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Preface

This book is a basic algebra text for first-year graduate students, with some
additions for those who survive into a second year. It assumes that readers know
some linear algebra, and can do simple proofs with sets, elements, mappings,
and equivalence relations. Otherwise, the material is self-contained. A previous
semester of abstract algebra is, however, highly recommended.

Algebra today is a diverse and expanding field of which the standard contents
of a first-year course no longer give a faithful picture. Perhaps no single book
can; but enough additional topics are included here to give students a fairer idea.
Instructors will have some flexibility in devising syllabi or additional courses;
students may read or peek at topics not covered in class.

Diagrams and universal properties appear early to assist the transition from
proofs with elements to proofs with arrows; but categories and universal algebras,
which provide conceptual understanding of algebra in general, but require more
maturity, have been placed last. The appendix has rather more set theory than
usual; this puts Zorn’s lemma and cardinalities on a reasonably firm footing.

The author is fond of saying (some say, overly fond) that algebra is like French
pastry: wonderful, but cannot be learned without putting one’s hands to the
dough. Over 1400 exercises will encourage readers to do just that. A few are
simple proofs from the text, placed there in the belief that useful facts make good
exercises. Starred problems are more difficult or have more extensive solutions.

Algebra owes its name, and its existence as a separate branch of mathemat-
ics, to a ninth-century treatise on quadratic equations, Al-jabr wa’l muqabala,
“the balancing of related quantities”, written by the Persian mathematician al-
Khowarizmi. (The author is indebted to Professor Boumedienne Belkhouche for
this translation.) Algebra retained its emphasis on polynomial equations until well
into the nineteenth century, then began to diversify. Around 1900, it headed the
revolution that made mathematics abstract and axiomatic. William Burnside and
the great German algebraists of the 1920s, most notably Emil Artin, Wolfgang
Krull, and Emmy Noether, used the clarity and generality of the new mathemat-
ics to reach unprecedented depth and to assemble what was then called modern
algebra. The next generation, Garrett Birkhoff, Saunders MacLane, and others,
expanded its scope and depth but did not change its character. This history is
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documented by brief notes and references to the original papers. Time pressures,
sundry events, and the state of the local libraries have kept these references a bit
short of optimal completeness, but they should suffice to place results in their
historical context, and may encourage some readers to read the old masters.

This book is a second edition of Algebra, published by the good folks at Wiley
in 1999. I meant to add a few topics and incorporate a number of useful comments,
particularly from Professor Garibaldi, of Emory University. I ended up rewriting
the whole book from end to end. I am very grateful for this chance to polish a major
work, made possible by Springer, by the patience and understanding of my editor,
Mark Spencer, by the inspired thoroughness of my copy editor, David Kramer,
and by the hospitality of the people of Marshall and Scottsville.

Readers who are familiar with the first version will find many differences, some
of them major. The first chapters have been streamlined for rapid access to solv-
ability of equations by radicals. Some topics are gone: groups with operators,
Lüroth’s theorem, Sturm’s theorem on ordered fields. More have been added:
separability of transcendental extensions, Hensel’s lemma, Gröbner bases, primi-
tive rings, hereditary rings, Ext and Tor and some of their applications, subdirect
products. There are some 450 more exercises. I apologize in advance for the new
errors introduced by this process, and hope that readers will be kind enough to
point them out.

New Orleans, Louisiana, and Marshall, Texas, 2006.
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I
Groups

Group theory arose from the study of polynomial equations. The solvability of
an equation is determined by a group of permutations of its roots; before Abel
[1824] and Galois [1830] mastered this relationship, it led Lagrange [1770] and
Cauchy [1812] to investigate permutations and prove forerunners of the theorems
that bear their names. The term “group” was coined by Galois. Interest in groups
of transformations, and in what we now call the classical groups, grew after 1850;
thus, Klein’s Erlanger Programme [1872] emphasized their role in geometry.
Modern group theory began when the axiomatic method was applied to these
results; Burnside’s Theory of Groups of Finite Order [1897] marks the beginning
of a new discipline, abstract algebra, in that structures are defined by axioms, and
the nature of their elements is irrelevant.

Today, groups are one of the fundamental structures of algebra; they underlie
most of the other objects we shall encounter (rings, fields, modules, algebras) and
are widely used in other branches of mathematics. Group theory is also an active
area of research with major recent achievements.

This chapter contains the definitions and basic examples and properties of
semigroups, groups, subgroups, homomorphisms, free groups, and presentations.
Its one unusual feature is Light’s test of associativity, that helps with presentations.
The last section (free products) may be skipped.

1. Semigroups

Semigroups are sets with an associative binary operation. This section contains
simple properties and examples that will be useful later.

Definition. A binary operation on a set S is a mapping of the Cartesian product
S × S into S .

For example, addition and multiplication of real numbers are binary oper-
ations on the set R of all real numbers. The set N of all natural numbers
1, 2, . . . , n, . . . , the set Z of all integers, the set Q of all rational numbers, and
the set C of all complex numbers have similar operations. Addition and mul-
tiplication of matrices also provide binary operations on the set Mn(R) of all
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n × n matrices with coefficients in R , for any given integer n > 0. Some size
restriction is necessary here, since arbitrary matrices cannot always be added or
multiplied, whereas a binary operation S × S −→ S must be defined at every
(x, y) ∈ S × S (for every x, y ∈ S ). (General matrix addition and multiplication
are partial operations, not always defined.)

More generally, an n -ary operation on a set S is a mapping of the Cartesian
product Sn = S × S × · · · × S of n copies of S into S . Most operations in
algebra are binary, but even in this chapter we encounter two other types. The
empty Cartesian product S0 is generally defined as one’s favorite one-element
set, perhaps {0} or {Ø} ; a 0-ary or constant operation on a set S is a mapping
f : {0} −→ S and simply selects one element f (0) of S . The Cartesian product
S1 is generally defined as S itself; a 1-ary operation or unary operation on S is a
mapping of S into S (a transformation of S ).

For binary operations f : S × S −→ S , two notations are in wide use. In
the additive notation, f (x, y) is denoted by x + y ; then f is an addition. In
the multiplicative notation, f (x, y) is denoted by xy or by x · y ; then f is a
multiplication. In this chapter we mostly use the multiplicative notation.

Definition. Let S be a set with a binary operation, written multiplicatively. An
identity element of S is an element e of S such that ex = x = xe for all x ∈ S .

Readers will easily show that an identity element, if it exists, is unique. In the
multiplicative notation, we usually denote the identity element, if it exists, by 1.
Almost all the examples above have identity elements.

Products. A binary multiplication provides products only of two elements.
Longer products, with terms x1, x2, . . . , xn , must break into products of two
shorter products, with terms x1, x2, . . . , xk and xk+1 , xk+2 , . . . , xn for some
1 � k < n . It is convenient also to define 1-term products and empty products:

Definition. Let S be a set with a binary operation, written multiplicatively. Let
n � 1 (n � 0 , if an identity element exists) and let x1, x2, . . . , xn ∈ S .

If n = 1 , then x ∈ S is a product of x1, x2, . . . , xn (in that order) if and only
if x = x1 . If S has an identity element 1 and n = 0 , then x ∈ S is a product of
x1, x2, . . . , xn (in that order) if and only if x = 1 .

If n � 2 , then x ∈ S is a product of x1, x2, . . . , xn (in that order) if and only
if, for some 1 � k < n , x is a product x = yz of a product y of x1, . . ., xk (in
that order) and a product z of xk+1, . . . , xn (in that order).

Our definition of empty products is not an exercise in Zen Buddhism (even
though its contemplation might lead to enlightenment). Empty products are defined
as 1 because if we multiply, say, xy by an empty product, that adds no new term,
the result should be xy .

In the definition of products with n = 2 terms, necessarily k = 1, so that
x ∈ S is a product of x1 and x2 (in that order) if and only if x = x1 x2 .
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If n = 3, then k = 1 or k = 2, and x ∈ S is a product of x1, x2, x3 (in that order)
if and only if x = yz , where either y = x1 and z = x2 x3 (if k = 1), or y = x1 x2
and z = x3 (if k = 2); that is, either x = x1 (x2 x3) or x = (x1 x2) x3 . Readers
will work out the cases n = 4, 5.

Associativity avoids unseemly proliferations of products.

Definition. A binary operation on a set S (written multiplicatively) is associative
when (xy) z = x (yz) for all x, y, z ∈ S .

Thus, associativity states that products with three terms do not depend on the
placement of parentheses. This extends to all products: more courageous readers
will write a proof of the following property:

Proposition 1.1. Under an associative multiplication, all products of n given
elements x1, x2, . . . , xn (in that order) are equal.

Then the product of x1, x2, . . . , xn (in that order) is denoted by x1 x2 · · · xn .

An even stronger result holds when terms can be permuted.

Definition. A binary operation on a set S (written multiplicatively) is commu-
tative when xy = yx for all x, y ∈ S .

Recall that a permutation of 1, 2, . . ., n is a bijection of { 1, 2, . . ., n } onto
{ 1, 2, . . . , n } . Readers who are familiar with permutations may prove the follow-
ing:

Proposition 1.2. Under a commutative and associative multiplication, xσ (1)
xσ (2) · · · xσ (n) = x1 x2 · · · xn for every permutation σ of 1, 2, . . ., n .

Propositions 1.1 and 1.2 are familiar properties of sums and products in N , Q ,
R , and C . Multiplication in Mn(R) , however, is associative but not commutative
(unless n = 1).

Definitions. A semigroup is an ordered pair of a set S , the underlying set of
the semigroup, and one associative binary operation on S . A semigroup with an
identity element is a monoid. A semigroup or monoid is commutative when its
operation is commutative.

It is customary to denote a semigroup and its underlying set by the same letter,
when this creates no ambiguity. Thus, Z, Q, R , and C are commutative monoids
under addition and commutative monoids under multiplication; the multiplicative
monoid Mn(R) is not commutative when n > 1.

Powers are a particular case of products.

Definition. Let S be a semigroup (written multiplicatively). Let a ∈ S and let
n � 1 be an integer (n � 0 if an identity element exists). The nth power an of a
is the product x1 x2 · · · xn in that x1 = x2 = · · · = xn = a .

Propositions 1.1 and 1.2 readily yield the following properties:
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Proposition 1.3. In a semigroup S (written multiplicatively) the following
properties hold for all a ∈ S and all integers m, n � 1 (m, n � 0 if an identity
element exists):

(1) am an = am+n ;

(2) (am)n = amn ;

(3) if there is an identity element 1 , then a0 = 1 = 1n ;

(4) if S is commutative, then (ab)n = an bn (for all a, b ∈ S ).

Subsets are multiplied as follows.

Definition. In a set S with a multiplication, the product of two subsets A and
B of S is AB = { ab

∣
∣ a ∈ A, b ∈ B } .

In other words, x ∈ AB if and only if x = ab for some a ∈ A and b ∈ B .
Readers will easily prove the following result:

Proposition 1.4. If the multiplication on a set S is associative, or commutative,
then so is the multiplication of subsets of S .

The additive notation. In a semigroup whose operation is denoted additively,
we denote the identity element, if it exists, by 0; the product of x1 , x2 , . . . , xn
(in that order) becomes their sum x1 + x2 + · · · + xn ; the nth power of a ∈ S
becomes the integer multiple na (the sum x1 + x2 + · · · + xn in that x1 = x2 =
· · · = xn = a ); the product of two subsets A and B becomes their sum A + B .
Propositions 1.1, 1.2, and 1.3 become as follows:

Proposition 1.5. In an additive semigroup S , all sums of n given elements
x1, x2, . . . , xn (in that order) are equal; if S is commutative, then all sums of n
given elements x1, x2, . . . , xn (in any order) are equal.

Proposition 1.6. In an additive semigroup S the following properties hold for
all a ∈ S and all integers m, n � 1 (m, n � 0 if an identity element exists):

(1) ma + na = (m + n) a ;

(2) m (na) = (mn) a ;

(3) if there is an identity element 0 , then 0a = 0 = n0 ;

(4) if S is commutative, then n (a + b) = na + nb (for all a, b ∈ S ).

Light’s test. Operations on a set S with few elements (or with few kinds of
elements) can be conveniently defined by a square table, whose rows and columns
are labeled by the elements of S , in that the row of x and column of y intersect
at the product xy (or sum x + y ).

Example 1.7. a b c d

a a b c b
b b c a c
c c a b a
d b c a c
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For example, the table of Example 1.7 above defines an operation on the set
{ a, b, c, d } , in that, say, da = b , db = c , etc.

Commutativity is shown in such a table by symmetry about the main diagonal.
For instance, Example 1.7 is commutative. Associativity, however, is a different
kettle of beans: the 4 elements of Example 1.7 beget 64 triples (x, y, z) , each
with two products (xy) z and x (yz) to compare. This chore is made much easier
by Light’s associativity test (from Clifford and Preston [1961]).

Light’s test constructs, for each element y , a Light’s table of the binary ope-
ration (x, z) �−→ (xy) z : the column of y , that contains all products xy , is
used to label the rows; the row of xy is copied from the given table and con-
tains all products (xy) z . The row of y , that contains all the products yz , is used
to label the columns. If the column labeled by yz in Light’s table coincides with
the column of yz in the original table, then (xy) z = x (yz) for all x .

Definition. If, for every z , the column labeled by yz in Light’s table coincides
with the column of yz in the original table, then the element y passes Light’s test.
Otherwise, y fails Light’s test.

In Example 1.7, y = d passes Light’s test: its Light’s table is

d b c a c

b b c a c
c c a b a
a a b c b
c c a b a

On the other hand, in the following example (table on left), a fails Light’s test:
the column of b in Light’s table of a does not match the column of b in the original
table. The two mismatches indicate that a (aa) =/ (aa) a and b (aa) =/ (ba) a :

a b c

a b c c
b a c c
c c c c

a b c c

b a c c
a b c c
c c c c

Example Light’s table of a

Associativity requires that every element pass Light’s test. But some elements
can usually be skipped, due to the following result, left to readers:

Proposition 1.8. Let S be a set with a multiplication and let X be a subset
of S . If every element of S is a product of elements of X , and every element of X
passes Light’s test, then every element of S passes Light’s test (and the operation
on S is associative).

In Example 1.7, d2 = c , dc = a , and da = b , so that a , b , c , d all are
products of d ’s; since d passes Light’s test, Example 1.7 is associative.
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Free semigroups. One useful semigroup F is constructed from an arbitrary
set X so that X ⊆ F and every element of F can be written uniquely as a product
of elements of X . The elements of F are all finite sequences (x1, x2, . . . , xn) of
elements of X . The multiplication on F is concatenation:

(x1, x2, . . . , xn) (y1, y2, . . . , ym) = (x1, x2, . . . , xn, y1, y2, . . . , ym).

It is immediate that concatenation is associative. The empty sequence () is an
identity element. Moreover, every sequence can be written uniquely as a product
of one-term sequences:

(x1, x2, . . . , xn) = (x1) (x2) · · · (xn).

If every element x of X is identified with the corresponding one-term sequence
(x) , then X ⊆ F and every element of F can be written uniquely as a product
of elements of X . The usual notation makes this identification transparent by
writing every sequence (x1, x2, . . . , xn) as a product or word x1 x2 · · · xn in the
alphabet X . (This very book can now be recognized as a long dreary sequence of
words in the English alphabet.)

Definition. The free semigroup on a set X is the semigroup of all finite nonempty
sequences of elements of X . The free monoid on a set X is the semigroup of all
finite (possibly empty) sequences of elements of X .

For instance, the free monoid on a one-element set {x} consists of all words
1, x , xx , xxx , . . . , xx · · · x , . . . , that is, all powers of x , no two of that are
equal. This semigroup is commutative, by Proposition 1.12. Free semigroups on
larger alphabets { x, y, . . . } are not commutative, since the sequences xy and
yx are different when x and y are different. Free monoids are a basic tool of
mathematical linguistics, and of the theory of computation.

Free commutative semigroups. The free commutative semigroup C on a
set X is constructed so that X ⊆ C , C is a commutative semigroup, and every
element of C can be written uniquely, up to the order of the terms, as a product
of elements of X . At this time we leave the general case to interested readers and
assume that X is finite, X = { x1, x2, . . . , xn } . In the commutative semigroup
C , a product of elements of X can be rewritten as a product of positive powers of
distinct elements of X , or as a product xa1

1 xa2
2 · · · xan

n of nonnegative powers of
all the elements of X . These products look like monomials and are multiplied in
the same way:

(

xa1
1 xa2

2 · · · xan
n
)(

xb1
1 xb2

2 · · · xbn
n
)

= xa1+b1
1 xa2+b2

2 · · · xan+bn
n .

Formally, the free commutative monoid C on X = { x1 , x2 , . . . , xn } is
the set of all mappings xi �−→ ai that assign to each xi ∈ X a nonnegative
integer ai ; these mappings are normally written as monomials xa1

1 xa2
2 · · · xan

n ,
and multiplied as above. The identity element is x0

1 x0
2 · · · x0

n . Each xi ∈ X
may be identified with the monomial x0

1 · · · x0
i−1 x1

i x0
i+1 · · · x0

n ; then every
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monomial xa1
1 xa2

2 · · · xan
n is a product of nonnegative powers xa1

1 , xa2
2 , . . . , xan

n
of x1 , x2 , . . . , xn , uniquely up to the order of the terms.

Definition. The free commutative monoid on a finite set X = { x1 , x2 , . . . ,
xn } is the semigroup of all monomials xa1

1 xa2
2 · · · xan

n (with nonnegative integer
exponents); the free commutative semigroup on X = { x1 , x2 , . . . , xn } is the
semigroup of all monomials xa1

1 xa2
2 · · · xan

n with positive degree a1 + a2 + · · · +
an .

For instance, the free commutative monoid on a one-element set {x} consists
of all (nonnegative) powers of x : 1 = x0 , x , x2 , . . . , xn , . . . , no two of that are
equal; this monoid is also the free monoid on {x} .

Exercises
1. Write all products of x1 , x2 , x3 , x4 (in that order), using parentheses as necessary.

2. Write all products of x1 , x2 , x3 , x4 , x5 (in that order).

3. Count all products of x1, . . . , xn (in that order) when n = 6; n = 7; n = 8.

*4. Prove the following: in a semigroup, all products of x1 , x2 , . . . , xn (in that order) are
equal.

5. Show that a binary operation has at most one identity element (so that an identity element,
if it exists, is unique).

*6. Prove the following: in a commutative semigroup, all products of x1 , x2 , . . . , xn (in
any order) are equal. (This exercise requires some familiarity with permutations.)

7. Show that multiplication in Mn(R) is not commutative when n > 1 .

8. Find two 2 × 2 matrices A and B (with real entries) such that (AB)2 =/ A2 B2 .

9. In a semigroup (written multiplicatively) multiplication of subsets is associative.

10. Show that the semigroup of subsets of a monoid is also a monoid.

11. Show that products of subsets distribute unions: for all subsets A, B, Ai , B j ,
(⋃

i∈I Ai
)

B =
⋃

i∈I (Ai B) and A
(⋃

j∈J B j
)

=
⋃

j∈J (AB j ).

12. Let S be a set with a binary operation (written multiplicatively) and let X be a subset
of S . Prove the following: if every element of S is a product of elements of X , and every
element of X passes Light’s test, then every element of S passes Light’s test.

13,14,15. Test for associativity:

a b c d

a a b a b
b a b a b
c c d c d
d c d c d

a b c d

a a b a b
b b a d c
c a b c d
d d c d c

a b c d

a a b c d
b b a d c
c c d c d
d d c d c

Exercise 13 Exercise 14 Exercise 15

16. Construct a free commutative monoid on an arbitrary (not necessarily finite) set.
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2. Groups

This section gives the first examples and properties of groups.

Definition. A group is an ordered pair of a set G and one binary operation on
that set G such that

(1) the operation is associative;

(2) there is an identity element;

(3) (in the multiplicative notation) every element x of G has an inverse (there
is an element y of G such that xy = yx = 1).

In this definition, the set G is the underlying set of the group. It is customary to
denote a group and its underlying set by the same letter. We saw in Section 1 that
the identity element of a group is unique; readers will easily show that inverses are
unique (an element of a group has only one inverse in that group).

In the multiplicative notation the inverse of x is denoted by x−1 . In the
additive notation, the identity element is denoted by 0; the inverse of x becomes
its opposite (the element y such that x + y = y + x = 0) and is denoted by −x .

Groups can be defined more compactly as monoids in that every element has
an inverse (or an opposite). Older definitions started with a fourth axiom, that
every two elements of a group have a unique product (or sum) in that group. We
now say that a group has a binary operation. When showing that a bidule is a
group, however, it is sensible to first make sure that the bidule does have a binary
operation, that is, that every two elements of the bidule have a unique product (or
sum) in that bidule. (Bidule is the author’s name for unspecified mathematical
objects.)

Examples. Number systems provide several examples of groups. (Z, +) ,
(Q, +) , (R, +) , and (C, +) all are groups. But (N, +) is not a group, and Z , Q ,
R , C are not groups under multiplication, since their element 0 has no inverse.
However, nonzero rational numbers, nonzero real numbers, nonzero complex num-
bers, all constitute groups under multiplication; so do positive rational numbers,
positive real numbers, and complex numbers with absolute value 1.

The set of all n × n matrices (with entries in R , or in any given field) is a group
under addition, but not under multiplication; however, invertible n × n matrices
constitute a group under multiplication. So do, more generally, invertible linear
transformations of a vector space into itself.

In algebraic topology, the homotopy classes of paths from x to x in a space X
constitute the fundamental group π1(X, x) of X at x .

The permutations of a set X (the bijections of X onto itself) constitute a group
under composition, the symmetric group SX on X . The symmetric group Sn on
{ 1, 2, . . . , n } is studied in some detail in the next chapter.

Small groups may be defined by tables. If the identity element is listed first,
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then the row and column labels of a table duplicate its first row and column,
and are usually omitted. For example, the Klein four-group (Viergruppe) V4 =
{ 1, a, b, c } is defined by either table below:

V4 1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

1 a b c
a 1 c b
b c 1 a
c b a 1

Readers will verify that V4 is indeed a group.

Dihedral groups. Euclidean geometry relies for “equality” on isometries, that
are permutations that preserve distances. In the Euclidean plane, isometries can
be classified into translations (by a fixed vector), rotations about a point, and
symmetries about a straight line. If an isometry sends a geometric configuration
onto itself, then the inverse isometry also sends that geometric configuration onto
itself, so that isometries with this property constitute a group under composition,
the group of isometries of the configuration, also called the group of rotations and
symmetries of the configuration if no translation is involved. These groups are
used in crystallography, and in quantum mechanics.

Definition. The dihedral group Dn of a regular polygon with n � 2 vertices is
the group of rotations and symmetries of that polygon.

A regular polygon P with n � 2 vertices has a center and has n axes of symme-
try that intersect at the center. The isometries of P onto itself are the n symmetries
about these axes and the n rotations about the center by multiples of 2π/n . In
what follows, we number the vertices counterclockwise 0, 1, . . ., n − 1, and
number the axes of symmetry counterclockwise, 0, 1, . . ., n − 1, so that vertex
0 lies on axis 0; si denotes the symmetry about axis i and ri denotes the rotation
by 2π i/n about the center. Then Dn = { r0, r1, . . ., rn−1, s0, s1, . . ., sn−1 } ;
the identity element is r0 = 1. It is convenient to define ri and si for every integer
i so that ri+n = ri and si+n = si for all i . (This amounts to indexing modulo n .)

Compositions can be found as follows. First, ri ◦ r j = ri+ j for all i and
j . Next, geometry tells us that following the symmetry about a straight line
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L by the symmetry about a straight line L ′ that intersects L amounts to a rotation
about the intersection by twice the angle from L to L ′ . Since the angle from axis j
to axis i is π (i − j)/n , it follows that si ◦ s j = ri− j . Finally, si ◦ si = s j ◦ s j = 1;
hence s j = si ◦ ri− j and si = ri− j ◦ s j , equivalently si ◦ rk = si−k and
rk ◦ s j = sk+ j , for all i, j, k . This yields a (compact) composition table for Dn :

Dn r j s j

ri ri+ j si+ j
si si− j ri− j

Properties. Groups inherit all the properties of semigroups and monoids
in Section 1. Thus, for any n � 0 elements x1, . . ., xn of a group (written
multiplicatively) all products of x1, . . . , xn (in that order) are equal (Proposition
1.1); multiplication of subsets

AB = { ab
∣
∣ a ∈ A, b ∈ B }

is associative (Proposition 1.3). But groups have additional properties.

Proposition 2.1. In a group, written multiplicatively, the cancellation laws hold:
xy = xz implies y = z , and yx = zx implies y = z . Moreover, the equations
ax = b , ya = b have unique solutions x = a−1 b , y = b a−1 .

Proof. xy = xz implies y = 1y = x−1 xy = x−1 xz = 1z = z , and similarly
for yx = zx . The equation ax = b has at most one solution x = a−1 ax = a−1 b ,
and x = a−1 b is a solution since a a−1 b = 1b = b . The equation ya = b is
similar. �

Proposition 2.2. In a group, written multiplicatively, (x−1)−1 = x and
(

x1 x2 · · · xn
)−1 = x−1

n · · · x−1
2 x−1

1 .

Proof. In a group, uv = 1 implies v = 1v = u−1 uv = u−1 . Hence
x−1 x = 1 implies x = (x−1)−1 . We prove the second property when n = 2
and leave the general case to our readers: x y y−1 x−1 = x 1 x−1 = 1; hence
y−1 x−1 = (xy)−1 . �

Powers in a group can have negative exponents.

Definition. Let G be a group, written multiplicatively. Let a ∈ G and let n be
an arbitrary integer. The nth power an of a is defined as follows:

(1) if n � 0 , then an is the product x1 x2 · · · xn in that x1 = x2 = · · · = xn = a
(in particular, a1 = a and a0 = 1);

(2) if n � 0 , n = −m with m � 0 , then an = (am)−1 (in particular, the −1
power a−1 is the inverse of a ).

Propositions 1.3 and 2.2 readily yield the following properties:
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Proposition 2.3. In a group G (written multiplicatively) the following proper-
ties hold for all a ∈ S and all integers m, n :

(1) a0 = 1 , a1 = a ;

(2) am an = am+n ;

(3) (am)n = amn ;

(4) (an)−1 = a−n = (a−1)n .

The proof makes an awful exercise, inflicted upon readers for their own good.

Corollary 2.4. In a finite group, the inverse of an element is a positive power
of that element.

Proof. Let G be a finite group and let x ∈ G . Since G is finite, the powers xn

of x , n ∈ Z , cannot be all distinct; there must be an equality xm = xn with, say,
m < n . Then xn−m = 1, x xn−m−1 = 1, and x−1 = xn−m−1 = xn−m−1 xn−m

is a positive power of x . �
The additive notation. Commutative groups are called abelian, and the addi-

tive notation is normally reserved for abelian groups.

As in Section 1, in the additive notation, the identity element is denoted by 0;
the product of x1, x2, . . . , xn becomes their sum x1 + x2 + · · · + xn ; the product
of two subsets A and B becomes their sum

A + B = { a + b
∣
∣ a ∈ A, b ∈ B }.

Proposition 2.1 yields the following:

Proposition 2.5. In an abelian group G (written additively), −(−x) = x and
−(x1 + x2 + · · · + xm) = (−x1) + (−x2) + · · · + (−xm) .

In the additive notation, the nth power of a ∈ S becomes the integer multiple
na : if n � 0, then na is the sum x1 + x2 + · · · + xn in that x1 = x2 = · · · = xn = a ;
if n = −m � 0, then na is the sum −(x1 + x2 + · · · + xm) = (−x1) + (−x2) + · · · +
(−xm) in which x1 = x2 = · · · = xm = −a . By 1.3, 2.3:

Proposition 2.6. In an abelian group G (written additively) the following
properties hold for all a, b ∈ G and all integers m, n :

(1) ma + na = (m + n) a ;

(2) m (na) = (mn) a ;

(3) 0a = 0 = n0 ;

(4) −(na) = (−n) a = n (−a) ;

(5) n (a + b) = na + nb .

Exercises
1. Show that an element of a group has only one inverse in that group.
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*2. Let S be a semigroup (written multiplicatively) in which there is a left identity element
e (an element e such that ex = x for all x ∈ S ) relative to which every element of S has a
left inverse (for each x ∈ S there exists y ∈ S such that yx = e ). Prove that S is a group.

*3. Let S be a semigroup (written multiplicatively) in which the equations ax = b and
ya = b have a solution for every a, b ∈ S . Prove that S is a group.

*4. Let S be a finite semigroup (written multiplicatively) in which the cancellation laws
hold (for all x, y, z ∈ S , xy = xz implies y = z , and yx = zx implies y = z ). Prove that S
is a group. Give an example of an infinite semigroup in which the cancellation laws hold, but
which is not a group.

5. Verify that the Klein four-group V4 is indeed a group.

6. Draw a multiplication table of S3 .

7. Describe the group of isometries of the sine curve (the graph of y = sin x ): list its
elements and construct a (compact) multiplication table.

8. Compare the (detailed) multiplication tables of D2 and V4 .

9. For which values of n is Dn commutative?

10. Prove the following: in a group G , am an = am+n , for all a ∈ G and m, n ∈ Z .

11. Prove the following: in a group G , (am)n = amn , for all a ∈ G and m, n ∈ Z .

12. Prove the following: a finite group with an even number of elements contains an even
number of elements x such that x−1 = x . State and prove a similar statement for a finite
group with an odd number of elements.

3. Subgroups

A subgroup of a group G is a subset of G that inherits a group structure from G .
This section contains general properties, up to Lagrange’s theorem.

Definition. A subgroup of a group G (written multiplicatively) is a subset H
of G such that

(1) 1 ∈ H ;

(2) x ∈ H implies x−1 ∈ H ;

(3) x, y ∈ H implies xy ∈ H .

By (3), the binary operation on G has a restriction to H (under which the
product of two elements of H is the same as their product in G ). By (1) and (2),
this operation makes H a group; the identity element of H is that of G , and an
element of H has the same inverse in H as in G . This group H is also called a
subgroup of G .

Examples show that a subset that is closed under multiplication is not necessarily
a subgroup. But every group has, besides its binary operation, a constant operation
that picks out the identity element, and a unary operation x �−→ x−1 . A subgroup
is a subset that is closed under all three operations.
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The multiplication table of V4 = { 1, a, b, c } shows that { 1, a } is a subgroup
of V4 ; so are { 1, b } and { 1, c } . In Dn the rotations constitute a subgroup.
Every group G has two obvious subgroups, G itself and the trivial subgroup
{ 1 } , also denoted by 1.

In the additive notation, a subgroup of an abelian group G is a subset H of G
such that 0 ∈ H , x ∈ H implies −x ∈ H , and x, y ∈ H implies x + y ∈ H .
For example, (Z, +) is a subgroup of (Q, +) ; (Q, +) is a subgroup of (R, +) ;
(R, +) is a subgroup of (C, +) . On the other hand, (N, +) is not a subgroup of
(Z, +) (even though N is closed under addition).

We denote the relation “ H is a subgroup of G ” by H � G . (The notation
H < G is more common; we prefer H � G , on the grounds that G is a subgroup
of itself.)

Proposition 3.1. A subset H of a group G is a subgroup if and only if H =/ Ø

and x, y ∈ H implies xy−1 ∈ H .

Proof. These conditions are necessary by (1), (2), and (3). Conversely, assume
that H =/ Ø and x, y ∈ H implies xy−1 ∈ H . Then there exists h ∈ H and
1 = h h−1 ∈ H . Next, x ∈ H implies x−1 = 1 x−1 ∈ H . Hence x, y ∈ H
implies y−1 ∈ H and xy = x (y−1)−1 ∈ H . Therefore H is a subgroup. �

Proposition 3.2. A subset H of a finite group G is a subgroup if and only if
H =/ Ø and x, y ∈ H implies xy ∈ H .

The case of N ⊆ Z shows the folly of using this criterion in infinite groups.

Proof. If H =/ Ø and x, y ∈ H implies xy ∈ H , then x ∈ H implies xn ∈ H
for all n > 0 and x−1 ∈ H , by 2.4; hence x, y ∈ H implies y−1 ∈ H and
x y−1 ∈ H , and H is a subgroup by 3.1. Conversely, if H is a subgroup, then
H =/ Ø and x, y ∈ H implies xy ∈ H . �

Generators. Our next result yields additional examples of subgroups.

Proposition 3.3. Let G be a group and let X be a subset of G . The set of all
products in G (including the empty product and one-term products) of elements
of X and inverses of elements of X is a subgroup of G; in fact, it is the smallest
subgroup of G that contains X .

Proof. Let H ⊆ G be the set of all products of elements of X and inverses of
elements of X . Then H contains the empty product 1; h ∈ H implies h−1 ∈ H ,
by 2.2; and h, k ∈ H implies hk ∈ H , since the product of two products of
elements of X and inverses of elements of X is another such product. Thus H
is a subgroup of X . Also, H contains all the elements of X , which are one-term
products of elements of X . Conversely, a subgroup of G that contains all the
elements of X also contains their inverses and contains all products of elements
of X and inverses of elements of X . �

Definitions. The subgroup 〈 X 〉 of a group G generated by a subset X of
G is the set of all products in G (including the empty product and one-term
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products) of elements of X and inverses of elements of X . A group G is generated
by a subset X when 〈 X 〉 = G .

Thus, G = 〈 X 〉 when every element of G is a product of elements of X and
inverses of elements of X . For example, the dihedral group Dn of a polygon
is generated (in the notation of Section 2) by { r1 , s0 } : indeed, ri = r i

1 , and
si = ri ◦ s0 , so that every element of Dn is a product of r1’s and perhaps one s0 .

Corollary 3.4. In a finite group G , the subgroup 〈 X 〉 of G generated by a
subset X of G is the set of all products in G of elements of X .

Proof. This follows from 3.3: if G is finite, then the inverses of elements of X
are themselves products of elements of X , by 2.4. �

Proposition 3.5. Let G be a group and let a ∈ G . The set of all powers of a
is a subgroup of G ; in fact, it is the subgroup generated by {a} .

Proof. That the powers of a constitute a subgroup of G follows from the parts
a0 = 1, (an)−1 = a−n , and am an = am+n of 2.3. Also, nonnegative powers
of a are products of a ’s, and negative powers of a are products of a−1 ’s, since
a−n = (a−1)n . �

Definitions. The cyclic subgroup generated by an element a of a group is the
set 〈 a 〉 of all powers of a (in the additive notation, the set of all integer multiples
of a ). A group or subgroup is cyclic when it is generated by a single element.

Proposition 3.5 provides a strategy for finding the subgroups of any given finite
group. First list all cyclic subgroups. Subgroups with two generators are also
generated by the union of two cyclic subgroups (which is closed under inverses).
Subgroups with three generators are also generated by the union of a subgroup
with two generators and a cyclic subgroup; and so forth. If the group is not too
large this quickly yields all subgroups, particularly if one makes use of Lagrange’s
theorem (Corollary 3.14 below).

Infinite groups are quite another matter, except in some particular cases:

Proposition 3.6. Every subgroup of Z is cyclic, generated by a unique nonneg-
ative integer.

Proof. The proof uses integer division. Let H be a subgroup of (the additive
group) Z . If H = 0 (= { 0 }) , then H is cyclic, generated by 0. Now assume
that H =/ 0, so that H contains an integer m =/ 0. If m < 0, then −m ∈ H ;
hence H contains a positive integer. Let n be the smallest positive integer that
belongs to H . Every integer multiple of n belongs to H . Conversely, let m ∈ H .
Then m = nq + r for some q, r ∈ Z , 0 � r < n . Since H is a subgroup,
qn ∈ H and r = m − qn ∈ H . Now, 0 < r < n would contradict the
choice of n ; therefore r = 0, and m = qn is an integer multiple of n . Thus
H is the set of all integer multiples of n and is cyclic, generated by n > 0.
(In particular, Z itself is generated by 1.) Moreover, n is the unique positive
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generator of H , since larger multiples of n generate smaller subgroups. �
Properties.

Proposition 3.7. In a group G , a subgroup of a subgroup of G is a subgroup
of G .

Proposition 3.8. Every intersection of subgroups of a group G is a subgroup
of G .

The proofs are exercises. By itself, Proposition 3.8 implies that given a subset
X of a group G , there is a smallest subgroup of G that contains X . Indeed,
there is at least one subgroup of G that contains X , namely, G itself. Then
the intersection of all the subgroups of G that contain X is a subgroup of G by
3.8, contains X , and is contained in every subgroup of G that contains X . This
argument, however, does not describe the subgroup in question.

Unions of subgroups, on the other hand, are in general not subgroups; in fact,
the union of two subgroups is a subgroup if and only if one of the two subgroups
is contained in the other (see the exercises). But some unions yield subgroups.

Definition. A chain of subsets of a set S is a family (Ci )i∈I of subsets of S
such that, for every i, j ∈ I , Ci ⊆ C j or C j ⊆ Ci .

Definition. A directed family of subsets of a set S is a family (Di )i∈I of subsets
of S such that, for every i, j ∈ I , there is some k ∈ I such that Di ⊆ Dk and
D j ⊆ Dk .

For example, every chain is a directed family. Chains, and directed families, are
defined similarly in any partially ordered set (not necessarily the partially ordered
set of all subsets of a set S under inclusion). Readers will prove the following:

Proposition 3.9. The union of a nonempty directed family of subgroups of a
group G is a subgroup of G . In particular, the union of a nonempty chain of
subgroups of a group G is a subgroup of G .

Cosets. We now turn to individual properties of subgroups.

Proposition 3.10. If H is a subgroup of a group, then H H = Ha = aH = H
for every a ∈ H .

Here aH and Ha are products of subsets: aH is short for {a}H , and Ha is
short for H{a} .

Proof. In the group H , the equation ax = b has a solution for every b ∈ H .
Therefore H ⊆ aH . But aH ⊆ H since a ∈ H . Hence aH = H . Similarly,
Ha = H . Finally, H ⊆ aH ⊆ H H ⊆ H . �

Next we show that subgroups partition groups into subsets of equal size.

Definitions. Relative to a subgroup H of a group G , the left coset of an
element x of G is the subset x H of G ; the right coset of an element x of G
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is the subset H x of G . These sets are also called left and right cosets of H . �
For example, H is the left coset and the right coset of every a ∈ H , by 3.10.

Proposition 3.11. Let H be a subgroup of a group G . The left cosets of H
constitute a partition of G ; the right cosets of H constitute a partition of G .

Proof. Define a binary relation R on G by

x R y if and only if xy−1 ∈ H .

The relation R is reflexive, since xx−1 = 1 ∈ H ; symmetric, since xy−1 ∈ H
implies yx−1 = (xy−1)−1 ∈ H ; and transitive, since xy−1 ∈ H , yz−1 ∈ H
implies xz−1 = (xy−1)(yz−1) ∈ H . Thus R is an equivalence relation, and
equivalence classes modulo R constitute a partition of G . Now, x R y if and
only if x ∈ H y ; hence the equivalence class of y is its right coset. Therefore the
right cosets of H constitute a partition of G . Left cosets of H arise similarly
from the equivalence relation, x L y if and only if y−1x ∈ H . �

In an abelian group G , x H = H x for all x , and the partition of G into left
cosets of H coincides with its partition into right cosets. The exercises give an
example in which the two partitions are different.

Proposition 3.12. The number of left cosets of a subgroup is equal to the number
of its right cosets.

Proof. Let G be a group and H � G . Let a ∈ G . If y ∈ aH , then y = ax
for some x ∈ H and y−1 = x−1 a−1 ∈ Ha−1 . Conversely, if y−1 ∈ Ha−1 ,
then y−1 = ta−1 for some t ∈ H and y = at−1 ∈ aH . Thus, when A = aH is
a left coset of H , then

A′ = { y−1 ∣∣ y ∈ A }

is a right coset of H , namely A′ = Ha−1 ; when B = Hb = Ha−1 is a right coset
of H , then B′ = { x−1 ∣∣ x ∈ B } is a left coset of H , namely aH . We now have
mutually inverse bijections A �−→ A′ and B �−→ B′ between the set of all left
cosets of H and the set of all right cosets of H . �

Definition. The index [ G : H ] of a subgroup H of a group G is the (cardinal)
number of its left cosets, and also the number of its right cosets.

The number of elements of a finite group is of particular importance, due to our
next result. The following terminology is traditional.

Definition. The order of a group G is the (cardinal) number |G| of its elements.

Proposition 3.13. If H is a subgroup of a group G , then |G| = [ G : H ] |H | .
Corollary 3.14 (Lagrange’s Theorem). In a finite group G , the order and index

of a subgroup divide the order of G .
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Proof. Let H � G and let a ∈ G . By definition, aH = { ax
∣
∣ x ∈ H } ,

and the cancellation laws show that x �−→ ax is a bijection of H onto aH .
Therefore |aH | = |H | : all left cosets of H have order |H | . Since the different
left cosets of H constitute a partition, the number of elements of G is now equal
to the number of different left cosets times their common number of elements:
|G| = [ G : H ] |H | . If |G| is finite, then |H | and [ G : H ] divide |G| . �

For instance, a group of order 9 has no subgroup of order 2. A group G
whose order is a prime number has only two subgroups, G itself and 1 = {1} .
The original version of Lagrange’s theorem applied to functions f (x1, . . . , xn)
whose arguments are permuted: when x1, . . . , xn are permuted in all possible
ways, the number of different values of f (x1, . . ., xn) is a divisor of n!

At this point it is not clear whether, conversely, a divisor of |G| is necessarily
the order of a subgroup of G . Interesting partial answers to this question await us
in the next chapter.

Exercises
1. Let G = Dn and H = { 1, s0 } . Show that the partition of G into left cosets of H is

different from its partition into right cosets when n � 3 .

2. Prove that every intersection of subgroups of a group G is a subgroup of G .

3. Find a group with two subgroups whose union is not a subgroup.

4. Let A and B be subgroups of a group G . Prove that A ∪ B is a subgroup of G if and
only if A ⊆ B or B ⊆ A .

5. Show that the union of a nonempty directed family of subgroups of a group G is a
subgroup of G .

6. Find all subgroups of V4 .

7. Find all subgroups of D3 .

8. Find all subgroups of D4 .

9. Can you think of subsets of R that are groups under the multiplication on R? and
similarly for C?

10. Find other generating subsets of Dn .

11. Show that every group of prime order is cyclic.

12. A subgroup M of a finite group G is maximal when M =/ G and there is no subgroup
M � H � G . Show that every subgroup H =/ G of a finite group is contained in a maximal
subgroup.

13. Show that x ∈ G lies in the intersection of all maximal subgroups of G if and only if it
has the following property: if X ⊆ G contains x and generates G , then X \ { x } generates
G . (The intersection of all maximal subgroups of G is the Frattini subgroup of G .)

14. In a group G , show that the intersection of a left coset of H � G and a left coset of
K � G is either empty or a left coset of H ∩ K .
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15. Show that the intersection of two subgroups of finite index also has finite index.

16. By the previous exercises, the left cosets of subgroups of finite index of a group G
constitute a basis (of open sets) of a topology on G . Show that the multiplication on G is
continuous. What can you say of G as a topological space?

4. Homomorphisms

Homomorphisms of groups are mappings that preserve products. They allow
different groups to relate to each other.

Definition. A homomorphism of a group A into a group B (written multi-
plicatively) is a mapping ϕ of A into B such that ϕ(xy) = ϕ(x) ϕ(y) for all
x, y ∈ A. �

If A is written additively, then ϕ(xy) becomes ϕ (x + y) ; if B is written
additively, then ϕ(x) ϕ(y) becomes ϕ(x) + ϕ(y) . For example, given an element
a of a group G , the power map n �−→ an is a homomorphism of Z into G . The
natural logarithm function is a homomorphism of the multiplicative group of all
positive reals into (R, +) . If H is a subgroup of a group G , then the inclusion
mapping ι : H −→ G , defined by ι(x) = x for all x ∈ H , is the inclusion
homomorphism of H into G .

In algebraic topology, continuous mappings of one space into another induce
homomorphisms of their fundamental groups at corresponding points.

Properties. Homomorphisms compose:

Proposition 4.1. If ϕ : A −→ B and ψ : B −→ C are homomorphisms of
groups, then so is ψ ◦ ϕ : A −→ C . Moreover, the identity mapping 1G on a
group G is a homomorphism.

Homomorphisms preserve identity elements, inverses, and powers, as readers
will gladly verify. In particular, homomorphisms of groups preserve the constant
and unary operation as well as the binary operation.

Proposition 4.2. If ϕ : A −→ B is a homomorphism of groups (written
multiplicatively), then ϕ(1) = 1 , ϕ(x−1) =

(

ϕ(x)
)−1 , and ϕ(xn) =

(

ϕ(x)
)n , for

all x ∈ A and n ∈ Z .

Homomorphisms also preserve subgroups:

Proposition 4.3. Let ϕ : A −→ B be a homomorphism of groups. If H is a
subgroup of A , then ϕ(H) = {ϕ(x)

∣
∣ x ∈ H } is a subgroup of B . If J is a

subgroup of B , then ϕ−1(J ) = { x ∈ A
∣
∣ ϕ(x) ∈ J } is a subgroup of A .

The subgroup ϕ(H) is the direct image of H � A under ϕ , and the subgroup
ϕ−1(J ) is the inverse image or preimage of J � B under ϕ . The notation
ϕ−1(J ) should not be read to imply that ϕ is bijective, or that ϕ−1(J ) is the
direct image of J under some misbegotten map ϕ−1 .
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Two subgroups of interest arise from 4.3:

Definitions. Let ϕ : A −→ B be a homomorphism of groups. The image or
range of ϕ is

Im ϕ = {ϕ(x)
∣
∣ x ∈ A }.

The kernel of ϕ is

Ker ϕ = { x ∈ A
∣
∣ ϕ(x) = 1 }.

In the additive notation, Ker ϕ = { x ∈ A
∣
∣ ϕ(x) = 0 } . By 4.3, Im ϕ = ϕ(G)

and Ker ϕ = ϕ−1(1) are subgroups of B and A respectively.

The kernel K = Ker ϕ has additional properties. Indeed, ϕ(x) = ϕ(y) implies
ϕ(y x−1) = ϕ(y) ϕ(x)−1= 1, y x−1 ∈ K , and y ∈ K x . Conversely, y ∈ K x
implies y = kx for some k ∈ K and ϕ(y) = ϕ(k)ϕ(x) = ϕ(x) . Thus, ϕ(x) = ϕ(y)
if and only if y ∈ K x . Similarly, ϕ(x) = ϕ(y) if and only if y ∈ x K . In particular,
K x = x K for all x ∈ A .

Definition. A subgroup N of a group G is normal when x N = N x for all
x ∈ G .

This concept is implicit in Galois [1830]. The left cosets of a normal subgroup
coincide with its right cosets and are simply called cosets.

For instance, all subgroups of an abelian group are normal. Readers will verify
that Dn has a normal subgroup, which consists of its rotations, and already know,
having diligently worked all exercises, that { 1, s0 } is not a normal subgroup of
Dn when n � 3. In general, we have obtained the following:

Proposition 4.4. Let ϕ : A −→ B be a homomorphism of groups. The image of
ϕ is a subgroup of B . The kernel K of ϕ is a normal subgroup of A . Moreover,
ϕ(x) = ϕ(y) if and only if y ∈ x K = K x .

We denote the relation “ N is a normal subgroup of G ” by N �= G . (The
notation N � G is more common; the author prefers N �= G , on the grounds
that G is a normal subgroup of itself.) The following result, gladly proved by
readers, is often used as the definition of normal subgroups.

Proposition 4.5. A subgroup N of a group G is normal if and only if x N x−1 ⊆
N for all x ∈ G .

Special kinds of homomorphisms. It is common practice to call an injective
homomorphism a monomorphism, and a surjective homomorphism an epimor-
phism. This terminology is legitimate in the case of groups, though not in general.
The author prefers to introduce it later.

Readers will easily prove the next result:

Proposition 4.6. If ϕ is a bijective homomorphism of groups, then the inverse
bijection ϕ−1 is also a homomorphism of groups.
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Definitions. An isomorphism of groups is a bijective homomorphism of groups.
Two groups A and B are isomorphic when there exists an isomorphism of A onto
B ; this relationship is denoted by A ∼= B .

By 4.1, 4.6, the isomorphy relation ∼= is reflexive, symmetric, and transitive.
Isomorphy would like to be an equivalence relation; but groups are not allowed to
organize themselves into a set (see Section A.3).

Philosophical considerations give isomorphism a particular importance. Abs-
tract algebra studies groups but does not care what their elements look like.
Accordingly, isomorphic groups are regarded as instances of the same “abstract”
group. For example, the dihedral groups of various triangles are all isomorphic,
and are regarded as instances of the “abstract” dihedral group D3 .

Similarly, when a topological space X is path connected, the fundamental
groups of X at various points are all isomorphic to each other; topologists speak
of the fundamental group π1(X) of X .

Definitions. An endomorphism of a group G is a homomorphism of G into G ;
an automorphism of a group G is an isomorphism of G onto G .

Using Propositions 4.1 and 4.6 readers will readily show that the endomor-
phisms of a group G constitute a monoid End (G) under composition, and that
the automorphisms of G constitute a group Aut (G) .

Quotient groups. Another special kind of homomorphism consists of projec-
tions to quotient groups and is constructed as follows from normal subgroups.

Proposition 4.7. Let N be a normal subgroup of a group G . The cosets
of N constitute a group under the multiplication of subsets, and the mapping
x �−→ x N = N x is a surjective homomorphism, whose kernel is N .

Proof. Let S temporarily denote the set of all cosets of N . Multiplication of
subsets of G is associative and induces a binary operation on S , since x N yN =
xyN N = xyN . The identity element is N , since N x N = x N N = x N . The
inverse of x N is x−1 N , since x N x−1 N = x x−1 N N = N = x−1 N x N . Thus
S is a group. The surjection x �−→ x N = N x is a homomorphism, since
x N yN = xyN ; its kernel is N , since x N = N if and only if x ∈ N . �

Definitions. Let N be a normal subgroup of a group G . The group of all cosets
of N is the quotient group G/N of G by N . The homomorphism x �−→ x N = N x
is the canonical projection of G onto G/N .

For example, in any group G , G �= G (with Gx = xG = G for all x ∈ G ),
and G/G is the trivial group; 1 �= G (with 1x = x1 = { x } for all x ∈ G ), and
the canonical projection is an isomorphism G ∼= G/1.

For a more interesting example, let G = Z . Every subgroup N of Z is normal
and is, by 3.6, generated by a unique nonnegative integer n (so that N = Zn ). If
n = 0, then Z/N ∼= Z ; but n > 0 yields a new group:
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Definition. For every positive integer n , the additive group Zn of the integers
modulo n is the quotient group Z/Zn .

The group Zn is also denoted by Z(n) . Its elements are the different cosets
x = x + Zn with x ∈ Z . Note that x = y if and only if x and y are congruent
modulo n , whence the name “integers modulo n ”.

Proposition 4.8. Zn is a cyclic group of order n , with elements 0 , 1 , . . . , n − 1
and addition

i + j =

{

i + j if i + j < n,

i + j − n if i + j � n.

Proof. The proof uses integer division. For every x ∈ Z there exist unique q
and r such that x = qn + r and 0 � r < n . Therefore every coset x = x + Zn
is the coset of a unique 0 � r < n . Hence Zn = { 0, 1, . . . , n − 1 } , with the
addition above. We see that r1 = r , so that Zn is cyclic, generated by 1. �

In general, the order of G/N is the index of N in G: |G/N | = [ G : N ] ; if G
is finite, then |G/N | = |G|/|N | . The subgroups of G/N are quotient groups of
subgroups of G:

Proposition 4.9. Let N be a normal subgroup of a group G . Every subgroup
of G/N is the quotient H/N of a unique subgroup H of G that contains N .

Proof. Let π : G −→ G/N be the canonical projection and let B be a
subgroup of G/N . By 4.3,

A = π−1(B) = { a ∈ G
∣
∣ aN ∈ B }

is a subgroup of G and contains π−1(1) = Ker π = N . Now, N is a subgroup of
A , and is a normal subgroup of A since aN = Na for all a ∈ A . The elements
aN of A/N all belong to B by definition of A . Conversely, if x N ∈ B , then
x ∈ A and x N ∈ A/N . Thus B = A/N .

Assume that B = H/N , where H � G contains N . If h ∈ H , then
hN ∈ H/N = B and h ∈ A . Conversely, if a ∈ A , then aN ∈ B = H/N ,
aN = hN for some h ∈ H , and a ∈ hN ⊆ H . Thus H = A . �

We prove a stronger version of 4.9; the exercises give an even stronger version.

Proposition 4.10. Let N be a normal subgroup of a group G . Direct and
inverse image under the canonical projection G −→ G/N induce a one-to-one
correspondence, which preserves inclusion and normality, between subgroups of
G that contain N and subgroups of G/N .

Proof. Let A be the set of all subgroups of G that contain N ; let B be the set of
all subgroups of G/N ; let π : G −→ G/N be the canonical projection. By 4.16
and its proof, A �−→ A/N is a bijection of A onto B , and the inverse bijection
is B �−→ π−1(B) , since B = A/N if and only if A = π−1(B) . Both bijections
preserve inclusions (e.g., A1 ⊆ A2 implies A1/N ⊆ A2/N when N ⊆ A1 ); the
exercises imply that they preserve normality. �
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Exercises
1. Let ϕ : A −→ B be a homomorphism of groups (written multiplicatively). Show that

ϕ(1) = 1, ϕ(x–1) =
(
ϕ(x)

)
–1 , and ϕ(xn) =

(
ϕ(x)

)n , for all x ∈ A and n ∈ Z .

2. Let ϕ : A −→ B be a homomorphism of groups and let H � A . Show that ϕ(H) � B .

3. Let ϕ : A −→ B be a homomorphism of groups and let H � B . Show that
ϕ–1(H) � A .

4. Show that the following are equivalent when N � G : (i) x N = N x for all x ∈ G ;
(ii) N x N y ⊆ N xy for all x, y ∈ G ; (iii) x N x–1 ⊆ N for all x ∈ G .

5. Let ϕ : A −→ B be a homomorphism of groups. Show that N �= B implies

ϕ–1(N) �= A .

6. Let ϕ : A −→ B be a surjective homomorphism of groups. Show that N �= A implies
ϕ(N) �= B .

7. Give an example that N �= A does not necessarily imply ϕ(N) �= B when ϕ :
A −→ B is an arbitrary homomorphism of groups.

8. Prove that every subgroup of index 2 is normal.

9. Prove that every intersection of normal subgroups of a group G is a normal subgroup
of G .

10. Prove that the union of a nonempty directed family of normal subgroups of a group G
is a normal subgroup of G .

11. Show that G = D4 contains subgroups A and B such that A �= B and B �= G but
not A �= G .

12. Let the group G be generated by a subset X . Prove the following: if two homo-
morphisms ϕ, ψ : G −→ H agree on X (if ϕ(x) = ψ(x) for all x ∈ X ), then ϕ = ψ

(ϕ(x) = ψ(x) for all x ∈ G ).

13. Find all homomorphisms of D2 into D3 .

14. Find all homomorphisms of D3 into D2 .

15. Show that D2 ∼= V4 .

16. Show that D3 ∼= S3 .

17. Find all endomorphisms of V4 .

18. Find all automorphisms of V4 .

19. Find all endomorphisms of D3 .

20. Find all automorphisms of D3 .

21. Let ϕ : A −→ B be a homomorphism of groups. Show that ϕ induces an order-
preserving one-to-one correspondence between the set of all subgroups of A that contain
Ker ϕ and the set of all subgroups of B that are contained in Im ϕ .
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5. The Isomorphism Theorems

This section contains further properties of homomorphisms and quotient groups.

Factorization. Quotient groups provide our first example of a universal prop-
erty. This type of property becomes increasingly important in later chapters.

Theorem 5.1 (Factorization Theorem). Let N be a normal subgroup of a
group G . Every homomorphism of groups ϕ : G −→ H whose kernel contains
N factors uniquely through the canonical projection π : G −→ G/N (there
exists a homomorphism ψ : G/N −→ H unique such that ϕ = ψ ◦ π ):

Proof. We use the formal definition of a mapping ψ : A −→ B as a set of
ordered pairs (a, b) with a ∈ A , b ∈ B , such that (i) for every a ∈ A there exists
b ∈ B such that (a, b) ∈ ψ , and (ii) if (a1, b1) ∈ ψ , (a2, b2) ∈ ψ , and a1 = a2 ,
then b1 = b2 . Then ψ(a) is the unique b ∈ B such that (a, b) ∈ ψ .

Since Ker ϕ contains N , x−1 y ∈ N implies ϕ(x−1) ϕ(y) = ϕ
(

x−1 y
)

= 1,
so that x N = yN implies ϕ(x) = ϕ(y) . As a set of ordered pairs,

ψ = {
(

x N , ϕ(x)
) ∣
∣ x ∈ G }.

In the above, (i) holds by definition of G/N , and we just proved (ii); hence ψ is a
mapping. (Less formally one says that ψ is well defined by ψ(x N) = ϕ(x) .) By
definition, ψ(x N) = ϕ(x) , so ψ ◦ π = ϕ . Also, ψ is a homomorphism:

ψ(x N yN) = ψ(xyN ) = ϕ(xy) = ϕ(x)ϕ(y) = ψ(x N) ψ(yN).

To show that ψ is unique, let χ : G/N −→ H be a homomorphism such that
χ ◦ π = ϕ . Then χ(x N) = ϕ(x) = ψ(x N) for all x N ∈ G/N and χ = ψ . �

The homomorphism theorem is also called the first isomorphism theorem.

Theorem 5.2 (Homomorphism Theorem). If ϕ : A −→ B is a homomorphism
of groups, then

A/Ker ϕ ∼= Im ϕ;

in fact, there is an isomorphism θ : A/Ker f −→ Im f unique such that
ϕ = ι ◦ θ ◦ π , where ι : Im f −→ B is the inclusion homomorphism and
π : A −→ A/Ker f is the canonical projection:
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Proof. Let ψ : A −→ Im ϕ be the same mapping as ϕ (the same set of
ordered pairs) but viewed as a homomorphism of A onto Im ϕ . Then Ker ψ =
Ker ϕ ; by 5.1, ψ factors through π : ψ = θ ◦ π for some homomorphism
θ : A/K −→ Im ϕ , where K = Ker ϕ . Then θ(x K ) = ψ(x) = ϕ(x) for all
x ∈ A and ϕ = ι ◦ θ ◦ π . Moreover, θ , like ψ , is surjective; θ is injective
since θ(x K ) = 1 implies ϕ(x) = 1, x ∈ Ker ϕ = K , and x K = 1 in A/K . If
ζ : A/Ker f −→ Im f is another isomorphism such that ϕ = ι ◦ ζ ◦ π , then

ζ (x K ) = ι
(

ζ
(

π(x)
))

= ϕ(x) = ι
(

θ
(

π(x)
))

= θ(x K )

for all x ∈ A , and ζ = θ . (This also follows from uniqueness in 5.1.) �

The homomorphism theorem implies that every homomorphism is a com-
position of three basic types of homomorphism: inclusion homomorphisms of
subgroups; isomorphisms; and canonical projections to quotient groups.

Corollary 5.3. Let ϕ : A −→ B be a homomorphism. If ϕ is injective, then
A ∼= Im ϕ . If ϕ is surjective, then B ∼= A/Ker ϕ .

Proof. If ϕ is injective, then Ker ϕ = 1 and A ∼= A/Ker ϕ ∼= Im ϕ . If ϕ is
surjective, then B = Im ϕ ∼= A/Ker ϕ . �

We illustrate the use of Theorem 5.2 with a look at cyclic groups. We saw that
the additive groups Z and Zn are cyclic. Up to isomorphism, Z and Zn are the
only cyclic groups:

Proposition 5.4. Let G be a group and let a ∈ G . If am =/ 1 for all m =/ 0 , then
〈 a 〉 ∼= Z ; in particular, 〈 a 〉 is infinite. Otherwise, there is a smallest positive
integer n such that an = 1 , and then am = 1 if and only if n divides m , and
〈 a 〉 ∼= Zn ; in particular, 〈 a 〉 is finite of order n .

Proof. The power map p : m �−→ am is a homomorphism of Z into G .
By 5.1, 〈 a 〉 = Im p ∼= Z/Ker p . By 3.6, Ker p is cyclic, Ker p = Zn for
some unique nonnegative integer n . If n = 0, then 〈 a 〉 ∼= Z/0 ∼= Z , and am = 1
(a ∈ Ker p ) if and only if m = 0. If n > 0, then 〈 a 〉 ∼= Z/Zn = Zn , and am = 1
if and only if m is a multiple of n . �

Definition. The order of an element a of a group G is infinite if am =/ 1 for all
m =/ 0 ; otherwise, it is the smallest positive integer n such that an = 1 . �

Equivalently, the order of a is the order of 〈 a 〉 . Readers will be careful that
an = 1 does not imply that a has order n , only that the order of a divides n .

Corollary 5.5. Any two cyclic groups of order n are isomorphic.

We often denote “the” cyclic group of order n by Cn .

Corollary 5.6. Every subgroup of a cyclic group is cyclic.

This follows from Propositions 5.4 and 3.6; the details make a pretty exercise.
More courageous readers will prove a stronger result:
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Proposition 5.7. In a cyclic group G of order n , every divisor d of n is the
order of a unique cyclic subgroup of G , namely { x ∈ G

∣
∣ xd = 1 } .

The isomorphism theorems. The isomorphisms theorems are often numbered
so that Theorem 5.2 is the first isomorphism theorem. Then Theorems 5.8 and 5.9
are the second and third isomorphism theorems.

Theorem 5.8 (First Isomorphism Theorem). Let A be a group and let B , C be
normal subgroups of A . If C ⊆ B , then C is a normal subgroup of B , B/C is
a normal subgroup of A/C , and

A/B ∼= (A/C)/(B/C);

in fact, there is a unique isomorphism θ : A/B −→ (A/C)/(B/C) such that
θ ◦ ρ = τ ◦ π , where π : A −→ A/C , ρ : A −→ A/B , and τ : A/C −→
(A/C)/(B/C) are the canonical projections:

Proof. By 5.1, ρ factors through π : ρ = σ ◦ π for some homomorphism
σ : A/C −→ A/B ; namely, σ : aC �−→ aB . Like ρ , σ is surjective. We show
that Ker σ = B/C . First, C �= B , since C �= A . If bC ∈ B/C , where b ∈ B ,
then σ (bC) = bB = 1 in A/B . Conversely, if σ (aC) = 1, then aB = B and
a ∈ B . Thus Ker σ = { bC

∣
∣ b ∈ B } = B/C ; in particular, B/C �= A/C .

By 5.2, A/B = Im σ ∼= (A/C)/Ker σ = (A/C)/(B/C) . In fact, Theorem 5.2
yields an isomorphism θ : A/B −→ (A/C)/(B/C) such that θ ◦ σ = τ , and
then θ ◦ ρ = τ ◦ π ; since ρ is surjective, θ is unique with this property. �

Theorem 5.9 (Second Isomorphism Theorem). Let A be a subgroup of a group
G , and let N be a normal subgroup of G . Then AN is a subgroup of G , N is a
normal subgroup of AN , A ∩ N is a normal subgroup of A , and

AN/N ∼= A/(A ∩ N);

in fact, there is an isomorphism θ : A/(A ∩ N) −→ AN/N unique such that
θ ◦ ρ = π ◦ ι , where π : AN −→ AN/N and ρ : A −→ A/(A ∩ N) are
the canonical projections and ι : A −→ AN is the inclusion homomorphism:

In particular, |AN |/|N | = |A|/|A ∩ N | when G is finite.

Proof. We show that AN � G . First, 1 ∈ AN . Since N �= G , N A = AN ;
hence an ∈ AN (with a ∈ A , n ∈ N ) implies (an)−1= n−1 a−1 ∈ N A = AN .
Finally, AN AN = AAN N = AN .
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Now, N �= AN . Let ϕ = π ◦ ι . Then ϕ(a) = aN ∈ AN/N for all a ∈ A , and
ϕ is surjective. Moreover, ϕ(a) = 1 if and only if a ∈ N , so that Ker ϕ = A ∩ N ;
in particular, A ∩ N �= N . By 5.2, AN/N = Im ϕ ∼= A/Ker ϕ = A/(A ∩ N) ;
in fact, there is a unique isomorphism θ : A/(A ∩ N) −→ AN/N such that
θ ◦ ρ = ϕ = π ◦ ι . �

Theorem 5.9 implies that the intersection of two normal subgroups of finite
index also has finite index. Consequently, the cosets of normal subgroups of finite
index constitute a basis of open sets for a topology (see the exercises).

Exercises
1. Let ϕ : A −→ B and ψ : A −→ C be homomorphisms of groups. Prove the

following: if ψ is surjective, then ϕ factors through ψ if and only if Ker ψ ⊆ Ker ϕ , and
then ϕ factors uniquely through ψ .

2. Show that the identity homomorphism 12Z : 2Z −→ 2Z does not factor through the
inclusion homomorphism ι : 2Z −→ Z (there is no homomorphism ϕ : Z −→ 2Z such that
12Z = ϕ ◦ ι ) even though Ker ι ⊆ Ker 12Z . (Of course, ι is not surjective.)

3. Let ϕ : A −→ C and ψ : B −→ C be homomorphisms of groups. Prove the
following: if ψ is injective, then ϕ factors through ψ (ϕ = ψ ◦ χ for some homomorphism
χ : A −→ B ) if and only if Im ϕ ⊆ Im ψ , and then ϕ factors uniquely through ψ .

4. Show that the additive group R/Z is isomorphic to the multiplicative group of all
complex numbers of modulus 1 .

5. Show that the additive group Q/Z is isomorphic to the multiplicative group of all
complex roots of unity (all complex numbers z =/ 0 of finite order in C\{0} ).

6. Prove that every subgroup of a cyclic group is cyclic.

7. Let Cn = 〈 c 〉 be a cyclic group of finite order n . Show that every divisor d of n is the
order of a unique subgroup of Cn , namely 〈 cn/d 〉 = { x ∈ Cn

∣
∣ xd = 1 } .

8. Show that every divisor of |Dn | is the order of a subgroup of Dn .

9. Find the order of every element of D4 .

10. List the elements of S4 and find their orders.

11. Show that the complex nth roots of unity constitute a cyclic group. Show that ωk =
cos (2πk/n) +i sin (2πk/n) generates this cyclic group if and only if k and n are relatively
prime (then ωk is a primitive nth root of unity).

12. Let A and B be subgroups of a finite group G . Show that |AB| = |A||B|/|A ∩ B| .
13. Find a group G with subgroups A and B such that AB is not a subgroup.

14. If G is a finite group, H � G , N �= G , and |N | and [G : N ] are relatively prime,
then show that H ⊆ N if and only if |H | divides |N | . (Hint: consider H N .)

15. Show that, in a group G , the intersection of two normal subgroups of G of finite index
is a normal subgroup of G of finite index.

16. Let A and B be cosets of (possibly different) normal subgroups of finite index of a
group G . Show that A ∩ B is either empty or a coset of a normal subgroup of G of finite
index.
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17. By the previous exercise, cosets of normal subgroups of finite index of a group G
constitute a basis of open sets of a topology, the profinite topology on G . What can you say
about this topology?

6. Free Groups

This section and the next construct groups that are generated by a given set. The
free groups in this section are implicit in Dyck [1882]; the name seems due to
Nielsen [1924].

In a group G generated by a subset X , every element of G is a product of
elements of X and inverses of elements of X , by 3.3. But the elements of G are
not written uniquely in this form, since, for instance, 1 = x x−1 = x−1 x for every
x ∈ X : some relations between the elements of X (equalities between products
of elements of X and inverses of elements of X) always hold in G .

The free group on a set X is generated by X with as few relations as possible
between the elements of X . Products of elements of X and inverses of elements
of X can be reduced by deleting all x x−1 and x−1 x subproducts until none
is left. The free group on X consists of formal reduced products, multiplied by
concatenation and reduction. That it has as few relations as possible is shown by
a universal property. The details follow.

Reduction. Let X be an arbitrary set. Let X ′ be a set that is disjoint from
X and comes with a bijection x �−→ x ′ of X onto X ′ . (Once our free group is
constructed, x ′ will be the inverse of x .) It is convenient to denote the inverse
bijection X ′ −→ X by y �−→ y′ , so that (x ′)′ = x for all x ∈ X , and (y′)′ = y
for all y ∈ Y = X ∪ X ′ . Words in the alphabet Y are finite, possibly empty
sequences of elements of Y , and represent products of elements of X and inverses
of elements of X . The free monoid on Y is the set W of all such words, multiplied
by concatenation.

Definition. A word a = (a1, a2, . . ., an) ∈ W is reduced when ai+1 =/ a′i for
all 1 � i < n .

For example, the empty word and all one-letter words are reduced, for want
of consecutive letters. If X = { x, y, z, . . . } , then (x, y, z) and (x, x, x) are
reduced, but (x, y, y′, z) is not reduced.

Reduction deletes subsequences (ai , a′i ) until a reduced word is reached.

Definitions. In W , we write a 1−→ b when a = (a1, a2, . . ., an) , ai+1 = a′i ,
and b = (a1, . . ., ai−1, ai+2, . . . , an) , for some 1 � i < n ;

we write a k−→ b when k � 0 and a 1−→ a′ 1−→ a′′ 1−→ · · · 1−→ a(k) = b for
some a′, a′′, . . ., a(k) ∈ W (when a = b , if k = 0);

we write a −→ b when a k−→ b for some k � 0 .
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If a is reduced, then a k−→ b implies k = 0, since there is no a 1−→ c , and
a −→ b implies a = b .

Lemma 6.1. For every word a ∈ W there is a reduction a −→ b to a reduced
word b .

Proof. By induction on the length of a . If a is reduced, then b = a serves.
Otherwise, a 1−→ c for some c ∈ W , c −→ b for some reduced b ∈ W since c
is shorter than a , and then a −→ b . �

We show that the word b in Lemma 6.3 is unique.

Lemma 6.2. If a 1−→ b and a 1−→ c =/ b , then b 1−→ d , c 1−→ d for some d .

Proof. Let a = (a1, a2, . . ., an) . We have ai+1 = a′i and

b = (a1, . . ., ai−1, ai+2, . . ., an),

for some 1 � i < n ; also, a j+1 = a′j and

c = (a1, . . . , a j−1, a j+2, . . . , an),

for some 1 � j < n . Since b =/ c we have i =/ j and may assume i < j . If
j = i + 1, then ai = a′i+1 = a j+1 = ai+2 , (ai−1 , ai+2 , ai+3) = (a j−2 , a j−1 ,
a j+2) , and b = c ; hence j � i + 2. Then ai and ai+1 are consecutive letters of
c , a j and a j+1 are consecutive letters of b , and

d = (a1, . . . , ai−1, ai+2, . . ., a j−1, a j+2, . . ., an)

serves (or d = (a1, . . ., ai−1, a j+2, . . . , an) , if j = i + 2.) �

Lemma 6.3. If a −→ b and a −→ c , then b −→ d and c −→ d for some d .

Proof. Say a k−→ b and a �−→ c . The result is trivial if k = 0 or if � = 0.

We first prove 6.3 when � = 1, by induction on k . We have a 1−→ c . If k � 1,

then 6.3 holds, by 6.2. Now let k > 1, so that a 1−→ u k−1−→ b for some u . If
u = c , then d = b serves. Otherwise, u 1−→ v and c 1−→ v for some v :

a 1−→ u −→ b
↓ ↓ ↓
c 1−→ v−→ d

by 6.2. The induction hypothesis, applied to u k−1−→ b and u 1−→ v , then yields
b −→ d and c 1−→ v −→ d for some d .

Now, 6.3 holds when � � 1; the general case is proved by induction on � :

a 1−→ u −→ c
↓ ↓ ↓
b −→ v−→ d
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If � > 1, then a −→ b and a 1−→ u �−1−→ c for some u . By the case � = 1,
b −→ v and u −→ v for some v . The induction hypothesis, applied to u −→ v

and u �−1−→ c , then yields b −→ v −→ d and c −→ d for some d . �
Lemma 6.4. For every word a ∈ W there is a unique reduced word b such that

a −→ b .

Proof. If a −→ b and a −→ c , with b and c reduced, then, in Lemma 6.3,
b −→ d and c −→ d imply b = d = c . �

Definition. The reduction red a of a ∈ W is the unique reduced word b such
that a −→ b . �

Construction. The free group on X is now within reach.

Proposition 6.5. Under the operation a . b = red (ab) , the set FX of all
reduced words in X is a group.

Proof. If a 1−→ b , then ac 1−→ bc and ca 1−→ cb for all c ∈ W . Hence
a −→ b implies ac −→ bc and ca −→ cb for all c ∈ W . If now a , b , c ∈ W
are reduced, then ab −→ a . b and bc −→ b . c yield

abc −→ (a . b) c −→ (a . b) . c and abc −→ a (b . c) −→ a . (b . c) .

Hence (a . b) . c = a . (b . c) , by 6.4.

The empty word 1 = () is reduced and is the identity element of FX , since
1 . a = red (1a) = red a = a and a . 1 = red a = a when a is reduced.

The inverse of a reduced word a = (a1, a2, . . . , an) is, not surprisingly,

a−1 = (a′n, a′n−1, . . ., a′1);

indeed, a−1 is reduced, since a′i =/ (a′i−1)
′ for all i > 1, and a a−1 −→ 1,

a−1 a −→ 1. Thus FX is a group. �

In particular, the inverse of a one-letter word (y) is (y′) . The first part of
the proof implies that concatenation followed by reduction also yields products of
three or more terms in FX .

Definition. The free group on a set X is the group FX in Proposition 6.5, which
consists all reduced words in X .

Readers will enjoy showing that FX
∼= Z when X has just one element.

Properties. The free group on X should be generated by X . Strictly speaking,
X is not a subset of FX . However, there is a canonical injection η : X −→ FX ,
x �−→ (x) , which is conveniently extended to Y = X ∪ X ′ so that η : x ′ �−→ (x ′) ;
then FX is generated by η(X) :

Proposition 6.6. If a = (a1, a2, . . ., an) is a reduced word in X , then

a = η(a1) . η(a2) . · · · . η(an).
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In particular, FX is generated by η(X) .

Proof. If a = (a1, a2, . . . , an) is reduced, then concatenating the one-letter
words (a1) , (a2) , . . . , (an) yields a reduced word; hence

a = (a1) . (a2) . · · · . (an) = η(a1) . η(a2) . · · · . η(an).

We saw that η(x ′) = η(x)−1 for all x ∈ X ; hence every a ∈ FX is a product of
elements of η(X) and inverses of elements of η(X) . �

Theorem 6.7. Let η : X −→ FX be the canonical injection. For every mapping
f of X into a group G , there is a homomorphism ϕ of FX into G unique such
that f = ϕ ◦ η , namely

ϕ (a1, a2, . . ., an) = f (a1) f (a2) · · · f (an).

Proof. We show uniqueness first. Let ϕ : FX −→ G be a homomorphism such
that f = ϕ ◦ η . Extend f to X ′ so that f (x ′) = f (x)−1 for all x ∈ X . For every
x ∈ X , we have ϕ

(

η(x)
)

= f (x) and ϕ
(

η(x ′)
)

= ϕ
(

η(x)−1) = f (x)−1 = f (x ′) .
If now a = (a1, a2, . . ., an) is reduced, then necessarily

ϕ(a) = ϕ
(

η(a1) . η(a2) . · · · . η(an)
)

= f (a1) f (a2) · · · f (an),

since ϕ is a homomorphism. Hence ϕ is unique.

It remains to show that the mapping ϕ : FX −→ G defined for every reduced
word a = (a1, a2, . . ., an) by

ϕ(a) = f (a1) f (a2) · · · f (an)

is a homomorphism of groups. First we can extend ϕ to all of W by using the
formula above for every word, reduced or not. Then ϕ(ab) = ϕ(a)ϕ(b) for all
a, b ∈ W . Also a 1−→ b implies ϕ(a) = ϕ(b) : indeed, if a = (a1, a2, . . ., an) ,
ai+1 = a′i , and b = (a1, . . ., ai−1, ai+2, . . ., an) , for some 1 � i < n , then

ϕ(a) = f (a1) · · · f (ai−1) f (ai ) f (ai+1) f (ai+2) · · · f (an)

= f (a1) · · · f (ai−1) f (ai+2) · · · f (an) = ϕ(b),

since f (ai+1) = f (ai )
−1 . Therefore a −→ b implies ϕ(a) = ϕ(b) . If now a

and b are reduced, then ϕ(a . b) = ϕ(ab) = ϕ(a)ϕ(b) . �
Corollary 6.8. If the group G is generated by a subset X , then there is a

surjective homomorphism of FX onto G .

Proof. By Theorem 6.7, there is a homomorphism ϕ : FX −→ G such that
ϕ ◦ η is the inclusion mapping X −→ G ; then Im ϕ = G , since Im ϕ contains
every generator x = ϕ

(

η(x)
)

of G . �
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Notation. The construction of FX is clearer when X and FX are kept separate,
but once FX is constructed, the usual practice is to identify x ∈ X and η(x) =
(x) ∈ FX , to identify x ′ ∈ X ′ and x−1 = (x)−1 = η(x ′) ∈ FX , and to write the
elements of FX as words rather than sequences (for instance, abb−1c instead of
(a, b, b′, c) ). This notation is used in all subsequent sections. Then X ⊆ FX ,
η : X −→ FX is an inclusion mapping, and FX is generated by X .

With these identifications, the universal property in Theorem 6.7 states that
every mapping f of X into a group G can be extended uniquely to a homomor-
phism ϕ of FX into G . If X ⊆ G , then ϕ sends the typical element of FX ,
which is a product of elements of X and inverses of elements of X , onto the same
product but calculated in G . Hence every relation between the elements of X
(every equality between products of elements of X and inverses of elements of
X ) that holds in FX also holds in every group G that contains X . Thus, FX has
as few relations as possible between the elements of X .

Exercises
1. In an alphabet with two elements, how many reduced words are there of length 4? of

length n ?

2. Show that, in FX , a . b . · · · . h = red (ab · · · h) .

3. Show that FX ∼= Z if X has just one element.

4. Prove that the universal property in Theorem 6.7 characterizes the free group on X up to
isomorphism. (Let F be a group and let j : X −→ F be a mapping. Assume that for every
mapping f of X into a group G , there is a homomorphism ϕ of F into G unique such that
f = ϕ ◦ j . Show that F ∼= FX .)

5. Show that every mapping f : X −→ Y induces a homomorphism Ff : FX −→ FY
unique such that Ff ◦ ηX = ηY ◦ f (where ηX , ηY are the canonical injections). Moreover, if
f is the identity on X , then Ff is the identity on FX ; if g ◦ f is defined, then Fg◦ f = Fg ◦ Ff .

6. Locate a statement of Kurosh’s theorem on subgroups of free groups.

7. Define homomorphisms of semigroups and prove a universal property of the free semi-
group on a set X .

8. Prove a universal property of the free commutative semigroup on a set X .

7. Presentations

Presentations, also called definitions by generators and relations, construct groups
that are generated by a given set whose elements satisfy given relations. These
groups are often too large to be defined by multiplication tables. Presentations
were first considered by Dyck [1882].

Relations. Informally, a group relation between elements of a set X is an
equality between products of elements of X and inverses of elements of X . Free
groups provide formal models of all such products, and a formal definition:
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Definition. A group relation between the elements of a set X is an ordered pair
(u, v) of elements of FX .

These are called group relations because there are similar but different relations
for rings, modules, and other bidules.

Relations (u, v) are normally written as equalities u = v . This should cause
no confusion: if u and v are actually equal in FX , then the relation u = v is trivial
and is not likely to be considered; normally, u and v are different in FX and it is
obvious that u = v is a relation and not an equality.

In order for a relation u = v to hold in group G , the elements of X have to be
carried, kicking and screaming, into G , by a mapping of X into G .

Definition. A group relation (u, v) between the elements of a set X holds in a
group G via a mapping f of X into G when ϕ(u) = ϕ(v) , where ϕ : FX −→ G
is the unique homomorphism that extends f .

The definition of relations makes most sense when X ⊆ G and f is the
inclusion mapping (in which case mention of f is usually omitted). Then ϕ sends
products of elements of X and inverses of elements of X , as calculated in FX , to
the same products but calculated in G ; and the relation u = v holds in G if and
only if the products u and v are equal when calculated in G .

For example, the relation a8 = 1 holds in a cyclic group G = 〈 a 〉 of order 8,
in which a has order 8. Formally, f is the inclusion mapping X = { a } −→ G ;
the free group F on X is cyclic and generated by a ; ϕ sends an , as calculated in
F , to an as calculated in G ; the relation a8 = 1 holds in G since a8 and 1 are
equal in G .

In general, relations of type w = 1 suffice: indeed, u = v holds if and only if
uv−1 = 1 holds, since ϕ(u) = ϕ(v) if and only if ϕ(uv−1) = ϕ(1) .

Construction. Given a group G and a subset X of G , readers will show, as
an exercise, that there exists a smallest normal subgroup of G that contains X .
This provides a way to construct a group in which given relations must hold.

Definition. Given a set X and a set R of group relations between elements of
X , the group 〈 X

∣
∣ R 〉 is the quotient of the free group FX by the smallest normal

subgroup N of FX that contains all u v−1 with (u, v) ∈ R .

The group 〈 X
∣
∣ R 〉 = FX/N comes with a canonical mapping ι : X −→

〈 X
∣
∣ R 〉 , the composition ι = π ◦ η of the inclusion mapping η : X −→ FX and

canonical projection π : FX −→ FX/N .

Proposition 7.1. Let R be a set of group relations between elements of a
set X . Every relation (u, v) ∈ R holds in 〈 X

∣
∣ R 〉 via the canonical mapping

ι : X −→ 〈 X
∣
∣ R 〉 ; moreover, 〈 X

∣
∣ R 〉 is generated by ι(X) .

Proof. The canonical projection π : FX −→ 〈 X
∣
∣ R 〉 is a homomorphism

that extends ι to FX , since π ◦ η = ι ; therefore it is the homomorphism that
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extends ι to FX . If (u, v) ∈ R , then u v−1 ∈ N = Ker π , π(u) = π(v) , and
(u, v) holds in 〈 X

∣
∣ R 〉 via ι .

Every element g of 〈 X
∣
∣ R 〉 is the image under ϕ of an element a of F ; a is

a product of elements of X and inverses of elements of X ; hence g is a product
of elements of ϕ(X) = ι(X) and inverses of elements of ι(X) . �

Definitions. 〈 X
∣
∣ R 〉 is the (largest) group generated by X subject to every

relation (u, v) ∈ R . The elements of X are the generators of 〈 X
∣
∣ R 〉 , and the

relations (u, v) ∈ R are its defining relations.

This terminology is traditional but unfortunate. Indeed, 〈 X
∣
∣ R 〉 is generated

by ι(X) , not X . The canonical mapping ι is usually injective on examples, since
superfluous generators have been eliminated, but has no reason to be injective in
general; thus, X cannot be a priori identified with a subset of 〈 X

∣
∣ R 〉 . Even

when ι is injective and X may be identified with a subset of 〈 X
∣
∣ R 〉 , X can

generate barrels of groups in which every relation (u, v) ∈ R holds; 〈 X
∣
∣ R 〉 is

merely the largest (see Theorem 7.2 below). These considerations should be kept
in mind when one refers to 〈 X

∣
∣ R 〉 as the group generated by X subject to every

relation in R ; 〈 X
∣
∣ R 〉 should be thought of as the largest group generated by X

subject to every relation in R .

For example, the relation a8 = 1 holds in a cyclic group C8 = 〈 a 〉 of order 8;
in a cyclic group C4 = 〈 a 〉 of order 4; in a cyclic group C2 = 〈 a 〉 of order 2;
and in the trivial group 1 = { a } . But only C8 is 〈 a

∣
∣ a8 = 1 〉 .

Universal property.

Theorem 7.2 (Dyck [1882]). Let R be a set of group relations between elements
of a set X . If f is a mapping of X into a group G , and every relation (u, v) ∈ R
holds in G via f , then there exists a homomorphism ψ : 〈 X

∣
∣ R 〉 −→ G unique

such that f = ψ ◦ ι (where ι : X −→ 〈 X
∣
∣ R 〉 is the canonical mapping). If G

is generated by f (X) , then ϕ is surjective.

In particular, when a group G is generated by X , and every relation (u, v)∈
R holds in G , then there is a surjective homomorphism 〈 X

∣
∣ R 〉 −→ G , and G

is isomorphic to a quotient group of 〈 X
∣
∣ R 〉 . In this sense 〈 X

∣
∣ R 〉 is the largest

group generated by X subject to every relation in R .

Proof. Let N be the smallest normal subgroup of FX that contains all u v−1

with (u, v) ∈ R . By 6.7 there is a unique homomorphism ϕ : FX −→ G that
extends f . Since every (u, v) ∈ R holds in G via f , we have ϕ(u) = ϕ(v)
and u v−1 ∈ Ker ϕ , for all (u, v) ∈ R . Therefore Ker ϕ ⊇ N . By 5.1,
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ϕ factors uniquely through the canonical projection π : FX −→ FX/N = 〈 X
∣
∣ R 〉 :

there exists a homomorphism ψ : 〈 X
∣
∣ R 〉 −→ G unique such that ψ ◦ π = ϕ :

Then also ψ ◦ ι = f . Moreover, ψ is the only homomorphism of 〈 X
∣
∣ R 〉 into

G such that ψ ◦ ι = f : if χ ◦ ι = f , then ψ and χ agree on every generator ι(x)
of 〈 X

∣
∣ R 〉 and therefore agree on all of 〈 X

∣
∣ R 〉 .

If G is generated by f (X) , then Im ψ = G , since Im ψ contains every
generator f (x) = ψ

(

ι(x)
)

of G . �
Presentations. We now turn to examples.

Definition. A presentation of a group G is an isomorphism of some 〈 X
∣
∣ R 〉

onto G . �
A presentation of a group G completely specifies G but provides no description,

and needs to be supplemented by a list of elements and, if G is not too large, a
multiplication table. The usual procedure is to play with the defining relations
until no more equalities pop up between the potential elements of G . Then one
must make sure that all such equalities have been found. Alas, inequalities in
〈 X
∣
∣ R 〉 can be obtained only from its universal property. In practice this means

that the desired group must be constructed by some other method in order to prove
its isomorphy to 〈 X

∣
∣ R 〉 . Examples will illustrate several methods.

Proposition 7.3. Dn
∼= 〈 a, b

∣
∣ an = b2 = 1, bab = a−1 〉 .

Proof. Let G = 〈 a, b
∣
∣ an = b2 = 1, bab = a−1 〉 . The elements of G

are products of a ’s, b ’s, a−1 ’s, and b−1 ’s. Since a and b have finite order, the
elements of G are in fact products of a ’s and b ’s. Using the equality ba = an−1b ,
every product of a ’s and b ’s can be rewritten so that all a ’s precede all b ’s. Since
an = b2 = 1, every element of G is now a product of fewer than n a ’s followed
by fewer than 2 b ’s; in other words, G = { ai , ai b

∣
∣ 0 � i < n } . In particular,

G has at most 2n elements; we do not, however, know whether these elements
are distinct in G ; we might have found an equality between them if we had tried
harder, or been more clever, or if, like our Lord in Heaven, we had enough time to
list all consequences of the defining relations.

We do, however, know that G is supposed to be isomorphic to Dn , and this
provides the required alternate construction of G . We know that Dn is, in the
notation of Section I.2, generated by r1 and s0 . Moreover, in Dn , the equalities
rn

1 = s2
0 = 1 and s0 r1 s0 = r−1 = r−1

1 hold, so that the defining relations of
G hold in Dn via f : a �−→ r1 , b �−→ s0 . By 7.2, f induces a surjective
homomorphism θ : G −→ Dn . Hence G has at least 2n elements. Therefore
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G has exactly 2n elements (the elements ai , ai b , 0 � i < n , are distinct in G );
θ is bijective; and G ∼= Dn . �

In the same spirit our reader will verify that a cyclic group Cn = 〈 a 〉 of order
n has the presentation Cn

∼= 〈 a
∣
∣ an = 1 〉 .

Example 7.4. List the elements and construct a multiplication table of the
quaternion group

Q = 〈 a, b
∣
∣ a4 = 1, b2 = a2, bab−1 = a−1 〉.

Solution. As in the case of Dn , the elements of Q are products of a ’s and
b ’s, which can be rewritten, using the relation ba = a3b , so that all a ’s precede
all b ’s. Since a4 = 1 and b2 = a2 , at most three a ’s and at most one b suffice.
Hence Q = { 1, a, a2, a3 , b, ab, a2b, a3b } . In particular, Q has at most eight
elements.

The possible elements of Q multiply as follows: ai a j = ai+ j for all 0 �
i, j � 3 (with ai+ j = ai+ j−4 if i + j � 4); ba = a3b , ba2 = b3 = a2b ;
ba3 = a2ba = a2 a3b = ab , so that bai = a4−i b for all 0 � i � 3; ai b a j b =
ai a4− j b2 = ai+6− j for all i, j . This yields a multiplication table:

1 a a2 a3 b ab a2b a3b

a a2 a3 1 ab a2b a3b b

a2 a3 1 a a2b a3b b ab

a3 1 a a2 a3b b ab a2b

b a3b a2b ab a2 a 1 a3

ab b a3b a2b a3 a2 a 1

a2b ab b a3b 1 a3 a2 a

a3b a2b ab b a 1 a3 a2

The quaternion group Q .

It remains to show that the eight possible elements of Q are distinct, so that the
multiplication table above is indeed that of Q . The table itself can always serve
as a construction of last resort. It defines a binary operation on a set G with eight
elements, bizarrely named 1, a, a2, a3 , b, ab, a2b, a3b ; but these are actual
products in G . Inspection of the table shows that 1 is an identity element, and
that every element has an inverse. Associativity can be verified by Light’s test in
Section 1. Since all elements of G are products of a ’s and b ’s, only a and b need
to be tested, by 1.8. The table below (next page) shows that a passes. Readers
will verify that b also passes. Hence G is a group.

The multiplication table shows that, in G , bab−1 = a3b a2b = a3 = a−1 , so
that the defining relations a4 = 1, b2 = a2 , bab−1 = a−1 of Q hold in G , via
f : a �−→ a , b �−→ b . By 7.2, f induces a homomorphism θ : Q −→ G ,
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a a a2 a3 1 ab a2b a3b b

a a a2 a3 1 ab a2b a3b b

a2 a2 a3 1 a a2b a3b b ab

a3 a3 1 a a2 a3b b ab a2b

1 1 a a2 a3 b ab a2b a3b

a3b a3b a2b ab b a 1 a3 a2

b b a3b a2b ab a2 a 1 a3

ab ab b a3b a2b a3 a2 a 1

a2b a2b ab b a3b 1 a3 a2 a

Light’s table of a .

which is surjective since G is generated by a and b . Hence Q has at least
eight elements. Therefore Q has exactly eight elements; the elements ai , ai b ,
0 � i < 3, are distinct in Q ; and θ is bijective, so that Q ∼= G and the
multiplication table above is that of Q .

An alternate method of construction for Q (from which Q actually originates)
is provided by the quaternion algebra, which we denote by H after its discoverer
Hamilton [1843]. H is a vector space over R , with a basis { 1, i, j, k } whose
elements multiply so that 1 is an identity element; i2 = j2 = k2 = −1; i j = k ,
jk = i , ki = j ; and j i = −k , k j = −i , ik = − j . In general,

(a+bi + cj + dk)(a′ + b′i + c′ j + d ′k)

= (aa′ − bb′ − cc′ − dd ′) + (ab′ + ba′ + cd ′ − dc′) i
+ (ac′ + ca′ + db′ − bd ′) j + (ad ′ + da′ + bc′ − cb′) k.

In H there is a group G = {±1, ±i, ± j, ±k } in which i4 = 1, j2 = i2 , and
j i j−1 = j i (− j) = − jk = −i = i−1 . Thus, the defining relations of Q hold in
this group G , via f : a �−→ i , b �−→ j . Then Q ∼= G , as above. �

Other examples, which make fine exercises, are

T = 〈 a, b
∣
∣ a6 = 1, b2 = a3, bab−1 = a−1 〉

and the group

A4
∼= 〈 a, b

∣
∣ a3 = 1, b2 = 1, aba = ba2b 〉,

one of the alternating groups, about which more will be said in the next chapter.

Exercises
1. The conjugates of an element x of a group G are the elements axa–1 of G , where

a ∈ G . Given a group G and a subset X of G , show that there exists a smallest normal
subgroup of G that contains X , which consists of all products of conjugates of elements of
X and inverses of elements of X .
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2. Show that 〈 X
∣
∣ R 〉 is determined, up to isomorphism, by its universal property.

3. Show that a cyclic group Cn of order n has the presentation Cn ∼= 〈 a
∣
∣ an = 1 〉 .

4. Find all groups with two generators a and b in which a4 = 1, b2 = a2 , and
bab–1 = a–1 .

5. Write a proof that isomorphic groups have the same number of elements of order k , for
every k � 1 .

6. Show that Q ∼=/ D4 .

7. List the elements and draw a multiplication table of T = 〈 a, b
∣
∣ a6 = 1, b2 =

a3, bab–1 = a–1 〉 ; prove that you have the required group.

8. Show that a group is isomorphic to T in the previous exercise if and only if it has two
generators a and b such that a has order 6 , b2 = a3 , and bab–1 = a–1 .

9. List the elements and draw a multiplication table of the group A4 ∼= 〈 a, b
∣
∣ a3 =

1, b2 = 1, aba = ba2b 〉 ; prove that you have the required group.

10. Show that no two of D6 , T , and A4 are isomorphic.

11. Show that A4 does not have a subgroup of order 6 .

12. List the elements and draw a multiplication table of the group 〈 a, b
∣
∣ a2 = 1, b2 =

1, (ab)3 = 1 〉 ; prove that you have the required group. Do you recognize this group?

13. List the elements and draw a (compact) multiplication table of the group 〈 a, b
∣
∣ a2 =

1, b2 = 1 〉 ; prove that you have the required group.

14. Show that a group is isomorphic to Dn if and only if it has two generators a and b
such that a has order n , b has order 2 , and bab–1 = a–1 .

15. The elements of H can be written in the form a + v , where a ∈ R and v is a
three-dimensional vector. What is (a + v)(a′ + v′)?

16. Prove that multiplication on H is associative.

17. Let |a + bi + cj + dk| =
√

a2 + b2 + c2 + d2 . Prove that |hh′| = |h||h′| for all
h, h′ ∈ H .

18. Show that H\{0} is a group under multiplication (this makes the ring H a division
ring).

8. Free Products

This section may be skipped. The free product of two groups A and B is the
largest group that is generated by A ∪ B in a certain sense. Its construction was
devised by Artin in the 1920s. Free products occur in algebraic topology when
two path-connected spaces X and Y have just one point in common; then the
fundamental group π1(X ∪ Y ) of X ∪ Y is the free product of π1(X) and π1(Y ) .

In a group G that is generated by the union A ∪ B of two subgroups, every
element is a product of elements of A ∪ B . But the elements of G cannot be
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written uniquely in this form, since, for instance, a product of elements of A
can always be replaced by a single element of A . Thus, in G , there are always
relations of sorts between the elements of A ∪ B (equalities between products of
elements of A ∪ B ). Even more relations exist if A ∩ B =/ 1, a situation which is
considered at the end of this section.

The free product of A and B is constructed so that there are as few relations
as possible between the elements of A ∪ B (in particular, A ∩ B = 1 in the free
product). Then a product of elements of A ∪ B can always be reduced by replacing
all subproducts of elements of A by single elements, and similarly for B , until no
such subproduct is left. The free product of A and B consists of formal reduced
products, multiplied by concatenation and reduction. That it has as few relations
as possible between the elements of A ∪ B is shown by its universal property.
A similar construction yielded free groups in Section 6. The free product of any
number of groups is constructed in the same fashion, as adventurous readers will
verify.

Reduction. In what follows, A and B are groups. If A ∩ B =/ 1 we replace
A and B by isomorphic groups A′ and B′ such that A′ ∩ B′ = 1: for instance,
A′ = { 1 } ∪

(

(A\{ 1 }) ×{ 0 }
)

and B′ = { 1 } ∪
(

(B\{ 1 }) ×{ 1 }
)

, with
operations carried from A and B by the bijections θ : A −→ A′ and ζ : B −→
B′ : xy = θ

(

θ−1(x) θ−1(y)
)

for all x, y ∈ A′ , and similarly for B′ ; then
A′ ∼= A , B′ ∼= B , and A′ ∩ B′ = { 1 } . Hence we may assume from the start that
A ∩ B = 1.

Words in the alphabet A ∪ B are finite nonempty sequences of elements of
A ∪ B . Let W be the free semigroup on A ∪ B : the set of all such nonempty
words, multiplied by concatenation. For clarity’s sake we write words as sequences
during construction; in the usual notation, the word (x1, x2, . . ., xn) is written as
a product x1 x2 · · · xn .

Definition. A word x = (x1, x2, . . ., xn)∈ W in the alphabet A ∪ B is reduced
when it does not contain consecutive letters xi , xi+1 such that xi , xi+1 ∈ A or
xi , xi+1 ∈ B .

Thus a word is reduced when it does not contain consecutive letters from the
same group. For example, the empty word, and all one-letter words, are reduced.
If a, a′ ∈ A and b ∈ B , then aba′ is reduced, as long as a, a′, b =/ 1, but aa′b
is not reduced. In general, when x = (x1, x2, . . . , xn) is reduced and n > 1,
then x1, x2, . . ., xn =/ 1, and elements of A alternate with elements of B in the
sequence x1, x2, . . ., xn .

The reduction process replaces consecutive letters from the same group by their
product in that group, until a reduced word is reached.

Definitions. In W we write x 1−→ y when x = (x1, x2, . . . , xn) , xi , xi+1 ∈
A or xi , xi+1 ∈ B , and y = (x1, . . ., xi−1, xi xi+1, xi+2, . . ., xn) , for some
1 � i < n ;
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we write x k−→ y when k � 0 and x 1−→ x ′ 1−→ x ′′ 1−→ · · · 1−→ x(k) = y for
some x ′, x ′′, . . ., x(k) ∈ W (when x = y , if k = 0);

we write x −→ y when x k−→ y for some k � 0 .

Lemma 8.1. For every word x ∈ W there is a reduction x −→ y to a reduced
word y .

We show that the word y in Lemma 8.1 is unique, so that all different ways of
reducing a word yield the same reduced word.

Lemma 8.2. If x 1−→ y and x 1−→ z =/ y , then y 1−→ t , z 1−→ t for some t .

Proof. By definition, x = (x1, x2, . . ., xn) , xi , xi+1 ∈ A or xi , xi+1 ∈ B for
some i ,

y = (x1, . . ., xi−1, xi xi+1, xi+2, . . ., xn),

x j , x j+1 ∈ A or x j , x j+1 ∈ B for some j , and

z = (x1, . . . , x j−1, x j x j+1, x j+2, . . . , xn).

Then i =/ j , since y =/ z . We may assume that i < j . If i + 1 < j , then xi , xi+1
are consecutive letters of z , x j , x j+1 are consecutive letters of y , and

t = (x1, . . ., xi−1, xi xi+1, xi+2, . . ., x j−1, x j x j+1, x j+2, . . ., xn)

serves. If i + 1 = j , and if xi , xi+1 ∈ A and xi+1 , xi+2 ∈ B , or if xi , xi+1 ∈ B
and xi+1 , xi+2 ∈ A , then xi+1 = 1 and

y = z = (x1, . . ., xi−1, xi , xi+2, . . . , xn),

contradicting y =/ z ; therefore xi , xi+1 , xi+2 ∈ A or xi , xi+1 , xi+2 ∈ B , and

t = (x1, . . ., xi−1, xi xi+1 xi+2, xi+3, . . ., xn)

serves. �
As in Section 6 we now have the following:

Lemma 8.3. If x −→ y and x −→ z , then y −→ t and z −→ t for some t .

Lemma 8.4. For every word x ∈ W there is a unique reduced word y such
that x −→ y .

Definition. The reduction red x of x ∈ W is the unique reduced word y such
that x −→ y .

Construction. The free product of A and B is now defined as follows.

Proposition 8.5. If A ∩ B = 1 , then the set A
∐

B of all reduced nonempty
words in A ∪ B is a group under the operation x . y = red (xy) .

Proof. Associativity is proved as in Proposition 6.5. The one-letter word
1 = (1) is reduced and is the identity element of A

∐

B , since 1 . x = red (1x) =
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red x = x and x . 1 = red x = x when x is reduced. The inverse of a reduced
word x = (x1, x2, . . ., xn) is x−1 = (x−1

n , x−1
n−1, . . ., x−1

1 ) : indeed, x−1 is
reduced, since, like x , it does not contain consecutive letters from the same group,
and x x−1 −→ 1, x−1 x −→ 1. Thus A

∐

B is a group. �
Definition. Let A and B be groups such that A ∩ B = 1 . The free product

of A and B is the group A
∐

B in Proposition 8.5, which consists of all reduced
words in A ∪ B .

Readers will gladly show that FX∪Y
∼= FX

∐

FY when X and Y are disjoint,
and that A ∼= A′ , B ∼= B′ implies A

∐

B ∼= A′ ∐ B′ when A′ ∩ B′ = 1.

The free product A
∐

B comes with canonical injections ι : A −→ A
∐

B
and κ : B −→ A

∐

B , which send an element of A or B to the corresponding
one-letter word.

Proposition 8.6. Im ι ∼= A, Im κ ∼= B , Im ι ∩ Im κ = 1 , and A
∐

B is
generated by Im ι ∪ Im κ .

Proof. Im ι ∼= A and Im κ ∼= B since ι and κ are injective; Im ι ∩ Im κ = 1
since A ∩ B = 1; A

∐

B is generated by Im ι ∪ Im κ since every reduced word
is a product of one-letter words. �

Notation. The usual practice is to identify the elements of A or B and the
corresponding one-letter words; then A and B are subgroups of A

∐

B , and
the latter is generated by A ∪ B . Also, products in A

∐

B are usually written
multiplicatively, e.g., xy rather than x . y . Various other symbols are used instead
of

∐

.

Universal property. By Proposition 8.6, the free product of A and B is also
the free product of Im ι and Im κ (up to isomorphism). If A ∩ B =/ 1, then the
free product of A and B is defined (up to isomorphism) as the free product of any
A′ ∼= A and B′ ∼= B such that A′ ∩ B′ = 1, with injections A −→ A′ −→ A′ ∐ B′

and B −→ B′ −→ A′ ∐ B′ .

A
∐

B is the “largest” group generated by A ∪ B , in the following sense:

Proposition 8.7. Let A and B be groups. For every group G and homo-
morphisms ϕ : A −→ G and ψ : B −→ G , there is a unique homomorphism
χ : A

∐

B −→ G such that χ ◦ ι = ϕ and χ ◦ κ = ψ , where ι : A −→ A
∐

B
and κ : B −→ A

∐

B are the canonical injections:

In particular, there is a homomorphism of A
∐

B onto any group that is gener-
ated by A ∪ B .

Proof. We may assume that A ∩ B = 1, as readers will verify. Then it is
convenient to combine ι and κ into a single mapping λ : A ∪ B −→ A

∐

B ,
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and to combine ϕ and ψ into a single mapping ω : A ∪ B −→ G . Now,
every reduced word x = (x1, x2, . . . , xn) is a product of one-letter words x =
λ(x1) . λ(x2) . · · · . λ(xn) . If χ ◦ ι = ϕ and χ ◦ κ = ψ , equivalently χ ◦ λ = ω ,
then χ(x) = ω(x1) ω(x2) · · · ω(xn) . Hence χ is unique.

Conversely, as in the proof of 6.7, define a mapping ξ : W −→ G by

ξ (x1, x2, . . . , xn) = ω(x1) ω(x2) · · · ω(xn),

for every (x1, x2, . . . , xn) ∈ W . Then ξ(xy) = ξ(x) ξ(y) for all x, y ∈ W .

Moreover, ξ(x) = ξ(y) when x 1−→ y : if, say, x = (x1, x2, . . ., xn) has xi ,
xi+1 ∈ A , so that

y = (x1, . . ., xi−1, xi xi+1, xi+2, . . ., xn),

then ω(xi xi+1) = ω(xi ) ω(xi+1) , since ϕ is a homomorphism, hence ξ(x) = ξ(y) .
Therefore x −→ y implies ξ(x) = ξ(y) . If now x and y are reduced, then
ω(x . y) = ω(xy) = ω(x) ω(y) . Hence the restriction χ of ω to A

∐

B ⊆ W is a
homomorphism. Moreover, χ ◦ λ = ω . �

Free products with amalgamation. If A and B are groups with a common
subgroup A ∩ B = H , then the union A ∪ B is a group amalgam, and it is
a property of groups that any group amalgam A ∪ B can be embedded into a
group G , so that A and B are subgroups of G and G is generated by A ∪ B .
The “largest” such group is the free product with amalgamation of A and B
(which amalgamates H ). This generalization of free products is due to Schreier.
Free products with amalgamation occur in algebraic topology when two spaces X
and Y have a common subspace Z = X ∩ Y ; under the proper hypotheses, the
fundamental group π1(X ∪ Y ) of X ∪ Y is the free product with amalgamation
of π1(X) and π1(Y ) amalgamating π1(Z) .

We sketch the general construction without proofs. Given A and B with
A ∩ B = H we consider nonempty words in the alphabet A ∪ B . A word is
reduced when it does not contain consecutive letters from the same group. Every
element of the free product with amalgamation can be written as a reduced word,
but this representation is not unique (unless H = 1): for instance, if a ∈ A\H ,
b ∈ B\H , and h ∈ H , then (ah, b) and (a, hb) are reduced, but should represent
the same element. Thus, the elements of the free product with amalgamation must
be equivalence classes of reduced words.

In detail, two reduced words are equivalent when one can be transformed into
the other in finitely many steps, where a step replaces consecutive letters ah and
b (or bh and a ) by a and hb (or by b and ha ), or vice versa. A given word
can now be reduced in several different ways, but it can be shown that all the
resulting reduced words are equivalent. More generally, equivalent words reduce
to equivalent reduced words. Equivalence classes of reduced words are then
multiplied as follows: cls x . cls y = cls z , where xy reduces to z .

With this multiplication, equivalence classes of reduced words constitute a
group, the free product with amalgamation P of A and B amalgamating H ,
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also denoted by A �H B . It comes with canonical injections ι : A −→ P and
κ : B −→ P that have the following properties:

Proposition 8.8. Let P be the free product with amalgamation of two groups A
and B amalgamating a common subgroup H = A ∩ B . The canonical injections
ι : A −→ P and κ : B −→ P are injective homomorphisms and agree on
H ; moreover, Im ι ∼= A, Im κ ∼= B , Im ι ∩ Im κ = ι(H) = κ(H) , and P is
generated by Im ι ∪ Im κ .

Proposition 8.9. Let P be the free product with amalgamation of two groups
A and B amalgamating a common subgroup H = A ∩ B . For every group G
and homomorphisms ϕ : A −→ G and ψ : B −→ G that agree on H , there is a
unique homomorphism χ : P −→ G such that χ ◦ ι = ϕ and χ ◦ κ = ψ , where
ι : A −→ P and κ : B −→ P are the canonical injections.

The free product with amalgamation of groups (Ai )i∈I with a common sub-
group Ai ∩ Aj = H is constructed similarly, and has a similar universal property.

Exercises
1. Show that FX∪Y ∼= FX

∐

FY when X and Y are disjoint.

2. Show that A ∼= A′ , B ∼= B′ implies A
∐

B ∼= A′ ∐ B′ when A′ ∩ B′ = 1.

3. Given presentations of A and B , find a presentation of A
∐

B .

4. Suppose that A ∼= A′ , B ∼= B′ , and A′ ∩ B′ = 1, so that A
∐

B = A′ ∐ B′ , with

injections ι : A −→ A′ ι′−→ A′ ∐ B′ and κ : B −→ B′ κ′−→ A′ ∐ B′ . Show that the
universal property of ι′ and κ ′ yields a similar universal property of ι and κ .

5. Show that A
∐

B is uniquely determined, up to isomorphism, by its universal property.

6. Show that (A
∐

B)
∐

C ∼= A
∐

(B
∐

C) (use the universal property).

*7. Construct a free product of any family of groups (Ai )i∈I ; then formulate and prove
its universal property.

*8. In the construction of free products with amalgamation, verify that equivalent words
reduce to equivalent reduced words.

9. Prove the universal property of free products with amalgamation.



II
Structure of Groups

This chapter studies how finite groups are put together. Finite abelian groups
decompose into direct products of cyclic groups. For finite groups in general,
one method, based on the Sylow theorems and further sharpened in the last two
sections, leads in Section 5 to the determination of all groups of order less than
16. The other method, composition series, yields interesting classes of groups.

Sections 2, 8, 10, 11, and 12 may be skipped.

1. Direct Products

Direct products are an easy way to construct larger groups from smaller ones. This
construction yields all finite abelian groups.

Definition. The direct product of two groups G1 and G2 is their Cartesian
product G1 × G2 , also denoted by G1 ⊕ G2 , together with the componentwise
operation: in the multiplicative notation,

(x1, x2)(y1, y2) = (x1 y1 , x2 y2).

Readers will verify that G1 × G2 is indeed a group.

In algebraic topology, direct products of groups arise from direct products of
spaces: when X and Y are path connected, then π1(X × Y ) ∼= π1(X) ×π1(Y ) .

The direct product G1 × G2 × · · · × Gn of n groups, also denoted by G1 ⊕
G2 ⊕ · · · ⊕ Gn , is defined similarly when n � 2 as the Cartesian product
G1 × G2 × · · · × Gn with componentwise multiplication

(x1, x2, . . ., xn) (y1, y2, . . ., yn) = (x1 y1, x2 y2, . . ., xn yn).

It is convenient to let G1 × G2 × · · · × Gn be the trivial group if n = 0 and be
just G1 if n = 1. In all cases,

∣
∣G1 × G2 × · · · × Gn

∣
∣ =

∣
∣G1
∣
∣
∣
∣G2
∣
∣ · · ·

∣
∣Gn
∣
∣ .

Longer direct products are associative; for instance,

(G1 × G2 × · · · × Gn)×Gn+1
∼= G1 × G2 × · · · × Gn × Gn+1.

Direct sums. Next, we give conditions under which a group splits into a direct
product.
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Proposition 1.1. A group G is isomorphic to the direct product G1 × G2 of
two groups G1 , G2 if and only if it contains normal subgroups A ∼= G1 and
B ∼= G2 such that A ∩ B = 1 and AB = G .

Proof. The direct product G1 × G2 comes with projections π1 : G1 × G2 −→
G1 , (x1, x2) �−→ x1 and π2 : G1 × G2 −→ G2 , (x1, x2) �−→ x2 , which are
homomorphisms, since the operation on G1 × G2 is componentwise. Hence

Ker π1 = { (x1, x2) ∈ G1 × G2
∣
∣ x1 = 1 } and

Ker π2 = { (x1, x2) ∈ G1 × G2
∣
∣ x2 = 1 }

are normal subgroups of G1 × G2 . We see that (x1, 1) �−→ x1 is an isomorphism
of Kerπ2 onto G1 and that (1, x2) �−→ x2 is an isomorphism of Kerπ1 onto G2 .
Moreover, Ker π2 ∩Ker π1 = {(1, 1)} = 1, and

(

Ker π2
)(

Ker π1
)

= G1 × G2 ,
since every (x1, x2) ∈ G1 × G2 is the product (x1, x2) = (x1, 1)(1, x2) of
(x1, 1) ∈ Ker π2 and (1, x2) ∈ Ker π1 .

If now θ : G1 × G2 −→ G is an isomorphism, then A = θ
(

Ker π2
)

and
B = θ

(

Ker π1
)

are normal subgroups of G , A ∼= Ker π2
∼= G1 , B ∼= Ker π1

∼=
G2 , A ∩ B = 1, and AB = G .

Conversely, assume that A �= G , B �= G , A ∩ B = 1, and AB = G . Then
every element g of G is a product g = ab of some a ∈ A and b ∈ B . Moreover,
if ab = a′b′ , with a, a′ ∈ A and b, b′ ∈ B , then a′−1a = b′b−1 ∈ A ∩ B yields
a′−1a = b′b−1 = 1 and a = a′ , b = b′ . Hence the mapping θ : (a, b) �−→ ab of
A × B onto G is a bijection. We show that θ is an isomorphism.

