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Preface

Functional analysis arose in the early twentieth century and
gradually, conquering one stronghold after another, became a
nearly universal mathematical doctrine, not merely a new area
of mathematics, but a new mathematical world view. Its
appearance was the inevitable consequence of the evolution of
all of nineteenth-century mathematics, in particular classical
analysis and mathematical physics. Its original basis was
formed by Cantor’s theory of sets and linear algebra. Its
existence answered the question of how to state general
principles of a broadly interpreted analysis in a way suitable for
the most diverse situations.

A.M. Vershik ([45], p. 438).

This text evolved from the content of a one semester introductory course in func-
tional analysis that I have taught a number of times since 1996 at the University of
Virginia. My students have included first and second year graduate students prepar-
ing for thesis work in analysis, algebra, or topology, graduate students in various
departments in the School of Engineering and Applied Science, and several under-
graduate mathematics or physics majors. After a first draft of the manuscript was
completed, it was also used for an independent reading course for several under-
graduates preparing for graduate school.

While this book is short, comparatively speaking, it does not accomplish it aims
through brevity. Arguments are generally presented in detail, and in fact I have tried
to firmly keep in mind the reader who may be learning the material on his or her
own without the benefit of a formal course or instructor. Since functional analysis is
a huge field, I have had to make many omissions with regard to the topics I present.
These choices represent, of course, my own preferences, but also my desire to start
with the basics and still travel a path through some significant parts of modern func-
tional analysis.

The prerequisites for this book include undergraduate courses in real analysis,
linear algebra, and basic point set topology (say, in metric spaces). A modicum of
complex analysis is used in a few examples and exercises, and in the proofs of a
few results in Chapter 5; in a pinch it is not an essential prerequisite for a student
willing to bypass those parts (or take them on faith). With respect to real analysis
a good undergraduate level course is essential. Beyond this some familiarity with
measure theory and the Lebesgue integral is desirable, but not essential. Save for
the last chapter, most of the use of measure theory and Lebesgue integration occurs
in limited ways—primarily in examples. An Appendix provides a summary and
expository discussion of all that is needed here. I encourage any prospective reader
who may feel shaky with these desirable but not essential prerequisites not to be
daunted by them. On the basis of my experiences teaching this material I have found
that students with no prior exposure to complex analysis or measure theory and
Lebesgue integration can nevertheless have a successful experience with the topics
presented here.

vii



viii Preface

I have woven a certain amount of historical commentary into the text; this re-
flects my belief that some understanding of the historical development of any field
in mathematics both deepens and enlivens one’s appreciation of the subject. The
history of functional analysis is filled with interesting characters, many of whom
lived and worked during turbulent times in the twentieth century.

Each chapter concludes with an extensive collection of exercises. The purpose of
the exercises is to enable the reader to become comfortable with the ideas in the text;
to make them his or her own. While most are therefore closely tied to the material
being discussed, an occasional exercise is intended to provide an initial step or steps
towards a topic not discussed in the text, or to point the way for further exploration.
In any case, all are intended to be eminently doable by a student and when advisable
are accompanied by a hint.

I would like to express my great appreciation to several friends and colleagues
who provided advice and encouragement during the writing of this book. Sheldon
Axler, Tom Goebeler, Christopher Hammond, and Bill Ross read substantial por-
tions of the manuscript and provided many helpful comments, as well as suggestions
for exercises. Larry Thomas gave useful feedback on the Appendix. Mark Spencer at
Springer provided valuable editorial assistance. Julie Riddleberger helped with the
illustrations, and patiently answered many TgX questions. I thank Tom Kriete for
his enthusiastic support and encouragement throughout all stages of this work. And
finally I thank the students in the Functional Analysis course I taught at the Univer-
sity of Virginia in each of the last several years. It was their enthusiastic response
to this course that initially got me thinking about writing a functional analysis text,
and helped me refine my ideas of what this text should look like.

Charlottesville, Virginia Barbara D. MacCluer
July 2008
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Chapter 1
Hilbert Space Preliminaries

It seems to me not useless to indicate interest in a study of sets
composed of functions....

J. Hadamard, International Congress of Mathematicians,
Ziirich, 1897.

Functional analysis developed in the late nineteenth and early twentieth centuries,
during a period in which there was a general interest in abstraction, axiomatization,
and unification across all fields of mathematics. This unification meant that objects
that behaved according to a common set of rules were viewed as “the same,” even
if they consisted of rather different elements. A core idea in functional analysis is
to treat functions as “points” or “elements” in some sort of abstract space, so that
instead of working with individual functions (the tradition in classical analysis), we
deal with functions as points in a space endowed with some kind of overall structure.
The structure of the space itself is emphasized over properties of individual elements
in the space. This viewpoint, accompanied by an axiomatization of the new spaces
to be considered, was an integral step in the process of transferring familiar concepts
in finite-dimensional Euclidean space to (typically infinite-dimensional) “function
spaces.”

While important contributions to the beginnings of functional analysis were made
by individuals of various nationalities, the most readily identifiable schools of work
in the early history of the subject were in France, Italy, and Germany. In France,
one of the notable contributors to the initial development of functional analysis was
Maurice Fréchet, whose 1906 doctoral dissertation is a landmark paper in the sub-
ject. In this work, which was extremely influential in both functional analysis and
point set topology, Fréchet began the study of abstract spaces of functions. In partic-
ular, he defined the notion of a metric space (which he called “(E)” spaces, from the
French “écart” meaning distance), and included a discussion of examples of met-
ric spaces where the points in the space were functions. In Fréchet’s work one can
clearly see the influence of his advisor Jacques Hadamard. In an address to the Inter-
national Congress of Mathematicians in 1897, Hadamard proposed a study of what
would now be termed set-theoretic topology. A quote from this address introduces
this chapter; his student Fréchet took up the challenge put forth there.

In this chapter we describe the basic kinds of spaces which will interest us, with a
particular emphasis on Hilbert spaces, which are rich in geometric structure. In sim-
plest terms, the idea behind a Hilbert space is to generalize the familiar Euclidean

B.D. MacCluer, Elementary Functional Analysis, DOI 10.1007/978-0-387-85529-5_1, 1
(© Springer Science+Business Media, LLC 2009



2 1 Hilbert Space Preliminaries

spaces R" or C", preserving as much as possible the geometric results in these finite-
dimensional settings.

1.1 Normed Linear Spaces

A modern-seeming, axiomatic, definition of vector spaces goes back to the Italian
mathematician Giuseppe Peano, in 1888. A vector space is an algebraic object; to
introduce such analytic notions as convergence or continuity in a vector space we
must provide our vector space with additional structure. This brings us to the con-
cept of a normed linear space, which is a vector space with a norm.

Definition 1.1. Let X be a vector space over either the scalar field R of real numbers
or the scalar field C of complex numbers. Suppose we have a function |- || : X —
[0,0) such that

(1) |jx|l =0if and only if x =0,
2 [lx+y| < ||x[|+ ||ly|| for all x,y € X, and
(3) |lax|| = |al|x|| for all scalars ¢ and vectors x.

We call (X, || - ||) a normed linear space.

Property (2) is called the triangle inequality, and property (3) is referred to as
homogeneity. The reverse triangle inequality,

e+ 11 = el = [y

follows easily from (2); see Exercise 1.1.

We give some examples of normed linear spaces. In these examples we won’t
give the details of the verification that the norm satisfies these defining properties.
This verification is straightforward in some cases, while in others it may already be
known to the reader or will be outlined in an exercise.

Example 1.2. Let X = C" = {(z1,22,...,21) : 2; € C} with

n
1
(z1:22,--zn) | = (Y Izj1%) 2

J=1

this is called the Euclidean norm. The Euclidean space R" is similarly defined; in
this case we restrict to real scalars.

Example 1.3. Let X = C" with ||(z1,22,...,2,)|| = max{[z;| : 1 < j < n}.

Example 1.4. Let Y = [0, 1], or more generally any compact Hausdorff space, and
let C(Y) be the vector space of continuous, complex-valued functions on Y, un-
der pointwise addition and scalar multiplication. Define a norm on C(Y) by ||f]| =
max{|f(y)| : y € Y}. This (specifically Cla,b], endowed with the metric which de-
fines the distance between functions f and g to be max,<,<p | f(x) — g(x)|), was one
of the important examples that Fréchet put forth in his 1906 dissertation.
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Example 1.5. Choose a value of p > 1, and let 7 = (P(N) denote the set of all
sequences {a,};_; of complex numbers (indexed by the positive integers N) for
which ¥ |a,|? < eo. In our notation for a sequence we will often abbreviate {a, };_;
by {a,}7 or even just {a,}. Define the norm of {a,} € (” by

o 1/p
{an}l, = ();Ianl"> :

We can include the choice p = oo by modifying this definition in the expected way:
€= = {{an}7 : suplan| < oo}
n

and
[[{an} . = sup |an|.
n

For p =1 and p = o the triangle inequality is easily verified; for 1 < p < o it goes
by the name of Minkowski’s inequality, in honor of Hermann Minkowski who first
studied the analogue of this #’-norm on the space R".

Example 1.6. We can generalize the last example as follows. Consider a positive
measure space (¥,90, 1), where Y is a set, 9 is a o-algebra of subsets of Y, and u
is a positive measure. Choose 1 < p < oo, and denote by L? (Y, i) the collection of
all equivalence classes of 9i-measurable functions on Y with

[ 11 <
JY

111 = ([ )’

(the integral in this definition is the Lebesgue integral). Minkowski’s inequality (for
integrals) provides the proof that the norm satisfies the triangle inequality. We also
define L”(X, ) to be all equivalence classes of essentially bounded measurable
functions, normed by || /|| = ess sup |f], the essential supremum of f. Of particular
interest to us will be the space L?[0,1] = L?([0,1],dx) with respect to Lebesgue
measure dx on the real line.

normed by

For the reader unfamiliar with the concepts in the preceding example, the Ap-
pendix provides a summary of the relevant definitions and results from real analysis.
The use of the Lebesgue integral in the definition of the L” spaces is important, and
in writing a history of functional analysis, Jean Dieudonné [10] states

...it is likely that progress in Functional Analysis might have been appreciably slowed down

if the invention of the Lebesgue integral had not appeared, by a happy coincidence, exactly
at the beginning of Hilbert’s work...(pp. 119-120).

replacing, what Dieudonné calls “the horrible and useless so-called Riemann inte-
gral.” In Example 1.6, the particular choice Y = N and u = counting measure on
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the subsets of N gives the space ¢” of Example 1.5; see Sections A.2 and A.3 in the
Appendix for more details.

Example 1.7. Fix a sequence {(n)};_ of positive numbers with 8(0) =1 and

lim B(n)"/" > 1. 1.1)
n—oo
The reason for this last restriction will be made clear shortly, but for right now notice
that defining B (n) = (n+ 1) for some fixed real number a will give an allowable
choice. Define the weighted sequence space K% to consist of all sequences {a, }§

with

iowﬂﬁ(n)z <o,

where the norm of {a, }{ is defined to be

. 1/2
(Z’blanlzﬁ(ﬁ) :

From one perspective these weighted sequence spaces can be thought of simply as
L2(X, M, u) for X = Ny = {0} UN, 9% the collection of all subsets of Ny, and u the
measure that assigns to each point n of Ny the mass f(n)?, so that we have a special
case of the example discussed in Example 1.6. In particular, the general version of
Minkowski’s inequality gives the triangle inequality in 6%. (See Exercise 1.6 for a
more elementary approach.)

The requirement in Equation (1.1) allows us to offer a second perspective on the
spaces /2, and the interplay between the two perspectives endows these examples
with a particular richness. Associate to a sequence {a,} in Eé the power series
Y _ganZ". The radius of convergence of this series is at least one (see Exercise 1.9),
and thus the series converges to an analytic function on the unit disk D = {z € C:
|z| < 1}. This suggests that we may want to identify ¢, a space of sequences, with
the vector space

{f =Y a2" analyticinD: Y |a,|*B(n)* < oo}
0 0

In the latter guise, the space is referred to as a weighted Hardy space and denoted
H?(B); the case B(n) = 1 for all n gives the Hardy space H?. In the next chapter we
will have the language needed to make precise the properties of this identification,
but for the moment we simply observe that the map sending {a,}§ to f = Y5 a.z"
is one-to-one (by uniqueness of power series) and onto H?(f3) by definition, and we
will regard H? () as normed so that this mapping preserves norms.

Example 1.8. Let 2 be a nonempty open set in C. Denote the collection of all
bounded analytic functions on Q by H*(£), and introduce a norm on H*(Q) by

£l = sup{|f(2)] : z € Q}.
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The norms in Examples 1.3, 1.4, 1.8, and the ¢~ norm in Example 1.5, are all
referred to as the “supremum norm,” and when needed for clarity will be written as
I |- The L= norm in Example 1.6 is called the essential supremum norm; it is also
written || + ||o-

Definition 1.9. A metric space is a set X with a function d(-,-) : X x X — [0,0)
satisfying, for x,y, and zin X,

(1) d(x,y)=0if and only if x =y,
@) d(xy) = d(y,%), and
(3)  dxy)+d(yz) = d(x,z).

The third property is referred to as the triangle inequality.

On any metric space (X,d) there is an associated topology. The open balls are
the sets of the form B(a,r) = {x: d(x,a) < r}, where r > 0. Every open set is the
union of some collection of open balls. It is easy to see that if X is a normed linear
space, we may define a metric on X by defining d(x,y) = ||x — y||. With the metric
topology in place on X, continuity of certain basic mappings can be addressed. For
example, it is easy to check that the function || - || : X — [0,o0) is continuous; see
Exercise 1.8 for this and other elementary results.

About eight years after Fréchet’s seminal work in 1906, Felix Hausdorff wrote a
text that presented a thoroughly modern definition of metric space and defined the
fundamental idea of a Cauchy sequence, which we recall next.

Definition 1.10. Let X be a metric space. A sequence {x,} in X is said to be a
Cauchy sequence if it has the following property: Given any € > 0 there exists N
such that if n,m > N, then d (x,, x,,) < €.

Definition 1.11. A metric space is said to be complete if every Cauchy sequence in
X converges in X.

Definition 1.12. Let X be a normed linear space. If X is complete in the metric d
defined from the norm by d(x,y) = [|x — y||, we call X a Banach space.

All of the above examples of normed linear spaces are Banach spaces. We will
not stop to prove this now, but we do make a couple of observations. The statement
that the space L” (Y, u) is complete for any 1 < p < oo and any positive measure
space (Y,u) goes by the name of the Riesz—Fischer theorem. In its full general-
ity it is a deep result of real analysis (see also the discussion in Section 1.5 below
and in Section A.3 of the Appendix). Notice that this general class of examples
includes the /P spaces and weighted sequences spaces as special cases (see Exer-
cise 1.6 for a more elementary approach), as well as the finite-dimensional spaces
in Examples 1.2 and 1.3. In Exercise 1.2 the reader is asked to provide a proof of
completeness for the spaces in Example 1.4, and a similar argument can be used for
the space H* () of Example 1.8. You can get an example of a normed linear space
which is not a Banach space by taking a nonclosed subspace of a Banach space; see
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for example Exercise 1.3. (A subspace of a vector space V is a subset of V which is
itself a vector space under the same addition and scalar multiplication operations.)

Banach spaces are named in honor of the Polish mathematician Stefan Banach,
a dominating figure in the birth of functional analysis, who wrote a fundamentally
important book called Opérations Linéaires in 1932. In this book (which had its
beginnings in Banach’s 1920 doctoral thesis) many of the properties of complete
normed linear spaces are developed. Banach calls these spaces “spaces of type (B),”
perhaps in the hope they would eventually be known as “Banach spaces”! This is
precisely what happened, with the terminology “Banach space” making its formal
appearance in Fréchet’s text Les Espaces Abstraits [13].

Hugo Steinhaus, Banach’s teacher and collaborator, writes in a 1963 memoir of
Banach that Banach’s axiomatic definition of a complete normed linear space pro-
vided precisely the right level of generality; broad enough to encompass a wide
variety of natural examples, but not so general as to permit only uninteresting theo-
rems:

His foreign competitors in the theory of linear operations either dealt with spaces that were
too general, and that is why they either obtained only trivial results, or assumed too much
about those spaces, which restricted the extent of the applications to a few and artificial
examples — Banach’s genius reveals itself in finding the golden mean. This ability of hitting
the mark proves that Banach was born a high class mathematician ([44], p. 12).

In fact, a few months after Banach set down the axioms for a normed linear space,
the American Norbert Wiener independently gave nearly the same definition, and
for a short while the terminology “Banach—Wiener spaces” was used. However, as
Wiener’s interest in the area did not continue, these spaces, in Wiener’s words, be-
came “quite justly named after Banach alone ([46], p. 60).”

Hilbert spaces, which we turn to now, are Banach spaces with some additional
structure, coming from the presence of an inner product.

Definition 1.13. Let X be a vector space over C. An inner product is a map (-,-) :
X x X — C satisfying, for x,y, and z in X and scalars a € C,

(1) (x,y) = (y,x) forall x,yin X,

(2)  (x,x) >0, with (x,x) =0 (if and) only if x =0
(3) (x—l—y, >_< >+<y>Z>’and

@ (ox,y) = alxy).

Some comments on this definition are in order. The bar in (1) denotes complex
conjugation. Property (2) is referred to as “positive-definiteness,” and the adjective
“Hermitian” is used for property (1). The parenthetical “if” statement in (2) need
not be included in the definition, as it follows from the other parts since (0,0) =
(2-0,0) = 2(0,0). An inner product is linear in the first slot and conjugate linear in

! Though this interpretation of Banach’s choice of notation is widely repeated, V.D. Milman, in
writing about Banach, says, “In his book...Banach denotes operators by the letter A. These were
the initial objects of study, and the complete normed spaces on which they operated were denoted
by the Latin letter B. That was natural, and there is no indication that he was ‘hinting’ at his own
name by using that letter” ([32], p. 228).
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the second ({x, ty+z) = &(x,y) + (x,z)), so the defining properties are encapsulated
by saying that an inner product is a Hermitian, positive definite, sesquilinear form
(sesquilinear from the Latin for “l%” linear). The reader is cautioned that some
authors (in physics, for example) define the inner product to be linear in the second
slot, and conjugate linear in the first.

A standard example is to define an inner product on L?(X, i) for a positive mea-
sure space (X, ) by

(.0 = [ rean.

X
This general framework includes, as special cases, the example C* with

n
<(Z] 3%2y .- ,Zn)’ (W17W27 e ’Wn)> = Z ZjWﬁ
j=1
the example ¢ of all square summable sequences with
<(ZlaZ27 .. ')7 (WlaWZa .. )> = Z Zjov

and the weighted analogues E% with

(Gorzrn ) (wonwr. ) = X 2B ()7
=0

The first two are obtained by taking X to be, respectively, {1,2,...,n} or N, with
equal to counting measure. In the case of weighted sequence spaces, X = Ny and
assigns mass f3(n)? to the set {n}.

Any inner product satisfies an important inequality, called the Cauchy—Schwarz
inequality, which we describe next.

Proposition 1.14. If (-,-) is an inner product on a vector space X, then for all x and
yin X we have

|32 < Ge) ().

In this general form, the Cauchy—Schwarz inequality is due to John von Neumann
(1930), who is often credited with the “axiomatization” of Hilbert spaces (defined
below). Earlier versions of Proposition 1.14, for specific settings, go back to Cauchy,
Bunyakowsky, and Schwarz, and the Cauchy—Schwarz inequality is sometimes re-
ferred to as the Cauchy—Bunyakowsky—Schwarz inequality.

One particularly simple proof of Proposition 1.14 is outlined in Exercise 1.7. As
an important application of Proposition 1.14, we show next how any inner product
defines a norm.

Proposition 1.15. If (-,-) is an inner product on a vector space X, then

1
Xl = (x,2)2
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is a normon X.

Proof. We will check the triangle inequality, and leave the verification of the other
norm properties to the reader. Using the linearity of the inner product we have

lx+yl1° = (x+yx+y) = (6x) + 3x) + (69) + (3y)
= [|x|1* +2Re(x,y) + [Iy[I?
< [l 21 e ) [+ Iyl
< [l + 2yl + 1yl
= (Jlxll + lIvl*

where Re z denotes the real part of a complex number z, and we have used the
Cauchy—Schwarz inequality in the penultimate step. 0O

Definition 1.16. A (complex) Hilbert space ¢ is a vector space over C with an
inner product such that .77’ is complete in the metric

1
d(x,y) = [lx—y[ = (x—y,x—y)2.

Any space L?>(X, 1) as described above is thus an example of a Hilbert space,

since we have already observed that L?>(X,u) is a Banach space under the norm
. 1 . . 1
17112 = (fy |fPdp)? which we recognize as (f, f)?.

There are various anecdotes, of dubious validity, about David Hilbert and the
terminology “Hilbert space.” Steve Krantz, writing in Mathematical Apocrypha [27]
says

It is said that, late in his life, Hilbert was reading a paper and got stuck at one point. He

went to his colleague in the office next door and queried, “What is a Hilbert space?” (p. 89)

Another version is given by Laurence Young [47]:

When Weyl presented a proof of the Riesz—Fischer theorem in a Géttingen colloquium,
Hilbert went up to the speaker afterward to say,“Weyl, you must just tell me one thing,
whatever is a Hilbert space?” (p. 312)

Next we will look at an important example of a Hilbert space where the vectors
are certain analytic functions on the unit disk D = {z € C: |z| < 1}. This example,
which uses a few basic results from complex analysis, will prove to be particularly
illuminating of several of the fundamental Hilbert space notions.

Example 1.17. The Bergman space L2(ID) is the vector space, under pointwise op-
erations, of all analytic functions f on D for which

,dA
LIPS <

where dA denotes two-dimensional Lebesgue measure (so that dA /7 is “normalized
area measure” on the unit disk). Of course, every function in L2(DD) is (a represen-
tative of) an element of the Hilbert space L?(ID,dA/x); we give L2(ID) the inner
product it inherits from L?(ID):
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= / f(2)g(2)—
D

Our first goal is to check that the Bergman space is a Hilbert space. How much
work must we do? Since we already know that L?(ID,dA /) is a Hilbert space, it
will suffice to verify that L2(ID) is a closed subspace of L*>(ID,dA /). Of course,
“closed” here refers to the topology on L*>(ID,dA/x); this is the metric topology
induced by the norm. To this end, we need an area mean-value property for analytic
functions.

Proposition 1.18. If f is a analytic function in some closed disk B(a,R), then

i
@)= — /B A

Proof. As a consequence of Cauchy’s integral formula we have the mean value
property

1 21 .
fla)= E/o f(a+re’9)d6

for all 0 < r < R. Multiplying by r and integrating with respect to r we have

R R r2rm . do
/ rf(a)drz/ f(a+re’9)r—dr
0 0 Jo 21
or equivalently

R 1
105 = 27 fyo 4

as desired. O

From this we get a corollary that gives an upper bound on the value of a function
in the Bergman space at a point w € D in terms of the norm of f and the distance
from w to DD, the unit circle.

Corollary 1.19. Fix w € D. For every f € Lg(]D) we have

f(w) 17122 m)

| < —
1||

Proof. Let 0 < r < 1 —|w] so that the closed disk B(w,r) is contained in D. Using
Proposition 1.18 and Hélder’s inequality we have

1
— dA
wr? /B<w,r> / ’

1
= 72 JB(wy)

1 12 12
2(/ ldA) </ f|2dA)
r B(w,r) B(w,r)

[F (W)l

|f] dA

IN
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1 dA\'?
vy ( [

IN

1
= ;||f|\Lg(1D>)-

This calculation holds for any » < 1 —|w/, so letting r increase to 1 — |w| yields the
desired conclusion. O

To show that the Bergman space is a Hilbert space, we will use, in addition
to Corollary 1.19, a result from real analysis that says if a sequence {f,} in
L*(D,dA /) converges in the L2-norm to a limit f, then some subsequence {f;, }
converges pointwise almost everywhere (dA/7) to f; see, for example, p. 74 in [40].

Theorem 1.20. The Bergman space L2(D) is a Hilbert space.

Proof. As we have discussed, we need only show that L2(ID) is a closed subspace of
L>(D,dA/x). That L2(DD) is a subspace is immediate. To see that it is closed, sup-
pose we have a sequence {f,} of functions in L2(D) with f, — f in L*(D,dA /7).
Our task is to show that f must be in L2(ID); that is, that the limit function f is
analytic (or more precisely, has an analytic representative). On the one hand, from
the remark preceding the theorem, we know that convergence of f;, to f in the norm
of L*(D,dA /) implies some subsequence {f;, } converges pointwise almost every-
where (dA/7) to f. On the other hand, by Corollary 1.19 we have, for any closed
disk B(0,r) C D and all z in this closed disk,

1
(@) = fun@) < 3 o = Sonll ) -

This says that the sequence {f,} is uniformly Cauchy on B(0,r) and, by Morera’s
theorem from complex analysis, f;, converges uniformly on B(0,r) to an analytic
function g on B(0,r). This holds for all » < 1 and thus our pointwise limit f must
agree almost everywhere with an analytic function, i.e., we may choose f to be
analytic in L?(ID,dA /). This is precisely the desired conclusion that f is in the
Bergman space L2(DD). O

There are L?, p # 2, versions of the Bergman space; see Exercise 1.11 for the
definition and some basic properties.

1.2 Orthogonality

A Banach space is a complete normed linear space and a Hilbert space is a complete
inner product space. The presence of an inner product permits the all-important
geometric notion of orthogonality, which says in turn that Hilbert spaces behave in
many ways as generalizations of finite-dimensional Euclidean space, where one can
talk about angles and projections, for example.
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Definition 1.21. Given vectors f, g in a Hilbert space J¢, we say that f is orthog-
onal to g, written f L g, if (f,g) = 0. For sets A and B in S we write A L B if
(f,g) =0forall f< A and g€ B. Finally, A" is the set of all vectors f € J# such
that f 1 g for all g in A; for any set A this is always a subspace of 7, moreover
since At = Nyea{a}®, At is a closed subspace by continuity of the inner product
(see Exercise 1.8).

It should be clear that ANA+ = {0}. (Why?)

Some authors use the terminology “linear manifold” for a linear subspace that is
not necessarily closed, and reserve the term “subspace” for a closed linear manifold.
We will not do so, but instead use the adjective “closed” when it applies. An example
of a subspace which is not closed is the set of all sequences in ¢? with finitely many
nonzero terms.

The next result, aptly called the Pythagorean theorem, is easily verified by writ-
ing the norm in terms of the inner product and expanding. The details are left to the
reader.

Proposition 1.22. If f1, f>,...,f, are pairwise orthogonal vectors in a Hilbert
space, then

i Lot Sl = 1A NI+ 1l

In general, for any vectors f and g in a Hilbert space we have

If +l% = If1* +2Re (f,8) +Is]?

and
1 —gll> = I£1> —2Re (f, )+ llg]l*.

The parallelogram equality is then obtained:
1f + &l + 17— gl* = 211717 +2llgl>.

Its name comes from picturing the relationship for vectors in, say, R2; see Figure
1.1.

FIGURE 1.1: The parallelogram equality

In any inner product space, the inner product can be recovered from the norm:
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1
{f.8) = (If +8l = [1f = glI* +illf +igl® —ill f —igll?) (1.2)

This is called the polarization identity, and it is verified by a straightforward calcu-
lation. It can be written, and perhaps more easily remembered, as

1 3
(F) =Y I+ el
k=0

Perhaps surprisingly, given a normed linear space in which the parallelogram
equality holds, there is an inner product that gives the norm. See Exercise 1.14 for
an outline of how to show this result, which is due to P. Jordan and J. von Neumann.
This exercise gives the best known of many (hundreds!) of ways of characterizing
those normed linear spaces that are in fact inner product spaces. For much more on
this subject, the reader is referred to [1].

1.3 Hilbert Space Geometry

A convex set in a vector space V is a subset S of V with the property that whenever
a,barein S, soista+ (1 —¢)b for any 0 <7 < 1. Clearly every subspace is convex,
every ball in a normed linear space is convex, and any translate x4+ S = {x+ s :
s € S} of a convex set S is convex. The next result, which we will refer to as the
nearest point property, is a key step in obtaining our main theorem on Hilbert space
geometry.

Proposition 1.23 (Nearest Point Property). Every nonempty, closed convex set K
in a Hilbert space ¢ contains a unique element of smallest norm. Moreover, given
any h € FC, there is a unique ky in K such that

| —ko|| = dist(h,K) = inf{||h— k| : k € K}.
Proof. We begin with a proof of the first statement. The parallelogram equality says
that for any vectors x,y in 7,
2

XYy
2

1
= S (el + 1% -

x4y
o)

If d = inf{||y|| : y € K}, then we may find a sequence of vectors {x,} in K with
||x» || — d. Thus for any n,m we have

2 2

Xn —Xm

2

Xn+Xm
2

)

1
= b+ ) -

where, by convexity, %xn + %xm is in K, so that
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Thus we have
0 < ||xn _mez < 2(||xn||2 + ||xm||2) —4d’.

This tells us that {x, } is a Cauchy sequence, and by completeness it must converge
to some x € J#. Since K is closed, x € K. Continuity of the norm says that ||x, | —
||x]|, so ||x|| = d. This gives us the existence part of the first statement.

For uniqueness, suppose ||z|| = ||x|| = d for some z in K. Consider Jx+ 3z € K.
Since we must have

xX+z
2

>d

the parallelogram equality again says

2 2

—d* -

2
<0

—_ b

X—Z

X—z Xtz
2

2

1 xX+z
= 5(||X||2+I\ZI|2)— —

which forces x = z. This completes the proof of the first statement.

