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Preface

This book has evolved from my experience over the past decade in
teaching and doing research in functional analysis and certain of its appli-
cations. These applications are to optimization theory in general and to
best approximation theory in particular. The geometric nature of the
subjects has greatly influenced the approach to functional analysis presented
herein, especially its basis on the unifying concept of convexity. Most of
the major theorems either concern or depend on properties of convex sets;
the others generally pertain to conjugate spaces or compactness properties,
both of which topics are important for the proper setting and resolution of
optimization problems. In consequence, and in contrast to most other
treatments of functional analysis, there is no discussion of spectral theory,
and only the most basic and general properties of linear operators are
established.

Some of the theoretical highlights of the book are the Banach space
theorems associated with the names of Dixmier, Krein, James, Smulian,
Bishop-Phelps, Brondsted-Rockafellar, and Bessaga-Pelczynski. Prior to
these (and others) we establish to two most important principles of geometric
functional analysis: the extended Krein-Milman theorem and the Hahn-
Banach principle, the latter appearing in ten different but equivalent formula-
tions (some of which are optimality criteria for convex programs). In
addition, a good deal of attention is paid to properties and characterizations
of conjugate spaces, especially reflexive spaces. On the other hand, the
following (incomplete) list provides a sample of the type of applications
discussed:

Systems of linear equations and inequalities;
Existence and uniqueness of best approximations;
Simultaneous approximation and interpolation;
Lyapunov convexity theorem;

Bang-bang principle of control theory;
Solutions of convex programs;

Moment problems;

Error estimation in numerical analysis;

Splines;

Michael selection theorem;

Complementarity problems;

Variational inequalities;

Uniqueness of Hahn-Banach extensions.

Also, “geometric” proofs of the Borsuk-Dugundji extension theorem, the
Stone-Weierstrass density theorem, the Dieudonne separation theorem,
and the fixed point theorems of Schauder and Fan-Kakutani are given as
further applications of the theory.
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Over 200 problems appear at the ends of the various chapters. Some
are intended to be of a rather routine nature, such as supplying the details
to a deliberately sketchy or omitted argument in the text. Many others,
however, constitute significant further results, converses, or counter-
examples. The problems of this type are usually non-trivial and I have
taken some pains to include substantial hints. (The design of such hints
is an interesting exercise for an author: he hopes to keep the student on
course without completely giving everything away in the process.) In any
event, readers are strongly urged to at least peruse all the problems. Other-
wise, I fear, a good deal of the total value of the book may be lost.

The presentation is intended to be accessible to students whose mathe-
matical background includes basic courses in linear algebra, measure
theory, and general topology. The requisite linear algebra is reviewed in §1,
while the measure theory is needed mainly for examples. Thus the most
essential background is the topological one, and it is freely assumed. Hence,
with the exception of a few results concerning dispersed topological spaces
(such as the Cantor-Bendixson lemma) needed in §25, no purely topological
theorems are proved in this book. Such exclusions are warranted, I feel,
because of the availability of many excellent texts on general topology.
In particular, the union of the well-known books by J. Dugundji and J. Kelley
contains all the necessary topological prerequisites (along with much
additional material). Actually the present book can probably be read
concurrently with courses in topology and measure theory, since Chapter I,
which might be considered a brief second course on linear algebra with
convexity, employs no topological concepts beyond standard properties
of Euclidean spaces (the single exception to this assertion being the use of
Ascoli’s theorem in 7C).

This book owes a great deal to numerous mathematicians who have
produced over the last few years substantial simplifications of the proofs
of virtually all the major results presented herein. Indeed, most of the proofs
we give have now reached a stage of such conciseness and elegance that
I consider their collective availability to be an important justification for a
new book on functional analysis. But as has already been indicated, my
primary intent has been to produce a source of functional analytic informa-
tion for workers in the broad areas of modern optimization and approxima-
tion theory. However, it is also my hope that the book may serve the needs
of students who intend to specialize in the very active and exciting ongoing
research in Banach space theory.

I am grateful to Professor Paul Halmos for his invitation to contribute
the book to this series, and for his interest and encouragement along the
way to its completion. Also my thanks go to Professors Philip Smith and
Joseph Ward for reading the manuscript and providing numerous correc-
tions. As usual, Nancy Eberle and Judy Snider provided expert clerical
assistance in the preparation of the manuscript.
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Chapter 1

Convexity in Linear Spaces

Our purpose in this first chapter is to establish the basic terminology
and properties of convex sets and functions, and of the associated geometry.
All concepts are “primitive”, in the sense that no topological notions are
involved beyond the natural (Euclidean) topology of the scalar field. The
latter will always be either the real number field R, or the complex number
field C. The most important result is the “basic separation theorem”, which
asserts that under certain conditions two disjoint convex sets lie on opposite
sides of a hyperplane. Such a result, providing both an analytic and a
geometric description of a common underlying phenomenon, is absolutely
indispensible for the further development of the subject. It depends implicitly
on the axiom of choice which is invoked in the form of Zorn’s lemma to
prove the key lemma of Stone. Several other equally fundamental results
(the “support theorem”, the “subdifferentiability theorem”, and two extension
theorems) are established as equivalent formulations of the basic separation
theorem. After indicating a few applications of these ideas we conclude the
chapter with an introduction to the important notion of extremal sets (in
particular extreme points) of convex sets.

§1. Linear Spaces

In this section we review briefly and without proofs some elementary
results from linear algebra, with which the reader is assumed to be familiar.
The main purpose is to establish some terminology and notation.

A. Let X be a linear space over the real or complex number field. The
zero-vector in X is always denoted by 6. If {x;} is a subset of X, a linear
combination of {x;} is a vector x € X expressible as x = ZA,x;, for certain
scalars /;, only finitely many of which are non-zero. A subset of X is a (linear)
subspace if it contains every possible linear combination of its members. The
linear hull (span) of a subset S of X, consists of all linear combinations of its
members, and thus span(S) is the smallest subspace of X that contains S.
The subset S is linearly independent if no vector in S lies in the linear hull of
the remaining vectors in S. Finally, the subset S is a (Hamel) basis for X if
S is linearly independent and span(S) = X.

Lemma. S isa basis for X if and only if S is a maximal linearly independent
subset of S.

Theorem. Any non-trivial linear space has a basis; in fact, each non-empty
linearly independent subset is contained in a basis.
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B. As the preceding theorem suggests, there is no unique choice of
basis possible for a linear space. Nevertheless, all is not chaos: it is a re-
markable fact that all bases for a given linear space contain the same number
of elements.

Theorem. Any two bases for a linear space have the same cardinality.

It is thus consistent to define the (Hamel) dimension dim(X) of a linear
space X as the cardinal number of an arbitrary basis for X. Let us now
recall that if X and Y are linear spaces over the same field then a map
T:X — Y is linear provided that

T(x + 2z) = T(x) + T(z), x,ze X,
T(ax) = aT(x), x€e X, o scalar.

It follows that X and Y have the same dimension exactly when they are
isomorphic, that is, when there exists a bijective linear map between X and Y.

C. We next review some constructions which yield new linear spaces
from given ones. First, let {X,} be a family of linear spaces over the same
scalar field. Then the Cartesian product I'T,X, becomes a linear space (the
product of the spaces X,) if addition and scalar multiplication are defined
component-wise. On the other hand, let M,,..., M, be subspaces of a
linear space X and suppose they are independent in the sense that each is
disjoint from the span of the others. Then their linear hull (in X ) is called
the direct sum of the subspaces M, ..., M, and written M L @ -@®M,or

simply (—D M;. The point of this definition is that if M = @ M, then each

i=1
n

x € M can be uniquely expressedas x = Y m;, wherem;e M;,i =1,...,n

i=1
Now let M be a subspace of X. For fixed x € X, the subset x + M =
{x + y:ye M} is called an affine subspace (flat) parallel to M. Clearly,
X, + M = x, + M ifand only if x; — x, € M, so that the affine subspaces
parallel to M are exactly the equivalence classes for the equivalence relation
“~ " defined by x; ~, x, if and only if x;, — x, € M. Now, if we define

x+M+(y+M=(x+y+M,
ax + M) =ax + M, o scalar

then the collection of all affine subspaces parallel to M becomes a linear
space X/M called the quotient space of X by M.

Theorem. Let M be a subspace of the linear space X. Then there exist
subspaces N such that M @ N = X, and any such subspace is isomorphic to
the quotient space X /M.

Any subspace N for which M @ N = X is called a complementary
subspace (complement) of M in X. Its dimension is by definition the co-
dimension of M in X. The theorem also allows us to state that symbolically

codimy(M) = dim(X/M),
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where the subscript may be dropped provided the ambient linear space X
is clearly specified. In fact, this theorem seems to suggest that there is not a
great need for the construct X /M, and this is so in the purely algebraic case.
However, later when we must deal with Banach spaces X and closed sub-
spaces M, we shall see that generally there will be no closed complementary
subspace. In this case the quotient space X/M becomes a Banach space and
serves as a valuable substitute for the missing complement.

Now let M be a subspace of X, and choose a complementary subspace
N:M ® N = X.Then we can define a linear map P: X — M by P(m + n) =
m, me M, ne N. P is called the projection of X on M (along N). We have
similarly that I — P is the projection of X on N (along M), where I is the
identity map on X. The existence of such projections allows us the luxury
of extending linear maps defined initially on a subspace of X:if T:M — Y
is linear, then T = To P is a linear map from X to Y that agrees with T on
M. Such a map T is an extension of T.

D. Let X be a linear space over the scalar field F. The set of all linear
maps ¢:X — F becomes a new linear space X’ with linear space operations
defined by

(@ + ¥)(x) = $(X) + Y(x),
(ad)(x) = agp(x), ae F, xe X.

X' is called the algebraic conjugate (dual) space of X and its elements are
called linear functionals on X. Observe that if dim(X) = n (a cardinal
number) then X’ is isomorphic to the product of n copies of the scalar field.
As we shall see many times, it is often convenient to write

P(x) = {x, ¢,

for x e X, ¢ € X'. The reason for this is that often the vector x and/or the
linear functional ¢ may be given in a notation already containing parentheses
or other complications.

Since X' is a linear space in a natural fashion, we can construct its
algebraic conjugate space (X'), which we write simply as X”. We call X" the
second algebraic conjugate space of X. We then have a map J4: X — X"
defined by

<¢’JX(X)> = <x9 ¢>) XGX, ¢GXI~

This map is clearly linear; it is called the canonical embedding of X into X".
This terminology is justified by the next theorem.

Theorem. The map Jy just defined is always injective, and is surjective
exactly when dim(X) is finite.

Thus, under the canonical embedding J, the linear space X is isomorphic
to a subspace of its second algebraic dual space, and this subspace is proper
(not all of X”’) unless X is of finite dimension. In either case, we see that if it
suits our purposes, we can consider that a given linear space consists of
linear functionals acting on some other linear space (namely, X’).
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E. The proper affine subspaces of a linear space X can be partially
ordered by inclusion. Any maximal element of this partially ordered set is
a hyperplane in X.

Lemma. An affine subspace V in X is a hyperplane if and only if there
isanon-zero ¢ € X' and a scalar o suchthat V = {x e X:¢(x) = o} = [¢; «].

Thus the hyperplanes in X correspond to the level sets of non-zero linear
functionals on X. We can alternatively say that the hyperplanes in X consist
of the elements of all possible quotient spaces X/ker(¢), where ¢ € X,
¢ # 6, and ker(¢p) = [¢; 0], the kernel (null-space) of ¢. The hyperplanes in
X which contain the zero-vector are in particular seen to coincide with the
subspaces of codimension one. More generally, the subspaces of codimension
n (n a positive integer) are exactly the kernels of linear maps on X of rank n
(that is, with n-dimensional image).

F. Suppose that X is a complex linear space. Then in particular X is a
real linear space if we admit only multiplication by real scalars. This under-
lying real vector space Xy is called the real restriction of X. Suppose that
¢ € X'. Then the maps

X = re ¢(x),

X > im ¢(x), xe X,

are clearly linear functionals on Xp, that is, they belong to Xk. On the other
hand, since ¢(ix) = ip(x), x € X, we see that

im ¢(x) = —re P(ix)

so that ¢ is completely determined by its real part. Similarly, if we start
with i € Xk, and define

B(x) = Y(x) — i(ix),

we find that ¢ € X'. To sum up, the correspondence y = ¢ just defined is
an isomorphism between X = (Xg) and (X')g.

This correspondence will be important in our later work with convex
sets and functions. The separation, support, subdifferentiability, etc. results
all concern various inequalities involving linear functionals; it is thus
necessary that these linear functionals assume only real values. Consequently,
in the sequel, linear spaces will often be assumed real. The preceding remarks
then allow the results under discussion to be applied to complex linear
spaces also, by passage to the real restriction, the associated linear functionals
being simply the real parts of the complex linear functionals.

G. We give next a primitive version of the “quotient theorem”, which
allows us intuitively to “divide” one linear map by another. The more
substantial result involving continuity questions appears in Chapter III.

Let X, Y, Z be linear spaces and let S: X — Y, T: X — Z be linear maps.
We ask whether there exists a linear map R:Y — Z such that T = Ro S.
An obvious necessary condition for this to occur is that ker(S) = ker(T); it
is more useful to note that this condition is also sufficient.
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Theorem. Let the linear maps S and T be prescribed as above, and assume
that ker(S) < ker(T). Then there exists a linear map R, uniquely specified on
range(S), such that T = Ro S.

One consequence of this theorem, important for later work on weak
topologies, is the following.

Corollary. Let X be a linear space and let ¢y, ..., ¢,, Y € X'. Then
Y espan{@,, ..., ¢,} if and only if

‘Dl ker(¢;) < ker(y).

H. Let M be a subspace of the linear space X. The annihilator M° of

M consists of those linear functionals in X’ that vanish at each point of M.

It is clearly a subspace of X'. Similarly, if N is a subspace of X, its pre-

annihilator °N consists of all vectors in X at which every functional in N
vanishes. Thus:

MO

N ker(Jx(x)),
°N = Jx(range(Jyx) N N°).

Let T:X — Y be a linear map. The transpose T' is the linear map from
Y’ to X’ defined by

x, T'(W)y = <T(x), ¥, xe X, yeY.

It may be recalled that when X and Y are (real) finite dimensional Euclidean
spaces, and T is represented by a matrix (with respect to the standard unit
vector bases in X and Y), then T is represented by the transposed matrix,
whence the above terminology.

Lemma. Let T:X — Y be a linear map. Then ker(T') = range(T)° and
range(T’) = ker(T)°.

Thus we see that T is surjective (resp., injective) if and only if T is injective
(resp., surjective). The various constructs in the preceding sub-sections can
now all be tied together in the following way. Let us say that the linear spaces
X and Y are canonically isomorphic, written X = Y, if an isomorphism
between them can be constructed without the use of bases in either space.
For example, we clearly have X = J,(X). On the other hand, it may be
recalled that none of the usual isomorphisms between a finite dimensional
space and its algebraic conjugate space is canonical.

Theorem. Let M be a subspace of the linear space X. Then

a) M° = (X/M)';

b) M' = X'/M°.

The proof of a) follows from an application of the lemma to the quotient
map Qu:X — X/M, defined by Q,,(x) = x + M. Since Q,, is clearly sur-
jective, its transpose Q) :(X/M) — X' is an isomorphism onto its range,
which is (ker(Q,,))° = M°. The proof of b) proceeds similarly by applying
the lemma to the identity injection of M into X.
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§2. Convex Sets

In this section we establish the most basic properties of convex sets in
linear spaces, and prove the crucial lemma of Stone. This lemma is, in effect,
the cornerstone of our entire subject, as we shall see shortly. Throughout
this section, X is an arbitrary linear space.

A. Let x, ye X with x # y. The line segment joining x and y is the set
[x, y] = {ax + (1 — a)y:0 < o < 1}. Similarly we put [x, y) = [x, y]\{y},
and (x, y) = [x, y)\{x}. If A < X, then A is star-shaped with respect to
pe Aif [p,x] = A, for all xe A, and A is convex if it is star-shaped with
respect to each of its elements. Clearly a translate of a convex set is convex,
hence each affine subspace of X is convex.

Since the intersection of a family of convex sets is again convex, we can
define, for any A = X, the convex hull of A, written co(A4), to be the inter-
section of all convex sets in X that contain S. Thus co(A4) is the smallest
convex set in X that contains 4. This set admits an alternative description,
namely

co(4) = {Zox;:0 < oy < 1, Zoyy = 1, x;€ A},

the set of all convex combinations of points in 4. (We emphasize again that
all linear combinations of vectors involve only finitely many non-zero terms.)
We have, for instance, that co({x, y}) = [x, y]. More generally, if we define
the join of two sets A and B in X to be U {[x, y]:x € 4, y € B}, then

2.1) co(A U B) = join(co(A4), co(B)),

so that if 4 and B are convex, then their join is convex and is, in fact, the
convex hull of their union.

Let us define addition and scalar multiplication on the family P(X) of
non-empty subsets of X by

oA + BB = {aa + Ppb:ae A, be B},

where 4, B = X and «, f are scalars. This definition does not define a linear
space structure on P(X); nevertheless, it proves to be quite convenient. For
instance, we can state

2.2) co(@A + BB) = a co(4) + B co(B).

A set A c X is balanced (equilibrated) if «A = A whenever |a| < 1. The
balanced hull of A, bal(A), is the intersection of all balanced subsets of X
that contain A, and is therefore the smallest balanced set in X that contains
A. Alternatively:

bal(4) = U{ad:|e| < 1}.

Finally, a set which is both convex and balanced is called absolutely
convex. The smallest such set containing a given set A4 is the absolute convex
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hull of A, written aco(4). For example, aco({x}) = [ —x, x], if X is a real
linear space. In general, we have
aco(4) = co(bal(4))
{Zax;: Zloy| < 1, x;€ A},
the set of all absolute convex combinations of points in 4. In particular, we

see that A is absolutely convex if and only if @, be 4 and |of + |f| < 1
implies aa + pb e A.

B. We come now to the celebrated result of Stone. Two non-empty
convex sets C and D in X are complementary if they form a partition of X,
thatis, CNn D = @f, Cu D = X. An evident example of a pair of com-
plementary convex sets occurs when X is real: choose a non-zero ¢ € X’
and put C = {xe X:¢(x) > 0}, D = X\C.

Lemma. Let A and B be disjoint convex subsets of X. Then there exist
complementary convex sets C and D in X such that A = C, B = D.

Proof. Let & be the class of all convex sets in X disjoint from B and
containing A; certainly A € 4. After partially ordering € by inclusion, we
apply Zorn’s lemma to obtain a maximal element C € . It now suffices to
put D = X\C and prove that D is convex. If D were not convex, there would
be x, ze D and y € (x, z) n C. Because C is a maximal element of €, there
must be points p, g € C such that both (p, x) and (q, z) intersect B, say at
points u, v, resp. (Reason by contradiction; if the last statement were false,
then the following assertion (*) would hold: for all pairs {p, g} = C, either
(p,x)"nB=For(qz)nB=. Now if (q,z) n B =, for all ge C,
then C < co({z, C}) and C is not maximal. Consequently, there is some
g e C for which (G, z) n B # . But then, if there were a point p € C such
that (p, x) N B # J, the pair {p, g} would violate (*). Thus, for all pe C,
(p, x) " B # &, C = co({x, C}), and C is not maximal.) Now, however, we
find that [u, v] N co({p, ¢, y}) # &, which contradicts the disjointness of
Band C. 0

C. Let A and B be subsets of X. The core of A relative to B, written
corg(A), consists of all points a € A such that for each b e B\{a} there exists
x € (a, b) for which [a, x] = A. Intuitively, it is possible to move from each
a € corg(A) towards any point of B while staying in 4. The core of A relative
to X is called simply the core (algebraic interior) of A and written cor(A4).
Sets A = X for which A = cor(A4) are called algebraically open, while points
neither in cor(4) nor in cor(X\A4) are called bounding points of A; they
constitute the algebraic boundary of A. It is easy to see that the core of any
(absolutely) convex set is again (absolutely) convex.

A second important instance of the relative core concept occurs when
B is the smallest affine subspace that contains 4. This subspace, aff(4) (the
affine hull of A), can be described as {Zo;x;: Xo; = 1, x; € A} or, equivalently,
as x + span(4 — A), for any fixed x € A. Now the set cor,g, (4) is called
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the intrinsic core of A and written icr(A4). In particular, when A is convex,
a e icr(A) if and only if for each x € A\{a}, there exists y e 4 such that
a € (x, y); intuitively, given a e icr(A4), it is possible to move linearly from
any point in A past a and remain in A.

In general, icr(A4) will be empty; but in a variety of special cases we can
show icr(A4) and even cor(A4) are not empty. For example, it should be clear
that if X is a finite dimensional Euclidean space and A < X is convex, then
cor(A) is just the topological interior of A. But this last assertion fails in the
infinite dimensional case as we shall see later, after introducing the necessary
topological notions. We now work towards a sufficient condition for a convex
set to have non-empty intrinsic core.

A finite set {xg, Xq,...,X,} = X is affinely independent (in general position)
if the set {x; — xo,..., X, — Xo} is linearly independent. The convex hull
of such a set is called an n-simplex with vertices x,, x4, . . ., x,. In this case,
each point in the n-simplex can be uniquely expressed as a convex com-
bination of the vertices; the coefficients in this convex combination are the
barycentric coordinates of the point.

Lemma. Let A be an n-simplex in X. Then icr(A) consists of all points
in A each of whose barycentric coordinates is positive. In particular,

icr(4) # &.

Proof. Let the vertices of 4 be {xq, x,..., X,}. Let a = Zoyx; and
b = XZB;x; be points of 4 with all o; > 0. To show a € icr(4), it is sufficient
to show that b + A(a — b)e A for some A > 1. If we put A = 1 + ¢, the
condition on & becomes

o + &l — By) = 0, i=01,...,n

Z": o + &l — B) = L.
i=0

Since ) (o — p;) =1 — 1 =0, the second condition always holds, and
i=0

since all &; > 0, the first condition holds for all sufficiently small positive
e. Conversely, let a = Zo;x; have a zero coefficient, say o, = 0. Then we
claim that x, + A(a — x;) ¢ A4, for any A > 1. For otherwise, for some 4 > 1
we would have
xk + l(a - xk) = Z ﬂix,-EA.
i=0
It would follow that

a= ELT‘%“_lxk + Y v
ik
for certain coefficients y;. But in this representation of a, the x,-coefficient is
clearly positive (since B = 0). This leads us to a contradiction, since the
barycentric coordinates of a are uniquely determined, and the x,-coefficient
of a was assumed to vanish. il
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The dimension of an affine subspace x + M of X is by definition the
dimension of the subspace M. The dimension of an arbitrary convex set 4 in
X is the dimension of aff(A4). A nice way of writing this definition symbolically
is

dim(A4) = dim(span(4 — A)).

It follows from the preceding lemma that every non-empty finite dimensional
convex set A has a non-empty intrinsic core. Indeed, if dim(A4) = n (finite),
then 4 must contain an affinely independent set {x,, x;, ..., x,} and hence
the n-simplex co({Xg, Xy, .. ., X,}).

Theorem. Let A be a convex subset of the finite dimensional linear space
X. Then cor(A) # & if and only if aff(4) = X.

Proof. Ifaff(4) = X, the last remark shows that cor(4) = icr(4) # .
Conversely, if p € cor(4), and x € X, there is some positive ¢ for which
[p,p + &(x — p)] = A. Then with A = (¢ — 1)/e, we have

x=Ap+ (1 — A(p + &x — p)) € aff(A4). 0

Remark. The conclusion of this theorem fails in any infinite dimen-
sional space. More precisely, in any such space X we can find a convex
set A with empty core such that aff(4) = X. To do this we simply let 4
consist of all vectors in X whose coordinates wrt some given basis for X
are non-negative. Clearly A — 4 = X, while cor(4) = .

D. Let A = X. A point x € X is linearly accessible from A if there
exists a € A, a # x, such that (a, x) = 4. We write lina(4) for the set of all
such x, and put lin(4) = A v lina(A4). For example, when A is the open
unit disc in the Euclidean plane, and B is its boundary the unit circle, we
have that lina(B) = @ while lin(4) = lina(4) = A U B. In general, one sus-
pects (correctly) that when X is a finite dimensional Euclidean space, and
A < X is convex then lin(A4) is the topological closure of 4. But we have
to go a bit further to be able to prove this.

The “lin” operation can be used to characterize finite dimensional spaces.
We give one such result next and another in the exercises. Let us say that
a subset of 4 of X is ubiquitous if lin(4) = X.

Theorem. The linear space X is infinite dimensional if and only if X
contains a proper convex ubiquitous subset.

Proof. Assume first that X is finite dimensional, and let 4 be a convex
ubiquitous set in X. Now clearly A cannot belong to any proper affine
subspace of X. Hence aff(4) = X and thus, by 2C, cor(4) is non-empty.
Without loss of generality, we can suppose that 6 € cor(4). Now, given
any x € X, there is some y € X such that [y, 2x) = A, and there is a posi-
tive number ¢ such that #(2x — y) e A. It is easy to see that the half-line
{Ax + (1 — At2x — y):A > 0} will intersect the segment [ y, 2x); but this
of course means that x is a convex combination of two points in 4, hence
x € A also.
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Conversely, assume that X is infinite dimensional. We can select a well-
ordered basis for X (since any set can be well-ordered, according to Zermelo’s
theorem). Now we define A4 to be the set of all vectors in X whose last co-
ordinate (wrt this basis) is positive. 4 is evidently a proper convex subset
of X, and we claim that it is ubiquitous. Indeed, given any x € X, we can
choose a basis vector y “beyond” any of the finitely many basis vectors
used to represent x. But then, if t > 0, we have x + ty € 4; in particular,
x € lina(A4). 0

E. We give one further result involving the notions of core and “lina”
which will be needed shortly to establish the basic separation theorem of 4B.
It is convenient to first isolate a special case as a lemma.

Lemma. Let A be a convex subset of the linear space X, and let p €
cor(A). For any x € A, we have [ p, x) < cor(A), and hence

cor(4) = U{[p, x):xe A}.

Proof. Chooseany ye[p,x),sayy = tx + (1 — t)p, where0 < ¢ < 1.
Then given any ze X, there is some A > 0 so that p + Aze A. Hence
y+ (1 —=1tlz=(1 —t)(p + A2) + tx € A, proving that y € cor(4). Finally,
given any q € cor(A4), q # p, there exists some § > 0 such that x = g +
d(g — p) e A. It follows that g = (dp + x)/(1 + d) € [p, x). 0

Theorem. Let A be a convex subset of the linear space X, and p € cor(A).
Then for any x € lina(A4) we have [p, x) = cor(A4).

Proof. We can assume that p = 0. Since x e lina(4), there is some
z e A such that [z, x) = A4, and since 0 € cor(4), there is some § > 0 such
that —z e A. Arguing as in 2D, given any point tx, 0 < t < 1, the line
{Atx + (1 — A)(—¥2):4 > 0} will intersect the segment [z, x) if ¢ is taken
sufficiently small. Consequently, the segment [0, x) lies in 4. But now the
preceding lemma allows us to conclude that in fact [, x) lies in cor(4). []

§3. Convex Functions

In this section we introduce the notion of convex function and its most
important special case, the “sublinear” function. With such functions we can
associate in a natural fashion certain convex sets. The geometric analysis of
such sets developed in subsequent sections makes possible many non-trivial
conclusions about the given functions.

A. Intuitively, a real-valued function defined on an interval is convex
if its graph never “dents inward” or, more precisely, if the chord joining any
two points on the graph always lies on or above the graph. In general, we
say that if 4 is a convex set in a linear space X then a real-valued function f
defined on A is convex on A if the subset of X x R! defined as {(x, #):x € 4,
f(x) < t} is convex. This set is called the epigraph of f, written epi( f).
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An equivalent analytic formulation of this definition is easily obtained:
f is convex on A4 provided that

Siex + (1 = 9y) < tflx) + 1 — 9f(y),

forall x, ye 4,0 < t < 1. Obviously the linear functionals in X' are convex
on X, and it is not hard to see that the squares of linear functionals are also
convex on X. Indeed, if ¢ € X’ and f = ¢(*)% and if x, y € X, then setting
o= ¢x), = ¢(y),wefindfor0 <t <1

f(x) + (1 — f(y) — fltx + (1 = 1)y)
=ta? + (1 — 0B — (ta + (1 — 1)P)?
=tl — t)a — p)* = 0.

Further examples of convex functions follow from the use of elementary
calculus. Let f be a continuously differentiable function defined on an open
interval I. Then f is convex on I if and only if f” is a non-decreasing function
on I. Consequently, if f is twice continuously differentiable on I, then f is
convex on I if and only if " is non-negative on I. To obtain a third charac-
terization of smooth convex functions, and to extend the preceding charac-
terizations to higher dimensions, we consider that f is now a continuously
differentiable function defined on an open convex set 4 in Euclidean n-space.
Let Vf(x) be its gradient at x € A. The function

E(x,y) = f(y) — f(x) = V(x) - (y — x)

measures the discrepancy between the value of f at y and the value of the
tangent approximation to f over x at y. (Here the dot denotes the usual dot
product on R") Intuitively, if f is convex, this discrepancy will be non-
negative at all points x, y € A. To generalize the one-dimensional notion of
non-decreasing derivative, let us say that the map x +— Vf(x) is monotone
on A if

(Vf(y) = V(%) (y = x) = 0
for all x, y € A.
Theorem. Let f be a continuously differentiable function defined on the
open convex set A in R". The following assertions are equivalent :
a) E(x,y) > 0,x,ye 4;
b) the map x +— Vf(x) is monotone on A,
c) fis convex on A.

Proof. If E(x, y) = 0throughout A x A, we have
(V/(y) = V(X)) (y = %) = V/(») - (y = x) = Vf(x) - (y — %)
Z (f(y») = f(¥) = (f(y) = flx) = 0.

Next, if Vf(+) defines a monotone map on A4, fix x, ye 4 and put g(t) =
f(x + t(y — x)). We want to see that g is convex on [0, 1] or that g’ is
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non-decreasing there. Choose 0 < o« < f < 1. Then

g(B) — g = (Vflx + By — X)) = Vf(x + oy — x))) - (y — %)
1
= m(vf(v) = VW) @ —w =0,
where we have put u = x + a(y — x) and v = x + B(y — x), both in A.
Thus b) implies c). Finally, let f be convex on A4 and fix x, y € A. Define

h(t) = (1 = 9f(x) + tf(y) = f((1 = Ox + 1),

so that h is a non-negative smooth function on [0, 1] and h attains its
minimum at ¢t = 0. Therefore, /'(0) > 0. Since E(x, y) = h'(0), the proof is
complete. 0

Many further examples of convex functions will appear in due course.

B. Here we record, for future reference, some elementary properties of
the class Conv(A4) of all convex functions defined on a convex set 4 in some
linear space. First, Conv(A4) is closed under positive linear combinations;

that is, if {f},...,f,} = Conv(4) and &; > 0, i = 1,...,n, then ) «f;€e
1
Conv(A). Also, if {f,} = Conv(4), and sup, f(x) < oo for each x € A, then

this supremum defines a function in Conv(A). Indeed,
epi(sup f,) = [] epi(f)-

The set Conv(A4) is of course partially ordered by f < g if and only if
f(x) < g(x), x e A. Now let { f,} = Conv(A4) with each f, non-negative on 4,
and suppose that the family {f,} is “directed downwards”, that is, given
fo f3 there exists f, such that f(x) < min{f(x), f3(x)}, x € A. For example,
{f.} could be a decreasing sequence. Then inf, f, € Conv(A).

We indicate one more procedure for forming new convex functions
from old. Given f,..., f, € Conv(A) we define their infimal convolution

A0O---0fuby
(/LO--0OfMX) = inf{fl(xl) + 4 fx)ix € A,ix,- = x}.

This terminology is motivated by the case where n = 2, since we can then
write

(fO9)x) = inf{f(y) + g(x — y):ye 4},

and be reminded of the formula for integral convolution of two functions.
In practice, the functions involved in an infimal convolution will be bounded
below (usually non-negative), so that the resulting function is well-defined.
The convexity of the infimal convolution of convex functions is an easy
consequence of the next lemma. This result is of general interest; it allows
us to construct convex functions on a linear space X by prescribing their
graphs in the product space X x R*.
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Lemma. Let X be a linear space and K a convex set in X x R!. Then
the function
f(x) = inf{t:(x, t) € K}

is convex on the projection of K on X.

The proof follows from the analytic definition of convexity in 3A. To
apply the lemma to the convexity of f; [J--- [ f, for f;e Conv(4), A
convex in X, let K = epi(f;) + -+ + epi(f,). K is certainly convex in
X x R! and (x, t) € K exactly when there are x; € 4 and t; € R! such that

fix) < t, t =3 t;, x =Y x;. Thus applying the procedure of the lemma

1 1
yields f; (0 - - - O f, which is thereby convex.
Finally, note that if f € Conv(A4) then the “sub-level sets” defined by
{xe A:f(x) < A} and {x € A:f(x) < A} are convex for any real 1. However,
there will be non-convex functions on A that also have this property.

C. We come now to the most important type of non-linear convex
functions. Let X be a linear space. A real-valued function f on X is positively
homogeneous if f(tx) = tf(x) whenever x € X and ¢ > 0. Such a function is
convex if and only if f(x + y) < f(x) + f(y) for all x, y e X. We call such
convex functions sublinear. In addition to the linear functions, many other
examples of sublinear functions lie close at hand. Thus if X = R", we can

n 1/p
choose a number p > 1 and let f(x) = (Z |§,~|"> forx=(¢,...,¢)eR
1

f(x) is called the p-norm of x. Or, we can let X = C(T), the linear space of
all continuous real-valued functions on a compact Hausdorffspace T.If Qis a
closed subset of T we let f(x) = max{x(t):t € Q}; this f is clearly a sublinear
function on X.

Sublinear functions on linear spaces arise frequently from the following
geometrical considerations. Let A be a subset of a linear space X such that
0 e cor(A). Such sets A are called absorbing: sufficiently small positive
multiples of every vector in X belong to A. We define the gauge (Minkowski
function) of A by

pa(x) = inf{t > 0:x e tA4}.

For example, if ¢ € X’ and o > 0, let 4 be the “slab” {x e X:|¢(x)| < o};
then p, = |¢(-)|/o. Or, let X = R*and p > 1; then the p-norm introduced
above is the gauge defined by the unit p-ball

{x = (él?' .. )én)ERn:; |€i|p S 1}

The primary importance of gauges in a linear space X is that they can
be used to define topologies on X. This is certainly apparent in the case of
the p-norms on R”; every one of them defines the usual Euclidean topology
on R" if the distance between two points in R” is taken to be the p-norm of
their difference. (The resulting metric spaces are of course not the same.)
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This example leads us to the general attempt to define a metric d, by

dA(x, J’) = pA(x - y)a

if p, is the gauge of some given absorbing set 4. Thus we are saying that
two points are close if their difference lies in a small positive multiple of 4.
However, it is immediately apparent that more information about A4 is
needed in order to prove that d,, is really a metric. Some of this information
is given now and the topic will be continued in the next chapter.

Lemma. Let A be an absorbing set in a linear space X.

a) the gauge p , is positively homogeneous;

b) if A is convex then p, is sublinear;

¢) if A is balanced then p,(Ax) = |A|p4(x) for all scalars A and all x € X.

Proof. a) Clear. b) Let x, ye X and choose t > p,(x) + p4(y). Then
there exist a > p4(x), B > p4(y) such that t = « + B. Now since A4 is
convex, we have z € A whenever p,(z) < 1; in particular x/o and y/B are in
A. Consequently, (x + y)/t = (x + y)/@ + B) = («(x/a) + B(y/B))/(x + B)
is also in A4 so that p,(x + y) < t. ¢) Assume that 1 # 0 and choose t >
pa(x). Then x € A for some s, p4(x) < s < t and hence Ax € |4|sA4 because A
is balanced. Thus p 4(Ax) < |A|s and therefore p (Ax) < |4|p4(x). The reverse
inequality follows after replacing x by Ax and 4 by 1/2 in this argument. []

D. The gauge of an absolutely convex absorbing set A is called a
semi-norm. Thus a semi-norm p, has the properties that it is sublinear and
that p4(Ax) = |4|p4(x), for all scalars A and vectors x. Conversely, any real-
valued function p having these two properties is a semi-norm in the sense
that there is an absolutely convex absorbing set 4 such that p = p,. Indeed,
we can take A = {xe X:p(x) < 1}. Since x € t4 <> p(x) < t it follows that

= Pa

If p=p,is asemi-norm on X then ker(p) = {xe X:p(x) = 0} is a
subspace of X; in fact, it is the largest subspace contained in A. When
ker(p) = {0}, we say that p is a norm on X. Thus p is a norm if and only if
p(x) = 0= x = 6. The p-norms on RV are clearly examples of norms,
which justifies the use of that earlier terminology.

§4. Basic Separation Theorems

In this section we establish two elementary separation theorems for
convex subsets of a linear space, making use of Stone’s lemma in 2B. Many
of the major subsequent results in this book will depend in some degree on
the use of an appropriate separation theorem.

A. We begin with a lemma that draws upon the results of §2. Through-
out, X is a real linear space.

Lemma. Let C and D be non-void complementary convex sets in X, and
put M = lin(C) n lin(D). Then either M = X or else M is a hyperplane in X.
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" Proof. Since C and D are convex so are lin(C) and lin(D), and hence
so is M. We claim that M is in fact an affine subspace of X. To see this,
first note that lin(C) = X\cor(D) and lin(D) = X\cor(C), whence M =
(X\cor(C)) n (X\cor(D)). Now let x, y € M and suppose that z is a point on
the line through x and y. If z ¢ M then z € cor(C) U cor(D); we may suppose
that z € cor(C) and that y € (x, z). This entails x € lina(C) and hence y € cor(C)
by 2E. This contradiction proves that ze M and consequently M is an
affine subspace. There is now no loss of generality in assuming that M is
actually a linear subspace. Suppose that M # X; then there is a vector
pe X\M, say pe cor(C). Now —p e cor(C) u cor(D), but if —p e cor(C)
then 6 € cor(C) also, since cor(C) is convex. This is not possible so it must
be that —p € cor(D). Now it follows that for any xe C,[—p,x] n M # &,
and, for any ye D, [ p, y] n M # (. But this means that the linear hull of
p and M is all of X, since X = C u D. By definition then, M is a hyper-

plane. 0

B. Let H = [¢;«] be a hyperplane in X defined by ¢ € X’ and the
(real) scalar o. The hyperplane H determines two half-spaces, namely,
{xe X:¢(x) = «} and {x e X:¢(x) < a}. Two subsets 4 and B of X are
separated by H if they lie in opposite half-spaces determined by H. This
does not a priori preclude the possibility that A N B # ¢ nor that 4 and/or
B actually lie in H. Generally, the important question is not whether 4 and
B can be separated by a particular H, but rather by any hyperplane at all.
Simple sketches suggest that an affirmative answer to this question is unlikely
unless both sets are convex. Following is the “basic separation theorem”.

Theorem. Let A and B be disjoint non-empty convex sets in X. Assume
that either X is finite dimensional or else that cor(A) U cor(B) # . Then
A and B can be separated by a hyperplane.

Proof. By 2B there are complementary convex sets C and D in X such
that A = C and B = D. We let M = lin(C) n lin(D), as in the preceding
lemma. If M is a hyperplane then it does the job of separating 4 and B. The
lemma asserts that M can fail to be a hyperplane only if X = lin(C) = lin(D),
that is, only if both C and D are ubiquitous (2D). But, if X is finite dimensional,
neither C nor D can be ubiquitous since they are proper (2D again). On the
other hand, if 4 (resp. B) has a non-empty core, then D (resp. C) is not
ubiquitous.

We can in turn use this theorem to establish a stronger and more definitive
separation principle, under the hypothesis that one of the sets to be separated
has non-empty core.

Corollary. Let A and B be non-empty convex subsets of X, and assume
that cor(A) # . Then A and B can be separated if and only if cor(4) N B =

Proof. 1If A and B are separated by a hyperplane [¢; o], then the set
¢(cor(4)) is an open interval of reals, disjoint from the interval ¢(B). Thus
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cor(A4) and B must be disjoint. Conversely, assuming they are disjoint, they
can be separated by a hyperplane [¢; «] (since cor(4) is convex and alge-
braically open (2C)). But clearly if ¢(x) < «a, say, for x € cor(4), then also
¢(x) < o for all xe A (2E). Thus [¢; o] separates 4 and B. 0O

C. In some cases, stronger types of separation are both available and
useful. Let us say that the sets 4 and B are strictly separated by a hyperplane
H = [¢; «] if they are separated by H and both 4 and B are disjoint from
H, and that they are strongly separated by H if they lie on opposite sides of
the slab {x e X:|¢(x) — o < &} for some ¢ > 0. Analytically, these two
conditions can be expressed as ¢(x) < a < ¢(y), (respectively, as ¢(x) <
a—e<a+e< @), for all xe A, ye B (after possibly interchanging
the labels “4” and “B”). Simple examples in the plane show that convex sets
A and B can be strictly separated without being strongly separated.

Some types of separation can be conveniently characterized in terms of
the separation of the origin 6 from the difference set A-B.

Lemma. The convex sets A and B can be (strongly) separated if and only
if 0 can be (strongly) separated from A-B.

The proof is straightforward. The assertion is not true for strict separa-
tion, however. A slightly less obvious condition for strong separation will
be given next, and called the “basic strong separation theorem”.

Theorem. Two disjoint convex sets A and B in X can be strongly separated
if and only if there is a convex absorbing set V in X such that(A + V) n B =

.

Proof. 1If such a V exists then A + V has non-empty core and so can
be separated from B. Thus there exists ¢ € X’ such that ¢(a + v — b) = 0
for all ae A, be B, ve V. Now the interval ¢(V) contains a neighborhood
of 0, so there is vy € V with ¢(vy) < 0. Hence ¢(a) = ¢p(b) — ¢(v,) for all
ae A, be V, whence inf{¢(a):ae A} > sup{¢p(b):b € B}. Thus 4 and B are
strongly separated. Conversely, assume that 4 and B can be strongly sepa-
rated. Then there are ¢ € X' and reals a, ¢ with ¢ > 0, such that inf{¢(a):
acA} > o+ e>a— &> sup{pb):beB}.Ifweput V = {x e X:|p(x)| <
¢} we find V is convex and absorbing and that (4 + V) n B = (. 0

A particular consequence of this theorem is that two disjoint closed
convex subsets of R” can be strongly separated, provided that one of them
is bounded (hence compact). The boundedness hypothesis cannot be omitted
as is shown by simple examples in R2.

§5. Cones and Orderings

In this section, we study a special type of convex set, the “wedge”. Such
sets are intimately connected with the notions of ordering in linear spaces,
and positivity of linear functionals. This added structure in linear space
theory is important because of its occurrence in practice, for example in



§5. Cones and Orderings 17

function spaces and operator algebras. Wedges associated with a given
convex set (support and normal wedges, recession wedges) are introduced
in later sections, and play important roles in certain applications.

A. A wedge P in a real linear space X is a convex set closed under
multiplication by non-negative scalars. Any such set defines a reflexive and
transitive partial ordering on X by

x<y<sy—xelP

This ordering has the further properties that x < yentails x + z < y + z
for any ze X, and Ax < Ay whenever A > 0. For short, we call such a
partial ordering a vector ordering and X so equipped an ordered linear space.
Conversely, if we start with an ordered linear space (X, <) and put P =
{xe X:x > 0}, then P is a wedge in X (the positive wedge) which induces
the given vector ordering.

A wedge P is a cone if P n (— P) = {6}; in this case 6 is called the vertex
of P. Since P n (—P) is the largest subspace contained in P, this condition
is equivalent to the assertion that P contains no non-trivial subspace. It is
further easy to see that a wedge is a cone exactly when the induced vector
ordering is anti-symmetric, in the sense that x < y, y < x < x = ).

The span of a wedge P is simply P — P. When P — P = X, the wedge
is said to be reproducing, and X is positively generated by P. It is not hard
to show that this situation obtains in particular whenever cor(P) # . In
terms of the associated vector ordering on X, we can state that X is positively
generated by P if and only if the ordering directs X, in the sense that any
two elements of X have an upper bound. Precisely, this means that given
x, y€ X, there exists ze X such that x < zand y < z.

The simplest examples of ordered linear spaces are function spaces with
the natural pointwise vector ordering. If X is a linear space of functions
defined on a set T, and the linear space operations are the usual pointwise
ones, then it is natural to let P = {xe X:x(t) > 0, te T}. The induced
vector ordering is then defined by

x < y<=x(t) < ), teT.

Let us now further specialize to the case where X = C[0, 1], the space of
all (real-valued) continuous functions on the interval [0, 1]. Clearly the
pointwise vector ordering on X directs X and so the cone of non-negative
functions is reproducing. On the other hand, let us consider in X the cone
0 of all non-negative and non-decreasing functions in X. Now we have that
Q — Q is the subspace of all functions in X that are of bounded variation
on [0, 1]. Consequently, Q is not reproducing in X.

Another interesting cone is the set Conv(X) (3B) in the linear space of
all real-valued functions on X.

B. Let X be an ordered linear space with positive wedge P. A linear
functional f € X' is positive if f(x) > 0 whenever x € P. Clearly a positive
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linear functional f is monotone in the sense that x < y = f(x) < f(y). The
set of all positive linear functionals forms a wedge P* in X’ called the dual
wedge; the induced vector ordering on X' is the dual ordering, and the
subspace P* — P™ is the order dual of X. The dual wedge is actually a
cone exactly when P is reproducing.

It is not a priori clear whether or not there are any non-zero positive
linear functionals on a given ordered linear space, and indeed there may be
none. We now use the separation theory of §4 to give a useful sufficient
condition for P* # {6}.

Theorem. If the wedge P is a proper subset of X and has non-empty
core, then P* contains non-zero elements.

Proof. We choose an x € X |P and apply 4B to separate x and P by a
hyperplane [¢; o], say ¢(x) < a < ¢(y), y € P. Now any linear functional
that is bounded below on a wedge must be non-negative there. Thus ¢ € P*
and ¢ # 6. il

C. We consider briefly some conditions sufficient to guarantee that a
wedge P in a linear space X is actually a cone. A linear functional ¢ € P*
is strictly positive if x € P (x # 0) = ¢(x) > 0. A base for P is a non-empty
convex subset B of P with 6 ¢ P such that every x € P (x # 0) has a unique
representation of the form Ab, where be Band A > 0. If ¢ € P* is strictly
positive and we set B = [¢; 1] n P then B is a base for P. The converse
assertion is equally valid: given a base B for P, there is by Zorn’s lemma a
maximal element H in the class of affine subspaces which contains B but
not 6. H is seen to be a hyperplane defined by a strictly positive linear
functional.

Theorem. Consider the following properties that a wedge P in X may
possess:

a) Pisa cone;

b) P has a base;

c) cor(P*) # &.
Then c) = b) = a); if X is some Euclidean space, and P is closed in X, then
all three properties are equivalent.

Proof. 1t is clear that the existence of a base for P implies that P is a
cone, so that b) = a). Now assume that ¢ e cor(P*); it will suffice to show
that ¢ is strictly positive. If not, there exists x € P(x # 6) such that ¢(x) = 0.
But since x # 0, there must be some iy € X' for which y(x) < 0. As ¢ €
cor(P*), there is A > 0 such that ¢ + Ay € P*; however ¢(x) + Ay(x) =
AY(x) < 0, a contradiction. Thus ¢) = b). Finally, assume that X = R" for
some n, and that P is closed in X. We show a) = c¢). Now according to 2C,
cor(P*) # @ < P* is reproducing. If P is not reproducing then its linear
hull P* — P™ is a proper subspace of R" (here we are tacitly utilizing the
usual self-duality of R” with itself: (R"Y = R"). There is thus a non-zero
linear functional @ € (R")” = R" such that & vanishes on P* — P* (1C).
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The proof is concluded by showing that + @ e P, so that P is not a cone.
If, for example, @ € P, there is a Euclidean ball V centered at 0 in R” such
that (@ + V) n P = (J; this follows because P is assumed closed. But now
by 4C we can strongly separate @ and P. As in 5B, the separating hyperplane
must be defined by an element ¢ € P* with (¢, ®> < 0; this however is a
contradiction since @ vanishes on P*. 0

Without further hypotheses, the other conceivable implications between
a), b), and c) are not valid.

§6. Alternate Formulations of the Separation Principle

In this section we establish four new basic principles involving convex
sets and linear functionals, which, along with the basic separation theorems
of §4, will be used repeatedly in the sequel. Of special interest here is that
these new principles are in fact only different manifestations of our earlier
separation principle 4B: they are all equivalent to it and hence to each other.
(In 6B it is further noted that the existence theorem of 5B is also equivalent
to the basic separation theorem.)

A. We begin with the extension principles. In 1C it was noted that,
rather trivially, a linear map defined on a subspace of a linear space admits
a (linear) extension to the whole space. For the time being, all linear maps
to be extended will be linear functionals, defined on a proper subspace M
of a linear space X. What will make our extension theorems interesting (and
useful) is the presence of various “side-conditions” which must be preserved
by the extension. If f and g are real-valued functions with common domain
D, we shall write f < g in case f(x) < g(x) for every x € D. Our first result
is the “Hahn-Banach theorem”.

Theorem. Let g e Conv(X) where X is a real linear space, and suppose
that ¢ € M’ satisfies ¢ < g|M. Then there exists an extension ¢ € X' of ¢
such that ¢ < g.

Proof. Let A be the epigraph (3A) of g and B the graph of ¢ in the space
Y = X x R By hypothesis, B = {(x, ¢(x)):x e M} is a subspace of Y
disjoint from the convex set 4. Now A is algebraically open. To see this,
choose (xg, ty) € Aand (x,t)e Y. Thenfor0 < A < 1,
glxg + Ax) — (to + At)
=g(Mxo + x) + (1 — Axp) — to — At
< Ag(xo + x) + (1 — Dg(xp) — to — At

= Ag(xo + x) — to — 1) — (1 — A)(to — g(xo))-

Since the second term here is positive, the entire expression will be negative

for sufficiently small A, proving that (x,, t,) € cor(4). Thus we can separate
Aand Bby ahyperplane [®; «] < Y. Since the linear functional @ is bounded
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on the subspace B, & = 0; we assume that & is non-negative (necessarily
positive, in fact) on A. Since (0, t) € A4 for sufficiently large t, c = &(6, 1) > 0.
Now to define the desired extension ¢ € X’ we note that &(x, 0) + ®(6, t) =
&(x, t) whenever (x, t) € A. That is, setting ¢ = (—1/c)®(-, 0), we see that
g(x) < timplies ¢(x) < talso,sothatd < gon X.Andsince ¢p(m, ¢p(m)) = 0
for m e M, we see that ¢(m) = ¢(m), m € M, so that ¢ is the desired extension
of ¢. 0

We indicate one direct and important consequence of the Hahn-Banach
theorem; its derivation is outlined in exercise 1.21.

Corollary. Let p be a semi-norm (3D) on the linear space X, and M a
subspace of X. If ¢ € M’ satisfies |¢(-)| < p|M, then there is an extension
¢ € X' of ¢ such that |§(-)| < p.

B. Our second extension principle concerns positive linear functionals.
Let X be an ordered linear space with positive wedge P (5A), and let M be
a subspace of X. M will be considered as an ordered linear space under the
vector ordering induced by the wedge P n M. The next result, the “Krein-
Rutman theorem”, provides a sufficient condition for a positive linear func-
tional (5B) on M to admit a positive extension to all of X.

Theorem. With M, P, X as just defined, assume that P n M contains a
core point of P. Then any positive linear functional ¢ on M admits a positive
extension to all of X.

Proof. Tt will suffice to construct a positive extension on the span of
P and M; we can then extend to all of X in the trivial manner of 1C. For
x in this span we define

g(x) = inf{$(y):y = x, ye M}.

Now g is convex (actually sublinear; the proof is quite analogous to that of
the lemma in 3C), and we have ¢ < g|M on account of the monotonicity
of ¢ on M. Thus we can apply the Hahn-Banach theorem (6A) and obtain
an extension ¢ (to the span of P and M) of ¢ so that ¢ < g. To see that this
@ is positive, choose y, € P n M and x € P; we shall show that ¢(—x) < 0.
Now for all t > 0, yo + txe P. Thus yo/te M and y,/t > —x, so that
d(—x) < g(—x) < P(yo/t) = P(yo)/t; to conclude, let t —» + co. 0

In order to show that both the preceding extension theorems are equiv-
alent to the basic separation theorem, it clearly suffices to prove that the
latter is a consequence of the Krein-Rutman theorem. In turn, recalling 4C,
it suffices to show that if A is a convex set in a linear space X with non-empty
core, and 0 ¢ A, then we can separate 6 from A by a hyperplane; or, in other
words, we can find a non-zero linear functional in X' that assumes only
non-negative values on A. Let us define P = {tA:t > 0}. Then P is a wedge
(actually a cone) in X and cor(P) # . It now follows from 5B that P*
contains a non-zero element, which is what we wanted. Although the proof
of 5B utilized the basic separation theorem, it is clear that 5B is also a simple
consequence of the Krein-Rutman theorem.
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C. Let H = [¢;«] be a hyperplane and 4 a convex set in the real
linear space X. We say that H supports A if A lies in one of the two half-spaces
(4B) determined by H and A n H # (. A point in A4 that lies in some such
supporting hyperplane is called a support point of A; a support point of
A is proper if it lies in a supporting hyperplane which does not completely
contain A. There is a more general notion of supporting affine subspace
(not necessarily a hyperplane) which is introduced in exercise 1.37.

The next result, the “support theorem”, completely identifies the proper
support points of convex sets with non-empty intrinsic core (2C).

Theorem. Let A be a convex subset of a real linear space X such that
icr(A) # . If x ¢ icr(A), there exists ¢ € X' such that ¢(x) > ¢(y), for all
y € icr(A).

Proof. We may assume that the origin 6 belongs to icr(4). Let M =
span(A). If x ¢ M, we can certainly construct ¢ € M° with ¢(x) > 0.If x e M,
the basic separation theorem allows us to construct ¢, € M’ such that
do(x) = Po(y) for all y eicr(4). It is clear from the linearity of ¢, and the
definition of core that equality can never hold here. Now any extension
¢ of ¢, to all of X will serve our purpose. 0

Corollary. The proper support points of a convex set A with icr(4) # &
are exactly those in A\ict(A). In particular, if cor(A) # &, the proper support
points of A are the bounding points (2C) of A that belong to A.

Since all finite dimensional convex sets have non-empty intrinsic core
(2C), their support points are fully located by this corollary. Naturally, the
situation is a little more complicated in the general infinite-dimensional
case. Let us consider, for example, the case of the real linear space £7(d),
where 1 < p < oo and d is a cardinal number, finite or infinite. This is the
usual space of real-valued functions on a set S of cardinality d which are p-th
power integrable wrt the counting measure on S (the counting measure is
by definition defined on all subsets of S; its value at a particular subset is
the cardinality of this subset if finite, and otherwise is + o0). Less formally,
if x:S — R and we identify x with the “d-tuple” of its values, x = (x(s):s € S),
then x e ¢7(d) if and only if ) s |X(s)|? < co. Now ¢7(d) is clearly ordered by
the natural pointwise vector ordering (5A), and the positive wedge P =
{x € £7(d):x(s) = 0, se S} is a reproducing cone in ¢?(d). However, this
wedge has no core when d > ¥, and hence no intrinsic core, so that the
support theorem does not apply.

Since no hyperplane can contain P, each support point of P (if there are
any) must be proper. In the case where d > N, we claim that every point
in P is a support point. This is so because each such point must vanish at
some point in S. The characteristic function of this point in S then gives
rise to a linear functional on £7(d) that defines a supporting hyperplane to
P through the given point in P. For contrast, consider now the case where
d=%Noand S = {1,2,...}. If x = (§;) € P and some &; = 0 then the pre-
ceding argument shows that x is a support point of P. But now it is possible
that no &, = 0 and in this case x is not a support point of P.
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Thus we see that in the absence of core, a particular bounding point of
a convex set may or may not be a support point. More surprising, perhaps,
is the possibility that a given convex set may have no support points at all. An
example illustrating such a “supportless” convex set is given in exercise 1.20.

It is clear from 4C that the present support theorem implies the basic
separation theorem.

D. Let f be a convex function defined on a convex set 4 in some real
linear space X. A linear functional ¢ € X' is a subgradient of f at a point
X € A if

dx — xo) < f(x) = flxo), x€A.

This definition is motivated by the result in 3A for the case where X = R",
and f is differentiable at x,. In this case, the gradient vector Vf(x,) was
shown to satisfy the above condition (when viewed as a linear functional on
R" in the usual way). Thus a subgradient is a particular kind of substitute
for the gradient of a convex function, in case the latter does not exist (or
is not defined).

Consider, for example, the case where 4 = X = R! and f, although
necessarily continuous on R! (since it is convex), is not differentiable at
some X,. In this case, as is well known, f has a left hand derivative f”_(x,) and
a right hand derivative f.(x,) at the point x,, and f_(xy) < f'4(xo). Now
we claim that any number ¢, f'_(x) < f'.(x,), defines a subgradient of f at
xo. This is so because the difference quotients whose limits define these one-
sided derivatives converge monotonically:

Jx) = f(xo)
P—— Lfe(xo),  x 1o
and
x) — f(x
TO=TC) oz 51
Thus
S (xo)(x — xo) < f(x) — f(xo), Xo < X
and

S(xo)(x — xo) < f(x) — f(xo), x < Xo.

Other examples of subgradients are given in the exercises and in later sections.

Let us consider next the geometrical interpretation of subgradients. First
we recall that when X is a real linear space, (X x R!) is isomorphic to
X’ x R!.Indeed, such an isomorphism occurs by associating (¢, s)e X' x R?
with € (X x R, where

Yx,t) = ¢(x) + st, xeX, teRL

Now the basic geometric interpretation to follow is that subgradients cor-
respond to certain supporting hyperplanes of the set epi(f) (3A) in X x R!.

Lemma. Let A be a convex subset of X and let f € Conv(A).
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a) ¢ € X' is a subgradient of f at x, € A if and only if the graph of the
affine function h(x) = f(xo) + ¢(x — X,) is a supporting hyperplane to epi( f)
at the point (x4, f(xo))-

b) Conversely, assume that y € (X x R'Y and that H = [{;a] is a
supporting hyperplane to epi(f) at (xo, f(xo)); say a = infy(epi(f)). Let
correspond to (¢, s) e X' x R! as above. Then, if s # 0 (intuitively, if H is
“non-vertical”), we have s > 0 and — ¢/s is a subgradient of f at x,.

Proof. a) By definition, ¢ is a subgradient of f at x, if and only if
h|A < f. If we define y € (X x R') by y(x,t) = —¢(x) + ¢, and let o« =
f(xo) — @(xo), then the inequality h|4 < f is equivalent to inf y(epi(f)) =
W(xo, f(x0)) = o Thus the hyperplane [/; o] supports epi(f) at (xo, f(xo));
it is clear that graph(h) = [¢; a].

b) We have ¢(xo) + sf(xo) < ¢(x) + st, for all xe 4 and all t > f(x).
From this the two assertions of b) are evident. 0

If there exists a subgradient ¢ of f at x, we say that f is subdifferentiable
at xo. The set of all such ¢ is the subdifferential of f at x,, written df(x,);
it is clearly a convex subset of X'. Since the subdifferentiability of f at a
given point depends, as we have just seen, on a support property of epi( f),
we might suspect from the results of the previous section that in general
0f (x,) will be empty. This is certainly the case as simple examples show. An
existence theorem is thus required; the following “subdifferentiability
theorem” fills this order.

Theorem. Let A be a convex subset of the real linear space X and f €
Conv(A). Then f is subdifferentiable at all points in icr(A).

Proof. Let x4 € icr(A), M = span(A — A) (M is-the subspace parallel
to aff(4)), and B = 4 — x,. Define g € Conv(B) by g(x) = f(x + x,). Then
any subgradient in dg(0) will, upon extension from M’ to X’, also belong to
0f(xo)- In other words, there is no loss of generality in assuming that 6 =
Xo € cor(A); it is further harmless to take f(6) = 0. But now, in X x R?,
any point of the form (6, t,), t, > 0, belongs to cor(epi(f)). To see this, pick
(x, )€ X x R'; we must show that (0, t,) + A(x, t) € epi(f) for sufficiently
small A > 0, or that f(Ax) < t, + At for small A. But the convex function
g(2) = f(Ax) defined on (0, o) satisfies

gA)/A 1 g0, 210,
so that certainly
JOX)/2 = g(A)/A < tofd + ¢

for small 1. Now since cor(epi(f)) # &, by 6C the bounding point (0, 0) is
a support point of epi( f). The corresponding hyperplane cannot be “vertical”,
since 6 € cor(4). Thus, by part b) of the preceding lemma, there is a sub-
gradient of f at 0. g

To complete our circle of equivalent formulations of the basic separation
principle, let us show that the subdifferentiability theorem entails this
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principle. From 4B and 4C we see that it is sufficient to prove that an alge-
braically open convex set 4 in X can be separated from any point x, ¢ A.
As usual, after a translation, we may assume that 6 € A. Thus A is absorbing,
its gauge p, belongs to Conv(X) (3C), and p4(x,) = 1. By the subdifferen-
tiability theorem, there exists ¢ € 0p(xo): d(x — xo) < pa(x) — pa(xo), X €
X. Letting x = 6 and x = 2x,, and recalling that p, is positively homoge-
neous, we see that
d(xo) = palxo) = a
$() < pu),  xeX.

Consequently, the hyperplane [ ¢; o] separates x, and A (since x € A implies
pa(x) < 1Isothat ¢p(x) < pu(x) <1< ).

E. In summary, we have now established the mutual equivalence of
six propositions, each of which asserts the existence of a linear functional
with certain properties. These propositions are

1) the basic separation theorem (4B);

2) the existence of positive functionals (5B);
3) the Hahn-Banach theorem (6A);

4) the Krein-Rutman theorem (6B);

5) the support theorem (6C);

6) the subdifferentiability theorem (6D).

An important meta-principle is suggested by these results: if one wishes to
establish the existence of a solution to a given problem, and one has some
control over the choice of the linear space in which the solution is to be
sought, then it will generally behoove one to choose the ambient linear space
to be a conjugate space if possible. This is of course automatic in the finite
dimensional case (1D), but does represent a restriction in the general case.
We shall see many applications of this idea in subsequent sections.

§7. Some Applications

In this section we give a few elementary applications of the preceding
existence theorems. Most of these results will play a role in later work.
More substantial applications require the topological considerations to be
developed in the next chapter. Throughout this section, X denotes a real
linear space.

A. We first consider a criterion (“Helly’s condition”) for the consistency
of a finite system of linear equations, subject to a convex constraint. The
most important special cases of this result are obtained by letting the set 4
below be the unit ball of a semi-norm p, that is, the set {x € X:p(x) < 1}
(when p is identically zero, this definition yields simply 4 = X).

Theorem. Let A be an absolutely convex subset of X. Let {¢,, . .., ¢,} <
X' and {cy,...,c,} = R. Then, a necessary and sufficient condition that for
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every 6 > 0 there exists x; € (1 + 8)A satisfying

b1(x5) = ¢4,

¢n(x&) = Cp,
is that for every set {a;, ..., a,} < R,

n

z o;C;

i=1

n

z o;hi(x)

i=1

:xeA}.

Proof. The stated condition is clearly necessary for the consistency of
the given system. Let us prove its sufficiency. Suppose that for some § > 0
whenever x € (1 + §)A4, we have ¢;(x) # ¢; for some i. If we define a linear
map T:X — R" by

< sup{

T(x) = (¢1(x), - - ., Pulx)),

our assumption becomes
c=(Cy...,C) ¢ T((1 + 6)A).

By 4B these two sets can be separated: there is a non-zero linear functional
A on R" such that

Mc) = sup{A(v):ve T((1 + 8)A)} = sup{|A(v)|:ve T((1 + §)A)}
= sup {|AT(x))|:x e (1 + 6)4}.

(The absolute values are permissible because A is a balanced set.) Now if A

n

is given by A(v) = Y oy, for v = (vy, ..., v,) € R", we obtain
1

n

Z o;i(x)

i=1

n
Y o = sup{
i=1

xe(l + 5)A}

n

Z o;¢p:(x)

i=1

=(1 +5)sup{

:xeA},

in contradiction to Helly’s condition. 0

B. Next, we consider a criterion (“Fan’s condition”) for the consistency
of a finite system of linear inequalities. Such systems are of considerable
importance in the theory of linear programming and related optimization
models.

Theorem. Let {¢;,...,¢,} = X' and {cy,...,c,} = R. A necessary
and sufficient condition that there exists x € X satisfying

¢1(x) = ¢y,

bu(x) = Cp,
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is that for every set {a,, ..., o,} of non-negative numbers for which

n

Z o = 0,

i=1
it follows that

n
Y o < 0.
i=1

Proof. Again the necessity of the condition is clear, and we proceed to
establish its sufficiency. Since a more general result will be established later,
we merely outline the main steps and invite the reader to fill in the details.
Let T:X — R" and ¢ be as in the previous section, and let P be the usual
positive wedge (5A) in R". If the given system of inequalities is inconsistent
then, in R”, the affine subspace T(X) — cis disjoint from P. Let {b,, ..., b;}
be a basis for the annihilator (1H) of the subspace T(X), and define a linear
map S:R"” - R¥

S(v) = Bv,

where B is the k x n matrix whose rows are the vectors b, ..., b,. Then
S(P) is a closed wedge in R* and, since our inequality system is inconsistent,
—S(c) ¢ S(P). Hence, by 4C, we can strongly separate the point — S(c) from
the wedge S(P) by a hyperplane H in R*. H is a level set of a linear functional
/. defined by a vector u in R*. We set

a=S8A)=uB=(a,...,0),

where S is the transpose (1H) of S. The numbers «;, . . . , a, satisfy ., o;c; > 0
1

n

and ) a;¢; = 60, and consequently Fan’s condition is violated. 0
1

C. To illustrate the remark made in 6E we consider one more type of
system of linear inequalities. Now, however, we admit more complex systems
than were covered above: infinitely many inequalities are allowed, together
with an accompanying non-linear constraint. The problem will be formulated
in a conjugate space, as recommended in 6E.

We will need a result from general topology concerning compactness in
function spaces. Let Y be a discrete topological space and Z a metrizable
space (we are primarily interested in the special case Z = R.) Let G be a
subset of the product space Z¥ endowed with its product topology. Con-
ditions for the compactness of G in ZY are contained in the following result,
a special case of the “Ascoli theorem”.

Lemma. The closed set G is compact in Z* if (and only if)

a) G is equicontinuous; and

b) foreach y e Y, {f(y):fe G} has compact closure in Z.

Now let g be a sublinear function (for example, a gauge p,) defined on our
real linear space X. Let J be an arbitrary index set. Given sets {x;:je J} = X
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and {c;:je J} = R we consider the problem: find ¢ € X’ such that

7.1 dx;) = ¢, jed,
g = ¢.

We have the following criterion (the “Mazur-Orlicz condition”) for the
consistency of this system.

Theorem. The system (7.1) has a solution ¢ € X' if and only if for every
finite set {jy, ..., j.} = J and every set {a,, . .., a,} of non-negative numbers
we have

(72) Y o, < g ( Y akxjk)
k=1 k=1

Proof. As usual we need only be concerned with the sufficiency. Let us
first show that for each finite set {j,,...,j,} = J the system

(7.3) o(x;) = ¢, k=1,...,n
9> ¢

has a solution ¢. Let ¢ = (cj,,...,c;,)€R" and let P be usual positive
wedge there. The set B = {¢(x;,), ..., ¢(x;,): ¢ € X', ¢ < g} is a compact
convex set in R" (the compactness of B follows from the compactness of the
set G = {peX':¢p < g} in R¥ which in turn is a consequence of the
Ascoli theorem). Now if the system (7.3) had no solution we would have
B n (P + ¢) = &, and consequently these two sets could be strictly sepa-
rated by a hyperplane. Thus there would be numbers a4, . . ., a, and f such

that

n

Z oup(x;) < B, ¢€q,

k=1
and

n

Y olpe +¢;)>p  ifp =0

k=1

The first inequality here implies that g <Z X jk> < B and the second that
1

Z oxcj, > P and also that each oy > 0. This is a contradiction of condition

(7.2).
At this point we have proved that for each finite subset K < J, the set

Gy = {peG:d(xi) = ¢, ke K}

is non-empty. These sets Gg are closed subsets of G and, again from what
we have just shown, they have the finite intersection property. Hence, since
G is compact, all the sets G have a non-empty intersection; any element of
this intersection is clearly a solution of (7.1). il
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D. Let g be a real-valued function defined on X. The directional
(Gateaux) derivative of g at x, in the direction x is

(7.4) g'(x,; x) = lim glx, + t’:) — 9(x)
tio

Replacing t by —t in (7.4) we see that

t p—
lim g(x, + tx) — g(x,)

= —g'(x,; —X).
t1o t

As a preliminary to our next application, and to later work, we study this
notion in the case where g is convex.

Lemma. Let g € Conv(X). For any x,, x € X, the function

o g(x, + tx) — g(x,)

7.5 ;

is non-decreasing for t > 0.

Proof. Observe first that if h € Conv(X) satisfies () = 0, then f(t) =
h(tx)/t is non-decreasing for ¢t > 0. Because, if 0 < s < ¢,

Hs) < S hiex) + t—:§ h),

so that f(s) < f(1). Now apply this argument to the function Ah(y) =
g(x, + ) — g(x,).

Theorem. Let g € Conv(X). Given any x, € X, the directional derivative
g'(x,; x) exists for all x € X and is a sublinear function of x.

Proof. Given x e X, we can establish the existence of g'(x,; x) by
showing that the difference quotient (7.5) is bounded below for ¢t > 0 and
then applying the lemma. In the convexity inequality

(7.6) g(su + (1 — s)v) < sg(u) + (1 — s)g(v)
let us replace u by x, + tx, v by x, — x, and s by 1/(1 + ¢). This yields

g(x,) = g <l$t (%o + 1+ T (%, = x))

< ! (x, + tx) + ! (x x)
\1+tgo 1+tgo ]

whence
< g(xo + t.X?) - g(xo)
= t

g(x,) — g(x, — x) , t>0.

Now the function g'(x,; -) is clearly positively homogeneous (whether or
not g is convex). To establish its sublinearity when g € Conv(X), we return
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to inequality (7.6) and replace u by x, + 2tx and v by x, + 2ty for x, y € X.
Setting s = 1, we obtain

g(x, + tlx + y)) < 3(9(x, + 2tx) + g(x, + 2ty)),
and so

g(xo + t(x + y)) - g(xo) < g(xo + ZIX) - g(xo) + g(xo + ZW) - g(xo)
t = 2t 2t '

Thus, when t | 0, we see that

g (X5 x + y) < g'(x,5 %) + g'(%,5 ). O

Corollary. Let g € Conv(X) and x,€ X. Then —g'(x,; —x) < g'(x,; X),
for all x € X. Consequently, if ¢ = g'(x,; ) is linear (that is, if ¢ € X') then

7.7 H(x) = lim g(x, + tx) — g(x,)

) t

xeX;

that is, the two-sided limit as t — 0 exists for all x € X. Conversely, if this
two-sided limit exists for all x € X, then the functional ¢ defined by (7.7) is
linear.

When the two sided limit in (7.7) exists for all x € X, the resulting ¢ € X’
is called the gradient of g at x,, and is written ¢ = Vg(x,). By way of illus-
tration it is interesting to mention that when g € Conv(A4), where A4 is an
open convex set in R”, then g has a gradient at almost every point in 4 and
the map x +— Vg(x) is continuous on its domain in 4. The proofs of these
facts are not trivial and will be omitted, as the results play no role in the
sequel.

E. Itwasobservedin 6D that when f € Conv(R) fails to be differentiable
at x, € R then of(x,) = [ f-(x,), f'+(x,)]. Guided by this special situation, we
consider its analogue in a more general setting, and draw some interesting
conclusions relating the notions of gradient, sub-gradient, and directional
derivative.

First of all, the results of 7D allows us to assert that the subgradients of
g € Conv(X) at a point x, € X are exactly the linear minorants of the direc-
tional derivative at x,. That is,

0g(x,) = {Y € X" < g'(xo5 )}
Since y is linear we can re-write this formula as
(7.8)  dg(x,) = {Y e X':—g(x; —%) < Y(x) < g'(Xo5 x), x€ X}.