For all a ∈ A and b ∈ B , we have aba−1b−1 = a (ba−1b−1) ∈ A and
aba−1b−1 = (aba−1) b−1 ∈ B , since A, B �= G ; hence aba−1b−1 = 1 and
ab = ba . (Thus, A and B commute elementwise.) Therefore

θ
(

(a, b)(a′, b′)
)

= θ (aa′, bb′) = aa′bb′ = aba′b′ = θ (a, b) θ (a′, b′). �
Definition. A group G is the (internal) direct sum G = A ⊕ B of two subgroups

A and B when A, B �= G , A ∩ B = 1 , AB = G .

Then G ∼= A × B , by 1.1. For example, V4 = { 1, a, b, c } is the direct sum of
A = { 1, a } and B = { 1, b } .

The proof of 1.1 shows that direct products contain a certain amount of commu-
tativity, and its conditions A, B �= G , A ∩ B = 1, AB = G are rather stringent.
Hence comparatively few groups split into nontrivial direct products.

Abelian groups. In abelian groups, however, all subgroups are normal and the
conditions in Proposition 1.1 reduce to A ∩ B = 1, AB = G ( A + B = G , in the
additive notation). Subgroups with these properties are common in finite abelian
groups. In fact, all finite abelian groups are direct sums of cyclic groups:

Theorem 1.2. Every finite abelian group is isomorphic to the direct product of
cyclic groups whose orders are positive powers of prime numbers, and these cyclic
groups are unique, up to order of appearance and isomorphism.
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Early versions of this result are due to Schering [1868], Kronecker [1870], and
Frobenius and Stickelberger [1878]. We postpone the proof until the more general
results in Section VIII.6.

Theorem 1.2 readily yields all finite abelian groups of given order n (up to
isomorphism). If G is a direct product of cyclic groups of orders pk1

1 , pk2
2 ,

. . . , pkr
r , for some k1, k2, . . . , kr > 0 and some not necessarily distinct primes

p1, p2, . . . , pr , then G has order n = pk1
1 pk2

2 · · · pkr
r . This equality must match

the unique factorization of n into positive powers of distinct primes.

First let G be a p-group (a group of order pk > 1 for some prime p ). A
partition of a positive integer k is a sequence k1 � k2 � · · · � kr > 0 such
that k = k1 + k2 + · · · + kr . If n = pk is a positive power of a prime p , then,
in the equality n = pk1

1 pk2
2 · · · pkr

r , all pi are equal to p , and the positive
exponents ki , when numbered in descending order, constitute a partition of k .
Hence abelian groups of order pk correspond to partitions of k : to a partition
k = k1 + k2 + · · · + kr corresponds the direct product C pk1 ⊕ C pk2 ⊕ · · · ⊕ C pkr

of cyclic groups of orders pk1 , pk2
2 , . . ., pkr .

For example, let n = 16 = 24 . We find five partitions of 4: 4 = 4; 4 = 3 + 1;
4 = 2 + 2; 4 = 2 + 1 + 1; and 4 = 1 + 1 + 1 + 1. Hence there are, up to
isomorphism, five abelian groups of order 16:

C16 ; C8 ⊕ C2 ; C4 ⊕ C4 ; C4 ⊕ C2 ⊕ C2 ; and C2 ⊕ C2 ⊕ C2 ⊕ C2 .

Now let the abelian group G of arbitrary order n be the direct product of cyclic
groups of orders pk1

1 , pk2
2 , . . . , pkr

r . Classifying the terms of this product by
distinct prime divisors of n shows that G is a direct product of p-groups, one for
each prime divisor p of n :

Corollary 1.3. Let p1, . . . , pr be distinct primes. An abelian group of order

pk1
1 pk2

2 · · · pkr
r is a direct sum of subgroups of orders pk1

1 , pk2
2 , . . ., pkr

r .

Abelian groups of order n are therefore found as follows: write n as a product
of positive powers pk of distinct primes; for each p find all abelian p-groups of
order pk , from the partitions of k ; the abelian groups of order n are the direct
products of these p-groups, one for each prime divisor p of n .

For example let n = 200 = 23 · 52 . There are three partitions of 3: 3 = 3,
3 = 2 + 1, and 3 = 1 + 1 + 1, which yield three 2-groups of order 8:

C8 ; C4 ⊕ C2 ; and C2 ⊕ C2 ⊕ C2 .

The two partitions of 2, 2 = 2 and 2 = 1 + 1, yield two 5-groups of order 25:

C25 and C5 ⊕ C5 .
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Hence there are, up to isomorphism, 3 × 2 = 6 abelian groups of order 200:

C8 ⊕ C25; C8 ⊕ C5 ⊕ C5; C4 ⊕ C2 ⊕ C25; C4 ⊕ C2 ⊕ C5 ⊕ C5;

C2 ⊕ C2 ⊕ C2 ⊕ C25; and C2 ⊕ C2 ⊕ C2 ⊕ C5 ⊕ C5.

For another example, “the” cyclic group Cn of order n = pk1
1 pk2

2 · · · pkr
r ,

where p1, . . ., pr are distinct primes, is a direct sum of cyclic subgroups of orders
pk1

1 , pk2
2 , . . ., pkr

r . This also follows from the next result:

Proposition 1.4. If m and n are relatively prime, then Cmn
∼= Cm × Cn .

Proof. Let Cmn = 〈 c 〉 be cyclic of order mn . Then cn has order m (since
(cm)k= 1 if and only if mn divides mk , if and only if n divides k ) and cm has
order n . The subgroups

A = 〈 cn 〉 ∼= Cm and B = 〈 cm 〉 ∼= Cn

have the following properties. First, ck ∈ A if and only if n divides k : if ck = cnt

for some t , then k − nt is a multiple of mn and k is a multiple of n . Similarly,
ck ∈ B if and only if m divides k . If now ck ∈ A ∩ B , then m and n divide k ,
mn divides k , and ck = 1; thus A ∩ B = 1. Also AB = Cmn : since m and n are
relatively prime, there exist integers u and v such that mu + nv = 1; for every k ,

ck = ckmu+knv = cnkv cmku,

where cnkv ∈ A and cmku ∈ B . Hence Cmn
∼= Cm × Cn , by 1.1. �

The abelian groups of order 200 may now be listed as follows: C8 ⊕
C25

∼= C200 ; C8 ⊕ C5 ⊕ C5
∼= C40 ⊕ C5 ; C4 ⊕ C2 ⊕ C25

∼= C100 ⊕ C2 ; etc.

Euler’s φ function. These results yield properties of Euler’s function φ .

Definition. Euler’s function φ(n) is the number of integers 1 � k � n that
are relatively prime to n .

If p is prime, then φ(p) = p − 1; more generally, if n = pm , every p th number
1 � k � pm is a multiple of p , so that φ(pm) = pm − (pm/p) = pm (1 − 1/p) .

Proposition 1.5. A cyclic group of order n has exactly φ(n) elements of
order n .

Proof. Let G = 〈 a 〉 be cyclic of order n . Let 1 � k � n . The order of ak

divides n , since (ak)n = (an)k = 1. We show that ak has order n if and only if
k and n are relatively prime. If gcd (k, n) = d > 1, then (ak)n/d = (an)k/d = 1
and ak has order at most n/d < n . But if gcd (k, n) = 1, then ak has order n :
if (ak)m = 1, then n divides km and n divides m . �

Properties of cyclic groups, such as Proposition 1.4, now provide nifty proofs
of purely number-theoretic properties of φ .
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Proposition 1.6. If m and n are relatively prime, then φ(mn) = φ(m) φ(n) .

Proof. By 1.4 a cyclic group Cmn of order mn is, up to isomorphism, the direct
product of a cyclic group Cm of order m and a cyclic group Cn of order n . In
Cm × Cn , (x, y)k = 1 if and only if xk = 1 and yk = 1, so that the order of (x, y)
is the least common multiple of the orders of x and y (which is the product of the
orders of x and y , since the latter divide m and n and are relatively prime). It
follows that (x, y) has order mn if and only if x has order m and y has order n .
Hence φ(mn) = φ(m) φ(n) , by 1.5. �

Corollary 1.7. φ(n) = n
∏

p prime, p|n (1 − 1/p) .

Proof. This follows from 1.6 and φ(pm) = pm (1 − 1/p) , since n is a product
of relatively prime powers of primes. �

Proposition 1.8.
∑

d|n φ(d) = n .

Proof. Let G = 〈 c 〉 be a cyclic group of order n . By I.5.7, every divisor d of
n is the order of a unique cyclic subgroup of G , namely D = { x ∈ G

∣
∣ xd = 1 } .

Since D is cyclic of order d , G has exactly φ(d) elements of order d . Now, every
element of G has an order that is some divisor of n ; hence n =

∑

d|n φ(d) . �

Exercises
1. Verify that the direct product of two groups is a group.

2. Define the direct product of any family of groups, and verify that it is a group.

3. Prove the following universal property of the direct product A × B of two groups and its
projections π : A × B −→ A , ρ : A × B −→ B : for every homomorphisms ϕ : G −→ A ,
ψ : G −→ B of a group G , there is a homomorphism χ : G −→ A × B unique such that
π ◦ χ = ϕ and ρ ◦ χ = ψ .

4. Show that the direct product of two groups is characterized, up to isomorphism, by the
universal property in the previous exercise.

5. Find all abelian groups of order 35 .

6. Find all abelian groups of order 36 .

7. Find all abelian groups of order 360 .

8. Prove directly that no two of the groups C8 , C4 ⊕ C2 , and C2 ⊕ C2 ⊕ C2 are
isomorphic.

A group G is indecomposable when G =/ 1 , and G = A ⊕ B implies A = 1 or B = 1.

9. Prove that D5 is indecomposable.

10. Prove that D4 is indecomposable.

11. Prove directly that a cyclic group of order pk , with p prime, is indecomposable.
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2. The Krull-Schmidt Theorem.

This section may be skipped. The Krull-Schmidt theorem, also known as the
Krull-Schmidt-Remak theorem, is a uniqueness theorem for decompositions into
direct products, due to Remak [1911], Schmidt [1912], Krull [1925], and, in the
general case, Schmidt [1928].

Direct sums. We begin with the following generalization of Proposition 1.1:

Proposition 2.1. A group G is isomorphic to the direct product G1 × G2 ×
· · · × Gn of groups G1 , G2 , . . . , Gn if and only if it contains normal subgroups
Ai

∼= Gi such that A1 A2 · · · An = G and (A1 A2 · · · Ai ) ∩ Ai+1 = 1 for
all i < n . Then every element g of G can be written uniquely in the form
g = a1 a2 · · · an with ai ∈ Ai ; ai ∈ Ai and aj ∈ Aj commute whenever
i =/ j ; and the mapping (a1, a2, . . . , an) �−→ a1 a2 · · · an is an isomorphism of
A1 × A2 × · · · × An onto G .

Proof. This is trivial if n = 1, and Proposition 1.1 is the case n = 2.

Since the operation on G1 × G2 × · · · × Gn is componentwise,

G′
k = { (1, . . ., 1, xk, 1, . . ., 1) ∈ G1 × G2 × · · · × Gn

∣
∣ xk ∈ Gk }

is a normal subgroup of G1 × G2 × · · · × Gn , for every 1 � k � n . Moreover,
ιk : xk �−→ (1, . . ., 1, xk, 1, . . ., 1) is an isomorphism of Gk onto G′

k . Also

G′
1 G′

2 · · · G′
k = { (x1, . . ., xn) ∈ G1 × · · · × Gn

∣
∣ xi = 1 for all i > k }.

Hence (G′
1 G′

2 · · · G′
k) ∩ G′

k+1 = 1 for all k < n and G′
1 G′

2 · · · G′
n = G . (In

fact, (G′
1 · · · G′

k−1 G′
k+1 · · · G′

n) ∩ G′
k = 1 for all k .) Finally,

(x1, . . . , xn) = ι1(x1) ι2(x2) · · · ιn(xn),

so that every element (x1, . . . , xn) of G1 × G2 × · · · × Gn can be written
uniquely in the form x ′1 x ′2 · · · x ′n with x ′i ∈ G′

i for all i ; x ′i ∈ G′
i and x ′j ∈ G′

j
commute whenever i =/ j ; and the mapping (x ′1, x ′2, . . ., x ′n) �−→ x ′1 x ′2 · · · x ′n is
an isomorphism of G′

1 × G′
2 × · · · × G′

n onto G .

If now θ : G1 × G2 × · · · × Gn −→ G is an isomorphism, then Ak = θ(G′
k)

is a normal subgroup of G , Ak
∼= G′

k
∼= Gk , (A1 A2 · · · Ak) ∩ Ak+1 = 1 for all

k < n , and A1 A2 · · · An = G . (In fact, (A1 · · · Ak−1 Ak+1 · · · An) ∩ Ak = 1
for all k .) Moreover, every element g of G can be written uniquely in the form
g = a1 a2 · · · an with ai ∈ Ai ; ai ∈ Ai and aj ∈ Aj commute whenever
i =/ j ; and the mapping (a1, a2, . . . , an) �−→ a1 a2 · · · an is an isomorphism of
A1 × A2 × · · · × An onto G .

The converse is proved by induction on n . We may assume that n > 2.
Let G contain normal subgroups Ai

∼= Gi such that (A1 A2 · · · Ai ) ∩ Ai+1 = 1
for all i < n and A1 A2 · · · An = G . Then A = A1 A2 · · · An−1

�= G , since
A1 , A2 , . . . , An−1

�= G , and An
�= G , A ∩ An = 1, A An = G . Hence
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G ∼= A × An by 1.1, A ∼= G1 × G2 × · · · × Gn−1 by the induction hypothesis,
and G ∼= (G1 × G2 × · · · × Gn−1) × Gn

∼= G1 × G2 × · · · × Gn . �
Definition. A group G is the (internal) direct sum G = A1 ⊕ A2 ⊕ · · · ⊕ An of

subgroups A1 , A2 , . . . , An when Ai
�= G for all i , (A1 A2 · · · Ai ) ∩Ai+1 = 1

for all i < n , and A1 A2 · · · An = G .

Then G ∼= A1 × A2 × · · · × An by 2.1 and, as noted in the proof of 2.1,
(A1 · · · Ai−1 Ai+1 · · · An) ∩ Ai = 1 for all i ; every element g of G can be
written uniquely in the form g = a1 a2 · · · an with ai ∈ Ai , and the mapping
(a1, a2, . . . , an) �−→ a1 a2 · · · an is an isomorphism of A1 × A2 × · · · × An
onto G . Particular cases of direct sums include the empty direct sum 1 (then
n = 0 and G = A1 A2 · · · An is the empty product), direct sums with one term
A1 (then G = A1 ), and the direct sums with two terms in Section 1.

Finite groups decompose into direct sums of smaller groups until the latter can
be decomposed no further. In detail:

Definition. A group G is indecomposable when G =/ 1 , and G = A ⊕ B
implies A = 1 or B = 1 .

Then every finite group is a direct sum of indecomposable subgroups. We prove
a somewhat more general statement.

Definition. A group G has finite length when every chain of normal subgroups
of G is finite.

Proposition 2.2. Every group of finite length is a direct sum of (finitely many)
indecomposable subgroups.

Proof. Assume that there is a group G of finite length that is not a direct
sum of indecomposable subgroups. Call a normal subgroup B of G bad when
G = A ⊕ B for some subgroup A , but B is not a direct sum of indecomposable
subgroups. For instance, G = 1 ⊕ G is bad. Since G has finite length, there must
exist a minimal bad subgroup (a bad subgroup M with no bad subgroup B � M ):
otherwise, G is not minimal and there is a bad subgroup B1 � G ; B1 is not
minimal and there is a bad subgroup B2 � B1 ; B2 is not minimal and there is a
bad subgroup B3 � B2 ; and there is an infinite chain of (bad) normal subgroups
of G , which is more than any group of finite length can tolerate.

Now, M is not trivial and is not indecomposable (since M is not a direct
sum of zero or one indecomposable subgroups). Therefore M = C ⊕ D for some
C, D =/ 1. Then G = A ⊕C ⊕ D for some subgroup A , so that C, D �= G . Then
C, D � M , so C and D are not bad; C and D are direct sums of indecomposable
subgroups; then so is M , which is the required contradiction. �

Proposition 2.2 holds more generally for groups whose normal subgroups satisfy
the descending chain condition (defined in Section A.1).

Main result. The Krull-Schmidt theorem states that the direct sum decom-
position in Proposition 2.2 is unique, up to isomorphism and indexing. In fact,
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a stronger statement holds:

Theorem 2.3 (Krull-Schmidt). If a group G of finite length is a direct sum

G = G1 ⊕ G2 ⊕ · · · ⊕ Gm = H1 ⊕ H2 ⊕ · · · ⊕ Hn

of indecomposable subgroups G1, . . ., Gm and H1, . . . , Hn , then m = n and
H1, . . . , Hn can be indexed so that Hi

∼= Gi for all i � n and

G = G1 ⊕ · · · ⊕ Gk ⊕ Hk+1 ⊕ · · · ⊕ Hn

for every k < n .

The last part of the statement is the Krull-Schmidt exchange property. Theorem
2.3 is often stated as follows: if a group G of finite length is isomorphic to
two direct products G ∼= G1 × G2 × · · · × Gm

∼= H1 × H2 × · · · × Hn of
indecomposable subgroups G1 , G2 , . . . , Gm and H1 , H2 , . . . , Hn , then m = n
and H1 , H2 , . . . , Hn can be indexed so that Hi

∼= Gi for all i � n and G ∼= G1 ×
· · · × Gk × Hk+1 × · · · × Hn for all k < n .

Normal endomorphisms. Recall that an endomorphism of a group G is a
homomorphism of G into G . The proof of Theorem 2.3 requires properties of
endomorphisms, and some patience.

In this proof we write endomorphisms as left operators. Endomorphisms com-
pose: if η and ζ are endomorphisms of G , then so is ηζ : x �−→ η (ζ x) . Thus
the set End (G) of all endomorphisms of G becomes a monoid.

An endomorphism η of a group G is normal when η (gxg−1) = g (ηx) g−1 for
all x, g ∈ G (in other words, when η commutes with all inner automorphisms).
Then both Im η and Ker η are normal subgroups.

Lemma 2.4. If G has finite length, then a normal endomorphism of G is
injective if and only if it is surjective, if and only if it is bijective.

Proof. Let η ∈ End (G) be normal. For every n > 0, ηn is normal, so that
Im ηn and Ker ηn are normal subgroups of G . The descending sequence

Im η ⊇ Im η2 ⊇ · · · ⊇ Im ηn ⊇ Im ηn+1 ⊇ · · ·
cannot be infinite, since G has finite length; therefore Im ηn = Im ηn+1 for some
n . For every x ∈ G we now have ηn x = ηn+1 y for some y ∈ G ; if η is injective,
this implies x = ηy , and η is surjective.

Similarly, the ascending sequence

Ker η ⊆ Ker η2 ⊆ · · · ⊆ Ker ηn ⊆ Ker ηn+1 ⊆ · · ·
cannot be infinite; therefore Ker ηn = Ker ηn+1 for some n . If η is surjective, then
for every x ∈ Ker η we have x = ηn y for some y ∈ G , so that ηn+1 y = ηx = 1,
y ∈ Ker ηn+1 = Ker ηn , and x = ηn y = 1; thus η is injective. �

Lemma 2.5. If G has finite length and η is a normal endomorphism of G , then
G = Im ηn ⊕ Ker ηn for some n > 0 .
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Proof. As in the proof of Lemma 2.4, the sequences

Im η ⊇ · · · ⊇ Im ηn ⊇ · · · and Ker η ⊆ · · · ⊆ Ker ηn ⊆ · · ·
cannot be infinite, so that Im ηk = Im ηk+1 for some k and Ker ηm = Ker ηm+1

for some m . Applying η to Im ηk = Im ηk+1 yields Im ηn = Im ηn+1 for all
n � k ; similarly, Ker ηn = Ker ηn+1 for all n � m . Therefore Im ηn = Im η2n

and Ker ηn = Ker η2n both hold when n is large enough.

If now x ∈ Im ηn ∩ Ker ηn , then x = ηn y for some y , η2n y = ηn x = 1,
y ∈ Ker η2n = Ker ηn , and x = ηn y = 1. Thus Im ηn ∩ Ker ηn = 1.

For any x ∈ G we have ηnx ∈ Im ηn = Im η2n and ηn x = η2n y for some y .
Then x = (ηn y) (ηn y−1) x , with ηn y ∈ Im ηn and (ηn y−1) x ∈ Ker ηn , since
ηn((ηn y−1) x

)

= (η2n y)−1 ηn x = 1. Thus (Im ηn) (Ker ηn) = G . �
If G is indecomposable, then the direct sum in Lemma 2.5 is trivial. Call an

endomorphism η of a group G nilpotent when Im ηn = 1 for some n > 0.

Lemma 2.6. If G is an indecomposable group of finite length, then every normal
endomorphism of G is either nilpotent or an automorphism.

Proof. By 2.5, either Im ηn = 1 and η is nilpotent, or Ker ηn = 1, and then
Ker η = 1 and η is bijective by 2.4. �

Pointwise products. The group operation on G induces a partial operation .
on End (G) : the pointwise product η . ζ of η and ζ ∈ End (G) is defined in
End (G) if and only if the mapping ξ : x �−→ (ηx)(ζ x) is an endomorphism,
and then η . ζ = ξ . Longer products are defined similarly, when possible. The
following properties are straightforward:

Lemma 2.7. η . ζ is defined in End (G) if and only if ηx and ζ y commute
for every x, y ∈ G . If η and ζ are normal and η . ζ is defined, then η . ζ is
normal. If η1, η2, . . ., ηn ∈ End (G) , and ηi x commutes with ηj y for every
x, y ∈ G and every i =/ j , then η1 . η2 . · · · . ηn is defined in End (G) , and
η1 . η2 . · · · . ηn = ησ1 . ησ2 . · · · . ησn for every permutation σ .

Some distributivity always holds in End (G) : ξ (η . ζ ) = (ξη) . (ξζ ) and
(η . ζ ) ξ = (ηξ) . (ζ ξ) , if η . ζ is defined. (If G is abelian, written additively,
then η . ζ is always defined and is denoted by η + ζ , and End (G) is a ring.)

Lemma 2.8. Let η1, η2, . . ., ηn be normal endomorphisms of an indecompos-
able group G of finite length. If ηi x commutes with ηj y for every x, y ∈ G and
every i =/ j , and every ηi is nilpotent, then η1 . η2 . · · · . ηn is nilpotent.

Proof. We prove this when n = 2; the general case follows by induction on
n . Assume that η, ζ ∈ End (G) are normal and nilpotent, and that α = η . ζ is
defined but not nilpotent. Then α is an automorphism, by 2.6. Let ϕ = ηα−1 and
ψ = ζα−1 . Then ϕ and ψ are nilpotent by 2.6, since they are not automorphisms.
Also ϕ . ψ = (η . ζ )α−1 = 1G . Hence

ϕϕ . ϕψ = ϕ (ϕ . ψ) = ϕ = (ϕ . ψ)ϕ = ϕϕ . ψϕ.
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Under pointwise multiplication this implies ϕψ = ψϕ . Therefore (ϕ . ψ)n can
be calculated as in the Binomial theorem: (ϕ . ψ)n is a pointwise product with
(n

i
)

terms ϕi ψ j for every i + j = n . By 2.7, this pointwise product can be
calculated in any order, since ϕψ = ψϕ and every ϕx ∈ Im η commutes with
every ψy ∈ Im ζ .

Now, η and ζ are nilpotent: Im ηk = Im ζ � = 1 for some k, � > 0. If
i + j = n � k + � , then either i � k and ϕi ψ j x ∈ Im ηi = 1, or j � � and
ϕi ψ j x = ψ j ϕi x ∈ Im ζ j = 1 (or both), for all x ∈ G ; hence ϕi ψ j x = 1 for
all x ∈ G and Im (ϕ . ψ)n= 1, contradicting ϕ . ψ = 1G . �

Direct sums. Direct sum decompositions come with normal endomorphisms.
Let G = G1 ⊕ G2 ⊕ · · · ⊕ Gm , so that every x ∈ G can be written uniquely
in the form x = x1 x2 · · · xn with xi ∈ Gi for all i . For every k let ηk be the
mapping ηk : x1 x2 · · · xn �−→ xk ∈ G ; ηk can also be obtained by composing
the isomorphism G ∼= G1 × G2 × · · · × Gm , the projection G1 × G2 × · · · ×
Gm −→ Gk , and the inclusion homomorphism Gk −→ G , and is therefore
an endomorphism of G , the k th projection endomorphism of the direct sum
G = G1 ⊕ G2 ⊕ · · · ⊕ Gm . The following properties are immediate:

Lemma 2.9. In any direct sum decomposition G = G1 ⊕ G2 ⊕ · · · ⊕ Gm , the
projection endomorphisms η1, η2, . . . , ηn are normal endomorphisms; Im ηk =
Gk ; ηk x = x for all x ∈ Gk ; ηk x = 1 for all x ∈ Gi if i =/ k ; ηi x commutes
with ηj y for every x, y ∈ G and every i =/ j ; η1 . η2 . · · · . ηn is defined in
End (G) ; and η1 . η2 . · · · . ηn = 1G .

Lemma 2.10. Let G = A ⊕ B . Every normal subgroup of A is a normal
subgroup of G . If η is a normal endomorphism of G and ηA ⊆ A, then the
restriction η|A of η to A is a normal endomorphism of A .

Proof. Let a ∈ A and b ∈ B . The inner automorphism x �−→ abxb−1a−1 of
G has a restriction to A , which is the inner automorphism x �−→ axa−1 of A ,
since b commutes with every element of A . Therefore every normal subgroup of
A is normal in G . Moreover, if η commutes with every inner automorphism of
G , then η|A commutes with every inner automorphism of A . �

Proof of 2.3. Armed with these results we assail Theorem 2.3. Let G be a
group of finite length that is a direct sum

G = G1 ⊕ G2 ⊕ · · · ⊕ Gm = H1 ⊕ H2 ⊕ · · · ⊕ Hn

of indecomposable subgroups G1 , G2 , . . . , Gm and H1 , H2 , . . . , Hn . We prove
by induction on k that the following hold for all k � n :

(1) k � m , and H1 , H2 , . . . , Hn can be indexed so that

(2) Hi
∼= Gi for all i � k and

(3) G = G1 ⊕ · · · ⊕ Gk ⊕ Hk+1 ⊕ · · · ⊕ Hn .
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With k = n , (1) yields n � m ; exchanging G ’s and H ’s then yields n = m . The
other parts of Theorem 2.3 follow from (2) when k = n , and from (3).

There is nothing to prove if k = 0. Let 0 < k � n ; assume that (1), (2), (3)
hold for k − 1. By 2.10, all Gi and Hj have finite length. Let η1, η2, . . . , ηm
be the projection endomorphisms of the direct sum G = G1 ⊕ G2 ⊕ · · · ⊕ Gm ,
and let ζ1, ζ2, . . . , ζn be the projection endomorphisms of the direct sum G =
G1 ⊕ · · · ⊕ Gk−1 ⊕ Hk ⊕ · · · ⊕ Hn in the induction hypothesis.

By 2.9, η1 . · · · . ηm = 1G . Hence

ζk = ζk (η1 . · · · . ηm) = ζkη1 . · · · . ζkηm .

If k > m , then ηi x ∈ Gi for all x ∈ G and Im ζkηi = 1 for all i � m < k ,
by 2.9; hence Hk = Im ζk = 1, a contradiction since Hk is indecomposable.
Therefore m � k and (1) holds for k .

Similarly, ζ1 . · · · . ζn = 1G , ηkζj Gk ⊆ Gk for all j , and Im ηkζj = 1 for all
j < k , for then ζj x ∈ Gj for all x ∈ G . Hence

ηk = ηk (ζ1 . · · · . ζm) = ηkζ1 . · · · . ηkζm = ηkζk . · · · . ηkζm .

Now, every (ηkζj )|Gk
is a normal endomorphism of Gk , by 2.10, and ηk |Gk

=
(ηkζk)|Gk

. · · · . (ηkζm)|Gk
is the identity on Gk and is not nilpotent; by 2.8,

(ηkζj )|Gk
is not nilpotent for some j � k . The groups Hk , . . . , Hn can be

indexed so that (ηkζk)|Gk
is not nilpotent.

We show that Gk
∼= Hk . By 2.6, (ηkζk)|Gk

is an automorphism of Gk . Hence

ηkζk is not nilpotent. Then Im ηk (ζkηk)
n ζk = Im (ηkζk)

n+1 =/ 1 for all n and
ζkηk is not nilpotent. Hence (ζkηk)|Hk

is not nilpotent, since (ζkηk)
n x = 1 for

all x ∈ Hk would imply (ζkηk)
n ζkηk x = 1 for all x ∈ G , and (ζkηk)|Hk

is
an automorphism of Hk by 2.6. Then ηk |Hk

is injective and ζk Gk = Hk , since
ζk Gk ⊇ ζkηk Hk = Hk . Similarly, ζk |Gk

is injective and ηk Hk = Gk . Hence
ηk |Hk

is an isomorphism of Hk onto Gk (and ζk |Gk
is an isomorphism of Gk

onto Hk ). Thus (2) holds for k .

Let K = G1 · · · Gk−1 Hk+1 · · · Hn . Since G = G1 ⊕ · · · ⊕ Gk−1 ⊕ Hk ⊕
· · · ⊕ Hn by the induction hypothesis, we have K = G1 ⊕ · · · ⊕ Gk−1 ⊕ Hk+1 ⊕
· · · ⊕ Hn . Also ζk K = 1, since ζk Gi = ζk Hj = 1 when i < k < j . Since ζk |Gk
is injective this implies K ∩ Gk = 1. Hence K Gk = K ⊕ Gk .

Now, ηk |Hk
: Hk −→ Gk is an isomorphism, and ηk x = 1 when x ∈ Gi

or x ∈ Hj and i < k < j . Hence θ = ζ1 . · · · . ζk−1 . ηk . ζk+1 . · · · . ζn is an
isomorphism
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θ : G = G1 ⊕ · · · ⊕ Gk−1 ⊕ Hk ⊕ Hk+1 ⊕ · · · ⊕ Hn

−→ G1 ⊕ · · · ⊕ Gk−1 ⊕ Gk ⊕ Hk+1 ⊕ · · · ⊕ Hn = K Gk .

Viewed as an endomorphism of G , θ is normal and injective; hence θ is surjective,
by 2.4, G = K Gk , and (3) holds for k . �

3. Group Actions

It has been said that groups make a living by acting on sets. This section contains
basic properties of group actions and their first applications, including the class
equation and nice results on p-groups.

Definition. A left group action of a group G on a set X is a mapping G × X −→
X , (g, x) �−→ g . x , such that 1 . x = x and g . (h . x) = (gh) . x , for all g, h ∈ G
and x ∈ X . Then G acts on the left on X .

In some cases g . x is denoted by gx or by gx . A right group action X × G −→
X , (x, g) �−→ x . g , must satisfy x . 1 = x and (x . g) . h = x . gh for all x, g, h ;
x . g may be denoted by xg or by xg .

For example, the symmetric group SX of all permutations of a set X acts on X
by evaluation: σ . x = σ (x) . Every group G acts on itself by left multiplication:
g . x = gx . Every subgroup of G acts on G by left multiplication.

Properties.

Proposition 3.1. In a (left) group action of a group G on a set X , the action
σg : x �−→ g . x of g ∈ G is a permutation of X ; moreover, g �−→ σg is a
homomorphism of G into the symmetric group SX .

Thus, a group always acts by permutations.

Proof. By definition, σ1 is the identity mapping on X , and σg ◦ σh = σgh for
all g, h ∈ G . In particular, σg ◦ σg−1 = 1X = σg−1 ◦ σg , so that σg and σg−1 are
mutually inverse bijections. Thus σg ∈ SX . The equality σg ◦ σh = σgh shows
that σ : g �−→ σg is a homomorphism. �

Our tireless readers will show that there is in fact a one-to-one correspondence
between left actions of G on X and homomorphisms G −→ SX .

Corollary 3.2 (Cayley’s Theorem). Every group G is isomorphic to a subgroup
of the symmetric group SG .

Proof. Let G act on itself by left multiplication. The homomorphism σ :
G −→ SG in 3.1 is injective: if σg = 1G , then gx = x for all x ∈ G and g = 1.
Hence G ∼= Im σ � SG . �
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Proposition 3.3. Let the group G act (on the left) on a set X . The relation

x ≡ y if and only if y = g . x for some g ∈ G

is an equivalence relation on X .

Proof. The relation ≡ is reflexive since 1 . x = x , symmetric since y = g . x
implies x = g−1 . (g . x) = g−1 . y , and transitive since y = g . x , z = h . y
implies z = hg . x . �

Definition. In a left group action of a group G on a set X , the orbit of x ∈ X
is { y ∈ G

∣
∣ y = g . x for some g ∈ G } .

By 3.3 the different orbits of the elements of X constitute a partition of X . For
instance, if a subgroup of G acts on G by left multiplication, then the orbit of an
element x of G is its right coset H x . In the action on the Euclidean plane of the
group of all rotations about the origin, the orbits are circles centered at the origin
and resemble the orbits of the planets about the Sun.

Next we look at the size of the orbits.

Definition. In a left group action of a group G on a set X , the stabilizer S(x)
of x ∈ X is the subgroup S(x) = { g ∈ G

∣
∣ g . x = x } of G .

The stabilizer S(x) is a subgroup since 1 . x = x , g . x = x implies x =
g−1 . (g . x) = g−1 . x , and g . x = h . x = x implies gh . x = g . (h . x) = x .

Proposition 3.4. The order of the orbit of an element is equal to the index of its
stabilizer.

Proof. Let G act on X . Let x ∈ X . The surjection x̂ : g �−→ g . x of G onto
the orbit of x induces a one-to-one correspondence between the elements of the
orbit of x and the classes of the equivalence relation induced on G by x̂ . The
latter are the left cosets of S(x) , since g . x = h . x is equivalent to x = g−1h . x
and to g−1h ∈ S(x) . Hence the order (number of elements) of the orbit of x
equals the number of left cosets of S(x) . �

For example, let a subgroup H of G act on G by left multiplication. All
stabilizers are trivial ( S(x) = 1). The order of every orbit (the order of every right
coset of H ) is the index in H of the trivial subgroup, that is, the order of H .

Action by inner automorphisms. For a more interesting example we turn
to inner automorphisms. Recall that an automorphism of a group G is an iso-
morphism of G onto G . The automorphisms of G constitute a group under
composition, the automorphism group Aut (G) of G .

Proposition 3.5. For every element g of a group G , the mapping αg : x �−→
gxg−1 is an automorphism of G ; moreover, g �−→ αg is a homomorphism of G
into Aut (G) .

Proof. First, (gxg−1)(gyg−1) = gxyg−1 for all x, y ∈ G , so that αg is a
homomorphism. Also, α1 is the identity mapping 1G on G , and αg ◦ αh = αgh
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for all g, h ∈ G , since g (hxh−1) g−1 = (gh) x (gh)−1 for all x ∈ G . In
particular, αg ◦ αg−1 = 1G = αg−1 ◦ αg , so that αg and αg−1 are mutually inverse
bijections. Hence αg is an automorphism of G . The equality αg ◦ αh = αgh
shows that g �−→ αg is a homomorphism. �

Definition. An inner automorphism of a group G is an automorphism x �−→
gxg−1 for some g ∈ G .

The proofs of Propositions 3.5 and 3.1 are suspiciously similar. This mystery
can be solved if we detect a homomorphism of G into Aut (G) ⊆ SG in 3.5, a
clue to an action of G on itself, in which g . x = αg(x) = g x g−1 .

Definition. The action of a group G on itself by inner automorphisms is defined
by g . x = g x g−1 for all g, x ∈ G .

The product gxg−1 is also denoted by gx ; the notation xg = g−1xg is also
in use. We see that 1x = x and that g(h x) = ghxh−1g−1 = gh x , so that
g . x = g x g−1 is indeed a group action.

Definitions. In the action of a group G on itself by inner automorphisms,
the orbits are the conjugacy classes of G ; two elements are conjugate when they
belong to the same conjugacy class.

Thus, x and y are conjugate in G when y = gxg−1 for some g ∈ G . By
3.3, conjugacy is an equivalence relation. The conjugacy class of x is trivial
(gxg−1 = x for all g ) if and only if x lies in the center of G :

Definition. The center of a group G is

Z(G) = { g ∈ G
∣
∣ gxg−1 = x for all x ∈ G } .

Equivalently, Z(G) = { g ∈ G
∣
∣ gx = xg for all x ∈ G } .

Proposition 3.6. Z(G) and all its subgroups are normal subgroups of G .

Proof. If z ∈ Z , then gzg−1 = z for all g ∈ G . Hence gHg−1 = H for all
H � Z . �

In general, the order of a conjugacy class is the index of a stabilizer:

Definition. The centralizer in G of an element x of a group G is

CG(x) = { g ∈ G
∣
∣ gxg−1 = x }.

Equivalently, C(x) = { g ∈ G
∣
∣ gx = xg } . In our action of G on itself, C(x)

is the stabilizer of x and is therefore a subgroup; in fact, it is the largest subgroup
of G whose center contains x (see the exercises). Proposition 3.4 yields the next
result:

Proposition 3.7. The number of conjugates of an element of a group G is the
index of its centralizer in G .
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Proposition 3.8 (The Class Equation). In a finite group G ,

|G| =
∑

|C | = |Z(G)| +
∑

|C|>1 |C |.

The first sum has one term for each conjugacy class C; the second sum has one
term for each nontrivial conjugacy class C .

Proof. First, |G| =
∑

|C | , since the conjugacy classes constitute a partition
of G . Now, the conjugacy class of x is trivial ( |C | = 1) if and only if x ∈ Z(G) ;
hence there are |Z(G)| trivial conjugacy classes and

|G| =
∑

|C | =
∑

|C|=1 |C | +
∑

|C|>1 |C | = |Z(G)| +
∑

|C|>1 |C |. �

p-groups. A p-group is a group whose order is a power of a prime p . The class
equation yields properties of these groups.

Proposition 3.9. Every nontrivial p-group has a nontrivial center.

Proof. By 3.7, |C | divides |G| = pn for every conjugacy class C . In particular,
p divides |C | when |C | > 1. In the class equation, p divides |G| and p divides
∑

|C|>1 |C | ; hence p divides |Z(G)|and |Z(G)| � p . �

Groups of order p are cyclic. The next result yields groups of order p2 :

Proposition 3.10. Every group of order p2 , where p is prime, is abelian.

By 1.2, the groups of order p2 are, up to isomorphism, C p2 and C p ⊕ C p .

Groups of order p3 are not necessarily abelian, as shown by D4 and Q .

Proof. Readers will delight in proving that G/Z(G) cyclic implies G abelian.
If now |G| = p2 , then |Z(G)| > 1, so that |Z(G)| = p or |Z(G)| = p2 . If
|Z(G)| = p2 , then G = Z(G) is abelian. If |Z(G)| = p , then |G/Z(G)| = p ,
G/Z(G) is cyclic, and again G is abelian (and |Z(G)| =/ p ). �

Exercises
1. Show that there is a one-to-one correspondence between the left actions of a group G

on a set X and the homomorphisms G −→ SX .

2. Explain how the original statement of Lagrange’s theorem (when x1, . . . , xn are per-
muted in all possible ways, the number of different values of f (x1, . . . , xn) is a divisor of
n! ) relates to orbits and stabilizers.

3. Let G be a group. Prove the following: for every g ∈ G , the mapping αg :
x �−→ gx g−1 is an automorphism of G ; moreover, g �−→ αg is a homomorphism of
G into Aut (G) .

4. Explain why the inner automorphisms of a group G constitute a group under composition,
which is isomorphic to G/Z(G) .

5. Find the center of the quaternion group Q .

6. Find the center of D4 .

7. Find the center of Dn .
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8. List the conjugacy classes of D4 .

9. List the conjugacy classes of Q .

10. Let G be a group and let x ∈ G . Prove the following: the centralizer of x in G is
the largest subgroup H of G such that x ∈ Z(H) .

11. Show that, in a finite group of order n , an element of order k has at most n/k
conjugates.

12. Prove the following: if G/Z(G) is cyclic, then G is abelian.

A characteristic subgroup of a group G is a subgroup that is invariant under all automorphisms
(a subgroup H such that α(H) = H for all α ∈ Aut (G) ). In particular, a characteristic
subgroup is invariant under inner automorphisms and is normal.

13. Show that the center of a group G is a characteristic subgroup of G .

14. Prove that every characteristic subgroup of a normal subgroup of a group G is a normal
subgroup of G , and that every characteristic subgroup of a characteristic subgroup of a group
G is a characteristic subgroup of G .

15. Let N be a characteristic subgroup of a group G . Prove that, if N � K � G and
K/N is a charateristic subgroup of G/N , then K is a characteristic subgroup of G .

4. Symmetric Groups

In this section we study the symmetric group Sn on the set { 1, 2, . . . , n } .

We write permutations as left operators (σ x instead of σ (x) ), and the operation
on Sn (composition) as a multiplication (στ instead of σ ◦ τ ). We follow custom
in specifying a permutation by its table of values

σ =
(

1 2 . . . n
σ1 σ2 . . . σn

)

.

Transpositions. Readers probably know that every permutation is a product of
transpositions; we include a proof for the sake of completeness.

Definition. Let a, b ∈ { 1, 2, . . ., n } , a =/ b . The transposition τ = (a b) is
the permutation defined by τa = b , τb = a , and τ x = x for all x =/ a, b .

Proposition 4.1. Every permutation is a product of transpositions.

Proof. By induction on n . Proposition 4.1 is vacuous if n = 1. Let n > 1
and σ ∈ Sn . If σn = n , then, by the induction hypothesis, the restriction of
σ to { 1, 2, . . ., n − 1 } is a product of transpositions; therefore σ is a product
of transpositions. If σn = j =/ n , then (n j) σ n = n , (n j) σ is a product of
transpositions (n j) σ = τ1 τ2 · · · τr , and so is σ = (n j) τ1 τ2 · · · τr . �

By 4.1, Sn is generated by all transpositions; in fact, Sn is generated by the
transpositions (1 2) , (2 3) , . . . , (n − 1 n) (see the exercises).

There is a uniqueness statement of sorts for Proposition 4.1:
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Proposition 4.2. If σ = τ1 τ2 · · · τr = υ1 υ2 · · · υs is a product of transposi-
tions τ1, τ2, . . ., τr and υ1, υ2, . . ., υs , then r ≡ s (mod 2).

Equivalently, a product of an even number of transpositions cannot equal a
product of an odd number of transpositions.

Proof. This proof uses the ring R of all polynomials with n indeterminates
X1, . . ., Xn , with integer (or real) coefficients. Let Sn act on R by

σ . f (X1, . . . , Xn) = f (Xσ1, Xσ2, . . . , Xσn).

We see that 1 . f = f and σ . (τ . f ) = (στ ) . f , so that the action of Sn on R is
a group action. Also, the action of σ preserves sums and products in R .

Let τ = (a b) , where we may assume that a < b , and let

p (X1, X2, . . ., Xn) =
∏

1�i< j�n (Xi − Xj ).

Then τ . p is the product of all τ . (Xi − Xj ) = Xτ i − Xτ j with i < j , and

τ . (Xi − Xj ) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi − Xj if i, j =/ a, b, (1)

Xb − Xa = −(Xa − Xb) if i = a and j = b, (2)
Xb − Xj = −(Xj − Xb) if i = a < j < b, (3)
Xb − Xj if i = a < b < j , (4)
Xa − Xj if a < i = b < j , (5)
Xi − Xb if i < j = a < b, (6)
Xi − Xa if i < a < j = b, (7)
Xi − Xa = −(Xa − Xi ) if a < i < j = b. (8)

Inspection shows that every term of p =
∏

1�i< j�n (Xi − Xj ) appears once in
τ . p , though perhaps with a minus sign. Hence τ . p = ±p . The minus signs
in τ . p come from case (2), one minus sign; case (3), one minus sign for each
a < j < b ; and case (8), one minus sign for each a < i < b . This adds up to an
odd number of minus signs; therefore τ . p = −p .

If now σ is a product of r transpositions, then σ . p = (−1)r p . If σ is also a
product of s transpositions, then σ . p = (−1)s p and (−1)r = (−1)s . �

Proposition 4.2 gives rise to the following definitions.

Definitions. A permutation is even when it is the product of an even number of
transpositions, odd when it is the product of an odd number of transpositions.

Counting transpositions in products shows that the product of two even permu-
tations and the product of two odd permutations are even, whereas the product of an
even permutation and an odd permutation, and the product of an odd permutation
and an even permutation, are odd.
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Definition. The sign of a permutation σ is

sgn σ =
{

+1 if σ is even,

−1 if σ is odd.

By the above, sgn (στ ) = (sgn σ )(sgn τ ) , so that, when n � 2, sgn is a
homomorphism of Sn onto the multiplicative group {+1, −1 } ; its kernel consists
of all even permutations and is a normal subgroup of Sn of index 2.

Definition. The alternating group An is the normal subgroup of Sn that consists
of all even permutations.

Cycles. Cycles are a useful type of permutation:

Definitions. Given 2 � k � n and distinct elements a1 , a2 , . . . , ak of
{ 1, 2, . . . , n } , the k-cycle (a1 a2 . . . ak) is the permutation γ defined by

γ ai = ai+1 for all 1 � i < k , γ ak = a1 , γ x = x for all x =/ a1, . . . , ak .

A permutation is a cycle when it is a k-cycle for some 2 � k � n .

In other words, (a1 a2 . . . ak) permutes a1 , a2 , . . . , ak circularly, and
leaves the other elements of { 1, 2, . . ., n } fixed. Transpositions are 2-cycles (not
bicycles). The permutation σ =

(1 2 3 4
4 2 1 3

)

is a 3-cycle, σ = (1 4 3) .

In general, a k-cycle γ = (a1 a2 . . . ak) has order k in Sn , since γ k = 1 but
γ ha1 = ah+1 =/ a1 if 1 � h < k .

Proposition 4.3. An is generated by all 3 -cycles.

Proof. First, (a b c) = (a b)(c b) for all distinct a, b, c , so that 3-cycles are
even and An contains all 3-cycles. Now we show that every even permutation is
a product of 3-cycles. It is enough to show that every product (a b)(c d) of two
transpositions is a product of 3-cycles.

Let a =/ b , c =/ d . If { a, b } = { c, d } , then (a b)(c d) = 1. If { a, b } ∩
{ c, d } has just one element, then we may assume that b = d , a =/ c , and then
(a b)(c d) = (a b)(c b) = (a b c) . If { a, b } ∩ { c, d } = Ø, then (a b)(c d) =
(a b)(c b)(b c)(d c) = (a b c)(b c d) . �

The cycle structure. Next, we analyze permutations in terms of cycles.

Definitions. The support of a permutation σ is the set { x
∣
∣ σ x =/ x } . Two

permutations are disjoint when their supports are disjoint.

Thus, x is not in the support of σ if and only if it is a fixed point of σ (if
σ x = x ). The support of a k-cycle (a1 a2 . . . ak) is the set { a1, a2, . . ., ak } .

Lemma 4.4. Disjoint permutations commute.

Proof. Let σ and τ be disjoint. If x is not in the support of σ or τ , then
στ x = xτσ x . If x is in the support of σ , then so is σ x , since σ x =/ x implies
σσ x =/ σ x ; then στ x = σ x = τσ x , since σ and τ are disjoint. Similarly, if x is
in the support of τ , then στ x = τ x = τσ x . �
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Proposition 4.5. Every permutation is a product of pairwise disjoint cycles,
and this decomposition is unique up to the order of the terms.

Proof. Given σ ∈ Sn , let Z act on X = { 1, 2, . . ., n } by m . x = σm x . This
is a group action since σ 0 = 1 and σ� σm = σ�+m . It partitions X into orbits. We
see that σ x = x if and only if the orbit of x is trivial; hence the support of σ is
the disjoint union of the nontrivial orbits.

By 3.4 the order of the orbit A of a ∈ X is the index of the stabilizer
S(a) = {m ∈ Z

∣
∣ σma = a } of a . Hence A has k elements if and only if

S(a) = Zk , if and only if k is the least positive integer such that σ ka = a . Then
σa , . . . , σ k−1a =/ a . In fact, a , σa , . . . , σ k−1a are all distinct: otherwise,
σ i a = σ j a for some 0 � i, j < k with, say, i < j , and σ j−i a = a with
0 < j − i < k . Therefore A = { a , σa , . . . , σ k−1a } . Moreover, σ and the
k-cycle γA =

(

a , σa , . . . , σ k−1a
)

agree on A , if A is not trivial.

The cycles γA , where A ranges over all nontrivial orbits, are pairwise disjoint,
and their product, in any order by 4.4, is σ : if the orbit B of x is trivial,
then σ x = x = γAx for all nontrivial A ; otherwise, σ x = γB x and γAx = x ,
γAγB x = γB x for all A =/ B .

Conversely, assume that σ is a product of pairwise disjoint cycles σ =
γ1 γ2 · · · γr . Let Ai be the support of γi . By the hypothesis, the sets Ai
are pairwise disjoint and nontrivial. If x /∈ A1 ∪ · · · ∪ Ar , then γi x = x for all
i , σ x = x , and the orbit of x is trivial. If x ∈ Ai , then γj x = x for all j =/ i ,

and σ x = γi x ∈ Ai , so that σ h x = γ h
i x for all h , Ai is the orbit of x , and

γi = γAi
. Thus A1, . . ., Ar are the nontrivial orbits, and the cycles γ1, . . ., γr

are the cycles γA above with A nontrivial. �
The proof of Proposition 4.5 provides an algorithm that decomposes any per-

mutation into a product of pairwise disjoint cycles, in finitely many steps: apply
σ repeatedly to 1, 2, . . ., n to get the orbits. For example, let

σ =
(

1 2 3 4 5 6 7 8 9
7 2 8 1 4 3 5 6 9

)

.

We have σ1 = 7, σ7 = 5, σ5 = 4, σ4 = 1; σ2 = 2; σ3 = 8, σ8 = 6, σ6 = 3;
and σ9 = 9. Therefore σ = (1 7 5 4)(3 8 6) .

Definition. The cycle structure of a permutation σ ∈ Sn is the sequence
k1 + k2 + · · · + kr in which r � 0 , k1 � k2 � · · · � kr � 2 , and the decomposition
of σ into a product of pairwise disjoint cycles consists of a k1-cycle, a k2-cycle,
. . . , and a kr-cycle. �

The plus signs are symbolic; k1 + k2 + · · · + kr is the author’s notation. Often,
enough 1’s are added that k1 + · · · + kr + 1 + · · · + 1 becomes a partition of n .

For example, the cycle structure of σ =
(1 2 3 4 5 6 7 8 9

7 2 8 1 4 3 5 6 9
)

is 4 + 3, since
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σ = (1 7 5 4)(3 8 6) . Readers will verify that σ is odd and has order 12. In
general, the order of a permutation is readily ascertained from its cycle structure
(see the exercises).

Conjugates. With Proposition 4.5 we can find conjugacy classes in Sn .

Lemma 4.6. If γ = (a1 a2 . . . ak) is a k -cycle, then so is σγ σ−1 =
(σa1 σa2 . . . σak) .

Proof. If x =/ σa1 , σa2 , . . . , σak , then σ−1x =/ a1 , a2 , . . . , ak , γ σ−1x =
σ−1x , and σγ σ−1x = x . But if x = σai , where i < k , then σγ σ−1x = σγ ai =
σai+1 ; similarly, σγ σ−1(σak) = σa1 . �

Proposition 4.7. Two permutations are conjugate if and only if they have the
same cycle structure.

Proof. Let σ be a product of disjoint cycles σ = γ1 γ2 · · · γr . Each γi is a
ki -cycle for some ki � 2; by 4.4 we may assume that k1 � k2 � · · · � kr , and
then the cycle structure of σ is k1 + k2 + · · · + kr . By 4.6, αγiα

−1 is a ki -cycle
like γi and

ασα−1 = (αγ1α
−1) (αγ2α

−1) · · · (αγrα
−1)

is a product of cycles whose supports are the images under α of the supports of
γ1 , γ2 , . . . , γr and are therefore pairwise disjoint. Therefore the cycle structure
of ασα−1 is k1 + k2 + · · · + kr , the same as that of σ .

Conversely, let σ and τ have the same cycle structure k1 + k2 + · · · + kr . Then
σ and τ are products of r pairwise disjoint cycles

σ = γ1 γ2 · · · γr and τ = δ1 δ2 · · · δr ,

in which γi and δi are ki -cycles, γi = (a1 a2 . . . aki
) , δi = (b1 b2 . . . bki

) . Let
θi be the bijection of { a1, a2, . . . , aki

} onto { b1, b2, . . . , bki
} that sends at to

bt . The permutations σ and τ have n − (k1 + k2 + · · · + kr ) fixed points; let θ0 be
any bijection of the set of fixed points of σ onto that of τ . The set of fixed points
of σ and the supports of γ1 , γ2 , . . . , γr constitute a partition of { 1, 2, . . ., n } ;
the set of fixed points of τ and the supports of δ1 , δ2 , . . . , δr also constitute a
partition of { 1, 2, . . ., n } . Therefore the bijections θ0 , θ1 , . . . , θr can be pasted
together into a bijection θ of { 1, 2, . . ., n } onto { 1, 2, . . ., n } . Then θ ∈ Sn
and 4.6 yields θγiθ

−1 = δi for all i , by the choice of θi ; hence θσθ−1 = τ . �

Proposition 4.7 sets up a one-to-one correspondence between conjugacy classes
of Sn and cycle structures (or between the former and partitions of n ). As an
example we list the conjugacy classes of S4 and determine their orders. With
n = 4 the possible cycle structures are 4, 3, 2 + 2, 2, and the empty sum. Readers
who like combinatorics will verify that S4 has six 4-cycles, eight 3-cycles, six
transpositions, three products of disjoint transpositions, and one empty product of
disjoint cycles, for a total of 6 + 8 + 6 + 3 + 1 = 24 elements.
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The orders of centralizers are found by similar methods. For example, let
σ = (1 7 5 4)(3 8 6) ∈ S9 . By the uniqueness in 4.7, ασα−1 = σ if and only if
α (1 7 5 4) α−1 = (1 7 5 4) and α (3 8 6) α−1 = (3 8 6) ; by 4.6, if and only if
(α1 α7 α5 α4) = (1 7 5 4) and (α3 α8 α6) = (3 8 6) . These conditions imply that
α also permutes the fixed points 2 and 9 of σ . Now, there are four permutations
of 1, 7, 5, 4 such that (α1 α7 α5 α4) = (1 7 5 4) ; three permutations of 3, 8, 6
such that (α3 α8 α6) = (3 8 6) ; and two permutations of 2, 9. These can be
combined in all possible ways to yield elements of the centralizer. Therefore the
centralizer of σ has 4 × 3 × 2 = 24 elements. The conjugacy class of σ then has
9!/24 = 15120 elements, by 3.7.

Exercises
.

1. Show that Sn is generated by (1 2) , (2 3) , . . . , (n − 1 n) .

2. Show that Sn is generated by (1 2) and (1 2 · · · n) .

3. Show that S4 ∼= 〈 a, b
∣
∣ a4 = 1, b2 = 1, (ba)3 = 1 〉 .

4. Show that A4 ∼= 〈 a, b
∣
∣ a3 = 1, b2 = 1, aba = ba2b 〉 .

5. Devise a presentation of Sn .

6. Verify that a k -cycle is even when k is odd and odd when k is even.

7. Show that A4 has a normal subgroup of order 4 .

8. How many k -cycles are there in Sn ?

9. Write σ =
(
1 2 3 4 5 6 7 8
7 5 6 4 2 8 3 1

)
as a product of pairwise disjoint cycles. Is σ even or odd?

What is the order of σ ?

10. What is the order of the centralizer of σ =
(
1 2 3 4 5 6 7 8
7 5 6 4 2 8 3 1

)
? of its conjugacy class?

11. Write σ =
(
1 2 3 4 5 6 7 8
8 4 7 2 1 6 3 5

)
as a product of pairwise disjoint cycles. Is σ even or odd?

What is the order of σ ?

12. What is the order of the centralizer of σ =
(
1 2 3 4 5 6 7 8
8 4 7 2 1 6 3 5

)
? of its conjugacy class?

13. Prove the following: if the cycle structure of σ is k1 + k2 + · · · + kr , then the order of
σ is the least common multiple of k1 , k2 , . . . , kr .

14. Show that Z(Sn) = 1 when n � 3 .

15. Make sure that the author did not pull a fast one when listing the orders of the conjugacy
classes of S4 .

16. List all conjugacy classes of S5 and their orders.

17. List all conjugacy classes of A4 and their orders. (Warning: even permutations that
are conjugate in S4 are not necessarily conjugate in A4 .)

18. List all conjugacy classes of A5 and their orders. (Warning: even permutations that
are conjugate in S5 are not necessarily conjugate in A5 .)

19. Show that A5 has no normal subgroup N =/ 1, A5 .
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5. The Sylow Theorems

The Sylow theorems (named after Sylow [1872]) are a basic tool of finite group
theory. They state that certain subgroups exist and give some of their properties.

First theorem. The first Sylow theorem is a partial converse of Lagrange’s
theorem.

Theorem 5.1 (First Sylow Theorem). Let G be a finite group and let p be a
prime number. If pk divides the order of G , then G has a subgroup of order pk .

Proof. First we prove a particular case: if G is abelian and p divides |G| ,
then G has a subgroup of order p . Readers will easily derive this statement from
Theorem 1.2 but may prefer a direct proof. If |G| = p , then G itself serves.
Otherwise, |G| > p and we proceed by induction on |G| . Let a ∈ G , a =/ 1. If
the order of a is a multiple mp of p , then am has order p and G has a subgroup
〈 am 〉 of order p . Otherwise, p does not divide the order of A = 〈 a 〉 . Hence
p divides the order of G/A . By the induction hypothesis, G/A has a subgroup
of order p : bA ∈ G/A has order p in G/A for some b ∈ G . Now, the order
of bA in G/A divides the order of b in G , since bm = 1 implies (bA)m = 1 in
G/A . Therefore the order of b is a multiple of p and as above, G has a subgroup
of order p .

Now let G be any finite group. Theorem 5.1 is true when |G| = 1; we prove
by induction on |G| that if any pk divides |G| , then G has a subgroup of order
pk . We may assume that pk > 1.

If p divides |Z(G)| , then by the above, Z(G) has a subgroup A of order
p . Then A �= G by 3.6. If pk divides |G| , then pk−1 divides |G/A| < |G| ;
by the induction hypothesis, G/A has a subgroup B/A of order pk−1 , where
A � B � G , and then B � G has order pk .

If pk > 1 divides |G| but p does not divide |Z(G)| then in the class equation,
|G| = |Z(G)| +

∑

|C|>1 |C | , p cannot divide every |C | > 1, since p divides |G|
but not |Z(G)| ; hence some |C | > 1 is not a multiple of p . By 3.7, |C | is the
index of the centralizer C(x) of any x ∈ C ; hence pk divides |C(x)| = |G|/|C | .
Now, |C(x)| < |G| , since |C | > 1; by the induction hypothesis, C(x) � G has
a subgroup of order pk . �

Corollary 5.2 (Cauchy’s Theorem). A finite group whose order is divisible by
a prime p contains an element of order p .

Cauchy’s theorem implies an equivalent definition of p-groups:

Corollary 5.3. Let p be a prime number. The order of a finite group G is a
power of p if and only if the order of every element of G is a power of p .

Normalizers. The next Sylow theorems are proved by letting G act on its



5. The Sylow Theorems 65

subgroups by inner automorphisms. For each g ∈ G , x �−→ gxg−1 is an (inner)
automorphism of G , and H � G implies gHg−1 � G . This defines a group
action g . H = gHg−1 of G on the set of all its subgroups.

Definitions. In the action by inner automorphisms of a group G on its sub-
groups, the orbits are the conjugacy classes of subgroups of G ; two subgroups of
G are conjugate when they belong to the same conjugacy class.

Thus, H and K are conjugate when K = gHg−1 for some g ∈ G .

The number of conjugates of a subgroup is the index of a stabilizer:

Definition. The normalizer in G of a subgroup H of a group G is

NG(H) = { g ∈ G
∣
∣ gHg−1 = H }.

Equivalently, N(H) = { g ∈ G
∣
∣ gH = Hg } . In the action of G on its

subgroups, N(H) is the stabilizer of H and is therefore a subgroup; in fact, it is
the largest subgroup of G in which H is normal (see the exercises). Hence:

Proposition 5.4. The number of conjugates of a subgroup of a group G is the
index of its normalizer in G .

The second and third theorems. These theorems give properties of p-
subgroups of maximal order.

Definition. Let p be prime. A Sylow p-subgroup of a finite group G is a
subgroup of order pk , where pk divides |G| and pk+1 does not divide |G| .

The existence of Sylow p-subgroups is ensured by Theorem 5.1.

Proposition 5.5. If a Sylow p-subgroup of a finite group G is normal in G ,
then it is the largest p -subgroup of G and the only Sylow p-subgroup of G .

Proof. Let the Sylow p-subgroup S be normal in G . If T is a p -subgroup of
G , then ST � G and |ST | = |S| |T |/|S ∩ T | � |S| , by I.5.9. Hence |ST | = |S| ,
by the choice of S , so that T ⊆ ST = S . �

Theorem 5.6 (Second Sylow Theorem). Let p be a prime number. The number
of Sylow p-subgroups of a finite group G divides the order of G and is congruent
to 1 modulo p .

Theorem 5.7 (Third Sylow Theorem). Let p be a prime number. All Sylow
p-subgroups of a finite group are conjugate.

Sylow [1872] proved Theorems 5.6 and 5.7 in the following form: all Sylow
p-subgroups of a finite group of permutations are conjugate, and their number is
congruent to 1 modulo p . By Cayley’s theorem, this must also hold in every finite
group. Like Sylow, we prove the two theorems together.

Proof. Let S be a Sylow p-subgroup. A conjugate of a Sylow p-subgroup is
a Sylow p-subgroup; therefore S acts on the set S of all Sylow p-subgroups by
inner automorphisms. Under this action, {S} is an orbit, since aSa−1 = S for
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all a ∈ S . Conversely, if {T } is a trivial orbit, then aT a−1 = T for all a ∈ S and
S ⊆ NG(T ) ; then 5.5 applies to T �= NG(T ) and yields S = T . Thus {S} is the
only trivial orbit. The orders of the other orbits are indexes in S of stabilizers and
are multiples of p . Hence |S| ≡ 1 (mod p ).

Suppose that S contains two distinct conjugacy classes C′ and C′′ of subgroups.
Any S ∈ C′ acts on C′ and C′′ ⊆ S by inner automorphisms. Then the trivial orbit
{S} is in C′ ; by the above, |C′| ≡ 1 and |C′′| ≡ 0 (mod p ). But any T ∈ C′′

also acts on C′ ∪ C′′ by inner automorphisms; then the trivial orbit {T } is in C′′ ,
so that |C′′| ≡ 1 and |C′| ≡ 0 (mod p ). This blatant contradiction shows that
S cannot contain two distinct conjugacy classes of subgroups. Therefore S is a
conjugacy class. Then |S| divides |G| , by 5.4. �

Theorem 5.7 has the following corollary:

Corollary 5.8. A Sylow p-subgroup is normal if and only if it is the only Sylow
p-subgroup.

The use of Theorems 5.6 and 5.7 may be shown by an example. Let G be a
group of order 15. The divisors of 15 are 1, 3, 5, and 15; its prime divisors
are 3 and 5. Since 1 is the only divisor of 15 that is congruent to 1 (mod 3),
G has only one Sylow 3-subgroup S ; since 1 is the only divisor of 15 that is
congruent to 1 (mod 5), G has only one Sylow 5-subgroup T . Now, S ∼= C3
and T ∼= C5 are cyclic; S, T �= G by 5.8; S ∩ T = 1, since |S ∩ T | must divide
|S| and |T | ; and |ST | = |S| |T |/|S ∩ T | = 15, so that ST = G . By 1.1, 1.4,
G ∼= C3 × C5

∼= C15 . Thus, every group of order 15 is cyclic.

Further results. The list of Sylow theorems sometimes includes the next three
results, which are of use in later sections.

Proposition 5.9. In a finite group, every p-subgroup is contained in a Sylow
p-subgroup.

Proof. As above, a p-subgroup H of a finite group G acts by inner auto-
morphisms on the set S of all Sylow p-subgroups. Since |S| ≡ 1 (mod p )
there is at least one trivial orbit {S} . Then hSh−1 = S for all h ∈ H and
H ⊆ NG(S) . Now, S is a Sylow p-subgroup of NG(S) , and H ⊆ S , by 5.5
applied to S �= NG(S) . �

In particular, the maximal p-subgroups are the Sylow p-subgroups.

Proposition 5.10. In a finite group, a subgroup that contains the normalizer of
a Sylow p-subgroup is its own normalizer.

Proof. Let S be a Sylow p-subgroup of a finite group G , and let H be a
subgroup of G that contains NG(S) . Let a ∈ NG(H) . Then aHa−1 = H ,
so that S and aSa−1 are Sylow p-subgroups of H . By 5.7, S and aSa−1 are
conjugate in H : S = haSa−1h−1 for some h ∈ H . Then ha ∈ NG(S) ⊆ H
and a ∈ H . Hence NG(H) = H . �
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Proposition 5.11. A p-subgroup of a finite group that is not a Sylow p-subgroup
is not its own normalizer.

Proof. Let H be a p-subgroup of a finite group G . If H is not a Sylow p-sub-
group, then p divides [ G : H ] . Now, H � NG(H) , and [ G : NG(H) ] divides
[ G : H ] . If p does not divide [ G : NG(H) ] , then [ G : NG(H) ]< [ G : H ] and
H � NG(H) . Now assume that p divides [ G : NG(H) ] .

The subgroup H acts by inner automorphisms on its conjugacy class C . Then
{H} is a trivial orbit. Since p divides |C| = [ G : NG(H) ] , there must be another
trivial orbit {K} =/ {H} . Then hK h−1 = K for all h ∈ H and H ⊆ NG(K ) ;
hence K � NG(K ) . Since there is an inner automorphism of G that takes K to
H , this implies H � NG(H) . �

Corollary 5.12. In a finite p-group, every subgroup of index p is normal.

Exercises
1. Use Theorem 1.2 to show that a finite abelian group whose order is a multiple of a prime

p has a subgroup of order p .

2. Use Theorem 1.2 to prove the following: when G is a finite abelian group, every divisor
of |G| is the order of a subgroup of G .

3. Prove the following: when H � G , then NG(H) is the largest subgroup of G such
that H �= NG(H) .

4. Show that A4 does not contain a subgroup of order 6 .

5. Show that, in a group of order n � 11 , every divisor of n is the order of a subgroup.

6. Find the Sylow subgroups of S4 .

7. Find the Sylow subgroups of S5 .

8. Show that every group G of order 18 has a normal subgroup N =/ 1, G .

9. Show that every group G of order 30 has a normal subgroup N =/ 1, G .

10. Show that every group G of order 56 has a normal subgroup N =/ 1, G .

11. Find all groups of order 33.

12. Find all groups of order 35.

13. Find all groups of order 45.

14. Prove the following: if pk+1 divides |G| , then every subgroup of G of order pk is
normal in a subgroup of order pk+1 .

6. Small Groups

In this section we construct all groups of order at most 15. (Finding the 14 groups
of order 16 is more difficult.)

General results. For every prime p , we saw that every group of order p is
cyclic, and that every group of order p2 is abelian (3.10).
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Proposition 6.1. Let p be prime. A group of order 2p is cyclic or dihedral.

Proof. A group of order 4 is abelian and either cyclic or isomorphic to V4
∼= D2 .

Now let p > 2. By the Sylow theorems, a group G of order 2p has a Sylow
p-subgroup A of order p and a Sylow 2-subgroup B of order 2; A and B are
cyclic, A = 〈 a 〉 ∼= Cp , B = 〈 b 〉 ∼= C2 . Moreover, A �= G , since A has index
2, A ∩ B = 1, and G = AB , since |G| = |A| |B| = |AB| . Then G is generated
by { a, b } , and a, b satisfy a p = 1, b2 = 1, and bab−1 = ak for some k , since
bab−1 ∈ A . Since b2 = 1, we have a = bbab−1b−1 = bakb−1 = (bab−1)k=
(ak)k= ak2

; hence p divides k2 − 1 = (k − 1)(k + 1) . Since p is prime, p
divides k − 1 or k + 1.

If p divides k − 1, then bab−1 = ak = a and ba = ab ; hence G is abelian,
B �= G , and G = A ⊕ B ∼= Cp ⊕ C2

∼= C2p is cyclic. If p divides k + 1, then

bab−1 = ak = a−1 , the defining relations of Dp in I.7.3 hold in G , and there is
a homomorphism θ of Dp into G , which is surjective since G is generated by a
and b ; θ is an isomorphism, since |Dp| = |G| = 2p . Thus G ∼= Dp . �

Proposition 6.2. If p > q are primes, and q does not divide p − 1 , then every
group of order pq is cyclic.

For instance, we saw in Section 5 that every group of order 15 is cyclic. But
D3 has order 6 = 3 × 2, where 2 divides 3 − 1, and is not cyclic.

Proof. By the Sylow theorems, a group G of order pq has a Sylow p-subgroup
P of order p and a Sylow q-subgroup Q of order q , both of which are cyclic.
Among the divisors 1, p , q , pq of pq , only 1 is congruent to 1 (mod p ),
since q < p , and only 1 is congruent to 1 (mod q ), since q does not divide
p − 1. Therefore P, Q �= G . Moreover, P ∩ Q = 1 and P Q = G , since
|G| = |P| |Q| = |P Q| . Hence G = P ⊕ Q ∼= Cp ⊕ Cq

∼= C pq . �

We now know all groups of the following orders:

Order Type
1, 2, 3, 5, 7, 11, 13 cyclic;
4, 9 abelian (3.10);
6, 10, 14 cyclic or dihedral (6.1);
15 cyclic (6.2).

Groups of order 8 . Up to isomorphism, there are three abelian groups of
order 8, C8 , C4 ⊕ C2 , C2 ⊕ C2 ⊕ C2 , and at least two nonabelian groups,
D4 = 〈 a, b

∣
∣ a4 = 1, b2 = 1, bab−1 = a−1 〉 and Q = 〈 a, b

∣
∣ a4 = 1, b2 =

a2, bab−1 = a−1 〉 ; the exercises have shown that D4 � Q .

Proposition 6.3. A nonabelian group of order 8 is isomorphic to either D4
or Q .
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Proof. Let G be a nonabelian group of order 8. No element of G has order
8, since G is not cyclic, and the elements of G cannot all have order 1 or 2: if
x = x−1 for all x ∈ G , then xy = (xy)−1= y−1 x−1 = yx for all x, y ∈ G .
Therefore G has an element a of order 4. Then A = 〈 a 〉 is a subgroup of G of
order 4; A �= G since A has index 2.

The group G is generated by a and any b /∈ A , since A � 〈 a, b 〉 ⊆ G . Now,
b2 ∈ A , since Ab has order 2 in G/A . Also, b2 =/ a, a3 : otherwise, b has
order 8. Hence b2 = 1 or b2 = a2 . Moreover, bab−1 ∈ A has order 4 like a ;
bab−1 =/ a , otherwise, G is abelian; hence bab−1 = a3 = a−1 .

The coup de grace is now administered as in the proof of 6.1. If b2 = 1, then
the defining relations of D4 hold in G ; hence there is a homomorphism θ of D4
onto G , which is an isomorphism since both groups have order 8; thus G ∼= D4 .
If b2 = a2 , then the defining relations of Q , etc., etc., and G ∼= Q . �

Groups of order 12 . Up to isomorphism, there are two abelian groups of
order 12, C4 ⊕ C3

∼= C12 and C2 ⊕ C2 ⊕ C3 , and at least three nonabelian
groups, D6 = 〈 a, b

∣
∣ a6 = 1, b2 = 1, bab−1 = a−1 〉 , T = 〈 a, b

∣
∣ a6 = 1, b2 =

a3, bab−1 = a−1 〉 (from Section I.7), and A4 ; the exercises have shown that
D6 , Q , and A4 are not isomorphic to each other.

Proposition 6.4. A nonabelian group of order 12 is isomorphic to either D4
or T or A4 .

Proof. A nonabelian group G of order 12 has a subgroup P of order 3. Then
G acts by left multiplication on the set of all four left cosets of P : g . x P = gx P .
By 3.1, this group action induces a homomorphism of G into S4 , whose kernel
K is a normal subgroup of G . Moreover, K ⊆ P , since gx P = x P for all x
implies g ∈ P ; hence K = 1 or K = P .

If K = 1, then G is isomorphic to a subgroup H of S4 of order 12. Let
γ ∈ S4 be a 3-cycle. Since H has index 2, two of 1, γ , γ 2 must be in the same
left coset of H . Hence γ ∈ H , or γ 2 ∈ H and γ = γ 4 ∈ H . Thus H contains
all 3-cycles. Hence H = A4 , by 4.3, and G ∼= A4 .

If K = P , then P �= G , P is the only Sylow 3-subgroup of G , and G has only
two elements of order 3. If c ∈ P , c =/ 1, then c has at most two conjugates and
its centralizer CG(c) has order 6 or 12. By Cauchy’s theorem, CG(c) contains
an element d of order 2. Then cd = dc , since d ∈ CG(c) , and a = cd has order
6. Then A = 〈 a 〉 is a subgroup of G of order 6; A �= G since A has index 2.

As in the proof of 6.3, G is generated by a and any b /∈ A . Now, bab−1 ∈ A
has order 6 like a ; bab−1 =/ a , otherwise, G is abelian; hence bab−1 = a5 =
a−1 . Also, b2 ∈ A , since Ab has order 2 in G/A ; b2 =/ a , a5 , otherwise,
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b has order 12 and G is cyclic; b2 =/ a2, a4 , since b2 commutes with b but
ba2b−1 = a−2 yields ba2 = a4b . Hence b2 = 1 or b2 = a3 . Then, as in the
proof of 6.3, G ∼= D6 or G ∼= T . �

Summary. The groups of order 1 to 15 are, up to isomorphism:

Order Groups:
1 1;
2 C2 ;
3 C3 ;
4 C4 , C2 ⊕ C2

∼= V4 ;
5 C5 ;
6 C6 , D3

∼= S3 ;
7 C7 ;
8 C8 , C4 ⊕ C2 , C2 ⊕ C2 ⊕ C2 , D4 , Q ;
9 C9 , C3 ⊕ C3 ;
10 C10 , D5 ;
11 C11 ;
12 C12 , C2 ⊕ C2 ⊕ C3 , D6 , T , A4 ;
13 C13 ;
14 C14 , D7 ;
15 C15 .

Exercises
1. To which group of order 12 is C2 ⊕ D3 isomorphic?

Nonabelian groups in the following exercises should be specified by presentations.

2. Find all groups of order 51 .

3. Find all groups of order 21 .

4. Find all groups of order 39 .

5. Find all groups of order 55 .

6. Find all groups of order 57 .

7. Find all groups of order 93 .

7. Composition Series

Analysis by normal series is another tool for the study of finite groups.

Definitions. A normal series of a group G is a finite ascending sequence A0 ,
A1 , . . . Am of subgroups of G such that 1 = A0

�= A1
�= A2

�= · · · �= Am = G ;
then m is the length of the series.
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The subgroups that appear in normal series are called subnormal; they need
not be normal (see the exercises). Normal series are sometimes called subnormal
series. Some infinite sequences of subgroups are also called series.

For example, every group G has a trivial normal series 1 �= G . We saw in
Section 3 that Sn has a nontrivial normal series 1 �= An

�= Sn .

Definition. The factors of a normal series 1 = A0
�= A1

�= A2
�= · · · �=

Am = G are the quotient groups Ai/Ai−1 (1 � i � m ).

Definition. Two normal series A : 1 = A0
�= A1

�= A2
�= · · · �= Am = G

and B : 1 = B0
�= B1

�= B2
�= · · · �= Bn = G are equivalent when m = n and

there is a permutation σ such that Ai/Ai−1
∼= Bσ i/Bσ i−1 for all i > 0 . �

In other words, two normal series are equivalent when they have the same
length and, up to isomorphism and indexing, the same factors. For instance, a
cyclic group C = 〈 c 〉 of order 6 has two equivalent normal series 1 �= {1, c3 }
�= C and 1 �= {1, c2, c4 } �= C .

One may think of a normal series 1 = A0
�= A1

�= A2
�= · · · �= Am = G as

analyzing the group G as somehow assembled from simpler groups, the factors
A1/A0 , A2/A1 , . . . , Am/Am−1 . Reconstructing G from these factors is more
difficult and is discussed in Section 12. For now, our philosophy is to ignore
reconstruction difficulties and make the factors as simple as possible.

Refinement adds terms to a normal series to obtain smaller, simpler factors.

Definition. A refinement of a normal series A : 1 = A0
�= A1

�= A2
�= · · ·

�= Am = G is a normal series B : 1 = B0
�= B1

�= B2
�= · · · �= Bn = G such

that every Ai is one of the Bj’s.

For example, D4 has a normal series A : 1 �= R �= D4 , where R = { r0 , r1 ,
r2 , r3 } in our notation. The normal series B : 1 �= { r0, r1 } �= R �= D4 is a
refinement of A .

In general, refinement replaces each interval Ai−1
�= Ai by a sequence Ai−1 =

Bj
�= B j+1

�= · · · �= Bk = Ai . By I.4.9, the new factors Bh/Bh−1 are the factors
of a normal series 1 �= B j+1/Bj

�= · · · �= Bk/Bj of Ai/Ai−1 ; this analyzes the
original factors Ai/Ai−1 into smaller and simpler factors.

Refinements exhibit a kind of convergence.

Theorem 7.1 (Schreier [1928]). Any two normal series of a group have equiv-
alent refinements.

Proof. Let A : 1 = A0
�= A1

�= A2
�= · · · �= Am = G and B : 1 =

B0
�= B1

�= B2
�= · · · �= Bn = G be two normal series of a group G . Let

Cmn = Dmn = G ; for every 0 � i < m and 0 � j < n , let

Cni+ j = Ai (Ai+1 ∩ Bj ) and Dmj+i = Bj (Bi+1 ∩ Ai ) .
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This defines Ck and Dk for every 0 � k � mn , since every 0 � k < mn can be
written uniquely in the form k = ni + j with 0 � i < m and 0 � j < n , and can
be written uniquely in the form k = mj ′ + i ′ with 0 � i ′ < m and 0 � j ′ < n .
Thus σ : ni + j �−→ mj + i is a permutation of { 0, 1, . . ., mn − 1 } .

We see that Ai = Cni ⊆ Cni+1 ⊆ · · · ⊆ Cni+n = Ai+1 and Bj = Dmj ⊆
Dmj+1 ⊆ · · · ⊆ Dmj+m = B j+1 , for all 0 � i < m and 0 � j < n ; in particular,
C0 = D0 = 1. Hence Ck ⊆ Ck+1 and Dk ⊆ Dk+1 for all k ; if we can show that
C : C0 , C1 , . . . , Cmn and D : D0 , D1 , . . . , Dmn are normal series, they will be
refinements of A and B .

That C and D are normal series follows from Zassenhaus’s lemma 7.2 below,
applied to A = Ai , A′ = Ai+1 , B = Bj , and B′ = B j+1 : by this lemma, Cni+ j =
A (A′ ∩ B) , Cni+ j+1 = A (A′ ∩ B′) , Dmj+i = B (B′ ∩ A) , and Dmj+i+1 =
B (B′ ∩ A′) are subgroups of G ; Cni+ j = A (A′ ∩ B) �= A (A′ ∩ B′) = Cni+ j+1 ;
Dmj+i = B (B′ ∩ A) �= B (B′ ∩ A′) = Dmj+i+1 ; and

Cni+ j+1/Cni+ j = A (A′ ∩ B′) / A (A′ ∩ B)
∼= B (B′ ∩ A′) / B (B′ ∩ A) = Dmj+i+1/Dmj+i .

Therefore C and D are normal series, and are refinements of A and B ; moreover,
Ck+1/Ck

∼= Dσk+1/Dσk for all 0 � k < mn , where σ is our earlier permutation
of { 0, 1, . . ., mn − 1 } , so that C and D are equivalent. �

Lemma 7.2 (Zassenhaus [1934]). If A �= A′ � G and B �= B′ � G , then
A (A′ ∩ B) , A (A′ ∩ B′) , B (B′ ∩ A) , and B (B′ ∩ A′) are subgroups of G ;
A (A′ ∩ B) �= A (A′ ∩ B′) ; B (B′ ∩ A) �= B (B′ ∩ A′) ; and

A (A′ ∩ B′) / A (A′ ∩ B) ∼= B (B′ ∩ A′) / B (B′ ∩ A).

This is often called the Butterfly lemma, after its subgroup inclusion pattern:

Proof. A (A′ ∩ B) and A (A′ ∩ B′) are subgroups of A′ , since A �= A′ . Also
A′ ∩ B �= A′ ∩ B′ , since B �= B′ .

Let x = ab ∈ A (A′ ∩ B′) and y = cd ∈ A (A′ ∩ B) , with a, c ∈ A ,
b ∈ A′ ∩ B′ , d ∈ A′ ∩ B . Then xcx−1 ∈ A , since x ∈ A′ and A �= A′ ;
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bdb−1 ∈ A′ ∩ B , since b ∈ A′ ∩ B′ and A′ ∩ B �= A′ ∩ B′ ; xdx−1 =
abdb−1a−1 ∈ A (A′ ∩ B) A = A (A′ ∩ B) , since A �= A′ ; and xyx−1 =
xcx−1 xdx−1 ∈ A (A′ ∩ B) . Thus A (A′ ∩ B) �= A (A′ ∩ B′) .

Let S = A′ ∩ B′ , T = A (A′ ∩ B) , and U = A (A′ ∩ B′) . Then S � U ,
T �= U , and

ST = T S = A (A′ ∩ B) (A′ ∩ B′) = A (A′ ∩ B′) = U.

We find S ∩ T . First, A ∩ B′ ⊆ S , A ∩ B′ ⊆ A ⊆ T , A′ ∩ B ⊆ S , and
A′ ∩ B ⊆ T , so that (A ∩ B′) (A′ ∩ B) ⊆ S ∩ T . Conversely, if t ∈ S ∩ T , then
t ∈ A′ ∩ B′ and t = ab for some a ∈ A and b ∈ A′ ∩ B ; then b ∈ B′ , a =
tb−1 ∈ B′ , and s = ab ∈ (A ∩ B′) (A′ ∩ B) . Thus S ∩ T = (A ∩ B′) (A′ ∩ B) .

By the second Isomorphism theorem (I.5.9), T �= ST , S ∩ T �= S , and
ST/T ∼= S/(S ∩ T ) . Hence (A ∩ B′) (A′ ∩ B) = S ∩ T �= S = A′ ∩ B′ and

A (A′ ∩ B′) / A (A′ ∩ B) = ST/T
∼= S/(S ∩ T ) = (A′ ∩ B′) / (A ∩ B′) (A′ ∩ B).

Exchanging A ’s and B ’s in the above yields that B (B′ ∩ A) and B (B′ ∩ A′)
are subgroups of G , B (B′ ∩ A) �= B (B′ ∩ A′) , and

B (B′ ∩ A′) / B (B′ ∩ A) ∼= (A′ ∩ B′) / (A ∩ B′) (A′ ∩ B).

Hence A (A′ ∩ B′) / A (A′ ∩ B) ∼= B (B′ ∩ A′) / B (B′ ∩ A) . �

Composition series. A composition series is a normal series without proper
refinements, hence with the simplest possible factors:

Definition. A composition series of a group G is a normal series A : 1 =
A0

�= A1
�= A2

�= · · · �= Am = G of G such that, for every 1 � i � m ,
Ai−1 �

/= Ai and there is no subgroup B such that Ai−1 �
/= B �

/= Ai .

By I.4.9, subgroups B such that Ai−1 �
/= B �

/= Ai correspond to normal sub-
groups N =/ 1, Ai/Ai−1 of Ai/Ai−1 . Hence a composition series is a normal
series in which every factor Ai/Ai−1 is nontrivial and has no normal subgroup
N =/ 1, Ai/Ai−1 . We state this as follows.

Definition. A group G is simple when G =/ 1 and G has no normal subgroup
N =/ 1, G .

Proposition 7.3. A normal series is a composition series if and only if all its
factors are simple.

For instance, a cyclic group C = 〈 c 〉 of order 6 has two composition series
1 �= {1, c3 } �= C and 1 �= {1, c2, c4 } �= C .

Proposition 7.4. Every finite group has a composition series.

However, not every group has a composition series (see the exercises).
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Proof. In a group G of order n , every strictly ascending normal series A : 1 =
A0 �

/= A1 �
/= A2 �

/= · · · �
/= Am = G has length m � n . Hence G has a strictly

ascending normal series of maximal length, i.e., a composition series. �

The following theorem was proved by Hölder [1889]. Jordan [1869] had shown
earlier that different compositions series have factors of the same order.

Theorem 7.5 (Jordan-Hölder). Any two composition series of a group are
equivalent.

Proof. Let A : 1 = A0 �
/= A1 �

/= A2 �
/= · · · �

/= Am = G and B : 1 =
B0 �

/= B1 �
/= B2 �

/= · · · �
/= Bn = G be two composition series of a group G .

By Schreier’s theorem (7.1), A and B have equivalent refinements C and D .
Since A is a composition series, C is obtained from A by adding equalities; its
factors are the (nontrivial) factors of A and a bunch of trivial factors. Similarly,
the factors of D are the (nontrivial) factors of B and another bunch of trivial
factors. The permutation σ such that Ck/Ck−1

∼= Dσk/Dσ (k−1) for all k > 0
sends the nontrivial factors of C onto the nontrivial factors of D , and sends the
factors of A onto the factors of B ; therefore A and B are equivalent. �

By 7.5, when a group G has a composition series, all composition series of G
have the same factors, up to isomorphism and order of appearance.

Definition. The simple factors of a group G that has a composition series are
the factors of any composition series of G .

For instance, the simple factors of a cyclic group C = 〈 c 〉 of order 6 are one
cyclic group of order 2 and one cyclic group of order 3, as shown by either of the
composition series 1 �= {1, c3 } �= C and 1 �= {1, c2, c4 } �= C .

Simple groups. Analysis by composition series shows that simple groups are
a basic building block of finite groups in general.

One of the great achievements of late twentieth century mathematics is the
Classification theorem, which lists all finite simple groups; its proof set a new
record for length, and is being published in installments (Gorenstein et al. [1994
up]), some 2100 pages as of this writing. With 26 exceptions, finite simple groups
fall into some 18 infinite families. We can produce two such families now; a third
is constructed in the next section.

Proposition 7.6. A finite abelian group is simple if and only if it is a cyclic
group of prime order.

This follows from, say, Theorem 1.2.

Nonabelian simple groups arise from composition series of sufficiently large
groups. Dihedral groups are unsuitable for this (see the exercises) but Sn has a
normal series 1 �= An

�= Sn , which is a composition series if n � 5:

Proposition 7.7. An is simple for all n � 5 .



7. Composition Series 75

The group A3
∼= C3 is simple, too, but A4 has a normal subgroup of order 4

and is not simple (see the exercises in Section 3).

Proof. The simplicity of A5 is proved by counting the elements of its conjugacy
classes, which readers will verify consist of:

12 5-cycles;
12 more 5-cycles;
20 3-cycles;
15 products of two disjoint transpositions; and
1 identity element.

A normal subgroup of A5 is the union of { 1 } and other conjugacy classes. These
unions have orders 1, 13, 16, 21, 25, 28, and over 30, none of which is a proper
divisor of |A5| = 60; therefore A5 has no normal subgroup N =/ 1, A5 .

The simplicity of An when n > 5 is proved by induction on n . Let N =/ 1 be
a normal subgroup of An . We want to show that N = An .

First we show that N is transitive: for every i, j ∈ { 1, 2, . . ., n } , there exists
σ ∈ N such that σ i = j . Since N =/ 1 we have σk =/ k for some σ ∈ N and
k ∈ { 1, 2, . . . , n } . For any i ∈ { 1, 2, . . ., n } we can rig an even permutation
α such that αk = k and ασk = i ; then ασα−1 ∈ N and ασα−1k = i . If now
i, j ∈ { 1, 2, . . ., n } , there exist µ, ν ∈ N such that µk = i , νk = j , and then
νµ−1 ∈ N and νµ−1i = j .

Next we show that some σ ∈ N , σ =/ 1, has a fixed point (σk = k for some k ).
As above, we have σk = j =/ k for some σ ∈ N . Then σ j =/ j . Let i =/ j, k, σ j .
If σ i = i , σ serves. Otherwise, i , σ i , j , σ j are all different; since n � 6
we can concoct an even permutation α such that α j = k , ασ j = j , αi = i ,
and ασ i =/ i, j, k, σ i . Then µ = ασα−1 ∈ N , µk = ασ j = j = σk , and
µi = ασ i =/ σ i . Hence ν = σ−1µ ∈ N , ν =/ 1 since νi =/ i , and νk = k .

Let k be a fixed point of some σ ∈ N , σ =/ 1. Let B = {α ∈ An
∣
∣ αk = k } .

Then N ∩ B =/ 1 and N ∩ B �= B . Since B ∼= An−1 is simple, by the induction
hypothesis, this implies N ∩ B = B and B ⊆ N . If α ∈ A , then µk = αk for
some µ ∈ N , since N is transitive, so that µ−1α ∈ B ⊆ N and α = µ (µ−1α)∈
N . Thus N = An . �

Exercises
1. Show that D4 has a normal series with a term that is not a normal subgroup of D4 .

2. Show that A4 has a normal series with a term that is not a normal subgroup of A4 .

3. Let N �= G . Show that normal series of N and G/N can be “pieced together” to yield
a normal series of G .

4. Let A : 1 = A0 �= A1 �= A2 �= · · · �= Am = G be a normal series. Explain how
normal series of all the factors Ai/Ai−1 give rise to a refinement of A .

5. Show that Z does not have a composition series.
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6. Prove the following: if N �= G and G/N have composition series, then G has a
composition series.

7. Prove the following: if N �= G and G has a composition series, then N and G/N
have composition series. (Hint: first show that N appears in a composition series of G .)

8. Prove the following: if G has a composition series, then every strictly ascending normal
series of G can be refined into a composition series.

9. Find all composition series and simple factors of D4 .

10. Find all composition series and simple factors of A4 .

11. Find all composition series and simple factors of D5 .

12. Prove that an abelian group has a composition series if and only if it is finite.

13. Prove that all abelian groups of order n have the same simple factors.

14. Show that the simple factors of Dn are all abelian.

15. Show that 1 �= An �= Sn is the only composition series of Sn when n � 5 .

16. Show that a group of order pn , where p is prime, has a composition series of length n .

17. Let G be a group of order n and let m be the length of its composition series. Show
that m � log2 n . Show that the equality m = log2 n occurs for arbitrarily large values of n .

The following exercise is more like a small research project.

*18. Without using results from later sections, show that there is no nonabelian simple
group of order less than 60 .

8. The General Linear Group

This section can be skipped. The general linear group is one of the classical groups
whose study in the nineteenth century eventually gave rise to today’s group theory.
Its normal series yields new simple groups.

Definition. Let V be a vector space of finite dimension n � 2 over a field
K . The general linear group GL(V ) of V is the group of all invertible linear
transformations of V into V .

Given a basis of V , every linear transformation of V into V has a matrix;
hence GL(V ) is isomorphic to the multiplicative group GL(n, K ) of all invertible
n × n matrices with coefficients in K . In particular, all vector spaces of dimension
n over K have isomorphic general linear groups. The group GL(n, K ) is also
called a general linear group.

The Special Linear Group. We construct a normal series of GL(V ) . First,
determinants provide a homomorphism of GL(V ) into the multiplicative group
K ∗ of all nonzero elements of K . Its kernel is a normal subgroup of GL(V ) .
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Definition. Let V be a vector space of finite dimension n � 2 over a field K .
The special linear group SL(V ) of V is the group of all linear transformations of
V into V whose determinant is 1 .

The multiplicative group SL(n, K ) of all n × n matrices with coefficients in K
and determinant 1 is isomorphic to SL(V ) and is also called a special linear group.
Matrices with arbitrary nonzero determinants are readily constructed; hence the
determinant homomorphism GL(V )−→ K ∗ is surjective and the Homomorphism
theorem yields the following result:

Proposition 8.1. SL(V ) �= GL(V ) and GL(V ) / SL(V ) ∼= K ∗ .

Centers. Since K ∗ is abelian, any nonabelian simple factor of GL(V ) must
come from SL(V ) , in fact must come from SL(V ) / Z

(

SL(V )
)

. To find the center
of SL(V ) we use elementary transformations.

Readers may recall that an elementary n × n matrix E is obtained from the
identity matrix by adding one nonzero entry outside the main diagonal:

E =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
. . . a

1
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

If E has a =/ 0 in row k and column � =/ k , then multiplying a matrix on the
left by E adds a times row � to row k , which is the basic step in Gauss-Jordan
reduction. Multiplying on the left by E−1 reverses this step; thus E−1 is the
elementary matrix with −a in row k and column � .

Definition. A linear transformation T : V −→ V is elementary when there
exists a basis b1, b2, . . . , bn of V such that T b1 = b1 + b2 and T bi = bi for all
i � 2 .

Readers will show that T is elementary if and only if its matrix in some basis
of V is elementary.

Proposition 8.2. For a linear transformation T ∈ GL(V ) the following are
equivalent: (i) T : V −→ V is elementary; (ii) det T = 1 and

F(T ) = { x ∈ V
∣
∣ T x = x } = Ker (T − 1)

has dimension dim V − 1 ; (iii) det T = 1 and Im (T − 1) has dimension 1 . In
particular, SL(V ) contains all elementary transformations.

Proof. Let T be elementary, so that there is a basis b1, b2, . . . , bn of V such
that T b1 = b1 + b2 and T bi = bi for all i � 2. The matrix of T in that basis is
triangular, with 1’s on the main diagonal; hence det T = 1. Also F(T ) is the
subspace generated by b2, . . ., bn and has dimension n − 1; Im (T − 1) is the
subspace generated by b2 and has dimension 1.
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Conversely, assume that det T = 1 and F(T ) has dimension dim V − 1,
equivalently, that det T = 1 and dim Im (T − 1) = dim V − dimKer (T − 1) =
1. Let b1 /∈ F(T ) ; then V = K b1 ⊕ F(T ) and T b1 = cb1 + v =/ b1 , for some
c ∈ K and v ∈ F(T ) . For any basis b2, . . . , bn of F(T ) , the matrix of T in
the basis b1, b2, . . . , bn of V is triangular, since T bi = bi for all i � 2, with
c, 1, . . ., 1 on the main diagonal; hence c = det T = 1 and T (b1) = b1 + v with
v ∈ F(T ) , v =/ 0. There is a basis b2, . . ., bn of F(T ) in which b2 = v . Then
T b1 = b1 + b2 . Thus T is elementary. �

Proposition 8.3. For a linear transformation T ∈ GL(V ) the following are
equivalent: (i) T is in the center of GL(V ) ; (ii) T commutes with every elementary
transformation; (iii) T x ∈ K x for all x ∈ V ; (iv) T = λ1V for some λ ∈ K ,
λ =/ 0 . Hence Z

(

GL(V )
)
∼= K ∗ .

A linear transformation T ∈ SL(V ) is in the center of SL(V ) if and only if
it is in the center of GL(V ) , if and only if T = λ1V for some λ ∈ K such that
λn = 1 . Hence Z

(

SL(V )
)

is isomorphic to the multiplicative group of all nth
roots of 1 in K .

Proof. Let T ∈ GL(V ) . We see that (i) implies (ii).

Assume (ii). If b1, b2, . . . , bn is a basis of V , then there is an elementary
transformation E such that Eb1 = b1 + b2 and Ebi = bi for all i � 2. Then
Im (E − 1) = K b2 and

T b2 = T (E − 1) b1 = (E − 1) T b2 = ab2

for some a ∈ K . For every x ∈ V , x =/ 0, there is a basis of V in which b2 = x ;
hence T x = ax for some a ∈ K , and (ii) implies (iii).

If (iii) holds, then in any basis b1, b2, . . . , bn of V we have T bi = ai bi for
some ai ∈ K . Now,

ai bi + aj bj = T (bi + bj ) = a (bi + bj )

for some a ∈ K ; hence ai = a = aj , for every i, j , and T = λ1V , where
λ = a1 = a2 = · · · = an =/ 0, since λn = det T =/ 0. Thus (iii) implies (iv). Finally,
(iv) implies (i), since scalar multiples T = λ1V of the identity transformation on
V commute with every linear transformation.

Now let T ∈ SL(V ) . If T ∈ Z
(

SL(V )
)

, then T commutes with every
elementary transformation; hence T ∈ Z

(

GL(V )
)

, and T = λ1V , where λn =
det T = 1. �

The Projective Special Linear Group. We noted that any nonabelian simple
factor of GL(V ) or SL(V ) must come from SL(V ) / Z

(

SL(V )
)

.

Definition. Let V be a vector space of finite dimension n � 2 over a field K .
The projective special linear group PSL(V ) or PSL(n, K ) is the quotient group
SL(V ) / Z

(

SL(V )
)

.
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We digress to show that projective linear groups are groups of transformations
of projective spaces, much as linear groups are groups of transformations of vector
spaces. For every vector space V over a field K a projective space P over K is
constructed a follows: the relation

x ∼ y if and only if x = λy for some λ ∈ K , λ =/ 0,

is an equivalence relation on V ; P is the set of all equivalence classes [x] of
nonzero vectors x ∈ V .

In the Euclidean plane, the motivation for projective spaces lies in the projection
of one straight line L to another straight line L ′ , not parallel to L , from one point
not on L or L ′ . This projection is almost a bijection of L onto L ′ , except that
one point of L disappears at infinity in the direction of L ′ , and one point of L ′

seems to arrive from infinity in the direction of L . If every straight line could be
completed by the addition of a point at infinity, then projection of one straight line
onto another, whether parallel or from a point, would always be bijective:

This is precisely what happens in the projective plane P (over R ), which is
the projective space of V = R

3 . In P there are two kinds of points: points
[(a, b, c)] with c =/ 0, which may be written in the form [(x, y, 1)] and identified
with points (x, y) of R

2 , and points at infinity [(x, y, 0)] . A straight line in P is
the set of all points [(x, y, z)] that satisfy a linear equation ax + by + cz = 0 with
(a, b, c) =/ 0. In P , the points at infinity constitute a straight line, z = 0; every
other straight line consists of a straight line in R

2 plus one point at infinity. Two
straight lines in P always intersect; parallel lines in R

2 intersect at infinity when
completed to straight lines in P .

In general, an invertible linear transformation T ∈ GL(V ) of V induces a pro-
jective transformation [T ] of the corresponding projective space P , which is well
defined by [T ] [x] = [T x] . Readers will easily deduce from Proposition 8.3 that
[T ] = [U ] if and only if T = λU for some λ ∈ K , λ =/ 0. Hence the group of all
projective transformations of P is isomorphic to GL(V ) / Z

(

GL(V )
)

. Similarly,
linear transformations T ∈ SL(V ) induce a group of projective transformations
of P , which is isomorphic to SL(V ) / Z

(

SL(V )
)

; this is the projective special
linear group PSL(V ) .

Elementary transformations. Our main result concerns the simplicity of
PSL(V ) . The proof requires two properties of elementary transformations.

Proposition 8.4. For every vector space V of finite dimension n � 2 over a
field K , the group SL(V ) is generated by all elementary transformations.
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Proof. We use matrices. As long as rows are not permuted or multiplied by
scalars, Gauss-Jordan reduction is equivalent to left multiplication by elementary
matrices. Therefore, when M is an invertible matrix, there are elementary ma-
trices E1 , . . . , En such that E1 · · · En M is diagonal. Since the inverse of an
elementary matrix is elementary, M is the product of elementary matrices and a
diagonal matrix D . Moreover, det M = det D , since elementary matrices have
determinant 1. We claim that, when a diagonal matrix D has determinant 1, there
are elementary matrices E1 , . . . , En such that E1 · · · En M is the identity matrix.
Then D is a product of elementary matrices, and Proposition 8.4 is proved.

The claim is proved if n = 2 by the Gauss-Jordan reduction:

D =
(

a 0
0 b

)

−→
(

a 0
a b

)

−→
(

0 −b
a b

)

−→
(

0 −b
a 0

)

−→
(

1 −b
a 0

)

−→
(

1 −b
0 ab

)

−→
(

1 0
0 ab

)

,

where ab = 1. If n > 2 and D has d1 , d2 , . . . , dn on the diagonal, then
transforming the first two rows of D as above yields a diagonal matrix with 1,
d1 d2 , d3 , . . . , dn on the diagonal; then transforming rows 2 and 3 as above
yields a diagonal matrix with 1, 1, d1 d2 d3 , . . . , dn on the diagonal; repeating
this process yields a diagonal matrix with 1, . . . , 1 , d1 d2 . . . dn on the diagonal,
which is the identity matrix if det D = 1. �

Proposition 8.5. Elementary transformations constitute a conjugacy class of
GL(V ) ; if dim V � 3 , they constitute a conjugacy class of SL(V ) .

Proof. Let E be an elementary transformation and let T ET−1 be a conjugate
of E in GL(V ) . There is a basis b1, b2, . . . , bn of V such that Eb1 = b1 + b2
and Ebi = bi for all i � 2. Then T b1, T b2, . . . , T bn is a basis of V and
T ET−1 T b1 = T b1 + T b2 , T ET−1 T bi = T bi for all i � 2; hence T ET−1 is
elementary. Thus, all conjugates of E are elementary.

Conversely, let E and E ′ be elementary transformations. There is a basis
b1, b2, . . . , bn of V such that Eb1 = b1 + b2 and Ebi = bi for all i � 2, and a
basis b′1, b′2, . . . , b′n of V such that E ′b′1 = b′1 + b′2 and E ′b′i = b′i for all i � 2.
Let T be the linear transformation such that T bi = b′i for all i ; T is invertible and
T ET−1 = E ′ , since T ET−1b′i = E ′b′i for all i . Thus E and E ′ are conjugate
in GL(V ) .

To prove conjugacy in SL(V ) we need T ∈ SL(V ) . Let d = det T =/ 0. If
n � 3, then b′′1 = b′1 , . . . , b′′n−1 = b′n−1 , b′′n = d−1b′n is still a basis of V , and
E ′b′′1 = b′′1 + b′′2 , E ′′b′′i = b′′i for all i � 2. Let T ′ be the linear transformation
such that T ′bi = b′′i for all i ; T ′ is invertible, det T ′ = d−1 det T = 1, and
T ′ET ′−1 = E ′ ; hence E and E ′ are conjugate in SL(V ) . �

The last part of the proof breaks down if n = 2; in fact, elementary transfor-
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mations need not be conjugate in SL(V ) when dim V = 2 (see the exercises).

Main result:

Theorem 8.6. PSL(V ) is simple when dim V � 3 .

Proof. A nontrivial normal subgroup of PSL(V ) comes from a normal subgroup
Z
(

SL(V )
)

� N ⊆ SL(V ) of SL(V ) . We show that N must contain an elementary
transformation; then N = SL(V ) , by 8.5 and 8.4.

Since N properly contains Z
(

SL(V )
)

, some A ∈ N does not commute
with some elementary transformation D , by 8.3. Then B = AD A−1 D−1 =/ 1
and B ∈ N . Also F(AD A−1) ∩ F(D) ⊆ F(B) ; since AD A−1 and D are
elementary, we have dim F(AD A−1) = dim F(D) = n − 1, by 8.2, and

dim F(B) � dim
(

F(AD A−1) ∩ F(D)
)

= dim F(AD A−1) + dim F(D) − dim
(

F(AD A−1) + F(D)
)

� n − 2.

Hence F(B) has dimension n − 1 or n − 2. If F(B) has dimension n − 1, then
B is elementary by 8.2, and we are done.

Assume that F(B) = Ker (B − 1) has dimension n − 2. Then Im (B − 1)
has dimension 2. Since V has dimension at least 3, Im (B − 1) is contained in a
subspace U of V (a hyperplane) of dimension n − 1. Then BU ⊆ (B − 1)U +
U ⊆ U and BU = U .

For every u ∈ U , u =/ 0, and v ∈ V \U there is an elementary transformation
E such that F(E) = U and Ev = u + v ; in particular, Im (E − 1) = K u . Then
C = B E B−1 E−1 ∈ N ; also U ⊆ F(C) , since x ∈ U implies B−1x ∈ U =
F(E) and Cx = B E B−1x = B B−1x = x . Hence F(C) = U or F(C) = V . We
show that u and v can be chosen so that C =/ 1; then C is elementary.

If F(B) � U , choose v ∈ F(B) \U and u ∈ U\F(B) . Then Bu =/ u ,
B E B−1v = B Ev = Bv + Bu =/ v + u = Eu , B E B−1 =/ E , and C =/ 1.

If F(B) ⊆ U , then B has a restriction B′ to U and F(B′) = F(B) =/ 0, U ;
by 8.4, B′ /∈ Z

(

SL(U)
)

and Bu = B′u /∈ K u for some u ∈ U . Then B E B−1 is
elementary by 8.5; also, B E B−1(Bv) = B Ev = Bu + Bv , so that Im (B E B−1 −
1) = K Bu =/ K u = Im (E − 1) , B E B−1 =/ E , and C =/ 1.

In either case C ∈ N is elementary. �

The case when dim V = 2 is more complex. Then PSL(V ) is not simple when
K has only 2 or 3 elements (see below). The following result makes a substantial
exercise:

Theorem 8.7. PSL(V ) is simple when dim V = 2 and |K | � 4 .

Orders. If K is finite, then so are GL(n, K ) , SL(n, K ) , and PSL(n, K ) .
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Proposition 8.8. If K has q elements, then |GL(n, K )| =
∏

0�i<n (qn − qi ) ;
|SL(n, K )| = |GL(n, K )|/(q − 1); and |PSL(n, K )| = |SL(n, K )|/r , where r is
the number of nth roots of 1 in K .

Proof. An n × n matrix M is invertible if and only if its columns constitute
a basis of the vector space K n . If |K | = q , there are qn possible columns and
qn − 1 ways to choose the first column of M , which must not be the zero column;
there are qn − q ways to choose the second column, which must not be one of
the q scalar multiples of the first column; there are qn − q2 ways to choose the
third column, which must not be one of the q2 linear combinations of the first
two; . . . ; and there are qn − qn−1 ways to choose the last column, which must
not be one of the qn−1 linear combinations of the first n − 1 columns. Hence
|GL(n, K )| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1) .

Then |GL(n, K )| / |SL(n, K )| = q − 1, by 8.1; if r is the number of nth roots
of 1 in K , then |PSL(n, K )| = |SL(n, K )|/r , by 8.3. �

We will show in Chapter V that a finite field K is uniquely determined, up to
isomorphism, by its number q of elements, which must be a power of a prime;
then GL(n, K ) , SL(n, K ) , and PSL(n, K ) are usually denoted by GL(n, q) ,
SL(n, q) , and PSL(n, q) .

If q = 2, then K ∼= Z2 , the field of integers modulo 2, and has one square root
of unity. Hence |GL(2, 2)| = (4 − 1)(4 − 2) = 6 and |PSL(2, 2)| = |SL(2, 2)| =
6/(2 − 1) = 6. If q = 3, then K ∼= Z3 has 2 square roots of unity, |GL(2, 3)| =
(9 − 1)(9 − 3) = 48, |SL(2, 3)| = 48/(3 − 1) = 24, and |PSL(2, 2)| = 24/2 = 12.
Hence PSL(2, 2) and PSL(2, 3) are not simple.

On the other hand, |GL(3, 2)| = (8 − 1)(8 − 2)(8 − 4) = 168 and |PSL(3, 2)|
= |SL(3, 2)| = 168/(2 − 1) = 168, since K ∼= Z2 . The simple group PSL(3, 2) is
not abelian (it is not of prime order) and is not one of the simple alternating groups
(whose orders are 60, 360, 2520, . . . ). Thus, the groups PSL(n, q) constitute a
new family of simple groups.

Exercises
1. Show that a linear transformation is elementary if and only if its matrix in some basis is

elementary (has 1’s on the main diagonal and exactly one nonzero entry off the main diagonal).

2. Show that in SL(2, K ) , every elementary matrix is conjugate to some
(
1 a
0 1

)
.

3. Show that
(
1 a
0 1

)
and
(
1 b
0 1

)
, where a, b =/ 0 , are conjugate in SL(2, K ) if and only if

ab−1 = c2 for some c ∈ K .

4. Show that PSL(2, 2) ∼= D3 .

5. To which known group is PSL(2, 3) isomorphic?
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6. Draw a table showing |PSL(n, q)| for all n, q = 2, 3, 4, 5 .

7. Let |K | = q = pk and let S be the set of all upper triangular n × n matrices with 1’s
on the main diagonal. Show that S is a Sylow p-subgroup of SL(n, K ) .

8. Show that Z
(

GL(V )
)

� N �= GL(V ) implies SL(V ) ⊆ N .

*9. Prove that PSL(V ) is simple when dim V = 2 and |K | � 4 .

9. Solvable Groups

Solvable groups are a large class of groups with remarkable properties. Their
connection with polynomial equations is explained in Chapter V. The Hall theorems
at the end of this section may be skipped.

Definition. A solvable group is a group with a normal series whose factors are
abelian.

Solvable groups are sometimes called metabelian. Abelian groups are solvable;
readers will easily show that Dn is solvable, and that all groups of order less than
60 are solvable. On the other hand, nonabelian simple groups are not solvable,
since the single factor in their one normal series is not abelian; thus, An (when
n � 5) and the simple groups in Section 8 are not solvable.

The first major step of the Classification theorem, the Feit and Thompson
theorem [1963], states that all nonabelian finite simple groups have even orders;
equivalently, every group of odd order is solvable.

The commutator series. The commutator series is the smallest descending
sequence of subgroups with abelian factors. It provides an alternate definition of
solvable groups, and is constructed as follows.

Definitions. The commutator of two elements x, y is xyx−1 y−1 ; the commu-
tator subgroup or derived group of a group G is the subgroup G′ of G generated
by all commutators.

The commutator xyx−1 y−1 is traditionally denoted by [x, y] . In algebraic
topology, the derived group of π1(X) is the first homology group H1(X) of X .

Proposition 9.1. G′ is a normal subgroup of G ; in fact, G′ is the smallest
normal subgroup N of G such that G/N is abelian.

Proof. The inverse of a commutator xyx−1 y−1 is a commutator, and a conju-
gate of a commutator is again a commutator:

a xyx−1 y−1 a−1 = axa−1 aya−1 (axa−1)−1 (aya−1)−1.

Hence every x ∈ G′ is a product of commutators x = c1 c2 · · · cn , and then
axa−1 = ac1 a−1 ac2 a−1 · · · acn a−1 ∈ G′ for all a ∈ G . Thus G′ �= G .

Next, xyx−1 y−1 ∈ G′ for all x, y ∈ G ; hence G′xy = G′yx and G/G′
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is abelian. Conversely, if N �= G and G/N is abelian, then N xy = N yx and
xyx−1 y−1 ∈ N for all x, y ∈ G , and G′ ⊆ N . �

Readers will prove the following universal property: every homomorphism of
G into an abelian group factors uniquely through the projection G −→ G/G′ .

Definition. The commutator series of a group G is the sequence

G �= G′ �= G′′ �= · · · �= G(k) �= G(k+1) �= · · ·

in which G(0) = G and G(k+1) = (G(k))′ for all k � 0 .

The group G(k) is the kth derived group of G ; it is normal in G(k−1) by 9.1.
The commutator series is not a normal series, but it becomes one if some G(r) = 1
and the tail G(r+1) �= · · · is chopped off (preferably under anesthesia).

Proposition 9.2. A group G is solvable if and only if G(r) = 1 for some r � 0 .

Proof. If G(r) = 1, then 1 = G(r) �= G(r−1) �= · · · �= G′ �= G is a normal
series whose factors are abelian, by 9.1. Conversely, assume that G has a normal
series 1 = A0

�= A1
�= · · · �= Am = G whose factors Ai/Ai−1 are all abelian.

