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PREFACE

Le juge: Accusé, vous ticherez d’étre bref.
Laccusé: Je ticheral d’&tre clair,

~—G. CoURTELINE

This book is the child of an unborn parent. Some years ago the senior
author began the preparation of a Colloquium volume on algebraic geom-
etry, and he was then faced with the difficult task of incorporating in that
volume the vast amount of purely algebraic material which is needed in
abstract algebraic geometry. The original plan was to insert, from time
to time, algebraic digressions in which concepts and results from commu-
tative algebra were to be developed in full as and when they were needed.
However, it soon became apparent that such a parenthetical treatment of
the purely algebraic topics, covering a wide range of commutative algebra,
would impose artificial bounds on the manner, depth, and degree of gener-
ality with which these topics could be treated. As is well known, abstract
algebraic geometry has been recently not only the main field of applications
of commutative algebra but also the principal incentive of new research in
commutative algebra. To approach the underlying algebra only in a
strictly utilitarian, auxiliary, and parenthetical manner, to stop short of
going further afield where the applications of algebra to algebraic geometry
stop and the general algebraic theories inspired by geometry begin, Im-
pressed us increasingly as being a program scientifically too narrow and
psychologically frustrating, not to mention the distracting effect that re-
peated algebraic digressions would inevitably have had on the reader,
vis-2-vis the central algebro-geometric theme. Thus the idea of a separate
book on commutative algebra was born, and the present book—of which
this is the first of two volumes—is a realization of this idea, come to
fruition at a time when its parent—a treatise on abstract algebraic geom-
etry—has stll to see the light of the day.

In the last twenty years commutative algebra has undergone an inten-
sive development. However, to the best of our knowledge, no systematic
account of this subject has been published in book form since the appear-

ance in 1935 of the valuable Ergebnisse monograph “Idealtheorie” of
v
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W. Krull. As to that monograph, it has exercised a great influence on
research in the intervening years, but the condensed and sketchy character
of the exposition (which was due to limitation of space in the Ergebmnisse
monographs) made it more valuable to the expert than to the student
wishing to study the subject. In the present book we endeavor to give
a systematic and—we may even say—leisurely account of commutative
algebra, including some of the more recent developments in this field,
without pretending, however, to give an encyclopedic account of the subject
matter. We have preferred to write a self-contained book which could
be used in a basic graduate course of modern algebra. It is also with an
eye to the student that we have tried to give full and detailed explanations
in the proofs, and we feel that we owe no apology to the mature mathema-
tician, who can skip the details that are not necessary for him. We have
even found that the policy of trading empty space for clarity and explicit-
ness of the proofs has saved us, the authors, from a number of erroneous
conclusions at the more advanced stages of the book. We have also tried,
this time with an eye to both the student and the mature mathematician,
to give a2 many-sided treatment of our topics, not hesitating to offer several
proofs of one and the same result when we thought that something might
be learned, as to methods, from each of the proofs.

The algebro-geometric origin and motivation of the book will become
more evident in the second volume (which will deal with valuation theory,
polynomial and power series rings, and local algebra; more will be said of
that volume in its preface) than they are in this first volume. Here we
develop the elements of commutative algebra which we deem to be of
general and basic character. In chapter I we develop the introductory
notions concerning groups, rings, fields, polynomial rings, and vector spaces.
All this, except perhaps a somewhat detailed discussion of quotient rings

ith respect to multiplicative systems, is material which is usually given in
an intermediate algebra course and is often briefly reviewed in the begin-
ning of an advanced graduate course, The exposition of field theory
given in chapter II is fairly complete and follows essentially the lines of
standard modern accounts of the subject. However, as could be expected
from algebraic geometers, we also stress treatment of transcendental ex-
tensions, especially of the notions of separability and linear disjointness (the
latter being due to A. Weil). The study of maximally algebraic subfieids
and regular extensions has been postponed, however, to Volume II (chap-
ter VII), since that study is so closely related to the question of ground
field extension in polynomial rings.
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Chapter IIT contains classical material about ideals and modules in
arbitrary commutative rings. Direct sum decompositions are studied in
detail. The last two sections deal respectively with tensor products of
rings and free joins of integral domains. Here we introduce the notion
of quasi-linear disjointness, and prove some results about free joins of inte-
gral domains which we could not readily locate in the literature.

With chapter IV, devoted to noetherian rings, we enter commutative
algebra proper. After a preliminary section on the Hilbert basis theorem
and a side trip to the rings satisfying the descending chain condition, the
first part of the chapter is devoted mostly to the notion of a primary repre-
sentation of an ideal and to applications of that notion. We then give a
detailed study of quotient rings (as generalized by Chevalley and Uzkov).
The end of the chapter contains miscellaneous complements, the most im-
portant of which is Krull’s theory of prime ideal chains in noetherian rings.
An appendix generalizes some properties of the primary representation to
the case of noetherian modules,

Chapter V begins with a study of integral dependence (a subject which
is nowadays an essential prerequisite for almost everything in commutative
algebra) and includes the so~called “going-up” and “‘going-down” the-
orems of Cohen-Seidenberg and the normalization theorem. (Other varia-
tions of that theorem will be found in Volume II, in the chapter on poly-
nomial and power series rings.) With Matusita we then define a Dedekind
domain as an integral domain in which every ideal is a product of prime
ideals and derive from that definition the usual characterization of Dede-
kind domains and their properties. An important place is given to the
study of finite algebraic field extensions of the quotient field of a Dedekind
domain, and the degree formula 3eifs = # is derived under the usual (and
necessary) finiteness assumptions concerning the integral closure of the
given Dedekind domain in the extension field. This study finds its natural
refinement in the Hilbert ramification theory (sections 9 and 10) and in
the properties of the different and discriminant (section 11). The chap-
ter closes with some classical number-theoretic applications and a generali-
zation of the theorem of Kummer. The properties of Dedekind domains
give us a natural opportunity of introducing the notion of a valuation (at
least in the discrete case) but the reader will observe that this notion is
introduced by us quite casually and parenthetically, and that the language
of valuations is not used in this chapter. We have done that deliberately,
for we wished to emphasize the by now well-known fact that while ideals
and valuations cover substantially the same ground in the classical case
(which, from a geometric point of view, is the case of dimension 1), the
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domain in which valuations become really significant belongs to the theory
of function fields of dimension greater than 1.

The preparation of the first volume of this book began as a collaboration
between the senior author and our former pupil and friend, the late Irving
S. Cohen. We extend a grateful thought to the memory of this gifted
young mathematician,

We wish to acknowledge many improvements in this book which are
due to John Tate and Jean-Pierre Serre. We also wish to thank heartily '
Mr. T. Knapp who has carefully read the manuscript and the galley proofs
and whose constructive criticisms have been most helpful.

Thanks are also due to the Harvard Foundation for Advanced Research
whose grant to the senior author was used for typing part of the manu-
script.  Last but not least, we wish to extend our thanks to the D. Van
Nostrand Company for having generously cooperated with our wishes in
the course of the printing of the book.*

Oscar ZARIskI
Prerre SAaMUEL
Cambridge, Massachusetts

Chamalieres, France

* The work on this voluine was supported in part by a research project at Harvard
University, sponsored by the Office of Ordnance Research, United States Army, under
Contract DA-19-020-ORD-3100.
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I. INTRODUCTORY CONCEPTS

§ 1. Binary operations. Let G be an arbitrary set of elements
a, b, c,- - -. Byabinary operation in G is meant a rule which associates
with each ordered pair (a, b) of elements of G a unique element ¢ of the
same set G. A binary operation can therefore be thought of as a single-
valued function whose domain is the set of all ordered pairs (a, ) of
elements of G and whose range is either G itself or some subset of G.
We point out explicitly that if @ and b are distinct elements of G, then
the elements of G which are associated with the ordered pairs (g, 5) and
(b, @) may very well be distinct.

In group theory, and in algebra generally, it is customary to denote
by a-b or ab the element which is associated with (g, b) under a given
binary operation. The element ¢ = ab is then called the product of a
and b, and the binary operation itself is called multiplication. When the
term ““ multiplication” is used for a binary operation, it carries with it
the implication that “if a € G (read: a is an element of G) and b€ G,
then also ab€ G.” We shall often express this property by saying that
G is closed under the given multiplication.

Let G be a set on which there is given a binary operation, which we
write as multiplication. The operation is said to be associative if
(ab)c = a(bc) for any three elements a, b, c of G.  T'wo elements a and b
of G are said to commute if ab = ba, and the operation is said to be
commutative if any two elements of G commute.

We assume henceforth that the operation in question is associative.
It is then a simple matter to define inductively the powers of an element
of G and to prove the usual rules of exponents. Namely, if a € G and
if n is a positive integer, we define a* = a; if n > 1, a" = a"~la. We
then have for any positive integers m and #:

€] arar = antn,
® (amy = am.

For fixed m, one can proceed by induction on #, observing that these
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rules hold by definition for n = 1. Moreover, if a and b are two
elements of G which commute, then so do any powers of a and b, and
(3) {ab)" = a™b".

An identity element in G is an element ¢ in G such that ea = ae = a
forall ain G. If G has an identity e, then it has no other. Forife'is
also an identity, then ¢ = e¢’ = ¢'. Moreover, we can now define a° to
be ¢, and the foregoing three rules trivially hold for arbitrary non-
negative exponents.

We now assume that G has an identity e. If a € G, an inverse of a is
an element @’ in G such that a'a = aa” = e. 1If a” is also an inverse of
a, then @” = a"e = a"(aa’) = (a"a)a’ = ea’ = a’. 'Thus the inverse of
a (if it exists at all) is unique. If @ possesses an inverse a’, then negative
powers of a can also be defined. Namely, we observe that

a™ = a™tla’

for all non-negative m, and we take this as an inductive definition for
negativem. Thusa™a = am*1forallm. Therule(1)aboveisthentrue
for any fixed m (positive or negative), provided n = 1; it can be proved
for arbitrary positive z by induction fromz# — 1 to n and for negative
n by induction fromn + 1 ton. Since, therefore, a™a~—™ = ¢ = a—"a™,
we observe that a™ has a—™ as inverse, sothat (a™)" is defined for every =.
Rule (2) can now be proved by the two inductions used for (1). From
the definition we have that a—! = a’, and we shall always use a—1 for the
inverse of a (if it exists). If a and b both have inverses, then so does ab,
and (ab)~! = b—1a—1. If, moreover, a and b commute, then so do any
powers of a and b, and (3) holds for arbitrary n.

The product of n elements ay, - - -, a, of G is inductively defined as
follows:

n n~1

Hai=a1 fn=1; ﬂai=(Ha,~>an fn>1.
=1

=1 i=1

This product will be denoted also by @,a, - - - @,. From the associativity
of multiplication in G, we can prove the following general associative
law, which states that the value of a product is independent of the
grouping of the factors:

Let ng, nq,- - -, n, be integers such that 0 = ny < n, < - - - < n, =mn.
Then
H( 11 ak) = E a;.

J=1\k=nj_1+1

This is clear for n = 1; hence we assume it proved for » — 1 and
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prove it for n factors. The formula being trivial for r = 1, we may
assume r > 1. Then

., ﬁ )
JI=11 (k=ni_1+1ak

“7—1 j r n—1 1
= ( 11 ak)] 1 ( 11 ak) a,, (by definition)
f k=n; Jt 4

j=1 nj_1+1 =n,_1+1
r—1 i n—1 ! L.
= {{ ( ak)} { {1 a,,} ja,, (by associativity)
F=I \k=n;_1+1 k=n,_y+1
n—1
= { a; }a,, (by definition and induction hypothesis)
=1

= a;

]
=1

(by definition).

This computation is valid unless n,_; = n — 1; the modification neces-
sary in this case is left to the reader.

If all ¢; = a, then [] ¢; = a", and (1) and (2) are consequences (for
=1

positive exponents) of the general associative law.

§2. Groups

DrerINITION. A set G which is closed under a given multiplication
1s called a GROUP if the following conditions (GROUP AXIOMS) are satisfied :

G, The set G is not empty.
G, Ifa, b, c €G, then (ab)c = a(bc) (ASSOCIATIVE LAW).
Gy.  There exists in G an element e such that

(1) For any element a in G, ea = a.
(2) For any element a in G there exists an element o’ in G such
that a'a = e.

In view of axiom G, and the general associativity law proved above,
we can write the product of any (finite) member of elements of G without
inserting parentheses.

We proceed to show that e is anidentity in G, and that for every element a
has an inverse. 1f a is given, then by G, (2), there exists an &’ such that
@'a = e, and there exists an ¢” such that @’a’ = e. Then aa’ = e(aa’)
= (a"d')(ad’) = a"(d'a)a’ = a"ea’ = ¢; this, together with oda =,
shows that g’ is an inverse of a, provided that e is an identity. But this
is immediate, for ea = a by G, (1), and ae = a(a’a) = (aa')a = ea = a.
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Since e is an identity in G and &’ an inverse of a, it follows that both are
uniquely determined. As mentioned in the preceding section, the
inverse of a will be denoted by a—1.

If a and b are elements of a group G, then each of the equations ax = b,
xa = b, has one and only one solution. Consider, for instance, the
equation ax = b. -Multiplication on the left by a~?! yields x = a~1b as
the only possible solution, and direct substitution shows that a=% is
indeed a solution. Similarly it can be seen that x = ba—! is the only
solution of the equation xa = b.

An immediate consequence of the uniqueness of the solution of each
of the above equations is the (right or left) cancellation law: if ax = ax’
or if xa = x'a, then x = x'.

The solvability of both equations ax = b, xa = b is equivalent, in the
presence of G| and G,, to axiom G,. For if we assume the solvability of
the foregoing equations and if we assume furthermore G, and G,, then
we can prove G, as follows:

We fix an element ¢ in G and we denote by ¢ a solution of the equation
x¢c = ¢. If now ais any element of G, let b be a solution of the equation
cx=a. We will have then ea = ¢(ch) = (ec)b = cb = a, which
establishes G5 (1). Asto G;(2), it is an immediate consequence of the
solvability of the equation xa = e.

In practice, when testing a given set 7 against the group axioms, it is
sometimes the case that the solvability of the equations ax = b, xa = b
follows more or less directly from the nature of the given binary opera-
tionin G. The task of proving that G is a group can therefore sometimes
be simplified by using the solvability condition just stated, rather than
axiom Gj.

A group which contains only a finite number of elements is called a
finite group. By the order of a finite group is meant the number of
elements in the group.

It may happen that a group G consists entirely of elements of the
form a”, where a is a fixed element of G, and 7 is an arbitrary integer,
Z 0. If thisis the case, G is called a cyclic group, and the element a 1s
said to generate G. '

§ 3. Subgroups. Given two groups G and H, denote by - and o the
group operations in G and in H respectively. We say that H is a sub-
group of Gif (1) H is a subset of G and (2) a-b = ao b for any pair of
elements a, bin H.

Let H be a subgroup of G and let ¢ and ¢’ be the identity elements of
G and H respectively. We have ¢'-¢' =¢'0e =¢' and ¢'.e =¢'.
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Hence ¢’ ¢’ = ¢’-¢, and therefore, by the cancellation law which holds
in G, ¢ = e We thus see that the identity element of a group G belongs
to any subgroup H of G (and is necessarily also the identity of H).

If H is a subgroup of G we shall not use different symbols (such as

and o) to denote the group operations in G and H respectively. Both
operations will be denoted by the same symbol, say, - oro.

Given a group G and a non-empty subset H, of G, there is a very
simple criterion for H, to be the set of elements of a subgroup of G.
Namely, we have the following necessary and sufficient condition: if
a,be Hy, then ab—* € H,. This condition is obviously necessary. On
the other hand, if this condition is satisfied, then we have in the first
place that H contains the identity ¢ of G (if a is any element of the non-
empty set H, then e =a.a~1e H,). It follows that if a € H,, then
also a~leHya'=¢-a1eH,y), and if a,be H, then a-b=
a-(b-Y~1e H, Thus H; is indeed a group H with respect to the
group operation in G, and this group H is a subgroup of G.

Let G be an arbitrary group and let H be a subgroup of G. Ifais
any element of G, we denote by Ha the set of elements of G which
are of the form ha, h € H, and we call this set a right coset of H. In a
similar fashion, we can define left cosets aH of H. If multiplication in
G is commutative (§ 1), then any right coset is also a left coset: Ha and
af are identical sets.

Let Ha and Hb be two right cosets of H in G, and suppose that these
two cosets have an element ¢ in common: ¢ = h,a = hyb; hy, hy€ H.
Then b= h,~'h,a, and for any element A of H we have hb =
(hhy=1hy)a € Ha (since H is a subgroup of G and hence hh,~h, € H).
Thus Hb C Ha; and similarly we can show that Ha C Hb. Therefore
Ha = Hb.

It follows that two right cosets Ha and Hb are either disjoint (that is,
have no elements in common) or coincide. A similar result holds for
left cosets. Note that a € Ha, for H contains the identity of G. Hence
every element of G belongs to some right (or left) coset.

H is said to be a normal (or invariant) subgroup of G if Ha = aH for
everyain G. An equivalent property is the following: for every a in G
and every k& in H, the element a—ha belongs to H.

Suppose now that G is a finite group of order n, and let m be the order
of H. Every right coset Ha of H contains then precisely m elements (if
hy, hy€ H and hy 3£ h,, then hja 7 hya). Since every element of G
belongs to one and only one right coset, it follows that m must be a
divisor of # and that n/m is the number of right cosets of H. We have
therefore proved that if G is a finite group, then the order m of any
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subgroup H of G divides the order n of G. 'The quotient n/m is called the
index of H in G.

If a is an arbitrary element of a group G, the elements a?, n any
integer = 0, clearly form a subgroup H of G. We call H the cyclic
subgroup generated by the element a. 1f this subgroup H is finite, say of
order m, then m is-called the order of the element a; otherwise, a is said
to be of infinite order.

Let a be an element of G, of finite order m. There exist then pairs
of distinct integers n, n’ such that a” = a” (otherwise the cyclic group

generated by a would be infinite). From a" = a” follows a"~" =1,
whence there exist positive integers v such that > = 1. Let u be the
smallest of these integers. Then 1,4, a? ---,a*1 are distinct ele-

ments, while if n is any integer and if, say, n=qu + n', 0 = »' < p,
then
) a" = g7 = (g#)1-a" = a”.
It follows that the cyclic group generated by a consists precisely of the
w elements 1, a, a2, - - -, a*=, and hence . = m. Thus the order of a
is also the smallest positive integer m such that a™ =

From (1) it follows that " = 1 if and only if »" = 0, that is, ¥ and
only if n is a multiple of m(= p).

It is clear that if G is a finite group, then every element a of G has
finite order, and that the order of a divides the order of G.

§4. Abelian groups. Let G be a set with an associative multiplica-
tion. As defined in § 1, the multiplication is said to be commutative if
ab = ba for any elements a, bin G. In such a case it is permissible to
change freely the order of the factors in a product a,a,---a, 'That
is to say, we have the general commutative law, which can be formally
stated as follows: .

Let ¢ be a permutation of the integers {1,2,---,n}. Then

n n
H ai = H aq’(i).
i==1 =1

The proof is by induction and may be left to the reader.

A group G in which the group operation is commutative is said to be
commutative or abelian. The group operation is then often written
additively; that is, we write a 4 b instead of ab and Ya; instead of [ Ja;.
The element a 4 b is called the sum of @ and 5. The identity element
is denoted by 0 (2ero) and the inverse of a by — a. Correspondingly
one writes na instead of a”, and the rules for exponents take the form

1 ma + na = (m + na,
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(2) m(na) = (mn)a,
(3) n(a + b) = na + nb,
(4) — (na) = (— n)a.

The last equation is a paraphrase of the statement (in the multiplicative
notation) that the inverse of a” is a=". 'The equation xa = 4, which in
the abelian case is equivalent to the equation ax = b, assumes then the
form x + a = b. Its unique solution & + (— a) is denoted by b — a
and is called the difference of b and a. 'The binary operation which
associates with the ordered pair (a, 4) the difference b — a is called
subtraction.

§ 5. Rings

DerINITION. A set R in which two binary operations, + (addition)
and - (multiplication), are given is called a RING if the following conditions
(RING AXIOMS) are satisfied:

Ry. R is an abelian group with respect to addition.

R,. Ifa, b, ceR, then albc) = (ab).

Ry Ifa,b,ceR, thenalb+ ¢) = ab + ac and (b + ¢)a = ba + ca

(distributive laws).
In conformity with the additive notation for abelian groups (§4) the
identity element of R (regarded as an additive group) is denoted by 0,
and the (additive) inverse of an element a is denoted by — a. Therefore
the following relations hold in any ring R:
O+a=a+0=aq,
a+(—a)=(—a)+a=0,

—(—a)=a,
a+b+c)=(@+ b +c,
a+b=b+a.

The abelian group which, according to the ring axiom R,, any ring R
forms with respect to addition is called the additive group of the ring.

A ring R is called commutative if multiplication is commutative in
R: ab = ba for any elements a, b in R.

The distributive laws hold also for subtraction:

Y] a(b — ¢) = ab — ac; (b — c)a = ba — ca.
To prove, for instance, the first of these two relations, we have to show

that a(b — ¢) + ac = ab. This, however, follows directly from the
first distributive law R,, since (b — ¢) + ¢ = b.
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For b = ¢, relations (1) yield the following important property of the
element 0:

2 al = Oa = 0,
forall ain R. If we putin (1) & = 0 we find
“a(— )= —ac; (— c)a= — ca,

and if in the first of these relations we replace a by — a we obtain
(— a)— ¢) = — (— a)c = — {— ac), whence

3) (— a)— ) = ac.

An element a of R is called a left (or right) zero divisor if there exists
in R an element b different from zero such that ab = 0 (or ba = 0). By
(2) the element 0 is always both a left and right zero divisor whenever R
contains elements different from zero. However, it is convenient to
regard 0 as a zero divisor also in the trivial case of a ring R which consists
only of the element zero (nullring). By a proper zero divisor is meant a
zero divisor which is different from 0. Hence a ring R has proper zero
divisors if and only if it is possible to have in R a relation ab = 0 with
both a and b different from zero. In the sequel we shall call R a ring
without zero divisors if R has no proper zero divisors. An element of R
which is not a zero divisor will be called a regular element. In particu-
lar, the element O is not a regular element.

§ 6. Rings with identity. If there exists in the ring R an element
which is an identity with respect to multiplication, then, by a remark
made in § 1, this element is uniquely determined. If R is not a nullring,
we shall refer to this element as the identity of the ring and we shall
denote it by the symbol 1. In such a ring, multiplicative inverses are
referred to simply as inverses. Hence an inverse of a is an element a’
such that @’a = 1 and aa’ = 1; it is unique according to § 1 and will be
denoted by a1

The element 1 is its own inverse. Similarly it follows from (3) that
— 1 is its own inverse. ‘

The elements O and 1 are distinct elements of R. For we have agreed
that R is not a nullring, and if @ 5 0, then a0 = 0 and al = a % 0,
whence 0 3 1. From this it follows that the element 0 has no inverse,
since for any element g in R we have a0 = 0a = 0 ¢ 1. Consequently
a ring (which is not a nullring) is definitely not a group with respect to
multiplication. _

An element of R is called a unst if it has an inverse. The elements 1
and — 1 are units. 'The ring of integers is the simplest example of a
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commutative ring in which 1 and — 1 are the only units. If aand b are
units, we have a~la =aa ' =1 and (b-'aVab = ab(b~la=1) =1,
and this shows that also @—! and ab are units. It follows that in a ring
R with identity the units form a group with respect to multiplication.

If an element @ has an inverse a~!, then from ab = 0 follows
a—lab = 0,15 = 0, thatis,b = 0. Therefore ais not a left zero divisor.
Similarly it can be shown that @ is not a right zero divisor. 'Thus no
unit in R is a zero divisor.

A commutative ring with identity and having no proper zero divisors is
called an integral domain.

§ 7. Powers and multiples. If R is an arbitrary ring and a € R,
then a” is defined for all positive integers #, in accordance with § 1, and,
moreover, relations (1) and (2) of that section are valid. If R is com-
mutative, (3) also holds. If R has an element 1, then the definition in
§ 1 gives @® = 1, and if in addition @~ exists, then @" is defined for all
integers n, and (1) and (2) are valid for arbitrary powers. In the
commutative case, if @ and b have inverses, then (3) holds for any
integer n.

Since R is a group with respect to addition, the multiples na are defined
for any integer n and any ¢ in R. In addition to the rules for multiples
given in § 4 we have the rules

(N n{ab) = (na)b = a(nb).

These follow from the general distributive laws

biai =§:bai, (i‘h’)b =§:aib,
i=1 i=1 i=1 i=1

which in turn are easily proved by induction.

We point out that the associative law of multiplication has nothing to
do with (1) above or with (2) of §4, nor have the distributive laws
anything to do with (1) and (3) of § 4. More generally, we note that
the symbol na should not be regarded as the product of n and a. Not only
would such an interpretation of the symbol na be ill-founded (na was
defined as the sum of n elements, all equal to @), but it would also be
meaningless, since the integer n is in general not even an element of R.
However, if R has an identity, then using the distributive law R,—or
simply (1) above—we can write:

na=1la+ la4---+ la(ntimes) =(1 + 14 - - 4+ Da= (nla,

and this time na is therefore indeed a product, namely, the product of
nl and a. But also in this case the factor n1 (which is an element of R)
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should not be confused offhand with the integer 7, just as the element 1
of R is not to be identified with the integer 1. We shall see in a later
chapter (I1,§4) under what conditions and in what sense is the identifica-
tion “n-1 = n”’ permissible.

In this book we shall study exclusively the theory of COMMUTATIVE rings.
Since no other rings will be considered, a “ring’” will mean from now
on a ‘“‘commutative ring.”

§ 8. Fields

DEeFINITION. A ring F is called a FIELD tf the following conditions
(FIELD AXIOMS) are satisfied:

¥.. F has at least two elements.
Fo. F has an identity.
Fgs.  Buvery element of F different from zero has an inverse.

The three field axioms can be replaced by a single axiom: the elements of
F which are different from zero form a group with respect to multiplication.
This group shall be referred to as the multiplicative group of F.

In a field, every element different from 0 is a unit. Therefore a field
has no proper zero divisors (§ 6) and is an integral domain (in view of
F,). ”

If we apply the general group-theoretic considerations of § 2 to the
multiplicative group of F, especially the considerations concerning the
equation ax = b, we see that given any two elements a and & of F, both
different from zero, it is possible to divide b by a, that is, form the
quotient bla. This quotient is the unique solution of the equation
ax = b. We observe, however, that also if 5 = 0, but @ 3 0, then the
resulting equation ax = 0 still has a unique solution x = 0, since a is
not a zero divisor. For this reason we define: 0/a = 0 (@ 7 0). Hence
division by any element a different from zero is always permissible in a
field. On the other hand, if a4 =0, then there results an ecuation
0-x = b which either has no solution (if & 3¢ 0; whence 5/0 does not
exist) or is satisfied by every element of F (if b = 0; whence 0/0 is
indeterminate.)

The ring of natural integers is an example of an integral domain that
is not a field. Examples of fields: (a) the set of all rational numbers;
(b) the set of all real numbers; (c) the set of all complex numbers.

§ 9. Subrings and subfields. A ring R’ is called a subring of R if
(2) R’ is a subset of R and (b) the ring operations + and - in R are
the same as those induced in the set R’ by the corresponding ring
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operations 4+ and - in R. It follows that a subring R’ of R, regarded
as an additive group, must be in the first place a subgroup of the additive
group of R. Hence R’ must be a non-empty set and it must satisfy the
following condition (§ 3):

(a) Ifa,be R, thena — be R
Furthermore, R’ must be closed under the given multiplication in R:
(b) If a,be R’, then ab e R'.
Conditions (a) and (b) (together with the trivial condition that R’ be a
non-empty set) are also sufficient to make R’ a subring of R (the associa-
tive, commutative, and distributive laws automatically hold in R’
because they hold in R).

If R has an identity 1 and if this element 1 also belongs to R, then
1 is, of course, the identity of R’. In this case, we shall call R" a
unitary subring of R (or R a unitary overring of R'.) However, it may
well happen that while R has an identity, R’ does not (for example:
R = ring of integers, R’ = ring of even integers). Less trivial possi-
bilities are the following: (a) both R and R’ have an identity, but the
identity of R does not belong to R’; (b) R’ has an identity but R does not
(see Example 2 below). In both cases (a) and (b) the identity of R’ is
necessarily a zero divisor of R.  For let 1’ denote the identity of R” and
let us assume that 1’ is not an identity of R. There exists then in R an
element asuchthat l'a = b3 a. Wehave I'b = (1"-1Ya = 1'a = b,
hat is, 1’a = 1', or 1"(a — b) = 0. Since a = b, it follows that 1" is
a zero divisor in R.

By a subfield of a field F we mean any subset F’ of F which is a field
with respect to the given field operations (+ and ) in F. From the
remarks just made concerning rings with identity it follows that the
element 1 of F is necessarily the identity of F'. This also follows from
the fact that the multiplicative group of F’ must be a subgroup of the
multiplicative group of F. This last condition, together with the
condition that F’ be a subgroup of the additive group of F, characterizes
the concept of a subfield. Hence (§ 3) F’ is a subfield of F if and only
if the following two conditions are satisfied: (a) if a, be F', then
a—beF;(b)ifa,beF and b 0, thenab-1e F".

ExamprLes. (1) If @ and b are distinct elements of a field F, we may
define a new addition @ and a new multiplication © in F as follows:
xOy=x4+y—a xOy=a+ (x—a)y — a)/(b — a). (Ingeo-
metric terms: we change the origin and the scale.) It is easily seen that
the elements of F form a field also with respect to these new operations.
We denote this new field by F'. It is clear that a subset of F whichis a
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subring of F’ will not in general be a subring of F. Note that ¢ and b
are respectively the zero and the identity of F".

(2) Let 4 and B be two rings and let R be the set of all ordered pairs
(a, b), where a € A and b e B. If we define addition and multiplication
in R by setting (a,0)+ (@', b)Y ={(a+ a4, b+ ), (a,b)-(bb)=
(aa’ bb'), then R is a ring, and the subset R’ of R consisting of the
elements (g, 0) is a subring of R. If A4 has an identity, say, e,, then
{e4, 0) is the identity of R’. The ring R has an identity if and only if
both 4 and B have identities ¢, and ¢z, and in that case (e, ¢p) is the
identity of R. In the present example the identities of R and R’ are
therefore necessarily distinct.