Theorem. Let ge Conv(X)and x, € X.

a) For any x € X, the two-sided limit in (7.7) exists and has the value o if
and only if the function > Y(x) is constantly equal to « for all € dg(x,).

b) The gradient Vg(x,) exists in X' if and only if 0g(x,) consists of a single
element, namely Vg(x,).
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Proof. a) is clear from (7.8) and the fact that the limit in (7.7) exists if
and only if g'(x,; —x) = —g'(x,; x). To establish b), assume first that Vg(x,)
exists in X'. Then given any y € dg(x,) we see from (7.8) that

¥ < g'(x; ) = Vg(x,),

so that Y = Vg(x,) and hence dg(x,) = {Vg(x,)}. Conversely, if the gradient
Vg(x,) fails to exist, it is because —g'(x,; —X) < g'(x,; X) for some X € X.
Let M = span {X} and choose any « in the interval [ —g'(x,; X), g'(X,; —X)].
We define a functional § € M’ by setting /(tX) = at, for t € R. Then by our
choice of a, Y(x) < g'(x,; x) for all x e M. Now the Hahn-Banach theorem
(6A) provides us with an extension y of i for which y < ¢/(x,; -). We obtain
distinct such y’s by varying « in the indicated interval and by (7.8) all the
Y’s belong to dg(x,).

F. Let 4 be a convex absorbing set in X. It is of interest to apply the
preceding results about general convex functions to the study of the gauge
p4 of A. This will yield the insight that the linear functionals defining sup-
porting hyperplanes to A at some bounding point in A4 are exactly the sub-
gradients of p, at that point. Given the geometric interpretation (6D) of
subgradients and the fact the p, is sublinear, this relationship should not
be completely unexpected.

We say that the map 7,:X x X — R defined by

T4(X, ¥) = pu(x; y).

is the tangent function of A. From 7D it is clear that the tangent function
obeys the following rules:

a) 14(x, ‘) is sublinear on X;

b) 4%, ¥) < pa(y);

c) T4(x, tx) = tpy(x),t € R;and
d) t4(ax, ) = t4(x,), ¢ > 0.

Theorem. Let A be a convex absorbing set in X with gauge p 4. Given
x, € X with px,) > 0, the following assertions are equivalent for ¢ € X':

a) ¢ € 0p4(x,);

b) 4) < TA(xo’ )a

©) @(x,) = pa(x,) and sup{p(x):xe A} = 1.

Proof. The equivalence of a) and b) is a consequence of equation (7.8).
To see the equivalence of a) and c), we recall that
P €0palx,) =P < pg and  ¢(x,) = palx,).

(These implications depend only on the sublinearity of p,.) Since also it is
clear that

¢ < pyg=sup{p(x):xe A} = 1,
the proof is complete. 0
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By virtue of the support theorem (6C) we know that every bounding
point x, of 4 belonging to A is a (proper) support point of 4. The theorem
above tells us that 7,4(x,, -) # 0 in this case, and furthermore, that there is
a unique hyperplane of support at x, exactly when 7 4(x,, *) is linear. (If this
functional is linear, then the unique supporting hyperplane to A4 at x, is
[ta(x, *); 1] = [Vpa(x,); 1].) When these conditions for uniqueness are
satisfied we say that x, is a smooth point of A, or that A is smooth at x,. This
terminology is chosen to suggest that (intuitively) the surface of A does not
come together “sharply” at x,. We have shown that smoothness of A at its
bounding point x, is equivalent to the existence of Vp ,(x,) in X".

To illustrate these ideas, let X = R” let p > 1, and let 4 be the unit
p-ball (3C) in R”". We know that p, is then the p-norm on R":

n 1/p
palx) = <=Zl |é.~|"> soox=(n,....&)eRN

By direct differentiation we compute that, for x # 6 and p > 1,

Z ’1i|fi|p_l sgn &;
(7.9 T4y ==

s y=0,...,n)eR"

palxyt
Here the sigmum function sgn ¢ is defined for real or complex &, by
sgn ¢ = % if &0

Suppose that x is a bounding point of A4, so that p ,(x) = 1. Then equation
(7.9) shows that the tangent function is linear in y. Consequently, the unit
p-ball is smooth at all its bounding points and, for such points x,

(7.10) Vpa(x) = (|&:[P7 ! sgn &y, ..., |&[P 7 sgn &),

Now consider the situation when p = 1. A simple sketch (when n = 2
or 3) suggests, and (7.9) confirms, that 7 ,(x,-) is still linear provided no
&, = 0, that is, provided that x lies in no coordinate hyperplane in R". Thus
the unit 1-ball is smooth at such points and formula (7.10) remains valid.
On the other hand, let us suppose that some components of x are zero; say
(&, =0foriel, § {1,2,...,n}. Then we compute that

(7.11) (9 =Y nsgné& + Y |nil
i¢l, iel,

From (7.11) we see that 7 4(x, -) is not linear and, in fact, that —z,(x, —y) <
74(x, y) whenever n; # 0 for some i € I,.. It follows that the unit 1-ball is not
smooth at any such x. In fact, we see that any hyperplane of the form [¢; 1]
supports the unit 1-ball at x if ¢ is determined by ({,, ..., {,) and

Ci = sgn éi’ l¢ Io
|| < 1, iel,
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§8. Extremal Sets

In this section we introduce the last of our “primitive” linear space
concepts: extremal subsets and points of convex sets. The fundamental idea
here is that a given convex set can be “reconstructed” from knowledge of
certain bounding subsets by use of the operation of taking convex com-
binations (and perhaps also closures, as we shall see later). There is a faint
analogy with the reconstruction of a linear space from the elements of a
basis and the operation of taking linear combinations, although the more
complicated behavior of general convex sets permits further classifications
of extremal sets and points.

A. Let E be a subset of a convex set 4 in the real linear space X. E is
a semi-extremal subset of A if A\E is convex, and E is an extremal subset of
Aifx,ye Aand tx + (1 — t)ye E for some t (0 < t < 1) entails x, y € E.
We often write “E is A-semi-extremal” or “E is A-extremal”. It is clear that
each extremal subset of 4 is semi-extremal; the simplest examples in R?
show that the converse is generally false. However, when E = {x,} is a
singleton subset of A4, the two notions do coincide; when this happens, x,
is said to be an extreme point of A and we write x, € ext(4). Thus the extreme
points of A4 are just those points which can be removed from A4 so as to
leave a convex set. Any such point is necessarily a bounding point of A.

The prototypical example is an n-simplex (2C): it is (by definition) the
convex hull of its vertices which are the extreme points in this case. More
generally, the convex hull of any subset of the vertices is an extremal subset of
the n-simplex. Other possibilities can occur: on the one hand, every bound-
ing point of the unit p-ball (p > 1) in R" is an extreme point, and there are no
other (proper) extremal subsets; on the other hand, an affine subspace of
positive dimension contains no (proper) extremal subsets at all. Examples
of A-semi-extremal subsets are obtained as the intersection of 4 with any
half-space (4B) in X, or more generally, as the intersection of any A-extremal
set with a half-space. Any subset of ext(4) is A-semi-extremal.

The following lemma collects a variety of elementary but useful properties
of (semi-) extremal sets; its proof is left as an exercise. It should be noted
that the assertions below involving A-extremal sets do not require the
convexity of A.

Lemma. Let A be a convex subset of X.

a) The union of a family of (semi-) extremal subsets of A is A-(semi-)
extremal,;

b) The intersection of any (nested) family of A-(semi-) extremal sets is
A-(semi-) extremal.

c) Let E « B = A with B an extremal subset of A. If E is B-(semi-)
extremal, then E is also A-(semi-) extremal.

d) If E is A-extremal then ext(E) = ext(4) n E.
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B. Let us now consider how the extremal subsets or extreme points of
a given convex set A can be used to describe the set. Here we shall only
consider the case where A is of finite dimension (2C). Thus we may as well
assume that A = R” for some n; we shall also assume that A4 is closed.

Lemma. Each closed convex subset A of R" contains an A-extremal
affine subspace, and any two such affine subspaces are parallel.

Proof. To prove the existence of such extremal flats in A we proceed
by induction on the dimension of 4. We may assume that existence has been
established for sets of dimension less than dim(A4), which we take to equal n.
We may also assume that 4 has a bounding point p, for otherwise 4 = R”"
and A is an extremal flat in itself. Now if H is a hyperplane supporting A4 at
p(6C), the set A N H contains an extremal flat K by the induction hypothesis.
However, since A n H is necessarily an extremal subset of A, it follows from
the preceding lemma that K is also A-extremal.

Now suppose that K, = p, + L, and K, = p, + L, are two A-extremal
flats parallel to the subspaces L, and L, (1C). We want to see that L; = L,.
If L, is not contained in L, then

@8.1) K,GL, + K, c A

(The second inclusion of (8.1) can be shown as follows: let I, € L, and
p, + I, € K,;thenfort > 1, p; + tl; € A and hence

1 1
8.2) <1 - —t—>(p2 + L) + ?(pl + tl)) e A.

As t —» + o0, the left side of (8.2) converges to I; + p, + I, and this must
belong to A4 since A4 is closed.) Now (8.1) contradicts the assumption that
K, is A-extremal, so that we must have L; < L,. Analogously, L, < L,,
whence L, = L,.

It follows that the extremal affine subspaces of A are all parallel to a
particular subspace L, called the lineality space of A. The dimension of L,
is the lineality of A and an affine subspace of 4 is A-extremal exactly when
it is of maximal dimension (with respect to all the affine subspaces of A), this
dimension being just the lineality of A. It is easy to see that

8.3) L,={xeR"x+ A=A}

A is said to be line-free exactly when L, = {6}. We now have sufficient
information to state the basic existence theorem for extreme points.

Theorem. The closed convex set A in R" has an extreme point if and
only if A is line-free.

Proof. If A is not line-free then there is a non-zero x satisfying (8.3) so
that no point of 4 can be extreme. On the other hand, if 4 is line-free, the
only flats contained in A are of zero dimension, hence points. The lemma
now guarantees the existence of an extreme point. 0
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This result allows us to obtain a preliminary decomposition of the closed
convex set A. Let L} be the orthogonal complement of the subspace L,
that is, the set of all vectors in R” that are orthogonal to L,. Then we can
write

8.4 A=1L4+ (An Ly;

the “section” A n L} of A is clearly line-free and hence has an extreme point.
It is not hard to show that this is the only way to express A as the orthogonal
sum of a subspace and a closed line-free convex set.

C. To obtain a more complete decomposition of the closed convex set
A in R*, we introduce the recession cone'™ (asymptotic cone) Cy of a convex
set B in a real linear space X :

Cp = {xeX:x + B c B}.

Note the analogy with formula (8.3); clearly Ly = Cyz, when B <= R”;
indeed, Ly = Cz n (—Cpg) (5A). We shall want to consider the set Cp
especially in the case where B is line-free (Ly = {6}); in terms of our original
convex set A under investigation, we shall be interested in Cz,, where
B, = An Ly

Lemma. Let B be a convex subset of the real linear space X.

a) The recession cone Cg is a wedge in X ;

b) Cg = {xe X:b + txe B forallt > 0andallbe B};

¢) if X = R" and B is closed then Cy is closed and Cz = {xe R":x =
lim,, t,x,, where x, € B and t, | 0}.

Proof. a)Letxe Cgsothatx + B < B.Then2x + B=x + (x + B) =
X + B < B, and more generally, nx + B < B for every positive integer n.
Since B is convex, this means that tx + B < Bforallt > 0, that is, tx € Cg,
t > 0. Next,if x, ye Cgand 0 < t < 1, we have

(1 =—9x+tyy+ B=(1—1t)(x + B) + t(y + B)
c(l — t)B + tB = B,
using the convexity of B. This proves that Cy is a wedge.
b) The inclusion from right to left here is trivial, and the reverse inclusion

follows from the proof of a).
c) From part b) we see that given any b € B

@8.5) Cp = n{t(B — b):t > 0}

(whether or not X = R"). Since B is closed, (8.5) exhibits Cy as an inter-
section of closed sets, so that Cp is closed. Next, let x € Cy; for any fixed

) The term “recession cone” is used in conformity with established terminology. To be
consistent we should say “recession wedge”, since this set is generally not a cone as defined
in S5A.
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beB, b + nx = x,€ B and hence x = lim, t,x,, where x, e B and ¢, | 0.
We claim that b, + tx € B for any fixed b, € B and any t > 0. If this were
not the case then for some t, > 0, b, + t,x ¢ B and we could apply the
strong separation theorem to find ¢ € R” and o € R such that

(8.6) sup{¢(b):be B} < a < ¢(b, + t,X).
However, ¢(x) = lim, ¢(t,x,) and ¢(t,x,) < t,o, so that ¢(x) < 0; this entails
o(b, + t,x) < ¢(b,) < a, in contradiction to (8.6). O

The formula in part b) provides the motivation for the term “recession
cone”. Note that the wedge Cy is a cone exactly when B is line-free. A pro-
cedure for computing both L, and C,, for a given closed convex set A = R"
is indicated in exercise 1.35.

We come now to the main decomposition formula for a closed convex
set A = R" the “Klee-Minkowski-Hirsch-Hoffman-Goldman-Tucker theo-
rem”. Associated with 4 we have its lineality space L, and the corresponding
line-free section B, = 4 n L.

Theorem. Let A be a closed convex subset of R". Then

8.7 A =L, + Cg, + co(ext(By)).
Proof. Tt will suffice (in view of (8.4)) to show that
3.8 B < Cg + co(ext(B))

for any closed line-free convex set B = R". We proceed (as in (8B)) via
induction on the dimension of B and assume that (8.8) is valid for subsets B
of dimension <n. Let p be an arbitrary point in B and let L be any line
containing p. The set B n L is then either a closed half-line or a compact
line segment, since B is line-free. In the former case we can write

BAL={x+ Ay:A > 0}.

The end-point x of this half-line is a bounding point of B and hence is con-
tained in a hyperplane H of support to B. Applying the induction hypothesis
to B n H, we have

x € Cgy + co(ext(B< H))

<= Cp + co(ext(B)),
using (8A). Since y must lie in Cp and since p = x + Ay for some 4 > 0, it
follows that B
p = x + Ay e(co(ext(B)) + Cp) + Cp
cco(ext(B)) + Cp.
In the other case, B n L is a compact line segment and by analogous rea-

soning both its end-points belong to Cp + co(ext(B)); since this latter set is
convex, it contains the entire line segment and, in particular, the point p. []

D. Some important consequences of the preceding theorem will now
be given. The first of these, “Minkowski’s theorem”, follows from 8C and
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the observation that a convex set A = R" is bounded if and only if C,
(hence L,) = {6}.

Corollary. A compact convex set in R is the convex hull of its extreme
points.

Consider next the case where our closed convex set A = R"is unbounded
but line-free: L, = {0}. An extreme ray of A is an A-extremal half-line; we
write the set of all extreme rays of 4 as rext(4). The idea now is that 4 can
be recovered (via convex combinations) from its extreme points and its
extreme rays.

Lemma. Let C be a closed (convex) cone in R". Then C = co(rext(C)).

Proof. From 5C we know that our cone C has a base K given by
K = [¢;1] n C, where ¢ is a linear functional that is strictly positive on
C\{0}. The base K is clearly closed and we claim also that it is bounded.
For otherwise, there would exist a sequence {x,} = K with ||x,||, - +
(here ||x,||, is the 2-norm (3C) of x,). Let z be a limit point of the sequence
X/ ||[%n| |25 since ||z||, = 1, z # 6, and since C is closed, z € C, whence ¢(z) >
0. But also

P(2) = 1i'1'm D0/ ||xal|2) = lim (1/]x,]]2) = O,

a contradiction; thus K must be bounded hence compact. Now an easy
argument shows that if p is an extreme point of K then the ray {tp:t > 0}
is an extremal ray of C. The conclusion of the lemma is thus seen to be a
consequence of Minkowski’s theorem. il

The following result, “Klee’s theorem”, provides a substantial general-
ization of Minkowski’s theorem; its proof follows directly from the lemma
and 8C.

Theorem. A closed line-free convex set A in R" is the convex hull of its
extreme rays and extreme points:

A = co(ext(A) U rext(A)).

E. Animportant application of these structure theorems is to problems
of optimization. An optimization (or variational) problem occurs when we
are given a pair (4, f) (a variational pair) consisting of a set A and a real-
valued function f on A; f is called the objective (or cost) function. The
problem is to determine the number inf{ f(x):x € A}, called the value of the
optimization problem, and a point in A4 (if any) where f attains its infimum;
any such point is a solution of the problem. It is traditional to also refer to
such an optimization problem as an abstract mathematical program. It should
be noted that by the simple expedient of changing the sign of the objective
function, problems originally requiring the maximization of some function
can be converted into the present format.

Let us consider a special case of the preceding: a finite dimensional
concave program (A, f), where A is a convex set in R" for some n and f is
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a concave function on A, that is, —f € Conv(A4). In practice, such a problem
might arise as a linear program, that is, f(x) = ¢(x) + ¢, where ¢ is a linear
functional on R" and ¢ is a constant, or, after a change of sign, as the problem
of maximizing the utility of some risk-seeking investor.

Theorem. Let (A, f) be a finite dimensional concave program as just
defined; assume that A is line-free and closed, and that f is lower semicontinuous
on A. If a solution exists in A, then there is a solution in ext(A). Conversely,
any solution to the program (ext(A), f) is also a solution to the original program
(A4, f), provided that f is bounded below on A.

Proof. The subset F of A where f attains its infimum over A is non-
empty (by hypothesis) and is in addition closed and convex. Therefore, by
8B, F has an extreme point. Since F is also easily seen to be A-extremal it
follows from 8A that this extreme point belongs to ext(A4). For the converse,
suppose that inf{f(x):x € ext(4)} is attained at p € ext(4). If x = Zt,e; €
co(ext(A4)), then

fx) = f(Zre) = Zt:f(er) = 2t f(p) = f(p)-
Now from 8C, 4 = C, + co(ext(4)), since A is line-free (so that L, = {6}).

Choose any ce C, and any ¢t > 1. Then for x € co(ext(4)) we have tc + xe A4
and

t—1 1
c+ x= ; x+;(tc+x),

so that

t—1 1

flc + x) = ; f(x) + —t—f(tc + x)
t—1 1.
> ——f(p) + - inf{f(y):ye 4}.

Letting ¢t —» oo, we conclude that f(c + x) = f(p). 0

The effect of this theorem is of course to reduce the search for solutions
of the finite dimensional concave program (4, f) to the extreme points of 4.
In particular, when f is bounded below on A4, and ext(A) is a finite set, then
we are assured of the existence of a solution in ext(A4). For example, if 4 is
the strip {(x;, x,) € R*:r < x;, a < x, < b} and the concave function f is
bounded below on A, then at least one of the points (r, a), (r, b) is a solution
of the concave program (4, f).

F. The preceding results have dealt with finite dimensional convex sets
and their extremal properties. To conclude this section we now want to give
a famous example concerning the extreme points of certain infinite dimen-
sional convex sets.

Let A be an algebra of real or complex-valued functions defined on some
set Q; we assume that A contains the function e identically equal to one on
Q. A is of course an ordered linear space with the natural pointwise vector
ordering (5A); we let P be the positive wedge in 4 and P* the dual wedge
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in A'. In A" we consider the convex sets K, = {¢ € P*:¢(e) < 1} and
K, = {¢ € Ky:¢p(e) = 1}. The question now is: what are the extreme points
of K, and K, ?

Let A = {f € A:f is real-valued} and suppose that A consists only of
bounded functions on Q. Then we can derive a necessary algebraic condition
for an element of K, or K, to be extreme. Note that since K, is K-extremal,
it suffices to work only with K,; indeed, ext(K,) = ext(K;) u {6}.

Theorem. An extreme point of K, must be an algebra homomorphism of
A.

Proof. Let ¢ € ext(Ky); if ¢ = 6 we are done. Otherwise we must
show that

(8.9) P(f9) = (f)(9)

for all f, ge A. Let us first prove this when g = e. Let y = (1 — ¢(e))¢.
Since ¢ € Ko, € P whence ¢ + € P*; similarly, ¢ — € P*. Further,

e, d + ¥) = ¢(e) + ¢le)(1 — d(e))
< ¢l + (1 —¢le) =1,

and <{e, p — ¥> = ¢(e)*> < 1. Therefore, ¢ + € K, and so y = 6, since
¢ € ext(K,). Next we prove (8.9) assuming that g is real-valued. For this we
may also assume that 6 < g < e; because, since g is bounded (by hypothesis),
there are s,t > Osuch that 6 < sg + te < e, and, if it is true that {f(sg + te),
®> = ¢(f)(sg + te), then sd(fg) + td(f) = sPp(t)p(g) + td(f)gp(e). Now,

with0 < g < e lety(f) = ¢(fg) — d(f)P(g);then e, ¢ + Y = ¢Ple) < 1.
Further, if f € P,

ot + 0> = $f) + () — )
= ()1 — $lg) + $(fg) > O,

and similarly,

Srd = U0 = o(f) — ¢(f9) + d()d9)
= (fle — 9), ¢> + #(f)g(g) = 0.

Again we have shown that ¢ + € K, and hence y = 6. Finally, for
arbitrary f, g € 4, define y(g) = ¢(fg9) — d(f)P(g). If g € P then by what
we have just shown, y(g) = 0; thus once more ¢ + Y € K, and y = 0,
completing the proof of (8.9). |

The algebra 4 was not assumed to be self-adjoint (that is, to contain f
whenever it contains f). However, if ext(K,) # &, then the self-adjointness
of A follows; thus the theorem really concerns algebras of bounded functions
(exercise 1.39).

Let us also remark that the same proof applies to a more general situation.
Namely, let 4 # be a second algebra of functions defined on some set Q3
with positive wedge P # and containing the identically-one function e .
Let Ky(A4, A#) consist of all positive linear maps T:4 — A 3 such that
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T(e) < e # (T is positive if T(P) = P3#). Similarly we let K (4, A#) =
{Te KyA, A%#):T(e) = e#}. Then the preceding theorem is true for
Ko(A4, A#) and K,(4, A #).

Before treating the converse of the theorem, let us note a useful fact: if
fe Ag and ¢ € K, then

(8.10) o(f?) < o(f).

The proof of this follows upon consideration of the discriminant of the non-
negative quadratic form t - {(tf + €)?, ¢D.

Now assume that our algebra A is self-adjoint and that ¢ is a homo-
morphism of A belonging to K,. Then we can prove that ¢ € ext(K,). To do
$0, suppose that ¢ = 4(¢, + ¢,) where ¢y, ¢, € Ko. Now, if f € 4y,

201(f)* + 2¢2()* < 3(:(f?) + d2(f)
= ¢(f?) = ¢(f)* = 26:(f)* + 30:(N)2(f) + 2¢2(f)?

where the first inequality is a consequence of (8.10). This argument shows
that (¢.(f) — ¢2(f))*> < 0, whence ¢, and ¢, agree on Ag. Since A4 is
self-adjoint this means that ¢; = ¢, and so ¢ € ext(K,) as claimed. Again,
this proof generalizes to the case Kq(A4, A #).

To sum up, in the case where A is a self-adjoint algebra of bounded
functions, we have obtained both an algebraic characterization of the
extreme points of the sets K, and K, and a geometrical interpretation of
certain algebra homomorphisms of A (for many common algebras A, every
homomorphism of 4 belongs to K; this is true in particular when 4 = C(Q),
the space of all continuous functions on the compact Hausdorff space Q).
Now at present we don’t know whether extreme points or (non-zero) homo-
morphisms exist, but we have at least arrived at the point where knowledge
of one has implications for the other. Existence proofs for either extreme
points or homomorphisms involve the Axiom of Choice, usually in the guise
of Zorn’s lemma. We might, for example, try to utilize the latter to produce
a proper maximal ideal M in A; we would then expect M to be the kernel of
a homomorphism. However, in conformity with our geometric approach,
we will adopt the opposite course and try to develop methods for proving
the existence of extreme points for certain infinite dimensional convex sets.
The eventual results bear some analogy to the finite dimensional case treated
earlier in this section, but the methods are quite different. Interestingly
enough, these methods require topological considerations (interesting
because the notion of extreme point is purely algebraic). We turn to such
considerations next.

Exercises

1.1. a) Show that the sequence of monomials {t":n =0,1,2,...} is a
linearly independent subset of the linear space of all real-valued
functions defined on the interval [0, 1].
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1.3.

1.4.

L.5.

1.6.

1.7.

1.8.
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b) Show that the family of complex exponentials {¢"*: — o0 < 4 < 00}
is a linearly independent subset of the linear space of all continuous
bounded complex-valued functions defined on R.

¢) What is the dimension of the space in b)?

Let n be an arbitrary cardinal number. Construct a (real or complex)

linear space of dimension n.

a) Let X be the linear subspace of exercise 1.1a),let0 < t; <t, < - <
tm <1, and let {cy, c,,...,¢c,} = R. Show that the set {xe X:
x(t;) = ¢;, i = 1,...,m} is an affine subspace of X.

b) Let X be an arbitrary linear space. If ¢4, ..., ¢,, € X', show that

m
[] ker ¢; is a subspace of codimension <m.

1

a) Let X be an infinite dimensional linear space over the field F. Prove
that dim(X’) = 2%™®_ (First show that dim(X"’) > 2™ by considering
a linear independent sequence {e,} = X and the set {¢,:1e F} =
X' defined by ¢,(e,) = A". Then verify

24m¥ — card(X’) = 2™ dim(X’) = max(2™, dim(X’)) = dim(X").)

b) Prove that two linear spaces over F are isomorphic if (and only if)
their algebraic conjugate spaces are isomorphic. (In the case where
the spaces are of infinite dimension use part a) and the generalized
continuum hypothesis.)

Let T:X — Y be a linear map between linear spaces X and Y.

a) Show that T"” = (T')Y: X" — Y" is an extension of T.

b) If X = Y, show that T is always the transpose of some linear map
exactly when X is finite dimensional.

Let X and Y be linear spaces. A map T:X — Y is affine if the map

x = T(x) — T(0) is linear. Show that if T is affine the image T(A)

of a convex set A = X is convex, and the inverse image T~ }(B) of a

convex set B < Y is convex.

Let A be an absolutely convex set in a linear space. Show that span(4) =

0

lJ n4 and that cor(4) is again absolutely convex.
1

Let A < R” for some n.

a) If A is convex show that the core of A4 is the (topological) interior
of A, and that lin(A4) is the closure of A.

b) Show by example in R? that when A4 is not convex, there can be
points in cor(A4) which are not interior points of 4.

c) If A is open show that co(A4) is also open.

d) Find an example of a closed A4 such that co(4) is open (yet not
all of R").

e) Show that each x € co(A4) lies in some m-simplex with vertices in

m
A and m < n. (“Caratheodory’s theorem”. Express x as Z oGX;
o
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1.9.

1.10.

1.11.
1.12.

1.13.

1.14.

1.15.

1.16.

1.17.

m
where x;€ A, o; > 0, and ) o; = 1 and assume that this represen-
o

tation of x involves the minimum possible number of points in A.
It is to be shown that m < n. Proceed by contradiction, assuming
that m > n + 1; the points x,, X4, ..., X,, are then not in general
position.)
f) Use the result of ) to show that co(4) is compact whenever 4
is compact.
Taking into account exercise 1.8a) show that a linear space X has finite
dimension if and only if for all convex 4 = X we have lin(lin(4)) =
lin(A). (If X is infinite dimensional and x € X, define s(x) to be the sum
of the coefficients involved in the expression of x relative to a fixed
basis for X, and define n(x) to be the number of these coefficients that
are not zero. Let A be the set of x with non-negative coefficients such
that n(x) > Oand n(x)s(x) > 1. Then A is convex but 0 € lin(lin (4) )\A4.)
A real-valued function f defined on a linear space X is quasi-convex
if its sublevel sets {x € X : f(x) < A} are convex for each real 1. Show
that f is quasi-convex if and only if f(tx + (1 — f)y) < max{f(x),
f(y)} for x, ye X and 0 < ¢t < 1. Thus every convex function is quasi-
convex but the converse fails even in R
Prove the lemma in 3C.
Let A be a convex absorbing set in a linear space X. The gauge p,
determines A analytically as follows:
a) cor(A) = {xe A:p,(x) < 1};
b) the algebraic boundary of 4 is {x € X:p,(x) = 1};
c) if {x:ps(x) < 1} = B = {x:p4(x) < 1}, then p, = pp.
It follows that an absorbing non-convex set may still have a sublinear
gauge.
Let A4,..., A, be convex absorbing sets in the linear space X. Express

the gauge of [] 4; in terms of the gauges p,,, ..., pa,
1

Establish the following variant of the basic separation theorem: let A
and B be convex subsets of a linear space such that both icr(4) and
icr(B) are non-empty; then 4 and B can be separated by a hyperplane
if and only if icr(4) n icr(B) = & (we exclude the trivial case that
A U B already lies in a hyperplane).

Show by example in R? that the lemma in 4C is not valid for strict
separation.

Let A <= R" The polar of A is the convex set A° = {x e R":(a, x) < 1,
a € A}, where (-, ) is the usual inner product on R". If now 4 is convex
and absorbing with gauge p,, show that

pa(x) = sup{(x, y):ye A°}, xeR"

Sometimes it is of interest to know when two disjoint convex sets can
be (strongly) separated by a given hyperplane. The simplest case is
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1.18.

1.19.

1.20.

1.21.

1.22.

1.23.

1.24.
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the following: we are given points a, b, py, pP», - - - » P, in R” with the p;
in general position. Let H be the hyperplane aff({p,, . . ., p,}). Assuming
that neither a nor b lies in H, show that H strongly separates a and b

if and only if the determinants det(d@, F,, . . . , P,) and det(B, §,, . . ., D)
have opposite signs, where for x = (&,, ..., &,),X = the column vector
&, ..., &, DT. (Consider the condition for the line segment (a, b) to

intersect H.)

Show that a wedge P in a real linear space is reproducing if and only

if the dual wedge P* is a cone. Show that this happens in particular

when P has non-empty core.

a) Let X be the space C(T) (resp. C,(T)) of continuous real-valued
functions (resp. that vanish at infinity) on the compact (resp. locally
compact) Hausdorff space T. Determine in each case the core of
the positive wedge in X (the natural pointwise vector ordering is
assumed.)

b) Let X be the space of real n x n symmetric matrices and let P
be the wedge of positive semi-definite matrices in X. Show that P
is reproducing and determine its core.

Let X be the linear space of (the usual equivalence classes of) real-

valued measurable functions on the interval [0, 1], and let P be the

wedge of ae non-negative functions in X. Show that P* = {6}. It
follows that every non-trivial linear functional in X’ maps P onto
all of R; consequently P cannot be separated from any set in X, and
in particular, P contains no support points. (Suppose ¢ € P* but
¢ # 6. If x5 is the characteristic function of the measurable set E <

[0, 1], then {y,1) ¢> = o > O for otherwise ¢ would annull all

bounded functions in X and hence ¢ would be the zero functional.

Then one of {y;o, 1), > and (x4, 1), ¢ is at least a/2, say the former,

so that {4y, 1) > = 2. Repeating this argument, an increasing

sequence of functions in X can be constructed such that ¢ cannot be
defined on the (measurable) limit of this sequence.)

Let A be a convex absorbing subset of the real linear space X, M a

subspace of X, and ¢ € M". If sup{¢p(x):xe A n M} < 1, then there

is an extension ¢ of ¢ in X’ such that sup{@(x):xe A} < 1. (Note
that the inequality on ¢ is equivalent to ¢ < p4|M.) Use this result
in the case where A is absolutely convex to prove the corollary in 6A.

Where is the hypothesis that cor(P) n (P n M) # & used in the proof

of the theorem in 6B?

Let X = {?(d)where 1 < p < oo and dis a cardinal number >, (6C).

Show that the positive wedge P in X has no core, and give the details

for the assertions made in the text regarding the support points of P.

Let M be a subspace of the linear space X, ¢ € M’, and let f, g be two

convex functions on X. Then there is an extension ¢ of ¢ in X’ such

that —g < ¢ < f if and only if for all pairs x, ye X with x — ye M

we have ¢(x — y) < f(x) + g(y). In particular, the case M = {6} gives
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1.25.

1.26.

1.27.

1.28.

a condition for the existence of a linear functional in X’ interposed

pointwise between —g and f. (Let g (x) = g(—x)andset h=f [1g~

(3B); then the condition ¢(x — y) < f(x) + g(y) for x — ye M is

equivalent to ¢ < h|M.)

a) Let f be the p-norm (3B) on R" (1 < p < o0). Find all subgradients
of f at the origin. Same problem if f(x) = (Qx, x), where Q is a
symmetric positive semi-definite n X n matrix.

b) Let f be a continuous convex function defined on R" (continuity
is actually automatic as we shall learn later). Identifying R" with
R" in the usual way, show that 9f(x,) is a non-empty compact
convex set in R”, for all x, e R

c) Let f be the convex function on the interval [ —1, 1] defined by
f(x) = —/1 — x2.Show that f is not subdifferentiable at the points
+1.

Let X be a real linear space.

a) The equality system

¢1(x) = ¢,

Pu(X) = Cp
for given ¢; € X' and c; € R is consistent if and only if for any set
{0, ..., 0m} = R, Y oyc; = O whenever ) o, = 6. Write the
1 1

matrix version of this assertion when X = R".
b) In 7C, prove that there is ¢ € X' satisfying

¢(xi) = cj, je J9
g=9¢
if and only if the Mazur-Orlicz condition (7.2) holds with no sign
restriction on oy, . . . , o,
Suppose that the inequality system in 7B is inconsistent. Show that

there is some ¢ > 0 such that for every choice of 44, .. ., §, with each
d; = —e¢ the system

d1(x) = ¢y + 6y,

Gul(x) = ¢y + b,

is inconsistent.

Let X be a real ordered linear space whose positive wedge has non-
empty core. Given an index set J and sets {x;:je J} = X, {c;;jeJ} <
R, suppose that for some j, € J, x; € cor(P)and ¢;, > 0. The “moment
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1.33.
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1.36.
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problem istofind ¢ € P* such that ¢(x;) = c;. Show that this problem
1s consistent if and only if for every finite set { 11, .+ Ja} = J such that

Z ac;, = 0 for {ay,...,a,} =R, the vector Z ax;, is not in cor(P).
1

Interpret this result in the case where X = C([0, 1]) and for j = 0, 1,

2,..,x(0) = .

In the course of proving the theorem in 7C we needed to know that

sup{Y(x):y € G} = g(x), for various x € X. Prove this and show that

the “sup” is actually a “max”.

Let f e Conv(R". If the n (two-sided) partial derivatives of f exist

at x, € R” then f has a gradient at x,,.

Given a convex absorbing set A in a real linear space X, x, € A with

pax,) =1, xe X, and a € R such that —1,(x,, —x) < a < 14(x,, X),

show that there exists ¢ € X' with ¢(x) = o« such that the hyperplane

[¢; 1] supports A at x,,.

Let A be the “unit max-ball” in R”, that is, 4 = {(&;,...,&)eR™

|&] < 1,i=1,...,n}. Compute p,, determine the smooth points of

A, and find a formula for Vp, at such points.

Let A be a convex subset of the linear space X.

a) If pe X, then p € ext(A) if and only if the condition p + x € 4 for
x € X implies x = 6.

b) If F is a finite subset of 4 and x € ext(4) ~ co(F), then x € F.

¢) The intersection of an A-extremal set with a half-space in X is
A-semi-extremal.

d) If Aisawedgein X then it is actually a cone if and only if 8 € ext(A4).

Let A be a compact convex set in R” and let E = A.

a) Then E is semi-extremal if and only if for all compact sets B = A\E
we have co(B) = A\E.

b) If Eis a closed semi-extremal subset of A, then E contains an extreme
point of 4. (This assertion is certainly true if E is convex; in general
consider a maximal convex subset of E.)

Let A be a closed convex subset of R". To compute the lineality space

L, and the recession cone C, we express A as {x e R":¢;(x) > c;,

j € J} for suitable linear functionals ¢;, reals c; and (countable) index

set J. (Use 4C.) Then

L, ={xeR"¢ix) =0,jeJ}
and
Cy={xeR"¢;x) > 0,jeJ}.

Let B be a closed convex set in R” with Cz = {6}. Show that B must
be bounded.

A basis f = {uy,...,u,} for R" is orthonormal if (u; u;) = §;; for
1 < i,j < n. The associated lexicographic order < inR"is then defined
by x <y yifthereis k < nsuch that &, =, fori < k — 1 and &, <
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1.38.

1.39.

1.40.

1.41.

(here x = (&¢,...,&)and y = (4, ..., n,)). Now given a compact set
A = R" we define
A, = {xe€ A:(u;, x) = max (u, y)},
yed

Ay oo ={x€dy .y (g, x) = ;nax (4 M)},
YEA,

-1

inductively for k = 2,..., n. Show that dim(4,, ...,,) < n — kso that

A,, .. .., 1s a singleton set, whose unique element is denoted by e(4, B).

Show that e(A4, p) is the lexicographic maximum of 4 with respect to

the basis f, that e(4, f) is an extreme point of 4, and that every extreme

point of A arises in this manner for some (not necessarily unique)

basis f.

Let X be a real linear space, A a convex subset of X, and V an affine

subspace of X. We say that V supports A if A n V is a non-empty

extremal subset of A. (This reduces to the definition in 6C when V

is a hyperplane.)

a) Let E be a convex A-extremal set. Show that the affine subspace
aff(E) supports A.

b) If X is partially ordered with positive wedge P, a subspace M < X
is an order ideal if the order interval {x:y < x < z} lies in M
whenever y, ze M. Show that M is an order ideal if and only if
M supports P.

Let A be a convex subset of the real linear space X.

a) Show that x € icr(A4) if and only if x lies in no proper A-extremal set.

b) For x € 4, the A-extremal hull E(x) of x is the intersection of all
extremal sets containing x and the A-facet F(x) of x is the largest
convex subset of 4 containing x in its intrinsic core. Prove that
E(x) = F(x).

Let Aand K, = A’ bedefined as in 8F. Suppose that ext(K,) is non-void.

Show that the algebra A must be self-adjoint, that is, f € A implies

f € A where f(w) = f(w), w € Q. (A criterion for the self-adjointness

of Aisthat A = Ag + iAg.)

Let X be a linear space and {¢,, . . ., ¢,} a linearly independent subset
of X'. Prove the existence of a subset {x,, ..., x,} of X such that
di(x;) = 0y

forl1 <ij<n



Chapter 11

Convexity in Linear Topological Spaces

We have made good progress in developing the algebraic aspects of our
subject but the needs and applications of functional analysis require more
powerful methods based on topological concepts. Thus, as our next step, we
consider the result of imposing on a given linear space a “compatible topol-
ogy”. This is hardly a novel idea; indeed, several excellent books already exist
which are devoted to a detailed investigation of the many ramifications of
this notion. However, our treatment is less ambitious and more pragmatic,
being shaped primarily by the necessities of our intended applications. These
necessities require an understanding of the properties of topologies defined
by one or more semi-norms on a linear space. They also require a well-
rounded duality theory and it is interesting to discover that the maximal class
of linear topologies which yields the requisite duality theory is precisely the
class of topologies defined by a family of semi-norms.

§9. Linear Topological Spaces

In this section we give the definition and fundamental properties of
“linear topologies”. This notion is too general for our purposes and it will
shortly be specialized by the introduction of a geometrical constraint on
the basic neighborhoods.

A. Let X be a linear space over the (real or complex) scalar field F. We
recall that a topology on X is a family J of subsets of X, closed under the
formation of finite intersections and arbitrary unions, and containing in
particular the empty set & and the whole space X. J is a linear topology
on X if it is compatible with the linear space structure on X ; that is, if both
the linear space operations

X, )x+y, xyeX

9.1
©-D (ot, X) > ax, ael, xeX

are continuous on their respective domains X x X and F x X. Here these
product spaces are given the usual product topologies determined by J and
the natural topology on F. In this case the pair (X, ) is a linear topological
space. However, once J is clearly understood, it is convenient to just say
that X is a linear topological space.

For any non-zero scalar o, € FF and vector x, € X the map x — x, + opx
is a homeomorphism of X with itself, so that, in particular, a linear topological
space is homogeneous. Consequently, the topological structure of X about
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any point is determined by a base of neighborhoods about the origin 6.
For if % is a base of 8-neighborhoods, then the sets x + U (U € %) constitute
a base of x-neighborhoods. For short, we say that a base of 8-neighborhoods
is a local base in X. The next result summarizes the fundamental working
properties of a local base.

Lemma. Let X be a linear topological space and % a local base in X.
Then

a) every U € % is absorbing;

b) if U e U there exists a balanced 6-neighborhood V suchthatV + V < U;

©) if A < X then A, the closure of A in X, equals n{A + U:Ueu};

d) the topology on X is Hausdorff if and only if n{U:Ue %} = {0}.

Proof. Parts a) and b) follow directly from the assumed continuity of
the linear space operations (9.1). Thus, given x € X and U € %, we have
that Ox = 6, so there must exist an interval (—4, §) for which txe U if
—0 <t < §; this proves a). Next, since § + 6 = 6 and addition is con-
tinuous, there is certainly some W e % for which W + W< U. To complete
the proof of b) it will suffice to find a balanced 6-neighborhood V = W.
But the map (a, x) — ax is continuous at (0, 8) so there is 6 > 0 and N € %
such that «N < Wif|o| < 6. Now we can put ¥V = U{aN:|a| < 6} and this
V meets the requirements of b).

c)LetAc XandletB=n{A + U:Ue¥}.1fxe Aand U e % then,
choosing V as in b), we see that the x-neighborhood x + V intersects A and
so xeA—V=A+ Vc A+ U. Thus xe B and we have shown that
A < B. However, if x € B a completely similar argument shows that every
x-neighborhood intersects 4 and so x € A. Therefore, B = A.

d) If the topology is in fact Hausdorff and we choose any x # 0 in X,
there is some #-neighborhood V such that x ¢ V; consequently there is some
U € % such that x ¢ U. This proves that x ¢ "n{U:U e %}. Conversely, if
this intersection contains only the zero vector 6 and if we choose x # y in
X, then there is some U e % for which x — y ¢ U. Selecting V as in b) we
then see that x + ¥V and y + V are disjoint neighborhoods of x and y, thus
proving that our topology is Hausdorff. 0

Theorem. A linear topological space X has a local base consisting of
closed balanced sets.

Proof. First we note that the closure of any balanced set 4 = X is
again balanced. That is, if [4| < 1 then A4 = 4. To see this, choose any
such 4 and any x € 4; if N is any neighborhood of Ax we wish to show that
N intersects A. By continuity there is an x-neighborhood V'such that AV < N.
Since x € 4, there exists ae A n V. Consequently, lae A n N, and so 4 is
balanced if 4 is.

Now let W be any 6-neighborhood in X. Applying the lemma we can
choose 6-neighborhoods U and V such that U is balanced and U < V <
V< W.Then U ¢ V <« W and U is balanced. 0
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At this point we have obtained a few elementary properties of linear
topologies. Many more connections between the algebraic and topological
structure are collected together in exercise 2.1; they will be used freely as
we go on. Let us also take note of a kind of converse to some of these facts.
Suppose that in a linear space X we are given a family % of balanced ab-
sorbing sets such that whenever U € % there exists Ve # with V + V < U
and whenever U, Ve % there exists We % with W <« U V. Then % is a
local base for a unique linear topology 4 on X. Indeed, I consists of those
sets ¥V < X such that, for every x € V, there exists Ue % with x + U < V.

Clearly, real or complex Euclidean n-space is a linear topological space
for every n. Other more substantial (infinite dimensional) examples will
follow shortly, as we learn systematic procedures for constructing linear
topologies.

B. Most of our subsequent interest in linear topological spaces will
tend to emphasize the effects of the topology on the linear structure. This
may be expected in view of our previous developments in Chapter I. However,
momentarily it is of interest to adopt the opposing view: what kinds of
topological spaces are obtained via the imposition of a linear topology on
a given linear space? Our main point is that such topological spaces must
be very “smooth”.

We have already noted that a linear topological space X must be
homogeneous, that is, given x,, x, € X, there exists a homeomorphism
h:X — X such that h(x;) = x,. (Indeed, we can take h to be the translation
X > x + (x, — x;).) Further, if the linear topology on X is Hausdorff then
X must be regular (even completely regular; see exercise 2.6 for an important
special case.) This follows from 9A using that X contains a local base of
closed sets.

Let us recall that a topological space X is contractible if the identity map
on X is nullhomotopic. This means intuitively that X can be continuously
shrunk to a point, and precisely that there is a continuous function (a
homotopy) h:[0,1] x X — X such that k0, x) = x (x € X) and Ah(1, x) is
constant. Similarly, X is said to be locally contractible if every point x € X
has a neighborhood base consisting of sets contractible to x. These conditions
entail very strong connectivity properties of X. Thus if X is (locally) con-
tractible then X is (locally) path connected and (locally) simply connected.
It is clear that a linear topological space is both contractible and locally
contractible, since the map («, x) > ax is continuous by definition.

Finally, some linear topological spaces of considerable importance in
our subject (conjugate spaces with the “weak-star” topology; defined later)
turn out to be expressible as a countable union of compact subsets. Such
spaces then have the Lindelof covering property (every covering by open
subsets admits a countable subcovering). It is known that any regular
Lindelof space must be paracompact (every open covering has an open
neighborhood-finite refinement), and in particular normal. The paracom-
pactness property is a weak substitute for metrizahility, which may or may
not be available depending on the nature of a particular linear topology.
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C. Although we have as yet established no results of any substance
concerning linear topological spaces, it is nevertheless already possible to
give an interesting application and we digress briefly to do so. The result to
be established concerns simultaneous approximation and interpolation in
abstract setting; upon suitable specialization it yields a variety of refinements
of known classical approximation principles such as the Stone-Weierstrass
theorem.

The main difficulty in the proof may be localized to the following lemma.
We consider a convex subset A of a real linear topological space X.

Lemma. Let ¢ be a continuous linear functional in X'. If A is dense in
X then A n ker(¢) is dense in ker(¢).

Proof. The hyperplane H = ker(¢) is closed (since ¢ is continuous)
and the half-spaces H* = {xe X:¢(x) > 0}, H™ = {xe X:¢(x) < 0} are
open. Let % be a local base in X consisting of balanced sets (9A). Fix x e H
and U e %. Now the dense set A4 intersects the sets (x + U) n H* at points
p*. Since ¢p(p~) < 0 < ¢(p™), there exists t, 0 < t < 1, such that tp~ +
(1 — t)p* € H. We now have

tp” +(1 —t)ptedn Hn(x + 2U).

This argument shows that A n H intersects every neighborhood of x. []
Now we come to the main result, known as the “Singer-Yamabe theorem”.
The idea is that if it is possible to approximate points in X from the convex
set A (that is, if 4 is dense in X), then it is also possible to approximate while
simultaneously satisfying a number of linear interpolatory conditions.

Theorem. Let A be a dense convex subset of X and let ¢,, ..., ¢, be
continuous linear functionals in X'. Given any xq€ X and any xy-neighborhood
V, there exists a point z € A such that ze V and ¢y(z) = ¢i(xo), i =1,...,n

Proof. After replacing A by its translate 4 — x, we may assume that
Xo=10. Let M; = {xe X:¢,(x) =+ = ¢;(x) = 0}. Then My = X o
M; > M, o -+ > M, and either M;,;, = M; or else M;,, is a closed
hyperplane in M;, for each j. Now, A n M; is convex, and if it is dense
in M; then by the lemma A N M;,, is dense in M;,,. Thus n repeated
applications of the lemma establish the desired result. 0

Let us consider a particular instance of this theorem. Let X = C(2),
the usual space of real-valued continuous functions defined on the compact
space Q. We define a linear topology (the topology of uniform convergence
on Q) by taking as a local base the sets

9.2) U, = {xe C(Q):sup |x(1)| < 1/n},
te
forn = 1,2,.... This topology takes its name from the fact that a sequence

of continuous functions coverges in this topology exactly when it converges
uniformly on Q in the usual sense. Now if y is a finite signed measure on the
Borel sets in €, it defines a linear functional ¢ € X’ by the rule

d(x) = foxdu, xeC(Q)
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Such functionals are continuous with respect to the topology of uniform
convergence on  since

6x) — V)| = [falx — y)dy|
< sup [x(0) — (0 |u/(@),

where |u|(€) is the total variation of y on Q.

Now suppose that A4 is a subalgebra of C(Q) that contains the constant
functions and that py,, ..., u, are Borel measures on 2 as above. Then the
following assertions are equivalent:

i) for each xy € C(Q) and each ¢ > 0, there exists y € 4 such that

sup [xo(t) — W0 < &
te
and
j!)xodﬂizjﬂydﬂi’ i=1,...,n;

i) A separates the points of Q.

The equivalence here follows directly from the Singer-Yamabe theorem and
the Stone-Weierstrass theorem (22E) which asserts that A4 is dense in C(Q2)
(in the topology of uniform convergence) exactly when A4 separates the points
of Q.

Note in particular that if each y; is a positive Borel measure concentrated
ata point t; € Q then [, x dy; = a;x(t;), for some o; > O (for details, see 22E).
Thus if A is a separating subalgebra of C(Q2) containing the constant functions
we can uniformly approximate any given function x in C(2) by a function
in A that agrees with x at a finite number of points in Q.

If we take instead our space X to consist of all complex-valued continuous
functions on a compact space 2, then the preceding extension of the Stone-
Weierstrass theorem remains valid, provided that the algebra A is also
self-adjoint (8F).

D. We now establish some facts about products, sums, and quotients
of linear topological spaces. These facts allow us to systematically construct
new spaces from given ones; they represent a continuation of the development
begun in 1C.

First, let {X,:a € I} be a family of linear topological spaces over the
same field and let X be the product space [ ], X,. Following the classical
Tychonov construction of the product topology we can define a local base
in X. To do so, let %, be a local base in X,. For each finite subset J < I
we choose a neighborhood V, € %, for a € J and define

9.3) U={xeXx,eV,ael}

Then the collection of all such U is a local base for the product topology on
X. It is easy to see from the characterization of Hausdorff linear topologies
in 9A that the product topology on X is Hausdorff exactly when the given
linear topology on each space X, is Hausdorff.
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When X, = Y for each « the resulting product space is denoted Y’; by
definition, it consists of all Y-valued functions defined on the set I. In this
case the product topology is often called the topology of pointwise conver-
gence on I, because a net {f;:6 € D} of functions in Y’ converges in the
product topology to f € Y' exactly when lim { fy(«):6 € D} = f(«), for every
ael.

Consider next the situation where a linear topological space X is the
algebraic direct sum of subspaces M and N:X = M @ N.If P:X - M is
the associated (linear) projection along N then P is an open map, that is, if
0 is an open subset of X then P(() is open in M. (Because, ® + N is open
and P(0) = P(O© + N) = (0 + N) n M.) We say that X is the topological
direct sum of M and N if the map (m, n) = m + n from the product space
M x N to X is a homeomorphism (it is clearly a continuous isomorphism
in all cases). For this to happen it is necessary and sufficient that the pro-
jection P be continuous. In turn, for P to be continuous it is evidently
necessary (but not sufficient!) that the subspaces M and N be closed in X.

Finally, let M be a subspace of the linear topological space X and let
Oum:X — X/M be the quotient map (1H). The quotient topology on X /M is
the strongest topology on X/M for which Q,, is continuous. This means
that a set A < X/M is considered to be open exactly when its inverse image
0Qx'(4) is open in X. The quotient topology is a linear topology on X/M:
indeed, a local base for it is the Q,,-image of a given local base in X. When
X /M is given the quotient topology, the quotient map Q,, is both continuous
and open.

Theorem. Let M be a subspace of X. The quotient topology on X/M is
Hausdorff if and only if M is closed in X.

Proof. 1f X/M is Hausdorff the zero-vector in X/M is a closed set and
its Q-inverse image must be closed. But Q,,'(#) = M. Conversely, assume
that M is closed. We will show that given a non-zero vector x + M in X/M
there is a closed neighborhood of x + M that does not contain 6, and this
will prove that the quotient topology is Hausdorff. Now, since x + M # 6,
x ¢ M, so that X\M is an open x-neighborhood in X. Since Q,, is an open
map, Q,(X\M) is an open (x + M)-neighborhood that does not contain 6.
Since the quotient topology is a linear topology, we conclude by 9A that
there is a closed (x + M)-neighborhood within Q,,(X\M). 0

E. We turn next to some finite dimensional considerations. Let us say
that two topological linear spaces over the same field are isomorphic (linearly
homeomorphic) if there exists an algebraic isomorphism between them which
is at the same time a homeomorphism. Such spaces cannot be distinguished
from one another by examination of their algebraic-topological structure.

Now let F be either the real field R or the complex field C. For each
n=12...,F" is an n-dimensional Hausdorff topological linear space
over F in its natural (product) topology (9D). We claim that it is the only
such space.
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Theorem. Let X be an n-dimensional Hausdorff topological linear space
over the field F. If {x,,...,x,} is a basis for X then the map T:F" — X
defined by

n

T(;Ll, ey ;Ln) = Z lix,-
is an isomorphism between F" and X.

Proof. T is well known to be an algebraic isomorphism and an obvious
induction, based on the axioms (9A) for a linear topological space, shows
that T is also continuous. Let B be the unit 2-ball (3C) in F"; that is, B =

{v="_(,,...,&) e F||v||3 = X |&* < 1}. In order to show that T is an
1

open map (and hence a homeomorphism) it suffices to show that T(B) con-
tains a 6-neighborhood in X. Now the boundary § = {ve F":||v||, = 1} of
B is compact in F” and so T(S) is a compact set in X that does not contain 6.
Hence X\T(S) is a 6-neighborhood in X and so contains a balanced 6-
neighborhood U. We claim that U < T(B). Because, if x ¢ T(B), then
[|T~*(x)||, > 1, whence

X/ T = T(T™)/||T 1)) € TIS),

and so x cannot belong to U. il

This theorem admits several corollaries two of which follow below and
two of which appear as exercises. First note this implication: if M is any
finite dimensional subspace of a Hausdorff linear topological space X, then
M is closed in X. This is because M is topologically complete, being homeo-
morphic to the complete metric space F".

Corollary 1. Let M and N be closed subspaces of the Hausdorff linear
topological space X with N of finite dimension. Then M + N is a closed
subspace of X.

Proof. Let Q) :X — X/M be the quotient map. The subspace Q,(N)
is a finite dimensional subspace of X /M, hence closed in X /M. Consequently,
its inverse image Q' (Qy(N)) = M + N is closed. 0

Corollary 2. Let X and Y be linear topological spaces with X Hausdorff
and finite dimensional. Then any linear map R: X — Y is necessarily continuous.

Proof. Let T:F" — X beanisomorphism. ThenthemapR o T:F" - Y
must be of the form (4,,...,4,) = 4y, + - -+ + A,, for suitable vectors
Yis---5Yn € Y. Such a map is surely continuous (as noted in the proof of
the theorem). Consequently, R = (R o T)o T~ is continuous. 0

F. We continue our finite dimensional considerations by establishing
a characterization of finite dimensional linear topological spaces. We precede
this result by some new terminology which also is needed for later work.

Let X be a linear topological space over the field F with local base %.
A sequence {x,} < X is bounded if 1,x, — 6 whenever 4, — 0 in F. A set
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A < X is bounded if every sequence in A is bounded. According to exercise
2.3 this happens exactly when A is absorbed by every neighborhood in %
(that is, given U e %, A4 < U for sufficiently small |4]). A set 4 = X is
totally bounded if for every U € % there is a finite subset B = X such that
A < B + U. Clearly a compact set is totally bounded and every totally
bounded set is bounded. The converse of this last remark is sometimes valid;
see exercise 2.3. In particular, the bounded sets in F”* are exactly the relatively
compact sets there.

Finally, a subset of X is fundamental in X if its linear hull is dense in X.
Evidently, X has finite dimension exactly when it contains a finite funda-
mental subset (9E). We preface the main result by an abstract form of
“Riesz’s lemma”.

Lemma. Let A be a bounded subset and M a closed subspace of X. If
there exists A€ F, |A| < 1, such that A = M + AA, then A = M.

Proof. For any U e % there is an integer n such that A"4 < U. Hence
AcM+ A<M+ UjandsoA = M = M. 0

It follows immediately that if A is both bounded and fundamental, if
|A| < 1,andif A = B + A4, then the set B is fundamental.

Theorem. The linear topological space X is finite dimensional if and
only if it contains a totally bounded neighborhood.

Proof. Suppose that some U € % is totally bounded. Then U is both
bounded and fundamental. For any scalar 4 with 0 < |A| < 1 there is a
finite set B such that U < B + AU; the preceding remark now shows that
B must be fundamental. 0

Thus we see that a locally compact (Hausdorff) linear topological space
must be finite dimensional.

§10. Locally Convex Spaces

In this section we specialize the very general notion of linear topology
developed in the preceding section. The reason for doing so is that the linear
topology axioms are simply too weak to yield a useful duality theory. Thus
in order to be able to link up the present topological considerations with the
powerful linear-geometric theory of Chapter I, we find it necessary to impose
an additional but crucial geometric condition on our linear topologies,
namely that the topology be determined by convex neighborhoods.

A. A linear topological space X is a locally convex space if it contains
a local base consisting of convex #-neighborhoods. This condition implies
that any x-neighborhood (x € X) contains a convex x-neighborhood. The
definitions (9.2) and (9.3) of local bases for C(2) and for [ [, X, show that these
spaces are locally convex (provided in the latter case that each X, is locally
convex and the local base %, in X, contains only convex sets).
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A barrel in a linear topological space X is a closed absolutely convex
absorbing subset of X. It follows from 9A and the preceding definition that
any locally convex space has a local base consisting of barrels. Note that
we do not claim that every barrel is a 6-neighborhood; only that enough of
them are so as to define the topology. Clearly intersections and positive
multiples of barrels are again barrels. In general, an absolutely convex
absorbing set 4 in X is a barrel exactly when its gauge p, is lower semi-
continuous on X.

The next lemma comprises the geometric description of locally convex
topologies; the analytical description follows momentarily.

Lemma. Let % be a family of absolutely convex absorbing sets in a
linear space X.

a) Suppose that, given U, V € U, there exists W € U such that W< U n
V, and that aU € % whenever o # 0. Then % is a local base for a unique
locally convex linear topology on X.

b) Whether or not U satisfies the conditions of a), there is a weakest
linear topology on X such that every set in % is a 0-neighborhood. A local base
for this topology consists of all positive multiples of finite intersections of the
members of 9 ; in particular, the topology is locally convex.

Part b) evidently follows from part a). The proof of part a) is omitted,
being straightforward but tedious. Let us just note that the unique topology
whose local base is % consists of those sets ¥V < X such that, for each x e V,
there exists U e Z with x + U < V.

B. In 3D it was observed that the semi-norms on a linear space X are
exactly the gauges of absolutely convex absorbing subsets of X. For any
semi-norm p on X we let U, = {x € X:p(x) < 1} be the p-unit ball in X.

Lemma. Let X be a linear topological space and B a barrel in X. Then
a) the gauge pg is the only semi-norm on X for which U, = B.
b) pg is continuous on X if and only if B is a 6-neighborhood.

Proof. a) We know from exercise 2.4 that B < U,,. Suppose that
x € U,; then for every ¢ > O thereis y, € Bsuch that x = (1 + ¢)y,. Clearly
Y. —> xas ¢ L 0sothat xe B = B. Thus B = U,,. Now if also B = U, for
some semi-norm p then we would have p(x) < 1< pg(x) < 1. For any
fixed ye X and ¢ > 0, put x = y/(p(y) + ¢) and then put x = y/(pg(y) + &)
to obtain pg(y) < p(y) + eand p(y) < pp(y) + &

b) If pp is continuous then B contains the open #-neighborhood {x € X:
pa(x) < 1}. Conversely, if B is a #-neighborhood, for each ¢ > 0, pg(eB)
lies in the interval [0, ¢]. This proves that py is continuous at 6. Since

lps(x) — pa(¥)| < palx — ),

it now follows that py is (uniformly) continuous on X. 0
One implication of this lemma is that the unit balls of all the continuous
semi-norms on a given locally convex space X constitute a local base of
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barrels in X. However, this would be an inordinately large local base. It is
more interesting (and practical) to be able to define the topology on X with
as few semi-norms as possible. The following details constitute the analytic
description of locally convex topologies.

Let 4" be a family of continuous semi-norms on X. We say that 4" is a
base of continuous semi-norms on X if, for any continuous semi-norm ¢ on
X, there exist t > 0 and p € A" such that ¢ < tp (equivalently, U, < tU,).
Thusif 4" is a base of continuous semi-norms on X, then {tU,:p e A, t > 0}
is a local base in X.

The most common way of specifying a locally convex topology by means
of semi-norms is to make use of 10A. Suppose that we are given a family
A of semi-norms on a linear space X. Then there is a weakest locally convex
topology 4 on X for which all the semi-norms in 4" are continuous. J is
said to be generated by A" and we often call 7 the A -topology. A local base
for 7 consists of all positive multiples of finite intersections of p-unit balls
for p e &/ and a base of continuous semi-norms on (X, .7 ) is given by the
collection of suprema of the finite subsets of A"

Another perspective on the .4 ’-topology is gained from the following
considerations. Each semi-norm p € A" defines a pseudometric d, on X by

dy(x,y) = p(x — y).
That is, the relations
dy(x,y) 2 0,

dy(x, y) = d,(y, x),
d,(x, y) < dj(x,z) + d,(y,2)

hold for all x, y, ze X. (The pseudo-metric d, interacts with the linear
structure on X by virtue of being translation invariant, that is, the relation

dy(x + 2,y + 2) = dyx,y)

holds for all x, y, z e X.) Each pseudo-metric d, defines in the usual way a
pseudo-metric topology on X and the A -topology is simply the least upper
bound of these d,-topologies for p € A". The point of these remarks is to
suggest that a property of the 4 -topology is likely to be the conjunction of
the corresponding properties in all the d,-topologies. This idea is made
forcefully clear by the next theorem which summarizes the main operating
characteristics of A -topologies.

Theorem. Let A" be a family of semi-norms on the linear space X.

a) The A -topology is Hausdorff if and only if for each non-zero x € X
there exists p € & for which p(x) > 0.

b) Anet {x;:6€ D} = X convergesto x € X if and only if limsp(x; — x) =
0, for every pe N

c) A subset A of X is bounded in the A -topology if and only if A has
finite p-diameter for every p e N,
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d) A subset A of X is totally bounded in the A -topology if and only if
Jor every ¢ > 0 and every p € N there is a finite (g, p)-net in A.

Let us clarify some terminology here. The p-diameter of the set A4 is the
number sup{p(x — y):x, y€ A}. An (g, p)-net in A is a subset B of 4 such
that for every x € A there exists y € B with p(x — y) < & Thus, parts c) and
d) may be reworded: the set A = X is bounded (resp., totally bounded) in
the A -topology exactly when A4 is bounded (resp., precompact) in each
d,-topology (p € A"). The proof of this theorem is straightforward and is
left to the exercises, as is a criterion for metrizability of an 4 -topology.

C. Recall (3D) that a norm p on a linear space X is a semi-norm
with trivial kernel: p(x) = 0 only if x = 0. Geometrically, p is the gauge of
an absolutely convex absorbing set which contains no proper subspace. A
locally convex space is normable if its topology is the .4 "-topology for A"
consisting of a single norm.

Theorem. A locally convex space X is normable if and only if there
exists a proper bounded 6-neighborhood in X.

Proof. 1If the topology on X is defined by a norm p then the p-unit ball
(10B) is such a -neighborhood. Conversely, if such a #-neighborhood exists,
it must contain a barrel B. The gauge pp must be a norm since pg(x) = 0
implies nxe B for n = 1,2,..., so that x = 0 or else B would not be
bounded. Since pg is continuous (10B) the pg-topology is weaker than the

.. . . 1
original topology. But since B is bounded, the sets P B:n=1,2,... form

a local base in X; hence the pg-topology is exactly the original topology
on X. 0

Corollary. Let {X,:a € I} be a family of normable spaces over the same
field. Then the product space [ |, X, is normable if and only if the index set 1
is finite.

The proof results directly from the theorem and exercise 2.3b.

D. In practice a normable locally convex space is specified analytically
rather than geometrically as in 10C. That is, there is given a pair (X, p)
consisting of a linear space X and a norm p on X. X is then considered to
be topologized by the 4 -topology with A" = {p}; the resulting locally
convex space is called a normed linear space. Since p is a norm the pseudo-
metric d, (10B) is actually a metric on X x X. The study of normed linear
spaces and the interplay between the resulting algebraic-geometrical-
topological structure is one of the major objects of this book.

Let us now consider some prototypical examples of normed linear spaces.
In doing so and in subsequent work we shall adhere to the tradition of writing
a norm as ||||.

Example 1. (Spaces of continuous functions). Let Q be a topological
space and let IF be either R or C. Then the space C,(R, F) is the linear space



§10. Locally Convex Spaces 57

of all bounded continuous F-valued functions f on Q normed by the uniform
norm

(10.1) [|[fllo = sup{|f(®)|:t e Q}.

Convergence in the associated metric is uniform convergence on  (as in 9C).
The case where Q is discrete is of interest here; in this case C,(Q, F) comprises
the space of all bounded F-valued functions on Q.

Example 2. (Spaces of integrable functions). Let (Q, X, u) be a positive
measure space and let p > 1. The space L? = L?(Q, u, F) is the linear space
of all (equivalence classes of) p-th power u-integrable functions f:Q — F
normed by the p-norm

(10.2) 11> = (JelfC)P du)*>.

The subadditivity of the p-norm is not entirely obvious; it is in fact equivalent
to Minkowski’s inequality in measure theory. Convergence in the associated
metric is called convergence in the mean of order p. Note that this example
subsumes the earlier case of the p-norm on F” (3C). 0

Example 3. (Spaces of measures). Let (2, X) be a measurable space.
Then the space #(Q, X, F) is the linear space of all F-valued countably
additive set functions u defined on the g-algebra X, normed by

(10.3) |/l = sup {i |u(A;)|: {4;} partitions Q}

To say that {4;} partitions Q means that {4;} is a sequence of pairwise
disjoint subsets of ~ whose union is Q. As is well known, if in the right hand
side of (10.3) we replace Q by an arbitrary set A € 2, then the formula
defines a finite positive measure |y| on X, called the total variation (measure)

of u. Thus ||y||, = |u|(K). 0

Example 4. (Spaces of Lipschitz functions). Let (2, d) be a metric space.
Then the space Lip(Q, d, F) is the linear space of all bounded F-valued
functions on Q which satisfy a Lipschitz condition on  (in the sense that

(10.4) If1la = sup {|f(s) — f(e)|/d(s, t):s,te Q, s #* t}

is finite), normed by

(10.5) 1f1le = max{]|f], ||fla}-

Convergence in the associated metric is much stronger than uniform con-
vergence; for an illustration, see exercise 2.9. O

Example 5. (Spaces of analytic functions). Let Q be a subset of C
consisting of a simple closed curve and its interior; for example, let Q =
{zeC: |z| < 1}. Then the space A(R) is the linear space of all continuous
complex-valued functions on Q which are analytic in the interior of €,
normed by the uniform norm (10.1). We may similarly define the space
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H*(Q) to be the linear space of all bounded analytic functions defined on
the interior of ©, again normed by the uniform norm. O

At this point we have a large variety of examples at our disposal, because
in addition to the preceding examples we can consider subspaces, quotient
spaces and (finite) products. A subspace M of a normed linear space X is
of course again a normed linear space with norm equal to the restriction of
the given norm on X to M. Similarly, the quotient space X/M is normable,
provided that M is closed in X. To see this, we recall from 9D that a local
base in X/M is given by the Q,,~-image of a local base in X. Since X is normed
we let A = X/M be the Q,,-image of the unit ball in X. The set A4 fails to
be a barrel in X/M only because it may fail to be closed; in any event, its
gauge p, is a norm on X/M which defines the quotient topology. We can
give a formula for this quotient norm as follows:

(10.6) [[x + M|| = pa(x + M) = d(x, M)
where the right hand side of (10.5) is defined for all x € X by
(10.7) d(x, M) = inf{||x — y||:ye M}.

It was shown in 10C that a product X = X, x --- x X, of normed
linear spaces X,,..., X, is normable. The question remains of actually
constructing a norm on X in terms of the given norms ||-||; defined on X.

A general way of doing this is to select any monotonic norm p on R” and
then to define

10.) Iell = ofalls - ol

for all x = (x4, ..., x,) € X. The norm p on R" is monotonic provided that
p(u) < p(v) whenever 6 < u < v in R” In particular, the p-norms on R"
are monotonic.

One final remark should be made about our list of examples of normed
linear spaces. In all cases these examples were linear spaces of scalar-valued
functions with certain special properties. Much more complicated examples
can be constructed by replacing the range space F (the scalar field) by some
normed linear space X (necessarily complex for Example 5). Then we con-
sider the preceding examples with the feature that our functions are now
X-valued. We must then modify the definitions (10.1)—(10.4) by replacing
the absolute values on the right hand sides by the norm in X. Thus, for
example, (10.1) becomes

(10.9) [|f]|e = sup{||f(0)||:t € Q),

where || (2)|| is the X-norm of the vector f() € X.

In addition to the foregoing list of spaces of scalar or vector-valued
functions, there is one other class of normed linear spaces that is very impor-
tant in practice. These spaces consist of the continuous linear operators
acting between two given normed linear spaces. We defer further discussion
of such spaces until we have learned how they should be normed.
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§11. Convexity and Topology

In this section we study the basic topological properties of convex sets
in linear topological spaces, and learn conditions for the continuity of linear
mappings on such spaces. The results of this section will allow us to establish
sharper forms of the separation, support, and extension theorems in the
context of linear topological spaces.

A. The following lemma summarizes information that we shall need
concerning the topology of convex sets. We write the interior of a set 4 as
int(A4), and we say that A is solid if its interior is non-empty.

Lemma. Let A be a convex subset of a linear topological space X. Then
A is convex. If A is also solid, then

a) int(A) = cor(A4);

b) A = int(4) and int(A) = int(A) (in particular, int(A) is dense in A);

c) lin(A) = A (in particular, lin(A) is convex);

d) the algebraic boundary of A is its topological boundary.

Proof. The map f:X x X x [0,1] - X defined by f(x,y,t) = tx +
(1 — t)y is continuous; hence

fA x 4 x[0,1]) = f(A x 4 x [0,1])

cf(A x A x [0,1]) = A.

Thus we see that A4 is convex.
The key observation for the rest of the proof is the fact that

(11.1) td + (1 — t)int(4) < int(4),

for 0 < t < 1. To prove this, it suffices to show that the left hand side of
(11.1) lies in A since it is clearly open. Let p € int(4). Then (1 — t) (int(4) — p)
is an open #-neighborhood and so

tA =tA c tA + (1 — t) (int(A) — p)
=tA+ (1 —-9tint(d) — (1 —-t)p= A —(1 - t)p.

a) From exercise 2.1 we know that int(4) = cor(A4). Suppose that x €
cor(A4) and p € int(4). Then there exists y € 4 such that x € [ p, y). Since this
segment lies in int(A4) by (11.1), we see that cor(4) < int(A4).

b) Clearly int(4) = A4. Suppose that x € 4 and p € int(4). Then [ p, x) =
int(4) by (11.1) and so x € int(A4). To prove the second assertion of part b),
we see that int(4) < int(A4) is trivial. Suppose that x € int(4) and p € int(A).
Then x € [ p, y) for some y € 4; by (11.1) again, this implies that x € int(A).

¢) Clearly lin(4) = A. Suppose that x € 4 and p € int(4). Then [ p, x) =
int(4) shows immediately that x € lin(A4).

d) If x is a bounding point of 4, then x € lin(4)\cor(4) = A\int(4) =
0(A), the topological boundary of 4. This reasoning is clearly reversible. []
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Let A be a subset of the linear topological space X. We define the closed
convex hull of A,T0o(A), to be the smallest closed convex setin X that contains
A:

to(4d) = n{K = X:A4 < K, K closed and convex}.