Then G/Am−1 is abelian; by 9.1, G′ ⊆ Am−1 . In general, Am−k/Am−k−1 is
abelian, so G(k) ⊆ Am−k implies G(k+1) ⊆ A′

m−k ⊆ Am−k−1 , by 9.1. Induction
then yields G(k) ⊆ Am−k for all k � m , in particular G(m) = 1. �

Proposition 9.2 is often used as a definition of solvable groups.

Properties. The class of all solvable groups has three basic properties that can
be proved either from the definition or from 9.2, and make fine exercises.

Proposition 9.3. Every subgroup of a solvable group is solvable.

Proposition 9.4. Every quotient group of a solvable group is solvable.

Proposition 9.5. If N �= G and G/N are solvable, then G is solvable.

These properties yield further examples.

Proposition 9.6. Every finite p-group is solvable.

Proof. That a group G of order pn is solvable is proved by induction on n . If
n � 2, then G is abelian, hence solvable, by 3.10. In general, G has a subgroup
N of order pn−1 , which is normal by 5.12; then N and G/N are solvable, by
the induction hypothesis, and G is solvable, by 9.5. �

Proposition 9.7. Every group of order pnq (where p and q are primes) is
solvable.

In Chapter IX we prove a stronger result, Burnside’s pmqn theorem: every
group of order pmqn , where p, q are primes, is solvable. Proposition 9.7 and its
proof may be skipped.
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Proof. We may assume that p =/ q . The proof is by induction on n .

Let S be a Sylow p-subgroup of G . If S �= G , then G/S is cyclic, since
|G/S| = q is prime, S is solvable by 9.6, and G is solvable by 9.5.

Now assume that S is not normal. Then S ⊆ NG(S) � G ; since [ G : S ] = q
is prime, this implies NG(S) = S , and S has [ G : NG(S) ] = q conjugates. Thus
there are q Sylow p-subgroups.

If the q Sylow p-subgroups of G are pairwise disjoint ( S ∩ T = 1 when
S =/ T ), then G has q (pn − 1) elements whose order is a positive power of p ,
leaving at most q elements whose order is a power of q . Therefore G has only
one Sylow q -subgroup Q , and Q �= G . Then Q is cyclic, G/Q is solvable by
9.6, and G is solvable by 9.5. In particular, 9.7 holds when n = 1.

Now assume that the q Sylow p-subgroups of G are not pairwise disjoint.
Then there are Sylow p-subgroups S and T such that S ∩ T =/ 1, and one can
choose S and T so that M = S ∩ T has the greatest possible number of elements.
By Lemma 9.8 below, H = NG(M) has more than one Sylow p-subgroup; M is
the intersection of all the Sylow p-subgroups of H ; and every Sylow p-subgroup
of H is contained in a unique Sylow p-subgroup of G . Now, the number of
Sylow p-subgroups of H divides pnq but is not divisible by p ; hence H has q
Sylow p-subgroups. Since G also has q Sylow p-subgroups, M is contained in
every Sylow p-subgroup of G . Therefore M is the intersection of all the Sylow
p-subgroups of G . Since the latter are all conjugate, this implies that M �= G .
Now, |M | = pk , where 1 � k < n . Hence G/M is solvable, by the induction
hypothesis; M is solvable by 9.6; and G is solvable, by 9.5. �

Lemma 9.8. Let M be the intersection of two distinct Sylow p-subgroups of a
group G . If M has the greatest possible number of elements, then H = NG(M)
has more than one Sylow p-subgroup; M is the intersection of all the Sylow p-sub-
groups of H ; and every Sylow p-subgroup of H is contained in a unique Sylow
p-subgroup of G .

Proof. We have M � S for some Sylow p-subgroup S of G . By 5.11,
M � NS(M) = H ∩ S . Now, NS(M) ⊆ S is a p -subgroup of H and is by 5.9
contained in a Sylow p-subgroup P of H , which is in turn contained in a Sylow
p-subgroup T of G . Then M � NS(M) ⊆ S ∩ T and S = T by the choice of
M . Hence P ⊆ H ∩ S = NS(M) and NS(M) = P is a Sylow p-subgroup of
H . Since M �= NG(M) = H , M is contained in every conjugate of P and is
contained in every Sylow p-subgroup of H .

We also have M = S ∩ T for some Sylow p-subgroups S =/ T of G . Then
M ⊆ NS(M) ∩ NT (M) ⊆ S ∩ T and M = NS(M) ∩ NT (M) . Then
NS(M) =/ NT (M) , since M � NS(M), NT (M) . By the above, applied to S
and to T , M is the intersection of two distinct Sylow p-subgroups of H . There-
fore H has more than one Sylow p-subgroup, and M is the intersection of all the
Sylow p-subgroups of H .
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Finally, let P be any Sylow p-subgroup of H . By 5.9, P is contained in a Sy-
low p-subgroup S of G , but P is not contained in two distinct Sylow p-subgroups
S and T of G : otherwise, M � P ⊆ S ∩ T contradicts the choice of M . �

The Hall Theorems. This part may be skipped. The three theorems below, due
to Hall [1928], are stronger versions of the Sylow theorems that hold in solvable
groups. First we prove a lemma.

Lemma 9.9. Every nontrivial finite solvable group contains a nontrivial abelian
normal p-subgroup for some prime p .

Proof. Let G be be a finite solvable group. There is a smallest integer r > 0
such that G(r) = 1. Then A = G(r−1) is a nontrivial abelian normal subgroup of
G . Some prime p divides |A| > 1; let N be the set of all elements of A whose
order is a power of p . Then N =/ 1, N � A , and N is a p-group. If x ∈ N
and g ∈ G , then gxg−1 ∈ A and the order of gxg−1 is a power of p , so that
gxg−1 ∈ N ; thus N �= G . �

The proof of the first theorem also uses Schur’s theorem, proved in Section 12
by other methods: if m and n are relatively prime, then a group of order mn
that contains an abelian normal subgroup of order n also contains a subgroup of
order m .

Theorem 9.10. Let m and n be relatively prime. Every solvable group of order
mn contains a subgroup of order m .

Proof. Let G be solvable of order mn . If m is a power of a prime, then
9.10 follows from the first Sylow theorem. Otherwise, we proceed by induction
on |G| . By 9.9, G contains contains a nontrivial abelian normal subgroup N of
order pk > 1 for some prime p . Now, pk divides |G| = mn ; since m and n are
relatively prime, either pk divides m , or pk divides n .

If pk divides m , then |G/N | = (m/pk) n , where m/pk and n are relatively
prime and |G/N | < |G| . By the induction hypothesis, G/N has a subgroup
H/N of order m/pk , where N ⊆ H � G ; then |H | = m .

If pk divides n , then |G/N | = (n/pk) m , where n/pk and m are relatively
prime and |G/N | < |G| . By the induction hypothesis, G/N has a subgroup
H/N of order m , where N ⊆ H � G . Then |H | = mpk . Now, N �= H , N is
abelian, and N has order pk , which is relatively prime to m ; by Schur’s theorem,
H has a subgroup of order m , and then so does G . �

The subgroups of G of order m are the Hall subgroups of G .

Lemma 9.11. Let m and n be relatively prime and let G be a group of order
mn with an abelian normal subgroup of order n . All subgroups of G of order m
are conjugate.

Proof. Let |G| = mn and let N �= G , with |N | = n and N abelian. Let
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A and B be subgroups of G of order m . Since m and n are relatively prime we
have A ∩ N = B ∩ N = 1; hence AN = B N = G . Therefore every coset of N
intersects A in exactly one element, and similarly for B . The element of N x ∩ B
can then be written as ux x for some unique ux ∈ N . Then ua (auba−1) ab =
(uaa)(ubb) ∈ B for all a, b ∈ A and

uab = ua auba−1.

Let v =
∏

b∈A ub ∈ N . Since N is abelian,

v =
∏

b∈A uab =
∏

b∈A (ua auba−1) = um
a ava−1

for all a ∈ A . We also have un
a = 1, since |N | = n . Now, qm + rn = 1 for

some q, r ∈ Z , since m and n are relatively prime; hence ua = uqm+rn
a = uqm

a ,
w = vq = umq

a (ava−1)q = ua awa−1 , and uaa = waw−1 for all a ∈ A .
Therefore B = wAw−1 is a conjugate of A . �

Theorem 9.12. In a solvable group of order mn , where m and n are relatively
prime, all subgroups of order m are conjugate.

Proof. Let G be solvable of order mn . If m is a power of a prime, then 9.12
follows from the third Sylow theorem. Otherwise, we proceed by induction on
|G| . By 9.9, G contains an abelian normal subgroup N of order pk > 1 for some
prime p , and pk divides m or n . Let A, B � G have order m .

Assume that pk divides m . Then |N A| = |A| (|N |/|A ∩ N |) = mph for
some h � k . Now, mph = |N A| divides mn = |G| ; since ph and n are
relatively prime this implies ph = 1. Hence |N A| = |A| and N ⊆ A . Similarly,
N ⊆ B . By the induction hypothesis, A/N and B/N are conjugate in G/N :
B/N = (N x)(A/N)(N x)−1 for some x ∈ G . Then

B =
⋃

b∈B Nb =
⋃

a∈A (N x)(Na)(N x)−1

=
⋃

a∈A N xax−1 = N (x Ax−1) = x Ax−1,

since N = x N x−1 ⊆ x Ax−1 . Thus A and B are conjugate in G .

Now assume that pk divides n . Then A ∩ N = B ∩ N = 1; hence |N A| =
|N B| = pkm , and the subgroups N A/N ∼= A/(A ∩ N) and N B/N ∼= B/(B ∩
N) of G/N have order m . By the induction hypothesis, N A/N and N B/N are
conjugate in G/N . As above, it follows that N A and N B are conjugate in G :
N B = x N Ax−1 for some x ∈ G . Then B and x Ax−1 are subgroups of N B
of order m . Hence B and x Ax−1 are conjugate in N B : this follows from the
induction hypothesis if pk < n , from Lemma 9.11 if pk = n . Therefore A and
B are conjugate in G . �

Theorem 9.13. In a solvable group of order mn , where m and n are relatively
prime, every subgroup whose order divides m is contained in a subgroup of
order m .
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Proof. Let G be solvable of order mn . If m is a power of a prime, then
9.13 follows from 5.9. Otherwise, we proceed by induction on |G| . By 9.9, G
contains an abelian normal subgroup N of order pk > 1 for some prime p , and
pk divides m or n . Let H be a subgroup of G whose order � divides m .

Assume that pk divides m . Then |N H/N | = |H |/|H ∩ N | divides m ,
is relatively prime to n , and divides |G/N | = (m/pk) n . By the induction
hypothesis, H/N is contained in a subgroup K/N of G/N of order m/pk ,
where N ⊆ K � G ; then H is contained in the subgroup K of G of order m .

Assume that pk divides n . Then H ∩ N = 1 and |N H | = pk� . Hence
|N H/N | = � divides m , is relatively prime to n , and divides |G/N | = (n/pk) m .
By the induction hypothesis, N H/N is contained in a subgroup K/N of G/N
of order m , where N ⊆ K � G ; then |K | = pkm and H ⊆ N H ⊆ K . If
pk < n , then |K | < |G| and H is contained in a subgroup of K of order m , by
the induction hypothesis.

Now assume that pk = n . Let A be a subgroup of G of order m . Then
A ∩ N = 1, |N A| = |N | |A| = |G| , and N A = G . Hence |A ∩ N H | =
|A| |N H | / |AN H | = mpk�/mn = � . Thus H and K = A ∩ N H are subgroups
of N H of order � . By 9.12, H and K are conjugate in N H : H = x K x−1 for
some x ∈ N H . Then H is contained in the subgroup x Ax−1 of G , which has
order m . �

Exercises
.

1. Find the commutator series of S4 .

2. Find the commutator series of A4 .

3. Show that Dn is solvable.

4. Show that every group of order less than 60 is solvable.

5. Show that G′ is a fully invariant subgroup of G (ηG′ ⊆ G′ for every endomorphism
η of G ).

6. Show that G(k) is a fully invariant subgroup of G , for every k � 0 .

7. Show that G/G′ has the following universal property: every homomorphism of G into
an abelian group factors uniquely through the projection G −→ G/G′ .

8. Show that a group that has a composition series is solvable if and only if all its simple
factors are abelian.

9. Prove that every subgroup of a solvable group is solvable.

10. Prove that every quotient group of a solvable group is solvable.

11. Prove the following: if N �= G and G/N are solvable, then G is solvable.

12. Show that Sn is solvable if and only if n � 4 .



10. Nilpotent Groups 89

13. Find the commutator series of Sn .

10. Nilpotent Groups

Nilpotent groups are a class of solvable groups with even more striking properties.

Definition. A normal series 1 = C0
�= C1

�= · · · �= Cm = G is central when
Ci

�= G and Ci+1/Ci ⊆ Z(G/Ci ) for all 0 � i < m .

Central normal series are also called just central series. A central normal series
has abelian factors, but a normal series with abelian factors need not be central;
the exercises give a counterexample.

Definition. A group is nilpotent when it has a central normal series.

In particular, abelian groups are nilpotent, and nilpotent groups are solvable.
The converses are not true; we shall see that D4 is nilpotent but not abelian, and
that D3 and D5 are solvable but not nilpotent.

Two central series. Nilpotent groups have two explicit central normal series.

Definition. The descending central series of a group G is the sequence

G �= G1 �= · · · �= Gk �= Gk+1 �= · · ·

in which G0 = G , and Gk+1 is the subgroup generated by all commutators
xyx−1 y−1 with x ∈ G and y ∈ Gk .

In particular, G1 = G′ . The descending central series yields a central normal
series if some Gr = 1 and subsequent terms are removed (or fall off):

Proposition 10.1. Gk �= G and Gk/Gk+1 ⊆ Z(G/Gk+1) , for all k .

Proof. The proof is by induction on k . First, G0 = G �= G , and G0/G1 =
G/G′ ⊆ Z(G/G1) since G/G′ is abelian by 9.1.

Now assume that Gk �= G . As in the proof of 9.1, the inverse of the commutator
xyx−1 y−1 of x and y is the commutator of y and x ; a conjugate

a xyx−1 y−1 a−1 = axa−1 aya−1 (axa−1)−1 (aya−1)−1

of xyx−1 y−1 is the commutator of a conjugate of x and a conjugate of y . Hence
every g ∈ Gk+1 is a product g = c1, . . ., cn of commutators xyx−1 y−1 of
x ∈ G and y ∈ Gk , and commutators xyx−1 y−1 of x ∈ Gk and y ∈ G ;
then aga−1 = ac1a−1 · · · acna−1 is a product of similar commutators. Thus
Gk+1 �= G . For all x ∈ G and y ∈ Gk , xyx−1 y−1 ∈ Gk+1 ; hence Gk+1xy =
Gk+1 yx and Gk+1 y ∈ Z(G/Gk+1) . Thus Gk/Gk+1 ⊆ Z(G/Gk+1) . �

The other series ascends by way of centers and is constructed as follows.
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Proposition 10.2. Every group G has unique normal subgroups Zk(G) such
that Z0(G) = 1 and Zk+1(G) / Zk(G) = Z

(

G/Zk(G)
)

for all k � 0 .

Proof. First, Z0(G) = 1 is normal in G . If Zk
�= G , then Z

(

G/Zk(G)
)

is a normal subgroup of G/Zk(G) ; by I.4.9, there is a unique normal subgroup
Zk+1(G) ⊇ Zk(G) of G such that Z

(

G/Zk(G)
)

= Zk+1(G) / Zk(G) . �
In particular, Z1(G) = Z(G) is the center of G .

Definition. The ascending central series of a group G is the sequence

1 = Z0(G) �= Z1(G) �= · · · �= Zk(G) �= Zk+1(G) �= · · ·
constructed in Proposition 10.2.

The ascending central series yields a central normal series if some Zr (G) = G
and subsequent terms are removed (or just abandoned by the wayside).

Proposition 10.3. A group G is nilpotent if and only if Gr = 1 for some r � 0 ,
if and only if Zr (G) = G for some r � 0 .

Proof. If Gr = 1 for some r � 0, or if Zr (G) = G for some r � 0, then
truncating the descending central series, or the ascending central series, yields a
central normal series, and G is nilpotent.

Conversely, assume that G has a central normal series 1 = C0
�= C1

�= · · ·
�= Cm = G . We prove by induction on k than Gk ⊆ Cm−k and Ck ⊆ Zk(G)
for all 0 � k � m ; hence Gm = 1 and Zm(G) = G . (Thus, the ascending and
descending central series are in this sense the “fastest” central series.)

We have Gm−m = G = Cm . Assume that Gm− j ⊆ Cj , where j > 0. Let

x ∈ G and y ∈ Gm− j ⊆ Cj . Since C j−1 y ∈ Cj/C j−1 ⊆ Z(G/C j−1) , we

have C j−1xy = C j−1 yx and xyx−1 y−1 ∈ C j−1 . Thus C j−1 contains every

generator of Gm− j+1 ; hence Gm− j+1 ⊆ C j−1 .

We also have Z0(G) = 1 = C0 . Assume that Ck ⊆ Zk = Zk(G) , where
k < m . Then G/Zk

∼= (G/Ck)/(Zk/Ck) and there is a surjective homomor-
phism π : G/Ck −→ G/Zk with kernel Zk/Ck , namely π : Ck x �−→ Zk x .
Since π is surjective, π sends the center of G/Ck into the center of G/Zk :

π (Ck+1/Ck) ⊆ π Z(G/Ck) ⊆ Z(G/Zk) = Zk+1/Zk ;

hence Zk x ∈ Zk+1/Zk for all x ∈ Ck+1 , and Ck+1 ⊆ Zk+1 . �
In fact, we have shown that Gr = 1 if and only if Zr (G) = G ; the least such r

is the nilpotency index of G .

Properties. Nilpotent groups, as a class, have basic properties that can be
proved either from the definition or from 10.3, and make wonderful exercises.

Proposition 10.4. Every subgroup of a nilpotent group is nilpotent.
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Proposition 10.5. Every quotient group of a nilpotent group is nilpotent.

Proposition 10.6. If N ⊆ Z(G) and G/N is nilpotent, then G is nilpotent.

Proposition 10.7. If A and B are nilpotent, then A ⊕ B is nilpotent.

Armed with these properties we now determine all nilpotent finite groups.

Proposition 10.8. Every finite p-group is nilpotent.

Proof. That a group G of order pn is nilpotent is proved by induction on n .
If n � 2, then G is abelian, hence nilpotent, by 3.10. If n > 2, then G has a
nontrivial center, by 3.9; then G/Z(G) is nilpotent, by the induction hypothesis,
and G is nilpotent, by 10.6. �

Proposition 10.9. A finite group is nilpotent if and only if all its Sylow subgroups
are normal, if and only if it is isomorphic to a direct product of p-groups (for various
primes p ).

Proof. The ascending central series of any group G has the following property:
if Zk ⊆ H � G , then Zk+1 ⊆ NG(H) . Indeed, let x ∈ Zk+1 and y ∈ H . Since
Zk x ∈ Zk+1/Zk ⊆ C(G/Zk) we have Zk xy = Zk yx , so that xyx−1 y−1 ∈ Zk
and xyx−1 = (xyx−1 y−1) y ∈ H . Thus x ∈ NG(H) .

Now let G be a finite group. Let S be a Sylow p-subgroup of G . By 5.10,
NG(S) is its own normalizer. Hence Z0 = 1 ⊆ NG(S) , and Zk ⊆ NG(S) implies
Zk+1 ⊆ NG(NG(S)) = NG(S) by the above, so that Zk ⊆ NG(S) for all k . If G
is nilpotent, then NG(S) = G , by 10.3, and S �= G .

Next, assume that every Sylow subgroup of G is normal. Let p1, p2, . . . , pm
be the prime divisors of |G| . Then G has one Sylow pi-subgroup Si for every
pi . We have |G| = |S1| |S2| · · · |Sm | ; hence G = S1 S2 · · · Sm . Moreover,
(S1 · · · Si ) ∩ Si+1 = 1 for all i < m , since |Si+1| and |S1 · · · Si | are relatively
prime. Hence G ∼= S1 × S2 × · · · × Sm , by 2.1.

Finally, if G is isomorphic to a direct product of p-groups, then G is nilpotent,
by 10.8 and 10.7. �

In particular, D4 and Q are nilpotent, by 10.8, but the solvable groups D3 and
D5 are not nilpotent, by 10.9. If G is a nilpotent finite group, readers will easily
deduce from 10.9 that every divisor of |G| is the order of a subgroup of G . This
property does not extend to solvable groups; for instance, the solvable group A4
of order 12 does not have a subgroup of order 6.

Exercises
1. Give an example of a normal series that is not central but whose factors are abelian.

2. Show that Zk(G) is a characteristic subgroup of G (α Zk(G) = Zk(G) for every
automorphism α of G ).

3. Show that Zk(G) is a fully invariant subgroup of G (η Zk(G) ⊆ Zk(G) for every
endomorphism η of G ).
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4. Find the ascending central series of Sn .

5. Find the descending central series of Sn .

6. Prove that Gr = 1 if and only if Zr (G) = G .

7. Prove that every subgroup of a nilpotent group is nilpotent.

8. Prove that every quotient group of a nilpotent group is nilpotent.

9. Prove the following: if N ⊆ Z(G) and G/N is nilpotent, then G is nilpotent.

10. Prove the following: if A and B are nilpotent, then A ⊕ B is nilpotent.

11. Find a group G with a normal subgroup N such that N and G/N are nilpotent but
G is not nilpotent.

12. Prove the following: when G is a nilpotent finite group, every divisor of |G| is the
order of a subgroup of G .

13. A maximal subgroup of a group G is a subgroup M � G such that there exists no
subgroup M � H � G . Prove that a finite group G is nilpotent if and only if every maximal
subgroup of G is normal, if and only if every maximal subgroup of G contains G′ .

11. Semidirect Products

Semidirect products are direct products in which the componentwise operation is
twisted by a group-on-group action. The exercises give some applications.

Definition. A group B acts on a group A by automorphisms when there is
a group action of B on the set A such that the action of every b ∈ B is an
automorphism of the group A.

In what follows, A and B are written multiplicatively, and we use the left
exponential notation (b, a) �−→ ba for actions of B on A . Then B acts on A by
automorphisms if and only if

1a = a , b(b′a) = bb′a , b(aa′) = ba ba′

for all a, a′ ∈ A and b, b′ ∈ B ; the first two laws ensure a group action, and the
last law ensures that the action of b ∈ B on A (the permutation a �−→ ba ) is a
homomorphism, hence an automorphism, of A . Then

b1 = 1 , b(an) = (ba)n

for all a ∈ A , b ∈ B , and n ∈ Z .

For example, the action gx = gxg−1 of a group G on itself by inner automor-
phisms is, felicitously, an action by automorphisms.

Proposition 11.1. Let the group B act on a group A by automorphisms. The
mapping ϕ : b �−→ ϕ(b) defined by ϕ(b): a �−→ ba is a homomorphism of B
into the group Aut (A) of all automorphisms of A .
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Proof. By definition, every ϕ(b) is an automorphism of A ; moreover, ϕ(1) is
the identity mapping on A , and ϕ(b) ◦ ϕ(b′) = ϕ(bb′) for all b, b′ ∈ B . �

In fact, there is a one-to-one correspondence between actions of B on A by
automorphisms and homomorphisms B −→ Aut (A) . It is convenient to denote
an action of B on A and the corresponding homomorphism of B into Aut (A)
by the same letter.

Definition. Given two groups A and B and an action ϕ of B on A by
automorphisms, the semidirect product A �ϕ B is the Cartesian product A × B
with the multiplication defined for all a, a′ ∈ A and b, b′ ∈ B by

(a, b) (a′, b′) = (a ba′, bb′).

When ϕ is known without ambiguity, A �ϕ B is denoted by A � B .

Readers will verify that A �ϕ B is indeed a group. If B acts trivially on A

(ba = a for all a and b ), then A �ϕ B is the Cartesian product A × B with
componentwise multiplication, as in Section 1. The exercises give examples of
semidirect products that are not direct products.

Internal characterization. Proposition 1.1 on internal direct sums extends to
semidirect products: in fact, 1.1 is the case where B �= G .

Proposition 11.2. A group G is isomorphic to a semidirect product G1 � G2
of two groups G1 , G2 if and only if it contains subgroups A ∼= G1 and B ∼= G2
such that A �= G , A ∩ B = 1 , and AB = G .

Proof. G1 � G2 comes with a projection π : G1 � G2 −→ G2 , (x1, x2) �−→
x2 , which is a homomorphism, since the operation on G1 � G2 is componentwise
in the second component. Hence

Ker π = { (x1, x2)∈ G1 × G2
∣
∣ x2 = 1 }

is a normal subgroup of G1 × G2 ; and (x1, 1) �−→ x1 is an isomorphism of
Ker π onto G1 . There is also an injection ι : G2 −→ G1 � G2 , x2 �−→ (1, x2) ,
which is a homomorphism since x 1 = 1 for all x ∈ G2 ; hence

Im ι = { (x1, x2)∈ G1 × G2
∣
∣ x1 = 1 }

is a subgroup of G1 � G2 and is isomorphic to G2 . Moreover, Ker π ∩ Im ι =
{ (1, 1) } = 1, and (Ker π) (Im ι) = G1 × G2 , since every (x1, x2)∈ G1 × G2
is the product (x1, x2) = (x1, 1)(1, x2) of (x1, 1)∈ Ker π and (1, x2)∈ Im ι .

If now θ : G1 � G2 −→ G is an isomorphism, then A = θ (Ker π) and
B = θ (Im ι) are subgroups of G , A ∼= Ker π ∼= G1 , B ∼= Im ι ∼= G2 , A �= G ,
A ∩ B = 1, and AB = G .

Conversely, assume that A �= G , B � G , A ∩ B = 1, and AB = G . Ev-
ery element g of G can then be written uniquely as a product g = ab for
some a ∈ A and b ∈ B : if ab = a′b′ , with a, a′ ∈ A and b, b′ ∈ B , then
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a′−1a = b′b−1 ∈ A ∩ B yields a′−1a = b′b−1 = 1 and a = a′ , b = b′ . Hence
the mapping θ : (a, b) �−→ ab of A × B onto G is a bijection.

Like G , B acts on A by inner automorphisms: ba = bab−1 . Products ab then
multiply as follows: (ab)(a′b′) = a ba′b−1 bb′ = a ba′ bb′ , and θ : (a, b) �−→ ab
is an isomorphism of A � B onto G . �

Exercises
1. Verify that A �ϕ B is a group.

2. Show that Dn is a semidirect product of a cyclic group of order n by a cyclic group of
order 2 , which is not a direct product if n > 2 .

In the following exercises Cn is cyclic of order n .

3. Find Aut (C3) .

4. Find Aut (C4) .

5. Find Aut (C5) .

6. Show that Aut (Cp) is cyclic of order p − 1 when p is prime.

7. Find all semidirect products of C4 by C2 .

8. Find all semidirect products of C3 by C4 .

9. Given presentations of A and B , set up a presentation of A �ϕ B .

10. Prove the following: for any group G there exists a group H such that G �= H and
every automorphism of G is induced by an inner automorphism of H .

Nonabelian groups in the following exercises should be specified by presentations.

11. Find all groups of order 21 .

12. Find all groups of order 39 .

13. Find all groups of order 55 .

14. Find all groups of order 57 .

15. Find all groups of order 20 .

16. Find all groups of order 28 .

17. Find all groups of order 44 .

18. Find all groups of order 52 .

In the remaining exercises, p > 2 is a prime number.

19. Show that Cp ⊕ Cp has (p2 − 1)(p2 − p) automorphisms. (Hint: Cp ⊕ Cp is also
a vector space over Zp .)

20. Construct all automorphisms α of Cp ⊕ Cp such that α2 = 1.

21. Construct all groups of order 2p2 . (Give presentations.)
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12. Group Extensions

Group extensions are more complex than semidirect products but also more gen-
eral, since they require only one normal subgroup. They lead to the beautiful
results at the end of this section, and to the Hall theorems in Section 9.

Definition. Informally, a group extension of a group G by a group Q is a
group E with a normal subgroup N such that G ∼= N and E/N ∼= Q . Composing
these isomorphisms with the inclusion homomorphism N −→ E and canonical
projection E −→ E/N yields an injection G −→ E whose image is N and a
projection E −→ Q whose kernel is N . Our formal definition of group extensions
includes these homomorphisms:

Definition. A group extension G κ−→ E
ρ−→ Q of a group G by a group Q

consists of a group E , an injective homomorphism κ : G −→ E , and a surjective
homomorphism ρ : E −→ Q , such that Im κ = Ker ρ . �

Then N = Im κ = Ker ρ is a normal subgroup of E , G ∼= N , and E/N ∼= Q .
For example, every group E with a normal subgroup N is an extension of N by
E/N ; every semidirect product A � B of groups is an extension of A by B , with
injection a �−→ (a, 1) and projection (a, b) �−→ b .

Group extensions need be considered only up to isomorphism, more precisely,
up to isomorphisms that respect injection and projection, or equivalences:

Definitions. An equivalence of group extensions G κ−→ E
ρ−→ Q and G λ−→

F σ−→ Q of G by Q is an isomorphism θ : E −→ F such that θ ◦ κ = λ and
ρ = σ ◦ θ .

Two group extensions E and F are equivalent when there is an equivalence
E −→ F of group extensions.

Readers will show that equivalence of group extensions is reflexive, symmetric,
and transitive (and would be an equivalence relation if group extensions were
allowed to constitute a set).

Schreier’s Theorem. Given two groups G and Q , Schreier’s theorem con-
structs all extensions of G by Q . This construction is of theoretical interest, even
though it does not lend itself to computing examples by hand. In case N �= E ,
Schreier’s construction is based on the arbitrary selection of one element in each
coset of N ; this creates a bijection of N × E/N onto E .

Definition. A cross-section of a group extension G κ−→ E
ρ−→ Q is a family

p = (pa)a∈Q such that ρ (pa) = a for all a ∈ Q .
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“Cross-section” is the author’s terminology; various other names are in use.

In the above, the inverse image ρ−1(a) of any a ∈ Q is a coset of N = Im κ =
Ker ρ ; thus, a cross-section of E selects one element in every coset of N , and
is actually a cross-section of the partition of E into cosets of N . Every element
of E belongs to only one coset and can now be written uniquely in the form npa
with n ∈ N and a ∈ Q (then a = ρ(npa) ):

Lemma 12.1. Let G κ−→ E
ρ−→ Q be a group extension and let p be a cross-

section of E . Every element of E can be written in the form κ(x) pa for some
unique x ∈ G and a ∈ Q (then a = ρ (κ(x) pa) ).

Lemma 12.1 provides a bijection (x, a) �−→ κ(x) pa of G × Q onto E . Now
we put every product κ(x) pa κ(y) pb in the form κ(z) pc . We start with the
simpler products pa κ(y) and pa pb .

Definitions. Let G κ−→ E
ρ−→ Q be a group extension, and let p be a cross-

section of E . The set action (a, x) �−→ a x of the set Q on the group G relative
to p is defined by

pa κ(x) = κ(a x) pa .

The factor set s = (sa,b)a,b∈Q of E relative to p is defined by

pa pb = κ(sa,b) pab.

Since ρ
(

pa κ(x)
)

= a and ρ (pa pb) = ab , it follows from Lemma 12.1 that
pa κ(x) = κ(a x) pa and pa pb = κ(sa,b) pab for some unique a x , sa,b ∈ G .
Thus the definitions above make sense. “Set action” is the author’s terminology
for the action of Q on A , which, sadly, is usually not a group action.

With the set action and factor set we can compute

(κ(x) pa) (κ(y) pb) = κ(x) κ(a y) pa pb = κ (x a y sa,b) pab.

This suggests the operation

(x, a) (y, b) = (x a y sa,b , ab) (M)

on the set G × Q ; then E ∼= G × Q ; in particular, G × Q is a group.

Now we determine when (M) makes G × Q a group extension of G by Q .

Lemma 12.2. Relative to any cross-section, Q acts on G by automorphisms;
in particular, a(xy) = a x a y and a1 = 1 for all x, y ∈ G and a ∈ Q . Moreover,
the cross-section p can be chosen so that p1 = 1 , and then

1x = x and sa,1 = 1 = s1,a (N)

for all x ∈ G and a ∈ Q .

This is straightforward. The automorphism x �−→ a x is induced on G , via
κ , by the inner automorphism x �−→ pa x p−1

a , which has a restriction to Im κ ;
(N) is the normalization condition.
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Lemma 12.3. If (N) holds, then (M) is associative if and only if
a(bx) sa,b = sa,b

abx and sa,b sab,c = asb,c sa,bc , (A)

for all x ∈ G and a, b, c ∈ Q .

Condition (A) is the associativity condition; the first part of (A) shows that
the set action of Q on G is a group action only up to inner automorphisms.

Proof. By (M) and 12.2,
(

(x, a)(y, b)
)

(z, c) = (x ay sa,b , ab) (z, c)

=
(

x ay sa,b
abz sab,c , (ab) c

)

,

(x, a)
(

(y, b)(z, c)
)

= (x, a) (y bz sb,c , bc)

=
(

x a(y bz sb,c) sa,bc , a (bc)
)

=
(

x ay a(bz) asb,c sa,bc , a (bc)
)

.

Hence (M) is associative if and only if

x ay sa,b
abz sab,c = x ay a(bz) asb,c sa,bc (A∗)

holds for all x, y, z ∈ G and a, b, c ∈ Q . With x = y = z = 1, (A∗) yields
sa,b sab,c = asb,c sa,bc . With x = y = 1 and c = 1, (A∗) yields sa,b

abz =
a(bz) sa,b , since sab,1 = asb,1 = 1 by 12.2. Thus (A∗) implies (A) . Conversely,
(A) implies the following equalities and implies (A∗) :

x ay sa,b
abz sab,c = x ay a(bz) sa,b sab,c = x ay a(bz) asb,c sa,bc. �

In what follows we denote by ϕ the mapping a �−→ ϕ(a) , ϕ(a): x �−→ ax of
Q into Aut (G) , which encapsulates the set action of Q on G ; then ax can be
denoted by a

ϕx to avoid ambiguity.

Theorem 12.4 (Schreier [1926]). Let G and Q be groups, and let s : Q ×
Q −→ G and ϕ : Q −→ Aut (G) be mappings such that (N) and (A) hold.
Then E(s, ϕ) = G × Q with multiplication (M) , injection x �−→ (x, 1) , and
projection (x, a) �−→ a , is a group extension of G by Q . Conversely, if E is
a group extension of G by Q , and s, ϕ are the factor set and set action of E
relative to a cross-section of E , then E is equivalent to E(s, ϕ) .

Proof. If s and ϕ satisfy (N) and (A) , then (M) is associative by 12.3,
and (1, 1) is an identity element of E(s, ϕ) . Moreover, every element (y, b)
of E(s, ϕ) has a left inverse: if a = b−1 and x = (ay sa,b)−1 , then (M)
yields (x, a)(y, b) = (1, 1) . Therefore E(s, ϕ) is a group. By (M) and (N) ,
λ : x �−→ (x, 1) and σ : (x, a) �−→ a are homomorphisms, and we see that
Im λ = Ker σ . Thus E(s, ϕ) is a group extension of G by Q .

Conversely, let G κ−→ E
ρ−→ Q be a group extension of G by Q . Choose a

cross-section p of E such that p1 = 1 and let ϕ and s be the corresponding
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set action and factor set. We saw that θ : (x, a) �−→ κ(x) pa is an isomorphism
of E(s, ϕ) onto E . Moreover, (N) and (A) hold, by 12.2 and 12.3. Finally,
θ (λ(x)) = κ(x) p1 = κ(x) and ρ (θ(x, a)) = a = σ (x, a) , for all x ∈ G and
a ∈ Q . Thus E is equivalent to E(s, ϕ) : �

Equivalence. We complete Theorem 12.4 with a criterion for equivalence.

Proposition 12.5. E(s, ϕ) and E(t, ψ) are equivalent if and only if there exists
a mapping u : a �−→ ua of Q into G such that

u1 = 1, a
ϕx = ua

a
ψ x u−1

a , and sa,b = ua
a
ψub ta,b u−1

ab , (E)

for all x ∈ G and a, b ∈ Q .

Proof. Let θ : E(s, ϕ) −→ E(t, ψ) be an equivalence of group extensions:

We have θ (x, 1) = (x, 1) and θ (1, a) = (ua, a) for some ua ∈ G , since θ

respects injections and projections. Then u1 = 1, since θ (1, 1) = (1, 1) , and

θ (x, a) = θ
(

(x, 1)(1, a)
)

= (x, 1)(ua, a) = (xua, a)

by (N) . Since θ is a homomorphism,

(x a
ϕ y sa,b uab , ab) = θ

(

(x, a)(y, b)
)

= θ (x, a) θ (y, b) = (xua
a
ψ y a

ψub ta,b , ab)

by (M) , and

x a
ϕ y sa,b uab = xua

a
ψ y a

ψub ta,b (E∗)

for all x, y, a, b . With x = y = 1, (E∗) yields sa,b = ua
a
ψub ta,b u−1

ab . Hence

x a
ϕ y ua

a
ψub ta,b = x a

ϕ y sa,b uab = xua
a
ψ y a

ψub ta,b

and a
ϕ y = ua

a
ψ y u−1

a . Thus (E) holds.

Conversely, (E) implies (E∗) , by the same calculation. Then θ : (x, a) �−→
(xua, a) is a homomorphism, and, clearly, an equivalence of group extensions. �

Split extensions.
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Proposition 12.6. For a group extension G κ−→ E
ρ−→ Q the following condi-

tions are equivalent:

(1) There exists a homomorphism µ : Q −→ E such that ρ ◦ µ = 1Q .

(2) There is a cross-section of E relative to which sa,b = 1 for all a, b ∈ Q .

(3) E is equivalent to a semidirect product of G by Q .

(4) Relative to any cross-section of E there exists a mapping u : a �−→ ua of
Q into E such that u1 = 1 and sa,b = aub ua u−1

ab for all a, b ∈ Q .

A group extension splits when it satisfies these conditions.

Proof. (1) implies (2). If (1) holds, then pa = µ(a) is a cross-section of E ,
relative to which sa,b = 1 for all a, b , since µ(a) µ(b) = µ(ab) .

(2) implies (3). If sa,b = 1 for all a, b , then ϕ : Q −→ Aut (G) is a homo-
morphism, by (A) , and (M) shows that E(s, ϕ) = G �ϕ Q . Then E is equivalent
to E(s, ϕ) , by Schreier’s theorem.

(3) implies (4). A semidirect product G �ψ Q of G by Q is a group extension
E(t, ψ) in which ta,b = 1 for all a, b . If E is equivalent to G �ψ Q , then,
relative to any cross-section of E , E(s, ϕ) and E(t, ψ) are equivalent, and (E)
yields sa,b = ua

a
ψub ta,b u−1

ab = a
ϕub ua u−1

ab for all a, b ∈ Q .

(4) implies (1). If sa,b = aub ua u−1
ab for all a, b ∈ Q , then u−1

a
a(u−1

b ) sa,b
= u−1

ab and µ : a �−→ κ(u−1
a ) pa is a homomorphism, since

µ(a)µ(b) = κ
(

u−1
a

a(u−1
b ) sa,b

)

pab = κ(u−1
ab ) pab = µ(ab). �

Extensions of abelian groups. Schreier’s theorem becomes much nicer if G is
abelian. Then (A) implies a(bx) = abx for all a, b, x , so that the set action of Q
on G is a group action. Equivalently, ϕ : Q −→ Aut (G) is a homomorphism.
Theorem 12.4 then simplifies as follows.

Corollary 12.7. Let G be an abelian group, let Q be a group, let s : Q × Q −→
G be a mapping, and let ϕ : Q −→ Aut (G) be a homomorphism, such that

sa,1 = 1 = s1,a and sa,b sab,c = asb,c sa,bc

for all a, b, c ∈ Q . Then E(s, ϕ) = G × Q with multiplication (M) , injection
x �−→ (x, 1) , and projection (x, a) �−→ a is a group extension of G by Q .
Conversely, every group extension E of G by Q is equivalent to some E(s, ϕ) .

If G is abelian, then condition (E) implies a
ϕx = a

ψ x for all a and x , so that
ϕ = ψ . Thus, equivalent extensions share the same action, and Proposition 12.5
simplifies as follows.

Corollary 12.8. If G is abelian, then E(s, ϕ) and E(t, ψ) are equivalent if
and only if ϕ = ψ and there exists a mapping u : a �−→ ua of Q into G such
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that

u1 = 1 and sa,b = ua
aub u−1

ab ta,b for all a, b ∈ Q.

Corollaries 12.7 and 12.8 yield an abelian group whose elements are essentially
the equivalence classes of group extensions of G by Q with a given action ϕ .
Two factor sets s and t are equivalent when condition (E) holds. If G is
abelian, then factor sets can be multiplied pointwise: (s · t)a,b= sa,b ta,b , and the
result is again a factor set, by 12.7. Under pointwise multiplication, factor sets
s : Q × Q −→ G then constitute an abelian group Z2

ϕ(Q, G) . Split factor sets

(factor sets sa,b = ua
aub u−1

ab with u1 = 1) constitute a subgroup B2
ϕ(Q, G)

of Z2
ϕ(Q, G) . By 12.8, two factor sets are equivalent if and only if they lie in

the same coset of B2
ϕ(Q, G) ; hence equivalence classes of factor sets constitute

an abelian group H2
ϕ (Q, G) = Z2

ϕ(Q, G) / B2
ϕ(Q, G) , the second cohomology

group of Q with coefficients in G . (The cohomology of groups is defined in full
generality in Section XII.7; it has become a major tool of group theory.)

The abelian group H2
ϕ (Q, G) classifies extensions of G by Q , meaning that

there is a one-to-one correspondence between elements of H2
ϕ (Q, G) and equiv-

alence classes of extensions of G by Q with the action ϕ . (These equivalence
classes would constitute an abelian group if they were sets and could be allowed
to belong to sets.)

Hölder’s Theorem. As a first application of Schreier’s theorem we find all
extensions of one cyclic group by another.

Theorem 12.9 (Hölder). A group G is an extension of a cyclic group of order
m by a cyclic group of order n if and only if G is generated by two elements
a and b such that a has order m , bn = at , bi /∈ 〈 a 〉 when 0 < i < n , and
bab−1 = ar , where rn ≡ 1 and rt ≡ t (mod m ). Such a group exists for every
choice of integers r, t with these properties.

Proof. First let G = 〈 a, b 〉 , where a has order m , bn = at , bi /∈ 〈 a 〉 when
0 < i < n , and bab−1 = ar , where rn ≡ 1 and r t ≡ 1 (mod m ). Then
A = 〈 a 〉 is cyclic of order m . Since b has finite order, every element of G is a
product of a ’s and b ’s, and it follows from bab−1 = ar that A �= G . Then G/A
is generated by Ab ; since bn ∈ A but bi /∈ A when 0 < i < n , Ab has order n
in G/A , and G/A is cyclic of order n . Thus G is an extension of a cyclic group
of order m by a cyclic group of order n .

Conversely, assume that G is an extension of a cyclic group of order m by
a cyclic group of order n . Then G has a normal subgroup A that is cyclic of
order m , such that G/A is cyclic of order n . Let A = 〈 a 〉 and G/A = 〈 Ab 〉 ,
where a, b ∈ G . The elements of G/A are A , Ab , . . . , Abn−1 ; therefore
G is generated by a and b . Moreover, a has order m , bn = at for some t ,
bi /∈ 〈 a 〉 when 0 < i < n , and bab−1 = ar for some r , since A �= G . Then
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art = bat b−1 = bbnb−1 = at and r t ≡ t (mod m ). Also b2ab−2 = bar b−1 =
(ar )r = ar2

and, by induction, bkab−k = ark
; hence a = bnab−n = arn

and
rn ≡ 1 (mod m ).

In the above, 1, b , . . . , bn−1 is a cross-section of G . The corresponding action
is Ab j

ai = b j ai b− j = air j
. If 0 � i, j < n , then b j bk = b j+k if j + k < n ,

b j bk = at b j+k−n if j + k � n ; this yields the corresponding factor set. This
suggests a construction of G for any suitable m, n, r, t .

Assume that m, n > 0, rn ≡ 1, and r t ≡ t (mod m ). Let A = 〈 a 〉 be cyclic
of order m and let C = 〈 c 〉 be cyclic of order n . Since rn ≡ 1 (mod m ), r
and m are relatively prime and α : ai �−→ air is an automorphism of A . Also,
α j (ai ) = air j

for all j ; in particular, αn(ai ) = airn
= ai . Hence αn = 1A and

there is a homomorphism ϕ : C −→ Aut (A) such that ϕ(c) = α . The action of
C on A , written jai = c j

ϕ ai , is jai = α j (ai ) = air j
.

Define s : C × C −→ A as follows: for all 0 � j, k < n ,

s j,k = sc j ,ck =
{

1 if j + k < n,
at if j + k � n.

Then s1, ck = 1 = sc j , 1 . We show that sc j , ck sc j ck , c� = c j
sck , c� sc j , ckc� (equiv-

alently, s j,k sc j ck , � = jsk,� s j, ckc� ) for all 0 � j, k, � < n .

If j + k + � < n , then s j,k s j+k, � = 1 = j sk,� s j, k+� .

If j + k < n , k + � < n , and j + k + � � n , then s j,k s j+k, � = at = j sk,� s j, k+� .

Since r t ≡ t (mod m ), we have jat = atr j
= at . If now j + k < n and

k + � � n , then ckc� = ck+�−n , j + k + � − n < n , since ( j + k)+� < 2n , and
s j,k s j+k, � = at = jat = j sk,� s j, k+�−n .

If j + k � n and k + � < n , then similarly c j ck = c j+k−n , j + k + � − n < n ,
and s j,k s j+k−n � = at = j sk,� s j, k+� .

If j + k � n , k + � � n , and j + k + � < 2n , then j + k + � − n < n and
s j,k s j+k−n, � = at = jat = j sk,� s j, k+�−n .

Finally, if j + k � n , k + � � n , and j + k + � � 2n , then j + k + � − n � n
and s j,k s j+k−n, � = at at = jat at = j sk,� s j, k+�−n .

It now follows from 12.7 that E(s, ϕ) is an extension of A by C . �

Readers will verify that 〈 a, b
∣
∣ am = 1, bn = at , bab−1 = ar 〉 is a presenta-

tion of the group G in Theorem 12.9.

The Schur-Zassenhaus Theorem. We begin with the Schur part:
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Theorem 12.10 (Schur). If m and n are relatively prime, then a group of order
mn that contains an abelian normal subgroup of order n also contains a subgroup
of order m .

Schur’s theorem is often stated as follows: if m and n are relatively prime,
then every group extension of an abelian group of order n by a group of order
m splits. The two statements are equivalent: if E has a normal subgroup G of
order n and a subgroup H of order m , then G ∩ H = 1, so that G H = E , E
is a semidirect product of G and H , and E splits, as a group extension of G ;
conversely, a split extension of a group G by a group Q of order m is isomorphic
to a semidirect product of G and Q and contains a subgroup that is isomorphic
to Q and has order m .

Proof. Let G be a group of order mn with an abelian normal subgroup N of
order n . Then G is an extension of N by a group Q = G/N of order m . Let s
be any factor set of this extension. For every a ∈ Q let ta =

∏

c∈Q sa,c . Then
t1 = 1, by (N) . Since Q is a group,

∏

c∈Q sa,bc =
∏

d∈Q sa,d = ta . Since N is
abelian, applying

∏

c∈Q to sa,b sab,c = asb,c sa,bc yields

sm
a,b tab = atb ta .

We also have sn
a,b = tn

a = 1, since |N | = n . Now, qm + rn = 1 for some q, r ∈ Z ,
since m and n are relatively prime; hence

sa,b = sqm+rn
a,b = atq

b tq
a (tq

ab)−1

and 12.8 (with uc = tq
c ) shows that the extension splits. �

If G is abelian and |G| = n , |Q| = m are relatively prime, Schur’s theorem
implies that every extension of G by Q has a subgroup of order m . Any two such
subgroups are conjugate, by 9.11.

Zassenhaus [1937] extended Schur’s theorem as follows:

Theorem 12.11 (Schur-Zassenhaus). If m and n are relatively prime, then a
group of order mn that contains a normal subgroup of order n also contains a
subgroup of order m .

If |G| = mn and G has a normal subgroup N of order n and a subgroup H of
order m (relatively prime to n ), then, as with Schur’s theorem, G is a semidirect
product of N and H , and the extension G of N splits.

Proof. Let N �= G with |N | = n , |G| = mn . If N is abelian, then 12.11
follows from Schur’s theorem. The general case is proved by induction on n . If
n = 1, then 12.11 holds, trivially. Now let n > 1.

Let p be a prime divisor of n . Then p divides |G| . If S is a Sylow p-sub-
group of G , then the order of SN/N ∼= S/(S ∩ N) is a power of p and divides
m = |G/N | ; since m and n are relatively prime, this implies |SN/N | = 1 and
S ⊆ N . Thus N contains every Sylow p-subgroup of G . Hence G and N have
the same Sylow p-subgroups.
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Since all Sylow p-subgroups are conjugates, G has [ G : NG(S) ] Sylow p-sub-
groups, and N has [ N : NN (S) ] Sylow p-subgroups. Hence

|G|/|NG(S)| = [ G : NG(S) ] = [ N : NN (S) ] = |N |/|NN (S)|
and

[ NG(S) : NN (S) ] = |NG(S)|/|NN (S)| = |G|/|N | = m.

Now, NN (S) = N ∩ NG(S) �= NG(S) , since N �= G , and S �= NG(S) . Hence
NN (S)/S �= NG(S)/S ,

[ NG(S)/S : NN (S)/S ] = [ NG(S) : NN (S) ] = m,

and |NN (S)/S| is relatively prime to m , since NN (S) � N . Moreover,
|NN (S)/S| < |N | = n , since |S| > 1. By the induction hypothesis, NG(S)/S
has a subgroup K/S of order m , where S ⊆ K � NG(S) .

By 3.9, the center Z of S is not trivial: |Z | > 1. Diligent readers know
that Z is a characteristic subgroup of S , so that S �= K implies Z �= K . Then
S/Z �= K/Z , [ K/Z : S/Z ] = [ K : S ] = m , and |S/Z | is relatively prime to m
since it divides |N | = n . Moreover, |S/Z | < n . By the induction hypothesis,
K/Z has a subgroup L/Z of order m , where Z ⊆ L � K .

Now, Z �= L , [ L : Z ] = m , and |Z | is relatively prime to m since it divides
|S| and |N | = n . By the abelian case, L contains a subgroup of order m ; hence
so does G . �

It is known that in Theorem 12.11 all subgroups of order m are conjugate. We
proved this in two particular cases: when the normal subgroup is abelian (Lemma
9.11) and when the group is solvable (Theorem 9.12).

Exercises
1. Show that equivalence of group extensions is reflexive, symmetric, and transitive.

2. Find a cross-section of E(s, ϕ) relative to which s is the factor set and ϕ is the set
action.

3. Show that E(s, ϕ) and E(t, ψ) are equivalent if and only if there exist a group extension
E and two cross-sections of E relative to which s, ϕ and t, ψ are the factor set and set action
of E .

4. Find all extensions of C3 by C2 (up to equivalence).

5. Find all extensions of C4 by C2 (up to equivalence).

6. Find all extensions of Cp by Cq (up to equivalence) when p and q are distinct primes.

7. Find all extensions of C3 by C4 (up to equivalence).

8. Let the group G be generated by two elements a and b such that a has order m ,
bn = at , bi /∈ 〈 a 〉 when 0 < i < n , and bab−1 = ar , where rn ≡ 1 and r t ≡ t
(mod m ), as in Hölder’s theorem. Show that 〈 a, b

∣
∣ am = 1, bn = at , bab−1 = ar 〉 is a

presentation of G .



104 Chapter II. Structure of Groups

*9. Devise presentations for all groups of order 16 .

Nonabelian groups in the following exercises should be specified by presentations.

10. Find all groups of order 30 .

11. Find all groups of order 42 .

12. Find all groups of order 70 .

13. Find all groups of order 105 .



III
Rings

Rings are our second major algebraic structure; they marry the complexity of
semigroups and the good algebraic properties of abelian groups.

Gauss [1801] studied the arithmetic properties of complex numbers a + bi with
a, b ∈ Z , and of polynomials with integer coefficients. From this start ring theory
expanded in three directions. Sustained interest in more general numbers and
their properties finally led Dedekind [1871] to state the first formal definition of
rings, fields, ideals, and prime ideals, though only for rings and fields of algebraic
integers. The quaternions, discovered by Hamilton [1843], were generalized by
Pierce [1864] and others into another type of rings: vector spaces with bilinear
multiplications (see Chapter XIII). Growing interest in curves and surfaces defined
by polynomial equations led Hilbert [1890], [1893] and others to study rings of
polynomials. Modern ring theory began in the 1920s with the work of Noether,
Artin, and Krull (see Chapters VII and IX).

This chapter contains general properties of rings and polynomials, with some
emphasis on arithmetic properties. It requires basic properties of groups and
homomorphisms (Sections I.1 through I.5), and makes occasional use of Zorn’s
lemma and of the ascending chain condition in the appendix. Sections 7, 9, and
12 may be skipped; Section 11 may be covered later (but before Chapter VII).

1. Rings

This section contains the definition and first examples and properties of rings.

Definition. A ring is an ordered triple (R, +, ·) of a set R and two binary
operations on R , an addition and a multiplication, such that

(1) (R, +) is an abelian group;

(2) (R, ·) is a semigroup (the multiplication is associative);

(3) the multiplication is distributive: x (y + z)= xy + xz and (y + z) x = yx + zx
for all x, y, z ∈ R .

Definition. A ring with identity is a ring whose multiplicative semigroup (R, ·)
has an identity element.
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The identity element of a ring R with identity (R, ·) ) is generally denoted by
1, whereas the identity element of the underlying abelian group (R, +) is the zero
element of the ring R and is denoted by 0.

Rings with identity are also called rings with unity; many definitions also require
1 =/ 0. Rings as defined above are often called associative rings; nonassociative
rings have only properties (1) and (3).

Examples. Z (short for: (Z, +, ·) , with the usual addition and multiplication)
is a ring with identity; so are Q , R , C , the quaternion algebra H , and the ring Zn
of integers modulo n (also constructed in the next section).

Polynomials provide major examples, which we study in Sections 5 and 6.

In a vector space V over a field K , the endomorphisms of V (the linear
transformations V −→ V ) constitute a ring with identity EndK (V ) , whose
addition is pointwise and multiplication is composition. A related example is
the ring Mn(K ) of n × n matrices over K , with the usual matrix addition and
multiplication.

Proposition 1.1. The set End (A) of all endomorphisms of an abelian group
A is a ring with identity.

In the additive notation for A , addition on End (A) is pointwise ((η + ζ ) x =
ηx + ζ x ); multiplication on End (A) is composition ((ηζ ) x = η (ζ x) ). Readers
will cheerfully verify properties (1), (2), and (3).

Properties. Calculations in rings follow the familiar rules for addition, sub-
traction, and multiplication of numbers, except that multiplication in a ring might
not be commutative, and there is in general no division.

Sections I.1 and I.2 provide basic properties of sums, opposites, products,
integer multiples, and powers. Properties that are specific to rings come from
distributivity. Readers will happily supply proofs (sometimes, not so happily).

Proposition 1.2. In a ring R ,
(∑

i xi
)(∑

j yj
)

=
∑

i, j xi yj , for all
x1, . . ., xm, y1, . . . , yn ∈ R .

Proposition 1.3. In a ring R , (mx)(ny) = (mn)(xy) , in particular, (mx) y
= x (my) = m (xy) , for all m, n ∈ Z and x, y ∈ R . If R is a ring with identity,
then nx = (n1) x for all n ∈ Z and x ∈ R .

Subtraction may be defined in any abelian group by x − y = x + (−y) , and it
satisfies x − x = 0 and x − (y − z) = (x − y) + z for all x, y, z .

Proposition 1.4. In a ring R , x (y − z) = xy − xz and (y − z) x = yx − zx ,
for all x, y, z ∈ R . In particular, x0 = 0 = 0x for all x ∈ R .

Definition. A ring is commutative when its multiplication is commutative.

The familiar rules for addition, subtraction, and multiplication of numbers hold
in commutative rings. So does the following result:
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Proposition 1.5 (Binomial Theorem). In a commutative ring R ,

(x + y)n =
∑

0�i�n

(
n
i

)

xi yn−i , where
(

n
i

)

=
n!

i! (n − i)!
.

In fact, 1.5 works in every ring, as long as xy = yx .

Infinite sums are defined in any abelian group as follows. Without a topology
we don’t have limits of finite sums, so our “infinite” sums are not really infinite.

Definition. A property P holds for almost all elements i of a set I when
{ i ∈ I

∣
∣ P does not hold } is finite.

Definition. The sum
∑

i∈I xi of elements (xi )i∈I of an abelian group A is de-
fined in A when xi = 0 for almost all i ∈ I , and then

∑

i∈I xi =
∑

i∈I, xi =/ 0 xi .

Thus the “arbitrary” sum
∑

i∈I xi is a finite sum to which any number of zeros
have been added, a fine example of window dressing.

Proposition 1.6. In a ring,
(∑

i xi
)(∑

j yj
)

=
∑

i, j xi yj , whenever xi = 0
for almost all i ∈ I and yj = 0 for almost all j ∈ J .

Homomorphisms. Homomorphisms of rings are mappings that preserve sums
and products:

Definitions. A homomorphism of a ring R into a ring S is a mapping ϕ

of R into S that preserves sums and products: ϕ(x + y) = ϕ(x) + ϕ(y) and
ϕ(xy) = ϕ(x) ϕ(y) for all x, y ∈ R .

If R and S are rings with identity, a homomorphism of rings with identity of
R into S also preserves the identity element: ϕ(1) = 1 .

For example, in any ring R with identity, the mapping n �−→ n1 is a homo-
morphism of rings with identity of Z into R ; this follows from I.2.6 and 1.3.

A homomorphism of rings also preserves the zero element (ϕ(0) = 0), integer
multiples (ϕ(nx) = n ϕ(x) ), all sums and products (including infinite sums),
differences, and powers (ϕ(xn) = ϕ(x)n ).

Homomorphisms compose: when ϕ : R −→ S and ψ : S −→ T are homo-
morphisms of rings, then so is ψ ◦ ϕ : R −→ T . Moreover, the identity mapping
1R on a ring R is a homomorphism. Homomorphisms of rings with identity have
similar properties.

It is common practice to call an injective homomorphism a monomorphism,
and a surjective homomorphism an epimorphism. In the case of epimorphisms of
rings the author finds this terminology illegitimate and prefers to avoid it.

Definition. An isomorphism of rings is a bijective homomorphism of rings.

If ϕ is a bijective homomorphism of rings, then the inverse bijection ϕ−1

is also a homomorphism of rings. Two rings R and S are isomorphic, R ∼= S ,
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when there exists an isomorphism of R onto S . As in Section I.2, we regard
isomorphic rings as instances of the same “abstract” ring.

Adjoining an identity. Homomorphisms of rings are studied in more detail in
Section 3. We consider them here to show that every ring R can be embedded
into a ring with identity. The new ring must contain an identity element 1, all its
integer multiples n1, and all sums x + n1 with x ∈ R . The next result basically
says that these sums suffice.

Proposition 1.7. For every ring R , the set R1 = R × Z , with operations

(x, m) + (y, n) = (x + y, m + n), (x, m)(y, n) = (xy + nx + my, mn),

is a ring with identity. Moreover, ι : x �−→ (x, 0) is an injective homomorphism
of R into R1 .

The proof is straightforward but no fun, and left to our poor, abused readers.

The ring R1 has a universal property, which will be useful in Chapter VIII.

Proposition 1.8. Every homomorphism ϕ of R into a ring S with identity
factors uniquely through ι : R −→ R1 (there is a homomorphism ψ : R1 −→ S
of rings with identity, unique such that ϕ = ψ ◦ ι ).

Proof. In R1 , the identity element is (0, 1) and (x, n) = (x, 0) + n (0, 1) . If
now ψ(0, 1) = 1 and ψ ◦ ι = ϕ , then necessarily ψ (x, n) = ϕ(x) + n1 ∈ S ; hence
ψ is unique. Conversely, it is straightforward that the mapping ψ : (x, n) �−→
ϕ(x) + n1 is a homomorphism with all required properties. �

If now ϕ is a homomorphism of R into an arbitrary ring S , then applying
Proposition 1.8 to R

ϕ−→ S −→ S1 yields a homomorphism ψ : R1 −→ S1 of
rings with identity; in this sense every homomorphism of rings is induced by a
homomorphism of rings with identity.

Some properties are lost in the embedding of R into R1 (see the exercises),
but in most situations an identity element may be assumed, for instance when one
studies rings and their homomorphisms in general. We make this assumption in
all later sections. The important examples of rings at the beginning of this section
all have identity elements.

Exercises
1. In the definition of a ring with identity, show that one may omit the requirement that the

addition be commutative. [Assume that (R, +, ·) satisfies (2), (3), that (R, ·) has an identity
element, and that (R, +) is a group. Show that (R, +) is abelian.]

2. Verify that End (A) is a ring when A is an abelian group.
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3. A unit of a ring R with identity is an element u of R such that uv = vu = 1 for some
v ∈ R . Show that v is unique (given u ). Show that the set of all units of R is a group under
multiplication.

4. Let R be a ring with identity. Show that u is a unit of R if and only if xu = uy = 1 for
some x, y ∈ R .

5. Show that x ∈ Zn is a unit of Zn if and only if x and n are relatively prime.

6. Prove that xφ(n) ≡ 1 (mod n ) whenever x and n are relatively prime. (φ is Euler’s φ

function.)

7. A Gauss integer is a complex number a + ib in which a and b are integers. Show that
Gauss integers constitute a ring. Find the units.

8. Show that complex numbers a + ib
√

2 in which a and b are integers constitute a ring.
Find the units.

9. Show that
(∑

i∈I xi
)

+ (
∑

i∈I yi
)

=
∑

i∈I (xi + yi ) holds in every ring, when
xi = 0 for almost all i ∈ I and yi = 0 for almost all i ∈ I .

10. Show that
(∑

i∈I xi
)(∑

j∈J yj
)

=
∑

(i, j)∈I×J xi yj holds in every ring, when
xi = 0 for almost all i ∈ I and yj = 0 for almost all j ∈ J .

11. Let R be a ring. Show that R1 = R × Z , with operations

(x, m)+(y, n) = (x + y, m + n), (x, m)(y, n) = (xy + nx + my, mn),

is a ring with identity.

12. A ring R is regular (also called von Neumann regular) when there is for every a ∈ R
some x ∈ R such that axa = a . Prove that R1 can never be regular.

13. Let R be a ring with identity. Show that R can be embedded into End (R, +) . (Hence
every ring can be embedded into the endomorphism ring of an abelian group.)

2. Subrings and Ideals

From this point on, all rings are rings with identity, and all homomorphisms of
rings are homomorphisms of rings with identity.

Subrings of a ring R are subsets of R that inherit a ring structure from R .

Definition. A subring of a ring R [with identity] is a subset S of R such that S
is a subgroup of (R, +) , is closed under multiplication ( x, y ∈ S implies xy ∈ S ),
and contains the identity element.

For example, every ring is a subring of itself. In any ring R , the integer
multiples of 1 constitute a subring, by Proposition 1.3; on the other hand, the
trivial subgroup 0 = {0} is not a subring of R , unless R = 0.

Let S be a subring of R . The operations on R have restrictions to S that make
S a ring in which the sum and product of two elements of S are the same as their
sum and product in R . This ring S is also called a subring of R .
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Readers will show that every intersection of subrings of a ring R is a subring
of R . Consequently, there is for every subset X of R a smallest subring S of R
that contains X ; the exercises give a description of S .

Ideals of a ring are subgroups that admit multiplication:

Definitions. An ideal of a ring R is a subgroup I of (R, +) such that x ∈ I
implies xy ∈ I and yx ∈ I for all y ∈ R . A proper ideal also satisfies I =/ R .

The definition of an ideal often includes the condition I =/ R .

For example, every subgroup nZ of Z is also an ideal of Z (proper if n =/ ±1).
Every ring R is an (improper) ideal of itself and has a trivial ideal 0 = {0} .

Properties. Our first property makes an easy exercise:

Proposition 2.1. Every intersection of ideals of a ring R is an ideal of R .

By 2.1 there is for every subset S of R a smallest ideal of R that contains S ,
namely the intersection of all the ideals of R that contain S .

Definitions. The ideal (S) of a ring R generated by a subset S of R is the
smallest ideal of R that contains S . A principal ideal is an ideal generated by a
single element.

Proposition 2.2. In a ring R [with identity], the ideal (S) generated by a
subset S is the set of all finite sums of elements of the form xsy , with s ∈ S and
x, y ∈ R . If R is commutative, then (S) is the set of all finite linear combinations
of elements of S with coefficients in R .

Proof. An ideal that contains S must also contain all elements of the form xsy
with s ∈ S and x, y ∈ R , and all finite sums of such elements. We show that the set
I of all such sums is an ideal of R . First, I contains the empty sum 0; I is closed
under sums by definition, and is closed under opposites since −(xsy) = (−x) sy .
Hence I is a subgroup of (R, +) . Moreover, (xsy) r = xs (yr) , for all r ∈ R ;
hence i ∈ I implies ir ∈ I . Similarly, i ∈ I implies ri ∈ I , for all r ∈ R .
Thus I is an ideal of R ; then I = (S) .

If R is commutative, then xsy = (xy) s and (S) is the set of all finite sums
x1 s1 + · · · + xn sn with n � 0, x1, . . ., xn ∈ R , and s1, . . ., sn ∈ S . �

Proposition 2.3. In a commutative ring R [with identity], the principal ideal
generated by a ∈ R is the set (a) = Ra of all multiples of a .

This follows from Proposition 2.2: by distributivity, a linear combination x1 a +
· · · + xn a of copies of a is a multiple (x1 + · · · + xn) a of a . Propositions 2.3
and I.3.6 yield a property of Z :

Proposition 2.4. Every ideal of Z is principal, and is generated by a unique
nonnegative integer.

A union of ideals is not generally an ideal, but there are exceptions:
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Proposition 2.5. The union of a nonempty directed family of ideals of a ring R
is an ideal of R . In particular, the union of a nonempty chain of ideals of a ring
R is an ideal of R .

Proposition 2.5 implies that Zorn’s lemma in Section A.2 can be applied to
ideals. Zorn’s lemma states that a nonempty partially ordered set in which every
nonempty chain has an upper bound must contain a maximal element (an element
m such that m < x holds for no other element x ). In a ring, “maximal ideal” is
short for “maximal proper ideal”:

Definition. A maximal ideal of a ring R is an ideal M =/ R of R such that
there is no ideal I of R such that M � I � R .

Proposition 2.6. In a ring R [with identity], every proper ideal is contained in
a maximal ideal.

Proof. An ideal that contains the identity element must contain all its multiples
and is not proper. Hence an ideal is proper if and only if it does not contain the
identity element. Therefore the union of a nonempty chain of proper ideals, which
is an ideal by 2.5, is a proper ideal.

Given an ideal I =/ R we now apply Zorn’s lemma to the set S of all proper
ideals of R that contain I , partially ordered by inclusion. Every nonempty chain
in S has an upper bound in S , namely its union. Also, S =/ Ø, since I ∈ S . By
Zorn’s lemma, S has a maximal element M . Then M is a maximal (proper) ideal
that contains I . �

Finally, we note that the union I ∪ J of two ideals always admits multiplication.
By 2.2, the ideal generated by I ∪ J is the set of all finite sums of elements of
I ∪ J , that is, the sum I + J of I and J as subsets.

Definition. The sum of two ideals I and J of a ring R is their sum as subsets:
I + J = { x + y

∣
∣ x ∈ I, y ∈ J } .

Equivalently, I + J is the smallest ideal of R that contains both I and J .
More generally, every union

⋃

i∈I Ji of ideals Ji admits multiplication; hence
the ideal it generates is the set of all finite sums of elements of

⋃

i∈I Ji , which
can be simplified so that all terms come from different ideals.

Definition. The sum of ideals (Ji )i∈I of a ring R is
∑

i∈I Ji = {
∑

i∈I xi
∣
∣ xi ∈ Ji and xi = 0 for almost all i ∈ I } .

Equivalently,
∑

i∈I Ji is the smallest ideal of R that contains every Ji .

Proposition 2.7. Every sum of ideals of a ring R is an ideal of R .

Exercises

All rings in the following exercises have an identity element.

1. Show that every intersection of subrings of a ring R is a subring of R .
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2. Show that the union of a nonempty directed family of subrings of a ring R is a subring
of R .

3. Show that the smallest subring of a ring R that contains a subset X of R is the set of
all sums of products of elements of X and opposites of such products.

4. Show that every intersection of ideals of a ring R is an ideal of R .

5. Show that the union of a nonempty directed family of ideals of a ring R is an ideal of R .

6. Let I and J be ideals of a ring R . Show that I ∪ J is an ideal of R if and only if
I ⊆ J or J ⊆ I .

7. An element x of a ring is nilpotent when xn = 0 for some n > 0 . Show that the
nilpotent elements of a commutative ring R constitute an ideal of R .

8. Let n > 0 . Show that the ideal nZ of Z is maximal if and only if n is prime.

9. Polynomials in two variables (with real coefficients) constitute a ring R under the usual
operations. Let I be the set of all polynomials f ∈ R whose constant coefficient is 0 . Show
that I is a maximal ideal of R . Show that I is not a principal ideal.

The product AB of two ideals A and B of a ring is the ideal generated by their product as
subsets. (Both products are denoted by AB , but, in a ring, the product of two ideals is their
product as ideals, not their product as subsets.)

10. Show that the product AB of two ideals A and B of a ring R is the set of all finite
sums a1 b1 + · · · + an bn in which n � 0 , a1 , . . . , an ∈ A , and b1 , . . . , bn ∈ B .

11. Show that the product of ideals is associative.

12. Show that the product of ideals distributes sums: A(B + C) = AB + AC and (B +
C)A = B A + C A ; for extra credit, A

(∑

i∈I Bi
)

=
∑

i∈I (ABi ) and
(∑

i∈I Ai
)

B =
∑

i∈I (Ai B) .

3. Homomorphisms

This section extends to rings the wonderful properties of group homomorphisms
in Sections I.4 and I.5.

Subrings and ideals. Homomorphisms of rings (defined in Section 1) are
mappings that preserve sums, products, and identity elements. Homomorphisms
also preserve subrings, and, to some extent, ideals.

Proposition 3.1. Let ϕ : R −→ S be a homomorphism of rings. If A is a
subring of R , then

ϕ(A) = {ϕ(x)
∣
∣ x ∈ A }

is a subring of S . If B is a subring of S , then

ϕ−1(B) = { x ∈ R
∣
∣ ϕ(x) ∈ B }

is a subring of R .
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If A is an ideal of R and ϕ is surjective, then ϕ(A) is an ideal of S . If B is
an ideal of S , then ϕ−1(B) is an ideal of R .

Readers will happily concoct proofs for these statements, and show that non-
surjective homomorphisms do not necessarily send ideals to ideals. In Proposition
3.1, ϕ(A) is the direct image of A ⊆ R under ϕ and ϕ−1(B) is the inverse image
of B ⊆ S under ϕ . Two subsets of interest arise as particular cases:

Definitions. Let ϕ : R −→ S be a homomorphism of rings. The image or
range of ϕ is

Im ϕ = {ϕ(x)
∣
∣ x ∈ R }.

The kernel of ϕ is

Ker ϕ = { x ∈ R
∣
∣ ϕ(x) = 0 }.

Propositions 3.1 and I.4.4 yield the following result:

Proposition 3.2. Let ϕ : R −→ S be a homomorphism of rings. The image of
ϕ is a subring of S . The kernel K of ϕ is an ideal of R . Moreover, ϕ(x) = ϕ(y)
if and only if x − y ∈ K .

Conversely, every subring S of a ring R is the image of the inclusion homo-
morphism x �−→ x of S into R .

Quotient rings. Ideals yield quotient rings and projection homomorphisms.

Proposition 3.3. Let I be an ideal of a ring R . The cosets of I in the abelian
group (R, +) constitute a ring R/I . In R/I , the sum of two cosets is their sum
as subsets, so that (x + I ) + (y + I ) = (x + y) + I ; the product of two cosets is the
coset that contains their product as subsets, so that (x + I ) (y + I ) = xy + I . The
mapping x �−→ x + I is a surjective homomorphism of rings, whose kernel is I .

Proof. R/I is already an abelian group, by I.4.7. If x + I , y + I ∈ R/I , then
the product (x + I )(y + I ) of subsets is contained in the single coset xy + I , since
(x + i)(y + j) = xy + x j + iy + i j ∈ xy + I for all i, j ∈ I . Hence multiplication
in R/I can be defined as above. It is immediate that R/I is now a ring; the
identity element of R/I is 1 + I . �

Definitions. Let I be an ideal of a ring R . The ring of all cosets of I is the
quotient ring R/I of R by I . The homomorphism x �−→ x + I is the canonical
projection of R onto R/I .

For example, every ring R is an ideal of itself and R/R is the trivial ring {0} ;
0 is an ideal of R and the canonical projection is an isomorphism R ∼= R/0.

For a more interesting example, let R = Z . By 2.4, every ideal I of Z is
principal, and is generated by a unique nonnegative integer n . If n = 0, then
I = 0 and Z/I ∼= Z ; if n > 0, then the additive group Zn becomes a ring (which
readers probably know already):
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Definition. For every positive integer n , the ring Zn of the integers modulo n
is the quotient ring Z/Zn .

In general, the subrings of R/I are quotients of subrings of R , and similarly
for ideals (in the sense that A/I = { a + I

∣
∣ a ∈ A } when A ⊆ R ):

Proposition 3.4. Let I be an ideal of a ring R . Every subring of R/I is the
quotient S/I of a unique subring S of R that contains I . Every ideal of R/I is
the quotient J/I of a unique ideal J of R that contains I .

This follows from I.4.9. Theorem I.5.1 also extends to quotient rings:

Theorem 3.5 (Factorization Theorem). Let I be an ideal of a ring R . Every
homomorphism of rings ϕ : R −→ S whose kernel contains I factors uniquely
through the canonical projection π : R −→ R/I (there exists a homomorphism
ψ : R/I −→ S unique such that ϕ = ψ ◦ π ).

Proof. By I.5.1 there is a homomorphism of abelian groups ψ of (R/I, +) into
(S, +) unique such that ϕ = ψ ◦ π ; equivalently, ψ(x + I ) = ϕ(x) for all x ∈ R .
Now, ψ is a homomorphism of rings. Indeed,

ψ
(

(x + I )(y + I )
)

= ψ (xy + I ) = ϕ (xy) = ϕ(x) ϕ(y)= ψ (x + I ) ψ (y + I )

for all x + I , y + I ∈ R/I , and ψ(1) = ψ (1 + I ) = ϕ(1) = 1. �
The homomorphism theorem. Theorem I.5.2 also extends to rings; so do the

isomorphism theorems in Section I.5 (see the exercises).

Theorem 3.6 (Homomorphism Theorem). If ϕ : R −→ S is a homomorphism
of rings, then

R/Ker ϕ ∼= Im ϕ;

in fact, there is an isomorphism θ : R/Ker f −→ Im f unique such that
ϕ = ι ◦ θ ◦ π , where ι : Im f −→ S is the inclusion homomorphism and
π : R −→ R/Ker f is the canonical projection.

Proof. By I.5.2 there is an isomorphism of abelian groups θ : (R/Ker f, +)
−→ (Im f, +) unique such that ϕ = ι ◦ θ ◦ π ; equivalently, θ (x + Ker ϕ) = ϕ(x)
for all x ∈ R . As in the proof of 3.5, this implies that θ is a homomorphism of
rings, hence is an isomorphism. �

Our first application of the homomorphism theorem is the following result.
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Proposition 3.7. Let R be a ring [with identity]. There is a unique homomor-
phism of rings of Z into R . Its image is the smallest subring of R ; it consists of
all integer multiples of the identity element of R , and is isomorphic either to Z or
to Zn for some unique n > 0 .

Proof. If ϕ : Z −→ R is a homomorphism of rings [with identity], then
ϕ(1) = 1 and ϕ(n) = ϕ(n1) = n1 ∈ R for all n ∈ Z . Hence ϕ is unique.
Conversely, we saw that the mapping ϕ : n �−→ n1 is a homomorphism of rings
of Z into R . Then Im ϕ , which is the set of all integer multiples of the identity
element of R , is a subring of R ; it is the smallest such subring, since a subring of
R must contain the identity element and all its integer multiples.

By the homomorphism theorem, Im ϕ ∼= Z/I for some ideal I of Z . By 2.4,
I is principal, I = nZ for some n � 0. If n = 0, then Im ϕ ∼= Z/0 ∼= Z . If
n > 0, then Im ϕ ∼= Zn ; then n > 0 is unique with this property, since, say, the
rings Zn all have different numbers of elements. �

The unique integer n > 0 in Proposition 3.7 is also the smallest m > 0 such
that m1 = 0 and the smallest m > 0 such that mx = 0 for all x ∈ R .

Definition. The characteristic of a ring R [with identity] is 0 if n1 =/ 0 in R
for all n > 0 ; otherwise, it is the smallest integer n > 0 such that n1 = 0 .

For example, Zn has characteristic n .

Exercises
1. Let ϕ : R −→ S be a homomorphism of rings and let A be a subring of R . Show that

ϕ(A) is a subring of B .

2. Let ϕ : R −→ S be a homomorphism of rings and let B be a subring of S . Show that
ϕ–1(B) is a subring of R .

3. Let ϕ : R −→ S be a surjective homomorphism of rings and let I be an ideal of R .
Show that ϕ(I ) is an ideal of S .

4. Find a homomorphism ϕ : R −→ S of commutative rings and an ideal I of R such
that ϕ(I ) is not an ideal of S .

5. Let ϕ : R −→ S be a homomorphism of rings and let J be an ideal of S . Show that
ϕ–1(J) is an ideal of R .

6. Let R be a ring and let I be an ideal of R . Show that every ideal of R/I is the quotient
J/I of a unique ideal J of R that contains I .

7. Let R be a ring and let I be an ideal of R . Show that quotient by I is a one-to-one
correspondence, which preserves inclusions, between ideals of R that contain I and ideals
of R/I .

8. Let I ⊆ J be ideals of a ring R . Show that (R/I )/(J/I ) ∼= R/J .

9. Let S be a subring of a ring R and let I be an ideal of R . Show that S + I is a subring
of R , I is an ideal of S + I , S ∩ I is an ideal of S , and (S + I )/I ∼= S/(S ∩ I ) .
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4. Domains and Fields

Domains and fields are major types of rings.

Definition. A domain is a commutative ring R =/ 0 [with identity] in which
x, y =/ 0 implies xy =/ 0 .

Equivalently, a ring R is a domain when R\{0} is a commutative monoid
under multiplication. For example, Z , Q , R , and C are domains. In fact, Q , R ,
and C have a stronger property:

Definition. A field is a commutative ring F =/ 0 such that F\{0} is a group
under multiplication.

Domains and fields may also be defined as follows. A zero divisor of a
commutative ring R is an element x =/ 0 of R such that xy = 0 for some y =/ 0,
y ∈ R . A commutative ring R =/ 0 is a domain if and only if R has no zero divisor.
A unit of a ring R [with identity] is an element u of R such that uv = vu = 1
for some v ∈ R ; then v is a unit, the inverse u−1 of u . Units cannot be zero
divisors. A commutative ring R =/ 0 is a field if and only if every nonzero element
of R is a unit.

Proposition 4.1. Let n > 0 . The ring Zn is a domain if and only if n is prime,
and then Zn is a field.

Proof. If n > 0 is not prime, then either n = 1, in which case Zn = 0, or
n = xy for some 1 < x, y < n , in which case x y = 0 in Zn and Zn has a zero
divisor. In either case Zn is not a domain.

Now let n be prime. If 1 � x < n , then n and x are relatively prime and
ux + vn = 1 for some u, v ∈ Z . Hence x u = 1 in Zn and x is a unit. Thus Zn
is a field. �

Domains are also called integral domains, and the term “domain” is sometimes
applied to noncommutative rings without zero divisors. A noncommutative ring
R =/ 0 such that R\{0} is a group under multiplication (equivalently, in which
every nonzero element is a unit) is a division ring.

Properties. The cancellation law holds as follows in every domain:

Proposition 4.2. In a domain, xy = xz implies y = z , when x =/ 0 .

Proof. If x (y − z) = 0 and x =/ 0, then y − z = 0: otherwise, x would be a
zero divisor. �

Proposition 4.3. The characteristic of a domain is either 0 or a prime number.

Proof. The smallest subring of a domain has no zero divisors; by 3.7, 4.1, it is
isomorphic either to Z , or to Zp for some prime p . �

Domains of characteristic p =/ 0 have an amusing property:
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Proposition 4.4. In a commutative ring R of prime characteristic p , (x + y)p =
x p + y p and (x − y)p = x p − y p , for all x, y ∈ R .

Proof. By the binomial theorem, (x + y)p =
∑

0�i�p
(p

i
)

xi y p−i , where
(p

i
)

= p!
i! (p−i)! . If 0 < i < p , then p divides p! but does not divide i! or

(p − i)! ; hence p divides
(p

i
)

,
(p

i
)

r = 0 for all r ∈ R , and

(x + y)p =
∑

0�i�p
(p

i
)

xi y p−i =
∑

i=0, p
(p

i
)

xi y p−i = x p + y p.

Then (x − y)p = x p + (−1)p y p ; if p is odd, then x p + (−1)p y p = x p − y p ,
whereas, if p = 2, then x p + (−1)p y p = x p + y p = x p − y p . �

Prime and maximal ideals have quotient rings that are domains and fields.

Definition. A prime ideal of a commutative ring R is an ideal p =/ R such that
xy ∈ p implies x ∈ p or y ∈ p .

Proposition 4.5. If a is an ideal of a commutative ring R [with identity], then
R/a is a domain if and only if a is a prime ideal.

The proof is an exercise.

Proposition 4.6. If a is an ideal of a commutative ring R [with identity], then
R/a is a field if and only if a is a maximal ideal.

Proof. A field F has no proper ideal c =/ 0: indeed, if x ∈ c , x =/ 0, then
1 ∈ c since x is a unit, and c = F . Conversely, let R =/ 0 be a commutative ring
with no proper ideal c =/ 0. For every x ∈ R , x =/ 0, we have 1 ∈ Rx = R , so
that x is a unit. Hence R is a field.

If now a is an ideal of a commutative ring R , then R/a is a field if and only
if R/a =/ 0 and R/a has no ideal 0 � c � R/a , if and only if a =/ R and R has
no ideal a � b � R , by 3.4. �

Corollary 4.7. In a commutative ring [with identity], every maximal ideal is
prime.

Corollary 4.8. An ideal Zn of Z is prime if and only if n is prime, and then
Zn is maximal.

As in the proof of Proposition 4.6, a field has no proper ideal a =/ 0. If now ϕ

is a homomorphism of fields, then Ker ϕ is a proper ideal, since ϕ(1) = 1 =/ 0, so
that Ker ϕ = 0 and ϕ is injective:

Proposition 4.9. Every homomorphism of fields is injective.

Fields of fractions. A subring of a domain is a domain. Conversely, we show
that every domain is (up to isomorphism) a subring of a field.

A field that contains a domain R must also contain the inverses of nonzero
elements of R and all products xy−1 with x, y ∈ R , y =/ 0. The latter add and
multiply like fractions x/y : (xy−1) (zt−1) = (xz) (yt)−1 and (xy−1) + (zt−1)
= (xt + yz) (yt)−1 ; moreover, xy−1 = zt−1 if and only if xt = yz .
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This suggests the following construction. Let R be a domain. Define a binary
relation ∼ on R × (R\{0}) by

(x, y) ∼ (z, t) if and only if xt = yz .

It is immediate that ∼ is an equivalence relation. The equivalence class of
(x, y) ∈ R\{0} is a fraction, x/y or x

y . Readers will verify that operations on
the quotient set Q(R) =

(

R × (R\{0})
)

/∼ are well defined by

(x/y) + (z/t) = (xt + yz)/yt and (x/y) (z/t) = xz/yt

and that the following holds:

Proposition 4.10. For every domain R , Q(R) is a field and ι : x �−→ x/1 is
an injective homomorphism.

Then R is isomorphic to the subring Im ι of the field Q(R) . It is common
practice to identify x ∈ R and ι(x) = x/1 ∈ Q(R) ; then ι is an inclusion
homomorphism and R is a subring of Q(R) .

Definition. If R is a domain, then Q(R) is the field of fractions, or field of
quotients, or quotient field, of R . �

For instance, if R = Z , then Q(R) ∼= Q . Thus, Proposition 4.10 generalizes
the construction of rational numbers from integers.

The field of fractions of a domain has a universal property:

Proposition 4.11. Let R be a domain. Every injective homomorphism ϕ of R
into a field F factors uniquely through ι : R �−→ Q(R) : ϕ = ψ ◦ ι for some
unique homomorphism ψ : Q(R)−→ F , namely ψ(x/y) = ϕ(x) ϕ(y)−1 .

Proof. Every homomorphism ψ of fields preserves inverses: if x =/ 0, then
ψ(x) ψ(x−1) = ψ(1) = 1, so that ψ(x) =/ 0 and ψ(x−1) = ψ(x)−1 .

In Q(R) , (x/y)−1 = y/x , when x, y =/ 0; hence x/y = (x/1) (1/y) =
ι(x) ι(y)−1 when y =/ 0. If now ϕ : R −→ F is injective, then y =/ 0 implies
ϕ(y) =/ 0 and ψ ◦ ι = ϕ implies ψ (x/y) = ψ

(

ι(x)
)

ψ
(

ι(y)−1) = ϕ(x) ϕ(y)−1 .

Taking this hint we observe that x/y = z/t implies xt = yz , ϕ(x) ϕ(t) =
ϕ(y) ϕ(z) , and, in the field F , ϕ(x) ϕ(y)−1 = ϕ(z) ϕ(t)−1 (since ϕ(y) ,
ϕ(t) =/ 0). Therefore a mapping ψ of Q(R) into F is well defined by

ψ (x/y) = ϕ(x) ϕ(y)−1.
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Moreover, ψ(1) = ϕ(1) ϕ(1)−1 = 1,

ψ
(

(x/y)+(z, t)
)

= ϕ(xt + yz) ϕ(yt)−1

= ϕ(x) ϕ(t) ϕ(y)−1 ϕ(t)−1 + ϕ(y) ϕ(z) ϕ(y)−1 ϕ(t)−1

= ϕ(x) ϕ(y)−1 + ϕ(z) ϕ(t)−1 = ψ(x/y) + ψ(z/t),

since ϕ(yt)−1= ϕ(y)−1 ϕ(t)−1 , and

ψ
(

(x/y) (z/t)
)

= ϕ(x) ϕ(y) ϕ(z)−1 ϕ(t)−1 = ψ(x/y) ψ(z/t),

whenever y, t =/ 0. Thus ψ is a homomorphism. By the beginning of the proof,
ψ is the only homomorphism such that ψ ◦ ι = ϕ . �

If R is identified with a subring of Q(R) , then every injective homomorphism
of R into a field F extends uniquely to a [necessarily injective] homomorphism of
Q(R) into F ; hence Q(R) is, up to isomorphism, the smallest field that contains
R as a subring.

From 4.11 we deduce an “internal” characterization of Q(R) :

Proposition 4.12. Let R be a subring of a field K . The identity on R extends
to an isomorphism K ∼= Q(R) if and only if every element of K can be written in
the form ab−1 for some a, b ∈ R , b =/ 0 .

Proof. This condition is necessary since every element of Q(R) can be written
in the form a/b = ab−1 for some a, b ∈ R , b =/ 0. Conversely, by 4.11, the
inclusion homomorphism R −→ K extends to a homomorphism θ : Q(R) −→
K , which is injective by 4.6, and surjective if every element of K can be written
in the form ab−1 = θ (a/b) . �

Exercises
1. Let a be an ideal of a commutative ring R . Prove that R/a is a domain if and only if

a is a prime ideal.

2. Let n > 0 . Give a direct proof that the ideal Zn of Z is prime if and only if n is prime,
and then Zn is maximal.

3. Give a direct proof that every maximal ideal of a commutative ring is a prime ideal.

4. Show that the field of fractions of a domain is completely determined, up to isomorphism,
by its universal property.

5. Let S be a monoid that is commutative and cancellative. Construct a group of fractions
of S . State and prove its universal property.

5. Polynomials in One Variable

A polynomial in one indeterminate X should be a finite linear combination
a0 + a1 X + · · · + an X

n of powers of X . Unfortunately, this natural concept of
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polynomial s leads to a circular definition: one needs a set of polynomials in order
to make linear combinations in it. Our formal definition of polynomials must
therefore seem somewhat unnatural. It specifies a polynomial by its coefficients:

Definition. Let M = { 1, X, . . ., Xn, . . . } be the free monoid on {X} . A
polynomial over a ring R [with identity] in the indeterminate X is a mapping
A : Xn �−→ an of M into R such that an = 0 for almost all n � 0 . The set of all
polynomials in X over R is denoted by R[X ] .

In this definition, M can be replaced by any monoid. The resulting ring R[M]
is a semigroup ring (a group ring if M is a group). The exercises give details of
this construction.

We quickly define operations on R[X ] , so that we can return to the usual
notation A = a0 + a1 X + · · · + an Xn . Polynomials are added pointwise,

A + B = C when cn = an + bn for all n � 0,

and multiplied by the usual rule,

AB = C when cn =
∑

i+ j=n ai bj for all n � 0.

Proposition 5.1. For every ring R [with identity], R[X ] , with the operations
above, is a ring.

Proof. For each A ∈ R[X ] there exists some m � 0 such that ak = 0 for all
k > m : otherwise, { k � 0

∣
∣ ak =/ 0 } is not finite. If ak = 0 for all k > m ,

and bk = 0 for all k > n , then ak + bk = 0 for all k > max (m, n) ; hence
{ k � 0

∣
∣ ak + bk =/ 0 } is finite and A + B ∈ R[X ] . If ck =

∑

i+ j=k ai bj for
all k � 0, then ck = 0 for all k > m + n , since ai = 0 if i > m and bj = 0
if i + j = k and i � m (then j > n ); hence { k � 0

∣
∣ ck =/ 0 } is finite and

AB ∈ R[X ] . Thus the operations on R[X ] are well defined.

It is immediate that (R[X ], +) is an abelian group. The identity element of
R[X ] is the polynomial 1 with coefficients 1n = 0 for all n > 0 and 10 =
1. Multiplication on R[X ] inherits distributivity from the multiplication on R ;
associativity is an exercise. �

By custom, r ∈ R is identified with the constant polynomial with coefficients
an = 0 for all n > 0 and a0 = r ; X is identified with the polynomial with
coefficients an = 0 for all n =/ 1 and a1 = 1. This allows a more natural notation:

Proposition 5.2. A =
∑

n�0 an Xn , for every A ∈ R[X ] ; if ai = 0 for all
i > n , then A = a0 + a1 X + · · · + an Xn .

Proof. The infinite sum
∑

n�0 an Xn exists since an Xn = 0 for almost all

n . Its coefficients are found as follows. By induction on k , Xk has coefficients
an = 0 if n =/ k , ak = 1. Then r Xk has coefficients an = 0 if n =/ k , ak = r ,
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for every r ∈ R . Hence
∑

n�0 an Xn has the same coefficients as A . If ai = 0

for all i > n , then A =
∑

i�0 ai Xi =
∑

0�i�n ai Xi . �

Operations on polynomials can now be carried out in the usual way.

Definitions. The degree deg A of a polynomial A =/ 0 is the largest integer
n � 0 such that an =/ 0 ; then an is the leading coefficient of A .

The degree of the zero polynomial 0 is sometimes left undefined or is variously
defined as −1 ∈ Z or as −∞ , as long as deg 0 < deg A for all A =/ 0.

A polynomial A has degree at most n if and only if ai = 0 for all i > n , if and
only if A can be written in the form A = a0 + a1 X + · · · + an Xn . The following
properties are straightforward:

Proposition 5.3. For all A, B =/ 0 in R[X ] :

(1) deg (A + B) � max (deg A,deg B) ;

(2) if deg A =/ deg B , then deg (A + B) = max (deg A, deg B) ;

(3) deg (AB) � deg A + deg B ;

(4) if R has no zero divisors, then deg (AB) = deg A + deg B .

In particular, if R is a domain, then R[X ] is a domain.

Corollary 5.4. If R has no zero divisors, then the units of R[X ] are the units
of R .

Polynomial division. In R[X ] , polynomial or long division of A by B =/ 0
requires repeated division by the leading coefficient bn of B . For good results bn
should be a unit of R , for then division by bn is just multiplication by b−1

n and
has a unique result. In particular, polynomial division of A by B works if B is
monic (its leading coefficient bn is 1), and for all B =/ 0 if R is a field.

Proposition 5.5. Let B ∈ R[X ] be a nonzero polynomial whose leading
coefficient is a unit of R . For every polynomial A ∈ R[X ] there exist polynomials
Q, S ∈ R[X ] such that A = B Q + S and deg S < deg B ; moreover, Q and S
are unique.

Proof. First we assume that B is monic and prove existence by induction on
deg A . Let deg B = n . If deg A < n , then Q = 0 and S = A serve. Now let
deg A = m � n . Then B am Xm−n has degree m and leading coefficient am .
Hence A − B am Xm−n has degree less than m . By the induction hypothesis,
A − B am Xm−n = B Q1 + S for some Q1, S ∈ R[X ] such that deg S < deg B .
Then A = B

(

am Xm−n + Q1
)

+ S .

In general, the leading coefficient bn of B is a unit of R ; then B b−1
n is monic,

and A = B b−1
n Q + S with deg S < deg B , for some Q and S .

Uniqueness follows from the equality deg (BC) = deg B + deg C , which
holds for all C =/ 0 since the leading coefficient of B is not a zero divisor. Let
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A = B Q1 + S1 = B Q2 + S2 , with deg S1 , deg S2 < deg B . If Q1 =/ Q2 ,
then S1 − S2 = B (Q2 − Q1) has degree deg B + deg (Q2 − Q1) � deg B ,
contradicting deg S1 , deg S2 < deg B ; hence Q1 = Q2 , and then S1 = S2 . �

Evaluation. Polynomials A ∈ R[X ] can be evaluated at elements of R :

Definition. If A = a0 + a1 X + · · · + an Xn ∈ R[X ] and r ∈ R , then A(r) =
a0 + a1r + · · · + anrn ∈ R .

The polynomial A itself is often denoted by A(X) . A polynomial A(X) =
a0 + a1 X + · · · + an Xn ∈ R[X ] can also be evaluated at any element of a
larger ring S ; for example, at another polynomial B ∈ R[X ] , the result being
A(B) = a0 + a1 B + · · · + an Bn ∈ R[X ] . This operation, substitution, is discussed
in the exercises.

In general, (A + B)(r) = A(r) + B(r) , but readers should keep in mind that
(AB)(r) = A(r) B(r) requires some commutativity.

Proposition 5.6. If R is commutative, then evaluation at r ∈ R is a homo-
morphism of R[X ] into R . More generally, if R is a subring of S and s ∈ S
commutes with every element of R , then evaluation at s is a homomorphism of
R[X ] ⊆ S[X ] into S .

The commutativity condition in this result is necessary (see the exercises).

Proof. For all A, B ∈ R[X ] , (A + B)(s) = A(s) + B(s) and

A(s) B(s) =
(∑

i ai s
i)(∑

j bj s
j) =

∑

i, j
(

ai s
i bj s

j)

=
∑

i, j
(

ai bj si s j) =
∑

k
(∑

i+ j=k ai bj
)

sk = (AB)(s),

since every si commutes with every bj . Also 1(s) = 1. �

Roots. A root of a polynomial A ∈ R[X ] is an element r (of R , or of a larger
ring) such that A(r) = 0.

Proposition 5.7. Let r ∈ R and A ∈ R[X ] . If R is commutative, then A is a
multiple of X − r if and only if A(r) = 0 .

Proof. By polynomial division, A = (X − r) B + S , where B and S are
unique with deg S < 1. Then S is constant. Evaluating at r yields S = A(r) , by
5.6. Hence X − r divides A if and only if A(r) = 0. �

Definitions. Let r ∈ R be a root of A ∈ R[X ] . The multiplicity of r is the
largest integer m > 0 such that (X − r)m divides A; r is a simple root when it
has multiplicity 1 , a multiple root otherwise.

For example, i is a simple root of X2 + 1 = (X − i)(X + i) ∈ C[X ] and a
multiple root (with multiplicity 2) of X4 + 2X2 + 1 = (X − i)2 (X + i)2 ∈ C[X ] .

To detect multiple roots we use a derivative:
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Definition. The formal derivative of A(X) =
∑

n�0 an Xn ∈ K [X ] is A′(X) =
∑

n�1 n an Xn−1 ∈ K [X ] .

Without a topology on R , this is only a formal derivative, without an interpre-
tation as a limit. Yet readers will prove some familiar properties:

Proposition 5.8. For all A, B ∈ K [X ] and n > 0 , (A + B)′ = A′ + B′ ,
(AB)′ = A′B + AB′ , and (An)′ = n An−1 A′ .

Derivatives detect multiple roots as follows:

Proposition 5.9. If R is commutative, then a root r ∈ R of a polynomial
A ∈ R[X ] is simple if and only if A′(r) =/ 0 .

Proof. If r has multiplicity m , then A = (X − r)m B , where B(r) =/ 0:
otherwise (X − r)m+1 divides A by 5.7. If m = 1, then A′ = B + (X − r) B′

and A′(r) = B(r) =/ 0. If m > 1, then A′ = m (X − r)m−1 B + (X − α)m B′

and A′(r) = 0. �

Homomorphisms.

Proposition 5.10. Every homomorphism of rings ϕ : R −→ S induces a
homomorphism of rings A �−→ ϕA of R[X ] into S[X ] , namely,

ϕ
(

a0 + a1 X + · · · + an Xn) = ϕ(a0) + ϕ(a1) X + · · · + ϕ(an) Xn .

The next result, of fundamental importance in the next chapter, is a universal
property that constructs every ring homomorphism ψ : R[X ] −→ S . Necessarily
the restriction ϕ of ψ to R is a ring homomorphism; and ψ(X) commutes with
every ϕ(r) , since, in R[X ] , X commutes with all constants.

Theorem 5.11. Let R and S be rings and let ϕ : R −→ S be a homomorphism
of rings. Let s be an element of S that commutes with ϕ(r) for every r ∈ R (an
arbitrary element if S is commutative). There is a unique homomorphism of rings
ψ : R[X ] −→ S that extends ϕ and sends X to s , namely ψ(A) = ϕA (s) .

Proof. The mapping ψ is a homomorphism since it is the composition of
the homomorphisms A �−→ ϕA in 5.10 and B �−→ B(s) , (Im ϕ)[X ] −→ S
in 5.6. We see that ψ extends ϕ and sends X to s . By 5.2, a homomor-
phism with these properties must send A = a0 + a1 X + · · · + an Xn ∈ R[X ] to
ϕ(a0) + ϕ(a1) s + · · · + ϕ(an) sn = ϕA (s) . �

Propositions 5.6 and 5.10 are particular cases of Theorem 5.11.

The field case. The ring K [X ] has additional properties when K is a field.
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Proposition 5.12. For every field K : K [X ] is a domain; every ideal of K [X ]
is principal; in fact, every nonzero ideal of K [X ] is generated by a unique monic
polynomial.

Proof. The trivial ideal 0 = {0} is generated by the zero polynomial 0.
Now, let A =/ 0 be a nonzero ideal of K [X ] . There is a polynomial B ∈ A

such that B =/ 0 and B has the least possible degree. Dividing B by its leading
coefficient does not affect its degree, so we may assume that B is monic. We have
(B) ⊆ A . Conversely, if A ∈ A , then A = B Q + R for some Q, R ∈ K [X ] with
deg R < deg B . Since R = A − B Q ∈ A , R =/ 0 would contradict the choice of
B ; therefore R = 0 and A = B Q ∈ (B) . Hence A = (B) .

If A = (B) = (C) =/ 0, then C = B Q1 and B = C Q2 for some Q1 , Q2 ∈
K [X ] ; hence deg B = deg C and Q1 , Q2 are constants. If C is monic like B ,
leading coefficients show that Q1 = Q2 = 1, so that C = B . �

Since K [X ] is a domain, it has a field of fractions.

Definitions. Let K is a field. The field of fractions of K [X ] is the field of
rational fractions K (X) . The elements of K (X) are rational fractions in one
indeterminate X with coefficients in K .

In K (X) , rational fractions are written as quotients, A/B or A
B , with A, B ∈

K [X ] , B =/ 0. By definition, A/B = C/D if and only if AD = BC , and

A
B

+
C
D

=
AD + BC

B D
,

A
B

C
D

=
AC
B D

.

Rational fractions can be evaluated: when F = A/B ∈ K (X) and x ∈ K ,
then F(x) = A(x) B(x)−1∈ K is defined if B(x) =/ 0 and depends only on the
fraction A/B and not on the polynomials A and B themselves (as long as F(x)
is defined). The evaluation mapping x �−→ F(x) has good properties, but stops
short of being a homomorphism, as pesky denominators keep having roots.

Section 9 brings additional properties of rational fractions in one variable.

Exercises
1. Verify that the multiplication on R[X ] is associative.

2. Let R be a commutative ring and let b ∈ R . Prove that the equation bx = c has a
unique solution in R for every c ∈ R if and only if b is a unit.

3. Let A ∈ R[X ] have degree n � 0 and let B ∈ R[X ] have degree at least 1 .
Prove the following: if the leading coefficient of B is a unit of R , then there exist unique
polynomials Q0 , Q1 , . . . , Qn ∈ R[X ] such that deg Qi < deg B for all i and A =
Q0 + Q1B + · · · + Qn Bn .

4. Let R be a subring of S . Show that evaluation at s ∈ S , A �−→ A(s) , is a ring
homomorphism if and only if s commutes with every element of R .

5. Find an example of a ring R , an element r ∈ R , and polynomials A, B ∈ R[X ] such
that (AB)(r) =/ A(r) B(r) .
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6. Let M be a maximal ideal of R . Show that M + (X) is a maximal ideal of R[X ] .

7. Verify that (AB)′ = A′B + AB′ for every A, B ∈ R[X ] .

8. Verify that (An)′ = n An−1 A′ for every n > 0 and A ∈ R[X ] .

9. Show that every polynomial A ∈ R[X ] has a kth derivative A(k) for every k > 0 . If
A =
∑

n�0 an Xn has degree k , then show that A(k)(0) = k! ak .

10. Let R be commutative, with characteristic either 0 or greater than m . Show that a
root r of A ∈ R[X ] has multiplicity m if and only if A(k)(r) = 0 for all k < m and
A(m)(r) =/ 0 . Show that the hypothesis about the characteristic of R cannot be omitted from
this result.

11. Let R be a domain and let Q be its field of fractions. Show that the field of fractions
of R[X ] is isomorphic to Q(X) .

Substitution in R[X ] is defined as follows: if A(X) = a0 + a1X + · · · + an Xn ∈ R[X ] and
B ∈ R[X ] , then A(B) = a0 + a1B + · · · + an Bn ∈ R . The notation A ◦ B is also used for
A(B) , since A(B)(r) = A(B(r)) for all r ∈ R when R is commutative.

12. Show that substitution is an associative operation on R[X ] .

13. Show that A �−→ A(B) is a homomorphism of rings, when R is commutative.

14. Prove the following: if R has no zero divisors, then A �−→ A(B) is a homomorphism
of rings for every B ∈ R[X ] if and only if R is commutative.

Let R be a ring and let M be a monoid. The semigroup ring R[M] is the ring of all mappings
a : m �−→ am of M into R such that am = 0 for almost all m ∈ M , added pointwise,
(a + b)m = am + bm , and multiplied by (ab)m =

∑

x,y∈M, xy=m ax by .

15. Verify that R[M] is a ring.

16. Explain how every a ∈ R[M] can be written uniquely as a finite linear combination
of elements of M with coefficients in R .

17. State and prove a universal property for R[M] .

6. Polynomials in Several Variables

A polynomial in n indeterminates X1 , X2 , . . . , Xn should be a finite linear

combination of monomials X1
k1 X2

k2 · · · Xn
kn . But, as before, this natural concept

makes a poor definition. The formal definition specifies polynomials by their
coefficients; this readily accommodates infinitely many indeterminates.

Definition. A monomial in the family (Xi )i∈I (of indeterminates) is a possibly

infinite product
∏

i∈I Xi
ki with integer exponents ki � 0 such that ki = 0 for

almost all i ; then
∏

i∈I Xi
ki is the finite product

∏

i∈I, ki =/ 0 Xi
ki .

It is convenient to denote
∏

i∈I Xi
ki by Xk , where k = (ki )i∈I . Monomi-

als are multiplied by adding exponents componentwise: Xk X� = Xk+� , where
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(k + �)i = ki + �i for all i ∈ I ; the result is a monomial, since ki + �i =/ 0 implies
ki =/ 0 or �i =/ 0, so that { i ∈ I

∣
∣ ki + �i =/ 0 } is finite.

Definition. The free commutative monoid on a set, written as a family (Xi )i∈I ,

is the set M of all monomials Xk =
∏

i∈I Xi
ki , where ki � 0 and ki = 0 for

almost all i , with multiplication Xk X� = Xk+� .

The identity element of M is the empty product, 1 =
∏

i∈I Xi
ki , in which

ki = 0 for all i . If I = { 1, 2, . . ., n } , then M is the free commutative monoid
on X1, X2, . . . , Xn in Section I.1.

Definition. Let M be the free commutative monoid on a family (Xi )i∈I .
A polynomial in the indeterminates (Xi )i∈I over a ring R [with identity] is a
mapping A : Xk �−→ ak of M into R such that ak = 0 for almost all k ∈ M .
The set of all such polynomials is denoted by R[(Xi )i∈I ] .

If I = { 1, 2, . . ., n } , where n � 1, then R[(Xi )i∈I ] is denoted by R[X1,

..., Xn] . If n = 1, then R[X1, ..., Xn] is just R[X ] ; the notations R[X, Y ] ,
R[X, Y, Z ] are commonly used when n = 2 or n = 3.

R[(Xi )i∈I ] and R[X1, ..., Xn] are semigroup rings, as in the Section 5 exer-
cises. They are often denoted by R[X ] and R[x] when the indeterminates are
well understood; we’ll stick with R[(Xi )i∈I ] and R[X1, ..., Xn] .

Polynomials are added pointwise,

A + B = C when ck = ak + bk for all k ,

and multiplied by the usual rule,

AB = C when cm =
∑

k+�=m ak b� for all m .

Proposition 6.1. For every ring R [with identity], R[(Xi )i∈I ] , with the opera-
tions above, is a ring.

Proof. Let A, B ∈ R[(Xi )i∈I ] . Since ak + bk =/ 0 implies ak =/ 0 or bk =/ 0,
the set { k ∈ M

∣
∣ ak + bk =/ 0 } is finite and A + B ∈ R[(Xi )i∈I ] . If cm =

∑

k+�=m ak b� for all m , then, similarly, cm =/ 0 implies ak , b� =/ 0 for some k, � ;
therefore {m

∣
∣ cm =/ 0 } is finite and AB ∈ R[(Xi )i∈I ] . Thus the operations on

R[(Xi )i∈I ] are well defined.

It is immediate that R[(Xi )i∈I ] is an abelian group under addition. The identity
element of R[(Xi )i∈I ] is the polynomial 1 with coefficients ak = 1 if ki = 0 for
all i , ak = 0 otherwise. Multiplication on R[(Xi )i∈I ] inherits distributivity from
the multiplication on R ; associativity is an exercise. �

Each element r of R is identified with the constant polynomial r with coeffi-
cients ak = r if ki = 0 for all i , ak = 0 otherwise; and each indeterminate Xi is
identified with the polynomial Xi with coefficients ak = 1 if ki = 1 and kj = 0
for all j =/ i , ak = 0 otherwise. This allows a more natural notation:
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Proposition 6.2. A =
∑

k ak Xk , for every A ∈ R[(Xi )i∈I ] .

Proof. The infinite sum
∑

k ak Xk exists since ak Xk = 0 for almost all k . We
find its coefficients. By induction on mi , the coefficient of Xk in Xi

mi is 1 if
ki = mi and kj = 0 for all j =/ i , otherwise 0. Hence the coefficient of Xk in Xm

is 1 if k = m , 0 if k =/ m . Then the coefficient of Xk in r Xm is r if k = m , 0 if
k =/ m . Hence

∑

m am Xm has the same coefficients as A . �
Operations on polynomials can now be carried out as usual.

The ring R[X1, ..., Xn] is often defined by induction. This is useful in proving
properties of R[X1, ..., Xn] .

Proposition 6.3. R[X1, ..., Xn] ∼=
(

R[X1, ..., Xn−1]
)

[Xn] when n � 2 .

Proof. Every polynomial in R[X1, ..., Xn] can be rearranged by increasing
powers of Xn , and thereby written uniquely in the form A0 + A1 Xn + · · · + Aq Xq

n ,
with A1, . . ., Aq ∈ R[X1, ..., Xn−1] . This bijection of R[X1, ..., Xn] onto
(

R[X1, ..., Xn−1]
)

[Xn] preserves sums and products, since R[X1, ..., Xn] is a
ring and Xn commutes with every B ∈ R[X1, ..., Xn−1] . �

Degrees. The degree of a monomial is its total degree. Monomials also have a
degree in each indeterminate.

Definitions. The degree of a monomial Xk =
∏

i∈I Xi
ki is deg Xk =

∑

i∈I ki .
The degree deg A of a nonzero polynomial A =

∑

k ak Xk is the largest deg Xk

such that ak =/ 0 .

The degree in Xj of a monomial Xk =
∏

i∈I Xi
ki is degXj

Xk = kj . The

degree in Xj , degXj
A , of a nonzero polynomial A =

∑

k ak Xk is the largest

degXj
Xk such that ak =/ 0 . �

Readers will verify the following properties:

Proposition 6.4. For all A, B =/ 0 in R[(Xi )i∈I ] :

(1) deg (A + B) � max (deg A,deg B) ;

(2) if deg A =/ deg B , then deg (A + B) = max (deg A, deg B) ;

(3) deg (AB) � deg A + deg B ;

(4) if R has no zero divisors, then deg (AB) = deg A + deg B .

In particular, if R is a domain, then R[(Xi )i∈I ] is a domain.

Degrees in one indeterminate have similar properties.

Corollary 6.5. If R has no zero divisors, then the units of R[(Xi )i∈I ] are the
units of R .

Polynomial division in R[(Xi )i∈I ] is considered in Section 12.
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Homomorphisms. Polynomials in several indeterminates can be evaluated:

Definition. If A =
∑

k
(

ak
∏

i∈I Xi
ki ) ∈ R[(Xi )i∈I ] and (ri )i∈I is a family

of elements of R , then A
(

(ri )i∈I
)

=
∑

k
(

ak
∏

i∈I ri
ki ) ∈ R .

In this formula, the possibly infinite product
∏

i∈I si
ki denotes the finite product

∏

i∈I, ki =/ 0 si
ki . More generally, a polynomial A ∈ R[(Xi )i∈I ] can be evaluated

at elements of a larger ring S ⊇ R , for instance, at a family of polynomials in
some R[(Yj ) j∈J ] ; the details of this operation, substitution, are left to interested
readers, or to those who rightly fear idleness.

If I = { 1, 2, . . ., n } , then A
(

(ri )i∈I
)

is denoted by A(r1, ..., rn) . The poly-
nomial A itself is often denoted by A

(

(Xi )i∈I
)

, or by A(X1, ..., Xn) . As in
Section 5, (A + B)

(

(ri )i∈I
)

= A
(

(ri )i∈I
)

+ B
(

(ri )i∈I
)

, but (AB)
(

(ri )i∈I
)

=
A
(

(ri )i∈I
)

B
(

(ri )i∈I
)

requires commutativity:

Proposition 6.6. If R is commutative, then evaluation at (ri )i∈I∈ R is a ho-
momorphism of R[X ] into R . More generally, if R is a subring of S and (si )i∈I
are elements of S that commute with each other and with every element of R , then
evaluation at (si )i∈I is a homomorphism of R[(Xi )i∈I ] ⊆ S[(Xi )i∈I ] into S .

This is proved like 5.6; we encourage our tireless readers to provide the details.
Homomorphisms of rings also extend to their polynomial rings, as in Section 5.