§ 10. Transformations and mappings. We shall use the symbol
C for set inclusion. Thus, if .S and .S’ are sets, then .S” C S shall mean
that S" is a subset of S. If §'C S, and §" 7 S, we shall say that S’ is
a proper subset of S and we shall write S < S.

Let S and S be arbitrary sets of elements. By a transformation of S
into S we mean a rule which associates with every element a of S some
subset of S. This subset, which may be empty, wi!! be denoted by a7".
If g is an element of a7, we say that @ corresponds to a (under the given
transformation 7', or that a is a transform of a, or that d is a T-image
of a. It may be that to certain (or even all) elements of S there corre-
spond no elements of .S.

If 4 is an arbitrary non-empty subset of .S, the union of all 7-images
of all elements of A shall be referred to as the transform of A (under T')
and shall be denoted by AT. We have 47 = U a7, a€ 4, where the
symbol U indicates set-theoretic addition (union of sets) and where a
varies in A. We make the convention that if 4 is empty, then the
symbo! A7 stands for the empty set. We §ay that 7'is a transformation
of Sonto Sif ST = S.

Let T be a transformation of S into S, and let S’ be a subset of S.
Then 7 induces in a natural way a transformation 7" of S into S: if
ac S, we define al” = aT. 7T’ is called the restriction of T to S’.

If T is a transformation of S iato S and 7" is a transformation of §
into some other set ', then the product of T and 1" is the transformation
of § into 8" which associates with every element a of S the subset
(aT)T" of §’. This transformation shall be denoted by 7'7". Thus,
by definition, a(7'7") = {aT)7", and it follows that we have for any
subset 4 of S: A(TT"Y = (AT)T". If S, S, S, S, are sets and
T =1, 2, 3)is a transformation of S; into ;. ;, then clearly (7, 7T,)T;
= T(T,Ty).
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For a transformation 7 of S into S, the inverse transformation T—? of
Sinto Sis defined as follows: If @ € S, then a7~ 11is the set of all elements
of S having G as T-image; that is, a€a7-! if and only if 2 €aT.
Clearly T is the inverse of 71,

A transformation 7 of Sinto S will be called 2 mapping of Sinto Sifit
is everywhere defined on S and is single-valued, that is, if for every
element a of S, the set @7 contains one and only one element. This
element will also be denoted by @7 As with transformations in general,
a mapping T of S into S is said to be a mapping onto Sif ST=S. A
mapping of Sinto S is untvalent if aT = bT implies @ = b for any e and
5in S. A mapping of S into S will be called ore to one—in symbols,
(1, 1)—if it is both onto and univalent. It is clear that, T being 2
mapping of S into S, 7= is 2 mapping of S into S if and only if T is
one to one; and in that case, also 71 is one to one.

The identity mapping I of a set- S is defined by el = aforall e in S.
If S and S are two sets, I and [ their respective identity mappings, then
a transformation 7 of S into S is a one to one mapping of S if and only
if there exists a transformation T of S into Ssuchthat 7T = I, TT = I;
and in that case T = T-1

If T is a2 mapping of S into S, and 7" a mapping of S into a set .S,
then the product transformation 77" of S into S’ is itself 2 mapping.

A mapping of S into S is, in fact, a single-valued function f on Sto S,
since it associates with each element of S 2 unique element of §. We
shall frequently use the functional notation f(a) to denote the element of
S which corresponds to an element @ of S. If f is 2 mapping from S
into S, and g a mapping from S into S', we shall write, in the usual way,
&(f(a)) for the element of S’ corresponding to @ under the product of the
mappings f and g.

A mapping T of a set S into aset S’ is sometimes denoted by a notation
of the type a — E{a), where E(a) is a formula giving the value of the
image a7 of any element a of S.

§11. Group homomorphisms. From the foregoing general set-
theoretic definitions we now pass to the case in which the given sets are
groups. In this case one is interested in mappings of a particular type.
Let G and G be two arbitrary groups. We use the multiplicative
notation for the group operation in each group. By a homomorphism, or
homomorphic mapping, of G into (or onto) G we mean a mapping T of G
into (or onto) G which satisfies the following condition: if a and b aere
any two elements of G, then

(ab)T = (aT)bT).
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Thus a homomorphism of a group G into another group G is 2 mapping
characterized by the condition that the fmage of a product is the product
of the images: if to a there corresponds & and to b there corresponds
b (a,beG; a,be (), then to the product ab there corresponds the
product @b, that is, we have ab = ab.

If both groups G, G are abelian and if the group operation in both
groups is written additively, then the foregoing homomorphism condition
(ab)T = (aTYbT) becomes

(a + T = aT 4 bT.

A univalent homomorphic mapping of G into (or onto) G is called an
isomorphism, or an isomorphic mapping, of G into (or onto) G. It is
clear that an isomorphism of G onto G is a homomorphism of G into G
which is at the same time a one-to-one mapping.

Given two groups G, G, we say that G is a homomorphic or isomorphic
tmage (or map) of G according as there exists a homomorphism or an
isomorphism of G onto G. 1If T is an isomorphism of G onto G, then
it is clear that 7-1 is an isomorphism of G onto G. Hence if G is
an isomorphic image of G, then also G is an isomorphic image of G.
We say then that G and G are isomorphic groups. In particular, a
homomorphism of a group G into itself is called an endomorphism
of G; and an isomorphism of G onto itself is called an automorphism
of G.

If 7' is a homomorphism of G into G and.if 7" is 2 homomorphism of
G into a group G, then 77" is 2 homomorphism of G into G'.  If both
T and T' are homomorphisms onto, then also 77" is 2 homomorphism
onto {of G onto G’). It follows that 2 homomorphic image of a homo-
morphic image of a group G is itself a homomorphic image of G.

If T is a homomorphism of a group G into a group G, we mean by
the kernel of T the set of all elements of G which are mapped into the
identity element of G.

TueorReM 1. If T is a homomorphism.of a group G tnto a group G and
if e and é denote respectively the tdentity elements of G and of G, then
eT'=¢. IfacG andif al = 4, then a=\T = a. The set GT is a
subgroup of G, and the kernel H of T is a normal subgroup of G.

PROOF. From ee = e follows (e7)(eT) = eT, and on the other hand
we have éeT) = eT. Hence (eT)eT) = é(eT), and since the cancel-
lation law holds in any group, it follows that 7" = é.

From aa—! = ¢ follows (aT)(a—T) = eT = ¢, whence a= 17T = -1,
where @ = aT.

If @ =aT and b= bT are any two elements of GT (e, be G),
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then @)= (aT)BT)* = (aT)(b'T) = (ab—1)T, and therefore
d(b)~*e GT. This shows that GT is a subgroup of G (§4).

The kernel of T is a non-empty subset of G, since eI = ¢, hence
ecH. Ifa beH,thatis, al = bT = ¢, then (ab—\)T = (aT)dT)?
= ¢, hence ab—' € H, and this shows that H is a subgroup of G. If a
is any element of the kernel H and if x is any element of G, we have
(x—ax)T = (xT)~YaT)xT) = ¢, and therefore x~'ax € H. This shows
that H is a normal subgroup of G.

The following theorem is used very frequently in testing whether a
given group homomorphism is an isomorphism:

THEOREM 2. A homomorphism T of a group G into a group G is an
isomorphism if and only if the kernel H of T contains only the identity e
of G.
fPROOF. In the first place it is obvious that if T is an isomorphism—
hence a univalent mapping-—then e is the only element of G whichis
mapped into the identity element & of G. Conversely, let us assume
that the kernel H of T contains only the identity e of G and let @ and & be
elements of G having the same T-image: aT = bT. Then (ab—)T =
aT - (bT)"1=¢,ab > e H, ab—* = ¢, a = b, and hence T is a univalent
mapping, that is, 7" is an isomorphism.

As was stated in Theorem 1, the kernel of any homomorphism of a
group G is a normal subgroup of G. Now, conversely, let H be a given
invariant subgroup of G. The right cosets of H and G coincide then
with the left cosets of H, and we can define multiplication of cosets as
follows: Ha-Hb = Hab(a, b€ G). The product Ha-Hb depends only
on the cosets Ha, Hb and not on the choice of representatives a and b of
these cosets. For if Ha' = Ha and Hb' = Hb, we have @’ = h,a and
b" = h,b, where h, and h, are elements of H, and hence Ha'-Hb =
Hk,-ah,-b = Hh.hy;-ab = Hab, where h, = ah,a~1e H. One sees
immediately that with respect to this definition of multiplication of
cosets, the cosets of H form a group, the coset H being the identity of
that group, and that the mapping @ — Ha is a homomorphism of G onto
the group of H-cosets, with kernel H. The group of cosets of the
normal subgroup H is called the factor group, or the quotient group, of G
with respect to H, and is denoted by G/H. The mapping a— Ha is
called the canonical or natural homomorphism of G onto G/H.

The following situation occurs frequently in applications: we are
given a group G, a set G in which a binary operation (multiplication) is
defined, and a mapping T of G onto G which has the usual homo-
morphism property (ab)T = (aT)bT). We may express these
conditions by saying that the set G is a homomorphic image of the group G.
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LemMA 1. The homomorphic image G of a group Gisa group. If G
is commutative, so is G.

PROOF. We first prove the associative law in G. Let g, b, ¢ be
arbitrary elements of G; they are images of certain elements a, b, ¢ of G,
since T maps G onto G.  We have (ab)c = a(bc). We have [(ab)c]T =
[(ab)TeT = [(aTXbT)1eT = (ab)e. In a similar fashion we find that
Ta(be)IT = a(bé), and hence (@b)e = a(be). One shows then, as in the
proof of Theorem 1, that G has an identity, namely, 7, where e is the
identity of G, and that every element & of G has an inverse, namely, if
d = aT, then 3! = (a=1)T. Thus G is a group. The second asser-
tion of the lemma is obvious.

Another situation which occurs frequently in connection with group
homomorphisms is the following:

We are given two groups G and G and a transformation T of G into G.
It is also given that

(A) for any element a in G the set aT is non-empty;
(B) if G € aT and b € bT, then gb € (ab)T.

It is not given a priori that T is a mapping (that is, single-valued). Were
this given too, then it would follow at once that 7 is a homomorphism of
G into G. The following lemma reduces the test of single-valuedness
of T to the test of single-valuedness of T at the identity element ¢ of G.

Lemma 2. Let T be a transformation of a group G into a group G such
that conditions (A) and (B) are satisfied. If the set eT contains only one
element (e denoting the identity of G), then T is a mapping, hence a homo-
morphism, of G into G.

PROOF. We have, by condition (B), ¢T-eT € (¢-)T = eT'; hence eT
is the identity ¢ of G. Let a be any element of G and let us fix an
element b in (a=1)7. If & is any element in @7, we have, by (B),
abe(aa= V)T = eT = ¢, thatis,ab = é&. 'Thisshows thataT consists of
the single element 5~1. Q.E.D.

§12. Ring homomorphisms. A mapping T of a ring R into a
ring R is called a ring homomorphism, or simply a homomorphism, or a
homomorphic mapping, if T satisfies the following conditions:

(N (@ + b)T = aT 4 bT,
@) (ab)T = (aT)BT),
for any pair of elements ¢ and 6 in R. Condition (1) signifies that T is

a homomorphism of the additive group of R into the additive group of
R. Condition (2) is the analogue of (1) for multiplication.
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A ring homomorphism which is a univalent mapping is called an
isomorphism.

If T is a homomorphism or isomorphism of R onto R, then we say that
R is respectively a homomorphic or isomorphic image of R. If R is an
isomorphic image of R, then also R is an isomorphic image of R (in
virtue of the mapping 7-1), and the two rings R, R are said to be
isomorphic rings, or R is said to be isomorphic with R.

We use the standard notation

R~R

to indicate that R is 2 homomorphic image of R (that is, that there exists
a homomorphism of R onfo R) and we write

T:R~R

to indicate that a grven mapping 7 or R onto R is a homomorphism.
The corresponding notation for isomorphic rings is

R=R,
T:R=R.

The same notation is used also in group theory for group homo-
morphism and group isomorphisms respectively.

An isomorphic mapping of a ring R (or of a group) onto i#self is called
an automorphism. In an automorphism 7': R =2 R the two rings (or
groups) R, R coincide (not merely as sets but also as rings, or groups).

By the kernel of a homomorphism T of a ring R into a ring R we mean
the set of elements ¢ in R such that a7 = 0, where 0 denotes the zero
element of R.

Tueorem 3. If T is a homomorphism of a ring R into a ring R, then

(a) OT = 0 and (— a)T = — (aT), for any element a in R;

(b) RT is a subring of R;

(c) the kernel N of T is a subring of R;

(d) #f R has an identity element 1 and if RT is not a nullring, then
1T is the identity element of RT, and if a™* exists, then a™'T is
the inverse of aT in the ring RT.

PROOF

(a) This follows from Theorem 1 of § 11 as applied to the additive
group of R,

(b) If @, b€ RT, then @ = a7, b = bT, where a,b€R, and db =
(ab)T € RT. Hence RT is closed under multiplication. Since, by
Theorem 1, RT is a subgroup of the additive group of R, it follows (§ 9)
that RT is a subring of R.
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The proof of (¢) and (d) is equally straightforward and is left to the
reader.

Corovrrary. If T is a homomorphism of R onto R and if R has an
identity element 1, then also R has an identity element (provided R is not
a nullring) and this element is 1T.

It has already been pointed out that the kernel N of the homo-
morphism 7T contains at least the element 0 of R. From Theorem 2 of
§ 11, as applied to the additive group of R, it follows that a homo-
morphism T of a ring R into a ring R is an isomorphism if and only if the
kernel N of T contains only the element 0 of R.

We have shown in the proof of Theorem 3 that the kernel N 1s closed
under multiplication. Actually N has the following much stronger
property: If one of the factors a, b of a product ab belongs to N, then the
product itself belongs to N. For if, say, ae N, then (ab)T = (aT)bT)
= 0(bT) = 0, hence abe N, as asserted. This property of the kernel
N is fundamental in the formulation of the concept of an ideal, and we
shall return to it in chapter III.

From a formal algebraic standpoint, isomorphic rings are not essenti-
ally distinct rings, because it is clear that an isomorphic mapping of
a ring R preserves the algebraic properties of R (that is, those pro-
perties of R which can be formally expressed in terms of the ring
operations + and ). Thus, for instance, an isomorphic image of an
integral domain or of a field is again respectively an integral domain or
a field.

On the other hand, a homomorphism which is not an isomorphism
may affect some algebraic properties of a ring. For instance, a homo-
morphic image of an integral domain need not be an integral domain,
and a ring which is not an integral domain may have an integral domain
as a homomorphic image, (see III, § 9). ~

The situation for groups, which is covered by Lemma 1 of the
preceding section, arises also for rings and leads to a similar lemma.
Assume that we have a ring R, a set R in which two binary operations
+ and - are defined, and a mapping T of R onto R having the usual
homomorphism properties: (a + 8)T = aT + b7, (ab)T = aT-bT.
We express these conditions by saying that the set R is a homomorphic
tmage of the ring R.

Lemma. A homomorphic image of a ring is again a ring.

The proof is similar to that of Lemma 1 of the preceding section and
may be left to the reader.

As to Lemma 2 of the preceding section, it is automatically applicable
to rings when we regard rings as additive groups.
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COROLLARY. An isomorphic image of an integral domain or of a field
is again respectively an integral domain or a field.

If T'is a homomorphism of a ring R into a ring R and if R, is a subring
of R, then the restriction 7'y of T to R, is a homomorphism of R, into
R. If T is an isomorphism, then also the induced homomorphism T,
of R, is an isomorphism (but not conversely).

An important special case is the following: R, is a common subring of
R and R, and the induced homomorphism of R, is the identity (that is,
the automorphism 7'y of R, defined by a7y = a, forallain R;). Inthis
case we say that T is a relative homomorphism of R over Ry, or briefly: T
is an Ry-homomorphism (or an Ry-isomorphism, if T is an isomorphism).
For instance, the automorphism of a + 7 —a — ib of the field of
complex numbers (a, b real) is a relative automorphism over the field of
real numbers.

If R, is a common subring of two rings R and R, we say that R is an
R -homomorphic image of R if there exists an Ry-homomorphism of R
onto R; and that R is an Ry-isomorphic image of R (or that R and R are
R-isomorphic) if there exists an R -isomorphism of R onto R.

If T is a homomorphism of a ring R into a ring R and 7, is a homo-
morphism of a subring R, or R into the same ring R, we shall say that T
is an extension of T, if T, is the restriction of Tto R,. Ifonly R, R, R,
and T, are given, then we say that 7', can be extended to a homomor-
phism of R (into R) if there exists a homomorphism 7" of R into R such
that 7 is an extension of 7',.

§ 13. Identification of rings. As an application of the concept of
isomorphism extension, we shall now discuss a certain standard pro-
cedure of ring identification which is frequently used in algebra.

Given two rings R and .S’ we say that R can be imbedded in S’ if there
exists a ring .S which contains the ring R as a subring (§ 9) and which is
isomorphic with .§’. It is clear that if R can be imbedded in S’ then .S’
must contain a subring which is an isomorphic image of R. We shall
prove now that this condition is also sufficient. We give the sufficiency
condition in the following sharp formulation:

LemMa. If R and S’ are rings and if T, is a given isomorphism of R
onto a subring R’ of S, then there exists a ring S which contains R as a
subring and which is such that T, can be extended to an isomorphism T of
S onto S,

PRooF. We shall first assume that R and S" have no elements in
common. We replace in S’ every element 7’ of R’ by the corresponding
element 77— of R. The result is a set S which is the union of the two
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disjoint sets S’ — R’ and R, where 8’ — R’ denotes the set of elements of
S’ which are not in R’ (the complement of R’ in S’). We extend the one
to one mapping T’y of R onto R’ to a one to one mapping 7 of S onto S’
in the following obvious fashion: a7 = aT,, if a€R; aT =a if
aeS — R. The mapping 7T is indeed one to one since S" — R  and R
are disjoint. We now define addition @ and multiplication © in S as
follows:if @, b€ S, thena @ b = (aT + bT)T,a © b= (aT-6T)T-".
With this definition of the ring operations in S it follows directly from
Lemma 1 of § 12 that S'is a ring and that T is anisomorphism of S onto S’.
Since Ty is an isomorphism of R onto R’ and T coincides with T, on R,
it follows from the very definition of the ring operations in .S that if
a,beR thena@b=a+4 banda O b = a-b, where + and - refer to
the ring operations in R. Hence the ring R is a subring of S. Moreover,
T is, by definition, an extension of T,

This completes the proof if R and S’ are disjoint. In case R and S’
have elements in common, we first replace S’ by an isomorphic ring 5",
which is disjoint from R. For this purpose, we make use of the follow-
ing élementary fact from set theory: If 8" and R are arbitrary sets, there
exists a set S”, and a mapping H of S’ onto S’; such that §’, is disjoint
from R and H is one to one. By means of H the ring operations can be
carried over from S’ to S’; (as they were in the preceding paragraph
from S’ to S by means of T), S’, becomes a ring, and H becomes an
isomorphism of S" on S’;. If R, = R'H, then R', is a subring of ',
and 7' H defines an isomorphism of R onto R';. Since §’; and R are
disjoint we may apply the present lemma and obtain a ring .S containing
R and an isomorphism T, of S onto S’y which coincides with T,H on R.
Then T,\H—* 1s an isomorphism of § onto S’ which coincides with T
on R. The lemma is thereby proved.

A typical situation which will occur frequently in this_book and in
which we shall tacitly make use of the foregoing lemma is the following:
R will be a ring (as a rule, a field) which is fixed throughout the discus-
sion, while S" may be any ring of a certain class of rings, but in each ring
S’ there will be a subring R’ isomorphic with R.  Since we shall not be
concerned with the particular nature of the elements of S’ but only
with S” regarded as an abstract ring, we are free to replace S’ by an
1somorphic ring S containing the fixed ring R as a subring, according
to the scheme indicated in the above lemma. Actually we shall seldom
carry out explicitly this cumbersome substitution of S for S’. We
shall, as a rule, simply say that we identify R’ with our fixed ring R,
and we shall, therefore, without further ado regard R as a subring
of §".
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§ 14. Unique factorization domains. We first give some defini-
tions concerning divisibility concepts in an arbitrary (commutative) ring
R with identity. The zero element of R is excluded from the considerations
which follow below.

If @ and b are elements of R, we say that b divides a (or b is a divisor of
a) and that a is divisible by b (or a is a multiple of b) if there exists in R
an element ¢ such that a = bc. Notation: b'a, or a = 0 (mod b). Itis
clear that the units of R are those and only those elements of R which
are divisors of 1.

If a = be and ¢ is a unit, then a and b are called associate elements, or
simply associates. We have then that b = ae—?, and hence not only
does b divide a but also a divides 5. Conversely, if a and b are elements
of R such that b'a and a'b, and if R is an integral domain, then a and b are
associates. For we have a = bc and b = ac’, whence a = ac’c, ¢'c =1,
that is, ¢ is a unit.

A unit € divides any element a of R: a = ¢-e~'a. The associates of
an element @ and the units in R are referred to as improper divisors of a.

An element a is called #rreducible if it is not a unit and if every divisor
of a is improper.

DEerINITION.  An integral domain R is a UNIQUE FACTORIZATION
DOMAIN (or briefly, a UFD) if it satisfies the following conditions:

UF1. Ewvery non-unit of R is a finite product of irreducible factors.
UF2. The foregoing factorization is unique to within order and unit
Jactors.

More explicitly, UF2 means the following: If a = pyp, - p, =
9192 " " * ¢ where p; and g¢; are irreducible, then m =, and on
renumbering the ¢;, we have that p; and ¢, are associates, i = 1,2, -+, m.

Examples of unique factorization domains: (a) the ring of integers;
(b) euclidean domains (see § 15, Theorem 5); (c) the ring of polynomials
in any number of indeterminates, with coefficients in a field (see § 17,
Theorem 10).

Tureorem 4. For integral domains R satisfying UF1, condition UF2
15 equivalent to the following condition:

UF3. If pis an irreducible element in R and if p divides a product ab
then p divides at least one of the factors a, b.

PROOF. Let ab = pc and let

a= I}P,b b= ];[P”ﬁ ¢ = ];IQk

be factorizations of a, 4, and ¢ into irreducible factors (UF1). We have
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Ty, Trp” =p-! fr ! g, and hence if we assume that UF2 holds, then p

dlffers from one of the factors p’;, p”; by a unit factor, and this proves
UF3. :
Conversely, assume that R satisfies conditions TUF1 and UF3. Since
UF2 is obvious for factorizations of irreducible elements, we shall
assume that UF2 holds for any element of R which can be factored into
s irreducible factors and we shall prove then that UF2 holds for any
element ¢ which can be factored into s -+ 1 irreducible factors. Let
s+1
M a=1Tp = ”p It
= i=
be two factorizations of ¢ into irreducible factors, one of which involves
exactly s -+ 1 factors. We have that p; divides the product of the p,
and hence, by UF3, p; must divide one of the elements p'y, p'y, - -+, p',-
Let, say, p, divide p’;.  Since p’, is irreducible, it follows that p, and p’,
are associates. Thenp’, = ep,, where ¢ 1s a unit, and after cancellation
of the common factor p,, (1) yields

.\'+l

(2) P,—e P,

On the left there is a product of s 1rreduc1ble factors. Hence by our
assumption, the two factorizations in (2) differ only in the order of the
factors and by unit factors. Since we have already shown that p’,
differs from p, by a unit factor, everything is proved.

In a unique factorization domain any pair of elements a, b has a
greatest common divisor (GCD), that is, an element d, denotec by (a, ),
which is defined as follows: (1) d is a common divisor of a and b; (2) if ¢
1s a common divisor of a and b, then ¢ divides d. The GCD of @ and b
is uniquely determined to within an arbitrary unit factor. The proofs
of existence and uniqueness of (g, ) are straightforward and can be left to
the reader.

If (@, b) = 1, the elements @ and & are said to be relatively prime. The
following are important but straightforwarc properties of relatively
prime elements:

(1) If (a, b) = 1 and b divides a product ac, then b divides c.
(2) If (a,0) = 1 and if a'c and b'c, then ab'c.

§ 15. Euclidean domains. An important class of unique factoriza-
tion domains is-given by the so-called euclidean domains or rings admit-
ting a division algorithm. 'These rings are defined as follows:
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DerINITION. A euclidean domain E is an integral domain in which
with every element a there is associated a definite integer p{a), provided the
function @ satisfies the following conditions:

El. If b divides a, then ¢(b) < ¢(a).*
E2. For each pair of elements a, b in E, b £ 0, there exist elements q
and r in E such that a = bgq + r and ¢(r) < ¢(b).

The ring of integers is a euclidean ring if we set for every integer #:
@(n) = Inl = absolute value of n. Then for any two integers @ and b
the ordinary division algorithm yields integers g (quotient) and r
(remainder) satisfying E2. Similarly the ring F{X] of polynomials in
one indeterminate X, with coefficients in a field F (see § 17, Theorem 9,
Corollary 3) is a euclidean ring if for any polynomial f(X) in F[X] we
set: o{f) = degree of fif f 5 0; ¢(0) = — 1.

We proceed to derive a number of consequences from the conditions
El and E2.

a. If b5 0, then ¢(0) < ¢(b). For if in E2 the element a is the
element zero, then r = — bg. If r were different from zero, then we
would have b!r and hence, by E1, ¢(b) < ¢(r), in contradiction with E2.
Hence r = 0 and ¢(0) < ¢(b), as asserted. We note that the function
9, = ¢ — @(0) also satisfies conditions E1 and E2. This new “nor-
malized” function is such that ¢,{0) = 0 and ¢4{a) > 0ifa 3 0. This
normalization of the function ¢ can therefore always be assumed ab
initio, if desired, but it plays no particular role in the proofs given below.
As a matter of fact, we could have phrased the definition of euctidean
rings in such a way as to leave out the element 0 altogether. Namely,
it would have been sufficient to assume that ¢ is defined only for elements
a different from zero, provided the requirement g(r) < @(b) in E2 had
been replaced by the alternative: either 7 = 0 or ¢(r) < ¢{b).

b. If a and b are associates, then ¢(a) = ¢(b). This follows directly
from E1.

c. If a divides b and ¢(b) = ¢(a), then a and b are associates. Under
the assumption ¢(b) = ¢(a), condition E2 yields: ¢(r) < ¢{a). On the
other hand, if r were different from zero then fromr = a — bgand a'bit
would follow that a divides r, whence ¢(a) < ¢(r), a contradiction.
Hence r = 0, that is, also b divides ¢, and therefore ¢ and b are associ-
ates.

* In this condition the elements @ and b are automatically different from zero,
since the divisibility concepts introduced in the preceding section have been
restricted to elements different from zero.
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d. If € is a unit, then o) = (1), and conversely. The direct
statement follows from b. and the converse from c.

THEOREM 5. A euclidean domain is a unique factorization domain.

ProoF. We.shall show that a euclidean domain E satisfies UF1 and
UF3 (see § 14, Theorem 4).

VERIFICATION oF UF1. Let a be an arbitrary non-unit. Then UF1
is vacuously true for a if ¢(a) = @(1) (since this equality is in fact im-
possible if a is a non-unit). Hence we can use induction with respect to
the value of ¢(a). We shall therefore assume that UF1 is satisfied for
all elements a’ such that ¢(a’) < ¢(a) and we proceed to show that UF1
is then satisfied also for the given element a. If a is irreducible, there is
nothing to prove. In the contrary case we have a = bc, where neither
b nor ¢ is an associate of a. It follows then from E1 and ¢ that ¢(b) <
o(a) and ¢(c) < @(a). Therefore, by our induction hypothesis, both
b and ¢ are finite products of irreducible factors, and consequently also
a is such a product.

VEeRIFICATION OF UF3. We shall first prove the following lemma:

LemMa. Any two elements a, b of E(a,b 7 0) have a GCD d,
and d is a linear combination of a and b, that is, d = ea + Bb, e« € E,
BekE.

Let I denote the set of all elements of E which are linear combinations,
Aa + Bbof aand b (4, Be E). Among the elements of I other than
zero we select an element d for which ¢(d) is minimum. We have
d = aa + Bb(a, B E), and on the other hand, by E2, we can find
elements s and ¢ in Esuch that a = ds + ¢, p(t) < ¢(d). We have then
t=a—ds=a(l — as) + b(— Bs) e Iand ¢(t) < ¢(d). Consequently,
t = 0, that is, d divides a. Similarly it can be shown that 4 divides b,
and hence d is a common divisor of a and b. Moreover, since d is of the
form aa -+ Bb, every common divisor of a and b 1s also a divisor of d.
Hence disa GCD of a and b. Q.E.D.

The verification of UF3 is now immediate. For let an irreducible
element p of E divide a product ab, and let us assume that p does
not divide a. Then the GCD of p and a is 1, and hence, by the
lemma, we can write 1 = aa + Bp. Hence b =5b-1 = aab + Bbp,
and since p'ab it follows that p'b. This completes the proof of the
theorem.

§ 16. Polynomials in one indeterminate. Given a ring R, we
shall consider sequences

f={aova1’a2,"'}v a;eR,
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such that all but a finite number of the a; are zero. Let S denote the set
of all such sequences. Iff,ge S,

g=1{bp by b, -}
then we define:
(1) fHeg={ay+bpa,+b,a+ by}
2 fe= {aohes aghy + arby, @by + aiby + ashy, - -} = {ca)s
where
3 = >ab, k=0.1,2---.
iHimk
It is immediately seen that with these definitions of addition and multi-
plication the set S becomes a ring. 'The elements of this ring .S will be
called polynomials over R or polynomials with coefficients in R.
The zero element of S is the sequence {0, 0, 0, - - -}, and we have

—f={—ay —ay, —a, "}
If R has an identity 1, then also S has an identity 1’, namely, 1’ =
{1,0,0,---}. The converse is also true, as can be seen by writing
{4,0,0,---11"={a,0,0,-- -}, a€ R (complete the proof).

If f={a;} is a non-zero polynomial (that is, if not all g; are zero)
and if » is the greatest integer such that a, 3% O(n = 0), then » is called
the degree of f.  The degree of f will be denoted by ¢f. We do not assign
any degree to the zero polynomial. If ¢f = n, then ag, a4, - - -, @, will
be called the coefficients of f, and a, will be called the leading coefficient
of f. If R has an identity and @, = 1, then the polynomial f will be
called monic.