The second statement is obtained by translation. To find the unique point in K
closest to a given & in 7, first find the unique point x in the convex set K — h of
minimal norm. Its translate x + / is the desired point. O

The arguments used in this proof are basically those of the Hungarian mathe-
matician Frederic Riesz, another important contributor during the early period of
functional analysis. We will continue to see his name attached to quite a few of the
results discussed in this book.

The nearest point property is quite rigid—it fails to be true if we omit either
the requirement that K be closed or convex, or change “Hilbert space” to “Banach
space” in the statement. The interested reader can provide examples to illustrate this.

We will get a lot of mileage out of the next result, called the projection theorem,
whose proof uses the nearest point property. Our presentation follows that of [40].

Theorem 1.24 (Projection Theorem). Let M be a closed subspace of a Hilbert
space €. There is a unique pair of mappings P : 7€ — M and Q : 7 — M~ such
that x = Px+ Qx for all x € 7. Furthermore, P and Q have the following additional
properties:

(a) x€M=— Px=xand Qx=0.
(b)) xeM't=— Px=0and Ox = x.
(¢) Pxis the closest vector in M to x.
(d) Ox is the closest vector in M- to x.
(e) ||Px[|* +[[Qx|]*> = [|x|]* for all x.
(f) P and Q are linear maps.

Proof. First we define P as follows: For every x € JZ, let Px be the unique closest
point to x in the (closed convex) set M; here we are using the nearest point property



14 1 Hilbert Space Preliminaries

of Proposition 1.23. Uniqueness says that P is well-defined. Moreover, P : ¢ — M,
and if x € M, Px = x. Define Ox = x — Px so that Q is uniquely defined on /7,
Px+ QOx=xforall x,and if x € M, Qx = 0.

We next show that Qx € M for all x. It suffices to show that (x — Px,m) = 0 for
all m € M. Clearly it is enough to check this for unit vectors in M. Fix m € M, ||m|| =
1. Consider Px+ am € M for o any complex number. Since Px is the closest point
toxin M

o — (Px+ cum) | > [lx— Px.

Writing z = x — Px we have
22 + e [ lm ]| — {oum, z) — (z, am) > |z
This is true for all o complex, and choosing & = (z,m) we see that o = 0. This says
0=a = (z,m) = (x— Px,m),

which verifies the claim and proves that Qx € M as desired.

If x € M, then x — Qx € M, since M is a subspace. But also x — Qx = Px € M,
and MN M+ = {0}, so x € M+ implies x = Qx and Px = 0. Furthermore, for any
x € I,

%[> = (Px+ Qx, Px+ Qx) = [|Px||* + || Qx|*,

since Qx € M- and Px € M.

Next we check the linearity of the maps P and Q. Let x,y be arbitrary vectors in
. We want to show P(x+y) = Px+ Py and similarly for Q. Since x = Px+ Ox,
y=Py+Qyandx+y=P(x+y)+Q(x+y) we see that

Px+Qx+Py+Qy=P(x+y)+0Q(x+y)

so that
Ox+Qy—Q(x+y) = P(x+y) — Px—Py.

The vector on the left side of the last line lies in M and the vector on the right side
in M this forces both to be 0, and we have our desired conclusions. The statements
P(ox) = aPx and Q(ox) = aQx are proved similarly.

There are two remaining parts to the proof. We must show that Qx is the closest
vector in M to x, and verify the uniqueness statement for P and Q. The first of
these goes as follows: Let x € 7, and suppose y € M. Since Qx € M~ for all x,

|x—y|I* = [|Px+ Qx—y|* = || Px|]> + [|Qx — y||%s

this is clearly minimized if y = Qx. So Qx is the closest vector to x in M.

The uniqueness of P and Q with the specified properties is easy: if P,P' : 5 — M
and Q,Q’ : S — M~ with Px+ Qx = x = P'x+ Q'x for all x then Px — P'x = Q'x —
Qx; the common value must be 0 since M N M+ = {0}. O

Figure 1.2 illustrates the projections P and Q from the projection theorem.
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-

Px

FIGURE 1.2: The projections P and Q

The linear maps P and Q in the projection theorem are called the orthogonal
projections of . onto M and M, respectively. The notation 7% = M & M™" is
commonly used to encapsulate the statement of the projection theorem.

We end this section with a simple, but useful, corollary of the projection theorem,
whose proof is left to the reader.

Corollary 1.25. If M is a closed, proper, subspace of F€, then there exists a non-
zero vector'y in J€ withy 1 M.

As a consequence of this corollary, note that one can show that a closed subspace
M is all of 77 by showing that there is no nonzero vector y in J¢ withy 1L M.

1.4 Linear Functionals

Definition 1.26. If X is a normed linear space over C, a linear functional on X is a
map A : X — C satisfying A (ox+ By) = aA(x) + BA(y) for all vectors x and y in
X and all scalars o and 3.

Hadamard in 1903, and his student Fréchet in 1904—05, began to investigate the
continuous linear functionals on various function spaces. Hadamard, for example,
described the linear functionals on C|a, b] as having the form

A() = lim [ f(x)®y(x)dx
for a sequence of continuous functions &, and, in a letter to Fréchet in 1904, pro-
posed the term “functional” for these “functions of functions.” When the function
space under investigation was a Hilbert space, work done independently by Fréchet
and Riesz gave a particularly pleasant and important characterization of these linear
functionals, as we will soon see. We begin with a definition.
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Definition 1.27. A bounded linear functional on a normed linear space X is a linear
functional A : X — C for which there exists a finite constant C satisfying |A (x)| <
C|lx|| for all x € X.

Anticipating notation somewhat, we write
Al = sup{|A(x)] - [lx]] < 1}

and refer to this as the norm of A; it is easy to check that when we give linear struc-
ture to the collection of all bounded linear functionals on any normed linear space
by defining the vector operators of addition and scalar multiplication pointwise, || - ||
is indeed a norm on this linear space. More will be said about structure on this
space later. Exercise 1.16 gives several equivalent formulations of ||A||, which we
will use without comment in what follows. An easy, but fundamental, observation
is that bounded linear functionals are precisely those linear functionals which are
continuous.

Proposition 1.28. If X is a normed linear space, and A : X — C is a linear func-
tional, then the following are equivalent:

(a) A is continuous.
(b) A is continuous at 0.
(¢) A is bounded.

Proof. The implication (a)=-(b) is trivial, so we look first at (b)=-(c). Since A (0) =
0 (why?), continuity of A at 0 means that given € > 0 we may find > 0 such that
if ||x|| < &8, then |A(x)| < €. Choose such a § to correspond to € = 1. Given x # 0,

linearity tells us that
[[x]| x6 ]l
awi=|a (B 25| < B,
5 |« 6

which gives the boundedness of A with ||A]] < 1/8. The result of Exercise 1.16 is
used here. The proof of (c)=-(a) is left to the reader. O

In discussing continuity, it is helpful to recall that any map f : X — Y, where X
is a metric space but Y need only be a topological space, is continuous if and only
if given any sequence {x,} in X that converges to a point xo in X, the sequence
{f(xn)} converges to f(xp). The “if” direction of this statement need not be true if
X is not a metric space; this issue will be discussed further in Section 5.5.

As a consequence of a somewhat more general result that we will prove later, the
set of all bounded linear functionals on a normed linear space X is itself a Banach
space, under pointwise operations and using the norm just defined. In terminology
proposed by Nicolas Bourbaki 2 in 1938, this is called the dual space of X and

2 Nicolas Bourbaki is the pseudonym of a “secret” society of mathematicians, nearly all French,
formed in 1935. It included among its founding members A. Weil, J. Dieudonné, and H. Cartan.
New members were added over time, and one of its rules was that members were to retire at age
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is denoted X*. Our immediate goal is to understand the dual space of a Hilbert
space. The next result is called the Riesz representation theorem; it was discovered
independently by Riesz and Fréchet in 1907. As motivation for the statement, ob-
serve that if we fix a vector Ao in a Hilbert space .77, then the map A (h) = (h, h) is
clearly linear on 7. The Cauchy—Schwarz inequality shows that A is bounded with
[|A |l < ||ho]|- In fact we have equality, as is easily seen by computing A (ho/||ho]|) if
hy # 0. The Riesz representation theorem provides a converse to these observations.

Theorem 1.29. Every bounded linear functional A on a Hilbert space € is given
by inner product with a (unique) fixed vector hy in 5€: A(h) = (h,hg). Moreover,
the norm of the linear functional A is ||ho||.

Proof. Suppose A is a bounded linear functional on .77 If A is identically 0, choose
ho = 0. Otherwise, set

M=kerA={hest:A(h)=0}.

Since A is linear, M is a subspace of ./, and since A is continuous, M = A~1(0)
is closed. Note that M # .77 since we are assuming A # 0. Pick a nonzero vector
7 € M. By scaling if necessary we may assume A (z) = 1. Consider, for arbitrary
h € S, the vector A (h)z — h and observe that if we apply A to this vector we get 0,
i.e., it lies in M. Since z was chosen to lie in M=, this says

A(h)z—h Lz

so that for every h € J2,
(A(h)z—h,z) = 0.

Rearranging this last line we see that A (1) = (h,z/||z||*), which gives the existence
statement with /g = z/||z||>. Uniqueness is immediate, and since we have already
observed that ||A|| = ||Ao||, we are done. o

What does the proof of this result tell you about the relationship between any two
vectors in (ker A)* when A is a bounded linear functional on .;#?

Theorem 1.29 says that a Hilbert space is self-dual, i.e., that #* = 5 in the
sense that the map sending hg in % to the bounded linear functional (-, %) is an
isometry of .7 onto its dual space (“isometry” referring to the fact that the norm of
the linear functional induced by Ay is ||Aig]|) . Notice that we’re not asserting linearity
for the identification of hy with the linear function (-, hg); why not?

In their 1907 works, Riesz and Fréchet dealt specifically with the Hilbert space
L?[a,b]. Shortly thereafter, Riesz considered the natural generalization of his work
when he investigated the possibility of describing all bounded linear functionals on
LP]a,b] for 1 < p < oo, launching the study of L” spaces as normed linear spaces. In
1909, Riesz identified the set of all bounded linear functionals on LP[a,b],1 < p < oo

50. The society’s original purpose was to create an analysis text, but this quickly expanded into a
project of much bigger scope. A multivolume Eléments de mathématique, now totaling more than
7000 pages and treating many core topics in modern mathematics, has been produced.
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with L9[a,b], where 1/p+1/g =1 (when p = 1 we set g = o). The analogous
statement for ¢ came a few years earlier, in work of E. Landau; the reader is asked
to provide a proof in this case in Exercise 1.17. If we leave the realm of Banach
spaces, however, a discussion of bounded linear functionals may become moot. For
example, M.M. Day showed in 1940 that there are no continuous linear functionals
on LP[0,1] for 0 < p < 1 except the trivial functional (which is identically zero). The
spaces L”[0,1] for 0 < p < 1 are discussed in Exercise 1.30; they are not Banach
spaces.

Let us return to our example of the Bergman space L2(ID). Observe that Corol-
lary 1.19 says that evaluation at any point w € ID is a bounded linear functional on the
Hilbert space L2(ID). By Theorem 1.29, evaluation at w must thus be given by inner
product with some fixed vector in L2(ID), that is, for each w € ID there is a function
in L2(DD), which we will denote K, (z), satisfying f(w) = (f,K,,) for all f € L2(D).
Can we identify K,,? This has a nice answer, which is outlined in Exercise 1.25.

Next we’ll interpret the projection theorem when % = L*(D,dA/x) and M =
L%(D), the Bergman space. Can we find an explicit formula for the orthogonal pro-
jection P: L*(D,dA/x) — L2(ID)? A simple lemma will be useful here.

Lemma 1.30. Let P : 57 — M be the orthogonal projection of a Hilbert space 7
onto a closed subspace M of 7. We have (f,Pg) = (Pf,g) for all vectors f and g
in .

Proof. Let f and g be in S and write, using the projection theorem, f = mj +ny,
g =myp +ny, where my,my € M and ny,n, € M~+. We have

<f’Pg> = <m1 +n17m2> = <m1am2>

while
(Pf,g) = (my,my+np) = (my,my).

Returning to our question, if f € L?>(D,dA/x), then for any w € D,

PION = (P = (PR = (1K) = [ FOR@ S

where K,, is the vector in L2(ID) that gives the linear functional of evaluation at
w, and we have used the lemma for the second equality. Since by Exercise 1.25
K,,(z) = (1 —wz)~2, this gives an integral formula for computing the projection Pf.

The Bergman space furnishes an example of what are called functional Banach
spaces. Here is the definition: A Banach space X consisting of scalar-valued func-
tions on a set S is a functional Banach space if point evaluation e;(f) = f(s) at each
point s of S is a bounded linear functional on X, and if no evaluation functional
es is identically 0. Other examples of functional Banach spaces, besides L2(ID),
include C[0,1] in the supremum norm and ¢” for 1 < p < co. A non-example is
LP(]0,1],dx),1 < p < o; here the vectors are equivalence classes of functions, and
evaluation at a point of [0, 1] doesn’t even make sense.
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1.5 Orthonormal Bases

Definition 1.31. An orthonormal set in a Hilbert space ¢ is a set & with the prop-
erties:

(1) foreveryee &, |le||=1, and
(2) for distinct vectors e and f in &, {e, f) = 0.

For an easy example of an orthonormal set in the Hilbert space ¢, take the
set & of vectors ej, j > 1 where ¢; has a 1 in the jth coordinate and zeros else-
where. As a second example, consider the Hilbert space L?[0,27], with respect to
normalized Lebesgue measure dt/(27). The collection of functions e for any in-
teger n form an orthonormal set in this Hilbert space. We often will write L?(T)
for L?([0,27],dt/(2x)), where T denotes the unit circle and we are identifying a
function on [0,27] with a function on T by f(t) = f(e™).

Definition 1.32. An orthonormal basis for a Hilbert space ¢ is a maximal or-
thonormal set; that is, an orthonormal set that is not properly contained in any or-
thonormal set.

It is easy to see that in the £> example above, the set {ej: j>1}is an orthonormal
basis. Harder, but still true, is that {¢ : n € Z}, where Z is the set of all integers
and e = cos(nt) +isin(nt), is an orthonormal basis for L>(7). This result is a
consequence of Fejér’s theorem; for a proof the reader is referred to [48]. Every
Hilbert space has an orthonormal basis (see Exercise 3.1 in Chapter 3). The proof
of this statement uses Zorn’s lemma, which will be discussed in Section 3.1. The
Hilbert spaces of principal interest to us will either have a finite or countably infinite
orthonormal basis.

A Hilbert space is also a vector space, and as such it has a linear (or Hamel) basis.
We digress here briefly to recall some facts and terminology from linear algebra.
Given a nonempty subset S in a vector space V, by a linear combination of vectors
in § we mean a finite sum of the form

n
Z ;v
j=1

where the vectors v; are in S and the coefficients ¢; are scalars. A set S spans V if
every vector in V is a (necessarily finite) linear combination of vectors in S. A set S
of vectors is said to be linearly independent if the only linear combination of vectors
in § that is equal to the zero vector is the one whose scalar coefficients are all zero.
A linear, or Hamel, basis for a vector space V is a subset of V that is both linearly
independent and spans V. It is easy to see that a Hamel basis can be equivalently
defined as a maximal linearly independent subset of V; that is, a linearly independent
set that is not properly contained in any linearly independent set.

Every vector space has a Hamel basis, and for a given vector space, any two
Hamel bases can be put in one-to-one correspondence; proofs of these can be pro-
vided by the reader, or found, for example, in [14]. Notice that the concept of a
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Hamel basis depends only on the linear structure of V, and not the topological struc-
ture that comes when the vector space is endowed with a norm or inner product. It is
for this reason that in a Hilbert space the concept of an orthonormal basis proves to
be more central than that of a Hamel basis, so much so that in the context of Hilbert
spaces the term “basis” will always mean “orthonormal basis,” and “dimension” will
always refer to the (common) cardinality of any orthonormal basis. In particular, a
Hilbert space is said to be finite-dimensional if it has a finite orthonormal basis, and
infinite-dimensional otherwise. This convention will not lead to any confusion be-
cause of the following two facts: A finite orthonormal set in a Hilbert space .77 that
is not properly contained in any orthonormal set is in fact a Hamel basis for .7, and
no Hilbert space with a finite Hamel basis can contain an infinite orthonormal set.
See Exercise 1.21 for a further exploration of these and related ideas.

Given a linearly independent sequence { f, }7 in a Hilbert space .7, there always
exists an orthonormal sequence {e, } such that

span{ f1, f2,..., fx} = span{ej,ez,... e}

for each positive integer k, where “span” denotes the set of linear combinations of
the indicated set. An inductive process for constructing the vectors e, called Gram—
Schmidt orthonormalization, is outlined in Exercise 1.19.

The last topic of this section is motivated by the question: When is an orthonor-
mal set in a Hilbert space an orthonormal basis? When {¢ } is a finite or countably
infinite orthonormal set in 7, then for every vector h € ¢ we have

Y (e < |11

this is known as Bessel’s inequality. It follows from the observation that the closest
vector to A in the linear span of the orthonormal set {e;,ez,...,e,} is Y1 (h,ex)ex
(see Exercise 1.21), and the Pythagorean identity of Proposition 1.22.

The identity in (e) of the next result is called Parseval’s identity; it is the equality
case of Bessel’s inequality.

Theorem 1.33. If {e,}T is an orthonormal sequence in a Hilbert space F, then
the following conditions are equivalent:

(a) {en}T is an orthonormal basis.

(b) Ifhe 3 and h L e, for all n, then h = 0.

(c) Forevery he€ €, h=Y7(h,ey)e, equality here means the convergence in
the norm of J€ of the partial sums to h.

(d) Forevery h € 3, there exist complex numbers a, so that h =Y 1 ape,.

(e) Foreveryhe . X7 |(hen)|? = AP

(f) Forallhand gin 5, YT (h,en){en,g) = (h,8).

Proof. The equivalence of (a) and (b) follows almost immediately from the defini-
tion, since if 0 # h and h L e, for all n, then {e,}7 U {h/||||} is an orthonormal
set.
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Now assume (b) and suppose h € S and let ¢, = (h,e,). By Bessel’s inequal-
ity we have Y7 |c,|? < oo, so that the partial sums s; = Y'*_, ¢,e, form a Cauchy
sequence in S with

k
2 2
Ise—smll* ="} lenl
n=m+1
whenever k > m. By completeness these partial sums must converge in .7 to some
vector s. We claim s = h, which will show (c). For each fixed n,

(s,en) = (klim Sky€n) = klim (Sk,en) = (hyen),

where we have used the continuity of the inner product, a consequence of the
Cauchy-Schwarz inequality. Thus (s — h,e,) = 0 for all n, and by (b), s = h. The
reverse implication, (¢) = (b), is easy, since if (c) holds, and & L e, for all n, then
h=Y7(h,e,)e, implies that h = 0.

Clearly (c) implies (d) and the reverse implication follows from setting f; =
21;:1 aje; and noting as above that

<h,€n> = </}£I>£10fk7€n> = klglolo<fk7en> = dp.

Next we show that (c) implies (e). Continuity of the norm shows that if & =
Y7 (h,eq)en, then ||sg|| — ||| where sy is the partial sum Y _, (h,e,)e, and ||s; > =
YX|(h,e,)|? by the Pythagorean formula. Thus (e) holds.

Clearly (f) implies (e) and the reverse implication can be obtained by using the
polarization identity to write (h,g) in terms of ||k + g%, || — g||*, ||k + ig||* and
||h — ig||?, expanding each of these norms using (e), and computing.

Finally, if (e) holds, and & L e, for all n, then ||h||> = Y7 |(h,e,)|> = 0, giving
(b). O

When {e,}{ is an orthonormal basis for a Hilbert space /¢, and h € ., the
scalars (h,e,) are called the Fourier coefficients of h with respect to {e,}7. In this
case, the sum in (c) of the above theorem is referred to as the Fourier series of h,
relative to the specified orthonormal basis.

No countably infinite orthonormal basis can ever be a Hamel basis. Indeed, using
Gram—Schmidt orthonormalization we can show something stronger. Suppose that
{fi,/2,...} is a linearly independent sequence in a Hilbert space .. We claim
that there is a vector in # which is not a finite linear combination of the f;.
The Gram—Schmidt process produces an orthonormal sequence {ej,e,...} with
span{ey,ey,...,ex} = span{fi, f2,..., fi} for all positive integers k. Write down
any sum ) 7cje; where infinitely many of the coefficients c; are nonzero and
Y7 le j|2 < oo, This sum converges in ¢ to some vector g, since its partial sums
form a Cauchy sequence in 7. Since (g, e,) = c,, and this is nonzero for infinitely

many 7, g is not in the span of {ej,es,...,e;} for any k, and hence neither is it in
the span of {f1, f2,..., fi} for any k.
Example 1.34. It is easy to see that if e, = /n+ 12", then {e,};;_, is an or-

thonormal sequence in the Bergman space L2(ID). Is it an orthonormal basis? It’s
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tempting to think we can make short work of answering this question. By part
(d) of Theorem 1.33, we need only show that every function f in the Bergman
space can be written as f = Y 5 ase, = Y5 apnv/n+ 17", and since f is analytic in
the disk it has a power series expansion f = Y ¢ b,z". But the two equality signs, in
f=Yga,wn+17"andin f =Y 7 b,7", refer to two different kinds of convergence.
In the first, we want convergence of the partial sums in the L?(ID,dA /) norm, while
the second gives us pointwise convergence in D, or, better, uniform convergence on
compact subsets of D of the partial sums of } 3 b,z" to f. Since this latter type of
convergence does not imply L? convergence, something more must be done.

To that end, we will show that {e,}>_ is an orthonormal basis for L2(ID) by
showing that if f € L2(D) and f L e, foralln=0,1,2..., then f = 0. The assump-

tion that f | e, is simply that
dA
/ f@7" — =
D

We can write f in terms of its power series in D, f(z) = Y3 byz*, where the partial
sums of this series converge uniformly on compact subsets of . Fix ¢ < 1 and use
this uniform convergence to write

/@ F(2)7" dA = /@ ( i bkzk> 7 dA

—Zbk/ k=n g

-7 b’l t2n+2
n+1

since the integral in the penultimate line is O unless k = n, in which case it
is w22 /(n+1). Now f(z)7" is in L*(D,dA/x) C L'(D,dA/x), so we can let
t T 1 and use the dominated convergence theorem to see that for any nonnegative

integer n,
/ /@) T n + 1

Thus if this integral is O for all n, we see that b,, = 0 for all n and hence f =0 as
desired.

Specializing the result of (e) of Theorem 1.33 to ./ = L*[a,b] we obtain the
Riesz—Fischer theorem, named for simultaneous and independent work of Riesz and
Ernst Fischer in 1907. More precisely, Fischer showed that L?[a, b] is complete (see
also Section A.3 in the Appendix), while Riesz showed that given a orthonormal
basis {e,} of L?[a,b], the map which sends f € L?[a,b] to the square-summable
sequence {a, }, defined by a, = [ : fepdx, is an isometric linear bijection onto ¢2.
These two results are individually or collectively referred to as the “Riesz—Fischer
theorem”; they are equivalent in the sense that each can be recaptured from the other.
Theorem 1.29, the Riesz representation theorem (or as it should be more accurately
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called, the Fréchet—Riesz Representation theorem) enters into the mix as well, in
the following argument due to Riesz. Suppose we have an orthonormal basis {e;}
(known to Riesz, based on a talk given by Erhard Schmidt it 1905, to be countable)
for L*[a,b] and a sequence {c;} of complex numbers with ¥ |¢;|?> < . Define A on

L?[a,b] by
A(f) =Y cilf, e,

where (f,e;) = | f feidx. The mapping A is linear, and bounded by the Cauchy—
Schwarz inequality and Bessel’s inequality. By Theorem 1.29, there exists g €
L?[a, b] such that

/abfgdszf) ~Yailf.e)

for all f € L?[a,b]. Setting f = ¢; gives ff e;gdx = ¢;, and setting f = g gives

b
| IsPdx= ¥ ltg.e .

Now imagine starting with g € L?[a,b] and defining ¢; = jf geidx. Defining A as
above, we get the stated isometric linear bijection between L?[a,b] and ¢*. Riesz
also provided three proofs for the completeness of L?[a, b]. Exercise 1.27 outlines

one of these, which relies on Theorem 1.29 as well.

1.6 Exercises

1.1. Prove the reverse triangle inequality: For vectors x,y in any normed linear
space,
eyl = [l = [yl

1.2. Show that C[0,1] is a Banach space in the supremum norm. Hint: If {f,} is
a Cauchy sequence in C[0, 1], then for each fixed x € [0,1], {f,(x)} is a Cauchy
sequence in C, which is complete.

1.3. Let C'[0, 1] be the space of continuous, complex-valued functions on [0, 1] with
continuous first derivative. Show that in the supremum norm || - ||, C'[0, 1] is not a
Banach space, but that in the norm defined by || ]| = || f]|s + || /|| it does become
a Banach space.

1.4. Show that the space ¢' of Example 1.5 is complete.

1.5. Show that a metric space is complete if every Cauchy sequence has a convergent
subsequence.

1.6. Assume that you know Minkowski’s inequality

\ 1/2 . 1/2 . 1/2
(Z |aj+bj2> < (Z aj|2> + <Z |bj|2>
j=1 J=1 J=1
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for C" in the Euclidean norm.

(a) Show that for {a,} and {b,} in a weighted sequence space E%,

1/2

- 1/2 - 1/2 -
<20|a,-+b,.|2;3<,->2> < (_Zolaﬂﬁ(jf) + (Zolb,-2ﬁ(j)2>
Jj= J= J=

(b) Verity directly (without appealing to the Riesz—Fischer theorem on the com-

pleteness of L2(X, i) in general) that 4,23 is complete.

1.7. Let x and y be any two vectors in an inner product space and set A = (y,y).
Show that

A [A(x,x) =[x, 0) ] = (Ax— (x,y)y, Ax = (x,)y).

Use this to derive the Cauchy—Schwarz inequality and to determine when equal-
ity holds in the Cauchy—Schwarz inequality.

1.8.(a) Show that for a normed linear space X, the map x — ||x|| of X into [0,0) is
continuous. Is it uniformly continuous?

(b) Show that the mappings X x X — X given by (x,y) = x+y,and Cx X — X
given by (or,x) — oux are continuous. The topologies on X x X and C x X are
the product topologies.

(c) Suppose that X is an inner product space. Show that the maps x — (x,y) and x —
(y,x) are continuous on X for each fixed y in X. Are they uniformly continuous?

1.9.(a) Show that if i |a,|*> < co, then the power series Y a,z" has radius of con-
vergence at least one, and hence is an analytic function in the unit disk D. Hint:
Recall that the radius of convergence R is determined by

. :
E:hmsup|an|1/.

n—oo

(b) Show that if
lim B(n)'/" > 1

n—oo

and N
Y lan*B(n)* < oo
0
then the power series
Yo
0

has radius of convergence at least equal to 1.
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1.10. Suppose that X and Y are normed linear spaces and that 7 : X — Y is a linear
map (meaning that T(ox; + Bxz) = aT (x1) + BT (x;) for all vectors xj,x; in X
and all scalars a and f3). Suppose that 7 maps X onto Y and is isometric (meaning
ITx|| = ||x|| for all x € X).

(a) Show that T is one-to-one.
(b) Show that if X is a Banach space, sois Y.
(c) Show that if X is a Hilbert space, then so is Y if we define

1, 2)y = (x1,202)x

where x; and x; are the unique points in X satisfying Tx; = y; and Tx; = y;.
(d) Explain how this shows that the weighted Hardy spaces H>(f3) of Example 1.7
are Hilbert spaces.

1.11. For 1 < p < o, define L5 (D) to be the set of all analytic functions f on the
unit disk D for which

Lirars <=

and set || f||” to be the value of this integral. Show that L} (D) is a Banach space by
first obtaining the appropriate analogue of Corollary 1.19.

1.12. Suppose S is a (not necessarily closed) subspace of a Hilbert space 5. Show
that S+ = (S*)* is the closure of S.

1.13. Show that C[0, 1] in the supremum norm is not an inner product space; that is,
the norm cannot be derived from an inner product.

1.14. Show that in any normed linear space where the norm satisfies the parallel-
ogram equality, an inner product can be defined which induces the norm in the
usual sense that (x,x) = ||x||>. Hints: Define (x,y) by polarization and show that
(x,y) = (y,x). Next show that (x+y,z) = (x,z) + (y,z) by showing the equality of
the real parts and imaginary parts of both sides of this identity separately. Finally,
show that (sx,y) = s(x,y) for s in turn an integer, a rational number, a real number
and a complex number.

1.15. Let M be a closed subspace of a Hilbert space .7, and suppose x is in JZ.
Show that

min{|lm —xo|| : m € M} = max{|(xo,n)| : n € M+, ||n| = 1}.

1.16. Let A : X — C be a bounded linear functional on a normed linear space X.
Recall that ||A || is defined as sup{|A (x)] : ||x|| < 1}. Show that

[A]l = sup{|A (x)[ - [|x]] = 1}

= sup{|A(x)[/[lx]| : x # 0}
= inf{J : |A(x)| < &]x|| for all x € X }.
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1.17. Let 1 < p < and define g by 1/p+1/g=1.
(a) Show that for each fixed {a,} € ¢4, the linear mapping defined by

A({bn}) =Y buay

is a bounded linear functional on ¢ with norm ||{a, }||-
(b) Conversely, if A is a bounded linear functional on ¢, then there exists {a,} in

£4 such that
A({b,}) anan

for all {b,} in £P.
(c) What are the corresponding statements for the case p = 1?7

1.18. Show that on the Hardy space H? as described in Example 1.7, evaluation at
each point w € D is a bounded linear functional. Hint: Use the Cauchy—Schwarz

inequality to show that
1 1/2
o<l (1=r )

1.19. In this problem we describe the Gram—Schmidt process: Let x,x;,... be a
sequence of linearly independent vectors in an inner product space. Define vectors
inductively by
er =xi/|lx|
n—1
fo =Xy — Z (Xn,ej)ej forn >2
j=1

en = fu/|| full forn > 2.
Show that {e, } is an orthonormal sequence with the property that the linear span of

{x1,%x2,...,%,} is the same as the linear span of {e],e,...,e,} for each n.

