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PREFACE

The present volume completes the series of texts on algebra
which the author began more than ten years ago. The account
of field theory and Galois theory which we give here is based on
the notions and results of general algebra which appear in our first
volume and on the more elementary parts of the second volume,
dealing with linear algebra. The level of the present work is
roughly the same as that of Volume II.

In preparing this book we have had a number of objectives in
mind. First and foremost has been that of presenting the basic
field theory which is essential for an understanding of modern
algebraic number theory, ring theory, and algebraic geometry.
The parts of the book concerned with this aspect of the subject
are Chapters I, IV, and V dealing respectively with finite dimen-
sional field extensions and Galois theory, general structure theory
of fields, and valuation theory. Also the results of Chapter III on
abelian extensions, although of a somewhat specialized nature,
are of interest in number theory. A second objective of our ac-
count has been to indicate the links between the present theory of
fields and the classical problems which led to its development.
This purpose has been carried out in Chapter II, which gives
Galois” theory of solvability of equations by radicals, and in
Chapter VI, which gives Artin’s application of the theory of real
closed fields to the solution of Hilbert’s problem on positive defi-
nite rational functions. Finally, we have wanted to present the
parts of field theory which are of importance to analysis. Partic-
ularly noteworthy here is the Tarski-Seidenberg decision method
for polynomial equations and inequalities in real closed fields
which we treat in Chapter VI.

As in the case of our other two volumes, the exercises form an
important part of the text. Also we are willing to admit that

quite a few of these are intentionally quite difficult.
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Introduction

In this book we shall assume that the reader is familiar with
the general notions of algebra and the results on fields which
appear in Vol. I, and with the more elementary parts of Vol. II.
In particular, we presuppose a knowledge of the characteristic of
a field, prime field, construction of the field of fractions of a com-
mutative integral domain, construction of simple algebraic and
transcendental extensions of a field. These ideas appear in
Chaps. II and IIT of Vol. I. We shall need also the elementary
factorization theory of Chap. IV. From Vol. IT we require the
basic notions of vector space over a field, dimensionality, linear
transformation, linear function, compositions of linear trans-
formations, bilinear form. On the other hand, the deeper results
on canonical forms of linear transformations and bilinear forms
will not be needed.

In this Introduction we shall re-do some things we have done
before. Our motivation for this is twofold. In the first place,
it will be useful for the applications that we shall make to sharpen
some of the earlier results. In the second place, it will be con-
venient to list for easy reference some of the results that will be
used frequently in the sequel. The topics that we shall treat
here are: extension of homomorphisms (cf. Vol. I, Chap. III),
algebras (Vol. II, Chap. VII), and tensor products * of vector
spaces and algebras (Vol. II, Chap. VII). The notion of extension
of homomorphism is one of the main tools in the theory of fields.
The concept of an algebra arises naturally when one studies a
field relative to a selected subfield as base field. The concept of
tensor product is of lesser importance in field theory and it per-

*In Vol. IT this notion was called the Kronecker product. Current usage favors the
term tensor product, so we shall adopt this in the present volume. Also we shall use the
currently standard notation @ for the X of Vol. II.

1



2 INTRODUCTION

haps could be avoided altogether. However, this notion has
attained enormous importance throughout algebra and algebraic
topology in recent years. For this broader reason it is a good
idea for the student to become adept in handling tensor products,
and we shall use these freely when it seems appropriate.

1. Extension of homomorphisms. Throughout this book we
shall adopt the convention that the rings we consider all have
identity elements 1 # 0. The term subring will therefore mean
subring in the old sense (as in Vol. I) containing 1, and by a
homomorphism of a ring % into a ring B we shall understand a
homomorphism in the old sense sending the 1 of % into the 1 of B.

Now let o be a subring of a field P and let ® be the subfield of P
generated by 0. We recall that the elements of ® can be ex-
pressed as simple fractions a8~ of elements a, B €0 (8 = 0).
Hence @ is the subring of P generated by o and the inverses of
the elements of the set o* of non-zero elements of 5. The set o*
contains 1 and is closed under the multiplication of 0. It is some-
times useful to generalize this situation in the following way: We
are given a subring o of P and a subset M of o* containing 1 and
closed under multiplication. We shall refer to such a subset as a
sub-semigroup of the multiplicative group of the field. We are
interested in the subring oy generated by o and the inverses of
the elements of M. For example, we could take P to be the field
R, of rational numbers and M = {2¥|k =0,1,2, ---}. Then
onr i1s the subring of rational numbers whose denominators are
powers of 2. In the general case,

ox = {afaeo, BeMi;

for, if we denote the set on the right-hand side of this equation by
o/, then clearly o’ € oa and o’ contains 0 = {a = al 7'}. Also
o’ contains every 87! = 187! for e M. One checks directly
that o’ is a subring of P. Then it follows that o’ = oy.

Now suppose P’ is a second field and we have a homomorphism
s of o into P’ such that 8* = 0 for every 8 e M. Our first homo-
morphism extension theorem concerns this situation. This is the
following result.

L Let 0 be a subring (with 1) of a field P, M a subset of non-zero
elements of o containing 1 and closed under multiplication, ou the
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subring of P generated by o and the inverses of the elements of M.
Let s be a homomorphism of o into a field P’ such that B* = 0 for
every Be M. Then s has a unique extension to a homomorphism
S of ox into P'. Moreover, S is an isomorphism if and only if s
is an isomorphism.

Proof. Let o877 = asB:™ !, a;ep0, B;e M. Then o8, =
a0 and consequently a;*8s* = a3°8;°. This relation in P’ gives
o1*(81%) 7! = ap*(B8:*) ~'. Hence the mapping

S:af™! > !B, aeos, BeM

which is defined on the whole of 0x = {aB87!} is single-valued.
One checks that § is a homomorphism (Vol. I, p. 92). If a ey,
thena® = (al 7!)% = a’1®* = o*,s0S is the same as s on 0. Hence
§ is a homomorphism of 0s which extends the given homomor-
phism of 0. Now let §’ be any such extension. Then the relation
B8t =1 for e M gives (871 =1, so (B71)% = (85)".
If aeo, then we have (8™ 1) = &5 (B%)7! = *(B®) ! =
(aB™1)S. Hence &’ = § and § is unique. Clearly, if S is an iso-
morphism, then its restriction 5 to o is an isomorphism. Now
assume s is an isomorphism and let a8~! be in the kernel of the
homomorphism §: 0 = (e8™1)% = o*(8*) . Thena®*=0,a =0,
and e8! = 0. This shows that the kernel of § is 0; hence § is an
isomorphism.

We consider next an arbitrary commutative ring % and the
polynomial ring %[x], » an element which is transcendental rela-
tive to A (Vol. I, p. 93). The elements of A[x] have the form
ao + a1x + asx® +- - -+ a,x™ where the 2, e % and a9 + ax +
-+ a,x™ = 0 only if all the 4; = 0. We now have the follow-
ing homomorphism theorem.

II. Let A be a commutative ring, U[x] the polynomial ring over U
in a transcendental element x and let s be a homomorphism of U into
a commutative ring B. If u is any element of B there exists a unique
homomorphism S of U[x] into B such that: a5 = a*, a e U, x5 = u.

The reader is referred to Vol. I, p. 97, for the proof. This result
has an immediate extension to a polynomial ring A[x;, xg, -« -, %]
where the ; are algebraically independent elements. We recall
that the algebraic independence of the x; means the following:
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If (my, my, - -+, m,) is an r-tuple of non-negative integers m;, then

a relation D am-my™ %" =0, @pmy.-.me ¥, can hold
mi
only if every @m,...m, = 0. From now on we shall refer to ele-

ments x; which belong to a commutative ring and are algebraically
independent relative to a subring ¥ as indeterminates (relative to
%). Then we have

IIL. Let Alxy, « - -, %, be a commutative polynomial ring in x;
which are indeterminates (relative to N) and let s be a homomorphism
of A into a commutative ring B. If uy, us, - -+, u, are arbitrary
elements of B, then there exists a unique homomorphism S of UAlxi|
into Bsuchthat1) a® = a*ae ;2) xS = usyi=1,2, -, 1.

We now suppose we have a commutative ring €, % a subring,
s a homomorphism of ¥ into another commutative ring 8. Let
ti, 3, - -+, ¢ be elements of € and let A#y, 25, - - -, 2] be the sub-
ring of € generated by % and the #. Under what conditions can
s be extended to a homomorphism § of Al#] = A, 22, - - -, 2]
into B so that #5 = u;, 1 <7 <r, where the u; are prescribed
elements of 8? The answer to this basic question is

IV. Let B and € be commutative rings, N a subring of €, s a
komomorphism of N into B. Let ty, - - -, t, be elements of €, uy, - - -,
u, elements of B. Then there exists a homomorphism S of Ulty, - - -,
t) into B such that a® = a*, aeW and tS = uyyi = 1,2, r, if
and only if for every polynomial f(xi, - - -, x,) € Ulx:], x; indeter-
minates, such that f(¢,, - -, t) =0 we have f(uy, -+, u,) =0.
Here f*(x1, -+, %r) 15 obtained by applying s to the coefficients of
S(xuy <5 x0). If S exists, it is unique.

Proof. The set & of polynomials f(xi, :--, x,) such that
S(t1, -, #:) = O is the kernel of the homomorphism A(xy, - - -, ¥,)
— h(ty, -, 2,) of Ux,] into Az]. Hence we have the isomor-
phism 7:4(¢y, -, 2) — A(xy, -+, %) + & of A#] onto the dif-
ference ring A[x;]/R. Next we consider the homomorphism A(xy,

<oy %) — A%uy, -+, u.) of Alxg) into B (cf. III). Assume that
f(ury -+, u,) =0 for every feR Then every fef® is mapped
into 0 by the homomorphism &(xy, - -+, x,) — A° (uy, -+, #,) so
R is contained in the kernel of this homomorphism. It follows
(Vol. I, p. 70) that we have the homomorphism A(xy, - -+, ¥.) +
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R — A(uy, -, u,) of Ax;]/® into B. Combining this with the
isomorphism 7 we obtain the homomorphism

(1) S:h(ty, -y ty) o AUy, -y u,)

of U[#] into B. This is the required extension of s. If §’ is any
extension of s to a homomorphism of U[#;] into B such that % =
a® and 5" = u;, then A(¢y, -, 1,)5" = A*(uy, - - -, u,); hence §’ =
S and § is unique. Also, it is trivial that, if f(#;, ---,2) = 0,
then 0 = f(¢y, - -+, £)5 = f*(u1, - - -, u,) if § 1s a homomorphism
of Al#y, - - -, ¢,) satisfying our conditions. Hence it i1s clear that
the condition stated in the theorem is necessary for the existence
of the extension §.

We have noted in the proof that the set ® of polynomials
f(x1, - -+, %.) such that f(#;, ---,2) = 0 is the kernel of a homo-
morphism. Hence this is an ideal in the polynomial ring A[xy, x2,
<«+,%.). Now let X = {g} be a set of generators of : X T &
and every element f e & has the form Za;(xy, - - -, x,)g:i(x1, - -+, %»)
where the a; (%1, - -, %,) &€ Alxy, 9, - - -, &,] and the gi(xy, - -, x,)
e X. Itis clear that, if g*(u4;, - - -, #,) = 0 holds for every ge X,
then also f*(uy, - - -, u,) = O for every feR. Hence we can obtain

from IV the following result which is often easier to apply than
IV itself:

IV'. Let B and € be commutative rings, N a subring of €, and s
a homomorphism of N into B. Let X be a set of generators of the
ideal ® of polynomials f in U[x1, Xy - - -, %r, ¥: indeterminates, such
that f(t1ytay - - -y t,) = 0. Then there exists a homomorphism S of
Alty, 2o, -+, 2] into B such that o = a®, ae¥, and 5 = u;,
1 <i < r if and only if g*(uy, - - -, u,) = O for every ge X. If S
exists, then it is unique.

We now consider the important special case of IV’ in which
A = & a field and » = 1. Then we know that ®[x] is a principal
ideal domain (Vol. I, p. 100). Hence the ideal ® = (f(x)), where
(f(%)) denotes the ideal of polynomial multiples of the poly-
nomial f(x) eR. It is clear that & > (1) = ®[x] since, otherwise,
0 = ®[x]/® = ®[f)] D& which contradicts 1 0. Since (a)
= (1) if a is a non-zero element of @, it is clear that the possibili-
ties for ® are ® = (0) or & = (f(»)) where f(x) is a non-zero poly-
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nomial in ®[x] of positive degree. In the first case we have ®[x]
=~ @[#] and ¢#is transcendental. Then II (or IV) is applicable and
shows that s can be extended to a homomorphism § sending #
into any u ¢ 8. Now suppose that f(x) = 0. In this case we
call the element ¢ e @ algebraic over ® since we have a non-zero
polynomial f(x) such that f(#) = 0. The ideal & is, by definition,
the set of polynomials g(x) such that g(#) = 0. The polynomial
f(x) is a polynomial of least degree in & and every other poly-
nomial contained in ® = (f(x)) has the form g(x) f(x). We can
normalize f(x) by multiplying it by the inverse of its leading
coefficient to obtain a polynomial with leading coefficient 1. If
we let f(x) be this polynomial, then clearly f can be characterized
by the properties that it is the polynomial of least degree belong-
ing to ®[x] with leading coefficient 1 satisfying f(#) = 0. We shall
call f(x) the minimum polynomial (over ®) of the algebraic element

te€. We can now state the following result which is a special
case of IV’

V. Let B and € be commutative rings, ® a subfield of €, t an ele-
ment of € which is algebraic over ®, and s an isomorphism of ® into B:

C2% 22
\

Then s can be extended to a homomorphism S of ®[t] into B so that
5 = u, if and only if f*(u) = O for the minimum polynomial f(x)
of t over ®. When the extension exists it is unique.

Remarks. The condition one has to put on # to insure the
existence of § can be stated also in the following way: « is alge-
braic over the image ®* of ® and its minimum polynomial over
®* is a factor of f*(x). The equation (1) giving the form of §
now becomes

) S:g(d) — g(u).

It is immediate from this that § is an isomorphism if and only if
S*(x) is the minimum polynomial of «.



INTRODUCTION 7

2. Algebras. We recall the definition of an algebra % over a
field @ (Vol. II, p. 36 and p. 225): A is a vector space over ® in
which a product xy € % is defined for x, y in % such that

5 (¥1 + %2)y = w1y + %29, *#(y1 + y2) = %91 + xy2

®) alxy) = (ax)y = x(ay), aced.

We shall be interested only in algebras which have identities 1 and
which are associative; hence in this volume “‘algebra” will always
mean just this.

We shall usually encounter algebras in the following way: We
are given a ring % and a subfield & of the center of %. Then
we can consider % as a vector space over ® by taking ax, o e®,
x ¢ %, to be the ring product of @ and x in %. Clearly this makes
% a vector space over ®. Also (3) is clear since « is in the center.
Hence we have an algebra %/® (% over ®).* This procedure for
defining an algebra will be used in studying a field P relative to a
subfield ®. Then we obtain the algebra P/®.

Another algebra which is basic is the algebra £,( M) of linear
transformations of a vector space I over a field ®. Here 4 + B,
AB and aA for A, B e (M) and a e ® are defined by x(A4 + B)
=xA + xB, x(AB) = (xA)B, x(aAd) = a(xA) = (ax)A. The
dimensionality [2s(IM):®] of LW(M) over & is finite if and only
if [M:®] is finite. If [IMN:®] = m, then [L( M) :®]) = m? (Vol. 11,
p- 41).

Evidently an algebra is a ring relative to the + of the vector
space and the multiplication @b. A subalgebra B of an algebra %
over ® is a subspace of % which is also a subring. An ideal of
%A/® is a subspace which is an ideal of A as a ring. A homomorphism
s of the algebra %/® into the algebra 8/® is a mapping of % into
B which is ®-linear and a ring homomorphism. Isomorphisms
and automorphisms are defined in a similar fashion. If  is an
ideal in %/®, then the factor space %/R is an algebra over & rela-
tive to its vector space compositions and the multiplication
(@ +8)(% +8) =ab+ & We have the algebra homomorphism
a — a -+ 8 of A/® onto A/R over &. If s is a homomorphism of
A/® into B/P, then the image A* is a subalgebra of B and the

* We shall use the notation /B also for the difference ring of Y relative to theideal B.
Which of these meanings is intended will always be clear from the context.
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kernel £ of s is an ideal in . We have the isomorphism 2 + & —
a® of A/ onto A*. The basic results on ring homomorphisms ex-
tend to algebras and we shall use these without comment.

We shall now record some elementary results on finite dimen-
sional algebras which will be used frequently in the sequel. The
first concerns a dimensionality relation for A/® and %/E, where
E is a subfield of ®. Evidently if E is a subfield of &, then we can
restrict the multiplication ax, a €¢®, x ¢ ¥ to a in E. This turns
% into an algebra % over E. Also since E is a subfield of & we
can define the algebra®/E. We now have

V1. Let U be an algebra over ®, E a subfield of ®. Suppose [A:®] <
o gnd [8:E] < . Then

(4) [%: E] = [%A:9][®: E].

Proof. Let (4;),1 < i < n,beabasis for A/®, (v;),1 <j <m,
a basis for ®/E. Then (4) will follow if we can show that (y;u;)

is a basis for A/E. First let ae Y. Then a = E atti, a; e®,

and a; = E e;;v; where ¢;e E. Then a —E)eu'y,u1 is a linear
J=1

combination of the elements vy;#; with coefficients ¢;; in E. Now

suppose Ze;viju; = 0 where the ¢;; ¢ E. Then we have Zayu; = 0

for a; = X e;;v;in®. Since the u; are ®-independent, this gives

J
a; =0,1 <7 <n Then the formulas a; = Z¢;v; and the E-
independence of the v; give e; = O for all 4, . This proves that
the elements y,u; are E-independent and so these form a basis
for A/ E.

VIL. Let U be a finite dimensional algebra over a field ®. Then U
is a division ring if and only if U is an integral domain.

Proof. We know that division rings are integral domains (Vol.
I, p. 54). Now suppose ¥ is an integral domain and let ¢ be any
non-zero element of %A. Consider the right multiplication ag:
x — xa determined by 4. This is a linear transformation in %/®
and, since 4z = 0 in ¥ implies & = 0, the null space of ag is 0.
It follows that ag is surjective (that is, maps % onto ). Hence
there exists an element 4’ such that 4’a = a’ap = 1. Thus a
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has a left inverse. A similar argument using the left multiplica-
tion a7, shows that @ has a right inverse. Hence every non-zero
element of A is a unit and YU is a division ring.

We consider next algebras % = &[] which have a single genera-
tor ¢t (cf. §1). We have the homomorphism g(x) — g(# of
®[x], » an indeterminate, onto A. If ® is the kernel, then Y =~
B[x]/R. Also we have seenin § 1 that ® = (f(x)) where f(x) = 0
or is a non-zero polynomial with leading coefficient 1. In the
first case, ¢ is transcendental and the homomorphism we indicated
is an isomorphism. In the second case, # is algebraic and f(x) is
its minimum polynomial. Then we have

VIIL. Let A = ®[t] be an algebra over ® generated by a single
algebraic element | whose minimum polynomial is f(x). Then

%) [A:®] = deg f(x),
the degree of f(x).

Proof. Let #» = degf(x). Then we assert that (1,2, ---, 1)
is a basis for %/®. Thus let 4 be any element of % = ®[#]. This
has the form g(#), g(x) in ®[x]. By the division process in ¥[x]
we can write g(x) = f(¥)g(x) + r(x) where degr(x) < deg f(x).
Then if we apply the homomorphism of ®[x]/® onto ®[#]/® send-
ing x into ¢, we obtain @ = g(¢) = 0g(#) + r(#). Since deg r(x) <
n, this shows that ¢ = r(¢) is a ®-linear combination of 1,¢, - -,
"1, Next we note that 1,4, -- -, #*~! are linearly independent
over ® since otherwise we would have a polynomial g(x) = 0 of
degree < # such that g(¥) = 0. This contradicts the hypothesis
that f(x) is the minimum polynomial. Hence (1,2, -+, " 1) is a
basis and (5) holds.

We recall that ®[s] == ®[x}/( f(x)), f(x) a polynomial of positive
degree, is a field if and only if f(x) is irreducible (Vol. I, p. 101).
Otherwise, ®[4 is not an integral domain. It is useful to have a
more complete analysis of the structure of &[] in terms of the
minimum polynomial f(x). We shall indicate the results in the
following exercises.

EXERCISES

1. An algebra A is a direct sum of ideals N if A is a vector space direct sum of
the subspaces ;. Let ¥ = &[4, ¢ algebraic with minimum polynomial f(x).
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Suppose f(x) = fi(x)fa(x) » - - fo(x) where (fi(x), fi(x)) = 1 if i £ j. Set gi(x) =
f(x)/fi(x). Show that there exist polynomials ai(x) such that

T

2 alx)ax) = 1.

T
Set e; = a:(#)gi(¥) and show that
atet--te=1, e =¢, ee=0, i#j.
Show that A = Aer @ ex D+ - - @D We, and that the ideal Ne; = {ae:]a & A}

considered as an algebra with identity e; has the form ®[e;] and is isomorphic to
®[x]/(fi(x)).

2. Let A = P[4, ¢ algebraic with minimum polynomial f(x). Let f(x) =
pi(x)pa(x)*e - - - pi(x)fr, plx) irreducible, pi(x) ¥ pi(x), i ¥ j. Show thatifz =
210 p2(t) - - - 2,(¢), then the ideal M = Uz in A is nilpotent in the sense that there
exists an integer k such that every product of & elements of 9t is 0. Show that

A=A/N=9[7, F=++N, and 7 is algebraic with minimum polynomial
2(x) = p1(#)pa(x) -+ p(x). Show that A=A P L PD--- P A, where U;
is an ideal which as an algebra is isomorphic to the field ®[x]/(p:(x)).

3. Let A/® be an algebraic algebra in the sense that every element of U is
algebraic. Prove that, if ¥ is an integral domain, then ¥ is a division ring.

3. Tensor products of vector spaces. Let I, N and P be
vector spaces over the same field . Then a dilinear mapping of
M, N into P is a mapping of the product set M X N into P such
that, if ¥ X y denotes the image of the pair (x,y), xe M, y e N,
then

(x1+x2)><y=x1 ><y+x2 X_}’,
(6) kX (+y2) =xXyi+x Xy
a(x Xy) =ax Xy=x X ay, acd.

It is clear that the product xy in any algebra ¥ is bilinear from
% A to A We shall say that a vector space P and a bilinear
mapping ® of MM, N into P is a tensor product of M and N and
we write B = M @ N if the pair (®, P) is “universal” for bi-
linear mappings in the sense that the following condition is ful-
filled:

If B’ is any vector space and X' is a bilinear mapping of M, N
into P/, then there exists a unique linear mapping = of B into P’
such that (x @ y)r = » X' y.

This notion is a special case of the general concept of the tensor
product of a right module M over a ring A and a left module
N over A. The special case we have defined for vector spaces is
treated under slightly different but equivalent hypotheses in Vol.
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I1, Chap. VII. In particular, a proof of the existence of a tensor
product of vector spaces and nearly all the basic properties we
shall require were given in Vol. II. At this point we shall give
another derivation of some of these basic results which is more in
keeping with the spirit of the now standard treatment of the
module case.

We first give a construction of a tensor product. To do this one
begins with a vector space § having as basis the product set
M X N of pairs (x,y), x e M, y e R. Thus the elements of § are
the expressions £;(x1,1) + £(¥2, ¥2) + - -+ Em(¥my ¥m) Where
£ ed, x;e M, y; € N, and the pairs (x;, ;) are distinct. If two
elements are given we can introduce terms with O coefficients and

thus suppose that the elements are E E:(%i, ¥4) and X 9:(xs, v2).
1
Then equality holds if and only if 51 =ni=1,2,---,m Addi-

tion is defined by E Ei(xs yi) + E n:(%6, ¥:) = E (& + 1) (%5, 32

and multlpllcatlon by a in ® by aE&(xi, y:) = E(aé,) (%5, ¥0). It
is immediate that § is a vector space over ®. Since It X N is
usually infinite, § is usually an infinite dimensional space. Now
let R be the subspace of § spanned by all the vectors of the follow-
ing forms:

(xl + x2,.y) - (xl,.y) - (x2,.y)

(%91 +32) — (%, 51) — (%, 52)
(e, y) — (%, o)
a(x>.y) - (ax>.y)>

xeM yeMN, ae®. Let B be the factor space F/R and set
¥ ®y = (xy) + R, the coset of (x,y) in F/R. Then we have:

™)

(¥1+ %) @y —x1 @y — %2 0y
= (01 +x2,5) — (k1,5 — (¥2,9) + R=%
* ® (91 + y2) —Xx®y1 —Xx @Y
=@y +y) —(Hy) —Fy) +R=%
ax @y) —ax @y = a(x,y) — (ax,y) + R = R
ax @y —xQ@ay = (ax, y) — (x,ay) + R = R.
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Hence ¥ ® y is bilinear. Since the vectors (x, y) generate §, the
cosets ¥ ® y generate B = F/R.

Now let X’ be a bilinear mapping of M, N into the vector space
P’. Since the vectors (x, y) form a basis for §, there exists a
linear mapping =’ of § into B’ such that (x, y)=’ = » X’ y. Let
R be the kernel of /. Then ((x1 + %2, y) — (%1, 5) — (%2, y))7 =
(01 + %2) X'y —x1 X'y — % X'y = 0550 (%1 + 2, %)
- (x> .y) - (x2>.y) ef. Similarl}’; (x>.yl +)’2) - (x>.yl) - (x>.y2)
ef, (ax,y) — a(x,y) e®, and (e, y) — (¥, ay) eR. This implies
that ® C & and, consequently, we have the linear mapping =
of § = §/R into P’ such that (¥ @ y)r = (%, y) + R)7 = 5 X' y.
Since the space § = F/R is generated by the elements x ® y,
it is clear that w is uniquely determined by the linearity property
and (¥ ® y)r = x X’ y. We have therefore shown that (8, ®) is
a tensor product of M and N and accordingly we shall write P =
M@ N (or M @+ N, if it is necessary to indicate the base field
®). Itis immediate from the definition that if (B;, ®,) and (Bq,
®2) are two tensor products, then we have a linear mapping of
P into Pz such that ¥ ®, ¥y — ¥ @2 y and we have a linear map-
ping of B, into P, such that ¥ @y — » @, y. Since the x @y
generate B;, the products in both orders of the two linear mappings
are identity mappings. It follows that both mappings are sur-
jective (onto) linear isomorphisms. In this sense the tensor
product is uniquely determined and so we may speak of #%e tensor
product of M and N.

Let {e.} and { fs} be sets of generators for ﬂ)? and M respec-

tively. Then any x e has the form » = E £:e; where {e;}

is a finite subset of {¢,} and any y e R has the form y= E 05,

{fi} € {fs}. Hence, by the bilinearity of ® we have « ®_y

Ztéme; ® fi. Since the elements ¥ @ y generate M @ N, we
see that the products ¢, ® f3 generate M ® N. Now suppose
that the {e,} and { fs} are independent as well as generators, that
is, these form bases for their respective spaces. We assert that
the set of products {e. ® fs} is a basis for M ® N. Since these
are generators we just need to show that they are linearly in-
dependent. For this purpose we form a vector space B’ with
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basis gag in 1-1 correspondence with the product set («, 8) of the
index sets of a and of 8. If x = Zfe; and y = Zy;f;, then we
define ¥ X'y = Z&m;gi;. Itis easy to check that the product X’
is bilinear, so we have the linear mapping = of M ® N into P’
sendingx @ y — x X' y. In particular, ¢, ® f5 — ea X' f5 =
Zage Since the gos are linearly independent, the same holds for
the ¢. ® f5 and we have proved

IX. Let {¢o} and { fg} be generators for M over ® and N over @
respectively. Then the set {e. ® fg} generates M @ N.  More-
over, if the {e.} and { fg} are bases, then the same holds for {e. ® f3}.

The second property actually characterizes the tensor product
among the bilinear mappings of M and N. More precisely, let
X’ be a bilinear mapping from M and N to a space P’ and suppose
there exists a basis (¢.) for M over ® and a basis (f5) for M over
® such that (¢, X’ f5) is a basis for p’. Then (P, X’) is a ten-
sor product. Thus we have the linear mapping of M ® N into
P’ sending e, ® f; into ex X' f5. Since the e, X’ f5 generate
P’, the mapping is surjective and, since the ¢, X’ fg are linearly
independent, the mapping is 1-1. Thus we have a linear iso-
morphism of M ® N onto P’, mapping ¥ ® y into ¥ X’ y. This
implies that (B’, X’) is a tensor product.

In the case of finite dimensional spaces we have the following
simple criterion.

X. Let X' be a bilinear mapping of the finite dimensional spaces
M and N into B’ and suppose that B’ is generated by the products
x X'y. Thenthe dimensionality [P :®] < [ IM:®)[N:®] and equality
holds if and only if (B, X') is a tensor product of M and N.

Proof. Let (¢.), (f;) be bases for M and N respectively. Then
every ¥ X’ y is a linear combination of the elements ¢; X’ f; and
so every element of P’ is a linear combination of these elements.
This implies [B':®] < [M:P][N:®]. (B’, X’) is the tensor product
if and only if the set (¢; X’ f;) is a basis. This is the case if and
only if the equality holds in the dimensionality relation.

We recall that, if 4 is a linear mapping of M into M, and B
is a linear mapping of M into Ny, then there exists a uniquely de-
termined linear mapping 4 ® B of I @ N into M; ® Ny such
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that (x ® y)(4 ® B) = x4 ® yB (Vol. 11, p. 211). We recall
also that, if Pis an extension field of the field ® so that P isa vector
space over ® and I is any vector space over ®, then P @+ M
can be considered as a vector space over P by means of the
product p(Zp; ® x;) = Zpp: @ ¥, pypie P, %, M (Vol. 11, p.
221). We denote this vector space as Mp and we refer to it as
the space obtained from ¢ by extending the base field to P. If
A is a linear transformation in M over @, then 1 @ A (defined by
Coi® %) 1® A) = Zp; ® x;.4) is a linear transformation in
Mp over P which may be considered as the extension of 4 to Mp.
We shall use the same letter 4 to denote this extension. If (e,)
is a basis for M over ®, then (1 ® ¢ ) is a basis for Mp over P, so M
over ® and Mp over P have the same dimensionality. If M is finite
dimensional with basis (e;), 1 <7 < n, and A is the linear trans-
formation with matrix («;;) relative to this basis, then e;4 =
Zage; and (1 ® )4 = Zoyi(1 @ ¢;). Hence the extension A has
the same matrix relative to the basis (1 ® ¢;).

We recall also that the tensor product is commutative in the
sense that there exists a 1-1 linear transformation such that ¥ ®
y > y@xof M@ N onto N ® M. Moreover, associativity
holds in the sense that there is a linear isomorphism of (I ® N)
® SontoM @ (N ® S) mapping (¥ ® ¥) @ zintox @ (¥ ® 2).
These results have been established in Vol. II, pp. 209-210. We
shall indicate alternative proofs in some of the following exercises.

EXERCISES

1. Show that, if { f} is a set of generators for N, then every element of M @ N
has the form Zx; ® fi, { fi} a finite subset of { fs} and x; € M. Show that, if the
{ f8} are linearly independent, then Zx; ® f; = 0 if and only if every x; = 0.

2. Show that, if N is a subspace of M, then the subspace Py ® N generated
by all vectors x; @ y, x1 € My, y €N is the tensor product of My and N relative
to the ® defined in N @ N.

3. Let & be a subspace of I, { a subspace of N. Show that (M/K) & N/Y
and (M N)/(R @ N+ M ® Y are isomorphic under a linear mapping such
that(* + R X U+ 2 xRI+ R AIN+M Y.

4. Let Py, P, - - -, M, and P be vector spaces over . Define an r-linear
mapping (x1, -, %) — %1 X %3 X++- X 2r €PB, x: € Py, by the properties:

xp Xooe X (o 4 ) Xeo o Xowr = 200 Xoo o Xaed Xoo o X 2y
F a1 X X xd" Xeo o X
ooy XX %) = 21 X-+»Xaxg X+ X .
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Show that there exists a P and an r-linear mapping of Iy, - - -, M, into P such
that: if (w1, -+, %) — x1 X" wg X'+« X’ %, is an rlinear mapping of My, - - -,
M., into P’, then there exists a unique linear mapping 7 of P into P’ such that
(%1 ®:+-® w)m = w1 X'+ ++ X’ #,. Denote this P together with its product as
the tensor product I8, @ P @ --- @ M,.

5. Show that M @ N @ Pisisomorphicto M Q@ N @ P)and (M AON) @ P
by means of linear mappings such that x® y ® 2 > * ® (y ® 2 and
(x ® ») ® zrespectively. Generalize to r factors.

6. Show that I ® N is isomorphic to N ® M under a linear mapping send-
ingx®y - y®x (Hint: Given # @ M, define x X'y =5y @ x, x e IMN,
€. Show that this gives a bilinear mapping of IR, N into ! @ IM and
apply the defining property of M @ M. Then reverse the roles of Pt and N.)

4. Tensor product of algebras. We recall that, if %; and ¥,
are algebras over ®, then the vector space A = A, ® Us is an
algebra relative to its vector space compositions and the multi-
plication

(8) (Z a; @ a2i><z blf ® bg:) = Z al,-bl,- ® 421'521',
T 7 3

@y, b1j € Ny, @2i, baj € Ay (Vol. 11, p. 225). The associativity of
%A; and A, implies associativity of A; ® A and 1; ® 1, is the
identity 1 of A = A; @ U, if 1; is the identity of ¥;. Also U is
commutative if the ¥; are commutative. The basic property of
the tensor product of algebras is the following homomorphism
theorem.

XI. Let A, ¢ = 1,2, be algebras over ®, s; a homomorphism of
W; into an algebra B such that a,*as;™ = as®a™, a; ¢ Uy, as e U,
Then there exists a homomorphism s of A = Ay, @ Ny into B such
that

© (Zar: @ a3:)® = ZaMax.

Proof. The algebra product @; X’ a3 = 4,2, ¢ B defines a
bilinear mapping of %;, %, inte B. This is clear from the linearity
of the 5; and the properties of the multiplication composition in $.
Hence the definition implies that we have a linear mapping s of
A @ Ay into B such that (a; ® a3)* = 4,°a;°. Then s has the
form (9). We have ((ﬂl ® ag)(bl ® 52))3 = (4151 ® agbg)s =
(8161)"(a263) = 41"61%a2%6," = a,"a:%6,"%," = ((a1 @ a2)*
(61 ® &5)*). This implies that s is an algebra homomorphism.
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Suppose now that the following condition holds in B:

(1) If (ea) is a basis for A over ® and (fp) is a basis for ¥y over
®, then the set {e,* f3"} 1s linearly independent.

An equivalent condition for this which we shall sometimes find
more convenient is

(") If (f) is a basis for A, over @, then a relation &, f;* +
as" f2®* + -+ an"fu® = O for a; € Ay and f; € (f3) implies that
every a; = 0 (cf. ex. 1 of § 3).

Now we have seen that, if (i) or (') holds, then the mapping
s given by (9) is an isomorphism of % = A; ® U, as vector space
into 8. Since this is an algebra homomorphism, clearly it is an
algebra isomorphism. We remark that (i) cannot hold unless s,
and sp are isomorphisms.

The result we have obtained actually gives an internal charac-
terization of A; ® ¥A,. For this we note thata; —» 2, =4, ® 1,
and a; — 43" = 1, ® 4, are homomorphisms of %; and %, re-
spectively into %; ® %, since the linearity of the mappings we
have indicated follows from the bilinearity of 4, ® a3, and the
homomorphism for multiplication is clear from (9). The com-
mutativity condition: @;%a,;* = a5%a," is clear, since 4;%a,% =
(a1 @ 15)(11 ® a3) = a1 ® az = (1, ® a2)(a1 @ 15) = aza,".
Finally, if (e.) and (fp) are bases for %; and ¥, respectively, then
the set {e,"f3*} = {e. ® f3} is linearly independent. It follows
that (e,") is a basis for ;1 = {a; ® 1} and (f3%) is a basis for
Ay Also 5, and s, are isomorphisms and we can identify %
with %, Ay* with Ay, Our results evidently lead to the following
internal characterization of the tensor product of algebras:

XIL. Let A be an algebra, N, and Ny subalgebras such that

(1) @182 = asay, a;e ¥
(1) If (ea) is a basis for Ny and (f3) is a basis for g, then {eq f5}
is a linearly independent set.
(i11) A is generated by Ny and Us.

Then Zay: @ azi — Zayiaq; is an isomorphism of Ay @ s onto U.

Because of this result and the situation we noted in %, ® ¥,
itself, we shall say that % is the tensor product of its subalgebras U,
and U, if the above conditions (i)—(iii) are fulfilled. As we have
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seen, the condition (ii) can be replaced by the equivalent condi-
tion:

(i) If (fp) is a basis for s, then ar fr + asfo + -+ @mfm =0
for a; € Wy, fie (fp) implies every a; = 0.

Of course, the roles of %A; and ¥z can be interchanged in this.
We remark also that (ii) and (iii) can be combined in a single con-
dition: If (ea) s a basis for %y and (fg) is a basis for N, then (ea f5)
is a basis for A. For finite dimensional algebras this is equivalent
to the dimensionality condition: [A:®] = [, :®][A:P] (cf. X).

EXERCISES

1. Let A be an algebra over the field ® and let A[x] be the algebra of polynom-
ials in an indeterminate x over 3. Show that A[x] is the tensor product of its
subalgebra A (constants of A[x]) and its subalgebra ®[x] of polynomials in x with
coefficients in ®. Use this to prove that ®[x, y], x, y indeterminates, is the tensor
product of its subalgebras ®[x] and ®[y].

2. Let ®(x, y) be the field of rational expressions in the indeterminates x, y,
that is, the field of fractions of ®[x, y]. Let U be the subset of fractions with
denominators of the form f(x)g(), f(x) € ®[x], g(») € By]. Show that A is a sub-
algebra of ®(x, ¥) which contains the subalgebras &(x), ®(y) where these are the
fields of fractions of ®[x] and ®[y] respectively. Show that U is the tensor prod-
uct of these subalgebras and that X is not a field.



Chapter 1

FINITE DIMENSIONAL EXTENSION FIELDS

If ® is a subfield of a field P, then we have seen that we can
consider P as an algebra over ®. In this chapter we shall be con-
cerned primarily with the situation in which P is finite dimen-
sional over the subfield ®. We shall be concerned particularly
with the general results of Galois theory that are of importance
throughout algebra and especially in the theory of algebraic num-
bers. We shall consider the notions of normality, separability,
and pure inseparability for extension fields, Galois cohomology,
regular representations, traces, and norms. Also the basic results
on finite fields will be derived and the notion of composites of two
extension fields will be considered.

In most of our considerations, and indeed throughout this book,
we shall usually be given a field ® and we shall be concerned with
extension fields P/®. The ways of obtaining such extensions have
already been indicated in Vol. I, pp. 100-104. At the beginning
of this chapter we adopt a different point of view. Here we are
given the top field P and we look down at its various subfields;
moreover, we do not insist that these contain any particular sub-
field (except, of course, the prime field). The treatment here will
be abstract in the sense that no knowledge of the structure of an
extension is required. In spite of this we can give a survey of the
subfields which are of finite co-dimension in the given field P and
those which are Galoisin P. These surveys aregiven in twogeneral
“Galois correspondences.” After these rather abstract considera-
tions we shall go down to ® and we shall apply the general results
to the extension P/® in terms of polynomial equations with co-

efficients in P.
18
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1. Some vector spaces associated with mappings of fields.
Let E and P be two fields, and let 2(E, P) denote the set of homo-
morphisms of the additive group (E, +) of E into (P, +). The
set 8(E, P) is a group relative to the composition 4 + B defined
by e(4 + B) = e4 + B for ¢ in E. One checks that 4 4+ Be
2(E, P) and that the group conditions hold. The 0 of 2(E,P) is
the mapping O such that 0 = 0, the 0 of P, for all ein E,; and —A4
is given by e¢(—A) = —eA (cf. Vol. I, §2.13 and Vol. 11, § 2.2).
If A is a third field and A4 ¢ &(E,P) and B e P, A), then the
resultant 4B defined by e(4B) = (eA)B is an element of L(E, A).
Both distributive laws hold for this composition. In combined
form they say that, if 41, 45 € (E, P) and B;, B; e P, A), then
(4, + A2)(By + By) = A4\By + A4,By + A2B, + A;,B,. Fi-
nally, we note that the associative law of multiplication holds:
If T is another field and A4 & ¥(E,P), Be P, A), Ce g, T),
then (AB)C = A(BC) e {(E,T). All of these assertions are
readily verified and they are very similar to facts about composi-
tion of linear mappings which we have considered in Vol. II,
§2.2. Weleave it to the reader to carry out the verifications.

The results we have indicated imply that {(E, E) is a ring
under the compositions of addition and multiplication. This is
just the ring of endomorphisms of the additive group (E, +)
which has been considered in the general case in Vol. I, § 2.13.
If p € P, then the mapping pr:¢ — £p(= pf) in P belongs to (P, P).
Since 4B ¢ (E, P) for 4 in {(E, P) and B in (P, P), we see that
Apr € (E,P). This observation permits us to convert (E,P)
into a right vector space over the field P. For this purpose we
define Ap = Apg for A € {(E, P) and p e P. Then we have

(A4 B)p=(A4+ Bpr = Apr + Bor = Ap + Bp
A+ o) = A(p + o)r = A(pr + or)
= Apr + Aog = Ap + Ao
A(po) = A(po)r = A(pror) = (Apr)or = (Ap)o
Al = Alg = A,

which shows that 2(E, P) is a right vector space over P.
We note next that if ez denotes the mapping n — 7nein E, then
e € 2(E, E). Hence, if 4 ¢ ¥(E, P), then g4 ¢ (E,P). We can
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now consider {(E, P) also as a left vector space over E by defining
ed = erA. It should be remarked that, if we do this, then there
is an ambiguity in writing e4 which can mean either the image of
e under A or the endomorphism eg4. For this reason we shall
avoid considering {(E, P) as a left vector space over E and use
instead the product eg4 when this will be needed.

All that we have just said applies also to fields over a given
field ®. Consider the fields E/® and P/®. In this connection it is
natural to consider the subset & (E, P) of &(E, P) of linear trans-
formations of E as vector space over ® into P over ®. If aed®
and & p eP, then (af)pr = (af)p = a(ép) = a(tpr), which implies
that pp € (P, P). If A4 e %(E,P), then Ap = App ¢ W(E, P); so
it is clear that (E, P) is a subspace of the right vector space
L(E, P) over P. If %A is any right vector space over P, we denote its
dimensionality over P as [%:P)g. Then we have the following im-
portant result on [8(E, P) :P]z.

Theorem 1. Let E/®, P/® be fields over ® and let 2(E, P) be the
right vector space over P of linear mappings of E/® into P/®. Then
[E:®] is finite if and only if [Re(E, P):Plg is finite and when both
are finite then

1) [E:®] = [(E, P):Plz.

Proof. Let 7y, 72, - -+, 7, be elements of E which are linearly
independent over . Then we may imbed this set in a basis {74}
for E over ® (Vol. I1, p. 239). If we choose a correspondent 7,
e P for each 5,, then there exists a unique element A € &(E, P)
such that no4 = 7, for every n,. This implies that for each i =
1,2, ---,n, there exists a linear mapping E; (not necessarily
unique) such that 9;E; = 1, 9;E; = 0if j ¢ 7. Then if p; e P,

77:'(2 EiPi> = 2 miE)p: = p;.
1 t=1

Hence ) Ep; = 0 implies every p; = 0, which shows that, if
1

[E:®] is infinite, then for every » there exist #» right P-in-
dependent elements of 8(E, P). Then [%(E, P):Plg > # for every
n, so this dimensionality is infinite. Next suppose [E:®] = # <
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o and that the 5’s constitute a basis. Let 4 ¢ &(E, P) and set
nid = ps Then n,-(‘:: E,-p,-> = p; = n;4. Thus 4 and ZE;p;
have the same effect z)n the basis (51,72, - - -, 7s) for E/®. It
follows that 4 = ‘:: E:p; and, since the E; are right independent

1
over P, these form a basis for %(E, P) over P. Hence [%&(E, P):Pz
= n = [E:®]. This completes the proof.

We now drop ® and consider again E and P arbitrary fields
and {(E, P) the group of homomorphisms of (E, +) into (P, +).
We consider this as a right vector space over P as before. Let
% be a subspace of this space. Let e be a fixed element of E.
Then e determines a mapping f, of ¥ into P by the rule that
f(A) = edeP. We have f(d + B) = (A + B) = ed + B
= fd{A) + f«(B) and, if peP, then f(Ap) = e(dp) = (eA)p =
f(A)p. Thus we see that f, is a P-linear mapping of the right
vector space ¥ over P into the one dimensional space P over P,
that is, f. &€ A*, the conjugate space of A. Of course, A* is a left
vector space over P. The process we have just indicated produces
a collection {f.|ee E} of linear functions. This collection is
“total” in the sense that, if f(4) = 0 for all ¢ then A4 = 0.
This is clear since the requirement is that e4 = O for all € and this
is just the definition of 4 = 0. We can now prove the following
useful

Lemma. Let U be a subspace of L E, P) over P such that [A:Plr =
n < . Then there exist elements €, €y -+, €, € B and a right
basis Ey  Eq, -+, E, for A over P such that ¢;E; = 8;; (8;; = 0 if
i 74,85 =1).

Proof. We are given that [:P]g = # < ». This implies that
the conjugate space ¥* is #-dimensional. Let B* be the subspace
of A* spanned by the linear functions f., e¢ E. Since f(4) =0
for all f e B* implies that 4 = 0, it follows that 8* = %* (Vol.
2, §2.10). Hence we can find # linear functions f, fo, ***, fe,
which form a basis for %*. Since % can be considered as the con-
jugate space of A*, we can find a basis Ey, E, - - -, E, for %A over
P such that f.(E;) = ;. Recalling the meaning of f. we see that
we have €;E; = 8;; as required.
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2. The Jacobson-Bourbaki correspondence. Let P be a field
and let 2(P, P) be the ring of endomorphisms of the additive
group (P, +). As before, we consider (P, P) as a right vector
space over P. If ® is a subfield, then £;(P, P) the ring of linear
transformations of P/® is a subring of (P, P) and a subspace of
(P, P) over P. Moreover, we have seen (Th. 1) that, if ® is of
finite co-dimension in P in the sense that [P:®] = # < oo, then
[2:(P, P): P]g = n. These properties of (P, P) in no way refer
to the subfield ®. We shall now show that they are charac-
teristic of the sets (P, P). This is a consequence of the follow-
ing

Theorem 2 (Jacobson-Bourbaki). Let P ¢ a field and U a set
of endomorphisms of (P, +) such that:

(1) Uisa subring of Y(P, P) the ring of endomorphisms of (P, +)
(containing the identity mapping, by our convention, Introd.
?2.2).

(ii) A is a subspace of (P, P) as right vector space over P.
(i) [A:Plg = 7 < .

Let ® be the subset of P of elements o such that agd = Aag for all
AeN. Then® is a subfield of P, [P:®] = n and A = (P, P) the
complete set of linear transformations of P/®.

Proof (Hochschild). The verification that & is a subfield is
immediate and will be omitted. Next we apply the lemma of § 1
to obtain elements p;, pg, - - *, pn iIn P and a right basis (E;, E,,

En) for %A over P such that p,'E_,' = 5,'_,'. Since PROR = ORPR
for any p, o in P, it is clear that ® is the set of « € P satisfying
arE; = Eop, 1 = 1,2, ---,n. Also it follows from p;E; = 8

n

that, if we express the element 4 of % as 4 = 3 Eo;, then
1

pid = Z (p;E;)o; = o;. Hence the representation of any A in

terms of the basis reads: 4 = Z Ep:A) or 4 = Z E(p: Dr.

We shall now use this formula to show that every E; maps P into
®. For this purpose let ¢ be any element of P and consider the
mapping EwgEr, j, k = 1,2, -« -, n, which belongs to ¥, since % is
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a subring of the ring of endomorphisms. The formula we obtained
can be applied for 4 = E;orFE; to give

EjopEr = 2 Edp:EjorEi)r

= Ej(lO’REk)R
= E_,'(O’Ek)jz.

Q

This means that for arbitrary pin P we have
pEijorE = pEij(cEy)R.
In other words, ((pE;)0)Er = (pE;)(dEx). Then
(e(pED))Ex = (0Er)(pE;).
If we think of ¢ as the argument, this gives the operator identity
(eErEx = Ei(pE;)r, which implies that pE; e ®, and this holds
for all p e P. We can now show that the p; we started with form
a basis for P/®. Let ¢ e P and consider the element ¢/ = ¢ —
> (¢Ej)p; in P. Since ¢E;e® and agEy = Eyag for a in &, we
j
have ¢'E; = ¢E; — (Z (aE,-)p,-) Ey=0oE;, — (Z Pj(O'Ej)R> E;
J J
= O'Ek - Z (ijk)(an)R = O'Ek — O'Ek =0. Since le 2[, 1=
J
ZE\ for suitable A\, e P. Then ¢’E; = 0 implies ¢’'1 = 0 so
o/ = 0. We therefore see that o = Z(cE;)p; is a ®-linear combina-
tion of the Py If Za;p: = O, a; e, then o = (Ea;pi)Ej =0,
Hence (o1, p2, - - -, pn) is a basis for P over ® and [P:®] = ».
Since agd = Aag for every ae® and A e ¥, every AN is a
linear transformation of P over ®. Hence ¥ C (P, P). Since
[8(P, P):Plg = # by Theorem 1, and [¥:P]g = #, we see that
A= QQ(P, P)

Theorem 2 permits us to establish our first and most general
“Galois correspondence” for a field P. This concerns two collec-
tions of objects: the collection & of subfields & which are of
finite co-dimension in P and the collection Z of sets of endomor-
phisms of (P, +) having the properties (i), (ii), (iii) of the theo-
rem. To each ® e # we associate R(®) = 2,(P, P). This is a
subring of (P, P), a subspace of &(P, P) over P and satisfies
[8(P, P):Plg < ». Hence R(®) = (P, P) e Z On the other
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hand, if % e %, then we can associate the subfield F(%) = & =
{a|ae P, apd = Aag, A € U}. This is of finite co-dimension in
P and so it belongs to # By Theorem 2, we have R(F(¥)) = .
If e # and % = R@) = %W(P, P), then [A:P)]z = [P:®] by
Theorem 1 and [¥: Pl = [P:F(A)] by Theorem 2. If a e®, we
certainly have agd = Aag for 4 ¢ A. Hence & C F(A) by the
definition of F. Since [P:®] = [P:F(M]F(A):®] (VI, Introd.)
and [P:®] = [P:F(N)], we have [F(A):®] = 1 and so® = F(A) =
F(R(@®)). The two relations

REFM) =9, AeXR
F(R@) =&, ®¢F

imply that the mappings R and F are inverses and are 1-1 of &
onto Z and Z onto ¥ respectively. It should be noted that the
definitions of R and F show that these mappings are order revers-
ing for the inclusion relation: ®; C @, for subfields implies R(®,)
2 R(®;) and A, C A, for UA; € Z implies F(A;) D F(Uy).

In § 4 we shall establish a Galois correspondence between finite
groups of automorphisms of a field P and certain subfields of
finite co-dimension in P. Later (§ 8, Chap. IV) we shall establish
a similar correspondence between certain Lie algebras of deriva-
tions in P and certain subfields of P. Both of these correspond-
ences will be derived from the general “Jacobson-Bourbaki cor-
respondence’” which we have just given. In addition to this we
shall need some information on special generators for some of the
rings A € #. For the automorphism theory the generators are
automorphisms of P. The results we require for these will be
derived in the next section.

EXERCISES

1. Let ¥ be a set of endomorphisms of (P, +) satisfying conditions (i) and (ii)
of Theorem 2. Show that ¥ is an irreducible ring of endomorphisms (Vol. 11, p.
259). Apply the density theorem for such rings (Vol. II, p. 274) to show that, if
p1, P2, * * *, pm are P-independent elements (P as in Th. 2) and oy, 0a, - -+, 0m are
arbitrary in P, then there exists an 4 € ¥ such that ud = 04,i = 1,2, -+, m.
Use this result to give another proof of Theorem 2.

2. Let P be an arbitrary extension field of the field . Show that, if « € P satis-
fies apAd = Aag for all A4 €(P,P), then a € ®.

3. Let (p1, p2, * - -, pn) be a basis of P/®, (41, Ao, - -+, As) a right basis for
(P, P) over P. Show that the #n X # matrix (pi4;) has an inverse in P,.
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3. Dedekind independence theorem for isomorphisms of a field.
Let s be an isomorphism of a field E into a field P. Then s is an
isomorphism of the additive group (E, +) of E into (P, +)
satisfying the multiplicative condition (en)* = €3*. We can
write this in operator form as:

() mrS = 5(n*)r

where 7z is the multiplication by 4 in E and (%) is the multiplica-
tion by * in P. If both E and P are fields over ®, then an iso-
morphism of E/® into P/® is an algebra isomorphism of the first
algebra into the second. Hence, in addition to the conditions:
(e+m)° =€+ 7% (en)® = *9°,1° = 1, 5sis 1-1, we have (ae)® =
ae® for a €®. The first and last of these are just the conditions
that 5 € 2(E, P). Hence if s is an isomorphism of E/® into P/®,
then o* = (al)® = al* = « holds for every a e®. Conversely,
this condition implies that (ae)®* = ae’, e ¢ E. Thus an isomor-
phism of E/® into P/® is just an isomorphism of E into P which
is the identity mapping on &.

We shall now derive two basic results on linear relations con-
necting isomorphisms of E into P (no ®).

Theorem 3 (Dedekind). Let E and P be fields and let sy, 59, - - -,
Sn be distinct isomorphisms of B into P. Then the s; are right linearly
independent over P: Zs;p; = 0, p; € P, implies every p; = 0. Here
Sp = Spr.

Proof. If the assertion is false, then we have a shortest relation,
which by suitable ordering reads:

(3) S1p1 + Sep2 + 0 o+ Sepr = O)

where every p; # 0. Suppose » > 1. Since s5; 53 there exists
1€ E such that #* = 9”. Now multiply (3) on the left by ng.
If we take into account (2), this gives: 519%p; + s2nps + -+
sm™p, = 0. Next we multiply (3) on the right by 5™ and obtain

S1p19* + Sgpon®™ + - - -+ 5.p,m™ = 0. Subtraction of the two new
relations gives

s2p2(n"* — 1™) + sapa(n™ — 9*) +---= 0.

Since py(n* — ™) % 0, this is a non-trivial relation which is
shorter than (3). Hence we are forced to conclude that » = 1,
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that is, s;p; = 0. Since p;r™! exists, this gives 5; = 0 contrary

to the assumption that s, is an isomorphism.
We can combine Theorem 1 and Dedekind’s theorem to obtain
the following

Corollary. Let E and P be fields over ® such that [E:®) = n < .
Then there exist at most n distinct isomorphisms of E/® into P/®.

Proof. Let 54, 54, - - -, 5, be distinct isomorphisms of E/® into
P/®. Then these are elements of R (E, P) which are right P-
independent. Since [2(E, P): Plg = », we must have r < n.

In the next section we shall be concerned with right P-vector
spaces spanned by a finite number of automorphisms of a field.
More generally, let s5q, 53, - - -, 5» be distinct isomorphisms of E
into P and let % be the set of endomorphisms of the form

4) 51p1 + S2p2 + -+ Snpn, pi€P.

Evidently, % is a subspace of the right P-vector space 2(E, P).
Moreover, if € ¢ E, then egs; = s:(e*)g, by (2), so

n n n
® ( 2 sip "> = D sderps = 2 se(ep) -
1 1 1

This shows that 9 is closed under left multiplication by arbitrary
er, € € E. We shall require the following

Theorem 4. Let E and P be fields, sy, 59, - - -, Su is0morphisms of
E into P, and let A be the right P-subspace of Y E, P) of endomor-
phisms Zsipi, pse P. Let B be a P-subspace of A which is invariant
under left multiplication by elements eg, e e E. Then B = 5,P +

5i, P 4.4 SfrP<= {Z ijp,'j}> where {51‘1, Sigy "0y 51‘,-} =8B N
J
{51> 52, "'>5ﬂ}'

Proof. It is clear that {Z Sipiy| piy € P} C 8. To prove the
=1

n
opposite inclusion it suffices to show that, if 3 s:;0; € 8, then the
1

s; for which p; # 0 are contained in 8. Suppose this is not the
case. Then we have an element sppx, + Skpr, + -+ Sk0r, in
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% in which every pg, # 0 and s5i, ¢ 8. We can then argue as in
the proof of Dedekind’s theorem. We assume s minimal. If
s > 1, we apply the process we used before to obtain a shorter
element of the same type contained in 8. Then sipx, € B which
implies that s3, € 8 contrary to assumption.

EXERCISE

1. Let E = ®() where 0 is algebraic over & and (f(x)) is the kernel of the
homomorphism g(x) — g(6) (Vol. I, p. 103). Then [E:®] = deg /. Use the ex-
tension theorem V of Introduction to show that the number of 1somorphisms of
E/® into P/® does not exceed deg /. Extend this result to obtain an alternative
proof of the Corollary to Theorem 3.

4. Finite groups of automorphisms. Let G be a group of auto-
morphisms of a field P and let ® be the subset of P of elements «
such that o® = « for every s ¢ G. We shall call ® the set of G-
invariants of P. Since the invariants (or fixed elements) of an
automorphism form a subfield, ® is a subfield of P. We denote
® = I(G) (or Ip(G) if it is necessary to indicate P) and we call a
subfield which has this form, that is, which is the subfield of in-
variants of a group of automorphisms, Galois in P. We shall
also say that P is Galois over ® or P/® is Galois.

The process we have just indicated associates with groups of
automorphisms G, subfields I(G), and we have the mapping
G — I(G) of these groups into subfields of P. We now define
a mapping in the opposite direction. If @ is any subfield of P,
then we associate with & the set 4(®) (or Ap(®)) consisting of the
automorphisms of P/®, that is, the automorphisms s of P such
that o® = o for all @ e®. Evidently, 4(®) is a subgroup of the
group A of all the automorphisms of P. We call 4(®) the Galois
group of P/®. We have the subfield-group mapping @ — A4(®).
The following properties of the mappings G — I(G), @ — A(®)
are clear from the definitions:

(@ G, 2G; = I(G,) CI(G;) (= denotes “implies”).
B) @ 2% = A@) C A4@s).

(v IA@) 2.

(& 4I(G)=26.
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These relations have the following consequences:
(e) I(4(1(G))) = I(G).
(n) AI(A@))) = 4@®).

The proofs of these two are identical so we consider (e) only.
Here we use (y) for ® = I(G) and obtain I(A(I(G))) 2 I(G).
On the other hand, if we apply I to 4(I(G)) 2 G, we obtain I(G) 2
I(A(I(G))). Hence (e€) holds. A consequence of () is that ® is
Galois in P if and only if @ is the set of invariants of the Galois
group of P/®, that is, ® = I(A4(®)). Clearly this condition is
sufficient. On the other hand, if ® = I(G) for some group of auto-
morphisms G, then ® = I(G) = I(A(I(G))) = I(A@®)).

We shall now study the Galois correspondences ® — A4(®),
G — I(G) starting with finite groups of automorphisms. We
denote the order of a group G by (G:1) and, more generally, the
index of a subgroup H in G by (G:H). We shall deduce all the
results on the subfield—group correspondence from the Jacobson-
Bourbaki theorem (Th. 2) via the following

Lemma. Let G be a finite group of automorphisms in the field P

and let A = {Z sipi|5:€G, pe e P}. Then U satisfies the hypoth-
1

eses (1), (i1), (ii1) of Theorem 2, [A:Plg = (G:1), and the subfield
® given in Theorem 2 is the subfield of G-invariamts. If B is a
subring of N and a subspace of A over P, then

B = {;tjpﬂt,-eﬂ,p;e P}

where H = {t;} is a subgroup of G.

Proof. If pe P and s is an automorphism, then (2) shows that
prs = 5(p*)r. Hence (sips)(sip) = si(pirsipir = sisi(pi*rpir =
si5;p:p; € U since 5357 € G. This implies that %A is a subring of the
ring of endomorphisms (P, P). Since 1eG and G C ¥, 1.
It is clear that % is a subspace of (P, P) as right vector space
over P. Since the s; are independent over P by Dedekind’s
theorem, [A:P]g = (G:1) < . The subfield & of Theorem 2 is
the set of @ € P such that a4 = Aag forall 4 e A. Since agpr =
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orOR, p € P, anyhow, the condition is equivalent to agrs; = s;ag,
s: € G. Since ags; = si(a®)g, this is equivalent to s;(a™)z = s5;ar,
s;€G. Since s;7! exists, this becomes (a*)g = ag or a% = «
which shows that agd = Aag, 4 ¢ U is equivalent to: « is G-
invariant. Now let B be a subring of ¥ which is a P-subspace.
Then 8 2 1P = {pr|p ¢ P} and consequently ®B is invariant
under left multiplication by the pr. Hence, by Theorem 4,
B=41P+ 1P+ ---+ 4P where H = {t;}] = G N 8. Evidently
H = G N 8B is closed under multiplication so this is a finite sub-
semigroup of G. Hence H is a subgroup of G.

The main result on finite groups of automorphisms of a field is

Theorem 5. Let P be a field and let S be the collection of finite
groups of automorphisms in P, I the collection of subfields of P
which are Galois and of finite co-dimension in P. If ® et let
A®) be the Galois group of P/® and, if G e o, let I(G) be the sub-
field of P of G-invariants. Then: () If ® ¢ S, A®) ¢ A, and if
Ge s, I(G) e F Moreover, I(A®)) =& and A(I(G)) = G.
(i) If G e &, then (G:1) = [P:I(G)). (i) If ®eSf and E is a
subfield of P containing ®, then B e £ (iv) In this situation H =
AE), which is a subgroup of G = A(®), is invariant in G if and
only if E is Galois over ®. Then the Galois group Ax(®) of E/® is
isomorphic to G/H.

Proof. (i)-(i1). If Ge o and A = {Zs.0:|5: € G, p; € P}, then
[P:I(G)] = [A:Plr = (G:1), by the lemma and Theorem 2. If
we set ® = I(G) and G’ = A4(®) the Galois group of P/®, then
the corollary to Dedekind’s theorem shows that (G’:1) < [P:®] =
(G:1). Since G C G’ is evident, G’ = G. Thus 4(I(G)) = G.
Next let ® be Galois and of finite co-dimension in P. Then & =
I(G) where G is the Galois group of P/®. This is finite by the
corollary to Dedekind’s theorem. Hence 4(®) e & and I(A4(®))
= ®. This completes the proof of (i) and (ii). (iii) Let ® ¢ S
and let ¥ be the ring of endomorphisms defined by the Galois
group G of P/®. By Theorem 2, A = (P, P). Now let E be a
subfield of P containing ®. Then 8 = (P, P) is a subring of A
of the sort considered in the lemma. Hence 8 = 4P +---+ ¢£,P
where H = {#;} is a subgroup of G. Since E = {¢|erB = Beg,
B ¢ 8}, it follows that E is the subfield of H-invariants. This
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proves (iii). (iv) If s € G, E* the image of E under s is another
subfield of P containing ® and it follows directly from the defini-
tion that A(E*) = s™'Hs. Hence H is invariant in G if and only
if E* = E for every s e G. We proceed to show that this holds
if and only if E is Galois over ® and then Ag(®) =~ G/H. Assume
first that E* = E and let G’ be the group of restrictions s’ to E
of the s € G. Then G’ is a finite group of automorphisms in E
and I(G") = ®. Hence & is Galois in E and G’ = Ax(®) by (i)
applied to E. The mapping s — s’ is a homomorphism of G onto
G'. The kernel is the set of s ¢ G such that s’ =1 on E. This
is H. Hence G’ =~ G/H. Next let E be Galois over ®. Then we
have [E:®] distinct automorphisms of E over ® and these can be
considered as isomorphisms of E/® into P/®. On the other hand,
by the corollary to Dedekind’s theorem there are at most [E: @]
isomorphisms of E/® into P/® so these must coincide with the
automorphisms of E/®. If 5 ¢ G, the restriction of s to E is an
isomorphism of E/® into P/®; hence this is an automorphism.
This implies that E* = E for all s e G.

Theorem 5 establishes, in particular, a bijection (1-1, onto
mapping) between the collection of subfields E of P which con-
tain a fixed subfield ®, which is Galois and of finite co-dimension
in P, and the collection of subgroups H of the Galois group G of
P/®. This correspondence satisfies the properties in (iii) and
(iv). We remark also that {#} is finite, which implies that the
collection of fields beween P and @ is finite. At this point there
is one serious gap in our theory: We have given no conditions
that P be finite dimensional Galois over & The next three sec-
tions will be devoted to filling this gap and to forging the link
between the present “abstract” Galois theory and the theory of
equations.

EXERCISES

1. Let C be the field of complex numbers and let P = C(£), a simple transcend-
ental extension of C (Vol. I, p. 101). Let s be the automorphism of P/C such
that £ = ef where €is a primitive s-th root of 1 and let # be the automorphism of
P/Csuch that & = £~ Show thats® = 1, £ = 1, st = #5771 and that the group
G of automorphisms generated by s, #1s of order 2#. Show that the subfield of
G-invanants is C(n), n = £ + £~

2. Determine the Galois group of ®(p) over ® where ® is the field of rational
numbers and p* = 2.
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3. Let P be finite dimensional Galois over ® and suppose the Galois group G =
Gy X Gy, G; subgroups of G. Show that, if P; is the subfield corresponding to
G, then P;/® is Galois and P = P, ® P, (over &).

4. Let & be a field of characteristic # 2 and let P be an extension such that
[P:®] = 2. Show that P = ®(f) where ® = a € ®. Use this to prove that P is
Galois over ®.

5. Show that, if &, and &; are Galois'in P, then ®, 1 &, is Galoisin P. Let®
be a field of characteristic 0, P = ®(§), £ transcendental. Let &, = &(£?),
$, = ®(E(E + 1)). Show that [P:®,] = 2 = [P:®] but [P: &, N &] is infinite.

6. Show that, if Ry is the field of rational numbers, then Ro(+/2) is not Galois
over Ry.

7. Let G be an arbitrary group of automorphisms in a field P and let %
= {Zs5;p:]5: € G, p; € P}. Show that U satisfies the hypotheses (1) and (i) of
Theorem 2. Show that & = {a|ard = Adap, 4 e} is the subfield of G-in-
variants. Use these results and ex. 1, § 2, to prove that, if K 1s a subfield of P
containing ® such that [£:®] < , then any isomorphism of E./® into P/® can
be extended to an automorphism of P/®.

8. (Kaplansky). P,®,E, and G asin ex. 7. Prove that E 1s Galoisin P. (In
other words, if & is Galois in P and E D & satisfies [E:®$] < o, then E is Galois
in P) (Hint: Set H = G N A(E). Let A be a finite dimensional subspace of
P/® containing B. Use ex. 1, § 2, to show that Ls(A, P) has a right P-basis of
the form (§,, 2, - -, §a), §i the restriction to A of s; € G. Use Theorem 4 to show
that Lg(A, P) has a P-basis (71,72, -+, 7s), ¢ € H. Use this and ex. 2, § 2, to
prove that E = I(H).)

5. Splitting field of a polynomial. Let ® be a given field and
f(x¥) a non-zero polynomial contained in the polynomial ring
®[x], x an indeterminate. We recall that an element p of ® is called
a root of f(x) or of the equation f(x) = 0 if f(p) = 0. We know
that this is the case if and only if f(x) = (¥ — p)g(x) in ®[x] (Vol.
I, p. 99); and if deg f(x) = », then f(x) has at most » roots in
(Vol. 1, p. 104). 1If py, p2, - - -, pr are distinct roots, then

Sx) = (x —p)(¥ — p2) -+ (¥ — pg(x).

In Vol. 1, pp. 101-102, we have given a construction for an ex-
tension P/® in which a given irreducible polynomial f(x) € ®[#] has
a root. If we apply this to an irreducible factor of any non-zero
Jf(x) & ®[x], we obtain an extension P/® containing a root of f(x).
We shall now establish the existence of a minimal field extension P
in which a given polynomial f(x), deg f(x) > 0, decomposes as a
product of linear factors. Unless otherwise indicated we shall
assume our polynomials have leading coefficients 1. Then we re-
quire an extension P/® such that

(%) Sx) = (x — p)(x — p2) -+ (¥ — pn)
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in P[x]. If ®(py, ps, * * -, pn) denotes the subfield of P/® generated
by the p;, then evidently the factorization (5) is valid also in
®(py, p2, -+ *» pu)lx]. Hence, if P/® is to be minimal, then we
must have P = ®(py, ps, * -+, pn). We recall also that the fac-
torization (5) is unique in P[x] apart from factors in & (Vol. I,
p- 100, p. 123). From this it follows that the set {p;} is the com-
plete set of roots of f(x) in P and that, if Z/® is a subfield of ®(p,,

-+ pn)/® such that f(x) is a product of linear factors in Z[x],
then £ = ®(py, p2, * **» pn). This leads us to give the following

Definition 1. Let ® be a field and f(x) a polynomial of positive
degree with coefficients in ® (leading coefficient 1). Then an extension
Sfield P/® is called a splitting field of f(x) if a factorization (5) holds
in Plx] and P = ®(p1, p2y * * *» Pn)-

We shall now state two immediate results which will be used
frequently.

Lemma 1. (1) If P/® is a splitting field of f(x) e ®[x] and Z/®
is a subfield of P/®, then P/Z is a splitting field of f(x). (2) If P/Z
is a splitting field for f(x) e ®[x] and Z = ®(ay, - - -, 0,) where f(o;)
= 0, then P/® is a splitting field of f(x).

Proof. (1) This is an immediate consequence of the definition.
(2) By assumption we have P = Z(py, - - -, pa) where (5) holds
in P[x]. Also £ = &gy, +++,0,) and f(¢;) = 0. It follows that
every ¢; is one of the p;; hence P = ®(py, pg, * -+, pn)-

We can now prove the following existence theorem.

Theorem 6. Any polynomial f(x) € ®[x] of positive degree has a
splitting field P/®.

Proof. Let f(x) = fi(x)fa(x) - - - fx(x) be the factorization of
f(x) into irreducible factors (with leading coefficients 1). Evi-
dently # < # = deg f(x). We use inductiononn — k. Ifn — &
= 0, the fi(x) are all of degree 1 and this means that ® itself is a
spllttlng field. Now assume #n — k£ > 0 so that some fi, say fi(¥),
is of degree > 1. Then there exists an extension field E/® such
that E = ®&(p) and fi(p) = 0. Then fi(x) = (¥ — p) f1*(¥) in
E[x] and so f(x) is a product of / > £ irreducible factors in E[«].
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Then » — / < #n — k and the induction hypothesis permits us to
conclude that there exists a splitting field P/E for f(x). Since E
= &(p), the lemma shows that P/® is a splitting field for f(x).

We consider some examples of splitting fields.

(1) flx) = x* + ax + B. If fis reducible in $[x], then ® is a splitting field.
Otherwise, we let P = ®[x]/( f(x)), which is a field since fisirreducible. If weset
p1 = x + (f(x)) where, as usual, (f(x)) denotes the principal ideal generated by
this polynomial, then f(p1) = 0 in P so f{x) = (¥ — p1)(x — p2) in P{x]. Thus
P = ®[pi] = ®(py) is a splitting field. Since f(x) is the minimum polynomial
of p1, [P:®] = 2, by VIII of the Introduction.

(2) Letpbeaprimeand letf(x) = 4 — 1 = (x — D(xP 1 + P2 4--- 4+ 1),
® = Ry the field of rational numbers. Then P is a splitting field of f(x) if and
only if it is a splitting field of g(x) = »»~' + x»~2 4 ... 4 1. It is known that
g(x) 1s irreducible (Vol. I, ex. 2, p. 127), so P = Rq[x]/(g(x)) is a field over Ry and
P = Rolp] = Rolp), p = x + (g(x)). We have p? = 1 and p # 1, which implies
that p is of order p in the multiplicative group P* of P. Hence, 1, p, p%, ++ -, p? !
are distinct and all of these are roots of x» — 1 = 0. It follows that x» — 1 =
p—1
II (x — p) and so P = Ry(p) is a splitting field.

30

(3) f(x) = (x* — 2)(x* — 3), ® = Ry. We first form . = Ry(p) where p* = 2.
We know that ¥ — 2 is irreducible in Ry[x] (Euclid). In E we have x* — 2 =
(x — p)(x + p). However, x* — 3 is irreducible in E[x]. Otherwise, there exists
7 € E such that 9 = 3, Buty = a + Bp, , B rational and n* = (a® + 26%) +
2a8p; s0, if this = 3, then af = 0 and o + 282 = 3. If 8 = 0, we must have
a® = 3 and, if @ = 0, we have 82 = 3/2. Both of these are impossible for ra-
tional numbers. We now form P = E() where 9?2 = 3. We have P = Ro(p, 1)
and in Plx], («* — D —3) = (x — p)(x + p)(x —m)(x +n), so P/Ry is a
splitting field. Using VI and VIII of the Introduction, one sees that [P:$] = 4.

Before continuing with our discussion of splitting fields it will
be well to fix some notations on field extensions and algebra exten-
sions of a field ® which to some extent have already been used.
If § is a subset of a field P/®, then we let ®[S] and &(S) respec-
tively denote the subalgebra and the subfield over ® generated by
§. By definition, the first of these is the intersection of all sub-
algebras of P/® containing § and the second is the intersection
of all subfields of P/® containing §. It is clear that ®[S] is the
subspace of P over & spanned by 1 and all monomials ¢y02° + - om,
o: €S, and that &(S) is the set of elements o8}, a, 8 in ®[S],
B # 0. It follows directly from the definition that, if §; and S,
are subsets of P, then (8(5,))(Ss) = &(S; U §) where the first
of these is, of course, the subfield of P/&(S,) generated by S,.

If p is an algebraic element of P/®, then we know that [®[p]:®]
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= deg f(x) where f(x) is the minimum polynomial of p over &
(Introd. VIII). In fact, we have seen that, if deg f(x) = », then
(1, p, p%, - - -, p"71) is a basis for P/®, Since the dimensionality
[®[p]:®] is finite, we know that ®[p] is a field (Introd. VII).
Hence it is clear that ®(p) = ®[p]. We shall now generalize these
results in proving the following key lemma on successive algebraic
extensions.

Lemma 2. Let P = ®(py, p2, - -y pm) and assume that p; is alge-
braic over ®(py, pgy sy Pi—1)y £ = 1,2, -+, m. Then [P:®] < o
and P = Q[pl, P2y " Pm]-

(We shall see later (p. 254) that, conversely, if P = ®[py, pg,
-+ +, pa] 1s a field then the p; are algebraic over ®.)

Proof. We have seen that this holds for m» = 1. Suppose m
> 1 and assume the result holds for » < m. Then ®(py, - - -, p,)
= ®[p,, - - -, p,] and this 1s finite dimensional over ®. Since p,;
is algebraic over ®(py, - - -, pr), we have ®(p1, -+, p)(pry1) =
®(p1, - - -5 pr)[pr41] and the dimensionality of this extension over
®(py, - - -, pr) 1s finite. It follows that

(6) [CP(PD Y Pr+1) :‘I>] = [‘I>(Pl, Y Pr) (Pr+1):q’]
= [¢(pl, Y pr)(pr+l) :¢(pl> Y pr)][Q(pl, Y pr) :Q]

is finite. Also ®(py, * -+, pry1) = ®(p1, * - +5 pr)Pry1] and @(py,

<y pr) = ®[p1, -+, p,] imply that every element of &(p, - - -,
pr4+1) is a polynomial in the p; for 1 <7 <r+ 1. Hence
®(p1, - -+ Pry1) = ®lp1, -+, pr41). The lemma now follows by
induction.

This result is applicable in particular if the p; are all algebraic
over ®. Since the roots p; of f(x) are algebraic over ®, it is ap-
parent that if P/® is a splitting field of f(x) e ®[x], then [P:®] < .

We shall now show that any two splitting fields of a polynomial
are isomorphic over . In order to carry out an inductive argu-
ment (and for other reasons, too) it is useful to generalize the
result as follows. Let® and & be fields which are isomorphic and
let @ — & be an isomorphism of ® onto &. We know that this
can be extended to a unique isomorphism f(x) — f(x) of ®[«]
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onto ®$[x] so that ¥ — x (Introd. II). We wish to consider a
splitting field over ® of a polynomial f(x) and a splitting field over
& of the corresponding polynomial f(x) in ®[x]. The following
theorem will imply uniqueness of the splitting field and gives an
important result on the number of isomorphisms of a splitting
field.

Theorem 7. Let o — & be an isomorphism of a field ® onto
the field ® and let f(x) be a polynomial of positive degree with leading
coefficient 1, f(x) in ®[x], and let f(x) be the corresponding polynomial
in B[x]. Let P and P be splitting fields over ® and & of f(x) and f(x)
respectively. Then there exists an isomorphism of P onto P which
coincides with the given isomorphism on ®. Moreover, if f(x) is a
product of distinct linear factors in Plx], then the number of extensions
of the given isomorphism on ® to an isomorphism of P into P is
[P:®].

Proof. Both assertions will be proved by induction on [P:®].
If [P:®] =1, P=® and f(x) = IO(x — p;) in $[x]. Applying
the isomorphism 4(x) — A(x) of ®[x] we obtain f(x) = II(x — 5;)
and the 5; ¢®. It follows that these are the roots of F(x) = 0in
P so P =% and both results hold in this case. Now assume
[P:®] > 1. Then f(x) is not a product of linear factors in ®[x]
and so it has an irreducible factor g(x) of degree» > 1. Then (x)

is a factor of f(x). Also we may assume that g(x) = [] (x — o),
1

Zx) = ITII (¥ — ¢;) where f(x) = I'iI (x — ps) and f(x) = I—':I (x — &;).

Since g(x) is irreducible, this is the minimum polynomial over
® of p;, and E = ®(p,) is r-dimensional over ® (» = deg g > 1).
The extension theorem V of the Introduction implies that the
isomorphism a@ — & can be extended to a unique isomorphism
of E = ®[p,] = ®(p;) into P so that p, > &, ¢ =1,---,r
We observe next that the indicated isomorphisms of E into P
are the only extensions of @« — & Again by the extension
theorem V, in any isomorphism of E extending the given iso-
morphism, p; is mapped into an element ¢ such that g(¢) = 0.

Since g(x) = J] (v — &5, it follows that & = &; for some i,
1



36 FINITE DIMENSIONAL EXTENSION FIELDS

1 <7 <r. Then the isomorphism coincides with one of those
we indicated. Thus we see that @« — & can be extended to an
isomorphism of E = ®(p;) into P and the number of such exten-
sions is the number of distinct elements in {4, ---, & }. In
particular, if f(x) is a product of distinct linear factors, then this
is true also for g(x) and the number is then » = deg §(x) = [E:®)].
We now replace the base field ® by E and let E be its image under
one of the chosen extensions of the isomorphism on & to an iso-
morphism of Einto P. We denote this extension by e — & Then
P/E is a splitting field of f(x) and P/E is a splitting field of
f(x). Moreover, [P: E] < [P:®] since [E:®] = » > 1. Hence the
induction hypothesis shows that ¢ — & can be extended to an
isomorphism of P onto P and the number of such extensions is
[P: E] if f(x) is a product of distinct linear factors in P[x]. If we
take into account the first result on the extension of @ — & to
€ — & we see that there exists an extension of the isomorphism
o — & to an isomorphism of P onto P and, if f(x) splits into
distinct linear factors, then we obtain [P: E][E:®] = [P:®] dis-
tinct isomorphisms since we have [E:®] extensions to E and each
of these has [P: E] extensions to P. Thus we obtain [P:®] =
[P: E][E:®] distinct extensions. Itis clear that we have accounted
for every extension in our enumeration (cf. also Cor. to Th. 3)
and so the proof is complete.

We now specialize the result we have just proved by taking
$® = @ and theidentity mappinga — ain®. Then the conclusion
is that, if P/® and P/® are two splitting fields of the same poly-
nomial f(x), then P/® and P/® are isomorphic. Moreover, the
second part of the result is that, if f(x) has distinct roots, then
the number of automorphisms of P/® is [P:®]. In other words,
(G:1) = [P:3] for G the Galois group of P/&.

EXERCISES

1. Construct a splitting field over the rationals for ¥* — 2. Find the dimen-
sionality.

2. Let P/® be a splitting field of f(x) £ 0 in ®[x] and let E be a subfield of
P/®. Show that any isomorphism of E/® into P/® can be extended to an
automorphism of P,

3. Show that the dimensionality of a sphttmg field P/® of a polynomial f(x)
of degree # cannot exceed »!.
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6. Multiple roots. Separable polynomials. Let f(x) be a poly-
nomial of positive degree in ®[#] and let P/® be a splitting field.
We now write

o) fx) = (x — p)M(x — p2)P -+ (x — po),

p: € P, p; 5 p; if { = j, and we say that p; is a root of multiplicity
k;of f(x) = 0. If k; = 1, then p; is called a simple root; otherwise
pi is a multiple root. If we have a second splitting field P over &,

r

then f(x) = II (x — 5p* in P where p; — 5;in an isomorphism
1

of P/® onto P/®. Itis clear that the existence of multiple roots
for fis independent of the particular choice of a splitting field.
We shall now carry over a classical criterion for multiple roots
which can be tested in ®[x] itself. For this we need the standard
formal derivative (or derivation) in ®[x]. Thus we define a linear
mapping f — f in ®[x] by specifying that (x?)’ = ix*~!, i = 0,
1,2,---,¥°= 1. Since (1, %, x% ---) is a basis for ®[x] over ®,
this defines a unique linear mapping f — f in ®[x] over . We
call £ the (formal) derivative of f and we note the basic rule:

(8 (/8 = fg+ f&g.
Because of the linearity of the derivative, it suffices to check
this for f = x%, g = 7 in the basis (x*) for ®[x]. Then fg = x*+
so that (fp)! = (i + w1, fg = ixH1, fe/ = j#H1, 50
(8) is valid. We can now prove

Theorem 8. If f(x) e ®[x] and deg f > 0, then all the roots of f
(in its splitting field) are simple if and only if (f, f') = 1 (that is,
1 is5 the highest common factor of fand f').

Proof. Let d(x) be the highest common factor (f, f) of fand
S" in®[x] (cf. Vol. I, p. 100, p. 122). Suppose f(x) has a multiple
root in P[x], so f(x) = (¥ — p)*g(x), ¥ > 1. If we take deriva-
tives in P[x], this gives f' = (x — p)*¢’ + k(x — p)*~g which
is divisible by ¥ — psince # —1 > 1. Thus (x — p)| f (l.e.x — p
is a factor of f) and (x — p)| f’, so (x — p)|d. Henced(x) = 1.
Next, suppose all the roots of fare simple. Then we have f(x) =

IT (x — p2), pi # pj, i %% j. The usual extension of (8) to several
1
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factors gives
£ = ; (6= p1) - (¥ = prot)(x — pyas) - (¥ — pu)-

It is clear from this that (x — ps) 4 f’(x) and this implies that
) = 1.

If f is irreducible in ®[x], then (f, f’) > 1 implies that f|f’.
By degree considerations this can happen only if f/ = 0. If the
characteristic is 0, this evidently implies that f is an element of
®. If the characteristic is p # 0 and f(x) = apx™ + ayx™ ! +
azx™ 2 4+ oy, then f/(x) = naw™ ! + (n — Daya™? +
(n — 2)apx™"3 +-.., so f/(¥) = 0 implies that (# — i)a; = 0.
This implies that a; = 0 if the integer » — { is not divisible by ».
Hence we see that f(x) = Box™ + Bix™~ V7 ... 4 8, = g(x?)
where g(x) = Box™ + B14™ ! 4+ -+ 4 B, This condition is also
clearly sufficient that f/ = 0 since (¥*?)’ = kpx*»~! = 0. In the
characteristic p > 0 case we shall see that the conditions: f ir-
reducible of positive degree, f' = 0, can be fulfilled. This is a
basic difference between fields of characteristic 0 and those of
characteristic p = 0 and this is the root of a host of complications
in the latter case.

Let us now look more closely at fields of characteristic p = 0.
We recall that, if & is of this type, then we have

© (a+ 8 =&+ 85 (af) = 2"

in & (Vol. I, ex. 3, p. 120). The second of these is clear and the
first is a consequence of the binomial theorem and the fact that

the binomial coefficient (1_’ > — pl/il(p — i)!is divisible by p for
4

1 <i < p —1 since this is an integer and p occurs in the nu-
merator of the fraction but not in the denominator. We note
also that, if a» = 87, then (@ —B)?P =a? — 87 =0 so a = 8.
Thus we see from this and (9) that the mapping @ — o is an
isomorphism of ® into itself. The image ® = {a®|ae®} is a
subfield, the subfield of p-th powers. We can iterate the mapping
@ — o and obtain the isomorphism @ — o', ¢ = 1,2, -+ of
® onto the subfield $° of p°-th powers.
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We prove next the following general result which will be useful
later on.

Lemma. If ® is a field of characteristic p # 0, then x* — o is
irreducible in ®[x] unless o = B°, B &P, in which case x* — a =

(x — B)"

Proof. Let P be a splitting field for ¥» — a. If 8is a root of
¥ —a=0, then «a = 8°. Hence #* — a =4 — g2 = (x — B)?
in P[x]. Now suppose ¥ — a = g(¥)A(x) in ®[x] where deg g =
kand1 <k < p — 1. Thenin P[x] we must have g = (x — B)*
= x* — k@x*~! +-... This implies that k8 e®; hence Be®.
Then x» — a = (¥ — B)? holds in ®[x].

We now consider the following example. We let I, = I/(p)
the field of residues modulo p, and we let & = I,(§), ¢ transcen-
dental. Then we claim that £ ¢®?. Now, if v e®, we can write
v = a(§)B() ! where a(f) and B(¢) are polynomials. Then 4* =
a(EP)B(EP) 7Y, since a(f) = ap + aif + - implies a(§)? = ap” +
aPt? 4+ =y + ayf? +--- (by Fermat’s theorem). Hence
+? = £ implies that a(¢?) = §(¢?)¢ and this is impossible since 1,
g, -+ are I-independent. Thus we see that £ ¢ ®? and hence, by
the lemma, x? — ¢ is irreducible in ®[x]. On the other hand, we
have seen that ¥ — £ has p equal roots in its splitting field. We
note also that (x» — £)’ = 0.

We shall now call a polynomial f (of positive degree) separable
if it is a product of irreducible polynomials in ®[x] all of which
have only simple roots in a splitting field. Our discussion shows
that, if ® is of characteristic 0, then every f(x) e ®[x] is separable,
whereas for characteristic p = 0 there exist inseparable poly-
nomials.

EXERCISES

1. Prove the following extension of the lemma:  — @ is irreducible unless
ae PP,

2. Let @ be a finite field of ¢ elements and let P = &y(£), £ transcendental over
®). Let G be the finite group of the automorphisms of P over &, such that
§ 5 t+a aedy Show that & = I(G) = dy(§2 — §).

3. Let & be a field of characteristic p # 0 and let &, &, - - -, &, be indeter-
minates over ®, P = ®(§, &, - -, £,) the field of fractions of ®[&,, &, -+ -, &l
Show that [P:®(:?, &P, - - -, £47)] = p™. Show also that the Galois group of P
over (&P, &P, -+ -, E,P) is the identity.
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4, LetP = ®(&y, &, - - -, £4) of characteristic p # 0 and suppose that £ € &
fori = 1,2, -+, n, e; a positive integer. Show that the Galois group of P over &
is the identity.

5. Let ® be a field of characteristicp # 0. A polynomlal with coeﬂic1ents in®
is called a p-polynomial if it has the form «*™ + a1x®™ ' + aax®™ > +++ - + Q.
Show that a polynomial (with leading coefficient 1) is a p-polynomial if and only
if its roots form a subgroup of the additive group of the splitting field and all the
roots have the same multiplicity p¢. Show that the roots of the displayed p-
polynomial are all simple if and only if ., # 0.

6. Let f(x) be irreducible in ®[x], ® of characteristic p # 0. Show that f(x) can
be written in the form g(x*") where g() is irreducible and has distinct roots, Use
this to show that every root of f(x) has the same multiplicity ¢ (in a splitting
field).

7. Let ® be a field of characteristic 0, f(x) a polynomial of positive degree con-
tained in ®[x]. Show that if d(x) is the highest common factor of f(x) and f/(x),
then g(x) = f(x)d(x) ! has simple roots which are the distinct roots of f(x).

7. The ‘“fundamental theorem” of Galois theory. We now take
up again the abstract Galois theory of § 4 and we shall answer
first the question which we raised at the end of § 4: that of charac-
terizing finite dimensional Galois extensions. The result is the
following

Theorem 9. A field P/® is finite dimensional Galois over & if and
only P is' a splitting field over ® of a separable polynomial f(x) e
®[x].

