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Preface

This book is a basic algebra text for first-year graduate students, with some
additions for those who survive into a second year. It assumes that readers know
some linear algebra, and can do simple proofs with sets, elements, mappings,
and equivalence relations. Otherwise, the material is self-contained. A previous
semester of abstract algebra is, however, highly recommended.

Algebra today is a diverse and expanding field of which the standard contents
of a first-year course no longer give a faithful picture. Perhaps no single book
can; but enough additional topics are included here to give students a fairer idea.
Instructors will have some flexibility in devising syllabi or additional courses;
students may read or peek at topics not covered in class.

Diagrams and universal properties appear early to assist the transition from
proofs with elements to proofs with arrows; but categories and universal algebras,
which provide conceptual understanding of algebra in general, but require more
maturity, have been placed last. The appendix has rather more set theory than
usual; this puts Zorn’s lemma and cardinalities on a reasonably firm footing.

The author is fond of saying (some say, overly fond) that algebra is like French
pastry: wonderful, but cannot be learned without putting one’s hands to the
dough. Over 1400 exercises will encourage readers to do just that. A few are
simple proofs from the text, placed there in the belief that useful facts make good
exercises. Starred problems are more difficult or have more extensive solutions.

Algebra owes its name, and its existence as a separate branch of mathemat-
ics, to a ninth-century treatise on quadratic equations, Al-jabr wa’l mugabala,
“the balancing of related quantities”, written by the Persian mathematician al-
Khowarizmi. (The author is indebted to Professor Boumedienne Belkhouche for
this translation.) Algebra retained its emphasis on polynomial equations until well
into the nineteenth century, then began to diversify. Around 1900, it headed the
revolution that made mathematics abstract and axiomatic. William Burnside and
the great German algebraists of the 1920s, most notably Emil Artin, Wolfgang
Krull, and Emmy Noether, used the clarity and generality of the new mathemat-
ics to reach unprecedented depth and to assemble what was then called modern
algebra. The next generation, Garrett Birkhoff, Saunders MacLane, and others,
expanded its scope and depth but did not change its character. This history is
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documented by brief notes and references to the original papers. Time pressures,
sundry events, and the state of the local libraries have kept these references a bit
short of optimal completeness, but they should suffice to place results in their
historical context, and may encourage some readers to read the old masters.

This book is a second edition of Algebra, published by the good folks at Wiley
in 1999. I meant to add a few topics and incorporate a number of useful comments,
particularly from Professor Garibaldi, of Emory University. I ended up rewriting
the whole book from end to end. I am very grateful for this chance to polish a major
work, made possible by Springer, by the patience and understanding of my editor,
Mark Spencer, by the inspired thoroughness of my copy editor, David Kramer,
and by the hospitality of the people of Marshall and Scottsville.

Readers who are familiar with the first version will find many differences, some
of them major. The first chapters have been streamlined for rapid access to solv-
ability of equations by radicals. Some topics are gone: groups with operators,
Liiroth’s theorem, Sturm’s theorem on ordered fields. More have been added:
separability of transcendental extensions, Hensel’s lemma, Grébner bases, primi-
tive rings, hereditary rings, Ext and Tor and some of their applications, subdirect
products. There are some 450 more exercises. I apologize in advance for the new
errors introduced by this process, and hope that readers will be kind enough to
point them out.

New Orleans, Louisiana, and Marshall, Texas, 2006.
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I
Groups

Group theory arose from the study of polynomial equations. The solvability of
an equation is determined by a group of permutations of its roots; before Abel
[1824] and Galois [1830] mastered this relationship, it led Lagrange [1770] and
Cauchy [1812] to investigate permutations and prove forerunners of the theorems
that bear their names. The term “group” was coined by Galois. Interest in groups
of transformations, and in what we now call the classical groups, grew after 1850;
thus, Klein’s Erlanger Programme [1872] emphasized their role in geometry.
Modern group theory began when the axiomatic method was applied to these
results; Burnside’s Theory of Groups of Finite Order [1897] marks the beginning
of a new discipline, abstract algebra, in that structures are defined by axioms, and
the nature of their elements is irrelevant.

Today, groups are one of the fundamental structures of algebra; they underlie
most of the other objects we shall encounter (rings, fields, modules, algebras) and
are widely used in other branches of mathematics. Group theory is also an active
area of research with major recent achievements.

This chapter contains the definitions and basic examples and properties of
semigroups, groups, subgroups, homomorphisms, free groups, and presentations.
Its one unusual feature is Light’s test of associativity, that helps with presentations.
The last section (free products) may be skipped.

1. Semigroups

Semigroups are sets with an associative binary operation. This section contains
simple properties and examples that will be useful later.

Definition. A binary operation on a set S is a mapping of the Cartesian product
S x Sinto S.

For example, addition and multiplication of real numbers are binary oper-
ations on the set R of all real numbers. The set N of all natural numbers
1,2, ..., n, ..., the set Z of all integers, the set Q of all rational numbers, and
the set C of all complex numbers have similar operations. Addition and mul-
tiplication of matrices also provide binary operations on the set M, (R) of all
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n X n matrices with coefficients in R, for any given integer n > 0. Some size
restriction is necessary here, since arbitrary matrices cannot always be added or
multiplied, whereas a binary operation S X § — § must be defined at every
(x,y) € S xS (forevery x,y € S). (General matrix addition and multiplication
are partial operations, not always defined.)

More generally, an n-ary operation on a set S is a mapping of the Cartesian
product S =S x § x --- x S of n copies of S into S. Most operations in
algebra are binary, but even in this chapter we encounter two other types. The
empty Cartesian product 5O is generally defined as one’s favorite one-element
set, perhaps {0} or {@}; a O-ary or constant operation on a set S is a mapping
f {0} — S and simply selects one element f(0) of S. The Cartesian product
stis generally defined as S itself; a 1-ary operation or unary operation on § is a
mapping of S into S (a transformation of §).

For binary operations f : § x § — S, two notations are in wide use. In
the additive notation, f(x,y) is denoted by x + y; then f is an addition. In
the multiplicative notation, f(x,y) is denoted by xy or by x - y; then f is a
multiplication. In this chapter we mostly use the multiplicative notation.

Definition. Let S be a set with a binary operation, written multiplicatively. An
identity element of S is an element e of S such that ex = x = xe forall x € S.

Readers will easily show that an identity element, if it exists, is unique. In the
multiplicative notation, we usually denote the identity element, if it exists, by 1.
Almost all the examples above have identity elements.

Products. A binary multiplication provides products only of two elements.
Longer products, with terms x;, x,, ..., x,,, must break into products of two
shorter products, with terms x;, x,, ..., x, and Xx;,{, X;,5, ..., X, for some
1 £ k < n. Itis convenient also to define 1-term products and empty products:

Definition. Let S be a set with a binary operation, written multiplicatively. Let

n 21 (n 20, if an identity element exists) and let x|, x,, ..., X, € S.

If n=1, then x € S is a product of x;, x,, ..., x,, (in that order) if and only
if x = x;. If S has an identity element 1 and n = 0, then x € § is a product of
X|, X, ..., X, (in that order) if and only if x = 1.

If n 2 2, then x € S is a product of x|, x,, ..., x,, (in that order) if and only
if, for some 1 < k < n, x is a product x = yz of a product y of x, ..., x; (in
that order) and a product z of x;¢, ..., X, (in that order).

Our definition of empty products is not an exercise in Zen Buddhism (even
though its contemplation might lead to enlightenment). Empty products are defined
as 1 because if we multiply, say, xy by an empty product, that adds no new term,
the result should be xy.

In the definition of products with n = 2 terms, necessarily k¥ = 1, so that
x € § is a product of x; and x, (in that order) if and only if x = x; x,.
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Ifn=3,thenk=1o0rk=2,and x € S isaproductof x;, x,, x5 (in that order)
if and only if x = yz, where either y = x; and z = x, x5 (if k =1),0r y = x; x,
and z = x5 (if k = 2); that is, either x = x; (x,x3) or x = (x; x,) x;. Readers
will work out the cases n =4, 5.

Associativity avoids unseemly proliferations of products.

Definition. A binary operationonaset S (written multiplicatively) is associative
when (xy)z=x(yz) forall x,y,z € S.

Thus, associativity states that products with three terms do not depend on the
placement of parentheses. This extends to all products: more courageous readers
will write a proof of the following property:

Proposition 1.1. Under an associative multiplication, all products of n given
elements x|, x,, ..., x,, (in that order) are equal.

Then the product of x{, x,, ..., x, (in that order) is denoted by x; x5 --- x,,.

An even stronger result holds when terms can be permuted.

Definition. A binary operation on a set S (written multiplicatively) is commu-
tative when xy = yx forall x,y € S.

Recall that a permutation of 1, 2, ..., n is a bijection of {1,2, ...,n } onto
{1,2,...,n}. Readers who are familiar with permutations may prove the follow-
ing:

Proposition 1.2. Under a commutative and associative multiplication, x, (1
Xo2) " KXo (n) TX1 Xy 0 Xy for every permutation o of 1, 2, ..., n.

Propositions 1.1 and 1.2 are familiar properties of sums and products in N, Q,
R, and C. Multiplication in M, (R), however, is associative but not commutative
(unless n =1).

Definitions. A semigroup is an ordered pair of a set S, the underlying set of
the semigroup, and one associative binary operation on S. A semigroup with an
identity element is a monoid. A semigroup or monoid is commutative when its
operation is commutative.

It is customary to denote a semigroup and its underlying set by the same letter,
when this creates no ambiguity. Thus, Z, Q, R, and C are commutative monoids
under addition and commutative monoids under multiplication; the multiplicative
monoid M, (R) is not commutative when n > 1.

Powers are a particular case of products.

Definition. Let S be a semigroup (written multiplicatively). Let a € S and let
n 2 1 be an integer (n = 0 if an identity element exists). The nth power a” of a
is the product x| x, -+ x,, inthat x; =x, =---=x, =a.

Propositions 1.1 and 1.2 readily yield the following properties:
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Proposition 1.3. In a semigroup S (written multiplicatively) the following
properties hold for all a € S and all integers m,n =2 1 (m,n = 0 if an identity
element exists):

(1) am an =am+n ;

(2) (am)n - amn ;

(3) ifthere is an identity element 1, then a=1=1";

4) if S is commutative, then (ab)" = a" b" (forall a,b € §).

Subsets are multiplied as follows.

Definition. In a set S with a multiplication, the product of two subsets A and
BofSis AB={ab|ac A, beB}.

In other words, x € AB if and only if x = ab for some a € A and b € B.
Readers will easily prove the following result:

Proposition 1.4. If the multiplication on a set S is associative, or commutative,
then so is the multiplication of subsets of S.

The additive notation. In a semigroup whose operation is denoted additively,
we denote the identity element, if it exists, by O; the product of x;, x,, ..., x,,
(in that order) becomes their sum x; + x5 + - -+ + x,,; the nth power of a € §
becomes the integer multiple na (the sum x; + x, + -+ +x, in that x; = x, =

- = x, = a); the product of two subsets A and B becomes their sum A + B.
Propositions 1.1, 1.2, and 1.3 become as follows:

Proposition 1.5. In an additive semigroup S, all sums of n given elements
X, Xy, ..., X, (in that order) are equal; if S is commutative, then all sums of n
given elements x|, x,, ..., X, (in any order) are equal.

Proposition 1.6. In an additive semigroup S the following properties hold for
all a € S and all integers m,n 2 1 (m,n 2 0 if an identity element exists):
(1) ma+na=m+n)a;
(2) m (na)=(mn)a;
(3) ifthere is an identity element 0, then Oa = 0 = n0;
(4) if S is commutative, then n (a +b) = na +nb (forall a,b € S).
Light’s test. Operations on a set S with few elements (or with few kinds of
elements) can be conveniently defined by a square table, whose rows and columns

are labeled by the elements of §, in that the row of x and column of y intersect
at the product xy (or sum x +y).

Example1.7. | a b ¢ d
ala b c b
b|b c ac
clc ab a
d| b c ac
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For example, the table of Example 1.7 above defines an operation on the set
{a,b,c,d},inthat, say, da =b, db = c, etc.

Commutativity is shown in such a table by symmetry about the main diagonal.
For instance, Example 1.7 is commutative. Associativity, however, is a different
kettle of beans: the 4 elements of Example 1.7 beget 64 triples (x, y, z), each
with two products (xy)z and x (yz) to compare. This chore is made much easier
by Light’s associativity test (from Clifford and Preston [1961]).

Light’s test constructs, for each element y, a Light’s table of the binary ope-
ration (x,z) — (xy)z: the column of y, that contains all products xy, is
used to label the rows; the row of xy is copied from the given table and con-
tains all products (xy)z. The row of y, that contains all the products yz, is used
to label the columns. If the column labeled by yz in Light’s table coincides with
the column of yz in the original table, then (xy)z = x (yz) for all x.

Definition. If, for every z, the column labeled by yz in Light’s table coincides
with the column of yz in the original table, then the element y passes Light’s test.
Otherwise, y fails Light’s test.

In Example 1.7, y = d passes Light’s test: its Light’s table is

On the other hand, in the following example (table on left), a fails Light’s test:
the column of b in Light’s table of a does not match the column of b in the original
table. The two mismatches indicate that a (aa) + (aa)a and b (aa) # (ba)a:

Example Light’s table of a

Associativity requires that every element pass Light’s test. But some elements
can usually be skipped, due to the following result, left to readers:

Proposition 1.8. Let S be a set with a multiplication and let X be a subset
of S. If every element of S is a product of elements of X, and every element of X
passes Light’s test, then every element of S passes Light’s test (and the operation
on S is associative).

In Example 1.7, d? = ¢, dc =a, and da = b, so that a, b, ¢, d all are
products of d’s; since d passes Light’s test, Example 1.7 is associative.
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Free semigroups. One useful semigroup F is constructed from an arbitrary
set X sothat X C F and every element of F can be written uniquely as a product
of elements of X . The elements of F are all finite sequences (x;, x,, ..., x,,) of
elements of X . The multiplication on F is concatenation:

n

(X1 Xgs ees X)) (V1o Yoo ooes V) = (X1s Xgs oo Xpps Vps Yoo oees V)

It is immediate that concatenation is associative. The empty sequence () is an
identity element. Moreover, every sequence can be written uniquely as a product
of one-term sequences:

(X1, Xgs oo xy,) = (x7) (x9) -+ (x,)-

If every element x of X is identified with the corresponding one-term sequence
(x), then X C F and every element of F can be written uniquely as a product
of elements of X. The usual notation makes this identification transparent by
writing every sequence (X, X,, ..., X,) as a product or word x; x, --- x,, in the
alphabet X . (This very book can now be recognized as a long dreary sequence of
words in the English alphabet.)

Definition. The free semigroup on a set X is the semigroup of all finite nonempty
sequences of elements of X. The free monoid on a set X is the semigroup of all
finite (possibly empty) sequences of elements of X .

For instance, the free monoid on a one-element set {x} consists of all words
1, x, xx, xxx, ..., xx---x, ..., that is, all powers of x, no two of that are
equal. This semigroup is commutative, by Proposition 1.12. Free semigroups on
larger alphabets { x, y, ... } are not commutative, since the sequences xy and
yx are different when x and y are different. Free monoids are a basic tool of
mathematical linguistics, and of the theory of computation.

Free commutative semigroups. The free commutative semigroup C on a
set X is constructed so that X C C, C is a commutative semigroup, and every
element of C can be written uniquely, up to the order of the terms, as a product
of elements of X . At this time we leave the general case to interested readers and
assume that X is finite, X = {x, x5, ..., x,, }. In the commutative semigroup
C, aproduct of elements of X can be rewritten as a product of positive powers of
distinct elements of X, or as a product x?l x;z -+ xpn of nonnegative powers of
all the elements of X . These products look like monomials and are multiplied in
the same way:

ay a . _ap by by bn _ a1+by _ar+by anp+by
(xp" xg? - ) (! x,") = x) *2 Kno

Formally, the free commutative monoid C on X = {x;, x5, ..., X, } is

the set of all mappings x; —— q; that assign to each x; € X a nonnegative

ap

. . . . . ay a
integer a; ; these mappings are normally written as monomials x| x, C X",

and multiplied as above. The identity element is x? xg xg . Bach x; € X

0 1 .0

may be identified with the monomial x? e Xp_ X X oo x,? ; then every
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9 ..

. a a
monomial x|! x, 2 an

- x," is a product of nonnegative powers xf‘ s X9y e X
of xy, x5, ..., x,, uniquely up to the order of the terms.

Definition. The free commutative monoid on a finite set X = {xl » Xgs e

@ ..

x, } is the semigroup of all monomials xllll Xy - x;" (with nonnegative integer

exponents); the free commutative semigroup on X = {x;, x,, ..., x,, } is the
semigroup of all monomials xfl x;z - Xt with positive degree a; +a, + - - - +
a,.

For instance, the free commutative monoid on a one-element set {x} consists
of all (nonnegative) powers of x: 1 = xo, X, xz, ..., x", ..., no two of that are

equal; this monoid is also the free monoid on {x}.

Exercises
1. Write all products of x1, x2, x3, x4 (in that order), using parentheses as necessary.

2. Write all products of x1, x2, x3, x4, x5 (in that order).

3. Count all products of x1, ..., x, (in that order) when n =6; n=7; n =8.
*4. Prove the following: in a semigroup, all products of x1, x2, ..., x, (in that order) are
equal.

5. Show that a binary operation has at most one identity element (so that an identity element,
if it exists, is unique).

*6. Prove the following: in a commutative semigroup, all products of x1, x2, ..., x5 (in
any order) are equal. (This exercise requires some familiarity with permutations.)

7. Show that multiplication in M, (]R) is not commutative when n > 1.
8. Find two 2 X 2 matrices A and B (with real entries) such that (AB)? # A% B2,
9. In a semigroup (written multiplicatively) multiplication of subsets is associative.
10. Show that the semigroup of subsets of a monoid is also a monoid.
11. Show that products of subsets distribute unions: for all subsets A, B, A;, Bj,
(Uies 41) B =Uie, (4iB) and A(Ujej B)) = Ujes (AB)).
12. Let S be a set with a binary operation (written multiplicatively) and let X be a subset

of §. Prove the following: if every element of S is a product of elements of X, and every
element of X passes Light’s test, then every element of S passes Light’s test.

13,14,15. Test for associativity:

ab cd abcd a b c d
ala b ab ala b ab ala b c d
blab ab b|b adc b|b adc
clcdcd clabcd clcdcd
d|lcdc d d|d c dc d|d c d c
Exercise 13 Exercise 14 Exercise 15

16. Construct a free commutative monoid on an arbitrary (not necessarily finite) set.
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2. Groups

This section gives the first examples and properties of groups.

Definition. A group is an ordered pair of a set G and one binary operation on
that set G such that

(1) the operation is associative;
(2) there is an identity element;

(3) (in the multiplicative notation) every element x of G has an inverse (there
is an element y of G such that xy = yx = 1).

In this definition, the set G is the underlying set of the group. It is customary to
denote a group and its underlying set by the same letter. We saw in Section 1 that
the identity element of a group is unique; readers will easily show that inverses are
unique (an element of a group has only one inverse in that group).

In the multiplicative notation the inverse of x is denoted by x~!. In the
additive notation, the identity element is denoted by 0; the inverse of x becomes
its opposite (the element y such that x + y = y + x = 0) and is denoted by —x .

Groups can be defined more compactly as monoids in that every element has
an inverse (or an opposite). Older definitions started with a fourth axiom, that
every two elements of a group have a unique product (or sum) in that group. We
now say that a group has a binary operation. When showing that a bidule is a
group, however, it is sensible to first make sure that the bidule does have a binary
operation, that is, that every two elements of the bidule have a unique product (or
sum) in that bidule. (Bidule is the author’s name for unspecified mathematical
objects.)

Examples. Number systems provide several examples of groups. (Z,+),
(Q,+), (R,+), and (C, +) all are groups. But (N, +) is not a group, and Z, Q,
R, C are not groups under multiplication, since their element O has no inverse.
However, nonzero rational numbers, nonzero real numbers, nonzero complex num-
bers, all constitute groups under multiplication; so do positive rational numbers,
positive real numbers, and complex numbers with absolute value 1.

The set of all n x n matrices (with entries in R, or in any given field) is a group
under addition, but not under multiplication; however, invertible n X n matrices
constitute a group under multiplication. So do, more generally, invertible linear
transformations of a vector space into itself.

In algebraic topology, the homotopy classes of paths from x to x in a space X
constitute the fundamental group (X, x) of X at x.

The permutations of a set X (the bijections of X onto itself) constitute a group
under composition, the symmetric group Sy on X . The symmetric group S, on
{1,2,...,n} is studied in some detail in the next chapter.

Small groups may be defined by tables. If the identity element is listed first,
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then the row and column labels of a table duplicate its first row and column,
and are usually omitted. For example, the Klein four-group (Viergruppe) V, =
{1,a,b,c} is defined by either table below:

Readers will verify that V, is indeed a group.

Dihedral groups. Euclidean geometry relies for “equality” on isometries, that
are permutations that preserve distances. In the Euclidean plane, isometries can
be classified into translations (by a fixed vector), rotations about a point, and
symmetries about a straight line. If an isometry sends a geometric configuration
onto itself, then the inverse isometry also sends that geometric configuration onto
itself, so that isometries with this property constitute a group under composition,
the group of isometries of the configuration, also called the group of rotations and
symmetries of the configuration if no translation is involved. These groups are
used in crystallography, and in quantum mechanics.

Definition. The dihedral group D, of a regular polygon with n 2 2 vertices is
the group of rotations and symmetries of that polygon.

Aregular polygon P with n 2 2 vertices has a center and has n axes of symme-
try that intersect at the center. The isometries of P onto itself are the n symmetries
about these axes and the n rotations about the center by multiples of 2m/n. In
what follows, we number the vertices counterclockwise 0, 1, ..., » — 1, and
number the axes of symmetry counterclockwise, 0, 1, ..., n — 1, so that vertex
0 lies on axis 0; s; denotes the symmetry about axis i and ; denotes the rotation
by 2mi/n about the center. Then D, = {7y, |, ..., F\y_1s Sgs S5 oos Sy }
the identity element is r = 1. Itis convenient to define r; and s; for every integer
i sothat r,,, =r; and s5; , =s; forall i. (This amounts to indexing modulo n.)

Compositions can be found as follows. First, r; or = Tiaj for all { and

j. Next, geometry tells us that following the symmetry about a straight line
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L by the symmetry about a straight line L’ that intersects L amounts to a rotation
about the intersection by twice the angle from L to L. Since the angle from axis j
toaxis i is 7 (i — j)/n,itfollows that s; os;=ri_j. Finally, s; os; = sjos;= 1;
hence s; = s; 0or;_; and s; = r;_; os;, equivalently s; o r, ='s;_; and
TR OS; =Sy for all i, j, k. This yields a (compact) composition table for D, :

Properties. Groups inherit all the properties of semigroups and monoids
in Section 1. Thus, for any n = 0 elements x,;, ..., x, of a group (written
multiplicatively) all products of x, ..., x, (in that order) are equal (Proposition
1.1); multiplication of subsets

AB = {ab|a€ A, beB}
is associative (Proposition 1.3). But groups have additional properties.
Proposition 2.1. In a group, written multiplicatively, the cancellation laws hold:
xy = xz implies y = z, and yx = zx implies y = z. Moreover, the equations
ax =b, ya = b have unique solutions x = a 'b, y = ba '
Proof. xy = xz implies y = 1y = x| Xy = x 'xz=1z=2z,and similarly
for yx = zx. The equation ax = b has at most one solution x = alax=a""b,

and x = a~ ' b is a solution since a a~'b = 1b = b. The equation ya = b is
similar. [

Proposition 2.2. In a group, written multiplicatively, ()c_l)_1 = x and
-1 _ -1 -1 -1
(xlxl”'xn) Sy Xy Xy

Proof. In a group, uv = 1 implies v = lv = u~luwv = u~'. Hence

xTx=1 implies x = (x . We prove the second property when n = 2

and leave the general case to our readers: xy y_1 x ' =x1x7" = 1; hence
ylx l=(xy)"l.D

—1)—1

Powers in a group can have negative exponents.

Definition. Let G be a group, written multiplicatively. Let a € G and let n be
an arbitrary integer. The nth power a” of a is defined as follows:
(1) if n 20, then a" is the product x| x, - -- x, inthat X, =x, =-- =X, =a
(in particular, a' =a and a° = 1);
2) ifn <0, n=—m withm 2 0, then a" = (am)_1 (in particular, the —1

power a~ Y is the inverse of a).

Propositions 1.3 and 2.2 readily yield the following properties:
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Proposition 2.3. In a group G (written multiplicatively) the following proper-
ties hold for all a € S and all integers m, n:

(D) a® = 1, al =a;
(2) am aﬂ - am+n ;
(3) (am)n - amn ;
4) (an)flzafn :(a71>n.
The proof makes an awful exercise, inflicted upon readers for their own good.

Corollary 2.4. In a finite group, the inverse of an element is a positive power
of that element.

Proof. Let G be a finite group and let x € G. Since G is finite, the powers x"
of x, n € Z, cannot be all distinct; there must be an equality x”* = x" with, say,

n—m—1 n—m—1 _ nfmflxnfm

m<n. Then x" ™ =1, xx =1,and x ! = x x

is a positive power of x. [J

The additive notation. Commutative groups are called abelian, and the addi-
tive notation is normally reserved for abelian groups.

As in Section 1, in the additive notation, the identity element is denoted by 0;
the product of x, x,, ..., x, becomes their sum x; + x, + - -+ + x,,; the product
of two subsets A and B becomes their sum

A+B = {a+b|acA beB}.
Proposition 2.1 yields the following:

Proposition 2.5. In an abelian group G (written additively), —(—x) = x and
(g + o x, ) = (—x) F(—xp) + o0+ (—x,,).

In the additive notation, the nth power of a € S becomes the integer multiple

na: if n 2 0, then na isthesum x| +x, +---+x, inthat x; =x, =---=x, = a;
if n=—m <0, then na isthe sum —(x; +x, +---+x, )= (—x;) +(—xy) +- - +
(—x,,) in which x; =x, =---=x, = —a. By 1.3,2.3:

Proposition 2.6. In an abelian group G (written additively) the following
properties hold for all a,b € G and all integers m, n:

(1) ma+na=(m+n)a;

(2) m (na)=(mn)a;

(3) 0a =0=n0;

4) —(na)=(—-n)a=n(—-a);
(5) n(a+b)=na+nb.

Exercises

1. Show that an element of a group has only one inverse in that group.
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*2. Let S be a semigroup (written multiplicatively) in which there is a left identity element
e (an element e such that ex = x for all x € §) relative to which every element of S has a
left inverse (for each x € S there exists y € S such that yx = e). Prove that § is a group.

*3. Let S be a semigroup (written multiplicatively) in which the equations ax = b and
ya = b have a solution for every a, b € S. Prove that S is a group.

*4. Let S be a finite semigroup (written multiplicatively) in which the cancellation laws
hold (for all x, y,z € S, xy = xz implies y = z, and yx = zx implies y = z). Prove that S
is a group. Give an example of an infinite semigroup in which the cancellation laws hold, but
which is not a group.

5. Verify that the Klein four-group Vj is indeed a group.
6. Draw a multiplication table of S3.

7. Describe the group of isometries of the sine curve (the graph of y = sin x): list its
elements and construct a (compact) multiplication table.

8. Compare the (detailed) multiplication tables of D2 and Vj.

9. For which values of n is D,, commutative?

10. Prove the following: in a group G, a™ a" = a™*" ,foralla € G and m,n € Z.
11. Prove the following: in a group G, (a™)" =a™" ,foralla € G and m,n € Z.

12. Prove the following: a finite group with an even number of elements contains an even
number of elements x such that x 1 = x. State and prove a similar statement for a finite
group with an odd number of elements.

3. Subgroups

A subgroup of a group G is a subset of G that inherits a group structure from G.
This section contains general properties, up to Lagrange’s theorem.

Definition. A subgroup of a group G (written multiplicatively) is a subset H
of G such that

(1) 1e H;
(2) x € H implies x e H;
(3) x,y € H implies xy € H.

By (3), the binary operation on G has a restriction to H (under which the
product of two elements of H is the same as their product in G). By (1) and (2),
this operation makes H a group; the identity element of H is that of G, and an
element of H has the same inverse in H asin G. This group H is also called a
subgroup of G .

Examples show that a subset that is closed under multiplication is not necessarily
a subgroup. But every group has, besides its binary operation, a constant operation
that picks out the identity element, and a unary operation x —— x A subgroup
is a subset that is closed under all three operations.
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The multiplication table of V, = {1, a, b, ¢ } shows that {1, a } is a subgroup
of Vy;soare {1,b} and {1,c}. In D, the rotations constitute a subgroup.
Every group G has two obvious subgroups, G itself and the trivial subgroup
{1}, also denoted by 1.

In the additive notation, a subgroup of an abelian group G is a subset H of G
such that 0 € H, x € H implies —x € H,and x,y € H implies x +y € H.
For example, (Z,+) is a subgroup of (Q, +); (Q, +) is a subgroup of (R, +);
(R, +) is a subgroup of (C, +). On the other hand, (N, +) is not a subgroup of
(Z, +) (even though N is closed under addition).

We denote the relation “H is a subgroup of G” by H < G. (The notation
H < G is more common; we prefer H < G, on the grounds that G is a subgroup
of itself.)

Proposition 3.1. A subset H of a group G is a subgroup if and only if H + @
and x,y € H implies xy_] €H.

Proof. These conditions are necessary by (1), (2), and (3). Conversely, assume
that H + @ and x,y € H implies xy_l € H. Then there exists h € H and
l=hh'eH. Next, x € H implies x !'=1x"! € H. Hence x,y € H
implies y~ '€ H and xy =x (y_l)_1 € H. Therefore H is a subgroup. []

Proposition 3.2. A subset H of a finite group G is a subgroup if and only if
H £ ¢ and x,y € H implies xy € H.

The case of N C 7Z shows the folly of using this criterion in infinite groups.

Proof. If H + @ and x, y € H implies xy € H, then x € H implies x" € H
forall n > 0 and x ! € H, by 2.4; hence x,y € H implies )F1 € H and
xy ' eH,and H isa subgroup by 3.1. Conversely, if H is a subgroup, then
H + ¢ and x,y € H implies xy € H.[J

Generators. Our next result yields additional examples of subgroups.

Proposition 3.3. Let G be a group and let X be a subset of G. The set of all
products in G (including the empty product and one-term products) of elements
of X and inverses of elements of X is a subgroup of G; in fact, it is the smallest
subgroup of G that contains X .

Proof. Let H C G be the set of all products of elements of X and inverses of
elements of X. Then H contains the empty product 1; & € H implies hlen,
by 2.2; and h,k € H implies hk € H, since the product of two products of
elements of X and inverses of elements of X is another such product. Thus H
is a subgroup of X. Also, H contains all the elements of X, which are one-term
products of elements of X. Conversely, a subgroup of G that contains all the
elements of X also contains their inverses and contains all products of elements
of X and inverses of elements of X . [J

Definitions. The subgroup (X ) of a group G generated by a subset X of
G is the set of all products in G (including the empty product and one-term
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products) of elements of X and inverses of elements of X. A group G is generated
by a subset X when (X)=G.

Thus, G = ( X' ) when every element of G is a product of elements of X and
inverses of elements of X. For example, the dihedral group D, of a polygon
is generated (in the notation of Section 2) by {rl, 50 }: indeed, r,= r{, and
s; =r; 05, so that every element of D, is a product of r’s and perhaps one s,.

Corollary 3.4. In a finite group G, the subgroup (X ) of G generated by a
subset X of G is the set of all products in G of elements of X.

Proof. This follows from 3.3: if G is finite, then the inverses of elements of X
are themselves products of elements of X, by 2.4. [

Proposition 3.5. Let G be a group and let a € G. The set of all powers of a
is a subgroup of G in fact, it is the subgroup generated by {a}.

Proof. That the powers of a constitute a subgroup of G follows from the parts
a® =1, (a")_1 =a ", and a™ a" = a™*" of 2.3. Also, nonnegative powers
of a are products of a’s, and negative powers of a are products of a~1s, since
a "= Y. O

Definitions. The cyclic subgroup generated by an element a of a group is the
set {a) of all powers of a (in the additive notation, the set of all integer multiples
of a). A group or subgroup is cyclic when it is generated by a single element.

Proposition 3.5 provides a strategy for finding the subgroups of any given finite
group. First list all cyclic subgroups. Subgroups with two generators are also
generated by the union of two cyclic subgroups (which is closed under inverses).
Subgroups with three generators are also generated by the union of a subgroup
with two generators and a cyclic subgroup; and so forth. If the group is not too
large this quickly yields all subgroups, particularly if one makes use of Lagrange’s
theorem (Corollary 3.14 below).

Infinite groups are quite another matter, except in some particular cases:

Proposition 3.6. Every subgroup of Z is cyclic, generated by a unique nonneg-
ative integer.

Proof. The proof uses integer division. Let H be a subgroup of (the additive
group) Z. If H =0 (= {0}), then H is cyclic, generated by 0. Now assume
that H # 0, so that H contains an integer m £0. If m < O, then —m € H;
hence H contains a positive integer. Let n be the smallest positive integer that
belongs to H . Every integer multiple of n belongs to H. Conversely, let m € H.
Then m = nq + r for some g,r € Z, 0 < r < n. Since H is a subgroup,
gn € Hand r = m —gn € H. Now, 0 < r < n would contradict the
choice of n; therefore r = 0, and m = gn is an integer multiple of n. Thus
H is the set of all integer multiples of n and is cyclic, generated by n > 0.
(In particular, Z itself is generated by 1.) Moreover, n is the unique positive
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generator of H , since larger multiples of n generate smaller subgroups. [
Properties.

Proposition 3.7. In a group G, a subgroup of a subgroup of G is a subgroup
of G.

Proposition 3.8. Every intersection of subgroups of a group G is a subgroup
of G.

The proofs are exercises. By itself, Proposition 3.8 implies that given a subset
X of a group G, there is a smallest subgroup of G that contains X. Indeed,
there is at least one subgroup of G that contains X, namely, G itself. Then
the intersection of all the subgroups of G that contain X is a subgroup of G by
3.8, contains X, and is contained in every subgroup of G that contains X . This
argument, however, does not describe the subgroup in question.

Unions of subgroups, on the other hand, are in general not subgroups; in fact,
the union of two subgroups is a subgroup if and only if one of the two subgroups
is contained in the other (see the exercises). But some unions yield subgroups.

Definition. A chain of subsets of a set S is a family (C;);c; of subsets of S
such that, for every i, j € I, C; C Cj or CJ- cq.

Definition. A directed family of subsets of a set S is a family (D;);c; of subsets
of S such that, for every i, j € I, there is some k € I such that D; C D, and
D; C Dy.

For example, every chain is a directed family. Chains, and directed families, are
defined similarly in any partially ordered set (not necessarily the partially ordered
set of all subsets of a set S under inclusion). Readers will prove the following:

Proposition 3.9. The union of a nonempty directed family of subgroups of a
group G is a subgroup of G. In particular, the union of a nonempty chain of
subgroups of a group G is a subgroup of G.

Cosets. We now turn to individual properties of subgroups.

Proposition 3.10. If H is a subgroup of a group, then HH = Ha =aH = H
foreverya € H.

Here a H and Ha are products of subsets: aH is short for {a}H, and Ha is
short for H{a}.

Proof. In the group H, the equation ax = b has a solution for every b € H.
Therefore H C aH. But aH C H since a € H. Hence aH = H. Similarly,
Ha=H.Finallyy HCaH CHH C H.OJ

Next we show that subgroups partition groups into subsets of equal size.

Definitions. Relative to a subgroup H of a group G, the left coset of an
element x of G is the subset xH of G the right coset of an element x of G
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is the subset Hx of G. These sets are also called left and right cosets of H. []
For example, H is the left coset and the right coset of every a € H, by 3.10.

Proposition 3.11. Let H be a subgroup of a group G. The left cosets of H
constitute a partition of G ; the right cosets of H constitute a partition of G.

Proof. Define a binary relation R on G by
x Ryifandonlyif xy~! € H.

The relation R is reflexive, since xl=1ecH ; symmetric, since xy_1 cH
implies yx~! = (xy~!)~! € H; and transitive, since xy™' € H, yz7' € H
implies xz~' = (xy~!)(yz~!) € H. Thus R is an equivalence relation, and
equivalence classes modulo R constitute a partition of G. Now, x R y if and
only if x € Hy; hence the equivalence class of y is its right coset. Therefore the
right cosets of H constitute a partition of G. Left cosets of H arise similarly

from the equivalence relation, x L y if and only if y_lx e H.O

In an abelian group G, xH = Hx for all x, and the partition of G into left
cosets of H coincides with its partition into right cosets. The exercises give an
example in which the two partitions are different.

Proposition 3.12. The number of left cosets of a subgroup is equal to the number
of its right cosets.

Proof. Let G beagroupand H < G. Leta € G. If y € aH, then y = ax
for some x € H and y_1 =x1ale Hal. Conversely, if y_1 S Ha_l,
then y_1 =ta~! for some t € H and y= at~' € aH. Thus, when A = aH is
a left coset of H, then

A= {y | yea}

is aright coset of H, namely A’ = Ha ';when B=Hb=Ha " is aright coset
of H,then B' = {x~! | x € B} isaleft coset of H,namely aH . We now have
mutually inverse bijections A —— A’ and B —— B’ between the set of all left
cosets of H and the set of all right cosets of H. [

Definition. The index [G : H ] of a subgroup H of a group G is the (cardinal)
number of its left cosets, and also the number of its right cosets.

The number of elements of a finite group is of particular importance, due to our
next result. The following terminology is traditional.

Definition. The order of a group G is the (cardinal) number |G| of its elements.
Proposition 3.13. If H is a subgroup of a group G, then |G| =[G :H]|H]|.

Corollary 3.14 (Lagrange’s Theorem). In a finite group G, the order and index
of a subgroup divide the order of G.
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Proof. Let H < G and let a € G. By definition, aH = {ax | x € H},
and the cancellation laws show that x —— ax is a bijection of H onto aH .
Therefore |aH| = |H|: all left cosets of H have order |H|. Since the different
left cosets of H constitute a partition, the number of elements of G is now equal

to the number of different left cosets times their common number of elements:
|G| = [G:H]|H|.If |G| is finite, then |H| and [G : H ] divide |G|. O

For instance, a group of order 9 has no subgroup of order 2. A group G
whose order is a prime number has only two subgroups, G itself and 1 = {1}.

The original version of Lagrange’s theorem applied to functions f(x;, ..., x,))
whose arguments are permuted: when x, ..., x, are permuted in all possible
ways, the number of different values of f(x,, ..., x,) is a divisor of n!

At this point it is not clear whether, conversely, a divisor of |G| is necessarily
the order of a subgroup of G . Interesting partial answers to this question await us
in the next chapter.

Exercises

1.Let G = Dy and H = {1, so }. Show that the partition of G into left cosets of H is
different from its partition into right cosets when n = 3.

2. Prove that every intersection of subgroups of a group G is a subgroup of G.
3. Find a group with two subgroups whose union is not a subgroup.

4.Let A and B be subgroups of a group G . Prove that A U B is a subgroup of G if and
onlyif ACBor BCA.

5. Show that the union of a nonempty directed family of subgroups of a group G is a
subgroup of G.

6. Find all subgroups of V.
7. Find all subgroups of D3.
8. Find all subgroups of Dy.

9. Can you think of subsets of R that are groups under the multiplication on R? and
similarly for C?

10. Find other generating subsets of D;, .
11. Show that every group of prime order is cyclic.

12. A subgroup M of a finite group G is maximal when M # G and there is no subgroup
M g H g G . Show that every subgroup H # G of a finite group is contained in a maximal
subgroup.

13. Show that x € G lies in the intersection of all maximal subgroups of G if and only if it
has the following property: if X C G contains x and generates G, then X \ { x } generates
G . (The intersection of all maximal subgroups of G is the Frattini subgroup of G.)

14. In a group G, show that the intersection of a left coset of H < G and a left coset of
K £ G is either empty or a left cosetof H N K .
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15. Show that the intersection of two subgroups of finite index also has finite index.

16. By the previous exercises, the left cosets of subgroups of finite index of a group G
constitute a basis (of open sets) of a topology on G. Show that the multiplication on G is
continuous. What can you say of G as a topological space?

4. Homomorphisms

Homomorphisms of groups are mappings that preserve products. They allow
different groups to relate to each other.

Definition. A homomorphism of a group A into a group B (written multi-
plicatively) is a mapping ¢ of A into B such that ¢(xy) = ¢(x) ¢(y) for all
x,y€eA.

If A is written additively, then ¢(xy) becomes ¢ (x + y); if B is written
additively, then ¢(x) ¢(y) becomes ¢(x) + ¢(y). For example, given an element
a of a group G, the power map n — a” is a homomorphism of Z into G. The
natural logarithm function is a homomorphism of the multiplicative group of all
positive reals into (R, +). If H is a subgroup of a group G, then the inclusion
mapping ¢ : H — G, defined by ¢(x) = x for all x € H, is the inclusion
homomorphism of H into G.

In algebraic topology, continuous mappings of one space into another induce
homomorphisms of their fundamental groups at corresponding points.

Properties. Homomorphisms compose:

Proposition 4.1. If ¢ : A — B and ¥ : B — C are homomorphisms of
groups, then so is o ¢ : A — C. Moreover, the identity mapping 15 on a
group G is a homomorphism.

Homomorphisms preserve identity elements, inverses, and powers, as readers
will gladly verify. In particular, homomorphisms of groups preserve the constant
and unary operation as well as the binary operation.

Proposition 42. If ¢ : A — B is a homomorphism of groups (written
multiplicatively), then ¢(1) =1, (x 1) = (¢(x)) ™!, and ¢(x") = (p(x))", for
all x e Aandn € Z.

Homomorphisms also preserve subgroups:

Proposition 4.3. Let ¢ : A — B be a homomorphism of groups. If H is a
subgroup of A, then ¢(H) = {¢(x) ’ x € HY} is asubgroup of B. If J isa
subgroup of B, then (p_l(J) ={x€A | @(x) € J} isasubgroup of A.

The subgroup ¢(H) is the direct image of H < A under ¢, and the subgroup
go_l(J ) is the inverse image or preimage of J < B under ¢. The notation

@~ '(J) should not be read to imply that ¢ is bijective, or that ¢~ '(J) is the
direct image of J under some misbegotten map o L.
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Two subgroups of interest arise from 4.3:

Definitions. Let ¢ : A — B be a homomorphism of groups. The image or
range of ¢ is

Img = {g(x)|xeA}.
The kernel of ¢ is
Kergp = {x €A |px)=1}.

In the additive notation, Ker ¢ = {x € A | p(x)=0}. By4.3, Img = ¢(G)
and Ker ¢ = (p_l (1) are subgroups of B and A respectively.

The kernel K = Ker ¢ has additional properties. Indeed, ¢(x) = ¢(y) implies
e(yx =9 e(x)"'=1, yx ' € K,and y € Kx. Conversely, y € Kx
implies y = kx forsome k € K and ¢(y) = ¢(k) ¢(x) = ¢(x). Thus, ¢(x) = ¢(y)
ifandonlyif y € Kx. Similarly, ¢(x) = ¢(y) ifandonlyif y € xK . Inparticular,
Kx=xK forall x € A.

Definition. A subgroup N of a group G is normal when xN = Nx for all
x €.

This concept is implicit in Galois [1830]. The left cosets of a normal subgroup
coincide with its right cosets and are simply called cosets.

For instance, all subgroups of an abelian group are normal. Readers will verify
that D, has a normal subgroup, which consists of its rotations, and already know,
having diligently worked all exercises, that { 1, s, } is not a normal subgroup of
D, when n 2 3. In general, we have obtained the following:

Proposition 4.4. Let ¢ : A — B be a homomorphism of groups. The image of
@ is a subgroup of B. The kernel K of ¢ is a normal subgroup of A. Moreover,
o(x)=o(y) ifand only if y € xK = Kx.

We denote the relation “N is a normal subgroup of G” by N 4 G. (The
notation N < G is more common; the author prefers N J G, on the grounds
that G is a normal subgroup of itself.) The following result, gladly proved by
readers, is often used as the definition of normal subgroups.

Proposition 4.5. A subgroup N of a group G is normal if and only ifox_] -
N forall x € G.

Special kinds of homomorphisms. It is common practice to call an injective
homomorphism a monomorphism, and a surjective homomorphism an epimor-
phism. This terminology is legitimate in the case of groups, though not in general.
The author prefers to introduce it later.

Readers will easily prove the next result:

Proposition 4.6. If ¢ is a bijective homomorphism of groups, then the inverse
bijection go_l is also a homomorphism of groups.
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Definitions. An isomorphism of groups is a bijective homomorphism of groups.
Two groups A and B are isomorphic when there exists an isomorphism of A onto
B ; this relationship is denoted by A ~ B.

By 4.1, 4.6, the isomorphy relation = is reflexive, symmetric, and transitive.

Isomorphy would like to be an equivalence relation; but groups are not allowed to
organize themselves into a set (see Section A.3).

Philosophical considerations give isomorphism a particular importance. Abs-
tract algebra studies groups but does not care what their elements look like.
Accordingly, isomorphic groups are regarded as instances of the same “abstract”
group. For example, the dihedral groups of various triangles are all isomorphic,
and are regarded as instances of the “abstract” dihedral group Dj.

Similarly, when a topological space X is path connected, the fundamental
groups of X at various points are all isomorphic to each other; topologists speak
of the fundamental group 7, (X) of X.

Definitions. An endomorphism of a group G is a homomorphism of G into G ;
an automorphism of a group G is an isomorphism of G onto G.

Using Propositions 4.1 and 4.6 readers will readily show that the endomor-
phisms of a group G constitute a monoid End (G) under composition, and that
the automorphisms of G constitute a group Aut (G).

Quotient groups. Another special kind of homomorphism consists of projec-
tions to quotient groups and is constructed as follows from normal subgroups.

Proposition 4.7. Let N be a normal subgroup of a group G. The cosets
of N constitute a group under the multiplication of subsets, and the mapping
x — xN = Nx is a surjective homomorphism, whose kernel is N .

Proof. Let S temporarily denote the set of all cosets of N. Multiplication of
subsets of G is associative and induces a binary operation on S, since xN yN =
xyNN = xyN. The identity element is N, since NxN = xN N = xN. The
inverse of xN is x*IN, since xNx 'N=xx"'NN=N=x"'NxN. Thus
S is a group. The surjection x —— xN = Nx is a homomorphism, since
xN yN =xyN;its kernel is N, since xN = N ifand only if x € N.

Definitions. Let N be a normal subgroup of a group G. The group of all cosets
of N is the quotient group G/N of G by N. The homomorphism x — xN = Nx
is the canonical projection of G onto G/N.

For example, in any group G, G J G (with Gx =xG =G forall x € G),
and G/G is the trivial group; 1 9 G (with 1x =x1 ={x } forall x € G), and
the canonical projection is an isomorphism G =~ G/1.

For a more interesting example, let G = Z. Every subgroup N of Z is normal
and is, by 3.6, generated by a unique nonnegative integer n (so that N = Zn). If
n=0,then Z/N =~ Z;but n > 0 yields a new group:
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Definition. For every positive integer n, the additive group 7, of the integers
modulo n is the quotient group 7./Zn.

The group Z, is also denoted by Z(n). Its elements are the different cosets
X = x + Zn with x € Z. Note that X =y if and only if x and y are congruent
modulo n, whence the name “integers modulo n”.

Proposition4.8. 7., is a cyclic group of order n, with elements 0,1,....,.n—1
and addition

R i+ ifi+j<n,
i+j =
i+j—n ifi+j2n
Proof. The proof uses integer division. For every x € Z there exist unique g
and r such that x = gn +r and 0 < r < n. Therefore every coset X = x + Zn
is the coset of a unique 0 < r < n. Hence Z, = {0, 1, ..., n — 1 }, with the

addition above. We see that r1 =7, so that Z, is cyclic, generated by 1. ]

In general, the order of G/N is the index of N in G: |G/N|=[G:N];if G
is finite, then |G/N| = |G|/|N|. The subgroups of G/N are quotient groups of
subgroups of G:

Proposition 4.9. Let N be a normal subgroup of a group G. Every subgroup
of G/N is the quotient H/N of a unique subgroup H of G that contains N .

Proof. Let 1 : G — G/N be the canonical projection and let B be a
subgroup of G/N. By 4.3,

A=n"YB)={acG|aN€B}

is a subgroup of G and contains 7! (1)=Kerm = N. Now, N is a subgroup of
A, and is a normal subgroup of A since aN = Na for all a € A. The elements
aN of A/N all belong to B by definition of A. Conversely, if xN € B, then
x€Aand xN € A/N. Thus B=A/N.

Assume that B = H/N, where H < G contains N. If h € H, then
hN € H/N = B and h € A. Conversely, if a € A, then aN € B = H/N,
aN =hN forsome h € H,anda € hN C H. Thus H =A.[

We prove a stronger version of 4.9; the exercises give an even stronger version.

Proposition 4.10. Let N be a normal subgroup of a group G. Direct and
inverse image under the canonical projection G — G /N induce a one-to-one
correspondence, which preserves inclusion and normality, between subgroups of
G that contain N and subgroups of G/N .

Proof. Let A be the set of all subgroups of G that contain N ; let B be the set of
all subgroups of G/N;let 7 : G — G/N be the canonical projection. By 4.16
and its proof, A — A/N is a bijection of A onto B, and the inverse bijection
is B — 7 '(B), since B = A/N if and only if A =7 ~!(B). Both bijections
preserve inclusions (e.g., A; € A, implies A;/N C A,/N when N C A,); the
exercises imply that they preserve normality. []
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Exercises

1.Let ¢ : A — B be a homomorphism of groups (written multiplicatively). Show that
p() =1, p(x 1) = ((p(x))fl,and p(x") = ((p(x))",for allx € Aandn € Z.

2.Let ¢ : A — B be ahomomorphism of groupsandlet H < A. Show that ¢(H) < B.

3.Let ¢ : A — B be a homomorphism of groups and let H < B. Show that
¢ '(H)S A

4. Show that the following are equivalent when N < G: (i) xN = Nx forall x € G;
(i) Nx Ny C Nxy forall x,y € G; (iii) xNxt C N forall x € G.

5.Let ¢ : A — B be a homomorphism of groups. Show that N < B implies
¢ '(N) 2 A,

6.Let ¢ : A — B be a surjective homomorphism of groups. Show that N J A implies
¢(N) 2 B.

7. Give an example that N J A does not necessarily imply ¢(N) J B when ¢ :
A — B is an arbitrary homomorphism of groups.

8. Prove that every subgroup of index 2 is normal.

9. Prove that every intersection of normal subgroups of a group G is a normal subgroup
of G.

10. Prove that the union of a nonempty directed family of normal subgroups of a group G
is a normal subgroup of G.

11. Show that G = D4 contains subgroups A and B suchthat A J B and B J G but
not AdG.

12. Let the group G be generated by a subset X. Prove the following: if two homo-
morphisms ¢, ¥ : G — H agree on X (if ¢(x) = ¥(x) forall x € X), then ¢ =
(p(x)=v¥(x) forall x € G).

13. Find all homomorphisms of Dg into D3.
14. Find all homomorphisms of D3 into Do.
15. Show that Do = Vy.

16. Show that D3 =~ S3.

17. Find all endomorphisms of Vj.

18. Find all automorphisms of Vy.

19. Find all endomorphisms of D3 .

20. Find all automorphisms of D3.

21. Let ¢ : A — B be a homomorphism of groups. Show that ¢ induces an order-
preserving one-to-one correspondence between the set of all subgroups of A that contain
Ker ¢ and the set of all subgroups of B that are contained in Im¢.



5. The Isomorphism Theorems 23
5. The Isomorphism Theorems

This section contains further properties of homomorphisms and quotient groups.

Factorization. Quotient groups provide our first example of a universal prop-
erty. This type of property becomes increasingly important in later chapters.

Theorem 5.1 (Factorization Theorem). Let N be a normal subgroup of a
group G. Every homomorphism of groups ¢ : G — H whose kernel contains
N factors uniquely through the canonical projection ®# : G — G/N (there
exists a homomorphism  : G/N — H unique such that ¢ =y om):

Proof. We use the formal definition of a mapping ¢ : A — B as a set of
ordered pairs (a, b) witha € A, b € B, such that (i) for every a € A there exists
b € B such that (a, b) € ¢, and (ii) if (a;,b,) € ¥, (ay,b,) € ¥, and a; = a,,
then b, = b,. Then (a) is the unique b € B such that (a,b) € .

Since Ker ¢ contains N, x 'y € N implies o(x™") (y) = p(x"1y) = 1,
sothat x N = yN implies ¢(x) = ¢(y). As a set of ordered pairs,
v = {(xN, ¢(x)) ’xEG}.

In the above, (i) holds by definition of G/N, and we just proved (ii); hence v is a
mapping. (Less formally one says that v is well defined by ¥ (xN) = ¢(x).) By
definition, ¥ (xN) = ¢(x),s0 ¥ om = ¢. Also, ¥ is a homomorphism:

V(xNyN) = ¥(xyN) = p(xy) = ¢(x)p(y) = ¥(xN) ¢(yN).

To show that ¥ is unique, let x : G/N — H be a homomorphism such that
xom=¢.Then x(xN)=¢(x)=y¢(xN) forall xN € G/N and x = ¢.O

The homomorphism theorem is also called the first isomorphism theorem.

Theorem 5.2 (Homomorphism Theorem). If ¢ : A — B is a homomorphism
of groups, then

A/Ker ¢ =~ Im ¢;

in fact, there is an isomorphism 6 : A/Ker f — Im f unique such that
¢ =100 om, where t : Im f — B is the inclusion homomorphism and
w: A — A/Ker f is the canonical projection:

A Y . B

A/Ker ¢ oI Im g
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Proof. Let ¥ : A — Im ¢ be the same mapping as ¢ (the same set of
ordered pairs) but viewed as a homomorphism of A onto Im ¢. Then Ker ¢ =
Ker ¢; by 5.1, ¢ factors through 7: v = 6 o m for some homomorphism
0 : A/K — Im ¢, where K = Ker ¢. Then 6(xK) = ¥(x) = ¢(x) for all
x € Aand ¢ =106 om. Moreover, 9, like ¥, is surjective; 6 is injective
since 0(xK) =1 implies ¢(x) =1, x € Ker¢ = K,and xK =1 in A/K. If
¢ :A/Ker f — Im f is another isomorphism such that ¢ =10 ¢ o 7, then

((xK) = (¢ (m(x)) = o(x)= 1(0(n(x))) = 6(xK)
forall x € A, and ¢ = 6. (This also follows from uniqueness in 5.1.) [

The homomorphism theorem implies that every homomorphism is a com-
position of three basic types of homomorphism: inclusion homomorphisms of
subgroups; isomorphisms; and canonical projections to quotient groups.

Corollary 5.3. Let ¢ : A — B be a homomorphism. If ¢ is injective, then
A = Im . If ¢ is surjective, then B =~ A/Ker ¢.

Proof. If ¢ is injective, then Ker o =1 and A =~ A/Kerp @ Im ¢. If ¢ is
surjective, then B =Im ¢ = A/Ker¢.

We illustrate the use of Theorem 5.2 with a look at cyclic groups. We saw that
the additive groups Z and Z,, are cyclic. Up to isomorphism, Z and Z, are the
only cyclic groups:

Proposition5.4. Let G beagroupandleta € G. If a™ + 1 forall m 0, then
(a) = Z; in particular, {a) is infinite. Otherwise, there is a smallest positive
integer n such that a" = 1, and then a™ = 1 if and only if n divides m, and
(a) = Z,; in particular, (a) is finite of order n.

Proof. The power map p : m —— a™ is a homomorphism of Z into G.
By 5.1, {(a) = Im p ~ Z/Ker p. By 3.6, Ker p is cyclic, Ker p = Zn for
some unique nonnegative integer n. If n =0, then (a) @ Z/0 = Z, and a™ =1
(a € Ker p)ifandonlyif m =0.If n > 0,then (a) = Z/Zn =7, ,and a™ =1
if and only if m is a multiple of n. O

Definition. The order of an element a of a group G is infinite if a™ + 1 for all
m + 0; otherwise, it is the smallest positive integer n such that a* = 1. [

Equivalently, the order of a is the order of (a ). Readers will be careful that
a"™ =1 does not imply that a has order n, only that the order of a divides n.

Corollary 5.5. Any two cyclic groups of order n are isomorphic.
We often denote “the” cyclic group of order n by C,, .
Corollary 5.6. Every subgroup of a cyclic group is cyclic.

This follows from Propositions 5.4 and 3.6; the details make a pretty exercise.
More courageous readers will prove a stronger result:
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Proposition 5.7. In a cyclic group G of order n, every divisor d of n is the
order of a unique cyclic subgroup of G, namely {x € G | x4 =1 1.

The isomorphism theorems. The isomorphisms theorems are often numbered
so that Theorem 5.2 is the first isomorphism theorem. Then Theorems 5.8 and 5.9
are the second and third isomorphism theorems.

Theorem 5.8 (First Isomorphism Theorem). Let A be a group and let B, C be
normal subgroups of A. If C C B, then C is a normal subgroup of B, B/C is
a normal subgroup of A/C, and

A/B = (A/C)/(B/C);

in fact, there is a unique isomorphism 6 : A/B — (A/C)/(B/C) such that
Qop=tom, wherem : A — A/C, p: A — A/B,and 1t : A/C —
(A/C)/(B/C) are the canonical projections:

A —2+ A/C

v
ﬁl d 11’
Iy

A/B —5+(4/C)/(B/C)

Proof. By 5.1, p factors through 7: p = ¢ o m for some homomorphism
0:A/C — A/B;namely, 0 : aC — aB. Like p, o is surjective. We show
that Ker o = B/C. First, C d B,since C J A. If bC € B/C, where b € B,
then o(bC)=bB =1 in A/B. Conversely, if o(aC) = 1, then aB = B and
a € B. Thus Ker o = {bC ‘ b € B} = B/C; in particular, B/C J A/C.
By 5.2, A/B=Imo =~ (A/C)/Kero = (A/C)/(B/C). In fact, Theorem 5.2
yields an isomorphism 6 : A/B — (A/C)/(B/C) such that 6 o o = 7, and
then 6 o p = T o 7 ; since p is surjective, € is unique with this property. [

Theorem 5.9 (Second Isomorphism Theorem). Let A be a subgroup of a group
G, and let N be a normal subgroup of G. Then AN is a subgroup of G, N isa
normal subgroup of AN, AN N is a normal subgroup of A, and

AN/N =~ A/(ANN);

in fact, there is an isomorphism 0 : A/(A N N) — AN/N unique such that

@op=mot where 1 : AN — AN/N and p : A — A/(ANN) are

the canonical projections and t : A — AN is the inclusion homomorphism:
A Lo A/(AnN)

tl Y E@
+
AN —— AN/N
¥/ 4
In particular, |AN|/|N| =|A|/|A N N| when G is finite.

Proof. We show that AN < G. First, 1 € AN. Since N g’ G, NA=AN,;
hence an € AN (with a € A, n € N) implies (an)'=n"'a~!' € NA= AN.
Finally, AN AN = AANN = AN..
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Now, N 4 AN.Let g =m ot. Then ¢(a)=aN € AN/N foralla € A, and
¢ is surjective. Moreover, ¢(a) =1 ifandonlyif a € N, sothat Kerp = ANN;
in particular, ANN & N. By 52, AN/N =Im¢ =~ A/Ker¢p = A/(ANN);
in fact, there is a unique isomorphism 6 : A/(A N N) — AN/N such that
Qop=¢=mor.]

Theorem 5.9 implies that the intersection of two normal subgroups of finite
index also has finite index. Consequently, the cosets of normal subgroups of finite
index constitute a basis of open sets for a topology (see the exercises).

Exercises

l.Let ¢ : A — B and ¥ : A — C be homomorphisms of groups. Prove the
following: if ¥ is surjective, then ¢ factors through i if and only if Ker ¢ C Ker ¢, and
then ¢ factors uniquely through .

2. Show that the identity homomorphism 1,57 : 2Z — 2Z does not factor through the
inclusion homomorphism ¢ : 2Z — Z (there is no homomorphism ¢ : Z — 27 such that
197 = ¢ o) even though Ker ¢ C Ker 157 . (Of course, ¢ is not surjective.)

3.Let ¢ : A — C and ¥ : B — C be homomorphisms of groups. Prove the
following: if v is injective, then ¢ factors through ¢ (¢ = ¥ o x for some homomorphism
X A — B)ifandonly if Im ¢ C Im v, and then ¢ factors uniquely through .

4. Show that the additive group R/Z is isomorphic to the multiplicative group of all
complex numbers of modulus 1.

5. Show that the additive group Q/Z is isomorphic to the multiplicative group of all
complex roots of unity (all complex numbers z # 0 of finite order in C\{0}).

6. Prove that every subgroup of a cyclic group is cyclic.

7.Let Cn = (¢ ) be acyclic group of finite order n. Show that every divisor d of n is the
order of a unique subgroup of C,, namely (C”/d> ={x€Cy ’ x4 =1 }

8. Show that every divisor of |Djy| is the order of a subgroup of Dy .
9. Find the order of every element of Dy .
10. List the elements of S4 and find their orders.

11. Show that the complex nth roots of unity constitute a cyclic group. Show that wy =
cos (2wk/n) +i sin (2wk/n) generates this cyclic group if and only if k and n are relatively
prime (then wy, is a primitive nth root of unity).

12. Let A and B be subgroups of a finite group G . Show that |AB| = |A||B|/|A N B|.
13. Find a group G with subgroups A and B such that AB is not a subgroup.

14.1f G is a finite group, H £ G, N 4 G, and |N| and [G : N] are relatively prime,
then show that H C N if and only if |H| divides |N|. (Hint: consider HN .)

15. Show that, in a group G, the intersection of two normal subgroups of G of finite index
is a normal subgroup of G of finite index.

16. Let A and B be cosets of (possibly different) normal subgroups of finite index of a
group G. Show that A N B is either empty or a coset of a normal subgroup of G of finite
index.
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17. By the previous exercise, cosets of normal subgroups of finite index of a group G
constitute a basis of open sets of a topology, the profinite topology on G. What can you say
about this topology?

6. Free Groups

This section and the next construct groups that are generated by a given set. The
free groups in this section are implicit in Dyck [1882]; the name seems due to
Nielsen [1924].

In a group G generated by a subset X, every element of G is a product of
elements of X and inverses of elements of X, by 3.3. But the elements of G are
not written uniquely in this form, since, for instance, 1 = x x =x"1x for every
x € X: some relations between the elements of X (equalities between products
of elements of X and inverses of elements of X) always holdin G.

The free group on a set X is generated by X with as few relations as possible
between the elements of X . Products of elements of X and inverses of elements
of X can be reduced by deleting all x x Vand x1x subproducts until none
is left. The free group on X consists of formal reduced products, multiplied by
concatenation and reduction. That it has as few relations as possible is shown by
a universal property. The details follow.

Reduction. Let X be an arbitrary set. Let X’ be a set that is disjoint from
X and comes with a bijection x — x’ of X onto X’. (Once our free group is
constructed, x’ will be the inverse of x .) It is convenient to denote the inverse
bijection X’ — X by y — y’, so that (x") = x forall x € X, and (y')' =y
forall y € ¥ = X U X'. Words in the alphabet Y are finite, possibly empty
sequences of elements of Y, and represent products of elements of X and inverses
of elements of X . The free monoid on Y is the set W of all such words, multiplied
by concatenation.

Definition. A word a = (ay, a, ..., a,) € W is reduced when a, ., # a. for
all 1 <i <n.

For example, the empty word and all one-letter words are reduced, for want
of consecutive letters. If X = {x,y,z, ...}, then (x,y,z) and (x,x,x) are
reduced, but (x, y,y’, z) is not reduced.

Reduction deletes subsequences (al-, al{) until a reduced word is reached.

Definitions. In W, we write a L b when a = (ay, ay, ..., a,), a;,y = al(,
and b= (ay, ..., a;_y, @5, ..., a,), forsome 1 =i <n;
we write a — b when k =20 and a L d Lo L0 g = b for
some da', d", ..., a®) € W (whena=>b,if k=0);

we write a —s b when a —~ b for some k = 0.
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If a is reduced, then a k, b implies k = 0, since there is no a 1, ¢, and
a — b implies a =b.

Lemma 6.1. For every word a € W there is a reduction a — b to a reduced
word b.

Proof. By induction on the length of a. If a is reduced, then b = a serves.

Otherwise, a L. ¢ for some ¢ € W, ¢ — b for some reduced b € W since ¢
is shorter than a, and then a — b. [0

We show that the word b in Lemma 6.3 is unique.

Lemma6.2.]fa¢>b anda#c:ﬁb, thenb#d, c#dforsome d.
Proof. Let a = (ay, a,, ..., a,). We have a,,, =a; and
b=(ay, ....a;_y, 6,9, ..., a,),
for some 1 < i < njalso, a,, =a;- and
c = (ap, ..., Aj 1y iy oo a,),
for some 1 £ j < n. Since b £ ¢ we have i # j and may assume { < j. If

.o _ ! _ _ _
Jj=i+lthen a; = ajyy = a4y = a4, (@1, @iyps 13) = (a;_5, a;_y,

a; +2), and b = c; hence j 2 i +2. Then a; and a;,; are consecutive letters of
c,a; and a 41 are consecutive letters of b, and
d = (ay, ..., G;_y, Qs s aj_y, Ajups oo a,)
serves (or d = (ay, ..., a;_q, Ajyns oo a,),if j=i+2)0
Lemma 6.3. If a — b and a — ¢, then b — d and ¢ — d for some d.

Proof. Say a —~ b and a —% ¢. The result is trivial if k = 0 orif £ = 0.

We first prove 6.3 when £ = 1, by induction on k. We have a 1, c. Ifk <1,

then 6.3 holds, by 6.2. Now let k£ > 1, so that a 1, u k;l> b for some u. If
u = c, then d = b serves. Otherwise, u L v and ¢ -5 v for some v:

—

S— =
QU—

1
—
1
—

o — Q

—
by 6.2. The induction hypothesis, applied to u L p and u v, then yields
b—sd and ¢ - v — d for some d.

Now, 6.3 holds when £ < 1; the general case is proved by induction on £:

1
a— uUu—=¢

! U

b— v—d
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If ¢ > 1,then a — b and a#uuc for some u. By the case ¢ =1,
b — v and u — v for some v. The induction hypothesis, applied to u — v

anduﬂc,thenyields b— v —d and ¢ — d for some d.[]

Lemma 6.4. For every word a € W there is a unique reduced word b such that
a—b.

Proof. If a — b and a — c, with b and ¢ reduced, then, in Lemma 6.3,
b—dandc — dimply b=d=c.O

Definition. The reduction red a of a € W is the unique reduced word b such
thata — b. O

Construction. The free group on X is now within reach.

Proposition 6.5. Under the operation a-b = red (ab), the set Fy of all
reduced words in X is a group.

Proof. If a Lb, then ac L>bc and ca 1, ch for all ¢ € W. Hence
a — b implies ac — bc and ca — cb forall c € W. Ifnow a, b, c € W
are reduced, then ab — a - b and bc — b - ¢ yield

abc — (a-b)c — (a+b)-c and abc — a(b-c)—a-(b-c).
Hence (a-b)-c=a-(b-c), by 6.4.

The empty word 1 = () is reduced and is the identity element of Fy, since
l-a=red (la)=reda =a and a-1 =red a = a when a is reduced.

The inverse of a reduced word a = (a], Ay, ...y an) is, not surprisingly,

a_l — (a/ !

.
w Gy 1 -ees A1)3
indeed, a~! is reduced, since al #(al_,) forall i > 1, and aa!

a~'a — 1. Thus Fy is a group. [J

— 1,

In particular, the inverse of a one-letter word (y) is (y’). The first part of
the proof implies that concatenation followed by reduction also yields products of
three or more terms in Fy .

Definition. The free group on a set X is the group Fy in Proposition 6.5, which
consists all reduced words in X .

Readers will enjoy showing that Fy, ~ 7Z when X has just one element.

Properties. The free group on X should be generated by X . Strictly speaking,
X is not a subset of Fy . However, there is a canonical injection n : X — Fy,
x — (x), which is conveniently extended to ¥ = X U X’ sothat n : x" — (x);
then Fy is generated by n(X):

Proposition 6.6. If a = (ay, a,, ..., a,) is a reduced word in X, then

a = n(ay)-nlay) - - -nla,).
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In particular, Fy is generated by n(X).

Proof. If a = (al, a,, ..., an) is reduced, then concatenating the one-letter
words (al), (ay), ..., (a,) yields a reduced word; hence

= (a)-(ay) - -+ - (a,) = nlay) - nlay) - -+~ - n(a,).

We saw that 7(x") = n(x)~! forall x € X; hence every a € Fy is a product of
elements of 7(X) and inverses of elements of n(X). O

Theorem 6.7. Let 11 : X — Fy be the canonical injection. For every mapping
f of X into a group G, there is a homomorphism ¢ of Fy into G unique such
that f = ¢ on, namely

vl(ay, ay, ..., a,) = f(a)) f(ay)--- fla,).
X Fy

NF

G‘

Proof. We show uniqueness first. Let ¢ : Fy — G be a homomorphism such
that f = ¢ on. Extend f to X’ sothat f(x’)= f(x)~! forall x € X. Forevery
x € X, wehave (n(x)) = f(x) and ¢ (n(x")) = @(n(x)"") = f(x) "' = f(x').

If now a = (a;, a,, ..., a,) is reduced, then necessarily

ola) = ¢(n(ay)-n(ay) - - -n(a,)) = flay) flay)-- flay,).
since ¢ is a homomorphism. Hence ¢ is unique.

It remains to show that the mapping ¢ : Fy — G defined for every reduced
word a = (a,, a,, ..., a,) by
pla) = flay) flay)--- flay,)
is a homomorphism of groups. First we can extend ¢ to all of W by using the
formula above for every word, reduced or not. Then ¢(ab) = ¢(a) ¢(b) for all
a,b e W. Also a Lp implies ¢(a) = ¢(b): indeed, if a = (a;, a,, ..., a,),
a;,y=al,and b=(ay, ..., a;,_y, a;,y, ..., a,), for some 1 <i < n, then

pla) = flay)--- flai_y) fa;) flay) flap,) - fla,)
flay) - flagy) flap) - fla,) = ¢(b),
1

since f(a;.;)= f(a;)” . Therefore « — b implies ¢(a) = ¢(b). If now a
and b are reduced, then <p(a b)=¢(ab)=y(a)p(b).O

Corollary 6.8. If the group G is generated by a subset X, then there is a
surjective homomorphism of Fy onto G.

Proof. By Theorem 6.7, there is a homomorphism ¢ : Fy — G such that
@ o n is the inclusion mapping X — G; then Im ¢ = G, since Im ¢ contains
every generator x = ¢(n(x)) of G. O
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Notation. The construction of Fy is clearer when X and Fy are kept separate,
but once Fy is constructed, the usual practice is to identify x € X and n(x) =
(x) € Fy, to identify x" € X’ and x =) M=) e Fy, and to write the
elements of Fy as words rather than sequences (for instance, abb~ ¢ instead of
(a, b, b, ¢)). This notation is used in all subsequent sections. Then X C F,,
n: X — Fy is aninclusion mapping, and Fy is generated by X.

With these identifications, the universal property in Theorem 6.7 states that
every mapping f of X into a group G can be extended uniquely to a homomor-
phism ¢ of Fy into G. If X C G, then ¢ sends the typical element of Fy,
which is a product of elements of X and inverses of elements of X , onto the same
product but calculated in G. Hence every relation between the elements of X
(every equality between products of elements of X and inverses of elements of
X) that holds in Fy, also holds in every group G that contains X . Thus, Fy has
as few relations as possible between the elements of X .

Exercises

1. In an alphabet with two elements, how many reduced words are there of length 4? of
length n?

2. Show that,in Fy,a-b-----h=red (ab---h).
3. Show that Fy = Z if X has just one element.

4. Prove that the universal property in Theorem 6.7 characterizes the free group on X up to
isomorphism. (Let F be a group and let j : X — F be a mapping. Assume that for every
mapping f of X into a group G, there is a homomorphism ¢ of F into G unique such that
f=¢oj.Showthat F = Fx.)

5. Show that every mapping f : X — Y induces a homomorphism Fy : Fy — Fy
unique such that Fy onx = ny o f (where nx , ny are the canonical injections). Moreover, if
f istheidentity on X, then Fy is the identity on Fy ;if g o f isdefined, then Fyop = Fg o Fy .

6. Locate a statement of Kurosh’s theorem on subgroups of free groups.

7. Define homomorphisms of semigroups and prove a universal property of the free semi-
group on a set X .

8. Prove a universal property of the free commutative semigroup on a set X .

7. Presentations

Presentations, also called definitions by generators and relations, construct groups
that are generated by a given set whose elements satisfy given relations. These
groups are often too large to be defined by multiplication tables. Presentations
were first considered by Dyck [1882].

Relations. Informally, a group relation between elements of a set X is an
equality between products of elements of X and inverses of elements of X . Free
groups provide formal models of all such products, and a formal definition:
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Definition. A group relation between the elements of a set X is an ordered pair
(u,v) of elements of Fy.

These are called group relations because there are similar but different relations
for rings, modules, and other bidules.

Relations (u, v) are normally written as equalities 4 = v. This should cause
no confusion: if ¥ and v are actually equal in F , then the relation u = v is trivial
and is not likely to be considered; normally, # and v are different in Fy and it is
obvious that u = v is a relation and not an equality.

In order for a relation # = v to hold in group G, the elements of X have to be
carried, kicking and screaming, into G, by a mapping of X into G.

Definition. A group relation (u, v) between the elements of a set X holds in a
group G via a mapping f of X into G when ¢(u) = ¢(v), where ¢ : iy — G
is the unique homomorphism that extends f.

The definition of relations makes most sense when X C G and f is the
inclusion mapping (in which case mention of f is usually omitted). Then ¢ sends
products of elements of X and inverses of elements of X, as calculated in Fy, to
the same products but calculated in G ; and the relation u = v holds in G if and
only if the products # and v are equal when calculated in G .

For example, the relation a® =1 holds in a cyclic group G = (a ) of order 8,
in which a has order 8. Formally, f is the inclusion mapping X = {a } — G;
the free group F on X is cyclic and generated by a; ¢ sends a”, as calculated in
F,to a" as calculated in G ; the relation a8 =1 holds in G since a® and 1 are
equalin G.

In general, relations of type w = 1 suffice: indeed, u = v holds if and only if
uv~! =1 holds, since ¢(u) = ¢(v) if and only if (uv~') = ¢(1).

Construction. Given a group G and a subset X of G, readers will show, as
an exercise, that there exists a smallest normal subgroup of G that contains X .
This provides a way to construct a group in which given relations must hold.

Definition. Given a set X and a set R of group relations between elements of
X, the group (X | R) is the quotient of the free group Fy by the smallest normal
subgroup N of Fy that contains all u v with (u,v) € R.

The group (X | R) = F;/N comes with a canonical mapping « : X —
(X ] R), the composition ¢ = v o n of the inclusion mapping 7 : X — Fy and
canonical projection 7 : Fy — Fy/N.

Proposition 7.1. Let R be a set of group relations between elements of a
set X. Every relation (u,v) € R holds in (X ’ R ) via the canonical mapping
X — (X ’ R); moreover, (X ’ R) is generated by 1(X).

Proof. The canonical projection 7 : Fy, — (X | R) is a homomorphism
that extends ¢ to Fy, since 7w o 1 = ¢; therefore it is the homomorphism that
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extends ¢ to Fy. If (u,v) € R, then uv~!

(u,v) holdsin (X | R) via ¢.

€ N=Kerm, n(u)=n(v), and

Every element g of (X | R)) is the image under ¢ of an element a of F; a is
a product of elements of X and inverses of elements of X ; hence g is a product
of elements of ¢(X) =¢(X) and inverses of elements of ¢(X). O

Definitions. (X ’ R)) is the (largest) group generated by X subject to every
relation (u,v) € R. The elements of X are the generators of ( X | R), and the
relations (u,v) € R are its defining relations.

This terminology is traditional but unfortunate. Indeed, { X ] R) is generated
by ¢(X), not X. The canonical mapping ¢ is usually injective on examples, since
superfluous generators have been eliminated, but has no reason to be injective in
general; thus, X cannot be a priori identified with a subset of ( X | R). Even
when ¢ is injective and X may be identified with a subset of (X | R), X can
generate barrels of groups in which every relation (1, v) € R holds; (X | R) is
merely the largest (see Theorem 7.2 below). These considerations should be kept
in mind when one refers to ( X ] R) as the group generated by X subject to every
relationin R; (X ‘ R ) should be thought of as the largest group generated by X
subject to every relation in R.

For example, the relation ¢® = 1 holds in a cyclic group Cg = (a) of order 8;
in a cyclic group C, = (a) of order 4; in a cyclic group C, = (a) of order 2;
and in the trivial group 1 ={a }. Butonly Cy is (a | ad=1).

Universal property.

Theorem 7.2 (Dyck [1882]). Let R be a set of group relations between elements
ofaset X. If f is amapping of X into a group G, and every relation (u,v) € R
holds in G via f, then there exists a homomorphism ¥ : ( X ’ R) — G unique
such that f =¥ ot (where 1 : X — (X | R) is the canonical mapping). If G
is generated by f(X), then ¢ is surjective.

In particular, when a group G is generated by X, and every relation (u, v) €
R holds in G, then there is a surjective homomorphism { X | R) — G,and G
is isomorphic to a quotient group of (X | R). In this sense (X | R) is the largest
group generated by X subject to every relation in R.