It follows from the lemma that

to(A4) = co(4),

that is, €0(A) is simply the closure of the ordinary convex hull co(A4).
Let A and B be two subsets of X whose closed convex hulls are compact.
Then
¢o(A4 U B) = co(co(A4) u To(B))

is compact, since the right hand side (the join (2A) of €6(A4) and \c—o(B)) 1s
the continuous image of the compact space To(4) x co(B) x [0, 1] under
the mapping (x, y, t) > tx + (1 — t)y. Analogously, if at least one of €o(4),
Co(B) is compact, and «, § are scalars, then

(A + BB) = « TH(A) + B TO(B).

Because, being closed and convex, the set co(x4) + €o(8B) contains co(aAd +
BB) (making use of equation (2.2)); on the other hand,

to(xAd + BB) = co(@d + BB)
> co(ad) + <o(fSB).

Finally, we employ the general fact

To(cA) = cco(A)
for any scalar c.

B. The following proposition, concerning the preservation of bounded-
ness properties, requires us to work in locally convex spaces; both conclusions
can fail in a general linear topological space.

Lemma. Let A be a bounded (resp. totally bounded) subset of a locally
convex space X. Then the absolutely convex hull of A is bounded (resp. totally
bounded).

Proof. Let A" be a base of continuous semi-norms (10B) on X. We
know (10B again) that A4 is bounded if and only if it has finite p-diameter for
each p € A#. Now if A has finite p-diameter for a semi-norm p the same is
clearly true for bal(A4) and for co(bal(4)) = aco(A4) (2A). Now suppose that
A is totally bounded. Then for each ¢ > 0 and each p € 4/, there is a finite
(&, p)-net in A (10B). To show that bal(A) is totally bounded, we select ¢ > 0,

pe N, an %, p | -net {xl, ..., X,} in A and an g/2y-net {a, ..., a,} in the

set of scalars {

{or:|ox }; herey = max{ p(xy), . .., p(x,)}. Then we see that
the set {o;x;: 1 <i

< , 1 < j < n}is an (g p)net in bal(4). Finally we
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show that co(A) is totally bounded if 4 is. Given ¢, p, and {x;,...,x,} = 4
as above, let B = co({xy, ..., x,}). Then B is totally bounded (actually

compact by exercise 1.8 and 9E); let { y;, ..., y,} bean %, p | -net in B. We

claim that the y’s form an (e, p)-net in co(A). Because, if x = Y oa; is in

co(A4), there are points X, in {x;,..., x,} such that p(a; — X)) < /2.
Consequently, setting y = ) o;%;q), we have p(x — y) < ¢/2; since y € B,
there is some y; with p(y — y;) < &/2, whence p(x — y;) < e. 0

The chief interest in this result is that it provides a means of constructing
or recognizing compact convex sets. That is, if a set A is known to be totally
bounded we intuitively suspect that the sets co(A4) and aco(A4) = aco(A)
should be compact. Whether they actually are or not depends on the com-
pleteness properties of X. We briefly consider such properties next.

C. Let X be a locally convex space. A net {x;:6 € D} in X is a Cauchy
net if

lim (x; — x5) = 6.
J,06'eD

A subset 4 of X is complete (resp., semi-complete) if every Cauchy net (resp.,
sequence) contained in A4 has a limit in 4. X is called quasi-complete if every
closed bounded subset of X is complete. In particular, a quasi-complete
space must be semi-complete, since any Cauchy sequence is necessarily
bounded.

A complete normed linear space is called a Banach space. All the examples
in 10D of normed linear spaces are actually Banach spaces (exercise 2.8). In
the next chapter we shall see some important examples of quasi-complete
but not complete spaces.

Theorem. Let X be a quasi-complete locally convex space. If A is a
totally bounded subset of X then aco(A) (and hence TO6(A)) is compact in X.

Proof. The most expedient proof of this theorem is based on the notion
of universal net. Recall that a universal net in a topological space A4 is a net
in A with the property that for each set B = A, the net is eventually in B or
else eventually in A\B. Now in order to show that aco(A4) is compact we
must show that any net {x,:0 € D} in aco(4) has a cluster point in aco(4).
Since every net has a universal subnet, we may as well suppose that {x;:6 € D}
is already universal. We are going to show that a universal net in aco(A)
must be Cauchy; once this is done we can invoke the completeness of aco(A4)
to conclude that this Cauchy net converges in aco(A) and so finish the proof.

Let U be an arbitrary 6-neighborhood in X and choose a balanced
0-neighborhood V such that V + V < U (9A). Then since aco(A) is totally
bounded (being the closure of a totally bounded set), there is a set B =
{¥1,- -+, Y} = X such that aco(4) = B + V. Because our net is universal
it must eventually lie in one of the sets y;, + V,..:,y, + V,sayiny; + V.
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That is, there exists y € D such that x; € y; + V whenever 6 > y (in the
ordering of D). Consequently, if §, §' > 7y then

X5 —xge(y; +V)—(y; + V)

and so our universal net is indeed a Cauchy net. il

It is to be noted that this argument made no use of local convexity
beyond the appeal to 11B. It follows that any complete and totally bounded
subset of a linear topological space must be compact. The converse is also
true, and much easier to prove.

D. Now we consider some criteria for the continuity of linear mappings
between linear topological spaces. The only satisfactory general results occur
when the target space is finite dimensional. We begin with a very general
elementary proposition, whose straightforward proof is omitted.

Lemma. Let T:X — Y be a linear map between linear topological spaces
X and Y. The following are equivalent

a) T is continuous on X ;

b) T is continuous at 0 in X ;

c) T is uniformly continuous on X, that is, for each 6-neighborhood
V < Y, there is a 0-neighborhood U = X such that T(x) — T(y)eV if
x —yeU.

Corollary. If X and Y are locally convex then a linear map T:X — Y
is continuous if and only if for every continuous semi-norm p on Y, there is a
continuous semi-norm o on X and a constant § > 0 such that

(11.2) o(T(x)) < Bo(x), xe X.

Suppose in particular that X and Y are normed linear spaces. Then we
can state that T:X — Y is continuous if and only if for some g > 0

(11.3) [|Tx)|| < BIX|l, xeX.
The smallest such f is called the norm of T and written ||T||, that is
(11.4) |IT|| = sup {lrlrli)'cl)”x # 0}.

Note that this quantity serves as the Lipschitz constant for T. On account
of the inequality (11.3) continuous linear maps between normed linear spaces
are frequently called bounded linear maps, since they map bounded sets into
bounded sets. Let B(X, Y) be the linear space of all bounded linear maps
between the normed linear spaces X and Y. Then B(X, Y) is again a normed
linear space with norm defined by (11.4). Such spaces constitute the class of
examples suggested at the end of 10D.

We now give a useful condition for a certain important class of linear
maps to be continuous. Recall that the rank of a linear map is the dimension
of its image.
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Theorem. Let T:X — Y be a linear map of finite rank between linear
topological spaces X and Y. Then T is continuous if and only if its kernel is
closed in X.

Proof. The condition is trivially necessary. Conversely, suppose that
N = ker(T) is closed. Then by 9D, the quotient space X/N is a finite dimen-
sional Hausdorff linear topological space, and so, by 9E, any linear map
defined on X/N must be continuous. In particular the map T:X/N — Y
defined by
T(x + N) = T(x)

is continuous (and also injective). Thus T = T o Qy is also continuous. []

This theorem of course applies in the case of linear functionals: a linear
functional ¢ in X’ is continuous if and only if its hyperplanes [¢; o] are
closed for all scalars «. We denote the set of all such ¢ by X*; it is a subspace
of X’ but possibly trivial in the sense that its only element may be 6. We
shall soon see that the local convexity of X is sufficient to insure that X* is
in fact a usefully “large” subspace of X'. First we note a corollary to the
preceding theorem for linear functionals.

Corollary. Let X be a linear topological space. A linear functional ¢ € X'
is discontinuous if and only if one (and hence all) of its level sets [$; o] is
dense in X.

Proof. It only needs to be observed that if ¢ is discontinuous then its
kernel is not closed in X and so is properly contained in its closure. Since
this closure is a subspace it must be all of X because a hyperplane is by
definition (1E) a maximal proper flat in X. 0

Observe that this corollary implies that a discontinuous linear functional
defined on a real linear space X cannot be bounded above or below on any
(proper) open subset of X.

E. Now it is time to reconsider the separation and support principles
of sections 4 and 6. The necessity for this is due to the phenomenon of dense
hyperplanes, possible in infinite dimensional spaces. Separation or support
assertions involving such hyperplanes are devoid of useful geometric impli-
cation. To avoid this problem we must work exclusively with closed hyper-
planes, or equivalently, with continuous linear functionals. Following is the
topological version of the basic separation theorem of 4B, to be called
henceforth simply the “separation theorem”.

Theorem. Let A and B be convex subsets of the real linear topological
space X, and assume that A is solid. Then A and B can be separated by a
closed hyperplane if and only if int(4) n B = .

Proof. Since cor(A) = int(4) # ¢, we know from 4B that A and B
can be separated by some hyperplane exactly when int(A) n B = . Let
[¢; «] be any such hyperplane. Then [¢; «] N int(4) = (¥ so that the level
set [¢; a] is not dense in X. By 11D it follows that ¢ is continuous and that
[#; «] must be closed. O
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As a consequence we note a geometric criterion for the existence of
non-trivial linear functionals on X, namely, the existence of a proper solid
convex set in X. For if such a set exists, it can be separated from any point
outside it by a closed hyperplane which is a level set of some non-zero
continuous linear functional. This observation in turn yields an even more
striking corollary which provides most of the motivation for the study of
locally convex topologies.

Corollary 1. Let X be a locally convex Hausdorff space. Then the space
X* separates the points of X.

Proof. Let x and y be distinct points in X. We are to find a continuous
linear functional ¢ on X such that ¢(x) # ¢(y). Letting z = x — y # 0, we
shall find such a ¢ for which ¢(z) # 0. Let V be a convex 6-neighborhood
that does not contain z. Then z and V can be separated by a closed hyper-
plane [; a]. Since Y/(V) is an interval containing 0 in its interior, /(z) cannot
be 0. Thus i is (the real part (1F) of) a continuous linear functional ¢ and
d(z) # 0.

The Hausdorff restriction here is crucial; the assertion of the corollary
is false for non-Hausdorff spaces. Consequently, all locally convex spaces
will henceforth be assumed to be Hausdorff, unless the contrary is explicitly
allowed. The space X * will be called the continuous dual (topological conjugate
space) of X. One of the major techniques in our subject is the characterization
of a property of a space X by means of a “dual” property of the space X*.

Corollary 2. A closed solid convex subset of a real linear topological
space is supported at every boundary point by a closed hyperplane.

This is an immediate consequence of the theorem, and is the topological
version of the support theorem of 6C.

F. Here we give our final separation theorem in linear topological
spaces. Its necessity is evidenced by the fact that at present we don’t even
know if a point can be separated from a closed convex set (disjoint from the
given point). We can only be sure of this if the convex set were known to be
solid. However, we can exploit the fact that the point is a compact set. What
is needed is the topological version of the basic strong separation theorem
of 4C.

Theorem. Two convex sets A and B in a locally convex space X can be
strongly separated by a closed hyperplane if and only if 6 ¢ B — A.

Proof. The condition is clearly necessary. Conversely, if 6¢ B — A
there is an open absolutely convex set V in X such that V n (B — 4) = {J,
or, such that the open convex set A + V is disjoint from B. By 11E we can
separate these sets by a closed hyperplane which, just as in 4C, strongly
separates A and B. 0

Corollary. Let A and B be disjoint closed convex subsets of a locally
convex space with A compact. Then A and B can be strongly separated by a
closed hyperplane.
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Proof. The set A — B is closed and does not contain 6. O
A profound extension of this corollary is given later in 15D. See also
exercise 2.26.

G. We conclude this section with sharpened forms of the Hahn-Banach
theorem (6A) and its corollary. There is an obvious analogous sharpening
of the Krein-Rutman theorem (6B); see exercise 2.45.

Theorem. Let M be a subspace of the linear topological space X and
let p € M*.

a) Assume that X is real, that g € Conv(X) is continuous on X, and that
¢ < g|M. Then there is an extension ¢ € X* of ¢ such that ¢ < g.

b) Assume that p is a continuous semi-norm on X and that |¢(-)| < p|M.
Then there is an extension ¢ € X* of ¢ such that |§(-)| < p.

The proof is an immediate consequence of the existence of the extensions
(6A) and the continuity criteria in 11D.

§12. Weak Topologies

In this section we introduce a class of linear topologies which, together
with the normable topologies, leads to the most important examples of
locally convex spaces (at least for our purposes). The ultimate reason for the
importance of these so-called “weak topologies” is the compactness criterion
presented below in 12D.

A. Let X be a linear space and Y a subset of the algebraic conjugate
space X'. The A -topology (10B) defined on X by means of the family of
semi-norms

N = {|p()|:pe Y}

is called the weak topology on X generated by Y, and denoted o(X, Y). It is
the weakest topology on X in which all the functionals belonging to Y are
continuous. It is clear that ¢(X, Y) is unchanged if we replace Y by span(Y),
so we shall assume always that Y is a subspace of X'. From the general
properties of A -topologies given in 10B we can deduce the following
important facts about weak topologies. Recall that a subset Y <= X' is total
if it separates the points of X; that is, Y is total if ¢(x) = O for all pe Y
implies x = 6.

Lemma. Let X be a linear space and Y a subspace of X'.
a) The weak topology (X, Y) is a Hausdorff topology if and only if Y
is total.
b) A net {x;:6 € D} in X converges to x in the o(X, Y) topology if and
only if im{¢(x;):0 € D} = P(x), for all p € Y.
c) The following properties of a set A = X are equivalent:
i) Ais a(X, Y)-bounded;
i) A is (X, Y)-totally bounded,;
iii) sup {|¢(x)|:xe A} < oo, forallp e Y.
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d) A o(X, Y)-local base in X is given by the family
{xeX:|¢p(x)| < 1, pe F e F},

where F consists of the finite subsets of Y.

Important cases in practice of weak topologies occur when X is already
a locally convex (Hausdorff) space and Y is its continuous dual X*. The
resulting (Hausdorff) topology o(X, X*) is called simply the weak topology
on X, and we speak accordingly of weakly bounded or weakly compact sets
in X, and of weak convergence of nets in X. Even more important is the
topology a(X*, X) = a(X*, Jx(X)) defined on the continuous dual X* of
X by the evaluation functionals

¢ - o(x), xe X, Pe X*

The map Jy here is the canonical embedding of X into X" introduced in
1D; we have tacitly restricted the domain of these functionals to be X*
rather than all of X". The topology o(X*, X) is called the weak* (weak-star)
topology on X*, and we may consider weak*-compact sets in X*, weak*-
convergence of nets in X*, etc.

Let us consider in general a weak topology 6(X, Y) on a linear space X
generated by a total subspace Y = X'. We know that each ¢ € Y is o(X, Y)-
continuous on X and we ask if there are any other o(X, Y)-continuous
functionals in X'.

Theorem. A functional ¢ € X' is o(X, Y)-continuous on X if and only if
¢peY.

Proof. 1If ¢ is o(X, Y)-continuous then ¢ is bounded (say by 1) on some
o(X, Y)-6-neighborhood in X. By part d) of the lemma it follows that there
are @y, . .., ¢, € Y such that |p(x)| < 1 whenever |¢;(x)] < 1,1 < i< nln
particular, if xe N {ker(¢;):1 < i < n}, then |¢(kx)| < 1 for all k, whence
¢(x) = 0. Thus

n{ker(¢;):1 < i < n} < ker(¢),

so that, by 1G, ¢ € span{¢,, ..., ¢,} = Y. 0

Let us consider some implications of this theorem for a locally convex
space X and its weak topology o(X, X *). First note that the weak topology
really is weaker than the given topology on X. This follows, for example,
from part b) of the lemma which implies that any convergent net in X is
also weakly convergent. Now the theorem implies that every continuous
linear functional on X is necessarily weakly continuous. Thus, even though
the weak topology on X may be strictly weaker than the given topology, the
two topologies yield exactly the same continuous linear functionals. We also
see that the two topologies yield the same closed convex sets.

Corollary 1. Let A be a convex subset of a real locally convex space X.
Then A is closed if and only if it is weakly closed.
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Proof. Assume that A is closed and that x € X\4. By 11F x can be
strongly separated from A4 by a hyperplane [¢; o] for some ¢ € X *. Thus,
by part b) of the lemma again, no net in 4 can converge weakly to x. That is,
x does not belong to the weak closure of A. il

This corollary shows us in turn that the weak closure of any set 4 = X
lies in €o(A), since this latter set is weakly closed. In particular, if X is
metrizable (for example, if X is a normed linear space), then each point in
the weak closure of 4 is the limit (in the original topology on X) of a sequence
of convex combinations of points in A.

Corollary 2. Let X be a normed linear space. Then the norm on X is a
weakly lower semicontinuous function.

This result follows directly from the weak closure of the unit ball (and its
positive multiples) in X. The implication is that

12.1) ||x|| < lim; infl|x,|],

whenever {x,:6 € D} is a net in X that converges weakly to x.

B. Let X bealocally convex space and let J,: X — X*' be the canonical
embedding of X into the algebraic conjugate space of X *:

{p, Ix(x)) = ¢(x), ¢ e X*, xe X.

Now X* with its o(X*, X) topology is a locally convex space and Jy(X)
is its continuous dual. (Although a simple enough consequence of 9A, this
is still an important remark. Explicitly it asserts that any weak*-continuous
linear functional defined on X* must be an evaluation functional, that is,
it must have the form ¢ > ¢(x,) for some fixed x, € X.) Thus J,(X) has its
own weak* topology. With Jx(X) so topologized and with X topologized
with the weak topology, the map Jyx:X — Jx(X) is an isomorphism. Thus
every locally convex space is weakly reflexive in that it is canonically iso-
morphic to the dual of its dual, provided that the appropriate topologies are
used on the spaces involved. Because of its universal validity this result is
not of great usefulness in practice; it is much more important (but not always
possible) to achieve such an isomorphism when X has its given topology.
We shall return to this problem in Chapter III.

C. In exercise 1.16 the notion of the polar of a subset of R” was intro-
duced. We now extend this definition. Let X be a real linear topological
space. The polar ofaset A = X is

A° = {peX*:¢(x) < 1,xe 4}.

Since 6 € A° always, we see that 4° is a non-empty convex and weak*-closed
subset of X *. As an example, if 4 is a subspace of X, its polar is the intersection
of X* and its annihilator subspace (1H) in X".

The bipolar of 4 is

CA° =A%) = {xe X:¢(x) < 1,¢p € 4A°}.
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The precise relation between a set in X and its bipolar is quite important
and is contained in the following “bipolar theorem”.

Theorem. Let A be a subset of a real locally convex space. Then
(12.2) °A° =To({0} U A).

Proof. It is clear that the set {6} U A lies in °A4°. Since °A4° is convex
and (weakly) closed we see that °4° > €0({6} U A). On the other hand, if
any closed half-space (4B) contains {8} U A4, it must also contain °A4°. Taking
into account exercise 2.13, we obtain the reverse inclusion. 0

Corollary 1. (°A4°)° = A°.

Corollary 2. Let A be a subset of a real locally convex space X. Then
span(A) is weakly dense in X if and only if ¢ = 0 is the only functional in X*
to annul every point of A.

Proof. Let M = span(4) and let M™ be its weak closure in X. Then
M» = X if and only if (M™)° = X° = {6}, since M* and X are each equal
to their own bipolars. But M¥ = °M° so that our condition for M¥ = X
becomes

{0} —_ (MW)O — (OMO)O — MO’

which is clearly equivalent to the condition stated in the corollary. 0

Corollary 3. Let X be a real locally convex space. A subset of X* is
total if and only if its span is weak*-dense in X *.

Example. To gain some insight into the significance of weak*-density
of subspaces, we consider a particular case. Let L' = L'([0, 1], R) be the
Banach space of real-valued Lebesgue integrable functions on the interval
[0, 1] (a special case of the spaces in Example 2, 10D). Now every essentially
bounded measurable function g on [0, 1] defines a continuous linear func-
tional on L! by

(12.3) [ s fogndt,  felLl,

and the norm (11D) of this functional is just the essential sup norm ||g||.
In this fashion we obtain a norm-preserving isomorphism from L® =
L*([0, 1], R) into L'". On the other hand, if ¢ € L*" then the formula

WE) = ¢(xg)

defines an absolutely continuous measure y on the measurable subsets
E < [0, 1] whose Radon-Nikodym derivative g belongs to L* with ||g||., =
||#||. Since

§6 x6g(0)dt = [§ x5 du = WE) = $(xz),
we see that g defines via the formula (12.3) a continuous linear functional

on L' that agrees with ¢ on each characteristic function, hence on each
simple function, and finally (by continuity) on all of L. Thus we may identify
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L'* with the space L. (The same result holds if [0, 1] is replaced by any
o-finite measure space.)

Now the space C([0, 1], R) is evidently a proper closed subspace of L*.
We claim that it is weak*-dense, however. To see this, it is enough (by
Corollary 3) to verify that the continuous functions are total over L. That
is, we must show that if, for some f e L?,

Jb fvg(ode = 0

for all continuous g, then f = 0. There are various ways to prove this last
assertion. One may note, for example, that the hypothesis implies that f has
an everywhere vanishing Fourier transform, so that by the uniqueness of
Fourier transforms, f = 6. Otherwise, it may be attacked directly (a good
exercise!) by use of standard measure theoretic tools such as the regularity
of Lebesgue measure and the dominated convergence theorem. O

D. We consider next a criterion (the “Alaouglu-Bourbaki theorem”) for
the weak*-compactness of subsets of the continuous dual X* of a linear
topological space X. It is possible to give more general (but more com-
plicated) criteria for compactness in any ¢(X, Y) topology. However, such
criteria are difficult to apply in practice, and, in any event, most practical
situations can be handled by the clear and simple condition below. Also we
point out that very sophisticated (and useful) compactness conditions will be
given in the next chapter for complete locally convex spaces (especially,
Banach spaces).

Let G be a subset of X *. Since G consists of continuous linear functionals
we can assert that G is equicontinuous if and only if there is some balanced
6-neighborhood U = X such that ¢(x) < 1 for xe U and ¢ € G. In other
words, G is equicontinuous if and only if G = U°®, for some balanced 6-
neighborhood U < X.?

Suppose, for example, that X is a normed linear space with unit ball
U(X) = {xe X:||x|| < 1}. We have seen (11D) that X* is also a normed
linear space with norm defined by

||#|| = sup {lﬁslcl)lx # 0} = sup {|p(x)|:||x|| = 1}.

It follows that
UX) = UX* = {pe X*:||¢|| < 1}

Consequently, since
(tU)y =t U° (t # 0)

@ Polars such as U°® have only been defined in real spaces; in case our space X here is
complex we apply this condition to the real restriction X (1F).

) If X is complex this equation means that U(X *) consists of those functionals whose real
parts belong to U(X)°; it is justified by the fact that ||¢|| = ||re ¢||, ¢ € X*.
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always holds for polars, we see that a subset G of X* is equicontinuous
exactly when it is bounded in the norm topology on X*.

Theorem. Let U be a 0-neighborhood in the linear topological space X.
Then U° is weak*-compact in X *. In particular, every equicontinuous subset
of X* is relatively weak*-compact.

Proof. Let V be a balanced 6-neighborhood contained in U; since
U° < V°, it will suffice to show that V° is weak*-compact. Now, by part c)
of the lemma in 12A, V° is totally bounded because, for any x € X, there is
¢ > 0 for which ex € V, whence

sup{|p(x)|:pe V°} < &' <

On the other hand, V° is certainly weak*-complete. To see this, let {¢;} be
a weak*-Cauchy net in V°. Then {@,(x)} is a Cauchy net of scalars for each
xe X so that limg ¢p45(x) = ¢(x) exists and defines a linear functional ¢ e X'.
But, since |¢,(x)| < 1 for each x € V, we must have |@(x)| < 1 also, so that
peVe.

Note that this result can also be considered as another application of
the Ascoli theorem (7C).

Corollary 1. Let X be a normed linear space. Then every bounded subset
of X* is relatively weak*-compact, and every ball in X* is weak*-compact.
(A ball in a normed linear space X is a set of the form

{xeX:||x — x,|| <r} = x, + rUX),

for some x,e€ X and r > 0.) The converse of this corollary is not true in
general unless X is complete; this will be shown in the next chapter (see
also the following sub-section).

Corollary 2. Let A,,..., A, be closed convex 0-neighborhoods in a
locally convex space. Then
(12.4) (A;n-nA4) =co(d] n N A,).

Proof. This is a consequence of the general formula for the polar of
the intersection of an arbitrary family of closed convex sets containing 0
(exercise 2.28) and the Alaoglu-Bourbaki theorem which guarantees that
each of the polars A; is weak*-compact. It remains only to apply exercise
2.21 to conclude that the right hand side of (12.3) is weak*-compact. 0

E. LetX beanormed linear space. We remain interested in the problem
of deciding whether a given weak*-compact set G = X* is necessarily
bounded (or, equivalently, equicontinuous). We noted after Corollary 1 of
12D that this will not generally be the case unless X is a Banach space.

Example. Let X be the subspace of £}(X,) (6C) consisting of sequences
of scalars that have only a finite number of non-zero terms. Let ¢, be a
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sequence of positive numbers such that lim ¢, = + oo, and let ¢, e X* be
defined by

(%) = & x=(§,&.. )X,

Then the set G = {0, t,¢,, t2¢5, ...} in X* is clearly unbounded since
||ta®al| = t.. However, the sequence {,¢,} converges weak* to 6 so that G
is weak*-compact. il

We see next that such a situation cannot occur in the presence of con-
vexity.

Theorem. A weak*-compact convex set G in X * is bounded.
Proof. We can write
G=u{GnnUX*:n=12,..1}

exhibiting G as a countable union of weak *-closed subsets. Since any compact
topological space is a Baire space (17A), one of the sets G N nU(X*) must
be solid. That is, there exists ¢ € G and a weak*-6-neighborhood V < X*
such that

(@ + V)u G = nU(X*).

Since G — G is weak*-bounded (actually w*-compact) it is absorbed by V:
there exists 4, 0 < A < 1, such that A(G — G) = V. Because G is convex
we see that
1—-ANp+AGc(dp+AMG—-G)nG
c(p + V)n G < nUXH*).

This inclusion shows that AG lies in some ball in X* and hence so does

G. 0

F. In studying new topological spaces such as linear spaces X with a
weak topology a(X, Y) (12A), one is naturally concerned with their metri-
zability. Unfortunately, except for generally uninteresting special cases (such
as finite dimensionality), the weak topologies are not definable by a metric.
This assertion will be justified in the next chapter, as an application of some
results about Banach spaces.

In spite of this general disappointment we shall see next that the restric-
tion of the a(X, Y) topology to certain subsets of X is metrizable. Such
results can be quite useful.

Theorem. Let X be a locally convex space and Y a total subspace of X *.
Let A be a 6(X, Y)-compact subset of X and suppose there exists a countable
set G = Y which separates the points of A. Then the (relative) o(X, Y) topology
on A is a metric topology.

Proof. Consider the product space F¢ where F is the scalar field
associated with X. Since G is countable this space is metrizable as we see
by recalling the construction (9.3) of a local base in F¢ and the metrizability
criterion of exercise 2.5. Hence each subset of F¢ is metrizable and we will
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be done if we can show that A is homeomorphic to some such subset. To do
this we define Q: 4 — F€¢ by

Q(x) = Jx(x)

where Jy is, as usual, the canonical embedding of X into X*. Then Q is
certainly continuous by the definitions of the relevant topologies (the relative
o(X, Y) topology on A, the topology of pointwise convergence on G).
Furthermore Q is injective because G separates the points of A. Consequently,
since A4 is compact Q must be a homeomorphism. 0

G, xeA,

Corollary 1. Let X be a separable locally convex space and let A be a
weak*-closed equicontinuous subset of X*. Then in its (relative) weak*
topology A is a compact metric space.

Proof. This is a consequence of the Alaoglu-Bourbaki theorem (12D)
and the preceding result where we choose the set G to be any countable
dense subset of X. 0

The most important special case of this corollary occurs when X is a
normed linear space; we can then completely characterize those cases where
the conclusion of Corollary 1 holds.

Corollary 2. Let X be a normed linear space. Then the following state-
ments are equivalent.

a) U(X™) is weak*-metrizable;

b) every ball in X* is weak*-metrizable;

¢) X is separable.

Proof. We need only check that a) implies c). Since every metric space
is first countable there exists a countable 6-neighborhood base {V,} in
U(X*) and hence a sequence {4,} of finite subsets of X such that

(e UX:)p(x)| < L xed)cV, n=12....

Let A = u{Ad,:n=1,2,...}. If ¢ € U(X*) vanishes at each point of A4,
thenpe n{V,:n =1,2,...} = {0}. It now follows from 11F that span(4) =
X and so X is separable (exercise 2.22).

The analogue of Corollary 2 for the weak metrizability of balls in a
normed linear space X is also valid, the necessary and sufficient condition
being the separability of X * (in its norm topology). However, this situation
occurs less in practice than that of the corollary.

A topological space Q is called sequentially compact if every sequence in
Q has a convergent subsequence (with limit in Q). For example, every com-
pact metric space is sequentially compact. In particular, if X is a separable
normed linear space, the ball U(X*) is weak*-sequentially compact. What
happens if X is not separable?

Example. Let m be the linear space of all bounded scalar sequences
x = (&, &,, .. ) normed by ||x||,, = sup{|&,], |¢,]. . .}.m is a non-separable
normed linear space (in fact, a Banach space). Hence the ball U(ms*) is
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weak*-compact but not weak*-metrizable. We claim that it is not weak*-
sequentially compact. To see this, let ¢, € m* be defined by ¢,(x) = &, for
x em. Clearly ||¢,|| = 1 for all n. But {¢,} has no weak*-convergent sub-
sequence. On the other hand, {¢,} has a weak*-cluster point in U(is*). That
is, there exist weak*-convergent subnets of {¢,} none of which is a sub-
sequence. 0

G. Let X be a normed linear space. We shall see in the next chapter
that if X is complete then X * is weak*-quasi-complete. However, as we now
show, it is never the case that X* is weak*-complete, unless X is finite
dimensional.

Example. Let X have infinite dimension. According to exercise 2.14,
there exists a linear functional ¢ € X'\X*. For each finite dimensional sub-
space M of X, there is, by exercise 2.2, a closed complementary subspace of
M in X and consequently there is a continuous projection P,: X — M. We
define ¢, = ¢ o Py,. Each ¢, is continuous by 11D. Now the collection .#
of finite dimensional subspaces of X can be partially ordered by inclusion
and then forms a directed set. The net {¢,,: M € .#} is consequently a weak *-
Cauchy net in X* with no weak*-limit in X*. g

What is going on here is the following. As a product of complete spaces
the space F* of all scalar-valued functions on X is complete in its product
topology, the topology of pointwise convergence on X. The subspace X' of
FX is closed (hence complete) in this topology and the preceding argument
shows that X* is a proper dense subspace of X'.

It is also true but somewhat harder to prove that X is never weakly
complete (unless it is finite dimensional, of course). We shall give a criterion
(reflexivity) for X to be weakly quasi-complete in the next chapter.

§13. Extreme Points

In this section we continue the discussion of §8 concerning the extreme
points of a convex set and their usefulness in describing that set. A basic
difficulty (8F) is the very existence of an extreme point and we deal with
this problem first. Then we give the infinite dimensional analogue of Minkow-
ski’s theorem (8D). Frequent applications of these results appear in this
and later sections.

A. Throughout this section X will be a real locally convex (Hausdorff)
space. Let A be a closed convex subset of X. If X is finite dimensional we
were able to give a concise necessary and sufficient condition for 4 to have
an extreme point, namely that 4 be line-free (8B). As simple examples show
(exercise 2.30), this result is generally false in infinite dimensional spaces,
although it is clearly always necessary for 4 to be line-free. Our first result,
a nice application of the strong separation theorem (11F), shows that a
sufficiently strong topological assumption (compactness) entails the existence



74 Convexity in Linear Topological Spaces

of extreme points, whether or not our set is even convex. As noted in 8F,
this type of result is somewhat surprising because the notion of extreme
point is strictly algebraic. It is at this point that an appreciation for the
efficacy of topological methods in functional analysis should really begin.

Lemma. Let A be a (non-empty) compact subset of X. Then A has an
extreme point.

Proof. The family & of all compact extremal subsets of 4 is non-empty
(since A € o) and is partially ordered by inclusion. The intersection of any
nested family in « is non-empty (by compactness) and A-extremal (by 8A).
Therefore, there exists a minimal element B of «/. We claim that B contains
only one point which, in that case, must belong to ext(4), If not, there are
distinct points p, g € B. By 11E these points can be separated by a continuous
linear functional ¢ € X*:¢(p) # ¢(q). But now the set

B N [¢; min{¢(x):x € B}]

is a proper compact extremal subset of B. By 8A this set is also A-extremal
and this contradicts the minimality of B. Thus B must be a singleton set.  []
There is an application of this theorem to concave programming prob-
lems (8E). Let f be a concave function defined on X and let A be a non-empty
compact subset of X. We consider the optimization problem (4, f).

Corollary. If f is lower semicontinuous on A then f attains its minimum
on A at an extreme point of A. O

Proof. The set where f attains its minimum is a non-empty compact
extremal subset of 4. This set has an extreme point which, by 8A, must also
be an extreme point of A. il

Note that this corollary applies in particular to the case where fe X*.

B. Theresult to be given next is an extended form of the “Krein-Milman
theorem”, one of the most important general principles of geometric func-
tional analysis. It provides two conditions for a subset B of a compact
convex set A < X to satisfy c6(B) = A4. In particular the conditions are
satisfied when B = ext(4). The additional operation of closure is necessary
now in contrast to the finite dimensional case (8D) because, for example,
co(ext(A4)) will not be closed in general (exercise 2.31).

Theorem. Let B be a subset of the compact convex set A = X. The
following conditions are equivalent :

a) co(B) = 4;

b) inf{¢(x):x € B} = min{¢(x):x € A}, for any ¢ € X*;

c) ext(d) < B.

Proof. The equivalence of a) and b) follows directly from the strong
separation theorem 11F and the fact that

inf{¢(x):x € B} = inf{¢(x):x € co(B)}
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for every ¢ € X*. Note that the compactness of 4 is not needed for this
conclusion. The preceding corollary shows that c) implies b). It remains to
prove c) from a). This will follow from the general fact that

(13.1) ext(co(B)) < B,

a result of independent interest. To prove (13.1), let x € ext(Co(B)); we must
show that (x + V) n B # (J for any #-neighborhood V (by 10A it may be
assumed that V is a barrel). Now B is totally bounded and hence there is a
finite subset {x,, ..., x,} = B such that

Bc u{x;+ Vii=1,...,n}.

Since the sets K; = ¢o((x; + V) n B) = co(B) = A are compact and
convex, we have

Co(B) = co(u{K;:i=1,...,n}) = co(U{K;:i = 1,...,n}),

the last equality by exercise 2.21. It now follows from exercise 1.33 b) that
x actually belongs to some K;. In particular, x = x; + v from some ve V,
whence x; = x — vis a pointin (x + V) n B. il

We now list a few corollaries of this theorem, the first two pertaining
to an arbitrary compact convex set A = X (see also exercise 2.32).

Corollary 1. Let B be a non-empty closed semi-extremal subset of A.
Then B contains an extreme point of A.

Corollary 2. A lower semicontinuous quasi-concave function f on A attains
its minimum on A at an extreme point of A.

Proof. A quasi-concave function is by definition the negative of a
quasi-convex function (exercise 1.10). It follows that the sets {x € A:a < f(x)}
are open and convex for every real «. Thus we see that the set B = 4 where
[ attains its minimum satisfies the conditions of Corollary 1 and so contains
an extreme point of A. 0

The optimization result given in Corollary 2 is known as “Bauer’s
minimum principle”. There is of course an analogous statement pertaining
to the maximum of an upper semicontinuous quasi-convex function.

Now suppose that X is a normed linear space. Then in the weak*-
topology any ball in X * is a compact convex set (12D) and so is the closed
convex hull of its extreme points. This fact yields a geometric strengthening
of Corollary 1 in 11E.

Corollary 3. For every normed linear space X the extreme points of
U(X*) separate the points of X.

We can paraphrase this corollary by stating that to any pair x, y of distinct
points of X there corresponds a ¢ € ext(U(X*)) such that ¢(x) # ¢(y).
The fact that the balls in the dual space of a normed linear space are well
supplied with extreme points has an interesting implication. Namely, if a
given space X has the property that ext(U(X)) is empty it follows that X
cannot be a dual space. Examples of such spaces occur in exercise 2.30.
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C. In the two preceding sections we have been successful in developing
a viable extreme point theory for compact sets. It has further been noted
that such results do not extend much beyond the compact situation because
of the existence of closed bounded (convex) sets with no extreme points.
One avenue of extension is available, however, and this is to the case of
locally compact sets. This extension will result in a generalization of Klee’s
theorem (8D) to arbitrary infinite dimensional (locally convex) spaces.
Two preliminary lemmas are required, the first being a bit stronger than we
need but having some independent interest.

Lemma 1. A (non-zero) cone C in a real locally convex space X is locally
compact if and only if it has a compact base, in which case C is necessarily closed.

Proof. Assume that C is locally compact. There is then a closed convex
0-neighborhood U <= X for which C n U is compact. Let D be the inter-
section of C with the boundary of U. Then ¢6(D) = C n U and hence is
compact. Since 0 € ext(C) and 6 ¢ D we have by (13.1) that 0 ¢ co(D). Now
let H be a closed hyperplane strongly separating 6 and co(D). We then have
that B = C n H is a base for C and that B = C n U, whence B is compact.

Conversely, suppose that B is a compact base for C. Then for all t > 0
the sets K, = {Ax:x e B, 0 < 1 < t} are compact. Let H again be a closed
hyperplane strongly separating § and B; we can assume that H = [¢; 1]
for some ¢ € X *. Now let x, € C; we wish to find a compact x,-neighborhood
in C. Since x, = t,b, for suitable ¢, > 0 and b, € B (5C), we have that
x,€ Ky, . Butif B = inf{¢(x):x € B} then the set {xe C:¢(x) < 28t,} = K,,
is the desired neighborhood.

The proof that C must be closed if it has a compact base is left as an easy
exercise. il

Note that the linear functional ¢ used to separate 6 from the base B
is a strictly positive functional (5C) on X:¢(x) > O for all xe C, x # 6.

In 8C we introduced the recession cone C, of a convex set and in exercise
1.36 it was noted that if C, = {6} and 4 is closed in R" then A must be
compact. The same argument applies in our more general (infinite dimen-
sional) setting, provided we hypothesize that A4 is locally compact: C, = {0}
if and only if A is compact. We now use this observation to establish the
existence of extreme points.

Lemma 2. A (non-empty) closed, convex, locally compact, and line-free
set A in X has an extreme point.

Proof. We may assume that 4 is not compact. Then C, is a non-trivial
closed cone in X (closure follows from equation (8.5)). Further C, is itself
locally compact since a translate of it lies in 4. Let ¢ € X* be a strictly
positive linear functional and let K be the half-space {x € X:¢(x) < 0}.
If we translate C, and K to a point x, € A wesee thattheset 4 n (x, + K) = B
must be compact, since otherwise, by its local compactness, it would contain
a half-line outside the set x, + C,, in contradiction to the definition of
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C,. Finally, either B is contained in the hyperplane {x € X:(x) = ¢(x,)} in
which case ext(B) = ext(A4) (8A), or else B has an extreme point not in this
hyperplane; but such a point must again be an extreme point of A. 0

Now we can give the general version of Klee’s theorem. In particular our
approach here provides a new but less direct proof of the original finite
dimensional result in 8D.

Theorem. Let A satisfy the hypotheses of Lemma 2. Then
(13.2) A = Co(ext(4) u rext(A4)).

Proof. Let B be the right-hand side of (13.2). If B were properly con-
tained in A we could strongly separate B from a point in A\B by a closed
hyperplane H. By Lemma 2 there is an extreme point p of A n H which,
by definition, does not belong to ext(A4). There is hence a line L in X such
that p e cor(4A N L), where 4 n L is either a line segment or a half-line.
In the former case we claim that the end-points of A N L are both extreme
points of A, which would then imply that p € B, in contradiction to the
choice of p. To prove this claim, let g be an end-point of 4 n L. If g ¢ ext(A4)
there are distinct points u, ve 4 with g € (4, v). Then, if z is a point of A N Lin
the half-space of H that does not contain g, it follows that p € cor(H n co(u,
v, z)) which again contradicts the choice of p. Finally, if A n Lis a half-line,
we see analogously that it must in fact be an extreme ray of A; this entails
p € B which is again a contradiction. 0

D. Let M be a closed linear subspace of a real normed linear space X.
It is frequently of interest to determine how well an element x, € X\M can
be approximated by members of M. (A classical situation occurs when
X = C([a, b],R) and M consists of all polynomials of degree at most n,
for some n.) By definition this closeness of approximation is given by the
quantity
d(x,, M) = inf{||x, — y||:ye M}.

We are going to see that the extreme points of certain convex sets in X*
play a role in the determination of this value.

Let ¢ € U(M°) where M° is the annihilator (or, equivalently, the polar)
of M in X*. Then for any y e M,

@G| = |o(x, = 9 <[]l %o = ¥ < [Ix = ¥l

whence
(13.3) |¢(x,,)| < d(x,, M).

On the other hand, we can separate M and the ball {xe X:||x, — x|| <
d(x,, M)} to obtain a functional ¢ € M° such that y(x, + x) > 0 for
[|x]| < d(x,, M). Thus

_l//(xo) < lnf{l//(X)HXH < d(xo’ M)} = _d(xo’ M)”l//”,
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so that the functional ¢ = satisfies ¢ € U(M°) and

- ||./,||
(13.9) d(x,, M) < ¢(x,).
Combining (13.3) and (13.4) we obtain
d(x,, M) = max {¢(x,):¢ € UM®)}
= sup{¢(x,):¢ € ext(U(M°))},

where the second equality is a consequence of 13A applied to the weak*-
continuous linear function ¢  ¢(x,) on the weak*-compact set U(M°)
(the compactness of U(M°) follows from 12D and the fact that subspaces of
the form M° are weak*-closed).

We now develop a technique for recognizing the extreme points of sets
of the type U(M°). Let p be a continuous semi-norm on X (which may be

any real locally convex space for the moment). For any ¢ € U (the polar
of the p-unit ball (10B)) we define a set

Ay = {xeX:p(x) — ¢p(x) < 1}.

Each such set is an unbounded convex 6-neighborhood in X. We give
next a preliminary result for the case M = {6}.

(13.5)

Lemma. A functional ¢ € U; is an extreme point of U; if and only if the
difference set A, — A, is dense in X.

Proof. In general, by the strong separation theorem, a convex set
K < X fails to be dense in X exactly when some non-zero i € X * is bounded
(above) on K. Suppose first that ¢ ¢ ext(U;). Then there is a non-zero
Y € X* such that ¢ + e Uj. Hence [{x, ¢ + y)| < p(x) for all xe X
and in particular ¥(x) < p(x) — ¢(x). Thus  is bounded above by 1 on
+ A, and hence by 2 on A, — A4,; consequently, 4, — A, is not dense in
X. Conversely, if we assume that 4, — A4, is not dense, there is some non-
zero Y € X * bounded above (say by 1) on 4, — A,. Since A4, is a balanced
set containing A, it follows that sup {|y(x)|:x € 4,} < 1.It remains to prove
that ¢ + y € U; for this will show that ¢ ¢ ext(U;). To do this select any
xeU,andset a = p(x) — ¢(x).

Case 1: o = 0. In this case we have tx e 4, for every t > 0 whence
[W(x)| < 1/t and so Y(x) = 0. Thus (x, ¢ + ¥ > = ¢(x) = p(x) < 1.

Case 2: a > 0. We have p(x/a) — ¢(x/a) = a/a = 1, so that x/ae A4,
and hence [Y(x/o)| < 1. Thus |Y(x)| < a = p(x) — ¢(x), so that again
(u ¢+ ¥>< pl) < L 0

We can now establish the main characterization of extreme points
of sets of the type U(M°), known as the “Buck-Phelps theorem”.

Theorem. Let p be a continuous semi-norm on the real locally convex
space X and let M be a linear subspace of X. A functional ¢ € M° n U,
is an extreme point of M° n Uy if and only if

(13.6) X=M+ 4, — A,
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Proof. Let o be the semi-norm d(-, M), that is, o(x) = inf{p(x — y):y €
M}. Then U, = M + U, and we define B, = {xe X:0(x) — ¢(x) < 1}
for any ¢ € U;. By the lemma we know that ¢ € ext(U;)ifand onlyif B, — B,
is dense in X. Now it is clear that U; = M° n U;. We show next that
M + A, — A, is dense in By — B,. Since o(x + y) < p(x) for all ye M,
we see that M + A, < B, and thenthat M + A, — 4, = B, — B,. Next,

1xforn=1,2,....Wchavea(u,,)—

n —
select any x € B, and set u, =

¢(u,) < 1 so that there exists y, € M such that p(u, + y,) < 1 + ¢(u,) =
1 + ¢(u, + y); that is, u, + y, € A,. Similarly given z € B, we can analo-

gously define v, = ke z and vectors y, € M. We then have (u, + y,) —

vy + y)e Ay — A, so that u, —v,e M + A, — A, and lim,(u, — v,) =
x — z. This establishes the density of M + A4, — A, in By — B, as claimed
above.

We now know that ¢ e ext(M° n U;) if and only if M + A4, — 4,
is dense in X. It remains to see that this density is equivalent to (13.6).
However, this is a consequence of the fact that the sets 4, are solid which
entails that M + A, — A, is also solid. Thus any x e X\(M + 4, — 4,)
could be separated from M + 4, — A, by a closed hyperplane, but this
contradicts the density of M + 4, — A4, in X. 0

Corollary. A functional ¢ € M° n U is an extreme point of M° n U,
if and only if for eachn = 1,2,...,

1 1
X=M+-A4,— =4,
+n ¢ n ¢

Observe that

1
%A,ﬁ = {xeX:p(x) — ¢(x) < ;}

E. Let us now give a few examples of the extreme point structure of
the unit balls in certain normed linear spaces. We omit most of the details
of the following assertions; filling these in should constitute an interesting
exercise. The notation of 10D is utilized when possible.

Example 1. Let X be either C(Q, F) or else L*(u, F), where F =R
or Cand, in the latter case, u is a g-finite measure on some measure space.
The extreme points of U(Cy(R, F)) are the functions with modulus one
everywhere on Q. Similarly, any y-measurable function f with pu({t:|f()| #
1}) = 0 defines an extreme point of U(L*(Q, F)) and every extreme point
is so obtained. (Interestingly enough, for all these spaces except X = C,(Q,R)
we have

(13.7) U(X) = o(ext(U(X))).

However, when X = C,(Q,R) the validity of (13.7) is equivalent to a topo-
logical constraint on £, namely that Q should be totally disconnected, which
means that there is a base for the topology of Q consisting of sets which are
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both open and closed. The proof of (13.7) depends on the equivalence of a)
and b) in 13B and on further knowledge of the continuous dual space

X*) a

Example 2. Let Q be the unit disc {ze C:|z| < 1} and let X = A(Q).
As in Example 1, any function in X which is of modulus one on the boundary
0Q of Q (the unit circle) is an extreme point of U(X). More generally, because
the functions in X are analytic on the interior of €, it follows that any func-
tion in U(X) which has modulus one on a subset of positive (Lebesgue)
measure of 0Q is also extreme. The complete answer is that f e U(X) is an
extreme point if and only if

(13.8) = log(l — |f(e")|ydt = —o0.

(To see that this condition is necessary, assume that it fails. Select a con-
tinuous function h on 0Q such that 6 < h() < 1 — |f(°)| and such that h
is of class C' on each open arc of the set where | f(-)| < 1. Then if we define

1 (* &' +z
g(z) = exp [ﬂ J_ eTi_z log h(t)dt],
we will have g € A(Q) and ||f + g||, < 1).

The same result holds for the space H*(), although some preliminary
work is needed to establish the existence of boundary values on 0Q2 before
the condition (13.8) can be applied. For both these spaces it is again true
that formula (13.7) is valid. 0

Example 3. Let X = Lip([0, 1], d, F) where d is the usual metric on
[0, 1] and, as usual, F = R or C. Any function f € X is differentiable almost
everywhere and, in fact, || f'||, = ||f||s- Iff has modulus one at each point of
[0, 1] then certainly f € ext(U(X)) by Example 1. Also for f to belong to
ext(U(X)) it is necessary that || f||,, = 1 (otherwise, we just add and subtract
a suitable constant and see thereby that f is not extreme). Then we have
that f € U(X) is extreme if and only if | f'(-)| = 1 almost everywhere in the
set where | f(-)| < 1. (To see that this condition is necessary, we can proceed
by contradiction. Let E be a compact subset of {t € [0, 1]:|f(t)| < 1} with
positive measure such that ||f’|E||, < 1. Then we can choose ¢, € [0, 1]
such that the function

9(s) = 5 260 {Xt0, 1, 1(t) — Xato, 11(8)}4E

belongs to X and ¢'(-) vanishes off E. Then for sufficiently small § > 0,
||/ + 6g||. < 1) Again we remark that (13.7) is valid for this example. []

Example 4. We consider again X = C,(2, F) but now we try to identify
ext(U(X*)). In this example we shall assume that Q is a compact Hausdorff
space. This is a very important case in practice. Our task is facilitated by
the results of 8F. We let P be the positive wedge in X and let P* = P* n X*
be the continuous dual wedge in X *. If we now define K = {¢ € P*:¢p(e) = 1}



§13. Extreme Points 81

where e is the function constantly equal to one on Q then we know from
8F that ext(K) consists of the algebra homomorphisms of X. In particular,
given any point t € Q the evaluation functional é, defined by (x, §,) = x(t)
for x € X belongs to ext(K). Since K is clearly an extremal subset of U(X*)
it follows that each evaluation functional is an extreme point of U(X*).
More generally,

E = {0d,;:|o| = 1, 1€ Q} = ext(U(X*)).
Now evidently °E = U(X), so by the bipolar theorem (12C) we have
U(X*) = °E° = co*(E),

(vt 34

where “Co*” refers to weak*-closure. But since E is weak*-compact (by
virtue of being a continuous image of the compact set {x € F:|a| = 1} x Q),
we see by applying (13.1) that

ext(U(X*)) < E* = E c ext(U(X%)).
Thus we have achieved the identification
(13.9) ext(U(C(Q, F)*)) = {ad,:ae F,|o| = 1,1 Q},

for every compact Hausdorff space Q. 0
The discussion of this class of examples is continued in exercise 2.35
for the case of non-compact Q. Also, in contrast with the preceding examples,
U(C(Q, F)*) is not now generally equal to the norm-closure of the convex
hull of its extreme points (consider, for example, the case Q = [0, 1]).

Example 5. A normed linear space (X, ||'||) is strictly normed if
[ + y|| = ||x||] + ||y|| implies that x = ty for some ¢t > 0 or else y = 6.
This constraint on the norm is easily seen to be equivalent to the geometric
condition that U(X) be rotund, where a convex set is rotund if every bounding
point is an extreme point. From our present point of view such spaces are
not very interesting since, for example, condition (13.7) is automatically
fulfilled. Examples of strictly normed spaces are the LP(Q, u, F) spaces for
1 < p < oo; this may be shown by consideration of the condition for
equally in Holder’s inequality. il

Example 6. For our final examples we consider normed linear spaces
X and Y (over the same scalar field) and study some extreme points of
U(B(X,Y)). Amap TeB(X, Y) is an isometry if T “preserves the norm”,
that is, if ||T(x)|| = ||x||, for all x e X. It is easy to see that if Y is strictly
normed then any isometry in B(X, Y) is an extreme point of U(B(X, Y)).
Now we assume that X = Y and abbreviate B(X, Y) to B(X). Then we
claim that the identity map I (where I(x) = x for all x € X) is an extreme
point of U(B(X)) (whether or not X is strictly normed). In fact, one can
prove the much stronger assertion that I is a vertex of U(B(X)) in the sense
that the set {¢ € B(X)*:||¢|| = 1 = ¢(I)} is total over B(X). In other words,
the intersection of all hyperplanes of support to U(B(X)) that contain I
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is just {I}. Examples of such functionals ¢ are the double evaluation func-
tionals w, , € B(X)* defined by

oy, (T) = <T(x), ),  TeBX),

where x € X, f € X*, || f|| = ||x|| = f(x) = 1. (The proof that I is a vertex
is not entirely straightforward for general spaces X but it should be clear in
the special finite dimensional case where X = R" or C")

Once it is known that I is a vertex of U(B(X)) for some X it then readily
follows that any isometry T € B(X) whose range is all of X is also a vertex.
This can be seen by observing that the map S > T ! o S is an isometry on
B(X) that sends T into I. Thus, for example, when X = R" or C" (with the
usual Euclidean norm) then every linear map on X defined by a unitary
matrix is a vertex of U(B(X)). Furthermore, in this case a strong converse
is valid: every extreme point of U(B(X)) is defined by a unitary matrix,
and hence is a vertex. (If T e ext(U(B(X))) is defined by T(x) = Ax for
some square matrix A, then we can express 4 as VDU (“singular value
decomposition”) where U and V are unitary, U is the hermitian transpose
of U, and D is a diagonal matrix with diagonal entries 0 < d,, d,,...,d, < 1.
Because T'is extreme each d; is either 0 or 1. If some d; = 0 we define a linear
map S by S(x) = {x, u;>v; where u; (resp. v;) is the j column of U (resp. V).
Then ||T + S|| < 1 contradicting that T is extreme. Thus we see that A4 is
unitary.) 0

§14. Convex Functions and Optimization

In this section we resume our general discussion of convex functions
which was begun in §3 and continued in 6D and 7D-E. Further developments
depend on topological considerations reflected in continuity assumptions
about the functions. Our approach constitutes a noteworthy application
of the geometric theory developed in earlier sections. In particular, it is
interesting to observe how the existence of various separating or supporting
hyperplanes to certain convex sets entails analytical information about a
given convex function or program.

A. We first discuss conditions which insure the continuity of a given
convex function f defined on an open convex set 4 in a linear topological
space X. The main point to be made is that, except in very pathological
cases, f is automatically continuous on 4. We have already seen a special
case of this in 11D where f was a linear function: f € X'. We note that if f is
continuous at a point p in A4 then fis certainly bounded on some neighbor-
hood of p. It is striking that this trivial necessary condition forces f to be
continuous throughout A.

Theorem. Let A be an open convex subset of the linear topological space
X. If f € Conv(A) is bounded above on a neighborhood of a point p € A then
[ is continuous at every point in A.
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Proof. Let us first see that f must be bounded from above on a neigh-
borhood of any point g € 4. Given such a point ¢, there is t > 1 such that
p + (g — p) € A (11A). Now, suppose that a = sup{f(x):xep + V} < ©
for some balanced #-neighborhood V; then we claim that f is bounded on
the g-neighborhood g + (1 — 1/¢)V. Indeed, if z =q + (1 — 1/t)v for
some v e V, then

s =f(a=(1-3)r+(1-F)w)
<%f(p+ g —p) + <1 —%)oc.

To complete the proof it will suffice to show that if f is bounded above
on some neighborhood of p € A then f is continuous at p. Choose a and
Vasaboveandlet 0 < ¢ < 1. Then if ze p + &V we can write

z=(1—¢p+¢&p+ v
for some v e V, and therefore
@ <1 —9f(p) + ae,
f(@) = f(p) < ele — f(p))
On the other hand, since, for any v € V, we can write

1 1
p= T(P‘*'SU)“F(I—T)(P v),

we have
f(p) < ——~f(p + &v) +—f(p — )

ae
1+¢

@+

This yields
e(f(p) — o) < f(2) — f(p).

|f(2) = f(p)| < el — f(p)),

for all ze p + &V, proving that f is continuous at p. il

Some important corollaries are now at hand. First, if A is not open but
is solid then the theorem applies to the interior of A. Next, suppose that 4
has no interior. We may view A4 as a subset of its closed affine hull aff(4) =
aff(4). Relative to aff(4) the set 4 may be solid. This will occur exactly
when there is a point pe A and a 6-neighborhood V in the closed linear
subspace span(4—A4) = span(A—A) such that p + V < aff(4). Such points
p (if any) constitute the relative interior of A (written rel-int(4)), and evidently
the theorem still applies to these points.

Thus we see that

Corollary 1. Iff e Conv(A) is bounded above on some neighborhood of a
relative interior point of A, then f is continuous throughout rel-int(A).
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The concept of relative interior of a convex set is the appropriate sub-
stitute for the intrinsic core (2C) when dealing with infinite dimensional
linear topological spaces. In particular, then, we have the following strong
result about convex functions with finite dimensional domain.

Corollary 2. If f e Conv(A) where A = R" for some n, then f is con-
tinuous throughout icr(A).

When X is a normed linear space we can make a still stronger assertion
about the continuity of convex functions with domain in X. Namely such
a function must satisfy a Lipschitz condition throughout some neighborhood
of each point of continuity; see exercise 2.40.

It is clear from the theorem that continuity of f € Conv(A4) at some point
p e int(A4) is equivalent to upper semicontinuity of f at p. On the other
hand, when f is only known to be lower semicontinuous at p the theorem
need not apply. Nevertheless (exercise 3.50), it is a consequence of the Baire
category theorem that when X is a Banach space and f is lower semi-
continuous at every point of A, then f is continuous throughout cor(A)
(when A is closed we actually have cor(4) = int(4), again by the Baire
theorem). If we recall that f is lower semicontinuous on A if and only if
the sub-level sets {x € A:f(x) < 4} are closed for all A, then we have the
basis for the proof of the second part of the next corollary, which establishes
the connection between continuity properties of convex functions and
topological properties of their epigraphs (3A).

Corollary 3. Let f e Conv(A) where A is a convex subset of the linear
topological space X.

a) f is continuous throughout int(A) if and only if epi(f) is solid,

b) f is lower semicontinuous on A if and only if epi(f) is a closed subset
of X x R

B. Let fe Conv(A)where A4 is a convex set in the real linear topological
space X. Subgradients of f were introduced in 6D and were shown to exist
(in X') at each intrinsic core point of 4. As usual, we would like these linear
functionals to be continuous and it is natural to inquire as to what hypothesis
on f will ensure this. The following result is a satisfactory answer.

Theorem. Let pe A. The set df(p) n X* of continuous subgradients is
a weak*-closed convex set. If f is continuous at p € int(4), this set is also
non-empty and weak*-compact.

Proof. The first assertion is clear from the definitions. If now f is
continuous at p and ¢ € f(p) then ¢ < f — (f(p) — ¢(p)) on A. In particular
¢ is bounded (above) on some p-neighborhood and hence continuous by
11D. To complete the proof it is now sufficient to show that df(p) is relatively
weak*-compact in X*. From 12D we see that this will be true if there is a
0-neighborhood ¥V < X such that df(p) = V°. But there is such a neighbor-
hood, namely V = {xe X:|f(p + x) — f(p)| < 1}. 0

From now on we shall consider only continuous subgradients for convex
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functions; in particular, the set Jf(p) will always be considered to belong to
X* (rather than X"). In practical terms this results in little loss of generality,
since we just observed it to be the case whenever f is continuous at p.

Let us note that when X is a normed linear space and f is continuous
at p then df(p) is a bounded subset of X*. This is a consequence of the
convexity and weak*-compactness of df(p) (12E).

C. Let f, A, and X be as in the preceding section, and let us suppose
that the directional derivative f'(p; x) is defined for some p € A and every
x € X. From 7D we know that this will be the case in particular if p € int(A).
Now if ¢ € df(p) it follows from formula (7.8) that the directional derivative
function f'(p;-) is bounded below on some 6-neighborhood in X. This
means that as we move linearly away from the point p the value of f cannot
drop off too sharply. We show next that this condition is actually equivalent
to the subdifferentiability of f at p, provided that X is locally convex.

Theorem. Let f € Conv(A) where A is a convex subset of the real locally
convex space X. For any pe A we have Of(p) # & if and only if there is
some @-neighborhood V = X such that — oo < inf{ f'(p; x):x e V}.

Proof. Since X is locally convex we can assume (10A) that V is a barrel
with gauge py. Since f'(p; -) is positively homogeneous we have

ov(x) < fi(p;x), xeX,

where y = inf{ f'(p; x):x € V}. Now |y|py is a continuous seminorm on X
so that its epigraph E is a solid convex set in X x R!. Also, int(—E) N
epi(f'(p; *)) is void; for otherwise it would contain a point (x, t) and then
t < —|ylpv(x) = ypy(x) < f'(p; x) < t, a contradiction. Consequently, we
can separate these two convex sets by a closed hyperplane [; o] where
Y(x, t) = ¢(x) + t for xe X, te R! (6D). Since epi(f'(p;-)) is a wedge we
must have o« = 0. Further, we must have s # 0 because, if s = 0, then it
would follow that ¢(x) < O for every x € X, since (x, t) always belongs to
int(— E) for sufficiently small negative t. But now part b) of the Lemma in
6D allows us to conclude that — ¢/s € of(p). 0

When X is finite dimensional there is an even more striking implication
of the failure of f to be subdifferentiable at a point p € 4.

Corollary. If dim(X) < oo and df(p) = & for some p € A, then there
there exists x € X such that f'(p;x) = — oo.

Actually, any x € icr(A — p)yields f'(p; x) = — oo when df(p) = . This
corollary may be illustrated by the function f(t) = —./1 — t? defined on
A=[-1,1] =« R We see that df(+1) = J (exercise 1.25) and that
fi(£1; F1) = —o0.

The theorem also yields a new proof that df(p) # & whenever p € int(A4)
and f is continuous at p. For if we put g(x) = f(p + x) — f(p) then g is
continuous at 0 and f'(p; ) < g. This shows that f’(p; -) is continuous at 6
and hence certainly bounded below on some 6-neighborhood.
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D. We give one final and important general relation between directional
derivatives and subgradients of convex functions. Let f € Conv(4) where A
is a solid convex set in the real linear topological space X. Then from equation
(7.8) we have, for p € int(A).

—f'(p; —x) < inf{Y(x):y € 3f(p)}
< sup {Y(x):¢ € 0f(p)} < f'(p; %),

for any x € X. We now see when the outside inequalities in (14.1) become
equalities.

(14.1)

Theorem. If X is a real locally convex space and f € Conv(A4) is con-
tinuous at p € int(A), then

(14.2) f'(p; x) = max{y(x):y € f(p)}
and
(14.3) —f'(p; —x) = min {y(x):y € of(p)}

for every x € X.

Proof. By 14B the set 0f(p) is weak*-compact so that the max and min
in (14.2) and (14.3) are attained. We shall just prove (14.2) as (14.3) then
follows by an analogous argument (or even by just a change in sign of x).
Suppose that

(14.9) max{y(x):y € of(p)} < o < f'(p; X)

for some x € X and a € R. Arguing as in 7E we define a linear functional
Y on M = span{x} by J(tx) = at for all te R. Then on M, § < f'(p; ) and
hence by 11G there is a continuous extension ¥ on ¥ to all of X such that
¥ < f(p'; ). Since Y(x) = o we have arrived at a contradiction to (14.4). []

It is an instructive exercise to give an alternative proof of this theorem
by separating epi(f) from the ray {(p + tx, f(p) + tf'(p; x)):t = 0} in
X x R In any case we now have the exact analogue of the results in 7E
for continuous subgradients provided that we make the usual continuity
hypothesis on f.

Corollary 1. With the same hypotheses on f, p, A and X, we have that
the gradient Vf(p) exists in X* if and only if the subdifferential Of(p) consists
of a single element, namely Vf(p).

The above theorem has some further more substantial corollaries. We
give one now and another in the next subsection. Consider a fixed set A <= X
and let pe A. Then the gradient map f — Vf(p) is a linear map from the
space of smooth functions on 4 into X*. When we drop the smoothness
requirement we still obtain an analogue of the gradient map by imposing
convexity conditions: 4 is a convex set and f e Conv(A4). The analogue
is now the subdifferential map f - 9f(p), considered as a map from the wedge
Conv(A) into the weak*-closed convex subsets of X *. We show that this map,
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although in no ways linear (Conv(A4) is not even a linear space), still generally
respects the wedge operations on Conv(A).

Corollary 2. Let f, g € Conv(A) and assume both are continuous at
p € A. Then for any non-negative numbers s and t we have

asf + tg)(p) = sof(p) + tog(p).
Proof. Leth = sf + tg. Then

max {y(x):y € oh(p)} = K(p; x) = sf'(p; x) + tg'(p; x)
smax {y(x):y € of(p)} + t max {Y(x):y € dg(p)}
= max {y(x):y € sof(p) + tdg(p)}, xe X.

Now the sets dh(p) and sof(p) + tog(p) are both convex and weak*-compact,
and the first contains the second (using 7E, for example). They must therefore
be equal (13B).

Again it is an instructive exercise to give a direct proof by use of a
separating hyperplane argument in X x R!. This will also yield a slightly
stronger version of Corollary 2, in that it will be seen that the continuity of
only one of the functions f and g at p need be assumed.

E. As another application of the preceding theorem we derive a global
criterion of the solvability of convex optimization problems. Suppose we
are given the variational pair (A4, f) consisting of a convex set A < X (real,
locally convex) and fe Conv(A4). The general problem then is to minimize
f over A, and in particular, to decide whether a given point p € 4 is a solu-

tion in the sense that .
f(p) = min{f(x):x € 4}.

To accomplish this we introduce the set F(p; A) of feasible directions
of A at p as the set of all x e X for which some § > 0 exists (depending on
x) such that p + txe A for 0 < t < 4. This concept is related to our earlier
notion (8C) of the recession cone C, by

(14.5) C, = n{F(p; A):pe A}

provided that A4 is closed (actually, (14.5) does not even require that 4 be
convex). Now the set F(p; A) is a wedge in X ; we let F(p; A)* be the con-
tinuous dual wedge, that is, the wedge of continuous linear functionals on
X which assume non-negative values on F(p; A). We then have the following
optimality principle (“Pshenichnii’s condition™).

Theorem. If f'is continuous at p € 4 then p is a solution of the convex
program (4, f) if and only if

(14.6) of(p) n F(p; A)* # &.

Proof. Suppose that condition (14.6) holds and that ¢ e df(p) n
F(p; A)*. Since A is convex we have x — p e F(p; A) for all x € 4, and so

0<¢x —p) <flx) - flp, xeA
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Thus p is a solution of our program. (Note that the continuity hypothesis
was not needed for this implication.)

Conversely, suppose that p is a solution but that (14.6) does not hold.
Then, in X* the origin does not belong to the weak*-closed convex set
F(p; A)* — of(p) (the weak*-closure of this set results from the weak*-
compactness of of(p)). Applying the strong separation theorem and 14A we
obtain x, € X such that

6 = inf{¢(x,):¢ € F(p; 4* — of(p)} > 0,
or

(14.7) inf{¢(x,): ¢ € F(p; A)*} = 6 + max{d(x,):¢ € of(p)}.

Since F(p; A)* is a wedge the left side of (14.7) must be zero. This has two
implications: first, that f'(p; x,) < —d < 0, and second, that x, € F(p; A).
This second fact follows from the bipolar theorem (12C) when we recognize
that F(p; A)* = —F(p; A)°. Now since f’(p; -) is continuous at 6 (14C), it is
everywhere continuous (14A). Hence f'(p; x) is negative at all x in some
x,-neighborhood and in particular at some point X € F(p; A). But this
means that f(p + tX) — f(p) is negative for sufficiently small ¢; since
p + tx e A for such t we have arrived at a contradiction. 0

Corollary. Under the same hypotheses on A, f, and p, a necessary and
sufficient condition for p to be a solution of the convex program (A, f) is that
there exist ¢ € Of (p) such that p is a solution of the program (A, ¢).

Again, the sufficiency of the condition does not depend on the continuity
assumption. The effect of this corollary is to reduce the quest for solutions
of the original convex program (4, f) to the quest for solutions to the linear
program (A4, ¢). The practical application of this reduction depends of
course on our knowledge of the subdifferential Jf(p). The most important
special case is that where f is smooth, in the sense that f'(p;-) = Vf(p)
exists in X *. Then, as we know (14D), 9f(p) = {Vf(p)} and so our program
(A4, f) reduces to the linear programs (4, Vf(p)), p € A.

Example 1. Consider the special case where A = x, + M is an affine
subspace (1C) of X. For any p € A the necessary and sufficient condition
that p solve the program (4, f) is that f(p) n M° # &, where M° is the
annihilator subspace of M in X*. This is because F(p; 4) = M in this
case. 0

Example 2. Suppose that g e Conv(X) and that A is the set {xe X:
g(x) < 0}. An important special case occurs when we have a semi-norm p
on X and we put g(-) = p(-) — A, for some 1 > 0; that is, 4 = AU,. We
select p € A and try to determine F(p, A)*. If p € int(A4) then clearly F(p, A) =
X and F(p, A)* = {0}, whence p is a solution of the program (4, f) if and
only if 6 € 9f(p). (Note that this conclusion does not depend on the special
form of A.) Otherwise, and this is the more typical case, p is a boundary
point of 4. We assume that g is continuous so that g(p) = 0. We shall also



§14. Convex Functions and Optimization 89

assume that there is some point g € 4 such that g(q) < 0 (“Slater’s regularity
condition”). Then we assert that

F(p; A)* = (-0, 0]dg(p)
(14.8) = {peX*¢p =1y, t <O0,¢edg(p)}

The inclusion from right to left in (14.8) is clear, because if x € F(p; A) and

Y € dg(p), then
w(x) < g(p + tx) < 0

for sufficiently small ¢t > 0, whence y(x) < 0. To reverse the inclusion we
note that since ¢ — p € 4 we have

Y@ —p)<glg <0, yYedig(p),

so that 6 ¢ dg(p). Let ¢ € F(p; A) (¢ # 6); we shall assume that t¢ ¢ dg(p)
for any t < 0 and reason to a contradiction. We can separate the weak*-
closed convex set (— 00, 0]¢p — dg(p) from 6 and so obtain x, € X such that

(14.9) sup {¥(x,): ¥ € dg(p)} < 0 < tp(x,), t<0.

By 14D it follows that g'(p; x,) < 0 and hence x, € cor(F(p; A)). But then
¢(x,) > 0, in contradiction to (14.9).
We conclude that a point p with g(p) < 0 is a solution of the convex
program
min { f(x):9(x) < 0}

if and only if there are subgradients ¢ € df(p), ¥ € dg(p) and a “multiplier”
A = 0 such that
¢+ =20

A9(p) = 0. 0

This example could be further generalized by replacing g by a vector
valued convex function on X, that is, a map from X into R” each component
of which is a convex function. We would then be dealing with the problem
of minimizing f subject to n simultaneous convex constraints g;(x) < O,
i=1,...,n After a fair amount of work we would arrive at the natural
generalization of (14.10), namely that the existence of multipliers 4; = 0
such that

(14.10)

0 df(p) + ‘_Zl 4: 99:(p),

(14.11) o
A:9:(p) = 0, i=1,...,n

is necessary and sufficient for p to be a solution (the necessity of (14.11)
again requires a regularity assumption).

It would even be possible to go further, replacing R" by a suitable ordered
linear space Y, and g be a convex mapping of X into Y. But we do not feel
the added generality justifies the effort involved, the above examples being
adequate illustrations of the optimality principle. However, the concept of



90 Convexity in Linear Topological Spaces

a Y-valued convex mapping is useful, and will be utilized in the following
sub-sections; in particular, to develop some new principles of convex
optimization.

F. We are now going to derive a very general principle of convex
analysis whose usefulness will be amply illustrated by subsequent examples.
Let 4 be a convex subset of a linear space X and let Y, Z be two linear
topological spaces (all linear spaces are real). We assume that Y and Z are
also ordered linear spaces (SA) with orderings induced by positive wedges
PcY,Q c Z A mapping S:4 — Y is a convex mapping if

Sloeu + (1 — a)v) < aSw) + (1 — 2)S(v),

for every u, ve A and 0 < a < 1. The inequality here refers to the vector
ordering on Y, and so we cannot determine the convexity of a mapping S
until we have specified also the ordering on Y. Obviously all linear maps
from X into Y are examples of convex mappings. We suppose given two
convex mappings S:X —» Yand T:X — Z. Thecase Y = R}, Z = R"is of
special importance. In this case S is simply a convex function on 4 and T is
an n-tuple (g4, . . . , g,) with each g; € Conv(4).