Proof. Let f(x) be separable and let f(x) = fi(x)®- - fi(x)®
where the f;(x) are irreducible in ®[x] and f; = f;if i ¢ j. Then
fi(x) has only simple roots. Moreover, since f; and f; for i = j
are distinct irreducible polynomials, their highest common factor
is 1. Hence 1 = a(x) fi(x) + b(x) f;(x) for a(x), 6(x) in ®[x], and
this implies that f; and f; have no common roots in any extension
field. It follows that g(x) = fi(x)fa(x) - fi(x) has no multiple
roots, and it is clear that, if P/® is a splitting field of f, then it
is a splitting field also for g. Now we know that any splitting
field is finite dimensional and Theorem 6 implies that, if G is the
Galois group of P/®, then (G:1) = [P:®]. Let & = I(G) the
set of G-invariants. Then, by Theorem 5 (ii), (G:1) = [P:®'].
Since & 2D & we have & = &', which shows that ® is Galois in P
or Pis Galois over ®. This proves the sufficiency of the condition.
Next assume P is finite dimensional Galois over ® and let G be
the Galois group. We know that G is finite and we indicate it as
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G = {s1, 52, "+ 5 $a}. If p e P, we shall call the images p* under
s: € G the conjugates of p in P/®. We may assume that p*, - - -,
o' are distinct and that this set includes all the conjugates. Then

r
we assert that A(x) = J] (¥ — p*) e®[x]. To see this let s G
j=1
and let s be its extension to P[x] such that ¥* = x. Then we have
r
A (x) = [I (x — p**). Since the elements p**, - .-, p** are dis-
1

tinct conjugates, this set is the complete set of conjugates and so
A (x) = h(x), seG. Hence %(x) e®[x]. This shows that the
minimum polynomial over & of any p ¢ P (this is actually A(x)) is
separable and splits as a product of linear factors in P[x]. Now
let (p1, p2, -+ pn) be a basis for P/® and let fi(x) be the minimum
polynomial of p; over ® Then f(x) = ILfi(x) is separable and
clearly P is a splitting field over @ of f.

The main Galois correspondence (Th. 5) can now be applied to
state the following result that is known classically as the

Fundamental Theorem of Galois Theory. Let P be a splitting
Jield over @ of a separable polynomial and let G be the Galois group of
P/®. With eack subgroup H of G we associate the subfield E of P
over ® of H-invariants and with each subfield E over ® we associate
the subgroup H of G of elements t such that € = € for all € in E.
Then these two correspondences are inverses and are bijections of the
set of subgroups of G and the set of subfields of P over ®. The corre-
spondences are order inverting relative to inclusion and

(10) (H:1) = [P:E], (G:H) = [E:d.

Moreover, H is invariant in G if and only if the corresponding field
E is Galois over ® and in this case the Galois group of E/® is iso-
morphic to the factor group G/H.

All of this can be read off directly from Theorem 5 and the
remarks which follow it. The only part which has not been made
explicit before is (10). Now it is clear from the definition that &
is the Galois group of P/E. Hence (H:1) = [P: E]. Also (G:1)
= [P:®],s0 (G:H) = (G:1)/(H:1) = [P:®]/[P: E] = [E:®]. We
note also that (G:H) = [E:®| is the number of distinct isomor-
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phisms of E/® into P/®. To see this we consider the restrictions
5 to E of the elements s e G. If § =% fors, teG, then s#7! = 1
which means that s#~! e H. Then the cosets Hs and Ht are
identical. The converse follows by retracing the steps. Hence
we see the collection {§|se G} contains (G:H) distinct isomor-
phisms of E/® into P/®. We know also that there are no more
than [E:®] = (G:H) isomorphisms of E/® into P/® (Cor. to
Th. 3). Hence we have caught them all. Incidentally, we have
shown also that every isomorphism of E/® into P/® is a restric-
tion of an automorphism of P/®. In other words, any such iso-
morphism can be extended to an automorphism (cf. ex. 7, § 4).

8. Normal extensions. Normal closures. At the beginning of
the last section we gave an abstract characterization of splitting
fields of separable polynomials: these are just the finite dimen-
sional Galois extensions. We shall now give two abstract charac-
terizations of arbitrary splitting fields.

Theorem 10. Tke following three conditions on a finite dimen-
stonal extension P/® are equivalent:

(1) P/® is a splitting field of a polynomial f(x) e @[x].

(2) Any isomorphism s of P/® into an extension field A/® is an
automorphism.

(3) Every irreducible polynomial g(x) € ®[x] whick has a root in
P is a product of linear factors in P[x].

Proof. (1) = (2) (“=" means “implies”): Let P = ®(py, pg,

-+, pn) where f(x) = II(x — p;) in P[x] and f(x) e ®[x]. Sup-
pose A D P D& and let s be an isomorphism of P/® into A/®.
Since f(p:;) = 0, we have f(p:*) = 0 and, since {p;} is the com-
plete set of roots of f(x) in A, p;® is one of the p;, Hence s maps
every generator p; of P = ®(py, pg, - - -, p,) into P. Hence P* C
P. Since s is 1-1 &-linear and [P:®] < «, we have P* = P and
s is an automorphism. (2) = (3): Assume every isomorphism
of P/® into any extension field A/® is an automorphism. Let
g(x) be irreducible in ®[x] and have a root ¢ in P. Write P =
®(p1, p2, ** *» Pm) and let fi(x) be the minimum polynomial of

pi over ®. Set f(x) = g(x) II fi(x) and let A/P be a splitting
1
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field over P of f(x). Since p; e P and f(x) e ®[x], A is also a split-
ting field over ® of f(x) and it contains a splitting field over ® of
g(x). Hence it will follow that g(x) is a product of linear factors
in P[x] if we can show that every root ¢’ of g(x) contained in A
is contained in P. To prove this we note that, since g(x) is ir-
reducible in ®[x] and g(¢) = 0 = g(o”), there exists an isomorphism
s of &(¢)/® into ®(¢’) /® such that ¢* = ¢’. We now observe that
we can consider A as a splitting field over ®(¢) and over ®(¢’) of
f(x) = f(x). Hence the main isomorphism theorem for split-
ting fields (Th. 6) shows that s can be extended to an automor-
phism s of A. Since &® = @, @ £®, s is a $-automorphism of A.
Its restriction to P is an isomorphism of P/® into A/®. Hence,
by hypothesis, this restriction is an automorphism of P/®.
Since ¢ € P, it follows that ¢* = ¢’ ¢ P. This proves (3). (3) =
(1). Write P = ®(py, pg, * - *, pm) and let fi(x) be the minimum
polynomial of p; over ®. If we assume (3), then f;(x) is a product
of linear factors in P[x]. Hence P/® is a splitting field of f(x) =
IIfi(x). This completes the proof.

A finite dimensional extension P/® satisfying any one (hence
all) of the conditions of Theorem 10is called a normal extension. 1t
is clear from the condition (1) that, if P is normal over ® and E is
a subfield of P/®, then P is normal over E. On the other hand,
if P2 E D&, then it may well happen that P/E and E/® are
normal and P/® is not (ex. 1 below). Let P = ®(ay, - - -, o) be
an arbitrary finite dimensional extension of & and let f(x) =
I f.(x) where fi(x) is the minimum polynomial of o; over ®. Let
A/P be a splitting field of f(x) e®[x]. Then A/® is a splitting
field of f(x); hence A/® is normal. Now let A’/® be any normal
extension of P/®. Since A’ contains ¢; and fi(x) is irreducible in
®, condition (2) of Theorem 8 shows that A’/® contains a splitting
field of f(x). Hence we have an isomorphism of A/® into A’/®.
This implies that no proper subfield of A containing P is normal
over ®. We now define a normal closure of P/® as a normal
extension of ® containing P and having the property that no
proper subfield containing P is normal over ®. Then we can say
that A/® is a normal closure of P/® and the remark about A and
A’ shows that such an extension is determined up to ®-isomor-
phism by P/®.
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EXERCISE

1. Let P = Ry(\/2), R, the rationals, and let E = Ry(+/2) C P. Show that
P/E and E/Rg are normal but P/Ry is not normal,

9. Structure of algebraic extensions. Separability. The struc-
ture theory of fields will be taken up in detail in Chapter IV.
However, at this point it is convenient to derive the basic theo-
rems on algebraic extensions and more generally on the set of
algebraic elements of any field P/®. We have shown in Vol. 1
(p- 183) that, if P is a field over &, then the subset A of elements
of P which are algebraic over & form a subfield over ® and every
element of P which is algebraic over A is contained in A. The
subfield A/® is called the algebraic closure of ® in P and & is called
algebraically closed in P if ® = A. The field P/® is algebraic if
P = A, that is, every element of p is algebraic over . Thus the
second part of the result we have quoted above is that, if A is the
algebraic closure of ® in P, then A is algebraically closed in P. We
shall now indicate another proof of these results which is based
on the Lemma 2 of § 5: If p; is algebraic over ®(py, - - -, pi_;) then
®(py, pa, ** 5 Pn)/® is finite dimensional. Now let A be the set
of elements of P which are algebraic over ® and let p, ¢ ¢ A. Then
®(p, o) is finite dimensional. Since ®(7)/® is infinite dimensional
for transcendental r, it follows that every element of ®(p, o) is
algebraic over ®. In particular, p & o, po, and p~! are algebraic
if p # 0. Since p and ¢ are arbitrary in P, this implies that A is
a subfield of P. Also it is clear that A D ®. Now let p be an
element of P which is algebraic over A and let f(x) = ™ +
oyx™! 4.+ + a, be its minimum polynomial over A. Then the
a; e A and so are algebraic over . Moreover, it is clear that p
is algebraic over ®(ay, ag, + + +, @,). It now follows that ®(ay, - - -,
@, p) 1s finite dimensional over & Hence p is algebraic over &
and consequently A is algebraically closed in the field P. The
result we proved on the algebraic closure of A in P implies the
following transitivity property: if B/A is algebraic and A/® is
algebraic, then B/® is algebraic. To see this let T'/® be the sub-
field of B/® of elements which are algebraic over ®. Clearly I' 2
A and we have seen that, if 8 € Bis algebraic over T, then it belongs
to . On the other hand, if 8 is any element of B, then 8 is alge-
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braic over A, hence over T', so 8 eI'. This shows that B =T is
algebraic over &.

There are several other useful remarks on algebraic elements
which are worth recording here for future reference. The first of
these, which is implicit in what we have proved before, is that,
if A/® is a subalgebra of a field P/®, then every element of ¥ is
algebraic over @ if and only if every finite subset X of ¥ is con-
tained in a finite dimensional subalgebra ¥/®. This implies that
every £e ¥ is algebraic over @ since it implies that ®[¢] is
finite dimensional. On the other hand, if every element of ¥ is
algebraic and X = {&, &, - -+, &}, then the lemma we quoted
shows that ®(¢,, -- -, £.)/® is finite dimensional. We recall also
that ®[¢, -, &) = ®(£1, + -+, &), which implies that, if every
element of U is algebraic, then % is a subfield of P/®. We note
also that, if E/® is an algebraic subfield of P/® and A/® is an
arbitrary subfield, then the subalgebra EA/® generated by E and
A is a subfield which is algebraic over A. To see this we observe
that EA is the set of elements of the form Zed;, € € E, 8; € A.
Hence, if X is a finite subset of EA, then there exists a finite sub-
set {€;} such that every element of X is a A-linear combination of
the ¢;. Since E/® is algebraic, we may imbed the set {e¢;} in a
finite dimensional subalgebra. If we express the € in terms of a
basis {#;} for this subalgebra, then we see that every element of X
has the form Zd;, 8; e A. Since nm = Zvjrm, Vi € P, it is clear
that the set Ay, of A-linear combinations of the #; is a subalgebra
of P/A. We have therefore proved that every finite subset of
EA is contained in a finite dimensional subalgebra over A. Hence
every element of EA is algebraic over A and EA is a subfield.

An algebraic element p € P/® is called separable (algebraic) over
® if its minimum polynomial over ® is separable. It is clear that
p is separable over @ if and only if there exists a polynomial f(x)
e ®[x] with distinct roots such that f(p) = 0. Also p is separable
if and only if there exists a polynomial f(x) e ®[x] with (f, f) =
1 such that f(p) = 0. If & is an extension field of ®, we shall
again have (f, f') = 1 in &[] (since (f', f) = af + &f, ex. 3, p.
122 of Vol. I). It follows that, if & /® is a subfield of P/& and
p € P is separable over @, then p is separable over . We have
seen (§ 6) that every polynomial with coefficients in a field of
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characteristic 0 is separable. Consequently, the results we shall
now consider become trivial in the characteristic O case.

An extension P/® will be called separable (algebraic) if every
element p € P is separable over ®. Let A/® be algebraic and let
Y be the subset of A of elements which are separable over . We
wish to show that ¥ is a subfield containing ® and that every ele-
ment of A which is separable over 2 is contained in 2. For this
we shall need the following

Lemma 1. Let P D E 2 ® where E and ® are subfields of P and
E/® is finite dimensional Galois. Then any element 0 ¢ P which
is separable algebraic over E is separable algebraic over ®.

Proof. Let g(x) be the minimum polynomial of 6 over E. If
s ¢ G the Galois group of E/®, then s has a unique extension to
E[x] satisfying x* = x. Let g"(x), g%(x), ---,g(x) be the

distinct images of g(x) under seG and let f(x) = [I g*(x).
1

Then f*(x) = f(x) for all seG, which implies that f(x) e ®[«].
Since g(x) is irreducible in E[x] and (g, g’) = 1, the same is true
for every g%. Hence every g%(x) has distinct roots. We note also
that, if 7 > j, then g% and g% are relatively prime, since other-
wise (g%, g*) = g(x) = g%(x) because these are irreducible in
E[x]. This contradicts g% = g% for i £ 5. Thus 1 = (g%, g%)
and consequently these have no common roots in a splitting field
for f(x). Itisnow clear that f(x) has distinct roots. Since f(6) =
0 and f e ®[x], we see that 6 is separable over &.

Clearly if pe E, then p is separable algebraic over E (with
minimum polynomial ¥ — p). Hence Lemma 1 shows that p is
separable over ®. In other words, we have the

Corollary. Any finite dimensional Galois extension is separable.
We can now prove the main result on separability.
Theorem 11. If A/® is algebraic, then the set T of elements of A

which are separable over ® is a subfield containing ®. Moreover, Z
contains every element of A which is separable algebraic over Z.

Proof. Letp, o ¢ and let g(x) and A(x) be the minimum poly-
nomials over & of p and ¢ respectively. Then f(x) = g(x)A(x) is
separable. If A is a splitting field over ®(p, o) of f(x), then A is
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also a splitting field over ® of f(x) (the normal closure of (p, ¢)/®).
Hence A/® is Galois, so by the corollary above, every element of
A is separable over ®. In particular, p &= ¢, po, p~! (if p 5 0) and
every element of  are separable over ®. This proves that Z is a
subfield containing ®. Now let § be an element of A which is
separable algebraic over 2 and let ™ + p1x™ ™' 4+ - -+ p,, pi € Z,
be its minimum polynomial over =. The subfield ®(py, pg, * - -,
pa; 0) is finite dimensional over ®. Let A/® be its normal closure.
Let fi(x) be the minimum polynomial of p; over ®. Then A con-

tains a splitting field E/® of f(x) = ]I fi«(») and this is Galois
1

over & since f(x) is separable. Evidently E D ®(py, pg, « * *, pn)-
Also 6 is separable over ®(p1, pa, * -, pa) since x™ + pyx" "' 4+
++++ p, is its minimum polynomial. Hence 8 is separable alge-
braic over E. Then 6 is separable algebraic over ® by Lemma 1.
This proves the second statement.

If the only elements of an algebraic extension A/® which are
separable are the elements of ®, then we say that A/® is purely
inseparable. Similarly, an algebraic element p is purely insepa-
rable over ® if ®(p)/® is purely inseparable. It is clear from the
definitions that, if p is at the same time separable and purely in-
separable over ®, then pe®. Also, it should be remarked that
an element can be inseparable (= not separable) without being
purely inseparable (cf. ex. 3 below). If A/® is algebraic and Z/&
is the maximal separable subfield of A/® (that is, the subfield of
all the separable elements), then the second half of Theorem 11
states that A/Z is purely inseparable. This shows that every
algebraic extension A/® can be built up in two “pure” stages:
first, a separable extension Z/& and next a purely inseparable
extension A/Z. The second part of Theorem 11 and the argu-
ment we used before for algebraic extensions (p. 44) implies the
transitivity: If A/® is separable algebraic and B/A is separable
algebraic, then B/® is separable algebraic. We are going to prove
a similar transitivity for purely inseparable extensions. Since
everything is trivial for characteristic 0, we shall assume in the
rest of this section that the characteristic is p = 0. We shall
need the following important criterion for separable and purely
inseparable elements.
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Lemma 2. Let ® be of characteristic p # 0. (1) Then an alge-
braic element p of an extension field is separable over ® if and only if
B(p) = ®(p?) = ®(p?") =---. (ii) If p is purely inseparable, then
its minimum polynomial has the form x* — a, a e¢®. On the other
hand, if p satisfies an equation of the form x* = ae®d, e >0,
then p is purely inseparable over ®.

Proof. Let g(x) be the minimum polynomial of p over ®. (i)
Suppose first that p is not separable. Then g(x) = A(x?) and p?
is a root of A(x). Hence [®(p?):®] < degA(x) < deg g(x) =
[®(p):®]. Consequently, ®(p”) < ®(p). Next suppose p is sepa-
rable so that g(x) has distinct roots. Let 4(x) be the minimum
polynomial of p over ®(p?). Then A(x)|g(x), so A(x) has distinct
roots. Also p is a root of the polynomial x? — p? € ®(p?)[#], so
h(x)|x? — p» = (x — p)?. Since A(x) has distinct roots, this im-
plies that 2(x) = ¥ — p. Hence p e ®(p?) = ®[p?] and p is a poly-
nomial in p? with coefficients in ®. Taking p-th powers shows
that p? is a polynomial in p?* with coefficients in . Hence pe
®(p?"). A repetition of the argument shows that ®(p) = ®(p?) =
®(p?") =.-.. This proves (i). (ii) Let p be purely inseparable
over ® and write g(x) = A(x*") where e is maximal for this. Then
#'(x) # 0 since, otherwise, A(x) = k(x?) and g(x) = k(x*") con-
trary to the choice of e. We have A(p?) = 0, so p*" is a root of a
separable polynomial. Since p was assumed purely inseparable,
this implies that p** = a ¢ ® and p is a root of ¥ — a. Since g(x)
= %(%™) is the minimum polynomial of p over @, it is clear that
g(x) = #*° — a. Next assume that p»" = ae¢® for some non-
negative integer ¢. Let ¢ e ®(p) = ®[p] so that ¢ = @y + a1p +
vood amp™, ;e ®. Then ¢ = g + oo + - + an? (p*)™
e®. If o is separable, then &(¢) = &(¢*), by (1). Hence &(¢) =
® and ¢ €®. Thus p is purely inseparable.

The second part of this lemma shows that A/® is purely insepa-
rable if and only if every element of A satisfies an equation of the
form x*" = ae®. Since (x*)?' = #7"| this implies that if B/A
is purely inseparable and A/® is purely inseparable, then B/®
is purely inseparable. Also it is clear from the second part of the
lemma that if A is purely inseparable over ®, then it is purely
inseparable over any subfield E of P/®.
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EXERCISES

1. Let A/® be algebraic. Verify that the set of elements v € A which are
purely inseparable over ® form a subfield containing &,

2. Let I, be the field 7/(p) and let P = (&, 1) where £, 5 are indeterminates
(cf. ex. 3, § 6). Let ® = I(£?,n* —n — £). Show that [P:®] = p% and deter-
mine the maximal separable subfield of P/®.

3. (J.D. Reid). Let P beasinex.2and let E = P(Z) where {** = ££7 + 0.
Show that [E:P] = p? and E/P is inseparable. Show that E/P contains no purely
inseparable element over P not contained in P.

4, Let P/® be algebraic and let P(&, &, -+ -, &) be the field of fractions of
P&y, &, - -+, &, & indeterminates. Let A be the set of elements in P(£,) having
the form Fg~1, where F e P[£1, -+ +, &], g € B[&y, -+ +, £]. Prove that A is a sub-
field of P(&, -+, &)/®(&, -+, &) which is algebraic. Prove that A =
P(%, - -+, &). Hence prove that every non-zero polynomial with coefficients in
P has a non-zero multiple with coefficients in &,

10. Degrees of separability and inseparability. Structure of
normal extensions. We assume throughout this section that the
characteristic is p % 0 and we consider finite dimensional exten-
sions. For such an extension P/® with maximal separable sub-
field £ /® we consider the dimensionalities [Z:®] and [P:Z], which
we call the separability degree and inseparability degree respectively
of P/®. We write [2:®] = [P:®],,[P:Z] = [P:®];. Then we have

(11) [P:®] = [P:D],[P:®)]..

We shall now show that [P:®]; = pf, which amounts to saying
that the dimensionality of a purely inseparable extension is a
power of the characteristic. If P = &, this is clear since [P:®] =
1 = p°% Otherwise, let pe P, ¢ . Then Lemma 2 of § 9 shows
that the minimum polynomial of p over ® has degree p¢, ¢ > 0.
Then [®(p): ®] = p° and [P:®(p)] < [P:®]. Since P is purely in-
separable over ®(p), we may assume (using induction on the
dimensionality) that [P:®(p)] = p¢ Then [P:®] = p°pt = pete,

We now consider successive finite dimensional extensions: A/ P
is finite dimensional and P/® is finite dimensional; hence A/® is
finite dimensional. We have seen that, if P/® and A/P are sepa-
rable (purely inseparable), then A/® is separable (purely insepa-
rable). If P/® is separable and A/P is purely inseparable, then
one sees easily that P/® is the maximal separable subfield of A/®.
Then [A:®], = [P:®] and [A:®]; = [A: P]. We now consider the
interesting combination: P/® purely inseparable and A/P sepa-



50 FINITE DIMENSIONAL EXTENSION FIELDS

rable. We shall show that the maximal separable subfield of the
result A/® will have the same dimensionality as A/P. A con-
siderably sharper statement is the following

Lemma. Let A/P be separable, P/® purely inseparable. Then
A/ =P @22 where Z/® is the maximal separable subfield of
A/®. Moreover, [A:P] = [2:9).

Proof. It follows easily from XII, Introduction that the state-
ment A = P®s:2 is equivalent to: there exists a ®-basis for
Y which is at the same time a P-basis for A. This implies that
[Z:®] = [A:P]. We proceed to determine the required type of
basis. First, let (8,85, -+, 8,) be a basis for A/P and write
8:8; = 2 pijudn, pisr € P. If 8 is any element of A and g(x) =

k

A(xP°) is its minimum polynomial over @ such that A(x) is separ-
able, then 87 is separable over ®. Hence also 8°*' = (§*°)' is
separable. It follows that we can choose e so that every §° and
every pij” 1s separable over ®. Since P/® is purely inseparable,
thiS implies that Uiy = pi‘,'kp8 ed. We have 8,—”’8,-’" = Ep,-,-k”'Bk’";
hence, if we put 8;*° = ¢, then we have ¢; € 2 and ¢i0; = Zajx0n,
air e®. We claim that (¢y,0q, -+, 0,) is a basis for A/P and
for £/&. We note first that the multiplication table for the o,
shows that E@a, is a ®-subalgebra of Z/® and E Pg; is a P-

subalgebra of A/P Also the number of ¢; is #; so to show that
(01, 02, * * +5 04) is a P-basis for A it is enough to prove that every
d e Ais a P-linear combination of the ¢;. To prove that (a4, o,

-+, 0n) is a ®-basis for T it will be enough to show that every
o e is a ®-linear combination of the o, since, if these are P-
linearly independent, then they are certainly ®-linearly independ-
ent. Now let 8 ¢ A, Then 8 is separable over P so 5 ¢ P[6*']. We
have & = Zp;5;, p; € P, since (8, -+ -, 3,) isa P-basis. Then & =
Zpi*8” = Zp,”0; ey, Po;. Since §e P[67], this implies that

de Y Po,. Nextlet 0 €. Then, as we have just shown, ¢ =

Zpigi, pie P. If f is large enough, then p® e® and ¢ =
S a ez ®o,. Since ¢ is separable over ®, ¢ € $[¢?’] C E & ;.

This completes the proof.
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We can now prove
Theorem 12. If A/P and P/® are finite dimensional, then
(12) [A:9], = [A: PL,[P:®],, [A:®]; = [A:P][P:¥].

Proof. It is enough to prove the first of these equations since
the second will follow from it and (11). Assume first that A/P is
purely inseparable. Then any element of A/® which is separable
over & is separable over P and so belongs to P. Hence the maxi-
mal separable subfield /& of A/® is contained in P and so this is
the maximal separable subfield of P/®. Hence [A:®], = [P:®],.
On the other hand, since A/P is purely inseparable, [A: P], = 1.
Hence (12) holds in this case. Next assume A/P is separable.
Considering the maximal separable subfield £/® of P/® as base
field, we apply the lemma to the separable extension A/P and
the purely inseparable extension P/Z. This gives [A: P] = [2:Z]
where 2’/Z is the maximal separable subfield of A/Z. Since
separability is transitive, it is clear that 2’/® is the maximal sep-
arable subfield of A/®. Hence, by definition, [A:®], = [2': @]
and

[A:®], = [Z:9] = [2:2][2:9]

= [A: P][2:®].

Clearly, [2:®] = [P:®], and, since A/P is separable, [A:P] =
[A:P],. Substituting in the above equation gives (12) in this case.
Finally, let A/P be arbitrary. Let E/P be the maximal separable
subfield of A/ P, so A/E is purely inseparable. Then, on consider-
ing E D P 2@ where E/P is separable, we see that [E:®], =
[E:P],[P:®],. Since A/E is purely inseparable, the first case ap-
plied to A D E D ® gives [A:®], = [A: E|,[E:®],. Similarly, con-
sidering A D E D P, we obtain [A:P], = [A:E],[E:P],. Com-
bining, we obtain

[A:®], = [A:E][E:®],
= [A:E],[E:P],[P:‘I’],
= [A: P][P:®],,

which is (12) in the general case.
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We have seen that, if P/® is Galois, then P/® is separable (Cor.
to Lemma 1, §9). Also, since P/® is a splitting field, this exten-
sion is normal. Conversely, if P/® is normal and separable, then
P/® is a splitting field of a polynomial which is separable. Hence
P/® is Galois. Thus the condition: P/® Galois is equivalent to
P/® is separable and normal. We claim also that any purely in-
separable extension P/® is normal. To see this let g(x) e ®[«]
be irreducible and suppose g(¢) = O for ¢ € P. Then g(x) is the
minimum polynomial of ¢ over &, so g(x) = ¥»° — a. Since ¢®" =
a, we have the factorization g(x) = & — @ = #?° — o’ =
(x — o), so g(x) is a product of linear factors in P[x]. Hence
P/® is normal. The following theorem gives a rather precise
description of the structure of normal extensions.

Theorem 13. If P/® is finite dimensional normal, then P = £ Qs
T where 2 /® is Galois and T/® is purely inseparable. Conversely,
if T/® is a finite dimensional purely inseparable éxtension and = /®
is finite dimensional separable extension, then the algebra P/® =
T ®22 is afield and this is normal if Z/® is Galois.

Proof. Assume P/® finite dimensional normal. Let I be the
set of purely inseparable elements over ®, so T is a subfield over
® (ex.1,§9). Letpe Pand let g(x) be the minimum polynomial
of p over ® and write g(x) = A(x?") where A(x) is separable. Since
g(x) is irreducible in ®[x], it i1s clear that A(x) is irreducible in
®[x]. Since A(p*) = 0, the normality of P/® implies that A(x) =

IT (* — B8) in Plx]. Also g(x) = A(x?") = fI (¥ — B:) is a

product of linear factors in P[x]. Hence x*° — 8; has a root p;
in P and consequently x*° — 8; = & — p,» = (¥ — p;)?". Then

g(x) = A(x?") = JT (#** — 8:) = II (* — po)”. Now set k(x) =
. 1 1

II (x — ps). Since the 8; = p* are distinct, the p; are dis-
1

tinct. We have k(x)? = I(x? — p®) = O(x* — B,) = g(x). If
k(x) = x™ 4+ g™ 1 +... 4 0, then the o;e P and k(x)* =
x4 g PxmmDP o4 g,” = g(x) which shows that ¢ ¢
®; hence the o; eT. Hence k(x) e T[x]. Since p is a root of k()
and k(x) has distinct roots, p is separable over . Since p was any
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element of P, this proves that P/T is separable. The factoriza-
tion P =T ®s2Z where ¥ is the maximal separable subfield of
P/® therefore follows from the lemma at the beginning of this
section. If ¢ € Z and f(x) is its minimum polynomial over &, then
f(x) = O(x — ox) in P[x]. Evidently the o are separable over &
so they are contained in Z. Hence the factorization f(x) =
I(x — ox) holdsin Z[x]. This proves that 2/® is normal as well as
separable. Hence it is Galois over . This proves the first state-
ment. Now let T'/® be finite dimensional purely inseparable,
/& finite dimensional separable. We shall show first that, if
(61, 02, * * *» 0m) 1s a basis for /@, then the same is true for (¢,%,
o2?, -+, om™), ¢ > 1. Clearly it suffices to show that every ele-
ment ¢ €2 is a ®-linear combination of the ¢». Now for any
j >0, ¢ is a linear combination of the ¢;. Taking p°-th powers
shows that (¢)’ is a ®-linear combination of the o;* for j =
0,1,2,---. Since ¢ is separable, we know that ¢ £ ®[¢?] (Lemma
2 of §9). Hence o & 2 ®0.” and (01, 05, -+ -, ow?) is a basis

for Z/®. Now consider P =T ®+ 2. This is a commutative al-
gebra and any element of this algebra can be written in the form
Zv:i® 04y viel, and (o4, -+, om), the basis for /. Now if
p = Zv:; ® a; # 0, then one of the v;, say, v1 # 0. Since I'/® is
purely inseparable, we can choose ¢ > 0 so that v = a; e,
1 <i<m Then p* = Za; @ ¢ = 1 ® Zaue®. Since
(617, - -+, 0m®) is a basis for £/® and o # 0, Za,0,* is a non-
zero element of 2. Since this has an inverse in X, p has an in-
verse in P. Thus Pisa field. Now assume Z/® is Galois. Then
Z/® is a splitting field of a polynomial g(x) e ®[x] and T'/® is a
splitting field of A(x) e ®[x]. Since P is generated by subfields
isomorphic to I' and Z, it follows that P/® is a splitting field of
g(x)A(x). Hence P/® is normal.

EXERCISES

1. Let E/® be finite dimensional, P/® an arbitrary field extension. Show that
the number of distinct isomorphisms of E/® into P/® does not exceed [E:®],.
Show that this number is attained if P/® is the normal closure of E/®.

2. Let P/® be finite dimensional normal, Z/® the maximal separable subfield,
G the Galois group of P/®. Show that Gmaps 2 into itself and that the mapping
§ — § the restriction of 5 € G to Z is an isomorphism of G onto the Galois group
of /®. Show that I(G) = I'/®, the maximal purely inseparable subfield of P/&.
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11. Primitive elements. In this section and the next we shall
obtain some special generations of finite dimensional extensions
P/®. The results are valid for arbitrary . However, the proofs
in these two sections will require ® to be infinite; the validity of
the results for finite & will be established in § 13.

If P = ®(6), that is, P is generated over ® by 6, then we have
called P a simple extension of ® (Vol. I, p. 101). We shall now
say also that 0 is a primitive element of P/®. We shall prove two
results on existence of primitive elements.

Theorem 14. Let @ be an infinite field and let P = ®(%, q) be a
field generated over ® by a separable algebraic element & and an alge-
braic element n. Then P/® has a primitive element.

Proof. Let f(x) and g(x) be the minimum polynomial over ®
of £ and 7 respectively and let A/P be a splitting field of f(x)g(x).
Then A/® is a splitting field of f(x)g(x) containing P. Let £, =
& &3, -+, Em be the distinct roots of f(x), 51, %2, = -+, - those of
g(x). Then the £, are all the roots of f(x) and we may assume m >
1 since, otherwise, £ €® and P = &(y). Consider one of the
linear equations x¢; + n1 = % + 05 i =2, -, mj=1,.---,7r
This has at most one solution in ®. Hence, since & is infinite, we
can avoid the finite set of solutions of these equations and choose
x=vyedsothatyty +m #Z vt + ;i =2, - ,mj=1.--,
r. Weassert that§ = &, + » is a primitive element of P. Thus
consider the polynomial g(6 — yx) which evidently belongs to
®(0)[x]. We have g(6 — v%1) = g(n) = 0 and, since § — v&; = 5,
fori =2,---;mandj=1,2,.--,7 g(0 — v&) = 0. Hence the

highest common factor of g(@ — vx) and f(x) = [ (¥ — &) is
1

x — £ = x — £1. Hence there exist 4(x), B(x) e ®(f)[x] so that
(» — &) = A(x) f(x) + B(x)g(6 — vx), which implies that £ € (6).
Then 7 = 6 — v e ®(f) and 4 is a primitive element.

The result just proved has an immediate extension, by induc-
tion on k to show that, if P = ®(§,, - - -, &, n) where the §; are
separable algebraic and 7 is algebraic, then P has a primitive ele-
ment. In particular, we see that any finite dimensional separable
extension has a primitive element. We note that the number of
intermediate fields of such an extension is finite. This is clear
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since P can be imbedded in an extension A/® which is finite di-
mensional Galois, and the set of intermediate fields between A
and & are in 1-1 correspondence with the set of subgroups of a
finite group—the Galois group of A/®. The theorem on primitive
elements for finite dimensional separable extensions is therefore
also a consequence of the following

Theorem 15 (Artin). Let ® be an infinite field and P a finite di-
mensional extension field of ®. Then P/® is a simple extension if
and only if there are only a finite number of intermediate fields be-
tween P and ®.

Proof. Suppose first that P = ®(f) and let E be an inter-
mediate field. Let g(x) be the minimum polynomial of 6 over E
and let E’/® be the field generated by the coefficients of g(x).
Then E’ C E, but g(x) is also the minimum polynomial over E’
of 6. Hence [P:E’] = degg(x) = [P:E]. Hence E=FE is
generated by the coefficients of g(x). Now g(x) is a factor of the
minimum polynomial f(x) of 6 over & and both g(x), f(») & P[x].
Since f(x) has only a finite number of distinct factors in P[x]
with leading coeflicients 1, the number of E is finite. Next assume
that there are only a finite number of intermediate fields between
Pand ®. It suffices to show that, if £ 5 € P, then ®(%, ») is simple.
Now let « e® and consider the subfield P, = ®&(¢ 4+ ay). We
have an infinite number of a € ® and a finite number of P,. Hence
there exist @, 8 in ®, & # B, such that P, = Ps. Theny = (a —
B) Mg+ an—&—PBn)eP, and hence £ =£+ an — ane P
Thus P, = ®(¢, #) and this is generated by ¢ + on.

EXERCISES

1. Let & be of characteristic p # 0 and let P = ®y(£, n) the field of fractions
of B[£, 7], £, indeterminates. Let ® = ®y(P?) the subfield over &, generated by
all the p-th powers. Show that [P:®] = p? and that P does not have a primitive
element over &,

2. Let P be the splitting field over the rationals of (¥* — 3)(x* — 2). Find a
primitive element for P.

3. Do the same for % — 2.

12. Normal bases. If P is finite dimensional Galois over &
with Galois group G = {sy, sz, * - -, $,}, then p ¢ P has a minimum
polynomial of degree # over ® if and only if the elements p*, i =
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1, -+, n, are distinct. This is clear since, if p*, - - -, p* are the

r
distinct conjugates, then f(x) = [] (¥ — p*) is the minimum

j=1
polynomial of p over®. Itis clear also that pis a primitive element
of P/® if and only if the degree of its minimum polynomial is
n = (G:1). Hence p is a primitive element if and only if the
p% 1 =1, .., n are distinct. A stronger condition than this is
evidently that these elements are linearly independent. Then we
have the basis (p™, p*%, - - -, p**) of P over &. Such a basis, con-
sisting of the conjugates of a single element, is called a normal
basis for the Galois extension. We shall now show that such
bases always exist if @ is infinite. Our proof of this fact will be
based on the notion of algebraic independence of isomorphisms
which is of considerable interest on its own. We define this as
follows:

Definition 2. Let E be a field over ® and Q an extension field of
E. Let sy, -+ -y Sm be isomorphisms of B/® into Q/®. Then we shall
call the s; algebraically independent over @ if the following is true:
The only polynomial f(x1, + -+, Xm) € Qx1, » + 5 X¥m), ¥:i indetermi-
nates, such that f(n", 9%, -, 9 =0forallne Eis f = 0.

We require the following

Lemma. Let Q be an extension field of an infinite field ® and let

f(xl, v ')xm) eﬂ[xb * ")xm] satisf_y f(zb * ",Em) = Ofor all &i
ed. Then f = 0.

Proof. Let (w,) be a basis for @ over ®. Then we can write
S(x1y oy xm) = 2 fi(%1, -+ 0, ¥m)w; where {w;} is a finite sub-

1

set of (w,) and the f; e®[xy, - -+, ¥m). Then0 = f(&, -+, &m) =
Zfit1, 0, Emw;forall £ e®. Since the w; are d-independent and
the fi(£1, * * -, &m) €®, this implies that every fi(§1, -+, &m) = 0.
Hence, by a result proved in Vol. I, p. 112, fi(xy, + - -, ¥m) = O for
all / and so f(x1, +* *, ¥m) = O.

We can now prove the following theorem on algebraic independ-
ence of isomorphisms.

Theorem 16. Let P be finite dimensional Galois over an infinite
field ®, E a subfield of P/®, and Q an arbitrary extension field of
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P. Let 51, 59, - -+, $m be the different isomorphisms of E over ® into
P over ®. Then the s; are algebraically independent over Q.

Proof. We recall that the number m of isomorphisms is [E:®]
(§ 7). We note next that, if (e, €, * -, €m) is a basis for E/®,
then the determinant det (e;*) of the matrix whose (7, 7) entry
is ¢;% is not 0. Otherwise, the rows of this matrix are P-dependent,
so there exist p; not all 0 in & such that Zpse; = 0,7 = 1,2, -,
m. If e is any element in E, we can write ¢ = Zf;e;, B: e®, and
we obtain Y B.pje;% = 0. Since 8% = B, we have ) p;e = 0.

[ J
This states that the operator Zs;p;r = 0 contrary to Dedekind’s
independence theorem for isomorphisms. We have therefore
established that det (e;*) > 0. Now suppose f & Qxy, X3, * * *, ¥m]
and f(e, €2, -+, ) = 0 for all ee E. Then f(ZB:e;", ZB:ie;”,
vov, 2B, = 0 for all B; in the infinite field . Now let g(xy,
coos Km) = f(Oxie, Sxie®, -0, Txie®) € Qxq, -+, ¥m). This
vanishes for all x; = 8, e ®, so by the lemma, g(x1, - -, ¥m) = O.
Now det (e,*) # 0, so the matrix (¢,%) has an inverse (u;;). Then
Sx1y ooy ¥m) = g(ZXithar, Sxattiny * vy ZXapin) = 0. This proves
that s;, - -+, 5w are algebraically independent over Q.
We can use the result just proved to establish

Theorem 17. Let P be finite dimensional Galois over an infinite
&. Then P/® has a normal basis.

Proof. Let G = {s4, -+ -, 5.} be the Galois group of P/®. We
have just seen that, if (py, ** -, pa) is a basis of P over &, then
det (p) = 0. Conversely, this condition is sufficient for a basis;
for, if £B8,p; = 0 where the 8; ¢ ®, then 28,p,5 = 0,7 =1, -+, m.
This implies that the columns of (p;*) are ®-dependent unless
every 8; = 0. Our criterion shows that, for a particular p, (p*,
p%, -+, p*) is a normal basis if and only if det (p**) = 0. We
now write s;5; = 5;,and we know that (1;, 2, - -+, #,;) isa permuta-
tion of (1,2, .-+, n). Consider the matrix whose (z, j) entry is the
indeterminate x;;, (45 = 1,2, -+, n) in Plxy, - -+, x,]. We assert
that the polynomial d(x1, -« -, x,) = det (x;) # 0. To see this
we specialize ¥, = 1, 43 = --- = ¥, = 0. Since each row and
column of (x;;) contains exactly one xy, it follows that det (x;,) =
=+1 if the x; are specialized as indicated. Therefore, d(x, - - -, ¥»)
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# 0, and so by the algebraic independence of the x; we can
find a p e P such that det (o**%) = det (o%)) # 0. Then p de-
termines a normal basis.

There is another, more sophisticated, formulation of the normal
basis theorem which we shall now indicate. For this we introduce
the group algebra ®(G) of the group G: ®(G) has the basis G =
{s1, -+, 5.} and multiplication is defined by (Za;s;)(28;5;) =
SaiBisis; = ZaBisy; (cf. Vol. 1, ex. 2, p. 95). We consider two
right modules for ®(G): The first of these is #(G) itself considered
in the usual way: x4, x € ®(G), 2 ¢®(G) is the algebra product.
Next we consider P as #(G)-module by defining pa = Za;p* for
a = Za;s; in ®(G). It is immediate that the module axioms hold
for this multiplication. The normal basis theorem is just the
statement that these two modules are isomorphic. Thus, let
(p*) be a normal basis and consider the linear mapping of ®(G)
over ® into P over ® sending s; into p*. This is a ®-linear iso-
morphism and, if x = Zs;, then xs; = &y, — D Eip® =

> £p%% = (Z£ip%)s;. Hence, if we denote the image of x by

x’, then &’s; = (x5;)’. This implies that ¥’z = (xa)’ for all a ¢
®(G) so we have a ®(G)-isomorphism. It is easy to check that,
conversely, if x — %’ is a $(G)-isomorphism of #(G) onto P, then
the image of (s; = 1, 2, - - -, §,) is a normal basis for P/®.

EXERCISE

1. Prove the following generalization of Theorem 16: Let f(x1 D, « + - #,, D,
21D, e @, e ™) o 0, ) be a non-zero polynomial in indeterminates
#;%. Then there exist 71, -+ -, 7, € E such that fin%1, -+, m®m, -+, 9%, «-+,
7etm) = 0,

13. Finite fields. The main results on finite fields are readily
obtained as applications of Galois theory. We proceed to derive
these. At the same time we shall establish the validity of the
theorem on primitive elements and normal basis for finite base
fields.

We remark first that any finite field P is of characteristic p = 0,
since otherwise P contains a subfield isomorphic to the field of
rational numbers. Hence the prime field ®, of P is isomorphic to
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» = 1/(p). If ® is any subfield, of course, [P:®] = n < . If
(o1, * * *» pn) is a basis for P over ®, every element p e P can be

n

written in one and only one way as ) ap;, a; e ®. If the cardinal
1

number |®|= g, then it is clear from this that |P|= ¢ In
particular, if [P:®)] = N, ®, the prime field, then |P|= p?¥.
This shows that the number of elements in any finite field is a
power of its characteristic.

We show next that for any prime power p¥ there exists one
and, in the sense of isomorphism, only one field with p¥ elements.
We consider the uniqueness first. Let P be a field with | P| = p?.
Then it is clear that the prime field ®, of P is isomorphic to .
If p is a non-zero element of P, then p?"~! = 1 since the order of
the multiplicative group P* of non-zero elements of P is p¥ — 1.
We have also that p?" = p, an equation which is valid for every
pe P. Thus every element of P is a root of x?" — x = 0 and
%" — x e ®o[x], B, the prime field. Then

(13) XY — x = i1I (x — pi)

where the p; are the elements of P. This shows that P/®, is a
splitting field of the polynomial ¥»" — x. Now suppose P’ is a
second field such that |P’| = p¥; then P’ has characteristic p so
its prime field ®y’ = ®,. Also P’/®, is a splitting field of " — x.
Hence P’ = P by the uniqueness theorem on splitting fields.

The method just used also gives the existence of a field P with
|P| = p¥, p a prime. For this we begin with &, = I, which has
P elements and we let P be a splitting field over &, of x?" — x.
Let = be the set of roots of x»* — x = 0 contained in P. Since
the derivative (x*" — x)’ = —1, x»” — x = 0 has distinct roots
so |Z|= p¥. We note next that = is a subfield, since, if £, g ¢
Z, then " =¢ " =9 s0o E—n)? =" — " =t -,
()" = &"P" = g and ()" = (PP =9 7lifp = 0. It
now follows that Z 2 &, and, since P is a splitting field of x?" —
¥, P = ®,(2) = Z. Thus we have |P|=|Z|= p?.

We prove next the theorem on primitive elements: If ® is a
finite field and P is a finite dimensional extension of ®, then P =
®(0). Clearly, under the given conditions P is finite. We now
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show that the multiplicative group P* is cyclic. This is a con-
sequence of the following useful general result.

Lemma 1. Any finite subgroup A of the multiplicative group of
a field is cyclic.

Proof. Let 7 be the order of A4 and let ' be the highest order
for the elements of 4. It is known that, if 2 and 4 are two ele-
ments of a finite commutative group, then there exists a ¢ in the
group whose order is the least common multiple of the orders of 2
and & (Vol. II, ex. 1, p. 69). It follows that, if 7’ is the highest
order, then 4™ =1 for every 4. On the other hand, we know
that the equation ¥™ — 1 = 0 has at most m’ roots in a field.
Since m’|m, we have m’ = m. Moreover, if a is an element of
order s, then the order of the cyclic group [4] generated by 4 is m.
Hence 4 = [4].

Now if P is a finite field and @ is a subfield, then surely P =
®(0) if 8 is chosen to be a generator of the cyclic group P*.

We consider next the automorphisms of a finite field P. If the
characteristic is p, then we know that the mapping w:f — £ is
an isomorphism of P into P. Since P is finite, this is an auto-
morphlsm If | P| = p¥, then p?" = p for every pE e P. Evidently
7 is the automorphlsm £ — £ so we have #¥ = 1. On the
other hand, if 6 is a geneiator of the group P*, then 67" = 6 if
m < N. This implies that #™ 5 1. Hence the cyclic group G =
[r] has the order N. Let ® be the set of G-invariants of P. Then
we know that ® is a subfield and [P:®] = N. On the other hand,
we know that [P:®g] = p¥ if &, is the prime field. Hence & =
®,. We now see that the field P is Galois over its prime field &,
and the Galois group is G = [r]. The Galois correspondence now
gives a correspondence between the collection of subfields of P
and the collection of subgroups of G. Since G is cyclic of order N,
for each divisor # of N there exists one and only one subgroup H
of index n. We have H = [r] where r = »". The correspond-
ing field ® of H-invariants (or of r-invariants) has dimension-
ality # over ®,. Hence |®|= p" and we have shown that the
subfields ® of P have order p™ where #| N and for each such order
there is precisely one subfield of P of this order. The Galois
group of P over ®is the cyclic group H = [r] as before. In general,



FINITE DIMENSIONAL EXTENSION FIELDS 61

we shall call an extension field P/® ¢yclic, abelian, or solvable if P/®
is finite dimensional Galois and its Galois group is respectively
cyclic, commutative, or solvable. Hence we can say that any
finite field is a cyclic extension of any of its subfields. We shall
therefore have the normal basis theorem also for finite base
fields by proving

Lemma 2. Any cyclic extension P/® has a normal basis over ®.

Proof. Let s be a generator of the Galois G group of P/®.
We consider s as a linear transformation in P over ® and let u(x) e
®[x] be its minimum polynomial. Now Dedekind’s independence
theorem implies that the automorphisms 1,s, ---, s*! are P-
independent if (G:1) = n. It follows that these are also ®-in-
dependent and consequently deg u(x) > #. On the other hand,
[P:®] = # so the degree of u(x) cannot exceed » (Vol. 11, p. 69).
Hence deg u(x) = n. Since s = 1, we see that u(x) = ™ — 1.
Now we know that there exists a p ¢ P whose order polynomial
relative to the linear transformation s is the minimum polynomial
(Vol. 11, p. 67). Then p, p°, -+, p™" are ®-independent and so
these elements form a normal basis for P/®.

EXERCISES

NoTE: A set of exercises on finite fields is given in Vol. I, pp. 112-113,

1. Let @ be a finite field of order of ¢(= p¥). Show that an irreducible pol y-
nomial f(x) € ®[x] is a factor of ¥¢" — x if and only if deg f(x) |#. (Hint: consider
the field ®[x]/(f(x)).) Show that ¥" — x = II fi(x) where fi(x) runs over the ir-
reducible polynomials with leading coefficients 1 of degrees divisors of n. Let
N(g, r) denote the number of these polynomials of degree ». Derive the formula

Nig,n) == ZM (n) 7
noyin r
where u is the Mdbius function (cf. Vol. I, ex. 5, p. 120).

2. Let I be an » dimensional vector space over a finite field ® of odd order ¢
(characteristic # 2) and let g(x, y) be a non-degenerate symmetric bilinear form
on N over &. Show that if » > 2, then there exists a vector % in i} such that
g(u,u) = 1. Apply this and the reduction theory of Vol. II, pp. 152-154, to
prove that I has an orthogonal basis (u1, us, - - -, #,) such that g(u, uy) =
6 # O, g(us,u) = 11f i > 1. Use this to prove that any two non-singular sym-
metric # X » matrices with entries in & are cogredlent if and only if their
determinants differ by a multiplicative factor which is a square (6§ = 6p?) in ®.
Hence show that there are just two cogredience classes of non-singular sym-
metric matrices.
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3. Let &, M, g be as in ex. 2. If (e1,eq, ---,¢,) is a basis, then 6 =
det (g(es, €7) is called a discriminant of g. For 4 &€ ® let N(g, 4) be the number
of vectors u# € N satisfying g(u, #) = 4. Show that

@ l—¢+ ¢ ifn=2wand
(—1)’é is not a square
Ng,0)=|¢*» '+ ¢ — gL if n=2wand
(—1)’é is a square
@ ifn=w+1

F¢? 1+ ¢ 1 if 650, n = 2, and
(—1)*6 is not a square

@' — ¢ L if b0, n =2, and
(—1)8 is a square

¢ — ¢, ifb#0,n =2+ 1, and
(—1)*84 is not a square

¢+ ¢,if6#0,n=2+1, and
(—1)’64 is a square

N(g, b) =

4. Let O(n,g) denote the orthogonal group determined by g:O(n, g) is the
group of linear transformations 4 of M such that gxA4, yA4) = g(x, y) for all
%,y € M. If uis a non-isotropic vector, let O, be the subgroup of O(n, g) leaving
fixed. Show that O, is isomorphic to O(» — 1, g") where g’ is the restriction of g
to (®x)L. Use Witt’s theorem to show that the number of cosets 0,4 of O, in
O(n, g) is the number of vectors v satisfying g(v, v) = g(u, ). Use this result and
ex. 3 to establish the following formulas for the order (O(#, g):1):

=D/2
2.g¢-0M T (g% — 1), if nis odd
O(n, 9):1) = T o
2egnn=DH(n2 o T (g% — 1),if nis even
t=]

Here ¢ = 1if (—1) § is a square; otherwise e = —1.

14. Regular representation, trace and norm. In this section
we consider a finite dimensional extension field P/® and we shall
define certain mappings of P into ® called the trace and the norm.
These functions can be defined just as easily for arbitrary finite
dimensional algebras and are of importance for these also. We
shall therefore begin by considering a finite dimensional algebra
A/® with basis (u1, us, - - -, u,) over . We define a ( finite di-
mensional) representation of %/® to be a homomorphism of %/®
into the algebra (M) of linear transformations of a finite di-
mensional vector space :M/®. If § is such a representation: 2 —
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a5, then the defining conditions are

(a4 5)5 =a%+ 85 (aa)S = aa’,
(14)
(ab)S = a5, 15 =1,

a,bed, aed If (x1, %9, -+, xx) is a basis for I over &, then
we can determine the matrix 25 relative to this basis in the usual
manner: We write

N

(15) x@5 = Y ay(a)x;, i=1,2,---,N.
j=1

This gives the matrix a(s2) = (a;;(a)) and the mapping 2 — «(a)
of A/® into the algebra &y/® of N X N matrices with entries in
®. Since the mapping 4 — () of the linear transformation A4
into its matrix (a) relative to (%1, %2, - - -, ¥x) is an isomorphism,
the mapping 2 — a(a) is a homomorphism of %A/® into &x/®.
Such a homomorphism is called a matrix representation. We recall
that, if we change the basis (x3, - - -, #x) to another basis (y;, - -,
yn~) where y; = Zpu;x;, then the matrix representation defined by
§ and this basis is 2 — (u)a(a)(u) ~! where (u) = (i) (cf. Vol.
I1, p. 42).

The most important representation of %/® is the so-called
regular representation R. Here a® = ap the right multiplication
¥ — xa defined by a. One checks directly that ag is a linear
transformation in % over ® and that 2 — ag is an algebra homo-
morphism (cf. Vol. I, p. 82). Since ¥ has an identity, 2 — 4z
is 1-1 and so is an isomorphism of %A/® into Le(A). Since xaz =
xa, we obtain the matrix representation associated with the basis
(%1, 2, * - +y un) of A/® by writing the products u;a as ®-linear
combinations of the #;:

(16) uia = Zpi(@uz, j=1,2, -, n

We write p(a) = (p;;(4)) and we have the matrix representation
a — p(a) which is 1-1. Also since 1z = 1, p(1) = 1, the identity
matrix. As in the general case, a change to the basis (v;, vs, - - -,
v,), where v; = Zpu,u;, gives the new matrix representation ¢ —
o(a), where

(17) a(@) = (We(@ W)™, (W) = (uy).



64 FINITE DIMENSIONAL EXTENSION FIELDS

As an example of this we consider an algebra % = ®[4] with a
single generator. Since [U:®] < oo, ¥[a] = $[x]/(f(x)) where f(x) is
a non-zero polynomial with leading coefficient 1. We have f(a) =
0 and f(x) is the non-zero polynomial of least degree (leading
coefficient 1) having 4 as a root. Thus the polynomial f(x) is the
minimum polynomial of 2 (Introduction, p. 6). Also ®[s] has
the basis (1, 4, - -, 4" ') where » = [%:®] = deg f(x). Suppose
(18) Jx) =a® —aux 4o+ (=), a;ed.

Then we have the relations

la =a,8a=a% - --,a" %22 =a"!
a*la=aa" ! — a2 -+ (=1 ay,.
These show that, if p(s) denotes the matrix of ag relative to
(1, a, ---,a*"), then we have

(19)

01 0
00 1
(2()) p(a) = . . . . ,
(—1)"—-1011; T a2 ag

which is called the companion matrix of the polynomial f(x). In
theory, once we know this matrix, we know p(%) for any element 4
in ®[4] since 4 is a polynomial in a.

We now consider the general case again and we define the charac-
teristic polynomial of the element 2 e %A to be the characteristic
polynomial
(21) Ja(%) = det (x1 — p(a))
of the linear transformation ag in 9 or of the corresponding matrix
p(a). By (17) we have

x1 — o(a) = (W(xl — p(@))(w) ™"
which shows that

det (x1 — o(a)) = det (w)(x1 — p(a)) (W) ™"
= det () det (x1 — p(a)) det (u) ™!
= det (x1 — p(a)).
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Thus we see that f,(x) is independent of the choice of the basis
for A/®. We can write the characteristic polynomial as

(22) Salx) = x™ — T(@)x™ ' 4+ - -+ (—=1)"N(a).

We have T(a) = trace p(a) = i pii(a), N(a) = det (o(a)) and we

call these respectively the trace and norm of 4 in % over . We
shall find it necessary at times to specify the base field of the alge-
bra and also the algebra itself. In these cases we shall write
Tuis(a) for T(a), Nuis(a) for N(a). Since the trace is a linear
function of matrices and since 2 — p(a) is linear, it is clear that
a — Tyuie(a) is a linear mapping of A into ®. Also since p(1) =
1, we have Tyujs(1) = nl and Tyie(az) = aTuie(a). Thus we
have the following relations:

Tuis(a + &) = Tuie(a) + Tui=(%)

(23) Twis(aa) = aTwns(a), ac®
T(1) = nl.
Since 2 — p(a) is multiplicative and 4 — det 4 is a multiplica-
tive mapping of the set of matrices, we have Nys(ad) =
Nuis(a) Ny s(8). Also, it is clear that Nyjs(asz) = a"Nyje(a)
and Ny|s(1) = 1. Thus we have:
Nuis(ab) = Nuis(a)Nuia(?),
(24) Nyjo(aa) = a"Nyjs(a), aecd,
N() = 1.

We recall that according to the Hamilton-Cayley theorem p(a)
is a root of fo(x) = 0. If we apply the isomorphism p(4) — 4, we
see that f,(¢) = 0. Thus we have
(25) a® — T(@)a""'+-.--+ (—1)"N(a)1 = 0.

Let mq(x) be the minimum polynomial of p(a) (or of ag). Since
b — p(?) is an isomorphism, it is clear that m,(x) is the minimum
polynomial of 2. We recall that the minimum polynomial of a
matrix is a factor of its characteristic polynomial and these two
have the same irreducible factors in ®[x], differing only in the
multiplicities of these factors (Vol. II, p. 99, or p. 102).
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The trace function can be used to define an important bilinear
form on the algebra A/®. This is the regular trace form

(26) (a, &) = Ty e(abd).

Evidently, we have the following rules governing this function
whose values are in ®:

(@61 + 62) = (a,81) + (a, &2)

(@1 + a2, ) = (a1, 6) + (a2, &)
a(a, b) = (aa,d) = (a, ab)
(ab,c) = (a, bc) (= Twa(abc)).

Also we recall that, if M and N are matrices, then the tr MN =
tr NM (Vol. I1, p. 104). This implies that

(28) (a,8) = (&, a),

so (a, &) is a symmetric bilinear form. We shall define also the
discriminant of A over ® relative to the basis (uy, us, - -+, u,) to

be
(29) 8(u;) = det ((us, u;)) = det (Twia(u:u;)).

It is immediate that, if we replace (ui, - -, #,) by the basis
(01, * 5 V), U: = Zusju;, then the matrix ((u;, #;)) is replaced by
((vs v)) = M((us, u)))M'y M = (us;) (Vol. I1, p. 149). Hence the
discriminant relative to (v;) is 8(u;)u?, u = det M.

We now suppose that E is a subfield of ® of finite co-dimension
in®. Then A 2@ D E and [4: E] = [A:P][®: E] is finite so, if we
consider ¥ as a vector space over E, this is finite dimensional.
Hence % is a finite dimensional algebra over E. We can therefore
carry out all of the above considerations for the algebra %/E. We
can also consider ® as an algebra over E and we can define Tug,
Tsie, Nuig, Neig as well as Tujs, Nuis. We shall now proceed
to develop the following fundamental transitivity relations con-
necting these functions: If & D E,

(30) Twig(a) = Teiu(Tuis(a))
31) Nyuig(a) = Nsie(Nujs(a)).

(27)
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As before, we let (#y, - - -, u,) be a basis for %/® and we suppose
(Y1, Y25 * * *» &) is a basis for ®/E. Then

(32) (Y11, Yattyy = 5 YhUL} Y182, ** "5 YhUz2 ** * Yiln)
is a basis for Y/E. If p ¢ ®, we write

(33) Yok = zxqt(p)'ﬂ) gt = 1) Y h

so we have the isomorphism p — (A(p)) where A(p) is the matrix
(Mgt(p)) with entries in E. Then Tee(p) = ZAg(p) and Ner(p)
= det (\(p)). We now combine the relations (33) and (16) to
write

(34) (Yeus)a = Zryepij(@)u; = Zhgi(pii(a))yeuj,

iyj=1,--,m ¢gt=1,---,h This shows that if the basis
(vqu:) is ordered as in (32), then the matrix of 4z in UA/E is

Mp11) Mpiz) o+ Mp1a)
(35) A(a) — )‘(P.Zl) )\(sz) )\(P.zn)
X(/-’nl) )\(Pnz) e X(Prm)

where \(p;;) is an A X A matrix with entries in E and we have ab-
breviated p;; = pi;(@). It is clear from the form of (35) that

Twie(a) = trA(a) (tr = trace)
= tr N(p11) + tr X(p22) + -+ -+ tr A(onn)
= tr N(p11 + p22 + -+ Pnn)
= tr M(Tuie(4))
= Taie(Tu1s(a)).

This establishes (30).

For the proof of (31) we require a general transitivity property
of determinants (Vol. II, ex. 2, p. 135) which we proceed to derive.
We suppose we have an #4 X #k matrix with entries in a field E
and we assume that, if we partition this as an #» X # matrix A =
(\ij) where each \;; is an 4 X 4 matrix, then the \; all commute.
This is equivalent to assuming that the \;; all belong to a com-
mutative subalgebra 8 of the matrix algebra ®,. This is precisely
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the situation for the matrix A(z) and the blocks A\(p;;) of (35).
Since the \;; ¢ ¥ and B is commutative, the usual definition and
properties of determinants hold and we can consider

(36) det,. (A) = Z GP)\lil)\Ziz e )‘nin)
P

where the summation is over the permutations (iiiz - 7,) of
(12 ---n) and e = 1, —1 according as P is even or odd. Now
det, (A) as defined above is an element of ;. Hence we can take
the usual determinant of this. We shall now establish the follow-
ing formula:

37) det (det, (A)) = detA

where det A is the usual determinant of the n4 X #4 matrix.

To prove this result we extend the base field E to a splitting
field over E of the product of the characteristic polynomials of all
the matrices \y;. It suffices to prove the result in this field. Hence
without loss of generality we may assume that E contains the
characteristic roots of all the A;;. The theory of sets of commuting
linear transformations (Vol. II, pp. 133-134) shows that there
exists a matrix u € Ej, such that every u~'\;u is triangular:

Pij1 *
Pij2
(38) pTNp = gy =
0 Pijn
Hence if we set
(1
u
(39) M = . ]
u
then
(711 M1z Mia
(40) M~AM = M21 M2z " Mamf
tNMnl Mn2 " Nan
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We have det A = det M~!AM and, since 7;; = p~\u,
det, M~7IAM = p~'(det, A)p.

Hence det (det, M~AM) = det (det, A); so it suffices to verify
that

(41) det (det, M~IAM) = det M~AM.

Now it follows directly from the definition of det, and from the
way triangular matrices are multiplied and added that

det P1 *
det ps
(42)  det, M7'AM =
b 0 det Ph

whnere

P11k P12k  **° Plnk
(43) 0 P21k P22k = P2nk

k= . .

Prik Pn2k *°° Pnnk

Hence

(44) det (det, M~'AM) = det p; det ps - - - det p.

We need to calculate next det M—'AM. For this we make the
following permutations of rows and columns:

column (i — 1)A 4+ 5 — column (j — 1)n + i
row(i—Dh+jo>row(j—Dn+1
for i =1,2,---,nand j=1,2,---,h This gives the matrix

P1 *

P2
(45)

28
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where py, is as in (43). Hence, by Laplace’s expansion, det M ~'AM
= det p; det p, - - - det p, = det (det, M~'AM). This proves (37),
as required.

We now apply this to norms. Here we have Nyjs(a) =
det (o:;(a)) e ® and

NEisNuis(a) = det (\(det py)).
Since p — A(p) is an isomorphism, we have

(M(det pij)) = det. (A(p:p)
SO
det M(det p;;) = det det, (A(p;;)) = det A(a),

by (37). Sincedet A(a) = Ny e(a) we have the norm formula (31).
We shall now specialize all of this to the case: ¥ = P a field.*
We know that the minimum polynomial 7,(x) of any @ € P is ir-
reducible. Hence the characteristic polynomial f,(x) = m.(x)".
We have [P:®] = n = deg fo(x) and [®(a) :®] = deg m,(x); there-
fore r = deg f.(x)/deg m,(x) = [P:®]/[®(a):®] = [P:®(a)]. Hence
we have

(46) Sa(x) = mo(x)F12@1,

We shall now obtain some important formulas for the norm
and trace of a field and we look first at the separable case. Thus
let P/® be finite dimensional separable, 2/® the normal closure of
P/®. Then 2/® is Galois and [2:®] = (G:1) for the Galois group
G of @/®@. Let H be the subgroup of G corresponding to P/® (the
Galois group of €/P). Since [P:®] = n, the index (G:H) = n
and we have » distinct cosets Hs,’, Hs,', - -+, Hs,'. If 5; denotes
the restriction of s/ to P, then s,, 55, - - -, 5, are distinct isomor-
phisms of P/® into 2/® and these are all the isomorphisms of P/®
into @/® (§ 7). Next let p e P and let K be the subgroup of G
corresponding to ®(p). Then G 2D K D H. Lets/,---,tn’ bea
complete set of representatives of the cosets K/ in G and let
ui'y - -+, u,’ be a complete set of representatives of the cosets
Hu' in K. Then we have G = UK:/, K= UHuy so G =

* A simplified version of the proof of the transitivity formula for norms in this case will
be indicated in ex. 2 below.
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UHu,'ty’ and the mr elements %'ty form a complete set of rep-
resentatives of the cosets of H in G. We may assume that these
are the s;/ which we indicated before. The restrictions of the ¢
to ®(p) give all the isomorphisms of ®(p)/® into /& and these
are distinct. Since p generates $(p), it follows that the elements
%', p%, -+, p'" are distinct and these include all the conjugates
p*y s’ € G. Hence the minimum polynomial of p over & is m,(x) =

II (x — p*%'). Also we have p*'% = p%' for all k and j. Hence
F=1

II(x —p%) = II II (x — o®'%') = m,(x)". On the other hand,
{=1

k=1 j=1
r = [P:®(p)], so by (46) (for a = p), we see that the charac-
teristic polynomial

47) fi) = ﬁ(x — )

where sy, $2, -+, 5, are the different isomorphisms of P/® into
its normal closure 2/®. Comparison of this formula with (22)
gives the following formulas for the trace and norm in the sepa-
rable case:

(48) Tris(p) = ip", Neis(p) = I':Ip"-

Next let P/® be purely inseparable of characteristic p 0.
Then [P:®] = p/. If p e P, the minimum polynomial ,(x) has
the form x* — a = (¥ — p)*. Since P/®(p) is purely insepa-
rable, [P:®(p)] = p* and p’ = [P:8] = [P:®(0)][®(p):®] = p*p°.
Hence f = g + e. By (46), the characteristic polynomial is

(49) filx) = (™ — a)?* = (x — p)*’.
This shows that
(50) Teis(p) = [P:®]p, Nris(p) = pF.

Now let P/® be arbitrary, £/& the maximal separable sub-
field, 9/® the normal closure of P/®. Then ©2/® contains the
normal closure A/® of Z/®. Again we assume the characteristic
is p ¢ 0. Then [P:Z] = p/, f > 0, and this is the degree of in-
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separability [P:®]; (§ 10). If p ¢ P we have, by (50) and (47),

NPlQ(p) = N2|Q(Np|z(p)) = NEIQ(p[P:‘Pl")
(P:aleya(,[Pi8lYer ... (p[Pidli)on

= (p

where 51, 52, * - -, 5o are the different isomorphisms of Z/® into
A/®. Now it is easily seen that every s; is the restriction of an
isomorphism of P/® into ©/® and distinct isomorphisms of P/®
in ©/® have distinct restrictions to Z/® and map this field into
A/® (ex. 1, § 10). It follows that the foregoing formula can be re-
written as

(1) Npia(p) = (pp% - - - pon)[Pidls

where s, $2, -+ *, §, are now considered as the different isomor-
phisms of P/® into 2/®. In exactly the same way we obtain

(52) Te1a(o) = [P:®]:(p™ + p* +-- - + p™).

If P is not separable over ®, then f > 0 and [P:®]; = p/ is
divisible by p. Hence we see that Tp|s(p) = O for inseparable
P/®.

We obtain next some formulas for the discriminant of P/®
relative to a basis (py, p2, -+, pn). Thisis

(53) 8 = det (Tr1a(pinj))-

If P/® is inseparable, Tpje = 0so 8 = 0. Now assume P/® sepa-
rable and, as before, let sy, 53, - - -, 5, be the isomorphisms of P/®
into 2/®. Consider the matrix

(54) A= ("), 4,j=12,---,n
We have shown in the proof of Theorem 16 that det 4 = 0. We

consider now the matrix 44’, A’ the transpose of 4, whose (i, 5)-
entry is

(55) p*ipi™ + pi®p® + - -+ pi*pi™ = Teie(pinj).
Hence § = det A4’ and we have
(56) 8 = (det A)%, A = (p:).

Since det 4 # 0, this shows that § ¢ 0. We recall that this im-
plies that the trace bilinear form (p, ¢) = Tpis(ps) is non-de-
generate (Vol. I, p. 140). We therefore have the following
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Theorem 18. If P/® is finite dimensional separable, then the
trace form (p, o) = Tp\s(po) is non-degenerate and the discriminants
dof P/®are # 0.

Let 6 be a primitive element of the finite dimensional separable
extension. Then it is clear from (46) that the characteristic poly-
nomial f(x) of 8 is the same as the minimum polynomial. In Q[x]
we have f(x) = (x — 61)(x — 62) -+ (x — 0,), 6; = 6, and the
6; are distinct. If f/(x) is the derivative of f(x), then
(57) S0 =(0—02)(0—63) - (6 —6,)
and this element is contained in P = &(6) since f'(x) e ®[x]. The
element f'(0) is called the different of . We shall show that the
discriminant & determined by the basis (1,8, 6% ---,*71) is

n(n—1)

(58) 8= (=1) 2 Neis(f6).

We have § = det Tp1s(0° "1 ~1). Now it is clear that we have an
isomorphism of ®(#)/® into ©2/® sending 6§ into 6;, 1 <7 < ».
Hence the 6; are the conjugates 6% of § and (6¥)*% = 6,*. The
matrix A4 of (54) for the basis (1,6, 6% ---,6""!) now becomes

1 1 |
7] [7] ce 0n
A = 1 2
aln—l 021;—1 . e ann—l

It is well known that det 4, a so-called Vandermonde determinant,
has the value J] (8; — 6;). Consequently (56) gives the formula

i>7

(59) d = H(ai—ai)zx i’j=1’2"",n’
1<J

for the discriminant. On the other hand, f/(6) = [] (6, — 6.).
w1

Applying s; which sends 6, into§; we obtain f'(8)* = [] (8, — 6).
[ )

It follows that
n(n—1)

(60) Neio(f'0)) = (=1) 2 TJ (6: — 6"

i<j

Comparison of (59) and (60) proves (58).
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EXERCISES

1. Let A be the algebra ®[x]/(x® — 1), so that A has the basis (1,8, --., 0%~}
where @ is the coset x + (x* — 1). Show that, if a =g+ asf +---+
a8, a; £ ®, then the matrix of ag relative to the basis (1,8, ---,6" %) is
the circulant matrix

24 (25 S 2 s |

Op-] Qo 01 - * Op2
A=

o] oy g *+ -+ Qo

Show that, if ® contains # distinct #-th roots {; of 1, then
n n—1
N@ =det4=TJI(2 a.{,“)-
i=1\ g

2. Let P D & D E be finite dimensional extension fields of the field E. Let
aeP and let " — a* ™! +-- -+ (—1)*a, be the minimum polynomial of 2
over ® so that (20) defines a matrix representation of ®(z)/®. Show that one ob-
tains a matrix representation of ®(z)/E by replacing the entries 0, 1 which
appear by the £ X 4 zero and identity matrices respectively and the a; by the
representing matrices A(o;) for a matrix representation of ®/E. Use Laplace’s
expansion to verify that the determinant of the resulting matrix is

Na@y/e(a) = det Mas).
Since an = Ng(a)/2(a), this gives

Nz (ay/e(@) = Ngsa(Neoye(a)).

Next show that Np|p(s) = Ngy/e(@)",r = [P:®(a)]. Use these results to prove
(31) for A = P,

3. Let A/® be an algebra with the basis (w1, up, -+, un) and let ¥ =
&y, &2, - - -, E,) the field of rational expressions in mdetermmates £ Consider
the algebra (A ®4 %) over ¥ which has the basis (#1, us, - - -, #,,) over X. Show

n
that, if X = Y &, then the characteristic polynomial fx(x) of X is 2a homogene-
1

ous polynomial of degree » in ®[x, &, - - -, &4], x, &, indeterminates. Use this
and the arithmetic theory of polynomial rings of Vol. I, pp. 124~127, to show that
the minimum polynomial px(x) of X has the form x™ — #(&y, «- -, Ea™ 1 4 .-
+ (=D)™n(§y, - -+, £,) where the coefficient of ¥™~* is a homogeneous poly-
nomial of degree 7 in the &'s. If a = Sayu; e U, set py(x) = #™ — Hoy, -+,
a)x™ ™ 4. (=)™, - -+, a,). Prove that u{a) = 0.

4. Let the notations be as in 3 and assume I = P is a field. Show that px(x)
is irreducible (Hint: Use ex. 4, § 9); hence show that fx(x) is a power of px(x).
Show that n(£y, - - -, £s) is irreducible and that the norm form

N(X) = i"(il, Y £
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15. Galois cohomology. One is often interested in studying
mappings of the Galois group G of a finite dimensional Galois
extension P/® into P or into the multiplicative group P* of non-
zero elements of P. More generally, one encounters mappings of
the product sets G X G, G X G X G, --- (functions of several
variables in G) into P or P*. A particularly important type of
mapping of G into P*, s — u, & P¥, is one which satisfies Emmy
Noether’s equations

(61) Mt = ,Uvat#t-

If the p, e ®, then u,* = p, and this reads: ps,s = pope which is just
a character or multiplicative mapping of G into ®. If G is cyclic
with generator g: G = {1, g, -+, g" "'}, g* = 1, then any element
p € P such that N(u) = ppf - -+ €' = 1 defines a mapping s —
us satisfying (61) if we define

(62) w1 =1, pg=p, pg = pus -, pp = ppf - pf

Then pgn = puf «+ - p& = (upb -+ w8 )8 p = ugifu, holds for
i=1,--.,m— 2. Also (61) is clear for # = 1 since u; = 1 and
1 = pgn = pgn%ug = pf -+ p& 'w = N(u). Hence (61) holds
foralls = gtand¢# = g. Itiseasy to check by induction that it is
valid for all s and all £ = g'.

In the general case, if ¥ is any element of P¥*, we can set u, =
v(v*)~! and we have

pe'ue = (v(¥) D (¥H)
—_ ,Yt(,yat)—l,y(,yt) -1
= v(y*)~!
= Mst.

Thus p, = y(v*) ! satisfies Noether’s equations for any non-zero
v in P. We proceed to show that this “trivial” solution of Noe-
ther’s equations is the only possible one, for we have

Theorem 19. Let s — p, be a mapping of G into P* such that
Mot = pa'us, 5, L €G. Then there exists a non-zero element v in P
such that p, = v(v*) 1.

Proof. Since the y, are ¥ 0 and the automorphisms are right
linearly independent over P, we see that the operator Zsu, (=
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Zsusg) 1s ¥ 0. Thus we can find a 8 & P such that y = 8Csu,) =
2B, # 0. We now calculate

¢
= (‘% B’#a) = 2 B"u,t
= ( 2 Bat#atl"t) pet

= ( > ﬂ"#at) pe?

= (; ﬂaﬂa) pe

since s¢ ranges over G if s ranges over G. Hence we have o' =
yu: ! and p, = y(¥") ! as required.

We have seen that, if G is cyclic with generator g and u is an
element of norm one in P (Np|4,(p) = 1), then Noether’s equations
hold for pgi = put ,1 <i <n—1,u = 1. Thetheorem
now states that there ex1sts avyeP*such that u = u, = v(v*) .
This gives the following corollary which is referred to in the
literature as “Hilbert’s Satz 90”:

Corollary. Let P/® be a finite dimensional cyclic extension field
and let g be a generator of the Galois group of P over . Then any
element u e P such that Npio(u) = 1 has the form p = v(v¢) ™! for
a suitable v e P.

The two results which we have just obtained have analogues
for the additive group of the Galois extension P/®. We consider
a mapping s — 3, of G into P. The additive analogue of Noe-
ther’s equation is:

(63) 5” = 5at + 53, S, te G.

If ye P and we set 8§, = v — 4%, then §,, = v — ¥** and 3, +
0 =" — ¥+ 4 — 4" = 8,550 (63) holds. The direct analogue
of Theorem 19 is valid:

Theorem 20. Let 8, s€G, be elements of P satisfying (63).
Then there exists a v € P such that 8, = v — ~°.
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Proof. We choose an element p £ P such that Tp|s(p) = Zp® =
0. This can be done since D s = 0 by the Dedekind inde-

8= G

pendence theorem. Sety = 2 T(p)~'3,0°. Then
el

y— ot = T<p>-1(; (5ot = 55%))

T(o) -l(; (o~ 85"
= T(p) -1(; s

=570 (5)

= 8T(p) ™' T(p) = &,

which is what we want.

In the cyclic case, G generated by g, the analogue of the condi-
tion Npje(u) = 1 is Tpje(w) = 0. If u is such an element, then
weset 8, =0, 8 = p+ pf +---+ u® " and it is easy to check
that (63) holds. We therefore have the following additive analogue
of Hilbert’s Satz 90:

Corollary. Let P/® be finite dimensional cyclic, g a generating
automorphism of the Galois group of P/®. Then any element p e P
such that Te\s(u) = 0 has the form v — ~* for a suitable v € P.

We recall that, if P/® is finite dimensional Galois with G as the
Galois group, then the set 2(P) of linear transformations of P
as vector space over ® coincides with the set ¥ of operators of the
form Za sps = 2 sp.r (Lemma of §4). We know also that by

se

the Dedekind independence theorem the group elements (),
s € G, form a basis for 2¢(P) as right vector space over P. We shall
now show that Noether’s equations arise in considering the follow-
ing question: What are the automorphisms of the ring £(P) which
leave fixed every element of the subring Pg (= 1P)? Let A be
such an automorphism and set s = #,, s ¢ G. Then if we apply 4
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to the basic relation prs = 5(o*)r (eq. (2)), we obtain

(64) PRUs = ua(Pa)R-

Hence,

1

pr(s 7 u,) = s (0" Drus = s7'u(0* )R = (s u,)pg.

Thus we see that s™«, is an endomorphism of the additive group
of P which commutes with every right multiplication pg. This
implies that s, is itself a right multiplication (Vol. I, p. 83).
Hence s 'u, = p.r and u, = su,, s ¢ G. We now use the fact that
s — s* = u, is a homomorphism of G. This implies that »,, =
Uy, 5,teG and so we have stu,e = (su,) () = stu,'u,. Hence
the u, e P* (since #, >¢ 0) satisfy Noether’s equations. Con-
versely, it is easy to see by reversing the steps that, if the u, # 0
satisfy Noether’s equations, then the mapping

A 5py = D Uspey Us = Sk
8 8

is an automorphism of ¢(P) which is the identity on P. We now
recall that any automorphism of 2¢(P) which is the identity on &g
(acting in P) is an inner automorphism (Vol. II, ex. 5, p. 237).
Hence there exists an element C e 2(P) such that X4 = C~'XC
holds for all X e 2(P). In particular, we have pgp = pg? =
C~prC for all p e P, that is, C commutes with every pg. This
implies that C = vz, ¥ a non-zero element of P. Then

1

Spe =ty = §4 = C715C = v Loz

= s(y"rve = s((0™)V)r, $s¢G

which implies that u, = ¥(y*)~!. This gives another proof of
Theorem 19. Of course, this is considerably less elementary than
the first proof. However, the method is useful in related con-
texts in which the first method is not applicable.

The representation of 2,(P) as % = {Zsp,} suggests a construc-
tion of a more general kind of ring, called a crossed product of
the field P and its Galois group G. For this purpose we consider
a right vector space B over P with basis (%,) in 1-1 correspondence
s — u, with the group G. Thus the elements of 8 can be written
in one and only one way in the form ), #,0,, ps € P, so that [8: Plg
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= (G:1). We now suppose we have a mapping of G X G into
P* so that for each ordered pair (s, ) of group elements we have a
corresponding p,,; € P*. We use these to define a multiplication
in 8 according to the formula

(65) (5 wm ) (o) = T smitou

8t

It is easy to verify that the multiplication is both ways distribu-
tive relative to addition. Hence B will be a ring if and only if the
associative law of multiplication holds. Also because of the dis-
tributive laws it suffices to have (ab)c = a(éc) for a = u.p, b =
ww, ¢ = u,t, 5, t,ve G. Now

(ﬂb)é’ = (uazptaﬂa,t)(uv‘f)

—_ tv_v v
= UstoP 0 THa,t Mst,v

a(bc) = (uep)(tey0Te, )

—_ tv v
= UgtoPp O Ths,toMt,ve

Hence associativity holds if and only if

(66) I-’va,tv,uat,v = Us,tobbt,vs Iy L, UE G.

A set of non-zero u,. $,¢eG, satisfying these conditions is
called a (G, P*) factor set. Our argument shows that such a set
defines a ring 8 by means of (65), the associativity conditions cor-
responding precisely to the conditions (66). The ring % is called
the crossed product of G and P with respect to the factor set g, ;.
We shall write 8 = (G, P, p) to indicate the ingredients G, P and
the factor set p = (u,.¢)-

If we consider again the representation of 2(P) as % = {Zsp,},
we see that % is isomorphic to the crossed product (G, P, 1) where
1 is the factor set p,,: = 1, 5,¢ e G, 1 the identity of P. This is
clear if we compare (65) with the multiplication of elements of .
We now replace the right basis (s) of A over P by («,) where #, =
$%s, Ys a non-zero element of P. Then we have

usus = (5v5)(tve) = stvs'y:

—_ -1
= UstYst 'Yat'Yt-
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Thus we see that ¥ is also isomorphic with the crossed product
(G, P, p) where

(67) Ps,t = Yot Ys've

It is easy to check that these satisfy the factor set conditions but
this is unnecessary since these are equivalent to the associative
law. A factor set u which is obtained from a function s — v, ¢ P*
by means of (67) is said to be equivalent to 1 (u ~ 1). The result
we have established is that, if u ~ 1, then (G, P, p) is isomorphic
to 2(P). One might be tempted to guess that the analogue to
Theorem 18 is valid for factor sets. However, this is not the case
and we shall indicate this by considering the special case of a
cyclic group.

Let G be cyclic with g as generator and let (G:1) = n. We set
for0 <4, j<mn-—1,

1 if i+j5j<n

(68) ““"’={a¢o in & if i+j>n

We have to check the factor set conditions (66). Since 1, a e®
these simplify to

(69) Hgt,gilbg®i gk = [igt, githligd, gk

There are three cases: i + j+ k< n,n <i+j+ k < 2#n, and
i+ j+ k& >2n. In the first case, both sides reduce to 1. In
the second, both are «; and in the third, both are &®. A crossed
product (G, P, ) where G is cyclic and p is of the type just de-
fined is called a ¢yclic algebra or cyclic crossed product. The condi-
tion that u ~ 1 is that there exist non-zero elements v, such that
Beig = Vet ygfy,.  This gives for v = vg v = ¥¥5 -+,
Yo =47 YT, @ =y Tty = Tyt ey
Y1 !Npie(y). Alsol = u;,; = 71 11y givesy1 = 1 so we must
havea = Npis(y). Itis easily seen also that this condition implies
that u ~1. Thus we see that we can get a factor set u 1
simply by choosing an a £ ® which is not the norm of any element
v of P. For example, let & be the field of real numbers and P
the field of complex numbers, P = &(s), i = —1. Then if y =
Y1+ 2 Y1, Y2 in & ¥¥ =9 =71 —iv; and N(y) = v.° +
722 > 0. Henceif o < 0, then «a is not a norm. We remark that
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it is easy to see that the cyclic crossed product constructed with
such an « is isomorphic to Hamilton’s quaternion algebra over ®.

The notions with which we have been dealing are all special
cases of notions in the cohomology theory of groups. We shall
now indicate briefly the general situation. We begin with an
arbitrary group G and the group ring I(G) of G over the integers.
The elements of I(G) are the elements Za m,s where the m, are

se

integers and 7, # O for a finite subset of G (cf. Vol. I, ex. 2, p. 95).
We consider Zm,s = Zn,s if and only if m, = #n, for all 5. Addi-
tion in I(G) is by components: Zm,s + Zn,s = Z(m, + n,)s.
Multiplication is defined by (Z m,s) (Z nJ) = D mnst.
G teG 8, teG
Since G is associative, 7(G) is an associative ring. Let I be a
right 7(G)-module so that I is a commutative group under addi-
tion and a product xa, x ¢ M, a ¢ I(G), xa ¢ M is defined so that
(x +y)a = xa + ya, x(a + &) = xa + xb, x(ab) = (xa)b, x1 =
1.
Let C"(G, :) denote the set of mappings of the r-fold product
GXGX---XG into M. The elements of C(G, M) will be
called r-cochains of G relative to the module M. These are the
mappings (1, $2, * -+, 5r) = f(s1, 52, -, 5) e M, s:eG. We
make a commutative group out of C*(G, M) by defining f + g
in the usual way by (f+ £)(s1, 52, <=, 8r) = f($1, -+, 50) +
g(s1, -+, 52). We shall now define a homomorphism 4, the co-
boundary operator of C'(G, M) into C"+1(G, M). We do this by
defining df for fin C" = C"(G, M) by

(df)(sly S2, 'y 5r+1) = f(52’ Ty 5"+1)
(70) F (=1 f(s1y - o vy Sim1s SiSig1s * 0ty Srg1)
1=1

+ (_1)r+1f(51’ Y Sr)5r+1-

It is clear that d(f + g) = df + dg, so 4 is a homomorphism of
Crinto C*1. Strictly speaking we should denote the 4 we de-
fined by (70) by d,; however, it is convenient to use the same nota-
tion for all of these homomorphisms which are defined on C*, r =
1,2, ---. It is convenient to include also the group C° of 0-
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cochains which we take to be the module 9 itself. Then if
x e C° = I, dx is the element of C* such that (dx)(s) = » — «s.

The kernel of 4 (acting on C7) is denoted as Z" and its elements
are called r-cocycles of G relative to the module M. The image
in Cr of C*~ under d is denoted as B" and its elements are called
r-coboundaries. Both Z" and B" are subgroups of C" and it can
be shown that Z D B". This is equivalent to showing that 4% =
0 for the coboundary operator 4. We shall leave the verification
as an exercise (ex. 1 below). The factor group H"(G, M) =
Z7/Br is called the r-th cokomology group of G relative to the module
9. Here we taker = 0,1, 2, -- -, and we adopt the convention
that B® = 0, so H® = Z° the group of O-cocycles. The elements
of this group are just the elements x of M such that xs —x =0
for all s e G. Evidently these are just the set of invariants of I
relative to G.

We shall now show that the notions we have been considering
in this section fit into this general picture. We take G to be the
Galois group of the field P/® where P/® is finite dimensional
Galois. For the module I we take either the multiplicative
group P* of P or the additive group (P, 4+) of P. In the first
case we make P* a module for 7(G) by defining pa, p € P*, a2 =
Za mss to be the element I; (p*)™. Since G is a finite group
se se

there is no difficulty in defining this product. It is trivial to
check the module axioms and we leave this to the reader. A 1-
cochain s — u, = u(s) e P*is a cocycle if and only if (du)(s, £ =
petss ‘us' = 1 (the O of P*). This is equivalent to py = peps’
which are Emmy Noether’s equations (61). If y € P* then v is
a O-cochain and its coboundary is the 1-cochain f(s) = v(v*) 7.
Theorem 19 can now be re-interpreted as the statement that
every l-cocycle of G relative to P* is a coboundary. In other
words, Z'/B' = 1, or the first cohomology group of G relative %0
P* is the identity.

If (s,#) — u,.¢is a 2-cochain, then the coboundary definition
gives

(d,u)(.f, t) u) = .U't,u.u'st,u_lﬂa,tu(/"'a,tu) _1'

It follows that u,,. is a 2-cocycle if and only if msyubten =
Bat.ults,t%s S, £, u € G and these are just the conditions (66) defin-
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ing a factor set. Thus the 2-cocycles are just the factor sets. If
§ — v, 1s a l-cochain, its coboundary 4 is given by (dv)(s, ) =
vi(¥e) “'vs'. Hence 2-coboundaries are just the factor sets
equivalent to 1. The general considerations imply that the set of
factor sets form a group under multiplication: (up)s,: = ps, s,
The factor sets equivalent to 1 form a subgroup and the second co-
homology group H*(G, P*) is the factor group of the first of these
groups relative to the second. As we have seen, in general the co-
homology group H°(G, P*) is the set of G-invariants of P*. Thus
this is the multiplicative group &* of the subfield ®.

An entirely analogous discussion can be made for the additive
group (P, +) considered as an I(G)-module by means of the
definition pa = z(; mep®. It is easily seen that Theorem 20 states

that the first cohomology group of G relative to (P, +) i1s0. It can be
shown that if the characteristic of P is either O or not a divisor of
the order # of G, then all the cohomology groups H"(G, P) = 0,
r > 1. This is an immediate consequence of ex. 2 below.

EXERCISES
1. Prove &* = 0.
2. Let G be a finite group of order # and let I be a module for J(G) which is
uniquely n-divisible in the sense that for any y e Y} there exists a unique x

(written as %y) such that nx = y. Prove that the groups H"(G, IN) = O for

r>1.

3. Let P/® be a cyclic field extension, [P:®] = #, r a divisor of #,7 a non-zero
element of & such that y" = Npja(p), pe P. Prove that v = Ngjs(n) where
E/® is the (unique) subfield of P/® such that [P:El =randnpe E. (Hint: Set

n = mr and consider the element 8 = ppf - -+ pf" . Show that Npe(8) = v"

and apply Hilbert’s Satz 90 to 8~ly.)

16. Composites of fields. In this section we consider a prob-
lem which can be formulated roughly in the following manner.
Given two extension fields E and P over ®, to determine the ways
these can be put together to form another extension field of @.
More precisely we seek to determine the composite fields of E and
P over ® in the following precise sense.

Definition 3. Let E and P be two fields over ®. Then a composite
field of E/® and P/® is a triple (T, s, {) where T is a field over ® and
s and t are isomorphisms of E/® and P/® respectively into T'/® such
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that U is generated as a field by the images E° and P'. The com-
posites (T, s, 1) and (I, s’y V') of E/® and P/® are equivalent if there
exists an isomorphism u of T'/® onto I /® such that su = s’ and tu =
t.