Proposition 6.7. Every homomorphism of rings ϕ : R −→ S extends uniquely
to a homomorphism of rings A �−→ ϕA of R[(Xi )i∈I ] into S[(Xi )i∈I ] that sends
every Xi to itself, namely

ϕ
(∑

k ak Xk) =
∑

k ϕ(ak) Xk .

The universal property of R[(Xi )i∈I ] constructs every ring homomorphism
ψ : R[(Xi )i∈I ]−→ S . Necessarily, the restriction ϕ : R −→ S of ψ to R is a
ring homomorphism, and the elements ψ(Xi ) of S commute with each other and
with every ϕ(r) , since, in R[(Xi )i∈I ] , the monomials Xi commute with each
other and with all constants.

Theorem 6.8. Let R and S be rings and let ϕ : R −→ S be a homomorphism
of rings. Let (si )i∈I be elements of S that commute with each other and with
ϕ(r) for every r ∈ R (arbitrary elements of S if S is commutative). There is a
unique homomorphism of rings ψ : R[(Xi )i∈I ]−→ S that extends ϕ and sends
Xi to si for every i , namely ψ

(

A((Xi )i∈I )
)

= ϕA
(

(si )i∈I
)

.

This is proved like Theorem 5.11. Propositions 6.6 and 6.7 are particular cases
of Theorem 6.8.
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Rational fractions. We now let R be a field K . Then K [(Xi )i∈I ] is a domain,
by 6.4, and has a field of fractions:

Definitions. Let K be a field. The field of fractions of K [(Xi )i∈I ] is the field of
rational fractions K ((Xi )i∈I ) . The elements of K ((Xi )i∈I ) are rational fractions
in the indeterminates (Xi )i∈I over the field K . �

If I = { 1 2, . . ., n } , where n � 1, then K ((Xi )i∈I ) is denoted by K (X1,

..., Xn) . If n = 1, K (X1, ..., Xn) is just K (X) ; K (X1, X2) and K (X1, X2, X3)
are more commonly denoted by K (X, Y ) and K (X, Y, Z) .

In K
(

(Xi )i∈I
)

, rational fractions are written as quotients, A/B or A
B , with

A, B ∈ K [(Xi )i∈I ] , B =/ 0. By definition, A/B = C/D if and only if AD = BC ,
and

A
B

+
C
D

=
AD + BC

B D
,

A
B

C
D

=
AC
B D

.

The field K (X1, ..., Xn) can also be defined by induction:

Proposition 6.9. K (X1, ..., Xn) ∼=
(

K (X1, ..., Xn−1)
)

(Xn) when n � 2 .

As in the one-variable case, rational fractions can be evaluated: when F =
A/B ∈ K ((Xi )i∈I ) and xi ∈ K for all i ∈ I , then

F
(

(xi )i∈I
)

= A
(

(xi )i∈I
)

B
(

(xi )i∈I
)−1 ∈ K

is defined if B
(

(xi )i∈I
)

=/ 0, and, when defined, depends only on the fraction
A/B and not on the polynomials A and B themselves. The mapping (xi )i∈I �−→
F
(

(xi )i∈I
)

, defined wherever possible, is a rational function.

Exercises
1. Give a direct proof that multiplication in R[(Xi )i∈I ] is associative.

2. Let M be a maximal ideal of R . Show that M +
(
(Xi )i∈I

)
is a maximal ideal of

R[(Xi )i∈I ] .

3. Let K be a field. Show that K [X1, X2] has ideals that are not principal.

4. Flesh out a detailed proof of the statement that the bijection of R[X1, ..., Xn] onto
(

R[X1, ..., Xn−1]
)
[Xn] , obtained by rearranging polynomials in R[X1, ..., Xn] by increas-

ing powers of Xn , “preserves sums and products since R[X1, ..., Xn] is a ring”.

5. A polynomial A ∈ K [(Xi )i∈I ] is homogeneous when all its monomials have the
same degree (deg Xk = deg X� whenever ak , a� =/ 0). Show that every polynomial in
K [(Xi )i∈I ] can be written uniquely as a sum of homogeneous polynomials.

6. Prove the universal property of R[(Xi )i∈I ] .

7. Use induction on n to prove the universal property of R[X1, ..., Xn] .

8. Show that Z[(Xi )i∈I ] is the free commutative ring [with identity] on (Xi )i∈I in
the sense that every mapping of (Xi )i∈I into a commutative ring R extends uniquely to a
homomorphism of Z[(Xi )i∈I ] into R .
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9. Let R be a domain and let Q be its field of fractions. Show that the field of fractions of
R[(Xi )i∈I ] is isomorphic to Q((Xi )i∈I ) .

10. Show that K (X1, ..., Xn) ∼=
(

K (X1, ..., Xn−1)
)
(Xn) when n � 2 .

*11. Define substitution in R[(Xi )i∈I ] and establish its main properties.

*12. Define a polynomial ring in which the indeterminates (Xi )i∈I commute with constants
but not with each other. State and prove its universal property. Does this yield “free” rings?

7. Formal Power Series

This section can be skipped. Power series lose some of their charm when trans-
planted to algebra: they can still be added and multiplied, but, without a topology,
there don’t have sums; they become formal power series.

Definition. Let M = { 1, X, . . ., Xn, . . . } be the free monoid on {X} . A
formal power series A =

∑

n�0 an Xn in the indeterminate X over a ring R [with
identity] is a mapping A : Xn �−→ an of M into R .

Power series are added pointwise,

A + B = C when cn = an + bn for all n � 0,

and multiplied by the usual rule,

AB = C when cn =
∑

i+ j=n ai bj for all n � 0.

The following result is straightforward:

Proposition 7.1. If R is a ring, then formal power series over R in the
indeterminate X constitute a ring R[[X ]] .

At this point, A =
∑

n�0 an Xn is not an actual sum in R[[X ]] (unless A is a
polynomial). But we shall soon find a way to add series in R[[X ]] .

Order. Power series do not have degrees, but they have something similar.

Definition. The order ord A of a formal power series A =
∑

n�0 an Xn =/ 0 is
the smallest integer n � 0 such that an =/ 0 .

The order of the zero series 0 is sometimes left undefined; we define it as ∞ ,
so that ord 0 > ord A for all A =/ 0. Thus A =

∑

n�0 an Xn has order at least
n if and only if ak = 0 for all k < n , if and only if it is a multiple of Xn . The
following properties are straightforward:

Proposition 7.2. For all A, B =/ 0 in R[[X ]] :

(1) ord (A + B) � min (ord A, ord B) ;

(2) if ord A =/ ord B , then ord (A + B) = min (ord A, ord B) ;

(3) ord (AB) � ord A + ord B ;
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(4) if R has no zero divisors, then ord (AB) = ord A + ord B .

In particular, if R is a domain, then R[[X ]] is a domain.

Sums. Certain series can now be added in R[[X ]] in a purely algebraic fashion
(but for which the exercises give a topological interpretation).

Definition. A sequence T0, T1, . . ., Tk, . . . of formal power series Tk =
∑

n�0 tk,n Xn ∈ R[[X ]] is addible, or summable, in R[[X ]] when, for every
n � 0 , Tk has order at least n for almost all k . Then the sum S =

∑

k�0 Tk is
the power series with coefficients sn =

∑

k�0 tk,n .

If ord Tk � n for almost all k , then tk,n = 0 for almost all k , and the infinite
sum sn =

∑

k�0 tk,n is defined in R .

In particular, T0, T1, . . ., Tk, . . . is addible whenever ord Tk � k for all k .
For example, for any A =

∑

n�0 an Xn ∈ R[[X ]] , the sequence a0 , a1 X , . . . ,
an Xn , . . . is addible, since ord an Xn � n . Its sum is A . Thus A =

∑

n�0 an Xn

is now an actual sum in R[[X ]] .

Proposition 7.3. If R is commutative, then A =
∑

n�0 an Xn is a unit of R[[X ]]
if and only if a0 is a unit of R .

Proof. If A is a unit of R[[X ]] , then AB = 1 for some B ∈ R[[X ]] , a0 b0 = 1,
and a0 is a unit of R .

We first prove the converse when a0 = 1. Let A = 1 − T . Then ord T � 1,
and ord T n � n , by 7.2. Hence the sequence 1, T, . . ., T n, . . . is addible. We
show that B =

∑

k�0 T k satisfies AB = 1.

Let Bn = 1 + T + · · · + T n . Then B − Bn =
∑

k>n T k and ord (B − Bn) > n ,
since ord T k > n when k > n . By 7.2, ord (AB − ABn) > n . Now,

ABn = (1 − T )(1 + T + · · · + T n) = 1 − T n+1.

Hence ord (ABn − 1) > n . By 7.2, ord (AB − 1) > n . This holds for all n � 0;
therefore AB = 1, and A is a unit of R[[X ]] .

If now a0 is any unit, then A a−1
0 , which has constant coefficient 1, is a unit

of R[[X ]] , A a−1
0 B = 1 for some B ∈ R[[X ]] , and A is a unit of R[[X ]] . �

Formal Laurent series. A Laurent series is a power series with a few additional
negative terms.

Definition. Let G = { Xn ∣∣ n ∈ Z } be the free group on {X} . A formal
Laurent series A =

∑

n an Xn in the indeterminate X over a ring R is a mapping
A : Xn �−→ an of G into R such that an = 0 for almost all n < 0 .

Equivalently, a Laurent series A =
∑

n an Xn looks like (and will soon be) the
sum of a polynomial

∑

n<0 an Xn in X−1 and a power series
∑

n�0 an Xn .
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Laurent series are added pointwise,

A + B = C when cn = an + bn for all n ∈ Z ,

and multiplied by the usual rule,

AB = C when cn =
∑

i+ j=n ai bj for all n ∈ Z .

The following result is straightforward:

Proposition 7.4. For every ring R [with identity], the Laurent series over R
with one indeterminate X constitute a ring R((X)) .

The order ord A of a Laurent series A =
∑

n an Xn =/ 0 is the smallest integer
n such that an =/ 0; as before, we let ord 0 = ∞ . Thus, a Laurent series
A =

∑

n�0 an Xn has order at least n ∈ Z if and only if ak = 0 for all k < n , if
and only if it is the product of Xn and a power series.

Readers will easily extend Proposition 7.2 to Laurent series, but may be more
interested in the following result.

Proposition 7.5. For every field K , K ((X)) is a field; in fact, K ((X)) is
isomorphic to the field of fractions of K [[X ]] .

Proof. Let A =
∑

n an Xn ∈ K ((X)) , A =/ 0. Then A has order m ∈ Z and
A = Xm B for some B ∈ K [[X ]] whose constant term is b0 = am =/ 0. By 7.3,

B is a unit of K [[X ]] : BC = 1 for some C ∈ K [[X ]] . Then A X
−m

C = 1 and A
is a unit of K ((X)) . Thus K ((X)) is a field. Moreover, K [[X ]] is a subring of
K ((X)) , and a Laurent series A ∈ K ((X)) either has order m � 0 and belongs
to K [[X ]] , or has order m < 0 and can be written as A = Xm B = B (X−m)−1

with B, X−m ∈ K [[X ]] ; by 4.12, K ((X)) is isomorphic to the field of fractions
of K [[X ]] . �

Exercises

1. Verify that multiplication on R[[X ]] is associative.

2. Let R be commutative and let m be a maximal ideal of R . Show that m + (X) is a
maximal ideal of R[[X ]] .

Substitution in R[[X ]] substitutes a power series C of order at least 1 into any power series
A =
∑

n�0 an Xn to yield a power series A ◦ C or A(C) =
∑

n�0 anCn .

3. Show that substitution is a well-defined operation on R[[X ]] , which is associative when
R is commutative.

4. Show that, in R[[X ]] , (A + B) ◦ C = (A ◦ C) + (B ◦ C) , and, if R is commutative,
(AB) ◦ C = (A ◦ C)(B ◦ C) , whenever C has order at least 1 .

5. Show that R[[X ]] is a metric space, in which d(A, B) = 2
−ord (A−B)

if A =/ B ,
d(A, B) = 0 if A = B . Show that the operations on R[[X ]] are continuous.

6. Show that the metric space R[[X ]] is the completion of R[X ] .
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7. Let T0, T1, . . . , Tk , . . . be an addible sequence. Show that
∑

k Tk is the sum of a
series in the metric space R[[X ]] .

8. Let K be the field of fractions of a domain R . Show that K ((X)) is the field of
fractions of R[[X ]] .

9. Let R be commutative. Show that a Laurent series of order n is a unit of R((X)) if
and only if its coefficient an is a unit of R .

10. Let K be a field. Describe the homomorphism K (X) −→ K ((X)) , whose existence
is guaranteed by 7.5, that expands rational fractions into Laurent series.

*11. Set up a theory of formal power series in several variables.

8. Principal Ideal Domains

This section extends the main arithmetic properties of Z to all principal ideal
domains, including polynomial rings K [X ] where K is a field.

Definition. A principal ideal domain or PID is a domain (a commutative ring
with identity and no zero divisors) in which every ideal is principal.

We already have some examples: by 2.4, 5.12, Z is a PID, and so is K [X ]
for every field K . On the other hand, polynomial rings with more than one
indeterminate are not PIDs (see the exercises).

Representatives. By 2.3, every ideal a of a PID R is the set a = (a) = Ra of
all multiples of some a ∈ R ; thus x ∈ a if and only if a | x (a divides x ). Here,
a is unique up to multiplication by a unit:

Lemma 8.1. In a domain R , Ra = Rb if and only if a = ub for some unit u .

Proof. If u is a unit, then Ru = R and Rub = Rb . Conversely, if Ra = Rb ,
then a = ub , b = va for some u, v ∈ R ; if a = 0, then b = 0 and a = 1b ;
otherwise, uva = a =/ 0 implies uv = 1, so that u is a unit. �

In Lemma 8.1, the equivalence relation Ra = Rb partitions R into equivalence
classes; equivalent elements are often called associates, and we call the equiva-
lence classes associate classes. Uniqueness in various results can be achieved by
selecting one representative element in each associate class.

Proposition 8.2. In a domain R , every principal ideal is generated by a unique
representative element.

In Z , the units are ±1, and nonnegative integers serve as representative
elements; Proposition 2.4 already states that every ideal of Z is generated by
a unique nonnegative integer. By 5.4, the units of K [X ] are the nonzero elements
of K ; monic polynomials, together with 0, serve as representative elements; in
Proposition 5.12, every nonzero ideal of K [X ] is already generated by a unique
monic polynomial. Fortunately, these manic representatives do not assemble to
pass laws.



134 Chapter III. Rings

Properties. We now extend to PIDs the basic arithmetic properties of integers.
The main property has to do with elements that are sometimes called prime (as in
Z ), sometimes called irreducible (as in K [X ] ).

Definitions. An element p of a domain R is prime when p is not zero or a
unit, and p | ab implies p | a or p | b (equivalently, ab ∈ Rp implies a ∈ Rp
or b ∈ Rp ). An element q of a domain R is irreducible when q is not zero or a
unit, and q = ab implies that a is a unit or b is a unit.

Proposition 8.3. In a principal ideal domain R , the following conditions on an
element p ∈ R are equivalent: (i) p is irreducible; (ii) p is prime; (iii) Rp is a
nonzero prime ideal; (iv) Rp is a nonzero maximal ideal.

In case R = Z , this is Corollary 4.8. In general, Proposition 8.3 implies the
following: when u is a unit of R , then p is irreducible if and only if up is
irreducible.

Proof. (iv) implies (iii), by 4.7; (iii) implies (ii) trivially; and (ii) implies (i): if
p is prime and p = ab , then p divides, say, a ; since a already divides p , b is a
unit, by 8.1.

We show that (i) implies (iv). Assume that Rp is contained in an ideal a = Ra
of R . Then p = ab for some b ∈ R . By (i), either a is a unit, and then a = R ,
or b is a unit, and then a = Rp . �

The main property of PIDs can now be stated in two equivalent forms.

Theorem 8.4A. In a principal ideal domain R , every element, other than 0 and
units, is a nonempty product of irreducible elements. If furthermore two nonempty
products p1 p2 · · · pm = q1 q2 · · · qn of irreducible elements are equal, then
m = n and the terms can be indexed so that Rpi = Rqi for all i .

Theorem 8.4B. Every nonzero element of R can be written as the product
u pk1

1 pk2
2 · · · pkn

n of a unit and of positive powers of distinct representative
irreducible elements, which are unique up to the order of the terms.

Proof. We prove the first statement, which implies the second. Assume that
R has bad elements: elements, other than 0 and units, that are not products of
irreducible elements. The bad principal ideals generated by bad elements then
constitute a nonempty set B of ideals of R . We show that B has a maximal
element Rb . Otherwise, let Rb1 ∈ B . Since Rb1 is not maximal there exists
Rb1 � Rb2 ∈ B . Since Rb2 is not maximal there exists Rb2 � Rb3 ∈ B .
This constructs a chain of ideals Rb1 � · · · � Rbn � Rbn+1 � · · · . Then
b =

⋃

n>0 Rbn is an ideal of R . Since R is a PID, b is generated by some
b ∈ R . Then b ∈ Ran for some n , and (b) ⊆ Rbn � Rbn+1 � b = (b) . This
contradiction shows that B has a maximal element Rm , where m is bad. (Readers
who are already familiar with Noetherian rings will easily recognize this part of
the proof.)

Now, m , which is bad, is not 0, not a unit, and not irreducible. Hence
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m = ab for some a, b ∈ R , neither of which is 0 or a unit. Then Rm � Ra
and Rm � Rb . Hence a and b cannot be bad and are products of irreducible
elements. But then so is m = ab . This contradiction shows that every element of
R , other than 0 and units, is a product of irreducible elements.

Next, assume that p1 p2 · · · pm = q1 q2 · · · qn , where m, n > 0 and all pi ,
qj are irreducible. We prove by induction on m + n � 2 that m = n and the
elements pi , qj can be reindexed so that Rpi = Rqi for all i . This is clear if
m = n = 1. Now assume, say, m > 1. Then pm divides q1 q2 · · · qn ; since pm
is prime by 10.3, pm divides some qk : qk = upm for some u ∈ R . Since qk is
irreducible, u is a unit and Rqk = Rpm . The elements qj can be reindexed so
that k = n ; then Rqn = Rpm and qn = upm .

The equality p1 p2 · · · pm = q1 q2 · · · qn now yields p1 p2 · · · pm−1 =
u q1 q2 · · · qn−1 . Hence n > 1: otherwise, p1 p2 · · · pm−1 = u and p1 ,
. . . , pn−1 are units, a contradiction. Now, uq1 is irreducible; by the induction
hypothesis, m − 1 = n − 1, and the remaining terms can be reindexed so that
Rp1 = Ruq1 = Rq1 and Rpi = Rqi for all 1 < i < m . �

Least common multiples and greatest common divisors can be defined in
any domain, but do not necessarily exist.

Definitions. In a domain, an element m is a least common multiple or l.c.m. of
two elements a and b when m is a multiple of a and of b , and every multiple of
both a and b is also a multiple of m ; an element d is a greatest common divisor
or g.c.d. of two elements a and b when d divides a and b , and every element
that divides a and b also divides d .

Any two l.c.m.s of a and b must be multiples of each other, and similarly for
g.c.d.s; by 8.1, the l.c.m. and g.c.d. of a and b , when they exist, are unique up to
multiplication by a unit. They are often denoted by [a, b] and (a, b) ; the author
prefers lcm (a, b) and gcd (a, b) .

In a PID, l.c.m.s and g.c.d.s arise either from ideals or from 8.4.

Proposition 8.5. In a principal ideal domain R , every a, b ∈ R have a least
common multiple and a greatest common divisor. Moreover, m = lcm (a, b) if
and only if Rm = Ra ∩ Rb, and d = gcd (a, b) if and only if Rd = Ra + Rb. In
particular, d = gcd (a, b) implies d = xa + yb for some x, y ∈ R .

Proof. By definition, m = lcm (a, b) (m is an l.c.m. of a and b ) if and only if
m ∈ Ra ∩ Rb , and c ∈ Ra ∩ Rb implies c ∈ Rm ; if and only if Rm = Ra ∩ Rb .
An l.c.m. exists since the ideal Ra ∩ Rb must be principal.

Similarly, d = gcd (a, b) if and only if a, b ∈ Rd , and a, b ∈ Rc implies
c ∈ Rd , if and only if Rd is the smallest principal ideal of R that contains both
Ra and Rb . The latter is Ra + Rb , since every ideal of R is principal. Hence
d = gcd (a, b) if and only if Rd = Ra + Rb , and then d = xa + yb for some
x, y ∈ R . A g.c.d. exists since the ideal Ra + Rb must be principal. �
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Readers may now define l.c.m.s and g.c.d.s of arbitrary families (ai )i∈I and
use similar arguments to prove their existence in PIDs.

In a PID, the l.c.m. and g.c.d. of a and b ∈ R can also be obtained from 8.4.
Write a and b as products a = u pk1

1 pk2
2 · · · pkm

m and b = v q�1
1 q�2

2 · · · q�n
n of

a unit and positive powers of distinct representative irreducible elements. Merge
the sequences p1 , . . . , pm and q1 , . . . , qn , so that a and b are products a =

u pa1
1 pa2

2 · · · pan
n and b = v pb1

1 pb2
2 · · · pbn

n of a unit and nonnegative powers
of the same distinct representative irreducible elements. Readers may establish
the following properties:

Proposition 8.6. In a principal ideal domain, let a = u pa1
1 pa2

2 · · · pan
n and

b = v pb1
1 pb2

2 · · · pbn
n be products of a unit and nonnegative powers of the same

distinct representative irreducible elements. Then:

(1) a divides b if and only if ai � bi for all i .

(2) c = pc1
1 pc2

2 · · · pcn
n is an l.c.m. of a and b if and only if ci = max (ai , bi )

for all i .

(3) d = pd1
1 pd2

2 · · · pdn
n is a g.c.d. of a and b if and only if di = min (ai , bi )

for all i .

(4) lcm (a, b) gcd (a, b) = wab for some unit w .

For instance, if R = Z and a = 24 = 23 · 3, b = 30 = 2 · 3 · 5, then
lcm (a, b) = 23 · 3 · 5 = 120 and gcd (a, b) = 2 · 3 = 6.

The following properties make fine exercises:

Proposition 8.7. In a PID, if gcd (a, b) = gcd (a, c) = 1 , then gcd (a, bc) = 1 ;
if a divides bc and gcd (a, b) = 1 , then a divides c .

Irreducible polynomials. Now, let K be a field. Theorem 8.4 yields the
following property of K [X ] :

Corollary 8.8. Let K be a field. In K [X ] , every nonzero polynomial is the
product of a constant and positive powers of distinct monic irreducible polynomi-
als, which are unique up to the order of the terms.

What are these irreducible polynomials? The answer reveals profound differ-
ences between various fields. We begin with a general result, left to readers.

Proposition 8.9. Let K be a field. In K [X ] :

(1) every polynomial of degree 1 is irreducible;

(2) an irreducible polynomial of degree at least 2 has no root in K ;

(3) a polynomial of degree 2 or 3 with no root in K is irreducible.

On the other hand, (X2 + 1)2 ∈ R[X ] has no root in R but is not irreducible.
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Equipped with Proposition 8.9 we clean up the cases K = C and K = R .

Proposition 8.10. A polynomial over C is irreducible if and only if it has
degree 1 .

Proposition 8.10 is often stated as follows:

Theorem 8.11 (Fundamental Theorem of Algebra). Every nonconstant polyno-
mial over C has a root in C .

This result is due to Gauss [1799]. In 1799, algebra was primarily concerned
with polynomial equations, and Theorem 8.11 was indeed of fundamental impor-
tance.

Complex analysis provides the best proof of Theorem 8.11 (a much more
algebraic proof is given in Section VI.2). Assume that f ∈ C[X ] has no root
in C . Then the function g(z) = 1/ f (z) is holomorphic on all of C . If f has
degree 1 or more, then |g(z)| −→ 0 when z −→ ∞ , so that the larger values
of |g(z)| all occur inside some closed disk D ; since |g(z)| is continuous it has a
maximum value on the compact set D , which is also its maximum value on all of
C . This also holds if f is constant. The Maximum principle now implies that g
is constant, and then so is f .

Proposition 8.12. A polynomial over R is irreducible if and only if it has either
degree 1 , or degree 2 and no root in R .

Proof. Polynomials with these properties are irreducible, by 8.9. Conversely,
let f ∈ R[X ] , f =/ 0. As a polynomial over C , f is, by 8.8 and 8.10, the product
of a constant and monic polynomials of degree 1:

f (X) = an (X − r1)(X − r2)· · · (X − rn).

Then n = deg f , an is the leading coefficient of f , and r1 , . . . , rn are the (not
necessarily distinct) roots of f in C . Since f has real coefficients, complex
conjugation yields

f (X) = f (X) = an (X − r1)(X − r2)· · · (X − rn),

Then { r1, . . . , rn } = { r1, . . ., rn } , for f has only one such factorization. There-
fore the roots of f consist of real roots and pairs of nonreal complex conjugate
roots. Hence f is the product of an , polynomials X − r ∈ R[X ] with r ∈ R ,
and polynomials

(X − z)(X − z) = X2 − (z + z) X + zz ∈ R[X ]

with z ∈ C\R and no root in R . If f is irreducible in R[X ] , then f has either
degree 1, or degree 2 and no root in R . �

The case K = Q is more complicated and is left to Section 10. We now turn to
the finite fields K = Zp .

Proposition 8.13. For every field K , K [X ] contains infinitely many monic
irreducible polynomials.
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Proof. This proof is due to Euclid, who used a similar argument to show that Z

contains infinitely many primes. We show that no finite sequence q1, q2, . . . , qn
can contain every monic irreducible polynomial of K [X ] . Indeed, f = 1 +
q1 q2 · · · qn is not constant and is by 8.8 a multiple of a monic irreducible polyno-
mial q . Then q =/ q1 , q2 , . . . , qn : otherwise, q divides 1 = f − q1 q2 · · · qn . �

If K is finite, then K [X ] has irreducible polynomials of arbitrarily high degree,
since there are only finitely many polynomials of degree at most n .

Irreducible polynomials of low degree are readily computed when K = Zp and
p is small. For example, let K = Z2 . Let f ∈ Z2[X ] , f =/ 0. The coefficients
of f are either 0 or 1; hence f has no root in Z2 if and only if its constant
coefficient is 1 and it has an odd number of nonzero terms. Then

X , X + 1, X2 + X + 1, X3 + X + 1, and X3 + X2 + 1

are irreducible, by 8.9, and all other polynomials of degree 2 or 3 have roots in
Z2 . Next there are four polynomials of degree 4 with no roots: X4 + X + 1,
X4 + X2 + 1, X4 + X3 + 1, and X4 + X3 + X2 + X + 1. If one of these is not
irreducible, then it is a product of irreducible polynomials of degree 2 (degree 1
is out, for lack of roots) and must be (X2 + X + 1)(X2 + X + 1) = X4 + X2 + 1
(by 4.4). This leaves three irreducible polynomials of degree 4:

X4 + X + 1, X4 + X3 + 1, and X4 + X3 + X2 + X + 1.

Exercises
1. Show that no polynomial ring with more than one indeterminate is a PID.

2. A Gauss integer is a complex number x + iy in which x and y are integers. Show that
the ring R of all Gauss integer is a PID. (You may wish to first prove the following: for every
a, b ∈ R , b =/ 0 , there exist q, r ∈ R such that a = bq + r and |r | < |b| .)

3. A ring R is Euclidean when there exists a mapping ϕ : R\{0} −→ N with the
following division property: for every a, b ∈ R , b =/ 0 , there exist q, r ∈ R such that
a = bq + r and either r = 0 or ϕ(r) < ϕ(b) . Prove that every Euclidean domain is a PID.

4. Show that every family of elements of a PID has an l.c.m. (which may be 0).

5. Show that every family (ai )i∈I of elements of a PID has a g.c.d. d , which can be written
in the form d =

∑

i∈I xi ai for some xi ∈ R (with xi = 0 for almost all i ∈ I ).

6. Prove Proposition 8.6.

7. In a PID, show that gcd (a, b) = gcd (a, c) = 1 implies gcd (a, bc) = 1.

8. Prove the following: in a PID, if a divides bc and gcd (a, b) = 1, then a divides c .

9. Let K be a field. Prove that, in K [X ] , a polynomial of degree 2 or 3 is irreducible if
and only if it has no root in K .

10. Write X5 + X3 − X2 − 1 ∈ R[X ] as a product of irreducible polynomials.

11. Write X4 + 1 ∈ R[X ] as a product of irreducible polynomials.

12. Find all irreducible polynomials of degree 5 in Z2[X ] .
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13. Find all monic irreducible polynomials of degree up to 3 in Z3[X ] . (Readers who are
blessed with long winter evenings can try degree 4 .)

9. Rational Fractions

A first application of principal ideal domains is the decomposition of rational
fractions into a sum of partial fractions, a perennial favorite of calculus students.

Let K be a field. A partial fraction is a rational fraction f/qr ∈ K (X) in
which q is monic and irreducible, r � 1, and deg f < deg q . Then f , q , and
r are unique (see the exercises). The main result of this section is the following:

Theorem 9.1. Every rational fraction over a field can be written uniquely as
the sum of a polynomial and partial fractions with distinct denominators.

The proof of Theorem 9.1 has three parts. The first part reduces rational
fractions and ejects the polynomial part. A rational fraction f/g ∈ K (X) is in
reduced form when g is monic and gcd ( f, g) = 1.

Lemma 9.2. Every rational fraction can be written uniquely in reduced form.

Proof. Given f/g , divide f and g by the leading coefficient of g and then by
a monic g.c.d. of f and g ; the result is in reduced form.

Let f/g = p/q , f q = gp , with g, q monic and gcd ( f, g) = gcd (p, q) = 1.
Then q divides gp ; since gcd (p, q) = 1, q divides g , by 8.7. Similarly, g
divides q . Since q and g are monic, q = g . Then p = f . �

We call a rational fraction f/g polynomial-free when deg f < deg g .

Lemma 9.3. Every rational fraction can be written uniquely as the sum of a
polynomial and a polynomial-free fraction in reduced form.

Proof. By 9.2 we may start with a rational fraction f/g in reduced form.
Polynomial division yields f = gq + r with q, r ∈ K [X ] and deg r < deg g .
Then f/g = q + r/g ; r/g is polynomial-free and is in reduced form, since g is
monic and gcd (r, g) = gcd ( f, g) = 1. Conversely let f/g = p + s/h , with p ∈
K [X ] , deg s < deg h , h monic, and gcd (s, h) = 1. Then f/g = (ph + s)/h .
Both fractions are in reduced form; hence g = h and f = ph + s = pg + s , by
9.2. Uniqueness in polynomial division then yields p = q and s = r . �

The second part of the proof breaks a reduced polynomial-free fraction f/g into
a sum of reduced polynomial-free fractions a/qk , in which q is irreducible. (These
are not quite partial fractions, since deg a < deg qk , rather than deg a < deg q .)

Lemma 9.4. If deg f < deg gh and gcd (g, h) = 1 , then there exist unique
polynomials a, b such that deg a < deg g , deg b < deg h , and f/(gh)=
(a/g) +(b/h) . If gcd ( f, gh) = 1 , then gcd (a, g) = gcd (b, h) = 1 .
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Proof. Since gcd (g, h) = 1, there exist polynomials s, t such that gs + ht = f .
Polynomial division yields t = gp + a , s = hq + b , where deg a < deg g and
deg b < deg h . Then f = gh (p + q) + ah + bg , with deg (ah + bg) < deg gh ,
and p + q = 0: otherwise, deg f � deg gh , contradicting the hypothesis. Hence
f = ah + bg , and f/(gh)= (a/g) +(b/h) . If gcd ( f, gh) = 1, then a polynomial
that divides a and g , or divides b and h , also divides f = ah + bg and gh ; hence
gcd (a, g) = gcd (b, h) = 1.

Now assume that f/(gh)= (c/g) +(d/h) , with deg c < deg g , deg d <

deg h . Then ch + dg = f = ah + bg and (c − a) h = (b − d) g . Hence g divides
c − a and h divides b − d , by 8.7, since gcd (g, h) = 1. But deg (c − a) < deg g ,
deg (b − d) < deg h ; therefore c − a = b − d = 0. �

Lemma 9.5. If deg f < deg g and gcd ( f, g) = 1 , then there exist unique
integers n � 0 , k1 , . . . , kn > 0 and unique polynomials a1 , . . . , an , q1 , . . . , qn

such that q1 , . . . , qn are distinct monic irreducible polynomials, deg ai < deg qki
i

for all i , gcd (ai , qi ) = 1 for all i , and

f
g

=
a1

qk1
1

+ · · · +
an

qkn
n

.

If g is monic in Lemma 9.5, readers will see that g = qk1
1 qk2

2 · · · qkn
n is

the unique factorization of g into a product of positive powers of distinct monic
irreducible polynomials; then 9.5 follows from 9.4 by induction on n .

The last part of the proof breaks reduced polynomial-free fractions a/qk , in
which q is monic and irreducible, into sums of partial fractions.

Lemma 9.6. If deg q > 0 , k > 0 , and deg a < deg qk , then there exist
unique polynomials a1 , . . . , ak such that deg ai < deg q for all i and

a
qk =

a1
q

+
a2
q2 + · · · +

ak
qk .

Readers will easily prove Lemma 9.6 by induction on k , using polynomial
division.

Theorem 9.1 now follows from Lemmas 9.3, 9.5, and 9.6. The proof provides
a general procedure, which can be used on examples: given f/g , first divide f
by g to obtain an equality f/g = p + r/g , where p is a polynomial and r/g
is polynomial free; use the factorization of g as a product of positive powers
of irreducible polynomials to set up a decomposition of r/g as a sum of partial
fractions; expansion, substitution, and lucky guesses yield the numerators.

For instance, consider
X4 + 1

X3 + X2 + X
∈ Z2(X) . Polynomial division yields

X4 + 1 = (X3 + X2 + X)(X + 1) + (X + 1) ; hence

X4 + 1
X3 + X2 + X

= X + 1 +
X + 1

X3 + X2 + X
.
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Now, X3 + X2 + X = X (X2 + X + 1) , and we have seen that X and X2 + X + 1
are irreducible in Z2[X ] . Hence

X + 1
X3 + X2 + X

=
a
X

+
bX + c

X2 + X + 1
for some unique a, b, c ∈ Z2 . Expansion yields

X + 1 = a (X2 + X + 1) + (bX + c) X = (a + b) X2 + (a + c) X + a,

whence a = 1, a + c = 1, c = 0, a + b = 0, and b = 1; we might also have seen
that X + 1 = (X2 + X + 1) + (X)(X) . Hence

X4 + 1
X3 + X2 + X

= X + 1 +
1
X

+
X

X2 + X + 1
.

Exercises

1. Prove the following: if f/pr = g/qs , with p, q monic irreducible, r, s � 1 , and
deg f < deg p , deg g < deg q , then f = g , p = q , and r = s .

2. Write a proof of Lemma 9.5.

3. Let deg q > 0 , k > 0 , and deg a < deg qk . Show that there exist unique
polynomials a1 , . . . , ak such that deg ai < deg q for all i and

a
qk =

a1

q
+

a2

q2
+ · · · +

ak

qk .

4. Write
X5 + 1

X4 + X2
∈ Z2(X) as the sum of a polynomial and partial fractions.

5. Write
X5 + 1

X4 + X2
∈ Z3(X) as the sum of a polynomial and partial fractions.

6. Write
1

X5 + X3 + X
∈ Z2(X) as a sum of partial fractions.

10. Unique Factorization Domains

These domains share the main arithmetic properties of PIDs and include polyno-
mial rings K [X1, ..., Xn] over a field K and polynomial rings over a PID.

Definition. A unique factorization domain or UFD is a domain R (a commuta-
tive ring with identity and no zero divisors) in which (1) every element, other than
0 and units, is a nonempty product of irreducible elements of R ; and (2) if two
nonempty products p1 p2 · · · pm = q1 q2 · · · qn of irreducible elements of R are
equal, then m = n and the terms can be indexed so that Rpi = Rqi for all i .

Equivalently, a UFD is a domain in which every nonzero element can be written
uniquely, up to the order of the terms, as the product u pk1

1 pk2
2 · · · pkn

n of a unit
and of positive powers of distinct representative irreducible elements.

By Theorem 8.4, every PID is a UFD; in particular, Z and K [X ] are UFDs for
every field K . UFDs that are not PIDs will arrive in five minutes.
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In a UFD, any two elements a and b have an l.c.m. and a g.c.d., which can
be found as in Section 8 from their factorizations, once a and b are rewritten
as products a = u pa1

1 pa2
2 · · · pan

n and b = v pb1
1 pb2

2 · · · pbn
n of a unit and

nonnegative powers of the same distinct representative irreducible elements:

Proposition 10.1. In a unique factorization domain, let a = u pa1
1 pa2

2 · · · pan
n

and b = v pb1
1 pb2

2 · · · pbn
n be products of a unit and nonnegative powers of the

same distinct representative irreducible elements. Then:

(1) a divides b if and only if ai � bi for all i .

(2) c = pc1
1 pc2

2 · · · pcn
n is a least common multiple of a and b if and only if

ci = max (ai , bi ) for all i .

(3) d = pd1
1 pd2

2 · · · pdn
n is a greatest common divisor of a and b if and only if

di = min (ai , bi ) for all i .

(4) lcm (a, b) gcd (a, b) = wab for some unit w .

On the other hand, in a UFD, the g.c.d. of a and b is not necessarily in the
form xa + yb . Proposition 10.1 is proved like its particular case Proposition 8.6.
More generally, every family of elements has a g.c.d., and every finite family of
elements has an l.c.m.; the proofs of these statements make nifty exercises. The
same methods yield two more results:

Proposition 10.2. In a UFD, an element is prime if and only if it is irreducible.

Proposition 10.3. In a UFD, if gcd (a, b) = gcd (a, c) = 1 , then gcd (a, bc) =
1 ; if a divides bc and gcd (a, b) = 1 , then a divides c .

This result is proved like its particular case Proposition 8.7.

Polynomials. Our main result was first proved by Gauss [1801] for Z[X ] .

Theorem 10.4. If R is a unique factorization domain, then R[X ] is a unique
factorization domain.

Hence (by induction on n ) Z[X1, ..., Xn] and K [X1, ..., Xn] are UFDs (for
any field K ). This provides examples of UFDs that are not PIDs. Actually,
Theorem 10.4 holds for any number of indeterminates, so that Z[(Xi )i∈I ] and
K [(Xi )i∈I ] are UFDs (see the exercises).

The proof of Theorem 10.4 uses the quotient field Q of R , and studies irre-
ducible polynomials to show how R[X ] inherits unique factorization from Q[X ] .

Definition. A polynomial p over a unique factorization domain R is primitive
when no irreducible element of R divides all the coefficients of p . �

Equivalently, p0 + · · · + pn Xn is primitive when gcd (p0, . . . , pn) = 1, or
when no irreducible element divides all pi .

Lemma 10.5. Every nonzero polynomial f (X) ∈ Q(X) can be written in the
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form f (X) = t f ∗(X) , where t ∈ Q , t =/ 0 , and f ∗(X) ∈ R[X ] is primitive;
moreover, t and f ∗ are unique up to multiplication by units of R .

Proof. We have f (X) = (a0/b0) + (a1/b1) X + · · · + (an/bn) Xn , where
ai , bi ∈ R and bi =/ 0. Let b be a common denominator (for instance, b =
b0 b1 · · · bn ). Then f (X) = (1/b)(c0 + c1 X + · · · + cn Xn) for some ci ∈ R .
Factoring out a = gcd (c0, c1, . . . , cn) yields f (X) = (a/b) f ∗(X) , where f ∗

is primitive.

Assume that (a/b) g(X) = (c/d) h(X) , where g, h are primitive. Since g and
h are primitive, ad is a g.c.d. of the coefficients of ad g(X) , and bc is a g.c.d.
of the coefficients of bc h(X) ; hence bc = adu for some unit u of R , so that
g(X) = u h(X) and (a/b) u = c/d in Q . �

Lemma 10.6 (Gauss). If f and g ∈ R[X ] are primitive, then f g is primitive.

Proof. Let f (X) = a0 + a1 X + · · · + am Xm and g(X) = b0 + b1 X + · · · +
bn Xn , so that ( f g)(X) = c0 + c1 X + · · · + cm+n Xm+n , where ck =

∑

i+ j=k ai bj .
We show that no irreducible element divides all ck .

Let p ∈ R be irreducible. Since f and g are primitive, p divides neither all
ai nor all bj . Let k and � be smallest such that p does not divide ak or b� . Then
p divides ai for all i < k , and divides bj for all j < � . By 10.2, p does not
divide ak b� ; but p divides ai bj whenever i < k and whenever i + j = k + � and
i > k , for then j < � . Therefore p does not divide ck+� . �

Corollary 10.7. In Lemma 10.5, f is irreducible in Q[X ] if and only if f ∗ is
irreducible in R[X ] .

Proof. We may assume that deg f � 1. If f is not irreducible, then
f has a factorization f = gh in Q[X ] where deg g , deg h � 1. Let
g(X) = v g∗(X) , h(X) = w h∗(X) , with g∗, h∗ ∈ R[X ] primitive, as in 10.5.
Then t f ∗(X) = f (X) = vw g∗(X) h∗(X) . By 10.6, g∗h∗ is primitive; hence
f ∗(X) = u g∗(X) h∗(X) for some unit u of R , by 10.5, and f ∗ is not irreducible.
Conversely, if f ∗ is not irreducible, then neither is f (X) = t f ∗(X) . �

Lemma 10.8. In R[X ] , every polynomial, other than 0 and units of R , is a
nonempty product of irreducible elements of R and irreducible primitive polyno-
mials. Hence the irreducible elements of R[X ] are the irreducible elements of R
and the irreducible primitive polynomials.

Proof. Assume that f ∈ R[X ] is not zero and not a unit of R . Let d be
a g.c.d. of the coefficients of f . Then f (X) = d f ∗(X) , where f ∗ ∈ R[X ]
is primitive; moreover, d and f ∗ are not 0 and are not both units of R .
Now, d is either a unit or a product of irreducible elements of R , and f ∗

is either a unit of R or not constant. If f ∗ is not constant, then f ∗ is, in
Q[X ] , a product f = q1 q2 · · · qn of irreducible polynomials qi ∈ Q[X ] .
By 10.5, qi (X) = ti q∗

i (X) for some 0 =/ ti ∈ Q and primitive q∗
i ∈ R[X ] .
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Then f ∗(X) = t1 · · · tn q∗
1 (X) · · · q∗

n (X) . By 10.6, q∗
1 · · · q∗

n is primitive. Hence
10.5 yields f ∗(X) = u q∗

1 (X) · · · q∗
n (X) for some unit u of R (namely, u =

t1 · · · tn ), with u q∗
1 , q∗

2 , . . . , q∗
n primitive and irreducible by 10.7. �

To prove Theorem 10.4 we still need to show the following: if two nonempty
products

p1 · · · pk pk+1 · · · pm = q1 · · · q� q�+1 · · · qn

of irreducible elements of R[X ] are equal, then m = n and the terms can be
indexed so that (pi ) = (qi ) for all i . By 10.8 we may arrange that p1 , . . . , pk ,
q1 , . . . , q� are irreducible elements of R and pk+1 , . . . , pm , q�+1 , . . . , qn ∈ R[X ]
are irreducible primitive polynomials.

Let a = p1 · · · pk and b = q1 · · · q� ∈ R , f = pk+1 · · · pm and g =
q�+1 · · · qn ∈ R[X ] , so that a f = bg . By 10.7, f and g are primitive. Hence
f = ug , au = b for some unit u of R , by 10.5. Since R is a UFD and au = b ,
we have k = � and p1 , . . . , pk , q1 , . . . , q� can be reindexed so that pi = ui qi for
all i � k , where ui is a unit of R .

Since Q[X ] is a UFD and f = ug , we also have m − k = n − � and pk+1 ,
. . . , pm , q�+1 = qk+1 , . . . , qn can be reindexed so that pj (X) = uj qj (X) for all
j > k , where uj is a unit of Q . In fact, uj is a unit of R . Indeed, let uj = c/d ,
where c, d ∈ R . Then c pj (X) = d qj (X) . Since pj and qj are both primitive,
taking the g.c.d. of the coefficients on both sides yields c = ud for some unit u of
R . Hence uj = c/d = u is a unit of R . We now have m = n and (pi ) = (qi ) in
R[X ] for all i . �

Irreducibility tests. Let R be a UFD and let Q be its quotient field. By
Corollary 10.7, the irreducible polynomials of Q[X ] are determined by those of
R[X ] . For instance, the irreducible polynomials of Q[X ] are determined by those
of Z[X ] . We now give two sufficient conditions for irreducibility. The first is
essentially due to Eisenstein [1850]; the exercises give a generalization.

Proposition 10.9 (Eisenstein’s Criterion). Let R be a UFD and let f (X) =
a0 + a1 X + · · · + an Xn ∈ R[X ] . If f is primitive and there exists an irreducible
element p of R such that p divides ai for all i < n , p does not divide an , and
p2 does not divide a0 , then f is irreducible.

Proof. Suppose that f = gh ; let g(X) = b0 + b1 X + · · · + br Xr and h(X) =
c0 + c1 X + · · · + cs Xs ∈ R[X ] , where r = deg g and s = deg h . Then
ak =

∑

i+ j=k bi cj for all k ; in particular, a0 = b0 c0 . Since p2 does not divide
a0 , p does not divide both b0 and c0 . But p divides a0 , so p divides, say,
b0 , but not c0 . Also, p does not divide br , since p does not divide an = br cs .
Hence there is a least k � r such that p does not divide bk , and then p divides
bi for all i < k . Now p divides every term of

∑

i+ j=k bi cj except for bk c0 .
Hence p does not divide ak . Therefore k = n ; since k � r � r + s = n this
implies r = n , and h is constant. �



10. Unique Factorization Domains 145

For example, f = 3X3 + 4X − 6 ∈ Z[X ] is irreducible in Z[X ] : indeed, f is
primitive, 2 divides all the coefficients of f except the leading coefficient, and 4
does not divide the constant coefficient. By 10.7, f is also irreducible in Q[X ] ,
and so is 5

6 f = 5
2 X3 + 5

3 X − 5.

Proposition 10.10. Let R be a domain, let a be an ideal of R , and let
π : R �−→ R/a be the projection. If f ∈ R[X ] is monic and πf is irreducible in
(R/a)[X ] , then f is irreducible in R[X ] .

Readers will delight in proving this. For instance, f = X3 + 2X + 4 is
irreducible in Z[X ] : if π : Z −→ Z3 is the projection, then πf = X3 − X + 1
is irreducible in Z3[X ] , since it has degree 3 and no root in Z3 .

Exercises
1. Show that every family (ai )i∈I of elements of a UFD has a g.c.d.

2. Show that every finite family of elements of a UFD has an l.c.m.

3. Does every family of elements of a UFD have an l.c.m.?

4. Find a UFD with two elements a and b whose g.c.d. cannot be written in the form
xa + yb .

5. In a UFD, show that gcd (a, b) = gcd (a, c) = 1 implies gcd (a, bc) = 1.

6. Prove the following: in a UFD, if a divides bc and gcd (a, b) = 1, then a divides c .

7. Prove the following: in a UFD, an element is prime if and only if it is irreducible.

8. Prove the following stronger version of Lemma 10.5: when R is a UFD and Q its
field of fractions, every nonzero polynomial f (X) ∈ Q(X) can be written in the form
f (X) = (a/b) f ∗(X) , where a, b ∈ R , gcd (a, b) = 1, and f ∗(X) ∈ R[X ] is primitive;
moreover, a , b , and f ∗ are unique up to multiplication by units of R .

9. Prove Proposition 10.10: Let R be a domain, let a be an ideal of R , and let π : R �−→
R/a be the projection. If f ∈ R[X ] is monic and πf is irreducible in (R/a)[X ] , then f is
irreducible in R[X ] .

10. Show that X3 − 10 is irreducible in Q[X ] .

11. Show that X3 + 3X2 − 6X + 3 is irreducible in Q[X ] .

12. Show that X3 + 3X2 − 6X + 9 is irreducible in Q[X ] .

13. Show that X3 − 3X + 4 is irreducible in Q[X ] .

14. Prove the following generalization of Eisenstein’s criterion. Let R be a domain and let
f (X) = a0 + a1 X + · · · + an Xn ∈ R[X ] . If f is primitive (if the only common divisors of
a0, . . . , an are units) and there exists a prime ideal p of R such that ai ∈ p for all i < n ,
an /∈ p , and a0 is not the product of two elements of p , then f is irreducible.

*15. Prove the following: when R is a UFD, then R[(Xi )i∈I ] is a UFD.
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11. Noetherian Rings

Noetherian rings are named after Emmy Noether, who initiated the study of
these rings in [1921]. In this section we define Noetherian rings and prove that
K [X1, ..., Xn] is Noetherian for every field K .

Definition. Applied to the ideals of a commutative ring R , the ascending chain
condition, or a.c.c., has three equivalent forms:

(a) every infinite ascending sequence a1 ⊆ a2 ⊆ · · · ⊆ an ⊆ an+1 ⊆ · · · of
ideals of R terminates: there exists N > 0 such that an = aN for all n � N ;

(b) there is no infinite strictly ascending sequence a1 � a2 � · · · � an �

an+1 � · · · of ideals of R ;

(c) every nonempty set S of ideals of R has a maximal element (an element s
of S , not necessarily a maximal ideal of R , such that there is no s � a ∈ S ).

Indeed, (a) implies (b), since a strictly ascending infinite sequence cannot termi-
nate. If the nonempty set S in (c) has no maximal element, then there exists some
a1 ∈ S ; since a1 is not maximal in S there exists some a1 � a2 ∈ S ; this
continues indefinitely and begets a strictly ascending infinite sequence. Hence (b)
implies (c). Finally, (c) implies (a), since some aN must be maximal, and then
aN � an is impossible when n � N . Section A.1 has a more general but entirely
similar proof of the equivalence of (a), (b), and (c).

Definition. A commutative ring is Noetherian when its ideals satisfy the asc-
ending chain condition.

For example, Z is Noetherian, by 11.1 below; K [X ] and K [X1, ..., Xn] are
Noetherian for every field K , by 11.3 below.

In a ring, the a.c.c. has a fourth equivalent form. Recall that the ideal a of R
generated by a subset S of R consists of all linear combinations of elements of S
with coefficients in R . Hence a is finitely generated (as an ideal) if and only if
there exist a1, . . ., an ∈ a such that a = { r1a1 + · · · + rnan

∣
∣ r1, . . ., rn ∈ R } .

The set { a1, . . . , an } is traditionally called a basis of a , even though the elements
of a need not be writable uniquely in the form r1a1 + · · · + rnan .

Proposition 11.1. A commutative ring R is Noetherian if and only if every
ideal of R is finitely generated (as an ideal).

Proof. Let a be an ideal of R . Let S be the set of all finitely generated ideals
of R contained in a . Then S contains principal ideals and is not empty. If R is
Noetherian, then S has a maximal element s by (c). Then s ⊆ s + (a) ∈ S for
every a ∈ a , since s + (a) ⊆ a and s + (a) is finitely generated, by a and the
generators of s . Since s is maximal in S it follows that s = s + (a) and a ∈ s .
Hence a = s and a is finitely generated.

Conversely, assume that every ideal of R is finitely generated. Let a1 ⊆
a2 ⊆ · · · ⊆ an ⊆ an+1 ⊆ · · · be ideals of R . Then a =

⋃

n>0 an is an ideal
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of R and is finitely generated, by, say, a1, . . ., ak . Then ai ∈ ani
for some

ni > 0. If N � n1, . . . , nk , then aN contains a1, . . ., ak ; hence a ⊆ aN , and
a ⊆ aN ⊆ an ⊆ a shows that an = aN for all n � N . �

The main result in this section is basically due to Hilbert [1890].

Theorem 11.2 (Hilbert Basis Theorem). Let R be a commutative ring with
identity. If R is Noetherian, then R[X ] is Noetherian.

Proof. Let A be an ideal of R[X ] . We construct a finite set of generators of
A . For every n � 0 let

an = { r ∈ R
∣
∣ r Xn + an−1 Xn−1 + · · · + a0 ∈ A for some an−1, . . . , a0 ∈ R } .

Then an is an ideal of R , since A is an ideal of R[X ] , and an ⊆ an+1 , since
f (X) ∈ A implies X f (X) ∈ A . Since R is Noetherian, the ascending sequence
a0 ⊆ a1 ⊆ · · · ⊆ an ⊆ an+1 ⊆ · · · terminates at some am (an = am for all
n � m ). Also, each ideal ak has a finite generating set Sk , by 11.1.

For each s ∈ Sk there exists gs = s Xk + ak−1 Xk−1 + · · · + a0 ∈ A . We show
that A coincides with the ideal B generated by all gs with s ∈ S0 ∪ S1 ∪ · · · ∪ Sm ;
hence A is finitely generated, and R[X ] is Noetherian. Already B ⊆ A , since
every gs ∈ A . The converse implication, f ∈ A implies f ∈ B , is proved by
induction on deg f . First, 0 ∈ B . Now let f = an Xn + · · · + a0 ∈ A have
degree n � 0. Then an ∈ an .

If n � m , then an = r1s1 + · · · + rksk for some r1, . . . , rn ∈ R and s1, . . ., sk ∈
Sn ; then g = r1gs1

+ · · · + rk gsk
∈ B has degree at most n , and the coefficient

of Xn in g is r1s1 + · · · + rksk = an . Hence f − g ∈ A has degree less than n .
Then f − g ∈ B , by the induction hypothesis, and f ∈ B .

If n > m then an ∈ an = am and an = r1s1 + · · · + rksk for some r1, . . ., rn ∈
R and s1, . . . , sk ∈ Sm ; then g = r1gs1

+ · · · + rk gsk
∈ B has degree at most m ,

and the coefficient of Xm in g is r1s1 + · · · + rksk = an . Hence Xn−m g ∈ B has
degree at most n , and the coefficient of Xn in g is an . As above, f − Xn−m g ∈ A

has degree less than n , f − Xn−m g ∈ B by the induction hypothesis, and
f ∈ B . �

Corollary 11.3. K [X1, ..., Xn] is Noetherian, for every field K and n > 0 .

This corollary is also known as the Hilbert basis theorem; the case K = C was
Hilbert’s original statement, “every ideal of C[X1, ..., Xn] has a finite basis”.

Corollary 11.4. Let R ⊆ S be commutative rings. If R is Noetherian, and S
is generated by R and finitely many elements of S , then S is Noetherian.

We leave this to our readers, who deserve some fun.

Exercises
1. Let R be a Noetherian ring. Prove that every quotient ring of R is Noetherian.
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2. Find a commutative ring that is not Noetherian.

3. Let R ⊆ S be commutative rings. Suppose that R is Noetherian and that S is generated
by R and finitely many elements of S . Prove that S is Noetherian.

*4. Let M be the free commutative monoid on a finite set { X1, ..., Xn } (which consists
of all monomials Xm = X

m1
1 · · · Xmn

n with nonnegative integer exponents). A congruence
on M is an equivalence relation C on M such that Xa C Xb implies Xa Xc C Xb Xc for
all Xc ∈ M . Prove Rédei’s theorem [1956]: the congruences on M satisfy the ascending
chain condition. (Hint: relate congruences on M to ideals of Z[X1, ..., Xn] .)

*5. Prove the following: if R is Noetherian, then the power series ring R[[X ]] is Noethe-
rian. You may want to adjust the proof of Theorem 11.2, using

an = { r ∈ R
∣
∣ r Xn + an+1Xn+1 + · · · ∈ A for some an+1, . . . in R } .

12. Gröbner Bases

This section may be skipped or covered later with Section VIII.9. Gröbner bases are
carefully chosen generating sets of ideals of K [X1, ..., Xn] . The basic properties
in this section are due to Gröbner [1939] and Buchberger [1965].

Monomial orders. The definition of Gröbner bases requires polynomial
division in n indeterminates. When K is a field, polynomial division in K [X ]
is possible because monomials in one indeterminate are naturally ordered, 1 <

X < · · · < Xm < · · · Polynomial division in K [X1, ..., Xn] is made possible by
suitable total orders on the monomials Xm = Xm1

1 · · · Xmn
n of K [X1, ..., Xn] .

Definition. A monomial order on K [X1, ..., Xn] is a total order on its mono-
mials such that Xa � 1 for all Xa , and Xa < Xb implies Xa Xc < Xb Xc .

Monomial orders are often called term orders. The author prefers “monomials”
for products Xm1

1 · · · Xmn
n and “terms” for their scalar multiples aXm1

1 · · · Xmn
n .

There is only one monomial order 1 < X < · · · < Xm < · · · on K [X ] , but in
general monomial orders can be constructed in several ways. This gives Gröbner
bases great flexibility.

Definitions. In the lexicographic order on K [X1, ..., Xn] with X1 > X2 >

· · · > Xn , Xa < Xb if and only if there exists 1 � k � n such that ai = bi for
all i < k and ak < bk .

In the degree lexicographic order on K [X1, ..., Xn] with X1 > X2 > · · · >

Xn , Xa < Xb if and only if either deg Xa < deg Xb , or deg Xa = deg Xb

and there exists 1 � k � n such that ai = bi for all i < k and ak < bk
(deg Xm = m1 + · · · + mn is the total degree of Xm ).

In the degree reverse lexicographic order on K [X1, ..., Xn] with X1 > X2 >

· · · > Xn , Xa < Xb if and only if either deg Xa < deg Xb , or deg Xa = deg Xb

and there exists 1 � k � n such that ai = bi for all i > k and ak > bk .
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Readers will show that the above are monomial orders:

Proposition 12.1. The lexicographic order, degree lexicographic order, and
degree reverse lexicographic order are monomial orders on K [X1, ..., Xn] .

In any monomial order, Xa Xb > Xa whenever Xb =/ 1; hence Xc � Xa

whenever Xc is a multiple of Xa . We also note the following property:

Proposition 12.2. In any monomial order, there is no infinite strictly decreasing
sequence Xm1 > Xm2 > · · · > Xmk > Xmk+1 > · · · .

By 12.2, every nonempty set S of monomials has a least element (otherwise S

would contain an infinite strictly decreasing sequence).

Proof. Suppose that Xm1 > Xm2 > · · · > Xmk > Xmk+1 > · · · By 12.3
below, the ideal of K [X1, ..., Xn] generated by all Xmi is generated by finitely
many Xmi ’s. Let Xt be the least of these. Every Xmk is a linear combination
of monomials Xm � Xt and is a multiple of some Xm � Xt ; hence Xmk � Xt

for all k . On the other hand Xt is a linear combination of monomials Xmk and
is a multiple of some Xm� ; hence Xt � Xm� for some � . Then Xt = Xm� , and
Xm� > Xm�+1 is not possible. �

Lemma 12.3. An ideal of K [X1, ..., Xn] that is generated by a set S of
monomials is generated by a finite subset of S .

Proof. By the Hilbert basis theorem, the ideal (S) generated by S is generated
by finitely many polynomials f1 , . . . , fr . Every nonzero term of f j is a multiple
of some Xs ∈ S . Let T be the set of all Xs ∈ S that divide a nonzero term of
some f j ; then T is finite, (T) contains every f j , and (T) = (S) . �

Polynomial division. With a monomial order on K [X1, ..., Xn] , the monomi-
als that appear in a nonzero polynomial f =

∑

m am Xm ∈ K [X1, ..., Xn] can be
arranged in decreasing order, and f acquires a leading term:

Definitions. Relative to a monomial order, the leading monomial of a nonzero
polynomial f =

∑

m am Xm ∈ K [X1, ..., Xn] is the greatest monomial ldm f =
Xm such that am =/ 0 , and then the leading coefficient of f is ldc f = am and
the leading term of f is ldt f = am Xm .

Other notations are in use for ldt f , for instance, in ( f ) . Polynomial division
in K [X1, ..., Xn] can now be carried out as usual, except that one can divide a
polynomial by several others, and the results are not unique.

Proposition 12.4. Let K be a field. Let f, g1, . . ., gk ∈ K [X1, ..., Xn] ,
g1, . . ., gk =/ 0 . Relative to any monomial order on K [X1, ..., Xn] , there exist
q1, . . ., qk, r ∈ K [X1, ..., Xn] such that

f = g1q1 + · · · + gkqk + r,

ldm (gi qi ) � ldm f for all i , ldm r � ldm f , and none of ldm g1 , . . . , ldm gk
divides a nonzero term of the remainder r .
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Proof. Let f0 = f . If none of ldm g1 , . . . , ldm gk divides a nonzero
term of f , then q1 = · · · = qk = 0 and r = f serve. Otherwise, there is a
greatest monomial Xm that appears in a term am Xm =/ 0 of f and is a multiple
of some ldm g j ; in particular, Xm � ldm f . Then Xm no longer appears in
f1 = f − (am Xm/ldt g j ) g j : it has been replaced by lesser terms. Repeating
this step yields a sequence f0 , f1 , . . . in which Xm decreases at each step.
By 12.2, this is a finite sequence. The last fs serves as r and has the form
r = f − g1q1 − · · · − gkqk . Every qi is a sum of terms am Xm/ldt gi , where
Xm � ldm f ; hence ldm (gi qi ) � ldm f and ldm r � ldm f . �

The proof of Proposition 12.4 provides a practical procedure for polynomial
division. For an example, let us divide f = X2Y − Y by g1 = XY − X and
g2 = X2 − Y ∈ C[X ] , using the degree lexicographic order with X > Y . Then
ldm g1 = XY , ldm g2 = X2 ; X2 divides X2Y , so that

f1 = (X2Y − Y ) − (X2Y/X2)(X2 − Y ) = Y 2 − Y.

Since XY and Y 2 do not divide Y 2 or Y , division stops here, with f = Y g2 +
(Y 2 − Y ) . We see that the remainder r = Y 2 − Y is not 0, even though
f = Xg1 + g2 lies in the ideal (g1, g2) generated by g1 and g2 .

Gröbner bases. The membership problem for ideals of K [X1, ..., Xn] is, does
a given polynomial f belong to the ideal (g1, . . ., gk) generated by given poly-
nomials g1, . . ., gk ? We just saw that unfettered polynomial division does not
provide a reliable solution. This is where Gröbner bases come in.

Definition. Let K be a field, let A be an ideal of K [X1, ..., Xn] , and
let < be a monomial order on K [X1, ..., Xn] . Let ldmA be the ideal of
K [X1, ..., Xn] generated by all ldm f with f ∈ A . Nonzero polynomials
g1, . . ., gk ∈ K [X1, ..., Xn] constitute a Gröbner basis of A , relative to < ,
when g1, . . ., gk generate A and ldm g1, . . ., ldm gk generate ldmA .

Proposition 12.5. Let K be a field, let A be an ideal of K [X1, ..., Xn] , let
g1, . . ., gk be a Gröbner basis of A relative to a monomial order < , and let
f ∈ K [X1, ..., Xn] . All divisions of f by g1, . . ., gk (using < ) yield the same
remainder r , and f ∈ A if and only if r = 0 .

Proof. Let f ∈ A . Let r be the remainder in a division of f by g1, . . ., gk .
Then r ∈ A . If r =/ 0, then ldt r ∈ ldmA is a linear combination of ldm g1,
. . ., ldm gk and is a multiple of some ldm g j , contradicting 12.4. Therefore
r = 0. Conversely, if r = 0, then f ∈ (g1, . . ., gk) = A . If now r1 and r2 are
remainders in divisions of f by g1, . . ., gk , then r1 − r2 ∈ A , and no ldm g j
divides a nonzero term of r1 − r2 ; as above, this implies r1 − r2 = 0. �

Buchberger’s algorithm. We now assume that K [X1, ..., Xn] has a monomial
order and find an effective way to construct Gröbner bases. Together with Propo-
sition 12.5, this will solve the membership problem. First we prove that Gröbner
bases exist:
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Proposition 12.6. Every ideal of K [X1, ..., Xn] has a Gröbner basis.

Proof. Let A be an ideal of K [X1, ..., Xn] . By 12.3, ldmA is generated by
ldm g1, . . ., ldm gk for some nonzero g1, . . ., gk ∈ A . Let f ∈ A . As in the
proof of 12.5, let r be the remainder in a division of f by g1, . . . , gk . Then r ∈ A .
If r =/ 0, then ldt r ∈ ldmA is a linear combination of ldm g1, . . . , ldm gk
and is a multiple of some ldm g j , contradicting 12.4. Therefore r = 0 and
f ∈ (g1, . . ., gk) . Hence A = (g1, . . ., gk) . �

Proposition 12.7 (Buchberger’s Criterion). Let K be a field and let g1, . . . ,
gk ∈ K [X1, ..., Xn] be nonzero polynomials. Let �i j = lcm (ldm gi , ldm g j ) ,
let di, j = (�i j/ldt gi ) gi − (�i j/ldt g j ) g j , and let ri, j be the remainder in a
polynomial division of di, j by g1, . . . , gk . Then g1, . . . , gk is a Gröbner basis
of (g1, . . ., gk) if and only if ri, j = 0 for all i < j , and then ri, j = 0 for all i, j .

Proof. The ideals A = (g1, . . ., gk) and (ldm g1, . . ., ldm gk) and polynomi-
als di, j do not change when g1, . . . , gk are divided by their leading coefficients;
hence we may assume that g1, . . ., gk are monic.

If g1, . . ., gk is a Gröbner basis of A , then ri, j = 0 by 12.5, since di, j ∈ A .

The converse follows from two properties of the polynomials di, j . Let ldt gi =
Xmi, so that di, j = (�i j/Xmi ) gi − (�i j/Xm j ) g j .

(1) If g′i = Xti gi , g′j = Xt j g j , and �′i j = lcm (Xti +mi , Xt j +m j ) , then

d ′
i, j = (�′i j/ldt g′i ) g′i − (�′i j/ldt g′j ) g′j

= (�′i j/Xti Xmi ) Xti gi − (�′i j/Xt j Xm j ) Xt j g j = (�′i j/�i j ) di, j .

(2) If ldm gi = Xm for all i and ldm (a1g1 + · · · + ak gk) < Xm , where
a1, . . ., ak ∈ K , then a1 + · · · + ak = 0, di, j = gi − g j , and

a1g1 + · · · + ak gk = a1 (g1 − g2) + (a1 + a2) (g2 − g3)

+ · · · + (a1 + · · · + ak−1) (gk−1 − gk) + (a1 + · · · + ak) gk

= a1 d1,2 + (a1 + a2) d2,3 + · · · + (a1 + · · · + ak−1) dk−1, k .

Now assume that ri j = 0 for all i < j . Then ri, j = 0 for all i and j ,
since di,i = 0 and d j,i = −di, j . Every nonzero f ∈ A is a linear combination
f = p1g1 + · · · + pk gk , where p1, . . ., pk ∈ K [X1, ..., Xn] . Let Xm be the
greatest of all ldm (p j g j ) . Choose p1, . . ., pk so that Xm is minimal.

Assume that Xm does not appear in f . We may number g1, . . ., gk so that
Xm is the leading monomial of the first products p1g1 , . . . , ph gh . Then h � 2:
otherwise, Xm cannot be canceled in the sum p1g1 + · · · + pk gk and appears in
f . Also ldm (p1g1 + · · · + ph gh) < Xm , since Xm does not appear in f or in
ph+1gh+1 + · · · + pk gk .
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Let ldt p j = a j Xt j and g′j = Xt j g j . Then ldm (g′j ) = Xm for all j � k and
ldm (a1g′1 + · · · + ah g′h) < Xm . By (2) and (1),

a1g′1 + · · · + ah g′h = c1d ′
1,2 + · · · + ch−1d ′

h−1, h

for some c1, . . . , ch−1 ∈ K , where d ′
i, j = g′i − g′j = (Xm/�i j ) di, j . Now,

ldm d ′
i, j < Xm when i < j � h , since ldm g′i = ldm g′j = Xm . By the

hypothesis, every di, j can be divided by g1, . . ., gk with zero remainder when
i < j ; so can d ′

i, j and c1d ′
1,2 + · · · + ck−1d ′

h−1, h , and 12.4 yields

a1 Xt1 g1 + · · · + ah Xth gh = c1d ′
1,2 + · · · + ch−1d ′

h−1, h = q ′
1g1 + · · · + q ′

k gk ,

where q ′
1, . . . , q ′

k ∈ K [X1, ..., Xn] and ldm (q ′
i gi ) � Xm for all i , since

ldm (c1d ′
1,2 + · · · + ch−1d ′

h−1, h) < Xm . Since a j Xt j = ldt p j this implies

p1g1 + · · · + ph gh = q1g1 + · · · + qk gk ,

where q1, . . . , qk ∈ K [X1, ..., Xn] and ldm (qi gi ) < Xm for all i . Then

f = p1g1 + · · · + ph gh + · · · + pk gk = p′1g1 + · · · + p′k gk ,

where p′1, . . ., p′k ∈ K [X1, ..., Xn] and ldm (p′i gi ) < Xm for all i , a gross
contradiction of the minimality of Xm .

Therefore Xm appears in f . Hence every nonzero f ∈ A is a linear combina-
tion f = p1g1 + · · · + pk gk in which ldm (p j g j ) � ldm f for all j . Then ldt f
is a linear combination of those ldt (p j g j ) such that ldm (p j g j ) = ldm f ; hence
ldm f ∈ (ldm g1, . . . , ldm gk) . Thus ldm g1, . . ., ldm gk generate ldmA . �

Proposition 12.7 yields an effective procedure for finding Gröbner bases, which
together with Proposition 12.5 solves the ideal membership problem (without
raising membership fees).

Proposition 12.8 (Buchberger’s Algorithm). Let K be a field and let g1, . . ., gk
∈ K [X1, ..., Xn] be nonzero polynomials. Compute a sequence B of polynomials
as follows. Start with B = g1, . . ., gk . Compute all polynomials ri, j with i < j
of B as in Proposition 12.7 and add one ri, j =/ 0 to B in case one is found. Repeat
until no ri, j =/ 0 is found. Then B is a Gröbner basis of the ideal (g1, . . . , gk) .

Proof. Let A = (g1, . . . , gk) . Since ri, j is the remainder of some di, j ∈ A

in a division by g1, . . ., gk , we have ri, j ∈ A , but, if ri, j =/ 0, no ldm gt
divides ldm ri, j and ldm ri, j /∈ (ldm g1, . . ., ldm gk) . Hence (ldm g1, . . . ,
ldm gk) increases with each addition to B . Since K [X1, ..., Xn] is Noetherian,
the procedure terminates after finitely many additions; then B is a Gröbner basis
of A , by 12.7. �

Example 12.9. Let g1 = XY − X , g2 = Y − X2 ∈ C[X, Y ] . Use the
lexicographic order with Y > X . Start with B = g1, g2 .
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We have ldm g1 = XY , ldm g2 = Y , �12 = XY , and

d1,2 = (�12/ldt g1) g1 − (�12/ldt g2) g2 = g1 − Xg2 = X3 − X = r1,2 ,

since XY and Y divide no term of X3 − X .

Now let B = g1, g2, g3 = X3 − X . We have ldm g1 = XY , ldm g2 = Y , and
ldm g3 = X3 . As before, d1,2 = X3 − X = g3 , but now division yields r1,2 = 0.
Also �13 = X3Y and

d1,3 = (�13/ldt g1) g1 − (�13/ldt g3) g3 = X2g1 − Y g3 = XY − X3 ;

XY divides ldt (XY − X3) = XY , so d1,3 = g1 − X3 + X ; then X3 divides
ldt (−X3 + X) , so d1,3 = g1 − g3 and r1,3 = 0. Finally, �23 = X3Y and

d2,3 = (�23/ldt g2) g2 − (�23/ldt g3) g3 = X3g2 − Y g3 = XY − X5;

XY divides ldt (XY − X5) = XY , so

d2,3 = g1 + (X − X5) = g1 − X2g3 + (X − X3) = g1 − (X2 + 1) g3

and r2,3 = 0. The procedure ends; and B = g1, g2, g3 is a Gröbner basis of
(g1, g2) .

The polynomial f = X3 + Y does not belong to (g1, g2) : using the same
lexicographic order, division by g1, g2, g3 yields f = g2 + (X3 + X2) = g2 +
g3 + (X2 + X) , with remainder X2 + X =/ 0. On the other hand,

X2Y − Y = (X2 − 1) g2 + X4 − X2 = (X2 − 1) g2 + Xg3 ∈ (g1, g2). �

Exercises

1. Show that the lexicographic order on K [X1, ..., Xn] is a monomial order.

2. Show that the degree lexicographic order on K [X1, ..., Xn] is a monomial order.

3. Show that the degree reverse lexicographic order on K [X1, ..., Xn] is a monomial order.

4. Using the lexicographic order with X > Y , find all quotients and remainders when
f = 2X3Y 3 + 4Y 2 is divided by g1 = 2XY 2 + 3X + 4Y 2 and g2 = Y 2 − 2Y − 2 in
C[X, Y ] .

5. Using the lexicographic order with X > Y , find all quotients and remainders when
f = 2X3Y 3 + 4Y 2 is divided by g1 = 2XY 2 + 3X + 4Y 2 , g2 = Y 2 − 2Y − 2 , and
g3 = XY in C[X, Y ] .

6. Let A be the ideal of K [X1, ..., Xn] generated by nonzero polynomials g1, . . . , gs .
Let a monomial order be given. Suppose that f ∈ A if and only if, in every division of f by
g1, . . . , gs , the remainder is 0 . Show that g1, . . . , gs is a Gröbner basis of A .

7. Using the lexicographic order with X > Y , find a Gröbner basis of the ideal (2XY 2 +
3X + 4Y 2, Y 2 − 2Y − 2) of C[X, Y ] . Does f = 2X3Y 3 + 4Y 2 belong to this ideal?
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8. Using the lexicographic order with X > Y , find a Gröbner basis of the ideal (2XY 2 +
3X + 4Y 2, Y 2 − 2Y − 2, XY ) of C[X, Y ] . Does f = 2X3Y 3 + 4Y 2 belong to this ideal?

9. Using the lexicographic order with X > Y , find a Gröbner basis of the ideal (X2 +
Y 2 + 1, X2Y + 2XY + X) of Z5[X, Y ] .



IV
Field Extensions

Fields are our third major algebraic structure. Their history may be said to begin
with Dedekind [1871], who formulated the first clear definition of a field, albeit
limited to fields of algebraic numbers. Steinitz [1910] wrote the first systematic
abstract treatment. Today’s approach is basically due to Artin, on whose lectures
van der Waerden’s Moderne Algebra [1930] is partly based.

Up to isomorphism, fields relate to each other by inclusion; hence the study
of fields is largely that of field extensions. This chapter gives general proper-
ties of fields, field extensions, and algebraic extensions, plus some properties of
transcendental extensions. The emphasis is on general structure results, that tell
how extensions can be constructed from simpler extensions. Deeper properties of
algebraic extensions will be found in the next chapter.

All this requires a couple of calls on Zorn’s lemma, and makes heavy use of
Chapter III. Sections 6, 7, and 9 may be skipped at first reading.

The few rings that have trespassed into this chapter all have identity elements.

1. Fields

A field is a commutative ring (necessarily a domain) whose nonzero elements
constitute a group under multiplication. Chapter III established a few proper-
ties of fields. This section brings additional elementary properties, pertaining to
homomorphisms, the characteristic, roots of unity, subrings, and subfields.

A subring of a field F is a subset S of F such that S is an additive subgroup
of F , is closed under multiplication ( x, y ∈ S implies xy ∈ S ), and contains the
identity element; so that S inherits a ring structure from F . Subfields are similar:

Definition. A subfield of a field F is a subset K of F such that K is an
additive subgroup of F and K\{0} is a multiplicative subgroup of F\{0} .

Equivalently, K is a subfield of F if and only if (i) 0, 1 ∈ K ; (ii) x, y ∈ K
implies x − y ∈ K ; and (iii) x, y ∈ K , y =/ 0 implies xy−1 ∈ K . Then
x, y ∈ K implies x + y ∈ K and xy ∈ K , so that K inherits an addition and
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a multiplication from F , and K is a field under these inherited operations; this
field K is also called a subfield of F .

For example, Q is a subfield of R , and R is a subfield of C .

Homomorphisms of fields are homomorphisms of rings with identity:

Definition. A homomorphism of a field K into a field L is a mapping ϕ :
K −→ L such that ϕ(1) = 1 , ϕ(x + y) = ϕ(x) + ϕ(y) , and ϕ(xy) = ϕ(x) ϕ(y) ,
for all x, y ∈ K .

For instance, when K is a subfield of F , the inclusion mapping K −→ F is a
homomorphism of fields, the inclusion homomorphism of K into F .

An isomorphism of fields is a bijective homomorphism of fields; then the inverse
bijection is also an isomorphism.

Proposition 1.1. Every homomorphism of fields is injective.

This is Proposition III.4.9. Consequently, a homomorphism of a field K into a
field L induces a homomorphism of multiplicative groups of K\{0} into L\{0} ,
and preserves powers and inverses. Proposition 1.1 has a another consequence:

Proposition 1.2 (Homomorphism Theorem). If ϕ : K −→ L is a field homo-
morphism, then Im ϕ is a subfield of L and K ∼= Im ϕ .

Thus, up to isomorphism, the basic relationship between fields is inclusion.
Inclusions between fields are studied in later sections.

For future use we note the following particular case of Proposition III.5.7:

Proposition 1.3. Every field homomorphism ϕ : K −→ L induces a ring
homomorphism f �−→ ϕf of K [X ] into L[X ] ; if f (X) = a0 + a1 X + · · · + an Xn ,
then ϕf (X) = ϕ(a0) + ϕ(a1)X + · · · + ϕ(an)Xn .

The characteristic. By Proposition III.3.7 there is for any field K a unique
homomorphism of rings of Z into R . Its image is the smallest subring of K ; it
consists of all integer multiples of the identity element of K , and is isomorphic
either to Z or to Zn for some unique n > 0, the characteristic of K .

Proposition 1.4. The characteristic of a field is either 0 or a prime number.

Proposition 1.5. Every field K has a smallest subfield, which is isomorphic to
Q if K has characteristic 0 , to Zp if K has characteristic p =/ 0 .

Proofs. If K has characteristic p =/ 0, then p is prime, by III.4.3; hence
the smallest subring of K is a field, by III.4.1, and is the smallest subfield of
K . If K has characteristic 0, then, by III.4.11, the injection m �−→ m1 of Z

into K extends to a homomorphism ϕ of the quotient field Q = Q(Z) into K ,
namely ϕ(m/n) = m1 (n1)−1 . By 1.2, Im ϕ ∼= Q is a subfield of K ; it is the
smallest subfield of K since every subfield of K must contain 1 and every element
m1 (n1)−1 of Im ϕ . �
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Roots of unity.

Definition. An element r of a field K is an nth root of unity when rn = 1 .

For example, the nth roots of unity in C are all e2ikπ/n with k = 0, 1, . . . ,
n − 1; they constitute a cyclic group under multiplication, generated by e2iπ/n , or
by any e2ikπ/n in which k is relatively prime to n . All fields share this property:

Proposition 1.6. Every finite multiplicative subgroup of a field is cyclic.

Such a subgroup consists of roots of unity, since its elements have finite order.

Proof. Let K be a field and let G be a finite subgroup of the multiplicative
group K\{0} . Write |G| as a product |G| = pk1

1 pk2
2 · · · pkr

r of positive powers
of distinct primes. By II.1.3, G is a direct sum of subgroups H1 , . . . , Hr of
orders pk1

1 , pk2
2 , . . . , pkr

r .

Let p = pi be a prime divisor of |G| ; then H = Hi = { x ∈ G
∣
∣ x p j

= 1 for

some j � 0 } . In H there is an element c of maximal order pk . Then x pk
= 1 for

all x ∈ H . In the field K , the equation X pk
= 1 has at most pk solutions; hence

|H | � pk . On the other hand, 〈 c 〉 ⊆ H already has pk elements. Therefore
H = 〈 c 〉 . Thus H1 , . . . , Hr are cyclic. Since their orders are relatively prime,
G = H1 ⊕ H2 ⊕ · · · ⊕ Hr is cyclic, by II.1.4. �

By 1.6, the nth roots of unity of any field constitute a cyclic group under
multiplication; its generators are primitive nth roots of unity:

Definition. A primitive nth root of unity in a field K is a generator of the cyclic
multiplicative group of all nth roots of unity.

Subfields. Subfields have a number of general properties.

Proposition 1.7. Every intersection of subfields of a field F is a subfield of F .

The proof is an exercise. On the other hand, a union of subfields is not in
general a subfield, a notable exception being the union of a nonempty chain, or of
a nonempty directed family. Readers will prove a more general property:

Proposition 1.8. The union of a nonempty directed family of fields is a field. In
particular, the union of a nonempty directed family of subfields of a field F is a
subfield of F .

By 1.7 there is for every subset S of a field F a smallest subfield of F that
contains S , the subfield of F generated by S . The next result describes the
subfield generated by the union of S and a subfield K of F ; this yields the
subfield generated by just S , if K is the smallest subfield of F .

Proposition 1.9. Let K be a subfield of a field F and let S be a subset
of F .
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The subring K [S] of F generated by K ∪ S is the set of all finite linear com-
binations with coefficients in K of finite products of powers of elements of S .

The subfield K (S) of F generated by K ∪ S is the set of all ab−1 ∈ F with
a, b ∈ K [S] , b =/ 0 , and is isomorphic to the field of fractions of K [S] .

Proof. Let (Xs)s∈S be a family of indeterminates, one for each s ∈ S . By
III.6.6 there is an evaluation homomorphism ϕ : K [(Xs)s∈S] −→ F :

ϕ
(∑

k
(

ak
∏

s∈S Xs
ks )) =

∑

k
(

ak
∏

s∈S s
ks )

,

where
∏

s∈S s
ks denotes the finite product

∏

s∈S, ks =/ 0 s
ks . Then Im ϕ is a

subring of F , which contains K and S and consists of all finite linear combinations
with coefficients in K of finite products of powers of elements of S . All these
linear combinations must belong to any subring of F that contains K and S , so
Im ϕ is the smallest such subring.

By III.4.11 the inclusion homomorphism of K [S] into F extends to a homo-
morphism ψ of the quotient field Q(K [S]) into F , which sends a/b to ab−1 ∈ F
for all a, b ∈ K [S] , b =/ 0. Hence

Im ψ = { ab−1 ∈ F
∣
∣ a, b ∈ K [S], b =/ 0 } ∼= Q(K [S])

is a subfield of F , which contains K [S] and K ∪ S . Moreover, any subfield
that contains K and S must contain K [S] and all ab−1 ∈ F with a, b ∈ K [S] ,
b =/ 0; hence Im ψ is the smallest such subfield. �

The notation K [S] , K (S) is traditional, but readers should keep in mind that
K [S] is not a polynomial ring, even though its elements look like polynomials,
and that K (S) is not a field of rational fractions, even though its elements look like
rational fractions. Moreover, K [S] and K (S) depend on F , not just on K and S .
If S = { s1 , . . . ,sn } is finite, then K [S] and K (S) are denoted by K [s1 , . . . ,sn]
and K (s1 , . . . ,sn) .

Proposition 1.9 implies some useful properties.

Corollary 1.10. Let F be a field, let K be a subfield of F , let S be a subset of
F , and let x, α1 , . . . ,αn ∈ F .

(1) x ∈ K [α1 , . . . ,αn] if and only if x = f (α1 , . . . ,αn) for some polynomial
f ∈ K [X1 , . . . , Xn] .

(2) x ∈ K (α1 , . . . ,αn) if and only if x = r(α1 , . . . ,αn) for some rational
fraction r ∈ K (X1 , . . . , Xn) .

(3) x ∈ K [S] if and only if x ∈ K [α1 , . . . ,αn] for some α1 , . . . ,αn ∈ S .

(4) x ∈ K (S) if and only if x ∈ K (α1 , . . . ,αn) for some α1 , . . . ,αn ∈ S .

Composites. The compositum or composite is another operation on subfields,
a worthy alternative to unions.

Definition. The composite
∏

i∈I Ki of a nonempty family (Ki )i∈I of subfields
of a field F is the subfield of F generated by

⋃

i∈I Ki . �
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If I = { 1, 2, . . . , n } is finite, then
∏

i∈I Ki is denoted by K1 K2 · · · Kn .
Regarding this traditional notation, readers should keep in mind that a composite
is not a product of subsets, and that it depends on the larger field F . The author
pledges to avoid confusion by never multiplying subfields as subsets.

Proposition 1.9 yields the following description of composites:

Proposition 1.11. Let (Ki )i∈I be a nonempty family of subfields of a field F .
Then x ∈

∏

i∈I Ki if and only if x = ab−1 ∈ F for some a, b ∈ R , b =/ 0 , where
R is the set of all finite sums of finite products of elements of

⋃

i∈I Ki .

In particular, x ∈ F is in the composite K L of two subfields K and L of F
if and only if x = ab−1 ∈ F for some a, b ∈ R , b =/ 0 , where R is the set of all
finite sums of products of an element of K and an element of L .

Proof. We have
∏

i∈I Ki = K0
(⋃

i∈I Ki
)

, where K0 is the smallest subfield
of F . Multiplying an element of K0 by a finite product of powers of elements
of
⋃

i∈I Ki yields a finite product of elements of
⋃

i∈I Ki ; hence, in 1.9, linear
combinations with coefficients in K0 of finite products of powers of elements of
⋃

i∈I Ki are just finite sums of finite products of elements of
⋃

i∈I Ki . In the case
of two subfields K and L , a finite product of elements of K ∪ L is the product
of an element of K and an element of L . �

In the case of two subfields K and L , the composite K L is generated by
K ∪ L , so that K L = K (L) = L(K ) and Proposition 1.11 follows directly from
Proposition 1.9.

Exercises

1. Prove that every intersection of subfields of a field K is a subfield of K .

2. Prove that the union of a nonempty directed family of fields is a field.

3. Let K , L , M be subfields of a field F . Show that (K L)M = K (L M) .

4. Let L be a subfield of a field F and let (Ki )i∈I be a nonempty directed family of
subfields of F . Show that

(⋃

i∈I Ki
)

L =
⋃

i∈I (Ki L) .

2. Extensions

This section contains basic properties of field extensions.

Definition. A field extension of a field K is a field E of which K is a subfield.

We write this relationship as an inclusion K ⊆ E when it is understood that K
and E are fields.

A field extension of a field K can also be defined as a field F together with
a homomorphism of K into F . The two definitions are fully equivalent up to
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isomorphisms. If K is a subfield of E and E ∼= F , then there is a homomor-
phism of K into F . Conversely, if ϕ : K −→ F is a homomorphism, then K is
isomorphic to the subfield Im ϕ of F .

Moreover, when ϕ : K −→ F is a homomorphism of fields, there is a field
E ∼= F that contains K as a subfield. To see this, cut Im ϕ from F and attach
K in its place to make a disjoint union E = K ∪ (F \ Im ϕ) . Electrify this
monster to life as a field through the bijection θ : E −→ F that takes x ∈ K to
ϕ(x)∈ F and is the identity on F \ Im ϕ : define sums and products in E by
x + y = θ−1(θ(x) + θ(y)

)

, xy = θ−1(θ(x) θ(y)
)

; then E is a field like F , θ

is an isomorphism, and K is a subfield of E , since ϕ is a homomorphism. This
construction can be used with most bidules; the author calls it surgery.

K-homomorphisms let extensions of a field K relate to each other.

Definition. Let K ⊆ E and K ⊆ F be field extensions of K . A K-homomor-
phism of E into F is a field homomorphism ϕ : E −→ F that is the identity on
K (ϕ(x) = x for all x ∈ K ).

The inclusion homomorphism E −→ F in a tower K ⊆ E ⊆ F of extensions
is a K-homomorphism. Conversely, if K ⊆ E, F and ϕ : E −→ F is a
K-homomorphism, then there is a K-isomorphism E ∼= Im ϕ ⊆ F .

Definitions. A K-isomorphism is a bijective K-homomorphism. A K-
automorphism of a field extension K ⊆ E is a K-isomorphism of E onto E .

We view K-isomorphic extensions as avatars of the same “abstract” extension.

Degree. The first property of any field extension K ⊆ E is that it is a vector
space over K , in which scalar multiplication is just multiplication in E . In this
light, K-homomorphisms are (in particular) linear transformations.

In Chapter VIII we show that any two bases of a vector space V have the same
number of elements, the dimension of V (which is an infinite cardinal number if
V does not have a finite basis).

Definitions. The degree [ E : K ] of a field extension K ⊆ E is its dimension
as a vector space over K . A field extension K ⊆ E is finite when it has finite
degree and is infinite otherwise. �

For example, C is a finite extension of R , with [C : R ] = 2, but R is an
infinite extension of Q (in fact, [R : Q ] = |R|). Readers will remember that
finite extensions are not usually finite in their number of elements, only in their
dimension. The traditional terminology “degree” originated in a number of cases
in which the degree of an extension is the degree of a related polynomial.

Proposition 2.1. If K ⊆ E ⊆ F , then [ F : K ] = [ F : E ] [ E : K ] .

Proof. Let (αi )i∈I be a basis of E over K and let (βj ) j∈J be a basis of F
over E . Every element of F is a linear combination of βj ’s with coefficients
in E , which are themselves linear combinations of αi ’s with coefficients in K .



2. Extensions 161

Hence every element of F is a linear combination of αi βj ’s with coefficients in
K . Moreover, (αi βj )(i, j)∈I×J is a linearly independent family in F , viewed
as a vector space over K : if

∑

(i, j)∈I×J xi, j αi βj = 0 (with xi, j = 0 for
almost all (i, j) ), then

∑

j∈J
(∑

i∈I xi, j αi
)

βj = 0,
∑

i∈I xi, j αi = 0 for all
j , and xi, j = 0 for all i, j . Thus (αi βj )(i, j)∈I×J is a basis of F over K and
[ F : K ] = |I × J | = |I | |J | = [ F : E ] [ E : K ] . �

Simple extensions are easily constructed and serve as basic building blocks for
field extensions in general.

Definitions. A field extension K ⊆ E is finitely generated when E =
K (α1, . . ., αn) for some α1, . . ., αn ∈ E . A field extension K ⊆ E is simple
when E = K (α) for some α ∈ E ; then α is a primitive element of E .

For example, the field of rational fractions K (X) is a simple extension of
K ; the indeterminate X is a primitive element. Unlike simple groups, simple
extensions may have proper subfields (see the exercises).

Let K ⊆ E be a field extension. For each α ∈ E , Proposition III.5.6 provides
an evaluation homomorphism f �−→ f (α) of K [X ] into E . Its kernel is an ideal
of K [X ] and is either 0 or generated by a unique monic polynomial.

Proposition 2.2. Let K ⊆ E be a field extension and let α ∈ E .

Either f (α) =/ 0 for every nonzero polynomial f (X) ∈ K [X ] , in which case
there is a K-isomorphism K (α) ∼= K (X);

or f (α) = 0 for some nonzero polynomial f (X) ∈ K [X ] , in which case there
is a unique monic irreducible polynomial q such that q(α) = 0 ; then f (α) = 0 if
and only if q divides f , K [α] = K (α) ∼= K [X ]/(q) , [ K (α) : K ] = deg q , and
1 , α , . . . , αn−1 is a basis of K (α) over K , where n = deg q .

Proof. Let ψ : K [X ] −→ E , f (X) �−→ f (α) be the evaluation homomor-
phism. By 1.10, Im ψ = K [α] ⊆ E .

If Ker ψ = 0, then K [α] ∼= K [X ] ; by 1.9 and III.4.11, K (α) is K-isomorphic
to the quotient field of K [α] , and K (α) ∼= K (X) .

Otherwise, by III.5.12, the nonzero ideal Ker ψ of K [X ] is generated by a
unique monic polynomial q . Then f (α) = 0 if and only if q divides f , and
K [α] ∼= K [X ]/Ker ψ = K [X ]/(q) . Now, K [α] ⊆ E is a domain; hence (q) is
a prime ideal. In the PID K [X ] this implies that q is irreducible and that (q) is a
maximal ideal. Hence K [α] ∼= K [X ]/(q) is a field; therefore K (α) = K [α] . If
p ∈ K [X ] is monic irreducible and p(α) = 0, then q divides p and q = p .

Let n = deg q > 0. For every f ∈ K [X ] , we have f = qg + r , where
deg r < n = deg q . Then f (α) = r(α) , and every element f (α) of K [α] is
a linear combination of 1, α , . . . , αn−1 with coefficients in K . Moreover, 1 ,
α , . . . , αn−1 are linearly independent over K : if r(α) = 0, where r ∈ K [X ]
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and deg r < n , then q divides r and r = 0: otherwise, deg r � deg q = n .
Thus 1, α , . . . , αn−1 is a basis of K [α] (as a vector space) over K . �

Algebraic and transcendental elements. Proposition 2.2 leads to the follow-
ing classification.

Definitions. Let K ⊆ E be a field extension. An element α of E is algebraic
over K when f (α) = 0 for some nonzero polynomial f (X)∈ K [X ] . Otherwise,
α is transcendental over K .

Equivalently, α is algebraic over K if and only if [ K (α) : K ] is finite. For
example, every element of K is algebraic over K in any extension of K . Every
complex number is algebraic over R ; 1 +

√
3 and 3√2 ∈ R are algebraic over Q .

It has been shown by other methods that e and π ∈ R are transcendental over Q ;
in fact, most real numbers are transcendental over Q (see Section A.5).

Definitions. Let α be algebraic over K . The unique monic irreducible poly-
nomial q = Irr (α : K ) ∈ K [X ] such that q(α) = 0 is the irreducible polynomial
of α over K ; the degree of α over K is the degree of Irr (α : K ) .

For example, Irr (i : R) = X2 + 1 and i has degree 2 over R . Also, 3√2 ∈ R

is algebraic over Q ; Irr ( 3√2 : Q) = X3 − 2 (irreducible in Q[X ] by Eisenstein’s
criterion), and 3√2 has degree 3 over Q .

Finite simple extensions. We complete 2.2 with two more results.

Proposition 2.3. Let K be a field and let q ∈ K [X ] be irreducible. Up to
isomorphism, E = K [X ]/(q) is a simple field extension of K : E = K (α) , where
α = X + (q) . Moreover, [ E : K ] = deg q and q = Irr (α : K ) .

Kronecker [1887] had a very similar construction.

Proof. By III.8.3, (q) is a maximal ideal of K [X ] ; hence E = K [X ]/(q) is
a field. Then x �−→ x + (q) is a homomorphism of K into E ; we may identify
x ∈ K and x + (q)∈ E , and then E is an extension of K .

Let α = X + (q) ∈ E . By the universal property of K [X ] there is a unique
homomorphism of K [X ] into E that sends X to α and every x ∈ K to x + (q) =
x . Since the evaluation homomorphism f (X) �−→ f (α) and the canonical
projection K [X ]−→ E have these properties, they coincide, and f (X) + (q) =
f (α) for all f ∈ K [X ] . Hence E = K [α] , by 1.10, K [α] is a field, and
E = K (α) . Also q(α) = q + (q) = 0 in E , so that α is algebraic over K and
Irr (α : K ) = q . Then [ E : K ] = deg q , by 2.2. �

Thus every irreducible polynomial q ∈ K [X ] has a root in some extension of
K . For example, R[X ]/(X2 + 1) is a simple extension R(α) of R , with a basis
1, α over R by 2.2 in which α2 + 1 = 0. Hence R[X ]/(X2 + 1) ∼= C . This
provides a construction of C that does not require any overt adjunction.

Finite simple extensions inherit from polynomial rings a very useful universal
property, which constructs field homomorphisms K (α) −→ L .



2. Extensions 163

Proposition 2.4. Let α be algebraic over K and let q = Irr (α : K ) . If
ψ : K (α) −→ L is a field homomorphism and ϕ is the restriction of ψ to
K , then ψ(α) is a root of ϕq in L . Conversely, for every field homomorphism
ϕ : K −→ L and every root β of ϕq in L , there exists a unique field homomor-
phism ψ : K (α) −→ L that extends ϕ and sends α to β .

Proof. Let ψ : K (α) −→ L be a field homomorphism. Its restriction ϕ to K
is a field homomorphism. For each f (X) = a0 + a1 X + · · · + am Xm ∈ K [X ] ,
we have

ψ
(

f (α)
)

= ψ
(

a0 + a1 α + · · · + am αm)

= ϕ(a0) + ϕ(a1)ψ(α) + · · · + ϕ(am)ψ(α)m = ϕf
(

ψ(α)
)

.

Hence q(α) = 0 yields ϕq
(

ψ(α)
)

= 0. Thus ψ(α) is a root of ϕq in L .

Conversely, let β ∈ L be a root of ϕq . Since K (α) ∼= K [X ]/(q) by 2.3, we
may assume that K (α) = K [X ]/(q) and α = X + (q) . By the universal property
of K [X ] , ϕ extends to a unique homomorphism χ : K [X ]−→ L that sends X
to β , namely χ : f �−→ ϕf (β) . Then χ(q) = ϕq(β) = 0; hence (q) ⊆ Ker χ .

By the Factorization theorem (III.3.5) χ factors uniquely through the projection
π : K [X ]−→ K [X ]/(q) : χ = ψ ◦ π for some unique homomorphism ψ :
K (α) −→ L . Then ψ extends ϕ and sends α to β ; ψ is the only homomor-
phism with these properties, since 1, α , . . . , αn−1 is a basis of K (α) . �

Infinite simple extensions have a similar property (see the exercises).

Exercises
1. Show that every field extension is a directed union of finitely generated extensions.

2. Show that α = 1 +
√

5 ∈ R is algebraic over Q ; find Irr (α : Q) .

3. Show that α =
√

2 +
√

3 ∈ R is algebraic over Q ; find Irr (α : Q) .

4. Show that α =
√

2 + i
√

3 ∈ C is algebraic over Q ; find Irr (α : Q) .

5. Show that the simple extension E = Q( 6√2) ⊆ R of Q has intermediate fields
Q � F � E .

6. Show that the simple extension K (X) of K has intermediate fields K � F � K (X) .

7. Construct a field with four elements; draw its addition and multiplication tables.
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8. Construct a field with eight elements; draw its addition and multiplication tables.

9. Construct a field with nine elements; draw its addition and multiplication tables.

10. Prove the following. Let α be transcendental over K . If ψ : K (α) −→ L is a field
homomorphism, then ψ(α) is transcendental over ψ(K ) . Conversely, if ϕ : K −→ L is a
field homomorphism and β ∈ L is transcendental over ϕ(K ) , then there exists a unique field
homomorphism ψ : K (α) −→ L that extends ϕ and sends α to β .

3. Algebraic Extensions

This section contains basic properties of the class of algebraic extensions. Tran-
scendental extensions are considered in Sections 8 and 9.

Definitions. A field extension K ⊆ E is algebraic, and E is algebraic over
K , when every element of E is algebraic over K . A field extension K ⊆ E
is transcendental, and E is transcendental over K , when some element of E is
trancendental over K .

For example, C is an algebraic extension of R and R is a transcendental
extension of Q .

Algebraic extensions have a number of basic properties that make wonderful
and highly recommended exercises.

Proposition 3.1. Every finite field extension is algebraic.

Proposition 3.2. If E = K (α1, . . ., αn) and every αi is algebraic over K , then
E is finite (hence algebraic) over K .

Proof. We give this proof as an example. Let E = K (α1, . . ., αn) , where all
αi are algebraic over K . We prove by induction on n that E is finite over K . If
n = 0, then E = K is finite over K . If n > 0, then F = K (α1, . . ., αn−1) is finite
over K by the induction hypothesis; αn is algebraic over F , since f (αn) = 0 for
some nonzero f ∈ K [X ]⊆ F[X ] ; hence E = F(αn) is finite over F by 2.2, and
E is finite over K , by 2.1. �

Proposition 3.3. If every α ∈ S is algebraic over K , then K (S) is algebraic
over K .

Proposition 3.4. Let K ⊆ E ⊆ F be fields. If F is algebraic over K , then E
is algebraic over K and F is algebraic over E .

Proposition 3.5 (Tower Property). Let K ⊆ E ⊆ F be fields. If E is algebraic
over K , and F is algebraic over E , then F is algebraic over K .

Proposition 3.6. If E is algebraic over K and the composite E F exists, then
E F is algebraic over K F .

Proposition 3.7. Every composite of algebraic extensions of a field K is an
algebraic extension of K .
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Here are some applications of these results.

Proposition 3.8. If E is finite over K and the composite E F exists, then E F
is finite over K F . Hence the composite of finitely many finite extensions of K is
a finite extension of K .

Proof. We prove the first statement and leave the second as an exercise. Let
α1 , . . . , αn be a basis of E over K . Then E = K (α1 , . . . , αn) and every αi is
algebraic over K . Hence E F = K F(α1 , . . . , αn) , every αi is algebraic over K F
by 3.6, and E F is finite over K F by 3.2. �

Proposition 3.9. In any field extension K ⊆ E , the elements that are algebraic
over K constitute a field.

Proof. First, 0 and 1 ∈ K are algebraic over K . Now let α , β ∈ E be
algebraic over K . By 3.3, K (α, β) ⊆ E is algebraic over K . Hence α − β ∈
K (α, β) and α β−1 ∈ K (α, β) are algebraic over K . �

For example, the set of all algebraic real numbers (over Q ) is a field.

Exercises
Prove the following:

1. If every α ∈ S is algebraic over K , then K (S) is algebraic over K .

2. If K ⊆ E ⊆ F are fields and F is algebraic over K , then E is algebraic over K and
F is algebraic over E .

3. If K ⊆ E ⊆ F are fields, E is algebraic over K , and F is algebraic over E , then F
is algebraic over K . (Hint: every α ∈ F is algebraic over K (α0, α1, . . . , αn) , where α0 ,
α1 , . . . , αn are the coefficients of Irr (α : E) .)

4. If E is algebraic over K , then the composite E F , if it exists, is algebraic over K F .

5. Every composite of algebraic extensions of K is an algebraic extension of K .

6. The composite of finitely many finite extensions of K is a finite extension of K .

4. The Algebraic Closure

In this section we show that every field has a greatest algebraic extension, its
algebraic closure, which is unique up to isomorphism.

Algebraically closed fields have no proper algebraic extensions:

Proposition 4.1. For a field K the following properties are equivalent:

(1) the only algebraic extension of K is K itself;

(2) in K [X ] , every irreducible polynomial has degree 1 ;

(3) every nonconstant polynomial in K [X ] has a root in K .

Proof. (1) implies (2): when q ∈ K [X ] is irreducible, then E = K [X ]/(q)
has degree [ E : K ] = deg q , by 2.3; hence (1) implies deg q = 1.
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(2) implies (3) since every nonconstant polynomial f ∈ K [X ] is a nonempty
product of irreducible polynomials.

(3) implies (1): when α is algebraic over K , then q = Irr (α : K ) has a root r
in K ; hence q = X − r , and q(α) = 0 yields α = r ∈ K . �

Definition. A field is algebraically closed when it satisfies the equivalent con-
ditions in Proposition 4.1. �

For instance, the fundamental theorem of algebra (Theorem III.8.11) states that
C is algebraically closed. The fields R , Q , Zp are not algebraically closed, but
R and Q can be embedded into the algebraically closed field C .

Algebraically closed fields have an interesting homomorphism property.

Theorem 4.2. Every homomorphism of a field K into an algebraically closed
field can be extended to every algebraic extension of K .

Proof. Let E be an algebraic extension of K and let ϕ be a homomorphism
of K into an algebraically closed field L . If E = K (α) is a simple extension of
K , and q = Irr (α : K ) , then ϕq ∈ L[X ] has a root in L , since L is algebraically
closed, and ϕ can be extended to E by 2.4.

The general case uses Zorn’s lemma. Let S be the set of all ordered pairs
(F, ψ) in which F is a subfield of E , K ⊆ F ⊆ E , and ψ : F −→ L is
a homomorphism that extends ϕ (ψ(x) = ϕ(x) for all x ∈ K ). For instance,
(K , ϕ) ∈ S . Partially order S by (F, ψ) � (G, χ) if and only if F is a subfield
of G and χ extends ψ . Let C = (Fi , ψi )i∈I be a nonempty chain of S . Then
F =

⋃

i∈I Fi is a subfield of E , by 1.8. A mapping ψ : F −→ L is well
defined by ψ(x) = ψi (x) whenever x ∈ F is in Fi : if x ∈ Fi ∩ F

j
, then, say,

(Fi , ψi ) � (Fj , ψj ) , ψj extends ψi , and ψj (x) = ψi (x) . Then ψ extends every
ψi , and is a homomorphism since any x, y ∈ F belong to some Fi and ψi is a
homomorphism. Hence (F, ψ) ∈ S , (Fi , ψi ) � (F, ψ) for all i ∈ I , and C has
an upper bound in S .

By Zorn’s lemma, S has a maximal element (M, µ) . If M =/ E , then any
α ∈ E\M is algebraic over M , since E is an algebraic extension of K ⊆ M , and
µ can be extended to the simple algebraic extension M(α) of M , contradicting
the maximality of M . So M = E , and µ extends ϕ to E . �

The proof of Theorem 4.2 is a standard argument that generally provides maxi-
mal extensions of bidule homomorphisms (see the exercises). The homomorphism
in Theorem 4.2 can generally be extended in several ways; already, in Proposition
2.4, ϕ can usually be extended in several ways, since ϕq usually has several roots.
This phenomenon is studied in more detail in the next section.

Embeddings. The main result of this section is that every field K can be
embedded into an algebraically closed field K that is algebraic over K ; and then
every algebraic extension of K can be embedded in K , by Theorem 4.2.
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Lemma 4.3. Every field K has an algebraic extension that contains a root of
every nonconstant polynomial with coefficients in K .

Proof. (Kempf) For any finitely many nonconstant polynomials f1 , . . . , fn ∈
K [X ] , we note that K has an algebraic extension in which every fi has a root:
repeated applications of Propositions 2.3 to irreducible factors of f1 , . . . , fn yield
an extension of K in which every fi has a root, which is algebraic over K by 3.3.

Now write the set of all nonconstant polynomials f ∈ K [X ] as a family
( fi )i∈I . Form the polynomial ring K [(Xi )i∈I ] , using the same index set I , and
let A be the ideal of K [(Xi )i∈I ] generated by all fi (Xi ) .

We show that A =/ K [(Xi )i∈I ] . Otherwise, 1 ∈ A and 1 =
∑

j∈J uj fj (Xj )
for some finite subset J of I and polynomials uj ∈ K [(Xi )i∈I ] . Since J is finite,
K has an algebraic extension E in which every fj has a root αj . The universal
property of K [(Xi )i∈I ] yields a homomorphism ϕ of K [(Xi )i∈I ] into E such
that ϕ(x) = x for all x ∈ K , ϕ(Xi ) = 0 for all i ∈ I\J , and ϕ(Xj ) = αj for all
j ∈ J . Then ϕ

(

fj (Xj )
)

= fj (αj ) and 1 = ϕ(1) =
∑

j∈J ϕ(uj ) ϕ
(

fj (Xj )
)

= 0.
This is the required contradiction.

Now, A =/ K [(Xi )i∈I ] is contained in a maximal ideal M of K [(Xi )i∈I ] .
Then F = K [(Xi )i∈I ]/M is a field. We now follow the proof of Proposition 2.3.

There is a homomorphism x �−→ x + M of K into F . We may iden-
tify x ∈ K and x + M ∈ F ; then F is an extension of K . Let αi =
Xi + M ∈ F . By uniqueness in the universal property of K [(Xi )i∈I ] , the
canonical projection K [(Xi )i∈I ]−→ F coincides with the evaluation homomor-
phism f

(

(Xi )i∈I
)

�−→ f
(

(αi )i∈I
)

, since both send Xi to αi for all i and send
every x ∈ K to x + M = x . Thus, f

(

(Xi )i∈I
)

+ M = f
(

(αi )i∈I
)

for all
f ∈ K [(Xi )i∈I ] . Hence F = K [(αi )i∈I ] , by 1.10, K [(αi )i∈I ] is a field, and
F = K ((αi )i∈I ) . Also fi (αi ) = fi (Xi ) + M = 0 in F , so that every αi is
algebraic over K ; hence F is algebraic over K , by 3.3. �

Another proof of Lemma 4.3 is given in Section A.4 (see the exercises for that
section).

Theorem 4.4. Every field K has an algebraic extension K that is algebraically
closed. Moreover, K is unique up to K-isomorphism.

Proof. There is a very tall tower of fields

K = E0 ⊆ E1 ⊆ · · · ⊆ En ⊆ En+1 ⊆ · · ·
in which En+1 is the algebraic extension of En in Lemma 4.3, which contains
a root of every nonconstant polynomial with coefficients in En . Then every En
is algebraic over K , by 3.5, and K =

⋃

n�0 En , which is a field by 1.8, is an

algebraic extension of K . Then K is algebraically closed: when f ∈ K [X ] is
not constant, the finitely many coefficients of f all lie in some En and f has
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a root in En+1 ⊆ K .

Let L be an algebraically closed, algebraic extension of K . By 4.2, there is a
K-homomorphism ϕ : K −→ L . Then Im ϕ ∼= K is algebraically closed, and L
is algebraic over Im ϕ by 3.4; therefore L = Im ϕ and ϕ is a K-isomorphism. �

Definition. An algebraic closure of a field K is an algebraic extension K of K
that is algebraically closed.

The field K in this definition is also called the algebraic closure of K , since
Theorem 4.4 ensures that all algebraic closures of K are K-isomorphic. For
example, C is ‘the’ algebraic closure of R , since it is algebraically closed and
algebraic over R .

The algebraic closure K of K can be characterized in several ways:

(1) K is an algebraically closed, algebraic extension of K (by definition);

(2) K is a maximal algebraic extension of K (if K ⊆ E and E is algebraic
over K , then K = E );

(3) K is, up to K-isomorphism, the largest algebraic extension of K (if E is
algebraic over K , then E is K-isomorphic to a subfield of K , by 4.2);

(4) K is a minimal algebraically closed extension of K (if K ⊆ L ⊆ K and L
is algebraically closed, then L = K );

(5) K is, up to K-isomorphism, the smallest algebraically closed extension of
K (if K ⊆ L and L is algebraically closed, then K is K-isomorphic to a subfield
of L , by 4.2).

By (3) we may limit the study of algebraic extensions to the intermediate fields
K ⊆ E ⊆ K of any algebraic closure of K :

Corollary 4.5. For every algebraic extension E of K , E is an algebraic
closure of K ; hence E is K-isomorphic to an intermediate field K ⊆ F ⊆ K of
any algebraic closure of K .

Finally, we note the following properties.

Proposition 4.6. Every K-endomorphism of K is a K-automorphism.

Proof. Let ϕ : K −→ K is a K-homomorphism. As in the proof of 4.4,
Im ϕ ∼= K is algebraically closed, K is algebraic over Im ϕ , by 3.4, hence
K = Im ϕ and ϕ is a K-isomorphism. �

Proposition 4.7. If K ⊆ E ⊆ K is an algebraic extension of K , then every
K-homomorphism of E into K extends to a K-automorphism of K .

Proof. By 4.2, every K-homomorphism of E into K extends to a K-
endomorphism of K , which is a K-automorphism of K by 4.6. �
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Exercises
1. Let G be a group, let H be a subgroup of G , and let ϕ : H −→ J be a homomorphism

of groups. Show that there is a pair (M, µ) such that H � M � G , µ : M −→ J is a
homomorphism that extends ϕ , and (M, µ) is maximal with these properties.

2. Show that every algebraically closed field is infinite.

3. Let A be the field of all complex numbers that are algebraic over Q . Show that A is an
algebraic closure of Q .

5. Separable Extensions

An algebraic extension K ⊆ E is separable when the irreducible polynomials of
its elements are separable (have no multiple roots). This section relates polynomial
separability to the number of K-homomorphisms of E into K .

Separable polynomials. Let f ∈ K [X ] be a nonconstant polynomial with
coefficients in a field K . Viewed as a polynomial with coefficients in any algebraic
closure K of K , f factors uniquely (up to the order of the terms) into a product
of positive powers of irreducible polynomials of degree 1:

f (X) = a (X − α1)
m1 (X − α2)

m2 · · · (X − αr )
mr ;

then a ∈ K is the leading coefficient of f , r > 0, m1, . . ., mr > 0, α1 , . . . ,
αr ∈ K are the distinct roots of f in K , and mi is the multiplicity of αi . Recall
that a root αi of f is multiple when it has multiplicity mi > 1.