A subset V, of Y is said to be a regularizing set for the positive wedge P
if@e ¥, and P + V, is a solid convex set. If we know that P is solid then this
condition holds with ¥, = {6} or P. In general, regularizing sets are intro-
duced when P is known not to have interior. When V, is a regularizing set
for P we write

y1 <y + (V)
(resp. y; <y, + (V)

to indicate that y, — y, € P + V, (resp. y, — y, € int(P + V})).
Consider now an abstract inequality system

(14.12) S(x) <6, xeA.

If V, is a regularizing set for P we shall say that x, € A is a V,-solution of the
system (14.12) if S(x,) < 6 + (V,). If such a solution exists, the system is
V,-consistent. Suppose that W, = Z is a regularizing set for the positive
wedge Q. Then the system

(14.13) Sx) <0, T(x)<86 xeAd

is (V,, W,)-consistent if there exists a (V,, W,)-solution x, € A in the sense that
S(x,) < 6 + (V,) and T(x,) < 6 + (W,). The main result (“Tuy’s inconsis-
tency condition”) is a necessary condition for the inconsistency of an abstract
system of the form (14.13) under certain hypotheses.

Theorem. Let S and T be convex mappings from the convex set A in the
(real) linear space X into the ordered linear topological spaces Y and Z,
respectively. Let V, (resp. W,) be a regularizing set for the positive wedge P
(resp. Q) in Y (resp. Z) and, suppose that the system (14.12) is V,-consistent.
Then if the system (14.13) is (V,, W,)-inconsistent there exist continuous
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monotone linear functiongls ¢ € P*, € Q* such that  # 0 and
(14.14) {S(x), ¢ + <T(x),¥> = 0, xe€ A.
Proof. Let X be a V,-solution of the system (14.12). We introduce the set

E={(yzeY xZ:y—SxeP+V,
andz — T(x)e Q + W, for some x € A}.

We assert that E is a solid convex set and that (6, 0) is not an interior point
of E. The convexity of E follows from the convexity of S and T, and the
second assertion follows from the hypothesis that the system (14.13) is
(V,, W,)-inconsistent. To prove that E is solid we select an interior point w,
of Q + W, and define Z = w, + T(X). We then claim that (6, ) € int(E). To
see this, we select 0-neighborhoods V < Y, W < Z such that V — §(X)
P + V,andw, + W < Q + W,. Theniteasily followsthat V x (z + W) <
E. Thus E is a solid convex set. We therefore can separate E from (6, 6) by
a closed hyperplane (11E) and so find a non-zero linear functional @ e
(Y x Z)* such that &(y, z) > 0 for all (y, z) e E. Now we define ¢ € Y*,
Y eZ* by ¢(y) = D(y, 0) and Y(z) = P(6, z). The remainder of the proof
involves showing that ¢ and  have the desired properties.

By definition of regularizing sets there are nets {y,} = P + ¥, and
{z,} = Q + W, each convergent to the respective zero vectors. We have

(S(x) + y;) — S(x)e P + V,, X € A,
(Tx) +z) - Tx)eQ + W,, xeAd,
so that
(S(x) + ys, T(x) + zy) eE, X € A,
and hence
<S(X) + y&a ¢> + <T(X) + Zy, *//> > 0’ XGA,

We thus obtain (14.14) by letting y; — 6, z, — 6.
Next, select any ye P,ze Q and 5,t > 0. Then

(S(x) + sy, T(x) + tz) e E, x€ A,

and so

{(8(x) + sy, ¢ + <T(x) + tz, 9> = 0.
Hence
(14.15) <S(x), > + <T(x), ¥> + sd(y) + ty(z) = 0.

By letting first s, then ¢ become large in (14.15) we see that ¢(y) = 0,y(z) = 0;
that is, we have shown that ¢ € P*, € Q*.

Finally, we observe that if y = 6, then from the fact that (6, Z) € int(E)
we would have ¢ non-negative on some 6-neighborhood in Y, whence
¢ = 0. But this contradicts @ # 6. 0

It is to be noted that the regularizing sets make a transient appearance
in this argument; the conclusion (14.14) depends only on the data A, S, T, P,
and Q.
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Corollary 1.  If the positive wedges P and Q are both solid and if the
system (14.12) is consistent, then the system (14.13) is inconsistent only if
Junctionals ¢ € P*,y € Q* (y # 0) exist and satisfy (14.14).

We now proceed to several applications of the theorem and Corollary 1.
The first is known as the “Farkas-Minkowski lemma”.

Corollary 2. Let A be a convex subset of the (real) linear topological
space X and let f € Conv(A). Let S:A — Y be a convex mapping with values
in an ordered linear topological space Y. Assume that the associated system
(14.12) is consistent and that f(x) = 0 whenever x € A satisfies S(x) < 0.
Then there exists a monotone linear functional ¢ € Y* such that

fx) = —<8x), ¢>, xeA.

Proof. This is a direct consequence of Corollary 1 and the theorem if
we take Z = R with the usual ordering and let T = f. 0

This corollary contains as a special case the classical version of Farkas’
lemma in matrix theory. Namely, let B be an m x n real matrix. Then a
vector b e R" will satisfy <b, x) = 0 for all x such that Bx > 6 if and only
if there is a non-negative vector y € R™ such that yB = b.

G. For another application of Tuy’s inconsistency condition we re-
consider the general convex programming problem of 14E. We shall assume
that our program has the form

(14.16) min { f(x):x € A, S(x) < 6}

where A is a convex set in some linear space X, S: 4 — Y is a convex mapping,
and Y is an ordered linear topological space with positive wedge P. As usual,
the case Y = R"is of special importance. The following optimality principle
is the “Hurwicz saddle-point condition”.

Theorem. If pe A solves the program (14.16) and if the associated
system (14.12) is consistent then there exists a linear functional ¢ € P* such
that

(14.17) J(p) + <8(p), ¥ < f(x) + {S(x), ¢

for all x e A and all y € P*. Conversely, if for some point pe€ A such a ¢
exists in P*, and if P is closed in Y, Y being now a locally convex space, then
p is a solution of (14.16).

Proof. Again the first assertion follows directly from Corollary 1 in
14F, because if p is to be a solution of (14.16) then the system

(14.18) S(x) < 0, f(x) — f(p) <O, xeA

must be inconsistent.

To establish the second assertion we observe that (14.17) entails
{S(p), ¥ > < <{S(p), p> for all Y € P*, whence {S(p), ¥) < O for all € P*.
Then since P is closed it follows that —S(p) € P, or, that S(p) < 6. We now



§14. Convex Functions and Optimization 93

appeal to exercise 2.43 to conclude that the system
Sx)<6, fx)—flp)<0, xe4d

is inconsistent and hence that p is a solution of (14.16). O
The consistency of the associated system (14.12), as a hypothesis for the
necessity of (14.17) is again known as Slater’s regularity condition (14E).
To see the reason for the saddle-point terminology employed just above
we define a function L (the “Lagrangian function”) on 4 x P* by

(14.19) L(x, ¢) = f(x) + {S(x), ¢.

A point (p, §) € A x P* is called a saddle-point of L if for every x € A and
Y € P* we have
L(p, ) < L(p, ¢) < L(x, ¢).

It thus appears that if we assume that Y is a locally convex ordered space
with closed positive wedge P, and that the Slater condition holds, then
p € A is a solution of the convex program (14.16) if and only if there exists
¢ € P* such that (p, ¢) is a saddle point of the Lagrangian function (14.19).

H. We continue our study of the convex program (14.16) with the same
assumptions as in the first paragraph of 14G. Let v be the value (8E) of the
program. We introduce the companion notion of weak value. We say that
a net {x;:6 € D} is a weak solution of the system

(14.20) Sx) <0, xed

if S(x;) = y5 + yj where y5 < 0 and yj — 6. The weak value of the program
(14.16) is then
v' = inf lim { f(x,):6 € D},

where the infimum is taken over all weak solutions (if there are none we
set v = + o0). In all cases we clearly have v < v.

Suppose now that Y is locally convex and that its positive wedge P is
closed. It follows that

if S(x) < 0
g(x) = sup{f(x) + <S(x), p):¢ € P*} = {ﬁfﬂ;liﬁ(lz)t S

and so
inf{g(x):xe A} = v.

In other words, in terms of the Lagrangian function (14.19)

v = inf sup L(x, ¢).
xeA ¢peP*
We are thus led to consider the variational pair (P*, h) where h(¢) =
inf{L(x, ¢):x € A}. The corresponding maximizing program is called the
dual of (14.16). Let the dual value be denoted v*:
v* = sup inf L(x, ¢).

¢peP* xed
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We now have “GolStein’s duality theorem”. The proof constitutes another
application of 14F and illustrates the use of regularizing sets.

Theorem. Assume that the system (14.20) is weakly consistent in that
it possesses a weak solution. Then the weak value of the primal program
(14.16) equals the value of the dual program: v' = v*.

Proof. Suppose first that — oo < v and select some a < v'. We claim
that for some convex #-neighborhood V, = Y the system

(14.21) Sx) <0+ (Vy), f(x)—a<0, xeAd

is inconsistent. For if not we let {V;:0 e D} be a #-neighborhood base
directed by inclusion and select a solution x; of (14.21) for each § € D. The
net {x;:0 € D} is then a weak solution of (14.20), but lim { f(x;):6 € D} <
o < v/, a contradiction of the definition of v’. (Note that any convex 6-
neighborhood in Y is a regularizing set for the positive wedge P.) Now for
the 6-neighborhood V,, that makes (14.21) inconsistent the system

S(x) < 0 + V,, xe A

is consistent; this follows from the existence of a weak solution of (14.20).
Hence we can apply Tuy’s inconsistency condition and obtain ¢ € P* such
that

f(x) + {S(x), ¢> = a, xeA.

’

This proves that v* > « for all « < v' and hence that v* > v'.
For the converse let {x;:0 € D} be a weak solution of (14.20) so that
S(x;) = y5 + y5, where y; < 0 and y; — 6. For any ¢ € P* we have

CS(x5) — y5, @) + fx5) = <ys & + f(x5) < flx5),
which yields
lim {<S(x;) — y5, ¢ + f(x;):8 € D} < lim {f(x;):5 € D}.

h(¢) = inf{L(x, ¢):x € A}
< lim{L(x;, ¢):0 € D} < lim{f(x;):6 € D}.

Thus

This being true for all ¢ € P* we see that
v* = sup{h(¢):¢ € P*} < v,

which completes the proof, even in the case where v’ = — oo. 0
We say that the convex program (14.16) is well-posed if it has the same
value as its dual program. Thus, being well-posed is equivalent to

(14.22) inf sup L(x, ¢) = sup inf L(x, ¢).

xeA ¢eP* PpeP* xed

Let us also say that a sequence {(x,, ¢,)} in A x P* is a weak saddle-point
for the Lagrangian Lon A x P* if there exists a numerical sequence ¢, = 0,
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&, — 0 such that for every n
(14.23) L(x,, ¥) — &, < L(x, ¢,) + & X € A, ¢ € P*,
We then have an alternative characterization of well-posed programs.

Corollary. The convex program (14.16)is well-posed (with a finite value)
if and only if there is a weak saddle-point for its Lagrangian.

Proof. From (14.23) we see that the left side of (14.22) is not larger
than the right side. Since the reverse inequality is always true for any function
L we see that (14.22) is valid and hence that the program is well-posed.
Conversely, assume the program to be well-posed and let {x,} = A4 be any
minimizing sequence: g(x,) - v > —oo. Similarly, let {¢,} = P* be a
maximizing sequence for the dual program: h(¢,) — v. Define

v — h(¢a)]}-

Then 0 < ¢, — 0 while g(x,) < v + ¢, and v — ¢, < h(¢,); this leads to
(14.23). 0

I. In 6E we summarized the equivalence of six versions of the basic
separation theorem in linear spaces. In the present chapter we have obtained
the topological forms of these principles along with several new versions.
It remains true that all these versions are equivalent to one another. They
(collectively) constitute the single most important general principle of
geometric functional analysis. (We may also safely assert that the (extended)
Krein-Milman theorem of 13B is the second most important general principle
of our subject.) For ease of reference we now list the ten topological formula-
tions of our fundamental principle.

1) The separation theorem (11E);

2) the support theorem (11E, Cor. 2);

3) the Hahn-Banach theorem (11G);

4) the Krein-Rutman theorem (6B and exercise 2.46);
5) the subdifferentiability theorem (11C);

6) the Tuy inconsistency theorem (14F);

7) the Farkas-Minkowski lemma (14F, Cor. 2);

8) the Hurwicz saddle-point condition (14G);

9) the Golstein duality theorem (14H);

10) the Dubovitskii-Milyutin separation condition (exercise 2.47).

It is important to be convinced of the mutual equivalence of these
theorems. Most of the techniques for establishing these equivalences Have
already been presented (particularly in §6), so we will be content with making
a few additional suggestions.

We have shown in the preceding several sub-sections that 6) implies
7)-10). Now we can use either 7) or 8) to establish the linear space version
of the Krein-Rutman theorem (6B), and from that as usual the topological
version. To do this assume the data M, P, X and ¢ as in 6B, and define
S:M — X by S(x) = —x. If we assume 7) then the hypotheses that the

&, = max{|v — g(x,)

B
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system (14.12) is consistent and that ¢(x) = 0 at each of its solutions are
both satisfied, and the conclusion of 7) immediately yields the conclusion
of the Krein-Rutman theorem. On the other hand, if we assume 8) then we
consider the convex program

min{ f(x):x e M, S(x) < 6}

where fe X' is any extension of ¢. The value of this program is 0 and 6
is a solution. By 8) we obtain a positive linear functional ¢ € X’ such that

0 < f(x) + <8(x), ) = f(x) — $lx)

for all x e M. Thus fis a positive extension of ¢.

Finally, it is immediate that 10) implies 1), so that it only remains to see
what we can do with 9). Let X be a real locally convex space. A real-valued
affine function fon X (exercise 1.6) necessarily has the form f(x) = ¢(x) + ¢
for some ¢ € X' and ceR. Let {f;:je J} be a family of continuous affine
functions on X, put f(x) = sup{fj(x):jeJ}, and 4 = {x:f(x) < +o0}.
Then if 4 # (& it is clear that f& Conv(A4) and is lower semicontinuous.
We can use 9) to demonstrate the converse.

Lemma. Let A be a convex set in X and assume that f € Conv(A) is lower
semicontinuous. Then there is a family { f;:j € J} of continuous affine functions
on X such that f;|A < f, je J, and

f(x) = sup{fj(x):jeJ}, x € A.
Proof. For each ¢ € X* define

(14.24) (@) = sup{¢(x) — f(x):x e A}.

If there exists ¢ € X* such that f*(¢) is finite then f, = ¢|4 — f*(¢) is a
continuous affine minorant of f on A; we shall show in fact that

(14.25) f(x) = sup{fs(x):f*(¢) < o}, x e A.

In order to apply 9) we select p € 4 and set up a convex program of the type
(14.16) with S: 4 — X defined by S(x) = p — x, and assume that X has the
trivial positive wedge P = {6} (so that P* = X*). Because of the lower
semicontinuity of f on A, the hypotheses of 14H are satisfied and so we
may assert that

f(p) = sup inf L(x, ¢)

PeX* xed

= sup iilf{f(X) + ¢(p — x)}
sup {#(p) — fH(®)}-

Thus either {¢ € X*:f*(¢) < oo} is non-empty or else 4 = ¢F; assuming
the former to be the case we have then proved (14.25). 0

This lemma in turn leads to a proof of 2) by the same method employed
in 6D. Thus let 4 be a solid convex set in X and x, ¢ int(4). Assuming that
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0 € int(4) we can write (14.25) as

pa(x) = sup{$(x) — pi($):p3(¢) < o0}
= sp{p(x):¢ < pa},  xeX,

where the second equality follows from the positive homogeneity of the
gauge p,. Since the set {¢p € X*:¢ < p,} = A° is weak*-compact (12D)
we can choose ¢ < p, with ¢(xo) = pa(xo) = 1 and then [¢; 1] defines
the desired supporting hyperplane to 4 at x,.

A more direct proof of the lemma is indicated in exercise 2.47.

§15. Some More Applications

In this section we present a variety of applications illustrating the ideas
and principles of this chapter.

A. In 7B we studied a criterion (Fan’s condition) for the consistency
of a finite system of linear inequalities. We now give a generalization but, in
keeping with the advice offered in 6E, we formulate the problem in a suitable
conjugate space, as in 7C.

Let X be a real locally convex space, {x;:je J} a famlly of vectors in X,
and {c;:j e J} an accompanying family of real numbers. We inquire about
the consistency of the system

(15.1) < Plx),  jeld,

where ¢ is to belong to X *. A condition for the consistency of (15.1) can be
expressed in terms of the smallest closed wedge P = X x R! that contains
each pair y; = (x;, ¢;) for je J. That is, P is the closure of the set
[0, co)co({y;:j € J}). Our consistency criterion is based on the following
simple consequence of the strong separation theorem (11F).

Lemma. Let A be a subset of the real locally convex space Y. A point
q € Y belongs to the smallest closed wedge containing A if and only if every
¢ € Y* satisfying ¢p(x) = 0 for x € A also satisfies ¢(q) = 0O

Corollary. The inequality system(15.1)is consistent if and only if (6, 1) ¢ P.

Proof. Using the general form of linear functionals on the product
space Y = X x R! (6D) we see from the lemma that (6, 1) € P if and only
if every real s satisfying

d(x;) +s¢; =20, jeld

for some ¢ € X* satisfies s > 0. But it is clear that this last condition is
equivalent to the inconsistency of (15.1). |

The consistency criterion described in the lemma will also be referred
to as “Fan’s condition”. It is easily verified that this result contains the
earlier result of 7B as a special case. A further application to inequality
systems is given in exercise 2.50.
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B. In 13D we derived a formula (13.5) for the distance d(x, M) from
a point x to a linear subspace of a normed linear space X. An interesting and
important question is whether or not this distance is attained in the sense
that there exists some ye M so that |[x — y|| = d(x, M). Such a y is a
best approximation to x from M. In other words, we ask: does the convex
program

15.2) min {||x — y||:ye M}

have a solution? The general theory of 14E (cf. Ex. 1 there) implies that
pe€ M is a solution of (15.2) if and only if df(p) N M° # &, where f(y) =
[[x — ||, y € X. Interpreting this condition we may assert that pe M is
asolution ifand only if there exists ¢ € U(M°) such that ¢(x — p) = ||x — p||;
this intuitively means that p must be chosen in M so that the error vector
X — pis in a certain sense “perpendicular” to M. But the optimality theory
does not actually help us to decide whether such a p exists. This existence
question is really quite difficult in general and particular cases must often
be handled by ad hoc methods. The next result (“Godini’s theorem”) contains
a pair of necessary and sufficient conditions for a subspace M to admit
a best approximation to every x € X. Such subspaces are said to be proximinal
in X; they clearly must be closed in X.

Theorem. Let M be a linear subspace of the real normed linear space X.
The following conditions are equivalent:

a) M is proximinal in X ;

b) Ou(U(X)) = U(X/M);

¢) Ou(U(X)) is closed in X /M.

Proof. Assume that M is proximinal and select a coset x + M with
1 =||x + M|| = d(x, M). Let ye M be a best approximation to x. Then
x —ye U(X) and Qp(x — y) = x + M. This proves that a) implies b)
while it is trivial that b) implies both a) and c). It remains to show that c)
implies b). If Q,(U(X)) is closed but properly contained in U(X/M) then
there is a coset x + M of norm one which can be strongly separated from
Om(U(X)). Taking into account the duality formula of 1H we can obtain
¢ € M° such that

$0) > sup {g):[Ju] < 1} = [}

But this results in a contradiction since |p(x)| < ||¢||d(x, M) = ||¢|| 0
Let us see what this theorem says in the particular cases where M is
either of finite dimension or finite codimension.

Corollary. a) Every finite dimensional subspace of X is proximinal in
X.
b) If M is closed and of codimension n < oo in X, then M is proximinal
in X if and only if S(UM)) is closed in R", where S:X — R" is defined by
S(x) = (¢a(x), - - -, Pu(x))

for any given basis {¢,, . .., .} of M°.
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Proof. a) We show that Q,(U(X)) is closed in X/M. Suppose that
X, + M - x + M where ||x,|| < 1. Then d(x, — x, M) — 0 and so there
exist vectors y, € M and ¢, € X, ¢, — 6, such that x, — x — y, = ¢,. The
sequence {y,} is bounded and so contains a convergent subsequence (9F)
with limit y € M (9E). Consequently, limx, = x + ye U(X)and x + M =
Omlx + y).

b) Given a basis {¢, . . ., ¢,} for M° we can select vectors vy, ..., v,€ X
so that ¢;(v;) = d;; (exercise 1.41). The set {v; + M, ..., v, + M} is then
a basis for X/M, and since

X — Z ¢j(x)vj€°M° B M
ji=1

(12Q), it follows that
x4+ M=) ¢ix)(v; + M).
=1

J

Now if T:R" - X/M is the isomorphism defined in 9E in terms of the
basis {v; + M,...,v, + M}, we have Q, = So T, and our assertion
follows from Godini’s theorem. 0

Observe that the condition of b) may also be expressed as the condition
that U(X) be complete in the (non-Hausdorff) weak topology o(X, M°).
Also note the special case n = 1 of b): if M = ker(¢) is a hyperplane in X
then M is proximinal in X if and only if ¢ “attains its norm” in the sense
that there is some non-zero x € U(X) such that ¢(x) = ||¢||. That this need
not always happen is demonstrated by the example

d(x) = [§tx(tydt,  xeLY([0,1],R).

C. In 13E (Ex. 5) we introduced the notion of a strictly normed linear
space X. Such spaces were noted to have the property that their unit ball
U(X) is rotund, that is, every boundary point (unit vector) is an extreme
point of U(X). It follows that if we try to minimize the distance from a point x
in such a space to a linear subspace M or, indeed, to any convex set A4,
this distance can be attained by at most one point in M (resp. 4). In other
words, a convex subset of a strictly normed space contains at most one
best approximation to any point. The reason for this is simply that if there
were two best approximations to some particular point x then the line
segment joining these two best approximations would consist entirely
of best approximations and we would hence have a line segment lying on
the boundary of a ball centered at x, in contradiction to its rotundity.

Lemma 1. Let A be a closed locally compact convex subset of a strictly
normed linear space. For each x € X there is a unique best approximation
P/ (x) to x in A and the map P, is continuous on X.

Proof. The sets A n (x + AU(X)) are closed, convex, locally compact
and non-empty for sufficiently large A > 0. Since they have a trivial recession
cone, they must also be compact (13C). Their intersection, taken over those
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A yielding non-empty sets, is therefore also non-empty, and consists exactly
of the best approximations to x in A. Because X is strictly normed we see
that the map P,:X — A is well defined and single valued. It remains to
verify the continuity of P,. Suppose that lim, x, = x. Then

[[%n = Pa(x)|| = ||x = Pa)||| = |d(x,, 4) — d(x, A)|

(15.3) <lr-x-0 no o

Because of local compactness any subsequence of the sequence {P,(xy)}
has a cluster point y € A which, by (15.3), satisfies

IIx =y =[x = Pax)|| = d(x, A4).

By uniqueness of approximation it follows that y = P ,(x). 0

The map P, is called the metric projection of X on A.

Most normed spaces do not come equipped with strict norms. In order
to be able to apply Lemma 1 to some interesting situations we show next
that the normed spaces occuring in practice can be “renormed” with strict
norms. This means that we can find a new norm on the space which defines
the same topology as does the original norm and which is in addition a
strict norm. In general, it is easy to see (9B) that two norms p and ¢ on a
linear space define the same topology exactly when they are equivalent in
the sense that positive constants a and b exist such that

(15.4) ap(x) < o(x) < bp(x), x e X.

The first inequality quantitatively expresses that the p-topology on X is
weaker than the o-topology, and the second that the o-topology is weaker
than the p-topology. We can alternatively state that the norms p and o
on X are equivalent if and only if the identity map I:(X, p) — (X, o) is an
isomorphism. Renorming a space in this sense thus changes the geometry
but not the topology. We now have the “Clarkson-Rieffel renorming lemma”.

Lemma 2. Let X be a separable normed linear space.

a) There is an equivalent strict norm on X.

b) There is a strict norm p on X *, weaker than the usual dual norm, such
that the p-topology on any bounded subset of X* coincides with the weak*-

topology.

Proof. a) By 12F there is a weak*-dense sequence {¢,} in U(X¥).
Define

o 1/2
o(x) = ||x|| + <;1 2'"|¢,,(x)|2> , xe X,

where ||-|| is the given norm on X. Then ¢ is a norm on X and since
Il < ot < 2]xll,  xeX,

the two norms are equivalent. Finally, we show that ¢ is a strict norm.
Let us assume that a(x + y) = o(x) + o(y), and set &, = P (X), 1, = D))
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Then

w 1/2 ® 1/2 w 1/2
(15.5) (; 277E, + 11,,|2> = (; 2‘"|§,,[2) + <; 2"‘|;7,,|2) .

Because all L*(Q, u, F) spaces are strictly normed (in the present case,
Q = {1,2,...} and u({n}) = 27"), equation (15.5) entails either n = (n,) = 0
or else the existence of t = 0 such that & = t. Thus, recalling that the
sequence {¢,} is total over X (12C), it follows that either y = 6 or else
X = ty, proving that ¢ is a strict norm.

b) Let {x,} be a dense sequence in U(X) and define

) 1/2
oo = (5 2oel) L pexn

Then p is a strict norm on X * satisfying p(¢) < ||¢||, ¢ € X*. Consider now
the identity map from U(X*) in its weak*-topology to U(X*) with its
p-topology. If we show that this map is continuous it will follow that it is
actually a homeomorphism because of the weak*-compactness. This will
show that the two topologies agree on U(X*) and hence on any bounded
subset of X *. To prove the continuity of the identity map at ¢, € U(X™*),
select ¢ > 0 and let V = {¢p e UX*):p(¢p — ¢o) < ¢}. Then if an integer
m is chosen so that
Y 27" < g4,

n=m+1
and we define the weak*-¢-neighborhood

W= {¢eX*:|¢(xn) — ¢o(x,)| < \/7?, 1<n< m},
we see that U(X*) n W is a (relative) weak*-¢,-neighborhood contained
" I;;Iote that the argument just given reproves in stronger form a speci|a:lI
case of 12F. We now outline some applications of these two lemmas.

Example 1. Let f:Q — Q be a map from a set Q into itself. A point
p € Qis a fixed point of f if f(p) = p. The solution of many non-linear equa-
tions can be obtained as fixed points of certain mappings. The existence of
fixed points in Euclidean spaces is resolved by the classical “Brouwer fixed
point theorem”: every continuous map of a Euclidean unit ball into itself
has a fixed point. Since every compact convex set in R" is homeomorphic
to some Euclidean unit ball, the fixed-point statement can be made about
all such sets as well. We shall obtain a substantial generalization of this
fact known as the “Schauder fixed point theorem”.

Theorem. Let A be a closed convex subset of a normed linear space X,
and let f be a continuous map of A into a compact subset of A. Then f has a
fixed point in A.
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Proof. We first reduce the problem to the case where A is bounded
and X is a separable strictly normed space. This can be done noting that
if f(A) = K, a compact set, then we can replace 4 by B = ¢6(K) = A and
try to prove the theorem for B. Next we let Y = span(B); this is a separable
subspace of X and we can work entirely in Y. Finally, by Lemma 2, we can
assume that Y is strictly normed.

Now f(B) is totally bounded and hence contains a %-net {flx)i=1,...,

m = m(n)} for each n (10B). Let Y, be the linear hull of this %-net and put

B, = BN Y,, a compact convex subset of the finite dimensional space Y,.
Let P,:Y — B, be the metric projection. Then the map

Jo= Py Y

is a continuous map from B, into itself (using Lemma 1) and so has a fixed
point u,:f,(u,) = u,. By compactness we can assume that v = lim, f(u,)
exists in K. Now

[t = ol = || i) = 0]
(15.6) < | Altn) = f)]| + || f ) = o]

1
S;—F ”f(un)" v

s

because, for any x € B,,,
1£:x) = f¥)]] = ||Pu(f(x)) — f()]
= d(f(x), B,) < min{||f(x) — f(x)||:1 < i< m} <

S|

The estimate (15.6) proves that lim, u, = v = lim, f(u,) = f(v); that is,
vis a fixed point of f.

Example 2. Let (2, d) be a metric space and let A be a closed subset
of Q. According to the “Tietze extension theorem” every continuous function:
A — R can be extended to a continuous function: Q — R. (This extension
theorem actually characterizes normal Hausdorff spaces.) According to
the “Borsuk-Dugundji extension theorem” this extension can be achieved
for bounded functions via a “linear extension operator” from Cy(4, R) into
Cy(2,R). This means that there exists T € B(C,(4, R), C,(2,R)) such that
T(x) is an extension of x for every x € C,(4, R). Further, it can be arranged
that ||T|| = 1 and that the functions be permitted to take values in an
arbitrary locally convex space instead of R.

We give now a geometric proof of the latter extension theorem under
the restriction that the metric space (@2, d) be compact, and that the functions
be real or complex-valued. The reason for the compactness restriction is
that it is the only case where we can guarantee that C(Q, IF) is separable.
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Lemma 3. The Banach space C,(Q, F) is separable if and only if the
metric space (2, d) is compact.

Proof. From exercise 1.40 we see that C,(Q, C) is separable if and only
if C,(Q, R) is, so we just work with the latter space. Suppose that Q is compact.
Then Q is 2nd-countable and there is a countable base {V,} for its topology.
We define x,(t) = d(t, Q\V,) and let o7 be the subalgebra of C(Q, R) generated
by the x,’s. Now & is by definition the linear hull of the “monomials”
x§t - x%m, where ay,...,q, are non-negative integers and m is arbitrary.
This collection of monomials is countable and the linear combinations of
them with rational coefficients also constitute a countable set which is,
moreover, dense in /. Thus it suffices to show that .« is dense in C(Q, R).
But this is an immediate consequence of the Stone-Weierstrass theorem,
since the functions {x,} evidently separate the points of Q. This proves
that C(Q, R) is separable whenever Q is a compact metric space.

Conversely, suppose that Q is not compact. Then there is a sequence
{t,} of distinct points in Q with no cluster point in Q. Centered at each
t, there is a ball B, containing no other member of the sequence and such
that B, n B,, = (J, m # n. As above, let x,(t) = d(t, 2\B,). Let # be the
family of all non-empty subsets of the positive integers and, for each J € 2,
define

(15'7) yJ(t) = z X"(t)/”Xn'

neJ

. te Q.

The function y; is a well-defined member of C,(Q, R) since at each t € Q,
at most one term on the right hand side of (15.7) is non-zero. But if J; and
J, are distinct members of # then||y,, — y;,||.. = 1,showingthat {y,:J e #}
is an uncountable discrete subset of C,(Q, R), and hence that this space is
not separable.

Now to achieve our geometric proof of the Borsuk-Dugundji theorem
subject to the above restrictions, we fix a closed set 4 = Q and consider
the weak*-compact convex subset B of C(Q, F)* consisting of those positive
linear functionals ¢ such that ¢p(e) = 1 (where e is the constantly one function
in C(Q, F)), and such that ¢ annuls every continuous function vanishing
on A. Thus B contains in particular the set {J,:t € A}. Let Q be the restriction
of the metric projection Py (defined and weak*-continuous by Lemmas 1
and 2b) ) to the set {J,:t € 2}. We can then define our linear extension operator
T:C(4, F) » C(Q, F) by the formula

T(x)(t) = <x, Q(5,)), te Q.

It is easily checked that T has the desired properties and that, in addition,
T maps the constantly one function on 4 into e. 0

D. We give now the generalization of the strong separation theorem
promised in 11F. This result, known as “Dieudonne’s separation theorem”
is an immediate consequence of the general criterion for strong separation
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given in 11F and the lemma below. Actually, this lemma has considerable
independent interest. For example, we shall utilize it along with a result
in Chapter III in discussing the existence of solutions to a certain type of
convex program which serves as model for problems of optimal control
and spline approximation.

Theorem. Let X be a locally convex space and let A, B be disjoint closed
convex subsets of X. We suppose that A is locally compact and that the recession
cones have trivial intersection: C4 n Cp = {0}. Then A and B can be strongly
separated by a closed hyperplane.

It is clear that this theorem includes the strong separation theorem of
11F, since the hypothesis there was that 4 is compact which implies C, = {0}.
On the other hand, the hypothesis that C, n Cpz = {6} is crucial; omitting
that, the conclusion can fail even in case B is finite dimensional. We now
state and prove the key lemma.

Lemma. Let X be a Hausdorff linear topological space and let A, B
be closed convex subsets of X. If A is locally compact and C, n Cy = {6}
then B — A is closed in X.

Proof. The conclusion is clear if A is compact (exercise 2.1) so we
shall explicitly assume that 4 is non-compact. Let c e B — A; there are
thus nets {b;:6 € D} = B and {a;:6 € D} = A such that ¢ = limy(b; — a;).
For any balanced 6-neighborhood V in X we define

My ={xeA:x+(c+ V)nB# J}.

The sets M, are non-empty: they eventually contain the vectors a;. Suppose
that some M, is relatively compact. Then there is a cluster point a e A of
the net {a;: € D} and so the net {b;:5 € D} also has a cluster point b, neces-
sarily in B. Hence ¢ = b — ae B — A, and the proof is complete in this
case. Thus we are reduced to the situation where none of the sets M, is
relatively compact.

Without loss of generality we may assume that 8 € 4. Let W be a closed
balanced 6-neighborhood such that 4 n W is compact. Now, for each
positive integer n and each V as above, we define

PH,V = MVﬁAﬁX\(nW).

Because 4 n nW < n(A n W) which is compact, and because of our
assumption that none of the sets M, is relatively compact, it follows that
none of the sets P,  is empty. The proof is now concluded in two steps:
a) the existence of a half-line L = A such that L < [0, c)P, y, for every
nand V;and b) use of this half-line to obtain a contradiction to the hypothesis
Cyn Cg = {6}

Proof of a). Let K = A n W n (X\int(3W)); this is a compact subset
of A. We consider the directed family of sets [0, 0)P, , N K. Because K is
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compact this family has a cluster point x, € K; necessarily x, # 6. Then
the desired half-line L is [0, co)x,. To see this, choose any 4 > 0. Then,
noting that the sets P, ,, decrease as n increases and/or V shrinks, we see
that Ax, belongs to the closure of each set [0, c0)P, . Also, since Axy € AW,
Ax, belongs in fact to the closure of [0, c0)P, N nW for any n > A. But
this set lies in A, since € A and A4 is convex. That is, Axoe 4 = A.

Proof of b). We select an arbitrary b e B and show that b + L < B;
this will yield the desired contradiction. Let z € L and choose an integer n,
such that z € int(n, ). Now for any integer n and any balanced 6-neighbor-
hood V there exist A > 0 and ve V such that x = Az + v)e P, ,, and
z + venyW. This entails A > n/n,. Since P, , < M, we can write x =
y — ¢ + v with ye Band v' € V. Then

b+z=b+x/A—v
(15.8) =b+(y—c+V)A—-v
=b+(y—>b/l+(b- )+ V/Ai-—nu

Now if n > ny then A > 1 and so b + (y — b)/A € B; we can further take n
so large that (b — ¢)/A belongs to V. Then by (15.8) we have b + ze B + 3V,
whence (9A) b + ze B = B. O

We note one special case of this lemma as a corollary; it makes use of
the local compactness of finite dimensional spaces (9F).

Corollary. Let N be a finite dimensional subspace of X and P a closed
wedge in X such that N n P = {0}. Then N + P is closed in X.

Note that if the wedge P is also a linear subspace then N + P is always
closed, whether or not N n P = {0} (9E). Thus in this very special case we
can obtain a stronger result than that provided by the lemma. In general,
when N and P are closed subspaces of a normed space satisfying N n P =
{6}, it is easy to see that N + P is closed whenever inf{||x — y||:xe N,
yeP, ||x|| = ||y|| = 1} > 0. This condition certainly holds in particular
when N has finite dimension.

E. As our final application of this chapter we utilize the Krein-Milman
theorem to study the range of certain vector measures. The result to be
presented below contains as a special case the famous Liapunov convexity
theorem concerning finite dimensional vector measures. This theorem in
turn has a wide variety of applications, notably to the optimal control of
linear dynamical systems (where it is essentially equivalent to the “bang-bang
principle”), and to statistical decision theory.

Let (2, X, v) be a totally finite (positive) measure space. In 12C we
observed that the continuous dual of the Lebesgue space L*(v) = LY(, v, R)
could be identified with the space L*(v) of v-essentially bounded measurable
real-valued functions on Q. Since the positive wedge {¢ € L*(v):¢ = 6} is
weak*-closed (because, for example, it can be expressed as {¢ € L®(v):
feddv = [q dxzdv > 0}, and the characteristic functions y; belong to
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L'(v) for all E e X), its intersection K with U(L®(v)) is weak*-compact.
According to exercise 2.56 the extreme points of K are just the characteristic
functions:

(15.9) ext(K) = {yz:Ee Z}.

Now let M be a subset of L!(v) and E a measurable subset of Q. We
consider the subspaces M*(E) of L*(v) consisting of all those ¢ that vanish
a.e. on the complement of E and that annul each member of M: [, f¢p dv =
0, f € M. We shall write M*(Q) as simply M*- M 1s said to be thin provided
that M*(E) # {0} whenever v(E) > 0. It is clear that M is thin if and only
if span(M) is thin.

Lemma 1. If M is thin then K < ext(K) + M*.

Proof. Let ¢ € K. Then theset A = K n (¢ + M) is compact and so
by 13A there exists iy € ext(4). We claim that i is a characteristic function
and hence in ext(K). If not, there exist ¢ > O and E € X such that ¢ < Y/E <
1 — &. Now since M is thin there is a non-zero ¥, € M*(E) and, since ¥/, is
essentially bounded, we can arrange that |y,(-)| < &. But then y + ¢, € 4,
contradicting ¥ € ext(K).

Let us recall that a set E € X is an atom of v if W(E) > 0 and every mea-
surable set F < E satisfies v(F) = 0 or else WF) = v(E). Intuitively an atom
is a point of positive mass. The measure v is called purely atomic if the com-
plement of all the atoms of v is a null set. An example of such a measure
occurs when Q is a countable set and for all E = Q, w(E) = cardinality of E.
Such a measure is naturally called a counting measure. At the other extreme,
the measure v is non-atomic if there are no atoms in 2. Lebesgue measure on
R™is non-atomic and, more generally, given any Lebesgue integrable function
fonR" themap E — [ f(t)dt defines a non-atomic measure on the Lebesgue
measurable subsets of R”. The next two lemmas indicate some of the relevance
of these types of measures in our present framework.

Lemma 2. If v is non-atomic then any finite set M < L(v) is thin.

Proof. Suppose that M = {f,, ..., f,} and that E € X. Since v is non-
atomic we can partition E into disjoint sets E, . . ., E,, , of positive measure.

Let A be the n x (n + 1) matrix with entries ij f; dv. Then there is a non-
n+1

zero solution x of the system Ax = 6. Hence the function ) Xj)XE; 1s @
1

non-zero element of M*(E). 0
Lemma 2 does not characterize thin sets. By partitioning 2 into countably
many sets of positive measure we can easily construct infinite thin sets.

Lemma 3. a) ext(K) is weak*-dense in K if (and only if) v is non-atomic.
b) ext(K) is weak*-closed in K if (and only if) v is purely atomic.

Proof. a) Let N = {¢ € L*(v):|[q fip dv| < 1,1 < i < n} be a weak*-
6-neighborhood in L*(v) and set M = {fj, ..., f,}. Then by Lemmas 1
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and 2
K c ext(K) + M < ext(K) + N,

so that K < ext(K)*.

b) If vis purely atomic the set Q is a countable union ofatoms E, E,, . . . .
Since any measurable function is necessarily constant a.e. on an atom, it
follows from (15.9) that

ext(K) = [] {¢€L®v):¢(‘) = Oorlae. onE,}
n=1
= [] {¢ € L°(v):[q x5,¢ dv = 0 or W(E,)}.
n=1
This exhibits ext(K) as an intersection of weak*-closed sets. 0

The conclusion of the first part of Lemma 3 should be duly noted. It
provides us with an example of a non-trivial compact convex set which is the
closure of its extreme points. This is a surprising possibility and emphasizes
once again the occasionally bizarre properties of weak*-topologies.

We now suppose given a family {u;:j € J} of totally finite signed measures
on (2, X), each member of which is v-absolutely continuous. By the Radon-
Nikodym theorem the densities f; = du;/dv exist in L'(v) for each j e J. Let
E:Z — R’ be defined by f(E) = (u;(E):j e J) and, for any E € X, let R(E) =
{W(F):FeZX, F < E}. Thus fi is a vector measure on (R, X) and R(E) is the
range of its restriction to E. We are interested in the nature of R(E) as a
subset of the product space R’ (which is assumed to have the product
topology (9D)). Our answer is contained in the following theorem of
Kingman and Robertson.

Theorem. With the above notation let M = {f;:j€ J}. Then R(E) is a
(compact) convex set in R” for every set E € X if and only if M is thin.

Proof. Suppose that M is thin. It is sufficient to prove the assertion for
the case E = Q, since otherwise we can apply the following argument to
the restriction of i to E. Now the map T:L*(v) —» R’ defined by

(15.10) T(¢) = (Jo fjp dv:jeJ)

is linear and weak*-continuous, and ker(T) = M*. Further, R(Q) =
T(ext(K)). Since M is thin Lemma 1 implies that

T(K) = T(ext(K) + M*) = T(ext(K)) = T(K).

That is, R(Q) = T(ext(K)) = T(K) is the continuous linear image of a
compact convex set and so is itself compact and convex.

Conversely, suppose that M is not thin; we shall find a set E € X for
which R(E) is not convex. Indeed, there is a set E with v(E) > 0 such that
M(E) = {0}. Let My = {f;|[E:jeJ}. Then My is dense in L'(v|E). This
implies that the map Ty defined on L®(v|E) as in (15.10) (with Q there
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replaced by E) is injective. Hence if R(E) were convex then ext(Kg) =
Tz '(R(E)) would also be convex, where K = {¢ € L*(V|E):0 < ¢ < 1};
thus ext(Kg) = {yr:F € Z, F = E}. But this set of characteristic functions is
certainly not convex (consider, for example, the sets F = Eand F = ). []

Our approach in this theorem has been to study the vector measure
I:Z — R’ by postulating the existence of a density defined wrt some positive
measure v. It is useful to note that this represents no restriction when the
index set J is denumerable. For then such a measure always exists. We may
take, for example,

(15.11) v = ZJ | 1451/27| 5| (22),

where |y;| is the total variation (10D) of y;. Then each p; is certainly v-
absolutely continuous. Also, if each y; is non-atomic the same is true for v.

The most important case of the theorem occurs when J is a finite set,
say J = {l,...,n}. Now & = (yy, ..., i,) is an R"valued measure on X.
We then have the classical “Liapunov convexity theorem”.

Corollary. The range R(E) (E € X) of a finite dimensional vector measure
A= (fy, ..., W) is a compact subset of R" and is convex whenever each y; is
non-atomic.

Proof. The second assertion follows from Lemma 2 and the theorem.
Now if some of the y; fail to be non-atomic the measure v defined by (15.11)
will have atoms. However, the restriction of v to the complement of the set
of its atoms is a non-atomic measure. Thus Q can be partitioned as Q; U Q,
such that v is non-atomic on Q, and purely atomic on Q,. Then for any
EeZ, R(E) = R(En Q) + R(E n Q,) and we know that R(E n ©,) is
compact (and convex). On the other hand, taking part b) of Lemma 3 into
account, we see that R(E n ,) is also compact, as the continuous image of
a compact set of extreme points. 0

To see some implications of Liapunov’s theorem let us briefly consider
a dynamical system governed by a set of linear differential equations

(15.12) x(t) = A(®)x(t) + B(u(t),

where x:[0, T] - R", u:[0, T] - R™ and A4, B are appropriately shaped
matrix functions of ¢ € [0, T'] with Lebesgue integrable entries. The vector
x(t) represents the “state” of our system at time ¢ and u(f) represents a
“control” which we apply to the system in order to influence its state. If we
know the transition matrix &(t) of the system (15.12), that is, the matrix
solution of

d(t) = A()D(), o0) = 1,

then we can express the effect of the control on the state by
(15.13) x(t) = @(t) [ &~ *(s)B(s)u(s)ds,

where for simplicity we have assumed x(0) = 6. In particular, if 4 is a
constant matrix, then @(¢) is just the matrix exponential exp(t4).
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The controls u are chosen to be measurable and to take their values in
some fixed compact convex subset C = R™. In order to know what effect
we can hope to achieve on the state x(-) with such controls, we see from
(15.13) that we must know about the set Z(t; C) of functions {[o P(s)u(s)ds}
where ¥ = & !B and u runs through the measurable C-valued controls.
The “bang-bang principle” asserts that

(15.14) E(t; C) = Et;ext(C)), 0<t<T.

This terminology arises from the special case where C = {zeR™:|z| < 1,
i =1,...,m}, the unit cube in R™ It means that any point in R" to which
we can drive the state by means of an admissible (that is, C-valued) control
in time T can also be attained in the same time by a “bang-bang control”,
that is, intuitively one that uses full power at all times.

The proof of (15.14) in its full generality is difficult but the special case
where C = unit cube is a fairly direct consequence of the Liapunov convexity
theorem. The necessary argument is outlined in exercise 2.57.

Exercises

2.1. Let X be a linear topological space over the field F and let 4, B be
subsets of X. Prove the following assertions.
a) x + A=x+ Aforxe X;
b) if 4 is a linear subspace of X, so is 4;
¢) the interior of A4 is contained in cor(A4);
d) if Bis open thensois 4 + B;
e) if Ais compact, Bisopen,and A = B, then there is a f-neighborhood
U c Xsuchthat 4 + U < B;
f) if A is compact and B is closed then A + B is closed;
g) if A and B are both compact, sois A + B.
2.2. Let the linear topological space X be the algebraic direct sum of its
subspaces M and N, and let P: X — M be the associated projection.
a) Show that the direct sum is topological exactly when P is continuous.
b) If P is continuous show that M and N must be closed.
¢) Show that the conditions of a) are also equivalent to the following:
the map T:X/M — N defined by T(x + M) = (x + M) n N is
an isomorphism (note that T is always continuous).
d) If M is closed and of finite codimension in X show that the direct
sum X = M @ N must be topological.
2.3. Let A be a subset of the linear topological space X.
a) if A is bounded or totally bounded then the same is true of 4 and
of any continuous linear image of A4;
b) if X =[], X, is a product of linear topological spaces X, and X
has the product topology then A4 is bounded ifand only if A = [ ], B,,
where each B, is a bounded subset of X,.
¢) If X = F!for an arbitrary set I (# &) then any bounded set 4 = X
is actually totally bounded.
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2.4.

2.5.

2.6.

2.7.
2.8.

29.

2.10.

Convexity in Linear Topological Spaces

Let A be a convex absorbing subset of a linear topological space X,
and let p, be the gauge of 4. Show that {x € X:pa(x) < 1} is the
interior of 4 and that {x e X:p,(x) < 1} =

a) Give the details of the proof of the theorem in 10B.

b) Establish the following metrizability criterion for a locally convex
space X : X is metrizable if and only if its given topology is Hausdorff
and X contains a countable local base. (Assume that {U,, U,, ...}
is a local base of barrels. After replacing U, by U, n--- n U,
if necessary it may be assumed that U, > U, o ---. Let p, be the
gauge of U, and define

d(x’ y) = Zl 27" min(pn(x - y)’ 1)

for x, y e X. d is the desired metric and is, in addition, translation
invariant.)
c¢) Is the function x > d(x, ) a semi-norm on X ?
Show that every locally convex Hausdorff space is a completely regular
topological space.
Prove the quotient norm formula (10.6).
Verify that the normed linear spaces in Examples 1 through 5 (10D) are
actually Banach spaces. (For the L? spaces of Example 2 note first

that if 0 < f,e L? and Z [|fal|l, < o0, then f = Zf,, belongs to L?

also and || f]|, < Z ||f4||p- This conclusion follows from Minkowski’s
1

inequality and the monotone convergence theorem. Now if { f,} is a
Cauchy sequence in L? it may be supposed that || f,., — f.|[, < 27"

(by passing to a subsequence if necessary). If g, = f, — Y |fix1 — fil

and h, = f, + 3 |fi+1 — fi|, then our remark implies g,, h, € L? and

l|g. — ha| < 27"*2 Finally, f = lim, g, exists in L? and is the desired
limit of { f,}.)

Let R" be normed by the p-norm (3C) with p > 1 and let f:R* - R
be continuously differentiable with gradient Vf(x) eR", xeR" Let
Q be a compact convex subset of R". ||» R) by
showing that the norm (10.4) is given by sup {||Vf(x)||,:x € Q} where
q = p/(p — 1). It follows that for smooth functions convergence in the
metric defined by (10.5) is equivalent to uniform convergence of the
functions and their first partial derivatives.

Every linear space X has a strongest locally convex topology, namely
that generated by the family of all semi-norms on X. Establish the
following properties of this unique topology, often called the convex
core topology on account of g) below.
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2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

a) The topology is Hausdorff;

b) every linear (hence every affine) subspace is closed;

¢) unless X is finite dimensional the topology is not metrizable;

d) any bounded set is necessarily finite dimensional;

e) X is complete (begin by showing that the projection of a given
Cauchy net in X on any finite dimensional subspace has a limit in
that subspace);

f) every linear functional in X’ is necessarily continuous;

g) if A is a convex subset of X then int(4) = cor(A).

Let X be a linear topological space and let 4 = X.

a) If A is open then so is co(A4).

b) If@ e A and A is convex then 4 > N{tA:t > 1} and equality holds
if A is a 6-neighborhood.

c) If A is solid and convex then d(A4) is nowhere dense in X.

Show that Corollary 1 in 11E is false for all non-Hausdorff locally

convex spaces (use 9A).

Let A be a subset of a real locally convex space X. Show that co(4)

is the intersection of all the closed half-spaces in X that contain A.

In case A is already closed and convex it follows that 4 can be deter-

mined by a family of linear constraints: 4 = {x € X:¢,(x) < ¢,} for

some family {¢,} = X* and corresponding family {c,} = R. This is

the principle of “quasi-linearization of convex sets”. When X is a

separable normed linear space the family of determining linear func-

tionals can always be taken to be denumerable. (Compare with exercise

1.35.)

Let X be an infinite dimensional normed linear space. Show that there

exists a discontinuous linear functional on X (that is, X'\ X* # ).

Use this fact to construct discontinuous (unbounded) linear map from

X into itself with a closed kernel (compare with 11D).

Show that a linear functional ¢ defined on a real linear topological

space X is discontinuous if and only if the set {x e X:¢(x) # 0} is

connected.

Let M be a linear subspace of the locally convex space X and let

¢ € M*. Show that there exists an extension of ¢ in X *.

A semi-norm p defined on a linear space X is discrete if M = {xe X:

p(x) = 0} has finite codimension in X.

a) Give examples of discrete semi-norms on the space C,(2, R).

b) Show that ¢ € X’ is continuous in the p-topology on X exactly
when ¢ € M°.

Let A be a closed convex subset of the separable Banach space X.

Show that either A4 is contained in some closed hyperplane or else A

has a non-support point. (Assume the former not to be the case and

that 6 € A. Let {x,} be a dense sequence in A and set y, = x, if||x,|| < 1

o0
and otherwise y, = X,/||x,||. Define p =) 27"y,. Then pe 4 but p is
1

not a support point of A.)
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2.19.

2.20.

2.21.

2.22.

2.23.

2.24.

2.25.
2.26.

2.27.

Convexity in Linear Topological Spaces

Establish the following cancellation law for convex sets. Let A and B
be closed convex sets of a linear topological space X. Suppose that
A + C =B + C for some (non-empty) bounded set C = X. Then
A =B.

Let X be a locally convex space, 4 a compact convex subset of X, and

M a closed linear subspace of codimension >n. If 4 " M = & show

that there exists a linearly independent set {¢;, ..., ¢,} = X* such

that each ¢; defines a hyperplane strongly separating 4 and M.

Let A,,. .., 4, be compact convex subsets of a linear topological space.

Show that co(4; U -+ - U 4,) is also compact (and convex).

Let X be a linear topological space.

a) If 4 is a countable subset of X show that the closed linear span of
A is a separable subspace of X.

b) If X is locally convex show that X is separable if (and only if) X
is weakly separable.

c) If X is separable and normed show that X* is weak*-separable.
Is the converse true?

Let X be an infinite dimensional normed linear space.

a) Endowed with its weak topology X is a set of first category in itself.

b) The weak closure of the set {x € X:||x|| = 1} is the entire unit ball
U(X).

c) The analogues of a) and b) for X* and its weak* topology are also
valid.

Let (@, 2, n) be a positive o-finite measure space.

a) The space L*(y) is either finite dimensional or not separable.

b) Define an equivalence relation on X by E ~ F if and only if
WEAF) = W(E\F) + w(F\E) = Oand let X, be the set of equivalence
classes containing a set of finite measure. We can define a metric
on X, by d(E, F) = w(EAF). Verify that d is a metric on X, and then
prove that for 1 < p < oo the space L?(y) is separable if and only
if the metric space (Z,, d) is separable.

¢) Show that L?(u) is separable whenever the g-algebra X is countably
generated, that is, whenever X is the smallest g-algebra containing
a given countable family of subsets of Q.

d) Show that if @ =« R" and u is Lebesgue measure then LP(y) is
separable for 1 < p < oo.

e) Give an example of a finite measure space such that the corre-
sponding L? spaces are not separable.

Discuss the separability of the Banach spaces in Examples 3—5 of 10D.

Prove that two disjoint closed convex subsets of a locally convex space,

one of which is weakly compact, can be strongly separated by a closed

hyperplane.

Let X be a locally convex space and J the canonical embedding (12B)

of X into X*.

a) Show that a net {x,:0 € D} in X converges to x € X if and only if
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2.28.

2.29.

2.30.

2.31.

2.32.

2.33.

2.34.

2.35.

Jx(x5) converges to Jx(x) uniformly on each equicontinuous subset
of X*.
b) Show that each weakly compact subset of X is complete.
Establish the following working rules for polars in a locally convex
space.
a) B° < A°if A < B;

b) (tA)° = %A°,t # 0;

o) (U{d;ijeld})° = n{4;:jel};
d) (n{4;:je J})° = o*(u{d;:je}).
Give an example of a compact convex set in R® whose set of extreme
points is not closed.
Let X be either the space L'([0, 1], u, F) (where u is Lebesgue measure)
or the space Cy(R, F) consisting of all continuous F-valued functions
on the non-compact locally compact Hausdorff space that vanish at
infinity (that is, functions f € C,(@, F) such that {t € Q:|f(t)| = ¢} is
compact for all ¢ > 0), normed by the uniform norm (10.1). Show that
in both cases the unit ball U(X) has no extreme points. Thus “compact”
in 13A cannot be replaced by, for example, “closed and bounded”.

In the space m of bounded sequences (12F) let e, be the sequence with

all terms 0 except the n'" which is 1. Let 4 = co({0, e;, e,/2, e3/3, .. .}).

Show that A4 is compact (and convex) but that 4 # co(ext(A4)). Thus

in the Krein-Milman formula 4 = co(ext(4)) of 13B the closure

operation cannot generally be omitted.

Let A be a compact convex subset of a locally convex space. Prove that

A is the closed convex hull of its extreme support points (that is, support

points belonging to ext(4)). Note that it is not claimed that every

extreme point must be a support point.

Prove that, in contrast with exercise 1.36, there exists an unbounded

closed convex set B in some Banach space whose recession cone Cy

contains only the zero vector. (In the sequence space £*(X,) let B =

{x = (él) 62, .. '):lénl < n})

Let X be a locally convex space and P a wedge in X.

a) If P is solid then its dual wedge P* is weak*-locally compact in X *.

b) If Pisa closed conein X then the subspace P* — P* is weak*-dense
in X*,

Let Q be a completely regular Hausdorff space (a Tychonov space).

a) The map g:t — J, is a homeomorphism of Q into the ball U(C,(£,
F)*) endowed with the weak* topology.

b) The image g(2) is weak*-closed exactly when Q is compact.

c) Assume that Q is not compact and set §(Q) = ZI@* Then B(Q)
is a compact space containing Q as a dense subspace. Thus () is,
by definition, a compactification of Q and is in fact the maximal or
Stone-Cech compactification of Q. (It is to be shown that if (I, h)
is any compactification of Q, so that h is a homeomorphism of Q
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2.36.

2.37.

2.38.
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onto a dense subspace of the compact Hausdorff space I', then I is
a quotient space of (). In turn this may be achieved by con-
structing a continuous surjection F:(Q) — I' such that h = F o q.
Finally, we can obtain F by considering the transpose (1H) of the
map g - g o hfrom C(I', F) into C,(Q, F), restricting this transpose
to B(R), and composing this restriction with the inverse of the
canonical homeomorphism of I' into U(C(I", F)*).)

d) Every fe C,(Q, F) has a uniquely specified extension to C(B(R), F).

e) B(Q) consists of the non-trivial homomorphisms defined on the
algebra C,(Q, ). It then follows that S(Q2) may be identified with
the set of extreme points of {¢ € U(Cy(Q, F)*):¢(e) = 1}, where e
is, as usual, the constantly one function on Q.

f) If f is any continuous map from Q into a compact space I" then
there exists a uniquely specified continuous extension of f defined
on B(Q). (Same argument as in c).) Hence this extension property
characterizes () up to homeomorphism.

g) Let Q be the space of positive integers with the discrete topology.
Then m = Cy(Q, F) can be identified with C((Q), F) (use d)).

h) If Q = (0, 1] with the usual topology then B(Q2) is not (homeo-
morphic to) [0, 1]. (use d)).

All of which goes to show, among other things, that when Q
is not compact the extreme point structure of U(Cy(R2, F)*) is much
more complicated than in the compact case, when formula (13.9)
provides a complete description. We may also note, in reference to
Lemma 3 of 15C, that from 12F and a) above it follows that in the
case where Q is completely regular, the metrizability of Q is a
necessary condition for the separability of C,(, F).

Show that the unit ball of a normed linear space X is rotund if and

only if X is strictly normed.

Let X be a normed linear space, let {¢,,...,¢,} = X* and {cy,...,

¢,y = R.Let Vbetheaffinesubspace {x € X:¢;(x) = ¢;,j = 1,...,n}.

For any x, € X show that

2tie; — $i(x0))|

|12t

where the supremum is taken over all sets {t,, ..., t,} = R such that

Y'tip; # 6. Conclude that a sequence {x,} = X converges weakly to

X if and only if its distance from any closed finite codimensional flat

through x, tends to 0. (By contrast, a sequence converges to x, in the

norm topology if and only if its distance to any closed flat through x,

tends to 0.)

Let X be either a space L}, u, F) for u o-finite, or a space C(2, F)

for Q compact. Show that each extreme point of U(X*) is actually a

vertex of U(X) (in the sense of 13E, Ex. 6). More precisely, for any

¢ e X* define B, = {x€ X:¢(x) = ||x||}. Then show that ¢ e ext(U(X*))

ifand only if X = B, — B,

d(xO, V) = Sup
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2.39.

2.40.

2.41.

2.42.
2.43.

2.44.

2.45.

2.46.

Let A and B be compact convex subsets of the locally convex space X.
Prove that, in the product space X x X, ext(4 x B) = ext(4) x ext(B).
Let X be a locally convex space with the property that every non-
empty, closed, bounded, convex subset of X has an extreme point.
Show that every such subset is then the closed convex hull of its extreme
points. (Proceed by contradiction and use the strong separation
theorem. This result was originally formulated for Banach spaces, and
provided the basis for a proof that every closed bounded convex subset
of £1(RX,) is the closed convex hull of its extreme points. Compare with
exercise 3.10).

Let f be a convex function defined on a neighborhood of a point x,
in some normed linear space and continuous at x,. Show that there
exist an xy-neighborhood V and a positive constant A such that when-
ever x and y belong to V we have the Lipschitz inequality |f(x) —
f)| < A||x — y||- (It may be assumed that x, = 8; choose § > 0 so

that | f(x) — f(0)| < 1if ||x|| < 6. Then we may take V = g U(X) and

A = 8/6.) It follows that the restriction of a continuous convex function
to a compact convex set in X satisfies a Lipschitz condition uniformly
on that set.

Prove the formula (14.5).

The solvability of any optimization problem is always a topological
matter. Thus, let (4, f) be a variational pair. We define a topology
7 = 1(f) on the set A by taking as a subbase all sets of the form {x € 4:
f(x) > A} as A runs through R.

a) 1 is the weakest topology on A in which f is lower semicontinuous.
b) Thereis a solution to the program (4, f)ifand only if 4 is 7-compact.
With the terminology and notation of Tuy’s inconsistency theorem
(14F) suppose that the wedge Q is solid and that there exist linear
functionals ¢ € P*, Yy € Q* ( # 0) satisfying (14.14). Show that the
system

S(x) < 0, T(x) < 6, xe A
is inconsistent.

With the same notation and the assumption that Q is solid, suppose
also that the system

Tx) <0, xeA

is weakly inconsistent (in other words, has no weak solution in the
sense of (14H)). Prove that there exists a non-zero i € Q* such that
(T(x),¥> > 0,xe A

Apply the theory of 14F to establish the topological form of the Krein-
Rutman theorem: let M be a linear subspace of the linear topological
space X, ordered by the solid positive wedge P; if int(P) n M # &
then any positive linear functional in M* has an extension belonging
to P*.



116

2.47.

2.48.

2.49.

2.50.

2.51.

2.52.

2.53.

2.54.

Convexity in Linear Topological Spaces

Establish the “Dubovitskii-Milyutin separation condition”: let A4,
Ay, ..., A, be convex sets in a real linear topological space X with
Oe A4;foralljand A4,, ..., A, open; then n{4;:j =0,1,...,n} = &
if and only if the sets are separated in the sense that there exist linear

functionals ¢, ¢4, .. ., ¢, € X*, not all 6, such that ¢;(x) = 0 for all
xeAd; and ¢o + ¢, + -+ + ¢, = 0. (For the necessity, apply a
separation theorem in the product space X x --- x X (n times) to
the sets Ay x *++ x A, and {(x,...,%,):X; ="+ = X, € Ag}.)
Give a direct proof the lemma in 14I. (Apply exercise 2.13 to the
epigraph of f.)

Consider a convex program (4, f) where A is a convex subset of a
locally convex space X and f is lower semicontinuous. Unless the value
of this program is — oo, the conjugate function f* defined by (14.24)
will be finite at ¢ = 6 in X *. Assuming this, prove that the program
is solvable if and only if f* is subdifferentiable at 6, and then df *(6)
is exactly the set of solutions of the program.
Let f € Conv(R") be differentiable. Show that the conjugate function
f* is finite at y € R" exactly when y = Vf(x), for some x € R". Thus
f* is everywhere finite exactly when Vf:R" — R” is surjective. (3A is
helpful for the sufficiency; for the necessity, assume that f*(y) < o
and show that the supremum in (14.24) is attained at some x € R".)
a) Verify that the consistency condition of 7B is a special case of that
inl15A.
b) Let the system (15.1) be consistent and let S = X * be the set of all
its solutions. Let (y, b) e X x R™. Then the inequality b < ¢(y) is
a consequence of (15.1) (in the sense that this inequality is valid for
every ¢ € S) if and only if there exists a > b such that ( y, a) belongs
to the wedge P of 15A.. (If no such a exists then the wedge P and the
segment [(6, 1), (y, b)] in X x R can be strongly separated.)
Let X be a normed linear space and 4 a (non-empty) weak*-closed
subset of X *. Prove that A is proximinal in X*. (Use 12D. This is a
very versatile and powerful optimization principle, which illustrates
again the value of the recommendation in 6E. Note that 4 need not
be a linear subspace nor even convex.)
Let T be a continuous map of a normed linear space X into itself.
Suppose that T maps bounded sets into compact sets and that

o Tl

= 0.
Ieeo ]|

Show that for any A > 0 and y € X the equation x = AT(x) + y has
a solution x € X. (Apply the Schauder fixed point theorem to the map
f(x) = AT(x) + y after observing that f must map some multiple of
the unit ball into itself.)

Let (5o, to) € R? and let g:R? - R be continuous on a neighborhood
of (s, to). According to “Peano’s theorem” the differential equation
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2.55.

2.56.
2.57.

Y'(s) = g(s, y) has a solution h defined on a neighborhood of s, and
satisfying h(so) = to. To prove this, choose &¢ > 0 so that |g(s, )| < 1
on the square [so — ¢, S0 + €] x [to — & to + €] Let X = C([so — &,
so + €], R)andlet A4 = {xe X:|to — x(s)| < &, |s — So| < &}. Then define
f:A—> Aby

JE)(s) = to + [3, 9(s, x(s))ds

and show that a solution may be obtained by applying the Schauder
fixed point theorem to f.

Let p and ¢ be two norms on a finite dimensional linear space. Show
that p and ¢ must be equivalent, in that constants a, b > 0 exist so that
(15.4) holds.

Prove formula (15.9).

Establish the special case of the bang-bang principle (15.14) where C
is the unit cube in R™. (Let u be a C-valued measurable function on
[0, T] and, for definiteness, take t = T in (15.14). We are to find a
C-valued measurable function v on [0, T] such that each component
v; of v satisfies |v;(-)] = 1 a.e. on [0, T] and

I3 ®(s)uls)ds = |5 P(s)u(s)ds.

Let us concentrate on a particular v;. We must choose a measurable

set B; < [0, T] (the set on which v; equals 1) such that
jg lI’lj(s)“j(s)ds = fBj .Plj(s)ds - j.B} .Illj(s)ds)(4)

jg P,j(s)u;(s)ds = ij P,(s)ds — _[B} ¥,i(s)ds,

where ¥;; is the (i, j)t-entry of the matrix ¥. Thus the requirement
on B; is that

I8, Wi(s)ds = [T (1 + ui(s))¥ii(s)ds, i =1,...,n
In order to apply Liapunov’s theorem we define a vector measure fi
on [0, T] by

HE) = (Jg Y1;(5)ds, . . ., [g Wai(s)ds);
then we know R([0, T]) is a compact convex set in R”. We also define
a weak*-continuous affine map @: U(L®([0, T], R)) - R" by
®(w) = 53 (1 + wydE.

We can finish by proving that the range of @ lies in R([0, T]), and
for this it suffices to prove that ¢ maps every extreme point of
U(L*([0, T],R)) into R([0, T]). This is not hard as these extreme
points can be characterized in a way analogous to that of (15.9).)

) B is the complement of B;.
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2.58.

2.59.

2.60.
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Let (Q, Z, ) be a positive non-atomic measure space and let M be
a finite dimensional linear subspace of L'(u). Establish the existence
of arbitrarily small “determining sets” for M. Precisely, given ¢ > 0,
there exists E € 2 such that 0 < u(E) < ¢ with the property that if x,
y€M and x|E = y|E then x = y. (Proceed by induction on dim(M).)
Let (R, Z, u) be a positive measure space and consider the unit ball
U = ULYQ, u, F)). In exercise 2.30 it was shown that this set may
have no extreme points.
a) Let F = C and choose fe U, ||f||; = 1. Then fe ext(U) if and
only if | f(-)| € ext(U(LXL, u, R))).
b) Let F = R and choose f € U, ||f||; = 1. Then f e ext(U) if and
only if f = +y,/u(4), where A4 is an atom in X.
Show that the conclusion of Dieudonne’s separation theorem (15D)
remains valid if the hypothesis concerning the recession cones is
weakened to: M = C, n Cg is a linear subspace of X. (Work in the
quotient space X/M.)
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Principles of Banach Spaces

The theme of our presentation up to this point may be described as a
study of the interplay between the algebraic-geometric notions of convex
sets and mappings, extreme points, etc. and the topological notions of
openness, compactness, continuity, etc. For such a study the correct setting
is, as we have seen, the linear topological space (frequently required also to
be locally convex). The resulting theory is broad and powerful, as we hope
has been demonstrated by Chapter II. Further development now requires
some additional specialization of our setting. The crucial new hypothesis
which we now bring in is that of completeness. We shall also generally limit
our considerations to normed linear spaces, unless the results under con-
sideration can be clearly and cleanly extended to locally convex spaces.
More typically, locally convex topologies will play a vital supporting role
in our theory of Banach spaces, particularly the weak and weak* topologies.

Of the numerous important results presented in this chapter the most
important for applications (as we hope to illustrate in the examples and
problems) are the various category theorems of §17. For further theoretical
developments in the study of Banach spaces, the profound characterizations
of weak compactness due to Eberlein and James and the theorems of Bishop-
Phelps are important.

§16. Completion, Congruence, and Reflexivity

In this section we present a miscellany of general facts about Banach
spaces and linear maps defined thereon. The most important notion is that
of reflexivity of a Banach space. A number of characterizations of reflexive
spaces are collected together in 16F, and others occur in later sections.
Because of their many useful properties and generally tidy theory, it is both
a shame and a challenge that many of the important Banach spaces are not
reflexive.

A. Let X and Y be normed linear spaces over the same scalar field and
let B(X, Y) be the normed space of bounded linear maps from X into Y
(11D). Our first problem is to decide when B(X, Y) is a Banach space (that
is, complete). The answer depends only on the range space Y.

Theorem. B(X, Y) is a Banach space if and only if Y is a Banach space.

Proof. Suppose that Y is complete and let {T,} be a Cauchy sequence
in B(X, Y). For any x € X we have .
< |ITw = Tall [

’
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from which we conclude that {T,(x)} is a Cauchy sequence in Y. Hence
T(x) = lim, T,(x) exists in Y. The correspondence x — T(x) clearly defines
a linear map from X into Y. Now a Cauchy sequence in any metric space is
bounded; in our case we have therefore that = sup,||T,|| < co. Thus
[|T.)|| < Bl|x|| and so

ITEll = [fim T, 0l = tim || < Bl

for all x e X; that is, ||T|| < B and so T belongs to B(X, Y).

Conversely, suppose that B(X, Y) is complete and let { y,} be a Cauchy
sequence in Y. Select a vector x, € X with ||xo|| = 1 and then, by 11E, a
functional ¢ € X* such that ¢(x,) = 1. Then if we define T, e B(X, Y) by

T,(x) = ¢(X)y,  x€X,

we see that ||T, — T,|| < ||¢|| ||y» — yu|| Consequently, {T,} is a Cauchy
sequence in B(X, Y) and therefore has a limit T € B(X, Y). Finally,

”yn - T(xo)” = ”Tn(xo) - T(xo)” -0, n — 0o,
whence lim,, y, = T(x,) € Y. 0

Corollary. Let X be a normed linear space. Then X* is a Banach space.

B. Again, let X and Y be normed spaces over the same field and T e
B(X, Y). As in 9E T is an isomorphism if it identifies X and Y as linear
topological spaces, that is, if T is both an algebraic isomorphism and a
homeomorphism. Otherwise put, T is an isomorphism exactly when T ~*
exists and belongs to B(Y, X). More generally we say that T is an isomor-
phism into Y if T is injective and T~! is bounded on its domain (which is,
by definition, the image T(X) of X in Y).

Lemma. T e B(X,Y) is an isomorphism into Y if and only if y =
inf{||T(x)||:||x|| = 1} > 0.

Proof. By its definition y satisfies || T(x)|| = v||x|| for all x e X. Hence
ify >0 then T is certainly injective and ||T 1(T(x))l = ||x|| <7 T(x)||
so that T~ is bounded. Similarly, if T~! exists and is bounded then |
|IT~Y(Tx)|| < ||T~ ] ||T(x)|| so that y > 1/||T~|| > 0.

We can thus write for comparison

= inf{[| T)|: ||| =

< sup{||T[:||xl| = 13 = [|7]|
when T is an isomorphism into, and in particular
(16.2) L<ITIIT

We see also that T is an isomorphism into exactly when T has a bounded
inverse.

(16.1) (1=
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Dealing as we are with normed spaces rather than more general linear
topological spaces, it is important to know when two such spaces can be
identified with all their structure. Such identifications are made by means
of a congruence, that is, a norm-preserving isomorphism. Thus T € B(X, Y)
is a congruence when T is surjective and

16.3) T = ||, xeX.
This condition is clearly equivalent to
(16.4) |T|| = ||T7Y| =1

Again, when T is not surjective but satisfies (16.3) or (16.4) we shall say that
T is a congruence into. In this case T identifies X with a subspace of Y.