1.20. Apply the Gram—Schmidt process (Exercise 1.19) to the three vectors {1,x,x*}
in L?([—1,1],dx). Use your answer to find the distance from x* to the span of
{1,x,x?}; equivalently, find

1
min / Ix* —a— bx — cx?|?dx.
a,b,ceC.J—1

When the Gram—Schmidt process is applied to the sequence 1,x,x%,x>, ..., the re-
sulting vectors are called the Legendre polynomials.

1.21. Let 27 be a Hilbert space.

(a) Every orthonormal set in 57 is linearly independent (recall this means that every
finite subset is linearly independent).
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(b) Suppose {e1,e3,...,e,} is an orthonormal set in .7 and define
M = span{ej,ez,...,e,}.

Check that M is closed and show that if P is the projection of .7 onto M, then
Px=Y"1(x,ej)e; forall x € 7.
(c) Show that if .77 has a finite orthonormal basis, it is also a Hamel basis for .77.

1.22. Suppose M is a closed subspace of a Hilbert space .7 and A is a continuous
linear functional on M with
A (m)|

sup ——— =c.
meM, m#0 Hm”

Using Hilbert space methods, show that there is a unique continuous linear func-
tional A on H with

A(m) = A(m)
for all m € M and
A0 _
up =c.
heH, h#0 ”hH

1.23. Let 57 be an infinite dimensional Hilbert space. Show that .7 has a countable
orthonormal basis if and only if 7 has a countable dense subset.

1.24. Given a subset E C N, consider the bounded sequence xg = {x, }T with x, = 1
if n € E, and x,, = 0 otherwise.

(a) Show that for each E C N, there is an open ball Bg in £~ centered at xg such that
for distinct subsets E and F of N, Bg and B are disjoint.

(b) Conclude that ¢~ contains no countable dense subset. This says that ¢ is non-
separable.

1.25.(a) Show that if f € L2(D) has Taylor series expansion Y5 a,z" in D, then

= 1
117 =Y lanf?

) n+1

Notice that this says that L2(DD) is a weighted Hardy space H*(B) for B(n) =
(n+ 1)_%. Also, find an expression in terms of the Taylor coefficients of f and
g for (f, g>L3(1D)’ where f and g are in L2(ID).

(b) We have seen that evaluation at w € D is a bounded linear functional on L2(ID).
Thus there is a function, call it K,,(z), in L2(D) so that f(w) = (f,K,,) forall f €
L2(DD). Show that K,,(z) = (1 —wz)~2. What is the norm of the linear functional
of evaluation at w?

1.26. Show thatif f(z) = Y7y a,z" is in the Hardy space H?, then for each 0 < r < 1
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[ IR 5 = X
0 n=0

where f,(e%) = f(re'®). Conclude that

R o\ d0
im [ |f(ré®)? o=
r—1-J0

is equal to the H> norm of f. Conversely, show that if f(z) = Yo oanZ" is analytic

in the unit disk D and
21

oy d0
1' i0 27 0
Jim Jy 170 o <

then Y2 |a,|* < oo.

1.27. [21] Complete the argument outlined below, due to Riesz, to give a proof of
the completeness of L?[a,b]. Let {f,} be a Cauchy sequence in L*[a, b].

(a) Show that {||f,||} is a Cauchy sequence of scalars, and hence a bounded se-
quence, say || /|| < M.

(b) Show that for fixed g € L*[a,b), . ab fngdx is a Cauchy sequence and its limit o,
satisfies |otg| < Mgl

(c) Define A : L?[a,b] — C by A(g) = . Use Theorem 1.29 to show that there
exists F € L2[a, b] with o, = [” Fgdx for all g € L*[a,b].

(d) Show that £, converges to F in L?[a,b).

1.28. A sequences {h,} in a Hilbert space .77 is said to converge weakly to h €
if

for every g € J7.

(a) If {e,} is an orthonormal sequence in .7¢, show that ¢, — 0 weakly.
(b) Show that if h, — h in norm, then h, — h weakly. Show that the converse is
false, but that if h, — h weakly and ||/, || — ||%||, then h, — h in norm.

1.29. Show that if { f,,} is a sequence in L2(D) and f,, — f weakly in L2(ID) (see the
previous exercise for the definition), then f;,(z) — f(z) for each z € D.

1.30. Let 0 < p < 1 and define L”[0, 1], with respect to Lebesgue measure dx, to be
the set of all (equivalence classes of) measurable functions for which

1
/ |f|Pdx < oo.
0
(a) Show that if we define
1
9= [ 1f—sgldx

for f,g € LP[0, 1], then d is a metric on L”[0, 1] and the resulting metric space is
complete.
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(b) Show that || - ||, does not satisfy the triangle inequality and thus is not a norm on
LP?[0,1], where as usual we write

1 1/p
Il = () s

1.31. Suppose that 7], 74,... is a finite or countable collection of Hilbert spaces.
The purpose of this exercise is to define the (external) direct sum of the spaces .77;,.
We give the definition in the case of a countable collection and leave it to the reader
to describe the obvious modifications in the finite case. Define 77 to be the set of
all sequences {h, } with h, € J#, for each n and ¥'5° || 2, ||> < eo. Addition and scalar
multiplication on .7 are defined coordinatewise, and for 4 = {h, } and g = {g, } in
JC we define

<h,g>,;f = Z<hnagn>jfn-
n=1

(a) Show that (-,-) is an inner product on #, and in the resulting norm ||A|*> =
|| ||?, 22 is a Hilbert space. (Use the Cauchy—Schwarz inequality to show

that the sum in the definition of (k, g) ,» converges absolutely.)
(b) Denote 7 as just defined by Y ©.77;,. Sometimes we like to think of 77, as a sub-
space in ) .77;; this means that we identify 7, with those elements of )} .57,
which have a zero in all but the nth position. Show that with this identification,

I, L 6, for m # n.

1.32. In this problem we compare the results of the previous exercise with a slightly
different, but essentially equivalent, notion of the direct sum of Hilbert spaces.
Suppose that J#,.7%, ... is a collection of pairwise orthogonal closed subspaces
of a Hilbert space 7. By Y @74, (which we temporarily call the internal direct
sum of the spaces %,;) we mean the closure of the collection of all finite sums
hy+hy+---+h, where m € Nand h; € jfj for all j. Show that this internal direct
sum is isomorphic to the external direct sum via the correspondence

(h]7h27h37~~-) —hi+hy+hs+---.

1.33. If J7,.54,... is a collection of pairwise orthogonal closed subspaces of a
Hilbert space 77, and Y .7, is their internal direct sum (in the terminology of
the previous exercise), show that ¥, @.77, is the intersection of all closed subspaces
containing U,.7%,. This is called the closed linear span of the subspaces .7, and is
denoted V/,, %,. Thus we have

\ A=Y ot

for pairwise orthogonal /7.
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Chapter 2
Operator Theory Basics

The constantly widening field of applications of functional
analysis leads to a systematic reconsideration of its basic
methodological standpoints. One of these standpoints asserts
that the original and basic concept of functional analysis is the
concept of a space (normed, metric,. .. ). To study a problem one
must choose a space and study the corresponding functionals,
operators, etc. init. ... [T]he choice of the space in which the
problem is studied is partly connected with the subjective aims
which the investigator sets himself. Apparently the objective
data are only the operators that appear in the equations of the
problem. On this account it seems to us that the original and
basic concept of functional analysis is that of an operator.

S. Krein and Yu. Petunin ([28], p. 85).

Linear operators connect, either explicitly or in the background, to all of the topics
of this book, so in this chapter we will discuss the most basic properties of operators
on Banach or Hilbert spaces.

2.1 Bounded Linear Operators

Definition 2.1. If X and Y are normed linear spaces, amap T : X — Y is linear if
T(oxy + Bx2) = a(Tx1) + BT (x2)

for all x1,x, in X and scalars @ and 3. We say the linear map T is a bounded linear
operator from X to Y if there is a finite constant C such that ||Tx||y < C||x||x for all
xin X.

We will normally suppress the subscript on the norm symbol || - ||, which indicates
the space in which the vector lives, unless there is a potential for confusion. Bounded
linear functionals introduced in the last chapter are bounded linear operators for the
special case Y = C. As with linear functionals, boundedness of a linear operator is
equivalent to continuity, as the next result, whose proof is left to the reader, states.

Proposition 2.2. If T : X — Y is a linear map from a normed linear space X to a
normed linear space Y, the following are equivalent:

(a) T is bounded.
(b) T is continuous.
(c) T is continuous at Q.

B.D. MacCluer, Elementary Functional Analysis, DOI 10.1007/978-0-387-85529-5_2, 31
(© Springer Science+Business Media, LLC 2009
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As with linear functionals, we define || T'|| = sup{||Tx|| : ||x|| < 1} and refer to this
as the “operator norm of 7'.” This terminology is justified by the following result,
whose proof is left as Exercise 2.1.

Proposition 2.3. The collection B(X,Y) of all bounded linear operators from a
normed linear space X to a normed linear space Y is a normed linear space in the
operator norm, where the vector operations are defined pointwise. If, in addition, Y
is a Banach space, then %(X,Y) is a Banach space.

When X =Y we will write Z(X) for Z(X,X). Note that, as promised in Section
1.4, Proposition 2.3 tells us that the collection of all bounded linear functionals on
a normed linear space forms a Banach space, since ¥ = C is complete.

Before discussing any more of the general theory of bounded linear operators it’s
helpful to have a list of examples in mind.

Example 2.4. Here is an example we have already met. Suppose M is a closed sub-
space in a Hilbert space 7. Let Py : 3¢ — M be the orthogonal projection of .77
onto M. By the projection theorem, Py, is a bounded linear operator of norm 1 (if

M # {0}).

Example 2.5. Let (X,90, 1) be any o-finite measure space and choose ¢ €
L>(X, u). Define the multiplication operator My : L*(X, 1) — L*(X, 1) by My (f) =
¢ f; this is clearly a linear map and since

[ 1oPan <ol [ 1£Pdu
X X

we see that M, is bounded with norm at most ||@||... We claim that in fact || M|| =
|l@||. To see this suppose ¢ < ||@||w. If E is defined to be {x: [@(x)| > o}, then
W(E) > 0. The idea is to consider something like y£ to show that || My || > o, but we
can’t quite do this since Yz will not be in L?(X, u) if u(E) is infinite. Instead, we
use the o-finiteness hypothesis on g to find a subset E’ of E with 0 < u(E') < eo.
Then f = yg will be in L?>(X, 1) and

Mof> = [ 1pPdu > au(E') = o [ |fPdu
so that ||M|| > o, where ¢ is any chosen value less that ||@||e.. Thus ||[M|| = || @||.

In the next example, which combines the previous two, we encounter the com-
position of two linear operators. In general, if A € #(X,Y) and B € #(Y,V), then
by the product BA we mean the mapping defined by BA(x) = B(A(x)) forx € X. It
is easy to see that BA € #(X,V) and ||BA|| < ||B||||A]|-

Example 2.6. Consider the Bergman space L2(D) and let ¢ € L*(ID,dA/); note
that ¢ is not assumed to be analytic. Define the Toeplitz operator with symbol ¢
on L2(D) by Ty(f) = P(@f), where P is the projection of L*(D,dA /) onto L2 (D).
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Clearly 7y, is linear, and since P : L*(D,dA/x) — L2(D) is bounded with norm 1,
and My : L*(D,dA/m) — L*(D,dA /) is bounded of norm ||@||., T is bounded
with norm at most || @||.. When ¢ is analytic in L™(ID,dA/x), the projection factor
in the definition of T serves no purpose, and in this case Ty is just the restriction of
the multiplication operator My, to the closed subspace L2(D) of L*(DD).

Example 2.7. The next pair of operators are simple but important ones. They act
from ¢? to itself. The first, called the forward shift, is defined by

S(X[,Xz, .. ) = (0,x1,x2,...).

It is easy to see that it is a bounded linear operator of norm one; in fact it is an
isometry, meaning ||Sx|| = ||x|| for every x = (x1,x2,...) € £2. The backward shift is
the operator from ¢> to ¢> which takes (x1,x2,x3,...) to (x2,x3,...). It has norm 1,
but is not an isometry (why?).

Example 2.8. Suppose that # is a Hilbert space with orthonormal basis {e,}7.
Choose any bounded sequence of complex numbers {Ocn}‘io and set Ae, = O,e;,.
Extend A by linearity to any finite linear combination of the e,, and extend A to
all of 7 by continuity, noting that linearity is preserved. Explicitly this means the
following. Given h € J#, we know h = Y (h,e,)e,, where the sum converges in
. Since {ay,} is a bounded sequence, the partial sums of Y7 (h,e,)aye, form a
Cauchy sequence in 7 and thus converge in J¢; call the sum Ah. Since

oo

ARI? = Y [{hyen)Ploul® < (suploul®) ) |(h,en)|* = (supow|)?|IA]1%,
1 n 1 n

we see that A is bounded with ||A|| < sup, |0, |. Consideration of Ae, shows that,
indeed, we have equality here. Such an operator A is called a diagonal operator,
with diagonal sequence {0, }. The terminology comes from defining, in analogy
with the finite-dimensional case, the matrix M, of A (with respect to the basis {e, })
to be the (infinite) matrix with i jth entry (Ae;,e;). This is a diagonal matrix when A
is a diagonal operator.

In spite of its usefulness in finite-dimensional settings, we will not find it par-
ticularly helpful to work with the matrix of a general bounded linear operator on
a Hilbert space 77, in part because it is not easy to tell if a linear operator A is
bounded by looking at its matrix My4. Another way to say this is that while every
bounded linear operator corresponds to a matrix, the converse is not true.

Example 2.9. We describe a class of operators called integral operators. Start with
a o-finite measure space (X,91, i) and a measurable function k : X x X — C with
ke L?(X xX,ux u). Define K : L*(X,u) — L*(X,u) by Kf = g where

80 = [ Kx)f0)dn()

for x in X. We call k the kernel of the integral operator K. Since k € L*(X x X), for
almost every x € X, the function y +— k(x,y) is in L?>(X, ), and thus the function
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y + k(x,y)f(y) is integrable if f € L*(X,u). We show that K maps into L*(X, u)
and is bounded. For f € L2(X, 1) we have

K = [ lePante) = [ | [ ktx)s0)am0)
< [ ([ ewsisoaucs ) auco
< [ (o wesPan) ) [ 170)Pdu) ) o

=11 [, [ 1) Pan(s)an
= IFIPEIE,

where we have used the Cauchy—Schwarz inequality midway through the calcula-
tion. This computation shows that K is bounded from L?(X,u) into L?(X, i) with
norm at most ||k||. Some of the measure-theoretic technicalities of this example can
be bypassed by taking, for example, X = [0, 1] and requiring k(x, y) to be continuous
on [0,1] x [0, 1].

du( )

A particular integral operator of interest is the Volterra operator; it comes from
the choice X = [0, 1], with Lebesgue measure, and k(x,y) equal to the characteristic
function of the lower triangle {(x,y) : y < x} in the unit square [0,1] x [0, 1]. This

gives
= /0 f(y)dy,

so the Volterra operator is sometimes called the “operator of indefinite integration.”
By the above remarks, its norm is at most 1/+/2; computing the norm exactly is not
so easy; see [17], Problem 188.

A bounded linear operator T on a Banach space X is said to attain its norm if there
is a nonzero vector x in X with || Tx|| = || T'||||x||. See Exercise 2.8 for an exploration
of this issue in the Hilbert space setting.

2.2 Adjoints of Hilbert Space Operators

Now that we have some examples of bounded linear operators in mind, let us turn
to the notion of the adjoint of a Hilbert space operator. Later we will define adjoints
of operators on Banach spaces, and compare it to the definition we give now in the
Hilbert space setting. As motivation for our work in this section, recall that given an
n x n matrix A = (a;;) with complex entries, its conjugate transpose A* is the n x n
matrix whose ijth entry is aj;. Associate to the matrix A the linear operator T4 on
C" given by T4 (v) = Av where v € C" is written as a column vector. For any vectors
v and w in C", we have



2.2 Adjoints of Hilbert Space Operators 35

(Tav,w) = (v, Tp=w). 2.1

The operator T+ is called the adjoint of the operator Ty, and the analogue of the
property in Equation (2.1) will lead us to the idea of the adjoint of any bounded
linear operator between Hilbert spaces. To make this precise, we begin with the
definition of a sesquilinear form.

Definition 2.10. If 5# and ¢ are both Hilbert spaces, a sesquilinear form u : 7€ X
& — C is a mapping satisfying

(1) u(ah+Pg.k) = ou(h,k)+ Bu(g,k), and

(2 u(h,ak+Bf)="0wuh.k)+Bu(h,[)

for all h,g € 27, all k, f € 2 and all scalars o and 8. A sesquilinear form u is
bounded if there is a finite constant M such that |u(h,k)| < M||h||||k|| for all h € 2
and ke 7.

Setting 5 = ¢ and letting u(h, k) be the inner product (h,k) gives an example
of a sesquilinear form that is bounded (by the Cauchy— Schwarz inequality). More
generally, if A € B(,¢) and B € B( A, ), then both u(h,k) = (Ah,k) and
u(h,k) = (h,Bk) (where the inner products are in .#" and .7, respectively) define
sesquilinear forms that are bounded, since, for example,

|u(h, k)| = (AR, k)| < [|AR[|[|&]] < [[AI[ | 2] |k
The next result describes all bounded sesquilinear forms.

Theorem 2.11. Let 57 and % be Hilbert spaces and suppose that u: 7€ x & — C
is a bounded sesquilinear form. There exists a unique A € B(H, A") such that

u(h,k) = (Ah,k) ¢
forallh € 5 and k € X .
Proof. For fixed h € 7 we define a mapping A, : # — C by

One can easily check that Ay, is linear. Moreover, since u is bounded by hypothesis,
[An(K)[ = [u(h, k)| = |u(h, k)| < M||l|[|]|

for some M independent of 4 and k. Thus Ay, is a bounded linear functional on JZ".
By the Riesz representation theorem this functional must therefore be given by inner
product with a unique vector f in J¢:

Ah(k) = <k>f>J£’

for all k € %, and moreover ||A;|| = ||f||. Since we have already observed that
ALl < M||k||, we must have || f|| < M]|A||. This process defines a map A from .7#
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to £ taking h to f. This mapping is linear: If hy,hy are in 5 and a € C with
Ah; = f1 and Ahy = f> so that

u(hl’k) = <kvfl>J£/

and

uhy, k) = (k, fa) »
for all k € ¢, then

Ay +hy (k) = u(ahy + hy, k) = Otu(hl,k) +M(l’l2,k)
= a<kaf1>}{+ <k7f2>%/ = <k7 (xfl +f2>=)g;

so that A maps ahy + hy to o f] + f>. We have already seen that A is bounded with
[|AR|| = |If|| < M]||h||. This shows that there is a bounded linear operator A with

or equivalently

u(h,k) = (Ah,k) .
Moreover, A is unique, since if (f1,k) » = (f2,k) » for all k € £, we must have
(fi — f2,k) ¢ = 0 for all k, and therefore f; = f>. a

As a consequence of the last result, suppose we start with an operator A in
PB(H, X ) and define u : # x 7 — C by

u(k,h) = (k,Ah) .

This is a bounded sesquilinear form. Applying Theorem 2.11, we can find the unique
operator, call it A*, in (%, ) satisfying

u(k, h) = (A%k, h)

for all k € # and h € J#. Taking conjugates, we have the following important
conclusion.

Theorem 2.12. Given Hilbert spaces 7€ and ¥ and A € B(H,X), there is a
unique A* € B(H , ) so that

<Ah7 k>)£/ = <h’A*k>%”

forallhe 5 and k € .

The operator A* in the last result is called the (Hilbert space) adjoint of A. In the
case that 77 = ¢ and A* = A we say that A is self-adjoint or Hermitian. Looking
back at the statement of Lemma 1.30 in Chapter 1, we see that orthogonal projec-
tions (onto closed subspaces) are self-adjoint operators.

Some more examples are in order. For the forward shift S on ¢2 as in Example 2.7,
it is easy to check that S* is the backward shift; to see this it suffices to compute
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(Sx,y) and (x, By) and see that they agree, where x and y are in £ and B denotes the
backward shift.

For a multiplication operator M, defined on L?(X, u) for some o-finite measure
space (X, 1) and ¢ € L*(X, ), we have

(Mof.8) = (0,8) = [ @fedi=(f.7g) = (f.Mge)

for any f,g € L>(X, ). Thus Mg, = Mg, and a multiplication operator is self-adjoint
if and only if its symbol ¢ is real-valued almost everywhere.

A similar computation, using the self-adjointness of the Bergman projection from
Lemma 1.30, shows that a Toeplitz operator T, on L2(DD) has adjoint T5. See Exer-
cise 2.5.

To determine the adjoint of the integral operator with kernel k acting on L?(X, i)
we seek the operator K* satisfying (K f,g) = (f,K*g) for all f and g in L>(X, ).
Writing the inner product as an integral, and using Fubini’s theorem to interchange
the order of integration, we see that

(Kf.g) = [ KfW0gldu)

- /X ( /X k(x,y)g(x)du(X)) F)du(y)
- ( i k(x,y)g@c)du(x)) FO0)du (),

| IOREDIu0) = (£K's)

which is equal to

if we define K* to be the integral operator with kernel k*(x,y) = k(y, x).

We will be mainly interested in adjoints for bounded linear operators from a
Hilbert space .77 to itself; recall we will write B(J¢) for B(,.7) in this case.
For simplicity, the next result is stated in this setting, rather than the more general
one of bounded linear operators from J# to 2 .

Proposition 2.13. For A and B in B(.#°) we have

(a) A™ =A where A* = (A")*.
(b) (A+B)* =A*+B".

(¢c) (aA)*=0aA* foracC.
(d) (AB)* = B*A*,

Proof. For (a) we first note that by the definition of the adjoint we have (A*x,y) =
(x,A**y) for all x and y in JZ. Since also (Ay,x) = (y,A*x), taking conjugates we
see that (x,Ay) = (A*x,y). Thus (x,A**y) = (x,Ay) for all x and y, or equivalently
(x,A**y — Ay) = 0 for all x and y. This forces A*"y = Ay for all y € .7, giving (a).



38 2 Operator Theory Basics

Part (b) follows from the definition of the adjoint and a straightforward computa-
tion showing that ((A + B)x,y) = (x, (A* 4 B*)y) for all x and y in J#. Parts (c) and
(d) are done similarly, and the details are left to the reader. a

The next result will be fundamentally important to us.
Proposition 2.14. [f A € B(H), then ||A|| = ||A*|| and ||A*A|| = ||A]%.
Proof. Take any vector h € .7 with ||| = 1. We have
|AR||> = (Ah,AR) = (h,A*Ah) < |[A"AR|| |h]| < [JA*A]l < [IA*[|- A (2.2)

so that ||A]] < ||A*||. Applying this together with (a) of the previous proposition
we also have ||A*|| < ||A**|| = ||A||. Thus ||A|| = ||A*||. Using this, and taking the
supremum over all unit vectors % in (2.2), we see that

IA]I? = sup{||AR|> : |n]| = 1} < [|4*A] < A" - Al = |A]”
and thus equality must hold throughout, yielding ||A||*> = ||A*A|| as desired. O

Let us recap and extend the structure we have on #(7°) when J¢ is any
Hilbert space. First of all, using pointwise-defined vector operations and the “op-
erator norm,” it is a Banach space; this is Proposition 2.3. We define a multipli-
cation on () which makes it into a complex algebra; that is, a vector space
over C with a multiplication satisfying A(BC) = (AB)C, (A+ B)C = AC + BC,
A(B+C) =AB+AC, and o(AB) = (aA)B = A(aB) for all A,B,C € #(+) and
scalar . This multiplication AB is just the composition of the linear maps A and
B. Note multiplication is not in general commutative. As we have noted above,
IAB|| < ||A|||IB]|, and we will see later this makes Z(.¢) into a Banach algebra, as
will be formally defined in Chapter 5.

We also have an involution * of Z(.#); this is a map A — A* of #(J¢) into
itself satisfying (A*)* = A, (AB)* = B*A*,(aA + B)* = @A* + B* for all A,B in
PB () and scalars a. Of course, * is just our adjoint operation. It is connected to the
norm by ||A*A|| = ||A||?, the result of Proposition 2.14. As we will see in Chapter 5,
all of these properties together say that () is a C*-algebra. The relationship
|A*A|| = ||A||? is called the C*-identity. Because there is a multiplicative identity
(the identity operator I in (7)), we will say that # () is a unital C*-algebra.
Later we will make a study of C*-algebras in general, and Z(.7) will be one of our
primary examples. Since () is noncommutative (except in the trivial situation
that the dimension of 57 is 1), we will find it convenient to single out for special
scrutiny the operators in Z(5¢) which do commute with their adjoints.

Definition 2.15. An operator A in B() is normal if AA* = A*A, and self-adjoint
ifA=A"

Any multiplication operator M, on L*(X, (1) is normal, since Mg = Mg. In Chap-
ter 6, we will see multiplication operators are, in a natural sense, the canonical ex-
amples of normal operators.
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As noted above, we will be primarily interested in adjoints of operators in
PB(H), as opposed to B(,.%). One exception is if 7 and % are Hilbert
spaces and U : 77 — J¢ is a linear surjection that preserves inner products, mean-
ing (Uhy,Uhy) = (hy,hy) for all h; and hy in #. Such a map is called a Hilbert
space isomorphism.

Proposition 2.16. If U : 5 — ¢ is an isomorphism, then U*U = L (the identity
on ) and UU* =1 4.

Proof. Let h and g be in .77. We have
(U*Uh,g) = (Uh,Ug) = (h,g)

so that (U*Uh — h,g) = 0. This says that for a fixed h, U*Uh — h is orthogonal to
every vector in 57, and hence U*U = [ .

Now let k be in JZ". Since U is surjective we may find & with Uh = k. Thus
UU*k = (UU*)Uh = Uh = k, which gives the desired statement about UU*. O

Definition 2.17. An operator A in H(.5¢,. %) is said to be invertible if there exists
Bin B(H , ) with AB =1, and BA = I ». We write B=A"".

We can rephrase the last proposition as “If U is an isomorphism, then U* = U1
An isomorphism between Hilbert spaces is called a unitary operator, although some
authors will restrict this terminology to the setting 2Z° = ¢, and some, as is our
practice, will use it more generally for an isomorphism of one Hilbert space .77’
onto another, possibly different, Hilbert space J¢".

Definition 2.18. If J# and %" are Hilbert spaces and if U : 2 — % is a bijective
linear map with
(Uh1,Uha) ¢ = (h1,h2) ¢

for all 4 and hy in 77, then U is said to be a unitary operator.

It is an easy consequence of the polarization identity that a linear and surjective
isometry from 7 to % is unitary; see Exercise 2.9.

Let us make a few elementary observations about invertibility of operators. First
note that when A € #(J,. %) is invertible with inverse B, A must be one-to-one,
since if Ahy = Ahy we must have hy = BAh; = BAhy = hy. The operator A must
also be onto #, since for any k € ¢, A(Bk) = k. We’ll discuss a converse to these
statements a bit later. By linearity, A is one-to-one if and only if its kernel

kerA={he # :Ah=0}

consists of the zero vector only.
We can add another property to our list of properties of *:

Proposition 2.19. If A is invertible, then so is A*, and (A*)’1 = (A’l)*.
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Proof. When A is invertible we have AA~! = I = A~'A. Applying the * operation
we have (AA~!)* =I* = (A~'A)*; clearly I* = I so that by property (d) of Proposi-
tion 2.13 we have (A~1)*A* = I = A*(A~1)*, which is the desired conclusion. O

The next result is the converse to Proposition 2.16.

Proposition 2.20. If U is in B(, %) with U invertible and U~" = U*, then U is
an isomorphism.

Proof. We have already observed that U must be surjective, so we only need to
check that it preserves inner products:

({Uh,Ug) = (h,U*Ug) = (h,U'Ug) = (h.g)
for all 4 and g in 7. O
A few examples are in order.

Example 2.21. Let S be the forward shift on £2, so that S* is the backward shift. We
have S*S =1, but S is not unitary, since its not surjective. This example points out an
important distinction with the finite-dimensional situation. For a linear map T from
C" into itself, T is necessarily bijective if it is either one-to-one or surjective.

Example 2.22. Consider a multiplication operator M, on L*(X,u) for ¢ in L”
(X,u). When is M, unitary? We want M(I,M(;1 = MMy = 1. We know that

Mg = Mg, so that My is unitary if and only if |p|?f = f for all fin L*>(X,u);
that is, if and only if |@| = | pu-almost everywhere.

Example 2.23. Let F map L*([0,27x],dt/(27)) into

oo

{{an}*u s ) lanf® < oo}

n=—oo

()

by F(f) = {f(n)}*.. where

? int n int dt

— \ nty _ et =2
Jo = trem = [T foe s
Linearity of F follows from linearity of the integral. Since {¢?"} is an orthonormal
basis for L?([0,27],dt/(27)), part (f) of Theorem 1.33 guarantees that F' preserves
inner products. Given a sequence {a, }*,, € £*(Z), define f = Y=, a,e™. This sum
converges in L*([0,27]) and F(f) = {a,}”.. Thus F is surjective, and hence is a
unitary map.