It is clear that if 9f < dg, then a(f + g) < 9g, with equality if
¢f < ¢g. 1f of = n and 9g = m, then it follows directly from (3) that
Cnan=ab, and ¢, =0 if k>m+n. Hence either ab, 70, in
which case fg % 0, d(fg) = m + n, and the leading coefficient of fg is
ab,; or ab, =0, and then either fg =0 or o(fg) <m + n. The
first alternative (that is, a,5,, % 0) certainly holds if one of @, and &, is
not a zero divisor, in particular if either (1) R has an identity and one of
J and g is monic or (2) if R is an integral domain.

The natural mapping a—{a,0,0,---} is an isomorphism of R
onto 2 subring R’ of S. Hence R can be imbedded in S. However,
rather than replace S by some unspecified isomorphic ring S” which
contains R as a subring (see § 13), we prefer in the present case to deal
with the ring S itself, since our concrete definition of a polynomial as a
sequence is most convenient. It must then be emphasized that we
cannot regard in all cases our original ring R as a subring of S, since, in
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the absence of any information about the nature of the elements of R,
it cannot be excluded that R and S — R’ have common elements, that
1s, that some elements of R are in fact finite sequences of other elements
of R. 'Toavoic all unnecessary notational complications, we agree from
now on to replace R by some isomorphic ring for which the above set-
theoretic difficulty does not arise and to regard therefore R as a subring
of S.

Summarizing, we have the foliowing

THEOREM 6. The polynomials with coefficients in R form a ring S in
which R can be tmbedded as a subring. S has an identity if and only if R
has an identity; and if that is so, then (1,0, 0, - - -) is the identity of S,
where 1 is the identity of R. If f and g are two non-zero polynomials in
S, then either fg = 0 or o(fg) £ of + &g, and we have o(fg) = of + og
if and only if the product a,b,, of the leading coefficients of f and g is not
zero; and if that is so, then a,b,, is the leading coefficient of fg. If Ris an
tntegral domain, so is S, and the units of S arise from the units of R under
the mapping a — (a, 0, 0, - - +).

If—as will be the case from now on—R is regarded as a subring of S,
then the element 1 of R is also the identity of S, and if R is an integral
domain, then the units of R are the only units of S.

We shall now assume that R has an identity 1 and denote by X the
polynomial (0,1,0,---). We find at once that if ac R and m is a
non-negative integer, then aX™ = {¢;}, where ¢; = 0 if 7 %% m, ¢,, = a.
Tt follows that if f = {a,} is 2 polynomial of cegree n, then

4 f=a,+aX+a,X?+---4+aX" a,€eR, a,#0,

which yields the familiar expression of a “ polynomial in X”. We shal!
call X an indeterminate and we shall refer to the polynomials in S as
polynomials in one indeterminate (over R). 'The ring S itself/\ will be
denoted by R[X? and will be referred to as a polynomial ring in one
tndeterminate over R.

The polynomials in one indeterminate, which we have defined so far
in 2 purely formal fashion, have an important functional connotation
which we proceed to elucidate. Let 4 be any unitary overring of R
and let f=a, + a,X + - - - + @, X" be any polynomial in R[X]. If
yved,weset f(y) =ay+ a;y+---+ a,y". Thenf(y)ed. Wesay
that f(¥) is the result of substituting y for X in the expression f(X) of f.
In particular, we have, then, f(X) = f (taking for 4 the ring RIX"
itself).

If A is 2 unitary overring of R and if v is a fixed element of 4, the
mapping f— f() is 2 R-homomorphism of R[X] into 4. This state-
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ment follows from a comparison of (1), (2), (3) with the easily proved
formulas
(5) day 4+ Dby = >(a; + b))y,
(6) (S a;y)Ob;y7) = Depy*, where ¢ = iLJZ—kaibj'
Thus if f{X) and g(X) are two polynomials in X and if we set
RX) = f(X) £ g(X), K(X) = f(X)g(X),

k(y) = () £ &(3), K(y) = f(9)8(y).

For f fixed, the transformation y — f(), v € 4, is a mapping of 4
into itself, that is, a function of 4 to 4. We denote this function by f,.
Thus with every polynomial f in RTX1 and with every ring £, unitary
over R, we have associated a function f, on 4 to 4. If 4 is a subring
of another ring 4, which is unitary over 4, then f, = f, on 4. Tt
is therefore apparent that any polynomial in RTL.X1 can be thought of as
the symbol of a well-defined operation which can be applied to any
element vy of any given ring 4 unitary over R and which, if so applied,
yields a well-defined function on 4 to 4. This operation is performed
by substituting ¥ for X in the given polynomial f, or f(X). From
this point of view the symbol X appears indeed as an indeterminate,
or “variable,” which can take values in any ring containing R.

We point out that for a given ring 4 containing R it may very well
happen that distinct polynomials in R[ X give rise to the same function
on 4. This is equivalent to saying that there may exist a non-zero
polynomial f such that f(v) = 0 for al' y in 4. This will certainly
happen if 4 = R and R contains only a finite number of elements, say,
€1, €+, ¢, Forthenwemaysetf = (X — ¢ (X —¢p)- - (X —¢,),
and obviously f(y) =0 for all y in R. On the other hand, there
exist rings 4 containing R such that f, ¢ g, whenever f % g. The
simplest example of such a ring is the ring R[ X1 itself, for we have
J(X)=fg=gX). Any ring S containing R which is R-iso-
morphic with R[X1 (see § 12), and a fortiori, any ring 4 which contains
such a ring S’ as a subring, will share with RTX1 the above-mentioned
property.

If f=aeR, then the function f, is constant: f,(y) = a, for all
y€d. For this reason the elements of R regarded as polynomials will
be called constants. In view of what was said in the preceding para-
graph, it may wel!l happen that f, is constant even though fé¢ R.
Nevertheless only those polynomials which are in R will be called
constants.

then
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§ 17. Polynomial rings. We consider again a ring 4 unitary over
R, and we fix an element x in 4.  We then have a mapping f — f(x) of
R’X1into 4 and we have seen that this mapping is a homomorphisro.
If f is a constant, f = a € R, then f(x) = a, whence we are dealing with
an R-homomorphism of RIX1 (§ 12). The image of RIX1 under this
homomorphism is a subring of 4 (Theorem 3, b, § 12). We denote
this subring by Rlx]. This subring of 4 is uniquely determined by R
and x: 1t consists of all elements of 4 which are of the form a, + a,x +
-+ =+ ax" a;€ R. It can also be characterized as the least subring of
4 containing x and all the elements of R.

DrriniTION.  We shall say that x is algebraic over R if the mapping
f— f(x) is a proper homomorphism (that is, not an isomorphism). In
other words (§ 11, Theorem 2), x is algebraic over R if and only if
there exists a non-zero polynomial g(X) such that g(x)=10. An
element x of 4 is said to be transcendental over R if it is not algebraic
over R.

It follows that if x is transcendental over R, then Rlx] and R[X] are
R-isomorphic rings, the mapping f(X) — f(x) being an R-isomorphism
of R[X1 onto Rlxl.

Since all rings Rix], where x is transcendental over R, are
R-1somorphic with R[X], it is natural to call all such rings polynomial
rings. We give therefore the following

DEerFINITION.  Let R be a ring with identity and let S’ be a ring unitary
over R. Then S’ is called a polynomial ring over R if there exists at least
one R-tsomorphism of RTX1 onto S'. In other words, S’ is a polynomial
ring over R if S’ contains at least one element x which is transcendental
over R and which is such that S' = Rlx). Any such element x is called a
generator of S’ over R.

If S’ is a polynomial ring over R, and x is a generator of S’ over R,
we shall also say that S’ is a polynomial ring over R in the element x.
As an example, let R be the field of rational numbers, 4 the field of real
numbers, 7 the ratio of circumference to diameter {or any other
transcendenta! real number). Then the subring R{#] of 4 is a poly-
nomial ring over R in the element 7.

From the very definition of polynomial rings it follows that all
polynomial rings over a given ring R are R-isomorphic. We further
elaborate this fact in the following

Tueorem 7. Let S’ be a polynomial ring over a ring R in an element
x; let R be a ring with identity, 4 a unitary overring of R, and y an element
of 4. If T, 1is a homomorphism of R onto R, then T, can be extended in
one and only one way to @ homomorphism T of §' onto RIy) suchthat xT = y.
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Moreover, T will be an isomorphism if and only if T, is an isomorphism
and v is transcendental over R.
PROOF. We observe that if T exists at all, then we have

(Cas)T = 2(aTYxTY = >(a,To)y", a; € R,

so that T is uniquely determined. We make use of this formula to
define T. Since x is transcendental over R, every element of S’ can
be uniquely expressed in the form Ja;x'(a; € R); thus T is single-
valued. It is surely a mapping of S’ onto Ry, since T is a mapping
onto R. Obviously aT = aT, for ae R, and xT =y. That Tis a
homomorphism follows from (5) and (6) of § 16, applied to elements of
R[x] and R[y".

Suppose T, is an isomorphism and ¥ is transcendental over R. If
(Sax)T = 0, then 3(a;To)y' = 0. Since y is transcendental over R,
each ;T 1s 0; since T s an isomorphism, @; = 0. Thus T is an
isomorphism. The converse is similarly proved.

COROLLARY. Let S’ and S be polynomial rings over a ring R in the
elements x and vy respectively.  Then there is a unique R-isomorphism of S’
onto S which maps x into y.

We now turn to the study of a fixed polynomial ring S in an element
x over a ring R with identity. The notion of degree and leading
coefficient of a polynomial is carried over in an obvious fashion from the
ring R[X1 to the given ring S. Thus, if y is any element of S, y # 0,
then y = f(x), where f= f(X) is a uniquely determined non-zero
polynomial in RTX?. Then the degree and leading coeflicient of f will
be, by definition, the degree and leading coefficient, of the element v
regarded as a polynomial in x. 1t must be eraphasized that the degree
and leading coefficient of any given element y of S are not intrinsically
related to v but depend aiso on the choice of the generator x. We can,
however, state the following

THEOREM 8. Let R be an integral domain and let S be a polynomial
ving over R in an element x. Let x’ be a non-zero element of S, of degree
n > 0in x (that is, n = degree of x° regarded as a polynomial in x) and
let f(X) be any. polynomial in an indeterminate X, of degree m. Then
S(x") is of degree mnin x. A necessary and sufficient condition that x* be a
generator of S over R is that x* be linear in x (that is,n = 1) and with lead-
ing coefficient a unit in R.  In this case the degree of an element of S relative
to x” will be equal its degree relative to x.

PROOF., Let x’ = g(x) and let @ and b denote the leading coefficients
of g and frespectively. Then the leading term of f(x") is ba™x™", whence
the first statement of the conclusion. If &’ is 2 generator of S over R,
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then x = f(x") for an anpropriate f, hence mn = 1, ba = 1, so that x’
has the indicated form. Conversely, if &’ has this form, then x € Rlx'],
hence S = Rfx’l. Furthermore, if f(X) is of degree m, f £ 0, then
f(x ) is also of degree min x (since n = 1), and hence f(x") 3% 0. Hence
x’ is a transcendenta’ over R. This completes the proof.

Cororrary. If T is an R-automorphism of a polynomial ring Rlx
(R an integral domain), then xT = a, + a,x, where a, is a unit in R.
Conversely, if x' = ay + a,x and a, is a unit in R, then there exists a
unique R-automorphism T of Rlx? such that xT = x'.

The first part of the corollary follows from the fact that under the
assumptions made we must have Rlx! = R[x7]. The second part
follows directly from the oresent theorem anc from the corollary to
Theorem 7.

If R has zero divisors, then it is still true that elements x” of the inci-
cated form are generators, but the other statements of this theorem need
not be true. Indeec it is possible that S is a polynomial ring in an
element x" whose degree in x is greater than 1. For example, let R be
a ring with identity, and suppose that R contains an element a # O such
that a2 = 0. Then, if &' = x + ax?, we have x' — ax'? = x, whence
Rix't = Rlxl.

Of particular importance are the polynomial rings over 2 field. These
wi'l be seen to be euclidean domains as a result of

TrEoREM 9. Let R be a ring with identity and Rlx’ a polynomial
ring over Rin x. Let f(x) and g(x) be two polynomials in Rlx! of respective
degrees m and n, let k = max(m — n + 1,0) and let a be the leading
coefficient of g(x). Then there exist polynomials ¢(x) and r(x) such that

@f(x) = q(x)g(x) + (x),

and r(x) is either of degree less than n or is the zero polynomial. Moreover,
if a is regular in R, then q(x) and r(x) are uniquely determined. .

PROOF. Ifm < n,then k = 0, and we may take g(x) = 0, r{x) = f(x).
Form=n—1, k=m—mn-+1 and we prove the first part of the
theorem by induction on m, observing it to be true if m =n — 1.
Hence let m = n.  Then af{x) — bx™~7g(x) has cegree at most m — 1,
where b is the leading coefficient of f. By induction hypothesis there
exist polynomiais ¢;(x) and r,(x) such that

atm==+*(af (x) — ban~rg(x)) = g,(x)glx) + 71(a), or; < n

r, = 0.

We need now only take g(x) = bam™"x™=" + ¢,(x), r(x) = 7y(x).

’
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Now suppose a is regular and that we have also @*f = ¢'g + 7/,
er<n Then(q—qlg=1r —r 1fg— ¢ 5 0, then the left side
has degree at least n, since the leacing coeflicient of g(x) is regular. But
this is impossible since &(r' — 7) < n. Henceg— ¢ =0,7" —r= 0.

CoROLLARY 1. Using the notation of the theorem let f(x) be in R'x]
and a in R. Then f(a) = 0 if and only if x — ais a divisor of f(x) in
Rrx1

Since x — ais of degree 1, there exist ¢{x) € R[x" and b € R such that
f(x) = g(x)(x — @) + b; then f(a) = b, whence the corollary.

If X is an indeterminate, an element @ of R such that f(e) = 0 will
be called, as usual, a root of f(X).

CoROLLARY 2. Let f(X) be in the polynomial ring RTX) in one
indeterminate, over an integral domain R. If ay, - - -, a,, are distinct roots
of f(X) in R, then (X — ay)---(X — a,,) divides f(X) in RIX". If
f(X) 5 0, the number of roots of f(X ) in R is at most equal to the degree of
(X).

The first statement is tree for m = 1; hence assume it for m — 1 roots,
so that f(X)=(X—a) (X —a, )gX). Then fla,) =
(@, — a,) " (a, — a,_,)¢(a,). Since there are no zero divisors,
¢(a,,) = 0, so that X — a,, divides ¢(X), whence the first statement of
the theorem. The second statement foliows from considerations of
degree.

If R has zero divisors, Corollary 2 need not be true. Inceec a non-
zero polynomial may have infinitely many roots. For example, suppose
that an element a of R, different from zero, is an absolute zero-divisor,
that is, that @b = 0 for al'! 5in R. Then every element of R is a root of
the polynomial X, which therefore has infinitely many roots (if R has
infinitely many elements).

Another examble (in which R will have an element 1) is the following:

Let 4 and B be two rings with identities ¢, and eg and let R be the
ring of ordered pairs (@, b) defined in Example 2 of §9. If we set
a = (e, 0), every element of the form (0, 5), b€ B is a root of the
polynomial eX, which therefore has infinitely many roots if we take for
B an infinite ring.

CoroLrarY 3. 4 polynomial ring F1x" over a field F is a euclidean
domain. Ewvery polynomial of positive degree can be factored in the form

a H=1 fix), where ac€ F and f{x) is a monic irreducible polynomial;

this factorization is unique except for order.
If f(x) e Fixl, let o(f) = of, if f5£ 0; let ¢(0) = — 1. Concition
El of the definition of euclidean domain (§ 15) is clearly satisfied;
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condition E2 follows from the theorem. Hence Flx] is a unique
factorization domain. Since every polynomial in Flx] has a monic
associate and since associates can differ only by a non-zero factor in
F, the remainder of the corollary follows.

Since a field is trivially a unique factorization domain, the following
theorem, which is of the greatest importance, may be regarded as a
partial generalization of the preceding corollary.

Treorem 10. If R is a unique factorization domain, then so is any
polynomial ring over R in one transcendental.

PROOF. Throughout this proof one should bear in mind the various
assertions of Theorem 6 of § 16.

We call 2 polynomial primitive if its coeflicients have no common
divisors (other than units). We then observe that it is possible to write
any (non-zero) polynomial f(x) of RIX]in the form f(x) = ¢fi(x), where
¢ € R, and f,(x) is primitive: namely, let ¢ equal a GCD of the coefh-
cientsof f(x). Any element csatisfying the stated condition is necessarily
a GCD of the coeflicients of f(x) and hence is determined to within a
unit factor. The factor ¢ is called the content of f(x) and is denoted by
c(f). We observe that f(x) is primitive if and only if ¢(f) is a unit in R.

We can now prove that every element of Rlx] factors into irreducible
ones. Itis clear that an element of R is irreducible (or a unit) in Rfx]
if and only if it is irreducible (or 2 unit) in R. From this it follows
(since R is a UFD) that every polynomial of Rx] of degree zero factors
into irreducibles. Suppose f(x) has positive degree n and that factoriza-
tion has been proved for nolynomials of lower degree. We write
f(x) = cfy(x), where ¢ = ¢(f) € R and f,(x) is primitive, and we need
only prove that f,(x) is a product of irrecucibles. If f;(x) is irreducible,
there is nothing to prove. Otherwise, f,(x) = g(x)h(x), where g(x),
h(x) € Rlx], and neither is a constant since f,(x) is primitive. Hence
both have degree less than =, therefore they factor into irreducible
polynomials, by induction assumption, and hence so does f,(x).

We complete the proof by verifying UF3: If p(x), f(x), g(x) € Rlx], p(x)
irreducible, and p(x) divides f(x)g(x), then p(x) divides either f(x) or g(x).
The proof must be separated into two cases, depending on whether the
degree of p(x) is zero or positive, and each case is covered by one of the
following two lemmas.

Lemma 1. (Lemma oF Gauss) If f(x), g(x) € RX1, then (fg) =
o(f)elg). In particular, the product of two primitive polynomials is
primitive.

PROOF. If ¢ = ¢(f), d = c(g), then f(x) = cf(x), g(x) = dg,(x), anc
f1and g, are primitive. Since fg = (¢cd)f,£,, We need only prove that
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f.g: is primitive—that is, it is enough to prove the second assertion of
the lemma. If f,g, is not primitive, let p be an irreducible element of
R which divides all the coefficients of fyg,. If fi(x) = >axi, g.(x) =
Shixi, a; b; € R, let a,, b, be the first coefficients of f; and g, respectively
which are not divisible by p (these exist since f; and g, are primitive).

The coeflicient of x5+t in f,(x)g,(x) 1s
et a byt ab +ayb o+

Since R is a unique factorization domain, p does not divide ab,.
Since it divides all terms of the above sum which precede and follow
a,b,, it does not divide the sum itself, a contradiction. Hence f,(x)g,(x)
is primitive, as asserted.

Levva 2. If g{x) divides bf (x), where b € R and g(x) is primitive, then
g(x) divides f(x).

PROOF. We have bf(x) = g(x)h(x), where i(x) € Rlx]. By Lemmal,
b-c(f) = c(g)-c(h) = c(h). Thus b divides ¢(h) and hence also A(x), so
that g(x) divides f(x).

We can now prove UF3 for R[x]. Suppose, then, that p(x) divides
f(x)g(x), where p(x) is irreducible. If the degree of p(x) is zero, so that
p(x) = pe R, then p divides ¢(fg) = ¢(f)c(g), hence (say) p/c(f) (by
UF3 in R), so that p/f(x).

If, on the other hand, the degree of p(x) is positive, we proceed as
follows. Suppose p(x) does not divide f(x); then we show that it divides
g(x). Consider* the set M of all polynomials A(x)p(x) + B(x)f(x),
where A(x), B(x) € R[x]. Among all the non-zero polynomials of M,
let @(x) be one of least degree, and let a be its leading coefficient.
According to Theorem 9, there exists a non-negative integer k2 and
polynomials 4(x) and r(x), such that a*f = @h + r, where either » = 0
or ¢r< dp. Since oM, ¢ = Ap + Bf, hence r = a*f — ph =
(— Ah)p + (a* — Bh)f, so that r € M. Hence or < ¢ is impossible,
and so r = 0, a*f = ph. We write p(x) = cp,(x), where ¢ = ¢(p) and
@, is primitive. By Lemma 2, ¢, divides f. Similarly ¢, divides p.
Since p is irreducible and does not divide f(x), it follows that ¢, is 2
unit in R{x], hence is in R. Hence ¢ € R; that is, the set M contains a
constant @ 7% 0. From ¢ = Ap 4+ Bf we obtain @g = Apg + Bfg, so
that p divides gg. Since p is irreducible and of positive degree, 1t is
primitive, and so Lemma 2 implies that p(x) divides g(x).

This completes the proof of Theorem 10. We shall use the two above
lemmas on various other occasions.

* It will be noticed that this proof is very much like that of the Lemma of
§ 15 (p. 27), the modifications being due to the fact that our ring R[x] is not
euclidean but is ‘“nearly so” (in virtue of Theorem 9).
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§ 18. Polynomials in several indeterminates. In § 16 we have
defined polynomials in one indeterminate over a given ring R and have
seen that each such polynomial can be expressed in the usual form
>a.X‘. By apolynomial in n indeterminates we have in mind a finite sum

Zai “ee z'nXlz‘ tet ann,

where the 7; are non-negative integers and a; . ..
1

1

;, € R, and we seek to
formalize this concept. We observe that a polynomial is determined

when its coefficients a; ..., are known, that is, when to each ordered
1

n-tuple (z,, - --,7,) of non-negative integers is assigned an element
a; ...; of R. This, in effect, will be our definition.

Let I be the set of non-negative integers, I, the set of ordered n-tuples
(@)= (&}, - -+, 1,) of elements of I, that is, each element of I, is a
sequence of # non-negative integers. If (§)=(jy, ---,7,)isin I, we
define (i) = () = (i + Ju - - 1n + o)

DEeFINITION.  Let R be a ring with identity, n a positive integer. A
polynomial over R in n indeterminates is a mapping f of I, into R such that
(2)f = O for all but a finite number of n-tuples (z). If f and g are two such
polynomials, define h = f + g and k = f-g by

(Oh = (@)f + (s
k= > (NG
D+E)=6)

If n = 1, we have mappings of I into R—that is, in effect, sequences
of elements of R. Thus the present definition is consistent with that of
§ 16.

If S denotes the set of all polynomials over R in n indeterminates it
is easily seen that .S is a ring. For each element ¢ in R we define a
polynomial f, by

(Vu=a @)= (0,0, R
(7)f, = 0 otherwise.

It is immediate that f, is the zero of .S and that, moreover, S has an
identity, which is given by f; (1 being the identity of R). It is readily
verified that

fa +fb =fa+b»fa’fb =fab’

so that the mapping @ — f, is an isomorphism of R onto the subring of
S consisting of all f,. We shall replace each f, by the corresponding
a, so that henceforth we consider .S to contain R as a subring.

If v is 2 fixed integer between 1 and 7, let (7)) denote the z-tuple
which has the integer 1 in the v-th place and the integer 0 elsewhere.
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We define X, to be the element of .S which assigns the identity element
of R to the n-tuple {0) and the zero of R to every other n-tuple. If

aeR, and i,,1,, - - -, i, are non-negative integers, then it is easily seen
that aX "X, - - - X,/ is the element of .S which associates ¢ with the
n-tuple (1) = (i1, £, - - -, Z,) and 0 with every other one. Thus every

element f of S is a sum of a finite number of special polynomials of the
form

(1) a(i)Xlingiz s Xﬂin,
called monomials, and f is the zero element of S if and only if all the
coefficients a.;, are zero. Here i,,1, --,1, are any non-negative

integers and a;, is any element of R. The ring .S wili be denoted by
RIX, ", XL

By the degree of the monomial (1) we mean the sum of the exponents
iy + 1y + -+ -+ 1, By the degree of of any non-zero polynomial f we
mean the maximum of the degrees of the monomials of which f is the
sum. If all the monomials in this sum have the same degree, then f is
said to be homogeneous or to be a form. 1f fand g are forms, then fg is
clearly either zero or a form of degree df + dg.

A polynomia! f of degree m can be expressed uniquely in the form

f=fh+hH+ ot S

where each f; is either zero or a form of degree 7, and f,, 3¢ 0. From this
it is clear that if f, g € S and fg # 0, then (fg) < of + ég.

We may now state

Turorem 11.  Let R be a ring with identity. The polynomials in n
indeterminates with coefficients in R form a ring S which is unitary over R.
If f and g are non-zero polynomials in S, then either fg = 0 or o(fg) < of
+ ¢g.  If Ris an integral domain, then so is S and then o(fg) = of + og.

pROOF. All has been proved but the last statement. Suppose, then,

that f and g are non-zero polynomials in .S of respective degrees p and g.
We write

f=fothHit o +f =8 ta+ -+ g,
H#0, g,#0,

where f; and g, are either zero or forms of degrees i and j respectively.
Now

pt¢
=2 M = 2 J&;

i+j=k
Since 4, is either zero or a form of degree k, the last statement of the
theorerp 'is provt?d if we show that th = f,g, is not zero. In other
words it is sufficient to show that S is an integral domain,
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For this purpose we order the monomials of a given degree v lexico-
graphically: XX ,0 - - X < X7 X - - X 7w if i, <j,, where
s is the least integer (1 = s =< n) such that 7, 5. With respect to
this ordering, and for v == p, let aX,*X,% - - - X,% be the first of the
monomials which actually occur in f(a # 0). Similarly, let
bX A.X 8 -+ - X Fn De the first monomial of degree ¢ which actually
occurs in g, (b £ 0). Then it is immediately seen that

aleal+31Xzaa+Bx MR Xna"+3"

is the first monomial in the product f,g,, and since ab 5 0 it follows
that fg, # 0.

Often theorems on polynomials in n indeterminates are proved by
induction with respect to n. We shall now put in evidence this induc-
tive aspect of polynomial rings.

Consider the set S’ of those polynomials f in R[X,, X,,---, X, ] in
which the indeterminate X, does not occur at all, or—as we shall say—
which are independent of X,. By these polynomials we mean those
mappings f of I, into R which satisfy the following condition:
(i1, 49, - -+, 3,)f = 0if i, 3¢ 0. Itis clear that these mappings f in S’
are in (1, 1) correspondence with the mappings of I,_, into R, for any
such mapping f is uniquely determined Dy its effect on the n-tuples of
the form (i}, 75, -, 7,4, 0). We can therefore identify the poly-
nomials f in R'X,, X,, ---,X,], which are independent of X, with

corresponding polynomials in R[X,, X, ---,X, ;7. It is im-
mediately seen that the ring operations in S = R[X,, X,, -+, X,]
and S, = RIX,, X,,---,X,_,] are consistent with this identification.

Hence we can (and shall) regard RIX,, X,,---,X,_,| as a subring of
RIX,, X, ---,X,. Wenow assert that this latter ring S is a polynomial
ring in X, over the ring S,, in the sense of the definition of § 17. For in
the first place, every subring of S which contains S, and X, contains all
the monomials aX %X, - - - X,’n and hence contains S. In the second
place, it is obvious that X, is a transcendental over S,. Hence
S = Sl[Xn]'

From this last fact, and from Theorem 6 of § 16, we can conclude by
induction that S is an integral domain if R is.

Much of the discussion of § 16 and § 17 can be extended to the case of
polynomials in n indeterminates.

Polynomials in R[X,, - - -, X,] can be construed as “functions of =
variables.” Let 4 be any ring unitary.over R and let x,, -+, x, be
elements of 4. If

f=SapXs - X
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is any polynomial in S, we define

(2) Sy ooy %) = 2ap®yfs - X
Then f(xl, -+, x,)is in 4 and is called the result of substituting x, for
X, -, %, for X in f. In particuiar, according to this definition,
f(Xy s X 1sf1tself

For xl, -, x, fixed, f—+f(x1, ---,x,) Is an R-homomorphism of

R[X;, -+, X, into 4. The 1mage in 4 of RIX,,---,X, will be
denoted by R[xl, <++,x,). Itis a subring of 4 and consists of all
elements of the form (2); it may also be described as the smallest
subring of 4 containing x,, - - -, %, and R.

DEerFINITION 1. The elements x,, - - -, x,, will be called ALGEBRAICALLY
DEPENDENT OVER R if the mapping f — f(x,, - - -, x,,) is a proper homo-
morphism. Otherwise they will be called ALGEBRAICALLY INDEPENDENT
OoVER R.

Thus, x,, - - -, x, are algebraically dependent over R if and only if
there exists a non-zero polynomial g(X) such that g(x) = 0.

DEFINITION 2. Let R'be a ring with identity and S’ a ring unitary over
R. Then S’ is called a polynomial ring over R if there exist elements
Xy, * %, 10 S’ which are algebraically independent over R and such that
S’ = Rlxy, - -+, x,.  Any such set {x,, - - -, x,} will be called a generat-
ing set. More specifically we sav that S’ is a polynomzal ring over R in
Xy oy Xy

Thus S’ is a polynomial ring over R if and only if there is an R-
1somorphxsm of RTX,,---,X,] onto S’ for some n. In particular
R[X,, ---, X isitselfa poly')omlal ring under this definition. Before
proving the analogue of Theorem 7 of § 17, we first state the following
lemma.

LEMMA. Let R be a ring with identity, S’ a umitary overring,
xy, v+, x, elements of S’, with n > 1. Let R, = R[x,,-- -, x,_,]

Then S’ is a polynomial ring over R in xy, - - -, x, if and only if R, is a
polynomial ring over R in x,, - - -, x,_, and S is a polynomial ring over
R;in x,.

This lemma is essentially a restatement of the inductive property of
polynomial rings in 7 indeterminates, given earlier in this section. The
proof may be left to the reader.

THEOREM 12.  Let S’ be a polynomial ring over a ring R in the elements
Xy, » let R be a ring with an zdentzty and 4 a unitary overring of
R, Zet yl, <, ¥, be elements of 4. If Tyis a homomorphzsm of R onto
R, then Ty can be extended in one and only one way to @ homomorphism T
of § onto Rlyy, - -+ yul such that x;T = yi i = 1, ---, n. Moreover, T



38 INTRODUCTORY CONCEPTS Ch.1I

will be an isomorphism if end only if Ty is an isomorphism and vy, - - -, ¥,
are algebraically independent over R.
In view of the lemma, this theorem follows from Theorem 7 of § 17.