The problem is to determine the equivalence classes of com-
posites. We shall consider this question now under the assump-
tion that one of the fields, say P, is finite dimensional over ®. In
Chapter IV (§ 10) we shall investigate the problem for infinite
dimensional extensions.

Suppose (I, 5, #) is a field composite of E/® and P/® where
[P:®] = n < ». We consider the subset

EsPt = { Z 6,;spit|€,; £ E, pi € P} .

Clearly this is the subalgebra of I'/® generated by the two sub-
algebras E*/® and P//®. Also it is immediate that, if (py, p2, * -+,
pn) is a basis for P/®, then E*P! = E*p,! + E’p,' +-- -+ E%.!,
the set of E*-linear combinations of the p,/, 1 <7 < #. SinceT
and hence E°P! is commutative, E*P’ is an algebra over E* and
[E*P:E®] <7 <. Since E°P!is contained in a field, it has no
zero divisors; hence by VII of the Introduction, E*P! is a field.
Since T' is the subfield of I' generated by E* and P!, we see that
I' = E*P‘. This important relation leads us to look at the tensor
product algebra E ®, P whose elements we indicate in the
original notation: Ze; ® p;. The basic property of the tensor
product is that the mapping Ze; ® pi — Ze°p;' is a homomor-
phism of E ®, P ontoT' = E*P’. If & is the kernel of this homo-
morphism, thenT' 2¢ (E ®s P)/3. Since I is a field, this implies
that & is a maximal ideal: & is a proper subset of E ® P and there
exists no ideal &’ such that E @ P D & © & Conversely, if §
is a maximal ideal in E ® P, thenI' = (E ® P)/3 # 0 and this
has noideals # 0, E ® P. HenceI is a field (Vol. I, p. 77). We
can now state the following result.

Theorem 21. Let E/® and P/® be fields such that [P.®] < =
and let & be a maximal ideal in E Q4 P. Let s be the mapping ¢ —
e®1+ 3 of EintoT = (E ® P)/S and let ¢t be the mapping
p > 1®@p+ 3 of Pinto'. Then (T, s,t) is a freld composite
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of E/® and P/®. Distinct maximal ideals S, ' in E @ P give
rise in this way to inequivalent composites. Moreover, every field
composite of E/® and P/® is equivalent to one of the (T, s, t) given by
a maximal ideal S in E @ P,

Proof. If & is a maximalidealin E @ P,thene > e ® lisa
homomorphism into E @ P so sie > e ® 1+ & is a homo-
morphism intoT' = (E ® P)/3. Since ]l - 1+ S and Eis a
field, s is an isomorphism. Similarly t:p — 1 ® p + G is an iso-
morphism of P/® into I'. Any element of T' has the form Ze; ®
p:+ 3 and £ ®pi+ 3 =(e 1+ N1 @ p; + I) = &0
hence I' is generated by E* and P!. Also I' is a field since & is
maximal. Hence (T, s, #) is a composite. Next let & and &’ be
two maximal ideals, (T, s, #), (T, s/, #) the associated composites
and assume that there exists an isomorphism # of I'/® onto I'/®
such that s’ = su, ¥ = tu. Let Ze; @ p; 3. Then the defini-
tions of s, # give the relation Ze,*p;' = 0in . Applying # we ob-
tain Ze* p;" = 0 which means that Z¢; ® p; € Y. Thus we see
that & € &. Since & is maximal we have 3 = &’. We have
therefore proved that, if the composites (I, s, #), (T, s, ¥') are
equivalent, then § = &’. Finally, let (I', &/, #) be a composite of
E/® and P/® constructed in any way. We have seen that the
mapping Ze; @ p; — Ze&'pi' is a homomorphism of E @ P onto
I whose kernel & is a maximal ideal in E @ P. We have the in-
duced isomorphism u: Ze; ® p; + 3 — Zefpif of I' = (E @ P)/Y
onto I'. One checks that this is an equivalence of the composite
(T, s, ¢) defined by & with (I, s/, #). This completes the proof.

We have now established a bijection of the collection of equiva-
lence classes of composites with the collection {3} of maximal
ideals in the tensor product E ®, P. Since E ®, P can be con-
sidered as a finite dimensional algebra over E (Introduction), the
following result implies that there are only a finite number of
equivalence classes of composites of E/® and P/®.

Theorem 22. 4 finite dimensional algebra with an identity ele-
ment has only a finite number of distinct maximal ideals. If these
h

are 3‘1)3‘2, oy 3 and R = n E}j, then A = 2I/ER§I‘1®I‘2®
1
<@ Ty where T'; = /5.
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Proof. The direct sum I'y @ 2@ - @ I's is just the set of A-
tuples (v1, v2, - > ¥a), Yiels;, where equality is defined by
equality of components and addition and multiplication are also
by components. Evidently the dimensionality of the direct sum
is the sum of the dimensionalities of the I';, Now let &y, - -+, Su
be any distinct maximal ideals and let $ =T, @Il ®--- @,
I; = A/3;. We define a homomorphism of ¥ into 8 by mapping
a—> (a+ 31,8+ 32 -+,a+ 3u). The fact that this map-
ping is a homomorphism is immediate. The kernel ® of this
homomorphism is the set of elements 4 such that 2 + 3; = §;

h
for every j. Hence ® = ) 3;. We shall now show that the
1

homomorphism is surjective. We show first that §; + 3,33 - -+ s
= 9. Since the 3; are distinct maximal ideals, % = J; + J»
and A = $; + 3. Multiplicationgives A = A% = 312 +3: 35 +
F231 + 3233 = 31 + 3233. Now suppose we already have A =
$1+ F2 -+ S Since A = §; + Jx41 a similar multiplication
gives A = 3; + 3233 -+ Sky1- Hence we have A =5, +
2 -+ 3n and this implies that A = J; 4+ (32 N -+ N ) since
S - CESJ N - N Sy If aisany element of A, then our
relation shows that ¢ = 4+ ¢ where 63y, ceJ N--- N S
Hence the image of ¢ in our homomorphism is (¢ + 31, ¢ + S,
RN o S(h) = (ﬂ + 31) 32) B S(h)) which shows that) if 71 is
any element of I';, then the element (v,,0, - - -, 0) is in the image
of the homomorphism. Ia a similar fashion, if v, is any element
of Ty, then (0, - -+ 0, 44,0, - - - 0) is in the image. Addition shows
that any element (v, ¥s, - -+, v#) is in the image so the homo-
morphism is surjective. It is now clear that, if I, 32, -+, S
are distinct maximal ideals, then the dimensionality [%:®] >

h
> [I;:®] where I'; = %/3;. Since every [I';:®] > 0, this of
1

course puts a bound on the number of ;. Also we have seen
that, if 31, §s, * - -, Iy are distinct maximal ideals and ® = N Iy,
then AR, @I

We shall now obtain more precise information on composites
under the assumption that P = &(f) is a simple algebraic exten-
sion of ®. Let f(x) be the minimal polynomial of § over . Then
(1,6,6% ---,0*"1) is a basis for P/® and 6" = ag + ;0 +---+
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10" if flx) = ¥® — @p_1x" "1 — -+ — a@p. Now consider
E ®s P. The elements of this algebra can be written in one
n—1

and only one way as e ® 6, ;e E. We consider E ®; P

0

as an algebra over E by defining n(Z¢; ® 6%) = Zne; ® 6%, n e E (cf.
Introd.). Then it is clear that 1 ® 8 is a generator of E ®, P
over E and the minimum polynomial over E of this element is f(x).
Thus we see that E ®¢ P = E[x]/(f(x)). The ideals of this alge-
bra have the form (p(x))/(f(x)) where p(x) is a divisor of f(x)
and such an ideal is maximal if and only if p(x) is irreducible.
Then the difference algebra (E[x]/(f(x))/((p(x)/(f(x))) is iso-
morphic to the field E[x]/(p(x)).

Suppose finally that P is a finite dimensional separable exten-
sion of . Then we know that P = &(f) where the minimum poly-
nomial f(x) of 8 is irreducible and separable. The derivative
criterion shows that in E[x] we have the factorization f(x) =
p1(x)p2(x) - - pa(x) where p;(x) is irreducible of positive degree
and p.(x) & p;(x) if i % j. Thus we see that we have 4 inequiva-
lent field composites of P and E over ®. These have the form
(T, 5, ¢;) where I'; =~ E[x]/(p;(x)). Also by ex. 1, § 2 of Introd.,

h

E Q: P E[X]/(f(x)) 2T ®T:® - @'y and > [[:E] =
1
[P:®]. We state this result as

Theorem 23. Let P/® be finite dimensional separable and let
E/® be an arbitrary extension field. If 0 is a primitive element of P
and f(x) its minimum polynomial over ®, then the field composites
(T, 5, 8) are in 1=1 correspondence with the irreducible factors p(x)
of f(x) in Elx]. If Ty, 855t), f =1, -+, h are the inequivalent

h
composites of P/® and E/®, then [P:®] = 3 [[;:E].

=1

EXERCISES

1. Show that, if P/® is finite dimensional Galois, then there are n = [P:®] in-
equivalent composites of P with itself and, if (T, s, /) is one of these, then T’ =
P* = P!, Use this to prove that P Q2 P PO @ P® @-..@ P™ where
PO~ P,

2. Let P be finite dimensional Galois over ® and let E be a subfield of P over
®. Show that P Q¢ EX PO P PP P.- . P P™ where PV Pand m =
[E:®].
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3. Let P/® be finite dimensional separable. Show that P/® and E/® have
only one (in the sense of equivalence) composite if either 1) E/® is purely in-
separable, or 2) E = &(§,, &, - - -, £,) the field of rational expressions in indeter-
minates §;.

4. Define a composite (T, sy, 52, + -, 5;) of r extension fields P;/®,1 < i < 7, as
a field I'/® and isomorphisms s; of P; into I' such that I' is generated by the sub-
fields P;*. Call two such composites (T, s1, -+, ), (I, sty -+, 5/) of P;
equivalent if there exists an isomorphism « of I'/® into I /® such that s/ = 5%,
1 < i < r. Assume every P;/® is finite dimensional and prove that Theorem 21
generalizes to composites (I', 51, -+ +, 5,) and the tensor product P; @ P, @+ ®
P..
5. Let P/® be finite dimensional Galois and let (51, sq, * * -, 5,) be an ordered
r-tuple of automorphisms of P/®. Then (P, sy, 52, - * -, 55) 1s an r-fold composite
of P/®. Show that (sy, * -, s, (s, + + -, 5/) determine equivalent composites if
and only if s/ = s;u is an automorphism of P/®. Let $(sy, - -+, 5,) be the ideal
inPR®P ... ® P (r factors) associated with (P, 51, -+, 5,). Use the fact
that there are [P:®]"! distinct ideals (sy, -+, 5r) and that

P® - ®P)/Js1, -, )P

to prove that the §(sy, - - -, 5,) are the only maximal idealsin PP =P Q... QP
and that every r-fold composite of P/® is equivalent to one of the composites
(P, 51, 52, -+, 5»). Note that S(sy, - -+, 5, is the kernel of the homomorphism
of P™/® into P/® such that

MnOp® - ®pr — p1'ip® - pr.



Chapter 11

GALOIS THEORY OF EQUATIONS

In this chapter we shall consider the classical application of
Galois theory: Galois’ criterion for solvability by radicals of a
polynomial equation f(x) = 0. To say that an equation is solv-
able by radicals means roughly that its roots can be obtained
from the coefficients by rational operations and root extractions.
A criterion for this was given by Galois after Abel and Ruffini had
proved that the general equation of the fifth degree is not solvable
by radicals. Galois was led to the development of his theory in
order to give the criterion for solvability by radicals. Besides the
fundamental group-field correspondence which we gave in the last
chapter and whose scope goes far beyond the theory of equations,
some results of a more special nature are needed. These concern
cyclotomic fields, that is, fields of the roots of 1, and “pure” ex-
tensions P = ®(), 6" = o in ®. The study of these fields is
interesting also beyond the theory of equations and we shall under-
take a detailed study of such fields in the next chapter. In the
present one we confine ourselves to the minimum which is needed
for the theory of equations.

1. The Galois group of an equation. Let ® be a field, f(x) a poly-
nomial of positive degree in ®[x] having leading coefficient 1. Let
P/® be a splitting field of f(x), so P = ®(py, - - -, pm) and f(x) =
(x — p1)(x — p2)?t -+ (x — pm) in P[x] where the p; are dis-
tinct and the e; are positive integers. Since the p; are generators
of P/®, any automorphism s of P/® is completely determined by
its action on the finite set of roots R = {p;, ps, -+, pm}. Also
each p;® is again a root of f(x), so p,* € R and the restriction s; of s

to R is a permutation of this finite set. Thus we see that every s
89
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of the Galois group G of P/® defines a permutation sy of R. The
mapping s — §; is a homomorphism of G into the symmetric
group S(R) of 1-1 mappings of R. Moreover, if s € G has the
property that p;* = p;, 1 <i <m, thens=1in P = &(p,, - -,
pm). Consequently, s — s, is an isomorphism of G with a sub-
group Gy = {s;} of the symmetric group S(R). In view of this
isomorphism we are led, in studying the equation f(x) = 0, to
shift our attention from the group G to the permutation group
G;. Accordingly, we give the following

Definition 1. If ® is a field and f(x) is a non-zero polynomial in
®[x], then the Galois group of the equation f(x) = 0 over ® is the
group Gy induced by the Galois group G of a splitting field P/® in the
set of roots of f(x) = 0 in P.

Since any two splitting fields are isomorphic, G; is essentially
uniquely determined by ® and f(x).

It is convenient to identify the permutation p; — p;’ of R with
the permutation i — 7' of {1,2, ---,m}. In this way we can
consider G; as a subgroup of the symmetric group S» of per-
mutations of {1,2, ---,m}. We shall do this from now on.
Moreover, we assume in the sequel that f(x) has simple roots, that
is, the ¢; = 1. This implies that P/® is Galois. Hence we have
the fundamental correspondence between the collection of sub-
groups of the Galois group G and the collection of subfields E/® of
P/®. Combining this with the isomorphism of G onto G; we ob-
tain a 1-1 correspondence between the collection of subgroups of
G; with the collection of subfields E/®. We shall refer to the sub-
field E/® corresponding to a subgroup H; of G, as the “field of in-
variants of H;.” In reality, of course, E/® is the field of invariants
of the subgroup H of G corresponding to Hy. In the other direc-
tion, H; is the Galois group of f(x) = 0 over the subfield E.

We recall that the symmetric group S, contains the alternating
group 4, as an invariant subgroup of index 2. 4, is the set of
even permutations, that is, the set of permutations which can be
written as products of an even number of transpositions (47) (Vol.
I, pp. 35-36). If G, is the Galois group of the equation f(x) = 0
over ®, then G; N 4, is a subgroup of index 1 or 2 in G;. We shall
now give an identification of the corresponding subfield of P/®,
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assuming the characteristic is not two (see ex. 1 below for the
characteristic 2 case). The result is the following

Theorem 1. Let ® be a field of characteristic # 2 and f(x) a non-
zero polynomial € ®[x] without multiple roots. Let P/® be a splitting
Jield of f(%), p1y P2y -+ 5 Pm 125 roots, Gy the Galois group of the equa-
tion f(x) = O considered as a permutation group of {1,2, -, m}.
Then the subfield of invariants of Gy N An is ®(A), where

(1) A= TI (i — pj).
i<i=1

Proof. Werecall a standard characterization of the alternating
group. For this one considers the ring ®[x;, s, * * 5 Xml, ¥ in-
determinates. If7 — #7is a permutation of 1,2, - - -, m, then we
have the automorphism 4(s) of ®[xy, - -, ¥m] over & such that
%A@ = g2 (Vol. I, p. 107, and Introd.). Let X = T (x: — #;).

1<s

Then X4©@ = x(¢)X where x(¢) = 1 or —1 according as ¢ is even
or odd (cf. Vol. I, ex. 2, p. 110). Now let = be the homomorphism
of ®[xy, xa, * -+, ¥m] Over ® into P/® such that &7 = p;, 1 <7 <
m. Let s bein the Galois group of P/®, s; the corresponding per-
mutation of the p;. Then if we apply = to the relation X4¢) =
x(s7)X we obtain A® = x(s;)A where A is given by (1). Since
A > 0 we see that A®* = A if and only if 5, e G; N A4,,. Thus the
Galois group of the equation f(x) = 0 over &(4) is G; N Ap.
Consequently, by the Galois correspondence, ®(A) is the set of
invariants of Gy N A,,.

We have seen that for any s e G, A* = +£A; hence if § = A%
then 8 = & for all s and so 6 e . We have seen also that the
statement of the theorem is equivalent to the assertion that the
Galois group of the equation f(x) = 0 over ®(4A) is 4 N G.
This implies the

Corollary. The Galois group of f(x) = O over ® is a subgroup of
the alternating group if and only if 8 is the square of an element of ®.

Proof. Clearly the condition G, € A4, or Gy = G, N A, is
that #(A) = &. If this holds, then A e ® and § = A% is a square
of an element of . Conversely, if § = % a e ®, then § = A?
gives A = a e ®. Hence #(A) = &.
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We recall that, if 8 is a separable algebraic element over  and
6, =6, 0,5, ---, 0, are the distinct images of 8 under the isomor-
phisms of ®(f) into its normal closure, then & = JJ (6; — 6;)?

L

1<
is a discriminant of the field ®(6)/® (cf. § 1.14). If f(x) =
(x — p1)(x — p2) -+ (x — pm), as before, then we shall call § = A2
= [ (p: — ;)% the discriminant of the polynomial f(x) or of the
i<j
equation f(x) = 0. It follows from the main theorem on symmetric

polynomials (Vol. I, p. 109) that & can be expressed as a poly-
nomial with coefficients in the prime field in the coefficients of

@ f&) =" — e+ a™ T — o (= 1)"am.

We shall now indicate how this can be done. We begin with the
Vandermonde formula:

1 1 e 1
p p ctc Pm
&) ' ? =TI (os — p3).
>]
p™Tt el eee pp™ Tl

Squaring we get

m gy 02 . Om—1

o1 o2 O3 . Om
(4) d =

Om—1 Om Omy4l " O2m—2

where o; = p1* + p2' +-- -+ pn’. Since the power-sums can be
expressed as polynomials in the a; with coefficients in the prime
field, (4) will give the same kind of expression for 8.*

We shall now carry this out for the cases m = 2, 3.

m=12. Wehavef(x) = x> — ayx + az = (x — p1)(¥ — p2) s0O
01 =p1+ p2=ar and pips = a;. Then ¢ = p,? 4 p? =
(pl + p2)2 - 2p1p2 = a12 - 2&2. The formula (4) glVeS
(5) é= 2(72 - (712 = a12 - 4‘6!2.

* That this can be done follows from the fundamental theorem on symmetric poly-

nomials (Vol. I, p. 109). Explicit recursion formulas, the so-called Newton’s identities
can be used to express the oy in terms of ; (Vol. I, ex. 4, p. 110).
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m =3. Here f(x) = x® — a1x? + asx — a3 = (x — py)(x —
p2)(x — p3) sO o1 = py + p2 + p3 = au, p1p2 + p2ps + P13 = Qagz,
p1p2p3 = az. Then a3 = p12 + po® + ps® = (o1 + p2 + p3)% —
2(p1p2 + p1p3 + p2p3) = 12 — 2as. To calculate o3 and o4 we
use the relations pka = alpkz — aopr + ag, pk4 = alpka - azpkz +
azpy. Then

o3 = p1® + p® + ps®
= a1(p1® + p2® + p3®) — as(ps + p2 + ps) + 3o
= al(alz — 2a3) — aza; + 3ag
= ;% — 3ajaz + 3as
0y = a103 — a0z + azo;
= ay(ay® — 3oz + 3az) — az(e? — 2a;) + azay
= ! — 4oy%as + 4anaz + 2a5>
Using (4) and these formulas we obtain
(6) 8 = 30304 + 2010203 — 03° — 3032 — 0,%04
= —4a,%a; + ar?a? + 18ajaza3 — 4as® — 27a32
We obtain next a criterion on G; as permutation group of
{1,2, -+ -, m} that f(x) beirreduciblein ®[x]. Thisis the following

Theorem 2. Let f(x) € ®[x] have no multiple roots in its splitting
Jfield P. Then f(x) is irreducible in ®[x] if and only if the Galois
group Gy of f(x) = 0 over ® is a transitive permutation group.

Proof. We recall that a transformation group of a set M is
called transitive if given any pair (x, y), x, ¥y € M there exists a ¢
in the group such that x* = y. Suppose first that f(x) is irreduci-
ble in ®[x] and let p;, p2 be two of its roots in P. Since f(x) is ir-
reducible and f(p;) = 0 = f(p,), there exists an isomorphism of
®(p;)/® onto ®(p3)/P mapping p; on ps. This isomorphism can
be extended to an automorphism s of P/® Then seG and
p1* = p2. This implies that Gy is transitive. Conversely, suppose
G; is transitive. Let fi(x) be an irreducible factor of f(x) of
positive degree and let p; be one of its roots. Let p, be any root of
f(x). Then there exists an se&G such that p,* = ps. Then
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f1(p2) = f1(p1®) = f1(p1)* = 0. This shows that every root of
f(x) is a root of fi(x). Hence f(x) = fi(x) is irreducible.

The two results which we have derived make it trivial to calcu-
late the Galois groups of quadratic and cubic equations. Similar
ideas can be applied to quartics. We shall look at the first two
cases now and will indicate how quartics can be handled in the ex-
ercises which follow. We assume that the characteristic of ® is
not 2 and that f(x) has distinct roots. If f(x) is a quadratic:
f(x) = ¥ — ayx + as, then the group is the symmetric group S,
or 42 = 1 according as & = a;2 — 4y is not or is a square in &,
Next let f(x) = #® — a1x + asx — a3. If f(x) = (x — p)g(x) in
®[x], then the Galois group of f(x) = O is the same as that of the
quadratic g(x). Hence we may assume f(x) irreducible in ®[x].
Since the only transitive subgroups of §3 are §3 and 43, the Galois
group Gy is one of these. The corollary to Theorem 1 shows that
G, = A3 1f 8 = —4a,3a3 + ay2a? + 18ayasas — 4as® — 27a3? is
a square in . Otherwise, G; = Ss.

EXERCISES

1. Assume ® has characteristic 2 and f(x) € ®[x] has distinct roots p1, g2, * * *, pm
in its splitting field P. Let A’ = Y py™ oo™ 2 ... pra_9ys. Show that the
oedm

subfield of invariants of G; N A, is $(A").

2. Let ® be a finite field, f(x) an irreducible polynomial of #-th degree with co-
efficients in ®. Show that G; consists of the powers of an #-cycle which may be
taken to be (123 - - - ).

In the remainder of the exercises we assume the characteristic of the base field
®is #£ 2, flw) = x* — a1x® + aex® — aygx + oy has distinct roots py, p2, ps, s in
the splitting field P/®, G the Galois group of P/®.

3. Show that the subgroup 7 (Klein’s Vierergruppe) = {1, (12)(34), (13)(24),
(14)(23)} is invariant in Sy

4. Show that the subfield of invariants relative to Gy 7 is ®(71, 72, 75) where
T1 = p1p2 + psp4, 72 = P1ps + Paps, Ts = p1pa + paps.

hS. Let g(x) = (x — 71)(x — 72)(x — 15) (the resolvent cubic of f(x)). Verify
that

)] () = #% — Bix? + Bax — By
where

B = o
(8) B2 = ayos — 4oy

Bs = ar* oy + ag? — 4oz
and that g(x) and f(x) have the same discriminant.
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6. Prove that the transitive subgroups of S4 are (i) Sy, (i) A4, (i) 7, (iv) C =
{1, (1234), (13)(24), (1432)} and its conjugates, (v) D = ¥ U {(12), (34), (1423),
(1324)} a Sylow 2-group (subgroup of order 8) and its conjugates.

7. Show that the Galois group G; of g(x) = 0 is isomorphic to G;/(G; N 7).
Assume f(x) is irreducible and verify that, if (i) Gy = Sy, then G, is of order 6, (i1)
Gy = A4, G; is of order 3, (il)) Gy = 7, G; = 1, (iv) Gy = C or one of the con-
Jjugates (that is, any cyclic subgroup of order 4 of §y), then G, is of order 2, (v)
Gy = D or one of its conjugates (any Sylow subgroup of order 8 in §y), then G; is
of order 2. Note that these results identify Gy if we know G, unless Gy is either as
in (iv) or (v).

8. Prove that, if G, is of order 2, then G;==2 D or Gy =2 C according as f(x) is or
is not irreducible in ®(+/8) where 8 is the discriminant of f(x).

9. Determine the Galois group of x* + 3x® — 3x — 2 = 0 over the field of
rational numbers.

2. Pure equations. In this section we shall derive the special
results which are needed for Galois’ criterion. We shall formulate
these in the invariant fashion in terms of splitting fields rather
than, as in the last section, of the groups of equations. The re-
sults we need concern equations of the form a® — a = 0 (or x™ =
a) which are called pure (or dinomial) equations. Occasionally,
we use the notation p = Va or p = a'/* to indicate that p is a
root of x® = a. We consider first the case « = 1. The roots of
x" = 1 are called the #-th roots of 1 and a splitting field P of this
equation is called a cyclotomic field of order n over ® The
derivative (x® — 1)’ = nx™~! is not relatively prime to x® — 1 if
and only if the characteristicis p # 0 and p|#. Then we can write
n=pn,(n,p) =1and we have s* — 1 = (*® — 1)?". Hence
the cyclotomic field of order # coincides with that of order #’.
We shall therefore assume from now on that p } # in the char-
acteristic p # 0 case.

Let P/® be a cyclotomic field of order #» over ®. Because of
our assumption on the characteristic, the set Z(#) = {{;} of #-th
roots of 1 contains # elements. If m|n, then »™ = 1 implies
7 = 1; hence the cyclotomic field of order » contains that of
order m for every divisor m of n. We observe next that Z(n) is a
subgroup of the multiplicative semigroup of P. This is clear since
Gf=1=2¢" imply (Git2)» =1, (i7" =1. Since Z(n) is
finite, this is a cyclic group (Lemma 1, §1.13). Hence there
exists a {eZ(n) such that Z(n) = {{}|i=0,1, -, 7n — 1}.
Such a ¢ is called a primitive n-th root of 1. Since P/® is generated
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by the {;, we have P = &({) so { is a primitive element of the field
P/®. We shall now prove

Theorem 3. If the characteristic of ® is not a divisor of n (0 in-
cluded), then the Galois group G of the cyclotomic field P/® of order
n is isomorphic to a subgroup of the multiplicative group U(n) of
units in 1/(n), I the ring of integers.

Proof. Asin § 1 let G, denote the group of permutations of the
set Z(n) of roots induced by G. Since the elements of G, are
restrictions of automorphisms, it is clear that they are automor-
phisms of the multiplicative group of Z(#). Hence G; (== G) is
isomorphic to a subgroup of the group of automorphisms of Z(#).
Now Z(n) is a cyclic group of order # and it is well known that the
group of automorphisms of such a group is isomorphic to U(n)
(Vol. I, ex. 3, p. 47, and ex. 1, p. 82). Hence the Galois group G
is isomorphic to a subgroup of U(n).

It is important to note that G is commutative since U(n) is
commutative. Moreover, we observe that, if / is a prime, then
U(J) is just the multiplicative group (of order / — 1) of the field
1/(/) and this is a cyclic group. Hence G which is isomorphic to a
subgroup of U(J) is cyclic. We therefore have the

Corollary. If the notation is as in Theorem 3, then G is a com-
mutative group and G is cyclic if n is a prime.

Next we consider the Galois group of any pure equation s = «
under the assumption that the base field ® contains » distinct
n-th roots of 1. We have seen that this implies that the charac-
teristic is not a divisor of #z. Then x™ — « is prime to its deriva-
tive #x" ! if @ % O (the case @ = 0O is trivial) and so x® — a has #
distinct roots. We have the following

Theorem 4. If & contains n distinct n-th roots of 1 then the
Galois group of the equation ™ = « over ® is cyclic of order a divisor

of n.

Proof. Let P/® be a splitting field over & of " — a, G its
Galois group. We have to show that G is cyclic. If a = 0, we
have P = &, G = 1. Hence we assume a # 0. Let p be one of
the roots of x® — ain P. If Z(n) = {{; =1, o - -+, £} is the
set of n-th roots of 1 contained in &, then we know that Z(#n) is a
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cyclic group under multiplication and, since p # 0, it is clear that
{pt1, P2y - - - P} is the set of roots of x® — a. Evidently P =
®(p); so an automorphism s & G is completely determined by its
effect on p. We have p* = {ys)p where {;(, is one of the {’s € Z(n)
and is uniquely determined by s. If e G and p* = (i, then

p*t = Lunp' = Liwiwp-

This shows that the mapping s — {is) is 2 homomorphism of G
into Z(n). If tye = 1, we have p* = p so s = 1. Hence s—
¢i(s) is an isomorphism. Thus G is isomorphic to a subgroup of
the cyclic group Z(#) and the result is clear.

We shall need one more special result for the proof of Galois’
criterion. This is the following converse of Theorem 4.

Theorem 5. Assume ® has n distinct n-th roots of 1 and let P/ ®
be a cyclic n dimensional extension field. Then P = ®(£) where
8 =aced.

Proof. The hypothesis on P is that P/® is Galois with Galois
group G which is cyclic of order #. Since P is separable over ® it
has a primitive element so P = ®(f). Let s be a generator of G
and let ¢ be the “Lagrange resolvent”:

®) E=04+07 402 400D
where { is a primitive #-th root of 1. Then
g=0 40 oD

=64 6c 4 07T = ¢tk

Then £* = t*¢ so ¢ has # distinct conjugates and hence its mini-
mum polynomial is of degree ». Consequently P = ®(£). Set
£ = a. Then (£")° = ({£)" = £ implies that o® = asoae ®and
the proof is complete.

EXERCISES

1. Let » be a prime not equal to the characteristic of the field ®. Show that, if
a & ®, then ¥ — a is irreducible in ®[x] or it has a root in this field.

2. Let ® be the field of rational numbers, p a prime, and let ¥ — o be ir-
reducible in ®[x]. Show that the Galois group of the equation ¥? = a over ® is
isomorphic to the group of transformations in //(p) which have the form y —
vy + 8, v #0.
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3. Let ® be a field of characteristic 2 #0. Show that ¥ — x —a is ir-
reducible in ®[x] unless « =87 — B8, B in . Show also that, if ¥ —x —a is
irreducible, then the group of the equation x? = x + a is cyclic of order p.
(Hint: Show that, if pis aroot of x» —x —a =0, thenp,p+ 1,p+ 2, -+,
p + (p — l)are roots. Hence show that the Galois group of the equation is iso-
morphic to a subgroup of the additive group of 7/(p).)

4. Let ® be of characteristic p # 0, P/® cyclic and p dimensional. Show that
P can be generated over ® by an element £ such that ## — £ = a e ®.

3. Galois’ criterion for solvability by radicals. It is essential
first to have a precise formulation of the statement that an equa-
tion f(x) = Ois solvable by radicals over a field ®. We give this in
the following

Definition 2. Let ® be a field and let f(x) € ®[x] be of positive de-
gree. Then the equation f(x) = O is said to be solvable by radicals
over ® if the splitting field P/® can be imbedded in a field T which
possesses a tower of subfields:

(10 P=9CPHCPHhC - CEyy=2

where each ®;, = ®;(&;) and £ = oz e B, A chain of fields such
as (2) is called a root tower for Z/®.

For the sake of simplicity we restrict our attention to fields of
characteristic 0. This will avoid the complications of insepara-
bility and some difficulties with roots of 1 in the characteristic
p # 0 case. Our objective is to establish the following criterion
of Galois:

An equation f(x) = 0 is solvable by radicals over a field ® of
characteristic O if and only if its Galois group is solvable.

We recall that a group G is defined to be solvable if it has a
chain of subgroups G =G, 2G, 2G; D .-+ 2 G,y =1 such
that each G;,, is invariant in G; and G;/G;, is commutative.
Every subgroup and homomorphic image of a solvable group is
solvable. Moreover, if G contains an invariant subgroup H
such that H and G/H are solvable, then G is solvable. A finite
group G is solvable if and only if it has a composition series G =
G, DGy D .- D G,yy =1 whose composition factors G;/Giyy
are cyclic of prime order. We recall also that the alternating
group 4,, n > 5, is simple and this implies that the symmetric
group §, on # letters is not solvable if » > 5. A proof of the
statement about .4, is given in Vol. I, p. 139. All of the other
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results which we have stated are easy consequences of the theory
of normal series and most of these have been given as exercises in
Vol. I, pp. 139, 143. At any rate we shall assume all of these
results.

In order to prove the necessity of Galois’ criterion we shall need
the following

Lemma. If Z kas a root tower over ® of characteristic O, then
Z has an extension field Q which is finite dimensional Galois over ®
and also has a root tower over ®.

Proof. We are given ® = &, C ®,C -+ C &,,; = Z where
&1 = Bi(L), &™ = a; & ;. We shall show that there exists a
field A; D 2 which also contains a subfield @, such that 1) 2; © &;,
2) Q; 1s Galois over ®, 3) Q; has a root tower over ®:

A;

i

®
|
®

Now for i = 1 we take A; = Z, €, = ®, and we suppose we are
given A; and €; for a certain 7. Let G; be the Galois group of ©;
over ® and let a;%, -+, a;** be the conjugates of the element o;

under the automorphisms s;¢e G;. Set gi(x) = H (x™ — ).

Then g:(x) e <I>[x] Let A;;; bea sphttlng field 0ver A of g;(x) and
let &, E, , &'’y + -+ be the roots of g;(x) in A;;;. Note that one of
these is the E, such that &, , = @(E,) since g;(¢;) = 0 and
A1 2 48; 22, Set @y, = Uk, &/, 87, ). Since @;/® is a
splitting field of a polynomial fi(x) e ®[x], Q;;1/® is a splitting
field of fi(x)gi(x) and (since the characteristic is 0) Q;,, is Galois
over . Since ;.1 2 Q; and £; e Q;, Q: 41 2%, = di(£). Let
£;® be any one of the elements &, £/, £/, - - - ; then g,(£;®) = 0
and gi«(x) = O(x™ — a;*) show that (§,®)" is one of the a;*.
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Hence @:,; = (¢, £/, &7, -+ +) has a root tower over ®. This
shows that A;; and @, satisfies the conditions 1), 2), 3). We
now take @ = Q,,; and this satisfies the conditions stated in the
lemma.

Remark. Note that the integers #; for the root tower for Q/®
are the same as those for the given tower for = /®.

We can now prove the necessity of Galois’ condition. Thus let
f(x) = 0 be solvable by radicals over ® (of characteristic 0) so the
splitting field P/® of f(x) can be imbedded in a field 2 which hasa
root tower over ®. By the lemma we may assume that Z/® is
Galois. Let 7 be the least common multiple of the exponents 7,
occurring in a root tower for Z and let A be a splitting field over Z
of s —- 1 so A = Z(¢) where { is a primitive #-th root of 1 and A
is Galois over ® and has a root tower over ®. Moreover, it is
clear that we can obtain a root tower for A which has the form:

(11) =%, C P =2,() S ¥
=®(() C - SO (¢ = A

where £ e ®,4,. If H is the Galois group of A over &, then the
chain of subfields (11) gives rise to a decreasing chain of sub-
groups

(12) H=H,2H; D - DHyp=1

where H; is the Galois group of A over ®;. By Theorem 3, & is
Galois over &, with commutative Galois group and since ®; con-
tains the necessary roots of 1, ®,, is cyclic over ®;if 7 > 2. This
implies that H;,, is an invariant subgroup of H; forj > 1. The
factor group H,/H, is isomorphic to the Galois group of &, over
®, and so is commutative while the factor group H;/H;,,
i > 2, is isomorphic to the Galois group of ®;,; over ®; and so is
cyclic. Thus the sequence of groups (12) shows that H is solvable.
Now we have A D P D & where P/® is the splitting field of f(x).
Hence if K is the subgroup corresponding to P, then K is invariant
in H and H/K == G, the Galois group of P/®. Since H is solvable,
this shows that G is solvable; hence the Galois group G; of the
equation f(x) = 0 is a solvable group.

In order to prove the sufficiency of Galois’ condition we require
the following result which is of independent interest.
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Theorem 6. Let P/® be finite dimensional Galois over ® and let
P’ be an extension field of P such that P’ is generated by P and a
second subfield ® 2D ®. Then P' /¥ is finite dimensional Galois
and its Galois group G' is isomorphic to a subgroup of the Galois
group G of P/®.

PI
GI
P’ P

P

Proof. We know that P = &(¢,, - - -, £,) where the £; are the
roots of a separable polynomial f(x) e [x]. Since P’ is generated
by & D & and P, we have P/ = &'(¢,, ---,£,). Hence P/ is a
splitting field over ® of f(x). Since separability is invariant under
extension of the base field, f(x) is separable over & and conse-
quently P’ is Galois over . Let s’ belong to the Galois group G’
of P’/®. Then ¢ is the identity mapping in ® C &’ and s’ maps
theset R = {&, &, « + -, £} intoitself. Hence s’ maps P = ®(R)
into itself and so the restriction of s’ to P is an element s of the
Galois group of P over . The mapping s’ — s is a homomor-
phism-of G’ into G. Since s = 1 implies that {* = £, 1 <7 <n,
and this implies that s’ = 1, we see that s’ — sis an isomorphism,
so G’ is isomorphic to a subgroup of G.

We can now give the proof of the sufficiency of Galois’ condi-
tion. We assume that f(x) = O has a solvable Galois group Gy;
hence the Galois group G of the splitting field P/® of f(x) is
solvable. We are assuming also that ® is of characteristic 0. Let
n = (G:1) and let P’ = P(}) where { is a primitive #-th root of 1.
Then P’ is generated by P and the subfield # = &(¢). Hence, by
Theorem 6, P’ is Galois over & and its Galois group G’ over & is
isomorphic to a subgroup of G. Hence G’ is solvable and has a
composition series G’ = G’ D Gy’ D -+ - D G,y,’ = 1 whose com-
position factors G;’/G;,,’ are cyclic of prime order. Evidently
these orders are divisors of # = (G:1). Let® = &,/ < &'’ < ---
C ®,41" = P’ be the chain of subfields corresponding to the com-
position series for G’. Since G;, is invariant in G/ and Gy /G’
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is cyclic, ®;4," is Galois over &, with cyclic Galois group whose
order #; is a divisor of n. Now &, contains a primitive #;-th root
of 1 since &/ D & = &(t). Hence, by Theorem 5, &;,, =
®,(t;) where £ = a;e®;. Thus &' < d,y/ < -+ < &, =P
is a root tower for P’ over ®'. Since ® = &({),t"=1,2C &' <
&, < --- C ®,. = P’ is a root tower for P’ over ®. Since
P’ D P, this shows that f(x) = 0 is solvable by radicals over &.

EXERCISES

1. Let P/® be a splitting field over ® of characteristic O for x» — 1, p a prime.
Prove that P/® can be imbedded in a field /& which has a root tower (10) for
which the #; are primes and [®:41:®:;] = n;. Call such a root tower normalized.
(Hint: Use induction on p and ex. 1 of § 2.)

2. Obtain normalized root tower fields over the cyclotomic fields of 5th and 7th
roots of 1 over the field Rp of rational numbers.

3. Prove that, if f(x¥) = 0 has a solvable Galois group over a field of charac-
teristic O, then its splitting field can be imbedded in an extension which has a
normalized root tower.

4. Let ® be of characteristic » # 0. Call an equation f(x) = 0, Ax) € ®[«],
solvable by equations s* — x = o if its splitting field P/® can be imbedded in a
field = which has a tower of fields 1 =® € %, C ... © &,4; = where
®; 1 = Bi(E), §2 — & = a; £®;. Show that, if f(x) has distinct roots, then
f(x) = 0is solvable by equations ## — x = a if and only if its Galois group is of
order p?. (Hint: Use ex. 3, 4 of § 2 and the fact that a finite group of prime
power order is solvable.)

4. The general equation of n~th degree. The formula x =
(a £V'a® — 45)/2 for the solutions of the quadratic equation
x* — ax + & = 0 (characteristic  2) is valid if 4,4 are con-
sidered as indeterminates. When this is done one has a “general
quadratic equation.” Particular quadratic equations are obtained
by specializing the coefficients. The corresponding specialization
for the solutions gives the solutions of the particular equations.
Similar solutions for general cubic and quartic equations by radi-
cals are known (ex. 3, 4 below). We shall now consider the ques-
tion of solvability by radicals of the general equation of #-th de-
gree for any ».

Let ® be a field and let £ = ®(ty, %, -+ +, #,) be the field of
rational expressions in indeterminates ¢; over ®. Then the equa-
tion

(13) flo)y=a"—px" P+ tpx" 2 —ee o+ (D™, =0
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is called the general equation of the n-th degree over ®. We wish to
determine the Galois group G; over Z of this equation. Let P =
(%1, %2, * + -5 %n) be a splitting field over = of f(x) such that
f(x) = (x — x1)(x — x2) -+ (¥ — x,) In P[x]. Then

(14) b= 2K bty = D XeXjy t vy by = X1Xg v K}
1<J

hence
(15) P= z(""1, Xay ) xn) = Q(tb Loy "ty bny X1y 000, xn)

D(x1y Xay 0y Xn)-

In order to determine G, we consider first a simpler problem.
We introduce new indeterminates £, s, *  +, £n over ® and the
field P = ®(¢y, &, - - -, £a) Of rational expressions in the £;. Con-
sider the polynomial

(16) J) = (x — E)(x — &) -+ (x — £a)

in P[x]. We have

(17) flx) = 5" — 16" L F 1ok 2 — o (= 1),
where

(18) T = in, T2 = ;Ef&" T = 5152 e En-
i<y

We now consider the subfield £ = ®(ry, 72, **+, 7,) of P/® and
we note that the relation P = Z(&y, &, -, £,) and (16) show
that P is a splitting field over Z of f(x). We assert that the Galois
group G; of the equation f(x) = 0 over Z is the symmetric group.
Thus we have to show that, if £; — & is any permutation of the
£, then there exists an 3; e G; such that £7 = £, Now we know
that we have an automorphism § of the polynomial algebra
®[ty, £a, - -+, £x] Over ® such that &’ = £, 1 <7 < n. We know
also that § has an extension to an automorphism § of the field
P = &(&, £, - -+, £a) Over &, Fmally § can be extended to an
automorphlsm § of P[x] so that £ = x. Then we have f(x) =
(x — £ (% — £p) -- (¥ — &) = f(x) which, by (17), implies
i =141 <i<mn (This can be seen also by using the expres-
sion (18) for the r;.) Now r;/ = r, implies that the elements of
S = &(ry, 72, * * *, Ta) are fixed under 5. Hence § is in the Galois
group of B/Z and the induced mapping §; satisfies &7 = &u,
1 <7 < n, as required.
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We shall now carry over the result we have just obtained on the
pair of fields P, Z to the pair P, Z by establishing an isomorphism
of P onto P which maps Z onto 2. We consider first the algebra
homomorphism 5 over & of

Q[tlx by m 0y tn] _,,) Q[TI, T2y " °» Tn]

such that 17 = r;, 1 <i < n. The existence of 5 is clear since
the; are indeterminates. We assert that 7 is an isomorphism. To
see this we note that we have the homomorphism { over & of

Q[EI, 52) ) En] _g') Q[xb Xz ** %y xn]

so that £f = x;. Again this is clear since the {; are indeterminates.
Note also that Q[EI) 2, 00y En] 2 Q[TI, T2, "% Tn] so ¢ is de-
fined. Now the formulas (18) and (14) show that rf = 4.
Hence ¢ = r{ = #; and consequently g% = g for every g in
®[t1, t2, ** * ta). This implies that our first mapping 7 is an iso-
morphism since g” = 0 gives g = g% = 0 for gin ®[ty, - -+, ta].

We are now in a position to extend 5 to an isomorphism 5 of
D = ®(ty,t2, +*y ta) ONto = = (7, 74, -+ +, 7,) and this extends
to an isomorphism 7 of =[] onto Z[x] so that " = x. Then

Sfley = (x™ — At = an — T = 7(x)

On the other hand, P is a splitting field over Z of f(x) and P is a
splitting field over T of f(x). Hence the general uniqueness
theorem for splitting fields (Th. 1.7) provides an isomorphism 5 of
P onto P which coincides with the given 5 on =. It is immediate
from the existence of such an isomorphism that the Galois group
G of P/Z is isomorphic to the Galois group G of P/Z. In fact, itis
clear that the mapping s — n7lsy is an isomorphism of G onto G.
The fact that G; = §, now implies that the Galois group G; of
f(x) = 0 over Z is §,. Itis clear also that the roots of f(x) are
distinct and Theorem 2 shows that f(x) is irreducible in Z{x]. The
results we have obtained can be stated as

Theorem 7. The general equation of the n-th degree (13) is ir-
reducible in Z = ®(t1, ta, + -+, tn) and has distinct roots. The
Galois group of f(x) = 0 is the symmetric group Sn.

Since §, is not solvable if # > 4 this implies the

Theorem of Abel-Ruffini. The general equation of the n-th degree
is not solvable by radicals if n > 4 (characteristic 0).
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EXERCISES

1. Use the fact that every finite group is isomorphic to a subgroup of S, to con-
struct a field P whose Galois group over a suitable field ® is isomorphic to a given
finite group G. (The construction of P for a given & and G is an open problem.
In fact, for & the field of rational numbers this is a classical problem which is still
unsolved.)

2. Use the Galois theory to prove that, if 7(xy, xa, » « +, x,) € B(x1, ¥2, **+, ¥n)
the field of rational expressions in indeterminates x; over the field & and » is
symmetric in the sense that r(xv, xo, ++ -, %) = r(x1, %2, - - -, xs) for every per-
mutation ¥; — Xy of the #’s, then 7 is a rational expression with coefficients in &
in the elementary symmetric polynomials # = Zw;, 2= D sawj, oo, tp =

i<
%1% »++ %n. (Compare the fundamental theorem on symmetric polynomials,
Vol. I, p. 109.)

3. Assume the characteristic of ® is not two or three and consider the general
cubic % — fx? + fox — 5 = (¥ — x1)(x — x2)(x — x5). Here the # are in-
determinates and the x; are in a splitting field P over 2 = &(#1, #5, #3). Nothing is
lost in replacing % by yi= 2 — 4(%1 + x2 + %3) = x: — 34, Then the
given equation is replaced by y® + py + ¢ = 0 whose roots are y1, ys, y3s where
y1+ y2 + ys = 0. Then the formula (6) for the discriminant gives § = —4p% —
274 The group of P over 2(1/3) is the alternating group 43 which is cyclic of
order 3. Let { be a primitive cube root of 1 (e.g., { = —% + £+/=3) and set
=N+t = e, =t T =0+
£+ s, m=y1+ 32+ 35 =0, Verify that z® = &g —$v/=3+/5
if ¢ = =143V =3 and z® = —%l7 + 32/ =3 /5, 2122 = —3p. Hence

2=V -3y — 3+/—30
w = V=3 + §v/=35

where the determination of 4/—36 is the same in both formulas and that of
/" is such that z1zs = —3p. Solve the equations z1 = y1 + ¢%yy + {3, 22 =
y1+ &y2 + s, 2 = y1 + 2 + ys for y1, y2, s to obtain Cardan’s solution of
the equation y* 4+ py + ¢ = 0.

4, Assume the characteristic is not two or three and consider the general
quartic x — 4x3 + 4x? — By + 4 = (x — #)(x — x2)(x — x3)(x — x1). Re-
placing x; by y: = »; — 14 gives an equation f(y) =yt +py2 + gy +r =0
whose roots are y1, ¥s, ys, ¥4 Show that the resolvent cubic of f(y) =0 is
£2(2) = 28 — 2922 + (p* — 4n)z + ¢% = 0 (cf. the exercises in § 1). Show that the
Galois group of P = ®(iy1, x2, %3, x9) = ®(y1, 2, ¥s, ya) over &(z1, 22, 23), z: the
roots of g(z) = 0 is the Vierergruppe. Obtain formulas for yi, ys, ¥3, ¥4 in terms
of 21, %3, 23 and square roots of elements of ®(21, 22, 23).

5. Consider a splitting field P over = = ®(#,, - - -, ), £ indeterminates, of the
general equation (13) and let %1, », - -+, X, be the roots. Assume ® contains »
distinct elements ¢y, ca, =+ +, cn. Prove that 8 = cix1 + coxs + -+ cpvn Is 2
primitive element of P/Z.

(19)

5. Equations with rational coefficients and symmetric group as
Galois group. The theorem of Abel-Ruffini shows that equations
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of degree >5 with indeterminate coefficients are not solvable by
radicals. On the other hand, it is clear that for certain fields ®,
e.g., the field of real numbers or the field of complex numbers,
every equation with coefficients in & is solvable by radicals. We
shall now show that there exist equations with rational coefh-
cients which are not solvable by radicals. We shall do this by
showing that there exist rational equations of any prime degree p
with Galois group the symmetric group §,. We prove first the
following result on permutation groups.

Lemma. If G is a permutation group on p elements where p is a
prime and G contains an element of order p and a transposition, then
G =35,

Proof. We recall that any permutation can be written as a
product of disjoint cycles (Vol. I, p. 35). Moreover, the order of a
cycle is the number of letters it contains. This implies that, if
o £ G has order p, then ¢ is a cycle containing all the letters 1,
2, .-+, p. By re-ordering the elements 1, 2, - - - suitably, we may
assume that G contains the transposition (12). Since a suitable
power of the p-cycle ¢ has the form (12 ... ) further re-ordering
of the elements 12, - - -, p, if necessary, permits us to assume that
G contains (12) and ¢ = (123 .. p). We recall that, if 7 is any
element of §, (or §,), then r7(if)r = (#'/") where 7", /7 are the
images of 7, j respectively under r. This shows that ¢~1(12)¢ =
(23), 0~2(12)e% = (34), - -+, (p — 1, p) and (pl) are contained in
G. Since

(13) = (12)(23)(12)
(14) = (13)(34)(13)

(p)=0p—-D-1plp—-1)

all of these elements are contained in G. Since (47) = (1) (15)(17)
if 1, 4, j are different, this shows that every transposition is con-
tained in G. Since every element of §, is a product of transposi-
tions, we have G = §,.

We shall now prove the following
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Theorem 8. Ler f(x) be a polynomial of prime degree with ra-
tional coefficients which is irreducible in the rational field. Suppose
f(x) = O has exactly two non-real roots in the field C of complex
numbers. Then the group Gy of f(x) = O over the rationals is the
symmetric group.

Proof. The fundamental theorem of algebra asserts that
S(x) = (¥ — p1)(¥ — p2) +++ (¥ — pp) in C[x]. Then the subfield
P = Ro(p1, p2, * * *» pp), Ro the rationals, of C is a splitting field of
J(x) over Ry. Since P D Ry(p;) and [Ro(p1):Ro] = deg f(x) = p,
[P:R,] is divisible by p. Hence p is a divisor of (G:1), G the
Galois group of P over R,. It follows from Sylow’s theorem that G
contains an element of order p. Now consider the automorphism
a=a+pV—-1—>a—BV—-1=3 af real, of C over the
field of real numbers. This maps f(x) into itself since the co-
efficients of f(«x) are real. Hence it maps the set {p1, p2, * * *, pp} Of
the roots of f(x) belonging to C into itself. Let p;, p2 be the non-
real roots of f(x). Then ¢ — g interchanges p; and pz and leaves
fixed all the p;, 7 > 2. Thus the restriction of the automorphism
a — a of C to the set of roots is an element of Gy which is a
transposition. Hence G; contains an element of order p and a
transposition and Gy = §, by the lemma.

We shall now indicate how one can construct polynomials
satisfying the conditions of the theorem.* Let m be a positive
integer, 7; < mg < -+ < n,_5 be r — 2 even integers where r
is odd and >3. Consider the polynomial

(200  g(x) = («® + m)(x — n1)lx — n3) -+ (¥ — mr_s).

The real roots of g(x) are ny, na, - -+, #,_5 and the graph of y =
g(x) has the form:

* The construction we give is due to R. Brauer.
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This has (» — 3)/2 relative maxima and, since [g(k)| > 2 for any
odd integer %, it is clear that the values of these relative maxima
are >2. This implies that f(x) = g(x) — 2 has (» — 3)/2 posi-
tive relative maxima between 7, and #n,_,. It follows that f(x)
has » — 3 real roots in the interval (n,, n,_3). Since f(n,_,) =
—2 and f(«) = o, there is also a real root >#n,_,. This gives
r — 2 real roots for f(x). Let ay, as, -+, a, be the complex roots
of f(x). Then f(x) = (¥ — ;) = (¥ + m)(x — ny) -+ (x —

n.—3) — 2, and equating coefficients of ¥"~! and x"~2%, we obtain

r r—2
(21) Dar= 2 nk, D, ampy = Y, ngm+ m.
1 1 <7 k<l
Hence
(22) Eaﬁ = (2&,;)2 -2 Z aqa;
i<j
= Enk2 — 2m.

If we choose m sufficiently large, (22) shows that Za;? < 0 and
this implies that not every «; is real. If @, is a non-real root, then
&; # a; is another such root so we have at least two non-real roots.
Since in any case we have » — 2 real roots, we see that f(x) has
exactly » — 2 real roots. We now write f(x) = x" + a;x" !
+..++ a,. Clearly the a; are even integers. Moreover, since
the constant term of g(x) is divisible by 4, that of f(x) = g(x) — 2
is not divisible by 4. It follows by Eisenstein’s criterion applied
to the prime ¢ = 2 that f(¥) is irredugible in the rational field.
We therefore see that we can satisfy the conditions of the theorem
for every prime p = r > 5. It is easy to see that this holds also
for p = 2,3. Hence the conditions hold for every prime, so we see
that there exist rational equations of every prime degree p with
Galois group the symmetric group S,.

EXERCISES

1. Let f(x) € ®[x] have distinct roots p1, pa, * * *, pr in a splitting field P/® and
let Gy € 8, be the Galois group of the equation f. Let y1, s, +++, ¥» be in-
determinates and set

F(x) = H (x - (Pl‘)’l +p2¢}’z +- "+Pn‘_yn))

teSn

=II (x — (oryst + payat +- > + puyns)).

teSn
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Show that F(x) &€ ®[y1, ya, * -+, ¥, ¥]. Let F(x) = Fi(x)Fa(x) -+ F(x) be the
factorization of F(x) into irreducible factors with leading coefficient 1 in &(y1, ¥,
-+, yn)[x]. Show that, if x — 2_ pitys is a factor of Fi(x), then

P =[] (« — 2 pm)
5eGp B
Hence show that deg Fi(x) = (G;:1).

2. Same notations as 1. Assume, moreover, that & = R, the field of rational
numbers and that f(x) has integer coefficients and leading coefficient 1. Assume
2 is a prime such that the polynomial f(x) obtained by replacing the coefficients
of f(x) by their residues modulo p has distinct roots in a splitting field P/7,. Show
that F(x) = I:gI (¥ — piys) in Plx, y1, + - -, ] where py, Po, -+ -, P are the roots

teSa

of f(x) in P, Use this and ex. 1 to prove that, if the ¢ are suitably ordered, then
Gy is a subgroup of G;.

3. Show that any transitive subgroup of §, which contains an (# — 1)-cycle
and a transposition coincides with Sn.

4. Show that the equation

x84 2245 — 9yt 4 1248 — 3742 — 29x — 15
over Ry has the group Se. (Hint: Apply ex. 2 using the primes p = 2, 3, 5.)



Chapter T11

ABELIAN EXTENSIONS

In this chapter we shall investigate several types of abelian ex-
tension fields. First, we shall consider cyclotomic fields over the
field of rational numbers and we shall determine their dimen-
sionalities and Galois groups. Next we shall consider Kummer
extensions, which are obtained by adjoining the roots of a finite
number of pure equations ™ = « to a field containing m distinct
m-th roots of 1. Finally, we shall study the so-called abelian p-
extensions, which are defined to be abelian extensions of p’
dimensions of a field of characteristic p 0. The theory of
characters of finite commutative groups is a basic tool for the in-
vestigation of Kummer extensions and abelian p-extensions. Be-
sides this, our study of abelian p-extensions will be based on a cer-
tain type of ring, a ring of Witt vectors which can be constructed
from any commutative algebra ¥ over a field of characteristic
p # 0. For any such % andinteger m» = 1,2, -+ -, we have a ring
of Witt vectors B,,(A) of characteristic p™. In the theory of
valuations it is useful to pass to the limit as » — « and to con-
sider also rings W(A) of infinite Witt vectors. This will be con-
sidered in Chapter V. A number of the results of this chapter will
be needed for an application to the theory of formally real fields
which we shall take up in Chapter VI.

1. Cyclotomic fields over the rationals. We have defined the
cyclotomic field of order 7 over a field ® to be the splitting field
over & of the polynomial x™ — 1 (§2.2). We have shown that, if
the characteristic of @ is not a divisor of 7, then the Galois group
of the cyclotomic field is isomorphic to a subgroup of the group
U(m) of units in the ring I/(m) (Th. 2.3). We now assume that

the base field & = R,, the field of rational numbers, and we let
110
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P™ denote the cyclotomic field of the m-th roots of 1 over R,.
Let Z(m) be the multiplicative group of the m-th roots of 1. We
recall that Z(m) is cyclic and its generators are called primitive
m-th roots of 1. Also P™ = Ry(), where { is any primitive m-th
root of 1; hence the dimensionality [P™:R] is the degree of the
minimum polynomial of { over Ry. If { is a primitive m-th root of
1, then any other primitive m-th root of 1 has the form ¢* where
(k, m) = 1. Hence the number of primitive m-th roots of 1 is
@(m) the number of positive integers not exceeding 7 which are
relatively prime to m. This is also the order of the group U(m).
Now let
(1) M(x) = II (¢ =)
¢ primitive

This is a polynomial of degree ¢(m) with coefficients in P™. If s
is in the Galois group G of P(™ over R,, then clearly s maps the
set of primitive m-th roots of 1 into itself. Hence we have the
relation A\,*(x) = An(x) for every s e G. Since P™ is Galois over
Ry, we see that A,(x) &€ Ro[x], that is, N\, (x) has rational coefhi-
cients. We can see this also in a more elementary way which, at
the same time, gives an inductive procedure for calculating
Am(%). Since the order of any m-th root of 1 is a divisor of m and
since every d-th root of 1 for d|m is an m-th root of 1, we clearly
have the formula

(2) ™ —1= d1|1 Na(x).
1<d<m

Evidently we have A\ (¥) = ¥ — 1 and, assuming that \s(x) e
Ry[x] for all 4 such that 1 < 4 < m, then the formula (2) gives

3) An(¥) = (™ — 1)/ lem Aa(*)

which shows that \,(x) e Ro[x]. This gives a practical way of
calculating A\, (x). For example, we have \(x) = x — 1,

Ne(x) = (%% = 1)/N(x) = % + 1,

Aa(x) = (¢ — 1)/M(x) = %2+ % + 1,

() = (¢* — 1)/M(ON(x) = 22 + 1,

Ne(%) = (x® = 1)/N (N (0Ng(x%) = x® — x + 1
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and

Az(x) = (#*2 — 1)/ N 0)N2(Na(0)Na(3)N6(x) = x* — x% + 1.
If p is a prime, we have
(B M) = (= D/lr— 1) = £ 2 4o ]

and it is easy to see, using Eisenstein’s criterion, that \,(x) is ir-
reducible in Ro[x] (Vol. I, ex. 2, p. 127). We shall now prove the
following general result

Theorem 1. 1\, (x) is frreducible in the rational field.

Proof. We observe first that \,(x) has integer coefficients.
For, assuming this holds for every Ai(x), d < m, and setting
p(x) = TI Na(x), we obtain by the usual division algorithm

1;%"»

that ¥™ — 1 = p(x)g(x) + r(x) where ¢(x) and r(x) e I[x] and
deg 7(x) < deg p(x). On the other hand, we have x™ — 1 =
p(x)A(x), so by the uniqueness of the quotient and remainder,
(%) = g(x) has integer coefficients. Now suppose that \,,(x) =
h(x)k(x) where A(x) is irreducible in Ro[x] and deg A(x) > 1. By
Gauss’ lemma (Vol. I, p. 125) we may assume that A(x) and k(x)
have integer coefficients and leading coefficients 1. Let p be a
prime integer such that p } m and let ¢ be a root of A(x). We
shall show that {? is a root of A(x). Since (p,m) =1, {? is a
primitive m-th root of 1 and, if {? is not a root of A(x), ¢? is a root
of k(x); consequently ¢ is a root of k(x?). Since A(x) is irre-
ducible in Ro[x] and has ¢ as a root, A(x)|k(x?). It follows (as
above) that k(x?) = A(x)/(x), where /(x) has integer coefficients
and leading coefficient 1. Also we have x™ — 1 = N\, (x)p(x) =
h(x)k(x)p(x) and all of these polynomials have integer coefficients
and leading coefficients 1. We now pass to congruences modulo p
or, what is the same thing, to relations in the polynomial ring
I,[x]. Then we obtain

() xm — 1 = h(x)k(x)p (%)

vghere in general, if f(x) = g™ + a4~ + ...+ a, & I[x], then
J(x) = @™ + &x" ' + -+ -+ Gn, d: = a; + (p) in I. Similarly,
we have E(x?) = A(x)/(x). On the other hand, using 3? = 4 for
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every integer a, we see that
f-(x)” = (Gox™ 4+ G,)° = GPxP* + -+ 3P
= Ggx™" 4+ G, = f(xP)

for any polynomial f(x). Hence k(x)? = k(x?) = h(x)J(x) which
implies that (A(x), k(x)) = 1. Then (5) shows that ¥ — 1 has
multiple roots in its splitting field over J,. Sincep 4 m thisis
impossible and so we have proved that {? is a root of 4(x) for every
prime p satisfyingp 4 m. A repetition of this process shows that
¢"is a root of 4(x) for every integer  prime to . Since any primi-
tive m-th root of 1 has the form {', (r, m) = 1 we see that every
primitive m-th root of 1 is a root of 4(x). Hence A(x) = A\n(x) and
Am(x) is irreducible in Rg[x].

We now see that \,,(x) is the minimum polynomial over R, of
any primitive m-th root of 1. Since P™ = Ry(f), ¢ primitive
we have established the formula

(6) [P™:Rg] = ¢(m).

This implies that (G:1) = ¢(m) for the Galois group G of P™/R,.
Since (U(m):1) = ¢(m) and G is isomorphic to a subgroup of
U(m), this proves

Theorem 2. Let P™ be the cyclotomic field of order m over the
rationals Ro. Then the Galois group of P™ /R, is isomorphic to
U(m), the multiplicative group of units in the ring 1/(m).

We shall now proceed to determine the structure of the Galois
group G or, what is the same thing, that of U(m). Itis easy to see
that, if m = p,“p,® - - - p,* where the p, are distinct primes, then
U(m) is isomorphic to the direct product of the U(p;*). For this
reason we shall confine our attention to the case m = p° a prime
power. Then U(p®) is a commutative group of order ¢(p°) =
pt—p° 1 =p7(p — 1). We prove first

Theorem 3. If p is an odd prime, then the multiplicative group
U(p®) of units in I/(p®) is cyclic.

Proof. Since the order of this group is p*~'(p — 1), U(»9) is a
direct product of its subgroup H of order p*~! consisting of the

elements which satisfy ¥ = 1 and the subgroup K of order
p — 1 of the elements satisfying x?~ = 1. It suffices to show
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that both H and K are cyclic since the direct product of cyclic
groups having relatively prime orders is cyclic. If ¢ = 1, then
U(p) = K is the multiplicative group of the field 7/(p) and this is
cyclic. Hence we can choose an integer @ such that 2 + (p), a® +
(p), +++,a® ! + (p) are distinct in I/(p). Set & = a*". Since
(a,9) =1, (4,p°) = 1 and & + (p°) and a + (p°) e U(p®). Also
1 = (@l = 2@ =1 (mod p°) so &+ (p°) e K. Since
b=a""=a (mod p), 6+ (p), 62+ (p),+--, 47271 + (p) are
distinct. Hence also & + (p%), 4% + (%, - -+, #*~1 + (p°) are
distinct. This implies that the order of 4 4 (p°) is precisely
p — 1. Since (K:1) = p — 1, it follows that K is cyclic with
generator & + (p¢). It remains to prove that H is cyclic, and we
may assume that ¢ > 2, since, otherwise, H = (1) and the result
is clear. Assuming ¢ > 2, we can conclude that H is a direct
product of £ > 1 cyclic groups of order p%, ¢; > 1. Then the
number of solutions of the equation x? = 1, x e H is p*. Hence it
will be enough to show that the number of integers 7,0 < 7 < p°,
satisfying #* = 1 (mod p°) does not exceed p. Now if # satisfies
these conditions, then, since #» = »n (mod p), we have n =1
(mod p). Then if n # 1, we may write n =1+ yp’ + zp’ 1!
where 1 < f<e—1, 0<y<p, and z is a non-negative
integer. Then

= 1+(2) 0+ +(5) 0 + 2002

+...+ (y + zp)?p?f
— 1 4+ yp’*+! (mod p'+?).

If ”» =1 (mod p°) and f < ¢ — 1, this gives yp/*! =0 (mod
p’7?) so y = 0 (mod p) contrary to 0 < y < p. Hence we see
that, if 1 < # < p° satisfies #?» = 1 (mod p°), then » =1 +
y72°1, 0 <y < p. This gives altogether at most p solutions in-
cluding 1 and completes the proof of the theorem.

We consider next the case of the prime 2 in the following

Theorem 4. U(2) and U(4) are cyclic and, if ¢ > 3, then U(2°)
is a direct product of a cyclic group of order 2 and one of order 2°72.
Proof. The order of U(2°%) is ¢(2°) = 2¢1. Ife =1, (U(2):1)
= land if ¢ = 2, UQ2°) = U(4) has only two elements and so is
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cyclic. Suppose e > 3. We show first that there are four distinct
elements x & U(2°) satisfying x* = 1. This will imply that U(2°)
is a direct product of at least two distinct cyclic groups # 1. Set
ay=1,a=—1,a=1+4+21 g,=—1+2°7, x;=a;+
(2°). Then the x; are distinct and satisfy ;> = 1, which proves
our assertion. Also since U(2°) is a direct product of at least two
cyclic groups # 1 and the order of U(2°) is 2°~!, we see that, if
x & U(2°), then x** = 1 or, what is the same thing, if 4 is an odd
integer, then 4 = 1 (mod 2°). The proof will be completed by
displaying an x such that x>~ 1. Then we shall have a cyclic
subgroup of order 2¢~2 and this can happen only if U(2°) is a
direct product of a cyclic group of this order and one of order 2.
We proceed to show that we may take x = 5 + (2°). Note first
that, if ¢ = 3, then 5" = 5= 1 (mod 2¢) but 5" =1 (mod
2¢71). Now let f > 3 and let k(f) be the largest integer & such
that 527 = 1 (mod 2*). Then we have k(3) = 2. Also for any
f >3 we have 527 = 1 + y2*O) where y is odd. This gives

52(f"'1)—a = (52f—‘)2 =1 +y2k(f)+1 + y222k(f)
which shows first that k(f + 1) > k(f), so k(f) =2 if f > 3.

Then the relation shows that 5297 = 1 4 22k00+1 where
z=y + 28N "1y2is0dd. Hencek(f+ 1) = k(f) + 1. Thisand
k(3) = 2 imply that k(f) =f — 1 for all f > 3. Thus 527" = 1
(mod 2°) if ¢ > 3 which is what we needed. This completes the
proof.

Theorems 2, 3, and 4 give a description of the Galois group of
the field of the p*-th roots of 1 over the rationals. The result is
the following

Theorem 5. Let m = p*, p a prime, and let P™ be the field of the
m-th roots of 1 over the field Ry of rational numbers. Then the Galois
group G of P /Ry is cyclic unless p = 2 and ¢ > 3, in which case
G is a direct product of a cyclic group of order 2 and one of order
272,

EXERCISES
1. Use the M&bius inversion formula (Vol. I, ex. 5, p. 120) to prove that

Am(x) = .,I.,I., (8 — 1)“(7).
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2. Let » be a prime and let P‘® be the cyclotomic field of p-th roots of 1 over
the field Ry of rational numbers. Let g 4 (p) be a generator of the cyclic group
U(p) and let s be the automorphism of P® /R, such that {* = %, ¢ a fixed
primitive p-th root of 1. Show that (¢, ¢, ¢, +++, {* ") form a basis (normal
basis) for P® /R,. Supposep — 1 = &f, ¢, f positive integers and let E/R; be the
subfield of ¢ dimensions of P® /R, Show that, if # = s¢ and 9 = ¢ + ¢* + ¢
4+ {‘fﬂ, then (n, 7%, +++,7*"™") is a basis for E/R,. Show that the multipli-
cation table for this basis has integer coefficients.

3. Let P be the field of the 17-th roots of 1 over Ry. Determine the subfields
Ryyi=1,23 such that Ry T RIC R C Rs C Ry = P and [R;ZRi__l] = 2.
Find an element w; in R; so that R; = R;_y(ws), w?e R, 1 < i< 4.

4. (O. Todd) Let P be the field of p-th roots of 1 over Ry where p isa prime of
the form 4» 4 3. Show that P is a tensor product of a quadratic subfield and a
subfield of odd dimensionality. Show that the quadratic subfield is not real (if P
is considered as a subfield of the field of complex numbers).

S. Let E™ be the cyclotomic field of degree m over & = I, Write m =
m'pe, (m', p) = 1. Show that [E(™ :&] is the order of the element p + (m) in
the group U(m").

2. Characters of finite commutative groups. In the remainder
of this chapter we shall study two classes of abelian extension
fields: Kummer extensions and abelian extensions of p¢ dimen-
sions over a field of characteristic p. For both of these the theory
of characters of finite commutative groups is basic, so we shall
develop this first.

Let 4 and B be two commutative groups (written multipli-
catively) and let x and ¥ be homomorphisms of £ into B. We de-
fine the product xy¢ by @*¥ = 4%s¥. One checks that thisis again a
homomorphism and that the set Hom (A4, B) of all the homo-
morphisms of 4 into B is a commutative group under the prod-
uct xy¢ (cf. Vol. I, p. 78). We shall be interested particularly in
the case A finite and B = Z a finite cyclic group whose order is
divisible by the orders of all the elements of 4. We shall call the
maximum order of the elements of 4 the exponent of 4. We recall
that the order of every element is a divisor of the exponent (Vol.
II, ex. 1, p. 69), so the condition we have imposed on Z is equiva-
lent to: the order of Z is divisible by the exponent of 4.

We wish to determine Hom (4, Z) from a particular decom-
position of / as 4 = A4, X A, X+ X A, where the 4; are cyclic
subgroups. Thus we are assuming that 4 = 4, -.+ 4, and
A: N 1{1 1{;_14;_'_1 1{, = 1. Let n; = (1{11) and let
C; be the subgroup of Z of elements z satisfying 2™ = 1. Since n:
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is a divisor of the order of Z, C; is the subgroup of order #; of Z.
Let C be the group of rtuples (¢, ¢z, **+,¢,) where ¢; e C: and
multiplication is defined componentwise. Hence C is the (ex-
ternal) direct product of the groups Cy, Cy, -+, Cr and C =~ 4
(cf. Vol. I, p. 144). We shall now obtain an isomorphism of
Hom (A, Z) onto C. For this purpose we choose a generator a;
of 4,i=1,2,--+,r. If xeHom (4, Z), then aX = ¢, satisfies
¢™ =1, since @, = 1. Thus ¢; e C;, We now map x into the
element (cy, ¢35, * +ycr) = (@1, a5%, -+, a,X) e C. If x,¥ eHom (A4, 2),
then
(alxd/’ ey a,"“’) = (al"ﬂl'l', ey a,"a,"’)

= (alx’ Pty arx) (41‘1” Y ar‘l’)’

so x — (arX, ++-, aX) is a homomorphism of Hom (4, Z) into C.
Ifax=1,i=1,---,r, then ax = 1 for every a e 4, since the a;
are generators of 4. Thus 2;* = 1 for all / implies x = 1, which
shows that x — (&, -+, 4) is an isomorphism into C. It re-
mains to show that this mapping is surjective. Let ¢; be any ele-
ment of C;. Then ¢;® = 1 and it is clear that we have a homo-
morphism x; of 4; onto C; such that 2% = ¢;. Since 4 = A4; X
Ay X+ X A, the mapping wixp +++ &, — xXwX2 - X, x; ¢
A, is a homomorphism x of 4 into Z. Clearly x — (ar%, -+, aX)
= (1, €2, * * 5 ¢). This shows that the mapping of Hom (4, Z) in-
to C is surjective. Thus we have shown that 4 =~ C =~Hom (4, Z).

Theorem 6. Let A be a finite commutative group and let Z be a
JSinite cyclic group whose order is divisible by the exponent of A.
Then the group Hom (A4, Z) is isomorphic to A.

If Z satisfies the condition of the theorem, then we shall call the
group Hom (4, Z) a character group of the group £ and we shall
call the elements of this group characters of A.

We arenow in a position to derive in quick succession the results
on characters which we need. We note first the following

Corollary 1. If a # 1 in A, then there exists a character x e
Hom (4, Z) such that a* # 1.

Proof. Let B be the subgroup of £ of elements 4 such that & =
1 for all x eHom (A4, Z). Then we see immediately that our



118 ABELIAN EXTENSIONS

assertion will follow if we can show that B =1. Now let xe
Hom (A4, Z). Since 6 =1, 4¢ B, B is in the kernel of x and
so we have an induced homomorphism % of 4/B into Z defined by
(aB)X = ax. If x,¢ e Hom (4, Z) and X = ¢, then the definition
shows that x = . Hence the mapping x — X of Hom (4, Z)
into Hom (A4/B, Z) is 1-1. Since (4:1) = (Hom (4, Z):1) and
(4/B:1) = (Hom (4/B, Z):1), by Theorem 6, we must have
equality of all of these numbers. This implies that B = 1, which
is what we needed.

If a is a fixed element of 4, then we can define a mapping 7, of
Hom (4, Z) into Z by x™ = a*. If x,¢ e Hom (4, Z) we have
()™ = ¥ = aXa¥ = x™y"%, which shows that 7, is a homo-
morphism of Hom (4, Z) into Z. Thus 7, is a character of the
group Hom (4, Z). Then we have the basic

Corollary 2. For a € A define a mapping n, of Hom (A, Z) into
Z by x" = ax. Then n, ¢ Hom (Hom (4, Z), Z) and the mapping
a — ng 15 an isomorphism of A onto Hom (Hom (4, Z), Z).

Proof. Observe first that 2 — 75, is a homomorphism since
X' = (ab)*x = axp* = x"x"™ = x"® (the last equation by the
definition of the product in a character group). Next suppose
ne = 1. Then 4 =1 for all x so, by Cor. 1, a = 1. This
shows that the kernel of the homomorphism 2 — 7, is the iden-
tity. Hence the mapping is an isomorphism. Since (4:1) =
(Hom (A4, Z):1) = (Hom (Hom (4, Z), Z):1), by Theorem 6,
a4 — 7, Is surjective and the proof is complete.

Corollary 2 permits us to identify 4 with the character group
(relative to Z) of Hom (A4, Z). By virtue of this result we have a
perfect duality between 4 and Hom (A4, Z). We use this in the
proof of

Corollary 3. A ser {x1, Xz, ** > Xr} Of characters generate the
character group Hom (A, Z) if and only if the only a e A satisfying
a=1,7i=1,2,+--,risa=1.

Proof. This is equivalent to the dual statement {a,, a3, - - -, a,}
generate A if and only if a* =1, for 1 = 1,2, - -+, r holds only
for the character 1. This is easy; for, if a,, - - -, a, generate 4 and
a* = 1 holds for the character x, then 4 = 1 holds since x is a
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homomorphism. This implies that x = 1. On the other hand, if
the subgroup B generated by 4,, ---, 4, is a proper subgroup,
then there exists a character X # 1 for 4/B. Ifa e A4 the mapping
defined by @ — 4B — (aB)* is an element 7 1 of Hom (4, Z)
satisfyingaX = 1,1 =1, -+, r.

3. Kummer extensions. It is generally a difficult problem to
obtain a survey of the abelian extensions of a given field ®. For
example, if ® is the field of rational numbers, this requires deep
arithmetic considerations. However, there are two types of
abelian extensions which can be quite exhaustively studied by
comparatively elementary algebraic means. One of these, which
we shall call abelian p-extensions, are the abelian extensions of p*
dimensions over a field of characteristic p # 0. We shall con-
sider these in § 5. In the present section we shall develop the
theory of Kummer extensions, which are defined as follows.

Definition 1. Let P be an abelian extension of a field ®. Then
P/ & is called a Kummer m-extension if the Galois group of P/ ® is of
exponent m and ® contains m distinct m-th roots of 1.

We shall now suppose that & is a given field which contains m
distinct m-th roots of 1. The field ® and the integer m will be fixed
throughout our discussion. We are interested in obtaining a sur-
vey of the Kummer m'-extensions P/® where m’'|m. We recall
that the condition that ® contain m distinct m-th roots of 1 im-
plies that the characteristic is not a divisor of 7 (§ 2.2). If P/®
is a Kummer m'-extension where 7’| m, then [P:®] = (G:1) and,
since the exponent and order of a finite commutative group are
divisible by the same primes, we see that the characteristic is not
a divisor of [P: ®].

Let ® and 7 be as indicated and let P/® be a Kummer 7’-ex-
tension, m'|m. Let P* and &* be the multiplicative groups of
non-zero elements of P and & respectively. For pe P*, the
mapping p — p™ is an endomorphism of P* which maps &* into
itself. The kernel of p — p™ is Z(m) the group of order 7 of m-th
roots of 1 and Z(m) € &*. Let

) M(P) = {p e P*p™ ¢ ®*}
(8) N(P) = {p™|p e M(P)}.
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Thus M(P) consists of the m-th roots in P of the elements of &*
and N(P) is the set of elements of ®* which are m-th powers of
elements of P. It is clear that M(P) is a subgroup of P* con-
taining ®* and N(P) is a subgroup of ®* containing &*™ =
{a™|a & ®*}.

Let p e M(P) and set x,(s) = p%~), seG. Since p" = a e @,
(o)™ = a s0 p*p~! € Z(m). Moreover, since Z(m) < @,

x(55) = p*p71 = (e ) (%Y = x.()x.(H).

Thus we see that x, e Hom (G, Z), Z = Z(m), which is a character
group of the finite commutative group G since the exponent of G
is a divisor of m. Conversely, let x be any element of Hom (G, Z).
Then we have x(s9) = x(5)x() = x(s)x(#), so Noether’s equa-
tions are satisfied. Consequently, by Noether’s theorem (Th.
1.19), there exists a non-zero element p e P such that x(s) =
p’p~t. Sincep’p~! &€ Z we have (p*)™ = p™or (p™)* = p™ for every
s e G. This implies that p™ ¢ ® and so p e M(P). We have there-
fore shown that every element of the character group Hom (G, Z)
is of the form x(s) = p% %, p in M(P). If py,p; e M(P) and
Xe1» Xpo are the corresponding characters of G, then x,,,(s) =
(p1p2)*(p102) ™1 = P11 p2°p2 ™" = X,,($)X,:(s). Hence the map-
ping p — x,($) is a homomorphism of M(P) onto Hom (G, Z).
The kernel of this homomorphism is the set of elements p ¢ M(P)
such that p*0~! = 1, s e G. This is just the set of elements satis-
fying p* = p, s €G, p # 0 and so it is ®*.

It is convenient to state the result which we have just obtained
on the homomorphism of M(P) onto Hom (G, Z) as a result on
exact sequences of group homomorphisms. If Gy, Gg, - - -, Gy, are
groups and 7; is a homomorphism of G; into G,,,, then we say
that the sequence

G, — G, — -+ > Gy — G,
m 72 Nk-1

is exact if for each i = 1,2, -+, k — 2 the image of G. under 7,
coincides with the kernel of . ;. If1 denotes the group consisting
of 1alone then the only homomorphism of 1 into any group G is
1 — 1. It follows from this and the definition of exactness that
1 - Gy - G, is exact if and only if 5 is 1-1 and G, - Gy > 1
is exact if and only if 4 is surjective.
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Using this terminology we can state the following theorem.

Theorem 7. Let @ be a field containing m distinct m-th roots of 1
and let P/® be a Kummer m'-extension where m'|m. Let M(P) be
defined by (7) where P* is the multiplicative group of P and ®* is the
multiplicative group of ®. Then we have the exact Sequence of
multiplicative groups

1 > & - M(P) -» Hom (G, 2) — 1

where the homomorphism of ®* is the inclusion mapping and that of
M(P) is p = X,y x,(5) = p°p~ Y. The factor group M(P)/P* is
Jfinite and isomorphic to G. We have P = ®(M(P)) and P =
®(p1, p2, * * *5 pr)y pi in M(P), if and only if the cosets p;®* generate
M(P)/®*.

Proof. The first statement on the exactness of the displayed
sequence means that ®* is the kernel of the mapping p — x, and
this mapping is surjective on Hom (G, Z). Both of these facts
were established above. Consequently, we have Hom (G, Z) =~
M(P)/®*. Since Hom (G, Z) =~ G, by Theorem 6, we have
M(P)/®* == G. This proves the second statement. Now let
P1s * * *» pr be elements of M(P) such that the cosets p;®* generate the
finite group M(P)/®*. Clearly the homomorphism p — x, of M(P)
gives the isomorphism p®* — x, of M(P)/®* onto Hom (G, Z).
Hence we see that the characters x,, generate Hom (G, Z). Now let
P’ = &(py, p2, -+, pr) and let H be the subgroup of G corre-
sponding to P’ (the Galois group of P/P'). If re H, we have
pit = pi 1 <7 < 7,50 x,,(#) = 1. This implies that x(r) = 1 for
every x e Hom (G, Z). It follows from Corollary 1 to Theorem 6
that 1 = 1. Thus H = 1 which implies that P’ = ®(py, - -+, p,)
=P and P = &M(P)). Conversely, let py, -+, p, e M(P)
satisfy ®(py, -+ +, 0,) = PandletseG. Thenp;® =p;,1 <i <7,
will imply that p* = p, pe P. Hence we see that x,,(s) = 1,
1 <7 <7 implies s = 1. Then Corollary 3 to Theorem 6 im-
plies that the x,, generate Hom (G, Z). In particular, if p ¢ M(P),
then x, = x,"x,,** - - x,,*. Thus for every s e G we have

p*p™1 = (p1’p1 ™) 1 (pa%02 "1 F2 - - - (0,0, )%,

Hence (ppy ¥ 1pp %2+ - p,7h)e = pp;~hipy~he oo p ks e G, It
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follows that p = Bp,** -+« p,*, 8 € ®*. Since p was any element of
M(P), this shows that the cosets p;®* generate M(P)/®*. This
completes the proof.

Next we consider the mapping p — p™®*™ of M(P) onto the
factor group N(P)/®*™. This is a homomorphism whose kernel
is the set of elements of M(P) such that p™ = o™ where a & ®*.
Then p = ta where {™ = 1. Since Z S &%, these are just the ele-
ments of ®*. Hence we have the isomorphism p®* — p™®*" of
M(P)/®* onto N(P)/®*™. Since M(P)/®* is isomorphic to the
Galois group of P/®, itis clear that N(P)/®*™ is a finite subgroup
of */®*™ and we have

(9) N(P)/&*™ =~ M(P)/&* ~G.

We shall now shift our attention to the subgroup N(P) of &*.
This satisfies the two conditions: N(P) 2 ®*™ and N(P)/®*™ is
finite. We shall see that these subgroups, which are defined by &
and m, can be used to give a survey of the Kummer extensions
P/®. We observe first that, if a;, as, -+, @, are elements of
N(P) such that the cosets a;®*™ generate N(P)/&*", then P/®
is the splitting field of

(10) S = (6™ — a) (™ — o) -+ (3" — o).

For, we have p;® = a; where p; e M(P) and the isomorphism
pd* — pm®*™ of M(P)/®* with N(P)/&*™ implies that the cosets
p:®* generate M(P)/®*. Hence, by Theorem 7, P = ®(p,, - - -,
p.). If Z = {¢;}, then the roots of f(x) are p:t;, so we see that
P = ®(p;;) is a splitting field over & of f(x).

We proceed to show next that any subgroup N of &* satisfying
the stated conditions arises from a Kummer extension. The pre-
cise result is the following

Theorem 8. Let ® be a field containing m distinct m-th roots of 1
and let N be a subgroup of ®* containing ®*™ such that N/®*™ is
Sinite. Then there exists a Kummer m’'-extension P/® with m'|m
such that N(P) = N where N(P) and M(P) are defined by (8) and
(7).

Proof. The foregoing analysis of Kummer extensions gives the
clue to the definition of P/®. In view of this, we are led to choose
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@y, @z, **+y @, in the given group N so that the cosets a,d*™
generate N/®*™. Let P/® be a splitting field of the polynomial
f(x) given in (10). Since ¥™ — a; has m distinct roots, f(x) is
separable and P/® is finite dimensional Galois. Let G be the
Galois group. If p; is a root of ™ — a;, then all the roots of this
polynomial are the elements pif;, {; in the group Z of m-th
roots of 1. Henceif s € G, then p;* = t:(s)ps, Ci(s) e Z. If s, ¢ e G,
we have p*f = (§i($)pd)" = $($)pst = Fu(9)¢:(Hpi. Hence p* =
p:** i =1,2,---,7, and since it is clear that P = &(py, pg, - - -,
p.), st = ts for all 5, reG. This shows that G is a commutative
group. Also we have p:" = ti(s)*ps, k=1,2,---, and conse-
quently p;*" = p; which implies that s™ = 1, s € G. Thus the ex-
ponent of G is a divisor of 7 and P/® is a Kummer m’-extension
since Z S ®. It remains to show that, if N(P) is defined by (8),
then N(P) = N. Since pi™ = a; e ®, p; e M(P) defined by (7).
Since P = &(py, - -, pr), Theorem 7 shows that the cosets p,®*
generate M(P)/®*. Applying the isomorphism of M(P)/®* with
N(P)/®*™ we see that the cosets a;®*™ generate N(P)/®*". On
the other hand, we know that the cosets a;®*™ generate N/d*™.
This implies that N(P) = N

We now consider two Kummer m.-extensions P;/®, i = 1, 2,
where m;|m. Itis clear from the definitions of M(P;), N(P;) that,
if P/® = P,/®, then the subgroups N(P,) and N(P,) of ®* coin-
cide. Conversely, suppose we have N(P;) = N(P;). We have
seen that, if ay, as, - -, a, are elements of N(P;) such that the
cosets a;&*™ generate N(P;)/®*™, then P;is a splitting field over &
of f(x) = (™ — a1)(*™ — a3) -+ (*™ — «,). The uniqueness of
splitting fields implies that P,;/®==P,/® if N(P,) = N(P,).
Next we look at the Kummer m’-extensions, P/®, m'|m, which
are contained in one extension field /& (e.g., the algebraic closure
of ®in the sense of § 4.1). We have seen that, if P;/® is one of our
extensions, then P; = ®(M(P;)). Hence it is clear that P, 2 P,
if and only if M(P,) D M(P,). Also it is clear that M(P;) D
M(P,) if and only if N(P,) © N(P,). Hence P, D P, if and
only if the N(P,) 2 N(P,). Itis apparent that our results give a
completely satisfactory internal description of the Kummer ex-
tensions P/® by means of the subgroups NV of ®* satisfying the two
conditions: N 2 &*™, N/d*™ is finite.
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EXERCISES

1. Show that there exist an infinite number of non-isomorphic quadratic ex-
tensions of the field of rational numbers.

2. Assume ® contains m distinct m-th roots of 1 and let P/® be cyclic of m
dimensions over ®, s a generator of the Galois group of P/®. Show that P =
®(p) where p™ = a € ® and p* = {p where { is a primitive m-th root of 1. Show
that, if o € P satisfies 0™ & ®, then ¢ = Bp* wherefedand 1 < k < m.

3. (Albert). Let P be cyclic of » = /¢ dimensions over ® where /is a prime and
® contains / distinct /th roots of 1. Let s be a generator of the Galois group G of
P/®, H the subgroup of order / of G generated by ¢ = 5™, m = /*~1 E the sub-
field of H-invariants, so E/® is the unique subfield of m dimensions in P/®. By
2, P = E(p) where p’ = a € E and p* = {p, { a primitive /-th root of 1. Show
that p* = Bp* where 8e E and 1 < k </ Show that pt = vp*" = {p where
v € E and hence that #” = 1 (mod /) and # = 1. Show that Ngje(B) = { and
ata"t =B

4. (Albert). Assume ® has / distinct /th roots of 1,/ a prime, and that E/® is
cyclic of m = /*~! dimensions over ®, ¢ > 1. Suppose E contains an element
B such that Ngle(8) = ¢ a primitive /-th root of 1. Show that there exists an
a £ E such that a®a™ = 8! where s is a generator of the Galois group of E/®.
Show that a is not an /th power in E so that, if P = E(p) with p’ = a, then
[P:E] = /. Show that P is cyclic of 7 dimensions over ®.

5. Note that ex. 3 and 4 imply the following: If & contains / distinct /th roots
of 1, 7 a prime, and E/® is cyclic of # > 1 dimensions, then E/® can be im-
bedded in an extension P/® which is cyclic of #+! dimensions if and only if
the primitive Lth root of 1, { is a norm of an element of E. Use this to prove
that, if ® is of characteristic £ 2, the quadratic extension E = ®(¢), & = vy e ®,
can be imbedded in a quartic cyclic extension of ® if and only if v is a sum of two
squares of elements of . In particular, show that, if R, is the field of rational
numbers, then an imaginary quadratic extension Ry(e), €2 = v < 0 in Ry cannot
be imbedded in a cyclic quartic extension.