Proof. Let N be the smallest normal subgroup of Fy that contains all u vl

with (u,v) € R. By 6.7 there is a unique homomorphism ¢ : Fy, — G that
extends f. Since every (u,v) € R holds in G via f, we have ¢(u) = ¢(v)
and uv~! € Ker @, for all (u,v) € R. Therefore Ker ¢ O N. By 5.1,
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¢ factors uniquely through the canonical projection 7 : F, — Fy /N = (X ] R):
there exists a homomorphism ¥ : ( X ‘ R) — G unique such that ¥ o 7 = ¢:

X Fy—" (X|R)

I e
X y-//"

G

Then also ¢ o ¢ = f. Moreover, ¥ is the only homomorphism of ( X | R) into
G suchthat Yy o= f:if y o= f,then ¢ and x agree on every generator ¢(x)
of (X | R) and therefore agree on all of (X |R).

If G is generated by f(X), then Im ¢ = G, since Im  contains every
generator f(x) = (1(x)) of G.O

Presentations. We now turn to examples.

Definition. A presentation of a group G is an isomorphism of some (X | R)
onto G.

A presentation of a group G completely specifies G but provides no description,
and needs to be supplemented by a list of elements and, if G is not too large, a
multiplication table. The usual procedure is to play with the defining relations
until no more equalities pop up between the potential elements of G. Then one
must make sure that all such equalities have been found. Alas, inequalities in
(X ] R ) can be obtained only from its universal property. In practice this means
that the desired group must be constructed by some other method in order to prove
its isomorphy to ( X | R ). Examples will illustrate several methods.

Proposition7.3. D, = (a,b ‘ a"=b*>=1, bab=a"! ).

Proof. Let G = (a,b ] a" =b* =1, bab = a”! ). The elements of G
are products of a’s, b’s, a! ’s, and b~1’s. Since a and b have finite order, the
elements of G are in fact products of a’s and b’s. Using the equality ba = a* b,
every product of a’s and b’s can be rewritten so that all a’s precede all b’s. Since
at=b>=1, every element of G is now a product of fewer than n a’s followed
by fewer than 2 b’s; in other words, G = {ai, a'b ‘ 0 =i <n}. Inparticular,
G has at most 2n elements; we do not, however, know whether these elements
are distinct in G ; we might have found an equality between them if we had tried
harder, or been more clever, or if, like our Lord in Heaven, we had enough time to
list all consequences of the defining relations.

We do, however, know that G is supposed to be isomorphic to D, , and this
provides the required alternate construction of G. We know that D, is, in the
notation of Section 1.2, generated by r; and s;. Moreover, in D, , the equalities
r{’ = sg =1 and SS9 =T_1 = rl_ 1 hold, so that the defining relations of
G hold in D, via f :a —— r;, b — s5. By 7.2, f induces a surjective
homomorphism 6 : G — D, . Hence G has at least 2n elements. Therefore



7. Presentations 35

G has exactly 2n elements (the elements a',a'b,0<i <n,aredistinctin G);
6 is bijective; and G = D, . [J

In the same spirit our reader will verify that a cyclic group C, = (a) of order
n has the presentation C, =~ (a|a" =1).

Example 7.4. List the elements and construct a multiplication table of the
quaternion group

0 = (a,bla*=1,b*=d? bab™' =a"").

Solution. As in the case of D, , the elements of Q are products of a’s and
b’s, which can be rewritten, using the relation ba = a’ b, so that all a’s precede
all b’s. Since a* = 1 and b* = az, at most three a’s and at most one b suffice.
Hence 0 ={1, a, a?, a3, b, ab, a*b, a3b}. In particular, Q has at most eight
elements.

The possible elements of Q multiply as follows: alal = a™tl forall 0 <
i,j <3 (with o’ = a4 if i +j 2 4); ba = a’b, ba® = b> = a’b;
ba’ = a*ba = a®> a®b = ab, so that ba' = a* ' b for all 0 <i <3, a'balb =
a a* 7 b% = a'*%J for all i, j. This yields a multiplication table:

1 a d®> & b ab a*b ab
a da> 4 1 ab a’b a’b b
a a1 a a’b a’b b ab
a1 a d*> a’b b ab a%b
b a’b a’h ab a* a 1 d
ab b a’b d®b o d* a 1
a’h ab b a’b 1 @@ 4> a
a*b a’h ab b a 1 & 4

The quaternion group Q.

It remains to show that the eight possible elements of Q are distinct, so that the
multiplication table above is indeed that of Q. The table itself can always serve
as a construction of last resort. It defines a binary operation on a set G with eight
elements, bizarrely named 1, a, az, a3, b, ab, azb, a3b; but these are actual
products in G. Inspection of the table shows that 1 is an identity element, and
that every element has an inverse. Associativity can be verified by Light’s test in
Section 1. Since all elements of G are products of @ ’s and b’s, only a and b need
to be tested, by 1.8. The table below (next page) shows that a passes. Readers
will verify that b also passes. Hence G is a group.

The multiplication table shows that, in G, bab~ ' =a’ba*b=a® =a! , SO

that the defining relations a* = 1, 6> = a?, bab™' =a~' of Q holdin G, via
fiavr—a, b— b. By 7.2, f induces a homomorphism 6 : 0 — G,
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a a a* a® 1 ab a*b @b b

1 1 a a* & b ab a*b a’b
@b | a’b a®b ab b a 1 & a2
b b a’b a*b ab a* a 1 a

ab ab b a’b a*b & a* a 1
a’b|a*h ab b a*b 1 & a* a

Light’s table of a.

which is surjective since G is generated by a and b. Hence Q has at least
eight elements. Therefore Q has exactly eight elements; the elements a, a'b,
0 < i < 3, are distinct in Q; and 6 is bijective, so that Q ~ G and the
multiplication table above is that of Q.

An alternate method of construction for Q (from which Q actually originates)
is provided by the quaternion algebra, which we denote by H after its discoverer
Hamilton [1843]. H is a vector space over R, with a basis {1, i, j, k } whose
elements multiply so that 1 is an identity element; i% = j2 = k%= —1;ij =k,
jk=i,ki=j;and ji = —k, kj =—i, ik =—j. In general,

(a+bi +cj +dk)(a' +b'i+ ' j+d'k)
=(aa’ —bb' —cc’ —dd') + (ab' +ba’ +cd —dc')i
+ (ac’ +cd’ +db’ —bd") j+ (ad' +da’ +bc’ — cb)k.
In H there is a group G = {+1, +i, +j, +k } in which it =1, j2 =i%, and
jij "l =ji (=j)=—jk=—i= i~!. Thus, the defining relations of Q hold in
this group G,via f :a+—i, b+—— j. Then Q = G, as above. [J
Other examples, which make fine exercises, are

T = (a,b‘a6: 1, b2 =a>, bab™! :a_1>
and the group

Ay = (a,b | a® =1, b> =1, aba = ba’b),

one of the alternating groups, about which more will be said in the next chapter.

Exercises

1. The conjugates of an element x of a group G are the elements axa ' of G, where
a € G. Given a group G and a subset X of G, show that there exists a smallest normal
subgroup of G that contains X, which consists of all products of conjugates of elements of
X and inverses of elements of X .



8. Free Products 37

2. Show that (X | R) is determined, up to isomorphism, by its universal property.

3. Show that a cyclic group C, of order n has the presentation C, = (a ’ at=1).

4. Find all groups with two generators a and b in which a* =1, b2 = 42, and

babt =a™t.

5. Write a proof that isomorphic groups have the same number of elements of order &, for
every k 2 1.

6. Show that Q ¢ Djy.

7. List the elements and draw a multiplication table of 7 = (a, b| ab = 1, b2 =
a®, babt=a! }; prove that you have the required group.

8. Show that a group is isomorphic to 7 in the previous exercise if and only if it has two
generators a and b such that a has order 6, b>=a> and bab ' =a !

9. List the elements and draw a multiplication table of the group A4 = (a, b | a3

1, % =1, aba = ba’b ) ; prove that you have the required group.
10. Show that no two of Dg, T, and A4 are isomorphic.

11. Show that A4 does not have a subgroup of order 6.

12. List the elements and draw a multiplication table of the group {a, b ‘ a’ =1, b?

1, (ab)3 = 1); prove that you have the required group. Do you recognize this group?

13. List the elements and draw a (compact) multiplication table of the group (a, b ‘ a®
1, br=1 ) ; prove that you have the required group.

14. Show that a group is isomorphic to D, if and only if it has two generators a and b
such that a has order n, b has order 2, and babt=al.

15. The elements of H can be written in the form a + v, where ¢ € R and v is a
three-dimensional vector. What is (a + v)(a’ +v')?

16. Prove that multiplication on H is associative.

17. Let |a + bi +c¢j + dk| = Va? +b2 +c2 +d2. Prove that |hh'| = |k||}’| for all
h, h' €H.

18. Show that H\{0} is a group under multiplication (this makes the ring H a division
ring).

8. Free Products

This section may be skipped. The free product of two groups A and B is the
largest group that is generated by A U B in a certain sense. Its construction was
devised by Artin in the 1920s. Free products occur in algebraic topology when
two path-connected spaces X and Y have just one point in common; then the
fundamental group 77, (X UY) of X UY is the free product of 77, (X) and 7 (Y).

In a group G that is generated by the union A U B of two subgroups, every
element is a product of elements of A U B. But the elements of G cannot be
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written uniquely in this form, since, for instance, a product of elements of A
can always be replaced by a single element of A. Thus, in G, there are always
relations of sorts between the elements of A U B (equalities between products of
elements of A U B). Even more relations exist if A N B # 1, a situation which is
considered at the end of this section.

The free product of A and B is constructed so that there are as few relations
as possible between the elements of A U B (in particular, A N B =1 in the free
product). Then a product of elements of A U B can always be reduced by replacing
all subproducts of elements of A by single elements, and similarly for B, until no
such subproduct is left. The free product of A and B consists of formal reduced
products, multiplied by concatenation and reduction. That it has as few relations
as possible between the elements of A U B is shown by its universal property.
A similar construction yielded free groups in Section 6. The free product of any
number of groups is constructed in the same fashion, as adventurous readers will
verify.

Reduction. In what follows, A and B are groups. If A N B # 1 we replace
A and B by isomorphic groups A’ and B’ such that A’ N B = 1: for instance,
A" = {1}U ((A\{1}) x{0}) and B’ = {1} U ((B\{1}) x{1}), with
operations carried from A and B by the bijections # : A — A’ and ¢ : B —
B': xy =007 (x) 67!(y)) forall x,y € A’, and similarly for B’; then
A'~ A, B~ B,and A’ N B’ ={1}. Hence we may assume from the start that
ANB=1.

Words in the alphabet A U B are finite nonempty sequences of elements of
A U B. Let W be the free semigroup on A U B: the set of all such nonempty
words, multiplied by concatenation. For clarity’s sake we write words as sequences
during construction; in the usual notation, the word (xl, Xyy eens xn) 1S written as

a product x; x, - -+ X,

Definition. Aword x = (xy, X5, ..., X,,) € W inthe alphabet AU B isreduced
when it does not contain consecutive letters X5 X4 such that X, X1 € A or

X;, X;,1 € B.

Thus a word is reduced when it does not contain consecutive letters from the

same group. For example, the empty word, and all one-letter words, are reduced.
If a,a’ € A and b € B, then aba’ is reduced, as long as a, a' b+ 1,but aa’b

is not reduced. In general, when x = (xl, Xy, oen, xn) is reduced and n > 1,
then x;, x5, ..., x,, # 1, and elements of A alternate with elements of B in the
sequence xy, Xy, ..., X,

The reduction process replaces consecutive letters from the same group by their
product in that group, until a reduced word is reached.

Definitions. In W we write x Ly when x = (X{, Xy, ..., X,), X;, X;. €
Aorx;, x;,y €B,and y = (x;, ..., X;_1, X; X; 11, Xj40, ---s X,,), for some
15i <n;
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we write xLy when k = 0 and x L x/ Ly Lo L () =y for
some x', x", ..., x (6 e W (when x =y, ifk=0),
we write x —>ywhenxi>yf0rsomek§0.

Lemma 8.1. For every word x € W there is a reduction x — y to a reduced
word y.

We show that the word y in Lemma 8.1 is unique, so that all different ways of
reducing a word yield the same reduced word.

Lemma 8.2. If x Ly and x - 7 +y,then y Lt, zimforsome t.

Proof. By definition, x = (xy, X,, ..., X,,), X;, X
some i,

. €Aorx;, x;, €B for
Y o= (X e X XX Xy e Xy,

Xj,Xjy €Aorx;,x;, €B forsome j,and

J
z = (xp, ..o, Xj_1s XjXjuqs Xjyps ooes x,).

Then i £ j,since y # z. We may assume that i < j. If i +1 < j, then x;, x;
are consecutive letters of z, x j» Xjy are consecutive letters of y, and

to= (X s X X X g Xipgs oees Xj1s XjXjuqs Xjyps ooes x,)

serves. If i + 1 =j,andif x;, x;,; € A and x; ¢, x;,5 € B,orif x;, x;,,; € B
and x;_ ¢, x;,» € A, then x; ; =1 and

l
Y =2 = (Xs ooy X5 Xjy Xy ooes Xy),s
contradicting y # z; therefore x;, x,, |, x;,, € A or x;, x;,, X;;» € B, and
Po= (X e Xg X X Xy X3 ooes Xy)
serves. [
As in Section 6 we now have the following:

Lemma 83. If x — y and x — 7z, then y — t and z — t for some t.

Lemma 8.4. For every word x € W there is a unique reduced word y such
that x — y.

Definition. The reduction red x of x € W is the unique reduced word y such
that x — y.

Construction. The free product of A and B is now defined as follows.

Proposition 8.5. If AN B =1, then the set AUl B of all reduced nonempty
words in AU B is a group under the operation x -y = red (xy).

Proof.  Associativity is proved as in Proposition 6.5. The one-letter word
1 = (1) is reduced and is the identity element of A1l B, since 1-x =red (1x) =
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red x = x and x -1 = red x = x when x is reduced. The inverse of a reduced

word x = (x;, x5, ..., X,) is x~ 1= (x;l, x;_ll, ey xfl): indeed, x ! is

reduced, since, like x, it does not contain consecutive letters from the same group,

1 1

and xx~ " — 1, x~ " x — 1. Thus AIIl B is a group. [J

Definition. Let A and B be groups such that AN B = 1. The free product
of A and B is the group A1l B in Proposition 8.5, which consists of all reduced
words in AU B.

Readers will gladly show that Fy ,, ~ Fy Il F), when X and Y are disjoint,
andthat A ~ A’, B~ B’ implies AIIB ~ A’I1 B’ when A’ N B’ =1.

The free product Al B comes with canonical injections « : A — AIlB
and k : B — A1l B, which send an element of A or B to the corresponding
one-letter word.

Proposition 8.6. Im (i~ A, Imk =~ B, ImtNIm«k =1, and AIIB is
generated by Im (U Im k.

Proof. Imt ~ A and Im x = B since ¢ and « are injective; Im¢:NImx =1
since AN B =1; AIIB is generated by Im ¢ U Im « since every reduced word
is a product of one-letter words. [

Notation. The usual practice is to identify the elements of A or B and the
corresponding one-letter words; then A and B are subgroups of AIl B, and
the latter is generated by A U B. Also, products in A Il B are usually written
multiplicatively, e.g., xy rather than x - y. Various other symbols are used instead
of II.

Universal property. By Proposition 8.6, the free product of A and B is also
the free product of Im ¢ and Im « (up to isomorphism). If A N B # 1, then the
free product of A and B is defined (up to isomorphism) as the free product of any
A’ ~ Aand B’ ~ B suchthat A'N B’ = 1, withinjections A — Al — A'IB
and B— B’ — A’ B.

ATl B is the “largest” group generated by A U B, in the following sense:

Proposition 8.7. Let A and B be groups. For every group G and homo-
morphisms ¢ : A — G and ¥ : B — G, there is a unique homomorphism
X :AUB — G suchthat x ot =¢ and x ok =, where 1 : A — AIl B
and k : B — A1l B are the canonical injections:

X F % (X|R)
Lo
X {0
G
In particular, there is a homomorphism of A Il B onto any group that is gener-

atedby AUB.

Proof. We may assume that A N B = 1, as readers will verify. Then it is
convenient to combine ¢ and « into a single mapping A : AUB — AIlB,
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and to combine ¢ and i into a single mapping w : AU B — G. Now,
every reduced word x = (xl, Xy, e xn) is a product of one-letter words x =
Axp)eA(xy) e -o-+A(x,). If xor=¢ and x ok =V, equivalently x o A = w,
then x (x) = w(x|) w(x,) --- w(x,). Hence yx is unique.

Conversely, as in the proof of 6.7, define a mapping £ : W — G by

E (X, X9, oy X)) = 0(x)) ©(xy) -+ 0(x,),
for every (x;, x5, ..., x,) € W. Then &(xy) = &(x) &(y) forall x,y € W.
Moreover, &(x) = £(y) when x Ly if, say, x = (X1, X5, ..., x,) has x;,

X;,1 € A, so that

Y o= (Xps ooy X XXl Xjpgs oo Xy)s

then w(x; x;,1) = (x;) w(x;, ), since ¢ is ahomomorphism, hence & (x) = £(y).
Therefore x — y implies £(x) = £(y). If now x and y are reduced, then
o(x+y)=w(xy)=w(x) o(y). Hence the restriction x of w to AIIB C W isa

homomorphism. Moreover, x o A = w. [J

Free products with amalgamation. If A and B are groups with a common
subgroup A N B = H, then the union A U B is a group amalgam, and it is
a property of groups that any group amalgam A U B can be embedded into a
group G, so that A and B are subgroups of G and G is generated by A U B.
The “largest” such group is the free product with amalgamation of A and B
(which amalgamates H ). This generalization of free products is due to Schreier.
Free products with amalgamation occur in algebraic topology when two spaces X
and Y have a common subspace Z = X N Y; under the proper hypotheses, the
fundamental group 77, (X UY) of X UY is the free product with amalgamation
of m,(X) and 7| (Y) amalgamating 7,(Z).

We sketch the general construction without proofs. Given A and B with
A N B = H we consider nonempty words in the alphabet A U B. A word is
reduced when it does not contain consecutive letters from the same group. Every
element of the free product with amalgamation can be written as a reduced word,
but this representation is not unique (unless H = 1): for instance, if a € A\H,
b e B\H,and h € H ,then (ah, b) and (a, hb) are reduced, but should represent
the same element. Thus, the elements of the free product with amalgamation must
be equivalence classes of reduced words.

In detail, two reduced words are equivalent when one can be transformed into
the other in finitely many steps, where a step replaces consecutive letters ah and
b (or bh and a) by a and hb (or by b and ha), or vice versa. A given word
can now be reduced in several different ways, but it can be shown that all the
resulting reduced words are equivalent. More generally, equivalent words reduce
to equivalent reduced words. Equivalence classes of reduced words are then
multiplied as follows: cls x - cls y = cls z, where xy reduces to z.

With this multiplication, equivalence classes of reduced words constitute a
group, the free product with amalgamation P of A and B amalgamating H,
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also denoted by A I, B. It comes with canonical injections ¢ : A — P and
k : B — P that have the following properties:

Proposition 8.8. Let P be the free product with amalgamation of two groups A
and B amalgamating a common subgroup H = A N B. The canonical injections
t: A — P and k : B — P are injective homomorphisms and agree on
H; moreover, Imt~ A, Imk @ B, Im:NImk = «(H)=«(H), and P is
generated by Im U Im k.

Proposition 8.9. Let P be the free product with amalgamation of two groups
A and B amalgamating a common subgroup H = A N B. For every group G
and homomorphisms ¢ : A — G and ¥ : B — G that agree on H, there is a
unique homomorphism x : P — G such that x ot = ¢ and x ok =, where
t:A— P and k : B — P are the canonical injections.

The free product with amalgamation of groups (A;);c; with a common sub-
group A; NA ;= H is constructed similarly, and has a similar universal property.

Exercises
1. Show that Fy_y =~ Fx Il Fy when X and Y are disjoint.
2.Show that A ~ A’, B ~ B’ implies AIIB ~ A’ I B’ when A'N B’ =1.
3. Given presentations of A and B, find a presentation of A Il B.

4. Suppose that A~ A", B~ B',and A'N B’ =1,sothat ALl B = A'lI B, with

I
L

!
injections ¢ : A — A’ —— A’IIB’ and k : B — B’ = A’ 11 B’. Show that the
universal property of ¢" and &’ yields a similar universal property of ¢ and « .
5. Show that A I B is uniquely determined, up to isomorphism, by its universal property.
6. Show that (Al B) IIC = AII (B 11 C) (use the universal property).

*7. Construct a free product of any family of groups (A;);¢c; ; then formulate and prove
its universal property.

*8. In the construction of free products with amalgamation, verify that equivalent words
reduce to equivalent reduced words.

9. Prove the universal property of free products with amalgamation.
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Structure of Groups

This chapter studies how finite groups are put together. Finite abelian groups
decompose into direct products of cyclic groups. For finite groups in general,
one method, based on the Sylow theorems and further sharpened in the last two
sections, leads in Section 5 to the determination of all groups of order less than
16. The other method, composition series, yields interesting classes of groups.

Sections 2, 8, 10, 11, and 12 may be skipped.

1. Direct Products

Direct products are an easy way to construct larger groups from smaller ones. This
construction yields all finite abelian groups.

Definition. The direct product of two groups G| and G, is their Cartesian
product G| X G,, also denoted by G| ® G,, together with the componentwise
operation: in the multiplicative notation,

(X1, ) (35 ¥2) = (X191, X 0,)-

Readers will verify that G| X G, is indeed a group.

In algebraic topology, direct products of groups arise from direct products of
spaces: when X and Y are path connected, then 7 (X x Y) = 7 (X) xm(Y).

The direct product G| x G, x --- x G, of n groups, also denoted by G| &
G, ® --- ® G, is defined similarly when n = 2 as the Cartesian product
G, x G, x -+ x G, with componentwise multiplication

(X712 Xps ooy X)) (s Yoo ooen V) = (X1 V] Xp Yo ey X, )

It is convenient to let G; x G, X -+ x G, be the trivial group if n = 0 and be
just G; if n = 1. Inall cases, |G| X G5 X -+ X Gn’ = ‘Gl‘ |G2| ‘Gn’
Longer direct products are associative; for instance,

(G xGyx-xG)*xG,  2G xGyx--xG, xG,,,.

Direct sums. Next, we give conditions under which a group splits into a direct
product.
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Proposition 1.1. A group G is isomorphic to the direct product G| x G, of
two groups G, G, if and only if it contains normal subgroups A =~ G| and
B ~ G, suchthat ANB=1and AB=G.

Proof. The direct product G x G, comes with projections | : G| X G, —
Gy, (x;, x) — x; and 7, : G| x G, — G,, (x;, x,) — x,, which are
homomorphisms, since the operation on G; x G, is componentwise. Hence

Kerm, = {(x, x) €G; x G, | x; =1} and

Kerm, = {(x, x,) €G; x G, |x,=1}
are normal subgroups of G| x G,. We see that (x;, 1) — x, is an isomorphism
of Ker , onto G, andthat (1, x,) — x, isanisomorphism of Ker 77, onto G, .
Moreover, Ker m, N Kermr; = {(1,1)} = 1,and (Ker,) (Kerm,) = G, x G,,
since every (x|, x,) € G; x G, is the product (x,, x,) = (x;, 1)(1, x,) of
(x;, 1) € Kerm, and (1, x,) € Ker ;.

If now 6 : G; x G, — G is an isomorphism, then A = ¢ (Ker 7,) and
B = Q(Ker JTl) are normal subgroups of G, A ~ Kerm, ~ G, B ~ Kerm ~
G,,ANB=1,and AB=G.

Conversely, assume that A 4 G, BJd G, ANB =1,and AB = G. Then
every element g of G is a product g = ab of some a € A and b € B. Moreover,
if ab=a'b’, witha,a’ € A and b,b’ € B, then ' la =b'b~' € AN B yields
' la=p'b"'=1and a=a’, b=0b'". Hence the mapping 0 : (a, b) — ab of
A x B onto G is a bijection. We show that 6 is an isomorphism.

Forall a € A and b € B, we have aba~'b™' = a(ba='b™') € A and
aba—'p~! = (aba_l)b_1 € B, since A, B d G; hence aba='p~! =1 and
ab =ba. (Thus, A and B commute elementwise.) Therefore

0((a,b)(d’, b)) =06 (ad’, bb') = aa'bb’ = aba’b' =6 (a, b) 6 (a’,b"). O

Definition. A group G is the (internal) direct sum G = A ® B of two subgroups
A and B when A,Bd G, ANB=1, AB=G.

Then G = A x B, by 1.1. Forexample, V, = { 1,a, b, ¢} is the direct sum of
A={l,a}and B={1,b}.

The proof of 1.1 shows that direct products contain a certain amount of commu-
tativity, and its conditions A, B g G, ANB =1, AB = G are rather stringent.
Hence comparatively few groups split into nontrivial direct products.

Abelian groups. In abelian groups, however, all subgroups are normal and the
conditions in Proposition 1.1 reduceto AN B =1, AB=G (A+ B =G, in the
additive notation). Subgroups with these properties are common in finite abelian
groups. In fact, all finite abelian groups are direct sums of cyclic groups:

Theorem 1.2. Every finite abelian group is isomorphic to the direct product of
cyclic groups whose orders are positive powers of prime numbers, and these cyclic
groups are unique, up to order of appearance and isomorphism.
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Early versions of this result are due to Schering [1868], Kronecker [1870], and
Frobenius and Stickelberger [1878]. We postpone the proof until the more general
results in Section VIIL.6.

Theorem 1.2 readily yields all finite abelian groups of given order n (up to
isomorphism). If G is a direct product of cyclic groups of orders pllq, p];z,
pf’, for some ki, k,, ..., k., > 0 and some not necessarily distinct primes
Py> Ps ---» P, then G hasorder n = pll<1 p’2<2 - pkr . This equality must match
the unique factorization of n into positive powers of distinct primes.

First let G be a p-group (a group of order pk > 1 for some prime p). A
partition of a positive integer k is a sequence k; = k, = --- 2 k, > 0 such
that k = k; +ky + -+ k.. If n = pk is a positive power of a prime p, then,
in the equality n = plf‘ pé{z pf’, all p; are equal to p, and the positive
exponents k;, when numbered in descending order, constitute a partition of k.
Hence abelian groups of order pk correspond to partitions of k: to a partition
k =k, +ky,+---+k,_ corresponds the direct product Cpkl @ Cpkz D P Cpk,

of cyclic groups of orders pkl, plzcz, pk’.

For example, let n = 16 = 2%, We find five partitions of 4: 4 =4;4=3+1;
4=2+2;4=2+1+1;and 4 =1+1+1+1. Hence there are, up to
isomorphism, five abelian groups of order 16:

Ci: Cs3®DCy; C4,PCy; C4BC, 2 Cy; and C, DC, BC, B C,y.

Now let the abelian group G of arbitrary order n be the direct product of cyclic

groups of orders pllq , plz€2 s ey plr". Classifying the terms of this product by
distinct prime divisors of n shows that G is a direct product of p-groups, one for
each prime divisor p of n:

Corollary 1.3. Let p(, ..., p, be distinct primes. An abelian group of order
pllCl p12<2 e pf’ is a direct sum of subgroups of orders pll<1 , pl;z, e pf’ .

Abelian groups of order n are therefore found as follows: write n as a product
of positive powers pk of distinct primes; for each p find all abelian p-groups of
order p*, from the partitions of k; the abelian groups of order n are the direct
products of these p-groups, one for each prime divisor p of n.

For example let n = 200 = 23 .52, There are three partitions of 3: 3 =3,
3=2+1,and 3 =1+ 1+ 1, which yield three 2-groups of order 8:

Cg; C4dCy; and C, & C, B Cy.
The two partitions of 2, 2 =2 and 2 =1 + 1, yield two 5-groups of order 25:

Cys and C5® Cs.
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Hence there are, up to isomorphism, 3 x 2 = 6 abelian groups of order 200:
Ce®Chs; CgC5BCs; CpDCr D Chs; CpDC, B CsdC s
C,0C, &C, D Chs; and C, & CH, D Cy D Cq D Cs.

For another example, “the” cyclic group C, of order n = pllcl p];2 pff,
where pq, ..., p, aredistinct primes, is a direct sum of cyclic subgroups of orders
pllq, p12(2, ey p’r" . This also follows from the next result:

Proposition 1.4. If m and n are relatively prime, then C, ~ C, X C,.

Proof. Let C,, = (c) be cyclic of order mn. Then ¢" has order m (since

(¢™)*=1 if and only if mn divides mk, if and only if n divides k) and ¢” has
order n. The subgroups

A=(c")=C, and B={c")=C

n

have the following properties. First, ke Aifand only if n divides k: if k=t

for some 7, then k — nt is a multiple of mn and k is a multiple of n. Similarly,
k€ B ifand only if m divides k. If now keAans , then m and n divide k,
mn divides k, and k= l;thus ANB=1. Also AB=C,,,: since m and n are
relatively prime, there exist integers u and v such that mu +nv = 1; for every k,

Ck — Ckmu+knv — anv kau

’

where ¢V € A and ¢"™** ¢ B. Hence Con=C,xC, byll.O
The abelian groups of order 200 may now be listed as follows: Cg @
Euler’s ¢ function. These results yield properties of Euler’s function ¢.

Definition. Euler’s function ¢(n) is the number of integers 1 < k < n that
are relatively prime to n.

If p isprime, then ¢(p) = p — 1; more generally, if n = p™ , every pth number
1 £k £ p™ is amultiple of p, sothat ¢(p™)=p™ — (p"/p)=p" (1 —1/p).

Proposition 1.5. A cyclic group of order n has exactly ¢(n) elements of
order n.

Proof. Let G = (a) be cyclic of order n. Let 1 < k < n. The order of a*
divides n, since (a¥)" = (a™)¥ = 1. We show that a* has order n if and only if
k and n are relatively prime. If ged (k,n) = d > 1, then (a¥)"/? = (a™)K/4 =1
and a* has order at most n/d < n. Butif ged (k,n) = 1, then a® has order n:
if (a¥)™ =1, then n divides km and n divides m .

Properties of cyclic groups, such as Proposition 1.4, now provide nifty proofs
of purely number-theoretic properties of ¢ .
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Proposition 1.6. If m and n are relatively prime, then ¢(mn) = ¢(m) ¢(n).

Proof. By 1.4 acyclic group C,,,, of order mn is, up to isomorphism, the direct
product of a cyclic group C,, of order m and a cyclic group C, of order n. In
C,xC,, (x, y)k =1 if and only if x¥ =1 and yk = 1, so that the order of (x, y)
is the least common multiple of the orders of x and y (which is the product of the
orders of x and y, since the latter divide m and n and are relatively prime). It
follows that (x, y) has order mn if and only if x has order m and y has order n.
Hence ¢p(mn) = ¢p(m) ¢(n), by 1.5. O

Corollary 1.7. ¢(n) =n [], ,rime, pln (1-1/p).

Proof. This follows from 1.6 and ¢(p™) = p™ (1 — 1/p), since n is a product
of relatively prime powers of primes. [J

Proposition 1.8. Zd\n o(d)=n.

Proof. Let G = (c¢) be a cyclic group of order n. By 1.5.7, every divisor d of
n is the order of a unique cyclic subgroup of G, namely D ={x € G | x?=1 .
Since D iscyclic of order d, G has exactly ¢(d) elements of order d. Now, every
element of G has an order that is some divisor of n; hence n = Zd‘n o(d). O

Exercises
1. Verify that the direct product of two groups is a group.
2. Define the direct product of any family of groups, and verify that it is a group.

3. Prove the following universal property of the direct product A X B of two groups and its
projections m : AX B — A, p: A X B — B: forevery homomorphisms ¢ : G — A,
¥ : G — B of a group G, there is a homomorphism x : G — A X B unique such that
mox=¢and poy=1y.

4. Show that the direct product of two groups is characterized, up to isomorphism, by the
universal property in the previous exercise.

5. Find all abelian groups of order 35.
6. Find all abelian groups of order 36.
7. Find all abelian groups of order 360.

8. Prove directly that no two of the groups Cg, C4 @ C2, and C2 & Co ¢ Co are
isomorphic.

A group G is indecomposable when G # 1,and G = A ® B implies A=1or B=1.
9. Prove that Dy is indecomposable.
10. Prove that D4 is indecomposable.

11. Prove directly that a cyclic group of order pk , with p prime, is indecomposable.
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2. The Krull-Schmidt Theorem.

This section may be skipped. The Krull-Schmidt theorem, also known as the
Krull-Schmidt-Remak theorem, is a uniqueness theorem for decompositions into
direct products, due to Remak [1911], Schmidt [1912], Krull [1925], and, in the
general case, Schmidt [1928].

Direct sums. We begin with the following generalization of Proposition 1.1:

Proposition 2.1. A group G is isomorphic to the direct product G| X G, X
-+ X G, of groups Gy, G,, ..., G, if and only if it contains normal subgroups
A; = G; such that Aj A, --- A, = G and (AjAy---A;) N A, =1 for
all i < n. Then every element g of G can be written uniquely in the form
g =aja,---a, with a; € A;; a; € A; and a; € Aj commute whenever
i # j; and the mapping (a,, a,, ..., a,) — a,a, --- a
A XAy X - XA, ontoG.

., IS an isomorphism of

Proof. This is trivial if n = 1, and Proposition 1.1 is the case n = 2.
Since the operation on G; X G, x - -+ X G, is componentwise,
G, ={(l, ..., Lx, 1, .., 1)€G; xGyx - xG, | x, €Gy }

is a normal subgroup of G; x G, x --- x G, , forevery 1 < k < n. Moreover,
y i xe— (1, ..., 1, x, 1, ..., 1) is an isomorphism of G, onto G;C. Also

G\ Gy Gy = {(x, ... 5,)€EG; x -+ xG, | x;=1 forall i >k}.

Hence (G| G5 --- G})N G, =1 forall k <nand G|G, --- G/, =G. (In
fact, (G’1 G;(_l G;<+1 G;) N G;C =1 for all k.) Finally,

(xps o xy) = () () - 1, (),
so that every element (x;, ..., x,,) of G; x G, x --- x G, can be written
uniquely in the form x| x5 -+ x/ with xl( € G; forall i; xl{ € G; and x]{ € GJ{
commute whenever i # j; and the mapping (x}, x5, ..., x,) — x{ x} -+ xJ, is
an isomorphism of G’l X G’z X ooee X G; onto G.

Ifnow 6 : G; x G, x -+ X G, —> G is an isomorphism, then A, = 0(G})
is a normal subgroup of G, A, ~ G,’{ =Gy, (AjAy - A )N AL, =1 forall
k<n,and Aj Ay --- A, =G. (Infact, (A} --- A, _; Apyy - A NA =1
for all k.) Moreover, every element g of G can be written uniquely in the form
g =ajay---a, with a; € A;; a; € A; and g; € A; commute whenever
i # j; and the mapping (al, a, ..., an) —— aj a, - a, is an isomorphism of
Al X Ayx---xX A, onto G.

n

The converse is proved by induction on n. We may assume that n > 2.
Let G contain normal subgroups A; = G; suchthat (A; A, --- A;)) N A, =1
forall i <nand AjAy---A, =G. Then A=A A, ---A,_, d G, since
A, Ay, L A dG,and A, 2 G, AnNA, =1, AA, = G. Hence

n—1
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GxAxA,byll, A~ G, x G, X --- x G,_; by the induction hypothesis,
and G = (G, xGy x---xG,_|)xG, =G, xG,x---xG,.0

Definition. A group G is the (internal) directsum G = A ® A, & --- D A, of
subgroups Ay, A,, ..., A, when A; 2 G forall i, (Aj A, --- A;)NA;, =1
foralli <n,and A{ A, --- A, =G.

Then G @ A} X Ay x --- x A, by 2.1 and, as noted in the proof of 2.1,
(A -~ A, A - A)NA; =1 forall i; every element g of G can be
written uniquely in the form g = a; a, --- a, with a; € A;, and the mapping
(ay, ay, ..., a,) — a;a, --- a, is an isomorphism of A; x Ay x --- x A,
onto G. Particular cases of direct sums include the empty direct sum 1 (then
n=0and G=A A, --- A, is the empty product), direct sums with one term
Ay (then G = A), and the direct sums with two terms in Section 1.

Finite groups decompose into direct sums of smaller groups until the latter can
be decomposed no further. In detail:

Definition. A group G is indecomposable when G £ 1, and G = A ® B
implies A=1or B=1.

Then every finite group is a direct sum of indecomposable subgroups. We prove
a somewhat more general statement.

Definition. A group G has finite length when every chain of normal subgroups
of G is finite.

Proposition 2.2. Every group of finite length is a direct sum of (finitely many)
indecomposable subgroups.

Proof. Assume that there is a group G of finite length that is not a direct
sum of indecomposable subgroups. Call a normal subgroup B of G bad when
G = A @ B for some subgroup A, but B is not a direct sum of indecomposable
subgroups. For instance, G = 1 & G is bad. Since G has finite length, there must
exist a minimal bad subgroup (a bad subgroup M with no bad subgroup B ;Cé M):
otherwise, G is not minimal and there is a bad subgroup B, ; G By is not
minimal and there is a bad subgroup B, ;Ct B|; B, is not minimal and there is a
bad subgroup Bj ; B, ; and there is an infinite chain of (bad) normal subgroups
of G, which is more than any group of finite length can tolerate.

Now, M is not trivial and is not indecomposable (since M is not a direct
sum of zero or one indecomposable subgroups). Therefore M = C & D for some
C,D # 1. Then G =A@ C @ D forsome subgroup A,sothat C, D I G. Then
C,D ; M ,so C and D arenotbad; C and D are direct sums of indecomposable
subgroups; then so is M, which is the required contradiction. [J

Proposition 2.2 holds more generally for groups whose normal subgroups satisfy
the descending chain condition (defined in Section A.1).

Main result. The Krull-Schmidt theorem states that the direct sum decom-
position in Proposition 2.2 is unique, up to isomorphism and indexing. In fact,
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a stronger statement holds:
Theorem 2.3 (Krull-Schmidt). If a group G of finite length is a direct sum
G=G 36, &G, = HOH, & ---DH,

of indecomposable subgroups G, ..., G, and H, ..., H,, then m = n and
H,, ..., H, can be indexed so that H; =~ G, forall i < n and

for every k < n.

The last part of the statement is the Krull-Schmidt exchange property. Theorem
2.3 is often stated as follows: if a group G of finite length is isomorphic to
two direct products G =~ G; x G, X -+ x G, ¥~ H x Hy x -+ x H of
indecomposable subgroups G, G,, ..., G, and H;, H,, ..., H,,then m =n
and H;, H,, ..., H, canbeindexedsothat H; ~ G, forall i <nand G ~ G, x
X G X H 4 x---xH forall k <n.

Normal endomorphisms. Recall that an endomorphism of a group G is a
homomorphism of G into G. The proof of Theorem 2.3 requires properties of
endomorphisms, and some patience.

In this proof we write endomorphisms as left operators. Endomorphisms com-
pose: if n and ¢ are endomorphisms of G, then so is ¢ : x — n(¢x). Thus
the set End (G) of all endomorphisms of G becomes a monoid.

An endomorphism 7 of a group G is normal when n (gxg~') = g (nx) g~ for
all x, g € G (in other words, when n commutes with all inner automorphisms).
Then both Im 5 and Ker 5 are normal subgroups.

Lemma 2.4. If G has finite length, then a normal endomorphism of G is
injective if and only if it is surjective, if and only if it is bijective.

Proof. Let n € End (G) be normal. For every n > 0, n" is normal, so that
Im n" and Ker n" are normal subgroups of G. The descending sequence

Imn 2 Impn? 2 -+ 2 Imp” 2 Impy™ 2 -

cannot be infinite, since G has finite length; therefore Im " = Im n"“ for some
n. Forevery x € G we now have n"x = n"*!y for some y € G if 7 is injective,
this implies x = ny, and 7 is surjective.

Similarly, the ascending sequence
Kern C Kern? C --- C Kern" C Kern™! C ...

cannot be infinite; therefore Ker n" = Ker n”“ forsome n. If 7 is surjective, then
for every x € Ker n we have x = "y for some y € G, so that 77”+1y =nx=1,
y € Ker n*! = Ker 5", and x = 0y = 1; thus 5 is injective. (J

Lemma 2.5. If G has finite length and 1 is a normal endomorphism of G, then
G =Imn" ® Ker " for some n > 0.
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Proof. As in the proof of Lemma 2.4, the sequences
Imn D - DImpy"” D --- and Kern C --- C Kerp" C ---

cannot be infinite, so that Im n* = Im n**! for some k and Ker n” = Ker n"*!
for some m. Applying 7 to Im n* = Im n**! yields Im " = Im n"*! for all
n = k; similarly, Ker n”* = Ker n"*! for all n = m. Therefore Im 5" = Im n*"
and Ker 7" = Ker > both hold when # is large enough.

If now x € Im 1" N Ker 5", then x = n"y for some y, n*'y = n"x = 1,
y e Kern? =Kern",and x ="y = 1. Thus Im " NKer " = 1.

Forany x € G we have "x € Im " = Im %" and n"x = n*"y for some y.
Then x = ("y) (n*y ') x, with "y € Im n* and ("y~')x € Ker 5", since
n"((n”y_l)x) = (r;zny)_1 n"x =1. Thus (Im n") (Kern")=G.O

If G is indecomposable, then the direct sum in Lemma 2.5 is trivial. Call an
endomorphism 7 of a group G nilpotent when Im 5" = 1 for some n > 0.

Lemma 2.6. If G is an indecomposable group of finite length, then every normal
endomorphism of G is either nilpotent or an automorphism.

Proof. By 2.5, either Im n"* = 1 and 7 is nilpotent, or Ker n” = 1, and then
Kern =1 and 5 is bijective by 2.4. [l

Pointwise products. The group operation on G induces a partial operation -
on End (G): the pointwise product n-¢ of n and ¢ € End (G) is defined in
End (G) if and only if the mapping & : x — (nx)(¢x) is an endomorphism,
and then 1 -¢ = £. Longer products are defined similarly, when possible. The
following properties are straightforward:

Lemma 2.7. n+¢ is defined in End (G) if and only if nx and ¢y commute
for every x,y € G. If n and ¢ are normal and n - ¢ is defined, then n-¢ is
normal. If 0y, 0y, ..., n, € End(G), and n;x commutes with Yy for every
x,y € G and every i # j, then n,+n,+ --- -1, is defined in End (G), and
NpsNge o oM, =Ng1*Ngp* =+ * Ny, fOr every permutation o .

Some distributivity always holds in End (G): & (n-¢) = (§n)-(§¢) and
(n-¢)& = n&)-(¢§), if n-¢ is defined. (If G is abelian, written additively,
then 7 - ¢ is always defined and is denoted by 1 + ¢, and End (G) is aring.)

Lemma 2.8. Let n{,n,, ..., n, be normal endomorphisms of an indecompos-
able group G of finite length. If n,x commutes with Yy forevery x,y € G and
every i + j, and every n; is nilpotent, then 1 0y« --- 1, is nilpotent.

Proof. We prove this when n = 2; the general case follows by induction on
n. Assume that n, { € End (G) are normal and nilpotent, and that &« = - ¢ is
defined but not nilpotent. Then « is an automorphism, by 2.6. Let ¢ = r;of1 and
Y= ;ofl . Then ¢ and v are nilpotent by 2.6, since they are not automorphisms.
Also ¢« =(n- ;)a_l =1,. Hence

pp oY =¢(p-V¥)=p=(p-¥)p=0p-Vo.
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Under pointwise multiplication this implies ¢y = ¥¢. Therefore (¢ - ¢)" can
be calculated as in the Binomial theorem: (¢ - )" is a pointwise product with
() terms ¢' ¥/ for every i + j = n. By 2.7, this pointwise product can be
calculated in any order, since ¢y = Y@ and every px € Im n commutes with

every ¥y € Im¢.

Now, 1 and ¢ are nilpotent: Im nk = Im g“e =1 for some k,¢ > 0. If
i+j=n2>k+{, theneitheri >k and ¢' ¥/ x € Imn' =1, 0r j > £ and
goi vl x = 1//j (pix € Im ¢/ =1 (or both), for all x € G ; hence (pi wjx =1 for
all x € G and Im (¢ - ¥)"= 1, contradicting ¢ - ¢ = 1.0

Direct sums. Direct sum decompositions come with normal endomorphisms.
Let G=G, ®G,®--- DG, sothat every x € G can be written uniquely
in the form x = x; x, --- x,, with x; € G, for all i. For every k let 5, be the
mapping 7, : x; X, -+ X, — x; € G; n, can also be obtained by composing
the isomorphism G =~ G; x G, X --- X G, , the projection G| X G5 X --- X
G,, — G, and the inclusion homomorphism G, — G, and is therefore
an endomorphism of G, the kth projection endomorphism of the direct sum
G=G,®G,® @G, . The following properties are immediate:

Lemma 2.9. In any direct sum decomposition G =G, & G, & --- D G, , the
projection endomorphisms 1y, 0, ..., 1, are normal endomorphisms; Im n, =
Gy, mx=x forall x € G; mpx =1 forall x € G, if i +k; n,x commutes
with Yy forevery x,y € G and every i # j; ny-ny---- 1, is defined in
End(G);and ny-ny- - +n, =15.

Lemma 2.10. Let G = A & B. Every normal subgroup of A is a normal
subgroup of G. If n is a normal endomorphism of G and nA C A, then the
restriction Un of n to A is a normal endomorphism of A.

Proof. Let a € A and b € B. The inner automorphism x — abxb~'a= ! of
G has a restriction to A, which is the inner automorphism x —— axa~' of A,
since b commutes with every element of A. Therefore every normal subgroup of
A is normal in G. Moreover, if  commutes with every inner automorphism of
G, then 1|4 commutes with every inner automorphism of A. [

Proof of 2.3. Armed with these results we assail Theorem 2.3. Let G be a
group of finite length that is a direct sum

n

of indecomposable subgroups G, G,, ..., Gm and H,, H,, ..., H,. We prove
by induction on k that the following hold for all k < n:

(1) k<m,and H|, H,, ..., H, can be indexed so that
(2) H; = G, forall i <k and

n
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With k = n, (1) yields n < m; exchanging G’s and H ’s then yields n = m. The
other parts of Theorem 2.3 follow from (2) when k = n, and from (3).

There is nothing to prove if k = 0. Let 0 < k < n; assume that (1), (2), (3)
hold for £ — 1. By 2.10, all G, and HJ have finite length. Let 0, n,, ..., 1,
be the projection endomorphisms of the direct sum G =G, ® G, & ---® G, ,
and let ¢, ¢, ..., ¢, be the projection endomorphisms of the direct sum G =
G, & - ®G,_; ® H, D ® H, in the induction hypothesis.

By29,n;----+n, =15. Hence

& = §k<'71' nm) = 5np e Gy

If k > m,then n,x € G, forall x € G and Im ¢;n; = 1 forall i < m < k,
by 2.9; hence H, = Im ¢, = 1, a contradiction since H, is indecomposable.
Therefore m < k and (1) holds for k.

Similarly, ¢y« --- - ¢, =15, nkg“ij C G, forall j, and ITm S = 1 for all
Jj < k, for then ij € Gj forall x € G. Hence

N = ’7k(§1' .gm) = ”kfl"" .nkgm = nkgk' 'nké'm'

Now, every (nkg“j)|Gk is a normal endomorphism of G, , by 2.10, and |G, =
n.¢ e (M 1s the 1dentity on and 1s not nilpotent; .8,
ne 1S not nilpotent for some ; = k. € groups ey can be

Wiig, 1 ilp f i 2 k. The groups H, H, b
indexed so that (1, ;k)| G, is not nilpotent.

We show that G, =~ H, . By 2.6, (nk;“k)|Gk is an automorphism of G, . Hence
N, is not nilpotent. Then Im n, (§,1,)" ¢ = Im (nkg’k)"+1 # 1 for all n and
£y, is not nilpotent. Hence ({knk)| H, is not nilpotent, since (&em)"x =1 for
all x € H, would imply (¢,n)" ¢mx =1 forall x € G, and (gknk)lHk is
an automorphism of H, by 2.6. Then M| H, is injective and ¢, G, = H,, since
4G 2 4 H, = H,. Similarly, Sk|G, is injective and 1, H, = G,. Hence
M| H, is an isomorphism of H, onto G, (and §k|Gk is an isomorphism of G
onto H; ). Thus (2) holds for k.

Let K :Gl Gk*lHk+1 Hn Since G= Gl @@kal @Hk@
--+ @ H, by the induction hypothesis, wehave K =G, & --- & G,_| O H, | &
-~ @ H, . Also {, K =1, since {,G; = CkHj =1 wheni < k < j. Since gk\Gk
is injective this implies K N G, = 1. Hence KG; = K © G,,.

Now, M| Hy H, — G, is an isomorphism, and n,x = 1 when x € G;
or x € H, andi <k < j. Hence 0 =&y« -+ {1 oM+ Gpyps oo+ &, isan

isomorphism
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.G = Gl®...®Gk71@Hk®Hk+l®.“@Hn

Viewed as an endomorphism of G, 8 is normal and injective; hence 0 is surjective,
by 2.4, G = KG,, and (3) holds for k. ]

3. Group Actions

It has been said that groups make a living by acting on sets. This section contains
basic properties of group actions and their first applications, including the class
equation and nice results on p-groups.

Definition. A left group action of a group G onaset X isamapping G X X —
X, (g, x)— g-x,suchthat1-x=xand g+ (h-x)=(gh)-x,forallg,h € G
and x € X. Then G acts on the left on X.

In some cases g - x is denoted by gx orby &x. A right group action X X G —
X, (x,g)— x-g, mustsatisfy x-1=x and (x-g)-h=x-gh forall x, g, h;
x - g may be denoted by xg or by x§.

For example, the symmetric group Sy of all permutations of a set X acts on X
by evaluation: o -x = o(x). Every group G acts on itself by left multiplication:
g -x = gx. Every subgroup of G acts on G by left multiplication.

Properties.

Proposition 3.1. In a (left) group action of a group G on a set X, the action
Op 1 X — g+X of g € G is a permutation of X; moreover, g — o, isa
homomorphism of G into the symmetric group Sy .

Thus, a group always acts by permutations.

Proof. By definition, o is the identity mapping on X, and 0y 00} =0y, for
all g, h € G. In particular, 0,00,-1 = Iy = 0y—100,,50 that o, and Op—1 are
mutually inverse bijections. Thus o, € Sy . The equality 0y 00} =0y, shows

that o : g — Oy is a homomorphism. [J

Our tireless readers will show that there is in fact a one-to-one correspondence
between left actions of G on X and homomorphisms G — Sy .

Corollary 3.2 (Cayley’s Theorem). Every group G is isomorphic to a subgroup
of the symmetric group Sg.

Proof. Let G act on itself by left multiplication. The homomorphism o :
G — S8 in 3.1 is injective: if o, = l;,then gx =x forall x € G and g = 1.
Hence G = Imo = S;. O
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Proposition 3.3. Let the group G act (on the left) on a set X. The relation
x =y ifandonlyify=g-x forsome g € G
is an equivalence relation on X .

Proof. The relation = is reflexive since 1-x = x, symmetric since y = g - x
implies x = g_1 <(g-x) = g_1 -y, and transitive since y = g-x, z = h-y
implies z = hg -x.

Definition. In a left group action of a group G on a set X, the orbit of x € X
is{ye G|y=g-xf0rsome g€G}.

By 3.3 the different orbits of the elements of X constitute a partition of X . For
instance, if a subgroup of G acts on G by left multiplication, then the orbit of an
element x of G is its right coset Hx . In the action on the Euclidean plane of the
group of all rotations about the origin, the orbits are circles centered at the origin
and resemble the orbits of the planets about the Sun.

Next we look at the size of the orbits.

Definition. In a left group action of a group G on a set X, the stabilizer S(x)
of x € X is the subgroup S(x)={g € G ’ g-x=x}ofG.

The stabilizer S(x) is a subgroup since 1-x = x, g-x = x implies x =
g 'e(g-x)=¢g '-x,and g-x =h-x =x implies gh-x =g (h-x)=x.

Proposition 3.4. The order of the orbit of an element is equal to the index of its
stabilizer.

Proof. Let G acton X. Let x € X. The surjection X : g — g - x of G onto
the orbit of x induces a one-to-one correspondence between the elements of the
orbit of x and the classes of the equivalence relation induced on G by x. The
latter are the left cosets of S(x), since g+x = h - x is equivalent to x = g_lh - X
andto g 'h € § (x). Hence the order (number of elements) of the orbit of x
equals the number of left cosets of S(x).O

For example, let a subgroup H of G act on G by left multiplication. All
stabilizers are trivial (S(x) = 1). The order of every orbit (the order of every right
coset of H) is the index in H of the trivial subgroup, that is, the order of H .

Action by inner automorphisms. For a more interesting example we turn
to inner automorphisms. Recall that an automorphism of a group G is an iso-
morphism of G onto G. The automorphisms of G constitute a group under
composition, the automorphism group Aut (G) of G.

Proposition 3.5. For every element g of a group G, the mapping Uy 0 X

gxg_1 is an automorphism of G ; moreover, g — «

into Aut (G).

o is a homomorphism of G

Proof. First, (gngl)(gygfl) = gxyg~! forall x,y € G, so that a, is a
homomorphism. Also, «; is the identity mapping 1; on G, and Uy O =0y
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for all g,h € G, since g (hxh ') g™ = (gh)x(gh)~! forall x € G. In
particular, Qg o, = lg = a, o
bijections. Hence o, is an automorphism of G. The equality « g OO = gy

shows that g — « o is a homomorphism. [

_j100a,,sothat o, and «__; are mutually inverse

Definition. An inner automorphism of a group G is an automorphism x ——
gxg_1 for some g € G.

The proofs of Propositions 3.5 and 3.1 are suspiciously similar. This mystery
can be solved if we detect a homomorphism of G into Aut (G) C S; in3.5,a
clue to an action of G on itself, in which g -x = a, (x)=gxg L.

Definition. The action of a group G on itself by inner automorphisms is defined
byg-x = gxg_lforall g, xeG.

1

The product gxg~' is also denoted by 8x; the notation x8 = g~ 'xg is also
1 8hy 5o that

in use. We see that 'x = x and that 8("x) = ghxh~lg™! =
gx = gx g_1 is indeed a group action.

Definitions. In the action of a group G on itself by inner automorphisms,
the orbits are the conjugacy classes of G ; two elements are conjugate when they
belong to the same conjugacy class.

Thus, x and y are conjugate in G when y = gngl for some g € G. By
3.3, conjugacy is an equivalence relation. The conjugacy class of x is trivial
(gxg’1 = x for all g) if and only if x lies in the center of G:

Definition. The center of a group G is

Z(G)={¢g¢€ G|gxg_1 =x forall x € G }.
Equivalently, Z(G)={g € G| gx =xg forall x € G }.
Proposition 3.6. Z(G) and all its subgroups are normal subgroups of G.

Proof. If z € Z, then gzg_1 =z forall g € G. Hence gHg_1 = H for all
H<Lz.O

In general, the order of a conjugacy class is the index of a stabilizer:
Definition. The centralizer in G of an element x of a group G is
Colx) = {g€G|gxg ' =x},

Equivalently, C(x)={g € G ‘ gx =xg }. In our action of G on itself, C(x)
is the stabilizer of x and is therefore a subgroup; in fact, it is the largest subgroup
of G whose center contains x (see the exercises). Proposition 3.4 yields the next
result:

Proposition 3.7. The number of conjugates of an element of a group G is the
index of its centralizer in G.
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Proposition 3.8 (The Class Equation). In a finite group G,
Gl = Y [C] = 1Z(G) + X icpas [Cl.

The first sum has one term for each conjugacy class C; the second sum has one
term for each nontrivial conjugacy class C.

Proof. First, |G| = > |C|, since the conjugacy classes constitute a partition
of G. Now, the conjugacy class of x is trivial (|C| = 1) if and only if x € Z(G);
hence there are |Z(G)| trivial conjugacy classes and

Gl = el = Yo 161+ Xy €] = 1Z(6)]+ X jepo €10

p-groups. A p-group is a group whose order is a power of a prime p. The class
equation yields properties of these groups.

Proposition 3.9. Every nontrivial p-group has a nontrivial center.

Proof. By 3.7, |C| divides |G| = p" for every conjugacy class C . In particular,
p divides |C| when |C| > 1. In the class equation, p divides |G| and p divides
ZIC\>1 |C|; hence p divides |Z(G)|and |Z(G)| 2 p. O

Groups of order p are cyclic. The next result yields groups of order pz:
Proposition 3.10. Every group of order pz, where p is prime, is abelian.

By 1.2, the groups of order p2 are, up to isomorphism, Cpg and Cp @ Cp.
Groups of order p3 are not necessarily abelian, as shown by D, and Q.

Proof. Readers will delight in proving that G/Z(G) cyclic implies G abelian.
If now |G| = p?, then |Z(G)| > 1, so that |Z(G)| = p or |Z(G)| = p*. If
|Z(G)| = p?, then G = Z(G) is abelian. If |Z(G)| = p, then |G/Z(G)| = p,
G/Z(G) is cyclic, and again G is abelian (and |Z(G)| # p). O

Exercises

1. Show that there is a one-to-one correspondence between the left actions of a group G
on aset X and the homomorphisms G — Sy .

2. Explain how the original statement of Lagrange’s theorem (when x1, ..., X, are per-
muted in all possible ways, the number of different values of f(x1, ..., x) is a divisor of
n!) relates to orbits and stabilizers.

3. Let G be a group. Prove the following: for every g € G, the mapping ag :
X — gx g_1 is an automorphism of G; moreover, g —— o is a homomorphism of
G into Aut (G).

4. Explain why the inner automorphisms of a group G constitute a group under composition,
which is isomorphic to G/Z(G).

5. Find the center of the quaternion group Q.
6. Find the center of Dy .

7. Find the center of D,,.
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8. List the conjugacy classes of Dy .
9. List the conjugacy classes of Q.

10. Let G be a group and let x € G. Prove the following: the centralizer of x in G is
the largest subgroup H of G such that x € Z(H).

11. Show that, in a finite group of order n, an element of order k has at most n/k
conjugates.

12. Prove the following: if G/Z(G) is cyclic, then G is abelian.

A characteristic subgroup of a group G is a subgroup that is invariant under all automorphisms
(a subgroup H such that a(H) = H for all « € Aut (G)). In particular, a characteristic
subgroup is invariant under inner automorphisms and is normal.

13. Show that the center of a group G is a characteristic subgroup of G .

14. Prove that every characteristic subgroup of a normal subgroup of a group G is a normal
subgroup of G, and that every characteristic subgroup of a characteristic subgroup of a group
G is a characteristic subgroup of G.

15. Let N be a characteristic subgroup of a group G. Prove that, if N < K < G and
K /N is a charateristic subgroup of G/N, then K is a characteristic subgroup of G .

4. Symmetric Groups

In this section we study the symmetric group S, ontheset {1,2,...,n}.

We write permutations as left operators (o x instead of o (x)), and the operation
on §, (composition) as a multiplication (o 7 instead of o o 7). We follow custom
in specifying a permutation by its table of values

(1 2 .. n
= \o1 02 ... on)"

Transpositions. Readers probably know that every permutation is a product of
transpositions; we include a proof for the sake of completeness.

Definition. Let a,b € {1,2,...,n}, a +b. The transposition t = (a b) is
the permutation defined by ta = b, tb =a, and tx = x forall x + a, b.

Proposition 4.1. Every permutation is a product of transpositions.

Proof. By induction on n. Proposition 4.1 is vacuous if n = 1. Let n > 1
and o € §,. If on = n, then, by the induction hypothesis, the restriction of
o to{1,2,...,n— 1} is a product of transpositions; therefore o is a product
of transpositions. If on = j #n, then (n j)on =n, (n j)o is a product of
transpositions (n j)o =1, 7, --- 7,,andsois o = (n j) 1,7, -+~ 7.

By 4.1, §,, is generated by all transpositions; in fact, S, is generated by the
transpositions (12), (23), ..., (n — 1 n) (see the exercises).

There is a uniqueness statement of sorts for Proposition 4.1:
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Proposition 4.2. If 0 = 1)1y -+ T, = v Uy -+ U, is a product of transposi-
tions Ty, Ty, ..., T, and vy, U,, ..., U, then r =5 (mod 2).

Equivalently, a product of an even number of transpositions cannot equal a
product of an odd number of transpositions.

Proof. This proof uses the ring R of all polynomials with » indeterminates
X, ..., X, , with integer (or real) coefficients. Let S, acton R by

G‘f(Xl, ey Xl’l) = f(XUl, XO'Z’ ey X

Weseethat 1. f=fand o-(r- f)=(oT1)- f,so that the action of S, on R is
a group action. Also, the action of ¢ preserves sums and products in R.

an)'

Let 7 = (a b), where we may assume that @ < b, and let
p(Xl, XZ’ ceey Xn) = Hl§i<j§n (Xi —Xj).

Then 7 - p is the product of all 7+ (X; — X;)= X, — X; withi < j, and

T1
X; - X; ifi,j£a,b, (1)
X, - X,=—(X,~X,) ifi=aandj=b,(2)

X,—X;=—(X;-X,) ifi=a<j<b (3

X, —X; ifi=a<b<j, 4
b

(X, - X)) = ¥ XJ £ . :
a—Xj ifa<i=b<j, (5
X, - X, ifi<j=a<b, (6)
X, - X, ifi<a<j=b, (7)

X, —X,=—(X,-X;) ifa<i<j=b (8

Inspection shows that every term of p =[] 1<i<j<n (X, - X j) appears once in
7 - p, though perhaps with a minus sign. Hence t-p = +p. The minus signs
in T - p come from case (2), one minus sign; case (3), one minus sign for each
a < j < b; and case (8), one minus sign for each a < i < b. This adds up to an
odd number of minus signs; therefore 7. p = —p.

If now o is a product of r transpositions, then o - p = (—1)"p. If o is also a
product of s transpositions, then o - p = (—1)*p and (—1)"=(—1)*.O0

Proposition 4.2 gives rise to the following definitions.

Definitions. A permutation is even when it is the product of an even number of
transpositions, odd when it is the product of an odd number of transpositions.

Counting transpositions in products shows that the product of two even permu-
tations and the product of two odd permutations are even, whereas the product of an
even permutation and an odd permutation, and the product of an odd permutation
and an even permutation, are odd.
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Definition. The sign of a permutation o is

+1  ifo is even,
sgno = .
—1 ifoisodd.
By the above, sgn (07) = (sgn o)(sgn 1), so that, when n = 2, sgn isa
homomorphism of S, onto the multiplicative group { +1, —1 }; its kernel consists
of all even permutations and is a normal subgroup of S, of index 2.

Definition. The alternating group A, is the normal subgroup of S, that consists
of all even permutations.

Cycles. Cycles are a useful type of permutation:

Definitions. Given 2 < k < n and distinct elements a;, a,, ..., a, of
{1,2,....n}, the k-cycle (a; a, ... ay) is the permutation y defined by

ya; =a; . forall 1 <i <k, yay =ay, yx=x forall x +ay, ..., a.
A permutation is a cycle when it is a k-cycle for some 2 < k < n.

In other words, (a; a, ... a;) permutes a;, a,, ..., a, circularly, and
leaves the other elements of { 1,2, ..., n } fixed. Transpositions are 2-cycles (not
bicycles). The permutation o = (333 %) is a 3-cycle, o = (14 3).

In general, a k-cycle y = (a; a, ... a;) has order k in S, , since vk =1 but
yhal =a,. #a,if 1 <h<k.

Proposition 4.3. A, is generated by all 3-cycles.

Proof. First, (a b ¢) = (a b)(c b) for all distinct a, b, c, so that 3-cycles are
even and A, contains all 3-cycles. Now we show that every even permutation is
a product of 3-cycles. It is enough to show that every product (a b)(c d) of two
transpositions is a product of 3-cycles.

Let a+b, c+d. If {a,b} ={c,d}, then (a b)(cd)=1. If {a,b} N
{¢,d} has just one element, then we may assume that b = d, a # ¢, and then
(ab)(cd)=(ab)(cb)=(abc). f {a,b}N{c,d} =@, then (a b)(cd)=
(ab)(cb)bc)dc)=(abc)bed).O

The cycle structure. Next, we analyze permutations in terms of cycles.

Definitions. The support of a permutation o is the set {x | ox #x}. Two
permutations are disjoint when their supports are disjoint.

Thus, x is not in the support of o if and only if it is a fixed point of o (if
ox =x). The support of a k-cycle (a; a, ... a;) istheset {a, a,, ..., a; }.

Lemma 4.4. Disjoint permutations commute.

Proof. Let o and t be disjoint. If x is not in the support of o or t, then
otx = xtox. If x is in the support of o, then so is ox, since ox £ x implies
oox £o0x;then otx =0x = 10X, since o and t are disjoint. Similarly, if x is
in the support of 7, then otx = tx = tox.
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Proposition 4.5. Every permutation is a product of pairwise disjoint cycles,
and this decomposition is unique up to the order of the terms.

Proof. Given o € S, ,let Z acton X ={1,2,...,n} by m-x =¢™x. This
is a group action since o%=Tlandolo” =" 1t partitions X into orbits. We
see that ox = x if and only if the orbit of x is trivial; hence the support of o is
the disjoint union of the nontrivial orbits.

By 3.4 the order of the orbit A of a € X is the index of the stabilizer
S@)={m € Z | oc™a =a} of a. Hence A has k elements if and only if
S(a) = Zk, if and only if k is the least positive integer such that o%a = a. Then
oa, ..., a+a. In fact, a, oa, ..., o*~1q are all distinct: otherwise,
ola = o/a for some 0 < i,j < k with, say, i < j, and o/7la = a with
0 < j—1i < k. Therefore A = {a, oa, ..., (rk_la}. Moreover, o and the
k-cycle y, = (a, oa, ..., ok_la) agree on A, if A is not trivial.

O_k—l

The cycles y 4, where A ranges over all nontrivial orbits, are pairwise disjoint,
and their product, in any order by 4.4, is o: if the orbit B of x is trivial,
then ox = x = y,x for all nontrivial A; otherwise, ox = ypx and y,x = x,
VaYpX =ypx forall A £ B.

Conversely, assume that o is a product of pairwise disjoint cycles o =
Y1Va - V.. Let A; be the support of y;. By the hypothesis, the sets A;
are pairwise disjoint and nontrivial. If x ¢ A; U---U A, , then y;x = x for all
i, ox = x, and the orbit of x is trivial. If x € A;, then Yix = x forall j £1i,

and ox = y;x € A;, so that olx = yl.hx for all i, A; is the orbit of x, and

Y; = ¥4 - Thus A;, ..., A, are the nontrivial orbits, and the cycles y;, ..., ¥,
are the cycles y, above with A nontrivial. [J

The proof of Proposition 4.5 provides an algorithm that decomposes any per-
mutation into a product of pairwise disjoint cycles, in finitely many steps: apply
o repeatedly to 1,2, ..., n to get the orbits. For example, let

(1 2 3 4 5 6 7 8 9
“\7 2814356 9/

Wehave 01 =7,07=5,05=4,04=1;02=2;03=8,08=6, 06=3;
and 09 =9. Therefore 0 = (1754)(386).

Definition. The cycle structure of a permutation o € S, is the sequence
ki +ky+---+k, inwhichr 20, k; 2 ky 2 --- 2 k. 2 2, and the decomposition
of o into a product of pairwise disjoint cycles consists of a k;-cycle, a ky-cycle,
..., and a k,-cycle. [

The plus signs are symbolic; k| +k, + - - - +k,. is the author’s notation. Often,
enough 1’s are added that ky +---+k,. +1+---+1 becomes a partition of 7.

(123456789
72814

For example, the cycle structure of o = 35 69) is 4 + 3, since
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o =(1754)(386). Readers will verify that o is odd and has order 12. In
general, the order of a permutation is readily ascertained from its cycle structure
(see the exercises).

Conjugates. With Proposition 4.5 we can find conjugacy classes in S, .

Lemma 4.6. If y = (a; a, ... a) is a k-cycle, then so is oyo ! =

(0a, oa, ... oay).

Proof. If x +0a,, oa,, ..., oa;, then oy £ap, ay, ..., a, ya_lx =

ailx, and ayoflx =x. Butif x =o0a;, where i < k, then oyoflx =oya; =

oa,,;similarly, ayail(aak) =oa;.O

i+1°

Proposition 4.7. Two permutations are conjugate if and only if they have the
same cycle structure.

Proof. Let o be a product of disjoint cycles o = y; ¥, -+ ¥,.. Bach y; is a
k; -cycle for some k; = 2; by 4.4 we may assume that k; = k, = --- 2 k,., and
then the cycle structure of o is k| +k, +---+k,_.. By 4.6, ayioz_l

like y; and

is a k; -cycle

—1 —1 —1 —1
aoa™" = (aya) (e ) (e )
is a product of cycles whose supports are the images under o of the supports of
Y1» Ya» ---» ¥, and are therefore pairwise disjoint. Therefore the cycle structure
of aoa ! is ki +ky+---+k,, the same as that of o .

Conversely, let o and 7 have the same cycle structure k| +k, +- -+ +k,.. Then
o and t are products of r pairwise disjoint cycles

o=Y1Vy - y,and T =68, - 6,,
in which y; and §; are k; -cycles, y; = (a; a, ... ak,-)’ 8 =(b; by ... bki)' Let
6; be the bijection of { a;, a,, ..., ay. }onto {by, by, ..., bk,- } that sends a, to

b, . The permutations o and t have n — (k; +k, + - - - + k,.) fixed points; let 6, be
any bijection of the set of fixed points of o onto that of 7. The set of fixed points

of o and the supports of y,, y,, ..., y, constitute a partition of {1,2,...,n};
the set of fixed points of t and the supports of §;, &,, ..., , also constitute a
partition of { 1,2, ..., n }. Therefore the bijections 0y» 0y -.., 0, can be pasted

together into a bijection 6 of {1,2,...,n} onto {1,2,...,n}. Then 0 € S,
and 4.6 yields 0)/1-6’1 = §; for all i, by the choice of 6, ; hence 000~ =7.0

Proposition 4.7 sets up a one-to-one correspondence between conjugacy classes
of S, and cycle structures (or between the former and partitions of 7). As an
example we list the conjugacy classes of S, and determine their orders. With
n = 4 the possible cycle structures are 4, 3, 2+ 2, 2, and the empty sum. Readers
who like combinatorics will verify that S, has six 4-cycles, eight 3-cycles, six
transpositions, three products of disjoint transpositions, and one empty product of
disjoint cycles, for a total of 6 + 8 + 6 + 3 + 1 = 24 elements.
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The orders of centralizers are found by similar methods. For example, let
0=(1754)(386)¢c S,. By the uniqueness in 4.7, aca”! = o if and only if
a(1754)a '=(1754) and « (38 6) ™! = (386); by 4.6, if and only if
(el @7 a5 ad)=(1754) and (3 a8 a6) = (38 6). These conditions imply that
« also permutes the fixed points 2 and 9 of o . Now, there are four permutations
of 1,7, 5, 4 such that (a1 o7 a5 ad) = (17 5 4); three permutations of 3, 8, 6
such that (3 a8 a6) = (3 8 6); and two permutations of 2, 9. These can be
combined in all possible ways to yield elements of the centralizer. Therefore the
centralizer of o has 4 x 3 x 2 = 24 elements. The conjugacy class of o then has
9!/24 = 15120 elements, by 3.7.

Exercises

1. Show that S, is generated by (12), (23), ..., (n—1 n).

2. Show that S, is generated by (12) and (12 --- n).

3. Show that Sy = (a.b|a" =1, > =1, (ba)®=1).

4. Show that A4 = (a,b ‘ a’ = 1, b2 =1, aba = ba2b>.

5. Devise a presentation of Sy .

6. Verify that a k-cycle is even when k is odd and odd when k is even.
7. Show that A4 has a normal subgroup of order 4.

8. How many k-cycles are there in Sy, ?

9. Write o = (% g g 3 g g ; ?) as a product of pairwise disjoint cycles. Is o even or odd?
What is the order of o ?

10. What is the order of the centralizer of o = (% g 2 i g g :,7’ ?) ? of its conjugacy class?

11. Write o = (é ?1 ? 3 ‘;’ g g g) as a product of pairwise disjoint cycles. Is o even or odd?
What is the order of o ?

12. What is the order of the centralizer of o = (é i ‘; 3 ‘;’ g ; g) ? of its conjugacy class?
k1 +k

13. Prove the following: if the cycle structure of o is
o is the least common multiple of k1, k2, ..., kr.

14. Show that Z(S;) =1 when n = 3.

1+ ko + -+ - + kr, then the order of

15. Make sure that the author did not pull a fast one when listing the orders of the conjugacy
classes of Sy.

16. List all conjugacy classes of S5 and their orders.

17. List all conjugacy classes of A4 and their orders. (Warning: even permutations that
are conjugate in S4 are not necessarily conjugate in A4 .)

18. List all conjugacy classes of As and their orders. (Warning: even permutations that
are conjugate in S5 are not necessarily conjugate in As.)

19. Show that A5 has no normal subgroup N £ 1, As.
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5. The Sylow Theorems

The Sylow theorems (named after Sylow [1872]) are a basic tool of finite group
theory. They state that certain subgroups exist and give some of their properties.

First theorem. The first Sylow theorem is a partial converse of Lagrange’s
theorem.

Theorem 5.1 (First Sylow Theorem). Let G be a finite group and let p be a
prime number. If pk divides the order of G, then G has a subgroup of order pk.

Proof. First we prove a particular case: if G is abelian and p divides |G|,
then G has a subgroup of order p. Readers will easily derive this statement from
Theorem 1.2 but may prefer a direct proof. If |G| = p, then G itself serves.
Otherwise, |G| > p and we proceed by induction on |G|. Leta € G, a # 1. If
the order of a is a multiple mp of p, then a™ has order p and G has a subgroup
(a™) of order p. Otherwise, p does not divide the order of A = (a ). Hence
p divides the order of G/A. By the induction hypothesis, G/A has a subgroup
of order p: bA € G/A has order p in G/A for some b € G. Now, the order
of bA in G/A divides the order of b in G, since b™ = 1 implies (bA)™ =1 in
G/A. Therefore the order of b is a multiple of p and as above, G has a subgroup
of order p.

Now let G be any finite group. Theorem 5.1 is true when |G| = 1; we prove
by induction on |G| that if any p* divides |G|, then G has a subgroup of order
pk. ‘We may assume that pk > 1.

If p divides |Z(G)|, then by the above, Z(G) has a subgroup A of order
p. Then A Jd G by 3.6. If pk divides |G|, then p*~! divides |G/A| < |G|;
by the induction hypothesis, G/A has a subgroup B/A of order pk_1

A < B<G,andthen B < G has order p*.

, Where

If p* > 1 divides |G| but p does not divide | Z(G)| then in the class equation,
|G| =1Z(G)| +Z|C|>1 |C|, p cannot divide every |C| > 1, since p divides |G
but not |Z(G)|; hence some |C| > 1 is not a multiple of p. By 3.7, |C] is the
index of the centralizer C(x) of any x € C; hence p* divides |C(x)| = |G|/|C|.
Now, |C(x)| < |G|, since |C| > 1; by the induction hypothesis, C(x) £ G has
a subgroup of order pk O

Corollary 5.2 (Cauchy’s Theorem). A finite group whose order is divisible by
a prime p contains an element of order p.

Cauchy’s theorem implies an equivalent definition of p-groups:

Corollary 5.3. Let p be a prime number. The order of a finite group G is a
power of p if and only if the order of every element of G is a power of p.

Normalizers. The next Sylow theorems are proved by letting G act on its
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subgroups by inner automorphisms. For each ¢ € G, x — gxg’l is an (inner)

automorphism of G, and H < G implies gHg~! < G. This defines a group
action g - H = gHg’1 of G on the set of all its subgroups.

Definitions. In the action by inner automorphisms of a group G on its sub-
groups, the orbits are the conjugacy classes of subgroups of G ; two subgroups of
G are conjugate when they belong to the same conjugacy class.

Thus, H and K are conjugate when K = gHg’l for some g € G.

The number of conjugates of a subgroup is the index of a stabilizer:

Definition. The normalizer in G of a subgroup H of a group G is
Ng(H) = {g€G|gHg '=H}.

Equivalently, N(H) = {g € G | gH = Hg}. In the action of G on its
subgroups, N(H) is the stabilizer of H and is therefore a subgroup; in fact, it is
the largest subgroup of G in which H is normal (see the exercises). Hence:

Proposition 5.4. The number of conjugates of a subgroup of a group G is the
index of its normalizer in G.

The second and third theorems. These theorems give properties of p-
subgroups of maximal order.

Definition. Let p be prime. A Sylow p-subgroup of a finite group G is a
subgroup of order p*, where p* divides |G| and p**' does not divide |G|.

The existence of Sylow p-subgroups is ensured by Theorem 5.1.

Proposition 5.5. If a Sylow p-subgroup of a finite group G is normal in G,
then it is the largest p-subgroup of G and the only Sylow p-subgroup of G.

Proof. Let the Sylow p-subgroup S be normalin G. If T is a p-subgroup of
G,then ST £ G and |ST|=|S||T|/|SNT| 2 |S|, by 15.9. Hence |ST| = |S|,
by the choice of S,sothat 7 C ST =S§.0

Theorem 5.6 (Second Sylow Theorem). Let p be a prime number. The number
of Sylow p-subgroups of a finite group G divides the order of G and is congruent
to 1 modulo p.

Theorem 5.7 (Third Sylow Theorem). Let p be a prime number. All Sylow
p-subgroups of a finite group are conjugate.

Sylow [1872] proved Theorems 5.6 and 5.7 in the following form: all Sylow
p-subgroups of a finite group of permutations are conjugate, and their number is
congruent to 1 modulo p. By Cayley’s theorem, this must also hold in every finite
group. Like Sylow, we prove the two theorems together.