Note that, because of its linearity, a congruence is actually an isometry
on the underlying metric space of X. Thus it preserves all the geometric
features of X and in particular it maps the unit ball U(X) onto the unit
ball of its range. This of course need not happen when T is merely an
isomorphism; in that case we can only be sure that topological properties
are preserved. In the remainder of this section we are going to see several
important examples of congruences. (We have previously encountered a
congruence between the spaces L'* and L® in 12C.)

C. Let X, Y, T be as in 16B. According to 1H there is a linear map
T':Y' — X' (the transpose of T) defined by the equation

xTW) =<Tx),¢), xeX, yYe¥.

T* = T'|Y*,
and call T* the conjugate (adjoint, dual) of T. Directly from the definitions

it follows that T* is weak*-continuous, that is, T* is continuous when both
X*and Y* are given their weak* topologies.

We set

Lemma. The mapping T+ T* is a congruence of B(X,Y) with the
subspace of B(Y*, X *) consisting of weak*-continuous linear maps.

Proof. The mapping is clearly linear and its range consists of weak*-
continuous maps on Y* as was just noted. Next, we have

17| = sup{||T*W)]|:|W]| < 1}
sup{| &, T*YP|:||x]] < 1,
sup {| <T(x), Yy |: ||| < L ||x|| < 1}

sup {|| T)[[:[[x]| < 1} = [|T].

(Note that the penultimate equality here requires the Hahn-Banach theorem
11G to guarantee the existence of Y € U(Y*) such that <T(x), y > = ||T(x)||.

Finally, we must show that any weak*-continuous S e B(Y*, X*) is the
conjugate of some T € B(X, Y). Such T must satisfy

(16.5) KTx) > = <{x, SO

vl < 1
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for all x e X and y € Y*. Now the right-hand side of (16.5) is by assumption
a weak*-continuous linear functional on Y* for any fixed x € X. By 12B it
follows that there is a vector in Y, which we call T(x), such that (16.5) holds.
The map T:X — Y so defined is single-valued (11E), linear, and continuous

since
sup {[<T(x), ¥o|:|l|| < 1}

sup {|<x, SW[:(ll < 13 < |IS]] |Ix[l
so that ||T|| < [|S]| 0

This lemma implies that B(Y*, X*) is generally a more complicated
space than B(X, Y). However, it is a direct corollary to 16F below that
whenever Y is reflexive every map in B(Y*, X*) is weak*-continuous, so
that this space is congruent to B(X, Y) under the above mapping. The
converse is also valid.

The following result belongs in this sub-section as it connects the ideas
of conjugate maps and isomorphisms. However, part of its proof makes use
of a later result, which we must temporarily take on faith.

I7Cal

Theorem. T € B(X, Y) has abounded inverse if and only if T* is surjective.

Proof. Suppose that T has a bounded inverse T, defined on a sub-
space R (= range (T)) of Y. For any ¢ € X * the functional ¢ o T~ ! belongs
to R* and may therefore be extended to a functional i € Y* (exercise 2.16).
We claim that T*(y) = ¢. Indeed, for any x € X,

X, T*Y)) = (T, ¥) = ¢ o T"HT(x) = ().

Thus T* is seen to be surjective.
Conversely, suppose that T* is surjective. If T fails to have a bounded
inverse then by exercise 3.3 there is a sequence {x,} in X with

(16.6) lim ||x,]| = 0,  lim T(x,) = 6.

Now for any ¢ € X* we have by assumption that ¢ = T*()) for for some
Y € Y* Hence

lim ¢(x,) = lim {x,, T*(¥)> = lim <T(x,), ¥> = 0.

According to the uniform boundedness principle (17C) the sequence {x,} is
bounded since we have just shown that it converges weakly to 6. We thus
have a contradiction to (16.6). 0

D. We now give a second important example of congruence in normed
linear space theory. Let X be a normed linear space and consider once again
the canonical embedding J,: X — X* defined by

@, Ix(x)) = ¢(x), xe X, pe X*
For fixed x we see that

[<¢, Ix(x)>] = ()| < ||#]| |||
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which proves that Jy(x) is a continuous function on X* with norm <||x]|.
Thus range(Jx) = X** = (X*)*. Further, as was noted in 16C, it is an
elementary consequence of the Hahn-Banach theorem that given x € X
there is ¢ € U(X*) with ¢(x) = ||x||. This entails

(16.7) sup {|<¢, Jx(x)>|:||¢]| < 1} =

and proves that Jy is a congruence of X into X **.

It is convenient to write X = Jx(x) for x € X and to denote the closure
of range(Jx) by X. Since X ** is a Banach space (16A) and X is closed (by
definition) in X **_ it follows that X is complete and hence a Banach space.
Consequently, X satisfies all the requirements for a completion of X: it is a
Banach space containing a dense subspace congruent to X.

A routine argument shows that, for any normed space Y,any T € B(X, Y)
has exactly one extension T belonging to B(X, Y) and satisfying || T|| = 117]I-
This fact in turn shows that, up to congruence, X is the only completion of
X. It also shows that (X)* is congruent to X *. But, let it be noted carefully
that if X # X (that is, if X is not complete) then the respective weak*
topologies on X* and on (X)* are not the same, since the former is the
topology of pointwise convergence on X while the latter is the topology of
pointwise convergence on the properly larger space X. However, the two
topologies do agree on any ball B in X *, since B is weak*-compact by 12D
and so the identity map of B, being o(X*, X) — o(X*, X)-continuous, is
actually a homeomorphism.

E. We are going to exhibit a few other congruences important in the
general theory of normed spaces. First, however, let us agree on some
terminology. A bounded linear map between two normed spaces will hence-
forth be called an operator. Given an operator T € B(X, Y) we define an
operator T called the 1—1 operator induced by T by

T:X/ker(T) - Y,
T(x + ker(T)) = T(x), xeX.

This new operator T is well-defined, linear injective, and has the same range
= ||T||. Do not confuse the notation
T w1th the completlon notation X just introduced.

The notation X = Y was used in 1H to signify canonical isomorphism
of linear spaces. In our present context of normed linear spaces we shall use
this notation to mean that there is a canonical isomorphism between X and
Y which is also a congruence. Thus we have, for example, X = Jy(X),
because of (16.7).

Theorem. Let M be a linear subspace of the normed linear space X. Then
a) (X/M)* = M°;
b) M* = X */M°
¢) M** = J(M)".
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Proof. a) The proof runs parallel to that of the linear space analogue
given in 1H, but also makes use of 16C. Let Q,,: X — X/M be the quotient
map. Then Q% :(X/M)* — X* is an injective operator with range M° and
it remains to see that it is a congruence. This requires proving that for each
peM°

(16.8) ||| = sup {|¢p(x)|/d(x, M):x e X\M}.

Now the left-hand side of (16.8) is < the right hand side since ||Q%|| =
||Qn]| = 1. On the other hand, if me M, |¢p(x)| = |p(x — m)| < ||¢]| ||x — m]|,
so that |p(x)| < ||¢]||d(x, M).

b) Again we follow 1H and consider the identity injection I,;:M — X.
Then I§:X* — M* is just the restriction operator (that is, I¥(¢) = ¢|M )
and the 1-1 operator I :X*/M° — M* is an (algebraic) isomorphism. To
prove that it is a congruence we must verify that for each ¢ € X*

(16.9) (¢, M°) = sup{|p(y)|:y € UM)} = ||p|M]|.

Let us just check that the left-hand side of (16.9) cannot exceed the right-
hand side. Let t be a norm-preserving extension (11G) of ¢|M to all of X
and set y = ¢ — 7. Then y € M° and hence d(¢, M°) < ||¢p — ¥|| = |[7]| =
ol

c) Let M°° = (M°)° be the annihilator of M° in X**:M°° = {® e X**:
®(¢) = 0, p € M°}. Then by combining a) and b) we see that

(16.10) M** = M,
and the proof can be completed by showing that
(16.11) M = J,(M)*.

Now the left-hand side of (16.11) certainly contains the right-hand side
since M°° is weak*-closed and contains J4(M). If the inclusion were proper
there would exist a @ € M°° that could be strongly separated from T
by a weak*-closed hyperplane in X**. Using 12B we could then find a
¢ € X* such that ¢(y) = (¢, 9> =0, ye M, and (¢, &) # 0. In other
words, ¢ € M° yet (¢, P> # 0, which contradicts ® € M°°. 0

A few remarks should be made about this theorem. First, the inverses of
the congruences in a) and b) are easily described and could be used as the basis
of alternate proofs. Thus in a) we have simply ¢ > ¢ o 7 as the congruence
from M° to (X/M)*, where 7: X /M X /ker(¢) is the norm-decreasing sur-
jection defined by t(x + M) = x + ker(¢). In b) the congruence from M*
to X*/M° sends each element y of M* into the affine subspace of X* con-
sisting of all possible extensions of s to X.

Secondly, the congruence in c) can also be explicitly described. For
example, in the direction M°° > M** it sends ¢ € M°° into the functional
on M* whose value at f € M* is the value assumed by & on any extension
of fin X*. This value is of course independent of the particular extension
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since any two extensions of f must differ by an element of M°. (The inverse
congruence is used in the proof of the theorem in 16F below; see also
exercise 3.16c.)

Finally, note that the theorem identifies the second conjugate space M **
with a subspace of X **, while the first conjugate M * can only be identified
with a quotient space of X *. It is unusual that this quotient can in turn be
identified with a subspace of X*.

A generalization of formula (16.11) pertaining to convex sets containing
0 is given in exercise 3.7.

F. A normed linear space X is reflexive if the canonical embedding
Jx:X — X** is surjective. This requirement should be compared with the
result in 1D for the purely algebraic situation. There it was noted that when
X is infinite dimensional there will always be linear functionals on X’ which
are not evaluation functionals. But our reflexivity definition does not ask so
much; the requirement is merely that every continuous linear functional on
the subspace X * of X’ should be an evaluation functional. This is a situation
which does in fact occur in a number of common normed spaces (16G below).
Such spaces have several pleasant and useful properties as we shall see.

It is clear that any reflexive normed space must be complete, by virtue
of being congruent to a complete space (namely, X**). It should also be
clear that the condition of reflexivity is equivalent to the identity of the weak
and weak* topologies on X *. Indeed, if these topologies are the same then
any functional in X ** is ¢(X *, X **)-continuous (since any operator between
normed spaces is weakly continuous, that is, continuous when both spaces
are given their weak topologies), and so (X *, X)-continuous (by assump-
tion). Hence the functional must be an evaluation functional by 12B.

It is clear that every finite dimensional normed space is reflexive (1D),
and we shall see other examples later in this section. On the other hand, the
space L' = LY([0, 1], R) is not reflexive. To see this we recall (12C) that
L'* can be identified with (is congruent to) L*® = L*([0, 1], R). We shall
prove the existence of functionals @ € L** which are not of the form

(16.12) o) = s f)g()dt,  geL”,

for some f e L'. Now the subspace C = C([0, 1], R) is a proper closed
subspace of L* and so there is a non-zero @ € C° (11F). If @ were an evalua-
tion functional defined by some f € L' as in (16.12) then we would have in
particular

§6 f(g(v)dr =0, geC.

But, as was observed in 12C, this last condition forces f = 0; that is, a
representation of @ as in (16.12) does not exist, and so L' is not reflexive.

We are going to present a few necessary and sufficient conditions for the
reflexivity of a given Banach space. It is convenient to first establish a useful
general fact, known as the “Goldstine-Weston density lemma”. For X a
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given normed space, we let V be a subspace of X * and define the canonical
embedding Jx ,:X — V* by the usual formula:

<¢’ JX, V(x)> = ¢(x)> X e Xa (b € V'
Clearly ||Jx, || < 1and Jy y is injective exactly when V is total.
Lemma. For every ¥ € V* there is a net {x;:6 € D} in X such that

sup{||x||:6 € D} < ||*]]
and
lim {¢(x;5):0 € D} = P(¢), peV.

In particular, Jx (U(X)) is weak*-dense in U(V*).
Proof. Let ¥, = ¥/||?|| (the result is trivial if ¥ = ). Let N be an
arbitrary weak*-neighborhood of ¥o:N = {® e V*:|®(¢;) — Polds)| <

&0} for some finite set {¢y, ..., ¢,} = V. We shall exhibit x, € U(X) such
that Jx ,(x,) € N, thereby proving that ¥, belongs to the weak*-closure of

Jx, v(U(X)). Let r = max{||¢;||:i = 1,..., n}. Because ||¥,|| = 1 we can
apply Helly’s condition (7A) to conclude that for every ¢ > 0 there exists
x, with ||x,|| < 1 + ¢/r and ¢i(x,) = Po(¢:), i = 1,...,n. We now set

Xo = (r/(r + €o))X,,. Then ||x,|| < 1 and
|¢i(xo) - 'Po(¢i)| = l¢i(x0) - ¢i(xeo)|
= |¢i(xo) -1+ 80/’)¢i(x0)| <r

= &p-

—&
r

Thus ¥y € Jy, AUX))" and so there is a net {y5:0 € D} in U(X) that
converges weak* to ¥,. Hence we may set x; = ||¥||y; to conclude. 0

The most important application of this lemma is of course to the case
where V = X*. Also, we note that whenever V is separable then the net
{x5:0 € D} can be taken to be a sequence, since, in this case, U(V*) is compact
and weak*-metrizable (12F). An alternate proof of the lemma is suggested
in exercise 3.7.

Theorem. The following properties of a Banach space X are equivalent.
a) X is reflexive;

b) X* is reflexive;

¢) M and X/M are reflexive for every closed linear subspace M of X ;
d) M and X/M are reflexive for some closed linear subspace M of X ;
e) U(X) is weakly compact;

f) X is weakly quasi-complete.

Proof. Assume that X is reflexive. To show that X * is reflexive, choose
any G e X*** = (X**)* and define ¢ = GoJye X* Then if ¢ e X**,
@ = X for some x € X, and

(D,G) =<(%6)=<x,GoJy
= ¢x) = {p, X)> = {(, D);
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that is, G = Jx.«(¢), and thus Jy. is surjective. Next, let M be a closed sub-
space of X. If ®e M°° = X** then & = X, for some x, e X. Hence if
deM°, 0= <{¢p, Xo> = ¢P(xq), Wwhence x, € °M° = M by 12C. Now, given
any F e M**, we define @ € M°° by &(¢) = F(¢|M), € X* Then & = X,
for some x, € M, as we have just seen. Therefore, F = Jy(x,) and J,, is
surjective.

Suppose that X* is reflexive. Then X** is reflexive and so is its closed
subspace Jx(X). Since this subspace is congruent to X, X must also be
reflexive. Also, if M is again a closed subspace of X, then (X/M)* = M° is
a closed subspace of the reflexive space X *, hence is reflexive. Since (X/M)*
is reflexive so is X/M.

To complete the proof of equivalence of a) through d) we show that d)
implies a). Select any @ € X **. Then §|M° € M°* = (X/M)** = Jy\(X/M),
and so there exists x, € X such that (¢, @) = ¢(x,), for all ¢ € M°. Con-
sequently, @ — X, € M°° = M** = J, (M), and it follows that there is
Yo € M such that @ — X, = J,. Therefore, ® = X, + J, € Jx(X), and Jy is
surjective.

It remains to establish the equivalence of a), e), and f). For e) the keys
are the Goldstine-Weston density lemma (with ¥V = X *) and the observation
(12B) that J is a homeomorphism between X and J,(X) when these spaces
are given the weak and weak* topologies respectively. Thus U(X) is weakly
compact if and only if Jx(U(X)) is weak* compact. Since J »(U(X)) is weak*-
dense in U(X**) which is weak*-compact (12D), it follows that U(X) is
weakly compact exactly when Jx(U(X)) = U(X**). This last condition is
of course equivalent to the surjectivity of Jy. Next, assume that X is weakly
quasi-complete. Then in particular U(X) is weakly complete. The same
argument then shows that J(U(X)) = U(X**) and hence that X is reflexive.

Finally, suppose that X is reflexive, and let 4 be any weakly bounded
and weakly closed subset of X. We want to see that A4 is weakly complete.
Appealing once more to the forthcoming uniform boundedness principle
(17C), the set A is norm-bounded. Thus A is a weakly closed subset of some
ball which, by e), is weakly compact and, in particular, weakly complete.
Hence A must also be weakly complete. 0

In exercise 3.37 there is given a useful necessary and sufficient condition
for an arbitrary subspace of a Banach space to be reflexive.

G. In12C weoutlined an argument showing that the spaces L}(, u, F)*
and L*®(Q, u, F) are congruent provided that the measure y is o-finite. That
some restriction on y is necessary can be seen from the following example.

Example. Let Q = [0, 1]. Let the g-algebra X of subsets of Q consist
of all countable subsets of 2 and their complements. Then any X-measurable
function defined on Q has a countable range. Now let u be the counting
measure on Q so that y(E) = cardinality of E if E € X is finite, and otherwise
W(E) = oo. Then the functional

[ 5 ydur,  feL'Q u F),
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does not arise from any X-measurable function, and so the usual congruence
from L®(Q, u, F) into L*(Q, u, F)* is not surjective.

In spite of examples such as this, any L! space that fails to have the
corresponding L® space as its dual (via the usual congruence) does so for
an essentially trivial reason. In other words, the difficulty is more apparent
than real. Precisely, the following result is true: for any measure space
(@, Z, u) there is another such space (I', , v) such that LY(I, v, F) =
LYQ, u, F) and LI, v, F)* = L*(T', v, F) (via the usual congruence). We
shall not prove this result but in exercise 3.11 we ask that such a measure
space be determined for the preceding example.

Let us now consider the problem of determining L?(Q, u, F)* for a given
measure space (2, 2, p) and 1 < p < oo. In this case the answer requires no
restrictions whatever on the nature of the underlying measure space, and
can be used to show that all such spaces are reflexive. This is the single most
important class of infinite dimensional reflexive Banach spaces. Given p with
1 < p < oo we define g = p/(p — 1), and for ge L? = LYLQ, u, F) we define
a linear functional @, on L? = LP(Q, u, F) by the rule

(16.13) Pf) =fofgds,  felL”
Theorem. The map g > D, is a congruence of L with (L?)*.

Proof. Hélder’s inequality shows that @, e (L?)* and that ||®,|| < ||g,-
Let us assume first that u(Q) < oo. Given any ¥ e (L?)* we proceed as in
12C by considering the measure v on X defined by WE) = ¥Y(xz), E€ 2.
v is pu-absolutely continuous and the Radon-Nikodym theorem yields g =
dv/du e L' such that WE) = [z g du. Then ¥Y(f) = [, f dv = [, fg du for
all simple functions f, and hence for all f € L' (which includes L?). Let us
next see that g € L% Select any h e L with 6 < h < |g|. Then

(11115 < o b~ g| dp

_ d|v|
q—1 171
j'g h » dv

_, 4|
q—1 11
'I’<h dv) < |7l

1211 1A]™

_, dpy|
a—1 "1"1]
h dv

whence ||h||, < ||¥||- Taking the supremum over all such h we see that
llg]l; < ||¥]|- This completes the proof for the case u(2) < oo.

In the general case we consider an arbitrary set E € X with0 < u(E) < oo.
Such sets are called chunks. Restricting the given y € (L?)* to the subspace
{fxe:f € L?} we obtain by the preceding method an element gz € L? with
ge = gexe and ¥(fxg) = [o fge du. If E, is any other chunk with corre-
sponding gg, then on E N E,; the elements gy and g, must be equal. Now
let E,, E,, ..., be a sequence of chunks chosen so that

lim ||gg, ||, = sup{||gel;:0 < WE) < 0} = y.
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Then y < ||?|| and the sequence {gg, } is a Cauchy sequence in L? since,
assuming m < n,

95, — 95|l4 < feas,, 981" d1 = [5, |95, d1 = [, |gE,|* dp.

The limit g € L? satisfies ||g||, = ¥ and g vanishes outside the o-finite set
A = |Ja E, This g is the desired L? representer of ¥. Indeed, by the maximal
property of g (||g||, = ) it follows that any chunk E disjoint from 4 must
have its corresponding gy = 6. Thus, if we select any f € L? such that f
vanishes outside some chunk E, then

P(f) = P(fxe) = 59 Jge du

= SAnE ng d/'t + jE\A ng d,u

= IAAE ngr\E dl't + 0= j‘AﬁE fg d,u

= jﬂ fg d.u9
where the penultimate equality follows from the relation g,z = gg, in the
set E n E, (which implies that, on A n E, g, = lim, gg, = g). Equation
(16.14) shows that ¥(f) = &,(f) whenever f vanishes off a chunk. The set
of such f contains in particular the space of the characteristic functions of

chunks and so is dense in L?. Hence by continuity ¥ = &, and so the map
g > @, is surjective in the general case as well. 0

(16.14)

Corollary. For1 < p < oo the space L*(Q, u, F) is reflexive.
The proof is a direct consequence of the theorem; the details are left to
exercise 3.12.

H. We finally consider some function spaces defined on an arbitrary
set 2 and determine congruent representations of their dual spaces. It will
follow from these representations that none of the spaces under consideration
is reflexive.

We define ¢, = ¢¢(2, F) to be the set of all F-valued functions x on Q
that vanish at infinity in the sense that [t e Q:|x(t)| > &} is finite for each
e > 0,and m = m(Q, F) to be the set of all bounded F-valued functions
on Q. These are special cases of earlier examples of spaces of continuous
functions if Q is assumed to have the discrete topology. In both cases, of
course, the spaces are normed by the uniform norm ||x||, = sup {|x(1)|:
te Q}, and ¢, is a closed linear subspace of the Banach space m. We also
define ¢! = LY(Q, yu, F) where p is the counting measure with domain 2%,
the family of all subsets of Q2. Note that m = L*(Q, u, F) but that in general
(unless Q is countable) u is not o-finite.

If X and Y are two normed spaces we define the ¢P-product (X x Y),
to be the product space X x Y with the norm ||(x, y)||, = ||(||X]}; ||¥D]l» =
(||x[|P + ||¥||»)**% for 1 < p < oo (a special case of formula (10.8)). We can
now represent the dual spaces of ¢, £!, and ne.

Theorem. a) ci = (!;
b) = m;
) m* = (€' x (¢0));-

Il 12
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Proof. a) The congruence of this part (and of b)) is defined in the
expected way; namely, given y € £* we define @, € ¢§ by

D(x) = [xydu
= ) x(ONt), xec.

teQ2

Clearly, ||®@,|| < Yieo |¥®)| = ||¥]|;- Consider now any ¥ e c§. We define
a function y on Q by y(t) = P(e,), where e, = yy,, t € Q. For each finite set
E < Q define an operator Ty on ¢, by Tg(x) = xyz Then T% is an operator
on ¢ (16C) and

<x, TE(Y)) = (Tgx), ¥>

(16.16) = <,EZE e, ¥ = ,ZE x(t)¥(e,)

= ,ZE x(Out),  xee,.

(16.15)

Setting x(t) = | y(t)[/y(t) whenever y(t) # 0 and x(t) = 0 otherwise, it follows
from (16.16) and (16C) that

1#]] = ITE]| > 3, 0] = [z |yl du

Thus y € ¢' and ||y||; < ||¥||- This proves that the map y > &, is a surjective
congruence and completes the proof of a).

b) The proof of this assertion is quite similar to that of a). The congruence
from m onto £!* is defined as in (16.15) except that now y € 7 and x € £.

c) The notation ¢j refers to the annihilator of ¢, in m* when ¢, is
considered as a subspace of m. The congruence is defined as follows: let
ye ¢! and ¢ € ¢, then to this pair we associate the functional @, , in m*
defined by

B, o(x) = 1 x> + <%, B> = [oxydu + $(x),  x€m.
Clearly ||®, 4|| < |[¥||l: + ||¢|| Consider now any ¥ e m*. The restriction
lI’|co defines an element @, of c§ (notation as in part a)) for some y e ¢'.
We can then let ¢ = ¥ — J, (y) and ¢ will belong to cg. Thus ¥ = @, ,
and so the mapping (y, ¢) - @, , is linear and surjective. It remains to see
that [|@,, ]| > [[ll: + [l¢]l |
Let ¢ > 0. Since every integrable function on a measure space can be
approximated in the mean (of order 1) by an integrable simple function,
there is a finite set I' = Q such that ). | ()| < &. We define a function
X € ¢y by

x(t) = sgn(y(t)), terl
o, otherwise

so that ||x||,, = 1. Next, we choose any Z € U(m) for which ¢(2) > ||¢|| — &,
and then put z = xq,, - Z. Then z has the properties that ze U(m), x - z = 6,
and ¢(z) = ¢(2), since z — Z € ¢,. Now the function x + z has unit norm
in 7 and

Dy 4(x +2) = {9 + <, 2> + ¢(2)
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since ¢(x) = 0. Thus

85,6l > @,60x + 2) > [[lls — & — 6 +[|g]] — ¢
=l + [lgll =3 O

The preceding representation of m* is of somewhat limited usefulness
when Q is of infinite cardinality due to the mysterious nature of the linear
functionals belonging to ¢g. Indeed, it is only by means of non-constructive
arguments such as the Hahn-Banach or separation theorems that we can
even establish the existence of such functionals. An alternative perspective
on ¢g can be gained by employing exercise 2.35 to identify » congruently
with C(B(€2), F), where () is the Stone-Cech compactification of Q (Q being
considered to have the discrete topology). Since the boundary of the unit
ball U(eg) is an extremal subset of U(m*), the extreme points of U(cp)
correspond via formula (13.9) to the functionals «d, € C(B(2), F)* where
|| = 1 and t € B(Q)\.

I. We make two final remarks about reflexive spaces. First, we have
defined a Banach space X to be reflexive if the canonical embedding Jy:
X — X** is a congruence between X and (all of) X**. It is important to
stress that this definition requires that the congruence between X and X **
be implemented by this particular mapping. For example, there is a non-
reflexive Banach space Y (the “James space”) which is congruent to Y**.
However, the canonical embedding Jy(Y) of Y in Y** is a subspace of co-
dimension one in Y**. In general, a Banach space whose canonical image
in its second conjugate space has finite codimension is called quasi-reflexive.
In analogy with the theorem of 16F it can be shown that X is quasi-reflexive
if and only if X* is quasi-reflexive if and only if M and X/M are quasi-
reflexive for some (hence every) closed linear subspace M = X (see exercise
3.16).

Second, reflexive spaces are an ideal setting for optimization problems
involving norms. This is because every (non-empty) weakly closed set in a
reflexive space is proximinal and, in particular, contains an element of
minimal norm. This assertion follows from exercise 2.51. From 12A we then
see that every closed convex set in a reflexive space is proximinal. Moreover,
as we shall establish later in this chapter (19C), this last property is actually
characteristic of reflexive spaces.

§17. The Category Theorems

In this section we present a collection of results of decisive importance
in the theory of Banach spaces. Most are derived from a single basic fact
(Lifshits’ lemma) which in turn depends on the Baire category theorem. The
section also contains a variety of applications of these and other results
based on the Baire theorem (recall, in fact, that we have already had occasion
in 16C and 16F to look ahead to the uniform boundedness principle of 17C).



132 Principles of Banach Spaces

A. We begin by reviewing the notions of category and the theorem of
Baire. Let Q be a topological space. A subset A of Q is nowhere dense in Q if

int(4) = ¢.

Thus a closed subset 4 of Q is nowhere dense if and only if 2\4 is dense
(and open) in Q. From this we conclude that the closed nowhere dense sets
in Q are the boundaries of the open sets in Q. Specific examples of such sets
are (1) a finite set, (ii) the Cantor set in [0, 1], (iii) a rectifiable curve in R",
and (iv) a closed proper affine subspace of a linear topological space.

In general, any finite union of nowhere dense sets is nowhere dense. We
define a set of first category in Q to be a countable union of nowhere dense
subsets of Q. All other subsets of Q are said to be of second category. Roughly
speaking, sets of first category play a role in topology analogous to that of
null sets in measure theory, although there is no direct overlap even in the
case Q = [0, 1]. For although any countable set (in any topological space)
is of first category, there exists a first category subset of [0, 1] which has
(Lebesgue) measure 1. (Namely, the union of a sequence of Cantor sets, the
measures of which form a sequence increasing to one.)

The topological space Q is a Baire space if the complement of every first
category subset of Q is dense in Q. Such subsets are called residual sets in
Q. Since a set of first category in a Baire space Q can have no interior, it
follows that any residual subset of Q (in particular Q itself) is of second
category (as well as dense in Q). Also, any open subset of a Baire space is
clearly a Baire space. Finally we can apply DeMorgan’s rules of set theory
to deduce that Qis a Baire space if and only if the intersection of any countable
family of dense open subsets of Q is itself dense in Q.

In the applications we typically use the following property of Baire spaces:
if a Baire space Q is the countable union of closed subsets A, then some one
of the A, has non-empty interior. In fact, |J, int(4,) is dense in Q. To see this
we let B equal the union of the boundaries of the A,, so that B is a set of
first category in Q. It follows that |J, int(4,) contains the residual set Q\B.

For the purposes of functional analysis the most important Baire spaces
are those topological spaces 2 whose topology is defined by a complete
metric (or pseudo-metric). This is the content of the “Baire category theorem”.

Theorem. Let Q be a complete metric (or pseudo-metric) space. Then Q
is a Baire space.

Proof. Let {0,,0,, ...} be a sequence of dense open subsets of Q and
let @ be an open ball in Q of radius r > 0. We must show that (ﬂ,, 0,)n0O
is not empty. Now there exists t; € ® n ¢, such that @ N O, contains the
ball B, at t, of positive radius r; < r/2. Next, there exists t, € B; n (), such
that B, n 0, N O, N O contains the ball B, at t, of positive radius r, < r/4.
Proceeding inductively we find a point ¢, € B,—; n 0, and a positive number
r, < r/2" such that the ball B, at t, of radius r, is contained in B,_; N
O, N0, n0O. The sequence By, B,,... is a nested sequence of sets
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whose diameters tend to 0. By virtue of the completeness of Q we can conclude
that there is a point common to all the B, and hence to all the sets @), and
0.

In exercise 3.17 it is to be shown that any locally compact Hausdorff
space is also a Baire space.

B. The Baire category theorem can be used to provide non-constructive
existence proofs in somewhat the same way as the various versions of the
Hahn-Banach and separation theorems. However, there is a difference in that
the Baire theorem is applied after showing that the desired object belongs
to a residual set in some Baire space; it is then concluded that the objects
being sought comprise a large subset (precisely, dense subset of second
category) of the particular Baire space. In other words the Baire theorem
does not produce examples one by one but, so to speak, in bunches.

An interesting and classical illustration of the technique is provided by
the problem of the existence of continuous functions on [0, 1] that are
nowhere differentiable. Examples of such functions have been known for a
long time; the original example

f@t) = i b" cos(a"nt)
n=0

where a is an odd integer and b satisfies 0 < b < 1, ab > 1 + 3m/2 was
given by Weierstrass. The nature of this and similar examples as contrasted
with the familiar smooth functions encountered in calculus tends to suggest
that such examples are the exception rather than the rule. But in fact the
actual situation is quite the reverse. We are going to see that the class of
nowhere differentiable functions in C = C([0, 1], R) is a residual set there,
so that we should be surprised in some sense whenever we encounter a
function that is differentiable at a single point in [0, 1], let alone one that
is, say, of class C!.

The precise statement that we prove is the following: let E, be the subset

. 1
of C consisting of those functions f such that for some t e [0, 1 - ;) and

every h e (0, %), we have

17.1) _f_(_tj%& <n
We claim thatforn = 1, 2,. .., E, is a nowhere dense subset of C. Granting

this is follows that E = |J, E, is a set of first category. But any function
with even a finite right-hand derivative at some point in [0, 1] must belong
to E.

The proof that each of the sets E, is nowhere dense is achieved by showing
that each E, is closed in C and has a dense complement. The closure of E,
follows from the observation that the set E, , of f’s satisfying inequality
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(17.1) for some te [0, 1 - %) and for a fixed he <0, %) is closed under

. 1.
uniform convergence, and so E, = n<E, ,:0 < h < -} is also closed.
’ n

Next, select any fe C and any ¢ > 0. We shall find g e C\E, such that
[[f — g||» < 2¢ and thereby show the density of C\E,. To construct such a
g we first find a polynomial p such that ||f — p||., < &(classical Weierstrass
theorem). We then let g be a continuous function satisfying |||, < & and
|4 ()] > n + 2||p'||, for all but finitely many ¢ € [0, 1]. For example, p could
be a piecewise-linear (saw-tooth) function, the straight line segments of whose
graph have sufficiently large slope (in absolute value). Now wesetg = p + g;
clearly ||f — gl|lo < ||f = P||» + ||4|lc < 2¢. On the other hand, if we

1
select any t e [0, 1 — ;) and choose h > 0 sufficiently small we see that

t+ h) — p(t
p( ; p(?) < |17l
t+ h) — q(t
q( z q(?) >+ 2P,
whence
lg(t + h) — g(t)l IQ(t + h) — 61(t)| _ IP(t + h) — p(t)l g
| h 17 h | h |~

which proves that g € C\E,

C. Let X be a Banach space and f € Conv(X). It was remarked in 14A
that if it is known that f is lower semi-continuous on X then actually f is
continuous. We can see this by noting that

X x R = ﬁ (epi(f) — (6, n)).

Since epi(f) is closed on account of the lower semicontinuity of f (14A),
this formula and the Baire category theorem imply that some translate of
epi(f), and hence epi(f) itself, is solid. Consequently, by 14A again, f is
continuous. (See exercise 3.50 for a further generalization.)

We are now ready for the first of the important category theorems known
as the “principle of uniform boundedness.”

Theorem. Let X be a Banach space, Y a normed linear space, and let
% < B(X, Y). Then the following assertions are equivalent:

a) sup{||T||:Te ¥} < oo;
} < oo, xeX;
o) sup{|[KT(x),y>|:Te ¥} < 0, xeX, Ye¥*

Proof. Trivially a) implies b) and c). Assume that b) holds and define
Sfr(x) = are continuous and sublinear on X
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and our hypothesis guarantees that
f(x) = sup{fr(x):Te¥%} < o, xe X.

Now f, as the supremum of a family of continuous convex functions on X
is a lower semicontinuous convex function on X, and hence is continuous.
In particular, there exists 6 > 0 such that

sup{||Tx)||:Te¥} <1, |[}x]| <é.
Hence

1
sup{||T(x)||: T e ¢} <—5||x||, xe X,

and so sup{||T||:Te ¥} < 1/5. Thus b) implies a). Finally, assume that
¢) holds and fix x € X. Then the function

¥ b sup{|<T(x), Y>|: Te %}
is continuous on Y*. As before, there exists 6 > 0 such that

sup{[<T(x), Y2 Te ¥} <1,  []| <.
Therefore,

ITC| = sup{KTx), ¥ [:|lf| = 1} < 1/5,  Te¥. 0

Corollary. a) Let A be a subset of a normed linear space X. If
sup{|p(x)|:x € A} < oo for all ¢ € X*, then A is a bounded set.

b) Let B be a subset of X* where X is a Banach space. If sup{|¢(x)|:
¢ € B} < oo for all x € X, then B is a bounded set.

The corollary may be paraphrased by stating that any weakly bounded
subset of a normed linear space is bounded, and any weak*-bounded set in
the conjugate space of a Banach space is bounded. The assumption of com-
pleteness of X in part b) here is vital: recall that in 12E an example was
given of an unbounded weak*-convergent sequence in the conjugate space
of an incomplete normed space.

Example. Let X be a Banach space. Then X * is weak *-quasi-complete.
Indeed, if B is any weak*-closed and bounded subset of X* then by the
preceding corollary B is (norm)-bounded. Hence B is weak*-compact (12D)
and a fortiori B is weak*-complete. This result was promised in 12G and
complements the negative result given there concerning the failure of (infinite)
dimensional) conjugate spaces to be weak*-complete. 0

D. Here we take a slightly deeper look at the equivalence of parts
a) and b) of the principle of uniform boundedness. With the notation of
17C suppose that 4 is an unbounded set in B(X, Y), that is, we suppose
that part a) is not valid. Then it follows that the set of x € X for which
sup{||T(x)||: T € 4} = oo is a residual set in X. Indeed, its complement M
is a linear subspace of X which can be expressed as the union of the closed
sets M, = {xe X:||T(x)|| < k, T € };since % is by assumption unbounded,
none of the sets M, can be solid, and therefore M is of first category.
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This type of refinement of the uniform boundedness principle leads us to
the classical result known as the “principle of condensation of singularities”.

Theorem. Let X,Y,,Y,,...be normed linear spaces with X complete
and let 4, = B(X, Y,) forn = 1,2,.... If 4, is unbounded for each n then
the set

17.2) {xe X:sup ||T(x)|| = co,n =1,2,...}
Te%,
is a residual set in X.

Proof. Put
. A, = {xeX:sup||T(x)|| < o}
Te%,

By hypothesis each A, is a proper subset of X and the argument just
given above shows that A, is a set of first category in X. Consequently
U{A,:n = 1,2,...} is of first category and therefore its complement, which
is exactly the set in (17.2), is a residual set in X.

In practice the set %, usually consist of a sequence {T,, ,;m = 1,2,...}
of operators in B(X, Y,), and we are able to find a point x, in X such that

lim sup || T, o(x,)|| = o0

for each n. We may then conclude that

{x € X:lim sup ||T,, .x)|| = oo for all n}
is a residual set in X.

Example. A classical application of the principle of condensation of
singularities is to the problem of the pointwise convergence of Fourier series.
We consider elements x of the Banach space L' = L!([ —=, n], , R) where
i is Lebesgue measure. For each such x the Fourier coefficients of x are

1 T
a, = a(x) = p j x(t)cos kt dt

-n

by

b(x) = ;1; f " X()sin ke dt

-n

and we let
m
Su(t; X) = Y. a,cos kt + b, sin kt, -n<t<m,
K=o

be the m'-partial sum of the Fourier series of x.
We recall that if x € L? then the Fourier series converges to x in the mean
of order 2:
lim ||S,(:;x) — x||, = 0.
m-=* oo
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Thus for large m the trigonometric sums S,,(-; x) represent x satisfactorily
in a mean square sense. In particular, a subsequence of {S,(-; x)} will con-
verge pointwise a.e. to x. However, this approach yields no information as
to whether

17.3) lim S,(t; x) = x(t)

m-—» o0

for a particular t € [ —x, ]. Of course this is not really a well-defined question
as x is itself only defined to within a.e. equivalence. Therefore, let us specialize
to the case x € C,,, the (closed) subspace of C([ —x, ], R) consisting of
functions with equal values at t = —n and t = n. Thus C,, can be thought
of as the linear space of real 2n-periodic continuous functions on R; equipped
with the uniform norm C,, is a Banach space.

In this setting it is known that the pointwise convergence (17.3) takes
place under a variety of further hypotheses on x; for example, it is valid if
x is of bounded variation on a neighborhood of t (“Jordan’s test”). But
continuity alone is definitely inadequate as we shall now see. Let {t,, t,,...}
be an arbitrary (possibly dense) sequence in [ —x, ©]. We shall prove that
there exists x € C,, whose Fourier series diverges on an uncountable subset
D of [ —=, =], and that D can be chosen to contain the sequence {t,, t,, .. .}.

We recall that

Sp(t; x) = i j x(s)D,, (s — t)ds
2n)_,
where

D,u)y=1+2) cosku

k=0

. 1
B sin <m + —2—> u
- sin u
2

is the Dirichlet kernel. According to exercise 3.19 S,(t; -) is a bounded linear
functional on C,, with

1 T
(17.4) 5ot Ol = o j IDu(s — )] ds
Next we show that
lim (%, |D,(s — t)| ds = oo.
Indeed,

" |D(S_t)|d5=2 2 wdu>2 T_|Si_n(2l";_l)l|du
or " %_I sin u = —-n—t |u|

2
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n—t (k+l)1!
2 " 2mer |sin2m + 1)u
=2 Z —not kn |—|‘—|—-_|d

2 2m+l

m e —t (k+1)1z'1 .
=2 z [ + o " 1] Lszm(Zm + 1)u| du

2m 1

= 2c —_—,
ok + 1

where ¢ is an appropriate positive constant. It follows that {S,(t;-):m =
1,2,...} is not a bounded subset of C%, for any given te [ —=, n] and
hence, by the uniform boundedness principle, there exists some x e C,,
whose Fourier series diverges at t.

Now consider the sequence {S,(t,; )} in C%,. The principle of condensa-
tion of singularities implies that

{x € C,,:1im sup |S,,(t,; x)| = oo for all n}
m-—* oo

is a residual set in C,,, and evidently the Fourier series of every x in this
set diverges at each t,. Select any such x and put

D = {t:—n < t < m, limsup |S,(t; )| = oo};

we wish to show that D is uncountable. Let
D,,={tt—n<t<m|S,(t;x)| <k
D, = n{D, :m=1,2,...}

By continuity each D,, , is closed, hence so is D,. We claim that each D, is
a set of first category. Granting this it follows that U{D,:k = 1,2,...} is
also of first category; but this set contains the set of all ¢ at which the Fourier
series of x is convergent. Thus the set of ¢ at which the Fourier series diverges
contains a set of second category in [ —x, n] and such a set is necessarily
uncountable.

To prove that each of the sets D, is of first category we assume that the
sequence {t,} is augmented (if necessary) by an additional sequence so as to
be dense in [ —x, z]. Then if D, were not of first category it would not, in
particular, be nowhere dense, and so, being closed, it would contain a non-
trivial interval. Hence |S,(t; x)| < k for all m = 1,2,... and all ¢ in this
interval. But this is a contradiction since any interval must contain one of
the points ¢, and each ¢, € D. O

E. The remaining category theorems will be derived from the following
basic geometric principle due to Lifshits. If X is a linear topological space
a subset 4 of X is called ideally convex if for any bounded sequence {x, } cA

and sequence {4,} of non-negative numbers with Z An = 1, the series Z AnXn

either converges to an element of A, or else does not converge at all One
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general reason for the usefulness of such sets is that they satisfy certain
preservation rules analogous to those for general convex sets; such rules are
assembled in exercise 3.70. Further, we can note that any convex set which
is either open or closed is ideally convex, and that if X is finite dimensional,
any convex set is ideally convex.

We come now to the fundamental lemma of Lifshits.

Lemma. Let A be an ideally convex subset of a Banach space X. Then
17.5) int(4) = cor(4) = cor(4) = int(4).

Proof. As remarked in 14A it is a consequence of the Baire category
theorem that the core of any closed convex set (such as A) is equal to its

interior. Indeed if p € cor(4) then 4 — p is absorbing andso X = |} n(4 — p).
1

Hence A — pissolid by Baire’s theorem. Therefore, by 11A, § e cor(4 — p) =
int(4 — p) whence p € int(4). Now to complete the proof of (17.5) it will
suffice to show int(4) < int(A4).

Suppose that p € int(4); without loss of generality we may assume that
p = 0. Then for some ¢ > 0 we have B = ¢U(X) = A. Hence B A n
B c An B c (A n B) + 1B (9A). Consequently, for any § > 0 we have

(17.6) 6B < 8(A N B) + gB.

Now consider any x € 3B, that is, ||x|| < §. By (17.6) there exist x, e A n B
and y, € 1B such that x = {x, + y,. Proceeding inductively using (17.6)
with § = 4, 4,..., we obtain the sequences {x,} = A~ Band {y,} =
2~ =+ 1B for which

yn = 2—(n+1)x" + yn+1'
But then

m

x— Y 27"x,

n=1

= [lyml| < 277 0e,

whence x = ) 27"x, and therefore, by the ideal convexity of 4, x € A. This
1
proves that the f-neighborhood 4B lies in A and so completes the proof. []

F. Let X and Y be normed linear spaces, and let T be a linear map
defined on a subspace D(T) = X and taking values in Y. The graph of T is
the linear subspace of X x Y defined by

gr(T) = {(x, T(x)):x € D(T)}.

We say that T is closed on X if gr(T) is a closed subspace of X x Y (in the
product topology). We leave the proof of the following simple lemma as
exercise 3.20.

Lemma. a) Tisclosed on X if and only if {x,} < D(T),lim, x, = x€ X,
and lim,, T(x,) = y imply x € D(T) and T(x) = y.
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b) If T is closed on X and injective then T ™! is closed on Y.

c) If Tis closed on X then ker(T) is a closed subspace of X.

d) If D(T) is a closed subspace of X and T is continuous then T is closed
on X.

The notion of closed linear maps is used extensively in the theory of
ordinary and partial differential equations, where it often serves as an
effective substitute for the more familiar notion of continuous linear maps.

d
Example. The simplest kind of differential operator is the map T = X

defined on D(T) = C*([0,1],R) = X = C([0,1],R) = Y. Thus for each
continuously differentiable x € X we have
T(x)(t) = x'(¢).

T is certainly not continuous on D(T) since if p,(t) = t",n = 1,2,..., we
have ||p,||.. = 1 and ||T(p,)||, = sup{n""':0 <t < 1} = n. But we claim
that T is closed on X. To see this, suppose that x, € D(T) and that lim, x, =
x, lim, T(x,) = y. By definition this means that {x,} converges uniformly to
x and that {x;} converges uniformly to y on [0, 1]. It follows that

x(t) — x(0) = lim(x,(t) — x,(0))
= lim [{ x,(s)ds = [§ y(s)ds, O0<t<1,
whence xe D(T)and y = x’' = T(x). 0
We shall not pursue this area of application of closed linear maps any
further. Rather we shall proceed directly to the famous result which allows
us to prove that certain closed linear maps are necessarily continuous. This

fact, known as the “closed graph theorem” has a number of useful and
surprising consequences, as we shall soon see.

Theorem. Let X and Y be Banach spaces and suppose that the linear
map T:X — Y is closed on X. Then T € B(X, Y); that is, T is continuous.

Proof. To show that T is continuous at 6 (and hence at every point in
X) it will suffice to prove that 6 is interior to T~ }(U(Y)). Now this set is
certainly absorbing so we can complete the proof via Lifshits’ lemma (17E)
by showing that T~ !(U(Y)) is ideally convex. To do so we select a bounded
sequence {x,} for which ||T(x,)|| < 1 and a sequence {4,} of non-negative

numbers with ) 4, = 1. Let x = ). 4,x,; we must show that ||T(x)|| < 1.
1 1

o0
Now the series Y, 4,T(x,) is absolutely convergent, hence convergent to some
1

element y e Y (exercise 3.1b). Because T is closed it follows that

Tx) =y = ;1 AnT(xy),

from which it is clear that ||T(x)|| < ) 4, = 1. 0
1
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A most important consequence of this theorem is the following “inverse
mapping theorem”.

Corollary 1. Let T be a continuous algebraic isomorphism between
Banach spaces X and Y. Then T is a topological isomorphism.

Proof. It must be shown that the inverse mapping T~ ! is continuous.
By hypothesis T~! is defined on all of Y and is closed on Y by part b) of
the preceding lemma. Therefore, T~! is continuous by the closed graph
theorem.

G. We give two more general operator-theoretic consequences of the
method of ideally convex sets (an application of a different nature occurs in
exercise 3.71). The first of these is known as the “open mapping theorem”.

Theorem. Let X and Y be Banach spaces and suppose that T € B(X, Y)
is surjective. Then

a) T is an open mapping; and

b) there exists a constant y > 0 such that to every y € Y there corresponds
an x € X with T(x) = y and ||x|| < y||||

Proof. a) Because T is surjective the set T(U(X)) is absorbing. Since
this set is easily seen to be ideally convex it follows from Lifshits’ lemma
(17E) that 6 € int(T(U(X))). Hence, from the linearity of 7, it follows that
the T-image of any open ball in X is open in Y, and consequently that T
is an open mapping.

b) By what we have just shown there exists a § > 0 such that oU(Y) <
T(U(X)). Hence for any non-zero y € Y there is some X € U(X) such that
T(x) = 8y/||y|l. If we put x = ||y||%/6 we see that T(x) = y and ||x|| <
[I¥[1/8 = »||y]]

Corollary. Let X and Y be Banach spaces and suppose that T € B(X, Y)
has a dense but proper range in Y. Then there exists y € Y with the property
that whenever lim,, T(x,) = y it follows that lim,, ||x,|| = + 0.

Proof. 1If no such y exists then the set T(U(X)) is absorbing. By 17E
then, the set T(U(X)) is a f-neighborhood and consequently T is surjective.
This is a contradiction. 0

H. A mistake that occasionally occurs in applications of the open
mapping theorem is the assumption that, because a linear mapping trans-
forms open sets into open sets, it necessarily transforms closed sets into
closed sets. Of course this would be true if the closed set were compact.
Otherwise, the simplest examples in R? show that it is possible to have a
closed convex set map into a non-closed set. Specifically we may let T be
the orthogonal projection of R? onto R! (T(x, y) = (x,0)) and let 4 =
{(x,y) € R*:x > 0, xy > 1}. Then A is the closed region in the first quadrant
bounded by a branch of the hyperbola xy = 1, and T(A4) is the positive
x-axis {(x, 0):x > 0}, which is not closed.
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If we specialize our closed set further by assuming that it is an affine
subspace then its T-image will also be an affine subspace. Thus we can
assert that the linear image of any finite dimensional affine subspace is closed
(using 9E). But without the finite dimensionality restriction this assertion too
can fail. This will prove to be a particular consequence of the following
general necessary and sufficient condition.

Lemma. Let X and Y be Banach spaces and let T € B(X, Y) be surjective
with kernel N. Then a subset A of X has the property that T(A) is closed in
Yifandonly if A + N is closed in X.

Proof. The key to the proof is once again the factorization T = T o Q.
If T(A) is closed in Y then certainly T~ !(T(A)) is closed in X, since T is
continuous. But T~ Y(T(A4)) = Oy }(Qx(4)) = A + N. Conversely, assume
that A + N is closed in X. We must show that QN(A) is closed in X/N,
as then T(4) = T(Qx(A4)) will be closed in Y because T is an isomorphism
(17F). Suppose that we have {x,} = 4 such that lim, Qx(x,) = Qx(x) for
some x € X. Then lim,, d(x, — x, N) = 0and we must see that Qn(x) € Qn(A),
or that xe 4 + N. But we have sequences {z,} = N and {¢,} = X, with
lim, &, = 0, such that x, — x — z, = ¢, or x, — 2z, = x — &, Since {x, —
z,} = A + N which is closed, we have x = lim,(x — ¢,)e 4 + N. 0

Example. Let X = £%(N,), let Y be the subspace of X consisting of
sequences with zero components in the odd numbered places, and let
T e B(X, Y) be defined as that operator which multiplies each x € X by
the characteristic function of the even integers:

T( (él, 52’ 63, 54) . )) = (03 éza 0’ 54) O) . )
Then N = ker(T) = {x = ({1, &5, .. ) € X:leven = 0}. Let

1 1
A= - in — m=12,...p
span {(cos n> X{Zn—l} -+ <sm n> X{Zn} n }

Then A + N is not closed in X (exercise 3.25) and so T(A) cannot be closed
in Y. 0

The preceding lemma leads to another interesting question which we
discuss briefly. Namely, given a Banach space X, which subsets 4 of X have
the property that T(A4) is always closed whenever T:X — Y is a surjective
operator and Y is a Banach space? Certainly the compact subsets of X have
this property. A satisfactory answer is known only under certain restrictions:
X is finite dimensional and A4 is considered a priori to be both convex and
closed in X. Under these restrictions we say that a half-line Lc X is a
boundary ray (resp. asymptote) of A if L < 0(A) (resp. if L = X\A but
dist(4, L) = 0). Suppose that 4 has no boundary ray or asymptote. Then
it can be proved that A + N is closed in X for any closed convex set N < X
(exercise 3.26). In particular, when N = ker(T), we see that T(A4) must be
closed in Y.
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Finite dimensional convex sets 4 in R" lacking both boundary rays and
asymptotes are called continuous convex sets, because they can be alterna-
tively characterized as sets whose support function o, is continuous on the
unit sphere:

o4u) = sup{(x,u:xe A}, |y, =1

The simplest example of a continuous but non-compact convex set is (the
closure of) the region in R? interior to a parabola.

We shall return to this general problem below in 21B when we discuss
spline minimization problems. In particular, we shall see some examples
of infinite dimensional non-compact sets whose continuous linear image in
a Banach space is always closed.

I. Wenow give a simple but useful application of the category theorems.
Many other applications occur in later sections and in the exercises.

Let the normed linear space X be the direct sum of two subspaces M
and N, X = M @ N, and let P: X — M be the associated projection:

Pm + n) = m, meM, ne N.

In exercise 2.2 it was shown that if P is continuous then M and N are
necessarily closed in X (indeed, N = P~1(0), etc.). Of greater interest is the
converse, which is valid under a completeness hypothesis.

Theorem. Let X be a Banach space. If X = M @ N where M and N
are closed subspaces of X, then the associated projection is continuous.

Proof. By the closed graph theorem (17F) it is sufficient to show that
Pisclosed on X. Thus suppose thatlim, x, = x € X and lim,, P(x,) = ye M.
Then lim,(x, — P(x,)) = x — ye N. Hence x = y + (x — y) yields P(x) =
P(y) = y, which proves that P is closed on X.

An alternative proof can be based on part c) of exercise 2.2 and the open
mapping theorem (17G). Also we note that if we define the angle between
the (disjoint) subspaces M and N to be

y(M, N) = inf{|jm — n||:me M,ne N,

|| = ||} = 1}

then
7.7 y(M, N) = ||P||_1.
Indeed, for any unit vectors me M, n e N, we have
[Pl [|m = nf| > ||Pem — n)]| = [jm|| = 1.

Inequality (17.7) establishes (for Banach spaces) the converse of the assertion
made at the end of 15D. Thus:

Corollary. Let M and N be disjoint closed subspaces of a Banach space
X. Then M @ N is closed in X exactly when y(M, N) is positive.

J. Our final topic of this section is a striking application of the Baire
category theorem, due to Lindenstrauss and Phelps. We consider a solid
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closed convex subset 4 of a Banach space X and again raise the question:
does A have any extreme points? We shall assume that 4 is bounded to rule
out examples such as a half-space which has no extreme points. Even so,
ext(4) may still be empty as we know (exercise 2.30). However, if we further
assume that X is reflexive, then ext(4) # ¢ by virtue of the Krein-Milman
theorem. As we now see, it turns out that quite a stronger assertion is true,
if X has infinite dimension.

Theorem. Let X be a real reflexive Banach space of infinite dimension.
If A is a solid, closed, bounded and convex subset of X then ext(A4) is un-
countable.

Proof. Suppose that the theorem has been proved whenever 4 is the
unit ball in a reflexive space. Then given 4 and X as in the theorem, let Y
be the reflexive space X x R!' with norm ||(x, #)|| = max{||x||, |¢|}. Let
Ay = {(x,1):xe A} and define B = co(4; U (—A4,)). In Y, B is a solid
absolutely convex bounded set and hence its gauge is an equivalent norm
on Y. So normed, Y is still reflexive and now U(Y) = B. Therefore, ext(B)
is uncountable. Since ext(B) = ext(4,) U ext(—A4;) = ext(4,) U —ext(4,)
(formulas (2.1) and (13.1)), it follows that ext(4,) is uncountable. But
ext(4,) = {(x, 1):x € ext(A4)}, so that ext(A4) is also uncountable.

Thus the proof is reduced to the case 4 = U(X). Suppose that ext(U(X))
is countable: ext(U(X)) = {x;, X,,...}. Let G, = {¢ € UX*):|p(x,)| =
[|¢]|}; these sets are weak*-closed subsets of U(X*) and hence are weak*-
compact (12D). Since U(X) is weakly compact (16F), each ¢ € X* attains
its supremum on U(X) at an extreme point (13A), and so U(X*) = |J, G,..
By the Baire category theorem some G,, say G,, has non-empty interior
relative to the weak topology on U(X*). Let ¢, belong to this interior. Since
scalar multiplication is weakly continuous, we can assume that ||@o|| < 1.

Now there exist z,...,z,€ X such that ¢ € G; whenever ||¢|| < 1 and
[<zj, ¢ — ¢o>| < 1,j =1,...,m. Let V be the flat {¢p € X*:d(z;) = Po(z;),
i=1, ..., m ¢(x;) = ¢o(x,)}. Because V has finite codimension in the

infinite dimensional space X *, there exists ¢, € V, ¢, # ¢, and ¢, = ¢ +
¢y — Po) € V for all t. Since ||¢|| < 1 there exists ¢ such that ||¢,|| = 1.
But now ¢, € Gy and so 1 = ||| = [¢/0x1)] = |po(xo)| < ||@ol] [l =
||@o|- This is a contradiction to ||@|| < 1

This theorem does not initially appear to be of interest for complex
spaces since, for example, if x € ext(U(X)) then ax € ext(U(X)), for all o,
lo| = 1. Thus if there are any extreme points at all, there are uncountably
many. However, if we say that two extreme points x and y are equivalent
provided that y = ax for some |a| = 1, then the theorem directly implies
that if X is reflexive and infinite dimensional there must be uncountably
many such equivalence classes of extreme points.

The theorem has various implications, some of which we mention now
(see also exercise 3.59). First, suppose that 4 and X are as in the theorem,
and that X is also separable. Then ext(A4) cannot consist entirely of isolated
points. This is because any set of isolated points in a separable metric space
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is necessarily countable. Surprisingly enough, this consequence fails in
general: there are inseparable reflexive spaces for which every pair x, y of
distinct extreme points of the unit ball satisfies ||x — y|| = 6 for some
constant 6 > 0.

There is a class {X} of real Banach spaces with the property that any
three balls in X will intersect if each two of them intersect. This class contains
all C(R, R) and LY, u, R) spaces but does not contain, for example, any
Euclidean space (R”, ||||). It is known that every space in this class contains
a separable subspace again in the class. It is also known that if X belongs to
this class and if x € ext(U(X)), ¢ € ext(U(X*), then |p(x)| = 1. Now, given
any pair x, y € ext(U(X)), there is some ¢ € ext(U(X *)) for which ¢(x) # ¢(y)
(13B), whence ||x — y|| = |p(x — y)| = 2. It follows that ext(U(X)) consists
of isolated points and so no infinite dimensional space in this class can be
reflexive.

§18. The Smulian Theorems

In this section we establish two of the most profound and useful theorems
in normed linear space theory. These are the Eberlein-Smulian theorem
characterizing weakly compact subsets of normed spaces and the Krein-
Smulian theorem characterizing weak*-closed convex subsets of the conju-
gate space of a Banach space.

A. Let Q be a topological space. A subset A of Q is called (relatively)
countably compact if every sequence in A has a cluster point in A4 (in Q).
If Q is metrizable this property of the subset A4 is equivalent to the (relative)
compactness of 4 and to the (relative) sequential compactness of 4. Further,
in the metrizable case, A4 is then sequentially dense, meaning that every point
in A is the limit of a sequence of points in 4.

Supposed now that X is a normed linear space and that X, is the topo-
logical space obtained by endowing X with the weak topology 6(X, X*)
(12A). According to exercise 3.29 this topology is not metrizable unless X
is finite dimensional. Nevertheless it turns out that the three types of compact-
ness indicated above are equivalent properties of any subset of X, and
further any subset having these properties is weakly sequentially dense. We
now set out to prove this assertion; along the way we shall establish a few
other equivalent properties of subsets of X,,.

Lemma Let X be anormed linear space such that X * contains a countable
total subset. If A is a weakly compact set in X then the (relative) weak topology
on A is metrizable.

Proof. Let {¢;, ¢,, ...} be the countable total subset of X*. Without
loss of generality we can assume that ||¢,|| = 1 for all n. We define a norm
ponX by

plx) = ; 27" du(x)|;
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clearly p < ||'|| Now the set 4, being weakly compact, is in particular
weakly bounded and hence norm bounded (17D). Hence the identity map
from A in its (relative) weak topology to A in its (relative) p-topology is
continuous and therefore is a homeomorphism (because A4 is weakly
compact). 0

The use of the norm p and the subsequent argument are quite analogous
to the corresponding features of the Clarkson-Rieffel lemma of 15C. Observe
that the lemma applies to any space X which is either separable or conjugate
to a separable space (for example, X = ms).

Corollary. Let A be a weakly compact subset of the normed linear space
X. Then A is weakly sequentially compact.

Proof. Let {x,} be a sequence in A. We must show that some sub-
sequence converges weakly to a point in A. Let M = span({x,}). Since M is
weakly closed (12A) the set A n M is a weakly compact subset of the sepa-
rable space M. By the lemma, then, 4 n M is weakly metrizable in M. Hence
{x,} contains a subsequence that converges weakly to a point in 4 n M. Ob-
viously this subsequence is also convergent in the weak topology on X. []

We next show that weak sequential compactness is equivalent to several
other properties of subsets of normed spaces.

Theorem. Let X be a real locally convex space and A = X. Then each
of the following properties implies its successor. If X is normed all the properties
are equivalent.

a) A is weakly sequentially compact;

b) A is weakly countably compact;

c) for any sequence {x,} = A there exists X € A such that
8.1 lim ¢(x,) < ¢(X) < Iim @(x,), PeX*;

d) if {C,} is a decreasing sequence of closed convex sets in X such that
AnC,# Jforallnthen A (), C,) # &;

e) if M is a separable closed linear subspace of X and {H,} is a sequence
of closed half-spaces such that An M ~H, -+~ H, # & for every n
thenAnMn ([, H,) # .

Proof. Directly from the definitions involved a) implies b). Now given
a sequence {x,} < A4, any cluster point X of this sequence will meet the
requirements of c). To see this select any ¢ € X * and let r = Tim,, @(x,). If,
for some ¢ > 0, ¢(X) > r + ¢, then for infinitely many n we would have
¢(x,) > r + &, contradicting the definition of r. This proves the right-hand
side of (18.1) and the proof of the left-hand side is analogous. Next, assume
that c) holds and for each n choose x, € A n C,. Then we claim that the X
of (18.1) corresponding to the sequence {x,} belongs to 4 N ([], C,). Indeed,
part of the conclusion of ¢) is that X € 4. Further, if X ¢ C, for some n then
by the strong separation theorem (11F) there exists ¢ € X * such that

$(%) > sup{p(x):x e C,} > sup{¢p(x):xe Cpyy} =,
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whence lim, ¢(x,) < ¢(%), contradicting (18.1) and proving d). It is clear
that d) implies e) if we take C, = M n H, n--- N H,.

It remains to show that e) implies a) if X is normed. Let {x, } be a sequence
in 4 and put M = span({x,}). Then M is separable and hence there exists
a total sequence {¢,} in M*. Now we note that A is weakly bounded (if not,
then for some ¢ € X*, sup {¢(x):xe A} = oo;setting H, = {xe X:¢(x) = n},
the sequence {H,} would then satisfy e) yet ], H, = ). In particular, for
each m the sequence {¢,,(x,)} is bounded. The Cantor diagonal process now
yields a subsequence { y,} of {x,} such that c,, = lim,, ¢,(y,) exists for every m.

We next claim that there exists y € A such that ¢,, = ¢,(y) for every m.

This follows from e) by arranging the half-spaces { x€ X : +(d,(x) — c,) < %},

(k,m = 1,2,...)in a sequence {H,} and using the vectors y,; it follows that
AnMn (). H,) # & and we can take y to be any point in this intersection.

We complete the proof by showing that weak-lim, y, = y. For this it
will suffice to prove that for every ¢ € X* lim, ¢(y, — y) < 0 (since then it
will follow that lim, ¢(y, — y) = 0, whence lim, ¢(y, — y) = 0). If not,
there exists some ¢ € X *, some ¢ > 0, and a subsequence {z,} of {y,} such
that ¢(z,) = ¢(y) + eforalln. Let H be the half-space {x € X:¢(x) = ¢(y) +
¢} and adjoin H to the sequence {H,} above. Then for each n, A n H n
H, n---n H,contains terms of {z,}, so that by e) again there exists a point
ze An M n H n ([}, H,). For this z we have

(18.2) Pn(z) = lim ¢,,(z,) = lim ¢(y,) = ¢ = Gl ¥)-

But the sequence {¢,,} is total over M so that (18.2) entails y = z, which
contradicts z € H. 0
For a comment on this theorem see exercise 3.31.

B. At this stage we know that weakly compact subsets of normed linear
spaces are weakly sequentially compact and that this property in turn is
equivalent to several others. We now complete this chain of implications
by proving that weakly countably compact sets are weakly compact
(“Eberlein’s theorem”). The resulting collection of characterizations of weakly
compact sets is the “Eberlein-Smulian theorem”. The essentials of the
remaining proof are contained in the following technical lemma to be called
“Whitley’s construction”.

Before the lemma we make one simple observation. Suppose that M
is a finite dimensional subspace of a conjugate space X *. Since dU(M) is
compact (9E) it contains a finite {-net{¢,, ..., ¢,}; thus for each ¢ e M
with ||¢|| = 1 there is some ¢, such that ||¢ — ¢|| < & If we now select
X1, ...,X%, € 0U(X) such that ¢,(x,) > 2, we shall have for any ¢ € M

(18.3) max {|p(x)|:1 < k < n} > 3||¢]|.

Lemma. Let A be a relatively countably compact subset of the normed
linear space X, and let ® € J(A)". Then there is a sequence {xp} = A with
a unique weak cluster point x € X such that X = &.
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Proof. Choose any ¢, € 0U(X*). There is then x; €A such that
K¢y, %, — )| < 1 (since ® e Tx(A)"). Applying now our preliminary
observation above, there exist ¢,, ..., ¢, € 0U(X*) such that for every
¥ e span({®, X, — @}) we have (by (18.3))

max{|¥(¢y)|:2 < k < n(2)} = 3||?||
Next we can find x, € A such that
max {|[{¢y, X, — ®)|:1 < k < n(2)} < 3.

Then by the observation again there exist ¢,)+ 1, - - -, Pnz) € OU(X*) such
that (by (18.3) again)

max {|¥(y)|:n(2) < k < n@3)} = 4|,
for every ¥ e span({®, X, — @, X, — @}). Then we choose x; € 4 so that
max {|<{¢y, X3 — ®)|:1 < k < n(3)} < },

and continue. In this way we inductively construct a sequence {x,} < A.

By hypothesis there is at least one weak cluster point x of the sequence
{x,}. Since span({x,}) is weakly closed we have x in this subspace and
consequently

(18.4) X — ¢espan({P,x; — D,%, — D,...}).
Now by construction any ¥ in this span satisfies
(18.5) sup{|P(p)|:k = 1,2,...} > ||#]|.

so the same inequality remains valid for ¥ in the closed span of (18.4).
In particular, (18.5) is true for ¥ = X — .

We next prove that (¢, X — &> = 0 for every k; granting this it will
follow from (18.5) that X = @&. Since p < n(p) for p = 1,2,..., we have

for k < n(p) < n that |{¢, X, — ®)| < Il? and hence

|<¢k’£ - ¢>| < I<¢k’ 55,, - ¢>| + |¢k(xn - X)l

<

(18.6)
+ iy — ).

= -

Since x is a weak cluster point of {x,}, given ¢, and p > k there exists x,
such that |¢,(x, — x)| < —Ilgand k < n(k) < n(p) < n (because the sequence
{x,} is frequently in the weak x-neighborhood defined by the functional
¢, and the number 11’, and so there will be some x, in this neighborhood for

2
arbitrarily large n). For this x, we then have by (18.6) that | (¢, X — ®)| < >

This proves that (¢, X — @) = 0 and hence that X = .
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Thus we have shown that any cluster point x of {x, } satisfies X = Jy(x) =
®@; since Jy is injective the cluster point x must be unique. 0
Notice that a particular consequence of Whitley’s construction is

(18.7) T < Jy(X).

Theorem Let A be a relatively weakly countably compact subset of a
normed space X. Then the weak closure of A is weakly compact.

Proof. For any ¢ € X* the image d)(A) is relatively countably compact,
hence in particular bounded Thus A4 is weakly bounded and therefore
bounded by 17D. Thus J X(A) is a weak*-closed and norm-bounded subset
of X** and hence is weak*-compact. Because J is a homeomorphism from
the weak topology on X to the (relative) weak* topology on J,(X) (12B),
we see from (18.7) that the weak closure of 4 is weakly compact. 0

It is now also clear that any such set 4 must be weakly sequentially
dense. Indeed, if x belongs to the weak closure of 4 then % e Jx(4)*, and so
Whitley’s construction yields a sequence in 4 that converges weakly to x.
It is also possible to use this result to give another proof that a weakly
compact set is weakly sequentially compact (18A); however, we leave this
to exercise 3.32.

We note an important consequence of the Eberlein-Smulian theorem:
one of the strongest characterizations of reflexive spaces (the others appear
in 19C).

Corollary. A normed linear space X is reflexive if and only if U(X) is
weakly sequentially compact.

Of course any reflexive space is necessarily complete (16A), but it is
easy to see that if U(X) is weakly sequentially compact then X must already
be complete. The condition of the corollary is frequently stated in the form
that every bounded sequence in X has a weakly convergent subsequence.

C. The Eberlein-Smulian theorem can be used to give a negative
answer to the question of whether every infinite dimensional Banach space
must contain a reflexive subspace (of infinite dimension).

Example. Let £* = £*(X,). We prove that every reflexive subspace of
£! must be finite dimensional. Indeed, the following lemma (“Schur’s lemma™)
shows that ! has the peculiar property that every weakly convergent sequence
is actually norm-convergent. Granting this for a moment, let M be any
reflexive subspace of £!. Then U(M) is weakly compact (16F), hence weakly
sequentially compact (18B), and hence compact. Thus M must be finite
dimensional (9F).

Lemma. Let {x,} = {(¢{, &%, ...)} be a sequence of vectors in (.
Then {x,} is weakly convergent if and only if it converges in the norm topology.
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Proof. Suppose that {x,} is weakly convergent; we may assume that
its weak limit is 6. We shall prove that

(18.8) lim ||x,||; = lim Y |&®] = 0.
n— oo n=o j=1

Given ¢ > 0 define
€

{4» & Upm):|g()] < 5. k}.

The sets F,, k = 1,2, ..., are weak*-closed in m and their union exhausts
U(m). Since U(m) is a compact metric space in its relative weak* topology,
we can apply the Baire category theorem to conclude that some F, has
non-empty weak*-interior. For this k there then exists ¢ € U(m), an integer
N, and 6 > 0 such that
(18.9) {YeU(m):|¢; — yi| < 6,1 <i< N} cF,
N €
Because w-lim, x, = 6 we can arrange that ) |¢"| < 3 for all n > p, say.
1

Now fix any n > max(k, p) and define y € U(ms) by

ET I sgn(E™), N < i

This  belongs to the left-hand side of (18.9) and hence to F,. Therefore,

@Y el <L
i=N+1 3
whence
Sl S X <2
i=N+1 3
It follows that
Iy = 3 €7 <& n > maxk, p). 0
i=1

D. We now begin our preparations for the other major result of this
section which concerns the conjugate space of a Banach space. We shall
need a new locally convex topology on conjugate spaces. This topology, the
bounded weak*-topology, is defined on the conjugate of any normed linear
space X by declaring that a subset of X* is bw*-closed if and only if its
intersection with every weak*-compact set is again weak*-compact. Thus,
formally, the bw*-topology is the inductive topology on X * defined by the
family of weak*-compact subsets of X* together with the injection maps
defined on these subsets; hence it is the strongest topology on X * for which
all these injection maps are continuous (equivalently, it is the strongest



§18. The Smulian Theorems 151

topology on X * agreeing with the weak*-topology on every weak*-compact
set).

By elementary manipulations of complements we see that a set in X * is
bw*-open if and only if its intersection with every ball centered at 6 € X *
is a relatively weak*-open subset of that ball. It is further easy to see that a
set G = X* is bw*-closed exactly when every bounded weak*-convergent
net in G has its limit in G. Of greater significance is the following lemma
which shows in particular that the bw*-topology is locally convex and is
stronger than the weak*-topology.

In order to encompass complex linear spaces in the following discussion
let us define the absolute polar A® of a set A = X by

A* = {pe X*:|p(x)| < 1,xe A}.

Thus when X is real we have 4° = (Au — A)°. Rules and results for absolute
polars parallel those for polars as developed in 12C; see exercise 3.34.
However, they will not be important in what is to transpire. We are rather
interested in the convenience of the notation.

Lemma. Let X be a normed linear space. Then {4*:A < X, A compact}
is a local base for the bw*-topology on X*.