Suppose A € B(, %), and think of A as a mapping from J# to JZ in the
purely set-theoretic sense. From this point of view, A is invertible (as a mapping
between sets) if and only if A is bijective. Its not hard to show (see Exercise 2.7)
that if A is bijective, linearity of A implies that this set-theoretic inverse is a linear
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map from JZ onto . However, it is not at all clear that this linear set-theoretic
inverse should be bounded. Remarkably, it is, as we will see in Section 3.3, and
we are left with the extremely useful conclusion that a bounded linear operator in
PB(A, x) is invertible (in the sense of Definition 2.17) if and only if it is bijective.

We explore this a bit further. Our immediate goal is to show that we can char-
acterize the invertible operators by weakening the requirement that A be onto if we
simultaneously strengthen the requirement that A be one-to-one. The next definition
describes this strengthening.

Definition 2.24. We say that A € B(.5, ¢ ) is bounded below if there is a 6 > 0
such that ||Ak|| > &]|h]| for all A in 2.

Clearly, if A is bounded below, its kernel is {0} and hence A is one-to-one. How-
ever, A being one-to-one does not imply that A is bounded below; a diagonal opera-
tor with diagonal sequence {1/n} provides a counterexample.

A weakening of the condition “A maps ¢ onto %™ is the requirement that the
range of A is dense in J¢; i.e., the closure of the range of A should be all of JZ".

Theorem 2.25. If A is a bounded linear operator from a Hilbert space 7 to a
Hilbert space ', then A is invertible if and only if A is bounded below and has
dense range.

Proof. The “only if” direction is easy: A invertible guarantees that the range of A is
equal to 2, and moreover for any h € 7,

2]l = A~ AR|| < A7 [[[|AR]

so that

| AR[| = il
IIA

lla=T

and A is bounded below. The “if”’ direction is outlined in Exercise 2.12. O

When we ask why a particular operator fails to be invertible, it is sometimes more
useful to see which of the properties “bounded below” and/or “dense range” it fails
to have, rather than looking at the properties “one-to-one” and “onto.”

2.3 Adjoints of Banach Space Operators

So far we have defined A* when A is a bounded linear operator between Hilbert
spaces, and our definition seems closely tied to the inner product structure. We pause
briefly in this section to see if we can define the adjoint of a bounded linear operator
between Banach spaces. For simplicity, we restrict attention to A € #(X), where X
is a Banach space.

Let us begin by rephrasing the defining property of the adjoint of a Hilbert space
operator. If A € () where S is a Hilbert space, then A* is the unique bounded
linear operator on 7 satisfying
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(Ax,y) = (x,A%y) 2.3)

for all x and y in .5Z. Let the linear functional x — (x,y) on .5 (for fixed y) be
denoted by A,. Thus we can rewrite Equation (2.3) as

Ay(Ax) = Apsy(x).

Even more suggestively, let us think of the map that associates the linear functional
A, to the linear functional A4~y,. We have

Axry(x) = (x,A"y) = (Ax,y) = Ay(Ax) = (Ay 0 A)(x)

for x and y in J#. This suggests we try defining A* for A € #(X), where X is now
a Banach space, as the map on the dual space X* that sends A € X* to Ao A:

A*(A) = AoA.

It is easy to see that A*(A) is in X* and that the map A* : X* — X™* is linear.

If we adopt this as the definition of A* when A is a bounded linear operator on
the Banach space X, how does it compare with our earlier definition in the case that
X is actually a Hilbert space 5#? To answer this, let C : 5 — 7" be the surjective
conjugate linear isometry sending y to A,; “conjugate linear” referring to the fact
that C(cty) = aC(y) for scalars a. We claim that CA};; = A}(C, as schematically
illustrated below. Here the subscripts HS and BS indicate we are using the adjoint
definition in, respectively, the Hilbert space setting or Banach space setting, so that
Ajg acts on 2 while Apg acts on S

A*
H— H*
Ags

This is verified by observing that CAj;¢x is the bounded linear functional on /7
given as inner product with A}, ¢x, that is, the bounded linear functional taking y €
S 1o (y,A};¢x) = (Ay,x). On the other hand, Aj;Cx is the bounded linear functional
on 7 taking y to

[ABs(Cx)](y) = Cx(Ay) = (Ay,x).

The conjugate linearity of C means that while (@Axs)* = 0CAjq, (00A)5g = QAj.
It is pleasant to import the Hilbert space notation (-,-) into the Banach space
setting. For X a Banach space, denote a generic element of X* by x* and write

x*(x) = (x,x").

Notice, then, that if A is in Z(X) and A* is in Z(X*), we have (Ax,x*) = (x,A*x*)
since both are equal to x*(Ax).
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Example 2.26. Consider the Banach space X = C[0, 1] in the supremum norm. As
in Exercise 2.3, let ¢ be a continuous map of [0, 1] into [0, 1] and define the bounded
linear operator Cp on X by Cy(f) = f o ¢. Fix a point p € [0,1] and let A, be the
bounded linear functional of evaluation at p: A,(f) = f(p) for all f € X. We seek
to identify Cy(Ap) as an element of X*. We have

Co(Ap)(f) = Ap(Co(f)) = Ap(fo@) = F(9(p)) = Ag(p) ()

for every f in X. Thus Cy(A,) = Ag(p)- In our “inner product” notation the relevant
calculation looks like

(f:Co(Ap)) = (o @,Ap) = f(@(p)) = ([ Ap(p))-

The concept of the adjoint operator had its beginnings in the work of Riesz
in 1909 for operators on L”[a,b]. Riesz used the terminology “Transponierte” or
“transposed operator.” By 1930 the idea had been extended by Banach and Juliusz
Schauder to the general setting of a bounded linear operator between Banach spaces,
with the terms “opération adjointe” and “opération conjuguée” being introduced.

2.4 Exercises

2.1. Let X and Y be normed linear spaces, and let (X ,Y) denote the collection of
all bounded linear operators from X into ¥ endowed with the operator norm. Show
that (X ,Y) is a normed linear space, and Z(X,Y) is a Banach space whenever Y
is a Banach space. The vector operations in #Z(X,Y) are to be defined pointwise:
(A+ B)(x) =Ax+ Bx, and (@A) (x) = a(Ax).

2.2. Suppose M is a dense subspace in a Banach space X (meaning that the closure
of M is all of X) and suppose that T : M — Y is linear, where Y is a Banach space,
with [|[Tm|y < K|jm||x for some K < o and all m € M. Show that T extends, in a
unique way, to a bounded linear operator from X into Y.

2.3. Let X = [0,1] or more generally any compact Hausdorff space, and let % =
C(X), the Banach space of continuous, complex-valued functions on X, in the supre-
mum norm. For any continuous function ¢ mapping X into itself, define the com-
position operator Cy on % by Cy(f) = f o ¢. Prove that Cy is a bounded linear
operator on /. For which ¢ is Cy invertible?

2.4. Compute the norm of the multiplication operator M, (equivalently the Toeplitz
operator T;) on L2(ID).

2.5. Show that the Toeplitz operator with symbol ¢ acting on the Bergman space
L2(D) has adjoint T.
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2.6. Suppose T is a bounded linear operator on a Hilbert space .7 and suppose
further that the range of 7 is one-dimensional. Show that there are vectors x and y
in 7 so that

Tz=(z,x)y

for all z € 7. This operator is sometimes written as y ® x. Identify T* in this case.

2.7. Show that if T : X — Y is a bijective linear map, then the set-theoretic inverse
T is also linear.

2.8.(a) Suppose that & is a nonzero vector in a Hilbert space 7. Show that T €
PB(A) attains its norm at h (meaning ||Th|| = ||T||||#|]) if and only if T*Th =
I,

(b) Extend (a) to the case that T is a bounded linear operator from a Hilbert space
¢ to a Hilbert space %, and then use this result to provide another proof of
Proposition 2.16.

2.9. Show that a linear surjective isometry from one Hilbert space .7 to another
Hilbert space .#" is unitary.

2.10. Let {a,}7 be a bounded sequence of complex numbers. Fix an orthonormal
basis {g,} for £2. The unique linear operator W satisfying W (g,) = @,g,+1 for all n
is called a weighted shift.

(a) Find |W|| and W*.

(b) Suppose {a,} and {b,} are bounded sequences with |a,| = |b,| for all n. Let W
and V be the associated weighted shifts. Show that there is a unitary U : /> — (>
with U~'WU = V. We say that W and V are unitarily equivalent.

2.11.(a) Show that if Y2 |a,|?(n!)? < oo, then the power series Y~ a,z" con-
verges for all z € C and hence f(z) =Y, ja,2" is analytic in C. Define the
vector space of entire functions

v ={f= ianz” : i an|?(n!)? < oo}
n=0

n=0

and put an inner product on ¥ by setting
<fag> = Z an;n(n!)z
n=0

when f(z) =Y (a,7" and g(z) = Yo bnz". Show that " is a Hilbert space.
(b) Let U : H> — ¥ by
“
Uur=Yy =
f r;] n’

when f(z) = ¥ oa,z" is in H? (so that Y7 |an|? < oo; see Example 1.7). Re-
calling that the power series coefficients a, of f are given by
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£"(0)

n!

a, =

show that U is a unitary map.

(c) Define a linear map D on ¥ by Df = f/, and show that D is a bounded linear
operator on V.

(d) Let B : H*> — H? be defined by

f=1(0)

Z

Bf =
Show that B is a bounded linear operator on H> and D = UBU !, so that D and

B are unitarily equivalent.

2.12. Suppose that A € B(, %) where A is bounded below and has dense range
in JZ . Show that A is invertible. Hint: Start by showing that if A is bounded below,
then the range of A is closed.

2.13. Suppose A, € B(H;,) for n =1,2,3,..., where each 77, is a Hilbert space.
Assume further that sup,, [|A,|| < ec. Define A on JZ =Y. ®.5, by

A(h) =A(hy,ha,...) = (Ah1,Ahy, ..).

Show that A € B() and ||A|| = sup, ||An||. We call A the direct sum of the opera-
tors {A, } and denote it )" PA,,.

2.14. Suppose that u is a bounded sesquilinear form on 7 x ¢ for some Hilbert
space S .

(a) Define the quadratic form @i : 7€ — C by 6i(h) = u(h,h). Show the polarization
identity

u(h,g) = i (;(h—i—g)) 2 <;(h—g)> id (;(h—i-ig)) —id (;(h—ig)>

for all 4 and g in 2.
(b) Show that if u#; and u; are bounded sesquilinear forms on 7 x JZ with
ui (hyh) = up(h,h) for all b in 72 then u; and uy agree on & X .

2.15. Recall the space C'[0, 1] defined by
C'([0,1]) = {f € C[0,1] : f’ exists and is continuous on [0,1]}.

(a) Recall from Exercise 1.3 of Chapter 1 that C'[0, 1] is a Banach space if we norm
it by

£ llcr = max{|f(x)] : 0 <x < 1} +max{|f(x)| : 0<x < 1}.

Show that for each x € [0, 1], the functional
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evi(f) = f'(x)

is a bounded linear functional on (C'[0,1], ]| -||c1)-
(b) Fix ¢ : [0,1] — [0,1] in C'[0,1] and define Cp on C'[0,1] by Cy(f) = fo .
Show that Cy is a bounded linear operator on C' [0, 1]. What is C;(ev}c)?
2.16. For an operator T in (), where S is a Hilbert space, show that ker T =
(ran T*)*, where ker T = {h: Th =0} and ran T* =range T* = {T*h: h € J¢}.
2.17.If T is a bounded and self-adjoint operator on a Hilbert space and 72 = T,
show that 7 is the orthogonal projection onto its range.

2.18. Suppose that Py, and Py, are orthogonal projections onto the closed subspaces
M and M, of a Hilbert space.

(a) Show that Py, Py, is an orthogonal projection if and only if Py, Py, = Py, Py, -
(b) If the condition in (a) is satisfied so that Py, Py, = Py for some closed subspace
M, identify M.

2.19. Show that a diagonal operator on a Hilbert space is an orthogonal projection
if and only if its diagonal consists of 0’s and 1s.

2.20. Fix vectors Ay, hy, ..., h, in a Hilbert space .77 .
(a) Define B: C" — 2 by

n
B(Z],Zz,...,zn) = ZZJ'/’IJ‘.
j=1

Calculate B* : 57 — C".
(b) What is the relationship between the operator B in (a), the n x n matrix A = [g; j]
with a;; = (hj,h;), and the operator C : 5 — J¢ given by

n
Ch="Y (h.hj)h;?
j=1

(c) Show that Ay, hy,. .., h, are linearly independent in 7 if and only if the matrix
A is invertible.

2.21. Suppose that T is an operator in JB(.5) for some Hilbert space . and sup-
pose that 7 = 7! and 7 = T*. Show that the sets

A ={h+Th:he A}

and
M ={h—Th:he X}

are closed subspaces of JZ with S = J# ® 773, and that the restriction of T to J#
is the identity I while the restriction of T to 73 is —1I.

Conversely, show that if .77 is the direct sum of two subspaces 7] and .75 with
T(h)=hforh€ 74 and T(h) = —hforh€ 75, then T =T ' and T* =T.
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222.If A € B(H) and h € F, then
{h,Ah,Ah,A%h,...}

is called the orbit of h under A. When the orbit of & spans 7#— that is, when the set
of linear combinations of vectors in the orbit of /4 is dense in J#—we call h a cyclic
vector for A, and say that A is a cyclic operator.

(a) Show that the constant function 1 is a cyclic vector for M, on L2(ID).
(b) Consider the operator from C> to C? with matrix

200
A=1020
001

Show that this operator has no cyclic vector.

Cyclic operators will be studied further in Chapter 6.

2.23. Thus far, the only topology we have considered on () for ¢ a Hilbert
space is the topology that comes from the operator norm; this is called the norm
topology or the uniform operator topology. However, there are other useful topolo-
gies on (), and in this problem we introduce two of them by discussing se-
quential convergence in two new senses.

Definition. Given {7, } in B(¢), we say T,, — T € ZB(H) in the strong operator
topology if

T,h— Th

for each h € 7. This is abbreviated 7, — T (SOT).
We say T, converges to T in the weak operator topology, denoted T,, — T (WOT),
if
(Tuh.g) — (Th,g)
for each fixed i, g in J7.

(a) Show that if S is the forward shift operator on ¢2, then S — 0 (WOT), but S"
does not converge to 0 in either the norm or strong operator topology.
(b) If P, : 17 — (% by

Pu(x1,x2,...) = (0,0,... X511, %042, )

show that B, — 0 (SOT), but not in the norm topology.

(c) Show that if T, — T (SOT) for T,,,T € B(H), then T, — T (WOT).

(d) Is the mapping from () — C which sends T to ||T || continuous if we use the
strong operator topology (respectively, the weak operator topology) on % (5¢)?
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Chapter 3
The Big Three

In linear spaces with a suitable topology, one encounters three
far-reaching principles concerning continuous linear
transformations.

N. Dunford and J. Schwartz ([12], p. 49).

In this chapter we will look at several core results of functional analysis. Two of
these, the principle of uniform boundedness and the open mapping theorem (as well
as their close cousins, the Banach—Steinhaus theorem and the closed graph theorem)
are Banach space results. The third, the Hahn—-Banach theorem, makes no use of
completeness and takes place in a normed linear space (or even more generally). All
three of these results are ubiquitous in functional analysis.

We will look at the Hahn—Banach theorem first, and begin by reviewing Zorn’s
lemma, which is sometimes called the “analysts’ version of the axiom of choice.”
We begin with some needed terminology. A partial order on a set X is a relation,
written generically as <, satisfying the following properties for all a,b,c € X:

(a) transitivity: ifa < band b < cthena <c,
(b) reflexivity: a < a, and
(c) anti-symmetry: ifa < band b < athena=">.

If for every pair a,b in X we either have a < b or b < a, then X is said to be
totally ordered by <. Two simple examples to illustrate these concepts are the totally
ordered set consisting of the real line with the usual < relationship, and, for any set
X, any collection of subsets of X partially ordered by set inclusion C. Note that the
latter need not be a total ordering, for example when the cardinality of X is at least
two, and (X)) is the set of all subsets of X, then (Z?(X), Q) is a partial ordering
which is not a total ordering.

As further examples, consider the set N x N of ordered pairs of positive integers
and two relations <; and <, defined as follows. Say that (a,b) <; (x,y) if a is
strictly less than x or if @ = x and b is less than or equal to y (in the usual sense
on N). This is sometimes called lexicographical ordering, by its analogy with the
ordering of words in a dictionary. For the second relation, say (a,b) <, (x,y) if a is
less than or equal to x, and b is less than or equal to y, in the usual sense of inequality
on N. Clearly <; is a total ordering, while < is a partial ordering which is not a
total ordering.

B.D. MacCluer, Elementary Functional Analysis, DOI 10.1007/978-0-387-85529-5_3, 49
(© Springer Science+Business Media, LLC 2009
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When a set X is partially ordered by < and Y is a subset of X, we call an element
p € X an upper bound for Y if y < p for all y € Y. An element m in X for which
m < x implies m = x is called a maximal element of X .

We are ready to state Zorn’s lemma, which is indispensable in functional analy-
sis. It will be taken as an axiom of set theory; alternatively one can derive it from
the axiom of choice, which says that the Cartesian product of nonempty sets is
nonempty.

Lemma 3.1 (Zorn’s Lemma). If X is a nonempty partially ordered set with the
property that every totally ordered subset of X has an upper bound in X, then X has
a maximal element.

A good way to see a standard and completely straightforward application of
Zorn’s lemma is to use it to prove that any orthonormal set in a Hilbert space can
be extended to an orthonormal basis, so in particular every Hilbert space has an or-
thonormal basis. See Exercise 3.1. The proof of the Hahn—Banach theorem in the
next section will provide another example of an application of Zorn’s lemma.

3.1 The Hahn-Banach Theorem

The Hahn—-Banach theorem deals with extending continuous linear functionals from
a subspace of a normed linear space to the whole space. Completeness of the space
plays no role, so this is a result about normed linear spaces in general. This is one
of the few places in the subject where it is helpful to first look at real vector spaces
(that is, a vector space over R), and prove it in that context, before extending the
argument to cover the case of a complex vector space. This extension, while not
difficult, is not trivial either; historically the real case was proved nearly ten years
before its extension to complex scalars.

Theorem 3.2 (Hahn—-Banach Theorem). Let X be a normed linear space over F =
R or C, and suppose Y is a (not necessarily closed) proper subspace of X. If ¢p :
Y — F is a bounded linear functional, then there is a bounded linear functional
¢ : X — [ with the restriction of ¢ to'Y equal to ¢y (so that @ is an extension of ¢q)
and ||@|| = ||@ol| (so that this extension is norm-preserving).

It is the norm-preserving part of the conclusion that gives the result its power.
Recall that Exercise 1.22 in Chapter 1 showed how to extend linear functionals
on subspaces of Hilbert spaces, using simple Hilbert space techniques, in a norm-
preserving way. Without Hilbert space machinery at our disposal, we will have to
work a bit harder.

Before we look at the proof of the Hahn—Banach theorem, we give some applica-
tions. For the first, suppose X is a normed linear space which is not just {0}. Could
X*, the dual space of X, consist of just the zero functional?

Corollary 3.3. Let X # {0} be a normed linear space. Given xo # 0 in X, there is a
bounded linear functional @ on X of norm 1 with ¢(xo) = ||xo]|-
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Proof. Set M ={oxp : oo € F}, a subspace of X. Define ¢ on M by ¢(axo) = ot||xo]|-
It is easy to see that ¢ is a bounded linear functional on M with norm 1 and ¢ (xg) =
|lxo]]- By the Hahn—Banach theorem we can extend ¢ to all of X without increasing
its norm. O

The next corollary shows that the dual of a nontrivial normed linear space must
be rich enough to “separate the points” of X.

Corollary 3.4. Suppose X # {0} is a normed linear space. Given x| # x, we may
find a bounded linear functional ¢ on X with @(x1) # @(x2).

Proof. Apply Corollary 3.3 to xg = x| — x2. O

Corollary 3.5. Suppose xg is an element of a normed linear space X. We have

[Ix0l| = sup{l@(x0)| : @ € X, [[@]| = 1},
and moreover this supremum is attained.

Proof. The result if trivially true if xo = 0. In general, we have |@(xo)| < |lxol| if
lo|| =1, so the supremum is at most ||xg||. On the other hand, by Corollary 3.3
there exists ¢ € X* with ||@]| = 1 and @(xp) = ||x0]|, so the supremum must in fact
be equal to ||xg||, and the supremum is attained (by Q). O

See Exercise 3.5 for a concrete application of Corollary 3.5 in the particular
normed linear space LP (X, 0, 1t), 1 < p < oo,
Note the symmetry in the statements: For ¢ € X*,

o]l = sup{|@(x)| : x € X, [|x]| =1},

and forx € X,
[[x] = sup{|@(x)[ : @ € X", ||| = 1}.

In the second line (but not in general in the first, although see Corollary 3.7 below),
“sup” can be replaced by “max.”

The Hahn—Banach theorem gives a means for determining the points that lie in
the closure of a linear subspace of a normed linear space. The proof of the next
result is left to the reader as Exercise 3.8.

Corollary 3.6. Suppose that X is a normed linear space, xo € X and M is a
(not necessarily closed) subspace in X. Suppose that d = dist(xo,M) > 0 where
dist(xo, M) = inf{||xo —y|| : y € M}. There exists ¢ € X* with ¢(x9) =1, ¢ =0o0n
M, and ||@|| = 1/d. In particular, xy is in the closure of M if and only if there is no
bounded linear functional on X that is O on M and nonzero at xy.

When X is a Banach space, or even just a normed linear space, we know from
Exercise 2.1 in Chapter 2 that its dual X* is a Banach space, so that it too has a dual
space (X*)* which we will write X**. If xo € X we can define what will constitute
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an element of X**, call it xjj*, by setting xj* (@) = ¢@(xo), for any ¢ in X*. It is easy
to see that xj;* as just defined is a linear functional on X* and moreover,

o (@) = |@(xo)| < [l@]l[xoll

so that x§* is bounded with norm at most ||xo||. We claim that this natural map from
X to X™ sending xp to xj" is a linear isometry of X into X**. The interesting piece
that still needs verification is the “isometry” part of this statement. We have

sup{[xo" ()| : @ € X", [|[| = 1}
= sup{|@(x0)[: @ € X", [|o] =1}
= [lxol

[EoNl

where we have used the definition of the norm on X**, the definition of xj*, and
Corollary 3.5 for each of the three equalities, respectively. If this natural map xo —
x4* is onto X**, then X is said to be reflexive, and it gives a isometric isomorphism of
X with X**. In this context, “isomorphism” means a continuous linear bijection with
continuous inverse. If X is reflexive, it must be a Banach space since X** is a Banach
space. Note that the definition of “reflexive” requires that a particular mapping of
X into X** (the “natural map”) be an isometric isomorphism, not simply that there
exist some isometric isomorphism of X and X**. The latter surprisingly turns out
to be a strictly weaker assumption; this was shown by R.C. James in [23]. As an
immediate consequence of the definition of a reflexive space and Corollary 3.5 we
see that bounded linear functionals on reflexive Banach spaces attain their norm;
this is the content of the next result, whose proof is left to the reader.

Corollary 3.7. Suppose that X is a reflexive Banach space. Given ¢ € X*, there
exists a unit vector xy in X such that |@(xo)| = || @||.

This corollary is sometimes useful for showing a particular Banach space is not
reflexive; see, for example, Exercise 3.34. The converse to Corollary 3.7 is also true:
In any nonreflexive Banach space there is a bounded linear functional which does
not attain its norm on the unit sphere. This result is also due to James [24].

We are going to prove Theorem 3.2 in the real scalar case first, that is, we will
assume in the statement of the theorem that ' = R. There are two key parts to the
proof: the “one-step extension,” which basically extends a linear functional, in a
norm-preserving way, from a linear manifold to the span of that manifold and a
single additional vector; and a Zorn’s lemma argument.

Proof (Theorem 3.2, real case). If ||@o|| = 0, simply set ¢ = 0 and we are done.
Thus we are interested in the case ||¢@y|| # 0, and we may assume, without loss of
generality, that || @g|| = 1, which we do. Choose a vector z which lies in X but not in
Y and let

Vi={y+oaz:yeYanda e R} ={az—y:y€Y and o € R},
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so that Y7 is the span of Y and z. For any choice of a fixed real number c, if we
define @; on Y; by ¢1(az—y) = ac— @y(y), then ¢; is an extension of ¢y to a
linear functional on Y;. There are a few details to be checked here, starting with the
observation that ¢; is well-defined (once c is chosen) and linear. Well-definedness
follows from uniqueness of representation for every vector in Y; in the form oz —y
with y € Y and o € R. Once these easy issues are attended to (we leave the details
to the reader), the issue becomes whether we can choose ¢ so that || @ || = ||go]| = 1.
In other words, we want to choose ¢ so that

lac—@o(y)| < [Jaz—y| (3.1

for all yin Y and all scalars & in R. Now we want (3.1) to hold for all y € Y and real
scalars o, so it can be rewritten in an equivalent manner by dividing by || (since
the ¢ = 0 case is trivially true). Doing this, we see that the condition (3.1) we wish
to satisfy is equivalent to the condition

le—@o(a'y)[ < Jlz—aly]

for all y € Y and real a # 0, or more simply, to the condition

le— @) < |lz—Vll (3.2)

for all y € Y. This last inequality will hold for some choice of ¢ precisely when there
is a choice of ¢ satisfying

Qo) —lly—zll <c < @o(y) +Ily—2l (3.3)

for all y € Y. If we denote the left-hand side, @o(y) — [y — z||, by A(y) and the
right-hand side, @y(y) + ||y — z||, by B(y), a real ¢ of the desired type can be found

provided
AG).B()]
yey

is nonempty (and if it is nonempty, any c that lies in this intersection will do).

We claim that
NIAG),B(y)]
yeyY

is nonempty precisely when A(y) < B(v) for all y and v in Y. One direction of this
claim is clear: If ¢ € [A(y),B(y)] forall y € Y, then ¢ > A(y) for all y and ¢ < B(v) for
all v. Conversely, if A(y) < B(v) for all choices of y and v, then a = sup,cy A(y) <
inf,cy B(v) = b, and any c in the range a < ¢ < b will lie in [A(y), B(y)] for all y.
This verifies the claim, and we can create a norm-preserving extension if

Po(y) = [ly =zl < go(v) + [lv—2| (34

for all y and v in Y. We have
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() — @) =(y—v) <[ly=vl <lly—zll+ 2=,

where we have used the assumption that ¢ has norm 1. Rearranging this computa-
tion gives (3.4), and we conclude that there is a norm-preserving extension ¢; of ¢
fromY to Y.

To finish the proof, we use Zorn’s lemma. Let & be the collection of all pairs
(Y', @) where Y’ is a (not necessarily closed) subspace containing Y and ¢ : Y/ — R
is a linear functional extending @ : ¥ — R with ||¢’|| = ||@o|| = 1. Partially order
P by (Y,0) < (Y ¢")if Y/ CY” and the restriction of ¢” to Y’ is ¢’. Suppose
¢ ={(Yg,pp) : B € F} is atotally ordered subset of &. Set N = Ug¥p. Since ¢’
is totally ordered, N is a subspace. Define ¢ on N by ¢(y) = @g(y) if y € Yg; note
that @ is well-defined since % is totally ordered, and is linear. Moreover, (N, @) is
in &2; in particular there is an 3 so that

oI = lepM < ¥l

so || @] < 1. We see that (N, @) is an upper bound for &', since (Y, ¢g) < (N, @) for
all B. By Zorn’s lemma, £ has a maximal element, which we denote (Xw, ¢ ). We
must have X, = X, else we could do the one-step extension process to extend to the
span of X, and xg, where xy is in X but not in X.., contradicting the maximality of
(Xeo, @0 ). Once we know that X.. = X, we have the desired norm-preserving exten-
sion @ of ¢y to all of X. g

In Exercise 3.4, the reader can work through an application of the one-step ex-
tension process in a concrete setting.

The extension of the proof of the Hahn—Banach theorem from the real case to the
complex case is outlined in Exercises 3.2 and 3.3. While it is not hard, historically
there was a span of nearly ten years between the work on the real case by Banach and
the extension to the complex case by H. Bohnenblust and A. Sobczyk in 1938. Per-
haps not coincidently, Banach’s esteemed 1932 treatise Opérations Linéaires deals
only with real Banach spaces. In the particular setting of X = L” the complex case
appeared in 1936 in the work of F. Murray; see also the comment in Exercise 3.3 on
an earlier contribution by H. Lowig. The work of Bohenblust and Sobczyk may be
the first place that the result is referred to as the “Hahn—Banach Theorem.”

In reality, it would be more accurate to credit Eduard Helly with the first proof
of a Hahn—Banach type theorem for work dating from 1912. Helly was working on
a problem, posed by Riesz, which he reformulated as a problem about extending a
bounded linear functional on a subspace of C[a,b]. His argument had a thoroughly
modern flavor, and was quite similar to that later used independently by Hahn (1927)
and Banach (1929). A key feature was the one-step extension process, and in par-
ticular the inequalities of (3.3) and (3.4) for the special case of Cla,b] appears in
his work. A slightly later paper of Helly’s [22], published in 1921, gives the Hahn—
Banach theorem in the context of sequence spaces.