Proof. Let S be a Sylow p-subgroup. A conjugate of a Sylow p-subgroup is
a Sylow p-subgroup; therefore S acts on the set § of all Sylow p-subgroups by
inner automorphisms. Under this action, {S} is an orbit, since aSa=! = § for
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all a € S. Conversely, if {T'} is a trivial orbit, then aTa~! = T forall a € § and
S C Ng(T);then5.5appliesto T J N;(T) and yields S = T'. Thus {S} is the
only trivial orbit. The orders of the other orbits are indexes in S of stabilizers and
are multiples of p. Hence |§] = 1 (mod p).

Suppose that § contains two distinct conjugacy classes €’ and €” of subgroups.
Any S € @ actson €’ and €’ C § by inner automorphisms. Then the trivial orbit
{S} isin €; by the above, |€'| = 1 and |€”| = 0 (mod p). Butany T € €’
also acts on €' U " by inner automorphisms; then the trivial orbit {7} is in e,
so that |€”| = 1 and |€'| = 0 (mod p). This blatant contradiction shows that
$ cannot contain two distinct conjugacy classes of subgroups. Therefore S is a
conjugacy class. Then |§| divides |G|, by 5.4. O

Theorem 5.7 has the following corollary:

Corollary 5.8. A Sylow p-subgroup is normal if and only if it is the only Sylow
p-subgroup.

The use of Theorems 5.6 and 5.7 may be shown by an example. Let G be a
group of order 15. The divisors of 15 are 1, 3, 5, and 15; its prime divisors
are 3 and 5. Since 1 is the only divisor of 15 that is congruent to 1 (mod 3),
G has only one Sylow 3-subgroup S; since 1 is the only divisor of 15 that is
congruent to 1 (mod 5), G has only one Sylow 5-subgroup 7. Now, S = Cj
and T = Cs are cyclic; S,7 d G by 5.8, SNT =1, since |S N T| must divide
|S| and |T|; and |ST| = |S||T|/|S N T| = 15, so that ST = G. By 1.1, 1.4,
G =~ C3 x C5 = C;5. Thus, every group of order 15 is cyclic.

Further results. The list of Sylow theorems sometimes includes the next three
results, which are of use in later sections.

Proposition 5.9. In a finite group, every p-subgroup is contained in a Sylow
p-subgroup.

Proof. As above, a p-subgroup H of a finite group G acts by inner auto-
morphisms on the set § of all Sylow p-subgroups. Since |§| = 1 (mod p)
there is at least one trivial orbit {S}. Then hSh~' = § for all h € H and
H C N;(S). Now, S is a Sylow p-subgroup of N;(S), and H C S, by 5.5
appliedto S d N(S).0

In particular, the maximal p-subgroups are the Sylow p-subgroups.

Proposition 5.10. In a finite group, a subgroup that contains the normalizer of
a Sylow p-subgroup is its own normalizer.

Proof. Let S be a Sylow p-subgroup of a finite group G, and let H be a
subgroup of G that contains N (S). Let a € N;(H). Then aHa=' = H,
so that § and aSa™' are Sylow p-subgroups of H. By 5.7, S and aSa~! are
conjugate in H: S = haSa~'h~"! for some h € H. Then ha € Ng(S) € H
and a € H. Hence N;(H)=H.[
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Proposition 5.11. A p-subgroup of a finite group that is not a Sylow p-subgroup
is not its own normalizer.

Proof. Let H be a p-subgroup of a finite group G. If H is not a Sylow p-sub-
group, then p divides [G: H]. Now, H < N;(H),and [G: N (H)] divides
[G:H].If p doesnotdivide [G:Ng(H)],then [G:N;(H)]< [G:H] and
H G N;(H). Now assume that p divides [G: Ng(H)].

The subgroup H acts by inner automorphisms on its conjugacy class €. Then
{H} is atrivial orbit. Since p divides |C| = [G : N;(H) |, there must be another

trivial orbit {K} # {H}. Then hKh~' = K forall h € H and H C Ng(K):
hence K & N (K). Since there is an inner automorphism of G that takes K to
H , this implies H & N (H). O

Corollary 5.12. In a finite p-group, every subgroup of index p is normal.

Exercises

1. Use Theorem 1.2 to show that a finite abelian group whose order is a multiple of a prime
p has a subgroup of order p.

2. Use Theorem 1.2 to prove the following: when G is a finite abelian group, every divisor
of |G| is the order of a subgroup of G.

3. Prove the following: when H < G, then Ng(H) is the largest subgroup of G such
that H J Ng(H).

4. Show that A4 does not contain a subgroup of order 6.

5. Show that, in a group of order n < 11, every divisor of n is the order of a subgroup.
6. Find the Sylow subgroups of S4.

7. Find the Sylow subgroups of S5 .

8. Show that every group G of order 18 has a normal subgroup N £ 1, G.

9. Show that every group G of order 30 has a normal subgroup N # 1, G.

10. Show that every group G of order 56 has a normal subgroup N # 1, G.

11. Find all groups of order 33.

12. Find all groups of order 35.

13. Find all groups of order 45.

14. Prove the following: if p**' divides |G
k+1

, then every subgroup of G of order pk is

normal in a subgroup of order p

6. Small Groups
In this section we construct all groups of order at most 15. (Finding the 14 groups
of order 16 is more difficult.)

General results. For every prime p, we saw that every group of order p is
cyclic, and that every group of order p2 is abelian (3.10).
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Proposition 6.1. Let p be prime. A group of order 2p is cyclic or dihedral.

Proof. A group of order 4 is abelian and either cyclic or isomorphicto V, = D,.
Now let p > 2. By the Sylow theorems, a group G of order 2p has a Sylow
p-subgroup A of order p and a Sylow 2-subgroup B of order 2; A and B are
cyclic, A = {a) ~ Cp, B = (b) = C,. Moreover, A J G, since A has index
2, ANB=1,and G = AB, since |G| = |A||B| = |AB|. Then G is generated
by {a,b}, and a, b satisfy a? =1, b* =1, and bab—! = a* for some k, since
bab~' € A. Since b> = 1, we have a = bbab~'b~" = ba*b~! = (bab™")¥=
(a¥)k= akz; hence p divides k> — 1 = (k — 1)(k + 1). Since p is prime, p
divides k — 1 or k+ 1.

If p divides k — 1, then bab™' = a* = a and ba = ab; hence G is abelian,
BdG,and G=A® B Cp ©Cy = C2p is cyclic. If p divides k + 1, then
bab ' =ak =a! , the defining relations of Dp in I.7.3 hold in G, and there is
a homomorphism 6 of Dp into G, which is surjective since G is generated by a
and b; 6 is an isomorphism, since |D,| = |G| =2p. Thus G = D,. [

Proposition 6.2. If p > q are primes, and q does not divide p — 1, then every
group of order pq is cyclic.

For instance, we saw in Section 5 that every group of order 15 is cyclic. But
D5 has order 6 = 3 x 2, where 2 divides 3 — 1, and is not cyclic.

Proof. By the Sylow theorems, a group G of order pg has a Sylow p-subgroup
P of order p and a Sylow g-subgroup Q of order g, both of which are cyclic.
Among the divisors 1, p, g, pq of pgq, only 1 is congruent to 1 (mod p),
since ¢ < p, and only 1 is congruent to 1 (mod ¢), since g does not divide
p — 1. Therefore P,Q & G. Moreover, P N Q =1 and PQ = G, since

|G|=|P|[Q|=|PQ|. Hence G=P®Q=C,®C, =C, .0

We now know all groups of the following orders:

Order Type
1,2,3,5,7,11, 13 cyclic;

4,9 abelian  (3.10);

6, 10, 14 cyclic or dihedral (6.1);
15 cyclic (6.2).

Groups of order 8. Up to isomorphism, there are three abelian groups of
order 8, Cg, C, ® C,, C, & C, ® C,, and at least two nonabelian groups,
D, = (a,b| a* =1, b* =1, bab ! =a_1> and Q = (a,b|a4 =1, b =
az, bab~ ' =q7! ) ; the exercises have shown that D, #0.

Proposition 6.3. A nonabelian group of order 8 is isomorphic to either D,

or Q.
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Proof. Let G be a nonabelian group of order 8. No element of G has order
8, since G is not cyclic, and the elements of G cannot all have order 1 or 2: if

Ix—1 = yx forall x,y € G.

x =x"!forall x € G, then xy = (xy) " '= y~
Therefore G has an element a of order 4. Then A = (a ) is a subgroup of G of

order 4; A g G since A has index 2.

The group G is generated by a and any b ¢ A, since A ; (a,b) C G. Now,
= A, since Ab has order 2 in G/A. Also, b* +a, a’: otherwise, b has
order 8. Hence b? =1 or b* = a>. Moreover, bab~—!' € A has order 4 like a;
bab~! + a, otherwise, G is abelian; hence bab ' =a3=a"1.

The coup de grace is now administered as in the proof of 6.1. If b* =1, then
the defining relations of D, hold in G ; hence there is a homomorphism 6 of D,
onto G, which is an isomorphism since both groups have order 8; thus G >~ D,.
If b2 = az, then the defining relations of Q, etc.,etc.,and G =~ Q.

Groups of order 12. Up to isomorphism, there are two abelian groups of
order 12, C, ® C3 = Cy, and C, & C, & C3, and at least three nonabelian
groups, Dg = (a,b|a® =1, b*=1, bab~ ' =a™'), T =(a,b|a® =1, b =
a3, bab~ ! = a7 ! ) (from Section 1.7), and A, ; the exercises have shown that
D¢, Q,and A, are not isomorphic to each other.

Proposition 6.4. A nonabelian group of order 12 is isomorphic to either D,
orT or Ay.

Proof. A nonabelian group G of order 12 has a subgroup P of order 3. Then
G acts by left multiplication on the set of all four left cosets of P: g-xP =gxP.
By 3.1, this group action induces a homomorphism of G into S, whose kernel
K is a normal subgroup of G. Moreover, K C P, since gxP = xP for all x
implies g € P;hence K =1 or K = P.

If K =1, then G is isomorphic to a subgroup H of §; of order 12. Let
y € 8, be a3-cycle. Since H has index 2, twoof 1, y, )/2 must be in the same

left coset of H. Hence y € H, or )/2 € Hand y = 7/4 € H. Thus H contains
all 3-cycles. Hence H = A,,by4.3,and G > A,.

If K = P,then P 4 G, P istheonly Sylow 3-subgroup of G, and G has only
two elements of order 3. If ¢ € P, ¢ # 1, then ¢ has at most two conjugates and
its centralizer C;(c) has order 6 or 12. By Cauchy’s theorem, C;(c) contains
an element d of order 2. Then c¢d = dc, since d € C G(c), and a = cd has order
6. Then A = (a) is a subgroup of G of order 6; A J G since A has index 2.

As in the proof of 6.3, G is generated by @ and any b ¢ A. Now, bab™!' € A
has order 6 like a; bab~! + a, otherwise, G is abelian; hence bab—' =4 =
a ! Also, b € A, since Ab has order 2 in G/A; b? +a, a5, otherwise,
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b has order 12 and G is cyclic; b? + az, a4, since b® commutes with b but
ba*b~! = a2 yields ba® = a*b. Hence b* = 1 or b* = a°. Then, as in the
proof of 6.3, G @ Dg or G = T.0J

Summary. The groups of order 1 to 15 are, up to isomorphism:

Order Groups:

1;

Gy

Cy;

Cp, C0C 2 Vys

Cs;

C¢> Dy = S5

Cys

Cg, C40Cy, C,&C, B Cy, Dy, O
Cy, C3 @ Cy;

Cios Ds:

Cis

Cipy G868 C3, Dg, T, Ay;
Ci3s

Cly» D7;

Cis-

O 00 O L B W N =

—_—
—_ O

—_— = =
|9, I SNV I )

Exercises
1. To which group of order 12 is Co @ D3 isomorphic?
Nonabelian groups in the following exercises should be specified by presentations.
2. Find all groups of order 51.
3. Find all groups of order 21.
4. Find all groups of order 39.
5. Find all groups of order 55.
6. Find all groups of order 57.
7. Find all groups of order 93.

7. Composition Series

Analysis by normal series is another tool for the study of finite groups.

Definitions. A normal series of a group G is a finite ascending sequence A,
Ay, ... A, ofsubgroupsof G suchthat1=A; 2 A; d A, d --- d A =G;
then m is the length of the series.
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The subgroups that appear in normal series are called subnormal; they need
not be normal (see the exercises). Normal series are sometimes called subnormal
series. Some infinite sequences of subgroups are also called series.

For example, every group G has a trivial normal series 1 < G. We saw in

Section 3 that S, has a nontrivial normal series 1 4 A I S, .

Definition. The factors of a normal series 1 = Ay d Ay d A, d .- d
A,, = G are the quotient groups A;/A;_; (1 =i < m).
Definition. Two normal series A : 1 = Ay 4 Ay d A, D -2 A, =G

and B:1=Byd BB, d ---dB, =G areequlvalentwhenm—n and
there is a permutation o such ‘that A, /Az—l ~ B, /By, foralli> 0.0

In other words, two normal series are equivalent when they have the same
length and, up to isomorphism and indexing, the same factors. For instance, a
cyclic group C = (¢) of order 6 has two equivalent normal series 1 < {1, ¢*}

dcand1 2 {1, *1dc.

analyzmg the group G as somehow assembled from s1mpler groups the factors
Ai/Ay, Ay/Aq, ..., A, /A, ;. Reconstructing G from these factors is more

difﬁcult and is discussed in Section 12. For now, our philosophy is to ignore

reconstruction difficulties and make the factors as simple as possible.

One may think of a normal series 1 =A; J A; 2 A, d --- 2 A, =G as

Refinement adds terms to a normal series to obtain smaller, simpler factors.

Definition. A refinement of a normal series A : 1 = A, d A} d A, d
d A, =G isanormal series B:1=By,d By d B,d --- d B, =G such
hat every A; is one of the Bj’s.

For example, D, has a normal series A : 1 d R d D,, where R = {r,, r/,
r5, 3 } in our notation. The normal series B : 1 d {ry, 7} S RI D, isa
refinement of A.

In general, refinement replaces each interval A;_; < A; byasequence A;_| =
B, 2 B, 2 -+ d B, =A;. Byl49, thenew factors B, /B, are the factors
of a normal series 1 J B;.\/B; d...d By /B; of A;/A

original factors A;/A;_; into smaller and 51mpler factors

;1 this analyzes the

Refinements exhibit a kind of convergence.

Theorem 7.1 (Schreier [1928]). Any two normal series of a group have equiv-
alent refinements.

Proof. Let A :1=A;dA dA,d---dA =Gand B : 1=

A 1l

Byd B, dB,d --- B, = G be two normal series of a group G. Let
Con=D,,=G: forevery0<l <mand 0 £ j <n,let
Chivj =A; (AN B;)and D, ;. = B; (B NA;).
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This defines C;, and D, forevery 0 < k < mn, since every 0 < k < mn can be
written uniquely in the form k =ni + j with 0 < i <m and 0 £ j < n, and can
be written uniquely in the form k = mj’ +i’ with 0 < i’ <m and 0 < j' < n.

Thus o : ni + j — mj +i is a permutation of {0, 1, ..., mn —1}.
We see that A, = C,;, € C,;,; € - CCp,, = Ajq and Bj = ij -
ij+1 C...C Dm/+m _BJH,forall Ogi <m and 0 £ j < n; in particular,

Co=Dy=1. Hence C, € Cy,y and D, C D, forall k; if we can show that
¢:Cy, Cy,...,C,, and D: Dy, D, ..., D, are normal series, they will be
refinements of A and B.

mn

That € and D are normal series follows from Zassenhaus’s lemma 7.2 below,
appliedto A= A4A,, Al = A, B= B ,and B’ = Bj+1 by this lemma, C
A(A'NB), Cpyjyy = A(A'N B) Dmlﬂ = B(B'NA),and D,y =
B (B'N A') are subgroups of G; C,;,; = A(A'NB) 4 A(A'nB')=C
D ..=B(B'nA) BB NA)=D ; and

mj+i mj+i+1°

= AA'NB)/A(A'NB)
B(B'nAY/B(B'NA) =D

ni+j =
ni+j+l°

Cni+j+1/cni+j

112

mj+i+1/ij+i'

Therefore € and D are normal series, and are refinements of A and B ; moreover,
Cis1/Cr = Dyyyy/Dyy forall 0 < k < mn, where o is our earlier permutation
of {0, 1, ..., mn —1},sothat € and D are equivalent. (J

Lemma 7.2 (Zassenhaus [1934]). If A< A" < G and B2 B’ < G, then
A(A'NB), A(A'nB’), B(BPN A), and B (B' N A’) are subgroups of G;
AA'NB) S AA'NB); B(BBNA) 4 B(B'nA');and

AA'NBY/A(ANB) ~ B(B'nA")/B(B' nA).
This is often called the Butterfly lemma, after its subgroup inclusion pattern:

A(A'n B B(B'nA"

A'nB

A'NB) "N A)
B

B

A (B
/ v
A (A"N B)(B' N A)

ANEPERAN

B'N

/

A'n
Proof. A(A’NB) and A (A’ N B’) are subgroups of A’, since A J A’. Also
A'NB 2 AnB ,since BI B

Let x =ab € A(AANB')and y = cd € A(A' N B), with a,c € A,
be ANB,de ANB. Then xcx ' € A, since x € A’ and Ad A
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bdb=' € A’ N B, since b € AN B and AANBJ A NB; xdx™! =
abdb~'a=! € A(A' N B)A = A(A' N B), since AJ A’; and xyx~! =
xex 'xdx™' € A(A'NB). Thus A(A'NB) < A(A'NB).

Let S=A'NB', T=A(A"NB),and U
T dU,and

A(A'N B'). Then S < U,

ST =TS = A(A'NB)(A'nNB')=AANB)=U.

We find SN T. First, ANB ' C S, ANB CACT,ANBCS,and
A'NBCT,sothat (ANB")(A'NB)C SNT. Conversely, if t € SN T, then
te€ A'NB and t = ab forsome a € A and b € A’ N B;then b € B, a =
th~' € B',and s =abc (ANB')(A'NB). Thus SNT = (AN B')(A'NB).
By the second Isomorphism theorem (1.5.9), T d ST, SN T I §, and
ST/T = S/(SNT). Hence (ANB)(A'NB)=SNT < S=A"NB" and

AA'NB"Y/A(A'NB) = STT
~ S/(SNT) = (AnB"Y/(AnB")(A'NnB).
Exchanging A’s and B’s in the above yields that B (B’ N A) and B (B’ N A”)
are subgroups of G, B (B'NA) J B(B'NA’), and
B(B'nA"Y/B(B'NnA) =~ (A'nB")/(AnB")(A'nB).
Hence A(A'NB")/A(A'nB) ~ B(B'nA)/B(B'nA).O

Composition series. A composition series is a normal series without proper
refinements, hence with the simplest possible factors:

Definition. A composition series of a group G is a normal series A : 1 =
Ay A2 A, D - 2 A, =G of G such that, for every 1 =< i < m,

A =<tl A; and there is no subgroup B such that A;_, =<tl B :<t] A;.

By 1.4.9, subgroups B suchthat A;_; § B @ A; correspond to normal sub-
groups N #£1, A;/A;,_; of A;/A,_,. Hence a composition series is a normal
series in which every factor A;/A;_; is nontrivial and has no normal subgroup
N #1, A;/A;_,. We state this as follows.

Definition. A group G is simple when G + 1 and G has no normal subgroup
N+1,G.

Proposition 7.3. A normal series is a composition series if and only if all its
factors are simple.

For instance, a cyclic group C = (c¢) of order 6 has two composition series
19{,3}dcand12{1,% *ydc.

Proposition 7.4. Every finite group has a composition series.

However, not every group has a composition series (see the exercises).
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Proof. In a group G of order n, every strictly ascending normal series A : 1 =
Ay A A F -2 A, =G haslength m < n. Hence G has a strictly
ascending normal series of maximal length, i.e., a composition series. [

The following theorem was proved by Holder [1889]. Jordan [1869] had shown
earlier that different compositions series have factors of the same order.

Theorem 7.5 (Jordan-Holder). Any two composition series of a group are
equivalent.

Proof. Let A : 1 =AdA dAF dA,=GCGadB: 1=
Byg B¢ B3 -+ & B, = G be two composition series of a group G.
By Schreier’s theorem (7.1), A and B have equivalent refinements C and D.
Since A is a composition series, C is obtained from A by adding equalities; its
factors are the (nontrivial) factors of A and a bunch of trivial factors. Similarly,
the factors of D are the (nontrivial) factors of B and another bunch of trivial
factors. The permutation o such that C,/C, | = Dck/Do(k—l) forall Kk > 0
sends the nontrivial factors of € onto the nontrivial factors of D, and sends the
factors of A onto the factors of B; therefore A and B are equivalent. [J

By 7.5, when a group G has a composition series, all composition series of G
have the same factors, up to isomorphism and order of appearance.

Definition. The simple factors of a group G that has a composition series are
the factors of any composition series of G.

For instance, the simple factors of a cyclic group C = (¢ ) of order 6 are one
cyclic group of order 2 and one cyclic group of order 3, as shown by either of the
composition series 1 I {1, 3} < Cand 14 {1, % ¢*} d C.

Simple groups. Analysis by composition series shows that simple groups are
a basic building block of finite groups in general.

One of the great achievements of late twentieth century mathematics is the
Classification theorem, which lists all finite simple groups; its proof set a new
record for length, and is being published in installments (Gorenstein et al. [1994
up]), some 2100 pages as of this writing. With 26 exceptions, finite simple groups
fall into some 18 infinite families. We can produce two such families now; a third
is constructed in the next section.

Proposition 7.6. A finite abelian group is simple if and only if it is a cyclic
group of prime order.

This follows from, say, Theorem 1.2.

Nonabelian simple groups arise from composition series of sufficiently large
groups. Dihedral groups are unsuitable for this (see the exercises) but S, has a
normal series 1 J A, d S, , which is a composition series if n = 5:

Proposition7.7. A, is simple for all n 2 5.
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The group A5 = Cj is simple, too, but A, has a normal subgroup of order 4
and is not simple (see the exercises in Section 3).

Proof. The simplicity of As is proved by counting the elements of its conjugacy
classes, which readers will verify consist of:

12 5-cycles;

12 more 5-cycles;

20 3-cycles;

15 products of two disjoint transpositions; and
1 identity element.

A normal subgroup of A is the union of { 1 } and other conjugacy classes. These
unions have orders 1, 13, 16, 21, 25, 28, and over 30, none of which is a proper
divisor of |A5| = 60; therefore A5 has no normal subgroup N # 1, As.

The simplicity of A, when n > 5 is proved by induction on n. Let N + 1 be
a normal subgroup of A, . We want to show that N = A, .

First we show that N is transitive: for every i, j € {1,2, ..., n }, there exists
o € N such that oi = j. Since N # 1 we have ok + k for some o0 € N and
ke {l1,2,...,n}. Forany i € {1,2,...,n} we can rig an even permutation
o such that ok = k and ook = i; then aca”l € N and aoca 'k = i. If now
i,j€{1,2,...,n}, there exist u, v € N such that uk =i, vk = j, and then
vu_l € N and v,u_li =j.

Next we show that some o € N, o # 1, has afixed point (ok = k for some k).
As above, wehave ok = j # k forsome 0 € N. Thenoj # j. Leti # j, k, oj.
If i =i, o serves. Otherwise, i, oi, j, oj are all different; since n = 6
we can concoct an even permutation « such that «j =k, aoj = j, ai =1,
and aoi #1i, j, k, oi. Then p = aca”l € N, uk = aoj = j = ok, and
Wi =aoi + oi. Hence U:G*I/L € N,v+1since vi £i,and vk =k.

Let k be a fixed point of some 0 € N, 0 £ 1. Let B={a € A, | ak =k}.
Then NNB#1and NN B § B. Since B ~ A,_, is simple, by the induction
hypothesis, this implies NN B =B and B C N. If « € A, then uk = ak for
some i € N,since N is transitive, so that u_la €EBCNandoa=p (/L_l()[) €
N.Thus N=A, .0

Exercises
1. Show that D4 has a normal series with a term that is not a normal subgroup of Dy .
2. Show that A4 has a normal series with a term that is not a normal subgroup of A4.

3.Let N 2 G. Show that normal series of N and G/N can be “pieced together” to yield
a normal series of G .

4. Let A: 1=4A0d A1 2 A2 2 --- < Ay = G be anormal series. Explain how
normal series of all the factors A;/A; _1 give rise to a refinement of A .

5. Show that Z does not have a composition series.



76 Chapter II. Structure of Groups

6. Prove the following: if N 4 G and G/N have composition series, then G has a
composition series.

7. Prove the following: if N d G and G has a composition series, then N and G/N
have composition series. (Hint: first show that N appears in a composition series of G .)

8. Prove the following: if G has a composition series, then every strictly ascending normal
series of G can be refined into a composition series.

9. Find all composition series and simple factors of Dy .

10. Find all composition series and simple factors of A4 .

11. Find all composition series and simple factors of Dy .

12. Prove that an abelian group has a composition series if and only if it is finite.

13. Prove that all abelian groups of order n have the same simple factors.

14. Show that the simple factors of D, are all abelian.

15. Show that 1 4 A, < Sy is the only composition series of S, when n = 5.

16. Show that a group of order p” , where p is prime, has a composition series of length 7.

17. Let G be a group of order n and let m be the length of its composition series. Show
that m < logy n. Show that the equality m = log, n occurs for arbitrarily large values of n.

The following exercise is more like a small research project.

*18. Without using results from later sections, show that there is no nonabelian simple
group of order less than 60.

8. The General Linear Group

This section can be skipped. The general linear group is one of the classical groups
whose study in the nineteenth century eventually gave rise to today’s group theory.
Its normal series yields new simple groups.

Definition. Let V be a vector space of finite dimension n 2 2 over a field
K. The general linear group GL(V) of V is the group of all invertible linear
transformations of 'V into V.

Given a basis of V, every linear transformation of V into V has a matrix;
hence GL(V) is isomorphic to the multiplicative group GL(n, K) of all invertible
n X n matrices with coefficients in K . In particular, all vector spaces of dimension
n over K have isomorphic general linear groups. The group GL(n, K) is also
called a general linear group.

The Special Linear Group. We construct a normal series of GL(V). First,
determinants provide a homomorphism of GL(V) into the multiplicative group
K* of all nonzero elements of K . Its kernel is a normal subgroup of GL(V).
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Definition. Let V be a vector space of finite dimension n 2 2 over a field K .
The special linear group SL(V) of V is the group of all linear transformations of
V into V whose determinant is 1.

The multiplicative group SL(n, K) of all n X n matrices with coefficients in K
and determinant 1 is isomorphic to SL(V') and is also called a special linear group.
Matrices with arbitrary nonzero determinants are readily constructed; hence the
determinant homomorphism GL(V) — K* is surjective and the Homomorphism
theorem yields the following result:

Proposition 8.1. SL(V) < GL(V) and GL(V)/SL(V) = K*.

Centers. Since K* is abelian, any nonabelian simple factor of GL (V) must
come from SL(V'), in fact must come from SL(V') / Z(SL(V')). To find the center
of SL(V) we use elementary transformations.

Readers may recall that an elementary n X n matrix E is obtained from the
identity matrix by adding one nonzero entry outside the main diagonal:

1

If E has a £ 0 in row k and column ¢ # k, then multiplying a matrix on the
left by E adds a times row £ to row k, which is the basic step in Gauss-Jordan
reduction. Multiplying on the left by E ~! reverses this step; thus E —1 s the
elementary matrix with —a in row k and column £.

Definition. A linear transformation T : V — V is elementary when there
exists a basis by, b,, ..., b, of V such that Th; = b, +b, and Tb; = b, for all
i 22.

Readers will show that T is elementary if and only if its matrix in some basis
of V is elementary.

Proposition 8.2. For a linear transformation T € GL(V) the following are
equivalent: 1) T : V — V is elementary; (ii) det T =1 and

F(T) ={xeV|Tx=x} = Ker (T - 1)

has dimension dimV — 1; (iii) det T = 1 and Im (T — 1) has dimension 1. In
particular, SL(V') contains all elementary transformations.

Proof. Let T be elementary, so that there is a basis b, b,, ..., b, of V such
that Th, = b, + b, and Th; = b; forall i = 2. The matrix of 7" in that basis is
triangular, with 1’s on the main diagonal; hence det T = 1. Also F(T) is the
subspace generated by b,, ..., b, and has dimension n — 1; Im (7 — 1) is the
subspace generated by b, and has dimension 1.
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Conversely, assume that det 7 = 1 and F(T) has dimension dimV — 1,
equivalently, that det 7 =1 and dimIm (7 — 1) =dim V —dim Ker (T — 1) =
1. Let by ¢ F(T);then V = Kb, @ F(T) and Th| = cb; + v # b, for some
c € K and v € F(T). For any basis by, ..., b, of F(T), the matrix of T in
the basis by, by, ..., b, of V is triangular, since Tb; = b, for all i > 2, with
¢, 1, ..., 1 on the main diagonal; hence ¢ =det T = 1 and T(bl) = b +v with
v € F(T), v+0. There is a basis b,, ..., b, of F(T) in which b, = v. Then
Th, =b|+b,. Thus T is elementary. []

Proposition 8.3. For a linear transformation T € GL(V) the following are
equivalent: (i) T isinthe center of GL(V); (ii) T commutes with every elementary
transformation; (iii) Tx € Kx forall x € V; (iv) T = Aly, for some A € K,
A #0. Hence Z(GL(V)) = K*.

A linear transformation T € SL(V) is in the center of SL(V) if and only if
it is in the center of GL(V), if and only if T = A1y, for some ) € K such that
A" = 1. Hence Z(SL(V)) is isomorphic to the multiplicative group of all nth
roots of 1 in K.

Proof. Let T € GL(V). We see that (i) implies (ii).

Assume (ii). If by, b,, ..., b, is a basis of V, then there is an elementary
transformation E such that Eb; = b; + b, and Eb; = b; for all i = 2. Then
Im (E —1)=Kb, and

Thy = T(E—1)b, = (E—1)Th, = ab,

for some a € K. Forevery x € V, x £ 0, there is a basis of V in which b, = x;
hence Tx = ax for some a € K, and (ii) implies (iii).

If (iii) holds, then in any basis by, b,, ..., b, of V we have Tb; = a;b, for
some a; € K. Now,

aibi+ajbj = T(bi+bj) = a(bi+bj)

for some a € K; hence aq; = a = aj, for every i, j, and T = Aly,, where
A=a; =a,=---=a, +0,since A" =det T 0. Thus (iii) implies (iv). Finally,
(iv) implies (i), since scalar multiples 7" = A1,, of the identity transformation on

V commute with every linear transformation.

Now let T € SL(V). If T € Z(SL(V)), then T commutes with every
elementary transformation; hence T € Z(GL(V)), and T = Al,,, where 1" =
detT=1.0

The Projective Special Linear Group. We noted that any nonabelian simple
factor of GL(V') or SL(V) must come from SL(V)/ Z(SL(V)).

Definition. Let V be a vector space of finite dimension n 2 2 over a field K .
The projective special linear group PSL(V) or PSL(n, K) is the quotient group
SL(V)/Z(SL(V)).
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We digress to show that projective linear groups are groups of transformations
of projective spaces, much as linear groups are groups of transformations of vector
spaces. For every vector space V over a field K a projective space P over K is
constructed a follows: the relation

x ~ yifandonlyif x = Ay forsome A € K, A £0,

is an equivalence relation on V; P is the set of all equivalence classes [x] of
nonzero vectors x € V.

In the Euclidean plane, the motivation for projective spaces lies in the projection
of one straight line L to another straight line L', not parallel to L, from one point
noton L or L’. This projection is almost a bijection of L onto L’, except that
one point of L disappears at infinity in the direction of L, and one point of L’
seems to arrive from infinity in the direction of L. If every straight line could be
completed by the addition of a point at infinity, then projection of one straight line
onto another, whether parallel or from a point, would always be bijective:

L

A

?

I.r’

This is precisely what happens in the projective plane P (over R), which is
the projective space of V = R>. In P there are two kinds of points: points
[(a, b, ¢)] with ¢ # 0, which may be written in the form [(x, y, 1)] and identified
with points (x, y) of R%, and points at infinity [(x, y,0)]. A straight line in P is
the set of all points [(x, y, z)] that satisfy a linear equation ax + by + cz = 0 with
(a,b,c) £0. In P, the points at infinity constitute a straight line, z = 0; every
other straight line consists of a straight line in R? plus one point at infinity. Two
straight lines in P always intersect; parallel lines in R? intersect at infinity when
completed to straight lines in P.

In general, an invertible linear transformation 7 € GL(V) of V induces a pro-
Jjective transformation [T of the corresponding projective space P, which is well
defined by [T] [x] = [Tx]. Readers will easily deduce from Proposition 8.3 that
[T]=[U] ifand only if T = AU for some % € K, A # 0. Hence the group of all
projective transformations of P is isomorphic to GL(V) / Z(GL(V)). Similarly,
linear transformations 7' € SL(V) induce a group of projective transformations
of P, which is isomorphic to SL(V')/ Z(SL(V')); this is the projective special
linear group PSL(V).

Elementary transformations. Our main result concerns the simplicity of
PSL(V). The proof requires two properties of elementary transformations.

Proposition 8.4. For every vector space V of finite dimension n 2 2 over a
field K, the group SL(V) is generated by all elementary transformations.
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Proof. We use matrices. As long as rows are not permuted or multiplied by
scalars, Gauss-Jordan reduction is equivalent to left multiplication by elementary
matrices. Therefore, when M is an invertible matrix, there are elementary ma-
trices E,, ..., E, such that E| --- E, M is diagonal. Since the inverse of an
elementary matrix is elementary, M is the product of elementary matrices and a
diagonal matrix D. Moreover, det M = det D, since elementary matrices have
determinant 1. We claim that, when a diagonal matrix D has determinant 1, there
are elementary matrices Eq, ..., E, suchthat £ --- E, M is the identity matrix.
Then D is a product of elementary matrices, and Proposition 8.4 is proved.

The claim is proved if n = 2 by the Gauss-Jordan reduction:
p=(¢ 0 (¢ 0 . 0 —b . 0 —b
T \O0 b a b a b a 0
. 1 —b . 1 —b . 1 0
a O 0 ab 0 ab )’

where ab = 1. If n > 2 and D has d;, d,, ..., d, on the diagonal, then
transforming the first two rows of D as above yields a diagonal matrix with 1,
dyd,, dy, ..., d, on the diagonal; then transforming rows 2 and 3 as above
yields a diagonal matrix with 1, 1, d;d, d5, ..., d, on the diagonal; repeating
this process yields a diagonal matrix with 1, ..., 1, d; d, ... d,, on the diagonal,
which is the identity matrix if det D = 1.

Proposition 8.5. Elementary transformations constitute a conjugacy class of
GL(V); if dimV 2 3, they constitute a conjugacy class of SL(V).

Proof. Let E be an elementary transformation and let T E T ' bea conjugate
of E in GL(V). There is a basis b, b,, ..., b, of V such that Eb; = b| + b,
and Ebi = bl- for all i = 2. Then Tb, Th,, ..., Tbn is a basis of V and
TET ' Th =Tb, +Tby, TET™' Th, = Th, forall i > 2; hence TET ! is
elementary. Thus, all conjugates of E are elementary.

Conversely, let E and E’ be elementary transformations. There is a basis
by, by, ..., b, of V suchthat Eb; = b; +b, and Eb; = b; forall i 2 2,and a
basis b}, b, ..., bl of V suchthat E'b] = b} + b}, and E'b! = b/ forall i = 2.
Let T be the linear transformation such that T'b; = bf forall i; T isinvertible and
TET™' = E’, since TET'b! = E'b} forall i. Thus E and E’ are conjugate
in GL(V).

To prove conjugacy in SL(V) weneed T € SL(V). Letd =det T £0. If
n = 3, then b'll = b’l, b;’_l = b;lq—l’ b:l' = d_lb;l is still a basis of V, and
E’b’{ = b’ll + b’z' , E”bl’-' = b;’ forall i > 2. Let T’ be the linear transformation
such that T’bi = bl{/ for all i; T is invertible, det T’ = d 1 det T = 1, and
T'ET'~! = E';hence E and E’ are conjugate in SL(V). O

The last part of the proof breaks down if n = 2; in fact, elementary transfor-
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mations need not be conjugate in SL(V) when dim V =2 (see the exercises).
Main result:
Theorem 8.6. PSL(V) is simple when dimV 2 3.

Proof. A nontrivial normal subgroup of PSL(V') comes from a normal subgroup
Z(SL(V)) S N C SL(V) of SL(V). We show that N must contain an elementary
transformation; then N = SL(V), by 8.5 and 8.4.

Since N properly contains Z (SL(V)), some A € N does not commute
with some elementary transformation D, by 8.3. Then B = ADAT'D™! 41
and B € N. Also F(ADA™!Y) N F(D) C F(B); since ADA™! and D are
elementary, we have dim F(ADA™!) = dim F(D)=n — 1, by 8.2, and

dim F(B) 2 dim (F(ADA™')n F(D))
= dim F(ADA™") +dim F(D) — dim (F(ADA™ ')+ F(D)) = n—2.

Hence F(B) has dimension n — 1 or n — 2. If F(B) has dimension n — 1, then
B is elementary by 8.2, and we are done.

Assume that F(B) = Ker (B — 1) has dimension n — 2. Then Im (B — 1)
has dimension 2. Since V has dimension at least 3, Im (B — 1) is contained in a
subspace U of V (a hyperplane) of dimension n — 1. Then BU C (B — 1)U +
UCUand BU =U.

Forevery u € U, u # 0, and v € V\U there is an elementary transformation
E such that F(E)=U and Ev = u + v; in particular, Im (E — 1) = Ku. Then
C=BEB 'E7! € N;also U C F(C), since x € U implies B~'x € U =
F(E) and Cx = BEB 'x = BB 'x = x. Hence F(C)=U or F(C)=V. We
show that # and v can be chosen so that C # 1; then C is elementary.

If F(B)Z U, choose v € F(B) \U and u € U\F(B). Then Bu +u,
BEB 'w=BEv=Bv+Bu#v+u=Eu, BEB ' #E,and C 1.

If F(B) C U, then B has a restriction B’ to U and F(B')= F(B) +0,U;
by 8.4, B' ¢ Z(SL(U)) and Bu = B'u ¢ Ku forsome u € U. Then BEB™ ! is
elementary by 8.5; also, BEB_l(Bv) = BEv = Bu + Bv, so that Im (BEB_1 —
1)=KBu+Ku=Im(E—1), BEB"' +E,and C £1.

In either case C € N is elementary. [

The case when dim V' = 2 is more complex. Then PSL(V) is not simple when
K has only 2 or 3 elements (see below). The following result makes a substantial
exercise:

Theorem 8.7. PSL(V) is simple when dimV =2 and |K| 2 4.

Orders. If K is finite, then so are GL(n, K), SL(n, K), and PSL(n, K).
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Proposition 8.8. If K has q elements, then |GL(n, K)| = [To<; ., (4" — ')
|SL(n, K)| = |GL(n, K)|/(q — 1); and |PSL(n, K)| = |SL(n, K)|/r, where r is
the number of nth roots of 1 in K.

Proof. An n x n matrix M is invertible if and only if its columns constitute
a basis of the vector space K". If |K| = ¢, there are ¢" possible columns and
q" — 1 ways to choose the first column of M, which must not be the zero column;
there are ¢" — ¢ ways to choose the second column, which must not be one of
the ¢ scalar multiples of the first column; there are g" — q2 ways to choose the
third column, which must not be one of the q2 linear combinations of the first
two; ...; and there are g" — q”*1 ways to choose the last column, which must
not be one of the q”fl linear combinations of the first n — 1 columns. Hence
IGL(n, K)| = (¢" = 1)(¢" —a)(¢" —a*) - (¢" —¢" "),

Then |GL(n, K)|/|SL(n, K)| = ¢ — 1, by 8.1; if r is the number of nth roots
of 1 in K, then |PSL(n, K)| =|SL(n, K)|/r, by 8.3.O

We will show in Chapter V that a finite field K is uniquely determined, up to
isomorphism, by its number g of elements, which must be a power of a prime;
then GL(n,K), SL(n,K), and PSL(n, K) are usually denoted by GL(n,q),
SL(n,q),and PSL(n,q).

If g =2, then K = Z,, the field of integers modulo 2, and has one square root
of unity. Hence |GL(2,2)| = (4 — 1)(4 —2)=6 and |PSL(2,2)| = |SL(2,2)| =
6/(2—1)=6.1If ¢ =3, then K = Z; has 2 square roots of unity, |GL(2, 3)| =
(9—1)(9—3)=48, |SL(2.3)| =48/(3 — 1) =24, and | PSL(2,2)| = 24/2 = 12.
Hence PSL(2,2) and PSL(2,3) are not simple.

On the other hand, |GL(3,2)| = (8 — 1)(8 —2)(8 —4) =168 and |PSL(3,2)|
=|SL(3,2)| =168/(2 — 1) =168, since K = Z,. The simple group PSL(3,2) is
not abelian (it is not of prime order) and is not one of the simple alternating groups
(whose orders are 60, 360, 2520, ...). Thus, the groups PSL(n, g) constitute a
new family of simple groups.

Exercises

1. Show that a linear transformation is elementary if and only if its matrix in some basis is
elementary (has 1’s on the main diagonal and exactly one nonzero entry off the main diagonal).

2. Show that in SL(2, K), every elementary matrix is conjugate to some ((1) “) .

3. Show that ((1J ‘f) and ((1) l1>) , where a, b # 0, are conjugate in SL(2, K) if and only if
ab™! = ¢? forsome ¢ € K .

4. Show that PSL(2,2) =~ Ds.

5. To which known group is PSL(2, 3) isomorphic?
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6. Draw a table showing |PSL(n, q)| forall n,q =2,3,4,5.

7.Let |[K|=¢q = pk and let S be the set of all upper triangular n X n matrices with 1’s
on the main diagonal. Show that S is a Sylow p-subgroup of SL(n, K).

8. Show that Z(GL(V)) & N 2 GL(V) implies SL(V) C N.
*#9. Prove that PSL(V') is simple when dim V =2 and |K| 2 4.

9. Solvable Groups

Solvable groups are a large class of groups with remarkable properties. Their
connection with polynomial equations is explained in Chapter V. The Hall theorems
at the end of this section may be skipped.

Definition. A solvable group is a group with a normal series whose factors are
abelian.

Solvable groups are sometimes called metabelian. Abelian groups are solvable;
readers will easily show that D, is solvable, and that all groups of order less than
60 are solvable. On the other hand, nonabelian simple groups are not solvable,
since the single factor in their one normal series is not abelian; thus, A, (when
n 2 5) and the simple groups in Section 8 are not solvable.

The first major step of the Classification theorem, the Feit and Thompson
theorem [1963], states that all nonabelian finite simple groups have even orders;
equivalently, every group of odd order is solvable.

The commutator series. The commutator series is the smallest descending
sequence of subgroups with abelian factors. It provides an alternate definition of
solvable groups, and is constructed as follows.

Definitions. The commutator of two elements x,y is )cy)cflyfl ; the commu-

tator subgroup or derived group of a group G is the subgroup G' of G generated
by all commutators.

The commutator xyx_1 y_1 is traditionally denoted by [x, y]. In algebraic

topology, the derived group of 7, (X) is the first homology group H,(X) of X.

Proposition 9.1. G’ is a normal subgroup of G; in fact, G' is the smallest
normal subgroup N of G such that G/N is abelian.

Proof. The inverse of a commutator x y)c_1 y_1 is a commutator, and a conju-
gate of a commutator is again a commutator:

1.,—1 —1 1

axyx 'y a = axa -1

aya™ (axa™") 7! (aya™")

Hence every x € G’ is a product of commutators x = cycy -+ c,, and then

n?
axa™! =ac, a=! acza*I - ac, a~! € G’ forall a € G. Thus G’ 26

Next, xyx~'y™! € G’ forall x,y € G; hence G'xy = G'yx and G/G’
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is abelian. Conversely, if N J G and G/N is abelian, then Nxy = Nyx and
xyx_]y_1 € N forall x,y € G,and G' C N.O

Readers will prove the following universal property: every homomorphism of
G into an abelian group factors uniquely through the projection G — G/G’.

Definition. The commutator series of a group G is the sequence

G266 . xcle ekl

in which G = G and G**V) = (G®)Y forall k > 0.

The group GW) is the kth derived group of G it is normal in G*-1) by 9.1.
The commutator series is not a normal series, but it becomes one if some G ) =1
and the tail GU*D > ... g chopped off (preferably under anesthesia).

Proposition 9.2. A group G is solvable if and only if G =1 for some r 2 0.

Proof. 1t GU) =1, then 1=G") 4 GU~D d ... 9 G’ < G is anormal
series whose factors are abelian, by 9.1. Conversely, assume that G has a normal
series 1 = A, d A, 2 --- 2 A, =G whose factors A;/A;_, are all abelian.

Then G/A,, _, is abelian; by 9.1, G' C A, .. Ingeneral, A, /A, _, | 1is
abelian, so G*) C A, _ implies G (k+1) - A:n_k C A, _i_1,by9.1. Induction
then yields G*) C A, _, forall k < m, in particular Gm=1.0

Proposition 9.2 is often used as a definition of solvable groups.

Properties. The class of all solvable groups has three basic properties that can
be proved either from the definition or from 9.2, and make fine exercises.

Proposition 9.3. Every subgroup of a solvable group is solvable.
Proposition 9.4. Every quotient group of a solvable group is solvable.
Proposition 9.5. If N 4 G and G/N are solvable, then G is solvable.
These properties yield further examples.

Proposition 9.6. Every finite p-group is solvable.

Proof. That a group G of order p" is solvable is proved by induction on n. If
n < 2, then G is abelian, hence solvable, by 3.10. In general, G has a subgroup
N of order p"_1 , which is normal by 5.12; then N and G/N are solvable, by
the induction hypothesis, and G is solvable, by 9.5. [J

Proposition 9.7. Every group of order p"q (where p and q are primes) is
solvable.

In Chapter IX we prove a stronger result, Burnside’s p™q" theorem: every
group of order p™q", where p, g are primes, is solvable. Proposition 9.7 and its
proof may be skipped.
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Proof. We may assume that p # ¢g. The proof is by induction on #.

Let S be a Sylow p-subgroup of G. If S d G, then G/S is cyclic, since
|G/S| = q is prime, S is solvable by 9.6, and G is solvable by 9.5.

Now assume that S is not normal. Then S C N;(S) & G since [G:S]=¢q
is prime, this implies N;(S) =S, and S has [G : N;(S)] = ¢ conjugates. Thus
there are g Sylow p-subgroups.

If the ¢ Sylow p-subgroups of G are pairwise disjoint (S N7 = 1 when
S # T), then G has g (p" — 1) elements whose order is a positive power of p,
leaving at most g elements whose order is a power of ¢g. Therefore G has only
one Sylow ¢g-subgroup Q,and Q I G. Then Q is cyclic, G/Q is solvable by
9.6, and G is solvable by 9.5. In particular, 9.7 holds when n = 1.

Now assume that the g Sylow p-subgroups of G are not pairwise disjoint.
Then there are Sylow p-subgroups S and T such that S N T £ 1, and one can
choose S and T sothat M = S N T has the greatest possible number of elements.
By Lemma 9.8 below, H = N (M) has more than one Sylow p-subgroup; M is
the intersection of all the Sylow p-subgroups of H ; and every Sylow p-subgroup
of H is contained in a unique Sylow p-subgroup of G. Now, the number of
Sylow p-subgroups of H divides p"q but is not divisible by p; hence H has ¢
Sylow p-subgroups. Since G also has g Sylow p-subgroups, M is contained in
every Sylow p-subgroup of G. Therefore M is the intersection of all the Sylow
p-subgroups of G. Since the latter are all conjugate, this implies that M J G.

Now, |M| = pX, where 1 < k < n. Hence G/M is solvable, by the induction
hypothesis; M is solvable by 9.6; and G is solvable, by 9.5. U

Lemma 9.8. Let M be the intersection of two distinct Sylow p-subgroups of a
group G. If M has the greatest possible number of elements, then H = N5 (M)
has more than one Sylow p-subgroup; M is the intersection of all the Sylow p-sub-
groups of H; and every Sylow p-subgroup of H is contained in a unique Sylow
p-subgroup of G.

Proof. We have M ; S for some Sylow p-subgroup S of G. By 5.11,
MG Ng(M)=HnNS. Now, Ng(M) C S isa p-subgroup of H and is by 5.9
contained in a Sylow p-subgroup P of H, which is in turn contained in a Sylow
p-subgroup T of G. Then M G Ng(M) C SN T and S =T by the choice of
M. Hence P C HNS = Ng(M) and Ng¢(M) = P is a Sylow p-subgroup of
H. Since M d N;(M) = H, M is contained in every conjugate of P and is
contained in every Sylow p-subgroup of H .

We also have M = S N T for some Sylow p-subgroups S # T of G. Then
M C N¢M)NNy(M)< SNT and M = Ng(M) N Njp(M). Then
Ng(M) # Ny (M), since M G Ng(M), Np(M). By the above, applied to S
and to T, M is the intersection of two distinct Sylow p-subgroups of H. There-
fore H has more than one Sylow p-subgroup, and M is the intersection of all the
Sylow p-subgroups of H .
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Finally, let P be any Sylow p-subgroup of H. By 5.9, P is contained in a Sy-
low p-subgroup S of G, but P is not contained in two distinct Sylow p-subgroups
S and T of G: otherwise, M g P C SN T contradicts the choice of M. [

The Hall Theorems. This part may be skipped. The three theorems below, due
to Hall [1928], are stronger versions of the Sylow theorems that hold in solvable
groups. First we prove a lemma.

Lemma9.9. Every nontrivial finite solvable group contains a nontrivial abelian
normal p-subgroup for some prime p.

Proof. Let G be be a finite solvable group. There is a smallest integer r > 0
such that GU') = 1. Then A = G~ is a nontrivial abelian normal subgroup of
G. Some prime p divides |A| > 1;let N be the set of all elements of A whose
order is a power of p. Then N #1, N £ A, and N isa p-group. If x € N
and g € G, then gxg’1 € A and the order of gxg’1 is a power of p, so that
gxg~l e Nithus N 46.0

The proof of the first theorem also uses Schur’s theorem, proved in Section 12
by other methods: if m and n are relatively prime, then a group of order mn
that contains an abelian normal subgroup of order n also contains a subgroup of
order m.

Theorem 9.10. Let m and n be relatively prime. Every solvable group of order
mn contains a subgroup of order m.

Proof. Let G be solvable of order mn. If m is a power of a prime, then
9.10 follows from the first Sylow theorem. Otherwise, we proceed by induction
on |G|. By 9.9, G contains contains a nontrivial abelian normal subgroup N of
order pk > 1 for some prime p. Now, p* divides |G| = mn; since m and n are
relatively prime, either pk divides m, or pk divides n.

If pX divides m, then |G/N| = (m/pX)n, where m/p* and n are relatively
prime and |G/N| < |G|. By the induction hypothesis, G/N has a subgroup
H/N of order m/p*, where N C H < G ;then |H|=m.

If p* divides n, then |G/N| = (n/p*)m, where n/p* and m are relatively
prime and |G/N| < |G|. By the induction hypothesis, G/N has a subgroup
H/N of order m, where N C H < G. Then |H| =mpk. Now, N d H, N is
abelian, and N has order pk , which is relatively prime to m ; by Schur’s theorem,
H has a subgroup of order m, and then so does G . []

The subgroups of G of order m are the Hall subgroups of G .

Lemma 9.11. Let m and n be relatively prime and let G be a group of order
mn with an abelian normal subgroup of order n. All subgroups of G of order m
are conjugate.

Proof. Let |G| = mn and let N 9 G, with [N| = n and N abelian. Let
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A and B be subgroups of G of order m. Since m and n are relatively prime we
have ANN =B NN =1;hence AN = BN = G. Therefore every coset of N
intersects A in exactly one element, and similarly for B. The element of Nx N B
can then be written as u, x for some unique u,, € N. Then u,, (auba_l) ab =
(u,a)(u,b) € B forall a,b € A and

_ —1
uab = ua auba .

Let v =]],c4 4, € N. Since N is abelian,

— — -1\ _ .m —1
v = [lpeattap = Ilpea (g aupa™) = uy ava
forall a € A. We also have u), = 1, since |[N| = n. Now, gm +rn = 1 for
some ¢, r € Z, since m and n are relatively prime; hence u,, = ug’"” "= udm,
pd (ava=1)4 = u, awa™!, and u,a = waw™! forall a € A.

Therefore B = wAw ™! isa conjugate of A. [l

w=v7 =u

Theorem 9.12. In a solvable group of order mn, where m and n are relatively
prime, all subgroups of order m are conjugate.

Proof. Let G be solvable of order mn. If m is a power of a prime, then 9.12
follows from the third Sylow theorem. Otherwise, we proceed by induction on
|G|. By 9.9, G contains an abelian normal subgroup N of order pk > 1 for some
prime p, and pk divides m or n. Let A, B < G have order m.

Assume that p* divides m. Then |[NA| = |A|(|N|/|A N N|) = mp" for
some h < k. Now, mp" = |NA| divides mn = |G|; since p" and n are
relatively prime this implies p” = 1. Hence [NA| = |A| and N C A. Similarly,
N C B. By the induction hypothesis, A/N and B/N are conjugate in G/N:
B/N = (Nx)(A/N)(Nx)~! for some x € G. Then

B = Upep Nb = Uyen (Nx)(Na)(Nx) ™!
= Usea Nxax~' = N(xAx™!) = xAx~!,

since N =xNx~! C xAx~!. Thus A and B are conjugate in G .

Now assume that p* divides n. Then ANN = BN N = 1; hence [NA| =
INB| = p*m, and the subgroups NA/N = A/(AN N) and NB/N =~ B/(B N
N) of G/N have order m. By the induction hypothesis, NA/N and NB/N are
conjugate in G/N . As above, it follows that NA and NB are conjugate in G:
NB = xNAx~! for some x € G. Then B and xAx~! are subgroups of NB
of order m. Hence B and xAx~! are conjugate in N B: this follows from the
induction hypothesis if pk < n, from Lemma 9.11 if pk = n. Therefore A and
B are conjugate in G.[J

Theorem 9.13. In a solvable group of order mn, where m and n are relatively
prime, every subgroup whose order divides m is contained in a subgroup of
order m.
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Proof. Let G be solvable of order mn. If m is a power of a prime, then
9.13 follows from 5.9. Otherwise, we proceed by induction on |G|. By 9.9, G
contains an abelian normal subgroup N of order pk > 1 for some prime p, and
pk divides m or n. Let H be a subgroup of G whose order ¢ divides m .

Assume that pX divides m. Then |[NH/N| = |H|/|H N N| divides m,
is relatively prime to n, and divides |G/N| = (m/p*)n. By the induction
hypothesis, H/N is contained in a subgroup K/N of G/N of order m/ pk,
where N C K £ G;then H is contained in the subgroup K of G of order m.

Assume that p* divides n. Then H NN =1 and [NH| = p*¢. Hence
INH/N| = ¢ divides m, is relatively prime to 7, and divides |G/N| = (n/p*)m.
By the induction hypothesis, NH /N is contained in a subgroup K/N of G/N
of order m, where N C K < G; then |K| = pkm and H C NH C K. If
pk < n, then |K| < |G| and H is contained in a subgroup of K of order m, by
the induction hypothesis.

Now assume that pk =n. Let A be a subgroup of G of order m. Then
ANN =1, |[INA| = [N||A| = |G|, and NA = G. Hence |A N NH| =
|A|[NH|/|ANH| = mp*¢/mn = ¢. Thus H and K = A N NH are subgroups
of NH of order £. By 9.12, H and K are conjugate in NH: H = xKx~! for
some x € NH. Then H is contained in the subgroup xAx~! of G, which has
order m. U

Exercises

1. Find the commutator series of Sy .

2. Find the commutator series of A4 .

3. Show that D, is solvable.

4. Show that every group of order less than 60 is solvable.

5. Show that G’ is a fully invariant subgroup of G (nG’ C G’ for every endomorphism
n of G).

6. Show that G(k) is a fully invariant subgroup of G, for every k = 0.

7. Show that G/ G’ has the following universal property: every homomorphism of G into
an abelian group factors uniquely through the projection G — G/G’.

8. Show that a group that has a composition series is solvable if and only if all its simple
factors are abelian.

9. Prove that every subgroup of a solvable group is solvable.

10. Prove that every quotient group of a solvable group is solvable.

11. Prove the following: if N J G and G/N are solvable, then G is solvable.
12. Show that Sy, is solvable if and only if n < 4.



10. Nilpotent Groups 89

13. Find the commutator series of Sy, .

10. Nilpotent Groups

Nilpotent groups are a class of solvable groups with even more striking properties.

Definition. A normal series 1 =Cy 2 C; d --- d C,, = G is central when
C;, 2 Gand C;,/C; € Z(G/C;) forall 0 =i <m.

Central normal series are also called just central series. A central normal series
has abelian factors, but a normal series with abelian factors need not be central;
the exercises give a counterexample.

Definition. A group is nilpotent when it has a central normal series.

In particular, abelian groups are nilpotent, and nilpotent groups are solvable.
The converses are not true; we shall see that D, is nilpotent but not abelian, and
that D5 and Ds are solvable but not nilpotent.

Two central series. Nilpotent groups have two explicit central normal series.
Definition. The descending central series of a group G is the sequence

G G'> ... Gt GgHl >

in which G° = G, and G*' is the subgroup generated by all commutators
1

xXyx— y*1 withx € G and y € G*.
In particular, G! = G’'. The descending central series yields a central normal
series if some G" = 1 and subsequent terms are removed (or fall off):

Proposition 10.1. G* < G and G*/G**' C z(G/G**Y), for all k.

Proof. The proof is by induction on k. First, G° = G d G, and G%/G' =
G/G' C Z(G/Gl) since G/G’ is abelian by 9.1.

Now assume that G¥ d G. Asinthe proof of 9.1, the inverse of the commutator
xyx_ly_1 of x and y is the commutator of y and x ; a conjugate

1.,—-1 -1

axyx 'y "a =axa”!

aya~" (axa™") 7! (aya=")™!

1y~1 is the commutator of a conjugate of x and a conjugate of y. Hence

Gk+]

of xyx™
is a product g = ¢, ..., ¢, of commutators )cy)c_ly_1 of

every g €

x € Gand y € G*, and commutators )cyx_]y_1 of x € G, and y € G;
then aga_1 = acla_1 acna_1 is a product of similar commutators. Thus
GM1' 9 G. Forall x € G and y € G*, xyx~'y~! € G**!; hence GF*'xy =

G**lyx and G**'y € Z(G/G*). Thus G¥/ G € z(G/G*"). O

The other series ascends by way of centers and is constructed as follows.
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Proposition 10.2. Every group G has unique normal subgroups Z,(G) such
that Zy(G) =1 and Z;,,(G) | Z,(G) = Z(G/Z,(G)) forall k = 0.

Proof. First, Zy(G) = 1 is normal in G. If Z, < G, then Z(G/Z,(G))
is a normal subgroup of G/Z,(G); by L.4.9, there is a unique normal subgroup
Z11(G) 2 Z,(G) of G suchthat Z(G/Z,(G)) = Z;,1(G) / Z,(G). O

In particular, Z,(G) = Z(G) is the center of G.

Definition. The ascending central series of a group G is the sequence

1=2y6) 4 2(6) & - 2 Z(6) 2 2,,4(6) 2
constructed in Proposition 10.2.

The ascending central series yields a central normal series if some Z,(G) = G
and subsequent terms are removed (or just abandoned by the wayside).

Proposition 10.3. A group G is nilpotent if and only if G" = 1 for some r 2 0,
ifand only if Z,(G) =G for some r 2 0.

Proof. If G" =1 for some r 2 0, orif Z,(G) = G for some r = 0, then
truncating the descending central series, or the ascending central series, yields a
central normal series, and G is nilpotent.

Conversely, assume that G has a central normal series 1 = C, & C; d ---
< C, = G. We prove by induction on k than G¥ C C, , and C, € Z,(G)

for all 0 Sk <m;hence G" =1 and Z, (G)= G. (Thus, the ascending and
descending central series are in this sense the “fastest” central series.)

We have G"™" = G = C, . Assume that G"J C Cj, where j > 0. Let
x€Gand y e G"J C Cj. Since Cj_ly € Cj/Cj_l C Z(G/Cj_l), we
have Cj_lxy = Cj_lyx and xyx_ly_1

generator of G™~/*1: hence G™/*! C Ci_y.

S Cj—l- Thus Cj_1 contains every

We also have Zy(G) =1 = Cy. Assume that C;, C Z, = Z,(G), where
k < m. Then G/Z, =~ (G/C})/(Z;/C;) and there is a surjective homomor-
phism 7 : G/C, — G/Z; with kernel Z, /C,, namely 7 : C;x — Z;x.
Since 7 is surjective, 7 sends the center of G/C,, into the center of G/Z, :

T (Cri/Cr) € T Z(G/Cy) € Z(G/Zy) = Zy 1/ 2y
hence Z;x € Z;,/Z; forall x € C; y,and C; ., € Z; ;.0

In fact, we have shown that G" = 1 if and only if Z.(G) = G ; the least such r
is the nilpotency index of G.

Properties. Nilpotent groups, as a class, have basic properties that can be
proved either from the definition or from 10.3, and make wonderful exercises.

Proposition 10.4. Every subgroup of a nilpotent group is nilpotent.
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Proposition 10.5. Every quotient group of a nilpotent group is nilpotent.
Proposition 10.6. If N C Z(G) and G/N is nilpotent, then G is nilpotent.
Proposition 10.7. If A and B are nilpotent, then A & B is nilpotent.
Armed with these properties we now determine all nilpotent finite groups.
Proposition 10.8. Every finite p-group is nilpotent.

Proof. That a group G of order p" is nilpotent is proved by induction on 7.
If n < 2, then G is abelian, hence nilpotent, by 3.10. If n > 2, then G has a
nontrivial center, by 3.9; then G/Z(G) is nilpotent, by the induction hypothesis,
and G is nilpotent, by 10.6. O

Proposition 10.9. A finite group is nilpotent if and only if all its Sylow subgroups
are normal, if and only ifit is isomorphic to a direct product of p-groups (for various
primes p).

Proof. The ascending central series of any group G has the following property:
if Z,. CH<G,then Z;,;, C N;(H). Indeed, let x € Z;,; and y € H. Since
Zx € Zy,/Z, € C(G/Z},) we have Z, xy = Z, yx, so that xyx " ly7l e Z,

and xyx ! = (xyx~'y~l)y € H. Thus x € Ng(H).

Now let G be a finite group. Let S be a Sylow p-subgroup of G. By 5.10,
N () isits own normalizer. Hence Z, =1 C N;(S),and Z, C N(S) implies
Zi.1 S Ng(Ng(S)) = N;(S) by the above, so that Z, C N(S) forall k. If G
is nilpotent, then N;(S)=G,by 10.3,and S & G.

Next, assume that every Sylow subgroup of G is normal. Let p;, p,, ..., p,
be the prime divisors of |G|. Then G has one Sylow p,-subgroup S; for every
p;- We have |G| = [S,][S,] ---|S,,|; hence G = S, S, --- S, . Moreover,
(S -+ 8;)NS;,; =1forall i <m,since |S, ;| and |S| --- S;| are relatively
prime. Hence G = §; X §, X --- x §, , by 2.1.

Finally, if G is isomorphic to a direct product of p-groups, then G is nilpotent,
by 10.8 and 10.7. OJ

In particular, D, and Q are nilpotent, by 10.8, but the solvable groups D5 and
Dy are not nilpotent, by 10.9. If G is a nilpotent finite group, readers will easily
deduce from 10.9 that every divisor of |G| is the order of a subgroup of G. This
property does not extend to solvable groups; for instance, the solvable group A,
of order 12 does not have a subgroup of order 6.

Exercises
1. Give an example of a normal series that is not central but whose factors are abelian.

2. Show that Z;(G) is a characteristic subgroup of G (& Zx(G) = Zx(G) for every
automorphism « of G).

3. Show that Z;(G) is a fully invariant subgroup of G (n Zx(G) C Z;(G) for every
endomorphism 7 of G).
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4. Find the ascending central series of Sy, .

5. Find the descending central series of Sy, .

6. Prove that G" =1 ifand only if Z,(G) =G.

7. Prove that every subgroup of a nilpotent group is nilpotent.

8. Prove that every quotient group of a nilpotent group is nilpotent.

9. Prove the following: if N C Z(G) and G/N is nilpotent, then G is nilpotent.
10. Prove the following: if A and B are nilpotent, then A ¢ B is nilpotent.

11. Find a group G with a normal subgroup N such that N and G/N are nilpotent but
G is not nilpotent.

12. Prove the following: when G is a nilpotent finite group, every divisor of |G| is the
order of a subgroup of G.

13. A maximal subgroup of a group G is a subgroup M ; G such that there exists no
subgroup M ; H ; G . Prove that a finite group G is nilpotent if and only if every maximal
subgroup of G is normal, if and only if every maximal subgroup of G contains G’ .

11. Semidirect Products

Semidirect products are direct products in which the componentwise operation is
twisted by a group-on-group action. The exercises give some applications.

Definition. A group B acts on a group A by automorphisms when there is
a group action of B on the set A such that the action of every b € B is an
automorphism of the group A.

In what follows, A and B are written multiplicatively, and we use the left
exponential notation (b, a) — b4 for actions of B on A. Then B acts on A by
automorphisms if and only if

la=a, ba)="a, P(ad')="abd

forall a,a’ € A and b, b’ € B; the first two laws ensure a group action, and the
last law ensures that the action of b € B on A (the permutation a —— ba) is a
homomorphism, hence an automorphism, of A. Then

bl =1, b(an)= (ba)n
forallace A,be B,andn € Z.
1

For example, the action 8x = gxg~" of a group G on itself by inner automor-
phisms is, felicitously, an action by automorphisms.

Proposition 11.1. Let the group B act on a group A by automorphisms. The
mapping ¢ : b — @(b) defined by ¢(b): a — a is a homomorphism of B
into the group Aut (A) of all automorphisms of A.
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Proof. By definition, every ¢(b) is an automorphism of A ; moreover, ¢(1) is
the identity mapping on A, and ¢(b) o ¢(b') = @(bb’) forall b, b’ € B.O

In fact, there is a one-to-one correspondence between actions of B on A by
automorphisms and homomorphisms B — Aut (A). It is convenient to denote
an action of B on A and the corresponding homomorphism of B into Aut (A)
by the same letter.

Definition. Given two groups A and B and an action ¢ of B on A by
automorphisms, the semidirect product A Xy B is the Cartesian product A X B

with the multiplication defined for all a,a’ € A and b, b’ € B by
(a,b) (d', b)) = (a’d, bb).
When ¢ is known without ambiguity, A %, B is denoted by A x B.

Readers will verify that A Xy B is indeed a group. If B acts trivially on A
(ba = a for all a and b), then A Xy B is the Cartesian product A x B with
componentwise multiplication, as in Section 1. The exercises give examples of

semidirect products that are not direct products.

Internal characterization. Proposition 1.1 on internal direct sums extends to
semidirect products: in fact, 1.1 is the case where B J G.

Proposition 11.2. A group G is isomorphic to a semidirect product G| x G,
of two groups G, G, if and only if it contains subgroups A ~ G| and B = G,
suchthat Ad G, ANB=1,and AB=G.

Proof. G, »x G, comes with a projection w : G| x G, — G,, (x|, x5)—
X, , which is a homomorphism, since the operation on G| x G, is componentwise
in the second component. Hence

Kerm = {(x;, x)€G, xG, | x,=1}
is a normal subgroup of G| x G,; and (x;, 1) x; is an isomorphism of

Ker 7 onto G, . There is also an injection t : Gy — G| X G,, x, — (1, x,),
which is a homomorphism since *1 = 1 forall x € G, ; hence

Ime = {(x, %) €G; xG,y|x;,=1}
is a subgroup of G; % G, and is isomorphic to G,. Moreover, Ker x N Im ( =

{(1,1)} =1,and (Ker 7) (Im¢) = G; x G,, since every (x|, x,) € G, x G,
is the product (x;, x,)= (x;, 1)(1, x,) of (x;, 1)€ Ker 7 and (1, x,) € Im .

If now 6 : G, x G, — G is an isomorphism, then A = 6 (Ker 7) and
B =0 (Im) are subgroupsof G, A~ Ker7 =G, BxIm:~G,, Ad G,
ANB=1,and AB=G.

Conversely, assume that A 4 G, B <G,ANB=1,and AB =G. Ev-
ery element g of G can then be written uniquely as a product g = ab for
some a € A and b € B: if ab = a'b’, with a,a’ € A and b, b’ € B, then
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d la=b'b"" € ANB yields " 'a=bb""=1and a=d’, b =b'. Hence
the mapping 0 : (a, b)—— ab of A x B onto G is a bijection.

Like G, B actson A by inner automorphisms: ba = bab™'. Products ab then
multiply as follows: (ab)(a’b')=a ba’b™" bb' = a’a’ bb',and 6 : (a, b) — ab
is an isomorphism of A x B onto G.[J

Exercises
1. Verify that A X, B is a group.

2. Show that D, is a semidirect product of a cyclic group of order n by a cyclic group of
order 2, which is not a direct product if n > 2.

In the following exercises Cp is cyclic of order n.
3.Find Aut (C3).
4.Find Aut (Cy).
5. Find Aut (Cs).
6. Show that Aut (Cp) is cyclic of order p — 1 when p is prime.
7. Find all semidirect products of C4 by C2.
8. Find all semidirect products of C3 by Cy.
9. Given presentations of A and B, set up a presentation of A X, B.

10. Prove the following: for any group G there exists a group H such that G 4 H and
every automorphism of G is induced by an inner automorphism of H .

Nonabelian groups in the following exercises should be specified by presentations.
11. Find all groups of order 21.
12. Find all groups of order 39.
13. Find all groups of order 55.
14. Find all groups of order 57.
15. Find all groups of order 20.
16. Find all groups of order 28.
17. Find all groups of order 44.
18. Find all groups of order 52.
In the remaining exercises, p > 2 is a prime number.

19. Show that C, @® C, has (p? — 1)(p® — p) automorphisms. (Hint: C, @ Cp is also
a vector space over Zp.)

20. Construct all automorphisms « of Cp & Cp such that a?=1.

21. Construct all groups of order 2 p2 . (Give presentations.)
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12. Group Extensions

Group extensions are more complex than semidirect products but also more gen-
eral, since they require only one normal subgroup. They lead to the beautiful
results at the end of this section, and to the Hall theorems in Section 9.

Definition. Informally, a group extension of a group G by a group Q is a
group E with anormal subgroup N suchthat G ~ N and E/N ~ Q. Composing
these isomorphisms with the inclusion homomorphism N — E and canonical
projection E — E/N yields an injection G — E whose image is N and a
projection E — Q whose kernelis N . Our formal definition of group extensions
includes these homomorphisms:

Definition. A group extension G SLENy BN Q of a group G by a group Q
consists of a group E, an injective homomorphism k : G — E, and a surjective
homomorphism p : E — Q, such that Im k = Ker p. J

Then N = Im « = Ker p is anormal subgroupof E, G ¥ N,and E/N = Q.
For example, every group E with a normal subgroup N is an extension of N by
E /N ; every semidirect product A x B of groups is an extension of A by B, with
injection a — (a, 1) and projection (a, b) — b.

Group extensions need be considered only up to isomorphism, more precisely,
up to isomorphisms that respect injection and projection, or equivalences:

Definitions. An equivalence of group extensions G B Q and G 2,
F-Z 0 of G by Q is an isomorphism 0 : E — F such that 6 ok = A and
p=0of.

Two group extensions E and F are equivalent when there is an equivalence
E — F of group extensions.

Readers will show that equivalence of group extensions is reflexive, symmetric,
and transitive (and would be an equivalence relation if group extensions were
allowed to constitute a set).

Schreier’s Theorem. Given two groups G and Q, Schreier’s theorem con-
structs all extensions of G by Q. This construction is of theoretical interest, even
though it does not lend itself to computing examples by hand. In case N J E,
Schreier’s construction is based on the arbitrary selection of one element in each
coset of N ; this creates a bijection of N x E/N onto E.

Definition. A cross-section of a group extension G < E-L 0 is a family
p= (pa>a€Q such that p (p,)=a forall a € Q.
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“Cross-section” is the author’s terminology; various other names are in use.

In the above, the inverse image p ! (a) ofany a € Q isacosetof N = Im«k =
Ker p; thus, a cross-section of E selects one element in every coset of N, and
is actually a cross-section of the partition of E into cosets of N. Every element
of E belongs to only one coset and can now be written uniquely in the form np,
with n € N and a € Q (then a = p(np,)):

Lemma 12.1. Let G 5 E -2 QO be a group extension and let p be a cross-
section of E. Every element of E can be written in the form «(x) p, for some
unique x € G and a € Q (then a = p (k(x) p,)).

Lemma 12.1 provides a bijection (x, a) — k(x) p, of G x Q onto E. Now
we put every product «(x) p, k(y) p, in the form «(z) p,. We start with the
simpler products p, «(y) and p, p,,.

Definitions. Let G < E-Z QO be a group extension, and let p be a cross-
section of E. The set action (a, x)—— “x of the set Q on the group G relative
to p is defined by

Pak(x) = «(“x) pg.
The factor set s = (sa,b)a,bEQ of E relative to p is defined by

Pa Py = K(S4) Pap:

Since p(p, k(x)) = a and p (p, p,) = ab, it follows from Lemma 12.1 that
pax(x) =«(“x)p, and p, p, = «(s, ;) P, for some unique “x, s, , € G.
Thus the definitions above make sense. “Set action” is the author’s terminology
for the action of Q on A, which, sadly, is usually not a group action.

With the set action and factor set we can compute
(ke (x) p,) (k () pp) = k(x)k(*Y) Py Pp = kK (XY S, ) Pap-
This suggests the operation
(x.a) (y.b) = (x“ys,,. ab) (M)
ontheset G X Q;then E =~ G x Q;in particular, G X Q is a group.
Now we determine when (M) makes G x Q a group extension of G by Q.

Lemma 12.2. Relative to any cross-section, Q acts on G by automorphisms;
in particular, *(xy)=%x %y and *1 =1 forall x,y € G and a € Q. Moreover,
the cross-section p can be chosen so that p; =1, and then

1
x=x and s, =1=s, (N)

forall x € Ganda € Q.

This is straightforward. The automorphism x —— “x is induced on G, via
k , by the inner automorphism x — p, x pa_l , which has a restriction to Im « ;
(N) is the normalization condition.
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Lemma 12.3. If (N) holds, then (M) is associative if and only if
b b
a( x) Sa,b = sa,ba x and Sa,b sub,c = asb,c Sa,bc’ (A)
forall x € G and a,b,c € Q.

Condition (A) is the associativity condition; the first part of (A) shows that
the set action of Q on G is a group action only up to inner automorphisms.

Proof. By (M) and 12.2,
((x.a)(y.b))(z. )

(x % 50+ ab) (z.)

|
~
=
<
©
Q
S
)
I\l
)
Q
N
[
—
Q
S
=
SN—

(x,a)((y.b)(z. 0))

x,a) (v Sp.c» be)

x %y b, Sb,c) Sabes @ (bc))

b,
x % 4(%) asb’c Sabes @ (bc)).

Hence (M) is associative if and only if
a ab a, aby\a *
X YSap ZSape = XY (Z) Sb.c Sa,be (A )

holds for all x,y,z € G and a,b,c € Q. With x =y =z = 1, (A¥) yields
SabSabe = “SpeSape- With x =y =1 and ¢ = 1, (A") yields sa,b“bz =
aby) Sq.p» Since s, 1 =5, | =1 by 12.2. Thus (A™) implies (A). Conversely,
(A) implies the following equalities and implies (A™):

X ay sa,b abZ sab,c =X ay a(bZ) Sa,b sab,c =X ay a(bz) asb,c Sa,bc' O
In what follows we denote by ¢ the mapping a — ¢(a), ¢(a): x — % of

Q into Aut (G), which encapsulates the set action of Q on G; then “% can be
denoted by ‘(;x to avoid ambiguity.

Theorem 12.4 (Schreier [1926]). Let G and Q be groups, and let s : Q X
QO — G and ¢ : Q — Aut (G) be mappings such that (N) and (A) hold.
Then E(s,¢) = G x Q with multiplication (M), injection x — (x, 1), and
projection (x,a)v—— a, is a group extension of G by Q. Conversely, if E is
a group extension of G by Q, and s, ¢ are the factor set and set action of E
relative to a cross-section of E, then E is equivalent to E (s, ¢).

Proof. If s and ¢ satisfy (N) and (A), then (M) is associative by 12.3,
and (1, 1) is an identity element of E(s, ¢). Moreover, every element (y, b)
of E(s,¢) has a left inverse: if @ = b~! and x = (% sayb)_l, then (M)
yields (x,a)(y,b) = (1,1). Therefore E(s, ¢) is a group. By (M) and (N),
A:x r— (x,1) and o : (x,a)— a are homomorphisms, and we see that
Im A =Kero. Thus E(s, ¢) is a group extension of G by Q.

Conversely, let G B2 0 be a group extension of G by Q. Choose a
cross-section p of E such that p; = 1 and let ¢ and s be the corresponding
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set action and factor set. We saw that 6 : (x,
of E(s,¢) onto E. Moreover, (N) and (
6 (1(x)) = x(x) py = k(x) and p (B(x.a))
a € Q. Thus E is equivalent to E(s, ¢): O

a)+— k(x) p, is an isomorphism
) hold, by 12.2 and 12.3. Finally,
=a=o0(x,a), forall x € G and

G2 E(s,9) —2~0

|
G 0

E

o

Equivalence. We complete Theorem 12.4 with a criterion for equivalence.