Proof. Let A be a compact subset of X. First we check that 4% is a
bw*-0-neighborhood. Givent > 0 we can select a finite % -net{x,..., Xy}
for the compact set 24. Now consider any ¢ € X * with ||¢|| < rand |¢(x;)| <
1,j=1,...,n(). If xe A we can find some x; within a distance of % from

2x. Hence
1 1
66| = 5 16(29] < 5 ([px — x| + [$(x)])

1 1 t 1
<zl = x|l +35 <5 +5=1

Letting N = {¢ € X*:|¢(x)| < 1, x € A} we have shown that
(e tUX*):|p(x)| < Li=1,...,n(0} = N < 4%,

so that A% contains the bw*-open #-neighborhood N and is consequently
itself a bw*-f-neighborhood. Note that this argument only uses the total
boundedness of the set A.

For the converse let N be a bw*-open 6-neighborhood in X*. Then
by definition of the bw*-topology there is a finite set F; = X such that
F{ n U(X*) = N. Now assume for the sake of an inductive construction
that for some integer n we have obtained a finite set F,, = X with the property
that

(18.10) F® A nU(X*) < N.
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We shall show that there is a finite set H, < % U(X) such that (F, u H,)* n
(n + 1)U(X*) = N. Suppose not. Then the family of sets
(F,u H)Y A (n + DUX™*) n (X\N)

. . 1 . .
where H is a finite subset of . U(X) has the finite intersection property.

Since X\N is bw*-closed, this family consists of weak*-closed subsets of the
weak*-compact set (n + 1)U(X*). Consequently the intersection of all the
sets in this family is non-empty. Any point ¢ in this intersection has the

properties that ¢ € Fi n (X|N) and that |¢(x)| < 1 whenever ||x|| < % This

last property implies that ||@|| < n so that ¢ € F3 n nU(X*) = N, which
contradicts ¢ € X\N.

Thus if we set F,,, = F, u H, we have achieved an inductive construc-
tion of finite sets F, with the property (18.10), and such that if the set |J, F,
is enumerated in any order the resulting sequence {x,} converges to 6 in X.

It follows that the set A = {0, {x,}} is compact and that 4 = N. 0

Corollary. Let X be a normed linear space.

a) {{x,}*:x,€ X, lim, x, = 0} is a local base for the bw*-topology.

b) A net X* is bw*-convergent if and only if it converges uniformly on
each compact subset of X.

c) A bounded weak*-convergent net in X* is bw*-convergent.

The verification of these assertions follows readily from the lemma; the
details are left to exercise 3.35. Parts b) and c) suggest that the bw*-topology
is always strictly stronger than the weak*-topology (unless, of course, X is
finite dimensional), and this is true as is demonstrated by the following
example in particular and exercise 3.36 in general.

Example. Let X = {P(X,) for 1 < p < oo. Let {¢,} = X* be defined
by ¢, = n'’Pe,, where e, = the nth-standard unit vector = y (- Then, in
X*, 0 belongs to the weak*-closure of the sequence {¢,}. To see this, let
{x; = (&P, &9,...):1 < i < k} be a finite subset of X and let ¢ > 0. Since
Y |EPPP < oo for each i we have

5 (% ) <o

n=

Hence there must be some n for which
k
> | < om0
i=1

(if not, raise both sides to the pth-power and obtain a contradiction from
the divergence of the harmonic series). Choosing such an n we find that

|pu(xi)| = n'2|ED| <6,  i=1,...,k
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thus proving that the sequence {¢,} intersects every basic weak*-0-
neighborhood.

However, 6 does not belong to the bw*-closure of {¢,}. We can see this,
for example, by defining the compact set A = X to be {6, n™'/7e,}. Since
dn(n~?e,) = §,,, no subnet of {@,} can converge to 0 uniformly on A.

Finally we might note that 6 also fails to be in the weak*-sequential
closure of {¢,}, since no subsequence of {¢,} can converge on account
of the uniform boundedness principle. This observation provides a direct
proof that the weak*-topology on £P(X,) is not metrizable for 1 < p < o
(compare with exercise 3.29). 0

E. Weshow now that the space of all bw*-continuous linear functionals
on X* can be identified with the completion X = J,(X) (16D). This fact,
a special case of “Grothendieck’s completeness theorem”, is an important
justification of our interest in the bw*-topology. In particular, it leads
immediately to the Krein-Smulian theorem.

Theorem. Let X be a normed linear space. Then
(18.11) X = {® e X*':® is bw*-continuous}.

Proof. First suppose that @ € X**\X. Let H be the hyperplane [®; 1]
in X*. We shall show that there is a bounded net in H that weak*-converges
to 6. This will imply that H is not bw*-closed, whence & cannot be bw*-

continuous.
Let d = d(®, X) > 0 and choose any A such that dA > 1. Let V =

{xy,...,X,}* be an arbitrary basic weak*-0-neighborhood in X*. We
shall show that
(18.12) AWUXHAHAV £ &

or, in other words, that 6 belongs to the weak*-closure of AU(X*) n H.
To do so we utilize Helly’s condition (7A) with 4 = (1/d)U(X*). Accordingly,
we can prove that there exists ¢;e€ (1 + 6)A for every 6 > 0 such that
D(¢;5) = 1
Xi(ds) =0, i=1...,n
(any such ¢; will certainly belong to the left-hand side of (18.12) if § is
sufficiently small), provided that

(18.13) o] < sup{ wB() + ¥ ablx)
i=1

1
. < =7,
ol < 3}
for arbitrary real a, ay, ..., o, Now (18.13) is trivial if &« = 0; if not, we

divide both sides by |a|and let x = ) (o;/ar)x;. We are then reduced to proving
1

1
(18.14) 1 < sup {|<¢, @ — 2|:||¢|| < 3}.

But (18.14) is certainly valid since ||@ — X|| > 4.
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At this point we have shown that every bw*-continuous linear functional
on X* belongs to X. It remains to select any @ € X and to show that @ is
bw*-continuous. We can do this by showing that @ is bounded on some
bw*-6-neighborhood. Now since € X = J,(X) thereis a sequence {x.} = X
such that lim, %, = @. We let 4 = {x,} and note that since A4 is totally
bounded, 4¢ is a bw*-0-neighborhood (18D). We can conclude the proof by
showing that |®(¢)| < 2 if ¢ € 4% But

[2(9)] < [6(x)] + K¢, @ — %))
< L+ il {[@ — %l

for any n and we can certainly choose some n so that || — %,|| < 1/||¢|- O

Corollary 1. Let X be a normed linear space. Then X is complete if and
only if every bw*-continuous linear functional on X* is weak*-continuous.

This corollary provides a useful method for establishing the weak*-
continuity of a given functional ¢ € X*', when X is a Banach space. Indeed,
the problem is reduced to verification that U(X *) n ker(®) is weak*-closed.
More generally we can assert that any linear subspace M — X* is weak*-
closed if and only if UM) = U(X*) n M is weak*-closed. This assertion
is known as the “Banach-Dieudonné theorem”, and is a special case of the
next corollary which is the “Krein-Smulian theorem”. This result again
emphasizes the important role played by convex sets since it shows that any
convex set in X* has the same closure in both the weak* and the bw*-
topologies. We already know that this property is not enjoyed by arbitrary
subsets of X * (unless as usual X is finite dimensional).

Corollary 2. Let X be a Banach space. A convex subset C of X* is
weak*-closed if and only if it is bw*-closed.

Proof. Suppose that ¢ does not belong to the bw*-closure of C. Since
the bw*-topology is locally convex we can apply the strong separation
theorem and separate C from ¢ by a bw*-closed hyperplane H. By the
theorem H is weak*-closed so that ¢ cannot belong to the weak*-closure
of C. Therefore C* < 6"‘“, and the reverse inclusion is trivial since the
weak*-topology is weaker than the bw*-topology. O

F. We now give two applications of the Banach-Dieudonné theorem.
The first is a new characterization of reflexive spaces. Let X be a Banach
space with norm ||-|| and let ¢ be an equivalent norm on X :a||x|| < o(x) <
B||x|| for some a, B > 0 and all x € X. Then

1]e()] _ | _ 1]ee)]

B = ot = e lx

Thus the norm ¢* defined on X * by

, x e X, deX*

* — M *
(18.15) o*(x) = it;}; o) peX
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is equivalent to the original norm ||-||* on X*. Any norm on X* of the
form (18.15) derived from an equivalent norm on X is called a dual norm.
Thus dual norms are equivalent to the original norm on X* We shall
consider the converse question: for which spaces X is every equivalent norm
on X * necessarily a dual norm?

We first prove a lemma which gives a general topological criterion for
a given equivalent norm on X* to be a dual norm.

Lemma. Let p be a norm on X* equivalent to the original norm. Then
p is a dual norm if and only if its unit ball U, is weak*-closed.

Proof. Suppose that there is an equivalent norm ¢ on X such that
o* = p. Then
 sup [l _ 03]

() sre p(@)
Thus there is at most one candidate for 6. Let us now define ¢ according
to (18.16). Then if °U, = {x e X:|¢(x)| < 1, p € U,} is the polar of U, in X,
we have °U, = U,, whence
U,c°Uy=U; =U, = {¢peX*:0%¢) < 1}.

By 9B and 12C it follows that p = o* if and only if U, = °US = U,. []

(18.16) oa(x) =

Theorem. Every equivalent norm on X* is a dual norm if and only if
X is reflexive.

Proof. Assume that X is reflexive and that p is an equivalent norm on
X*. Then U, is closed and convex, hence weakly closed, and hence weak*-
closed (16D). Conversely assume that every equivalent norm on X* is a
dual norm. To show that X is reflexive we must show that every bounded
linear functional ¢ on X* is weak*-continuous (12B). Since X is complete
(by hypothesis) it is sufficient to show that @ is bw*-continuous, or that

B = ker(®) n U(X*) is weak*-closed (18E). But B = [| B, where B, =
1

{4) e U(X*): |¢(¢)| , 80 it suffices to show that each B, is weak*-closed.

However, for each n, B,, is a solid bounded barrel in X* and so its gauge
P, is an equivalent norm on X *. By hypothesis p, is a dual norm and the
lemma then implies that B, = U, is weak*-closed.

There is an extension of this theorem to quasi-reflexive spaces (16I):
A Banach space X satisfies dim(X**/Jx(X)) < n if and only if there is
a subspace M = X* of codimension < n such that for every equivalent
norm p on X * there is a dual norm on X * that agrees with p on M. This
more general result is known as the “Roth-Williams theorem”.

G. As our second application we establish a companion result to the
theorem of 16C. The present result lies deeper than that of 16C but is cor-
respondingly of greater use. Before stating this result let us make two simple
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remarks about conjugate operators. Let X and Y be normed linear spaces
and Te B(X, Y).

i) T** e B(X**, Y**) is an extension of T in the sense that T** o J, =
JyoT.

i) If T is an isomorphism of X onto Y then T* is an isomorphism of
Y* onto X*.

The proof of i) is completely analogous to the argument required for
exercise 1.5b). As for ii), it is easily verified that (T ~')* is a bounded inverse
for T* that is defined on X*. The converse of ii) is also true and can be
established by use of both i) and ii).

Theorem. Let Te B(X,Y).

a) If Y is complete and T is surjective, then T* has a bounded inverse.

b) If X is complete and T* has a bounded inverse, then T is surjective
(hence Y is also complete).

Proof. The proof of a) is similar to the corresponding argument in
16C and is left to exercise 3.42. The main difficulty with b) is to prove that
T(X) is complete, since it is easy to see that it must be dense in Y (otherwise
we could strongly separate some point in Y from T(X), and so find a non-zero
element in T(X)° < ker(T*), whence T* could not have an inverse).

Let N = ker(T) « X. We shall prove that T*(Y*) = N°. Granting
this for a moment we can finish the proof by introducing the 1-1 operator
T:X/N - Y. We find that T* is then (by hypothesis) an isomorphism from
Y* onto (X/N)* (indeed, T* = (Q}) ! o T* where QF:(X/N)* - N° is
an isomorphism (16E)). Hence by remark ii) above T** is an isomorphism
of (X/N)** onto Y**. In particular, T**(JX/N(X/N)) is complete in Y**
and so by remark i) above T(X) = T(X/N) is complete in Y.

It remains to prove that T*(Y*) = N°. We clearly have T*(Y*) = N°.
If we knew that T*(Y*) were weak*-closed then we could obtain a contra-
diction by assuming this inclusion to be proper. For in this case there would
be a functional ¢ € N°\T*(Y*) and hence a weak*-continuous functional
X that vanishes on T*(Y*) but not on ¢. It would then follow that y(T(x)) = 0
for all y € Y* so that T(x) = 6. Thus x € N but ¢(x) # 0 for some ¢ € N°,
a contradiction.

We shall finally prove that T*(Y*) is weak*-closed. Let K = T*(U(Y*)).
Then K is absolutely convex and weak*-compact (12D and 16C) and
M = span(K) = T*(Y*)is closed in X * (by hypothesis). Thus M is complete
and it follows from 17C that the gauge pg is a continuous norm on M: pg(¢) <
A|¢|| for all ¢ € M and some A > 0. Now if {¢;:6 € D} is any net in U(M)
with weak*-limit ¢, then since pg(¢;) < A we have by exercise 2.4 that
{¢s/A:0e D} = K. Hence ¢/1e K. This proves that ¢ € AK =« M and
since U(X*) is weak*-compact, ¢ € UM). By the Banach-Dieudonné
theorem we conclude that M is weak*-closed. O

In this way we obtain a complete “dual” version of the theorem of
16C under the assumption that both X and Y are Banach spaces.
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§19. The Theorem of James

In this section we discuss a final characterization of weakly compact sets
in Banach spaces. It is one of the most profound theorems in this book
and we shall only completely establish a special case. The result is actually
valid in any quasi-complete locally convex space, but we shall not go into
this added generality here. The consequences for Banach spaces are already
impressive and we shall give several of these.

A. Let A be a weakly compact subset of a real Banach space X. If
¢ € X* then ¢ is weakly continuous on X and in particular on 4. Hence
sup{@(x):x € A} is attained. The theorem of James asserts, surprisingly, that
this trivial necessary condition is sufficient to guarantee the weak compact-
ness of 4 under mild restrictions.

Theorem. Let A be a bounded and weakly closed subset of the real Banach
space X. If every continuous linear functional on X attains its supremum on A
then A is weakly compact.

The proof will be given in several steps. The first step is a new characteriza-
tion of weakly compact sets in Banach spaces known as the “iterated limit
condition”. This result is in effect another version of the Eberlein-Smulian
theorem (18B).

Lemmal. Let A be a bounded subset of the Banach space X. Then A
is relatively weakly compact if and only if for every pair of sequences {x,} = A
and {¢,} = UX*)

(19.1) lim lim ¢,,(x,) = lim lim ¢,,(x,)

whenever both of the limits exist.

Proof. 1If A is weakly compact and such a pair {x,}, {¢,} is given, let
X, be a weak cluster point of {x,} and let ¢, be a weak*-cluster point of {¢,,}.
Then if either of the limits in (19.1) exists it must be ¢¢(x).

For the converse we proceed as in 18B: since A is bounded Jy(4) *
weak*~compact in X **; if we can prove the inclusion (18.7) we will be done
IfoeJ X(A) we shall prove that @ is bw*-continuous; this will establish
(18.7) by 18E and 12B. If @ is not bw*-continuous then its restriction to
U(X*) fails to be weak*-continuous at some point ¢,. There is thus a &(¢,)-
neighborhood N such that each weak*-¢,-neighborhood contains a point
¢ with @(¢) ¢ N.

We now construct a pair of sequences that will violate (19.1). For any
x; € A there is a ¢, € U(X*) such that |[{x;, ¢o — ¢1>| < 1 and B(¢,) ¢ N.
Select x, € A so that [{¢o, X, — PD| < 1 |[<¢,, X, — ®)| < 1. Then select

¢, € U(X*) so that |<x1, o — ¢2>| <3 |<x2, o — ¢2>| < }and &(¢,) ¢
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N. Proceeding, we inductively construct sequences {x,} = A4, {¢,,} = UX*)
such that

max{| <4y %, ~ B0 <j<n— 1) < ——
, 1
max{[{x;, ¢o — $up[:1 <j < n} < -

D(¢n) ¢ N.

lim lim ¢,,(x,) = lim ¢o(x,) = P(Po)

It follows that

while
li:n Om(xy) = Pm) € N.

Therefore, if we choose a subsequence of {¢,,} such that {&(¢,,)} converges
to a point outside N, the iterated limit condition (19.1) will fail. 0

B. Now to begin the proof of James’ theorem we suppose that A is
not weakly compact. Then the iterated limit condition (19.1) fails for some
pair of sequences {x,} = A4, {¢} = U(X*). After changing the signs of the
¢, (if necessary), and after possibly discarding a finite number of {x,} and/or
{¢m}, we can find an r > 0 such that for all k

(19'2) ¢k(xn) — lim ¢m(xn) 2T,

provided that n is sufficiently large. We shall moreover assume that {¢,,}
contains a weak*-convergent subsequence with weak*-limit ¢, € U(X*).
This assumption is certainly warranted if X is separable (12F). We relabel
the terms of this subsequence as {¢,,} and discard any other terms of the
original sequence. Hence (19.2) becomes simply

(19.3) s e — oy 271

for each k, provided that n is sufficiently large.
For each n =1, 2, ..., we let K, = co({¢,:m = n}) and we let o,
be the support function of A:

o 4(¢) = sup{¢p(x):x € A}, Ppe X*
Then we note that for ¢ € K,

O'A(d) - ¢0) = <xm d) - ¢O>

14 p
(19.4) = Y 4w, — P> =T Y A=,
j=1 j=1
p
where 4,...,4, 2 0, Z A; = 1 exist by virtue of ¢ € K;, and where n is
1

taken sufficiently large.
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Lemma 2. Let {B,} be a sequence of positive numbers. Then there exists
V,eK,n=12,...,suchthat

oa( 0= 00) > 30+ 0u('S Bk b))

Let us grant the validity of this lemma momentarily and see how we can
use it to construct a functional y € X * that fails to attain its supremum on
A. Such a construction will of course reduce the proof of James’ theorem to
that of Lemma 2.

Suppose that the sequence {f,} is chosen so that

lim—l— > Bi=0;
n ni=n+1

for example, B, = 1/n!. Define
Y= ‘;1 B — do);

this series converges absolutely since ||://,|| < 1, and so defines an element
of X* (exercise 3.1). Suppose that i attains its supremum on A4 at x, € A4:
o) = Y(xo). Then if y = sup{o4(P):¢ € K; — ¢} we would have

'21 BiXo, ¥i — o> = Y(xo) — i Bilxo0, ¥i — o>

i=n+1

>y =y 3 = —1 3 B

= 0y <Zn:l B — ¢0)> — 0y <=i1 B — ¢o) — ‘/’) -7 Z Bi

i=n+1

= 04 <;1 By — ¢o)> -2y -=Z+, Bi
> 30+ oa(E b= 80) =2 3 5

> 38+ % Aot = 9> =2 T B

i=n+1
Therefore,
1 1 &
<x0,Wn - ¢0> > Er - 23’— Z Bi’
ni=n+1
whence

lim infxo, Y — oY > =

n—* oo 2

But this is a contradiction to lim, ¥,(x,) = ¢o(x,) which follows in turn
from lim,, ¢,(xo) = @o(xo) and the fact that y, € K,,.
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We shall complete the proof of James’ theorem by an inductive construc-
tion of the sequence {y,} of Lemma 2. This construction uses at each step
the following algebraic fact.

Lemma 3. Let ¢ be a sublinear function on a linear space X, K a convex
subset of X, u a point in X, and o, B, and B’ three positive numbers. If
inf{o(u + Bx):x € K} > aff + o(u), then there exists xo € K such that

inf{o(u + Bxo + f'x):x € K} > aff’ + o(u + Bx).
Proof. There is a 6 > 0 such that —o(u) = aff — inf{o(u + Bx):
xe K} + 6. For any x,, y; € K, put z = (Bxo + B'y)/(B + B) e K. Then
ou + Bxo + B'yy) 2 o((1 + B/B)u + Bz)) — o(B'u/B). Hence

’

inf{o(u + Bxo + B'y,):yeK} = (1 + %) inf{o(u + px):xe K} — E_a(u)

’

B

= (1 + %) inf{o(u + px):x e K}
+ %(cxﬁ — inf{o(u + Bx):xe K}) + %6
= af’ + inf{o(u + px):xe K} + %5.

We can now achieve the proof of Lemma 3 by selecting x, € K so that
o(u + Pxo) < inf{o(u + px):xe K} + %5, 0

Let us finally give the construction of the sequence {i,} of Lemma 2.
For y; we apply Lemma 3 with 6 = 64, K = K; — ¢pp, u =0, f = B4,
B’ = B, and a = r/2. The hypothesis of Lemma 3 is an immediate conse-
quence of (19.4) and so there exists y; € K, such that

inf{o (8101 — do) + Bo(¥ — @o)):¥ € K1} > 3for + 04(Bi(¥1 — do))-
In general, we obtain i, by applying Lemma 3 with K = K, — ¢¢, u =

n—1

Y Biyi — ¢o), B = P and p' = B,.,. The hypothesis of Lemma 3 in this
1

general case follows from the conclusion of the lemma at the previous step:

inf{o(u + By — ¢o)):¥ € K} = inf{o,(u + By — do)):¥ € K, 1}

> %ﬁnr + GA(u)'

This step completes the proof of James’ theorem. 0

We emphasize that we have only completely proved James’ theorem for
separable Banach spaces (but see also exercise 3.44). However, as will be
noted in the following paragraphs, this restriction is not as serious as it may
seem. The reason is that by use of the Eberlein-Smulian theorem we can
always reduce the problem of determining the weak compactness of a
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specified set A4 to that of determining the weak compactness of each separable
“slice” of A. By this term we mean the intersection of 4 with a closed separable
subspace.

C. We now give two new and striking geometric characterizations of
reflexive spaces. First let X be a reflexive real Banach space. As was noted in
161 every closed convex subset of X is then proximinal. Further, according
to exercise 3.10a), any two disjoint, closed, convex subsets of X, one of which
is bounded, can be strictly (actually strongly) separated by a (closed) hyper-
plane. Our next result is that either of these geometric properties is charac-
teristic of reflexivity.

Theorem. A real Banach space X is reflexive if (and only if)

a) every closed convex subset of X is proximinal; or

b) each pair of disjoint closed, convex subsets of X, one of which is bounded,
can be strictly separated by a hyperplane.

Proof. Suppose that X is not reflexive.

a) From exercise 3.33 we know that X contains a nonreflexive separable
subspace M. The ball U(M) is therefore not weakly compact and so, by
James’ theorem, there exists a functional ¢ € M* that fails to attain its
norm on U(M). This means (15B) that the closed convex set H = [¢; |¢||]
has no minimal element and is consequently not proximinal.

b) We shall show that the disjoint closed convex sets H and U(M)
cannot be strictly separated. Suppose otherwise; then there would exist
Y € X* and a positive number y such that y/(x) < y < (), for all x e UM),
y € H. Let us assume that ¢ has been extended to all of X via the Hahn-
Banach theorem, and let us call the extension ¢ also. Choose any point
X € X such that ¢(X) = ||¢|| and any ze X for which ¢(z) = 0. Then for
all 1eR, Yy(x + Az) > 7. Hence y(z) = 0 and so ker(¢p) = ker(y). This
means that the set {¢, y} is linearly dependent. We can therefore choose a
constant « so that y = (oy/||¢||)¢. Now if ye H then y < y(y) = ay, so
that 1 < a. On the other hand, if x e U(M) then y(x) < 7y, and so ¢(x) =
(||@||/oer(x) < ||@||/ex; since a > 1, this contradicts the definition ||¢|| =
sup{p(x):x € UM)}.

There is another (and stronger) characterization of reflexive spaces by
means of a separation property, known as the “Klee-Tukey theorem”, which
we shall state without proof: a real Banach space is reflexive if (and only if)
each pair of disjoint, closed, bounded, convex subsets can be separated by
a hyperplane. The proof does not depend on James’ theorem but hinges
rather on the fact that any non-reflexive space contains a non-reflexive
(closed) subspace of infinite codimension. This fact in turn depends on the
existence of a bounded sequence with no weakly convergent subsequence
(18B).

D. In 13E and 15C we discussed the notion of a strictly normed linear
space. We now define a stronger property. Let us say that a closed convex
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subset A of a normed linear space X is uniformly rotund if there is a non-
decreasing function & on [0, o0) with 0 = §(0) < d(¢), ¢t > 0, such that
3(x + y) + z€ A whenever x, y e Aand ||z|| < 8(||x — y||). If U(X) satisfies
this condition we shall say that X is uniformly normed.

The condition that a convex set 4 be uniformly rotund is a strong
geometric constraint on A. It requires that the mid-point of any chord joining
two boundary points of 4 be bounded away from the boundary by a positive
quantity that depends only on the length of the chord and not on the location
of its end-points. Intuitively the boundary of A cannot come too close to
“flattening out” in any region. In particular, any uniformly rotund set is
rotund, and on the other hand, any finite dimensional strictly normed linear
space is actually uniformly normed.

Our interest in this condition is summarized by the next result known
as “Milman’s theorem”. We see that it is another of those peculiar hybrids
wherein a hypothesis of one type (in this case, geometric) leads to a conclusion
of a different type (topological). By this nature it reminds us of the Krein-
Milman theorem wherein a topological hypothesis implied an algebraic
conclusion.

Theorem. A uniformly normed Banach space X is reflexive.

Proof. As usual, it is sufficient to prove that U(M) is weakly compact
where M is any separable closed subspace of X. If ¢ € M* let a sequence
{x,} = U(M) be chosen so that lim, ¢(x,) = ||¢|. We wish to show that
{x,} is a Cauchy sequence. If we do so then its limit will be a point where ¢
attains its norm; hence U(M) will be weakly compact on account of James’
theorem. Now as m and n become large, ¢(x,) + @(x,,) — 2||#||, so that

lim ¢ (x, + xn) = ||}

Hence lim,, , ||3(x, + x,)|| = 1. Because of the uniform rotundity of
U(M) (which follows a fortiori from that of U(X)), we conclude that
lim,, , ||x, — X,|| = 0, and so {x,} is indeed a Cauchy sequence. 0

Are there any uniformly normed Banach spaces of infinite dimension?
The answer is in the affirmative: every LP(Q, u, IF) space (of infinite dimension)
is uniformly normed for 1 < p < oo (“Clarkson’s theorem”). This is difficult
to prove for general p but not so hard when p = 2. For in this case it is
easily seen that

I+ I3 + [l = I3 = 2011z + [1¥1[2),

(the “parallelogram law”) from which it follows that we may take d(t) =
J1 + 4t — 1in the definition of uniform rotundity of the ball U(L*(, u, F)).

E. We shall finally give two applications of the theorem of James that
do not pertain to reflexivity. The first is “Krein’s theorem”.

Theorem. Let A be a weakly compact subset of a real Banach space X.
Then aco(A) is weakly compact.
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Proof. As usual, it will suffice to prove that each separable slice of 4
is weakly compact; we shall therefore assume directly that X is separable.
Now let ¢ € X*; we must show that ¢ attains its supremum on aco(A4).
Leta = min{p(x):x € A} < max{¢(x):xe A} = B. Since A4 is weakly com-
pact there exist u, ve A such that ¢(u) = a, ¢(v) = . Now the image
$(aco(A)) is the interval [ —y, y] where y = max {|«|, ||}, and aco(4) con-
tains a point (namely — u or v) at which ¢ assumes the value y. Since ¢(aco(4))
also equals [ —7v, y], we have shown that aco(A4) satisfies the hypotheses of
James’ theorem and consequently is weakly compact.

Observe that Krein’s theorem is only new in the case where X is not
reflexive. For we know that all reflexive spaces are weakly quasi-complete
(16F), and that in any quasi-complete locally convex space aco(A) is compact
whenever A is totally bounded (11C).

F. Our second application concerns vector measures taking values in
a real Banach space X. Let (@2, X) be a measurable space and let i: X — X be
a function having the property that for every sequence {E,} = X of mutually
disjoint sets

ﬁ( U E..) = ), HE,),
n=1 n=1
where the series on the right is assumed to converge unconditionally in X

(that is, to converge regardless of the order of its terms: Y (E,) = Y. f(E ),
1 1

for any permutation p of the positive integers; this is equivalent to absolute
convergence of the series when dim(X) < oo, but otherwise is weaker).

Our aim is to show that the range fi(X) is relatively weakly compact in X
(“theorem of Bartle-Dunford-Schwartz”). The contrast between this situation
and that of 15E is that we are studying measures with values in an arbitrary
Banach space rather than in a product space and, more importantly, the
measures are not assumed to possess a density.

Theorem. Under the above assumptions the range [i(Y) is relatively weakly
compact in X.

Proof. For any functional ¢ € X* the composite ¢ o [i is a finite signed
measure on (R, X), and there is a corresponding Hahn-decomposition of Q.
That is, there is a partition Q@ = 4 U B, A n B = ¢, with ¢ - i a non-
negative measure on A and —¢ o i a non-negative measure on B. Now,
to show that the weak closure R of the range () is weakly compact, we
observe that

sup{@(x):x € R} = sup{p(x):x € @(X)}

sup{$(WE)):E e Z} = p((A)).
This proves that ¢ attains its supremum on R and hence, by James’ theorem,

that R is weakly compact. (Note that it is implicit in the preceding argument
that R is weakly bounded and hence bounded by 17C.) il
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We remark that a stronger conclusion is possible in the special case
where X is reflexive and f is of bounded variation in the sense that

sup Y. ||B(E,)|| < oo,

where the supremum is taken over all partitionsn = {E,, ..., E,} consisting
of a finite collection of disjoint sets in X~ whose union is Q. Namely, in this
case it can be shown that the norm closure of the range fi(¥) is norm-compact,
and is also convex provided that fi has no atoms (where this latter term is
defined in complete analogy with the scalar case considered in 15E). The
proof of this second assertion utilizes the finite dimensional Lyapunov
convexity theorem of 15E.

§20. Support Points and Smooth Points

In this section we establish the famous theorems of Bishop and Phelps
concerning the existence of support points and support functionals for a
given convex subset of a Banach space and observe the particular conse-
quence that every Banach space is subreflexive. We also discuss the sub-
differentiability of lower semicontinuous convex functions on Banach spaces,
a situation which is not covered by the earlier discussion in 14B. Unlike
most of the earlier results in this chapter which admit extensions to certain
more general types of locally convex spaces, the present results require both
anorm and completeness for their validity, as we see by appropriate examples
and exercises. Finally, we resume the discussion begun in 7E—F of smooth
points. The density theorem of Mazur is established for separable spaces,
and some applications to the uniqueness of Hahn-Banach extensions of
linear functionals are given.

A. Let A be a closed subset of a real Banach space X. We say that
Xo € A is a conical support point of A if there is a closed cone C in X such that

(20.1) AN (xo + C) = {xo}.

In terms of the ordering induced on X by C (5A) equation (20.1) simply
means that x, is a maximal element of A4 (that is, x, < x € 4 implies x, = x).
Now in general there is no reason why such points in the set 4 should exist.
However, as we shall now see, their existence can be guaranteed for a certain
class of cones. After establishing this technical fact we shall discuss some of
its implications.

For ¢ € X*, ||¢|| = 1, and 0 <y < 1 we define a closed cone C =
C(¢,y) = {x e X:y||x|]|] < ¢(x)}. It is easily seen that C is the cone generated
by the set B = B(¢, y) = U(X) n {xe X:y < ¢(x)}, that is, C = [0, 00)B.
Also, from now on, we shall write sup ¢(4) in place of sup{¢(z):z€ A}.

Lemma. Let A be a closed subset of the Banach space X and suppose
that ¢ € X* (||p|| = 1) is bounded above on A. Then for 0 < y < 1, and any
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X € A, there exists xo € A such that x, € x + C and (20.1) holds for C =
(g, ).

Proof. Let A, = A n (x, + C) where the sequence {x,} is defined in-
ductively as follows: x, = x and having obtained x,, ..., x, we take x,,,
to be any point in A4, for which sup ¢(4,) < ¢(x,+,) + 1/n. Since x,,, €
A, = x, + C, we have x,,,; + C = x, + C, ahd hence 4,,, = A,. Now,
it ye 4,44, then ¢(y) < sup ¢(4,) and

1
V”y - xn+1” < @(y) — P(Xy41) < sup @(4,) — dlxu+1) < Py

. 2 . . .
whence diam(4,,,) < % Because A is complete the intersection of the

nested sequence {A4,} consists of a single point x,. Since x, € 4; we have
Xo € x + C. Finally, since xo€ 4, = A n (x, + C) for all n, we have
An(xg + C) = A, for all n (because C is a cone), hence 4 N (xo + C) =
{xo}, and so (20.1) is satisfied. 0

B. If Ais asolid closed convex subset of a real linear topological space
then the support theorem (11E) assures us that every boundary point of A
is a support point. On the other hand, whether or not A is solid, it will in
general (exercise 2.18) contain non-support points. For a long time it was
unknown whether an arbitrary (not solid, not weakly compact) closed convex
set A in a Banach space necessarily contained any support points. We can
now see that, in fact, support points must exist in this setting, since any
conical support point x, € A (with respect to some solid cone C) is actually
a support point of 4. This follows from an application of the separation
theorem to the convex sets 4 and x, + C.

The first theorem of this section will provide a stronger response to the
question of the existence of support points by proving their density in the
boundary of a given closed convex set 4. We will then known that either
the support points of 4 are exactly the boundary points (when A4 is solid)
or else they are dense in 4 (when A4 has no interior). For both this theorem
and a later one we shall need another technical fact which we shall call the
“Phelps-Brondsted-Rockafellar lemma”.

Lemma. Suppose that A is a closed convex subset of the Banach space X,
that ¢ € X* has norm 1, and that ¢ > 0 and x € A are such that

sup ¢(4) < ¢(x) + &

Then for any y € (0, 1) there exist € X* and x, € 4 such that sup Y(4) =
Y(xo), ||xo — x|| < &/y,and ||¢p — ¥|| < ».

Proof. By the preceding lemma there is a conical support point x, € 4
(with respect to the cone C = C(¢, y)) such that x, € x + C. We shall obtain
the desired functional ¥ via a separation argument resembling the one used
to obtain subgradients. Let f(x) = y||x|| — ¢(x) and let 4, = {(z,0)e X x R:
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Xo + z€ A}. Then A, n epi(f) = {(6, 0)} by (20.1) and so 4, is disjoint
from the interior of epi( f). By the separation theorem we can find a functional
@ e (X x RY* such that sup #(4,) = 0 = inf G(epi(f)). Now the point (6, 1)
belongs to int(epi(f)) so that &0, 1) > 0. Hence we can write &(z, t) =
Y(z) + t for all (z,t)e X x R Now (z — xo, 0) € A; whenever z€ 4, so
that @(z — x,, 0) = Y(z — x) < 0, whence sup Y(4) = Y(x,). Also, since
(z, f(z)) e epi(f) for all ze X, we have 0 < &(z, f(2)) = Y(z) + f(z), whence
—¥(z) < f(2) = y||z|]| — #(2) and therefore ||¢p — ¢|| < y. Finally,x, — xe C
implies y||x, — X|| < P(xo — x) < sup H(C) — $(x) < e. 0

This lemma leads directly to the “first Bishop-Phelps theorem” on the
density of support points.

Theorem. If A is a closed convex subset of a Banach space X, then the
support points of A are dense in the boundary of A.

Proof. Let xe d(A) and 6 > 0 be given. Choose ze X |4 so that
||x — 2|| < 6/2 and then choose ¢ € X * such that ||$|| = 1 and sup ¢(4) < ¢(2)
(11F). Then ¢(z) < ¢(x) + ||x — z||, whence sup ¢(4) < ¢(x) + J/2. We
now apply the preceding lemma with ¢ = 6/2 and y = 1/2 to obtain x, € 4
and ¥ € X* such that sup y(4) = ¥Y(x,), ||xo — x|| < 6, and ||¢p — ¥|| < 3.
This last inequality shows that y # 0 (since ||¢|| = 1), and thus x, is a
support point of 4 within distance § from x. 0

C. In order to show that there is not much hope of extending this
theorem beyond the setting of Banach spaces we shall indicate an example
of Peck (based on an earlier more specialized example of the same type of
phenomenon due to Klee). This example will lead to a bounded closed convex
subset of a complete metrizable locally convex space which has no support
points at all. The construction serves also as a further application of the
theorem of James. Let us say that a linear functional ¢ is a support functional
of a set A if ¢ # 0 and ¢ attains its supremum over A:sup ¢(A4) = ¢p(x,),
for some x, € A.

o0

Example. Let X = [] X, be the product of a sequence of non-reflexive
1

real Banach spaces X,. In its product topology X is locally convex and
complete, and this topology is metrizable by exercise 2.4. We are going to
construct a closed bounded convex subsei A of X such that the projection

of A on each [] X, is open, n = 1,2,.... Since any functional ¢ € X* is
1

bounded on some basic §-neighborhood in X, ¢ must have the form }_ ¢, o m,

1
where ¢, € X¥ and =m,: X — X, is the usual projection. It follows that ¢(A4)
must be open and hence that ¢ cannot be a support functional of A. Therefore,
A can have no support points.
The construction of A4 is based on an inductive construction of a sequence
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of closed bounded convex sets 4, = [| U(X,). To begin, let ¢, € X5 be a
1

norm-one functional that is not a support functional of U(X,) (19A). Let
Ay = {(x1, %) € UX,) x U(X,):||x4]| < ¢2(x,)}. Note that if ||x,|| < 1 and
¢,(x,) > 0, then (0, x,) belongs to the interior of A, in X, x X,. For the
inductive step we suppose that n > 3 and that a closed bounded convex

n—1

set A,_, < ﬂ U(X,) has been constructed containing an interior point
1

y*~ D = (y,,..., yo—1). Choose a norm-one functional ¢, € X* which is
not a support functional of U(X,). Let p,_, be the gauge of the convex 0-
neighborhood 4,_; — y®~ ), and define

An = {(xla ceey xn—h xn) € H U(Xk):(xb ) xn—l) € An—l and
1

pn—l((xla ey xn—l) - y("_l)) < ¢n(xn)}*

If y, € int(U(X,)) is chosen so that ¢,(y,) > O then y™ = (y;,..., Va1, Vn)
is an interior point of 4,,.
Having obtained the sets 4, ..., 4,, ... we now define

A= {(x,x3...)EX:(xg,...,%,) € Apn =2}
Clearly A is a closed bounded convex subset of X. To complete the example
it will suffice to prove that the projection of 4 on [nl X, is int(4,) for n =
2,3,....Suppose first that (x;,..., X, Xy41,--.) € /i Then

Pn((xn ey xn) - y(")) < ¢n+ l(xn+1) < 1,

whence (xi, ..., X, — y™ eint(4, — y™), or (xy,..., X,) € int(4,). To re-
verse the inclusion, take (x,, ..., x,)€int(4,); then p,((xy, ..., x,) — y™) < 1.
Since ||@,+1|| = 1, there exists x,,. ; € int(U(X,, . ,)) such that p,((xy,...,x,) —
V™) < Pt 1(Xn+ 1)- Therefore, (x4, . . . , X, X, 1 1) € int(4, ). We can continue
this inductive procedure and obtain (x;,..., X,, X,+1,-..) € A whose pro-

n

jection on [ X, is (x4, . . ., X,,). il
1

D. Let A be a convex subset of a Banach space X, and let f € Conv(A)
be lower semi-continuous. Then f is continuous throughout int(A) (exercise
3.50), and hence subdifferentiable there (14B). If 4 is not solid it is still of
interest to inquire about the subdifferentiability of f. Recall (6D) that sub-
gradients of f correspond to non-vertical supporting hyperplanes to epi(f).
Making use of arguments analogous to those used in the lemma of 20B,
the following result was established by Brondsted and Rockafellar.

Lemma. Lete, y > 0. Suppose that ¢ € X * satisfies

(f(x) — &) + ¢z — x) < f(2),
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for some x and all z in A. Then there exist xo € A and Yy € X* such that
o — || < 7. I — Wl| < s/, and ¥ € 3f(xo).

Any such ¢ is called an e-approximate subgradient of f at x and the set
of all these is denoted 4, f(x). The sets 9, f(x) are non-empty weak*-closed
convex subsets of X* for ¢ > 0, and they decrease to df(x) as ¢ decreases to
0.(That 0, f(x) # & may be seen by strongly separating the point (x, f(x) — &)
from the closed set epi(f) (14A).) How well one of these sets approximates
0f (x) can be estimated by the above lemma. We shall use this lemma to prove
a formula which implies that the points at which f is subdifferentiable con-
stitute a dense subset of 4. Let B = {ze X:0f(2) # &} and let f = f|B.

Theorem. Forall xe A,

(20.2) f(x) = lim inf f(y).
y=x
Proof. Because f is lower semicontinuous we need only prove that
f(x) = lim inf f(y). Given x € 4 and § > 0, put ¢ = §/2 and select ¢ € 9, f(x).
Choose y > 0sosmall thaty < é and y||¢|| < 6/2. Nowletx,e Aandy e X*
satisfy the conclusions of the lemma. Then

fxo) = fx) < —y(x = xo)
)
< b =l Il < (] + 5) <3+ =

Thus xo € B, ||x — xo|| < & and f(xo) < f(x) + 6.

We remark that this result too cannot be extended beyond the confines
of Banach spaces. To illustrate, let K be the supportless set constructed in
20C in the product space X. We choose an arbitrary non-zero x, € X and
define a convex function by
(20.3) f(x) = min{te R:x + txy € K},
the domain A of f being the set of x € X for which some such ¢ exists. Because
K is closed and bounded in X this function is lower semicontinuous on A.
However, if 9f(x) # & for some x € A then it can be shown (exercise 3.51)
that the set K would have a non-trivial supporting hyperplane at the point
x + f(x)xo, and this is a contradiction. Thus (20.3) defines a lower semi-
continuous convex function on 4 = X which is nowhere subdifferentiable.

E. We shall now give a second application of the Phelps-Brondsted-
Rockafellar lemma. This intended application is motivated by the problem
of subreflexivity of Banach spaces, which is in turn motivated by the theorem
of James (19A). Given a real Banach space X we let Z(X) = {¢p € X*:¢
attains its norm on U(X)}. Then the theorem of James asserts that 2(X) =
X* if and only if X is reflexive. We say that X is subreflexive if 2(X) is dense
in X* (in the norm topology). We are thus led to inquire as to which Banach
spaces are subreflexive.

For example, if we identify ¢§ with ¢! as in 16H, then 2(c,) is that subset
of {' whose members vanish except on a finite set (the finitely supported
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elements of £!). Or, if we identify [}'* = LY(Q, u, F)* with L® = L*(Q, , F)
as in 12C (here p is a o-finite measure), then P(L') = {f e L*:u{te Q:
|f®)] = ||f]l} > 0} (in other words, 2(L") is that subset of L* whose
members attain their norm on a set of positive measure). In both these
cases it is easy to see that the spaces are subreflexive. The next result, the
“second Bishop-Phelps theorem”, shows that this is not an accident.

Theorem. Let A be a closed convex set in the real Banach space X, and
let pe X* (||¢|| = 1) be bounded above on A. Then for any §€(0,1) there
exists a support functional y of A with ||¢p — y|| < 6.

Proof. Choose x € A so that sup f(4) < f(x) + 1 and apply the lemma
of 20B with ¢ = 1 and y = §. We obtain y e X * such that sup Y(4) = (x,)
for some xo€ 4,and ||¢p — Y|| < 6 < 1 = ||¢|| Hencey # 6 and is therefore
a support functional of A. 1l

This theorem shows that the set of support functionals of 4 is dense
in the space of functionals that are bounded above on A4, and leads imme-
diately to the following corollaries.

Corollary 1. If A is a closed bounded and convex subset of X then the
support functionals of A are dense in X*.

Corollary 2. Every Banach space is subreflexive.

It is interesting to remark that when X is an incomplete normed linear
space there is a solid closed bounded convex subset A of X such that the
support functionals of 4 are not dense in X * (exercise 3.53). Consequently,
Corollary 1 is actually a new characterization of Banach spaces within the
class of normed spaces. On the other hand, an incomplete normed space
may or may not be subreflexive. For example, the space of sequences with
only finitely many non-zero terms, normed by the £7(R)-norm for 1 < p <
o0, is a subreflexive normed space. But the space of polynomials on [0, 1],
normed by the supremum norm, is not reflexive. The proof of this latter
assertion depends on the representation of the general continuous linear
functional on this space (or, equivalently, on the space C([0, 1],R)) as a
Stieltjes integral defined by an integrator function of bounded variation
(171, 22D, and exercise 4.9).

F. We consider now a special kind of support point for convex subsets
in normed spaces. In general, let 4 be a solid convex set in a real linear
topological space X. A support point of A is called a smooth point of A if
there is only one (closed) hyperplane supporting 4 at x. We assume that A
has non-empty interior so as to rule out situations where A lies in some
hyperplane; in such cases we would not expect 4 to have any smooth points
(except in trivial cases such as the case where A is already a hyperplane.) If
every boundary point of 4 is a smooth point we shall say that 4 is smooth.
The set of all smooth points of 4 is denoted sm(A4), so that 4 is smooth if
and only if d(4) = sm(A4). If A is the unit ball in the normed space X and if
A is smooth, then X will be said to be smoothly normed.
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Smooth points were introduced in 7F for the purely linear space situation
and in particular we classified the unit vectors of the p-norm unit balls in
R" as to smoothness (1 < p < o0). We can also read out of 7F the following
application to smoothness in normed spaces: a unit vector x, is a smooth
point of U(X) exactly when the norm function has a gradient at x,. Thus
(7F) xo € sm(U(X)) exactly when

20.4) glxo: x) = Tim 1P+ & = [bxol
’ t—0 t

exists for all x and defines a functional g(x,; -) in X *. The functional g(x,;-)
is the gradient of the norm at x, and, as an element of X *, has norm one.
When the limit in (20.4) exists we have g(xq; X) = Tyx)(Xo, X), the tangent
function of U(X) (7F).

We now consider some of the standard normed spaces and determine
the smooth points of their unit balls. Most of the details are left as an exercise.

Example. a) Let L?(Q, u,R) for 1 < p < co. Then every unit vector
is a smooth point of U(LP). This can be seen from the condition for equality
in Holder’s inequality, or by directly differentiating under the integral
sign in order to compute the limit in (20.4). However, it also follows from
the fact that LP* = L7 is strictly normed (13E—Ex. 5, and 16G), and the
duality between smoothly normed and strictly normed reflexive spaces
(20G). For x, € 0U(LP?) the gradient of the p-norm at x, is given by the
function xo|xo|?~%/||xo||? ! € L%

b) Let L' = LY(Q, u,R). Then x,esm(U(L")) if and only if wu({te
Q:xo(t) = 0}) = 0. When this condition holds the gradient of the norm
at x, is the function sgn(x,) € L®. (We assume that the measure u is such
that the usual congruence between L'* and L® holds.) In the special case
where Q = [0, 1], u.= Lebesgue measure, it follows that the subspace of
polynomials of degree < n, for some integer n, is a smooth subspace of L*.

c) By contrast, the sequence space £'(X,) has no smooth subspaces
of dimension > 1. This may be seen by taking any two vectors x = (¢4, &,,...),

y = (N1, M2...) in ¢!, and considering the function f(z) = Y |&, + tn,|

1
The function f is either a constant (if y = ) or else fails to be differentiable
at t = —¢,/n, whenever 5, # 0. But, f'(t) = g(x + ty; y).

d) Let C = C(2,R), where Q is a compact Hausdorff space. A peak
function in C is a function x, that attains its norm ||x,||,, at a single point
in Q. Clearly, any unit vector in C that is not a peak function cannot belong
to sm(U(C)). On the other hand, a peak function x, of unit norm is indeed
a smooth point of U(C). To prove this we assume that xo(po) = 1 = ||Xo|»
and verify that g(x,; ‘) = J,,. For any x € C we have

lIxo + tx|le = [xo(p) + tx(P)| = [Xo(Po) + tx(Po)].
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Therefore,
0 < 1= |xo(py)| < |of [¥(po)| + [t] [x(po)|

<
< 20 |l

whence
lim [xo(p)| = 1.

Since Q is compact, it follows that p, — p, as t — 0. Now, for sufficiently
small |¢] )
tx(po) = 1 + tx(po) — 1 = |1 + tx(po)| — 1
< |xo(py) + tx(p)| — 1
%o + x|l — [Iol|-o
= xO(pt) + tx(pt) -1< tx(pt)'

Now divide through by ¢ and let t — 0. If xo(py) = — 1, we use the general
rule g(—xo;°) = —g(Xo; ) and so obtain g(xo; ") = sgn(xe(Po) ), 0

The main result about smooth points is known as the “Mazur density
theorem”.

Theorem. Let A be a solid closed convex subset of a separable Banach
space X. Then sm(A) is a residual subset of d(A).

Proof. Since A4 is solid we can assume that 0 € int(4). Let 7 = 1y y),
the tangent function (7F) of the unit ball in X. From the properties of t
listed in 7F we see that

[e(x, ) — 1(x, 2)| < max(ps(y — 2), pa(z — )

(20.5) 1
<=y 4}

if ¢ > 0 is chosen small enough that eU(X) < A. From formula (7.8) and
the theorem in 7F we see that a boundary point x, of 4 is a smooth point
of A provided that (xq, x) = —1(xo, —x), for all xe X. Now let {y,}
be a countable dense set in X|{0}, and define

Z, = {xeX:t(x, y) = —1(x, —yn)},
Z=1 2.
n=1

Then, because of the continuity of z(x, -) as shown by (20.5), a non-zero
x e Z will satisfy x/p,(x) € sm(A4). Since (ax, ) = 7(x, ), « > 0, we see
that the problem is reduced to proving that Z is a residual set in X.

Let

Zyij = {XGXIJ(PA <x + :Vj_n> — 2p4(x) + pa <x - %)) < %}

These sets are open in X and so Z,; = U{Z,; ;:j = 1,2,...} is also
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open. But Z, = n{Z, ;:i = 1,2,...}. Thus it remains only to show that
each set Z, ; is dense in X. Suppose not; then for some integers i and n
there exists a point x, € X and 6 > 0 such that Z, ; is disjoint from x, +
OU(X). If we put g(A) = pu(xo + Ay,) it follows that g is not differentiable
for |A| < 6/||y.|| But g is a Lipschitz continuous (hence absolutely continuous)
function of A, since p, is sublinear, and, as is known from analysis, any such
function is differentiable almost everywhere. Thus we arrive at a contradiction
by assuming that Z, ; fails to be dense. U

Having obtained such a geometrical fact about convex sets we can,
by the usual device of applying the fact to epigraphs, obtain a corresponding
conclusion about convex functions.

Corollary. Let A be a convex subset of the separable Banach space X
and f € Conv(A). If f is continuous at a relative interior point of A then f has
a gradient at each point of a residual subset of rel-int(A).

Proof. As usual, after passing to aff(4), we can assume that f is con-
tinuous throughout int(A4). The epigraph of f is then a solid closed convex
set in the separable Banach space X x R!, and so the smooth points con-
stitute a residual subset of its boundary gr(f). There are therefore open sets
Z, < X x R! such that sm(epi(f)) = [],(Z, n gr(f)) and Z, N gr(f) is
dense in gr(f). Let P: X x R! — X be the projection along R*: P(x, t) = x.
Then P is a continuous open mapping and P(gr(f)) = A. It follows that the
sets P(Z, n gr(f)) are dense and open in 4, and hence that their intersection
B is a residual subset of int(4). If x € B, then (x, f(x)) € []. (Z, N gr(f)) =
sm(epi(f)). Thus there is a unique hyperplane of support to epi(f) at the
point (x, f(x)). By 6D it follows that there can be at most one subgradient of
f at x. But by 14B, 0f(x) # . Therefore, there is a unique subgradient
of fat x which must, by 14D—Cor. 1, be the gradient of f at x. This shows
that f'has a gradient at the points of the residual set B.

The separability hypothesis in these results is crucial. Lacking this, the
conclusion can fail completely. For example, the norm in the Banach spaces
L*([0, 1], u, R) (# = Lebesgue measure) and £'(N) (X > N,) is nowhere
differentiable. Hence the unit balls of these spaces have no smooth points
at all. However, it is known that the conclusions do hold for all reflexive
spaces.

G. We now discuss a few miscellaneous topics related to the notion
of smoothness. First is the observation that the properties of being strictly
normed and smoothly normed are, in a sense, dual to one another.

Theorem. Let X be a real normed linear space. If X* is smoothly (resp.
strictly) normed then X is strictly (resp. smoothly) normed.

Proof. The proofs of both assertions are similar, so we shall just prove
the first. Suppose that X is not strictly normed. Then the boundary oU(X)
contains a non-trivial line segment [u, v]. Let ¢ € dU(X*) be a support
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functional to U(X) at the point (# + v)/2. Then the functionals &, § € X**
are both subgradients of the norm at the point ¢, and so there cannot be
a gradient of the norm in X* at ¢ (14D). Hence X* is not smoothly
normed. 0

Corollary. Let X be a real reflexive Banach space. Then X is strictly
(resp. smoothly) normed if and only if X* is smoothly (resp. strictly) normed.

Let A be an open convex set in a normed linear space X. Suppose that
f € Conv(A) is continuous and differentiable on 4. Thus we have the gradient
map x — Vf(x), defined from A into X*. The following result establishes
two basic properties of such a mapping: monotonicity (3A) and demicon-
tinuity. In general, a mapping from a subset of X into X* is demicontinuous
if it is continuous from the norm topology into the weak*-topology. The
kinds of convex functions to which we want to apply this result are those
associated with the norm on a smoothly normed space; for example, f(x) =
[[x|| or f(x) = %||x||>. But notice also that even in the finite dimensional
case the theorem provides some new information by showing that a differen-
tiable convex function (defined on an open subset of R”, say) is automatically
continuously differentiable.

Theorem. Let X be a normed linear space and f a continuous and differen-
tiable convex function defined on an open convex set A = X. Then the gradient
map x — Vf(x) is monotone and demicontinuous on A.

Proof. The monotonicity inequality

X =pVfx) - Vf(»>=20, xyed,
is proved exactly as in 3A, making use of the subgradient property (u — v,
Vi) < f(u) — f(v), for u, v e A.

In order to prove that f(-) is demicontinuous at a given point x, € 4,
we first note that there is an xy-neighborhood V such that the restriction
f|V satisfies a uniform Lipschitz condition on ¥V with constant A (exercise
2.41). It follows that the restriction Vf(-)|V is a bounded mapping:

(20.6) (V)| < 4, xeV.

Now suppose that lim, x, = x, for some sequence {x,} = V. We shall
prove that weak*-lim, Vf(x,) = Vf(x,) by showing that the sequence
{Vf(x,)} has the unique weak*-cluster point Vf(x,). Because of the weak*-
compactness of {Vf(x,)} guaranteed by (20.6), there is some weak*-cluster
point ¢ € X*. To see that ¢ = Vf(x,) it must be shown that ¢(y — x,) <
f(y) — f(x,) for all y € A. Now

d)(y - xO) = <y — Xo» d) - Vf(xn)> + <y - Xp, Vf(xn)>
+ <xn — Xo» Vf(xn)>, ye X.

Select some y € A and any ¢ > 0. Then there is a sequence {n,} of positive

(20.7)
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integers such that [<y — xo, ¢ — Vf(x, 0| < & |f(x,) — fx0)| < & and
A|X,,, — Xo|| < & Hence, from (20.7),

Ay — Xo) < Y = X, V(X)) + 26
< f(y) — f(x,) + 2 < f(y) — f(x0) + 3e.

This proves that ¢ is a subgradient of f at x, and hence, by uniqueness of
subgradients (14D), that ¢ = Vf(x,). 0

Example. Let X be a smoothly normed space. Then the norm gradient
mapping x — g(x; ) is defined by (20.4) from 0U(X) into oU(X*). From
7F it follows that this mapping is positively homogeneous of degree zero:

glax; ) = g0x;-),  a>0,|]x| =1

Hence we may consider that g is defined on the open set X\{6}, where it is
consequently monotone and demicontinuous. The range of the norm gradient
consists of certain kinds of extreme points of U(X *); this idea is developed
further in exercise 3.57.

Now let f(x) = %||x||>. By the chain rule, f is differentiable on all of X
and
208) Vi) = {Hx”g(x, ), xeX,x #6,

0 x = 6.

The mapping (20.8) is called the norm-duality map and will be denoted by T.
Again, T is monotone and demicontinuous. Further, we can assert that
range(T) = 2(X) (20E). Hence range(T) is dense in X* whenever X is
complete but it equals X * only when X is reflexive (James’ theorem). Finally,
it is easy to see that T is injective exactly when X is strictly normed. Thus,
when X is a reflexive Banach space which is both smoothly and strictly
normed, it follows that T is a bijection between X and X *. It may also happen,
but not necessarily, that T is a homeomorphism (see exercise 3.58). 0

H. Let M be a linear subspace of a normed space X. We know from
the Hahn-Banach theorem that any ¢ € M * has a norm-preserving extension
@ in X*. A most interesting question pertains to the uniqueness of ¢. We
shall study this question briefly, making use of the concepts of rotundity and
smoothness. Let us say that M has property (U) if every ¢ € M* admits
exactly one norm-preserving extension to all of X. We may as well confine
ourselves to closed subspaces in X, since a subspace M has property (U)
if and only if M has property (U).

Example. The simplest space where property (U) always occurs is
Euclidean n-space, that is, R* normed by the 2-norm. Any subspace M of
R" has an orthogonal complementary subspace M* for which M @ M* =
R™ Let P,, be the corresponding projection of X on M. Then any ¢ € M*
has the unique norm-preserving extension ¢ = ¢ o P,.. Indeed, any other
such extension, ¢ say, could be represented as an inner product ¢(x) = <x, z),
where z = u + v, ue M, ve M . By confining x to M we see that ¢(x) =



§20. Support Points and Smooth Points 175

<x, uy, whence ||g|| = [[ul|. But, ||g]| = [|2l| = (|||* + [|o]|)*"* and so
[|#]| = ||#|| requires v = 6. Thatis, ¢ = ¢ o Py = ¢. O

We shall now obtain a substantial generalization of this example. The
basic fact here is due to Phelps. Let us say that a subspace N of a normed
space is a Chebyshev subspace if it is proximinal and every point outside of
N has a unique best approximation (15B) from N.

Theorem. The subspace M of the normed linear space X has property
(U) if and only if its annihilator M° is a Chebyshev subspace of X *.

Proof. If M does not have property (U) there exists some functional
¢ € M* with two distinct extensions y, and y, in X*. Hence y; — ¥, is
a non-zero element of M°. We claim that yr, has two distinct best approxima-
tions from M°, namely 0 and , — y,. To see this, recall from formula
(169) that d(yy, M°) = M| = [lg]|- Thus [lys — 0]] = ||| = [l¢]] =
d1, M), and |jy; — (Y1 — ¥a|| = |[¥2]| = ||¢||, as well. Conversely, sup-
pose that M° is not a Chebyshev subspace. Then there exists a functional
¥ € X'* that has two distinct best approximations from M°, say y, and 5.
(We are implicitly using the fact that M° is proximinal, since it is weak*-
closed (exercise 2.52).) After translating by , we can assume that y; = 6.
Then ¢ and ¥ — ¥, have the same restriction to M (since their difference,
Y, belongs to M°), and ||y|| = d(y, M°) = ||y|M|| = ||y — ¥||. Therefore,
M does not have property (U). 0

From 15C we recall that every convex subset of a strictly normed space
contains at most one best approximation to each point. Conversely, it is
easy to see that any normed space with this property must be strictly normed
(consider one-dimensional convex subsets). With these remarks the theorem
is seen to have as an immediate corollary the “Taylor-Foguel theorem”.

Corollary. Every subspace of a normed linear space X has property (U)
if and only if X* is strictly normed.

I. Finally, we look at the problem of extending a single functional in
a unique manner. We shall need the following lemma concerning convex
functions, although only for the case of the norm function.

Lemma. Let A be a solid convex subset of a locally convex space X.
Let f € Conv(A) be continuous at a point p € A. Then the set

L(f;p) = {xeX:—f(p; —x) = f(p; )}

is a closed linear subspace of X, on which f'(p;-) is a continuous linear
Sfunctional.

Proof. This follows from 7E or 14D, as either of these subsections
shows that x € I'(f'; p) if and only if the functional Jy(x) in X*' assumes a
constant value on df(p). Thus I'(f; p) is the subspace of direction vectors
in X for which the function f is differentiable. Furthermore, the directional
derivative f'(p;-) being sublinear on X (7D), is continuous on X since
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f'(p; x) < f(p + x) — f(p), which is bounded for x in some #-neighborhood.
Therefore, its restriction to I'(f ; p), where it is linear, is also continuous.  []

We now specialize to the case where X is a normed space and f(x) = ||x|.
For x # 0 we define

. tyl| — .
(20.9) r, = {y € X:lim w ex1sts},
=0
and we let ¢, € I'} be the linear functional whose value at y is the limit in
(20.9). Thus for each x in X (x # 0), I', is a smooth subspace of X and ¢,
is the norm gradient for this subspace. We can now state a sufficient condition
for unique extendability of linear functionals.

Theorem. Let M be a subspace of X and suppose that ¢ € M* attains
its norm at x € OU(M). Then ¢ has a unique norm-preserving extension to the
subspace M + I',.

Proof. Any norm-preserving extension ¢ in (M + I',) must satisfy
#M = ¢ and §|I', = ¢,, so that ¢ is uniquely determined on M + I,
and hence on its closure. 0

Corollary. If ¢ € M* attains its norm at a point in dU(M) which happens
to be a smooth point of U(X), then ¢ has a unique norm-preserving extension
to all of X.

From this we can in turn observe that if X is smoothly normed then
every reflexive subspace of X has property (U).

§21. Some Further Applications

In this section we discuss a variety of miscellaneous topics, some of
which are direct applications of previous developments. All the topics here
have been chosen on the basis of their usefulness and intrinsic interest.

A. We begin by establishing the Banach space version of the quotient
theorem (1G), known as the “Sard quotient theorem”. We are given normed
linear spaces X, Y, and Z, with X and Y complete, and operators S € B(X, Y),
T € B(X, Z), with S surjective.

Theorem. Let the operators S and T satisfy in addition ker(S) < ker(T).
Then there exists a uniquely specified operator Re B(Y, Z) such that T = R~ S.

Proof. We introduce the 1-1 operators S:X/ker(s) » Y and T:
X/ker(T) » Z (16E). By the inverse mapping theorem (17F) the linear
mapping S~ ! is bounded. Now to each coset x + ker(S) we make correspond
the coset x + ker(T). This correspondence is well defined because of our
hypothesis that ker(S) < ker(T), and defines a linear map P: X /ker(S) —

X /ker(T). Since ||x + ker(T)|| = d(x, ker(T)) < d(x, ker(S)) = ||x + ker(S)||,
we have ||P|| < 1. We can thus finally define R = T o P o8 * and easily
verify that T = R o S. O
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Although a simple enough consequence of the inverse mapping theorem,
this result plays an important role in the analysis of certain problems in
approximation theory and numerical analysis. We indicate a prototypical
application.

Example. Suppose that we have some sort of numerical formula that
we wish to apply to functions defined on an interval [a, b] (or perhaps some
region of higher dimension). This formula is to be thought of as providing
an approximation to a desired quantity. Thus if this desired quantity is the
definite integral of a function, the formula may give us a prescribed linear
combination of some values of the function (and perhaps of certain of its
derivatives) at specified points in [a, b]. In this case the formula is usually
called a quadrature rule. We have to have some reason for believing that the
formula is going to be effective; let us suppose that the formula gives exactly
the correct answer when applied to polynomials of degree <n — 1, say.
The general problem is then to appraise the error when the formula is applied
to functions other than such polynomials.

Let C" = C%([a, b],R) be the linear space of n-times continuously
differentiable functions on the interval [a, b], normed by

X[ = max {[|x]], [|x’

x|} xe C.

I

(Convergence of a sequence in this norm thus means uniform convergence
on [a, b] of the functions together with that of their first n derivatives.) The
completeness of C" can be seen either directly or via the observation that
C" is isomorphic to the product space R" x C = R" x C([a, b], R) under
the mapping

(21.1) S(x) = (x(a), x'(a), . .., x" Ya), x™), xeC

Now let T e C"*. Since S is an isomorphism, {6} = ker(S) = ker(T)
and so the quotient theorem applies. We thus obtain a functional & €
(R" x C)* such that T = @ o S. If @ has the form

n—1

(21'2) ¢((t0’ tla"')tn—laf)) = Z cktk + ¢(f)

k=1

for (tg,t4,...,t,—1)€ R" and f e C, it follows from (21.1) and (21.2) that
n—1

(21.3) T(x) = Y. ax®(a) + ¢(x™).
k=0

Thus we have reduced the problem of determining the form of the continuous
linear functionals on C" to the corresponding problem for C. For the rest
of this example we shall grant the validity of the remark made at the end
of 20E, namely that to any ¢ € C* corresponds a function g of bounded
variation on [a, b] such that

(1.4 o(f) = [ flndg(r),  feC.
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Returning now to the error analysis problem above, let T € C** be the
error functional. That is, for each x € C", T(x) is the difference between the
true (but unknown) value at x and the approximate (but computable) value.
We have assumed that T(x) = 0 whenever x is a polynomial of degree <
n — 1. This condition can be interpreted as the condition that ker(T) contains
the kernel of the linear map x > x™ from C" to C. Applying the quotient
theorem we conclude that there exists ¢ € C* such that T(x) = ¢(x™),
x € C". From the representation (21.4) we reach our final conclusion that
there exists a function g of bounded variation on [a, b] such that

(21.5) T(x) = [ x"(t)dg(t), xeC"

With the achievement of formula (21.5) the contribution of functional
analysis to this problem is completed. However, it is clear that for the
purposes of numerical analysis the problem is far from solved. The next
step is to determine the nature of the integrator function g. For instance,
due to additional information that may be available regarding the functional
T, we might be able to conclude that g is absolutely continuous. In this
case the Stieltjes integral in (21.5) becomes an ordinary Lebesgue integral
of the product x”g’. We could then estimate the error in our approximation
by

ITea] < [l

1|

TG < [lgIla[x"1]2

if we could be sure that g’ is square integrable. If our original goal were to
design an optimal approximation formula we might be led, in view of the
preceding estimates, to the optimization problem of selecting g so as to
minimize either ||g'||; or ||g’]|, over a certain class of formulas. However,
even the mere computation of these quantities can be difficult, and so we
shall leave the problem at this point. g

or perhaps by

B. We consider next a special type of optimization problem known as
an abstract spline problem. Given are two real Banach spaces X and Y,
an operator R € B(X, Y),and a subset K of X. An R-spline in K is by definition
any solution of the program

(21.6) min {||R(x)||:x € K}.

It is usually assumed that K is disjoint from the kernel of R, as otherwise
points in the intersection would yield trivial solutions to (21.6).

In all cases of interest the set K is defined by means of a second operator
T € B(X, Z), for some normed space Z and some prescribed subset I" of Z:

21.7) K={xeX:Tx)el'} = T"XI).

The most common situations occur when I' is a singleton, so that K is an
affine subspace of X, or when I' = z, + C for some cone C = Z. In this
latter case K appears in the form {x € X:T(x) > z,}, where the inequality
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refers to the ordering induced on Z by C. As usual, the case Z = R”" for
some n is of special importance. In this case T is defined by a subset

{d1,..., o} = X*:
T(x) = (¢1(x), ..., du(x)), x€X.

Then K is either of the form {xe X:¢;(x) = ¢;, i = 1,...,n} (a finite co-
dimensional flat) or {x € X:¢;(x) > ¢;, i = 1,..., n} (a polyhedron).

The operator R is most commonly a linear differential operator of the
form

m dk
(21.8) R=Y ak(t)7, a ) #0, a.eCq[a, b],R),
k=0

on some interval [a, b], and X and Y are accordingly function spaces of
such a nature that R € B(X, Y). At first glance it might seem adequate to
take X = C"([a, b],R) and Y = C([q, b], R). This choice fails to be satis-
factory because of the nature of Y in this case: it is not reflexive and in fact
not even a conjugate space (13B, 13E, —Ex. 1), hence it will be difficult to
guarantee solutions to our basic optimization problem (21.6). Instead we
set Y = L? = LP([a, b], u, R) where u is Lebesgue measure and 1 < p < oo.
Then for X we might take the space

Hy = {feC" Y([a, b], R):f™~ 1 is absolutely continuous

21.9
(21.9) and f™ e L?}.

The spaces Hy for m=1,2,..., and 1 < p < oo are known as Sobolev
spaces and are indeed Banach spaces under a variety of norms; for example

Wil = 3 Vel + 171,

where {t,, ..., t,} is a set of distinct points in [a, b].

The classical case occurs where m = p = 2, R = d?/dt?, and n data
points (¢, ¢;), .. ., (t, ¢,) are given. Herea < t; < -+ < t, < b and the ¢;
are arbitrary. In this case a solution of the program (21.6) will be a smoothest
interpolant of the data, that is, a function f satisfying

fGH%, f(ti)zci, i=1,...,n,
§5(f"(t))?dt = min,

This classical problem is only of interest when n > 3, since when n = 2
there is a unique polynomial of degree one that interpolates the given data
and obviously the minimum in (21.10) is zero in this case. When n > 3
the solution of (21.10) is known to be a natural cubic spline, that is, a function
of class C? whose restriction to each sub-interval (¢, t;, ) is a cubic poly-
nomial, i = 1, ..., n — 1, and which in addition reduces to a first degree
polynomial in each of the intervals [a, t,), (t,, b].

With this background we return to the abstract program (21.6). We
shall assume that Y is reflexive and that the range of the operator R is closed

(21.10)
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in Y. Since any closed subspace of a reflexive space is again reflexive (16F)
we can replace Y by range(R) and therefore assume that R is surjective.
From 161 we know that every closed convex subset of a reflexive space is
proximinal. Hence if the set K is convex and if R(K) is closed in Y we can
be sure of the existence of an R-spline in K.

Theorem. Let Y be reflexive and let K be a closed convex subset of X.
Suppose that the operator R has a finite dimensional kernel N which is disjoint
from the recession cone of K:N n Cg = {0}. Then there exists an R-spline
in K.

Proof. The image R(K) is convex by exercise 1.6 so we must show that
it is closed in Y. According to 17H R(K) is closed exactly when K + N
is closed in X. Now N, being a finite dimensional linear subspace of X, is
locally compact and equals its own recession cone. We have assumed that
N n Cg = {6}; hence all the hypotheses of the lemma in 15D are satisfied
and so we may conclude that K + N is indeed closed.

In the important special case where K is an affine subspace parallel to
some linear subspace M, an R-spline in K will always exist provided that
dim(N) < oo. This is because the condition for R(K) to be closed, namely
that M + N be closed, is automatically satisfied (9E). The hypothesis that
the operator R should have a finite dimensional kernel is suggested (and
certainly satisfied) by linear differential operators of the form (21.8).

Corollary  Let Y be reflexive and assume that R has finite dimensional
kernel N. Suppose that K has the form (21.7) for some surjective operator
T e B(X, Z) and some closed convex set I' = Z. If M n N = {0}, where
M = ker(T), and if Cr n T(N) = {6}, then an R-spline in K exists.

Proof. We must verify that Cx n N = {6}, for then the preceding
theorem can be applied. Now, using the surjectivity of T, it is easy to see that
T(Ckx) = Cr. Then T(Cx n N) = Cr n T(N) = {0}, whence Cx n N <
Mn N = {6}. 0

We finally consider a class of closed convex sets to which the preceding
theorem need not apply. These sets constitute the examples promised in
17H of non-compact sets whose continuous linear image in a Banach space
is always closed.

Example. Let X and Y be real Banach spaces and Re B(X, Y) a
surjective operator. If K is any polyhedron in X then R(K) is closed in Y,
and so an R-spline in K exists if Y is reflexive. To prove that R(K) is closed
we note first that if y € R(K) then the flat R™*(y) is at zero-distance from K ;
this observation uses only the fact that the 1-1 operator R is an isomorphism
and does not depend on the special nature of K. It remains to show that
Kn R Yy # &.