One possible explanation for the lack of recognition Helly received for this
(and other mathematical contributions he made) might be found in some of the
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non-mathematical details of his life (see [20]). An Austrian, he received his Ph.D. in
1907. He enlisted in the army at the start of World War I, and was wounded in 1915,
suffering serious heart and lung injuries. He became a Russian prisoner of war, and
was imprisoned in Siberia from 1915-1917. In part due to the civil war in Russia in
1918, he was not able to return to his home of Vienna until late in 1920. He received
his Habilitation degree from the University of Vienna in 1921, but was unable to se-
cure an academic position. He worked as a bank clerk (until the bank failed in 1929)
and in an insurance company, while trying to remain active in mathematics. Helly—
who was Jewish—emigrated to the United States in 1938, as Austria was absorbed
by the Third Reich. He held positions at several junior colleges in New Jersey until
he was offered a Professorship at the Illinois Institute of Technology. Unfortunately,
shortly after this he died of a heart attack, at the age of 59. Undoubtedly his earlier
war injuries contributed to this premature death.

3.2 Principle of Uniform Boundedness

Several important problems in Banach space theory come down to the rather
pedestrian-seeming problem of showing that a set is “large” in the sense that it has
nonempty interior. Recall that the interior of a set A in a metric space (M,d) is the
set of points a € A for which there exists § > 0 with B(a,8) = {m € M : d(a,m) <
0} C A. As an illustration of this general principle, let us characterize boundedness
of a linear operator in terms of a particular set having nonempty interior.

Proposition 3.8. Suppose X and Y are normed linear spaces and T : X — Y is lin-
ear. Then T is bounded if and only if T~ ({y € Y : ||y|| < 1}), the preimage of the
open unit ball in Y under T, has nonempty interior.

Proof. First suppose T is bounded with ||T|| = M. If x € B(0,1/M) we have ||Tx|| <
1, and thus B(0,1/M) is contained in the preimage of the open unit ball of ¥ under
T.

The more interesting direction is the “if” direction. For this, suppose T is lin-
ear and T~ !'{y: ||y|ly < 1} contains xo as an interior point, say B(xo,€) lies in the
preimage of the open unit ball in ¥ under T. Fix €’,0 < €’ < &, and consider x with
|lx|| < €. Since x+xp € B(xp, €), we have

ITx]| =T (x+x0 —x0) || = |7 (x+x0) =T (x0) |
< T (x+x0) | + [ Txol|
< 14T =M.

A

Thus for any unit vector v in X,

1 M
mi=[r ()] <%
€ €

and T is bounded. O



56 3 The Big Three

So when does a set have nonempty interior? In a complete metric space (thus in
particular in a Banach space) the Baire category theorem sheds some light on this.

Definition 3.9. A set S in a metric space M is nowhere dense if its closure has empty
interior.

Some examples of nowhere dense sets are the integers Z in the real line R, or the
Cantor set in [0, 1] (it is a closed set containing no open intervals). By contrast, the
rationals are not a nowhere dense set in R.

The next result is the Baire category theorem. Its roots are in René Baire’s 1899
dissertation, where it was shown that R” is not a countable union of nowhere dense
sets (the case n = 1 was actually proved two years earlier by W. Osgood). One can
think of this as a topological tool; it will play a role in the proof of the principle of
uniform boundedness of this section, and the proof of the open mapping theorem in
the next.

Theorem 3.10 (Baire Category Theorem). A complete metric space is not the
union of a countable number of nowhere dense sets.

Proof. Let M be a complete metric space. Suppose, for a contradiction, that M is
the countable union of sets A, that are nowhere dense. We will construct a Cauchy
sequence in M with no limit point in M.

Since A; is nowhere dense, we may find an open ball B; with B, NA; = 0, where
A denotes the closure of A;. Clearly, we can choose the radius of this ball By to be
less than 1. Since A, has empty interior, it doesn’t contain B and (M\A;) N B is a
nonempty open set. Thus we may find an open ball B, whose closure is contained
in B} such that By NA; = 0 and such that the radius of B is less than 1/2. Continue
inductively, so that at the nth stage we produce an open ball B, whose closure is
contained in B,_1, such that B, N A, = 0 and the radius of B, is less than 1 /n; we
are using the hypothesis that A,, has no interior point and thus B, is not contained
in A,. Note that the closed balls B, form a nested sequence of closed sets, whose
diameters tend to 0, in our complete metric space.

Let x, be the center of the ball B,. It is easy to see that {x,} forms a Cauchy
sequence in M: When m,n > N, the points x,, and x, lie in the ball By and hence
d(Xm,xn) < 2/N, which tends to 0 as N — oo. This Cauchy sequence then converges
to some point x € M. We claim that x is notin A; for all j > 1, a contradiction to the
assumption that M = U7 1Aj. To verify this claim, note that if x € A;, then x is not

in B; (since B;NA; = 0), and hence not in By for all k > j+ 1. However, we have
Xy € Bjyq foralln > j+1 and therefore x is in Bj,| C B}, a contradiction. O

Thus the Baire category theorem says that if a complete metric space X is written
as a countable union X = UTA,, at least one of the sets A, must be “big” in the sense
that its closure has nonempty interior. The proof of the next result, the principle of
uniform boundedness, illustrates this. Informally, this theorem says that a pointwise
bounded family of operators is uniformly bounded.
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Theorem 3.11 (Principle of Uniform Boundedness). Suppose X is a Banach
space and F is a family of bounded linear operators from X to a normed linear
space Y. If, for every x € X,

sup{||Tx||: T € F} <oo

then
sup{||T||: T € F} < oo.

Proof. Define A, = {x € X : ||Tx|| <nforall T € #}. The hypothesis says that
each x € X is in some A, so that X = U"_,A,. By the Baire category theorem, for
some 7, A,, has nonempty interior. To make use of this we first claim that each A,, is
closed. To see this, suppose x;, is in A, for m = 1,2,... and that x,, — x. For each
T € .7, ||Txm| < n, while continuity of T guarantees that ||7x,,|| — ||7x||. Hence
ITx|| <nforeach T € .% and x € A,,.

So in fact, for some fixed n, A, has an interior point, which we will denote x¢. Let
€ > 0 be chosen so that B(xp, €) C A,. The positive number €, as well as the integer
n, are fixed values at this point. If ||x|| < g, then for any T € .7,

I Tx|| = |T (x+2x0) — Txol| < ||T (x+x0) ||+ | Tx0|| < n+n.

From this it follows that for any unit vector v,
1 2n
Tv||=—-|T(ev)|| < —
Il = SIT(en) < 5

and thus
2n

e

sup{||T||: T € .F} <
O

Note that we can restate the principle of uniform boundedness as follows: either
sup{||T|| : T € F#} < o, or there exists x € X such that sup{||7x||: T € .F} = co.

As with the Hahn—Banach theorem, Helly deserves more credit than he has re-
ceived for his contributions to the uniform boundedness principle. He gave the first
proof, for C|a,b], but by methods which extend to general Banach spaces. Banach
and Steinhaus’s original proof depended on a technique called the “gliding hump”
method; this was replaced by the Baire category argument after S. Saks pointed out
the possibility of using this approach. The original gliding hump argument is out-
lined in Exercise 3.15. A precursor to the principle of uniform boundedness, in the
setting of £2, appeared in work of E. Hellinger and O. Toeplitz in 1910.

A close cousin of the principle of uniform boundedness is the Banach—Steinhaus
theorem, which we look at next.

Theorem 3.12 (Banach—Steinhaus Theorem). Suppose {T,} is a sequence of
bounded linear operators from a Banach space X to a Banach space Y. Assume
further that for all x € X, lim,,_, T,,x exists. Define T : X — Y by Tx = lim;_, Tyx.
With this definition, T is a bounded linear operator from X to Y.
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Proof. 1t is easy to check that T is linear, and we leave the details of this to the
reader. We will use the principle of uniform boundedness to show that 7" is bounded.
For each x € X, sup,, || T,x|| < oo since {T,x} is a convergent sequence by hypoth-
esis and convergent sequences in a metric space are bounded. By Theorem 3.11,
sup,, ||T,|| = M < . This means that for each x € X, and any n, || Tx|| < M||x||. We
have

T[] = || lim T,,x]] < M]|x]

(note the continuity of the norm lurking behind this calculation) and T is bounded
with ||T|| < M. O

Note that the last result does not say that if 7, — T pointwise on X, then ||7,| —
|IT||. For example, let T, : £> — C be the linear operator given by T, ({a;}) = a,.
For each a = {a;} in £*> we have lim,, ... T;,(a) = 0, so T = 0 is the pointwise limit
n=T| =Tl =1.

We give some examples to illustrate applications of Theorems 3.11 and 3.12. The
first uses the sequence space co = {{a, }{ : lim,_.. a, = 0}, in the supremum norm.
It is left to the reader (see Exercise 3.16) to show that ¢ is a closed subspace of £,
hence is itself a Banach space.

Example 3.13. Suppose that {a,}T is a sequence of complex numbers such that
Y7 anb, converges whenever {b, }{ is in co. We will show that }'*|a,| < . To see
this, define T : co — C by

Ti({bn}) = Zaj

Each T} is a bounded linear functional on ¢y with ||T;|| < Zl;'=1 laj|; the latter state-
ment follows from the calculation

< Y last < (b ) o) < b }nwz o]

]—

In fact, we have equality: ||T;|| = ZI;-=1 laj|. To see this, consider 7} acting on the
unit vector in cg
(mazako)
jar] " faz| " ]

(with the obvious modifications if some a; = 0), whose image under 7j is Z’;Zl laj|.
We are given, then, that for each b = {b, } € co, lim_. Ty () exists, since T;(b) =
YXa;b; and Y7 a;b; converges. In particular, sup; |Tx(b)| < oo for each b € co. By
Theorem 3.11, sup; {[|7k[|} < o, and thus Y7, [a;| < eo.

Example 3.14. Our next example is an application of Theorem 3.11 to a question
about convergence of Fourier series. A continuous function f on the unit circle T
has a Fourier series
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where

=)= [ fe

(that is, the Fourier expansion of f with respect to the orthonormal basis {e™}>
for L?(T,dx/(2x)). We know that this series converges to f in the norm of L?(T),
and so a subsequence converges pointwise almost everywhere; this is true for any
f in L*>(T), not just the continuous ones. But the general question of the point-
wise convergence of the series is more delicate. In fact, for a period of time that
stretched for 40 years, Riemann, Dirichlet, Weierstrass, and Dedekind all believed
that the Fourier series of a continuous function converged pointwise everywhere
(necessarily to the function value). The first counterexample was given in 1876 by
DuBois-Reymond. Then the pendulum swung and for a while it was believed that
the Fourier series of a continuous function could fail to converge at every point. In
1966 Lennart Carleson settled the matter definitively by proving the “Lusin con-
jecture,” which asserts that the Fourier series of any function in LZ(T) (and thus,
in particular, of any continuous function) converges pointwise almost everywhere.
What we will do in this example is use the principle of uniform boundedness to
show there exists an f € C(T) such that s, (f,0) does not converge to f(0), where
su(f,0) denotes the symmetric partial sum Y7_  f(k)e' evaluated at 0. Indeed, we
will show the existence of an f € C(T') so that the partial sums of the Fourier series
of f att = 0 are unbounded.
We begin with a calculation.

N N dx

w(f)= Y Fe = ; (/’;f(x)eikxzn> i

k=—N k=—N
T N dx
_ } ik(t—x)
= X e
/;j'[ f( )kiiN 27.[

= [" swpwe-n5

where Dy (s) = Y& e/*; this is the so-called Dirichlet kernel. The reader may
recognize the last integral as the convolution f x Dy(¢) of f and Dy. Next we claim

that
_ sin(N+ D)s

sin( )

when s # 0, and 2N + 1 when s = 0. In the case s = 0 this is clear; otherwise write

DN (S)

N ) 2N . ei(ZNJrl)s
Z ezks — e*lNA Z e’k“ — e*lNA i
1—e"
k=—N k=0

Multiplying numerator and denominator by e /2 and using the identity e~ — ¢ =
—2isiny gives the desired result. This kernel Dy (s) is badly behaved in two respects:

it is not positive and ||Dy/||1 is not bounded. To see the latter, we have
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IDxl :/Jr sin(N+%)s|ds/7r|sin( +3)s] ds
M= e Tsin3) 2 Jo [sin(3)] w

2 [Pl b,

N

2 ra(N+)) . du
7/ |sinu|—,
T Jo u

where we have used the estimate 0 < sint < ¢ for 0 <7 < 7/2 and made the substi-
tution u = (N + (1/2))s. Now

RN+ 2 4
—/ \smu\—u > = Z/ |s1nu|—du:?

Now let us get set up to use the principle of uniform boundedness. Recalling
that C(T) is a Banach space in the supremum norm, define the linear functional
Ay : C(T) — C by Ay(f) = sa(f,0). Since

5 log(N+1).

(20 = [ repu(-0)5

we see that

Al =| [ s

so that A, is bounded with norm at most ||D,]||;. We claim that we actually have
equality: ||Ay|| = ||Dx||1- To see this, fix 7 and let g(x) be defined to be 1if D, (x) > 0,
tobe —1if D, (x) < 0and 0 if D, (x) = 0. We may then find continuous and piecewise
linear functions f;(x) with —1 < f;(x) <1 for all x and f; — g pointwise on [—7, 7|
as j — oo. By the dominated convergence theorem

bis d T d
tim [ D / g(x )5 = LEIDn(—x) ~ = |Dulls.

joeo J 2

d Y d
&< /ﬁﬂ NP5 < I l=1Dal

Since || fjl < 1 this shows that ||A,|| > ||D,]|1 as desired.

We are finally ready to make our appeal to the principle of uniform boundedness.
Either ||A,|| < M for some M < oo and for all n, or there exists f € C(T) such that
sup,, |[An(f)| = eo. Since ||Ay|| = ||Dn|l1 — oo, the first alternative cannot hold and
thus the second must. We obtain the existence of an f € C(T') such that

sup [ A (f)] = sup|sy(f,0)] = ee,

and the Fourier series of f diverges at 0.

The next result is dual to the principle of uniform boundedness.
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Theorem 3.15. Let X be a normed linear space, and suppose A is a subset of X. If
sup{|@(x)| : x € A} is finite for each fixed ¢ in X*, then A is bounded.

Proof. Consider the natural map @ : X — X** taking x to x**. Note that ®(A) is
thus a collection of bounded linear functionals on X*. Since X* is a Banach space

sup{|@(x)(@)|: x € A} = sup{|@(x)| : x €A} <o
for each ¢ € X*. By Theorem 3.11, applied to the linear maps
F ={P(x) :x €A},

we must have
sup{||P(x)|| :x €A} < oo.

However, we know that @ is an isometry of X into X**, so that ||®(x)|| = ||x||. Thus
we conclude sup{||x|| : x € A} < o; that is, A is bounded. a

Exercise 3.18 gives an application of Theorem 3.15.

3.3 Open Mapping and Closed Graph Theorems

The theorems of the title of this section are closely related; we will prove the open
mapping theorem first, using the Baire category theorem, and then derive the closed
graph theorem from it. An open map is one for which the image of every open set is
open. The open mapping theorem concerns surjective maps in (X,Y).

Theorem 3.16 (Open Mapping Theorem). Suppose that X and Y are Banach
spaces and that T is a bounded linear operator from X to Y. If T maps X onto
Y, then T(G) is open in Y whenever G is open in X.

Before we discuss the proof, let us give one important consequence. This is often
called the inverse mapping theorem, and it is the third member of the triumvirate of
results in this section.

Corollary 3.17 (Inverse Mapping Theorem). Suppose X and Y are Banach spaces
and T € B(X,Y) is bijective. Its set-theoretic inverse T~ is then a bounded linear
operator fromY to X.

Proof. We have already observed that 7~! exists as a linear map, so only bounded-
ness of 7~! remains to be shown. By the open mapping theorem, T carries open sets
to open sets. Now 7! is bounded if and only if 7~! is continuous,and T~ : ¥ — X
is continuous if and only if (7~!)~!(G) is open in Y for every G that is open in X.
But (7-!1)~!(G) = T(G) and, by Theorem 3.16, T(G) is open in Y for any open set
G in X. Thus we conclude that 7~! is bounded, as desired. O
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This answers our old question as to whether the set-theoretic invertibility of
T € B(X,Y) implies its operator-theoretic invertibility, i.e., the existence of an in-
verse in Z(Y,X). We see the answer is yes, a result that Paul Halmos calls “one of
the pleasantest and most useful facts about operator theory.” The inverse mapping
theorem was first proved by Banach in 1929. Our approach, using the open mapping
theorem, is due to Schauder in 1930.

We turn next to the proof of the open mapping theorem. We will accomplish this
by first proving the next result.

Theorem 3.18. Suppose that X and Y are Banach spaces, and let Bx and By denote
the open unit balls, centered at 0, in X and Y, respectively. Suppose A is a bounded
linear operator mapping X onto Y. There exists a positive constant & such that
0By C A(Bx); that is, given 'y € Y with ||y|| < 0 there is x € X with ||x|| < 1 and
Ax =y.

Notice that the hypothesis that A is onto Y says that given any y in Y we may find
an x in X with Ax = y; thus the significance of Theorem 3.18 is that we may control
the norm of x in terms of the norm of y. Before we give the proof of Theorem 3.18,
let us see that it will quickly yield the open mapping theorem.

Proof (Theorem 3.16). Let G be an open set in X and let xy be in G. We only need
to show that A(G) contains an open ball about Axg. To this end, translate G to obtain
G' = G —xo. Since G’ is an open set containing 0 we may find a positive number ¢
with tBx C G'. By Theorem 3.18 we have

A(G') D A(tBx) =tA(Bx) D t3By
for some positive constant . By linearity,
A(G) =A(G +x0) = Axg +A(G") D Axo +tS8By;
this last is the open ball centered at Axg of radius ¢6. O

To prove Theorem 3.18 we first give a lemma which is an approximate version of
the theorem. It says that given y € Y we may get as close to y as desired by a vector
of the form Ax for some x in X whose norm is controlled by the norm of y.

Lemma 3.19. Suppose that X and Y are Banach spaces, and that A is a bounded
linear operator mapping X onto Y. There is a positive number d with the following
property: Given € > 0 and y € Y there exists x € X such that |Ax —y|| < € and
[Ixll < d~"lyll-

Proof. Giveny €Y there exists X in X with A¥ =y, since A is surjective. This means

=

Y = JA(kBx)
k=1
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where By is the open unit ball in X. Since Y is a complete metric space, the Baire
category theorem says that for some k, A(kByx) has closure with nonempty interior;
say

A(kBx) 2 B(yo,7)

for some r > 0 and yg € Y. If ||y|| < r, then y + yo will be in B(yo,r) and hence in
A(kBx). Thus for any y in Y with ||y|| < r we may find sequences {x},} and {x}
in kB such that Ax/, — yo and Ax// — yo +y. Consider x, = x// — x},, and note that
Axy — y and ||x,|| < 2k.

The conclusion will follow from exploiting linearity. Let z # 0 be an arbitrary
vector in Y, so that (r/2)(z/||z||) is a vector in Y of norm less than r. By the first part
of the proof we may find a sequence x;, in X with ||x, || <2k and Ax, — (r/2)(z/]|z||)-

Linearity says A((2/r)||zl|x,) — z where the norm of (2/r)||z||x, is less than
(4k/r)||z||- This is the desired conclusion, with d = r/(4k). O

We can now prove Theorem 3.18 by an iterative use of this lemma. In the state-
ment of the Lemma 3.19, we will refer to y as the rarget vector and € as the toler-
ance.

Proof (Theorem 3.18). Let A, X, and Y be as in the statement of the theorem, and let
d be as given by Lemma 3.19. Fix y in dBy, the open unit ball of radius d centered
at 0 in Y. We apply the lemma, with target vector y and tolerance € = d/2, to find
x1 € X of norm less than (1/d)||y|| < 1 such that ||y — Ax; || < d/2. Apply the lemma
again, this time with target y — Ax; and tolerance € = d /4 to find x; in X with

d
|- An) - Ax] < §

and
lrall < Sy~ Axil < 5
X —|ly —Ax —.
2 d y 1 D)
Continue inductively, so that if we have determined x;,x3,...,x, with
d
Iy —Ax) —Axy — -+ — Axp|| < >
and |
[Ixe |l < T fork=1,2,...,n,
then at the next step we apply the lemma with target y —Ax; —- - - — Ax,, and tolerance

d /2" to select x,,, 1 so that

d

[y —Axi — -+ — Axy — Axps1 || < )

and

1 1
[[n+1 ] < EHy—Axl =A< 5
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For each positive integer n, define v, = x; +x, + - - - + x,, and observe that {v,}
is a Cauchy sequence in X: When m > n,

m
1
[V = vall = [IXng1 + -+ + x| < Z"l? —0
n+

as n,m — oo. By completeness, there is an x € X with v, — x. Moreover,

o |
Ibell < olheell < X 5= =2
1 1

so that x is in 2Bx. Since ||y —Av,|| < d/2" we have Av, — y as n — co. By continuity
of A, Av,, — Ax, so that y = Ax. Recalling that y was arbitrary in dBy and x is in 2By,
we see that we have proved A(2Bx) 2O dBy, and by linearity A(Bx) D (d/2)By. This
gives Theorem 3.18, with 6 = d/2. O

Definition 3.20. When X and Y are normed linear spaces and 7 : X — Y is a linear
map, the graph of T, denoted graph(T), is {(x,Tx) : x € X }. Note that the graph of
T is asubsetof X x Y.

The product X x Y is a vector space under coordinatewise operations. We can put
anorm on X X Y (the “one-norm”) by ||(x,y)|| = ||x|lx + ||¥||y- It is not hard to show
that when X and Y are Banach spaces, then X x Y in the one-norm is also a Banach
space; see Exercise 3.19. Notice also that the graph of T is a (not necessarily closed)
subspace of X x Y.

The next result, called the closed graph theorem, gives a new way to see if a
linear map between Banach spaces is bounded.

Theorem 3.21 (Closed Graph Theorem). If X and Y are Banach spaces and T :
X — Y is linear, then T is bounded if and only if graph(T) is closed in X x Y.

Before we give the proof, we make a few observations. The hypothesis that
graph(T') is closed can be reformulated as “whenever (x,, Tx, ) converges to (x,y) in
X x Y, then we must have y = Tx”. The “only if”” direction of Theorem 3.21 is triv-
ial: If T is bounded and if (x,, Tx,) € graph(7T) satisfies (x,,Tx,) — (x,y), we have
||lx, —x||x — 0 and ||Tx, —y|ly — 0. Continuity of 7 implies that || Tx, — Tx|ly — 0,
so that Tx = y.

Proof (Theorem 3.21). Only the “if” direction needs proof. If the graph of T is
closed, then it is a closed subspace of the Banach space X x Y (in the one-norm), and
thus is itself a Banach space. Consider the continuous linear maps P, : graph(7) — X
and P, : graph(T) — Y defined by P; (x,Tx) = x and P>(x,Tx) = Tx. The map P is
bijective, and thus, by the inverse mapping theorem, P~ !is a continuous linear map
of X onto graph(T'). Since we can write T = P, o P !, we see that T is continuous.
O

Let us think about what this result actually does for us. If X and Y are Banach
spaces and T : X — Y is linear, to show that T is continuous from the definition, we
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assume that x,, — x, and then must show both that Tx,, converges, and that its limit
is Tx. By contrast, with the closed graph theorem at our disposal, to show that T is
continuous, we may assume both

x, —x and Tx, —Yy;

our task is then simply to show that y = Tx. In fact, its even a bit simpler. By lin-
earity, we need only show that whenever x, — 0 and Tx, — y, then y = 0; see
Exercise 3.21.

As an application of the closed graph theorem, we next prove the two-norm the-
orem.

Theorem 3.22 (Two-Norm Theorem). Suppose X is a normed linear space with
two norms, || -||1 and || - ||, each of which make X into a Banach space. If there
exists a finite constant M such that

[l < Mi|x]l2

for all x € X, then there exists a finite constant K such that ||x|2 < K||x||1 for all
xeX.

Proof. LetI: (X,]|-|l1) — (X,]-|l2) be the identity map. Clearly I is linear, and we
want to show that it is bounded. To do this we will apply the closed graph theorem.
Suppose that x,, — x in (X, || - ||;) and that I(x,) = x, — y in (X, || - ||2). Our goal is
to show that y = Ix = x. For each n,

1) =yl = lre =yl < fbe =2l + {12 =yll1 < lloe =2l +Mlbe = yll2,

which tends to 0 as n — . Hence x =y, and by Theorem 3.21 we conclude that /
is bounded. O

When a pair of norms || - ||; and || - ||> satisfy both ||x||; < M|x||» and ||x]|> <
K]||x||y for finite constants M and K, we say the norms are equivalent. Note that
equivalent norms will induce the same topology on the underlying space, since an
open set in one norm is also an open set in the other norm.

As an application of the two-norm theorem, we will show that C[0,1] in the
L' norm ||f||; = fy |f]dx is not a Banach space. We know that (C[0,1], ]| - ||.)
is a Banach space, and it is trivial that ||f||; < ||f]l~ holds for all f in C[0,1].
If (C[0,1],]| - |l1) were a Banach space, the two-norm theorem would say that
[l £ll« < K||f]l1 for some finite constant K and all f € C[0, 1]. The reader can easily
construct piecewise linear functions f;, in C[0, 1] with || f,||1 = 1 and || /||« = n; for
example, let f;,(x) be n — (n?/2)x for 0 < x < 2/n and 0 elsewhere.
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3.4 Quotient Spaces

As an application of the results in the previous section, we consider the notion of
a quotient space of a Banach space. Suppose that X is a Banach space, and M is a
closed subspace of X. Define an equivalence relation on X by decreeing that x = y
if and only if x —y is in M; this is easily verified to be an equivalence relation.
Denote the set of equivalence classes by X /M; that is, X /M is the set of cosets
X+ M where x; + M = x, + M if and only if x; — x; is in M. Define addition and
scalar multiplication on X /M by

(xi +M)+ (2 +M) =x1+x2+M

and
ox+M)=ax+M.

With these definitions, X /M becomes a vector space with zero vector 04+ M = M.
Put what will be a norm on X /M by setting

llx+M| =inf{|x+m| :me M} =inf{||x —m| :m € M},

so that ||x+ M || can be thought of as the distance from x to M. Note that ||x+ M| =0
if and only if x is in M; we are using the hypothesis that M is closed. In Exercise 3.25
you are asked to show that this is indeed a norm on X /M, and that X /M is complete.
The map IT : X — X /M which sends x to x+ M is called the natural, or quotient,
map. It is linear, and since

T = [l + M1 < [lx]],

it is bounded.

As a particular application of these ideas, consider a bounded linear operator
T :X — Y, where X and Y are Banach spaces and let M = ker T, a closed subspace
in X. Consider the quotient X /M = X /ker T. If T is surjective, we claim that Y and
X /ker T are isomorphic; that is, there is a bijective bounded linear operator from
one onto the other, with bounded inverse. To see this, set

A:X/kerT —Y

by
A(x+kerT)=Tx.

It is easy to verify that A is well-defined, linear, and bounded; see Exercise 3.26.
Moreover, if A(x; +ker T) = A(xp +ker T), then Tx; = Tx; and x; —x, is inker 7.
This shows that A is one-to-one. To see that A is onto Y, let y be in Y and find x
with Tx =y, so that A(x+ker T') = y. Once we know that A is bijective and linear,
the inverse mapping theorem guarantees that A has a bounded inverse, and therefore
X /ker T is isomorphic to Y.
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As a special case of this, suppose T is a bounded linear functional on a Banach
space X that is not the zero functional. In this case, T is automatically surjective, so
we conclude that X /ker T is isomorphic to C. This result will be important to us in
Chapter 5.

It is interesting to look at 7’ /M in the special case that M is a closed subspace
of a Hilbert space 77 Exercise 3.26 asks you to show that in this case the quotient
map gives an isometric isomorphism of M+ onto .7# /M. The philosophy is then that
X /M acts as a substitute for M in the Banach, non-Hilbert space setting.

3.5 Banach and the Scottish Café

By now we have seen evidence of Banach’s central role in the development of func-
tional analysis in roughly the period from 1920 (when he completed his doctoral
thesis) to his death in 1945, at which point the theory of linear operators on Banach
and Hilbert spaces had reached a level of maturity. Bourbaki (see the footnote in
Section 1.4) makes the following comment:

The publication of Banach’s treatise “Opérations Linéaires” marks, one could say, the be-
ginning of the adult age for the theory of normed spaces.... As it happened, the work had
considerable success...([6], p. 347).

Here we will say a bit more about his life and mathematical colleagues in Poland.
Much more information can be found in R. Kaluza’s biography of Banach [26].
Banach was a protege of Steinhaus, who was only a few years older than Banach,
and together they founded the Polish school of functional analysis, often referred to
as the Lwow school, which flourished during the period between World War I and
World War II. For a time the Café Szkocka (“Scottish Café”) in Lwow served as a
prime location for collaborative work and discussion between the members of this
Lwéw school. Meetings of the Polish Mathematical Society held at the Mathemat-
ics Department at the University of Lwéw were followed by discussions, first at the
nearby Café Roma, and then later next door at the Café Szkocka, which evidently
offered Banach a more congenial credit situation. Eventually this became the site of
near daily meetings, and a notebook purchased by Banach’s wife became a repos-
itory for problems posed by mathematicians working in the Scottish Café (prior to
this purchase, problems and work simply got written on the marble tabletops of the
café, to be erased at closing time by the janitor). The first entry in the “Scottish
Problem Book” as it came to be known, was made in July 1935 and the 193rd—and
last—entry in May 1941. Space was left after each problem for any forthcoming
solution to be added later. The book was kept at the café, to be produced by a waiter
or cashier when called for by Banach or one of his colleagues. Visitors added to the
problem book too, and one can see hints of the larger political landscape in this; for
example, Russian names appear among the contributors after 1939, when the Soviet
Union occupied Lwoéw. Prizes were offered for solutions to some of the problems,

EEINT3

many of these involved alcohol: “two small beers,” “a flask of brandy,” or “a bottle
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of wine,” while others were more unusual: “a live goose,” or hinted at deprivations
brought on by world events, “a kilo of bacon.” As World War II loomed, there were
concerns for the safety of the book and various suggestions were made for its safe-
keeping. The book did survive the war, and the original remains in the possession of
Banach’s son. A copy of the book was published by Birkhéduser in 1981 [31], along
with considerable commentary on the problems. Many parts of mathematics—not
just functional analysis—are represented.