Proposition12.5. E(s, ¢) and E(t, V) are equivalent if and only if there exists
amapping u :a — u, of Q into G such that

a. _ a —1 _ a —1
C X S UL XU, and s, , =u, Wb Ly p Ugp » (E)

forall x € G and a,b € Q.

u; =1

Proof. Let 0 : E(s, ¢) — E(t,¥) be an equivalence of group extensions:
G—E(s,¢) — 0

| el ]
G 0

E(1.9)

We have 6 (x,1)= (x,1) and 6 (1,a)= (u,, a) for some u, € G, since 6
respects injections and projections. Then u, = 1, since 6 (1, 1)= (1, 1), and

0(x,a) = 0((x,1)(1,a)) = (x,1)(uy, a) = (xu,, a)

by (N). Since 0 is a homomorphism,
(X Y Sqp gy, ab) = 0((x,a)(y. b))
=0 (x,a)0(y,0) = (xu,yyyu,t, . ab)
by (M), and
xgy SapUgp = XU, ?py ?bub ta,b (E*)

forall x,y,a,b. With x =y =1, (E*) yields Sap = Uy ?p“b tab ua_b]. Hence

X ;y u, ?ﬁub ta,b =X ;y Sap Ugp = XU, ?ﬂy ?ﬁub ta,b
and 0y =u, 3y u;l. Thus (E) holds.

Conversely, (E) implies (E*), by the same calculation. Then 6 : (x,a)—
(xu,, a) is ahomomorphism, and, clearly, an equivalence of group extensions. (]

Split extensions.
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Proposition 12.6. For a group extension G — E 2, Q the following condi-
tions are equivalent:

(1) There exists a homomorphism w : Q — E such that pou = IQ.
(2) There is a cross-section of E relative to which s, , =1 forall a,b € Q.
(3) E is equivalent to a semidirect product of G by Q.

(4) Relative to any cross-section of E there exists a mapping u : a — u, of
into E suchthat u, =1 and s_, =%, u_u_,) forall a,b € Q.
1 a,b b "a “ab

A group extension splits when it satisfies these conditions.

Proof. (1) implies (2). If (1) holds, then p, = u(a) is a cross-section of E,
relative to which s, , =1 for all a, b, since p(a) u(b) = u(ab).

(2) implies (3). If s, , = 1 forall a, b, then ¢ : Q — Aut (G) is a homo-
morphism, by (A), and (M) shows that E(s, ¢) = G x, Q. Then E is equivalent
to E(s, ¢), by Schreier’s theorem.

(3) implies (4). A semidirect product G Xy Q of G by Q is a group extension
E(t,¥) in which t,p =1 forall a,b. If E is equivalent to G Xy Q, then,
relative to any cross-section of E, E(s, ¢) and E(z, ) are equivalent, and (E)
yields s, , =u, i;;”;; tab ”‘a_bl = ;”h u, ”a_bl forall a,b € Q.

(4) implies (1). If s, , = %u, u, u ;) forall a,b € Q, then u; ' “(u, ') s, ,

= ua_bl and u:a+— K(ua_l) P, is a homomorphism, since

—1 —1 -1
wla) u(b) = K(”a “(uy, )Sa,b> Pap = k(tgy ) Pgp = mlab). O
Extensions of abelian groups. Schreier’s theorem becomes much nicer if G is
abelian. Then (A) implies “(°x) = “x for all a, b, x, so that the set action of Q
on G is a group action. Equivalently, ¢ : Q — Aut (G) is a homomorphism.
Theorem 12.4 then simplifies as follows.

Corollary12.7. Let G be an abelian group, let Q be a group, lets : Q x Q —
G be a mapping, and let ¢ : Q — Aut (G) be a homomorphism, such that

—1 = _a
Sa,] =1= sl,a and Sa,b Sab,c - Sb,c Sa,bc

forall a,b,c € Q. Then E(s,¢)= G x Q with multiplication (M), injection
x — (x, 1), and projection (x,a)— a is a group extension of G by Q.
Conversely, every group extension E of G by Q is equivalent to some E(s, ¢).

If G is abelian, then condition (E) implies S‘Zx = f//x for all a and x, so that

¢ = . Thus, equivalent extensions share the same action, and Proposition 12.5
simplifies as follows.

Corollary 12.8. If G is abelian, then E(s,¢) and E(t, V) are equivalent if
and only if ¢ = and there exists a mapping u : a — u, of Q into G such
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that
uy=1 and s,,=u,u, u;b] t,p forall a,b € Q.

Corollaries 12.7 and 12.8 yield an abelian group whose elements are essentially
the equivalence classes of group extensions of G by O with a given action ¢.
Two factor sets s and r are equivalent when condition (E) holds. If G is
abelian, then factor sets can be multiplied pointwise: (s - ) ab=Sablab and the
result is again a factor set, by 12.7. Under pointwise multiplication, factor sets
s 1 Q X Q — G then constitute an abelian group Z;(Q, G). Split factor sets

(factor sets s, ,, = u, “uy, u;bl with u; = 1) constitute a subgroup B;(Q, G)
of Zi( 0, G). By 12.8, two factor sets are equivalent if and only if they lie in
the same coset of B(IZJ(Q, G); hence equivalence classes of factor sets constitute
an abelian group H(z(Q, G)= Z;(Q, G)/ Bé(Q, G), the second cohomology

group of Q with coefficients in G. (The cohomology of groups is defined in full
generality in Section XII.7; it has become a major tool of group theory.)

The abelian group Hq%(Q, G) classifies extensions of G by Q, meaning that

there is a one-to-one correspondence between elements of H £(Q, G) and equiv-
alence classes of extensions of G by Q with the action ¢. (These equivalence
classes would constitute an abelian group if they were sets and could be allowed
to belong to sets.)

Holder’s Theorem. As a first application of Schreier’s theorem we find all
extensions of one cyclic group by another.

Theorem 12.9 (Holder). A group G is an extension of a cyclic group of order
m by a cyclic group of order n if and only if G is generated by two elements
a and b such that a has order m, b" = a', b’ ¢ (a) when 0 < i < n, and
bab~' =a", where r" =1 and rt =t (mod m). Such a group exists for every
choice of integers r, t with these properties.

Proof. Firstlet G = (a,b), where a has order m, b" = a’, b ¢ (a) when
0 <i < n, and bab~! = a”, where ¥ = 1 and rt = 1 (mod m). Then
A = (a) is cyclic of order m. Since b has finite order, every element of G is a
product of a’s and b’s, and it follows from bab—' = a" that A d G. Then G/A
is generated by Ab; since b" € A but b ¢ A when 0 <i <n, Ab has order n
in G/A, and G/A is cyclic of order n. Thus G is an extension of a cyclic group
of order m by a cyclic group of order n.

Conversely, assume that G is an extension of a cyclic group of order m by
a cyclic group of order n. Then G has a normal subgroup A that is cyclic of
order m, such that G/A is cyclic of order n. Let A = (a) and G/A = (Ab),
where a,b € G. The elements of G/A are A, Ab, ..., Ab”_l; therefore
G is generated by a and b. Moreover, a has order m, b" = a' for some ¢,
b' ¢ (a) when 0 < i < n,and bab~' = a" for some r, since A < G. Then
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a" =ba'b~' = bbb =a' and rt =t (mod m). Also b2ab=% = ba"b~! =
(@)= ar2 and, by induction, bkab=* = ark; hence a = b"ab™" = a"" and
r" =1 (mod m).

In _the above, 1, b, ..., b.”_1 is a cross-section of G . The corresponding action
is A gl = bigib=I =" 10 < i, j < n, then bk = I if j+k <n,
b/ = a' I if j + k = n; this yields the corresponding factor set. This
suggests a construction of G for any suitable m, n, r, .

Assume that m,n > 0, r" = 1,and rt =t (mod m). Let A = (a) be cyclic
of order m and let C = (c¢) be cyclic of order n. Since " = 1 (mod m), r
and m are relatively prime and « : @' —— a'” is an automorphism of A. Also,
ol (a') = a'"”’ forall j;in particular, o (a') = a'"" = a'. Hence o = 1, and
there is a homomorphism ¢ : C — Aut (A) such that ¢(c) = «. The action of

c/

) - i
C on A, written ‘a' = " A

al,isda' =a’(a')=a
Define s : C x C — A as follows: forall 0 < j, k < n,
1 ifj+k <n,

ik TSk E gt i jak 2,

J .
— — . . . —(’ . -
Then Sy ok = 1= Sei 1 We show that Sei ok Seick ot =Sk ot Scj ekt (equiv

alently, sy Sejck o =75 ¢ ) kee) forall 0 < j k. € < n.
; —1=1J
If j+k+¢ < n,then Sk Sj+k,€_1_ Sk Sj ket -

If j+k <n,k+€ <n,and j+k+0 2> nothens; ;s =a' :jsk,zsj,k+e-
. i J .
Since rt = t (mod m), we have Ja’ = a'” =a'. Ifnow j+k < n and
k+4£ = n, then cket = ckHt—n j+k+£€—n <n,since (j+k)+{ < 2n, and
— gt — it — ]
SikSjtk 0 =@ =74 =8k ¢S kwo—n-

If j+k =n and k + £ < n, then similarly ¢/ ck = /"

,j+k+f—n<n,
and ;4 Sig_pg = a'= jsk,z Sik+e

If j+k>2n,k+€2n,and j+k+€ <2n,then j+k+{¢—n < n and
SikSj+k—n, = a'='d' = jsk,e Si k+t—n-

Finally,ifj+kzn,k+_£ gn,_andj+k+€ >2n,then j+k+f—n2=>n
and SikSjsk—n. b =a'a' =Jd'a’ = fsk’g S kt—n-
It now follows from 12.7 that E(s, ¢) is an extension of A by C. O

Readers will verify that (a, b f a" =1, b" =a', bab~ ! = a”) is a presenta-
tion of the group G in Theorem 12.9.

The Schur-Zassenhaus Theorem. We begin with the Schur part:
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Theorem 12.10 (Schur). If m and n are relatively prime, then a group of order
mn that contains an abelian normal subgroup of order n also contains a subgroup
of order m.

Schur’s theorem is often stated as follows: if m and n are relatively prime,
then every group extension of an abelian group of order n by a group of order
m splits. The two statements are equivalent: if £ has a normal subgroup G of
order n and a subgroup H of order m,then G N H =1,sothat GH = E, E
is a semidirect product of G and H, and E splits, as a group extension of G;
conversely, a split extension of a group G by a group Q of order m is isomorphic
to a semidirect product of G and Q and contains a subgroup that is isomorphic
to Q and has order m .

Proof. Let G be a group of order mn with an abelian normal subgroup N of
order n. Then G is an extension of N by a group Q = G/N of order m. Let s
be any factor set of this extension. For every a € Q let t, = [].c 0%a.c Then
t; =1,by (N). Since Q isagroup, [[.co Sypc =Ilscg Sa.a =1, Since N is
abelian, applying [[.co 10 S, Sup o = “Sp o S4pc Vields

m —a
sa,b tab - tb ta'
We also have s); , =1/ = 1,since |[N| =n. Now, gm +rn =1 forsome q,r € Z,
since m and n are relatively prime; hence
_ qm+rn _a.q q —1
Sab = Sap = 'y ta (gp)
and 12.8 (with u_ = t7) shows that the extension splits. [J

If G is abelian and |G| = n, |Q| = m are relatively prime, Schur’s theorem
implies that every extension of G by Q has a subgroup of order m . Any two such
subgroups are conjugate, by 9.11.

Zassenhaus [1937] extended Schur’s theorem as follows:

Theorem 12.11 (Schur-Zassenhaus). If m and n are relatively prime, then a
group of order mn that contains a normal subgroup of order n also contains a
subgroup of order m.

If |G| = mn and G has a normal subgroup N of order n and a subgroup H of
order m (relatively prime to n), then, as with Schur’s theorem, G is a semidirect
product of N and H, and the extension G of N splits.

Proof. Let N d G with |[N| =n, |G| = mn. If N is abelian, then 12.11
follows from Schur’s theorem. The general case is proved by induction on n. If
n =1, then 12.11 holds, trivially. Now let n > 1.

Let p be a prime divisor of n. Then p divides |G|. If S is a Sylow p-sub-
group of G, then the order of SN/N =~ §/(S N N) is a power of p and divides
m = |G/N|; since m and n are relatively prime, this implies |[SN/N| = 1 and
S C N. Thus N contains every Sylow p-subgroup of G. Hence G and N have
the same Sylow p-subgroups.
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Since all Sylow p-subgroups are conjugates, G has [ G : N;(S)] Sylow p-sub-

groups, and N has [N : Ny (S)] Sylow p-subgroups. Hence
IGI/ING(S)| = [G:Ng(S)]= [N:Ny(S)]= IN|/INy(S)]
and
[NG(S): Ny (S)]= [NG(SI/INy(S) = |GI/IN| = m.
Now, Ny (S)=NNNg5(S) 2 N5(S),since N d G,and S I N;(S). Hence
Ny(8)/S 2 Ng(8)/S.
[NG(S)/S:Ny(8)/S]= [Ng(S): Ny(S)] = m,

and [Ny (S)/S| is relatively prime to m, since Ny(S) < N. Moreover,
INy(S)/S| < |N|=n, since |S| > 1. By the induction hypothesis, N (S)/S
has a subgroup K /S of order m, where S C K = N;(S).

By 3.9, the center Z of S is not trivial: |Z| > 1. Diligent readers know
that Z is a characteristic subgroup of S, so that § J K implies Z J K. Then
S/Zd K/Z,[K/Z:S/Z]=[K:S]=m,and |S/Z]| is relatively prime to m
since it divides |N| = n. Moreover, |S/Z| < n. By the induction hypothesis,
K /Z has a subgroup L/Z of order m,where Z C L < K.

Now, Z J L, [L:Z]=m,and |Z| is relatively prime to m since it divides
|S| and |N| = n. By the abelian case, L contains a subgroup of order m ; hence
sodoes G.UJ

It is known that in Theorem 12.11 all subgroups of order m are conjugate. We
proved this in two particular cases: when the normal subgroup is abelian (Lemma
9.11) and when the group is solvable (Theorem 9.12).

Exercises
1. Show that equivalence of group extensions is reflexive, symmetric, and transitive.

2. Find a cross-section of E (s, ¢) relative to which s is the factor set and ¢ is the set
action.

3. Show that E(s, ¢) and E(t, ¢) are equivalentif and only if there exist a group extension
E and two cross-sections of E relative to which s, ¢ and ¢, ¥ are the factor set and set action
of E.

4. Find all extensions of C3 by Ca (up to equivalence).
5. Find all extensions of C4 by Co (up to equivalence).
6. Find all extensions of Cp by Cy4 (up to equivalence) when p and g are distinct primes.
7. Find all extensions of C3 by C4 (up to equivalence).

8. Let the group G be generated by two elements a and b such that a has order m,
p" =a', b ¢ (a) when 0 < i < n, and bab~! = 4", where ¥" = 1 and 1t = ¢
(mod m), as in Holder’s theorem. Show that (a, b ’ a® =1, b"=d', bab ' =d" )isa
presentation of G .
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*9. Devise presentations for all groups of order 16.
Nonabelian groups in the following exercises should be specified by presentations.
10. Find all groups of order 30.
11. Find all groups of order 42.
12. Find all groups of order 70.
13. Find all groups of order 105.
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Rings

Rings are our second major algebraic structure; they marry the complexity of
semigroups and the good algebraic properties of abelian groups.

Gauss [1801] studied the arithmetic properties of complex numbers a + bi with
a,b € 7, and of polynomials with integer coefficients. From this start ring theory
expanded in three directions. Sustained interest in more general numbers and
their properties finally led Dedekind [1871] to state the first formal definition of
rings, fields, ideals, and prime ideals, though only for rings and fields of algebraic
integers. The quaternions, discovered by Hamilton [1843], were generalized by
Pierce [1864] and others into another type of rings: vector spaces with bilinear
multiplications (see Chapter XIII). Growing interest in curves and surfaces defined
by polynomial equations led Hilbert [1890], [1893] and others to study rings of
polynomials. Modern ring theory began in the 1920s with the work of Noether,
Artin, and Krull (see Chapters VII and IX).

This chapter contains general properties of rings and polynomials, with some
emphasis on arithmetic properties. It requires basic properties of groups and
homomorphisms (Sections I.1 through 1.5), and makes occasional use of Zorn’s
lemma and of the ascending chain condition in the appendix. Sections 7, 9, and
12 may be skipped; Section 11 may be covered later (but before Chapter VII).

1. Rings

This section contains the definition and first examples and properties of rings.

Definition. A ring is an ordered triple (R, +, ) of a set R and two binary
operations on R, an addition and a multiplication, such that

(1) (R, +) is an abelian group;

(2) (R, ") is a semigroup (the multiplication is associative);

(3) the multiplication is distributive: x (y+z)=xy+xzand (y+z)x = yx +2x
forall x,y,z € R.

Definition. A ring with identity is a ring whose multiplicative semigroup (R, -)
has an identity element.
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The identity element of a ring R with identity (R, -)) is generally denoted by
1, whereas the identity element of the underlying abelian group (R, +) is the zero
element of the ring R and is denoted by 0.

Rings with identity are also called rings with unity; many definitions also require
1 # 0. Rings as defined above are often called associative rings; nonassociative
rings have only properties (1) and (3).

Examples. Z (short for: (Z, +, -), with the usual addition and multiplication)
is aring with identity; so are Q, R, C, the quaternion algebra H, and the ring Z,
of integers modulo n (also constructed in the next section).

Polynomials provide major examples, which we study in Sections 5 and 6.

In a vector space V over a field K, the endomorphisms of V (the linear
transformations V. — V') constitute a ring with identity End (V), whose
addition is pointwise and multiplication is composition. A related example is
the ring M, (K) of n x n matrices over K, with the usual matrix addition and
multiplication.

Proposition 1.1. The set End (A) of all endomorphisms of an abelian group
A is a ring with identity.

In the additive notation for A, addition on End (A) is pointwise ((n+¢)x =
nx + ¢x); multiplication on End (A) is composition ((n¢) x = n (¢x)). Readers
will cheerfully verify properties (1), (2), and (3).

Properties. Calculations in rings follow the familiar rules for addition, sub-
traction, and multiplication of numbers, except that multiplication in a ring might
not be commutative, and there is in general no division.

Sections I.1 and 1.2 provide basic properties of sums, opposites, products,
integer multiples, and powers. Properties that are specific to rings come from
distributivity. Readers will happily supply proofs (sometimes, not so happily).

Proposition 1.2. In a ring R, (Zl xi)(zj yj) = Zi,j x; ¥, for all
Xis eves Xps Vis oo ¥, € R.

Proposition 1.3. In a ring R, (mx)(ny) = (mn)(xy), in particular, (mx)y
=x(my)=m(xy), forall m,n € Z and x,y € R. If R is a ring with identity,
then nx = (nl) x forall n € Z and x € R.

Subtraction may be defined in any abelian group by x — y = x + (—y), and it
satisfiesx —x=0andx — (y —z)=(x —y)+z forall x, y, z.

Proposition 1.4. Inaring R, x (y —z)=xy —xz and (y —z) x = yx — zx,
forall x,y,z € R. In particular, x0 =0 =0x forall x € R.

Definition. A ring is commutative when its multiplication is commutative.

The familiar rules for addition, subtraction, and multiplication of numbers hold
in commutative rings. So does the following result:
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Proposition 1.5 (Binomial Theorem). In a commutative ring R,

n'

n\ : ,_. n !
(x+y)" = Eogign <i)x' y*' 7!, where (1) = m

In fact, 1.5 works in every ring, as long as xy = yx.

Infinite sums are defined in any abelian group as follows. Without a topology
we don’t have limits of finite sums, so our “infinite” sums are not really infinite.

Definition. A property P holds for almost all elements i of a set I when
{i € 1| P does not hold } is finite.

Definition. The sum Ziel x; of elements (xi)iel of an abelian group A is de-
finedin A when x; = 0 foralmostall i € I, andthen ) ;1 x; =3 ;e x #0%i-

Thus the “arbitrary” sum ) ;- ; x; is a finite sum to which any number of zeros
have been added, a fine example of window dressing.

Proposition 1.6. In a ring, (3°; x;) (ZJ yj) = Zi,j X; ¥j, whenever x; = 0

1

for almost all i € I and Y = 0 for almost all j € J.

Homomorphisms. Homomorphisms of rings are mappings that preserve sums
and products:

Definitions. A homomorphism of a ring R into a ring S is a mapping ¢
of R into S that preserves sums and products: ¢(x +y) = ¢(x) + ¢(y) and

o(xy)=g¢(x) @(y) forall x,y € R.

If R and S are rings with identity, a homomorphism of rings with identity of
R into S also preserves the identity element: ¢(1)=1.

For example, in any ring R with identity, the mapping n —— nl is a homo-
morphism of rings with identity of Z into R ; this follows from I.2.6 and 1.3.

A homomorphism of rings also preserves the zero element (¢(0) = 0), integer
multiples (¢(nx) = ne(x)), all sums and products (including infinite sums),
differences, and powers (¢(x") = ¢(x)").

Homomorphisms compose: when ¢ : R — S and ¢ : S — T are homo-
morphisms of rings, then so is ¥ o ¢ : R — T. Moreover, the identity mapping
1, onaring R is a homomorphism. Homomorphisms of rings with identity have
similar properties.

It is common practice to call an injective homomorphism a monomorphism,
and a surjective homomorphism an epimorphism. In the case of epimorphisms of
rings the author finds this terminology illegitimate and prefers to avoid it.

Definition. An isomorphism of rings is a bijective homomorphism of rings.

If ¢ is a bijective homomorphism of rings, then the inverse bijection o !

is also a homomorphism of rings. Two rings R and S are isomorphic, R = S,
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when there exists an isomorphism of R onto S. As in Section 1.2, we regard
isomorphic rings as instances of the same “abstract” ring.

Adjoining an identity. Homomorphisms of rings are studied in more detail in
Section 3. We consider them here to show that every ring R can be embedded
into a ring with identity. The new ring must contain an identity element 1, all its
integer multiples n1, and all sums x + nl with x € R. The next result basically
says that these sums suffice.

Proposition 1.7. For every ring R, the set R' = R x Z, with operations
(x,m)+(y,n)=(x+y, m+n), (x,m)(y,n)=(xy+nx+my, mn),

is a ring with identity. Moreover,  : x — (x,0) is an injective homomorphism
of R into R'.

The proof is straightforward but no fun, and left to our poor, abused readers.
The ring R' has a universal property, which will be useful in Chapter VIII.

Proposition 1.8. Every homomorphism ¢ of R into a ring S with identity
factors uniquely through t : R — R (there is a homomorphism r : R' — 5
of rings with identity, unique such that ¢ = o).

R—R!

N

¥
S

Proof. In R', the identity element is (0, 1) and (x,n) = (x,0) +n (0,1). If
now ¥ (0, 1)=1 and ¢ ot = ¢, then necessarily ¥ (x,n) = ¢(x)+nl € S; hence
¥ is unique. Conversely, it is straightforward that the mapping ¥ : (x,n) —
@(x) +nl is a homomorphism with all required properties. (J

If now ¢ is a homomorphism of R into an arbitrary ring S, then applying
Proposition 1.8 to R L5 — st yields a homomorphism ¥ : R' — §! of
rings with identity; in this sense every homomorphism of rings is induced by a
homomorphism of rings with identity.

Some properties are lost in the embedding of R into R! (see the exercises),
but in most situations an identity element may be assumed, for instance when one
studies rings and their homomorphisms in general. We make this assumption in
all later sections. The important examples of rings at the beginning of this section
all have identity elements.

Exercises

1. In the definition of a ring with identity, show that one may omit the requirement that the
addition be commutative. [Assume that (R, +, -) satisfies (2), (3), that (R, -) has an identity
element, and that (R, +) is a group. Show that (R, +) is abelian.]

2. Verify that End (A) is aring when A is an abelian group.
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3. A unit of aring R with identity is an element # of R such that uv = vu = 1 for some
v € R. Show that v is unique (given u ). Show that the set of all units of R is a group under
multiplication.

4. Let R be aring with identity. Show that « is a unit of R if and only if xu = uy =1 for
some x,y € R.

5. Show that X € Z, is a unit of Z, if and only if x and n are relatively prime.

6. Prove that x¢(”) = 1 (mod n) whenever x and n are relatively prime. (¢ is Euler’s ¢
function.)

7. A Gauss integer is a complex number a + ib in which a and b are integers. Show that
Gauss integers constitute a ring. Find the units.

8. Show that complex numbers @ +ib+/2 in which a and b are integers constitute a ring.
Find the units.

9. Show that (Ziel xi) + (Qier y,-) = > ies (xi + ;) holds in every ring, when
x; =0 for almostall i € I and y; =0 foralmostall i € I.

10. Show that (Ziel xi) (ZjeJ yj) = Z(i j)erxa XiJj holds in every ring, when
x; =0 foralmostall i € I and y; =0 for almostall j € J.

11. Let R be aring. Show that R! = R x Z, with operations
(x,m)+(y,n)=(x+y, m+n), (x,m)(y,n)=(xy+nx+my, mn),
is a ring with identity.

12. Aring R is regular (also called von Neumann regular) when there is for every a € R
some x € R such that axa = a. Prove that R can never be regular.

13.Let R be aring with identity. Show that R can be embedded into End (R, +). (Hence
every ring can be embedded into the endomorphism ring of an abelian group.)

2. Subrings and Ideals

From this point on, all rings are rings with identity, and all homomorphisms of
rings are homomorphisms of rings with identity.

Subrings of aring R are subsets of R that inherit a ring structure from R.

Definition. A subring of a ring R [with identity] is a subset S of R such that S
is a subgroup of (R, +), is closed under multiplication (x, y € S implies xy € S),
and contains the identity element.

For example, every ring is a subring of itself. In any ring R, the integer
multiples of 1 constitute a subring, by Proposition 1.3; on the other hand, the
trivial subgroup 0 = {0} is not a subring of R, unless R =0.

Let S be a subring of R. The operations on R have restrictions to S that make
S aring in which the sum and product of two elements of S are the same as their
sum and product in R. This ring § is also called a subring of R.
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Readers will show that every intersection of subrings of a ring R is a subring
of R. Consequently, there is for every subset X of R a smallest subring S of R
that contains X ; the exercises give a description of S.

Ideals of a ring are subgroups that admit multiplication:

Definitions. An ideal of a ring R is a subgroup I of (R, +) such that x € I
implies xy € I and yx € I forall y € R. A proper ideal also satisfies I + R.

The definition of an ideal often includes the condition [ # R.

For example, every subgroup nZ of Z is also an ideal of Z (properif n #=+1).
Every ring R is an (improper) ideal of itself and has a trivial ideal 0 = {0} .

Properties. Our first property makes an easy exercise:
Proposition 2.1. Every intersection of ideals of a ring R is an ideal of R.

By 2.1 there is for every subset S of R a smallest ideal of R that contains S,
namely the intersection of all the ideals of R that contain S.

Definitions. The ideal (S) of a ring R generated by a subset S of R is the
smallest ideal of R that contains S. A principal ideal is an ideal generated by a
single element.

Proposition 2.2. In a ring R [with identity], the ideal (S) generated by a
subset S is the set of all finite sums of elements of the form xsy, with s € S and
X,y € R. If R is commutative, then (S) is the set of all finite linear combinations
of elements of S with coefficients in R.

Proof. An ideal that contains S must also contain all elements of the form xsy
with s € S and x, y € R, and all finite sums of such elements. We show that the set
I of all such sums is an ideal of R. First, I contains the empty sum 0; 7 is closed
under sums by definition, and is closed under opposites since —(xsy) = (—x) sy.
Hence I is a subgroup of (R, +). Moreover, (xsy)r = xs (yr), forall r € R;
hence i € I implies ir € [. Similarly, i € [ implies ri € I, for all r € R.
Thus 7 is an ideal of R;then I = (S).

If R is commutative, then xsy = (xy)s and (S) is the set of all finite sums
xys;+---+x,s5, withn 20, x,, ..., x, € R,and 5}, ..., 5, € 5.0

Proposition 2.3. In a commutative ring R [with identity], the principal ideal
generated by a € R is the set (a) = Ra of all multiples of a.

This follows from Proposition 2.2: by distributivity, a linear combination x; a +
---+x, a of copies of a is a multiple (x; +--- +x,)a of a. Propositions 2.3
and 1.3.6 yield a property of Z:

Proposition 2.4. Every ideal of 7 is principal, and is generated by a unique
nonnegative integer.

A union of ideals is not generally an ideal, but there are exceptions:
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Proposition 2.5. The union of a nonempty directed family of ideals of a ring R
is an ideal of R. In particular, the union of a nonempty chain of ideals of a ring
R is an ideal of R.

Proposition 2.5 implies that Zorn’s lemma in Section A.2 can be applied to
ideals. Zorn’s lemma states that a nonempty partially ordered set in which every
nonempty chain has an upper bound must contain a maximal element (an element
m such that m < x holds for no other element x). In a ring, “maximal ideal” is
short for “maximal proper ideal”:

Definition. A maximal ideal of a ring R is an ideal M + R of R such that
there is no ideal I of R suchthat M G 1 G R.

Proposition 2.6. In a ring R [with identity], every proper ideal is contained in
a maximal ideal.

Proof. An ideal that contains the identity element must contain all its multiples
and is not proper. Hence an ideal is proper if and only if it does not contain the
identity element. Therefore the union of a nonempty chain of proper ideals, which
is an ideal by 2.5, is a proper ideal.

Given an ideal I # R we now apply Zorn’s lemma to the set § of all proper
ideals of R that contain 7, partially ordered by inclusion. Every nonempty chain
in 8 has an upper bound in §, namely its union. Also, 8 # @, since I € §. By
Zorn’s lemma, 8 has a maximal element M . Then M is a maximal (proper) ideal
that contains 7. [J

Finally, we note that the union / U J of two ideals always admits multiplication.
By 2.2, the ideal generated by I/ U J is the set of all finite sums of elements of
1 U J,thatis, thesum / +J of I and J as subsets.

Definition. The sum of two ideals I and J of a ring R is their sum as subsets:
I+J={x+y|x€el yel}.

Equivalently, I + J is the smallest ideal of R that contains both / and J.
More generally, every union |J;c; J; of ideals J; admits multiplication; hence
the ideal it generates is the set of all finite sums of elements of |J;c; J;, which
can be simplified so that all terms come from different ideals.

Definition. The sum of ideals (J;),c; of aring R is
Sier di = {>ier % | x; € J; and x; = 0 for almost all i € I }.
Equivalently, »,; J; is the smallest ideal of R that contains every J; .

Proposition 2.7. Every sum of ideals of a ring R is an ideal of R.

Exercises
All rings in the following exercises have an identity element.

1. Show that every intersection of subrings of a ring R is a subring of R.
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2. Show that the union of a nonempty directed family of subrings of a ring R is a subring
of R.

3. Show that the smallest subring of a ring R that contains a subset X of R is the set of
all sums of products of elements of X and opposites of such products.

4. Show that every intersection of ideals of a ring R is an ideal of R.
5. Show that the union of a nonempty directed family of ideals of aring R is an ideal of R.

6. Let I and J be ideals of aring R. Show that I U J is an ideal of R if and only if
ICJorJCI.

7. An element x of a ring is nilpotent when x" = 0 for some n > 0. Show that the
nilpotent elements of a commutative ring R constitute an ideal of R.

8. Let n > 0. Show that the ideal nZ of Z is maximal if and only if # is prime.

9. Polynomials in two variables (with real coefficients) constitute a ring R under the usual
operations. Let / be the set of all polynomials f € R whose constant coefficient is 0. Show
that / is a maximal ideal of R. Show that / is not a principal ideal.

The product AB of two ideals A and B of a ring is the ideal generated by their product as
subsets. (Both products are denoted by A B, but, in a ring, the product of two ideals is their
product as ideals, not their product as subsets.)

10. Show that the product AB of two ideals A and B of aring R is the set of all finite
sums a1 by +---+ap by, inwhichn 20, ay, ...,an € A,and by, ..., by € B.

11. Show that the product of ideals is associative.

12. Show that the product of ideals distributes sums: A(B + C) = AB + AC and (B +
C)A = BA + CA; for extra credit, A(Y.,.; B;j) = > ;c; (AB;) and (3, A;)B =
Zia (AiB).

3. Homomorphisms
This section extends to rings the wonderful properties of group homomorphisms
in Sections 1.4 and L.5.

Subrings and ideals. Homomorphisms of rings (defined in Section 1) are
mappings that preserve sums, products, and identity elements. Homomorphisms
also preserve subrings, and, to some extent, ideals.

Proposition 3.1. Let ¢ : R — S be a homomorphism of rings. If A is a
subring of R, then

9(A) = {g(x) | xeA}
is a subring of S. If B is a subring of S, then
¢ '(B) = {x €R|¢(x)€ B}
is a subring of R.
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If A is an ideal of R and ¢ is surjective, then ¢(A) is an ideal of S. If B is
an ideal of S, then ¢~ (B) is an ideal of R.

Readers will happily concoct proofs for these statements, and show that non-
surjective homomorphisms do not necessarily send ideals to ideals. In Proposition
3.1, ¢(A) is the direct image of A C R under ¢ and ! (B) is the inverse image
of B C S under ¢. Two subsets of interest arise as particular cases:

Definitions. Let ¢ : R — S be a homomorphism of rings. The image or
range of ¢ is

Img = {e(x)| xR}
The kernel of ¢ is
Kergp = {x € R|p(x)=0}.
Propositions 3.1 and 1.4.4 yield the following result:

Proposition 3.2. Let ¢ : R — S be a homomorphism of rings. The image of
@ is a subring of S. The kernel K of ¢ is an ideal of R. Moreover, ¢(x) = ¢(y)
ifandonlyif x —y € K.

Conversely, every subring S of a ring R is the image of the inclusion homo-
morphism x — x of S into R.

Quotient rings. Ideals yield quotient rings and projection homomorphisms.

Proposition 3.3. Let I be an ideal of a ring R. The cosets of I in the abelian
group (R, +) constitute a ring R/I. In R/I, the sum of two cosets is their sum
as subsets, so that (x +I)+ (y+1)= (x +y) + I, the product of two cosets is the
coset that contains their product as subsets, sothat (x +I) (y+1)=xy+ 1. The
mapping x — x + I is a surjective homomorphism of rings, whose kernel is I .

Proof. R/I is already an abelian group, by 1.4.7. If x + I, y+1 € R/I, then
the product (x + I)(y + 1) of subsets is contained in the single coset xy + I, since
(x+i)(y+j)=xy+xj+iy+ij €xy+ [ forall i, j € I. Hence multiplication
in R/I can be defined as above. It is immediate that R/I is now a ring; the
identity element of R/I is 1+ 1.

Definitions. Let I be an ideal of a ring R. The ring of all cosets of I is the
quotient ring R/I of R by 1. The homomorphism x — x + I is the canonical
projection of R onto R/I.

For example, every ring R is an ideal of itself and R/R is the trivial ring {0};
0 is an ideal of R and the canonical projection is an isomorphism R =~ R/0.

For a more interesting example, let R = Z. By 2.4, every ideal I of Z is
principal, and is generated by a unique nonnegative integer n. If n = 0, then
I'=0and Z/I > Z;if n > 0, then the additive group Z, becomes a ring (which
readers probably know already):
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Definition. For every positive integer n, the ring Z, of the integers modulo n
is the quotient ring Z/7Zn.

In general, the subrings of R/I are quotients of subrings of R, and similarly
for ideals (in the sense that A/ ={a+1 |a € A} when A C R):

Proposition 3.4. Let I be an ideal of a ring R. Every subring of R/ is the
quotient S/1 of a unique subring S of R that contains 1. Every ideal of R/I is
the quotient J /1 of a unique ideal J of R that contains I .

This follows from 1.4.9. Theorem 1.5.1 also extends to quotient rings:

Theorem 3.5 (Factorization Theorem). Let I be an ideal of a ring R. Every
homomorphism of rings ¢ : R — S whose kernel contains I factors uniquely
through the canonical projection m : R — R/I (there exists a homomorphism
¥ : R/I — S unique such that ¢ = o).

Proof. By L5.1 there is a homomorphism of abelian groups ¥ of (R/I, +) into
(S, +) unique such that ¢ = ¢ o 7 ; equivalently, ¥ (x + I) = ¢(x) forall x € R.
Now, ¥ is a homomorphism of rings. Indeed,

V(x+D+D) =y @y+D=¢y)=p)e(y)=y x+1) ¥ (y+])
forallx+/7,y+I e R/I,and y(1)=y (1+1)=¢(1)=1.0

The homomorphism theorem. Theorem 1.5.2 also extends to rings; so do the
isomorphism theorems in Section 1.5 (see the exercises).

Theorem 3.6 (Homomorphism Theorem). If ¢ : R — S is a homomorphism
of rings, then
R/Ker ¢ =~ Im g¢;

in fact, there is an isomorphism 6 : R/Ker f — Im f unique such that
¢ =106 om, where « : Im f — S is the inclusion homomorphism and
7w : R — R/Ker f is the canonical projection.

R % . §

rl I

R/Ker ¢ S Img

Proof. By L1.5.2 there is an isomorphism of abelian groups 6 : (R/Ker f, +)
— (Im f, +) unique such that ¢ = 1 0 6 o 7 ; equivalently, 6 (x + Ker ¢) = ¢(x)
for all x € R. As in the proof of 3.5, this implies that 6 is a homomorphism of
rings, hence is an isomorphism. [

Our first application of the homomorphism theorem is the following result.



3. Homomorphisms 115

Proposition 3.7. Let R be a ring [with identity]. There is a unique homomor-
phism of rings of Z into R. Its image is the smallest subring of R; it consists of
all integer multiples of the identity element of R, and is isomorphic either to 7. or
to Z,, for some unique n > 0.

Proof. If ¢ : Z — R is a homomorphism of rings [with identity], then
(1) =1 and ¢(n) = ¢(nl) = nl € R for all n € Z. Hence ¢ is unique.
Conversely, we saw that the mapping ¢ : n — n1l is a homomorphism of rings
of Z into R. Then Im ¢, which is the set of all integer multiples of the identity
element of R, is a subring of R; it is the smallest such subring, since a subring of
R must contain the identity element and all its integer multiples.

By the homomorphism theorem, Im ¢ ~ Z/I for some ideal I of Z. By 2.4,
I is principal, I = nZ forsome n =2 0. If n = 0, then Im ¢ ~ Z/0 = Z. If
n > 0,then Img = Z,; then n > 0 is unique with this property, since, say, the
rings Z, all have different numbers of elements. [

The unique integer n > 0 in Proposition 3.7 is also the smallest m > 0 such
that m1 = 0 and the smallest m > 0 such that mx =0 forall x € R.

Definition. The characteristic of a ring R [with identity] is 0 if n1 £0 in R
forall n > 0; otherwise, it is the smallest integer n > 0 such that n1 = 0.

For example, Z, has characteristic 7.

Exercises

1.Let ¢ : R — S be a homomorphism of rings and let A be a subring of R. Show that
¢(A) is asubring of B.

2.Let ¢ : R — § be a homomorphism of rings and let B be a subring of S. Show that
@ 1(B) is a subring of R.

3.Let ¢ : R — S be a surjective homomorphism of rings and let / be an ideal of R.
Show that ¢(I) is an ideal of S.

4. Find a homomorphism ¢ : R — S of commutative rings and an ideal / of R such
that (1) is not an ideal of S.

5.Let ¢ : R — S be a homomorphism of rings and let J be an ideal of §. Show that
@ 1(J) is an ideal of R.

6.Let R be aring and let / be an ideal of R. Show that every ideal of R/[ is the quotient
J/I of aunique ideal J of R that contains /.

7. Let R be aring and let / be an ideal of R. Show that quotient by / is a one-to-one
correspondence, which preserves inclusions, between ideals of R that contain I and ideals
of R/I.

8.Let I C J beideals of aring R. Show that (R/I)/(J/I) = R/J.

9.Let S be a subring of aring R and let / be an ideal of R. Show that S + / is a subring
of R, [ isanidealof S+ 7, SN[ isanidealof S,and (S+1)/I =~ S/(SNI).
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4. Domains and Fields

Domains and fields are major types of rings.

Definition. A domain is a commutative ring R + 0 [with identity] in which
x,y # 0 implies xy # 0.

Equivalently, a ring R is a domain when R\{0} is a commutative monoid
under multiplication. For example, Z, Q, R, and C are domains. In fact, Q, R,
and C have a stronger property:

Definition. A field is a commutative ring F # 0 such that F\{0} is a group
under multiplication.

Domains and fields may also be defined as follows. A zero divisor of a
commutative ring R is an element x # 0 of R such that xy =0 for some y + 0,
y € R. Acommutativering R # 0 is adomain if and only if R has no zero divisor.
A unit of aring R [with identity] is an element u# of R such that uv = vu =1
for some v € R; then v is a unit, the inverse u~! of u. Units cannot be zero
divisors. A commutative ring R # O is a field if and only if every nonzero element
of R is a unit.

Proposition 4.1. Let n > 0. The ring Z,, is a domain if and only if n is prime,
and then 7., is a field.

Proof. If n > 0 is not prime, then either n = 1, in which case Zn =0, or
n =xy for some 1 < x,y < n, in which case ¥y = 0 in Z,, and Z, has a zero
divisor. In either case Zn is not a domain.

Now let n be prime. If 1 < x < n, then n and x are relatively prime and
ux +vn =1 forsome u,v € Z. Hence xu =1 in Z, and X is a unit. Thus Z,
is a field. [J

Domains are also called integral domains, and the term “domain” is sometimes
applied to noncommutative rings without zero divisors. A noncommutative ring
R # 0 such that R\{0} is a group under multiplication (equivalently, in which
every nonzero element is a unit) is a division ring.

Properties. The cancellation law holds as follows in every domain:
Proposition 4.2. In a domain, xy = xz implies y = z, when x # 0.

Proof. If x (y —z)=0 and x # 0, then y — z = 0: otherwise, x would be a
zero divisor. []

Proposition 4.3. The characteristic of a domain is either 0 or a prime number.

Proof. The smallest subring of a domain has no zero divisors; by 3.7, 4.1, it is
isomorphic either to Z, or to Z » for some prime p.[]

Domains of characteristic p # 0 have an amusing property:
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Proposition 4.4. In a commutative ring R of prime characteristic p, (x +y)? =
xP+yP and (x — y)P =xP — yP, forall x,y € R.

Proof. By the binomial theorem, (x + y)” = Y o<;<, () x! yP~! | where

(#) = i!([lj!—i)!' If 0 <i < p, then p divides p! but does not divide i! or
(p —i)!; hence p divides (i.’), (’i’)r =0 forall »r € R, and
(4P = Yogigp ()37 = X, (D) 6" yP71 = 2P 4P,

Then (x — y)? = xP + (—=1)P yP; if p is odd, then x? + (—1)P y? = xP — yP,
whereas, if p=2,then x” + (—1)? y? =xP +yP =xP — yP . [

Prime and maximal ideals have quotient rings that are domains and fields.

Definition. A prime ideal of a commutative ring R is an ideal P # R such that
Xy € P implies x e P oryep.

Proposition 4.5. If @ is an ideal of a commutative ring R [with identity), then
R/a is a domain if and only if Q is a prime ideal.

The proof is an exercise.

Proposition 4.6. If Q is an ideal of a commutative ring R [with identity], then
R/ is a field if and only if Q is a maximal ideal.

Proof. A field F has no proper ideal ¢ £ 0: indeed, if x € ¢, x £0, then
1 € ¢ since x is a unit, and € = F. Conversely, let R # 0 be a commutative ring
with no proper ideal ¢ £ 0. Forevery x € R, x # 0, we have 1 € Rx = R, so
that x is a unit. Hence R is a field.

If now @ is an ideal of a commutative ring R, then R/a is a field if and only
if R/a £ 0 and R/a has no ideal 0 ; o ; R/a,if and only if @ £ R and R has
noideal A G b S R, by3.4.0

Corollary 4.7. In a commutative ring [with identity], every maximal ideal is
prime.

Corollary 4.8. An ideal Zn of Z is prime if and only if n is prime, and then
Zn is maximal.

As in the proof of Proposition 4.6, a field has no proper ideal & # 0. If now ¢
is a homomorphism of fields, then Ker ¢ is a proper ideal, since ¢(1) =1 # 0, so
that Ker ¢ = 0 and ¢ is injective:

Proposition 4.9. Every homomorphism of fields is injective.

Fields of fractions. A subring of a domain is a domain. Conversely, we show
that every domain is (up to isomorphism) a subring of a field.

A field that contains a domain R must also contain the inverses of nonzero
elements of R and all products xy*1 with x, y € R, y £ 0. The latter add and
multiply like fractions x/y: (xy~!) (zt71) = (xz) (yt)™' and (xy~!) + (z¢7 1)
= (xt +yz) (yt)~ ' moreover, xy~! =zt~ if and only if x7 = yz.
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This suggests the following construction. Let R be a domain. Define a binary
relation ~ on R x (R\{0}) by

(x,y) ~ (z,t) if and only if xr = yz.

It is immediate that ~ is an equivalence relation. The equivalence class of
(x,y) € R\{0} is a fraction, x/y or % Readers will verify that operations on

the quotient set Q(R) = (R x (R\{0}))/~ are well defined by
(x/y) +(z/t) = (xt +yz)/yt and (x/y)(z/1) = xz/yt
and that the following holds:

Proposition 4.10. For every domain R, Q(R) is a fieldand ¢ - x — x/1 is
an injective homomorphism.

Then R is isomorphic to the subring Im ¢ of the field Q(R). It is common
practice to identify x € R and ((x) = x/1 € Q(R); then ¢ is an inclusion
homomorphism and R is a subring of Q(R).

Definition. If R is a domain, then Q(R) is the field of fractions, or field of
quotients, or quotient field, of R. [

For instance, if R = Z, then Q(R) ~ Q. Thus, Proposition 4.10 generalizes
the construction of rational numbers from integers.

The field of fractions of a domain has a universal property:

Proposition 4.11. Let R be a domain. Every injective homomorphism ¢ of R
into a field F factors uniquely through ¢ : R — Q(R): ¢ = ¥ o for some
unique homomorphism ¥ : Q(R) — F, namely ¥ (x/y) = ¢(x) ¢(y)~".

Proof. Every homomorphism v of fields preserves inverses: if x # 0, then

Y(x) Y(x) =y (1)=1,sothat Y(x) £0and y(x~ )=y (x)"".

In Q(R), (x/y)~' = y/x, when x,y #0; hence x/y = (x/1)(1/y) =
((x) t(y)~! when y £0. If now ¢ : R — F is injective, then y # 0 implies

¢(y) #0and ¢ o= implies ¥ (x/y) = ¥ («(x)) ¥ (e(») ") = 0(x) 0(y) 7"

Taking this hint we observe that x/y = z/t implies xt = yz, ¢(x) ¢(t) =

¢(y) ¢(z), and, in the field F, ¢(x) ¢(y)~' = ¢(z) ¢(1)”" (since o(y),
@(t) # 0). Therefore a mapping ¥ of Q(R) into F is well defined by

¥ (x/y) = o(x) o(y)~L.
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Moreover, ¥ (1) =¢(1) ¢(1)~!
Y ((x/y)+(z. 1) = o(xt+yz) (yt) !
o(x) o) @ ( ) o) o) 0(2) e(y) T e(r)!
o(x) o(y) " +o(2) o(1) " = w(x/y) + (/1)
since ¢(y1)"'=(y) " o(1)"", and
¥ ((x/) (z/1) = o(x) o) 0(2) " ()" = Y(x/y) ¥(z/1),

whenever y, t # 0. Thus v is a homomorphism. By the beginning of the proof,
¥ is the only homomorphism such that ¥ ot = ¢. [

If R is identified with a subring of Q(R), then every injective homomorphism
of R into afield F extends uniquely to a [necessarily injective] homomorphism of
Q(R) into F;hence Q(R) is, up to isomorphism, the smallest field that contains
R as a subring.

From 4.11 we deduce an “internal” characterization of Q(R):

Proposition 4.12. Let R be a subring of a field K. The identity on R extends
to an isomorphism K ~ Q(R) if and only if every element of K can be written in

the form ab™! for some a,b € R, b +0.

Proof. This condition is necessary since every element of Q(R) can be written
in the form a/b = ab™! for some a,b € R, b £0. Conversely, by 4.11, the
inclusion homomorphism R — K extends to a homomorphism 6 : Q(R) —
K, which is injective by 4.6, and surjective if every element of K can be written
in the form ab™' =6 (a/b). O

Exercises

1. Let a be an ideal of a commutative ring R. Prove that R/ is a domain if and only if
a is a prime ideal.

2.Let n > 0. Give a direct proof that the ideal Zn of Z is prime if and only if n is prime,
and then Zn is maximal.

3. Give a direct proof that every maximal ideal of a commutative ring is a prime ideal.

4. Show that the field of fractions of a domain is completely determined, up to isomorphism,
by its universal property.

5. Let S be a monoid that is commutative and cancellative. Construct a group of fractions
of §. State and prove its universal property.

5. Polynomials in One Variable

A polynomial in one indeterminate X should be a finite linear combination
ag+a X +---+a,X " of powers of X. Unfortunately, this natural concept of
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polynomial s leads to a circular definition: one needs a set of polynomials in order
to make linear combinations in it. Our formal definition of polynomials must
therefore seem somewhat unnatural. It specifies a polynomial by its coefficients:

Definition. Let M = {1, X, ..., X", ... } be the free monoid on {X}. A
polynomial over a ring R [with identity] in the indeterminate X is a mapping
A: X"+ a, of M into R such that a, =0 for almost all n 2 0. The set of all
polynomials in X over R is denoted by R[X].

In this definition, M can be replaced by any monoid. The resulting ring R[M]
is a semigroup ring (a group ring if M is a group). The exercises give details of
this construction.

We quickly define operations on R[X], so that we can return to the usual
notation A =ag+a; X +---+a,X". Polynomials are added pointwise,

A+B=C whenc, =a,+b, foralln 20,
and multiplied by the usual rule,

AB=C whenc, =3 a; b; foralln 2 0.

i+j=n
Proposition 5.1. For every ring R [with identity], R[X], with the operations
above, is a ring.

Proof. For each A € R[X] there exists some m = 0 such that ¢, = 0 for all
k > m: otherwise, {k = 0 | a, £0} is not finite. If g, = 0 for all k > m,
and b, = 0 for all k > n, then a; + b, = 0 for all k > max (m, n); hence
{k20|a +b #0} is finiteand A + B € R[X]. If ¢, = 3, a; b; for
all k = 0, then ¢, =0 forall k > m+n,since q; =0 if i > m and bj =0
ifi+j=kandi < m (then j > n); hence {k = 0 | ¢, # 0} is finite and
AB € R[X]. Thus the operations on R[X] are well defined.

It is immediate that (R[X], +) is an abelian group. The identity element of
R[X] is the polynomial 1 with coefficients 1, = 0 for all n > 0 and 1, =

1. Multiplication on R[X] inherits distributivity from the multiplication on R;
associativity is an exercise. [

By custom, r € R is identified with the constant polynomial with coefficients
a, = 0 forall n > 0 and a;, = r; X is identified with the polynomial with
coefficients @, = 0 for all n # 1 and a; = 1. This allows a more natural notation:

Proposition 5.2. A =3 >, a,X", for every A € R[X]; if a; = 0 for all
i>n,then A=ag+a X +---+a,X".
Proof. The infinite sum >, a,X" exists since a,X" = 0 for almost all

n. Its coefficients are found as follows. By induction on k, X k¥ has coefficients
a,=0if n#k, a. =1. Then rX* has coefficients a,=0ifntk, a =r,
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for every r € R. Hence ), >, a, X" has the same coefficients as A. If a; =0
forall i > n,then A=Y 50a,X' =3 y<;<, ;X' .0

Operations on polynomials can now be carried out in the usual way.

Definitions. The degree deg A of a polynomial A # 0 is the largest integer
n 2 0 such that a, +0; then a, is the leading coefficient of A.

The degree of the zero polynomial 0 is sometimes left undefined or is variously
defined as —1 € Z or as —oo, as long as deg 0 < deg A forall A #0.

A polynomial A has degree at most 7 if and only if a; = 0 forall i > n, if and
only if A can be written in the form A = ay+a; X +---+a,X". The following
properties are straightforward:

Proposition 5.3. Forall A, B +0 in R[X]:
(1) deg (A + B) < max(deg A, deg B);
(2) if deg A # deg B, then deg (A + B) = max (deg A, deg B);
(3) deg (AB) < deg A+deg B,
(4) if R has no zero divisors, then deg (AB) = deg A + deg B.

In particular, if R is a domain, then R[X] is a domain.

Corollary 5.4. If R has no zero divisors, then the units of R[X] are the units
of R.

Polynomial division. In R[X], polynomial or long division of A by B £ 0
requires repeated division by the leading coefficient b, of B. For good results b,
should be a unit of R, for then division by b, is just multiplication by b, ! and
has a unique result. In particular, polynomial division of A by B works if B is
monic (its leading coefficient b, is 1), and for all B # 0 if R is a field.

Proposition 5.5. Let B € R[X] be a nonzero polynomial whose leading
coefficient is a unit of R. For every polynomial A € R[X] there exist polynomials
0, S € R[X] such that A= BQ + S and deg S < deg B, moreover, Q and S
are unique.

Proof. First we assume that B is monic and prove existence by induction on
deg A. Let deg B =n. If deg A < n,then Q =0 and S = A serve. Now let
deg A =m 2 n. Then B a, X" has degree m and leading coefficient a,,, .
Hence A — B a,, X" ™" has degree less than m. By the induction hypothesis,
A—Ba, X" "=BQ,+S forsome Q,, S € R[X] such that deg § < deg B.
Then A = B(a,, X" "+ Q) +S.

In general, the leading coefficient b, of B is a unitof R;then B b, Lis monic,
and A =Bb;1 O + S with deg S < deg B, for some Q and S.

Uniqueness follows from the equality deg (BC) = deg B + deg C, which
holds for all C # 0 since the leading coefficient of B is not a zero divisor. Let
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A=BQ,+S8 =B0Q,+S,, with deg §;, deg S, < deg B. If Q) + 0,,
then S, — S, = B(Q, — Q) has degree deg B + deg (Q, — Q) = deg B,
contradicting deg S, deg S, < deg B; hence Q| = Q,, and then §; = §,. ]

Evaluation. Polynomials A € R[X] can be evaluated at elements of R:

Definition. If A = ay+a; X +---+a,X" € R[X] and r € R, then A(r) =
ay+ayr+---+a,r" € R.

The polynomial A itself is often denoted by A(X). A polynomial A(X) =
ay+a; X +--- +a,X" € R[X] can also be evaluated at any element of a
larger ring S; for example, at another polynomial B € R[X], the result being
A(B)=ay+a;B+---+a,B" € R[X]. This operation, substitution, is discussed
in the exercises.

In general, (A + B)(r) = A(r) + B(r), but readers should keep in mind that
(AB)(r) = A(r) B(r) requires some commutativity.

Proposition 5.6. If R is commutative, then evaluation at r € R is a homo-
morphism of R[X] into R. More generally, if R is a subring of S and s € S
commutes with every element of R, then evaluation at s is a homomorphism of
R[X] C S[X] into S.

The commutativity condition in this result is necessary (see the exercises).
Proof. Forall A, B € R[X], (A+ B)(s)=A(s) + B(s) and
(X a;s") (Zj bjs]) = Ei,j (a;s' bjs])
i ] k
= 2 (qbs's7) = 3 (X a; b)) s* = (AB)(s),

since every s' commutes with every b;. Also 1(s)=1.0

A(s) B(s)

Roots. A root of a polynomial A € R[X] is an element r (of R, or of a larger
ring) such that A(r)=0.

Proposition 5.7. Let r € R and A € R[X]. If R is commutative, then A is a
multiple of X — r if and only if A(r)=0.

Proof. By polynomial division, A = (X — r) B + S, where B and S are
unique with deg § < 1. Then S is constant. Evaluating at r yields S = A(r), by
5.6. Hence X — r divides A if and only if A(r)=0.0

Definitions. Let r € R be a root of A € R[X]. The multiplicity of r is the
largest integer m > 0 such that (X — r)™ divides A; r is a simple root when it
has multiplicity 1, a multiple root otherwise.

For example, i is a simple root of X? +1 = (X —i)(X +i) € C[X] and a
multiple root (with multiplicity 2) of X*+2X2+1 = (X —i)? (X +i)? € C[X].

To detect multiple roots we use a derivative:
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Definition. The formal derivative of A(X)=3",>qa, X" € K[X] is A'(X) =
Susina, X" e K[X].

Without a topology on R, this is only a formal derivative, without an interpre-
tation as a limit. Yet readers will prove some familiar properties:

Proposition 5.8. For all A,B € K[X] and n > 0, (A+B) = A" + B/,
(AB) = A’B + AB’, and (A") =nA" 1A’

Derivatives detect multiple roots as follows:

Proposition 5.9. If R is commutative, then a root r € R of a polynomial
A € R[X] is simple if and only if A’(r) +0.

Proof. If r has multiplicity m, then A = (X — r)" B, where B(r) #0:
otherwise (X — r)™*! divides A by 5.7. If m = 1, then A’ = B+ (X —r) B’
and A’(r)= B(r)£0. If m > 1,then A’ =m (X —r)" ' B+ (X —a)" B
and A'(r)=0.0

Homomorphisms.

Proposition 5.10. Every homomorphism of rings ¢ : R — S induces a
homomorphism of rings A — YA of R[X] into S[X], namely,

‘p(a0+a1X+~-~+anX") = ¢(ag) +o(a;) X +---+¢(a,) X".

The next result, of fundamental importance in the next chapter, is a universal
property that constructs every ring homomorphism v : R[X] — §. Necessarily
the restriction ¢ of ¥ to R is a ring homomorphism; and v (X) commutes with
every ¢(r), since, in R[X], X commutes with all constants.

Theorem 5.11. Let R and S be rings and let ¢ : R — S be a homomorphism
of rings. Let s be an element of S that commutes with ¢(r) for every r € R (an
arbitrary element if S is commutative). There is a unique homomorphism of rings
¥ : R[X] — S that extends ¢ and sends X to s, namely ¥ (A) =A (s).

R-S-R[X]

|
LN

S

Proof. The mapping v is a homomorphism since it is the composition of
the homomorphisms A —— “A in 5.10 and B +— B(s), (Im ¢)[X] — S
in 5.6. We see that  extends ¢ and sends X to s. By 5.2, a homomor-
phism with these properties must send A = a5 +a; X +--- +a,X" € R[X] to

plag) +e(a))s+---+¢(a,)s" =%A(s). 0
Propositions 5.6 and 5.10 are particular cases of Theorem 5.11.

The field case. The ring K [X] has additional properties when K is a field.
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Proposition 5.12. For every field K : K[X] is a domain; every ideal of K[X]
is principal; in fact, every nonzero ideal of K[X] is generated by a unique monic
polynomial.

Proof. The trivial ideal 0 = {0} is generated by the zero polynomial 0.
Now, let 2 + 0 be a nonzero ideal of K[X]. There is a polynomial B € 2
such that B £ 0 and B has the least possible degree. Dividing B by its leading
coefficient does not affect its degree, so we may assume that B is monic. We have
(B) C 2. Conversely, if A € A, then A = BQ + R forsome Q, R € K[X] with
deg R < deg B. Since R=A — BQ € 2, R + 0 would contradict the choice of
B therefore R=0and A= BQ € (B). Hence & = (B).

If A =(B)=(C)+0,then C = BQ, and B = CQ, forsome Q,, 0, €
K[X]; hence deg B = deg C and Q,, Q, are constants. If C is monic like B,
leading coefficients show that O, = 0, =1, so that C = B. [

Since K [X] is a domain, it has a field of fractions.

Definitions. Let K is a field. The field of fractions of K[X] is the field of
rational fractions K(X). The elements of K(X) are rational fractions in one
indeterminate X with coefficients in K .

In K(X), rational fractions are written as quotients, A/B or % ,with A, B €
K[X], B #0. By definition, A/B = C/D if and only if AD = BC, and
A+C_AD+BC A C AC
B D BD ' BD BD’
Rational fractions can be evaluated: when F = A/B € K(X) and x € K,
then F(x) = A(x) B(x)~'e K is defined if B(x) # 0 and depends only on the
fraction A/B and not on the polynomials A and B themselves (as long as F(x)

is defined). The evaluation mapping x — F(x) has good properties, but stops
short of being a homomorphism, as pesky denominators keep having roots.

Section 9 brings additional properties of rational fractions in one variable.

Exercises
1. Verify that the multiplication on R[X] is associative.

2. Let R be a commutative ring and let b € R. Prove that the equation bx = ¢ has a
unique solution in R for every ¢ € R if and only if b is a unit.

3. Let A € R[X] have degree n = 0 and let B € R[X] have degree at least 1.
Prove the following: if the leading coefficient of B is a unit of R, then there exist unique
polynomials Qg, Q1, ..., On € R[X] such that deg Q; < deg B forall i and A =
Qo+ Q1B+---+0nB".

4. Let R be a subring of S. Show that evaluation at s € S, A — A(s), is a ring
homomorphism if and only if s commutes with every element of R.

5. Find an example of aring R, an element r € R, and polynomials A, B € R[X] such
that (AB)(r) # A(r) B(r).
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6.Let M be a maximal ideal of R. Show that M + (X) is a maximal ideal of R[X].
7. Verify that (AB) = A’B + AB’ forevery A, B € R[X].
8. Verify that (A")' = nA" 1A’ forevery n > 0 and A € R[X].

9. Show that every polynomial A € R[X] has a kth derivative AK) for every k > 0. If
A=3%" >qan X" has degree k, then show that AW (0) =k!ay.

10. Let R be commutative, with characteristic either 0 or greater than m . Show that a
root r of A € R[X] has multiplicity m if and only if A(k)(r) =0 for all k < m and

Alm) (r) # 0. Show that the hypothesis about the characteristic of R cannot be omitted from
this result.

11. Let R be a domain and let Q be its field of fractions. Show that the field of fractions
of R[X] is isomorphic to Q(X).

Substitution in R[X] is defined as follows: if A(X)=ag+a1X +---+a, X" € R[X] and
B € R[X],then A(B)=ap+a1B+---+ayB" € R. The notation A o B is also used for
A(B), since A(B)(r)=A(B(r)) forall r € R when R is commutative.

12. Show that substitution is an associative operation on R[X].
13. Show that A — A(B) is a homomorphism of rings, when R is commutative.

14. Prove the following: if R has no zero divisors, then A — A(B) is a homomorphism
of rings for every B € R[X] if and only if R is commutative.

Let R be aring and let M be a monoid. The semigroup ring R[M] is the ring of all mappings
a:m+— ay of M into R such that a;; = 0 for almost all m € M, added pointwise,
(@ +b)m = am + by , and multiplied by (ab)m, = ZX,yEM, rym @x by.

15. Verify that R[M] is a ring.

16. Explain how every a € R[M] can be written uniquely as a finite linear combination
of elements of M with coefficients in R.

17. State and prove a universal property for R[M].

6. Polynomials in Several Variables

A polynomial in n indeterminates X, X,, ..., X, should be a finite linear
. . . k k k .

combination of monomials X 'x 22 X, " . But, as before, this natural concept

makes a poor definition. The formal definition specifies polynomials by their

coefficients; this readily accommodates infinitely many indeterminates.

Definition. A monomial in the family (X;);c; (of indeterminates) is a possibly
infinite product [[;c; Xf " with integer exponents k; = O such that k; = 0 for
almost all i ; then []; ¢, Xfi is the finite product ;¢ ki 40 lelc" .

. . k; .
It is convenient to denote [[;c; X;* by Xk, where k = (k;);er- Monomi-

Xk+£

als are multiplied by adding exponents componentwise: xkxt = , where
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(k+1£); =k; +¢; forall i € I the result is a monomial, since k; +¢; # 0 implies
ki #0or ¢, £0,sothat {i € I | k;+¢; 0} is finite.

Definition. The free commutative monoid on a set, written as a family (X;);c;,

is the set M of all monomials X* = [Tic; Xfi, where k; 2 0 and k; = 0 for
almost all i, with multiplication xkxt = xk+t,

The identity element of M is the empty product, 1 = [];,c; X lk ", in which
ki =0forall i. If I ={1,2, ..., n},then M is the free commutative monoid
on X, X, ..., X, in Section I.1.

Definition. Let M be the free commutative monoid on a family (X;);c;-
A polynomial in the indeterminates (X;);c,; over a ring R [with identity] is a
mapping A : xk— a, of M into R such that a;, = 0 for almost all k € M.
The set of all such polynomials is denoted by R[(X;);c,].

If 1={1,2,...,n}, where n = 1, then R[(Xl-)l-el] is denoted by R[X,
.. X,]. If n =1, then R[X,, ..., X,] is just R[X]; the notations R[X, Y],
R[X, Y, Z] are commonly used when n =2 or n = 3.

R[(X;);c/] and R[X, ..., X, ] are semigroup rings, as in the Section 5 exer-
cises. They are often denoted by R[X] and R[x] when the indeterminates are
well understood; we’ll stick with R[(X;);,] and R[X, ..., X, ].

Polynomials are added pointwise,
A+ B =C when ¢, =a;, +b, forall k,
and multiplied by the usual rule,
AB=C whenc, =% . a.b, forall m.

Proposition 6.1. For every ring R [with identity], R[(X;);c,], with the opera-
tions above, is a ring.

Proof. Let A, B € R[(Xi)iel]~ Since a; + by, # 0 implies a; + 0 or b, + 0,
the set {k € M | aj + b, £0} is finite and A + B € R[(X,);c;]. If ¢, =
Zk+£=m a; b, for all m, then, similarly, c,, # 0 implies a;, b, # 0 for some k, £;
therefore {m | c,, # 0} is finite and AB € R[(X;);c,;]. Thus the operations on
R[(X;);c] are well defined.

Itis immediate that R[(X;),,] is an abelian group under addition. The identity
element of R[(X;);c,] is the polynomial 1 with coefficients a; = 1 if k; = 0 for
all i, a; =0 otherwise. Multiplication on R[(X;),;] inherits distributivity from
the multiplication on R ; associativity is an exercise. [

Each element r of R is identified with the constant polynomial r with coeffi-
cients a. =r if kl- =0 forall i, a, = 0 otherwise; and each indeterminate X i is
identified with the polynomial X; with coefficients a; = 1 if k; = 1 and kj =0
forall j 1, a; = 0 otherwise. This allows a more natural notation:
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Proposition 6.2. A=), aka,fOV every A € R[(X;);¢/]-

Proof. The infinite sum ), a; X k" exists since a X k=0 for almost all k. We
find its coefficients. By induction on m;, the coefficient of XK in Ximi is 1 if
k; =m; and kj =0 forall j # i, otherwise 0. Hence the coefficient of Xk in x™

is 1 if k =m, 0 if k # m. Then the coefficient of XK in rX™ is rif k =m, 0 if
k +m. Hence ) a, X" has the same coefficients as A. ]

Operations on polynomials can now be carried out as usual.

The ring R[X, ..., X, ] is often defined by induction. This is useful in proving
properties of R[X, ..., X,].
Proposition 6.3. R[X . ..., X,] = (R[X,,.... X,,_;])[X,] when n = 2.

Proof. Every polynomial in R[X, ..., X,] can be rearranged by increasing
powers of X, , and thereby written uniquely in the form Ay + A X, +---+ A q X1,
with A}, ..., Aq € R[X,,..,X,_,]. This bijection of R[X,..., X,] onto
(R[Xl, o Xn_l])[Xn] preserves sums and products, since R[X,...,X,] is a
ring and X, commutes with every B € R[Xl, e Xn_l]. O

Degrees. The degree of a monomial is its total degree. Monomials also have a
degree in each indeterminate.

Definitions. The degree of a monomial X* = [Licr Xfi is deg X* = Yier ki
The degree deg A of a nonzero polynomial A =), a; X K is the largest deg X k
such that a;, + 0.

The degree in Xj of a monomial xk = Hiel Xf{i is deng xk = kj. The
degree in Xj, deng A, of a nonzero polynomial A =, aka is the largest
deng X* such that a, +0.0

Readers will verify the following properties:

Proposition 6.4. Forall A, B #0 in R[(X;);c;]:

(1) deg (A + B) < max(deg A, deg B);
(2) if deg A # deg B, then deg (A + B) = max (deg A, deg B);
(3) deg (AB) < deg A +degB;
(4) if R has no zero divisors, then deg (AB) = deg A + deg B.
In particular; if R is a domain, then R[(X;);c;] is a domain.
Degrees in one indeterminate have similar properties.

Corollary 6.5. If R has no zero divisors, then the units of R[(X;);c;] are the
units of R.

Polynomial division in R[(X;);,] is considered in Section 12.
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Homomorphisms. Polynomials in several indeterminates can be evaluated:
.. k; . .
Definition. If A =Y (a; [T;c; X;') € RI(X,);c;) and (r;);c; is a family

of elements of R, then A((r;);c;) = >ox (ax [Tics rfi) €R.

In this formula, the possibly infinite product [ [, <, sfi denotes the finite product

[Lics ki 40 sf " More generally, a polynomial A € R[(X;),,] can be evaluated
at elements of a larger ring S O R, for instance, at a family of polynomials in
some R[(Y]) je ;7]: the details of this operation, substitution, are left to interested
readers, or to those who rightly fear idleness.

If7={1,2, ...,n}, then A((r;);c;) isdenoted by A(ry, ..., r,). The poly-
nomial A itself is often denoted by A((X;);c;). or by A(X,,...X,). Asin
Section 5, (A + B)((r;)ics) = A((ri)ies) + B((ry)ics) - but (AB)((r));e;) =
A((r;);jer) B((r;);e;) requires commutativity:

Proposition 6.6. If R is commutative, then evaluation at (r;);c;€ R is a ho-
momorphism of R[X] into R. More generally, if R is a subring of S and (8))icr
are elements of S that commute with each other and with every element of R, then
evaluation at (s;);c; is a homomorphism of R[(X;);c;] € S[(X;);¢,] into S.

This is proved like 5.6; we encourage our tireless readers to provide the details.
Homomorphisms of rings also extend to their polynomial rings, as in Section 5.

Proposition 6.7. Every homomorphism of rings ¢ : R — S extends uniquely
to a homomorphism of rings A — A of R[(X;);¢;] into S[(X;);c,] that sends
every X; to itself, namely

ke X5) = Tpolay) x5
The universal property of R[(X;);c;] constructs every ring homomorphism
¥ R[(X;);c;]— S. Necessarily, the restriction ¢ : R — S of ¥ to R isa
ring homomorphism, and the elements v/ (X;) of S commute with each other and
with every ¢(r), since, in R[(X;);c;], the monomials X; commute with each
other and with all constants.

Theorem 6.8. Let R and S be rings and let ¢ : R — S be a homomorphism
of rings. Let (s;);c; be elements of S that commute with each other and with
@(r) for every r € R (arbitrary elements of S if S is commutative). There is a
unique homomorphism of rings ¥ : R[(Xi)ie 11— S that extends ¢ and sends

X; 10 s; for every i, namely ¥ (A((X;);c;)) = A ((si)icr)-
R R[(Xiier]
R iﬁb

This is proved like Theorem 5.11. Propositions 6.6 and 6.7 are particular cases
of Theorem 6.8.
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Rational fractions. We now let R beafield K. Then K[(X;)
by 6.4, and has a field of fractions:

Definitions. Let K be a field. The field of fractions of K [(X;);c,] is the field of
rational fractions K ((X;);c;). The elements of K((X;); ;) are rational fractions
in the indeterminates (X;);; over the field K . []

iel] is a domain,

If I ={12,...,n}, where n = 1, then K((X;);c;) is denoted by K (X,
X)) Ifn=1,K(X,,...X,)isjust K(X); K(X,X,) and K(X,, X,, X3)
are more commonly denoted by K (X, Y) and K(X, Y, Z).

In K ((X i)i e 1) , rational fractions are written as quotients, A/B or % , with
A,Bc K[(Xi)iel], B + 0. By definition, A/B = C/D ifandonlyif AD = BC,
and

A+C_AD+BC A C AC
B D BD ' BD BD’
The field K (X, ..., X,,) can also be defined by induction:
Proposition 6.9. K (X, ... X,) = (K(X{,.... X,,_;))(X,,) when n = 2.

As in the one-variable case, rational fractions can be evaluated: when F =
A/B € K((X;);c;) and x; € K forall i € I, then

—1
F((x)ier) = A((x)ier) B((x;)ier) €K
is defined if B((xi)ie 1) # 0, and, when defined, depends only on the fraction
A/B and not on the polynomials A and B themselves. The mapping (x;);c; —
F ((xl. )i c 1) , defined wherever possible, is a rational function.

Exercises
1. Give a direct proof that multiplication in R[(X;);e/] is associative.

2. Let M be a maximal ideal of R. Show that M + ((Xi)iel) is a maximal ideal of
R[(Xi)ier]-

3.Let K be a field. Show that K [X1, X2] has ideals that are not principal.

4. Flesh out a detailed proof of the statement that the bijection of R[X1, ..., X;] onto
(R[Xl, vy X,,,l]) [Xn], obtained by rearranging polynomials in R[X1, ..., X»] by increas-
ing powers of X, “preserves sums and products since R[X1, ..., X»] is aring”.

5. A polynomial A € K[(X;);es] is homogeneous when all its monomials have the

same degree (deg xk = deg X* whenever ay, ag #0). Show that every polynomial in
K[(X;)ier] can be written uniquely as a sum of homogeneous polynomials.

6. Prove the universal property of R[(X;)ie/]-
7. Use induction on n to prove the universal property of R[X1, ..., Xn].

8. Show that Z[(X;);es] is the free commutative ring [with identity] on (X;);e; in
the sense that every mapping of (X;);c; into a commutative ring R extends uniquely to a
homomorphism of Z[(X;);c/] into R.
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9. Let R be a domain and let Q be its field of fractions. Show that the field of fractions of
R[(Xi)ier] is isomorphic to Q((X;)ier)-

10. Show that K (X1, ... Xn) = (K(X1..... Xs—1))(Xn) when n = 2.
*11. Define substitution in R[(X;);es] and establish its main properties.

*12. Define a polynomial ring in which the indeterminates (X;);c; commute with constants
but not with each other. State and prove its universal property. Does this yield “free” rings?

7. Formal Power Series

This section can be skipped. Power series lose some of their charm when trans-
planted to algebra: they can still be added and multiplied, but, without a topology,
there don’t have sums; they become formal power series.

Definition. Let M = {1, X, ..., X", ... } be the free monoid on {X}. A
formal power series A =), > a, X" in the indeterminate X over a ring R [with
identity] is a mapping A : X" — a, of M into R.

Power series are added pointwise,
A+B=C whenc,=a,+b, foralln 20,
and multiplied by the usual rule,

AB=C whenc, =3 a; b; forall n 2 0.

i+j=n
The following result is straightforward:

Proposition 7.1. If R is a ring, then formal power series over R in the
indeterminate X constitute a ring R[[X]].

At this point, A =) >, a, X" is not an actual sum in R[[X]] (unless A is a
polynomial). But we shall soon find a way to add series in R[[X]].

Order. Power series do not have degrees, but they have something similar.

Definition. The order ord A of a formal power series A =3 >qa,X" 0 is
the smallest integer n 2 0 such that a, + 0.

The order of the zero series 0 is sometimes left undefined; we define it as oo,
so that ord 0 > ord A forall A +0. Thus A=) >, a,X" has order at least

n if and only if @, = 0 for all k < n, if and only if it is a multiple of X". The
following properties are straightforward:

Proposition 7.2. Forall A, B + 0 in R[[X]]:
(1) ord (A + B) 2 min (ord A, ord B);
(2) if ord A + ord B, then ord (A + B) = min (ord A, ord B);
(3) ord (AB) = ord A +ord B;
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(4) if R has no zero divisors, then ord (AB) = ord A + ord B.
In particular, if R is a domain, then R[[X]] is a domain.

Sums. Certain series can now be added in R[[X]] in a purely algebraic fashion
(but for which the exercises give a topological interpretation).

Definition. A sequence Ty, Ty, ..., T, ... of formal power series T, =
Y>>0 X" € R[[X]] is addible, or summable, in R[[X]] when, for every
n 2 0, T, has order at least n for almost all k. Then the sum S =, >q T is

the power series with coefficients s, = Zk;o Tkon-

If ord T, = n for almost all k, then e = 0 for almost all k£, and the infinite
sum s, = > ;>q ., is defined in R.

In particular, Ty, Ty, ..., T, ... is addible whenever ord T, = k for all k.
For example, for any A = ) >, a,X" € R[[X]], the sequence q;, a;X, ...,
a,X", ... is addible, since ordZnX" 2n. Itssumis A. Thus A=3" >;a,X"
is now an actual sum in R[[X]]. B

Proposition1.3. If R is commutative, then A =", > a, X" is aunit of R[[X]]
if and only if a is a unit of R. B

Proof. If A isaunitof R[[X]],then AB =1 forsome B € R[[X]], ayb, =1,
and a; is a unit of R.

We first prove the converse when ;= 1. Let A=1—T. Thenord T 2 1,
and ord T" = n, by 7.2. Hence the sequence 1, T, ..., T", ... is addible. We
show that B =", > T* satisfies AB = 1.

Let B, =1+T+---+T". Then B— B, =Y ,_, TXandord (B - B,) > n,
since ord T% > 1 when k > n. By 7.2, ord (AB — AB,) > n. Now,

AB, = (1 —=T)(1+T+---+T") = 1 —T",

Hence ord (AB,, — 1) > n. By 7.2, ord (AB — 1) > n. This holds forall n 2 0;
therefore AB =1, and A is a unit of R[[X]].