Let K = {xe X:¢i(x) = ¢;, i = 1,..., n} for appropriate ¢; € X* and
c;eR. Let R(X) = yand N = ker(R). Setting ¢; = ¢; — ¢;(X),i = 1,...,n,
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we see that K n R™1(y) # F is equivalent to the consistency of the inequality
system

¢1(x) = C’I,

(21.11)

$ux) = ¢,  xeN.
We can prove the consistency of (21.11) by applying Fan’s condition (7B).
Suppose that «y, . . . , &, are non-negative numbers for which ) «;¢;|N = 6.
1

Since the sets K and R ™ !(y) are at zero-distance there are sequences {k;) < K,
{z;} = N, such that lim; ||k; — X — z;|| = 0. Then

lim |¢;(k; — X — z;)| = 0, i=1,...,n
J
whence

(21.12) lim inf ¢,(z;) = ¢, i=1...,n

jooo
Now, given ¢ > 0, it follows from (21.12) that when j is sufficiently large

n n

0= Z o i(z;) = Z o(ci — &);
i=1 i=1
consequently

n n
€Y o= Y o
i=1 i=1

n

Since ¢ is arbitrary we have shown that ) o;¢; < 0 and so Fan’s condition
1

is satisfied. This in turn proves that the system (21.11) is consistent. 0

C. Let Q and X be sets. A mapping F:Q — 2% is called a carrier.
Intuitively a carrier is a “multivalued function” on Q, assigning a certain
subset of X to each point in Q. In this and the following subsection we are
going to study some properties of carriers defined on a certain kind of
topological space, and taking values in the family of convex subsets of a
Banach space. The theorems we prove concerning the existence of selections
and fixed points are extremely powerful and useful, and their range of
applicability appears to be limited only by the ingenuity of the user.

Basic to our work is the availability of partitions of unity on normal
topological spaces. We recall that a partition of unity on a topological space
Q is a family {p,:a €I} of nonnegative continuous functions on €, such
that all but a finite number of these functions vanish on some neighborhood
of each point in Q, and

Yplt) =1 teQ.
ael
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A partition of unity {p,:a € I} is subordinate to a given covering of Q if
each p, vanishes outside some member of the covering. We also say that a
family % of subsets of Q is locally finite if each point in Q has a neighborhood
that intersects only finitely many members of #.

Lemma 1. Let {V,:a eI} be a locally finite open covering of a normal
space . Then there exists a partition of unity {p,:a € 1} which is subordinate
to this covering.

The proof is achieved by shrinking the covering {V,} to obtain a new
open covering {W,:a € I} such that W, = V,,« € I, and then using Urysohn’s
lemma to obtain continuous functions g,:Q — [0, 1] such that

1) = 1, te W,
=30, tew,

Then the definition
= %O
P(t) ZI )
yields the functions making up the desired partition of unity.

If % and ¥ are coverings of a space Q, ¥~ is said to be a refinement of
% if each member of ¥ is contained in some member of %. Then a Hausdorff
space Q is paracompact if every open covering of Q has an open, locally
finite refinement. It is known from topology that metric spaces and compact
(Hausdorff) spaces are paracompact, and that every paracompact space is
normal.

Let 2 and X be topological spaces. A carrier F:Q — 2X is lower semi-
continuous if {t e Q:F(t) n O # &} is open in , for every open set ¢ < X.
When F is an ordinary (single-valued) mapping from Q to X this definition
reduces to the usual requirement of continuity. Observe that if the carrier F
is lower semicontinuous and if lim {t;:6 € D} = tin Q, then for each x € F(t)
there exists x; € F(t;) such that lim {x;:6 € D} = x.

Before starting our main result we establish a technical lemma concerning
convex-valued carriers on paracompact spaces.

Lemma 2. Let Q be a paracompact space, X a normed linear space, and
F:Q — 2% a lower semicontinuous carrier whose values are non-empty convex
subsets of X. Then if r > 0 there exists a continuous map f:Q — X such that
a(f(t), F(t)) < r, te Q.

Proof. Foreach xe X let
0, = {teQ:dx, F(t)) < r}.

These sets ¢, are open in Q because of the lower semicontinuity of F and
therefore {0,:x € X} is an open cover of Q. Hence there exists an open
locally finite refinement {V,:a € I}. Let {p,:a € I} be a partition of unity
subordinate to this refinement. Then if for each a € I we select x(a) € X so
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that V, < 0,,, the desired map f can be defined by
0 = Z} Px(a),  teQ.

To see that this sum is well-defined and that f is continuous we can note
that each ¢ € Q has a neighborhood U which intersects only a finite number
of the V,, and so, on U, f is a finite sum of continuous functions. Thus f is
continuous on a neighborhood of each point in Q, and hence is continuous
on all of Q. Finally, for each t € Q, f(t) is a convex combination of points
x(«) each of which belongs to the convex set {xe X:d(x, F(t)) < r}; it
follows that d(f(t), F(t)) < r also. 0

Given a carrier F:Q — 2% a selection for F is a mapping f:Q — X such
that

f(®) € F(¢), te Q.

The following “Michael selection theorem™ asserts the existence of a con-
tinuous selection for certain kinds of carriers.

Theorem. Let Q be a paracompact space and X a Banach space. If F is
a lower semicontinuous carrier on Q whose values are non-empty closed convex
subsets of X, then there is a continuous selection f:Q — X for F.

Proof. We shall inductively construct a sequence of continuous func-
tions f;: 2 — X such that, for each t € Q,

a) ||fi() — fici0]| <277*2%  i=23,...,
b) d(fi(¢), F(¢)) < 274, i=12....

This will suffice for the proof, because by a) the sequence is uniformly
Cauchy and so converges to a continuous f:Q — X ; by b) we have f(t) € F(¢)
for all t € Q. That is, f is a continuous selection for F.

The existence of f, satisfying b) follows immediately from Lemma 2.
Suppose that fj, ..., f, have been constructed to satisfy a) and b) for
i =1,...,n We shall construct f,., so as to also satisfy a) and b).

We define a new carrier F,,; on Q by

F,iy(t) = {xe F@t):||x — fu0)]| < 27"}, te Q.

By the induction hypothesis F,,(t) # &, t € Q. We claim that F,., is
lower semicontinuous. To see this, let @ be an open set in X and let U =
{te Q:F,.1() n O # J}; we show that each t, € U has a neighborhood
contained in U, so that U is open in Q. Given ¢, € U, select a positive 4 < 27"
sothat Q = {xe X:||x — fu(to)|| < A} # & Thenif

V= {teQFt)nOn Q # T},
V, = {te Q:||f) — filtd)|| < 27" — 1},

the set V, is open because F is lower semicontinuous, V, is open because
[, is continuous, and to € (V; n V,) = U.

(21.13)
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Finally, we apply Lemma 2 to the carrier F,,, and obtain a continuous
function f,,,:Q — X such that

A(frs1(t), Fruqg(t)) < 277714 te Q.
But now
[ foea@® — f@|] <2771 4 27" < 2771

which is a), and

d(fur 1(8), F(1)) < d(fus1(8), Fuyy(1)) <2771
which is b). 0

It is interesting to remark that the Michael selection theorem admits a
converse: if Q is a Hausdorff space with the property that there exists a
continuous selection for every lower semicontinuous carrier on 2 whose
values are non-empty closed convex subsets of some Banach space, then Q
is paracompact. The proof is based on the fact (also due to Michael) that
Q is paracompact if to any given open covering of Q there is a subordinate
partition of unity. In terms of the given covering a special Banach space and
lower semicontinuous carrier are constructed, and the assumed existence of
a continuous selection leads immediately to the desired partition of unity
(exercise 3.64).

As an application of the selection theorem we shall establish a useful
result known as the “theorem of Bartle and Graves”. The setting is a pair of
Banach spaces X, Y, and a surjective operator Te B(X, Y). A right-inverse
of T is an operator S e B(Y, X) such that TS is the identity on Y. In this
case the operator ST is a projection on X since

(ST)? = (ST)(ST) = S(TS)T = ST.

Since ker(ST) = ker(T) it follows that I — ST is a projection of X onto
ker(T). Hence a right-inverse of T can exist only if ker(T) is a topological
direct summand of X. Since an arbitrary (closed) linear subspace of a Banach
space need not be a topological direct summand (22F), we cannot expect a
right inverse to exist in general. What we can always find is a (continuous)
cross-section of T, that is, a continuous but not necessarily linear map
f:Y - X such that T(f(y)) = y, for all ye Y. We can also impose some
additional requirements on f, as we see next.

Corollary. Let X and Y be Banach spaces and let Te B(X, Y) be sur-
jective. For each A > 1 there exists a continuous and homogeneous cross-
section f of T such that

(21.14) IS < Ainf{||x||: T(x) = y}.

Proof. By the open mapping theorem (17G) T is open. Hence the
carrier F defined on Y by F(y) = T '(y) is lower semicontinuous. Any
continuous selection f of F will therefore be a continuous cross-section of F.
In order to obtain a cross-section with the specified additional properties
we restrict F to the set dU(Y) of all unit vectors in Y; call this restriction F,.



§21. Some Further Applications 185

Let y(y) = Ainf{||x||: T(x) = y}. Since the 1-1 operator T is an isomor-
phism, y is a continuous function on Y. Define a new carrier F, on 0U(Y) by

Fiy)n{xeX:||x| <y»} »»>0
{0}, 2y) = 0.

This carrier is lower semicontinuous and hence so is the carrier F; defined
by F3(y) = F,(y). Let g be a continuous selection for F; and then define

y
T ) # 0
iy = 4Pl (nyn) Y
0, y=0.

This function h meets all our requirements except that it is only positively
homogeneous: h(ty) = th(y),t = 0.

To satisfy the remaining requirement of homogeneity we distinguish
between the cases where the underlying scalar field is real or complex. In
the real case we simply define f(y) = (hW(y) — h(—y))/2; this function meets
all our requirements. The complex case is a bit more subtle. We define

Fa(y) ={

(21.15) fy) = % 2r eTitpey)dt, yeY.

For each y € Y the integrand in (21.15) is a continuous 2n-periodic function
from R to X, so that the integral can be defined in the expected manner,
namely as the norm-limit of Riemann approximating sums:

1. &
(21.16) f(y) = —1lim Y e“h(eM)(t; — t;_),

2 n S
where 0 =ty < t; < - <t <t <t; <- - <t,=2n The existence
of the limit is assured by the completeness of X. Since ) (t; — t;-,)/2n = 1

1
we see from (21.16) that f(y) belongs to the closed convex hull of the set
{e""h(e"y):t € R}; hence f is a cross-section of T that satisfies (21.14). The
continuity of f follows from that of h: if lim, y, = y, in Y then

lim e~ "h(e"y,) = e "h(e"y,)
n
uniformly in ¢, because h is uniformly continuous on the compact set

{ay,in=0,1,2,...,0€C, oc| = 1}. Finally, because of the periodicity of
the integrand we have, for seR,

. 1 N
flety) = 5 5 e e Oy

(21.17) - % [27 o~ i+ Op (o0 )4y

e's o )
=5 §3 e~ *h(ey)dt = €f(y);
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since f is already positively homogeneous (because 4 is) we see from (21.17)
that f is homogeneous, as desired. O

D. We are now going to establish a fixed point theorem for certain
kinds of carriers. If Q is a set and F:Q — 22 is a carrier, a point t, € Q for
which t, € F(t,) is called a fixed point of F. This is a natural generalization
of the usual notion (15C) for single-valued mappings. Fixed point theorems
for carriers, or multivalued mappings, have important applications to
game theory, mathematical economics, non-linear programming, and to
boundary value problems for certain kinds of partial differential equations.
As a particular application of the fixed-point theorem below we shall
prove the existence of solutions to a so-called “variational inequality”.
Since many problems can be cast into the form of such an inequality, this
result is a useful adjunct to the fixed-point theorem.

If Q and X are topological spaces a carrier F:Q — 2X is upper semi-
continuous if {t € Q:F(t) = U} is open in Q for every open set 0 = X. Again,
this definition reduces to that of ordinary continuity when F is a single-
valued mapping. We now have the “Fan-Kakutani fixed-point theorem”.

Theorem. Let K be a compact convex subset of a locally convex space X.
Let F:K — 2% be an upper semicontinuous carrier whose values are non-
empty closed convex subsets of K. Then there exists xo € K with xy € F(x,).

Proof. Let {U,:a €1} be a local base in X consisting of absolutely
convex open sets. For each index o € I there exists a finite set {x,;:f € J(0)} <
K such that K = u{x,; + U,:B e J(a)}. Let {p,z:p€ J(o)} be a partition
of unity subordinate to this covering of K (21C). Choose y,z in F(x,;) arbi-
trarily and define the function f,:K — X by

fa(x) = Z paﬁ(x)yoz[i'
BeJ (@)

Now the set C, = co{y,s:8 € J(«)} is a finite dimensional compact convex
set to which the classical Brouwer fixed-point theorem (15C) applies. Hence,
since f,(C,) = C,, there is a point x, € C, with f,(x,) = x,.

To produce the desired fixed-point of F we note that the correspondence
U, - x, defines a net in K, since the local base {U,:a € I} is directed
(downward) by inclusion. Let x, € K be any cluster point of this net, and
suppose that x, ¢ F(x,). By the strong separation theorem there is a closed
convex neighborhood W of F(x,) with x, ¢ W. Since F is upper semi-
continuous there exists an xy-neighborhood ¥V such that F(x) = W whenever
xe K n V; clearly we may also assume that Vn W = ¢J. Choose an
index ye I so that U, + U, ¢ V — x,. Then, by definition of x,, there
exists a eI with U, = U,, so that x,e x, + U,; hence x, + U, = V.
Finally, if p,4(x,) # O for any g € J(a) then x, € x,; + U,, so that x,ze V.
Hence y,; € Wand so

Xo = fa(xa) = Z paﬁ(xa)yap S W’
BeJ(@)



§21. Some Further Applications 187

however, this contradicts x, € V. We have thus proved that x, € F(x,). []

Before giving the application to variational inequalities we introduce
a new topology on the conjugate space of a given locally convex space X.
Let ¥~ be the family of all weak*-closed barrels in X*. According to 10A
¥ is a local base for a unique locally convex topology on X* called the
strong topology on X*. According to exercise 3.67 a net in X* converges
strongly (that is, in the strong topology) only if it converges uniformly on
each bounded subset of X. The converse is also true but we shall not need it.
Also according to this same exercise, the strong topology on the conjugate
of a normed space is just the usual norm topology there.

Corollary. Let K be a compact convex subset of a real locally convex
space X, and let T:K — X* be strongly continuous. Then there exists x, € K
such that

(21.18) {x — X9, T(xg)> = 0, x e K.

Proof. We define a carrier F:K — 2% by
F(x) = {ze K: {z, T(x)) = min{y, T(x)>}.

yeK

The values of F are clearly non-empty closed convex subsets of K, and
evidently the fixed points of F (if any) are exactly the points x, in K for
which (21.18) is valid. Thus, if we show that F is upper semicontinuous we
can apply the preceding theorem and complete the proof.

Let O be a (relatively) open set in K and choose any y, € K such that
F(yo) = 0; we shall find a y,-neighborhood N such that F(y) < @ for all
y € N. Suppose that we can find an ¢ > 0 such that, with ¢, = T(y,),

sup <z, ¢ — ¢oy| < & implies
(21.19) zek

{x € K:¢(x) = min ¢(K)} <= 0.
Then we can let
(21.20) N =y, + T (K.

Since K the absolute polar of K (18D), is by definition a strong 6-neighbor-
hood in X*, and since T is strongly continuous, (21.20) does define a y,-
neighborhood N such that F(y) = @ forall y € N. Thus it remains to establish

(21.19).
We assert that there is an ¢, > 0 such that
(21.21) x € K\0 implies ¢o(x) = €0 + min ¢o(K).

1
For otherwise there would be a sequence {x,} = K\O such that ¢(x,) < . +

min ¢o(K). Any cluster point of this sequence would be a point in K\O at
which ¢, attains its minimum over K; this, however, is in contradiction to
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our assumption that F(y,) = Q Finally we show that ¢ = gy/3 satisfies
(21.19). If sup{|<z, ¢ — dop|:z€ K} < /3, then

bo(z) — %" < () < dol2) + f39 zeK.

Hence, from (21.21)

82) > dolz) — 2 > 222 1 min g(K)

>%L+mm¢m)>mmaKL ze K\0.

This proves the implication (21.19). 0

The inequality (21.18) is called a variational inequality because of its
interpretation when T is the gradient or “first variation” of a functional f
which is to be minimized on the set K. In 14E it was shown that when f e
Conv(K) and f has a gradient in X * then a point x, € K is a solution of the
program (K, f) exactly when x, is a solution of the program (K, Vf). (If f is
not convex it is still easy to see that any solution of the program (K, f)
must also be a solution of (K, Vf), although the converse may fail) But
if we let T(x) = Vf(x), x € K, then solutions of this latter program are
exactly solutions of (21.18).

Of course, the assumption in the corollary that K is compact does not
leave the question of the existence of a minimum in much doubt, unless f is
a badly behaved function. There is thus some interest in relaxing the compact-
ness hypothesis; however, this is possible only at the cost of more stringent
restrictions on the mapping 7. We might mention also that the corollary
can be extended in a different direction in that T can be allowed to be an
upper semicontinuous carrier on K whose values are compact convex sub-
sets of X* (all topological statements about T refer to the strong topology
on X*).

E. As an illustration both of the use of the variational inequality and
of its extension to certain non-compact sets, we consider a continuous
mapping T:R" — R". The complementarity problem (determined by T) is
to find a solution to the system

y = T(x)
(21.22) x =0, y =0,
x-y=0.

Since x and y are non-negative vectors in R" the bottom line of (21.22)
can be interpreted as either the requirement of orthogonality, (x, y> = 0,
or, as indicated, that the componentwise product of x and y is the zero vector.
Thus the complementarity problem asks us to find a non-negative vector
whose image is also non-negative and such that the two vectors are
orthogonal.
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The interest in the complementarity problem is that it provides a unified
model for certain problems in several different fields such as optimization,
game theory, economics, and mechanics. The most important cases lead
to a linear complementarity problem wherein T is an affine mapping:
T(x) = Ax + b, for some n x n matrix A and fixed vector b e R".

Example. Consider the problem of minimizing a convex function f
over the positive cone P <« R":P = {xe R":x > 0} = {x = {{;,...,&):
¢, 20,...,&, = 0}. Such a problem would arise in particular if we were
interested in approximating from a finite dimensional linear subspace of
some normed space X, subject to non-negativity constraints on the coeffi-
cients. In this case f would have the form

f(él"";én)=||u_élul —..._énunla

for prescribed u, u,, . . ., u, € X. If f is differentiable then x, € P is a solution
of the program (P, f) if and only if <{xq, Vf(xo)> < (x, Vf(x,)), for all xe P
(14E). It follows that Vf(x,) € P and that {x,, Vf(xo)> = 0. Thus, letting
T = Vf(-), we are led to a complementarity problem. This problem will be
linear exactly when f is a quadratic function: f(x) = % {x, Ax) + {x,b> + ¢,
for symmetric 4 and fixed vectors b e R", c e R. ]

It is easy to see that the complementarity problem (21.22) is equivalent
to the variational inequality

(21.23) X =% Tx)y =0, x>0, x3>0.

That is, x, = 6 solves (21.23) if and only if the pair (xq, yo) = (X0, T(Xo))
solves (21.22). However, because of the non-compactness of the cone P it is
not so easy to decide on the solvability of either of these problems. Even
when T(x) = Ax + b it is only possible to establish the existence of a
solution under rather specialized hypotheses on the matrix A. We shall
give an existence-uniqueness theorem for the general complementarity prob-
lem which will apply in particular to the linear problem when A is positive
definite.

Let D be a subset of R". A mapping T:D — R" is strongly monotone if
there exists a constant « > 0 such that

(21.249) x =y, T(x) — T(y)> = o|x — |5 x, yeD.

This is clearly a strengthening of the concept of monotone mapping intro-
duced in 3A. In the single variable (n = 1) case any function g whose deriva-
tive ¢’ satisfies g'(x) = a > O for x in some interval D is strongly monotone
on D. A generalization to R" is given in exercise 3.68.

We know from 3A that for a smooth function f defined on an open
convex set D in R", convexity of f is equivalent to the monotonicity of Vf
on D. A function f on D is strongly convex if there exists a constant « > 0
such that

(21.25) f(tx + (1 — Oy) < tf(x) + (1 — Of(y) — ar(1 — B)|]x — y||3,
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for x, ye D, 0 < t < 1. Intuitively a strongly convex function is a convex
function whose graph has positive curvature. Thus, in one variable, f(x) = x>
is strongly convex while f(x) = x* is not. More generally, of all the p-norms
on R", only the 2-norm is strongly convex (whereas from 19E we know that
the p-norms are uniform norms on R" for p > 1). Exercise 3.69 makes the
connection between strongly convex functions and strongly monotone
mappings: a smooth convex function is strongly convex if and only if its
gradient is strongly monotone.

The following result on the solvability of the complementarity problem
is due to Karamardian. All norms appearing in the proof are 2-norms.

Theorem. The complementarity problem (21.22) has a unique solution if
the mapping T is continuous and strongly monotone on the positive cone P.

Proof. In(21.24)welety = 0:
x, T(x)) = <{x, T(0)> + oc“x

Let K be the compact convex set {x € P:||x|| < ||T(0)||/a}. Then for any
x € P\K we have

2 x = 0.

olx[* > [[| [|T®)]] = —<x, TO),
whence

(21.26) (x, Tx)> >0, xeP|K.

Now for all u > 0 let D, = {xe K:{u — x, T(x)) > 0}. The sets D, are
closed and we claim that they have the finite intersection property. To verify
this assertion select any finite subset {u, ..., u,} of P, and apply the corol-
lary of 21D to the compact convex set D = co(K U {uy, ..., u,}). The
conclusion is that there exists an x, € D for which the variational inequality

(21.27) {x — X, T(x0)> = 0, xeD,

holds. In particular, {u; — xo, T(x¢)> = 0 for i = 1,..., m. We further
have x, € K since otherwise there would result a contradiction to (21.26)
(the origin belongs to K, hence to D, so we can take x = 0 in (21.27)). This
proves that the family of closed sets {D,:u > 6} has the finite intersection
property. Since K is compact, n{D,:u > 6} # &; any point in this inter-
section solves the variational inequality (21.23). Hence the complementarity
problem has a solution.

Finally, suppose that we have two solutions to (21.23), say x; and x,.
Then, since 0 < {x;, T(x;)D, 0 < {x,, T(x,)), and 0 = {x;, T(x,)> = {x,,
T(x,))>, we have

02> {x; — x5, T(xy) — T(x;)) = 0‘”"1 - xz| 2

whence x; = x,. O

This theorem can be generalized in various ways. First, we can replace the
usual positive cone P by an arbitrary closed (convex) cone C in R". Under
the same hypotheses on T it can be shown that there exists exactly one
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X € C for which T(xg)e C* (= —C°) and {xq, T(xg)> = 0. Second, we
can replace R" by a real reflexive Banach space X. If C is a closed (convex)
cone in X and T is a mapping from C into X* satisfying the condition of
strong monotonicity (21.24), and continuous from the norm to the weak*
topology, then we can obtain the same conclusion. The proof proceeds via
the observation that any solution x, € C of the variational inequality
{x — Xo, T(x0)) = 0, x € C, must satisfy ||xo|| < ||T(8)||, independently of
C. Then, given any finite dimensional linear subspace M of X, the preceding
theory is applied to obtain a solution x,, of the finite dimensional problem
with cone C n M. Since ||xy|| < ||T(6)||, the bounded net {x),:dim M < oo}
has a weak cluster point in C, and this cluster point turns out to solve the
general problem.

Exercises

3.1. Let X be a normed linear space.
a) Show that X is complete if and only if M and X/M are complete for
some, and hence every, closed linear subspace M of X.

b) A series i x, with x, € X is absolutely convergent if i [[x,]] < o0.
Show thalt X is complete if and only if every such seriles converges
to an element z € X, in the sense that lim i X, = Z.
3.2. Let X be a Banach space and put B(X) ENB(B( , X).

a) If T e B(X) satisfies || — T|| < 1 (I is the identity operator on X)
then T is an automorphism of X, that is, T~ ! € B(X). (Consider

the series i (I — T)"in B(X).)
1

b) Let {x,, ..., x,} be a linearly independent set in X. Show that there
is an ¢ > O such that any set {y,, ..., y,} for which ||x; — y;|| <&,
i=1,...,n,is also linearly independent. (Construct an automor-

phism T € B(X) for which T(x;) = y;,, i =1,...,n)

3.3. LetT e B(X, Y)be an operator between normed spaces X and Y which
fails to have a bounded inverse. Show that there exists a sequence
{x,} = X having the properties of (16.6). (Use 16B.)

34. Let X be a real normed linear space and ¢ € X*, ¢ # 0.

a) Show that inf{||x||:p(x) = 1} = 1/||¢||
b) Show that there is an equivalent norm on X such that the subspace
ker(¢) is proximinal wrt this new norm.

3.5. Let X be a normed linear space. Show that any weakly-complete
subset of X is norm-complete. It follows that a Cauchy sequence is
convergent in X if (and only if) it is weakly convergent.

3.6. Let X be alocally convex space and N a linear subspace of X*. Show
that N is weak*-closed in X * (if and) only if N = M°, for some subspace
M < X.(Take M = °N.)
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3.7.

3.8.

3.9.

3.10.

311

3.12.
3.13.

3.14.

3.15.

3.16.
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Let X be a normed linear space. If G = X* then (°G)° = ¢o*({G, 0})
and °(G°) = To({G, 0}). Hence G° = (°G)°° if and only if €6({G, 0}) is
weak*-closed. (The point of this exercise is as follows. Let 4 be a given
convex subset of X with 6 € A. Suppose that we represent A4 in quasi-
linear formas {x € X:¢(x) < 1, ¢ € G} for an appropriate set G = X*.
That is, A = °G. Then A°° = J(A) X(A) < G° and equality holds if and
only if T0({G, 0}) is weak*-closed in X*. In other words, whether or
not A°° is “what it should be” in X ** depends, in the indicated fashion,
on the “richness’ of the representing set G.)

Give an alternative proof of the Goldstine-Weston density lemma in

16F, proceeding by contradiction and use of the strong separation

theorem.

Let X and Y be Banach spaces over the same field. Show that the

congruence T  T* from B(X, Y) into B(Y*, X*) is surjective if and

only if Y is reflexive.

Let X be a reflexive Banach space.

a) Show that two disjoint closed convex subsets of X can be strongly
separated by a closed hyperplane provided that one of the sets is
bounded. (Compare with the remark at the end of 19E.)

b) Show that every closed bounded convex subset of X is equal to the
closed convex hull of its extreme points.

Consider the example in 12G of a measure space (R, X, p) for which

the usual congruence of L*(, ,u, F)into LY(Q, u, F)* is not surjective

Determine a measure space (I', 7, v) for which LY(I", v, F) = LY(Q, u, F),

and LX(I", v, F)* = L*(I", v, F) via the usual congruence.

Give the details of the proof of the corollary in 16G.

Consider the sequence spaces £P(N,) for 1 < p < 0. Let ¢, be the

sequence (0,...,0, 1, 0,...), where the n'*-component is one. Show

that this sequence converges weakly to 0 if and only if p > 1.

Show that a weakly semi-complete Banach space whose conjugate

space is separable must be reflexive.

Prove the statements made at the end of 16H pertaining to ¢§. (Under

the congruence between m(Q, F) and C(B(Q, F)) the elements of ¢,

go into the (continuous) functions that vanish on S(Q\Q.)

Let X be a Banach space.

a) Show that X is quasi-reflexive if and only if X * is quasi-reflexive.
(This will follow from the observations that, on the one hand

I X)° = (X**/Tx(X))*

(16E) and, on the other hand, that J,(X)° is isomorphic to
X **%/J (X *). This latter isomorphism can be obtained (via exercise
2.2¢c) from the stronger observation that

X*% = JL(X*) @ Jy(X)°.

Indeed, a projection P from X*** onto Jy.(X*) along Jx(X)° can
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3.17.

3.18.

3.19.

3.20.
3.21.

be defined by P(F) = ¢p, F € X*** where ¢ € X* is defined by
¢dp(x) = F(x), x € X.)

b) Let M be a closed linear subspace of X. Then Jy(X) + M°°is a
closed linear subspace of X **. (This follows from

Ix(X) + M = Q™1 o Jym(X/M),

which is in turn a consequence of the formula Jy s © Qp = Qi o Jx.)

¢) Show that X is quasi-reflexive if and only if M and X/M are quasi-
reflexive for some (hence every) closed subspace M <= X. (For any
Banach space X we have in fact that M **/J,,(M) is isomorphic to
(Jx(X) + M°°)/Jx(X) and that (X/M)**/Jy (X /M) is isomorphic
to X**/(Jx(X) + M°°). To obtain these isomorphisms let R,:
X* — M* be the restriction map. Then R}, is a congruence between
M**and M°°,and R} o J,y = Jx|M. Now for the first isomorphism
consider the map Q,, (X)  Rj;, and for the second isomorphism
consider

QJX,M(X/M) ° QR:{*)

Prove that any locally compact Hausdorff space Q is a Baire space.
(Use the fact that Q has a basis consisting of relatively compact open
sets.)

Let Q be a Baire space.

a) Show that each open subset of Q is again a Baire space.

b) Let f be a lower semicontinuous function on Q. Then the subset
of Q consisting of points having a neighborhood on which f is
bounded above is dense in Q.

c) Let {f,} be a sequence in C(€, F) that converges pointwise on Q
to a function f. Show that the set of points at which f is continuous
is a residual set. (“Osgood’s theorem”. Without loss of generality,
assume F = R. Observe that if I is any open interval in R then
f7() is an F,-set in Q. Now, given ¢ > 0, cover R by a sequence
{I,} of open intervals each of length <e. If f~}(I,) = U{C{:
k =1,2,...} where each C{” is closed, then Q, = |}, |Jx int(C{")
is a dense open set in Q, at each point of which the oscillation of f
is <e. It follows that f is continuous on the residual set [}, 2,,,.)

d) If (@, d) is a complete metric space then every non-negative lower
semicontinuous function f on Q is continuous on a residual set
in Q. (Apply c) with f,(t) = inf{f(x) + nd(t, x):x € Q}.)

Prove the formula (17.4) for the norm of the Fourier series partial sum

functional on C,,.

Verify the statements of the lemma in 17F.

Let X and Y be Banach spaces and let T:X — Y be linear.

a) Suppose that T is weakly continuous, that is, T is continuous when
both X and Y are given their weak topologies. Show that T must
be bounded and hence that T € B(X, Y).
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3.22.

3.23.

3.24.

3.25.

3.26.

3.27.

3.28.
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b) Suppose that y o T e X* for allyy e G = Y*, where span(G) = Y*.
Show that T must be bounded. (In both cases show that T is closed
on X. A typical application of b) is to the case where Y = LY(, u, F)
for some o-finite measure y and G = L®(Q, u, F) is the set of char-
acteristic functions of chunks.)

Let {4} be a sequence of real numbers such that for all {b,} € £9(N,),

1 < q < oo, the series ), a;b, is convergent. Prove that {a,} € £7(X,)

1
for p=¢q/(q — 1) (p = oo when q = 1.) (Define a linear map T:

n

¢4 > mby T({b}), = Y. aby, and show that T is continuous.)

1

Let M be a closed linear subspace of C = C([0, 1], R) consisting of
continuously differentiable functions. Show that M must be finite
dimensional. (Consider the mapping x + x’ from M into C. In fact,
a stronger assertion is true. Namely, M must be finite dimensional if
it consists of functions of bounded variation.)

Let X and Y be Banach spaces with X reflexive. If there exists a surjec-
tive operator in B(X, Y) then Y is also reflexive. In other words, the
continuous linear image of a reflexive space must also be reflexive.
In the example in 17H show that A + N is not closed in X by verifying

of . 1 —
that ) <sm E) X belongs to A + N\(A + N).
1 n

Let A be a closed convex set in R"” having no boundary rays nor

asymptotes (17H). Show that A + B is closed for any closed convex

set B = R". (Proceed via the following steps. Let C be a closed convex
set in R”™.

a) Suppose that pe C, ge R" (9 # 0), and that there are sequences
{x:} = C, {t;} = (0, ) such that lim, t;, = 0 and lim, t,x, = g.
Then C contains the ray p + [0, c0)q.

b) Suppose that L is a half-line emanating from 6 and that x, y are
points in R” such that x + L « R"\C and y + L = C. Then for
some z € [x, y] the half-line z + L is either a boundary ray or an
asymptote of C.

c) If A n C = ¥ then dist(4, C) > 0. For suppose that dist(4, C) =
0. Then there exist sequences {x,} = 4, {y} <= C such that
lim(x, — y,) = 6. We get an immediate contradiction unless
lim, ||x|| = co. We may then assume that lim, x,/||x|| = g. Now
use a) and b) to get a contradiction to our assumption about A.

d) Finally,let pe A + B. Then dist(4 — p, —B) = 0.)

Let 4 be a subset of a normed linear space X. Show that A4 is compact

if and only if for any sequence {¢,} = X* with weak*-lim, ¢, = 0,

the sequence {¢,|4} converges uniformly to zero.

Find the error in the following argument. “Theorem”: Let X be a

separable normed linear space. Then weak and norm sequential
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3.29.

3.30.

331

3.32.

3.33.

3.34.

3.35.
3.36.

convergence are equivalent. (Recall Schur’s lemma in 18C.) “Proof”:
Let {x,} be a sequence in X that converges weakly to 6. Then {x,} is
bounded and hence the sequence of functionals {,|U(X*)} is equi-
continuous. Since U(X*) is a compact metric space in its weak*-
topology and {&,|U(X*)} converges pointwise to 6, the convergence
is uniform. Therefore, lim, ||x,|| = 0.

Let X be a normed linear space of infinite dimension. Then the weak
topology on X is not metrizable (12F). (If the weak topology on X
were metrizable there would be a countable local base for the weak
topology and it would follow that X* would have countable Hamel
dimension. But X* is complete (16A) and any infinite dimensional
Banach space must have uncountable Hamel dimension.) It follows
similarly that if X is complete then the weak*-topology on X * is not
metrizable.

Let X and Y be normed linear spaces with X complete. Suppose that
X and Y are homeomorphic. Then Y is complete. (It is known from
topology that any topologically complete subset of a complete metric
space is a G; set in that space. Applied to the present situation this
means that Y is a (dense) G, set in its completion ¥, say Y =[], ¥,
where each Y, is a dense open set in Y. Then Y\Y = U, (Y\Y,) is a set
of first category. Finally, if Y\Y # & it would follow that Y is a set
of first category in ¥, whence ¥ = Y u (Y\Y) gives a contradiction to
the Baire category theorem. Therefore, Y\Y = ()

In the theorem of 18A, where is the hypothesis that X is normed used
in the proof that e) implies a)? Given an example to show that
properties a)—e) are not equivalent for subsets of general locally convex
spaces.

Use the equivalence of weak relative compactness and weak relative
countable compactness established in 18B to prove that each weakly
countably compact subset of a normed space is weakly compact, and
that each weakly compact subset is weakly sequentially compact (18A).
(For the second assertion proceed by contradiction, assuming the
existence of a sequence with no weakly convergent subsequence.)
Show that a Banach space X is reflexive if and only if every closed
separable linear subspace of X is reflexive.

Formulate and prove a bipolar theorem for the absolute polar of a
subset A of a locally convex space. Use it to show that (A% = A%
(Observe that “A* = %A% is a weakly closed absolutely convex set
containing A4.)

Prove the assertions of the corollary in 18D.

Let X be an infinite dimensional normed linear space and let {M,}
be an increasing sequence of n-dimensional subspaces of X*. For

1
n=12...,let 4, be a finite ;-net in 0U(M,), and set 4 = U,, A,



196

3.37.

3.38.

3.39.

3.40.

3.41.

3.42.
3.43.

3.44.

3.45.

Principles of Banach Spaces

Then 6 belongs to the weak*-closure of 4 but not to the bw*-closure.

Conclusion: the bw*-topology on X* is strictly stronger than the

weak*-topology.

Let M be a closed linear subspace of a Banach space X. Then M is

reflexive if and only if J,(M) is weak*-closed in X **.

Let X be a real Banach space and @ € X **. Suppose that there exists

a compact set A < X such that & < g,, where o, is the support

function of A: 0,4(¢) = max{¢(x):x € A}, for all ¢ € X*. Prove that

® e Jy(Co(A)). (If, in fact, & = X for some x € X, then necessarily

x € o(A4). To prove the existence of some such x, show that o, is

bw*-continuous.)

Show that a Banach space X is reflexive if and only if every closed

bounded convex subset of X * is weak*-compact.

Let X be a Banach space and M a closed linear subspace of X *. Show

that if M, as a Banach space, is reflexive, then M is weak*-closed in X *.

Let X be a normed linear space, and let H(X) be the linear space of

all real-valued, continuous, positively homogeneous functions on X.

Any such function is necessarily bounded on U(X) and so we can

norm H(X) by || f|| = sup{|f(x)|:||x]| < 1}. Let N(X) be the subset of

H(X) consisting of semi-norms, and E(X) the subset of N(X) consisting

of equivalent norms. For each ¢ € E(X) we let 6* € E(X*) be the dual

norm as defined by (18.15).

a) H(X)is a Banach space and N(X) is a closed cone in H(X);

b) E(X) = int(N(X)) (in particular, E(X) is dense in N(X) (11A));

¢) o b ¢* is a homeomorphism of E(X) into E(X*), and is surjective

exactly when X is reflexive. (For b), consider the continuous function

y:N(X) — [0, 0o) defined by y(o) = inf{a(x):||x|| = 1}; y(o) is positive

if and only if ¢ € E(X).)

Give the details of the proof of statement a) of the theorem in 18G.

Let X and Y be Banach spaces and T € B(X, Y) a surjective operator.

a) ker(T**) = ker(T)°°;

b) if dim(ker(T)) < oo, and if M is a closed linear subspace of X,
then T(M)°° = T**(M°°).

Let A be a bounded and weakly closed subset of a Banach space X

with the property that every functional in X* attains its supremum

on A. Then if Y is any separable Banach space and Te B(X, Y) is

surjective, the image T(A4) is weakly compact in Y. Is this statement

true if T is not assumed surjective?

Let A be bounded and weakly closed subset of a Banach space X.

Show that the following assertions about A4 are equivalent.

a) A is weakly compact;

b) if {x,} = A and lim, ¢(x,) exists for some ¢ € X*, then there is an
X € A such that lim, ¢(x,) = ¢(x);

c) if B is a weakly closed subset of X which is disjoint from A, then
dist(4, B) > 0.
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3.46.

3.47.

3.48.

3.49.

3.50.

Let X be a Banach space.

a) Show that X is uniformly normed if and only if any pair of sequences
{Xu}, { ya} of unit vectors in X for which lim,, ||x, + y,|| = 2 satisfies
lim, ||x — vl = 0.

b) If X is finite dimensional and strictly normed, show that X is
uniformly normed.

Let X be a uniformly normed Banach space.

a) If {x,} is a sequence of unit vectors in X for which weak—lim, x, =
x is also a unit vector, then lim, x, = x.

b) The metric projection (15C) on any closed convex subset of X is
single-valued and continuous.

There exists an incomplete (hence a fortiori a non-reflexive) normed

linear space X such that every functional ¢ € X * attains its supremum

on U(X). The example is suggested by the observation that if Z is a

reflexive Banach space then every ¢ € Z* attains its supremum on U(Z)

at an extreme point of U(Z) (13B, 16F), and that X = span(ext(U(Z)))

is dense in Z (exercise 3.10b). Consequently, if X # Z, X will serve
as the desired example. (To obtain such an example, let Z, be the space

R" normed by the supremum norm, s &)l = max(|&|), and

let Z be the linear subspace of [], Z, consisting of those sequences

7 = (é(ll)’ 5(12), 5(22), 6(3) 6(3) (3)’ . ) for which

ll2ll” = 101 + (15, 5 + (€5, &87, eI + -+ < oo

a) So normed, Z is a reflexive Banach space.

b) If X = span{ze Z:|¢P| = |&D)] = -+ = |&7),
X is dense in Z (by the above extreme point argument).

¢) X # Z,so that X is not complete (any sequence in Z with distinct
terms cannot belong to X).

d) Every ¢ € Z* has the following form: there is a sequence of numbers
{od™} such that

B0) = AV + VLR + aPeP)
+ @PED + o + o) + -

..} then

e) Every ¢ € Z* attains its supremum on U(Z) at a point z:||z|| = 1,
@(z) = ||¢|| Taking into account the form of ¢ given in d), the
terms of z can be modified so that a point x € X is obtained with
|[x|| = 1 and ¢(x) = ¢(2).)

Let X be a normed linear space and let B be a closed, bounded, convex

subset of X with 6 ¢ B. If C = [0, c0)B, show that C is a closed cone

in X.

Let A be a convex set in a Banach space. If f € Conv(4) is lower

semicontinuous then f is continuous at each relative interior point

of A. (It is sufficient to assume that A4 is solid. Use 14A and exercise
3.18b.)
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3.51.

3.52.

3.53.

3.54.

3.55.

3.56.

3.57.

Principles of Banach Spaces

Prove (by contradiction) that the convex function defined by (20.3)
is nowhere subdifferentiable.

Let M be a subspace of finite codimension in the (real) Banach space
X. Suppose that A4 is a closed convex set in X, that ¢ > 0, and that
x € d(A) n M. Then there exists a support point x, of 4 such that
xo € Mand ||x — x,|| < &.(Ifwerepresent Mas {x e X:¢py(x) = -+ =
¢u(x) = 0} for appropriate functionals ¢,,..., ¢, € X*, then this
assertion is a generalization of the first Bishop-Phelps theorem of 20B:
it states that a boundary point of A4 satisfying a finite number of linear
constraints can be approximated by a support point satisfying the
same constraints (compare with 9C). The following lemma is useful
for the proof: if x, is a support point of the set 4 n M with respect
to the subspace M, then x, is a support point of A. To prove the lemma,
use the support theorem and induction on codim(M).)

Let X be an incomplete normed linear space. Then there exists a solid,
closed, bounded, convex set A = X such that the support functionals
of A are not dense in X*. (Embed X in its completion X and select
a unit vector x € X\X. Then select ¢ € X* = X* such that ||¢|| =
1 = ¢(x). Let B = U(X) N ker(¢), and then put 4, = co({x, B}). 4,
is a solid closed convex set in X. Finally, let 4 = 4, n X. Show that
any support functional of 4 must be at distance at least 4 from ¢.)
Verify the formulas for 2(¢,) and 2(L') given in 20E, and use these
formulas to show directly that ¢, and L are subreflexive.

Let M be a closed linear subspace of a Banach space X. Let Y}, =
{¢ € P2(X):¢(x) = ||@|| for some x € M}. Suppose that Y, is a linear
subspace of X*. Then Y,, = M*. (Consider the restriction map from
Y, into M*. The point of the problem is that it gives a condition under
which we can identify M* with a subspace of X * rather than just a
quotient space as in 16E.)

Show that the unit ball of L*([0, 1], u, R) has no smooth points.
(Lebesgue measure is assumed. Let x, be a unit vector in L*, and
suppose that essup xo(-) = 1. Let {E,} be a sequence of pairwise
disjoint chunks such that xo|E, > n/(n + 1), and define norm-one
functionals ¢, on L® by

1
HE,)

Now the sets M = {x e L®:lim, ¢,,_,(x) exists} and N = {xe X:
lim, ¢,,(x) exists} are subspaces on which the indicated limits define
norm-one linear functionals. Let ¢’ and ¢” be Hahn-Banach extensions
of these functionals to all of L*. Then [¢'; 1] and [¢"; 1] are distinct
hyperplanes of support to U(L®) at x,.)

Let X be a real normed linear space. A functional ¢ € dU(X*) is a
regularly exposed point of U(X*) if there exists a unit vector x € X

du(x) = (g, xdu,  xeL”.
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3.58.

3.59.

3.60.

3.61.

3.62.

such that X attains its supremum (=||x||) on U(X*) only at ¢. Prove

that

a) if xo e sm(U(X)), then the norm gradient g(x,;‘) is a regularly
exposed point of U(X *), and conversely;

b) every regularly exposed point of U(X*) is an extreme point;

c) if X is a separable Banach space, the regularly exposed points of
U(X*) are weak*-dense in ext(U(X *) (use 13B and 20F).

Let L? = L?(Q, u, F) for 1 < p < oo. Show that the norm duality

map (20G) from L? into L? is given by

x()x()]P 2
xp g X6
0, x = 0.

x # 0

Show that this mapping is a homeomorphism from L? onto L4 (although
it is not linear unless p = 2).

Let A be a countable weakly compact subset of an infinite dimensional
Banach space. Show that €6(A4) can have no interior. (Use 17J and 19E.)
Let g be a real-valued function defined on an interval [a, b]. If g is
of bounded variation then, as is well known, the Riemann-Stieltjes
integrals [% f(£)dg(¢) exist for all f e C = C([a, b], R). Prove the con-
verse: if these integrals exist for every f € C then g must be of bounded
variation. (Otherwise there would exist a sequence {=,} of partitions
of [a, b], with n, = {a = ¢, 1D, ..., (5}, = b}, 62, < ¢}, such that

lim ||m,|| = lim max {t{’ — ?2,:1 <j < m} =0,
n

Z lg(t”) — g(f21)| > n.

j=1

It follows that each m, contains a set {s{", . .., sfo)} such that
n
|9(s3") — g(s”) + - -+ + g(s”) — g(s24)] > 5
Now define ¢, € C* by
m(n) t(")l + (")
éulf) = Z f >[g(t‘"’) g(e21)]-

Apply 17C to this sequence of functionals, after noting that lim, ¢,(f) =
|2 f(1dg(2), for each f e C; then make a special choice of f to obtain
a contradiction).

For fixed ¢ € [a, b] show that the evaluational functional f - f{(¢) is
a continuous linear functional on the Sobolev space Hy of 21B.

Let X and Y be Banach spaces and R € B(X, Y) a surjective operator
with kernel N.
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3.63.

3.64.

3.65.

3.66.

3.67.

3.68.

Principles of Banach Spaces

a) Let M be a closed linear subspace of X. Then each affine subspace
of X parallel to M (that is, each element of X /M) contains a unique
R-spline if and only if R(M) is a Chebyshev subspace (20H) of Y
and M n N = {6}.

b) When the conditions of a) hold, the mapping I — R, o Ty, o R
assigns to each x € X the unique R-spline in the flat x + M. Here
T, = the metric projection of Y onto R(M) and Ry, = R|M.

¢) Suppose that dim(N) < oo and that T € B(X, Z) for some normed
space Z. If I' is a closed, bounded, and convex set in Z, then R(K)
is closed in Y, where K is defined by (21.7). Consequently, if Y is
reflexive, an R-spline exists in K.

Let F:Q — 2* be a lower semicontinuous carrier, where Q is a topo-

logical space and X is a linear topological space. Prove that the carrier

t > CO(F(t)) is also lower semicontinuous.

Prove the converse to the Michael selection theorem: let Q be a

Hausdorff space such that every lower semicontinuous carrier whose

values are non-empty closed convex subsets of a Banach space admits

a continuous selection; then there is a partition of unity subordinate

to any given open covering of Q, and so Q is paracompact. (Let {(9

o € I} be the given open covermg and put X = £(I). Define a carrier
F:Q - 2X by

Fi) = {xeX:x, 20,Y x, = 1,x, = 0if t ¢ 0, }.

Then F admits a continuous selection f:Q — X and we can put

Pot) = (f(9))a; {Po: € I} is the desired partition of unity.)

Let X and Y be Banach spaces and T € B(X, Y) a surjection. Show

that T has the k-covering property, that is, for every compact set B < Y

there is a compact set A = X such that B = T(A).

Let T, X, Y be as in exercise 3.65. Show that T has a right-inverse if

(and only if, by 21C) ker(T) is a topological direct summand of X.

Show that the set of all such operators is an open subset of B(X, Y).

(Suppose that T, € B(X, Y) has a right-inverse S, € B(Y, X). (Choose

T e B(X, Y)tosatisfy ||T — To|| < ||So||”* and look for a right-inverse

of T in the form S,V, for suitable V € B(Y); apply exercise 3.2a.)

Let X be a locally convex space.

a) Show that strong convergence in X * implies uniform convergence
on each bounded subset of X. (Observe that if B is a bounded subset
of X then B? is a weak*-closed barrel in X *.)

b) Let X be a normed linear space. Then the strong topology on X*
coincides with the norm topology. (X * is always a Banach space.)

Let D be an open convex subset of R" and let T:D — R" be differen-

tiable. Suppose that there is a constant &« > 0 such that the spectrum

of the symmetric part of the Jacobian matrix J of T lies in the interval

[«, 00), for all points in D. (That is, if A is an eigenvalue of the matrix

1(J + J'), evaluated at some point in D, then 1 > a.) Show that T is
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3.69.

3.70.

3.71.

strongly monotone on D. (Fix x, y € D and consider the function ¢(t) =

x =y, Ttx + (1 — )yp,for0 <t < 1)

Let D be an open convex subset of R" and f a differentiable convex

function on D. Prove that f is strongly convex if and only if Vf is

strongly monotone on D. (First show that strong convexity is equivalent
to the existence of o > 0 such that {y — x, Vf(x)) < f(y) — f(x) —

a|[x — y||5 for x, ye D.)

Let X be a linear topological space.

a) Let 4 be a convex subset of X. If 4 is either open or closed, or if X
is finite dimensional, then A is ideally convex.

b) Any intersection of ideally convex subsets of X is again ideally
convex.

c¢) If T:X — Yiscontinuous and linear,and if A = Y isideally convex,
then T ~1(A) is ideally convex in X.

Now let X be a Banach space.

d) If T is as in ¢) (Y is arbitrary) and if 4 is a bounded ideally convex
subset of X, then T(A) is ideally convex in Y.

e) The sum of two ideally convex sets in X is again ideally convex,
provided that one of them is bounded.

Let X be an ordered Banach space with closed positive wedge P. P is

non-flat if there exists a constant y > 0 such that to every xe X

corresponds some y € P with x < y and ||y|| < v||x||-

a) P is non-flat if and only if P is reproducing. (For the forward
implication apply 17E to the set P n U(X) — P n U(X).)

b) If P is reproducing then any positive linear functional ¢ on X is
bounded. (That is, P* < P*. It is enough to show that @|P is
continuous at 8, and then use the non-flatness of P.)

c) If P is both reproducing and locally compact then X must be finite
dimensional.



Chapter IV

Conjugate Spaces and Universal Spaces

Motivated by the importance of conjugate spaces indicated in earlier
sections, we devote the bulk of this final chapter to some further consider-
ations regarding such spaces. We begin with the famous Riesz-Kakutani
characterization of C(Q,R)* as the space of regular signed Borel measures
on Q. After giving some applications of this theorem we proceed to some
characterizations of general conjugate spaces, and use these to exhibit some
new conjugate spaces (spaces of operators and Lipschitz functions). The
fact that certain spaces of operators are conjugate spaces has some interesting
implications for optimization theory as we shall see. We shall also establish
an isomorphism between certain spaces of Lipschitz functions and certain
spaces of L® type. A particular consequence of this is an example of a pair
of Banach spaces (namely, £!(N,) and L'([0, 1])) which fail to be isomorphic,
yet whose conjugate spaces are isomorphic.

Finally we show that the space of continuous functions defined on
an uncountably compact metric space can serve as a “universal” Banach
space, in the sense that every (separable) Banach space can be congruently
(isometrically) embedded in any such space.

§22. The Conjugate of C(2, R)

In this section we identify congruently the space C(2, R)* with the space
M ,(Q, B, R) of regular measures defined on the Borel subsets of the compact
space Q. This is an exceedingly useful representation and we shall indicate
a few of its more immediate applications.

22A. As a preliminary to the representation theorem we establish a
general fact about the conjugate spaces of certain ordered normed linear
spaces. Let X be a real ordered linear space (5A) with positive wedge P.
The ordering induced by P is archimedean (resp. almost archimedean) if
x < ty (resp. —ty < x < ty) for some y > 6 and all ¢t > 0 implies x = 6.
An element e € P is an order unit for P if for each x € X there is some ¢t > 0
such that —te < x < te. If X possesses an order unit e then

(22.1) [[x|| = inf{t > 0: —te < x < te}

defines a norm on X exactly when X is almost archimedean ordered. Such
a norm is called an order unit norm. If X is actually archimedean ordered
then

UX)=[—ee]={xeX:—e< x<e}
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The class of order unit normed linear spaces contains (among others)
all spaces of bounded continuous functions, all spaces L*(Q, u, R), and the
spaces of hermitian matrices of order n, for any n > 2 (considered as oper-
ators on R” with the norm (11.4)). The following lemma shows in particular
that the conjugate of any such space is positively generated.

Lemma. Let X be an order unit normed linear space with positive wedge
P. Then each ¢ € X * has a decomposition g = ¢* — ¢, where p*, ™ € P*

and ||g]| = {|¢~|| + [l¢~I

Proof. Let Y be the product space X x X with the usual coordinate-
wise algebraic operations and ordering induced by the wedge P x P. Let
e be the order unit defining the norm in X as in (22.1). Then (e, e) is an order
unit in Y. Now define a subspace M of Y by

22.2) M= {yeY:y=tee — (x,—x),teR, xe X}.

Then given ¢ € X* define y € M* by y(y) = t||¢|| — H(x), where ¢, x are
related to y as in (22.2). This functional y is positive, since if y € M is positive
then —te < x < te, whence ||x|| < ¢ and therefore ¢(x) < t||¢||, that is,
Y(y) = 0.

We can now apply the Krein-Rutman theorem (exercise 2.46) to extend
Y to a positive linear functional ¥ on all of Y. The hypothesis of this theorem,
namely that int(P x P) n M # (&, is satisfied by the point (e, €). We now
set o7 = Y(-,0) and ¢~ = (O, ). Then ¢* and ¢~ belong to P* and
¢ = ¢ — ¢ . Finally, we observe that

9] = dle,e) = ¢*(e) + ¢ (o)
= 6" + Il

This computation is justified by the fact that any positive linear functional
n € P* satisfies ||n|| = n(e). Indeed, n(e) < ||x|| ||e|| < |||, while if —te <
x < te then —tn(e) < n(x) < tn(e), so that |n(x)| < tn(e) and therefore
[n(x)] < n(e)||x||, that is, ||z|| < m(e). 0

We can also note that the dual wedge P* in the space conjugate to
an order unit normed tinear space is weak*-locally compact. This is an
immediate consequence of exercise 2.34a and the fact that P is solid (since
e e int(P)). From 13C we then expect that P* has a weak*-compact base,
and indeed such a set is given by B = {¢ € P*:¢(¢) = 1}. Then we can
observe the following structure of the unit ball in X*:

(22.3) U(X*) = co(B U —B).

We might finally remark that real Banach spaces having an order-unit
are “close” to being spaces of the type C(2, R). Namely, if X is such a Banach
space and is in addition a lattice (so that every pair x, y € X has a supremum
in X), then X is congruent to a space C(Q, R). In fact, the compact space Q
turns out to be ext{¢ € P*:¢(e) = 1}, where P is the positive cone in X and
e is the order-unit. (It must first be verified that this set is weak*-closed in
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U(X*). Then the congruence is simply the map x  X|Q, x € X; this map
is also order-preserving. The lattice hypothesis on X is used to guarantee
that the range of the congruence is dense in, and hence equal to, C(, R).
The density follows from the order theoretic form of the Stone-Weierstrass
theorem, since the range is a linear sublattice of C(Q2, R) which contains the
constant functions and separates the points of Q.) Any such Banach space
is called an M-space.

B. Let Q be a fixed compact Hausdorff space. Recall that the o-algebra
of Borel (resp. Baire) sets in Q is the g-algebra generated by the compact
(resp. compact G;) subsets of Q. The Baire o-algebra may alternatively be
described as the smallest og-algebra with respect to which every continuous
function on Q is measureable. A finite signed measure on one of these
o-algebra is naturally called a Borel (resp. Baire) measure. It is known from
measure theory that each Baire measure is regular (in the sense that its
value at any Baire set A is the supremum of its values on the compact Baire
subsets of 4), and that every Baire measure can be uniquely extended to a
regular Borel measure.

If 1 is a Borel (or Baire) measure then as has already been noted in 9C
the mapping

(22.9) x b [oxdy, x e C(2,R),
defines an element @, € C(Q, R)*, and ||®,|| < ||u|, = |u|(R) (10D, Ex. 3).
Now we claim that if y is regular then actually ||®,|| = ||¢||,. To see this,

lete > Oand select disjoint Borel sets A, ..., A, in @ such that Y |u(4;)| >
1

|4/(Q) — & Let C; be a compact subset of 4; such that |u|(4,\C;) < %,

and let {0y,...,0,} be a family of disjoint open sets such that C; < ¢,
i=1,...,n Because y is regular we may assume that |u|(©\C;) < %,
i=1,...,n By Urysohn’s lemma there exist x,..., x, € C(Q, R) such

that 0 < x;(t) < 1,te€ Q, x;(t) = 1, te C;, and x,(t) = 0, t ¢ O;. Hence if we

put xo = Y sgn(u(C;))x; we find that ||xo||., = 1 and
1

|®,(x0) — |u|(Q)] < &

As a final preliminary to the representation theorem we give the following
lemma. The proof will be momentarily deferred to 22C.

Lemma. Let ¢ be a positive linear functional in C(Q, R)*. Then there
exists a (unique) positive Baire measure p such that ®, = ¢.

Now let B be the family of Borel sets in Q and let ./Z,(Q, B,R) be the
linear space of regular Borel measures on £, normed by the total variation
norm |||, as in formula (10.3). We then have the “Riesz-Kakutani theorem”
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(a particular consequence of which is that .#,(Q, B, R) is a Banach space,
although this fact can also be proved directly.)

Theorem. The correspondence p - D, is a congruence between the spaces
M (2, B,R) and C(Q, R)*.

Proof. We have already noted that the correspondence y — ®,, which
is clearly linear, is norm-preserving and hence is an isometry. It remains to
show that every functional ¢ € C(Q, R)* arises in this fashion.

Now the constantly one function ee C(, R) is an order-unit and,
indeed, [ —e, e] is the unit ball. By 22A, therefore, any ¢ € C(Q, R)* de-
composes as ¢ = ¢ — ¢, where ¢p*, ¢~ are positive. Let u* and u~ be
the positive Baire measures associated with ¢* and ¢~ by the lemma. Then
u=p" — pu” satisfies @, = ¢. Finally, u can be extended to a regular
Borel measure as already remarked. 0

Since the proof that ||®,|| = [|u||, applies equally well to complex
measures, it is clear that the Riesz-Kakutani theorem is also valid for spaces
of complex-valued continuous functions: C(Q,C)* = #/(R2, B,C). We
simply apply the real version just proved to the real and imaginary parts of
any given functional in C(Q, C)*. It is also true that, in the real case, the
correspondence p — @, is bipositive in the sense that it and its inverse are
both order-preserving. In other words, y is a positive measure if and only if
@, is a positive functional (exercise 4.3).

C. The proof of the lemma in 22B requires a topological result con-
cerning Stone-Cech compactifications (exercise 2.35) which is of some
independent interest. Let us say that a topological space Q is extremally
disconnected (a Stonean space) if the closure of every open set is again open.
Several properties of such spaces are given in exercise 4.5; for example, Q is
extremally disconnected exactly when any two disjoint open subsets of Q
have disjoint closures. The simplest examples of such spaces are the discrete
spaces and their Stone-Cech compactifications. We prove this latter assertion
now.

Lemma. The Stone-Cech compactification of a discrete topological space
Q is extremally disconnected.

Proof. Let 00, and @, be disjoint open subsets of f(Q2), and put 4; =
0, Q,i = 1, 2. Since Q is dense in f(Q) these sets are non-empty (assuming
that 0; # ). Since Q is discrete, the characteristic functions y,, are con-
tinuous, and so have continuous extensions f; to f(Q) (exercise 2.35f)). By
continuity each f; assumes only the values 0 and 1, and we have f; f, = 0.
Since 4; is dense in 0; it follows that f;|0; is identically 1, i = 1, 2, and this
shows that 0,n0, = .

We remark that it can be shown that any extremally disconnected
compact Hausdorff space is a retract of f(Q), for some discrete space Q.
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Now, to proceed with the proof of the lemma in 22B, we let I" be the
space Q with the discrete topology, and let f:8(I") — Q be the continuous
extension of the identity map from I' to Q. The formula

(Tx)(1) = x(f(1), teQ,

defines an isometric embedding T of C(2, R) into C(B(I'), R). Hence for any
given positive functional ¢ € C(Q, R)* there is, by the Hahn-Banach theorem,
a functional @ e C(B(I'), R)* such that (Tx, &) = ¢(x), x € C(2, R), and
such that ||®|| = ||¢||- Since P(e) = &(Te) = P(e) = ||¢|| = |||}, it follows
from exercise 4.2 that @ is also positive (here we have used e to denote the
identically one function on the appropriate space).

Next let 2 be the algebra of open-and-closed sets in B(I"). For each
A € 2 the characteristic function y, is continuous and so we can define
v(A) = P(y,). This function v is a finitely additive measure on 2 and we
claim that it is actually countably additive. Indeed, if {4,} is a sequence of
disjoint sets in 2 whose union A4 belongs to 2, then only finitely many A,
can be non-empty, since they are open sets and A4 is compact. Thus v is
trivially countably additive, and by the usual Carathéodory extension pro-
cedure v can be extended to a measure on the g-algebra S(2) generated by
2; let us call the extension v also.

Since each set in 2 is a G;, S(2) contains only Baire sets. We claim that
S(2) is exactly the g-algebra of Baire sets; this will follow by showing that
each ye C(B(I') is S(2)-measurable. Given such a y and any real o define
E, = {se B(I):y(s) < a + 1/n}. The sets E, are open and so, by the lemma,

E, e 2. Hence {s:y(s) < o} = [] E, € S(2), whence y is S(2)-measurable. It
1

now also follows that

D(y) = jﬁ(r) y dv,

for each y e C(B(I'), R); we see this by approximating y (in the mean) by
simple functions based on sets in 2, and using the definition of v on such
sets.

Finally, if 4 is any Baire set in @, f ~!(A) is a Baire set in B(I'); define
w(A) = w(f ~}(A)). Then p is a Baire measure on Q and if x e C(2, R)

$(x) = (Tx, @) = [y T dv = [o x dp.
This completes the proof of the lemma and hence of the Riesz-Kakutani
theorem. 0

D. The original version of the Riesz-Kakutani theorem was given by
Riesz and pertains to the spaces C([a, b], R). For such spaces a somewhat
more concrete representation of their conjugate spaces is possible. Namely,
given any Borel measure y on [a, b] the definition

(22.5) g(t) = w[a, t]), a<t<b,
gla) =0,
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yields a function of bounded variation on [a, b] which is left-continuous at
every point in (g, b). Such functions constitute, by definition, the space
NBYV([a, b], R) of normalized functions of bounded variation. This space
can be normed by taking the norm of each such function to be its total
variation over the interval [a, b]. The correspondence u > g defined by
(22.5) is a linear norm-decreasing mapping from the space .#,([a, b], B, R)
into the space NBV([a, b], R) (We recall that any Borel subset of any
Euclidean space is automatically a Baire set, so that Borel and Baire measures
coincide in this case and, in particular, any Borel measure is regular.)

It turns out that this correspondence is actually a congruence between
the spaces .#,([a, b], B, R) and NBV([a, b], R). One verifies this statement
by defining for any g e NBV([a, b], R) a function p on certain sub-intervals
of [a, b] according to the rules

i[a, b]) = g(b) — g(a),
wla, 1)) = g(®) — gla), a<t<b

This function u can then be extended, first to the open sets of [a, b], and
then to all Borel sets in a standard fashion, so as to be a (signed) measure.
This measure is called the Borel-Stieltjes measure induced by g. Since
|4|([a, 1)) < total variation of g on [a, f], the correspondence p«> g is
isometric.

In this way we see that every linear functional ¢ € C([a, b], R)* is given
by a Riemann-Stieltjes integral

(22.6) ¢(x) = [2 x(dg(t), xeC,

where g e NBV([a, b], R) and ||@|| = total variation of g on [a, b]. (The
correctness of (22.6) can be verified by approximating the given continuous
function x uniformly by step-functions based on intervals of the form [c, d),
a < ¢ < d < b.) In particular, positive linear functionals on C([ 4, b], R) are
seen to correspond to non-decreasing functions in NBV([a, b], R).

Example. As an illustration of the use of formula (22.6) we establish a
result of some interest in probability theory, known as the “Helly selection
principle”. Recall that a distribution function is a bounded, non-decreasing,
and left-continuous function defined on R. Typically, such functions arise
in connection with random variables: if G is a real-valued random variable
defined on some probability space then

g@) = Pr{w:G(w) < t}
defines a distribution function g such that
g(—o0) = lim ¢(1) = 0,

t—>— o0

g(+o00) = lim g(t) = 1.
t—+

Because of its monotonic nature any distribution function is continuous at
all but at most countably many points.
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Suppose we have a sequence {g,} of distribution functions all of which
are concentrated on some interval [a, b], in the sense that g,(a) = 0,g,(b) = 1
for every n. (Such a sequence might arise in association with a uniformly
bounded sequence of random variables.) Then the selection principle asserts
the existence of a subsequence {g,, } and a distribution function g such that
lim, g,,(t) = g(¢) at every point t where g is continuous (in particular, at all
but at most countably many points of [a, b]).

To prove this assertion we use the fact that we can consider the sequence
{g,} to belong to the unit ball of C([a, b], R)*. Since this ball is a compact
metric space in its weak*-topology (12D, F), there is a subsequence {g,,}
which converges weak* to some h € NBV([a, b], R). Suppose that ¢, € [a, b]
is a point of continuity of h. For each ¢ > 0 define

1, t <ty
h(t) =40, th +e<t
linear o <t <ty+e
Then
'!im 12 h(t)dg, (t) = ® h(t)dh(t),

since h, is continuous on [a, b]. But,

Inlto) = [ h(0)dg,(0) < & h(1)dg,,(0),

§a h(0)dh(t) < h(to + e).

and

Therefore,
lim sup g,,(to) < h(to + ¢)
k- o0

for each ¢ > 0, and so lim supy g,,(to) < h(to). Similarly, one shows that
lim infy g,,(to) = h(t, — ¢). In this way we establish the pointwise conver-
gence of {g,,} to h on the continuity set D of h.

We complete the argument by showing that h is a distribution function
concentrated on [a, b]. Since he NBV([a, b], R) we know that h is left-
continuous and h(a) = 0. Also,

1) = [, dh = lim [} dg,,
k— o0

= lim (g,/(b) — gn (@) = lim 1 = 1.
k— o0 k— o0

Therefore, since the total variation of & on [a, b] is at most one, it must be
that h is non-decreasing on [a, b], as desired. g
For a more general result see exercise 4.37.

E. As an application of the Riesz-Kakutani theorem we shall give a
geometric functional analytic proof of the Stone-Weierstrass theorem. It is
convenient to begin by isolating a portion of the argument as a technical
lemma. We let Q be an arbitary compact Hausdorff space.
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Lemma. Let M be a non-dense linear subspace of C(Q,R) and let pe
ext(U(M°®)). Suppose that g € L*(Q, B, R) has the property that |o fg du = 0,
for all fe M. Then g is a constant |u|-almost everywhere.

Proof. After adding a constant to g and multiplying by a scalar we
can assume that g > 0 and {, g d|u| = 1. Now if ||g||., < 1 then certainly
g = 1 [|y[]. Otherwise ||g||, < 1. In this case let 1 = 1/||g]|., and define
two new (signed) Borel measures y, and y, by

S )]
m(E) = Lﬁdﬂa

By construction, 4 = (1 — A)u; + Ay, and neither u, nor u, equals u
(since ||g|| > 1 and 2 > 0). Thus we will have obtained a contradiction if
we can prove that both y; € U(M°). Since they clearly belong to M° we need
only estimate their norms. Now

[l1a]| = |12l (@) = Jo |gld|u| = fo gd|u| = 1.
Also, since 0 < Ag < 1,

Ja [t = Agldlul = fo 1 — dg)dlul = [l — 2 =1~ 4

whence ||p4|| = 1. 0

Let v be a positive regular Borel measure on Q. Recall that the support
o(v) of v is the complement of the union of all open subsets ¢ = Q for which
|/.t|((9) = 0. Consequently, o(v) = {t € Q: every t-neighborhood has positive
v-measure}. The support has the important property that fafdv =0 for
a non-negative fe C(2, R) if and only if f|o(v) = 0 (exercise 4.7). Now it
is not difficult to establish the Stone-Weierstrass theorem.

Theorem. Let A be a subalgebra of C(Q, R) with the properties that
for each t € Q there exists fe A such that f(t) # 0 and that A separates the
points of Q. Then A is dense in C(Q, R).

Proof. Suppose that 4 is not dense. Then by the Hahn-Banach, Alaoglu,
and Krein-Milman theorems there exists some u e ext(U(A4°)). For any
g€ A we have fge A whenever f € A4, so that [, fg du = 0. Hence by the
lemma g is constant | ,u|~almost everywhere. Since g is continuous g must be
constant on a(l,u|). Since this is true of every g € 4 and A is assumed to
separate the points of A4 it follows that o(|x|) must consist of a single point,
say p. We complete the proof by obtaining the contradiction that g(p) = 0,
geA.

Let e be the constantly one function on Q and choose any fe C(Q, R).
Since the function f — f(p)e vanishes on o(|u|) we have

| fo(f — f(Pe)dp| < fo|f — f(p)eld|u| = O,
so that o fdu = af(p), where a = (). Because u # 0 we see that o # 0.
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Therefore,
1
9(p) = Jogdu =0, ge4. a

The complex version of the Stone-Weierstrass theorem is obtained in
the usual manner, by assuming that the algebra A is self-adjoint (8F) in
addition to the other hypotheses of the theorem. By exercise 1.39 we then
have A = Ai + idg, and the algebra Ap must be dense in C(Q, R) by
what we have just shown.

F. As our final topic in this section we give an explicit example of a
closed linear subspace of a Banach space X which is not the range of any
continuous linear projection defined on X. In other words, this subspace
is uncomplemented in the sense that it has no closed complementary subspace
in X. Another example of this phenomenon is given in exercise 4.19 to
illustrate a result in §23.

We begin with a simple lemma which provides some information about
operators from a general Banach space into a space of continuous functions.

Lemma. Let X be a Banach space over the field F, let Q be a compact
Hausdorff space, and let T € B(X, C(Q, F)). Then there exists a continuous
map 1:Q — X* (given the weak*-topology) such that Tx(t) = <{x, 7(t)), t € ,
xe X, and ||T|| = ||t/|o-

Proof. We know that the map ¢ > §, is a continuous map of Q onto
a weak*-compact subset of U(C(Q, F)*). Hence, if we define ©(t) = T*(5,),
it follows from 16C that z is continuous. Finally,

|| = sup T = sup sup | Tx(r)

sup sup |Tx(r)| = sup sup |<x, ()]

e ||x||<1
= sup [[s]| = el
teQ

It is clear that, conversely, any such map t from Q into X* defines an
operator T:X — C(2, R) with ||T|| = ||t/ 0

Example. Let X be the Banach space of bounded real-valued functions
on [0, 1] with the usual sup-norm, and let C be the closed subspace of
continuous functions. We shall show that there is no closed complementary
subspace for C in X. Indeed, if there were such a subspace then by 171 there
would be a continuous linear projection P from X onto C. Let 7:[0, 1] —» X'*
continuous map associated with P according to the lemma. Thus Px(tf) =
{x,t(t)) for 0 < t < 1 and all x € X. In particular, since the restriction of
C=6,0<t<1 We
claim that 7(¢) is “evaluation at £’ as a functional on X; let us call this
functional &§,. The claim is valid because §, attains its norm on U(C) at
peak functions in U(C), for example, at the function x, defined by x(s) =
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1 —|s — 1], 0 < s < 1. The function x, is a smooth point of U(C) by 20F,
Ex. d) and in fact is also a smooth point of U(X) (exercise 4.10). Consequently,
by 20I 6, has a unique Hahn-Banach extension to all of X. This proves
that §, = 1(t) as claimed.