Definition. A polynomial f ∈ K [X ] is separable when it has no multiple root
in K .

For example, f (X) = X4 + 2X2 + 1 ∈ R[X ] factors as f (X) = (X2 + 1)2 =
(X − i)2 (X + i)2 in C[X ] and has two multiple roots in R = C ; it is not separable.
But X2 + 1 ∈ R[X ] is separable. Readers will show, however, that an irreducible
polynomial is not necessarily separable.

Proposition 5.1. Let q ∈ K [X ] be irreducible.

(1) If K has characteristic 0 , then q is separable.

(2) If K has characteristic p =/ 0 , then all roots of q in K have the same
multiplicity, which is a power pm of p , and there exists a separable irreducible
polynomial s ∈ K [X ] such that q(X) = s(X pm

) .

Proof. We may assume that q is monic. If q has a multiple root α in K , then
q ′(α) = 0 by III.5.9. Now, α is algebraic over K , with q = Irr (α : K ) since
q(α) = 0; hence q divides q ′ , and q ′ = 0, since deg q ′ < deg q . But q ′ =/ 0
when K has characteristic 0, since q is not constant; hence q is separable.

Now let K have characteristic p =/ 0. If q(X) =
∑

n�0 an Xn has a multiple

root, then, as above, q ′(X) =
∑

n�1 nan Xn−1 = 0; hence an = 0 whenever n
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is not a multiple of p and q contains only powers of X p . Thus q(X) = r(X p) for
some r ∈ K [X ] ; r is, like q , monic and irreducible in K [X ] (if r had a nontrivial
factorization, then so would q ), and deg r < deg q . If r is not separable, then

r(X) = t(X p) , and q(X) = t(X
p2

) , where t is monic and irreducible in K [X ]

and deg t < deg r < deg q . This process must stop; then q = s(X
pm

) , where
s ∈ K [X ] is monic, irreducible, and separable.

Write s(X) = (X − β1)(X − β2)· · · (X − βn) , where β1, . . ., βn are the
distinct roots of s in K . Since K is algebraically closed there exist α1, . . ., αn ∈
K such that βi = α

pm

i for all i ; in particular, α1, . . ., αn are distinct. In K and
K , (x − y)p= x p − y p for all x, y , by III.4.4, so that

q(X) = s(X
pm

) =
∏

i (X
pm

− α
pm

i ) =
∏

i (X − αi )
pm

;

hence the roots of q in K are α1, . . ., αn , and all have multiplicity pm . �
The separability degree. We now relate polynomial separability to the number

of K-homomorphisms into K .

Definition. The separability degree [ E : K ]s of an algebraic extension K ⊆ E
is the number of K-homomorphisms of E into an algebraic closure K of K .

By 3.11, [ E : K ]s does not depend on the choice of K . If E is a simple
extension of K , then Propositions 2.12 and 5.1 yield the following properties:

Proposition 5.2. If α is algebraic over K , then [ K (α) : K ]s is the number of
distinct roots of Irr (α : K ) in K . Hence [ K (α) : K ]s � [ K (α) : K ] ; if K has
characteristic p =/ 0 , then [ K (α) : K ] = pm [ K (α) : K ]s for some m � 0 ; and
[ K (α) : K ]s = [ K (α) : K ] if and only if Irr (α : K ) is separable.

We now look at algebraic extensions in general.

Proposition 5.3 (Tower Property). If F is algebraic over K and K ⊆ E ⊆ F ,
then [ F : K ]s = [ F : E ]s [ E : K ]s .

Proof. By 3.13 we may assume that E ⊆ K . Let ϕ : E −→ K be a K -
homomorphism. By 3.14, there is a K-automorphism σ of K that extends ϕ . If
now ψ : F −→ K is an E-homomorphism, then σ ◦ ψ is a K-homomorphism
that extends ϕ . Conversely, if χ : F −→ K is a K-homomorphism that
extends ϕ , then ψ = σ−1 ◦ χ is an E-homomorphism:

Hence there are [ F : E ]s K-homomorphisms of F into K that extend ϕ . The
K-homomorphisms of F into K can now be partitioned into [ E : K ]s equiva-
lence classes according to their restrictions to E . Each class has [ F : E ]s
elements; hence there are [ E : K ]s [ F : E ]s K-homomorphisms of F into K . �
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Proposition 5.4. For every finite extension E of K , [ E : K ]s � [ E : K ] ; if K
has characteristic 0 , then [ E : K ]s = [ E : K ] ; if K has characteristic p =/ 0 ,
then [ E : K ] = pm [ E : K ]s for some m � 0 .

Proof. E = K (α1, . . . , αn) for some α1, . . ., αn ∈ E , which yields a tower
K = E0 ⊆ E1 ⊆ · · · ⊆ En = E of simple extensions Ei = K (α1, . . ., αi ) =
Ei−1(αi ) . For every i , [ Ei : Ei−1 ]s � [ Ei : Ei−1 ] , by 5.2; hence [ E : K ]s �
[ E : K ] , by 5.3 and 2.4. The other two parts are proved similarly. �

Separable extensions.

Definitions. An element α is separable over K when α is algebraic over K
and Irr (α : K ) is separable. An algebraic extension E of K is separable, and E
is separable over K , when every element of E is separable over K.

Proposition 5.1 yields examples:

Proposition 5.5. If K has characteristic 0 , then every algebraic extension of
K is separable.

The main property of separable algebraic extensions K ⊆ E is that the number
of K-homomorphisms of E into K is readily determined.

Proposition 5.6. For a finite extension K ⊆ E the following conditions are
equivalent:

(1) E is separable over K (every element of E is separable over K);

(2) E is generated by finitely many separable elements;

(3) [ E : K ]s = [ E : K ] .

Proof. (1) implies (2), since E = K (α1, . . ., αn) for some α1, . . . , αn ∈ E .

(2) implies (3). Let E = K (α1, . . ., αn) , where α1, . . ., αn are separable
over K. Then K = E0 ⊆ E1 ⊆ · · · ⊆ En = E , where Ei = K (α1, . . . , αi ) =
Ei−1(αi ) when i > 0. Let q = Irr (αi : K ) and qi = Irr (αi : Ei−1) . Then
q ∈ K [X ]⊆ Ei−1[X ] and q(αi ) = 0; hence qi divides q and is separable. Then
[ Ei : Ei−1 ]s= [ Ei : Ei−1 ] , by 5.2, and [ E : K ]s = [ E : K ] , by 5.3 and 2.4.

(3) implies (1). Assume [ E : K ]s= [ E : K ] and let α ∈ E . By 5.3 and 2.4,

[ E : K (α) ]s [ K (α) : K ]s = [ E : K ]s = [ E : K ] = [ E : K (α) ] [ K (α) : K ].

Since [ E : K (α) ]s � [ E : K (α) ] and [ K (α) : K ]s � [ K (α) : K ] , this implies
[ E : K (α) ]s = [ E : K (α) ] and [ K (α) : K ]s = [ K (α) : K ] . Hence α is separa-
ble over K, by 5.2. (This argument requires [ E : K ] finite.) �

Properties. The following properties make nifty exercises.

Proposition 5.7. If every α ∈ S is separable over K, then K (S) is separable
over K.
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Proposition 5.8. Let K ⊆ E ⊆ F be algebraic extensions. If F is separable
over K, then E is separable over K and F is separable over E .

Proposition 5.9 (Tower Property). Let K ⊆ E ⊆ F be algebraic extensions.
If E is separable over K and F is separable over E , then F is separable over K .

Proposition 5.10. If E is algebraic and separable over K and the composite
E F exists, then E F is separable over K F .

Proposition 5.11. Every composite of algebraic separable extensions of a field
K is a separable extension of K .

We give some applications of these results.

Proposition 5.12 (Primitive Element Theorem). Every finite separable exten-
sion is simple.

Proof. Let E be a finite separable extension of a field K . If K is finite,
then E is finite, the multiplicative group E\{0} is cyclic by 1.6, and E is singly
generated as an extension.

Now let K be infinite. We show that every finite separable extension E =
K (α, β) of K with two generators is simple; then so is every finite separable
extension K (α1, . . ., αk) of K , by induction on k . Let n = [ E : K ] = [ E : K ]s
and ϕ1 , . . . , ϕn be the K-homomorphisms of E into K . Let

f (X) =
∏

i< j
(

ϕiα + (ϕiβ) X − ϕjα − (ϕjβ) X
)

∈ K [X ].

Since K is infinite we cannot have f (t) = 0 for all t ∈ K ; hence f (t) =/ 0 for
some t ∈ K . Then ϕ1 (α + βt) , . . . , ϕn (α + βt) are all distinct. Hence there are
at least n K-homomorphisms of K (α + βt) into K and [ K (α + βt) : K ] � n .
Therefore [ K (α + βt) : K ] = [ E : K ] and E = K (α + βt) . �

Proposition 5.13. If E is separable over K and Irr (α : K ) has degree at most
n for every α ∈ E , then E is finite over K and [ E : K ] � n .

Proof. Choose α ∈ E so that m = deg Irr (α : K ) is maximal. For every β ∈
E we have K (α, β) = K (γ ) for some γ ∈ E , by 5.12. Then deg Irr (γ : K ) �
m and [ K (γ ) : K ] � m . Since K (γ ) contains K (α) and [ K (α) : K ] = m ,
it follows that K (γ ) = K (α) . Hence K (α) contains every β ∈ E ; that is,
E = K (α) , and then [ E : K ] = m � n . �

Exercises

1. Find an irreducible polynomial that is not separable. (Hint: coefficients need to be in an
infinite field of nonzero characteristic.)

2. Prove the following: if E = K (S) is algebraic over K and every α ∈ S is separable
over K, then K (S) is separable over K.

3. Let K ⊆ E ⊆ F be algebraic extensions. Prove the following: if F is separable over
K, then E is separable over K and F is separable over E .
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4. Let K ⊆ E ⊆ F be algebraic extensions. Prove the following: if E is separable over
K and F is separable over E , then F is separable over K .

5. Let K ⊆ E be an algebraic extension. Prove the following: if E is separable over K
and the composite E F exists, then E F is separable over K F .

6. Prove the following: every composite of algebraic separable extensions of a field K is
a separable extension of K .

6. Purely Inseparable Extensions

In a purely inseparable extension of a field K , only the elements of K are separa-
ble over K. This section contains basic properties and examples, with applications
to perfect fields, and may be skipped at first reading.

Definition. An algebraic extension K ⊆ E is purely inseparable, and E is
purely inseparable over K , when no element of E\K is separable over K .

One reason for our interest in purely inseparable extensions is that every algebra-
ic extension is a purely inseparable extension of a separable extension (moreover,
some extensions are separable extensions of purely inseparable extensions; see
Proposition V.2.10).

Proposition 6.1. For every algebraic extension E of K , S = {α ∈ E
∣
∣ α is

separable over K } is a subfield of E , S is separable over K, and E is purely
inseparable over S .

Proof. First, 0 and 1 ∈ K are separable over K. If α, β ∈ E are separable
over K, then K (α, β) is separable over K by 5.7 and α − β , α β−1 ∈ K (α, β)
are separable over K. Thus S is a subfield of E . Clearly S is separable over K.
If α ∈ E is separable over S , then S(α) is separable over K by 5.7, 5.9, and
α ∈ S . �

By 5.5, purely inseparable extensions are trivial unless K has characteristic
p =/ 0. Then (α − β)pm

= α pm − β pm
for all m > 0 and α, β ∈ K , by III.4.4,

so that every a ∈ K has a unique pmth root in K and a polynomial in the form

X
pm

− a ∈ K [X ] has only one root in K . This provides the following example.

Proposition 6.2. If K has characteristic p =/ 0 , then K
1/p∞ = {α ∈

K
∣
∣ α pm ∈ K for some m � 0 } is a purely inseparable field extension of K .

Proof. We have K ⊆ K
1/p∞ , in particular 0, 1 ∈ K

1/p∞ . If α, β ∈ K
1/p∞ ,

then α pm
, β pm ∈ K when m is large enough, and then (α − β)pm

= α pm −
β pm ∈ K and (αβ−1)pm

= (α pm
)(β pm

)−1 ∈ K . Thus K
1/p∞ is a sub-

field of K . If α ∈ K
1/p∞\K , then α is algebraic over K and Irr (α : K )

divides some X
pm

− a ∈ K [X ] ; hence Irr (α : K ) has only one root in K and
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α is not separable. �

This example leads to equivalent definitions of purely inseparable extensions.

Lemma 6.3. If K has characteristic p =/ 0 , and α is algebraic over K, then

α pn ∈ K for some n � 0 if and only if Irr (α : K ) = X
pm

− a for some m � 0 ,
and a ∈ K .

Proof. Let q = Irr (α : K ) . By 5.1, q(X) = s(X
pm

) for some m � 0 and
separable monic irreducible polynomial s ∈ K [X ] . If α pn

= b ∈ K for some

n � 0, then q divides X
pn

− b , q has only one root in K , and s has only one
root in K ; since s is separable this implies s(X) = X − a for some a ∈ K and

q(X) = s(X
pm

) = X
pm

− a . The converse holds since q(α) = 0. �

Definition. If K has characteristic p =/ 0 , then α is purely inseparable over
K when α pn ∈ K for some n � 0 , equivalently when α is algebraic over K and

Irr (α : K ) = X
pm

− a for some m � 0 and a ∈ K.

Proposition 6.4. Let K have characteristic p =/ 0 and let E be an algebraic
extension of K. The following conditions are equivalent:

(1) E is purely inseparable over K (no α ∈ E\K is separable over K );

(2) every element of E is purely inseparable over K;

(3) there exists a K-homomorphism of E into K
1/p∞

;

(4) [ E : K ]s = 1 .

Proof. (1) implies (2). Assume that E is purely inseparable over K. Let α ∈ E

and q = Irr (α : K ) . By 5.1, q(X) = s(X
pm

) for some m � 0 and separable
monic irreducible polynomial s ∈ K [X ] . Then s(α pm

) = 0, s = Irr (α pm
: K ) ,

and α pm
is separable over K. If E is purely inseparable over K, then α pm ∈ K.

(2) implies (3). By 3.9 there is a K-homomorphism ϕ : E −→ K . If α ∈ E,
then α pm ∈ K by (2), ϕ(α pm

) ∈ K , and ϕ(α) ∈ K
1/p∞. Thus ϕ is a K-

homomorphism of E into K
1/p∞.

(3) implies (4). Let ϕ : E −→ K
1/p∞ and ψ : E −→ K be K-

homomorphisms. Since K has characteristic p =/ 0, every element of K has
a unique pmth root in K . If α ∈ E , then ϕ(α pm

) ∈ K for some m � 0,
equivalently, α pm ∈ K , since ϕ is injective; then ψ(α pm

) = α pm
, ψ(α) is, like

ϕ(α) , the unique pmth root of α pm
in K, and ψ(α) = ϕ(α) . Hence there is only

one K-homomorphism of E into K.

(4) implies (1). If α ∈ E is separable over K, then there are n = [ K (α) : K ]
distinct K-homomorphisms of K (α) into K, which by 3.9 extend to at least n
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distinct K-homomorphisms of E into K ; hence (4) implies n = 1 and α ∈ K .
Thus E is purely inseparable over K. �

Properties. By Proposition 6.4, K
1/p∞ is, up to K-isomorphism, the largest

purely inseparable extension of K. This costs the following results some of their
charm. The proofs are exercises.

Proposition 6.5. If every α ∈ S is purely inseparable over K, then K (S) is
purely inseparable over K.

Proposition 6.6. Let K ⊆ E ⊆ F be algebraic extensions. If F is purely in-
separable over K, then E is purely inseparable over K and F is purely inseparable
over E .

Proposition 6.7 (Tower Property). Let K ⊆ E ⊆ F be algebraic extensions.
If E is purely inseparable over K and F is purely inseparable over E , then F is
purely inseparable over K .

Proposition 6.8. If E is algebraic and purely inseparable over K and the
composite E F exists, then E F is purely inseparable over K F .

Proposition 6.9. Every composite of algebraic purely inseparable extensions
of a field K is a purely inseparable extension of K.

Exercises

1. Let α ∈ K . Show that α ∈ K
1/p∞

if and only if σα = α for every K-automorphism
σ of K .

2. Find properties of the inseparability degree [ E : K ]i = [ E : K ] / [ E : K ]s.

3. Prove the following: if every α ∈ S is purely inseparable over K, then K (S) is purely
inseparable over K.

4. Let K ⊆ E ⊆ F be algebraic extensions. Prove the following: if F is purely
inseparable over K, then E is purely inseparable over K and F is purely inseparable over E.

5. Let K ⊆ E ⊆ F be algebraic extensions. Prove the following: if E is purely
inseparable over K and F is purely inseparable over E , then F is purely inseparable over K.

6. Let K ⊆ E be an algebraic extension. Prove the following: if E is purely inseparable
over K and the composite E F exists, then E F is purely inseparable over K F.

7. Prove that every composite of purely inseparable extensions of a field K is purely
inseparable over K.
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7. Resultants and Discriminants

The resultant of two polynomials detects from their coefficients when they have
a common root. Similarly, the discriminant of a polynomial f detects from the
coefficients of f whether f is separable. This section can be skipped, though the
formulas for discriminants are quoted in Section V.5.

The resultant. K denotes a field in what follows.

Definition. Let f (X) = am (X − α1) · · · (X − αm) and g(X) = bn (X − β1)
· · · (X − βn) be polynomials of degrees m and n with coefficients in a field K
and roots α1, . . ., αm, β1, . . . , βn in K . The resultant of f and g is

Res ( f, g) = an
m bm

n
∏

i, j (αi − βj )

= an
m
∏

i g(αi ) = (−1)mn bm
n
∏

j f (βj ).

The terms an
m and bn

m will ensure that Res ( f, g) ∈ K. Our interest in the
resultant stems from the next two results.

Proposition 7.1. If K is a field and f, g ∈ K [X ] , then Res ( f, g) = 0 if and
only if f and g have a common root in K.

Next, we calculate Res ( f, g) from the coefficients of f and g . Hence the
resultant of f and g tells from their coefficients whether f and g have a common
root in K.

Proposition 7.2. Let K be a field and f (X) = am Xm + · · · + a0 , g(X) =
bn Xn + · · · + b0 ∈ K [X ] . If am , bn =/ 0 , then

Res ( f, g) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

am . . . . . . a0
. . . . . .

am . . . . . . a0

bn . . . . . . b0
. . . . . .

bn . . . . . . b0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∈ K.

In this determinant, each of the first n rows is the row of coefficients of f, padded
with zeros to length m + n ; the last m rows are constructed similarly from the
coefficients of g . For example, if f = aX2 + bX + c and g = d X + e, then

Res ( f, g) =

∣
∣
∣
∣
∣
∣

a b c
d e 0
0 d e

∣
∣
∣
∣
∣
∣

= ae2 − bde + cd2.

Proof. If a polynomial p ∈ Z[X1, ..., Xn] becomes 0 when Xj =/ Xi is sub-
stituted for Xi , then p is divisible by Xi − Xj : if, say, i = 1, then poly-
nomial division in Z[X2, ..., Xn][X1] yields p = (X1 − Xj ) q + r , where r has
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degree less than 1 in X1 , that is, X1 does not appear in r ; if p becomes 0 when
Xj is substituted for X1 , then so does r ; but this substitution does not change r ,
so r = 0.

For the rest of the proof we replace the coefficients and roots of f and g
by indeterminates. Let F = Am Xm + · · · + A0 ∈ Z[Am, . . ., A0, X ] , G =
Bn Xn + · · · + B0 ∈ Z[Bn, ..., B0, X ] , and

P =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Am . . . . . . A0
. . . . . .

Am . . . . . . A0

Bn . . . . . . B0
. . . . . .

Bn . . . . . . B0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∈ Z[Am, ..., A0, Bn, ..., B0].

Then f (X) = F(am, . . ., a0, X) , g(X) = G(bn, . . ., b0, X) , and the determinant
D in the statement is D = P(am, . . . , a0, bn, . . ., b0) .

Expansion shows that the coefficient of Xm−k in

Am (X − R1) · · · (X − Rm) ∈ Z[Am, R1, ..., Rm ][X ]

is (−1)k Am sk(R1, . . ., Rm) , where sk ∈ Z[R1, ..., Rm ] is homogeneous of
degree k (all its monomials have degree k ); s1, . . ., sm are the elementary
symmetric polynomials in m variables, studied in greater detail in Section V.8.
Similarly, the coefficient of Xn−k in

Bn (X − S1) · · · (X − Sn) ∈ Z[Bn, S1, ..., Sn][X ]

is (−1)k Bn tk(S1, . . . , Sm) , where tk ∈ Z[S1, ..., Sn] is homogeneous of degree
k . In particular,

am−k = (−1)k am sk(α1, . . . , αm) and bn−k = (−1)k bn tk(β1, . . . , βn) .

Let Φ be the ring homomorphism

Φ : Z[Am, ..., A0, Bn, ..., B0, X ] −→ Z[Am, Bn, R1, ..., Rm , S1, ..., Sn, X ]

such that

Φ(Am−k) = (−1)k Am sk(R1, . . ., Rm)

and

Φ(Bn−k) = (−1)k Bntk(S1, . . ., Sn)

for every k > 0; Φ substitutes (−1)k Am sk(R1, . . . , Rm) for Am−k and
(−1)k Bn tk(S1, . . . , Sn) for Bn−k . By the above,

Φ(F) = Am (X − R1) · · · (X − Rm)
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and

Φ(G) = Bn (X − S1) · · · (X − Sn).

We show that Φ(P) = An
m Bm

n
∏

i, j (Ri − Sj ) .

Let At = 0 if t < 0 or t > m , Bt = 0 if t < 0 or t > n . The entry Cr,c of P
in row r and column c is Am+r−c if r � n , Br−c if r > n . Hence

P =
∑

σ

(

sgn σ C1,σ1 · · ·Cm+n, σ (m+n)

)

=
∑

σ

(

sgn σ
∏

1�r�n Am+r−σr
∏

n<r�m+n Br−σr
)

.

Upon substituting

Am−k = (−1)k Am sk(R1, . . ., Rm), Bn−k = (−1)k Bn tk(S1, . . . , Sm),

which are homogeneous of degree k + 1, the typical term
∏

1�r�n Am+r−σr
∏

n<r�m+n Bn−(n+σr−r)

of P becomes a polynomial that is a multiple of An
m Bm

n and is homogeneous
of degree

∑

1�r�n (σr − r + 1) +
∑

n<r�m+n (n + σr − r + 1) = n + mn + m.
Hence Φ(P) is divisible by An

m Bm
n and is homogeneous of degree mn + m + n.

Now, consider the homogeneous system of linear equations

Xn−1 F = Am Xm+n−1 + · · · + A0 Xn−1 = 0,

Xn−2 F = Am Xm+n−2 + · · · + A0 Xn−2 = 0,
...

F = Am Xm + · · · + A0 X0 = 0,

Xm−1G = Bn Xm+n−1 + · · · + B0 Xm−1 = 0,
...

G = Bm Xn + · · · + B0 X0 = 0,

in which Xm+n−1 , Xm+n−2 , . . . , X0 are squatting in the unknowns’ locations.
The determinant of this system is P . Substituting

Am−k = (−1)k Am sk(R1, . . ., Rm), Bn−k = (−1)k Bn tk(S1, . . ., Sn)

for every k > 0 yields a system of linear equations whose determinant is Φ(P) .
Since Φ(F)(Ri ) = Φ(G)(Sj ) = 0, further substituting Ri = Sj yields a system

whose determinant is 0, since it has a nontrivial solution Sm+n−1
j , Sm+n−2

j , . . . ,

S0
j . Thus Φ(P) becomes 0 when Sj is substituted for Ri . Therefore Φ(P) is

divisible by Ri − Sj , for every i and j .

Poor Φ(P) is now divisible by

R = An
m Bm

n
∏

1�i�m, 1� j�n (Ri − Sj ).
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Since both Φ(P) and R are homogeneous of degree mn + m + n , then Φ(P) = t R
for some t ∈ Z . Now, An

m Bm
0 is a term of P ; hence

An
m (−1)mn Bm

n tn(S1, . . ., Sn)m = (−1)mn An
m Bm

n (S1 · · · Sn)m

is a term of Φ(P) . Since this is also a term of R , it follows that Φ(P) = R . In
other words, substituting

Am−k = (−1)k Am sk(R1, . . ., Rm), Bn−k = (−1)k Bn tk(S1, . . ., Sn)

in P for every k > 0 yields R = An
m Bm

n
∏

i, j (Ri − Sj ) . Hence, substituting

am−k = (−1)k am sk(α1, . . . , αm), bn−k = (−1)k bn tk(β1, . . . , βn)

for every k > 0 in D = P(am, . . . , a0, bn, . . ., b0) yields

D = an
m bm

n
∏

i, j (αi − βj ) = Res ( f, g). �

Discriminants. We still let K be a field. The discriminant of f ∈ K [X ]
detects from the coefficients of f whether f is separable. Discriminants also turn
up in the solution of polynomial equations of low degree.

Definition. Let f (X) = an (X − α1) · · · (X − αn) be a polynomial of degree
n � 1 with coefficients in a field K and not necessarily distinct roots α1 , . . . , αn
in K . The discriminant of f is

Dis ( f ) = a2n−2
n

∏

1�i< j�n (αi − αj )
2.

If n = 1, then Dis ( f ) = a0
1 = 1. In general, the term a2n−2

n will ensure that
Dis ( f ) ∈ K . Permutations of α1, . . ., αn may change the signs of individual
differences αi − αj but do not affect the product

∏

i< j (αi − αj )
2 ; hence Dis ( f )

depends only on f and not on the numbering of its roots.

Proposition 7.3. Let K be a field. A nonconstant polynomial f ∈ K [X ] is
separable over K if and only if Dis ( f ) =/ 0 .

The next result relates discriminants to resultants.

Proposition 7.4. Let K be a field. If f ∈ K [X ] has degree n � 2 and leading
coefficient an , then Res ( f, f ′) = (−1)n(n−1)/2 an Dis ( f ) .

Proof. In K [X ] , f (X) = an
∏

i (X − αi ) . By III.5.11,

f ′(X) = an
∑

i
(∏

j =/ i (X − αj )
)

.

Hence f ′(αi ) = an
∏

j =/ i (αi − αj ) and

Res ( f, f ′) = an−1
n

∏

1�i�n f ′(αi ) = an−1
n an

n
∏

1�i, j�n, j =/ i (αi − αj )

= a2n−1
n (−1)n(n−1)/2 ∏

1�i< j�n (αi − αj )
2. �

Combining Propositions 7.2 and 7.4 yields a determinant formula for discrimi-
nants:
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Proposition 7.5. Let K be a field. If f = an Xn + · · · + a0 ∈ K [X ] has degree
n � 2 , then

Dis ( f ) = (−1)n(n−1)/2 1
an

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

an . . . . . . a0
. . . . . .

an . . . . . . a0

nan . . . . . . a1
. . . . . .

nan . . . . . . a1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∈ K .

In this determinant, each of the first n rows is the row of coefficients of f, padded
with zeros to length 2n − 1; the last n − 1 rows are constructed similarly from
the coefficients of f ′.

For example, if f = aX2 + bX + c , then

Res ( f, f ′) =

∣
∣
∣
∣
∣
∣

a b c
2a b 0
0 2a b

∣
∣
∣
∣
∣
∣

= 4a2c − ab2;

hence Dis ( f ) = b2 − 4ac . If K does not have characteristic 2, readers may
derive this formula directly from the roots of f.

For f = X3 + pX + q , readers will verify that

Res ( f, f ′) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 p q 0
0 1 0 p q
3 0 p 0 0
0 3 0 p 0
0 0 3 0 p

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 4p3 + 27q2;

hence Dis ( f ) = −4p3 − 27q2 .

Exercises
In the following exercises, K denotes a field.

1. When do X2 + a X + b and X2 + pX + q ∈ K [X ] have a common root in K ?

2. Find the roots of f = a X2 + bX + c ∈ K [X ] in K in case K does not have characteristic
2 , and deduce that Dis ( f ) = b2 − 4ac . What happens when K has characteristic 2?

3. Verify that X3 + pX + q has discriminant −4p3 − 27q2 .

4. Find the discriminant of X4 + pX2 + q X + r .



8. Transcendental Extensions 181

8. Transcendental Extensions

We now turn to transcendental extensions, find their general structure, and prove
a dimension property. This section may be covered immediately after Section 3.

Totally transcendental extensions have as few algebraic elements as possible.

Definition. A field extension K ⊆ E is totally transcendental, and E is totally
transcendental over K , when every element of E\K is trancendental over K .

Proposition 8.1. For every field K , K ((Xi )i∈I ) is totally transcendental
over K .

Proof. First we show that K (X) is totally transcendental over K . For clarity’s
sake we prove the equivalent result that K (χ) ∼= K (X) is totally transcendental
over K when χ is transcendental over K . Let α ∈ K (χ) , so that α = f (χ)/g(χ)
for some f, g ∈ K [X ] , g =/ 0. If α /∈ K , then α g(X) /∈ K [X ] , α g(X) =/ f (X) ,
and α g(X) − f (X) =/ 0 in K (α)[X ] . But α g(χ) − f (χ) = 0, so χ is algebraic
over K (α) . Hence K (χ) = K (α)(χ) is finite over K (α) . Therefore [ K (α) : K ]
is infinite: otherwise, [ K (χ) : K ] would be finite. Hence α is transcendental
over K .

That K [X1, ..., Xn] is totally transcendental over K now follows by induction
on n . Let α ∈ K (X1, ..., Xn) be algebraic over K . Then α ∈ K (X1, . . . , Xn−1)
(Xn) is algebraic over K (X1, . . . , Xn−1) . By the case n = 1, α ∈ K (X1, . . . ,
Xn−1) , and the induction hypothesis yields α ∈ K .

Finally, let α = f/g ∈ K ((Xi )i∈I ) be algebraic over K . The polynomials f
and g have only finitely many nonzero terms. Hence α ∈ K ((Xi )i∈J ) for some
finite subset J of I . Therefore α ∈ K . �

A field extension is purely transcendental when it is K-isomorphic to some
K ((Xi )i∈I ) . By 8.1, purely transcendental extensions are totally transcendental.

Proposition 8.2. Every field extension is a totally transcendental extension of
an algebraic extension.

Proof. In any field extension K ⊆ E , the set A = {α ∈ E
∣
∣ α is algebraic over

K } is a subfield of E by 3.6, and contains K . Hence A is an algebraic extension
of K . If now α ∈ E is algebraic over A , then A(α) is algebraic over A by 3.3,
A(α) is algebraic over K by 3.5, α is algebraic over K, and α ∈ A ; thus E is a
totally transcendental extension of A . �

For example, R is a totally transcendental extension of its field of algebraic
numbers. We now show that every field extension is also an algebraic extension
of a totally transcendental extension.

Algebraic independence. Elements are algebraically independent when they
do not satisfy polynomial relations:
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Definitions. A family (αi )i∈I of elements of a field extension K ⊆ E is
algebraically independent over K when f

(

(αi )i∈I
)

=/ 0 for every nonzero poly-
nomial f ∈ K [(Xi )i∈I ] . A subset S of a field extension K ⊆ E is algebraically
independent over K when it is algebraically independent over K as a family
(s)s∈S .

For instance, {α} is algebraically independent over K if and only if α is tran-
scendental over K ; in K ((Xi )i∈I ) , (Xi )i∈I is algebraically independent over
K . In general, an algebraically dependent family (αi )i∈I satisfies a nontrivial
polynomial relation f

(

(αi )i∈I
)

= 0 (where f ∈ K [(Xi )i∈I ] , f =/ 0).

By III.6.6 there is an evaluation homomorphism ϕ : K [(Xi )i∈I ] −→ E ,
f �−→ f

(

(αi )i∈I
)

. Then Im ϕ = K [(αi )i∈I ] , by 1.13. We see that (αi )i∈I is
algebraically independent over K if and only if ϕ is injective. Then K [(αi )i∈I ]
∼= K [(Xi )i∈I ] , whence K

(

(αi )i∈I
)

∼= K ((Xi )i∈I ) ; in particular, K
(

(αi )i∈I
)

is totally transcendental over K , by 8.1.

The next lemmas show how algebraically independent subsets can be con-
structed by successive adjunction of elements. Their proofs make fine exercises.

Lemma 8.3. If S is algebraically independent over K and β is transcendental
over K (S) , then S ∪ {β} is algebraically independent over K.

Lemma 8.4. S is algebraically independent over K if and only if β is tran-
scendental over K (S\{β}) for every β ∈ S.

Transcendence bases. Algebraic independence resembles linear independence
and yields bases in much the same way.

Lemma 8.5. For a subset S of a field extension K ⊆ E the following conditions
are equivalent:

(1) S is a maximal algebraically independent subset;

(2) S is algebraically independent over K and E is algebraic over K (S) ;

(3) S is minimal such that E is algebraic over K (S) .

Proof. (1) and (2) are equivalent: by 8.3, if no S ∪ {β} with β /∈ S is alge-
braically independent, then every β ∈ E\S is algebraic over K (S) ; conversely, if
every β ∈ E is algebraic over K (S) , then no S ∪ {β} with β /∈ S is algebraically
independent.

(2) implies (3). Let S be algebraically independent over K and let E be algeb-
raic over K (S) . If T ⊆ S and E is algebraic over K (T ) , then T is algebraically
independent over K , T is a maximal algebraically independent subset since (2)
implies (1), and T = S .

(3) implies (2). Assume that E is algebraic over K (S) and that S is not
algebraically independent over K . By 8.4, 3.3, 3.5, some β ∈ S is algebraic
over K (S\{β}) ; then K (S) is algebraic over K (S\{β}) and E is algebraic over
K (S\{β}) . Hence S is not minimal such that E is algebraic over K (S) . �
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Definition. A transcendence base of a field extension K ⊆ E is a subset of E
that satisfies the equivalent conditions in Lemma 8.5. �

For example, (Xi )i∈I is a transcendence base of K ((Xi )i∈I ) .

Theorem 8.6. Every field extension K ⊆ E has a transcendence base; in fact,
when S ⊆ T ⊆ E, S is algebraically independent over K, and E is algebraic
over K (T ) , then E has a transcendence base S ⊆ B ⊆ T over K.

Proof. Readers will verify that the union of a chain of algebraically independent
subsets is algebraically independent. The existence of a maximal algebraically
independent subset then follows from Zorn’s lemma.

More generally, let S ⊆ T ⊆ E , where S is algebraically independent over K
and E is algebraic over K (T ) . Let A be the set of all algebraically independent
subsets A such that S ⊆ A ⊆ T . Then A =/ Ø, and, by the above, every nonempty
chain in A has an upper bound in A . By Zorn’s lemma, A has a maximal element
B . If β ∈ T \B , then β is algebraic over K (B) : otherwise, B ∪ {β} is alge-
braically independent by 8.3 and B is not maximal in A . By 3.3, 3.5, K (T ) is
algebraic over K (B) and E is algebraic over K (B) . Hence B is a transcendence
base of E . �

If B is a transcendence base of a field extension K ⊆ E , then E is algebraic
over K (B) , and K (B) is totally transcendental over K; thus, every field extension
is an algebraic extension of a totally transcendental extension.

Theorem 8.7. In a field extension, all transcendence bases have the same
number of elements.

Theorem 8.7 is similar to the statement that all bases of a vector space have the
same number of elements, and is proved in much the same way. First we establish
an exchange property.

Lemma 8.8. Let B and C be transcendence bases of a field extension E of K .
For every β ∈ B there exists γ ∈ C such that (B\{β})∪ {γ } is a transcendence
base of E over K , and either γ = β or γ /∈ B .

Proof. If β ∈ C , then γ = β serves. Now let β /∈ C . If every γ ∈ C is alge-
braic over K (B\{β}) , then, by 3.3, 3.5, K (C) is algebraic over K (B\{β}) , and
E , which is algebraic over K (C) , is algebraic over K (B\{β}) , contradicting 8.4.
Therefore some γ ∈ C is transcendental over K (B\{β}) . Then γ /∈ B\{β} ;
in fact, γ /∈ B since γ =/ β . By 8.3, B′ = (B\{β}) ∪ {γ } is algebraically
independent over K .

Since B is a maximal algebraically independent subset, B′ ∪ {β} = B ∪ {γ }
is not algebraically independent over K, and β is algebraic over K (B′) by 8.3.
By 3.3, 3.5, K (B) is algebraic over K (B′) , and E, which is algebraic over K (B) ,
is algebraic over K (B′) . �

We now prove 8.7. Let B and C be transcendence bases of K ⊆ E.
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Assume that C is finite, with n = |C | elements. If B = {β1, . . . , βn, βn+1,
. . . } has more than n elements, then repeated applications of 8.8 yield transcen-
dence bases { γ1, β2, . . ., βn, βn+1, . . . } , { γ1, γ2, β3, . . . , βn, βn+1, . . . } , . . . ,
{ γ1, . . . , γn, βn+1, . . . } . But C is a maximal algebraically independent subset.
Hence B has at most n elements. Exchanging B and C then yields |B| = |C | .

Now assume that C is infinite. Then B is infinite. In this case we use
a cardinality argument. Every β ∈ B is algebraic over K (C) . Hence β is
algebraic over K (Cβ) for some finite subset Cβ of C : indeed, f (β) = 0 for
some polynomial f ∈ K (C)[X ] , and Cβ need only include all the elements of C
that appear in the coefficients of f. Then every β ∈ B is algebraic over K (C ′) ,
where C ′ =

⋃

β∈B Cβ ⊆ C. By 3.3, 3.5, K (B) is algebraic over K (C ′) , and E
is algebraic over K (C ′) . Since C is minimal with this property, it follows that
C = C ′ =

⋃

β∈B Cβ . Thus C is the union of |B| finite sets and |C | � |B| ℵ0 =
|B| , by A.5.9. Exchanging B and C yields |B| = |C | . �

Definition. The transcendence degree tr.d. (E : K ) of an extension K ⊆ E is
the number of elements of its transcendence bases. �

For instance, E is algebraic over K if and only if tr.d. (E : K ) = 0. The
example of K ((Xi )i∈I ) shows that tr.d. (E : K ) can be any cardinal number.

Exercises

1. Show that the union of a chain of algebraically independent subsets is algebraically
independent.

2. Prove the following: if S is algebraically independent over K and β is transcendental
over K (S) , then S ∪ {β} is algebraically independent over K.

3. Prove that S is algebraically independent over K if and only if β is transcendental over
K (S\{β}) for every β ∈ S.

4. Let K ⊆ E ⊆ F be field extensions. Show that
tr.d. (F : K ) = tr.d. (F : E) + tr.d. (E : K ).

9. Separability

The definition of separability in Section 5 works for algebraic extensions only. This
section brings a definition that is suitable for all extensions, devised by MacLane
[1939]. We begin with a new relationship between field extensions, called linear
disjointness, used in MacLane’s definition.

Linearly disjoint extensions. Readers will prove our first result.
Proposition 9.1. Let K ⊆ E ⊆ L and K ⊆ F ⊆ L be fields. The following

conditions are equivalent:

(1) (αi )i∈I ∈ E linearly independent over K implies (αi )i∈I linearly indep-
endent over F;
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(2) (βj ) j∈J ∈ F linearly independent over K implies (βj ) j∈J linearly indep-
endent over E;

(3) (αi )i∈I ∈ E and (βj ) j∈J ∈ F linearly independent over K implies
(αi βj )(i, j)∈I×J ∈ L linearly independent over K.

Definition. Two field extensions K ⊆ E ⊆ L , K ⊆ F ⊆ L are linearly
disjoint over K when they satisfy the equivalent conditions in Proposition 9.1.

Linear disjointness can be established in several other ways.
Proposition 9.2. Let K ⊆ E ⊆ L and K ⊆ F ⊆ L be fields. Let E be the

quotient field of a ring K ⊆ R ⊆ E (for instance, let R = E ). If

(1) α1, . . . , αn ∈ R linearly independent over K implies α1, . . . , αn linearly
independent over F , or if

(2) there is a basis of R over K that is linearly independent over F ,

then E and F are linearly disjoint over K .
Proof. Assume (1) and let (αi )i∈I ∈ E be linearly independent over K. Then

(αj ) j∈J is linearly independent over K for every finite subset J of I. If J is
finite, then there exists r ∈ R , r =/ 0, such that rαj ∈ R for all j ∈ J. Since
R ⊆ E has no zero divisors, (rαj ) j∈J is linearly independent over K . By (1),
(rαj ) j∈J is linearly independent over F. Hence (αj ) j∈J is linearly independent
over F , for every finite subset J of I, and (αi )i∈I is linearly independent over F.
Thus E and F are linearly disjoint over K.

Now assume that there is a basis B of R over K that is linearly independent
over F. Let (αi )i∈I ∈ R be a finite family that is linearly independent over K.
All αi lie in the subspace V of R generated by a finite subfamily (βj ) j∈J of
B. Hence (αi )i∈I is contained in a finite basis (αh)h∈H of V. We show that
(αh)h∈H is linearly independent over F : since (αh)h∈H and (βj ) j∈J are bases
of V there is an invertible matrix C = (chj )h∈H, j∈J with entries in K such
that αh =

∑

i∈I ch j βj for all h ; if now
∑

h xh αh = 0 for some xh ∈ F , then
∑

h, j xh chj βj = 0,
∑

h xh chj = 0 for all j since (βj ) j∈J is linearly indepen-
dent over F, and xh = 0 for all h since C is invertible. In particular, (αi )i∈I is
linearly independent over F. Thus (1) holds. Hence E and F are linearly disjoint
over K. �

Corollary 9.3. If K ⊆ E ⊆ L and α1, . . ., αn ∈ L are algebraically indep-
endent over E , then E and K (α1, . . . , αn) are linearly disjoint overK.

Proof. K (α1, . . ., αn) ∼= K (X1, ..., Xn) is the quotient field of K [α1, . . .,
αn] ∼= K [X1, ..., Xn] , and the monomials α

m1
1 α

m2
2 · · · αmn

n constitute a basis of
K [α1, . . . , αn] over K. The monomials α

m1
1 α

m2
2 · · · αmn

n are linearly indepen-
dent over E , since α1, . . ., αn are algebraically independent over E. By part (2)
of 9.2, K (α1, . . ., αn) and E are linearly disjoint over K. �

Proposition 9.4. Let K ⊆ E ⊆ L and K ⊆ F ⊆ F ′ ⊆ L be fields. If E
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and F are linearly disjoint over K, and E F and F ′ are linearly disjoint over F ,
then E and F ′ are linearly disjoint over K.

Proof. Take bases (αi )i∈I of E over K, (βj ) j∈J of F over K, and (γh)h∈H
of F ′ over F. Then (βj γh) j∈J, h∈H is a basis of F ′ over K . If E and F are
linearly disjoint over K , then (αi )i∈I is linearly independent over F . If also E F
and F ′ are linearly disjoint over F , then (αi γh)i∈I, h∈H is linearly independent
over F . Therefore (αi βj γh)i∈I, j∈J, h∈H is linearly independent over K : if
∑

i, j,h ai jh αi βj γh = 0, where ai jh ∈ K , then
∑

i,h
(∑

j ai jhβj
)

αi γh = 0,
∑

j ai jhβj = 0 for all i, h , and ai jh = 0 for all i, j, h . Hence (αi )i∈I is linearly
independent over F ′ . �

Finally, we note two cases of linear disjointness. Let K have characteristic
p =/ 0. Let K

1/p∞ = {α ∈ K
∣
∣ α pr ∈ K for some r � 0 } . Up to K-

isomorphism, K
1/p∞ is the largest purely inseparable extension of K , by 6.2, 6.4.

Proposition 9.5. If K has characteristic p =/ 0 and E is purely transcendental
over K , then E and K

1/p∞
are linearly disjoint over K .

Proof. Let E = K ((χi )i∈I ) ∼= K ((Xi )i∈I ) , where (χi )i∈I are algebraical-

ly independent over K. Both E and K
1/p∞ are contained in K ((χi )i∈I ) ∼=

K ((Xi )i∈I ) , and E is the field of quotients of R = K [(χi )i∈I ] ∼= K [(Xi )i∈I ] .
The monomials m =

∏

i∈I χ
mi
i constitute a basis of R over K. Suppose that

α1m1 + · · · + αkmk = 0 for some α1, . . . , αk ∈ K
1/p∞ and some distinct

monomials m1, . . . , mk . Then α
pr

1 , . . . , α
pr

k ∈ K for some r � 0. Since x �−→
x pr

is an injective homomorphism, m pr

1 , . . . , m pr

k are distinct monomials and

α
pr

1 m pr

1 + · · · + α
pr

k m pr

k = 0; hence α
pr

1 = · · · = α
pr

k = 0 and α1 = · · · = αk = 0.

Thus the monomials m =
∏

i∈I χ
mi
i are linearly independent over K

1/p∞; by

9.2, E and K
1/p∞ are linearly disjoint over K. �

Proposition 9.6. If K has characteristic p =/ 0 and E is algebraic over K ,
then E is separable over K if and only if E and K

1/p∞
are linearly disjoint

over K.

Proof. First we prove this when E is a simple extension.

Let α ∈ K be separable over K. Then q = Irr (α : K (α p)) divides X p − α p =
(X − α)p in K [X ] , since (X p − α p)(α) = 0, and q = (X − α)k for some k � p .
But q is separable, so k = 1 and α ∈ K (α p) . Thus K (α) = K (α p) . Hence
K (α) = K (α p) = K (α p2

) = · · · = K (α pr
) for all r � 0.

Now, K (α) has a basis 1, α, . . ., αn−1 over K . Since K (α pr
) = K (α)

has the same degree, 1, α pr
, . . ., α(n−1) pr

is a basis of K (α pr
) over K. Hence
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1, α, . . ., αn−1 are linearly independent over K
1/p∞ : if γ0, . . ., γn−1 ∈

K
1/p∞ and γ0 + γ1 α + · · · + γn−1 αn−1 = 0, then γ

pr

0 , . . ., γ
pr

n−1 ∈ K for

some r � 0, γ
pr

0 + γ
pr

1 α pr
+ · · · + γ

pr

n−1 α(n−1) pr
=
(

γ0 + γ1 α + · · · +

γn−1 αn−1)pr
= 0, γ

pr

0 = γ
pr

1 = · · · = γ
pr

n−1 = 0, and γ0 = γ1 = · · · = γn−1 = 0.

Therefore K (α) and K
1/p∞ are linearly disjoint over K, by part (2) of 9.2.

Conversely, assume that K (α) and K
1/p∞ are linearly disjoint over K (where

α ∈ K ). Let α ∈ E and Irr (α : K ) = q(X) = a0 + a1 X + · · · + an Xn, with

an =/ 0. Then 1, α, . . ., αn−1 are linearly independent over K, and over K
1/p∞ .

As above, ai = γ
p

i for some γi ∈ K
1/p∞ . If q ′ = 0, then ai = 0 whenever i is

not a multiple of p ; q(X) = a0 + ap X p + · · · + akp Xkp ;

(

γ0 + γpα + · · · + γkpαk)p = γ
p

0 + γ p
p α p + · · · + γ

p
kpαkp

= a0 + apα p + · · · + akpαkp = q(α) = 0;

γ0 + γpα + · · · + γkpαk = 0; γ0 = γp = · · · = γkp = 0, since 1, α, . . ., αn−1 are

linearly independent over K
1/p∞; and q(X) = 0. Therefore q ′ =/ 0. Hence the

irreducible polynomial q is separable, and α ∈ E is separable over K.

Now let E be algebraic over K . We may assume that E ⊆ K. If E and
K

1/p∞ are linearly disjoint over K, then every α ∈ E is separable over K,
since K (α) ⊆ E and K

1/p∞ are linearly disjoint over K . Conversely, if E
is separable over K and α1, . . . , αn ∈ E are linearly independent over K, then

K ( α1, . . . , αn) = K (α) for some α ∈ E by 5.12, K (α) and K
1/p∞ are linearly

disjoint over K , and α1, . . . , αn are linearly independent over K
1/p∞ ; hence E

and K
1/p∞ are linearly disjoint over K , by part (1) of 9.2. �

Separability. We now turn to the general definition of separable extensions.

Definition. A transcendence base B of a field extension K ⊆ E is separating
when E is separable (algebraic) over K (B) .

Separable algebraic extensions, and purely transcendental extensions, ought to
be separable. Hence an extension with a separating transcendence base, which is
an algebraic separable extension of a purely transcendental extension, also ought to
be separable. Since directed unions of separable extensions ought to be separable,
an extension in which every finitely generated intermediate field has a separating
transcendence base ought to be separable as well. On the other hand, 9.5 and
9.6 suggest that separability over K could be defined by linear disjointness from
K

1/p∞, when K has characteristic p =/ 0. MacLane’s theorem states that this
yields the same class of extensions.
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Theorem 9.7 (MacLane [1939]). Let K be a field of characteristic p =/ 0 . For
a field extension K ⊆ E the following conditions are equivalent:

(1) every finitely generated intermediate field F = K (α1, . . ., αn) ⊆ E has a
separating transcendence base;

(2) E and K
1/p∞

are linearly disjoint over K ;

(3) E and K 1/p = {α ∈ K
∣
∣ α p ∈ K } are linearly disjoint over K .

Moreover, in (1), there is a separating transcendence base B ⊆ {α1, . . ., αn } .

In 9.7, the inclusion homomorphism K −→ E extends to a field homomor-
phism K −→ E ; hence we may assume that K ⊆ E , so that E, K

1/p∞ ⊆ E .

Proof. (1) implies (2). By (1) of 9.2 we need only show that every finitely
generated subfield K ⊆ F ⊆ E is linearly disjoint from K

1/p∞ over K . By (1),
F has a separating transcendence base B . By 1.11, K

1/p∞
K (B)⊆ K (B)1/p∞ .

Now, K (B) ⊆ F and K
1/p∞ are linearly disjoint over K , by 9.5; F and

K
1/p∞

K (B) ⊆ K (B)1/p∞ are linearly disjoint over K (B) , by 9.6; hence F

and K
1/p∞ are linearly disjoint over K , by 9.4.

(2) implies (3) since K 1/p ⊆ K
1/p∞ .

(3) implies (1). We prove by induction on n that every finitely generated
subfield F = K (α1, . . ., αn) ⊆ E has a separating transcendence base B ⊆
{α1, . . . , αn } . There is nothing to prove if n = 0. Assume that n > 0.
By 8.6, α1, . . . , αn contains a transcendence base, which we may assume is
{α1, . . . , αr } , where r = tr.d. (F : K ) � n . If r = n , then {α1, . . ., αn } is a
separating transcendence base of F . Hence we may further assume that r < n .

Since α1, . . . , αr+1 are algebraically dependent over K , there is a nonzero
polynomial f ∈ K [X1, ..., Xr+1] such that f (α1, . . ., αr+1) = 0. Choose f so
that its degree is as small as possible and, with this degree, its number of terms
is as small as possible. Then f is irreducible. Let f = c1 m1 + · · · + ck mk ,
where c1, . . ., ck ∈ K and m1, . . ., mk ∈ K [X1, ..., Xn] are monomials. Then
c1, . . ., ck =/ 0, by the choice of f .

Suppose that every exponent that appears in f , and in m1, . . ., mk , is a
multiple of p . Then f (X1, . . . , Xr+1) = g(X p

1 , . . ., X p
r+1) for some g ∈

K [X1, ..., Xr+1] ; similarly, mi (X1, . . ., Xr+1) = �i (X p
1 , . . ., X p

r+1) for some
monomial �i ∈ K [X1, ..., Xr+1] ; and every ci has a pth root γi ∈ K . Hence

f (X1, . . ., Xr+1) =
∑

i γ
p

i �i (X p
1 , . . ., X p

r+1)

=
(∑

i γi �i (X1, . . . , Xr+1)
)p

,

with γi ∈ K 1/p , and
∑

i γi �i (α1, . . ., αr+1) = 0, so that �1(α1, . . . , αr+1) ,
. . . , �k(α1, . . . , αr+1) are linearly dependent over K 1/p . However, �1(α1, . . .,
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αr+1) , . . . , �k(α1, . . . , αr+1) are linearly independent over K : otherwise, one
of the �i (X p

1 , . . ., X p
r+1) could be replaced in f by a linear combination of the

others, yielding a polynomial g ∈ K [X1, ..., Xr+1] such that g(α1, . . . , αr+1) =
0, with lower degree than f or with the same degree but fewer terms. Our
supposition thus contradicts either (3) or the choice of f . Therefore one of
X1, . . ., Xr+1 appears in f with an exponent that is not a multiple of p .

Suppose that, say, X1 appears in f with an exponent that is not a multiple of
p . Let g(X) = f (X, α2, . . ., αr+1) ∈ K (α2, . . . , αr+1)[X ] . Then g(α1) = 0,
and F is algebraic over K (α2, . . ., αr+1) . By 8.6, 8.7, {α2, . . . , αr+1 } is a
transcendence base of F ; hence g ∈ K (α2, . . . , αr+1)[X ] ∼= K [X1, ..., Xr+1] is
irreducible, since f ∈ K [X1, ..., Xr+1] is irreducible. Moreover, g′ =/ 0, since X
appears in g with an exponent that is not a multiple of p ; therefore g , which is
irreducible, is separable. The equality g(α1) = 0 then shows that α1 is algebraic
and separable over K (α2, . . ., αr+1) . Hence F = K (α1, . . ., αn) is algebraic and
separable over K (α2, . . ., αn) . By the induction hypothesis, K (α2, . . . , αn) has
a separating transcendence base B ⊆ {α2, . . . , αn } , and then B is a separating
transcendence base of F .

The other case, in which Xr+1 appears in f with an exponent that is not
a multiple of p , is similar but simpler. Then {α1, . . . , αr } is already a tran-
scendence base of F . Then g(αr+1) = 0, where g(X) = f (α1, . . ., αr , X) .
As above, g is irreducible and separable. Hence F = K (α1, . . ., αn) is al-
gebraic and separable over K (α1, . . ., αr , αr+2, . . ., αn) . By the induction
hypothesis, the latter has a separating transcendence base B ⊆ {α1, . . ., αr , αr+2
. . ., αn } , and B is a separating transcendence base of F . �

Definition. A field extension E of K is separable, and E is separable over K ,
when every finitely generated subfield K ⊆ F of E has a separating transcen-
dence base.

By 9.7, E is separable over K if and only if either K has characteristic 0, or
K has characteristic p =/ 0 and E is linearly disjoint from K

1/p∞ .

The class of separable extensions has several desirable properties. Separable
algebraic extensions are separable in the previous sense, by 9.5. If E is purely
transcendental over K , then E is separable over K, by 9.6. If E is separable over
K, then every intermediate field K ⊆ F ⊆ E is separable over K.

Proposition 9.8 (Tower Property). If F is separable over K, and E is separable
over F , then E is separable over K .

The proof is an easy exercise, using 9.4. One might hope for one more tower
property: if E is separable over K and K ⊆ F ⊆ E , then E is separable over F .
Alas, this is false in general; readers will find a counterexample.

Exercises
1. Let K ⊆ E ⊆ L , K ⊆ F ⊆ L be fields. Prove the following: if E is algebraic over

K , and F is purely transcendental over K , then E and F are linearly disjoint over K .
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2. Prove the following: if K is perfect, then every field extension of K is separable.

3. Prove the following: if F is separable over K, and E is separable over F, then E is
separable over K.

4. Show that a directed union of separable extensions of K is a separable extension of K.

5. Let K ⊆ E ⊆ L , K ⊆ F ⊆ L be fields. Prove the following: if E are F are linearly
disjoint over K, and α1, . . . , αn ∈ E are algebraically independent over K , then α1, . . . , αn
are algebraically independent over F.

6. Let K ⊆ E ⊆ L , K ⊆ F ⊆ L be fields. Prove the following: if E is separable over
K, and α1, . . . , αn ∈ E algebraically independent over K implies α1, . . . , αn algebraically
independent over F, then E F is separable over K.

7. Find a separable extension K ⊆ E with an intermediate field K ⊆ F ⊆ E such that
E is not separable over F.

8. Find a separable extension K ⊆ E that does not have a separating transcendence base.
(You may want to try K (X, X1/p, . . . , X1/pr

, . . .) , where K has characteristic p =/ 0 and
X is transcendental over K.)



V
Galois Theory

Algebra began when quadratic equations were solved by al-Khowarizmi. Its next
step was the solution of third and fourth degree equations, published by Cardano
in [1545]. Equations of degree 5, however, resisted all efforts at similar solutions,
until Abel [1824] and Galois [1830] proved that no such solution exists. Abel’s
solution did not hold the germs of future progress, but Galois’s ideas initiated
the theory that now bears his name, even though Galois himself lacked a clear
definition of fields. The modern version has remained virtually unchanged since
Artin’s lectures in the 1920s.

Galois theory provides a one-to-one correspondence between intermediate
fields K ⊆ F ⊆ E of suitable extensions and subgroups of their groups of
K-automorphisms. This allows group theory to apply to fields. For instance, a
polynomial equation is solvable by radicals if and only if the corresponding group
is solvable (as defined in Section II.9).

Sections II.7, II.9, and IV.1 through IV.5 are a necessary foundation. Sections
4 and 9 may be skipped.

1. Splitting Fields

The splitting field of a set of polynomials is the field generated by their roots in
some algebraic closure. This section contains basic properties of splitting fields,
and the determination of all finite fields.

Splitting fields. We saw in Section IV.2 that every polynomial with coefficients
in a field K has a root in some field extension of K . A polynomial splits in an
extension when it has all its roots in that extension:

Definition. A polynomial f ∈ K [X ] splits in a field extension E of K when it
has a factorization f (X) = a (X − α1)(X − α2) · · · (X − αn) in E[X ] .

In the above, a ∈ K is the leading coefficient of f , n is the degree of f , and
α1, . . . , αn ∈ E are the (not necessarily distinct) roots of f in E . For example,
every polynomial f ∈ K [X ] splits in the algebraic closure K of K .

Definition. Let K be a field. A splitting field over K of a polynomial
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f ∈ K [X ] is a field extension E of K such that f splits in E and E is gene-
rated over K by the roots of f . A splitting field over K of a set S ⊆ K [X ] of
polynomials is a field extension E of K such that every f ∈ S splits in E and E
is generated over K by the roots of all f ∈ S .

In particular, splitting fields are algebraic extensions, by 3.3. Every set S ⊆
K [X ] of polynomials has a splitting field, which is generated over K by the roots
of all f ∈ S in K , and which we show is unique up to K-isomorphism.

Lemma 1.1. If E and F are splitting fields of S ⊆ K [X ] over K , and F ⊆ K ,
then ϕE = F for every K-homomorphism ϕ : E −→ K .

Proof. Every f ∈ S has unique factorizations f (X) = a (X − α1)(X −
α2) · · · (X − αn) in E[X ] and f (X) = a (X − β1)(X − β2) · · · (X − βn) in
F[X ] ⊆ K [X ] . Since ϕ is the identity on K , f = ϕf = a (X − ϕα1)(X −
ϕα2) · · · (X − ϕαn) in K [X ] ; therefore ϕ {α1, . . ., αn } = {β1, . . . , βn } . Thus
ϕ sends the set R of all roots of all f ∈ S in E onto the set S of all roots of all
f ∈ S in F . By IV.1.9, ϕ sends E = K (R) onto K (S) = F . �

With S = { f } , the proof of Lemma 1.1 shows that every K-homomorphism
F −→ K permutes the roots of f . This phenomenon is explored in later sections.
By IV.4.2, every splitting field has a K-homomorphism into K ; hence Lemma 1.1
yields a uniqueness result:

Proposition 1.2. Every set S ⊆ K [X ] of polynomials has a splitting field
E ⊆ K over K ; moreover, all splitting fields of S over K are K-isomorphic.

Accordingly, we speak of the splitting field of S over K .

Finite fields. A finite field F has prime characteristic p =/ 0 and is a finite
extension of Zp ; hence F has order |F | = pn for some n = [ F : Zp ] > 0.

Theorem 1.3. For every prime p and every n > 0 there is, up to isomorphism,

exactly one field F of order pn ; F is a splitting field of X
pn

− X over Zp , and

all its elements are roots of X
pn

− X .

Proof. Let F be a field of order pn . By IV.1.6, the multiplicative group
F∗ = F\{0} is cyclic; since |F∗| = pn − 1 we have x pn−1 = 1 for all x ∈ F∗

and x pn
= x for all x ∈ F . Thus the elements of F are roots of f (X) = X

pn
− X ;

since f has at most pn roots, F consists of all the roots of f . Hence F is a
splitting field of f over Zp , and is unique up to isomorphism.

Conversely, let F be a splitting field of f (X) = X
pn

− X over Zp . Then F
has characteristic p . The roots of f in F constitute a subfield of F : 0 and 1 are
roots of f , and when α, β are roots of f , then so are α − β and α β−1 , since
(α − β)pn

= α pn − β pn
= α − β by III.4.4 and (α β−1)pn

= α pn
β−pn

= α β−1 .
Since F is generated by roots of f it follows that F consists of roots of
f . Now, all roots of f are simple by III.5.12, since f ′(X) = −1; therefore
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f has pn roots in F , and F has pn elements. �
The field of order q = pn is the Galois field GF(q) , after Galois [1830], who

showed that “imaginary roots modulo p ” of the equation X
pn

− X = 0 can be
added and multiplied. Properties of Galois fields make entertaining exercises.

Exercises
1. What is the splitting field of X3 − 2 over Q?

2. What is the splitting field of X4 + 5X2 + 6 over Q?

3. Set up addition and multiplication tables for GF(4) .

4. Set up addition and multiplication tables for GF(8) .

5. Let K be a field of characteristic p =/ 0 . Show that K contains a subfield of order pn

if and only if X
pn

− X splits in K , and then K contains only one subfield of order pn .

6. Show that a field of order pn contains a subfield of order pm if and only if m divides n .

7. Let L and M be subfields of a field K of orders p� and pm , respectively. Show that
L ∩ M has order pd , where d = gcd (�, m) .

2. Normal Extensions

A normal extension is the splitting field of a set of polynomials. This section
contains basic properties, with applications to perfect fields.

Definition. By IV.4.4, IV.4.5, every algebraic extension of K is contained in
an algebraic closure K of K , which is unique up to K-isomorphism. Normal
extensions are defined by the following equivalent properties.

Proposition 2.1. For an algebraic extension K ⊆ E ⊆ K the following
conditions are equivalent:

(1) E is the splitting field over K of a set of polynomials;

(2) ϕE = E for every K-homomorphism ϕ : E −→ K ;

(3) ϕE ⊆ E for every K-homomorphism ϕ : E −→ K ;

(4) σ E = E for every K-automorphism σ of K ;

(5) σ E ⊆ E for every K-automorphism σ of K ;

(6) every irreducible polynomial q ∈ K [X ] with a root in E splits in E .

Proof. (1) implies (2) by 1.1; (2) implies (3) and (4) implies (5); (2) implies
(4), and (3) implies (5), since every K-automorphism of K induces a K-homo-
morphism of E into K .

(5) implies (6). Let q ∈ K [X ] be irreducible, with a root α in E . We
may assume that q is monic; then q = Irr (α : K ) . For every root β of q in K ,
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IV.2.4 yields a K-homomorphism ϕ of K (α) ⊆ E into K that sends α to β . By
IV.4.5, ϕ extends to a K-automorphism σ of K . Then β = σα ∈ E by (5). Thus
E contains every root of q in K ; hence q splits in E .

(6) implies (1). E is a splitting field of S = { Irr (α : K ) ∈ K [X ]
∣
∣ α ∈ E } :

every q = Irr (α : K ) ∈ S has a root α in E and splits in E , by (6); moreover, E
consists of all the roots of all q ∈ S . �

Definition. A normal extension of a field K is an algebraic extension of K that
satisfies the equivalent conditions in Proposition 2.1 for some algebraic closure
of K .

Conjugates. Normal extensions can also be defined as follows.

Definitions. Let K be a field. A conjugate of α ∈ K over K is the image of
α under a K-automorphism of K . A conjugate of an algebraic extension E ⊆ K
of K is the image of E under a K-automorphism of K .

For example, an R-automorphism σ of C must satisfy (σ i)2 +1 = σ (i2 + 1) =
0; therefore, either σ i = i and σ is the identity on C , or σ i = −i and σ is
ordinary complex conjugation. Hence a complex number z has two conjugates
over R , itself and its ordinary conjugate z .

Proposition 2.2. Over a field K , the conjugates of α ∈ K are the roots of
Irr (α : K ) in K .

Proof. If σ is a K-automorphism of K , then σα is a root of q = Irr (α : K ) ,
since q(σα) = σq(σα) = σ q(α) = 0. Conversely, if β is a root of q in K , then
there is by IV.2.4 a K-homomorphism ϕ of K (α) ⊆ E into K that sends α to
β , which IV.4.7 extends to a K-automorphism σ of K . �

Proposition 2.3. For an algebraic extension K ⊆ E ⊆ K the following
conditions are equivalent:

(1) E is a normal extension of K ;

(2) E contains all conjugates over K of all elements of E ;

(3) E has only one conjugate.

Proof. (3) is part (4) of Proposition 2.1, and (2) is, by 2.2, equivalent to part (6)
of 2.1. �

Properties. The class of normal extensions has some basic properties, for
which readers will easily cook up proofs.

Proposition 2.4. If F is normal over K and K ⊆ E ⊆ F , then F is normal
over E .

Proposition 2.5. If E is normal over K and the composite E F exists, then
E F is normal over K F .

Proposition 2.6. Every composite of normal extensions of K is a normal
extension of K .
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Proposition 2.7. Every intersection of normal extensions E ⊆ K of K is a
normal extension of K .

One might expect two additional tower statements: if F is normal over K and
K ⊆ E ⊆ F , then E is normal over K ; if K ⊆ E ⊆ F , E is normal over K ,
and F is normal over E , then F is normal over K . Both statements are false;
the next sections will explain why.

By 2.7, there is for every algebraic extension K ⊆ E ⊆ K of K a smallest
normal extension N ⊆ K of K that contains E , namely, the intersection of all
normal extensions N ⊆ K of K that contain E .

Proposition 2.8. The smallest normal extension N ⊆ K of K that contains an
algebraic extension E ⊆ K of K is the composite of all conjugates of E .

Proof. A normal extension of K that contains E contains all conjugates of E
by 2.1 and contains their composite. Conversely, the composite of all conjugates
of E is normal over K , since a K-automorphism of K permutes the conjugates
of E and therefore leaves their composite unchanged. �

Proposition 2.9. Every finite (respectively separable, finite separable) extension
E ⊆ K of a field K is contained in a finite (separable, finite separable) normal
extension of K .

Proof. If E ⊆ K is finite, then, by IV.5.4, there are only finitely many K-
homomorphisms of E into K . Since the restriction to E of a K-automorphism of
K is a K-homomorphism, E has only finitely many conjugates; their composite
F is a finite extension of K by IV.3.5, and is normal over K by 2.8. If in general
E is separable over K, then so are the conjugates σ E ∼= E of E , and so is their
composite, by IV.5.11. �

The remaining results of this section require purely inseparable extensions (see
Section IV.6) and may be skipped at first reading.

Proposition 2.10. If E ⊆ K is a normal extension of K , then

F = {α ∈ E
∣
∣ σα = α for every K-automorphism σ of K }

is a purely inseparable extension of K , and E is a separable extension of F .

Proof. First, F is a subfield of E and K ⊆ F . If α ∈ F , then every K-
homomorphism ϕ of K (α) into K extends to a K-automorphism of K , by IV.4.7;
hence ϕ(α) = α and ϕ is the identity on K (α) . Thus [ K (α) : K ]s = 1. Hence
α ∈ K (α) is purely inseparable over K, and F is purely inseparable over K.

Now let α ∈ E . Let ϕ1, . . . , ϕn be the distinct K-homomorphisms of K (α)
into K ; one of these, say ϕ1 , is the inclusion homomorphism K (α)−→ K . Since
every ϕi extends to a K-automorphism of K , we have ϕi E ⊆ E and ϕiα ∈ E
for all i ; moreover, ϕ1α , . . . , ϕnα are distinct: if ϕiα = ϕjα , then ϕi = ϕj , since
K (α) is generated by α . Let

f (X) = (X − ϕ1α)(X − ϕ2α) · · · (X − ϕnα) ∈ E[X ].
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Then f (α) = 0, since ϕ1α = α , and f is separable, since ϕ1α , . . . , ϕnα are
distinct. If σ is a K-automorphism of K , then σϕ1 , . . . , σϕn are distinct
K-homomorphisms of K (α) into K , { σϕ1 , . . . , σϕn } = {ϕ1 , . . . , ϕn } , σ

permutes ϕ1α , . . . , ϕnα , and σf = f . Therefore all coefficients of f are in F
and f ∈ F[X ] . Since f (α) = 0, Irr (α : F) divides f and is separable; hence α

is separable over F . Thus E is separable over F . �
Perfect fields constitute a really nice class of fields, to which our new knowledge

of normal and purely inseparable extensions can now be applied.

Definition. A field K is perfect when either K has characteristic 0 , or K has
characteristic p =/ 0 and every element of K has a pth root in K . �

Proposition 2.11. Finite fields and algebraically closed fields are perfect.

Proof. Algebraically closed fields are supremely perfect. If K is a finite field,
then the characteristic of K is some prime p =/ 0, π : x �−→ x p is injective by
III.4.4; therefore π is surjective and K is perfect. �

Lemma 2.12. A perfect field has no proper purely inseparable extension.

Proof. By IV.5.5 we may assume that K has characteristic p =/ 0. If K is
perfect, then K contains the pth root of every a ∈ K in K ; by induction, K
contains the pmth root of every a ∈ K in K . Therefore, only the elements of K
are purely inseparable over K. �

Proposition 2.13. Every algebraic extension of a perfect field is separable.

Proof. Let K be perfect and let E ⊆ K be an algebraic extension of K . By
2.8, E is contained in a normal extension N of K , which by 2.10 is a separable
extension of a purely inseparable extension F of K . By 2.12, F = K ; hence
E ⊆ N is separable over K. �

Proposition 2.14. Every algebraic extension of a perfect field is perfect.

The proof is an exercise. (Readers may not groan.)

Exercises
1. Find the conjugates of 3√2 over Q .

2. Find the conjugates of
√

2 +
√

3 over Q .

Prove the following:

3. If F is normal over K and K ⊆ E ⊆ F , then F is normal over E .

4. If E is normal over K and the composite E F exists, then E F is normal over K F .

5. If E and F are normal over K , then E ∩ F is normal over K .

6. Every intersection of normal extensions E ⊆ K of K is a normal extension of K .

7. If E and F are normal over K , then E F (if it exists) is normal over K .

8. Every composite of normal extensions of a field K is a normal extension of K .
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9. A field K is perfect if and only if K
1/p∞

= K .

10. K (X) is not perfect when K has characteristic p =/ 0 .

11. A field K is perfect if and only if every algebraic extension of K is separable.

12. Every algebraic extension of a perfect field is perfect.

3. Galois Extensions

A Galois extension is a normal and separable extension. The main result of this
section is a one-to-one correspondence between the intermediate fields of a Galois
extension and the subgroups of its group of K-automorphisms.

Definition. A Galois extension of a field K is a normal and separable extension
E of K ; then E is Galois over K .

If K has characteristic 0, then every normal extension of K is a Galois exten-
sion of K ; for instance, K is Galois over K . A finite field of characteristic p is
a Galois extension of Zp .

The basic properties of Galois extensions follow from those of normal and
separable extensions:

Proposition 3.1. If F is Galois over K and K ⊆ E ⊆ F , then F is Galois
over E .

Proposition 3.2. If F is Galois over K and E ⊆ F is normal over K , then E
is Galois over K .

Proposition 3.3. If E is Galois over K and the composite E F exists, then E F
is Galois over K F .

Proposition 3.4. Every composite of Galois extensions of K is a Galois exten-
sion of K .

Proposition 3.5. Every intersection of Galois extensions E ⊆ K of K is a
Galois extension of K .

The fundamental theorem. This main result relates two constructions.

Definition. The Galois group Gal (E : K ) of a Galois extension E of a field K ,
also called the Galois group of E over K , is the group of all K-automorphisms
of E .

For example, the Galois group of C = R over R has two elements, the identity
on C and complex conjugation.

Proposition 3.6. If E is Galois over K , then
∣
∣Gal (E : K )

∣
∣ = [ E : K ] .

Proof. If E ⊆ K is normal over K , then every K-homomorphism of E into
K sends E onto E and is (as a set of ordered pairs) a K-automorphism of E .
Hence

∣
∣Gal (E : K )

∣
∣ = [ E : K ]s = [ E : K ] when E is separable over K. �
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Definition. Let E be a field and let G be a group of automorphisms of E . The
fixed field of G is FixE (G) = {α ∈ E

∣
∣ σα = α for all σ ∈ G } .

We see that FixE (G) is a subfield of E . For example, if G = Gal (C : R) ,
then Fix

C
(G) = R . A similar result holds whenever G is finite:

Proposition 3.7 (Artin). If G is a finite group of automorphisms of a field E ,
then E is a finite Galois extension of F = FixE (G) and Gal (E : F) = G .

Proof. Let α ∈ E . Since G is finite, Gα is a finite set, Gα = {α1, . . ., αn } ,
where n � |G| , α1 , . . . , αn ∈ E are distinct, and, say, α1 = α . Let fα(X) =
(X − α1)(X − α2) · · · (X − αn) ∈ E[X ] . Then fα(α) = 0 and fα is separable.
Moreover, every σ ∈ G permutes α1, . . . , αn , so that σfα = fα ; therefore
fα ∈ F[X ] . Hence α is algebraic over F , Irr (α : F) divides fα , and α is
separable over F . Thus E is algebraic and separable over F . (This also follows
from 2.10.) In fact, E is finite over F , with [ E : F ] � |G| by IV.5.13, since
deg Irr (α : F) � deg fα � |G| for every α ∈ E . We see that E is a splitting
field of the polynomials fα ∈ F[X ] ; hence E is normal over F .

By 3.6,
∣
∣Gal (E : F)

∣
∣ = [ E : F ] � |G| . But every σ ∈ G is an F-automor-

phism of E , so that G ⊆ Gal (E : F) . Therefore Gal (E : F) = G . �
Proposition 3.8. If E is a Galois extension of K , then the fixed field of

Gal (E : K ) is K .

Proof. Let G = Gal (E : K ) . Then K ⊆ FixE (G) . Conversely, let α ∈
FixE (G) . By IV.4.5, there is an algebraic closure K ⊇ E . By IV.4.7, every
K-homomorphism ϕ of K (α) into K extends to a K-automorphism σ of K ;
since E is normal over K , ψ has a restriction τ to E , which is a K-automorphism
of E . Hence ϕα = τα = α , and ϕ is the inclusion homomorphism of K (α) into
K . Thus [ K (α) : K ]s = 1. Since K (α) ⊆ E is separable over K, this implies
K (α) = K and α ∈ K . (Alternately, FixE (G) is purely inseparable over K, by
2.10; hence FixE (G) = K .) �

Propositions 3.1, 3.7, and 3.8 yield the fundamental theorem:

Theorem 3.9 (Fundamental Theorem of Galois Theory). Let E be a finite
Galois extension of a field K .

If F is a subfield of E that contains K , then E is a finite Galois extension of
F and F is the fixed field of Gal (E : F) .

If H is a subgroup of Gal (E : K ) , then F = FixE (H) is a subfield of E that
contains K , and Gal (E : F) = H .

This defines a one-to-one correspondence between intermediate fields K ⊆
F ⊆ E and subgroups of Gal (E : K ) .

The hypothesis that E is finite over K cannot be omitted in Theorem 3.9. What
happens when E is infinite over K is considered in the next section.

Properties. We complete Theorem 3.9 with the following properties.
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Proposition 3.10. Let F1 , F2 , F3 be intermediate fields of a finite Galois
extension E of K , with Galois groups H1 , H2 , H3 .

(1) F1 ⊆ F2 if and only if H1 ⊇ H2 ;

(2) F1 = F2 F3 if and only if H1 = H2 ∩ H3 ;

(3) F1 = F2 ∩ F3 if and only if H1 is the subgroup generated by H2 ∪ H3 ;

(4) when E ⊆ K , then F1 and F2 are conjugate if and only if H1 and H2 are
conjugate in Gal (E : K ) .

Proof. We prove (4) and leave (1), (2), (3) as exercises. First, F1 and F2 are
conjugate if and only if τ F2 = F1 for some τ ∈ Gal (E : K ) : indeed, τ can
be extended to a K-automorphism σ of K ; conversely, if σ F2 = F1 for some
K-automorphism σ of K , then σ has a restriction τ to the normal extension E ,
τ is a K-automorphism of E , and τ F2 = F1 .

If now K ⊆ F ⊆ E and σ, τ ∈ Gal (E : K ) , then σ ∈ Gal (E : τ F) if and
only if στα = τα for all α ∈ F ; equivalently, τ−1στ is an F-automorphism, or
σ ∈ τ Gal (E : F) τ−1 . Thus Gal (E : τ F) = τ Gal (E : F) τ−1 . If, conversely,
Gal (E : F3) = τ Gal (E : F) τ−1 for some τ ∈ Gal (E : K ) , then F3 = τ F . �

The next two properties resemble the Isomorphism theorems for groups.

Proposition 3.11. If E is a finite Galois extension of K , then an intermediate
field K ⊆ F ⊆ E is normal over K if and only if Gal (E : F) is normal in
Gal (E : K ) , and then Gal (F : K ) ∼= Gal (E : K ) /Gal (E : F) .

Proof. By part (4) of 3.10, F is normal over K ( F has only one conjugate)
if and only if Gal (E : F) is normal in Gal (E : K ) . Now let F be normal
over K . By 3.2, F is Galois over K . Hence every σ ∈ Gal (E : K ) has a
restriction σ|F to F , which is a K-automorphism of F . Then Φ : σ �−→ σ|F is a
homomorphism of Gal (E : K ) into Gal (F : K ) , which is surjective, since every
K-automorphism of F extends to a K-automorphism of K whose restriction to
the normal extension E is a K-automorphism of E ; and Ker Φ = Gal (E : F) . �

Proposition 3.12. If E is a finite Galois extension of K , F is a field extension
of K , and the composite E F is defined, then E F is a finite Galois exten-
sion of F , E is a finite Galois extension of E ∩ F , and Gal (E F : F) ∼=
Gal (E : E ∩ F) .

Proof. By 3.3, 3.1, E F is a Galois extension of F and E is a Galois extension
of E ∩ F ⊆ E ; E is finite over E ∩ F since E is finite over K ⊆ E ∩ F , and
E F is finite over F by IV.3.8.

Since E is normal over E ∩ F , every F-automorphism σ of E F has a
restriction to E , which is an E ∩ F -automorphism since σ is the identity
on F . This yields a homomorphism Θ : σ �−→ σ|E of Gal (E F : F) into
Gal (E : E ∩ F) . Since E F is generated by E ∪ F , a K-homomorphism



200 Chapter V. Galois Theory

of E F is uniquely determined by its restrictions to E and F ; therefore Θ is
injective.

If α ∈ E , then σ|E α = α for all σ ∈ Gal (E F : F) if and only if σα = α for
all σ ∈ Gal (E F : F) , if and only if α ∈ F , by 3.8. Thus E ∩ F is the fixed
field of Im Θ ⊆ Gal (E : E ∩ F) ; by 3.9, Im Θ = Gal (E : E ∩ F) . �

Exercises
1. Let F1 , F2 be intermediate fields of a finite Galois extension E of K , with Galois

groups H1 , H2 . Show that F1 ⊆ F2 if and only if H1 ⊇ H2 .

2. Let F1 , F2 , F3 be intermediate fields of a finite Galois extension E of K , with Galois
groups H1 , H2 , H3 . Show that F1 = F2 F3 if and only if H1 = H2 ∩ H3 .

3. Let F1 , F2 , F3 be intermediate fields of a finite Galois extension E of K , with Galois
groups H1 , H2 , H3 . Show that F1 = F2 ∩ F3 if and only if H1 is the subgroup generated
by H2 ∪ H3 .

4. A Galois connection between two partially ordered sets X and Y is a pair of order
reversing mappings F : X −→ Y , G : Y −→ X ( x ′ � x ′′ implies Fx ′ � Fx ′′ , y′ � y′′

implies Gy′ � Gy′′ ) such that FGy � y and G Fx � x for all x, y . Show that F and
G induce mutually inverse, order reversing bijections between { x ∈ X

∣
∣ G Fx = x } and

{ y ∈ Y
∣
∣ FGy = y } .

5. Let F be a finite field of order pn . Show that Gal (F : Zp) is cyclic of order pn−1 .

6. Let K be a field of characteristic 0 and let ε ∈ K be a root of unity (εn = 1 for some
n > 0). Show that K (ε) is Galois over K and that Gal (K (ε) : K ) is abelian.

4. Infinite Galois Extensions

This section may be skipped. It contains Krull’s theorem that extends the funda-
mental theorem of Galois theory to infinite Galois extensions.

Galois groups. Krull’s theorem places a topology on Galois groups, whose
construction is based on certain properties of these groups.

Proposition 4.1. Let E be Galois over K and let K ⊆ F ⊆ E . Then
[Gal (E : K ) : Gal (E : F) ] = [ F : K ] . Moreover, Gal (E : F) is normal in
Gal (E : K ) if and only if F is normal over K .

Proof. By 3.1, E is Galois over F . Every K-homomorphism of F into K ⊇ E
is the restriction to F of a K-automorphism of E . Now, σ and τ ∈ Gal (E : K )
have the same restriction to F if and only if σ−1 τ is the identity on F , if
and only if σ−1 τ ∈ Gal (E : F) . Hence there is a one-to-one correspondence
between left cosets of Gal (E : F) and K-homomorphisms of F into K , and
[Gal (E : K ) : Gal (E : F) ] = [ F : K ]s = [ F : K ] . The rest of the statement is
left to readers. �

Proposition 4.2. Let E be a Galois extension of K and let F be the set of all
Galois groups Gal (E : F) ⊆ Gal (E : K ) of finite extensions F ⊆ E of K .
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(1) Every H ∈ F has finite index in Gal (E : K ) .

(2)
⋂

H∈F H = 1 .

(3) F is closed under finite intersections.

(4) Every H ∈ F contains a normal subgroup N ∈ F of Gal (E : K ) .

Proof. (1) follows from 4.1.

(2). Let σ ∈
⋂

H∈F H . If α ∈ E , then K (α) ⊆ E is finite over K ,
Gal (E : K (α)) ∈ F , σ ∈ Gal (E : K (α)) , and σα = α . Hence σ = 1E .

(3). Let H1 = Gal (E : F1) and H2 = Gal (E : F2) , where F1 , F2 ⊆ E are
finite over K . Then F1 F2 is finite over K , by IV.3.8, and Gal (E : F1 F2) =
H1 ∩ H2 , since σ ∈ Gal (E : K ) is the identity on F1 F2 if and only if σ is the
identity on F1 and the identity on F2 . Hence H1 ∩ H2 ∈ F .

(4). Every finite extension F ⊆ E ⊆ K of K is contained in a finite
normal extension N of K , namely the composite of all conjugates of F , and
N ⊆ E since every conjugate of F is contained in [a conjugate of] E . Then
Gal (E : N) �= Gal (E : K ) by 4.1 and Gal (E : N) ⊆ Gal (E : F) . �

By 4.2, the trivial subgroup of a Galois group is the intersection of normal
subgroups of finite index. Hence not every group is a Galois group (see the
exercises). But we shall see in Section 7 that every finite group is a Galois group.

The Krull topology. Let X and Y be sets and let M be a set of mappings of
X into Y . For every f ∈ M and finite subset S of X let

V ( f, S) = { g ∈ M
∣
∣ g(s) = f (s) for all s ∈ S } .

If h ∈ V ( f, S) ∩ V (g, T ) , then V ( f, S) ∩ V (g, T ) = V (h, S ∪ T ) . Hence the
sets V ( f, S) constitute a basis for a topology, the finite topology on M .

Proposition 4.3. Let E be a Galois extension of K . Let

N be the set of all cosets of normal subgroups N ∈ F , let

L be the set of all left cosets of subgroups H ∈ F , and let

R be the set of all right cosets of subgroups H ∈ F .

Then N is a basis for the finite topology on Gal (E : K ) , and so are L and R .

Proof. Let H = Gal (E : F) ∈ F , where F ⊆ E is finite over K . Then
F = K (S) for some finite subset S of E . If σ, τ ∈ Gal (E : K ) , then τ ∈ V (σ, S)
if and only if σα = τα for all α ∈ K (S) , if and only if σ−1 τ ∈ H . Thus
V (σ, S) = σ H . Hence L is a basis of the finite topology on Gal (E : K ) .

If A, B ∈ N and σ ∈ A ∩ B , then A = σ M , B = σ N for some normal
subgroups M, N ∈ F , and A ∩ B = σ (M ∩ N) ∈ N , since M ∩ N ∈ F

by 4.2. Hence N is the basis of a topology. Now, L and N are bases of the
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same topology: N ⊆ L ; conversely, every subgroup H ∈ F contains a normal
subgroup N ∈ F , by 4.2. Similarly, R and N are bases of the same topology. �

The finite topology on Gal (E : K ) is also known as the Krull topology. Its
open sets are unions of members of N , equivalently, unions of members of L (or
R ). Unlike the author’s office door, every subgroup H ∈ F is both open and
closed (since its complement is a union of left cosets of H ).

If Gal (E : K ) is finite, then {1} is open and the finite topology is the discrete
topology. The general case is as follows:

Proposition 4.4. In the finite topology, Gal (E : K ) is compact Hausdorff and
totally disconnected.

Proof. Let G = Gal (E : K ) . Let σ, τ ∈ G , σ =/ τ . Then σ−1 τ /∈ H for
some H ∈ F , since

⋂

H∈F H = 1 by 4.2, and then σ H , τ H ∈ L are disjoint.
Hence G is Hausdorff. Also, σ H and G\σ H are both open (G\σ H is a union
of left cosets of H ) and σ ∈ σ H , τ ∈ G\σ H . Hence G is totally disconnected.

That G is compact follows from Tychonoff’s theorem. We give a direct proof:
we show that every ultrafilter U on G converges to some σ ∈ G .

Every α ∈ E belongs to a finite extension F ⊆ E of K (e.g., to K (α) ).
Then H = Gal (E : F) ∈ F has finite index, G is the union of finitely many left
cosets of H , and τ H ∈ U for some τ ∈ G , since U is an ultrafilter. Assume
that α ∈ F, F ′ , where F, F ′ ⊆ E are finite over K , and τ H , τ ′H ′ ∈ U ,
where H = Gal (E : F) and H ′ = Gal (E : F ′) . Then τ H ∩ τ ′H ′ ∈ U contains
some υ ∈ G , υ−1 τ ∈ H = Gal (E : F) , υ−1 τ ′ ∈ H ′ = Gal (E : F ′) , and
υ−1 τα = α = υ−1 τ ′α , since α ∈ F ∩ F ′ . Hence τα = τ ′α . Therefore
a mapping σ : E −→ E is well defined by σα = τα whenever α ∈ F and
τ H ∈ U , where F ⊆ E is finite over K , τ ∈ G , and H = Gal (E : F) .

If α, β ∈ E , then F = K (α, β) is finite over K , H = Gal (E : F) ∈ F , and
τ H ∈ U for some τ ∈ G . Hence σα = τα , σβ = τβ , and σ (α + β) = σα + σβ ,
σ (αβ) = (σα)(σβ) . Also σ x = τ x = x for all x ∈ K . Thus σ is a K-
endomorphism of E . Since E is normal over K , σ E = E , and σ ∈ G .

Let H = Gal (E : F) ∈ F , where F ⊆ E is finite over K . As above, τ H ∈ U

for some τ ∈ G , and then σα = τα for all α ∈ F , τ−1 σ ∈ Gal (E : F) = H ,
and σ H = τ H ∈ U . Thus U contains every neighborhood of σ . �

Krull’s theorem. The one-to-one correspondence in Krull’s theorem is between
the intermediate fields of a Galois extension and the closed subgroups of its Galois
group, under the finite topology. The next result explains why.

Proposition 4.5. If E is a Galois extension of K and H is subgroup of
Gal (E : K ) , then E is a Galois extension of F = FixE (H) and Gal (E : F) is
the closure of H in Gal (E : K ) .

Proof. By 3.1, E is Galois over F . Let σ ∈ H and α ∈ F . Then
K (α) ⊆ F is finite over K , U = Gal (E : K (α)) ∈ F , σU is open, and there
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exists τ ∈ H ∩ σU . Then τ−1σ ∈ U , τ−1σα = α , and σα = τα = α . Thus
σ ∈ Gal (E : F) .

Conversely, let σ ∈ Gal (E : F) . Let U = Gal (E : L) ∈ F , where L ⊆ E
is finite over K . Then L F is finite over F ; by 2.9, L F is contained in a finite
normal extension N ⊆ E of F (the composite of all conjugates of L F , all of
which are contained in E ). Then N is a finite Galois extension of F . Restriction
to N is a homomorphism Φ : τ �−→ τ|N of Gal (E : F) into Gal (N : F) . Now,
F = FixE (H) ; therefore F = FixN

(

Φ(H)
)

. In the finite Galois extension N
of F this implies Φ(H) = Gal (N : F) . Then Φ(σ ) = Φ(τ ) for some τ ∈ H ,
whence σ|N = τ|N , σ|L = τ|L , σ−1 τ ∈ Gal (E : L) = U , and τ ∈ σU ∩ H .
Then every neighborhood of σ intersects H , and σ ∈ H . �

Krull’s theorem follows from Propositions 3.1, 4.5, and 3.8:

Theorem 4.6 (Krull). Let E be a Galois extension of a field K .

If F is a subfield of E that contains K , then E is a Galois extension of F and
F is the fixed field of Gal (E : F) .

If H is a closed subgroup of Gal (E : K ) in the finite topology, then F =
FixE (H) is a subfield of E that contains K , and Gal (E : F) = H .

This defines a one-to-one correspondence between intermediate fields K ⊆
F ⊆ E and closed subgroups of Gal (E : K ) .

If E is finite over K , then Gal (E : K ) has the discrete topology, every
subgroup is closed, and Krull’s theorem reduces to Theorem 3.9. Readers will
easily extend Propositions 3.10, 3.11, and 3.12 to arbitrary Galois extensions.

An example. This example, from McCarthy [1966], has uncountably many
subgroups of finite index, only countably many of which are closed. Thus, a
Galois group may have comparatively few closed subgroups; subgroups of finite
index need not be closed in the finite topology; and the finite topology has fewer
open sets than the profinite topology mentioned at the end of Section I.5.

Let E ⊆ C be generated over Q by the square roots of all primes p � 3; E is
the splitting field of the set of all polynomials X2 − p , and is Galois over Q .

Let G = Gal (E : Q) . Since Irr (
√

p : Q) = X2 − p ,
√

p has only two
conjugates over Q ,

√
p and −√

p . Hence σ
√

p =
√

p or σ
√

p = −√
p , for

every Q-automorphism σ of E . Conversely, for every subset S of P , there is a
Q-automorphism σ of E such that σ

√
p = −√

p for all p ∈ S and σ
√

p =
√

p
for all p /∈ S . Therefore |G| = 2ℵ0 and G is uncountable.

We also have σ 2 = 1 for every Q-automorphism σ of E . Therefore G is
abelian, and is a vector space over Z2 . Let B be a basis of G over Z2 . Then B
is uncountable, since G is. For every β ∈ B , B\{β} generates a subgroup of G
of index 2. Therefore G has uncountably many subgroups of finite index.
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On the other hand, E is, like all algebraic extensions of Q , countable. If
F ⊆ E is finite over Q , then F = Q(α) for some α ∈ E , by IV.5.12. Therefore
there are only countably many finite extensions F ⊆ E of Q . By 4.6, G has only
countably many closed subgroups of finite index.

Exercises
1. Given a Galois extension E of K and K ⊆ F ⊆ E , show that Gal (E : F) is

normal in Gal (E : K ) if and only if F is normal over K , and then Gal (F : K ) ∼=
Gal (E : K )/Gal (E : F) .

2. In any group, show that the intersection of two subgroups of finite index is a subgroup
of finite index.

3. In any group, show that every subgroup of finite index contains a normal subgroup of
finite index.

4. In a group G , show that the identity is the intersection of normal subgroups of finite
index if and only if G can be embedded into (is isomorphic to a subgroup of) a direct product
of finite groups. (These groups are called profinite).

5. Show that the additive group Q is not profinite.

6. Use Tychonoff’s theorem to prove that Gal (E : K ) is compact in the finite topology.

7. In a Galois group, show that the multiplication (σ, τ) �−→ στ and inversion σ �−→ σ−1

are continuous in the finite topology.

8. Let F1 , F2 , F3 be intermediate fields of a Galois extension E of K , with Galois
groups H1 , H2 , H3 . Show that F1 = F2 F3 if and only if H1 = H2 ∩ H3 .

9. Let F1 , F2 , F3 be intermediate fields of a Galois extension E of K , with Galois
groups H1 , H2 , H3 . Show that F1 = F2 ∩ F3 if and only if H1 is the closure of the
subgroup generated by H2 ∪ H3 .

10. Let E be a Galois extension of K and let F be a field extension of K such that the
composite E F is defined. Show that E F is a Galois extension of F , E is a Galois extension
of E ∩ F , and Gal (E F : F) ∼= Gal (E : E ∩ F) . Is this isomorphism continuous? a
homeomorphism?

5. Polynomials

In this section we look at the splitting fields of polynomials of degree at most 4.
This provides concrete examples of Galois groups. The material on polynomial
equations may be skipped, but it shows a nice interplay between ancient results
and modern Galois theory.

General results. We begin with abitrary polynomials.

Definition. The Galois group Gal ( f : K ) of a polynomial f ∈ K [X ] over a
field K is the group of K-automorphisms of its splitting field over K . �

If E ⊆ K is the splitting field of f ∈ K [X ] over K , then E is finite
over K and its group G of K-automorphisms is finite; by 3.7, E is a finite
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Galois extension of F = FixE (G) and Gal ( f : K ) = G = Gal (E : F) . Then
E = F(α) for some α ∈ E , by IV.5.12 and E is the splitting field over F of
the separable irreducible polynomial Irr (α : F) . Thus the Galois group of any
polynomial is the Galois group (perhaps over a larger field) of a finite Galois
extension, and of a separable irreducible polynomial.

If f is separable over K, then its roots in K are separable over K, its splitting
field E is separable over K, E is a Galois extension of K , and Gal ( f : K ) =
Gal (E : K ) .

Proposition 5.1. Let α1, . . ., αn be the distinct roots of f ∈ K [X ] in K .
Every τ ∈ Gal ( f : K ) permutes the roots of f in K ; hence Gal ( f : K ) is
isomorphic to a subgroup G of the symmetric group Sn . If f is separable and
irreducible, then n divides |G| and G is a transitive subgroup of Sn .

Proof. Let E be the splitting field of f . If τ is a K-automorphism of E and
f (α) = 0, then f (τα) = τ f (τα) = τ f (α) = 0; hence τ permutes the roots of
f and induces a permutation σ ∈ Sn such that ταi = ασ i for all i . Since E
is generated by α1 , . . . , αn , τ is uniquely determined by σ , and the mapping
ϕ : τ �−→ σ is injective; ϕ is a homomorphism since ττ ′αi = τασ ′i = ασσ ′i .
Hence Gal ( f : K ) is isomorphic to the subgroup G = Im ϕ of Sn .

If f is separable and irreducible, then f has degree n , f = Irr (αi : K ) for
every i , K (αi ) ⊆ E has degree n over K , and Gal ( f : K ) = Gal (E : K ) has
a subgroup Gal (E : K (αi )) of index n . Hence n divides

∣
∣Gal ( f : K )

∣
∣ = |G| .

For every i, j there is a K-automorphism τ of E such that ταi = αj ; hence G is
transitive (for every i, j there is some σ ∈ G such that σ i = j ). �

For a separable and irreducible polynomial f ∈ K [X ] , 5.1 implies the follow-
ing. If f has degree 2, then Gal ( f : K ) ∼= S2 is cyclic of order 2. If f has
degree 3, then either Gal ( f : K ) ∼= S3 , or Gal ( f : K ) ∼= A3 is cyclic of order 3.

Example. The Galois group G and splitting field E ⊆ C of f (X) = X3 − 2
over Q can be analyzed in some detail. First, f is irreducible, by Eisenstein’s
criterion. The complex roots of f are ρ = 3√2 ∈ R , jρ , and j2ρ , where
j = −1/2 + i

√
3/2 is a primitive cube root of unity. Hence E = Q(ρ, jρ, j2ρ) =

Q(ρ, j) , and E has an intermediate field Q(ρ)⊆ R . We see that [Q(ρ) : Q ] = 3
and [ E : Q(ρ) ] = 2. Hence [ E : Q ] = 6 and G = Gal (E : Q) ∼= S3 , by 5.1.
Next, S3 is generated by the 3-cycle (1 2 3) and the transposition (2 3) ; hence G
is generated by γ and τ , where

γρ = jρ, γ ( jρ) = j2ρ, γ ( j2ρ) = ρ, γ j = j,

τρ = ρ, τ ( jρ) = j2ρ, τ ( j2ρ) = jρ, τ j = j2,

and G = { 1, γ , γ 2 , τ , γ τ , γ 2τ } . The subgroups of G are 1, G , and

{ 1, τ }, { 1, γ τ }, { 1, γ 2τ }, { 1, γ, γ 2 }.
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Hence E has four intermediate fields Q � F � E . The fixed field F of
{ 1, τ } contains ρ and has degree 3 over Q , since [ E : F ] = |Gal (E : F)| = 2;
hence it is Q(ρ) . Similarly, the fixed field of { 1, γ τ } is Q( j2ρ) , which has
degree 3 over Q ; the fixed field of { 1, γ 2τ } is Q( jρ) , which has degree 3 over
Q ; and the fixed field of { 1, γ, γ 2 } is Q( j) , which has degree 2 over Q and is
normal over Q since { 1, γ, γ 2 } �= G . �

Polynomials of degree 3. Let f (X) = an (X − α1) · · · (X − αn) be a poly-
nomial of degree n � 1 with coefficients in a field K and not necessarily distinct
roots α1 , . . . , αn in K . The discriminant of f is

Dis ( f ) = a2n−2
n

∏

1�i< j�n (αi − αj )
2.

Some properties of discriminants, for instance, Dis ( f ) ∈ K , are proved in
Section IV.7.

Proposition 5.2. If f ∈ K [X ] and the field K does not have characteristic
2 , then Gal ( f : K ) induces an odd permutation if and only if Dis ( f ) does not
have a square root in K .

Proof. The splitting field E of f contains all αi and contains Dis ( f ) . We
see that Dis ( f ) = d2 , where d = an−1

n
∏

1�i< j�n (αi − αj ) . If τ ∈ Gal ( f : K )
transposes two roots, then τd = −d ; hence τd = d whenever τ induces an
even permutation, and τd = −d =/ d whenever τ induces an odd permutation. If
d ∈ K , equivalently if Dis ( f ) has a square root in K (which must be d or −d ),
then no τ ∈ Gal ( f : K ) induces an odd permutation. If d /∈ K , then τd =/ d
for some τ ∈ Gal ( f : K ) , since K is the fixed field of Gal ( f : K ) , and some
τ ∈ Gal ( f : K ) induces an odd permutation. �

Corollary 5.3. Let f ∈ K [X ] be a separable irreducible polynomial of degree
3. If Dis ( f ) has a square root in K , then Gal ( f : K ) ∼= A3 ; otherwise,
Gal ( f : K ) ∼= S3 .

Proof. We saw that Gal ( f : K ) is isomorphic to either A3 or S3 . �

The discriminant of X3 + pX + q is known to be −4p3 − 27q2 . For example,
f (X) = X3 − 2 ∈ Q[X ] is irreducible by Eisenstein’s criterion; Dis ( f ) =
−27 × 22 = −108 does not have a square root in Q ; therefore Gal ( f : Q) ∼= S3 .
In this example, the roots of f in Q ⊆ C are reached by first adjoining to Q a
square root of −108 (equivalently, a square root of −3), then a cube root of 2;
this corresponds to the structure Q � Q( j) � E of the splitting field and to the
structure S3 � A3 � 1 of the Galois group.

Cardano’s formula. Cardano’s sixteenth century method [1545] yields for-
mulas for the roots of polynomials of degree 3, and an explicit way to reach them
by successive adjunctions of square roots and cube roots.

Let K be a field that does not have characteristic 2 or 3, and let f (X) =
aX3 + bX2 + cX + d ∈ K [X ] , where a =/ 0. The general equation f (x) = 0
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is first simplified by the substitution x = y − b/3a , which puts it in the form
g(y) = a (y3 + py + q) = 0, where p, q ∈ K , since p and q are rational
functions of a, b, c, d . Note that Dis ( f ) = Dis (g) , since f and g have the
same leading coefficient and differences between roots.

To solve the equation g(x) = x3 + px + q = 0, let x = u + v to obtain

(u + v)3 +p(u + v) + q = u3 + v3 + (3uv + p)(u + v) + q = 0.

If 3uv + p = 0, then u3 and v3 satisfy u3v3 = −p3/27 and u3 + v3 = −q , and are
the roots of the resolvent polynomial (X − u3)(X − v3) = X2 + q X − p3/27 ∈
K [X ] :

u3 =
−q +

√

q2 + 4p3/27
2

, v3 =
−q −

√

q2 + 4p3/27
2

,

and we obtain Cardano’s formula:

Proposition 5.4. If K does not have characteristic 2 or 3 and p, q ∈ K , then
the roots of X3 + pX + q in K are

u + v =
3

√

−q +
√

q2 + 4p3/27
2

+
3

√

−q −
√

q2 + 4p3/27
2

,

where the cube roots are chosen so that uv = −p/3 .

Equations of degree 4. The following method solves equations of degree 4
and yields explicit formulas that construct the roots by successive adjunctions of
square roots and cube roots. Cardano had a simpler solution, but it does not relate
as well to Galois groups.

Let f (X) = aX4 + bX3 + cX2 + d X + e ∈ K [X ] , where a =/ 0 and K does
not have characteristic 2. Simplify the equation f (x) = 0 by the substitution
x = y − b/4a , which puts it in the form g(y) = a (y4 + py2 + qy + r) = 0, where
p, q, r ∈ K are rational functions of a, b, c, d, e . The roots α1, . . ., α4 of f
and β1, . . ., β4 of g in K are related by αi = −b/4a + βi for all i . In particular,
Dis ( f ) = Dis (g) .

In K [X ] , g(X) = a (X4 + pX2 + q X + r) = a (X − β1)(X − β2)(X − β3)
(X − β4) , whence

∑

i βi = 0,
∑

i< j βi βj = p ,
∑

i< j<k βi βj βk = −q ,
β1 β2 β3 β4 = r . Let

u = −(β1 + β2)(β3 + β4) = (β1 + β2)
2,

v = −(β1 + β3)(β2 + β4) = (β1 + β3)
2,

w = −(β1 + β4)(β2 + β3) = (β1 + β4)
2;
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equivalently,

u = −
(

α1 + α2 +
b

2a

)(

α3 + α4 +
b

2a

)

=
(

α1 + α2 +
b

2a

)2
,

v = −
(

α1 + α3 +
b

2a

)(

α2 + α4 +
b

2a

)

=
(

α1 + α3 +
b

2a

)2
,

w = −
(

α1 + α4 +
b

2a

)(

α2 + α3 +
b

2a

)

=
(

α1 + α4 +
b

2a

)2
.

Tedious computations, which our reader will probably not forgive, yield

u + v + w = −2p, uv + uw + vw = p2 − 4r, uvw = q2.

Hence u , v , and w are the roots of the resolvent polynomial of f and g ,

s(X) = (X − u)(X − v)(X − w) = X3 + 2pX2 + (p2 − 4r)X − q2 ∈ K [X ].

Note that u − v = (β1 − β4)(β2 − β3) , u − w = (β1 − β3)(β2 − β4) , v − w =
(β1 − β2)(β3 − β4) , so that Dis (s) =

∏

i< j (βi − βj )
2 and Dis ( f ) = Dis (g) =

a6 Dis (s) .

Now, β1 + β2 = u′ is a square root of u , β1 + β3 = v′ is a square root of v ,
β1 + β4 = w′ is a square root of w , and

u′v′w′ = (β1 + β2)(β1 + β3)(β1 + β4) = β2
1
∑

i βi +
∑

i< j<k βi βj βk = −q.

Finally, u′ + v′ + w′ = 3β1 + β2 + β3 + β4 = 2β1 ; similarly, u′ − v′ − w′ =
2β2 , −u′ + v′ − w′ = 2β3 , −u′ − v′ + w′ = 2β4 and we obtain formulas for
β1, β2, β3, β4 :

Proposition 5.5. If K does not have characteristic 2 and p, q, r ∈ K , then
the roots of X4 + pX2 + q X + r in K are

β1 =
1
2

(u′ + v′ + w′), β2 =
1
2

(u′ − v′ − w′),

β3 =
1
2

(−u′ + v′ − w′), β4 =
1
2

(−u′ − v′ + w′),

where u′, v′, w′ are square roots of the roots u, v, w of the resolvent s(X) =
X3 + 2pX2 + (p2 − 4r)X − q2 , chosen so that u′v′w′ = −q .

If K does not have characteristic 2 or 3, then Cardano’s formula for u , v , and
w yields explicit formulas for β1, . . ., β4 and explicit formulas for α1, . . ., α4 ,
showing that they can be reached from K by successive adjunctions of square
roots and cube roots.

Polynomials of degree 4. The Galois groups of polynomials of degree 4 reflect
the construction of their roots in Proposition 5.5.

Proposition 5.6. Let f (X) = aX4 + bX3 + cX2 + d X + e ∈ K [X ] be a
separable irreducible polynomial of degree 4 , where the field K does not have
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characteristic 2 . Let F ⊆ K be the splitting field of its resolvent. Then [ F : K ]
divides 6 and:

(1) If [ F : K ] = 6 , then Gal ( f : K ) ∼= S4 .

(2) If [ F : K ] = 3 , then Gal ( f : K ) ∼= A4 .

(3) If [ F : K ] = 2 , then Gal ( f : K ) ∼= D4 if f is irreducible over F , otherwise
Gal ( f : K ) is cyclic of order 4.

(4) If [ F : K ] = 1 , then Gal ( f : K ) ∼= V4 .

Proof. The resolvent s of f is separable, since a6 Dis (s) = Dis ( f ) =/ 0.
Hence its roots u, v, w are all distinct. Let E ⊆ K and F = K (u, v, w) ⊆ K
be the splitting fields of f and s . By 5.5, E ⊆ K (u′, v′, w′) , where u′, v′, w′

are square roots of u, v, w such that u′v′w′ ∈ K . Hence E ⊆ F(u′, v′) and
[ E : F ] � 4. Also F is Galois over K ; Gal (s : K ) is isomorphic to a subgroup
of S3 , and [ F : K ] = |Gal (s : K )| divides 6.

Before tackling parts (1) through (4), we look at S4 . The normal subgroup
V = { 1, (1 2)(3 4) , (1 3)(2 4) , (1 4)(2 3) } of S4 is isomorphic to V4 . The
centralizer C of (1 2)(3 4) ∈ V consists of all permutations σ such that either
σ{ 1, 2 } = { 1, 2 } , σ{ 3, 4 } = { 3, 4 } , or σ{ 1, 2 } = { 3, 4 } , σ{ 3, 4 } =
{ 1, 2 } . Since (1 2)(3 4) has three conjugates in S4 , C has eight elements and
consists of (1 2) , (3 4) , (1 3 2 4) , (1 4 2 3) , and the elements of V , all of
which commute with (1 2)(3 4) . Thus C is a Sylow 2-subgroup of S4 . We see
that C ∼= D4 . The centralizers of (1 3)(2 4) and (1 4)(2 3) are the other Sylow
2-subgroups of S4 and consist of similar permutations. Hence σ ∈ S4 commutes
with every element of V if and only if σ ∈ V .

By 5.1, Gal ( f : K ) is isomorphic to a subgroup G of S4 : every τ ∈
Gal ( f : K ) permutes the roots α1, . . ., α4 of f and induces a permutation
σ ∈ S4 such that ταi = ασ i . The equalities

u = −
(

α1 + α2 +
b

2a

)(

α3 + α4 +
b

2a

)

=
(

α1 + α2 +
b

2a

)2
,

v = −
(

α1 + α3 +
b

2a

)(

α2 + α4 +
b

2a

)

=
(

α1 + α3 +
b

2a

)2
,

w = −
(

α1 + α4 +
b

2a

)(

α2 + α3 +
b

2a

)

=
(

α1 + α4 +
b

2a

)2

show that τ also permutes u , v , and w . If σ ∈ V , then the same equalities
show that τu = u , τv = v , and τw = w . Conversely, if τu = u , τv = v , and
τw = w , then τu = u =/ v,w , whence σ{ 1, 2 } = { 1, 2 } , σ{ 3, 4 } = { 3, 4 }
and σ commutes with (1 2)(3 4) ; similarly, σ commutes with (1 3)(2 4) and
(1 4)(2 3) ; hence σ ∈ V . Therefore τ ∈ Gal (E : F) if and only if σ ∈ V , and
Gal (E : F) ∼= G ∩ V . By 3.11, Gal (F : K ) ∼= Gal (E : K )/Gal (E : F) ∼=
G/(G ∩ V ) .

By 5.1, G ∼= Gal ( f : K ) is a transitive subgroup G of S4 , whose order is
divisible by 4. Hence |G| = 4, 8, 12, or 24. If |G| = 24, then Gal ( f : K ) ∼= S4
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and [ F : K ] = 6, since [ E : K ] = 24, [ E : F ] � 4, and [ F : K ] � 6.

If |G| = 12, then G = A4 , since A4 is the only subgroup of S4 of order
12; hence Gal ( f : K ) ∼= A4 , V ⊆ G , Gal (F : K ) ∼= G/V has order 3, and
[ F : K ] = 3.

If |G| = 8, then G is one of the three Sylow 2-subgroups of S4 ; hence
Gal ( f : K ) ∼= D4 , V ⊆ G , Gal (F : K ) ∼= G/V has order 2, and [ F : K ] = 2.
Since V is transitive and V ⊆ G , there exists, for every i , some τ ∈ Gal ( f : K )
such that τα1 = αi and τ induces some σ ∈ V ; then τ ∈ Gal (E : F) ; hence αi
is a root of Irr (α1 : F) . Thus Irr (α1 : F) has four distinct roots in E and degree
at least 4. Since f (α1) = 0, it follows that f is proportional to Irr (α1 : F) , and
is irreducible in F[X ] .

Finally, let |G| = 4. If G = V , then Gal ( f : K ) ∼= V4 , Gal (F : K ) = 1,
and [ F : K ] = 1. Otherwise, G is cyclic, generated by a 4-cycle, Gal ( f : K ) is
cyclic of order 4, Gal (F : K ) ∼= G/(G ∩ V ) has order 2, and [ F : K ] = 2; then
G ∩ V ∼= Gal (E : F) is not transitive, so f is not irreducible over F , by 5.1. �

Exercises

1. Find fields K ⊆ E ⊆ F such that F is normal over K but E is not normal over K .

2. Let f ∈ R[X ] have degree 3 . How does the sign of Dis ( f ) relate to the number of
real roots of f ?

3. Let f ∈ R[X ] have degree 4 . How does the sign of Dis ( f ) relate to the number of
real roots of f ?

In the following exercises, find the Galois group of the given polynomial over the given field,
and all intermediate fields of its splitting field.

4. X3 − X − 1 , over Q .

5. X3 − 10 , over Q .

6. (X2 − 2)(X2 − 3) , over Q .

7. X4 − 3 , over Q .

In the following exercises, find the Galois group of the given polynomial over the given field.

8. X3 − X − 1 , over Q(
√
−23) .

9. X3 − 10 , over Q(
√

2) .

10. X3 − 10 , over Q(
√
−3) .

11. X4 − 3 , over Q(
√

3) .

12. X4 − 3 , over Q(
√
−3) .

13. X4 + X + 3, over Q .

The following exercises are for the last part of this section, which may have been skipped.

14. Use Cardano’s formula to find the roots of X3 − 3X + 1 in C .
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15. Verify that u + v + w = −2p , uv + uw + vw = p2 − 4r , and uvw = q2 , in the proof
of 5.5.

16. Cardano solved the equation x4 + px2 + qx + r = 0 by rewriting it as (x2 + y)2 = · · ·
and choosing y so that the right hand side is a perfect square. Fill in the details.