If now ag is any unit, then A ag 1 , which has constant coefficient 1, is a unit
of R[[X]], Aay ' B =1 forsome B € R[[X]], and A is a unit of R[[X]]. O

Formal Laurent series. A Laurent series is a power series with a few additional
negative terms.

Definition. Let G = { X" ‘ n € Z} be the free group on {X}. A formal
Laurent series A =) a, X" in the indeterminate X over a ring R is a mapping
A: X" —a, of G into R such that a, =0 for almost all n < 0.

Equivalently, a Laurent series A = Zn a,X " looks like (and will soon be) the

sum of a polynomial ) _,a, X" in X! and a power series Yooy X"
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Laurent series are added pointwise,
A+B=C whenc,=a,+b, foralln € Z,
and multiplied by the usual rule,

AB=C whenc, =3 a; b; forall n € Z.

i+j=n
The following result is straightforward:

Proposition 7.4. For every ring R [with identity), the Laurent series over R
with one indeterminate X constitute a ring R((X)).

The order ord A of a Laurent series A =) a, X" # 0 is the smallest integer
n such that a, #0; as before, we let ord 0 = oco. Thus, a Laurent series
A= ZnZO anX” has order at least n € Z if and only if a;, = 0 for all k < n, if

and only if it is the product of X" and a power series.

Readers will easily extend Proposition 7.2 to Laurent series, but may be more
interested in the following result.

Proposition 1.5. For every field K, K((X)) is a field; in fact, K((X)) is
isomorphic to the field of fractions of K [[X]].

Proof. Let A=3" a,X" € K((X)), A#0. Then A has order m € Z and
A = X" B for some B € K[[X]] whose constant term is b, = a,, # 0. By 7.3,

m

Bisaunitof K[[X]]: BC =1 forsome C € K[[X]]. ThenAX =~ C=1and A
is a unit of K((X)). Thus K((X)) is a field. Moreover, K[[X]] is a subring of
K((X)), and a Laurent series A € K((X)) either has order m = 0 and belongs
to K[[X]], or has order m < 0 and can be written as A = X" B = B (X ™)!
with B, X~ € K[[X]]; by 4.12, K((X)) is isomorphic to the field of fractions
of K[[X]].O

Exercises
1. Verify that multiplication on R[[X]] is associative.

2. Let R be commutative and let M be a maximal ideal of R. Show that m + (X) is a
maximal ideal of R[[X]].

Substitution in R[[X]] substitutes a power series C of order at least 1 into any power series
A=3" >,anX" toyield a power series Ao C or A(C)=) >, anC".

3. Show that substitution is a well-defined operation on R[[X]], which is associative when
R is commutative.

4. Show that, in R[[X]], (A+B)oC=(AoC)+(BoC),and,if R is commutative,
(AB)oC =(AoC)(BoC),whenever C has order at least 1.
_ord (A—
5. Show that R[[X]] is a metric space, in which d(A, B) = 2 ord (A-5)
d(A, B) =0 if A = B. Show that the operations on R[[X]] are continuous.

if A+ B,

6. Show that the metric space R[[X]] is the completion of R[X].
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7. Let Ty, T1, ..., Ty, ... be an addible sequence. Show that Zk Ty is the sum of a
series in the metric space R[[X]].

8. Let K be the field of fractions of a domain R. Show that K((X)) is the field of
fractions of R[[X]].

9. Let R be commutative. Show that a Laurent series of order n is a unit of R((X)) if
and only if its coefficient a; is a unit of R.

10. Let K be a field. Describe the homomorphism K (X) — K ((X)), whose existence
is guaranteed by 7.5, that expands rational fractions into Laurent series.

*11. Set up a theory of formal power series in several variables.

8. Principal Ideal Domains

This section extends the main arithmetic properties of Z to all principal ideal
domains, including polynomial rings K [X] where K is a field.

Definition. A principal ideal domain or PID is a domain (a commutative ring
with identity and no zero divisors) in which every ideal is principal.

We already have some examples: by 2.4, 5.12, Z is a PID, and so is K[X]
for every field K. On the other hand, polynomial rings with more than one
indeterminate are not PIDs (see the exercises).

Representatives. By 2.3, every ideal @ of a PID R is the set @ = (a) = Ra of
all multiples of some a € R;thus x € & if and only if a | x (a divides x). Here,
a is unique up to multiplication by a unit:

Lemma 8.1. In a domain R, Ra = Rb if and only if a = ub for some unit u.

Proof. If u is a unit, then Ru = R and Rub = Rb. Conversely, if Ra = RbD,
then a = ub, b = va for some u,v € R;if a =0, then b =0 and a = 1b;
otherwise, uva = a # 0 implies uv = 1, so that « is a unit. [J

In Lemma 8.1, the equivalence relation Ra = Rb partitions R into equivalence
classes; equivalent elements are often called associates, and we call the equiva-
lence classes associate classes. Uniqueness in various results can be achieved by
selecting one representative element in each associate class.

Proposition 8.2. In a domain R, every principal ideal is generated by a unique
representative element.

In Z, the units are £1, and nonnegative integers serve as representative
elements; Proposition 2.4 already states that every ideal of Z is generated by
a unique nonnegative integer. By 5.4, the units of K [X] are the nonzero elements
of K ; monic polynomials, together with O, serve as representative elements; in
Proposition 5.12, every nonzero ideal of K[X] is already generated by a unique
monic polynomial. Fortunately, these manic representatives do not assemble to
pass laws.
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Properties. We now extend to PIDs the basic arithmetic properties of integers.
The main property has to do with elements that are sometimes called prime (as in
7), sometimes called irreducible (as in K [X]).

Definitions. An element p of a domain R is prime when p is not zero or a
unit, and p | ab implies p |a or p|b (equivalently, ab € Rp implies a € Rp
or b € Rp). An element q of a domain R is irreducible when ¢ is not zero or a
unit, and q = ab implies that a is a unit or b is a unit.

Proposition 8.3. In a principal ideal domain R, the following conditions on an
element p € R are equivalent: (i) p is irreducible; (ii) p is prime; (iii) Rp is a
nonzero prime ideal; (iv) Rp is a nonzero maximal ideal.

In case R = Z, this is Corollary 4.8. In general, Proposition 8.3 implies the
following: when u is a unit of R, then p is irreducible if and only if up is
irreducible.

Proof. (iv) implies (iii), by 4.7; (iii) implies (ii) trivially; and (ii) implies (i): if
p is prime and p = ab, then p divides, say, a; since a already divides p, b is a
unit, by 8.1.

We show that (i) implies (iv). Assume that Rp is contained in an ideal @ = Ra
of R. Then p = ab for some b € R. By (i), either a is a unit, and then @ = R,
or b is aunit, and then a = Rp. ]

The main property of PIDs can now be stated in two equivalent forms.

Theorem 8.4A. In a principal ideal domain R, every element, other than 0 and
units, is a nonempty product of irreducible elements. If furthermore two nonempty
products py py -+ P, = 414y '+ q, of irreducible elements are equal, then
m = n and the terms can be indexed so that Rp; = Rq; forall i.

Theorem 8.4B. Every nonzero element of R can be written as the product

k k . .. .. .
u pl1 1722 pﬁ” of a unit and of positive powers of distinct representative
irreducible elements, which are unique up to the order of the terms.

Proof. We prove the first statement, which implies the second. Assume that
R has bad elements: elements, other than 0 and units, that are not products of
irreducible elements. The bad principal ideals generated by bad elements then
constitute a nonempty set B of ideals of R. We show that B has a maximal
element Rb. Otherwise, let Rb; € B. Since Rb; is not maximal there exists
Rb; & Rb, € B. Since Rb, is not maximal there exists Rb, & Rb; € B.
This constructs a chain of ideals Rb; G --- G Rb, & Rb, | G ---. Then
b= U,~0 Rb, is an ideal of R. Since R is a PID, b is generated by some
b € R. Then b € Ra,, for some n,and (b) C Rb, S Rb,,, S b = (b). This
contradiction shows that B has a maximal element Rm , where m is bad. (Readers
who are already familiar with Noetherian rings will easily recognize this part of

the proof.)

Now, m, which is bad, is not O, not a unit, and not irreducible. Hence
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m = ab for some a,b € R, neither of which is 0 or a unit. Then Rm g Ra
and Rm ; Rb. Hence a and b cannot be bad and are products of irreducible
elements. But then so is m = ab. This contradiction shows that every element of
R, other than O and units, is a product of irreducible elements.

Next, assume that p; p, --+ p,, =44, *-* q,,, where m,n > 0 and all p,,
g; are irreducible. We prove by induction on m +n = 2 that m = n and the
elements p;, g; can be reindexed so that Rp; = Rg; for all i. This is clear if
m =n = 1. Now assume, say, m > 1. Then p, divides ¢q; g, - g,,; since p,,
is prime by 10.3, p,, divides some ¢, : g, = up,, for some u € R. Since g, is
irreducible, u is a unit and Rq; = Rp,, . The elements g; can be reindexed so
that k =n; then Rq, = Rp,, and q, =up,, .

The equality p; p, - p,, = 4195 -+ g, now yields p;p, --- p, | =
uqyq, -+ q,_ ;. Hence n > 1: otherwise, p;py - p,_1 = u and py,
..., D,_ are units, a contradiction. Now, ug, is irreducible; by the induction
hypothesis, m — 1 = n — 1, and the remaining terms can be reindexed so that
Rp| = Ruq; = Rq; and Rp; = Rq; forall 1 <i <m.0O

Least common multiples and greatest common divisors can be defined in
any domain, but do not necessarily exist.

Definitions. In a domain, an element m is a least common multiple or l.c.m. of
two elements a and b when m is a multiple of a and of b, and every multiple of
both a and b is also a multiple of m; an element d is a greatest common divisor
or g.c.d. of two elements a and b when d divides a and b, and every element
that divides a and b also divides d .

Any two l.c.m.s of @ and b must be multiples of each other, and similarly for
g.c.d.s; by 8.1, the l.c.m. and g.c.d. of a and b, when they exist, are unique up to
multiplication by a unit. They are often denoted by [a, b] and (a, b); the author
prefers lcm (a, b) and ged (a, b).

In a PID, l.c.m.s and g.c.d.s arise either from ideals or from 8.4.

Proposition 8.5. In a principal ideal domain R, every a,b € R have a least
common multiple and a greatest common divisor. Moreover, m = lem (a, b) if
and only if Rm = Ra N Rb, and d = gcd (a, b) if and only if Rd = Ra+ Rb. In
particular, d = gcd (a, b) implies d = xa + yb for some x,y € R.

Proof. By definition, m = lem (a, b) (m is an L.c.m. of a and b) if and only if
m € RaNRb,and ¢ € Ra N Rb implies ¢ € Rm;ifand only if Rm = RaN Rb.
An l.c.m. exists since the ideal Ra N Rb must be principal.

Similarly, d = gcd (a, b) if and only if a,b € Rd, and a,b € Rc implies
¢ € Rd, if and only if Rd is the smallest principal ideal of R that contains both
Ra and Rb. The latter is Ra + Rb, since every ideal of R is principal. Hence
d = gcd (a, b) if and only if Rd = Ra + Rb, and then d = xa + yb for some
X,y € R. A g.c.d. exists since the ideal Ra + Rb must be principal. [
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Readers may now define l.c.m.s and g.c.d.s of arbitrary families (q;);; and
use similar arguments to prove their existence in PIDs.

In a PID, the l.c.m. and g.c.d. of a and b € R can also be obtained from 8.4.
Write a and b as products a = u pll<1 pl;z ~oo pkmand b =0 qfl qﬁz gl of
a unit and positive powers of distinct representative irreducible elements. Merge
the sequences py, ..., p,, and ¢q;, ..., q,, so that a and b are products a =

up(' p5t - p and b=v pll71 pgz pﬁ” of a unit and nonnegative powers
of the same distinct representative irreducible elements. Readers may establish
the following properties:

Proposition 8.6. In a principal ideal domain, let a = u pfl pgz oo pan and
b=v pifl p1272 e pz” be products of a unit and nonnegative powers of the same
distinct representative irreducible elements. Then:

(1) a divides b if and only if a; < b; forall i.

2) c= pi‘l p? oo pyisanl.c.m. of a and b if and only if ¢; = max (a;, b;)
forall i.

3) d= pfl pgz e pg” isag.c.d. of a and b if and only if d; = min (a;, b;)
forall i.

(4) lem (a, b) ged (a, b) = wab for some unit w.

For instance, if R = 7Z and a = 24 = 23-3, b=30=2-3-5, then
lcm (a, b) =2%-3-5 =120 and gcd (a,b)=2-3 =6.

The following properties make fine exercises:

Proposition 8.7. In a PID, if gcd (a, b) = ged (a, ¢) = 1, then ged (a, be)=1;
if a divides bc and ged (a, b) = 1, then a divides c.

Irreducible polynomials. Now, let K be a field. Theorem 8.4 yields the
following property of K[X]:

Corollary 8.8. Let K be a field. In K[X], every nonzero polynomial is the
product of a constant and positive powers of distinct monic irreducible polynomi-
als, which are unique up to the order of the terms.

What are these irreducible polynomials? The answer reveals profound differ-
ences between various fields. We begin with a general result, left to readers.

Proposition 8.9. Let K be a field. In K[X]:
(1) every polynomial of degree 1 is irreducible;
(2) an irreducible polynomial of degree at least 2 has no root in K ;

(3) a polynomial of degree 2 or 3 with no root in K is irreducible.

On the other hand, (X2 + 1)? € R[X] has no root in R but is not irreducible.
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Equipped with Proposition 8.9 we clean up the cases K =C and K = R.

Proposition 8.10. A polynomial over C is irreducible if and only if it has
degree 1.

Proposition 8.10 is often stated as follows:

Theorem 8.11 (Fundamental Theorem of Algebra). Every nonconstant polyno-
mial over C has a root in C.

This result is due to Gauss [1799]. In 1799, algebra was primarily concerned
with polynomial equations, and Theorem 8.11 was indeed of fundamental impor-
tance.

Complex analysis provides the best proof of Theorem 8.11 (a much more
algebraic proof is given in Section VI.2). Assume that f € C[X] has no root
in C. Then the function g(z) = 1/f(z) is holomorphic on all of C. If f has
degree 1 or more, then |g(z)|] — 0 when z — o0, so that the larger values
of |g(z)| all occur inside some closed disk D; since |g(z)| is continuous it has a
maximum value on the compact set D, which is also its maximum value on all of
C. This also holds if f is constant. The Maximum principle now implies that g
is constant, and then so is f.

Proposition 8.12. A polynomial over R is irreducible if and only if it has either
degree 1, or degree 2 and no root in R.

Proof. Polynomials with these properties are irreducible, by 8.9. Conversely,
let f € R[X], f #0. As apolynomial over C, f is, by 8.8 and 8.10, the product
of a constant and monic polynomials of degree 1:

f(X)=a,(X—r)(X—ry - (X—r,).
Then n = deg f, a, is the leading coefficient of f, and ry, ..., r, are the (not

necessarily distinct) roots of f in C. Since f has real coefficients, complex

conjugation yields
F(X) = F(X) = a,(X —F)(X —Fp) (X —F,),

Then {r,...,r, } ={7, ....,7, },for f has only one such factorization. There-
fore the roots of f consist of real roots and pairs of nonreal complex conjugate
roots. Hence f is the product of a,,, polynomials X — r € R[X] with r € R,
and polynomials

(X —2)(X—2) = X> - (z+2) X +2Z € R[X]

with z € C\R and no rootin R. If f is irreducible in R[X], then f has either
degree 1, or degree 2 and no root in R. [J

The case K = Q is more complicated and is left to Section 10. We now turn to
the finite fields K = 7Z p-

Proposition 8.13. For every field K, K|[X] contains infinitely many monic
irreducible polynomials.
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Proof. This proof is due to Euclid, who used a similar argument to show that Z
contains infinitely many primes. We show that no finite sequence gy, ¢,, ..., g,
can contain every monic irreducible polynomial of K[X]. Indeed, f = 1 +
4,4, - q, is not constant and is by 8.8 a multiple of a monic irreducible polyno-
mial g. Then g £ gy, q,, ..., g, : otherwise, g divides 1 = f —¢q,q, --- q,.0

If K is finite, then K [X] has irreducible polynomials of arbitrarily high degree,
since there are only finitely many polynomials of degree at most 7.
Irreducible polynomials of low degree are readily computed when K = Z » and

p is small. For example, let K = Z,. Let f € Z,[X], f + 0. The coefficients
of f are either 0 or 1; hence f has no root in Z, if and only if its constant
coefficient is 1 and it has an odd number of nonzero terms. Then

X, X+1, X2+X+1,X3+X+1,and X>+ X2 +1

are irreducible, by 8.9, and all other polynomials of degree 2 or 3 have roots in
Z,. Next there are four polynomials of degree 4 with no roots: X+ X +1,
X4+X2+l, X4+ x3+ 1, and X%+ X3 + X%+ X + 1. If one of these is not
irreducible, then it is a product of irreducible polynomials of degree 2 (degree 1
is out, for lack of roots) and must be (X2 + X + 1)(X?+ X +1)= X*+ X> +1
(by 4.4). This leaves three irreducible polynomials of degree 4:

X4+X+1,X4+X3+1,and X+ X3+ X2+ X +1.

Exercises
1. Show that no polynomial ring with more than one indeterminate is a PID.

2. A Gauss integer is a complex number x + iy in which x and y are integers. Show that
the ring R of all Gauss integer is a PID. (You may wish to first prove the following: for every
a,b € R, b # 0, there exist ¢, r € R such that a = bg +r and |r| < |b|.)

3. A ring R is Euclidean when there exists a mapping ¢ : R\{0} — N with the
following division property: for every a,b € R, b # 0, there exist g,r € R such that
a = bg +r and either r = 0 or ¢(r) < ¢(b). Prove that every Euclidean domain is a PID.

4. Show that every family of elements of a PID has an l.c.m. (which may be 0).
5. Show that every family (a;);c; of elements of a PID has a g.c.d. d , which can be written
in the form d = Ziel x;ja; for some x; € R (with x; =0 for almostall i € ).

6. Prove Proposition 8.6.

7.1n a PID, show that ged (a, b) = ged (a, ¢) = 1 implies ged (a, be) = 1.

8. Prove the following: in a PID, if a divides bc and gcd (a, b) = 1, then a divides c.

9. Let K be a field. Prove that, in K[X], a polynomial of degree 2 or 3 is irreducible if
and only if it has no rootin K.

10. Write X° + X3 — X2 — 1 € R[X] as a product of irreducible polynomials.
11. Write X* + 1 € R[X] as a product of irreducible polynomials.
12. Find all irreducible polynomials of degree 5 in Z2[X].
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13. Find all monic irreducible polynomials of degree up to 3 in Z3[X]. (Readers who are
blessed with long winter evenings can try degree 4.)

9. Rational Fractions

A first application of principal ideal domains is the decomposition of rational
fractions into a sum of partial fractions, a perennial favorite of calculus students.

Let K be a field. A partial fraction is a rational fraction f/¢" € K(X) in
which ¢ is monic and irreducible, » = 1, and deg f < degq. Then f, ¢, and
r are unique (see the exercises). The main result of this section is the following:

Theorem 9.1. Every rational fraction over a field can be written uniquely as
the sum of a polynomial and partial fractions with distinct denominators.

The proof of Theorem 9.1 has three parts. The first part reduces rational
fractions and ejects the polynomial part. A rational fraction f/g € K(X) is in
reduced form when g is monic and ged (f, g)=1.

Lemma 9.2. Every rational fraction can be written uniquely in reduced form.

Proof. Given f/g, divide f and g by the leading coefficient of g and then by
amonic g.c.d. of f and g; the result is in reduced form.

Let f/g = p/q. fq = gp. with g, q monic and gcd (f, g) = ged (p.q) = 1.
Then ¢ divides gp; since ged (p,q) = 1, g divides g, by 8.7. Similarly, g
divides ¢ . Since g and g are monic, ¢ = g. Then p= f.0O

We call a rational fraction f/g polynomial-free when deg f < deg g.

Lemma 9.3. Every rational fraction can be written uniquely as the sum of a
polynomial and a polynomial-free fraction in reduced form.

Proof. By 9.2 we may start with a rational fraction f/g in reduced form.
Polynomial division yields f = gg +r with ¢,r € K[X] and degr < deg g.
Then f/g =q +r/g; r/g is polynomial-free and is in reduced form, since g is
monic and ged (r, g) = ged (f, g) = 1. Conversely let /g = p+s/h, with p €
K[X], degs < deg h, h monic, and gcd (s, h) = 1. Then f/g = (ph+s)/h.
Both fractions are in reduced form; hence g = h and f = ph+s = pg +s, by
9.2. Uniqueness in polynomial division then yields p = ¢ and s =r.

The second part of the proof breaks a reduced polynomial-free fraction f/g into
asum of reduced polynomial-free fractions a/ qk ,inwhich g isirreducible. (These
are not quite partial fractions, since dega < deg qk , rather than dega < deggq.)

Lemma 9.4. If deg f < deg gh and gcd (g, h) = 1, then there exist unique
polynomials a,b such that deg a < deg g, deg b < deg h, and f/(gh)=
(a/g)+(b/h). If ged (f, gh) =1, then gcd (a, g) = ged (b, h) = 1.
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Proof. Since ged (g, h) = 1, there exist polynomials s, ¢ such that gs + ht = f.
Polynomial division yields ¢ = gp + a, s = hq + b, where deg a < deg g and
degb < degh. Then f =gh(p+q)+ah+bg, with deg (ah + bg) < deg gh,
and p +¢q = 0: otherwise, deg f = deg gh, contradicting the hypothesis. Hence
f=ah+bg,and f/(gh)=(a/g) +(b/h). If gcd (f, gh) =1, then a polynomial
that divides a and g, or divides b and #, also divides f = ah +bg and gh; hence
ged (a, g)=ged (b, h)=1.

Now assume that f/(gh)= (c/g) +(d/h), with deg ¢ < deg g, degd <
degh. Then ch+dg = f =ah+bg and (c —a)h = (b —d) g. Hence g divides
¢ —a and h divides b — d, by 8.7, since gcd (g, h)= 1. Butdeg (¢ —a) < deg g,
deg (b — d) < deg h; therefore c —a=b—d =0.0

Lemma 9.5. If deg f < deg g and gcd (f, g) = 1, then there exist unique

integers n 2 0, ki, ..., k, > 0 and unique polynomials a, ..., a,, q;, ..., q,
suchthat q,, ..., q, aredistinct monic irreducible polynomials, dega; < deg ql.ki
forall i, gcd (a;,q;) =1 forall i, and
a a
i - Tl oot ]:’ .
8 q1 : qn"

If g is monic in Lemma 9.5, readers will see that g = qllcl qlzc2 gk s

the unique factorization of g into a product of positive powers of distinct monic
irreducible polynomials; then 9.5 follows from 9.4 by induction on 7.

The last part of the proof breaks reduced polynomial-free fractions a /qk, in
which ¢ is monic and irreducible, into sums of partial fractions.

Lemma 9.6. If deg q > 0, k > 0, and deg a < deg qk, then there exist

unique polynomials ay, ..., a; such that dega; < degq forall i and
a, a a
ik =14 —% +- 4 —ﬁ .
q q9 9 q

Readers will easily prove Lemma 9.6 by induction on k, using polynomial
division.

Theorem 9.1 now follows from Lemmas 9.3, 9.5, and 9.6. The proof provides
a general procedure, which can be used on examples: given f/g, first divide f
by g to obtain an equality f/g = p +r/g, where p is a polynomial and r/g
is polynomial free; use the factorization of g as a product of positive powers
of irreducible polynomials to set up a decomposition of r/g as a sum of partial
fractions; expansion, substitution, and lucky guesses yield the numerators.

X4 +1

X3+X2+X
X*+1=(X3+ X2+ X)(X +1) + (X +1); hence

For instance, consider € Z,(X). Polynomial division yields

x*+1 Cxala X1
X3+X2+X X3+ X2+ X'
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Now, X2+ X2+ X = X(X2+X+ 1), and we have seen that X and X2+ X +1
are irreducible in Z,[X]. Hence
X+1 _a bX +c¢
X3+X2+X X X2+X+1
for some unique a, b, ¢ € Z, . Expansion yields

+

X+1=a(X>+X+1)+(bX+c)X = (a+b)X>+(a+¢) X +a,

whence a =1,a+c=1,c=0,a+b =0, and b = 1; we might also have seen
that X +1=(X2+ X + 1)+ (X)(X). Hence
X*+1 1 X

———— = X+l + -+ 55—
X3+X?2+X X X?+X+1

Exercises

1. Prove the following: if f/p" = g/q°, with p,q monic irreducible, r,s = 1, and
deg f <degp,degg <deggqg,then f=g, p=q,andr =s.

2. Write a proof of Lemma 9.5.

3.Let deg g > 0, k > 0, and deg a < deg qk. Show that there exist unique
polynomials aq, ..., a; suchthat dega; < deg g forall i and ik =4y a% +eeet a—lz.
q q9 49 q

5

X°+1
4. Write X1 x2 € Z2(X) as the sum of a polynomial and partial fractions.

5

5. Write ————_
e xrix2

€ Z3(X) as the sum of a polynomial and partial fractions.

1
6. Write XX € Z2(X) as a sum of partial fractions.

10. Unique Factorization Domains

These domains share the main arithmetic properties of PIDs and include polyno-
mial rings K [X, ..., X, ] over a field K and polynomial rings over a PID.

Definition. A unique factorization domain or UFD is a domain R (a commuta-
tive ring with identity and no zero divisors) in which (1) every element, other than
0 and units, is a nonempty product of irreducible elements of R; and (2) if two
nonempty products py p, -+ p,, =q, 4y - q, of irreducible elements of R are
equal, then m = n and the terms can be indexed so that Rp; = Rq; for all i.

Equivalently, a UFD is a domain in which every nonzero element can be written
uniquely, up to the order of the terms, as the product u p]fl p12<2 e pﬁ" of a unit

and of positive powers of distinct representative irreducible elements.

By Theorem 8.4, every PID is a UFD; in particular, Z and K [X] are UFDs for
every field K. UFDs that are not PIDs will arrive in five minutes.
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In a UFD, any two elements a and b have an l.c.m. and a g.c.d., which can
be found as in Section 8 from their factorizations, once a and b are rewritten

as products @ = u p{' p5> -+ p® and b = v plfl pgz -+ pbn of a unit and
nonnegative powers of the same distinct representative irreducible elements:
. . . . . a a
Proposition 10.1. In a unique factorization domain, let a = u pl1 pz2 cee pz”

by b . ,
and b =v pl1 p22 e pz" be products of a unit and nonnegative powers of the
same distinct representative irreducible elements. Then:

(1) a divides b if and only if a; < b; forall i.

2) c= pfl pgz <o py is a least common multiple of a and b if and only if
¢; =max (a;, b;) forall i.

3) d= p‘li1 pgz e pg” is a greatest common divisor of a and b if and only if
d; =min (a;, b;) forall i.

(4) lem (a, b) ged (a, b) = wab for some unit w.

On the other hand, in a UFD, the g.c.d. of a and b is not necessarily in the

form xa + yb. Proposition 10.1 is proved like its particular case Proposition 8.6.
More generally, every family of elements has a g.c.d., and every finite family of

elements has an l.c.m.; the proofs of these statements make nifty exercises. The
same methods yield two more results:

Proposition 10.2. In a UFD, an element is prime if and only if it is irreducible.

Proposition 10.3. In a UFD, if gcd (a, b) = ged (a, ¢) = 1, then ged (a, be) =
1; if a divides bc and ged (a, b) = 1, then a divides c.

This result is proved like its particular case Proposition 8.7.
Polynomials. Our main result was first proved by Gauss [1801] for Z[X].

Theorem 10.4. If R is a unique factorization domain, then R[X] is a unique
factorization domain.

Hence (by induction on n) Z[X, ..., X,] and K[X,, ..., X, ] are UFDs (for
any field K). This provides examples of UFDs that are not PIDs. Actually,
Theorem 10.4 holds for any number of indeterminates, so that Z[(X;),c,;] and
K[(X;);c;] are UFDs (see the exercises).

The proof of Theorem 10.4 uses the quotient field Q of R, and studies irre-
ducible polynomials to show how R[X] inherits unique factorization from Q[X].

Definition. A polynomial p over a unique factorization domain R is primitive
when no irreducible element of R divides all the coefficients of p. ]

Equivalently, p, + --- + p,X" is primitive when gcd (py, ..., p,) = 1, or
when no irreducible element divides all p, .

Lemma 10.5. Every nonzero polynomial f(X) € Q(X) can be written in the
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form f(X)=1f*(X), where t € Q, t £0, and f*(X) € R[X] is primitive;
moreover, t and f* are unique up to multiplication by units of R.

Proof. We have f(X) = (ay/by) + (a;/by)X + --- + (a,/b,) X", where
a;, b, € R and b; £0. Let b be a common denominator (for instance, b =
byb, --- b,). Then f(X)= (1/b)(co+c; X +---+¢,X") for some c; € R.
Factoring out a = ged (cy, ¢y, ..., ¢,) yields f(X) = (a/b) f*(X), where f*
is primitive.

Assume that (a/b) g(X) = (¢/d) h(X), where g, h are primitive. Since g and
h are primitive, ad is a g.c.d. of the coefficients of ad g(X), and bc is a g.c.d.

of the coefficients of bc h(X); hence bc = adu for some unit u of R, so that
¢(X)=uh(X) and (a/b)u=c/d in Q.0

Lemma 10.6 (Gauss). If f and g € R[X] are primitive, then fg is primitive.

Proof. Let f(X)=ay+a; X+---+a, X" and g(X)=by+b; X +--- +
b, X", sothat (fg)(X)=co+c; X+ - +c,,, X" where ¢, =3,y a; b;.
We show that no irreducible element divides all ¢, .

Let p € R be irreducible. Since f and g are primitive, p divides neither all
a; nor all bj. Let k and £ be smallest such that p does not divide a; or b,. Then
p divides q; for all i < k, and divides bj forall j < £. By 10.2, p does not
divide a; b, ; but p divides a; b; whenever i < k and whenever i + j = k + £ and
i > k,forthen j < £. Therefore p does not divide ¢, . ]

Corollary 10.7. In Lemma 10.5, f is irreducible in Q[X] if and only if [ is
irreducible in R[X].

Proof. We may assume that deg f = 1. If f is not irreducible, then
f has a factorization f = gh in Q[X] where deg g, deg h = 1. Let
g(X)=vg*(X), h(X)=wh"(X), with g*,h" € R[X] primitive, as in 10.5.
Then ¢ f*(X) = f(X) = vwg*(X)h*(X). By 10.6, g*h™ is primitive; hence
S (X)=ug"(X)h*(X) for some unit u of R,by 10.5,and f™* is notirreducible.
Conversely, if f* is not irreducible, then neither is f(X) =17 f*(X).O

Lemma 10.8. In R[X], every polynomial, other than 0 and units of R, is a
nonempty product of irreducible elements of R and irreducible primitive polyno-
mials. Hence the irreducible elements of R[X] are the irreducible elements of R
and the irreducible primitive polynomials.

Proof. Assume that f € R[X] is not zero and not a unit of R. Let d be
a g.c.d. of the coefficients of f. Then f(X)=d f*(X), where f* € R[X]
is primitive; moreover, d and f* are not 0 and are not both units of R.
Now, d is either a unit or a product of irreducible elements of R, and f*
is either a unit of R or not constant. If f* is not constant, then f* is, in
Q[X], a product f = g,q, --- g, of irreducible polynomials ¢; € Q[X].
By 10.5, ¢;(X) = t; ¢/ (X) for some 0 #¢, € Q and primitive ¢ € R[X].
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Then f*(X)=1, --- 1,97 (X)--- ¢, (X). By10.6, g} --- g, is primitive. Hence
10.5 yields f*(X) = u q{(X)--- g, (X) for some unit u of R (namely, u =
1, - t,), with ugy, g5, ..., g, primitive and irreducible by 10.7. [J

To prove Theorem 10.4 we still need to show the following: if two nonempty
products

of irreducible elements of R[X] are equal, then m = n and the terms can be
indexed so that (p;) = (¢;) for all i. By 10.8 we may arrange that p,, ..., p;,
qi ---» qp areirreducible elements of R and p;,;, ..., P,y> 4ps1> -+ 4, € R[X]
are irreducible primitive polynomials.

Leta=p ---p,and b=gq ---q, €R, f=p, D, and g =
doy1 " - 4, € R[X], sothat af = bg. By 10.7, f and g are primitive. Hence
f =ug, au = b for some unit u of R, by 10.5. Since R is a UFD and au = b,
we have k =€ and pq, ..., p;, 4y, ..., q, can be reindexed so that p; = u;q; for
all i < k, where u; is a unit of R.

Since Q[X] isa UFD and f = ug, we also have m —k =n — £ and p;,,,
ey Poys 4y = i1 ---» 4, can be reindexed so that pj(X) = u; qj(X) for all
Jj > k, where uj is a unit of Q. In fact, Uj is a unit of R. Indeed, let uj = c/d,
where ¢, d € R. Then ¢ p;(X) = dqj(X). Since p; and g; are both primitive,
taking the g.c.d. of the coefficients on both sides yields ¢ = ud for some unit u of
R. Hence u; = c/d = u is a unit of R. We now have m =n and (p;)=(g;) in
R[X] forall i. O

Irreducibility tests. Let R be a UFD and let Q be its quotient field. By
Corollary 10.7, the irreducible polynomials of Q[X] are determined by those of
R[X]. For instance, the irreducible polynomials of Q[X] are determined by those
of Z[X]. We now give two sufficient conditions for irreducibility. The first is
essentially due to Eisenstein [1850]; the exercises give a generalization.

Proposition 10.9 (Eisenstein’s Criterion). Let R be a UFD and let f(X) =
ag+ay X +---+a, X" € R[X]. If f is primitive and there exists an irreducible
element p of R such that p divides a; forall i <n, p does not divide a,, and
p2 does not divide a), then f is irreducible.

Proof. Suppose that f = gh;let g(X)=by+b; X +---+b. X" and h(X) =
cg+c X+~ +c, X' € R[X], where r = deg ¢ and s = deg h. Then
a, = Zi+j=k b; ¢ for all k; in particular, a, = b c,. Since p2 does not divide
ag, p does not divide both b, and c,. But p divides a,, so p divides, say,
bO, but not - Also, p does not divide b,., since p does not divide a, = b, g
Hence there is a least k < r such that p does not divide b, , and then p divides
b; forall i < k. Now p divides every term of > ., =k b, ¢; except for by c.
Hence p does not divide a; . Therefore k = n; since k < r < r +s = n this
implies r = n, and & is constant. [
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For example, f = 3X> +4X — 6 € Z[X] is irreducible in Z[X]: indeed, f is
primitive, 2 divides all the coefficients of f except the leading coefficient, and 4
does not divide the constant coefficient. By 10.7, f is also irreducible in Q[X],
and so is %f= %X3+%X—5.

Proposition 10.10. Let R be a domain, let O be an ideal of R, and let
7 : R — R/Q be the projection. If f € R[X] is monic and ™f is irreducible in
(R/Q)[X], then f isirreducible in R[X].

Readers will delight in proving this. For instance, f = X3 42X +4 is
irreducible in Z[X]: if = : Z — Z; is the projection, then "f = X —x+1
is irreducible in Z;[X], since it has degree 3 and no root in Z;..

Exercises
1. Show that every family (a;);c; of elements of a UFD has a g.c.d.
2. Show that every finite family of elements of a UFD has an l.c.m.
3. Does every family of elements of a UFD have an l.c.m.?

4. Find a UFD with two elements a and b whose g.c.d. cannot be written in the form
xa+ yb.

5.1n a UFD, show that gcd (a, b) = ged (a, ¢) = 1 implies ged (a, be) = 1.
6. Prove the following: in a UFD, if a divides bc and ged (a, b) = 1, then a divides c.
7. Prove the following: in a UFD, an element is prime if and only if it is irreducible.

8. Prove the following stronger version of Lemma 10.5: when R is a UFD and Q its
field of fractions, every nonzero polynomial f(X) € Q(X) can be written in the form
f(X)=(a/b) f*(X), where a,b € R, gcd (a,b) =1, and f*(X) € R[X] is primitive;
moreover, a, b, and f* are unique up to multiplication by units of R.

9. Prove Proposition 10.10: Let R be a domain, let a be an ideal of R,andlet 7 : R —
R/ be the projection. If f € R[X] is monic and ™f is irreducible in (R/a)[X], then f is
irreducible in R[X].

10. Show that X3 — 10 is irreducible in Q[X].

11. Show that X3 +3X2 — 6X + 3 is irreducible in Q[X].
12. Show that X3 +3X? — 6X +9 is irreducible in Q[X].
13. Show that X® — 3X +4 is irreducible in Q[X].

14. Prove the following generalization of Eisenstein’s criterion. Let R be a domain and let
Ff(X)=ap+a1 X+---+an X" € R[X]. If f is primitive (if the only common divisors of
ap, ..., ap are units) and there exists a prime ideal P of R such that g¢; € p forall i < n,
an & P, and ap is not the product of two elements of P, then f is irreducible.

*15. Prove the following: when R is a UFD, then R[(X;);c;] is a UFD.
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11. Noetherian Rings

Noetherian rings are named after Emmy Noether, who initiated the study of
these rings in [1921]. In this section we define Noetherian rings and prove that
K[X o X n] is Noetherian for every field K .

Definition. Applied to the ideals of a commutative ring R, the ascending chain
condition, or a.c.c., has three equivalent forms:

(a) every infinite ascending sequence @; € a, C---Ca, Ca, ; € - of
ideals of R terminates: there exists N > 0 such that @, = a,, forall n > N;
(b) there is no infinite strictly ascending sequence a; & @, & --- S a, &

a -- of ideals of R;

C.
n+l =

(c) every nonempty set S of ideals of R has a maximal element (an element §
of 8, not necessarily a maximal ideal of R, such that there is no § g acsd).

Indeed, (a) implies (b), since a strictly ascending infinite sequence cannot termi-
nate. If the nonempty set § in (c) has no maximal element, then there exists some
0, € 8; since @ is not maximal in § there exists some @, ; a, € §; this
continues indefinitely and begets a strictly ascending infinite sequence. Hence (b)
implies (¢). Finally, (c) implies (a), since some @, must be maximal, and then
ay S a, isimpossible when n > N . Section A.1 has a more general but entirely
similar proof of the equivalence of (a), (b), and (c).

Definition. A commutative ring is Noetherian when its ideals satisfy the asc-
ending chain condition.

For example, Z is Noetherian, by 11.1 below; K[X] and K[X,, ..., X, ] are
Noetherian for every field K, by 11.3 below.

In a ring, the a.c.c. has a fourth equivalent form. Recall that the ideal @ of R
generated by a subset S of R consists of all linear combinations of elements of S
with coefficients in R. Hence @ is finitely generated (as an ideal) if and only if
there exist a,, ..., a, € @ such that & = {rja, +---+r,a, | r;.....r, € R}.
Theset {a, ..., a, } is traditionally called a basis of @1, even though the elements
of @ need not be writable uniquely in the form rya, +--- +r,a, .

Proposition 11.1. A commutative ring R is Noetherian if and only if every
ideal of R is finitely generated (as an ideal).

Proof. Let @ be an ideal of R. Let 8 be the set of all finitely generated ideals
of R contained in a. Then § contains principal ideals and is not empty. If R is
Noetherian, then S has a maximal element § by (c). Then § C § + (a) € § for
every a € @, since § + (a) C @ and § + (a) is finitely generated, by a and the
generators of §. Since § is maximal in § it follows that 6 =6 + (a) and a € §.
Hence a0 =6 and a is finitely generated.

Conversely, assume that every ideal of R is finitely generated. Let @; C
a,c---ca, ca,, C--- beidealsof R. Then a =J,.,@, is an ideal

n+l
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of R and is finitely generated, by, say, ay, ..., a,. Then a; € ani for some
n;>0.If N > ny, ..., ny,then ay contains a, ..., a;; hence a C a,, and
acayca, Cashowsthat a, =ay foralln =2 N.O

The main result in this section is basically due to Hilbert [1890].

Theorem 11.2 (Hilbert Basis Theorem). Let R be a commutative ring with
identity. If R is Noetherian, then R[X] is Noetherian.

Proof. Let A be an ideal of R[X]. We construct a finite set of generators of
2. Forevery n 2 0 let

a,={reRr ‘ rx" +anle"*l +---+ay €A forsomea, ;,..,a5E€ER}.
Then @, is an ideal of R, since 2 is an ideal of R[X], and @, C @, , since
f(X) e 2 implies Xf(X) € . Since R is Noetherian, the ascending sequence

aGp<ca c---ca, ca,,; C--- terminates at some a, (a, = a, forall
n 2 m). Also, each ideal @, has a finite generating set S, , by 11.1.

For each s € §, there exists g, = sx* +ak_1Xk_] +---+ay € A. We show
that 2/ coincides with the ideal 28 generated by all g, with s € SyUS; U---US, ;
hence 2 is finitely generated, and R[X] is Noetherian. Already 6 C £, since
every g, € 2. The converse implication, f € 2l implies f € ‘B, is proved by
induction on deg f. First, 0 € B. Now let f = a, X" +--- +a, € 2 have
degree n 2 0. Then a, € @,,.

Ifn < m,thena, =rs +---+r.s; forsomer,....,r, € Rands, ...,s; €
S, then g =ry gt T8y, € B has degree at most n, and the coefficient
of X" in g is rys;+--- f”ksk = ay. Hence.f — g € 2 has degree less than 7.
Then f — g € 2B, by the induction hypothesis, and f € 5.

Ifn>mthena, €a,=a, anda, =r;s;+---+r.s; forsomer,...,r, €
R and s, ...,s, €S, ;then g =rg, +~--+rkgSk € B has degree at most m,
and the coefficient of X" in g is rys; +---+r;s; = a,. Hence X" "¢ € B has
degree at most 7, and the coefficientof X" in g is a,,. Asabove, f — X""g c A

has degree less than n, f — X" "¢ € B by the induction hypothesis, and
fes.d

Corollary 11.3. KX, ..., X, | is Noetherian, for every field K and n > 0.

This corollary is also known as the Hilbert basis theorem; the case K = C was
Hilbert’s original statement, “every ideal of C[X 1o X n] has a finite basis”.

Corollary 11.4. Let R C S be commutative rings. If R is Noetherian, and S
is generated by R and finitely many elements of S, then S is Noetherian.

We leave this to our readers, who deserve some fun.

Exercises

1. Let R be a Noetherian ring. Prove that every quotient ring of R is Noetherian.
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2. Find a commutative ring that is not Noetherian.

3.Let R C S be commutative rings. Suppose that R is Noetherian and that S is generated
by R and finitely many elements of S. Prove that § is Noetherian.

*4, Let M be the free commutative monoid on a finite set { X1, ..., Xn } (which consists
of all monomials X" = XTI .-+ X" with nonnegative integer exponents). A congruence

on M is an equivalence relation G on M such that X¢ € X” implies X¢ X¢ € X” X° for
all X¢ € M. Prove Rédei’s theorem [1956]: the congruences on M satisfy the ascending
chain condition. (Hint: relate congruences on M to ideals of Z[X1, ..., X»].)

*5. Prove the following: if R is Noetherian, then the power series ring R[[X]] is Noethe-
rian. You may want to adjust the proof of Theorem 11.2, using

a,={reRr | rX" +a, 1 X"+ ... €9 for some @11, ... in R}.

12. Grobner Bases

This section may be skipped or covered later with Section VIII.9. Grobner bases are
carefully chosen generating sets of ideals of K[X, ..., X,]. The basic properties
in this section are due to Grobner [1939] and Buchberger [1965].

Monomial orders. The definition of Grobner bases requires polynomial
division in n indeterminates. When K is a field, polynomial division in K [X]
is possible because monomials in one indeterminate are naturally ordered, 1 <
X <--- < X™ <. Polynomial division in K[X/, ..., X,] is made possible by
suitable total orders on the monomials X" = Xrln1 —- X oof K[X, ..., X,].

Definition. A monomial order on K[X, ..., X,] is a total order on its mono-
mials such that X* > 1 for all X%, and X% < X" implies X*X¢ < XV Xx¢.

Monomial orders are often called ferm orders. The author prefers “monomials”
for products X|'! -+ X and “terms” for their scalar multiples aX/'' --- X"
There is only one monomial order 1 < X < --- < X™ < .- on K[X], but in
general monomial orders can be constructed in several ways. This gives Grobner
bases great flexibility.

Definitions. In the lexicographic order on K[X,..., X, ] with X| > X, >
b - . . _

-> X,, X < X7 ifand only if there exists 1 < k < n such that a; = b; for
all i <k and a;, < by,.

In the degree lexicographic order on K[X,..., X,] with X; > X, > --- >

b - [P b b

X,, X < X7 if and only if either deg X < deg X", or deg X? = deg X
and there exists 1 < k < n such that a; = b; for all i < k and a;, < b,
(deg X™ =m | +---+m, is the total degree of X" ).

In the degree reverse lexicographic order on K[X,, ..., X, | with X| > X, >
o> X, X < X? ifand only if either deg X < deg X”, or deg X = deg X
and there exists 1 < k = n such that a; = b; forall i >k and a; > by.



12. Grobner Bases 149

Readers will show that the above are monomial orders:

Proposition 12.1. The lexicographic order, degree lexicographic order, and
degree reverse lexicographic order are monomial orders on K[X, ..., X,].

In any monomial order, X%x? = X% whenever X? # 1; hence X¢ > X¢
whenever X€ is a multiple of X“. We also note the following property:

Proposition 12.2. In any monomial order, there is no infinite strictly decreasing
sequence XM > X2 > ... > XMk > XMkt > ..

By 12.2, every nonempty set & of monomials has a least element (otherwise 8
would contain an infinite strictly decreasing sequence).

Proof. Suppose that X"l > X2 > ... > X" > X"+ > ... By 12.3
below, the ideal of K [X, ..., X,] generated by all X"i is generated by finitely
many X"i’s. Let X' be the least of these. Every X"k is a linear combination
of monomials X™ > X' and is a multiple of some X" > X'; hence X"k > X'
for all k. On the other hand X' is a linear combination of monomials X”'* and
is a multiple of some X™¢; hence X' > X™¢ for some £. Then X' = X"t and
X"t > X™t+1 s not possible. (]

Lemma 12.3. An ideal of K[X, ..., X,] that is generated by a set § of
monomials is generated by a finite subset of S.

Proof. By the Hilbert basis theorem, the ideal (8) generated by § is generated
by finitely many polynomials f|, ..., f,. Every nonzero term of f j is a multiple
of some X* € §. Let T be the set of all X* € § that divide a nonzero term of
some [ ; then T is finite, (T) contains every f;,and (T)=(8).0

Polynomial division. With a monomial order on K [X 1o X n] , the monomi-
als that appear in a nonzero polynomial f =3 a,X™ € K[X,..., X,] canbe
arranged in decreasing order, and f acquires a leading term:

Definitions. Relative to a monomial order; the leading monomial of a nonzero
polynomial f =5 a, X" € K[X,, ..., X,] is the greatest monomial 1dm f =
X"™ such that a,, + 0, and then the leading coefficient of f is ldc f = a,, and
the leading term of f is 1dt f =a, X™.

Other notations are in use for 1dt f, for instance, in (f). Polynomial division
in K[X e X n] can now be carried out as usual, except that one can divide a
polynomial by several others, and the results are not unique.

Proposition 12.4. Let K be a field. Let f, g, ..., g € K[X|,...X,],
81> ---» & #0. Relative to any monomial order on K[Xl, Xn], there exist
gy, - qp. v € K[Xy, ..., X,)] such that

f=gaq+ - +gaq+r,

ldm (g;¢;) = Idm f forall i, ldmr < 1dm f, and none of ldmg,, ..., ldm g,
divides a nonzero term of the remainder r.
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Proof. Let f, = f. If none of ldmg;, ..., ldmg, divides a nonzero
term of f, then g = --- = g, = 0 and r = f serve. Otherwise, there is a
greatest monomial X™ that appears in a term a,, X" # 0 of f and is a multiple
of some ldmg;; in particular, X™ < 1dm f. Then X™ no longer appears in

fi=f—(a,X"/1dt g j) gj: it has been replaced by lesser terms. Repeating

this step yields a sequence f,,f, ... in which X™ decreases at each step.
By 12.2, this is a finite sequence. The last f, serves as r and has the form
r=f—g4q — - — 84 Every g; is a sum of terms a,, X" /ldt g;, where

X" < ldm f; hence ldm (g;¢;) < 1dm f and ldmr < ldm f. [

The proof of Proposition 12.4 provides a practical procedure for polynomial
division. For an example, let us divide f = Xy -y by g, = XY — X and
8 = X? — Y € C[X], using the degree lexicographic order with X > Y. Then
ldmg, = XY, ldmg, = X2; X2 divides XZY, so that

fi = (X2Y —Y) — (X*Y/X})(X?-Y) = Y* Y.

Since XY and Y? do not divide Y2 or Y , division stops here, with f = Yg, +
(Y2 — Y). We see that the remainder » = Y2 — Y is not 0, even though
f =Xg, +g, liesin the ideal (g,, g,) generated by g, and g,.

Grobner bases. The membership problem for ideals of K [X,, ..., X, ] is, does
a given polynomial f belong to the ideal (g, ..., g;) generated by given poly-
nomials g, ..., g ? We just saw that unfettered polynomial division does not
provide a reliable solution. This is where Grobner bases come in.

Definition. Let K be a field, let A be an ideal of K[X,,...,X,], and
let < be a monomial order on K[X,,...,X,]. Let ldm®l be the ideal of
K[X,,...,X,] generated by all ldm f with f € 2A. Nonzero polynomials
81> --» & € K[X,,...,X,] constitute a Grobner basis of 2, relative to <,
when g, ..., g generate 2 and ldm g, ..., ldm g, generate 1dm 2.

Proposition 12.5. Let K be a field, let A be an ideal of K[X, ..., X, ], let
g1 ---» & be a Grébner basis of A relative to a monomial order <, and let
f € K[X,, ... X,]. All divisions of f by g, ..., g (using <) yield the same
remainder v, and f € A if and only if r = 0.

Proof. Let f € 2. Let r be the remainder in a division of f by g, ..., g;.
Then r € /. If r # 0, then 1dtr € ldm % is a linear combination of 1dm g,
..., ldmg, and is a multiple of some ldm g j» contradicting 12.4. Therefore
r =0. Conversely, if » =0, then f € (g, ..., g&)=. If now r| and r, are
remainders in divisions of f by g, ..., g, then r; —r, € 2, and no ldm g;
divides a nonzero term of r| — r,; as above, this implies r; —r, = 0.0

Buchberger’s algorithm. We now assume that K [X 1o X n] has a monomial
order and find an effective way to construct Grobner bases. Together with Propo-
sition 12.5, this will solve the membership problem. First we prove that Grobner
bases exist:
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Proposition 12.6. Every ideal of K[X, ..., X,| has a Grobner basis.

Proof. Let 2 be an ideal of K[X, ..., X,]. By 12.3, ldm 2 is generated by
ldmg,, ..., Idm g, for some nonzero g, ..., g, € 2. Let f € 2. As in the
proofof 12.5, let r be the remainderinadivisionof f by g, ..., g,. Thenr € 2.
If r #£0, then Idtr € Idm$ is a linear combination of ldm gy ---» ldmg;
and is a multiple of some ldm g i contradicting 12.4. Therefore r = 0 and

fe(g - &) Hence A= (g, ..., g).0O

Proposition 12.7 (Buchberger’s Criterion). Let K be a field and let g, ...,
g, € K[X,,..., X,] be nonzero polynomials. Let ¢;; =lem (Idmg;, 1dm gj),
let d; ; = (Eij/ldt 8i) & — (Kij/ldt gj) 8. and let r; ; be the remainder in a
polynomial division of di,j by g1, ..., g, Then g, ..., g is a Grobner basis
of (81> -+ &) ifandonlyif r; ; =0 foralli < j, andthenr; ; =0 forall i, j.

Proof. Theideals % = (g;, ..., g;) and (ldmg,, ..., 1dm g; ) and polynomi-
als di, j do not change when g, ..., g, are divided by their leading coefficients;
hence we may assume that g, ..., g, are monic.

If g, ..., g is a Grobner basis of A, then i = 0 by 12.5, since di,j c .

The converse follows from two properties of the polynomials d; IE Letldt g, =
X™i, so that d; ;= (Zij/Xmi)gi — (El.j/me) gj-

(DIf g/ = Xig;, g% = X' g;, and £}; = lem (X" | X'/*™J), then

di ;= (L;/\dtg;) g — (€;/1dt g5) ¢

(6 /XXM Xlig, — (6;/XTX™) X' g, = (6;/¢;)d; ;-

(2) If ldmg; = X" for all i and ldm (a;g; + --- + a;g;) < X", where
ay, ...,aq, € K,thena; +---+a, =0, di7j=gl-—gj,and

ajg + - tagg, = ay (g — &) +(a;+ay) (g — &)
ek (ag ) (8 — &) +(ag -+ ay) g
= ald1,2+(a1+a2)d2,3+"'+(a1+"'+ak71)dk71,k'

Now assume that rij = 0 for all i < j. Then i = 0 for all i and j,
since d; ; = 0 and d i = —d; i Every nonzero f € 2l is a linear combination
f=pg + -+ p8&-where p, ..., p € K[X,,...,X,]. Let X" be the
greatest of all Idm (pj gj). Choose py, ..., p; sothat X" is minimal.

Assume that X™ does not appear in f. We may number g, ..., g, so that
X™ is the leading monomial of the first products p,g,, ..., p,g, . Then h = 2:
otherwise, X" cannot be canceled in the sum p, g, +--- + p; g, and appears in
f. Also ldm (p,g; + -+ p,g;,) < X", since X" does not appear in f or in
Pp18p1 T Pi8
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Letldtp; =a; X'i andg —XJgJ Then 1dm (g’ ) X™ forall j <k and
ldm(alg1 +ahgh)<Xm By (2) and (1),

/ r / /
aygy+-Fapg, = cydy ¥ ko_ydy gy,

for some ¢, ..., ¢,_; € K, where d” = gl — g] (Xm/ﬁij)di’j. Now,
ldmd{’j < X™ when i < j < h, since ldmg! = ldmgj- = X™. By the
hypothesis, every d; j can be divided by g;, ..., g, with zero remainder when

i < jiysocand;; and cydy o+ +¢_ydy_y p,, and 12.4 yields

1 h = / / — 4/ /
a) Xgy+-raXhgy =cdyy+-+op_gdy =181+ &

where ¢f, ..., q; € K[X,,...X,] and ldm(qlg;) < X" for all i, since
ldm (cld{,z o +Ch—1dl/z—1,h) < X™. Since ant/ =1dt p; this implies

P81t T P8y = 181+ T8k
X,] and 1dm (g;¢;) < X" for all i. Then

n

where ¢, ..., q; € K[X,, ...,

f = Pig+Hppgn P8 = Pig et Dr& s

where pi, ..., p; € K[X,,...,X,] and ldm (pig;) < X" for all i, a gross
contradiction of the minimality of X" .

Therefore X" appears in f . Hence every nonzero f € 2 is a linear combina-
tion f = p,g, +---+ p; g, in which Idm (pjgj) <1dm f forall j. Then ldt f
is a linear combination of those 1dt (pj gj) such that 1dm (pjgj) =1ldm f; hence
ldm f € (Idmg,, ..., ldmg;). Thus ldmg,, ..., ldm g, generate Idm 2. (]

Proposition 12.7 yields an effective procedure for finding Grobner bases, which
together with Proposition 12.5 solves the ideal membership problem (without
raising membership fees).

Proposition 12.8 (Buchberger’s Algorithm). Let K be afieldandlet g, ..., g
€ K[X,, ..., X,] be nonzero polynomials. Compute a sequence B of polynomials
as follows. Start with B = g, ..., g;. Compute all polynomials r; i with i < j
of B as in Proposition 12.7 and add one r; i* 0 to B in case one is found. Repeat
until no rii# 0 is found. Then B is a Grobner basis of the ideal (g, ..., g)-

Proof. Let 2 = (g, ..., &). Since ri is the remainder of some d e
in a division by g, ..., g,, we have r; i € A, but, if r; ;éO no ldmgt
divides ldmr; ; and ldmr; ; ¢ (dmgy, ..., ldmg,). Hence (ldmg,, ...,
ldm g;) increases with each addltlon to B. Since K[X|, ..., X,] is Noetherian,

the procedure terminates after finitely many additions; then B is a Grobner basis
of A, by 12.7.0

Example 12.9. Let g, = XY — X, g, =Y — X? € C[X,Y]. Use the
lexicographic order with ¥ > X. Start with B = g, g,.
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We have ldm g; = XY, ldmg, =Y, £, = XY, and
dyp=(Lp/1dtg)) g — (£1p/1dt g)) gy =8, — Xgy =X =X =r 5,
since XY and Y divide no term of X> — X .

Now let B =g, &, 83 = X3 — X. We have ldm g, = XY,ldmg, =Y, and
ldm g3 = X*. As before, d; , = X* — X = g5, but now division yields r| , = 0.
Also €3 = X3Y and

dL3 = (£3/1dt g;) g, — (£43/1dt g3) g3 = X2g1 —Yg3=XY — X3

XY divides 1dt (XY — X3) = XV, so di3=28 — X3 + X; then X divides
1dt (—X? + X),s0 d| 3 =g, — g3 and r| 3 =0. Finally, £,3 = X’ and

dy 3= (Ly3/1dt 8) 85 — (£r3/1dt g3) 83 = X g, — Y3 = XY — X,
XY divides 1dt (XY — X°) = XY, s0

dy;=g +(X—X")=g - X2+ (X — X¥) =g, — (X? +1) g5
and rp3 = 0. The procedure ends; and B = g, g,, g3 is a Grobner basis of
(81 8)-

The polynomial f = X 3+ Y does not belong to (g, g,): using the same
lexicographic order, division by g, g,, g3 yields f = g, + (X3 +x?%) = g +
g3+ (X 2+ X), with remainder X2 + X # 0. On the other hand,

XY —Y=(X* - 1) g+ X' =X =(X* — 1) gy + Xg; € (g}, 8). 0

Exercises
1. Show that the lexicographic order on K [X 1y ey X ,,] is a monomial order.
2. Show that the degree lexicographic order on K [X 1y s X n] is a monomial order.
3. Show that the degree reverse lexicographic orderon K[X1, ..., X»] is a monomial order.

4. Using the lexicographic order with X > Y, find all quotients and remainders when
f =2x3Y3 + 4Y? is divided by g1 = 2XY2? +3X +4Y2 and g = Y2 —2Y — 2 in
C[X,Y].

5. Using the lexicographic order with X > Y, find all quotients and remainders when
£ =2X3Y3 + 4Y? is divided by g1 = 2XY? +3X +4Y?2, go = Y?> —2Y — 2, and
g3 =XY in C[X, Y].

6. Let A be the ideal of K[X1, ..., Xx] generated by nonzero polynomials g1, ..., gs.
Let a monomial order be given. Suppose that f € 2 if and only if, in every division of f by
g1, ..., &s,the remainder is 0. Show that g1, ..., gs is a Grobner basis of 2.

7. Using the lexicographic order with X > Y, find a Grobner basis of the ideal (2XY 24
3X +4Y2, Y2 —2Y —2) of C[X, Y]. Does f =2X3Y3 +4Y? belong to this ideal?
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8. Using the lexicographic order with X > Y, find a Grobner basis of the ideal (2X Y2+
3X +4Y2, Y2 —2Y —2, XY) of C[X, Y]. Does f =2X?Y? +4Y? belong to this ideal?

9. Using the lexicographic order with X > Y, find a Grobner basis of the ideal (X2 +
Y2+ 1, X2Y +2XY + X) of Zs[X, Y].



IV

Field Extensions

Fields are our third major algebraic structure. Their history may be said to begin
with Dedekind [1871], who formulated the first clear definition of a field, albeit
limited to fields of algebraic numbers. Steinitz [1910] wrote the first systematic
abstract treatment. Today’s approach is basically due to Artin, on whose lectures
van der Waerden’s Moderne Algebra [1930] is partly based.

Up to isomorphism, fields relate to each other by inclusion; hence the study
of fields is largely that of field extensions. This chapter gives general proper-
ties of fields, field extensions, and algebraic extensions, plus some properties of
transcendental extensions. The emphasis is on general structure results, that tell
how extensions can be constructed from simpler extensions. Deeper properties of
algebraic extensions will be found in the next chapter.

All this requires a couple of calls on Zorn’s lemma, and makes heavy use of
Chapter III. Sections 6, 7, and 9 may be skipped at first reading.

The few rings that have trespassed into this chapter all have identity elements.

1. Fields

A field is a commutative ring (necessarily a domain) whose nonzero elements
constitute a group under multiplication. Chapter III established a few proper-
ties of fields. This section brings additional elementary properties, pertaining to
homomorphisms, the characteristic, roots of unity, subrings, and subfields.

A subring of a field F is a subset S of F such that S is an additive subgroup
of F,is closed under multiplication (x, y € S implies xy € §), and contains the
identity element; so that S inherits a ring structure from F. Subfields are similar:

Definition. A subfield of a field F is a subset K of F such that K is an
additive subgroup of F and K\{0} is a multiplicative subgroup of F\{0}.

Equivalently, K is a subfield of F ifand only if (i) 0,1 € K; (ii)) x,y € K
implies x — y € K; and (iii) x,y € K, y#0 implies xy~! € K. Then
x,y € K implies x + y € K and xy € K, so that K inherits an addition and
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a multiplication from F, and K is a field under these inherited operations; this
field K is also called a subfield of F .

For example, Q is a subfield of R, and R is a subfield of C.
Homomorphisms of fields are homomorphisms of rings with identity:

Definition. A homomorphism of a field K into a field L is a mapping ¢ :

K — L such that (1) =1, o(x +y) = ¢(x) + ¢(y), and ¢(xy) = ¢(x) ¢(y),
forall x,y € K.

For instance, when K is a subfield of F', the inclusion mapping K — F isa
homomorphism of fields, the inclusion homomorphism of K into F .

An isomorphism of fields is a bijective homomorphism of fields; then the inverse
bijection is also an isomorphism.

Proposition 1.1. Every homomorphism of fields is injective.

This is Proposition II1.4.9. Consequently, a homomorphism of a field K into a
field L induces a homomorphism of multiplicative groups of K\{0} into L\{0},
and preserves powers and inverses. Proposition 1.1 has a another consequence:

Proposition 1.2 (Homomorphism Theorem). If ¢ : K — L is a field homo-
morphism, then Im ¢ is a subfield of L and K ~ Im ¢.

Thus, up to isomorphism, the basic relationship between fields is inclusion.
Inclusions between fields are studied in later sections.

For future use we note the following particular case of Proposition II1.5.7:

Proposition 1.3. Every field homomorphism ¢ : K — L induces a ring
homomorphism f —— %f of K[X] into L[X];if f(X)=ay+a; X +---+a, X",
then %f (X) = ¢(ay) +p(a)) X +-- -+ ¢(a,) X".

The characteristic. By Proposition I11.3.7 there is for any field K a unique
homomorphism of rings of Z into R. Its image is the smallest subring of K ; it
consists of all integer multiples of the identity element of K, and is isomorphic
either to Z or to Zn for some unique n > 0, the characteristic of K .

Proposition 1.4. The characteristic of a field is either 0 or a prime number.

Proposition 1.5. Every field K has a smallest subfield, which is isomorphic to
Q if K has characteristic 0, to Zp if K has characteristic p + 0.

Proofs. If K has characteristic p # 0, then p is prime, by I11.4.3; hence
the smallest subring of K is a field, by IIl.4.1, and is the smallest subfield of
K. If K has characteristic 0, then, by II1.4.11, the injection m —— ml of Z
into K extends to a homomorphism ¢ of the quotient field Q = Q(Z) into K,
namely ¢(m/n) =ml (n1)~'. By 1.2, Im ¢ = Q is a subfield of K; it is the
smallest subfield of K since every subfield of K must contain 1 and every element
m1 (n1)~! of Im ¢. O
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Roots of unity.
Definition. An element r of a field K is an nth root of unity when r" = 1.

For example, the nth roots of unity in C are all ¢**7/" with k = 0, 1,..,
n — 1; they constitute a cyclic group under multiplication, generated by 27T/ or
by any ¢*™/" in which k is relatively prime to n. All fields share this property:

Proposition 1.6. Every finite multiplicative subgroup of a field is cyclic.
Such a subgroup consists of roots of unity, since its elements have finite order.

Proof. Let K be a field and let G be a finite subgroup of the multiplicative
group K\{0}. Write |G| as a product |G| = p]fl p]2<2 pf’ of positive powers
of distinct primes. By IL.1.3, G is a direct sum of subgroups H, ..., H, of
orders p]]cl , plzcz, e, pf’.

Let p = p; be a prime divisor of |G|; then H = H; = {x € G | xP =1 for
k
some j > 0}. In H there is an element ¢ of maximal order p*. Then x”" = 1 for

all x € H. In the field K, the equation X . 1 has at most pk solutions; hence
|H| < p*. On the other hand, (¢) C H already has p* elements. Therefore
H = {(c). Thus H,, ..., H, are cyclic. Since their orders are relatively prime,
G=H ®H,® - ® H, is cyclic, by II.1.4. [

By 1.6, the nth roots of unity of any field constitute a cyclic group under
multiplication; its generators are primitive nth roots of unity:

Definition. A primitive nth root of unity in a field K is a generator of the cyclic
multiplicative group of all nth roots of unity.

Subfields. Subfields have a number of general properties.
Proposition 1.7. Every intersection of subfields of a field F is a subfield of F .

The proof is an exercise. On the other hand, a union of subfields is not in
general a subfield, a notable exception being the union of a nonempty chain, or of
a nonempty directed family. Readers will prove a more general property:

Proposition 1.8. The union of a nonempty directed family of fields is a field. In
particular, the union of a nonempty directed family of subfields of a field F is a
subfield of F .

By 1.7 there is for every subset S of a field F' a smallest subfield of F' that
contains S, the subfield of F' generated by S. The next result describes the
subfield generated by the union of S and a subfield K of F; this yields the
subfield generated by just S, if K is the smallest subfield of F.

Proposition 1.9. Let K be a subfield of a field F and let S be a subset
of F.
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The subring K[S] of F generated by K U S is the set of all finite linear com-
binations with coefficients in K of finite products of powers of elements of S.

The subfield K(S) of F generated by K U S is the set of all ab™' € F with
a,b € K[S], b +0, and is isomorphic to the field of fractions of K [S].

Proof. Let (X,),cs be a family of indeterminates, one for each s € S. By

N

II1.6.6 there is an evaluation homomorphism ¢ : K[(X),cg] — F:

0 (X (4 [Tyes Xsks)) = 2 (4 [lses Sks)s

where ] ¢ s denotes the finite product [ cg 4 2 Osks . Then Im ¢ is a
subring of F', which contains K and S and consists of all finite linear combinations
with coefficients in K of finite products of powers of elements of S. All these
linear combinations must belong to any subring of F that contains K and S, so
Im ¢ is the smallest such subring.

By II1.4.11 the inclusion homomorphism of K [S] into F extends to a homo-
morphism v of the quotient field Q(K [S]) into F, whichsends a/b to ab™! € F
forall a,b € K[S], b + 0. Hence

Imy = {ab™' € Fla,beKI[S], b+0} = Q(KI[S])

is a subfield of F, which contains K[S] and K U S. Moreover, any subfield
that contains K and § must contain K [S] and all ab~! € F with a, b € K[S],
b + 0; hence Im  is the smallest such subfield. []

The notation K [S], K(S) is traditional, but readers should keep in mind that
K[S] is not a polynomial ring, even though its elements look like polynomials,
and that K () is not a field of rational fractions, even though its elements look like
rational fractions. Moreover, K [S] and K (S) depend on F, notjuston K and S.
If $=1{s;,....s, } is finite, then K[S] and K(S) are denoted by K{[s,,...,s,]
and K(s;,...,s,).

Proposition 1.9 implies some useful properties.

Corollary 1.10. Let F be a field, let K be a subfield of F, let S be a subset of
F,andlet x, ay,...,a, € F.

(1) x € K[ay,...,a,] if and only if x = f(a,...,a,) for some polynomial
fEKX, ... X,].

(2 x € K(ay,...,a,) if and only if x = r(e,...,a,) for some rational
fractionr € K(X,,...,X,).

(3) x € K[S] ifand only if x € K[ay, ..., a,] for some a,...,a, € S.
(4) x € K(S) ifand only if x € K(a, ..., a,) for some ay,...,a, € S.
Composites. The compositum or composite is another operation on subfields,
a worthy alternative to unions.

Definition. The composite [[;c; K; of a nonempty family (K;);c; of subfields
of a field F is the subfield of F generated by Uiel K;. O
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If I ={1, 2,..., n} is finite, then Hiel K, is denoted by K; K, --- K,,.
Regarding this traditional notation, readers should keep in mind that a composite
is not a product of subsets, and that it depends on the larger field F'. The author
pledges to avoid confusion by never multiplying subfields as subsets.

Proposition 1.9 yields the following description of composites:

Proposition 1.11. Let (K;);c; be a nonempty family of subfields of a field F .
Then x € Hiel K; ifand only if x = ab~! e F forsome a,b € R, b + 0, where
R is the set of all finite sums of finite products of elements of Uiel K;.

In particular, x € F is in the composite KL of two subfields K and L of F
if and only if x = ab~l e F for some a,b € R, b + 0, where R is the set of all
finite sums of products of an element of K and an element of L.

Proof. We have [;c; K; = Ko(U;¢; K;). where K, is the smallest subfield
of F. Multiplying an element of K, by a finite product of powers of elements
of Uie ; K; yields a finite product of elements of Uie ; K;; hence, in 1.9, linear
combinations with coefficients in K, of finite products of powers of elements of
U, s K; are just finite sums of finite products of elements of | J;; K; . In the case
of two subfields K and L, a finite product of elements of K U L is the product

of an element of K and an element of L. [

In the case of two subfields K and L, the composite KL is generated by
K UL,sothat KL = K(L)= L(K) and Proposition 1.11 follows directly from
Proposition 1.9.

Exercises
1. Prove that every intersection of subfields of a field K is a subfield of K .
2. Prove that the union of a nonempty directed family of fields is a field.
3.Let K, L, M be subfields of a field F'. Show that (KL)M = K(LM).

4. Let L be a subfield of a field F and let (K;);c; be a nonempty directed family of
subfields of F. Show that (|J;c; Ki)L =, (KiL).

2. Extensions

This section contains basic properties of field extensions.
Definition. A field extension of a field K is a field E of which K is a subfield.

We write this relationship as an inclusion K C E when it is understood that K
and E are fields.

A field extension of a field K can also be defined as a field F together with
a homomorphism of K into F'. The two definitions are fully equivalent up to
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isomorphisms. If K is a subfield of E and E x~ F, then there is a homomor-
phism of K into F. Conversely, if ¢ : K — F is a homomorphism, then K is
isomorphic to the subfield Im ¢ of F.

Moreover, when ¢ : K — F is a homomorphism of fields, there is a field
E =~ F that contains K as a subfield. To see this, cut Im ¢ from F and attach
K in its place to make a disjoint union £ = K U (F \ Im ¢). Electrify this
monster to life as a field through the bijection 6 : E — F that takes x € K to
¢(x) € F and is the identity on F \ Im ¢: define sums and products in E by
x+y=0"10(x)+6(y)), xy =071(8(x) 8(y)); then E is a field like F, 6
is an isomorphism, and K is a subfield of E, since ¢ is a homomorphism. This
construction can be used with most bidules; the author calls it surgery.

K-homomorphisms let extensions of a field K relate to each other.

Definition. Let K C E and K C F be field extensions of K. A K-homomor-
phism of E into F is a field homomorphism ¢ : E — F that is the identity on
K (p(x)=x forall x € K).

The inclusion homomorphism £ — F inatower K C E C F of extensions
is a K-homomorphism. Conversely, if K C E,F and ¢ : E — F is a
K-homomorphism, then there is a K-isomorphism £ =~ Im ¢ C F.

Definitions. A K-isomorphism is a bijective K-homomorphism. A K-
automorphism of a field extension K C E is a K-isomorphism of E onto E.

We view K-isomorphic extensions as avatars of the same “abstract” extension.

Degree. The first property of any field extension K C FE is that it is a vector
space over K, in which scalar multiplication is just multiplication in E. In this
light, K-homomorphisms are (in particular) linear transformations.

In Chapter VIII we show that any two bases of a vector space V have the same
number of elements, the dimension of V (which is an infinite cardinal number if
V does not have a finite basis).

Definitions. The degree [ E : K] of a field extension K C E is its dimension
as a vector space over K. A field extension K C E is finite when it has finite
degree and is infinite otherwise. [J

For example, C is a finite extension of R, with [C:R]= 2, but R is an
infinite extension of @ (in fact, [R:Q]= |R|). Readers will remember that
finite extensions are not usually finite in their number of elements, only in their
dimension. The traditional terminology “degree” originated in a number of cases
in which the degree of an extension is the degree of a related polynomial.

Proposition21. If K CE C F,then [F:K]=[F:E][E:K].

Proof. Let (a;);c; be abasis of E over K and let (8;);c, be a basis of F
over E. Every element of F is a linear combination of 8.’s with coefficients
in E, which are themselves linear combinations of «; ’s with coefficients in K.
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Hence every element of F' is a linear combination of «; ,Bj ’s with coefficients in
K. Moreover, (o; :Bj)(i, j)erxy is a linearly independent family in F, viewed
as a vector space over K: if Z(i,j)e]x] X i B = 0 (with X = 0 for
almost all (i, j)), then 35, (X;e; % ;%) B =0, Yiep x; jo; = 0 for all
j.andx; ;=0 for all 7, j. Thus (e; ﬁj)(i JYelxJ is a basis of F over K and
[F:K]|=|IxJ|=|I||J|=[F:E][E:K].O

Simple extensions are easily constructed and serve as basic building blocks for
field extensions in general.

Definitions. A field extension K C E is finitely generated when E =
K(ay,...,a,) for some ay, ..., a, € E. A field extension K C E is simple
when E = K (&) for some a € E; then « is a primitive element of E.

For example, the field of rational fractions K (X) is a simple extension of
K ; the indeterminate X is a primitive element. Unlike simple groups, simple
extensions may have proper subfields (see the exercises).

Let K C E be a field extension. For each o € E, Proposition IIL.5.6 provides
an evaluation homomorphism f — f(«a) of K[X] into E. Its kernel is an ideal
of K[X] and is either O or generated by a unique monic polynomial.

Proposition 2.2. Let K C E be a field extension and let o € E.

Either f(a) # 0 for every nonzero polynomial f(X) € K[X], in which case
there is a K-isomorphism K (¢) ~ K(X);

or f(a) =0 for some nonzero polynomial f(X) € K[X], in which case there
is a unique monic irreducible polynomial q such that q(a)=0; then f(a)=0 if
and only if q divides f, K|o]= K(«¢) = K[X]/(q), [K(x): K] =degq, and
1, a, ..., " ! isabasis of K(a) over K, where n = deggq.

Proof. Let ¥ : K[X] — E, f(X)+— f(a) be the evaluation homomor-
phism. By 1.10, Im ¢ = K[o] C E.

If Ker =0, then K [o] ~ K[X];by1.9andII1.4.11, K (e) is K-isomorphic
to the quotient field of K[«], and K (o) =~ K(X).

Otherwise, by II1.5.12, the nonzero ideal Ker ¢ of K[X] is generated by a
unique monic polynomial g. Then f(«) = 0 if and only if ¢ divides f, and
Klo] @ K[X]/Ker ¢ = K[X]/(q). Now, K[a] C E is a domain; hence (g) is
a prime ideal. In the PID K[X] this implies that ¢ is irreducible and that (g) is a
maximal ideal. Hence K [] ~ K[X]/(q) is a field; therefore K (&) = K[e]. If
p € K[X] is monic irreducible and p(«) =0, then g divides p and g = p.

Let n = deg ¢ > 0. For every f € K[X], we have f = gg + r, where
degr < n =deggq. Then f(a)=r(a), and every element f(a) of K][e] is
a linear combination of 1, «,..., a1 with coefficients in K . Moreover, 1,

a,..., "1 are linearly independent over K : if r(a)= 0, where r € K[X]
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and deg r < n, then g divides r and r = 0: otherwise, degr = deg g = n.
Thus 1, o, ..., «" ! is a basis of K [«] (as a vector space) over K . [

Algebraic and transcendental elements. Proposition 2.2 leads to the follow-
ing classification.

Definitions. Let K C E be a field extension. An element a of E is algebraic
over K when f(a) =0 for some nonzero polynomial f(X) € K[X]. Otherwise,
« is transcendental over K .

Equivalently, « is algebraic over K if and only if [ K(«): K] is finite. For
example, every element of K is algebraic over K in any extension of K. Every
complex number is algebraic over R; 1+ +/3 and V2 € R are algebraic over Q.
It has been shown by other methods that ¢ and = € R are transcendental over Q;
in fact, most real numbers are transcendental over Q (see Section A.5).

Definitions. Let a be algebraic over K. The unique monic irreducible poly-
nomial ¢ =Irr (o : K) € K[X] such that q(«) = 0 is the irreducible polynomial
of o over K ; the degree of « over K is the degree of Irr (¢ : K ).

For example, Irr (i : R)= X%+ 1 and i has degree 2 over R. Also, v2 € R
is algebraic over Q; Irr (/2: Q)= X3 — 2 (irreducible in Q[X] by Eisenstein’s
criterion), and V2 has degree 3 over Q.

Finite simple extensions. We complete 2.2 with two more results.

Proposition 2.3. Let K be a field and let ¢ € K[X] be irreducible. Up to
isomorphism, E = K[X]/(q) is a simple field extension of K : E = K (&), where
a=X+(q). Moreover, [E:K]|=degq and g =Trr (¢ : K).