6. (O. Todd). Let P be the field of p-th roots of 1 over Ry where p is a prime
of the form 4n 4+ 1. Show that P contains a real quadratic subfield.

7. Assume ® contains four distinct fourth roots of 1. Show that any quadratic
extension E/® can be imbedded in a cyclic quartic extension P/®.

4. Witt vectors. We have defined abelian p-extensions of a field
® of characteristic p # 0 to be abelian extensions of p° dimen-
sions of ®. Cyclic p-extensions of dimensionality p and p? were
encountered first by Artin and Schreier in connection with a prob-
lem on real fields (see § 6.9). Their construction was generalized by
Albert to give an inductive construction of cyclic p-extensions of
p¢ dimensions. Slightly later Witt gave a direct construction
and survey of abelian p-extensions along the lines of the theory of
Kummer extensions which we have just considered. Witt’s
method is based on an ingenious definition of a ring of vectors
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defined by a given field of characteristic p. This construction has
important application in other connections (e.g., valuation theory)
and we shall consider it now in its general form.

We shall begin first with the polynomial ring ¥ = Ry[xs, 5, i)
in indeterminates i ¥j, 2k, %,/,k = 0,1, -+, m — 1, over the
field R, of rational numbers. Let ¥™ be set of m-tuples (aq, 41,
“ vy @m—1), @; € ¥, with the usual definition of equality and with
addition and multiplication by components. If 2 = (ay, - -,
@m—1)y b = (boy * * 5 bm—1), then we denote the sum and product
bY ‘1@5) a© b) so that a@b = (ﬂO + 50) “tty @m—1 F bm—l))
a © b= (aho, * ) am—16m—1). Let p be a fixed prime number.
We use this to define a mapping ¢ in ™ by the rule that, if 4 =
(@0, @1, ** *y @m—1), then a® = (a9, 4V, - .. 4™V) where

(11) 4 = a® + pa,” 4+ -+ p’a,, vy =0,1, -, m — 1.
Thus 49 = 44, a¥ = go? + pay, -+ . We introduce also the

mapping P:a — af = (a®, a1?, -+, @m—1?). Then the defini-
tion (11) gives

(12) a® = g4 a® = @)V + pa,, v > 1.

Next let 4 = (a9, 4?0, ..., a™V) be arbitrary and define a
mapping ¢ by 4% = (aq, a1, * -+, @m—1) Where
= O
ayg = a’,
(13)
a, = —p_” (ﬂ(V) _ ﬂop' — pﬂlzr"-l — e — P”_lﬂy_l), v > 1.
One checks directly that a*¥ = 4, 4% = A, which shows that ¢ is
1-1 surjective with ¢ as its inverse.
We shall now use the mapping ¢ and ¢ = ¢! to define a new
addition and multiplication composition in ¥™. These are re-
spectively

(14)

1

a+b= (@)
ab = (a® © &),

These provide another ring structure in ¥™ (Vol. I, ex. 6, p. 71).
We denote the new ring as %,, so %, and ¥™ coincide as sets and

a — g¢*is an isomorphism of %, onto ¥™. Hence ¥, like ¥™, is
commutative.
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We now examine the formulas for x 4+ y, xy, and x — y for the

€< L 2
generic’ vectors ¥ = (xO) X1y * xm—l))y = (}’o, Y1, 0y .ym—l))
xi, y; the given indeterminates. For example, we have

1721 ,
x+0=%+30 E+INi1=x14+y1—- 2 (Ii’)xo’}’o"_l

i=1
(*¥)o = *%0y0, (¥¥)1 = %o®y1 + x1y0® + Px1y1.

In general, if o denotes any one of the compositions 4+, -, —, then

it is clear from the definitions that the »-th component (x o ),

of x o y is a polynomial with rational coefficients in %, yq, ¥1, ¥1,
-, %y, ¥». Also one sees easily that

(15) (x +.y)1' =%+ +fv(x0,}’0, T xv—l)yv—l)

where f, is a polynomial in the indicated indeterminates. The
basic result which we shall now establish is that (x o y), is a poly-
nomial in xg, ¥o, * * +, Xy, ¥, With integer coefficients.

Throughout our discussion we write 4* = (3@, 4@, .-
a™ V) if g = (ag, a1, * -+, am—1) €tc. Let I[x;, y;] be the rlng of
polynomials in %o, yo, * * *, ¥m—1, Ym—1 With coefficients in the ring
of integers I. If uis a non-negative integer we denote the ideal
p*I[x;, y;] by (p*) and we write ¢ = d (p*) for ¢ — d e (p*). Then

we have

Lemma 1. Let p>1, 0k <m—1, a=(a), 6= 1(4),
0Lv<m—1, a, b eI[x,,y,] Write a* = (a®), &* = (V).
Then the system of congruences

(16) a4 =5p", 0<v<k
is equivalent to
17) a®” = prt), 0 <y Lk

Procf. We have 4@ = g4, 49 = 4, so the result is clear for
k = 0. To prove the result by induction on £ we may assume
that both sets (16) and (17) hold for 0 < » <k — 1 and prove
that under these conditions 4y = 4,(p*) if and only if a® = 4®
(p**%). It is clear that a; = &;(p*) if and only if p*a;, = p*é,
(p***). Hence, using (12), it is enough to show that (#7)*—V =
(6F)x—=D(pu+*) holds under the induction hypothesis. We have
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i
this gives 4,» = 6,2(p*™), 0 < v < k — 1. Hence the induction
on k applies to a¥ and &% to give (aF)*~D = (§F)F—D(pr+1+E-1)
which is what is required.
We can now prove the basic

w=b),0sr<k-1 Usng(P)=0m,1<i<p -1,

Theorem 9. If x o y denotes x + y,xy orx — y,then (x o y), isa
polynomial in xo, Yo, X1, Y1, * * * 5 Xy Vv With integer coefficients.

Proof. Since (x o y), is a polynomial in xq, yo, -, %, ¥, With
rational coefficients, it suffices to prove that (xoy), € I[x; y,].
This is clear for (x o y)o and we assume it for (¥o y), 0 < £k <
v — 1. We have

(18) P’xoy)y = (x0 ) — ((xo 1D,
by (12) and (xo0»)® = x® & y® e I[x;,y]. The induction
hypothesis implies that ((x o ¥)¥)u—1y € I[%;, y;]. Hence, by (18),
it suffices to show that (x o )® = ((x o y)?)*~V (). We have
x® = (x¥7)¢7Y (p*) and y® = (y*)*~ P (p*), by (12). Hence
(19 (re)® = ¥ & 30 = (W) & (F)e?

= (¥ oy @),
We are assuming that (x o y)x € I[xi, ¥;],0 < k < v — 1. For any

polynomial with integer coefficients one has f(xo, yo, -+ -)? =

Sx?, 0% --+) (p). It follows that (o y)i = (¥ o y") (2),
0 <k <v—1. Hence, by Lemma 1, we have

(20) ((x 0 )N = (P 0 yN)*D ().

By (19) and (20), (x o »)® = ((x o ¥)?)®~V (p*), which is what
was needed.
It is convenient to write the result we have proved as follows:

(x +_y)v = JV(xO)yO) T xv,}’#) el[xi).yj]
(21) (xy)v = my(xo,}’o, Y xv,}’#) 8-[[""i).y:i]

(x _.y)v = dy(xo,}’o, e ')xn.yV) Sl[xi,}’j]-

We note also that, since (0, -- -, 0) and (1, - - -, 1) are the zero and
identity elements of ¥™ and (0, ---,0)* = (0, ---,0), (1,0, - -,
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0¢=(,---,1), then (0, ---,0) and (1,0, ---,0) are the zero
and identity of %,.. Let  be an algebra homomorphism of ¥ over
R, into itself and assume that x,”" = 4,, ," = 4,0 < » < m — 1.
Then we have (x(V))n = ﬂ(V)’ (y(V))n = 5(7)’ ((x +y)(7))n = g® +
6" and ((x + y))" = (a + 4),. Hence, by (21), (a + &), =
s,(@0, boy 5 @y &,) and similar formulas hold for (4b), and
(a — &),. Since there exists a homomorphism 7 of ¥ over R, such
that »," and y," are arbitrary elements of %, these formulas hold for
all 4,4 e ¥,. Evidently they imply that, if 8 is any subring of
Ro[#:, i, 28], then the set B, of vectors (&g, &1, * -+, bm_y1) with the
b, € B is a subring of %,,. In particular, this holds for 8 = 9 =
Ilxi, 31> 2] and for B = 9 = I[x., ;).

We are now ready to define the ring B,,(A) of Witt vectors.
Here % is any commutative algebra over the field 7, of p elements,
where p is the prime used above. The elements of ®,,(%) are the
“vectors” (g, @1, -y Gm—1) @ € A, with equality defined as
usual. Ifa = (ag, -+, @Gm—1), & = (b0, - * *, bm_1), then we define
addition and multiplication in 8,.(A) by

(a + &), = 5 (a0, b, - - ‘5 Gy by)
(ﬂb)v = mv(ﬂO) 50) Tty Gy bv)'

Here we understand that ¢ + & = ((@ + 6)o, 5 (@ + &) m_i),
ab = ((ab)oy * * +, (@0)m—1) and, if f(xg, yo, - ++) is a polynomial
with integer coefficients, then f(aq, 4y, - --) is the element of %
obtained by replacing the integer coefficients of f(xo, yo, - - +) by
their cosets in 7, %, by 4,, ¥, by 4,, 0 < v < m — 1. These re-
placements amount to applying the homomorphism of I[x;, y,]
into Asuch thatn » Aa=n+ (p),nel, x, > a,y, — b,
Now suppose 2 = (&), & = (4,), ¢ = (¢,) are any three elements
of B(A). We have a2 homomorphism of I[x;, ¥;, 2] into A such
thatn — #,nel, x, = 4,5 — b,2 — ¢,. Consider the sub-
ring 3, of %, of vectors (wq, wy, * -+, Wm_;) Where w, € I[x;, y;,
zi]. We have seen that, if £ = (¢, - *5 tm—1) &€ Sm, then (w + &),
= Jv(wO) Loy * vty Wy tv)) (wt)v = mv(wO) boy vy Wy tv)' It follows
that the mapplng (wO) T wm—l) - (wo", T wm—ln) is a
homomorphism of &, into the system (B.(A), +, -) where +
and - are defined by (22). Note that our homomorphism maps x
into a4, y into 4, z into ¢. We remark also that any element w =

(22)
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(w,) such that the w, € (p) is in the kernel of the homomorphism
of §,, into A.
We can now prove

Theorem 10. B,,(A) is @ commutative ring.

Proof. Let a = (a,), 6 = (4,), ¢ = (¢,) be any three elements
of ®,,(A). Then we have just seen that we have a homomorphism
of 3, into W,(A) such that x = (x,) > 2,y = (3) > b,z =
(2,) — ¢. Then the associative, commutative, and distributive
laws of addition and multiplication in $,, give the same rules for
the elements 4, 4, ¢ (e.g., (@b)c = a(bc)). The image of 0 = (0,
+++,0)and 1 = (1,0, - -+, 0) under our homomorphism are 0 =
©,---,0)and 1 = (1,0, ---,0) and the relations ¥ 4 0 = x, x1
=xgivea + 0 = g,al = ain®,(A). Also if we write &’ for the
image of —« under the homomorphism, then we have 2z 4+ 4’ = 0.
Since a, 4, ¢ are arbitrary in B.(A), these remarks show that
B, (A) is 2 commutative ring with 0 = (0, ---,0),1 = (1,0, - -,
0) as 0 and identity elements.

We shall call ,,(%) the ring of Witt vectors of length m over .
We remark that 8;(%) can be identified with % itself since we have
the isomorphism ¢ — (4) of % onto B, ().

Now let 8 be a subalgebra of % over I, and form the ring
W (B) of Witt vectors over B. Then itis clear thatd = (4,) — &
is an isomorphism of BW,.(B) into W.(A). In this way we can
identify ®,,(8) with the subring of B,.(%) of the Witt vectors 4
with 4, € 8. In particular, if we take 8 = I, we obtain the sub-
ring Wn(L,) of vectors with components in 7,. This subring
evidently consists of p™ elements.

We define the mapping P of B.(A) into itself by aF = (47,
a1%, -, am—1?) for a = (ao, a1, -+, @am—1). Wehave noted that,
if f(xO).yO) v ) el[xi).y:i]) then f(ﬂO) 50) v ')p = .7(‘10?) bop’ v )
This and the definitions of addition and multiplication in 98,,(%)
imply that

(23) (a + 8)F = af + 47, (ab)T = aFb%.

We shall call P the Frobenius endomorphism in ®,(%). We intro-
duce the restriction mapping R of Bn(A) into W,—1(A) by (a4, < -,
am—1)% = (ag, " "+, Gm—2) and the shift mapping V of BWpu—_1(A)
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into B,,(%) by (@0 <+ s ﬂm—2)V = (0,4, - -, 4m—3). It is im-
mediate that R is a ring homomorphism and we shall see that 7
is a homomorphism of the additive group of W, _,(¥) into that of
BWn(A). We have

)VR =

= (0) agy "'y ﬂm—2) = (‘10) ) ﬂm—l)RV-

(‘10) *t ity Bm—1

Also it is clear that PV = VP, RP = PR, and (VR)™ = 0 hold
in W, (W).
We prove next the important

Lemma 2. Thke following relations hold in Witt rings:

(24) p1=’1+1+yl---+11=1”"
(25) (a4 8)Y =4" + 8"

(26) a’b = (@R, aeBWn(Y), beBWnyp1(Y)
(27) pa = aFvE,

Proof. Consider the subrings 3m_1, Smy Imy1 Of Em—_1, ¥m,
¥n41 of elements with components in I[x., y;, 2x] and define the
mappings R and 7 for these in the same way as for the Witt rings.
Also we have the mapping P defined before. Consider the ele-
ment 1 = (1,0, ---,0) of I. Set p=pl. We have 1 = (1,1,
-+, 1) and

‘ v’ —
lsa@lsa@...@lsa = (p’ "',P)-

Hence p® = p, 0 <v <m — 1. On the other hand, 1'% =
0, 1,0, - -+, 0), so the definition of ¢ gives (1")@ =0, (1VE)®
=p,1 <v <m — 1. Then we have (1"B)® = p® (p*+1)/0 < »
< m — 1., By Lemma 1, this implies that (1), = p, (p). We
have seen that there is a homomorphism of 3 into . (A) such
that every w = (w,), w, € (p), is in the kernel. If we apply this
to 1¥® and to p and use the foregoing relations on components,
we obtain (24) in 28,,(%). Next we note that ¥ = (0, xq, - - -,
xm—l)) .yV = (0,_}’0, te ').ym—l) for x = (xO) e ')xm—l)) J = (.yO)
¢+ ¥m—1) in S Then

(xv)(”) = 17-’60?”—l + 172.?611'”“2 +- P, 1 <v<m,
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by (11); hence
(28) #)® = px®~V, 1 <» < m.

Since (¥ + y)@ = x® + y®, this and (xV)@ = (y")© = ((x +
NNO@ =0 give ((x+»N"N® = &)+ GNY, 0<r <m.
Hence (¥ + )Y = ¥ 4+ »¥ holds in 41 If we apply the
homomorphism of I[x;, ¥;, z¢] into A such thatn — 7 = n + (p),
X, — @, y» = b,, 2, — ¢, to the components of (x 4+ y)¥ and
xV + y¥, we obtain (25) for a, b e ®n(%). To prove (26) we shall
show that

(29) (xvy)v = ((xyPR)V)v (P): 0Lv<m

if = (x0,%1, "+ %m_1) €Fn and ¥y = (Yo, 51, *** Im) € Smi1,
xi, y; indeterminates. Set xVy = (wo, wy, « -+, Wn), (YFE)Y =
(fos 215 * " *» tm). Then we have to show that w, =4 (p),0 <» <
m. By Lemma 1, this is equivalent to w® = £ (p**!). This
holds for v = Osince w® = 0 = #9, Fory > 1, we have, by (28),
that w® = px®~Dy® and ) = pxC—D(yPEYe=D, Since y® =
(yF)»—D 4 p’y,, this gives the congruences

w® = px®—Dy® = pur=D(yP)e-D
= paCD(yPRYG—D = 400 (pr+1),

Hence (29) holds. Applying a suitable homomorphism into ¥,
we obtain (26). If we apply R to both sides of (26), we obtain
a"BpR = (abPR)VE, Setting 4 = 1 and &% = ¢ e W, (A), we ob-
tain 1VE¢ = ¢FYE, Since 1VE = pl, by (24), this gives pc = FVE.
Since ¢ = &% can be taken to be any element of B,,(%), this is
equivalent to (27).

We can now derive the basic properties of 8,,(%) which we shall
need. We prove first

Theorem 11. B,.(N) is a ring of characteristic p™.

Proof. It suffices to show that the order of 1 in the additive
group of W, (A) is p™. We have seen that p1 = 1Y = (0, 1, 0,
-+-,0) and by iterating (27) we obtain p%1 = (0,0,1,0, ---)
etc. This shows that p™~!1 = (0, ---,0,1) £ 0 but p™1 = 0, as
required.

We have seen that, if 8 is a subalgebra of %, then we can con-
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sider B,,(B) as a subring of W,,(A). In particular this holds if we
take 8 = I,. Then Z = B®,.({,) is the set of vectors with com-
ponents in the field 7, and so the number of elements in Z is p™.
On the other hand, Theorem 11 shows that there are p™ distinct
elements of the form k1, £ an integer, in B,,(A) and these belong to
Z. Hence it is clear that Z is just the set of integral multiples of
the identity of B,.(%). Evidently Z is isomorphic to the ring
I/(p™) of residues modulo p™. The following result gives an in-
sight into the structure of ,,(%).

Theorem 12. The mapping a = (agy @1y * * *y Gm—1) — 4o iS5 4
homomorphism of W, (N) onto A whose kernel N is a nilpotent ideal.

Proof. We have seen that R is 2 homomorphism of 8.,,(%) onto
BWm—1(A). Iteration of this shows that R~ is a homomorphism
of B,,(A) onto W;(A) = A. Evidently R™~! is the mapping we
have indicated. The kernel of our homomorphism is the ideal R
of elements of the form (0,ag, 41, -+, am—_s). Hence N =
W (A)VE. If we apply R to (26) we obtain a"E4E = (abFF)VE,
Since 4% can be taken to be any element ¢ in @,,(%), this gives the
relation 2"B¢ = (ac?)VE in B, (A). Then a"EVE = (4 FVE)VE =
(@PP)VB e W, (MPP?, Thus N2 = (W(A)VE)2 < NVE. Now
assume that for some £ > 2, #* € RRNVP** < VB Then if
d=a"®eN and b e N*, we have 6 = (VB ¢ e, (), since b ¢
RNV = @, (A VP, Hence db = a"BcVP* ¢ gRB*™ and so
N+ C RROB*, Moreover, if a,c e Bp(A), then g"BVR* =
(APVECVRINVE o (quuPRR VR — (RVRFNVR - B*  Hence
RRVD C ROB* and so REFL S NVB* This shows that
N*F < RPD* holds for all £ > 2. Since N = W(A)"® and
B (W T®™ = 0 this gives N™ = 0.

Corollary. An celement a = (ag, a1, - 5 Gm—1) 15 a unit in
W (N) if and only if ag is a unit in .

Proof. This follows from Theorem 12 and the remark that, if %
is a nilpotent ideal in a ring ®, then an element 2 ¢ W is 2 unit in W
if and only if the coset 4 + M is a unit in W/N. We leave the
proof as an exercise.

5. Abelian p-extensions. It will be instructive to consider first
briefly the abelian extensions of a field & of characteristic p # 0
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whose Galois groups G have exponent p (cf. ex. 3, 4, p. 98). In
this case we let Z be the additive cyclic group generated by the
element 1 of ® and we consider the character group Hom (G, Z)
where G is the Galois group of an extension P of the type specified.
The elements x € Hom (G, Z) are the mappings of G into Z
satisfying x(s#) = x(s) + x(¥). Since x(s) e Z C &, this can be
written also in the form x(s9) = x(s)* + x(#) so that we have an
instance of the additive analogue of Noether’s equations. Hence
by Theorem 1.20, there exists a p € P such that x(s) = p* — p. Since
x(8) e Z, x(5)? = x(s) so (p* — p)? = p* — p. This gives the
equation (p? — p)* = p? — p, s e G; hence p» — p = a e ®. Con-
versely, let p be any element of P such that p? — p = a ¢ ® and de-
fine x(s) = p* — p. Then x(5)? — x(s) = (b? — p)* — (b — p)
= oa* — a = 0. Hence x(s)*» = x(s) and this implies that x(s) is
in the prime field, so x(s) e Z. Also we have x(sf) = p** — p =
(0 — o)+ (0" — ) = (0* — p) + (p* — p) = x(s) + x(¥); hence
x e Hom (G, Z). Following the pattern of the Kummer theory
this leads us to consider the subset S(P) of P of elements p such that
p? — p e ®. This is a subgroup of the additive group (P, +) con-
taining (®, +) and we have the mapping p — x,, where x,(s) =
p* — p, of S(P) onto Hom (G, Z). Since Z is an additive group the
composition in Hom (G, Z) 1s (x + ¢)(s) = x(s) + ¥(s). More-
over, if p, 0 & S(P), then x,40(s) = (p + 0)° — (0 + o) = x(s) +
Xo(s); hence p — x, is a homomorphism of §(P) onto Hom (G, Z).
It is clear that the kernel of this homomorphism is ®. Hence
§(P)/® =~ Hom (G, Z) ==G.

The next step in the discussion is to consider the subset Q(P) of
® of elements of the form p? — p, p € S(P). This is a subgroup of
the additive group (®, +) containing the subgroup of elements of
the form o — a, a ¢ . One sees easily that the factor group of
Q(P) relative to the last subgroup is isomorphic to §(P)/®, hence
to Hom (G, Z) and to G. It can be shown that any subgroup of
(®, +) containing the subgroup of elements o? — @, a ¢ ®, and
having a finite factor group relative to this subgroup is a group
Q(P) for an abelian p-extension with Galois group of exponent
< p. The groups Q give a survey of these extensions in the same
manner that the group N(P) gave a survey of the Kummer ex-
tensions. We shall not work out the details here but instead we
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shall proceed to the general case of arbitrary p-extensions. The
idea here is to work in the ring ®.(P) of Witt vectors over the
given extension P where m > ¢, p° the exponent of G. Then the
subgroup Z of the additive group of B,,(P) generated by 1 is
cyclic of order p™; hence, Hom (G, Z) is a character group of G.
We shall need first of all the generalization of Theorem 1.20 to the
ring of Witt vectors and we proceed to derive this result.

Suppose first that P is a finite dimensional Galois extension field
of the field ® of characteristic p # 0 with Galois group G. Let
BWn(P) be the ring of Witt vectors of length m > 1 over P. We
have seen that we can identify 8,,(®) with the subset of ®,,(P) of
vectors B = (60) B, s ﬂm—l) with the Byed. If p= (pO) B
pm—1) eWn(P) and s & G, we define p* = (po - -, pm_1®). It is
clear that p — p°® is an automorphism of ®,,(P) and that the set
of these automorphisms is a group isomorphic to G. We denote
this group again as G. Evidently p* = p if and only if p,* =p,,
0 <v <m—1. Hence B,,(P) can be characterized as the sub-
ring of G-invariants of the ring B,,(P).

If pe®n(P) we define its #ace T(o) = X, p°. Evidently

8eG

T(p)* = T(p), s € G, so T(p) eBW,(®). If p = (po,p1, "+ Pm—1),
then the first component of T(p) is T(po) (trace in P over ®),
since first components are added in forming a sum in 8,,(P). We
recall that the automorphisms s € G in P are P-independent and
this implies that there exists a pg € P such that T(pg) = 0. If p,
is chosen in this way and p = (pg, - +), then T(p) = (T(po),
-+ +) has non-zero first component. It follows from the corollary
to Theorem 12 that T(p) is a unit in ®,,(®). Hence we have
proved the following

Lemma 1. There exist p e B,,(P) such that T(p) ™' exists in
B, (D).

We use this to prove the following key cohomology result.

Theorem 13. Let s — p, be a mapping of G into B,,(P) such
that pee = ps' + pe, 5, t € G. Then there exists an element o € B, (P)
such that p, = o* — a. Conversely, if 0 e B, (P), then py, = 0* — @
satisfies the given equations.
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Proof. The proof is identical with that of the special case of
Galois extension fields treated in Theorem 1.20. We choose p in
W,(P) so that T(p)~! exists in W,(®) and we let 7 =

T(p)™? (”ZG p,,p"). Then
r—1'=TE™ (Z (otp® — m‘p"))

= T(p)~! (; mp")

= T(p) 'u:T(p)
= M.

Hence if we take ¢ = —7, then we have p, = ¢* — ¢ as required.
Conversely, if we take u, = ¢* — ¢ where ¢ is any element of P,
then we have pl 4+ =0 — o'+ 0ol — 06 =% — 0 = g

We recall that the Frobenius mapping p — pf = (po?, pi?,
+«+, pm?) is an endomorphism of the ring ®,,(P). We shall now
introduce the mapping P in B,,(P) defined by

(30) B(o) = ¥ — p.

It is clear that P is an endomorphism of the additive group of
BW(P) (but not of the ring W,,(P)). The kernel of P is the set of
vectors (pg, p1, ** *s Pm—1) such that p? =p, 0 <»p <m — 1.
Evidently this is just the set of vectors with components p; in the
prime field ®, (=2 7,). Hence the kernel of P is the set of Witt
vectors (pg, p1, ' *» Pm—1) With the p; e &.. We have seen (after
Th. 11) that this is just the set Z of integral multiples of the
identity 1, and Z is a cyclic group of order p™ under addition.
We now assume that the Galois group G is an abelian group of
order p’ and that m > ¢ where p* is the exponent of G. Let

(31) S(%m(P)) = {p S%m(P”%(p) S%m(é)}

Then S(@,.(P)) is a subgroup of the additive group (Wn(P), +)
containing W,(P). If p e SWn(P)), then we define the mapping
x, of G by x,(s) = p* — p. Then x,(5)¥ = p*F — pF = pf* — pF
=@ +a) —(p+ a) if B(p) = a Hence x,(5)F =p*—p =
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x,(s). We have seen that this implies that x,(s) e Z. Also we
havex,(s£) = p** — p = p* — p' + p* —p = (p* — p) + (o' — p)
= x,(5) + x,(#). Hence x,eHom (G,Z). Next let p,o¢e
S@®n,(P)). Then p+ deS@L(P)) and x,40(s) = (p + 0)* —
(o +a) = (p* —p) + (¢° — 0) = x,(5) + x0(s). This shows that
the mapping p — x, is a homomorphism of S(@.(P)) into
Hom (G, Z). 1If x,(s) = 0 for all s &G, then we have p* = p,
s € G, and this implies that p e 8,,(®). Hence the kernelof p — x,
is W(®). Finally, we note that our homomorphism is surjective.
For, let x e Hom (G, Z). Then x(s£) = x(s) + x(#) and, since
the x(s) € Z, we have also x(s#) = x(s)* + x(¢¥). Hence, by Th. 13,
there exists a p e ®,,(P) such that x(s) = p* — p. Since x(s) € Z,
x(8)F = x(s) and this gives (of — p)* = p¥ — p. Hence B(p) =
pf — p e B, (®) and so p € S(Wn(P)). We now see that the map-
ping p — x, of S(Bn(P)) into Hom (G, Z) is surjective and since
the kernel is W,.(®) we have S(Bn,(P))/BWn(P) = Hom (G, Z) =~
G. We have therefore proved the first two statements of the
following theorem which is a perfect analogue of Theorem 7:

Theorem 14. Let ® be a field of characteristic p # 0, P/® an
abelian p-extension whose Galois group G is of exponent p® and let
W (P) be the ring of Witt vectors of length m over P where m > e.
Let S(®.n(P)) be defined by (31). Then we have the exact sequence of
additive groups

0 - BWu(®) — SW®WW(P)) > Hom (G, Z) - 0

where the homomorphism of Wn(®) is the inclusion mapping and
that of S(B,,(P)) into Hom (G, Z) is p — x,, X,(5) = p* — p. The
Sactor group S(Wm(P))/BWn(®) is finite and is isomorphic to G. The
Jield P/® is generated by the components of the vectors p € S(TWn,(P))
and

(2) (r))

—_ 1 1), .
P = ‘I:'(Po( )’ "',Pm—l( )’p0(2)’ cery 1P "',Po('), Ce e Pm—t

if and only if the cosets P(i) + B (P), p(i) = (PO(i)) T Pm—l(i)))
generate S(BW,,(P)) /Wn(P).

The proof of the last statement is exactly like that of the corre-
sponding statement of Theorem 7. We leave it to the reader to
check the details.
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Following the pattern of our treatment of the Kummer theory
we introduce next the set

(32) QBn(P)) = {B(p)[p e SBWu(P))} = BWn(P) N B(W.(P)).

This is a subgroup of the additive group (B.(®), +) containing
P, (P®)) the subgroup of vectors P(a), a e W,,(P). Consider the
homomorphism

p — Blo) + BBA(P))

of S(Wn(P)) onto QW (P))/B.(®)). An element p is in the
kernel of this homomorphism if and only if B(p) = B(a), a e
BWn(®). This is equivalent to P(p — &) = 0 which means that p —
a e Z. Hence it is clear that the kernel of the homomorphism is
BWn(®) and we have the isomorphism

(33) Q(Bn(P))/B(Bn(P)) = S@m(P))/BWm(¥).

This implies that Q(B®.(P))/B(Bm(P)) is a finite group isomorphic
to Hom (G, Z) and to G. We wish to show next that, if Q is any
subgroup of W,.(®) containing P(W,.(®)) as a subgroup of finite
index, then Q = Q(®,.(P)) for an abelian p-extension P over &.
For this we need

Lemma 2. Let 8 = (Boy,B1, -~ s Bm—1) eBWu(PB). Then there
exists a finite dimensional separable extension field P of ® such that
P = &(p) = ®(po, p1, * " * Pm—1) and the element p = (po, p1, * **y
pm—1) of Wn(P) satisfies B(p) = B.

Proof. If m = 1 we just have to construct a separable exten-
sion P = &(p) generated by a root p of an equation ¥ — x = B, 8
a given element in ®. Since the derivative (#* —x — 8)' = —1
the given equation has distinct roots so any field generated by a
root of this equation will satisfy the condition. Now suppose
we have already constructed a separable extension E = &(p,,
-+, pm—2) SO that the vector ¢ = (pg, - *, pm—z) Of Wp_s (E)
satisfies B(s) = (Bo, -+, Bm—2). Consider the polynomial ring
Elx] and the Witt ring ®,.(E[x]). We take the vector y =
(po, ** *» Pm—2, %) in this ring and we form

By) = (po?s * 5 Pm—2®s ¥%) — (o ** 5 Pm—2s X)-
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Then 33(}’) = (60) ﬂl) ) ﬂm—2)f(x))) f(x) € E[x]' Hence (60)
Bl) “r s Bm—s, f(x)) + (pO) Tty Pm—2y x) = (pop) “o vy Pm—2®s xp)'
Using the formula (15) we see that

(34) X0 =fx) +x+ v

where v e E. Hence f(x) = ¥» — x — 4. The derivative argu-
ment shows that f(x) = B,_; has distinct roots. If P = E(p,—;)
where f(pm—1) = Bm—1, then P is separable over E so P = ®(p,,
-+, pm—1) is separable over ®. Moreover, it is clear from the
formulas given above that p = (pg, - -+, pm—1) is an element of
Wn,(P) such that P(p) = 8.

We can now prove

Theorem 15. Let Q be a subgroup of (Wn(P), +) containing
B(Bn(P)) and having the property that Q/B(VWn(P)) is finite. Then
there exists an abelian p-extension P of ® such that the exponent of
the Galois group is p°, ¢ < m, and Q(BW.(P)) = Q.

Proof. Let BV, 8@, ... B be elements of Q such that the
cosets B + B(W.(P)) generate Q/B(W,(P)). By Lemma 2, we
can construct a field P which is finite dimensional separable over ®
and is generated by elements p,?, 1 < i <7, 0<»v <m — 1,
such that %(Po(i): T pm——l(i)) = (50“), Tty Bm—l(i)) in W,(P).
Let @ be a finite dimensional Galois extension field of ® containing
P. We form B,,(2) and let the Galois group G of 2/® act in 8,,(2)
as before. If s &G and p@ = (po?, - -+, pp_1?), then P(o?) =
ﬂ(i) gives $(p(i)s) = ﬂ(i). Hence $(p(i)s — p(i)) =0 so p(i)a —
p? € Z C BW,(®). This implies that P* C P, seG. It follows
that P is Galois over ® and so we may take @ = P. Ifs, ¢ are in
the Galois group G of P over &, then p™* = p® 4 4 and p™* =
p® 4 5D where ¥9, 6@ e98,.(®). Hence pMt = o J 4O 4
8 = p@ts which implies that G is commutative. Also p¥** =
pD + kYD, so pP7" = p® since W,(P) has characteristic p™.
This shows that s> = 1 and so G is of order p” and of exponent p°,
e < m. Let x; be the character of G determined by p?: x;(s) =
p@P* — p®. Then it is clear that xi(s) = 1, 1 <i <7, implies
that s = 1. It follows that the x; generate the character group
Hom (G, Z). Hence if p is any element of ®,(P) such that
B(p) € W, (), then we have x, = HOx™. This implies that p =
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Zmp® + B8, BeWn(®), m; integers. Then P(p) = Tm LD +
B(B) e Q. Since p is any element of S(W,.(P)) this shows that
Q(B.(P)) € Q. The converse is clear so the proof is complete.

The results which we have now obtained correspond to the
main results on Kummer extensions. They have the consequence
that two abelian p-extensions P;/®, P,/® with Galois groups of
exponent p°, ¢ < m, are isomorphic if and only if Q(@.(P;)) =
Q(B®n(P2)) (ex. 2 below). We have also the order preserving cor-
respondence between the subfields P/® of a particular @/® and
the subgroups Q(W(P)) of the additive group (W,(®), +) (ex. 1
below). We shall now consider the special case of cyclic p-exten-
sions. We note first that it is an immediate consequence of our
results that the cyclic extensions of p dimensions of & have the
form ®(p) where p» — p = B e ® and B ¢ B(P), that is, 8 = o? —
a, a ¢ ®. We shall now show that, if such an extension exists
over ®, which is equivalent to the condition ® == PB(®), then there
exist cyclic extensions of p™ dimensions over ® for any m = 1,2,

. This will follow from

Lemma 3. If Bo, - ', Bm_1 £ ®, then By e B(®) if and only if
B = (Bo,B1, -+ > Bm—y) satisfies p™ '8 & B(Wn(P))-

Proof. By (27),p™~ 8= (0, --+,0,B8,”™"). We have (0, - - -,
0, Bo) — (0, ---, 0, ﬂopm_l) =, -, 0, Bo) — ©, ---, 0, B¢") +
(0) Y 0, ﬂop) - (0) 0, 50",) +- 4 (0) 0, ﬂopm_‘z) - (0)
ceey 0, BT & B(WL(®)). Hence p™ 18 = (0, -+, 0, Bo®™ )
e P(B,(®)) if and only if (0, - -+, 0, Bo) & B(Wn(P)). Suppose
this holds, say, (0, - -+, 0, 8¢) = & — « where a = (ag, ay, -+,
om—1). Then of® — of = (0, ---, 0, Bo)® = 0 so off = of
and, if v = (ag, @1y "y tm_3,0), then ¥ =y so § =a — 1«
satisfies 8F — & = (0, ---, 0, Bo). Moreover, 6§ = (0, ---,0,
dm—1). This implies that 8,17 — 8m—1 = Bo s0 Bo € B(P).
Conversely, if this condition holds so that 8¢ = am_1* — am_1,
then o —a = (0, --+,0,8) for a = (0, -+ -, 0, @pm_y)-

We can now prove

Theorem 16. Let ® be a field of characteristic p #% 0. Then there
exist cyclic extensions of p™ dimensions, m = 1,2,3, -+ over ®
if and only if there exist such extensions of p dimensions. The con-
dition for this is ® = B(P).
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Proof. We have seen that there exists a cyclic extension of p
dimensions over ® if and only if ® £ B(®). Suppose this condi-
tion holds and choose 8y € ®, ¢ B(®). Let 8 = (Bo, B, ** 5 Bm—1)
where the 8;, i > 0, are any elements of . We have shown that
p™ 18 ¢ B(®) and this implies that the subgroup Q of B,.(P)
generated by 8 and P(B..(®)) has the property that Q/BTn(P))
is cyclic of order p™. By Theorem 15, Q = Q(P) for an abelian p-
extension P. Moreover, we have seen that the Galois group G of
P/® is isomorphic to Q/P(W~(®)) and so this is cyclic of p™ di-
mensions over ®.

EXERCISES

1. Let P; and P; be two abelian p-extensions of ® contained in the same field
Q. Show that P; D P; if and only if Q(,.(P1) 2 Q(W.(P2)) where m > ¢,
2%, the exponent of the Galois group of P,/®.

2. Let P;, m be as in 1, but do not assume that the P; are contained in the
same ). Show that P; and P; are isomorphic over @ if and only if Q(,(P1)) =
Q(BW(Py)).

3. Prove that if 8 is an element of LB, (P) such that p™ 18 £ P(W(P)), then
there exists a ¥ in W,.(P) such that py = 8. Use this to prove that any cyclic
extension of p™~! dimensions over ® of characteristic p can be imbedded in a
cyclic extension of p™ dimensions over ®.



Chapter 1V

STRUCTURE THEORY OF FIELDS

In this chapter we shall analyze arbitrary extension fields of a
field . A study of finite dimensional extension fields and a partial
study of algebraic extensions has been made in Chapter I. In this
chapter our primary concern will be with infinite dimensional ex-
tensions and we shall begin again with the algebraic ones. We
define algebraically closed fields and prove the existence of an
algebraic closure of any field. We shall extend the classical Galois
theory to apply to infinite dimensional normal and separable ex-
tensions. After this we shall consider arbitrary extension fields
and we shall show that these can be built up in two stages: first a
purely transcendental one and then on top of this an algebraic ex-
tension. The invariant of this mode of generating a field is the
transcendency degree which is the cardinal number of a transcend-
ency basis. We shall obtain conditions for the existence of a
transcendency basis such that the extension is separable algebraic
over the purely transcendental extension determined by the
basis. We shall also give a definition of separability of an ex-
tension field that generalizes the notion of algebraic separability.
The notion of a derivation plays an important role in these con-
siderations. Moreover, this notion can be used to develop a
Galois theory for finite dimensional purely inseparable extensions
of exponent one. We shall consider also briefly the notion of a
higher derivation that is useful for purely inseparable extensions
of exponent greater than one. At the end of the chapter we con-
sider the tensor product of extension fields, neither of which is
algebraic, and we apply this to the study of free composites of

fields.
141
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1. Algebraically closed fields. The “fundamental theorem of
algebra” states that every algebraic equation f(x¥) = 0 with co-
efficients in the field of complex numbers has a root in this field.
Any field that has this property is called algebraically closed. 1f ®
is an algebraically closed field, then every polynomial f(x) & ®[x]
of positive degree has a linear factor ¥ — p in ®[x] and, conse-
quently, every f(x) can be written as a product of linear factors in
®[x]. Clearly, the converse holds also: If every polynomial of
positive degree in ®[x] is a product of linear factors in ®[x], then &
is algebraically closed. We recall that a field ® is called alge-
braically closed in an extension field P if the only elements of P
which are algebraic over ® are the elements belonging to ® (§ 1.9).
We now note that a field ® is algebraically closed if and only if it is
algebraically closed in every extension field. Thus let ® be alge-
braically closed and let P be an extension field. Let pe P be
algebraic over ® and suppose f(x) is its minimum polynomial.
Since f(x) is irreducible and & is algebraically closed, f(x) is of first
degree. Hence pe®. Conversely, suppose ® is algebraically
closed in every extension field and let f(x) be an irreducible poly-
nomial of positive degree belonging to ®[x]. We can form the ex-
tension field P = ®[x]/(f(x)) whose dimensionality is the degree
of f(x). Since P is algebraic over ® and & is algebraically closed
in P, P = & Hence deg f(x) = 1, which shows that the only ir-
reducible polynomials of positive degree in ®[x] are the linear ones.
This means that ® is algebraically closed.

Let ® be an arbitrary field and let P be an algebraically closed
extension field of ®. Let A/® be the subfield of elements of P/® of
algebraic elements. If f(x) € A[x], we have f(x) = II(x — p;) in
P[x] and the p; are evidently algebraic over A. Since A is alge-
braically closed in P (§ 1.9), the p; e A. Hence we see that every
polynomial of positive degree in A[#] is a product of linear factors
in A[x]. This implies that A is algebraically closed. It is there-
fore clear that, if there exists an algebraically closed field con-
taining a given. field ®, then there exists such a field which is,
moreover, algebraic over ®. This leads to the definition: An ex-
tension field A/® is called an algebraic closure of ® if: 1) A is alge-
braic over & and 2) A is algebraically closed. We proceed to
prove the existence and uniqueness in the sense of isomorphism of
an algebraic closure for any field &.
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If ® is countable there is a rather straightforward way of con-
structing an algebraic closure of ®. Thus, in this case, it is easy to
enumerate the polynomials of positive degree with leading co-
efficients 1. Let fi(x), fo(x), fa(x), - - - be such an enumeration.
Then we begin with &, = ® and we construct ®; inductively as a
splitting field over ®;_; of fi(x). There is a simple way of making
precise the notion of the union A = U®,; of all the ;. Once this
has been done, one can prove that A is an algebraic closure of &
in the following way. First, it is clear that A/® is algebraic. Let
P be an algebraic extension of A and let p € P. Since p is algebraic
over A and A is algebraic over ®, p is algebraic over ®. Hence the
minimum polynomial f(x) over ® is one of the polynomials f;(x),
say f(x) = fa(x). Since ®, contains all the roots of f(x), p e ®,
C A. This shows that A is algebraically closed.

The procedure just sketched can be used also in the general case
by invoking transfinite induction. However, we prefer to give
another construction which will be based on Zorn’s lemma.* We
shall need also the following

Lemma. If A is an algebraic extension of an infinite field ®, then
the cardinal number |A| = |®|.

Proof. Let 2 be the subset of ®[x] of polynomials of positive
degree with leading coefficients 1 and let Z be the subset of T of
polynomials of degree » 4+ 1 =1,2,3,---. The elements of
2™ have the form x**! 4 a1 x™ + o™ 1 4+ -+ an, as € B, s0
Z™ has the same cardinal number as the #-fold product set
® X & XX ®. Since ®isinfinite, [Z™| = |& X--- X ®| =
|®|. Also |Z| = |UZ™| = |®|.f We now map each f(x) e Z
into the finite sét R, (possibly vacuous) of its roots in A. Since
every element of A is algebraic, fg R; = A. Since each R; is finite

the cardinal number of the collection {R;} of these subsets of A is
the same as |A|. Hence [A| = |{R;}| < |Z| = |®|. This
implies that |A| = |®]|.

* This has been used in several places in Vol. II. An adequate account of this lemma or
“maximum principle” can be found in Kelley’s General Topology, D. Van Nostrand Co.,
Inc., Princeton, N. J., 1955, p. 33.

t For properties of cardinal numbers, see Sierpinski’s Legons sur les Nombres Transfinis,
Paris, 1928.
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We can now prove
Theorem 1. Any field has an algebraic closure.

Proof. If ®isagiven field, then we canimbed ®in a set @ which
is very large compared to ® in the following sense: if & is finite,
then € is not countable and, if ® is infinite, then |2] > |®|. We
now make extension fields out of subsets E of @ containing &.
More precisely, we consider the collection I' of all triples (E, +, -)
where E is a subset of @ containing ®, and + and - are binary
compositions in E such that E with these compositions as addition
and multiplication is an algebraic extension field of ®. We par-
tially order T' by defining (Eq, 41, -1) < (BEa, +2, :2) if Es is an
extension field of E;. Any linearly ordered subcollection (E,,
~eas ‘o) Of T has an upper bound whose underlying set is the union
of the E, and whose addition and multiplication are defined in the
obvious way. Thus Zorn’s lemma is applicable and it gives a
maximal element (A, +, -) in the collection I'. We assert that A
is algebraically closed. Otherwise, A has a proper algebraic ex-
tension B. By thelemma, |B| = |A| = |®| if ®is infinite. For
finite ®, |A| and hence |B| is countable. Hence, in both cases,
|B| < |@|. This implies that there exists a 1-1 mapping of B
into @ which is the identity on A. We can use this mapping to
convert the image B’ in @ into a field over A isomorphic to E over
A. Then (B, +, -), where the + and - are the addition and
multiplication obtained by carrying over the + and - of B, is in the
collection I'. Moreover B’ D A and this contradicts the maxi-
mality of (A, +, :). Hence A is algebraically closed. Since A is
algebraic over @, A is an algebraic closure of ®.

We shall generalize next the notion of a splitting field and we
shall prove a result for these which will give the uniqueness of
algebraic closures as a special case. For this we consider a collec-
tion @ of polynomials of positive degree with coefficients in &.
We shall say that an extension field P/® is a splitting field of Q if
(1) every polynomial in 2 is a product of linear factors in P[x] and
(2) no proper subfield of P/® satisfies (1). Let A be an algebraic
closure of ® and let P be the subfield of A/® generated by all the
roots of the polynomials feQ. Evidently P is a splitting field
over ® of the set 2. Itis clear also that A itself is a splitting field
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over ® of the complete set of polynomials of positive degree be-
longing to ®[x]. The isomorphism over ® of any two algebraic
closures of ® is clearly a consequence of the following extension of
the theorem on splitting fields of a polynomial (Th. 1.8).

Theorem 2. Let a — & be an isomorphism of a field ® onto a
Jield ® and let Q be a set of polynomials of positive degree contained in
®(x], O the set of images of the f e Q under the isomorphism g(x) —
Z(x) of ®[x] onto B[x]. Let P/® be a splitting field of @ and P/® a
splitting field of Q. Then the isomorphism of ® onto ® can be ex-
tended to an isomorphism of P onto P.

Proof. We consider the collection A of isomorphisms s of sub-
fields of P/® onto subfields of P/® which coincide with the given
isomorphism a — & of ®onto®. We can partially order A = {s}
by defining s; < s; if 52 is an extension of s;. Then it is clear that
A is inductive, that is, every linearly ordered subset of A has an
upper bound. We may therefore invoke Zorn’s lemma to obtain a
maximal element # ¢ A. We assert that # is an isomorphism of P
onto P extending @ — &. Otherwise, the domain of definition of #
is a proper subfield E of P/®. Since P/® is a splitting field of @
and E c P, there exists a polynomial f(x) € @ that does not have
all of its roots in E. Hence if py, p2, * - *, pa are these roots in P,
then E(pi, p2, -5 02) D E and evidently E(py, -+, p,) is 2
splitting field over E of f(¥). On the other hand, E = Ef can be
imbedded in a subfield of P which is a splitting field over E of
f(x) Q. The theorem on a single polynomial can now be applied
to give an extension of ¢ to an isomorphism of E(py, - - -, pa) onto
the splitting field over E of f(x). This contradicts the maximality
of ¢, so we see that E = P. Evidently the image P*is a splitting
field over ® of &. Hence Pt = P and the theorem is proved.

If we take ® = ® and @ = « in this result we see that any two
splitting fields over ® of a set of polynomials are isomorphic over
®. In particular, we have the

Corollary. Any two algebraic closures of a freld ® are isomorphic
over ®.

Let A bé an algebraic closure of a field ®. There are two sub-
fields of A/® which are of particular interest. The first of these is
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the subfield Z of separable elements over ®. This can be defined
also as a splitting field over & of the set of separable polynomials
belonging to ®[x]. We shall call 2 a separable algebraic closure
of & Next let & be of characteristic p > 0 and let ™ be the
subfield of elements of A which are purely inseparable over .
By Lemma 2 of § 1.9, these are the elements of A which are roots
of equations of the form x** — a = 0, o in ®. If & is of charac-
teristic p # 0, we call ™" a perfect closure of ®, and if ® is of
characteristic 0, then the perfect closure of ® is taken to be ® it-
self. It is immediate that for p = 0 every element of &7~ is a p-
th power so the mapping & — o? is an automorphism of ®*".
Moreover, " is the smallest subfield of A over & which has the
property that all of its elements are p-th powers in this sub-
field.

A field ® is called perfect if every algebraic extension of @ is
separable. The perfect closure of any field which we have just de-
fined is a perfect field; for we have the following

Theorem 3. Any field of characteristic O is perfect and a field ®
of characteristic p # 0 is perfect if and only if ® = P2, that is, every
element of ® is a p-th power in P.

Proof. The first statement is clear since inseparable poly-
nomials exist only for characteristic p % 0. Now let ® be of
characteristic p ¢ 0 and suppose ® < ®. Let a be an element
of ® which is not a p-th power in ®. Then we know that x? — «
is irreducible and inseparable in ®[x] (Lemma in § 1.6). Then
P = ®[x]/(¥* — a) is an inseparable extension of ® different from
® so ® is not perfect. Conversely, assume that $” = & and let
f(x) be a polynomial in ®[x] such that f/(¥) = 0. Then we can
write f(x) = g(x?) where g(x) = x™ + Bx™" 1 +-- -+ B, Let .
y® =B, i=1,---,m, and set A(x) = x™ + vy x" " 4+ -+ v
Then we have f(x) = g(x?) = A(x)?. Thus every polynomial in
®[x] having zero derivative is a p-th power and so there exist no
irreducible inseparable polynomials of positive degree in ®[x].
Hence ® has no proper inseparable algebraic extension field.

If ® is a finite field of characteristic p, then the isomorphism &
— o of ® into ¥? is necessarily an automorphism. It follows
from Theorem 3 that every finite field is a perfect field.
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EXERCISES

1. Let E be an algebraic extension of a field ® and let A be an algebraic closure
of ®. Show that E/® is isomorphic to a subfield of A/®. (Hint: Consider the
algebraic closure of E and note that this is an algebraic closure of ®.)

2. Show that, if ® is of characteristic p # 0 and £ is transcendental over &,
then ®(§) is not perfect.

3. Prove that any algebraic extension of a perfect field is perfect.

4, Let ® be a field, ®* its perfect closure. Prove that either $* = & or
[®*:P] is infinite.

5. Prove that any algebraically closed field is infinite.

A field is called absolutely algebraic if it is algebraic over its prime field.
Examples are finite fields. We recall that for every prime p and every integer »
there exists one and in the sense of isomorphism only one field of cardinality p®
(§ 1.13). This result was generalized by Steinitz to arbitrary absolutely alge-
braic fields of characteristic p % 0. We indicate this in the following exercise.

6. A Steinitz number is a formal product N = IIp#: over all primes p; where
ke =0,1,2,-++, oroo. If M = IIp;% is a second Steinitz number, we say that
M is a divisor of N (M|N) if ; < k; for all . This leads in an obvious way to a
definition of the least common multiple (L.C.M.) of any collection of Steinitz
numbers. Let & be absolutely algebraic of characteristic p. Define deg ® to
be the Steinitz number L.C.M. of the degrees of the minimum polynomials over
the prime field (=2 I,;) of the elements of . Note that if & is finite, then |®| =
82 Prove that for any given prime p and Steinitz number N there exists an
absolutely algebraic field ®, 5 of characteristic p and deg &, y = N. (Hint: Let
r» be the highest common factor of N and #!, so that ry|rpi, 2 =1,2, -+,
Let &, be a field of cardinality p"™ and suppose ®, & $p41 & --+. Then
&, 5 =.U®,.) Show that any two absolutely algebraic fields having the same
prime characteristic and Steinitz degree are isomorphic. Prove that &,  is iso-
morphic to a subfield of &, » if and only if M|N.

2. Infinite Galois theory. In this section we shall give a
generalization of the fundamental theorem of Galois theory to
certain infinite dimensional algebraic extensions P/®. We
assume that P is a splitting field over ® of a set @ of separable
polynomials and we prove first the following

Lemma 1. Any finite subset of P is contained in a subfield E/P
which is finite dimensional Galois.

Proof. Let f be a polynomial which is a product of a finite
number of polynomials contained in the set @. Then it is clear
that P contains a splitting field P;/® of f. Moreover, we know
that Py is finite dimensional Galois over ® (Th. 1.10). Itis clear
also that, if f and g are both products of polynomials belonging to
Q, then Ps, is the subfield of P generated by P, and P,. It
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follows that UP;, the union of all of these subfields, is a subfield
of P over & Since UP; contains a splitting field of every g e ©,
it is clear that UP, = P. Thisimplies that any p; € P is contained
in a subfield Py, and consequently any finite subset {p1, p2, * * -, pm}
is contained in the subfield Pgy;, which is finite dimensional
Galois over ®.

Let G be the Galois group of P/®. The following result gives
essentially the first half of the Galois correspondence.

Lemma 2. & = I(G), that is, the only elements of P which are
G-invariant are the elements of ®.

Proof. We have to show that, if p ¢ P, ¢®, then there exists
an automorphism s of P over ® such that p* # p. By Lemma 1,
p is contained in a subfield E/® which is finite dimensional Galois
over ®. Since p ¢ P there exists an element § of the Galois group
of E/® such that p* > p. On the other hand, it is clear that P is a
splitting field over E of the set of polynomials € and consequently,
by Theorem 2, the automorphism § of E can be extended to an
automorphism s of P/®. Evidently s e Gand p* = p°  p.

The full intermediate subfield-subgroup correspondence which
holds in the finite dimensional case fails if P is of infinite dimen-
sionality. As an example of this we consider the algebraic closure
P of the field ® = I, of p elements. Since & is perfect, all poly-
nomials of ®[x] are separable and so P is a splitting field over &
of a set @ of separable polynomials contained in ®[x]. Let G be
the Galois group of P/® and let H be the subgroup generated by
the automorphism m:p — p?. (It is clear that this is an auto-
morphism.) The subfield I(H) of H-invariants is ® since the
only elements p such that p? = p are the p elements of . We
shall now show that H is a proper subgroup of G; then we shall
have two subgroups of G, namely, G and H which have the same
subfield of invariants. To do this we note that, if p* is any power
of p, ¢ > 1, then P contains a subfield ®, of order p°. We recall
also that®, &, if and only if ¢| f (§ 1.13). Now let / be a prime
and let ®;= denote the union of the fields in the sequence &, < ®p
C®p c---. Itis immediate that ®;= is a proper subfield of P
and P is a splitting field over ®;= of the set 2. Hence Lemma 2
shows that there exists an automorphism s of P over ®;=such that
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s # 1. Now s is not a power of the automorphism =; for if s =
7*, then the subfield of s-invariants is the finite set of elements
satisfying p?* = p. This set must include ;= and this is impossible
since ®;= is an infinite subfield of P.

This type of difficulty in the infinite Galois theory was first ob-
served (in the field of algebraic numbers of the rationals) by
Dedekind. The way out of the difficulty was found by Krull who
saw that it was necessary to restrict the correspondence to sub-
groups of the Galois group which are closed in a certain topology
which we shall now define.

The topology one needs is essentially the same as the finite
topology which we introduced in Vol. II, p. 248, for the set of
linear transformations of one vector space into a second one.
We consider the set PF of (single-valued) mappings of the field
P into itself. If (¢&1, &2, -+, En) and (1,792, * -, 7m) are finite
sequences of elements of P, then we let O(&;, 7;) be the subset of
PF of all 5 such that £&* =9, 1 =1, ---, m. The sets O(&;, 1:)
can be used as a basis for a set of open sets which make P¥ a
topological space (cf. Vol. II, p. 248). This topology of PF¥ is
called the finite topology.

If G is any subset of PF, that is, any set of mappings of P into
itself, then we topologize G as a subspace of P, In particular, we
shall do this for the Galois group G of P/® We now prove that
the fact that P is algebraic over ® implies that G is a closed sub-
set of PP, Thus let § belong to the closure of G and let £ 7 ¢ P,
ae®, Then there exists an s e G such that o = &, & = &,
7 =7 (E+n)" = (E+ 1) (En)* = ()’ Since &* = o, (¢ +
7)* = £ + 9°, (§9)* = £* we have the same relations for § and
these show that § is an isomorphism of P/® into itself. To see
that § is surjective we let £ be any element of P and we let E be
the subfield of P/® generated by all the roots £ in P of the mini-
mum polynomial f(x) of ¢ over ®. Clearly [E:®] < «. Since §
is an isomorphism of P/® into itself, E* € E. Hence the restric-
tion of § is a linear isomorphism of E/® into itself and so this map-
ping is surjective. Thus there exists an 7 ¢ E such that o° = &.
Hence § is an automorphism of P/®, so § ¢ G and G is closed.

We can prove the following fundamental theorem of the in-
finite Galois theory.
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Theorem 4. Let P/® be a splitting field of a set Q of separable
polynomials with coefficients in ® and let G be the Galois group of
P/®. With eackh closed subgroup H of G we associate the subfield
E = I(H) of H-invariants and with each subfield E of P over ® we
associate the Galois group A(E) of P over E. Then these two cor-
respondences are inverses of each other. Moreover, a closed subgroup
H is invariant in G if and only if the corresponding field E = I(H) is
Galois over ® and, in this case, the Galois group of E/® is isomorphic
to G/H.

Proof. IfE is a subfield of P/®, then P is a splitting field over
E of . Hence if H = A4(E) the Galois group of P/E, then H is
closed and Lemma 2 shows that I(A4(E)) = E. Next let H bea
closed subgroup of G and let E = I(H). We have to show that,
if s is an automorphism of P/E, then s ¢ H. Since H is closed it is
enough to show that s is in the closure of H, thatis, if p1, -+, pn €
P, then there exists a # e H such that p;f = p;*, 1 <17 < n. Let
A/E be a subfield of P/E which is finite dimensional Galois and
contains {p;} (Lemma 1). Then s and the # ¢ H map A into itself
and so their restrictions are elements of the Galois group of A/E.
If the restriction s’ of s to A coincides with no restriction # of
t e H to A, then the group H’ of the restrictions of # € H is a proper
subgroup of the Galois group of A over E. Consequently, chere
exists an element £ e A, ¢ E such that £ = £ for every e H. This
contradicts the definition of E as 7(H). This proves the first state-
ment. If H is a closed subgroup and s e G, then s ~'Hs is closed,
and if E = I(H), then E* = I(s7'Hs). It follows that H is
invariant in G if and only if E* = E for every s ¢ G. If this con-
dition holds, then the set of restrictions to E of the seG is a
group of automorphisms G in E whose set of invariantsis®. Hence
E is Galois over . Conversely, assume E is Galois over ® and let
G be the Galois group of E/®. If ¢¢ E and 5 ¢ G, then ¢ and ¢
have the same minimum polynomial over ®. Hence ¢ has only
a finite number of conjugates ¢, §eG. If these are e = ¢
€2, * - *, &, then the polynomial f(x) = II(x — ¢;) has coefficients
in ® and e is a root of f(x) = 0. Ifs eG, then ¢ is also a root of
f(x) =0 so ¢ = ¢ e E. Since € is arbitrary, this shows that
E* C E for s ¢ G. This implies that H is invariant in G. Since
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P is a splitting field over E of a set of polynomials belonging to
®[x], any automorphism of E/® can be extended to an automor-
phism of P/®. It follows easily from this that, if E is Galois over
®, then the mapping s — § the restriction of s to E is a homo-
morphism of G onto G. The kernel is H = 4(E) so G = G/H.

EXERCISES

1. Show that the hypothesis of Theorem 4 can be replaced by: P/® is a
separable and normal algebraic extension, where we define normality by the
condition that, if f(x) is irreducible in ®[x] and has a root in P, then f(x) is a
product of linear factors in P[x], (cf. § 1.8).

2. A topological space is called discrete if every subset is open. Let P be a
splitting field over ® of a set of separable polynomials and let G be the Galois
group of P over ®. Show that G is discrete if and only if [P:$] < .

3. Let P, ®, and G be as in ex. 2. Use the fact that every p € P has only a
finite number of conjugates and the T'ychonoff theorem to prove that G is a com-
pact group.

4. Let P be the algebraic closure of the field & = I, and let G be the Galois
group of P over #. Show that G is a commutative group. Let &;~ be the sub-
field of P defined for the prime / as 1n the text. Let 7 be the automorphism
p — p® restricted to &;. Show that 7 — 1 in the sense that, 1fS is any finite
subset of ®;=, then there exists a posmve integer N such that £* = £ for all
£e S provided # > N. Let mi, ms, - - - be a sequence of integers such that for
any positive integer k there exists an N such that m, = m; (mod ) if r, s > N.
Show that the sequence of automorphisms 7™, 7™, - - - converges to an auto-
morphism ¢ of ®;° over ® in the sense that 7™ —! — 1.

5. Let G be a group of automorphisms in a field P and let ® = I(G). Assume
G is a compact subset of PP. Show that this implies that for every £ € P the set
{£|s € G} is finite. Hence prove that P is the splitting field over ® of a set of
separable polynomials and that G is the Galois group of P/®.

6. Let G be the Galois group of P/® where P is algebraic over ® and let {G.}
be the collection of invariant subgroups of finite index in G. Show that NG,
=1,

7. Let ® be a finite field, A its algebraic closure, and G the Galois group of
A/®. Show that G has no elements of finite order # 1.

8. Let A, be the algebraic closure of the field I, of p elements, G, the Galois
group of A,/I,. Show that G, = G, for any two primes p, g.

9. Let P = ®(£, &3, - - -) the field of rational expressions in an infinite number
of indeterminates. Show that the Galois group of P/® is not closed in the finite
topology.

3. Transcendency basis. We have defined the property of
algebraic independence over @ for a finite subset {£1, &2, « -+, &a}
of a field P over ® in Vol. I and this definition has been repeated
in Introduction, p. 4. We now extend this notion to arbitrary
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subsets by stating that such a set § is algebraically independent if
every finite subset of § is algebraically independent. A set which
is not algebraically independent will be called algebraically
dependent; hence a set is algebraically dependent if and only if
it contains a non-vacuous algebraically dependent finite subset.
We shall now introduce another notion, which we shall see in our
first theorem is intimately related to those just given.

Definition 1. Let S be a subset of P over ® and let p be an element
of P then p is said to be algebraically dependent over ® on § if p
is algebraic over ®(S).

We note first that, if p is algebraically dependent over ® on §
and f(x) e®(§)[x] is the minimum polynomial of p over ®(S),
then the coefficients of f(x) are contained in a subfield &(F)
where Fis a finite subset of §. Hence it is clear that p is algebrai-
cally dependent over ® on a set § if and only if p has this property
for a finite subset F of .

Theorem 5. .4 non-vacuous subset S of a field P/® is algebrai-
cally dependent over ® if and only if there exists an element £ €8
whick is algebraically dependent over ® on the complementary set
S — {£}.

Proof. The remarks we have made show that it is sufficient to
assume § is finite, say, § = {£1, &2, - - -, £n}. Assume the condi-
tion stated holds. Then we may suppose that &, is algebraic over
k1, -+ vy En1). Let flx) e®(£y, -+, §a_1)[x] be the minimum
polynomial of &, over ®(&y, - - -, £,_;) and let 84, B3, * - -, Bm be its
coefficients. Now every element of ®(¢,, - -+, £,_;) has the form
g(gb Y En—l)lz(gl) T En—l) ~! where & h 8‘I>[x1, Y xn—l]) X
indeterminates, and A(y, -+, §a—1) # 0. In particular, 8; =
gi(gl) Tt En—l)hi(gb Y En—l)_l) hi(gl) RS} En—l) # 0. Set
A(x1y =y ¥n_1) = Aij(xy, -+, %n_1) and

F(xl) Tt xn) = h(xl, Tty xn—l){xnm
+ g1(xn, oy X)) (Xy ey X)) Tl
+-- -+ gm(xl, Tty xn—l)hm(xl) Tty xn—l) _1}-

Then F is a non-zero element in ®[xy, - - -, x,], ¥; indeterminates,
and we have F(§,, - - -, £,) = 0. This means that the &; are alge-

m—1
n
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braically dependent. Conversely, assume there exists a non-zero
polynomial F(xy, - -+, x,) e®[x1, - - -, #,] such that F(&, ---, &)
= 0, which amounts to saying that the ; are algebraically depend-
ent over . We may assume that # is minimal and we may write
F(xl) Tty xn) = fO(xl) S | xn—l)xnm + fl(xl) S | xn—l)xnm_l +
oot fulx1y oy X¥n—1) where fo #0 and m > 1. Since #n is
minimal, fo(£1, -+, Ea—1) # 0. Then

Fx) = 5+ ifxsl, e Eaet) folEry e Eng) T

is a non-zero element of ®(£y, - - -, £»_1)[x] such that f(¢,) = 0.
Hence £, is algebraically dependent on &y, - -+, §n_;.

The relation of algebraic dependence in a field P/® is a special
kind of relation between elements of P and subsets of P. Another
relation of a similar type is that of linear dependence of a vector
in a vector space on a subset of the space, and we shall encounter
still others. It is therefore worthwhile to treat such relations
axiomatically and we shall do this by considering an arbitrary set
P. Arelation < between elements of P and subsets § of P (¢ < §)
is called a dependence relation if the following conditions hold.

I. If ¢ e S, then £ < §.
II. If ¢ < §, then £ < F for some finite subset F of S.
III. If £ < § and every 75 in § satisfies n < T, then £ < T.
IV.If ¢< S and £ € & — {n} where eS8, then n < (§ —
{n}) U {&} (Exchange axiom).

Now let P be a field over ® and let £ < § for £in P, § a subset
of P, mean that £ is algebraically dependent on § over . Then
we have

Theorem 6. Algebraic dependence in P/® is a dependence rela-
tion in the sense of I—1V.

Proof. 1. Thisis evident. II. This was proved before. III.
Let £ be algebraic over #(§) and suppose every 5 € § is algebraic
over ®(T). Consider the subset A of P of elements which are
algebraic over ®(T). Then we know that A is a subfield of P/®(T)
and A is algebraically closed in P. Now § C A and £ is alge-
braic over ®(S), so over A. Hence £ ¢ A which means that& < T.
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IV. Supposet < Sandé « T =38 — {9} whereneS. LetE =
®(T). Then £ is transcendental over E and algebraic over E(y).
Hence there exists a polynomial f(x, y) e E[x, y], ¥, ¥ indetermi-
nates over E, such that f(x,y) # 0 and f(§,7) = 0. We write
Az, y) = ao(x)y™ + ay(x)y™ ' 4+ - -+ a,(x) where the a;(x) ¢
E[x] and a¢(x) # 0. Then a¢(£) = 0 and m > 0, since £ is trans-
cendental over E. The polynomial f(% y) is a non-zero poly-
nomial belonging to E(£)[y] and » is a root of f(£,y) = 0. Hence
n is algebraic over E(£), which implies that 5 is algebraic over
®(T U {£}). Thusn < T U {¢}.

We now return to the general theory of dependence relations.
As before, P is an arbitrary set. We define a subset § of P to be
independent (relative to <) if no £ ¢S is dependent on § — {¢}.
Then we have the following

Lemma. If B is independent and & is not dependent on B, then
B U {¢} is independent.

Proof. Otherwise, we have any e Bsuch thatg < (B U {£}) —
{n}. Since n « B — {5} the exchange axiom implies that ¢ < B
= (B — {n}) U {n} contrary to hypothesis.

A subset B of P will be called a dasis for P (relative to <) if (1)
B is independent and (2) every £ in P is dependent on §. The
main result on dependence relations is the following

Basis theorem. T%e set P has a basis. Moreover, any two bases
have the same cardinal number.

Proof. To prove the existence of a basis we consider the collec-
tion 7 of subsets of P which are independent. (It may happen
that the vacuous set is the only member of 7.) We order 7 by the
inclusion relation. If {8} is a linearly ordered subset of 7, then
US is contained in I. Otherwise, there is a ¢ e US which is
dependent on US — {£}. Then ¢ < F where F is a finite subset
of US — {£} and F' U {£} is a finite subset which is not independ-
ent. Since {§} is linearly ordered, FF U {£} C T for some T ¢ {S}
and this contradicts the assumption that T is an independent
set. We now see that 7 is inductive and so, by Zorn’s lemma, there
exists a maximal element B in I. Now let £ be any element of P.
Then £ is dependent on B since otherwise B U {£} is independent,
by the lemma. This would contradict the maximality of B.
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Hence every £ in P is dependent on B. This means that B is a
basis.

Now let B and C be two bases for P. We have to show that the
cardinal numbers |B|=|C|. Assume first that B is finite, say,
B = {B1,B2 -+, Bxn}. We assert that there is a vy = v; € C such
that v is not dependent on {Bs, - - -, B.}. Otherwise, by III, every
element of P is dependent on {B, -, B,}. In particular, 8
has this property, contrary to the independence of B. Now if v,
is not dependent on {8, - -, B}, then {v1, B2, - -, Ba} is in-
dependent. Moreover, the exchange axiom shows that 8; <
{'Yl) Bay * 2y ﬂn} so every B; < {‘Yl) B2y -+, Bn} Thus {'Yl) B2,

-+, Bn} 1s a basis. We can repeat this process and obtain v,
in C so that {v,7s,8s, -, Bs} is a basis. Continuing in this
way we obtain a basis {v, - - -, ¥»} which is a subset of C and has
the same cardinal number as B. Since C is independent, this is
all of C and we have |C|=|B|. Next assume |C| and |B| are
infinite. In this case we use a counting argunient which is due to
Lowig (cf. Vol. I1, p. 241). Lety e C. Then v is dependent on a
finite subset B, of B. Consequently |{B,}|<|C| and

Ye

< N0|C|= |Cl.

Next we note that UB, = B. Otherwise, we have a B¢ B,
¢ UB,. Since 8 < C and every v € C satisfiesy < UB,, we have
B < UB, which does not contain 8. This contradicts the in-
dependence of B. Thus UB, = B and the above relation on
cardinals gives |B| <|C|. By symmetry |C|<|B]|; hence |B|
=|C|.

This result is applicable in particular to algebraic dependence
in P/®. In this case a basis B is a set of algebraically independent
elements of P/® such that every £ in P is algebraically dependent
on B. Such aset Bis called a transcendency basis for P/® and its
cardinal number, which is the same for all bases, is called the #ans-
cendency degree (tr. d.) of P/®. An extension P/® is algebraic if and
only if P has a vacuous transcendency basis over ®, hence if and
only if the transcendency degree is 0. If a field P has a trans-
cendency basis B over ® such that P = &(B), then P s called a purely
transcendental extension of ®. The theorem on the existence of a
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transcendency basis can be interpreted in the following manner:
Every field can be obtained as an algebraic extension of a purely
transcendental extension ®(B) of the base field®. If xy, x5, - - -, X,
are indeterminates, then the field of fractions of the algebra
®[x1, - -+, ¥, is a purely transcendental extension ®(xy, - - -, x,) of
® with the transcendency basis {x:}. Moreover, it is clear that
any purely transcendental extension of degree r < o« is essentially
identical with ®(xy, - - -, x,).

Of particular interest in algebraic geometry are the fields P =
®(£1, &2, - - -5 £s) which are generated over the base field ® by a
finite set of elements ¢;. If B is a maximal algebraically independ-
ent subset of the set {£, &, - -+, £x}, then B is a transcendency
basis. We may assume B = {§, &, - -+, £}, A field of the form
P =®(%), &, -+, &a) is called a freld of algebraic functions over
® and the transcendency degree r (X #) is called the number of
variables of P. If {£, -- -, &} is a transcendency basis, then Pisa
finite dimensional extension of ®(£, &, - -+, £&). If this is sepa-
rable over ®(%,, - -+, &), then one of the theorems on primitive
elements shows that P = &(¢;, -+, &, n) for a suitable 4 in P.
This is always the case for characteristic 0 and we shall see in § 5
that simple conditions can be given to insure the existence of a
basis {£;} for a field of algebraic functions such that P is separable
algebraic over ®(¢y, £, * - -, £,).

EXERCISES

1. Show that, if C is a subset of P/® such that every element of P is alge-
braically dependent on C, then C contains a transcendency basis. Show also
that, if D is an algebraically independent subset of P/®, then D can be imbedded
in a transcendency basis.

2. Let E/® be a subfield of P/®. Show that the transcendency degree tr. d.
P/E < tr. d. P/® and that tr. d. E/® < tr. d. P/®.

3. Let E/® be a subfield of P/® and let B and C be transcendency bases for
E/® and P/E respectively. Show that B U C is a transcendency basis for
P/®. Hence prove the formula

1) tr.d. P/® = tr. d. P/E 4 tr. d. E/®.

Note that ex. 2 is a consequence of this. (Hint: Since E is algebraic over ®(B)
the subalgebra generated by E/® and ®$(C) is a field which is algebraic over
®(B, C) (p. 45). Hence E(C) is algebraic over ®(B, C).)

4. Prove that, if ® is a field of characteristic # 3 and P = ®(&, ) where £
is transcendental and #® + £ = 1, then P is not purely transcendental over ¥.
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5. Let P be the field of complex numbers, ® the subfield of rationals. Show
that tr. d. P/® = ¢ = |P|. Show that, if B is a transcendency basis of P/,
then any 1-1 surjective mapping of B can be extended to an automorphism of
P/®. Hence show that P has as many automorphisms as 1-1 surjective map-

1ngs.
; 6% Prove that, if P is finitely generated over ®, then this holds for any subfield

/@,

4. Liiroth’s theorem. The purely transcendental extensions
P = &(%y, &, - -+, £,) appear to be the simplest types of extension
fields. Nevertheless, it is easy to ask difficult questions about
such extensions, particularly about subfields of P/® if r > 1. If
r = 1 the situation is comparatively simple and we shall look at
this in this section.

Let P = ®(§), ¢ transcendental, and let  be an element of P
which is not contained in ®. We can write 9 = f(§)g(¢) ~* where
f(£) and g(¢) are polynomials in § which we may assume have no
common factor of positive degree in & We may write f(§) =
ag + a1 4 -+ anf”, g(§) = Bo + B1f + - - - + Bat™ where either
a, # 0or B, # 0,s0nis the larger of the degrees of fand g. The

relation 9 = f(£)g(§) ™! gives f(§) — ng(¢) = 0 and
0 = (o — 9Ba)E" + (@tn—y — WBa—)E* 1 4+ -+ (a0 — 1B0).
Moreover, a, — 98, # 0 since a, or B, # 0 and y ¢ ®. Thus we

see that £is a root of the equation of degree #: ), (a; — #8:)x* = 0
0

with coefficients in ®(»). We proceed to show that D (a; — 98:)x*
0

is irreducible in ®&(y)[x]. First, it is clear that 5 is transcendental
over ®, since ¢ is algebraic over ®(n); hence n algebraic over &
implies ¢ algebraic over ®, contrary to assumption. The ring
®[n, x] = ®[y][x] is the polynomial ring in two indeterminates 7, »
and we know that this ring is Gaussian, that is, the theorem on
unique factorization into irreducible elements holds in ®[, x]
(Vol. I, p. 126). We recall also that a polynomial in ®[», %] of posi-
tive degree in x is irreducible in ®(y)[x] if it is irreducible in ®[y, x]
Now f(n, x) = Z(az — n8:)x* = f(x) — ng(») is of degree 1 in .
Hence if f(5, x) is reducible in ®(»)[x], then it has a factor A(x)
of positive degree inx. This implies that f(x) and g(x) are divisible
by A(x) contrary to assumption. We have therefore shown that
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f(n, x) is irreducible in ®(n)[x]. Thus £ is algebraic of degree n
over ®(q). This proves

Theorem 7. Let P = ®(§), & transcendental over ® and let n be an
element of P not in ®. Write n = f(£)g(§) ™! where f(£) and g(§)
are polynomials in & with no common factor of positive degree in &.
Let n = max (deg f, deg g). Then & is algebraic over ®(q) and
[®(&):®2(n)] = n. Moreover, f(x,n) = f(x) — ng(x) is irreducible
in ®(n)[x].

This result enables us to determine the automorphisms of ®(£)
over ®. Such an automorphism is completely specified by the
image n of the generator ¢ For, if £ — 5, then «(&)v(§) ™! —
u(n)v(n) ~! for u, v polynomials in £&. It is clear also that, if 9 is the
image of ¢ under an automorphism, then ®(y) = &(¢). If n =
f(©)g(¢) ™! as above, then [®(£):®(n)] = # = max (deg f, deg g).
This shows that ®(g) = ®(£) if and only if max (deg f, degg) = 1.
Then we have +

at + B
@ Tyt

where a # 0 or v # 0 and af + 8, v£ + 6§ have no common
factor of positive degree. It is easy to see that these conditions
are equivalent to the single condition:

3) ad — By # 0.

If this condition holds, then ®() = ®(¢§) and the mapping
u(§)v(§)~' — u(n)v(n) ™! is an automorphism of P/®.

The condition (3) is equivalent to the requirement that the
matrix

-

¥y &

is non-singular. With each such matrix we associate the auto-
morphism of ®(£) over ® such that ¢ — g given by (2). One veri-
fies directly that the mapping of the non-singular matrix into the
corresponding automorphism is a group homomorphism. The

kernel is the set of matrices [a iJ such that (af + B)(v& + 8) !
Y
=¢torat+ B =&+ 8). This impliesy =0,8=10, a = .
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Hence the kernel is the set of scalar matrices {g J #= 0. It
x

is now clear that the group of automorphisms of ®(£) is isomorphic
to the factor group of the group L(®,2) of 2 X 2 non-singular
matrices relative to the subgroup of scalar matrices. This factor
group is called the projective group PL(®, 2).

We now consider an arbitrary subfield E of ®(£)/®. We may
assume E = ®&. Then E contains an element 4 notin ® so P =
®(£) is algebraic over ®(n) and hence is algebraic over E D ®(y).
Let the minimum polynomial of £ over E be f(x) = x" + y1x™?
+ .-+ v,. The v; have the form u;(¢)v(£)~! where u;, v; are
polynomials in the transcendental element £ Multiplication of
f(x) by a suitable polynomial in ¢ will give a polynomial

(5) S(& %) = co(O)x™ + c1(Hx" 71 - -+ cal®)

in ®[¢, x], £, x indeterminates, which is a primitive polynomial in x
in the sense that the highest common factor of the ¢;(§) is 1. Also
we have v; = ¢;(§)co(§) 7! € E and not all of these are in @ since
¢ is transcendental over ®. Thus one of the #’s has the form vy =
g(&)A(E) ™! where g(£), 4(¢) have mo common factor of positive
degree in £ and max (deg g, deg ) = m > 0. We have seen before
that g(x) — yA(x) is irreducible in ®(y)[x] and [P:@(y)]= m.
Since E 2 @(y) and [P:E]} = #, clearly m > n. We shall show
that m = #» and this will prove that E = @(y).

Since ¢ is a root of g(x) — vA(x) = 0 and the coeflicients of this
polynomial are contained in E, we have g(x) — vA(x) = f(x)q(x)
in E[x]. We have v = g(£€)4(§) ™! and we can replace the coef-
ficients of f and ¢ by their rational expressions in § and then
multiply by a suitable polynomial in ¢ to obtain a relation in
(¢, x] of the form

(6) k(©)[g(*)A(E) — g®O)A(x)] = f& %)q(§ %),

where f(& x) is the primitive polynomial given in (5). It now
follows that k(%) is a factor of ¢(, x) and so cancelling this we may
assume the relation is

7) g(x)A(E) — g®O)A(x) = S x)q(§, x).

Now the degree in ¢ of the left-hand side is at most m. Since
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y = g(€)A(¢)-1 with (g(¢), #(¢))= 1 and max(deg g, deg %) = m,
the ¢-degree of f(¢, x) is at least m. It follows that it is exactly m
and ¢(¢, x) = ¢(x) € ®[x]. Then the right hand side of (7) is
primitive as a polynomial in ». This holds also for the left hand
side. By symmetry, the left hand side is primitive as a poly-
nomial in ¢ also, and this implies that ¢(x)= ¢ is a non-zero
element of ®. ‘Then (7) implies that the x-degree and ¢-degree
of f(¢, x) are the same. Thus m= zand E= ®(y). As we saw
before, E D ® implies that y is transcendental. We have
proved the following

Theorem 8 (Liiroth). If P = ®(£), £ transcendental over ®, then
any subfield E D & is also a simple transcendental extension: E =
®(v), v transcendental.

The theorem of Liiroth is not valid for purely transcendental
extensions P/® of transcendency degree » > 1. The best positive
result in this direction is a theorem of Castelnuovo-Zariski which
states that, if ® is algebraically closed and » = 2, then a subfield
E/® of tr. d. 2 such that P/E is separable is a purely transcendental
extension.*

EXERCISES

1. Show that, if P = ®(&, ) where £ is transcendental and 72 + £2 = 1, then P
is purely transcendental.

2. Let ® be a finite field, |®| = ¢ = p™. Determine the order of the Galois
group of P(£)/®, £ transcendental.

3. Give an example of a subalgebra of $[£], £ transcendental, which does not
have a single generator.

5. Linear disjointness and separating transcendency bases.
Let ® be of characteristic p # 0 and let P = ®(§, n) where ¢ is
transcendental and n? = £ Then {£} is a transcendency basis
for P/® and P is inseparable over ®(£). On the other hand, P =
®(n) is separable over P. This simple example shows that certain
transcendency bases B for an extension may be preferable to
others in that P/®(B) is separable algebraic. We remark also
that such bases may not always exist, as is shown by the example

* See O. Zariski, On Castelnuovo’s criterion of rationality pa = Ps = 0, Illinois Jour. of
Math., Vol. 2 (1958), pp. 303-315.
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of any P/® which is algebraic and not separable over . A trans-
cendency basis B for P/® such that P is separable algebraic over
®(B) is called a separating transcendency basis. If P/® has such
a basis, then we shall say that P/® is separably generated. 1In
this section we shall derive a criterion that P/® is separably
generated, based on the following important notion.

Definition 2. Let E, and B, be subalgebras of an arbitrary field
P/®. Then B, and E, are said to be linearly disjoint over ® if the sub-
algebra E,E, generated by E, and By is the tensor product E; @+ E,.
More precisely, what is meant here is that the canonical homo-
morphism of E; ®s Ey into E\Ey sending €, ® €, into e1es 15 an
isomorphism (see Introd., § 3).

It is well to recall the conditions that E1E, = E; ®+ E, which
we obtained in the Introduction. We recall first that a sufficient
condition is that there exist bases («,), (vg) of E; and E; over &
respectively such that (u#,vg) is a basis for E,E, over ®. Since
every element of the subalgebra E,E, is anyhow a linear combina-
tion of the elements #,v5, we see that a sufficient condition for
E,E; = E; ®s E; is that there exist bases (), (vg) for E;/® and
E,/® such that {u.vp} is ®-independent. If E, is a subfield of
P/®, then E,E, = E; ®s E; if there exists a basis (vg) for E,
over ® such that the set (vg) is E;-independent.

Conversely, assume E; and E; are linearly disjoint subalgebras.
Then (u,vg) is a basis for E,E,/® for any basis (u,) of E;/® and
any basis (vg) of E5/®. Also if E; is a subfield, then (vg) is a basis
for E\E;/E;. We note also that linear disjointness of the sub-
algebras E, and E; implies that, if {#,} is any linearly independent
subset of E;/® and {vg} is any linearly independent subset of
E,/®, then {u,v3} is ®-independent.

We note next that E, and E; are linearly disjoint subalgebras
over ® if and only if the subfields Q, and Q, generated by E; and
E, respectively are linearly disjoint over ®. For, if Q; and Q,
have the property, then so do E; and E,, since subalgebras of
linearly disjoint algebras are clearly linearly disjoint by our
criteria. Conversely, suppose E; and E; are linearly disjoint.
Let £, &, <+ -, &m be elements of Q; which are ®-independent and
N1 M2 * * *» Na €lements of Q, which are ®-independent. We can
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write & = £/¢7Y, n; = n;/n~" where &/, £ e Ey, 0/, ne E;. Then
{6, &', -+, &4’} is a ®-independent subset of E; and {n,’, 92/,
-+ +,9,'} is a ®-independent subset of E,. Hence the m# elements
£/n;’ are ®-independent and so also the elements £; are ®-in-
dependent. Thisimplies that Q; and Q, are linearly disjoint over &.

We are interested primarily in subfields of P and we shall
require the following lemma which will enable us to prove linear

disjointness by steps.

Lemma. Let E, and By be subfields of P/®, A, a subfield of
E./®. Then B, and B, are linearly disjoint over ® if and only if the
Sollowing two conditions hold: (1) A, and Ey are linearly disjoint
over ® and (2) the field A\(E,) and B, are linearly disjoint over A,.

El EI(E2)

. <Ez>

P E,

Proof. Assume (1) and (2). Let (#,) be a basis for E;/®. By
(1), the u, are linearly independent over 4;. Since these elements
are contained in 4,(E,), and 4;(E,) and E;/A; are linearly dis-
joint over A, by (2), the u, are linearly independent over E;.
Hence E; and E; are linearly disjoint over ®. Conversely,
assume this holds. Then it is clear that A; and E; are linearly
disjoint over ®, that is, (1) holds. Also the hypothesis implies
that, if (4,) is a basis for E; over A;, (vg) a basis for A; over ®,
(w,) a basis for E; over ®, then (#,05w,) is a basis for E,E,; over
®. This implies that, if we have a relation Zcu,, = 0, ¢; € E24,
then every ¢; = 0. Now suppose we have Zd;u,, = 0, 8; € 41(E,).
Then we can write §; = ¢id ™!, ¢c;, d € E;A, and we obtain Zcu,, =
0,c; = 0and d; = 0. Thus we have shown that the basis (#,) of
E;/4A; is A (E;)-independent. This implies that E; and A,(E,)
are linearly disjoint over 4,,

We now embark on the study of linear disjointness and sepa-
rability. We assume that P is an extension field of a field & of
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characteristic p # 0 and we shall operate in an algebraic closure
A of P (which contains an algebraic closure of ). We consider
the subset ' of A of elements v such that ¥?e®. This is a
subfield over ®. We shall be interested in linear disjointness of P
and ®*~ over . In studying this question it is useful to note the
following simple criterion: A set {p1, p2, ***» pn}, pi € P is ®?7-
independent if and only if {p;?, po?, - - -, pa?} is ®-independent;
for, suppose we have ZB,p; = 0, 8; e®?". Then ZJa;p,? = 0 for
a; = B in ®. On the other hand, if Za;p,? =0, a; in ®, then,
since A contains an algebraic closure of ®, a; = 8%, B; in 7.
Then 28702 = 0. Hence (2B::)® = 0 and 2Bp; = 0. Also itis
clear in both situations that &; = 0 if and only if 8; = 0. We shall
now establish the following criterion.

Theorem 9. If P is an algebraic extension of ® (possibly infinite
dimensional), then P is separable over ® if and only if P is linearly
disjoint to & over ®.

Proof. We recall that an algebraic element p ot P over ® is
separable if and only if p e ®(p?) (Lemma 2 of § 1.9). Suppose
first that P and ®?” are linearly disjoint over & and let p & P.
Let (®(p):®) = n. Then (1, p, p2, - -+, p" 1) is a basis for ®(p) =
®[p] and hence these elements are <I>"_’-independent. This im-
plies that the elements 1, p?, p??, - - -, p*~V? are ®-independent.
Since there are # of these and they are contained in ®(p), they
torm a basis for ®(p). Evidently this implies that p £ ®[p?] so p
is separable over ®. Conversely, assume P separable over ® and
let {p1, - -, pn} be a finite ®-independent subset of P. We may
imbed this set in a subfield E/® which is finite dimensional, and
we can choose a basis (o1, -+, pny Pri1, * 5 pg) for E/®. Any
element ¢ of E is a ®-linear combination of the p;, 1 <j < q.
Then €? is a $-combination of the p;#. The same holds for ¢** =
(e2)?, 37 = (%), ---. On the other hand, since € is separable,
e e ®(e?) = ®[e?]. Consequently, e itself is a ®-linear combination
of the p;#. Since [E:®] = ¢ this implies that (pi?, po?, - - -, pg*)
is a basis for E/®. Hence {p,?, - -, ps?} is ®-independent and
{p1, *=*, pn} s @P"-independent. Since {p1, --*,pn} was an
arbitrary finite ®-independent subset of P, this proves that P
and & are linearly disjoint over ®.
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We prove next the following

Theorem 10. If P is purely transcendental over ®, then P is
linearly disjoint to " over ®.

Proof. Our assumption is that P = ®(B) where B is an alge-
braically independent set. We have seen also that P is linearly
disjoint to & over @ if and only if the subalgebra ®[B] of poly-
nomials in the elements of B is linearly disjoint to ®*"'. To prove
that the latter holds, it suffices to give a basis for ®[B]/® which is
&7 ".independent. For this we take the basis M consisting of the
monomials in & € B.” Now it is clear that, if m, and m, are dis-
tinct monomials, then m,? and m,? are distinct monomials. Hence
it is clear that the set M? of p-th powers of the elements of M is a
®-independent set. We have seen that this implies that M is
®?".independent. Hence ®[B] is linearly disjoint to &' and
the proof is complete.

We can now prove our main result which is

MacLane’s Criterion. If P/® is separably generated (of
characteristic p), then P and ' are linearly disjoint over ®. On
the other hand, if P is finitely generated over ® and P and ¥ are
linearly disjoint over ®, then P is separably generated over ®.