CoOROLLARY }. Let S’ and S be polynomial rings over Rin xy, - - - , %,
and iny,, - - -, y, respectively. Then there is a unique R-isomorphism T°
of S’ onto S such that x,T = y,,i=1,---, n.

CorovLARY 2. Let S be a polynomial ring over Rin x,, - - -, X, and let
{hy, by, - - -, h,} be a permutation of the integers {1,2,---,n}. Then
there is a unique R-automorphism T of S such that x;,T = x ,i = 1,---,n.

Tusorem 13. If R is a UFD and § is a polynomial ring over R in
n elements, then S is also a unique factorization domain.

This follows by induction from the lemma and Theorem 10 of § 17.

TueoreM 14. Let R be an integral domain, and f(X,,---,X,) a
non-zero polynomial over R in n indeterminates. Let Q be a subset of R
containing infinitely many elements. Then there exist elements a,, - - - , a,
in Q such that f(ay, - - -, a,) # 0.

proOF. This is true for n = 1, by Corollary 2 to Theorem 9 of § 17.
Assuming it true for n — 1 indeterminates, let us write f(X,, - - -, X,)

k . mn
= Zfi(XI! T Xn—l)Xniy Wherefi(Xls T Xn——l) € R[Xls o an—lj!
=0

i=
and f(X,, -+, X, ) # 0. By induction hypothesis, there exist
ay, -+, ayq € Qsuchthat fila,, - - -a,_,)# 0. Sincefla, - -, a,_q,
X,) # 0, the quoted corollary guarantees the existence of an a, € O such
that f(ay, - - -, a,_+, a,) 7 0.

From this theovem it follows that if R has infinitely many elements anc
if f(a,---,a, =0 for alla,, -+, a,e R, then f(X,,---,X,)=0.
On the other hand, this is obviously not true if R has but a finite number
of elements, as was pointed out toward the end of § 16 in the case n = 1.

We now turn to the study of a fixed polynomial ring S over R in n
elements xy, - - -, x,. 'The notion of the degree of a polynomial in S is
carried over in an obvious fashion from the ring R[X,, - - -, X,]. Asin
the case n = 1, we point out that the degree of a polynomial f in S
depends on the particular generating elements xy,---, x, and not
merely on the ring S.  Indeed, if n > 1, the degree of f may actually be
different if a different set of indeterminates is used, even if R is an
integral domain (or even a field; see § 17, Theorem 8). For example,
let n =2, and let y, = %y, y, = x, + 2,2 Then S is clearly also a
polynomial ring in y,, ¥,, but the degree of v, is two as a polynomial in
x4, %5, Weshall not attempt to determine all setsof elements y, - - -, v,
with respect to which S is a polynomial ring over R. However, we do
show that the number of indeterminates is invariant:
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TueoreM 15, Let S be a polynomial ring in elements x,, - - - , x,,, over
aring R,andlety,, - - -, v, be elements of S such that S = Rly,, - -+, y,1.
Then m = n, and equality holds in case S is a polynomial ring in

SURRRRY. Ay

PROOF: Since y; € Rlx,, - - -, x,], we may write y; = b; - y';, where
y'; is a polynomial in x,, - - -, x, without constant term, and b, € R.
Now S = R[y',,---,3 ], and ¥y, - - -, 3’ are algebraically indepen-
dentover Rifand onlyif v,, - - -, ¥, are. Hence it is sufficient to prove

the theorem with the 3, replacing the v;; in other words, we may assume
b; = 0. Then we have

(3) yi=byx, +---+bx, + B, j=12,---,m,

where &y, - -+, b;, € R, and B; is a sum of monomials in x,, - - -, x, of
degree two or greater. Since x; € Ry, ---,y,1,

4) x=aq¢tayi+ - Fay,+A4, i=12---,n
where a;q, a5, * * -, a;,, € R, and 4, is a sum of monomialsin y,, - -+, y,

of degree two or greater. Substituting in (4) the expressions for the y,
from (3) we have

X, = a;o + i / ilaijbfk)xk +

k=1 \j=
terms in xy, - - -, x, of degree > 2, i=1,2,--- n

Since x,, - - -, &, are algebraically independent over R, a,, = 0, and
(5) > a;bj=1orQaccordingasi="Fkoriskji,k=12---, n
J=1 ’

If, now, we assume m < 7, then each of the determinants
bagrap 0 0 by by,

ay - -a,0---0" b

| ml mn
i N
| A
P 0 0

has value zero. On the other hand, in view of (5), the multiplication
rule for determinants implies that the product of these two determinants
is 1. This contradiction shows that m = n. 'The second statement is
now obvious.

* Seell,§12, Theorem 25, for another proof of this theorem uvsing the concept
of the degree of transcendence.
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It is possible to define also polynomials in infinitely many indeter-
minates. Tf the number of indeterminates is to be countable, we may
simply construct a secuence

RIX,JCRX,, X,)C---CRIX,, Xy,- -+, X, ]C -,

where each ring of this sequence is considered a subring of its successor
in the manner described earlier. The set-theoretic union of these rings,
which can be made into a ring in an obvious way, may be called a poly-
nomial ring in the sequence of indeterminates X, Xy -+, X, - .
We could use transfinite induction to obtain an uncountable number of
indeterminates.

It is better, however, to proceed by analogy with the procedure for n
variables. To construct a polynomial ring whose indeterminates shall
be in (1, 1) correspondence with the elements of a given set E, we let I,
be the collection of all systems (i) = (¢,), where o € E, 7, is a non-
negative integer which is zero for almost all « in E, that is, I is the
collection of all mappings

@y:a—1,
of E into I such that 7, = 0 for all but a finite number of e in E. (Thus
in case E consists of the integers 1,2, -, n, (f) becomes essentially
an ordered n-tuple and Iy = I.). If (j) = (j,) we define (7) + (j) =
(t, + j.)-

If R is a given ring with identity, let .S be the setof all mappings f of I,
into R such that (¢)f = 0 for all but a finite number of (7) in I. If
feSandge S, leth = f+ gand k = fg be defined by

(0 = G)f + (g
@k= > (Mgl
@+U)=6
It is easily seen that .S is a ring and that R can be identified with a
subring of .S in an obvious way.

If B is a fixed element of E, let (j(®) denote that mapping of E into [
such that under j®, 8-> 1, and « — 0 for o 3% B. We may say that
(7 = (5,®) has the integer 0 in every place but the B-th, where it has
the integer 1. We then define X, to be that element of .S which assigns
the identity of R to (j®) and the zero of R to every other member of I;.
If B,, - - -, B, are distinct members of E, consider the subset I’ of I,
consisting of those () such that 7, = 0 unless ais one of B,, - - -, B,; I’
ts 11 (1, 1) correspondence with J, in an obvious fashion. Now consider
the set S’ of those f in .S such that (1)f = 0 for () not in I’. Such f
are completely determined by what they assign to the members (¢).of I’
and are thus seen to be in (1, 1) correspondence with the members of
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the ring of polynomials over R in n indeterminates. This correspond-
ence is easily seen to be an isomorphism. This can be shown by direct
verification. Another method starts with the observation that the
elements of .S’ are finite sums of terms of the form

aXyh - - Xy,
where a€ R and k,, - - -, b, are non-negative integers, so that
(6) S'=RIX,, -, X1
Now it can readily be checked that X,,---, X, are algebraically

independent over R, so that S’ is indeed isomorphic to the ring of
polynomials over R in n variables.

If f is any fixed polynomial in S, then (¢)f = 0 for all but a finite
number of () in Iz. For each such (7), all but a finite number of ¢, are
0. Taking all (¢) such that (¢)f # 0, and for each such () all a in E
such that i_ % 0, we get a finite number of elements B;, - - -, B, of E.
Then it is seen that f is in the ring (6). Thus it may be said that every
single f in .S is really a polynomial in only a finite number of variables,
and that S is the union of all its subrings of the type of (6).

In view of the observation just made, many properties of ordinary
polynomial rings can be extended to the case of polynomial rings in
infinitely many variables. For example, concepts like degree and
homogeneity can be defined, and theorems analogous to Theorem 11, 12
and 13 can be proved.

§19. Quotient fields and total quotient rings. Let K be a field
and let R be a ring contained in K. We assume that R is not the null-
ring. The intersection of all the subfields of K which contain R is again
a subfield of K containing R. This field, which we shall denote by F,
is therefore the smallest subfield of K which contains R (it is not to be
excluded that F coincides with R). Ifg,beRanc b 0, thena, beF
since R c F, and also a/b € F, since F is a field. Hence F contains all
the quotients of elements of R. On the other hand, the following
relations

1 a,¢c_odEbh

@ i bd

2 2. ¢c_%

@) b dT
-t d

3 A

©) G =%

4 a = ab/b,
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hold for any elements a, b, ¢, d of K, provided b % 0 and d = 0. If we
take these elements to be in R and we use the assumption that R is a
ring, not the nullring, we concluce at once that the set of all quotients afb,
such that a,be R, b 5 0, is already a subfield of K containing R, and
therefore coincides with F.  We shall refer to F as the quotient field of R
in K.

Now suppose that a ring R has been given in advance. One may,
then, inquire whether R can be at all imbedded in some field K. If R
is not the nullring, an obvious necessary condition is that R have no
prover zero divisors. We shall see in a moment that this condition is also
sufficient.  1f, then, we assume that R has no proper zero divisors, there
wil! exist fields K containing R as a subring. In each such field K|
the given ring will have a quotient field F. We shall see that the
various fields F thus obtained are all R-isomorphic. Any one of these
R-1somorphic felds may then be referred to as a quotient field of R.
(See the definition given below.)

Actually, we shall not confine the discussion to rings which are free
from proper zero divisors, but shall prove analogous results for a much
wider class of rings. Let, first, R be an arbitrary ring, not the nullring.
We have agreed in § 5 (p. 8) to refer to an element of R which is not a
zero divisor as a regular element of R. Let K be a ring with identity
containing R as a subring. Naturally, no zero divisor of R can have an
inverse in K. If bis a regular element of R, b may have an inverse in K.
If & does have an inverse in K, then K contains also the quotients a/b,
where a is any element of R. We shall assume that R contains at least

the ring K will contain all the quotients a/b such that ¢, b€ Rand b is
invertibie in K. Let F denote the set of all these quotients. From
the fact that R contains at least one invertible element of K, it follows
that F contains R [see (4)]. Furthermore, since the product of invertible
elements of K is invertible, and since relations (1) to (3) hold for any
elements q, b, ¢, d of K, provided b and d are units in K, we conclude at
oncethat F'is a ring (since R is a ring). We call this ring F the quotient
ring of R in K.

We note the following properties of F':

(a) F has an identity.

For if b is an element of R which is invertible in K and ! is the
identity of K, then 1 = bfbe F.

(b) R is a subring of F.

(c) If an element of R has an inverse in K, that inverse is in F.

Forif be Rand b~!e K, then b1 = bfb%ec F.
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(d) Every element of F 1s of the form alb, where a,be R, and b is
regular in R.

We are thus led to maxe the following

DErFINITION.  If R s a ring which contains at least one regular element,
then a total quotient ring of R is any ring F satisfying the above conditions
(a), (b), (d), and the following condition (c'), which is stronger than (c):

(¢ Every regular element of R has an inverse in F.

Before proceeding to the theorems on the uniqueness (to within R-
isomorphism) and the existence of a total quotient ring of R, we list
below, as corollaries, a number of consequences of the above definition.
It is always assumed that R has at least one regular element. In the
following corollaries F' denotes a total quotient ring of R. The letters
a, b, c, - - - stand for elements of R, and any element of R which occurs
in a denominator s assumed to be a regular element of R.

CoOROLLARY 1.  An element alb of F is regular in F if and only if a is
regular in R.  Every regular element of F has an inverse in F. 1IN PAR-
TICULAR, IF R HAS NO PROPER ZERO DIVISORS, THEN F IS A FIELD.

For if afb is regular in F, then it is obvious that q is regular in R, and
therefore bjae F. The rest of the proof is obvious.

For rings R without proper zero divisors we shall therefore use the
term ““ quotient field” instead of *total quotient ring.”

COROLLARY 2. If R has an identity and if every regular element of R
has an inverse in R, then F = R. In particular, a total quotient ring of
any ring R is always its own total quotient ring.

The first part of this corollary is an immediate consequence of the
definition of total quotient rings. The second part follows from
Corollary 1.

CoroLLARY 3. If K is any ring which satisfies conditions (a), (5) and
(c") (with F replaced by K), then the quotient ring Fy of R in K is a total
quotient ring of R, and F, is the smallest subring of K which satisfies con-
ditions (a), (b) and (¢} (with F replaced by F,). Furthermore, F is the only
subring of K which is a total quotient ring of R (in view of condition (c)).

We now proceed to the two basic theorems on the uniqueness and the
existence of the total quotient ring of R.

TreEOREM 16. Let R and R’ be two isomorphic rings, each containing
at least one regular element, let T, be an isomorphism of R onto R', and let
F and F’ be respective total quotient rings. Then T, can be extended in a
unique manner to an isomorphism T of F onto F'.

PROOF. Suppose afb € F, where a and b are in R, anc b is regular in
R; thus 8T is regular in R, since T is an isomorphism. If T exists at



44 INTRODUCTORY CONCEPTS Ch.I

all, then from a = b(a/b) we conclude a7, = al = bT-(a[b)T =
8T, (alb)T, so that

: a
®) (b) = ZT
Thus T is uniquely determined by 7, if it exists at all. We prove its
existence by defining it according to this formula.

By this formula, T is not defined, a priori, as a mapping (that is, as a
single-valued transformation) because an element of F may have several
representations of the form afb. However, (5) does define T as a
transformation of Finto F’, and it is easily verified that the conditions (A)
and (B) referred to in Lemma 2 of § 11, are satisfied. Moreover, if
alb =0, then a =0,aT,=0, and hence (a/b)T = 0. It follows,
therefore, by Lemma 2, that T"is a homomorphism of Finto F’.  Since
T, is a mapping onto R’ and since F' is a total quotient ring of R, we
conclude that T maps F onto F'. 1f b is regular in R and a is any
element of R, then a = ab/b, so that aT = (ab)T /b1y = aTy-bT,[bT,
= aT,, so that T is an extension of T, Finally, if (a/b)T = 0, then
aTofbTy =0, aTy = 0, hence a = 0 (for T is an isomorphism), and
alb = 0; since only the zero of F maps into the zero of F', T is an
isomorphism (§ 11, Theorem 2). This completes the proof of the
theorem.

TrEOREM 17. If R is a ring containing at least one regular element,
then R possesses a total quotient ring, which is unique to within isomorphisms
over R.

PROOF. 'The uniqueness follows from the preceding theorem; for if
F and F’ are two total quotient rings of R, apply thae theorem with T,
equa!l to the identity automorphism of R.

We now proceec to the existence proof by constructing a total quotient
ring of R. For this purpose we consider ordered pairs (a b) of
elements a, b of R, in which the element b is regular; such pairs will
be called permissible. In the sequel, only permissible pairs will be
considered.

We shall say that two (permissible) pairs (g, 8) and (¢, d) are equiva-
lent—and we shall write (a, ) = (¢, d—if ad = ¢b. In particular,
(a, b) = (ac, bc) for any permissible pair (a, 8) and any regular element
¢ in R. It is obvious that the relation = is reflexive and symmetric;
that is, (@, b) = (q, b), and if (a, b) = (¢, d), then (¢, d) = (a, b). This
relation is also transitive; that is, if (a, ) = ¢, d), and if (¢, d) = (e, f),
then (a, b) = (¢, f). Namely, we have by assumption that ad = ¢b and
cf = ed. Multiplying the first relation by f and the second by &, we find
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adf = cbf, cfb = edb, whence afd = ebd. Since d is not a zero divisor,
af = eb, that is, (a, b) = (e, f).

It follows that the permissible pairs fall into mutually exclusive
equivalence classes, each class consisting of equivalent pairs, with non-
equivalent pairs belonging to different classes. We denote by {g, b} the
equivalence class which contains a given permissible pair (a, b) and we
then have:

{a, b} = {¢, d} if and only if ad = cb.

Let F’ denote the set of all equivalence clases {a, }. Addition and

multiplication in F’ are defined as follows:

{a, b} + {c,d} = {ad + cb, bd}
{a, b}-{c, d} = {ac, bd}.

Since b and d are regular, so is bd, so that the right sides of these two
formulas are meaningful. We must show that the equivalence classes
{ad + ¢b, bd} and {ac, bd} depend only on the classes {q, b}, {c, d}, and
not on the particular pairs used to represent them. Let, then, (a, b) =
(ay, by) and (¢, d)=(c,,dy). From ab, —apb =cdy —c,d=0 it
follows that :

(ad + cbYbyd;, — (ayd; + ¢,b,)bd = (ab, — a,b)dd, + (edy — ¢,d)bb, = 0,
and hence (ad + cb, bd) = (a,d, + ¢,by, byd,), as asserted. Similarly,
(ac, bd) = (a4, b1dy).

With these definitions of addition and multiplication in F’ it is a
straightforward matter to verify the commutative laws, the associative
laws, and the distributive law.

Let b, be a fixed regular element of R. We then see that 0’ = {0, b}
is the zero element of F’, moreover {¢, d} = ' if and onlyifc = 0. If
{a, b} e F', then {a, b} + {—a, b} = 0’. It is thus proved that F' is a
ring. Clearly 1" = {b,, by} is the identity of F'; moreover {¢,d} = 1’
if and only if ¢ = d.

It is easily verified that the set R’ of elements of the form {ab,, by},
where a is arbitrary in R, is a subring of F' and that the mapping

To:a—{abgy, by}
is an isomorphism of Ron R'.  We assert that F' is a total quotient ring
of R". We must, then, verify conditions (c¢') and (d) of the definition.
For (c), let {aby, by} be regular in R’; then clearly a is regular in R, so

that the orcered pair (b, bya) is permissible, and {b,, b,a} is the inverse
of {aby, bo}. For (d), let {a, b} be arbitrary in F’; then

{a, b} = {abo’ bo}’{bo» bbo} = {abo, bo}/{bbo» bo}-
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We thus have: F' is a total quotient ring of R’, and Ty is an isomor-
phism of R onto R’. By the Lemma of § 13 (p. 19), there exists 2 ring
F containing R such that T, can be extended to an isomorphism of F
onto F’'. 'This obviously implies that F is a total quotient ring of R,
and the proof is thus complete.

§20. Quotient rings with respect to multiplicative systems.
Let R be a ring. A multiplicative system (abbreviation: m.s.) in R is a
non~empty subset M of R which does not contain the zero of R and
which is closed under multiplication—that is, if m, € M, m, € M, then
mymy € M. Let us make the additional requirement that all the elements
of M are regular in R. 'Thus R contains regu’ar elements and hence has
a total quotient ring . Since M is closed under muitiplication, the set
of all quotients a/m, where a € R, m € }M, is a subring of F containing R.
it will be denoted by R, and will be called the quotient ring of R with
respect to the system M. Note the following extreme cases.

% (1) R has an identity, and M is the set of all units of R. In this
case Ry, = R.

(2) M is the set of all regular elements of R. Then Ry, = F.

Let S be an arbitrary set of regular elements of R. The set of all
finite products of elements of .S is 2 m.s. M. We shall say that this
system M is generated by S; it is the least m.s. containing S. 'The proof
of the following statement is straightforward and may be left to the
reader: of M, and M, are two m.s. in R (both consisting only of regular
elements) and if M is the m.s. in R generated by the union M, U M,, then
Ry is the least subring of F which contains the rings Ry and Ry .

We note that M consists of the elements of M, the elements of M,
and the products mymy(m; € M;, i = 1,2). We also note that, quite
generally, the least subring of a ring F which contains two given subrings
R, and R, of F consists of the elements of R,, R, and al! finite sums
2.a;b; of products of elements of R, with elements of R,(a;/€ R,, b; € R,).

For a given m.s. M in R, let M’ be the set of al! elements of R which
are units in R,,. It is clear that M’ is a m.s., that every element of M’
is regular in R, and that M is a subsetof M’. Hence R;; € Ry. On
the other hand, if 4 € M’ and a € R, then a/b’ = a-1/b’ € Ry, since b’
is a unit in Ry, Hence Ry, C Ry, whence Ry, = R,,. If M, isany
m.s. in R such that Ry, = R, then the elements of M, are units in Ry,
and therefore M, C M’'. We have therefore shown that M’ is the
greatest m.s. in R such that Ry, = Ry,..

Them.s. M’ canalsobecharacterized as follows: M’ isthe set of elements
of R which divide some element of M. For if ¥ is any element of M’,
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then 1/b" € Ry,, that is, 1/b" = afb, where a € R, b € M, and this shows
that &’ is a divisor of . Conversely, if an element " of R divides some
element b of M, say b = ab’, a € R, then ¥’ is regular (otherwise b would
be a zero divisor) and 1/b" = a/b € Ry,; thus b’ is a unit in R, and
hence ' e M".

The following special case is noteworthy: R is an integral domain and
every element of R which is not a unit is a finite product of irreducible
elements of R (that is, R satisfies UF,, § 14, p. 21). Let .S denote the
set of all irreducible elements of R which divide elements of M. For
the purposes of the considerations that follow, associate elements will
not be regarded as distinct elements of S.  Let M, be the m.s. generated
by S. Itis clear that M is a subset of M’. It may be a proper subset
of M’, but since every element of M’ is the associate of some element of
M, it follows that Ry, = Ry, . We note that Sis uniquely determined
by M’, since S is also the set of all irreducible elements of R which
divide elements of M’. Hence S is also uniquely determined by the
given quotient ring R,,. On the other hand, given an arbitrary set .S
of irreducible elements of R, .S generates a m.s. M, and thus determines
a quotient ring Ry, . We conclude that there is a (1, 1) correspondence
between the quotient rings of R (in F), with respect to multiplicative
systems in R, and the sets of irreducible elements of R.

We point out the following consequence: If R is a unique factorization
domain with quotient field F, then a necessary and sufficient condition that
R and F be the only quotient rings of R with respect to m.s. in R is that any
two irreducible elements of R be associates. For if we exclude the trivial
case R = F, then the assumption that the set of all quotient rings R,
of R contains only two elements (which are then necessarily R and F) is
equivalent to the assumption that the set of all irreducible elements of
R contain only two distinct subsets (one of which is the empty set; this
corresponds to the case Ry, = R). Hence there is only one irreducible
element p in R (apart from associates of p).

TurorREM 18. If M is a m.s. in a ring R and M is a m.s. in the ring
R = R,,, then Ry, is the quotient ring of R with respect to a suitable m.s. in
R (all the m.s. under consideration are assumed to contain only regular
elements).

PROOF. We may assume that M is the maximal m.. in R with
respect to which R has the given quotient ring Rz. Then M contains
all the units of R, and therefore M D M. Let M, = MNR. Then
M,isam.s. in R, M; D M, and we have Ry, < Ry. Ontheother hand,
alb

a;/0y

let o =

be any element of Ry, where a, a, € R, b, b, € M and
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a,/b, € M. Wehave a, = a,/b,-b, € M, since b, € M € M and since M
is a m.s. Hence a, € M,. Since also be M C M,, it follows that
a = ab,[a;b € Ry, . This shows that Ry, = Rpg.

ExaMPLE 1. Let ] be the ring of integers, and let M be the set of all
integers which are not divisible by a given prime number p. Then the
corresponding quotient ring, which we may denote by J,, consists of
all rational numbers of the form a/b, when a and b are integers ancd
b # 0(p). The ring J, has only one irreducible element (to within
associates), namely, p itself, and hence its only quotient ring, other than
Jp» 1s the entire field of rationals.

According to general considerations given above, every quotient ring
of J can be obtained by choosing arbitrarily a (finite or infinite) set S of
prime numbers and by considering all rational numbers /b such that all
prime factors of the denominator 4 are in S. The ring R’ thus obtained
is the quotient ring of | with respect to the m.s. generated in J by S.
It is easily seen that the prime numbers which do not belong to S are the
only irreducible elements of R’ (apart from their associates in R’). It
is a straightforward matter to verify that also R’ is a UF-domain.

An interesting remark' is the fol‘owmg every rmg between the ring of
integers | and the field of rationals F is a quotient ring of J. For let R’
be a ring between ] and F and let M denote the set of all integers b such
that R’ contains an element of the form a/b, (a,b) = 1. Since
(@, b) = 1, there exist integers A and p such that da + pub = 1. Hence
if afbeR’, then also 1/beR’, since 1/b = dafb + p. From this it
follows at once that M is a m.s. in J and that R" = J,,, as asserted.

It is clear that the foregoing proof is valid for any euclidean domain
R. We have then the following result: any ring between a euclidean
domain R and the quotient field of R is a quotient ring of R with respect fo
some suitable m.s. in R.

EXAMPLE 2. Let R = k[.X be a polynomial ring in one indeterminate
over a field k. If aisany element in , then the polynomlals f (X ) such
that f(a) 3¢ 0 form a m.s. M, and the corresponding quotient ring R,,
conssts of all rational functions g(X)/f(X) which have a finite value at
x=a.

As in the precedinc case of the ring of integers, so also in the present
case, every r’ng between the ring £"X ] and its quotient field is a quotient
ring of R[X], since KX is a euclidean domain.

EXAMPLE 3 R is a polynomial ring ATX,, X,,---,X,) in n in-
determinates X;, over a field. If G is an arbitrary set of points
(@y, ay, -+ -, a,) in the n-dimensional space over k(a; € k), then the set of
polynomials f(X;, X,, **+, X,) such that fla,, a,, - - -, a,) # 0 for all
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points (a) in G is a m.s. M. The corresponding quotient ring Ry,
consists of all rational functions f(X) which are finite at eack point of G.

§ 21. Vector spaces

DerINITION. Let F be a field. A set V is called a vector space over
Fi

(j;) V is a commutative group (the group operation will be written
additively) and if

(b) with every ordered pair (a, x) (ac F,x € V') there is associated a
unique element of V, to be denoted by ax, such that the following relations
hold for any elements a, b of F and any elements x,y of V.

1 a(x + y) = ax + ay;
(2) (a + b)x = ax + bx;
3 (ab)x = a(bx);

G l-x = x.

The elements of a vector space } are sometimes called vectors, the
best-known example of a vector space being the three-dimensional
vector space of ordinary geometry. The element ax is sometimes called
the product of a and x. Asin §5, it is easily proved that a0 = 0x = 0
(we denote by the same symbol 0 the element zero of F and the element
zero of V') and that (— 1)x = — x. Notice also that the relation ax = 0
implies a = 0 or x = 0: 1n fact, if @ £ 0, @ admits an inverse a~1,
whence x = lx = (a~la)x = a~(ax) = 0.

Given a vector space ¥ over a field F, a non-empty subset # of V is
called a'subspace, or a vector subspace, of V if the relations »,y ¢ # imply
x — y € W (whence W is a subgroup of the group V'), and if the relations
acF,xe Wimply axe W. A subspace W of V is also a vector space
over F, if we define the product of a € F and x € I/ to be ax.

It is clear that any intersection of subspaces of a vector space I is
itself a subspace. 'Thus, given any subset X of V, there exists a least
subspace containing V, namely, the intersection of all subspaces con-
taining X. This subspace is called the subspace generated, or spanned,
by X, or the span of X. We shall denote it by s(X). Note that our defi-
nition of s(X) implies that if X is the empty set then s(X) consists of the
zero vector only. It is clear that s(X) consists of all the linear combina-
tions Y awy, where {#;} is any finite family of elements of X and {a;}

i=1
any finite family of elements of F. (We adopt the convention that if {x;}
is an empty set then zero is a linear combination of the x;.)
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We shall now put into evidence five properties of the operation s of
“span,” from which all the other elementary properties of vector space
may be deduced. This axiomatic treatment has the advantage that it
also applies to the study of algebraic dependence in field theory (cf. 11,
§ 12).

TuroreM 19. The operation s is a mapping of the set of all subsets of
V into itself which has the following properties:

(S If XCY, then s(X)Cs(Y).

(Sy) If xis an element of V and X a subset of V such that x € s(X), then
there exists a finite subset X' of X such that x € s(X").

(S;) For every subset X of V we have X C s(X).

(S,) For every subset X of V we have s(s(X)) = s(X).

(S;) The relations y € s(X, x) and v ¢ s(X) imply xes(X,y) (“ex-
change property”). (Here s(X, x) stands for s(X'U {x}).)

PROOF. Properties (S;) and (8;) are evident. Property (S,) follows
from the fact that every element of s(X) is a linear combination of a
finite number of elements of X. Since the span of a subspace Wis W
itself, (S,) holds. Finally the relation v € s(X, x) means that there exist

elements 4, ; of F and x; of X such that v = ax + z bix;. We have
a % 0 since v ¢ 5(X). Whence x = a~ z a- 1b x;, and therefore

x € S(X, ).

From now on we consider a set J/ with a mapping s of the set of all
subsets of V into itself which satisfies conditions (S,), (S,), (Sj), (S4,,
(S;). A subset X of VVis called a system of generators of V if s(X) =
A subset X of V' 1s said to be freeif for every xin X, we have x ¢ s(X — x),
where X — x denotes the complement of {x} in X. A basis of V is a
subset X which is at the same time free and a system of generators.
Note that if X is a free set, every subset of X is free.

CASE OF VECTOR SPACES. A system X of generators of 2 vector space
V is a subset of V" such that every element of V is a linear combination
of elements of X. For X to be a free subset of I it is necessary and
sufficient that the following condition holds:

(I) Every relation  ax, = 0 (a; € F, x; € X) implies that a; = 0 for
=1
every i.
In fact, if X is free, a relation Z ax; = 0, with, say, a, # 0,

i=1
implies x; = — Zal la,x;, whence x;es(X — x;), in contradic-
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tion with the hypothesis. Conversely, if (I) holds, a relation
res(X — x)(x e X) gives a non-trivial linear relation between the
elements of X| in contradiction with ().

The elements of a free subset of a vector space V are said to be
linearly independent ; notice that they must then be all distinct and all
s# 0. As a partial converse we notice that, if a vector x is 3 0, then the
subset {x} is free according to (I), since ax = 0(a € F) implies a = 0.