Kronecker [1887] had a very similar construction.

Proof. By I11.8.3, (g) is a maximal ideal of K [X]; hence E = K[X]/(q) is
a field. Then x — x + (¢) is a homomorphism of K into E; we may identify
x € K and x + (¢) € E, and then E is an extension of K .

Let « = X + (¢q) € E. By the universal property of K[X] there is a unique
homomorphism of K[X] into E thatsends X to « andevery x € K to x + (q) =
x. Since the evaluation homomorphism f(X) —— f(«) and the canonical
projection K[X]— E have these properties, they coincide, and f(X) + (¢) =
f(a) for all f € K[X]. Hence E = KJo], by 1.10, K[«] is a field, and
E = K(a). Also g(a) =g+ (¢)=0 in E, so that « is algebraic over K and
Irr(¢:K)=¢q. Then [E: K] =deggq,by22.0

Thus every irreducible polynomial ¢ € K [X] has a root in some extension of
K . For example, R[X]/(X? + 1) is a simple extension R(«) of R, with a basis

1, a over R by 2.2 in which ¢? + 1 = 0. Hence R[X]/(X?+ 1) = C. This
provides a construction of C that does not require any overt adjunction.

Finite simple extensions inherit from polynomial rings a very useful universal
property, which constructs field homomorphisms K (¢) — L.
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Proposition 2.4. Let a be algebraic over K and let ¢ = Irr (a: K). If
¥ : K(a) — L is a field homomorphism and ¢ is the restriction of ¥ to
K, then ¥ (a) is a root of %q in L. Conversely, for every field homomorphism
¢ : K — L and every root B of %q in L, there exists a unique field homomor-
phism ¥ : K (a) — L that extends ¢ and sends « to .

K —S.K(a)

I
L
qu
L

Proof. Let ¥ : K(a) — L be a field homomorphism. Its restriction ¢ to K
is a field homomorphism. For each f(X)=ag+a; X +---+a, X" € K[X],
we have

v (f(e) = ¥(ag+aya+---+a,a")

¢lag) +¢(a)) ¥(a) +- - +o(a,) ()" = % (¥().
Hence ¢(a) =0 yields %g (¥ () = 0. Thus ¥ (a) is aroot of % in L.

Conversely, let B € L be aroot of #g. Since K («) ~ K[X]/(gq) by 2.3, we
may assume that K («) = K[X]/(g) and & = X + (¢). By the universal property
of K[X], ¢ extends to a unique homomorphism x : K[X] — L that sends X
to B, namely x : f —— %f(B). Then x(q)=%(B)=0;hence (q) C Ker .

KS~K[X] =~ K[X]/(q) = K(a)

By the Factorization theorem (II1.3.5) x factors uniquely through the projection
7 : K[X]— K[X]/(q): x = ¥ o m for some unique homomorphism ¥ :
K(a) — L. Then ¢ extends ¢ and sends « to 8; ¥ is the only homomor-
phism with these properties, since 1, «, ..., o~ is a basis of K (). ]

Infinite simple extensions have a similar property (see the exercises).

Exercises
1. Show that every field extension is a directed union of finitely generated extensions.
2.Showthat = 1++/5 € R is algebraic over Q; find Irr (0 : Q).
3. Show that @ = V2 +v3 € R is algebraic over Q; find Irr (¢ : Q).
4. Show that a = v/2 +i+/3 € C is algebraic over Q; find Irr («¢:Q).

5. Show that the simple extension E = Q(%) C R of Q has intermediate fields
QS FSE.

6. Show that the simple extension K (X) of K has intermediate fields K G F & K (X).

7. Construct a field with four elements; draw its addition and multiplication tables.



164 Chapter IV. Field Extensions

8. Construct a field with eight elements; draw its addition and multiplication tables.
9. Construct a field with nine elements; draw its addition and multiplication tables.

10. Prove the following. Let « be transcendental over K. If ¢ : K(«) — L is a field
homomorphism, then ¥ («) is transcendental over ¥ (K). Conversely, if ¢ : K — L isa
field homomorphism and 8 € L is transcendental over ¢ (K ), then there exists a unique field
homomorphism  : K («¢) — L that extends ¢ and sends « to 8.

3. Algebraic Extensions

This section contains basic properties of the class of algebraic extensions. Tran-
scendental extensions are considered in Sections 8 and 9.

Definitions. A field extension K C E is algebraic, and E is algebraic over
K, when every element of E is algebraic over K. A field extension K C E
is transcendental, and E is transcendental over K, when some element of E is
trancendental over K .

For example, C is an algebraic extension of R and R is a transcendental
extension of Q.

Algebraic extensions have a number of basic properties that make wonderful
and highly recommended exercises.

Proposition 3.1. Every finite field extension is algebraic.

Proposition 3.2. If E = K (ay, ..., a,) and every «; is algebraic over K, then
E is finite (hence algebraic) over K .

Proof. We give this proof as an example. Let E = K(«y, ..., a, ), where all
a; are algebraic over K. We prove by induction on n that E is finite over K. If
n=0,then E = K isfiniteover K. If n > 0, then F = K(«, ..., «,_ ) is finite
over K by the induction hypothesis; «, is algebraic over F, since f(c,,) =0 for
some nonzero f € K[X] C F[X];hence E = F(a,) is finite over F' by 2.2, and
E is finite over K, by 2.1. 00

Proposition 3.3. If every a € S is algebraic over K, then K(S) is algebraic
over K.

Proposition 3.4. Let K C E C F be fields. If F is algebraic over K, then E
is algebraic over K and F is algebraic over E.

Proposition 3.5 (Tower Property). Let K C E C F be fields. If E is algebraic
over K, and F is algebraic over E, then F is algebraic over K .

Proposition 3.6. If E is algebraic over K and the composite EF exists, then
EF is algebraic over K F .

Proposition 3.77. Every composite of algebraic extensions of a field K is an
algebraic extension of K .
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Here are some applications of these results.

Proposition 3.8. If E is finite over K and the composite EF exists, then EF
is finite over K F. Hence the composite of finitely many finite extensions of K is
a finite extension of K .

Proof. We prove the first statement and leave the second as an exercise. Let
®p,..., a, beabasis of E over K. Then E = K(«;,..., «,) and every «; is
algebraic over K. Hence EF = KF(«,, ..., a,), every q; is algebraic over K F
by 3.6, and EF is finite over K F' by 3.2. [J

Proposition 3.9. In any field extension K C E, the elements that are algebraic
over K constitute a field.

Proof. First, 0 and 1 € K are algebraic over K. Now let o, 8 € E be
algebraic over K. By 3.3, K(«, B8) C E is algebraic over K. Hence a — 8 €
K(a, B) and a B! € K (a, B) are algebraic over K . [J

For example, the set of all algebraic real numbers (over Q) is a field.

Exercises
Prove the following:
1. If every a € S is algebraic over K , then K (S) is algebraic over K .

2.1f K C E C F arefields and F is algebraic over K , then E is algebraic over K and
F is algebraic over E.

3.If K C E C F are fields, E is algebraic over K, and F' is algebraic over E, then F
is algebraic over K. (Hint: every « € F is algebraic over K (ag, @1, ..., an), where g,
a1, ..., an are the coefficients of Irr («: E).)

4.If E is algebraic over K, then the composite E F', if it exists, is algebraic over K F .
5. Every composite of algebraic extensions of K is an algebraic extension of K .

6. The composite of finitely many finite extensions of K is a finite extension of K .

4. The Algebraic Closure

In this section we show that every field has a greatest algebraic extension, its
algebraic closure, which is unique up to isomorphism.

Algebraically closed fields have no proper algebraic extensions:

Proposition 4.1. For a field K the following properties are equivalent:
(1) the only algebraic extension of K is K itself;
(2) in K[X], every irreducible polynomial has degree 1;
(3) every nonconstant polynomial in K[X] has a root in K .

Proof. (1) implies (2): when ¢ € K[X] is irreducible, then E = K[X]/(q)
has degree [ E : K | = deg ¢, by 2.3; hence (1) implies deg g = 1.
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(2) implies (3) since every nonconstant polynomial f € K[X] is a nonempty
product of irreducible polynomials.

(3) implies (1): when « is algebraic over K, then ¢ = Irr (o : K) has aroot r
in K;hence g =X —r,and g(e)=0yields e =r € K.

Definition. A field is algebraically closed when it satisfies the equivalent con-
ditions in Proposition 4.1. J

For instance, the fundamental theorem of algebra (Theorem III1.8.11) states that
C is algebraically closed. The fields R, Q, Z p are not algebraically closed, but
R and Q can be embedded into the algebraically closed field C.

Algebraically closed fields have an interesting homomorphism property.

Theorem 4.2. Every homomorphism of a field K into an algebraically closed
field can be extended to every algebraic extension of K .

Proof. Let E be an algebraic extension of K and let ¢ be a homomorphism
of K into an algebraically closed field L. If E = K(«) is a simple extension of
K,and g =Irr (¢ : K), then ¥g € L[X] hasarootin L, since L is algebraically
closed, and ¢ can be extended to E by 2.4.

The general case uses Zorn’s lemma. Let & be the set of all ordered pairs
(F,¢) in which F is a subfield of E, K C F C E,and ¢ : F — L is
a homomorphism that extends ¢ (¥ (x) = ¢(x) for all x € K). For instance,
(K, @) € 8. Partially order S by (F,¢) < (G, x) if and only if F is a subfield
of G and x extends y. Let € = (F;, ¥;),c; be a nonempty chain of §. Then
F = ;e F; is a subfield of E, by 1.8. A mapping ¢ : F — L is well
defined by v (x) = ¥;(x) whenever x € F isin F;: if x € F; N I*; then, say,
(F;,¢;) < (F;. ¥;), ¥; extends ¥, and ; (x) = ¥;(x). Then ¥ extends every
¥, and is a homomorphism since any x, y € F belong to some F; and v; is a
homomorphism. Hence (F,y) € 8, (F;,¥;) = (F,y) forall i € I, and C has
an upper bound in §.

By Zorn’s lemma, 8§ has a maximal element (M, ). If M + E, then any
a € E\M is algebraic over M, since E is an algebraic extension of K C M, and
w can be extended to the simple algebraic extension M («) of M, contradicting
the maximality of M. So M = E, and u extends ¢ to E. [

The proof of Theorem 4.2 is a standard argument that generally provides maxi-
mal extensions of bidule homomorphisms (see the exercises). The homomorphism
in Theorem 4.2 can generally be extended in several ways; already, in Proposition
2.4, ¢ can usually be extended in several ways, since g usually has several roots.
This phenomenon is studied in more detail in the next section.

Embeddings. The main result of this section is that every field K can be
embedded into an algebraically closed field K that is algebraic over K ; and then
every algebraic extension of K can be embedded in K, by Theorem 4.2.
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Lemma 4.3. Every field K has an algebraic extension that contains a root of
every nonconstant polynomial with coefficients in K .

Proof. (Kempf) For any finitely many nonconstant polynomials f;,..., f, €
K[X], we note that K has an algebraic extension in which every f; has a root:
repeated applications of Propositions 2.3 to irreducible factors of fi,..., f, yield

an extension of K in which every f; has aroot, which is algebraic over K by 3.3.

Now write the set of all nonconstant polynomials f € K[X] as a family
(fi)iey - Form the polynomial ring K[(X;);<;], using the same index set 7, and
let 2 be the ideal of K[(X;);;] generated by all f;(X;).

We show that A £ K[(X;);c,]. Otherwise, 1 € A and 1 =5, u; f;(X;)
for some finite subset J of I and polynomials uj € K[(X;);es]- Since J is finite,
K has an algebraic extension E in which every ]3 has a root «;. The universal
property of K[(X;);c,;] yields a homomorphism ¢ of K[(X;);c,;] into E such
that ¢(x) = x forall x € K, ¢(X;) =0 forall i € I\J, and ¢(X;) = o; forall
j € 7. Then o(£(X,)) = fi(ay) and 1 = p(1)= % c; 0u) 9(f(X,)) =

This is the required contradiction.

Now, 2l # K[(X;);c] is contained in a maximal ideal 9 of K[(X;);c;].
Then F = K[(X;);c;]/99 is a field. We now follow the proof of Proposition 2.3.

There is a homomorphism x +—— x + 91 of K into F. We may iden-
tify x € K and x + 9 € F; then F is an extension of K. Let o =
X; + M € F. By uniqueness in the universal property of K[(X;);c;], the
canonical projection K [(X;);c;] — F coincides with the evaluation homomor-
phism f((X;);c;) — f((e;);¢;) - since both send X; to a; forall i and send
every x € K to x + M = x. Thus, f((X;);c;) + M = f((e);¢;) for all
f € K[(X;);c;]. Hence F = K[(a;);¢;], by 1.10, K[(e;);¢;] is a field, and
F = K((;);jep). Also fi(e;) = f;(X;) + 9 =0 in F, so that every «; is
algebraic over K ; hence F is algebraic over K , by 3.3. O

Another proof of Lemma 4.3 is given in Section A.4 (see the exercises for that
section).

Theorem 4.4. Every field K has an algebraic extension K that is algebraically
closed. Moreover, K is unique up to K-isomorphism.

Proof. There is a very tall tower of fields

K=E,CE C--CE, CE C .-

n+l

in which E, , is the algebraic extension of E, in Lemma 4.3, which contains
a root of every nonconstant polynomial with coefficients in E, . Then every E,
is algebraic over K, by 3.5, and K = UnZO E, , which is a field by 1.8, is an

algebraic extension of K. Then K is algebraically closed: when f € K[X] is
not constant, the finitely many coefficients of f all lie in some E, and f has
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arootin £, C K.

Let L be an algebraically closed, algebraic extension of K. By 4.2, there is a
K-homomorphism ¢ : K — L. Then Im ¢ = K is algebraically closed, and L
is algebraic over Im ¢ by 3.4; therefore L = Im ¢ and ¢ is a K-isomorphism. [

Definition. An algebraic closure of a field K is an algebraic extension K of K
that is algebraically closed.

The field K in this definition is also called the algebraic closure of K, since
Theorem 4.4 ensures that all algebraic closures of K are K-isomorphic. For
example, C is ‘the’ algebraic closure of R, since it is algebraically closed and
algebraic over R.

The algebraic closure K of K can be characterized in several ways:
(1) K is an algebraically closed, algebraic extension of K (by definition);

(2) K is a maximal algebraic extension of K (if K C E and E is algebraic
over K ,then K = E);

(3) K is, up to K-isomorphism, the largest algebraic extension of K (if E is
algebraic over K, then E is K-isomorphic to a subfield of K, by 4.2);

(4) K is a minimal algebraically closed extension of K (if K C L C K and L
is algebraically closed, then L = K);

(5) K is, up to K-isomorphism, the smallest algebraically closed extension of
K (if K C L and L is algebraically closed, then K is K-isomorphic to a subfield
of L,by4.2).

By (3) we may limit the study of algebraic extensions to the intermediate fields
K C E C K of any algebraic closure of K :

Corollary 4.5. For every algebraic extension E of K, E is an algebraic
closure of K ; hence E is K-isomorphic to an intermediate field K C F C K of
any algebraic closure of K .

Finally, we note the following properties.
Proposition 4.6. Every K-endomorphism of K is a K-automorphism.

Proof. Let ¢ : K — K is a K-homomorphism. As in the proof of 4.4,
Im ¢ ~ K is algebraically closed, K is algebraic over Im ¢, by 3.4, hence
K =Im ¢ and ¢ is a K-isomorphism. [J

Proposition 4.7. If K C E C K is an algebraic extension of " K, then every
K-homomorphism of E into K extends to a K-automorphism of K .

Proof. By 4.2, every K-homomorphism of E into K extends to a K-
endomorphism of K, which is a K-automorphism of K by 4.6.
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Exercises

1. Let G beagroup, let H be a subgroupof G,andlet ¢ : H — J be ahomomorphism
of groups. Show that there is a pair (M, u) suchthat H < M < G, u: M — J isa
homomorphism that extends ¢, and (M, ) is maximal with these properties.

2. Show that every algebraically closed field is infinite.

3. Let A be the field of all complex numbers that are algebraic over Q. Show that A is an
algebraic closure of Q.

5. Separable Extensions

An algebraic extension K C E is separable when the irreducible polynomials of
its elements are separable (have no multiple roots). This section relates polynomial
separability to the number of K-homomorphisms of E into K .

Separable polynomials. Let f € K[X] be a nonconstant polynomial with
coefficients in a field K . Viewed as a polynomial with coefficients in any algebraic
closure K of K, f factors uniquely (up to the order of the terms) into a product
of positive powers of irreducible polynomials of degree 1:

f(X) = a(X —a)™ (X —ay)"2 - (X —a,)™;

then a € K is the leading coefficient of f, r > 0, my, ..., m, > 0, ay, ...,
a, € K are the distinct roots of f in K, and m; is the multiplicity of «; . Recall
that a root a; of f is multiple when it has multiplicity m; > 1.

Definition. A polynomial f € K [X] is separable when it has no multiple root
in K.

For example, f(X)= X*+2X%+1 € R[X] factors as f(X) = (X>+1)?=
(X —i)? (X +i)? in C[X] and has two multiple roots in R = C; it is not separable.

But X2+1¢ R[X] is separable. Readers will show, however, that an irreducible
polynomial is not necessarily separable.

Proposition 5.1. Let g € K[X] be irreducible.
(1) If K has characteristic 0, then q is separable.

(2) If K has characteristic p +0, then all roots of q in K have the same
multiplicity, which is a power p™ of p, and there exists a separable irreducible
polynomial s € K[X] such that g(X) = s(xP™).

Proof. We may assume that ¢ is monic. If ¢ has a multiple root ¢ in K, then
q'(a) = 0 by I11.5.9. Now, « is algebraic over K, with ¢ = Irr (a: K) since
g(a) = 0; hence ¢ divides ¢, and ¢’ = 0, since deg ¢’ < degq. But ¢’ £0
when K has characteristic 0, since ¢ is not constant; hence g is separable.

Now let K have characteristic p # 0. If ¢(X) =) >, a, X" has a multiple

root, then, as above, ¢'(X) = Y o> ha, X"~1 = 0; hence a, = 0 whenever n
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is not a multiple of p and g contains only powers of X?. Thus g(X)=r(X?) for
some r € K[X]; r is, like ¢, monic and irreducible in K[X] (if  had a nontrivial
factorization, then so would ¢), and deg r < deg g. If r is not separable, then

2
r(X)=1(XP), and ¢(X) = 1(X""), where ¢ is monic and irreducible in K [X]

and degt < degr < degq. This process must stop; then g = s(Xp ), where
s € K[X] is monic, irreducible, and separable.

Write s(X) = (X — B;)(X — B,)---(X — B,), where B, ..., B, are the
distinct roots of s in K. Since K is algebraically closed there exist ay, ..., a, €
K such that B; = ozf " for all i; in particular, «y, ..., «, are distinct. In K and
K, (x —y)P=xP — y? forall x, y, by IIL4.4, so that

p" p" " p"
g(X) =s(X" ) =T (x" —af) = T[; X =) ;
hence the roots of ¢ in K are ay, ..., @, and all have multiplicity p".a

The separability degree. We now relate polynomial separability to the number
of K-homomorphisms into K .

Definition. The separability degree [ E : K | of an algebraic extension K C E
is the number of K-homomorphisms of E into an algebraic closure K of K .

By 3.11, [E: K], does not depend on the choice of K. If E is a simple
extension of K, then Propositions 2.12 and 5.1 yield the following properties:

Proposition 5.2. If « is algebraic over K , then [ K (a): K | is the number of
distinct roots of Irr («: K) in K. Hence [K(a): K], < [K(a):K]; if K has
characteristic p £ 0, then [K(a): K ]=p"™ [K(«): K], for some m = 0; and
[K(a):K],=[K(a): K] ifand only if Irr (a : K) is separable.

We now look at algebraic extensions in general.

Proposition 5.3 (Tower Property). If F is algebraic over K and K C E C F,
then [F:K]| =[F:E],[E:K],.

Proof. By 3.13 we may assume that E C K. Let ¢ : E — K bea K-
homomorphism. By 3.14, there is a K-automorphism ¢ of K that extends ¢. If
now ¥ : F — K is an E-homomorphism, then o o v is a K-homomorphism
that extends ¢. Conversely, if x : F — K is a K-homomorphism that
extends ¢, then i = o 1o x is an E-homomorphism:

1/ J—

o —
—

Hence there are [ F: E ] K-homomorphisms of F into K that extend ¢. The
K-homomorphisms of F into K can now be partitioned into [E : K | ¢ €quiva-
lence classes according to their restrictions to E. Each class has [F:E]
elements; hence there are [E: K | [ F : E]; K-homomorphisms of F into K .[]
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Proposition 5.4. For every finite extension E of K, [E: K], S [E:K];if K
has characteristic 0, then [E: K], = [E:K]; if K has characteristic p # 0,
then [E:K]|=p™ [E: K], for some m 2 0.

Proof. E = K(ay, ...,a,) for some «, ..., @, € E, which yields a tower
K =E,CE C---CE,=E of simple extensions E; = K(a|, ...,q;) =
E;_(a;). Forevery i, [E;:E; ], S [E;+E;_;].by52;hence [E: K] <
[E: K], by 5.3 and 2.4. The other two parts are proved similarly. (]

Separable extensions.

Definitions. An element o is separable over K when « is algebraic over K
and Irr (o : K) is separable. An algebraic extension E of K is separable, and E
is separable over K, when every element of E is separable over K.

Proposition 5.1 yields examples:

Proposition 5.5. If K has characteristic 0, then every algebraic extension of
K is separable.

The main property of separable algebraic extensions K C E is that the number
of K-homomorphisms of E into K is readily determined.

Proposition 5.6. For a finite extension K C E the following conditions are
equivalent:

(1) E is separable over K (every element of E is separable over K);
(2) E is generated by finitely many separable elements;
(3) [E:K],=[E:K].
Proof. (1) implies (2), since E = K («;, ..., ,) forsome «, ..., o, € E.
(2) implies (3). Let E = K(«y, ...,a,), where «y, ..., «, are separable
over K. Then K = E, C E; C --- C E, = E, where E; = K(o;, ..., ;) =
E;_|(o;) when i > 0. Let ¢ = Irr(; : K) and ¢; = Irr (o; : E;_;). Then
g € K[X]C E;,_,[X] and ¢(«;) = 0; hence ¢; divides ¢ and is separable. Then
[E;:E;_,],=[E;:E;_;],by52,and [E: K] ,=[E:K],by5.3and2.4.

(3) implies (1). Assume [E: K| =[E:K] andlet « € E. By 5.3 and 2.4,
[E:K(a)], [K(a):K];=[E:K];=[E:K]=[E:K(x)] [K(a):K].

Since [E:K(a)], S [E:K(a)] and [K(a): K], < [K(«): K], this implies
[E:K(a)]y=[E:K(a)] and [K(): K], =[K(«): K ]. Hence « is separa-
ble over K, by 5.2. (This argument requires [ £ : K | finite.) (]

Properties. The following properties make nifty exercises.

Proposition 5.7. If every o € S is separable over K, then K (S) is separable
over K.
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Proposition 5.8. Let K C E C F be algebraic extensions. If F is separable
over K, then E is separable over K and F is separable over E.

Proposition 5.9 (Tower Property). Let K C E C F be algebraic extensions.
If E is separable over K and F is separable over E, then F is separable over K .

Proposition 5.10. If E is algebraic and separable over K and the composite
EF exists, then EF is separable over K F .

Proposition 5.11. Every composite of algebraic separable extensions of a field
K is a separable extension of K .

We give some applications of these results.

Proposition 5.12 (Primitive Element Theorem). Every finite separable exten-
sion is simple.

Proof. Let E be a finite separable extension of a field K. If K is finite,
then E is finite, the multiplicative group E\{0} is cyclic by 1.6, and E is singly
generated as an extension.

Now let K be infinite. We show that every finite separable extension E =
K(a, B) of K with two generators is simple; then so is every finite separable
extension K (e, ..., a;) of K, by inductionon k. Letn=[E:K]=[E:K]
and ¢, ..., ¢, be the K-homomorphisms of E into K. Let

f(X) = Hi<j (‘Pia + (‘Piﬂ) X - P — (Wj/g) X) € ?[X]

Since K is infinite we cannot have f(¢) =0 forall r € K; hence f(¢) # 0 for
some t € K. Then ¢, (« + ft), ..., ¢, (« + pt) are all distinct. Hence there are
at least n K-homomorphisms of K (« + B¢) into K and [K(a+ Bt): K] = n.
Therefore [K(a+Bt):K]|=[E:K]and E = K(a + ft). O

Proposition 5.13. If E is separable over K and Irr (a : K) has degree at most
n for every a € E, then E is finite over K and [E: K] < n.

Proof. Choose « € E so that m = deg Irr (o : K) is maximal. For every 8 €
E we have K («a, B) = K(y) for some y € E, by 5.12. Then degIrr (y : K) <
m and [K(y):K] < m. Since K(y) contains K(«¢) and [K(a): K] = m,
it follows that K(y) = K(«). Hence K(o) contains every § € E; that is,
E=K(x),andthen [E:K]=m S n.O

Exercises

1. Find an irreducible polynomial that is not separable. (Hint: coefficients need to be in an
infinite field of nonzero characteristic.)

2. Prove the following: if E = K(S) is algebraic over K and every o € § is separable
over K, then K (S) is separable over K.

3.Let K C E C F be algebraic extensions. Prove the following: if F is separable over
K, then E is separable over K and F is separable over E.
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4.Let K C E C F be algebraic extensions. Prove the following: if E is separable over
K and F is separable over E, then F is separable over K .

5.Let K C E be an algebraic extension. Prove the following: if E is separable over K
and the composite EF exists, then EF is separable over K F'.

6. Prove the following: every composite of algebraic separable extensions of a field K is
a separable extension of K .

6. Purely Inseparable Extensions

In a purely inseparable extension of a field K, only the elements of K are separa-
ble over K. This section contains basic properties and examples, with applications
to perfect fields, and may be skipped at first reading.

Definition. An algebraic extension K C E is purely inseparable, and E is
purely inseparable over K, when no element of E\K is separable over K .

One reason for our interest in purely inseparable extensions is that every algebra-
ic extension is a purely inseparable extension of a separable extension (moreover,
some extensions are separable extensions of purely inseparable extensions; see
Proposition V.2.10).

Proposition 6.1. For every algebraic extension E of K, S ={a € E ’ o is
separable over K } is a subfield of E, S is separable over K, and E is purely
inseparable over S.

Proof. First, 0 and 1 € K are separable over K. If «, 8 € E are separable
over K, then K («, B) is separable over K by 5.7 and o — 8, ap”l e K(a, B)
are separable over K. Thus S is a subfield of E. Clearly S is separable over K.
If « € E is separable over S, then S(«) is separable over K by 5.7, 5.9, and
aeS.O

By 5.5, purely inseparable extensions are trivial unless K has characteristic
p#0. Then (o« — B)P" = aP" — P" forallm > 0 and a, € K, by IIL44,
so that every a € K has a unique p™th root in K and a polynomial in the form

X" —a e K[X] has only one root in K . This provides the following example.

oo
Proposition 6.2. If K has characteristic p +0, then K Ve {a €
K ‘ a?" € K for some m = 0} is a purely inseparable field extension of K .

oo o0 o0
Proof. We have K C Kl/p ,in particular 0, 1 € Kl/p fa, B e Kl/p s
then ", BP" € K when m is large enough, and then (@ — ﬂ)pm =a?" -

" € K and (@B~ )" = («?")(BP")"' € K. Thus K77 s a sub-
field of K. If @ € K'/” \K, then « is algebraic over K and Irr(a:K)

m J—
divides some X” —a € K[X]; hence Irr («: K) has only one root in K and
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« is not separable. []
This example leads to equivalent definitions of purely inseparable extensions.

Lemma 6.3. If K has characteristic p + 0, and « is algebraic over K, then
m
a?" € K for some n = 0 if and only if Irr (@ : K) = X©" — a for some m > 0,
and a € K.

m
Proof. Let q = Irr (@ :K). By 5.1, ¢(X) = s(X” ) for some m > 0 and
separable monic irreducible polynomial s € K[X]. If a?" = b € K for some
n=0, Een g divides X P b, g has only one root in K, and s has only one
root in K ; since s is separable this implies s(X) = X — a for some a € K and

—o(x”y = x?" _ i -
g X)=s(X" )=X a . The converse holds since ¢(«)=0.0

Definition. If K has characteristic p + 0, then « is purely inseparable over
K when o?" € K Jor some n = 0, equivalently when « is algebraic over K and

m
Irr (@:K)= X" —a for some m >0 and a € K.

Proposition 6.4. Let K have characteristic p + 0 and let E be an algebraic
extension of K. The following conditions are equivalent:

(1) E is purely inseparable over K (no a € E\K is separable over K );
(2) every element of E is purely inseparable over K;

o0

(3) there exists a K-homomorphism of E into K tp ;
4 [E:K],=1.

Proof. (1) implies (2). Assume that E is purely inseparable over K. Let & € E
and ¢ = Irr (¢ : K). By 5.1, ¢(X) = s(Xpm) for some m = 0 and separable
monic irreducible polynomial s € K[X]. Then s(a?" ) =0, s = Irr («”" : K),
and o”" is separable over K. If E is purely inseparable over K, then o” " ek

(2) implies (3). By 3.9 there is a K-homomorphism ¢ : E — K. If « € E,
then o”" € K by (2), p(a?") € K, and ¢(a) € K"P7. Thus @ is a K-

. . 1/p>®
homomorphism of E into K .

(3) implies 4). Let ¢ : E — K'/7" and v : E — K be k-
homomorphisms. Since K has characteristic p # 0, every element of K has
a unique p™th root in K. If o € E, then go(ozl’m) € K for some m = 0,
equivalently, «”” € K, since ¢ is injective; then ¥ (" ) = a?", ¥ (a) is, like
¢(a), the unique p"th root of «”” in K, and v (e) = ¢(c). Hence there is only

one K-homomorphism of E into K.

(4) implies (1). If « € E is separable over K, then there are n = [ K () : K |
distinct K-homomorphisms of K (&) into K, which by 3.9 extend to at least n
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distinct K-homomorphisms of E into K ; hence (4) implies n = 1 and o € K.
Thus E is purely inseparable over K. []

o0
Properties. By Proposition 6.4, K /p is, up to K-isomorphism, the largest
purely inseparable extension of K. This costs the following results some of their
charm. The proofs are exercises.

Proposition 6.5. If every a € S is purely inseparable over K, then K(S) is
purely inseparable over K.

Proposition 6.6. Let K C E C F be algebraic extensions. If F is purely in-
separable over K, then E is purely inseparable over K and F is purely inseparable
over E.

Proposition 6.7 (Tower Property). Let K C E C F be algebraic extensions.
If E is purely inseparable over K and F is purely inseparable over E, then F is
purely inseparable over K .

Proposition 6.8. If E is algebraic and purely inseparable over K and the
composite EF exists, then EF is purely inseparable over K F .

Proposition 6.9. Every composite of algebraic purely inseparable extensions
of a field K is a purely inseparable extension of K.

Exercises

— 1/p°®
1.Let « € K. Show that @ € K /» if and only if oo = o for every K-automorphism
o of K.

2. Find properties of the inseparability degree [E: K ];=[E:K]/[E: K ]s.

3. Prove the following: if every « € § is purely inseparable over K, then K (S) is purely
inseparable over K.

4. Let K C E C F be algebraic extensions. Prove the following: if F is purely
inseparable over K, then E is purely inseparable over K and F' is purely inseparable over E.

5. Let K C E C F be algebraic extensions. Prove the following: if E is purely
inseparable over K and F is purely inseparable over E, then F is purely inseparable over K.

6. Let K C E be an algebraic extension. Prove the following: if E is purely inseparable
over K and the composite EF exists, then EF is purely inseparable over K F.

7. Prove that every composite of purely inseparable extensions of a field K is purely
inseparable over K.
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7. Resultants and Discriminants

The resultant of two polynomials detects from their coefficients when they have
a common root. Similarly, the discriminant of a polynomial f detects from the
coefficients of f whether f is separable. This section can be skipped, though the
formulas for discriminants are quoted in Section V.5.

The resultant. K denotes a field in what follows.

Definition. Let f(X)=a,, (X —o)--- (X —«,,) and g(X)=b, (X — B;)
-+ (X — B,) be polynomials of degrees m and n with coefficients in a field K
and roots ay, ..., o, By, ..., B, in K. The resultant of f and g is

Res(f, g) a:lnb:,n Hi,j (0‘,'*:3]')
ay [1; 8(e;) = (=1)"" ;" TT; f(B;)-

The terms a,, and b} will ensure that Res (f, ¢) € K. Our interest in the

resultant stems from the next two results.

Proposition 1.1. If K is a field and f, g € K[X], then Res(f, g) =0 if and
only if f and g have a common root in K.

Next, we calculate Res (f, g) from the coefficients of f and g. Hence the
resultant of f and g tells from their coefficients whether f and g have a common
root in K.

Proposition 7.2. Let K be a field and f(X) = a, X" +---+a,, g(X) =
b,X"+---+by € K[X]. Ifa,, b, +0, then

a ay

a, ... ... q
Res(f, g) = € K

by . .. by

In this determinant, each of the first n rows is the row of coefficients of f, padded
with zeros to length m + n; the last m rows are constructed similarly from the
coefficients of g. For example, if f = aX?+bX +c and g =dX +e, then

Res(f, g) = = ae® — bde +cd’.

S R
L &
X OO

Proof. If a polynomial p € Z[Xl, Xn] becomes 0 when Xj # X, is sub-
stituted for X;, then p is divisible by X, — Xj: if, say, i = 1, then poly-
nomial division in Z[X,, ..., X, |[X,] yields p = (X| — Xj) q +r, where r has
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degree less than 1 in X, thatis, X; does not appear in r;if p becomes 0 when
X § is substituted for X, then so does r; but this substitution does not change r,
sor=0.

For the rest of the proof we replace the coefficients and roots of f and g
by indeterminates. Let F = A X" +---+ A, € Z[A,, ..., Ay, X], G =
B,X"+.--+ B, €Z[B,, ..., By, X],and

€ Z[A,,, ..., Ay, B, ..., Byl.

Then f(X)=F(a,, ...,ay, X), g(X)=G(b,, ..., by, X), and the determinant
D in the statementis D = P(a,,, ..., ay, b,, ..., by).

Expansion shows that the coefficient of X ¥ in
A, (X=R)--- (X—R,) € Z[A,, Ry, ... R,][X]

is (—1)k A, S;(Ry,....R,), where 5, € Z[R,, ..., R, ] is homogeneous of
degree k (all its monomials have degree k); §;, ..., §,, are the elementary
symmetric polynomials in m variables, studied in greater detail in Section V.8.
Similarly, the coefficient of X n=k in

Bn(X_Sl)"'(X_Sn)GZ[Bn’ Sl" S][X]

WS,
is (—1)k B, (S, ..., S,,), where t, € Z[S,, ..., S,] is homogeneous of degree
k. In particular,
a, ;= (=1 a, 5. (o, ...,a,) and b, ; = (— 1) b, t(By - By)-
Let ® be the ring homomorphism

®:Z[A,, .., Ay, B,, ... By, X] — Z[A,,B,. R|,... R, S|, ... S, X]

’ m?* ceey Mo

such that

D(A,_;) = (=1D)*A,, 5. (R, ... R,)

’ m

and
(I)(Bn—k) = (_l)k Bntk(Slv cees Sn)

for every k > 0; & substitutes (—1)* A, 5. (R,,...,R,) for A, , and
(—~1)*B, t,(S,, ..., S,) for B, ,. By the above,

’Tn

O(F)=A, (X =Ry (X=-R,)
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and
®(G)=B,(X—-5))---(X-8,).
We show that ®(P)= A" B Hi,j (R, — j)~

1
LetAt=0ift<00rt>m,Bt=0ift<Oort>n.TheentryCr’cofP

inrow r and column c is A ifr <nm, B,_. if r > n. Hence

m+r—c
P = Ea (Sgn o Cl,al T Cm+n, 0(m+n))
= >, (500 [Ti<,<n Amsr—or Lnzr<min Br—or)-
Upon substituting
Ap = (=D A, S (R, ..., R,), B, = (=1)FB, (S}, ....5,),
which are homogeneous of degree k + 1, the typical term

ngrgn Apir—or Hn<r§m+n Bn—(n+ar—r)
of P becomes a polynomial that is a multiple of A” B/ and is homogeneous
of degree > <,<, (or —r+ 1)+ _ < . (n+or—r+1)=n+mn+m.
Hence ®(P) is divisible by A} B and is homogeneous of degree mn +m + n.

Now, consider the homogeneous system of linear equations
X"l =A, X™ 1A X" =0,
X"TIF = A, X"y AgX"T2 =0,

F=A, X"+ - +A,X" =0,
x"1G =B x™" 4.+ Bx" ! =0,

_ 0_
G=B,X"+---+ByX" =0,

in which x™tn—1 xmtn=2  x0 qre squatting in the unknowns’ locations.

The determinant of this system is P . Substituting

Am—k = (71)]‘ Am 5k(R1’ ceey Rm)’ B k= (71)1( Bn tk(Sl’ ceey Sn)

n—

for every k > 0 yields a system of linear equations whose determinant is ®(P).
Since ®(F)(R;) = ®(G)(S;) = 0, further substituting R; = S; yields a system

Sm+n—2
)

9 eeey

whose determinant is 0, since it has a nontrivial solution .S’jm+"_1

SIQ. Thus ©(P) becomes 0 when S; is substituted for R;. Therefore ®(P) is
divisible by R, — S;, forevery i and ;.

Poor ®(P) is now divisible by

R = A% B Thigigm 1220 (R = 5p)-
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Since both ®(P) and R are homogeneous of degree mn +m +n, then ®(P) =R
for some t € Z. Now, A} By’ is aterm of P ; hence

A (1) BM (S, ..., S = (=1)" A" B (S, ---S,)"

’“n
is a term of ®(P). Since this is also a term of R, it follows that ®(P) = R. In
other words, substituting

Am_k=(_1)kAm5k(R17""Rm)’ B —k=(_1)k B}’l tk(Sl,. S )

n s Oy

in P forevery k > 0 yields R = A}, B,' []; ; (R; —S;). Hence, substituting

a, =(Dra, s (a),...;a,), b, =(=15b t,(B;,....8,)

forevery k > 0 in D = P(a,,, ..., ay, b,, ..., b) yields
D = a, b []; ; (; — B;) =Res (f.g). O

Discriminants. We still let K be a field. The discriminant of f € K[X]
detects from the coefficients of f whether f is separable. Discriminants also turn
up in the solution of polynomial equations of low degree.

Definition. Let f(X)=a, (X —a;)--- (X — a,) be a polynomial of degree
n 2 1 with coefficients in a field K and not necessarily distinct roots o, ..., o
in K. The discriminant of f is

Dis (f) = a2 Tl1<i-jzn (@ — )7

n

If n =1, then Dis(f) = a(l) = 1. In general, the term arzl”’2 will ensure that

Dis(f) € K. Permutations of o, ..., a, may change the signs of individual
differences o; — o; but do not affect the product J; _; (e; — aj)2 ; hence Dis (f)
depends only on f and not on the numbering of its roots.

Proposition 1.3. Let K be a field. A nonconstant polynomial f € K[X] is
separable over K if and only if Dis (f) + 0.

The next result relates discriminants to resultants.

Proposition7.4. Let K be afield. If f € K[X] has degree n = 2 and leading
coefficient a,, then Res (f, f) = (—1)r(n=1)/2 a, Dis (f).

Proof. In K[X], f(X)=a, []; (X —«;). By IIL5.11,
f1(X) = a,y, (Hj ;ei(X—aj))-

Hence f'(a;)=a, IT; £ (e; — ;) and
Res (f. f')

—1 —1
a, H1§i§n f/(“i) =a, a, H1§i,j§n,j +i (o; — O‘j)

= a " ()P T g (o — )P O

Combining Propositions 7.2 and 7.4 yields a determinant formula for discrimi-
nants:



180 Chapter IV. Field Extensions

Proposition 7.5, Let K be a field. If f =a,X" +---+ay € K[X] has degree
n =2, then

a ao

Dis (f) = (_1)n(n—1)/2i 0 e e .

a4, |na e e @

na, e a4y

In this determinant, each of the first n rows is the row of coefficients of f, padded
with zeros to length 2n — 1; the last n — 1 rows are constructed similarly from
the coefficients of f’.

For example, if f = aX?+bX +c, then

a b c
Res(f, f') = [2a b 0] = 4a’c —ab*;
0 2a b

hence Dis (f) = b> — 4ac. If K does not have characteristic 2, readers may
derive this formula directly from the roots of f.

For f=X 34 pX + q, readers will verify that

1 0 p g O
01 0 p g¢g
N — _ 3 2.
Res(f,f) =13 0 p 0 0| =4p°+279~;
03 0 p O
00 3 0 p

hence Dis (f) = —4p> —274>.

Exercises
In the following exercises, K denotes a field.
1. Whendo X2 +aX +b and X + pX + ¢ € K[X] have a common root in K ?

2.Find therootsof f = aX’+bX+ce K [X] in K incase K does not have characteristic
2, and deduce that Dis (f) = b? — 4ac. What happens when K has characteristic 2 ?

3. Verify that X 34 pX + ¢ has discriminant —4 p3 — 27q2.

4. Find the discriminant of X* + pX2 +gX +r.
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8. Transcendental Extensions

We now turn to transcendental extensions, find their general structure, and prove
a dimension property. This section may be covered immediately after Section 3.

Totally transcendental extensions have as few algebraic elements as possible.

Definition. A field extension K C E is totally transcendental, and E is totally
transcendental over K, when every element of E\K is trancendental over K .

Proposition 8.1. For every field K, K((X;);,c;) is totally transcendental
over K.

Proof. First we show that K (X) is totally transcendental over K . For clarity’s
sake we prove the equivalent result that K(x) =~ K(X) is totally transcendental
over K when yx istranscendental over K . Let @ € K(x),sothat @ = f(x)/g(x)
forsome f,g € K[X],g+0.Ifa ¢ K,then a g(X) ¢ K[X], @ g(X) + f(X),
and ¢ g(X) — f(X) £0in K(«)[X]. But e g(x) — f(x) =0, so x is algebraic
over K (o). Hence K(x)= K(a)(x) is finite over K («). Therefore [ K () : K ]
is infinite: otherwise, [ K (x): K] would be finite. Hence « is transcendental
over K.

That K[X e X n] is totally transcendental over K now follows by induction
onn.Leta € K(X, ..., X,) bealgebraic over K. Then @ € K(X,, ..., X, ;)
(X,,) is algebraic over K(X,, ..., X, ;). Bythecase n =1, o € K(X, ...,

X, _ ), and the induction hypothesis yields o € K.

Finally, let & = f/g € K((X;);c;) be algebraic over K. The polynomials f
and g have only finitely many nonzero terms. Hence o € K((X;);c;) for some
finite subset J of /. Therefore « € K.

A field extension is purely transcendental when it is K-isomorphic to some
K((X;);er)- By 8.1, purely transcendental extensions are totally transcendental.

Proposition 8.2. Every field extension is a totally transcendental extension of
an algebraic extension.

Proof. In any field extension K C E,theset A={«a € E | « is algebraic over
K } is asubfield of E by 3.6, and contains K . Hence A is an algebraic extension
of K. If now « € E is algebraic over A, then A(«) is algebraic over A by 3.3,
A(a) is algebraic over K by 3.5, « is algebraic over K, and @ € A; thus E is a
totally transcendental extension of A. [

For example, R is a totally transcendental extension of its field of algebraic
numbers. We now show that every field extension is also an algebraic extension
of a totally transcendental extension.

Algebraic independence. Elements are algebraically independent when they
do not satisfy polynomial relations:
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Definitions. A family (a;);c; of elements of a field extension K C E is
algebraically independent over K when f((e;);c;) # 0 for every nonzero poly-
nomial f € K[(X;);c;]. A subset S of a field extension K C E is algebraically
independent over K when it is algebraically independent over K as a family
(s) sES”

For instance, {o} is algebraically independent over K if and only if « is tran-
scendental over K ; in K((X;);c;), (X;);c; is algebraically independent over
K. In general, an algebraically dependent family (o;);, satisfies a nontrivial
polynomial relation f ((e;);c;) =0 (where f € K[(X;);c/], f #0).

By II1.6.6 there is an evaluation homomorphism ¢ : K[(X;);c,;] — E,
f— f((e;);er)- Then Im ¢ = K[(a;);;]. by 1.13. We see that (o;);; is
algebraically independent over K if and only if ¢ is injective. Then K [(e;); /]
~ K[(Xi)iel], whence K((“i)iel) =~ K((X;);c;); in particular, K((O‘i)iel)
is totally transcendental over K, by 8.1.

iel

The next lemmas show how algebraically independent subsets can be con-
structed by successive adjunction of elements. Their proofs make fine exercises.

Lemma 8.3. If S is algebraically independent over K and B is transcendental
over K(S), then SU{B} is algebraically independent over K.

Lemma 8.4. S is algebraically independent over K if and only if B is tran-
scendental over K (S\{B}) for every B € S.

Transcendence bases. Algebraic independence resembles linear independence
and yields bases in much the same way.

Lemma 8.5. For a subset S of a field extension K C E the following conditions
are equivalent:

(1) S is a maximal algebraically independent subset;
(2) S is algebraically independent over K and E is algebraic over K(S);
(3) S is minimal such that E is algebraic over K (S).

Proof. (1) and (2) are equivalent: by 8.3, if no S U {8} with B ¢ S is alge-
braically independent, then every B € E\S is algebraic over K (S); conversely, if
every B € E isalgebraic over K (S),thenno SU {8} with 8 ¢ S is algebraically
independent.

(2) implies (3). Let S be algebraically independent over K and let E be algeb-
raicover K(S). If T C S and E is algebraic over K (T'), then T is algebraically
independent over K, T is a maximal algebraically independent subset since (2)
implies (1), and T = S.

(3) implies (2). Assume that E is algebraic over K(S) and that S is not
algebraically independent over K. By 8.4, 3.3, 3.5, some 8 € S is algebraic
over K(S\{B}); then K(S) is algebraic over K (S\{B}) and E is algebraic over
K(S\{B}). Hence S is not minimal such that E is algebraic over K(S). O
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Definition. A transcendence base of a field extension K C E is a subset of E
that satisfies the equivalent conditions in Lemma 8.5. U]

For example, (X;),; is a transcendence base of K ((X;);c;)-

Theorem 8.6. Every field extension K C E has a transcendence base; in fact,
when § C T C E, S is algebraically independent over K, and E is algebraic
over K(T), then E has a transcendence base S C B C T over K.

Proof. Readers will verify that the union of a chain of algebraically independent
subsets is algebraically independent. The existence of a maximal algebraically
independent subset then follows from Zorn’s lemma.

More generally, let S C T C E, where S is algebraically independent over K
and E is algebraic over K (7). Let A be the set of all algebraically independent
subsets A suchthat S C A C T. Then A # @, and, by the above, every nonempty
chainin A has an upper bound in A. By Zorn’s lemma, A has a maximal element
B. If B € T\B, then B is algebraic over K (B): otherwise, B U {8} is alge-
braically independent by 8.3 and B is not maximal in A. By 3.3, 3.5, K(T) is
algebraic over K (B) and E is algebraic over K (B). Hence B is a transcendence
base of E. 0

If B is a transcendence base of a field extension K C E, then E is algebraic
over K(B), and K (B) is totally transcendental over K; thus, every field extension
is an algebraic extension of a totally transcendental extension.

Theorem 8.7. In a field extension, all transcendence bases have the same
number of elements.

Theorem 8.7 is similar to the statement that all bases of a vector space have the
same number of elements, and is proved in much the same way. First we establish
an exchange property.

Lemma 8.8. Let B and C be transcendence bases of a field extension E of K .
Forevery B € B there exists y € C suchthat (B\{B})U{y} is atranscendence
base of E over K, and either y =8 or y ¢ B.

Proof. If B € C,then y = B serves. Now let 8 ¢ C. Ifevery y € C is alge-
braic over K(B\{B}), then, by 3.3, 3.5, K(C) is algebraic over K (B\{8}), and
E, which is algebraic over K (C), is algebraic over K (B\{B}), contradicting 8.4.
Therefore some y € C is transcendental over K(B\{B}). Then y ¢ B\{B};
in fact, y ¢ B since y # 8. By 8.3, B’ = (B\{B}) U {y} is algebraically
independent over K .

Since B is a maximal algebraically independent subset, B’ U {8} = B U {y}
is not algebraically independent over K, and f is algebraic over K (B’) by 8.3.
By 3.3,3.5, K(B) is algebraic over K (B’), and E, which is algebraic over K (B),
is algebraic over K (B'). O

We now prove 8.7. Let B and C be transcendence bases of K C E.
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Assume that C is finite, with n = |C| elements. If B = { B, ..., B, B>
... } has more than n elements, then repeated applications of 8.8 yield transcen-

dence bases { ¥}, Bys .oy Bys Bpsts - o AV V2 Bao oos By Buss o 1o woes
{v1»--+Vy> Bys1> --- }- But C is a maximal algebraically independent subset.
Hence B has at most n elements. Exchanging B and C then yields |B| = |C]|.

Now assume that C is infinite. Then B is infinite. In this case we use
a cardinality argument. Every B € B is algebraic over K(C). Hence B is
algebraic over K(Cg) for some finite subset C4 of C: indeed, f(B) = 0 for
some polynomial f € K(C)[X], and Cy need only include all the elements of C
that appear in the coefficients of f. Then every B € B is algebraic over K (C’),
where C’ = Ugep Cg € C. By 3.3,3.5, K(B) is algebraic over K(C'),and E
is algebraic over K(C’). Since C is minimal with this property, it follows that
c=C'= Ugep Cpg- Thus C is the union of |B| finite sets and |C| < |B| X =
|B|, by A.5.9. Exchanging B and C yields |B| = |C|.O

Definition. The transcendence degree tr.d. (E : K) of an extension K C E is
the number of elements of its transcendence bases. [

For instance, E is algebraic over K if and only if tr.d. (E:K) = 0. The
example of K((X;);c;) shows that tr.d. (E : K') can be any cardinal number.

Exercises

1. Show that the union of a chain of algebraically independent subsets is algebraically
independent.

2. Prove the following: if S is algebraically independent over K and B is transcendental
over K (S),then S U {B} is algebraically independent over K.

3. Prove that S is algebraically independent over K if and only if B is transcendental over
K (S\{B}) forevery g € S.

4. Let K C E C F be field extensions. Show that
tr.d. (F:K)=tr.d.(F:E)+tr.d.(E:K).

9. Separability

The definition of separability in Section 5 works for algebraic extensions only. This
section brings a definition that is suitable for all extensions, devised by MacLane
[1939]. We begin with a new relationship between field extensions, called linear
disjointness, used in MacLane’s definition.

Linearly disjoint extensions. Readers will prove our first result.
Proposition 9.1. Let K C E C L and K C F C L be fields. The following
conditions are equivalent:

(1) («;);e; € E linearly independent over K implies (@;);c; linearly indep-
endent over F;
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) ('Bj)jef € F linearly independent over K implies </3j)jej linearly indep-
endent over E;

(3) (o;);e; € E and (B;)jc; € F linearly independent over K implies
(o ﬂj)(i,j) ci1xy € L linearly independent over K.

Definition. Two field extensions K C E C L, K C F C L are linearly
disjoint over K when they satisfy the equivalent conditions in Proposition 9.1.

Linear disjointness can be established in several other ways.
Proposition 9.2. Let K C E C L and K C F C L be fields. Let E be the
quotient field of a ring K C R C E (for instance, let R = E). If

(D) ay, ..., a, € R linearly independent over K implies o, ..., a, linearly
independent over F, or if

(2) there is a basis of R over K that is linearly independent over F,

then E and F are linearly disjoint over K .

Proof. Assume (1) and let (o;);c; € E be linearly independent over K. Then
(aj) jes is linearly independent over K for every finite subset J of I. If J is
finite, then there exists » € R, r # 0, such that ra; € R forall j € J. Since
R C E has no zero divisors, (raj) jes is linearly independent over K. By (1),
(rozj) jey is linearly independent over F. Hence (ozj) jey is linearly independent
over F, for every finite subset J of I, and («; ), is linearly independent over F.
Thus E and F are linearly disjoint over K.

Now assume that there is a basis B of R over K that is linearly independent
over F. Let (&;);c; € R be a finite family that is linearly independent over K.
All @; lie in the subspace V of R generated by a finite subfamily (,Bj) jer of
B. Hence (a;);c; is contained in a finite basis (a;,),cy of V. We show that
() pep 1s linearly independent over F': since (o,),cpy and (B;) ;¢ are bases
of V there is an invertible matrix C = (c;,;),cp, je; With entries in K such
that o, = Ziel Cpj ,BJ- for all &; if now >, x, o, = 0 for some x; € F, then
2onj Xncnj B =0, >onXn cp; =0 forall j since (B;) ¢ is linearly indepen-
dent over F, and x;, = 0 for all & since C is invertible. In particular, (o;);; is
linearly independent over F. Thus (1) holds. Hence E and F' are linearly disjoint
over K. J

Corollary 9.3. If K C E C L and ay, ..., a, € L are algebraically indep-
endent over E, then E and K(al, e Oln) are linearly disjoint overK.

Proof. K(ay, ..., a,) = K(X,, ..., X,) is the quotient field of K[e, ...,
a,] =~ K[X,, ..., X,], and the monomials ot;nl aglz .
K(ay, ..., a,] over K. The monomials oz'lnl o/zn 2 ... o™ are linearly indepen-
dent over E, since @y, ..., a, are algebraically independent over E. By part (2)

of 9.2, K(e;, ..., a,) and E are linearly disjoint over K. [J

- a)'™ constitute a basis of

Proposition 94. Let K C E C L and K C F C F' C L be fields. If E
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and F are linearly disjoint over K, and EF and F' are linearly disjoint over F,
then E and F' are linearly disjoint over K.

Proof. Take bases («;);c; of E over K, (B;);c, of F over K, and (y,),cpy
of F' over F. Then (B;¥),) ;e nep 15 @ basis of F' over K. If E and F are
linearly disjoint over K, then («; ) is linearly independent over F. If also E'F

and F' are linearly disjoint over F, then (c; ¥,);¢ 1. hen 18 linearly independent
over F. Therefore («; B; Yh)ic I, jet heH is linearly independent over K: if

Zi,j,h Qip ,3 ¥, = 0, where ajp € K, then Zzh (Z al]l’lﬂj)ai v, =0,
> B =0 forallz h,and a;;;, =0 forall i, j, h. Hence (a;);¢; is linearly
independent over F/. [0

Finally, we note two cases of linear disjointness. Let K have characteristic
p+0. Let K'? ={a e K |a €K forsome r > 0}. Up to K-
isomorphism, K l/p is the largest purely inseparable extension of K, by 6.2,6.4.

Proposition 9.5. If K has characteristic p + 0 and E is purely transcendental
1/p™ . L
over K, then E and K /p are linearly disjoint over K .

Proof. Let E = K((x;);e;) = K((X;);cy), Where (x;);c; are algebraical-
oo J—
ly independent over K. Both E and K 1/p are contained in K((x;);c;) =

K((X;);c;). and E is the field of quotients of R = K[(x;);c;] = K[(X;);ec/]-
The monomials m = [[;; Xl.mi constitute a basis of R over K. Suppose that

1/p®° ..
oaymy + -+ amy = 0 for some o, ..., € K /P and some distinct
r r
monomials m, ..., m;. Then af . a,f € K forsome r > 0. Since x —
r
x”" is an 1njectlve homomorphlsm m‘f ey m,f are distinct monomials and
PP P’ =gl = iz, =
ap my +- +ak my =0; henceoz1 = = =0and o) = —ak—O.

; . . 1/p>®
Thus the monomials m = [[;; x; i are linearly independent over K /p ; by

9.2, E and K I/p are linearly disjoint over K. []

Proposition 9.6. If K has characteristic p + 0 and E is algebraic over K,

oo
then E is separable over K if and only if E and Kl/p are linearly disjoint
over K.

Proof. First we prove this when E is a simple extension.

Let o € K be separable over K. Then g = Irr (a : K («?)) divides X? —a? =
(X —)? in K[X],since (XP —aP)(a)=0,and g = (X —a)* forsome k < p.
But g is separable, so k = 1 and ¢ € K(«”). Thus K (o) = K(«”). Hence
K(@)=K(aP)=K(@")=-- = K(a”") forall r > 0.

Now, K(a) has a basis 1, o, ..., "~ over K. Since K(a”' )= K(a)
has the same degree, 1, otpr, s oD P i a basis of K(apr) over K. Hence
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_ . . 1/p®® .
1, a, ..., " 1 are linearly independent over K /p ooif Yor +-» Va1 €
K77 and yy 4y a4+ n=1 20, then 3" P K f
and y, + y, o V1@ =0, then vy , ..., ¥,_; € or
r r r
some r 2 0, y' +yl o + -yl DY = (e
n—l)Pr

r r r
Vn—1¢ =0, V(f7 =V1p =--~=yf_1=0,andy0=y1=--~=yn71=0,

Therefore K («) and K VP~ are linearly disjoint over K, by part (2) of 9.2.

Conversely, assume that K («) and K p are linearly disjoint over K (where
a € K). Leta € E and Irr (¢:K) = ¢(X) = ay +a; X + -+ + a,X", with

a, #0.Then 1, e, ... a" ! are linearly independent over K, and over K 1/p .

’ o]
As above, a; = yl.p for some y; € Kl/p .If ¢’ =0, then a; = 0 whenever i is
not a multiple of p; ¢(X) = q, +apo 4o +akpXkP;

KNP _ P Pl 4. .. 4P kP
(y0+ypa+ +ykpoz) =y tvhal+ +yle
k .
= ag+ayal +-+aq 0t = qa) = 0;
k _q. _ _ _ _ . n—1
Yo+ Vpd+ -y, —O,VO—yp—---—ykp—O,smcel,oz, vy O are

linearly independent over K 1/p ;and g(X) = 0. Therefore ¢’ # 0. Hence the
irreducible polynomial g is separable, and o € E is separable over K.

Now let E be algebraic over K. We may assume that E C K. If E and
o0
K p are linearly disjoint over K, then every « € E is separable over K,

o0
since K(o) C E and K l/p are linearly disjoint over K. Conversely, if E

is separable over K and a4, ..., @, € E are linearly independent over K, then
o0
K(ay, ..., a,)=K(«) forsome a € E by 5.12, K () and K\/p are linearly
L. . . 1/p>°
disjoint over K, and @y, ..., a,, are linearly independent over K /p ;hence E

and k'? are linearly disjoint over K, by part (1) of 9.2. [J
Separability. We now turn to the general definition of separable extensions.

Definition. A transcendence base B of a field extension K C E is separating
when E is separable (algebraic) over K (B).

Separable algebraic extensions, and purely transcendental extensions, ought to
be separable. Hence an extension with a separating transcendence base, which is
an algebraic separable extension of a purely transcendental extension, also ought to
be separable. Since directed unions of separable extensions ought to be separable,
an extension in which every finitely generated intermediate field has a separating
transcendence base ought to be separable as well. On the other hand, 9.5 and
9.6 suggest that separability over K could be defined by linear disjointness from
K I/p OC, when K has characteristic p # 0. MacLane’s theorem states that this
yields the same class of extensions.
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Theorem 9.7 MacLane [1939]). Let K be a field of characteristic p + 0. For
a field extension K C E the following conditions are equivalent:

(1) every finitely generated intermediate field F = K (a, ..., a,) C E has a
separating transcendence base;

(2) E and Kl/pC>o are linearly disjoint over K ;

(3) Eand K'MP ={a €K | a? € K } are linearly disjoint over K .
Moreover, in (1), there is a separating transcendence base B C {al, c o }.

In 9.7, the inclusion homomorphism K — E extends to a field homomor-
L= —= R — 1/p>® _ —
phism K — E; hence we may assume that K C E,sothat E, K /p CE.

Proof. (1) implies (2). By (1) of 9.2 we need only show that every finitely
generated subfield K C F C E is linearly disjoint from Kl/poo over K. By (1),
F has a separating transcendence base B. By 1.11, K\ K(B)C K(B)'/P™ .
Now, K(B) C F and Kl/poo are linearly disjoint over K, by 9.5; F and
K]/pocK(B) C K(B)"/P™ are linearly disjoint over K(B), by 9.6; hence F
and K7 ~ are linearly disjoint over K, by 9.4.

(2) implies (3) since K'/? C k"7

(3) implies (1). We prove by induction on n that every finitely generated
subfield F = K(ay, ..., a,) € E has a separating transcendence base B C
{a, ..., a, }. There is nothing to prove if n = 0. Assume that n > 0.
By 8.6, a4, ..., @, contains a transcendence base, which we may assume is
{a, ...;a,},where r =tr.d. (F:K)<n.If r=n,then {a, ..., @, } isa
separating transcendence base of F'. Hence we may further assume that r < n.

Since oy, ..., a,,; are algebraically dependent over K, there is a nonzero
polynomial f € K[X,, ..., X,,,] such that f(e, ..., «,,;) =0. Choose f so
that its degree is as small as possible and, with this degree, its number of terms
is as small as possible. Then f is irreducible. Let f = cymy + -+ + ¢, my,
where ¢, ..., ¢, € K and m, ..., m; € K[X, ..., X,] are monomials. Then
¢y ..., ¢ # 0, by the choice of f.

Suppose that every exponent that appears in f, and in m, ..., m, is a
multiple of p. Then f(X,, ..., X,,;) = g(X¥, ..., X/,,) for some g €

r+l
K[Xy, ... X, 4]; similarly, m;(X,, ..., X,,;) = ¢;(X¥, ..., XP|) for some

r+l
monomial ¢; € K[X, ..., X,,,]; and every c; has a pthroot y; € K. Hence

fXpe o X)) = vl G(XT LX)
(i v (X, Xr+1))p7

with y; € KYP and Yo vili(ay, oo a,y) =0, so that £ (e, ..., o, ),
. (@, ..., a, ) are linearly dependent over KYP . However, (g, ...,
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o) --os (@, ..., a,,) are linearly independent over K : otherwise, one
of the ¢, (Xf, . XfH) could be replaced in f by a linear combination of the
others, yielding a polynomial g € K[X/, ..., X, ] such that g(e, ..., o) =
0, with lower degree than f or with the same degree but fewer terms. Our
supposition thus contradicts either (3) or the choice of f. Therefore one of
X, ..., X,, appears in f with an exponent that is not a multiple of p.

Suppose that, say, X appears in f with an exponent that is not a multiple of
p. Let g(X) = f(X,0,, ..., @) € K(ay, ..., @, ;)[X]. Then g(a;) =0,
and F is algebraic over K (a5, ..., @, ). By 8.6, 87, {a,, ..., a,, } isa
transcendence base of F; hence g € K(a,, ..., ., )[X] = K[X|,..., X, ] is
irreducible, since f € K[X . & +1] is irreducible. Moreover, g’ + 0, since X
appears in g with an exponent that is not a multiple of p; therefore g, which is
irreducible, is separable. The equality g(o;) =0 then shows that «; is algebraic

and separable over K (,, ..., «,,;). Hence F = K (o, ..., «,) is algebraic and
separable over K (a,, ..., a,). By the induction hypothesis, K («,, ..., «,) has
a separating transcendence base B C {az, NS }, and then B is a separating

transcendence base of F.

The other case, in which X, ; appears in f with an exponent that is not

a multiple of p, is similar but simpler. Then {«,, ..., «, } is already a tran-

scendence base of F. Then g(a,,,) = 0, where g(X) = f(a;, ..., a,, X).

As above, g is irreducible and separable. Hence F = K (al, . an) is al-

gebraic and separable over K(o, ..., @,, @,,,, ..., «,). By the induction

hypothesis, the latter has a separating transcendence base B C {al, ey O, Oy
.., @, },and B is a separating transcendence base of F. [

Definition. A field extension E of K is separable, and E is separable over K,
when every finitely generated subfield K C F of E has a separating transcen-
dence base.

By 9.7, E is separable over K if and only if either K has characteristic 0, or
K has characteristic p # 0 and E is linearly disjoint from K 1/p .

The class of separable extensions has several desirable properties. Separable
algebraic extensions are separable in the previous sense, by 9.5. If E is purely

transcendental over K , then E is separable over K, by 9.6. If E is separable over
K, then every intermediate field K C F C E is separable over K.

Proposition 9.8 (Tower Property). If F is separable over K, and E is separable
over F, then E is separable over K .

The proof is an easy exercise, using 9.4. One might hope for one more tower
property: if E is separable over Kand K C F C E, then E is separable over F.
Alas, this is false in general; readers will find a counterexample.

Exercises

I.Let K C EC L, KCF CL befields. Prove the following: if E is algebraic over
K ,and F is purely transcendental over K , then E and F are linearly disjoint over K .
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2. Prove the following: if K is perfect, then every field extension of K is separable.

3. Prove the following: if F is separable over K, and E is separable over F, then E is
separable over K.

4. Show that a directed union of separable extensions of K is a separable extension of K.

5.Let K CECL, K CF CL befields. Prove the following: if E are F are linearly
disjointover K, and o1, ..., @y € E are algebraically independent over K , then o1, ..., an
are algebraically independent over F.

6.Let K C EC L, K CF CL befields. Prove the following: if E is separable over
K,and a1, ..., an € E algebraically independent over K implies a1, ..., o algebraically
independent over F, then EF is separable over K.

7. Find a separable extension K C E with an intermediate field K C F C E such that
E is not separable over F.

8. Find a separable extension K C E that does not have a separating transcendence base.

h
(You may want to try K (X, Xl/p, e xl/r , ...),where K has characteristic p # 0 and
X is transcendental over K.)



v
Galois Theory

Algebra began when quadratic equations were solved by al-Khowarizmi. Its next
step was the solution of third and fourth degree equations, published by Cardano
in [1545]. Equations of degree 5, however, resisted all efforts at similar solutions,
until Abel [1824] and Galois [1830] proved that no such solution exists. Abel’s
solution did not hold the germs of future progress, but Galois’s ideas initiated
the theory that now bears his name, even though Galois himself lacked a clear
definition of fields. The modern version has remained virtually unchanged since
Artin’s lectures in the 1920s.

Galois theory provides a one-to-one correspondence between intermediate
fields K C F C E of suitable extensions and subgroups of their groups of
K-automorphisms. This allows group theory to apply to fields. For instance, a
polynomial equation is solvable by radicals if and only if the corresponding group
is solvable (as defined in Section II.9).

Sections 1.7, 11.9, and IV.1 through IV.5 are a necessary foundation. Sections
4 and 9 may be skipped.

1. Splitting Fields

The splitting field of a set of polynomials is the field generated by their roots in
some algebraic closure. This section contains basic properties of splitting fields,
and the determination of all finite fields.

Splitting fields. We saw in Section IV.2 that every polynomial with coefficients
in a field K has a root in some field extension of K. A polynomial splits in an
extension when it has all its roots in that extension:

Definition. A polynomial f € K|[X] splits in a field extension E of K when it
has a factorization f(X)=a (X —a;)(X —a,)--- (X —«,) in E[X].

In the above, a € K is the leading coefficient of f, n is the degree of f, and
ay, ..., o, € E are the (not necessarily distinct) roots of f in E. For example,
every polynomial f € K[X] splits in the algebraic closure K of K .

Definition. Let K be a field. A splitting field over K of a polynomial
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f € K[X] is a field extension E of K such that f splitsin E and E is gene-
rated over K by the roots of f. A splitting field over K of a set § C K[X] of
polynomials is a field extension E of K such that every f € 8 splitsin E and E
is generated over K by the roots of all f € 8.

In particular, splitting fields are algebraic extensions, by 3.3. Every set § C
K[X] of polynomials has a splitting field, which is generated over K by the roots
of all f € 8 in K, and which we show is unique up to K-isomorphism.

Lemma 1.1. If E and F are splitting fields of § C K[X] over K, and F C K,
then E = F for every K-homomorphism ¢ : E — K.

Proof. Every f € § has unique factorizations f(X) = a (X — a;)(X —
@) (X —e,) in E[X] and f(X)=a(X = B))(X = B,) - (X = B,)
F[X] C K[X]. Since ¢ is the identity on K, f =% = a(X — ¢a;)(X —
@ay) -+ (X — ga,) in K[X]; therefore ¢ {ay, ..., e, } = { By, .... B, }. Thus
¢ sends the set R of all roots of all f € § in E onto the set S of all roots of all
f€8in F.ByIV.1.9, ¢ sends E = K(R) onto K(S)=F.O

With 8§ = {f}, the proof of Lemma 1.1 shows that every K-homomorphism
F — K permutes the roots of f. This phenomenon is explored in later sections.
By IV.4.2, every splitting field has a K-homomorphism into K ; hence Lemma 1.1
yields a uniqueness result:

Proposition 1.2. Every set 8 C K[X] of polynomials has a splitting field
E C K over K ; moreover, all splitting fields of 8 over K are K-isomorphic.

Accordingly, we speak of the splitting field of $ over K .

Finite fields. A finite field F' has prime characteristic p # 0 and is a finite
extension of Z ,; hence F has order |F| = p" forsome n=[F:Z,] > 0.

Theorem 1.3. For every prime p and every n > 0 there is, up to isomorphism,
n
exactly one field F of order p"; F is a splitting field of X" — X over Zp, and

n
all its elements are roots of x" —x.

Proof. Let F be a field of order p". By IV.1.6, the multiplicative group
F* = F\{0} is cyclic; since |F*| = p" —1 we have x”" =1 =1 forall x € F*
and x”" = x forall x € F. Thus the elements of F arerootsof f(X)= X" —X;

since f has at most p” roots, F consists of all the roots of f. Hence F is a
splitting field of f over Z It and is unique up to isomorphism.

Conversely, let F be a splitting field of f(X)= X" " _ X over Z,. Then F
has characteristic p. The roots of f in F constitute a subfield of F: 0 and 1 are
roots of f, and when «, 8 are roots of f, then so are « — 8 and « ,3’1, since
(a— B =al" — BV = — Bbylllddand (@ )" =a?" g7 =ap~!.
Since F is generated by roots of f it follows that F consists of roots of
f. Now, all roots of f are simple by IIL.5.12, since f’(X) = —1; therefore
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f has p” rootsin F,and F has p" elements. (]
The field of order ¢ = p” is the Galois field GF (q), after Galois [1830], who

showed that “imaginary roots modulo p” of the equation X P" _ X =0 can be
added and multiplied. Properties of Galois fields make entertaining exercises.

Exercises

1. What is the splitting field of X 3 2 over Q?

2. What is the splitting field of X% +5X? +6 over Q?

3. Set up addition and multiplication tables for GF (4).

4. Set up addition and multiplication tables for GF (8).

5. Let K be a field of characteristic p # 0. Show that K contains a subfield of order p”"
if and only if X " — X splitsin K, and then K contains only one subfield of order p” .

6. Show that a field of order p" contains a subfield of order p™ if and only if m divides n.

7.Let L and M be subfields of a field K of orders p‘z and p™, respectively. Show that
L N M has order p?, where d = ged (£, m).

2. Normal Extensions

A normal extension is the splitting field of a set of polynomials. This section
contains basic properties, with applications to perfect fields.

Definition. By IV.4.4, IV.4.5, every algebraic extension of K is contained in
an algebraic closure K of K, which is unique up to K-isomorphism. Normal
extensions are defined by the following equivalent properties.

Proposition 2.1.  For an algebraic extension K C E C K the following
conditions are equivalent:

(1) E is the splitting field over K of a set of polynomials;

(2) ¢E = E for every K-homomorphism ¢ : E — K ;

(3) @E C E for every K-homomorphism ¢ : E — K ;

(4) oE =E for every K-automorphism o of K ;

(5) 0E C E for every K-automorphism o of K ;

(6) every irreducible polynomial q € K[X] with a root in E splits in E.
Proof. (1) implies (2) by 1.1; (2) implies (3) and (4) implies (5); (2) implies

(4), and (3) implies (5), since every K-automorphism of K induces a K-homo-
morphism of E into K.

(5) implies (6). Let g € K[X] be irreducible, with a root & in E. We
may assume that ¢ is monic; then ¢ = Irr (« : K). For every root 8 of ¢ in K,
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IV.2.4 yields a K-homomorphism ¢ of K («) C E into K that sends o to 8. By
IV.4.5, ¢ extends to a K-automorphism o of K. Then 8 = o« € E by (5). Thus
E contains every root of ¢ in K ; hence ¢ splits in E.

(6) implies (1). E is a splitting field of 8 = {Irr («:K) € K[X] |a € E }:
every g = Irr (¢ : K) € 8 has aroot « in E and splits in E, by (6); moreover, E
consists of all the roots of all g € §. [0

Definition. A normal extension of a field K is an algebraic extension of K that
satisfies the equivalent conditions in Proposition 2.1 for some algebraic closure
of K.

Conjugates. Normal extensions can also be defined as follows.

Definitions. Let K be a field. A conjugate of @ € K over K is the image of
o under a K-automorphism of K . A conjugate of an algebraic extension E C K
of K is the image of E under a K-automorphism of K .

For example, an R-automorphism o of C must satisfy (0i)* +1 = o (i>+1) =
0; therefore, either oi = i and o is the identity on C, or i = —i and o is
ordinary complex conjugation. Hence a complex number z has two conjugates
over R, itself and its ordinary conjugate 7.

Proposition 2.2. Over a field K, the conjugates of o € K are the roots of
Irr (@:K) in K.

Proof. If o is a K-automorphism of K , then o« is atoot of ¢ = Irr (a : K),
since g(oa) =%g(oca) = o g(a) = 0. Conversely, if B is aroot of ¢ in K, then
there is by IV.2.4 a K-homomorphism ¢ of K(«) C E into K that sends « to
B, which IV.4.7 extends to a K-automorphism o of K.

Proposition 2.3. For an algebraic extension K C E C K the following
conditions are equivalent:

(1) E is a normal extension of K ;
(2) E contains all conjugates over K of all elements of E ;
(3) E has only one conjugate.

Proof. (3) is part (4) of Proposition 2.1, and (2) is, by 2.2, equivalent to part (6)
of 2.1. 1

Properties. The class of normal extensions has some basic properties, for
which readers will easily cook up proofs.

Proposition 2.4. If F is normal over K and K C E C F, then F is normal
over E.

Proposition 2.5. If E is normal over K and the composite EF exists, then
EF is normal over KF .

Proposition 2.6. Every composite of normal extensions of K is a normal
extension of K .
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Proposition 2.7. Every intersection of normal extensions E C K of K is a
normal extension of K .

One might expect two additional tower statements: if F is normal over K and
K C E C F,then E isnormal over K ;if K C E C F, E is normal over K,
and F is normal over E, then F is normal over K. Both statements are false;
the next sections will explain why.

By 2.7, there is for every algebraic extension K C E C K of K a smallest
normal extension N C Ii of K that contains E, namely, the intersection of all
normal extensions N C K of K that contain E.

Proposition 2.8. The smallest normal extension N C K of K that contains an
algebraic extension E C K of K is the composite of all conjugates of E .

Proof. A normal extension of K that contains E contains all conjugates of E
by 2.1 and contains their composite. Conversely, the composite of all conjugates
of E is normal over K, since a K-automorphism of K permutes the conjugates
of E and therefore leaves their composite unchanged. [

Proposition2.9. Every finite (respectively separable, finite separable) extension
E C K of afield K is contained in a finite (separable, finite separable) normal
extension of K .

Proof. If E C K is finite, then, by IV.5.4, there are only finitely many K-
homomorphisms of E into K . Since the restrictionto E of a K-automorphism of
K is a K-homomorphism, E has only finitely many conjugates; their composite
F is a finite extension of K by IV.3.5, and is normal over K by 2.8. If in general
E is separable over K, then so are the conjugates 0 E =~ E of E, and so is their
composite, by IV.5.11. O

The remaining results of this section require purely inseparable extensions (see
Section IV.6) and may be skipped at first reading.

Proposition 2.10. If E C K is a normal extension of K , then
F={a€E ’ oa = a for every K-automorphism o of K }
is a purely inseparable extension of K, and E is a separable extension of F .

Proof. First, F is a subfield ﬁf Fand K CF. If x € F, t}En every K-
homomorphism ¢ of K («) into K extends to a K-automorphism of K , by IV.4.7;
hence ¢(a) = o and ¢ is the identity on K («). Thus [K(«): K], = 1. Hence
a € K(a) is purely inseparable over K, and F is purely inseparable over K.

Now let @ € E. Let ¢, ..., ¢, be the distinct K-homomorphisms of K (o)
into K ; one of these, say ¢, , is the inclusion homomorphism K (o) — K . Since
every ¢; extends to a K-automorphism of K, we have ¢, E CE and g0 € E
for all i ; moreover, ¢, ..., ¢, a are distinct: if ¢;a = g, then ¢; = ;> since
K («) is generated by «. Let

f(X) = (X —g1a)(X —gpa) -+ (X — g,) € E[X].
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Then f(a) =0, since g, = «, and f is separable, since ¢,c, ..., ¢, are
distinct. If o is a K-automorphism of K, then 0@y, ..., op, are distinct
K-homomorphisms of K(a) into K, {o¢,, ..., 0p,} = {e¢;, ..., ¢, }, 0
permutes ¢, ..., g,o, and °f = f. Therefore all coefficients of f are in F
and f € F[X]. Since f(«)=0, Irr (o : F) divides f and is separable; hence «
is separable over F'. Thus E is separable over F. [

Perfect fields constitute areally nice class of fields, to which our new knowledge
of normal and purely inseparable extensions can now be applied.

Definition. A field K is perfect when either K has characteristic 0, or K has
characteristic p + 0 and every element of K has a pth rootin K. [

Proposition 2.11. Finite fields and algebraically closed fields are perfect.