When Germany invaded the Soviet Union and then entered Lwéw in 1941, Ba-
nach faced danger, both as a member of the “Polish intellectual elite” and for hav-
ing had good relations with the Soviets during the previous period. That he escaped
death when many Polish scholars were executed was perhaps due to his employment
as a “lice-feeder” in the Weigl Institute in Lwéw. Run by the Polish biologist Rudolf
Stefan Weigl, the Institute produced a typhus vaccine by a process which required
daily feedings of lice on the blood of human hosts. Weigl was able to offer some
measure of protection for employees of the Institute, many of whom were univer-
sity professors, from arrest and deportation to concentration camps. This was both
because the work of the institute was considered a priority by the Germans, and at
the same time, the Gestapo was disinclined to interfere with Institute employees for
fear they could be carrying typhus-infected lice. Institute employees carried special
identity papers which included warnings of this risk. Many of the feeders in the
particular unit in which Banach worked were also mathematicians, and lively math-
ematical discussions continued during the time when the lice were feeding. Banach
worked in the Weigl Institute from the fall of 1941 until Soviet troops reentered
Lwéw in July 1944. An underground university, formed under cover of the Insti-
tute, also came into existence during this period. Banach taught in this university,
and according to a reminiscence of Banach written by Steinhaus [44], one student
received a doctorate under his direction during this time. Although Banach survived
the period of Nazi occupation of Lwow, he suffered under the harsh conditions of
the time, with illness and malnutrition, and died at the young age of 53 in 1945 of
lung cancer.

3.6 Exercises

3.1. Use Zorn’s lemma to prove the following: If E is an orthonormal set in a Hilbert
space 7, then 7 has an (orthonormal) basis containing E. In particular, every
Hilbert space has an orthonormal basis. A similar Zorn’s lemma argument shows
that every vector space has a Hamel basis.

3.2. We introduce some terminology for the purpose of this problem: If X is either a
real or complex vector space (meaning that the scalars used in scalar multiplication
are real, or, respectively, complex), we say that a real-valued ¢ is a real-linear func-
tional if @(x+y) = @(x)+ ¢@(y) and @(ax) = a@(x) holds for all x,y € X and o
real. For X a complex vector space, we say that (a complex-valued) ¢ is a complex-
linear functional if these relationships hold for all x,y € X and o complex.
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(a) Show that for any complex number z, z = Re z — iRe (iz).

(b) Suppose X is a complex vector space and ¢ is a complex-linear functional on
X. Define u : X — R by u(x) = Re ¢(x). Show that ¢ (x) = u(x) — iu(ix) for all
xeX.

(c) Suppose u is a real-linear functional on X. Define ¢ : X — C by ¢(x) =
u(x) — iu(ix). Show that ¢ is a complex-linear functional on X. (Hint: Check the
condition ¢(ax) = a@(x) first for a real, then for o = i, then for & complex.)

(d) Now suppose X is a normed linear space. For ¢ and u related as above, show
that ||| = [[ul].

3.3. (Complex Hahn—-Banach). Suppose Y is a subspace of a complex normed linear
space X and ¢ : Y — C is a bounded, complex-linear functional on Y. Show that ¢
extends to a bounded complex-linear functional @ on X with ||@|| = ||®||. Hints:
Most of the work is done by the previous problem. Let u = Re ¢ and use the real
Hahn-Banach theorem to extend u to U on all of X. Define @(x) = U(x) — iU (ix)
and check that @ has the desired properties. This correspondence between U and &
was observed by Lowig in 1934.

3.4. Let Ly be the space of real-valued essentially bounded functions on [0, 1] with
respect to Lebesgue measure. Let M be the subspace of constant functions. Define
f:M —Rby f(c) = ¢, where on the left hand side, ¢ denotes the constant function
with value c. Let go(x) = x, and set N = {c+1go : c € M,t € R}. The proof of the
one-step extension process in the Hahn—Banach theorem tells you how to find all
linear F : N — R so that F extends f and ||F|| = ||f||. Find all such F.

3.5. For 1 < p < o itis a fact that the dual space to L” (X, ), where (X, ) is a -
finite measure space, is LY(X, ), 1/p+1/q = 1, in the following sense: Given g €
Li(X, ), define Ay(f) = [y fgdu. This is a bounded linear functional on L” (X, 1),
and ||Ag|| = ||g||4- Conversely, every bounded linear functional on L” (X, i) has this
form. Using this and the Hahn—Banach theorem, show

1 =sup | [ e ¢ 29001l =1}

forall f € LP(X).

3.6. Suppose that (X, ) is a positive, o-finite measure space. Let {g,} be a se-
quence in L3(X,u) such that sup,||g,|| = . Prove there exists a function f €
L3/2(X, 1) such that sup, | [ fgndit| = o. You may use the fact that the dual space
of LP(u),1 < p < eo,is LY (1), 1/p+1/g =1 in the sense that is described in the
previous exercise.

3.7. Let X be a compact Hausdorff space. A positive linear functional on C(X) is a
(bounded) linear functional A with the additional property that A (f) > 0 whenever
f > 0on X. Show that point evaluation at xo € X is a positive linear functional for
each xp € X.
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There is a representation theorem for the positive linear functionals on C(X)
which says that for each positive linear functional A there is a unique positive,
finite, regular Borel measure y on X with

A= | fau.

(See Section A.5 in the Appendix for further discussion). If A is point evaluation at
X0, what is the corresponding measure (1?7

3.8. Prove Corollary 3.6.

3.9. Let {3 denote the space of bounded sequences with real entries, in the supre-
mum norm. Consider the operator T defined on ¢ by T (x1,x2,...) = (x2,x3,...);
this is clearly bounded. Let M =ran (T —1I), a subspace of /3. Sete = (1,1,1,...) €
(%, and note that since 0 € M, dist (e,M) < [le[[.. = 1.

(a) Show that in fact dist (e,M) = 1. Hint: Argue by contradiction.
(b) Show that there exists a bounded linear functional ¢ : /f — R with [[¢| =1,

¢(e) =1, and ¢(T{x,}) = @({x,}) for every {x, } in (.
(c) Let ¢ be real and s > 0. Consider a sequence {x, } with

c—s<x, <c+s
for all n € N. Show that
c—s<o({xy}) <c+s.

(d) Show that for any k = 0,1,2,... and {x, } in /},

o(T" {x}) = @(T{n}).

Conclude that
o({x1,x2,...}) = ({xn,xn+1,---})

for every N € N.
(e) Show that if {x,} € (3, then

liminfx, < @({x,}) < limsupx,.
n—oo n—oo

Such a linear functional is called a Banach limit. Note that if lim,,_ .. x, exists,
it must be @({x,}).

3.10. Given a normed linear space X and a (not necessarily closed) subspace M of
X, define
M+ ={pcX*:p(x)=0forall x € M},

the bounded linear functionals that vanish on M. Call this the annihilator of M, and
note that the notation is consistent with our earlier usage in the context of Hilbert
spaces. Furthermore, if N is a (again, not necessarily closed) subspace of X*, define
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IN={xeX:¢p(x)=0forall g € N},

so that LNV is the set of common zeros of the bounded linear functionals in N. Show
that for any subspace M of X,

L(M*) = closure M.

3.11. Show that if X is a Banach space that is not reflexive, then X* is also not
reflexive. Hint: Find a nonzero bounded linear functional on X** which is 0 on
{¥*:xeX}.

The converse statement is also true; see p. 132 in [8].

3.12. Use the Baire category theorem to show that no infinite-dimensional Hilbert
space can have a countable Hamel basis.

3.13. The point of this problem is to show that Theorem 3.11 may fail in a normed
linear space that is not a Banach space. Let F' be the set of “eventually zero” se-
quences, in the supremum norm; this means that a sequence {a, } € ¢ belongs to F
if there is an N with a, = 0 for all n > N. Define linear maps 7,, : F — C by

T({ar}) =

m=

Show that each 7}, is linear and bounded and for any fixed sequence x = {a;} in F,
sup{|T,(x)| : n=1,2,3,...} is finite. Is sup{|| T, || : n =1,2,3...} < o0?

3.14. Let o7 be a Hilbert space. Let {x,} be a sequence in .7 with the prop-
erty that (x,x,) — 0 as n — oo for each vector x € 7. Show that sup{||x,|| : n =
1,2,3,...} < oo

3.15. In this problem we outline the “gliding hump” technique as originally used by
Banach and Steinhaus to prove the uniform boundedness principle. This outline is
taken from [34]. We keep the notation as in Theorem 3.11. Denote

sup{||Tx||: T € F} =m(x)

so that m(x) < o for each x € X. Assume, for a contradiction, that sup{||T||: T €

F} =oo.

(a) Show that by an inductive construction we may find 71,75, ... in % and x1, x5, . ..
in X with

||T||>ZI"XI< +n

4 3 k<n

1
Il < 55

and

1T 1]

31
ll 2 5
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(Determine the T; and x; alternately.)
(b) Set x = Y°, xx so that Tpx = Y, Tuxg + TnXy + Lj~p TuXz; the middle term
being the “gliding hump.” Observe that

Z Tnxk

k<n

<) mx)

k<n

and

ZTxk

k>n

< ¥ 5%l < 555

k>n

Argue that || T;,x|| > n, a contradiction.

3.16. Show that
co={{an}7: y}i_r)lgoa,, =0}

is a closed subspace of ¢*, in the supremum norm.

3.17. For any a = {a,} in ¢!, define a linear functional ¢, on cg by

{xn} Z apXy.
Show that the map a — ¢, is an isometric isomorphism of ¢! onto (co)*; that is,
(co)* = 2.

3.18. Let X and Y be normed linear spaces and suppose T : X — Y is linear. Show
that 7' is continuous if ¢ o T is continuous for all ¢ in X*.

3.19. Suppose that X and Y are Banach spaces.
(a) Show that X x Y in the one-norm
1Ge ) = lixllx + lylly

is a Banach space.
(b) Is X x Y a Banach space in the norm

166, 9)|e = max(flxllx, [[¥]l¥)?

3.20. Let ¢ denote the linear subspace of ¢ consisting of all sequences x = {x, }{°
for which lim,,_... x,, exists.

(a) Lete = (1,1,1,...) € c. Show that
c={x+ae:xeccoand o € C}.

(b) Argue that the formula @w({x,}) = lim,_«x, defines a bounded linear func-
tional on ¢, where c is equipped with the supremum norm.
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(c) Show that c is a closed subspace of £~.
(d) Given b = {b,} in £' and y € C, consider the linear functional defined on ¢ by

Yoy ({n}) = Y baxy +y lim x,.

n=1

Show that the map (b, Y) — ¥}, y is an isometric isomorphism of ¢ I'x C, equipped
with the norm || (b, 7)|| = ||&||1 + 7], onto ¢*.

3.21. Suppose X, Y are Banach spaces and T : X — Y is linear. Suppose further that
whenever x, — 0 and Tx,, — y then y = 0. Show that T is continuous.

3.22. Suppose that ¢ : D — D is an analytic function (where DD is the open unit
disk) with the property that f € L2(D) implies f o ¢ € L2(D). Define Cy : L2(D) —
L%(D) by Cy(f) = f o ¢. Show that the composition operator Cy, is a bounded linear
operator on L2(ID).

3.23. Let X = C|0, 1] in the supremum norm and let
Y =C'[0,1] = {f € C[0,1] : f’ exists and is continuous on [0, 1]}.

Give Y the supremum norm also. Define T : Y — X by T f = f’. Clearly T is linear.

(a) Show that if f,, — f and Tf, — g, then g = T f. (Hint: you need only show
g(x) = f'(x) for all x € [0, 1]. Use the fundamental theorem of calculus).

(b) Show that T is not bounded.

(c) Why doesn’t this contradict the closed graph theorem?

3.24. Use the closed graph theorem to show that the operator

b= 110

is a bounded linear operator on L2(ID).

3.25. Show that the quotient X /M of a Banach space X by a closed subspace M is a
Banach space. (Begin by showing that

|lx+ M| =inf{||x+m| :m e M}
isanormon X /M.)

3.26.(a) Let X and Y be Banach spaces and 7 : X — Y be a bounded linear operator.
Show that
A:X/kerT —Y

given by A(x+ker T) = Tx is a well-defined, one-to-one, bounded linear oper-
ator.
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(b) Suppose T : X — C is a bounded linear functional, not identically 0, where X
is a Banach space. Show that T must be surjective and conclude X /ker T is
isomorphic to C.

(c) Suppose 7 is a Hilbert space and M is a closed subspace of .77 . Use the projec-
tion theorem to show that the quotient map I : 5% — 5 /M gives an isometric
isomorphism of M+ onto 7 /M.

3.27. Suppose that T is in Z () for some Hilbert space .7 and that T has closed
range. Show there exists ¢ > 0 such that

IThI[ = c||All
for all h € (ker T)*.

3.28. Give an example of a diagonal operator T : 5 — 5¢ whose range is not
closed.

3.29. Let M be a closed subspace of a Banach space X.

(a) Show that the map defined on X* /M, the quotient of X* by the annihilator of
M (see Exercise 3.10 for the definition), sending ¢ + M~ to @[y (the restriction
of ¢ to M) is a well-defined, linear, isometric map of X* /M + onto M*. (In short,
X*/M* = M").

(b) Show that the map from (X/M)* to M+ which sends ¢ in (X/M)* to ¢ oI,
where IT is the quotient map from X to X /M, is a well-defined, linear isometry
of (X/M)* onto M*. (In short, (X /M)* = M=)

3.30. Suppose that X is a functional Banach space (as defined in Section 1.4) of
functions defined on a set S, and g is a scalar-valued function on S with the property
that f € X implies fg € X. Define M, : X — X by M, f = fg.

(a) Show that M, is continuous and that g must be bounded.
(b) Show that sup{|g(s)| : s € S} < ||M,]|. Give an example to show that this in-
equality may be strict.

3.31. Suppose that X is a functional Banach space over a set S, and that each func-
tion in X is bounded. Show that sup,.g||es|| < oo, where e, denotes the functional of
evaluation at s.

3.32. Suppose that A is a linear map from a Hilbert space 77 into itself that satisfies
(x,Ay) = (Ax,y) for all x,y in 7. Show that A is bounded.

3.33. This problem outlines a proof of the statement: If X is a Banach space and
T € #(X) is such that X/TX, as a vector space, is finite-dimensional, then TX is
closed.

(a) Argue that since the map A : X /ker T — X defined by A(x+ker T') = Tx is one-
to-one and has the same range as 7', we may assume without loss of generality
that 7' is one-to-one.
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(b) Suppose that X /TX has dimension 1, so that there exists y € X such that X =
{Tx+ay:x € X,o € C}. Show that the map S defined on X x C in the one-
norm by S(x, o) = Tx+ oty is continuous and bijective. Use this to show that T
is bounded below and thus has closed range.

(c) Prove the full result.

3.34. This problem outlines one way to show that the Banach space c( (as defined
in Exercise 3.16) is not a reflexive Banach space.

(a) Show that ¢ : ¢g — C defined by

o({an}) = Z, 77:
is a bounded linear functional on ¢y and
=1
o= X
(b) Show that for every {a,} in ¢o with ||{a,}|| =1,

ot < ¥ oy

(c) Conclude that ¢ is not reflexive.

3.35. Recall the notion of the strong operator topology from Exercise 2.23 in Chap-
ter 2.

(a) Consider a sequence {T;,} of bounded linear operators on a Hilbert space 7.
Suppose that for each i € 72, {T,h} is a Cauchy sequence in 7. Show that there
exists T € #(H) such that T, — T (SOT). This result is sometimes phrased as
“%B(I) is sequentially complete in the strong operator topology.”

(b) Suppose that {T,,} is a sequence of operators in Z(5¢) and suppose further
that for each h,g in ¢, (T,h,g) converges as n — oo. Show that there exists
T in AB(H) such that T, — T (WOT). Hints: Show first that for each i € 2,
sup,, || Thh|| < oo, by considering the family of bounded linear functionals (-, T, 4},
and then argue that sup,, ||T,| < e. If S(h,g) = lim,_(Th,g), then S is a
bounded sesquilinear form.

3.36. A sequence {h,} of vectors in a Hilbert space 7 is said to be a Bessel se-
quence if

ihh|<oo

for every h € . A sequence {g,} is said to be a Riesz—Fischer sequence if given
any {c,} € ¢ there exists (at least one) vector g € .7 such that

(8,8n) = ¢, for all n. (3.5)
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Note that an orthonormal basis is both a Bessel sequence and a Riesz—Fischer se-
quence.

(a) Show that if {h,} is a Bessel sequence, then there exists M < o so that
Z |(h,hy)|* < M||R|?

for all h € 2. Hint: Apply the closed graph theorem to the map S : % — (2
defined by Sh = {(h,h,)}.

(b) Show that if {g, } is a Riesz—Fischer sequence, there exists m > 0 such that given
{cn} € £2, the equations in (3.5) hold for at least one solution g satisfying

mgl> <Y leal”.
n=1

Hint: The closed graph theorem again, applied to the appropriate map

T:0>— /N
where N is the orthogonal complement of the closed linear span of the vectors
&n-

3.37. A sequence of distinct vectors {/,} in a separable Hilbert space 5 is called
a frame if there exist finite positive constants M| and M, with

My||h|]* < Z (1, 1) |* < Mo |1

for all h € 5. Observe that if {h,} is a frame, then {h,} is a Bessel sequence (as
defined in Exercise 3.36), and that whenever {h, } is a Bessel sequence, the second
inequality in this definition must hold.

(a) Suppose that {4, } is a frame, and define T by
=Y (hh
n=1

Show that T is a bounded linear operator on .77
(b) Show that
My||l* < (Th,h) <||Th|| - ||n]

for all &, and thus that T is bounded below.
(c) Show that T is self-adjoint.
(d) Conclude from (b), (c), and Exercise 2.16 in Chapter 2 that T is invertible.

Frames are an important area of current research, and they have applications to
signal processing, and image and data compression and analysis.



Chapter 4
Compact Operators

The theory of compact operators is a convincing example that
deep and important mathematics can be—or should I say must
be—elegant.

A. Pietsch ([34], p. 51).

To set the stage for the main topic of this chapter, we begin with a look at finite-
dimensional spaces.

4.1 Finite-Dimensional Spaces

A vector space is finite-dimensional if it has a finite Hamel basis; that is, if it has a
finite linearly independent spanning set. Finite-dimensional normed linear spaces—
like C" in your choice of norm—have some especially nice properties. On C" we
often use the norms

i 1/2
l(z1,225---y20) |2 = <Z |ij>
=1

or

n
I(z1,22,-- - z) 1 = Y |2l
=1

or
2,22, 20) e = max |21

but as we will see these choices are all “equivalent” in a certain sense that we for-
mally define below.

In C", or any finite-dimensional normed linear space, the closed unit ball is com-
pact. The statement in C" may be known to the reader as the Heine—Borel theorem,
and its extension to any finite-dimensional normed linear space will follow from
Theorem 4.2 below. Recall that in a metric space a set A is compact in the open
cover sense (every open cover has a finite subcover) if and only if it is limit point
compact (every infinite subset of A has a limit point in A). The compactness of the
closed unit ball fails in any infinite-dimensional normed linear space. For example,
if /2 is a Hilbert space and {e, }{ is an infinite orthonormal set in .7#, then since

B.D. MacCluer, Elementary Functional Analysis, DOI 10.1007/978-0-387-85529-5_4, 77
(© Springer Science+Business Media, LLC 2009
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llen — em||* = 2 whenever n # m, the set {e,} has no limit point. In Exercise 4.3
the analogous result in a normed linear space is outlined. As a consequence of this
exercise, we obtain the conclusion that a normed linear space is finite-dimensional
if and only if the closed unit ball is compact.

We introduced the notion of equivalent norms in the last chapter; here we make
the formal definition.

Definition 4.1. Suppose X is a vector space and | - ||g and || - [|y are two norms on
X. We say that these norms are equivalent if there exist finite positive constants m
and M with

mllxllp < lxlly < Mlxllg

for all x in X.

Equivalence of norms in an equivalence relation and the topologies induced by
two equivalent norms are the same. Thus topological concepts like compactness are
unchanged when one norm is replaced by an equivalent one, and equivalent norms
give rise to the same convergent sequences. We encourage the reader to verify these
assertions.

Theorem 4.2. In a finite-dimensional vector space, any two norms are equivalent.

Proof. Let X be a finite-dimensional vector space and suppose || - [|g and || - [ are
two norms on X . Fix a Hamel basis {b,b; ...,b,} for X and define a third norm on
X as follows: Given x € X we write x uniquely in the form

x=0oyb1+---+o,b,
for scalars o; and set
[|x|leo = max{|et| : 1 < j < n}.

The reader can easily check that || - || is a norm on X. It suffices to show that both

| -llg and [ - ||y are equivalent to || - [|. We will verify that || - || and || - || are

equivalent; the equivalence of || - ||, and || - || will follow in exactly the same way.
For arbitrary x = a1 by + - - - + o, b, we have

Ixllp < Y llegbillg = Y lesllibillp < | Xlibjllg | Il
1 1 1

so that |x[|g < M||x||. for M = Y ||b;||g. Now consider the unit sphere § = {x :
[l = 1} in (X, ]| - [|eo)- Let

d = inf{||x|g : x € S}.
We may find a sequence y, of unit vectors in S with ||[yx||g — d. Write each y; as

Y = O b1+ -+ Oy by



4.1 Finite-Dimensional Spaces 79

and note that for all k and all 1 < j <n, ajﬁk\ < 1 since yg is in S. Since we are only
concerned with finitely many j, we may find a subsequence ki, k>, k3,... such that
{a;j,} converges, as m — oo, for each j = 1,2,...,n. Denote the limit of {a;x,, }
by @;. The corresponding subsequence yy,, of course still has ||y, [|g — d. Set

n
Yo = Z OCjbj.
j=1

We claim that yy,, — yo in || - || This follows from the calculation

n
1k = Yolloe = | Y (@, — @)Dl = max{|ej i, — 0| : 1 < j <n} —0.
=1

This verifies the claim and shows that, in particular, ||yp|/- = 1 and thus yy # 0.
Moreover, since by the first part of the proof

¥k, —¥ollg < Mlyx, —yolle — 0

we must have [[yo||g = lim ||y, ||g = d, so that d # 0. Finally for any nonzero x in

Xa
X

m es
and therefore
]| = oo
Xl Il g
so that
lIxllg = llyollg [1x[lee = dl|x]|oo
for nonzero d, as desired. O

Proposition 4.3. Any finite-dimensional normed linear space is a Banach space,
and any finite-dimensional subspace of a normed linear space is necessarily a
closed subspace.

Proof. Let (X,]| - ||) be the given normed linear space, and suppose that X is finite-
dimensional. Fix a basis {b,by,...,b,} and let || - || be a second norm defined on X
as in the proof of Theorem 4.2. We leave it as Exercise 4.1 to check that (X, || -||) is
complete if and only if (X, || - ||) is complete. The first statement in the proposition
will then follow if we can show that (X, || - ||«) is complete. Suppose that {y,,} is a
Cauchy sequence in (X, || - ||) and for each m write

n
Ym = Z aj,mbj-
=

By the definition of || - ||.., we must have that {;,};_, is a Cauchy sequence of
scalars for each j, 1 < j < n. Hence there exists 667 so that o, — 667 as m — oo, for
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each 1 < j < n. Define yp = ):;?:1 a;bj. It is easy to see that

lym = yollee — O

and hence (X, || - ||-) is complete.
Since the second statement of the proposition follows immediately from the first,
this completes the proof. a

Proposition 4.4. Every linear map from a finite-dimensional normed linear space
into a normed linear space is continuous.

Proof. Suppose T : X — Y is as in the statement, and fix a basis {by,...,b,} in X.
Define a second norm || - ||~ on X as in the proof of Theorem 4.2. The map T is
continuous with respect to the original norm on X if and only if it is continuous with
respect to the equivalent norm || - ||.. We have

n n
ITxlly = T (Y owbi)lly < Y lowl I Toily
1 1

n n
—(f;‘f;‘,,' k|) (kzln k||y) (kzln k||y> I

establishing the boundedness, and hence the continuity, of 7. O

An alternate proof for Proposition 4.4 is outlined in Exercise 4.5.

4.2 Compact Operators

The idea motivating this section is to find a subspace of %(X,Y) consisting of op-
erators which behave “like” linear maps on finite-dimensional spaces. One might
naturally first think of singling out the operators that have finite-dimensional range.
As we will see, this is not the most useful class of operators, so instead we make the
following definition.

Definition 4.5. If X and Y are Banach spaces and T : X — Y is linear, we will say
that T is compact if whenever {x,} is a bounded sequence in X, then {Tx,} has a
convergent subsequence in Y.

Equivalently, T is compact if the image of any bounded set E in X under T has
compact closure; the verification of this statement is left to the reader. The definition
of compactness does not a priori require that the linear map 7 be bounded, but our
first result will say this is so.

Proposition 4.6. If T is compact, then T is bounded.
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Proof. If T is not bounded, we may find unit vectors v, in X with ||Tvy|| T e. This
implies that {7'v, } cannot have a convergence subsequence, since if T'v,, — y, then
(T vl = 113l O

Example 4.7. The forward shift S : 2 — 2 is not compact, since if e, denotes the
standard nth basis vector for £2, {Se,} has no convergent subsequence.

Example 4.8. Any linear operator 7 : C" — C" is compact. To see this, let {x,}
be a bounded sequence of vectors in C"; say |[x,|| < M. Since T is bounded by
Proposition 4.4, {Tx, } is a set of vectors in the closed ball B(0,R) in C", where R =
IT||M. Since closed balls in C" are compact, {T'x, } has a convergent subsequence.

The same idea can be used to show that if 7" is a bounded linear operator from X
to Y, where X and Y are Banach spaces, and the range of T is a finite-dimensional
subspace of Y, then T is compact. Such an operator T is called a finite rank operator.

The next result is easy, but important. Its proof is left as Exercise 4.6.

Proposition 4.9. Let X be a Banach space, and suppose S is in B(X), and that
T, T, are compact operators in B(X). The operators Ty + T», ST1, T1 S, and aT; are
compact, for any scalar o.

This result says that the collection of all compact operators from X to X, which
we will denote %" (X), is a linear subspace in %(X) which is also a two-sided ideal
(see Section 5.3 for more on this last terminology). That leads us to an important
question: Is J#(X) a closed subspace of #(X)?

Theorem 4.10. Suppose X is a Banach space. If {T,,} is a sequence of compact
operators in B(X) and ||T,, — T|| — O for some T € B(X), then T is compact.

Proof. The argument we will use is sometimes referred to as the “diagonal trick,”
for reasons that should become apparent. Let {x, } be a bounded sequence in X. To
show that T is compact, we must show that {Tx,} has a convergent subsequence.
To do this, it suffices to show that {T'x, } has a subsequence which is Cauchy in X.

Since 7; is compact, we may find a subsequence {x;,}_, of {x,} such that
Ty (x1,,) converges in X as n — oo. Now {x,}>_, is a bounded sequence and 7>
is compact, so there is a subsequence {x2, }»_; of {x1,};_, such that 75(x,) con-
verges. Of course we also have 77 (x2 ,) converging, since {x2, }r_, is a subsequence
of {x1,}7_, and T'(x; ,) converges.

Continue, so that {x,}_, is a subsequence of {xz_;,}5_,, with Tx(xx,,) con-
verging as n — oo, as well as Tj(xg ,) for j=1,2,...,k— 1. Schematically we have

X11 X12 X13 -
X211 X22 X23 -+

X3,1 X32 X33 "

Xk Xk Xk3 -
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where each row is a subsequence of the preceding rows, and when we apply the
operators 71,75, ..., Ty to the kth row, a convergent sequence results.
Consider the diagonal sequence {x, , }, and note two things:

This is a subsequence of the original sequence {x,}.
For each k, {Tj(x,)};r_; converges as n — oo, since {x,,}_, is a subsequence
of {xk’j}jzl.

This second property is just the observation that from the kth term on, {x,,} is a
subsequence of the kth row, and the operator 7; applied to the kth row produces a
convergent subsequence.