A basis X of V' is then a subset of V' such that every element X of IV
can be expressed in one and only one way, as a linear combination of
elements of X (the assertion of uniqueness is an immediate consequence
of the assumption that X is free).

We now return to the axiomatic situation.

THEOREM 20. Let X be a subset of V. The three following assertions
are equivalent:

(a) X is a minimal system of generators of V.
(b) X is a maximal free subset of V.
(c) X is a basis of V.

PROOF. We give a cyclic proof. Let us first prove that (a) implies
(c). We have to prove that X is free. Assume the contrary to be true.
There exists then an element x in X such that x € s(X — x). Since we
have X — x C (X — x) (by (S3)), it follows that X C (X — x), and
therefore 1V = s(X) Cs(s(X — x)) (by (S;)) = s(X — x) (by (Sy).
Thus X — x is a system of generators, in contradiction with the hypo-
thesis that no proper subset of X is a system of generators.

We now prove that (c) implies (b). We know that X is free. For
every x in V, x ¢ X, we have x € s(X) since X is a system of generators,
whence X U {x} cannot be free. Thus no subset of 7 properly containing
X can be free, and this proves (b).

Finally we show that (b) implies (a). Let us first show that X is a
system of generators. In fact, for every x in V such that x ¢ X,
XU {x} is not free, whence we have, either x € s(X), or y € s(X — y, x)
for some y in S. In the second case the hypothesis that X is free
implies that y ¢ s(X — y), whence xes(X — v, v) = s(X) by (S;).
Hence in either case we have x € s(X) for every x ¢ X, and also for every
x € X by (S3). Therefore s(X) = V, and X is a system of generators.
If X were not a minimal system of generators, there would exist x in X
such that V' = s(X — x), whence x € s(X — x), in contradiction with the
fact that X is free. Q.E.D.

REMARK. In the last part of the proof we have shown that, if X is
free and if x ¢ s(X), then XU {x} is free.
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Tueorem 21.  Let L be a free subset of V, and S a finite system of
generators of V. There exists a subset S’ of S with the following properties:
LU S’ is abasisof Vand LS’ is empty.

PROOF. There exist subsets S” of § such that LU S” is free and
LNS” is empty (for example, the empty set). Thus, among the
subsets S” of S such that LU S” is free and LN S” is empty, we may
choose a maximal one, S’ (for example, one with the greatest possible
number of elements). We need only to show now that ' = s(LU S’).
By (S,) this is equivalent to showing that S Cs(LU S’), or that,
for every element x of S such that x¢ S’, we have xes(LUS").
This, however, follows from the fact that the relation x ¢ s(LUS")
would imply that LU S"U{x} is free, according to the remark made
above, and this contradicts the maximality of S'. Q.E.D.

CoroLLARY. If V admits a finite system S of generators, it admits a
basis BC S.

In fact, we take for L the empty set.

Theorem 21 and its corollary remain valid if S is not a finite set.
Namely, if S'is any system of generators of V, one uses Zorn’s lemma for
proving the existence of a maximal subset S’ of § such that LU S’ is
freeand L NS’ is empty. We shall discuss the general case in II, § 12,
in connection with infinite transcendenta! extensions of fields.

TrroreM 22. If V admits a finite basis B of n elements then every
basis B' of V is finite and has exactly n elements.

PROOF. Let m be the number of common elements of Band B’. If
m = n, that is, if B C B, then B = B’ by Theorem 20 (b) and the
theorem is proved. We shall now assume that m < n and we shall
proceed by induction from m + 1 to m. Let B = {x,, x,, - - -, x,}.
We may assume that x4, x,, - - -, x,, are the common elements of B and
B’. Theset B — x,,,, cannot be a set of generators of I, by Theorem
20 (a). Thens(B — x,.,) # , while s(B") = ¥, and this implies that
B & s(B — x,,,), since s(s(B — x,,,,)) = (B — x,,{ Let then y
be an element of B’ which does not belong to s(B — x,,.,). By the
remark made above, the set B, = (B — x,,..)U{y} is free. From
YES(B — x,0)) and €SB — %), 5nsr) (= s(B) = V) follows by
the “Exchange property” (S;) that x, , €s(B,). Hence B C s(B,),
V = s(B) C s(B,;), showing that B, is a system of generators of V.
Thus B, isabase of V. Also B, has n elements, but B, and B’ have the
m + 1elementsx,, x,, - - -, x,,, vin common. Hence, by our induction
hypothesis, B’ has exactly n elements.

CASE OF VECTOR SPACES. Let ¥ be a vector space over a field F.
If V admits a finite system of generators, then I admits a finite basts,
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and any two bases of V have the same number of elements. This
number is called the dimension of V over F, and is denoted by [I': F] or
by dim (V). A vector space which admits a finite basis is said to be
finite-dimensional. If a vector space V' does not admit any finite basis,
we say that V is infinite-dimensional, and we set [V : F] = o0 in this
case.

We conclude this section by giving some useful results about finite-
dimensional vector spaces. Given two vector spaces V, W over the
same field F, we say that a mapping T of V into W is a homomorphism (or
a linear transformation) if (x + )T = xT 4+ yT foreveryxand yin V,
and if (ax)T = a(xT) for every x in V and every a in F. Then T is,
in particular, 2 homomorphism of the additive group of V into that of
W (§ 11). It is easily seen, as in Theorem 1 of § 11, that the kernel of
T is a vector subspace of V, and that the image VT of V is a vector
subspace of W. A homomorphism of V into W which is univalent
(that is, whose kernel is (0)) is called an somorphism of V into W. A
homomorphism of V into itself is called an endomorphism; an endo-
morphism of ¥ which is univalent and onto is called an automorphism
of V.

THEOREM 23. Let V be a finite-dimensional vector space over a field
F, and T a homomorphism of V into another vector space W. Then the
kernel K of T and the image VT of V are finite-dimensional vector spaces,
and we have

[V:F]=I[K:F]+ [VT:F).

PROOF. The fact that K is finite-dimensional is included in the
following lemma:

LEMMA. Let V be a finite-dimensional vector space and V' a subspace
of V. Then V' is finite-dimensional. For every basis (x4, -, x,) = B
of V' there exists a basis (xy, -« + , %y, X511, " * * , X,) Of V which extends B.
(1t follows that if V' is a proper subspace of V, then dim V' < dim V)

If V' were not finite-dimensional, then no finite free subset of V'’
could be maximal (Theorem 20 (b)); we could then construct by induc-
tion a strictly increasing infinite sequence X, < X, < X;< -+ of
finite free subsets of V’. Their union X is obviously free, both in V'
and in V. Then Theorem 21 guarantees the existence of a basis of
V containing the infinite set X, in contradiction with Theorem 22.
Thus V'’ is finite-dimensional. Then a basis B of V' is a free subset of
V, and Theorem 21 proves that it can be included in a basis of V. This
proves the lemma.

This being so, let {x,, - - -, x,} be a basis of K| and let us extend it to
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abasis{x}, -+, %, 6,4, "+, 2} of V. Weassert that {x, T, -, x,T}
is a basis of V7. In fact, every element of VT may be written in the

q

form (Z a,x,)T Z {xT)= 2 a(xT), since x,T=0 for
=p+1

i=1, , P Thus {xp waly e, qu} i1s a system of generators of

VT. On the other hand, thls system is free in V7T, since a relation

q L4

> afx;T)=0 implies > a;x; €K, that is, i ax; = Zax- for
J=p+1 Jj=p+1 J=p+1
suitable elements a; of F. The linear independence of the vectors x;,%;
implies that a; =0 forj=p 4+ 1,---,¢. This proves that [VT: F]
=g —p. Since [V:F] = gand [K: F] = p, Theorem 23 is proved.

CoRrOLLARY. Let V be a finite-dimensional vector space. For an
endomorphism T of V to be univalent, it is necessary and sufficient that it
be onto.

In fact the assertion that 7" is univalent means that its kernel K is
(0), that is, that [K: F] = 0. The assertion that T is onto means that
VT =V, that is, that [VT: F] = [V : F] according to the lemma.



II. ELEMENTS OF FIELD THEORY

§ 1. Field extensions. Let k and K be two fields such that 2 is a
subfield of K. We say then that K is an extension of k. If xy, x5, - - -
x, are fixed elements of K, then K contains the ring k{xy, xg, - -+ , %]
(the least subring of K which contains % and the elements x4, - - -, x,;
see I, § 18, p. 37). 'This ring is an integral domain (since K is a field).

If f(Xy, X, - -+, X,) and g(X,, X,, - - -, X,,) are two polynomials in
R[X,, X, - -+, X,] and if g(xy, %y, - -, x,) 7 0 [whence, a fortiori,
g8Xy;, Xy, -+, X,)# 0], then the quotient f(xy, x5 - -, x,)/
g%y, %4, + -, x,) belongs to K (since K is a field), and the set of all such
quotients is a field; in fact, it is the least subfield of K which contains k&
and the elements x, x,, ---,, This field, which is merely the
quotient field in K of the integral domain A[xy, x,, - - -, ,] (I, §19),
shall be denoted by k(x,, x5, - - -, x,). It shall be referred to as the
field generated over k by x,, x,, - - -, x,, or the field obtained by adjoining
to k the elements xy, x,, - - -, x,.

An extension K of % is said to be finitely generated over k, if K =
k(x;, x4, - - -, x,), where the x; are suitable elements of K. We say that
K is a simple extension of k if K can be obtained from & by the adjunction
of a single element x.

If K and K’ are two extensions of k, we say in accordance with the
terminology introduced in I, § 12, that the two fields K and K’ are
k-isomorphic, or isomorphic over k, or isomorphic extensions of k, if there
exists a k-isomorphism o of K onto K'.

§ 2. Algebraic quantities. Let the field K be an extension of &
and let x be an element of K which is algebraic over % (I, § 17, p. 28).
Let f(X) be a polynomial in k[X] of least degree such that f(x) = 0.

TuroreM 1. The polynomial f(X) is irreducible over k (that is, f(X)
is an irreducible element of k[X1]; see 1, §14). If g(X) is any other
polynomial such that g(x) = 0, then f(X) divides g(X) (in k[X]).

PROOF. Suppose that f(X) = fy(X)fo(X), f(X)€k[X]. Then

Ji(x)fo(x) = 0, and since K is a field (and hence has no proper zero
55
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divisors), either fi(x) = 0 or fy(x) = 0. Let, say, fi(x) = 0. Since
of; < of, and since f(X) is a polynomial of least degree such that
f(x) = 0, we must have &f, = df, and hence f, is of degree zero, that is,
Jo is a unit in A[X]. This shows that f(X) is irreducible.

Let g(X') be a polynomial in X[ X7 such that g(x) = 0. Since k[ X1 is
a euclidean domain (I, § 17, Theorem 9), division by f(X) yields:
(X)) = ¢(X)f(X) 4+ r(X), where either 7(X) = Q or or < &f. Substi-
tuting x for X we have g(x) = r(x), whence r(x) = 0. Therefore we
cannot have or < &f, and hence 7(X) =0, and f(X) divides g(X).
This completes the proof.

An immediate consequence is the following

CorOLLARY. There ts one and—apart from an arbitrary unit factor
¢ 5 0, ce k—only one irreducible polynomial f(X) in k[X] such that
f(x) = 0. There is exactly one such polynomial which is monic.

The monic irreducible polynomial in A[X ] of which x is a root will be
called the minimal polynomial of x in k[ X], or over k.

THEOREM 2. If x is algebraic over k, then the field k(x) coincides with
the ring k[x}. Moreover, if the minimal polynomial of x over k is of degree
n, then any element of k(x) has a unique expression of the form cpx"—1 +
Cxm 4 et ER

PROOF. Let f(X) be the minimal polynomial of x over %, and let

gl% be any element of k(x). Since g(x) 5 0, f(X) does not divide g(X)

and hence f(X) and g(X) are relatively prime (since f(X) is irreducible,
by Theorem 1). Hence 1 is a highest common divisor of f(X) and
g(X), and we have an identity of the form 1 = A(X)f(X) + B(X)g(X),
where A(X') and B(X ) belong to k[X]. Substituting x for X, we have
1 = B(x)g(x), that is, g(x) is a unit in k[x]. This implies that
h(x)[g(x) € k[x], which proves the first part of the theorem.

Now let y == g(x) be any element of A(x), where g(X)e k[X]. By
the division algorithm in k[ X] we find as in the proof of Theorem 1 that
y=7r(x) =cex* 1+ ¢ 2" 2+ - -+ + ¢,_,, where n is the degree of f,
and the ¢; are in k. If r,(X) 1s any other polvnomial in A{X], of degree
< n —1, such that y = r,(x), then x is a root of the polynomial
r(X) - rl(X), and since this polynomial is either zero or of degree < 7
it must be the zero polynomial. This completes the proof.

CoRrOLLARY. If x is algebraic over k, then the field k(x), regarded as a
vector space over k, is of dimension n (see 1, § 21), where n is the degree of
the minimal polynomial of x over k. The elements 1, x, x%, - - -, x"~ form
a basis of k(x) over k.

THEOREM 3. Let K and K' be two extensions of k and let x and x' be
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elements of K and K' respectively which are algebraic over k. If x and '’
have the same minimal polynomial f(X) in k[X], then there exists a
k-isomorphism of k(x) onto k(x") which carries x into x', and conversely.

PROOF. Assume thatx and & are roots of one and the same irreducible
polynomial f(X)in k[X]. By Theorem 2, we obtain a (!, 1) mapping of
k(x) onto k(x'), if we let correspond to each element cpx®~1 + ¢ x"~2% +
-+« 4 ¢,_; of k(x) the element cx*~! + ¢ @1 + - - - + ¢,_, of k(x').
Let this mapping be denoted by ¢. It is clear that ¢ transforms each
element of % into itself and that xo = x’. So it remains to show that ¢
is an isomorphism. It is obvious that (¢ + 7)o = fo + 7o for any ¢
and n in A(x). We now prove that (é7)o = {o-no. This will complete
the proof of the direct part of the theorem. Let £ = r(x), n = s(x) and
&n = t(x), where 7(X), s(X) and #(X) are polynomials in A[X], of
degrees <n— 1. We have then: fo=r(x"), no=s(x) and
(én)o = #x"). Since x is a root of 7 X)s(X) — #X), we must have
rX)s(X) — t(X) = AX)f(X), where A(X)ek[X] (Theorem 1).
Since also f(x') = 0, it follows that r(x")s(x") = #«'), that is, {o-no =
(én)o, as asserted.

Conversely, if there exists a k-isomorphism o of k(x) onto k(x) such
that xo = «” and if f(X) is the minimal polynomial of x over %, then we
have f(x)o = 0, and since f(x)o = f(x') it follows that f(x') = 0. The
consideration of o~ shows at once that not only f(x") = 0 but that f(X)
is also the minimal polynomial of x” over 4.

Another proof of the direct part of the theorem is the following:

For any F(X) in k[X] we set F(x)o = F(x’). Then o is a trans-
formation (a priors not necessarily single-valued) of k[x] onto k[x'] which
satisfies the homomorphism conditions for sums and products. If
F(x) = 0, then f(X) divides F(X) in k[X], and since also f(x') =0
it follows that F(x') = 0, that is, F(x)o = 0. By Lemma 2 of I, § 11,
it follows that ¢ is a homomorphism. By the same token also o—1
is single-valued. Hence o is an isomorphism.

DrrFINITION.  Two elements x and y of one and the same extension field
K of k are conjugate over k if they are algebraic over k and have the same
minimal polynomial over k.

CoOROLLARY. If the minimal polynomial of x over k is of degree n, then
the number of conjugates of x over k in K is at most n. Moreover, if x and
¥ are conjugates, then the fields k(x) and k(y) are isomorphic extensions of k.

The first part of the corollary follows from the fact that a polynomial
f(X) in K[X], of degree n, can have at most n roots in K (see, for
instance, I, § 17, Theorem 9, Corollary 2). 'The second part of the
corollary follows from Theorem 3.
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Theorem 3 shows that if k& is a field and f(X) is an irreducible
polynomia! in A[X], then there exists—up to k-isomorphisms—at most
one simple extension k{x) of & such that x is a root of f(X). We prove
now the following

TreEOREM 3'. If f(X) is a non-constant irreducible polynomial in
R[ X, there exists a simple extension k(x) of k such that x is a root of f(X).

PROOF. It will be sufficient to prove the theorem for monic poly-
nomials f(X). Letn be the degree of f(X),n = 1. By Theorem 2, if
there exists an extension k(x) such that x is a root of f(X), then the
elements of k(x) are all expressible in the form ¢gx*—1 + ¢ x"~2 4 - - -
+ ¢,_y, ¢c; k. This suggests the following procedure for a proof of
our theorem.

Consider the subset 4 of k[X] consisting of the zero of A[X] and of
all polynomials in A{X7 which are of degree < n — 1. 'This subset 4
is a subgroup of the additive group of 2[X1. Itis, however, not closed
under multiplication in 2[X]. We shall make the additive group 4 into
a field by introducing in 4 a new multiplication, which we shall denote
by o, and we shall show that the field thus obtained is the field whose
existence is asserted in the theorem.

Let g(X),A(X)ed. To define the new product g(X)oA(X) we
multiply g(X) and A(X) in A[X ] and we divide the resulting polynomial
by f(X), getting as remainder a polynomial »{X) which is either zero or
is of degree < n — 1:

M ZXM(X) = ¢(X)f(X) + r(X).
The polynomial 7(X') belongs to 4 and is uniquely determined by g(X)
and A(X) (f(X) being fixed).

We set
@ 8(X) 0 H(X) = ().

It is immediately seen that this multiplication in 4 is associative, com-
mutative and satisfies the distributive law. For instance, to prove the
assoctative law,

BX) o A(X) o [[X) = g(X) o TA(X) o X)),
we show that either product is equal to the remainder r'(X) obtained by
dividing g(X)A(X)(X) by f(X). Let us show, for instance, that
9(X) 0 h(X)] 0 [X) = 7(X).

By (1), g(X)h(X) — r(X) is divisible by f(X). Hence g(X)A(X)I(X)—
r(X)(X) is also divisible by f(X). Since also g(X)A(X(X) — r'(X)
is divisible by f(X), it follows that »(X){(X) — »'(X) is civisible by f(X).
Since r'(X) € ATX], (X)) is the remainder of the division of (X (X)) by
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f(X), and hence, according to our definition of the multiplication o, we
have r{(X) o {X) = r'(X), that is,
[g(X) o H(X)] o J(X) = 7' (X).

Thus we have now 4 defined as 2 commutative ring. The identity 1
of k[X1is also the identity of 4. We now prove that 4 is a field. Let
g(X) be any element of 4, different from zero. Since g(X)is of degree
less than 7 and f(X) is irreducible, the two polynomials g(X), f(X) are
relatively prime. Hence there exist polynomials A(X) and A(X) such
that A(X)g(X) + AX)f(X) = 1. In this identity we may assume
that A(X) is of degree < n — 1, since we may write A(X)=
B(X)f(X) + hy(X), with 8k < n — 1, and then we find £,(X)g(X) +
A(X)f(X) =1, where 4,(X)= A(X)+ B(X)g(X). Hence AX)
belongs to 4. In the case of the two polynomials g(X) and £(X) under
consideration, we find that (1) holds with ¢(X) = — 4A(X)and r(X) =1,
and hence 4 is a field.

If g(X) and A(X) are elements of 4 such that the (old) product
g(X)R(X) is a polynomial F(X) of degree < n, then from our definition
of multiplication- in 4 it follows that g(X)o 2(X) = F(X). Hence if
¢ € kand m 1s any integer < n, then the element cX™ of 4 is actually the
circle product co X o X o - - -0 X of ¢ and m factors X. Since addition
in 4 1s the same as addition in 2[X ], we conclude that X is a generator of
4 over k.

At this stage, it will be convenient to denote the element X of (X7,
when this element is regarded as an element of the field 4, by some
letter other than X, say, by x. When that is done, then, we can dispense
with the symbol o, used for multiplication in 4, without introducing any
ambiguity in our notation. We therefore write g(x)a(x) for g(X) o A(X).
Our last conclusion, to the effect that X is a-generator of 4 over &, can
now be expressed, without ambiguity, by writing: 4 = A{x).

Let now f(X) = X" 4 fi(X), where f;(X) has degree = n — 1. We
have X"-1.X = f(X) — f,(X), hence "= x""!.x = — fi(x), by
definition (2). Therefore x” 4 fi(x) =0, that is, f(x) =0. This
completes the proof of the theorem.

CoroLLARY. If kisa fieldand f(X) = agX" 4 a, X1 4 - - - + a,
ay 7% 0, s an arbitrary non-constant polynomzal n R[X1, there exists an
extension field K of k such that f(X) factors completely in linear factors
in K[X]:

) FX) = afX — 2 )(X —xp) - (X — %), %€k

For n = 1, there is nothing to prove. We use induction with respect
ton. We fix an irreducible factor ¢(X) of f(X) and we consider some
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simple extension k, = k(x,) of & such that g(x,) = 0. Then f(x,) = 0,
and therefore f(X) is divisible by X — &, in £4[X]: f(X) =
(X — x)fi(X), fi(X) ek [X]. Since fi(X) is of degree n — 1, there
exists, by our induction hypothesis, an extension K of %, such that
[iX) = @y X — 2 )(X — x5) - - - (X — x,), ;€ K, and from this (3)
follows.

§ 3. Algebraic extensions

DrerinttioN 1. If K D &, then K is an algebraic extension of k if every
element of K is algebraic over k. Extensions which are not algebraic are
called transcendental extensions.

The simplest example of an algebraic extension is the field A(x), x
algebraic over & That not only x but every element of this field is
algebraic over k& will follow from the theorem below and from the fact
that A(x) is a finite dimensional vector space over k (§ 2, Theorem 2,
Corollary).

TueorEM 4. If K D k and if the dimension of K (regarded as a vector
space over k) is finite, say n, then K is an algebraic extension of k, and every
element x of K satisfies an equatzon of degree £ n over k (whence the
minimal polynomzal of x 1n k[X] is of degree < n; see § 2, Theorem 1).

PROOF. 1, x, x%, , x* are linearly dependent over k.

DEeriNITION 2. T he dimension n of K over k is called the degree of K
over k and is denoted by [K : k]. Weset [K:k] = o0 if K, regarded as a
vector space over k, has infinite dimension. If [K: k] is finite, then K is
said to be a finite extension of k, or also that K|k is a finite extension.

CoroLLaRY. If K is an extension of k and x € K, then x 1s algebraic
over k if and only if k(x) is a finite extension of k. In that case, if n =
[k(x) : k1, the minimal polynomial of x in k[ X is of degree n.

This follows at once from the preceding theorem and from Theorem
20of§2.

Let &, K and L be fields such that :C KX C L and let [K: k] = =,
[L:K1=m. a

THEOREM A. If wy, wy, - -+, w, is a basis of Klkand &, &5, - -+, &,
1s a basis of L/K, then the mn products

(1) w;fj, i=1,2,-..’n;j=1’2’...’m’
Sform a basis of Ljk.
PROOF. If{isanyelementof L,then{ = ZA ¢,A;€ K. Further-

more, we have 4; —Za,) w;, a;; € k. Hence{-z Zau w;¢;. This

i=1 t=1 )_
shows that L, regarded as a vector space over %, is spanned by the mzn
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vectors w;£;. It remains to show that these mn vectors are linearly
n m

independent over k. Let > > c,w;f; =0, c,;ek. We set C; =
=1 =1

zﬂ c;;w;. Then > C:£;, =0, C; € K, and since the £'s form a basis of
i=1 Jj=1

L over K,wemusthave C; = 0,j=1,2,---,m. From > ¢c;;w; =0
i=1

and from the fact that the w’s form a basis of K over k, we conclude that
all the ¢,; are zero. This completes the proof.

An immediate consequence of the foregoing theorem is the following
relation:

(2) [L:k}=[L:K]-[K:k]
THEOREM B. If %4, %5, - - -, x, are in an extension field K of k and
are algebraic over k, then k(xy, x,, - - -, x,) ts an algebraic extension of

k, of finite degree.

PROOF. Each x;, being algebraic over %, is a fortiori algebraic over
k(xy, %9, * - -, %;_4). Hence k(xy, xy, -+, ;) is a simple algebraic
extension of A(xy, x,, + -, %;_,), and therefore [k(xy, 2y, - -, x;):
k(xy, %4, -+ -, %;_1)] = m; = a finite integer = 1 (by the corollary of
Theorem 4). It follows then from (2) that [k(xy, xy, - -+, %,): k] =
mym, - - - m,, and Theorem 4 is applicable.

CorOLLARY. If K is an extension field of k, the elements of K which are
algebraic over k form a field.

TuroreMm C. If K is an algebraic extension of k and L is an algebraic
extension of K, then L is an algebraic extension of k.

PROOF. Assume first that the degree [K : k] is finite, and let x be any
element of L. Since x is algebraic over K, the field K(x) has finite
degree over K. Hence by (2), K(x) has also finite degree over k, and
a fortiori k(x) has finite degree over k. 'This implies that x is algebraic
over k. In the general case, let X7 + 4, X"<1 4 ... 4+ A be some
polynomial in K[X] which has x as a root (for instance, the minimal
polynomial of x over K), and let K' = k(4,, A,, - -+, 4,). Then xis
already algebraic over K’, and since K’ is finitely generated over k&, the
relative degree [K' : k] is finite, by Theorem B. The assertion that x is
algebraic over k now follows from the preceding case.

CoroLLARY. Let K be an extension field of k and let k, be the subfield
of K consisting of the elements of K which are algebraic over k (see Corollary
of Theorem B). Then every element of K which is algebraic over k, belongs
o k.

We express this property of the field k&, by saying k, is algebraically
closed in K. We refer to k, as the algebraic closure of k in K.
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§ 4. The characteristic of a field. Let &k be a field and let ¢ be the
identity of k. The integral multiples ne of ¢(n = 0) form a subring E
of & [in view of the relations (n & m)e = ne L me, (nm)e = ne-me
(I, §4)], in fact the least subring of % containing e.

Let 4 be the quotient field of E in & (I, § 19). Any subfield of &
contains the ring £ and hence must also contain the field 4. Hence 4
is the smallest subfield of k, and is in fact the intersection of all the
subfields of k.

DerixiTiON 1. A field which does not contain any proper subfields is
called a prime field.

It follows from this definition that the above subfield 4 of % is a
prime field. Since every subfield of % contains 4, 4 is the only prime
subfield of k.  Thus every field k contains a unique prime field.

We consider the mapping

H n— ne

of the ring J of integers onto E. This mapping is a homomorphism (in
view of the relations given above). Two cases are possible: (a) either
(1) is an isomorphism, or (b) it is a proper homomorphism.

If (1) is an isomorphism, we say that % has characteristic zero. In
this case, we have ne 3 0 if n 3£ 0, and the ring E is an infinite ring,
isomorphic to the ring J of integers. The quotient field 4 of E in &
is then isomorphic to the field of rational numbers, the isomorphism

between the former and the latter being given by 2eoZ m#0
m m

(see I, § 19, Theorem 16). It is clear that if a field & is of characteristic
zero, then every subfield of % is of characteristic zero, and that if one
subfield of & is of characteristic zero, then & itself is of characteristic zero.

Wealso note that—as has just been shown—any prime field of character-
1stic ero is 1somorphic to the field of rational numbers.

We now consider the case in which the homomorphic mapping (1) is
not an isomorphism. In this case, the kernel N of (1), that is, the set of
all » such that ne = 0, contains at least one integer n which is different
from 0 (I, §11, Theorem 2). Since ne = 0 implies — ne = 0, the
kernel contains also positive integers. Let p be the least positive
integer in V. We have then

(2) pe=0
and
3) re7 0,1f 0 <r <p.

Since IV is a subring of J (I, § 12, Theorem 3, c), N contains also all the
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multiples mp of p. On the other hand, if # is an arbitrary integer, we
can write n = ¢p + 7, where 0 = r < p, and then we find that ne =
gpe + re = re, since gpe = 0. We have therefore,

4) ne = re, 0=r<p,

and hence, by (3), ne 3£ 0 if n is not divisible by p, for in that case 0 < 7.
The kernel N of the homomorphsim (1) consists therefore of all the
multiples of p.

Since 1.e = e # 0, p is greater than 1. We assert that p is a prime
number. For if p = nyn,, then 0 = (nyn,)e = (n,e)(nye), and hence
either n,e = 0 or ny,e = 0 (since k is a field and has no proper zero
divisors), that is, either n; or n, is equal to p. The prime number p is
called the characteristic of the field k. Every field k has therefore a
well-defined characteristic p which is either zero or a prime number
(> 1).

We continue with the case p # 0. Relation (4) shows that the ring E
is finite and consists of the elements:

0,e,2e---,(p — De.
These p elements are distinct, in view of (3).

The ring E is a field. For let ne be any non-zero element of E.
Since 7 is not divisible by p, # and p are relatively prime and hence
there exist integers 7 and ¢ such that mn — ¢p = 1. We have then
(me)(ne) = (mn)e = (qp)e + e = ¢, and so ne has the inverse me, which
proves that E is a field. (Note the similarity of this reasoning to that
employed in the proof of Theorem 2 in § 2.)

Let &’ be any other field of the same characteristic p £ 0 as k, and let
E’ be the set of integral multiples ne’ of the identity ¢ of k. It is then
immediately seen that the transformation ne — ne’ is an isomorphic
mapping of E onto E'. We thus see that if there exist at all fields of a
given characteristic p # 0, then there also exist prime fields of character-
istic p, and any two prime fields of the same characteristic p are iso-
morphic. Using the ring [ of integers, we can now construct fields of
any characteristic p # 0. The construction is quite similar to that of
simple algebraic extensions of a field %, used in the proof of Theorem
3"in§2. The role of theirreducible polynomial f(X) is now played by
the prime number p. We denote, namely, by §, the set of integers
0,1,2,---,p—1. If m and n are any elements of J,, we define
addition + and multiplication o in }, as follows: m + 7 is the remainder
of the division of m + n by p and m o n is the remainder of the division
of mn by p. Using arguments similar to those used in the proof of
Theorem 3’ in § 2, one proves that §, is a field. Since every element of
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¥, is clearly an integral multiple of 1 (that is, we have m =1 +4 1 +
-+« <4+ 1, m times, for all m such that 1 Em < p — 1), ¥, is a prime
field. Since ¥, contains p elements, p is the characteristic of ¥,.