17. Find the roots of X4 + 3X + 3 in C .

18. Find the Galois group of X4 + 3X + 3 over Q .

6. Cyclotomy

The Greek roots of the word “cyclotomy” mean “circle” and “cut”, as in cutting
the unit circle into n equal arcs. This section uses Galois theory rather than scis-
sors to study complex roots of unity, their irreducible polynomials, and the fields
they generate over Q . This yields more examples of Galois groups. Applica-
tions include Wedderburn’s theorem on finite division rings; a particular case of
Dirichlet’s Theorem on primes in arithmetic progressions; and a proof that every
finite abelian group is the Galois group of a finite extension of Q .

Except for Proposition 6.5, which is quoted in Section 9, this material will not
be used later.

Cyclotomic polynomials. Recall that the nth roots of unity in C are the
complex numbers εk = cos (2πk/n) + i sin (2πk/n) , 0 � k < n . The nth root
of unity εk is primitive if and only if k and n are relatively prime, so that there
are φ(n) primitive nth roots of unity, where φ is Euler’s function.

Definition. The nth cyclotomic polynomial is the product Φn(X) ∈ C[X ] of
all X − ε in which ε is a primitive nth root of unity.

For example, Φ1(X) = X − 1; Φ2(X) = X + 1; Φ3(X) = (X − j)(X − j) =
X2 + X + 1; Φ4(X) = (X − i)(X + i) = X2 + 1.

Cyclotomic polynomials have some basic properties.

Proposition 6.1. For all integers n, q � 2 , Φn(q) ∈ R and Φn(q) > q − 1 .

Proof. The number Φn(q) is the product of φ(n) complex numbers q − ε ,
where |ε| = 1, ε =/ 1. Hence |q − ε| > q − 1 � 1 and |Φn(q)| > (q − 1)φ(n) �
q − 1. Moreover, Φn(q) is positive real, since the numbers q − ε are conjugate
in pairs or real. �

Proposition 6.2. Xn − 1 =
∏

d|n Φd(X) .

Proof. If ε has order d (if εd = 1 and εk =/ 1 for all 0 < k < d ), then d
divides n and ε is a primitive dth root of unity. Classifying by order yields

Xn − 1 =
∏

εn=1 (X − ε) =
∏

d|n
(∏

ε has order d (X − ε)
)

=
∏

d|n Φd(X). �

Since Φn has degree φ(n) , Proposition 6.2 implies n =
∑

d|n φ(d) , which
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is II.1.8. With 6.2, Φn can be computed recursively. For instance,

Φ6(X) = (X6 − 1)/(X − 1)(X + 1)(X2 + X + 1) = X2 − X + 1.

Proposition 6.3. Φn is monic and has integer coefficients.

Proof. By induction. First, Φ1(X) = X − 1 is monic and has integer coeffi-
cients. If n > 1, then polynomial division in Z[X ] of Xn − 1 ∈ Z[X ] by the
monic polynomial

∏

d|n, d<n Φd ∈ Z[X ] yields Φn(X) , by 6.2. �

Proposition 6.4. For all n > 0 , Φn is irreducible in Q[X ] .

Proof. Assume that Φn is not irreducible in Q[X ] . Then Φn ∈ Z[X ] is not
irreducible in Z[X ] and Φn(X) = q(X) r(X) for some nonconstant q, r ∈ Z[X ] .
We may assume that q is irreducible. Since Φn is monic, the leading coefficients
of q and r are ±1, and we may also assume that q and r are monic. The
nonconstant polynomials q and r have complex roots ε and ζ , respectively, that
are primitive nth roots of unity since they are also roots of Φn . Hence ζ = εk

for some k > 0 (since ε is primitive) and k is relatively prime to n (since ζ

is primitive). Choose ε and ζ so that k is as small as possible. Then k > 1:
otherwise, ζ = ε is a multiple root of Φn .

Let p be a prime divisor of k . Then p does not divide n , ε p is primitive,
and Φn(ε p) = 0. If q(ε p) = 0, then ζ = (ε p)k/p contradicts the choice of ε

and ζ . Therefore r(εp) = 0. But k � p is as small as possible, so k = p .
Moreover, q(X) divides r(X p) in Q[X ] , since q = Irr (ε : Q) and r(ε p) = 0,
so that r(X p) = q(X) s(X) for some s ∈ Q[X ] . Since q is monic, polynomial
division in Z[X ] yields s ∈ Z[X ] , so that q divides r(X p) in Z[X ] .

The projection a �−→ a of Z onto Zp induces a homomorphism f �−→ f of

Z[X ] into Zp[X ] : if r(X) = rm Xm + · · · + r0 , then r(X) = Xm + rm−1 Xm−1 +
· · · + r0 . By 1.3, a p = a for all a ∈ Zp , so that

r(X)p = Xmp + r p
m−1 X (m−1)p + · · · + r p

0 = r(X p).

Hence q divides r p , and q , r have a common irreducible divisor t ∈ Zp[X ] .

Then t2 divides q r , which divides f (X) = Xn − 1 ∈ Zp[X ] since qr = Φn

divides Xn − 1 by 6.2; hence f has a multiple root in Zp . But f ′(X) =

nXn−1 =/ 0, since p does not divide n , so that f and f ′ have no common root
in Zp , and f is separable. This is the required contradiction. �

Definition. The nth cyclotomic field is Q(εn)⊆ C , where εn ∈ C is a primitive
nth root of unity.

Proposition 6.5. The field Q(εn) is a Galois extension of Q ; [Q(εn) : Q ] =
φ(n) ; and Gal (Q(εn) : Q) is isomorphic to the group of units Un of Zn .

Proof. First, Q(εn) , which contains all complex nth roots of unity, is a
splitting field of Xn − 1 and is Galois over Q . Next, Φn(εn) = 0, whence
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Φn = Irr (εn : Q) , by 6.4; hence [Q(εn) : Q ] = φ(n) .

The group Un consists of all k ∈ Zn such that k and n are relatively prime.
Let C = 〈 εn 〉 be the multiplicative group of all complex nth roots of unity, which
is cyclic of order n . An endomorphism of C sends εn to some εk

n , then sends εi
n

to εki
n , and is an automorphism if and only if k and n are relatively prime. Hence

the group Aut (C) of automorphisms of C is isomorphic to Un . Now, every
σ ∈ Gal (Q(εn) : Q) permutes the roots of Xn − 1 and induces an automor-
phism σ|C of C . This yields a homomorphism σ �−→ σ|C of Gal (Q(εn) : Q)
into Aut (C) ∼= Un , which is injective, since Q(εn) is generated by ε , hence
bijective, since |Gal (Q(εn) : Q)| = φ(n) = |Un | . �

The exercises give additional properties of Q(εn) .

Division rings. A division ring is a ring in which every nonzero element is a
unit. Commutative division rings are fields. The quaternion algebra H in Section
I.7 is a division ring but not a field. In Section VIII.5 we show that a finitely
generated vector space over a division ring has a finite basis, and all its bases have
the same number of elements; impatient readers may prove this now.

Theorem 6.6 (Wedderburn [1905]). Every finite division ring is a field.

Proof. Let D be a finite division ring. The center K = { x ∈ D
∣
∣ xy = yx for

all y ∈ D } of D is a subfield of D . Let n be the dimension of D as a vector
space over K . We prove that n = 1.

Let |K | = q , so that |D| = qn . The center of D\{0} has q − 1 elements.
The centralizer of a ∈ D\{0} is L\{0} , where L = { x ∈ D

∣
∣ xa = ax } .

Now, L is a subring of D , and a division ring, and L contains K . Hence D
is a vector space over L and L is a vector space over K . Readers will verify
that dimK D = (dimL D) (dimK L) , so that d = dimK L divides n . Then
|L| = qd , the centralizer of a has qd − 1 elements, and the conjugacy class of
a has (qn − 1)/(qd − 1) elements. Moreover, qd < qn when a /∈ K , for then
L � D . Hence the class equation of the multiplicative group D\{0} reads

qn − 1 = (q − 1) +
∑ qn − 1

qd − 1
,

where the sum has one term for each nontrivial conjugacy class, in which d < n
and d|n . Now, qn − 1 =

∏

d|n Φd(q) , by 6.2. If d < n and d|n , then

qn − 1 = Φn(q)
∏

c|n, c<n Φc(q)

= Φn(q)
∏

c|d Φc(q)
∏

c|n, c<n, c�d Φc(q)

= Φn(q) (qd − 1)
∏

c|n, c<n, c�d Φc(q),

and Φn(q) divides qn − 1 and (qn − 1)/(qd − 1) . Therefore Φn(q) divides
q − 1. But Φn(q) > q − 1 when n > 1, by 6.1. Hence n = 1. �
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Dirichlet’s theorem. The general form of this theorem, due to Dirichlet [1837],
states that every arithmetic progression contains infinitely many primes. We use
cyclotomic polynomials to prove a particular case:

Theorem 6.7 (Dirichlet). For every positive integer n there are infinitely many
prime numbers p ≡ 1 (mod n ).

Proof. We start with a lemma.

Lemma 6.8. Let p be prime and m, n > 0 . If p divides Φn(m) , then p does
not divide m , and either p divides n or p ≡ 1 (mod n ).

Proof. By 6.2, Φn(m) divides mn − 1; hence p divides mn − 1, and does not
divide m . Let k be the order of m in the multiplicative group Zp\{0} ; k divides
∣
∣Zp\{0}

∣
∣ = p − 1, and divides n , since mn = 1 in Zp . Let � = n/k .

If � = 1, then n = k divides p − 1 and p ≡ 1 (mod n ).

Let � > 1. Since every divisor of k is a divisor of n ,
∏

d|n, d<n Φd(X) =
f (X)

∏

d|k Φd(X) , where f is a product of cyclotomic polynomials. Hence

mk� − 1 = Φn(m)
∏

d|n, d<n Φd(m) = Φn(m) (mk − 1) f (m)

by 6.2. Therefore p , which divides Φn(m) , divides

(mk� − 1)/(mk − 1) = (mk)�−1 +(mk)�−2 + · · · + 1.

Now, mk ≡ 1 (mod p ); hence p divides � and n = k� . �
We now prove 6.7. We may assume n > 1. For every k � 2 we have

Φkn(kn) > kn − 1 > 1 by 6.1, and Φkn(kn) has a prime divisor p . By 6.8,
p does not divide kn ; hence p ≡ 1 (mod kn ) and p > kn . Thus there are
arbitrarily large primes p ≡ 1 (mod n ). �

The proof of 6.7 shows algebra coming to the aid of number theory. Number
theory now comes to the aid of algebra.

Proposition 6.9. Every finite abelian group is the Galois group of a finite
extension of Q .

Proof. A finite abelian group G is a direct sum G = Cn1
⊕ Cn2

⊕ · · · ⊕ Cnr
of

cyclic groups of orders n1, . . ., nr . By 6.7 there exist distinct primes p1, . . ., pr
such that pi ≡ 1 (mod n1n2 · · · nr ) for all i . Let n = p1 p2 · · · pr .

By 6.5, Gal (Q(εn) : Q) ∼= Un . If k and � are relatively prime, then
Zk�

∼= Zk ⊕ Z� ; since (u, v) ∈ Zk × Z� is a unit if and only if u and v

are units, then Uk�
∼= Uk ⊕ U� . Therefore Gal (Q(εn) : Q) ∼= Un

∼= Up1
⊕

Up2
⊕ · · · ⊕ Upr

. Now, Upi
is cyclic of order pi − 1, since Zpi

is a field,
and ni divides pi − 1; hence Upi

has a subgroup Hi of index ni . Then
Upi

/Hi
∼= Cni

and Up1
⊕ Up2

⊕ · · · ⊕ Upr
has a subgroup H1 ⊕ H2 ⊕ · · · ⊕ Hr

such that (Up1
⊕ Up2

⊕ · · · ⊕ Upr
)/(H1 ⊕ H2 ⊕ · · · ⊕ Hr ) ∼= G . Therefore
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Gal (Q(εn) : Q) has a subgroup H such that Gal (Q(εn) : Q)/H ∼= G ; then the
fixed field F of H is a finite Galois extension of Q and G ∼= Gal (F : Q) . �

Exercises
1. Find Φn for all n � 10 .

2. Find Φ12 and Φ18 .

3. Show that Φn(0) = ±1 , and that Φn(0) = 1 if n > 1 is odd.

4. Show that Φ2n(X) = Φn(−X) when n > 1 is odd.

Readers who have polynomial division software and long winter evenings can now formu-
late and disprove a conjecture that all coefficients of Φn are 0 or ±1 .

5. Let p be prime. Show that Φnp(X) = Φn(X p) if p divides n , Φnp(X) =
Φn(X p)/Φn(X) if p does not divide n .

6. Let n be divisible by p2 for some prime p . Show that the sum of all complex primitive
nth roots of unity is 0 .

7. Show that Q(εm) Q(εn) = Q(εlcm (m,n)) .

8. Show that Q(εm) ∩ Q(εn) = Q(εgcd (m,n)) . (You may want to use 3.11.)

9. Find the least n > 0 such that Gal (Q(εn) : Q) is not cyclic.

10. Let D ⊆ E ⊆ F be division rings, each a subring of the next. Show that dimK D =
(dimL D) (dimK L) .

*11. Prove that a finitely generated vector space over a division ring has a finite basis, and
that all its bases have the same number of elements.

7. Norm and Trace

The norm and trace are functions defined on every finite field extension. In this
section we establish their basic properties and use the results to construct all Galois
extensions with cyclic Galois groups.

Definition. Recall that a linear transformation T of a finite-dimensional vector
space V has a determinant and a trace, which are the determinant and trace (sum
of all diagonal entries) of the matrix of T in any basis of V . If

c(X) = det (T − X I ) = (−1)n Xn + (−1)n−1cn−1 Xn−1 + · · · + c0

is the characteristic polynomial of T , then the determinant of T is c0 and its trace
is cn−1 . In particular, the determinant and trace of the matrix of T in a basis of
V do not depend on the choice of a basis.

A finite extension E of a field K is a finite-dimensional vector space over K ,
and multiplication by α ∈ E is a linear transformation γ �−→ αγ of E .

Definitions. Let E be a finite extension of a field K . The norm NE
K (α) and

trace TrE
K (α) of α ∈ E over K are the determinant and trace of the linear

transformation Tα : γ �−→ αγ of E .
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Both NE
K (α) and TrE

K (α) are elements of K . When K ⊆ E is the only
extension in sight we denote NE

K (α) and TrE
K (α) by N(α) and Tr (α) .

For example, in the finite extension C of R , multiplication by z = a + bi is a
linear transformation x + iy �−→ (ax − by) + i(bx + ay) with matrix

(a −b
b a
)

in
the basis { 1, i } ; hence z has norm a2 + b2 = zz and trace 2a = z + z .

In general, the norm and trace of α ∈ E can also be computed from the
K-homomorphisms of E into K , and from the conjugates of α . First we show:

Lemma 7.1. If E is finite over K and α ∈ E , then det (Tα − X I ) =
(−1)n q(X)� , where n = [ E : K ] , q = Irr (α : K ) , and � = [ E : K (α) ] .

Proof. We have Taβ = aTβ , Tβ+γ = Tβ + Tγ , and Tβγ = Tβ Tγ , for all
a ∈ K and β, γ ∈ E . Hence f (Tα) = T f (α) for every f ∈ K [X ] . In particular,
q(Tα) = Tq(α) = 0. (Thus, q is the minimal polynomial of Tα .)

Choose a basis of E over K . The matrix M of Tα in the chosen basis
can be viewed as a matrix with coefficients in K , and the characteristic poly-
nomial c(X) = det (Tα − X I ) of Tα is also the characteristic polynomial of
M . In K [X ] , c is the product of its leading coefficient (−1)n and monic
irreducible polynomials r1 , . . . , r� ∈ K [X ] , for some � . If λ ∈ K is a root
of rj , then c(λ) = 0, λ is an eigenvalue of M , Mv = λv for some v =/ 0,

Miv = λiv , f (M) v = f (λ) v for every f ∈ K [X ] , q(λ) v = q(M) v = 0,
and q(λ) = 0. Therefore rj = Irr (λ : K ) = q . Hence c = (−1)n q� . Then
� = deg c/deg q = [ E : K ]/[ K (α) : K ] = [ E : K (α) ] . �

Proposition 7.2. Let E be a finite extension of K of degree n . Let α1 , . . . ,
αr ∈ K be the distinct conjugates of α ∈ E , and let ϕ1 , . . . , ϕt be the distinct
K-homomorphisms of E into K . Then r and t divide n and

NE
K (α) = (α1 · · ·αr )

n/r = ((ϕ1α) · · · (ϕtα))n/t ∈ K ,

TrE
K (α) =

n
r

(α1 + · · · + αr ) =
n
t

(ϕ1α + · · · + ϕtα) ∈ K .

The norm and trace are often defined by these formulas.

Proof. The conjugates of α are the roots of q = Irr (α : K ) , which by IV.5.1
all have the same multiplicity m . Hence

q(X) = (X − α1)
m · · · (X − αr )

m

= Xrm − m (α1 + · · · + αr ) Xrm−1 + · · · + (−1)rm (α1 · · ·αr )
m .

Then [ K (α) : K ] = rm divides n and � = [ E : K (α) ] = n/rm . By 7.1, c(X) =
det (Tα − X I ) = (−1)n q(X)� . The constant coefficient of c is

N(α) = (−1)n (−1)rm� (α1 · · ·αr )
m� = (α1 · · ·αr )

n/r ,
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since rm� = n . The trace of α is (−1)n−1 times the coefficient of Xn−1 in c :

Tr (α) = (−1)n−1 (−1)n (−�) m (α1 + · · · + αr ) =
n
r

(α1 + · · · + αr ).

Next, t = [ E : K ]s , which divides n by IV.5.2. Since q has r distinct roots
in K , there are r K-homomorphisms of K (α) into K , that send α to α1 , . . . ,
αr . Each can be extended to E in k = [ E : K (α) ]s ways. Hence t = kr ;
(ϕ1α) · · · (ϕtα) = (α1 · · ·αr )

k ; and ϕ1α + · · · + ϕtα = k (α1 + · · · + αr ) . This
completes the proof since (n/r)/k = n/t . �

Proposition 7.2 becomes simpler in some cases, as readers will easily verify.

Corollary 7.3. Let E be finite over K and let α ∈ E .

(1) If α ∈ K , then NE
K (α) = αn and TrE

K (α) = nα , where n = [ E : K ] ;

(2) if E = K (α) is separable over K, then NE
K (α) is the product of the conjugates

of α , and TrE
K (α) is their sum;

(3) if E is not separable over K, then TrE
K (α) = 0 ;

(4) if E is Galois over K , with Galois group G , then NE
K (α) =

∏

σ∈G σα and
TrE

K (α) =
∑

σ∈G σα .

Properties.

Proposition 7.4. If E is finite over K , then NE
K (αβ) = NE

K (α) NE
K (β) and

TrE
K (α + β) = TrE

K (α) +TrE
K (β) , for all α, β ∈ E .

Proof. In Proposition 7.2, ϕ1 , . . . , ϕt are homomorphisms. �
Proposition 7.5 (Tower Property). If K ⊆ E ⊆ F are finite over K , then

NF
K (α) = NE

K (NF
E (α)) and Tr F

K (α) = Tr E
K (Tr F

E (α)) , for all α ∈ E .

Proof. We may assume that F ⊆ K and choose E = K . Let m = [ E : K ] and
n = [ F : E ] , let ϕ1, . . ., ϕt be the distinct K-homomorphisms of E into K , and
let ψ1, . . . , ψu be the distinct E-homomorphisms of F into E = K . As in the
proof that [ F : K ]s = [ E : K ]s [ F : E ]s , let σ1, . . ., σt be K-automorphisms of
K that extend ϕ1, . . ., ϕt . If χ : F −→ K is a K-homomorphism, then χ|E = ϕi

for some i , σ−1
i χ : F −→ K is an E-homomorphism, σ−1

i χ = ψj for some
j , and χ = σi ψj . Thus the K-homomorphisms of F into K are the tu distinct

maps σi ψj . We now use 7.2: since NF
E (α) ∈ E ,

NF
K (α) =

(∏

i, j σiψjα
)mn/tu =

(∏

i σi
(∏

j ψjα
)n/u)m/t

=
(∏

i σi NF
E (α)

)m/t =
(∏

i ϕi NF
E (α)

)m/t = NE
K (NF

E (α)),

and similarly for Tr F
K (α) . �

Hilbert’s Theorem 90 is the key that opens the door behind which lie cyclic
extensions. Like many good theorems, it requires a lemma.
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Lemma 7.6. Let E and F be field extensions of K . Distinct K-homomorphisms
of E into F are linearly independent over F .

Proof. Assume that there is an equality γ1ϕ1 + · · · + γnϕn = 0, in which n > 0,
γ1, . . ., γn ∈ F are not all 0 , and ϕ1, . . ., ϕn are distinct K-homomorphisms
of E into F . Among all such equalities there is one in which n is as small as
possible. Then γi =/ 0 for all i and n � 2. Since ϕn =/ ϕ1 we have ϕnα =/ ϕ1α
for some α ∈ E . Then

γ1 (ϕ1α)(ϕ1β) + · · · + γn (ϕnα)(ϕnβ) = γ1 ϕ1(αβ) + · · · + γnϕn(αβ) = 0 and

γ1 (ϕnα)(ϕ1β) + · · · + γn (ϕnα)(ϕnβ) = 0

for all β ∈ E . Subtracting the second sum from the first yields

γ1 (ϕ1α − ϕnα)(ϕ1β) + · · · + γn−1 (ϕn−1α − ϕnα)(ϕn−1β) = 0

for all β ∈ E and a shorter equality

γ1 (ϕ1α − ϕnα)ϕ1 + · · · + γn−1 (ϕn−1α − ϕnα)ϕn−1 = 0

with a nonzero coefficient γ1 (ϕ1α − ϕnα). This is the required contradiction. �

Lemma 7.7 (Hilbert’s Theorem 90 [1897]). Let E be a finite Galois extension
of K . If Gal (E : K ) is cyclic, Gal (E : K ) = 〈 τ 〉 , then, for any α ∈ E :

(1) NE
K (α) = 1 if and only if α = τγ /γ for some γ ∈ E , γ =/ 0 .

(2) TrE
K (α) = 0 if and only if α = τγ − γ for some γ ∈ E .

Proof. If γ ∈ E , γ =/ 0, then

N(τγ ) =
∏

σ∈G στγ =
∏

σ∈G σγ = N(γ )

by 7.3, where G = Gal (E : K ) ; hence N(τγ /γ ) = 1, by 7.4.

Conversely, assume that N(α) = 1. Let [ E : K ] = n . Then Gal (E : K ) =
{ 1, τ , . . . , τ n−1 } . By 7.6, 1, τ, . . ., τn−1 are linearly independent over K ;
therefore 1 + ατ + α (τα) τ2 + · · · + α (τα) · · · (τn−2α) τn−1 =/ 0 and

δ = β + ατβ + α (τα) (τ2β) + · · · + α (τα) · · · (τn−2α) (τn−1β) =/ 0

for some β ∈ E . If N(α) = α (τα) · · · (τn−2α) (τn−1α) = 1, then

α (τδ) = ατβ + α (τα) (τ2β) + · · · + α (τα) · · · (τn−1α) (τnβ) = δ,

since τn = 1; hence α = τγ /γ , where γ = δ−1 .

Similarly, if γ ∈ E , then

Tr (τγ ) =
∑

σ∈G στγ =
∑

σ∈G σγ = Tr (γ )

by 7.3, where G = Gal (E : K ) ; hence Tr (τγ − γ ) = 0, by 7.4.

Conversely, assume that Tr (α) = 0. Since 1, τ, . . . , τn−1 are linearly inde-
pendent over K , we have 1 + τ + · · · + τn−1 =/ 0 and Tr (β) = β + τβ + · · · +
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τn−1β =/ 0 for some β ∈ E . Let

δ = ατβ + (α + τα) (τ 2β) + · · · + (α + τα + · · · + τn−2α) (τn−1β).

If Tr (α) = α + τα + · · · + τn−1α = 0, then

τδ = (τα)(τ2β) + (τα + τ2α) (τ3β)

+ · · · + (τα + τ2α + · · · + τn−2α) (τn−1β) − αβ.

Hence δ − τδ = ατβ + ατ2β + · · · + ατn−1β + αβ = α Tr (β) and α = τγ − γ ,
where γ = −δ/Tr (β) . �

Cyclic extensions are extensions with finite cyclic Galois groups. These
extensions generally arise through the adjunction of an nth root.

Definition. A cyclic extension is a finite Galois extension whose Galois group
is cyclic.

Proposition 7.8. Let n > 0 . Let K be a field whose characteristic is either 0
or not a divisor of n , and that contains a primitive nth root of unity.

If E is a cyclic extension of K of degree n , then E = K (α) , where αn ∈ K .

If E = K (α) , where αn ∈ K , then E is a cyclic extension of K , m = [ E : K ]
divides n , and αm ∈ K .

Proof. By the hypothesis, K contains a primitive nth root of unity ε ∈ K .

Let E be cyclic over K of degree n and Gal (E : K ) = 〈 τ 〉 . Since N(ε) =
εn = 1 we have τα = εα for some α ∈ E , α =/ 0, by 7.7. Then τ (αn) = (τα)n =
αn ; hence σ (αn) = αn for all σ ∈ Gal (E : K ) and αn ∈ K . Since α has n
conjugates α , τα = εα , . . . , τ n−1α = εn−1α , there are n K-homomorphisms of
K (α) into K , [ K (α) : K ] = [ E : K ] , and K (α) = E .

Now let E = K (α) , where αn = c ∈ K . We may assume that E ⊆ K and
that α /∈ K . In K , the roots of Xn − c ∈ K [X ] are α , εα , . . . , εn−1α . Hence
Xn − c is separable, its splitting field is E , and E is Galois over K .

If σ ∈ Gal (E : K ) , then σα is a root of Xn − c and σα = εiα for some i .
This provides a homomorphism of Gal (E : K ) into the multiplicative group of
all nth roots of unity, which is injective since α generates E . The latter group
is cyclic of order n ; hence Gal (E : K ) is cyclic and its order m divides n . Let
Gal (E : K ) = 〈 τ 〉 and τα = ε jα ; then ε j has order m , τ (αm) = (τα)m = αm ,
σαm = αm for all σ ∈ Gal (E : K ) , and αm ∈ K . �

Primitive nth roots of unity are readily adjoined if needed in 7.8:

Proposition 7.9. A root of unity ε ∈ K is a primitive nth root of unity for some
n > 0 ; if K has characteristic p =/ 0 , then p does not divide n ; K (ε) is a Galois
extension of K of degree at most n ; and Gal (K (ε) : K ) is abelian.

The proof is an enjoyable exercise. In 7.9, it may happen that [ K (ε) : K ] < n ,
and that Gal (K (ε) : K ) is not cyclic; this makes more fine exercises.
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If K has characteristic p =/ 0, then the identity (α − β)p = α p − β p shows
that pth roots are unique, but not separable, and are quite incapable of generating
cyclic extensions of K of degree p . Hence 7.8 fails in this case. To obtain cyclic
extensions of degree p we must replace X p − c by another polynomial:

Proposition 7.10 (Artin-Schreier). Let K be a field of characteristic p =/ 0 .

If E is a cyclic extension of K of degree p , then E = K (α) , where α p − α ∈ K .

If E = K (α) , where α p − α ∈ K , α /∈ K , then E is a cyclic extension of K of
degree p .

Proof. Let E be cyclic over K of degree p and Gal (E : K ) = 〈 τ 〉 . Since
Tr (1) = p1 = 0 we have τα − α = 1 for some α ∈ E , by 7.7. Then τ i α = α + i
for all i ; hence α has p conjugates τ i α = α + i , 0 � i < p ; there are p
K-homomorphisms of K (α) into K ; [ K (α) : K ] = [ E : K ] ; and K (α) = E .

Now let E = K (α) , where c = α p − α ∈ K and α /∈ K . We may assume
that E ⊆ K . Since K has characteristic p , (α + 1)p − (α + 1) = α p − α = c ;
therefore the roots of X p − X − c ∈ K [X ] are α , α + 1, . . . , α + p − 1.
Hence X p − X − c is separable, its splitting field is E , and E is Galois over
K . Moreover, Irr (α : K ) divides X p − X − c ; hence [ E : K ] � p . We
have τα = α + 1 for some τ ∈ Gal (E : K ) ; then τ iα = α + i =/ α for all
i = 1, 2, . . ., p − 1, τ pα = α , and τ has order p in Gal (E : K ) . Therefore
Gal (E : K ) = 〈 τ 〉 , Gal (E : K ) has order p , and [ E : K ] = p . �

Exercises
1. Show that TrE

K (α) = 0 for all α ∈ E when E is not separable over K.

2. Show that TrE
K (α) =/ 0 for some α ∈ E when E is separable over K.

3. Find NE
Q

(α) and Tr E
Q

(α) when α ∈ E = Q(
√

n) ⊆ R , where n > 0 .

4. Find NE
Q

(α) and Tr E
Q

(α) when α ∈ E = Q(i
√

n) ⊆ C , where n > 0 .

5. Find the units of Q[i
√

n ] ⊆ C , where n is a positive integer.

6. Let α =
√

2 +
√

3 and E = Q(α) ⊆ R . Find NE
Q

(α) and Tr E
Q

(α) .

7. Let α =
√

2 + i
√

3 and E = Q(α) ⊆ C . Find NE
Q

(α) and Tr E
Q

(α) .

8. Show that a root of unity is a primitive nth root of unity for some n > 0 , where p does
not divide n if the characteristic is p =/ 0 .

9. Show that K (ε) is a Galois extension of K of degree at most n when ε ∈ K is a
primitive nth root of unity.

10. Show that Gal (K (ε) : K ) is abelian when ε ∈ K is a root of unity.

11. Show that [ K (ε) : K ] < n may happen when ε ∈ K is a primitive nth root of unity.
(The author buried an example somewhere in this book but lost the map.)

12. Show that Gal (K (ε) : K ) need not be cyclic when ε ∈ K is a primitive nth root of
unity.
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8. Solvability by Radicals

“Radical” is a generic name for nth roots. A polynomial equation is solvable by
radicals when its solutions can be reached by successive adjunctions of nth roots
(for various n ). We saw in Section 5 that equations of degree at most 4 generally
have this property. This section gives a more refined definition of solvability by
radicals, and relates it to the solvability of Galois groups. (In fact, solvable groups
are named for this relationship.) The main application is Abel’s theorem that
general equations of degree 5 or more are not solvable by radicals.

Solvability. By 7.8, extensions generated by an nth root coincide with cyclic
extensions, except in characteristic p =/ 0, where Proposition 7.10 shows that roots
of polynomials X p − X − c are a better choice than pth roots (roots of X p − c ).
Accordingly, we formally define radicals as follows.

Definitions. An element α of a field extension of K is radical over K when
either αn ∈ K for some n > 0 and the characteristic of K does not divide n , or
α p − α ∈ K where p =/ 0 is the characteristic of K . A radical extension of K is
a simple extension E = K (α) , where α is radical over K .

Definitions. A field extension K ⊆ E is solvable by radicals, and E is
solvable by radicals over K , when there exists a tower of radical extensions
K = F0 ⊆ F1 ⊆ · · · ⊆ Fr such that E ⊆ Fr . A polynomial is solvable by
radicals over K when its splitting field is solvable by radicals over K .

Thus, E is solvable by radicals over K when every element of E “can be
reached from K by successive adjunctions of radicals”; a polynomial is solva-
ble by radicals over K when its roots have this property. More precisely, in a
tower K = F0 ⊆ F1 ⊆ · · · ⊆ Fr of radical extensions, the elements of F1 are
polynomial functions with coefficients in K of some α ∈ F1 that is radical over
K ; the elements of F2 are polynomial functions with coefficients in F1 of some
β ∈ F2 that is radical over F1 ; and so forth. We saw in Section 5 that the roots of
a polynomial of degree at most 4 can be written in this form, except perhaps when
K has characteristic 2 or 3; then polynomials of degree at most 4 are solvable by
radicals.

Readers will gain familiarity with these radical new concepts by proving their
basic properties:

Proposition 8.1. If F is solvable by radicals over K and K ⊆ E ⊆ F , then
E is solvable by radicals over K and F is solvable by radicals over E .

If K ⊆ E ⊆ F , E is solvable by radicals over K , and F is solvable by
radicals over E , then F is solvable by radicals over K .

If E is radical over K and the composite E F exists, then E F is radical
over K F .

If E is solvable by radicals over K and the composite E F exists, then E F is
solvable by radicals over K F .
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The main result of this section is the following:

Theorem 8.2. An extension of a field K is solvable by radicals if and only if it
is contained in a finite Galois extension of K whose Galois group is solvable.

Proof. Let E be solvable by radicals over K , so that E ⊆ Fr for some tower
K = F0 ⊆ F1 ⊆ · · · ⊆ Fr of radical extensions Fi = Fi−1(αi ) , where αi is
radical over Fi−1 : either α

ni
i ∈ Fi−1 for some ni > 0 and the characteristic of

K does not divide ni , or α
p
i − αi ∈ Fi−1 , where p =/ 0 is the characteristic of

K and we let ni = p . We may assume that Fr ⊆ K . We construct a better tower.
First we adjoin to K a carefully chosen root of unity, so that we can use 7.8; then
we adjoin conjugates of α1, . . ., αn to obtain a normal extension.

Let m = n1 n2 · · · nr if K has characteristic 0; if K has characteristic p =/ 0,
let n1 n2 · · · nr = pt m , where p does not divide m . In either case, if the
characteristic of K does not divide ni , then ni divides m . Let ε ∈ K be a
primitive mth root of unity. Then K (ε) contains a primitive �th root of unity for
every divisor � of m , namely εm/� . The composite K (ε) Fr is a finite extension
of K and is contained in a finite normal extension N of K ; N is the composite
of all conjugates of K (ε) Fr = K (ε, α1, . . . , αr ) and is generated over K by all
conjugates of ε, α1, . . ., αr . Let ϕ0, ϕ1, . . ., ϕn−1 be the K-homomorphisms
of Fr into K . The conjugates of αi are all ϕjαi . Let

K ⊆ K (ε) = L0 ⊆ L1 ⊆ · · · ⊆ Ls,

where s = nr and L jr+i = L jr+i−1(ϕjαi ) for all 1 � i � r and 0 � j < n .
Then Ls is generated over K by all the conjugates of ε, α1, . . ., αr , since K (ε)
already contains all the conjugates of ε , and Ls = N . Moreover, ϕj Fi ⊆ L jr+i :
indeed, F0 = K ⊆ L jr , and ϕj Fi−1 ⊆ L jr+i−1 implies

ϕj Fi = ϕj Fi−1(αi ) = (ϕj Fi−1)(ϕjαi ) ⊆ L jr+i−1(ϕjαi ) = L jr+i .

Since αi is radical over Fi−1 , ϕjαi is radical over ϕj Fi−1 and is radical over
L jr+i−1 . Hence every Lk−1 ⊆ Lk is a radical extension; so is K ⊆ K (ε) .
Finally, E ⊆ Fr = K (α1, . . ., αr ) ⊆ N . We now have a tower of radical exten-
sions that ends with a normal extension Ls = N ⊇ E .

Let βk = ϕjαi , where k = jr + i . If α
ni
i ∈ Fi−1 , where the characteristic

of K does not divide ni , then β
ni
k ∈ Lk−1 and K (ε) ⊆ Lk−1 contains a

primitive nith root of unity, since ni divides m ; by 7.8, Lk is Galois over
Lk−1 and Gal (Lk : Lk−1) is cyclic. If α

p
i − αi ∈ Fi−1 , where p =/ 0 is the

characteristic of K , then β
p
k − βk ∈ ϕj Fi−1 ⊆ Lk−1 ; again Lk is Galois over

Lk−1 and Gal (Lk : Lk−1) is cyclic, by 7.10. Finally, K (ε) is Galois over K
and Gal (K (ε) : K ) is abelian, by 7.9. Therefore N is separable over K, and is
a Galois extension of K . By 3.11, the intermediate fields K ⊆ L0 ⊆ · · · ⊆ N
yield a normal series

1 = Gal (N : Ls) �= Gal (N : Ls−1) �= · · · �= Gal (N : L0) �= Gal (N : K )
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whose factors are abelian since they are isomorphic to Gal (Lk : Lk−1) and
Gal (L0 : K ) . Therefore Gal (N : K ) is solvable.

For the converse we show that a finite Galois extension E ⊆ K of K with
a solvable Galois group is solvable by radicals over K ; then every extension
K ⊆ F ⊆ E is solvable by radicals, by 8.1. Let n = [ E : K ] .

Again we first adjoin a primitive mth root of unity ε to K , where m = n
if K has characteristic 0 and pt m = n if K has characteristic p =/ 0 and p
does not divide m . As above, F = K (ε) contains a primitive �th root of unity
for every divisor � of m . By 3.11, E F is a finite Galois extension of F , and
Gal (E F : F) ∼= Gal (E : E ∩ F) � Gal (E : K ) ; hence [ E F : F ] divides n ,
Gal (E F : F) is solvable, and Gal (E F : F) has a composition series

1 = H0
�= H1

�= · · · �= Hr−1
�= Hr = Gal (E F : F)

whose factors Hi/Hi−1 are cyclic of prime orders. This yields a tower

F = Fr ⊆ Fr−1 ⊆ · · · ⊆ F1 ⊆ F0 = E F

of fixed fields Fi = FixE F (Hi ) ; by 3.11, Fi−1 is a Galois extension of Fi
and Gal (Fi−1 : Fi ) ∼= Hi/Hi−1 is cyclic of prime order pi . If pi is not the
characteristic of K , then pi divides n , pi divides m , F contains a primitive
pith root of unity, and Fi−1 is a radical extension of Fi , by 7.8. If pi is the
characteristic of K , then again Fi−1 is a radical extension of Fi , by 7.10. Hence
E F is solvable by radicals over F , and so is E ⊆ E F , by 8.1. �

Abel’s theorem states, roughly, that there is no formula that computes the
roots of a polynomial of degree 5 or more from its coefficients, using only sums,
products, quotients, and nth roots. For a more precise statement, define:

Definition. The general polynomial of degree n over a field K is

g(X) = An Xn + An−1 Xn−1 + · · · + A0 ∈ K (A0, A1, . . ., An)[X ],

where A0 , A1 , . . . , An are indeterminates. �

The general equation of degree n is An Xn + An−1 Xn−1 + · · · + A0 = 0.
The general equation of degree 2 is solvable by radicals when K does not have
characteristic 2: the formula

X1, X2 =
−B ±

√

B2 − 4AC
2A

for the roots of AX2 + B X + C shows that they lie in a radical extension of
K (A, B, C) . Longer but similar formulas in Section 5 show that the general
polynomials of degree 3 and 4 are solvable by radicals when K does not have
characteristic 2 or 3. For the general polynomial, solvability by radicals expresses
the idea that there is a formula that computes the roots of a polynomial from its
coefficients, using only field operations and radicals (nth roots, and the roots of
polynomials X p − X − c in case K has characteristic p =/ 0).
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Theorem 8.3 (Abel [1824]). The general polynomial of degree n is solvable by
radicals if and only if n � 4 .

Abel’s theorem follows from the relationship between coefficients and roots,
and from properties of the elementary symmetric polynomials.

Definitions. A polynomial f ∈ K [X1, ..., Xn] or rational fraction f ∈
K (X1, ..., Xn) is symmetric when f (Xσ1, Xσ2, . . ., Xσn) = f (X1, ..., Xn) for
every permutation σ ∈ Sn . The elementary symmetric polynomials s0 , s1 , . . . ,
sn in X1 , . . . , Xn are s0 = 1 and

sk(X1, ..., Xn) =
∑

1�i1<i2<···<ik�n Xi1
Xi2

· · · Xik
, k = 1, 2, . . . , n.

That s1 , . . . , sn are symmetric can be proved directly but also follows from:

Proposition 8.4. In K (X1, ..., Xn)[X ] ,

(X − X1)(X − X2) · · · (X − Xn) =
∑

0�k�n (−1)k sk(X1, ..., Xn) Xn−k .

Proof. Expanding (X − X1)(X − X2) · · · (X − Xn) yields a sum whose
terms are all products t1t2 · · · tn in which, for every 1 � i � n , either ti = X
or ti = −Xi . A product t1t2 · · · tn in which ti = −Xi happens k times equals
(−1)k Xi1

Xi2
· · · Xik

Xn−k for some 1 � i1 < i2 < · · · < ik � n . The sum of all

such products is (−1)k sk(X1, ..., Xn) Xn−k . �

Proposition 8.5. For any field K , K (X1, ..., Xn) is a Galois extension of
K (s1, . . . ,sn) , whose Galois group is isomorphic to the symmetric group Sn .

Proof. For every σ ∈ Sn , σ : f (X1, ..., Xn) �−→ f (Xσ1, Xσ2, . . ., Xσn) is
an automorphism of K (X1, ..., Xn) . Then G = { σ

∣
∣ σ ∈ Sn } is a finite group

of automorphisms of E = K (X1, ..., Xn) . By 3.6, E is a finite Galois extension
of S = FixE (G) and Gal (E : S) = G ∼= Sn .

Now, S consists of all symmetric rational fractions. Hence s1 , . . . , sn ∈ S and
L = K (s1, . . .,sn) ⊆ S . By 8.4, f (X) = (X − X1)(X − X2) · · · (X − Xn) ∈
L[X ] . Hence E is a splitting field of the separable polynomial f over L , and
is Galois over L . An L-automorphism of E must permute the roots of f and
is uniquely determined by its values at X1 , . . . , Xn ; therefore there are at most
n! L-automorphisms of E , and [ E : L ] � n! . But L ⊆ S and [ E : S ] = n! .
Therefore [ E : L ] = [ E : S ] , L = S , and Gal (E : L) ∼= Sn . �

Corollary 8.6. Every symmetric rational fraction of X1 , . . . , Xn is a rational
function of the elementary symmetric polynomials in X1 , . . . , Xn .

Proof. This follows from the equality S = L in the proof of 8.5. �

Corollary 8.7. The elementary symmetric polynomials s1, . . ., sn are alge-
braically independent over K in K (X1, ..., Xn) .

Proof. By IV.8.6, K (X1, ..., Xn) has transcendence degree n and a transcen-
dence base B ⊆ {s1 , . . . , sn } ; hence B = {s1 , . . . , sn } . �
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Corollary 8.8. Every finite group is isomorphic to a Galois group.

Proof. This follows from Proposition 8.5 since, by Cayley’s theorem II.3.2,
every finite group is isomorphic to a subgroup of some Sn . �

We now return to the general polynomial of degree n ,

g(X) = An Xn + An−1 Xn−1 + · · · + A0 ∈ K (A0, A1, . . ., An)[X ].

Proposition 8.9. The Galois group of the general polynomial of degree n is
isomorphic to the symmetric group Sn .

Proof. We show that the general polynomial of degree n can also be defined
by its roots. Let S = K (A)(s1, . . .,sn) ⊆ K (A)(X1, ..., Xn) and

f (X) = A (X − X1)(X − X2) · · · (X − Xn) ∈ K (A, X1, ..., Xn)[X ].

By 8.4, the coefficients a0, a1, . . ., an−1 of f are

an−k = (−1)k A sk(X1, ..., Xn) ∈ S.

Hence f ∈ S[X ] , and K (A)(X1, ..., Xn) is a splitting field of f over S . By
8.5, K (A)(X1, ..., Xn) is Galois over S , and its Galois group is isomorphic to
Sn . Thus the Galois group of f is isomorphic to Sn . Now, a0, a1, . . . , an−1
are algebraically independent over K (A) , by 8.7. Hence there is an isomorphism
S = K (a0, . . . , an−1, A) ∼= K (A0, A1, . . ., An) that sends f to g . Therefore the
Galois groups of f and g are isomorphic. �

Abel’s theorem now follows from Proposition 8.9 and Theorem 8.2, since we
saw in Section II.9 that Sn is solvable if and only if n � 4.

Exercises

1. Show that every extension of degree 2 is a radical extension, except perhaps in charac-
teristic 2 .

2. Let K have characteristic p =/ 0 and let c ∈ K . Show that X p − X − c ∈ K [X ]
either splits in K or is irreducible in K [X ] .

3. Prove the following: if F is solvable by radicals over K and K ⊆ E ⊆ F , then E is
solvable by radicals over K and F is solvable by radicals over E .

4. Prove the following: if K ⊆ E ⊆ F , E is solvable by radicals over K , and F is
solvable by radicals over E , then F is solvable by radicals over K .

5. Prove the following: if E is radical over K and the composite E F exists, then E F is
radical over K F .

6. Prove the following: if E is solvable by radicals over K and the composite E F exists,
then E F is solvable by radicals over K F .

7. Find fields K ⊆ E ⊆ F such that F is normal over K but E is not normal over K .

8. Find fields K ⊆ E ⊆ F such that E is normal over K and F is normal over E but
F is not normal over K .
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9. Geometric Constructions

The geometric constructions in question are procedures in plane Euclidean geome-
try that construct points and other figures using only a straightedge and a compass;
with these antique instruments one can draw a straight line through any two points
and a circle with any center and radius. Ancient geometers devised constructions
by straightedge and compass for many specific tasks, but, in certain cases which
became, in their time, famous problems, no construction could be found, despite
repeated efforts. This section explains why.

Constructibility. Constructions by straightedge and compass need at least two
points P and Q to start, from which points, straight lines, and circles can be
constructed. In our definition, “constructible” is short for “constructible from P
and Q by straightedge and compass”; a line is a straight line or a circle.

Definition. Let P and Q be two points in the Euclidean plane.

(a) P and Q are constructible;

(b) if A =/ B and C are constructible points, then the straight line AB and the
circle with radius AB and center C are constructible;

(c) intersections of constructible lines are constructible;

(d) a point or line is constructible when it can be obtained from P and Q by
finitely many applications of (b) and (c).

For example, when B, C =/ A are constructible points, the fourth point of the
parallelogram ABC D is constructible: the circle with radius AB and center C
is constructible; the circle with radius AC and center B is constructible; their
intersections, which include D , are constructible. In particular, the straight line
through C that is parallel to AB is constructible. Felicitously, this construction
works even when A , B , and C lie on the same straight line.

Constructibility becomes clearer with a Cartesian system of coordinates that
represents each point in the Euclidean plane by a pair of real numbers, or by a
single complex number. We put the origin O at P and choose axes and units of
length so Q is represented by the complex number 1.

Definition. A complex number is constructible (from 0 and 1) when the corre-
sponding point in the Euclidean plane is constructible (from P and Q ).

Proposition 9.1. Constructible complex numbers constitute a subfield of C .

Proof. The numbers 0 and 1 are constructible. Let a, b ∈ C be constructible
and let A, B be the corresponding points. Then a + b corresponds to the fourth
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point C of the parallelogram O ABC and is constructible; a − b corresponds to
the fourth point D of the parallelogram B O AD and is constructible.

The product ab corresponds to a point C such that the triangles O Q A and
O BC are similar. The point R on O B such that O R = O Q = 1 is constructible.
Then the triangle O RD , which is equal to O Q A , is constructible. The straight
line through B that is parallel to RD is constructible. It intersects O D at C , so
C is constructible:

The point E that corresponds to a/b when b =/ 0 is likewise constructible, since
the triangles O QE and O B A are similar. �

In particular, rational numbers are constructible. Readers will enjoy proving
the following properties:

Lemma 9.2. If z2 is constructible, then z is constructible. If z = x + iy , where
x, y ∈ R , then z is constructible if and only if x and y are constructible.

Main result. In analytic geometry, intersections of straight lines and circles
are found by solving linear and quadratic equations. Hence constructible complex
numbers are algebraic over Q . Our main result tells the complete story:

Theorem 9.3. A complex number is constructible (from 0 and 1) if and only if
it is algebraic over Q and its degree is a power of 2.

Proof. Call a complex number 2-constructible when it is algebraic over Q and
its degree over Q is a power of 2.

Lemma 9.4. A complex number z is 2-constructible if and only if it belongs to
a finite extension of Q whose degree is a power of 2, if and only if it belongs to a
finite normal extension of Q whose degree is a power of 2.

The proof is an exercise. In particular, 2-constructible complex numbers are
those that can be reached from Q by successive adjunctions of square roots. We
want to show that a complex number is constructible if and only if it is 2-con-
structible. Not surprisingly, these two kinds of numbers have the same basic
properties:

Lemma 9.5. The 2-constructible complex numbers constitute a subfield of C .

Proof. Let a, b ∈ C be 2-constructible. By 9.4, a and b belong to finite nor-
mal extensions E and F of Q whose degrees are powers of 2. By 3.2, 3.11, the
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composite E F is a Galois extension of Q , whose degree is a power of 2 since
the orders of Gal (F : Q) and Gal (E F : F) ∼= Gal (E : E ∩ F) � Gal (E : Q)
are powers of 2. Hence a − b ∈ E F and a/b ∈ E F are 2-constructible. �

Lemma 9.6. If z2 is 2-constructible, then z is 2-constructible. If x, y ∈ R , then
z = x + iy is 2-constructible if and only if x and y are 2-constructible.

We leave this as another exercise and prove 9.3. By definition, a point or line
(straight line or circle) is constructible from the two given points P and Q when
it can be obtained from P and Q by finitely many applications of (b) and (c).
That a constructible complex number z is 2-constructible is shown by induction
on the number of uses of (c) in the construction of the corresponding point. If (c)
is not used, then z is 0 or 1 and is 2-constructible.

Call a line 2-constructible when it has an equation with 2-constructible coeffi-
cients. Let the points A , B =/ A , and C correspond to 2-constructible numbers.
Their coordinates are 2-constructible, by 9.6. The straight line AB , and the circle
with radius AB and center C , are 2-constructible, since their equations

(xB − xA)(y − yA) = (yB − yA)(x − xA),

(x − xC )2 + (y − yC )2 = (xA − xB)2 + (yA − yB)2

have 2-constructible coefficients, by 9.5. Now, the intersection of two 2-constructi-
ble straight lines has2-constructible coordinates. The intersections of a2-construct-
ible straight line y = ax + b and a 2-constructible circle x2 + y2 + cx + dy + e = 0
are found from the quadratic equation

x2 + (ax + b)2 + cx + d(ax + b) + e = 0,

whose coefficients and discriminant δ are 2-constructible; if δ > 0, then
√

δ

is 2-constructible by 9.6, and the intersections have 2-constructible coordinates.
The intersections of two 2-constructible circles x2 + y2 + ax + by + c = 0 and
x2 + y2 + dx + ey + f = 0 are also the intersections of x2 + y2 + ax + by + c = 0
and the 2-constructible straight line ax + by + c = dx + ey + f , and have 2-con-
structible coordinates. In each case, intersections correspond to 2-constructible
complex numbers, by 9.6. This completes the induction.

Conversely, let z ∈ C be 2-constructible. By 9.4, z belongs to a finite normal
extension E of Q whose degree is a power 2r of 2. That z is constructible is
proved by induction on r . If r = 0, then z ∈ Q is constructible. In general,
the Galois group of E over Q is a finite 2-group and has a normal series whose
factors are cyclic of order 2. Hence E has a tower Q = F0 ⊆ F1 ⊆ · · · ⊆ Fr = E
of extensions of degree 2. Now, Q does not have enough nth roots of unity to use
7.8, but we can argue as follows. Since [ E : Fr−1 ] = 2, we have E = Fr−1(α)
for some α , and q = Irr (α : Q) has degree 2, q(X) = X2 + bX + c for some
b, c ∈ Fr−1 . Then α = 1

2 (−b ±
√

b2 − 4c) and E = Fr−1(β) , where β2 =
b2 − 4c ∈ Fr−1 . Now, β2 is constructible by the induction hypothesis, β is
constructible by 9.2, and z ∈ Fr is constructible by 9.1, since z = x + βy for
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some x, y ∈ Fr−1 and x, y are constructible by the induction hypothesis. �

Applications. With Theorem 9.3 in hand we return to Euclidean geometry.

Corollary 9.7. There is no construction by straightedge and compass that can
trisect angles (split any angle into three equal parts).

Proof. If a π/3 angle could be trisected, then the complex number ε = eiπ/9

would be constructible. But ε is a primitive 18th root of unity; by 6.5, ε has
degree φ(18) = 6 over Q , and is not constructible. �

In the same spirit, readers will tackle two more problems.

Corollary 9.8. There is no construction by straightedge and compass that can
duplicate cubes (construct the side of a cube whose volume is twice the volume of
any given cube).

Corollary 9.9. There is no construction by straightedge and compass that can
square circles (construct a square whose area is that of any given circle).

The last problem is splitting a circle into n arcs of equal lengths; equivalenty,
constructing a regular polygon with n sides. Its solution requires a definition.

Definition. A Fermat prime is a prime number of the form 22n
+ 1 .

For example, 220
+ 1 = 3, 221

+ 1 = 5, 222
+ 1 = 17, 223

+ 1 = 257, and
224

+ 1 = 65537 are Fermat primes. To the author’s knowledge, no other Fermat
primes have been discovered as of this writing.

Lemma 9.10. If 2k + 1 is prime, then k is a power of 2 .

Proof. If k is not a power of 2, then k = 2i j , where j is odd. Then every
m j + 1 is divisible by m + 1, and 2k + 1 = (22i

) j +1 is divisible by 22i
+ 1. �

Corollary 9.11 (Gauss [1801]). A regular polygon with n sides can be con-
structed from its radius by straightedge and compass if and only if n is the product
of a power of 2 and distinct Fermat primes.

Thus, regular polygons with 2, 3, 4, 5, or 6 sides are constructible, but not those
with 7 sides or 9 sides.

Proof. A regular polygon with n sides is constructible from its radius if and
only if the primitive nth root of unity εn = e2iπ/n is constructible. By 6.5, εn has
degree φ(n) over Q . Write n as the product n = 2m pm1

1 · · · pmr
r of a power of

2 and positive powers of distinct odd primes. Then

φ(n) = 2m−1 pm1−1
1 (p1 − 1) · · · pmr−1

r (pr − 1).

Hence φ(n) is a power of 2 if and only if m1 = · · · = mr = 1 and p1 − 1, . . . ,
pr − 1 are powers of 2; equivalently, n is the product of a power of 2 and distinct
odd primes, which are Fermat primes by 9.10. �
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Exercises
For the following exercises, give geometric solutions.

1. Show that the y-axis is constructible.

2. Prove the following: if z = x + iy , where x, y ∈ R , then z is constructible if and only
if x and y are constructible.

3. Prove the following. Let A be a constructible point. Show that there is a constructible
point B such that O B =

√
O A . Hint: when a point R on a circle projects to a point S on a

diameter C D , then C S.DS = RS2 .

4. Prove the following: if z ∈ C and z2 is constructible, then z is constructible.

5. Devise a construction by straightedge and compass of a regular pentagon, given its radius.

For the following exercises, give algebraic solutions.

6. Show that a complex number z is 2-constructible if and only if it belongs to a finite
extension of Q whose degree is a power of 2 , if and only if it belongs to a finite normal
extension of Q whose degree is a power of 2 .

7. Prove the following: if z ∈ C and z2 is 2-constructible, then z is 2-constructible.

8. Prove the following: if z = x + iy , where x, y ∈ R , then z is 2-constructible if and
only if x and y are 2-constructible.

9. Prove the following: if K does not have characteristic 2 , then every extension K ⊆ E
of degree 2 is a radical extension.

10. Show that there is no construction by straightedge and compass that can duplicate
arbitrary cubes.

11. Show that there is no construction by straightedge and compass that can square arbitrary
circles. (You may take it for granted that π is transcendental.)



VI
Fields with Orders and Valuations

The results of Artin and Schreier [1926] on ordered fields, presented in Sections
1 and 2, extend known properties of R and C and give new insights into the rela-
tionship of a field to its algebraic closure. The remaining sections study valuations
and completions, which have become valuable tools of algebraic geometry.

1. Ordered Fields

An ordered field is a field with a compatible total order relation. This section
contains basic properties, and a universal property of R .

Definition. An ordered field (short for “totally ordered field”) is a field F
together with a total order relation � on F such that, for all x, y, z ∈ F :

(1) x < y implies x + z < y + z ;

(2) if z > 0 , then x < y implies xz < yz .

For instance, Q and R are ordered fields (with their usual order relations). The
exercises give other examples.

Some familiar properties of Q and R extend easily to all ordered fields:

x > 0 if and only if −x < 0 (otherwise, say, x > 0 and −x > 0, and then
0 = x + (−x) > x > 0);

x > y if and only if x − y > 0;

x < y if and only if −x > −y ;

x > y > 0 implies y−1 > x−1 > 0;

if z < 0, then −z > 0 and x < y implies xz = (−x)(−z) > (−y)(−z) = yz ;

x2 > 0 for all x =/ 0, since x < 0 implies x2 = (−x)(−x) > 0; in particular,
1 = 12 > 0;

ordered fields have characteristic 0 (since 0 < 1 < 1 + 1 < 1 + 1 + 1 < · · · ).

Thus, not every field can be an ordered field; for example, C cannot be ordered,
since an ordered field cannot have −1 = i2 > 0. In general:
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Proposition 1.1. A field F can be ordered if and only if −1 is not a sum of
squares of elements of F , if and only if 0 is not a nonempty sum of nonzero squares
of elements of F .

Proof. If −1 =
∑

i x2
i , then 0 = 1 +

∑

i x2
i is a sum of squares. Conversely, if

0 =
∑

i x2
i with, say, xk =/ 0, then −x2

k =
∑

i =/ k x2
i and −1 =

∑

i =/ k (xi/xk)
2

is a sum of squares. In an ordered field, squares are nonnegative, and −1 < 0 is
not a sum of squares.

Conversely, assume that −1 is not a sum of squares. Let S be the set of all
nonempty sums of squares of nonzero elements of F . Then 0 /∈ S , −1 /∈ S ,
and S is closed under addition. Morover, S is closed under multiplication, since
(∑

i x2
i
)(∑

j y2
j
)

=
∑

i, j (xi yj )
2 , and is a multiplicative subgroup of F\{0} ,

since 1 ∈ S , and x =
∑

i x2
i ∈ S implies x−1 = x/x2 =

∑

i (xi/x)2 .

By Zorn’s lemma there is a subset M of F that contains S , is closed under
addition, is a multiplicative subgroup of F\{0} (in particular, 0 /∈ M ), and is
maximal with these properties. Then M , {0} , and −M = { x ∈ F

∣
∣ − x ∈ M }

are pairwise disjoint (if x ∈ M ∩ (−M) , then 0 = x + (−x) ∈ M ). We show that
F = M ∪ {0} ∪ (−M) ; readers will easily deduce that F becomes an ordered
field, when ordered by x < y if and only if y − x ∈ M .

Suppose that a ∈ F , a =/ 0, and −a /∈ M . Let

M ′ = { x + ay
∣
∣ x, y ∈ M ∪ {0} , with x =/ 0 or y =/ 0 } .

Then S ⊆ M ⊆ M ′ ; M ′ is closed under addition, like M , and closed under
multiplication, since x, y, z, t ∈ M ∪ {0} implies (x + ay)(z + at) = (xz +
a2 yt) + a(yz + xt) with xz + a2 yt, yz + xt ∈ M ∪ {0} since a2 ∈ S ⊆ M .
Also, 0 /∈ M ′ : x + ay =/ 0 when x = 0 =/ y or x =/ 0 = y , or when x, y ∈ M
(otherwise, a = −x/y ∈ −M ). Moreover, 1 ∈ S ⊆ M ′ , and t = x + ay ∈ M ′

implies t−1 = t/t2 = (x/t2) + a(y/t2) ∈ M ′ (since t2 ∈ M ). Thus, M ′ is a
multiplicative subgroup of F\{0} . Therefore M ′ = M , and a ∈ M . �

Archimedean fields. Since an ordered field F has characteristic 0, it contains
a subfield Q = {m1/n1

∣
∣ m, n ∈ Z, n =/ 0 } , which is isomorphic to Q as a field.

In fact, Q is isomorphic to Q as an ordered field: we saw that n1 > 0 in F when
n > 0 in Z ; hence m1/n1 > 0 in F when m/n > 0 in Q , and a1/b1 > c1/d1
in F if and only if a/b > c/d in Q . We identify Q with Q , so that Q is an
ordered subfield of F .

Definition. An ordered field F is archimedean when every positive element of
F is less than a positive integer.

For example, Q and R are archimedean, but not every ordered field is archi-
medean (see the exercises). The next result finds all archimedean ordered fields.

Theorem 1.2. An ordered field is archimedean if and only if it is isomorphic as
an ordered field to a subfield Q ⊆ F ⊆ R of R .
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Proof. Ordered subfields of R are archimedean, since R is archimedean.

Conversely, let F be an archimedean ordered field. We show that Q ⊆ F is
dense in F , that is, between any two x < y in F lies some r ∈ Q . Since F is
archimedean, there exist integers �, m, n > 0 such that −� < x < y < m and
1/(y − x) < n ; then 0 < 1/n < y − x . Now (i/n)− � > x when i � n(� + m) .
Hence there is a least j > 0 such that ( j/n) − � > x . Then ( j/n) − � < y ,
since (i/n) − � � y implies ((i − 1)/n) − � � y − (1/n) > x .

To embed F into R we define limits of sequences in F : L = limF xn if
and only if L ∈ F and, for every positive ε ∈ Q , L − ε < xn < L + ε

holds for all sufficiently large n . If limF xn exists, it is unique, since Q is
dense in F . Moreover, sequences with limits in F are Cauchy sequences: if
limF an exists, then, for every positive ε ∈ Q , − ε < am − an < ε holds for
all sufficiently large m, n . Readers with a yen for analysis will easily prove the
following limit laws: limF (an + bn) =

(

limF an
)

+
(

limF bn
)

and limF (an bn) =
(

limF an
) (

limF bn
)

, whenever limF an and limF bn exist; the usual arguments
work since F is archimedean.

Every element x of F is the limit in F of a Cauchy sequence of rationals:
since Q is dense in F , there exists for every n > 0 some an ∈ Q such that
x − (1/n) < an < x + (1/n) ; then limF an = x . If (bn)n>0 is another sequence
of rational numbers such that limF bn = x , then, for every positive ε ∈ Q ,
|an − bn | < ε holds for all sufficiently large n , so that an and bn have the same
limit in R . Hence a mapping λ : F −→ R is well defined by

λ(x) = limn→∞ an whenever x = limF an and an ∈ Q .

If x ∈ Q , then λ(x) = x , since we can let an = x for all n . Our two limits laws
show that λ a homomorphism. If x > 0 in F , then x−1 < m for some integer
m > 0 and 1/m < x ; we can arrange that x − (1/n) < an < x + (1/n) and
1/m < an for all n ; then λ(x) = limF an � 1/m > 0. Hence x < y implies
λ(x) < λ(y) ; the converse holds, since x � y would imply λ(x) � λ(y) . Thus
F is isomorphic to λ(F) , as an ordered field, and Q ⊆ λ(F) ⊆ R . �

Exercises

Prove the following:

1. A field F is an ordered field, and P ⊆ F is its set of positive elements, if and only
if 0 /∈ P , P is closed under addition and multiplication, F = P ∪ {0} ∪ (−P) (where
−P = { x ∈ F

∣
∣ − x ∈ P } ), and F is ordered by x < y if and only if y − x ∈ P .

2. Q can be made into an ordered field in only one way.

3. R can be made into an ordered field in only one way.

4. Q(
√

2) ⊆ R can be made into an ordered field in exactly two ways.
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5. If F is an ordered field, then so is F(X) , when f/g > 0 if and only if a/b > 0 , where
a and b are the leading coefficients of f and g ; but F(X) is not archimedean.

6. If F is an ordered field, then so is F(X) , when f/g > 0 if and only if f/g = Xn f0/g0 ,
where n ∈ Z and f0(0) > 0 , g0(0) > 0; but F(X) is not archimedean.

7. Let F be an archimedean ordered field. Without using Theorem 1.2, show that limF (an +
bn) =

(
limF an

)
+
(

limF bn
)

whenever limF an and limF bn exist.

8. Let F be an archimedean ordered field. Without using Theorem 1.2, show that
limF (an bn) =

(
limF an

) (
limF bn

)
whenever limF an and limF bn exist.

2. Real Fields

This section studies fields that can be ordered. A number of properties of R extend
to these fields. The Artin-Schreier theorem, which concludes the section, throws
some light on the relationship between a field and its algebraic closure.

Formally real fields are fields that can be ordered:

Definition. A field F is formally real when there is a total order relation on F
that makes F an ordered field.

By 1.2, a field F is formally real if and only if −1 is not a sum of squares
of elements of F . For example, every subfield of R is formally real. If F is
formally real, then so is F(X) (see the exercises for Section 1).

Proposition 2.1. If F is a formally real field and α2 ∈ F , α2 > 0 , then F(α)
is formally real.

Proof. We may assume that α /∈ F . Then every element of F(α) can be
written in the form x + αy for some unique x, y ∈ F . If α2 > 0 in F , then F(α)
is formally real, since

−1 =
∑

i (xi + αyi )
2 =

∑

i (x2
i + α2 y2

i ) + α
∑

i (2xi yi )

for some xi , yi ∈ F would imply −1 =
∑

i (x2
i + α2 y2

i ) � 0. �
On the other hand, C = R(i) is not formally real.

Proposition 2.2. If F is a formally real field, then every finite extension of F
of odd degree is formally real.

Proof. This is proved by induction on n , simultaneously for all F and all
E ⊇ F of odd degree n = [ E : F ] . There is nothing to prove if n = 1. Let
n > 1. If α ∈ E\F and F � F(α) � E , then [ F(α) : F ] and [ E : F(α) ] are
odd, since they divide n ; hence F(α) and E are formally real, by the induction
hypothesis. Now let E = F(α) . Then q = Irr (α : F) has odd degree n ; the
elements of E can be written in the form f (α) with f ∈ F[X ] and deg f < n .

If E is not formally real, then −1 =
∑

i fi (α)2 , where fi ∈ F[X ] and
deg fi < n . Hence q divides 1 +

∑

i f 2
i and 1 +

∑

i f 2
i = qg for some
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g ∈ F[X ] . Since the leading coefficients of all f 2
i are all positive in F , deg

(

1 +
∑

i f 2
i
)

= maxi deg ( f 2
i ) is even and less than 2n . Since deg q = n is odd, deg g

is odd and less than n , and g has an irreducible factor r whose degree is odd and
less than n . Now, r has a root β ∈ F and 1 +

∑

i fi (β)2 = q(β)g(β) = 0 in
F(β) , so that F(β) is not formally real. This contradicts the induction hypothesis
since [ F(β) : F ] = deg r is odd and less than n . �

Real closed fields. We saw that every field has a maximal algebraic extension
(its algebraic closure). Formally real field have a similar property.

Definition. A field R is real closed when it is formally real and there is no
formally real algebraic extension E � R .

For example, R is real closed: up to R-isomorphism, the only algebraic exten-
sion E � R of R is C , which is not formally real.

Theorem 2.3. A formally real field R is real closed if and only if (i) every
positive element of R is a square in R , and (ii) every polynomial of odd degree in
R[X ] has a root in R ; and then R = R(i) , where i2 = −1 .

Proof. Readers will enjoy proving that real closed fields have properties (i)
and (ii). Now let R be a formally real field in which (i) and (ii) hold. Then R
has no finite extension E � R of odd degree: if [ E : R ] is odd and α ∈ E ,
q = Irr (α : R) , then deg q = [ R(α) : R ] divides [ F : R ] and is odd, q has a
root in R by (ii), deg q = 1, and α ∈ R , so that E = R .

Let C = R(i)⊆ R , where i2 = −1. We show that every element a + bi of C is
a square in C . First, every a ∈ R is a square in C , by (i) (if a < 0, then −a = y2

and a = (iy)2 for some y ∈ R ). Now let b =/ 0. We have a + bi = (x + yi)2

if and only if x2 − y2 = a and 2xy = b , and 2 > 0 in R since R is formally
real. With y = b/2x the first equation reads x4 − ax2 − b2

4 = 0. This quadratic
equation in x2 has two solutions s1, s2 ∈ R , since its discriminant is a2 + b2 > 0.

Moreover, s1s2 = − b2
4 < 0, so that s1 , say, is positive. Then s1 = x2 for some

x ∈ R , and then a + bi = (x + ib/2x)2 .

Then every quadratic polynomial f ∈ C[X ] has a root in C , since its discrim-
inant has a square root in C . Hence C[X ] contains no irreducible polynomial of
degree 2. Then C has no extension C ⊆ E of degree 2: otherwise, E = C(α)
for any α ∈ E\C and Irr (α : C) would be irreducible of degree 2.

We show that C = C ; this implies R = C . If α ∈ C , then α and its conjugates
over R generate a finite Galois extension E of C , which is also a finite Galois ex-
tension of R . Then G = Gal (E : R) has even order |G| = [ E : R ] = 2[ E : C ] .
If S is a Sylow 2-subgroup of G and F = FixE (S) is its fixed field, then
[ F : R ] = [ G : S ] is odd, which we saw implies F = R ; hence G = S is a
2-group. Then Gal (E : C) is a 2-group. If C � E , then Gal (E : C) has a
subgroup of index 2, whose fixed field F ′ has degree 2 over C , which we saw
cannot happen; therefore E = C , and α ∈ C .
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If now R � E ⊆ R is a proper algebraic extension of R , then E = R and E
is not formally real, since −1 is a square in C . Hence R is real closed. �

Wher R = R , this argument gives a more algebraic proof that C is algebraically
closed, based on properties (i) and (ii) of R .

Corollary 2.4. A real closed field R can be made into an ordered field in only
one way.

Proof. Namely, x � y if and only if y − x = a2 for some a ∈ R , by 2.3. �

Corollary 2.5. If R is real closed, then f ∈ R[X ] is irreducible if and only if
either f has degree 1 , or f has degree 2 and no root in R .

This is proved like the similar property of R , as readers will happily verify.

Corollary 2.6. The field of all algebraic real numbers is real closed.

Proof. “Algebraic” real numbers are algebraic over Q ; they constitute a field
A . This field A has properties (i) and (ii) in Theorem 2.3, since real numbers that
are algebraic over A are algebraic over Q . �

The exercises give other properties of R that extend to all real closed fields.

Real closure. We now find maximal real closed algebraic extensions.

Definition. A real closure of an ordered field F is a real closed field that is
algebraic over F , and whose order relation induces the order relation on F .

Proposition 2.7. Every ordered field has a real closure.

Proof. Let F be an ordered field. The subfield E of F generated by all
square roots of positive elements of F is formally real: if −1 =

∑

i β2
i in E ,

then −1 =
∑

i β2
i in F(α1, . . . , αn) for some square roots α1, . . ., αn of positive

elements of F , and F(α1, . . ., αn) is not formally real, contradicting 2.1.

By Zorn’s lemma there is a subfield E ⊆ R of F that is formally real and
is maximal with this property. Then R is real closed, since a proper algebraic
extension of R is, up to R-isomorphism, contained in R and cannot be formally
real by the maximality of R ; R is algebraic over F ; and the order relation on R
induces the order relation on F : positive elements of F are squares in E ⊆ R
and are positive in R , whence negative elements of F are negative in R . �

It is known that every order preserving homomorphism of F into a real closed
field R extends to an order preserving homomorphism of any real closure of F
into R ; hence any two real closures of F are isomorphic as ordered fields.

The Artin-Schreier theorem is another characterization of real closed fields.

Theorem 2.8 (Artin-Schreier [1926]). For a field K =/ K the following condi-
tions are equivalent: (1) K is real closed; (2) [ K : K ] is finite; (3) there is an
upper bound for the degrees of irreducible polynomials in K [X ] .
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Thus, if [ K : K ] is finite, then [ K : K ] = 2; either the irreducible polynomials
in K [X ] have arbitrarily high degrees, or all have degree at most 2.

Proof. We start with three lemmas.

Lemma 2.9. If there is an upper bound for the degrees of irreducible polynomials
in K [X ] , then K is perfect.

Proof. If K is not perfect, then K has characteristic p =/ 0, and some c ∈ K
is not a pth power in K . We show that f (X) = X pr − c ∈ K [X ] is irreducible
for every r � 0. In K [X ] , f is a product f = q1q2 · · · qk of monic irreducible
polynomials q1, . . ., qk . Let α be a root of f in K . Then α pr

= c and
f (X) = X pr − α pr

= (X − α)pr
. Hence qi = (X − α)ti for some ti > 0. If

t = min (t1, . . ., tr ) , then q = (X − α)t is irreducible and divides q1, . . ., qk ;
therefore q1 = · · · = qk = q and f = qk . In particular, αkt = c , pr = kt , and k
is a power of p . But k is not a multiple of p , since αt ∈ K and c = (αt )k is not
a pth power in K . Therefore k = 1, and f = q is irreducible. �

Lemma 2.10. If F is a field in which −1 is a square, then F is not a Galois
extension of F of prime degree.

Proof. We show that a Galois extension E ⊆ F of F of prime degree p
(necessarily a cyclic extension) cannot be algebraically closed.

If F has characteristic p , then, by V.7.10, E = F(α) , where c = α p − α ∈ F ;
Irr (α : F) = X p − X − c ; and 1, α, . . . , α p−1 is a basis of E over F . Let
β = b0 + b1α + · · · + bp−1α

p−1 ∈ E , where b0, . . . , bp−1 ∈ F . Then

β p = bp
0 + bp

1 α p + · · · + bp
p−1α

(p−1)p

= bp
0 + bp

1 (α + c) + · · · + bp
p−1(α + c)p−1

and β p − β − cα p−1 = a0 + a1α + · · · + ap−1α
p−1 , where ap−1 = bp

p−1 −
bp−1 − c . Hence β p − β − cα p−1 =/ 0: otherwise, ap−1 = 0 and X p − X − c

disgraces irreducibility by having a root bp−1 in F . Thus X p − X − cα p−1 ∈
E[X ] has no root in E .

Now assume that F does not have characteristic p . We may also assume that E
contains a primitive pth root of unity ε : otherwise, E is not algebraically closed.
Then ε is a root of (X p − 1)/(X − 1) ∈ F[X ] and [ F(ε) : F ] < p . Therefore
[ F(ε) : F ] = 1 and ε ∈ F . Then V.7.8 yields E = F(α) , where α p ∈ F and
α /∈ F .

Assume that α has a pth root β in E . Let σ ∈ Gal (E : F) , ζ = (σβ)/β ∈ E ,
and η = (σζ )/ζ ∈ E . Then β p2

= α p ∈ F , (σβ)p2
= β p2

, (ζ p)p = 1,
ζ p ∈ F , (σζ )p = ζ p , ηp = 1, and η ∈ F . Now σβ = ζβ and σζ =
ηζ ; by induction, σ kβ = ηk(k−1)/2 ζ k β for all k , since this equality implies
σ k+1β = ηk(k−1)/2 (ηkζ k) (ζβ) = ηk(k+1)/2 ζ k+1 β . Then ηp(p−1)/2 ζ p = 1,
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since σ p = 1. If p is odd, then p divides p(p − 1)/2 and ηp(p−1)/2 = 1. If
p = 2, then ζ 4 = 1 and ζ 2 = ±1; if ζ 2 = 1, then ηp(p−1)/2 = 1; if ζ 2 = −1,
then ζ ∈ F , since F contains a square root of −1, and again ηp(p−1)/2 =
η = (σζ )/ζ = 1. In every case, ζ p = 1. Hence ζ = εt ∈ F , σβ = β , and
σα = σβ p = β p = α . But α /∈ F , so σα =/ α for some σ ∈ Gal (E : F) .
Therefore X p − α ∈ E[X ] has no root in E . �

Lemma 2.11. If [ K : K ] = n is finite, then every irreducible polynomial in
K [X ] has degree at most n , K is perfect, and K = K (i) , where i2 = −1 .

Proof. Every irreducible polynomial q ∈ K [X ] has a root α in K ; then
q = Irr (α : K ) has degree [ K (α) : K ] � n . Then K is perfect, by 2.9, and K
is Galois over K . Let i ∈ K be a root of X2 + 1 ∈ K [X ] . If K (i) � K , then
K is Galois over K (i) and Gal (K : K (i)) has a subgroup H of prime order;
then K is Galois over the fixed field F of H , of prime degree [ K : F ] = |H | ,
contradicting 2.10. Therefore K (i) = K . �

We now prove Theorem 2.8. By 2.3, (1) implies (2); (2) implies (3), by 2.11.

(3) implies (2). If every irreducible polynomial in K [X ] has degree at most n ,
then K is perfect by 2.9 and K is separable over K. Moreover, every element of
K has degree at most n over K ; hence [ K : K ] � n , by IV.6.13.

(2) implies (1). Assume that [ K : K ] is finite. By 2.11, K is perfect and
K = K (i) , where i2 = −1. Then i /∈ K , since K =/ K . Every z = x + iy ∈ K
has two conjugates, z and z = x − iy , and zz = x2 + y2 ∈ K . For every
x, y ∈ K , x + iy = u2 for some u ∈ K , and then x2 + y2 = u2 u2 = (uu)2 is a
square in K . Hence, in K , every sum of squares is a square. Now, −1 is not a
square in K , since i /∈ K . Hence K is formally real; K is real closed, since the
only algebraic extension K � E = K of K is not formally real. �

Exercises

1. Let R be a real closed field, with an order relation that makes it an ordered field. Show
that every positive element of R is a square in R .

2. Let R be a real closed field. Show that every polynomial f ∈ R[X ] of odd degree has
a root in R .

3. Prove the following: if R is real closed, then f ∈ R[X ] is irreducible if and only if
either f has degree 1 , or f has degree 2 and no root in R .

4. Prove the following: if R is real closed, f ∈ R[X ] , and f (a) f (b) < 0 for some
a < b in R , then f (r) = 0 for some a < r < b . (Hint: use Corollary 2.5.)

5. Prove the following: if K and L are real closed fields, then every homomorphism of K
into L is order preserving.

6. In an ordered field F , the absolute value of x ∈ F is |x | = max (x, −x) ∈ F .
(This is not an absolute value as defined in Section 3.) Show that |xy| = |x ||y| and that
|x + y| � |x | + |y| .
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7. Prove the following: when R is real closed and f (X) = a0 + a1X + · · · + an Xn ∈
R[X ] , then every root of f in R lies in the interval −M � x � M , where M =
max (1, |a0| + |a1| + · · · + |an |) .

8. Show that X p − a ∈ F[X ] is irreducible when p is prime, the field F does not have
characteristic p and does not contain a pth root of a , but F contains a primitive pth root of
unity and a square root of −1 .

9. Let C be an algebraically closed field. Prove that Aut (C) has no finite subgroup of
order greater than 2 .

3. Absolute Values

Absolute values on fields are generalizations of the familiar absolute values on Q ,
R , and C . They yield further insight into these fields as well as new constructions
and examples. The general definition is due to Kürschak [1913]. This section
contains general definitions and properties.

Definition. An absolute value v on a field F is a mapping v : F −→ R ,
x �−→

∣
∣x
∣
∣
v

, such that:

(a)
∣
∣x
∣
∣
v

� 0 for all x ∈ F , and
∣
∣x
∣
∣
v

= 0 if and only if x = 0 ;

(b)
∣
∣xy
∣
∣
v

=
∣
∣x
∣
∣
v

∣
∣y
∣
∣
v

for all x, y ∈ F ;

(c)
∣
∣x + y

∣
∣
v

�
∣
∣x
∣
∣
v

+
∣
∣y
∣
∣
v

for all x, y ∈ F .

Absolute values are also called real valuations or real-valued valuations, espe-
cially in the nonarchimedean cases discussed below. We denote

∣
∣x
∣
∣
v

by
∣
∣x
∣
∣ when

v is known.

Examples include the familiar absolute values on Q and R , and the absolute
value or modulus on C . Every field F also has a trivial absolute value t ,

∣
∣x
∣
∣
t = 1

for all x =/ 0. For less trivial examples let K be any field. Readers will verify that

∣
∣ f/g

∣
∣
∞ =

{
2deg f −deg g if f =/ 0,
0 if f = 0

is well defined and is an absolute value v∞ on K (X) . Similarly, an absolute
value v0 on K (X) is well defined by

∣
∣ f/g

∣
∣
0 =

{
2ord g−ord f if f =/ 0,
0 if f = 0,

where the order ord f of f (X) = a0 + a1 X + · · · + an Xn =/ 0 is the smallest
n � 0 such that an =/ 0. In these definitions, 2 can be replaced by any positive
constant (by Proposition 3.1 below). For every a ∈ K ,

∣
∣ f (X)/g(X)

∣
∣
a =

∣
∣ f (X − a)/g(X − a)

∣
∣
0
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is another absolute value va on K (X) . These absolute values are trivial on K .

By (a) and (c), an absolute value v on any field F induces a distance function

d(x, y) =
∣
∣x − y

∣
∣
v

on F , which makes F a metric space. Readers will verify that the operations on
F , and v itself, are continuous in the resulting topology. The completion of F as
a metric space is considered in the next section.

Equivalence of absolute values is defined by the following result.

Proposition 3.1. Let v and w be absolute values on a field F . The following
conditons are equivalent:

(1) v and w induce the same topology on F ;

(2)
∣
∣x
∣
∣
v

< 1 if and only if
∣
∣x
∣
∣
w

< 1 ;

(3) there exists c > 0 such that
∣
∣x
∣
∣
w

=
(∣
∣x
∣
∣
v

)c for all x ∈ F .

Proof. (1) implies (2). Assume
∣
∣x
∣
∣
v

< 1. Then limn→∞
∣
∣xn∣∣

v
= 0 and

limn→∞ xn = 0 in the topology induced by v and w . Hence the open set
{ x ∈ F ;

∣
∣x
∣
∣
w

< 1 } contains some xn ;
∣
∣xn∣∣

w
< 1 for some n ; and

∣
∣x
∣
∣
w

< 1.
Exchanging v and w yields the converse implication.

(2) implies (3). If (2) holds, then
∣
∣x
∣
∣
v

> 1 if and only if
∣
∣x
∣
∣
w

> 1, and
∣
∣x
∣
∣
v

= 1 if and only if
∣
∣x
∣
∣
w

= 1. In particular, v is trivial if and only if w is
trivial, in which case (3) holds. Now assume that v and w are not trivial. Then
∣
∣a
∣
∣
v

> 1 for some a ∈ F ,
∣
∣a
∣
∣
w

> 1, and
∣
∣a
∣
∣
w

=
(∣
∣a
∣
∣
v

)c for some c > 0.

We show that
∣
∣x
∣
∣
w

=
(∣
∣x
∣
∣
v

)c for all x ∈ F . We may assume that
∣
∣x
∣
∣
v =/ 0, 1.

Then
∣
∣x
∣
∣
v

=
(∣
∣a
∣
∣
v

)t for some t ∈ R . If m/n ∈ Q and m/n < t , then
(∣
∣a
∣
∣
v

)m/n
<
∣
∣x
∣
∣
v

,
∣
∣am∣∣

v
<
∣
∣xn∣∣

v
,
∣
∣am/xn∣∣

v
< 1,

∣
∣am/xn∣∣

w
< 1, and

(∣
∣a
∣
∣
w

)m/n
<
∣
∣x
∣
∣
w

. Similarly, m/n > t implies
(∣
∣a
∣
∣
w

)m/n
>
∣
∣x
∣
∣
w

. There-
fore

(∣
∣a
∣
∣
w

)t =
∣
∣x
∣
∣
w

, and
∣
∣x
∣
∣
w

=
(∣
∣a
∣
∣
w

)t =
(∣
∣a
∣
∣
v

)ct =
(∣
∣x
∣
∣
v

)c .

(3) implies (1). If (3) holds, then the metric spaces on F defined by v and w

have the same open disks, and therefore the same topology. �

Definition. Two absolute values on a field are equivalent when they satisfy the
equivalent conditions in Proposition 3.1.

Archimedean absolute values.

Definition. An absolute value v on a field F is archimedean when there is no
x ∈ F such that

∣
∣n
∣
∣
v

�
∣
∣x
∣
∣
v

for every positive integer n .

Here
∣
∣n
∣
∣
v

is short for
∣
∣n1
∣
∣
v

, where n1 ∈ F . The usual absolute values on Q ,
R , and C are archimedean, but not the absolute values v0 and v∞ on K (X) .
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Proposition 3.2. For an absolute value v the following are equivalent:

(1) v is nonarchimedean;

(2)
∣
∣n
∣
∣
v

� 1 for all n ∈ Z , n > 1 ;

(3)
∣
∣n
∣
∣
v

� 1 for all n ∈ Z ;

(d)
∣
∣x + y

∣
∣
v

� max (
∣
∣x
∣
∣
v
,
∣
∣y
∣
∣
v
) for all x, y ∈ F .

Proof. (1) implies (2). If
∣
∣m
∣
∣ > 1 for some m > 1, then limk→∞

∣
∣mk∣∣ = ∞

and there is no x ∈ F such that
∣
∣n
∣
∣ �

∣
∣x
∣
∣ for all n ∈ Z .

(2) implies (3) since
∣
∣− 1

∣
∣2 =

∣
∣1
∣
∣ = 1 and

∣
∣− 1

∣
∣ = 1, whence

∣
∣− m

∣
∣ =
∣
∣m
∣
∣ .

(3) implies (d). If (3) holds, then, for all n > 0,

∣
∣x + y

∣
∣n =

∣
∣
∣
∑

0�k�n

(
n
k

)

xk yn−k
∣
∣
∣

�
∑

0�k�n
∣
∣x
∣
∣k
∣
∣y
∣
∣n−k � (n + 1) max (

∣
∣x
∣
∣n,
∣
∣y
∣
∣n).

Hence
∣
∣x + y

∣
∣ � (n + 1)1/n max (

∣
∣x
∣
∣,
∣
∣y
∣
∣) for all n . This yields (d), since

limn→∞(n + 1)1/n = 1.

(d) implies (1): (d) implies
∣
∣n
∣
∣ =
∣
∣1 + · · · + 1

∣
∣ �

∣
∣1
∣
∣ = 1 for all n > 0. �

The next result is an exercise:

Corollary 3.3. A field of characteristic p =/ 0 has no archimedean absolute
value.

Absolute values on Q . Besides the usual absolute value, Q has an absolute
value vp for every prime p , which readers will verify is well defined by

∣
∣m/n

∣
∣

p =
{

p−k if m/n = pkt/u =/ 0, where p does not divide t or u,
0 if m/n = 0.

It turns out that these are essentially all absolute values on Q .

Proposition 3.4 (Ostrowski [1918]). Every nontrivial absolute value on Q is
equivalent either to the usual absolute value or to vp for some unique prime p .

Proof. Let v be a nontrivial nonarchimedean absolute value on Q . By 3.2,
∣
∣n
∣
∣
v

� 1 for all n ∈ Z . If
∣
∣n
∣
∣
v

= 1 for all 0 =/ n ∈ Z , then
∣
∣m/n

∣
∣
v

∣
∣n
∣
∣
v

=
∣
∣m
∣
∣
v

implies
∣
∣x
∣
∣
v

= 1 for all 0 =/ x ∈ Q and v is trivial. Therefore

P = { n ∈ Z ;
∣
∣n
∣
∣
v

< 1 } =/ 0.

In fact, P is a prime ideal of Z : indeed, P is an ideal by (b), (d), 1 /∈ P , and
m, n /∈ P implies

∣
∣m
∣
∣
v

=
∣
∣n
∣
∣
v

= 1 and mn /∈ P . Hence P is generated by a
prime p . Let c =

∣
∣p
∣
∣
v

< 1. If m/n = pkt/u =/ 0, where p does not divide t
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or u , then
∣
∣t
∣
∣
v

=
∣
∣u
∣
∣
v

= 1 and
∣
∣m/n

∣
∣
v

= ck . Hence v is equivalent to vp ; p is
unique since vp and vq are not equivalent when p =/ q (e.g.,

∣
∣p
∣
∣
q = 1).

Now let v be an archimedean absolute value on Q . We show that
∣
∣n
∣
∣
v

> 1
for all n > 1. Let m, n ∈ Z , m, n > 1. Then nk � m < nk+1 for some
k � 0, k � logn m . Repeated division by n yields 0 � r1, . . ., rk < n such that
m = r0 + r1n + · · · + rknk . Let t = max

(

1,
∣
∣n
∣
∣
v

)

. Since
∣
∣ri
∣
∣
v

� ri < n ,
∣
∣m
∣
∣
v

� (k + 1) n tk � (1 + logn m) n t logn m .

This inequality holds for all m > 1 and also holds for any mr > 1; hence
(∣
∣m
∣
∣
v

)r =
∣
∣mr ∣∣

v
� (1 + r logn m) n tr logn m and
∣
∣m
∣
∣
v

�
(

(1 + r logn m) n
)1/r t logn m,

for all r > 0. Since limr→∞
(

(1 + r logn m) n
)1/r = 1, we obtain

∣
∣m
∣
∣
v

� t logn m =
(

max
(

1,
∣
∣n
∣
∣
v

))logn m

for all m, n > 1. By 3.2,
∣
∣m
∣
∣
v

> 1 for some m > 1; therefore
∣
∣n
∣
∣
v

> 1 for all

n > 1. Then
∣
∣m
∣
∣
v

�
(∣
∣n
∣
∣
v

)logn m =
(∣
∣n
∣
∣
v

)ln m/ln n ,
(∣
∣m
∣
∣
v

)1/ln m =
(∣
∣n
∣
∣
v

)1/ln n ,
and

(

ln
∣
∣m
∣
∣
v

)

/ln m =
(

ln
∣
∣n
∣
∣
v

)

/ln n , for all m, n > 1. Hence c =
(

ln
∣
∣n
∣
∣
v

)

/ln n
does not depend on n (as long as n > 1). Then

∣
∣n
∣
∣
v

= nc for all n � 1, and
∣
∣x
∣
∣
v

=
(∣
∣x
∣
∣
)c for all x ∈ Q . �

Exercises
1. Prove that

∣
∣
∣
∣x
∣
∣
v
−
∣
∣y
∣
∣
v

∣
∣ �
∣
∣x − y

∣
∣
v

, for every absolute value v .

2. Define absolute values on a domain; show that every absolute value on a domain extends
uniquely to an absolute value on its quotient field.

3. Verify that v∞ is a nonarchimedean absolute value on K (X) .

4. Verify that v0 is a nonarchimedean absolute value on K (X) .

5. Verify that vp is a nonarchimedean absolute value on Q for every prime p .

6. Verify that the operations on F (including x �−→ x−1 , where x =/ 0) are continuous
in the topology induced by an absolute value.

7. Show that every absolute value is continuous in its own topology.

8. Prove that a field of characteristic p =/ 0 has no archimedean absolute value.

9. Let v be an absolute value on a field F . Show that
(∣
∣x
∣
∣
v

)c
is an absolute value on F

for every constant 0 < c < 1 (for every c > 0 if v is nonarchimedean).

10. Let 0 =/ x ∈ Q . Show that
∣
∣x
∣
∣
∏

p prime
∣
∣x
∣
∣

p
= 1. (First show that

∣
∣x
∣
∣

p
= 1 for

almost all primes p .)

11. Let K be any field. Prove that every nontrivial absolute value on K (X) that is trivial
on K is equivalent either to v∞ , or to a suitably defined vq for some unique monic irreducible
polynomial q ∈ K [X ] .
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4. Completions

As metric spaces have completions, so do fields with absolute values (Kürschak
[1913]). The construction of R from Q by Cauchy sequences is an example.
Completions also yield a new field, the field of p-adic numbers, and its ring of
p-adic integers, first constructed by Hensel [1897].

In what follows, F is a field with an absolute value. A Cauchy sequence in
F is a sequence a = (an)n>0 of elements of F such that, for every positive real
number ε ,

∣
∣am − an

∣
∣ < ε holds for all sufficiently large m and n . In F , every

sequence that has a limit is a Cauchy sequence.

Definition. A field F is complete with respect to an absolute value when it is
complete as a metric space (when every Cauchy sequence of elements of F has a
limit in F ).

For example, R and C are complete, but not Q .

Construction. The main result of this section is the following:

Theorem 4.1. Let F be a field with an absolute value v . There exists a field
extension F̂ = F̂v of F and an absolute value v̂ on F̂ that extends v , such that
F̂ is complete with respect to v̂ and F is dense in F̂ .

Proof. As a set, F̂ is the completion of F as a metric space. Let C be the set
of all Cauchy sequences of elements of F . Termwise sums and products

(an)n>0 + (bn)n>0 = (an + bn)n>0 , (an)n>0 (bn)n>0 = (an bn)n>0

of Cauchy sequences are Cauchy sequences (see the exercises). Hence C is a
commutative ring; its identity element is the constant sequence, an = 1 for all n .

Let z be the set of all a = (an)n>0 ∈ C such that lim an = limn→∞ an = 0,
equivalently lim

∣
∣an
∣
∣ = 0. Readers will verify that z is an ideal of C . We show

that z is a maximal ideal of C . Let a � z be an ideal of C . Let a ∈ a\z . Then
lim

∣
∣an
∣
∣ > 0 and there exists δ > 0 such that

∣
∣an
∣
∣ � δ for all sufficiently large

n . Let bn = 1/an if an =/ 0, bn = 1 if an = 0. If m and n are sufficiently large,
then

∣
∣am
∣
∣ � δ ,

∣
∣an
∣
∣ � δ , and

∣
∣bm − bn

∣
∣ =

∣
∣
∣

1
am

− 1
am

∣
∣
∣ =

∣
∣
∣
an − am

am an

∣
∣
∣ � |an − am |

δ2 ;

Hence b = (bn)n>0 is a Cauchy sequence. We see that lim (an bn) = 1, so that
c = ab − 1 ∈ z . Hence 1 = ab + c ∈ a and a = C .

We show that the field F̂ = C/z has the required properties. For every x ∈ F
there is a constant sequence x = (xn)n>0 in which xn = x for all n . This yields
a homomorphism x �−→ x + z of F into F̂ . Hence F becomes a subfield of F̂
when we identify x ∈ F and x + z ∈ F̂ .

If a = (an)n>0 is a Cauchy sequence in F , then
(∣
∣an
∣
∣
)

n�0 is a Cauchy
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sequence in R , since
∣
∣|an | − |bn |

∣
∣ �

∣
∣an − bn

∣
∣ . Hence lim

∣
∣an
∣
∣ exists in R .

If a − b ∈ z , then lim
∣
∣an − bn

∣
∣ = 0 and the same inequality

∣
∣|an | − |bn |

∣
∣ �

∣
∣an − bn

∣
∣ implies lim

∣
∣an
∣
∣ = lim

∣
∣bn
∣
∣ . Therefore a mapping v̂ : F̂ −→ R

is well defined by v̂(a + z) = lim
∣
∣an
∣
∣ , whenever a = (an)n>0 is a Cauchy

sequence in F . It is immediate that v̂ is an absolute value on F̂ . If x ∈ F , then
v̂(x) = lim

∣
∣x
∣
∣ =
∣
∣x
∣
∣ ; hence v̂ extends v .

If a = (an)n>0 is a Cauchy sequence in F , then a + z = lim an in F̂ , since
v̂(a + z− am) = lim

∣
∣an − am

∣
∣ . Hence F is dense in F̂ . Finally, let A = (An)n>0

be a Cauchy sequence in F̂ . Since F is dense in F̂ there exists for every n > 0
some an ∈ F such that v̂(An − an) < 1/n . Then a = (an)n>0 is a Cauchy
sequence in F̂ , a is a Cauchy sequence in F , and a + z = lim an = lim An in
F̂ . Thus F̂ is complete. �

Definition. A completion of a field F with respect to an absolute value v is a
field extension F̂v of F with an absolute value v̂ that extends v , such that F̂ is
complete with respect to v̂ and F is dense in F̂ .

For example, R is a completion of Q with respect to its usual absolute value;
readers will show that K ((X)) is a completion of K (X) with respect to v0 .
Another example, the field of p-adic numbers, is given below.

Properties. Completions have a universal property:

Proposition 4.2. Let F and K be fields with absolute values. If K is complete,
then every homomorphism of F into K that preserves absolute values extends
uniquely to a homomorphism of any completion of F into K that preserves
absolute values.

Proof. Let F̂ be a completion of F and let ϕ : F −→ K be a homomorphism
that preserves absolute values. Since F is dense in F̂ , every element α of the
metric space F̂ is the limit of a sequence a = (an)n>0 of elements of F , which
is a Cauchy sequence in F̂ and therefore a Cauchy sequence in F . Since ϕ

preserves absolute values, (ϕan)n>0 is a Cauchy sequence and has a limit in K .
This limit depends only on α : if α = lim an = lim bn , where an , bn ∈ F ,
then lim (an − bn) = 0, lim (ϕan − ϕbn) = 0 since ϕ preserves absolute values,
and lim ϕan = lim ϕbn . Hence a mapping ψ : F̂ −→ K is well defined by
ψα = lim ϕan whenever α = lim an and an ∈ F .

It is immediate that ψ extends ϕ and, from the limit laws, that ψ is a field
homomorphism. Moreover, ψ preserves absolute values: α = lim an implies
∣
∣α
∣
∣ = lim

∣
∣an
∣
∣ = lim

∣
∣ϕan

∣
∣ =

∣
∣ψα

∣
∣ , since absolute values are continuous and

preserved by ϕ . Conversely, if χ : F̂ −→ K is a field homomorphism that
extends ϕ and preserves absolute values, then χ is continuous and α = lim an
implies χα = lim χan = lim ϕan = ψα ; hence χ = ψ . �

A standard universal property argument then yields uniqueness:
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Proposition 4.3. The completion of a field with respect to an absolute value is
unique up to isomorphisms that preserve absolute values.

p-adic numbers.

Definitions. For every prime number p , Q̂p is the completion of Q with respect

to vp ; Ẑp = { x ∈ Q̂p ;
∣
∣x
∣
∣

p � 1 } ; a p-adic number is an element of Q̂p ; a

p-adic integer is an element of Ẑp .

Other notations are in use for Q̂p and Ẑp .

In Q̂p , for every xn ∈ Z , the series
∑

xn pn converges: the partial sums

constitute a Cauchy sequence, since
∣
∣xn pn∣∣

p � p−n and
∣
∣xn pn + xn+1 pn+1 +

· · · + xm pm∣∣
p � p−n . This yields a more concrete description of Q̂p :

Proposition 4.4. Every Laurent series
∑

n�m xn pn with coefficients xn ∈ Z

converges in Q̂p ; every p-adic integer x is the sum

x = x0 + x1 p + · · · + xn pn + · · ·
of a unique power series with coefficients xn ∈ Z such that 0 � xn < p ; every
p-adic number x =/ 0 is the sum of a unique Laurent series

x = xm pm + xm+1 pm+1 + · · · + xn pn + · · ·
with coefficients xn ∈ Z such that 0 � xn < p for all n � m , and xm =/ 0 ; and
then

∣
∣x
∣
∣

p = p−m , and x is a p-adic integer if and only if m � 0 .

Proof. First we prove a lemma.

Lemma 4.5. If x ∈ Q̂p and
∣
∣x
∣
∣

p � p−m , then
∣
∣x − tpm∣∣

p < p−m for some

unique integer 0 � t < p ; if
∣
∣x
∣
∣

p = p−m , then t =/ 0 .

Proof. If
∣
∣x
∣
∣

p < p−m , then t = 0 serves. Now assume
∣
∣x
∣
∣

p = p−m .

Since Q is dense in Q̂p we have
∣
∣x − y

∣
∣

p < p−m for some y ∈ Q . Then
∣
∣y
∣
∣

p = p−m and y = pm k/� , where m ∈ Z and p does not divide k or
� . Since Zp is a field we have k ≡ t� (mod p ) for some t ∈ Z , and can
arrange that 0 � t < p . Then 0 < t < p , since p does not divide t , and
∣
∣y − tpm∣∣

p =
∣
∣pm(k − t�)/�

∣
∣

p < p−m , since p divides k − t� but not � . Hence
∣
∣x − tpm∣∣

p < p−m . If also
∣
∣x − upm∣∣

p < p−m , where 0 � u < p , then
∣
∣tpm − upm∣∣

p < p−m , p divides t − u , and t = u . �

We now prove Proposition 4.4. Let
∣
∣x
∣
∣

p = p−m . By 4.5,
∣
∣x − xm pm∣∣

p �
p−(m+1) for some unique integer 0 < xm < p ; hence

∣
∣x − xm pm − xm+1 pm+1∣∣

p � p−(m+2)
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for some unique integer 0 � xm+1 < p ; repetition yields unique 0 � xn < p
such that

∣
∣x −

∑

m�n�r xn pn∣∣
p < p−r , for every r > m . Then the series

∑

n�m xn pn converges to x in Q̂p . If x ∈ Ẑp , then m � 0 and
∑

n�m xn pn is
a power series,

∑

n�0 xn pn , with xn = 0 for all n < m .

Assume that x =
∑

n�� yn pn , where 0 � yn < p for all n and y� =/ 0. Then
∣
∣
∑

n>� yn pn∣∣
p = limr→∞

∣
∣
∑

�<n�r yn pn∣∣
p � p−(�+1) and

∣
∣x
∣
∣

p =
∣
∣y� p�

∣
∣

p =

p−� . Hence � = m . Uniqueness of xn is proved by induction: if xn = yn
for all n < r (for instance, if r = m , or, in case x ∈ Ẑp , r = 0), then
∣
∣x −

∑

m�n�r yn pn∣∣
p < p−r and uniqueness in 4.5 yields xr = yr . �

Exercises
1. In any field with an absolute value, show that the termwise sum and product of two

Cauchy sequences are Cauchy sequences.

2. Prove the following: in any field with an absolute value, if a = (an)n>0 converges to 0
and b = (bn)n>0 is a Cauchy sequence, then ab = (an bn)n�0 converges to 0 .

3. Let K be a field. Show that K ((X)) is a completion of K (X) with respect to v0 .

4. Show that a completion is uniquely determined by its universal property, up to isomor-
phisms that preserve absolute values.

5. Let F be complete with respect to a nonarchimedean absolute value. Show that a series
∑

an converges in F if and only if lim an = 0.

6. Prove directly that every integer x ∈ Z is a sum x = x0 + x1 p + · · · + xm pm for some
unique m � 0 and x0, . . . , xm ∈ Z such that 0 � x0, . . . , xm < p and xm =/ 0 .

7. Let x =
∑

n�0 xn pn ∈ Ẑp , where xn ∈ Z and 0 � xn < p for all n . Show that x

is a unit in Ẑp is and only if x0 =/ 0 .

8. Write −1 as the sum of a Laurent series in Q̂2 .

9. Write 1
3 as the sum of a Laurent series in Q̂2 .

10. Write 1
2 as the sum of a Laurent series in Q̂3 .

11. Show that Q̂p is the field of fractions of Ẑp .

12. Show that pẐp is a maximal ideal of Ẑp . Find Ẑp/pẐp .

13. Show that Ẑp is a PID with only one representative prime, and that the ideals of Ẑp
constitute a chain.

14. Show that every domain with an absolute value has a completion with a suitable
universal property.

15. Let K be a field. Show that K [[X ]] is a completion of K [X ] with respect to v0 .
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5. Extensions

Can absolute values on a field K be extended to absolute values on algebraic exten-
sions of K ? This is the extension problem for absolute values, which was solved
by Ostrowski [1918], [1934]. In this section we solve the extension problem in the
archimedean case. We also prove Ostrowski’s theorem [1918], which determines
all complete archimedean fields.

Completeness. Let E be a finite field extension of K . An absolute value
E −→ R on E induces an absolute value K −→ R on K . First we show that, if
K is complete, then so is E . We prove this in a more general setting.

Definition. Let K be a field with an absolute value and let V be a vector space
over K . A norm on V is a mapping x �−→ ||x || of V into R such that

(a) ||x || � 0 for all x ∈ V , and ||x || = 0 if and only if x = 0;

(b) ||ax || =
∣
∣a
∣
∣ ||x || for all a ∈ K and x ∈ V ;

(c) ||x + y|| � ||x || + ||y|| for all x, y ∈ V .

Then V is a normed vector space over K .

For instance, when E is a field extension of K , viewed as a vector space
over K , then an absolute value on E induces an absolute value on K and is, in
particular, a norm on E . In general, a norm on V induces a distance function
d(x, y) = ||x − y|| on V , which makes V a metric space.

Proposition 5.1. Let V be a normed vector space of finite dimension over a
field K with an absolute value. If K is complete, then V is complete and, in any
basis e1 , . . . , en of V over K , (1) the ith coordinate function

∑
xi ei �−→ xi

is continuous; (2) a sequence (xk)k�0 , xk =
∑

i xk,i ei , converges in V if and
only if all its coordinate sequences (xk,i )k�0 converge in K ; (3) a sequence is
a Cauchy sequence in V if and only if all its coordinate sequences are Cauchy
sequences in K .

Proof. We start with (3). For every x =
∑

i xi ei we have

||x || = ||
∑

i xi ei || �
∑

i
(∣
∣xi
∣
∣||ei ||

)

.

Let (xk)k�0 be a sequence of elements of V , xk =
∑

i xk,i ei . If (xk,i )k�0 is
Cauchy in K for all i , then (xk)k�0 is Cauchy in V , by the inequality above.

The converse is proved by induction on n . There is nothing to prove if n = 1.
Now let n > 1. Assume that (xk)k�0 is Cauchy in V , but that, say, (xk,n)k�0
is not Cauchy in K . Then there exists ε > 0 such that

∣
∣xi,n − x j,n

∣
∣
v

� ε for
arbitrarily large i and j . In particular, for every k � 0 we have

∣
∣xik ,n − x jk ,n

∣
∣ � ε

for some ik, jk > k ; then xik ,n − x jk ,n =/ 0 in K . Let

yk = (xik ,n − x jk ,n)−1 (xik
− x jk

) ∈ V .
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Then limk→∞ yk = 0, since
∣
∣(xik ,n − x jk ,n)−1∣∣ � 1/ε , and (yk)k�0 is Cauchy

in V . Hence (yk − en)k�0 is Cauchy in V . Since yk has nth coordinate
yk,n = 1, (yk − en)k�0 is a Cauchy sequence in the subspace of V spanned
by e1, . . ., en−1 . By the induction hypothesis, (yk,i )k�0 is Cauchy in K when
i < n . Since K is complete, (yk,i )k�0 has a limit zi in K when i < n ;
the sequence (yk,n)k�0 also has a limit zn = 1. Let z =

∑

i zi ei . Then

||yk − z|| �
∑

i
(∣
∣yk,i − zi

∣
∣ ||ei ||

)

and limk→∞ yk = z . But this not possible,
since limk→∞ yk = 0 and z =/ 0. This contradiction proves (3).

If now every (xk,i )k�0 has a limit yi in K , then y =
∑

i yi ei ∈ V and

||xk − y|| �
∑

i
(∣
∣xk,i − yi

∣
∣ ||ei ||

)

, so that (xk)k�0 has a limit y in V . Conversely,
if (xk)k�0 converges in V , then (xk)k�0 is Cauchy in V and, for every i ,
(xk,i )k�0 is Cauchy in K by (3) and converges in K since K is complete, which
proves (2); in fact, if limk→∞ xk,i = yi , then limk→∞ xk =

∑

i yi ei by the
direct part, so that limk→∞ xk,i is the ith coordinate of limk→∞ xk . If (xk)k�0
is a Cauchy sequence in V , then every (xk,i )k�0 is Cauchy in K , by (3); every
(xk,i )k�0 converges in K , since K is complete; and (xk)k�0 converges in V by
(2); hence V is complete.

Finally, if the ith coordinate function is not continuous at t =
∑

i ti ei ∈ V , then
there exist ε > 0 and, for every k > 0, some xk ∈ V such that ||xk − t || < 1/k
and

∣
∣xk,i − ti

∣
∣ � ε ; then limk→∞ xk = t , whence limk→∞ xk,i = ti ; this

contradiction proves (1). �

Uniqueness. We now return to the extension problem for absolute values.

Theorem 5.2. Let E be a finite extension of degree n of a field K that is
complete with respect to an absolute value v . If there exists an absolute value w

on E that extends v , then w is unique and
∣
∣α
∣
∣
w

=
(∣
∣NE

K (α)
∣
∣
v

)1/n

for all α ∈ E ; moreover, E is complete with respect to w .

Proof. The definition of N(α) shows that N(α) is a polynomial function of the
coordinates of α in any basis of E over K , hence continuous, by 5.1. Let α ∈ E ,
α =/ 0, and β = αn N(α)−1 . Then N(β) = 1 by V.7.3, since N(α) ∈ K . Hence
N(βk) = 1 for all k , N

(

limk→∞ βk) = limk→∞ N(βk) = 1, limk→∞ βk =/ 0,
∣
∣β
∣
∣
w

� 1, and
(∣
∣α
∣
∣
w

)n �
∣
∣N(α)

∣
∣
v

. Similarly,
(∣
∣α
∣
∣−1
w

)n �
∣
∣N(α−1)

∣
∣
v

; hence
(∣
∣α
∣
∣
w

)n =
∣
∣N(α)

∣
∣
v

. Finally, E is complete, by 5.1. �

Existence. Theorem 5.2 yields absolute values, but only in some cases.

Proposition 5.3. If K is a field that is complete with respect to an absolute
value v , and does not have characteristic 2 , then v can be extended to every finite
extension of K of degree 2 .
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Proof. Inspired by 5.2 we try
∣
∣α
∣
∣
w

=
(∣
∣N(α)

∣
∣
v

)1/2 . By V.6.1, a finite
extension E of K of degree 2 is a Galois extension and has a nontrivial automor-
phism α �−→ α . Then N(α) = αα . Hence w has properties (a) and (b) in Section
3. This leaves (c),

∣
∣α + β

∣
∣
w

�
∣
∣α
∣
∣
w

+
∣
∣β
∣
∣
w

.

Let b = α + α and c = αα . Then b, c ∈ K . If
(∣
∣b
∣
∣
v

)2
> 4

∣
∣c
∣
∣
v

, then, by
5.4 below, (X − α)(X − α) = X2 − bX + c has a root in K ; hence α ∈ K and
(∣
∣b
∣
∣
v

)2 =
(∣
∣2α
∣
∣
v

)2 � 4
∣
∣α2∣∣

v
= 4
∣
∣c
∣
∣
v

. Therefore
(∣
∣b
∣
∣
v

)2 � 4
∣
∣c
∣
∣
v

.

If β = 1, then (c) reads
∣
∣N(α + 1)

∣
∣
v

=
(∣
∣α + 1

∣
∣
w

)2 �
(∣
∣α
∣
∣
w

+ 1
)2 =

∣
∣N(α)

∣
∣
v

+ 2
(∣
∣N(α)

∣
∣
v

)2 + 1; since
(∣
∣b
∣
∣
v

)2 � 4
∣
∣c
∣
∣
v

= 4
∣
∣N(α)

∣
∣
v

,
∣
∣N(α + 1)

∣
∣
v

=
∣
∣(α + 1)(α + 1)

∣
∣
v

=
∣
∣c + b + 1

∣
∣
v

�
∣
∣c
∣
∣
v

+
∣
∣b
∣
∣
v

+ 1 �
∣
∣N(α)

∣
∣
v

+ 2
(∣
∣N(α)

∣
∣
v

)1/2 + 1,

and (c) holds. Then (c) holds for all β =/ 0:
∣
∣α + β

∣
∣
w

=
∣
∣β
∣
∣
w

∣
∣αβ−1 + 1

∣
∣
w

�
∣
∣β
∣
∣
w

(∣
∣αβ−1∣∣

w
+ 1
)

=
∣
∣α
∣
∣
w

+
∣
∣β
∣
∣
w

. �

Lemma 5.4. Let K be a field that is complete with respect to an absolute value v ,
and does not have characteristic 2 . If

(∣
∣b
∣
∣
v

)2
> 4
∣
∣c
∣
∣
v

, then X2 − bX + c ∈ K [X ]
has a root in K .