We claim that {Tx,,}_; converges. It is enough to show that it is a Cauchy
sequence in X. We are given that ||x,|| < M for some finite value M. Let € > 0 be
given. Since ||T — T,|| — 0 we may find K so that |7 — Tx|| < €/(3M); K is now
fixed by this requirement. Since {7xx, , } converges as n — oo, it is Cauchy and there
exists N such that if n,m > N, then

€
||TKann_Tme,m|| < g 4.1

Thus, for n,m > N,

||Txn,n - Txm.m” < ||Txn,n - TKxn,n” + HTKxn,n - Tme.,mH + ||Tme.m - Txm,m”
€ ) )
<—M+-+—M=g¢,
- 3M + 3 + 3M
as desired. a

We look next at some examples. Suppose that A is a diagonal operator on a
Hilbert space .7 with diagonal {c;} such that or; — 0; recall this means Ae; = aje;
where {¢;} is an orthonormal basis for .7#. We claim that A is compact. To see this,
let A, be the diagonal operator with diagonal {f;} where B; = o;; for 1 < j <n
and B; = 0 for j > n. Note that A, is a finite rank operator, since the range of A,
is contained in the span of {e},ey,...,e,}. Moreover, A — A, is a diagonal opera-
tor with diagonal {7} where y; =0if 1 < j <n and y; = o for j > n, so that
[A—Ap|| = sup;.,, |aj| — 0 as n — co. This shows that A is the limit of finite rank
operators, hence A is compact, by Theorem 4.10. This example also shows that the
finite rank operators form a proper subclass of the compact operators.

It is also the case that a compact diagonal operator must have its diagonal con-
verging to 0; see Exercise 4.8.

Although the result is true more generally, we will find it convenient in the next
result to restrict our attention to Hilbert spaces with a countable orthonormal basis.
Having a countable orthonormal basis is equivalent to being a separable Hilbert
space, that is, having a countable dense subset; see Exercise 1.23 in Chapter 1.
Nonseparable Hilbert spaces were not studied before 1934, and we will restrict our
attention to the separable case whenever convenient.



4.2 Compact Operators 83

Theorem 4.11. If T € B(H) is a compact operator on a Hilbert space # having
a countable orthonormal basis, there exists finite rank operators T, with |T — T, || —
0; that is, every compact operator is a limit of finite rank operators.

Proof. There are three steps to the proof: Defining some likely candidates for the
operators T, showing that for each fixed & in J7°, T,h — Th, and then using this
pointwise convergence to show |7, — T|| — 0.

For the first step, suppose that {ej, e, ...} is an orthonormal basis for the closure
of the range of T (a closed subspace of J¢); notice it is only interesting if this basis
is infinite. Let P, be the projection onto the span of the first n vectors ey, ez, ..., e,.
Notice that we are using here the fact that this span is a closed subspace of 77,
which follows from Proposition 4.3 or Exercise 1.21 in Chapter 1. Define 7,, = P, T,
so that 7, is clearly a finite rank operator.

Now we check convergence of the T, to T at each point of . Let h be any
vector in .77 and set k = Th. We have

n
Toh=PTh="Pk =Y (k.e))e;,
=1

where we are using the result of Exercise 1.21 in Chapter 1, and

Th= (k,ej>ej,

™

1

J

since {e;} is an orthonormal basis for the closure of the range of 7. Thus

=

|Th=ThI? =} |(ke))P,
j=n+1
which tends to 0 as n — oo, since Y7 [(k,e)|? = ||Th|*> < .

Having established this pointwise convergence of T,, to T, we now consider ||T;, —
T|. Let B, denote the closed unit ball in #. Since T is a compact operator, the
closure of T(B,) is compact. Given £ > 0 the collection of open balls B(Th,¢€),
centered at points Th for & € B, and with radius €, forms an open cover of the
closure of 7'(B.). By compactness, we may select a finite subcover, say

m
T(B.) C | JB(Thj,e), 4.2)
j=1
for some positive integer m and some h; € B.. By our pointwise estimate, for each
J» 1 < j <m, there is an integer N () so that
1 Tuhj = Thjl <&
if n > N(j). Set N, = max <<, N(j) and let 1 be an arbitrary unit vector in JZ. By

condition (4.2) we may find a value of j, 1 < j <m, so that |[Th—Th;|| < €. For
any n > N, we have
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|Tuh —Th| < ||Toh— Tohjl| + | Toh; — Thill + | Th; — Th||
= ||PuT (h—hj)|| + |Tuhj — Thyl| + || T (h = hy)||
<2||T(h—hj)|+¢€
< 3¢,

where we have used the fact that the projection P, has norm 1. Since & was an
arbitrary unit vector, this calculation shows that if n > N,, then ||T, — T|| < 3¢, and
since € is arbitrary, this shows that |7, — T'|| — 0 as n — oo, as desired. O

This theorem is true even without the hypothesis that .77 has a countable basis,
that is, even for nonseparable Hilbert spaces; the necessary additions to the proof
for this case can be found in [8]. It makes sense to ask what happens if 7 is re-
placed by a Banach space X, i.e., is every compact operator in Z(X) a limit of finite
rank operators? This question, known as the approximation problem, was formu-
lated by T. Hildebrandt in 1931, and has been a problem of fundamental importance
in Banach space theory. Over time, many equivalent properties were discovered, and
various related approximation properties were defined. In 1973, Per Enflo caused a
sensation by constructing a counterexample to the original approximation problem.
Enflo’s work on this problem also yielded a negative answer to another long-open
problem in functional analysis: Does every separable Banach space have a Schauder
basis, that is, in any Banach space X is there always a sequence {x;} such that each
x € X can be uniquely written as

[} n
x= cix; = lim cixi |?

It is true that in a Banach space with a Schauder basis, every compact operator is a
limit of finite rank operators, and this includes all of the familiar Banach spaces.

Enflo’s work provided a solution to Problem #153 in the “Scottish Problem
Book”, posed by S. Mazur in 1936, for which a prize of “a live goose” had been
offered'. When Enflo was lecturing in Warsaw in 1972, Mazur presented him with
the prize goose promised 36 years earlier.

The next result is sometimes phrased as “# () is self-adjoint” when 7 is a
Hilbert space.

Proposition 4.12. If T is in B(H) for a separable Hilbert space 2, then T is
compact if and only if T* is compact.

Proof. Since T** =T, it suffices to prove that T compact implies 7* is compact. By
Theorem 4.11, if T is compact, there are finite rank operators 7, that converge to 7.
Now ||T, — T|| = ||T,; — T*|| by Proposition 2.14, and we will be done by an appeal
to Theorem 4.10 if we can show that each 7, is finite rank. Let P, be the projection
of 2 onto the range of T, a closed subspace of #°. Each P, is finite rank since
each T, is. Since P, is a projection, P,T,, = T, and taking adjoints, 7," Py = T,. But

I See Section 3.5.
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projections are self-adjoint, so we have T, = T,*P,. It is easy to see that the finite
rank operators form a (two-sided) ideal (see Exercise 4.6), so we conclude that 7
is finite rank, and thus 7 is compact. O

Since Theorem 4.11 extends to nonseparable Hilbert spaces, so does Proposi-
tion 4.12. The implication “T compact implies 7% compact” also extends to the Ba-
nach space setting, where it sometimes goes by the name of “Schauder’s Theorem”;
see [8].

To explore a large class of compact operators, we give a definition.

Definition 4.13. Suppose that .77 is a Hilbert space with a countable orthonormal
basis, and let T be in #(). We say that T is Hilbert-Schmidt if there is an or-
thonormal basis {e, }5" of 7 such that Y| || Te,||> < co.

It is convenient to know that the sum appearing in this definition is actually inde-
pendent of the choice of basis; this is the next result, which is due to von Neumann.

Proposition 4.14. Suppose that T is a bounded linear operator on a separable
Hilbert space J€ and {e,};,_, is an orthonormal basis for 7€ such that

Z | Tep||* < oo.
n=1
For any other orthonormal basis { f,};>_,, we have

Z ||Tfn||2 = Z ||Ten||2-
n=1 n=1

Proof. The proof relies on repeated applications of Parseval’s identity. For each n
we have

Th=Y (T fu fi)f5 and [T £ul> = Y (T fo, 1)1 (4.3)
j=1 j=1
Similarly, for each n and each j,

[ Ten||* = Y [(Ten, )7, 4.4

j=1
IT*£ill> = Y KT fi,en) |, 4.5)

n=1
IT*£ill> = Y KT £, f) |- 4.6)

n=1

Thus

o oo o oo

YATHIP =Y Y KT fu i)l =Y X KT fin f)lP = LT £l
n=1 1 J=1

n=1 j= Jj=1n=1
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where we have used Equations (4.3) and (4.6). Similarly, by Equations (4.4) and
4.5)

Y (I Ten|* = Z Z (Ten, ()P =Y, Y UT* frea) P = Y IT* £
n=1 n=I1 j= j=1n=1 j=1
so that . .
Z ||Tfn||2 = Z ||Ten||2>
n=1 n=1
as desired. O

As a corollary of the proof of the last result, we see that if T is Hilbert—Schmidt,
then so is 7*. The next result shows that a Hilbert—Schmidt operator is compact.

Theorem 4.15. Every Hilbert—Schmidt operator on a separable Hilbert space is
compact.

Proof. Let A be Hilbert-Schmidt on .7#. We will exhibit A as a limit of finite rank
operators and use Theorem 4.10 to conclude A is compact. Fix an orthonormal basis
{ex}7 of #, so that Y, ||Ae||? < oo. For each n > 1, define A, by

Ah=A, h(k)ey | =
k=1

where (k) = (h,e;). Clearly A, is linear, and A, is finite rank, since the range of A,,
is contained in the span of the vectors Aej,Aes, ..., Ae,. Moreover, for any h € 7,

h(k)Aey,

s
-

1 1

I(A—An)h| =] i il(k)Aek||§< i Ifl(k)2> ( i IIAekII2>

k=n+1 k=n+1 k=n+1
so that 1
o 2
A=Al < | Y llAelf ] |
k=n+1
which tends to 0 as n — oo, 0

The next result gives a large class of examples of Hilbert—Schmidt operators,
and explains how they arise naturally. It concerns operators on L?(X, i) for some
measure space (X, ).

Theorem 4.16. Suppose that L*(X, 1) is a separable Hilbert space and K is an
integral operator on L*(X, 1), with kernel k(x,y) € L*(X x X). The operator K is
Hilbert—Schmidt.

Proof. Let {e,}_, be a basis for L?(X, ). For fixed x € X, write k.(y) = k(x,y);
then &, is in Lz(u) for almost every x and we have
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(Ken)(¥) = [ k(x.y)en0)du()

— [ ken)due)
= <kx,5>,

so that
IKenl* = [ [Kea(o)Paia(x) = [ [0k, Pan()

and

ZuKen||2 Z/|kx,en|du /Z|kx,en|du ).

Now it is easy to see that {,}>_; is also an orthonormal basis for L?(X, 1), so that
(ky, ) are the Fourier coefficients of k, with respect to this basis. By Parseval’s
identity,

Z kmen = ||k« ||2
n=1

Thus we have

Y Keal = [ llPdatx)
n=1 X

- / (/ |k(x,y)|2dll(y)> dp(x)

—/ Ik (x,y)[Pd (1 x p) <

since k € L*(u x ). |

4.3 A Preliminary Spectral Theorem

Recall from linear algebra, that if M is a self-adjoint n X n matrix (meaning it is
equal to its conjugate transpose M*) then all the eigenvalues of M are real, and there
is a unitary matrix U (meaning U* = U~") such that UMU ! is real and diagonal.
There is an orthonormal basis for C" consisting of eigenvectors of M. In fact, if
M is normal, that is, if M*M = MM*, then M is unitarily diagonalizable and C”"
has an orthonormal basis of eigenvectors. Results that are generalizations of this to
operators on Hilbert spaces are called “spectral theorems.” They appear with several
quite distinct-looking formulations, and their connection to the finite-dimensional
linear algebra results can seem somewhat obscured.

In this section we will obtain a spectral theorem for compact self-adjoint op-
erators on a Hilbert space; one can view this as a complete description of such
operators. Later, in Chapter 6, we will obtain a much more general spectral theorem
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for bounded normal operators, at which point we will revisit the main results of this
section.

Our first goal is to obtain some information about the eigenvalues of compact
self-adjoint operators in (). The notion of an eigenvalue of an operator in
PB(H) is the expected one, and the definition looks the same for operators on
Hilbert or Banach spaces.

Definition 4.17. We say that A € C is an eigenvalue of T € Z(X), where X is a
Banach space, if there is a nonzero vector x in X so that Tx = Ax.

When A is an eigenvalue of T € Z(X), the kernel of T — AI is called the
eigenspace corresponding to the eigenvalue A, and the nonzero vectors in the
eigenspace are called eigenvectors. For a compact operator 7 with nonzero eigen-
value A, the kernel of T — A[ is necessarily finite-dimensional; see Exercise 4.10
and Exercise 4.25.

We will show that a compact self-adjoint operator 7' always has either ||T|| or
—||T|| as an eigenvalue. Before proceeding to the proof of this, we need a lemma.
The role of self-adjointness in it, and in the next several results, is contained in the
following observation: If T is self-adjoint, then for any vectors x and y, (Tx,y) =
(x,Ty) = (Ty,x), and so in particular (T'z,z) must be real for all vectors z.

For any operator T in B(J¢), it is easy to see that

1T = sup{|(Tx,y)| - [lxl| = 1, [[y[| = 1}.

The next result refines this for self-adjoint operators.

Lemma 4.18. Suppose T is a self-adjoint operator in B(H°) for some Hilbert
space F€. We have
IT]| = sup [(Tx,x)].

[Ixl=1

Proof. Set M = sup_; [(Tx,x)|. Our goal is to show M = ||T||. We make three
easy observations
(@) Foreachh#0 e 2, [(Th,h)| = (T (|hllgip), |11l i )| < M1

(b)  Since [(Th,h)| < ||Th||h|| < ||T||||A||> we must have M < || T||, by the defini-
tion of M.
(¢) Forall f,g € 2,

(T(f+g),f+8 —(T(f—g),f—g) =4Re(Tf,g).

This follows from expanding (T'(f +g), f £ g), using the self-adjointness of
T to write

(Tf,g)+(Tg,f)=(Tf,8) +(Tfg =2Re(Tf,g).

Since T is self-adjoint, (Tx,x) and (Ty,y) are real for any x,y € .7, and we have
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(Tx,x) —(Ty,y) < [(Tx,x)| + [(Ty, )] 4.7
< M(||x|>+ [lyl*)

M
= S (=1 + [ +y1%),

where we have used the observation in (a) and the parallelogram equality. Now let
v be any unit vector and suppose Tv # 0. Let s = || T'v|| and put

1 1
x=v+-Tv andy=v——-Tv
s s

in Equation (4.7). We obtain

M2 |
(Tx,x) — (Ty,y) < > (HSTV + ||2v|2> =4M.

Since by the calculation in (c) we have
1
(Tx,x) = (Ty,y) = 4Re (Tv,~Tv) = 4| Tv|
s

we conclude that ||7v|| < M for any unit vector v and hence ||T|| < M. Since we had
already observed the reverse inequality, we are done. a

Theorem 4.19. If T is a compact self-adjoint operator in B(H), then at least one
of the numbers ||T|| and —||T || is an eigenvalue of T.

Proof. Without loss of generality we assume ||T|| # 0, else T = 0 and 0 is trivially
an eigenvalue of 7. By Lemma 4.18 we have ||T|| = supj—; [(Tx,x)|. Find unit
vectors x, with |(Tx,,x,)| — || T||. Since T is self-adjoint, each (T'x,,x,) is real, and
passing to a subsequence if necessary (which we don’t relabel) we may assume that
(Txy,xn) — A where either A = ||T|| or A = —||T||. Since 4 is real, we have

T x0 — Axa||* = || Txn]|* — 2Re (Txp, Ax) + | A ]3]
= HTXHH2_21<Txn7xn>+;Lz
< ||T|1* = 24 (T xp, %) + A2
=22 —2A(Txp,X,).

As n — o0, 242 —2A(Txy,x,) — 0, so that
Tx,— Ax, — 0. 4.8)

Since T is compact, {Tx,} has a convergent subsequence, say Tx,, — y. By (4.8),
we have Ax,, — y, and thus ATx, — Ty. But ATx, — Ay, so that Ty = Ay. Are
we done? Yes, if we can show that y # 0. We have

I T X || = 1| AXn, + Txn, — A, ||
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> | A%, || = | Txn, — A, ||
= |A| - ||Tx’lk _A‘xnkHa

where we know that ||7x,, — Ax,, || — 0 and A # 0. But T'x,, — y, so that ||y|| =
limy, oo || Txy, || # 0. O

The next result applies to any self-adjoint operator on a Hilbert space, compact
or not.

Theorem 4.20. Suppose that T is self-adjoint in B(H). Every eigenvalue of T is
real, and the eigenvectors for distinct eigenvalues are orthogonal.

Proof. Suppose that for some nonzero vector 4 and some scalar A, Th = Ah. Since
(Th,h)y = (Ah,h) = A||h||* and (Th,h) = (h,Th) = (h,Ah) = A||h||> we must have

A =A,and A is real.
If A and u are distinct (real) eigenvalues for T with Th = Ah and Tg = ug then

0=(Th,g) = (h,Tg) = A(h,g) — p(h,g) = (A — p)(h,g) and (h,g) = 0. 0

The reader is cautioned that this result does not say that a self-adjoint opera-
tor must have eigenvalues. In contrast to the conclusion of Theorem 4.19, neither
compactness of T nor self-adjointness of T is (separately) sufficient to guarantee
the existence of an eigenvalue for T. Exercises 4.14 and 4.15 ask you to verify this
assertion.

Theorem 4.21. Suppose that T is a compact self-adjoint operator in B(H). The
set of eigenvalues of T is a finite or countably infinite set of real numbers; if infinite,
the eigenvalues form a sequence that converges to zero.

Proof. By Theorem 4.20, all the eigenvalues are real. Also observe that if Tx = Ax,
then |[A| < ||T||, so that no eigenvalue has absolute value greater than ||T||. There is
nothing further to do if the set of eigenvalues is finite, so suppose it is infinite. We
claim that for each € > 0, there are at most finitely many eigenvalues with absolute
value at least €. Suppose this is not the case. We may then find a sequence {A;}
of distinct eigenvalues, with |A;| > € and unit eigenvectors y; with T'y; = A;y;. By
Theorem 4.20 the y; are orthogonal, and thus

1Ty = Tyell> = 12y — Aail® = | + [ > 262,
This is a contradiction, since the compactness of 7' guarantees that {Ty;} has a
convergent subsequence. Thus the claim is verified and we have shown:

(a) The set of eigenvalues is countable, since {A : A is an eigenvalue and |A| >
1/n} is finite for every positive integer n.

(b) If the eigenvalues are a countably infinite set, they form a sequence which
converges to zero.

This completes the proof. O
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A version of this result holds for arbitrary compact operators on a Hilbert or
Banach space. The eigenvalues need not be real, but if infinite they still form a
sequence converging to zero.

In the next result, we write TM for {Tm:m € M}.

Lemma 4.22. Suppose that T is a bounded operator on a Hilbert space 7 and
that M is a closed subspace of €. If TM C M, then T*M* C M. Conversely, if
T*M* C M*, then TM C M.

Proof. Since T** =T and (M*)* = M, only the first assertion needs to be verified.
Let n be in M~ and let m be in M. We must show that T*n L m, or equivalently,
(T*n,m) = 0. We have

(T*n,m) = (n,Tm) =0

since Tm is in M. O
The next corollary is immediate.

Corollary 4.23. If T is a self-adjoint operator in B(), and if TM C M for some
closed subspace M, then T™M+ C Mt

A closed subspace M is called an invariant subspace for T € B() if TM C M.
It is called a reducing subspace for T if both TM C M and TM* C M. By virtue
of Lemma 4.22, M is reducing if and only if it is invariant for both T" and T*. For an
easy example, note that the subspaces

Ng = {f € L*[0,1] : f(x) = 0 almost everywhere on E}

for any measurable subset E of [0, 1] are reducing subspaces for the operator M, of
multiplication by @ (x) = x on (L?[0,1],dx). On the other hand,

N={feL;(D): f(0)=0}

is an invariant subspace for the multiplication operator M, on L2(ID), but it is not a
reducing subspace since, for example, M} (z) is the constant 1/2, which is not in N.
Further examples can be found in Exercise 4.17.

The terminology “reducing subspace” is suggestive of how these subspaces are
used: Since .## = M ® M, if M is a reducing subspace of T then the study of 7 on
H is “reduced” to its study on the (smaller) Hilbert spaces M and M. We’ll see this
in action in the next result, which is the spectral theorem for compact self-adjoint
operators. Our presentation follows that in [48].

Theorem 4.24 (Spectral Theorem, Preliminary Version). Let T # 0 be a com-
pact, self-adjoint operator in B(I). There exists a finite or countably infinite or-
thonormal set {g,} of eigenvectors of T, with corresponding real eigenvalues {1, },
such that

Tx =Y An(x,8n)8n-

If {A,} is infinite, then A, — 0.
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Proof. The fact that all eigenvalues are real has already been shown. For the rest we
give an inductive construction. We know that A; = ||T|| or —||T|| is an eigenvalue
of T. Pick a corresponding unit eigenvector g;. Let M| be the span of {g;}. Since
T(ag1) = atigi, M; is an invariant subspace for 7. By Corollary 4.23, it is a re-
ducing subspace, i.e., TM lL CcCM ll Let 75 be the restriction of T to the Hilbert space
Mll = 4. Now, the restriction of a compact operator to an invariant subspace is
compact (see Exercise 4.21), so T» € %(5#) is compact. We claim that 75 is also
self-adjoint: if x,y are in MIJ-, then

<T2*X,y> = <X, T2y> - <x7 Ty> = <Txay> = <T2X7y>,

where the fact that T is self-adjoint is used. Applying Theorem 4.19 again, this time
to T» € B(43), we see that T> has an eigenvalue A with A, = ||T3|| or —||T3]|, and
corresponding unit eigenvector g, € J%. Notice that |A;| < |4/, and of course, A,
is also an eigenvalue of the original operator 7. Since g; is in 583 = M IJ-, g Lgr.

Proceed inductively: Suppose we have obtained pairwise orthogonal unit eigen-
vectors gi1,£2,...,8, of T corresponding to real eigenvalues A, Ay,...,A, with
|Aj| = ||Tj||, where T} =T, and 7j is the restriction of T to

span {g1,82,...,gj-1}]"

for 1 < j <n.Let T,,+ be the restriction of T to

Sy = [span {g1,82,...,gn}] "

Since span {g1,£2,-..,8x} is invariant under T, so is %, by Corollary 4.23.
Moreover, as above, T4 : H54+1 — 41 is compact and self-adjoint, and thus
T,+1 must have eigenvalue A, |, equal to either ||T;,41 || or —||T;,+1]|, and we choose
a corresponding unit eigenvector g, € 5%, 1; this is of course also an eigenvector
for T on sZ. By the definition of /7,1, g, is orthogonal to g; for 1 < j <n.

As we continue this process, one of two things will happen. Either there is a
smallest m with T, = 0, in which case the process terminates with the construction
of gyu—1, or T, # 0 for all n. In the first case, consider, for arbitrary x in 2,

m—1

y=x—Y (x.g))8).
=1

Since Z’l"*l (x,g;j)gj is the projection of x onto span {g1,82,...,8m—1}, the projec-
tion theorem says that y is in the orthogonal complement of this span, that is, y is in
;. Thus we have

m—1 m—1
0=T,y=Ty=Tx— Z (x,8)Tgj=Tx— Z Ai(x, 88,
j=1 J=1

which says that
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m—1
Tx= Y Aj(x.g)g;
j=1
for every x in 77, giving the desired conclusion in this case.

In the case that 7, is not zero for any n, note while there may be repeated values
in the sequence A1, 43, ..., by Exercise 4.10 each value appears only finitely many
times. This observation, together with Theorem 4.21, says A4, — 0. Again consider
an arbitrary x in .5Z. We wish to show

i.e., that

n—1

Tx= lim Z Aj(x,8/)8;-
j=1

n—oo ¢

To this end, set

n—1
Yn=x—Y (x.8))8
j=1
and notice that y, is in %, and Z’f‘l (x,g;)gj is in its orthogonal complement. In
particular, this guarantees by the Pythagorean theorem that ||x|| > ||y, ||. Now

ITynll = 1T0yall < (1 Tallllyall = [Anl[[yall < [An[x]
We know that |4,,| — 0 as n — oo 50 we must have

n—1

ITx— Y Ai¢x,8)8ll = [ Tyull < |Anlll| — 0,
j=1

which is our desired conclusion. O

We note that the A, appearing in the statement of the last result must form a
complete list of all the nonzero eigenvalues of 7. To see this, observe that if 7z = uz
for some u distinct from all the A, then z L g, for all n, since the eigenvectors
corresponding to distinct eigenvalues are necessarily orthogonal for any self-adjoint
operator (Theorem 4.20). Hence

Zz’n <Zagn>gn =0=Tz=uz

and z =0.
In the last result, the g, are an orthonormal sequence, but need not be an or-
thonormal basis for 7. The next result explores this further.

Corollary 4.25. If T is a compact self-adjoint operator on a separable Hilbert space
S, then there is an orthonormal basis {e,} of 7€ consisting of eigenvectors for T
such that



94 4 Compact Operators
Tx= ZM()C, en)en
n

for every x in J€, where A, is the eigenvalue of T corresponding to the eigenvector
e,. This sum is either finite or countably infinite.

Proof. By Theorem 4.24, there is a finite or infinite orthonormal sequence {g,}
such that

Tx=Y An(x.8n)8n (4.9)

and T'g, = A,g,. By the construction in Theorem 4.24, the A,, are nonzero. Let { Ay, }
be an orthonormal basis for ker T'; this is at most countable since 7 is assumed to
be separable. We have Th,, = 0 and each h,, is an eigenvector of T. Since eigenvec-
tors corresponding to distinct eigenvalues are orthogonal, 4, L g, for all m,n. Thus
{gn}U{hy} is an orthonormal set in # consisting of eigenvectors of 7. We claim
it is an orthonormal basis for 7. By Equation (4.9),

x— Y (%, 8n)8n

is in ker T so that

X— Z<x7 8n)&n = Zcmhm

m

for some coefficients c,,; in fact we must have

Cm = <x_z<x7gn>gn7hm> = <x7hm>

n

since A, L g,. We have shown that an arbitrary x € 7 can be written as

x= Z(x,gn>gn + Z(x,hm>hm.

n

Thus {g, } U{A} is a countable orthonormal basis for .#. If we relabel this as {e, },
we are done. a

4.4 The Invariant Subspace Problem

The invariant subspace problem, which has been variously described as “the most
fundamental question in operator theory” [3] or “the most famous unsolved prob-
lem in the theory of bounded linear operators” [35], asks whether every T € B(X)
has a nontrivial closed invariant subspace; in this section the term “invariant sub-
space” will always mean a nontrivial closed invariant subspace. One can ask this
question when X is a Banach space or when X is a Hilbert space and this distinction
is important. Of course, if T has an eigenvalue, then the corresponding eigenspace
is invariant for 7', but it is easy to give examples of operators with no eigenvalues
but yet having invariant subspaces (see Exercises 4.14 and 4.15).
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In 1950, rediscovering unpublished work of von Neumann, Nachman Aronszajn
showed that a compact operator on a Hilbert space always has an invariant subspace.
A few years later Aronszajn and Kennan Smith generalized this result to compact
operators on Banach spaces. Paul Halmos described the situation subsequent to this
work as follows [18]:

Smith pointed out, I might almost say complained, that the proof was “tight”. It left no room
for modifications and generalizations; it proved exactly what it was designed to prove, no
more.... Aronszajn taught me the proof on a restaurant napkin several months before the
paper appeared. I understood it, I cherished it, and along with many others I kept trying to
“loosen” it so as to be able to apply it more broadly—but all to no avail (p. 320).

There the matter stayed until a breakthrough occured in 1966, and it was shown
that any operator T on a Hilbert space ¢ for which there is a nonzero polynomial
p(z) = apz" + - +aiz+ ag such that p(T) = a,T" + --- + a,T + apl is compact
(such an operator T is said to be polynomially compact) has an invariant subspace.
The first proof of this, by Allen Bernstein and Abraham Robinson, used methods of
“nonstandard analysis,” but Halmos quickly reworked their argument to formulate
them in classical standard analysis, publishing the resulting work as a short paper
later the same year.

In 1973, the young Russian mathematician Victor Lomonosov caused a sensa-
tion by announcing a theorem which included the following result: Any operator
on an infinite-dimensional complex Banach space which commutes with a nonzero
compact operator has an invariant subspace. Even more, he shows that any opera-
tor which commutes with an operator (not a scalar multiple of the identity) which
commutes with a nonzero compact operator has an invariant subspace. At first it
was not clear whether this latter description might include all bounded linear oper-
ators. While Lomonosov’s proof was short and elegant, an even briefer and more
accessible proof was later provided by Hugh Hilden; the reader can find the de-
tails of Hilden’s argument in [43], pp. 120-121. This particular thread of work on
the invariant subspace problem—starting with von Neumann and culminating with
Lomonosov and Hilden—proceeds from the philosophy that compact operators gen-
eralize finite-dimensional operators.

Another thread in the invariant subspace story is anchored by the statement that
normal operators on a Hilbert space always have invariant subspaces (we’ll see this
in Chapter 6). One then tries to find other classes of operators, related in some way
to a weakening of the normality hypothesis, which can be shown to have invariant
subspaces. In particular, the class of subnormal operators (see [5]) on Hilbert spaces
all have invariant subspaces.

As of this writing, the invariant subspace problem is still open for bounded linear
operators on Hilbert spaces. For Banach space, though, the situation was resolved by
work of Enflo published in 1987. He constructs a Banach space X and an operator
in Z(X) with no invariant subspace. While the date of publication is 1987, Enflo’s
announcement of the result, and a manuscript containing the example, dates from
1975. Certainly part of the explanation for the long delay before formal publication
lies in the complexity of Enflo’s construction. In fact, in reviewing the 100-page
long Acta Mathematica publication, the reviewer A.M. Davie writes [9]:
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[Enflo’s work]. ..is a remarkable achievement; however the latter part of his paper is so
impenetrable that it is destined to be admired rather than read.