The following identities hold in any field % of characteristic p:

(5) pa =0,

(6) (b £ )2 = b2 £ e,

where a, b and ¢ are elements of k. The first of these relations follows
from pa = p(ea) = (pe)a. The second relation is obtained by observing
that since p is a prime number, all the binomia! coefficients of (a + b)?,
except the first and the last, are divisible by p. Hence applying (5), we
have (b & ¢)? = b? + (£ 1)2c2. If p 3¢ 2, p is odd and (6) follows. If
p = 2, we have (b — ¢)? = b% + 2, but this time we have ¢ = — ¢?
since 2¢% = 0.

The identity (6) leads to an important consequence. Let k be a field
of characteristic p different from zero and let us denote by &? the set of
al! elements of & which are of the form a2, a € k. By (6), the set k? is
closed under addition and subtraction. Since we also have for any &
and ¢ in k: b2c? = (bc)? and—if ¢ 3¢ 0—b?[c? = (b/c)?, k? is also closed
under multiplication and division. Hence k? is a subfield of k. We
consider the mapping
N x—xP, xck.

Clearly, we have xy — x2.y?. This, in conjunction with (6), implies
that the mapping (7) is a homomorphism. Since ¥ = 0 implies x = 0,
1t follows that (7) is an isomorphism of k onto k».

DeriNtTION 2. A field k is called perfect if it is either of characteristic
zero or is of characteristic p 3£ O and coincides with its subfield ke.

It follows that if & is of characteristic p 5« 0, it 1s perfect if and only
if for every element x in %k there exists another element y in k such
that x = y?. This element y is uniquely determined by «, since (7) is
one to one. This element y is denoted by V.

If & is of characteristic p 3¢ 0 and is not perfect, there exist elements
in k which are not p-th powers of elementsof .. If xissuch an element,
there we agree to indicate this property of x by the notation: V/x ¢ k.

An example of a perfect field of characteristic p is the prime field ¥,.
To see this, we shall prove a more general result.

DerintrioN 3. A Galots field 1s a field containing only a finite number
of elements.

It is clear that the characteristic of a Galois field must be different
from zero, for any field of characteristic zero contains the (infinite) field
of rational-numbers.
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Now suppose that k is a Galois field and let p be the characteristic
of k. Since (7) is an isomorphism of k onto k?, the two fields have the
same (finite) number of elements. Since k? C £, it follows that & = k2.
We have thus proved

THEOREM 5. Every Galots field is perfect.

§5. Separable and inseparable algebraic extension. Let & be
a field and let £[.X] be the polynomial ring in the indeterminate X over
k. If

fX)=a Xt +a, X1+ ---+a,a,€ka,5#0,

is any polynomial in k[X], of degree n, we define the derivative f'(X) of
f(X) in the usual fashion:

FX) = naXrt 4 (1 = Da X2 4 -+ a, .

The derivative f'(X) is again a polynomial in 2[X]. If the characteristic
of k is zero, then a coefficient (n — #)a; of f'(X)i=0,1,---,n—1)
can be zero if and only if a; is zero. Hence f'(X) 5 0if n > 0.

Suppose, however, that k has characteristic p 2 0. In that case,
(n — 7)a; is zer0 if either a; = 0 or n — 7is divisible by p. In particular,
since a, 3% 0, we have na, = 0 only if » is divisible by p. It follows
that f'(X) = 0 if and only if n is divisible by p and all those coefficients
a; of f(X) are zero for which n — i is not divisible by . When that is so,
the terms @, X7—* which actually occur in f(X) are such that the exponent
n — i is divisible by p. That signifies that f(X) is a polynomial in XP,
that is, f(X) e k[X?]. This, then, is a necessary and sufficient condition
for the vanishing of f'(X).

DEerINITION 1. An irreducible polynomial f(X) in k[X ] is separable or
inseparable according as f'(X) 5 0 or f(X)=0. An arbitrary poly-
nomial f(X) in k[ X is separable if all its irreducible factors are separable;
otherwise f(X) is inseparable.

If k is of characteristic zero, every polynomial in k[X], of positive
degree, is separable. For fields of characteristic p % 0 we have the
following

THEOREM 6. A field k of characteristic p 5 0 is perfect if and only 1f
every polynomial in k[X] of positive degree is separable.

PROOF. Assume k perfect. It will be sufficient to show that every
irreducible polynomial in X[.X] of positive degree is separable. Now if
f(X) is an arbitrary polynomial in R[X] such that f(X) =0, then
f(X)ek[X?r], that is, we have f(X)=Zb X7 = (ZBX')?, where
B; = ¥/b; € k (since k is perfect), and hence f(X) is not irreducible.
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Conversely, assume that & is not perfect. There exists then at least
one element a in k such that a is not the p-th power of an element of k.
Set f(X) = X? — a. We have f(X) = 0, and hence the proof will be
complete if we show that X? — a is irreducible in R[X]. We shall prove
the following more general result:

THEOREM 7. If ack, Va¢ k and e is an integer = 0, then X?* — q
1s irreductble in k[ X].

PROOF. The theorem is trivial if ¢ = 0 for in that case we have
X?* — g = X — a (the condition V/a ¢ kis in this case irrelevant). We
now proceed by induction with respect to e. Let p(X) be a monic
irreducible factor of X?* — a in A[X] and let [p(X)* be the highest
power of p(X) which divides X?* — a:

ey X — a = [p(X)H(X), (p(X), H#X)) = 1.
Taking derivatives of both sides* and dividing by [p(X)¥*?, we have
the identity
he'(XW(X) + p(X)P'(X) = 0,

and hence §(X) divides the product ¢(X)J'(X). Since (X)) and
(X)) are relatively prime, we must have §'(X) = 0, for in the contrary
case ¢'(X) would be a non-zero polynomial of smaller degree than
HX), and H(X) could not divide '(X). We must therefore have
simultaneously: hp'(X) = 0, $'(X) = 0. The second of these relations
implies that (X) e k[ X?], say, ${X) = ,(X?), where ,(X) e r[X].
The first implies that the derivative of [p(X)I* is zero, whence also
[P € KX, say [p(X)] = g,(X?), ¢,(X) € KIX]. Hence, by (1),
we have X?* — g = ¢ (XP),(X?), or—replacing X? by X : X' — g
= (X )}(X). Since Xr*™* — ais irreducible in k[X1 (by our induc-
tion hypothesis) and since ¢,(X) is of positive degree, it follows that
(X)) is of degree zero, and hence ¢,(X) = 1 since both polynomials
Xr*' — gand ¢,(X) are monic. We have therefore X¢*™* — g = ¢,(X),
Xt — g = [p(X)]k. Were hamultiple of p, X** — a would be a power
of [p(X)lp, and since the coefficients of [p(X)1? belong to k? it would
then follow that also the coefficients X?* — 4 all belong to k?. This,
however, is in contradiction with our assumption that ¥a ¢ k. Hence
h is not divisible by p.  Since £ ¢(X) = 0, it follows now that ¢'(X) = 0,
(X ) e k[X?), and this implies at once that 2= 1 for otherwise the
relation X?* — a = [p(X)}* would imply that X?*"* — q is reducible in
R X]. Hence X — a = ¢p(X), Q.E.D.

* We use here the familiar rule for the derivative of a product. This rule is

a straightforward consequence of our purely formal definition of the derivative
of a polyndmial.
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A shorter proof of the above theorem can be given by making use
of the existence of an algebraic extension &’ of % such that ¢(X') has a
root a in k' (see Theorem 3’, §2). We have a = o#° and hence
X — a= (X — ). Itisnow easy to see that X?* — ais necessarily
a power of g(X). For assume this is not the case, and let /(X) be an
irreducible factor of X?* — g such that (p(X), $(X)) = 1. Then we
have an identity of the form A(X)p(X) + BXW(X) = 1, where A(X),
B(X)ek'X1. Since (X) divides (X — a}** in K'[X], « is a root of
#(X), and hence the substitution X — « in the above identity leads
to a contradiction (0 = 1). Since therefore @(X) is necessarily a
power of X — «, it follows that X?* — ¢ = [¢p(X)]?¥, p = 0, and the
fact that va ¢ k yields at once p = 0.

Let f(X) be a polynomial in R[X]. If f(X)e k[X?], then f(X) =
f1(X?), and the degree of f(X) is divisible by p. If also f,(X) € R[.X?],
then fi(X) = fy(X?) and f(X) = fo(X?*), and the degree of f(X) is
divisible by p2.  Since the degree of f(X) is finite, there exists an integer
e = 0 such that f(X)ek[X??], f(X)¢E[X?*""]. We set then f(X) =
[o(XP), n = degree of f(X), ny = degree of fo(X). Here f(X) ¢ R[X?]

and
n = nope.

DrerintTION 2. The integer ny is called the reduced degree of f(X), or
the degree of separability of f(X), while e and p¢ are called respectively the
exponent of inseparability and the degree of inseparability of f(X).

Tt is clear that an irreducible polynomial f(X) is separable if and only
if n = n,.

Let K be an extension field of a field & and let x be an element of K
which is algebraic over k.

DrrinttioN 3. The element x is separable or inseparable over k
according as the mimimal polynomial f(X) of x in k[ X] is separable or
tnseparable.

It follows that if % is of characteristic zero or is a perfect field of
characteristic p 5 0, then every algebraic quantity over k is necessarily
separable.

CoroLLARY 1. If x is algebraic over k and f(X) is the minimal poly-
nomial of x over k, then x is inseparable over k if and only if f'(x) = 0. If
x s inseparable over k and g(X) is any polynomial in k[X) such that
g(x) = 0, then g'(x) = 0.

For if f(x) = f'(x) = 0, f(X) irreducible, then necessarily f'(X) = 0
since f'(X) is of smaller degree than f(X'); and hence x is inseparable
over k. Conversely, if x is inseparable over %, then f'(X)=0
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and hence f'(x) = 0. If g(x) = 0, then f(X) divides g(X), g(X) =
AX)f(X), g'(x) = A(x)f'(x), and hence g'(x) = 0 if x is inseparable
over k.

Let g(X) be any polynomial in A[X] such that g(x) = 0. Since
x € K and g(X) is also a polynomial in K[X], X — x must divide g(X)
in K[X]. Let (X — x)° be the highest power of X — x which divides
gX)in K[X]:

2 &X) = (X — xyg(X),

where g,(X) € K[X] and g,(x) # 0. Since x belongs also to the sub-
field k(x) of K, a similar argument is applicable to the field k(x) (instead
of to K), and hence if (X — x) is the highest power of X — x which
divides g(X) in Ax)[X], then g(X)= (X — x)g,(X), where
2o(X) € R(x)[X] € K[X] and gy(x) 7 0. The identity (X — x)sg,(X)
= (X — x)g,(X), together with the inequalities g,{x) £ 0, g,(x) # 0,
implies that p = s, g(X) = g,(X). Hence the integer s depends only
on x and g(X), and not on the choice of the extension field K of %
containing x. 'This integer s is called the multiplicity of the root x of
2(X). Wesay that x is a simple root or a multiple root of g(X) according
ass=lors> 1.

Taking derivatives of both sides of (2) we find that if s = 1 then
gx)y=gx)# 0, and if s > 1 then g'(x) = 0. We can therefore
re-state Corollary 1 in the following form:

CoRoLLARY 2. If x is. algebraic over k and f(X) is the minimal
polynomial of x in R[X], then x is inseparable over k if and only if x is a
multiple root of f(X). If g(X) is any polynomial in R[X] such that
g(x) = 0 and if xis inseparable over k, then x is a multiple root of g(X).

DrrFiNiTION 4. An algebraic extension K of k is a separable extension
of k if every element of K is separable over k. In the contrary case, K is
called an inseparable extension of k.

From now on we shall assume in this section that the characteristic
pof kis # 0.

DeriNITION 5. An element x € K is purely inseparable over k if some
pe-th power of x belongs to k, e = 0. (In particular, if e = 0, that is, if
x € k, then x is purely inseparable over k.) K is a purely inseparable
extension of k if every element of K is purely inseparable over k.

CoroLLARY 3. If K is a finite purely inseparable extension of k, then
the degree [K : k] is a power of p.

By formula (2) of § 3 it is sufficient to prove the corollary under the
assumption that K is a simple extension of &, say, K = k(x). Let
e = 0 be the smallest integer such that x?° € k, and let x** = a. Then a
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is not a p-th power of an element of &, and hence the polynomial X?* — a
is irreducible in AT X ] (Theorem 7). Since x is a root of this polynomial,
X?* — a is the minima! polynomial of x over k& and hence (Theorem 2,
Corollary, § 2) Tk(x) : k] = p*.

LemMA 1. If x is both separable and purely inseparable over k, then
xek

PROOF. If ¢ is the least non-negative exponent such that x#° € k and
if x2° = q, then the proof of the Corollary 3 shows that X?* — g is the
minima!l polynomial of x in A[X1. Since x is separable over %, it
follows that f'(X) 0, and this is possible only if e =0. Hence
x € k, as asserted.

LemMa 2. If K is a separable algebraic extension of k and L is any
field between k and K (kR < L CK), then K 1s a separable algebraic
extension of L.

PROOF. Let x be any element of K and let f(X) be the minimal
polynomial of x in R[X]. Since x is separable over %, x is a simple root
of f(X), by the first part of Corollary 2. Since f(X) is also a poly-
nomial in L[X7], it follows then from the second part of Corollary 2 that
x is also separable over L.

If L is any subset of K, we denote by k(L) the subfield of K obtained
by adjoining to k all the elements of L, that is, 2(L) is the set of all
elements of K which are of the form f{x,, x5, - - -, &,)/g(%y, 24, - - -, x,),
where f(X;, X,, -+, X)), (X, Xy, -, X)) € kX, Xy, -, X, ], x,€ L
(f=12,---,n), g{x,, %5, - - -, x,) # 0 and 7 is an arbitrary integer.
We denote by £[ L} the ring consisting of all polynomials f{x;, x,, - - -, x,)
such as above. Then k(L) is the smallest subfield of K which contains
kand L, k[L] is the smallest subring of K containing k and L, and k(L)
is the quotient field of A[L] in K.

We shall denote by kL the set of all finite sums of products of elements
of & by elements of L. This set is, in general, not a ring, unless L is a
ring, and in the latter case we have AL = k[L}].

If L is a field and if every element of L is algebraic over k,
then k(L) = kL. Forinthat case we have for any elements x,, x,,***, x,
of L:k(xy, xg, -+, %,) = kixy, x5, - -+, x,) (Theorem 2, §2), hence
k(xy, x4, - - -, x,) T A[L] = kL.

We now proceed to prove the following criterion for separable
algebraic extensions:

TueoreM 8. If K is a separable algebraic extension of k, then RK? = K,
Conversely, if K is an extension of k such that kK? = K and if the extension
K/k is finite, then K is a separable exténsion of k.

PROOF. From a preceding observation it follows that kK? is a field.
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Moreover, every element of K is purely inseparable over kK?, for
K? CEK?. If K is a separable extension of %, it follows then from
k C kEK? C K and from Lemmas 1 and 2 that kK? = K, which proves
the first part of the theorem.

Assume now that kK? = K and that K is a finite (hence algebraic)

extension of k. LetTK: % =n. Let w,, w,y, -+ -, wy, be any elements

of K which are linearly independent over k. We assert that w,?,

wy?, - -, wy? are also linearly independent over k. TFor the proof of this

assertion, extend the set wy, w,, * -+, w, to a basis wy, wy, -+ -, w, of
n n

KJk. We have K= > kw; Kf=>kw?, K=FkK?r= Z kw?.
i=1 i=1

This shows that w,?, w,?, - - -, w,? also form a basis of XK over k whlch

proves our assertion. Now let x be any element of K, let f(X) be the
minimal polynomial of x over &, and let m be the degree of f(X).
Assume for 2 moment that x is inseparable over %, and let m, be the
reduced degree of f(X) (see Definition 2), so that my, < m. Then
1, x, x2, - - -, & are linearly independent over &, but 1, x#¢, x%¥, - . .|
x™? are linearly dependent over %, a contradiction. Hence x is
separable over k. Q.E.D.

CoROLLARY. If x is separable over k, then k(x) = k(x?), and therefore
k(x) is a separable extension of k. Conversely, if k(x) = k(x?), then x is
separable over k.

For if we set K = k(x), then K? = k¥(x?) and kK? = k(x?), and
since k(x) is a finite extension of &, it follows, by the theorem just proved,
that x is separable over & if k(x) = &(x?). On the other hand, if x is
separable over k&, x is both separable (Lemma 2) and purely inseparable
over k(x?), and hence x € k(x?), k(x) C k(x?) C k(x), i.e., k(x) = k(x?).
Thus K = kK?, and K is a separable extension of k.

THEOREM 9. If L is a separable extension of k and K is a separable
extension of L, then K is a separable extension of k.

PROOF. Since every element x of K is separable algebraic over k(L,),
where L is a suitable finite subset of L (depending on x), it is sufficient to
prove the theorem for finite extensions Ljk, K[/L. We have, by
Theorem 8, L = kL?, K = LK? = RL*K? C EK?, hence K = kK?.
Since K/k is a finite extension, K is separable over & (second half of
Theorem 8).

Tueorem 10. If x,, x,, - - -, x, are elements of K which are separable
over k, then k(xy, x,, - - -, x,) 15 a separable extension of k.
PROOF. Set K; = k(x,, X9, - -+, ¥;). Weknow that K| is a separable

extension of & (Theorem 8, Corollary). Assume that K is a separable
extension of k. Since x;,, is separable over K; (Lemma 2), it follows
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extension of 2 (Theorem 9). This completes the proof.

Let K be an arbitrary extension of % and let 2 be the algebraic
closure of & in K (see end of §3, p. 61). Let k, be the set of all
elements of K which are separable algebraic over 2. Then K C k, C &,
and &, is a field (Theorem 10). We shall refer to ky as the maximal
separable extension of k in K. 'We say that & is quasi-algebraically closed
in K if k = k,.

Let x be any element of % and let f(X) be the minimal polynomial of
x over k. Let p¢ be the degree of inseparability of f(X) (e = 0, if and
only if x€ky). Then x#° is separable over k, and therefore x*° € &,
Consequently x is purely inseparable over k,. 'This holds for any element
x of k; consequentlv k is a purely inseparable extension of ky. It follows
that any algebraic extension % of & can be obtained in two steps: a
separable extension & — %, followed by a purely inseparable extension
ko— k.

Let K be a finite algebraic extension of 2. In this case k = K. Let
no = [ko: £]. The degree [K: k4] is a power of p, since K is a purely
inseparable extension of %, (see Definition 5, Corollary). Let [K: k!
= pe. Then [K:R] = n =nyp?. The integers ny and p¢ are called
respectively the separable and the inseparable factor of the degree [K : £],
or also the degree of separability and the degree of inseparability of K/k.
In symbols

that K, , is a separable extension of K;, whence K, is also a separable

3) ny=[K: K, p'=I[K:H,
whence
€)) K:Rl=[K: %, [K:R,.

We consider now the special case in which K = A(x) = a stmple
algebraic extension of k. Let f(X) be the minimal polynomial of x over
k. Let ny be the reduced degree of f(X) and let p° be the degree of
inseparability of f(X), so that n = nyp¢, where n is the degree of f(X).
1t is not difficult to see that ny and p are equal respectively to Th(x) : k], and
[R(x): k];. Forlety =x#. Then y is separable over &, and k(y) is a
separable extension of k. Moreover [A(y): 2] = n,, since the minimal
polynomial of y over & has degree n,, The element x is purely in-
separable over (y), and hence any element of k(x) is purely inseparable
over &(y) (from x** € k(v) follows 22° € k(v) for all 2 1n A(x)). Itfollows
that every element of %(x) which is separable over % [and hence also
over k(y)] belongs to A(y) (Lemma 1). Hence A(y)= ko, and
ny = Th(x): k],, Wehaveny p*=n=Th(x): k] = [k(x): k], [k(x): &];
= nqy-[R(x): k];, and therefore p* = [k(x): R];, as asserted.
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§ 6. Splitting fields and normal extensions. We have shown in
§ 2 that if f(X) is any polynomial in 2[X ], then there exists an extension
K of k such that f(X) factors completely in K[X] into linear factors:

(1) JX) = agX —x)(X —xp)- - (X — ), x€K.

Here a, is the leading coefficient of f(X). If f(X) is irreducible in
k[ X1, then the n quantities x; are distinct [and hence each ; is a simple
root of f(X)], if and only if f(X) is a separable polynomial (see § 5,
Definition 3, Corollary 2). If f(X ) is reducible in £27X71, then the x;
are distinct if and only if f(X) is a separable ponnomlaI and has no
multiple factors in 2[X]. This follows from the fact that two distinct
irreducible monic polynomials in A2[X] cannot have a common root in
any extension field of & (a quantity x» which is algebraic over % has a
unique minimal ponnomiaI in £[X7).

TreorREM 11. Iff(X)isan zrreduable inseparable polynomial in R[X 1,
of reduced degree n, and exponent of inseparability e, then each linear
factor in (1) appears exactly pe times.

PROOF. We have f(X)= p(X?°), where ¢(X) is an irreducible
separable polynomia! in 2[X]. Each element x;#* is a root of @(X),
necessarily a simple root, and hence @(X) = (X — x?°)p,(X), where
p(X) e KiXTand p(x°) £ 0. We have, then, f(X) = (X — x,)?*f{X)
where fi(x;) = p(x*) ¢ 0. This shows that X — x; is exactly a
pe-fold factor of f(X), as asserted.

Let K be an extension field of % in which f(X) factors completely into
linear factors and let (1) be the factorization of f(X) in K[X]. The
field A(x;, x4, - - -, x,) is clearly the smallest subfield of K which contains
k and in which f(X) factors completely into linear factors.

DerinttiON 1. The field k(xy, o, - - -, x,) s called a splitting field
over k of the polynomial f(X).

A splitting field of f(X), over k, is therefore any extension field L of &
in which f(X) factors completely into linear factors and which is generated
over k by the roots of f(X) in L.

We have proved in § 2 (see Theorem 3) that if f(X) is an irreducible
polynomial in 2[X] and x, x” are roots of f(X) in some extension fields
K and K’ of & respectively, then the fields 2(x) and &{(x") are k-isomorphic
extensions of 2. Our next object is to prove the following analogous
result for splitting fields: if f(X) is an arbitrary polynomial in kI X1 (not
necessarily irreducible), any two sphitting fields of f(X) over k are k-iso-
morphic extensions of k. Before we do that, we restate Theorem 3 of
§ 2 in a slightly more general form:

LeMMA 1. Let 7 be an isomorphism between two fields k and k and let



§6 SPLITTING FIELDS AND NORMAL EXTENSIONS 73

¢(X) = apX" + a, X"~1 - - - +a, be an irreducible polynomial in
k(X1 Let p(X) = lp(X)Ir be the corresponding polynomial in k[X],
that is, let (X)) = apX* 4+ a, X7~1 + - - - + 4, where 4; = a;7. Let,
moreover, x be a root of (X)) in some extension field of k and let % be a root
of ®(X) in some extension field of k. Then the isomorphism T can be
extended to an tsomorphism p of k(x) onto k(x) such that xp = %, and the
extension 1s unique.

If k = kand r is the identity, then the lemma coincides with Theorem
30of §2. In the general case, the proof of the lemma is similar to the
proof of Theorem 3 and may be left to the reader.

The uniqueness theorem on splitting fields, which we propose to
prove, is the following:

THrOREM 12.  Let k, k and T have the same meaning as in the preceding
lemma, and let f(X) be an arbitrary monic polynomial in k{X], of degree n.
Let f(X) = [f(X)lr be the corresponding polynomial in RTX1 and let
k', k' be splitting fields over k and k of f(X) and f(X) respectively. Then
the isomorphism T can be extended to an isomorphism p of k' onto k', and
any such extension p sends each root of f(X) in k' into a root of f(X)in k'
(and similarly p=* sends each root of f(X) into a root of f(X).

PROOF. The theorem is trivial for » = 1. We shall therefore
proceed by induction from # — 1 to n. Let ¢(X) be an irreducible
factor of f(X) in A[X1 and let (X)) = [p(X)]r be the corresponding
irreducible factor of f(X) in A{X1. Then both ¢(X) and ¢(X) have
roots in &’ and &’ respectively. We fix a root x; of ¢(X) in £’ and a root
¥, of X)ink". By Lemma I, there exists an isomorphism r, between
k(x,) and k(%) which is an extension of  and which sends x, into %,.
Let f(X) = (X — x)f,(X) and f(X) = (X — £)/i(X). The poly-
nomials f,(X) and f,(X) have coefficients in k(x,) and A(%,) respectively,
and are of degree n — 1. It is clear that they are corresponding
polynomials under the isomorphism 7, between k(x,) and k().
Furthermore, the fields &' and k" are respectively splitting fields of
Jf1(X) over k(x,) and of f,(X) over k(&,). It follows from our induction
hypothesis that the isomorphism 7, can be extended to an isomorphism
pof k onto . Then pis an extension of r, and since the last statement
in the theorem is self-evident, the proof is complete.

COROLLARY. Let k' be a splitting field over k of a polynomial f(X)
whose coefficients belong to a certain subfield ky of k. Then any k-
isomorphism of k into k' can be extended to an automorphism of k'.

For, in the present case, the isomorphic field 4 is contained in &', and,
on the other hand, the polynomial f(X) coincides with f(X). Hence
we can take for &’ the field & itself.
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The preceding theorem has several important consequences. We
recall (§ 2, p. 57) that two algebraic elements x and y of an extension
field K of k are said to be conjugate over k if they are the roots of one
and the same irreducible polynomial in A[X1. It was shown earlier in
this section that if an element x of K is a root of an irreducible poly-
nomial f(X)in k[X], of reduced degree n, and exponent of inseparability
e, then x is a pe-fold root of f(X). Hence x has at most n, conjugate
elements in K (including x itself). If the number of conjugate elements
of x contained in K is exactly n,, or—what is the same thing—if f(X)
factors completely in K[X] into linear factors, then we shall say that
*“ K contains all the conjugates of x over k.”

DEFINITION 2.  An extension K of k is said to be normal over k, or a
normal extension of k, if K is an algebraic extension of k and if every
trreducible polynomial f(X) in k(X ] which has a root in K factors com-
pletely in K[X1 into linear factors, or—what is the same thing—if K
contains then a sphitting field of f(X) over k.

It is clear that this definition is equivalent to the following: K is a
normal extension of k if K is an algebraic extension of k and contains with
every element x also all the conjugates of x over k.

Cororrary 1. If K is a finite normal extension of k, then K is a
splitting field of some polynomial f(X) in R[X .

For let K = k{ay, ay, - -+, @,,) be a finite normal extension of &, and
let f{X) be the minimal polynomial of e, in £7X1. Since K is normal
over k, K contains a splitting field of f(X) over k. Then K also
contains a splitting field, over &, of the product f(X) of the m poly-
nomials f,(X). Since K is generated over k by roots of f(X) (namely
by ay, g, - - -, ), it follows that K itself is a splitting field of f(X)
over k.

CoroLLARY 2. If K is a finite normal extension of k and o, B are any
two elements of K which are conjugate over k, then there exists a k-auto-
morphism of K which sends « into B.

For, by Corollary 1, K is a splitting field of some polynomial f(X) in
R’ X1. Then K is also a splitting field of f(X) over k(«) anc also over
R(B). Since there exists a k-isomorphism of k() onto k(8) which sends
« into B, our corollary follows at once from Theorem 2.

CoroLLARY 3. Let K be a finite normal extension of k. If an element
o of K is left invariant under all k-automorphisms of K, then « is purely
inseparable over k.

For « must then coincide with all its conjugates over k, by Corollary
2, and hence the minimal polynomial of « in AfX] has reduced
degree 1.
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CoroLLARY 4. If K is a finite normal extension of k and if L is a field
between k and K, then any k-isomorphism of L into K can be extended 1o
an automorphism of K.

Apply the corollary of Theorem 12, taking for ', k, and k, the fields
K, L, and k respectively.

We shall have occasion to use the following lemma:

Levva 2. Let k C L C A C K be successive finite algebraic extensions
of k, where K is a normal extension of k. If 4 possesses n L-tsomorphisms
into K, then every k-isomorphism of L into K has exactly n extensions which
are isomorphisms of A into K.

PROOF. Let G be the group of all k-automorphisms of K and let G(L)
(respectively, G(4)) be the subgroup of G consisting of those auto-
morphisms of K which leave fixed every element of L (respectively,
of 4). Tt is clear that G(4) is a subgroup of G(L). Let

M) G = U G
) G = 6wy,

be the decomposition of G(L) into right G(4)-cosets and that of G into
right G(L)-cosets. Then the mn G(d)-cosets are distinct and

@) G = LJJ Gl)p

is the decomposition of G into right G(4)-cosets.

It is clear that the m automorphisms ¢, have distinct restrictions to L
and that the restriction of any element ¢ of G to L coincides with the
restriction of one of the ;. Since by Corollary 4 to Definition 2 every
k-isomorphism of L into K is the restriction of some automorphism of
K, it follows that L has exactly m k-isomorphisms into K and that these
are given by the restrictions of iy, iy, - * -, ¢, to L.

In a similar fashion it follows from (3) that 4 has exactly mn k-iso-
morphisms into K and that these are given by the restrictions of the mn
products g4f; to 4. Now, since each g, reduces to the identity on L and
since ¢; and ;. have distinct restrictions to L if j 3 j', it follows that
each k-isomorphism of L into K, say the isomorphism represented by the
restriction of ¢, has exactly » extensions to 4 which are k-isomorphisms
of 4 into K, namely the restrictions of gy, b, - -+, @b, to 4. In
particular, the identical isomorphism of L into K has also » such exten-
stons to 4, that is, 4 possesses exactly n L-isomorphisms into K. This
completes the proof of the lemma.
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We now prove the converse of Corollary 1 to Definition 2.

THEOREM 13. Any splitting field over k of a polynomial f(X) in k[ X]
is a finite normal extension of k.