Proof. Suppose first that P is separably generated over @,
which means that P has a transcendency basis B over ® such that
P is separable algebraic over £ = ®&(B). Then, by Theorem 10,
2 and ®?" are linearly disjoint over ®. Also, by Theorem 9, P
and 2?7 are linearly disjoint over =. Hence P and Z(@?")
which is a subfield of 2?™ over Z are linearly disjoint over Z.
The lemma now shows that P and ™ are linearly disjoint over &.

Next we assume P = ®(£, &, -+, &n) and P and &7 are
linearly disjoint over . We may assume also that {£y, &2, - - -, &}
is a transcendency basis. Suppose we know already that &,

-+, &, are separable algebraic over (¢, - - -, £,). If s = m, then
{£1, -+, &} is a separating transcendency basis. Hence we
suppose that £, is inseparable algebraic over T = ®(§y, - - -, &).
Let f(x) be the minimum polynomial of &4, over Z. If we
multiply f by a suitable polynomial in &, ---, & we obtain a
polynomial F(¢y, - - -, &, x) e ®[£, - - -, &, ] which is irreducible

<
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in ®[%4, - - -, &, x] and satisfies F(¢1, - -+, &ry E541) = 0. Since fis
inseparable it is a polynomial in x?; hence F(¢, - -, &, %) is a
polynomial in x?. We assert that there exists a &, 1 <17 <7,
such that F is not a polynomial in £#. Otherwise, the monomials
in &, &2, * -+, &, ¥ which actually occur in F are all p-th powers
and this implies that F(&, -+, &%) = H(f1, -+, 6, %)? in
&gy, -+, &, x]. Then H(gy, - -+, &y E1) = 0, so the mono-
mials in &, -+, &, & 41 occurring in H are linearly dependent
over ?”'. The assumption of linear disjointness of P and &
therefore implies that the same monomials are ®-dependent. This
implies that & 41 is a root of a polynomial A(x) e Z[], A(x) = 0
of lower degree than f, contradicting the fact that fis the mini-
mum polynomial of £ 4, over 2. This shows that we may suppose
that F(&, - -+, &, %) is not a polynomial in §2. The relation
F(¢1, -+, &y Es41) = O shows that &, is algebraic over ®(&,, - - -,
£, £441). Since &, - - -, & are also algebraic over this subfield, it
is clear that {&, ---, &, £,41} is a transcendency basis.

We shall show that £, is separable over Z' = ®(&,, - - -, &, &5.41).
We recall that F(¢y, - - -, &, y) is irreducible in ®[&, - - -, &, ¥].
Hence F(x, x5, -+, %sy) is irreducible in ®[x, xo, -« -, x,, ¥],
%, Xi ¥, Indeterminates, and consequently this polynomial is ir-
reducible in ®(x,, - -, x,, ¥)[¥] where ®(xs, - - -, x,, ) is the field
of fractions of ®[xy, ---, %,,y]. Since &, - -, &, Es41 are alge-
braically independent over ®, ®(&,, - -+, &, §s 1) =X B(xg, + -+, X4y
») under a®-isomorphism such thatx; — £,2 <i<r,y — &1
It follows that F(x, £, « -, &ry Es41) 1s irreducible in ®(&,, - - -,
£, £ +1)[x] and so this is a multiple of the minimum polynomial of
£ over Z'. Since this polynomial is not a polynomial in x?, &,
is separable algebraic over 2’. Also £, 1 < i <5, are separable
algebraic over ®(¢y, - - -, &, £41) and, since £; is separable alge-
braic over Z’, £; is separable algebraic over Z’. If we re-number
the £s we now have a transcendency basis &, - - -, & such that
every £, 1 <j <s 4 1, is separable algebraic over ®(¢y, - - -, &,).
This establishes the inductive step to show that we can choose
£1, -+, & among the generators £, - -+, &, so that every & is
separable algebraic over Z = &(&;, ---, ). Then {&, - -, &} isa
separating transcendency basis for P/®. This completes the
proof of the second assertion of the theorem.
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It is important to note for future use that, if P = ®(%y, - - -, &4)
is linearly disjoint to &~ over ®, then we have shown that a
separating transcendency basis can be extracted from the set
{£1, &2, - -+, Em}. We note also the following

Corollary (F. K. Schmidt). If ® is perfect, then any field of
algebraic functions ®(&1, - -, Em) has a separating transcendency
basis over ®.

This is an immediate consequence of MacLane’s criterion since
P is certainly linearly disjoint to ®*~ = &.

The results which we have proved, particularly Theorem 9,
make it natural to extend the notion of separability to arbitrary
(not necessarily algebraic) field extensions in the following way.

Definition 3. .7 field P is separable over ® if it is either of charac-
teristic O or if it is of characteristic p % 0 and P is linearly disjoint
to ®*”" over ®.

Theorem 9 shows that this is equivalent to the usual notion of
separability if P is algebraic over ®. Also MacLane’s criterion
shows that, if P is finitely generated over ®, then it is separable
over & if and only if P is separably generated over ®. The follow-
ing theorem gives two other properties of separability which are
familiar in the algebraic case.

Theorem 11. (1) If P is separable over ® and E is a subfield of
P over ®, then E is separable over ®. (2) If P is separable over E
and E is separable over ®, then P is separable over ®.

Proof. We may assume the characteristic is p # 0. (1) This
is clear since the linear disjointness of P and ®?" implies the
linear disjointness of E and ®*"'. (2) We are assuming that &
is linearly disjoint to E over ® and E? is linearly disjoint to P
over E. Then E@®?") which is a subfield of E* is linearly dis-
joint over E to P. The lemma now applies to show that &~
and P are linearly disjoint over ®. Hence P is separable over &.

We close the present discussion with two negative results.
First, we recall that, if P is separable algebraic over ®, then P
is separable algebraic over any intermediate field. This fails in
the general case since, for § transcendental, ®(£) is separable over
® of characteristic p # 0, but ®(£) is not separable over &(¢).
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Next we note that a field may be separable over ® and not sepa-
rably generated. An example of this is given in ex. 1 below.

EXERCISES

1. Let & be of characteristic p # 0 and let P = (¢, &7, &%, .. .) where £
is transcendental over . Show that P is separable over ® but not separably
generated over .

2. Let ® " be the subfield of the algebraic closure of P D & of elements £
such that £#" ¢ ® and let ®*° = U ". Show that P is separable over @ if
and only if P and ®*  are llnear]y disjoint over P.

3. Let E/® and A/® be subfields of P/® such that E/® is purely transcen-
dental and A/® is algebraic. Show that E and A are linearly disjoint over ¥.

4. Let P = ®(§,9,¢,7) where ® is of characteristic p # 0, £, 19, are alge-
braically independent and 72 = £? + 5. Show that P is not separably gener-
ated over E = &(§, 9).

5. (MacLane). Let® be a perfect field of characteristic  # 0, P an imperfect
extension field of ® such that tr. d. P/® = 1. Show that P is separably gener-
ated over .

6. Derivations. We have found it useful to introduce the usual
formal derivative of a polynomial in considering multiple roots
(§1.6). The mapping of the polynomial algebra ®[x] into itself
defined by: f(x) — f’(x) the formal derivative of f(x), is an
example of a derivation in the algebra ®[x]. More generally it is
convenient to consider derivations from a subalgebra into an
algebra. This general notion, which is of great importance in
algebra, is given in the following

Definition 4. If U is a subalgebra of an algebra B, a derivation
D of ¥ into B is a linear mapping of A into B such that

(8) (ab)D = (aD)b + a(éD), a,beq.
If A = B, then we speak of a derivation in 9.

We shall be interested mainly in derivations in fields of alge-
braic functions. In this section we consider some general results
on extension of derivations and on the algebraic system consisting
of all the derivations of an algebra into itself. We begin our con-
siderations by noting first that the study of derivations is equiva-
lent to the study of a certain type of algebra isomorphisms. This
will enable us to derive the main facts-about derivations as con-
sequences of corresponding results on homomorphisms. For this
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purpose we introduce the algebra ¥ with basis (1,7#) over the
base field ® and multiplication rule £ = 0. Thus T = ®[x]/(x?),
x an indeterminate, and ¢ is the coset ¥ + (x%). If B is an arbi-
trary algebra, then we form the algebra 8 ® . If we identify 8
in the usual way with the subalgebra of elements 4 ® 1 and
with the subalgebra of elements 1 ® #, u ¢ T, then we see that
the elements of 8 ® T can be written in one and only one way
in the form &, + 4,¢, 4, € B, the generator £ of . We have ér=
t6 and in general the multiplication rulein 8 ® T is

9) (bo + 618)(co + €18) = boco + (boc1 + b1c0)t,

biyci e B. The algebra 8 ® T is called the algebra of dual numbers
over B.

Now let D be a derivation of % into 8. Then we can use this
to define a mapping s = s(D) of Ainto B ® T by
(10) a — a* = a+ (aD)s
Evidently s is linear. Furthermore, if 4, 4 ¢ ¥, then
a*6* = (a + (aD)t)(6 + (6D)¢)
= ab + (a(bD) + (aD)é)¢
= ab + ((ab)D)t
= (ab)*.
Hence s is a homomorphism of the algebra % into the algebra of
dual numbers 8 ® T. The homomorphism s has a simple charac-
terization. For this we introduce the mapping =: 2 + &t — a,
a,6eB,0f B ® Tinto B. Itis clear that this is a homomorphism
of 8 ® T into B which is the identity mapping on the subalgebra
B. Now we see that, if 2 e ¥ and s is defined by the derivation
D of Ainto B as before, then a** = (a + (aD)#)* = a. Evidently,
this requirement guarantees that s is an isomorphism.
Conversely, let s be any homomorphism of % into 8 ® T such
that a** = g,a¢e A. Then a® = a + 4, a, b ¢ B and 4 is uniquely
determined by 4. Hence we have the mapping D: 2 — 4, and

we may write a* = a + (aD)¢. It is clear that the linearity of s
implies the linearity of D. Also since (a6)* = 4%4* for any a,4in ¥,

(2 + (aD)8)(b + (D)f) = ab + (a(sD) + (aD)b)t
= ab + ((ab)D)t.
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Hence we have (46)D = (aD)é 4+ a(éD) so D is a derivation. We
can therefore state the following

Theorem 12. If U is a subalgebra of B and D is a derivation of
WA into B, then s:a — a + (aD)t is an isomorphism of N into the
algebra of dual numbers B ® T over B such that a** = a. Con-
versely, any homomorphism of Ninto B @ T satisfying this condition
has the forma — a + (aD)t where D is a derivation of U into B.

We shall now obtain some simple consequences of this connec-
tion between derivations and isomorphisms. First, let ¥ be a
set of generators of the subalgebra % of the algebra 8 and let D,
and D, be derivations of % into B. Suppose xD; = xD; for every
x ¢ X. Then " = x*for the associated isomorphisms s; = s(Dy),
53 = 5(D3) of Ainto B ® T. It follows that a* = 4* for every
ae W sosy =3, and D, = D,. This shows that, if two deriva-
tions coincide on a set of generators of ¥, then they are identical
on A. We remark next that, if s is a homomorphism of ¥ into
B ® T such that ¥** = «x for x ¢ ¥ a set of generators, then 4°* =
a for all 2 ¢ A. Hence s defines a derivation in the manner in-
dicated.

An element ¢ of % such that ¢D = 0 is called a D-constant.
Evidently ¢ is a D-constant if and only if ¢* = ¢ for the isomor-
phism s = s(D). It follows from this—or directly—that the set
of D-constants is a subalgebra of %. In particular, 1 is a D-
constant for every derivation D. If % is commutative and & is
of characteristic p, then every p-th power in ¥ is a D-constant.
For, in any commutative algebra the basic property (8) for D
implies that (a*)D = ka*~'(aD). Henceifk = p, then (a*)D = 0.
We note also that, if = P is a field, then the set of D-constants
of P forms a subfield I of P. This is clear from the consideration
of s = 5(D) or it follows directly, by noting the rule for the deriva-
tive of y~liy™'D = —(yD)y~2, which follows by taking the
derivative of the relation yy™* = 1. If pe P and vy eT, then
(vp)D = v(pD) for the derivation D. This shows that De
Dr(P, B) the set of derivations of P/T" into B/I'. In considering
a particular derivation D of a field, it is often convenient to shift
from the original base field to the field of constants T of D or to
some subfield E/® of I'/®.



170 STRUCTURE THEORY OF FIELDS

We shall now carry over to derivations the two basic results
I and IV’ on extensions of homomorphisms of commutative rings
which we derived in the Introduction. We remark that these
results are valid for algebras over a field ® and we shall use them
in this form. Our first result on extension of derivations is

Theorem 13. Let P be a field over ®, N a subalgebra of P/®
(containing 1), M a multiplicatively closed subset of non-zero elements
of U containing 1, and let Uy be the subalgebra of P of elements of
the form ab=, ae W, be M. Let D be a derivation of U into P.
Then D can be extended in one and only one way to a derivation of
N into P,

Proof. Let s be the isomorphism ¢ — & + (aD)'t of ¥ into
P® T If a0, then a° = a + (aD)¢ has the inverse a=! —
a~2(aD)t since

(@ + (@D))(a™! — a72(aD)) = 1 + (aD)a='t — a~Y(aD)t = 1.

By I of the Introduction, s can be extended to an isomorphism
of Ayrinto P. The extension is unique and maps26=! — 4*(4*) 7.

We have
ﬂs(bs) —1

(@ + (@D)H)(6~* — b—2(sD)3)
a5~ + ((aD)6~' — ab—2(sD))t.

This formula shows that, if s denotes the extension of s to Ay,
then (@671)* = (a*(6*) ~Y)" = ab~1. It follows that s defines the
derivation:

(11) @b~ = (aD)6~' — ab—2(4D)

of Ay into P. The argument shows also that this extension of
D is unique.

Next we consider a subalgebra % of P/® and an extension of this
which has the form U[£,, &, - - -, &n), & elements of the field P.
We suppose we are given a derivation D of % into P and elements
N1, M2, " 5 nm of P. We seek conditions on D and the 5; which
insure that D can be extended to a derivation D of A[&y, &, -+ -,
£, such that &D =9, i =1,2,---,m. Since A and the &
generate A[§,, - - -, £,] it is clear that, if the extension exists, then
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it is unique. As before, we consider the isomorphism s:z — 2 +
(aD)t of A in P ® T satisfying 2 = 4. Then D can be extended
to a derivation of UA[¢;, - - -, £,] into P so that & — n;if and only
if s can be extended to an isomorphism of A[¢,, - -+, £x]into P @ T
so that § — & + g Clearly the condition is necessary and, if
it holds, we have @*" = g and §" = &, for the extension s. Hence s
will give rise to a derivation of A[£,, &, - - -, &), as before. The con-
ditions for the extension of s have been given in IV’ of the Introduc-
tion. We recall that the set & of polynomials f(x1, %2, -+, &m) €
Alx1, X9y -+ +, Xm], ¥; indeterminates, such that f(&, &, -+, &) =
0 is an ideal in A[x, x2, -+ +, ¥m]. The condition IV’ for an exten-
sion s of s such that £ = ¢, 1 <1 < m,is that g2(¢1, ¢25 "+, &m)
= 0 for every g e %, a set of generators of . Hence we see that
D can be extended to a derivation of A[£y, - - -, &x] into P such
that & — 9, i = 1,2, -+, m, if and only if

ga(gl + M1, &+ oty t o0y En + ﬂmt) =0

for every g in a set ¥ of generators of the ideal & of polynomials

Flxyy ooy xm) & Alxy, - -+, xm] such that f(&, -, &n) = O.
We proceed to work out these conditions in detail. Let 2 &
and consider the monomial M(xi, - -, xm) = ax*xs® - x,,%m,

Then
Mgy +mty, &2+ maty oy En + nmd)
= @& + m) G + ) oo (En + )
= (a + (@D)) (&1 + mO) (k2 + 120" -+ (Em + nmt)*™
= af gk - - £ 0 4 (aD)E MER - - g0t
+- (kaf M TR - gy
+ koat ME BT IES R L g by,
ot kpab®o s by Fmig BTy e

If we define the formal partial derivative of f = Zay,...px1% - -+
XnFm relative to x; as
af .

—_— zkiﬂkl"'km’x’l 1 e o x‘.kl""l PN xmkm’
o0x;
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0
and denote its value at (¢, &2, *+*, £m) by ('l

X3

—

) , then the
zy=E1

above calculation shows that

MS(EI +mt b+ ﬂmt)

m. /0
=M(EI)"')Em)+[MD(£1)"')£m)+ 2(6M> 771‘] Z,
1 Xi/ zy=ty

where, in general f2(xy, -+, %) is the polynomial obtained from
f by replacing the coefficients by their images under D. Hence
if feAlxy, -+, xm), then we have

(12) f’(gl + N1, &+ naly vy En + 77mt) af
=f(£1)"')£m)+fD(£l) v )Em)t+ Z(a ) VES
X3/ zg=4

It is now clear that /(& + m#, - -, €m + nmd) = 0 if and only if
S, -5 Em) = 0 and
(13) Pt + 2(3) w=o.

t=1 X/ zp=ty

The criterion which we gave can now be stated in the following
manner.

Theorem 14. Let U be a subalgebra over & of the field P/® and
let £1, 825+ + + 5 Emy M1y M2y * * s Nm e elements of Py, D a derivation of
WintoP. LetR be the ideal of polynomials f(x1, « 3 xm) € Alxy, -+ -,
Xm) such that f(&1, -+, En) = 0 and let X be any set of generators
for 8 Then D can be extended to a derivation D of [y, - - -, &n)
into P such that §D = n;yi = 1,2, -+, m, if and only if

(14) P b+ 3 (ax‘)w ~ 0

=1
Sor every g e X. If the extension exists, then it is unique.

A special case of the result is the following: If the £; are alge-
braically independent over ¥, then there exists a derivation D
extending D on 9 and mapping & — n; where 1, - -+, 9, are
arbitrary in P. This is clear since in this case the ideal & = 0,
so the condition for extension is trivially satisfied.
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We consider next an arbitrary algebra B, a subalgebra %, and
the set Ds(¥, B) of derivations of A/® into B/®. If Dy, D, ¢
De(¥, B) and a e ®, then aD; and D, + D, are linear mappings
of U into B. Moreover, if 4,4 ¢ ¥,

(ab)(aD1) = a((a6)D1) = a((aD1)é + a(6Dy))
= (a(aD1))é + a(4(aDy))
(a6)(D1 + Ds) = (ab)Dy + (a)D,
= (aD1)é + a(6D,) + (aD3)é + a(4D,)
= (a(Dy, + Dy))b + a(6(D, + Dy)).

This shows that aD; and D, + D, are derivations. Hence
De (Y, B) is a subspace of the space L (A, B) of linear mappings
of A/® into B/®. Next let ¢ be an element of the center of B
and, as usual, let cg denote the mapping ¥ — xc = cx in 8. We
assert that, if D is a derivation of % into B, then Dcg is also a
derivation of ¥ into B. For, it is clear that Dcg is linear and we
have

(46)Deg = ((aD)b + a(4D))er
= (aDcr)é + a((D)cr).

Hence Dcg £ Ds (¥, B).

Nextlet 8 = A and let De(A) = De(Y, A) the set of derivations
in . Let Dy, Dy e Ds(A). Then DD, is a linear transformation
of the space 3. However,

(@8)D1D; = (a(bD1) + (aD1)8)D:
= a(6D1\Dy) + (aD;)(6D1) + (aD1)(8D;) + (aD1D3)é.

Since (aD,)(éD,) + (aD;)(6D;) may be = 0, it is clear that
D, D, need not be a derivation. The “obstruction” (aDs)(4D,) +
(aDy)(8D,) is symmetric in D; and D, so we obtain the same
obstruction for D,D;. These cancel off if we form [D;D,] =
D,D; — D;D,. Henceitis clear that [D,D,] e Ds(%). The expres-
sion [D;D,] is called the Lie or additive commutator of Dy and D,.
Our result is that De(%) is a subspace of the space of linear trans-
formations of % closed under Lie commutators, that is, if Dy, D, €

De(¥), then [D1D,] e De(A). A subspace of (%) having this
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property is called a Lie algebra of linear transformations. The Lie
product [D;D,] is bilinear but it is not associative. The basic
properties which it has are

(15) [DD] = 0, [[D:1D:]Ds] + [[D2Ds]D1] + [[D3D1]Ds] = 0.

The first of these is clear and the second follows from a straight-
forward calculation which we leave to the reader. We note next
the following Leibniz formula for the k-th power of a derivation:

k

(16) (ad)D* = Z(k) (@aD)(6D*), k=1,2, --.

i=0 \1

This is readily proved by induction on k. Now suppose the base
P\ _ .
)a =0fori=1,2, -,

i
p — 1 and any 4 € ¥, so in this case, (16) for £ = p reduces to

(17) (ab)D? = (aD?)o + a(bD?),

which shows that ®s(¥) is also closed under p-th powers, that is,
if De Ds(A), then D? e De(A). A Lie algebra of linear trans-
formations in a vector space over a field ® of characteristic p %= 0
having this extra closure property is called a restricted Lie algebra
of characteristic p.

field is of characteristic p = 0. Then(

EXERCISES

1. Let A be an algebra over ® and let /& A. Verify that the mapping 2 —
[ad] = ad — dais a derivation in 0. Such a derivation is called an inner deriva-
tion of . Prove that, if I; denotes the inner derivation determined by 4, then
Toidy +azdy = 01l + 02lgy, 0 in @ and Iga = [I4,14]. Show also that, if & is of
characteristic p # 0, then Ia» = (JP.

2. Let U be a subalgebra of an algebra B. Verify that a mapping D of ¥ into
B is a derivation if and only if the mapping

=[5 2]

if A into the matrix algebra By of 2 X 2 matrices over B is an isomorphism.

7. Derivations, separability and p-independence. We shall
now take up the study of derivations in a field P/®. We note
first that, if % is a subalgebra of P/®, then any derivation D of
%A/® into P/® has a unique extension to a derivation D of the sub-
field E of P generated by . This is a special case of Theorem 13
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since E = ¥y for M the set of non-zero elements of . Suppose
next that E is a subfield of P/® and D is a derivation of E/® into
P/®. Let £e P. Then if £ is transcendental over P, D can be
extended to E[£] so that £D = 5 is any element of P. This is a
consequence of Theorem 14. Moreover, D can be extended to
the field E(£) so that ¢D = 5. Next assume £ is algebraic over E,
so E[f] = E(¢) and let f(x) be the minimum polynomial of ¢ over
E. Then the ideal  in E[x] of polynomials A(x) such that A(§)
= 0 is the principal ideal (f(x)). Hence Theorem 14 shows that
D can be extended to a derivation of E(£) such that ¢ — 5 if and
only if

(18) f2E®+ f(®n =0,

Jf'(x) the usual derivative of f(x) (cf. V of Introd.). If §is sepa-
rable, then f’(£) £ 0 and (18) gives n = — f2(¥) f/(¢§)~!. Hence
there is only one choice possible for » to give an extension of D.
Thus we see that, if E(§) is separable algebraic over E, then a
derivation of E/® into P/® can be extended in one and only one
way to a derivation of E(¢) over ®. In particular, if D = 0 on
E, then the only extension of D to a derivation in E(§) is D = 0
on E(§). If £ is inseparable, then f’(§) = 0. Hence D can be
extended to a derivation in E(£) if and only if f2(¢) = 0 and, when
this condition is fulfilled, then 5 is arbitrary so D can be extended
to E(£) in such a way that ¢D = yis any chosen element of P. If
f(x) = 2™ + ayx" ' 4+ - -, then fP(x) = (yD)x" ! 4 (azD)x™~2
+ -+ and since f(x) is the. minimum polynomial, the condition
fP(&) = 0 holds if and only if every a;D = 0. Thus, a necessary
and sufficient condition for the extendability of D to E(£), £ in-
separable algebraic over E is that the coefficients of the minimum
polynomial of ¢ over E are D-constants. We shall need this
criterion particularly in the case f(x) = ¥ — a. Then the con-
dition is simply that aD = 0.

Now let P = ®(&, &2, - - -, &) a finitely generated extension
field of ® (that is, a field of algebraic functions). Let & be the
ideal in ®[xy, x2, - -+, ] of polynomials f(xq, %2, -+, &) such
that f(&1, &, -+, &n) = 0 and let ¥ be a basis for . If Dis a
derivation of the algebra ®[,, &, - - -; £,]/® into P/®, D has a
unique extension to P/®. Theorem 14, applied to the derivation
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D = 0 on &, shows that there exists a derivation D of ®[¢y, &, - - -,
E,,,]/<I> into P/<I>—hence of P/® into itself—such that D = y;,
i=1,2, -+, m,if and only if

(19) = (2 )W ~0

0x;
for every ge %.

We have considered the system Ds(P) of derivations of P/®
in the last section and we have seen that this is a Lie algebra of
linear transformations which is restricted in the characteristic
» # 0 case, and Ds(P) is closed under right multiplication by
elements pg, p ¢ P. Hence we see that Ds(P) is a subspace of the
right vector space 2(P) over P (see § 1.1). We shall now in-
vestigate Dg(P) as right vector space over P for P = ®(&y, &, - - -
Em)-

For this purpose we introduce the right vector space P of
m-tuples (p1, p2, * * *» pm), pj € P, with the usual addition and
multiplication by elements of P. If De D = D(P), then we
map D into the element (¢,D, &,D, - -+, £,D) e P, This map-
ping is P-linear and so its image ®' is a subspace of P™ /P. If
£&D =0,1 <i <m then D = 0 since the & are generators of
P = &(§y, £, - - 5 ). This shows that the kernel of the mapping
D — (&D) of D onto D’ is 0 and so the mapping is a P-linear
isomorphism of ® onto D".

Next we shall give a description of the subspace ©’ of P™ in
terms of the ideal ® defined before. We note first that, if fe
P[x1, X2, * * *5 Xm], then the mapping

d
(20) A2 (s 2y - 3 1m) > Z(ai) "
Xi/ zg=y

b

is a linear function on P that is, an element of the conjugate
space P™* of P, Let 4% denote the subspace of P * spanned
by the elements d,, g € %, a set of generators for 8. The condition
(19) on (1, 02, * * 5 nm) 1s that (9;)dy = O for all g e 2. Hence we
see that there exists an element D e Ds(P) such that £D = g,
1 £ i < m,if and only if (9,)d; = O for all ge ¥. This clearly im-
plies that ©’ is the subspace of P™ of vectors incident with the
subspace 4% of P™* (Vol. II, p. 55). We recall that the sum of
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the dimensionalities of ®© and 4% is m. If we replace ¥ by the
complete ideal &, then we have ¥ C 4®; but, since both spaces
have the same dimensionality m — [D’: P]g, it is clear that J¥ =
df. This shows that 4% is the same for any two sets of generators,
a fact which is easy to see directly also. The result that we have
obtained is the following

Theorem 15. Let P = &(&y, &ay - -+, £n) a fleld of algebraic func-
tions over . Let X be a set of generators for the ideal 8 of polynomials
Slxry %oy« « vy xm) such that f(1, 8y 5 Em) = 0 and let De(P) be
the right P-vector space of derivations in P/®. Then

(21) [De(P):P] = m — [d%: Ple
where d¥ is the set of linear functions dg, g € %, defined by (20).

If X = {g1, &, ' -, &}, then it is clear from the definition of 4
and from the relation between dimensionality and determinantal
rank (Vol. II, p. 22) that [d%: P]g is the rank of the matrix

r(ax 1 )z (ax 2 )z = o (ax m)z ~
(ax ) (ax ) = o (ax ) =
- 1 zj——'E] 2/ zf —Ej m/ xf Ej b

Hence the rank of this “Jacobian” matrix and (21) give the di-
mensionality of Ds(P) over P.

We shall now look at these questions in a different way from
the point of view of the structure of P/® and we prove first the
following

(22)

Lemma. Let P = ®(1, 60, -+, Em). Then 0 is the only deriva-
tion of P/® into itself if and only if P is separable algebraic over .

Proof. If p is a separable algebraic element of P and D is a
derivation of P/®, then we have seen that pD = 0. Hence it is
clear that, if P/® is separable algebraic, then D = 0 is the only
derivation in P/®. Nextsuppose P is not separable algebraic over
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®. We may suppose {1, £, * -+, &} is a transcendency basis (» =
0 if P is algebraic). If P is not separable over (¢, &, - - -, &),
then the characteristic is p # 0 and, if 2 is the subfield of ele-
ments of P which are separable over ®(¢y, &, - - -, &), then P D 2
and P is purely inseparable over Z. We assert that there exists a
subfield E D Z such that P = E(p), where the minimum poly-
nomial of p over E is x» — 8, Be E. We have [P:Z] < « and
we can take E to be a maximal proper subfield of P containing Z.
Ifoe P,¢E, P = E(s) by the maximality of E. Since P is purely
inseparable over 2, hence over E, the minimum polynomial of ¢
over E has the form x** — 8, k¥ > 0. Then p = ¢ ¢ E so E(p)
D E. By the maximality of E we have E(p) = P. Moreover,
p? = o = B, so x” — @ is the minimum polynomial of p over E.
Now we have seen that there exists a derivation D of P/E such
that pD is any chosen element of P. If we take pD # 0, Dis a
non-zero derivation of P/®. Next assume P is separable algebraic
over ®(%y, £, - -+, £,). Then since P is not separable algebraic over
®, » > 0, and there exists a non-zero derivation of ®[¢,, - - -, &
over & into P over ®. This can be extended to P; hence in this
case also we obtain a non-zero derivation in P/®.

We can now prove the following result on the dimensionality
of Ds(P) over P.

Theorem 16. If P = ®(&y, £sy -+ -, £m), then [De(P): Plg is the
smallest integer s such that there exists a subset {&;, ki -+, &3} of
{&1, &2, * « «, Em} such that P is separable algebraic over (&, &4y « -
£,)-

Proof. As before, we consider the mapping D — (§,D, £D,

oy EnD) of D = De(P) into P™. We know that this is a P
isomorphism into P™ /P. Let (D, Ds, - -+, D,) be a right basis
of ® over P. Then s < m and the image of © in P™ has the
basis (¢,Dj, £2D;, - -+, EmD;), 1 < j <s. The rank of the s X m ma-
trix (¢;D;) is 5, so we can choose the order of the £’s so that det (¢:D;)
#0,1 <47 <s. SetE = ®(&y, &, - -+, &) and let D be a deriva-

tion of P/E into itself. Then De® so D = ) Djuj, p;eP.
j=1

7

Also £D = 3 (&Dj)p; = 0 for i = 1,2, ---,s. Since det (&:D;)

i=1
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# 0, this implies that every p; = 0 so D = 0. We therefore see
that the only derivation of P/Eis D = 0. Hence, by the lemma,
P is separable algebraic over E = ®(&y, &, - - -, &). Next suppose
{Eiy Eipy -+, £} is a subset of the &s such that P is separable
algebraicover®(¢,, - - -, £&;,). If we re-order the £s we may assume
the given set is {£1, &, - - -, &}. We now use these £'s to map D
into P® by means of the mapping D — (§D), 1 <j <&
Again this is P-linear. If (§D) = 0, then D maps E = ®(£,, &,
-+, &) into 0 and so D is a derivation of P/E into itself. Since
P is separable algebraic over E, the lemma shows that D = 0.
Hence we see that the mapping D — (§,D) is an isomorphism
and consequently s = [D:P]r < ¢. This completes the proof.

Corollary. If P = ®(&y, &2, -, £n), then [Da(P):Plg 27 =
tr. d. P/® and equality holds if and only if P is separably generated
over ®.

Proof. The theorem shows that, if s = [D: P]g, then we may
assume that P is separable algebraic over E = ®(&y, &, - - -, &e).
Since P is algebraic over E, it follows that {£&, &, - -, &} con-
tains a transcendency basis; hence s > . If s = 7, then since P
is separable over E, the set {£1, &, - -, &} is a separating trans-
cendency basis. Conversely, suppose P is separably generated.
Then we know that we may select a separating transcendency
basis from the set of £’s. We may assume this is {£, &5, - -, &}.
Then P is separable algebraic over ®(£y, &, - - -, ;) and the theorem
shows that » > [®:P]g. Since we have shown that [D:P]gp > r
always, we see that [D: Pl = r.

In the remainder of this section we shall assume the charac-
teristic of the field P is p % 0. We shall see that the theory of
derivations in this case is closely connected with the study of
purely inseparable extensions of a simple type. We assume P
is purely inseparable (algebraic) over ®. If p e P, then the mini-
mum polynomial of p over ® has the form x»* — 8 (Lemma 2,
§ 1.9). We call ¢ the exponent of the purely inseparable element p.
Evidently the exponent is O if and only if p e ®. If there exists a
maximum k for the exponents of the elements of P, then we say
that P is of exponent k over ®; otherwise, the exponent of P/® is
infinite.
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We shall be interested particularly in purely inseparable exten-
sions of exponent <1. P has this property relative to ® if and
only if P? C ® where P? is the subfield of p-th powers of elements
of P. Hence it is clear that, if P is any extension of ® of charac-
teristic p, then P is purely inseparable of exponent <1 over &’ =
®(P?). We shall now say that an element p € P is p-dependent in
P over ® on the subset S of P if p e®'(S) where = &(P?). We
indicate this relation by p <, § (assuming P and & are fixed in
our discussion). We proceed to show that this is a dependence
relation in the sense of § 3. First, it is clear that, if p &S, then
pe®(8); hence p <, 8. If p <, § we have p e ®'(S) and, since
®’(S) is the union of its subfields ®'(F) where F'is a finite subset of
8, then p <, F for some finite subset F of §. If p e®'(§) and
every o £ § is contained in ®'(T), then p e®'(T). Henceifp <, §
and every o e§ satisfies ¢ <, T, then p <, T. It remains to
check the exchange axiom. This states that, if p e ®'(S) and
p ¢ (S — {a}) for some ¢ in §, then ¢ e®'((§ — {a}) U {p}).
Set T = § — {o} and consider the subfields (T, p, o), ®'(T, p),
®'(T, o), ®'(T) for which we have the diagram:

(T, p, 9)
QI(T) p) (‘b,(T) 0’))

®'(T)
We have &' (T, p) D ®'(T) and &' (T, ¢) D ®'(T). Also p? e®'(T)
and o? e ®'(T). It follows that [®'(T, ¢):®'(T)] = p = [®'(T, p):
®'(T)]. Since p e®'(T, a), (T, p, 0) = ®'(T, o) so [&'(T, p, 7):
&' (T)] = p. It follows that &' (T, p, d) = &'(T, p) = (T, g) so
0 <, TU{p} = — {o}) U{p}. This completes the verifica-
tion of the axioms for a dependence relation.

We can now apply the general theory of dependence relations.
Accordingly, we call a subset § of P p-independentif ¢ <, § — {o}
for every oeS. The general basis theorem implies that there
exists a p-independent subset B of P such that every element is
p-dependent on B. The latter condition is equivalent to P =
®'(B). The set B is called a p-basis for P over . Any two p-
bases have the same cardinal number.
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If F = {p1, p2, ' *» pm} is @ p-independent set, then p,? = B, ¢
®" and p; ¢ ®'(p1, p2, * * 5 pi—1). Hence [ (py, -+, p:):® (py, - - -,
pi—1)] = p and [®(p1, - - -, pm):®'] = p™. It follows that the p™
elements

(23) p1¥ipa® <o putn, 0 < ki < p,

form a basis for ®(py, p2, * - *» pm) over . Conversely, if this
condition holds, then it is immediate that F'is a p-independent set.
We shall find it useful to apply this criterion in the following
equivalent form: F'is p-independent if and only if the only relation
of the form

(24) Zakl...kmplkl cee pmk"‘ = 0, 0<k< ?

with the o’s in &’ is the trivial one in which every oy, - -4, = O.

We note also that any p-independent subset .4 can be imbedded
in a maximal p-independent set B and such a set is necessarily a
basis.

We return to the consideration of derivations in any field P/®
of characteristic p. If E is a subfield of P/® and D is a derivation
of E/® into P/®, then ¢?D = pe?~!(eD) = O for any e¢in E. The
set of D-constants is a subfield I of E over & and the remark just
made shows that T D ®(E?). If y el and e¢ E, then (ve)D =
y(eD). This shows that D is a derivation of E/T into P/T". Since
®(E?) C T, every derivation of E/® into P/® is a derivation of
E/®(EP) into P/®(EP) and the converse is clear. Hence, in con-
sidering the derivations of E over & into P over &, we may as well
replace ® by ®(E?) and so we may assume E? € &®. In other
words, we may assume E is purely inseparable of exponent <1 over
®. It is now an easy matter to determine the derivations of E
over ® into P over ®. This is given in the following

Theorem 17. Let P be an arbitrary field of characteristic # 0,
® g subfield and B an intermediate field. Let B be a p-basis of E
over ®. Let § be an arbitrary mapping of B into P. Then there
extsts one and only one derivation D of E over ® into P over ® such
that eD = 6(e) for every e e B.

Proof. As we indicated, there is no loss in generality in assum-
ing E is purely inseparable of exponent <1 over ®. Also, we may
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suppose E D & which means that B is non-vacuous and the ex-
ponent of E/® is exactly one. Let ee B and set B, = B — {¢}.
Then ¢ ¢ ®(B,) so the minimum polynomial of e over ®(B,) is of
the form x» — B. Hence there exists a derivation D, of E =
®(B,, ¢) over ®(B,) into P/® sending ¢ into the element 4(e). If
F = {e, € -, ¢} is a finite subset F of B, then Dp = D, +
D,+---+ D, is a derivation of E/® into P/® such that
e&Dr = 8(e;), i = 1,2, ---,7. If Gis a finite subset of B con-
taining F, then the restriction of Dg to ®(F) coincides with the
restriction of Dy to ®(F). Now if £ is an arbitrary element of E,
we can choose a finite subset F' such that £ e (F) and we can
map § — £Dp. Then it is clear that £éDp is the same for any
finite subset such that £ e®(F). Hence the mapping D:¢ —
£Dp is single-valued. It is immediate that D is a derivation of
E/® into P/® such that eD = §(e) for every ee B. Since E =
&®(B), D is unique.

Let Ds(E, P) denote the set of derivations of E/® into P/®.
We consider Ds(E, P) as right vector space over P as we did
before for Dg(P) (cf. § 1.1 and p. 176). Then we have

Corollary 1. [Ds(E, P):Plg < © if and only if E/® has a
JSinite p-basis. Then [De(E, P): Plr =|B].

Proof. Let B be a p-basis for E over . Let A(B, P) be the set
of mappings of B into P which we consider as a right vector space
over P in the obvious way: (8; + 85)(8) = 8:(8) + 82(8), d: € 4,
BeB and (8p)(B) = 8(8)p, 64, BeB, pec P. We now map
Ds(E, P) into A(B, P) by sending D e Ds(E, P) into its restric-
tion § to B. This mapping is linear and, since E = &(B), D —
is an isomorphism. Moreover, the theorem shows that the map-
ping is surjective. Now it is clear that [A(B, P): P]g is infinite
(even uncountable) if B is infinite. Moreover, if B is finite, say,
B = {84, B2, - -+, B+}, then the r-mappings §; such that §;(8;) =
d;; (the Kronecker §;;) form a basis for [A(B, P): Plzg. Hencer =
[A(B, P):Plp =.[Da(E, P): Plg.

In the special case P = E = ®(¢;, &, -+, &m) this corollary
gives, in addition to Theorem 15 and 16, still a third way of
evaluating [Ds(P): Plr in the characteristic p # 0 case, namely,
this dimensionality is the number of elements in a p-basis for
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P/®. A second consequence of Theorem 17 is the following

Corollary 2. Every derivation of E/® into P/® can be extended to
a derivation of P/® if and only if the elements of any p-basis B of
E/® are p-independent in P/®.

Proof. If the condition holds, then B can be imbedded in a p-
basis C of P over ®. If D is a derivation of E/® into P/®, then
the restriction 8z of D to B can be extended to a mapping 8¢ of
C to P. The corresponding derivation D’ of P/® into itself is an
extension of D. On the other hand, suppose B is not p-independent
in P over ® and let 8 be an element of B which is p-dependent in
P on Bg =B — {B}. If D’ is any derivation in P such that
B'D’ = 0 for all B’ e By, then since B e ®(P?, Bg), B0’ = 0. The
theorem shows that there exist derivations D of E over ® into P
over & such that ’D = 0, 8’ e Bg but 8D = 0. Clearly, such a
derivation cannot be extended to P.

Our next two corollaries will deal with the special case E = P.
The proofs are quite similar to those we have just given so we
leave these as exercises.

Corollary 3. Let P be any fisld of characteristic p = 0 over ®.
Then an element p e P is in & = &(PP) if and only if pD = 0 for
every derivation D of P over ®.

Corollary 4. A subset S of P is p-independent if and only if for
every pe S there exists a derivation D of P over ® such that pD # 0
and eD = 0 for every o #% p in §.

We shall now specialize our results by taking ® to be the prime
field ®y (=¢ I,). A derivation of E/®, into P/®, will simply be
called a derivation of E into P. We remark that, if D is a mapping
of E into P such that (e¢; + €)D = ¢D + e2D and (e1e2)D =
(e1D)es + €1(e2D), then D is a derivation of E into P in the
present sense, since (ae)D = a(eD) for o e $g is a consequence of
the first property. We note also that ®,(E?) = E?. Hence Corol-
lary 3 gives a criterion for an element to be a p-th power. We
shall now investigate the criterion given in Corollary 2 that the
derivations of E into P be extendable to derivations in P. We
proceed to show that the condition given is equivalent to sepa-
rability, in the general sense, of P over E. First assume the con-
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dition: every p-basis of E (over &) is p-independent in P. Let
P1, P25 * * *» Pn € P and suppose we have Ze;p,? = 0 for ¢; # 0 in E.
If Bis a p-basis for E, then we can write ¢; = Zv,55,...5,081%82% - - -
B.% where the B;eB, 0 <k; <p, ¥iry--r, e E?2. We have
Eﬁkl...kﬁl"l s ﬂ,.k" = 0 where

5k1...]¢, = Z‘Yik;---krpzﬁepp-
i

Since the B’s are p-independent in P we have 8,...,, = 0. We
can write Yikyeooky = nikl---kfp) Nikys ke in E. Then 0= 6kl"'kf =
Z Nikr - .krppip gives Z Nikys o v krPi = 0 for all k]'. SinCC the € #= 0
- -

1
one of these relations is non-trivial, so we have shown that any
non-trivial relation of the form Zep® = 0, ;& E, p; ¢ P implies
one of the form Zn;,p; = 0, n; ¢ E. This is equivalent to sepa-
rability of P/E. Conversely, assume P separable over E and let
B1, B2, - -+, B, be elements of E for which we have a relation
27,61...,0,;31’“;32"2 cee ﬂ,k" = 0, Yy by = Nhyoo kel € P20 < ks < .

Let {ps} be a basis for P/E and write ngy.- - = 2 Ma- - -briPss
Nsin E. Then we have =

0 = Zyiy.,B% - o+ B = D pips®
3

where p; = 25 Ny 1riB1M185%2 - - - B,%. Since P is separable over
k
E, Zu:p? = 0 implies every u; = 0 so
ZXkl...k,,-"BIklﬂzkz s ﬂrk' = 0, l = 1, 2, R <

If some v4,...5, # 0, one of the Ay,...;,: # 0 and so we obtain a
non-trivial relation with coefficients in E? involving the powers
Bi* .- Bk This implies that, if {81, B3, - -, B,} is p-depend-
ent in P, then it is p-dependent in E. It is clear that this implies
the condition of Corollary 2. This corollary therefore gives the
following

Theorem 18. The following two conditions on a field P/E of
characteristic p are equivalent: (1) P/E is separable, (2) every deriva-
tion of B into P can be extended to a derivation in P,
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EXERCISES

1. Let P = &(p) where p** £ ® butp? ¢ ®. Show that {p?} is a p-independent
subset of E = ®(p?)/® but {p?} is not a p-independent subset of P/®.

2. Let B be a p-basis for P over ® of characteristic p # 0. Show that for
every positive integer k, P = &(P**, B).

In ex. 3, 4, P is purely inseparable of exponent one over & and [P: ] = p™ <
o0,

3. (Baer) Show that there exists a derivation D of P/® such that the only D-
constants are the elements of . (Hint: Let E be a proper subfield of P and sup-
pose we already have a derivation D in E/® satisfying the condition. Let
peP, ¢ E. We can choose a 8 € E which is not of the form €D, € in E and ex-
tend D to E(p) by specifying that pD = 8. Then the only D-constants of E(p)
are the elements of ®.)

4, Show that the D in ex. 3 can be chosen so that D is nilpotent.

5. (Faith) Let P be a field of algebraic functions over & (any characteristic)
and let B over ® be a subfield. Show that [Ds(P):Plz > [Ds(E): Elz.

6. Let P = ®(&, &, - -+, Em), D of characteristic p # 0. Show that tr. d. P/P
does not exceed the number of elements in a p-basis for P/®.

7. Let P and ® be as in ex. 6. Show that, if (Dy, Dy, * - -, D,) is a right P-basis
for Da(P), then the elements py, ps, - - -, p- form a p-basis for P over ® if and only
if the matrix (p;D;) is non-singular. Show also that, if py, pg, - - -, p, is a p-basis,
then the elements Dy, De, - -+, D, form a right P-basis of Ds(P) if and only if
(p:D;) is non-singular.

8. Let P = ®(&, &2, ++ +, &m). Show that P/® is separable algebraic if and
only if there exist m polynomials gi(x1, X2, «« +, ¥m), * * *, Em(¥1, X2,  * +, ¥) in
®[x1, x2, + + -, ¥m] such that gy, &2, - - -, &») = 0 and the Jacobian

det ((g—g—x;):k_&) # 0.

9. Let D be a derivation in P/®, T the subfield of D-constants. Prove that
th.e elements p1, pg, * * *, pm are I'-dependent if and only if the #ronskian deter-
minant

P1 P2 *tt Pm
oD 02D )
D™=l D™l ... p,Dm1

8. Galois theory for purely inseparable extensions of exponent
one. In this section we shall develop a Galois theory for purely
inseparable extensions of exponent one in which the role of the
Galois group of the classical theory is taken by the Lie algebra of
derivations.

First, let P be purely inseparable of exponent <1 over ® and
suppose P has a finite p-basis B = {p1, p2, - - -, pm} Over ®. Then
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[P:®] = p™ and the elements p;®ps* - - - p,,*m 0 < k; < p, form
a basis for P/®. We have p,» = B; e®. As before, we let Da(P)
denote the set of derivations of P/® and we recall that Ds(P) is a
restricted Lie algebra of linear transformations in P over ®. This
means that Ds(P) is a subspace of the space £ (P) of linear trans-
formations of the vector space P over ® such that, if Dy, Dy e Ds(P),
then [D1D2] = D1D2 —_ Dle £ @Q(P) and Dlp € @Q(P). We
have seen also that Ds(P) is g right vector space over P relative
to Dp = Dpg for p in P. Also we know that [Ds(P): Pl = m
(Cor. 1 to Th. 17) and, if p is an element of P such that pD =0
for every D e Ds(P), then pe® (Cor. 3 to Th. 17). This last
result gives one half of the Galois correspondence which we shall
establish.

To obtain the second half of this correspondence we now sup-
pose that P is any field of characteristic p £ 0 and we do not
specify any subfield as base field. As at the end of the last sec-
tion, we consider derivations in P, which can be defined either as
derivations of P over its prime field or as endomorphisms D of
(P, +) such that (pe)D = (pD)o + p(¢D), p, s ¢ P. We suppose
now that we are given a set D of derivations in P with the follow-
ing closure properties: (1) D is closed under addition. (2) D is
closed under Lie commutation [D1D,]. (3) D is closed under p-th
powers. (4) ® is closed under right multiplication by elements
prs p € P. The conditions (1) and (4) amount to saying that Disa
subspace of the right vector space of endomorphisms of the addi-
tive group (P, 4-) considered as a space over P relative to 4p =
Apr. Any set of endomorphisms of (P, 4-) which satisfy (1) to
(4) will be called a restricted P-Lie algebra of endomorphisms of
(P, +).* We can now state the following theorem.

Theorem 19 (Jacobson). Let P be a field of characteristic p 5~ 0
and let D be a restricted P-Lie algebra of derivations in P such that
[D:Plrg = m < o, Then: (1) if ® is the subfield of D-constants,
then P is purely inseparable of exponent <1 over ® and [P:®] =
2™ (2) if D is any derivation of P over ®, then D & D; (3) if (D1, Do,
+y Dy) is any right basis for D over P, then the set of monomials

* It should not be inferred from this terminology that D is an algebra over P as base

field. One of the conditions for an algebra is that [DiDslp = [Dip, Do] = {D1, Dop] and
this does not hold for every p (see equation (26) given subsequently).
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(25) 1)1":11)2":2 e Dmkm) 0 < ki < 2 (Dio = 1)

is a right basis for the ring Q(P) of linear transformations of P over
® considered as a right vector space over P.

Proof. The idea of the proof we shall give is basically the same
as that we used for the Galois theory of automorphisms: we shall
use the given set D to define a set of endomorphisms ¥ satisfying
the hypotheses of the Jacobson-Bourbaki theorem (Th. 1.2). In
the present case we let U be the set of right P-linear combinations
of the endomorphisms given in (25). Then it is clear that ¥ is a
right vector space over P and that [A:P]zp < . It remains to
show that ¥ is a subring of the ring of endomorphisms of (P, +)
and for this it is enough to show that 1 € % and that ¥ is closed
under multiplication. The first of these is clear since % contains
D,°D,® - .- D,,° = 1. To show closure under multiplication it is
enough to prove that every product (D;%D,* ... D,*p)D; e %
for p e P; for, if this holds, then one sees easily that every product
(Di* -+« Dy*mp)(Dyt - -+ Dp'mg), g € P, is contained in A. If D
is a derivation in P, the condition (£p)D = (¢D)p + £(pD) can
be written in operator form as:

(26) prD = Dpgr + (pD)r.

ThlS lmplles that (lel st Dmk"'p)D]' = lel s Dmk"‘D]'p +
D% ... Dp*(pD;). Hence toshow that ¥ is closed under multipli-
cation it is enough to show that D,* ... D, *=D; e % for every j =
1, ---,mand0 < k; < p — 1. Weshall now assign an (apparent)
degree N =k, + ky +-- -+ kn to the monomial D %D,k ...
D,*» and we shall show that D% ... D,*=D; is a right P-linear
combination of monomials (25) of degree <N + 1. This is clear
if N = 0 so we assume it holds for every D" - - D,!» of degree
2Zl; < N. Suppose first that j = m. Thenifk, <p —1,D,& ...
D,*D,, is one of the monomials (25) of degree N + 1 so the
result holds in this case. If k,, = p — 1, then (D;* ... D, *»)D,,
=D/® ... D,_1*-2D,? and D,? = ZD;u;, since D is closed
under p-th powers. Hence

lel v DmkmDm = lekl v Dm—lkm_lDt'”'im

so the induction hypothesis applies to show that D,* - .. D,*=D,,
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is a right P-linear combination of monomials (25) of degree
<N + 1. Thus we have the result if j = m and so we can now
make an additional induction hypothesis, namely, that the result
asserted holds for D% --. D, *D,forall/ > j. Since N = Zk; >
0, some k; # 0 so we may assume k£, # 0 and k£, =0 if s > r.
Then we have (D)% --- D, *»\D; = (Dy* --- D,*)D;. 1If j > r,
the product is a monomial (25) so the result holds in this case. If
J = r, the argument given before for j = m is applicable to prove
the assertion. Hence it remains to consider the case: j < 7.
Since ® is closed under commutation, D.D; = D;D, + ZDyv;,;,
virj € P. Then

Di* -+ D¥D; = Di# -+ DFD;D, + 3 Di¥ - - - DDy,
h

and every D% - .. D,*~1D, is a P-linear combination of monomi-
als (25) of total degree <N. Also this holds for D% ... D,*=1D;
and, since r > j, multiplication on the right by D, gives a
P-linear combination of terms (25) of total degree <N + 1.
This completes the proof of our assertion and shows that % is a
subring of the ring of endomorphisms of (P, +). It is clear from
the definition of ¥ that [A:P]z < p™ and equality holds only if
the monomials (25) are right P-independent and thus form a
basis. We can now apply the Jacobson-Bourbaki theorem (Th.
1.2) to % and we obtain the following conclusions: If & is the sub-
field of elements « of P such that ag4 = Aap for all 4 ¢ U, then
[P:®] = [A:P]gr and A = 2:(P). Now it is clear that a4 = Aag
holds for all A4 e A if and only if agD = Dag for all D in 9, and
since agD = Dog + (aD)r the condition for this is aD = 0 for
all De ®. Hence we see that & is the subfield of D-constants.
If p is any element of P, then p? is a D-constant. Hence P is
purely inseparable of exponent <1 over & so we have [P:®] =
p™ where m’ is the number of elements in a p-basis of P/®, and
m' < m since [P:®] = [A:P]g < p™. Also we know that, if
Ds(P) is the set of derivations of P/®, then [Ds(P):Plg = m'. If
ae® and De D, then (ap)D = a(pD) + (aD)p = a(pD) so De
Ds(P). Thus D S Ds(P) and, since [D:Plg = m, we must
have © = Ds(P) and m = m’. Then D contains every deriva-
tion of P/® and [P:®] = p™. This completes the proof.
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We can now establish a Galois type correspondence between the
following two collections determined by an arbitrary field P of
characteristic p: Let & be the collection of subfields & of P such
that P is purely inseparable of exponent <1 over ® and [P:®] <
and let 2 denote the collection of derivation algebras © in P
which are restricted P-Lie algebras of finite dimensionality over
P. If De 2, let C(D) be the subfield of D-constants, and, if
P ¢ &, let Ds(P) be the set of derivations of P/®. Then C(Ds(P))
= & and D¢y (C(D)) = . In particular, we obtain a 1-1 cor-
respondence between the collection of intermediate fields of P/®,
P purely inseparable of exponent <1 over &, [P:®] < « and the
restricted P-Lie subalgebras of the Lie algebra Ds(P) of deriva-
tions in P over ®.

EXERCISES

1. Let ®[x, y] be the polynomial ring in indeterminates x, y over a field of
characteristic p, ¥ any algebra over ®. Use the identities (x — y)? = ¥ — y? and
(x —?~1= > xi57in D[, y] to prove the following identities in U:

i4imp—1
r——-——p—q
27 [ [tala] - - - a] = [4a”]
—pP — lﬂ
(28) [---[tala] ---al = 3 a%adl
fjm=p—1

(Hint: Note that [6a] = &(ag — a1) where ag and ay, are the right and left multi-
plications determined by a in %. Specialize the indicated identities by taking
= ag, y = ar in the commutative algebra of linear transformations generated
by ar and ar.)
2. Let ¥ be as in ex. 1, Y[#] the polynomial algebra over ¥ in an indeterminate
x. Leta, b€ and write

»—1
(29) (@ + 62)? = a? + Y sda,b)x’ + b2x?.
T
Use the fact that Zaix’ — Zigxi~lis a derivation in A[x] and (29) to obtain
(30) Y (o4 b)iba + b = 3 isila, Bt
t4jmp—1 iz

Use this relation and (28) to prove the following identity

@1 G+ B =a?+ 52+ 5 sia,b)
1

where #5:(a, 4) is the coefficient of ¥~ in

- p—1 ,
[---[[b,a—i—bx]a—i-z;‘]---a+bx].
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3. Let P = ®(py, « - -, pm), P of characteristicp = 0,p = B; P, [P:D] = p™.
Let D be a derivation in P/® such that ® is the subfield of D-constants (see ex. 3
in § 7). Show that the minimum polynomial of D as linear transformation in P
over ® is a p-polynomial of the form

(32) W 4 B 4 B - B, Bie D

Show that there exists an element p € P such that (p, pD, - - -, pDP" ~1) is a basis
for P over . (This is an analogue of the normal basis theorem for separable
normal extensions.) Show that every element in the algebra £s(P) of linear
transformations in P over ® can be written in one and only one way in the form

(33) 16y + Doy + D6y + -+ D*"~lgym_y, ;€ P.

4. Let P, ® be as in ex. 3, Da(P) the set of derivations of P/®. Let § be a
subspace of the right vector space Ds(P) over P which is closed under p-th
powers. Prove that  is also closed under commutation so § satisfies all the
conditions of Theorem 19.

5. Show that if D is a derivation in P and 5 € P, then 9D’ = i (;) Di

f=0
(nD*")g. ’
6. Let D be a derivation in an algebra [ and let [#, D] be the set of formal

m

polynomials Y #%s;, 2; ¢ A. Equality, addition, and multiplication by elements
0
of ® are defined as for ordinary polynomials. Multiplication is defined by

(34) (zra)(zoit) = % () #*4@Dins;
T 7 i3k \k
Verify the associative law and hence show that [z, D] is an algebra.

7. Let D be a derivation in a field P of characteristic p # 0, ® the subfield of
D-constants and assume [P:®] = p™ < «. Then ex. 3 implies that there exists
a p-polynomial (32) such that D*" 4 8,D*" " 4...48,D =0, B;ed. Let
P[z, D] be the algebra of differential polynomials defined as in 6. Verify that ify
is any element of ®, then w(y) = #" + #"'8; +- - -+ #B8,, — v is in the center of
Plt, D]. Let (x(y)) denote the ideal generated by n(y). Show that, if A, =
Pz, D1/(x(y)), then [A,:P] = p?™. Show that Ay = Ls(P).

8. Same notations as 7. Let p be any element of P. Show that there exists an
automorphism of P[#, D] such thats — ¢+ p andy — 5 for everyn € P. Note
that [p, #] = pt — #p = pD by (34) and deduce from this and (31) that ¢+ 4 p)? =
4 (p® + pDP~Y). More generally prove that

(35) ¢+ o = 4 pt#l
where
(36) P! = g7 - (pDP=1P - (pDP 1P o pDP L,

9. Continuation of ex. 7 and 8. Show that the automorphism of Pf#, D] such
that7 — 74 p, 7 — 7,7 € P, sends the ideal generated by «(y) into itself if and
only if p satisfies

37 o™ 4 Biplr" 1 4 BoplP™ ™ oo 4 B,p = 0.
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10. Continuation of ex. 7 through 9. Prove that there exists an automor-
phism of Ls(P) sending every 5 € P into itself and sending D — D + 1p, p€ P,
if and only if p satisfies (37). Use this to prove the following analogue of Hil-
bert’s Satz 90: An element p satisfies (37) if and only if it is a “logarithmic deriva-
tive” (¢D)e ! of some ¢ in P.

11. Prove the following analogue of the result that the first cohomology
group HY(G, P*) = 0 in the Galois case (cf. § 1.15). Let P be a purely insepa-
rable extension of exponent one over ®, [P:P] = p™ < = and let D be the re-
stricted P-Lie algebra of derivations of P over . Let D — u(D) be a P-linear
mapping of D into P (thus an element of the conjugate space D* of D) such that

(38) u(D?) = w(D)? + w(D)DP~.

Then there exists a ¢ in P such that u(D) = (¢D)e ! for all D.
12. Show that, if %, is as in ex. 7, then %, = U; if

(39) 8 —y = pl" + Bipl" 1 + Bopl" I -+ + Bmp

(as in (37)) for some p £ P. Hence use ex. 7 to show that % 22 &, if there exists a
p € P such that y = pl#" 4 Biplr"~U 4 ... 4 Bnp. (The conditions given here
are also necessary.)

13. Apply ex. 1 to prove the following result on polynomials with integer co-
efficients: Let g(x) be any such polynomial and define gi(x) = gi—1(x)g’(x),
g1(x) = g(x) where / is the standard derivative. Show that for any prime p,
gp—1'(x) = 7(x?) (mod p) where 9(x) is a polynomial with integer coefficients.

14. Let v and & be elements of ® which are not p-th powers in ® of charac-
teristic p # 0. Use ex. 12 (both necessity and sufficiency) to prove that

(40) (%o® + xp—1) + ¥1®y + xPy? 4o xp_.l"‘y"'l =§
has a solution for x; € ® if and only if
(41) (3P + yp—1) + 178 + yP82 4+ + yp_ P8P =

has a solution for y; £ ®.

15. Let D be a non-zero derivation in a field P of characteristic p. Show that
the operators 1, D, - - -, DP~! are right linearly independent over P and that, if
p: e P, then po + Dp1 +- -+ DP7p,_1 is a derivation only if every p; = 0,

k=1
i # 1. Show that, if p € P, then (Dp)* = D¥p* + D(pE)*—! 4 > Dp; where
P

pie P and E = Dp (= Dpg). Use these results to prove the following formula
which is due to Hochschild:

E? = (Dp)? = DPp? + D(pE*™Y).

16. Investigate the possibility of a Krull type Galois theory for purely in-
separable extensions of exponent one of infinite dimensionality.

9. Higher derivations. The notion of a derivation can be
generalized in the following way.

Definition 5. Let A be a subalgebra of an algebra B over ®. Then
a sequence of mappings D™ = {Dy = 1,D,, +++, Du} of U into
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B i5 called a higher derivation of rank m of ¥ into B if every D; is
d-linear and
j

(42) (a6)D;j = 2 (aD)(8D;—3), j=0,1,---,m

i=0
holds for every a, b € . A higher derivation of infinite rank is an
infinite sequence {Do = 1, Dy, - -} of linear mappings of U into
B such that (42) holds for allj = 0,1,2, - --.

Clearly, if {Doy, Dy, D,, - --} is a higher derivation of infinite
rank, then the section {Dy, D, - - -, D,,} is a higher derivation of
rank m and any section {Dy, Dy, -+, D,}, ¢ < m, of the higher
derivation {Dy, ‘-, Dn} is a higher derivation. The mapping
D, is a derivation of % into B.

Let A = B = ®[x] where x is transcendental and let D; be the
linear mapping in % whose effect on the basis (1, x, %%, ---) is
given by
(43) «mD; = (”’) i

?

where we agree that <m> =0if i > m. Then
1

xm+nDj = (m + 77) xmtn—i

and /
(<7D (x"Dss) = (?) ( j . i) A
Since ;Zo (?) (j i z') = (m j— n) , we have iéo (*™D.)(x™D;_;)

= x™*"D;. This shows that (1, Dy, D,, ---) is a higher deriva-
tion of infinite rank in &[x].

If & is of characteristic O, then (43) shows that 7!D; = D,?
where D, is the usual standard derivation in ®[x]. Thus D; =

1 . . . e
—,—|D1‘. More generally, if D, is a derivation in any algebra of
7!
1 .
characteristic 0 and we define D; = 7 D, then {1, Dy, Dy, - - -}

is a higher derivation of infinite rank in %. This follows im-
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mediately from Leibniz’ formula: (24)D’ = Z( )(aD (D)
i
which gives (a)(Di/j!) = 2(aD'/iY)(6D'~%/(j — i)!). This is
1.
(42) fOI' Di = z—_TDll.

The device we used for reducing the study of derivations to
homomorphisms can be generalized so as to apply to higher deriva-
tions. Let ™ be the algebra over & with basis (1,74, ---, ™)
such that /%! = 0. Hence T™ =~ &[x]/(x™*!). Let 8™ =
B QR:IT™. If D™ = {1,D,, ---, Dy} is a higher derivation

of rank m of % into B, then we introduce the mapping s(D‘™) of
% into B™ as

(44) a — a+ (aDy)t + (aDy)t2 + - - -+ (aDy)t™.

Evidently 5 = s(D™) is linear. Also
a*h®t = (aD)et Y- (bDy)t*
0

(aD )(6D;_;)¥

] ]

oM§ o[V]§ oMs
g i
)

7

= (ab)*.

This shows that s is a homomorphism of ¥ into 8. We have
the homomorphism w:a¢ + @1 + a2® ++ - -+ a,4™ — 4y, 2:¢ B
and ¢°" = g for every 2 ¢ A. As in the special case of derivations,
this property is characteristic of the homomorphisms s obtained
from higher derivations of rank m.

Similar considerations apply to higher derivations of infinite
rank. The place of the algebra ™ is now taken by the algebra
B[[¢]] of power series

(45) [72)) + al -+ ﬂztz + .-

where the 2; ¢ 8 (cf. Vol. I, p. 95). As before, if {1, Dy, ---} is
a higher derivation of infinite rank, then the mapping s:2 — 2 +
(@D1)t + (aD3)#® + - - - is a homomorphism of ¥ into B[[]] such
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that 2* = 4 for all 2 ¢ % where = is the homomorphism 2z —
ao. Conversely, if 2 — 4° is a homomorphism of % into B[[/]]
such that 2" = 4, ae¥, then we write 2°* = 2 + (aD))t +
(aD3)t2 +--- and {Dy = 1, Dy, D,, ---} is a higher derivation
of % into B.

If {D;} is a higher derivation of rank m (infinite rank) of % into
B, an element a e A is a constant relative to the higher derivation
if aD; = 0 for all i > 0. This simply means that 2* = 4 for the
homomorphism associated with the higher derivation. Hence it is
clear that the set of constants is a subalgebra of the algebra .

Our purpose in this section is to give just an introduction to
higher derivations and to examine briefly higher derivations of
purely inseparable fields. We suppose now that P/® is a field of
characteristic p £ 0. Let E be a subfield of P/® and let D™ =
{1, Dy, -+ -, Dy} be a higher derivation of rank m of E/® into
P/®. In general, if D, =Dy =---=D,; =0 but D, # 0,
then we shall say that the higher derivation is of order 4 and D™
is called proper if D, = 0. If the order is ¢, the associated homo-
morphism s = s(D‘™) of E into P™ has the form

(46) € — e+ (eD)r? + (eDgy1)t?tt +- -+ (eDn)t™,
where eD, # 0 for some ¢ in E. We shall use this to prove the
following

Theorem 20. Let P/® be a freld of characteristic p = 0, E a sub-
Jeld of P/®, D™ g higher derivation of rank m and order q of E/®
into P/®. Let T be the subfield of D™ -constants of E and let p° be

m

the smallest power of p > —. Then E is purely inseparable of
q

exponent e over I.

Proof. We have to show that ¢*’ eI for every ¢ ¢ E and that
there exists an e ¢ E such that ¢ ¢T'. The first is clear from
(46) since

(e”')s = (Es)p‘ = (e + (qu)tq +--. .)p'
= EP' + (qu)P'tP‘q + c e = Ep..
Hence ¢ ¢ T'. Now choose e so that eD, 0. Then (&) =
e + (eD )P4 4 ... Since p*l¢g < m it is clear that
(¢)* # . Hence * ' ¢ T.
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We consider next a purely inseparable simple extension field
P = &(£) where #*° — « is the minimum polynomial of ¢ over &.
Let {D;} be the higher derivation in the polynomial algebra ®[x]
defined by (43) and let DY = {1, Dy, -+, Dye_;} be the
higher derivation of rank p* — 1 which is a section of this higher
derivation. We have (¥* — a)D; = 0 for 1 <5 < p¢ — 1 which
together with the defining relations (42) imply that the principal
ideal & = (¥ — ) is mapped into itself by every D;. Hence
every D; induces a linear mapping, which we denote again by D;,
in P = &) =~ ®[x]/3. The conditions in ®[x] for D; go over to
the same conditions (42) for the D; in ®(¢). Hence we obtain a
higher derivation D®*~D in (£) such that

(47) EmDi = (?)Em_i) m = 0) 1) o ')pe - L

We shall now show that the subfield I' of {D;}-constants for
D@~V is & Thus suppose & c I'. Then the minimum poly-
nomial of £ over I'is x*’ — B with f < eand 8inT. Then ¢ ¢TI.
On the other hand, the definition (47) gives £’D,s = 1. This
proves our assertion.

We assume next that P is a purely inseparable extension of &
which is a tensor product of simple extensions. Py, Py, ---, P,,
P; = ®(¢£;). This means that P = ®(¢y, &, - - -, &) and the mono-
mials &%,k ... g% 0 < k; < p%, form a basis for P over &.
If we set ®; = ®(&y, - - -, &1, Ei41, - 5 £r), then P = &,(§;) and
® N®, N---N& =& There exists a higher derivation in P
whose constants are the elements of ®;. Hence it is clear that ® is
the subset of P of elements which are constants relative to all the
higher derivations of finite rank in P over ®.

EXERCISES
1. Let { D;} be the higher derivation in ®[x], » transcendental, defined by (43).
Show that
S+ @) = fla) + (fD)(@)x + (fDe)(@)x? +---.
2. Let ®[x1, x2, + *+, ¥m] be the algebra of polynomials in indeterminates x;

over a field ®. If (ky, ks, - - -, k) is a sequence of non-negative integers %; we de-
fine a linear operator Dyg,...x, in ®lx1, ¥2, - -+, ¥m] by its action in the basis
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(e1™xg™ - -+ xm™) as follows:
0if any k; > n;

n n Pm
(xl"'lxz"ﬁ e xmnm)Dklng-km = k:)(k:) o (km) xlﬂl"klxz"ﬂ_ka e xm"m—’fm
ifks < m
Show that, if f(x1, x2, *«+, %m) € Blx1, %2, + =+, ¥p] and ay, qa, *+, am € P, then
St a2 +ag, o0, wm + am) = ; (fDity - k) oy 1F1202%2 < ¢« g,

3. Let f(x1, -+, %m) be a homogeneous polynomial of degree #» < m in
®[x1, x2, + -+, ¥m). Suppose there exists an a = (a1, as, + * *, am), a; € P, such
that (fDi,. . k) apma; = 0 if 2k < 7 — 2 and

(fDrjty- + ko) a1 Fiagbe « o gptm 3£ 0,
ky kgt ol men—1
Show that the equation f(x1, %2, - * -, ¥m) = B has a solution in & for any 8 £ ®-

Use this to prove that
Pty 42 —3xyz=8

is solvable in any field of characteristic 3.
4. A higher derivation in A of infinite rank is called iterative if D;D; =

(’ -:-j) D; . and a higher derivation D™ = {D;} is called iterative if D;D; =

(’ ¥7) Dissfor i +j < mand DiD; = 0ifi +j > m. Verify that the higher

derivations defined by (43) and (47) are iterative.

5. Let P = ®(¢) where ® is of characteristic p # 0 and the minimum poly-
normal of £ over ® is x* — a. Show that the subfields of P/® are the fields
®(¢2”) where 0 < f < ¢, and that the indicated ¢ + 1 subfields are distinct.

6. (Weisfeld). Let ® be a field of characteristic p # 0, & = ®o(e, 8,7)
where a?, 8?7, y? € B9 and these elements are p-independent over ®o[P:dg] = 27).
Let P = ®(&,9) where &' = a, n? = B¢ + v. Show that [P:®] = p3. Show
that [®(£):®] = 22, [B():®) = p* and P(E) N $@) = $. Show that P =
(¢, ¢) and P <I>(17, ¢) where { is any element such that {? € ®. Hence show
that P/® is not a tensor product of simple extensions.

7. Show that {D;} is a higher derivation if and only if agD; = Z DiaD;—)r,

j=0,1,---. Show that, if D1 £ 0 in the hlgher derivation {1 Dy, D, ---,
Dn}, then the endomorphlsms (1, Dy, - -+, D) in (P, +) areright P-independent.
8. Let D® D be an iterative higher derivation of rank p* — 1 in a field P of
characteristic p. Assume D® D is proper and that ® is the subfield of con-
2°—1
stants. Show that every linear transformationin P over ® has the form > Dip; =
0

ZD;pir, pi € P, and that P = ®(£) where the minimum polynomial of £ over & is
x — a.
9. Continuation of 8. Show that a sequence of linear transformations {4y,

dy, «- -, dpe_1} in P/® satisfies prd; = i ddpD;—),j = 0,1, .-+, p° — 1, if and
T=0
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only if there exists a vector (o9, 01, -+, 0p¢—1), 60 = 1, 0; € P such that d; =
Dy + D;_161 + -+ -+ loi. Use this to obtain necessary and sufficient condi-
tions that a vector (o, 01, - -, 6pe—1) be a “logarithmic derivative” in the sense
that there exists a p &€ P such that o; = p~(0D;),s = 0,1, - -+, p* — 1,

10. Tensor products of fields. In Chapter I we considered
tensor products of two fields, one of which was finite dimensional
over the base field. We saw that it was necessary to know the
maximal ideals of P ®< E in order to survey the composites of
the field P/® and E/® where [P:®] < x. In this section and the
next we shall obtain the extension of these results to arbitrary
fields. We shall first collect a number of results for the case in
which one of the fields is algebraic. In our statements, sepa-
rability will mean separability in the general sense defined on p.
166; pure inseparability will be used for an extension which is
purely inseparable algebraic. Also we shall say that a subfield
® is algebraically closed (separably algebraically closed) in P if
every algebraic (separable algebraic) element of P/® is contained
in®. We can now state the following

Theorem 21. Let P/® and E/® be extension fields of ®.

(1) If P/® is separable and B/® is purely inseparable, then P
®s E is a field. On the other hand, if P/® is not separable, then
there exists a purely inseparable extension B/® of exponent 1 such
that P ®e E contains a non-zero nilpotent element.

(2) If P/® is separable algebraic, then P Q@+ E has no non-zero
nilpotent elements for arbitrary E/®, and P Q=2 E is a field if ® is
separably algebraically closed in E.

(3) The elements of P Qs E are either units or nilpotents if
either P/® is purely inseparable and E/® is arbitrary, or P/® is
algebraic and ® is separably algebraically closed in E.

Proof. In (1) and the first part of (3) we may assume the
characteristic is p = 0. In all cases we write P ® E for P ®+ E
and we identify P and E with subalgebras of P ® E = PE.
These are linearly disjoint and consequently they satisfy the
various linear independence properties which we have noted for
this relation.

(1) Assume P/® isseparable and E/®is purely inseparable. The
separability implies that, if py, ps, - - -, pm are ®-independent ele-
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ments of P, then the elements p,”, po™, - - -, p”" are ®-independ-
m

ent for every e=0,1,2,---. Now let 2= > pi0;eP QE
1

where the p; e P and o; ¢ E. We may assume the p; are ®-inde-
pendent and, if 2 # 0, then we may assume also that every o; # 0.
Since E/® is purely inseparable there exists a positive integer ¢
such that ¢ = a;e® for 1 <i <m. Then 2 = Zap ¢ P
and, if z % 0, then the «; # 0 and 2*° is a non-zero element of P.
Hence 2*° and consequently 2 has an inverse. Thus P @ E is a
field. Next assume P/® is not separable. Then there exist ele-
ments py, pa, * * - pm in P which are ®-independent but for which
there exist v; # 0 in ® such that Zy;,p,# = 0. Not all the v; are
p-th powers in ® so an extension field of the form E = ®(oy, 09, - - -,
Om), 0: = vi, is of exponent 1 over ®. The element 2 = Zp,0; of
P ® E is not zero since the p; are $-independent and the ¢; ¢ E.
On the other hand, 2? = Zpf0? = Zy;p? = 0.

(2) Assume P/® is separable algebraic, E/® is arbitrary. We
have to show that P ® E has no non-zero nilpotents and that
P ® E is a field if ® is separably algebraically closed in E. If

z2eP ® E, 2 = ) po; where the p; ¢ P and ¢; ¢ E. Since P/®
1

is algebraic, the p; generate a finite dimensional extension and we
may clearly replace P by this extension in proving our result.
Hence it suffices to assume that [P:®] < . Then the sepa-
rability of P implies that P = &(0) = ®[«x]/(f(x)) where f(x) is
separable and irreducible in ®[x]. As we saw in Chapter I (p. 87)
P ® E =~ E[x]/(f(x)). Hence our result will follow if we can
show that E[x]/(f(x)) has no non-zero nilpotents and this is a
field if ® is separably algebraically closed in E. Now we have
seen in Chapter I that E[x]/( f(x)) is a direct sum of fields, and it
is easy to verify that an algebra having this structure contains no
non-zero nilpotent elements. This proves the first statement.
Next assume E[x]/(f(x)) is not a field. Then f(x) = g(x)A(x) in
E[x] where degg > 0 and deg% > 0. Let @ be a splitting field
over ® of f(x) and let f(x) = I(x — w;) in Qx]. Since the w;
are roots of f(x), they are separable algebraic over ®. It follows
that the coefficients of g(x) and A(x) are separable algebraic over ®.
These are elements of E and they are not all contained in &
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since f(x) is irreducible in ®[x]. Thus ® is not separably alge-
braically closed in E.
(3) Assume first that P/® is purely inseparable and E/® is

arbitrary. Letz = D po;eP ® E where p; ¢ P, g; ¢ E. Choose
1

e > 0 so that p?° = a; e®. Then 2*° = Za,0,”° ¢ E. Either 2*°
= 0 or 2*° has an inverse in E. In the latter case z is a unit in
P ® E. Next assume P/® is algebraic and ® is separably alge-
braically closed in E. Let 2/® be the maximum separable sub-
field of P/®. The subalgebra ZE of PE = P ® E over & is the
tensor product of Z/® and E/®. Since ® is separably algebraically
closed in E, we have, by (2), that ZE =2 ® E is a field. Let
{po} be a basis for P/Z, {os} a basis for Z/®. Then {pa05} is a
basis for P/® and these elements are E-independentin P ® E. It
follows that the elements p, are ZE-independent. This implies
that, if P and ZE are regarded as algebras over 2, then P(ZE) =
P ®z; ZE. On the other hand, P(ZE) is the same algebra over
® as PE= P ®s E; hence it suffices to show that every element of
P ®z ZE is either nilpotent or a unit. Since P/Z is purely in-
separable, this follows from the first part of the present proof.*

Our next task is to obtain some information on tensor products
of two fields, one of which is purely transcendental. The result
we shall prove for these in the following

Theorem 22. Let P be purely transcendental over ®, say, P =
&(B) where B is a transcendency basis and let E/® be arbitrary.
Then P Qs E has no zero-divisors, and if Q is its freld of fractions,
then @ = E(B) is purely transcendental over E with B as transcend-
ency basis. Moreover, if ® is algebraically closed (separably alge-
braically closed) in E, then P = &(B) is algebraically closed (sepa-
rably algebraically closed) in Q@ = E(B).

Proof. Asusual, we consider P and E as subalgebras of P®2 E.
Since B is an algebraically independent set, the set M of
distinct monomials B;¥18,% --- 8%, k; > 0 in the e B forms
a basis for the subalgebra ®[B] generated by B. Since ®[B] and

* The identification of PQg E with PQg (Z®4¢ E) which was used in the proof can be
established also by general formulas on tensor products. One has the associativity:

PRz CQ2E) = (PR:Z)®s E (cf. ex. 5, p. 15). Moreover, PQzZ =P. Hence
PRz (2CZQ®:E) = PR E.
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E are linearly disjoint, the set M is E-independent. Hence B is
algebraically independent in E[B]. Then we know that, if Fis a
finite subset of B, E[F] has no zero divisors (Vol. I, p. 106). Hence
E[B] is an integral domain and so it has a quotient field & whose
elements have the form PQ~! where P, Q e E[B]. Thus we see
that @ = E(B) and, since B is an algebraically independent set
over E, clearly @ is purely transcendental over E with B as a
transcendency basis. We observe next that £ contains the sub-
algebra @, of elements of the form Pg~—! where P ¢ E[B] and g ¢
®[B]. We proceed to show that this subalgebra can be identified
with P @+ E. First, we have the identity isomorphism of E[B] &
Q into E[B] € P ®+ E and this can be extended, by I of the
Introduction, to a unique isomorphism of @, = {Pg~'|P ¢ E[B],
q # 0 in $[B]} into P @z E, since the element 47! exists in P =
®(B). Let 2z be any element of P ®+ E and write 2 = Zp;e;,
pie P =&(B), ;e E. We can write p; = p,g~' where p;, g ¢
®[B]. Then 2 = (Zpse;)g~! = Pg~—! where P e E[B]. It follows
that z is in the image of the isomorphism of @y, so €, is isomorphic
to P ®: E. Hence if we identify P ®3 E with ©, and observe
that @ is also the field of fractions of @, since @, 2 ®[B], we ob-
tain the first statement. To prove the second we shall show that,
if @ = E(B) contains an element which is algebraic (separable
algebraic) over ®(B) which is not contained in ®(B), then E con-
tains an element which is algebraic (separable algebraic) over &
not contained in ®. Clearly, if an element of the type indicated
exists in @ = E(B), then it exists in E(F) for a finite subset F of
B. Hence we may take B finite and an induction argument shows
that it is enough to prove the following result: Let E/® be arbi-
trary and let ¢ be transcendental over E. If E(£) contains an ele-
ment which is algebraic (separable algebraic) over ®(¢) and not
contained in $(£), then E contains an element which is algebraic
(separable algebraic) over ® and not contained in ®. Thus let 4 be
an element of E(¢) which is algebraic over ®(¢) and let x™ +
Bix" ! 4.+ B, be its minimum polynomial over &(¢). We
can write 8; = p;g—* where p;, ¢ ¢ ®[£] (e.g., g can be taken to be the
product of the denominators of the 8;). Then H = ¢y is alge-
braic over ®(¢) with minimum polynomial x™ + p;x™~! + px™ 2
+---+ pn. If H= PQ7! where P and Q e E[£] and are rela-
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tively prime polynomials, then the equation for A gives
Pn — __pIPn—IQ - szn—2Q2 e e e ann'

If Q is of positive degree, then Q has an irreducible factor and the
displayed relation shows that this is a factor of P", hence of P,
contrary to the assumption on P and Q. It follows that Q is a
unit and so H ¢ E[£]. We now write H = ¢, + €,& + €2 +---+
ent™ where the ¢; ¢ E and we shall show that the relation 0 =
HE + p1HEO ™ +- -+ pa(®), H = H(E), p: = pi(§) ¢
®[£], implies that the coefficients ¢; are algebraic over ®. Thus let
a £ ® and consider the homomorphism of E[£] over E into E send-
ing¢ — a. Such a homomorphism exists since £ is transcendental.
As usual we denote the image of Q(£¢) by Q(a). Then we have the
relation H(a)™ + p1(a)H ()" +---+ pa(a) = 0. Since the
p:(a) e®, this shows that the element 8 = H(a) is algebraic over
®. Suppose first that & contains m + 1 distinct elements a,

agy ***y amy1. Then H(ap) = Y e’ = By is algebraic over
§=0
®fork=1,2,---,m + 1. Since the Vandermonde determinant
det (ax’) # 0, these equations for the ¢; have a unique solution
which is given by the usual determinant formulas. These show
that the €'s are algebraic over ®. If ® does not have m + 1 ele-
ments, we have to modify this argument slightly in the following
manner. If p is the characteristic, we choose r so that p" > m
and we let E be a splitting field over E of ¥ — 1. We let & be
the subfield of E of elements which are algebraic over ®. Evi-
dently this contains 7 + 1 distinct ax. We now make the argu-
ment with these elements using E in place of E, & in place of &.
Then we can conclude as before that the ¢; are algebraic over &,
hence, over . Now it is clear that, if the » we started with
g ®(£), then H ¢ ®(¢) and consequently not every ¢ in H = Zet!
is in ®. Thus there exists an ¢ in E algebraic over ® which is not
contained in E. Next assume n ¢ ®(¢) and 7 is separable over
®(£). Then H ¢ ®(¢) and is separable algebraic over ®(¢). Then
the ¢ are algebraic and the field ®(ej, €, - - -, &) contains a
separable algebraic element not in ®. Otherwise, the charac-
teristic is p and we have ¢;*" ¢ ® for somee = 1,2, ---. Then we
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have H* e ®(£) contrary to the separability of H over ®(¢). This
completes the proof.

We are now ready to handle the “mixed” cases in which the
fields need not be either algebraic or purely transcendental. We
prove first the following extension of a part of Theorem 21:

Theorem 23. I[f P/® is separable and E/® is arbitrary, then
P ®+ E kas no non-zero nilpotent elements.

Proof. It is clear that it suffices to prove this result under the
additional assumption that P is finitely generated. Then P is
separably generated, so that P has a transcendency basis B such
that P is separable algebraic over ®(B). We now consider the
subalgebra ®(B)E = #(B) ®4 E generated by ®(B) and E and
we regard this as well as P as an algebra over the field #(B). One
sees easily that, if {p,} is a basis for P over ®(B), then the only
relations of the form Z¢;p; = 0, ¢; e ®(B)E are the trivial ones for
which every ¢; = 0. Thisimplies that P @ E = P ®4(5) ®(B)E.*
We now apply Theorem 22 to the factor ®(B)E = ®(B) ®; E.
According to this result ®(B)E can be imbedded in a field @ =
E(B). Then P ®s) ®(B)E is a subalgebra of P ®45) @ where
Q is a field over ®(B) and it suffices to prove that P Q45 @ has
no non-zero nilpotent elements. Since P is separable algebraic
over ®(B), this follows from Theorem 21 (2).

We assume next that P is arbitrary and that & is separably
algebraically closed in E. Let B be a transcendency basis for P
over ®. As in the foregoing proof we have P @ E = P ®45)
®(B)E and this is a subalgebra of P Q43 @ where @ is a field
E(B). By Theorem 22 we know that ®(B) is separably algebrai-
cally closed in ©. Since P is algebraic over ®(B), Theorem 21(3)
shows that every element of P ®s(p) @ is either nilpotent or a
unit. Now let 2z be any element of P ®+ E C P Qs5) 2. Either
z 1s nilpotent or it is a unit in P Qe 2. In the latter case z is
not a zero divisor in P ®s E. We can therefore state the following

Theorem 24. If P is an arbitrary extension field of a freld ® and
& is separably algebraically closed in E then every zero divisor of
P ®qs E is nilpotent.

* A more sophisticated argument can be used to establish this. See the footnote on
p. 199.
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Clearly the last two theorems have the following immediate
consequence.

Corollary 1. Let P and E be extension frelds of ® such that (1)
either P/® or E/® is separable, (2) & is separably algebraically
closed in either P or E. Then P Qs E is an integral domain.

In particular, we see that, if P/® is separable and & is alge-
braically closed in P, then P ®< E is an integral domain for any
E/®. An extension P/® satisfying these two conditions is
called regular. If ® is algebraically closed, then it is perfect so
any extension P/® is separable. Moreover, it is clear that & is
algebraically closed in P. Hence every extension of an alge-
braically closed field is regular and consequently we have

Corollary 2. If ® is algebraically closed, then P ®+ E is an
integral domain for arbitrary extension fields P and E of ®.

11. Free composites of fields. We recall that a composite of
two fields E and P over ® is a triple (T, s, #) where I' is a field over
® and s and ¢ are isomorphisms of E over ® and P over & respec-
tively into I' such that I' is generated by the images E* and P’
(§ 1.16). The composites (T, 5, ¢) and (I, s’,#") of E and P are
equivalent if there exists an isomorphism # of I onto I'” such that
s" = us,t' = w. In §1.16 we studied composites of a finite di-
mensional extension P and another extension. In algebraic
geometry one is interested in composites of fields which need not
be algebraic but one restricts the notion in the following way.

Definition 6. A4 field composite (T, s,t) of E/® and P/® is
called free if for any algebraically independent subsets C and D of
E and P respectively, the sets C*, D' are non-overlapping and C* U D'
is algebraically independent in T/ ®.

Since any algebraically independent set can be imbedded in a
transcendency basis, it is clear that the condition that (T, s, £) is
free is equivalent to the following: for every pair of transcendency
bases B and B’ of E/® and P/®, respectively, B* and B’* are non-
overlapping and B* U B’! is algebraically independent. We now
observe that the word “every” can be replaced by “some” in
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this criterion. Thus suppose there exists a transcendency basis
B for E/® and a transcendency basis B’ for P/® such that B* and
B’ are non-overlapping and B* U B’!is algebraically independent.
We assert that this implies that the compdsite I' is free. It
clearly suffices to establish the condition of the definition for
finite sets, C, D. Now we can find a finite subset F of B such that
C is algebraically dependent over ® on F. Since F is a subset of
B, F* is algebraically independent in I' over P‘. Hence F* is
algebraically independent in &(F*, D*) over (D). This implies
that the transcendency degree of ®(F*, C*, D') over ® is f+ d
where fis the cardinal number |F| and 4 =|D]| (cf. ex. 3, § 3).
Since the transcendency degree of ®(F*, C*) over ® is f and C* is
algebraically independent, the transcendency degree of ®(F*, C*)
over ®(C*) is f — ¢ where ¢ =|C|. It follows that the tran-
scendency degree of ®(F*, C*, D') over ®(C®, D) does not exceed
f —c¢. This and the formula for the transcendency degree of
®(F*, C*, D*) over & imply that the transcendency degree of
®(C*, D')overdisatleast (f +d) — (f — ¢) = d + ¢. Itfollows
that C° D' are not overlapping and C* U D' is algebraically in-
dependent. We state this result as the following

Lemma 1. Ler (T, s,¢) be a field composite of the fields E over
® and P over d. Suppose there exists a transcendency basis B for B
over ® and a transcendency basis B’ for P over ® such that B*, Bt
are non-overlapping and B* U B'* is algebraically independent.
Then (T, s, t) is afree composite of E/® and P/®.

We remark also that if the condition of the lemma holds for B
and B’, then B* U B’! is a transcendency basis for I. For, it is
clear that the elements of E® and of P! are algebraic over ®(B* U
B’). Since I' is generated by E® and P, it follows that T is
algebraic over ®(B* U B’Y). Hence B* U B’' is a transcendency
basis.