Proof. Algebraically closed fields are supremely perfect. If K is a finite field,
then the characteristic of K is some prime p # 0, 7 : x — x? is injective by
I11.4.4; therefore 7 is surjective and K is perfect. [J

Lemma 2.12. A perfect field has no proper purely inseparable extension.

Proof. By IV.5.5 we may assume that K has characteristic p £ 0. If K is

perfect, then K contains the pth root of every a € K in K'; by induction, K
contains the p"'th root of every a € K in K. Therefore, only the elements of K
are purely inseparable over K. [J

Proposition 2.13. Every algebraic extension of a perfect field is separable.

Proof. Let K be perfect and let E C K be an algebraic extension of K. By
2.8, E is contained in a normal extension N of K, which by 2.10 is a separable
extension of a purely inseparable extension F' of K. By 2.12, F = K ; hence
E C N is separable over K. []

Proposition 2.14. Every algebraic extension of a perfect field is perfect.

The proof is an exercise. (Readers may not groan.)

Exercises
1. Find the conjugates of % over Q.
2. Find the conjugates of v/2 +1/3 over Q.
Prove the following:
3.If F isnormal over K and K C E C F, then F is normal over E .
4.If E is normal over K and the composite E F exists, then EF is normal over K F.
5.If E and F are normal over K , then E N F is normal over K .
6. Every intersection of normal extensions E C K of K is a normal extension of K .
7.1f E and F are normal over K , then EF (if it exists) is normal over K .

8. Every composite of normal extensions of a field K is a normal extension of K .
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. . o 1/
9. A field K is perfect if and only if K

=K.
10. K(X) is not perfect when K has characteristic p # 0.
11. A field K is perfect if and only if every algebraic extension of K is separable.

12. Every algebraic extension of a perfect field is perfect.

3. Galois Extensions

A Galois extension is a normal and separable extension. The main result of this
section is a one-to-one correspondence between the intermediate fields of a Galois
extension and the subgroups of its group of K-automorphisms.

Definition. A Galois extension of a field K is a normal and separable extension
E of K ; then E is Galois over K.

If K has characteristic 0, then every normal extension of K is a Galois exten-
sion of K ; for instance, K is Galois over K . A finite field of characteristic p is
a Galois extension of Z T

The basic properties of Galois extensions follow from those of normal and
separable extensions:

Proposition 3.1. If F is Galois over K and K C E C F, then F is Galois
over E.

Proposition 3.2. If F is Galois over K and E C F is normal over K, then E
is Galois over K .

Proposition 3.3. If E is Galois over K and the composite EF exists, then EF
is Galois over KF .

Proposition 3.4. Every composite of Galois extensions of K is a Galois exten-
sion of K.

Proposition 3.5. Every intersection of Galois extensions E C K of K isa
Galois extension of K .

The fundamental theorem. This main result relates two constructions.

Definition. The Galois group Gal (E : K) of a Galois extension E of afield K ,
also called the Galois group of E over K, is the group of all K-automorphisms
of E.

For example, the Galois group of C = R over R has two elements, the identity
on C and complex conjugation.

Proposition 3.6. If E is Galois over K , then |Gal (E:K)| =[E:K].

Proof. If E C K is normal over K, then every K-homomorphism of E into
K sends E onto E and is (as a set of ordered pairs) a K-automorphism of E.
Hence |Gal (E:K)|=[E:K];=[E:K] when E is separable over K. [J
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Definition. Let E be a field and let G be a group of automorphisms of E. The
fixed field of G is Fixy (G)={a € E|ca =a forall 0 € G }.

We see that Fixy (G) is a subfield of E. For example, if G = Gal (C:R),
then Fixc (G) =R. A similar result holds whenever G is finite:

Proposition 3.7 (Artin). If G is a finite group of automorphisms of a field E,
then E is a finite Galois extension of F = Fixp (G) and Gal(E: F)=G.

Proof. Let a € E. Since G is finite, Ga is a finite set, Ga = {ay, ..., «, },
where n < |G|, a4, ..., a, € E are distinct, and, say, o; = a. Let f (X) =
(X —a))(X —ay)--- (X —a,) € E[X]. Then f,(a)=0 and f, is separable.
Moreover, every o € G permutes «y, ..., «,, so that 6Tfo[ = fy therefore

f, € F[X]. Hence « is algebraic over F, Irr(a:F) divides f,, and « is
separable over F. Thus FE is algebraic and separable over F. (This also follows
from 2.10.) In fact, E is finite over F, with [E: F] < |G| by IV.5.13, since
degIrr (o : F) < deg f, < |G| forevery o € E. We see that E is a splitting
field of the polynomials f, € F[X];hence E is normal over F.

By 3.6, |Gal(E: F)| = [E: F] < |G|. Butevery ¢ € G is an F-automor-
phism of E, so that G C Gal (E: F). Therefore Gal (E: F)=G.O

Proposition 3.8. If E is a Galois extension of K, then the fixed field of
Gal(E:K)is K.

Proof. Let G = Gal(E:K). Then K C Fixy (G). Conversely, let a €
Fix (G). By IV.4.5, there is an algebraic closure K O E. By IV.4.7, every
K-homomorphism ¢ of K («) into K extends to a K-automorphism o of K;
since E isnormal over K , ¥ has arestriction t to E, whichis a K-automorphism
of E. Hence g = ta = «, and ¢ is the inclusion homomorphism of K (&) into
K. Thus [K(a):K] = 1. Since K(a) C E is separable over K, this implies
K(a)=K and @ € K. (Alternately, Fix, (G) is purely inseparable over K, by
2.10; hence Fixy (G)=K.) O

Propositions 3.1, 3.7, and 3.8 yield the fundamental theorem:

Theorem 3.9 (Fundamental Theorem of Galois Theory). Let E be a finite
Galois extension of a field K .

If F is a subfield of E that contains K, then E is a finite Galois extension of
F and F is the fixed field of Gal (E: F).

If H is a subgroup of Gal (E : K), then F = Fixy (H) is a subfield of E that
contains K, and Gal (E:F)=H.

This defines a one-to-one correspondence between intermediate fields K C
F C E and subgroups of Gal (E: K).

The hypothesis that E is finite over K cannot be omitted in Theorem 3.9. What
happens when E is infinite over K is considered in the next section.

Properties. We complete Theorem 3.9 with the following properties.
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Proposition 3.10. Let F|, F,, F; be intermediate fields of a finite Galois
extension E of K, with Galois groups H,, H,, H;.

() Fy CF,ifandonlyif H 2O H,;
(2) Fy=F, F5ifandonlyif H) = H, N Hy;
(3) Fy = F,N F; ifand only if H, is the subgroup generated by H, U Hy;

(4) whenE C K, then F | and F, are conjugate if and only if H| and H, are
conjugate in Gal (E:K).

Proof. We prove (4) and leave (1), (2), (3) as exercises. First, | and F, are
conjugate if and only if TF, = F, for some v € Gal(E:K): indeed, 7 can
be extended to a K-automorphism o of K: conversely, if o F, = F| for some
K-automorphism o of K, then o has a restriction t to the normal extension E,
T is a K-automorphism of £, and tF, = F|.

Ifnow K C FC E and 0,7 € Gal(E:K), then 0 € Gal(E:7F) if and
only if ot = ta for all @ € F; equivalently, tlorisan F -automorphism, or
ocectGal(E:F)r~!. Thus Gal (E:tF) =1 Gal(E: F)t . If, conversely,
Gal(E:F;)=1Gal(E:F) v~ ! for some 7 € Gal (E: K), then Fy=tF.0

The next two properties resemble the Isomorphism theorems for groups.

Proposition 3.11. If E is a finite Galois extension of K, then an intermediate
field K C F C E is normal over K if and only if Gal(E: F) is normal in
Gal(E:K), and then Gal (F:K) @ Gal(E:K)/Gal(E: F).

Proof. By part (4) of 3.10, F is normal over K (F has only one conjugate)
if and only if Gal(E:F) is normal in Gal(E:K). Now let F be normal
over K. By 3.2, F is Galois over K. Hence every 0 € Gal(E:K) has a
restriction o\F to F, which is a K-automorphism of F. Then ® : 0 — o\F isa
homomorphism of Gal (E : K) into Gal (F : K), which is surjective, since every
K-automorphism of F extends to a K-automorphism of K whose restriction to
the normal extension E is a K-automorphism of E; and Ker ® = Gal (E: F).O

Proposition 3.12. If E is a finite Galois extension of K, F is a field extension
of K, and the composite EF is defined, then EF is a finite Galois exten-
sion of F, E is a finite Galois extension of E N F, and Gal(EF:F) x~
Gal(E:ENF).

Proof. By 3.3, 3.1, EF is a Galois extension of F' and E is a Galois extension
of ENF C E; E is finite over E N F since E is finite over K C E N F, and
EF is finite over F' by IV.3.8.

Since E is normal over E N F, every F-automorphism o of EF has a
restriction to E, which is an E N F-automorphism since o is the identity
on F. This yields a homomorphism © : o — o\ of Gal (EF : F) into
Gal(E:E N F). Since EF is generated by E U F, a K-homomorphism
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of EF is uniquely determined by its restrictions to £ and F'; therefore © is
injective.
If o € E, then oy a = forall o € Gal (EF : F) if and only if oo = & for

all 0 € Gal(EF: F), if and only if « € F, by 3.8. Thus E N F is the fixed
fieldof In©® C Gal(E:ENF);by3.9, ImO©=Gal(E:ENF).O

Exercises

1. Let F;, Fo be intermediate fields of a finite Galois extension E of K, with Galois
groups Hy, Ho. Show that F, C Fy if and only if H1 D H».

2.Let F1, Fo, F3 beintermediate fields of a finite Galois extension E of K , with Galois
groups Hy, Ho, H3. Show that F1 = Fa F3 if and only if H1 = Ho> N Hs.

3.Let F1, Fa, F3 beintermediate fields of a finite Galois extension E of K , with Galois

groups Hyi, Ha, Hs. Show that 1 = Fo N F3 if and only if Hj is the subgroup generated
by Ho U H3.

4. A Galois connection between two partially ordered sets X and Y is a pair of order
reversing mappings F : X — Y, G : Y — X (x" < x” implies Fx' > Fx",y < y”
implies Gy’ = Gy'') such that FGy = y and GFx = x for all x, y. Show that F and
G induce mutually inverse, order reversing bijections between {x € X } GFx =x} and
{yeY|FGy=y}.

5.Let F be a finite field of order p". Show that Gal (F :Z) is cyclic of order p" L.

6. Let K be a field of characteristic 0 and let & € K be a root of unity (&" = 1 for some
n > 0). Show that K (&) is Galois over K and that Gal (K (¢) : K) is abelian.

4. Infinite Galois Extensions

This section may be skipped. It contains Krull’s theorem that extends the funda-
mental theorem of Galois theory to infinite Galois extensions.

Galois groups. Krull’s theorem places a topology on Galois groups, whose
construction is based on certain properties of these groups.

Proposition 41. Let E be Galois over K and let K C F C E. Then
[Gal(E:K):Gal(E:F)] = [F:K]. Moreover, Gal(E:F) is normal in
Gal (E:K) ifand only if F is normal over K .

Proof. By 3.1, E is Galois over F. Every K-homomorphismof F into K O E
is the restriction to F of a K-automorphism of E. Now, o and 7 € Gal (E: K)
have the same restriction to F if and only if o~ 7 is the identity on F, if
and only if o' 7 € Gal (E: F). Hence there is a one-to-one correspondence
between left cosets of Gal (E: F) and K-homomorphisms of F into K, and
[Gal(E:K):Gal(E:F)]=[F:K];=[F:K]. The rest of the statement is
left to readers. [J

Proposition 4.2. Let E be a Galois extension of K and let F be the set of all
Galois groups Gal (E : F) C Gal (E : K) of finite extensions F C E of K .
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(1) Every H € F has finite index in Gal (E: K).
) NyegH=1.
(3) F is closed under finite intersections.

(4) Every H € F contains a normal subgroup N € F of Gal (E : K).
Proof. (1) follows from 4.1.

(2). Let 0 € nHeﬁ"H' If « € E, then K(¢) C E is finite over K,
Gal(E:K(a)) € F,0 € Gal(E:K(a)),and oo =«. Hence o = 1.

(3). Let H = Gal(E: F|) and H, = Gal (E: F,), where F|, F, C E are
finite over K. Then F|F, is finite over K, by IV.3.8, and Gal(E: F| F,) =
H, N H,, since 0 € Gal (E: K) is the identity on F| F, if and only if o is the
identity on F; and the identity on F,. Hence H, N H, € F.

(4). Every finite extension FF C E C K of K is contained in a finite
normal extension N of K, namely the composite of all conjugates of F, and
N C E since every conjugate of F is contained in [a conjugate of] E. Then
Gal(E:N) d Gal(E:K)by4.land Gal(E:N)C Gal(E:F).O

By 4.2, the trivial subgroup of a Galois group is the intersection of normal
subgroups of finite index. Hence not every group is a Galois group (see the
exercises). But we shall see in Section 7 that every finite group is a Galois group.

The Krull topology. Let X and Y be sets and let M be a set of mappings of
X into Y. Forevery f € M and finite subset S of X let

V(f.S)={geM|g(s)=f(s) forall s € S }.
IfheV(f,S)NV(g, T),then V(f,S)NV(g,T)=V(h, SUT). Hence the
sets V(f, S) constitute a basis for a topology, the finite topology on M .

Proposition 4.3. Let E be a Galois extension of K. Let

N be the set of all cosets of normal subgroups N € F, let
L be the set of all left cosets of subgroups H € F, and let
R be the set of all right cosets of subgroups H € F.

Then N is a basis for the finite topology on Gal (E : K), and so are L and R.

Proof. Let H = Gal(E:F) € F, where F C E is finite over K. Then
F = K(S) for some finite subset S of E. If o, € Gal (E:K),thent € V(o, §)
if and only if oo = tar for all @ € K(S), if and only if 0~ 'z € H. Thus
V(o,S)=0H. Hence L is a basis of the finite topology on Gal (E: K).

If AABe Nand o € ANB,then A =oM, B =cN for some normal
subgroups M, N € F,and ANB =oc(MNN) &€ N,since MNN € F
by 4.2. Hence N is the basis of a topology. Now, L and N are bases of the
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same topology: N C L; conversely, every subgroup H € F contains a normal
subgroup N € F, by 4.2. Similarly, R and N are bases of the same topology. [

The finite topology on Gal (E : K) is also known as the Krull topology. Its
open sets are unions of members of N, equivalently, unions of members of L (or
R). Unlike the author’s office door, every subgroup H € J is both open and
closed (since its complement is a union of left cosets of H ).

If Gal (E : K) is finite, then {1} is open and the finite topology is the discrete
topology. The general case is as follows:

Proposition 4.4. In the finite topology, Gal (E : K) is compact Hausdorff and
totally disconnected.

Proof. Let G = Gal(E:K). Let 0,7 € G, 0 + t. Then o1t ¢ H for
some H € &, since ﬂHe?H =1 by 4.2, and then 0 H, TH € L are disjoint.
Hence G is Hausdorff. Also, 0 H and G\o H are both open (G\o H is a union
of left cosets of H)and o € 0 H, © € G\o H. Hence G is totally disconnected.

That G is compact follows from Tychonoff’s theorem. We give a direct proof:
we show that every ultrafilter U on G converges to some o € G.

Every o € E belongs to a finite extension F C E of K (e.g., to K(a)).
Then H = Gal (E : F) € JF has finite index, G is the union of finitely many left
cosets of H, and tH € U for some T € G, since U is an ultrafilter. Assume
that « € F, F', where F, F' C E are finite over K, and tH, t'H € U,
where H = Gal(E:F) and H' = Gal (E: F’). Then tH Nt'H’ € U contains
some v € G, v 't e H=Gal(E:F), v''t/ € H = Gal(E: F'), and
vlta = a = v 7, since « € FN F'. Hence ta = t'a. Therefore
a mapping o : E — E is well defined by o = T whenever « € F and
TH € U, where F C E is finite over K, 7 € G,and H = Gal(E: F).

If o, 8 € E, then F = K(«, B) is finite over K, H = Gal(E:F) € ¥, and
TH € U forsome t € G. Hence o =ta, o =t6,and o (¢ + B) = o + 08,
o(aB) = (ca)(oB). Also ox = tx = x forall x € K. Thus o is a K-
endomorphism of E. Since E isnormalover K, cE =E,and 0 € G.

Let H=Gal(E:F)€ F,where F C E is finite over K. As above, tH € U
for some T € G, and then oo =t foralla € F, 1l o € Gal(E:F)=H,
and o H = tH € U. Thus U contains every neighborhood of o . [J

Krull’s theorem. The one-to-one correspondence in Krull’s theorem is between
the intermediate fields of a Galois extension and the closed subgroups of its Galois
group, under the finite topology. The next result explains why.

Proposition 4.5. If E is a Galois extension of K and H is subgroup of
Gal (E: K), then E is a Galois extension of F = Fixy (H) and Gal (E: F) is
the closure of H in Gal (E: K).

Proof. By 3.1, E is Galois over F. Let 0 € H and « € F. Then
K (o) C F is finite over K, U = Gal(E:K(«)) € F, oU is open, and there
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exists T € HNoU. Then t o € U, t loa =«a,and ca = T = «. Thus
oc€Gal(E:F).

Conversely, let 0 € Gal(E:F). Let U = Gal(E:L) € ¥, where L C E
is finite over K. Then LF is finite over F; by 2.9, LF is contained in a finite
normal extension N C E of F (the composite of all conjugates of LF, all of
which are contained in E). Then N is a finite Galois extension of F'. Restriction
to N is a homomorphism ® : 7 +— 7}y of Gal(E: F) into Gal (N : F). Now,

F = Fixg (H); therefore F = Fix, (®(H)). In the finite Galois extension N
of F this implies ®(H) = Gal (N : F). Then ®(c) = &(r) for some t € H,
whence o)y = 1y, o), =T, o't eGal(E:L)=U,and t € oUNH.
Then every neighborhood of o intersects H,and o € H. [

Krull’s theorem follows from Propositions 3.1, 4.5, and 3.8:
Theorem 4.6 (Krull). Let E be a Galois extension of a field K .

If F is a subfield of E that contains K, then E is a Galois extension of F and
F is the fixed field of Gal (E: F).

If H is a closed subgroup of Gal(E:K) in the finite topology, then F =
Fixy (H) is a subfield of E that contains K, and Gal(E: F)=H.

This defines a one-to-one correspondence between intermediate fields K
F C E and closed subgroups of Gal (E: K).

N

If E is finite over K, then Gal(E:K) has the discrete topology, every
subgroup is closed, and Krull’s theorem reduces to Theorem 3.9. Readers will
easily extend Propositions 3.10, 3.11, and 3.12 to arbitrary Galois extensions.

An example. This example, from McCarthy [1966], has uncountably many
subgroups of finite index, only countably many of which are closed. Thus, a
Galois group may have comparatively few closed subgroups; subgroups of finite
index need not be closed in the finite topology; and the finite topology has fewer
open sets than the profinite topology mentioned at the end of Section L.5.

Let E C C be generated over Q by the square roots of all primes p = 3; E is
the splitting field of the set of all polynomials X 2 p, and is Galois over Q.

Let G = Gal(E:Q). Since Irr(\/p:Q) = X2 — p, /P has only two
conjugates over Q, \/p and —,/p. Hence o,/p = /p or o/p = —/p, for
every Q-automorphism o of E. Conversely, for every subset S of P, there is a
Q-automorphism o of E such that o/p = —,/p forall p € S and o/p=,/p
forall p ¢ S. Therefore |G| =2"0 and G is uncountable.

We also have o2 = 1 for every Q-automorphism o of E. Therefore G is
abelian, and is a vector space over Z,. Let B be a basis of G over Z,. Then B
is uncountable, since G is. For every 8 € B, B\{B} generates a subgroup of G
of index 2. Therefore G has uncountably many subgroups of finite index.
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On the other hand, E is, like all algebraic extensions of @, countable. If
F C E is finite over Q, then F = Q(«) for some « € E, by IV.5.12. Therefore
there are only countably many finite extensions F C E of Q. By 4.6, G has only
countably many closed subgroups of finite index.

Exercises

1. Given a Galois extension E of K and K C F C E, show that Gal(E: F) is
normal in Gal(E :K) if and only if F is normal over K, and then Gal (F:K) =
Gal(E:K)/Gal(E:F).

2. In any group, show that the intersection of two subgroups of finite index is a subgroup
of finite index.

3. In any group, show that every subgroup of finite index contains a normal subgroup of
finite index.

4. In a group G, show that the identity is the intersection of normal subgroups of finite
index if and only if G can be embedded into (is isomorphic to a subgroup of) a direct product
of finite groups. (These groups are called profinite).

5. Show that the additive group Q is not profinite.

6. Use Tychonoff’s theorem to prove that Gal (E : K) is compact in the finite topology.

7.1n a Galois group, show that the multiplication (o, T) — o7 andinversion o — ot

are continuous in the finite topology.
8. Let F1, Fo, F3 be intermediate fields of a Galois extension £ of K, with Galois
groups Hy, Hy, H3. Show that F1 = Fp F3 if and Ol‘l]y if Hi = Ho N H3.

9. Let F1, Fa, F3 be intermediate fields of a Galois extension E of K, with Galois
groups Hy, Ho, H3. Show that F; = Fo N F3 if and only if Hj is the closure of the
subgroup generated by Ho U H3.

10. Let E be a Galois extension of K and let F' be a field extension of K such that the
composite EF is defined. Show that E F is a Galois extension of F, E is a Galois extension
of ENF,and Gal(EF:F) ~ Gal(E:E N F). Is this isomorphism continuous? a
homeomorphism?

5. Polynomials

In this section we look at the splitting fields of polynomials of degree at most 4.
This provides concrete examples of Galois groups. The material on polynomial
equations may be skipped, but it shows a nice interplay between ancient results
and modern Galois theory.

General results. We begin with abitrary polynomials.
Definition. The Galois group Gal(f : K) of a polynomial f € K[X] over a
field K is the group of K-automorphisms of its splitting field over K . [

If E C K is the splitting field of f € K[X] over K, then E is finite
over K and its group G of K-automorphisms is finite; by 3.7, E is a finite
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Galois extension of F = Fixy (G) and Gal(f:K)= G = Gal(E: F). Then
E = F(a) for some « € E, by IV.5.12 and E is the splitting field over F of
the separable irreducible polynomial Irr («: F). Thus the Galois group of any
polynomial is the Galois group (perhaps over a larger field) of a finite Galois
extension, and of a separable irreducible polynomial.

If f is separable over K, then its roots in K are separable over K, its splitting
field E is separable over K, E is a Galois extension of K, and Gal(f:K) =
Gal(E:K).

Proposition 5.1. Let ay, ..., a, be the distinct roots of f € K[X] in K.
Every t© € Gal(f:K) permutes the roots of f in K; hence Gal(f:K) is
isomorphic to a subgroup G of the symmetric group S, . If f is separable and
irreducible, then n divides |G| and G is a transitive subgroup of S, .

Proof. Let E be the splitting field of f. If 7 is a K-automorphism of E and
fla) =0, then f(ra)="f(ra)= tf(e) = 0; hence t permutes the roots of
f and induces a permutation o € S, such that ta; = o ; forall i. Since E
is generated by o, ..., o, , T is uniquely determined by o, and the mapping
¢ 1 T — o is injective; ¢ is a homomorphism since ‘L"L'/Oli =Ta.; =,
Hence Gal (f : K) is isomorphic to the subgroup G =Im ¢ of S, .

oli*

If f is separable and irreducible, then f has degree n, f = Irr (o, : K) for
every i, K(a;) C E has degree n over K, and Gal(f:K)= Gal(E:K) has
a subgroup Gal (E : K (¢;)) of index n. Hence n divides |Gal (f: K)| = |G].
For every i, j thereis a K-automorphism t of E such that Te; = o hence G is
transitive (for every i, j there is some ¢ € G such that oi = j).

For a separable and irreducible polynomial f € K[X], 5.1 implies the follow-
ing. If f has degree 2, then Gal(f:K) = S, is cyclic of order 2. If f has
degree 3, theneither Gal (f: K) = S;,0r Gal(f: K) = Aj; is cyclic of order 3.

Example. The Galois group G and splitting field £ C C of f(X)=X 3.2
over Q can be analyzed in some detail. First, f is irreducible, by Eisenstein’s
criterion. The complex roots of f are p = V2 € R, jp, and jz,o, where
j =—1/2+i+/3/2 is a primitive cube root of unity. Hence E = Q(p, jp, j’p) =
Q(p, j),and E has an intermediate field Q(p) C R. We see that [Q(p) : Q] =3
and [E:Q(p)] =2. Hence [E:Q] =6 and G = Gal(E:Q) = S;, by 5.1.
Next, S5 is generated by the 3-cycle (12 3) and the transposition (2 3); hence G
is generated by y and t, where

vo=jo.v(jp)=i*0. v(j*p)=p, vj=]
0 =p. T(jp)=j’p. T(j*p) = jp. Tj = j%,
and G={1, v, yz, T, YT, )/21:}. The subgroups of G are 1, G, and

{Loh {Lyeh {Ly¥h {Ly. )



206 Chapter V. Galois Theory

Hence E has four intermediate fields Q & F G E. The fixed field F of
{1, t} contains p and has degree 3 over Q, since [E: F]=|Gal(E: F)| =2;
hence it is Q(p). Similarly, the fixed field of {1, y7 } is Q(j?p), which has
degree 3 over Q; the fixed field of { 1, y2z } is Q(jp), which has degree 3 over
Q; and the fixed field of {1, y, y2 } is Q(J), which has degree 2 over Q and is
normal over Q since {1, y, y?} < G.O

Polynomials of degree 3. Let f(X)=a, (X —a;)--- (X —«,) be a poly-
nomial of degree n ;1 with coefficients in a field K and not necessarily distinct
roots oy, ..., @, in K. The discriminant of f is

. 2n—2 2
DlS(f) = ann H1§i<j§n (ai _aj) :

Some properties of discriminants, for instance, Dis(f) € K, are proved in
Section IV.7.

n

Proposition 5.2. If f € K|[X] and the field K does not have characteristic
2, then Gal (f : K) induces an odd permutation if and only if Dis (f) does not
have a square rootin K .

Proof. The splitting field E of f contains all «; and contains Dis (f). We
see that Dis (f) = d*, where d = a" ! Ili<icj<n (e —op). I T € Gal(f: K)
transposes two roots, then td = —d; hence td = d whenever T induces an
even permutation, and td = —d # d whenever 7 induces an odd permutation. If
d € K, equivalently if Dis (f) has a square rootin K (which mustbe d or —d),
then no v € Gal(f:K) induces an odd permutation. If d ¢ K, then td + d
for some 7 € Gal(f:K), since K is the fixed field of Gal(f:K), and some
7 € Gal (f : K) induces an odd permutation. (]

Corollary 5.3. Let f € K[X] be a separable irreducible polynomial of degree
3. If Dis(f) has a square root in K, then Gal(f:K) = Ay, otherwise,
Gal(f:K) = S;.

Proof. We saw that Gal (f : K) is isomorphic to either A5 or S;. [

The discriminant of X3 + pX +¢q is known to be —4 p3 — 27q2. For example,
f(X) = X3 —2 e Q[X] is irreducible by Eisenstein’s criterion; Dis (f) =
—27 x 22 = —108 does not have a square root in Q; therefore Gal (f: Q) =~ S;.
In this example, the roots of f in Q C C are reached by first adjoining to Q a
square root of —108 (equivalently, a square root of —3), then a cube root of 2;
this corresponds to the structure Q & Q(j) & E of the splitting field and to the
structure S3 2 A; 2 1 of the Galois group.

Cardano’s formula. Cardano’s sixteenth century method [1545] yields for-
mulas for the roots of polynomials of degree 3, and an explicit way to reach them
by successive adjunctions of square roots and cube roots.

Let K be a field that does not have characteristic 2 or 3, and let f(X) =
aX’ +bX? +cX +d € K[X], where a # 0. The general equation f(x) =0
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is first simplified by the substitution x = y — b/3a, which puts it in the form
g(y)=a(y®+ py+q)=0, where p,q € K, since p and ¢ are rational
functions of a, b, c,d. Note that Dis(f) = Dis(g), since f and g have the
same leading coefficient and differences between roots.

To solve the equation g(x) = x>+ px +¢ =0, let x = u + v to obtain

(u+v) +pu+v)+q = u’ +v3+ Guv+ p)(u+v)+q = 0.
If 3uv+ p =0, then u? and v° satisfy vl = —p3/27 and u> +0° = —q,and are
the roots of the resolvent polynomial (X — u®)(X — v3)= X2 +¢gX — p3/27 €
K[X]:

3 _ —q+Vgr+4Ap3/2T 3 —q —\qP+4p3 /2T

u = , U = )

2 2

and we obtain Cardano’s formula:

Proposition 5.4. If K does not have characteristic 2 or 3 and p,q € K, then
the roots of X> + pX +q in K are

i/—q + \/q2+4p3/27 N i/—q — \/q2+4p3/27
2 2 ’

u+v =

where the cube roots are chosen so that uv = —p/3.

Equations of degree 4. The following method solves equations of degree 4
and yields explicit formulas that construct the roots by successive adjunctions of
square roots and cube roots. Cardano had a simpler solution, but it does not relate
as well to Galois groups.

Let f(X)=aX*+bX3+cX?>+dX +e € K[X], where a 0 and K does
not have characteristic 2. Simplify the equation f(x) = 0 by the substitution
x =y — b/4a, which puts it in the form g(y) =a (y4 +py2 gy + r) =0, where
p.q.r € K are rational functions of a, b, c,d,e. The roots o, ..., oy of f

and B, ..., By of gin K are related by a; = —b/4a + B; for all i. In particular,
Dis(f)=Dis(g).

In K[X]. g(X)=a(X*+pX?+qX +r)=a(X — B))(X — B,)(X — B3)
(X — /34)7 whence Zi B =0, Zi<j B; ,3]' =P, Zi<j<k B; ﬂj By = —q.,
By By By By=1. Let

u=—(B+B)(Bs+By) = (B +5)%
v= (B +B)(By+By) = (B +By)%
w = —(B+B4)(By+B;) = (B +By%
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equivalently,
b b b \2
u = —(a]+a2+z><tx3+a4+%> = (oc1+ot2+%) ,
b b b \2
v = —(a1+a3+%><a2+a4+%) = (a1+a3+5> ,
b b b \2
w = —(a1+a4+z)(a2+a3+%) = (a1+a4+z) .

Tedious computations, which our reader will probably not forgive, yield
u+v+w=-2p, uv+uw+vw=p2—4r, uvw=q2.
Hence u, v, and w are the roots of the resolvent polynomial of f and g,
s(X)= (X —u)(X —v)(X —w)=X>+2pX° + (p* — 4r)X — ¢* € K[X].
Note that u — v = (B) — By)(By — B3), u —w = (B; = B3)(B, = By), v —w =

(B, — By)(Bs — By). o that Dis (s) = [T, (8 — §,)* and Dis (f) = Dis (g) =
a® Dis (s).

Now, B; + B, = u’ is a square root of u, B+ B3 = v’ is a square root of v,
B, + By = w’ is a square root of w, and
2
w'v'w' = (By+By)(By+B3) By +B4) = B B+ i BB By = —a

Finally, u’ + v + v’ = 3B8; + By + B3 + B, = 2B;; similarly, u —v —w =
2By, —u' +v —w' =2B;, —u’ —v' +w’' = 28, and we obtain formulas for

.31» ﬂza ﬂ3a .343

Proposition 5.5. If K does not have characteristic 2 and p,q,r € K, then
the roots of X4+ sz +gX +rin K are

1 1
ﬂ1=f(u’+v/+wl), ,32=7(u/—v/—w/),

2 2
1 1
ﬂ3=§(—u/+v/—w/), ,34=§(—u/—v/+w/),

where u',v', w' are square roots of the roots u, v, w of the resolvent s(X) =
X3 +2pX? + (p? — 4r)X — ¢, chosen so that u'v'w' = —q.

If K does not have characteristic 2 or 3, then Cardano’s formula for u, v, and
w yields explicit formulas for 8, ..., B, and explicit formulas for o, ..., a,,
showing that they can be reached from K by successive adjunctions of square
roots and cube roots.

Polynomials of degree 4. The Galois groups of polynomials of degree 4 reflect
the construction of their roots in Proposition 5.5.

Proposition 5.6. Let f(X) = aX* + bX? + cX?> +dX + e € K[X] be a
separable irreducible polynomial of degree 4, where the field K does not have
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characteristic 2. Let F C K be the splitting field of its resolvent. Then [ F : K ]
divides 6 and:

(1) If [F:K]=6, then Gal (f:K) = S,.
Q) If [F:K]=3, then Gal (f:K) = A,.

) If[F:K]=2,then Gal (f:K) = D, if f isirreducible over F, otherwise
Gal (f : K) is cyclic of order 4.

@ If[F:K]=1, then Gal(f:K) = V,.

Proof. The resolvent s of f is separable, since a® Dis (s) = Dis (f) #£0.
Hence its roots u, v, w are all distinct. Let E C K and F = K(u,v,w) C K
be the splitting fields of f and s. By 5.5, E C K (u',v', w'), where u’, v/, w’
are square roots of u, v, w such that u’v'w’ € K. Hence E C F(u’,v’) and
[E:F]<4. Also F is Galois over K; Gal (s : K) is isomorphic to a subgroup
of S5,and [ F:K]=|Gal(s:K)| divides 6.

Before tackling parts (1) through (4), we look at S,. The normal subgroup
V={1,(12)(34), (13)(24), (14)(23)} of S, is isomorphic to V,. The
centralizer C of (1 2)(3 4) € V consists of all permutations ¢ such that either
o{1,2} ={1,2}, 0{3,4} = {3,4}, or 6{1,2} = {3,4}, 0{3,4} =
{1,2}. Since (12)(3 4) has three conjugates in S,, C has eight elements and
consists of (1 2), (34), (1324), (142 3), and the elements of V, all of
which commute with (1 2)(3 4). Thus C is a Sylow 2-subgroup of S,. We see
that C = D,. The centralizers of (1 3)(24) and (1 4)(2 3) are the other Sylow
2-subgroups of S, and consist of similar permutations. Hence o € S, commutes
with every element of V ifandonlyif o € V.

By 5.1, Gal(f:K) is isomorphic to a subgroup G of S,: every 7 €
Gal (f:K) permutes the roots ay, ..., ay of f and induces a permutation
o € S, such that Ta; = ;. The equalities

b b b \2
—(a1+a2+5><(¥3+0[4+g) (a1+(¥2+5) ,

u = =
b b b \2
vV = —(al+a3+i><a2+a4+%) = (a1+a3+%> s
b b b \2
w = _(a1+a4+z)(a2+a3+z) = (a1+a4+£)

show that 7 also permutes u, v, and w. If o € V, then the same equalities
show that tu = u, tv = v, and tw = w. Conversely, if tu = u, Tv = v, and
Tw = w, then tu = u £ v, w, whence 0{1,2} ={1,2}, 0{3,4} = {3,4}
and o commutes with (1 2)(3 4); similarly, o commutes with (1 3)(2 4) and
(14)(23);hence 0 € V. Therefore T € Gal (E: F) ifand only if o € V, and
Gal(E:F) ~GNV. By3.11, Gal(F:K) = Gal(E:K)/Gal(E: F) =
G/(GNV).

By 5.1, G = Gal(f:K) is a transitive subgroup G of S,, whose order is
divisible by 4. Hence |G| =4, 8,12, or 24. If |G| =24, then Gal (f:K) = S,
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and [F:K]=6,since [E:K]|=24, [E:F]<4,and [F:K] < 6.

If |G| =12, then G = A,, since A, is the only subgroup of S, of order
12; hence Gal (f:K) = A,, V C G, Gal(F:K) = G/V has order 3, and
[F:K]=3.

If |G| = 8, then G is one of the three Sylow 2-subgroups of S,; hence
Gal(f:K) =D,,V CG,Gal(F:K) ~G/V hasorder 2,and [ F: K]=2.
Since V is transitive and V C G, there exists, for every i, some v € Gal (f: K)
such that Ta; = «; and 7 induces some o € V ; then 7 € Gal (E: F);hence a;
is aroot of Irr (a; : ). Thus Irr (o : F) has four distinct roots in E and degree
at least 4. Since f (o) =0, it follows that f is proportional to Irr (; : F), and
is irreducible in F[X].

Finally, let |G| =4. If G = V, then Gal(f:K) = V,, Gal(F:K) =1,
and [ F: K] = 1. Otherwise, G is cyclic, generated by a 4-cycle, Gal (f: K) is
cyclic of order4, Gal (F:K) ~ G/(GN V) hasorder2,and [ F: K ]| =2; then
G NV ~ Gal(E: F) is not transitive, so f is not irreducible over F, by 5.1. J

Exercises
1. Find fields K C E C F such that F is normal over K but E is not normal over K .

2.Let f € R[X] have degree 3. How does the sign of Dis (f) relate to the number of
real roots of f?

3.Let f € R[X] have degree 4. How does the sign of Dis (f) relate to the number of
real roots of f?

In the following exercises, find the Galois group of the given polynomial over the given field,
and all intermediate fields of its splitting field.

4. X2 — X —1,over Q.
5. X3 — 10, over Q.
6. (X2 —2)(X? —3), over Q.
7. X* — 3, over Q.
In the following exercises, find the Galois group of the given polynomial over the given field.
8. X3 — X — 1, over Q(v/-23).
9. X3 — 10, over Q(ﬁ)
10. X3 — 10, over Q(v/=3).
11. X* — 3, over Q(\/§)
12. X* — 3, over Q(v/=3).
13. X*+ X +3, over Q.
The following exercises are for the last part of this section, which may have been skipped.

14. Use Cardano’s formula to find the roots of X2 —3X + 1 in C.
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15. Verify that u + v+ w = —2p, uv +uw + vw = p2 —4r,and uvw = q2,in the proof
of 5.5.

16. Cardano solved the equation xty px2 +gx +r = 0 by rewriting it as (x2 + y)2 =
and choosing y so that the right hand side is a perfect square. Fill in the details.

17. Find the roots of X% +3X +3 in C.
18. Find the Galois group of X% +3X +3 over Q.

6. Cyclotomy

The Greek roots of the word “cyclotomy” mean “circle” and “cut”, as in cutting
the unit circle into n equal arcs. This section uses Galois theory rather than scis-
sors to study complex roots of unity, their irreducible polynomials, and the fields
they generate over Q. This yields more examples of Galois groups. Applica-
tions include Wedderburn’s theorem on finite division rings; a particular case of
Dirichlet’s Theorem on primes in arithmetic progressions; and a proof that every
finite abelian group is the Galois group of a finite extension of Q.

Except for Proposition 6.5, which is quoted in Section 9, this material will not
be used later.

Cyclotomic polynomials. Recall that the nth roots of unity in C are the
complex numbers &, = cos (2wk/n)+isin (2nk/n), 0 < k < n. The nth root
of unity &, is primitive if and only if k and n are relatively prime, so that there
are ¢(n) primitive nth roots of unity, where ¢ is Euler’s function.

Definition. The nth cyclotomic polynomial is the product ®,(X) € C[X] of
all X — ¢ in which ¢ is a primitive nth root of unity.

For example, ®,(X)=X — 1; &,(X)=X+1; O5(X)=(X — j)(X —j)=
X2+ X +1;®,(X)= (X —i)(X+i)= X +1.

Cyclotomic polynomials have some basic properties.

Proposition 6.1. For all integers n,q 2 2, ®,(q) € R and ®,(q) > q — 1.

Proof. The number @, (q) is the product of ¢(n) complex numbers ¢ — ¢,
where | =1, ¢ # 1. Hence | —¢|>¢g—121and |®,(q)] > (¢ — 1% >
g — 1. Moreover, ®, (q) is positive real, since the numbers g — & are conjugate
in pairs or real. [J

Proposition 6.2. X" — 1 = Hd|n D,(X).

Proof. If ¢ has order d (if ¢4 =1and e £1 forall 0 < k < d), then d
divides n and ¢ is a primitive dth root of unity. Classifying by order yields

X" —1= He”:l (X - 8) = Hd\n (Hahasorderd (X - 8)) = Hd|n (bd(X)' U

Since ®, has degree ¢(n), Proposition 6.2 implies n = Zd\n ¢(d), which
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is I.1.8. With 6.2, ®, can be computed recursively. For instance,
De(X) = (XO—1)/(X — DX +1)(X*+X+1) = X> — X +1.
Proposition 6.3. ®, is monic and has integer coefficients.

Proof. By induction. First, ® (X)= X — 1 is monic and has integer coeffi-
cients. If n > 1, then polynomial division in Z[X] of X" — 1 € Z[X] by the
monic polynomial Hd|n’ d<n P4 € Z[X] yields ®,(X), by 6.2. ]

Proposition 6.4. For all n > 0, ®, is irreducible in Q[X].

Proof. Assume that ®, is not irreducible in Q[X]. Then ®, € Z[X] is not
irreducible in Z[X] and ®,(X) = ¢(X)r(X) for some nonconstant ¢, r € Z[X].
We may assume that g is irreducible. Since @, is monic, the leading coefficients
of ¢ and r are £1, and we may also assume that ¢ and r are monic. The
nonconstant polynomials ¢ and r have complex roots ¢ and ¢, respectively, that
are primitive nth roots of unity since they are also roots of ®,. Hence ¢ = ek
for some k > 0 (since ¢ is primitive) and k is relatively prime to n (since ¢
is primitive). Choose ¢ and ¢ so that k is as small as possible. Then k > 1:
otherwise, ¢ = ¢ is a multiple root of @, .

Let p be a prime divisor of k. Then p does not divide n, &” is primitive,
and @, (e7) = 0. If g(¢”) =0, then ¢ = (eP)*/P contradicts the choice of &
and ¢. Therefore r(¢”) = 0. But k = p is as small as possible, so k = p.
Moreover, ¢(X) divides r(X?) in Q[X], since g = Irr (¢: Q) and r(e?) =0,
so that r(X?) = g(X)s(X) for some s € Q[X]. Since ¢ is monic, polynomial
division in Z[X] yields s € Z[X], so that ¢ divides r(X?) in Z[X].

The projection @ —— a of Z onto Z, induces a homomorphism f +— f of
Z[X] into Z ,[X]: if r(X) =1, X"+ 41y, then F(X) = X" +F, | X"+
-+7y. By 13,a” =@ forall @ € Z,, so that

FX)P = X" 470 xm=Dp gy Fh = F(XP).
Hence g divides 77, and g, 7 have a common irreducible divisor 7 € Z p[X ].
Then 7 divides g7, which divides f(X) = X" — T € Z,[X] since gr = @,
divides X" — 1 by 6.2; hence f has a multiple root in Zp. But 7/(X) =

nX ffl £ 0, since p does not divide 7, so that f and 7’ have no common root
in Z T and f is separable. This is the required contradiction. []

Definition. The nth cyclotomic field is Q(sn) C C, where ¢, € C is aprimitive
nth root of unity.

Proposition 6.5. The field Q(e,) is a Galois extension of Q; [Q(e,): Q] =
¢(n); and Gal (Q(e,) : Q) is isomorphic to the group of units U, of Z,,.

Proof. First, Q(e,), which contains all complex nth roots of unity, is a
splitting field of X" — 1 and is Galois over Q. Next, ®,(e,) = 0, whence
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®, =Irr (¢, :Q), by 6.4; hence [Q(s,): Q] = ¢(n).

The group U,, consists of all ke Z,, such that k and n are relatively prime.
Let C = (¢, ) be the multiplicative group of all complex nth roots of unity, which
is cyclic of order n. An endomorphism of C sends ¢, to some 8,]; , then sends 8;.1
to 8?' , and is an automorphism if and only if k£ and n are relatively prime. Hence
the group Aut (C) of automorphisms of C is isomorphic to U,. Now, every
o € Gal(Q(e,):Q) permutes the roots of X" — 1 and induces an automor-
phism o) of C. This yields a homomorphism o +— 0| of Gal (Q(e,): Q)
into Aut (C) = U,, which is injective, since Q(e,) is generated by &, hence
bijective, since |Gal (Q(¢,): Q)| =¢(n) =|U,|. O

The exercises give additional properties of Q(e,, ).

Division rings. A division ring is a ring in which every nonzero element is a
unit. Commutative division rings are fields. The quaternion algebra H in Section
1.7 is a division ring but not a field. In Section VIIL.5 we show that a finitely
generated vector space over a division ring has a finite basis, and all its bases have
the same number of elements; impatient readers may prove this now.

Theorem 6.6 (Wedderburn [1905]). Every finite division ring is a field.

Proof. Let D be a finite division ring. The center K = {x € D | xy = yx for
all y € D} of D is asubfield of D. Let n be the dimension of D as a vector
space over K. We prove that n = 1.

Let |K| = ¢, so that |D| = g". The center of D\{0} has ¢ — 1 elements.
The centralizer of a € D\{0} is L\{0}, where L = {x € D | xa = ax }.
Now, L is a subring of D, and a division ring, and L contains K. Hence D
is a vector space over L and L is a vector space over K. Readers will verify
that dimg D = (dim; D) (dimg L), so that d = dim L divides n. Then
|L| = qd, the centralizer of a has qd — 1 elements, and the conjugacy class of
a has (¢" —1)/(q% — 1) elements. Moreover, ¢¢ < ¢" when a ¢ K, for then
L S D. Hence the class equation of the multiplicative group D\{0} reads

q" -1
qn_l = (q_l)+zqd_1,

where the sum has one term for each nontrivial conjugacy class, in which d < n
and d|n. Now, ¢" — 1 = Hd|n ®,(q),by 6.2. If d < n and d|n, then

q)n (6]) Hc\n, c<n q)c(q)
(I>n (q) Hc|d (I)c(q) Hc|n, c<n, cfd (bc(Q)
= q)n(q) (qd - 1) Hc|n, c<n, cfd (Pc(q),

and ®,(q) divides ¢" — 1 and (¢" — 1)/(¢% — 1). Therefore ®, (¢q) divides
g—1.But® (q)>¢g—1whenn>1,by6.1. Hence n = 1.0

qg" -1
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Dirichlet’s theorem. The general form of this theorem, due to Dirichlet [1837],
states that every arithmetic progression contains infinitely many primes. We use
cyclotomic polynomials to prove a particular case:

Theorem 6.7 (Dirichlet). For every positive integer n there are infinitely many
prime numbers p =1 (mod n).

Proof. We start with a lemma.

Lemma 6.8. Let p be prime and m,n > 0. If p divides ®,(m), then p does
not divide m, and either p divides n or p =1 (mod n).

Proof. By 6.2, ®,(m) divides m" — 1;hence p divides m" — 1, and does not
divide m. Let k be the order of m in the multiplicative group Z ,\{0}; k divides
|Z,\{0}| = p — 1, and divides n, since m" =1 in Z . Let £ = n/k.

If £=1,then n =k divides p — 1 and p = 1 (mod n).

Let £ > 1. Since every divisor of k is a divisor of n, Hd|n den ®4(X) =
FXTI aikc® 4(X), where f is a product of cyclotomic polynomials. Hence

e 1 = (I)n(m) Hd|n,d<n (I)d(m) (m) (mk - 1) f(m)
by 6.2. Therefore p, which divides @, (m), divides

(M= 1)/ (m* —1) = (M) T ) 21
Now, mk =1 (mod p); hence p divides £ and n = k¢.

We now prove 6.7. We may assume n > 1. For every k = 2 we have
®,,(kn) > kn — 1 > 1 by 6.1, and &, (kn) has a prime divisor p. By 6.8,
p does not divide kn; hence p = 1 (mod kn) and p > kn. Thus there are
arbitrarily large primes p = 1 (mod n). O

The proof of 6.7 shows algebra coming to the aid of number theory. Number
theory now comes to the aid of algebra.

Proposition 6.9. Every finite abelian group is the Galois group of a finite
extension of Q.

Proof. A finite abelian group G is adirect sum G = Cnl @ an ®---C, of
cyclic groups of orders ny, ..., n,. By 6.7 there exist distinct primes p, ..., p,
suchthat p;, =1 (mod nyn,---n,)foralli. Let n=p;py--- p,.

By 6.5, Gal(Q(e,):Q) = U,. If k and ¢ are relatively prime, then
Lpy =Ly ® Zy; since (u,v) € Zy x Z, is a unit if and only if u and v
are units, then U,, = U, © U,. Therefore Gal(Q(e,):Q) = U, = U, &
U‘l72 ® - P Upr. Now, U is cyclic of order p; — 1, since Zp, is a field,
and n; divides p; — 1; hence U has a subgroup H; of index n;. Then
Up,»/Hi =~ Cni and UPI DU, by @ 69 U, has a subgroup HoH,®---©H,
such that (Up1 eU, & @ Upr)/(H1 ® H, ®---® H.) = G. Therefore
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Gal (Q(e,,) : Q) has a subgroup H such that Gal (Q(e,): Q)/H = G; then the
fixed field F of H is a finite Galois extension of Q and G ~ Gal (F:Q).O

Exercises
1. Find ®, forall n < 10.
2. Find &9 and ®1g.
3. Show that ®,(0) = 1, and that ®,(0) =1 if n > 1 is odd.
4. Show that ®2,(X) = ®,(—X) when n > 1 is odd.

Readers who have polynomial division software and long winter evenings can now formu-
late and disprove a conjecture that all coefficients of ®, are 0 or 1.

5. Let p be prime. Show that ®pp(X) = ®p(XP) if p divides n, Pup(X) =
@, (XP)/®,(X) if p does not divide n.

6. Let n be divisible by p2 for some prime p. Show that the sum of all complex primitive
nth roots of unity is 0.

7. Show that Q(em) Q(en) = Q(&14y, (m!n)).
8. Show that Q(em) N Q(en) = Qe 404 (m,n)) . (You may want to use 3.11.)
9. Find the least n > 0 such that Gal (Q(&,) : Q) is not cyclic.

10. Let D C E C F be division rings, each a subring of the next. Show that dimg D =
(dimL D) (dim[( L) .

*11. Prove that a finitely generated vector space over a division ring has a finite basis, and
that all its bases have the same number of elements.

7. Norm and Trace

The norm and trace are functions defined on every finite field extension. In this
section we establish their basic properties and use the results to construct all Galois
extensions with cyclic Galois groups.

Definition. Recall that a linear transformation 7 of a finite-dimensional vector
space V has a determinant and a trace, which are the determinant and trace (sum
of all diagonal entries) of the matrix of 7' in any basis of V. If

¢(X) = det (T — XI) = (—1)"X" +(=1)""le, ;X" +. . 4¢,

is the characteristic polynomial of T, then the determinant of T is ¢, and its trace
is ¢, ;. In particular, the determinant and trace of the matrix of 7 in a basis of
V' do not depend on the choice of a basis.

A finite extension E of a field K is a finite-dimensional vector space over K,
and multiplication by « € E is a linear transformation y —— «ay of E.

Definitions. Let E be a finite extension of a field K. The norm N% (a) and
trace Tr% (a) of « € E over K are the determinant and trace of the linear

transformation T, : y — ay of E.
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Both N£(«) and Trf («) are elements of K. When K C E is the only
extension in sight we denote Ng(a) and Tr%(a) by N(«) and Tr («).

For example, in the finite extension C of R, multiplication by z = a + bi is a
linear transformation x + iy +— (ax — by)+i(bx +ay) with matrix (%7 in
the basis {1, i }; hence z has norm a® +b* = 77 and trace 2a = 7 + 7.

In general, the norm and trace of & € E can also be computed from the
K-homomorphisms of E into K, and from the conjugates of «. First we show:

Lemma 7.1. If E is finite over K and a € E, then det (T, — XI) =
(=1)"q(X)*, wheren=[E:K], g=Trr («:K), and £ = [E: K (a)].

Proof. We have Taﬂ = aTﬁ, T’Bﬂ, = Tﬂ + Ty, and Tﬁy = T,s Ty, for all
ac K and B,y € E. Hence f(T,)= Ty (q) forevery f € K[X]. In particular,
q(T)= Ty(@) = 0. (Thus, g is the minimal polynomial of 7, .)

o

Choose a basis of E over K. The matrix M of T, in the chosen basis
can be viewed as a matrix with coefficients in K, and the characteristic poly-
nomial ¢(X) = det (T, — XI) of T, is also the characteristic polynomial of
M. In K[X], c is the product of its leading coefficient (—1)" and monic
irreducible polynomials ry, ..., r, € K[X], for some €. If A € K is a root
of r;, then c¢(A) = 0, A is an eigenvalue of M, Mv = Av for some v #0,
Miv = Av, f(M)v = f(A)v for every f € K[X], g(A)v = g(M)v = 0,
and g(i) = 0. Therefore r; = Irr (A: K) = g. Hence ¢ = (—1)" g%. Then
¢=degc/degg=[E:K]/[K(a¢):K]=[E:K(a)].O

Proposition 7.2. Let E be a finite extension of K of degree n. Let ay, ...,
a, € K be the distinct conjugates of o« € E, and let @1, .-, @, be the distinct
K-homomorphisms of E into K. Then r and t divide n and

NE(“) = (“1 e )”/’ = (((0104)--- (%a))n/t cK.

r

n n
Tr%(a) = ;(a1+~-~+o¢r) = ?((pla+~--+(p1a)€K.

The norm and trace are often defined by these formulas.

Proof. The conjugates of « are the roots of ¢ = Irr (« : K), which by IV.5.1
all have the same multiplicity m. Hence

q(X) = (X —a)" - (X —a,)"
= er—m(al+~-~+oer)er_l + o+ (=D (g a,)™

Then [K(¢):K]=rm divides n and £ = [E:K(a)]=n/rm. By 7.1, ¢(X) =
det (T, — XI)=(-1)" q(X)t. The constant coefficient of ¢ is

N(a) = (=1)" (=1)" ;o)™ = (ay---a,)"",
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n—1

since rmf = n. The trace of « is (—1)"~! times the coefficient of X"~ ! in c:

Tr(«) = (—1)11—1(_1)" (—O)m(a;++a,) = g(a1+...+ar).

Next, t = [ E: K ], which divides n by IV.5.2. Since ¢ has r distinct roots
in K, there are r K-homomorphisms of K («) into K, that send o to «;, ...,
«,.. Each can be extended to E in k = [E:K(«a)], ways. Hence ¢ = kr;

r )

(1) (¢g,a) = (o ~~ar)k; and g o + -+ @, = k(o) + -+ +a,). This
completes the proof since (n/r)/k=n/t.O

Proposition 7.2 becomes simpler in some cases, as readers will easily verify.
Corollary 1.3. Let E be finite over K and let a € E.
() If a € K, then NE(a) = " and TvE (&) = now, where n = [E: K |;

(2) if E = K () is separable over K, then NII:; (@) is the product of the conjugates
of a, and Trg () is their sum;

(3) if E is not separable over K, then Trg (@) =0;
(4) if E is Galois over K, with Galois group G, then N% (@) =]]ycqoa and
TI‘Ib;((x) =) seG O
Properties.

Proposition 14. If E is finite over K, then N% (aB) = N& (o) NE(B) and
TrE (o + B) = Trk () +Tx5 (B), forall a, B € E.

Proof. In Proposition 7.2, ¢, ..., ¢, are homomorphisms. []

Proposition 1.5 (Tower Property). If K C E C F are finite over K, then
NE (@) = NE(NE(«)) and Tr & (a) = Tr E(Tr £ (a)), forall « € E.

Proof. We may assume that F C K and choose E = K. Let m = [ E: K | and

n=[F:E],let ¢, ..., ¢, be the distinct K-homomorphisms of E into K, and
let ¥y, ..., ¥, be the distinct E-homomorphisms of F" into E = K. As in the
proofthat [F: K] =[E:K ] [F:E], leto, ..., 0, be K-automorphisms of
K thatextend ¢, ..., ¢,. If x : F — K isa K-homomorphism, then X|E = %;

for some i, o;

Jrand x =o; 1/J‘j. Thus the K-homomorphisms of F into K are the tu distinct

—1 x : F — K is an E-homomorphism, alfl X = t/fj for some

maps o; ¥;. We now use 7.2: since NF(@) € E,

N[[z(a) _ (Hi,j Gil//ja)mn/lu _ (Hl Gi(Hj wja)n/u)m/t
= (ITio: NE@)™" = (I 9 NE(@)™" = NE(N(@)),
and similarly for Tr & («). O

Hilbert’s Theorem 90 is the key that opens the door behind which lie cyclic
extensions. Like many good theorems, it requires a lemma.
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Lemma'7.6. Let E and F be field extensions of K . Distinct K-homomorphisms
of E into F are linearly independent over F.

Proof. Assume that there is an equality y;¢; +---+y,¢, =0,inwhich n > 0,
Yis --os ¥y € F arenotall 0, and ¢, ..., ¢, are distinct K-homomorphisms
of E into F. Among all such equalities there is one in which n is as small as
possible. Then y; # 0 forall i and n = 2. Since ¢, # ¢, we have ¢, o # ¢«
for some « € E. Then

1 (@1a)(@1B) +- -+ v, (9,@)(0,8) =y 9(aB) +--+¥,9,(f) =0 and
V1 (0,0)(918) +- - + v, (9,@)(9,8) =0
for all B € E. Subtracting the second sum from the first yields
V(010 —9,@) (@ B) +- - +7, 1 (9, 1@ — 9, @)(¢, 1) = 0
for all B € E and a shorter equality
141 ((,010[ - (pnOl) L e i P | ((ﬂn,IOl - (pna) bn—1 = 0
with a nonzero coefficient y; (¢,a — ¢, «). This is the required contradiction. (]

Lemma 7.7 (Hilbert’s Theorem 90 [1897]). Let E be a finite Galois extension
of K. If Gal (E: K) is cyclic, Gal (E: K)= (1), then, forany « € E:

(1 NE(a): 1 ifand only if « =ty /y forsome y € E, y £ 0.
2) Trﬁ(a) =0 ifandonly if « =ty — y forsome y € E.
Proof. If y € E, y # 0, then
N(ty) = [loegoty = [lsegoy = N(¥)
by 7.3, where G = Gal (E : K); hence N(ty/y)=1,by 7.4.

Conversely, assume that N(o) = 1. Let [E: K] =n. Then Gal(E:K) =
{1, =, ..., 1 }. By76, 1,1, ..., "1 are linearly independent over K ;
therefore 1+ a7 +a (ta) t2+---+a (ta)--- (" 2a) "' £0 and

§ = BratB+a(ta) (t?B)+--+a(ta) - (1" 2a) (x"'B) £0
for some B € E. If N(a) =« (ta) - - - (t" %) (1" ') = 1, then
@ (t8) = atf+a(ta) (t2f) + - +a(ra) - (1" la) (t"B) = 8,
since " = 1; hence o = ty/y, where y = s,
Similarly, if y € E, then
Tr(ty) = Ygec 0TV = YXgeg oV = Tr(y)
by 7.3, where G = Gal (E: K); hence Tr (ty —y)=0,by 7.4.

Conversely, assume that Tr («) = 0. Since 1, 7, ..., "1 are linearly inde-

pendent over K, we have 1 + 7 +---+ 7" 1 £0 and Tr(B)=B+1B+ -+
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"7 18 £ 0 for some B € E. Let
§ = atB+(a+ ta)(t2B) + -+ (a+Ta+---+ 7" 2a) ("1 B).
If Tr(¢)=a+ta+---+7" la =0, then
w8 = (ta)(2B) + (ta + t2a) (13B)
+ ot (ta+ e+ + " 20) (7VB) — ap.

Hence § — 18 =atB+at?f+ - +at" 'B+af = aTr(f)anda =1y —y,
where y = —§/Tr (B8). O

Cyclic extensions are extensions with finite cyclic Galois groups. These
extensions generally arise through the adjunction of an nth root.

Definition. A cyclic extension is a finite Galois extension whose Galois group
is cyclic.

Proposition 1.8. Let n > 0. Let K be a field whose characteristic is either 0
or not a divisor of n, and that contains a primitive nth root of unity.

If E is a cyclic extension of K of degree n, then E = K (), where o" € K.

If E = K(«), where o" € K, then E is a cyclic extension of K, m = [E : K |
divides n, and o € K.

Proof. By the hypothesis, K contains a primitive nth root of unity & € K .

Let E be cyclic over K of degree n and Gal (E:K)= (7). Since N(¢) =
e" =1 we have To = e forsome & € E, o # 0, by 7.7. Then 7 (¢") = (ra)" =
o"; hence o (") = «" forall 0 € Gal(E:K) and ¢ € K. Since o has n
conjugates o, T = &, ..., "y = s”_]a, there are n K-homomorphisms of
K(a)into K, [K(a):K]=[E:K],and K(a)=E.

Now let E = K (), where o = ¢ € K. We may assume that E C K and
that « ¢ K. In K, the roots of X" — ¢ € K[X] are o, ¢a, ..., ¢" o Hence
X" — ¢ is separable, its splitting field is E, and E is Galois over K .

If o € Gal(E:K), then oo is aroot of X" — ¢ and oo = &' for some i .
This provides a homomorphism of Gal (E : K) into the multiplicative group of
all nth roots of unity, which is injective since o generates E. The latter group
is cyclic of order n; hence Gal (E : K) is cyclic and its order m divides n. Let
Gal(E:K)=(t) and ta = e/a; then ¢/ has order m, 7(a™) = (ta)" = &,
oo™ =™ forall 0 € Gal(E:K),and ¢™ € K. O

Primitive nth roots of unity are readily adjoined if needed in 7.8:

Proposition 7.9. A root of unity & € K is a primitive nth root of unity for some
n > 0; if K has characteristic p + 0, then p does not divide n; K (&) is a Galois
extension of K of degree at most n; and Gal (K (¢) : K) is abelian.

The proof is an enjoyable exercise. In 7.9, it may happen that [ K (¢): K ] < n,
and that Gal (K (¢) : K) is not cyclic; this makes more fine exercises.
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If K has characteristic p # 0, then the identity (o — 8)” = a” — B? shows
that pth roots are unique, but not separable, and are quite incapable of generating
cyclic extensions of K of degree p. Hence 7.8 fails in this case. To obtain cyclic
extensions of degree p we must replace X” — ¢ by another polynomial:

Proposition 7.10 (Artin-Schreier). Let K be a field of characteristic p # 0.
IfE is a cyclic extension of K of degree p, then E=K (&), where o —a € K.
If E=K(a), where af —a € K, a ¢ K, then E is a cyclic extension of K of
degree p.

Proof. Let E be cyclic over K of degree p and Gal(E:K)= (7). Since
Tr(1)= pl =0 wehave to — = 1 forsome « € E,by 7.7. Then 1’ o = o +1
for all i; hence o has p conjugates tta=a+i, 05 i < p; there are p
K-homomorphisms of K («) into K; [K(«):K]=[E:K];and K(a)=E.

Now let E = K (&), where ¢ = o” —a € K and o ¢ K. We may assume
that E C K. Since K has characteristic p, (¢ +1)? — (¢ +1)=a? —a = c;
therefore the roots of X? — X — ¢ € K[X] are o, « + 1, ..., a + p — 1.
Hence X? — X — c is separable, its splitting field is E, and E is Galois over
K. Moreover, Irr (e: K) divides X? — X — ¢; hence [E: K] < p. We
have ta = o + 1 for some 7 € Gal(E:K); then t'a = o + i # « for all
i=1,2,...,p—1, tPa = o, and 7 has order p in Gal(E:K). Therefore
Gal(E:K)=(t), Gal(E:K) hasorder p,and [E: K |=p.O

Exercises
1. Show that Tr£ () = 0 forall @ € E when E is not separable over K.
2. Show that Tr£ (&) # 0 for some a € E when E is separable over K.
3. Find Né(a) and Tr(a(a) when @ € E = Q(+v/n) C R, where n > 0.
4. Find Né(a) and Tr(EQ(a) when o« € E =Q(iv/n) C C, where n > 0.
5. Find the units of Q[i1/n] C C, where n is a positive integer.
6.Let @ =+v2++/3 and E = Q(er) C R. Find Né(a) and Tr@(a).

7.Leta =+/2+iy/3 and E = Q(a) C C. Find Né(a) and Tré(a).

8. Show that a root of unity is a primitive nth root of unity for some n > 0, where p does
not divide 7 if the characteristicis p # 0.

9. Show that K (g) is a Galois extension of K of degree at most n when & € K is a
primitive nth root of unity.

10. Show that Gal (K (¢) : K) is abelian when & € K is a root of unity.

11. Show that [ K (¢) : K ] < n may happen when ¢ € K is a primitive nth root of unity.
(The author buried an example somewhere in this book but lost the map.)

12. Show that Gal (K (&) : K) need not be cyclic when & € K is a primitive nth root of
unity.
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8. Solvability by Radicals

“Radical” is a generic name for nth roots. A polynomial equation is solvable by
radicals when its solutions can be reached by successive adjunctions of nth roots
(for various n). We saw in Section 5 that equations of degree at most 4 generally
have this property. This section gives a more refined definition of solvability by
radicals, and relates it to the solvability of Galois groups. (In fact, solvable groups
are named for this relationship.) The main application is Abel’s theorem that
general equations of degree 5 or more are not solvable by radicals.

Solvability. By 7.8, extensions generated by an nth root coincide with cyclic
extensions, except in characteristic p # 0, where Proposition 7.10 shows that roots
of polynomials X? — X — ¢ are a better choice than pth roots (roots of X — ¢).
Accordingly, we formally define radicals as follows.

Definitions. An element a of a field extension of K is radical over K when
either a" € K for some n > 0 and the characteristic of K does not divide n, or
aP —a € K where p £ 0 is the characteristic of K. A radical extension of K is
a simple extension E = K («), where « is radical over K .

Definitions. A field extension K C E is solvable by radicals, and E is
solvable by radicals over K, when there exists a tower of radical extensions
K=FyCF C--- CF, suchthat E C F,. A polynomial is solvable by
radicals over K when its splitting field is solvable by radicals over K .

Thus, E is solvable by radicals over K when every element of E ‘“can be
reached from K by successive adjunctions of radicals”; a polynomial is solva-
ble by radicals over K when its roots have this property. More precisely, in a
tower K = F, C F}; C --- C F, of radical extensions, the elements of F| are
polynomial functions with coefficients in K of some o € F, that is radical over
K ; the elements of F, are polynomial functions with coefficients in F| of some
B € F, thatis radical over F|; and so forth. We saw in Section 5 that the roots of
a polynomial of degree at most 4 can be written in this form, except perhaps when
K has characteristic 2 or 3; then polynomials of degree at most 4 are solvable by
radicals.

Readers will gain familiarity with these radical new concepts by proving their
basic properties:

Proposition 8.1. If F is solvable by radicals over K and K C E C F, then
E is solvable by radicals over K and F is solvable by radicals over E.

If K C E C F, E is solvable by radicals over K, and F is solvable by
radicals over E, then F is solvable by radicals over K .

If E is radical over K and the composite EF exists, then EF is radical
over KF.

If E is solvable by radicals over K and the composite EF exists, then EF is
solvable by radicals over K F .
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The main result of this section is the following:

Theorem 8.2. An extension of a field K is solvable by radicals if and only if it
is contained in a finite Galois extension of K whose Galois group is solvable.

Proof. Let E be solvable by radicals over K, so that E C F, for some tower
K = Fy C F; C --- C F, of radical extensions F;, = F;_,(«;), where «; is

radical over F;_;: either ocl.ni € F;_, for some n; > 0 and the characteristic of
p
i p—
K and we let n; = p. We may assume that F,, C K. We construct a better tower.
First we adjoin to K a carefully chosen root of unity, so that we can use 7.8; then

we adjoin conjugates of «;, ..., @, to obtain a normal extension.

K does not divide n;,ora; —a; € F,_y, where p # 0 is the characteristic of

Let m =nyn, --- n, if K has characteristic 0; if K has characteristic p # 0,
let nyny---n, = ptm, where p does not divide m. In either case, if the
characteristic of K does not divide n;, then n; divides m. Let ¢ € K be a
primitive mth root of unity. Then K (&) contains a primitive £th root of unity for
every divisor £ of m, namely ¢”/*. The composite K (&) F, is a finite extension
of K and is contained in a finite normal extension N of K; N is the composite
of all conjugates of K (¢) F, = K (e, o, ..., ,) and is generated over K by all
conjugates of ¢, ay, ..., .. Let ¢y, ¢y, ..., ¢,_; be the K-homomorphisms
of F, into K. The conjugates of o, are all @;; . Let

KCK(e)=LyCL, C---CL,,

where s = nr and L= Ljr+i71((pjai) forall 1 £i <rand 0 < j < n.
Then L, is generated over K by all the conjugates of ¢, «, ..., a,, since K(¢)
already contains all the conjugates of ¢, and L, = N. Moreover, ¥; F, CL

indeed, Fy =K C L,,,and ¥; F,_CL;.,; , implies

jre = Tjr+i

jr+i-

9 Fi =0 Fi_(o;) = (9 F;_)(9jo;) S Lji(9je) = Ly -
Since «; is radical over F;_ |, @;Q; is radical over ;i F,_, and is radical over
Ljr+l-_1. Hence every L, _; C L, is a radical extension; so is K C K (e).
Finally, £ C F,. = K (ozl, e, ozr) C N. We now have a tower of radical exten-
sions that ends with a normal extension L, =N 2 E.

Let B = ¢;a;, where k = jr+i. If a?" € F,_,, where the characteristic
of K does not divide n;, then ,3;” € L,_, and K(¢) C L,_, contains a
primitive 7n,;th root of unity, since n; divides m; by 7.8, L, is Galois over
Ly_, and Gal(L,:L,_,) is cyclic. If & —a; € F,_,, where p #0 is the
characteristic of K, then ,Blf — B € 9 F;,_y € L,_y; again L; is Galois over
L,_, and Gal(L;:L;_,) is cyclic, by 7.10. Finally, K(e) is Galois over K
and Gal (K (e): K) is abelian, by 7.9. Therefore N is separable over K, and is
a Galois extension of K. By 3.11, the intermediate fields K € L, € --- C N
yield a normal series

1=Gal(N:L,) < Gal(N:L, ;) < ---  Gal(N:Ly,) < Gal(N:K)
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whose factors are abelian since they are isomorphic to Gal (L, :L;_;) and
Gal (Ly: K). Therefore Gal (N : K) is solvable.

For the converse we show that a finite Galois extension E C K of K with
a solvable Galois group is solvable by radicals over K ; then every extension
K C F C E is solvable by radicals, by 8.1. Let n = [ E: K ].

Again we first adjoin a primitive mth root of unity ¢ to K, where m = n
if K has characteristic 0 and p'm = n if K has characteristic p £0 and p
does not divide m. As above, F = K (&) contains a primitive ¢th root of unity
for every divisor £ of m. By 3.11, EF is a finite Galois extension of F, and
Gal(EF:F) @ Gal(E:ENF)< Gal(E:K); hence [ EF: F] divides n,
Gal (EF : F) is solvable, and Gal (EF : F) has a composition series
1=Hyd H < ---2H_,d H=Gal(EF:F)

r

whose factors H;/H;_; are cyclic of prime orders. This yields a tower
F=F.CF_,C---CF CF,=EF

of fixed fields F; = Fixyy (H;); by 3.11, F,_; is a Galois extension of F;
and Gal (F;_,:F;) = H;/H;_, is cyclic of prime order p;,. If p, is not the
characteristic of K, then p; divides n, p; divides m, F contains a primitive
p;th root of unity, and F;_, is a radical extension of F;, by 7.8. If p; is the
characteristic of K, then again F;_ is aradical extension of F;, by 7.10. Hence
EF is solvable by radicals over F',andsois £ C EF,by 8.1.J

Abel’s theorem states, roughly, that there is no formula that computes the
roots of a polynomial of degree 5 or more from its coefficients, using only sums,
products, quotients, and nth roots. For a more precise statement, define:

Definition. The general polynomial of degree n over a field K is
g(X) = A, X"+A, X"+ + Ay € K(Ag Ay, ..., A,)[X],
where Ay, Ay, ..., A, areindeterminates. []

The general equation of degree n is A, X" + An_lX”_1 +-4+ Ay = 0.
The general equation of degree 2 is solvable by radicals when K does not have
characteristic 2: the formula

—B++/B?2—4AC
2A

X, X, =

for the roots of AX? + BX + C shows that they lie in a radical extension of
K(A, B,C). Longer but similar formulas in Section 5 show that the general
polynomials of degree 3 and 4 are solvable by radicals when K does not have
characteristic 2 or 3. For the general polynomial, solvability by radicals expresses
the idea that there is a formula that computes the roots of a polynomial from its
coefficients, using only field operations and radicals (nth roots, and the roots of
polynomials X” — X — ¢ in case K has characteristic p # 0).
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Theorem 8.3 (Abel [1824]). The general polynomial of degree n is solvable by
radicals if and only if n < 4.

Abel’s theorem follows from the relationship between coefficients and roots,
and from properties of the elementary symmetric polynomials.

Definitions. A polynomial f € K[X,,..., X,] or rational fraction f €
K (X, ..., X,) is symmetric when f(X_ ., X 5, .... X;,) = f(Xy,.... X)) for
every permutation o € S, . The elementary symmetric polynomials §,, §, ...,
5, in X, ..., X, are 5,=1 and
5k(X1’ v Xn) = Zl§i1<i2<-~-<ik§n Xil Xiz Xik , k=1,2,...,n.
That §,, ..., §, are symmetric can be proved directly but also follows from:

Proposition 8.4. In K(X,, ..., X,))[X],
(X = X)X = X) - (X = X,) = Doz, (DF8(X o X,) X5,

Proof. Expanding (X — X;)(X — X,)--- (X — X,,) yields a sum whose
terms are all products f;#, ---¢, in which, for every 1 < i < n, either =X
or t; = —X;. A product tt,---t, in which #; = —X, happens k times equals
(—1)]‘)(1.1)(1.2 : --Xl.kX"’k forsome 1 <i; <i, <--- <i, <n.Thesumofall
such products is (—1) 5. (X ... X)) X"k 0

Proposition 8.5. For any field K, K(X,, ..., X,) is a Galois extension of
K(S,,...,8,), whose Galois group is isomorphic to the symmetric group S,,.

Proof. Forevery o € S, 7 : f(X|,... X)) — f(X 1, Xpp, -y X)) I8
an automorphism of K(X,..., X,). Then G = {& ] o €8, } is a finite group
of automorphisms of E = K (X, ..., X,). By 3.6, E is a finite Galois extension
of § =Fixy (G) and Gal (E:S)=G = §,.

Now, § consists of all symmetric rational fractions. Hence §;, ..., §, € § and
L=K($,..,5,)CS. By84, f(X)=(X-X)(X—-X,)---(X—-X,)¢€
L[X]. Hence E is a splitting field of the separable polynomial f over L, and
is Galois over L. An L-automorphism of £ must permute the roots of f and
is uniquely determined by its values at X, ..., X, ; therefore there are at most
n! L-automorphisms of E, and [E:L] < n!. But L C S and [E:S] = n!.
Therefore [E:L]=[E:S],L=S,and Gal(E:L) = S,.O

Corollary 8.6. Every symmetric rational fraction of Xy, ..., X, is a rational
Jfunction of the elementary symmetric polynomials in X4, ..., X,,.

Proof. This follows from the equality S = L in the proof of 8.5. [

Corollary 8.7. The elementary symmetric polynomials &, ..., S, are alge-
braically independent over K in K (X, ..., X,).

Proof. By IV.8.6, K (X 1> X n) has transcendence degree n and a transcen-
dence base B C {5, ..., 5, };hence B={§,,...,5, }.0
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Corollary 8.8. Every finite group is isomorphic to a Galois group.

Proof. This follows from Proposition 8.5 since, by Cayley’s theorem I1.3.2,
every finite group is isomorphic to a subgroup of some S, . [

We now return to the general polynomial of degree n,
gX) = A X"+A, X"'+.. +A; € K(Ag. Ay, ..., A)[X].

Proposition 8.9. The Galois group of the general polynomial of degree n is
isomorphic to the symmetric group S, .

Proof. We show that the general polynomial of degree n can also be defined
by its roots. Let S = K(A)(5,,...,5,) € K(A)(X,,..., X,) and

fX)=AX-X)(X—-X,)--- (X—Xn) € K(A, Xy, ,Xn)[X]
By 8.4, the coefficients a, a;, ..., a,_; of f are
k
a,_, = (—1) Aﬁk(X],..., Xn) € Ss.

Hence f € S[X], and K(A)(X,, ..., X,)) is a splitting field of f over S. By
8.5, K(A)(Xy, ..., X,) is Galois over S, and its Galois group is isomorphic to
S, . Thus the Galois group of f is isomorphic to S, . Now, ag, ay, ..., a,_,
are algebraically independent over K (A), by 8.7. Hence there is an isomorphism
S=K(ay, ...,a,_;, A) = K(Ay, A, ..., A,) thatsends f to g. Therefore the
Galois groups of f and g are isomorphic. []

Abel’s theorem now follows from Proposition 8.9 and Theorem 8.2, since we
saw in Section IL.9 that S, is solvable if and only if n < 4.

Exercises

1. Show that every extension of degree 2 is a radical extension, except perhaps in charac-
teristic 2.

2. Let K have characteristic p # 0 and let ¢ € K. Show that X — X — ¢ € K[X]
either splits in K or is irreducible in K [X].

3. Prove the following: if F is solvable by radicals over K and K C E C F, then E is
solvable by radicals over K and F is solvable by radicals over E.

4. Prove the following: if K C E C F, E is solvable by radicals over K, and F is
solvable by radicals over E, then F is solvable by radicals over K .

5. Prove the following: if E is radical over K and the composite E F exists, then EF is
radical over K F.

6. Prove the following: if E is solvable by radicals over K and the composite E F exists,
then EF is solvable by radicals over K F .