PROOF. Let K be a splitting field, over &, of a polynomial f{X) in
k(X7 and let ¢(X) be any irreducible polynomial in A[XT which has a
root o in K. We fix a splitting field K’ of o(X) over K. Let 8 be any
root of @(X) in K’. Since @(X) is irreducible over &, we have a
k-isomorphism 7 between k(x) and k(B8) which sends « into 8. This
isomorphism leaves f(X) invariant (since the coeflicients of f are in k),
and on the other hand the fields K and K(fB) are splitting fields of f{X)
respectively over k(«) and k(B) [since k(a) C K, k(B) © K(B) and
K = k(xq, x5, - -+, x,)]. Hence, by Theorem 12, the isomorphism
of k(a) onto k(B) can be extended to an isomorphism p of K onto K{(j).
We are dealing here with an isomorphism p of K into a field containing
K, namely into K'. Since p is also a k-isomorphism and since the
polynomial f(X), whose coeflicients are in k, factors completely in
K[X1 into linear factors, it follows that p must transform onto itself the
set of roots of f(X) in K. Since the roots of f(X) in K generate K
over k, it follows that p is an automorphism of K. Since « € K and
ap = B, we have B€ K. We have thus proved that K contains all the
roots of @(X) in K’ (whence K actually coincides with K’). This
shows that K is a normal extension of & and completes the proof of the
theorem.

Let K = k{ay, a3, * + +, ) be a finite extension of & and let f,(X) be
the minimal polynomial of «; in £[X 7. We set f(X) = f{(X)fo(X) - - -
f(X) and we consider a splitting field K’ of f(X) over K. Since K is
generated over & by roots of f(X) (namely by ay, a,, - - -, o) it follows
that K’ is generated over & (and not only over K) by the roots of f(X),
whence K’ is also a splitting field of f(X) over k. By Theorem 13, K’ is
then a normal extension of 2. We have therefore constructed an over-
field K’ of K which is normal {(and finite) over k. If K, is any feld
between K and K’ which is normal over &, then each of the m poly-
nomials f;{X') must factor completely in K;[X] into linear factors (since
J{X) is irreducible in A[.X1 and has a root in K;[X1, namely «;). This
shows that K’ coincides with K;. Hence K’ is a {east normal extension
of & which contains K as a subfield. We note furthermore that if K" is
any normal extension of & which contains K as a subfield, then K” must
contain a splitting field of f(X) over & (since this must be so for each
trreducible factor f{X) of f(X)) and the latter field will of course
contain K. In particular, then, if K” is a least normal extension of %
containing K as a subfield, then K” must be itself a splitting field of
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f(X) over K, and hence K’ and K" are K-isomorphic (Theorem 12).
We have therefore proved the following theorem:

THEOREM 14. If K is a finite extension of k then there exists a least
normal extension of k containing K, and any two such extensions are
K-isomorphic.

An almost immediate consequence of this theorem and of Corollary 2
of Definition 2 is the following theorem which gives a characteristic
property of finite normal extensions:

THEOREM 15. A finite extension K of k is normal over k if and only if
it satisfies the following condition: if K’ is any extension of K then any
k-isomorphism of K into K' is necessarily a k-automorphism of K.

PROOF. That any (finite or infinite) normal extension K of % satisfies
the condition of the theorem is obvious, since a k-isomorphism of K
into K’ sends any element of K into a conjugate element over k.
Conversely, assume that a finite extension K of & satisfies that condition.
We fix a finite extension K’ of K which is normal over k&, for instance a
least normal extension of k& containing K (Theorem 14). If y is any
element of K, then K’ contains all the conjugates of y over k. If
¥y’ 1s one of these conjugate elements, then there exists a k-auto-
morphism p of K’ which sends y into y" (Definition 2, Corollary 2).
Then p induces a k-isomorphist of K into K’, and by our assumption
this induced k-isomorphism is necessarily a k-automorphism of K.
Hence y = ype K (since y€ K). We have thus shown that K
contains all the conjugates of v over k. Since ¥ is an arbitrary element
of K it follows that K is normal over k. Q.E.D.*

As a final application of the preceding results, we shall now investigate
the following question: if K is a finite normal extension of k, how many
k-automorphisms does K admit? We incorporate the answer to this
question in the following more general result:

THEOREM 16. Let L be a finite algebraic extension of k and let K be an
extension field of L which is normal over k. If ng is the separable factor of
the degree TL : k), then there exist precisely ng distinct k-isomorphisms of L
into K.

PROOF. In the proof we may assume that K is a finite extension of k,
in fact we may even assume that K is a least normal extension of k& con-
taining L, for every k-isomorphism of L into K necessarily maps L into
the least normal extension of & which contains L and is contained in K.

* It is clear (and follows also directly from the proof) that Theorem 15 re-
mains true also if only finite extensions K’ of K are allowed in the statement of
the theorem; in fact the theorem remains true if we take for K’ a fixed normal
extension of k.
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The theorem is obvious in the case 7, = 1, for in that case every
element of L is purely inseparable over k and therefore is left invariant
by every k-isomorphism of L into K; that is, the identity is the only
k-isomorphism of L into K. The theorem is also obvious if L is a
simple extension of &, say L = k(x). For in that case, 7, is also the
reduced degree of the minimal polynomial of « in ALX7? (see end of
§ 5, p. 71). Hence « has exactly 7, conjugate elements in K (that is,
conjugate over k). If aj, ay -, a, are these conjugate elements
(e; = «), then there exists a unique k-isomorphism 7; of k() onto k(e,)
which sends « into «;. It is clear that the 7, isomorphisms 7; {7, = the
identity) are the only k-isomorphisms of k() into K, since any k-
isomorphism of k(«) into K must send « into a conjugate element of «
over k, that is, into one of the elements «,.

After these preliminary remarks, we proceed to prove our theorem by
induction on n,. We assume namely that the theorem is true for ali
finite algebraic extensions of & for which 7, is less than a given integer
m,m > 1. Letn, = mfor the given field L. Since m > 1, there exist
elements in L, not in &, which are separable over k.. We fix one such
element, say, «. Let s be the degree k() : k. Since « is separable
over k, the maximal separable extension of k in L coincides with the
maximal separable extension of k(e) in L. It follows that if we denote
by 7 the separable factor of the degree [L: k(a)], then m = s7. Since
s > 1, we have r < m. By our induction hypothesis, the theorem is
therefore valid for L if we replace & by k{«). Hence there exist exactly 7
distinct k(e)-isomorphisms of L into K (note that K, being normal over

k, is a fortiori normal over k(a)). Let 7,, 7, ---, 7, be the A(«)-
isomorphisms of L into K. Since K is normal over %, K contains all
the conjugates of c over &, say ay, &y, -+ +, .. Foreach j=1,2,--- 5,

we fix a k-automorphism o; of K which sends « into «; (Definition 2,
Corollary 2) and we set p;; =705, i=1,2,-+-,5;7=1,2,---,7
Then each p;; is a k-isomorphism of L into K. The m(= rs) isomor-
phisms p,; are distinct. For we have ap;; = ao; (since « is left invariant
by 7.), and hence if p;; = p;; then ao; = ac;, thatis, «; = ;. This
implies § = §', and from this it follows at once that =, = 7, (since
the o, as automorphisms of K, are univalent mappings of K). Hence
i=1', and this proves the assertion that the m isomorphisms p;; are
distinct. Now let p be an arbitrary k-isomorphism of L into K. The
element « is transformed by p into one of its conjugate elements
ay, &g, 0, . Let, say, ap =a;. Then po;~! is a k-isomorphism
of L into K which leaves « fixed, that is, po;~! is a k(«)-isomorphism
of L into K. Hence po;~! coincides with one of the isomorphisms
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T1 Toy * * s Ty, SAY, With 7, and hence p = 7,0, = p,;. This completes
the proof.

CoroLLARY 1. Let L be a finite algebraic extension of k and let n, be the
separable factor of the degree [L : k1. Then L possesses at most n, k-auto-
morphisms, and the maximum n, ts reached if and only if L is a normal
extenston of k.

The first part of the corollary is an immediate consequence of the
Theorem 16 and of the existence of finite extensions K of L which are
normal over k. If L is a normal extension of %, we can identify, in
Theorem 16, the field K with L and we deduce then that L possesses
n, k-automorphisms. Conversely, if L possesses 7, k-automorphisms,
then it follows from the above theorem that if K’ is any extension
field of L, every k-isomorphism of L into K’ is necessarily an auto-
morphism of L. Hence, by Theorem 15, L is a normal extension of k.

CoroLLARY 2. If R C L C A4 are successive finite algebraic extensions
of k, then
(4) (4: k] = [4: L, [L: &,

(5) [4:kl={4:L];-[L:kL.

It 1s sufficient to prove (4) since the product of the right-hand sides of
(4) and (5) is equal to the product of the left-hand sides, in view
of relation (2) of §3 and relation (4) of §5. Let my=TL:Z},
ny=[4:L),. Then n,is the number of L-isomorphisms of 4 into K,
where K is some extension of 4 which is normal over £ (for instance, the
least normal extension of % containing 4), and m, is the number of -
1somorphisms of L into K. By Lemma 2, the product mgn, is the
number of k-isomorphisms of 4 into K, and since this number is equal
to [4: kI, relation (4) is proved.

Another proof of (4) can be based on the following property of finite
separable extensions K[k established in the course of the proof of
Theorem 8 of § 5: if x,, xy, - - -, x, are elements of K which are linearly
tndependent over k, then for any integer e = 0 also the elements x,7°, x,?°,

, %2 are lLnearly independent over k. Let L, 4, and 4'; be
respectively the maxima!l separable extension of 2in L, of L in 4, and of
kind. We have kRCL,CLCA4,C4, kCL,C4,C4,C4, and

AR, =4y Rl =T4"g: Lyl-TLy: Rl =T4"q: Ly}-TL: k. Henceto
prove (4) we have to show that

(6) [4'g: L) = [4,: L.

Let x4, x5, - - -, x,, be elements of A’ which are linearly independent

over L, The x; are also in 4,; we assert that they are linearly inde-
pendent over L. For let Y ux, =0, u;eL. Since L is a purely
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inseparable extension of L,, we have u?‘ € L, for some integer e = 0,
and also > #?°x?* = 0. From this relation and from the separability of
the extension 4’y/L it follows that #?* = 0, u, = 0, and this proves our
assertion. We have therefore shown that [4'q: L] < [4,:L]. On
the other hand, let now x,, x,, - - -, x, be elements of 4, which are
linearly independent over L. Since 4, is a purely inseparable extension
of 4’,, there is an integer e = 0 such that the pe-th powers of the x;,
belong to 4’,. In view of the separability of the extension 4,/L, the
pe-th powers of the x; are still linearly independent over L, and hence
also over the subfield L, of L. We have thus found # linearly inde-
pendent elements of A’ over L,. 'This shows that [4,: L1 =< [4',: L]
and establishes (6).

§7. The fundamental theorem of Galois theory. If K is any
field, then the automorphisms of K clearly form a group (of transforma-
tions). If K contains a subfield &, then also the k-automorphisms of K
form a group. If K is a finite normal extension of k, the group of
k-automorphisms of K is called the Galois group of K with respect to k.
We shall denote this group by G(K/k). By Theorem 16 of § 6, G(K/k)
is a finite group.

Let K be a finite normal extension of k. If H is any subgroup of
G(K/E), then it is easily seen that the elements of K which are left
invariant under all the automorphisms belonging to H form a subfield
of K. We denote this subfield by F(H) (the fixed field of H). On the
other hand, if L is any subfield of K such that k C L, then K is also a
normal extension of L, and the Galois group of K with respect to L is
clearly a subgroup of G(K/k); it consists precisely of those auto-
morphisms in G(K/k) which leave invariant every element of L.

The fundamenta! theorem of Galois theory asserts the following:

Tueorem 17. If K is a finite normal separable extension of k, then
there is a one-to-one correspondence between the subgroups H of G(K[k) and
the subfields L of K which contain k, corresponding elements H and L being
such that L = F(H) and H = G(K/L).

PROOF. The correspondence L — G(K/L) defines a mapping of the
set of all subfields L of K which contain k into the set of all subgroups of
G(K|[k). If Lisagivensubfield of K containing k and if H = G(K/L),
then it follows from the separability and normality of K/L and from § 6,
Definition 2, Corollary 3, that L = F(H). Hence the above mapping
L — G(K|L) is univalent. To complete the proof of the theorem, it
remains to show that the mapping is onto the set of all subgroups of
G(K|[k). Let H be any subgroup of G(K/k) and let L = F(H). We
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shall show that H is the Galois group of K with respect to L. The
proof of this assertion will complete the proof of the theorem.

It is clear that H C G(K/L). Let n denote the order of the group H.
Suppose that it has already been proved that

(1) K:L1 <n.

Since K is a norma! and separable extension of L, we have, by Theorem
16, Corollary (§ 6), that the order of G(K/L) is equal to [K : L), hence is
< n, by (1). On the other hand, H is a subgroup of G(K/L) and has
order n. It follows at once that H = G(K/L), as asserted.

It remains to prove the inequality (1). Let oy, 05 -, 0, be
arbitrary n + 1 elements of K. We have to show that these elements
are linearly dependent over L. In the proof we may assume that no o,
is zero. Let 7y, 75, - - -, 7, be the elements of the group H. We find
a set of n 4 1 elements ¢; in K, not all zero, such that the following
system of n homogeneous equations is satisfied: *

ntl
(2) z ciler) =0, 1=12,---,n

i=t
Among all such sets {¢,, ¢y, - - -, ¢, 1} We choose one with the smallest
number of non-zeros. We assume that {c,, ¢y, - - -, ¢, ,} has already
been chosen in this fashion. Let, say, ¢, ¢5 - -,¢, #0, ¢,uy =
CGpo="""=¢64 =0 Then r=2, for if r=1, then a;7; =0,
ay = 0 [since {7y, 75, - - -, 7,} is @ non-empty set of automorphisms of K
(the identity belongs to the set)]. We have then

r

(3) Z Cj(aj'ri) = O’ 1= ly Zy R (N
=1
and, in particular, taking for 7; the identity of H, we have
(4) z Cjaj == O
j=1

We may assume that ¢, = 1.  We claim then that c,, - - -, ¢, belong to L,
whence by (4) «,, - - -, o, are indeed linearly dependent over L, as
was asserted.

We have to prove that ¢;7, = ¢;, 1 = 1,2, - - -, n (since L is the fixed

* We presuppose here the knowledge of the theory of simultaneous linear
homogeneous equations, with coefficients in a field K (see, for instance,
G. Birkhoff and S. MacLane, 4 Survey of Modern Algebra, Chapter X). The
existence of a non-trivial solution (¢, ¢g, ** *, cpt1) 0f (2) follows from the
theory of vector spaces which was developed in I, § 21 [the set of all n-tuples
(%1, X9, ° * ', %a), %; € K, is an n-dimensional vector space over K, and hence
the n + 1 vectors v; = (a;7y, o;75,* * +, ;7,) are linearly dependent over K.
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field of H). Let us prove for instance that ¢,7; = ¢;. If we apply to
(3) the automorphism 7, of K we find

Z (ijl)(ajflﬂ'l) =0, {= 1,2, ,m.

J=?
The n products 7,7, give again all the elements of the finite group H.
Hence we have

) Dleir)eir) =0, i=1,2,---,n
=1

Subtracting (5) from (3) and taking into account that ¢; = ¢;7; = 1, we
find
Z (CJ'7-1 - J')(aj'ri) = O, 7= 1’ 2’ <.

=2
Here we have a set of n relations similar to (2), but the number of terms
in each of these relations is Jess than 7. Hence, by our choice of the

set{cy, €50+, 6,0,0, -+, 0}, wemusthave c;7, = ¢;,7 = 2,3,---,7.
In a similar fashion we can prove that ¢;r,=¢;, j=2,3,---,7,
i= 1,2, -, n, and this completes the proof of the theorem.

CoroLrarY. IfkC L CK,then Lis a normal extension of kif and only
if G(K]|L) is an invariant subgroup of G(K|R), and when that is so, then
the Galois group G(L[k) is isomorphic to the factor group G(K[k)/G(K[L).

Let H = G(K/L). If ris any fixed element of G{(K/k), it is immedi-
ately seen that the elements of the form xr, x € L, form a subfield of KX,
which we shall denote by Lr, and that 7 Hr = G(K/L+). If Lisa
normal extension of k&, then L7 = L (Theorem 15, §6) and hence
7=Hr = H, and H is an invariant subgroup of G(K/k). Conversely,
if H is an invariant subgroup of G(K/k), then we have H = r—1Hr =
G(K/[L), that is, G(K/L) = G(K/L7). Hence, by the theorem just
proved above, L = Lr. This holds for all elements = of the Galois
group G(K/k), and therefore L is a normal extension of % (see footnote
at the end of proof of Theorem 15). Furthermore, the mapping
T — restriction of 7 to L {r € G) is a homomorphism of G(K/k) into
G(L/k), with kernel H. From Corollary 4 to Definition 2 of §6, it
follows that this homomorphism is onto G(L/k), and this establishes the
last part of the corollary.

§ 8. Galois fields. Let K be a Galois field of characteristic p (see
Definition 3, § 4) and let ¥, be the prime field containedin K (§4). In
view of the finiteness of K it follows at once that K is a finite algebraic
extension of ¥, (see, for instance, Theorem 4, § 3). Let # be the degree
(K: ¥, and let {x,, x,, - - -, x,} be a basis of K over J,. Then every
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element of K has a unique expression of the form a,x, 4 a,x, + - - - 4+
a,x,, a; €J,. Since each coefficient g; can take independently p values
(¥, being a field containing exactly p elements), i follows that the
number of elements in K is p». 'Thus the number of elements of a Galois-
field of characteristic p is always a power of p.

We note that a similar argument can be applied to obtain the following
results: if k is a Galois field consisting of m elements and if K is a finite
extension of k, of degree n, then K consists of m" elements (and is therefore
also a Galois field).

The elements of K, other than 0, form a multiplicative group, of
order # = p* — 1. We have therefore «* = 1 for all elements x of this
group, and consequently x?" — x = 0 for all elements x of K (including
0). Since the degree of the polynomial X?" — X is the same as the
number of elements of K, we conclude that the polynomial X*" — X
factors completely into linear factors in K[X]| and that we have

p"
(D X —X=11(X—0q),
=1
where oy, ay, - - -, o0 are all the elements of K. It follows also that K is

a splitting field, over ¥,, of the polynomial X?* — X, and is therefore a
normal extension ¥, (§ 6, Theorem 13). Hence, by Theorem 12 (§ 6),
any two Galots fields with the same number of elements (and consequently
of the same characteristic p) are isomorphic.

The Galois field having p” elements is denoted by GF(p"). That
there exist fields GF(p") for any prime number p and any positive integer
n follows from the existence of splitting fields (§ 6). Namely, it is
easily shown that any splitting field of the polynomia! X?" — X, over ¥,,
is in fact a field GF(p"). The proof is as follows:

Let K be a splitting field of X?" — X, over ¥,, and let (1) be the
factorization of X?" — X into linear factors in K[X]. Since the deriva-
tive of X?* — Xis — 1, it follows that each «; is a simple root of X" — X
(§ 5, Definition 3, Corollaries 1 and 2). Hence the p” elements o, are
distinct. If o; and «; are any two roots of X?" — X in K, then
(0 — )P = o " — o = o, — a, ()" = e = o0, and if

furthermore o; 3% 0 then also (a;=)*" = «,~%. In other words:

o, — a;, e and—if «; % 0—also ;=1 are roots of X?" — X in K and

therefore belong to the set {ay, ay, - -+, @y}  Consequently this set is a
subfield K' of K, and K’ is a Galois field of p* elements. Clearly
J» ©K’, and hence K’ = J,(ay, @y, * - -, apn) = K, as asserted.

THEOREM 18. The multiplicative group of a Galois field GF(p) is
cyclic.



84 ELEMENTS OF FIELD THEORY Ch. 11

PROOF. Let & = ¢;".gy"» - - - ¢,’m be the decomposition into prime
factors of the order % of the multiplicative group of GF(p")(k = p* — 1),
and let %; = k/g;. The polynomial X* — 1 has at most %; roots in
GF(p"), and since k; < k it follows that there exist elements 3 0 in
GF(p") which are not roots of this polynomial. We fix such an element
B; for each i =1,2,---,m and we set y, = B4, y = .y, - - y,.
We have y 2t = 1, whence the order of y; is a divisor of ¢,%: (see 1, § 3)
and is therefore a power ¢ of g, s; =7, On the other hand,
y 4" = B #£ 1. Hence y, is exactly of order ¢/:.  We claim that h
1s precisely the order of y. For assume the contrary. Then the order of
¥ 1s a proper divisor of % and is therefore a divisor of at least one of the
m integers h/q;, say of 2/g,. We have then 1 = ybla, = y Moy hie, . . .
Vu'%. Now if 2 £ 7 = m, then ¢7: divides k/q,, and hence y /4 = 1.
Therefore y,#/4, = 1. This implies that the order of y, must divide
h/g,, which is impossible since the order of y, is g,":.

The cyclic subgroup of the multiplicative group of GF(p"), generated
by the element y, is therefore of order # = order of the multiplicative
group of GF(pm). Hence y is a generator of this latter group. This
completes the proof.

§9. The theorem of the primitive element. Let 4 be an alge-
braic extension of a field k. An element « of 4 is a primitive element of
Kk if K = k{a).

THEOREM 19. Every finite separable extension 4 of k has a primitive
element (and hence every such extension 4 is a simple extension).

PROOF. We shall prove here this theorem by the ‘“method of
indeterminates,” a method due to Kronecker. We shall give the proof
only in the case in which % has infinitely many elements. If kis a finite
field, then also 4 is a finite field (see § 8), and in that case we know from
the preceding section that every non-zero element of 4 is the power of
a single element 6. This element 4 is then a primitive element.

Let 4= ko, @y -,,). We adjoin to 4 n+ 1 “indeter-
minates” X, X,, X,, - - -, X, that is, we consider the polynomial ring
41X, X,,---,X,] and its quotient field A(X, X, ---,X,). We
set kB* = k(X,, Xy, + -, X,), 4% = 4(X,, Xy, -+ +, X,). We have then
4* = k*(ay, ay, -+ -, a,), and 4* is a finite algebraic separable extension
of k* since the «;, being separable over %, are also separable over k*
(see § 5, Lemma 2). We consider in 4* the element

(H o* = Xy, + Xoay + -+ - + X0,
Let F(X) be the minima! polynomial of o* in A*IX1. The coeffi-
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cients of F(X) are rational functions of X, X, <+, X,, with
coefficients in k. Let g(X;, X,, - - -, X,) be 2 common denominator of
these rational functions, where g(X;, X,, - - -, X,) is then an element in
kX, Xo, -+, X,]. Then

g(Xl’ XZ’ e ’Xn)F(X) =f(X’ Xl’ XZ’ ot ’Xn) € k[X’ Xl’ XZ) Tt ’Xn])
and we have

(2) f(a*’Xl)XZ)”"Xn
Let

©)
G(Xyy Xy, -5 X) = f(Xyoey + Xooty + - - - + Xy, X3, Xy - -+, X)),
Then G(X,;, X,,---,X,) is a polynomial in X, X,, ---,X,, with
coefficients in 4, and we have, by (2): G(X,, X,, - - -, X,) = 0. There-
fore also the partial derivatives 0G[0X,, i = 1,2, - -, n, are all zero.
By (3), we have, then:

4 o f (0¥, X3, Xy o+ o, X)) + filo®, X0, X, - -+, X,

n
1=1)2)”')n)

) =0.

) =0,

where
_ af(X’Xl’Xz’ to )Xn)
- 0X ’
— af(X’Xl’ X2) e ’Xn)
= X .

i

f/(X’ XI)X2) T )Xn)

fz(X) Xl’ XZ) Ty X,,)

The left-hand side in each of the equations (4) is, by (1), a polynomial in
41X, X,, - -+, X,], and hence is the zero polynomial. Consequently,
the equations {4) remain valid if we substitute for Xy, X,, - - -, X, any
elements of .. On the other hand, we have (X, X, X,, - -, X,) =
Xy, X, - -+, X,)F'(X), and hence f'(e*, X1, Xy, - - -, X,) # 0, since
a* is separable over k* and therefore F'(a*) 3¢ 0. Hence f'(a*, X,
Xy, -+, X,) is a non-zero polynomial in ATX,, X, ---,X,]. Since

k C 4 and k is an infinite field, we can find elements ¢y, ¢y, - -, ¢, in k
such that (¢y, ¢y - -+, ¢,) 1s not a zero of that polynomial (I, §18,
Theorem 14). We have then, setting
@ = o =+ Coy + -, + 2,
that
(S) S eq,69 20,6 #0
and
(6) a;f (@, €15 €0 s €) F Sy €1y €00 - 5 6) =0,

1i=12--,n
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Equation (6) and the inequality (5) imply that «; € k(«), and since « € 4,
it follows that 24 = k(). This completes the proof of the theorem.

REMARK. 'Theorem 16 (§ 6) is also an immediate consequence of the
above theorem of the primitive element, since—as has been pointed out
in the beginning of the proof of Theorem 16—that theorem is obvious
if L is a simple extension of k.

§ 10. Field polynomials. Norms and traces. Let K be a finite
algebraic extension of a field %, of degree #n, and let x be any element of
K. If we fix a basis wy, wy, - - -, w, of K[k, we can write:

1771

(1 xwi=2awaekz—12 n,
s

or, in matrix notations:
1N x82 = AL,

where 4 is the matrix 'la, ;) and £2 is the 1-column matrix

Howy
Cwy
. @
The elements a,;, and hence the matrix 4, are uniquely determined by

the element x and by the basis 2. We shall denote by 'B' the determi-
nant of a square matrix B. Then it follows from (1) that

(2) 'wE — 4! =0,

where E is the unit #-rowed matrix.

The polynomial ' XE — 4'is monic, of degree 7, and its coefficients
are in k. Equation (2) signifies that x is a root of this polynomial. It
1s not difficult to see that for a given element x of K this polynomial does not
depend on the choice of the basis {w,, wy, ***,w,}. For let w'l, w'y,

. » be another basis of K/k. We have then o’; = Zb

l] 7

Jj=
w; = Z biow'ii=1,2++, n wherethe b, and ';; are eIements of k.
J=
If Q' denotes the one-column matrix
o 1 ”
w/2 i
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and B, B’ denote the square matrices I'5,l and "¥’,;", respectively, then

the above relations can be written in matnx rotatxém as follows:

3 Q'=BR, Q=BQ.

From (3) it follows that 2 = CQ where C is the matrix B'B. Since the
elements of £2 are linearly independent over &, C is necessarily the unit
matrix E, whence B is a non-singular matrix and B' = B-. Now,
dealing with the basis {w’y, @'y, - - -, w’,}, we have relations similar to
(1): Q" = A'Q’. Hence, by (3): xBQ = A'BQ, or Bx2 = A'BQ, and
therefore, by (1"): BAQ = A'BQ. Again using the fact that wy, w,,

-, w, are linearly independent over k, we see that the relation
BAS? A'BS2 implies that B4 = A'B, that is, 4' = BAB~. We
have therefore that the matrix XE — A’, which is the analogue of
XE — A, relative to the basis &', is given by XE — BAB-!. Since XE
commutes with every m-rowed square natrix, we have therefore
XE — A" = B'XEB — BAB-! = B(XE — A)B-!, and hence

'XE — 4''= B,-' XE— A}-'B~'' = 'XE — 4,
which proves our assertion.

The polynomial 'XE — A' is called the field polynomial of x, relative
to k, or over k. We emphasize that the field polynomial of x, over &,
depends not only on x but also on the field K. This dependence on
K is already obvious from the fact that the degree of the field polynomial
is always equal to the degree n of K/k. In particular, the field poly-
nomial of x is not necessarily the minimal polynomial of x over k.

We note that if XK is regarded as a vector space over k then in terms
of linear algebra the field polynomlal of x i1s the characteristic polynomial
of the linear transformation in K defined by z — zx, z € K.

Let .

X" + aan—l R a,
be the field polynomial of 'x over k. Expanding the determinant
IXE — 4', we find

(4) a; = — Z a;is
=1
5) a,=(— 14},
We set
(6) NOrmK/kx = NK/k(x) = (— 1)”a" = iA!,
7 Tracegpx = Tgpu(®) = — a; = > a,;.

i=1
The index K[k will frequently be omitted when there is no possibility
of confusion.
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Norms and traces obey the following laws:
2) N(xy) = N(x)-N(y).
b) If x € k, then N(x) = x™.
) Tx +y) = T(x) + T(y).
d) T(cx) = cT(x), cek.
e) If x € &, then T(x) = nx.

PROOF. If, for a given basis 2 of K[k, we have x2 = AR and
¥2 = B, then (x + )2 = (4 + B2 and xy2 = BAQ. In viewof
the definition of traces and norms, relations a) and c) follow immediately.
If x € &, then A4 is the diagonal matrix xE,, and this implies relations b)
and e). Property d) follows directly from (4) and (7).

Also the norm and trace of an element x of K depend not only on x
and k but also on the extension field K.

Let 4 be a finite extension of K, of degree m, and let x be any element
of K. If we regard x as an element of 4, we can consider the trace
T,x(x) and norm N,,(x), and as was pointed out above, these are
to be distinguished from Tg,(x) and Ng,(x). We shall now prove
the following relations:

(8) Ny®) = (Ngp()1™,
(9) Typ(x) = m[Tgp(x)].
For the proof, we fix a basis {w,, wy, * -, w,} of K/k and a basis

{1, s, - -+, &y of 4/K.  Then the mn products w,{; form a basis of
4]k (see § 3, Theorem A, p. 60). We order these products, as follows:
w;¢; precedes £ ifj <j orifj = j’ and 7 < 7/, and we denote these
products, in this order, by {4, {5, - -+, {y, N = mn. We denote by £
and Z the one-column matrices whlch have respectively, wy, wy, * * * , w,

and {4, {o, - -+, {y as elements. Let x2 = A2 and 2Z = CZ, so that
A and C are square matrices, with elements in k, having respectively
n and ‘mn rows. Now, we observe that if 4 = la,ll, whence

xw; —Za” w;, then xwf ——Za,] ; Hence if w;¢, =
(1= < < =< N) then x{, = chgy, where ¢,, = a;; if n divides both

u —tand v — j, and the absolute value of the difference p — vis <=
(or—equivalently—if u — i = v — j = 0 (mod 7)), while all the other
elements ¢, of the matrix C are zero. This signifies that C has the
following form: it is obtained from the m-rowed unit ‘matrix E,, on
replacing each diagonal element 1 by the matrix 4 and each other
element of E,, by the zero n-rowed matrix; in symbols: C = A, It
follows at once that the sum of the diagonal elements of C is the m-fold
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of the sum of the diagonal elements of 4 and that 'C' = '4'™. This
establishes (8) and (9).