We can use the criterion of the lemma to prove the existence of
a free composite for any two fields E and P over . Let B and B’
be transcendency bases for E and P over ® respectively. If B
and B’ are finite, say B = {&;, -+, ém}, B’ = {n1, - -, 7}, then
we construct the polynomial algebra ®[xy, X2, - - -, ¥myn] in m + #
indeterminates x;, ¥2, * -, ¥myn, and we form the field of frac-
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tions ®(x1, %2, - * -, ¥mtn). We have an isomorphism s of ®(B)
into ®(xy, x2, - * -, ¥myn) such that & — %, i = 1,2, -- - m and
an isomorphism ¢ of ®(B’) into ®(xy, x2, * - *, ¥mys) such that
N — Xmaiy J = 1,2, ---,n. Now let @ be an algebraic closure
of ®(x1, X2,  * *, ¥myn). Then we know that the isomorphisms s
and ¢ can be extended to isomorphisms s and # of the algebraic ex-
tensions E and P of ®(B) and $(B’) into @ (cf. ex. 1, p. 147). From
the lemma, then, if I' is the subfield of Q generated by E* and P,
(T, 5,2 is a free composite of E and P. If either B or B’ is infinite
a similar procedure can be employed, or we can modify it slightly
by defining 1-1 mappings of B and of B’ into the one of these, say
B, which has the larger cardinal number, in such a way that the
images are disjoint. These mappings can be extended to iso-
morphisms s and 7 of #[B] and $[B’] into #(B). Then they can be
extended to isomorphisms s and ¢ of ®(B) and ®(B’) into ®(B),
which can then be extended to isomorphisms s and ¢ of E and P
into an algebraic closure @ of ®(B). Then (T, s, £), where I is the
subfield generated by E* and P’, is a free composite of P and E.

We shall now extend the considerations of § 1.16 to obtain a
survey of all the composites and all free composites (in the sense
of equivalence) of two given fields E and P over ®. As before,
we form the tensor product E ®« P and we identify E and P with
their images in E ®s P. Let P be a prime ideal in E ®+ P (Vol.
I, p. 173); hence (E ®= P)/P is an integral domain as well as an
algebra over . We can imbed this in its field of fractions I'. Let
s denote the canonical homomorphisme — ¢ 4+ Bof E(CE ® P)
into (E ®+ P)/P. Since E is a field and 1°* = 1, this is an iso-
morphism. Also since (E ®+ P)/P$ S I', we can consider s as
an isomorphism of E/® into I'/®. Similarly, we have the iso-
morphism ¢:p — p + P of P into I'. Now E and P generate
E ® P. Consequently E® and P’ generate the algebra (E ® P)/$.
Since T is the field of fractions of (E ® P)/P we see that the
field T is generated by its subfields E®* and P{. Hence (T, s, #) is
a composite of E/® and P/®.

Next let $’ be a second prime ideal in E ®= P and let (I, 5/, ¢')
be the corresponding composite constructed in the manner just
given. Suppose (I, s’,#) is equivalent to (I, s,#). Then we
have an isomorphism # of I' onto I' so that s = su, ¢ = tu.
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Thusumapse® = e+ P > ¢ =e+ P,p'=p+P — o+ P
Consequently the restriction of # to the subalgebra E*P!/P
sends Ze;p; + P — Zep; + P for e, ¢ E, p; e P. It follows as in
§ 1.16 that Ze.p; € B implies Ze;p; € P'. Hence P & P, and if we
repeat the argument with #~! we see that B’ € PB. Thus we see
that distinct prime ideals in E Qs P give rise to inequivalent com-
posites of E/® and P /®.

Now let (I, 5/, #) be any composite of E/® and P/®. Then we
can combine the isomorphisms s/, # of E/® and P/® into I'" to
obtain the homomorphism Ze;p; — Ze*'p;" of E ®s P into I'.
The image under this homomorphism is the subalgebra E* P
generated by E¥/® and PY/®. This is an integral domain.
Hence if P is the kernel of the homomorphism, then (E ® P)/P =
E*P" and (E ® P)/P is an integral domain. Hence $ is a prime
ideal in E ® P so this can be used to construct the composite
(T, s,%) as before. Now the homomorphism of E ® P onto
E* P gives rise to the isomorphism # of (E ® P)/$ onto E* P¥
such that Zep; + B — Ze,*p,"'. This has a unique extension to
an isomorphism # of the field of fractions I' of (E ® P)/P onto
I". We have ¢ = (e + P)* = ¢, ee E and p'* = (p + P)* =
p¥, p e P. Hence uis an equivalence of (T, s, #) and (I, 5", #). Our
considerations therefore establish a 1-1 surjective mapping from
the set of prime ideals $ in E ®4 P to the set of equivalence
classes of composites in E/® and P/®.

In §1.16 we established a 1-1 surjective correspondence be-
tween the set of maximal ideals in E ®+ P for [P:®] < © and
the equivalence classes of composites of E/® and P/®. We can
now see that this is a special case of the present more general
considerations. We recall that an integral domain which is a
finite dimensional algebra is a field (Introd., p. 8). This im-
plies that any prime ideal in a finite dimensional algebra is maxi-
mal. If P/® is finite dimensional, then E ®s P can be considered
as a finite dimensional algebra over E. Hence the prime ideals
in this algebra are maximal and the present correspondence re-
duces to the earlier one for [P:®] < <.

It remains to sort out the prime ideals B in E ® P for which the
corresponding composites (I, s,#) are free. Let B and B’ be
transcendency bases for E and P respectively. We know that
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the set M of monomials in the 8 ¢ B are ®-independent. A similar
statement holds for the set M’ of monomials in the 8’ ¢ B’. More-
over, if M = {m;} and M’ = {n;}, then the set of products
{mn;} is d-independent. This implies that the sets B and B’ are
not overlapping and B U B’ is an algebraically independent set.
The same statement can be made about the images B* = {8 + B}
and B’ = {# + P} if and only if no non-zero element of the
subalgebra ®[B U B’] is mapped into 0 in the canonical homo-
morphism of E @ P into (E ® P)/P. This is equivalent to the
condition that ®[B U B'] N § = 0. Hence we obtain our first
condition: The composite (T, s, /) determined by the prime ideal
Pin E ® Pis free if and only if B U B'] N § = 0. Itis con-
venient to change this slightly by replacing (B U B’] by the
subalgebra ®(B)®(B’) generated by the subfields #(B) and ®(B’)
of E and P respectively. It is easily seen that the elements of
this subalgebra of E ® P have the form Pg~'r~! where Pe
®[B U B’], ge®[B], re®[B’]. It is clear that B U B’] is an
integral domain and this and the form of the elements of #(B)®(B’)
imply that ®(B)®(B’) is an integral domain. If Pg~'r~! 0 is
in § N ®(B)®(B’), then P # 0 and P ¢ ®(B)®(B’) N P. Hence
B N &(B)®(B’) = 0 implies P N $[B U B’] = 0. Since the con-
verse is clear the foregoing condition gives the following

Lemma 2. The composite field (T, s, ?) defined by a prime ideal
Pin E @ Pisfree if and only if B N ®(B)P(B’) = 0 where B and
B’ are transcendency bases for E/® and P /P respectively.

We recall that if o is a commutative ring and @ is a subring, then
an element g ¢ 0 is called integral over @ if there exists a polynomial
g(x) € @[x] such that g(x) has leading coefficient 1 and g(a) = 0
(Vol. I, p. 181). We have proved in Vol. I, p. 182, that, if @ is
Noetherian, then the set of ®-integral elements of o form a sub-
ring containing @. We shall see later (§ 5.13) that this result is
valid also for any commutative integral domain 0. However, the
Noetherian case is adequate to prove the following result which
we require.

Lemma 3. Let B and B’ be transcendency bases for E/® and

P/® respectively. Then every element of E Qe P is integral over
®(B)®(B’).
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Proof. Since E and P are algebraic over (B) and #(B’) respec-
tively, it is clear that the elements of E and of P are integral over
®(B)®(B’). Since E ® P is generated by E and P, the result will
follow if we can show that the set of ®(B)®(B’)-integral elements
is a subring. Hence we have to show that, if a, 8 are $(B)®(B’)-
integral, then so are @« — 8 and af. Since any pair «, 8 are both
integral over a subalgebra ®(F)®(F’) where F and F’ are finite
subsets of B and B’, it suffices to prove this for B and B’ finite.
In this case we can apply Hilbert’s basis theorem for polynomial
rings (Vol. I, p. 172) to conclude that (B)[B’] is Noetherian. We
shall show next that ®(B)®(B’) is Noetherian. Thus let § be
an ideal in ®(B)®(B’). Then § = § N &(B)[B’] is an ideal in
®(B)[B’], so it has a finite set of generators P;, Py, -+, Py.
Any element of ®(B)®(B’) has the form Pg~! where P e ®(B)[B’]
and ¢ e ®[B’]. If this element is in &, then P = (Pg~)geJ so
P =2Z4,P; where A4;e®(B)[B]. Hence Pg~' = Z(Aq")P..
This shows that Py, P,, ---, P,, is a set of generators for 3.
Hence ®(B)®(B’) is Noetherian. It follows that &« — 8 and af
are ®(B)®(B’)-integral and this completes the proof.

We can now prove the following

Theorem 25. The composite (T, s5,¢) of E and P over & de-
termined by the prime ideal P in E ®< P is free if and only if all the
elements of B are zero divisors in E ®s P.

Proof. In view of Lemma 2 one has to show that
P N SB)PB) =0

for B and B’ transcendency bases for E/® and P/® if and only
if every element of P is a zero divisor. Suppose first that P con-
tains only zero divisors and let P e P N &(B)®(B’). Then P is
an element of ®(B)®(B’) which is a zero divisor in E @ P. We
shall show that P is a zero divisor in ®(B)®(B’). For this pur-
pose we choose 4 basis {#,} for E over ®(B) and a basis {vs} for
P over ®(B’). Then it is easily seen that every elementof E @ P
can be written as a sum ZQqpuq08, Qup € D(B)P(B’) and ZQ,pu.05
= O only if every Q.5 = 0. (We leave this as an exercise.) Since
P is a zero divisor in E ® P we have an element ZQ,suqvs # 0
such that P(2Qasuavs) = 0. Then ZPQ.pu.vs = 0 and since
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PQ.s e B(B)®(B’) we have PQ.s = 0 and some Qqup = 0. Thus P
is a zero divisor in ®(B)®(B’). Since ®(B)®(B’) is an integral
domain, this implies P = 0. Hence $ N $(B)®(B’) = 0. Con-
versely, suppose $ N #(B)®(B’) = 0. Let P be any element of
$B. Then Lemma 3 implies that there exists a relation of the form
Pr 4 ¢\ PPl pPP2 .- .+ ¢, = 0 where the ¢; e ®(B)®(B’).
We may assume #» minimal. This relation shows that ¢, = —P"
— PP — i~ 1 PeP N ®(B)P(B). Hencec, = 0. Then
we have P(P* ' + ¢,P" 24 -4+ ¢,_;) = 0 and since » was
minimal P*~! + ¢ P*~2 4 ...+ ¢,_; #0. Hence P is a zero
divisor and we have shown that any P e P is a zero divisor. This
completes the proof.

The set of nilpotent elements of a commutative ring o forms an
ideal called the (nil)radical ® of o (Vol. I, p. 173). If Bis a prime
ideal in 0 and z ¢ R, then 2™ ¢ P for some integer m. This implies
that 2¢ B. Hence R is contained in every prime ideal P of o0.*
We have shown in the last section that, if E is any field over &
and & is separably algebraically closed in P, then the zero divisors
of E @« P are nilpotent. This and the result just noted implies
that the radical ® of E ® P is the only prime ideal in E ®= P all
of whose elements are zero divisors. Hence we can conclude from
Th. 25 and the fact that every composite of E and P over ® is
equivalent to one determined by a prime idealin E ® P the follow-
ing

Theorem 26. If E is an arbitrary extension field of ® and ® is
separably algebraically closed in P, then in the sense of equivalence
there is only one free composite of E/® and P/®.

* We shall see in Chapter V that R is the intersection of all the prime ideals of o.



Chapter V

VALUATION THEORY

The notion of a valuation of a field arises when one attempts to
assign magnitudes to the elements of a field. The classical case is
that of the absolute value |«| in the field of real numbers or in the
field of rational numbers. Of basic importance for the study of
arithmetic properties of the rational and more generally of number
fields (finite algebraic extensions of the rationals) are the p-adic
valuations of the field of rational numbers. For a given prime p
the valuation ¢,(a) of the rational number « indicates the power
of p which divides the rational number a. Valuations play a
fundamental role also in the study of algebraic function fields. For
these it is necessary to generalize the notion somewhat so that it
becomes equivalent to the notion of a place, which was first intro-
duced by Dedekind and Weber in giving a purely algebraic defini-
tion of Riemann surfaces for algebraic functions. Valuation
theory forms a solid link between algebra and analysis. On the
one hand, it permits a precise study of algebraic functions and, on
the other hand, it leads to the introduction of analytic notions
(convergence, integration) in the study of arithmetic questions.

We shall begin our discussion with real valued valuations. One
can distinguish two types of these: archimedean and non-archime-
dean. The latter lead to the extension in which the values are
taken from an ordered commutative group rather than the field of
real numbers. We shall determine the valuations of the simplest
types of fields and consider in some detail the problem of extension
of valuations. Applications to the Hilbert Nullstellensatz and to
the study of the integral closure of a commutative integral domain

will be given.
210
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1. Real valuations. We shall consider first valuations which are
real valued and we shall call these real valuations. It is possible
to give a development of the theory which gives at the same time a
development of the real number system from the point of view of
convergence. This adds a small complication, so we shall avoid it
and assume familiarity on the part of the reader with the basic no-
tions on real numbers which will be needed.

Definition 1. 4 real valuation ¢ of 2 freld ® is a mapping a —
o(a) of ® into the field of real numbers such that

(i) o(a) 20, p(a) = 0 if and only if « = 0
(ii) o(aB) = e(a)e(B)
(iii) e(a+ B) < o(a) + ¢(B).

Examples.

(1) ® the field of complex numbers, p(e) the usual absolute value V4?2 + 42
of the complex number @ = 4 + 44/ —1, 4, 4 real. This gives a valuation on
any subfield, in particular, on the field of real numbers and on the rational field.

(2) ® the field of rational numbers. Let p be a prime integer. Ifa # 0in ®,
we write a = o/p* where 2 = 0, =1, =2, - - - and & is a rational number prime
to p (notation: (a’, p) = 1) in the sense that its numerator and denominator in
some representation are prime to . The integer % is uniquely determined by «
and we write v(@) = k, @y(a) = p772@, Also, we set #,(0) = 0, ¢,(0) = 0.
Then (i) is evident and (ii) and (iii) are valid. This is obvious if eithera = 0 or
B = 0. Supposea = 0,8 7 0, and let a = o'p*, 8 = §'p! where (&/,p) =1 =
B,2). Then af = a'B’p** and (&/f',p) = 1. Hence vp(af) =k + /=
(@) + v5(8), s0 pu(eB) = pp(@)ep(B). If k </, then a + B = pHa’ + 62"
and vp(a + 8) = min (n(a), »(B)). Hence pyla + B) < max (py(a), ©,(8))
which is a stronger relation than (iii). Hence ¢y(c) is a valuation. This is called
the p-adic valuation of the rational field.

(3) P = ®P(x) the extension field of ® by a transcendental element x. Let m(x)
be an irreducible polynomial in ®[x]. If a is a non-zero rational expression, we
write @ = m(x)*a’ where % is an integer and o’ is a rational expression which is
prime to 7 ({a/, 7) = 1) in the sense that it has a representation with numerator
and denominator prime to m. We set v(e) = k and ¢r = ¢* where ¢ is a real
number, 0 < ¢ < 1. Also we set v, (0) = ,¢x(0) = 0. One checks asin exam-
ple 2 that ¢, is a valuation. A classical case of this type of valuation is that
in which ® is the field of complex numbers and ®(x) is identified with the field
of rational functions on ®. Here m(x) has the form x — 7 and v, ((x)) describes
the behavior of the rational function a(x) in the neighborhood of the point x = r.
One sees that, if v,(a@) = £ > 0, then a has a zero of order k at » and, if »,(a)
= —k, k£ > 0, then a(x) has a pole of order k at x = r. If »(@) = O, then « has
neither a zero nor pole at x = r. It is of interest also to consider the behavior
of a(x) at infinity. This can be done by introducing another valuation in $(x).

If a(x) # 0, we write a(x) = (B + B + -« -+ Buwx™(vo + v1x ++ - -+ yax™ ?
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where B, 7% 0, vn # 0. Then a(x) = (}C)n—m(ﬂo (}c)m 4o 4 Buvo (i)'l

n—l1

+ 7 (; ++++4 v and a(x) has a zero of order » — m at infinity if

n —m > 0, apole of order m — nif m — n > 0, and has neither a zero nor pole
at infinity if » = m. We define vo(a(x)) = 1 — m, pfalx)) = c» ™0 < c < 1,
¥o(0) = o, 0o(0) = 0. This gives a valuation. This procedure is applicable to
any ®(x), x transcendental.

(4) Any field ® with () = 1 if @ 3 0 and ¢(0) = 0. Such a valuation is
called #rivial. We remark that the valuations ¢, and ¢, of example 3 are all
trivial on &.

We now list some immediate consequences of the definition of a
real valuation. We note first that (ii) implies that (1) = 1,
e(—1) = 1, and p(—a) = ¢(a). Alsop(a™!) = ¢(a) 'if a = 0,
and ¢({) = 1if ¢ is a root of unity. This implies that the only
valuation in a finite field is the trivial one. Also we note that

1) lo(a) — 0(B)| < o(a — B)

where | | is the ordinary absolute value. All these assertions are
readily established and we leave their verification to the reader.

Definition 2. The real valuations ¢, and ¢, are called equivalent
if o1(a) > ¢1(B) holds for a, B e ® if and only if ¢s(a) > @2(B)-

It is natural from the point of view of convergence which we
shall consider in § 4 to identify valuations that are related as in the
foregoing definition. This relation leads to the following some-
what surprising consequence.

Theorem 1. If ¢ is equivalent to ¢, then there exists a positive
real number s such that os(a) = ¢1(a)® for all a & ®.

Proof. We may assume that one of the valuations is non-trivial
and, since the conclusion is symmetric in ¢, and es(p1 = ¢2° ),
we may suppose that ¢, is non-trivial. Then there exists an a in
® such that 0 < ¢;(ap) < 1 = ¢,(1). Then also 0 < ¢2(ap) < 1,
SO ¢ i1s non-trivial. Moreover, we can write ¢2(ap) = ¢1(a0)®
where s > 0. In fact, this relation is equivalent to s =
log ¢2(ao)/log ¢1(ap) which is positive since log ¢1(ap) < 0 and
log ¢a(a0) < 0. We wish to show that

log ¢a(e) _ log 1(a)
@ og p2(c) _ 108 71(@0)
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if a is any element in ® such that 0 < ¢;(a) < 1 andso0 0 < gs(a)
< 1. The two ratios in (2) are positive. Let m and # be positive
integers such that m/n > log ¢, (a)/log ¢1(a). Then m log ¢, (ao)
< n log ¢i1(a), log ¢i1(ae™) < log ¢1(a™) and ¢1(ap™) < ¢1(a™).
Hence ¢2(ap™) < @a2(a™) so, if we re-trace the steps, then we see
that m/n > log ps(a)/log ¢a(ap). By symmetry (s is non-trivial),
if m/n > log ¢s(a)/log ¢2(ap), then m/n > log ¢1(a)/log ¢1(ao).
Since these relations hold for all positive rationals » = m/n, we
have the equality (2). Hence

log ¢a(a) — log @a(ao) -
log ¢1(a)  log ¢1(ao)

and g2(a) = ¢;(a)® holds for all a with ¢;(a) < 1. By taking o™
we see that this holds also if ¢;(a) > 1. Moreover, it is clear
that, if ¢;(a) =1 = ¢;(1), then ¢2(e) = 1. Hence gs(a) =
e1(a)? for all a.

Definition 3. A real valuation is called archimedean if p(n) > 1
for some integer n(=nl =1+ 1 .- +1, n times) in the prime
Jfield. Otherwise the valuation is non-archimedean.

If ® has characteristic p # 0, then any # # 0 in the prime field
is a root of unity; hence ¢(#) = 1. Consequently, every valuation
of a field of characteristic » is non-archimedean. We note also
that any valuation which satisfies p(a + 8) < max (¢(a), ¢(8)) is
non-archimedean. For, this can be extended by induction to
give o(a; + az +- - +a,) < max (¢(a;), - -, ¢(a,)) and this
implies that ¢(#) < ¢(1) = 1. The converse of this result is valid
also since we have

Theorem 2. If ¢ is a non-archimedean real valuation, then
e(a + B) < max (¢(a), ¢(8)) for every a, B in ®.

Proof. We have

ola + B)" = oo™ + <711

< o(@)" + e(a)" p(B) +- - -+ (B
< (n + 1) max (p(@)", ¢(8)™)-

)an—lﬂ ++Bn)
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Hence we have ¢(a + 8) < (n + 1)Y™ max (o(a), ¢(8)). Since
lim (#n 4+ 1)Y* = 1, this implies that

3) e(a + B) < max (p(a), ¢(B)).

EXERCISES

In these exercises “valuation” will mean “real valuation.”

1. Show that, if ¢ is a valuation and s is a real number such that 0 < s < 1,
then @ — (@) is a valuation. Show also that, if ¢ is non-archimedean, then
a — p(a)® is a valuation for any s > 0.

2. Establish the following properties of non-archimedean valuations:

“ ola + B8) = ola) if o(@) > (8.
(5 Ifay + az +- - -+ a, = 0, then p(a;) = ¢(a;) for some i  j.

3. Let ¢ be a valuation in P such that ¢ is trivial on a subfield ® of P such that
P is algebraic over ®. Show that ¢ is trivial on P,

4. Let ¢ be a non-trivial valuation of ® and let 8 be a non-zero element of ®
such that¢(8) < 1. Show thatg(a) < 1if and only if p(Ba™) < 1,7 = 1,2, ---.
Use this to prove that, if ¥ is a valuation such that ¢(y) < 1 implies ¥(y) < 1,
then also ¢(y) > 1 implies ¥(y) > 1 and ¢ly) = 1 implies Y(y) = 1. Hence
show that ¢ and ¥ are equivalent.

5. Show that, if ¢1, ¢, - * -, @n are inequivalent non-trivial valuations of a
field ®, then there exists an a in ® such that ¢i(@) > 1 and ¢i(a) < 1 for § =
2,3, .-+, n. (Hint: The case » = 2 is an easy consequence of ex. 4. Using this
and induction one obtains 8 such that ¢1(8) > 1, ¢i(8) < 1,7 =2,---,n — 1,
and v such that o1(v) > 1, ou(y) < 1. If oa(8) < 1, one can take a = B%y for a
sufficiently large integer k. If pa(B) > 1, one can take @ = y8*(1 + 8%~ for &
sufficiently large.)

2. Real valuations of the field of rational numbers. We begin
by determining the archimedean valuations of the rationals. The

result is the following

Theorem 3. Any archimedean real valuation of the rationals is
equivalent to the absolute value valuation.

Proof (Artin). Let # and 7’ be integers > 1 and write #' = a4
‘an+---+an*, 0 <a; <n ar #0. Then,

e(n") < ¢(a0) + e(a)e(n) +- -+ e(ar)p(n)*.
Since 0 < ¢(4;) < a; < n, this gives
o(n) < n(l 4+ o(n) +-- -+ o(7)*) < n(k + 1) max (1, p(n)*).
We have ' > #n* so k < log #'/log #» and
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© o) <n(EE 4 1)max(1, o))

log »
If we replace #n’ by (#’)", r a positive integer, we obtain from (6):

l 7 r log n’
o(n)r < n(r g7 + 1>max<1,¢(n) log n )

log 7

Taking r-th roots we obtain

’ 1/r log n’
@ el <[ (llgg: +1)] max (1, o).

Since lim (ra + &))" = 1 if 2 # 0, (7) implies

log n’
®) o(n') < max (1, o(n)lgn )

Since ¢ is archimedean, #»’ can be chosen so that ¢(#’) > 1; hence
by (8),
log n’

©) 1 < o(n') < o(n)=".

Hence ¢(n) > 1, so we can interchange the roles of #» and »’ to ob-
tain

1 1
(10) p(n)lE™ = p(n')ls™

for any two positive integers 7, »’. Then log ¢(#)/log # is a posi-

tive real number s independent of # and ¢(n) = #°. It follows
that (a) = |a|® for every rational number a. Evidently ¢(a) is
equivalent to the absolute value valuation.

Theorem 4. Any non-trivial non-archimedean real valuation of
the rationals is equivalent to a p-adic valuation for some prime p.

Proof. We have ¢(#) < 1 for every integer n. If p(n) = 1 for
every integer, then ¢ is trivial. Hence there exist non-zero integers
& such that ¢(4) < 1. Let P be the collection of integers & satisfy-
ing this condition. This set is an ideal in the ring of integers /
since ¢(b1 — &3) < max (e(41), ¢(83)) < 1 if b; & B, and p(nd) =
e(m)e(b) < 1if nel, beP. Also P is prime since () = 1 =
o(n") implies ¢(nn’) = 1. Hence B = (p) where p is a prime.
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We can write ¢(p) = p~* where s > 0 since 0 < ¢(p) < 1. Let
n be any integer and write » = n'p* where £ > 0, (#, p) = 1.
Then n’' ¢ B so o(n’) = 1; hence ¢(n) = p~*. It follows that ¢
is the s-th power of the p-adic valuation determined by ».

3. Real valuations of #(x) which are trivial on . We suppose «
is transcendental in P = &(x) and we shall determine the real
valuations ¢ which are trivial on ®. Since the prime field is con-
tained in ®, ¢(n) = 1 for every integer £ 0 in the prime field.
Hence ¢ is non-archimedean. We distinguish two cases:

I. ¢(x) < 1. In this case ¢(f(x)) <1 for every f(x) = ap +
ayx +- -+ + a,x™ e ®[x]. This is clear from the non-archimedean
property of ¢. From now on we assume ¢ is non-trivial and this
implies that there exists a polynomial f(x) such that ¢(f) < 1.
Let P be the subset of ®[x] of polynomials f such that ¢(f) < 1.
As in the proof of Theorem 4 one sees that P is a prime ideal, P =
(w(x)), in ®[x]. We have o(n(x)) = ¢, 0 < c < 1. If f(x) =
w(x)*g(x) where (m(x), g(x)) = 1, then ¢(f) = ¢*. Hence ¢ is the
valuation ¢, discussed in example 3 of § 1.

IL. o(x) > 1. Letf(x) = ap + ayx ++ -+ + a,x™ where a,, #
0. Then g(ans™) = (%)™ > p(ax?) for i < m. Hence o(f) =
e(x)™ (cf. ex. 2in §1). If we set p(x) = ¢, 0 < ¢ < 1, then
o(f) = ¢~™. It is easy to check that ¢ is a valuation ¢ as de-
fined in example 3 of § 1.

4. Completion of a field. One of the most important aspects of
a real valuation is that it leads to the introduction of metric space
notions for a field. The most convenient form for these is based on
sequences and convergence. The basic definitions are patterned
after those of ordinary analysis.

Definition 4. Let ® be a field with a real valuation ¢. A sequence
{ax}, k = 1,2, --- is said to converge in & (relative to o) if there
exists an o in & such that for any real € > O there exists an integer
N = N(e) such that
(11) pla — apn) < e
forall n > N. Then ais unique and is called the limit of {ai}. If
a = 0, {a;} is @ null sequence. A sequence {ax} is called a Cauchy

sequence if for any e > O there exists an integer N = N(e) such
that
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(12) oo, — ay) < ¢
for all myn > N(e).

0

Convergence of series Y ay is defined as usual by the conver-
1

k

gence of the sequence {si} of partial sums sz = 3 4; For ex-
1

ample, in the rational field with the p-adic valuation, the series

> p*~! converges to 1/(1 — p) since

1
1
eo(7=5 = ) = @@/l = ) = 27 < ¢
if » is sufficiently large.

Itis easy to see, as in the real case, that any convergent sequence
is a Cauchy sequence, but the converse need not hold. This leads
to the following

Definition 5. 4 field ® is said to be complete with respect to a real
valuation ¢ if every Cauchy sequence of elements of ® is convergent
in ®.

We shall now carry out for any field ® with a real valuation ¢ a
construction of a completion ® of ®. This is a field & with the
following properties:

1. & is an extension field of ® and has a real valuation @ which
is an extension of the valuation ¢ of .

2. & is p-complete. ‘

3. The subfield & is dense in ® in the sense that every element
of & is a limit of a convergent sequence of elements of &.

We consider first the set C of Cauchy sequences {ai} of ele-
ments a; € d. We shall show that C is a ring relative to the com-
pOSitiOﬂS {ak} -+ {6k} = {ak + Bk}) {ak}{ﬁk} = {akﬁk}. For this

and a later application we require the following

Lemma 1. If {ak}, {Bk} SC, then {ak + Bk} and {akﬁk} eC.
If {ar} € C and is not a null sequence, then there exists n > 0 and an
integer N such that o(an) > n for alln > N.

Proof. Given e > 0, determine N; so that p(am — an) < €/2
if my n > Ny, and N, such that ¢(8, — B,) < ¢/2 if p, ¢ > N.,.
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Let N = max (N, N3). Theng(am + Bm — an — Ba) < ¢lam —
an) + @(Bm — Bn) < €/2 + ¢/2 = eif myn > N. Hence {a; +
B} € C. We note next that there exist positive real numbers s, ¢
such that p(ax) < s for all £ and ¢(8x) < ¢ for all k; for, we have
olam —ay) <1 if m > N and N is sufficiently large. Hence
e(am) — ¢(an) < olam — an) < 1 s0 p(am) < ¢(an) + 1 for all
m > N. Then if s = max (¢(a;) +1), i =1,2,---, N, then
¢(ax) < sfor all k. Similarly we can find # > 0 such that ¢(8:) <
t for all k. Then

(13)  ¢(amBm — anBn)
= o(amBm — omPn + AmBr — anby)
< o(am)e(Bm — Ba) + ©(Br)p(an — az)
< 50(Bm — Bn) + to(am — ay).

If we take NV, so that ¢(8, — B8x) < €¢/25s for m, n > N, and N,
so that p(am — a,) < €/2t for my, n > N, then (13) shows that
o(amBm — anBn) < € if my n > N = max(N,;, N,;). Hence
{axBr} € C. Now suppose {a;} € C and this is not a null sequence.
Then there exists e > 0 such that ¢(az) > € for an infinite number
of k. Also there is an N such that ¢(a, — as) < ¢/2 for all m,
n > N. Thereisa p > N such that ¢(a,) > €. Thenif n > p,
elan) = @lay — (ap — an)) 2 p(ap) — o(ay — @) > ¢/2 = 1.
This completes the proof.

To see that C is a ring under the indicated compositions we re-
call that the set of unrestricted sequences of elements of ® is a
ring under component addition and multiplication. This is just
the complete direct sum of a countable number of copies of &.
The O element of the ring is {0} and the identity is {1} where here
we write {a} for the sequence {a;} with oy = afork =1,2, ---.
We call this the constant sequence {a}. It is clear that the set of
constant sequences is a subring of the ring of sequences and this
subring is isomorphic to ® under the mapping « — {a}. Lemma
1 implies that the set C of Cauchy sequences is a subring of the
ring of sequences and evidently C contains the ring of constant
sequences. Thus we see that C is 2 commutative ring with an ele-
ment 1 = {1} and C contains the subring of constant sequences
which is isomorphic to ®.
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We consider next the subset Z of C consisting of the null se-
quences. We have the following

Lemma 2. Z is a maximal ideal in C.

Proof. It is easy to see that the difference {ax} — {8} =
{ar, — Bi} of two null sequences is a null sequence. Now let {ax}
be a null sequence and let {v:} be a Cauchy sequence. The proof
of Lemma 1 shows that there exists a positive real s such that
o(vr) < sforall k. If € > 0 we choose IV so that ¢(a,) < €/s for
all # > N. Then ¢(a,v,) < e for all # > N, so {axyr} is a null
sequence. Hence Z is an ideal in C. To show that Z is maximal
we have to show two things: Z ¢ C and, if B is any ideal in C con-
taining Z and an element {ay} ¢ Z, then B = C. The first of these
is clear since no constant sequence # {0} is contained in Z. Next
let B be an ideal in C containing Z and containing the element
{ax} ¢ Z. Lemma 1 shows that there exists a positive  and an
integer p such that o(a,) > nforalln > p. Letgr =1ifk <p
and Bx = ax if £ > p. Then {ax} — {Bx} ¢ Z. Consider the

¢(Bm -

sequence {Bx7'}. We have ¢(8,™" — B.7") = @ (BmBn)

1
Bn) < = ¢lam — an) if my n > p. This implies that {87} ¢ C.
n

Since {az} — {Bx} € Z < B and {ax} ¢ B, {Bx} ¢ B. Hencel =
{Bx~'}{Bx} ¢ B and so B = C.

Lemma 2 implies that the difference ring ® = C/Z is a field.
We proceed to show that & is a field with a valuation which has the
properties of a completion of ®.

Theorem 5. Let ® be a field with a real valuation ¢ and let ® =
C/Z the difference ring of the ring of Cauchy sequences with respect to
the ideal Z of null sequences. Then ® is a field which contains a sub-
JSield isomorphic to ® such that, if ® is identified with this subfield,
then ® is a completion of ®.

Proof. We have seen that the mapping a« — {a} is an iso-
morphism of  with a subring of C. The canonical homomor-
phism {a} — {a} + Z is an isomorphism since the only con-
stant sequence contained in Z is {0}. Hence we have the iso-
morphism @ — {a} + Z of & into & = C/Z. From now on we
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shall identify « with {a} + Z, & with its image in . We show
next that & has a valuation @ which is an extension of the valua-
tion ¢ in . Now let {az} e C. Then {¢(ax)} is a Cauchy se-
quence of real numbers since |¢(an,) — ¢(an)| < ¢(amn — a,) and
{az} is a Cauchy sequence. Hence, by the completeness of the
field of real numbers with respect to the absolute value valuation,
lim ¢(as) exists. Next let {a:’} be another Cauchy sequence such
that {ax} + Z = {ax’} + Z. This means that p(a, — a,’) < €
for a given ¢ > 0 provided # > N(e). Then |p(an) — ¢(an’)| <
elan — a,’) < € if n > N(e). Hence lim ¢(ax) = lim ¢(a}’), so
this real number is independent of the choice of the element {ay}
in the coset 4 = {ax} + Z. We now set @(4) = lim ¢(ax) and
we proceed to show that & is a valuation in $. First, it is clear
that a(4) > 0. If 4 = {ax} + Z and @(A4) = 0, then lim ¢(az) =
0; hence {a;} is a null sequence, so {ax} eZand 4/ =0. If B =
{Bk} -+ Z, then AB = {akﬁk} -+ Z and ¢(AB) = lim go(akﬁk) =
lim p(ax)e(Br) = &(A)@(B). Also 4 + B = {ay + Br} + Z and
#(4 + B) = lim p(ax + Bi) < lim (o(ar) + o(Br) = &(4) +
#(B). Hence @ is a valuation. If 4/ = ae®, s0 4 = {a} + Z,
then 3(A4) = lim ¢(a) = ¢(a); hence & is an extension of the
valuation ¢ on ®. We shall show next that ® is dense in &. Let
A4 = {ax} + Z be an element of . Let a3’ be the constant se-
quence all of whose terms are az. Then we have identified 4, =
ay’ + Z with a. We assert that lim 4y = 4. For, if ¢ > 0 is
given, we can find N such that (o, — a,) < €if myn > N. Then
lim ¢(an — a,) exists and thisis < e. On the other hand, g(4 —

n—o

An) = lim p(am — ay), so ¢(4d — A4,) <€ if m > N. Hence

lim 4y = A4 and ® is dense in . It remains to show that & is
complete. Let {4:} be a Cauchy sequence of elements of &. For
1

5
Then o(am — an) = @lam — Am + Ap — An + Ay — ay) <
¢(am - m) + ¢(Am - An) + ¢(/{n - an) < ¢(Am - An) +
1 1

ST
is a Cauchy sequence of elements of ®. If we now go back to the

each & we can choose a; e ® C & such that a(Ax — az) <

Since {4y} is a Cauchy sequence, this shows that {ay}
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original ® and take the element 4 = {ax} + Z, a) in the original
®, then we see easily that lim 4, = 4.

From now on we shall write ¢ for the valuation @ in &.

We now take up the question of uniqueness of the field &.
More generally, let ®;, i = 1,2, be a complete field with a valua-
tion ¢; and let ®; be a dense subfield. Suppose s is an isomorphism
of ®, onto &, which is isometric in the sense that ¢s(a®) = ¢;(a),
ae®,. Let 4ed, and let {ar} be a sequence of elements of &,
such that lim ay = 4. Then {ax*} is a Cauchy sequence in &,, so
it has a limit B. If {a’} is a second sequence such that lim ' =
A, then lim (ax — a’) = 0, lim ¢1(ax — ') = 0; hence lim
po(ar’ — ) = 0 and lim (e’ — ax”) = 0. This implies that
lim ax’* = B. Hence the mapping 5:4 — B of &, into &, is
single-valued. It is easy to check that this is a homomorphism.
Clearly 5 = s on ®;. Similarly, we can extend s~ to a homo-
morphism s ™! of §, intojl which is defined in the same way as 5.
Then one sees that £#*" = 4 for all 4e®, and B°"% = B for
all B e®,. This implies that § is surjective and an isomorphism.
We remark finally that, if 5, and 5, are isometric isomorphisms of
&, onto $; which coincide on ®,, then §; = 5,. The proof is clear.
We have therefore established the following

Theorem 6. Let &;, i = 1,2, be a complete field with a valuation
¢; and &, a dense subfield of ;. Let s be an isometric isomorphism of
&, onto ;. Then s has a unique extension to an isometric isomor-
phism of &, onto d,.

This result implies, in particular, that, if ®; and &, are com-
pletions of the same field &, then there exists an isometric isomor-
phism of &;/® onto $;/®. We just have to apply the theorem to
the identity mapping in ®. In this sense the completion is unique
and we have the right to use the term: the completion of the field
® relative to the real valuation .

EXERCISES

1. Let ® be a field with a real valuation ¢. Show that the sum, product, and
difference are continuous functions on ® in the usual sense. Show also that the
mapping @ — a~!is continucus on ®*, the set of non-zero elements of .

2. Let ® be the completion of . Show that the identity mapping is the only
continuous automorphism of ® over &.
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5. Some properties of the field of p-adic numbers. We look
first at some properties of any field relative to a non-trivial non-
archimedean real valuation ¢. If ®is such a field, then the subset
o of elements « € ® such that ¢(a) < 1is a subring of ®; for, if «,
Beo, then p(aB) = p()e(8) < 1 and p(a — B) < max (o(a),
¢(B)) < 1. Thering ois called the valuation ring of . The subset
p of o of elements B such that ¢(8) < 1 is an ideal in o, since
o) <1, @) <1, () <1 imply (81 —B2) <1 and
¢(aB;) < 1. The elements « in o which are not in p satisfy ¢(a) =
1; hence o(a™) = 1 and @™ e9. Conversely, if a is a unit in o,
then p(a) < 1, p(a™') <1 and p(a)p(a™") = 1 imply that ¢(a)
= 1,soa ¢ p. Thus we see that p is the set of non-units of p. This
implies that any ideal of o properly containing p contains a unit
and so coincides with 0. Hence p is 2 maximal ideal ino. If q is
any ideal properly contained in o, then q contains no units of o;
consequently ¢ € p. Hence p is the only maximal ideal of 0. The
difference ring o/yp is a field which is called the residue field of &
relative to ¢.

The set T = {¢(a), a # 0 in &} is clearly a subgroup of the
multiplicative group of positive real numbers. T is called the
value group of ¢. The valuation is called discrete if T is a cyclic
group. Itiseasy to see that a subgroup I' 1 of the positive reals
is cyclic if and only if the subset I'" of elements < 1 has a maximal
element. This element is a generator of I'.  Let ¢ be discrete and
let = be an element of ® such that ¢(7) is the largest element < 1 in
I'. Then = € p the maximal ideal of the valuation ring o and, if 8
is any element of p, then ¢(8) < o(7), ¢(B7r~") <1, s0 zr~! =
aepoand B = ar. Then p is the principal ideal (7). Conversely,
if p is a principal ideal: p = (=), then any 8 € p has the form a,
aeo,s0 ¢(8) = p(a)p(m) < o(m). Hence ¢(7) is the largest ele-
ment < 11in I' and ¢ is discrete. Since ¢(7) is a generator of T,
we have for any non-zero a in ®, p(a) = ¢(7)* for some integer k.
Then if e = ar™*, ¢(e) = p(@)p(r)™* =1, so € is a unit in o.
Consequently, any non-zero element of ® has the form er*, k =
0, £1, 42, - -- where € is a unit in o.

Let ® be any field with a non-archimedean real valuation ¢ and
let $ be the completion of ® relative to . We shall now show that
the value group of ® and & are the same and in a certain sense the
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same statement can be made for the residue fields. Let ae®.
Then the density of ® in & implies that there exists an « in & such
that ¢(@ — @) < ¢(&). Since the valuation is non-archimedean
we have ¢(a) = ¢(@ + (@ — @) = max (p(a), ¢(a — &) =
¢(&). Thus we have an a e ® such that ¢(a) = ¢(a) and clearly
this means that ® and & have the same value group I. Next let 5
be the valuation ring of ®, j its maximal ideal of non-units. If o
and p are the corresponding subsets of ®, theno=5N &, p =
pN & Ifaedwechooseae dsothatp(a —a) < 1. Thena —
aed and so a £0. Hence @ = a (mod §) which shows that o +
p = 5. We have the standard isomorphism:

5/p=(0+5)/p=0/(0 N5 =0/p

By means of this isomorphism we can identify the residue field of &
with that of &.

The theory of convergence of series in a complete field with a
non-archimedean valuation is strikingly simple. The complete-

ness implies that ) a; converges if and only if for any ¢ > O there
1

exists an integer V such that o(@myy +-*++ amps) < €if m > N
and £ =1,2,---. Since the valuation is non-archimedean,
o(amp1 +- -+ amyr) < max o(amy;). Hence the condition is
equivalent to ¢(amys) < e for m > N, i =1,2,---. This is
equivalent to lim a, = 0. This shows that a series converges if

0

m
and only if its #-th term converges to 0. Since X o = 2 a;
1 1

+ 3" a; we have ¢ (Z ak> < max (go (Z a,-) s go( > a,-)) and,
m4-1 © 1 1 m+1
since ¢ X, @; ) can be made arbitrarily small by taking m large
m-41 ©

enough, we have ¢ (Z ak> =0 (Z ai> if m is large enough. If,

1 1

in addition, we have ¢(a;) > ¢(az) > ¢(ag) > - - -, then go(Z ai>

© 1

= ¢(a;). Hence ¢<Z ak> = ¢(ay) in this case.
1

We now consider the special case of the field R® which is the
completion of the rational field R, with respect to the p-adic valua-
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tion g,(a) = p~* for a = p*a’, (a/, p) = 1. The field R® is
called the field of p-adic numbers. Evidently the value group of
R, relative to ¢, is the cyclic group generated by p~!; hence the
same result holds for R and the valuations of Ry and R® are
discrete. Let 5 be the valuation ring of R®. The elements of 5
are the p-adic numbers @ such that ¢,(&) < 1 and these are called
p-adic integers. It is clear from the definition of ¢, that the ra-
tional numbers a which are p-adic integers are those which can be
written in the form m/n where (n, p) = 1. 1If o is the valuation
ring of Ry, p its maximal ideal, theno = 5 N Ry, p = § N R,. We
have seen that 5 = o + §. Hence, if & is any p-adic integer, then
there exists a rational number m/» with (n, p) = 1 such that & —
m/n ¢ p. There exist integers @, & such that na + pb = 1. Then
m/n = ma + p(bm/n) so m/n = ma (mod §). Hence a = ma
(mod §), which shows that we have 5 = 7 + p, where 7 is the
ring of integers. It is clear that § N 7 = (p). Hence the residue
field 5/p = I/(p) is just the field of p elements.

Let @ be a p-adic integer. Then our argument shows that there
exists an element 2 of I (that is, an ordinary integer) such that @ —
aeh. If a= 04 (mod p), thena — bepand soa — &ep. This
shows that for every p-adic integer & we can choose 4, in {0, 1, 2,

1
---,p — 1} suchthata — @9 e p. We assert that &, =Z—>(& — ap)

is a p-adic integer. We note first that p is an element of p such
that ¢(p) is maximal. Since the value groups of Ry and R'® are
identical, it follows that p is an element of § with maximal ¢(p).
Consequently, the ideal § is principal with p as generator, so if 8
satisfies (B) < 1, then B = ¥p where ¥ is a p-adic integer. In

particular, @ — gy = pa, where & ¢5. Hence & = — (& — a)
?
e 5. We can repeat the argument with @;. Thus we can find ¢, =
1
0,1,2,---,p — 1suchthata, — 2, e pand &, =;(&1 — a;) ed.

Thena = a9 + pay = a9 + a1p + &p?. Continuing this process
we obtain

& = ay+ a1p + ap? + -+ ap® + a1 pF
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where 0 < 4, < p — 1 and @x,, €8 Then @ ,p* — 0 and
so we have

(14) a=atap+ap*+---, 0=<La;<p-1

Conversely, consider any series of this form. We may suppose
this is @mp™ + @mp1p™ ! +--- where m >0, 4, 0. Then
this series converges. If & is its limit, then ¢,(a@) = ¢,(p™) =
p~™. Hence a e 5. We see also that @ is a unit in § if and only if
m = 0. Hence the units of § are the elements (14) with &, = 0.
We have seen that the ideal § is the principal ideal generated by p.
It follows that every element of R‘ has the form p*¢ where ¢ is a
unit and k=1, 41,42, ---. Hence every element has the
form p*(ap + a1p +---) where 0 < a2, < p — 1.

Let U be the multiplicative group of units in 5. We wish to
analyze the structure of U, and first we shall show that U con-
tains a subgroup isomorphic to the multiplicative group of non-
zero elements of 1/(p), that is, a cyclic group of order p — 1. Let
a be one of the numbers 1,2, ---, p — 1. We know that @» = 2

+ xp where xel. It follows by induction that &?" = o**"
0k __ apk"l

(mod p¥) so — el € 5. It follows that

a® — a a* — a?
(15) ¢ > ? e ?

is a well-defined element of R, This is a limit of the sequence
{ta®} where

@’ — a a”* — a7
ST N
p p

Now in any field with a valuation one can prove as for the
reals that lim 4, = &, lim 4, = B imply lim (4 &= &) = @ = 8
and lim a4, = aB (cf. ex. 1, §4). Hence lim {,® = {, implies
lim (¢.®)? = ¢2. Since {.® = a*" we have lim ¢** = ¢, and
lim (a?")? = lim a***" = {,». But evidently lim 2" = {,. Hence
we have {,» = {,. Also {z = @ (mod p) is clear from (15), and
since 2 = 0 (mod §), ¢, % 0. Hence ¢{,>~! = 1. The same argu-
ment shows that, if @ % 4 in the set {1,2,---,p — 1}, then
{a # . Hence we have constructed p — 1 distinct (p — 1)-st
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roots of 1. This is all we can have in a field. We know also that
{¢a} is a cyclic group (Lemma 1, § 1.13).

LeteeU,sothat e =a + a1p + ayp®> +--- where 0 < a < p
and 0 <4;<p. Then {; =¢ (mod p) and & = {le= 1
(mod p). We shall call a p-adic integer a 1-unit (Einseinheit) if it
is congruent to 1 modulo 5. We have shown that every unit in
o has the form e = &, where & is a 1-unit. Let U, be the set of 1-
units. Then U, is a subgroup of U. To see this, let 7, iz &€ U so

=1+ By, B: ep. Then we have 7, = 1 + B1 + B2 + BiB2 =
1 (mod §), since 81 + Bz + B1B2 € p. Also, it is easy to see that
1 =B +B2—---= 1 +Bl)_l' Clearly, 1 — Br+ B2 —---
= 1 (mod p). Hence#,™ ' = (1 4+ B;) e U,.

In order to study the subgroup U, of U more closely we find it
convenient to introduce the exponential function in the field of p-
adic numbers. We define this by means of the series:

2

x o«
(16) expx=1+ﬁ+—2—!+---

which we shall show converges forallx e pif p = 2. Asin §1, we
write ¢,(x¥) = p~**® and we know that »,(x) is an integer. The
condition »,(x) =/ > 0 is equivalent to: x e f*. For a rational
number, v,(x) is the power of p which divides x in the sense that x
= p"»®y where (y, p) = 1. In order to prove convergence of (16)

k
we evidently need a formula for »,(k!). For this we note that [;]

of the numbers 1,2, --, % are divisible by p where, as usual [2]
denotes the integral part of the real number z. (These are p, 2p,

k k
3p, -, [;] p.) Similarly, [;}—] of the numbers 1,2, ---, k are

2

k
divisible by p?, [}—3] are divisible by *, etc. This implies that

(k) = E] + [}/52] + [fa] +--

1 1
! - — 4+...) = .
Hence »,(k!) < k(p + > + ) k(p — 1) We now
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assume p % 2. Then if vy(x) =/ > 1 and k > 0, »,(x*/k!) >
1

k(l - ﬁ> > 0. We can include ¥ = 0 in this by taking

»p(0) = . The inequalities show that x*/klep if £ > 0 and
lim x*/k! = 0. Hence (16) is convergent and exp « is defined for
all x e 5. Moreover, since x*/k! e § for k > 0, exp x is an element
of 5 and exp x = 1 (mod §). Hence exp x e U;. If ¥ # 0 and
vp(x) =7 >1, then w»,(x¥*/2)) =2/ >/ and, if k > 2, then
vp(x®/kY) > k <1 - ;—I—T> > /. It follows that, if xe 5,/ > 1,

then

a7 expx — 1 — xeptl

We shall now show that, if x, y € §, then

(18) exp (x +y) = (exp x)(expy).
n k n k n k
Let X.,,,= Z_x_, Y.,,,= Z-y_, Z(x +.y) .
0 ' 0 ' 0
1 yk—l
Si — kE il
ince k!(x + )k = l§o T (k—l)'
- % y*
Zan = Xa¥ 1+-k<an NEl
I>nor
k>n

The inequalities noted before imply lim (Z;, — X,Y,) = 0.
Since lim X, = expw, limY, = expy, lim Z,, = exp (¥ + ¥),
this gives (18). This equation and the fact that expxe U,
establish a homomorphism of the additive group (§, 4) into U;.
We shall show that the mapping ¥ — exp x is in fact an iso-
morphism of (§, +) onto U;. To see that the mapping is an iso-
morphism, it suffices to show that # = 0 implies exp # % 1. Thus
suppose v,(x) =/ 7 o, s0 x € p*, ¢ p**1. Then it is clear from (17)
that exp x = 1.

Next consider any element of U;. This has the form 1 + y,
yeh. Set xy =y and consider (1 4 y) exp (—x1). By (17),
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exp (—x1) = 1 — %1 + 2, where 2; € p?; hence
A4y exp(—x1) = 1 +x)(1 — 21 + 21)
=1+ (Zl —x® + xlzl)
=14+ x

where x, = 21 — 12 + x12; € §°. Suppose we have already deter-
mined elements x,, xo, - - -, %% such that x; € p* and

(I +y)exp(—x1 —wg — - —x) = 1 + 2y
where xx1 € **1. Then
1+ €xp (=% — %2 — -+ — Xiy1)
=1 +y)exp(—x1 — %3 — - — xx) exp (—Xr41)
= (1 + %a41) exp (—xx41)
= (I + x40 — %41 + 2Zey1),

where 23 € §*72 and (1 + xpp1)(1 — weyy + 2rg1) = 1 + x4
where %x15 = Zkg1 — ¥ep1® + %epa2egr € 972 This shows that
for any integer » > 1 we have x, x5, - - -, ¥n, ¥; € P%, such that

1+yexp(—2 x)=1 (mod p"t!). Then x = > x; is an
1

1 n
element of § and we assert thatexpx =1 + 3. Let X, = X .

1
Then exp (—x) exp X, = exp (X, — %) =1 (mod p"*!) since
X, — xep**. Now one verifies as for § that, if z; = 1 (mod
p"*1) and 2z, = 1 (mod §"*'), then 2,2, = 1 (mod §"*'). Hence
we can conclude from (1 4 y) exp (—X,) =1 (mod ') and
exp (—«) exp X, = 1 (mod §"*!) that

(1 + ) exp (—%) = 1 (mod "+,

Since # is arbitrary, this gives (1 + y) exp (—%) = land1 + y =
exp x as required. This shows that x — exp x, x € § is surjective
on U;. Hence we have proved the following

Theorem 7. Let § be the maximal ideal in the ring o of p-adic
integers, p # 2, and let U, be the group of elements = 1 (mod §).
Then the exponential mapping x — exp x is an isomorphism of the
additive group (8, +) onto the multiplicative group U, of 1-units of 6.
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Remark. It is natural to establish the fact that x — exp« is
surjective by giving the inverse function log (1 +y) =y —

2 3

32_ +¥3— _ ..., which is defined for all y & § (ex. 4 below). Then
one has to show that exp (log (1 +y)) = 1 +y. The details of
this are somewhat lengthy. For this reason we have preferred the
above proof that x — exp « is surjective since it does not require
the explicit definition of the inverse. The reader may refer to
Hasse’s Zahlentheorie, Berlin 1949, pp. 188-199, for a complete
treatment of these questions.

It is clear from Theorem 7 that the group U, has no elements of
finite order. Hence if Z denotes the group of (p — 1)-st roots
of 1 which we constructed before, then U; N Z = 1. We have
seen that every element of the group of units U of § is a product of
an element of Z and an element of U;. Hence we have U = U; X
Z (direct product).

As an application of these results we consider the question of
solvability of equations of the form x> = m in p-adic fields where
m is an ordinary integer prime to p and p £ 2. Then m e U and
we can write m = 7, where e U, and m = 2 (mod »),0 < 2 <
p. Itis clear that, if a* = m for & e R, then ¢,(@) = 1,s0if a
solution of ¥2 = m exists in R® then this solution must belong to
U. Hence it has the form X{s where {3 is one of the (p — 1)-st
roots of 1 and X e U,. It follows from U = U; X Z that A\? = 7,
¢v2 = .. We now note that the equation x> = 7 has a solution
for any e U;. Using the isomorphism of U, with (§, +), it
suffices to see that the mapping ¥ — 2x is an automorphism of the
latter group. This is clear since 27! ¢ U and ¥ — 27 'x maps §
into itself and is the inverse of the mapping ¥ — 2x. Hence we
see that the equation 2 = m is solvable in R® if and only if
{2 = {qis solvable. Itis easy to see that the condition for this is
that ¥2 = m or ¥* = 4 (mod p) is solvable, that is, m is a quadratic
residue modulo p. Hence x* = m is solvable in R®, p =2
(m, p) = 1 if and only if ¥2 = m (mod p) is solvable in integers,

that is, if and only if <%> = 1 where <%> is the Legendre symbol.
For example, if p = 5§ and m = —1, then 22 = —1 (mod 5) so
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-1
<T> = 1. Hence V —1 exists in the 5-adic field. On the other

hand, (%) = —1,s0 V'3 does not exist in this field.

EXERCISES

1. Obtain the 5-adic expansion of the form (14) for the 5-adic integer 3.

2. Show that the field of p-adic numbers is uncountable for any p = 2, 3,
5, +++. Use this to prove the existence of p-adic numbers which are transcen-
dental over the rational subfield.

3. Use the binomial expansion of (1 — 2x)* to obtain a convergent series for
4/—=1 = }(1 — 10)* in the 5-adic field.

2 3
4. Definelog (1 4+y) =y — % + '% —-+-. Show that this series converges

for all yep if p # 2. Show that log 1 +y)(1 +52) =log (1 +y) +
log (1 + y3), y: € §.
5. Show that the equation x® = 4 is solvable in the field of 5-adic numbers.
6. Show that in the field of 2-adic numbers the exponential mapping is an
isomorphism of p? onto the group of elements of 0 which are = 1 (mod §%).

6. Hensel’s lemma. There is another, more powerful, method
for handling equations in p-adic fields and more generally in com-
plete fields with a discrete non-archimedean real valuation. This
is based on a fundamental reducibility criterion for polynomials
which is known as

Hensel’s lemma. Let ® be a complete field relative to a non-
archimedean discrete real valuation ¢. Let o be the valuation ring of
®, p its maximal prime ideal, A = o/p the residue field and let « —
a* = a + p be the canonical homomorphism of o onto A. Suppose
S(%) e o[x] has the property that its image [*(x) = v(x)n(x) in Alx]
where (v(x), n(x)) = 1 and the leading coefficient of v(x) is 1. Then
S(x) = g(x)h(x) in olx] where g*(x) = v(%), A*(x) = n(x), deg g(x)
= deg v(x) and g(x) has leading coefficient 1.

Proof. Let deg f(x) = n, deg v(x) = » < #n. We can choose
g1(x), h1(x) e ofx] so that g1*(x) = v(x), A& *(x) = n(x), deg g1(x)
= r,deg A1(¥) < n — r, leading coefficient of g;(x) is 1. Then we
have f(x) = g:1(x)A1(x) (mod p) in the sense that the coefficients
are congruent (mod p). We proceed to determine two sequences
of polynomials {gi(x)}, {Ax(x)}, £ = 1,2, -+, in o[x] such that:
(i) gi(x) = gr1(x) (mod p¥), Ax(x) = Aria(x) (mod ), (ii) f(x) =
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a()h(x) (mod ), (i) deg gu(x) =, deg /u(x) <7 — 7,
leading coefficient of gr(x) = 1. We can begin these sequences
with the g,(x) and A;(x) which we have chosen. Hence we may
suppose that the sequences have already been constructed for
k<s. We set goi(x) = go(x) + u()7®, Asyr(x) = As(x) +
v(x)mw®, where p = (7)) (asin § 5). Then (i) will hold for any choice
of u(x) and v(x) in o[x]. We seek to satisfy (ii). This requires that

S(x) = [gu(x) + u(x)m*][£a(x) + v(x)7]
= g:(0)hs(x) + [ga(¥)0(x) + As(x)u(x)]x® (mod p**)
or
(19) f(x) — ga(%)ha(x) = [ga(x)v(x) + a(x)2(x)]7* (mod p*+).

Since f(x) = gs(%)A.(x) (mod p°®) we can write f(x) — go(x)As(x) =
m°w(x) where w(x) eo[x]. Since deg f(x¥) = » and deg g,(x)A,(x)
< n we may suppose deg w(x¥) < n. Itis clear that (19) will hold
if

(20) g:(x)o(x) + As(x)u(x) = w(x) (mod p).

Now it is clear from (i) that g,*(x) = g1*(x) = v(») and A,*(x) =
n(x), so we consider the equation

(21) v(*)v*(x) + n(x)u*(x) = 0*(x)

in A[x]. Since (v(x), n(x)) = 1, there exist polynomials a(x), 8(x)
in Alx] such that a(x)v(x) + B(¥)n(¥) = 1. Multiplication by
w*(x) gives polynomials k(x), N(x) such that k(x)y(x) + N(x)n(x)
= w*(x). We can write AM(x) = y(x)u(x) + o(x) where deg p(x)
< r and then we obtain

w*(x) = k(®)v(x) + (v(nux) + p(x))n(%)
= (k(x) + p(n())v(*x) + p(x)n()-

Then deg p(x)n(x) < 7 while deg w*(x) < #. Since deg y(x) = 7,
the foregoing relation shows that the degree of (x(x) + u(x)n(x))
does not exceed » — 7. If we call this polynomial o(x), we have

o(#)v(®) + p(x)n(x) = w*(x),

where deg p(x) < r and deg o(x) < » — . Then we can choose
u(x) and v(x) e o[x] so that u*(x) = p(x), v*(x) = o(x), deg u(x)
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= deg p(x) <7, deg v(x) <n —r. Then (21) holds and
Zor1(®) = gol) + ul)m®y Aop1(x) + As(x) + v(x)n® satisfy also
(iii). This completes the proof of the existence of the sequence
{g:()}, {Ae(x)}, & = 1,2, - satisfying (1), (ii), and (iii). The
conditions (i) and (iii) and the completeness of ® imply that the
sequences {gi(x)}, {4x(x)} converge to polynomials g(x), A(x) in
the sense that the sequences of coefficients of like powers of x con-
verge to those of g(x), A(x). Moreover, we have deg g(x) = 7,
deg A(x) < n — r, leading coefficient of g(x) = 1. It follows also
from (ii) that f(x) = g(x)A(x) and this completes the proof.

EXERCISES

1. Use Hensel’s lemma to prove that in the field of p-adic numbers there
exists a {g such that{,»~! = 1,{, = 2 (mod ) where 2 is any integer prime to p.
Also use this to obtain another proof of the existence of v/—1 and v/4 in the
5-adic field.

2. Hypotheses on ® as in Hensel’s lemma. Let f(x) = gox™ + g™ 1 -+ +
a, € 0[x] satisfy: o, @n € p but there exists 4., 1 < r < n — 1, such that ., ¢ .
Then f(x) is reducible in o{x]. Use this to show that, if g(x) = »™ + ayx*~1
+ .-+ a, is an irreducible polynomial in ®{x] and a, € o, then all the a; € 0.

7. Construction of complete fields with given residue fields.
Let A be a given field. We consider the problem of constructing
complete fields with non-archimedean real valuations such that
the residue field is the given field A. We shall give two construc-
tions: the first, in which the complete field contains A and so has
the same characteristic as A; the second, in which A is perfect of
characteristic p # 0 and the complete field is of characteristic 0.
" A special case of the latter is A = I, and the complete field is
the field of p-adic numbers.

We consider first the field ® = A(¢) where £ is transcendental
over A. We introduce the order function » by v(a()) = k if a(f)
= £58(£)v(£) ™ where 8(¢) and v(£) are polynomials not divisible
by £. We define a valuation ¢ by o(a(f)) = @@ ¢ a fixed real
number 0 < ¢ < 1 (cf. example 3, § 1). Let & be the completion
of & relative to ¢. Since ¢ is trivial on A, it is clear that ¢ is non-
archimedean. Hence its extension to &, which we shall denote by
¢ also, is non-archimedean. The value group I of ® and of &
consists of the powers of ¢, so the valuation is discrete. Let & be
the valuation ring of &, p its maximal ideal, and let 0 = 5 N &,
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p = p N & Itisclear that{is an element of § for which ¢(§) = ¢
is maximal. Hence, as in the p-adic case, every element & of & has
the form £ & where e € 5, ¢ p and & is an integer. We can therefore
define »(£¥€) = k and it is clear that this coincides on & with the
order » which we defined originally in &.

We have seen in § 5 that 5 = 0 + § and this permits us to
identify the residue fields 5/p and o/p. The ring o is the set of
rational expressions in £ with coefficients in A which are “finite at
0” in the sense that a(§) = B(£)y(§) ™' where 8 and v are poly-
nomials and y(0) % 0. The argument in the p-adic case showing
that 8 = 7 + § (p. 224) can be used in the present situation to
prove that 5 = A[¢] + §. Since £ ¢ b, this gives 5 = A + § and,
since N A = 0, we have the isomorphism § — 6 4 pin5/pof A
with the residue field 5/5. In this sense we can say that A is the
residue field of &.

Now let @ be any element of 5. Thens = A + § shows that we
can find 8y ¢ A such that @ — dp e p. Then a; = (@ — 80) ' &b
and we can repeat the argument with this obtaining &, € A such
that @ — 8; e pand @ = (& — 8,)¢ 1 ed. We have a = § +
818 + ast? as ed. As in the p-adic case, we can continue this
process and obtain

(22) & = 8o + 818 + 8282 + -+ -+ 5 + @ EFH!

where the ;e A and @,y 5. Since v(agp &) >k + 1, it is
clear that the sequence {a*} is a null sequence. Hence we have

(23) &= 80+ 815+ 58 +---, d:eA,

for any @ed. If g is any element of & we can write § = at—*
where % is a non-negative integer and @ € 5. Then we have

(24) B = E7*(8 + 818 + 582 +---).

This shows that ® is the set of power series of the form (24) in £
with coefficients in the field A. Itis easy to see that the expression
(24) for B is unique, that is, k¥ and the 8; ¢ A are uniquely deter-
mined by B. Moreover, the addition and multiplication of ele-
ments of $ are the usual ones for formal power series based on the
compositions in A. For example, we have (8o + 8:£ +---) +
(o + €6 +-+-) = (80 + €) + (81 + €1)é +- - - for §;, e;in A and
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(Z 5.t )(Z e,E’) ansk where n; = Z Sier—i It is clear

that we have a good hold on the field ® as the ﬁeld of formal power
series (24).

We consider next the case in which A is a perfect field of charac-
teristic p % 0 and we shall use this to construct a field  which is a
generalization of the field of p-adic numbers. The construction
we shall give is based on Witt vectors which we considered in
§3.4. We begin with the definition of the ring ®(A) of Wit
vectors (of infinite length) based on a commutative algebra ¥ over
I,. The elements of TW(A) are the infinite sequences

(25) (40) a1, @z, ° ')) a; € ﬂ)

where equality is defined component-wise. We can define addi-
tion and multiplication by the formulas (22) of Chap. III which
were used to define these compositions in B,(A) the ring of Witt
vectors of length m defined by 9. Then one can verify that (%)
is a ring. It is more convenient, however, to adopt an equivalent
but slightly different approach which is a special case of the defini-
tion of an inverse limit of rings. In the present case we are deal-
ing with such a limit for the rings % = B®,;(A), W, (), -- - with
the restriction homomorphism R of B, (%) into Wn_,(A). We
associate with the element 4 = (4o, 2,, - - -) of W(A) its projec-
tion 4™ = (ag, a1, ** 5 @m—1) in BW(A). Then A™F = (a4, - - -,
@m—3) = A™-1. On the other hand, let {4,|m = 0,1,2, ---} be
any sequence of elements A,, where 4,, e B (A) and £,F = A,_y,
m=1,2,---. Then it is clear that {A4,} = 4™ for a unique
A e B(N). Hence we can identify the elements of W(A) with the
sequences { A}, Am € Bn(A) such that £,F = Ap_y. If 4=
{Am} and B = {B,} are two such sequences, we define 4/ + B =
{An + Bn}, 4B = {AnBn}. Since R is a ring homomorphism,
(Am + Bm)R = AmR + BmR = Am—l + Bm—l and (AmBm)R =
AnFBLE = Ap_1Br_,. Hence 4 + B and AB e ®B(N). It is
trivial to check that B(NA) is a commutative ring relative to these
compositions and that 0 = (0,0, ---),1 = (1,0,0,---). For a
fixed m, the mapping mm: 4 — A™ is a homomorphism of (%)
onto W,,(A). Since 1™ has order p™, it is clear that the identity 1
of W(A) has infinite order in the additive group (W(A), +).
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Let ., denote the kernel of .. Then R, is the set of elements
of W(A) of the form (0, - -+, 0, @m, @my1, - +). Hence

(26) MONDONgD -+, [} Rm = 0.
m=1

We can use the set {®,} to define convergence in W(A). If
{Ax|k = 1,2, ---} is a sequence of elements of W(Y), then we
say that {4} converges to the element 4 of B(A) (A — A) if for
any positive integer m there exists a positive integer N(m) such
that 4 — Ax e Ny (m for all & > N(m). It is easy to see that the
limit A is unique and that 4y — 4, By — B imply 4 + By —
A+ B and 4 Br — AB. Suppose {Cilk =0,1,2,---} is a
sequence such that CreRi, £ =1,2,---. Set A= Co +
C,+---+Cx. Then A, »wE = 4,"» = A, "= hence the
sequence of elements {4, ™+, m = 0,1, ---} where 4, ™+ ¢
BWni1(A) can be identified with an element A4 eW(A). One
checks that A4, — 4. Since A, =Co+C, +---+ Cr, we

shall indicate the convergence 4x — A by writing X, Cx = 4.
k=0

We recall that, if % is the ideal of elements (0, @, - - -, @m_,;) in
Bn(A), then N is nilpotent (Th. 3.12). In fact, the proof of this
result shows that N* is contained in the set of vectors of the form
0, -+, 0,@ky1, -y @m—1). This implies that ,* S N in W(A).

Hence, if Z ¢ M;, then D, Z* is defined. Since (Z Z") 1-2
0

k=0
=1 — Z™*, it follows that 1 — Z is a unit in W(A) with X Z* as
0

inverse. Since (ag, -+ :)(a0™", --+) = (1, ---) this implies that,
if @o is a unit in ¥, then (o, a;, - - ) is a unit in W(A).

Now let % = A a perfect field of characteristic p. The formula
p(ao, a1, "y am—l) = (O) ao®s 4%y - -+, am—2p) in QBm(?I) which
we established in § 3.4 (Equation (27)) implies that p(ao, 21, - - )
= (0, ao®, 21”, - - -) holds in W(A). Iteration of this formula gives

—k—
(27) pk(aoa ax, ) = (Oa Y Oa aopk) alpk) ot ')'

Since 9 = A is perfect, the elements 2,7 can be taken to be arbi-
P s
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trary elements of A. Hence we have p*®W(A) = RN where Ny is the
ideal we defined before. Also (27) shows that, if 4 0, then
p*d # 0 fork=1,2,.--. Now let 4 and B be any non-zero
elements of W(A). Then we can write 4 = p*C, B = p'D where
C,D¢Ny. Then C = (co, ---) and D = (dp, - - -) where ¢o ## 0,
do # 0. Hence CD = (codp, --+) # 0 and 4B = p*'CD # 0.
This shows that 8(A) is an integral domain. Let & be the field of
fractions of W(A) and consider the subset & of & of elements of
the form p*C where C e ®(A) and &k = 0, =1, &2, ---. Since
any C e B(A4), ¢ pB(A4) is a unit in W(A), it is clear that the non-
zero elements of & form a group under multiplication. Since &’
is a subring of ® which contains (A), it follows that & = &.

If 4 = p*C, C e B(A), ¢ N1, then we define the order »(A) = &
and we define o(A4) = p~*, ¢(0) = 0. Then ¢ is a real non-
archimedean valuation of ®. The subring T(A) is the set of ele-
ments satisfying ¢(4) < 1 and R, is the ideal of elements B of
BW(A) such that o(B) < 1. The residue ring is ®(A) /N, which is
isomorphic to A. The result we noted before on convergence of
sequences in B(A) implies that & is complete relative to the valua-
tion ¢. We leave it to the reader to check this. Since 1 is of in-
finite order, ® is of characteristic 0. Thus & has all the properties
we required: completeness relative to a non-archimedean real
valuation, characteristic 0, residue field the given perfect field A
of characteristic p. If we start with A = I, then the field ® we
obtain in this way is the field of p-adic numbers.

8. Ordered groups and valuations. A non-archimedean real val-
uation satisfies p(a + ) < max (¢(a), ¢(8)), ¢(aB) = ¢(a) ¢(B).
Hence it is clear that in considering such a valuation the addi-
tion of the reals plays no role. Only the multiplication and
order of the non-negative reals are involved in the defining proper-
ties. As we shall see, this leads to a generalization of the concept
of a non-archimedean real valuation to (non-archimedean) valua-
tions with values in any ordered commutative group. Besides the
increased generality which results from this extension, the
generalization is essentially simpler and more natural than the
original concept. We consider first the notion of an ordered
commutative group.
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Definition 6. 47 ordered (commutative) group G is @ commuta-
tive group G together with a subset H satisfying the three conditions:
D1¢H,2)ifaeGeithraceH,a=10ra""eH,3) His closed
under the multiplication in G.

If (G, H) is an ordered group, then we let H~' = {,~!|b e H}.
Then condition 2 states that G = H U {1} U H~'. Moreover,
these sets are non-overlapping. This is assumed for A and {1} in
condition 1 and it follows for #~! and {1} on observing that, if
1 e H™?, then 1 ¢ H contrary to condition 1. Finally, if s e H N
H™' thena™' ¢ H and 1 = aa~' ¢ H by condition 3. This again
contradicts condition 1.

The positive reals form an ordered group if we take H to be the
set of elements < 1, We can take H equally well to be the set of
elements > 1. In fact, if G is any ordered group, then H~! is
closed under multiplication and satisfies conditions 1 and 2 of
Definition 6, so we can obtain another ordered group on replacing
H by H™'. In any ordered group G we define 2 < & to mean that
ab~' ¢ H. This defines a linear ordering in G, that is, we have the
following properties: 1. 2 < 4, 4 < ¢ implies 2 < ¢. 2. For any
pair (a, 4), 4, & € G, one and only one of the following holds: 2 < 4,
a = b,6 < a(as usual we write 4 > g fora < 4). The orderin G
is invariant under multiplication, that is, we have: 3. If 2 < 4,
then ac < 4c. Conversely, if a relation 2 < 4 is defined in a group
G so that properties 1, 2, and 3 hold, then G is ordered by the
subset H = {a|a < 1}. Clearly condition 1 of Definition 6 holds
for H. To prove conditions 2 and 3 we note first that, if 2 < &
and ¢ < d, then ac < bc < bdso ac < bd;hence,a < &if and only
if a=* > 47!, In particular, 2 < 1 if and only if 2~ > 1. Since
any g satisfies one of the conditions: 2 < 1,2 =1, 42 > 1, it is
clear that condition 2 of Definition 6 holds. Finally, 2 < 1,
4 < 1imply @b < 1, so H is closed under the multiplication in G.
We remark also that the ordering defined by H in the manner
indicated: 2 < & if a6~ ¢ H is the same as the original ordering
since 26~ ¢ H means a4~ < 1 and this holds if and only if 2 < &.

If G, is a subgroup of an ordered group G ordered by the set
H = {alaeG, a > 1}, then G, has an induced ordering defined
by H, = G; N H. This can be verified directly, or it can be seen
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by noting that the relation > defined in G gives a relation in G,
which satisfies the conditions stated before. If G is ordered by H
and G’ is a second ordered group, ordered by H’, then an isomor-
phism 7 of G into G’ is called an order-isomorphism if Hn C H'.
Also G and G’ are order-isomorphic if there exists an order iso-
morphism 7 of G onto G’. In this case one necessarily has Ay =
H'. For example, the group of positive reals under multiplication
with H defined as before is order isomorphic to the additive group
of all the real numbers ordered by the set H’ of negative reals.
The mapping 2 — log 2 (natural logarithm) is an order isomor-
phism of the first group onto the second one.

If G is an ordered group, G contains no elements > 1 of finite
order; for,if a < 1 (@ > 1), then g™ < 1 (& > 1), s0 a® # 1 for
every positive integer #n. A consequence of this property of G is
that for any fixed integer » the mapping ¥ — «™ of G is an iso-
morphism of G onto a subgroup of G, which is order preserving if
n>1

To define general valuations we shall need to consider ordered
groups V with 0. We define such a system to be an ordered group
G to which a 0 element has been adjoined: 7 = G U {0}. The
ordering in G is extended to » by defining 0 < & for every ae G
and we define 20 = O for all 2. We can now give the following

Definition 7. Let ® be a field and let V be an ordered (commuta-
tive) group with 0. A mapping o: a — o(a) of ® into V is called a
valuation if

(1) ¢(@) = 0 if and only if « = 0.
(i) p(aB) = p(@)e(B).
(iil) (e + ) < max (¢(a), ¢(8)).

The exact sweep of this definition will become apparent soon.
At this point it is clear that real non-archimedean valuations are a
special case in which 7 is the set of non-negative real numbers.
On the other hand, it should be noted that the real archimedean
valuations are not valuations in the present sense. This incon-
sistency in terminology will cause no real difficulty. We shall now
give an example of a valuation for which 7 is not the non-negative
reals.
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Example. 1In this example we shall find it convenient to use the additive
notation in the group G. The modifications in Definition 7 which are necessi-
tated by this change are obvious, so we shall not write these down. The group G
we shall consider is the additive group of integer pairs (k, /). We introduce the
lexicographic order in G, that is, we define (k,/) < (&, ) if either £ < ' or

= k' and / < /. One checks that this is a linear ordering preserved under
addition; hence G is an ordered (additive) group. Welet ¥ = G U {o} where
the ordering is extended to 7 by setting « > (k, /) for every (k,/) €G. Also we
define (k,/) + © = . Now let P = &(¢, ), a purely transcendental extension
of a field ® where {£,7} is a transcendency basis for P over . If 2 € P and
a # 0, we can write a = £™"p(£, n)g(£,7) ™! where p(£, 1) and ¢(£,7) are poly-
nomials in £, with nonzero constant terms, and 7 and » are integers. Then
we define (@) = (m, n). Also we set ¢(0) = <>. Then (i) holds. It is easy to
check that ¢(ab) = (@) + ©(4) and ¢(a + &) > min (¢(a), ¢(#)). The first of
these is (ii) in the additive notation and the second can be changed to (iii) by re-
versing the ordering (writing > for <). Hence our function is essentially a
valuation.

EXERCISES

1. Let G be the additive ordered group of integer pairs (k, /) given in the fore-
going example. Let ¢ and ¢ be real numbers such that 0 < ¢ < 1 and ¢ is posi-
tive and irrational. Show that the mapping (k,/) — c*t¢! is an isomorphism of
G into the ordered multiplicative group of positive real numbers P. Show that G
is not order isomorphic to a subgroup of P.

2. Let P = ®(£, ) and @ = E™"p(E, n)¢(£, n) ~* where p and ¢ are polynomials
in £, 7 with non-zero constant terms, as in the example above. Define Y(a) =
cmten where ¢ and ¢ are real numbers, 0 < ¢ < 1, ¢ positive irrational. Show
that ¥ is a non-archimedean real valuation which is not discrete.

3. Define a valuation ¢ of an integral domain o by replacing the field & in
Definition 7 by the integral domain 0. Show that any valuation ¥ of o into 7
has a unique extension to a valuation of the field of fractions ® of 0.

4, Let G be an arbitrary (commutative) ordered group and let 0 = &,(G) be
the group ring over a field @) of G (Vol. I, ex. 2, p. 95). Show that 0 is an integral

domain. If 2 = ) augi, a; % 0 in ®y, g: €G, define p(¢) = min g; (in the

1
ordering < defined in G). Define ¢(0) = 0. Show that ¢ is a valuation of 0.
Use exs. 3 and 4 to show that if 7 is any ordered group with 0, then there exists a
field ® with a valuation ¢ of ® into 7 such that o(®) = 7.

9. Valuations, valuation rings, and places. In this section we
shall establish an equivalence between the concepts of a valuation
in the sense of Definition 7 and two other concepts: valuation ring
and place. The first of these, valuation ring, is an intrinsic notion
in the sense that its definition does not require any system external
to the given field . Moreover, the valuation rings give the link
between valuations and places. We have already encountered
these for real non-archimedean valuations.
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Now let ® be any field and let ¢ be a valuation with values in
the ordered group 7 with 0. We note first that ¢(1)? = ¢(1?) =
¢(1) and, since G contains no elements of finite order = 1, ¢(1)
= 1. Also o(—1)2 =¢(1) =1, s0 ¢(—1) =1 and ¢(—a) =
e(—1Dep(a) = o(a). From aa™ = 1 we obtain ¢(a™) = ¢(a) ™!
and ¢(aB™!) = ¢(a)e(B)~1. Now let o be the subset of & of ele-
ments a such that ¢(a) < 1. Then, if a,B8 €0, o(a — 8) < max
(p(a), ¢(B)) <1 and ¢(af) = e(a)¢(B) < 1. Hence o is a sub-
ring. Now suppose a ¢9, then ¢(a) > 1 and ¢(a™) = ¢(a) ™
< 1. Hence a™ eo. We therefore see that o is a valuation ring
(in ®) in the sense of the following

Definition 8. If ® is a field, a valuation ring o in ® is a subring
of ® (comtaining 1) such that every element of ® is either in o or is the
inverse of an element of o.

If o is the subring of elements « satisfying ¢(a) <1 for the
valuation ¢, then o is called the valuation ring of ¢. This is a direct
generalization of the definition we gave before for non-archime-
dean real valuations. We shall now show that any valuation ring
gives rise to a valuation ¢’ for which the given ring is the valua-
tion ring. Suppose o is a valuation ring in ®. Let U be the set of
units of o, p the set of non-units, p* the set of non-units > 0, &*
the multiplicative group of non-zero elements of . Then U'is a
subgroup of the commutative group $* and we shall take G’ =
®*/U for our group. We introduce an ordering in G’ by letting "
be the set of cosets BU, B € p*. It is clear that the product of a
non-unit of o with any element of o is a non-unit. Hence if 8,
Bs € p*, then 8,8, € p*; so if B1U, B,U, e H', then (8,U)(B:U)
=B UeH. 1If BU is any element of G' = &*/U, then
B # 0,and if 8 ¢ p*, then eitherBe Uor 8 ¢ U and B ¢ p*. In the
first case BU = U, and in the second 8 ¢ 0, so 8~ €0 and, since
B~1e U implies Be U, we have 71 ep* Hence (BU)™' =
B *UeH'. Thus we see that G’ = H' U {1} U (&)™ holds.
Also 1 = U¢ H'. Hence H' makes G’ an ordered group as in
Definition 6. Next we adjoin a 0 to G, obtaining 7/ = G’ U {0},
and we define a mapping ¢’ of ® into 77 by

(28) Q0) =0, o() =aUecG if a0,
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The conditions (i) and (ii) for a valuation are clearly satisfied.
Also (iii) is clear if either a =0 or 8 =0. If a0, 80,
either a8~ e 0 or Ba ™" £ 0 and we may as well assume the former.
Then we have a = By where v e0 and ¢'(a) = ¢'(B)¢'(v) < ¢'(B)
since ¢'(v) =yU <1 =U. Also o7+ 1leo, so ¢ (af™! +
1) <land ¢'(a+ B) = ¢'(aB™' + 1)¢’(8) < ¢'(8) = max (¢'(a),
¢'(8)). Hence (iii) holds. It is clear from (28) and the defini-
tion of G’ and H’ that ¢’(a) < 1 is equivalent to a £ 0. Hence o
is the valuation ring of the valuation ¢’. We shall call the valua-
tion ¢’ the canonical valuation of the valuation ring o.

Now consider again an arbitrary valuation ¢ of & into 7 =
(G, 0) where G is a commutative group ordered by H. Let o be
the valuation ring of ¢ and ¢’ the canonical valuation of & into
V' = (G, 0) where G’ = ®*/U is ordered by H' = {BU|B ¢ p*}.
The definition (28) gives ¢'(0) = 0, ¢'(a) = aU if a % 0. We
have the homomorphism @ — ¢(a) of the multiplicative group ®*
into G whose kernel is the subgroup U. Hence we have the in-
duced isomorphism 5:¢'(a) = aU — ¢(a) of G’ = $*/U into G.
This is an order isomorphism since, if U ¢ H', then 8¢ p*, so
¢(B) < 1. We now see that the given valuation can be factored
as ¢ = ¢'n where 9 is an order isomorphism of G’ into G (more pre-
cisely, 7’ into V).

These considerations make it natural to lump together the
valuations of ® which have the same valuation ring 0. Accord-
ingly, we shall say that such valuations are equivalent.

There is a third concept, that of a place which is also equivalent
to the concepts of valuation and valuation ring. We define this as
follows:

Definition 9. If ® is a field, a place P is a homomorphism of a
subring o of ® into a field A such that, if a ¢o then a~ ' eo and
Pa™) =0. (We recall that 1 £0 and P (1) = 1 by our conven-
tions on subrings and homomorphisms.)

It is clear from the definition that, if 2 is a place, then the sub-
ring o given by Zis a valuation ring. On the other hand, suppose
o is any valuation ring and let p be the set of non-units of 0. Then
it is clear that, if Bep and aeo, af e p. In particular, —8 =
(=1Beyp. If B, and By e p, we may assume that B8, 'eo.
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Then B,8:™" + 1 €0, 50 81 + B2 = (B1827" + 1)B2 € p. Hence p
is an ideal in 0. Since p is the set of non-units of o, it is clear that p
is maximal and A’ = o/pis a field. Let &’ be the canonical homo-
morphism of o onto A’ = o/p. Then it is clear that &’ and o
satisfy the defining conditions for a place. We shall call this place
the canonical place of the valuation ring 0. The image of o under
P is A’ = o/p where p is the ideal of non-units of 0. As in the
special case of real non-archimedean valuation, we shall call A’
the residue field of the valuation ring o.

Now consider again an arbitrary place & of ® into the field A
and let o be the valuation ring on which & is defined. Let p be the
ideal of non-units of 0. If @ e p and @ 0, then a~! ¢, so the
hypothesis on & gives #(a) = 0. This holds also if « = 0.
Hence we see that p is contained in the kernel of & Since pis a
maximal ideal, this shows that p is the kernel of # The homo-
morphism @« — #(a), a ¢ o, therefore gives an isomorphism #'(«)
=a+ p = P(a), and so the place & is the resultant of the
canonical place &’ and an isomorphism of A’ into A. As for
valuations, it is natural to consider as eguivalent places that have
the same valuation ring.

We have now established the procedures for passing from one of
the concepts: valuation, valuation ring, place, to any other.
Clearly, a result on one of these can be translated to the other two.
In the sequel we shall apply this idea to obtain extensions of
valuations via extensions of places. The latter amounts to ex-
tensions of homomorphisms, for which we have available the basic
extension theorems of the Introduction.

EXERCISES

1. Let & be a place on ® with values in A. Adjoin a new element « to A and
define ©w 4§ =0 =8 + 0, €A, 0w =0, 0§ =w =0do if §#0 in A.
Extend & to the whole of ® by defining P(a) = = ifa ¢ 0. Verify that
Pla+B) = Pl + PB)

Pap) = PP B)
whenever the right-hand sides are defined. Conversely, assume that & is a
function defined on ® with values in (A, «), A a field where A N {»} = & and
obeys the rules indicated. Assume (29) hold whenever the right-hand sides are

defined. Let 0 be the inverse image &2~ (A). Show that the restriction of & to
0 is a place. This gives an alternative definition of a place.

(29)
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2. Let & be a place with valuation ring 0. Assume & is an isomorphism.
Show that 0 = & and that the canonical valuation of 0 is trivial in the sense that
(0 =0,¢' (@@ =1if a5 0.

10. Characterization of real non-archimedean valuations. In
order to apply the general theory of valuations to the case of non-
archimedean real valuations it is necessary to characterize these
among all possible valuations of a field. In view of the foregoing
discussion this is equivalent to the problem of characterizing the
ordered groups which are order isomorphic to subgroups of the
multiplicative group of positive reals or, equivalently, to the
additive group of all the real numbers with the usual order in this
group. Hence we seek a characterization of the ordered groups
which are order isomorphic to subgroups of the additive group of
real numbers. It will be convenient to use the additive notation
in all the groups which we shall consider in this section.

Let G be an ordered group: If 4 ¢ G, we define |2] = aif 2 > 0
and |a| = —aifa < 0. We define an isolated subgroup K of G as
a subgroup such that, if e K and |4| < |a], then e K. Let
K, and K, be isolated subgroups. Then we assert that either
K, C K; or K, C K,. For, if neither of these inclusions holds,
then there exists a 4, e K, ¢ K,, and a 4, ¢ K,, ¢ K,, and we may
suppose that ; > 0. If 4, > 4,, then 4, ¢ K, contrary to assump-
tion. Hence &, » 4, and similarly 4; > 4, which contradicts the
fact that G is an ordered group. Thus we have either K; 2 K, or
K, D K, so the set of isolated subgroups is linearly ordered by the
inclusion relation. The order type of the set of isolated subgroups
is called the rank of G.* The simplest situation is that of a group
of rank one in which G % 0 and G has no isolated subgroup =
0,G. These groups can be characterized by the archimedean
property which is familiar for real numbers:

Lemma. An ordered group G (% 0) is of rank one if and only if
given any a, be G with a > O there exists a positive integer n such
that na > b.

Proof. Suppose first that G contains two elements @, 4 such
that 2 > 0 and #a < & for all positive integers ». Let K denote
the subset of G of elements # such that 0 < # < ma for some
positive integer m. K is not vacuous since ¢ < 24 and clearly

* Cf., for example, F. Hausdorff, Mengenlehre, 3rd Ed., Chap. 3, de Gruyter & Co., 1937.
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K, is closed under addition. Moreover, K, contains every v such
that 0 < v < « for some # in K. Hence if #; and u, ¢ K and
uy < uy, then 0 < uy — uy < uy so us — u1e K. It follows
that the union of K, 0, and — K, the set of negatives of the ele-
ments of K, is a subgroup K of G. Now K is isolated, since, if
u e K and # > 0, then every v such that 0 < v < #isin K. Also
K = G since 4 ¢ K. Hence G is not of rank one. Conversely,
assume G not of rank one and let K be an isolated subgroup # 0,
G. Since K # G there exists a positive element 4 such that 4 > 4
for every ae K. Choose 2 > 0 in K, then na < & for all » =
1,2,3,---. Hence the archimedean property fails in G.

It is clear from this criterion that if G is of rank one, then any
non-zero subgroup of G is of rank one. In particular, any non-zero
subgroup of the additive group of real numbers is of rank one.
Moreover, these are essentially all the ordered groups of rank one,
since we have the following

Theorem 8. Any ordered group G of rank one is order z:amorplzzc
to a subgroup of the additive group of real numbers.