7. Find fields K C E C F such that F is normal over K but E is not normal over K .

8. Find fields K C E C F such that E is normal over K and F is normal over E but
F is not normal over K .
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9. Geometric Constructions

The geometric constructions in question are procedures in plane Euclidean geome-
try that construct points and other figures using only a straightedge and a compass;
with these antique instruments one can draw a straight line through any two points
and a circle with any center and radius. Ancient geometers devised constructions
by straightedge and compass for many specific tasks, but, in certain cases which
became, in their time, famous problems, no construction could be found, despite
repeated efforts. This section explains why.

Constructibility. Constructions by straightedge and compass need at least two
points P and Q to start, from which points, straight lines, and circles can be
constructed. In our definition, “constructible” is short for “constructible from P
and Q by straightedge and compass”; a line is a straight line or a circle.

Definition. Let P and Q be two points in the Euclidean plane.
(a) P and Q are constructible;

(b) if A + B and C are constructible points, then the straight line AB and the
circle with radius AB and center C are constructible;

(c) intersections of constructible lines are constructible;

(d) a point or line is constructible when it can be obtained from P and Q by
finitely many applications of (b) and (c).

For example, when B, C £ A are constructible points, the fourth point of the
parallelogram ABC D is constructible: the circle with radius AB and center C
is constructible; the circle with radius AC and center B is constructible; their
intersections, which include D, are constructible. In particular, the straight line
through C that is parallel to AB is constructible. Felicitously, this construction
works even when A, B, and C lie on the same straight line.

B D

A (&

Constructibility becomes clearer with a Cartesian system of coordinates that
represents each point in the Euclidean plane by a pair of real numbers, or by a
single complex number. We put the origin O at P and choose axes and units of
length so Q is represented by the complex number 1.

Definition. A complex number is constructible (from 0 and 1) when the corre-
sponding point in the Euclidean plane is constructible (from P and Q).

Proposition 9.1. Constructible complex numbers constitute a subfield of C.

Proof. The numbers 0 and 1 are constructible. Let a, b € C be constructible
and let A, B be the corresponding points. Then a + b corresponds to the fourth



9. Geometric Constructions 227

point C of the parallelogram O ABC and is constructible; a — b corresponds to
the fourth point D of the parallelogram B O AD and is constructible.

The product ab corresponds to a point C such that the triangles O QA and
O BC are similar. The point R on OB suchthat OR = O Q =1 is constructible.
Then the triangle ORD, which is equal to O QA, is constructible. The straight
line through B that is parallel to RD is constructible. It intersects OD at C, so
C is constructible:

C
D B B
R A A
o 0 0 Q

The point E that corresponds to a/b when b + 0 is likewise constructible, since
the triangles O QFE and OB A are similar. [

In particular, rational numbers are constructible. Readers will enjoy proving
the following properties:

Lemma 9.2. If 22 is constructible, then z is constructible. If z=x+1iy, where
x,y € R, then z is constructible if and only if x and y are constructible.

Main result. In analytic geometry, intersections of straight lines and circles
are found by solving linear and quadratic equations. Hence constructible complex
numbers are algebraic over Q. Our main result tells the complete story:

Theorem 9.3. A complex number is constructible (from 0 and 1) if and only if
it is algebraic over Q and its degree is a power of 2.

Proof. Call a complex number 2-constructible when it is algebraic over Q and
its degree over Q is a power of 2.

Lemma 9.4. A complex number z is 2-constructible if and only if it belongs to
a finite extension of Q whose degree is a power of 2, if and only if it belongs to a
finite normal extension of Q whose degree is a power of 2.

The proof is an exercise. In particular, 2-constructible complex numbers are
those that can be reached from Q by successive adjunctions of square roots. We
want to show that a complex number is constructible if and only if it is 2-con-
structible. Not surprisingly, these two kinds of numbers have the same basic
properties:

Lemma 9.5. The 2-constructible complex numbers constitute a subfield of C.

Proof. Let a, b € C be 2-constructible. By 9.4, a and b belong to finite nor-
mal extensions E and F of Q whose degrees are powers of 2. By 3.2, 3.11, the
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composite EF is a Galois extension of Q, whose degree is a power of 2 since
the orders of Gal (F:Q) and Gal (EF:F) ~ Gal(E:ENF)< Gal(E:Q)
are powers of 2. Hence a — b € EF and a/b € EF are 2-constructible. [

Lemma 9.6. If 722 is 2-constructible, then 7 is 2-constructible. If x, y € R, then
z = x + 1y is 2-constructible if and only if x and y are 2-constructible.

We leave this as another exercise and prove 9.3. By definition, a point or line
(straight line or circle) is constructible from the two given points P and Q when
it can be obtained from P and Q by finitely many applications of (b) and (c).
That a constructible complex number z is 2-constructible is shown by induction
on the number of uses of (¢) in the construction of the corresponding point. If (c)
is not used, then z is O or 1 and is 2-constructible.

Call a line 2-constructible when it has an equation with 2-constructible coeffi-
cients. Let the points A, B # A, and C correspond to 2-constructible numbers.
Their coordinates are 2-constructible, by 9.6. The straight line AB, and the circle
with radius AB and center C, are 2-constructible, since their equations

(xp —=x4)(y —ya) (g = ya)(x — xy),
2 2 2 2
(x =xe)"+(y=ye)” = (xg —xp)"+ (4 — ¥p)
have 2-constructible coefficients, by 9.5. Now, the intersection of two 2-constructi-
ble straight lines has 2-constructible coordinates. The intersections of a2-construct-

ible straight line y = ax + b and a 2-constructible circle X2+ y2 +cx+dy+e=0
are found from the quadratic equation

x4+ (ax +b)? +cx +d(ax +b) +e = 0,

whose coefficients and discriminant 8 are 2-constructible; if & > 0, then /8
is 2-constructible by 9.6, and the intersections have 2-constructible coordinates.
The intersections of two 2-constructible circles x> + y2 +ax + by +c =0 and
x4+ y2 +dx + ey + f =0 are also the intersections of X2+ y2 +ax +by+c=0
and the 2-constructible straight line ax + by + ¢ = dx + ey + f, and have 2-con-
structible coordinates. In each case, intersections correspond to 2-constructible
complex numbers, by 9.6. This completes the induction.

Conversely, let z € C be 2-constructible. By 9.4, z belongs to a finite normal
extension E of Q whose degree is a power 2" of 2. That z is constructible is
proved by induction on r. If r = 0, then z € Q is constructible. In general,
the Galois group of E over Q is a finite 2-group and has a normal series whose
factors are cyclic of order 2. Hence E has atower Q = FWCF C---CF.=E
of extensions of degree 2. Now, Q does not have enough nth roots of unity to use
7.8, but we can argue as follows. Since [E:F,_;]=2,wehave E = F,_(«)

for some o, and g = Irr (o : Q) has degree 2, ¢(X) = X> + bX + ¢ for some
b,c € F,_,. Then o = % (=b + \/b* —4c) and E = F,_,(B), where B2 =
br —dc € F._;. Now, ,32 is constructible by the induction hypothesis, S is
constructible by 9.2, and z € F, is constructible by 9.1, since z = x + By for
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some x,y € F,_; and x, y are constructible by the induction hypothesis. [
Applications. With Theorem 9.3 in hand we return to Euclidean geometry.

Corollary 9.7. There is no construction by straightedge and compass that can
trisect angles (split any angle into three equal parts).

Proof. If a w/3 angle could be trisected, then the complex number ¢ = e/
would be constructible. But ¢ is a primitive 18th root of unity; by 6.5, ¢ has
degree ¢(18) =6 over Q, and is not constructible. [J

In the same spirit, readers will tackle two more problems.

Corollary 9.8. There is no construction by straightedge and compass that can
duplicate cubes (construct the side of a cube whose volume is twice the volume of
any given cube).

Corollary 9.9. There is no construction by straightedge and compass that can
square circles (construct a square whose area is that of any given circle).

The last problem is splitting a circle into n arcs of equal lengths; equivalenty,
constructing a regular polygon with n sides. Its solution requires a definition.

Definition. A Fermat prime is a prime number of the form 22" 41,

For example, 22° +1=3,22 +1=5, 22 +1=17, 22 +1 = 257, and

224 + 1 = 65537 are Fermat primes. To the author’s knowledge, no other Fermat
primes have been discovered as of this writing.

Lemma 9.10. If K4 1is prime, then k is a power of 2.

Proof. If k is not a power of 2, then k = ‘2‘. J» where j is odd. Then every
mJ +1 is divisible by m + 1, and 2% + 1 = (22')7 +1 is divisible by 22" + 1.0

Corollary 9.11 (Gauss [1801]). A regular polygon with n sides can be con-
structed from its radius by straightedge and compass if and only if n is the product
of a power of 2 and distinct Fermat primes.

Thus, regular polygons with 2, 3, 4, 5, or 6 sides are constructible, but not those
with 7 sides or 9 sides.

Proof. A regular polygon with n sides is constructible from its radius if and

only if the primitive nth root of unity ¢, = ¢¥7/M s constructible. By 6.5, g, has
degree ¢(n) over Q. Write n as the product n = 2" p’lnl -+ p'r of a power of

2 and positive powers of distinct odd primes. Then

p(n) = 2" T (py = 1) p T (p, - 1),

Hence ¢(n) is a power of 2 if and only if m| =---=m, =1and p; — 1, ...,
p, — 1 are powers of 2; equivalently, n is the product of a power of 2 and distinct
odd primes, which are Fermat primes by 9.10. [J
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Exercises
For the following exercises, give geometric solutions.
1. Show that the y-axis is constructible.

2. Prove the following: if z = x + iy, where x, y € R, then z is constructible if and only
if x and y are constructible.

3. Prove the following. Let A be a constructible point. Show that there is a constructible
point B such that OB = +/OA. Hint: when a point R on a circle projects to a point S on a
diameter C D, then CS.DS = RS?.

4. Prove the following: if z € C and z2 is constructible, then z is constructible.
5. Devise a construction by straightedge and compass of a regular pentagon, given its radius.
For the following exercises, give algebraic solutions.

6. Show that a complex number z is 2-constructible if and only if it belongs to a finite
extension of (Q whose degree is a power of 2, if and only if it belongs to a finite normal
extension of Q whose degree is a power of 2.

7. Prove the following: if z € C and 22 is 2-constructible, then z is 2-constructible.

8. Prove the following: if z = x + iy, where x, y € R, then z is 2-constructible if and
only if x and y are 2-constructible.

9. Prove the following: if K does not have characteristic 2, then every extension K C E
of degree 2 is a radical extension.

10. Show that there is no construction by straightedge and compass that can duplicate
arbitrary cubes.

11. Show that there is no construction by straightedge and compass that can square arbitrary
circles. (You may take it for granted that  is transcendental.)
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Fields with Orders and Valuations

The results of Artin and Schreier [1926] on ordered fields, presented in Sections
1 and 2, extend known properties of R and C and give new insights into the rela-
tionship of a field to its algebraic closure. The remaining sections study valuations
and completions, which have become valuable tools of algebraic geometry.

1. Ordered Fields

An ordered field is a field with a compatible total order relation. This section
contains basic properties, and a universal property of R.

Definition. An ordered field (short for “totally ordered field”) is a field F
together with a total order relation < on F such that, forall x,y,z € F:

() x <y impliesx+z <y+2z;
(2) if z > 0, then x < y implies xz < yz.

For instance, Q and R are ordered fields (with their usual order relations). The
exercises give other examples.

Some familiar properties of Q and R extend easily to all ordered fields:

x > 0 if and only if —x < 0 (otherwise, say, x > 0 and —x > 0, and then
O=x+(—x)>x>0);

x >yifandonlyif x —y > 0;

x <y ifand only if —x > —y;

x >y > 0 implies y_1 >x1>0;
if z <0, then —z > 0 and x < y implies xz = (—x)(—z) > (—y)(—z) = yz;

x2 > 0 for all x # 0, since x < 0 implies x2

1=12>0;

ordered fields have characteristic O (since 0 <1 <1+1<1+1+1<---).

= (—x)(—x) > 0; in particular,

Thus, not every field can be an ordered field; for example, C cannot be ordered,
since an ordered field cannot have —1 =i> > 0. In general:
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Proposition 1.1. A field F can be ordered if and only if —1 is not a sum of
squares of elements of F , if and only if 0 is not a nonempty sum of nonzero squares
of elements of F.

Proof. If —1 = Zi xiz ,then0=1+ Zi xl.z is a sum of squares. Conversely, if
0=3" x? with, say, x; #0, then —x7 =", Lk x?and —1=3, Lk (x;/x,)?
is a sum of squares. In an ordered field, squares are nonnegative, and —1 < 0 is
not a sum of squares.

Conversely, assume that —1 is not a sum of squares. Let S be the set of all
nonempty sums of squares of nonzero elements of . Then 0 ¢ S, —1 ¢ S,
and § is closed under addition. Morover, § is closed under multiplication, since
(>, x7) > ij) =2 (xl-yj)z, and is a multiplicative subgroup of F\{0},
since 1 € S,and x =3, )c,-2 € S implies x ' = x/x? = Y (xl-/x)z.

By Zorn’s lemma there is a subset M of F that contains S, is closed under
addition, is a multiplicative subgroup of F\{0} (in particular, 0 ¢ M), and is
maximal with these properties. Then M, {0},and —-M ={x € F | —x e M }
are pairwise disjoint (if x € M N (—M), then 0 = x + (—x) € M ). We show that
F = M U {0} U(—M); readers will easily deduce that F becomes an ordered
field, when ordered by x < y ifandonlyif y —x € M.

Suppose that a € F, a # 0,and —a ¢ M. Let
M = {x+ay|x,ye MU{0},withx £00r y£0}.

Then S € M C M'; M’ is closed under addition, like M, and closed under
multiplication, since x,y,z,t € M U {0} implies (x + ay)(z + at) = (xz +
a’yt) + a(yz + xt) with xz + a®yt, yz +xt € M U {0} since a> € S C M.
Also, 0 ¢ M': x +ay+0 when x =0£yorx£0=y,orwhenx,y € M
(otherwise, a = —x/y € —M). Moreover, | € S C M',and t = x +ay € M’
implies 1=! = 1/1> = (x/1%) + a(y/1*) € M’ (since t*> € M). Thus, M’ is a
multiplicative subgroup of F\{0}. Therefore M’ = M, and a € M. O

Archimedean fields. Since an ordered field F has characteristic 0, it contains
asubfield Q = {ml/nl ] m,n € Z, n + 0}, which is isomorphic to Q as a field.
In fact, Q is isomorphic to QQ as an ordered field: we saw that nl > 0 in F when
n > 01in Z;hence m1/nl > 0 in F when m/n > 0 in Q, and al/bl > c1/d1
in F if and only if a/b > ¢/d in Q. We identify Q with Q, so that QQ is an
ordered subfield of F.

Definition. An ordered field F is archimedean when every positive element of
F is less than a positive integer.

For example, Q and R are archimedean, but not every ordered field is archi-
medean (see the exercises). The next result finds all archimedean ordered fields.

Theorem 1.2. An ordered field is archimedean if and only if it is isomorphic as
an ordered field to a subfield Q C F C R of R.
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Proof. Ordered subfields of R are archimedean, since R is archimedean.

Conversely, let F be an archimedean ordered field. We show that Q C F is
dense in F, that is, between any two x < y in F lies some r € Q. Since F is
archimedean, there exist integers £, m,n > 0 such that —¢ < x <y < m and
1/(y—x)<n;then0 < 1/n <y—x.Now (i/n) — € >x wheni =2 n({+m).
Hence there is a least j > 0 such that (j/n) — £ > x. Then (j/n) — € < y,
since (i/n) — ¢ = y implies ((i —1)/n) —€ =y — (1/n) > x.

To embed F into R we define limits of sequences in F: L = limj x,, if
and only if L € F and, for every positive ¢ € Q, L —¢ < x, < L+¢
holds for all sufficiently large n. If limy x, exists, it is unique, since Q is
dense in F. Moreover, sequences with limits in F are Cauchy sequences: if
limy a, exists, then, for every positive & € Q, —¢ < a,, — a, < & holds for
all sufficiently large m, n. Readers with a yen for analysis will easily prove the
following limitlaws: limy (a, +b,)= (limg a,) + (limg b,) and limj, (a, b,) =
(limp a,) (limg b,), whenever limy a, and limj b, exist; the usual arguments
work since F is archimedean.

Every element x of F is the limit in F of a Cauchy sequence of rationals:
since Q is dense in F, there exists for every n > 0 some a, € Q such that
x—(1/n) <a, < x+(1/n); then lim, a, = x. If (b,),_ is another sequence
of rational numbers such that lim; b, = x, then, for every positive ¢ € Q,
la, — b, | < e holds for all sufficiently large n, so that a, and b, have the same
limit in R. Hence a mapping X : F' — R is well defined by

A(x)=1lim,_, _a, whenever x =limya, and a, € Q.

If x € Q, then A(x) = x, since we can let a, = x for all n. Our two limits laws
show that A a homomorphism. If x > 0 in F, then x~! < m for some integer
m > 0 and 1/m < x; we can arrange that x — (1/n) < a, < x + (1/n) and
1/m < a, forall n;then A(x)=limpa, =2 1/m > 0. Hence x < y implies
A(x) < A(y); the converse holds, since x = y would imply A(x) = A(y). Thus
F is isomorphic to A(F), as an ordered field, and Q C A(F) CR.O

Exercises
Prove the following:

1. A field F is an ordered field, and P C F is its set of positive elements, if and only
if 0 ¢ P, P is closed under addition and multiplication, ¥ = P U {0} U (—P) (where
—P={x€F ’ —x € P}),and F isorderedby x < y ifandonlyif y —x € P.

2. Q can be made into an ordered field in only one way.
3. R can be made into an ordered field in only one way.

4. Q(v/2) C R can be made into an ordered field in exactly two ways.
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5.1f F is an ordered field, then sois F(X), when f/g > 0 ifand only if a/b > 0, where
a and b are the leading coefficients of f and g; but F(X) is not archimedean.

6.1f F isanordered field, thensois F(X),when f/g > O ifandonlyif f/g = X" fo/g0,
where n € Z and fp(0) > 0, go(0) > 0; but F(X) is not archimedean.

7.Let F be an archimedean ordered field. Without using Theorem 1.2, show that lim (an +
bn) = ( limpg an) + (limp b,,) whenever limyp a, and limpg b, exist.

8. Let F be an archimedean ordered field. Without using Theorem 1.2, show that
limp (an bn) = (limp a,,) (limp bn) whenever limg a, and limpg b, exist.

2. Real Fields

This section studies fields that can be ordered. A number of properties of R extend
to these fields. The Artin-Schreier theorem, which concludes the section, throws
some light on the relationship between a field and its algebraic closure.

Formally real fields are fields that can be ordered:

Definition. A field F is formally real when there is a total order relation on F
that makes F an ordered field.

By 1.2, a field F is formally real if and only if —1 is not a sum of squares
of elements of F. For example, every subfield of R is formally real. If F is
formally real, then so is F'(X) (see the exercises for Section 1).

Proposition 2.1. If F is a formally real field and o* € F, a* > 0, then F(c)
is formally real.

Proof. We may assume that ¢ ¢ F. Then every element of F(«) can be
written in the form x +ay for some unique x, y € F. If «> > 0 in F, then F(c)
is formally real, since

1= X G ray? = X 4 etyE) +a X (25, )

for some x;, y; € F would imply —1 =3, (x? +oz2yi2) =20.0

i
On the other hand, C = R(i) is not formally real.

Proposition 2.2. If F is a formally real field, then every finite extension of F
of odd degree is formally real.

Proof. This is proved by induction on n, simultaneously for all F and all
E D F of odd degree n = [E: F]. There is nothing to prove if n = 1. Let
n>1.IfaecE\Fand FG F(a)S E,then [F(a):F] and [E: F(a)] are
odd, since they divide n; hence F(«) and E are formally real, by the induction
hypothesis. Now let £ = F(«). Then g = Irr (o : F) has odd degree n; the
elements of E can be written in the form f(«) with f € F[X] and deg f < n.

If E is not formally real, then —1 = ), fl-(a)z, where f; € F[X] and
deg f; < n. Hence ¢ divides 1 + >, fi2 and 1+ ), fi2 = gg for some
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g € F[X]. Since the leading coefficients of all fl-z are all positive in F, deg (1 +
Do flz) = max; deg (flz) iseven and less than 2n. Since degg = n isodd, deg g
is odd and less than n, and g has an irreducible factor r whose degree is odd and
less than n. Now, r hasaroot € F and 1+, fl-(ﬂ)2 =¢q(B)g(B)=0in
F(B),sothat F(B) is not formally real. This contradicts the induction hypothesis
since [ F(B): F]=degr is odd and less than n. J

Real closed fields. We saw that every field has a maximal algebraic extension
(its algebraic closure). Formally real field have a similar property.

Definition. A field R is real closed when it is formally real and there is no
formally real algebraic extension E 2 R.

For example, R is real closed: up to R-isomorphism, the only algebraic exten-
sion E 2 R of R is C, which is not formally real.

Theorem 2.3. A formally real field R is real closed if and only if (i) every
positive element of R is a square in R, and (ii) every polynomial of odd degree in
R[X] has a root in R; and then R = R(i), where i* = —1.

Proof. Readers will enjoy proving that real closed fields have properties (i)
and (ii)). Now let R be a formally real field in which (i) and (ii) hold. Then R
has no finite extension E 2 R of odd degree: if [E:R] isodd and @ € E,
g =Irr(a:R), then deg g = [R(«): R] divides [ F:R] and is odd, ¢ has a
root in R by (ii), degg =1,and o € R,sothat £ = R.

Let C = R(i) C R, where i2 = —1. We show that every element a + bi of C is
asquarein C. First, every a € R isasquarein C, by (i) (if a < 0, then —a = y2
and a = (iy)? for some y € R). Now let b £ 0. We have a + bi = (x + yi)?

if and only if x> — y?> = a and 2xy = b, and 2 > 0 in R since R is formally

2

real. With y = b/2x the first equation reads x* —ax? - Z—z = 0. This quadratic

equation in x2 has two solutions 51, §5 € R, sinceits discriminant is a?+b% > 0.

2 . ..
Moreover, 5,5, = —% < 0, so that s, say, is positive. Then s, = x2 for some

x € R, and then a + bi = (x +ib/2x)?.

Then every quadratic polynomial f € C[X] has arootin C, since its discrim-
inant has a square root in C. Hence C[X] contains no irreducible polynomial of
degree 2. Then C has no extension C C E of degree 2: otherwise, E = C(«)
forany o € E\C and Irr (o : C) would be irreducible of degree 2.

We show that C = C; this implies R = C. If @ € C, then « and its conjugates
over R generate a finite Galois extension E of C, which is also a finite Galois ex-
tension of R. Then G = Gal (E: R) hasevenorder |G| = [E:R]=2[E:C].
If S is a Sylow 2-subgroup of G and F = Fixp (S) is its fixed field, then
[F:R]=[G:S] is odd, which we saw implies F = R; hence G = § is a
2-group. Then Gal(E:C) is a 2-group. If C & E, then Gal(E:C) has a
subgroup of index 2, whose fixed field F’ has degree 2 over C, which we saw
cannot happen; therefore £ = C,and @ € C.



236 Chapter VI. Fields with Orders and Valuations

If now R g E C R is a proper algebraic extension of R, then E = R and E
is not formally real, since —1 is a square in C. Hence R is real closed. [

Wher R = R, this argument gives a more algebraic proof that C is algebraically
closed, based on properties (i) and (ii) of R.

Corollary 2.4. A real closed field R can be made into an ordered field in only
one way.

Proof. Namely, x < y if and only if y — x = a* for some a € R, by 2.3. O

Corollary 2.5. If R is real closed, then f € R[X] is irreducible if and only if
either f has degree 1, or f has degree 2 and no rootin R.

This is proved like the similar property of R, as readers will happily verify.
Corollary 2.6. The field of all algebraic real numbers is real closed.

Proof. “Algebraic” real numbers are algebraic over QQ; they constitute a field
A. This field A has properties (i) and (ii) in Theorem 2.3, since real numbers that
are algebraic over A are algebraic over Q. [

The exercises give other properties of R that extend to all real closed fields.
Real closure. We now find maximal real closed algebraic extensions.

Definition. A real closure of an ordered field F is a real closed field that is
algebraic over F, and whose order relation induces the order relation on F.

Proposition 2.7. Every ordered field has a real closure.

Proof. Let F be an ordered field. The subfield E of F generated by all
square roots of positive elements of F is formally real: if —1 =), ﬂiz in E,
then —1 =3, ,Biz in F(ay, ..., a,) for some square roots oy, ..., a, of positive
elements of F, and F (Oll, an) is not formally real, contradicting 2.1.

By Zorn’s lemma there is a subfield E C R of F that is formally real and
is maximal with this property. Then R is real closed, since a proper algebraic
extension of R is, up to R-isomorphism, contained in R and cannot be formally
real by the maximality of R; R is algebraic over F; and the order relation on R
induces the order relation on F: positive elements of F are squares in £ C R
and are positive in R, whence negative elements of F are negative in R. J

It is known that every order preserving homomorphism of F into a real closed
field R extends to an order preserving homomorphism of any real closure of F
into R; hence any two real closures of F' are isomorphic as ordered fields.

The Artin-Schreier theorem is another characterization of real closed fields.

Theorem 2.8 (Artin-Schreier [1926]). For a field K + K the following condi-
tions are equivalent: (1) K is real closed; (2) [K : K| is finite; (3) there is an
upper bound for the degrees of irreducible polynomials in K [X].
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Thus, if [ K : K ] is finite, then [ K : K ] = 2; either the irreducible polynomials
in K[X] have arbitrarily high degrees, or all have degree at most 2.
Proof. We start with three lemmas.

Lemma2.9. Ifthere is an upper bound for the degrees of irreducible polynomials
in K[X], then K is perfect.
Proof. If K 1is not perfect, then K has characteristic p # 0, and some ¢ € K

is not a pth power in K. We show that f(X)= X?" — ¢ € K[X] is irreducible
for every r 2 0. In K[X], f isaproduct f =g q, g, of monic irreducible

polynomials ¢y, ..., gq;,. Let a be a root of f in K. Then o” = ¢ and
f(X)=XP" —aP" = (X —a)”" . Hence ¢; = (X — )’ for some #; > 0. If
t = min (fy, ...,1,), then ¢ = (X — )’ is irreducible and divides g, ..., g;;
therefore g; =---=¢q; =q and f = qk. In particular, okt =, p" =kt,and k

is a power of p. But k is not a multiple of p, since «’ € K and ¢ = (ozt)k is not
a pth power in K. Therefore k = 1, and f = g is irreducible. [

Lemma 2.10. If F is a field in which —1 is a square, then F is not a Galois
extension of F of prime degree.

Proof. We show that a Galois extension E C F of F of prime degree p
(necessarily a cyclic extension) cannot be algebraically closed.

If F has characteristic p, then, by V.7.10, E = F(a), where c=a? —a € F;
Ir(¢:F)=XP =X —c;and 1, o, ..., P~ is a basis of E over F. Let
B =b0+blot+~-~+bp71a1’_l € E, where b, "~’bp—1 € F. Then

,BP = bg+bfap+...+bzila(17*1)17

bg+b‘1”(oz+c)+-~-+b§_1(oz+c)”_1

and BP — B —caP ' =ay +aj+ -+ ap_lapfl, where a,_| = bl | —

bp_1 —c. Hence BP — B — ca?~ 1 £0: otherwise, a, | = Oand XP — X — ¢
disgraces irreducibility by having a root bp_1 in F. Thus X? — X —ca?~ ! e
E[X] hasnorootin E.

Now assume that F' does not have characteristic p. We may also assume that E
contains a primitive pth root of unity ¢: otherwise, E is not algebraically closed.
Then ¢ is aroot of (X¥ —1)/(X — 1) € F[X] and [F(e): F] < p. Therefore
[F(e):F]=1and ¢ € F. Then V.7.8 yields E = F(«), where «” € F and
aé¢F.

Assume that « hasa pthroot in E. Letoc € Gal(E: F), ¢ =(0B)/B € E,
and n = (6¢)/¢ € E. Then pP° = aP € F, (aB)P’ = pP°, (¢7)P = 1,
tPeF, ()P =¢P, p? =1,and n € F. Now o = (B and o¢ =

n¢ 3 by induction, ok B = nk(k_l)/ 2 g“k B for all k, since this equality implies
O’k+]ﬂ — nk(k—l)/Z (nké.k) (Cﬁ) — 77k(k+1)/2 §k+l B. Then np(p—l)/Z P =1,
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since o = 1.1f p is odd, then p divides p(p — 1)/2 and p?(P=1/2 = 1 It
p=2,then ¢*=1and ¢2 = +1;if ¢2 =1, then n?P~D/2 = 1 if (2 = —1,
then ¢ € F, since F contains a square root of —1, and again np(pfl)/ 2 -
n=1(0¢)/¢ =1. Inevery case, (¥ = 1. Hence ¢ = ¢’ € F, o = B, and
ca =oBP = BP =a. Butw ¢ F,so oo+« for some o € Gal(E: F).
Therefore X” — o € E[X] hasnorootin E.[J

Lemma 211. If [K : K| = n is finite, then every irreducible polynomial in
K [X] has degree at most n, K is perfect, and K = K (i), where i*> = —1.

Proof. Every irreducible polynomial ¢ € K[X] has a root « in K ; then
g =Irr (¢ : K) has degree [K(): K] < n. Then K is perfect, by 2.9, and K
is Galois over K. Let i € K bearoot of X*+1 € K[X]. If K(i) G K, then
K is Galois over K (i) and Gal (K : K(i)) has a subgroup H of prime order;
then K is Galois over the fixed field F of H, of prime degree [K : F] = |H]|,
contradicting 2.10. Therefore K (i) = K . [J

We now prove Theorem 2.8. By 2.3, (1) implies (2); (2) implies (3), by 2.11.

(3) implies (2). If every irreducible polynomial in K [X] has degree at most n,
then K is perfect by 2.9 and K is separable over K. Moreover, every element of
K has degree at most n over K ; hence [K : K] < n, by IV.6.13.

(2) implies (1). Assume that [ K : K] is finite. By 2.11, K is perfect and
K = K(i), where i>=—1. Then i ¢ K, since K # K. Every z=x+iy € K
has two conjugates, z and 7 = x — iy, and zZ = X%+ y2 € K. For every
x,y€e K, x+iy = u? for some u € K, and then )52+y2 =utul? = (uﬁ)2 isa
square in K. Hence, in K, every sum of squares is a square. Now, —1 is not a
square in K, since i ¢ K. Hence K is formally real; K is real closed, since the
only algebraic extension K ; E = K of K is not formally real. (J

Exercises

1. Let R be areal closed field, with an order relation that makes it an ordered field. Show
that every positive element of R is a square in R.

2. Let R be areal closed field. Show that every polynomial f € R[X] of odd degree has
arootin R.

3. Prove the following: if R is real closed, then f € R[X] is irreducible if and only if
either f has degree 1, or f has degree 2 and norootin R.

4. Prove the following: if R is real closed, f € R[X], and f(a)f(b) < O for some
a <bin R,then f(r)=0 forsome a < r < b. (Hint: use Corollary 2.5.)

5. Prove the following: if K and L are real closed fields, then every homomorphism of K
into L is order preserving.

6. In an ordered field F, the absolute value of x € F is |x| = max (x, —x) € F.
(This is not an absolute value as defined in Section 3.) Show that |xy| = |x||y| and that
e+ vl =[x+ ]yl
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7. Prove the following: when R is real closed and f(X)=ag+a1X +- - +a, X" €
R[X], then every root of f in R lies in the interval —M < x < M, where M =
max (1, |ag| + |ai| + -+ |an]).

8. Show that X” — a € F[X] is irreducible when p is prime, the field F does not have
characteristic p and does not contain a pth root of @, but F' contains a primitive pth root of
unity and a square root of —1.

9. Let C be an algebraically closed field. Prove that Aut (C) has no finite subgroup of
order greater than 2.

3. Absolute Values

Absolute values on fields are generalizations of the familiar absolute values on Q,
R, and C. They yield further insight into these fields as well as new constructions
and examples. The general definition is due to Kiirschak [1913]. This section
contains general definitions and properties.

Definition. An absolute value v on a field F is a mapping v : F — R,

X — ‘x i such that:

(a) ’x’v =0 forall x € F, and ’x’v =0ifandonlyif x =0;
(b) ‘xy’v = ’x’v !y}vforall x,yeF;
(©) |x +y|v < |x|v + |y|vf0rall x,y€F.
Absolute values are also called real valuations or real-valued valuations, espe-

cially in the nonarchimedean cases discussed below. We denote |x| by |x| when
v is known.

Examples include the familiar absolute values on Q and R, and the absolute
value or modulus on C. Every field F also has a trivial absolute value ¢, |x f = 1
for all x # 0. For less trivial examples let K be any field. Readers will verify that

2deg f—degg if 4 0,
778l = { its
0 if f=0

is well defined and is an absolute value v, on K(X). Similarly, an absolute
value v, on K(X) is well defined by

{ 2ord g—ord f if f £0,
0 if =0,

where the order ord f of f(X)=ag+a;X +---+a,X" 0 is the smallest
n 2 0 such that a, # 0. In these definitions, 2 can be replaced by any positive
constant (by Proposition 3.1 below). For every a € K,

|f(X)/e(X)|, = |f(X—a)/g(X —a)l|,

‘f/g‘o =
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is another absolute value v, on K (X). These absolute values are trivial on K .

By (a) and (c), an absolute value v on any field F induces a distance function

d(x.y) = |x =],

on F, which makes F a metric space. Readers will verify that the operations on
F, and v itself, are continuous in the resulting topology. The completion of F as
a metric space is considered in the next section.

Equivalence of absolute values is defined by the following result.

Proposition 3.1. Let v and w be absolute values on a field F. The following
conditons are equivalent:

(1) v and w induce the same topology on F ;
2) |x|v <1 ifandonlyif|x|w <1;
(3) there exists ¢ > 0 such that |x‘w = (|x|v)cf0r all x € F.

Proof. (1) implies (2). Assume |x| < 1. Then lim,  __|x"| =0 and
lim, ,__ x" = 0 in the topology induced by v and w. Hence the open set
{xeF; x|w < 1} contains some x"; x"{w < 1 for some n; and |x|w < 1.

Exchanging v and w yields the converse implication.

(2) implies (3). If (2) holds, then |x| > 1 if and only if |x| > 1, and
|x|, = 1 if and only if |x| = 1. In particular, v is trivial if and only if w is
trivial, in which case (3) holds. Now assume that v and w are not trivial. Then
|a{v > 1 forsome a € F, a}w > 1, and |a|w = (’a|v)c for some ¢ > 0.

‘We show that ’x’w = (|x’v)c for all x € F. We may assume that ‘x|v +£0,1.
Then |x| = (|a|v)t for some t+ € R. If m/n € Q and m/n < t, then
(|a|v)m/n < ’x e |am/x”|v < 1, ’am/x”|w < 1, and
(|a|w)m/n < |x|w. Similarly, m/n > t implies (a‘w)m/n > |x|w. There-
fore (|a|w)t = |'x|w’ and |x|w = (|a|w)t = (|a|v)Ct = (|x|v)c’

(3) implies (1). If (3) holds, then the metric spaces on F defined by v and w
have the same open disks, and therefore the same topology. U

n

v’ |am’v < |x

Definition. Two absolute values on a field are equivalent when they satisfy the
equivalent conditions in Proposition 3.1.

Archimedean absolute values.

Definition. An absolute value v on a field F is archimedean when there is no
x € F such that |n|v < |x|v for every positive integer n.

Here |n|v is short for }nl » where nl1 € F. The usual absolute values on Q,
R, and C are archimedean, but not the absolute values vy and v, on K (X).
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Proposition 3.2. For an absolute value v the following are equivalent:
(1) v is nonarchimedean;
2) ‘n’v <lforallne€Z,n>1;
() |n|, £ 1 forallne€Z;

(d) |x +y|v < max (|x

y|v)f0rall x,yeF.

v’
Proof. (1) implies (2). If |m| > 1 for some m > 1, then lim;_, |mk| =00
and there is no x € F such that |n| < |x| forall n € Z.
(2) implies (3) since | — 1|* = [1| =1 and | — 1] = 1, whence | — m| = |m|.
(3) implies (d). If (3) holds, then, for all n > 0,

fe+y|" = ’20§k§n (Z) x y"’k‘
< Yogeg [ I S (0 1) max (" ],
Hence |x + y| < (n + 1)l/n max (|x|, |y|) for all n. This yields (d), since
lim,  (n+D)/"=1.

(d) implies (1): (d) implies |n| = [1+---+1] < [1| =1 forall n > 0.0
The next result is an exercise:

Corollary 3.3. A field of characteristic p + 0 has no archimedean absolute
value.

Absolute values on Q. Besides the usual absolute value, Q has an absolute
value v » for every prime p, which readers will verify is well defined by
p_k ifm/n= pkt/u # 0, where p does not divide ¢ or u,
im/n|, = .
P 0 ifm/n=0.
It turns out that these are essentially all absolute values on Q.

Proposition 3.4 (Ostrowski [1918]). Every nontrivial absolute value on Q is
equivalent either to the usual absolute value or to v » for some unique prime p.

Proof. Let v be a nontrivial nonarchimedean absolute value on Q. By 3.2,
|n‘v <1foralln € Z.If |n|v =1 forall 0 £n € Z, then ‘m/n|v ‘n|v = ‘m|v
implies |x|v =1 forall 0 £ x € Q and v is trivial. Therefore

P ={neZ;

n|v<1} £ 0.

In fact, P is a prime ideal of Z: indeed, P is an ideal by (b), (d), 1 ¢ P, and
m,n ¢ P implies |m‘v = |n‘v =1 and mn ¢ P. Hence P is generated by a
prime p. Let ¢ = |p|v <1. If m/n= pkt/u # 0, where p does not divide ¢
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or u, then MU = ’u’v =1 and ’m/n‘v = c*. Hence v is equivalent to V,i P is

unique since v, and v, are not equivalent when p # ¢ (e.g., p|q =1).

Now let v be an archimedean absolute value on Q. We show that ’n|v > 1

forall n > 1. Let m,n € Z, m,n > 1. Then nk <m < n**1 for some
k 20, k < log, m. Repeated division by n yields 0 < r|, ..., r, < n such that

m:r0+r1n+--~+rknk. Lett:max(l, n’v) Since ‘ri|v < r,<nm,
Im|, < (k+1)nt* < (1+log,m)nt'en™.

This inequality holds for all m > 1 and also holds for any m” > 1; hence
(|m[,)" = |m"], = (1 +rlog, m)n "1™ and

|m|v < ((1+r10gnm)n)l/r tlognm

forall r > 0. Since lim, _,_ ((1+rlog, m)n)l/r =1, we obtain

i, < % = max (1, [a], )"

nl,
forall m,n > 1. By 3.2,

n > 1. Then |m|v§(|n v v
and (ln ‘m‘v)/lnm = (ln ’n|v)/lnn,f0rall m,n > 1. Hence ¢ = (ln ‘n’v)/lnn

m|v > 1 for some m > 1; therefore |”’v > 1 for all
U)lognm _ (|n|v>lnm/lnn7 (|m‘ )l/lnm _ (|n| )l/lnn

>

does not depend on n (as long as n > 1). Then ‘n|v =nc forall n = 1, and
|x|v = (|x|)c forall x € Q. O

Exercises

1. Prove that Hx|v — |y|v| < |x -y

. for every absolute value v.

2. Define absolute values on a domain; show that every absolute value on a domain extends
uniquely to an absolute value on its quotient field.

3. Verify that vso is a nonarchimedean absolute value on K (X).
4. Verify that vg is a nonarchimedean absolute value on K (X).
5. Verify that vy is a nonarchimedean absolute value on Q for every prime p.

6. Verify that the operations on F (including x —— x~1, where x # 0) are continuous
in the topology induced by an absolute value.

7. Show that every absolute value is continuous in its own topology.
8. Prove that a field of characteristic p # 0 has no archimedean absolute value.

9. Let v be an absolute value on a field F. Show that (’x ’U)C is an absolute value on F
for every constant 0 < ¢ < 1 (for every ¢ > 0 if v is nonarchimedean).

10. Let 0 # x € Q. Show that |x| []
almost all primes p.)

p prime ‘x|p = 1. (First show that ‘x|p =1 for

11. Let K be any field. Prove that every nontrivial absolute value on K (X) that is trivial
on K isequivalent either to voo , Or to a suitably defined v, for some unique monic irreducible
polynomial g € K[X].
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4. Completions

As metric spaces have completions, so do fields with absolute values (Kiirschak
[1913]). The construction of R from @Q by Cauchy sequences is an example.
Completions also yield a new field, the field of p-adic numbers, and its ring of
p-adic integers, first constructed by Hensel [1897].

In what follows, F is a field with an absolute value. A Cauchy sequence in
F is a sequence a = (a,,),. of elements of F such that, for every positive real
number ¢, |a,, — an| < ¢ holds for all sufficiently large m and n. In F, every
sequence that has a limit is a Cauchy sequence.

Definition. A field F is complete with respect to an absolute value when it is
complete as a metric space (when every Cauchy sequence of elements of F has a
limitin F).

For example, R and C are complete, but not Q.

Construction. The main result of this section is the following:

Theorem 4. 1 Let F be a field with an absolute value v. There exists a field
extension F = F of F and an absolute value v on F that extends v, such that

F is complete with respect to v and F is dense in F.

Proof. As a set, F is the completion of F as a metric space. Let C be the set
of all Cauchy sequences of elements of F'. Termwise sums and products

(an)n>0 + (bn)n>0 = (an + bn)n>0 ’ (an)n>0 (bn)n>0 = (an bn)n>0

of Cauchy sequences are Cauchy sequences (see the exercises). Hence C is a
commutative ring; its identity element is the constant sequence, a, = 1 forall n.

Let 3 be the setof all a = (a,),_, € C such that lima, = lim, ,__a, =0,
equivalently lim ’an| = 0. Readers will verify that } is an ideal of C. We show
that 3 is a maximal ideal of C. Let @ 2 3 be an ideal of C. Let a € a\3. Then
lim ’an‘ > 0 and there exists § > 0 such that ’an| 2> 8 for all sufficiently large
n.Letb, =1/a, ifa, #0, b, =1 if a, =0. If m and n are sufficiently large,

then ‘am’ >4, la ‘ > 8, and

a, —a,, ‘< la, —a,|

82 ’

b = - & -

m I’l

Hence b = (b)), is a Cauchy sequence. We see that lim (a, b,) = 1, so that
c=ab—-1¢€j3. Hence l=ab+ccaand a=C.

We show that the field F = C /3 has the required properties. For every x € F
there is a constant sequence X = (x,,),,. in which x, = x for all n. This yields

a homomorphism x — X + 3 of F into F. Hence F becomes a subfield of F
when we identify x € F and x+3 € F.

If a = (a,),.( is a Cauchy sequence in F, then ({an|)n20 is a Cauchy
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sequence in R, since ||a,| — |b,|| < |a, — b,|. Hence lim |a,| exists in R.
If a — b € 3, then lim |a, — b,| = 0 and the same inequality ||a,| — |b,|| <

~

|an - bn| implies lim |an| = lim |bn| Therefore a mapping v : F — R
is well defined by v(a + 3) = lim |a, |, whenever a = (a,),. is a Cauchy

o~

sequence in F. It is immediate that v is an absolute value on F. If x € F, then
(x) =lim |x‘ = ‘x : hence v extends v.

If a = (a,),- is a Cauchy sequence in F, then a + j = lim q,, in ]A?, since

v(a+3—a n n>0
be a Cauchy sequence in F. Since F is dense in F there exists for every n > 0
some a, € F such that v(A, —a,) < 1/n. Then a = (a,),_, is a Cauchy

) =1lim|a, —a,,|. Hence F isdensein F . Finally, let A = (A,)

~

sequence in F', a is a Cauchy sequence in F', and a + 3 = limq, = lim A, in
F. Thus F is complete. [J

Definition. A completion of a field F with respect to an absolute value v is a
field extension F, of F with an absolute value v that extends v, such that F is
complete with respect to v and F is dense in F .

For example, R is a completion of Q with respect to its usual absolute value;
readers will show that K ((X)) is a completion of K(X) with respect to v,.
Another example, the field of p-adic numbers, is given below.

Properties. Completions have a universal property:

Proposition 4.2. Let F and K be fields with absolute values. If K is complete,
then every homomorphism of F into K that preserves absolute values extends
uniquely to a homomorphism of any completion of F into K that preserves
absolute values.

Proof. Let F be a completion of F and let ¢ : F — K be a homomorphism
that preserves absolute values. Since F is dense in F, every element « of the
metric space F is the limit of a sequence a = (a,,),. of elements of F, which
is a Cauchy sequence in F and therefore a Cauchy sequence in F. Since ¢
preserves absolute values, (¢a,,),. is a Cauchy sequence and has a limit in K .
This limit depends only on «: if « = lim a, = lim b,, where a,, b, € F,
then lim (a, — b,) =0, lim (¢a, — @b, ) = 0 since ¢ preserves absolute values,
and lim ga, = lim ¢b,. Hence a mapping v : F — K is well defined by
Ya = lim ga, whenever « =lima, and a, € F.

It is immediate that i extends ¢ and, from the limit laws, that i is a field
homomorphism. Moreover,  preserves absolute values: o = lim a, implies
|| = lim |a,| = lim |pa,| = |¥a|, since absolute values are continuous and

preserved by ¢. Conversely, if x : F — K is a field homomorphism that
extends ¢ and preserves absolute values, then x is continuous and « = lim a,,
implies xo = lim xa, = lim @a, = Y a; hence x = .0

A standard universal property argument then yields uniqueness:
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Proposition 4.3. The completion of a field with respect to an absolute value is
unique up to isomorphisms that preserve absolute values.
p-adic numbers.
Definitions. For every prime number p, @ » is the completion of Q with respect
0 v,; Zp ={x € @p;

p-adic integer is an element of 7 -

x|p < 1}, a p-adic number is an element of (@p a

Other notations are in use for Q » and Z -

In @p, for every x, € 7Z, the series ) x, p" converges: the partial sums

—n

: : n n n+1
constitute a Cauchy sequence, since |xn p |p < p~ " and |xn pl+x, P+

et x, pt ]p < p~". This yields a more concrete description of Q o'
Proposition 4.4. Every Laurent series Enzm x, p" with coefficients x, € Z
converges in Q i every p-adic integer x is the sum
X = Xg+x;p+-+x,pl 4

of a unique power series with coefficients x, € Z such that 0 < x, < p; every
p-adic number x + 0 is the sum of a unique Laurent series

x = x,p" +xm+1pm+1 +okx, A
with coefficients x, € Z such that 0 < x,, < p forall n 2 m, and x,, + 0; and
then |x|p = p~ "™, and x is a p-adic integer if and only if m = 0.
Proof. First we prove a lemma.
Lemma 4.5. If x € @p and |x|p < p™ ", then |x - tp’"|p < p~ ™ for some
unique integer 0 <t < p; if |x|p =p " thent +0.

Proof. 1If |x|p < p~ ™, then r = 0 serves. Now assume |x|p =p ™

Since Q is dense in @p we have |x — y|p < p~™ for some y € Q. Then

|y|p =p and y = p™k/¢, where m € 7Z and p does not divide k or
£. Since Zp is a field we have k = t€ (mod p) for some ¢ € Z, and can

—m

arrange that 0 < ¢ < p. Then 0 < ¢t < p, since p does not divide 7, and
’y - tp’"’l7 = ‘pm(k - tﬁ)/ﬁ‘p < p~ ™, since p divides k — t£ but not £. Hence
|x — tpm’p < p~
|tpm - upm|p <p ™, pdividest —u,and t =u.O

" 1If also |x - up’"‘p < p~ ™, where 0 £ u < p, then

We now prove Proposition 4.4. Let fx’p =p ™. By45, |x —x,p" » <

—(m+1 ; ; .
p (m+1) for some unique integer 0 < x,, < p; hence

m m+1 —(m+2
x =%, " = X1 P \p§p( )
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for some unique integer 0 < x, ., < p; repetition yields unique 0 < x, < p
such that |x — Zm§n§r xnp”|p < p~ ", for every r > m. Then the series
anm x, p" converges to x in @p. If x € 2p, then m = 0 and anm x, p" is
a power series, > >q X, p", with x, =0 forall n < m.

Assume that x =) >, v, p",where 0 =y, < p forall n and y, # 0. Then

(e+1)

S me v, = lim, oo [Ypngy v, 2", S P and x| = [yp], =
£

p~ . Hence £ = m. Uniqueness of x, is proved by induction: if x, = y,
for all n < r (for instance, if » = m, or, in case x € Zp, r = 0), then

|x - Zménér ynpn‘p < P_r

and uniqueness in 4.5 yields x, = y,. [

Exercises

1. In any field with an absolute value, show that the termwise sum and product of two
Cauchy sequences are Cauchy sequences.

2. Prove the following: in any field with an absolute value, if a = (an),=0 converges to 0
and b = (by)u>0 is a Cauchy sequence, then ab = (an bn), >, converges to 0.

3.Let K be afield. Show that K ((X)) is a completion of K (X) with respect to vg .

4. Show that a completion is uniquely determined by its universal property, up to isomor-
phisms that preserve absolute values.

5. Let F be complete with respect to a nonarchimedean absolute value. Show that a series
Z an converges in F if and only if lim a, = 0.

6. Prove directly that every integer x € Z isasum x = xg+x1p + -+ xu p" for some
unique m = 0 and xq, ..., X, € Z suchthat 0 < xq, ..., xn < p and x; £ 0.

7. Let x = ano xnpt € Z,,, where x, € Z and 0 < x,, < p for all n. Show that x
is a unit in Zp is aI;i only if xg # 0.

8. Write —1 as the sum of a Laurent series in @2 .

9. Write % as the sum of a Laurent series in @2 .

10. Write % as the sum of a Laurent series in @3 .

11. Show that @p is the field of fractions of 2;, .

12. Show that pZ,, is a maximal ideal of i,,. Find 2,,/,;2,,.

13. Show that Z p is a PID with only one representative prime, and that the ideals of z p
constitute a chain.

14. Show that every domain with an absolute value has a completion with a suitable
universal property.

15. Let K be a field. Show that K [[X]] is a completion of K [X] with respect to vg.
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5. Extensions

Can absolute values on a field K be extended to absolute values on algebraic exten-
sions of K ? This is the extension problem for absolute values, which was solved
by Ostrowski [1918], [1934]. In this section we solve the extension problem in the
archimedean case. We also prove Ostrowski’s theorem [1918], which determines
all complete archimedean fields.

Completeness. Let E be a finite field extension of K. An absolute value
E — R on E induces an absolute value K — R on K . First we show that, if
K is complete, then so is E. We prove this in a more general setting.

Definition. Let K be a field with an absolute value and let V be a vector space
over K. Anormon V is a mapping x — ||x|| of V into R such that
(@) |x|| 20 forall x € V, and ||x| =0 if and only if x =0;
(b) |lax|| = |a| |x|| forall a € K and x € V;
© I+l < Ixll + Iyl forall .y € V.

Then V is a normed vector space over K .

For instance, when E is a field extension of K, viewed as a vector space
over K, then an absolute value on E induces an absolute value on K and is, in
particular, a norm on E. In general, a norm on V induces a distance function
d(x,y)=|lx — y| on V, which makes V a metric space.

Proposition 5.1. Let V be a normed vector space of finite dimension over a
field K with an absolute value. If K is complete, then V is complete and, in any
basis ey, ..., e, of V over K, (1) the ith coordinate function > x;e; — X;
is continuous; (2) a sequence (X)) >0, X; = >_; X;; €;, converges in V if and
only if all its coordinate sequences (xk,i) >0 converge in K; (3) a sequence is
a Cauchy sequence in V if and only if all its coordinate sequences are Cauchy
sequences in K.

Proof. We start with (3). For every x =), x;e; we have

el = 132 xeil = 325 ([xi]lleg )
Let (x;);>o be a sequence of elements of V', x; = >, x; ;e;. If (x1 ;)>q is
Cauchy in K for all i, then (x;), > is Cauchy in V, by the inequality above.

The converse is proved by induction on n. There is nothing to prove if n = 1.

Now let n > 1. Assume that (x),>q is Cauchy in V, but that, say, (x; ,);>
is not Cauchy in K. Then there exists ¢ > 0 such that ’xi n = ‘U = ¢ for

2

X

J.n
arbitrarily large i and j. In particular, forevery k = 0 we have ‘xik n " Xjn
for some i, Jp > k;then Xion = Xjn #01in K. Let

— —1
Vi = (xik,n —xjk’n) (xl-k —xjk) ev.
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Then lim,_, __ y, =0, since ‘(xik’n — xjk,n)’l‘ < 1/e, and (y;); > is Cauchy
in V. Hence (y, — e,);> is Cauchy in V. Since y, has nth coordinate
YVen = 1L 0k — €0 is a Cauchy sequence in the subspace of V spanned
by e, ..., e,_;. By the induction hypothesis, (¥k.i)k>0 is Cauchy in K when
i < n. Since K is complete, (yk,i)kZO has a limit_zl- in K when i < n;
the sequence (y; ,);>o also has a limit 7z, = 1. Let z = 3, z;e;. Then
Iy =zl < 32 (v — 2| lle;l) and limy_ ¥, = z. But this not possible,

since lim; _,  y;, =0 and z # 0. This contradiction proves (3).

If now every (x; ;);>o has alimit y; in K, then y = >, y;e; € V and
e =yl =52 (| —;if lle;[1) . sothat (x; ), >, hasalimit y in V. Conversely,
if (x;);>o converges in V, then (x);>q is Cauchy in V and, for every i,
(xk’ ;) ng is Cauchy in K by (3) and conV_erges in K since K is complete, which
proves_(Z); in fact, if limy_,  x; ; = y;, then lim;_,  x; = > i yie; by the
direct part, so that lim;_,  x; ; is the ith coordinate of lim; _,  x;. If (x;);>
is a Cauchy sequence in V, then every (xk’ )i>o is Cauchy in K, by (3); eve;y
(X.i )k >0 converges in K, since K is complete; and (X )k >0 converges in V by
(2); hence V is complete.

Finally, if the ith coordinate function is not continuous at t = ) _. t;e; € V, then
there exist & > 0 and, for every k > 0, some x, € V such that |[x, —¢]| < 1/k
and |xki - ti’ 2 g; then limy_, __ x, = ¢, whence lim;_, __ x,; = t;; this

contradiction proves (1). [J
Uniqueness. We now return to the extension problem for absolute values.

Theorem 5.2. Let E be a finite extension of degree n of a field K that is
complete with respect to an absolute value v. If there exists an absolute value w
on E that extends v, then w is unique and

- E 1/n
e, = (Nk(@)],)
forall o € E; moreover, E is complete with respect to w.

Proof. The definition of N () shows that N () is a polynomial function of the
coordinates of « in any basis of E over K , hence continuous, by 5.1. Let a € E,
@ #0,and B =a" N(a)~!. Then N(B) =1 by V.7.3, since N(«) € K. Hence
N(B*) =1 forall k, N(lim,_, ~) =lim,_ _ N(BX)=1, lim, g~ 0,
18], = 1, and (|e|,)" = |N(e)|,. Similady, (j«|;")" = [N(@™")
(lee| )" = |N(a)|, . Finally, E is complete, by 5.1. (]

0> hence

Existence. Theorem 5.2 yields absolute values, but only in some cases.

Proposition 5.3. If K is a field that is complete with respect to an absolute
value v, and does not have characteristic 2, then v can be extended to every finite
extension of K of degree 2.
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Proof. Inspired by 5.2 we try |a| = (’N(oz)‘v)l/z. By V.6.1, a finite

extension E of K of degree 2 is a Galois extension and has a nontrivial automor-
phism o — @. Then N(«) = aa. Hence w has properties (a) and (b) in Section
3. This leaves (c), |a +,3|w < |a|w + ‘/3|w.

Let b= a+@ and ¢ = a@. Then b,c € K. If (|b],)* > 4|c|,. then, by
5.4 below, (X —a)(X —a@)=X?> —bX +c hasarootin K ; hence « € K and
(I],)” = (|2#],)* < 4]a’|, = 4|, Therefore ([b],)" < 4],

If B = 1, then (c) reads |N(a + 1)], = (ja + 1],)° < (Ja|, +1)* =
[N (@), +2(|N(@)],)" + 1:since (|b[,)* < 4e], = 4[N ()] .
IN(@+1)|, = [(@+ D)(@+1)|, = |c+b+1]
< Je|, + |bl, +1 £ [N(@)], +2(|N(@)],) /> +1,

A

and (c) holds. Then (c) holds for all B #0: |a+ 8| =], ‘oz,B’l +1|,
1Bl (lep ™", + 1) = e, +[B],,- O

Lemma8.4. Let K be afieldthatis complete with respect to an absolute value v,

and does not have characteristic 2. If(|b‘v)2 > 4’6’1)’ then X> —bX +c € K[X]
has a rootin K.

Proof. We may assume that ¢ # 0; then b £ 0. We use successive approxi-
mations x,,; = f(x,) to find a root, noting that x%? — bx + ¢ = 0 if and only if
x=b—(c/x). Let x; = b and x,,,; =b — (c/x,). If |x| = J|b| > 0, then

v = (e/x)] 2 [b] = (|el/Ix[) = |o] = 2(|e[/[p]) = 6] = 3]b] = 3|o] > 0,

since |c| < zlt’b|; hence |xn‘ = %|b| for all n, x, #0 for all n, and x,
is well defined for all n. We show that (x,),_ is a Cauchy sequence. Let
r =4|c|/|b|* < 1. Since |x,| = %|b| for all n,

c c o] [aen =
X 0 — X =y -
’ n+2 n+1| X, X4l ’xn‘ ‘xn+1|
4lc| |x,, 4 —x
< ‘ | ’ |r[l,+|12 "‘ =r |xn+1 _xn|;

therefore |xn+2 — xn+1| <t ’xz - x1| forall n and (x,),. is Cauchy. Hence
(X,)=0 has a limit x in K; then |x| 2= %|b| >0, x =b— (c/x), and
X +bx+c=0.0

Ostrowski’s theorem now follows from the previous results.

Theorem 5.5 (Ostrowski [1918]). Up to isomorphisms that preserve absol-
ute values, R and C are the only fields that are complete with respect to an
archimedean absolute value.
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Proof. Let F be complete with respect to an archimedean absolute value v.
By 3.3, F has characteristic 0. Hence Q C F, up to isomorphism. By 3.4, the
valuation induced by F on Q is equivalent to the usual absolute value. We may
replace v by an equivalent absolute value that induces the usual absolute value
on Q. Then 4.2 yields an isomorphism, that preserves absolute values, of R = @
onto a subfield of F. Therefore we may assume from the start that R C F and
that F induces the usual absolute value on R.

If F contains an element i such that i = —1, then C = R(i) C F; by the
uniqueness in 5.2, v induces the usual absolute value on C, since both induce the
usual absolute value on R. If F contains no element i such that i2 = —1 , then v
extends to an absolute value w on E = F(i) by 5.3, and E is complete by 5.2.
Then C = R(i) C E; by 5.2, w induces the usual absolute value on C, since
both induce the usual absolute value on R. In this case, E = C implies F = R.
Therefore we may assume that C C F and that v induces the usual absolute value
on C; we need to prove that F = C.

Assume that C G F. Letaw € F\C. Let r =g.l.b. { |z — «
the function f(x) = |x — &/ is continuous on C, the “disk”

; z€ C}. Since

D ={zeC,;

z—a|Sr+1}

is a closed nonempty subset of C. Hence r = g.l.b. {‘z —«a|l; z € D}.
Also, D is bounded, since x,y € D implies ’x —y|=|x—a)=(y - oz)| <
|x —a|+|y — | < 2r +2. Therefore the continuous function f(x) = |x — af
has a minimum value on D and ’z — oe‘ =r for some z € C. Then the “circle”

C ={zeC,;

z—oc‘:r}

is nonempty, closed since f is continuous, and bounded since C C D. We show
that C is open; since C is connected this provides the required contradiction.

We show that x € C, y € C, and |x — y| < r implies y € C (hence C is
open). Let § =« — x and z = y — x, so that ‘/3} =r and |z’ <r.Lletn >0
and ¢ be a primitive nth root of unity. Then

B =" = (B—2)(B—ez)-(B—e""2)
and |B —8iZ’ =|a—x —8iZ| 2 r by the choice of r. Hence
Bz < B2 = (B 2] = [
and |B —z| <r+(|z"/r""1). Since |z| < r,letting n — oo yields |8 —z| <
r. But |/3—z‘:fa—y’§r.Hence ‘a—y|:r and y e C.O

In addition to a neat characterization of R and C, Ostrowski’s theorem tells the
complete story on fields that are complete with respect to an archimedean absolute
value: up to isomorphism, they are subfields of C, and their absolute values are
induced by the usual absolute value on C.
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With Ostrowski’s theorem, the extension problem for archimedean absolute
values becomes trivial: when v is an archimedean absolute value on a field F,
then, up to isomorphism, v can be extended to C and to every algebraic extension
of F. The nonarchimedean case is considered in Section 7.

Exercises
1. Verify that addition and scalar multiplication on a normed vector space are continuous.

2. Let V be a finite-dimensional vector space over a field K that is complete with respect
to an absolute value. Show that all norms on V' induce the same topology on V.

3. Find all archimedean absolute values on Q(v/—35).

6. Valuations

Valuations were first defined in full generality by Krull [1932]. They are more
general than nonarchimedean absolute values. They are also more flexible and
extend more readily to field extensions. Their values are not restricted to real
numbers, but are taken from the following more general objects.

Definition. A totally ordered abelian group is an ordered pair of an abelian
group G together with a total order relation < on G such that x < y implies
xz <yzforall z €G.

For example, the multiplicative group P of all positive real numbers, and its
subgroups, are totally ordered abelian groups with the usual order relation. When
n > 1, readers will verify that P" =P x - - - x IP is a totally ordered abelian group
that is not isomorphic (as a totally ordered abelian group) to a subgroup of P when
ordered lexicographically: (xy, ..., x,) < (¥, ..., y,) if and only if there exists
k = n such that x; = y; forall i <k and x; < y.

Totally ordered abelian groups are also called just ordered abelian groups. They
are often written additively (but here we prefer the multiplicative notation). In
a totally ordered abelian group, x < y implies y_1 < x!, since y_1 > x|
would imply 1 = xx 1< x;ﬁ1 < yy’1 = 1. Totally ordered abelian groups are
torsion free, since x > 1 implies 1 <x <x“ <--- <x" <---

An isomorphism of totally ordered abelian groups is an order preserving iso-
morphism (x < y implies 6(x) < 6(y)); since these groups are totally ordered,
the inverse bijection is also an order preserving isomorphism. For example, the
natural logarithm function is an isomorphism of totally ordered abelian groups of
PP onto the additive group (R, +).

Definition. Let G be a totally ordered abelian group. Adjoin an element O to
G such that 0 < g and g0 =0=0g forall g € G. A valuation on a field F with
values in G is a mapping v : F — G U {0} such that

(@) v(x)=0ifandonly if x =0;
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(b) v(xy)=v(x)v(y) forall x,y € F;
(c) v(x+y) < max (v(x), v(y)) forall x,y € F.
In (c) we have v(x) < v(y) or v(y) < v(x), since G U {0} is totally ordered,

and max (v(x), v(y)) exists. For example, nonarchimedean absolute values
are valuations with values in P; thus, v, is a valuation on Q; Voo and v, are

valuations on K (X) for any field K .

Readers will verify that a valuation v, can be defined on any K (X, ..., X,)
as follows. Let v,(0) = 0. Every nonzero f/g € K(X,, ..., X,)) can be written
uniquely in the form f/g = X' X5 -+ X" (h/k), with m, ...,m, = 0 and

h(0, ...,0), k(0, ...,0) #0;let vy(f/g)= (27", ..., 27 ™) € P".
In general, G, = {v(x) | x € F\{0} } is a subgroup of G, by (b).

Definitions. The value group of a valuation v : F — G U {0} is G, =
{v(x) | x € F\{0}}. Two valuations v,w : F — G U {0} are equivalent
when there exists an order preserving isomorphism 8 of G onto G, such that

w(x)=06(v(x)) forall x +0.

For every ¢ > 0, x —— x© is an order preserving automorphism of P;
hence nonarchimedean absolute values that are equivalent as absolute values are
equivalent as valuations. On the other hand, readers will be delighted to find that
the valuation vy on K (X 1 oees Xn) is not equivalent to an absolute value; thus
valuations are more general.

Valuation rings. Up to equivalence, valuations on a field F' are determined by
certain subrings of F'.

Definition. The valuation ring of a valuation v on a field F is 0, = {x €
Flox)<1}

Readers will prove the following properties:

Proposition 6.1. For every valuation v on a field F :

(1) 0, is a subring of F; when x € F\{0}, then x € 0, or x~
particular, F is the quotient field of 0,;

(2) the group of units of 0, is W, ={x € F | v(x)=1};

1 ps in

€0

(3) 0, has exactly one maximal ideal M, ={x € F | v(x) <1} =0,\U,;
(4) the ideals of 0,, form a chain.
We prove a converse:

Proposition 6.2. Let R be a subring of a field F and let U be the group of
units of R. The following properties are equivalent:

(1) R is the valuation ring of a valuation on F;
(2) F = Q(R) and the ideals of R form a chain;
(3) when x € F\{0}, then x € R or x_! € R.
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Then G = (F\{0})/u is a totally ordered abelian group, vy : x — xU is a
valuation on F, and R is the valuation ring of vp.

Proof. (1) implies (2) by 6.1.

(2) implies (3). Let x =a/b € F,where a,b € R, b £0. If Ra C Rb, then
a =br forsome r € Rand x =r € R. If Rb C Ra, then b = ar for some
reRandx !'=r eR.

(3) implies (1). The group of units U of R is a subgroup of the multiplicative
group F* = F\{0}. Let G = F*/u. Order G by

xu < yuifand only if xy~! € R, if and only if Rx C Ry.
Then < is well defined, since xU = zU, yU = ril implies Rx = Rz, Ry = Rt;

< is reflexive, transitive, and antisymmetric, since xy_1 € R and (xy_l)f =
y)c_l € R implies )cy_1 € U and xU = yu; < isatotal order on G, by (3); and
xu < yu implies (xu)(zu) < (yu)(zu). Now G has become a proud totally
ordered abelian group. Let

vp(x) = xU €G

forall x € F*, with vx(0) =0 € G U {0}. Then (a) and (b) hold. Property (c),
v(x +y) < max (v(x), v(y)), holds whenever x =0 or y = 0;if x, y £ 0 and,
say, vp(x) = vp(y),then Rx C Ry, R(x +y) C Ry, and vg(x +y) < vp(y).
Thus vy is a valuation on F (with value group G); R is the valuation ring of vp,
since vg(x) = 1= IU if and only if x =x1"'eR.O0

Definitions. A valuation ring or valuation domain is a domain that satisfies
the equivalent conditions in Proposition 6.2; then vy is the valuation induced by
R. A valuation ring of a field F is a subring of F that satisfies the equivalent
conditions in Proposition 6.2.

Proposition 6.3. Every valuation is equivalent to the valuation induced by its
valuation ring. In particular, two valuations on the same field are equivalent if
and only if they have the same valuation ring.

Proof. Let v be a valuation on a field F' and let 0 be its valuation ring. The
valuations v and v, induce surjective homomorphisms of multiplicative groups:

F*—Y .G,

|
19
k ¥
F*/u
where F* = F\{0} and U is the group of units of 0. Since Ker v = Ut = Ker v,
there is a multiplicative isomorphism 6 : G, — F* /Ul such that 6 o v = v,. If
x,y € F*, then v(x) < v(y) is equivalent to v(xy~') < 1,t0 xy~! € 0, and to

vg(x) = vy (y); therefore € is order preserving. [J

Discrete valuations. Since P contains cyclic subgroups, every valuation whose
value group is cyclic is equivalent to a nonarchimedean absolute value.
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Definition. A valuation is discrete when its value group is cyclic.

A discrete valuation v on a field F induces a topology on F', which is induced
by any equivalent discrete absolute value. The infinite cyclic group G, has just
two generators and has a unique generator v(p) < 1. Then every x € F\{0}
can be written uniquely in the form x = upk with v(u) =1 and k € Z, since
v(x) = v(p") for some unique k € Z.

Proposition 6.4. Let R be a domain and let F = Q(R) be its quotient field.
Then R is the valuation ring of a discrete valuation on F if and only if R is a
principal ideal domain with a unique nonzero prime ideal.

The proof is an exercise.

Definition. A discrete valuation ring is a principal ideal domain with a unique
nonzero prime ideal; equivalently, the valuation ring of a discrete valuation.

For instance, the ring Z » of p-adic integers is a discrete valuation ring. In
fact, Proposition 4.4 extends wholeheartedly to all discrete valuations. In the next
result, v is a discrete valuation, v(p) < 1 is a generator of its value group, 0 is
the valuation ring of v, and M is its maximal ideal.

Proposition 6.5. Let F be a field with a discrete valuation v. Let ¥ be a subset
of 0 with O € ¢ and one element in every coset of M in 0. Every element of 0
is the sum of a unique power series ), > rkpk with coefficients r, € T. Every

nonzero element of F is the sum of a unique Laurent series ) >, rkpk with
coefficients ry, € € forall k =2 m, r, #0.

Proof. By 6.4, mi is the ideal of 0 generated by p. Let x € F, x # 0. Then
x = up™ for some unique u € U and m € Z. By the choice of T, u € r,, + M
for some unique r,, € ¥, and r,, + 0 since u ¢ M. Hence u = r,, + py for
some unique y € 0. Then y =r, | + pz for some unique r,,,; € ¥ and z € 0.
Continuing thus yields expansions x = r, p" +--- +r pk + pk+1t and a series

Zk>m rkp that converges to x, since v(rkp + rk+1pk+1 ) < v(p)k for

all k. If x € 0,thenm =20 and ), >, rkp is a power series ) ;> rkpk, with
r, =0 for all K < m. Uniqueness makes a nifty exercise. [J B

Every discrete valuation v on F is equivalent to a nonarchimedean absolute
value on F and yields a completion IA*"U . We may assume that G, is a subgroup of
P. Then 6.5 extends to IAT In the next result, v is a discrete valuation, v(p) < 1
isa generator of its value group, 0 is the valuation ring of v, and ™ is its maximal
ideal; F = F and 0 is its valuation ring.

Proposition 6. 6 Let F be a field with a discrete valuatlon v. Every Laurent
series Zk> rkp with coefficients r;, € 0 converges in F. Conversely, let
be a subset of 0 with O € v and one element in every coset of W in 0. Every
element of 0 is the sum of a unique power series ), > rkpk with coefficients
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r, € T, every nonzero element of F is the sum of a unique Laurent series
Zkgm rkpk with coefficients r, € € forall k 2 m, r, #0.

Proof. First we show that v and its extension v to F have the same value group
G, . Wemay assume that G, is a subgroup of P. Every nonzero x € F is the limit
of a Cauchy sequence (x, ), of elements of F; then v(x) = lim v(x,) €
G, ,since G, is closed in PP

n—oo

We now follow the proof of Proposition 6.5. Let x € F, x#0. Then
v(x)=p~™ for some m € Z. Since F is dense in F we have v(x — y)< p~ "
for some y € F. Then v(y)= p~™; as above, y =r, p" + p" 7 for some
rm €, 1, #0, and some z € 0. Then ¥(x —r, p™) < p~ (") " Hence
o(x —r,p" — rm+1p’"+1) < p~m+2) for some Fmi1 € T; repetition yields
r, € T such that ﬁ(x — Y om<n<r rnp") < p~ ", for every r > m. Then the
series ) >, r,p" converges to x in F.Ifx €0,thenm >0 and Yonsm "
is a power series. Uniqueness is again an exercise. []

Exercises
1. Show that P" is a totally ordered abelian group when ordered lexicographically.

2. A totally ordered abelian group G is archimedean when for every a,b > 1 in G the
inequality a" > b holds for some n > 0. Show that every subgroup of IP is archimedean.
Show that P" is not archimedean when n = 2, and therefore is not isomorphic (as a totally
ordered abelian group) to a subgroup of P.

3. Show that vg is a valuation on K (X1, ..., Xn). Show that vq is not equivalent to an
absolute value. (Find its value group and show that it is not isomorphic, as a totally ordered
abelian group, to a subgroup of P.)

4. Find all automorphisms of the totally ordered abelian group P.
5. Prove that every multiplicative subgroup of PP is either cyclic or dense in PP.
6. Let v be a valuation. Show that v(x + y) = max (v(x), v(y)) when v(x) £ v(y).

7. Let v be a valuation on a field F'. Show that 0, has exactly one maximal ideal
my={xeF ’ v(x) < 1} = 0y\Uy, and that the ideals of 0, form a chain.

8. Show that a ring is the valuation ring of a discrete valuation if and only if it is a PID with
a unique nonzero prime ideal.

9. Prove that the series expansions in Propositions 6.5, 6.6 are unique.
10. Prove that a valuation ring is discrete if and only if it is Noetherian.
11. Prove that every totally ordered abelian group is the value group of a valuation.

In the following exercises, a place on a field F with values in a field Q is a mapping

7 :F — QU {oo} suchthat (i) 0 = {x € F | 7(x) # 00} isasubring of F; (ii)

the restriction of 7 to 05 is a ring homomorphism; (iii) if n(x) = 00, then x 1 € 0y and
-1

z(x~7)=0.
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12. Let 7 be a place on F with values in Q. Show that { 7 (x) ’ XEF, x+o00}isa
subfield of Q.

13. Let  be a place on F with values in Q and let p be a place on Q with valuesin L.
Show that p o 7 is a place on F with values on L.

14. Show that every valuation v on a field F induces a place = with values in 0,/mM,, .

15. Define equivalence of places and show that, up to equivalence, every place is induced
by a valuation.

7. Extending Valuations

In this section we consider the extension problem for valuations, including nonar-
chimedean absolute values: when E is a finite extension of a field K with a
valuation v, can v be extended to a valuation on E? We show that v has
extensions to E and prove some of their properties. This yields new properties of
finite field extensions. The results in this section are due to Ostrowski [1934].

Existence. Before extending valuations we extend homomorphisms.

Theorem7.1. Let R be a subring of a field K. Every homomorphism of R into
an algebraically closed field L can be extended to a valuation ring of K .

Proof. Let ¢ : R — L be a homomorphism. By Zorn’s lemma there exists
a homomorphism ¥ : § — L that extends ¢ to a subring S O R of K and is
maximal in the sense that i cannot be extended to a subring T 2 S of K. We
show that § is a valuation ring of K .

Claim 1: if ¥(a) # 0, then a is a unit of S; hence M = Ker ¢ is a maximal
ideal of S; F =Im ¢ ~ S/m is a field; and every a € S\M is a unit of S.

Givena € S, ¥(a) £0,let T = {xa_k cK | x €S, k=0}; T isasubring
of K, which contains S since a®=1.1f Y¥(a) #0, then xa k= ya*e implies
xa' = ya*, y(x)¥(a)" = ¥ ¥(@). and y()¥(@)* = () v
therefore a mapping x : T — L is well defined by x (xa %) = ¢ (x) ¢ (a) 7.
Then x is a homomorphism that extends . By maximality, 7 = S. Thus
Y (a) +0 implies a~!' € S (in K), so that @ is a unit of S.

Claim 2: if ¢ € K\ S, then m0+m]c+-~-+mkck =1 for some k > 0 and
my, my, ..., my; € M. The subring S[c] C K is the image of the evaluation
homomorphism ¢ : f — f(c) of S[X] into K, and A = Ker¢c = { f €
SIX] | f(c)=0} is an ideal of S[X]. Now, ¥ : § — F induces a surjective
homomorphism V¥ : S[X] — F[X], f — Yf; then B = ¥ () is an ideal of
F[X] and consists of all the multiples of some b € F[X].

We show that 8 = F[X]. Assume that b is not constant. Then b € F[X] C
L[X] has aroot y in the algebraically closed field L. Let y : F[X] — L,

g —— g(y) be the evaluation homomorphism. Then Y (¥ (f)) = 0 for all
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f €U, since b(y)=0 and ¥ (f) € B is a multiple of b. Hence Kerc =2 C
Ker (y o) and ¥ o v factors through ¢ : S[X] — S[c]:

S[X] % Flx
1 F
Sle] —5— L

Y 0¥ = x o¢ for some ring homomorphism yx : S[c] — L. If x € § C S[X],

then ¥(x) = ¥(x) € F C FIX] and x(x) = x(€(x)) = 7(¥(x)) = ¥ (x). Thus
x extends ¥, contradicting the maximality of S. Therefore 8 = F[X].

Since B = F[X] there exists f = ay+a; X +--- +a,X" € 2 such that

L=v(f)=v(ay) +¥(a;)X +---+V(a,)X", equivalently, | —a, and a,, ...,
a, areallin m = Ker ¢ . Then f(c)=0yields I = (1 —qy) —a;c—---—a,c",
where 1 —a, —ay, ..., —a, € M. This proves Claim 2.

We show that § is a valuation ring. Let ¢ € K. If c, ¢! ¢ S, then
m0+mlc+~~~+mkck =1-= n0+n1671+~~+n£cfz
for some k, £ = 0 and My, ..., My, Ny, ...,n, € M, by Claim 2. We may choose
these equalities so that k > £ and k + £ is as small as possible. Then m,, n, £ 0
and k,£ = 1 (since 1 ¢ m). Now, 1 — ny ¢ M is a unit of §, by Claim 1;
hence 1 —ny = n]c_1 +oee +n€c_l, d=(01- no)_l(n]ck_1 4+ +néck_(),

and substituting for ¢* in the left hand side lowers k by 1, contradicting the
minimality of k + £. Therefore ¢ € S or cles.O

Covered by Theorem 7.1 we now approach valuations.

Theorem 7.2. Let K be a subfield of E. Every valuation on K extends to a
valuation on E.

Proof. Let v be a valuation on K ; let 0 be the valuation ring of v, let M be
the maximal 