Another proof of (8) and (9) will be found at the end of this section.

Let f(X) be the field polynomia! of x over %k, when «x is regarded as
an element of K, and let F(X) be the field polynomial of x over k&,
when x is regarded as an element of 4. From the preceding proof, we
have that F(X) = (XE — A)™' (= 'XE — C"), and hence
(10) FX) = TfX)™
As a consequence of (10) we can now prove the following theorem:

TueorREM 20. If (X)) is the minimal polynomial of x over k, then f(X)
is a power of g(X ), and f(X) = g(X) if and only if x is a primitive element
of K over k (that is, if K = k(x); see § 9).

PROOF. Let g{X) be of degree s, and let g,(X) be the field poly-
nomial of x when x is regarded as an element of A(x). Since
[k(x) : k] =s, it follows that g,(X ) is also of degree s. Since x is a root
of g(X) and g(X) is the minimal polynomial of x in k[ X1, it follows (see
§ 2, Theorem 1) that g(X) = g,(X) (both g and g, being monic poly-
nomials). We have thus shown that if x is regarded as an element of
k(x), then the minima! polynomial of x in kX coincides with the field
polynomial of x over k. This proves the first part of the theorem
[apply (10) after replacing K by k(x) and 4 by K] and also the “if”” part
of the second half of the theorem. The “only if” follows from observ-
ing that, by (10), and from the fact that g(X) is the field polynomial of
x over k, when x is regarded as an element of k(x), it follows that
J(X) = [g(X)Im, where m = [K: k(x)]. Hence if f(X) = g(X), then
m = 1 and hence K = k(x).

The field polynomial {X) of x over k {x € K) can itself be interpreted
asanorm. For that purpose, we consider the field K(X') and we observe
that the algebraic closure of #(X) in K(X) contains K (since K is an
algebraic extension of k) and X [since X € k(X )1, hence coincides with
K(X). In other words: K(X } i1s an algebraic extension of A(X).

Furthermore, since K = Z k-w; = k(wy, wy, -+ +, w,), we have K(X)
= k(X Ywy, wy, -+, @) and therefore (see § 2, Theorem 2) K(X) =
RXYwy, wyy - -+, w,) = KX)K = Z B(X)-w;. 'This implies that

Wy, Wy, * * +, w, s also a basis of K(X ) over k(X), provided we show that
the w’s are lmearly independent over A(X). But this follows immedi-
ately from the linear independence of the w’s over k and from the fact
that X is a transcendental over A{w;, w,, - -+, w,). We have therefore
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proved that K(X) is a finite extension of k(X), that [K(X): A(X)] =
IK: k] =n, and that {wy, wy, -+, w,} is a basis of K(X) over A(X).
Now, we have (X — x)2 = XQ — AQ = (XE — A)Q, where 2 is the
one-column matrix

1w,
Wy !

L @

It follows that Ng x)ux)(X — %) = 'XE — A = f(X), that is, the
field polynomial of x over k, when x is regarded as an element of K, is the
norm of X — x over k(X), when X — xis regarded as an element of K(X).

We shall conclude this section with the derivation of an expression
for the trace and norm of x in terms of the conjugates of x (in some
norma! extension of & containing K). In view of (8) and (9) it will be
sufficient to deal with the case in which K = kx). Let f{X)= X"+
a, X"=1 -+~ ... 4 g, be the minimal polynomia! of x over & We
consider some normal extension K’ of % containing k(x) [for instance,
the least normal extension of & containing k(x)]. Let

fX)=TTx —x),
where x; € K’ (%, = x), whence

(11) a, = — i Xy
i=1

(‘2) a, = (— 1y 1] x,
i=1

Since we know already that f(X) is also the field polynomial of x over k&
(Theorem 20), we find, by (6) and (7):

n
(13) N =TT,
=1
n
(14) T(x) = > x;.
=1
Tf x is separable over &, then x,, x,, - - -, x, are distinct anc so we have

that the norm and trace of x are equal respectively to the product and sum
of the conjugates of x (in K’). If x is inseparable over &, and if n, and p¢
are respectively the separable and inseparable factors of the degree n of
f(x), then (§ 6, Theorem 11)

O = 1T 08 — 2, :
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and x has only n, distinct conjugates. It follows from (13) and (14)
that

= {15\
(15) N(x) \g"z/ ,
(16) T(x) = p(Z x) —0.

CoroLLARY. If K is a finite extension of k and x is an element of K
which is inseparable over R, then Ty {x) = 0.

This follows at once from (16) and (9).

We shall now derive another expression of Ny ,(x) and Tg;(x),
where K is a finite algebraic extension of % and x is an element of K.
Letm=TK:Rl,my=[K:kl, pf = [K k); and let n, ny and p be the
cor*espondmg degrees for k(x)instead of K. Let K* be the least normal
extension of k& containing K and let {g;; 1 =1, 2, - - -, m,} be the set of
k-isomorphisms of K into K*. Let {x;;7 = 1, 2, -+, ng} be the set of
distinct conjugates of x in K* {one of the x;, say x,, being x itself). 3By
Lemma 2 of § 6 each of the n, k-isomorphisms of A(x) into K* has
exactly my/n, extensions among the ¢;. Hence each of the conjugates
x; of x occurs my/n, times in the set {xq;l, XPy, - -, X, }.  Therefore

(17) T g, = (1T \™™

S J
=1 \J

My

(18) Zx(p, = mo/ny- Zx

i=1

By (8) and (9), with K and 4 replaced by k(x) and K respectively, we
have:

Ny () = (N p())me? 1m0,
Trplx) = mop![nop® Theya(%),
and hence, in view of (15) and (16) we find

(19) NK/k(x) = ( ﬁ x‘Pi)pry
=1
(20) Tin®) = p7 > xg;.

i=1
These are the desired expressions of the norm and trace of x; they are
generalizations of (15) and (16) from the case K = k(x) to the case of an
arbitrary finite algebraic extension of &.

Using the exoressions (19) and (20) we can derive the following
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transitivity law for norms and traces: if k © L C 4 are successive finite
algebraic extensions of k and x is an element of 4, then

(21) Nap®) = NN 4y(x)),
(22) Tyu(x) = Ty (T 5(x))-
For the proof we shall use the notations of the proof of Lemma 2 of § 6.

We may assume that ¢; is the identity automorphism of K. We have
by (19) and (20):

n J ol
N,yule) = (11 xqo,-) , pr=14:10,

m pB
NN o)) = {H <NA,L<x>¢,->) , P =LA,

or
\pa+B

23) NN o)) = ( I

Now, we know from the proof of Lemma 2 of § 6, that the restrictions of
the products g5 to 4 are distinct and give all the k-isomorphisms of 4
into K. Furthermore, by Corollary 2 to Theorem 16 of § 6, we know
that pe+8 = [4: k], Hence (21) follows from (23) in view of the
expression of the norm obtained in (19) (and applied to the field 4
instead of to K). The proof of (22) is quite similar.

We note that relations (8) and (9) can be derived as consequences of
(21) and (22). In (8) and (9) the element x belongs to a finite algebraic
extension K of k, and 4 is a finite algebraic extension of K, of degree m.
The norm N, x(x) and trace T, x(x) are equal to x™ and mx respectively,
since x belongs to K. Hence N,,(x) = Ny, (x™) = (N, K,k(x)) and

Typulx) = TK/k(mx) = mT g x).

§ 11. The discriminant. Let X be an algebraic extension of &, of
degree n, and let {w,, w,, * - -, w,} be a basis of K/k.
DErFINITION. The determinant

1) d= T{w;w)
ts called the discriminant of the basis {w,, w,, -+, w,}.
The discriminant of a basis {w,, w,, -+, w,} of K[k will also be
denoted by d{w,, wy, * * +, w,} or by dgfwy, wy, -+ 0, w )
If {o'y, w’z, -+, w’,} is another basis of K[k, then
=205, a6k A = "a;1 #0,
and

T((.U ‘w J) = a,B 1a JBT(wa'wB)'
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Hence if d’ denotes the discriminant d{w’y, 'y, - -, @'} of the new
basis, then by the rule of multiplication of detefmmants we have the
following relations:

(2) d=d A

COROLLARY. If the discriminant of one basis is zero, then the dis-
criminant of every basis is zero.

The statement ““ the field discriminant of K|k is zero (is not zero)” has
therefore a meaning. We mean here by the field discriminant of K|k,
the discriminant of any basis of K/k. By (2), the field discriminant of
K|/k is only determined to within a factor which is the square of an
arbitrary non-zero element of k (arbitrary, because if a is any element of
ka;éO andlfwesetwl—awl,wi_w 1=2,3,---,n, then
w'y, g, ' is a basis of K[k, and in this case we have .A; = a).

THEOREM 21. The field discriminant of K|k is zero if and only if
T(&) =0 for all ¢ in K.

PROOF. 'The “if” part is obvious. Assume now that d =10. We

can then find n elements ¢y, ¢, -+, ¢, not all zero, such that
2 T(ww)=0, for 1=1,2,---,n. We set 2= 2ZL,ciw,. Then
z # 0, and we have T(w;2) = 0,1 =1,2,---,n.  From this it follows

that T(yz) = 0 for all y in K. If £ € K, we take y = ¢/z and we find
T =0. QED.

CoROLLARY. If the field discriminant of K|k is zero, then k is of
characteristic p % 0, and n is a multiple of p.

For T(1) = n.

In order to derive further results on the discriminant, we go back to
the notion of a field polynomial, developed in §10. Let K, be the
maximal separable extension of k contained in K (§ 5) and let n = nyp°
whereny = K, : k], If £is any element of K, then we have T ,(¢) =
PTx (6] [see (9\ § 101, If K is an inseparable extension of &, that is,
if e z 1, this implies that Ty (€) = 0(é € Ky). If ¢ is in K but not
in K, then ¢ is inseparable over &, and hence we have again Tg(¢) = 0,
by the corollary on p. 91. We have thus proved that if K #s an
inseparable extension of k, then Ty (&) = 0 for all ¢ in K, and hence, by
Theorem 21 above, the field discriminant of K[k is zero.

We now consider the case in which K is a separable extension of k.
Let 4 be a least normal extension of K containing K (§6) and let
(= 1), 7, - - -, 7, be the distinct k-isomorphisms of K into 4 (§6,
Theorem 16). Let x be any element of K and let x; = xr,. Each
element x; is a conjugate of x over k, and every conjugate of x in K
coincides with one of the elements x; (§6, Theorem 15). The =2
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elements x; are not, however, necessarily distinct. If there are v
isomorohisms r; which leave x invariant, then x itself, and also every
conjugate element of x, occurs exactly v times in the set {x, x,, - * *, ,}.
Then x has only m distinct conjugate elements over &, where m = n/v,
and m 1s, then, also the cegree of the minima! polynomial g{X) of x over
k. Now if f(X) =0 is the fie!ld polynomial of x over & when « is
considerec as an element of K, then we know from § 10, formula (10),
that fAX) = [g(X >, It follows that

fX) =TT (X — ).

i=1
Trom this we conclude at once that
n

3) Typx) = > x,
i=1
,_YTiT

4 —

4) NK/k(x) = s X
=

These formulas are similar to (13) and (14) of § 10 which were obtained
in the specia! case K = k{x).
We shall now aoply (3) as follows:
Let {w,, wy -+, w, be a basis of K[k and let w,® = w;,
‘n
a=1,2-,n Then T(w; w)) = > w,®w;®, and from this, by the
a=1
ruie of multiplication of determinants, we obtain the following expression
of dlwy, wy, * * +, w,):

Ly, g™, e w12

(2) 2 ... (2)
w w w
(5) d(wl,w2,...,w — 1 Y2 D s Wy, 3

. wl(n)) w2(n), Y wn(n)

Since K is separable over &, there exists a primitive element of Kk (§ 9).
Let x be a primitive element. Then {1, x, x%, +++, x"~1} is a basis of
K|k, and (5) yields:
. 1
\ -,xl,x12,"',x,_” 12
[ 2 n—1
L Xy, X2, Xy
(6) d(1, x, 2% - anl) = ORI 5

[ § —_
Lok Xy, X
where x; = x7;. The Vandermonce determinant on the right-hand
sice of (6)is different from zero since xy, x,, * + -, &, are distinct elements
{x being separable over k anc n being the degree of k(x) over k). Hence

4 —
dit, x, x2, - - a1 £ 0.
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We have therefore proved the following

THEOREM 22. The field discriminant of K|k is zero if and only if K
is an inseparable extension of k.

CoRrOLLARY. K is a separable extension of k if and only if there exists
an element x in K such that Ty (x) # 0. This is an immediate conse-
quence of Theorems 21 and 22.

Note. If x is a primitive element of the separable extension K/k, of
degree n as above, and if g{X) is the minimal polynomial of x over
k, then g(X) = "7 (X — x), g'(x) = 7T, (x; — x;) anc N(g'(x)) =
TT 7T (x; —x)% Hence, by compuranon of the Vandermonce
S »3.*1(] 7

determinant (6):
(7 Al w ey =TT T (= %) = N(g().
[

§ 12, Transcendenta! extensions. An extension K of a feld k
is transcendental if it is not algebraic, that is, ¥ K contains elements
which are transcendental over k. An example of a transcencental
extension of k is the field of rational functions in n indeterminates over k,
that is, the cuotient field A(X., X,, - --, X,) of the polynomial ring
KX, X, -+, X} in n indeterminates (n = 1) over k; or also any

n.

k-isomorphic image k(xy, %5, - -, x,) 0f X, X, ---,X,), waere
therefore x,, x,, - -+, x, ave algebraically mc‘eoef\c‘ef\t over k and
klx,, 9, - -+, %, is a polynomia’ ring over k (7, § 18). Tt s clear that

any extension of a transcencental extension of & is itself a transcencenta!
extension of k.

The definition of algebraic independence over %, given in 1, § 18, can
be extended to infinite sets of elements, If K is an extension of % and
L is a subset of K, then the elements of L are saic to be algebraically
independent (a.i.) over k if each fnite subset of L consists of elements
which are aloebrmcally indepencent over k. Such a set L wil be called
a transcendence set (over k).

We shall use the termmology and notation introduced in II, § 1 and
§5. If K can be obtained from & by the adinnction of the elements of
some transcendence set L, then K is said to be a pure transcendental
extension of k. An example of a pure transcendental extension of k is
the field A(X,, X,, - - -, X,) of rational functions in z inceterminates
over k. For a given mteger n, any two felds which can be obtained
from % by the adjunction of » algebraically indepencent elements (and
which are therefore pure transcencental extensions of k) are k-isomorphic
fsee I, § 18, Theorem 12, Corollary I; and I, § 19, Theorem 16).
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Let L be a transcendence set in K/k and let x be an element of K
notin L. Let L’ be the set consisting of x and the elements of L.
LemMA. L' is a transcendence set if and only if x is a transcendental
over k(L).
PROOF. Suppose that x is transcendental over k(L) and let x,, x,,
, x, be any elements of L’. If all the x; are already in L, they are
ai. over k. Assume that x, = x and let f(X;, X, ---,X,) be a

polynomial, with coefficients in %, such that f(x,, x,, -+, x,) = 0.
Then x is a root of the polynomial f(x,, %y, -, x,_;, X) in
k(xy, x5, -+ +, %,1)[X]. This polynomial must be zero since x is

transcendental over k(L). Hence, if f(X,, X, +**,X)=
A Xy, Xy oo+, X, DX E+ - A(Xy, Xy, -+ -, X, 1), then we must
have A(x,, %9, +, %, 1) =0,1=0,1,---, g Sincexy, x5 -+ - ,%,_4
are a.i. over k, the polynomials 4{(X,, X,, - -+, X,_,) must be zero.
This implies that also f(X,, X,,---,X,) is the polynomial zero.
Conversely, assume that L’ is a transcendence set. et F(X) be a
polynomial in R(L)Y X! such that F(x) = 0. Since the number of
coefficients of F{X)1s finite, there exists a finite subset L, of L such that
these coefficients belong already to k(L,). Let x4, x5, -+, x, be the

elements of L,. If F(X) = q¢X?* + ¢, X¢~! + -.- + a, then we can
write the a; as quotients of polynomials in Alx,, x,, - - -, x,], with the

same denominator:

Afxy, 29y -0+, x,) . .
c= AL OB > Tn =0,1---,g
“ B(xl’ xz:"',xn)’ ‘ 7 o

If we set
f(leXm""XmX)=AO(Xl’Xza”"Xn)Xg .
+ AI(XD X27 SR X")Xg—l + e + Ag(Xb X27 SRR X")’

then f is 2 polynomial with coefficients in %, and from F(x) = O follows
that f(x,, %5, - - -, x,, x) = 0. Since L’ is a transcendence set, the
elements x;, x,, - - -, X, x are a.i. over k,and hence f(X;, X,, - - -, X,, X)
= 0. Thisimplies that 4(X;, X,,---,X,)=0,7=0,1,---, g, and
hencealsog, =0,7=10,1,---, g, thatis, F{(X)= 0. We have there-
fore proved that x is transcendental over A(L), and this completes the
proof of the lemma.

DeriNtTION 1. A transcendence set L in K is called a transcendence
basis of K(k if it is maximal, that is, if L is not a proper subset of another
transcendence set. 3

From the preceding considerations, it follows at once that a tran-
scendence set L is a transcendence basis of K[k if and only if K is an
algebraic extension of k{L).
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At this stage we shall incorporate our further conclusions concerning
algebraic dependence in the general axiomatic treatment of dependence
as developed in I, § 21.  This is possible since we can now define the
“ span ™ s(X) of 2 subset X of K as the algebraic closure of £{X) in K (the
algebraic closure of £ in K, if X is empty). Then it is immediately seen
that the conditions (S;)—(Ss) of Theorem 19 of I, § 21 are satisfied. In
fact, it is obvious that

(Sy). If X C Y, then s(X) C s(Y). ‘
(Sp). If x € s(X), then there exists 2 finite subset Y of X such that
x e s(Y).
(Sz). X C s(X) for all subsets X of K.
(Sy). s(s(X)) = s(X) (this simply expresses the transitivity of algebraic
dependence).
We shall now verify the condition (S;):

(Ss). The relations y € s(X, x) and y ¢ s(X) imply x € s(X, y).
There exists, by (Sp), a finite set of elements &y, x9, - -+ , ¥, in X such
that y is algebraic over k(xy, x,,---,x,, x). There exists then a
polynomial f(X,, X, ---,X,Z, Y), with coefficients in k&, such
that f(x,, x,, - - -, x,, x, Y);é 0 andf(xl,xz, L x,x,y)=0. We

write f(X}, X5, -, X0 Z, Y) = ZA(XI, X, -+, X,, Y)Zi, and we

observe that the g + 1 polynomzals A (X5 Xg -+, X, Y) are not all
zero, since f(X,, X,, - - -, X,, Z, Y) is not the zero polynomial. Since
v € s(X) (that 1s, since ¥ is a transcendental over k(X)), it follows there-
fore that not all the elements A ,(xy, x4, - - -, x,, ¥) of R(x,, x5, - - -, x,, ¥)
are zero.  Therefore f(xy, x5, ---,%, Z,y)5 0, and since
fay, x5, -, x,, 2,y =0, it follows that x 1is algebraic over
R(x,, x4, - - -, x,, ¥), that is, x € s(X, v), as was asserted.

We now generalize Theorems 21 and 22 of I, § 21, to the case of sets
V which do not necessarily admit a finite system of generators, We
recall from I, § 21, that it is assumed that we are given a mapping s of
the set of all subsets of [/ into itself, and that this mapping satisfles
conditions (S;) to (S;). We recall also that a set X is called a generating
system of ¥ if s(X) = V, that X is a free set if for any « in X we have
x ¢ s(X — x), and that X is called a basis of V' if it is both a generating
system of V" and a free set. In our case of an extension field K of &, X
is a generating system of K if K is an algebraic extension of A(X); X is
a free set if it is a transcendence set (in view of the lemma proved above)
and X is a basis of K/k if it is a transcendence basis.

For the purpose of the generalization of Theorems 21 and 22 of I, § 21,
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we must give some preliminary definitions concerning partially ordered
sets.

A set S is said to be partially orcered if there is given in S a binary
relation < which is defined for certain pairs (a, d) of elements of S (it
is not necessary that the relation < be defined for all pairs (q, b) of
elements of S) and which satisfies the following conditions: (1) a<a
for any element a of S; (2) if a < b and b < a, then a = b; (3) fa<b
and b < ¢, then a<c. A subset S, of Sis totally ordered 1f given any
two elements a, b of S, at least one of the relations a<borb<a
holds.

Let S; be a subset of a partially ordered set S. An element ¢ of S
is called an upper bound of S, if a<cforallain S,. An element g, of
S is a maximal element of S 1f ay < a implies a, = a.

A partially ordered set S is said to be inductive if every totally ordered
subset of S has an upper bound in S.

ZorN’s LemMA.  If a partially ordered set S is inductive, then there
extist maxtmal elements in S.*

We now begin with the following generalization of Theorem 21 of I,
§21.

THEOREM 23. Let L be a free subset of V and S a system of generators
of V. There exists a subset S’ of S such that L 0 S’ is a basis of V and
L N S’ is empty.

PrROOF. We partially order, by set-theoretic inclusion, the set M of
all subsets S, of S suchthat L N S, is empty and L U S_ is a free set.
The set M is non-empty since the empty subset of S belongs to M. It
is clear that M is an inductive set (since from({S;)it follows that any
ascending chain of free sets has a limit (union) which is also a-free set).
Let S” be a maximal elementof M. ThenL N S'isemotyandL U S’
is a free set. 'We shall show that L U S’ is a generating system of 7,
hence a basis of V, and this will complete the proof of the theorem.
Since s(S) =V, it will be sufficient to show that SC (L US’), in
view of (§;) and (S,) Let x be any element of S. If xe LU S’, then
xes(LLS"), by (S3) Assume that x¢ LU S’ and let (S, x) = S".
Then S” is a subset of S such that LNS” is empty. Since .S’ is a
proper subset of S”, it follows by the maximality of S’, that LU S”,
that is, (LU S’, x) is not a free set.  Since LU S’ is a free set, it follows
that x € s(LU S") (see Remark at the end of the proof of Theorem 20, I,
§ 21). 'This completes the proof.

* For a proof of Zorn’s lemma see, for instance, John L. Kelley, General
Topology, p. 33 (University Series in Higher Mathematics, Van Nostrand Co.,
Inc., Princeton, N.J., 1955).
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Cororrary 1. If L is a transcendence set in K|k and S is a subset of
K such that K is an algebraic extenston of k(S), then there exists a subset
S’ of S such that LNS' is empty and LU S’ is a transcendence basts of
KJk.

/COROLLARY 2. Any subset S of K such that K is an algebraic extensicn
of k(S) contains a transcendence basis of K/k.

We have only to apply Corollary 1 to the case in which L is the empty
set.

COROLLARY 3. There exist transcendence bases of K|[k.

We apply Coro'lary 2 for the case S = K.

~NOTE. In the case of a vector space V' over a field &, Theorem 23
guarantees the existence of a basis (or vector basis) of IV over k.

The following is a generalization of Theorem 22 in T, § 21:

THEOREM 24. Any two bases of V have the same cardinal number.

prROOF. This theorem has been provec in I, § 21 under the asstmp-
tion that there exists at least one finite basis of V. We shal! therefore
assume now that every basis of ¥ is infinite.

Let B be a basis of ¥ and let x be any element of V. By (Sg); there
exist finite subsets £ of B such thatx € s(B). We assert that there exists
a smallest finite subset E, of B such that x € s(E,) (and such that any
other subset E of B with the property x € s(E) contains E,). To see
this, it is sufficient to prove the following: if E' and E” are two subsets
of B such that x € s(E"YO\s(E") and if we have x ¢ s(E’',) for every proper
subset E'y of E’, then E' CE”. Assuming the contrary, let v be an
element of £’ not in £” and let E’; denote the set £’ — y. We have
x¢s(E',) and xes(E'y, v). Hence, by (S5), we have yes(E'y, x).
Since x € s(E£”) 1t follows that v e s(E'; U E”). This is in contradiction
with the fact thaty ¢ E';U E” anc that E'; U E"U{y} C B is a free set.

Now let B’ be another basis of V. We consider the mapping
x— E(xe B, E,C B), where E, is the finite subset of B defined above.
From set theory it is known that the cardinal number of B’ is not less

than the cardinal number of the set |} E, (since each set E, is finite).
xeB’

On the other hand, we have B=JE, since B'Cs(UEL),
xeB’
V =3s(B)=s(UE,), and therefore the subset |} E, of B must

x€B’
coincide with the baszs B. Hence the cardina: number of B’ is not less

than the cardinal number of B. Interchanging the roles of B and B’
we conclude that B and B’ have the same cardinal number. Q.E.D.
As a consequence we have the following result: '
TH=oreM 25. Any two transcendence bases of K|k have the same
cardinal number.



100 ELEMENTS OF FIELD THEORY Ch. 11

NOTE. In the case of a vector space V over a field &, Theorem 24
leads to the notion of the dimension of ¥V over &, this being the common
cardinal number of all vector bases of V/k.

DerinitioN 2. The common cardinal number of the various transcend-
ence bases of K[k is called the transcendence degree of K[k (abbreviation:
tr. d. K/k).

It is clear that K is an algebraic extension of % if and only if tr. d.
K[k =0.

THEOREM 26. Let Rk C K T 4 be successive extensions of k. Then
tr. d. 4/k = tr. d. 4/K + tr. d. K/k.

PROOF. Let L and M be transcendence bases of K/k and 4/K
respectively. It will be sufficient to prove that L U M is a transcendence
basis of A/k.  Let {x), x5, - -+, X,, ¥, Yo, * * * , ¥} be any finite subset of
LU M, where we assume that the x; are in L and the y; are in M. Let
JUEXL{YY) =f(Xy, Xoy o+, Xy Yy Yoo o+, Y,) be a polynomial in
m + n indeterminates, with coefficients in %, such that f({x}, {3}) = 0.
The polynomial f({x}, ¥) in the n indeterminates ¥, has coefficients in
K and must be zero since the y; are a.i. over K. Since the x; are a.i.
over &, it follows that f({X}, {¥}), regarded as a polynomial in {¥} with
coefficients in k[{X}], must be zero. Hence f({X}, {Y}) = 0 and that
shows that LU M is a transcendence set.

By assumption, K is an algebraic extension of k(L). It follows that
K(M) is an algebraic extension of k(LY(M) = k(LU M). But 4 is
an algebraic extension of K{M). Hence 4 is an algebraic extension of
R(LU M). This shows that LU M is a transcendence basis of 4/k.

TrezoreM 27. Let K and K’ be two extensions of k, contained in some
larger field 2, and let (K, K') be the smallest subfield of §2 containing both
fields K and K'. Then tr. d. (K, K')/K Ztr. d. K'[k, and tr. d.
(K, K')Jk £ tr. d. K[k + tr. d. K'[R.

PROOF. Let L’ be a transcendence basis of K'fk. We have (K, K') =
K(K"). Since every element of K’ is algebraic over &(L’), it follows
that (K, K') is algebraic over K(L'). Therefore, by Theorem 24, L’
contains a transcendence basis of (K, K')/K. We have then: tr. d.
(K, K)/K < tr. d. K'[k. By the preceding theorem, we have: tr. d.
(K, K')Jk = tr.d. (K, K")/K + tr. d. K/[k; and this, combined with the
above inequality, establishes the theorem.

We shall use the term ““transcendence degree” also when dealing with
integral domains (not necessarily fields) containing k. If Ris an integral
domain, R D &, and if K is the quotient field of R, then we set tr. d.
Rjk = tr.d. K[k. Note that since K = k(R), there exist transcendence
bases of K[k which are subsets of R (see Theorem 24, Corollary). Such
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transcendence bases of K[k will be referred to in the sequel as transcend-
ence bases of R/k.

Two k-isomorphic domains R and R’ (k C R, k C R’) have naturally
the same tr. d. over k. Of particular importance in applications are two
theorems which are proved immediately below.

THEOREM 28. Let R and R’ be integral domains containing k. If
R’ is a k-homomorphic image of R, then tr. d. R'[k < tr. d. R/k.

PROOF. We assume, then, that there exists a .-homomorphism + of
R onto R’ and we consider a transcendence basis L’ of R'/k. For every
element x” of L" we fix an element x in R such that x" = x7* and we
denote by L the set of all elements x obtained in this fashion. From
the fact that L’ is a transcendence set, it follows at once that also L is a
transcendence set. By Theorem 23, L is contained in some trans-
cendence basis M of R/k. The cardinal numbers of L’ and L are the
same since for every x” in L’ there is only one element x in L such that
x" = x7 and since therefore the correspondence x” — x is one to orme.
Since L is a subset of M, the proof is complete.,

Tueorem 29. If tr. d. R/k = tr. d. R'[k = n (n finite), then any
k-homomorphism = of R/k onto R'[k is an isomorphism.

PROOF. We use the notations of the proof of the preceding theorem.
Let L’ = {&'y, a’5, - - -, &",} be a transcendence basis of R'[k and let
L = {x,, x4, - -, x,}, where &x'; = x,7. This time L is not only a
transcendence set but also a transcendence basis of R/k, since tr. d.
R/k=n Nowletu c R, u 0. Since # is algebraically dependent
on k(xy, xg, - -+, %), We have a relation of the form
(M Afxus + Ay(xpur=t + - + A(x) =0, g2 1,
where

A,{X) = Ai(Xb KXo aXn) Ek[Xb KXo - ;Xn]
and where Ay(x) # 0. We take g as small as possible. Then A4 (x) # 0
for otherwise we could divide (1) by # (since # 3£ 0) and have an
equation for u, of degree < g. Applying to (1) the homomorphism ~
we find

(2) Agx e + Ay(&Yemt 4 - L A ) =0,
where #' = ur. Since A/ x) 7 0, the polynomial A,(X) is not zero,
and hence 4,(x") # 0, since &'y, x’5, - - -, &', are a.i. over k. Conse-

quently, by (2), we have #” 3£ 0, and this shows that 7 is an isomorphism.

* If L’ is an infinite set, this procedure involves the axiom of choice. It can
be easily replaced by another argument which is based exclusively on Zorn’s
lemma and which would show the existence of a subset L of R such that:
(1) ~(L) = L’; (2) the transformation of L onto