Proof. We shall define an order isomorphism 5 of G into the
additive group R of real numbers. For this purpose we choose a
#u>01in G. If v > 0, then there exist pairs (m, n) of positive
integers m, n such that #o > mu. Thus we may take m = 1 and,
by the archimedean property, determine # so that nv > u = lu.
If g e P, the collection of positive integers, then gnv > gmu if and
only if nv > mu. Hence if r = m/n =m'/n', m,n,m',n e P,
then nv > muif and only if w'v > m’u. The rational numbersr» =
m/n satisfying this condition form a set which we denote as R,.
Ifr=m/nand s =m'/n <r, m',n eP, then mn < mn'. If
reR,, then nv > mu and nn'v > mn'u > m'nu. Hence n'v >
m’'u so that s ¢ R,. We note next that the set of positive rationals
R, is bounded above. Otherwise, the result just proved implies
that R, is the complete set of positive rationals. Hence every
positive integer k 1s in R, which means that v > k«, k¢ P. 'This
contradicts the archimedean property of G. We now define " to
be the positive real number sup R,. Since R, contains every s < r
for every r e R,, it is clear that R, and its complementary set R,/
in the set of positive rationals defines a Dedekind cut. Hence
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sup R, = inf R,’. Now let vy, v, be positive elements of G and let
my/ny e R,,, my/nse R,, where miyn;e P. Then nv, > mu,
novy > mou and mymauy; > myngu, mingvy > mymgu. Hence
mng(vy + vy) > (ming + mam))u  and so my/ny + my/ny e
R, v This implies that (v; + v5)" > v;" + v,". On the other
hand, a repetition of the argument just given shows that, if
m,/n, € R, (thatis, n1v; < m,u) and my/n, ¢ R,;/, then m,/n, +
my/ng € Ry 10y’. Since v” = inf R/, this implies that (v; + v,)" <
v," + vy". Hence

(30) (01 + v3)" = 01" + vy
holds for vy, v, positive in G. We extend the mapping 5 to all of G
by defining 0" = 0 and (—v)" = —o" if v is positive. It is imme-

diate that (30) holds if either v; > 0, v, > 0, 0r v; <0, v, <O,
Suppose v; > 0 and v, < 0. If v; + v > 0, we write v; = (v, +
vg) + (—vg) and obtain ;" = (v; + v3)" + (—vy)" = (v + v)" —
vy". Then (v; + v5)" = v," + vy". If v; + v, < 0, then we write
—vg = —(vy + v2) + v, and obtain (—uv)" = (—(v1 + v2))" +
v,". Thus —u" = —(v; + v2)" + v," and again (30) holds.
Similarly, (30) holds if v; < 0 and v; > 0. Thus 5 is a group
homomorphism of G into R. If v > 0, then »” > 0; hence no
positive element is in the kernel of n. It follows that the kernel is 0
and n is an isomorphism. Since positive elements are mapped into
positive elements by 7, 7 is an order isomorphism of G into R.

There are several observations which should be made on the
foregoing proof. In the first place it is clear from the definition of
the isomorphism 5 that #” = 1. We note next that 5 is deter-
mined by this property, that is, if { is any order isomorphism of G
into R such that ## =1, then { = . Thus let 4 > 0 and let
m/n, m, n positive integers, satisfy m/n > v". Then ml > nv’
and mu" > nv", (mu)" > (nv)". Hence mu > nvand re-tracing the
steps we obtain m/n > of. Similarly, m/n > ¢ implies m/n >
o". Since this holds for arbitrary rationals it follows that v" = ¢f;
hence n = ¢. If 8 is any positive real number, then the mapping
x — PBx is an order preserving automorphism of R mapping
1 — B. It follows from this that there exists an order isomor-
phism of G mapping the given positive element « into any positive
B in R. Moreover, such an isomorphism is unique.
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A group of rank one is called discrese if it is order isomorphic
to the ordered group of integers (positivity as usual). We have
noted before (§ 5) that a subgroup of the multiplicative group of
positive reals is discrete if and only if it contains a largest element
< 1. This and Theorem 8 imply that an ordered group of rank
one is discrete if and only if it contains a least positive element.

EXERCISES

1. Let R™ denote the additive group of n-tuples x = ({1, ---,{n) of real
numbers {;. Define the set of positive elements of R by the condition that
x > 0 if the first non-zero {; is > 0. Show that this gives an ordered group.
Determine the isolated subgroups.

2. Call an ordered group G of rank n, n a positive integer, if 7 is the cardinal
number of the set of non-zero isolated subgroups. Show that any ordered group
of rank # is order isomorphic to a subgroup of the group R of ex. 1.

3. Call an ordered group G of rank » discrete if the factor groups of successive
isolated subgroups are all infinite cyclic groups. Show that any such group is
isomorphic to the subgroup of R™ of n-tuples 2 = (a1, as, * -+, @n) such that
the a; are integers.

11. Extension of homomorphisms and valuations. In this
section we shall prove a fundamental theorem on extension of a
homomorphism defined on a subring of a field. This result leads

to a general theorem on extension of valuations from a subfield to a
field. We prove first the following key lemma.

Lemma 1. Let o be a subring of a field ® and let m be a proper
ideal ino. If ais a non-zero element of ® and oa] is the subring of ®
generated by o and a, then either molal, the ideal generated by m in
o[al, is proper in ola] or mola™"] is proper in oa™].

Proof. Suppose the contrary: mo[a] = o[a], mola™"] = ofa™"].
Then 1 e mo[a] and 1 e mo[a™!], so we have relations of the form:
€29) 1 = poa”™ + pa™ ' 4o+ ptm, piem,

32) 1 =pa™ 4+ a1V 4.4 p,, vjem.

Since m # o, we have m > 0 and #» > 0 and we may assume m, »
are minimal for the relations (31) and (32). Also we may assume
m > n. Then (32) implies that a™ = yoa™ ™" + p1a™ ™"+ ...
+ vaa™; hence

(33) Olm(]. - Vn) = yoam_"" 44 Vn_lam—l.
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Multiplication of (31) by 1 — », gives
(B4) 1 — v = pol — »a)a™ + w1 — »p)a™!
+ ot wm(l = va)-
Hence, by (33),
1 —vn = po(oa™ ™™ ++ -+ vp_1a™77)
F pi(1 = va)a™ ™ F A um(l — wy).

Since the u;, »; € m, this gives another relation like (31) with m re-
placed by m — 1 contrary to the minimality of m. Hence the
proof is complete.

If 2 is a place which is a homomorphism of a subring o of the
field ® into the field A, then we shall say that & is A-valued. Our
main result is an extension theorem for homomorphisms to places,
as follows.

Theorem 9. Let oo be a subring of a field ® and let P be a homo-
morphism of oo into an algebraically closed field Q. Then P can be
extended to an Q-valued place P on ®.

Proof. We consider the collection of extensions &’ of the homo-
morphism & where &’ is a2 homomorphism into © of a subring o’
of ® containing 0o. These can be partially ordered in the usual
manner: &' < P’ if P'' is an extension of #’. Then, as usual, we
can apply Zorn’s lemma to obtain a maximal extension £ which is
defined on a subring o of ®. The proof will be completed by show-
ing that o is a valuation ring. Then & will be an Q-valued place
for . Let m be the kernel of # Since 1 — 1, m # 0. Since Q
has no zero-divisors # 0, m is a prime ideal on 0. Consequently,
the complementary set M of m in o is multiplicatively closed and
0¢ M. Let o be the subset of ® of elements of the form a8
where a, 3 e 0 and 8 e M. Then o’ is a subring of ® containing o
and & can be extended to a homomorphism 2 of o’ into @ by de-
fining Z'(af ™) = P()P(8) " (I of Introd.). Since Z is maximal
we have o/ = 0. This implies that the image of o under & is a
subfield E of ©; for, if 0 ¢ v = 2(8), Beo, then Be M, so 81 e
o =oand y~! = 2(B871) is in the image of 0. Now let a be any
element = 0 of ®. We shall show that either & or ™ ¢, which
is what is needed to prove that o is a valuation ring and & is a place.
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Now Lemma 1 shows that mo[a] < o[a] or mo[a™!] < o[a™!] and
we may as well assume the former. Then we shall show that & can
be extended to a homomorphism of o[a] into ©. This and the
maximality of & will imply that a eo. We consider the poly-
nomial rings o[x] and E[x], x an indeterminate, and we extend & to a
homomorphism of o[x] onto E[x] sending ¥ — x. Let %A be the
ideal of polynomials g(x) € o[x] such that g(a) = 0 and let %A’ be its
image in E[x] under the extension of &. Since the homomorphism
of o[x] is surjective, A’ is an ideal in E[x]. Also %’ < E[x]. Other-

wise, there exists a polynomial ) 8:x* € o[x] such that 28’ =0
0

and Y, Z(B)x* = 1. Then £(B,) = 1and (B;) = 0ifi > 0, so
0

1 —Boem and B;em for i > 0. Then the relation Z8;,a* =0
gives 1 =1—Zg8a' = (1 — Bo) + 2 (—B:)a’. Since 1 — By,
>0

B: em, this implies that 1 e mo[a] contrary to hypothesis. Hence
we see that %' is a proper ideal in E[x] and, since E[x] is a principal
ideal domain, %’ = (f(x)) where f(x) is either O or a polynomial of
positive degree. In the first case, we choose any element vy in Q
and in the second case we choose v & @ so that f(y) = 0. This
can be done since  is algebraically closed. Now our choice of ¥
amounts to this: If g(x) is any polynomial in o[x] such that g(a) =
0, then g2 (v) = O for the image g2 [x] in E[x]. Hence the exten-
sion theorem IV’ of the Introduction shows that Zcan be ex-
tended to a homomorphism of o[a] into A sending « into y. This
completes the proof.

Suppose now that g, is a valuation of a subfield ®, of the field &.
Let 0, be the valuation ring of ¢, p, the ideal of non-units, U, the
multiplicative group of units of 0. We have seen that ¢, is
equivalent to the canonical valuation ¢o’ into the group ®,*/U,
where the positive elements of this group are the cosets 8oUo,
Bo # 0 in po. We also have the canonical place &y’ of &, deter-
mined by oo. This is the homomorphism ay — @y + po of oo
into the residue field 0y/po. We can imbed o0o/po in an algebrai-
cally closed field . Then 2’ can be considered as an Q-valued
place Z, on ®,. Since @ is algebraically closed, the extension
theorem states that 2, can be extended to an Q-valued place & on
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®. Let o be the valuation ring in & on which 2 is defined and let p
be the ideal of non-units of 0. Since & is an extension of Z,0 2D oo
and since p and po are respectively the kernels of 2 and 2, p D yo.
Hence we have 0 N &5 Dogand p N $y 2D po. If Beo N $y and
B ¢ 0o, then 871 £ po C p, but this implies that 8 ¢o. Hence o N
®, = 0o. Since p and po are the ideals of non-units of o and oo
respectively, the relation o N ®, = 0o implies p N By S po.
Hence p N &, = po and U N &, = U, where U is the set of units
of 0. These relations imply that 8,Us — BoU, Bo & $o*, is an
order isomorphism of the ordered group ®,*/U, into ®*/U
ordered by the set of elements BU, B e p. If we apply this iso-
morphism to the canonical valuation ¢o’, we obtain an equivalent
valuation ¢o” of &, into the group ®*/U. We also have the
canonical valuation ¢’ of ® into ®*/U and the definitions show
that ¢’ is an extension of the valuation ¢o”’. In this sense we have
obtained an “extension” of the given valuation of &, to a valua-
tion on &,

We shall be interested particularly in the case in which & is
finite dimensional over ®, and the given valuation ¢y is of rank 1.
In the general case, if ¢ is a valuation of a field ® into 7 = (G, 0),
then the subgroup of G of values ¢(a), a # 0 in ®, is called the
value group of ¢. We shall need the following

Lemma 2. Let ¢ be a valuation of a field &, &, a subfield of
Jfinite co-dimension in ®. Then the value group of ® is order iso-
morphic to a subgroup of the value group of ®, (relative to the re-
striction of ¢).

Proof. Let{e ® and let o ™ + apt™ -+ - + axt™ = 0 where
the a; # 0 in ®, and #, > ny > -+ > n;. As in the case of
non-archimedean real valuations, if ¢(8;) > ¢(8;), 7 # 1, then
¢(2B:) = ¢(B1). Hence our relation implies that there exist / < 5
such that ¢(ai$™) = ¢(a;t™). Then (") = o(aya;™). If
[®:®P9] = 7, then we may assume that n; — n; < n; hence o(§)™
is in the value group of ®,. This shows that for any 4 in the value
group G of &, 4™ is in the value group Gy of ®. On the other
hand, we have seen that 2 — 4™ is an order preserving iso-
morphism of G onto a subgroup. Hence G is order isomorphic to a
subgroup of Gp.
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This result and Theorem 8 imply that the value group of & is of
rank 1 (discrete of rank 1) if and only if the same is true for the
value group of ®,.

We shall now see how all of this applies to real valuations. Let
@0 be a non-trivial non-archimedean valuation of a field &, into the
non-negative reals and let ® be a finite dimensional extension of
®,. Then we know that ¢o = ¢¢'n where ¢, is the canonical
valuation of ®, associated with the valuation ring oy of ¢ and 7 is
an order isomorphism of the value group Gy’ of ¢, into the posi-
tive reals P. Also we have just seen that we have a valuation ring
o of ® and an order isomorphism { of Gy’ into the value group G’ of
the canonical valuation ¢’ determined by o such that ¢'(ap) =
(@'0) (ap) for all ap e ®,. Since Gy’ is of rank 1 the same is true of
G’ and consequently we have an order isomorphism X of G’ into
P. Thus we have the following diagram of mappings:

b, —> Gy — P

- ®o’ 7
? g_ 1
P —m G — P
¢’ A

where 7 is the inclusion mapping and the first rectangle is commu-
tative: 1o’ = ¢o’'t. Assume Gy’ # 1 and let § be some element
1in Gy’. Then we can choose A so that & = §” and then we shall
have ™ = ¢ for all v’ € Gy’ (§10). This means that the
second rectangle in our diagram is also commutative. Then
¢ = ¢'\ is a real non-archimedean valuation which extends the
given valuation ¢, on ®g; for if ag e $o, then o(ap) = (¢on) (o)
= (po tN)(a0) = (@'N)(ap) = ¢(ap). If Gy’ = 1, then Lemma 2
shows that necessarily G’ = 1. Then 4 and \ are unique and
commutativity holds. This case is, of course, trivial at the out-
set, since it is the one in which ¢y is a trivial valuation. We have
therefore proved the following

Theorem 10. Let ¢y be a non-archimedean real valuation on a
Sield &g and let ® be a finite dimensional extension field of ®. Then
there exists a real valuation on ® whick is an extension of ¢.



VALUATION THEORY 251

12, Application of the extension theorem: Hilbert Nullstel-
lensatz. Before continuing our study of valuations we digress
slightly to take up some important applications of the homomor-
phism extension theorem (Th. 9). The first of these, Hilbert’s
Nullstellensatz, plays an important role in algebraic geometry.
We shall give it in its original ideal-theoretic form.

We consider a polynomial algebra ®[xy, xg, - - -, x,] in indeter-
minates x; over a field ®. Let Q be the algebraic closure of ®. If
Sf(x1, = -+, %n) € ¥y, - - -, x,] and the £; are elements of @ such that
Sf&1, -+, Ex) = 0, then we shall call (&, - - -, £,) an (algebraic) zero
of f(x1, -+ +, %a). If § is a set of polynomials contained in ®[x,,
-+, %,], then we define a zero of § to be an n-tuple (&, - - -, £n),
£; ¢ @, which is a zero for every feS§. Our main result concerns
the zeros of a proper prime ideal P in ®[xy, - - -, x,]. This is the
following

Theorem 11. Let B be a prime ideal in Bx,, - - -, x4], ® a field,
and suppose P #= (1) (= Plxy, - -+, xn]). Let g(xr, -+, %) be a
polynomial not contained in B. Then there exist & in the algebraic
closure Q of ® such that (&, - -, £a) 15 a zero for P and is not a zero

forg(xla Y xn)'

Proof. Since P # (1), ®[xy, -+ -, x,)/PB is an algebra over &
which is # 0 and this is generated over ® by the cosets v; = x;
+ %, i= 1) 2, -, Also Q['Yl) T V] = Q[xl) R xn]/SB
is an integral domain so this can be imbedded in its field of frac-
tions P = ®(yy, vz, - **,¥n). Suppose first that all the v, are
algebraic. Then P is an algebraic extension of ® so we have an
isomorphism of P/® into the algebraic closure Q@/®. Suppose
v: — &;in this isomorphism. Then if f(x1, - - -, ¥a) € B, /(v1, -+
¥x) = 0 and so f(&, -+, &) = 0. Hence (£, &, -+, &) Is a
zero of P. On the other hand, g(x1, - - -, x,) # B so glv1, * 5 ¥n)
# 0; hence g(&,, -- -, &) # 0. This proves the theorem in this
case. Next assume that not all the v, are algebraic. We may
suppose that the'y’s are ordered so that {v;, v, -+, 7.} (r > 1) is
a transcendency basis for P/®. Since g(xy, -+, x2) £ B, 2(v1, -
vn) #% 0in Pso g(yi1, - -+, ¥n) ~!existsin P. This element and the
elements v,,1, - -+, ¥~ are algebraic over ®(y;, -+, v,) and so
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they satisfy algebraic equations of the form

(35) ao(vy, ¥ + ar(yy, -,y

+-oFamlyy, ) =0

where the 4; are polynomials in the v;, j = 1, - -+, 7, and ao(vy,
<+, vr) # 0. For each vry1, --+, v and glvi, -+, va) 7! we
choose such an equation and we let a(yy, - - -, ¥») be the product
of the leading coefficients of these equations. Since a(xy, - - -, x,)
# 0, we may choose &, -+, in the infinite field @ so that
a(ky, - 5, &) # 0 (Vol. I, p. 112). Since the v;, 1 <j <7, are
algebraically independent, we have an algebra homomorphism of
®[vy, -+, v+ into /P such that y; — §. By the extension
theorem (Theorem 9) this homomorphism can be extended to an
Q-valued place Z on P. Since £ is an extension of an algebra
homomorphism, £ is the identity on ® and so & is an algebra
homomorphism into ©/®. We note next that the vz, » + 1 <
k < m,arein the valuation ringoof . Otherwise, Z(v;~!) = 0.
On the other hand, we have an equation of the form

ao(v1, 5 ¥e) + @y, e, ¥)TET!

+--- 4 4m(71, Ty 'Yr)'Yk_m = O,

and applying ®, weobtainao(éy, - - -, &) = P(ao(v1, -+, 7+)) = 0.
This contradicts the facts that (¢, ---, &) # 0 and a(yy, - - -,
v.) has ao(v1, - - -, v») as a factor. A similar argument shows that
g(g(yla B 'Yn)) # 0. Now let & = '?('Yk)) r+1<k<n
Then we assert that (£, &, - - -, £,) satisfies the conditions of the
theorem. In the first place, if f(x1, - -, xa) € B, then f(yy, -« -,
v») = 0 and applying & we have f(£, - - -, £,) = 0. Next we see
thatg(fl, T E") = g(g(yla R 7")) #= 0.

The Hilbert Nullstellensatz is the extension of Theorem 11 from
prime ideals to arbitrary ideals in ®[x,, - - -, ). To obtain this
we need a characterization of the (nil)radical of an ideal of a
commutative ring (Vol. I, p. 173). The result we require is that,
if A is an ideal in 2 commutative ring o, then the radical R(%) is the
intersection N P of the prime ideals P containing A. If o is
Noetherian, this result is an easy consequence of the decomposi-
tion theorem for ideals into primary ideals (Vol. I, p. 176, ex. 2, p.
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181). Although this is all we need here it is of interest to estab-
lish this result in the general case. We prove first the following

Lemma 1. Let o be a commutative ring, N an ideal in o and S a
non-vacuous multiplicatively closed subset of o such that A N § = &.
Then there exists a prime ideal P in o such that B2 N and PN S
= .

Proof. Let U be the collection of ideals 8 in o such that: 1.
B2DU2.B8NS =g Then U is non-vacuous since A e U. We
order the elements of U by inclusion. Let 7 be a linearly ordered

subset of U and let € = |J 8. Then €N S =g and €2 9
BeV

Moreover, it is easy to check that € is an ideal. Hence € ¢ U and
€ is an upper bound for the set 7. Thus U is an inductive set and
so we can apply Zorn’s lemma to conclude that U contains a
maximal element B. Let 4, 7 = 1,2, be elements of o not con-
tained in P. Then the ideal %; generated by 4; and P properly
contains P and contains A. Since P is maximal in U, it follows
that 9; ¢ U which means that A, N § =% . Let s;e A; N S If
we take into account the form of the elements of ¥; we see that
si = x:a; + p; where x;e0 and p; € B. Then

(36) § = 5159 = X1X24142 + ¥

where p € B. Since § is multiplicatively closed, s € §. If 145 € B,
then (36) implies that s € P contrary to B N § = &. Hence we see
that a,4, ¢ B so we have shown that 4, ¢ B, 4, ¢ P implies a,4, ¢ P.
Hence P is a prime ideal satisfying the required conditions.

We can now prove

Theorem 12. Let U be an ideal in the commutative ring o. Then
the radical R(N) = N P the intersection of the prime ideals P con-
taining U.

Proof. Letae R(A) and let P be a prime ideal containing A. A
suitable power 4" € A so 4™ ¢ B. Since P is prime, this implies
that2 e . Hence R(A) € P and R(A) S N P for the prime ideals
P containing A. Next let 2 ¢ R(A) and let § = {a",n = 1,2,

++}. Then § N A = & and § is multiplicatively closed. Hence
the lemma implies that there exists a prime ideal P containing %
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such that g ¢ . Hence a is not contained in the intersection of the
prime ideals containing %. Thus we have proved that N $ C
R(H) and so by the earlier inclusion, R(A) = N P.

Theorems 11 and 12 imply the

Hilbert Nullstellensatz. Let U be an ideal in the polynomial
algebra ®x,, xq, « - -, x,), ® a field, x; indeterminates, and let Q be
the algebraic closure of ®. Then a polynomial g(x1, - - -, %a) € R()

ifand only ifg(sl) T E") = 0 for every zero (Ela B En), EieQ, of
the ideal .

Proof. Let 7 denote the set of zeros (£, * - -, &), £1 Q, of A
Suppose g(x1, -+, xa) € R(A). Then g"e A for some positive
integer 7. Hence g(&1, <--,%a)" =0 for every (§)e/ and
g(&1, -+, £n) = O forevery (&) e V. Conversely, let g(xy, -, x5)
be a polynomial such that g(&, ---, &) = O for every (&) e V.
Let P be a prime ideal containing % and let /# be the set of zeros of
B. Since P 2 A, # C ¥V and consequently g(&y, -+, &) = O for
every (£;) e . It follows from Theorem 11 that g(xy, -+, x,) &
$B. Thus g is contained in every prime ideal containing ¥ and so,
by Theorem 12, g ¢ ®(%). This completes the proof.

We shall give next an application of the existence of an alge-
braic zero of a prime ideal to a theorem on finite generation of a
field. We recall that we saw long ago (Lemma 2, § 1.5) that, if
Y1, Y2, * * > Yn are algebraic over ®, then the field P = ®(v,, vs,
-+, va) coincides with the algebra ®[y,, v,, - - -, v»] generated
by the v;. We can now prove the following converse of this result.

Theorem 13. If the algebra P = B[y, v2, - - -, vn] over ® gener-
ated by the v; is a field, then the v; are algebraic over ®.

Proof. Let ®[x,, %2, - - -, xx] be the polynomial algebra over ® in
indeterminates x; and consider the homomorphism of this algebra
onto P/® mapping x; — v;, 1 <i < n Let P be the kernel of
the homomorphism. Since P is a field, P is 2 maximal ideal. If @
is the algebraic closure of ®, then we have seen that we can find
(El) 52) Tt E") in @ such that f(El) Y En) = 0 for every f8 P.
By IV of the Introduction we have a homomorphism of P =
®[y1, ¥2, - * *, Yn] Over ® onto B[&y, &, - -+, &) such that v, — &,
1 <7 <n Since P is a field, this homomorphism is an isomor-
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phism. Since &; is algebraic, it follows that v, is algebraic, 1 <
i <n
EXERCISE
1. Let P = ®[y1,7vs, - *,¥x] be a finitely generated commutative algebra

over ® and let R be the ideal of nilpotent elements. Show that R is the inter-
section of the maximal ideals of P.

13. Application of the extension theorem : integral closure. We
shall apply the extension theorem next to obtain an important
characterization of the integral closure of a subring of a field. Let
g be a subring of the field ®. We recall that an element ae ® is
called integral over g or g-integral if there exists a polynomial
f(x) e glx] with leading coefficient 1 such that f(a) = 0. The set
® of elements of ® which are g-integral is called the integral
closure of g in ®. We shall characterize this set. In the proof we
shall need the following

Lemma 1. If o is a commutative ring (with an identity 1), any
proper ideal N of o can be imbedded in a maximal ideal.

Proof. The proof is obtained as a special case of the argument
in the proof of Lemma 1 of § 12. We let § = {1}, so § is multipli-
catively closed and § N A = &. Let U be the set of ideals B such
that 8 D % and B is proper (so that 8 N § = &). Then U con-
tains a maximal element . It is immediate that P is 2 maximal
ideal containing 2.

Theorem 14 (Krull). Let g be a subring containing 1 in a field ®.
Then the integral closure ® of g in ® is N o, the intersection of all the
valuation rings of & whick contain g.

Proof. Let ae® so that we have a relation a” + ya" !
-4+ . =0,7 > 1, v;eq. Leto be a valuation whose valua-
tion ring o contains g. If ag¢o, then o(a@™) < 1. But 1 =
—y1a”! —- -+ — y,a7" and o(y:) < 1. Hence every o(v:a™) <
1 and this is impossible since the relation gives 1 = ¢(1) <
max (p(via™)) < 1. Hence « € 0 so we have proved that & is con-
tained in N o for the valuation rings containing g. Next suppose
a ¢ . Then a~!is not a unit in the ring gla™?], since otherwise
itsinverse a = yol + via™ 1 4+ -+ yp_12a™ "D y;£q, and hence
a® = yoa" ! + y1a" 2 4---+ yo_; so ae ®. Since a™! is not
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a unit in gla™"], the principal ideal a ~'g[a "] is properly contained
in gla™!]. By Lemma 1 there exists a maximal ideal m in gla™"]
containing a “gla™!]. Then gla™!]/m is a field which can be im-
bedded in an algebraically closed field ©. The canonical homo-
morphism of gla™"] onto gla™']/m can be considered as a homo-
morphism of gla™'] into ©. The extension theorem gives an Q-
valued place & whose valuation ring o contains gla™]. The
ideal p of non-units of o contains m, hence, ™. It follows that
a ¢o. Thus a ¢® implies a ¢ N o for the valuation rings o con-
taining g. We therefore have ® = N o and the proof is complete.

The subring g is called integrally closed in ® if ® = g. Then
we have the following

Corollary. If g is a subring of ®, then the set & of g-integral ele-
ments is a subring of ® containing g and @ is integrally closed in .

Proof. The first statement is clear since @ is an intersection of
subrings of ® and since @ certainly contains g. Also the set of -
integral elements is the intersection N o for the valuation rings
containing @ and hence containing g. On the other hand, if 0 is a
valuation ring containing g, then o D @. Hence the intersection
of the valuation rings containing @ is the same as that of the
valuation rings containing g, so this is ®. Hence @ is integrally
closed.

EXERCISES

1. (Artin). Let g be a subring of a field and let a1, g, -+ -, ar be elements of ®.
Suppose that for each 7 there exists a positive integer #; such that a* =
Piay, s, - - -, ay) where P;is a polynomial of total degree < n;. Show that every
a; is g-integral.

2. (Artin). Let g be asin ex. 1 and let I be a subring of ® which is a finitely
generated g-module. Show that every element of I is g-integral (cf. Vol. I, p.
182).

3. A commutative integral domain g is called integrally closed if it is integrally
closed in its field of fractions. Show that if g is Gaussian (that is, unique facto-
rization holds), then g is integrally closed.

4, (Cohn). Show that a subalgebra ¥ of ®[x], ® a field, x an indeterminate,
has a single generator if and only if ¥ is integrally closed. (Hint: Use Liiroth’s
theorem and Th. 14.)

14. Finite dimensional extensions of complete fields. In the
remainder of this chapter we return to the consideration of real
valuations (archimedean as well as non-archimedean). We shall
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begin by considering the problem of extending a valuation on a
complete field ® to a finite dimensional extension field. Our first
objective is to prove uniqueness of the extension. For this we re-
quire

Lemma 1. Ler & be complete with respect to a non-trivial real
valuation ¢ and let P be an extension field of ® with a valuation ¢
which is an extension of that of ®. Suppose uy, g, - -, u, are ele-
ments of P which are $-independent. Then a sequence {an}, an =

r
> @nittiy ani € ®, is a Cauchy sequence in P if and only if the r
i=1

sequences {ani}, i = 1,2, -, r, are Cauchy sequences in ®.

Proof. Itisimmediate that, if the {a.:} are Cauchy sequences,
then so is {@.}. Conversely, suppose {4,} is Cauchy. Ifr = 1,
then it is clear that {as;} is Cauchy. We shall now prove our
assertion for arbitrary » by induction. If the sequence {a,,} is a
Cauchy sequence, then the sequence {4,}, &, = a0 — aneu, is a

r—1

Cauchy sequence. Since 4, = Y anju;the required result follows
1

by induction. The proof will now be completed by showing that
the assumption that {a,-} is not Cauchy leads to a contradiction.
We make this assumption. Then there exists a real ¢ > 0 such
that for any positive N there exist p, ¢ > N such that ¢(a,, —
aqyr) > e Hence there exist pairs of positive integers (px, gx), P1
<Py <+, q1 < g < ---such that ¢(a,,r — aye) > e Then
(apyr — @g,r) 7! exists and we can form the sequence {4x} where

37) b = (aper — gur) " (@py — ag)-

1
We have ¢(a,,r — ag,-) 7! < ~and {a,, — 4,,} is a null sequence.
€
r—1
Hence {4:} is a null sequence. On the other hand, &; = Y Bxju;
j=1
+ u, and this implies that, if ¢, = Zg;u;, then {ci} is a Cauchy
sequence. Then the » — 1 sequences {8}, s =1,2,---,» — 1,
are Cauchy sequences. Since & is complete, lim 8x; = B; exists.
r~—1 r—l1

Since lim 4, = 0 we get from & = Y Biju; + 4., 0 =2, Biu;
1 1
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+ u,. This contradicts the linear independence of the «’s and
completes the proof.

We note two important consequences of this lemma: (1) If {4,}
is a null sequence, then all the sequences {an:} are null sequences.
(2) If [P:®] < o, then P is complete. The first of these is clear
since the {a.;} are Cauchy sequences. Hence lim a,; = «; exists
and Zau; = 0. Hence every a; =0 by the linear indepen-
dence of the #; To prove the second statement we suppose
that (u,, #y, -- -, u,) is a basis. Then if {4,} is Cauchy, every
{ani} is Cauchy and so lim an; = a; exists and lim 4, = Za.u..

We can now prove

Theorem 15. Let P be a finite dimensional extension field of a
Sield whick is complete with respect to a non-trivial real valuation o.
Then if ¢ can be extended to a real valuation of P, this valuation is
unique and is given by the formula

(38) e(p) = e(Neia(p))V", n = [P:2].

Proof. Assume the extension ¢ exists and suppose there exists a
p e P such that (38) does not hold. Then ¢(p") # ¢(N(p)), so
p # 0 and either o(p") < ¢(N(p)) or ¢(p") > ¢(N(p)). By re-
placing p by p72, if necessary, we may suppose ¢(p") < ¢(N(p)).
Set o = p"N(p)~'. Then ¢(0) <1 and N(o) = N(p")N(p) ™
= 1. Sincep(s) < 1,wehavelimo* = 0. If (1, 4y, -+, un)isa

n
basis and o* = ) ayu:, then lim ¢* = 0 implies that lim ay; = 0
i=1
for every i. Since the norm of an element ¢ = Zyu;, vi e P, is a
homogeneous polynomial of the #-th degree in the v; with fixed
coefficients, it is clear that lim az; = O for every 7 implies that
lim N(¢*) = 0. This contradicts N(o*) = N(o)* = 1.

We have seen before that any non-archimedean real valuation
on a subfield can be extended. Hence in the non-archimedean
case the formula (38) provides a valuation for the finite dimen-
sional extension P. It remains to consider the archimedean case.
The extension theorem in this case will be obtained by a complete
determination of the fields which are complete with respect to an
archimedean real valuation. We shall show that the only such
fields are the field of real numbers and the field of complex numbers.
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Lemma 2. Let P be a quadratic extension of a field ® which is
complete with respect to a real archimedean valuation ¢. Then ¢ can
be extended to a valuation of P.

Proof. We recall that the existence of an archimedean valua-
tion implies that the characteristicis 0. Hence P is Galois over &.
Let « — & be the automorphism of P/® which is not the identity.
Then the trace and norm of @ e P are T(a) = a + &, N(a) = aa
and we have o® — T(a)a + N(a) = 0 for any a e P. We shall
show that ¢(a) = ¢(N(a))* defines a valuation of P. If ae ®,
N(a) = o®. This implies that the mapping ¢ defined on P is an
extension of the ¢ which is given on ®. We evidently have ¢(a) =
0 only if @ = 0 and the multiplicative property of the norm implies
that o(aBf) = ¢(a)e(B). Hence all one needs to show is: ¢(a + B)
< ¢(a) + ¢(B). This will follow if we can show that (e + 1) <
e(a) + 1; for, p(a + B) < ¢la) + ¢(B) is clear if 8 = 0, and if
B #= 0, then

ol + B8) = o((eB™ + 1)B) = p(aB™ + 1)e(B)-

Hence, if p(aB™' + 1) < ¢(af™!) + 1, then

ela+ B) < (p(aB™) + De(B) = (e(a)e(B) " + De(B)

= p(a) + ¢(8).

Now g(a+ 1) < ¢(a) + 1 holds if a e® so we suppose that
ag® Then P = &a) and x? — T(a)x + N(a) 1s the min-
imum polynomial of @ and N(a+ 1) = (a + 1)@+ 1) = aa
+a+a+1=~Na + T(a) + 1. Hence pla + 1) < ¢(a)
+ 1 is equivalent to ¢(a + 1)? < ¢(a)? + 2¢(a) + 1 and to
(39) (1 + T(a) + N(a)) <1 + 20(N(a))* + o(N(e)).
If we use the addition property of ¢ in ® it is clear that (39) will
hold if ¢(T(a)) < 2¢p(N(a))*. Hence we suppose that o(T(c))
> 20(N(a)*, or o(T(a))? > 4o(N(a)). We write a = T(a),
b = N(a), so we are assuming ¢(a)? > 4¢(5). We shall show
that this implies that a e ® which will contradict our assumption.
Hence the proof will be completed by proving

Lemma 3. Let ® be a field which is complete relative to a real
valuation ¢ and let x> — ax + b = 0 be an equation with coefficients
a, b in ® such that p(a)® > 4¢(b). Then the equation has roots in ®.
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Proof. A non-zero root a of this equation will be a root of
a=a — ba"l. We shall obtain such a root as a limit of a
sequence {a,} where a, is defined recursively by ; = 34, 4,1 =
a — ba,”'. We show first that no @, = 0 so the definition works
for all n. We have ¢(a;) = 3¢(2) > 0 and we may suppose that
o(an) > 3¢(a). Then

@(@ny1) = o(a — ban™") 2 o(a) — o(b)p(an) ™"
> ¢(a) — 2¢(b)e(a)
> ¢(a) — 30(a)?0(a) ™! = }o(a).

Hence ¢(a,) > %¢(a) > O holds forall#z = 1,2, 3, - - - and every
a, # 0. Now we have @,y — @ny1 = btnyy '@ (any1 — a2);
and ¢(@ny1) T'e(@a) 7' < 40(a) 7?; hence
(40) oanss = ars)) < 22 olansn — an).
o(a)

If we set r = 4¢(8)/¢(4)? we have 0 < r < 1 and we may iterate
(40) to obtain ¢(@ny2 — @ny1) < r"c wherec = p(as — a1). This
inequality implies easily that {.} is a Cauchy sequence. Hence
a = lim 4, exists and since ¢(@,) > %¢(2) > 0, a # 0. Hence
the recursion formula @, ., = 2 — ba,™! gives @ = 2 — ba™" so
o2 —ana+ b =0.

We are now ready to prove

Theorem 16 (Ostrowski). The only fields whick are complete
relative to a real archimedean valuation are the field of real numbers
and the field of complex numbers.

Proof. Let ® be complete relative to the archimedean valua-
tion ¢. Then ® is of characteristic 0 and so it contains the ra-
tionals. Since any real archimedean valuation of the rationals is
equivalent to the absolute value valuation and ® is complete, it is
clear that ® contains the field of real numbers. If ® contains an
element i such that 72 = —1, then ® contains the field C of com-
plex numbers. Otherwise, we adjoin i to ® and obtain &(7) which
contains C. By Lemma 2, ¢ can be extended to a real valuation
of (7). Also we have seen that &(7) is complete. The theorem
will therefore follow if we can show that, if ® is complete with
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respect to an archimedean valuation and ® 2 C, then & = C.
Since the restriction of ¢ to the real subfield (the completion of
the rationals) is equivalent to the absolute value valuation,
Theorem 15 shows that ¢ is equivalent to the absolute value
valuation on C.

Now suppose ® D C and let a e ®, ¢ C. Let » = inf ¢(a — ¢)
for ce C. Then we claim that there exists a ¢ e C such that
ola — ¢g) = r. First, it is clear that » = inf p(a — ¢) for all ¢
such that (e —¢) <r+ 1 and, if ¢; and ¢; are two complex
numbers satisfying o(a — ¢1) < r+ 1, p(a — ¢cs) < r + 1, then
¢(c1 — ¢2) < 2r + 2. Hence the ¢ satisfying pla —¢) <7+ 1
form a closed and bounded set in C. Since ¢(a — ¢) is a con-
tinuous function of ¢ it is clear that there exists a ¢y such that
p(la — cg) = r. Since a ¢ C we have » > 0. If we replace a by
a — ¢o we may assume that ¢; = 0. Then we have ¢p(a) = r > 0
and ¢(a — ¢) > r for every c e C. We shall now show that we
have ¢o(a — ¢) = r for every complex ¢ with ¢(c) < . To see
this we let # be any positive integer and we consider a® — ¢" =
(¢ — c)(a — ) -+ - (@ — €"7Ic) where ¢ is a primitive #-th root
of 1 contained in C. Then

pla — ela — €) -+ pla — € 7c)

= pla" — ") < p()™ + ()™
oo = 7 < ol (1 + olc)” )

) (14(2))
o1+ (2)),

so if ¢(c) < r, then lim <1 + <¢(C)> ) = 1 gives the asserted re-
r

Since ¢(a — €*c) > r, we obtain

Hence

lation ¢(a — ¢) = . We can now replace @ by a — ¢ for any ¢
such that ¢(c) < r and we obtain g(a — 2¢) = r. If we repeat
this process we obtain p(a — #¢c) = rforalln = 1,2, --- andall¢
such that ¢(c) < . This amounts to saying that p(a — ¢) = rif
¢(c) < nr and, since # is arbitrary, we have ¢(a — ¢) = r for all
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ceC. Then if C1y €2 € C, qO(C] - 62) < qO(Ol - Cl) + (0(0‘ - 62) =
27 which is absurd since ¢ is equivalent to the absolute value
valuation on C. Thus we must have C = ® and the theorem is
proved. ‘

The extension theorem for valuations for complete fields relative
to an archimedean valuation becomes trivial in view of Ostrowski’s
theorem. If ® is complete relative to an archimedean valuation,
then & is either the reals or the complexes. In the first case, the
only finite dimensional extensions are ® and the field of complex
numbers. In the second, the only possibility is ®. In all cases the
extension theorem is clear. If we combine this with the earlier
results we obtain the following

Theorem 17. If ® is complete relative to a real valuation ¢ and P
is a finite dimensional extension of ®, then the valuation can be ex-
tended in one and only one way to P. The extension is given by the
Sformula (38). Moreover, P is complete relative to its valuation.

15. Extension of real valuations to finite dimensional extension
fields. We now take up the problem of determining all the ex-
tensions of a real valuation defined in a field ® to a finite dimen-
sional extension field P/®. The case in which ® is complete has
been treated in the last section. We shall use the result obtained
there to treat the general case. Let & be the completion of ® rela-
tive to ¢ and denote the valuation in & which extends that in ¢
by #. Now suppose (E, s, £) is a field composite of P/® and &/®:
E is a field over ®, s and ¢ are isomorphisms of P/® and &/&
respectively into E/®, and E is generated by P* and &’ Since
[P:®] = 7 < © we have [E:®‘] < # < o. The valuation @ in &
can be transferred to &’ by defining &;(a%) = @(a), a e . Clearly
&, coincides with ¢ on ®. Since & is complete relative to @, it is
clear that & is complete relative to @,. Since E is a finite dimen-
sional] extension of ®%, the real valuation @; has a unique extension
to a real valuation § on E. Let ¢, be the restriction of § to the
subfield P* and transfer ¥, to P by ¥(p) = ¥,(p®). Then it is clear
that ¢ is a real valuation on P which extends ¢.

Thus we have a process for associating with every composite
(E, 5,2) of P and & a real valuation ¥ on P which extends ¢. We
shall show that this correspondence between the composites and
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the extensions of the valuations is 1-1 and surjective, if we identify
equivalent composites. First, suppose the two composites
(Ei, 51, £1) and (Eg, 59, £5) of P/® and &/® are equivalent. Then
we have an isomorphism # of E;/® onto E,/® such that a* =
&, ae ® and p** = p*, pe P. For the valuations on &4 and &
we have ,(a%) = a(a) = #,(a%). Hence &,(a"%) = a,(a").
Let ¢, and . be the valuations of E; and E, respectively, which
extend @, and &, Now ¥2'(v1%) = ¥:1(v1), 71 € Ey, defines a real
valuation on E,; such that for a"“(e ) we have ¢,/'(a%) =
g1(a") = g,(a") = p,(@"%). Thus ¢’ is an extension of the
valuation g, on $2. Since $"is complete, this extension is unique
and so it coincides with §,. Hence we have ¢§,(y;) = #2(v1%) for
every v; € E;.  This implies that the restrictions ¢,, and ¢,, to
P* and P* satisfy ¥,,(p") = ¥,(p°%) = ¥,,(p*). Hence the cor-
responding valuations ¥, and ¥, on P satisfy ¢1(p) = ¢¥,,(p™) =
¥e,(p") = ¥2(p). Thus equivalent composites give the same val-
uation.

Conversely, assume ¢;(p) = ¥2(p) for the valuations ¢, ¥, of P
determined by the composites (Ey, 1, #1) and (Eg, s2, £2). Then
we have ¥, (p*) = ¥,,(p*?), p e P. Next we observe that E;i = 1,2,
is the closure of P* in the topology defined by the valuation in E;.
Clearly, this closure contains & and P*, hence E;, since this field
is generated by &% and P*%. Itisnow clear that E;is a completion
of P* relative to the valuation y,, in the sense of Definition 5.
Consequently, by Theorem 6, the isomorphism p® — p* of P*
onto Pt has a unique extension to an isometric isomorphism # of
E, onto E;. We have ¢;(v1) = y¥2(v1%) for the valuations y; of E;
and p®* = p®. Since &% is the closure of ® in E; and since # is the
identity on &, it is clear that # maps & onto 2 Hence the re-
striction of # to ®" is an isometric isomorphism which is the
identity on ®. On the other hand, the mapping a* — a“ has
these same properties since @,(a") = #(a) = p,(a*%). Hence by
Theorem 6, a — &" coincides with the mapping #. Hence we
have a“* = a* and so (Ey, 51, #;) and (E,, 52, £5) are equivalent.

It remains to show that every valuation ¥ on P which is an ex-
tension of ¢ can be obtained from a composite in the manner
indicated. To see this we let E be the completion of P relative to
¢ and let s denote the canonical imbedding (isomorphism) of P
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into E. Now we have an isomorphism # of the completion & into
the closure of ® in E. The subfield of E generated by & and P*
is a finite dimensional extension of &, so it is complete relative to
the valuation obtained from E. It follows that this coincides
with E. Hence we have a composite (E, s, ) and one checks that
the valuation of P obtained from this composite is the given
valuation y. We can now state the following

Theorem 18. Let P be a finite dimensional extension field of a
Jfield ® with a real valuation ¢ and let B be the completion of . Then
the extensions of ¢ to valuations ¥ in P are in 1-1 correspondence
with the equivalence classes of composites (E, s, t) of P/® and ®.

In § 1.16 we have established a 1-1 correspondence between the
equivalence classes of composites (E, s, £) and the maximal ideals
of the algebra ® ®, P. We have seen that, if &is a maximal ideal
in & ® P, then this determines a composite whose field is E =
(® ® P)/3. Distinct & give inequivalent composites and every
composite is equivalent to one obtained from a maximal ideal 3.
We have seen also that the number of maximal ideals is finite and,
if S5 e, - -+, S are the distinct maximal ideals in & ® P and
R=NYy, then (P Q@P)/R=E, ®E:@ - -DE;, where E; =
(3 ® P)/3;. The field E; is the completion of P relative to a
valuation ;. We shall call [E;:®] = #n; the local dimensionality of
P determined by ;. Then we have

Zn; =[(® @ P):§] — [R:P]
(41) = [P:8] — [R:&]
=n—[R:B)] < n

Moreover, Zn; = n if and only if ® = 0. Since & ® P can be
considered a finite dimensional algebra over ®, VII of the Intro-
duction implies that (¥ ® P)/3 is a field if and only if it is an
integral domain. Hence & is maximal in (& ® P) if and only if &
is prime. Hence, by Theorem 12, N §; = R is the radical of the
algebra & ® P, thatis, R is the set of nilpotent elements of & ® P
and ® = 0 if and only if & ® P has no non-zero nilpotent ele-
ments. If P is separable over ® we have & Q. P = E; @ E,
@ - -@® E; where the E;/® are fields which can be determined ex-
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plicitly from the minimum polynomial f(x) of a primitive element
6 of P over ® (§1.16). Since a direct sum of fields contains no
non-zero nilpotents, it is clear that & ® P has zero radical R if P is
separable over ®. Consequently, the formula (41) becomes

(42) n = Zn;
in this case.

EXERCISE

1. Determine the number of extensions of the p-adic valuation of the rationals
to the cyclotomic field of 5-th roots of 1 for p = 3, 5, 11.

16. Ramification index and residue degree. Let ® be a field
with a non-trivial non-archimedean real valuation ¢ and let v
be the value group, o/p the residue field of ® relative to ¢ (§ 5).
Suppose P is a finite dimensional extension field,  an extension of
the valuation ¢ to P, T the corresponding value group, O/ the
residue field of P. Since © and P are the sets of elements p satis-
fying ¥(p) <1, ¢(p) < 1 respectively it is clear that 0 € O and
p = o0 N P. Hence we can identify the residue field o/p with the
subfield (o0 + PB)/B of the residue field O/B. In this way we can
consider the dimensionality [©O/$B:0/p] = f which we shall call the
residue degree of the valuation ¢ of the extension P/®. It is clear
also that the value group v is a subgroup of T' and we shall call the
index ¢ of ¥ in T the ramification index of y. If p € P then we can
multiply p by a suitable non-zero element of p to obtain an
element of B. Hence we can cheoose elements of P as representa-
tives of the cosets of v in T'. Both the residue degree and the
ramification index are finite and, in fact, we have

Lemma 1. ¢ < #n = [P:®].

Proof. Let py, p2, - - -, ps, be elements of © which are linearly
independent over (o + B)/P. Thus if a; are elements of o and
Zap; e P, then every a; e p. Let 7y, 7, - - -, me, be elements of B
such that the cosets y(m)y, - - -, ¥(r.)v are distinct in T'/y. We
assert that the ¢ f; elements p;m; are ®-independent. Thus sup-
pose Zaypm; = 0 where the a;; e . We shall show first that, if
the a; € ® and Tagp; #= 0, then Y(Zazp;) ey. If Zagwp; # 0, then
some g; 7 0 and we may assume that 0 = ¢(a;) > ¢(a;). Then
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if B; = aja; 7Y, ¥(B:) < 1,50 B:1s in the valuation ring o of ¢. We
have Ea,-p,- = o (Eﬂipi). AlSO lp(Eﬂipi) S 1 and since ﬂ] =1 and
the B;eo, it is clear that ¢ (ZBsp;) < 1 would contradict the
linear independence of the p; over (0 4+ B)/B. Hence we see that
Y(ZBips) = 1 and so Y(Zavips) = Y(ar) (W(2Bipi)) = Y(a1) ev. We
now return to our relation Taypm; = 0, a;; € . Assume there
exists a j so that Y(Zaype:) # 0. Then we have distinct 4, say
7 =1,2,s0 that y(Za;10im1) = ¥ (Zaiepirs) # 0 (ex. 2, § 1). Then
V(Za;p)Y(r) = ¢yCawp:)¥(my) # 0 and the cosets vyy¥(m,) =
v¥(m2) by the result we have proved. This contradicts the choice
of the m’s. Hence we see that we must have ¥(Zayp;) = 0 or
Zagp: = 0 for every ;. The argument used before based on the
linear independence over (o + PB)/P of the p; now implies that
every a;; = 0. This proves our assertion that the ¢, f; elements
pim; are d-independent. Hence ¢ f; < n. Evidently the defini-
tions of ¢; and f; now imply that ¢f < #.

Lemma 2. ¢f = n if ¢ is discrete and ® is complete relative to o.

Proof. Since ¢ is discrete the valuation ¢ in P is discrete.
Moreover, P is complete. The groups v and T are cyclic and T'/y
is cyclic of order e. Let 7 and B be elements of B and p respec-
tively such that ¢(7) and ¢(8) = ¢(8) are maximal. Any non-
zero element of P has the form er* where ¥(¢) = 1 and £ = 0,
+1, £2, ---. Hence y(x) is a generator of T'. If 8 = n7* where
Y(n) = 1land ¢ > Osince Bep C B, then Y(7)* e so ¢’ is divis-
ible by the order ¢ of the coset (7). On the other hand, y(r)¢ =
Y(7%) = ¢(B’) for some B ep and B = {B¥ where ¥(¢) = 1.
Hence ¢(7¢) = ¢(B%) = ¢((97*)*) = ¢(#*'*). Hence ¢ = ¢'k. It
follows that £ = 1, ¢/ = ¢, and so we have the relation 8 = gr°,
¥(n) = 1, ¢ the order of T/y. Let py, pg, - - -, ps be elements of O
such that the cosets p; + P form a basis for the field O/ over the
subfield (o0 + PB)/PB = o/p. We shall show that the elements
pir’y, 1 <i <f,0 <j <e— 1 form a basis for P over . Since
¥(m)y is of order e, ¥(1), Y(x), - - -, ¥(w*~1) are in distinct cosets
relative to v; hence the proof of Lemma 1 shows that the elements
pir’ are ®-independent. It remains to show that every element of
P is a ®-linear combination of these elements and we shall show
first that every element of © is a linear combination with co-
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efficients in o of the elements p;x’. Let ve . Then y(») =
y(7*) for some k£ > 0. We can write k£ = me + j; where m; >
0, 0 <ji <e—1. Then ¢() = ¢(B™r") so p = (Bmr) ™l
satisfies ¥(u) = 1. The definition of the p; shows that there exist

s
elements ay;e0 such that uw — > ajpp;eP. Then Y(Cayp;)

1
= y¢(u) =1 and, if »; = g™a(u — Zouips), then Y(v) < ¥(»).
We have

(43) v = By = fmri(Zagps) + v

We may repeat this argument with »; and obtain a sequence »,,
vy, - - - such that

(44) V1 = B (Zagips) + vi

where the apieo, mp >0, 0 <jr <e— 1, Y(Zapps) =1 and
Y(v) < ¥(vi—1). Then (44) implies that Y(vp_1) = (8™, It
follows that »; — 0, ™ — 0, and (Zazp;)B8™ — 0. The last
implies that every infinite series whose terms form a subse-

quence of the sequence (Zoxip)8™, k=1, 2, ---, converges.
By (43) and (44) we have
(45) v = B (Zagps) + B (Zoips) + - - -

+ B (Zagips) + vi.

Since v, — 0 and the coefficients of the various powers 7/, 0 <
j < e — 1,in (45) converge, we obtain from (45) that » = Z8;;pm,
0 <j <e—1, where 8;;e0. Now let » be any element of P.
Then we can find a power of 8 so that 8% ¢ ©. Then we obtain
v = B*¥(ZBpm7) where Bi; €0 so every element of P is a ®-linear
combination of the p;n’.

We can now prove

Theorem 19. Let ® be a field with a non-archimedean real valua-
tion. Let P be a finite dimensional extension field of ®, Yy, Yo, - - -,
Yn the different valuations of P which extend ¢ and let e, f; be the
ramification index and residue degree of P/® relative to y;. Then

h

(46) > eifi <n=[P:d

1
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and
h

(47) Ze,-f,- =7n

1
holds if P is separable over ® and ¢ is discrete.

Proof. Let E; be the completion of P relative to ¢;. Then for &
the completion of ® and #; = [E;:®] we have Zn; < # and Zn; =
n for P separable over ®. Also we have seen in § 5 that E; and P
have the same value group relative to ¥; and ® and & have the
same value group relative to ¢. Hence the ramification index e; of
P over ® relative to ; is the same as that of E;over . Similarly,
§ 5 and the definitions show that the residue degree f; of P/®
relative to ¥; is the same as that of E/®. By Lemmas 1 and 2 we
have ¢;f; < n; and e¢;f; = n; if the valuation is discrete. Hence
Zeifs < In; < n in every case and Ze;f; = Zny = n if P/® is
separable and ¢ is discrete.

EXERCISE

1. Determine the residue degrees and ramification indices in the cases given in
ex. 1 of § 15.



Chapter V1

ARTIN-SCHREIER THEORY

In this chapter we shall consider the theory of formally real
fields which is due to Artin and Schreier. A basic algebraic
property of the field of real numbers is that the only relations of
the form Za;? = 0 which can hold in this field are the trivial ones:
02 + 0% 4---4+ 0% = 0. This observation led Artin and Schreier
to call any field having this property formally real. Any such
field can be ordered and, on the other hand, any ordered field is
formally real. Of central interest in the theory are the real closed
fields, which are the formally real fields maximal under algebraic
extension. A real closed field has a unique ordering which can
be specified by the requirement that a > 0 in such a field if and
only if « = 82 # 0. Also, if P is real closed, then P(v/' —1) is
algebraically closed. Any formally real field can be imbedded in
a real closed field which is algebraic over the given field. More-
over, if the original field is ordered, then the imbedding can be
made so that the (unique) ordering in the real closed algebraic
extension is an extension of that of the given field. Such a real
closed extension of an ordered field is essentially unique and is
called the real closure of the ordered field.

The classical application of the Artin-Schreier theory is to the
problem of determining which elements of a field are representable
as sums of squares of elements of the field. For finite algebraic
extensions of the rationals this has a simple answer which is due
to Hilbert and to Landau (Th. 11). The theory of formally real
fields led Artin to the solution of Hilbert’s problem on the resolu-
tion of positive definite rational functions as sums of squares.

We shall give a proof of Artin’s theorem (Th. 12).
269
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The most important development of the theory of formally real
fields subsequent to the original work of Artin and Schreier is the
metamathematical principle due to Tarski which asserts that any
elementary statement of algebra which is valid for one real closed
field is valid for every real closed field. This is based on an algo-
rithm for deciding the solvability in a real closed field of a finite
system of polynomial equations and inequalities with rational
coefficients. Such a decision method was given originally by
Tarski. We shall give an alternative one due to Seidenberg.

In the last section we shall establish the Artin-Schreier charac-
terization of real closed fields as the fields which are not alge-
braically closed but are of finite co-dimension in algebraically
closed fields.

1. Ordered fields and formally real fields. We have defined
ordered groups in the last chapter (§ 5.7). In a similar manner
one has the following

Definition 1. 4# ordered field ® is a field ® together with a subset
P (the set of positive elements) of ® such that: (1) 0 ¢ P, (2) If a e ®,
then either a e Py oo = 0, or —a e P, (3) P is closed under addition
and multiplication.

Since any field contains more than one element, it is clear that
the subset P is not vacuous. If N denotes the set { —a|a e P},
then (2) states that ® = P U {0} U N. Moreover, it is clear
from (1) that PN {0} = Fand NN {0} =g. Also PN N =
& since,if ae P N N, then —ae P N Nandso0 = a + (—a) ¢
P contrary to (1). Hence the decomposition® = P U {0} U N
is one into non-overlapping sets. It is clear that N is closed
under addition since (—a) + (—8) = —(a +B8) e N if a, B¢ P.
On the other hand, (—a)(—8) = aBe P if —a, —B e N.

We can introduce a partial ordering in the ordered field ® (or
more precisely &, P) by defining a« > 8 if «a — e P. Then if
a, B are any two elements of ®, we have the trichotomy: one and
only one of the relations & > 8, « = 8, 8 > a holds. Thus ® is
linearly ordered by the relation @ > 8. If « > B8, then a + v >
B+ vyand ad > B8if 8 > 0. Conversely, we can define an ordered
field by means of a linear ordering > such that a > B8 implies
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a+v>8+vand ad > B5if 8 > 0. Let P denote the set of
elements & > 0. Then it is immediate that &, P is an ordered
field in the original sense and that the relation > defined by ®, P
is the given ordering relation.

As usual, it is convenient to write « < 8 for 8 > a. The
elementary properties of the ordering in the field of real numbers
are readily established. We list some of these: a > 0 implies
a!'>0and a> B > 0implies 7' > ™! > 0. If a > B, then
—a< —Band,if a>B and v > 4§, then a+v > B8+ 4. As
usual, one defines |a|=aif « > 0 and |a|= —a if @ < 0, and
one proves that |a + 8| <|a|+[B]| and |aB] = || |B].

If ' is a subfield of an ordered field ®, P, then & is ordered
relative to P’ = & N P. We shall call this the induced ordering
in ®. Evidently o’ > 8’ in &, P’ if and only if &’ > 8’ in ®, P.
If ®, P and &', P’ are any two ordered fields, then an isomorphism
s of ® into ® is called an order isomorphism (or an isomorphism
of the ordered fields) if P* € P’. This implies that N* € N, the
set of negatives of the elements of P’ and, if s is surjective, then
P*=Pand N* = N

In any ordered field ®, a # 0 implies o® > 0. Hence if ay, a3,
<+« a, are #0, then Za;Z2 > 0. This shows that any ordered
field is formally real in the sense of the following

Definition 2. A field ® is called formally real if the only relations
of the form Y a2 = 0 in ® are those for which every a; = 0.

t=1

It is immediate that & is formally real if and only if —1 is not
a sum of squares of elements of ®. If the characteristic of ® is
p #0, then 0 =124 12 +-..4 12 (p terms); hence it is clear
that formally real fields are necessarily of characteristic 0.

In any field ® let (®) denote the subset of elements which are
sums of squares. Evidently £(®) contains 0 and is closed under
addition and multiplication. Moreover, we have seen that ® is
formally real if and only if —1 ¢ Z(®). If 8 # 0is in Z(®), then
B~ leZ(®); for, we have g = 282 and so 7! = BB 1?2 =
Z(B:871)2. We note also that, if ® is not formally real and not of
characteristic two, then Z(®) = ®; for, —1 e Z(®) and, if « is any
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element of ®, then

1+ a\2 1 — a\2 1+ a\2 1 — a\2
— — — —1
“<2><2><2>+()<2>
e 2(®) since Z(®) is closed under addition and multiplication. It
will be useful to state these results on 2 (®) in the following

Lemma. Let® be a field and let Z(®) be the subset of P of elements
which are sums of squares. Then Z(®) is closed under addition and
multiplication and contains B~ for every B #= 0 in Z(®). If ® is not
Sormally real and not of characteristic two, then Z(®) = ®.

EXERCISES

1. Show that the field of rational numbers can be ordered in one and only one
way.

2. Show that the field Ro(+/2) where Ry is the field of rational numbers has
exactly two distinct orderings.

3. Let ® be an ordered field, f(x) = ¥ + ay»" ' +---+ a, 2 polynomial
with coefficients in . Let M = max (1, |aa| + |oz| +---+ |aa|). Show that
every root of f(x) in ® is contained in the interval —M < x < M.

4. Show that any purely transcendental extension of a formally real field is
formally real.

5. Let Ry be the rationals and let ® = Ro(£) where £ is transcendental. Show
that ® has a non-countable number of distinct orderings.

6. Let ® be a formally real field and let 9(®,) denote the set of # X n sym-
metric matrices with entries in ®. Show that §(®,) is formally real in the sense
that 242 = 0, 4; e H(P,,) implies that every 4; = 0.

7. Let (x, ) be a symmetric bilinear form on an # dimensional vector space I
over ® where ® is an ordered field. Let {81,82, - - *,8x} be a diagonal matrix for
(x,). Prove the following extension of Sylvester’s theorem (Vol. II, p. 156):
The number of positive B; is an invariant of (x, y).

8. An ordered field is called archimedean if, given any a > 0, B > 0, there
exists an integer # such that na > 8 (equivalently, given a > 0, there exists an
integer # such that # > @). Let P be an ordered field, ® a subfield with the in-
duced ordering. Show that P is archimedean if: 1) ® is archimedean and 2)
[P:®] < . (Hint: Use ex. 3.)

9. Prove that any archimedean ordered field is order isomorphic to a sub-
field of the field R of real numbers (cf. Th. 5.8).

10. (Cohn). Let ® be ordered with P as the set of positive elements. Show
that ®(§), £ transcendental over ® can be ordered by choosing as set P; of posi-
tive elements those elements which have the form 8¢7fg~* where € Pandfand g
are polynomials in § with constant term 1. Show that ®(§) is not archimedean
ordered.

11, (Cohn). Let ® be ordered and let £, 7 be algebraically independent over &
in ®(£, 7). Order ®(£) as in ex. 10 and then repeat the process for $(¢,) con-
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sidering this as the purely transcendental extension ®(£)(n) of ®(£). Show that
every element of ®(£,7) is majorized by an element of $(n) but that there exists
no element of $(n) between £ and £2

12. Let P be an ordered field, ® a subfield. Let p be the set of elements 8 of P
such that |B| < || for every a % 0 in® andlet o = {y e P|yp C p}. Show
that o is a valuation ring in P containing ® and that J is the ideal of non-units of
0. Show that the residue field 0/p can be ordered by defining ¥ + p > 0 if
y¢pand ¥ > 0 in P. Show that o/p is an extension of ® (identified with
(® + p)/p) which is an archimedean extension of ® in the sense that every interval
(a, ), a, b € 0/p, contains an element of &.

2. Real closed fields. The deeper properties of formally real
fields concern real closed fields which are defined as follows.

Definition 3. A field ® is called real closed if ® is formally real
and no proper algebraic extension of ® is formally real.

We shall show first that any real closed field can be ordered in
one and only one way. Thisis an easy consequence of the following

Theorem 1. If ® is real closed, then any element of ® is either a
square or the negative of a square.

Proof. Let a be an element of ® which is not a square. Then
we can construct the proper algebraic extension @ = &(V/a).
This field is not formally real, so there exist g;, v; not all 0 in &
such that Z(8; + viVa)? = 0. This gives Z(8 + v.2a) +
2(ZBsvi)Va = 0. Since Va ¢ ® we have 228sy; = 0 and 28,2 +
aZvy? = 0. Since ® is formally real, Zvy;2 # 0. Then —a =
(2B (Zv:*) ', Using the properties of the set Z(®) of sums of
squares stated in the lemma of § 1, it follows that —ae Z(®).
Since —1 ¢ 2(®) by the formal reality of & this implies that
a ¢ Z(®). Thus we have shown that, if an element of ® is not a
square, then itis not a sum of squares. In other words, if a £ Z(®),
then a is a square. Moreover, we have seen that, if a is not a
square, then —a e Z(®) and this now implies that —a is a square.
This is what we wished to show.

We can now prove

Theorem 2. Any real closed field can be ordered in one and only
one way. Any automorphism of such a field is an order isomorphism.

Proof. Let P be the subset of non-zero squares in the real
closed field ®. Then O ¢ P and, if @ # 0 and a ¢ P, then —a e P
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by Theorem 1. Ifa = f2andy = 8% ¢ P,thena + v ¢ P. Other-
wise, a + v = —¢> where ee®. This gives 82+ 82+ 2 =0
contrary to the formal reality of ®. Hence we see that the sub-
set P satisfies the conditions 1, 2, 3 for an ordered field and &, P
is such a field. Let P’ be any subset of ® which gives an ordering.
Ifae Pya=8%#0. Then a > 0 in the ordering given by P’.
Hence P’ 2 P. This implies that P’ = P so the ordering in &
is uniquely determined. If s is an automorphism of ®, then it is
clear that s maps the set P of non-zero squares into itself. Hence
s 1s an order isomorphism of ®.

The question of the existence of real closed fields is easily
settled. In fact, we have the following

Theorem 3. Let ® be a formally real field and let Q be an algebraic
closure of ®. Then Q contains a real closed field A containing ®.

Proof. We consider the collection of formally real subfields of
Q containing ®. This collection is not vacuous since it contains ®.
Moreover, it is clear that the collection is inductive, so, by Zorn’s
lemma, it contains a maximal element A. If A is not real closed,
then it has a proper algebraic extension A’ which is formally real.
Since @ is algebraically closed, we may suppose that A’ € Q
(ex. 1, p. 147). This contradicts the maximality of A in Q. Hence
A is real closed.

Evidently Theorems 2 and 3 and the existence of an algebraic
closure for any field imply the following corollaries.

Corollary 1. Any formally real field can be imbedded in a real
closed field which is algebraic over the given field.

Corollary 2. Any formally real field can be ordered.

If ® is real closed, then —1 is not a square in ® so ®(V —1)
D ®. Weshall show that (v —1) is algebraically closed and we
shall see that this property is characteristic of real closed fields.
For this purpose we prove first the following result.

Theorem 4. If ® is real closed, then every polynomial of odd
degree with coefficients in ® has a root belonging to .

Proof. The result is clear for polynomials of degree 1 and we
use induction on the degree # of f(x). If f(x) is reducible, one of



ARTIN-SCHREIER THEORY 275

its factors is of odd degree so it has a root in . Hence we may
assume f(«x) is irreducible. Let A = ®(0) where f() = 0. Then
AD®, so A is not formally real. Hence we have a relation
Zpi(0)2 = —1 where p;(x) is a polynomial in x of degree <»n — 1.
The relation indicated implies that Ze;(x)? = —1 + f(x)g(x).
The leading coefficient of Z¢;(x)? is positive in the ordering in &
and the degree of this polynomial is even and <2(» — 1). It
follows that degg(x) is odd and <2(n — 1) —n =n — 2.
Hence there exists a 8 € ® such that g(8) = 0. Substituting this
B in the relation Zeg;(x)2 = —1 + f(x)g(x) gives Zg;(B)2 = —1
contrary to the formal reality of ®.

We shall prove next the following generalization to real closed
fields of the so-called fundamental theorem of algebra. The proof
is patterned rather closely after one of Gauss’ proofs of the classical
result.

Theorem 5. Let ® be an ordered field such that: (1) positive ele-
ments in S have square roots in ®, (2) any polynomial of odd degree
with coefficients in ® has a root in ®. Then V/ —1 ¢ ® and d(V —1)
is algebraically closed.

Proof. Since ® is real, it is clear that v —1 ¢®. Consider
®(V—1)>®. Let p —» p be the automorphism of (v —1)
over ® such that 7 = —i for i = v/ —1. If f(x) e ®(v =1)[«],
then f(x) f(x) e ®[x], and if this has a root in ®(v/—1), then f(x)
has a root in ®(v —1). Hence the algebraic closure of #(v/ —1)
will follow if we can show that every non-constant polynomial with
coefficients in ® has a root in (/' —1). This holds by (2) if the
degree of the polynomial is odd. We show next that every ele-
ment of &(v/ —1) has a square root in this field. First, if a e®
and a > 0, then, by (1), «a = 8%, 8e®. Nextifae® and a < 0,
then —a =82 and a = (V—-1)%82. Nowlet p=a+ 8i, i =
vV —1,a Bin & B8 0. Consider the element £ + 57, £ 7 in ®.
We have (¢ +9)2 =82 — 92+ 2&pi so (+9)?=a+Bi is

equivalent to
(1) £ —9’=a, 2n=8.

Since 8 # 0 we may (by multiplying by a suitable element of )
assume that 8 = 2, so the second equation becomes £y = 1. This
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holds if n = ¢7!. Then the first equation becomes ¢ — £72 = «
or N\— N\ !=qa for A\ =¢. Then we have N2 —aA—1 =0
which has the solution (a + Va? + 4)/2 in & since a® + 4 > 0.
Also a + Va2 + 4 > 0sincea+ Va2l + 4 < 0leads to4 < 0.
Hence there exists a ¢ # 0 in ® such that £2 = L(a + Va? + 4).
Then £ — a2 =1 and ¢ — t72 = . Hence £ and 5 = ¢!
satisfy (1) with 8 = 2. We have therefore proved that every
element of ®(\/ —1) has a square root in this field. Consequently
there exists no extension field A of (v —1) such that

[A:d(vV —=1)] = 2.

We proceed to use this fact to prove that every polynomial of
positive degree with coefficients in & has a root in ®(v' —1). Let
Jf(x) be such a polynomial and let E be a splitting field over ® of
(x? + 1) f(x). We may assume that E D &(+/ —1). Since the
the characteristic is 0, E is Galois over®. Let G beits Galois group
and let (G:1) = 2%n where m is odd. By Sylow’s theorem G has
a subgroup H of order 2°. Let A be the subfield over ® of H-
invariants. Then [E:A] = 2¢ and [A:®] = m. Since ® has no
proper odd dimensional extension field we must have A = & and
m = 1. Hence G = H has order 2°. Such a group is solvable. If
e > 1, it follows easily from Galois theory that E contains a sub-
field T over ®(v/' —1) such that [T:®(v/ —1)] = 2. This con-
tradicts what we proved before. Hence ¢ = 1,s0 [E:®] = 2 and
E = &V —1). This shows that ®(v/ —1) is a splitting field of
(%2 + 1) f(») and that f(x) has a root of ®(\/—1). Hence®(v —1)
is algebraically closed.

If® is a real closed field, then we have seen that ® can be ordered
in exactly one way. The proof of Theorem 2 shows that this
ordering is obtained by specifying that @ > 0 if « = 8%, 8 # 0.
Hence we see that every real closed field is ordered and satisfies
condition (1) of Theorem 5. Theorem 4 shows that every real
closed field satisfies condition (2) of Theorem 5. Hence we have
the following

Corollary. [f® is areal closed field, then N/ —1 ¢ ® and (v —1)
is algebraically closed.

We shall prove next the converse of this, namely,



ARTIN-SCHREIER THEORY 277

Theorem 6. If ® is a field such that N/ —1¢ & and ®(\/—1) is
algebraically closed, then ® is real closed.

Proof. Suppose ® satisfies the conditions. We note first that
the irreducible polynomials of positive degrees in ®[x] have degree
1 or 2. Let f(x) be such a polynomial and let 8 be a root of f(x)
contained in @ =&V —1). Then [®(0):®] = deg f(x) and
[®(6):®] < [Q:®] = 2. Hencedeg f(x) = 1or2asasserted. Now
let o, B # 0 e ® and consider the polynomial

(2) gx) =& —a)?+82= (" —a—B)x*— a+ B)
= (¢ — (a + B)H(x + (a + B)%)-
(x — (@ — B)H(x + (a — Bi)*,

where 7 = v/—1. This polynomial belongs to ®[x] and has no
linear factors in ®[x] since +a =+ Bi ¢®. Hence g(x) is a product
of two irreducible quadratic polynomials. The one divisible by
x — (a + Bi)*% cannot be

(x — (e + B)H(x + (a + B)*H) = x — (a + Bi);

for, this would imply that o + B/ e ®. Hence the polynomial in
question is either

(* = (a+ B)H)(x — (a — )
or

(x — (a + B)H(x + (a — Bi)*).

Either possibility implies that (> + 8%)* ¢®. Since « and 8 were
arbitrary non-zero elements of ®, we have proved that the sum
of two squares of elements in ® is a square. Induction shows
that every sum of squares is a square in . Since —1 is not a
square, this implies that —1 is not a sum of squares in ® and so &
is formally real. If P is a proper algebraic extension of ®, then
P is isomorphic to @ = (v —1). Then P is not formally real
and so @ is real closed. This completes the proof of Theorem 6.

The corollary to Theorem 5 and Theorem 6 give the charac-
terization of real closed fields by the properties that v/ —1¢®
and ®(V —1) is algebraically closed. We remark also that there
is another characterization involved in our discussion, namely,
an ordered field is real closed if and only if it satisfies conditions
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(1) and (2) of Theorem 5, that is, positive elements of ® have
square roots in ® and polynomials of odd degree with coeficients in
® have roots in ®. This is easily deduced from our results. We
derive next the following useful consequence of one of our charac-
terizations of real closed fields.

Corollary. If P is a real closed extension field of P JSreld ®, then
the subfield A of elements of P which are algebraic over ® is real
closed.

Proof. Let @ = P(vV —1). Then Q is algebraically closed.
Hence the subfield T' of elements of @ which are algebraic over &
is algebraically closed. If @ + V' —1, @, 8¢ P,isin T, thenso is
a — BV —1. Hencea = 3(a + V-1 + a — BV —1) e T.
Then B eT. Since a, 8 e P we see that o, 8e A. It follows that
I' = A(V/—1). Since v/—1 ¢ A, we see that A fulfills the condi-
tions of Theorem 6. Hence A is a real closed field.

EXERCISE

1. Let Q/® be algebraically closed, ® formally real. Show thatQ/® contains a
real closed subfield P/® such that @ = P(+/—1). In particular, show that
every algebraically closed field of characteristic O contains a real closed subfield
P such that @ = P(+/—1).

3. Sturm’s theorem. In this section we shall derive a classical
result, Sturm’s theorem, which permits us to determine the exact
number of roots in a real closed field of a polynomial equation
f(x) = 0. This result is fundamental in the sequel. In deriving
it we shall follow rather closely Weber’s exposition in Lehrbuch der
Algebra (1898), Vol. I, pp. 301-313. We shall need first the follow-

ing basic result.

Lemma. Let ® be a real closed field and f(x) a polynomial with
coefficients in ®. Suppose o and B are elements of ® such that f(o)
< 0 while f(B) > 0. Then there exists a v between o and B such

that f(y) = 0.

Proof. We recall that the only irreducible polynomials in ®[x]
are the linear ones and the quadratic ones. Let g(x) = x* +
ux + v e ®[x] beirreducible. We assert that necessarily u? — 4» <
0. This is clear from the formulas for the roots of a quadratic
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equation. We can now set 4v — u? = 452 where § is a non-zero
element of ® and we have

2
(3) g(x)=x2+px+v=<x+—§>+62.

Evidently this formula shows that g(n) > 0 for every 5 in &.
Now let f(x), a, 8 be as in the statement of the theorem. In
®[x] we have the factorization

(4)  Sflx) = p(x — p)(x — p3) -+ (¥ — pr)ga(®) <+ gu(x)

where gi(x) is an irreducible quadratic with leading coefficient 1.
Suppose none of the p; is between a and 8. Then for each i,
a — p; and B — p; have the same sign (both positive or both
negative). Since gj(a) > 0 and g;(8) > 0,1 < j </, this implies
that f(e) and f(B) have the same sign, contrary to hypothesis.
Hence there is a p; between a and 8. This completes the proof.

Let ® be a real closed field and let f(x) be a polynomial of posi-
tive degree with coefficients in ®. Following Weber, we shall say
that a sequence of polynomials

(5) fO(x) = f(JC'), fl(x)) Ty fs(x)

is a Sturm sequence of polynomials for f(x) for the interval [e, 8]
(that is, & < x < B) if the fi(x) e ®[x] and satisfy the following
conditions:

(1) fs(x) has no roots in [a, 8].

(i) fola) # 0, fo(B) # O.
(i) If v e [, B] is a root of fi(x), 0 < j < s, then

Sica() fixa(y) <O

(iv) If f(v) = 0, v e [a, ], then there exist intervals v; < x <
v and v < x < v, such that fy(x) fi(x) < O for x in the
first of these and fo(x) fi(x) > 0 for x» in the second.
(This amounts to saying that fy(x)fi(x) is an increasing
function of x at x = «.)

We shall establish the existence of such sequences for any
polynomial with distinct roots, but first we shall see how such a
sequence can be used to determine the number of roots of f(x) in
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the open interval (e, 8) (that is, o < ¥ < B8). We consider the
number of variations in sign of the sequence

fO(a)) fl(a)) ) fS(a)
fo(ﬂ), fl(ﬂ)) ) fs(ﬂ)

of elements of ®. If vy = {v1,vs, -, Ym} Is a finite sequence of
non-zero elements of ®, then we define the number of variations in
sign of v to be the number of 7, 1 <7 < m ~ 1, such that vy, 41
<0. If vy=1{v1,7v2 ', Ym} 1s an arbitrary sequence of ele-
ments of &, then we define the number of variations in sign of v
to be the number of variations in sign of the abbreviated sequence
v’ obtained by dropping the 0’s in y. For example,

{1) O) O) 2) _1) O) 3) 4) _2}

has three variations in sign.
We can now state

(6)

Theorem 7. Let f(x) be a polynomial of positive degree with co-
efficients in a real closed field ® and let fo(x) = f(x), fi(x), -+,
Js(x) be a Sturm sequence for f(x) for the interval [a, B]. Then the
number of distinct roots of f(x) in (a,B) is Vo — Vi where, in
general V., denotes the number of variations in sign of the sequence

{fO('Y)) fl('Y)) T fs('Y)}'

Proof. The interval [a, 8] is decomposed into subintervals by
the roots of the polynomials f;(x) of the given Sturm sequence.
Thus we have a sequence a = ap < a; < --+ < a, = 8 such
that none of the fi(x) has a root in (ai, @;y;). Choose o/ e
(i, ), 1 <i <m (e.g, o = Fai—1 + a;)) and let 7, be
the number of variations in sign of the sequence { f;(a/), j =
0,1, ---,s}. Evidently,

m—1

ya_yﬁ=ya_ya1'+ Z (Va,.'—Va‘ﬂ:)—}-Vam:—Vg,
1

so we shall try to compute ¥V, — Vo, Vay — Vairrrs Vaw — Ve
We have fo(a) # 0, fo(B) # 0, fo(a) # O, fo(ei’) # 0. Suppose
first that no fi(a) =0, 0 <j <s. Then fi(a)fi(ey’) > 0 for
k=0, s, since, otherwise, by the lemma, one of the f;(x) has
a root in (a, oy”) contrary to the property of the intervals (o,
ai+1). Hence we have V, = V,, in the case under consideration.
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Next let fi(a) = 0 for some j, 0 <j < s. Then f;_;(a)f;+1(e)
< 0, by (ii1). Since f;_1(¥) and f;(x) have no roots in (a, o),
we have f;_,(a)f;i—i(a:’) > 0 and f;1(a) fi+1(ea”) > 0. Hence
f,-_l(al')fj+1(a1') < 0. It follows that fj_l(a), O, fj+1(0t) and
fi—1(e)), filan"), fi+1(a1”) contribute the same number of varia-
tions of sign to ¥, and ¥, respectively. Taking into account all
the s we see that /', — V., = 0. A similar argument shows that
Ve, — Vg =0. Also the same argument shows that, if a;, 1 <
i <m — 1,1s not a root of f(x) = fo(») then again V., — V,,
= 0. It remains to consider what happens if f(e;) = 0 for 1 <
: <m —1. Then, by (iv) and the choice of the «;/, we have
fo(ai')fl(ai') < 0 and fo(ai+1l)f1(ai+1l) > 0. Then the se-
quence fo(ai’), f1(ai") has one variation in sign while the sequence
Solaiy1), fi(a;41”) has none. The argument used before shows
that f;_i(ei’), file), fivi(ad) and fia(atd), fieivd),
fiv1(a;11") have the same number of variations of sign if j > 1.
Hence we see that Voo — V,, v =1 if flas) = 0. We have
therefore shown that 7, — V,,,» = 0 or 1 according as f(a;)
# 0 or f(a;) = 0. Hence

m—1

ya_yﬁ=ya_ya1'+ Z (Va‘.:—VaHl,)—}-Vam,—Vﬁ
1

is the number of a; such that f(a;) = 0.
Now let f(x) be an arbitrary polynomial. We define the
standard sequence for f(x) by

So(x) = f(x), fi(x) = f'(x) (formalderivative of f(x)),
So(x) = q1(%) f1(%) — fa(x), deg f2 < deg fi

() fima(®) = @i(0) fo%) — fiya(%), deg fita < deg f:

Soo1(x) = g4(%) fulx).

Thus the fi(x) are obtained by modifying the Euclid algorithm
for finding the highest common factor of f(x) and f’(x) in such a
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way that the last polynomial obtained at each stage is the nega-
tive of the remainder in the division process. Clearly, f,(x) is
the highest common factor of f(x) and f’(x) and this is a divisor
of all the fi(x). Now set gi(x) = fi(x)fs(x) ™" and consider the

sequence

(8) gO(x)) gl(x)) R gs(x)-

We proceed to show that this is a Sturm sequence for go(x) for
any interval [a, 8] such that go(a) # 0, go(8) = 0. Clearly (i1)
in the definition of Sturm sequences is satisfied. Also (i) holds
since g,(x) = 1. Dividing the polynomials in (7) by fi(x) gives
the relation g;_;(%) = g;(%)g;(*) — gj4+1(x), 0 <j < 5. Suppose
gi(v) = 0. Then g;_;(y) # 0 and g;4,(v) = 0, since otherwise
the relations indicated would imply that all the gi(y) = 0 from
a certain point on contrary to g,(¥) = 1. Thus g;_;1(v)gj+1(v) #
0 and, since g;1(v) = £i(7)7;(v) — g51(v) = —gij41(7), we have
gi—1(7)gi +1(v) < 0and (iii) holds. Now suppose that go(y) = 0 for
v in [a, B]. Then we have f(x) = (x — v)%(x), ¢ > 0, A(y) # 0
and f'(x) = (x — y)A (x) + e(x — v)¢'h(x). Also f,(x) = (x —
v)¢ k(%) where k(y) = 0. Hence A(x) = k(x)/(x) where /(v) #
0 and A'(x) = k(x)m(x). These relations give

golx) = (x — v)(x), I(v) #0
g1(%) = (x — v)m(x) + el(x)

s0 g1(v) = el(y) # 0. Now choose an interval [y,, v2] containing
v in its interior such that /(x) = 0 and g;(x) # 0in [y, v5). Then
the lemma implies that g,(x) and /(x) are either both positive or
both negative in [yq, v2] so gi(x){(x) > 0 in [y;, v2]. Hence
go(®)g1(x) = (¥ — v)g1(%)/(x) has the same sign as ¥ — vy in [y1, v3]
50 go(¥)g1(¥) < Oiny; < x < yand go(x)g1(x) > 0iny < x < ..
This shows that (iv) holds and so (8) is a Sturm sequence for go(x).

If f(x) has no multiple roots, then f(x) and f’(x) have 1 as
highest common factor. Then the sequence { fo(x), fi(x), - -+,
fs(x)} differs from {go(x), g1(x), - - -, g+(x)} by a non-zero multi-
plier in . Hence the sequence of fi(x) is a Sturm sequence for
fx) = fo(x). If f(x) has multiple roots, then the standard se-
quence (7) will not be a Sturm sequence for an interval contain-
ing a multiple root. Nevertheless, we can still use the standard

)
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sequence to determine the number of distinct roots of f(x) in
(a, B). This is the content of

Sturm’s theorem. Lez f(x) be any polynomial of positive degree
with coefficients in a real closed field ® and let { fo(x) = f(x), f1(x) =
FI %)y + vy fo(%)) be the standard sequence (7) for f(x). Assume
le, B is an interval such that fla) # 0, f(B) % 0. Then the number
of distinct roots of f(x) in (o, B) is Vo — Vg where V., denotes
the number of variations in sign of { fo(¥), f1(¥), -+ -, fs(M)}.

Proof. Let gi(x) = fi(x)fs(x)™" as above. Then apart from
multiplicities, the polynomials f(x) and go(x) have the same roots in
in (a, B) (ex. 7, p. 40). Since the sequence {g:(x)} is a Sturm se-
quence for go(x), the number of these roots is /,(g) — 75(g) where
V,(g) is the number of variations in sign in {g:(y)}. Since

fi(¥) = g(v) fe(v) and  fi(a) # 0, fi(B) #0

it is clear that V,(g) = 7, and Vs(g) = V5. Hence V, — Vp
gives the number of distinct roots of f(x) in (a, B).

We have seen that the roots of f(x) = ¥ + g™ ! 4+ -+ + a,
in & are in the interval [—M, M] where M = max (1, |a,|+
lag|+ - +]an]) (ex.3,§1). Ifwesetp=1+|a|+: +]a.],
then the roots of f(x) in® are in (—pu, p). If fo(x) = f(x), f1(x),
+ o+, fo(x) 1s the standard sequence (7) for f(x), then the number
of roots of f(x) in®is ¥ _, — V, where 7, is the number of varia-
tions in sign in { fo(v), /1(7), - - -5 fs(v)}. This gives a construc-
tive way of determining the number of roots of f(x) in ®. Some-
times it is preferable to use instead of u a bound 5 which is a
polynomial in the ;. For this purpose we note that 1 + 2. >
|ai|, so we can take n =1+ 2(1 4+ a?) = (n + 1) + Za’.
Then the roots in ® lie in (—1, 7).

EXERCISES

In all of these exercises ® is a real closed field.

1. Prove Rolle’s theorem: If f(x) € $[x] has roots &, 8 in ¥, o < B, then there
exists 2y in d, @ < v < B such that f/(y) = 0.

2. Prove the mean value theorem for polynomials: If o < 8, then there exists a
v, o < v < B such that AB) — fla) = B — a)f'()-

3. Prove that f(x) has 2 maximum on any closed finite interval, [, 8].

4. (Budan’s theorem). Let f(x) have degree # and assume a0 < 8 in ® are not
roots of f(x). Let #, denote the number of variations in sign in the sequences:
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SO, /() + o+, f (7). Prove that #, — W3 exceeds the number of roots of
Sx) in ® in (o, B) counting the multiplicities of these roots by a non-negative
even integer.

5. Deduce from ex. 4 Descartes’ rule: Let f(x) = agx™ + ayx™ 1 +---+
ap™ ! ag # 0, a5 # 0,05 €D, Let P denote the number of variations in sign in
the sequence (ao, o1, <+ -, a1). Show that P exceeds the number of positive roots
of f(x), counting multiplicities, by a non-negative even integer.

4. Real closure of an ordered field. We have seen that every
formally real field can be imbedded in a real closed field. In
particular, this applies to ordered fields. We shall now show that,
if ® is an ordered field, then there exists a real closed algebraic
extension field A of ® whose (unique) ordering is an extension
of that of ®. Moreover, we shall see that A is essentially unique.
To prove the existence of A we need the following

Lemma. Let ® be an ordered field, @ an algebraic closure of ® and
let B be the subfield of Q/® obtained by adjoining to ® the square
roots of the positive elements of . Then E is formally real.

Proof. Suppose we have a relation Z¢% = 0 in E. Then the
§; are contained in a finite dimensional extension field of the form
®(VB1, VB, -+ +» VB,) where the 8; are positive elements of ®.
Hence it suffices to show that every subfield ®(v/B,, V/8,, - - -,
V/B,), B: > 0, of E is formally real. We prove this by induction
on the dimensionality of the subfield and for this it is convenient
to prove the apparently stronger statement that, if Jy;£2 =0
for v; >0 in ® and & in ®(VB1, VBs, -+, VB,), then every
¢, =0. This is clear for ® since this is an ordered field.
Suppose it holds for subfields of the indicated form of lower
dimensionality than that of T = &V, ---, VB,). We may
assume that T D H = &(V/B,, - -+, V/B8,_1), so the result holds
for H. Now assume Zvi? = 0, £;eT, v; > 0in®. Write £ =
ni + £VBr i, G e Ho Then Sy + 28,v:8% + 2Cvmd) VB,
= 0. Since VB, ¢H, Zyai: =0, so Zym? + 2Byt = 0.
Since vi, By €®, v;: > 0, Bry: > 0, and 1, ¢ € H, every 9; and
{i = 0. Thenevery & = 0 and the result is valid for T.

Definition 4. Let ® be an ordered field. Then an extension field
A of ® is called a real closure of ® if (1) A is real closed, (2) A is
algebraic over ®, (3) the ordering of A is an extension of that of ®.

We can now prove the following basic result.
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Theorem 8. Every ordered field ® has a real closure. If ®, and
®, are ordered fields with the real closures Ay and A, respectively,
then any order isomorphism of ®, onto ®, has a unique extension to
an isomorphism of Ay onto Ay. The extension is an order isomor-
phism.

Proof. Let ® be an ordered field, @ an algebraic closure of &.
Let E be the subfield of @ obtained by adjoining to ® the square
roots of all the positive elements of & Then E is formally real
and Q@ is an algebraic closure of E. We have seen that there exists
a real closed subfield A of @/E (Th. 3). Suppose Be® and 8 > 0.
Then 8 = p%, pe A. Hence 8 > 0in A so the ordering in A is an
extension of that of &, Hence A is a real closure of ®.