At the same time, the basic idea that underlies Enflo’s construction is a natural one
in a sense that we will be better able to describe in Section 6.1. He constructs the
space X as he goes, by putting a norm on the space of polynomials so that, with the
resulting space completed to a Banach space, the shift operator (multiplication by
the independent variable) has no invariant subspace. So here the space is compli-
cated but the operator is simple. B. Beauzamy has published what is essentially an
exposition of Enflo’s example, with some considerable simplifications. Counterex-
amples have also been given by C. Read; one of these is an example with a simple
space (¢! but a complicated operator.

Related to the question of existence of invariant subspaces is the problem of
determining all of the invariant subspaces of a given operator. Generally speaking,
this is a very difficult problem, although there have been some notable successes.
For example, the invariant subspaces of the shift operator M, of multiplication by
z on the Hardy space H? have been determined and have a beautiful structure (see
[40]). The operator of multiplication by z on the Bergman space L2(ID) is known to
have an extremely complicated lattice of invariant subspaces, and an understanding
of this structure is matter of on-going work.

4.5 Introduction to the Spectrum

We start with a definition, which will be of fundamental importance to us.

Definition 4.26. If T : X — X is a bounded linear operator on a Banach space X, the
set of complex numbers A for which T — A[ is not invertible is called the spectrum
of T.

We will denote the spectrum of T by o(T). The spectrum of an operator on
a Hilbert or Banach spaces contains vital information about the operator. It is an
“invariant” of the operator in the sense of the following result.

Proposition 4.27. If T is an operator in B(X) for a Banach space X, and if S is an
invertible operator in Z(X), then 6(T) = o(S~'TS).

Proof. If T — Al is invertible, with inverse V, then S~!7S — Al = S~1(T — AI)S
has inverse S~!VS. Conversely, if S~! (T — A1)S is invertible, then applying the first
part we see that S[S™! (T — AI1)S]S~! = T — A[ is invertible. Since S~/ (T — AI)S =
S~'TS — Al this completes the proof. g

When T; and T in %(X) are related by T = S~'TiS for some invertible
S € B(X), we say that T} and T are similar. Thus the last result says that similar
operators have the same spectrum. The reader can show, by means of 2 x 2 matrices
(that is, by operators in Z(C?)), that the converse is not true and two operators can
have the same spectrum but fail to be similar.
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It is helpful to think about how a complex number A could get into o(T). Recall
that an operator T — A[ is invertible if and only if T — A[ is bijective. So one way
for A to be a point of o(7T) is for T — A[ to fail to be one-to-one. By linearity,
this happens if and only if there is a vector g # 0 with T¢g = Ag, and thus A is an
eigenvalue of 7.

If L € o(T) but A is not an eigenvalue of 7', then it must be the case that T — A1
is not surjective. It sometimes helps to distinguish two ways this could happen: Ei-
ther the range of T — A1, while not all of X, is at least dense in X, or the closure of
the range of T — A is a proper subspace of X. These two “parts” of the spectrum
are called, respectively, the continuous spectrum and the residual spectrum. In some
sense this last piece is the most intractable part of the spectrum, and we’ll see later
that for certain classes of operators (for example, self-adjoint operators on a Hilbert
space) the residual spectrum is empty. There are other useful ways of distinguishing
various pieces of the spectrum; some of these (approximate eigenvalues, compres-
sion spectrum, essential spectrum) will be discussed in Sections 5.2 and 5.3.

In all of this discussion the reader should keep in mind the much simpler situation
for a linear operator on a finite-dimensional space, where the operator is bijective
if and only if it is injective. In other words, for an operator on a finite-dimensional
space, the spectrum is just the set of eigenvalues of the operator.

Example 4.28. Consider the operator M, of multiplication by ¢(x) = x on the
Hilbert space (L]0, 1],dx). In Exercise 4.15 you are asked to show that M, has no
eigenvalues. We claim, however, that each 0 < A < 1 is in 6(M,). To see this, it is
helpful to recall that an invertible operator is bounded below (meaning ||Ag|| > 6|g||
for some positive § and all g; see Definition 2.24), and to observe that

M —Al =M, ,,
the operator of multiplication by x —A. If 0 < A < 1 choose N sufficiently large that

if n > N then

E=h-tatlicon
n n

_ \/F
8n = 27(En

for all n > N. The g, are unit vectors in L?[0, 1] and

and set

2
_ 2 i(r_ 2_n APt (V2_ 1
0~ AP =16~ Dl =5 [ j-aPax< (1) 2=

n

This computation shows that M, — AI is not bounded below, and hence not invert-
ible. A similar argument, with E, = [0,1/n] or E, = [1 — (1/n),1] applies to show
that A =0and A = 1 are also in o (M,).

Finally, we claim that no point outside of the interval [0, 1] can lie in o(M,). If
A € C\[0, 1], then
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1 (=]
— €L70.1]

and M () is a bounded operator which is inverse to M, — Al

Many further examples of concrete operators and their spectra will appear in later
sections, when we have a bit more machinery at our disposal.

The terminology “spectrum” comes from David Hilbert, who made major con-
tributions to functional analysis initially motivated by a study of integral equations.
Especially important were a collection of six papers written by Hilbert in the period
1904-1910 (and published together as a book in 1912 [19]). The fourth of this se-
ries of papers marks the beginning of the modern spectral theory. Here, in a general
discussion of bilinear and quadratic forms, he generalized the concept of eigenvalue
to that of the “spectrum”? and began the study of the relationships between the op-
erator T and its spectrum. Retrospectively, and in modern language, we can say that
he studied self-adjoint operators on ¢2, and an important aspect of this work was
the discovery of ways to deal with the complications that arise when the continuous
spectrum is not empty (and thus we are “outside” of the finite-dimensional case).
This led to a description of any bounded self-adjoint operator on ¢> which is a gen-
eralization of what we have done for compact self-adjoint operators in Section 4.3,
and which leads to the spectral theorem as we shall discuss it in Chapter 6.

When later it was discovered that the mathematical setting of self-adjoint op-
erators on Hilbert space was a useful mathematical tool for theoretical physicists
who were developing the then new theory of quantum mechanics, the spectra of
these operators became related to the explanation of the “spectra” of atoms. Hilbert
comments on this remarkable coincidence of terminology [38]:

I developed my theory of infinitely many variables from purely mathematical interests,
and even called it “spectral analysis” without any presentiment that it would later find an
application to the actual spectrum of physics (p. 183).

Indeed, it is remarkable how the development of the theory of operators on Hilbert
spaces occurred just as it was needed for the development of quantum mechanics.
As A.M. Vershik writes in an essay on functional analysis in the twentieth century
[45]:

One might even conjecture that if the functional analysis of Hilbert spaces had not yet
existed at the time when quantum mechanics arose, it would have been created out of ne-
cessity. For that reason, it is no exaggeration to say that the extremely close connection
between the latest physics of the first half of the twentieth century and functional analysis
gave the latter even greater authority (p. 441).

2 Hilbert defined the spectrum of T as the set of A for which I — AT is not invertible, which gives
the reciprocals of what is now the commonly used definition.
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4.6 The Fredholm Alternative

Our main goal in this section is to get information on the spectrum of a compact
operator on a Hilbert space.

Theorem 4.29. Suppose X is a Banach space and T € PB(X) is compact. If A # 0,
then T — AI has closed range.

Proof. For A £0,T — Al = l(%T —1). Since %T is compact if T is, it suffices to
prove the theorem for A = 1. Suppose, for a contradiction, that the range of T — I
is not closed. Define a map S from the quotient space X /ker (T —I) into X by
S(x+ker (T —1I)) = (T —I)x. By Exercise 3.26 in Chapter 3, we know that S is
a well-defined, bounded linear map, which is one-to-one. The range of S is equal
to the range of T — I, and hence by our assumption, the range of S is not closed.
In Exercise 2.12 of Chapter 2 it was shown that a Hilbert space operator that is
bounded below must have closed range, and it is easy to see that this same result
holds in Banach spaces as well. Thus S is not bounded below, and so there must be
(quotient space) unit vectors x, +ker (7' —1I) in X /ker (T —I) with

[15Cen +ker (T —1))|| = [[(T = Dxa|| — 0.

By the definition of the coset norm, if ||x, +ker (T —I)|| = 1, then for any positive
€ there exist y, € ker (T —I) such that ||x, —y,|| < 1+ €. Since ||x, —y, +ker (T —
I)|| = 1, there is no loss of generality in assuming, say, that ||x,|| < 2 for all n. Com-
pactness of the operator 7' then guarantees that Tx,, has a convergent subsequence,
and hence we may assume (not relabeling this subsequence) that Tx;,, — y for some
y in X. Since (T —I)x, — 0, we must have x,, — y, and by continuity, Tx, — Ty.
Thus Ty =y and y is in ker (T — I). Now we have a contradiction: Writing [x,] for
the coset x, +ker (T —I), we have ||[x,]|| = 1 and ||[y]|| = O but also x, — y. |

The restriction A # 0 in Theorem 4.29 is crucial; see Exercise 4.26.

Theorem 4.30. Suppose that T is a compact operator on a Hilbert space FC and let
M be the range of the operator (T —1) for each j=1,2,.... There exists a positive
integer j such that M; = M.

Proof. By the previous theorem, M is closed. For j > 1, we may expand (I —T')/
by the binomial theorem to write
) i(i—1 o
(I-T) =I1— T+ LZ)T2+---+(—1)/TA
where A = jT — j(j—1)/2T%+---—(—1)/T/ is compact, by Proposition 4.9. Apply
the previous theorem to  — A to conclude that M; is closed for each j.
Clearly M; 1 C M;; suppose this containment is proper for each j. The quotients
M; / M ;11 would each then have dimension at least 1, and for each j we can choose
xjin M; with ||x;+M;11]| = 1. As in the proof of the preceding theorem, there is no
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loss of generality in assuming that ||x;|| <2 for each j. We claim that || Tx; — Tx | >
1 for j # k, contradicting the hypothesis that T is compact. To this end, suppose
j<ksothat j < j+1 <k <k+ 1. We have

o xy EMCMjyy,
e (T —I)xj € Mj, by definition of M, and
o (T—Ixx €My CMjy.

Defining y = (T —I)x; — (T —I)xx — xi, we see that y is in M 1, and the definition
of the coset norm guarantees that ||x; +y|| > 1. But x; +y = Tx; — Tx;, and we have
verified our claim. a

The result of Theorem 4.30 is sometimes phrased as “7 — I has finite descent if
T is compact.”

The next result is the main result of this section. It says that the nonzero points
in the spectrum of a compact operator are always eigenvalues of the operator.

Theorem 4.31. Suppose T is a compact operator on a Hilbert space ¢ and A # 0.
If T — Al is not invertible, then A is an eigenvalue of T.

Proof. Since T — Al = l(%T — 1), there is no loss of generality in taking A = 1.
Thus we are given that 7 —/ is not invertible. Suppose that 1 is not an eigenvalue of
T. This means ker (T —I) = {0}, and T —I is one-to-one. Since it is not invertible,
it must therefore fail to map onto ¢ (T —I).7 is properly contained in .7Z. Since
T — I is one-to-one, it follows that (T —I)?.7# is properly contained in (T —I).57,
for if xo fails to be in the range of T — I, then (T — I)x fails to be in the range of
(T —I)?. Continuing, we see that for each j, the range of (T —I)/*! is properly
contained in the range of (T —I)/. This is in contradiction to the conclusion of
Theorem 4.30, and we are done. O

The next result, called the “Fredholm alternative,” summarizes what we have
learned in this section. Notice how it captures results you know from linear algebra
about linear maps on C”.

Theorem 4.32. Let T be a compact operator on a Hilbert space 7. Suppose A is
a nonzero complex number.

(a) IfT — Al is one-to-one, then T — A1 is invertible.
(b) IfT — Al maps 7 onto , then T — Al is invertible.

Proof. The first statement is Theorem 4.31. For the second, take adjoints. If 7 — A/
is onto, then T* — AI is one-to-one (by Exercise 2.16 in Chapter 2). From the first
part of the theorem, T* — A1 is invertible; the adjoint of its inverse provides the
inverse to T — Al O

There is a pithy way of describing the conclusions of Fredholm alternative. Think
of “(T — AI)x = y” as an equation with “y” given and “x” as the unknown. The
second conclusion in the Fredholm alternative says “if a solution exists for all y,
then it is unique” while the first conclusion says “if the solution is unique, it exists.”

Theorem 4.32 can be extended to the following result.
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Theorem 4.33. If T is compact in B(5) and A is a nonzero value, then
dim ker (T — AI) = dim [ran (T — AT)]*.

Theorem 4.32 is the case where the common value of the two numbers is zero. We
do not give the proof of Theorem 4.33 here, but refer the interested reader to Lemma
3.2.8in [2].

Every result in this section has an exact Banach space analogue, and only minor
modifications need to be made to obtain the proofs in this more general setting. In
particular Theorems 4.30 and 4.31 go through exactly as before. For Theorem 4.32,
one need only pay attention to the fact that the adjoint is defined slightly differently
in the Banach space context, check that it is still true that ker A* = (ran A)~, where
now M+ denotes the bounded linear functionals which are zero at each point of M,
and recall that (T — AI)* =T* — Al

4.7 Exercises

4.1. Suppose that || - ||o and [ - ||g are two equivalent norms on a vector space X.
Show that if (X, || - ||o) is complete, then so is (X, || - [|3)-

4.2. Suppose that X is an n-dimensional normed linear space over C. Show that
there is a linear bijection T : X — C” such that T and T~ are continuous (in your
choice of a norm for C"); in short, every n-dimensional normed linear space over C
is isomorphic to C".

4.3. Suppose that X is a normed linear space, endowed with the metric topology,
and suppose X contains a nonempty open set V such that V is compact. The goal of
this problem is to show that this forces X to be finite-dimensional.

(a) Without loss of generality we may assume that O € V. Show that as x ranges over
the set V, the open sets x + %V ={x+ %v :v € V} form an open cover of V. By
compactness, extract a finite subcover

1 N
xk—l—V} .
fe vl

Define Y to be the span of the points xy,x2,...,xy.
(b) Show that V CY + 5 V for each positive 1nteger J, and hence

ﬂY+ =V).

(c) Show that N7(Y + V) =
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(d) From (b) and (c) and the fact that for any x € X, a sufficiently small, but nonzero
multiple of x will lie in V, conclude that X = Y, and thus that X is finite-
dimensional.

4.4. Suppose that M| is a closed subspace and M, is a finite-dimensional subspace
in a normed linear space X.

(a) Show that M| + M, = {m; +my : m; € My,my € M,} is a closed subspace of X.
Hint: Argue that it is enough to consider M, to be one-dimensional, M, = {oxg :
o € C}. Suppose my, + o,x9 — y where m,, € My, a, € C. Show that {a,} is a
bounded sequence of complex numbers, and extract a convergent subsequence
Oy, . Write my, = (O, X0 + My, ) — Oy Xo.

(b) Use (a) to give an alternate proof of the statement in Proposition 4.3 that a finite-
dimensional subspace in a normed linear space is closed.

4.5. This problem provides an alternate proof to Proposition 4.4. Suppose that T :
X — Y is linear, where X and Y are normed linear spaces and X is finite-dimensional.
Define || - || on X by

[[x[lp = max(llxlx, [[Tx][y)-

(a) Check that || - || is a norm on X.
(b) Argue that 7 : (X, || -[|g) — Y is continuous, and hence that sois 7 : X — Y in
the original norm on X.

4.6. Let X be a Banach space and suppose T1,73,S are bounded linear operators
from X into X, with 77 and 7> compact. Show that 71 + T», aTi, STi, and T3 S are all
compact (& any scalar). If F is a finite rank operator, show that SF and F'S are finite
rank as well.

4.7. Find the error in the following “proof” that the compact operators on a Banach
space X are closed in the bounded operators on X.

Alleged proof: Suppose T, is compact for each n and suppose further that ||7;, —
T|| — 0 for some bounded linear operator 7. To show that T is compact, we want
to show that for an arbitrary bounded sequence {x,} in X, {Tx,} has a convergent
subsequence. Fix such a sequence {x,} and let M be a bound for it: ||x,|| < M for
all n. Now choose an € > 0, and find K sufficiently large that

et

Tx—T| < .
ITc—71 < 5

We are given that the operator Tk is compact, so we can find a subsequence {x,,j}
of our sequence {x, } so that Tk (x,,) converges. But a convergent sequence must be
a Cauchy sequence, so if n; and ny, are sufficiently large, say if n;,n; > N, then

€
ITiiny) — Tican)l < 5-
We claim that T'(x,;) converges. Since we are in a Banach space, to verify this, it

is enough to show that {T (x4,)} is a Cauchy sequence. To this end, notice that for
nj,ni > N we have
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1T Ceny) =T Qan )| < T Oy ) = T o)+ 11T () — T (e ) |
+ 1Tk () = T (e ) |
€
<|T—Tk||-M+ 3t Tk —T||-M
<e
This shows that {7'(x,;)} is Cauchy, and hence it converges, as desired.

4.8.If A € #(A) is a diagonal operator with diagonal {c,}, show that if A is
compact, then lim,,_,.. &, = 0.

4.9. This problem builds on Exercise 2.6 in Chapter 2. Show that every finite rank
operator T in a Hilbert space .77 can be described as

n
th]

for orthonormal vectors x1,x7,...,x, and vectors yi,y2,..., V.

4.10.(a) Give an example of a compact operator which is not Hilbert—Schmidt.
(Hint: look for a diagonal operator with this property.)

(b) Show that no compact operator on an infinite-dimensional Hilbert space is in-
vertible. (Exercise 4.24 below extends this result to Banach spaces).

(c) Show that if T is compact in B(S¢), where .7 is a Hilbert space, and A # 0 is
an eigenvalue of T, then ker (7 — A[) is finite-dimensional.

4.11. For A € C we abbreviate T — AI (I the identity operator) by T — A.
(a) Suppose that T is a normal operator in %(.5). Show that
(T = )|l = |(T —A)"h]|

for all 4 in S and all scalars A. Hence ker(T —A) = ker(T — 1)*.

(b) Show that if T is normal, then eigenvectors corresponding to distinct eigenvalues
are orthogonal.

(c) State and prove a version of Theorem 4.21 for compact normal operators.

4.12. If T € B(H) for some (complex) Hilbert space .7 and (Th, h) is real for all
h € 7, show that T is self-adjoint.

4.13. In the notation of Corollary 4.25, show that for a given h € 7, we can solve
the equation 7 f = h for f if and only if 4 | ker T and

1
Y ol (e <.

Find all such solutions f under these assumptions.
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4.14. Consider the weighted shift operator on ¢ given by

1 1
W(x1,x2,x3,...) = (0,x1, Exz, §X37...).

Show that W is compact, but W has no eigenvalues. Find a nontrivial closed invariant
subspace for W.

4.15. Let M, be the multiplication operator acting on L?([0, 1],dx) by M,(f) = xf.
Note that M, is self-adjoint. Show that it has no eigenvalues, but many reducing
subspaces.

4.16. Show that the Volterra operator V of indefinite integration on L?(]0, 1],dx),
defined by

Vi = [ s
is compact.

4.17. Show that the subspaces
Mgy = {f € L*[0,1] : f = 0 almost everywhere on [0, a]}

for any 0 < o < 1 are invariant subspaces for the Volterra operator V (defined in
Exercise 4.16).

In fact, every invariant subspace of V is of the form M for some ¢. This is a
deep result; a proof can be found in [35].

4.18. Suppose that M is a closed subspace of .7 so that J# = M ®M* . If A is in
PB(H), we can write A as a matrix with operator entries

Xy
=12l
where X € B(M), Y € B(M*+,M), Z € B(M,M*), and W € B(M™). If M is an

invariant subspace for A, what does this tell you about Z? If M is reducing subspace
for A, what further information do you have about the operator entries of this matrix?

4.19. If {e,} is an orthonormal sequence in a Hilbert space J¢, and T € B(.¢) is
compact, show that Te, — 0.

4.20. Show that there is no nonzero multiplication operator on L?(T,dx/(2x)) that
is Hilbert—Schmidt. Is there a multiplication operator on L*(T,dx/(27)) that is com-
pact?

4.21. Show that if T € B(H) is compact, and M is a closed invariant subspace of
T, then the restriction of 7 to M is compact.

4.22. Show that a bounded linear operator 7 on a Hilbert space .7# which is self-
adjoint and satisfies 72> = T is an orthogonal projection onto its range.
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4.23. For an analytic function ¢ mapping the unit disk into itself, define the linear
composition operator Cy by Cy(f) = f o ¢ for f analytic on ID.

(a) Show that if Cy is Hilbert—Schmidt on the Bergman space L2(DD), then

1
| e <=

(b) Show that if Cy is bounded on L2(ID) and

1
| oA <=

then Cy, is Hilbert—Schmidt.
(c) Give an example of a compact composition operator on L2(ID).

4.24. Show that if X is an infinite-dimensional Banach space, then no bounded linear
operator on X can be both compact and invertible.

4.25. Show that the result of Exercise 4.10(c) also holds for a compact operator on
a Banach space.

4.26. Show that a compact operator A on a Banach space X can only have closed
range if its range is finite-dimensional.

4.27. Suppose that A is a compact operator on a Banach space X. Show that if A> =
A, then the range of A is finite-dimensional.

4.28. Are the Hilbert—Schmidt operators a closed subspace of %(.5)?

4.29. Suppose that T is a compact operator in () and A # 0. Show that there
exists a positive integer k so that

ker (T — AD)* =ker (T — A1),

This is sometimes described as “T — A[ has finite ascent,” since for any operator
A € B(H) we have ker A C ker A Cker A3 C -,
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Chapter 5
Banach and C*-Algebras

In 1943, a paper, written by 1. M. Gelfand and M. Neumark, “On
the imbedding of normed rings into the ring of operators in
Hilbert space,” appeared (in English) in Mat. Sbornik. From the
vantage point of a fifty year history, it is safe to say that the
paper changed the face of modern analysis.

R. Kadison ([25], p. 21).

In this chapter, our Banach spaces will be equipped with some additional structure
which comes from a multiplication operation; that is, a Banach space .2/ here will
permit the multiplication of two vectors. This multiplication will be required to
satisfy the following properties:

(1) a(bc) = (ab)c

(2) (a+b)c=ac+bc

3) a(b+c)=ab+ac

4)  A(ab) = (Aa)b=a(Ab)

for all a,b,c in &/ and all scalars A. Conspicuously absent from this list is any
requirement of commutativity for this new multiplication operation, as well as the
requirement that there be a multiplicative unit, i.e., a vector I such thatal =la=a
for all @ in «/. We will impose these additional requirements (particularly the latter)
from time to time, but at the moment neither is required. The terminology “complex
algebra” is used for a vector space over C having properties (1)—(4) above; if a unit
exists for the multiplication operation, we’ll say the algebra is “unital.”

A Banach algebra is a complex algebra .o/ with a norm making <7 into a Banach
space and satisfying

lab]| < llall 5]

Note this norm property guarantees that multiplication, as a map from ./ X &/ into
o, is continuous: if a, — a and b, — b then a,b, — ab. This follows by writing
anby — ab = (a, — a)b, + a(b, — b). When <7 is unital, we assume ||| = 1; see
Exercise 5.2.

The final layer of structure we will impose on some of the Banach algebras to be
studied comes from the notion of an involution. An involution, on a Banach algebra
o7, is amap a — a* of &7 into o/ satisfying

(1) (@) =a
(2) (ab)* =b*a*
3) (Aa+b)* =Aa* +0b*

B.D. MacCluer, Elementary Functional Analysis, DOI 10.1007/978-0-387-85529-5_5, 107
(© Springer Science+Business Media, LLC 2009
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for a,b € o/ and A a scalar. We call a* the adjoint of a.
Finally, a C*-algebra is a Banach algebra with an involution such that

la*all = ||al|*.

We will call this the C*-identity. One way to motivate the “naturalness” of this last
definition is to recall that for a bounded linear operator A on a Hilbert space 77 we
have already observed ||A*A|| = ||A||> (Proposition 2.14). It is occasionally helpful
to note that a Banach algebra with involution satisfying the inequality ||a*a|| > ||a||?
for all a € o7 is a C*-algebra, meaning we get the inequality in the other direction
for free. You are asked to provide the proof for this in Exercise 5.1.

5.1 First Examples

Let us look at some examples, which show that these new definitions are all quite
natural.

Example 5.1. Consider C with the usual multiplication, absolute value as norm, and
conjugation as involution: z* =Z. The C*-identity is the familiar statement [zz| = |z|?,
and C is a commutative C*-algebra with unit, 1.

Example 5.2. Let X be any compact Hausdorff space, and consider the Banach
space C(X) of all continuous, complex-valued functions on X in the supremum
norm, with pointwise-defined multiplication. This is a commutative Banach alge-
bra, with the constant function 1 serving as the multiplicative unit. Defining an in-
volution on C(X) by f*(x) = f(x) makes C(X) into a C*-algebra. We’ll see later
that every commutative unital C*-algebra is “isometrically isomorphic” to C(X) for

some choice of a compact Hausdorff space X.

Example 5.3. Now let X = R and consider the Banach space Cy(R) of continuous
complex-valued functions that vanish at e (meaning lim,_,+. f(x) = 0, or equiva-
lently, that {x : |f(x)| > €} is compact for every € > 0) in the supremum norm. De-
fine multiplication pointwise and involution just as in the previous example. Then
Co(R) is a commutative, but nonunital, C*-algebra. This example can be generalized
by replacing the real line by any noncompact but locally compact Hausdorff space
X; analogously to the last comment in the previous example, every commutative
nonunital C*-algebra is C(X) for some locally compact Hausdorff space X.

Example 5.4. Starting with a o-finite measure space (X, 91, 1), the Banach space
L*(X, u), with multiplication and involution defined as in the last two examples, is
a commutative, unital C*-algebra. (Strictly speaking, to define the multiplication of
two elements of L™ (X, i) we choose a representative of each and define its point-
wise product to be a representative of the product element.) Note it would not do to
replace “eo” by “p < oo” in this example, as the multiplication of two L? functions
need not be in L? for finite p.
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Example 5.5. Our most important example is the Banach algebra of all bounded lin-
ear operators on a Hilbert space .7, normed by the operator norm ||A|| = sup{||Ax]|| :
|||l = 1}, and with multiplication defined by composition (AB)(h) = A(B(h)). This
is a noncommutative (when the dimension of 7 is at least two) Banach algebra
with identity /. Defining A* to be the usual operator adjoint provides an involution
on () under which we have a C*-algebra, as noted in Chapter 2. In the special
case that 5 = C", then HB(S¢) is identified with the n x n matrices, and we will
often denote this by M,,. When .77 is replaced by a Banach space X, #(X) is a
Banach algebra.

Even though many of the classical Banach spaces are in fact Banach algebras un-
der a natural multiplication, the conscious exploitation of this fact was rather long
in coming. Riesz, writing in 1913, looked explicitly at the product of operators on a
Hilbert space, and was at least implicitly aware of the inequality ||AB|| < ||A||||B||-
By 1930, the concept of “rings of operators” came under explicit study, and begin-
ning in 1936 an important series of papers by Francis Murray and John von Neu-
mann, titled “On Rings of Operators,” developed the theory of what are now called
von Neumann algebras. These are certain kinds of C*-subalgebras of #(.7), and a
particular motivation for their study was to provide the “right” mathematical frame-
work for the study of “observables” in quantum mechanics.

Von Neumann was a brilliant and prolific mathematician who made fundamental
contributions to many areas of both pure and applied mathematics. He (along with
Albert Einstein and Kurt Godel) was part of the first faculty at the Institute for
Advanced Study in Princeton. Peter Lax, in the forward to a recently published
collection of letters written by von Neumann, says

...had he lived a normal span of years!, he would certainly have been a recipient of a Nobel
Prize in economics. And if there were Nobel Prizes in computer science and mathematics,
he would have been honored by these, too. So the writer of these letters should be thought of
as a triple Nobel laureate, or possibly, a 3 % -fold winner, for his work in physics, in particular
quantum mechanics ([37], p. xiii).

His work with Murray is among his most influential, at least on the pure mathe-
matics side. Curiously, this work predates much of the foundational work on Ba-
nach algebras that we will look at in the next sections (much of which is due to L.
Gelfand).

Von Neumann showed a prodigious talent as a young child for calculation and
solving problems. According to a biographical article on von Neumann written by
Halmos [16],

At the age of 6 he could divide two eight digit numbers in his head; by 8 he had mastered
the calculus; by 12 he had read and understood Borel’s Théorie des Fonctions (p. 383).

Stories about his astonishing calculational abilities recur throughout his life. His
biographer, N. Macrae, tells the following anecdote [30]:

! Von Neumann died in 1957, at the age of 53, of cancer.



110 5 Banach and C*-Algebras

When calculating a problem while sitting, he was apt to stare at the ceiling muttering, with
an almost frighteningly blank face. He did this when the Rand Corporation asked whether
his computers could be modified to tackle a particular problem, which—as Rand staff ex-
plained to him for two hours on blackboards and with graphs—would understandably be
beyond computers in their present state. For two or three minutes, Johnny “stared so blankly
that a Rand scientist later said he looked as if his mind had slipped his face out of gear. Then
he said ‘Gentlemen, you do not need the computer, I have the answer”(p. 9).

Any norm-closed subalgebra of a C*-algebra which is also closed under adjoints
is again a C*-algebra. An important example is the subalgebra of compact operators
H(H) in B(