We can now easily obtain a contradiction. Let x be a discontinuous
function in X. To be explicit let us take x to be the characteristic function
of (0, 1]. Then, forn = 1,2,...,

Px(0) = x, 10> =0# 1= <x, T (1>> = Px <1>
n n

which proves that Px is not continuous at 0, or, equivalently, that 7 is not
continuous from [0, 1] to the weak*-topology on X*. O

§23. Properties and Characterizations of Conjugate Spaces

In this section we discuss several special properties of conjugate Banach
spaces, some of which are strong enough to characterize such spaces among
general Banach spaces. Certain of these properties, such as the Bessaga-
Pelczynski necessary condition, pertain specifically to separable spaces.
Several examples of these results are also given.

A. Let X be a given Banach space. To say that X is a conjugate space
means that there exists a Banach space V such that X is congruent to V*.
We shall begin by presenting a simple condition sufficient to guarantee
that such a space V exists. This result will be called the “Dixmier-Ng
theorem”.

Theorem. Suppose that there is a (Hausdorff) locally convex topology
7 on X such that U(X) is t-compact. Then X is a conjugate space.

Proof. Let V = {¢ e X":¢|U(X) is t-continuous}. Then V is a closed
linear subspace of X *, and is therefore a Banach space. (To see that V < X*
observe that for any ¢ € V the image ¢(U(X)) is a compact hence bounded
set of scalars; that is, | ||| is finite and so ¢ € X*. Vis closed in X * because
convergence in X* entails uniform convergence on U(X).) We now bring
in the operator Jy :X — V* introduced in 16F. This operator assigns to
each x € X the functional “evaluation at x” in V*. We clearly have || Jx, y|| < 1.
The proof will be completed by showing that Jy , is a congruence between
X and V*. We do this by showing that Jy , is injective and that it maps
U(X) onto U(V*).

The first assertion follows because V' is total. Indeed, V contains the dual
space X ¥ which certainly separates the points of X (11E). The second
assertion follows from the fact (evident by definition of V) that Jx  is
continuous from the t-topology on X into the weak*-topology on V*.
This means in particular that Jx ,(U(X)) is w*-compact in V*. But, by the
Goldstine-Weston density lemma (16F), this image is also weak*-dense in

U= 0
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Let us now illustrate this theorem with a few examples. We first note
that it immediately implies the fact (already known from 16E and exercise 3.6)
that any weak*-closed linear subspace X of a conjugate space Y* is itself
a conjugate space. This follows from the observation that U(X) is compact
in the (relative) weak*-topology. It also implies the fact (known from 16H)
that the space m = m (Q, F) of bounded functions on a set Q is a conjugate
space (exercise 4.12). We now give a new example.

Example. Let X = Lip(Q, d, F) be the space of bounded Lipschitz
functions defined on the metric space (2, d) and normed by ||-||, = max{||-||.»
|*|l:} (10D, Ex. 4). Let t be the topology of pointwise convergence on X
(9D). Then U(X) is certainly a t-closed subset of X. In addition, U(X) is
contained in the product B?, where B = {A€ F:|4| < 1}. Since B is compact
Tychonov’s theorem implies that B? is compact in its product topology.
Consequently, U(X) is t-compact and so X is a conjugate space. 0

Any space V for which X is (congruent to) V* is called a pre-dual of X.
In general, a given conjugate space X can have more than one pre-dual,
although it is known, for example, that whenever y is a o-finite measure
the space L'(y) is the unique pre-dual of L®(u) (see also exercise 4.13).
In any event, having recognized that a given Banach space is a conjugate
space, it is usually of interest to identify a particular pre-dual as a more or
less familiar type of space. This problem is considered in exercise 4.14 for
the Lipschitz spaces just discussed.

B. We shall now look a little deeper into the question of whether a
given Banach space X is a conjugate space. It will also be of interest to raise
a companion question: is X isomorphic to a conjugate space? This is defi-
nitely a weaker question; for example, it can be shown that every quasi-
reflexive space (16I) has this latter property. More interesting, perhaps,
is the fact that any non-reflexive space can be renormed so as not to be a
conjugate space (see 23E).

Example. As a special case of this last remark let 7 be the usual space of
bounded sequences. Let A = U(m) + U(m) N ¢,. A may be characterized as
the set of sequences (¢, £, . . .)in 7 for which sup, |£,| < 2and limsup, |&,| <
1. Now U(m) =« A = 2U(m) and so the gauge p, of A is an equivalent
norm on 7. But the set A has no extreme points, and so p 4 is not a conjugate
space norm. 0

We proceed now to reduce the search for answers to either of the above
questions to subspaces of X *. Recall that this is where we found a pre-dual
for spaces X satisfying the condition of 23A. If V is a subspace of X * let us
henceforth write simply Jy, for the operator Jy y.

Lemma. Let X and Y be Banach spaces and suppose that T:X — Y*
is a congruence (resp. an isomorphism) between X and Y*. Then there exists
a subspace Vof X * such that J,,: X — V* is a congruence (resp. an isomorphism).
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Proof. Let V be the range of T* o Jy. For any y € Yset v = T*(Jy(y)).
Then for any x € X

D Tx)y = <T), Jy(y)) = {x,0)
= (v, Jy(x)) = KT*Uy(y)), Ju(x)>
= 5 (T* o Jy)* o Ty(x)).

This proves that T = (T* o Jy)* o J;, and consequently that
(23.1) Jy = (T*oJy)* ' T.

Since Jy is always a congruence formula (23.1) exhibits J, as a composite
of congruences (resp. of isomorphisms). Further, range(J) is all of V* because
T* o Jy:Y — Vis surjective, and hence so is (T* o Jy)* : Y* - V*, g

This lemma makes it clear that any reflexive space X has a unique
pre-dual, namely X *.

A closed linear subspace V of X* is said to be minimal if it is total and
no proper subspace of V is both total and closed. Also, V is said to be duxial
(or norm determining) if sup {|<x, v>|:ve U(V)} = ||x||, x e X. That is, V' is
duxial exactly when Jy, is an isometry. Finally, we say that a closed subspace
M of a Banach space X is constrained by a subspace N if there exists a norm-
one projection P: X — M such that ker(P) = N.

We now have the following several characterizations of conjugate spaces
and their isomorphs. We shall refer to these results collectively as the
“Dixmier-Goldberg-Ruston theorem”.

Theorem. Let X be a Banach space.

a) X is a conjugate space (resp. is isomorphic to a conjugate space) if and
only if there is a total subspace V of X* such that U(X) is o(X, V)-compact
(resp. is relatively o(X, V)-compact).

b) X is isomorphic to a conjugate space (resp. is a conjugate space) if and
only if X* contains a minimal subspace (resp. a duxial minimal subspace).

¢) X is isomorphic to a conjugate space (resp. is a conjugate space) if and
only if Jx(X) has a weak*-closed complementary subspace in X** (resp. is
constrained by such a subspace).

Proof. a) The condition for X to be a conjugate space is an immediate
consequence of Alaoglu’s theorem and the Dixmier-Ng theorem (23A).
Suppose that X is isomorphic to a conjugate space. By the lemma we can
assume that J,: X — V* is an isomorphism for some (total) subspace V of
X*. Now Jy is also a homeomorphism from the ¢(X, V)-topology into the
weak*-topology on V*. Therefore,

L UX) = TUX)" = U™,

where the second equality is a consequence of the Goldstine-Weston density
theorem (16F). This proves that U(X)’ is o(X, V)-compact.
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Suppose conversely that U(X) is. (X, V)-relatively compact for some
total ¥ < X*. Then, as before,

Jy{UX)) = T, {UX) " 0 Jy(X) = UV*) A Jy(X).

This shows that U(Jy (X)) = U(V*) n J,(X)is weak*-compact in V*. Hence
Jy(X) is weak*-closed in V* by the Banach-Dieudonné theorem (18E). Since
Jy(X) is also (as noted above) weak*-dense in V*, it follows that J, is
surjective. Consequently, by the inverse mapping theorem (17F) J, is an
isomorphism between X and V*.

b) Suppose that there is a subspace V of X * such that J, is an isomor-
phism (resp. a congruence). Then we claim that ¥ is a minimal (resp. a duxial
minimal) subspace of X*. Indeed, if W were a proper closed subspace of ¥V
there would exist some non-zero e W° < V* = V* If ¢ = Jy(x) then
x e °W yet x # 0, so that W could not be total.

Conversely, suppose that V is a minimal subspace of X *. We have to
prove that Jy is surjective. Select any @ € V*, & # 6. Then ker(®) is a
proper closed subspace of V and so cannot be total. Hence there exists a
non-zero xg € X such that ¢(x,) = 0 whenever &(¢) = 0. That is, ker(®) =
ker(Jy(xo)), and it follows that @ = aJ,(x,) = Jy(ox,) for a suitable scalar o.
(We have used the fact that J,(x,) # 0, since V is total and so J, is injective.)
If V is also duxial then we know that J,, is actually a congruence.

¢) Suppose that there is a subspace V of X* such that J, is an isomor-
phism. We claim that V° is a closed complementary subspace for J4(X) in
X** We certainly have Jx(X) n V° = {6},since Vistotal. Let R: X ** — V*
be the restriction map: R(P) = <1>| V, @ € X** Now define P: X** - J4(X)
by

P=JyoJy;'oR

Then clearly P is a projection of X ** onto J4(X), ker(P) = ker(R) = V°,
and ||P|| < ||JvY), . If also J, is a congruence
then ||P|| < 1; hence ||P|| = 1 and so Jx(X) is constrained by V°.

Finally, let W be a weak*-closed complementary subspace for Jx(X)
in X** By exercise 3.6 W = V° for some subspace V of X*. Because
Jx(X) n V° = {6}, V is total. Now given any @ e V'*, let & be a Hahn-
Banach extension of @ belonging to X ** Then & = X + w, we V°, and it
follows that

(p, ) =<, %) + (P, W)
= {x, ¢> = <¢’ JV(X)>’ d) eV.

That is, J,(x) = @, so that J, is surjective and hence is an isomorphism. If
Jx(X) is actually constrained by W then we have in addition

vl < (X[ = [I]] < [|12]] = [|12]] =

this proves that J,, is a congruence. O
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Implicit in this proof are some formulas for ||Jy !|| in the case where J;,
is an isomorphism; see exercise 4.15.

If a Banach space is not isomorphic to a conjugate space then it may or
may not be complemented in its second conjugate space. Examples are dis-
cussed in 23D and in the exercises. In particular, it happens that L'([0, 1],R)
is constrained in its second conjugate, yet is not isomorphic to any conjugate
space.

We now indicate a new class of conjugate spaces.

Example. Let X and Y be Banach spaces and consider the space B =
B(X, Y*). We claim that any such operator space is a conjugate space. We
can see this by defining for each x € X, ye Y, a functional x ® y e B¥ by

T, x ® y> = <y, T(xp, TeB,

and letting V' be the linear hull of all such functionals. Since

sup [<T,x ® y>| = sup |<y, T(x)|
Ix®yll<t lIxll <1
Ixi<t
= sup ||T9]| = 7]
it follows that V is duxial and hence that J, is an isometry. To show that
Jy is surjective we can either prove that ¥ is a minimal subspace of B* or
that U(B) is relatively o(B, V)-compact.

It seems more natural to adopt the second course. Accordingly we
observe that U(B) is a closed subset of the product space 4 = II{||x||U(Y*):
x € X}. Now, if U(Y*) is topologized by the weak*-topology, it follows
from the theorems of Alaoglu and Tychonov that A is compact. Since the
product topology on A clearly induces the o(B, V)-topology on U(B) we see
that U(B) is indeed o(B, V)-compact. Thus by either part a) or b) of the
theorem Jy, is a congruence between B and V*. The topology a(B, V) is
called the weak*-operator topology on B.

We continue this example by showing an application (see also exercise
4.18). Let I be an index set, let {x,:a e I} (resp. {y,:o € I}) be bounded
subsets of X (resp. of Y*), and let L be a positive number. We consider the
operator moment problem: find T € B such that

T(xa) = '/l(l’ o4 e I’

(23.2) Il < L.

(When [ is finite and Y = F! problem (23.2) is known in the literature as
the “L-problem of moments”, and the smallest value of the parameter L is
of special importance. In addition to its purely mathematical interest, the
L-problem of moments subsumes many special models of optimization and
control.)

Now problem (23.2) may not, as it stands, be consistent. It may not be
possible to find an operator interpolating all the data {x,, y,:a €I} or it
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may be that no interpolating operator can have norm <L. We intend to
prove that there always exists a Chebyshev (or minimax) solution. That is,
we shall show that an operator T exists satisfying ||T|| < L and

sup ”T(xa) - l//az” < sup ”T(xa) - !//a |’

whenever ||T|| < L.
To do this we observe that the functional f,: B — R defined by

JAT) =||Tx) — ¥fl,  TeB,

is weak*-operator lower semicontinuous on B. Indeed, themap T — T(x,) —
¥, is continuous from the weak*-operator topology on B into the weak*-
topology on Y* and, of course, the norm on Y* is weak*-lower semi-
continuous. Hence the functional f = sup{f,:a € I} is also weak*-operator
lower semicontinuous on B, and so attains its infimum over the compact
set LU(B) (exercise 2.43). Any operator T e LU(B) at which f attains its
minimum is a Chebyshev solution of the moment problem. O

C. We are now going to present a very striking geometric property
possessed by all separable conjugate spaces and their isomorphs. This con-
dition is thus necessary for a given separable Banach space to be isomorphic
to a conjugate space. We shall see that it follows easily that certain standard
separable spaces are not isomorphic to any conjugate space.

The crux of the matter is to establish the following general lemma due
to Namioka. Let us agree that if 4 is a subset of a conjugate space then
A, denotes the set 4 topologized by the (relative) weak*-topology.

Lemma. Let Y be a Banach space for which Y* is separable, and let A
be a weak*-compact and convex subset of Y*. If Z is the set of all points of
continuity of the identity map: A,« — A, then Z n ext(A) is weak*-dense in
ext(A).

Granting momentarily the truth of this lemma we can use it to establish
our main result, known as the ‘“Bessaga-Pelczynski theorem”.

Theorem. Let X be a separable Banach space which is isomorphic to a
conjugate space. Then every (non-empty) closed, bounded, and convex subset
of X is the closed convex hull of its extreme points.

Proof. According to exercise 2.40 it is sufficient to prove that every
such subset has an extreme point. Now if it is known that all separable
conjugate spaces have this property then X also has the property, since it
is clearly preserved under isomorphism. Hence there is no loss of generality
in assuming that X is a conjugate space: X = Y* for some Y.

Now let B be a closed, bounded, and convex subset of Y*. Let 4 = B *
Because B is bounded A is weak*-compact, and we may apply the lemma.
Let z belong to the set Z of the lemma. Since B is weak*-dense in A there
is a net {f,} = B that converges weak* to z. By definition of Z it follows
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that lim, ||B, — z|| = 0. This entails z e B. Consequently Z < B and Z n
ext(4) = B N ext(A). Now the lemma implies that Z n ext(4) is weak*-
dense in ext(4), and of course ext(4) # & (13A). Since B = A we have
B N ext(A) < ext(B), and so we have shown that in particular ext(B) # &&. []

The proof of Namioka’s lemma depends heavily on category and is
based on two additional lemmas, the first of which is of some independent
interest.

Lemma 1. Let A be a compact convex subset of a locally convex space.
If A is also metrizable then ext(A) is a Baire space.

Proof. Let d be a metric that defines the topology on A4, and define
1 1
C, = {5 (x + y):x,ye Aand d(x, y) > ;}. Then the sets C, are closed and

U,, C, = A\ext(A). This proves that ext(A4) is a G; subset of 4. Now, since
A is compact and metrizable, it is d-complete. From topology it is known
that any G; subset of a complete metric space is homeomorphic to a complete
metric space. Thus, being homeomorphic to a Baire space, ext(A4) is itself a
Baire space. 0

The conclusion of Lemma 1 remains valid even if A4 is not metrizable,
but the proof is more difficult and the result in this generality will not be
needed.

Lemma 2. Let Y be a Banach space for which Y* is separable, and let
A be a weak*-compact subset of Y*. Then the set of all points of continuity
of the identity map: A, — A is weak*-dense in A.

Proof. Foreach ¢ > 0 let 4, be the union of all open subsets of (norm)
diameter <e. Clearly A, is open and we shall show that it is dense in A.
Since A is separable there is a (norm) dense sequence {¢,} — 4. Hence

A=.4n <¢,, + % U(X*)). From 17A and exercise 3.17 the union of the

interiors of these sets is dense in 4, and the union is clearly contained in 4,.
Consequently, since 4 is a Baire space the set [}, A;, is dense in 4; but this
set is exactly the set of points of continuity of the identity map: A« —> 4. []

Proof of the Lemma. For each ¢ > 0 let B, consist of those points ¢ €
ext(A4) for which there exists a weak*-¢-neighborhood N such that diam(A4 N
N) < & Clearly B, is a weak*-open subset of ext(A4) and it will be shown to
also be weak*-dense in ext(4). Granting this it will follow from Lemma 1
that ﬂn B, , is also weak*-dense in ext(A). But this set is exactly Z n ext(A).
(Notice that in applying Lemma 1 we have tacitly used 12E, F to guarantee
that A is bounded and hence weak*-metrizable.) Thus it remains only to
show that B, is weak*-dense in ext(4).

Let W be an arbitrary weak*-open set in Y* such that ext(4) n W # &¥;
we must prove that B, " W # &. Let D = ext(4)"; D is weak*-compact
and certainly D n W # . By Lemma 2 the set of continuity points of the
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identity map: D,. — D is weak*-dense in D. Hence there is a weak*-open
set V.o Y*suchthat  # DnV <« D W,and diam(D n V) < ¢/4. Let
A, = To*(D\V) and A, = c0*(D n V). Since ext(d) = 4, U A, = 4 it
follows from 11A and 13B that 4 = co(4; U A,). We can also note that
diam(A4,) < ¢/2since D n V is contained in a ball of radius <e¢/4. Moreover,
A, # Abecause ext(4,) = D\V (13B)and D n V # (.

Now let d = diam(A) and r = ¢/4d. We define C to be the image of the
set A; x A, x [r, 1] under the map f(¢;, ¢, t) = td, + (1 — t)¢,. Then
Cis a weak*-compact and convex subset of 4. Further, C # A since ext(4) N
C < A,, and A, is a proper subset of 4. Now any y € A\C is of the form
Y = tp; + (1 — t)p,, where ¢;€ A; and 0 < ¢ < r. It follows that ||y —
@2|| < t||¢pr — 2|| < rd; consequently diam(A\C) < 2rd + ¢/2 = ¢, using
diam(4,) < ¢/2 and the definition of r.

Finally, since C # A, there exists ¢ € (A\C) n ext(4) (13B). Thus A\C
is a weak*-¢-neighborhood in A4 of diameter <g, so that ¢ € B,. And since
D\V < A, =« C, we must have ¢ e DV < D~ W. This shows that
peB. N W. O

D. We shall now give some examples and discussion pertaining to the
Bessaga-Pelczynski theorem.

Example 1. Let Q be a non-compact but locally compact Hausdorff
space and let Cy(Q, ) be the Banach space of continuous F -valued functions
on Q that vanish at infinity, with the usual sup norm. According to exercise
2.30 the unit ball of this space has no extreme points. Now if Q is metrizable
we know from 15C (Lemma 3) that Cy(Q, F) is separable. Therefore, by 23C
the space Cy(R, F) for metrizable Q is not isomorphic to any conjugate
space. In particular the sequence space ¢, has this property. Hence so does
the sequence space ¢, where ¢ consists by definition of all convergent
sequences of scalars. 0

It is interesting to remark that ¢, fails to be isomorphic to a conjugate
space for another reason: namely, it fails to satisfy criterion c) of the Dixmier-
Goldberg-Ruston theorem (23B). Indeed, as is to be shown in exercise 4.19,
¢, fails even to be complemented in its second conjugate space ms.

Example 2. Again according to exercise 2.30 the Lebesgue space L! =
L([0, 1], R) has the property that its unit ball contains no extreme points.
Consequently L! fails to be isomorphic to any conjugate space. This result
is known as “Gelfand’s theorem”. The conclusion has been substantially
generalized by Pelczyfiski: a space L}(2, u, R) where u is a o-finite measure
is isomorphic to a conjugate space (if and) only if y is purely atomic. This
last condition means that every chunk A4 in Q differs only by a null set from
the union of all the atoms contained in A.

By contrast with Example 1 the space L' is complemented (in fact,
constrained) in its second conjugate space. To prove this assertion we must
define a norm-one projection from L*** = L°* onto J,. (L'). Given ¢ € L**
let ¢ = ®|C([0, 1],R). Let g€ NBV([0, 1], R) correspond to ¢ according
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to formula (22.6). Then the derivative g’ belongs to L! and we can define
the desired projection P by P(®) = J,:(g'). Since

IP@)]| = llgls = fb lg@)]
<varg) = [l¢fl <|jefl.  @eLe,

we see that ||P|| < 1. Further, if & = J.. (f) for some f e L' then g is an
indefinite integral of f, and so P(®) = J,.(¢)) = J..(f) = ®. This proves
that P is a norm-one projection of L'** onto J,: (L'). (In exercise 4.20 it is
to be shown that ker(P) is weak*-dense in L**) W

Although more difficult to prove in complete generality it is true that
any L}(Q, u, R) space is constrained in its second conjugate.

Either by direct proof or as a consequence of results in the next section
it follows that C([0, 1], R) is also not isomorphic to a conjugate space.

Next, let us note that the separability hypothesis in the Bessaga-
Pelczynski theorem is really necessary. For example, consider the sequence
space ms; m is a non-separable conjugate space as we know (16H and exercise
2.24a). However, m certainly contains closed, bounded, convex subsets
having no extreme points; for example, U(¢,) and the set A appearing in
the example in 23B.

Finally, it should be remarked that there is no converse to the Bessaga-
Pelczynski theorem. This disappointment has been rather dramatically
illustrated by an example of Lindenstrauss: there exists a closed linear
subspace of £}(NX,) which fails to be isomorphic to any conjugate space.
Such a subspace appears in the following manner. Given any separable
normed linear space X there exists an operator T € B(¢!, X) such that T*
is an isometry. Namely, letting {x,} be a sequence dense in 0U(X), we define

T(é) = gl énxm é = (él, 62, . -) € el.

Clearly,

T|| < 1 and
IT*@)|.c = sup [<e T*@))]
= supotw)| = sup o] = 6. e X"

By 18G, T is surjective and X is necessarily complete. (It also follows that
T:£'/ker(T) — X is a congruence, proving that any separable Banach space
is (congruent to) a quotient space of £'; however, this fact is not essential
to the example.) Lindenstrauss’ example is now obtained by choosing X =
LY([0, 1], R); the kernel M of the associated operator T is shown to have
the property that it is not complemented in any conjugate space, whence by
part c) of the Dixmier-Goldberg-Ruston theorem M cannot be isomorphic
to a conjugate space.

E. We now establish the result alluded to in 23B concerning non-
reflexive spaces. This theorem, formulated by Davis and Johnson, provides
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a new characterization of reflexive spaces: a Banach space is reflexive if
and only if every isomorph of X is a conjugate space. (The necessity of this
condition is clear since any isomorph of a reflexive space is actually reflexive,
as we know.)

We shall prepare for the theorem with another renorming lemma, due
originally to Kadec and Klee.

Lemma. Let X be a Banach space and V a closed separable subspace of
X*. Then there is an equivalent norm ¢ on X such that if {¢5:6 € D} is any
net in X* that converges weak* to ¢ € V, and if lim; 6*(¢p;) = o*(¢), then

lim, |5 — || = 0.

Proof. Since V is separable there is an increasing sequence {G,} of
finite dimensional subspaces of V such that U,, G, is dense in V. Define

py) = || + X27"dW, G,),  Ye X*

Then p is an equivalent norm on X* and we claim that its unit ball U, is
weak*-closed in X*. This follows from the observation that a semi-norm
¥ b d(y, G) is lower semicontinuous whenever the subspace G is weak*-
closed (which in turn follows from formula (16.9) and exercise 3.6). Since
U, is weak*-closed we know from 18F that p is a dual norm on X*, say
p = o* for some equivalent norm ¢ on X.

Now, by weak*-lower semicontinuity we have lim, ||¢s|| = ||¢|| and
lim; d(¢s, G,) = d(¢, G,), for every n. In conjunction with the relation
lim; p(¢;) = p(¢) we have lim; d(¢;, G,) = d(¢, G,). But lim, d(¢, G,) = 0
since ¢ € V. This fact plus the compactness of balls in the subspaces G,
enables us to show that the net {¢;:9 € D} is relatively compact in X *. (The
details of the argument needed here are routine but tedious; we therefore
defer them to exercise 4.21.) But any cluster point of this net must be ¢,
since weak*-lim; ¢; = ¢. Consequently, lim, ||¢; — ¢|| = 0. O

Theorem. Let X be a non-reflexive Banach space. Then there is an
equivalent norm ¢ on X such that X so normed is not (congruent to) a conjugate
space.

Proof. By 18B U(X*)is not countably compact: there exists a sequence
{¢.} = U(X*) with no weak cluster point. Let {¢;:6 € D} be a subnet of
{#.} that converges weak* to some ¢ € U(X*),and set V = span {¢, p,:n =
1,2,...}. Letting J,, = Jy y as in 23B, we have

li;n s Jy(x)) = li;n ¢s(x) = (x)

= ¢(x) = <p, Jy(x)), xeX.

On the other hand there exists some @ e V* such that {¢;, @) fails to
converge to <¢, ). This argument shows that J is not surjective.

Let ¢ be the equivalent norm on X defined by V according to the lemma.
Suppose that X so normed is (congruent to) some conjugate space Y*.
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For each ¢ € V = Y** there is a net {y;:0 € D} = Y such that 6%(y,) <
o*(¢) and weak*-lim; Jy(y;) = ¢ (Goldstine-Weston density lemma,
16F). The weak*-convergence entails lim; 6*(Jy(y;)) = 0*(¢) and hence
lim; 6*(Jy(ys)) = 6*(¢p). By the lemma it follows that lim; Jy(y;) = ¢,
whence ¢ € Jy(Y). But now any @ € V* can be viewed as defined on a
subspace of Y. Any Hahn-Banach extension of @ belonging to Y* corresponds
to some x € X, and we see that (¢, Jy(x)) = ¢(x) = (¢, ®), p € V. Thus
we have arrived at the contradiction that J, is surjective. 0

§24. Isomorphism of Certain Conjugate Spaces

In this section we prove that the L™ spaces defined on a separable measure
space are all isomorphic to the space of Lipschitz functions on [0, 1]. In
addition to its intrinsic interest this result stands in contrast with the
corresponding negative fact for the L? spaces with 1 < p < oo, p # 2. For
such values of p the spaces £?(N,) and L?([0, 1], F) fail to be isomorphic.

A. We shall first work to establish the existence of an isomorphism
between the spaces m and L*([0, 1], F); the general isomorphism theorem
will then follow with little difficulty. There is clearly no loss of generality in
assuming the scalars to be real: F = R. We shall need two preliminary
lemmas which provide some interesting information about general spaces
of L™ type. Let us say that an ordered linear space is boundedly complete if
every subset which has an upper bound has a least upper bound.

Lemma 1. Let(Q,Z, u) be a o-finite measure space. Then L* = L*(Q, u,R)
is boundedly complete.

Proof. Let A be a subset of L® which is bounded above: there exists
g € L® such that f < g (thatis, 0 < g — f[u]) for all f € A. After replacing
A by the suprema of its finite subsets (if necessary) we may suppose that 4
is directed by <, and hence that A = {f,:a € A} is a non-decreasing net
in L® with f, < g, € A. Now for any non-negative x € L* we have {x, f,) <
{x,9>, a € A4, and so lim,{x, f,> exists and defines ¢(x) € R. Next, for any
non-negative x, ye L' we define ¢(x — y) = ¢(x) — ¢(y), and obtain a
linear functional: ¢ € (L!). Further, ¢ is continuous since {x, f,> < @(x) <
{x, g) for x > 0 and a € 4, so that there exists 1 > 0 with |¢p(x)| < A||x||:;
then decomposing any x e L' as x = x* — x7, x* > 0, we see that

(] = [plx* — x7)| < [$x )] + x|
< Apel+ Al = Al

Let he L™ correspond to ¢ under the usual congruence between (L')*
and L*®. Since {x,h — f,> > 0, x > 6, we have h — f, > 0, and so h is
an upper bound for A. Finally, if k€ L® is any upper bound for A, then
{x, f,> < {x, k), x = 0,whence ¢(x) = {x, h) < {x, k),x > 0. This proves
that h < k and therefore that h = sup{ f,:a € A} = sup 4. O
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It may be noted that the only use of the o-finiteness hypothesis was to
guarantee (L')* = L*, so that a slightly more general theorem is true via
the same argument.

For our second lemma we need the concept of an injective Banach space.
A Banach space X is injective if given any congruence between X and a
subspace of a Banach space Y, its image has a complementary subspace in
Y. In other words, X is injective if it is complemented in every Banach space
containing it. If there is always a projection of norm <A onto X from every
space containing it then X isa P;-space. For example, every finite dimensional
space X is injective (cf. exercise 2.2d) and in fact is a P,-space with A < /n.
Further, it is known that for X = (R"||'||,) we have for the smallest possible

value of 4,
n
P nr (5) 2n

ﬁF<n+1>~ n’ (n > o),
2

so that the general estimate 1 < «/n is close to optimal, in an asymptotic
sense. It will now be shown that the L® spaces are injective (actually P,-
spaces).

Lemma 2. Let L® be as in Lemma 1 and suppose that L* is (congruent
with) a subspace of a Banach space X. Then L® is constrained in X.

Proof. Let e be the identically one function in L* and define a sublinear
mapping g:X — L® by g(x) = ||x||e. Let f be the identity map on L*®.
Then f < g|M, and any extension of f to an operator P:X — L* for which
P < g will be a norm-one projection of X onto L®. The proof that such an
extension exists is essentially a copy of a standard proof of the Hahn-Banach
extension theorem (6A), except that L* plays the role of range space instead
of R.

To proceed with this proof we consider the family of all linear extensions
F of f to some subspace M with L* < M < X such that F < g|M. This
family can be partially ordered by saying that F, < F, if F, is an extension
of F,, and use of Zorn’s lemma yields a maximal extension F of f such that
F < g|M where M is the domain of F. It remains s only to see that M = X.

If not, there exists x, € X\M and we can define F 00N M, = span{xo, M}
by Fo(x + txo) = F(x) + tB, for every t € R. Then F, is a proper extension
of F and we complete the proof by showing that a choice of f exists for which
Fy < g|M,. Forany x, y € M we have

F(y) - Fx) = F(y — x) < g(y — X) < g(y + Xo) + 9(—Xo — X),
whence - N
—9(—xp — x) = F(x) < g(y + x0) — F(y).
Since the left side of this inequality is independent of y, and the right side
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is independent of x, we can apply Lemma 1 to obtain the existence of § € L”
for which

—g(—x — x) — F(x) < B < g(x + xo) — F(x), xeM.

With this definition of § the inequality F, < g|1\710 is easily seen to hold,
and we can therefore conclude that F, > F, F, # F, which contradicts the
maximality of F. O

It is evident from an inspection of the proof that the Banach space
structure of X and L™ was not used at all, and so it would have been possible
to formulate a purely algebraic version of this extension theorem for ordered
linear spaces with the bounded completeness property. However, the prime
examples of such spaces (among Banach spaces) are the L* spaces so that
the extra generality has not seemed worthwhile.

Throughout this section we shall use the notation X ~ Y to indicate
that the Banach spaces X and Y are isomorphic. Let L* = L>®([0, 1], R).
Then it is easy to verify that L* ~ L* x L*® and that m ~ m x m (these
product spaces may each be normed by ||(x, y)|| = max(||x| Y|w)- We
now have our basic result due to Pelczynski.

00

Theorem. m ~ L*.

Proof. From 23D we know that L®, being dual to the separable space
L', is congruent with a subspace of m. Since L® is injective by Lemma 2
there is a complementary subspace X in m, and so we have m ~ X x L%
(9D). On the other hand, we can directly embed ms into L*; for example,
by choosing a pairwise disjoint sequence {E,} of chunks in [0, 1] and
defining T: m — L= by

T(X) = i énXE,,, X = (él, 62’ . ) € M.
n=1

(The sum is pointwise convergent but does not, of course, converge in the
L™ topology.) Hence there is a complementary subspace Y for T() because
m is injective (the existence of Y is easily seen directly in this case), and so
L* ~ m x Y. We now have

L ~mxY~(mxm)xXY~mx(mxY)
~mX L® ~(X x L) x L* ~ X x (L*® x L%)
~ X x L® ~m. 0

It will be noted that this is quite a non-constructive proof and, in fact,
an explicit isomorphism between m and L® is not known.

It is clear that we can similarly embed £ isometrically in LP (1 < p < o0).
However, it was shown by Banach that L? cannot be even isomorphically
embedded in ¢? (unless p = 2).

Some of the interest in this theorem derives from the fact that the respec-
tive pre-dual spaces ¢! and L' are not isomorphic (although by 23D L' is a
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quotient space of £!). Indeed, L' cannot be isomorphic to any conjugate
space (23D, Ex. 2). Thus we see that although isomorphic spaces must have
isomorphic conjugates, the converse is not true. An even more surprising
possibility along these lines is pointed out in 25E.

B. We are now in position to prove our general isomorphism theorem.
Let (R, Z, u) be a measure space for which the spaces L?(Q, u, F') are separable
for 1 < p < oo (exercise 2.24). Note that the measure u is necessarily o-finite.
Also we consider the space Lip([0, 1], F') of all Lipschitz continuous F -valued
functions on [0, 1] with the norm ||-||, defined by (10.5).

Theorem. L*(2, u, F) ~ Lip([0, 1], F).

Proof. As usual, we can restrict our attention to the case of real scalars:
F = R.Let M be the subspace of Lip([ 0, 1], R) consisting of those functions
which vanish at 0. The map that sends fe M into f'e L*([0,1],R) is
clearly an isomorphism (actually a congruence). By 24A there is an isomor-
phism T:M — m. Now consider the map S:Lip([0, 1],R) » R! @ m de-
fined by S(f) = (f(0), T(f — f(0)e)), where e is the identically one function
on [0,1]. Then S is clearly an isomorphism, and since m ~ R' ® m
trivially, we have shown that Lip([0, 1],R) ~ . It remains to see that all
L*(Q, u, R) spaces are isomorphic. This is a consequence of 24A along
with some measure theory.

Consider first the case where u is non-atomic (15E). If u(Q) = 1 then
there is an isometry between its associated metric space (exercise 2.24b) and
that of Lebesgue measure on [0, 1]. This is a consequence of the isomorphism
theorem from measure theory which states that any separable, non-atomic,
normalized measure algebra is isomorphic to the measure algebra of the unit
interval. Given this correspondence between measurable sets we obviously
can obtain a correspondence between characteristic functions defined by
subsets of ¥ and those defined by the measurable subsets of [0, 1]. This
correspondence extends by linearity to the simple functions where it becomes
isometric, and thence to an isometry from L*(Q, u, R) onto L*([0, 1], R).
If u(Q) is finite we still clearly can obtain an isometry from L®(Q, u, R) onto
L*([0, 1],R). Finally, if u(2) is infinite we can in this manner obtain a
congruence between L®(Q, u, R) and L*(R,R). However, L*(R,R) is con-
gruent to L*([0 1],R); for example, via the map f > f o g, where g(t) =
tan n(t — 4),0 <t < 1.

Now the most general ¢-finite measure space (R, Z, u) will contain some
atoms, but at most countably many. Thus we can obtain a partition Q =
A U B where 4 is the union of the atoms in ¥ and B = Q\4 is either a null
set or else a subset of X on which u defines by restriction a non-atomic
measure. Clearly L®(Q, u,R) = L*(A4, uy, R) ® L®(B, ug, R) where p,
(resp. ug) is the restriction of u to the measurable subsets of 4 (resp. of B).
The first of these summands is isomorphic to either (R", ||-||,,) if n = card(4)is
finite, or else to ms; the second summand is isomorphic to L*([0, 1], R) or else
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w(B) = 0. Making use of 24A it is now clear that we have L®(Q, 4, R) ~ m
in all cases.

It is interesting to remark that some other function spaces on [0, 1] are
also known to be isomorphic to 7 (and hence to all of the preceding spaces).
Namely, the spaces H, = H,([0, 1], R) of all Holder-continuous functions
on [0, 1] of order « are each isomorphic to , if the norm on H, is defined

as max{|| ||, ||/]ls}, where
1]l = inf{d > 0:|f(s) — fO| < As — £ 0<st<1} O<a<l

Furthermore, in contrast with the preceding case (¢ = 1), Ciesielski has
shown that an isomorphism between H, and m can be effectively written
down in terms of a standard family of step functions on [0, 1] known as
the Haar functions.

C. There are two general reasons why isomorphism theorems are of
interest. The first and more obvious reason is that we may thereby easily
gain some new information about particular spaces. For example, based on
our knowledge of L*® spaces the preceding theorem allows us to conclude
that Lip([0, 1], F) is a non-separable P;-space. A second and more basic
reason for the importance of such theorems depends on their interpretation
as providing equivalent norms that have more pleasant or useful geometric
properties than a given norm. This technique is frequently employed in non-
linear functional analysis wherein non-convex sets (for example, manifolds)
and non-linear mappings between them are studied. In many cases only
topological properties of the sets and mappings are of interest, and these of
course are unchanged by a renorming. However, the new norm may facilitate
certain constructions. We have seen some uses of this technique in 15C and
a further example is mentioned in 25F.

§25. Universal Spaces

In this final section we discuss the concept of a universal Banach space
and give some examples. The interest in such spaces is discussed in 25F.

A. A Banach space Y is universal for a class ¥ of Banach spaces if
every X € € is congruent to a subspace of Y. The simplest example of a
universal space is the sequence space s.

Example 1. Let € consist of all separable Banach spaces and their
conjugate spaces. Then s is universal for €. Indeed, let X be a separable
Banach space. Then U(X *) is a compact metric space in the weak*-topology,
and in particular there is a sequence {¢,} that is weak*-dense in U(X*).
Define T: X — m by T(x) = (¢,(x)), x € X. Then T is linear and

170911 = sup o] = [}

so that T is a congruence of X with some subspace of m. On the other
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hand, the argument given at the end of 23D shows how to construct a
congruence between X * and a subspace of . H

Thus ms is, in a sense, a “macrocosm” of all the Banach spaces of much
real interest. It can further be shown that any separable metric space can
be isometrically embedded in m. Clearly, if a Banach space Y contains a
subspace congruent to 7 then Y is itself universal for the class of separable
spaces and their conjugates. Examples of such spaces Y are the spaces
L®(Q, u, F) of 24B.

Let Q be a topological space. The density character dens(Q) of Q is the
smallest cardinal number of a dense subset of Q. Thus, for instance, Q is
separable if and only if dens(Q) < N,. We note that the density character
ofatopological space is always well-defined, since any set of cardinal numbers
when ordered according to size is well ordered. Some further examples and
properties of dens(-) occur in the exercises.

Example 2. Let X be a Banach space. Then there exists a compact
Hausdorff space Q with dens(Q) < dens(X) such that X is congruent to a
subspace of C(Q, F). To see this we let 2 = U(X*) given the (relative) weak*-
topology. The map x i £|Q, x € X, is clearly a linear isometry of X into
C(Q, F), since

Xl = sup{l)|:[|¢]| < 1} = sup{|<s, [:l]| < 1}-

To estimate dens(Q2) we let {x,:a €I} be a dense set in dU(X) and for
each a choose ¢, € U(X*) with ¢,(x,) = 1. Then, for each x e X, ||x|| =
sup{[<x, ¢,>|:a €I}, so that by the extended Krein-Milman theorem (13B)
we have ¢0* ({¢,:a € I}) = U(X*) = Q. In particular, rational convex com-
binations of the ¢, are dense in Q, whence dens(Q2) < N, card(I) = card([),
and therefore dens(Q) < dens(0U(X)) = dens(X). ]

Thus any Banach space can be isometrically embedded in some space
C(Q, F) where Q is “not too large”. In particular, every separable space can
be embedded in some space C(Q, F) where Q is compact metric, that is, in
a separable space of type C(Q, F). It is now natural to inquire whether there
is a fixed compact metrizable space Q such that C(Q, ) is universal for the
class of all separable Banach spaces (over the field F). In exercise 4.30 it is
to be shown that a necessary condition for Q to serve this purpose is that
Q be uncountably infinite. We are now going to prove that this condition
on the cardinality of Q is also sufficient.

B. We begin with the most famous case of this result due to Banach:
the space C = C([0, 1], F) is universal for all separable Banach spaces. The
most expedient proof of this result depends on the result from topology
which states that any compact metric space is the continuous image of the
Cantor set.

Theorem. Any separable Banach space X is congruent with a subspace
of C.
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Proof. Let h be a continuous mapping from the Cantor set K onto
U(X*). Now the complementary set [0, 1]\K is a union of open intervals
I, = (s, t,) (“middle thirds”). The map h can be extended over each interval
I, via the definition h(4s, + (1 — A)t,) = Ah(s,) + (1 — Dh(t,), 0 < A < L.
The extended map, which we continue to call A, is clearly a continuous map
of [0, 1] onto U(X *). Define T:C(U(X *), F) — C by

T(g)(t) = g(h(t)), O0<t<'l

Clearly T is linear and isometric. Composing T with a congruence from X
into C(U(X*), F) yields the desired congruence between X and a subspace
of C. ]

C. A closed subset 4 of a topological space Q is perfect if it has no
isolated points, that is, if every point of 4 is an accumulation point of A.
If Q contains no perfect subsets it is said to be dispersed (scattered). Thus in
a dispersed space the isolated points are dense. Also, any dispersed space
must be totally disconnected in the sense that it contains no non-trivial
connected components.

We shall be interested in dispersed compact metric spaces. The simplest
example of such a space is the one-point compactification of a countable
discrete metric space. We can also consider ordinal sections. Let « be an
ordinal number and set I', = {¢:¢ < a}. With the usual order topology I',
is compact, and is metrizable exactly when it is countable, that is, when o
is less than the first uncountable ordinal w,. The spaces I', are dispersed,
and it is known that conversely any dispersed compact metric space is
homeomorphic to some space I',, where « < ®;.

Lemma 1. A real Banach space X is congruent with a subspace of C =
C(Q,R), where Q is a dispersed compact Hausdorff space, (if and) only if
ext(U(X*) )* is dispersed.

Proof. Suppose that T is a congruence of X with a subspace of C. Let
¢ e ext(U(X*)). Then ¢ o T~ e ext(U(T(X)*)) and so extends to a func-
tional € ext(U(C*)) (exercise 4.32). It follows that T*(y) = ¢ and we may
conclude that ext(U(X*)) = T*(ext(U(C*))). Since T* is weak*-continuous
(16C) and ext(U(C¥*)) is weak*-compact (13E, Ex. 4, and exercise 2.35), we
have

(25.1) XUUX M) < T*ext(U(CH))).

Now T* is continuous and surjective (16C) and hence is an open mapping
(17G). It is easy to check that the continuous open image of a dispersed
space is again dispersed. Therefore, if Q is dispersed it follows that ext(U(C*))
is dispersed, and from this that T*(ext(U(C*)) is dispersed. Hence from
(25.1) we conclude that ext(U(X *))* is also dispersed.

The converse is a consequence of the fact that a Banach space X can
always be isometrically embedded into C(Q2, F) where Q = ext(U(X *))*
(13B). 0
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From this lemma we can already see that not all infinite compact metric
spaces Q have that property that C(Q,R) is universal for real separable
Banach spaces. For example, the Euclidean spaces X = (R”, ||-||,) certainly
have ext(U(X*)) not dispersed, and therefore cannot be congruent with a
subspace of C(Q, R), for Q dispersed. In a moment we shall see conversely
that if C(Q2, R) does contain a copy of any Euclidean space (of dimension
> 1) then it must be universal, and Q must not be dispersed.

Lemma 2. Let Q be a compact metric space which is not dispersed. Then
there exists a continuous mapping from Q onto [0, 1].

Proof. Let P be a perfect subset of Q. We distinguish two cases.

a) P istotally disconnected. In this case P is known to be homeomorphic
to the Cantor set. Since any compact metric space (in particular, [0, 1]) is
the continuous image of the Cantor set, there exists a continuous map of P
on [0, 1]. This map can now be extended to all of Q by the Tietze extension
theorem (15C, Ex. 2).

b) If P is not totally disconnected then it contains a non-trivial compact
connected subset Q which is necessarily infinite. By virtue of being second
countable and completely regular Q can be homeomorphically embedded
in the “cube” [0, 1]™. Now considering Q as a subset of this cube project
it onto the various factors. Not all of these projections can consist of a
single point or else Q would be a singleton. Therefore, some projection is a
non-trivial compact connected subset of [0, 1], and hence is an interval
homeomorphic to [0, 1]. In this way we obtain a continuous map from Q
onto [0, 1], and this map can be extended to all of Q as usual. 0

We now have the following theorem due to Lacey and Morris.

Theorem. Let Q be a compact metric space. The following assertions are
equivalent.

a) C(Q,R) is universal for the class of separable real Banach spaces.

b) Some Euclidean space (R”, ||||,) for n = 2 is congruent with a subspace
of C(Q,R).

¢) C(Q,R) contains a smooth subspace of dimension > 2.

d) C(2, R) contains a subspace of dimension >2 with a strictly normed
conjugate space.

e) Q is not dispersed.

Proof. It is clear that a) implies b) implies c). If X is a smooth subspace
of C(2, R) let M be a subspace of X with 1 < dim(M) < oo. Then M* is
strictly normed by 20G and so d) holds. Next let X be a subspace satisfying
the condition of d). Suppose that Q is dispersed. Then by Lemma 1 so is
ext(U(X %)) ". But this set is just 9U(X ) * (13E, Ex. 5). Now either 9U(X *) "
equals 0U(X*) (if X is finite dimensional) or else it equals U(X *) (exercise
2.23C). Certainly U(X*) is not dispersed and since dim(X) > 1 neither is
0U(X*). Therefore, Q cannot be dispersed.

Finally, if e) holds let h:Q — [0, 1] be the continuous surjection guar-
anteed by Lemma 2. Then the map g — g o h defines a linear isometric
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embedding of C([0, 1], R) into C(£2, R). It now follows from 25B that C(©2, R)
is universal. a

D. The final step in our program can now be taken. This involves
proving that an uncountable compact metric space is not dispersed. This
fact is in turn an immediate consequence of the following classical topological
result, known as the “Cantor-Bendixson lemma”. Let us recall that a point p
in a topological space Q is a condensation point if every p-neighborhood
contains uncountable many points of Q.

Lemma. Any separable metric space Q can be partitioned into the union
of a perfect set and a countable dispersed set.

Proof. Let Q, be the union of all perfect subsets of Q and set Q, =
Q\Q;. Then Q, is closed, hence perfect, while Q, is by definition dispersed.
Let Q, be the set of all condensation points of Q. Then Q, is a perfect set
and so ©, ¢ Q,. The proof can now be completed by showing that Q\Q, is
countable, since we have Q, = Q\Q, < Q\Q,.

Since Q is separable it is 2" countable and there is a countable basis
{Vi, Vs, ...} for the topology. For each p e Q\Q, there is a p-neighborhood
W such that W is countable, and there is an integer n(p) such that V,,, = W,
whence V,, is countable. Now the set 4 = U{V,,,:p € Q\Q.} is countable
and contains Q\Q,; this proves that Q\Q, and hence @, is countable. []

The main result on universal spaces is now at hand. Notice that in
contrast with 25C there is no restriction on the underlying scalar field.

Corollary. Let Q be a compact metric space. Then C(Q, F) is universal
Jor the class of separable Banach spaces (over the field F) if and only if Q
is uncountable.

Proof. The necessity is a consequence of exercise 4.30. For the converse
it is sufficient to find a continuous map h from Q onto [0, 1], as this will
show that C([0, 1], F) is congruent with a subspace of C(Q, F) and 25B can
be applied. By Lemma 2 the map & can be constructed provided that Q is
not dispersed. But this is a consequence of the Cantor-Bendixson lemma
and the assumption that Q is uncountable. O

E. Let Q be a compact metric space. It is seen from the Lacey-Morris
theorem that the decisive geometric criterion for determining the universality
of the space C(Q, R) is whether or not it contains a non-trivial smooth
subspace, or, equivalently, whether or not it contains a non-trivial subspace
with a strictly normed conjugate. It is interesting to consider what kinds of
continuous functions on Q can compose such a subspace. In general such
functions exhibit a somewhat pathological behavior. For example, let Q =
[0, 1], and suppose that X is a subspace of C([0, 1], R) with a strictly normed
conjugate and satisfying 3 < dim(X) < oo. Let {x,,..., x,} be a linearly
independent set in X with n < dim(X). Then, as has been observed by
Donoghue and Smith, the curve t > (x,(¢), . . . , x,(t)) is a space-filling curve
in R”, that is, it covers some open set in R".
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F. Let us make a few further and final remarks about the material in
this section. The theory of universal spaces is of interest for several reasons.
First, it is a conceptual aid in thinking about Banach spaces in general to be
able to encapsulate the most important classes into a single space, such as
m or C([0, 1], F). Second, and more importantly, it is frequently possible
to establish some property for a class of Banach spaces by establishing it
first for a particular universal space and then verifying that the property is
hereditary, in the sense that it is possessed by all subspaces of the universal
space. It then follows that all Banach spaces in the class under consideration
have the property.

An outstanding example of this method is the problem of renorming
certain Banach spaces so that the new norm has some desirable property
not enjoyed by the original norm. For example, to prove that all separable
Banach spaces have an equivalent strict norm (15C) it suffices simply to
note that the norm ||-||,, + ||||. is an equivalent strict norm on C([0, 1], F).
Of greater import is the fact that it is possible to prove that C([0, 1],R)
admits an equivalent locally uniform norm, that is, a norm p with the property
x + X,

2
This notion is evidently mid-way between the notions of strict norm and
uniform norm that we have encountered earlier. Once this has been done it
follows that all separable real Banach spaces admit equivalent locally
uniform norms. The existence of such equivalent norms was one ingredient
in the proof of the famous theorem of Kadec to the effect that all separable
infinite dimensional Banach spaces are homeomorphic.

A second remark concerns the spaces C, = C(I',, R), where I', is the
ordinal section introduced in 25C. Assuming that o < w, the spaces I', are
countable, and hence C¥ is congruent to £!(,). On the other hand, the
spaces C, for infinite ordinals & < w, are not all isomorphic. In fact, Bessaga
and Pelczyfiski have shown that for « < f < w;, C, ~ C; if and only if
B < a®, where w is the first infinite ordinal. In particular, the spaces C,
and C,, are not isomorphic yet their conjugate spaces are congruent (!)
This surprising example answered a long standing question posed originally
by Banach, and may be contrasted with the earlier example of the non-
isomorphic spaces {'(N,) and L'([0, 1], R) whose conjugate spaces are
isomorphic (but not congruent).

A third remark pertains to some further work of Pelczynski, who has
shown that while there are other kinds of separable universal Banach spaces
besides those of 25D, the space C(K, C) is, in a sense, the smallest possible
such space. (Here K is the Cantor set.) More precisely, let 2 be an uncountable
compact metric space, and let 4 be a function algebra on Q; that is, let A be
a closed subalgebra of C(Q, C) which contains the constant functions and
separates the points of Q. An example of such an algebra is the space A(Q)
where Q is a closed disc in the complex plane (10D, Ex. 5). Then any function
algebra is universal for the class of separable Banach spaces. However, it

that whenever p(x), p(x,) < 1 and lim p< = 1 then lim x, = x.
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has also been shown that any separable universal Banach space contains a
constrained subspace which is congruent to C(K, C).

Finally, we remark that while no (separable) reflexive space can be
universal for all separable Banach spaces (as a consequence of exercise 4.33),
it is possible for such a space to be universal for the class of all finite
dimensional spaces (but not for the class of all separable reflexive spaces).
Indeed, there is an example due to Szankowski of a separable reflexive
space X such that every finite dimensional Banach space is congruent with a
constrained subspace of X.

Exercises

4.1. Prove formula (22.3). (To prove the inclusion from left to right consider
first the case where ¢ € U(X *) has norm one.)

4.2. Let X be an order unit normed linear space with order unit e. If ¢ € X*
satisfies ||@|| = ¢(e) then ¢ is a positive linear functional.

4.3. Show that the correspondence u — @, of 22B is bipositive in the sense
that u is a positive Borel measure if (and only if) {o x du > 0 for all
non-negative x € C(Q, R).

4.4. Let Q be a compact Hausdorff space. Suppose that {x,} is a bounded
sequence in C(Q, F') that is pointwise convergent to 0: lim, x,(t) = O,
t € Q. Show that x, converges weakly to 6. Show by example that this
conclusion may fail if {x,} is replaced by a bounded pointwise con-
vergent net in C(Q, F).

4.5. Let Q be an extremally disconnected topological space.

a) Any two disjoint open subsets of Q2 have disjoint closures.

b) If Q is metrizable (more generally, first countable) then Q is discrete.

¢) No sequence in Q can converge unless it is eventually constant.

4.6. a) Use the Riesz-Kakutani theorem to give a new proof of the fact

that a Banach space X is reflexive if U(X) is weakly compact (16F).
(Given @ € U(X**), define a Borel measure u on U(X) by &(¢p) =
fuo ¢|UX)du, ¢ € X*. Then |u|(U(X)) = |||y < 1. By 13B, E,
u is the weak* -limit of a net of atomic measures of the form
Y c6@, where {x{®} is, for each a, a finite subset of U(X), and
™ >0, ¢ = 1. Now consider any weak cluster point in U(X)
of the net {) ¢”x{}.)

b) Use the fact that reflexivity of a Banach space is equivalent to the
weak compactness of its unit ball to give a new proof of the reflexivity
of all closed subspaces and quotient spaces of a reflexive space.
(For the quotient space argument use 15B and 161.)

4.7. Let v be a positive regular Borel measure on a compact Hausdorff
space Q. Prove the two assertions made about the support of v in 22E.

4.8. For any real Banach space X the set 22(X) was defined in 20E. For
any compact Hausdorff space Q show that 2(C(2, R)) can be identified
with the set of measures y € #,(Q, B, R)suchthato(pu*) N o(u™) = .
(u* and u~ were defined in 22B.)
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4.9.

4.10.

4.11.

4.12.

4.13.
4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

Conjugate Spaces and Universal Spaces

Prove that the space of all polynomial functions on [0, 1] normed by
the uniform norm is not subreflexive.

Let x be a normalized peak function in m = m(Q, R), so that |x(1)| =
[[x[], =1 for a single ¢ e Q. Show that x € sm(U(m)). (This can be
done in two ways: either directly by use of the representation of ms*
(16H), or by use of the congruence m — C(B(2), R), and the result of
20F, Ex. d.)

Generalize the example of 22F to compact spaces other than [0, 1].
What must be assumed about such spaces for that proof to still apply?
Use the Dixmier-Ng theorem to show that the spaces m(Q, F) and
£1(Q, F) are conjugate spaces.

Show that any reflexive space has a unique pre-dual.

Determine a pre-dual of the Lipschitz space Lip(®, d, F). (Consider
the linear span of the evaluation functionals {,:t € Q} in Lip(, d, F).
This space can in turn be identified with the free vector space generated
by Q.)

Let X be a Banach space and V a subspace of X*.

a) Suppose that J,, = Jx  has a bounded inverse. Prove

197 {1 = sup {]|||:x € TX)"},

where ¢ = 6(X, V).

b) Suppose that X** = J,(X) @ V° and let P: X** — J,(X) be the
associated projection. Prove that ||J; || = ||P|].

Let X be a Banach space.

a) Show that X is reflexive if and only if X * contains no proper total
closed linear subspace.

b) Assume that X is separable. Show that X is reflexive if and only if
every total sequence in X * is fundamental (9F).

Let X be a separable Banach space.

a) Show that X* contains a separable duxial subspace.

b) Let X be the Lebesgue space L([0, 1], F). Show that the space
C([0, 1], F) as a subspace of L*([0, 1], F) is a (separable) duxial
subspace of X*.

Let M be a (closed) complemented linear space of a Banach space X,

and suppose that M is a conjugate space. Then there exists a minimal

projection on M, that is, a projection: X — M whose norm is < that
of any other projection of X on M. (Use the method of the example
in 23B.)

Show that the sequence space ¢, is not complemented in the space s,

thereby proving anew that ¢, is not isomorphic to any conjugate space.

(A simple proof can be constructed along the following lines. Suppose

that Z is a complementary subspace for ¢y in m:¢, @ Z = m. Then

Z is isomorphic to m/c, (exercise 2.2). Now there exists a countable

total set in m*, hence there is such a set in Z*, and therefore also in

(m/co)*. This last assertion leads to a contradiction. To obtain it, we
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4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

4.26.

4.27.

4.28.

4.29.
4.30.
4.31.

4.32.

4.33.

4.34.

make use of a fact about any countable set N: there exists an un-
countable family {U,} of infinite subsets of N such that U, n U, is
finite whenever a # S. Applying this fact to the case where N =
{1,2,...} welet f, be the coset in m/c, that contains the characteristic
function of the set U, Show that for any ¢ € (m/co)* the set {f,:
¢(f,) # 0} is countable. From this it follows that if {¢, } is any sequence
in (m/co)* then {f,:¢u(f,) # O for some k} is countable, whence {¢, }
cannot be a total subset of (m/cy)*.)

Let P:L®* — L! be the projection constructed in 23D, Ex. 2. Show
that °ker(P) = {6} <= L®.(One way to proceed is to select any f € L*®
(f # 0) and show that there is some ¢ € ker(P) such that {f, ¢)> # 0.
Consider separately the cases where f is or is not continuous on [0, 1].)
Fill in the details of the proof of the lemma in 23E. (The problem is to
show that the net {¢;:6 € D} is a relatively compact subset of X*.
For every ¢ > 0 show that there exists J, € D such that the tail {¢;:
0 > 0,} has a finite ¢-net. This result can then be used to show that any
subnet of {¢;: € D} has a Cauchy subnet.)

Consider the subspace of #([0, 1], B, R) consisting of those measures
that are absolutely continuous with respect to Lebesgue measure. Is
this subspace weak*-closed in C([0, 1], R)*?

Give a direct proof that any space m(Q, R) is a P,-space.

In §24 it is shown that m ~ L*([0, 1], F). Are these spaces in fact
congruent?

Show that the spaces (R”, ||-||,) are P;-spaces with < n'/? (1 < p < o0).
Show that any separable metric space can be isometrically embedded
in m, and consequently can be so embedded in C = C([0, 1], R).
(Thus C is universal for all separable metric spaces.)

Show that the density character of a metric space is equal to the largest
cardinal of a discrete (or isolated) subset.

Let X be a normed linear space. Prove that dens(X) < dens(X*), and
give examples where equality (resp. strict inequality) holds.

Compute the density character of a space m(R, R). (Answer: 2% %))
Let Q be a countable compact metric space. Show that C(Q, F) cannot
be universal for the class of separable Banach spaces.

a) Prove that a dispersed topological space is totally disconnected.
b) Prove that the oridinal sections I', (x < w,) are dispersed compact
metric spaces in the order topology.

Let M be a subspace of a normed linear space X. Suppose that ¢ €
ext(U(M*)). Show that there exists an extremal extension of ¢, that is,
a functional ¢ € ext(U(X*)) such that ¢|M = ¢. (Consider the set
of all norm-preserving extensions of ¢ in X*).

Let X be a separable Banach space, universal for the class of all
separable Banach spaces. Show that X cannot be isomorphic to a
conjugate space.

Show that the sequence space ¢ (space of all convergent scalar
sequences), and hence its subspace ¢,, has no infinite dimensional



234

4.35.

4.36.

4.37.
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reflexive subspace. (Let M be an infinite dimensional subspace of ¢.
Apply 25C and 17J. Compare with the example in 18C.)

Prove that any separable Banach space X can be smoothly renormed,
that is, admits an equivalent smooth norm. (Construct an equivalent
strict norm on X* via 15C, Lemma 2, which is weak*-lower semi-
continuous; then apply 18F and 20G.)

Determine a congruent representation of the conjugate of the space
Co(Q, F) of exercise 2.30 as a space of Borel measures on Q.

Let NBV = NBV([a, b], R) be considered as the conjugate space of
C([a, b], R) as in 22D. Show that a bounded sequence {g,} = NBV
converges weak* to ge NBV if and only if lim, g,(tf) = g(¢) at each
point ¢ of continuity of g.
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The purpose of the following remarks is to suggest collateral reading to
supplement the material in this book. The references given below have been
chosen, for the most part, not to be redundant with the present material,
but rather to indicate further developments of topics studied above or else,
in a few cases, to serve as introductions to material that has not been dis-
cussed above, but which is felt to constitute an important aspect of functional
analysis and its applications.

For general introductory treatments of functional analysis the texts by
Taylor (1959), Goffman-Pedrick (1965), Brown-Page (1970), Larsen (1973),
and Rudin (1973) are recommended. More compendious treatments are the
Edwards volume (1965) and the massive Dunford-Schwartz trilogy (1958-
71). An overview of Banach space theory (in a somewhat compressed format)
is given by Day (1973), and the classical Banach spaces are studied in the
recent monographs of Lindenstrauss-Tzafriri (1973) and Lacey (1974). The
theory of general linear topological spaces is well covered by Kelley,
Namioka, et al. (1963) and Schaefer (1971), and the specialized theory of
Hilbert spaces is treated by Halmos (1951, 1967) and Maurin (1967).
Operators on general Banach spaces are discussed by Goldberg (1966) and
Kato (1966), as well as by Dunford-Schwartz, and on Hilbert spaces by
Riesz-Nagy (1955), Gohberg-Krein (1969), Beals (1971), as well as by
Halmos and Dunford-Schwartz, Part II.

Functional analysis provides (as we hope has already been demonstrated)
a powerful and unified approach to problems of optimization. Detailed
developments of this theme are given by Luenberger (1969), Balakrishnan
(1971), Pshenichnii (1971), Girsanov (1972), Holmes (1972a), and Laurent
(1972). Applications to engineering are given by Porter (1966) and Naylor-Sell
(1971), to optimal control by Hermes-LaSalle (1969), and to mathematical
economics by Telser-Graves (1972). Functional analytic treatments of partial
differential equations have been given by Treves (1967) and Carroll (1969), as
well as by Dunford-Schwartz, Part II. Applications to approximation theory
are covered by Singer (1974), as well as by Holmes and Laurent.

We now indicate some specific references to accompany particular
sections or sub-sections. '

§1. Jacobson (1953).

§2. Valentine (1964), Stoer-Witzgall (1970).

§3. Rockafellar (1970), Stoer-Witzgall, Holmes.

§4. Klee (1969).

§5. Jameson (1970).

§7. 7B-C: Fan (1956).

§8. 8B-E: Rockafellar; 8F: Phelps (1963).

§9. Kelly, Namioka, et al., Schaefer; 9C: Deutsch (1966).
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§10. Kelly, Namioka, et al., Schaefer.

§11. Kelly, Namioka, et al.

§12. Kelly, Namioka, et al.

§13. 13C: Klee (1957); 13D: Buck (1965); 13E, Ex. 2: Hoffman (1962);
Ex. 3: Roy (1968); Ex. 6: Bohnenblust-Karlin (1955).

§14. 14B-E: Moreau (1967), Pshenichnii; 14F-H: Tuy (1972).

§15. 15A:Fan (1956, 1968); 15C, Ex. 1: Bonsall (1962); Ex. 2: Michael-
Pelczynski (1967); 15E: Kingman-Robertson (1968), Hermes-LaSalle.

§16. 16I: Civin-Yood (1957).

§17. 17H: Gale-Klee (1959); 17J: Lindenstrauss-Phelps (1968).

§18. 18A-E: Day.

§19. 19A-C: James (1964); 19F: Bartle-Dunford-Schwartz (1955).

§20. 20A-B: Phelps (1974); 20C: Peck (1971); 20D: Brondsted-
Rockafellar (1965); 20H: Phelps (1960), Holmes (1971).

§21. 21A: Sard (1963); 21B: Laurent, Holmes (1972b); 21C: Michael
(1956), Parthasarathy (1972); 21D: Browder (1968); 21E: Bazaraa et al.
(1972), Karamardian (1972).

§22. 22F: Lindenstrauss-Tzafriri (1971).

§23. 23C: Namioka (1967).

§24. 24B: Ciesielski (1960), Lacey-Bernau (1974).

§25. 25C: Pelczynski-Semadeni (1959); 25D: Lacey-Morris (1968);
25F: Kadec (1967), Semadeni (1963), Pelczyniski (1967), Szankowski (1972).
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1-1 operator

canonical embedding
functions vanishing at infinity
L? product

support function

weakly topologized space
bounded weak* topology
absolute polar
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smooth points
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isomorphic

density character

first uncountable ordinal
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absorbing, 13 of singularities, 136
algebraic point, 229

boundary, 7 condition

conjugate space, 3, 40 Dubovitskii-Milyutin, 116
archimedean, 202 Fan, 25, 97
atom, 106 Helly, 24

Hurwicz saddle-point, 92
iterated limit, 157

Baire 1
measure, 204 Mazur-Orlicz, 27, 43
space, 132, 193 Pshenichnii, 87

balancec’i 6 ’ Slater regularity, 89

ball, 70 ’ Tuy inconsistency, 90

Banach space, 61 cone, 17

bang-bang principle, 109 recession, 34

barrel, 54 congruence, 121

barycentric coordinates, 8 conjugate

base, 55 function, 116
local, 47 mapping, 121

basis, 1 space, 64

best approximation, 98 consistent, 90

bipolar, 67 constrained, 213

bipositive, 205 continuous dual, 64

Borel measure, 50, 204 contractible, 48

Borel-Stieltjes measure, 207 convex

bounded, 52, 109 combination, 6
linear map, 62 core topology, 110
totally, 53 function, 10
weak*-topology, 150 hull, 6

mapping, 90
set, 6

canonical embedding, 3, 122
canonically isomorphic, 5
Cantor-Bendixson lemma, 229

core, 7
cross-section, 184

carrier, 181
lower semicontinuous, 182 demicontinuous, 173
upper semicontinuous, 186 density character, 226, 233
category, 132 dimension, 2, 9
Cauchy net, 61 direct sum, 2
chunk, 128 directional derivative, 28
Clarkson-Rieffel lemma, 100 dispersed, 227
closed mapping, 139 duxial, 213
codimension, 2
compact

epigraph, 10
extension, 3, 102
unique, 174-176
extremal set, 32
extreme point, 32, 73-82, 106-107,
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countably, 145

sequentially, 72

weakly, 66, 145-149, 157, 196

weak*, 66
compatible, 46
complementarity problem, 188
complete, 61

boundedly, 221

quasi-, 61 Farkas-Minkowski lemma, 92

semi-, 61 feasible direction, 87
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flat, 2
Fourier series, 136-138
function
concave, 37
convex, 10
distribution, 207
objective, 36
support, 143, 158, 196
function algebra, 230
functional
evaluation, 67, 81
linear, 3
positive, 17
strictly positive, 18
support, 166
fundamental, 53

gauge, 13, 41, 110

Goldstein-Weston density lemma, 126
gradient, 29

graph, 139

half-space, 15
Helly selection principle, 207
homogeneous, 48
hull
affine, 7
balanced, 6
closed affine, 83
closed convex, 60
convex, 6
linear, 1
hyperplane, 4

ideally convex, 138, 201
independent

affinely, 8

linearly, 1
infimal convolution, 12
injective, 222
intrinsic core, 8
interior

algebraic, 7

relative, 83
isometry, 81
isomorphic, 2, 51
isomorphism into, 120

join, 6

Kadec and Klee lemma, 220
kernel, 4

Lagrangian function, 93
Lifshits’ lemma, 139
lineality, 33

space, 33
line-free, 33, 76

Subject Index

linear
combination, 1
functional, 3
map, 2
topology, 46
topological space, 46
line segment, 6
locally convex space, 53

M-space, 204
minimal
projection 232
subspace, 213
moment problem, 44, 215
monotone, 11, 18

n-simplex, 8
Namioka’s lemma, 216
non-atomic, 106, 118
non-support points, 111
norm, 14
dual, 155
duality map, 155
equivalent, 100, 117, 196
locally uniform, 230
order unit, 202
uniform, 57, 197
normable, 56
normed linear space, 56

operator, 123

order unit, 202

ordered linear space, 17
ordinal section, 227

p-ball, 13
p-norm, 13, 57
paracompact, 48, 182, 200
partition of unity, 181, 200
peak function, 170, 232
perfect, 227
Phelps-Brondsted-Rockafellar
lemma, 165
point
bounding, 7
conical support, 164
extreme, 32
extreme support, 113
fixed, 101, 186
regularly exposed, 198
smooth, 31, 169
support, 21, 165-167
polar, 41, 67, 113
absolute, 151, 195
polyhedron, 179
positively
generated, 17
homogeneous, 13
pre-dual, 212



Subject Index

product, 2
program, 36

dual, 93

well-posed, 94
projection, 3, 109

metric, 100, 197
property(U), 174
proximinal, 98, 116
purely atomic, 106

quasi-
convex, 41
linearization, 11, 192
reflexive, 131, 192
quotient
map, 5
space, 2
topology, 51

R-spline, 178, 200
rank, 62
reflexive, 125-127, 161, 192, 196
regularizing set, 90
reproducing, 17
residual set, 132
right-inverse, 184, 200
rotund, 81
uniformly, 162

saddle-point, 93
weak, 94
Schur’s lemma, 149
selection, 183
semi-
extremal, 32, 44
norm, 14
separated, 15
strictly, 16
strongly, 16
sequentially dense, 145
slice, 161
smooth, 31, 169
smoothly normed, 169, 234
Sobolev space, 179, 199
solid, 59
Stone-Cech compactification, 113, 205
strictly normed, 81, 99-100
strong topology, 187, 200
strongly
convex, 189, 201
monotone, 189, 201
subdifferential, 23
subgradient, 22, 84
g-approximate, 168
sublinear, 13
subreflexive, 168
subspace
affine, 2
Chebyshev, 175
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complementary, 2

linear, 1

uncomplemented, 210
support, 21, 209

tangent function, 30, 171

theorem
Alaoglu-Bourbaki, 70
Ascoli, 26
Baire, 132
Banach-Dieudonné, 154
Bartle and Graves, 184
Bartle-Dunford-Schwartz, 163
basic separation, 15
Bessaga-Pelczynski, 216
bipolar, 68, 195
Bishop-Phelps, 166, 169, 198
Borsuk-Dugundji, 102
Brouwer, 101
Buck-Phelps, 78
Carathéodory, 40
Clarkson, 162
closed graph, 140
Davis and Johnson, 220
Dieudonné, 104, 118
Dixmier-Goldberg-Ruston, 213
Dixmier-Ng, 211
Eberlein-Smulian, 147
Fan-Kakutani, 186
Gelfand, 218
Godini, 98
Golstein, 94
Hahn-Banach, 19, 65
inverse mapping, 141
James, 157
Karamardian, 190
Kingman and Robertson, 107
Klee, 36, 77
Klee-Tukey, 161
Klee et al., 35
Krein, 162
Krein-Milman, 74
Krein-Rutman, 20, 115
Krein-Smulian, 154
Lacey-Morris, 228
Liapunov, 108
Lindenstrauss-Phelps, 144
Mazur, 171
Michael, 183
Milman, 162
Minkowski, 35
open mapping, 141
Osgood, 193
Peano, 116
quotient, 5, 176
Riesz-Kakutani, 205
Roth-Williams, 155
Sard, 176
Schauder, 101



246

separation, 63
Singer-Yamabe, 49
Stone-Weierstrass, 209
strong separation, 64
subdifferentiability, 23
support, 21
Taylor-Foguel, 175

thin, 106

topological direct sum, 51

topology of pointwise
convergence, 51

total, 65

transpose, 5, 121

ubiquitous, 9
uniform boundedness principle, 134
uniformly normed, 162, 197
unit ball, 24, 54
universal
net, 61
space, 225

Subject Index

value, 36

variational
inequality, 188
pair, 36

vector ordering, 17

vertex, 17, 81

weak
convergence, 66
solution, 93
topology, 66
value, 93
weak*-
convergence, 66
operator topology, 215
topology, 66
wedge, 17
dual, 18
non-flat, 201
positive, 17, 42
Whitley’s construction, 147