Next let ®;, i = 1,2, be ordered fields, A; a real closure of ®;
and let @ — & be an order isomorphism of ®; onto ;. We wish
to extend the given isomorphism to an isomorphism of A; onto
A;. We note first that, if f(x) e ®[x], then f(x) and its image
f(x) under @ — & have the same number of roots in A; and A,
respectively. We have seen that there exists a u > 0 in ®; such
that every root of f(x) in A, is contained in (—u, u). Moreover,
by Sturm’s Theorem, the number of roots of f(x) in A; in the in-
terval (—u, u), hence the total number of roots of f(x) in A, is
given by ¥ _, — V, where 7, is the number of variations in sign of
the standard sequence (7) for fatvy. Since the standard sequence
of fis contained in ®,[x], all of this carries over to f(x) and A,.
Hence the number of roots of f(x) in A, is the same as the number
of roots of f(x) in A;. We note next that, if F = {py, p2, * * -, pn}
is a finite subset of A,, then there exists a subfield T'; of A; /® con-
taining F and an isomorphism 7 of T'; into A, which extends a —
@ and is such that, if p; < py <+ < pn, then p;” < po" <+ <
pn". For this purpose let f(x) be a polynomial in ®,[x] which has
the elements p;, 1 <i <#n, 0, =Vpji1 —pj, 1 <j<n—1,
among its roots. We note that the o; e A; since A; is real closed
and p;j4+1 — p; > O (proof of Th. 2). Let T'; be the finite dimen-
sional extension of ®, generated by the roots of f(x) in A;. Then
Ty = ®,(61) and, if g(x) is the minimum polynomial of 8, over &,,
g(x) has a root 6, in A,. We have an isomorphism 7 of T'; onto
®,(0;) such that o = @, a e®;, and 6," = 6;. Then p; 4" — p/7 =
(pjs1 — p;) = (6/7)2 > 0. Hence p;" < p" <:++< p,7 in A, as
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required. We shall now define a mapping 5 of A, into A; in the
following way: Let p be an element of A; and let A(x) be its mini-
mum polynomial over ;. Let the roots of 2(x) in A; be p; <
pz <+-+< pn and suppose pr = p. Then %A(x) has exactly m
roots p;’ < ps’ <+++< pn’ In A, and we now set p? = p;’. Evi-
dently a" = &, a e ®;, and it is easy to see that 7 is 1~1 and surjec-
tive. We assert that, if p,eeA;, then (p + )" = p" + ¢",
(po)" = p"a" so that 5 is an isomorphism of A, into A, extending
a — a. Let F be a finite subset of A; which includes the roots
in A; of the minimum polynomials over @, of p, o, p + o and po.
Then we have seen that there exist a subfield T'; of A; over &,
containing F and an isomorphism 7 of T'; in A, extending a — &
such that r preserves the order of the elements of F. As before,
let 2(x) be the minimum polynomial of p over ®; and let p; <
pz <-++< pm be the roots of A(x) contained in A;. Then p; e F
and py" < py” <---< pn’. We have Z(p7) = 0 and it follows
from the definition of 5 that p” = p’. Similarly, we see that ¢" =
o’y (p+ a)" = (p + o), (po)" = (po)”. Since ris an isomorphism,
this implies that (p + ¢)" = p" + o7, (po)" = p"". Hence 7 is an
isomorphism of A; onto A, extending the given isomorphism of &,
onto ®;. Now let ’ be any isomorphism of A; onto A,. Since #’
maps squares into squares it is clear that »” is an order isomor-
phism. Suppose also that n’ extends the mapping a — a. Let
ped; and let p; < ps <+ < pn be the roots in A; of the mini-
mum polynomial A(x) of p over ®;. Then p;" < p" <-++ < pp"
are the roots in A, of A(x). It follows that p” = p”. Hence the
extension 7 is unique. This completes the proof of the theorem.

If A, and A; are two real closures of a given ordered field &,
then the identity mapping on ® can be extended to an order iso-
morphism of A; onto A,. In this sense real closures are equivalent
and we may therefore speak of the real closure of ®.

EXERCISES

1. Let ® be an ordered field, A an extension field such that the only relations
of the form Zv;£;> = 0 with y; positive in ® and £; in A are those in which every
£: = 0. Show that A can be ordered in such a way that its ordering is an ex-
tension of that of ®.

2. Let ® be an ordered field, A a real closed extension field whose order is an ex-
tension of that of . Show that A contains a real closure of .
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5. Real algebraic numbers. We have seen that the field R, of
rational numbers has a unique ordering (ex. 1, § 1). This ordered
field has a real closure Aq which is determined up to isomorphism.
We shall call any real closure Ay of Ry the field of real algebraic
numbers. Clearly Qy = Ayo(v —1) is an algebraic closure of R,,
and we shall call this field tke field of algebraic numbers.

Now let T' = Ry(6) be a finite dimensional extension field of the
rationals. Then if # = [T': R,], we have # distinct isomorphisms
of T/R, into Qg/Ro. These are determined by mapping § — 6,
1 <i < n, where {6,,0;, ---,80,} is the set of roots of the mini-
mum polynomial g(x) of 6 in Qo Let 6,0, -+, 8, be those 8;
which belong to Ag. We shall call these the rea/ conjugates of 8.
We agree to set » = 0 if 6 has no real conjugates. Let7;,,1 <i <
r, be the isomorphism of T'/R, into Ag/Rp such that 67 = 6;. Then
the ordering of Ry(6;) S A, imposed by the unique ordering in
Ay provides an ordering of T': We define p > 0 for peT if and
only if o > 0. We shall refer to this ordering of T as the order-
ing determined by 7. Now suppose we have any ordering of T
and let A be a real closure of T relative to this ordering. Since T
is algebraic over Ry, it is clear that A is a real closure of R,. Con-
sequently, we have an order isomorphism 7 of A/R, onto Ag/R,.
The restriction of 7 to T coincides with one of the 7; and it is clear
that the given ordering of T' is the same as the ordering determined
by 7;. Finally, suppose 7; and 7; provide the same ordering of T.
Then we have an order preserving isomorphism of Ry(6;) onto
Ro(6;) such that 6; — 6;. Since Ay is a real closure of Ry(6;) and
of Ro(6;), by Theorem 8, we have an automorphism of A, (over
R,) sending 8; into 6;. On the other hand, since A, is a real closure
of Ry, Theorem 8 shows also that the identity is the only auto-
morphism of A, over R,. Hence we must have 6; = 6;. These
results establish the following

Theorem 9. Let T' be a finite dimensional extension of the field
of rational numbers. Then the number of distinct orderings of T is
the same as the number of isomorphisms of T/R, into the field Ay/ R,
of real algebraic numbers.

In particular, this number cannot exceed [T': R,] and there are
no orderings of I' = Ry(6) if and only if the minimum polynomial
of § over Ry has no real roots, that is, no roots in A,.
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We shall now apply this result to obtain a theorem of Hilbert
and Landau which gives a necessary and sufficient condition that
an element of T' = Ry(6), 6 algebraic, is a sum of squares in this
field. First, let ® be any field of characteristic #2 and, as in
§1, let Z(®) be the subset of ® of elements of the form Za.?,
a; e®. Next, we introduce the following definition.

Definition 5. An element p of a field is called totally positive if
p > 0 in every ordering of the field.

In particular, it will be understood that in a field which has no
ordering, then every element is totally positive. Thus every
element of a field which is not formally real is totally positive.
We have the following general criterion

Theorem 10. Let ® be a field of characteristic #2. Then an
element p #= 0 in ® is totally positive in @ if and only if p is a sum of
squares of elements of ®.

Proof. If0 = p = Za?, then dearly p > 01n every ordering of
®. Conversely, assume p # 0 is not a sum of squares in ®. Let
Q be an algebraic closure of ® and consider the collection of sub-
fields E of Q/® in which p is not a sum of squares. This collection
contains ® and is inductive; hence it contains a maximal element
P. Now P is formally real; otherwise, the lemma of §1 shows
that every element of P is a sum of squares, but we know that p
is not a sum of squares in P. Then P can be ordered. We note
next that —p is a square in P. Otherwise, we have the field
P(V —p) in @ and this properly contains P. Hence in this field
we must have p = Z(¢; + 7:V —p)?, &, 1:1n P. This gives p =
Zt2 — pZn? 4 2(ZtmiV —p). It follows that Zgm; =0 so
p(1 + 22 = Z¢2 Then 1 + 292 # 0 by the formal reality
of P; hence p = (Z£7)(1 + Z9:®) 7! is a sum of squares in P by
the lemma of § 1. This contradicts the choice of P. Hence we
see that —p = B% B e P. This implies that —p > 0 and p < Oin
every ordering of P. Since P can be ordered, the induced order-
ing in ® gives an ordering of ® in which p < 0. Thus p is not
totally positive.

This criterion and the result we obtained before on the form of
the orderings of a finite dimensional extension of the rationals
evidently imply the following
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Theorem 11 (Hilbert-Landau). Lez T be a finite dimensional
extension field of rationals and let 11,75, -+, 7, (r > 0) be the dif-
Sferent isomorphisms of T'/R, into the field of real algebraic numbers.
Then an element p 7 0 of T is a sum of squares in T if and only if
o> 0fori=1,2,--,r

EXERCISES

1. Let ® be an ordered field and A a formally real field over ®. Let p be an
element of A which cannot be written in the form

(10) 2B:td Bi>0ind,

&; in the larger field. Show that there exists an algebraic extension P of A such
that p is not of the form (10) in P (¢; in P) but p has this form in every proper
algebraic extension P’ of P. Show that every positive element of ®is a square in
P and hence that p is a sum of squares in any P’ D P, P’ algebraic over P.
Prove that P is real closed and that the ordering in P is an extension of that of &.
Prove that p < 0 in the ordering of P. Hence prove the following theorem: A
necessary and sufficient condition that an element p of A have the form (10) in A
is that p > 0 in every ordering of A which extends the ordering of ®.

2. Let @ be an ordered field, A the real closure of ® and I a finite dimensional
extension of ®. Prove the following generalization of Theorem 9: If r is the
number of isomorphisms of I'/® into A/®, then r is the number of ways of ex-
tending the ordering of ® to an ordering of T'.

6. Positive definite rational functions. One of the problems
proposed by Hilbert in his address to the 1900 Paris Congress of
Mathematicians was the following: Let Q be a rational function
of n variables with rational coefficients such that Q(%;, «« -, £&,) >
0 for all real (¢, « « -, &,) for which Q is defined. Then is Q neces-
sarily a sum of squares of rational functions with rational coef-
ficients? * By a rational function with rational coefficients we
mean a maPng (El) T &) — Q(El) RS 1) where Qx1y + 7
x») is a rational expression in indeterminates »; with rational coef-
ficients. The domain of definition of Q is the set of real #-tuples
(&1, ** +, £,) for which the denominator of Q(xy, « - -, x») is not 0.
In 1927 Artin gave an affirmative answer to Hilbert’s question
and proved the following stronger result.

Theorem 12 (Artin). Let @ be a field of real numbers (that is, a
subfield of the field R of ordinary real numbers) which has a unique

* This is known as Hilbert’s 17th problem. See D. Hilbert, Mathematische Probleme,
Gottinger Nachrichten, 1900, p. 284 or Gosammelte Abhandlungen, Vol. 3, p. 317.
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ordering and let Q be a rational function with coefficients in ® which
is rationally definite in the sense that Q(&1, - -, &,) > 0 for all
rational (£;) for which Q is defined. Then Q is a sum of squares of
rational functions with coefficients in ®.

Instances of fields ® which satisfy the condition are: the rational
field, any real closed subfield of real numbers, the field of all real
numbers. If we take & to be the first of these, then Artin’s
theorem gives a stronger result than that suggested by Hilbert.
Let ® be as in the theorem and consider the field ®(x;) = ®(xy, .,
- -+, x,) in indeterminates x; with coefficients in ® This field is
formally real (ex. 4, § 1). According to Theorem 10, Q(xy, - - -+, x,)
# 0 in ®(x;) is a sum of squares in this field if and only if Q > 0
in every ordering of ®(x;). Hence Theorem 12 will follow if we
can show that, if Q # 0 is rationally definite, then Q > 0 in every
ordering of ®(x;). This will follow from the following

Theorem 13. Let ® be a field of real numbers, ®(x;) = ®(xy, -+ -,
Xn) the field of rational expressions in n indeterminates x; with
coefficients in ® and suppose an ordering has been given to ®(x;)
which extends the ordering of ® as a subfield of the field of real num-
bers. Suppose fi(xiy - -y %n)s vy fu(X1, ** -5 xn) is a finite set of
elements of ®(x;). Then there exists a rational n-tuple (a1, + -, an)
such that for every j, 1 <j <k, fi(x1, -+ -, xn) is defined at (a;)
and f; and fi(ay, + -, an) have the same sign in the sense that

fia, -+, a,) % 0 according as f; % 0 in the given ordering of ®(x.).

Suppose that this result holds and let ® be as in Theorem 12.
Let Q # 0 be an element of ®(x;) which is not a sum of squares in
®(x;). Then we know that there exists an ordering of ®(x;) for
which Q < 0. Since ® has only one ordering, the ordering of
®(x;) is an extension of that of ®. Hence Theorem 13 gives a set
(@:), a; rational, such that Q(a;) < 0. Then Q is not rationally
definite. Hence we see that, if Q is rationally definite, then it is a
sum of squares of elements of ®(x;) and this is Artin’s theorem.

We shall prove Theorem 13—after some necessary preliminaries
—by induction on the number # of x;. The result is clearif » = 0
since in this case ®(x;) = ®, so the functions are just constant
functions. It remains to prove the inductive step, so we assume
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the result for ®(xy, - - -, x,) and we shall prove it for ®(xy, - - -,
X, ¥), where ¥ is an extra indeterminate. We shall see also that
it is, in essence, sufficient to consider polynomials in y with coef-
ficients in ®(x;). Let Fi(x; %), -+« Fr(xi, ¥) e ®(x)[y]. Then we
shall call a property P of this set of polynomials in y rationally
specializable if there exists a set of elements ¥;(x;), - - -, ¥a(x;) In
®(x;) such that, if (@, - -+, 4,) is any rational n-tuple for which
V1, -, ¥a is defined and ¢1(4;), 1 </ < A, has the same sign as
¥ (in a given ordering of ®(x;)), then the coefficients of all the
Fj(xi, ) are defined at (a4, - - -, 4,) and the polynomials F,(a, y),
«++, Fi(ai, y) have the property P. We shall require two results
on specializable properties which we state as lemmas.

Lemma 1. The property that F(xiy) = y™ + o1(x:)y™ ! +
<o o+ om(x;) has precisely r roots in the real closure of ®(x;) is
rationally specializable.

Proof. We are assuming that & is a subfield of the field of real
numbers and & is ordered by the ordering of the field of real num-
bers. The subfield of the latter of elements which are algebraic
over ® is a real closure A of ® (Cor. to Th. 6 and ex. 2, § 4). The
assertion of the lemma is that there exist ¥, ¥, - -+, ¥ in ®(x;)
such that if (a4, - - -, 2,) is any rational n-tuple such that every
¥ is defined at (a,, -+, @,) and (4, * - -, @,) has the same sign
as ¥, then F(a;, y) is defined and the number of its real roots (or
roots in A) is . Let Fy = F(xs,y), Fy, -+, F, be the standard
sequence for F(x;, y) (as in (7)). If (a1, - -+, @,) is a rational »-
tuple for which the non-zero coefficients of the F; and of the quo-
tients Q; as in (7) are defined and have non-zero values in &,
then Fo(ai, y), * -, Fi(ai, y) 1s the standard sequence for F(a;, y)

= Fo(ai, ). Letq(x:) = 2 ¢i(*x)® + (m +1). Then we have

=1
seen (p. 283) that the r roots of F(x;, y) in the real closure of
®(x;) lie in the interval (—n,9). By Sturm’s theorem the differ-
ence in the variations in sign between the two sequences
Fo(xi, —n), F1(xs =), +++, Fo(x:, —n) and Fo(xiy ), Fi(xsm),
cooy Fo(xiym) is . Now let {¢1(xs), - -, ¥a(x:)} be the set of
elements of ®(x;) consisting of the coefficients of the standard
sequence for F' and of the quotients Q; in this sequence, and the
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elements Fi(xi) _77(-"'1) Tt xn))) Fi(xi) 77(-"'1, T xn))) 0< ] <s.
Then it is clear from Sturm’s theorem that, if (a1, -+-,a,) is a
rational n-tuple such that the y’s are defined at (a4, - -+, @,) and
every ¥i(a1, - -+, a,) has the same sign as y;, then F(a; y) is
defined and has exactly » roots in Ain (—n(ay, - -+, @n), n(ay, ** -,
ay)). If we refer to the result on bounds for the roots again we see
that there are no real roots of F(a;, y) outside of the indicated
interval. Hence ris the number of real roots of F(a;, y).

Lemma 2. Let {Fi(xi,y), -+, F(xi, y)} be a sequence of poly-
nomials (not necessarily distinct) belonging to ®(x;)[yl. Assume
the leading cocfficients are 1. The property that Fi(x:y y) has a
root p; in the real closure P of ®(x;) and py < ps <---< py Is
rationally specializable.

Proof. The elements p;, and (pj 41 — pj)*%, 1 <j <t —1, are
contained in P and these generate a finite dimensional extension
field A of ®(x;) which has a primitive element 6. Let g(x;, ¥) be
the minimum polynomial of 6 over ®(x;). We have p, = ¢x(xs, 6),
(pi+1 — pi)*t = aj(xi, 0) where ox(xi, ¥), 0j(xi, ¥) € ®(x:)[y]. Since
Fi(x:y pr) = 0y Fy(xi, ox(xi, ¥)) has 6 as root and since g(xi, y)
is the minimum polynomial of 8, we have

(11) Fi(xi, on(xir, 3)) = Gali, 9)g(x3), 1 <k <t

Similarly the relation p;41 — p; = j(x:,0)2 or @;i1(xs 6) —
ei(x:, 0) = a;(x;, 0)% gives a relation

(12) @i, y) — @i(x5, y) — oi(%5 ¥)?
= H}(xi)y)g(xi)y)) 1 S] <t-— 1,

in ®(x;)[y]. Since o;(x;,8) # 0 it has an inverse 7;(x;, §) in A and
so we have relations of the form

(13) ai(xiy Y)7i(%0, ) — 1 = kj(xi, ¥)g(%i, ¥)

in ®(x;)[y]. Let {¢:(x1, ---, x,)} be a finite set of elements of
®(x;) which includes the coefficients of the Fy(x;, y), all the coef-
ficients of the polynomials in y appearing in (11), (12), and (13)
and a set of elements given in Lemma 1 to insure that g(a;, y)
has a real root v. Moreover, if the 2; are chosen so that every
¥i(a;) is defined, then substitution of v for y in every polynomial
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which occurs in (11), (12), and (13) is permissible. Substituting
y = v in (11) we see that Fj(a;, y) has the root B8, = or(ai, v).
Substituting y = v in (12) we see that 841 — B; = ¢j41(as,7v) —
ei(ai,v) = aij(a:,v)? 2 0. By (13), we have o;(a;, v)7i(ai,v) =
1. Hence oj(ai, v) # 0 and 8541 > B;. Thus we see that Fj(a;, y)
has the real root 8; and 8; < B; <-:: < B; as required.

We can now give the

Proof of Theorem 13. As we have seen before, it suffices to
prove that, if the theorem holds for ®(xy, - - -, #,), then it holds
for ®(xy, - -+, Xn, ¥), ¥ an extra indeterminate. Let P’ be a real
closure of the ordered field ®(x;, y), P the real closure of ®(x;) con-
tained in P’. We are given a finite set of elements F(x;, y) of
®(x;, y) and we have to show that rational ; and 4 can be chosen
so that F(a;, 4) is defined and has the same sign as F(x;, y) in the
ordering in P’ and this holds for every F in the given set. We can
write F = (X1, * 0y ""7'L)P1(-"'i).y)e1 o Ph(xi).y)eh where o(x1, - - -,
xn) € ®(x;), e; is an integer, P;(x;, ) is irreducible in ®(x;)[y] and
has leading coefficient 1, and the P;(x;, y) are distinct. If a;, 4
have the property that ¢(ay, - -, @,), Pj(ai, 4) are defined and
have the same sign as ¢ and P;, 1 <j < 4, then F(ay, - -, an, b)
is defined and has the same sign as F. This remark shows that
we may as well suppose that the given set consists of elements
¢ e ®(x;) and F e ®(x;)[y] such that every F'is irreducible in ®(x;)[ y]
and has leading coefficient 1. Let p; < p; < -+ < p; be the roots
in P of the given set {F} of polynomials in y. We can form a
sequence Fy, Fy, -+ -, F; whose terms are in {F} so that p; is a
root of F;. Since the F are irreducible and the field is of charac-
teristic 0, the roots of F are distinct. Also distinct F’s are relatively
prime. Hence if G(x;, y) is the product of the distinct F’s, then
G has distinct roots. By Lemma 1, we can find elements ¢4, « « -, ¢4
in ®(x;) such that, if 4, ---, @, are rational and every y; is
defined at (a,, -, @,) and y¥i(ay, -+, @,) has the same sign
as ¥, 1 </ < A, then G(a;, y) is defined and has ¢ real roots.
By Lemma 2, we have elements ¥y, - - -, ¥x so that, if the &’s
are rational and Ym(ay, - -+, 4,) is defined and has the same sign
as ¥my, 2 + 1 < m < k, then F;(a;, y) is defined and has a real
root B; so that 8; < B2 <--:< B, We now add to the ¢’s al-
ready given all the elements ¢ of the set given initially and the
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discriminant & of G(xi, y), which is different from 0, since G
has distinct roots. By the induction hypothesis, we can choose
rational a; so that all the conditions given by the ¢’s, the ¢’s, and
8 are satisfied. Now in P[y] we have the factorization

(14) Fi(xi).y) = (.y - pil)(.y - piz) o ()’ - Pi;,)Ql()’) o Qs;()’)

where the Q’s are irreducible quadratics with leading coefficients
1 and {1, ja, * * -, ji;} are distinct and are a subset of {1,2, -+,
t}. Our choice of the 4’s insures that in the field of real numbers
we have

(15) Fi(any) = (y — Bi)(y — Bi) -+ (3 — Bi) $1(») - -+ §:(y)

where the §’s are irreducible quadratics with leading coefficients
1. Since y is transcendental over ®(x;) and the p; are algebraic
over this field, it is clear that y is contained in one of the follow-
ing open intervals in P’: (=, p1), (P15 P2)5 * * *5 (Pt—1, 1)y (1 ).
Also we have seen that an irreducible quadratic with coefficients
in a real closed field and leading coefficient 1 has the form (y — v)2
+ 0%, 8 # 0 (see (3)). This implies that every Q(y) > 0 in P/,
and for any real number 4, §(4) > O for the §’s in (15). It now
follows from (14) and (15) that, if y is in the k-th interval of the
sequence (—, p1), (p1, p2), **-» (o1, ©) and & is any real num-
ber contained in the k-th interval (—, 8,), (81, B2), - * *, (Bs, ),
then Fj(a;, b) and Fj(x;, y) have the same sign and this will hold
for every j. Now it follows from the archimedean property of the
real field that every open real interval contains a rational num-
ber. Hence we can choose a rational 4 so that F;(a;, 4) has the
same sign as Fj(x;, y) for all the j. This completes the proof.

Remark. 1t is natural to ask if a result like Artin’s holds for
polynomials with coefficients in a field ® such as in Artin’s theorem.
In view of this theorem one can formulate the question in the
following way: Let P(xy, -, x,) e ®[xy, +* -, ¥,] such that P =
ZRi(x1, * + +, ¥5)® where the R; are rational expressions in the x’s
with coefficients in ®. Does this imply that P = ZPj(xy, * -+, ¥2)%,
P; e ®[x,, - -+, x,). Artin has shown that this is correct if » = 1
and ® is any field of real numbers. On the other hand, some ex-
amples due to Hilbert show that the result is false for » > 2 even
for ® the field of real numbers.
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EXERCISE

1. Let ® be an ordered field and ®(x1, - « +, #») the field of rational expressions
in indeterminates xy, -« -, x, over ®. Suppose Q € B(x;) satisfies O£y, «« ¢, &m)
> 0 for all & in a real closure A of ® for which Q(&y, «« -, &,) is defined. Prove
that Q = ZB;Fi(xy, - - +, xa)* where the 8; are non-negative elements of ® and the
F; e ®(x;). (Hint: See ex. 1 of § 5 and prove a suitable analogue of Th. 13.)

7. Formalization of Sturm’s theorem. Resultants. In the
next few sections we shall develop an algorithm, due to Tarski
and to Seidenberg, for testing the solvability in a real closed
field of a finite system of polynomial equations and inequalities (in
several variables). The ultimate test (Th. 16) will consist in the
verification of a finite system of polynomial equations and in-
equalities in the coefficients of the given system. In this section
we shall consider first a reformulation of Sturm’s theorem in this
manner. We shall develop also an elimination method based on
resultants which will be essential in the sequel.

To obtain the formalized version of Sturm’s theorem it is con-
venient to begin with the ring U[x] where % = Ro[#y, -+, 4], x
and the #; are indeterminates and R, is the field of rational num-
bers. Let F(t, -+, ;%) e Alx], so F(t;;x) = anx™ + @n_1x™ !
+ -+ ao where the @; e A and 4, = 0. If the # are specialized
to #; = 7; e ®, then we obtain the polynomial f(x) = F(r;;x) ¢
®[x] where deg f(x) < n. We shall now obtain a number of se-
quences E: {Fo(t;; x), Fi(t:; %), +++, Fy(t:; %)} such that for any
1i, 1 < i < r,in ® there exists one of these sequences E such that
the specialized sequence {Fo(ri;x), Fi(ri;x), «--, Fy(ri3 %)} 1s
essentially the standard Sturm sequence (7) for f(x).

Our choice for Fy(2:; x) is any one of the polynomials 2,x™ +
Gm_1x™ "V 4+ -+ ag, am # 0, m < n obtained by dropping lead-
ing terms an,x" +--++ @mnp1x™ !t of F(t;;%). Next we take
Fi(t;; ) = Fo'(¢;; x) the formal derivative of F, considered as a
polynomial in x. Suppose we have already defined Fo, Fy, - -,
Fi. If Fy = 0, we break off the sequence with Fo, Fy, -++, F, =
Fr_1. Otherwise,let F_y = b,x® ++ -+ bg, Fr, = cgx* +++ -+
co where 4, % 0, ¢, # 0, and p > ¢g. The usual division process
shows that we can find polynomials Q(x), R(x) in %[x] such that
¢ M F,_y = QF, — R where deg. R(t:;; x) < deg. Fi(t:; ).
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For our purposes it is preferable to replace p — ¢ + 1 by the
smallest even integer ¢ > p — ¢ + 1. Thus, changing notation,
we write ¢,°Fr_; = QFr — R and we call Q and R the quotient
and remainder on dividing Fy_; by Fj. It is clear that these are
unique. We now take Fj 4, to be R or one of the polynomials ob-
tained from R by dropping leading terms in the manner that
Fy(¢;; x) was obtained from F(#;; x). The sequences {Fy, Fy, - - -,
F,} obtained in this way will be called generic standard sequences
for F(¢;; x). Clearly the number of these is finite.

Let E:{F,, Fy, -+, Fs} be one of the generic standard se-
quences for F. Then we associate with £ two finite subsets §(E)
and NE) of A = Ry[#;]. The set 8(F) is the set of coefficients of
the terms dropped in forming the sequence. Thus, 8(E) consists
of the coefficients (of the powers of x) in F(¢;; x) — Fo(t;; x) and
those of R — F 41, £ > 1, as above. We let A\(E) be the set con-
sisting of the leading coefficients of the F; in the sequence.

Now let 7;e®, 1 <i <r, and consider the polynomial f(x) =
F(ri; x). We assume f(x) # 0. Suppose deg f(x) = m < n.
Then we shall take Fo(¢;; %) = amx™ 4+ -+ a9 and we have
Fo(re; %) = fx), am(r:) #0. The condition Fo(ri;x) = fx)
gives a,(r;) =+ = @m41(r;) = 0. One sees easily by an induc-
tive argument that there exists a generic standard sequence
{Fo, F1, - -, Fs} for F such that, if /; is the leading coefficient of
Fy, then

lk(n)#O, OSkSJ

(16) Folriz ) = f(x)
(T Fy_1(ri3 %) = Fi(ris 2)Qu(735 %) — Frpa(ris %),

where 0 <k <5, Fy41 = 0 and ¢; is an even integer, and Q
is the quotient on dividing Fi_, by F;. Since Fo(rs3 %) = f(x),
Fi(rs5x) = f'(%), L(1:)?* > 0 and the degrees of the Fy(7;; x) are
decreasing, it is clear that the terms of {Fo(7:; x), Fi(ri; %), -+,
F(7:; x)} differ from those of the standard sequence (7) for f(x)
by positive multipliers in ®. Hence the sequence {Fo(r:; %), * - - }
can be substituted for the standard sequence in applying Sturm’s
theorem.

We shall now formalize the conditions given in this theorem by
considering the finite collection of systems of equations and in-
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equalities made up of relations of the following types:

Fr(ti; y)Fu(tss y) <0,

a” Fopa(tsy) == Fia(ti;9) =0, k<!
Fo(ti; 2)Fo(t52) > 0,
Fppi(tisz) == Fya(ti;2) =0, p <y,
where y and z are indeterminates and we require that the pairs
(k, D), «+,(p,9), -+ used in the two sets of relations are such
that, if ¢ = 0,1, —1, 5, = 0,1, —1 satisfy the same conditions,
namely, ee <0, €41 =---=e—_; =0, ---,9,m >0, 9541 =

ce-=194_1 =0, ---, then the number of variations of sign of
{€o, €15 - - -, €} exXceeds that of {ng, 71, -, %.}. Now let (8,v)
be an interval in ®, 8 < v, such that f(8) # 0, f(v) # 0. Then
it is clear from Sturm’s theorem that f(x) has a root in (8, v) if
and only if #; = 7;,, y = B, 2 = v satisfies one of the systems of
relations (17).

If we take into account all the generic sequences E and observe
that (16) is equivalent to the conditions /() # 0, d(r;) = O for
all /e \(E) and 4 € 8(E), we see that (16) and (17) give a finite
collection of conditions {G,, Gs, - - -, G»}, where each G; is a finite
set of polynomial equations and inequalities with rational coef-
ficients, such that f(x) has a root in (8, v) if and only if #; = =;,
y = B, 2 = v satisfies all the conditions of one of the systems G;.

Now let f(x) = apx™ + ap_1¥™"' +-- -+ ay where a, = 0.
Then we know that all the roots in ® of f(x) are contained in the

m—1

interval (—n,7) where  =m + 1+ X afap"2. We have
0
Fo(f,‘; x) = @nx™ + ﬂm_lx‘m_l +---+ ap where Am = ﬂm(tl) Y

m—1
t,) # 0. If we substitute y = —(m + 1) — 3 aa,~2 in Fy(t:;
0
m—1

yandz=m+ 1+ 3 aa,?in Fy(t; 2) and clear of fractions
0

by multiplying by a suitable even power of @, we obtain poly-
nomial relations like those in (17), for the #; alone. In this way
one obtains a finite collection {Gi, Gy, - - -, Gi} where each G;is a
finite system of polynomial equations and inequalities with
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rational coefficients in the #; alone such that the statement that
f(x) has a root in & is equivalent to the validity of one of the
systems G; for ¢; = 7.

We shall consider next a classical determinant criterion for the
existence of a common factor of positive degree for two poly-
nomials. We consider the polynomials f(x) = onx™ + otp_1x™ ™!
+- 4+ gy, g(¥) = Bux™ + Bm—1¥™ '+ -+ Bo in $[x] where
® is an arbitrary field. We assume m > 0, » > 0, but we shall
allow @, = 0 or 8, = 0. The result we require is the following

Theorem 14. Let f(x) = anx™ + ap %™ 1 - -+ ag, g(x) =
BX™ + Bm—ax™ ' 4 -+ By where myn > O and put

Qp Op_ N £ 4]
2 2 Ap —1 N 1]
----------- m rows
Oy Qp_—1 -°° ag |J
(18) R(f, 9 =
ﬂm ﬂm—l BO
ﬂm Bm—l 60
------------- n rows
Brn Bm_1 -+ Boll

Then R(f,g) = O if and only if either a, = 0 = B, or f(x) and
g2(x) have a common factor of positive degree in x.

Proof. If a, = 0 = B, then the first column of the determi-
nant is 0. Hence R(f,g) = 0. Next assume f(x) and g(x) have
a common factor A(x) of positive degree and that either a, = 0
or Bm # 0. Then Ax) = fi(x)h(x), g(x) = g1(x)A(x) and either
Ji1(x) # 0 or g1(x) ## 0, according as a, # Oor 8,, # 0. By sym-
metry, we may assume a, # 0, fi(x) = 0. We have f(x)g:(x) =
g fi(x), flx) = fi(x)h(x) # 0. 1f deg h(x) = r, then deg f; =
n —r. If g(x) = 0, we have g,(x) = 0; otherwise the relation
S(x)g1(x) = g(x) f1(x) gives deg g1(x) < m — r. Hence we may
write fil®) = =y — yppx™ T — e — Yo, gl(x) =
Om—1x™"1 4 8, _ox™ 2 4 ... 4 8, so that we have

(19) (owx™ + -+ ) (dm_1x™ 1 +- -+ &)
+ (ﬂmxm + o '+ ﬂO)('Yn—lxn_l + . .+ 'YO) — O.
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If we equate to O the coefficients of x™t*—1 ™+t =2 ... '11in (19),
we obtain the following equations:

0 0m_1 + BmYn—1 = 0
ndm_o + oy 10m—1 + BmYn—2 + ﬂm—l'Yn—l =0

(20)

aodo + Bovo = 0.

We consider this as a system of homogeneous equations in the
v’s and &’s taken in the order 8, _1, dm_2, * 5 80y Yn—1> ** 5 Yor
Since not all the 4’s are 0, the determinant of the coefficients of
the v’s and &'s is 0. If we take the transpose of this determinant
obtained by ordering the v’s and &’s as indicated, we obtain (18).
Hence R(f,g) = 0. Conversely, assume R(f,g) = 0. Then we
can re-trace the steps through (20) and (19) and conclude that
there exist fi(x), g1(x) such that flx)g:(x) = g(x)fi(x) where
deg 1 <n —1,deg gy <m — 1, and either f; = 0 or g, # 0.
Assume f; # 0. If gy =0, then g = 0, 8,, = 0, and either f(x)
is a non-zero common factor of fand gor e, = 0. If g; # 0 and
g = 0 the foregoing argument applies. Now suppose g; # 0 and
g # 0. Then the relations f(x)g:(x) = g(x) fi(%), f1 # 0,21 =0,
g # 0imply f = 0. Either a, = 0 = 8, or we may assume o, #
0 which implies that deg f(x) = ». Since deg fi(x) <n — 1,
the relation f(x)g(x) = g(x)fi(x) and the factorization of the
non-zero polynomials f, fi, g, g1 into irreducible factors implies
that f(x) and g(x) have a common factor of positive degree.

We shall call R(f, g) the resultant of f and g (relative to x).
If either highest coefficient of for of g is not 0, then the vanishing
of R(f, g) is a polynomial relation on the a;, 8; with integer coef-
ficients which is equivalent to the statement that fand g have a
common factor of positive degree.

EXERCISE

1. Prove that, if f(x) = ™ + a,_1¥" 1 +- - -+ aq, then R(S, /) is the dis-
criminant of f(x) (cf. § 3.1).
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8. Decision method for an algebraic curve. In this section we
shall give Seidenberg’s method for deciding the solvability of an
equation f(x,y) = 0in a real closed field. This will be based on
the result which we shall now establish, that if f(x,y) = 0 has a
of
dx

J . .
(x —v) a—f =0, have a common solution in ® for any v, §in ®. The
Y

solution in &, then the equations f(x,y) =0, (y — )

geometric idea underlying this result will be clear from the two
lemmas which are used to prove it.

Lemma 1. Let f(x,y) e®[x, y], x,y indeterminates, ® a real
closed field. Then if f(x,y) = 0 has a solution in ®, it has a solu-
tion (a, B) nearest the origin.

Proof. We consider the intersection in the space ®® of pairs
(&, m), & n e®, of the curve C: f(x,y) = 0 with the circle ¥ + y?
= 4%, 4 > 0. Our hypothesis implies that there exist ¥ for which
this intersection is not vacuous, and we have to show that the
set § of v > 0 such that C meets x> + y?> = 4% in @ has a
minimum. We now consider the polynomials f(x,y) and x* +
y% — ¢* as polynomials in y with coefficients in ®(c, x), where ¢
and x are regarded as indeterminates, and we form the resultant
g(e, x) of these two polynomials. The formula (18) shows that
g(c, x) is a polynomial in ¢ and x with coefficients in ®. If (a, 8)
is a point of intersection of the circle x* + y* = ¥* and the curve
C, then fla,y) and y? + o® — 4% have a common factor
y — B. Hence g(v, @) = 0 and g(v, x) has the root a e®. More-
over, —y < a <. Conversely, assume that for v > 0, g(y, )
has a root @ in &, —y < a <. Since the leading coefficient of
yiny? 4+ a? — ¥?is 1, it follows from Theorem 14 that y2 4 o —
¥? and f(a,y) have a common factor in ®[y]. Since the
factors of y® + a* — y? are y = 8 where B8 = (v — a®)%, it
follows that (e, B) or (a, —p) is a point of intersection of the two
curves. Hence we see that the set § of ¥ > 0 such that C meets
x% + y% = 4% in ®?@ is the same as the set of v > 0 such that
g(y, %) =0 has a root x = ae®, —y <a <7v. Let & be the
subset of § of the v such that g(y, £v) # 0. For these the condi-
tion is that g(v, x) has a root in (—v, v). It is clear that we can
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obtain g(v, ¥) by a suitable specialization of a polynomial with
rational coefficients such that one of the parameters is specialized
toy. Hence we can apply the result obtained in the last section
to conclude that §’ is the union of a finite number of sets defined
by polynomial equations and inequalities of the form p(¢c) = 0,

q(c) = 0, r(c) z 0 where p, ¢, r are polynomials with coefficients

in ®. One sees easily that such a set is a union of a finite number
of intervals which may be open, closed, half open, single points or
extend to infinity. Since the set of ¥ such that g(y, £v) =0 is
either finite or all ¥ > 0, it is clear that § has the same structure
as §’. The result will now follow by showing that the complement
of § in the set of non-negative elements is the union of open inter-
vals; for, this implies that § is the union of a finite number of
closed intervals and hence has a minimal element. Thus, let
6>0,8¢8. Then g(8,x) = 0, —8 < x < § has no solution x in
®. Write g(c, x) = go(x) + £1(x)(c — 8) + -+ + gm(x)(c — &)™
where the g:(x) are polynomials in x. Then go(x) # 0 in —8 <
x < 8. It follows that there exists a 8’ > § such that go(x) = 0
in —8 < x <¥&. Then there exist 4 >0, B > 0 such that
lgo(x)| > 4, |gi(x)| < B for all xin [—&", 8] (ex. 3, §3). Then,
if|c—8|<%and |c—d|<é/4Band xe[—¥, 3],

lg(e, %) | = |go(x) | — |g1(%)(c — &) + -+ gm(x)(c — &)™

>4 — 2B| 8> 4 b_?
= ‘ 172
This implies that every &'’ satisfying 8’ < &,8” <8+ 4,8’ <
8 + 4/4B is contained in the complement of §. Hence this com-
plement contains an open interval containing 8 and the proof is
complete.
As in the classical case of the field of real numbers, a point
(a, B) on f(x,y) = 0 is called a simple point if

<<%>(a,m’ <%§>(a.e>> = 6,0

Then the normal vector at (a, 8) is <<ﬂ> s (ﬂ> ) and the
0%/ (a.py \OY/(a\)
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tangent line to the curve at (a, 8) is defined by the equation

<%>(a,m (e =) + <%>(mm(y - 8) =0.

Now let (@, 8) be a point on C: f(x,y) = 0 in ®® nearest the

.. . 9 9
origin. We wish to show that ﬂ(—/> — a(—/> = 0.
0%/ (a.p) 0y /(e

This is clear if (a,8) = (0,0) or (a, B) is not a simple point.
Otherwise, the equation states that the vector joining (0,0) to
(a, B) and the normal vector are linearly dependent. Hence C
and the circle with center at the origin and radius (a? 4 8%)*
have the same tangent at (a, 8). If this is not the case, then the
tangent to C at (a, B) contains interior points of the circle whereas
C itself does not. The result will therefore follow from

Lemma 2. Let p be a point of intersection (coordinates in ®) of a
circle and a curve C: f(x,y) = 0, flx,y) e®[x,y]. Assume p is a
simple point and the tangent at p to C has points interior to the
circle. Then C itself has points interior to the circle.

Proof. We take p = (0, 0) and the tangent to C at p to be the

0
x-axis. Then f(0,0) =0 and <a—/> = 0, and we may suppose
x

]
that <a—/> (0,0) = 1. The center of the circle is not on the x-
y

axis, so we may denote it as (@, §) with 2z = 0. We have f(x, y) =

] af 1 [/9? /> . <a2 f)
f((:’ 0 + <a£>0x + <6y>'y T [<6x ¥+ 2 oxdy ox_y +
<%y—/2> yz] + .-+, so taking into account the conditions on f we
0
see that we can write f(x,y) = y(1 + A(x, y)) + g(x) where
#(0,0) = 0 and g(x) is a polynomial in x divisible by x®. Since
#(0,0) = 0 we may choose a & > 0 such that |A(x,y)| < % if
|x| <8 and |y| <8 Then 3 <14 A(x,y) <3 and &(1 +
h(x, 8)) is between £6 and 8 while —8(1 4 A(x, —8)) is between
—48 and —$9 for all x satisfying |»| < 8. Since g(0) = O there
exists a &, 0 < & <& such that f(x,8) = 6(1 + A(x, d)) +
g(x) >0 and f(x, —8) <0 if |x|< &. Then for every xo,
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|xo| < & there exists a yo & [—3, 8] such that f(x¢, ¥9) = 0. Then
yo = —g(xo)(1 + A(xo, y0)) " and

(@ — x0)* + (6 — 30)?

£(x0) )2
1 4 A(%0, ¥0)

2bg(x0) (g(%0))? )
1 + }l(xo,yo) (1 + h(xo,}’o))z

Since g(xo) is divisible by x¢?%, it is clear that, if we take xo suf-
ficiently small so that ax, > 0, then (2 — x0)%> + (6 — y0)® <
a* + 5. Hence (x4, ¥0) is a point on C interior to the given circle.

Our results now show that, if C: f(x, y) = 0 has a solution in

_— . ¢

®, then there exists a solution in ® which is also in y Pyl a—f =0.
x y

If we replace the origin by (v, 8) where v, § e ®, then we see in

the same way that the intersection of C and the curve D:

=(a—x0)2+<b+

= a? + 5% — 2ax¢ + x0® +

] ] . .
(y — 9 a—f —(x—9) a—f = 0 contains a point in ®®.
x

We shall now apply this to obtain Seidenberg’s procedure for
deciding the solvability in ® of f(x,y) = 0. First, we can obtain
the highest common factor of the coefficients of the powers
of y in f(x, y) and put f(x, y) = d(x)fi(x, y) where fi(x, y) is
not divisible by a polynomial of positive degree in x alone.
Evidently f(x,y) = 0 has a solution in ® if and only if either d(x)
= 0 or fi(%,y) = 0 has such a solution. This reduces the discus-
sion to polynomials which are not divisible by polynomials of
positive degree in x alone. Next we can compute a highest

]
common factor in ®(x)[y] of f(x,y) and P f(x,y) by using the
y

Euclidean algorithm. We may assume this belongs to ®[x, y] and
is not divisible by polynomials of positive degree in x alone. Then
we can divide out by this highest common factor and obtain a
polynomial g(x,y) which is a factor of f(x,y), has the same
irreducible factors as f(x, y) and has no multiple factors in ®[x, y].
Clearly, f(x,y) = O is solvable in ® if and only if g(x,y) = 0 is
solvable in ®.
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If we replace f by g and change the notation back to f we may
suppose that f(x,y) has no multiple factors of positive degree
and no factors of positive degree in x alone. The first of these

. . . i}
conditions implies that f(x,y) and ™ f(x,y) have no common
y

factor contained in ®(x)[y] of positive degree in y.

af
dy
where v is any element of ®. We know that, if the curve C: f(x,
y) = 0 contains a point in ®®, then the intersection of C and
D:g(x,y) = 0 contains such a point. Before we can make use
of this it is necessary to arrange matters, by choosing a suitable
« so that the intersection of C and D is a finite set. To do this we
introduce another indeterminate ¢ and we consider the poly-
a—f —(x—0) g Let R(c; x) be the result-
ox dy

ant relative to y (that is, considering the polynomials as poly-
nomials in y) of f(x, y) and g(c; », y). We claim that R(c; x) = 0.
Otherwise, R(v; x) = O for all v. Now, Theorem 14 shows that
if 4 has this property, then g(v; »,y) and f(x,y) have a common
factor in ®(x)[y] and, consequently, in ®[x, y] of positive degree in y
(see Vol. I, p. 125). Hence if R(v; x) = O for all v, then there exist
distinct v, say, v: and v, such that f(x,y), g(vi; %, y) and g(vs;
x, y) all have a common factor of positive degreeiny. This follows
from the fact that to within associates f(x,y) has only a finite
number of different factors in ®[x,y]. We can then conclude

]
We now consider the polynomial g(x,y) =y a—f- —(x =)
x

nomial g(¢; %, y) = y

that f(x,y) and (v1 — 7v2) %f(x,y) = g(v1; %, 5) — g(v23 %, ¥)

have a common factor of positive degree in y and this
. i}

contradicts the fact that f(x,y) and a—f(x,y) have no such
J

common factor. This proves that R(c; x) = 0.

We can now choose a y¥ £ ® such that R(x) = R(y;x) # 0. Set
glx,y) = gly;%,y). Then f(x,y) and g(x,y) have no common
factor of positive degree in y and no common factor of positive
degree in x alone; hence they have no common factors except units
in ®[x, y]. It follows that the resultant Q(y) of f(x, y) and g(x, y)
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relative to x is not 0. Let 7 be the intersection in Q‘®, where
Q = &(V/' —1) is the algebraic closure of ®, of C: f(x,y) = 0 and
D:g(x,y) = 0. If (p,0) e 7, f(p,0) = 0 = g(p, o) imply that R(p)
= 0 and Q(¢) = 0. Since R(x) = 0, Q(y) # 0, this gives only a
finite number of possibilities. Hence 7 is a finite set. We know
that, if C contains a point in @® | then / has such a point and,
consequently, R(x) has a root in ®. Conversely, suppose R(x)
has a root ain ®. If  is not a root of the polynomial in » which
is the coefficient of the highest power of y in f(x, y), then R(a) =
0 implies the existence of a o e Q such that (a,0) e V. If ¢ =
B € ®, then we have the desired result that 7, and hence C, has a
point in ®®. Otherwise, (e, 6) € 7 where ¢ # ¢ is the conjugate
of ¢ under the automorphism = 1 of @/®. Then we have two
points in »: (@, ¢) and (a, ¢) with the same abscissa.

We can easily overcome—by a suitable choice of axes—the two
difficulties which we have noted which may prevent concluding
that 7, and hence C, has a point in ®® from the fact that R(x)
has a root in ®. We shall change to an &', y'-system where x =
u(x’" +¥"), y =y’ and u = 0 will be chosen suitably in ®. The
equation of C in the x/,y’-system is flu(x’' + ¥),»’) = 0.
Let f.(x,y) be the homogeneous part of highest degree » (>0)
in x and y in the polynomial f(x,y). Then the coefficient of (y")*
in flu(x" + 3),5") is falu, 1). Since fu(x, 1) 5 0, we can choose
ue® so that f.(u, 1) ¢ 0. Since the total degree of f(x,y) is
n, it will follow that the constant f,(u, 1) # 0 is the polynomial
in x’ which is the coefficient of the highest power of y’ in
Sfulx" + 5),5). This will take care of one of the difficulties.
To take care of the other we compute, by using the Euclidean
algorithm, applied to R(x) and R’(x), a polynomial »(x) which
has simple roots that are the same as those of R(x). Similarly, we
compute a polynomial ¢(y) having simple roots the same as those
of O(y). We note next that we can compute a polynomial s(x)
whose roots are (p; — pir)(0; — o5) ™ where py, - - -, ps are the
roots of 7(x) and oy, - - -, o, are those of ¢(y), 7 # i’,j # j/. For
this we introduce indeterminates £;,1 <7 < s,7;, 1 <j < ¢ and
we consider the polynomial

II [(n = i) — (& — &)

Tt
Jai’



306 ARTIN-SCHREIER THEORY

This is invariant under all permutations of the £’s and »’s so the
coefficients of the powers of x are polynomials with integer coef-
ficients in the elementary symmetric polynomials of the £s and
the #’s (Vol. I, p. 109). If we replace these elementary symmetric
polynomials by the corresponding coefficients of r(x) and ¢(y)
normalized to have leading coefficients 1, we obtain a polynomial
s(x) whose roots are (p; — pw)(o; — a5) Y, i # i, # 5. Assume
now that g is not a root of s(x) (as well as not a root of f,.(x,1))
and consider the set of points (p;, ¢;). This contains 7 and no
two distinct points in this set have the same abscissa in the ', y'-
system since (p, o) is the point (u~'p — o, o) in the &, y'-system.
Hence p='p; — o; # p "0 — o if (4, 7) #= (7, 1.

We now choose p as indicated and we replace f(x, y), g(x,y) by
h(x,5) = flu(x + ), ) and k(x,y) = gu(x + ¥),y). Let f(x)
be the resultant relative to y of A(x,y) and k(x,y). Then the
argument shows that f(x,y) = 0 is solvable in ® if and only if
f(x) hasarootin®. Thelatter problem can be decided by Sturm’s
theorem.

In order to carry this over to more than two variables it is
necessary to consider polynomials involving parameters and to
apply an inductive procedure. This necessitates an extension of
the decision method we have just given to take care of an equa-
tion f(x,y) = O restricted by an inequality g(x) = 0. To handle
this we first obtain a highest common factor d(x) of g(x) and the
coefficients of the powers of y in f(x,y) by the Euclidean algo-
rithm. Write f(x,y) = d(x) fi(x,y), gx) = d(x)g1(x). Then
the pair of conditions f(a, 8) = 0, g(a) = 0 is equivalent to the
pair: fi(a, 8) = 0, g(e) = 0. This remark permits us to reduce
the consideration to the case in which g(x) and f(x,y) have no
common factor of positive degree. To avoid considering trivial
cases we assume also that degg(x) > 0 and deg. f(x,y) > 0.
Let T(y) be the resultant relative to x of f(x,y) and g(x). Then
T(y) # 0 since, otherwise, f(x,y) and g(x) have a common factor
of positive degree in x in ®[x,y] contrary to our arrangement.
We now choose 7in ® so that T(r) # 0 and we replace f(x,y) by
A(x,y) = f(x,y + 7). Then the resultant relative to x of A(x,y)
and g(x) is T(y + 7) which is not O for y = 0. This implies that
g(x) and A(x, 0) are relatively prime. Clearly we can replace the
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pair f(x,y), g(x) by the pair A(x, y), g(x) for the problem of test-
ing the existence of a solution in ® of f(x,y) = 0,g(x) = 0. Now
let k(x,y) = A(x,g(x)y). Then if (a,B) satisfies A(a,B) = 0,
g(a) # 0, we have k(a,v) = 0 for v = Bg(e)™!. On the other
hand, if k(a,v) = 0, A(a, g(a)y) = 0, so g(a) # 0 since A(x,0)
and g(x) are relatively prime. Hence a and B = g(a)y satisfy
hla, B) = 0, g(a) # 0. This shows that f(x,y) = 0, g(x) = 0 has
a solution (e, B) in ®® if and only if k(x, y) = O has a solution in
®® and this is the situation we handled before.

9. Equations with parameters. If one attempts to extend the
method which we have given in the last section to more than two
variables, one is led to treat all but two of the variables as parame-
ters and to seek a reduction of the number of variables by means
of the method. This leads to the consideration of polynomials in-
volving parameters. Since the parameters will be allowed to take
on any values in the real closed field, there is no loss in generality
in assuming that the coefficients of the polynomials are rational
numbers. Moreover, the result one obtains in this way will be
applicable impartially to all real closed fields, and this can be used
to establish an important principle due to Tarski which states
that any elementary statement of algebra (this has to be made
precise) which is valid for one real closed field is valid for all real
closed fields. The main result in Seidenberg’s method for treat-
ing these questions is the following

Theorem 15. Let F(ti3%,y) € Rolts, - - -, try %, ¥], G(ti; %) ¢
Rolty, - - -ty &), 25, %, y indeterminates, Ry the field of rational num-
bers. Then one can determine in a finite number of steps a finite set
Of pairs Of POlynomiﬂk (Fi(ti; x)) Gi(ti))) Fi € RO[ti; x]) GJ' € RO[ti])
J =12, b, such that, if ® is any real closed field, then 7; € ®,
1 < i < r, has the property that

(21) Flryx,9) = 0, G(ri;2) #0
is solvable for x,y e ® if and only if one of the conditions:
(22) Gi(r:) #0 and Fyryx) =0

is solvable for x in ®, is satisfied.
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The proof of this theorem is essentially a formalization of the
decision method of the last section. We consider first some neces-
sary preliminary notions.

We shall call the set 7 of r-tuples (rq, 75, - - -, 7r), 7: £®, the
parameter space. A finite set of pairs of finite subsets (8;, \;) of
A = Rylt], s =1,2, ---, A, will be called a rational cover if for any
® of characteristic 0, @ is the union of the sets §; where §; is
defined by (8;, ;) in the sense that it is the set of (r;) e ® satis-
fyingd(r;) = 0,ded;, () #0,7eN;. If 8/, N),j=1,---,h,
(8", M), k =1, ---, g are rational covers, then so is (§;/ U 8",
N UND, s=1,---,h k=1,---,49. The corresponding sets
are the intersections of those of the two given rational covers.
We shall call this a refinement of the two rational covers. :

We have noted that, if F = g.x™ +---+ 29, G = bpx™ +- - -
+ bo, a;, bje Rolts), @n # 0, b # 0, n > m, then we have a
uniquely determined division algorithm which yields an even
integer ¢ > n — m + 1 and a quotient @ and remainder R in
Rolt:; x] = Ulx], A = Ry[t], such that 5,°F = QG — R where
deg. R < deg; G. This can be extended to thecasen < morF =0
by taking e =0, Q =0, R = —F. We now associate with the
pair (F, G) a number of generic Euclidean sequences Fo, F1, -+ -, F,
determined by the following rules Fy and F; are F and G or are
obtained from these respectively by dropping leading terms.
Thus, Fo = a,x* +---+ ao where 0 < p <n, F; = bgx?+---
+ 60,0 < g <m. If F; = 0 we take s = 0 and let the sequence
consist of Fy alone. Otherwise, we divide Fy by F; and we let F,
be the remainder or a polynomial obtained from the remainder
by dropping leading terms. If F, = 0, we stop with Fy, Fi;
otherwise, we repeat the process. Clearly, this process breaks off
in a finite number of steps and, since we have only a finite number
of choices for every Fj, we obtain a finite number of generic
Euclidean sequences E for (F,G). Set D(#;;x) = F,(t:; %) the
last term in the sequence E. Then D # 0 unless Fy = F; =0
and, except in this case, we can divide F and G by D obtaining
mt)F = FOD — RV, m(t,))G = GVD — §V where m(#;) is
the leading coefficient of D, ¢ and f are the even integers, and
FO GY the quotients, RV, §O the remainders obtained in the
division. With each E we associate also the pair of subsets (8(E),
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NE)) of Ro[t;] where 8(E) is the set of coefficients of the dropped
terms in the process of forming E (e.g., the coefficients of F — F,
and G — G,) and \(E) is the set of leading coefficients of the Fj.

Now let ® be any field of characteristic 0, let (7)) e " and set
f(x) = F(r45 %), g(x) = G(ri3 x). Itis easily seen that there exists
a generic Euclidean sequence E for (F,G) such that d(r;) = 0
for all 4 e 8(E), /(r;) # 0 for all /e N\(E). Hence the set of pairs
(8(E), N(E)) for all generic E is a rational cover. If E is chosen
as indicated for (r;), then d(x) = D(r;; x) is a highest common
factor in ®[x] of f(x) and g(x) and, if D(#;; x) # 0, we have the
polynomials FV (z;; x), G (25 %) such that m(r)°f(x) = d(x) f1(x),
m(r:)7g(x) = d(x)g1(x) where f1(x) = FO(15;2), g1(%) = GP (745 %)
and m(¢;) is the leading coefficient of D(¢;; x). We have m(r;) = 0
since m(¢;) e N(E).

The procedure we have just indicated can be extended in an
obvious way to any finite set of polynomials. We shall need the
process also for polynomials in two indeterminates x, y (besides
the #;). Here we begin with F(¢#;; x, y) and G(#;; x, ¥) in U[x, y] =
Ry[t:; %, y] and we treat x like one of the ¢;.. The division algo-
rithm with respect to y gives /(;; )°F = QG — R where deg, R <
deg, G. If we observe that a relation d(r;;x) = 0 for d(¢;; x) e
Ry[t:; x] is equivalent to /i(7;) = O for all the coefficients dx(¢;)
of d(t:; x) and /(745 x) = 0, I(#;, x) € Ro[t:; %], holds if and only if
Ii(m:) # 0 for one of the coefficients /;, we see that we can de-
termine a rational cover (8; \;), j = 1,2, - - -, 4, and polynomials
D;(t:; %, y) and F; V(¢4 %, y), GV (t:3 x, ) if D; £ 0, such that if
(r;) is. in the subset §; defined by (3;,)\;), then d(x,y) = D;(7;;
x,y) is a highest common factor in ®(x)[y] of f(x,y) = F(r
x,y) and g(x,y) = G(r;;%,y). Moreover, if D(t;;x,y) # 0 and
m(¢:; %) 1s its leading coefficient regarding D as a polynomial in y,
then m(x) = m(@i;%) # 0 and m(x)°f(x,y) = d(x, ) f1(%, 5),
m(x)7g(x, y) = d(x, y)g1(x, y) where fi(x,y) = F;V(ri; %, y),
gl(x).y) = Gi(l)(Ti; x,}’)-

There is one more device we shall need which will take the place
of the step in the decision method of choosing an element v in
® such that for a given polynomial f(x) > 0 one has f(v) = 0.
Let F(t;5x) = Fo(t:)x? + - - -+ Fo(2;) where F (¢;) # 0. Assume
first that (r;) in ®® satisfies Fg(r;) # 0. If we recall the bound
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for the roots in ® of a polynomial given in §3 we see that 5 =
q—1
(g 4+ 1)+ 3 Fi(r9)*F,(:) 7% is not a root of F(r;; x). Hence

0
q—1

if we set Q) = (¢ + DF ()2 + 2 Fiu(ts), P(t:) = Fo(t)?,

0

then P(r;) # 0, Q(r:) # 0 for all (r;) satisfying Fy(r;) # 0 and
7 = Q(7:)P(r;) 7! is not a root of F(r;; x). Next assume F,(7;) =
0 and F,(r:) # 0 for the first non-zero coefficient F,(¢;) after
Fy(t;). Then we can repeat the argument with p replacing g.
Continuing in this way we obtain a rational cover (8;,)\;), j =
1,2, ---, A, such that F(r;; x) = 0 for (7;) e S, and for j < & we
have Pj(tq,')’ Qj(fi) such that P,-(n-) #= 0, Q,-('r,-) # 0 and F(n-;
Qj(Ti)Pj(Ti) _1) £ O fOI‘ (T,') SS]'.

We are now ready to give the

Proof of Theorem 15. We note first that it is sufficient to give a
rational cover (8z,\), £ = 1, ---, m, such that for each £ one
defines a finite set of pairs of polynomials G;(:) & Ro[t:], Fi;(t:; %)
e Rolt;; ¥] having the property that, if (r;) e Sk, the subset of ®©
defined by (i, Ax), then F(r;;x,y) = 0, G(r;; %) 5 0 is solvable
in ® if and only if one of the conditions: Gy;(7;) # 0 and Fy;(rs; x)
= 0 is solvable in &, is satisfied. If we have this situation, we

put Fi;*(t:; %) = Frj(t:; %)® + ’;d(ti)z) Gri*(t:) = Gri(%) ZI; 1),

Then the finite set of pairs (Fy;*(#:; x), Gr;*(#:)) satisfies the con-
dition for the set of pairs (F;(#;; x), G;(¢.)) in the statement of the
theorem.

We consider next the reduction of the theorem from the pair
of conditions F(#;; x,y) = 0, G(#;; x) # 0 to a single condition
F(t:;x,y) = 0. (This corresponds to the second half of the argu-
ment given in the last section.) We shall use an induction on
deg. F and we note that the result is trivial if F does not involve
x. Then we can take F(#;; x) to be the polynomial obtained by re-
placing y by the missing » and take G(#;) to be the sum of the
squares of the coefficients of G(#;;x%). We now assume deg,
F(t;;%,5) > 0 and we apply the considerations on highest com-
mon factors to G(#;; #) and the coefficients of the powers of y in
F(t;;%,5). Accordingly, we obtain a rational cover such that
for each member (8, \) of the cover we can determine polynomials
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m(t:), D(ts; %), FOV(ti;%,y), GV (#; %) with rational coefficients
such that D(r;; x) is a highest common factor of G(7;; x) and the
coefficients of the y terms in F(r;; x,y) and m(r;) # 0,

m(r:)°F(ri; #,y) = D(ri; )F D (115 %, ),
m(1:)G(ri; ) = D(153 %)GV (745 %)

for all (r;) in the set § defined by (6, \). We can replace the pair
F(t:;%,3), G(t:; %) by the pair F®V (23 %,5), G (#:; %) in the set § so
if deg, F¥ < deg. F the induction can be used. Hence we may
assume equality of the degrees indicated, which means that we
have deg. D = 0. Then D(¢;x) = m(t;), and G(r;; x) and the
coefficients of F(r;;%,y) are relatively prime. Now let T(¢;y)
be the resultant relative to x of F(#;;x,y) and Ox + G(z:; %).
Then T(r;;y) #0 for all (r;) e § and by passing to a refinement of
the rational cover we may assume also that we can find P(¢;),
Q) e Ro[#:] such that P(r;) #0, Q(r:) #0, and T(rs; Q(+)P(r:) ™)
# 0 for (r;) in §. Wereplace F(¢;;x,y) by H(ti;x,y) = P(t.) F(¢:;
%,y + Q@) P(¢;) ') where f = deg, F(¢;; x,y). The resultant of
H(t:; %, y) and G(t;; x) relative to x has the form P(#)¢T(t:; vy +
Q@) P(¢;) ") and this is not O for (r;) e S,y = 0. It follows that
H(ri;%,5) = 0, G(r:5 %) # 0 is solvable in ® if and only if K(rs;
x,y) = 0 is solvable in ® for K(¢;; x,y) = H(t:; %, G(t:3 y)y).

We now consider a single equation F(¢;;x,y) = 0. By con-
sidering the highest common factor of the coefficients of the powers
of y of F we reduce the consideration to subsets § defined by a
rational cover and polynomials F(¢;; x, y) such that F(rs;x,y) is
not divisible by a polynomial of positive degree in » for (7;) € S.

) : oF

Next we consider the highest common factor of F and 5 and
Y

after a refinement we may assume that we have determined poly-

nomials m(t;; ), D(t:; %, y), F1(t:; %, y) with rational coefficients
such that D(r;;x,y) is a highest common factor in ®(x)[y] of

0
F(r;;x,y) and 5}?(”; x,¥), m(rs3 %) # 0 and m(rs; %)°F (v %, ¥)

= D(r4;%,y)F1(1:;%, ). Then Fy(ri; %,%) has no multiple fac-
tors of positive degree in y and F and F; have the same irreducible
factors of positive degree in y in ®[x, y]. Again we can determine
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k(ti), L(ti; %), Fz(fi;x,y) such that k(n)fFl(n;x,y) = L(n;
x)Fy(7s5 %, y) Where Fy(74; %, y) 1s not divisible by a polynomial of
positive degree in x. Then it is clear that we may replace F by F,
and so we may assume that for (r;) e §, F(r;;x,y) has no mul-
tiple factors of positive degree in y and no factor of positive
degree in y alone. Then F(r;;x,y) and %F(n;x,y) have no

. oF
common factors of positive degree. Set G(z;,c;%,y) = S Sl
x

(* —¢) > where ¢ is another indeterminate and let R(z;, c; x)
y

be the resultant relative to y of G(#;, ¢; %, ¥) and F(¢;; x,y). Then
one can argue as in the decision method itself that R(r;, ¢; x) # 0.
By going to a refinement of the rational cover we can obtain
P(t;), Q) € Rolzs] such that P(r;) =0, Q(r;) # 0, R(r;, Q(72)
P(r)~';x) # 0. If we replace G(tic;x,y) by Gy x,y) =
PG, Q@) P() 1 %, y), we see that the resultant R(#;; x) of
F(t;;%,y) and G(i;x,y) relative to y satisfies R(ry;x) # 0,
(r:) e S. As before, we can argue that also the resultant Q(#;; y) of
F and G relative to x satisfies Q(r;;y) # 0. The remainder of
the proof can be made along the lines of the decision method itself.
Weleave it to the reader to carry this out.

10. Generalized Sturm’s theorem. Applications. We can now
prove the following generalization of Sturm’s theorem which is due
to Tarski.

Theorem 16. Let ¢ be a finite set of polynomial equations and
inequalities of the form F(t1, -, te; %1, -y %n) =0, G(ty, - -,
by X1yt ooy Xn) #= O or H(ty, -y try %1, -y %) > O where F, G,
HeRyltr, -y tey %1, -+« %n), Then one can determine in a finite
number of steps a finite collection of finite sets ; of polynomial equa-
tions and inequalities of the same type in the parameters t; alone
such that, if ® is any real closed field, then the set ¢ has a solution for
the ’s in® for t; = 14, 1 < i <vr,if and only if the v; satisfy all the
conditions of one of the sets ;.

Proof. We show first that we can reduce the system ¢ to a
single equation of the form F(¢;; x;) = 0 where the number of x’s
may have to be increased. First it is clear that an inequality
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G # 0 is equivalent to G > 0. Next we can replace an inequality
H > 0 by the equivalent equation 22H — 1 = 0 where z is an
extra indeterminate. Finally, a number of equations F; = 0 can
be replaced by the single equation ZF;? = 0. These observations
prove the assertion, so we take ¢ to be a single equation F(¢;; ;) =
0. We show first by induction on the number # of x’s that we
can determine a finite number of sets of equations of the form
Fi(ti3 %) = 0, Gp(#;) # 0 such that a set 74, ---, 7, 7; in ®, has
the property that F(r;; #;) = 0 is solvable for #’s in ® if and only
if for some k one has Gi(7;) # 0 and Fy(r;; ¥) = 0 is solvable in &.
This is trivial for » = 1 and it is a consequence of Theorem 15
if » =2. Assume it holds for # — 1 > 2. Then treating x, as
one of the parameters we conclude that we can determine a
finite number of pairs of polynomials (Fi(ti, xa; %), Gu(ti,*,))
with rational coefficients such that, if the r; and £, e®, then
F(ri; %1, -+ Xn_1, &n) = O1is solvable for x1, - - -, ¥, _; in ® if and
only if, for some k, Gx(r;, £,) # 0 and Fi(r;, £23y) = 0 is solvable
in®. By Theorem 15, for each £ one can find a finite set of pairs of
polynomials (Fy;(¢:; %), Gr;(¢:;)) with rational coefficients such that
Fi(riy 23y) = 0, Gi(ri5%) # 0 is solvable in ® if and only if for
some j we have Gi;(r;) # 0 and Fy;(7;; %) = Oissolvablein ®. It
follows that the set of pairs (Fi;(#:; %), Gy;(#:)) satisfies the re-
quired condition for F(¢;; x1, - - -, ¥,). We now denote these pairs
as (Fj(t:;; x), G;(t)). For each F;(¢;; %) the version of Sturm’s
theorem we considered in § 7 shows that a finite set of polynomial
equations and inequalities with rational coefficients in the #; can
be found such that these are satisfied by #; = 7, ¢ ® if and only
if Fy(ri; %) is solvable in ®. If we add to each set the inequality
G;(r:) # 0 we obtain the sets ¥ satisfying the requirement of the
theorem.

Suppose now that we have a system of equations and inequali-
ties with rational coefficients which have a solution in one real
closed field ®;. It is clear that we can introduce parameters and
change our assertion to one that a certain system with parameters
and rational coefficients has a solution in &, for certain rational
values of the parameters. Then Theorem 16 implies that these
rational numbers satisfy one of a certain set of rational equations
and inequalities. Then if & is any other real closed field we can
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apply Theorem 16 again in the reverse direction and conclude that
the original system has a solution in ®.

Again, suppose we have a system of equations and inequalities
with rational coefficients involving parameters and suppose that
for one real closed field @, it is true that the system has a solution
in @, for all choices of the parameters in #;. Then one concludes
from Theorem 16 that this is equivalent to the statement that
every set of values for the parameters in &, satisfies one of a cer-
tain finite collection of finite sets of equations and inequalities.
It is easy to see that this in turn is equivalent to the statement
that there are no solutions in ®; of any one of another finite col-
lection of finite sets of rational equations and inequalities for the
parameters. The foregoing result shows that this carries over to
every real closed field ®. Hence we see that the original system
has a solution in & for all choices of the parameters in & where &
is any real closed field.

We shall now consider an application of these results to an
important theorem on division algebras.

A long time ago, before real closed fields were invented, Fro-
benius proved the following theorem: The only finite dimensional
division algebras over the field R of real numbers are: (1) R it-
self, (2) R(v —1), (3) Hamilton’s quaternion algebra over R.
The known proofs of this theorem are algebraic and give the same
result for any real closed field. The reader may refer to Dickson’s
Algebras and Their Arithmetics, p. 62, for an elementary proof of
this type. We now drop the assumption of associativity which we
have made throughout this book and consider non-associative
algebras. These are defined to be vector spaces over a base field
® in which a multiplication xy is defined satisfying the distribu-
tive laws and the rule a(xy) = (ax)y = #(ay), a e®. Such an
algebra which is finite dimensional is called a division algebra if
it has no zero divisors: xy = 0 implies either x = 0 or y = 0 in
the algebra. Besides the examples noted above there is one other
important example of a non-associative division algebra, namely,
an algebra of eight dimensions of octonions which was discovered
by Cayley and by Graves. The known examples of finite dimen-
sional non-associative division algebras over the field of real
numbers have dimensions 1,2, 4, and 8. It was conjectured for
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a long time that these are the only possible dimensions and this
was finally established by deep topological consideraticns by Bott
and Milnor. It would be a hardy task to attempt to carry over
the proof to the case of real closed fields. Moreover, this is un-
necessary since it is quite easy to conclude the result for arbitrary
real closed fields from its validity for the field of real numbers.
Assuming the Bott-Milnor result for the field of real numbers,
we shall prove that, if # # 1,2, 4, 8, « and ® is a real closed field,
then there exists no #» dimensional non-associative division algebra
over & To prove this let % be a non-associative algebra
with the basis (#1, ug, - - -, u,) over ® and suppose u;u; = Zviu
where the y;;: e ®. If ¥ = Z{u,, & e ®, then the mappingy — xy
in % is a linear one whose matrix relative to the basis (#q, - - -, #,)
is (p;r) where pji = 3 E#vijr. The existence of a y 3 0 such that

xy = 0 is equivalent to the statement that y — xy is a singular
linear transformation and this is the case if and only if F(yq; &)
= det (pjx) = 0. To show that ¥ is not a division algebra we
have to show that there exists an » # 0 such that F(y; &) = O.
We now see that our assertion is equivalent to the following: Let

F(tip; x:) = det <Z xitijk> which can be considered as a poly-

nomial in indeterminates #;x, ¥; with rational coefficients. Then
for all choices #;;5 = ;% € ® there exists a solution x; = £;in & of
the system F(yijx; %) = 0, Zx? # 0. Now by the Bott-Milnor
theorem this holds for & = R the field of real numbers. Hence our
results show that it holds for every real closed field.

Another example of the same type is a theorem of Hopf’s which
states that the only possible finite dimensionalities for real non-
associative commutative division algebras are » = 1,2. Com-
mutativity, of % is equivalent to the condition vy, = ;i for all
i, 7. Hence in the foregoing argument we consider indeterminates

Lik for i < j and define tisk = tijk for j > 7. Then det(Z xiti,-k>

is a polynomial with rational coefficients in the indeterminates
tijks i < j. The rest of the argument carries over and shows that
Hopf’s theorem is valid for all real closed fields.



316 ARTIN-SCHREIER THEORY

There is a general class of statements on real closed fields which
can be treated in the foregoing manner. These are the so-called
elementary sentences of algebra. We shall not attempt to give
the precise definition for these but refer the reader to the literature
(see the bibliographic notes on this chapter). The results we have
considered are special cases of the general principle of Tarski that
any elementary sentence of algebra is either true for all real
closed fields or is false for all real closed fields.

EXERCISES

1. Assuming the result for the field of real numbers prove that, if ® is any real
closed field and Fi(xy, -<-,%5) =0, ---, Fa(x1, -+, xs) = 0 where the Fse
®[x1, - - -, x4] has a solution x; = §; € ®, then it has a solution nearest the origin,

2. Prove the analogue of Theorem 16 for algebraically closed fields ® of charac-
teristic 0 and finite sets of equations F(ty, - - -, tr; ¥1, - - -, X,) = 0 and inequalities
Gty -+, X1, - - -, %q) 3% 0 where the F, G € Ro[#;; #;]. (Hint: A simple proof of
this can be based on the generic Euclidean sequences and the following simple
observation due to Tarski: if A(x), g(x) € ®[x] and deg f > 0, deg g > 0, then¥(x)
= 0, g(x) 5% 0 has a solution in ® if and only if f(¥) is not a divisor of g(x)dee (=),

3. Prove the result of ex. 2 also for ® of characteristic p 5 0 by developing the
corresponding results on generic Euclidean sequences of I[t;; ], I, = I/(p).

11. Artin-Schreier characterization of real closed fields. We
shall complete our discussion of real closed fields by proving a
beautiful characterization of real closed fields which is due to
Artin and Schreier. We recall that, if ® is a field not containing
vV —1 and ®(Vv/ —1) is algebraically closed, then ® is real closed
(Th. 6). We shall now prove

Theorem 17. Let Q be an algebraically closed field and & a
proper subfield which is of finite co-dimension in Q. Then ® is real
closed and @ = ®(v —1).

Proof. Let® = &(v/'—1) C Q. The theorem will follow from
the result quoted if we can show that ® = Q. Hence we suppose
that @ D ®. Let E be an algebraic extension of #’. Then E is
isomorphic to a subfield of @ over ® and so [E:®] < [Q:¥].
Hence the dimensionalities of algebraic extensions of & are
bounded. This implies that & is perfect. Otherwise, the charac-
teristicis p # 0 and there exists a 8 e ® which is not a p-th power.
Then for every ¢ > 0, x*° — B is irreducible in ®'[x] (ex. 1, § 1.6)
and this provides an algebraic extension of p* dimensions over &'
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Since e is arbitrary, this contradicts what we proved. Thus &’
is perfect and so Q is separable over . Since Q is algebraically
closed it is Galois over ® and its Galois group G over  is 1 be-
cause @ D ®". Hence G contains a cyclic subgroup of prime order
g and consequently there exists a subfield E D &' such that Q is
cyclic of ¢ dimensions over E. Since Q is an algebraic closure of E
and [2:E] = g, itis clear that @ and E are the only algebraic exten-
sions of E. It now follows that the characteristic of ® is not g.
Otherwise, Q is a cyclic ¢g-extension of E, and the existence of such
an extension of E implies the existence of cyclic g™extensions of
E for every m (Th. 3.16). This has been ruled out and so the
characteristic is not ¢. This implies that Q, which is algebraically
closed, contains ¢ distinct roots of 1. Since these are roots of
(0 — 1)(x?" ! + %7972 4+...4+ 1) and since the irreducible poly-
nomials in E[x] have degrees 1 or g, all the g-th roots of 1 are con-
tained in E. Since @ is cyclic g-dimensional over E, @ = E(Va)
where a € E and is not a ¢g-th power in E (Th. 2.5). Consider the

q
polynomial g(x) = IT (+ — ¢*p) where ¢ is a primitive g*-root

1
of 1 and p is an element of @ such that p? = . Since the inclu-
sion {p e E implies that E contains an element ({%p)? = 8 such
that 82 = a, we see that no {p ¢ E. Since g(¥) = ¥¢ — a e E[x],
it follows that all of its irreducible factors in E[x] are of degree g.
If 8 is the constant term of one of these, then 8 = p% where 5 is a
power of {. Since (p9)? = a and @ = E({'/&), p?¢E and Q@ =
E(p?) = E(8p~ 7 = E(5). Since E contains all the ¢g-th roots of
1, we see that 7 is a primitive g®-root of 1. Let ®, be the prime
field of @ and now consider the subfield ®4() of Q. If &, is the
field Ry of rational numbers we know that the dimensionality of
the field of ¢"-th roots of 1 is ¢(g") (Th. 3.2) and this goes to in-
finity with . If ®, has characteristic p # ¢, then the field of the
¢"-th roots of 1 over ®, contains at least 4" elements, so again the
dimensionality of this field over ®, approaches infinity. In any
case it now follows that there exists a positive integer  such that
®o(n) contains a primitive g’-th root of 1 but no primitive ¢"*!-st
root of 1. Since 5 is a primitive g%-root of 1, 7 > 2. The field @
contains a primitive ¢"tlst root of 1, say & Let A(x) be the
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minimum polynomial of £ over E. Sincen ¢ E, £ ¢ E, so deg A(x)

qr+l

= g¢. Also A(x) is a factor of x™ — 1 = J] (» — &), so the
1

coefficients of A(x) are contained in ®,(£); hence they are con-
tained in the field T' = $,(§) N E. It follows that [$,(£):T] = g.
Next we consider the subfield IV = ®y(y), v = £%, of ®3(¢). Evi-
dently v is a primitive ¢"-th root of 1, so I contains ¢ distinct ¢g-th
roots of 1. On the other hand, ®,(¢) = I'(¢) where £2 = ye T,
so either ®,(¢) = I' or ®y(£) is cyclic of ¢ dimensions over IV, If
®o(¢) = IV = $o(vy), we have ®u(£) < Po(n) since $o(n) contains
all the ¢"-th roots of 1. Then ®4(n) contains £, a primitive g"+'-st
root of 1, contrary to hypothesis. Thus we have [®4(£):T'] = g.
Now I" # I. Otherwise, T' contains a primitive ¢"-th root of 1,
so I' and E contain 5 contrary to @ = E(y) D E. We have there-
fore proved that the field ®,(£) of the g"T!-st roots of 1 over the
prime field contains two distinct subfields I' and I over which it is
g-dimensional. It follows that the Galois group of ®¢(£) over ®,
is not cyclic. By Lemma 1 of § 1.13 and Theorem 3.5, this is the
case only if the characteristic is 0 and ¢ = 2. Then the element
7 considered before is a primitive 4-th (% with ¢ = 2) root of 1.
On the other hand, E contains ® which contains v/ —1 and this is
a primitive 4-th root of 1. Hence we have @ = E(y) = E con-
trary to @ D E. This contradiction shows that & = &(v/' —1) =
Q and @ is real closed.



SUGGESTIONS FOR FURTHER READING

Chapter I. The classical Galois correspondence between groups of
automorphisms and subfields has been extended in a number of different
directions. First, one has Krull’s Galois theory of infinite dimensional
extensions which is considered in Chapter VI. Next one has the Galois
theory of division rings which is due (independently) to H. Cartan and
the present author. An account of this can be found in the author’s
Structure of Rings, AM.S. Colloquium Vol. 37 (1956), Chapter VII.
(Our development of the Galois theory in Chapter I is based on the
methods which were developed originally to handle the non-commutative
theory.) A Galois theory of finite dimensional separable extensions
based on the notion of a self-representation of a field is due to Kaloujnine.
This is contained in a more general theory given by the present author
in two papers in Am. J. Math., Vol. 66 (1944), pp. 1-29 and pp. 636-644.
See also two papers by Hochschild and by Dieudonné in the same
journal, Vol. 71 (1949), pp. 443-460 and Vol. 73 (1951), pfp. 14-24.

Quite recently a Galois theory of automorphisms of commutative
rings has been developed jointly by S. U, Chase, D. K. Harrison, and
A. %osenberg. This paper will appear in Transactions A.M.S.

A general cohomology theory of fields has been given by Amitsur in
Trans. A.M.S., Vol. 90 (1959), pp. 73-112. See also the paper by
Rosenberg and Zelinsky on this subject in Trans. 4.M.S., Vol. 97 (1960),
ppP- 3275—356, and Amitsut’s paper in J. Math. Soc. Japan, Vol. 14 (1962),

1-25.

Chapter II. We have indicated in the text the unsolved problem of
the existence for a given field ® and a given finite group G of a Galois
extension P/® whose Galois group is isomorphic to G. A closely related
question is that of the existence of an equation with coefficients in &
having a given subgroup of §, as group. These problems have been
studied extensively f%r & the field of rational numbers and more generally
for algebraic number fields (finite dimensional extensions of the ra-
tionals). Two methods have been developed for this problem: one based
on arithmetic properties of number fields, and a second more elementary
method based on an irreducibility criterion due to Hilbert. The deepest
results thus far obtained in the arithmetic theory are due to Safarevic.
?ﬁugn;gary of his results is given in Math. Reviews, Vol. 16 (1955), pp.

The Hilbert method (which was used by Hilbert to prove the existence
of rational equations with §, as Galois group) has two stages. Given
a field ® one requires first a purely transcendental extension field
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&(t, - - -,4,) and a Galois extension P of &(#;) with Galois group iso-
morphic to the given group G. This problem is still open except for
special cases (§,, alternating group and some others). Next one needs
to know that & is a Hilbertian field in the sense that Hilbert’s irreduci-
bility theorem holds for ®. (For example, the rational field is Hil-
bertian; the field of p-adic numbers and finite fields are not.) A discus-
sion of this theorem and its relation to Galois theory is given in S. Lang’s
book Diophantine Geometry, New York, 1962, Chapter VIII.

An interesting aspect of the classical Galois theory of equations is
Klein’s theory of form problems. A development of this from the point
of view of algebras, particularly crossed products, is due to R. Brauer in
Math. Annalen, Vol. 110 (1934), pp. 437~500. Reference to the classical
works on the subject is given in this paper.

A general reference book for Galois theory of equations is Tschebota-
r6w’s Gurndziige der Galois’schen Theorie, Groningen, 1950 (translated
from Russian by Schwerdtfeger).

Chapter III. D. K. Harrison has given a general theory of abelian
extension fields in Trans. A.M.S., Vol. 106 (1963), pp. 230-235.

Chapter IV. Some of the deeper results of this chapter have been
developed to meet the needs of algebraic geometry. The reader may con-
sult S. Lang’s Introduction to Algebraic Geometry, 1958, or A. Weil’s
Foundations of Algebraic Geomerry, AM.S. Colloquium Vol. 29, Provi-
dence, 1st. Ed., 1946, 2nd. Ed., 1962, for these connections.

Chapter V. There are several directions that one may take in pursuing
the subjéct matter of this chapter. First, one can study the general
theory of valuations as given in Zariski-Samuel’s Commutative Algebra
Vol. ¥I, D. Van Nostrand Co., Inc., Princeton, 1960, Chapter VI.
Secondly, this chapter leads to the arithmetic theory of number fields
and fields of algebraic functions of one variable. For this the reader
may consult Chevalley’s book Algebraic Functions of One Variable,
Princeton, 1951, Artin’s book Theory of Algebraic Numbers, Goéttingen,
1959, and E. Weiss’ book Algebraic Number Theory, New York, 1963.
A third direction which one can take after studying Chapter V is local
class field theory. For this the reader may consult Serre’s book Corps
Locaux, Paris, 1962,

Chapter VI. The original Artin-Schreier theory is given in papers by
Artin and Schreier and by Artin in the Hamburg Abkandl., Vol. 5 (1927).
Our exposition follows these papers rather closely. Seidenberg’s work
is in Annals of Math., Vol. 60 (1954), pp. 365-374. This contains also a
statement of Tarski’s principle and, of course, a reference to Tarski’s
earlier paper. Much of the present chapter can be developed also as a
part of mathematical logic, more exactly, as an aspect of the theory of
models. The reader may consult A. Robinson’s Eook, Model Theory,
Amsterdam, 1963, particularly Chapter VIII. Also references to the
literature are given in this book.
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Abelian extension field, 61, Chapter ITT
Abelian p-extensions, 132-140
Algebraically closed field, 142-147
Algebraic closure, 142
separable, 146
uniqueness of, 145
Algebraic element, 6
Algebraic field extension, 44
absolutely, 147
Algebraic functions, 156
Algebraic independence, 4, 151-157
of isomorphisms, 56
Algebras, 7-9
algebraic, 10
homomorphism of, 7
ideals of, 7
of dual numbers, 168
tensor products of, 15-17
Artin’s theorem on positive definite
rational functions, 289

Bilinear mapping, 10
Bott-Milnor theorem, 315

Character, 75
Character group, 117
of finite commutative group, 116—
119
Characteristic polynomial, 64
Cohomology groups, 82
Complete field (relative to a real valua-
tion), 217
finite dimensional
256-262
Completion of a field (relative to a real
valuation), 216-221
Composites of fields, 83-89, 262264
free, 203-209
Constant, 169, 194

extensions of,
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Crossed product, 79

Cyclic algebra, 80

Cyclic extension field, 61
Cyclic p-extensions, 139-140
Cyclotomic field, 95, 110-116

Decision method, 300-307
Dedekind independence theorem, 25
Degree of separability and insepara-
bility, 49
Dependence relations, 153-155
algebraic, 151-157
Derivations, 167-174, 183
constant relative to, 169
Galois theory of, 185-191
higher, 191197
iterative higher, 196
Different, 73
Direct sum, 9, 85
Discriminant:
of an algebra, 66
of a polynomial, 92

Equations with symmetric group as
Galois group, 105-109

Exponential function in p-adic num-
bers, 226-228

Extension of derivations, 170-172,
174-185

Extension of homomorphisms, 2-6,
246248

Extension of valuations,

256265

246-250,

Factor set, 79

Finite fields, 58-62
Finite topology, 149
Formally real field, 271
Frobenius’ theorem, 314
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INDEX

Fundamental theorem of Galois
theory, 41
for infinite dimensional extensions
(Krull’s theorem), 150
for purely inseparable extensions of
exponent one, 186

Galois cohomology, 75-83
Galois correspondence, 23
for subgroups and subfields, 29
Galois’ criterion for solvability by
radicals, 98-102
Galois extension field, 27
Galois group:
of an equation, 89-97
of an extension field, 27
of cyclotomic extensions, 96, 113,
115
of general equation, 104
of quartic equations, 94-95
of simple transcendental extensions,
158-159
Galois theory for purely inseparable
extensions of exponent one, 185-
191
General equation of #-th degree, 102-
105
Groups of automorphisms of fields,
27-31

Hensel’s lemma, 230-232
Hilbert Nullstellensatz, 254
Hilbert’s “Satz 90, 76
Hilbert’s 17th problem, 289
Homomorphism:

of an algebra, 7

of additive group of a field, 19
Hopf’s theorem, 315

Ideal, 7
imbedding in maximal ideal, 255
imbedding in prime ideal, 253
radical of, 209, 253
Indeterminates, 4
Infinite Galois theory, 147-151
Integral closure, 255256
Isometric mapping, 221

Jacobson-Bourbaki theorem, 22

Kronecker product, see tensor product
Kummer extensions, 119-124

Lie algebra of linear transformations,
174
restricted, 174
Lie commutator, 173
Linear disjointness, 160-167
Local dimensionality, 265
Liroth’s theorem, 157-160

MacLane’s criterion, 164
Minimum polynomial, 6
Multiple roots, 37

Noether’s equations, 75
Norm, 65
transitivity of, 66
Normal basis, 56, 61
Normal closure, 43
Normal extension, 43, 52-53
Number of solutions of quadratic equa-
tions in finite fields, 62

Order isomorphism, 238, 271
Ordered field, 270
archimedean, 272
Ordered group, 237
rank of, 243
of rank one, 244-246
Ostrowski’s theorem, 260

p-adic numbers, 222-230, 234-236
p-basis, 180
p-independence, 180
Perfect closure, 146
Perfect field, 146
Place, 241
Positive definite rational functions,
289-295
Power series, 233-234
Primitive elements, 54-55, 59
Pure equation, 95
Pure transcendental extension, 155
Purely inseparable extension, 47
exponent of, 179
Galois theory of, 185-191
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Ramification index, 265
Rationally specializable property, 291
Real algebraic numbers, 287-289
Real closed field, 273
characterization of, 276278, 316-
318
Real closure, 284-286
Representation:
matrix, 63
regular, 63
Residue degree, 265
Residue field, 222
Resultant, 298-299
Root tower, 98
Roots of unit, 95, 110-116

Seidenberg’s decision method, 300-
307
Separable:
algebraic closure, 146
element, 45
extension, 46, 166
polynomial, 39
Separating transcendency bases, 161,
164-167
and derivations, 178-179, 184
Solvable extension field, 61
Splitting field of a polynomial, 31
isomorphism theorem for, 35
Standard sequence, 281
Sturm sequence, 279
Sturm’s theorem, 283, 295
generalized (Tarski’s theorem), 312
Subalgebra, 7

Tarski’s theorem, 312
Tensor products, 10-17
of algebras, 15-17
of fields, 52, 84-87, 197-203
of subalgebras, 16
of vector spaces, 1015
Theorem of Abel-Ruffini, 104
Theorem of Hilbert-Landau, 289
Trace, 65
transitivity of, 66
Trace form, 66
Transcendency basis, 151-157
separating, 161, 164-167
Transcendency degree, 155
Transitivity theorem for determinants,
68

Unit group in p-adic numbers, 225-
230

Valuations:
archimedean, 213
discrete, 222
equivalence of, 212
general 238
of field of rational numbers, 214-216
of simple transcendental extensions,
216
p-adic, 211
real, 211
Valuation ring, 222, 240

Witt vectors, 124-132, 234-236
Wronskian, 185