Proof. We may assume that c =/ 0; then b =/ 0. We use successive approxi-
mations xn+1 = f (xn) to find a root, noting that x2 − bx + c = 0 if and only if
x = b − (c/x) . Let x1 = 1

2 b and xn+1 = b − (c/xn) . If
∣
∣x
∣
∣ � 1

2
∣
∣b
∣
∣ > 0, then

∣
∣x − (c/x)

∣
∣ �

∣
∣b
∣
∣−
(∣
∣c
∣
∣/
∣
∣x
∣
∣
)

�
∣
∣b
∣
∣− 2

(∣
∣c
∣
∣/
∣
∣b
∣
∣
)

�
∣
∣b
∣
∣− 1

2
∣
∣b
∣
∣ = 1

2
∣
∣b
∣
∣ > 0,

since
∣
∣c
∣
∣ < 1

4
∣
∣b
∣
∣ ; hence

∣
∣xn
∣
∣ � 1

2
∣
∣b
∣
∣ for all n , xn =/ 0 for all n , and xn

is well defined for all n . We show that (xn)n>0 is a Cauchy sequence. Let
r = 4|c|/|b|2 < 1. Since

∣
∣xn
∣
∣ � 1

2
∣
∣b
∣
∣ for all n ,

∣
∣xn+2 − xn+1

∣
∣ =

∣
∣
∣

c
xn

− c
xn+1

∣
∣
∣ =

∣
∣c
∣
∣
∣
∣xn+1 − xn

∣
∣

∣
∣xn
∣
∣
∣
∣xn+1

∣
∣

�
4
∣
∣c
∣
∣
∣
∣xn+1 − xn

∣
∣

|b|2 = r
∣
∣xn+1 − xn

∣
∣;

therefore
∣
∣xn+2 − xn+1

∣
∣ � rn ∣∣x2 − x1

∣
∣ for all n and (xn)n>0 is Cauchy. Hence

(xn)n>0 has a limit x in K ; then
∣
∣x
∣
∣ � 1

2
∣
∣b
∣
∣ > 0, x = b − (c/x) , and

x2 + bx + c = 0. �

Ostrowski’s theorem now follows from the previous results.

Theorem 5.5 (Ostrowski [1918]). Up to isomorphisms that preserve absol-
ute values, R and C are the only fields that are complete with respect to an
archimedean absolute value.
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Proof. Let F be complete with respect to an archimedean absolute value v .
By 3.3, F has characteristic 0. Hence Q ⊆ F , up to isomorphism. By 3.4, the
valuation induced by F on Q is equivalent to the usual absolute value. We may
replace v by an equivalent absolute value that induces the usual absolute value
on Q . Then 4.2 yields an isomorphism, that preserves absolute values, of R = Q̂

onto a subfield of F . Therefore we may assume from the start that R ⊆ F and
that F induces the usual absolute value on R .

If F contains an element i such that i2 = −1, then C = R(i) ⊆ F ; by the
uniqueness in 5.2, v induces the usual absolute value on C , since both induce the
usual absolute value on R . If F contains no element i such that i2 = −1, then v

extends to an absolute value w on E = F(i) by 5.3, and E is complete by 5.2.
Then C = R(i) ⊆ E ; by 5.2, w induces the usual absolute value on C , since
both induce the usual absolute value on R . In this case, E = C implies F = R .
Therefore we may assume that C ⊆ F and that v induces the usual absolute value
on C ; we need to prove that F = C .

Assume that C � F . Let α ∈ F\C . Let r = g.l.b. {
∣
∣z − α

∣
∣ ; z ∈ C } . Since

the function f (x) =
∣
∣x − α

∣
∣ is continuous on C , the “disk”

D = { z ∈ C ;
∣
∣z − α

∣
∣ � r + 1 }

is a closed nonempty subset of C . Hence r = g.l.b. {
∣
∣z − α

∣
∣ ; z ∈ D } .

Also, D is bounded, since x, y ∈ D implies
∣
∣x − y

∣
∣ =
∣
∣(x − α)−(y − α)

∣
∣ �

∣
∣x − α

∣
∣ +
∣
∣y − α

∣
∣ � 2r + 2. Therefore the continuous function f (x) =

∣
∣x − α

∣
∣

has a minimum value on D and
∣
∣z − α

∣
∣ = r for some z ∈ C . Then the “circle”

C = { z ∈ C ;
∣
∣z − α

∣
∣ = r }

is nonempty, closed since f is continuous, and bounded since C ⊆ D . We show
that C is open; since C is connected this provides the required contradiction.

We show that x ∈ C , y ∈ C , and
∣
∣x − y

∣
∣ < r implies y ∈ C (hence C is

open). Let β = α − x and z = y − x , so that
∣
∣β
∣
∣ = r and

∣
∣z
∣
∣ < r . Let n > 0

and ε be a primitive nth root of unity. Then

βn − zn = (β − z)(β − εz)· · · (β − εn−1z)

and
∣
∣β − εi z

∣
∣ =
∣
∣α − x − εi z

∣
∣ � r by the choice of r . Hence

∣
∣β − z

∣
∣ rn−1 �

∣
∣βn − zn∣∣ �

∣
∣β
∣
∣n +

∣
∣z
∣
∣n = rn +

∣
∣z
∣
∣n

and
∣
∣β − z

∣
∣ � r +

(∣
∣z
∣
∣n/rn−1) . Since

∣
∣z
∣
∣ < r , letting n → ∞ yields

∣
∣β − z

∣
∣ �

r . But
∣
∣β − z

∣
∣ =
∣
∣α − y

∣
∣ � r . Hence

∣
∣α − y

∣
∣ = r and y ∈ C . �

In addition to a neat characterization of R and C , Ostrowski’s theorem tells the
complete story on fields that are complete with respect to an archimedean absolute
value: up to isomorphism, they are subfields of C , and their absolute values are
induced by the usual absolute value on C .
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With Ostrowski’s theorem, the extension problem for archimedean absolute
values becomes trivial: when v is an archimedean absolute value on a field F ,
then, up to isomorphism, v can be extended to C and to every algebraic extension
of F . The nonarchimedean case is considered in Section 7.

Exercises

1. Verify that addition and scalar multiplication on a normed vector space are continuous.

2. Let V be a finite-dimensional vector space over a field K that is complete with respect
to an absolute value. Show that all norms on V induce the same topology on V .

3. Find all archimedean absolute values on Q(
√
−5) .

6. Valuations

Valuations were first defined in full generality by Krull [1932]. They are more
general than nonarchimedean absolute values. They are also more flexible and
extend more readily to field extensions. Their values are not restricted to real
numbers, but are taken from the following more general objects.

Definition. A totally ordered abelian group is an ordered pair of an abelian
group G together with a total order relation � on G such that x < y implies
xz < yz for all z ∈ G .

For example, the multiplicative group P of all positive real numbers, and its
subgroups, are totally ordered abelian groups with the usual order relation. When
n > 1, readers will verify that P

n = P × · · · × P is a totally ordered abelian group
that is not isomorphic (as a totally ordered abelian group) to a subgroup of P when
ordered lexicographically: (x1, . . ., xn) < (y1, . . ., yn) if and only if there exists
k � n such that xi = yi for all i < k and xk < yk .

Totally ordered abelian groups are also called just ordered abelian groups. They
are often written additively (but here we prefer the multiplicative notation). In
a totally ordered abelian group, x < y implies y−1 < x−1 , since y−1 > x−1

would imply 1 = xx−1 < xy−1 < yy−1 = 1. Totally ordered abelian groups are
torsion free, since x > 1 implies 1 < x < x2 < · · · < xn < · · · .

An isomorphism of totally ordered abelian groups is an order preserving iso-
morphism ( x < y implies θ(x) < θ(y) ); since these groups are totally ordered,
the inverse bijection is also an order preserving isomorphism. For example, the
natural logarithm function is an isomorphism of totally ordered abelian groups of
P onto the additive group (R, +) .

Definition. Let G be a totally ordered abelian group. Adjoin an element 0 to
G such that 0 < g and g0 = 0 = 0g for all g ∈ G . A valuation on a field F with
values in G is a mapping v : F −→ G ∪ {0} such that

(a) v(x) = 0 if and only if x = 0 ;
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(b) v(xy) = v(x) v(y) for all x, y ∈ F ;

(c) v(x + y) � max (v(x), v(y)) for all x, y ∈ F .

In (c) we have v(x) � v(y) or v(y) � v(x) , since G ∪ {0} is totally ordered,
and max (v(x), v(y)) exists. For example, nonarchimedean absolute values
are valuations with values in P ; thus, vp is a valuation on Q ; v∞ and v0 are
valuations on K (X) for any field K .

Readers will verify that a valuation v0 can be defined on any K (X1, ..., Xn)
as follows. Let v0(0) = 0. Every nonzero f/g ∈ K (X1, ..., Xn) can be written
uniquely in the form f/g = Xm1

1 Xm2
2 · · · Xmn

n (h/k) , with m1, . . ., mn � 0 and
h(0, . . ., 0) , k(0, . . ., 0) =/ 0; let v0( f/g) =

(

2−m1 , . . . , 2−mn
)

∈ P
n .

In general, Gv = { v(x)
∣
∣ x ∈ F\{0} } is a subgroup of G , by (b).

Definitions. The value group of a valuation v : F −→ G ∪ {0} is Gv =
{ v(x)

∣
∣ x ∈ F\{0} } . Two valuations v,w : F −→ G ∪ {0} are equivalent

when there exists an order preserving isomorphism θ of Gv onto Gw such that
w(x) = θ(v(x)) for all x =/ 0 .

For every c > 0, x �−→ xc is an order preserving automorphism of P ;
hence nonarchimedean absolute values that are equivalent as absolute values are
equivalent as valuations. On the other hand, readers will be delighted to find that
the valuation v0 on K (X1, ..., Xn) is not equivalent to an absolute value; thus
valuations are more general.

Valuation rings. Up to equivalence, valuations on a field F are determined by
certain subrings of F .

Definition. The valuation ring of a valuation v on a field F is ov = { x ∈
F
∣
∣ v(x) � 1 } .

Readers will prove the following properties:

Proposition 6.1. For every valuation v on a field F :

(1) ov is a subring of F ; when x ∈ F\{0} , then x ∈ ov or x−1 ∈ ov ; in
particular, F is the quotient field of ov ;

(2) the group of units of ov is uv = { x ∈ F
∣
∣ v(x) = 1 } ;

(3) ov has exactly one maximal ideal mv = { x ∈ F
∣
∣ v(x) < 1 } = ov\uv ;

(4) the ideals of ov form a chain.

We prove a converse:

Proposition 6.2. Let R be a subring of a field F and let u be the group of
units of R . The following properties are equivalent:

(1) R is the valuation ring of a valuation on F ;

(2) F = Q(R) and the ideals of R form a chain;

(3) when x ∈ F\{0} , then x ∈ R or x−1 ∈ R .
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Then G = (F\{0})/u is a totally ordered abelian group, vR : x �−→ xu is a
valuation on F , and R is the valuation ring of vR .

Proof. (1) implies (2) by 6.1.

(2) implies (3). Let x = a/b ∈ F , where a, b ∈ R , b =/ 0. If Ra ⊆ Rb , then
a = br for some r ∈ R and x = r ∈ R . If Rb ⊆ Ra , then b = ar for some
r ∈ R and x−1 = r ∈ R .

(3) implies (1). The group of units u of R is a subgroup of the multiplicative
group F∗ = F\{0} . Let G = F∗/u . Order G by

xu � yu if and only if xy−1 ∈ R , if and only if Rx ⊆ Ry .

Then � is well defined, since xu = zu , yu = tu implies Rx = Rz , Ry = Rt ;
� is reflexive, transitive, and antisymmetric, since xy−1 ∈ R and

(

xy−1)−1 =
yx−1 ∈ R implies xy−1 ∈ u and xu = yu ; � is a total order on G , by (3); and
xu � yu implies (xu)(zu) � (yu)(zu) . Now G has become a proud totally
ordered abelian group. Let

vR(x) = xu ∈ G

for all x ∈ F∗ , with vR(0) = 0 ∈ G ∪ {0} . Then (a) and (b) hold. Property (c),
v(x + y) � max (v(x), v(y)) , holds whenever x = 0 or y = 0; if x, y =/ 0 and,
say, vR(x) � vR(y) , then Rx ⊆ Ry , R(x + y) ⊆ Ry , and vR(x + y) � vR(y) .
Thus vR is a valuation on F (with value group G ); R is the valuation ring of vR ,
since vR(x) � 1 = 1u if and only if x = x1−1 ∈ R . �.

Definitions. A valuation ring or valuation domain is a domain that satisfies
the equivalent conditions in Proposition 6.2; then vR is the valuation induced by
R . A valuation ring of a field F is a subring of F that satisfies the equivalent
conditions in Proposition 6.2.

Proposition 6.3. Every valuation is equivalent to the valuation induced by its
valuation ring. In particular, two valuations on the same field are equivalent if
and only if they have the same valuation ring.

Proof. Let v be a valuation on a field F and let o be its valuation ring. The
valuations v and vo induce surjective homomorphisms of multiplicative groups:

where F∗ = F\{0} and u is the group of units of o . Since Ker v = u = Ker vo
there is a multiplicative isomorphism θ : Gv −→ F∗/u such that θ ◦ v = vo . If
x, y ∈ F∗ , then v(x) � v(y) is equivalent to v(xy−1) � 1, to xy−1 ∈ o , and to
vo(x) � vo(y) ; therefore θ is order preserving. �

Discrete valuations. Since P contains cyclic subgroups, every valuation whose
value group is cyclic is equivalent to a nonarchimedean absolute value.
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Definition. A valuation is discrete when its value group is cyclic.

A discrete valuation v on a field F induces a topology on F , which is induced
by any equivalent discrete absolute value. The infinite cyclic group Gv has just
two generators and has a unique generator v(p) < 1. Then every x ∈ F\{0}
can be written uniquely in the form x = upk with v(u) = 1 and k ∈ Z , since
v(x) = v(pk) for some unique k ∈ Z .

Proposition 6.4. Let R be a domain and let F = Q(R) be its quotient field.
Then R is the valuation ring of a discrete valuation on F if and only if R is a
principal ideal domain with a unique nonzero prime ideal.

The proof is an exercise.

Definition. A discrete valuation ring is a principal ideal domain with a unique
nonzero prime ideal; equivalently, the valuation ring of a discrete valuation.

For instance, the ring Ẑp of p-adic integers is a discrete valuation ring. In
fact, Proposition 4.4 extends wholeheartedly to all discrete valuations. In the next
result, v is a discrete valuation, v(p) < 1 is a generator of its value group, o is
the valuation ring of v , and m is its maximal ideal.

Proposition 6.5. Let F be a field with a discrete valuation v . Let r be a subset
of o with 0 ∈ r and one element in every coset of m in o . Every element of o
is the sum of a unique power series

∑

n�0 rk pk with coefficients rk ∈ r . Every

nonzero element of F is the sum of a unique Laurent series
∑

k�m rk pk with
coefficients rk ∈ r for all k � m , rm =/ 0 .

Proof. By 6.4, m is the ideal of o generated by p . Let x ∈ F , x =/ 0. Then
x = upm for some unique u ∈ u and m ∈ Z . By the choice of r , u ∈ rm + m
for some unique rm ∈ r , and rm =/ 0 since u /∈ m . Hence u = rm + py for
some unique y ∈ o . Then y = rm+1 + pz for some unique rm+1 ∈ r and z ∈ o .
Continuing thus yields expansions x = rm pm + · · · + rk pk + pk+1t and a series
∑

k�m rk pk that converges to x , since v
(

rk pk + rk+1 pk+1 + · · ·
)

� v(p)k for

all k . If x ∈ o , then m � 0 and
∑

k�m rk pk is a power series
∑

k�0 rk pk , with
rk = 0 for all k < m . Uniqueness makes a nifty exercise. �

Every discrete valuation v on F is equivalent to a nonarchimedean absolute
value on F and yields a completion F̂v . We may assume that Gv is a subgroup of
P . Then 6.5 extends to F̂v . In the next result, v is a discrete valuation, v(p) < 1
is a generator of its value group, o is the valuation ring of v , and m is its maximal
ideal; F̂ = F̂v and ô is its valuation ring.

Proposition 6.6. Let F be a field with a discrete valuation v . Every Laurent
series

∑

k�m rk pk with coefficients rk ∈ o converges in F̂ . Conversely, let r

be a subset of o with 0 ∈ r and one element in every coset of m in o . Every
element of ô is the sum of a unique power series

∑

n�0 rk pk with coefficients
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rk ∈ r ; every nonzero element of F̂ is the sum of a unique Laurent series
∑

k�m rk pk with coefficients rk ∈ r for all k � m , rm =/ 0 .

Proof. First we show that v and its extension v̂ to F̂ have the same value group
Gv . We may assume that Gv is a subgroup of P . Every nonzero x ∈ F̂ is the limit
of a Cauchy sequence (xn)n>0 of elements of F ; then v̂(x) = limn→∞ v(xn) ∈
Gv , since Gv is closed in P .

We now follow the proof of Proposition 6.5. Let x ∈ F̂ , x =/ 0. Then
v̂(x) = p−m for some m ∈ Z . Since F is dense in F̂ we have v̂(x − y)< p−m

for some y ∈ F . Then v(y) = p−m ; as above, y = rm pm + pm+1z for some
rm ∈ r , rm =/ 0, and some z ∈ o . Then v̂

(

x − rm pm) � p−(m+1) . Hence
v̂
(

x − rm pm − rm+1 pm+1) � p−(m+2) for some rm+1 ∈ r ; repetition yields
rn ∈ r such that v̂

(

x −
∑

m�n�r rn pn) < p−r , for every r > m . Then the

series
∑

n�m rn pn converges to x in F̂ . If x ∈ ô , then m � 0 and
∑

n�m rn pn

is a power series. Uniqueness is again an exercise. �

Exercises

1. Show that P
n is a totally ordered abelian group when ordered lexicographically.

2. A totally ordered abelian group G is archimedean when for every a, b > 1 in G the
inequality an > b holds for some n > 0 . Show that every subgroup of P is archimedean.
Show that P

n is not archimedean when n � 2 , and therefore is not isomorphic (as a totally
ordered abelian group) to a subgroup of P .

3. Show that v0 is a valuation on K (X1, ..., Xn) . Show that v0 is not equivalent to an
absolute value. (Find its value group and show that it is not isomorphic, as a totally ordered
abelian group, to a subgroup of P .)

4. Find all automorphisms of the totally ordered abelian group P .

5. Prove that every multiplicative subgroup of P is either cyclic or dense in P .

6. Let v be a valuation. Show that v(x + y) = max (v(x), v(y)) when v(x) =/ v(y) .

7. Let v be a valuation on a field F . Show that ov has exactly one maximal ideal
mv = { x ∈ F

∣
∣ v(x) < 1 } = ov\uv , and that the ideals of ov form a chain.

8. Show that a ring is the valuation ring of a discrete valuation if and only if it is a PID with
a unique nonzero prime ideal.

9. Prove that the series expansions in Propositions 6.5, 6.6 are unique.

10. Prove that a valuation ring is discrete if and only if it is Noetherian.

11. Prove that every totally ordered abelian group is the value group of a valuation.

In the following exercises, a place on a field F with values in a field Q is a mapping
π : F −→ Q ∪ {∞} such that (i) oπ = { x ∈ F

∣
∣ π(x) =/ ∞} is a subring of F ; (ii)

the restriction of π to oπ is a ring homomorphism; (iii) if π(x) = ∞ , then x−1 ∈ oπ and
π(x−1) = 0.
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12. Let π be a place on F with values in Q . Show that {π(x)
∣
∣ x ∈ F, x =/ ∞} is a

subfield of Q .

13. Let π be a place on F with values in Q and let ρ be a place on Q with values in L .
Show that ρ ◦ π is a place on F with values on L .

14. Show that every valuation v on a field F induces a place π with values in ov/mv .

15. Define equivalence of places and show that, up to equivalence, every place is induced
by a valuation.

7. Extending Valuations

In this section we consider the extension problem for valuations, including nonar-
chimedean absolute values: when E is a finite extension of a field K with a
valuation v , can v be extended to a valuation on E ? We show that v has
extensions to E and prove some of their properties. This yields new properties of
finite field extensions. The results in this section are due to Ostrowski [1934].

Existence. Before extending valuations we extend homomorphisms.

Theorem 7.1. Let R be a subring of a field K . Every homomorphism of R into
an algebraically closed field L can be extended to a valuation ring of K .

Proof. Let ϕ : R −→ L be a homomorphism. By Zorn’s lemma there exists
a homomorphism ψ : S −→ L that extends ϕ to a subring S ⊇ R of K and is
maximal in the sense that ψ cannot be extended to a subring T � S of K . We
show that S is a valuation ring of K .

Claim 1: if ψ(a) =/ 0, then a is a unit of S ; hence m = Ker ψ is a maximal
ideal of S ; F = Im ψ ∼= S/m is a field; and every a ∈ S\m is a unit of S .

Given a ∈ S , ψ(a) =/ 0, let T = { xa−k ∈ K
∣
∣ x ∈ S, k � 0 } ; T is a subring

of K , which contains S since a0 = 1. If ψ(a) =/ 0, then xa−k = ya−� implies
xa� = yak , ψ(x)ψ(a)� = ψ(y)ψ(a)k , and ψ(x)ψ(a)−k = ψ(y)ψ(a)−� ;
therefore a mapping χ : T −→ L is well defined by χ(xa−k) = ψ(x)ψ(a)−k .
Then χ is a homomorphism that extends ψ . By maximality, T = S . Thus
ψ(a) =/ 0 implies a−1 ∈ S (in K ), so that a is a unit of S .

Claim 2: if c ∈ K\S , then m0 + m1c + · · · + mkck = 1 for some k > 0 and
m0, m1, . . ., mk ∈ m . The subring S[c] ⊆ K is the image of the evaluation
homomorphism ĉ : f �−→ f (c) of S[X ] into K , and A = Ker ĉ = { f ∈
S[X ]

∣
∣ f (c) = 0 } is an ideal of S[X ] . Now, ψ : S −→ F induces a surjective

homomorphism ψ : S[X ] −→ F[X ] , f �−→ ψf ; then B = ψ(A) is an ideal of
F[X ] and consists of all the multiples of some b ∈ F[X ] .

We show that B = F[X ] . Assume that b is not constant. Then b ∈ F[X ] ⊆
L[X ] has a root γ in the algebraically closed field L . Let γ̂ : F[X ] −→ L ,
g �−→ g(γ ) be the evaluation homomorphism. Then γ̂ (ψ( f )) = 0 for all
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f ∈ A , since b(γ ) = 0 and ψ( f ) ∈ B is a multiple of b . Hence Ker ĉ = A ⊆
Ker (γ̂ ◦ ψ) and γ̂ ◦ ψ factors through ĉ : S[X ] −→ S[c] :

γ̂ ◦ ψ = χ ◦ ĉ for some ring homomorphism χ : S[c] −→ L . If x ∈ S ⊆ S[X ] ,
then ψ(x) = ψ(x) ∈ F ⊆ F[X ] and χ(x) = χ(ĉ(x)) = γ̂ (ψ(x)) = ψ(x) . Thus
χ extends ψ , contradicting the maximality of S . Therefore B = F[X ] .

Since B = F[X ] there exists f = a0 + a1 X + · · · + an Xn ∈ A such that
1 = ψ( f ) = ψ(a0) + ψ(a1)X + · · · + ψ(an)Xn , equivalently, 1 − a0 and a1 , . . . ,
an are all in m = Ker ψ . Then f (c) = 0 yields 1 = (1 − a0)− a1c − · · · − ancn ,
where 1 − a0 , −a1 , . . . , −an ∈ m . This proves Claim 2.

We show that S is a valuation ring. Let c ∈ K . If c, c−1 /∈ S , then

m0 + m1c + · · · + mkck = 1 = n0 + n1c−1 + · · · + n�c−�

for some k, � � 0 and m0, . . ., mk, n0, . . ., n� ∈ m , by Claim 2. We may choose
these equalities so that k � � and k + � is as small as possible. Then mk, n� =/ 0
and k, � � 1 (since 1 /∈ m ). Now, 1 − n0 /∈ m is a unit of S , by Claim 1;
hence 1 − n0 = n1c−1 + · · · + n�c−l , ck = (1 − n0)

−1(n1ck−1 + · · · + n�ck−�) ,
and substituting for ck in the left hand side lowers k by 1, contradicting the
minimality of k + � . Therefore c ∈ S or c−1 ∈ S . �

Covered by Theorem 7.1 we now approach valuations.

Theorem 7.2. Let K be a subfield of E . Every valuation on K extends to a
valuation on E .

Proof. Let v be a valuation on K ; let o be the valuation ring of v , let m be
the maximal ideal of o , and let u be its group of units. Let L be the algebraic
closure of the field o/m . By 7.1, the projection π : o −→ o/m ⊆ L extends to
a homomorphism ϕ : O −→ L of a valuation ring O ⊇ o of E . Let M be the
maximal ideal of O and let U be its group of units.

We show that O ∩ K = o , M ∩ K = m , and U ∩ K = u . If x ∈ m , then
ϕ(x) = π(x) = 0, x /∈ U , and x ∈ M . If now x ∈ K\o , then x /∈ u , x−1 ∈ m ,
x−1 ∈ M , and x /∈ O ; hence O ∩ K = o . If x ∈ o\m , then x ∈ u , x ∈ U ,
and x /∈ M ; hence M ∩ K = M ∩ o = m . Then U ∩ K = u .

The inclusion homomorphism K ∗ = K\{0} −→ E∗ = E\{0} now induces
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a homomorphism ψ : K ∗/u −→ E∗/U , xu �−→ xU (see the diagram above)
which is injective since U ∩ K ∗ = u . Moreover, ψ(xu) � ψ(yu) in E∗/U is
equivalent to xu � yu in K ∗/u , since both are equivalent to xy−1 ∈ O∩ K = o ;
hence ψ induces an order preserving isomorphism K ∗/u ∼= Im ψ . Up to this
isomorphism, the valuation vO on E extends the valuation vo on K . The given
valuation v is equivalent to vo by 6.3 and can also be extended to E . �

Properties. In what follows, v is a valuation on K ; w extends v ; o , m , and
u denote the valuation ring of v , its maximal ideal, and its group of units; O , M ,
and U denote the valuation ring of w , its maximal ideal, and its group of units.
Since w extends v we have O ∩ K = o , M ∩ K = m , and U ∩ K = u .

Definition. The residue class field of a valuation v is the quotient Fv = ov/mv ,
where mv is the maximal ideal of ov .

If w extends v , then Fw = O/M is a field extension of Fv = o/m : since
M ∩ o = m , there is a commutative square

where the vertical maps are projections. It is convenient to identify the residue
classes x = x + m ∈ Fv and x = x + M ∈ Fw of every x ∈ K , so that Fv
becomes a subfield of Fw .

Definitions. If E is a field extension of K and w is a valuation on E that
extends v , then e (w : v) = [ Gw : Gv ] is the ramification index of w over v , and
f (w : v) = [ Fw : Fv ] is the residue class degree of w over v .

These numbers e (w : v) and f (w : v) are also denoted by e (E : K ) and
f (E : K ) (preferably when they do not depend on the choice of w ).

Proposition 7.3. If E is a field extension of K , v is a valuation on K , and w

is a valuation on E that extends v , then e (w : v) f (w : v) � [ E : K ] .

Proof. Let (αi )i∈I be elements of E . Let (βj ) j∈J be elements of O whose
residue classes are linearly independent over Fv .

Let γ =
∑

j∈J xj βj ∈ E , where xj ∈ K , xj =/ 0 for some j ∈ J . Then
m = max j∈J v(xj ) =/ 0, m = v(xt ) for some t ∈ J , and then xj/xt ∈ o for
all j ∈ J , with xt/xt = 1 /∈ m . Since the residue classes (βj ) j∈J are linearly
independent over Fv we have

∑

j∈J xj/xt βj =/ 0 in Fw ,
∑

j∈J xj/xt βj /∈ M ,
w
(∑

j∈J xj/xt βj
)

= 1, and w(γ ) = w
(∑

j∈J xj βj
)

= w(xt ) ∈ Gv .

Now assume that
∑

i∈I, j∈J xi j αi βj = 0 for some xi j ∈ K such that xi j = 0
for almost all i, j but xi j =/ 0 for some i and j . Let γi =

∑

j∈J xi j βj . By
the above, either w(γi ) ∈ Gv (when xi j =/ 0 for some j ), or w(γi ) = 0. Then
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m = maxi∈I w(αiγi ) =/ 0 and m = w(αkγk) for some k ∈ I . If w(αiγi ) < m
for all i =/ k , then w

(∑

i∈I αiγi
)

= m , contradicting
∑

i∈I αiγi = 0. Hence
w(αiγi ) = w(αkγk) =/ 0 for some i =/ k , and then w(αi ) Gv = w(αj ) Gv . There-
fore, if all w(αi ) lie in different cosets of Gv , and the residue classes (βj ) j∈J
are linearly independent over Fv , then the elements (αiβj )i∈I, j∈J are linearly
independent over K . �

A nonarchimedean absolute value is a valuation v such that Gv ⊆ P . This
property is not necessarily preserved under extension, except in the finite case:

Theorem 7.4. If E is a finite extension of K , then every nonarchimedean
absolute value on K extends to a nonarchimedean absolute value on E .

Proof. By 7.2, a nonarchimedean absolute value v on K extends to a valuation
w on E . By 7.3, e = e (w : v) is finite. Then ge ∈ Gv for every g ∈ Gw , and
g �−→ ge is a homomorphism of Gw into Gv ⊆ P , which is injective since the
totally ordered abelian group Gw is torsion free. Now, every r ∈ P has a unique
eth root e√r in P , and r �−→ e√r is an automorphism of P . Then x �−→ e

√

w(x)e

is a nonarchimedean absolute value on E that extends v . �

Using the same homomorphism g �−→ ge , readers may prove the following:

Proposition 7.5. Let E be a finite extension of K , let v be a valuation on K ,
and let w be a valuation on E that extends v . If v is discrete, then w is discrete.

Proposition 7.6. Let E be a finite extension of K , let v be a discrete non-
archimedean absolute value on K , and let w be a discrete nonarchimedean
absolute value on E that extends v . If K is complete with respect to v , then
e (w : v) f (w : v) = [ E : K ] .

Proof. First, w exists, by 7.4 and 7.5. Let v(p) < 1 generate Gv and
w(ρ) < 1 generate Gw . Then v(p) = w(ρ)e for some e > 0; ρe = up for some
u ∈ U ; the cosets of Gv are Gv , w(ρ) Gv , . . . , w(ρe−1) Gv ; and e = e (w : v) .
Let f = f (w : v) and β1 , . . . , β f be elements of O whose residue classes β1 ,
. . . , β f constitute a basis of Fw over Fv . As in the proof of 7.3, the products

(ρi βj )0�i<e, 1� j� f are linearly independent over K .

Let r ⊆ o be a set with one element in every residue class of o . Since β1 , . . . ,
β f is a basis of Fw over Fv , the set { r1β1 + · · · + r f β f

∣
∣ r1, . . ., r f ∈ r } has

one element in every residue class of O . We now expand every nonzero element
α of E , much as in the proof of 6.5. We have w(α) = w(ρ)m for some m ∈ Z

and m = e� + i for some �, i ∈ Z , 0 � i < e ; then w(α) = w(p�ρi ) and
α = up�ρi for some u ∈ U , and u = r�i1β1 + · · · + r�i f β f + µ for some r�i j ∈ r

and µ ∈ M ; hence

α =
(∑

1� j� f r�i j p�ρiβj
)

+ α′,
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where α′ = µp�ρi , so that w(α′) < w(p�ρi ) = w(ρm) and w(α′) � w(ρ)m+1 .
Continuing in this fashion yields a series expansion

α =
∑

k��, 0�i<e, 1� j� f rki j pkρiβj .

Since K is complete,
∑

k�� rki j pk has a sum xi j in K for every i, j . Then

α =
∑

i, j xi jρ
iβj . Hence (ρi βj )0�i<e, 1� j� f is a basis of E over K . �

Extensions of nonarchimedean absolute values are now counted as follows.

Theorem 7.7. Let v be a nonarchimedean absolute value on a field K and let
E = K (α) be a finite extension of K . There are finitely many absolute values
on E that extend v , one for each monic irreducible factor qi of Irr (α : K )
in K̂ [X ] . Moreover, [ Êwi

: K̂ ] = deg qi and
∑

i [ Êwi
: K̂ ] � [ E : K ] , with

∑

i [ Êwi
: K̂ ] = [ E : K ] if E is separable over K .

Proof. First, Fi = K̂ [X ]/(qi ) is a finite extension of K̂ , Fi = K̂ (αi ) , where
Irr (αi : K ) = qi , and [ Fi : K ] = deg qi . Since

∏

i qi divides q = Irr (α : K ) ,
we have

∑

i [ Fi : K̂ ] =
∑

i deg qi � deg q = [ E : K ] ; if E is separable over K,
then q =

∏

i qi and
∑

i [ Fi : K̂ ] = [ E : K ] .

Since (q) ⊆ (qi ) in K̂ [X ] , there is a homomorphism E −→ Fi such that the
following square commutes:

where the vertical maps are projections. Hence Fi is a field extension of E . By
7.4 there is an absolute value on Fi that extends the absolute value v̂ on K̂ ; this
induces an absolute value wi on E that extends v .

Conversely, let w be an absolute value on E that extends v . The completion
Êw contains α and K̂ , so there is an evaluation homomorphism α̂ : f �−→ f (α)
of K̂ [X ] into Êw . Since α is algebraic over K̂ ⊇ K , Im α̂ = K̂ [α] is a finite
field extension of K̂ and is complete by 5.2. Since E is dense in Im α̂ ⊆ Êw this
implies Êw = Im α̂ = K̂ [α] ∼= K̂ [X ]/(r) , where r = Irr (α : K̂ ) . Now, r divides
q , since r(α) = 0; hence r is one of the monic irreducible factors of q in K̂ [X ] ,
r = qi for some i . Then Êw

∼= K̂ [X ]/(qi ) = Fi , by a K̂-isomorphism that takes
α to αi . Up to this isomorphism, ŵ = w′

i by 5.2, since both induce the same
absolute value v̂ on K̂ ; hence w = wi . Moreover, i is unique: if wi = wj , then

Êwi
= Êwj

and there is a K̂-isomorphism Fi
∼= Fj that takes αi to αj ; hence

qi = Irr (αi : K̂ ) = Irr (αj : K̂ ) = qj and i = j . �
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If v is discrete, then all wi are discrete, by 7.5, and 7.6 yields [ Êwi
: K̂ ]

= e (ŵi : v̂) f (ŵi : v̂) . Readers will verify that a discrete absolute value and its
completion have the same value group and have isomorphic residue class fields;
hence e (ŵi : v̂) = e (wi : v) , f (ŵi : v̂) = f (wi : v) , and 7.7 yields the following:

Theorem 7.8. Let v be a discrete absolute value on a field K , let E = K (α) be a
finite extension of K , and let w1 , . . . , wr be the distinct absolute values on E that
extend v . Then

∑

i e (wi : v) f (wi : v) � [ E : K ] , with
∑

i e (wi : v) f (wi : v) =
[ E : K ] if E is separable over K .

Further improvements occur when v is discrete and E is a finite Galois exten-
sion of K (hence simple, by the primitive element theorem). Then it can be shown
that w1 , . . . , wr are conjugate (wj = wi ◦ σ for some σ ∈ Gal (E : K ) ). Hence
all wi have the same ramification index e and the same residue class degree f
over v , and 7.8 yields [ E : K ] = e f r .

In the next section we complete 7.7 and 7.8 with criteria for irreducibility in
K̂ [X ] .

Exercises

1. Let R be a subring of K and let ϕ : R −→ L be a homomorphism of rings. Fill in the
details for the statement that, by Zorn’s lemma, there exists a homomorphism ψ : S −→ L
that extends ϕ to a subring S ⊇ R of K and is maximal in the sense that ψ cannot be
extended to a subring T � S of K .

2. Find the valuation ring and residue class field of the valuation vp on Q .

3. Let K be a field. Find the valuation ring and residue class field of the valuation v0

on K (X) .

4. Let w extend v and v extend u . Show that e (w : v) e (v : u) = e (w : u) and that
f (w : v) f (v : u) = f (w : u) . Do not expect extravagant praise when you find a proof.

5. Let E be a finite extension of K , let v be a valuation on K , and let w be a valuation
on E that extends v . Show that, if v is discrete, then w is discrete.

6. Let v be a discrete nonarchimedean absolute value on a field F and let v̂ be the
corresponding absolute value on F̂ . Show that v and v̂ have the same value group.

7. Let v be an nonarchimedean absolute value on a field F and let v̂ be the corresponding
absolute value on F̂ . Show that v and v̂ have isomorphic residue class fields.

8. Hensel’s Lemma

This result, first proved by Hensel [1904] for p-adic numbers, is now an irre-
ducibility criterion for polynomials with coefficients in a complete field.

Primitive polynomials. First we show that the irreducible polynomials over a
field K are determined by the irreducible polynomials over any of its valuation
rings. By 6.4, a discrete valuation ring o of a field K is a PID, hence a UFD. As
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we saw in Section III.10, every nonzero polynomial f ∈ K [X ] can be written in
the form f (X) = a f ∗(X) with a ∈ K , a =/ 0, and f ∗ ∈ o[X ] primitive, and f ∗

is unique up to multiplication by a unit of o ; a product of primitive polynomials
is primitive (Gauss’s lemma); hence f is irreducible in K [X ] if and only if f ∗ is
irreducible in o[X ] .

These properties extend to all valuation rings.

Definition. Let o be a valuation ring and let m be its maximal ideal. A
polynomial f ∈ o[X ] is primitive when its coefficients are not all in m .

Proposition 8.1. Let o be a valuation ring of a field K and let m be its
maximal ideal. Every nonzero polynomial f ∈ K [X ] can be written in the form
f (X) = t f ∗(X) , where t ∈ K , t =/ 0 , and f ∗(X)∈ o[X ] is primitive; moreover,
t and f ∗ are unique up to multiplication by units of o .

Proof. The ring o is the valuation ring of a valuation v on K . For every
f (X) = a0 + a1 X + · · · + an Xn ∈ K [X ] , let V ( f ) = max

(

v(a0), . . ., v(an)
)

.
If f =/ 0, then V ( f ) = v(at ) for some t , and then at ∈ K , at =/ 0, and f (X) =
at f ∗(X) , where f ∗ ∈ o[X ] is primitive since V ( f ) = v(at ) V ( f ∗) .

If a g(X) = b h(X) , where b, c =/ 0 and g, h are primitive, then v(a) =
V (a g(X)) = V (b h(X)) = v(b) =/ 0, u = a/b is a unit of o , and h = ug . �

Lemma 8.2 (Gauss). Let o be a valuation ring of a field K . If f and g ∈ o[X ]
are primitive, then f g is primitive.

Proof. Let f (X) = a0 + a1 X + · · · + am Xm and g(X) = b0 + b1 X + · · · +
bn Xn , so that ( f g)(X) = c0 + c1 X + · · · + cm+n Xm+n , where ck =

∑

i+ j=k ai bj .
Since f and g are primitive, the maximal ideal m of o does not contain all ai
and does not contain all bj . Let k and � be smallest such that ak /∈ m and
b� /∈ m . Then ai ∈ m for all i < k and bj ∈ m for all j < � . Since m is a
prime ideal, ak b� /∈ m ; but ai bj ∈ m when i < k , and when i + j = k + � and
i > k , for then j < � . Therefore ck+� /∈ m . �

Corollary 8.3. In Proposition 8.1, f is irreducible in K [X ] if and only if f ∗

is irreducible in o[X ] .

Proof. We may assume that deg f � 2. If f is not irreducible, then f has a
factorization f = gh in which deg g , deg h � 1. Let f (X) = a f ∗(X) , g(X)
= b g∗(X) , h(X) = c h∗(X) , with f ∗, g∗, h∗ ∈ o[X ] primitive, as in 8.1.
Then a f ∗(X) = bc g∗(X) h∗(X) . By 8.2, g∗h∗ is primitive; hence f ∗(X) =
u g∗(X) h∗(X) for some unit u of o , by 8.1, and f ∗ is not irreducible. Con-
versely, if f ∗ is not irreducible, then neither is f (X) = a f ∗(X) . �

Readers will prove the following generalization of Eisenstein’s criterion:

Proposition 8.4. If f (X) = a0 + a1 X + · · · + an Xn ∈ o[X ] , a0, . . ., an−1 ∈
m , an /∈ m , and a0 is not the product of two elements of m , then f is irreducible.
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If v is discrete and v(p) < 1 generates its value group, then the conditions in
8.4 hold when p divides a0, . . ., an−1 but not an , and p2 does not divide a0 .

Hensel’s lemma. Let F = o/m be the residue class field. Every polynomial
f (X) = a0 + a1 X + · · · + an Xn in o[X ] has an image f (X) = a0 + a1 X +
· · · + an Xn in F[X ] (where x = x + m ). Hensel’s lemma uses factorizations
of f to obtain factorizations of f when f is primitive. Equivalently, it refines
“approximate” factorizations modulo m into “exact” factorizations.

Theorem 8.5 (Hensel’s Lemma). Let K be complete for a valuation v and let
f ∈ ov[X ] be primitive. If

f = g0 h0

for some g0, h0 ∈ ov[X ] , where g0 is monic and g0 , h0 are relatively prime,
then there exist g, h ∈ ov[X ] such that

f = gh , g = g0 , h = h0 , g is monic, and deg g = deg g .

Proof. Without changing g0 and h0 we may assume that g0 and h0 have no
nonzero coefficients in m . Then the leading coefficients of g0 and h0 are units of
o ; deg g0 = deg g0 ; and deg h0 = deg h0 , so that deg h0 � deg f − deg g0 .
Since the leading coefficient of g0 is a unit, we may further assume that g0 is
monic.

Since g0 and h0 are relatively prime, there exist s, t ∈ o[X ] such that s g0 +
t h0 = 1. Then m contains every coefficient ai of r0 = f − g0 h0 and bj of
sg0 + th0 − 1. Choose c ∈ m so that v(c) = max i, j

(

v(ai ), v(bj )
)

. Then
v(c) < 1. Write p ≡ q (mod a ) when every coefficient of p − q is a multiple
of a in o . Since ai/c , bj/c ∈ o for all i, j , we have

f ≡ g0 h0, sg0 + th0 ≡ 1 (mod c).

To prove 8.5, we construct polynomials gn, hn ∈ o[X ] as follows, so that
f ≡ gn hn (mod cn+1 ). Polynomial division by g0 is possible in o[X ] since g0
is monic; hence, given gn and hn , there exist rn, q, k ∈ o[X ] such that

f − gn hn = cn+1rn , rn t = g0 q + k , and deg k < deg g0 .

Let � ∈ o[X ] be obtained from h0 q + rn s by replacing all coefficients that are
multiples of c by 0, so that � ≡ h0 q + rn s (mod c ). Let

gn+1 = gn + cn+1k and hn+1 = hn + cn+1� .

We prove

(1)

{

gn = g0, hn = h0, deg gn = deg g0, deg hn � deg f − deg g0,

gn is monic, and f ≡ gn hn (mod cn+1)

by induction on n . First, (1) holds if n = 0. Assume that (1) holds for n . Then
gn+1 = gn = g0 , hn+1 = hn = h0 , deg gn+1 = deg gn = deg g0 , since deg k <
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deg g0 , and gn+1 is monic like gn . Next, 1 ≡ sg0 + th0 (mod c ) implies

rn ≡ rn sg0 + rn th0 = g0 (rn s + h0 q) + h0 k ≡ g0 � + h0 k (mod c), and

f − gn+1 hn+1 ≡ f −
(

gn hn + cn+1(gn � + hn k)
)

= cn+1(rn − (gn � + hn k)
)

≡ cn+1(rn − (g0 � + h0 k)
)

≡ 0 (mod cn+2).

Finally, if deg hn+1 > deg f − deg g0 , then deg � > deg f − deg g0 , and
deg (g0 � + h0 k) = deg g0 � > deg f , since deg h0 k < deg h0 + deg g0 �
deg f . But rn ≡ g0 � + h0 k (mod c ) and deg rn � deg f ; hence the leading
coefficient of g0 l is a multiple of c , which contradicts the construction of � .
Therefore deg hn+1 � deg f − deg g0 . Thus (1) holds for all n .

Let gn(X) = a0n + a1n X + · · · + ar−1,n Xr−1 + Xr , where r = deg gn =
deg g0 . If m, n � N , then gm ≡ gn (mod cN ), aim − ain is a multiple of cN

in o , and v(aim − ain) � v(c)N . Hence (ain)n�0 is a Cauchy sequence and has

a limit ai in o . Then gn has a limit g(X) = a0 + a1 X + · · · + ar−1 Xr−1 + Xr ∈
o[X ] such that gn ≡ g (mod cn ) for all n ; moreover, g = g0 , g is monic, and
deg g = deg g0 . Similarly, hn has a limit h ∈ o[X ] such that hn ≡ h (mod cn )
for all n , h = h0 , and deg h � deg f − deg g0 . Then f ≡ gh (mod cn ) for all
n ; therefore f = gh . �

Corollary 8.6. Let K be complete for a valuation v and f ∈ ov[X ] . If
f (a) ∈ mv , f ′(a) /∈ mv for some a ∈ ov , then f (b) = 0 for some b ∈ a + mv .

Proof. The polynomial f is primitive, since f ′(a) /∈ m . We have f (a) = 0,
f ′(a) =/ 0. Hence f (X) = (X − a) h(X) for some h ∈ o[X ] , where X − a and
h are relatively prime. By 8.5, f = gh for some g, h ∈ o[X ] , where g is monic,
deg g = 1, and g = X − a . Then g(X) = X − b for some b ∈ o , b = a , and
f (b) = 0. �

For example, let f (X) = X2 + 1 ∈ Ẑ5[X ] . We have | f (2)|5 = |5|5 < 1,
| f ′(2)|5 = |4|5 = 1. By 8.6, there is a 5-adic integer x such that x2 = −1.

Adapting Newton’s method yields a sharper version of 8.6 for discrete valua-
tions, also known as Hensel’s lemma.

Proposition 8.7 (Hensel’s Lemma). Let K be complete for a discrete valuation
v and f ∈ ov[X ] . If v( f (a)) < v( f ′(a))2 for some a ∈ ov , then f (b) = 0 for
some unique b ∈ ov such that v(b − a) � v( f (a))/v( f ′(a)) .

Proof. We may regard v as a nonarchimedean absolute value. Assume that
∣
∣ f (a)

∣
∣ <

∣
∣ f ′(a)

∣
∣2 . Let α =

∣
∣ f (a)

∣
∣ , β =

∣
∣ f ′(a)

∣
∣ , and γ =

∣
∣ f (a)

∣
∣/
∣
∣ f ′(a)

∣
∣2 < 1.

Define b1 = a and

bn+1 = bn − f (bn)
f ′(bn)

.
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We prove by induction on n that

(2) bn ∈ o ,
∣
∣bn − a

∣
∣ � α/β , and

∣
∣ f (bn)

∣
∣ � β2 γ n .

We see that (2) holds when n = 1. If n > 1, then binomial expansion yields

f (x + t) = f (x) + t f ′(x) + t2 g(x, t) and

f ′(x + t) = f ′(x) + t f ′′(x) + t2 h(x, t)

for some g, h ∈ o[X, T ] . Hence
∣
∣bn − a

∣
∣ � α/β implies

f ′(bn) − f ′(a) = (bn − a)
(

f ′′(a) + (bn − a) h(a, bn − a)
)

,
∣
∣ f ′(bn) − f ′(a)

∣
∣ �

∣
∣bn − a

∣
∣ � α/β < β,

and
∣
∣ f ′(bn)

∣
∣ =
∣
∣ f ′(a)

∣
∣ = β . In particular, f ′(bn) =/ 0, so that bn+1 is defined.

Let t = − f (bn)/ f ′(bn) . We have f (bn+1) = f (bn + t) = t2 g(bn, t) , and
∣
∣ f (bn)

∣
∣ � β2 γ n implies
∣
∣ f (bn+1)

∣
∣ �

∣
∣t
∣
∣2 =

∣
∣ f (bn)

∣
∣2/
∣
∣ f ′(bn)

∣
∣2 � β2 γ 2n � β2 γ n+1.

In particular,
∣
∣ f (bn)/ f ′(bn)

∣
∣ < 1, so that bn ∈ o implies bn+1 ∈ o . Also,

(3)
∣
∣bn+1 − bn

∣
∣ =

∣
∣ f (bn)

∣
∣/
∣
∣ f ′(bn)

∣
∣ � β γ n,

so that
∣
∣bn+1 − bn

∣
∣ � βγ = α/β and

∣
∣bn − a

∣
∣ � α/β implies

∣
∣bn+1 − a

∣
∣ � α/β .

Thus (2) holds for all n .

Since γ < 1, (3) shows that (bn)n>0 is a Cauchy sequence. Since K is
complete, (bn)n>0 has a limit b . Then (2) yields b ∈ o ,

∣
∣b − a

∣
∣ � α/β , and

∣
∣ f (b)

∣
∣ = 0, whence f (b) = 0.

The equality
∣
∣ f ′(bn)

∣
∣ = β also implies

∣
∣ f ′(b)

∣
∣ = β . Let c ∈ o ,

∣
∣c − a

∣
∣ �

α/β , and f (c) = 0. Then
∣
∣c − b

∣
∣ � α/β and

0 = f (c) − f (b) = (c − b) f ′(b) + (c − b)2g(b, c − b).

If c =/ b , then f ′(b) = −(c − b) g(b, c − b) , and
∣
∣ f ′(a)

∣
∣ =
∣
∣ f ′(b)

∣
∣ �

∣
∣c − b

∣
∣ �

∣
∣ f (a)

∣
∣/
∣
∣ f ′(a)

∣
∣ contradicts the hypothesis. �

For example, let v be the 2-adic valuation, K = Q̂2 , and f (X) = X2 + 7 ∈
Ẑ2[X ] . We have

∣
∣ f (1)

∣
∣ =

∣
∣8
∣
∣ = 1/8,

∣
∣ f ′(1)

∣
∣ =

∣
∣2
∣
∣ = 1/2. By 8.7, there is a

unique 2-adic integer x such that
∣
∣x − 1

∣
∣ � 1/4 and x2 = −7.

Exercises
1. Let K be complete with respect to a discrete valuation, and let f ∈ o[X ] be primitive

and irreducible. Show that f is, up to a constant, a power of a single irreducible polynomial.

2. Let R be a commutative ring and let p be a prime ideal of R . Prove the following: if
f (X) = a0 + a1X + · · · + an Xn ∈ R[X ] , a0, . . . , an−1 ∈ p , an /∈ p , and a0 is not the
product of two elements of p , then f is irreducible.
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3. Let K be complete for a valuation v and f = a0 + a1X + · · · + an Xn ∈ K [X ]

be primitive and irreducible of degree n . Show that max
(
v(a0), v(a1), . . . , v(an)

)
=

max
(
v(a0), v(an)

)
.

4. Which of the polynomials X2 + 1, X2 + 3, X2 + 5 are irreducible in Q̂3 ?

5. Find all extensions to Q(
√

5) of the 3-adic valuation on Q .

6. Find all extensions to Q(
√

7) of the 3-adic valuation on Q .

7. Find all extensions to Q(
√

3) of the 3-adic valuation on Q .

8. Determine all valuations on Q(i) .

9. Filtrations and Completions

Filtrations by ideals, or by powers of an ideal, provide very general completions
of commutative rings. This leads to a more general statement of Hensel’s lemma,
and to a universal property of power series rings.

Construction. Ring filtrations are infinite descending sequences of ideals:

Definition. A filtration on a commutative ring R is an infinite descending
sequence a1 ⊇ a2 ⊇ · · · ⊇ ai ⊇ ai+1 ⊇ · · · of ideals of R .

For instance, if a is an ideal of R , then

a ⊇ a2 ⊇ · · · ⊇ ai ⊇ ai+1 ⊇ · · ·
is a filtration on R , the a-adic filtration on R . (an is the ideal of R generated
by all a1 · · · an with a1, . . . , an ∈ a .)

Definition. The completion of a commutative ring R relative to a filtration
A : a1 ⊇ a2 ⊇ · · · on R is the ring R̂A of all infinite sequences

(

x1 + a1 , . . . , xi + ai , . . .
)

such that xi ∈ R and xi + ai = xj + ai whenever j � i ; equivalently, xi+1 ∈
xi + ai for all i � 1 . If a is an ideal of R , then the a-adic completion R̂a of R
is its completion relative to the a-adic filtration.

We see that R̂A is a subring of R/a1 × R/a2 × · · · . In Section XI.4 we will
recognize R̂A as the inverse limit of the rings R/ai . One may view the rings
R/ai as increasingly accurate approximations of R̂A.

By definition, the a-adic completion R̂a of R consists of all sequences
(

x1 + a , . . . , xi + ai , . . .
)

such that xi ∈ R and xi + ai = xj + ai whenever j � i ; equivalently,

xi+1 ∈ xi + ai for all i � 1. For example, when p is a prime and p = Zp ,
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then Ẑp is isomorphic to the ring Ẑp of p-adic integers; when o is the valuation
ring of a discrete valuation v on a field F and m is its maximal ideal, then ôm
is isomorphic to the valuation ring of F̂v (see the exercises).

Proposition 9.1. If R = S[X1, ..., Xn] , where S is a commutative ring, and a

is the ideal generated by X1, . . ., Xn , then R̂a
∼= S[[X1, ..., Xn]] .

Proof. We see that ai consists of all polynomials of order at least i . For
every f ∈ S[[X1, ..., Xn]] , let ϕi ( f ) ∈ R/ai be the coset of any polynomi-
al with the same terms of degree less than i as f . Then ϕi is a homomor-
phism, and ϕi ( f ) + ai = ϕj ( f ) + ai whenever j � i ; hence ϕ : f �−→
(

ϕ1( f ), . . . , ϕi ( f ), . . .
)

is a homomorphism of S[[X1, ..., Xn]] into R̂a .

Conversely, let g =
(

g1 + a , . . . , gi + ai , . . .
)

∈ R̂a , so that gi ∈ S[X1, ..., Xn]
and gi+1 − gi ∈ ai+1 has order at least i + 1 for all i � 1. Then (gi+1 − gi )i>0
is addible in S[[X1, ..., Xn]] . Let g = g1 +

∑

i>0 (gi+1 − gi ) . The partial sum
g1 + (g2 − g1) + · · · + (gi − gi−1) is gi ; hence g and gi have the same terms
of degree less than i . In particular, g = ϕ(g) , and g depends only on the cosets
gi + ai and not on the choice of gi in gi + ai . Hence g �−→ g is a well defined
homomorphism of R̂a into S[[X1, ..., Xn]] .

We see that ϕ( f ) = f for every f ∈ S[[X1, ..., Xn]] , since f and ϕ( f ) have
the same terms of degree less than i as ϕi ( f ) , for all i . Thus ϕ and g �−→ g are
mutually inverse isomorphisms. �

Properties. In general, the completion R̂A comes with a canonical homomor-
phism R −→ R̂A defined as follows.

Definition. If A : a1 ⊇ a2 ⊇ · · · is a filtration on R , then ι : x �−→
(

x + a1, . . . , x + ai , . . .
)

is the canonical homomorphism of R into R̂A.

Readers will verify that ι is injective if and only if
⋂

i>0 ai = 0; this is true in
the examples above, but not in general.

Definition. A ring R is complete relative to a filtration A when the canonical
homomorphism ι : R −→ R̂A is an isomorphism. A ring R is complete relative to
an ideal a when the canonical homomorphism ι : R −→ R̂a is an isomorphism.

We show that R̂A is always complete.

Proposition 9.2. If A : a1 ⊇ a2 ⊇ · · · is a filtration on R , then

âj = {
(

x1 + a1, . . ., xi + ai . . .
)

∈ R̂A

∣
∣ xj ∈ aj }

is an ideal of R̂A, Â : â1 ⊇ â2 ⊇ · · · is a filtration on R̂A , and R̂A is complete
relative to Â .
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Note that âj = {
(

x1 + a1, . . ., xi + ai , . . .
)

∈ R̂A

∣
∣ xi ∈ ai for all i � j } ;

thus,
(

x1, . . ., xi , . . .
)

∈ âj if and only if xi = 0 in R/ai for all i � j .

Proof. First, âj is an ideal of R̂A, since it is the kernel of the homomor-

phism
(

x1 + a1, x2 + a2, . . .
)

�−→ xj + aj of R̂A into R/aj . In particular,

R̂A/âj
∼= R/aj ; the isomorphism sends

(

x1 + a1, x2 + a2, . . .
)

+ âj to xj + aj .
The alternate description of â j shows that â1 ⊇ â2 ⊇ · · · .

Let S = R̂A and Ŝ = Ŝ
Â

. If x =
(

x1 + a1, x2 + a2, . . .
)

∈ S lies in
⋂

i>0 âj ,
then xi ∈ ai for all i � j and all j , and x =

(

a1, a2, . . .
)

= 0 in S ; hence
ι : S −→ Ŝ is injective. Let x =

(

x1 + â1, x2 + â2, . . .
)

∈ Ŝ , so that xj ∈ R̂A

for all j and xj + âj = xk + âj whenever k � j . Then xk − xj ∈ âj when
k � j , so that xk =

(

xk1 + a1, xk2 + a2, . . .
)

and xj =
(

x j1 + a1, x j2 + a2, . . .
)

have the same component xki + ai = x ji + ai ∈ R/ai for all i � j . Let

yi = xii ∈ R . If k � j , then xk j − x j j ∈ aj and xkk − xk j ∈ aj , since xk ∈ R̂A;

hence yk − yj ∈ aj . Thus y =
(

y1 + a1, y2 + a2, . . .
)

∈ R̂A. Moreover,
y − xj ∈ âj for all j , since y j − x j j ∈ aj . Hence x =

(

x1 + â1, x2 + â2, . . .
)

=
(

y + â1, y + â2, . . .
)

= ι(y) . Thus ι : S −→ Ŝ is an isomorphism. �

Limits of sequences are defined in R as follows when R has a filtration.

Definitions. Relative to a filtration a1 ⊇ a2 ⊇ · · · , x ∈ R is a limit of a
sequence (xn)n>0 when for every i > 0 there exists N > 0 such that x − xn ∈ ai
for all n � N ; a sequence (xn)n>0 is Cauchy when for every i > 0 there exists
N > 0 such that xm − xn ∈ ai for all m, n � N .

Readers will verify basic properties of limits, such as the limit laws.

Proposition 9.3. If R is complete (relative to a filtration), then every Cauchy
sequence of elements of R has a unique limit in R .

Proof. Let (xn)n>0 be a Cauchy sequence relative to A : a1 ⊇ a2 ⊇ · · · .
Choose n(i) by induction so that n(i + 1) � n(i) and xm − xn ∈ ai for all
m, n � n(i) . Then (xn(i))i>0 is Cauchy, with xn( j) − xn(k) ∈ ai for all

j, k � i . Hence x̂ = (xn(1) + a1 , xn(2) + a2 , . . .) ∈ R̂A. Since R is complete,
x̂ = ι(x) for some x ∈ R . Then x − xn(i) ∈ ai for all i and x is a limit of
(xn(i))i>0 ; by the choice of n(i) , x is also a limit of (xn)n>0 . Readers will easily
prove that the latter is unique. �

The exercises give an alternate construction of R̂A by Cauchy sequences.
Proposition 9.3 also yields some truly infinite sums:

Corollary 9.4. (1) If R is complete relative to a filtration a1 ⊇ a2 ⊇ · · · ,
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then every family (xt )t∈T of elements of R such that

for every i > 0 , xt ∈ ai for almost all t ∈ T

has a sum in R , namely lim i→∞ si , where si is the sum of all xt /∈ ai .

(2) If R is complete relative to an ideal a and a1, . . ., an ∈ a , then every
power series

∑
rm am1

1 · · · amn
n with coefficients in R has a sum in R , namely

lim i→∞ si , where si is the sum of all terms of degree less than i .

Proof. (1). We see that si is a finite sum, and (si )i>0 is a Cauchy sequence. (2).
For every i , rm am1

1 · · · amn
n ∈ ai holds for almost all m , since rm am1

1 · · · amn
n ∈

am1+···+mn ⊆ ai when m1 + · · · + mn � i . By (1),
∑

m rm am1
1 · · · amn

n exists,
and

∑

m rm am1
1 · · · amn

n = lim i→∞ si , where si is the sum of all terms of degree
less than i : indeed, si has the same limit as the sum ti of all rm am1

1 · · · amn
n /∈ ai ,

since si − ti ∈ ai . �
Power series rings. If R is complete relative to an ideal a , then 9.4 yields for

every a1, . . ., an ∈ a an evaluation mapping of R[[X1, ..., Xn]] −→ R , which
sends f (X1, . . ., Xn) =

∑

m rm Xm1
1 · · · Xmn

n to

f (a1, . . ., an) =
∑

m rm am1
1 · · · amn

n .

Readers will verify that this mapping is a homomorphism. Evaluation in turn
yields a universal property:

Proposition 9.5. Let R and S be commutative rings. If S is complete relative
to an ideal b , then for every ring homomorphism ϕ : R −→ S and elements
b1, . . ., bn of b there exists a unique homomorphism ψ : R[[X1, ..., Xn]]−→ S
that extends ϕ and sends X1, . . ., Xn to b1, . . ., bn , namely

∑
rm Xm1

1 · · · Xmn
n �−→

∑
ϕ(rm) bm1

1 · · · bmn
n . (1)

Compare to the universal property of polynomial rings, Theorem III.6.8.

Proof. Let a be the ideal of R[[X1, ..., Xn]] generated by X1, . . ., Xn . For
every f =

∑

m rm Xm1
1 · · · Xmn

n ∈ S[[X1, ..., Xn]] let fi be the sum of all terms
of f of degree less than i . Then f − fi ∈ ai for all i . By 9.4, the sum
f =

∑

m ϕ(rm) bm1
1 · · · bmn

n exists and has a similar property: f − f i ∈ bi for
all i , where f i is the sum of all ϕ(rm) bm1

1 · · · bmn
n of degree m1 + · · · + mn < i .

Let ψ : R[[X1, ..., Xn]] −→ S be a homomorphism that extends ϕ and sends
X1, . . ., Xn to b1, . . ., bn . Then ψ(a) ⊆ b , ψ( fi ) = f i , and
ψ( f ) − f i = ψ( f − fi ) ∈ bi for all i . Since limits in S are unique, this
implies ψ( f ) = lim i→∞ f i = f . Hence ψ is unique, and given by (1).

Conversely, (1) defines a mapping ψ : R[[X1, ..., Xn]] −→ S that ex-
tends ϕ and sends X1, . . . , Xn to b1, . . ., bn . Then ψ( fi ) = f i for all
f ∈ R[[X1, ..., Xn]] and i > 0, and ψ( f ) = lim i→∞ f i . It is now straightfor-
ward that ψ is a homomorphism. �
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Substitution in power series follows from Proposition 9.5: for every f1, . . . ,
fn ∈ S[[X1, ..., Xn]] of order at least 1, there is a substitution endomorphism of
S[[X1, ..., Xn]] that sends g (X1, . . ., Xn) =

∑

m sm Xm1
1 · · · Xmn

n to

g ( f1, . . ., fn) =
∑

m sm f m1
1 · · · f mn

n .

Hensel’s lemma. Finally, we extend Hensel’s lemma to every ring that is
complete relative to an ideal. First we prove a lemma.

Lemma 9.6. If f = r1 X + · · · + ri Xi + · · · ∈ R[[X ]] , then η : g(X) �−→ g( f )
is an automorphism of R[[X ]] if and only if r1 is a unit of R , and then η−1 :
h(X) �−→ h(k) for some k ∈ R[[X ]] of order 1 .

Proof. If η is an automorphism, then X = η(g) for some g ; g = h X for some
h , since g and g( f ) have the same constant term; X is a multiple of η(X) = f ;
and r1 is a unit. Moreover, k(X) = η−1(X) ∈ R[[X ]] has order at least 1, since
k(X) and k( f ) = X have the same constant term. By uniqueness in 9.5, η−1

and h(X) �−→ h(k) coincide, since both are homomorphisms that send X to k .
Hence h(X) �−→ h(k) is an automorphism and k has order 1.

Conversely, assume that r1 is a unit. If g =/ 0 in R[[X ]] , then g(X) = sj X j +

s j+1 X j+1 + · · · for some j � 0 and sj =/ 0; g( f ) = sj f j + s j+1 f j+1 + · · · has

a term of degree j with coefficient sj r j
1 =/ 0, since r j

1 is a unit; and η(g) =/ 0.
Thus η is injective.

Let h = tj X j + t j+1 X j+1 + · · · ∈ R[[X ]] have order at least j . Since r j
1

is a unit we have tj = s r j
1 for some s ∈ R . Then h − s f j has order at least

j + 1. If now h ∈ R[[X ]] is arbitrary, then there exist s0, s1, . . ., sj , . . . ∈ R
such that h − s0 has order at least 1, h − (s0 + s1 f ) has order at least 2, . . . ,
and, for every j , h − (s0 + s1 f + · · · + sj f j ) has order at least j + 1. Then

h =
∑

j�0 sj f j = g( f ) , where g =
∑

j�0 sj X j . Thus η is surjective. �

We can now prove:

Theorem 9.7 (Hensel’s Lemma). Let f ∈ R[X ] , where R is complete relative
to an ideal a . If f (a) ∈ f ′(a)2 a , then f (b) = 0 for some b ∈ a + f ′(a)a ;
moreover, b is unique if f ′(a) is not a zero divisor in R .

Proof. Let r = f ′(a) . We have

f (a + r X) = f (a) + (r X) f ′(a) + (r X)2 h(X) = f (a) + r2 (X + X2h(X))

for some h ∈ R[X ] . By 9.6, η : g(X) �−→ g(X + X2h(X)) is an automorphism
of R[[X ]] , and η−1 : g(X) �−→ g(k) , where k ∈ R[[X ]] has order 1. Hence

f (a + rk(X)) = η−1( f (a + r X)
)

= f (a) + r2 X.

Now, f (a) = r2 s for some s ∈ a . Evaluating at −s ∈ a yields f (a + rk(−s)) =
f (a) − r2 s = 0. Thus f (b) = 0, where b = a + rk(−s) , and b − a = rk(−s) ∈
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f ′(a)a : since k(X) has order 1, −s ∈ a implies k(−s) ∈ a .

Assume that f (c) = 0 for some c ∈ a + f ′(a)a . Let b − a = rs , c − a = r t ,
where s, t ∈ a . Since f (a + r X) = f (a) + r2 (X + X2h(X)) ,

f (a) + r2 (s + s2h(s)) = f (a + rs) = 0 = f (a + r t) = f (a) + r2 (t + t2h(t)).

If r is not a zero divisor in R , this implies s + s2h(s) = t + t2h(t) . Then
η(k)(s) = k

(

s + s2h(s)
)

= k
(

t + t2h(t)
)

= η(k)(t) . But η(k) = X , since
k = η−1(X) ; hence s = t . �

As a consequence of Hensel’s lemma, some polynomial equations f (X, Y ) = 0
have power series solutions Y = g(X) . We show this in C[[X ]] , which is complete
relative to the ideal a generated by X .

For example, let R = C[[X ]] and f (Y ) = Y 3 − XY + X3 ∈ R[Y ] . Then
f ′(0) = −X is not a zero divisor in R , and f (0) = X3 ∈ (−X)2a . By Hensel’s
lemma, there is a unique g(X) ∈ R such that f

(

g(X)
)

= 0 and g ∈ 0 + f ′(0)a ,
that is, g has order at least 2.

The first terms of g are readily computed. Let g(X) = aX2 + bX3 + cX4 +
d X5 + · · · . Then g3 = a3 X6 + · · · and

0 = g3 − Xg + X3 = (1 − a)X3 − bX4 − cX5 + (a3 − d)X6 + · · · ;

hence a = 1, b = c = 0, and d = a3 = 1. Thus g(X) = X2 + X5 + · · · .

The geometric significance of this solution is that the algebraic curve y3 −
xy + x3 = 0 has a branch y = x2 + x5 + · · · at the origin. By symmetry there is
another branch x = y2 + y5 + · · · . In effect, this separates the double point at the
origin into two separate locations on the curve. The expansions also indicate the
shape of the two branches.

Exercises

1. Prove that Ẑp is isomorphic to the ring Ẑp of p-adic integers when p = Zp .

2. Let F be a field and let o be the valuation ring of a discrete valuation v on F , with
maximal ideal m . Prove that ôm is isomorphic to the valuation ring of F̂v . (You may want
to use Proposition 6.6.)

R and S are commutative rings in all the following exercises.

3. Let A : a1 ⊇ a2 ⊇ · · · and B : b1 ⊇ b2 ⊇ · · · be filtrations on R . Suppose that
every ai contains some bj and that every bj contains some ai . Show that R̂A

∼= R̂B .

4. Let A : a1 ⊇ a2 ⊇ · · · be a filtration on R and let B : b1 ⊇ b2 ⊇ · · · be a filtration
on S . Let ϕ : R −→ S be a ring homomorphism such that ϕ(ai ) ⊆ bi for all i . Show that
ϕ induces a homomorphism ϕ̂ : R̂A −→ ŜB .

5. State and prove a uniqueness property in the previous exercise. Then state and prove a
universal property of R̂A .
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6. Relative to a filtration a1 ⊇ a2 ⊇ · · · on R , show that limits of sequences are unique
in R if and only if

⋂

i>0 ai = 0.

7. Relative to a filtration a1 ⊇ a2 ⊇ · · · on R , show that every sequence of elements of
R that has a limit in R is a Cauchy sequence.

8. Prove the following limit laws: relative to a filtration a1 ⊇ a2 ⊇ · · · on R , if x is a
limit of (xn)n>0 , and y is a limit of (yn)n>0 , then x + y is a limit of (xn + yn)n>0 and xy
is a limit of (xn yn)n>0 .

9. Show that R is complete (relative to a filtration on R ) if and only if every Cauchy
sequence of elements of R has a unique limit in R .

10. Relative to a filtration A on R , show that Cauchy sequences constitute a ring; show
that sequences with limit zero constitute an ideal of that ring; show that the quotient ring is
isomorphic to R̂A .

11. Prove the following: if R is complete relative to an ideal a , then 1 − a is a unit of R
for every a ∈ a .

12. In the ring R[[X1, ..., Xn]] , show that a power series is a unit if and only if its constant
term is a unit of R . (You may want to use the previous exercise.)

13. Let R be complete relative to an ideal a . Show that evaluation at a1, . . . , an ∈ a is
a homomorphism of R[[X1, ..., Xn]] into R .

14. Use Hensel’s lemma to show that the equation Y 3 − X − 1 = 0 has a solution
Y = g(X) ∈ C[[X ]] . Then find an explicit solution.

15. Use Hensel’s lemma to show that the equation Y 2 − X3 − X2 = 0 has a solution
Y = g(X) ∈ C[[X ]] . Then find an explicit solution.

16. Use Hensel’s lemma to show that the equation Y 3 − 2XY + X3 = 0 has a solution
Y = g(X − 1) , where g ∈ C[[X ]] and g(0) = 1. Calculate the first three terms of g . What
does this say about the curve y3 − 2xy + x3 = 0 near the point (1, 1)?

17. Let K be a field and f ∈ K [X, Y ] . Suppose that f (a, b) = 0, ∂ f
∂y (a, b) =/ 0 for

some a, b ∈ K . Prove that f (X, g(X − a)) = 0 for some g ∈ K [[X ]] such that g(0) = b .

18. Let a1 ⊇ a2 ⊇ · · · be a filtration on R . Show that the cosets of a1, a2, . . .
constitute a basis for a topology on R . (This defines the Krull topology on R , named after the
similar Krull topology on Galois groups.)

19. Relative to any filtration on R , show that the operations on R are continuous for its
Krull topology.

20. Show that the Krull topology on a complete ring R is Hausdorff and totally discon-
nected.

*21. How much of Propositions 9.1 through 9.5 extends to not necessarily commutative
rings?



VII
Commutative Rings

Commutative algebra, the study of commutative rings and related concepts, orig-
inated with Kummer’s and Dedekind’s study of the arithmetic properties of alge-
braic integers, and grew very quickly with the development of algebraic geometry,
which consumes vast amounts of it. This chapter contains general properties of ring
extensions, Noetherian rings, and prime ideals; takes a look at algebraic integers;
and ends with a very minimal introduction to algebraic geometry.

A first reading might include only Sections 1 and 5, which have little prere-
quisites. Other sections use modules at a few critical places; definitions and proofs
have been provided, but this chapter could be covered after Chapter VIII.

All rings in what follows are commutative rings with an identity element.

1. Primary Decomposition

This section contains basic properties of ideals and the Noether-Lasker theorem,
proved in special cases by Lasker [1905] and in general by Noether [1921] in the
seminal paper which introduced the ascending chain condition.

Ideals. We saw in Section III.2 that the sum and intersection of a family of
ideals of a ring R are ideals of R . We define two additional operations.

Proposition 1.1. Let a and b be ideals of a commutative ring R and let S be
a subset of R .

(1) The set ab of all finite sums a1b1 + · · · anbn , where n � 0 , a1, . . ., an ∈ a ,
and b1, . . ., bn ∈ b , is an ideal of R .

(2) The set a : S = { r ∈ R
∣
∣ rs ∈ a for all s ∈ S } is an ideal of R ; in

particular, a : b = { r ∈ R
∣
∣ ra ⊆ b } is an ideal of R .

The quotient a : S is also called the transporter of S into a . The notation ab
is traditional; one must remember that the product of a and b as ideals is larger
than their product { ab

∣
∣ a ∈ a, b ∈ b } as subsets; in fact, the former is the ideal

generated by the latter. Readers will verify the following properties.

Proposition 1.2. In a commutative ring R , the product of ideals is commu-
tative and associative, and distributes sums and unions of chains. Moreover,
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Ra = a and ab ⊆ a ∩ b , for all ideals a and b of R .

By 1.2, all products of ideals a1, . . ., an (in any order) are equal. The resulting
product a1 · · ·an is written without parentheses; readers will verify that it is the
ideal generated by all products a1 · · · an in which ai ∈ ai for all i .

Proposition 1.3. The following properties hold in a commutative ring R , for
every subset S and ideals a ,b ,c , and ai ,bi of R :

(1) a : S is an ideal of R ;

(2) a ⊆ a : S , with a : S = R if and only if S ⊆ a ;

(3) c ⊆ a : b if and only if bc ⊆ a ;

(4) (a : b) : c = a : bc ;

(5)
(⋂

i∈I ai
)

: S =
⋂

i∈I (ai : S) ;

(6) a :
∑

i∈I bi =
⋂

i∈I (a : bi ) .

Radicals. Recall that an ideal p of a commutative ring R is prime when p =/ R
and xy ∈ p implies x ∈ p or y ∈ p (Section III.4). Readers will verify that p is
prime if and only if, for all ideals a, b of R , ab ⊆ p implies a ⊆ p or b ⊆ p .
Moreover, R/a is a domain if and only if a is prime (III.4.5).

Definition. In a commutative ring R , the radical Rada of an ideal a is the
intersection of all prime ideals of R that contain a .

If a = R , then no prime ideal of R contains a and we let the empty intersection
Rada be R itself. In general, Rada is sometimes denoted by

√
a , and is often

defined as follows:

Proposition 1.4. Rada = { x ∈ R
∣
∣ xn ∈ a for some n > 0 } .

Proof. Let x ∈ R and let r be the intersection of all prime ideals that contain
a . If x ∈ R\r , then x /∈ p for some prime ideal p ⊆ a , xn /∈ p for all n > 0
since p is prime, and xn /∈ a for all n > 0.

Conversely, assume that xn /∈ a for all n > 0. By Zorn’s lemma there is an
ideal p that contains a , contains no xn , and is maximal with these properties. Let
a, b ∈ R\p . By the choice of p , p + (a) contains some xm , and p + (b) contains
some xn . Then xm = p + ra , xn = q + sb for some p, q ∈ p and r, s ∈ R ,
xm+n = pq + psb + qra + rsab ∈ p + (ab) , p + (ab) � p , and ab /∈ p . Thus p
is a prime ideal; since x /∈ p , it follows that x /∈ r . �

By 1.4, the set Rad 0 = { x ∈ R
∣
∣ xn = 0 for some n > 0 } of all nilpotent

elements of R is an ideal of R , and is the intersection of all prime ideals of R ;
Rad 0 is the nilradical of R . Readers will prove the next two results:

Proposition 1.5. Rad
(

a1 ∩ · · · ∩ an
)

= Rada1 ∩ · · · ∩ Radan , for all
ideals a1, . . ., an of a commutative ring R .

Proposition 1.6. If the ideal Rada is finitely generated, then (Rada)n ⊆ a
for some n > 0 .
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Definition. An ideal a of a commutative ring R is semiprime when it is an
intersection of prime ideals.

Thus, a is semiprime when Rada = a ; equivalently, when xn ∈ a implies
x ∈ a . Readers will show that an ideal s of R is semiprime if and only if an ⊆ s
implies a ⊆ s , for every n > 0 and ideal a of R .

Definition. An ideal q of a commutative ring R is primary when q =/ R and,
for all x, y ∈ R , xy ∈ q implies x ∈ q or yn ∈ q for some n > 0 . An ideal q
of R is p-primary when q is primary and Radq = p .

Readers will show that an ideal q of R with radical p is p-primary if and only
if ab ⊆ q implies a ⊆ q or b ⊆ p , for every ideals a, b of R ; and that:

Proposition 1.7. (1) The radical of a primary ideal is a prime ideal.
(2) The intersection of finitely many p-primary ideals is p-primary.
(3) An ideal whose radical is a maximal ideal is primary.

Primary decomposition. We now let R be Noetherian. An ideal i of R
is irreducible (short for “intersection irreducible”) when i =/ R and i is not the
intersection of ideals a, b � i .

Lemma 1.8. Every ideal of a Noetherian ring R is the intersection of finitely
many irreducible ideals of R .

Proof. “Intersections” include one-term intersections and the empty intersection
R . Call an ideal b of R nasty when it is not the intersection of finitely many
irreducible ideals of R . If the result is false, then the set of all nasty ideals of
R is not empty; since R is Noetherian, there is a maximal nasty ideal n . This
bad boy n is not R and is not irreducible. Therefore n = a ∩ b for some ideals
a, b � n . By the maximality of n , a and b are intersections of finitely many
irreducible ideals; but then so is n , a contradiction. �

Theorem 1.9. In a Noetherian ring, every ideal is the intersection of finitely
many primary ideals.

Proof. By 1.8 we need only show that every irreducible ideal i of a Noetherian
ring R is primary. Assume that ab ∈ i and b /∈ Rad i . Let an = i : bn .
Then a ∈ a1 , i ⊆ an , an is an ideal, and an ⊆ an+1 , since xbn ∈ i implies
xbn+1 ∈ i . Since R is Noetherian, the ascending sequence (an)n>0 terminates;
hence a2n = an if n is large enough. Let b = i + Rbn . If x ∈ an ∩ b , then
xbn ∈ i and x = t + ybn for some t ∈ i and y ∈ R , whence tbn + yb2n ∈ i ,
yb2n ∈ i , y ∈ a2n = an , ybn ∈ i , and x = t + ybn ∈ i . Hence an ∩ b = i .
Now, b � i , since bn /∈ i . Therefore an = i ; hence a1 = i and a ∈ i . �

An algebraic set A ⊆ K n over a field K is the set of solutions of a system
of polynomial equations f (x1, . . ., xn) = 0, where f ranges through a subset
S of K [X1, ..., Xn] . Then A is also the solution set of the ideal a generated
by S . Hence algebraic geometry, the general study of algebraic sets and related
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concepts, begins with ideals of K [X1, ..., Xn] . By the Hilbert basis theorem,
every algebraic set can be defined by finitely many equations.

In the above, a may as well be semiprime, since A is also the set of all x ∈ K n

such that f (x) = 0 for all f ∈ Rada . By 1.9, a is the intersection of finitely
many primary ideals, and a = Rada is the intersection of their radicals, that is,
the intersection of finitely many prime ideals. It follows that A is the union of
finitely many algebraic sets defined by prime ideals (see Section 10). Algebraic
geometry can now concentrate on prime ideals of K [X1, ..., Xn] . Prime ideals of
Noetherian rings are studied in more detail in Sections 7 and 8.

Uniqueness. Intersections q1 ∩ · · · ∩ qr of primary ideals can be simplified
in two ways: by deleting superfluous terms qi such that q1 ∩ · · · ∩ qr = q1 ∩ · · ·
∩qi−1 ∩qi+1 ∩ · · · ∩qr ; or by replacing several terms with the same radical p by
their intersection, which by 1.7 is a p-primary ideal. An intersection q1 ∩ · · · ∩ qn
of primary ideals is reduced when it has no superfluous term and the radicals
Radq1 , . . . , Radqr are distinct.

Theorem 1.10 (Noether-Lasker). In a Noetherian ring, every ideal is a reduced
intersection of finitely many primary ideals, whose radicals are unique.

Proof. The associated prime ideals of an ideal a are the prime ideals of the
form a : c , where c /∈ a . We show that in every reduced primary decomposition
a = q1 ∩ · · · ∩ qr of an ideal a , the distinct prime ideals pi = Radqi coincide
with the associated prime ideals of a .

Let 1 � j � r and let b =
⋂

i =/ j qi . Then a = b∩ qj � b . By 1.6, pn
j ⊆ qj

for some n ; then bpn
j ⊆ b∩ qj = a . Let n be minimal such that bpn

j ⊆ a . Then

n > 0, bpn−1
j � a , and there exists c ∈ bpn−1

j \a . We show that pj = a : c . We
have c ∈ b and c /∈ qj (otherwise, c ∈ a ). Since qj is pj-primary, cx ∈ a ⊆ qj
implies x ∈ pj , and a : c ⊆ pj . Conversely, cpj ⊆ bpn

j ⊆ a , so that pj ⊆ a : c .
Thus pj = a : c .

Conversely, let p = a : c be an associated prime ideal of a , where c /∈ a . Then
c /∈ qj for some j . Let b =

∏

c /∈qi
qi . Then cb ⊆ qi for all i , cb ⊆ a , and

b ⊆ p . Hence qi ⊆ p for some i such that c /∈ qi . Then pi = Radqi ⊆ p .
Conversely, cx ∈ a ⊆ qi implies x ∈ pi , since qi is pi-primary, so that
p = a : c ⊆ pi . Thus p = pi . �

In the above, q1, . . . , qr are not in general unique. It can be proved, however,
that if pi = Radqi is minimal among p1, . . . , pr , then qi is unique.

Exercises

1. Let m, n ∈ Z . In the ring Z , what is (m)(n)? what is (m) : (n)?

2. Let n ∈ Z . When is (n) a semiprime ideal of Z?

3. Let n ∈ Z . When is (n) a primary ideal of Z?
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R is a commutative ring in what follows.

4. Show that a1 · · ·an is the ideal generated by all products a1 · · · an in which ai ∈ ai
for all i .

5. Show that the product of ideals of R is associative.

6. Show that a
(∑

i∈I bi
)

=
∑

i∈I (abi ) , for all ideals a and bi of R .

7. Show that a
(⋃

i∈I bi
)

=
⋃

i∈I (abi ) when a and bi are ideals of R and (bi )i∈I is
a nonempty directed family.

8. Show that a : S is an ideal of R , that a ⊆ a : S , and that a : S = R if and only if
S ⊆ a , for every ideal a and subset S of R .

9. Show that c ⊆ a : b if and only if bc ⊆ a , for all ideals a ,b ,c of R .

10. Show that (a : b) : c = a : bc , for all ideals a ,b ,c of R .

11. Show that
(⋂

i∈I ai
)

: S =
⋂

i∈I (ai : S) and a :
∑

i∈I bi =
⋂

i∈I (a : bi ) , for all
ideals a ,b ,ai ,bi of R .

12. Show that
(⋃

i∈I ai
)

: S =
⋃

i∈I (ai : S) , if (ai )i∈I is a nonempty directed family

and S is finite. Show that
(⋃

i∈I ai
)

: b =
⋃

i∈I (ai : b) , if (ai )i∈I is a nonempty directed
family and b is a finitely generated ideal.

13. Show that an ideal a =/ R of R is prime if and only if bc ⊆ a implies b ⊆ a or
c ⊆ a , for every ideals b ,c of R .

14. Show that an ideal a of R is semiprime if and only if cn ⊆ a implies c ⊆ a , for
every n > 0 and ideal c of R .

15. Show that Rad
(⋂

i∈I ai
)

=
⋂

i∈I Radai when I is finite. Give an example in

which I is infinite and Rad
(⋂

i∈I ai
)

=/
⋂

i∈I Radai .

16. Show that (Rada)n ⊆ a for some n > 0 when Rada is finitely generated.

17. Show that an ideal q of R with radical p is p-primary if and only if ab ⊆ q implies
a ⊆ q or b ⊆ p , for all ideals a, b of R .

18. Show that the radical of a primary ideal is a prime ideal.

19. Show that the intersection of finitely many p-primary ideals is p-primary.

20. Show that an ideal whose radical is a maximal ideal is primary.

21. Show that an ideal a of a Noetherian ring has only finitely many associated prime
ideals, whose intersection is Rada .

2. Ring Extensions

In this section we extend some properties of field extensions to ring extensions.

Definition. A ring extension of a commutative ring R is a commutative ring E
of which R is a subring.

In particular, the identity element of R is also the identity element of all its
ring extensions. A ring extension of R may also be defined, as was the case
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with field extensions, as a ring E with an injective homomorphism of R into E ;
surgery shows that this is an equivalent definition, up to isomorphisms.

Proposition 2.1. Let E be a ring extension of R and let S be a subset of E .
The subring R[S] of E generated by R ∪ S is the set of all linear combinations
with coefficients in R of products of powers of elements of S .

Proof. This is proved like IV.1.9. Let (Xs)s∈S be a family of indeterminates,
one for each s ∈ S . Let ψ : R[(Xs)s∈S]−→ E be the evaluation homomorphism
that sends Xs to s for all s ∈ S :

ψ
(∑

k
(

ak
∏

s∈S Xks
s
))

=
∑

k
(

ak
∏

s∈S sks
)

.

Then Im ψ is a subring of E , which contains R and S and consists of all finite
linear combinations with coefficients in R of finite products of powers of elements
of S . Conversely, all such linear combinations belong to every subring of E that
contains R and S . �

Corollary 2.2. In a ring extension, α ∈ R[s1, . . . , sn] if and only if α =
f (s1, . . ., sn) for some f ∈ R[X1, ..., Xn] ; α ∈ R[S] if and only if α ∈
R[s1, . . ., sn] for some s1, . . ., sn ∈ S .

Definition. A ring extension E of R is finitely generated over R when E =
R[α1, . . . , αn] for some n � 0 and α1, . . ., αn ∈ E .

Modules. Every field extension of a field K is a vector space over K . The
corresponding concept for ring extensions, introduced here, is studied in more
detail in the next chapter.

Definitions. Let R be a ring. An R-module is an abelian group M together
with an action (r, x) �−→ r x of R on M such that r(x + y) = r x + r y , (r + s)x =
r x + sx , r(sx) = (rs)x , and 1x = x , for all r, s ∈ R and x, y ∈ M . A submodule
of an R-module M is an additive subgroup N of M such that x ∈ N implies
r x ∈ N for every r ∈ R .

If K is a field, then a K-module is the same as a vector space over K . Every
ring extension E of R is an R-module, on which multiplication in E provides
the action of R . Every intermediate ring R ⊆ S ⊆ E is a submodule of E ; so is
every ideal of E , and every ideal of R .

Modules are the most general structure in which one can make sensible linear
combinations with coefficients in a given ring. For instance, if X is a subset of an
R-module M, readers will show that linear combinations of elements of X with
coefficients in R constitute a submodule of M, which is the smallest submodule
of M that contains X .

Definitions. Let M be an R-module. The submodule of M generated by a subset
X of M is the set of all linear combinations of elements of X with coefficients in
R . A submodule of M is finitely generated when it is generated (as a submodule)
by a finite subset of M .
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For example, in a ring extension, the subring R[S] is also the submodule
generated by all products of powers of elements of S , by 2.1.

Modules inherit from abelian groups the agreeable property that the quotient of
an R-module by a submodule is an R-module. Readers will show that the action
of R on M/N in the next result is well defined and is a module action:

Proposition 2.3. Let N be a submodule of an R-module M . The quotient group
M/N is an R-module, in which r (x + N) = r x + N for all x ∈ M .

Integral elements. Recall that, in a field extension of a field K , an element
α is algebraic over K when f (α) = 0 for some nonzero polynomial f ∈ K [X ] ,
equivalently when K [α] is finite over K .

Proposition 2.4. For an element α of a ring extension E of a commutative ring
R the following conditions are equivalent:

(1) f (α) = 0 for some monic polynomial f ∈ R[X ] ;

(2) R[α] is a finitely generated submodule of E ;

(3) α belongs to a subring of E that is a finitely generated R-module.

Proof. (1) implies (2). Let f (α) = 0, where f is monic; let n = deg f .
We show that 1, α, . . ., αn−1 generate R[α] as a submodule of E . Indeed, let
β ∈ R[α] . By 2.2, β = g(α) for some g ∈ R[X ] . Since f is monic, g can be
divided by f , and g = f q + r , where deg r < n . Then β = g(α) = r(α) is a
linear combination of 1,α , . . . ,αn−1 with coefficients in R .

(2) implies (3). R[α] serves.

(3) implies (1). Let α belong to a subring F of E that is generated, as a
sub-R-module of E , by β1, . . . , βn . Since αβi ∈ F there is an equality αβi =
xi1β1 + · · · + xinβn , where xi1, . . . , sin ∈ R . Hence

−xi1β1 − · · · − xi,i−1βi−1 + (α − xii )βi − xi,i+1βi+1 − · · · − xinβn = 0

for all i . By Lemma 2.5 below, applied to the R-module F , the determinant

D =

∣
∣
∣
∣
∣
∣
∣
∣
∣

α − x11 −x12 · · · −x1n
−x21 α − x22 · · · −x2n

...
...

. . .
...

−xn1 −xn2 · · · α − xnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

satisfies Dβj = 0 for all j . Since β1, . . . , βn generate F this implies Dβ = 0
for all β ∈ F and D = D1 = 0. Expanding D shows that D = f (α) for some
monic polynomial f ∈ K [X ] . �

Lemma 2.5. Let M be an R-module and let m1, . . ., mn ∈ M . If xi j ∈ R for
all i, j = 1, . . . , n and

∑

1� j�n xi j mj = 0 for all i , then D = det (xi j ) satisfies
Dmi = 0 for all i .



280 Chapter VII. Commutative Rings

Proof. If R is a field this is standard linear algebra. In general, we expand
D by columns, which yields cofactors cik such that

∑

k cik xk j = D if i = j ,
∑

k cik xk j = 0 if i =/ j ; hence

Dmi =
∑

k cik xki mi =
∑

j,k cik xk j mj = 0 for all i .

Definition. An element α of a ring extension E of R is integral over R when
it satisfies the equivalent conditions in 2.4.

For instance, every element of R is integral over R . In R ,
√

2 is integral over
Z . On the other hand, 1/2 ∈ Q is not integral over Z : as a Z-module, Z[1/2] is
generated by 1/2, 1/4, . . . , 1/2n, . . . ; a finitely generated submodule of Z[1/2]
is contained in some Z[1/2k ] , and cannot contain all 1/2n .

The following property makes a nifty exercise:

Proposition 2.6. If R is a domain and Q is its quotient field, then α is algebraic
over Q if and only if rα is integral over R for some r ∈ R , r =/ 0 .

Exercises
1. Prove the following: when X is a subset of an R-module M , the set of all linear

combinations of elements of X with coefficients in R is the smallest submodule of M that
contains X .

2. Prove the following: when N is a submodule of an R-module M , the quotient group
M/N is an R-module, in which r (x + N) = r x + N for all x ∈ M .

3. Show that
√

2 +
√

3 is integral over Z .

4. Show that
√

1/2 is not integral over Z .

5. Prove the following: when R is a domain and Q is its quotient field, then α is algebraic
over Q if and only if rα is integral over R for some r ∈ R , r =/ 0 .

6. Prove the following: when R is a domain and Q is its quotient field, then a ∈ R is a
unit of R if and only if a =/ 0 and 1/a ∈ Q is integral over R .

3. Integral Extensions

In this section we extend some properties of algebraic extensions to integral ex-
tensions. We also establish some properties of their prime ideals and take our first
look at algebraic integers.

Definition. A ring extension R ⊆ E is integral, and E is integral over R , when
every element of E is integral over R .

Proposition 3.1. Let E be a ring extension of a commutative ring R .

(1) If E is a finitely generated R-module, then E is integral over R .

(2) If E = R[α1, . . ., αn] and α1, . . . , αn are integral over R , then E is a
finitely generated R-module, hence is integral over R .
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(3) If E = R[S] and every α ∈ S is integral over R , then E is
integral over R .

Proof. (1). Every α ∈ E satisfies condition (3) in Proposition 2.4.

(2). By induction on n . If n = 0, then E = R is integral over R . Now, let
E be a finitely generated R-module; let F = E[α] , where α is integral over R .
Then α is integral over E and F is a finitely generated E-module: every element
of F is a linear combination of some β1, . . . , β� ∈ F , with coefficients in E that
are themselves linear combinations with coefficients in R of some α1, . . ., αk .
Hence every element of F is a linear combination with coefficients in R of the
k� elements αi βj ; and F is a finitely generated R-module.

(3) follows from (2) since α ∈ R[S] implies α ∈ R[α1, . . ., αn] for some
α1, . . . , αn ∈ S , by 1.2. �

The next properties follow from Proposition 3.1 and make bonny exercises.

Proposition 3.2. In a ring extension E of R , the elements of E that are integral
over R constitute a subring of E .

Proposition 3.3. Let R ⊆ E ⊆ F be commutative rings.

(1) If F is integral over R , then F is integral over E and E is integral over R .

(2) (Tower Property) If F is integral over E and E is integral over R , then F
is integral over R .

(3) If F is integral over E and R[F] is defined in some larger ring, then R[F]
is integral over R[E] .

(4) If E is integral over R and ϕ : E −→ S is a ring homomorphism, then
ϕ(E) is integral over ϕ(R) .

(5) If E is integral over R over R and R is a field, then E is a field and is
algebraic over R .

Ideals. We show that the prime ideals of an integral extension of R are closely
related to the prime ideals of R .

Definition. In a ring extension E of R , an ideal A of E lies over an ideal a
of R when A ∩ R = a .

Proposition 3.4. If E is a ring extension of R and A ⊆ E lies over a ⊆ R ,
then R/a may be identified with a subring of E/A; if E is integral over R , then
E/A is integral over R/a .

Proof. The inclusion homomorphism R −→ E induces a homomorphism
R −→ E/A whose kernel is A ∩ R = a , and an injective homomorphism
R/a −→ E/A , r + a �−→ r + A . Hence R/a may be identified with a subring
of E/A . If α ∈ E is integral over R , then α + A ∈ E/A is integral over R/a ,
by part (4) of 3.3. �
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Proposition 3.5 (Lying Over). Let E be an integral extension of R . For every
prime ideal p of R there exists a prime ideal P of E that lies over p . In fact,
for every ideal A of E such that p contains A ∩ R , there exists a prime ideal P

of E that contains A and lies over p .

Proof. Let A be an ideal of E such that A∩ R ⊆ p (for instance, 0). In the set
of all ideals B of E such that A ⊆ B and B∩ R ⊆ p , there is a maximal element
P , by Zorn’s lemma. We have 1 /∈ P , since 1 /∈ P ∩ R ⊆ p . If α, β ∈ E\P ,
then P + Eα contains some s ∈ R\p (otherwise, (P + Eα) ∩R ⊆ p and P is
not maximal); hence π + γα ∈ R\p , and ρ + δβ ∈ R\p , for some π, ρ ∈ P and
γ, δ ∈ E ; hence (π + γα)(ρ + δβ) ∈ R\p since p is prime, P + Eαβ =/ P , and
αβ /∈ P . Thus P is a prime ideal of E .

Assume that p ∈ p and p /∈ P . As above, s = π + γ p ∈ R\p for some
π ∈ P and γ ∈ E . Since E is integral over R , γ n + rn−1γ

n−1 + · · · + r0 = 0
for some n > 0 and rn−1, . . ., r0 ∈ R . Multiplying by pn yields

(s − π) n + prn−1(s − π) n−1 + · · · + pnr0

= pnγ n + prn−1 pn−1γ n−1 + · · · + pnr0 = 0.

Hence sn = pr + δπ for some r ∈ R and δ ∈ E , sn − pr ∈ P ∩ R ⊆ p , and
sn ∈ p , an unbearable contradiction. Therefore p ⊆ P and P ∩ R = p . �

The proof of Proposition 3.5 shows that an ideal that is maximal among the
ideals lying over p is necessarily a prime ideal. Conversely, a prime ideal that lies
over p is maximal among the ideals that lie over p (see the exercises). We prove
a particular case:

Proposition 3.6. Let E be an integral extension of R and let P,Q ⊆ E be
prime ideals of E that lie over p ⊆ R . If P ⊆ Q , then P = Q .

Proof. Let α ∈ Q . We have f (α) = 0 ∈ P for some monic polynomial
f ∈ R[X ] . Let f (X) = Xn + rn−1 Xn−1 + · · · + r0 ∈ R[X ] be a monic poly-
nomial of minimal degree n > 0 such that f (α) ∈ P . Then r0 ∈ Q ∩ R = p ,
since α ∈ Q , and α (αn−1 + rn−1α

n−2 + · · · + r1) = f (α) −r0 ∈ P . Now,
αn−1 + rn−1α

n−2 + · · · + r1 /∈ P , by the choice of f . Therefore α ∈ P . �
Proposition 3.7. If E is an integral extension of R and the prime ideal P ⊆ E

lies over p ⊆ R , then P is a maximal ideal of E if and only if p is a maximal
ideal of R .

Proof. By 3.4 we may identify R/p with a subring of E/P , and then E/P is
integral over R/p . If p is maximal, then R/p is a field, E/P is a field by 3.3,
and P is maximal. But if p is not maximal, then p is contained in a maximal
ideal m � p of R ; by 3.5, a prime ideal M ⊇ P of E lies over m ; then
P � M =/ E and P is not maximal. �

Here comes another bonny exercise:

Proposition 3.8 (Going Up). Let E be an integral extension of R and let



3. Integral Extensions 283

p � q be prime ideals of R . For every prime ideal P of E that lies over p , there
exists a prime ideal Q � P of E that lies over q .

Integrally closed domains. A ring has, in general, no “greatest” integral ex-
tension. A domain, however, has a largest integral extension inside its quotient
field, by 3.2, which is somewhat similar to an algebraic closure.

Definitions. The integral closure of a ring R in a ring extension E of R is the
subring R of E of all elements of E that are integral over R . The elements of
R ⊆ E are the algebraic integers of E (over R ).

Definition. A domain R is integrally closed when its integral closure in its
quotient field Q(R) is R itself (when no α ∈ Q(R)\R is integral over R ).

Since R ⊆ R ⊆ Q(R) , we have Q(R) = Q(R) . Moreover, if α ∈ Q(R) is
integral over R , then α is integral over R , by 3.3, so that R is integrally closed.
Thus, every domain R has an integral extension R ⊆ Q(R) that is integrally clo-
sed. Integrally closed domains are also called normal domains; then R ⊆ Q(R)
is the normalization of R .

Proposition 3.9. Every unique factorization domain is integrally closed.

Proof. Let R be a UFD and let a/b ∈ Q(R) . We may assume that a
and b are relatively prime (no irreducible element of R divides both a and
b ). If a/b is integral over R , then f (a/b) = 0 for some monic polynomial
f (X) = Xn + rn−1 Xn−1 + · · · + r0 ∈ R[X ] and

an + rn−1an−1b + · · · + r0bn = bn f (a/b) = 0.

No irreducible element p of R divides b : otherwise, p divides an and p divides
a , a contradiction; therefore b is a unit of R and a/b ∈ R . �

By Proposition 3.9, Z is integrally closed, and so is K [X1, ..., Xn] for every
field K . The next result yields integrally closed domains that are not UFDs.

Proposition 3.10. Let R be a domain and let E be an algebraic extension of its
quotient field. The integral closure R of R in E is an integrally closed domain
whose quotient field is E .

Proof. Every α ∈ E is algebraic over Q(R) ; by 2.6, rα is integral over R for
some r ∈ R ; hence E = Q(R) . If α ∈ E is integral over R , then α is integral
over R by 3.1 and α ∈ R , so R is integrally closed. �

Ready examples of integrally closed domains come from quadratic extensions
of Q , which are fields Q(

√
m) ⊆ C , where m ∈ Q . One may assume that

m ∈ Z and that m is square free (if n2 divides m , then n = 1): indeed,
Q(

√
a/b) = Q(

√
ab) , since

√
ab = b

√
a/b ; and Q(

√
m) = Q(

√

m/n2) when n2

divides m .

Proposition 3.11. If m ∈ Z is square free and not congruent to 1 (mod 4),
then Z[

√
m ] is integrally closed; and then, for all x, y ∈ Q , x + y

√
m is an

algebraic integer in Q(
√

m) (over Z ) if and only if x, y ∈ Z .
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Thus, Z[
√
−5 ] is integrally closed; readers will show that it is not a UFD. On

the other hand, Z[
√

5 ] is not integrally closed (see the exercises).

Proof. We show that Z[
√

m ] is the integral closure of Z in Q[
√

m ] ; hence
Z[
√

m ] is integrally closed, by 3.10. First, Z[
√

m ] = { x + y
√

m
∣
∣ x, y ∈ Z } , by

2.2; hence Z[
√

m ] is integral over Z , by 3.2.

Conversely, let α = x + y
√

m ∈ Q[
√

m ] be integral over Z (where x, y ∈ Q ).
Since Q(

√
m) has a Q-automorphism that sends

√
m onto −√

m , then β =
x − y

√
m is integral over Z . By 3.2, 2x = α + β and x2 − my2 = αβ are integral

over Z . Since Z is integrally closed this implies u = 2x ∈ Z and x2 − my2 ∈ Z ;
hence 4my2 ∈ Z and v = 2y ∈ Z , since m is square free.

If x /∈ Z , then u is odd, mv2 is odd since u2 − mv2 = 4(x2 − my2) is even,
and m, v are odd; hence, modulo 4, u2 ≡ v2 ≡ 1 and m ≡ mv2 ≡ u2 ≡ 1,
contradicting the hypothesis. Therefore x ∈ Z . Hence mv2/4 = my2 ∈ Z , 4
divides mv2 , v2 is even since m is square free, v is even, and y ∈ Z . Thus
α ∈ Z[

√
m ] . �

Exercises

Prove the following:

1. If F is integral over E and E is integral over R , then F is integral over R .

2. If F is integral over E and R[F] is defined in some larger ring, then R[F] is integral
over R[E] .

3. If E is integral over R and ϕ : E −→ S is a ring homomorphism, then ϕ(E) is
integral over ϕ(R) .

4. In a ring extension E of R , the elements of E that are integral over R constitute a
subring of E .

5. If E is integral over R , then E[X1, ..., Xn] is integral over R[X1, ..., Xn] .

6. If E is integral over R and R is a field, then E is a field.

7. Let E be an integral extension of R and let p be a prime ideal of R . Show that a prime
ideal of E that lies over p is maximal among the ideals of E that lie over p .

8. Prove the going up theorem: Let E be an integral extension of R and let p � q be
prime ideals of R . For every prime ideal P of E that lies over p , there exists a prime ideal
Q � P of E that lies over q .

9. Find all prime ideals of Z[
√
−5 ] that lie over the prime ideal (5) of Z .

10. Find all prime ideals of Z[
√
−5 ] that lie over the prime ideal (2) of Z .

11. Find all prime ideals of Z[
√
−5 ] that lie over the prime ideal (3) of Z .

12. Show that Z[
√
−5 ] is not a UFD.

13. Show that Q[
√

5 ] contains an algebraic integer x + y
√

5 such that x, y /∈ Z , so that
Z[
√

5 ] is not integrally closed.
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14. Find the algebraic integers of Q(
√

m) when m ∈ Z is square free and m ≡ 1
(mod 4).

15. Let R be an integrally closed domain and let Q = Q(R) . Prove the following: if
f, g ∈ Q[X ] are monic and f g ∈ R[X ] , then f, g ∈ R[X ] .

16. Let R be an integrally closed domain and let Q = Q(R) . Prove the following: if α is
integral over R , then Irr (α : Q) ∈ R[X ] .

4. Localization

A local ring is a commutative ring with only one maximal ideal; the name comes
from algebraic geometry. Localization expands a ring into a local ring by adjo-
ining inverses of some of its elements. The usefulness of this construction was
recognized rather late; it was defined in domains by Grell [1927], but not in general
until Uzkov [1948]. This section constructs rings of fractions, studies their ideals,
and proves some useful homomorphism properties.

Rings of fractions. R still is any commutative ring [with identity].

Definitions. A multiplicative subset of a commutative ring R is a subset S of
R that contains the identity element of R and is closed under multiplication. A
multiplicative subset S is proper when 0 /∈ S .

Readers may write a proof of the following result.

Lemma 4.1. Let S be a proper multiplicative subset of a commutative ring R .
The relation

(a, s) ≡ (b, t) if and only if atu = bsu for some u ∈ S

is an equivalence relation on R × S , and S−1 R = (R × S)/≡ is a ring, with the
operations

(a/s) + (b/t) = (at + bs)/(st), (a/s)(b/t) = (ab)/(st),

where a/s denotes the equivalence class of (a, s) .

By definition, a/s = b/t if and only if atu = bsu for some u ∈ S . In
particular, a/s = at/st for all t ∈ S ; s/s = 1 (= 1/1) for all s ∈ S ; and a/s = 0
(= 0/1) if and only if at = 0 for some t ∈ S .

Definition. If S is a proper multiplicative subset of a commutative ring R , then
S−1 R is the ring of fractions of R with denominators in S .

For instance, if R is a domain, then S = R\{0} is a proper multiplicative
subset and S−1 R is the field of fractions or quotient field Q(R) of R .

The universal property of quotient fields extends to rings of fractions. Every ring
of fraction comes with a canonical homomorphism ι : R −→ S−1 R , a �−→ a/1,
which is injective if R is a domain. Moreover, ι(s) = s/1 is a unit of S−1 R for
every s ∈ S , with inverse 1/s .
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Proposition 4.2. Let S be a proper multiplicative subset of a commutative ring
R . Every homomorphism ϕ of R into a ring R′ in which ϕ(s) is a unit for
every s ∈ S factors uniquely through ι : R −→ S−1 R : there is a homomorphism
ψ : S−1 R −→ R′ unique such that ψ ◦ ι = ϕ , given by ψ(a/s) = ϕ(a)ϕ(s)−1

for all a ∈ R and s ∈ S .

Proof. If a/s = b/t , then atu = bsu for some u ∈ S , ϕ(a)ϕ(t)ϕ(u) =
ϕ(b)ϕ(b)ϕ(u) , ϕ(a)ϕ(t) = ϕ(b)ϕ(s) , and ϕ(a)ϕ(s)−1 = ϕ(b)ϕ(t)−1 . Hence
a mapping ψ : S−1 R −→ R′ is well defined by: ψ(a/s) = ϕ(a)ϕ(s)−1 . It is
immediate that ψ is a homomorphism and that ψ ◦ ι = ϕ .

Conversely, let χ : S−1 R −→ R′ be a homomorphism such that χ ◦ ι = ϕ .
If s ∈ S , then 1/s is the inverse of ι(s) in S−1 R for every s ∈ S , hence
χ(1/s) is the inverse of χ(ι(s)) = ϕ(s) in R′ . Then a/s = (a/1)(1/s) yields
χ(a/s) = χ(ι(a))χ(1/s) = ϕ(a)ϕ(s)−1 = ψ(a/s) , and χ = ψ . �

The rings of fractions of a domain can be retrieved from its quotient field:

Corollary 4.3. If R is a domain, then S−1 R is isomorphic to the subring
{ as−1 ∣∣ a ∈ R, s ∈ S } of Q(R) .

Proof. Up to isomorphism, R is a subring of Q(R) , and 4.2 provides a
homomorphism ψ : S−1 R −→ Q(R) that sends a/s ∈ S−1 R to as−1 (= a/s
as calculated in Q(R) ). We see that ψ is injective. �

If R is a domain, then the ring S−1 R is usually identified with the subring
{ as−1 ∣∣ a ∈ R, s ∈ S } of Q(R) in Corollary 4.3.

Ideals. We now shuttle ideals between a ring and its rings of fractions.

Definitions. Let S be a proper multiplicative subset of R .
The contraction of an ideal A of S−1 R is AC = { a ∈ R

∣
∣ a/1 ∈ A } .

The expansion of an ideal a of R is aE = { a/s ∈ S−1 R
∣
∣ a ∈ a, s ∈ S } .

It is immediate that AC = ι−1(A) is an ideal of R and that aE is an ideal of
Rp ; in fact, aE is the ideal generated by ι(a) .

Proposition 4.4. For all ideals a, b of R and A of S−1 R :

(1) aE = S−1 R if and only if a ∩ S =/ Ø ;

(2) if a = AC , then A = aE ;

(3) (a + b)E = aE + bE , (a ∩ b)E = aE ∩ bE , and (ab)E = aE bE .

The proofs make good exercises.
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Proposition 4.5. Let S be a proper multiplicative subset of R . Contraction
and expansion induce a one-to-one correspondence between prime ideals of S−1 R
and prime ideals of R disjoint from S .

Proof. If p ⊆ R\S is a prime ideal of R , then a/s ∈ pE implies a/s = b/t
for some b ∈ p , t ∈ S , atu = bsu ∈ p for some u ∈ S , and a ∈ p , since p is
prime and tu /∈ p ; thus, a/s ∈ pE if and only if a ∈ p . Hence pE is a prime
ideal of S−1 R : 1/1 /∈ pE , and if (a/s)(b/t) ∈ pE and a/s /∈ pE , then ab ∈ p ,
a /∈ p , b ∈ p , and b/t ∈ pE . Also p = (pE )C .

Conversely, if P is a prime ideal of S−1 R , then PC is a prime ideal of R :
1 /∈ PC , since 1/1 /∈ P , and if ab ∈ PC and a /∈ PC , then (a/1)(b/1) ∈ P ,
a/1 /∈ P , b/1 ∈ P , and b ∈ PC . Moreover, (PC )E = P , by 4.4. �

Proposition 4.6. Let S be a proper multiplicative subset of R . Contraction
and expansion induce a one-to-one correspondence, which preserves radicals,
between primary ideals of S−1 R and primary ideals of R disjoint from S .

This is proved like 4.5. The following properties also make good exercises.

Proposition 4.7. Let S be a proper multiplicative subset of R .

(1) If R is Noetherian, then S−1 R is Noetherian.

(2) If E is integral over R , then S−1 E is integral over S−1 R .

(3) If R is an integrally closed domain, then so is S−1 R .

Localization. If p is a prime ideal of R , then R\p is a proper multiplicative
subset of R .

Definition. The localization of a commutative ring R at a prime ideal p is the
ring of fractions Rp = (R\p)−1 R .

Every commutative ring is isomorphic to a ring of fractions (see the exercises);
but not every ring is isomorphic to a localization.

Proposition 4.8. If p is a prime ideal of R , then Rp has only one maximal

ideal, M = pE = { a/s ∈ Rp

∣
∣ a ∈ p }; moreover, x ∈ Rp is a unit if and only if

x /∈ M .

Proof. If a/s ∈ M , then a/s = b/t for some b ∈ p , t /∈ p , atu = bsu ∈ p
for some u /∈ p , and a ∈ p since p is a prime ideal and tu /∈ p . Thus a/s ∈ M

if and only if a ∈ p . Now, x = a/s ∈ Rp is a unit if and only if x /∈ M : if

a /∈ p , then x is a unit, and x−1 = s/a ; conversely, if x is a unit, then ab/st = 1
for some b, t ∈ R , t /∈ p , abu = stu /∈ p for some u /∈ p , and a /∈ p . Hence
the ideal M of Rp is a maximal ideal. �

Definition. A commutative ring is local when it has only one maximal ideal.

For instance, valuation rings are local, by VI.6.1; Rp is local, by 4.8. In
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a local ring R with maximal ideal m , every x ∈ R\m is a unit (see the exercises).

Homomorphisms. Localization transfers properties from local rings to more
general rings. We illustrate this with some nifty homomorphism properties.

Theorem 4.9. Every homomorphism of a ring R into an algebraically closed
field L can be extended to every integral extension E of R .

Proof. If R is a field, then E is a field, by 3.3, and E is an algebraic extension
of R ; we saw that 4.9 holds in that case.

Now, let R be local and let ϕ : R −→ L be a homomorphism whose kernel is
the maximal ideal m of R . Then ϕ factors through the projection R −→ R/m
and induces a homomorphism ψ : R/m −→ L . By 3.5, 3.7, there is a maximal
ideal M of E that lies over m . By 3.4, the field R/m may be identified with a
subfield of E/M . Then E/M is algebraic over R/m and ψ : R/m −→ L can
be extended to E/M . Hence ϕ can be extended to E .

Finally, let ϕ : R −→ L be any homomorphism. Then p = Ker ϕ is a
prime ideal of R and S = R\p is a proper multiplicative subset of R and of E .
By 4.2, ϕ = ψ ◦ ι for some homomorphism ψ : S−1 R = Rp −→ L , namely,

ψ(a/s) = ϕ(a)ϕ(s)−1 . Then Ker ψ = { a/s ∈ Rp

∣
∣ a ∈ Ker ϕ = p } is the

maximal ideal of Rp . Therefore ψ extends to S−1 E , which is integral over

S−1 R by 4.7; hence ϕ extends to E . �
Theorem 4.10. Every homomorphism of a field K into an algebraically closed

field L can be extended to every finitely generated ring extension of K .

Proof. Let ϕ : K −→ L be a homomorphism and let R = K [α1, . . ., αm ] be
a finitely generated ring extension of K .

First, assume that R is a field. We may assume that R is not algebraic over
K . Let β1, . . ., βn be a transcendence base of R over K . Every α ∈ R is
algebraic over K (β1, . . ., βn) , so that γkα

k + · · · + γ0 = 0 for some k > 0 and
γ0, . . ., γk ∈ K (β1, . . ., βn) , ak =/ 0. Since we may multiply γ0, . . ., γk by
a common denominator in K (β1, . . ., βn) ∼= K (X1, . . ., Xn) , we may assume
that γ0, . . ., γk ∈ D = K [β1, . . ., βn] . Dividing by γk =/ 0 then shows that α
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is integral over D[1/γk ] . Applying this to α1, . . . , αm shows that α1, . . . , αm
are integral over D[1/δ1, . . ., 1/δm ] for some nonzero δ1, . . . , δm ∈ D . Hence
α1, . . . , αm are integral over D[1/δ] , where δ = δ1 · · · δm ∈ D , δ =/ 0. Then R
is integral over D[1/δ] .

Now, ϕ extends to a homomorphism

ψ : D = K [β1, . . ., βn] ∼= K [X1, ..., Xn] −→ L[X1, ..., Xn].

Let g = ψ(δ) . Since the algebraically closed field L is infinite, we have
g(x1, . . ., xn) =/ 0 for some x1, . . ., xn ∈ L , as readers will show. Let χ =
x̂ ◦ ψ , where x̂ : L[X1, ..., Xn] −→ L is the evaluation homomorphism f �−→
f (x1, . . ., xn) . Then p = Ker χ is a prime ideal of D and 4.2 extends χ

to the local ring Dp . By 4.3 we may assume that Dp = K [β1, . . ., βn]p ⊆
K (β1, . . ., βn) . Now, δ /∈ p , since g(x1, . . ., xn) =/ 0; hence δ has an inverse
in Dp and D[1/δ]⊆ Dp . Hence χ extends to D[1/δ] . Then χ extends to R by
4.9, since R is integral over D[1/δ] .

Finally, let R = K [α1, . . ., αm ] be any finitely generated ring extension of K .
Let m be a maximal ideal of R and let π : R −→ R/m be the projection.

Then R/m is a field, π(K ) ∼= K , and R/m = π(K )[π(α1), . . . , π(αm)] is a
finitely generated ring extension of π(K ) . Every homomorphism of π(K ) into
L extends to R/m ; hence every homomorphism of K into L extends to R . �

Exercises
1. Let S be a proper multiplicative subset of a commutative ring R . Show that

(a, s)≡ (b, t) if and only if atu = bsu for some u ∈ S

is an equivalence relation on R × S , and that S−1R = (R × S)/≡ is a ring when

(a/s) + (b/t) = (at + bs)/(st), (a/s)(b/t) = (ab)/(st).

2. Show that S−1R ∼= R when S is contained in the group of units of R .

3. Show that the canonical homomorphism R �−→ S−1 R is injective if and only if no
element of S is a zero divisor.

4. Describe Z(p) .

5. Let R be a local ring and let m be its maximal ideal. Show that R\m is the group of
units of R .

6. Let R be a local ring. Prove that there is a commutative ring R′ and a prime ideal p of
R′ such that R′

p
∼= R .

7. Show that Rp/pE ∼= Q(R/p) .
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8. Show that aE = Rp if and only if a � p .

9. Show that (AC )E = A for every ideal A of S−1R .

10. Show that (a + b)E = aE + bE .

11. Show that (a ∩ b)E = aE ∩ bE .

12. Show that (ab)E = aE bE .

13. Prove that contraction and expansion induce a one-to-one correspondence, which
preserves radicals, between primary ideals of S−1R and primary ideals of R disjoint from S .

14. Prove the following: if R is Noetherian, then S−1R is Noetherian.

15. Prove the following: if E is integral over R , then S−1E is integral over S−1R , for
every proper multiplicative subset of R .

16. Prove the following: if R is an integrally closed domain, then so is S−1R .

17. Let L be an infinite field and let f ∈ L[X1, ..., Xn] , f =/ 0 . Show that f (x1, . . . ,
xn) =/ 0 for some x1, . . . , xn ∈ L . (You may want to proceed by induction on n .)

5. Dedekind Domains

Kummer and Dedekind studied rings of algebraic integers and discovered, some-
time before 1871, that their ideals have better arithmetic properties than their
elements. Domains with these properties are now called Dedekind domains. This
section gives a few basic properties; the next section has deeper results.

Fractional ideals. First we generalize ideals as follows.

Definition. A fractional ideal of a domain R is a subset of its quotient field Q
of the form a/c = { a/c ∈ Q

∣
∣ a ∈ a } , where a is an ideal of R and c ∈ R ,

c =/ 0 .

Fractional ideals of R are submodules of Q . Every ideal a of R is a fractional
ideal, a = a/1. Conversely, a fractional ideal a/c contained in R is an ideal of
R , since it is a submodule of R ; then a/c = a : c = { x ∈ R

∣
∣ cx ∈ a } . Not all

fractional ideals of R are contained in R ; readers will easily find examples.

Proposition 5.1. Let R be a domain and let Q be its quotient field. Every
finitely generated submodule of Q is a fractional ideal of R . If R is Noetherian,
then every fractional ideal of R is finitely generated as a submodule.

Proof. If n > 0 and q1 = a1/c1 , . . . , qn = an/cn ∈ Q , then

Rq1 + · · · + Rqn = Rb1/c + · · · + Rbn/c = (Rb1 + · · · + Rbn)/c,

where c = c1 · · · cn ; hence Rq1 + · · · + Rqn is a fractional ideal of R . Conversely,
if every ideal a of R is finitely generated, a = Rb1 + · · · + Rbn for some
b1, . . ., bn ∈ R , then every fractional ideal a/c = Rb1/c + · · · + Rbn/c is a
finitely generated submodule of Q . �
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A fractional ideal is finitely generated when it is finitely generated as a sub-
module. Readers will verify the following properties.

Proposition 5.2. Let A and B be fractional ideals of R .

(1) A ∩ B is a fractional ideal of R .

(2) A + B = { a + b
∣
∣ a ∈ A, b ∈ B } is a fractional ideal of R .

(3) The set AB of all finite sums a1b1 + · · · + anbn , where a1, . . . , an ∈ A ,
b1, . . ., bn ∈ B , and n � 0 , is a fractional ideal of R .

(4) The multiplication of fractional ideals in (3) is commutative and associative.

(5) If A =/ 0 is finitely generated, then B : A = { q ∈ Q
∣
∣ qA ⊆ B } is a

fractional ideal of R ; in particular, A′ = R : A = { q ∈ Q
∣
∣ qA ⊆ R } is a

fractional ideal of R .

(6) If A = a/c is a fractional ideal, then A = ac′ , where c = Rc .

Similar constructions were seen in Section 1. The notation AB is traditional;
readers will surely remember that the product of A and B as fractional ideals is
larger than their product { ab

∣
∣ a ∈ A, b ∈ B } as subsets.

Definition. A fractional ideal A of R is invertible when AB = R for some
fractional ideal B of R .

Proposition 5.3. (1) Every invertible fractional ideal is finitely generated.

(2) A fractional ideal A is invertible if and only if A is finitely generated and
AA′ = R .

(3) Every nonzero principal ideal is invertible.

Proof. (1). If AB = R , then 1 = a1b1 + · · · + anbn for some a1, . . ., an ∈ A

and b1, . . . , bn ∈ B . Then Ra1 + · · · + Ran ⊆ A ; conversely, a ∈ A implies
a = a1b1 a + · · · + anbn a ∈ Ra1 + · · · + Ran .

(2). If AB = R , then B ⊆ A′ and A′ = A′R = A′AB ⊆ RB = B .

(3). If A = Ra , where a ∈ R , a =/ 0, then A′ = R/a and AA′ = R . �

Definition. Dedekind domains are defined by the following equivalent condi-
tions. Theorem 6.2 gives additional chracterizations.

Theorem 5.4. For a domain R the following conditions are equivalent:

(1) every nonzero ideal of R is invertible (as a fractional ideal);

(2) every nonzero fractional ideal of R is invertible;

(3) every nonzero ideal of R is a product of prime ideals of R ;

(4) every nonzero ideal of R can be written uniquely as a product of positive
powers of distinct prime ideals of R .

Then R is Noetherian, and every prime ideal of R is maximal.
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In (3) and (4), products are finite products and include the empty product R
and one-term products. The proof starts with a lemma.

Lemma 5.5. If a = p1p2 · · ·pr = q1q2 · · ·qs is a product of invertible prime
ideals p1, . . ., pr and q1, . . ., qs of R , then r = s and q1, . . . , qs can be
renumbered so that pi = qi for all i .

Proof. By induction on r . If r = 0, then a = R and s = 0: otherwise,
a ⊆ q1 � R . Let r > 0. Then pr , say, is minimal in {p1, . . ., pr } . Since
pr is prime, q1 · · ·qs ⊆ pr implies q j ⊆ pr for some j . Then p1 · · ·pr ⊆ q j
implies pi ⊆ q j for some i and pi = q j = pr , since pr is minimal. We
may renumber q1, . . ., qs so that qs = pr . Then multiplication by p′

r = q′
s

yields p1p2 · · ·pr−1 = q1q2 · · ·qs−1 ; by the induction hypothesis, r = s and
q1, . . ., qs−1 can be renumbered so that pi = qi for all i . �

Proof of 5.4. (1) implies (2). Let A = a/c be a fractional ideal and let c = Rc .
If a is invertible, then aa′ = R and Aa′c = ac′a′c = aa′cc′ = R , by 5.2, 5.3.

(2) implies R Noetherian: by (2), every ideal of R is finitely generated as a
fractional ideal, hence is finitely generated as an ideal of R .

(2) implies (3). If (3) does not hold, then R has a bad ideal, which is not a
product of prime ideals. Since R is Noetherian by (2), R has a maximal bad
(really bad) ideal b . Now, b is not a prime ideal and b =/ R , since b is not a one-
term or empty product of prime ideals. Hence b ⊆ p for some prime (actually,
maximal) ideal of R , and b � p . By (2), b = bp′p , and bp′ ⊆ pp′ ⊆ R ,
so that bp′ is an ideal of R . Also b = bpp′ ⊆ bp′ , and b � bp′ , since
b′bp = p � R = b′bp′p = R . Hence bp′ is not bad and b = bp′p is a product
of prime ideals, an intolerable contradiction.

(3) implies (4). A product of prime ideals is a product of positive powers of
distinct prime ideals; uniqueness follows from 5.5.

(4) implies (3). The proof of this is too short to fit in the margin.

(3) implies (1). First, (3) implies that every invertible prime ideal p of R is
maximal. Indeed, let a ∈ R\p . By (3), p + Ra = p1p2 · · ·pr and p + Ra2 =
q1q2 · · ·qs are products of prime ideals. Apply the projection x �−→ x of R onto
the domain R = R/p :

q1 · · ·qs = p + Ra2 = R a2 =
(

Ra
)2 =

(

p + Ra
)2 = p

2
1 · · ·p

2
r .

Since Ra and Ra2 are invertible by 5.3 it follows that q1, . . . , qs and p1, . . .,
pr are invertible. By 5.5, s = 2r and q1, . . ., qs can be reindexed so that
q2i−1 = q2i = pi for all i . Now, the projection R −→ R = R/p induces a
one-to-one correspondence between the prime ideals of R that contain p and the
prime ideals of R ; hence q2i−1 = q2i = pi for all i , and p + Ra2 = (p + Ra)2 .

Now p ⊆ (p + Ra)2 ⊆ p2 + Ra . In fact, p ⊆ p2 + pa , since x ∈ p2 ,
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x + ya ∈ p implies ya ∈ p and y ∈ p . Hence p ⊆ p (p + Ra) ⊆ p ,
p (p + Ra) = p , and p + Ra = p′p(p + Ra) = p′p = R . Thus p is maximal.

For the coup de grace, let p =/ 0 be a prime ideal of R . Let a ∈ p , a =/ 0. By
(3), Ra = p1 · · ·pr is a product of prime ideals of R , which are invertible since
Ra is invertible by 5.3. Then p1 · · ·pr ⊆ p and pi ⊆ p for some i . But pi is
maximal by the above. Hence p = pi is invertible. Thus every nonzero prime
ideal of R is invertible; then (3) implies (1). �

Definition. A Dedekind domain is a domain that satisfies the equivalent condi-
tions in Theorem 5.4.

Principal ideals. By 5.4, every PID is a Dedekind domain. Examples of
Dedekind domains that are not PIDs will be seen in the next section. First we
show that Dedekind domains in general are not very far from PIDs.

Let a =/ 0 be an ideal. We denote by ea(p) the exponent of p in the unique
expansion of a as a product of positive powers of distinct prime ideals. Thus
ea(p) = 0 for almost all p and a =

∏

p prime pea(p) . Equivalently, ea(p) is the

largest integer k � 0 such that a ⊆ pk : indeed, a =
∏

p prime pea(p) ⊆ pea(p) ;

conversely, if a ⊆ pk , then b = a(pk)′ ⊆ R , a = bpk , and k � ea(p) .

Proposition 5.6. Let a =/ 0 be an ideal of a Dedekind domain R and let
p1, . . ., pn be distinct nonzero prime ideals of R . There exists a principal ideal
b such that eb(pi ) = ea(pi ) for all i .

Proof. Let ai = p
ea(pi )
i and let ci = p

ea(pi ) + 1
i . Then a ⊆ ai and a � ci .

Let ai ∈ ai\ci . If ci + cj =/ R , then ci + cj ⊆ m for some maximal ideal m of
R , pi , pj ⊆ m , pi = m = pj since pi ,pj are themselves maximal by 5.4, and
i = j . Hence ci + cj = R when i =/ j . By 5.8 below, there exists b ∈ R such that
b + ci = ai + ci for all i . Then b ∈ ai\ci . Hence ea(pi ) is the largest integer
k � 0 such that Rb ⊆ pk

i and eRb(pi ) = ea(pi ) for all i . �
Proposition 5.7. Every ideal of a Dedekind domain is generated by at most two

elements. (This is often called “generated by 1 1
2 elements”.)

Proof. Let R be a Dedekind domain and let a =/ 0 be an ideal of R . Let
c ∈ a , c =/ 0, and c = Rc . By 5.6 there exists a principal ideal b = Rb such that
eb(p) = ea(p) whenever ec(p) =/ 0. We show that a = b + c .

If ec(p) = 0, then c � p , a � p , b + c � p , and ea(p) = eb+c(p) = 0. Now,
let ec(p) > 0 and k = ea(p) = eb(p) . Then a ⊆ pk and b + c ⊆ b + a ⊆ pk ,
but b + c � pk+1 , since b � pk+1 . Hence eb+c(p) = k . Thus eb+c(p) = ea(p)
for all p . Therefore a = b + c = Rb + Rc . �

Proposition 5.8 (Chinese Remainder Theorem). Let a1, . . ., an be ideals
of a commutative ring R such that ai + aj = R whenever i =/ j . For every
x1, . . ., xn ∈ R there exists x ∈ R such that x + ai = xi + ai for all i .



294 Chapter VII. Commutative Rings

By 5.8, if any two of m1, . . ., mn ∈ Z are relatively prime, then for every
x1, . . ., xn ∈ Z there exists x ∈ Z such that x ≡ xi (mod mi ) for all i .

Proof. Let bj =
∏

i=/ j ai . If aj + bj =/ R , then aj + bj is contained in a
maximal ideal m of R , ak ⊆ m for some k =/ j since bj ⊆ m and m is prime,
and aj + ak ⊆ m , contradicting the hypothesis. Therefore aj + bj = R . Hence
xj + aj = yj + aj for some yj ∈ bj . Let x = y1 + · · · + yn . Then xj + aj = x + aj ,
since yi ∈ bi ⊆ aj . �

Exercises
1. Find all fractional ideals of Z .

2. Find all fractional ideals of a PID.

In the following exercises, R is a domain and Q is its quotient field. Prove the following:

3. A ⊆ Q is a fractional ideal of R if and only if A is a submodule of Q and Ac ⊆ R
for some c ∈ R , c =/ 0 .

4. If A and B are fractional ideals of R , then A ∩ B is a fractional ideal of R .

5. Intersections of (too many) fractional ideals of R need not be fractional ideals of R .

6. If A and B are fractional ideals of R , then A + B = { a + b
∣
∣ a ∈ A, b ∈ B } is a

fractional ideal of R .

7. If A and B are fractional ideals of R , then so is the set AB of all finite sums
a1b1 + · · · anbn , where n � 0 , a1, . . . , an ∈ A , and b1, . . . , bn ∈ B .

8. The multiplication of fractional ideals is associative.

9. If A and B are fractional ideals of R and A =/ 0 is finitely generated, then B : A =
{ q ∈ Q

∣
∣ qA ⊆ B } is a fractional ideal of R .

10. If p1, . . . , pr are irreducible elements of a PID and (pi ) =/ (pj ) whenever i =/ j ,
then (p

m1
1 ) · · · (pmr

r ) = (p
m1
1 · · · pmr

r ) = (p
m1
1 )∩ · · · ∩ (pmr

r ) .

11. If R is a Dedekind domain and a =/ 0 , then every ideal of R/a is principal.

6. Algebraic Integers

This section brings additional characterizations of Dedekind domains. Following
in Dedekind’s footsteps we then show that the algebraic integers of any finite
extension of Q constitute a Dedekind domain.

First we prove the following:

Proposition 6.1. Every Noetherian, integrally closed domain with only one
nonzero prime ideal is a PID.

Equivalently, every Noetherian, integrally closed domain with only one nonzero
prime ideal is a discrete valuation ring, as defined in Section VI.6. Conversely,
PIDs are Noetherian, and are integrally closed, by Proposition 3.9.
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Proof. Let R be a Noetherian, integrally closed domain with quotient field Q
and only one nonzero prime ideal p . Then p is maximal. We show:

(a): A : A = R for every fractional ideal A =/ 0 of R . Indeed, A : A = { x ∈
Q
∣
∣ xA ⊆ A } is a subring of Q that contains R and is, by 5.1, a finitely generated

R-module. By 2.4, A : A is integral over R . Hence A : A = R .

(b): R � p′ . First, R ⊆ p′ . If x ∈ p , x =/ 0, then x is not a unit,
x−1 ∈ (Rx)′\R , and (Rx)′ � R . Let S be the set of all nonzero ideals a of
R such that a′

� R . Since R is Noetherian, S has a maximal element b . Let
a, b ∈ R , ab ∈ b , a /∈ b . Then (b + Ra)′ = R : otherwise, b is not maximal
in S . For any t ∈ b′\R we have bt(b + Ra) ⊆ tb ⊆ R , bt ∈ (b + Ra)′ = R ,
t(b + Rb) ⊆ R , and t ∈ (b + Rb)′\R ; hence (b + Rb)′ � R and b ∈ b , since
b is maximal in S . Thus b is a prime ideal. Hence b = p , and R � p′ .

(c): p is invertible. Indeed, p ⊆ pp′ ⊆ R , and pp′ =/ p : otherwise, p′ ⊆
p : p = R , contradicting (b). Therefore pp′ = R , since p is maximal.

(d): i =
⋂

n>0 pn = 0. By (c), ip′ ⊆ pn+1p′ = pn for all n , ip′ ⊆ i , and
R � p′ ⊆ i : i by (b); hence i = 0, by (a). (This also follows from Theorem 8.3.)

(e): p is principal. If p2 = p , then pn = p for all n , contradicting (d);
therefore p2

� p . Let p ∈ p\p2 . Then pp′ ⊆ pp′ = R and pp′
� p :

otherwise, p ∈ pp′p ⊆ p2 . Since p is maximal, every ideal a =/ R of R is
contained in p ; therefore pp′ = R , and p = pp′p = Rp .

Now, let a =/ R, 0 be an ideal of R . Then a ⊆ p , since a is contained in a
maximal ideal, but a is not contained in every pn , by (d). Hence a ⊆ pn and
a � pn+1 for some n > 0. Let a ∈ a\pn+1 . By (e), p = Rp for some p ∈ R ,
so that pn = Rpn , a = r pn for some r ∈ R , r /∈ p . In the local ring R this
implies that r is a unit. Therefore Rpn = Ra ⊆ a , and a = pn = Rpn . �

We prove a more general result, essentially due to Noether [1926]:

Theorem 6.2. For a domain R the following conditions are equivalent:

(1) R is a Dedekind domain;

(2) R is Noetherian and integrally closed, and every nonzero prime ideal of R
is maximal;

(3) R is Noetherian and Rp is a PID for every prime ideal p =/ 0 of R .

Proof. (1) implies (2). Let R be Dedekind. If x ∈ Q(R) is integral over R ,
then R[x] ⊆ Q(R) is a finitely generated R-module, R[x] is a fractional ideal by
5.1, R[x] is invertible, and (R[x])(R[x]) = R[x] yields R[x] = R and x ∈ R .
Thus R is integrally closed. The other parts of (2) follow from 5.4.

(2) implies (3). Let p =/ 0 be a prime ideal of R . Then Rp is Noetherian and
integrally closed, by 4.7, and has only one nonzero prime ideal by 4.5, since p is
maximal by (2). By 6.1, Rp is a PID.
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(3) implies (1). Since R is Noetherian, every ideal a =/ 0 of R is finitely
generated, a = Ra1 + · · · + Ran , and a′ is a fractional ideal. Now, aa′ ⊆ R .
If aa′

� R , then aa′ is contained in a maximal ideal m of R . In Rm , aE is
principal, by (3): aE = Rm (a/s) for some a ∈ a , s ∈ R\m . Hence ai/1 =
(xi/si )(a/s) for some xi ∈ R and si ∈ R\m . Then t = s1 · · · sn s ∈ R\m ,
(t/a) ai = t xi/si s ∈ R for all i , (t/a)a ⊆ R , t/a ∈ a′ , and t ∈ aa′ ⊆ aa′ ⊆
m . This disagreeable contradiction shows that aa′ = R ; thus a is invertible. �

Extensions. We now turn to algebraic integers. First we prove two results.

Proposition 6.3. Let R be an integrally closed domain and let E be a finite
separable field extension of its quotient field Q . The integral closure of R in E
is contained in a finitely generated submodule of E .

Proof. By the primitive element theorem, E = Q(α) for some α ∈ E . We
may assume that α is integral over R : by 2.6, rα is integral over R for some
0 =/ r ∈ R , and E = Q(rα) .

Since E is separable over Q , α has n = [ E : Q ] distinct conjugates
α1, . . . , αn in the algebraic closure Q of Q , which are, like α , integral over
R ; and F = Q(α1, . . ., αn) is a Galois extension of Q . Let δ ∈ E be the
Vandermonde determinant

δ =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1
α1 α2 · · · αn
...

...
. . .

...
αn−1

1 αn−1
2 · · · αn−1

n

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∏

i> j (αi − αj ) =/ 0.

Expanding δ by rows yields cofactors γ jk such that
∑

j αi
j γ jk = δ if i = k ,

∑

j αi
j γ jk = 0 if i =/ k . Also, every Q-automorphism of F permutes α1, . . ., αn ,

sends δ to ±δ , and leaves δ2 fixed; hence δ2 ∈ Q .

Let β ∈ E be integral over R . Then β = f (α) for some polynomial f (X) =
b0 + b1 X + · · · + bn−1 Xn−1 ∈ Q[X ] . The conjugates of β are all βj = f (αj )
and are, like β , integral over R . Then

∑

j βj γ jk =
∑

i, j bi αi
j γ jk = bkδ and

bkδ
2 =

∑

j βj γ jk δ . Now, δ and all γ jk are integral over R , since α1, . . . , αn

are integral over R , and so are β1, . . ., βn ; hence bkδ
2 is integral over R . Since

bkδ
2 ∈ Q , it follows that bkδ

2 ∈ R . Hence β =
∑

i bi αi belongs to the
submodule of E generated by 1/δ2 , α/δ2 , . . . , αn−1/δ2 , and the latter contains
every β ∈ E that is integral over R . �

A module is Noetherian when its submodules satisfy the ascending chain con-
dition. Readers will verify, as in Proposition III.11.1, that an R-module M is
Noetherian if and only if every submodule of M is finitely generated.

Proposition 6.4 (Noether [1926]). If R is Noetherian, then every finitely
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generated R-module is Noetherian.

We omit the proof, since a more general result, Proposition VIII.8.3, is proved
in the next chapter. A direct proof is outlined in the exercises. We can now prove
our second main result:

Theorem 6.5. Let R be a Dedekind domain with quotient field Q . The integral
closure of R in any finite field extension of Q is a Dedekind domain.

Proof. By 3.10, 6.3, the integral closure R of R in a finite extension of Q
is integrally closed and is contained in a finitely generated R-module M . Hence
R is Noetherian: its ideals are submodules of M and satisfy the ascending chain
condition, by 6.4. If P is a nonzero prime ideal of R , then p = P ∩ R is a prime
ideal of R , and p =/ 0: otherwise, P = 0 by 3.6. Hence p is maximal, and P is
maximal by 3.7. Therefore R is Dedekind, by 6.2. �

Corollary 6.6. In every finite field extension of Q , the algebraic integers
constitute a Dedekind domain.

This follows from Theorem 6.5, since Z is a Dedekind domain. Thus, the ideals
of any ring of algebraic integers (over Z ) can be factored uniquely into products
of positive powers of prime ideals, even though the algebraic integers themselves
may lack a similar property.

Exercises
1. Show that an R-module M is Noetherian if and only if every submodule of M is finitely

generated.

2. Give an example of a Dedekind domain that is not a UFD.

3. Show that a Dedekind domain with finitely many prime ideals is a PID.

4. Show that the direct product of two Noetherian R-modules is Noetherian.

5. If R is Noetherian, show that every finitely generated R-module M is Noetherian.
(Hint: let M have n generators; construct a module homomorphism Rn −→ M ; then use
the previous exercise.)

7. Galois Groups

This section uses properties of algebraic integers to obtain elements of Galois
groups (over Q ) with known cycle structures.

Proposition 7.1. Let R be a PID and let J be the ring of algebraic integers
of a finite field extension E of Q = Q(R) . There exists a basis of E over Q
that also generates J as an R-module. Hence J ∼= Rn (as an R-module), where
n = [ E : Q ] .

Here Rn is the R-module of all n-tuples (r1, . . ., rn) of elements of R ,
with componentwise addition and action of R , (r1, . . ., rn) + (s1, . . ., sn) =
(r1 + s1 , . . . , rn + sn) and r (r1, . . . , rn) = (rr1, . . . , rrn) .
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Proof. By 6.3, J is contained in a finitely generated submodule M of E .
Then M is a torsion free, finitely generated R-module. In Section VIII.6 we
prove by other methods that J ⊆ M must have a finite basis β1, . . ., βn , which
means that every element of J can be written uniquely as a linear combination
r1β1 + · · · + rnβn of β1, . . ., βn with coefficients in R . Then (r1, . . . , rn) �−→
r1β1 + · · · + rnβn is an isomorphism Rn −→ J of R-modules.

We show that β1, . . ., βn is also a basis of E over Q . Indeed, if q1β1 + · · · +
qnβn = 0 for some q1, . . ., qn ∈ Q , then q1, . . . , qn have a common denomi-
nator r ∈ R , r =/ 0, and then rq1β1 + · · · + rqnβn = 0 with rq1, . . ., rqn ∈ R ,
rqi = 0 for all i , and qi = 0 for all i . Moreover, β1, . . . , βn span E : if α ∈ E ,
then rα ∈ J for some 0 =/ r ∈ R by 2.6, rα = r1β1 + · · · + rnβn for some
r1, . . ., rn ∈ R , and α = (r1/r)β1 + · · · + (rn/r)βn . �

Proposition 7.2. Let R be an integrally closed domain, let J be the ring of
algebraic integers of a finite Galois extension E of Q(R) , and let p be a prime
ideal of R . There are only finitely many prime ideals of J that lie over p , and
they are all conjugate in E .

Proof. Let G = Gal (E : Q(R)) . If α is integral over R , then σα is integral
over R for every σ ∈ G ; hence the norm N(α) =

∏

σ∈G σα is integral over R .
Since N(α) ∈ Q(R) this implies N(α) ∈ R .

Let P and Q be prime ideals of J that lie over p . We have Q ⊆
⋃

σ∈G σP ,
since α ∈ Q implies N(α) ∈ Q ∩ R ⊆ P and σα ∈ P for some σ ∈ G . By
7.3 below, Q is contained in a single σP . Then Q = σP , by 3.6, since both lie
over p . Since G is finite, there are only finitely many prime ideals of J that lie
over p . �

Readers will establish the following property:

Lemma 7.3. Let p1, . . ., pn be prime ideals of a commutative ring R . An
ideal of R that is contained in p1 ∪ · · · ∪ pn is contained in some pi .

We now let R = Z .

Proposition 7.4. Let J be the ring of algebraic integers of a finite Galois
extension E of Q and let P1, . . . , Pr be the prime ideals of J that lie over
pZ , where p is prime. All J/Pi are isomorphic; E ∼= J/Pi is a finite Galois
extension of Zp ; Gal (E : Zp) is cyclic; and |E | = pk , where kr � [ E : Q ] .

Proof. If σ ∈ Gal (E : Q) , then σ J = J ; hence all J/Pi are isomorphic, by
7.2. Moreover, Pi is maximal by 3.7; hence E ∼= J/Pi is a field.

The projections J −→ J/Pi induce a homomorphism of rings ϕ : J −→
J/P1 × · · · × J/Pr , α �−→ (α + P1 , . . . , α + Pr ) ; ϕ is surjective, by
5.8, and Ker ϕ = A = P1 ∩ · · · ∩ Pr . Hence J/A ∼= Er . Now, p J ⊆ A ,
since p ∈ pZ ⊆ A . As an abelian group (Z-module), J ∼= Z

n by 7.1, where
n = [ E : Q ] . Hence J/p J ∼= Z

n/pZ
n ∼= (Z/pZ)n is finite, with pn elements,

J/A ∼= (J/p J )/(A/p J ) is finite, and E is finite, with pk elements for some
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k � 0. Then kr � n , since Er ∼= J/A has at most pn elements. (This inequality
can also be proved by extending valuations as in Section VI.7.)

By V.1.3, the finite field E of order pk is the splitting field of the separable
polynomial Xpk − X ∈ Zp[X ] . Hence E is a finite Galois extension of Zp .
Eager readers will delight in proving that Gal (E : Zp) is cyclic. �

We can now prove our main result.

Theorem 7.5. Let q ∈ Z[X ] be a monic irreducible polynomial and let p be
a prime number. Let the image q of q in Zp[X ] be the product of irreducible
polynomials q1, . . . , qs ∈ Zp[X ] of degrees d1, . . ., ds . For almost every prime
p , the polynomials q1, . . . , qs are distinct, and then the Galois group of q over
Q contains a product of disjoint cycles of orders d1, . . ., ds .

Proof. The roots α1, . . ., αn of q in C are integral over Z , since q is monic.
Let E = Q(α1, . . ., αn) be the splitting field of q . Let J, P1, . . . , Pr , E, k , and
r be as in 7.4; let P = P1 , and let α �−→ α = α + P be the projection J −→ E =
J/P . Then Zp ⊆ E , q, q1, . . . , qs ∈ E[X ] , and q(X) = (X − α1) · · · (X − αn)
in J [X ] yields

q1 · · · qs = q = (X − α1) · · · (X − αn)

in E[X ] . Hence every qj is the irreducible polynomial of some αi ∈ E .

If q1, . . ., qs are not distinct, then the discriminant
∏

i< j (αi − αj )
2 of q

is zero, and the discriminant D =
∏

i< j (αi − αj )
2 of q lies in P . Then

D ∈ P ∩ Z = pZ and D is an integer multiple of p . Therefore there are only
finitely many primes p such that q1, . . ., qs are not distinct.

Now, assume that q1, . . ., qs are distinct. Since E is Galois over Zp ,
q1, . . ., qs are separable and have no multiple roots in E . Moreover, q1, . . ., qs
have no common roots in E , since they are the distinct irreducible polynomials of
elements of E . Therefore α1, . . ., αn are all distinct.

Let G = Gal (E : Q) , G = Gal (E : Zp) , and H = { σ ∈ G
∣
∣ σP = P }

be the stabilizer of P . If σ ∈ H , then σ J = J , σP = P , and σ induces
an automorphism σ : α �−→ α = α + P of J/P = E . Then ϕ : σ −→ σ is
a homomorphism of H into G . If σ = 1, then, for all i , αi = σ αi = σαi ,
αi = σαi , since α1, . . . , αn are distinct, and σ = 1. Thus ϕ is injective and
|H | � |G| = k . But the orbit of P under the action of G is {P1, . . . , Pr } ,
by 7.2; hence [ G : H ] = r and |H | = n/r � k . Therefore |H | = k and ϕ is an
isomorphism. Thus every τ ∈ G is induced (as τ = σ ) by a unique σ ∈ H .

Identify every σ ∈ H with the permutation of α1, . . ., αn that it induces, and
every σ ∈ G with the similar permutation of α1, . . ., αn . Then σ and σ have
the same cycle structure. Let τ generate the group G , which is cyclic by 7.4.
Then τ permutes the roots β1, . . ., βdj

of qj , since τqj = qj . But τ cannot
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permute any proper subset, say {β1, . . ., βt } , of {β1, . . ., βdj
} : otherwise,

f (X) = (X − β1) · · · (X − βt ) and g(X) = (X − βt+1) · · · (X − βdj
) are fixed

under τ , f and g are fixed under G , f, g ∈ Zp[X ] , and f g = qj , an insult
to qj ’s irreducibility. Therefore τ has a restriction to {β1, . . ., βdj

} that is a
dj-cycle. Thus τ is a product of disjoint cycles of orders d1, . . ., ds . Then τ is
induced by some τ ∈ H with the same cycle structure. �

For example, let q(X) = X5 − X + 1 ∈ Z[X ] . Readers will verify that q is
irreducible in Z3[X ] . Hence q , which is monic, is irreducible in Z[X ] . Also

X5 − X + 1 = (X2 + X + 1)(X3 + X2 + 1) in Z2[X ] .

By 7.5, the Galois group G of q over Q , viewed as a subgroup of S5 , contains a
5-cycle, and contains the product of a 2-cycle and a disjoint 3-cycle. Therefore G
contains a 5-cycle and a transposition, and G = S5 .

Exercises
1. Let p1, . . . , pn be prime ideals of a commutative ring R . Prove that an ideal of R that

is contained in p1 ∪ · · · ∪ pn is contained in some pi .

2. Let F be a finite field of order pn . Show that Gal (F : Zp) is cyclic of order pn−1 .

3. Find the Galois group of X4 + X + 1 over Q .

4. Find the Galois group of X4 + 2X2 + X + 1 over Q .

5. Find the Galois group of X4 + 2X2 + 3X + 1 over Q .

8. Minimal Prime Ideals

In this section we establish several finiteness properties for the prime ideals of
Noetherian rings, due to Krull [1928], for use in the next section.

Artinian modules. We begin with a peek at modules that satisfy the descending
chain condition.

A module M is Artinian when every infinite descending sequence S1 ⊇ S2 ⊇
· · · ⊇ Sn ⊇ Sn+1 ⊇ · · · of submodules of M terminates (there exists m > 0 such
that Sn = Sm for all n � m ). For example, a finite-dimensional vector space over
a field K is Artinian as a K-module.

In an Artinian module M , every nonempty set S of submodules of M has
a minimal element (an element S of S such that there is no S � T ∈ S ):
otherwise, there exists some S1 ∈ S ; since S1 is not minimal in S there exists
some S1 � S2 ∈ S ; since S2 is not minimal in S there exists some S2 � S3 ∈ S ;
this continues indefinitely, ruining the neighborhood with an infinite descending
sequence that won’t terminate.

Proposition 8.1. If N is a submodule of M , then M is Artinian if and only if
N and M/N are Artinian.
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Proof. Assume that N and M/N are Artinian and let S1 ⊇ · · · Sn ⊇ Sn+1 ⊇ · · ·
be an infinite descending sequence of submodules of M . Then S1 ∩ N ⊇
· · · Sn ∩ N ⊇ Sn+1 ∩ N ⊇ · · · is an infinite descending sequence of submodules
of N, and (S1 + N)/N ⊇ · · · (Sn + N)/N ⊇ (Sn+1 + N)/N ⊇ · · · is an infinite
descending sequence of submodules of M/N . Both sequences terminate: there
exists m > 0 such that Sn ∩ N = Sm ∩ N and (Sn + N)/N = (Sm + N)/N for all
n � m . Then Sn + N = Sm + N for all n � m . Hence Sn = Sm for all n � m :
if x ∈ Sn ⊆ Sm + N , then x = y + t for some y ∈ Sm and t ∈ N , and then
t = x − y ∈ Sn ∩ N = Sm ∩ N and x = y + t ∈ Sm . Thus M is Artinian. We
leave the converse to enterprising readers. �

Lemma 8.2. If m is a maximal ideal of a Noetherian ring R , then R/mn is
an Artinian R-module, for every n > 0 .

Proof. Let M = mn−1/mn ( M = R/m , if n = 1). We show that M is
an Artinian R-module; since (R/mn)/(mn−1/mn) ∼= R/mn−1 , it then follows
from 8.1, by induction on n , that R/mn is Artinian. Since mM = 0, the action
of R on M induces a module action of R/m on M, which is well defined by
(r + m) x = r x . Then M has the same submodules as an R-module and as an
R/m -module. Since R is Noetherian, mn−1 is a finitely generated R-module and
M is a finitely generated as an R-module, and as an R/m -module. But R/m is a
field; hence M is a finite-dimensional vector space over R/m and M is Artinian
as an R/m -module and as an R-module. �

The intersection theorem.

Theorem 8.3 (Krull Intersection Theorem [1928]). Let a =/ R be an ideal of a
Noetherian ring R and let i =

⋂

n>0 an . Then ai = i and (1 − a) i = 0 for some
a ∈ a . If R is a domain, or if R is local, then i = 0 .

If i = 0, then R embeds into its a-adic completion in Section VI.9.

Proof. Let q be a primary ideal that contains ai and let p be its radical. Then
pn ⊆ q for some n , by 1.6, and i ⊆ q : otherwise, a ⊆ p , since q is primary,
and i ⊆ an ⊆ q anyway. Since ai is an intersection of primary ideals, by 1.9,
this implies i ⊆ ai and i = ai . Lemma 8.4 below then yields (1 − a)i = 0 for
some a ∈ a . Then 1 − a =/ 0. If R is a domain, then (1 − a)i = 0 implies i = 0.
If R is local, then 1 − a is a unit and again (1 − a)i = 0 implies i = 0. �

Lemma 8.4. Let a be an ideal of a commutative ring R and let M be a finitely
generated R-module. If aM = M , then (1 − a)M = 0 for some a ∈ a .

Proof. aM is the set of all sums a1x1 + · · · + an xn in which a1, . . ., an ∈ a
and x1, . . . , xn ∈ M . If M is generated by e1, . . ., em , then every element x of
aM is a sum a1e1 + · · · + amem , where a1, . . ., am ∈ a .

Since M = aM , there are equalities ei =
∑

j ai j ej in which ai j ∈ a for all
i, j . Then

∑

j bi j ej = 0 for all i , where bi j = 1 − ai j if i = j , bi j = −ai j
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otherwise. By 2.5, the determinant

D =

∣
∣
∣
∣
∣
∣
∣
∣
∣

b11 b12 · · · b1n
b21 b22 · · · b2n

...
...

. . .
...

bn1 bn2 · · · bnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 − a11 −a12 · · · −a1n
−a21 1 − a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · 1 − ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

satisfies Dei = 0 for all i . Now D = 1 − a for some a ∈ a . Then (1 − a) ei = 0
for all i , and (1 − a) x = 0 for all x ∈ M . �

Corollary 8.5 (Nakayama’s Lemma). Let a be an ideal of a commutative ring
R and let M be a finitely generated R-module. If a is contained in every maximal
ideal of R and aM = M , then M = 0 .

This makes a fine exercise. A more general version is proved in Section IX.5.

Prime ideals. We now turn to prime ideals. Let a be an ideal of R . A prime
ideal p is minimal over a , or an isolated prime ideal of a , when it is minimal
among all prime ideals of R that contain a .

Proposition 8.6. Let a =/ R be an ideal of a Noetherian ring R . There exists a
prime ideal of R that is minimal over a ; in fact, every prime ideal that contains
a contains a prime ideal that is minimal over a . Moreover, there are only finitely
many prime ideals of R that are minimal over a .

Proof. By 1.9, a is the intersection a = q1 ∩ · · · ∩ qr of finitely many
primary ideals with radicals p1, . . ., pr . A prime ideal that contains a contains
q1 · · ·qr ⊆ a , contains some qi , and contains its radical pi . Hence p is minimal
over a if and only if p is minimal among p1, . . ., pr . �

Lemma 8.7. Let R be a Noetherian local ring with maximal ideal m . If a ∈ m
and R/Ra is Artinian as an R-module, then there is at most one prime ideal p of
R that does not contain a , namely the nilradical p = Rad 0 of R .

Proof. Let p be a prime ideal of R that does not contain a . For every n > 0
let p(n) =

(

(pE )n)C , as calculated in Rp ; p(n) is the nth symbolic power of

p . Since x ∈ p(n) is equivalent to x/1 = (pE )n = (pn)E , x/1 = y/s for some
y ∈ pn and s ∈ R\p , and st x ∈ pn for some s, t ∈ R\p , we have

p(n) = { x ∈ R
∣
∣ sx ∈ pn for some s ∈ R\p } .

Hence p(1) = p , since p is prime, and p(n) ⊇ p(n+1) for all n . Since
Rad (pE )n= pE is the maximal ideal of Rp , (pn)E = (pE )n is pE-primary

by 1.10 and p(n) is p-primary by 4.6 (this can also be proved directly).

We show that the descending sequence p = p(1) ⊇ · · · ⊇ p(n) ⊇ p(n+1) ⊇ · · ·
terminates. Let b = p∩ Ra . Then p/b = p/(p∩ Ra) ∼= (p + Ra)/Ra ⊆ R/Ra
is an Artinian R-module, and the descending sequence

p/b = p(1)/b ⊇ · · · ⊇ (p(n) + b)/b ⊇ (p(n+1) + b)/b ⊇ · · ·
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terminates: there is some m > 0 such that p(n) + b = p(m) + b for all n � m .
If n � m , then M = p(m)/p(n) is a finitely generated R-module, and aM = M ,
since x ∈ p(m) ⊆ p(n) + Ra implies x = y + ra for some y ∈ p(n) and r ∈ R ,
ra = x − y ∈ p(m) , r ∈ p(m) since a /∈ p , x = y + ra ∈ p(n) + p(m)a , and
x + p(n) = a (r + p(n)) ∈ aM . Hence RaM = M , mM = 0 since Ra ⊆ m , and
M = 0 by 8.5. Thus p(n) = p(m) for all n � m .

On the other hand,
⋂

n>0 (pE )n = 0, by 8.3, applied to the local ring Rp .

Hence p(m) =
⋂

n>0 p(m) = 0 and p = Radp(m) = Rad 0. �
The main result in this section is Krull’s Hauptidealsatz (principal ideal the-

orem). Every commutative ring has a least prime ideal, its nilradical Rad 0. A
prime ideal p has height at most 1 when there is at most one prime ideal q � p :
when either p = Rad 0 or Rad 0 is the only prime ideal q � p . In a domain,
Rad 0 = 0 and a prime ideal of height at most 1 is either 0 or a minimal nonzero
prime ideal. (Heights are defined in general in the next section.)

Theorem 8.8 (Krull’s Hauptidealsatz [1928]). In a Noetherian ring, a prime
ideal that is minimal over a principal ideal has height at most 1.

Proof. First let p = m be the maximal ideal of a Noetherian local ring R .
Assume that m is minimal over a principal ideal Ra of R . Then Rad Ra ⊆ m ,
m = Rad Ra , and mn ⊆ Ra for some n > 0 by 1.6. Now, R/mn is an Artinian
R-module, by 8.2. Hence R/Ra ∼= (R/mn)/(Ra/mn) is Artinian, by 8.1. Since
p is minimal over Ra , a prime ideal q � p cannot contain a ; by 8.7, there is at
most one prime ideal q � p .

Now, let R be Noetherian and p be a prime ideal of R that is minimal over a
principal ideal Ra . Then Rp is a Noetherian local ring, pE is the maximal ideal

of Rp , and pE is minimal over (Ra)E by 4.5. Hence pE has height at most 1 in
Rp . Then p has height at most 1 in R , by 4.5 again. �

Readers will easily prove that, conversely, a prime ideal of height at most one
is minimal over a principal ideal.

Exercises
1. Prove the following: let N be a submodule of an R-module M ; if M is Artinian, then

N and M/N are Artinian.

2. Show that every ideal a =/ R of a commutative ring R has an isolated prime ideal (even
if R is not Noetherian). (First show that the intersection of a nonempty chain of prime ideals
is a prime ideal.)

3. Prove Nakayama’s lemma: Let a be an ideal of a commutative ring R and let M be a
finitely generated R-module. If a is contained in every maximal ideal of R and aM = M ,
then M = 0.

4. Give a direct proof that p(n) = { x ∈ R
∣
∣ sx ∈ pn for some s ∈ R\p } is a p-primary

ideal, whenever p is a prime ideal of a commutative ring R .
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5. Use Nakayama’s lemma to prove that p(n) = p(n+1) implies p(n) = 0, when p is a
prime ideal of a local ring.

6. Let R be a Noetherian ring and let p be a prime ideal of R of height at most 1. Show
that p is minimal over a principal ideal of R .

7. Let R be a Noetherian domain. Show that R is a UFD if and only if every prime ideal
of R of height at most 1 is principal. (You may want to show that irreducible elements of R
are prime, then follow the proof of Theorem III.8.4.)

9. Krull Dimension

In this section we prove that prime ideals of Noetherian rings have finite height
(Krull [1928]). This leads to a dimension concept for Noetherian rings.

Definition. In a commutative ring R , the height hgt p of a prime ideal p is
the least upper bound of the lengths of strictly descending sequences p = p0 �

p1 � · · · � pm of prime ideals of R .

Thus p has height at most n if and only if every strictly descending sequence
p = p0 � p1 � · · · � pm of prime ideals has length at most n . For instance, the
least prime ideal Rad 0 of R has height 0; p has height at most 1 if and only if
p � Rad 0 and there is no prime ideal p � q � Rad 0.

The height of p is also called its codimension. We saw in Section 1 that an
algebraic set A ⊆ C

n is the union of finitely many algebraic sets defined by
prime ideals, known as algebraic varieties. We shall prove that a prime ideal P

of C[X, Y, Z ] has height 0 (P = 0), 1 (for instance, if P = (q) , where q is
irreducible), 2, or 3 (if P is maximal); the corresponding algebraic varieties are
C

3 , algebraic surfaces, algebraic curves (intersections of two surfaces, defined by
two equations), and single points.

To prove Krull’s theorem we start with an inclusion avoidance lemma:

Lemma 9.1. Let p0, p1, . . ., pm,q1, . . ., qn be prime ideals of a Noetherian
ring R . If p0 � p1 � · · · � pm and p0 � q1 ∪ · · · ∪ qn , then p0 � p′

1 �

· · · � p′
m−1 � pm for some prime ideals p′

1, . . . , p′
m−1 � q1 ∪ · · · ∪ qn .

Proof. By induction on m . There is nothing to prove if m � 1. If m � 2, then
the induction hypothesis yields p0 � p′

1 � · · · � p′
m−2 � pm−1 for some prime

ideals p′
1, . . ., p′

m−2 � q1 ∪ · · · ∪ qn . Then p′
m−2 � pm ∪ q1 ∪ · · · ∪ qn , by

7.3. Let a ∈ p′
m−2 \ (pm ∪ q1 ∪ · · · ∪ qn) . By 8.6, p′

m−2 contains a prime
ideal p′

m−1 that is minimal over Ra + pm . Then p′
m−1 � q1 ∪ · · · ∪ qn and

p′
m−1 � pm . Finally, p′

m−2 � p′
m−1 : in the Noetherian ring R/pm , p′

m−2/pm
has height at least 2, since p′

m−2 � pm−1 � pm , whereas p′
m−1/pm is minimal

over (Ra + pm)/pm and has height at most 1 by 8.8. �
Krull’s theorem, also called principal ideal theorem like Theorem 8.8, is the

following result.
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Theorem 9.2 (Krull [1928]). In a Noetherian ring, every prime ideal p has
finite height; in fact, if p is minimal over an ideal with r generators, then p has
height at most r .

Proof. Let R be Noetherian; let a = Rx1 + · · · + Rxr be an ideal of R with
r generators x1, . . ., xr , and let p be a prime ideal of R that is minimal over
a . We prove by induction on r that hgt p � r . Hence hgt p � r when p has
r generators, since p is minimal over itself. (Conversely, every prime ideal of
height r is minimal over some ideal with r generators; see the exercises.)

Theorem 8.8 is the case r = 1. Assume r � 2. Let b = Rx1 + · · · + Rxr−1 . If
p is minimal over b , then hgtp � r − 1, by the induction hypothesis. Otherwise,
there are only finitely many prime ideals q1, . . ., qn of R that are minimal over
b , by 8.6, and p � q1 ∪ · · · ∪ qn , by 7.3. Let p = p0 � p1 � · · · � pm be a
strictly decreasing sequence of prime ideals.

By 9.1 we may assume that p1, . . . , pm−1 � q1 ∪ · · · ∪ qn . In the Noetherian
ring R/b , the prime ideals that are minimal over 0 = b/b are q1/b, . . ., qn/b ;
and p/b , which is minimal over the principal ideal (Rxr + b)/b but not over
b/b = 0, has height 1, by 8.8. Hence p is minimal over pm−1 + b : if q is a
prime ideal and p ⊇ q � pm−1 + b , then q/b � q1/b ∪ · · · ∪ qn/b , since
pm−1 � q1 ∪ · · · ∪ qn , q/b has height at least 1, p/b = q/b since p/b has
height 1, and p = q . Then p/pm−1 is minimal over (pm−1 + b)/pm−1 . Since
(pm−1 + b)/pm−1 has r − 1 generators, hgt p/pm−1 � r − 1, by the induction
hypothesis, and

p/pm−1 = p0/pm−1 � p1/pm−1 � · · · � pm−1/pm−1

implies m − 1 � r − 1. Hence m � r . �
Definitions. The spectrum of a commutative ring is the set of its prime ideals,

partially ordered by inclusion. The Krull dimension or dimension dim R of R is
the least upper bound of the heights of the prime ideals of R .

Thus a ring R has dimension at most n if every prime ideal of R has height
at most n . Readers will verify that the height of a prime ideal p of R is also the
dimension of Rp , and that dim R � 1 + dim R/p when p =/ Rad 0.

We now turn to polynomial rings.
Lemma 9.3. Let R be a domain and let P be a prime ideal of R[X ] . If

P ∩ R = 0 , then P has height at most 1 .

Proof. Let Q be the quotient field of R and let S = R\{0} , so that S−1 R = Q .
Since every r ∈ R\0 is a unit in Q and in Q[X ] , 4.2 yields an injective homomor-
phism θ : S−1(R[X ])−→ Q[X ] , which sends (a0 + · · · + an Xn)/r ∈ S−1(R[X ])
to (a0/r) + · · · + (an/r)Xn ∈ Q[X ] . If g(X) = q0 + q1 X + · · · + qn Xn ∈ Q[X ] ,
then rewriting q0, q1, . . ., qn with a common denominator puts g in the form
g = f/r for some f ∈ R[X ] and r ∈ R ; hence θ is an isomorphism. Thus
S−1(R[X ]) ∼= Q[X ] is a PID.
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Now, let P ∩ R = 0 and let 0 =/ Q ⊆ P be a prime ideal of R[X ] . Then
Q ∩ R = 0, and QE ⊆ PE are nonzero prime ideals of the PID S−1(R[X ]) , by
4.5. Hence QE is a maximal ideal, QE = PE , and Q = P by 4.5. �

Theorem 9.4. If R is a Noetherian domain, then dim R[X ] = 1 + dim R .

Proof. First, (X) is a prime ideal of R[X ] and R[X ]/(X) ∼= R ; hence
dim R[X ] � 1 + dim R[X ]/(X) = dim R + 1. In particular, dim R[X ] is infinite
when dim R is infinite, and we may assume that n = dim R is finite. We prove
by induction on n that dim R[X ] � n + 1. If n = 0, then 0 is a maximal ideal of
R , R is a field, R[X ] is a PID, and dim R[X ] = 1. Now, let n > 0 and

P0 � P1 � · · · � Pm

be prime ideals of R[X ] . We want to show that m � n + 1.

Since n � 1 we may assume that m � 2. We may also assume that Pm−1 ∩
R =/ 0. Indeed, suppose that Pm−1 ∩ R = 0. Then Pm−2 ∩ R =/ 0 by 9.3 and
there exists 0 =/ a ∈ Pm−2 ∩ R . Now, Pm−2 has height at least 2 and is not
minimal over (a) , by 8.8. Hence Pm−2 properly contains a prime ideal Q that
is minimal over (a) , by 8.6. Then Pm−2 � Q � 0, with Q ∩ R =/ 0.

Now, p = Pm−1 ∩ R is a nonzero prime ideal of R . Then dim R/p �
dim R − 1 = n − 1. By the induction hypothesis, dim (R/p)[X ] � n . The
projection R −→ R/p induces a surjective homomorphism R[X ]−→ (R/p)[X ]
whose kernel is a nonzero prime ideal P of R[X ] , which consists of all f ∈ R[X ]
with coefficients in p . Then P ⊆ Pm−1 , since p ⊆ Pm−1 ; dim R[X ]/P =
dim (R/p)[X ] � n ; and the sequence

P0/P � P1/P � · · · � Pm−1/P

has length m − 1 � n , so that m � n + 1. �

Theorem 9.4 implies dim R[X1, ..., Xn] = dim R + n and the following result:

Corollary 9.5. If K is a field, then K [X1, ..., Xn] has dimension n .

Exercises

1. Let p be a prime ideal of height r in a Noetherian ring R . Show that p is minimal over
an ideal a of R that has r generators. (You may construct a1, . . . , ar ∈ p so that a prime
ideal that is minimal over Ra1 + · · · + Rak has height k for every k � r .)

2. Show that dim R = dim R/a whenever a ⊆ Rad 0 .

3. Give examples of Noetherian rings of dimension 1 .

4. Show that the height of a prime ideal p of R is also the dimension of Rp .

5. Show that dim R � 1 + dim R/p when p is a prime ideal and p =/ Rad 0 .

6. Show that dim R = dim S when S is integral over R .
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10. Algebraic Sets

This section contains a few initial properties of algebraic sets, with emphasis on
overall structure and relationship to ideals.

Definitions. Let K be a field and let K be its algebraic closure. The zero set
of a set S ⊆ K [X1, ..., Xn] of polynomials is

Z(S) = { x = (x1, . . ., xn) ∈ K n ∣∣ f (x) = 0 for all f ∈ S } .

An algebraic set in K n with coefficients in K is the zero set of a set of polynomials
S ⊆ K [X1, ..., Xn] .

The algebraic sets defined above are also called affine algebraic sets because
they are subsets of the affine space K n . Projective algebraic sets are subsets of
the projective space Pn on K that are defined by sets of homogeneous equations
in n + 1 variables. They differ from affine sets by their points at infinity.

The straight line x + y − 4 = 0 and circle x2 + y2 − 10 = 0 are alge-
braic sets in C

2 with coefficients in R . Algebraic sets in C
2 with a single

nontrivial equation (the zero sets of single nonconstant polynomials) are alge-
braic curves; they have been studied at some depth, in part because of their
relationship to Riemann surfaces. But C

2 contains other kinds of algebraic sets:
Z
(

{ (X2 + Y 2 − 10) (X + Y − 4) }
)

is the union of two algebraic curves; Z
(

{ X2 +
Y 2 − 10, X + Y − 4 }

)

consists of two points, (1, 3) and (3, 1) ; the empty set
Ø = Z({1}) and C

2 = Z({0}) are algebraic sets.

Proposition 10.1. Every algebraic set is the zero set of an ideal.

Proof. Let S ⊆ K [X1, ..., Xn] and let a be the ideal generated by S . If f (x) =
0 for all f ∈ S , then (u1 f1 + · · · + um fm)(x) = 0 for all u1 f1 + · · · + um fm ∈ a ;
hence Z(S) = Z(a) . �

Proposition 10.2. Every intersection of algebraic sets is an algebraic set. The
union of finitely many algebraic sets is an algebraic set.

Proof. First,
⋂

i∈I Z(Si ) = Z
(⋃

i∈I Si
)

. Hence
⋂

i∈I Z(ai ) = Z
(⋃

i∈I ai
)

= Z
(∑

i∈I ai
)

for all ideals (ai )i∈I of K [X1, ..., Xn] ). Next, let A = Z(a) and
B = Z(b) , where a and b are ideals of K [X1, ..., Xn] . Then A ∪ B ⊆ Z(a∩b) .
Conversely, if x ∈ Z(a ∩ b) and x /∈ A , then f (x) =/ 0 for some f ∈ a ; but
f (x) g(x) = 0 for every g ∈ b , since f g ∈ a ∩ b ; hence g(x) = 0 for all g ∈ b ,
and x ∈ B . Thus A ∪ B = Z(a ∩ b) . �

The proof of Proposition 10.2 shows that sums of ideals yield intersections of
algebraic sets, and that finite intersections of ideals yield finite unions of algebraic
sets.

The Nullstellensatz. “Nullstellensatz” means “Theorem of Zero Points”. The
last hundred years have brought stronger and deeper versions. The original version
below was proved by Hilbert [1893] in the case K = C .
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Theorem 10.3 (Hilbert’s Nullstellensatz). Let K be a field, let a be an ideal of
K [X1, ..., Xn] , and let f ∈ K [X1, ..., Xn] . If every zero of f in K n is a zero of
a , then a contains a power of f .

Proof. Assume that a contains no power of f . By 1.4 there is a prime ideal p of
K [X1, ..., Xn] that contains a but not f . Then R = K [X1, ..., Xn]/p is a domain.
The projection π : K [X1, ..., Xn]−→ R induces an isomorphism K ∼= π K ⊆ R
and a homomorphism g �−→ πg of K [X1, ..., Xn] into (π K )[X1, ..., Xn] . Let
α1 = π X1 , . . . , αn = π Xn ∈ R . Then y = π f (α1, . . ., αn) = π f =/ 0 in R , since
f /∈ p . By 4.10, the homomorphism π K ∼= K ⊆ K extends to a homomorphism
ψ of (π K )[α1, . . . , αn, 1/y] ⊆ Q(R) into K . Then ψπ is the identity on K ,
(ψy)

(

ψ(1/y)
)

= 1,

f (ψα1, . . . , ψαn) = ψπ f (ψα1, . . . , ψαn) = ψy =/ 0, but

g(ψα1, . . . , ψαn) = ψπg(ψπ X1, . . ., ψπ Xn) = ψπg = 0

for all g ∈ a ⊆ p . Thus (ψα1, . . ., ψαn) ∈ K n is a zero of a but not of f . �
The following consequences of Theorem 10.3 make fun exercises.

Corollary 10.4. Every proper ideal of K [X1, ..., Xn] has a zero in K n .

Corollary 10.5. An ideal m is a maximal ideal of K [X1, ..., Xn] if and only if
m = { f ∈ K [X1, ..., Xn]

∣
∣ f (x) = 0 } for some x ∈ K n .

The main consequence of the Nullstellensatz is that every algebraic set A is
the zero set of a unique semiprime ideal, namely

I(A) = { f ∈ K [X1, ..., Xn]
∣
∣ f (x) = 0 for all x ∈ A } .

Corollary 10.6. The mappings I and Z induce an order reversing one-
to-one correspondence between algebraic sets in K n and semiprime ideals of
K [X1, ..., Xn] .

Proof. For every A ⊆ K n , I(A) is a semiprime ideal, since f n(x) = 0 implies
f (x) = 0. By definition, A ⊆ Z(I(A)) and a ⊆ I(Z(a)) . If A = Z(a) is an
algebraic set, then a ⊆ I(A) , Z(I(A)) ⊆ Z(a) = A , and Z(I(A)) = A . If a is
semiprime, then I(Z(a)) ⊆ Rada = a , by 10.3, and I(Z(a)) = a . �

Algebraic sets do not correspond as nicely to ideals of K [X1, ..., Xn] when the
zero set is defined as a subset of K n rather than K n . For instance, if K = R ,
then, in R

2 , the curve x2 + y2 − 1 = 0 is a circle; the curve x2 + y2 + 1 = 0 is
empty, and is the zero set of widely different ideals. But both are circles in C

2 .

Algebraic varieties. In the Noetherian ring K [X1, ..., Xn] , every ideal a is
a reduced intersection a = q1 ∩ · · · ∩ qr of primary ideals q1, . . ., qr with
unique radicals p1, . . . , pr (Theorem 1.10). If a is semiprime, then taking
radicals yields a = Rada = p1 ∩ · · · ∩ pr ; thus every semiprime ideal is an
irredundant finite intersection of unique prime ideals. By Corollary 10.6, every
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algebraic setĩs an irredundant finite union of unique algebraic sets defined by prime
ideals.

Definition. An algebraic set A ⊆ K n is irreducible, or is an algebraic variety,
when A =/ Ø and A is the zero set of a prime ideal. �

Equivalently, A is an algebraic variety when A =/ Ø and A is not the union of
two nonempty algebraic sets B, C � A . For instance, Ø and K n are algebraic
varieties; so is any single point of K n , by Corollary 10.5. Algebraic varieties
A ⊆ K n are also called affine algebraic varietys.

Corollary 10.7. The mappings I and Z induce an order reversing one-
to-one correspondence between algebraic varieties in K n and prime ideals of
K [X1, ..., Xn] .

Corollary 10.8. Every algebraic set in K n is uniquely an irredundant finite
union of algebraic varieties.

Algebraic geometry can now focus on algebraic varieties, equivalently, on prime
ideals of K [X1, ..., Xn] .

The height of prime ideals in K [X1, ..., Xn] (Theorem 9.4) yields a dimension
for algebraic varieties:

Definition. The dimension dim A of an algebraic variety A ⊆ K n is the
length of the longest strictly decreasing sequence A = A0 � A1 � · · · � Ar of
nonempty algebraic varieties contained in A; equivalently, n − hgt I(A) .

For instance, single points of K n have dimension 0; straight lines and (non-
degenerate) circles in C

2 have dimension 1; irreducible algebraic surfaces in C
3

have dimension 2; and C
3 itself has dimension 3.

The Zariski topology. It turns out that dimension and Corollary 10.8 are
purely topological phenomena. Since Ø and K n are algebraic sets, Proposition
10.2 implies that the algebraic sets of K n are the closed sets of a topology on K n .
Zariski [1944] originated this type of topology; Weil [1952] applied it to algebraic
sets.

Definition. The Zariski topology on an algebraic set A ⊆ K n is the topology
whose closed sets are the algebraic sets B ⊆ A.

Equivalently, the Zariski topology on an algebraic set A ⊆ K n is the topology
induced on A by the Zariski topology on the algebraic set K n . With this topology,
an algebraic set A ⊆ K n is Noetherian in the sense that its open sets satisfy the
ascending chain condition. Readers will verify that the following properties hold in
every Noetherian topological space: every closed subset is uniquely an irredundant
union of irreducible closed subsets; every closed subset C has a dimension, which
is the least upper bound of the lengths of strictly decreasing sequences A = C0 �

C1 � · · · � Cm of closed subsets.
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By Corollary 10.5 the points of K n correspond to the maximal ideals of
K [X1, ..., Xn] . The exercises extend the Zariski topology to the entire spectrum
of K [X1, ..., Xn] , in fact, to the spectrum of any commutative ring.

Exercises
1. Let K be a field. Show that every proper ideal of K [X1, ..., Xn] has a zero in K

n
.

2. Let K be a field. Show that m is a maximal ideal of K [X1, ..., Xn] if and only if
m = { f ∈ K [X1, ..., Xn]

∣
∣ f (x) = 0 } for some x ∈ K

n
.

3. Let K be a field. Show that the prime ideals of height 1 in K [X1, ..., Xn] are the
principal ideals generated by irreducible polynomials.

4. Show that K
n

is compact (though not Hausdorff) in the Zariski topology.

5. Prove the following: in a Noetherian topological space, every closed subset is uniquely
an irredundant union of irreducible closed subsets. (A closed subset C is irreducible when
C =/ Ø and C is not the union of nonempty closed subsets A, B � C .)

In the following exercises, R is any commutative ring.

6. Show that the sets {p
∣
∣ p is a prime ideal of R and p ⊇ a } , where a is an ideal of

R , are the closed sets of a topology (the Zariski topology) on the spectrum of R .

7. Verify that the Zariski topology on the spectrum of K [X1, ..., Xn] induces the Zariski
topology on K

n
when the elements of K

n
are identified with the maximal ideals of

K [X1, ..., Xn] .

8. Prove the following: when R = K [X ] , where K is an algebraically closed field, a
proper subset of the spectrum is closed in the Zariski topology if and only if it is finite.

9. Show that the sets {p
∣
∣ p is a prime ideal of R and a /∈ p } , where a ∈ R , constitute

a basis of open sets of the Zariski topology on the spectrum of R .

10. Show that the spectrum of R is compact in the Zariski topology.

11. Regular Mappings

In this section we define isomorphisms of algebraic varieties, and construct, for
every algebraic variety A , a ring C(A) that determines A up to isomorphism.
This recasts algebraic geometry as the study of suitable rings.

The coordinate ring. We begin with C(A) and define isomorphisms later.
Let A ⊆ K n be an algebraic set. Every polynomial f ∈ K [X1, ..., Xn] induces
a polynomial mapping x �−→ f (x) , also denoted by f , and a mapping f|A :
x �−→ f (x) of A into K . For instance, every a ∈ K induces a constant mapping
x �−→ a on A , which may be identified with a ; Xi ∈ K [X1, ..., Xn] induces the
coordinate function (x1, . . ., xn) �−→ xi .

Definitions. Let A ⊆ K n be an algebraic set. A polynomial function of A is
a mapping of A into K that is induced by a polynomial f ∈ K [X1, ..., Xn] . The
coordinate ring of A is the ring C(A) of all such mappings.
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The operations on C(A) are pointwise addition and multiplication. The ele-
ments of K may be identified with constant functions, and then C(A) becomes a
ring extension of K . Then C(A) is generated over K by the coordinate functions,
whence its name.

Proposition 11.1. If K is a field and A ⊆ K n is an affine algebraic set, then
C(A) ∼= K [X1, ..., Xn]/I(A) . Hence C(A) is a commutative, finitely generated
ring extension of K; its nilradical is 0 ; if A is an algebraic variety, then C(A) is a
domain. Conversely, every commutative, finitely generated ring extension R of K
with trivial nilradical is isomorphic to the coordinate ring of an affine algebraic
set; if R is a domain, then R is isomorphic to the coordinate ring of an algebraic
variety.

Ring extensions of a field K are also known as K-algebras (see Chapter XIII).
Commutative, finitely generated ring extensions of K with zero nilradical are also
called affine rings over K .

Proof. Two polynomials f, g ∈ K [X1, ..., Xn] induce the same polynomial
function on A if and only if f (x) − g(x) = 0 for all x ∈ A , if and only if
f − g ∈ I(A) . Therefore C(A) ∼= K [X1, ..., Xn]/I(A) . In particular, C(A) is
generated, as a ring extension of K, by the coordinate functions of A ; the nilradical
Rad 0 of C(A) is trivial, since I(A) is a semiprime ideal; if A is an algebraic
variety, then I(A) is a prime ideal and C(A) is a domain.

Conversely, let R be a commutative ring extension of K with trivial nilradical,
which is finitely generated, as a ring extension of K , by some r1, . . ., rn ∈
R . By the universal property of K [X1, ..., Xn] there is a homomorphism ϕ :
K [X1, ..., Xn]−→ R that sends X1, . . . , Xn to r1, . . ., rn . Since R is generated
by r1, . . ., rn , ϕ is surjective, and R ∼= K [X1, ..., Xn]/Ker ϕ . Moreover, Ker ϕ

is a semiprime ideal, since Rad 0 = 0 in R . Hence Ker ϕ = I(A) for some
algebraic set A = Z(Ker ϕ) ⊆ K n , and then R ∼= C(A) . If R is a domain, then
Ker ϕ is a prime ideal and A is an algebraic variety. �

The points of A correspond to the maximal ideals of C(A) :

Proposition 11.2. Let A be an algebraic set. For every x ∈ A let mx = { f ∈
C(A)

∣
∣ f (x) = 0 } . The mapping x �−→ mx is a bijection of A onto the set of all

maximal ideals of C(A) .

Proof. By 10.5 the mapping x �−→ I({x}) = { f ∈ K [X1, ..., Xn]
∣
∣ f (x) = 0 }

is a bijection of K n onto the set of all maximal ideals of K [X1, ..., Xn] . By 10.6,
x ∈ A = Z(I(A)) if and only if I(A) ⊆ I({x}) . Hence x �−→ I({x}) is a
bijection of A onto the set of all maximal ideals m ⊇ I(A) of K [X1, ..., Xn] .
The latter correspond to the maximal ideals of K [X1, ..., Xn]/I(A) and to the
maximal ideals of C(A) . The composite bijection is x �−→ mx . �

If A is a variety, then the domain C(A) has a quotient field Q , which is a
finitely generated field extension of K ; the elements of Q are rational functions
of A into K . Valuations on Q are a flexible way to define “locations” on A ;
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the exercises give some details when A is an algebraic curve.

Proposition 11.3. For every algebraic variety A , dim A = dim C(A) .

It is known that the dimension of C(A) also equals the transcendence degree
(over K ) of its quotient field. Section XII.9 gives a third approach to dimension.

Proof. First, C(A) is Noetherian, by III.11.4. By 10.7, dim A is the length
of the longest strictly descending sequence P0 � P1 � · · · � Pm = I(A) of
prime ideals of K [X1, ..., Xn] . As in the proof of 11.2, these correspond to strictly
descending sequences of prime ideals of C(A) . �

Propositions 11.2 and 11.3 describe the points and dimension of A in a way
that depends only on the ring C(A) and not on the embedding of A in K n.

Regular mappings. By 11.2, isomorphisms C(A) ∼= C(B) induce bijections
A −→ B . We investigate these bijections.

Definition. Let K be a field and let A ⊆ K m , B ⊆ K n be algebraic varieties.
A mapping F = ( f1, . . ., fn): A −→ B ⊆ K n is regular when its components
f1, . . ., fn : A −→ K are polynomial functions.

Regular mappings are also called polynomial mappings, morphisms of algebraic
varieties, and, in older texts, rational transformations. For example, let A ⊆ C

2

be the parabola y = x2 and let B ⊆ C
2 be the x-axis; the usual projection

A −→ B is a regular mapping, since it may be described by polynomials as
(x, y) �−→ (x, y − x2) . Regular mappings into K are the same as polynomial
functions.

Readers will verify that regular mappings compose: if F : A −→ B and
G : B −→ C are regular, then G ◦ F : A −→ C is regular. In particular,
when F : A −→ B is regular and g : B −→ K is a polynomial mapping
of B , then g ◦ F : A −→ K is a polynomial mapping of A . This defines a
mapping C(F): C(B) −→ C(A) , which preserves pointwise addition, pointwise
multiplication, and constants. Thus C(F) is a homomorphism of K-algebras (in
this case, a homomorphism of rings that is the identity on K ).

Proposition 11.4. Let K be a field and let A ⊆ K m , B ⊆ K n be algebraic
varieties. Every regular mapping F of A into B induces a homomorphism C(F)
of C(B) into C(A) . Conversely, every homomorphism of C(B) into C(A) is
induced by a unique regular mapping of A into B .

Proof. Let ϕ : C(B) −→ C(A) be a homomorphism of K-algebras. Let qj :
B −→ K , (y1, . . ., yn) �−→ yj be the jth coordinate function of B . The poly-

nomial function B −→ K induced by g =
∑

k ckY k1
1 · · · Y kn

n ∈ K [Y1, . . ., Yn]
sends y = (y1, . . ., yn) ∈ B to

g(y1, . . ., yn) = g
(

q1(y), . . . , qn(y)
)

=
∑

k ck q1(y)k1 · · · qn(y)kn =
(∑

k ck qk1
1 · · · qkn

n
)

(y)



11. Regular Mappings 313

and coincides with g(q1, . . ., qn) as calculated in C(B) .

Now, ϕ =
(

ϕ(q1), . . ., ϕ(qn)
)

is a regular mapping of A into K n, since

ϕ(qj ) ∈ C(A) for all j . If x ∈ A and g =
∑

k ckY k1
1 · · · Y kn

n ∈ I(B) , then

g(y) = 0 for all y ∈ B ,
∑

k ck qk1
1 · · · qkn

n = 0 in C(B) by the above, and

g
(

ϕ(x)
)

= g
(

ϕ(q1)(x), . . ., ϕ(qn)(x)
)

=
∑

k ck ϕ(q1)(x)k1 · · · ϕ(qn)(x)kn

=
(∑

k ck ϕ(q1)
k1 · · · ϕ(qn)kn

)

(x)

= ϕ
(∑

k ck qk1
1 · · · qkn

n
)

(x) = 0,

since ϕ is a homomorphism. Hence ϕ(x) ∈ Z(I(B)) = B . Thus ϕ is a regular
mapping of A into B . Similarly, g

(

ϕ(x)
)

= ϕ
(

g(q1, . . ., qn)
)

(x) for every
g ∈ K [Y1, . . .Yn] and x ∈ A ; thus ϕ is the homomorphism induced by ϕ .

Finally, let F : A −→ B be a regular mapping. If F induces ϕ , then
qj ◦ F = ϕ(qj ) = qj ◦ ϕ for all j , and F = ϕ , since F(x) and ϕ(x) have the
same coordinates for every x ∈ A . �

Definition. Two algebraic varieties A and B are isomorphic when there exist
mutually inverse regular bijections A −→ B and B −→ A.

For example, in C
2 , the parabola A : y = x2 and x-axis B : y = 0 are

isomorphic, since the regular mappings (x, y) �−→ (x, y − x2) of A onto B and
(x, y) �−→ (x, x2) of B onto A are mutually inverse bijections. Similarly, A and
C are isomorphic. In general, Proposition 11.4 yields the following result:

Proposition 11.5. Over a given algebraically closed field, two algebraic varie-
ties are isomorphic if and only if their coordinate rings are isomorphic.

Isomorphisms of algebraic varieties preserve their structure as algebraic sets:
for instance, isomorphic varieties are homeomorphic (with their Zariski topologies)
and their algebraic subsets are organized in the same fashion (see the exercises).
Much as abstract algebra studies groups and rings only up to isomorphism, disre-
garding the nature of their elements, so does algebraic geometry study algebraic
varieties only up to isomorphism, without much regard for their embeddings into
affine spaces. This redefines algebraic geometry as the study of affine rings and
domains.

Exercises
1. Let F : A −→ B and G : B −→ C be regular mappings. Verify that G ◦ F : A −→ C

is a regular mapping.

2. Show that every regular mapping A −→ B is continuous (in the Zariski topologies).

3. Let A be an algebraic set over an algebraically closed field K . The Zariski topology
on the spectrum of C(A) induces a topology on the set M of all maximal ideals of C(A) .
Show that A and M are homeomorphic.
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4. The algebraic subsets of an algebraic variety A constitute a partially ordered set when
ordered by inclusion. Show that isomorphic algebraic varieties have isomorphic partially
ordered sets of algebraic subsets.

5. Show that every straight line in K
2

is isomorphic to K .

6. Let A be an algebraic curve through the origin, with equation F(x, y) = 0, where
F ∈ C[X, Y ] is irreducible and F(0, 0) = 0. Let y = s(x) be a power series solution of
F(x, y) = 0 as in Section VI.9, where s ∈ C[[X ]] and s(0) = 0. Let f, g ∈ C[X, Y ] induce
the same polynomial function on A . Show that the series f (x, s(x)) and g(x, s(x)) have
the same order; hence there is a discrete valuation v on the quotient field of C(A) such that
v( f/g) = 2ord g−ord f when f, g =/ 0 in C(A) .

7. Let R be a domain with quotient field Q . Prove the following: if x ∈ Q belongs to
Rm ⊆ Q for every maximal ideal m of R , then x ∈ R .

8. Let A ⊆ K n be an algebraic variety, where K is algebraically closed. Call a function
f : A −→ K rational when every x ∈ A has an open neighborhood V ⊆ A on which
f is induced by a rational fraction g/h ∈ K (X) (for all y ∈ V, h(y) =/ 0 and f (y) =
g(y)/h(y) ). Show that the rational functions of A constitute a domain R . Then show that
R = C(A) . (You may want to show that R ⊆ C(A)mx for every x ∈ A , then use the
previous exercise.)



VIII
Modules

“Module” is a nineteenth century name for abelian groups; an abelian group on
which a ring R acts thus became an R-module. The usefulness of this concept
was quickly appreciated; the major results of this chapter already appear in van
der Waerden’s Moderne Algebra [1930]. Modules have gained further importance
with the development of homological algebra.

This chapter contains basic properties of modules, submodules, homomor-
phisms, direct products and sums, and free modules; the structure theorem for
finitely generated modules over PIDs; and its applications to abelian groups and
linear algebra. The last section may be skipped. Mild emphasis on free modules
and bases should help readers compare modules to vector spaces.

1. Definition

We saw that groups act on sets. Rings, not inclined to be left behind, act on abelian
groups; the resulting structures are modules.

Definitions. Let R be a ring (not necessarily with an identity element). A left
R-module is an abelian group M together with a left action (r, x) �−→ r x of R
on M , the left R-module structure on M , such that

(1) r(sx) = (rs)x , and

(2) (r + s)x = r x + sx , r(x + y) = r x + r y
for all r ∈ R and x, y ∈ M . If R has an identity element, then a left R-module
M is unital when

(3) 1x = x for all x ∈ M .

The notation R M generally indicates that M is a left R-module.

Readers who encounter modules for the first time should keep in mind the
following three basic examples.

A vector space over a field K is (exactly) a unital left K-module.

Every abelian group A is a unital Z-module, in which nx is the usual integer
multiple, nx = x + x + · · · + x when n > 0.
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Every ring R acts on itself by left multiplication. This makes R a left R-mod-
ule, denoted by RR to distinguish it from the ring R . If R has an identity element,
then RR is unital.

The last two examples show that modules are more general and complex than
vector spaces, even though their definitions are similar.

Some elementary properties of vector spaces hold in every left R-module M :
r0 = 0, 0x = 0, (r − s)x = r x − sx , and r(x − y) = r x − r y , for all
r ∈ R and x, y ∈ M . Left R-modules are also tailored for the formation of
linear combinations r1 x1 + · · · + rn xn with coefficients in R . But, in a module,
r1 x1 + · · · + rn xn = 0 does not make x1 a linear combination of x2, . . ., xn when
r1 =/ 0 (see the exercises).

More generally, (apparently) infinite sums are defined in any left R-module M ,
as in any abelian group:

∑

i∈I xi is defined in M when xi = 0 for almost all
i ∈ I (when { i ∈ I

∣
∣ xi =/ 0 } is finite), and then

∑

i∈I xi =
∑

i∈I, xi =/ 0 xi (as
in Section III.1). Infinite linear combinations are defined similarly:

∑

i∈I ri xi
is defined in a left R-module M when ri xi = 0 for almost all i ∈ I (for
instance, when ri = 0 for almost all i , or when xi = 0 for almost all i ) and then
∑

i∈I ri xi =
∑

i∈I, ri xi =/ 0 ri xi .

Equivalent definition. Module structures on an abelian group A can also be
defined as ring homomorphisms. Recall (Proposition III.1.1) that, when A is an
abelian group, the endomorphisms of A (written on the left) constitute a ring
End

Z
(A) with an identity element, under pointwise addition and composition.

The notation End
Z
(A) specifies that we regard A as a mere abelian group (a

Z-module), not as a module over some other ring.

Proposition 1.1. Let A be an abelian group and let R be a ring. There is a
one-to-one correspondence between left R-module structures R × A −→ A on A
and ring homomorphisms R −→ End

Z
(A) ; and unital left R-module structures

correspond to homomorphisms of rings with identity.

Proof. Let A is an R-module. The action αr of r ∈ R on A , αr (x) = r x ,
is an endomorphism of A , since r(x + y) = r x + r y for all x, y ∈ A . Then
r �−→ αr is a ring homomorphism of R into End

Z
(A) , since r(sx) = (rs)x and

(r + s)x = r x + sx (αr ◦ αs = αrs and αr + αs = αr+s ) for all r, s ∈ R and
x ∈ A .

Conversely, if α : R −→ End
Z
(A) is a ring homomorphism, then the action

r x =
(

α(r)
)

(x) of R on A is an R-module structure on A : for all r, s ∈ R
and x, y ∈ A , r(x + y) = r x + r y holds since α(r) is an endomorphism,
and r(sx) = (rs)x , (r + s)x = r x + sx hold since α(rs) = α(r) ◦ α(s) and
α(r + s) = α(r) + α(s) ; and then αr = α(r) for all r ∈ R . Then A is a unital
R-module if and only if 1x = x for all x ∈ A , if and only if α(1) is the identity
on A , which is the identity element of End

Z
(A) . �

We note two consequences of Proposition 1.1; the exercises give others. For
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every R-module M , the kernel of R −→ End
Z
(M) is an ideal of R :

Definitions. The annihilator of a left R-module M is the ideal Ann (M) = { r ∈
R
∣
∣ r x = 0 for all x ∈ M } of R . A left R-module is faithful when its annihilator

is 0 .

By Propositions III.1.7, III.1.8, every ring R can be embedded into a ring with
identity R1 such that every ring homomorphism of R into a ring S with identity
extends uniquely to a homomorphism of rings with identity of R1 into S (that
sends the identity element of R1 to the identity element of S ). By 1.1:

Corollary 1.2. Let A be an abelian group and let R be a ring. There is a
one-to-one correspondence between left R-module structures on A and unital left
R1-module structures on A . �

Thus every left R-module can be made uniquely into a unital left R1-module.
Consequently, the general study of modules can be limited to unital modules (over
rings with identity). We do so in later sections.

Right modules. Conservative minded rings prefer to act on the right:

Definitions. Let R be a ring. A right R-module is an abelian group M together
with a right action (r, x) �−→ r x of R on M such that

(1*) (xr)s = x(rs) , and

(2*) x(r + s) = xr + xs , (x + y)r = xr + yr

for all r ∈ R and x, y ∈ M . If R has an identity element, a right R-module M
is unital when

(3*) x1 = x for all x ∈ M .

For example, every ring R acts on itself on the right by right multiplication;
this makes R a right R-module RR . The notation MR generally indicates that M
is a right R-module. The relationship between right module structures and ring
homomorphisms is explained in the exercises.

The following construction reduces right modules to left modules. The multi-
plication on a ring R has an opposite multiplication ∗ , r ∗ s = sr , that, together
with the addition on R , satisfies all ring axioms.

Definition. The opposite ring Rop of a ring R has the same underlying set and
addition as R , and the opposite multiplication.

Proposition 1.3. Every right R-module is a left Rop-module, and conversely.
Every unital right R-module is a unital left Rop-module, and conversely.

Proof. Let M be a right R-module. Define a left action of Rop on M by
r x = xr , for all r ∈ R and x ∈ M . Then r(sx) = (xs)r = x(sr) = (sr)x =
(r ∗ s) x , and (1) follows from (1*) (once the multiplication on R has been
reversed). Axioms (2) and, in the unital case, (3) follow from (2*) and (3*). Thus
M is a left Rop-module. The converse is similar. �
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If R is commutative, then Rop = R and 1.3 becomes 1.4 below; then we
usually refer to left or right R-modules as just R-modules.

Corollary 1.4. If R is commutative, then every left R-module is a right R-mod-
ule, and conversely.

Submodules are subsets that inherit a module structure.

Definition. A submodule of a left R-module M is an additive subgroup A of
M such that x ∈ A implies r x ∈ A for all r ∈ R .

A submodule of a right R-module M is an additive subgroup A of M such
that x ∈ A implies xr ∈ A for all r ∈ R . The relation “ A is a submodule of M ”
is often denoted by A � M . Then the addition and action of R on M induce an
addition and action of R on A , under which A is a (left or right) R-module; this
module is also called a submodule of M .

For example, 0 = {0} and M itself are submodules of M . The submodules of
a vector space are its subspaces. The submodules of an abelian group (Z-module)
are its subgroups (since they are closed under integer multiplication).

Definition. A left ideal of a ring R is a submodule of RR . A right ideal of a
ring R is a submodule of RR .

An ideal of R is a subset that is both a left ideal and a right ideal; hence the
ideals of R are often called two-sided ideals. If R is commutative, then ideals,
left ideals, and right ideals all coincide.

Submodules have a number of unsurprising properties, whose boring proofs we
happily dump on our readers.

Proposition 1.5. Let M be a module. Every intersection of submodules of M
is a submodule of M . The union of a nonempty directed family of submodules of
M is a submodule of M . �

By 1.5 there is for every subset S of a module M a smallest submodule of M
that contains S .

Definition. In a module M , the smallest submodule of M that contains a subset
S of M is the submodule of M generated by S . �

This submodule can be described as follows.

Proposition 1.6. Let M be a unital left R-module. The submodule of M
generated by a subset S of M is the set of all linear combinations of elements of
S with coefficients in R .

In particular, when M is a unital left R-module, the submodule of M generated
by a finite subset { a1, . . ., an } of elements of M is the set of all linear com-
binations r1 a1 + · · · + rn an with r1, . . ., rn ∈ R ; such a submodule is finitely
generated. The cyclic submodule of M generated by a single element x of M is
the set Rx = { r x

∣
∣ r ∈ R } . These descriptions become more complicated when

M is not unital (see the exercises).
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The sum of a family (Ai )i∈I of submodules is their sum as subgroups:
∑

i∈I Ai = {
∑

i∈I ai
∣
∣ ai ∈ Ai for all i , and ai = 0 for almost all i } ;

equivalently,
∑

i∈I Ai is the submodule generated by the union
⋃

i∈I Ai .

Proposition 1.7. A sum of submodules of a module M is a submodule of M .

The last operation on submodules is multiplication by left ideals.

Definition. Let A be a submodule of a left R-module M and let L be a left
ideal of R . The product L A is the set of all linear combinations of elements of A
with coefficients in L . �

The notation L A is traditional. Readers will remember that L A is not the set
product { �a

∣
∣ � ∈ L , a ∈ A } of L and A ; rather, it is the submodule generated

by the set product of L and A .

Proposition 1.8. Let M be a left R-module, let A , (Ai )i∈I be submodules of
M , and let L , L ′ , (Li )i∈I be left ideals of R . The product L A is a submodule
of M . Moreover:

(1) L A ⊆ A;

(2) L(L ′A) = (L L ′)A;

(3) L
(∑

i∈I Ai
)

=
∑

i∈I (L Ai ) and
(∑

i∈I Li
)

A =
∑

i∈I (Li A) .

In particular, the product of two left ideals of R is a left ideal of R .

Exercises
1. Verify that the equalities r0 = 0 and (r − s)x = r x − sx hold in every left R-module.

2. Show that r x = 0 may happen in a module even when r =/ 0 and x =/ 0 .

3. Show that the endomorphisms of an abelian group A constitute a ring with an identity
element, under pointwise addition and composition.

4. Show that every abelian group has a unique unital left Z-module structure.

5. Let n > 0 and let A be an abelian group. When does there exist a unital left Zn-module
structure on A ? and, if so, is it unique?

6. Let A be an abelian group. When does there exist a unital left Q -module structure on
A ? and, if so, is it unique?

7. Let ϕ : R −→ S be a homomorphism of rings with identity and let A be a unital left
S-module. Make A a unital left R-module.

8. Let M be a unital left R-module and let I be a two-sided ideal of R such that
I ⊆ Ann (M) . Make M a unital R/I-module. Formulate and prove a converse.

9. Let V be a vector space and let T : V −→ V be a linear transformation. Make V a
unital K [X ]-module in which Xv = T (v) for all v ∈ V . Formulate and prove a converse.

10. Fill in the details in the following. Let A be an abelian group. The ring of en-
domorphisms of A , written on the right, is the opposite ring EndZ(A)op of its ring of
endomorphisms EndZ(A) written on the left. Right R-module structures on an abelian
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group A correspond to ring homomorphisms of R into this ring EndZ(A)op . This provides
another proof of Proposition 1.3.

11. Let M be a left R-module. Show that M has the same submodules as an R-module
and as an R1-module.

12. Show that every intersection of submodules of a module M is a submodule of M .

13. Show that the union of a nonempty directed family of submodules of a module M is a
submodule of M .

14. Let S be a subset of a unital left R-module M . Show that the submodule of M
generated by S is the set of all linear combinations of elements of S with coefficients in R .

15. Let S be a subset of a not necessarily unital left R-module M . Describe the submodule
of M generated by S .

16. Show that every sum of submodules of a module M is a submodule of M .

17. Show that L(L ′A) = (L L ′)A , whenever A is a submodule of a left R-module M and
L , L ′ are left ideals of R .

18. Show that L
∑

i∈I Ai =
∑

i∈I (L Ai ) , whenever (Ai )i∈I are submodules of a left
R-module M and L is a left ideal of R .

19. Show that
(∑

i∈I Li
)

A =
∑

i∈I (Li A) , whenever A is a submodule of a left
R-module M and (Li )i∈I are left ideals of R .

20. Let A, B, C be submodules of some module. Prove the following: if A ⊆ C , then
(A + B) ∩ C = A + (B ∩ C) .

2. Homomorphisms

Module homomorphisms are homomorphisms of additive groups, that also pre-
serve the ring action.

Definition. Let A and B be left R-modules. A homomorphism ϕ : A −→ B
of left R-modules is a mapping ϕ : A −→ B such that ϕ(x + y) = ϕ(x) + ϕ(y)
and ϕ(r x) = r ϕ(x) , for all x, y ∈ A and r ∈ R .

A homomorphism of right R-modules is a mapping ϕ such that ϕ(x + y) =
ϕ(x) + ϕ(y) and ϕ(xr) = ϕ(x) r , for all x, y, r . Module homomorphisms pre-
serve all sums and linear combinations: ϕ

(∑

i ri xi
)

=
∑

i (ri ϕ(xi )) , whenever
ri xi = 0 for almost all i . Homomorphisms of vector spaces are also called linear
transformations.

An endomorphism of a module M is a module homomorphism of M into
M . Injective module homomorphisms are also called monomorphisms; surjective
module homomorphisms are also called epimorphisms. An isomorphism of mod-
ules is a homomorphism of modules that is bijective; then the inverse bijection is
also an isomorphism.

Properties. Homomorphisms of modules inherit all the felicitous properties
of homomorphisms of abelian groups. We show this for left R-modules; homo-
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morphisms of right R-modules have the same properties, since a homomorphism
of right R-modules is also a homomorphism of left Rop-modules.

The identity mapping 1M on any left R-module M is a module homomorphism.
Module homomorphisms compose: if ϕ : A −→ B and ψ : B −→ C are homo-
morphisms of left R-modules, then ψ ◦ ϕ : A −→ C is a homomorphism of left
R-modules.

Module homomorphisms can be added pointwise: when ϕ,ψ : A −→ B
are homomorphisms of left R-modules, then ϕ + ψ : A −→ B , defined by
(ϕ + ψ)(x) = ϕ(x) + ψ(x) for all x ∈ A , is a homomorphism of left R-modules.
This property is used extensively in Chapters XI and XII.

Module homomorphisms preserve submodules:

Proposition 2.1. Let ϕ : A −→ B be a module homomorphism. If C is a
submodule of A , then ϕ(C) = {ϕ(x)

∣
∣ x ∈ C } is a submodule of B . If D is a

submodule of B , then ϕ−1(D) = { x ∈ A
∣
∣ ϕ(x) ∈ D } is a submodule of A .

Here ϕ(C) is the direct image of C � A under ϕ , and ϕ−1(D) is the inverse
image or preimage of D under ϕ . The notation ϕ−1(D) does not imply that ϕ is
bijective, or that ϕ−1(D) is the direct image of D under a spurious map ϕ−1 .

Two submodules of interest arise from Proposition 2.1:

Definitions. Let ϕ : A −→ B be a module homomorphism. The image
or range of ϕ is Im ϕ = {ϕ(x)

∣
∣ x ∈ A } = ϕ(A) . The kernel of ϕ is

Ker ϕ = { x ∈ A
∣
∣ ϕ(x) = 0 } = ϕ−1(0) .

Quotient modules. Conversely, submodules give rise to homomorphisms. If
A is a submodule of M , then the inclusion mapping A −→ M is a module
homomorphism. Moreover, there is a quotient module M/A , that comes with a
projection M −→ M/A .

Proposition 2.2. Let M be a left R-module and let A be a submodule of M .
The quotient group M/A is a left R-module, in which r (x + A) = r x + A for
all r ∈ R and x ∈ M . If M is unital, then M/A is unital. The projection
x �−→ x + A is a homomorphism of left R-modules, whose kernel is A .

Proof. Since every subgroup of the abelian group M is normal, there is a
quotient group M/A , in which cosets of A are added as subsets, in particular
(x + A) + (y + A) = (x + y) + A for all x, y ∈ M . Since A is a submodule, the
action of r ∈ R sends a coset x + A = { x + a

∣
∣ a ∈ A } into a single coset,

namely the coset of r x : if y ∈ x + A , then y = x + a for some a ∈ A and
r y = r x + ra ∈ r x + A . Hence an action of R on M/A is well defined by
r (x + A) = r x + A , the coset that contains all r y with y ∈ x + A . The projection
M −→ M/A preserves this action of R ; hence the module axioms, (1), (2), and,
in the unital case, (3), hold in M/A , since they hold in M . We see that the
projection M −→ M/A is a module homomorphism. �
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Definition. Let A be a submodule of a module M . The module of all cosets of
A is the quotient module M/A of M by A.

Submodules of a quotient module M/A are quotients of submodules of M :

Proposition 2.3. If A is a submodule of a module M , then C �−→ C/A is an
inclusion preserving, one-to-one correspondence between submodules of M that
contain A and submodules of M/A.

Proof. We saw (Proposition I.4.10) that direct and inverse image under the pro-
jection induce a one-to-one correspondence, which preserves inclusion, between
subgroups of M that contain A , and subgroups of M/A . Direct and inverse image
preserve submodules, by 2.1. �

Like quotient groups, quotient modules have a most useful universal property.

Theorem 2.4 (Factorization Theorem). Let A be a left R-module and let B be
a submodule of A . Every homomorphism of left R-modules ϕ : A −→ C whose
kernel contains B factors uniquely through the canonical projection π : A −→
A/B (ϕ = ψ ◦ π for some unique module homomorphism ψ : A/B −→ C ):

Proof. By the corresponding property of abelian groups (Theorem I.5.1),
ϕ = ψ ◦ π for some unique homomorphism ψ : A/B −→ C of abelian groups.
Then ψ(x + B) = ϕ(x) for all x ∈ A . Hence ψ is a module homomorphism. �

Readers will prove a useful stronger version of Theorem 2.4:

Theorem 2.5 (Factorization Theorem). If ϕ : A −→ B and ρ : A −→ C are
module homomorphisms, ρ is surjective, and Ker ρ ⊆ Ker ϕ , then ϕ factors
uniquely through ρ .

The homomorphism and isomorphism theorems now hold for modules.

Theorem 2.6 (Homomorphism Theorem). If ϕ : A −→ B is a homomorphism
of left R-modules, then

A/Ker ϕ ∼= Im ϕ;

in fact, there is an isomorphism θ : A/Ker f −→ Im f unique such that
ϕ = ι ◦ θ ◦ π , where ι : Im f −→ B is the inclusion homomorphism and
π : A −→ A/Ker f is the canonical projection.

Thus every module homomorphism is the composition of an inclusion homo-
morphism, an isomorphism, and a canonical projection to a quotient module:
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Theorem 2.7 (First Isomorphism Theorem). If A is a left R-module and B ⊇ C
are submodules of A , then

A/B ∼= (A/C)/(B/C);

in fact, there is a unique isomorphism θ : A/B −→ (A/C)/(B/C) such that
θ ◦ ρ = τ ◦ π , where π : A −→ A/C , ρ : A −→ A/B , and τ : A/C −→
(A/C)/(B/C) are the canonical projections:

Theorem 2.8 (Second Isomorphism Theorem). If A and B are submodules of
a left R-module, then

(A + B)/B ∼= A/(A ∩ B);

in fact, there is an isomorphism θ : A/(A ∩ B) −→ (A + B)/B unique such that
θ ◦ ρ = π ◦ ι , where π : A + B −→ (A + B)/B and ρ : A −→ A/(A ∩ B) are
the canonical projections and ι : A −→ A + B is the inclusion homomorphism:

Proofs. In Theorem 2.6, there is by Theorem I.5.2 a unique isomorphism θ

of abelian groups such that ϕ = ι ◦ θ ◦ π . Then θ(a + Ker ϕ) = ϕ(a) for all
a ∈ A . Therefore θ is a module homomorphism. Theorems 2.7 and 2.8 are
proved similarly. �

As in Section I.5, the isomorphisms theorems are often numbered so that 2.6 is
the first isomorphism theorem. Then our first and second isomorphism theorems,
2.7 and 2.8, are the second and third isomorphism theorems.

As another application of Theorem 2.6 we construct all cyclic modules.

Proposition 2.9. A unital left R-module is cyclic if and only if it is isomorphic
to R/L (= RR/L ) for some left ideal L of R . If M = Rm is cyclic, then
M ∼= R/Ann (m) , where

Ann (m) = { r ∈ R
∣
∣ rm = 0 }

is a left ideal of R . If R is commutative, then Ann (Rm) = Ann (m) .
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Proof. Let M = Rm be cyclic. Then ϕ : r �−→ rm is a module homomorphism
of RR onto M . By 2.6, M ∼= R/Ker ϕ , and we see that Ker ϕ = Ann (m) . In
particular, Ann (m) is a left ideal of R . Moreover, Ann (M) ⊆ Ann (m) ; if R
is commutative, then, conversely, sm = 0 implies s(rm) = 0 for all r ∈ R , and
Ann (m) = Ann (M) .

Conversely, if L is a left ideal of R , then R/L is cyclic, generated by 1 + L ,
since r + L = r (1 + L) for every r ∈ R . Hence any M ∼= R/L is cyclic. �

The left ideal Ann (m) is the annihilator of m . In any left R-module M ,
Ann (m) is a left ideal of R ; moreover, Ann (M) =

⋂

m∈M Ann (m) .

Exercises
1. Let ϕ : A −→ B be a homomorphism of left R-modules. Show that ϕ

(
ϕ−1(C)

)
=

C ∩ Im ϕ , for every submodule C of B .

2. Let ϕ : A −→ B be a homomorphism of left R-modules. Show that ϕ−1
(
ϕ(C)

)
=

C + Ker ϕ , for every submodule C of A .

3. Let ϕ : A −→ B be a homomorphism of left R-modules. Show that direct and inverse
image under ϕ induce a one-to-one correspondence, which preserves inclusion, between
submodules of A that contain Ker ϕ , and submodules of Im ϕ .

4. Let M be a [unital] left R-module and let I be a two-sided ideal of R . Make M/I M
an R/I-module.

5. Let R be a (commutative) domain. Show that all nonzero principal ideals of R are
isomorphic (as R-modules).

6. Let A and B be submodules of M . Show by an example that A ∼= B does not imply
M/A ∼= M/B .

7. Let R be a ring with an identity element. If x, y ∈ R and x R = y R , then show that
Rx ∼= Ry (as left R-modules); in fact, there is an isomorphism Rx −→ Ry that sends x
to y .

8. Let ϕ : A −→ B and ψ : B −→ C be module homomorphisms. Show that ψ ◦ ϕ = 0
if and only if ϕ factors through the inclusion homomorphism Ker ψ −→ B .

9. Let ϕ : A −→ B and ψ : B −→ C be module homomorphisms. Show that ψ ◦ ϕ = 0
if and only if ψ factors through the projection B −→ B/Im ϕ .

10. If ϕ : A −→ B and ρ : A −→ C are module homomorphisms, ρ is surjective, and
Ker ρ ⊆ Ker ϕ , then show that ϕ factors uniquely through ρ .

3. Direct Sums and Products

Direct sums and products construct modules from simpler modules, and their
universal properties help build diagrams. The definitions and basic properties in
this section are stated for left modules but apply to right modules as well.

Direct products. The direct product of a family of modules is their Cartesian
product, with componentwise operations:



3. Direct Sums and Products 325

Definition. The direct product of a family (Ai )i∈I of left R-modules is their
Cartesian product

∏

i∈I Ai (the set of all families (xi )i∈I such that xi ∈ Ai for
all i ) with componentwise addition and action of R :

(xi )i∈I + (yi )i∈I = (xi + yi )i∈I , r (xi )i∈I = (r xi )i∈I .

It is immediate that these operations make
∏

i∈I Ai a left R-module. If I = Ø,
then

∏

i∈I Ai = {0} . If I = {1} , then
∏

i∈I Ai
∼= A1 . If I = { 1, 2, . . ., n } ,

then
∏

i∈I Ai is also denoted by A1 × A2 × · · · × An .

The direct product
∏

i∈I Ai comes with a projection πj :
∏

i∈I Ai −→ Aj for
every j ∈ I , which sends (xi )i∈I to its j component xj , and is a homomorphism;
in fact, the left R-module structure on

∏

i∈I Ai is the only module structure such
that every projection is a module homomorphism.

The direct product and its projections have a universal property:

Proposition 3.1. Let M and (Ai )i∈I be left R-modules. For every family
(ϕi )i∈I of module homomorphisms ϕi : M −→ Ai there exists a unique module
homomorphism ϕ : M −→

∏

i∈I Ai such that πi ◦ ϕ = ϕi for all i ∈ I :

The proof is an exercise. By 3.1, every family of homomorphisms ϕi :
Ai −→ Bi induces a homomorphism ϕ =

∏

i∈I ϕi unique such that every square

commutes (ρi ◦ ϕ = ϕi ◦ πi for all i ), where πi and ρi are the projections;
namely, ϕ

(

(xi )i∈I
)

=
(

ϕi (xi )
)

i∈I . This can also be shown directly. If I =
{ 1, 2, . . . , n } , then

∏

i∈I ϕi is also denoted by ϕ1 × ϕ2 × · · · × ϕn .

External direct sums.

Definition. The direct sum, or external direct sum, of a family (Ai )i∈I of left
R-modules is the following submodule of

∏

i∈I Ai :
⊕

i∈I Ai = { (xi )i∈I∈
∏

i∈I Ai
∣
∣ xi = 0 for almost all i ∈ I }.

It is immediate that this defines a submodule. If I = Ø, then
⊕

i∈I Ai = 0.
If I = {1} , then

⊕

i∈I Ai
∼= A1 . If I = { 1, 2, . . ., n } , then

⊕

i∈I Ai is also
denoted by A1 ⊕ A2 ⊕ · · · ⊕ An , and coincides with A1 × A2 × · · · × An .

The direct sum
⊕

i∈I Ai comes with an injection ιj : Aj −→
⊕

i∈I Ai for
every j ∈ I , defined by its components: for all x ∈ Aj ,

ιj (x)j = x ∈ Aj , ιj (x)i = 0 ∈ Ai for all i =/ j .
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Happily, every ιj is an injective homomorphism.

The direct sum and its injections have a universal property:

Proposition 3.2. Let M and (Ai )i∈I be left R-modules. For every family
(ϕi )i∈I of module homomorphisms ϕi : Ai −→ M there exists a unique module
homomorphism ϕ :

⊕

i∈I Ai −→ M such that ϕ ◦ ιi = ϕi for all i ∈ I , namely
ϕ
(

(xi )i∈I
)

=
∑

i∈I ϕi (xi ) :

Proof. First we prove a quick lemma.

Lemma 3.3. If x = (xi )i∈I ∈
⊕

i∈I Ai , then x =
∑

i∈I ιi (xi ) ; moreover, x
can be written uniquely in the form x =

∑

i∈I ιi (yi ) , where yi ∈ Ai for all i and
yi = 0 for almost all i .

Proof. Let x = (xi )i∈I ∈
⊕

i∈I Ai , so that xi ∈ Ai for all i ∈ I and J = { i ∈
I
∣
∣ xi =/ 0 } is finite. Then y =

∑

i∈I ιi (xi ) is defined and y =
∑

i∈J ιi (xi ) ;
hence yj =

∑

i∈J ιi (xi )j = xj if j ∈ J , yj =
∑

i∈J ιi (xi )j = 0 otherwise. Thus
y = x , and x =

∑

i∈I ιi (xi ) . If x =
∑

i∈I ιi (yi ) , with yi ∈ Ai for all i and
yi = 0 for almost all i , then y = (yi )i∈I ∈

⊕

i∈I Ai , y =
∑

i∈I ιi (yi ) by the
above, y = x , and yi = xi for all i . �

Now, the homomorphism ϕ in Proposition 3.2 must satisfy

ϕ
(

(xi )i∈I
)

= ϕ
(∑

i∈I ιi (xi )
)

=
∑

i∈I ϕ(ιi (xi )) =
∑

i∈I ϕi (xi )

for all x = (xi )i∈I ∈
⊕

i∈I Ai , by 3.3; therefore ϕ is unique. On the other hand,
∑

i∈I ϕi (xi ) is defined for every x = (xi )i∈I∈
⊕

i∈I Ai ; hence the equality
ϕ
(

(xi )i∈I
)

=
∑

i∈I ϕi (xi ) defines a mapping ϕ :
⊕

i∈I Ai −→ M . Then ϕ is a
module homomorphism and ϕ ◦ ιj = ϕj for every j ∈ I . �

If I = { 1, 2, . . ., n } is finite, then A1 ⊕ A2 ⊕ · · · ⊕ An = A1 × A2 × · · · ×
An is blessed with two universal properties.

In general, Proposition 3.2 implies that every family of homomorphisms ϕi :
Ai −→ Bi induces a homomorphism ϕ =

⊕

i∈I ϕi unique such that every square

commutes (ϕ ◦ ιi = κi ◦ ϕi for all i ), where ιi and κi are the injections; namely,
ϕ
(

(xi )i∈I
)

=
(

ϕi (xi )
)

i∈I . If I = { 1, 2, . . ., n } , then
⊕

i∈I ϕi is also denoted
by ϕ1 ⊕ ϕ2 ⊕ · · · ⊕ ϕn , and coincides with ϕ1 × ϕ2 × · · · × ϕn .
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Direct sums have another characterization in terms of homomorphisms:

Proposition 3.4. Let (Mi )i∈I be left R-modules. A left R-module M is
isomorphic to

⊕

i∈I Mi if and only if there exist module homomorphisms µi :
Mi −→ M and ρi : M −→ Mi for every i ∈ I such that (1) ρi ◦ µi = 1Mi

for
all i ; (2) ρi ◦ µj = 0 whenever i =/ j ; (3) for every x ∈ M , ρi (x) = 0 for almost
all i ; and (4)

∑

i∈I µi ◦ ρi = 1M .

The sum in part (4) is a pointwise sum; we leave the details to our readers.

Internal direct sums. Direct sums of modules can also be characterized in
terms of submodules rather than homomorphisms.

Proposition 3.5. Let (Mi )i∈I be left R-modules. For a left R-module M the
following conditions are equivalent:

(1) M ∼=
⊕

i∈I Mi ;

(2) M contains submodules (Ai )i∈I such that Ai
∼= Mi for all i and every

element of M can be written uniquely as a sum
∑

i∈I ai , where ai ∈ Ai for all
i and ai = 0 for almost all i ;

(3) M contains submodules (Ai )i∈I such that Ai
∼= Mi for all i , M =

∑

i∈I Ai , and Aj ∩
(∑

i=/ j Ai
)

= 0 for all j .

Proof. (1) implies (2). By 3.3,
⊕

i∈I Mi contains submodules M ′
i =

ιi (Mi ) ∼= Mi such that every element of
⊕

i∈I Mi can be written uniquely
as a sum

∑

i∈I ai , where ai ∈ M ′
i for all i and ai = 0 for almost all i . If

θ :
⊕

i∈I Mi −→ M is an isomorphism, then the submodules Ai = θ(M ′
i ) of M

have similar properties.

(2) implies (3). By (2), M =
∑

i∈I Ai ; moreover, if x ∈ Aj ∩
(∑

i=/ j Ai
)

,
then x is a sum x =

∑

i∈I a′i in which a′j = x , a′i = 0 for all i =/ j , and a sum
x =

∑

i∈I a′′i in which a′′j = 0 ∈ Aj , a′′i ∈ Ai for all i , a′′i = 0 for almost all i ;
by (2), x = a′j = a′′j = 0.

(3) implies (2). By (3), M =
∑

i∈I Ai , so that every element of M is
a sum

∑

i∈I ai , where ai ∈ Ai for all i and ai = 0 for almost all i . If
∑

i∈I a′i =
∑

i∈I a′′i (where a′i , a′′i ∈ Ai , etc.), then, for every j ∈ I , a′′j − a′j =
∑

i=/ j (a′i − a′′i ) ∈ Aj ∩
(∑

i=/ j Ai
)

and a′′j = a′j by (3).

(2) implies (1). By 3.2, the inclusion homomorphisms Ai −→ M induce a
module homomorphism θ :

⊕

i∈I Ai −→ M , namely θ
(

(ai )i∈I
)

=
∑

i∈I ai .
Then θ is bijective, by (2). The isomorphisms Mi

∼= Ai then induce an isomor-
phism

⊕

i∈I Mi
∼=
⊕

i∈I Ai
∼= M . �

Definition. A left R-module M is the internal direct sum M =
⊕

i∈I Ai of
submodules (Ai )i∈I when every element of M can be written uniquely as a sum
∑

i∈I ai , where ai ∈ Ai for all i and ai = 0 for almost all i .
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Equivalently, M =
⊕

i∈I Ai when M =
∑

i∈I Ai and Aj ∩
(∑

i=/ j Ai
)

= 0
for all j . One also says that the sum

∑

i∈I Ai is direct.

By Proposition 3.5, internal and external direct sums differ only by isomor-
phisms: if M is an external direct sum of modules (Mi )i∈I , then M is an internal
direct sum of submodules Ai

∼= Mi ; if M is an internal direct sum of submodules
(Ai )i∈I , then M is isomorphic to the external direct sum

⊕

i∈I Ai . The same
notation is used for both; it should be clear from context which kind is meant.

If I is a totally ordered set, then the condition Aj ∩
(∑

i=/ j Ai
)

= 0 for
all j in Proposition 3.5 can be replaced by the apparently weaker condition
Aj ∩

(∑

i< j Ai
)

= 0 for all j , as readers will easily show. We state two
particular cases of interest:

Corollary 3.6. An R-module M is a direct sum M = A1 ⊕ · · · ⊕ An if and
only if M = A1 + · · · + An and Aj ∩ (A1 + · · · + A j−1) = 0 for all 1 < j � n .

Corollary 3.7. An R-module M is a direct sum M = A ⊕ B if and only if
A + B = M and A ∩ B = 0 ; and then M/A ∼= B , M/B ∼= A.

The exercises also give some associativity properties of internal direct sums.

Definition. A direct summand of a module M is a submodule A of M such
that A ⊕ B = M for some submodule B of M .

Corollary 3.7 characterizes direct summands. Readers may prove another
characterization:

Proposition 3.8. A submodule is a direct summand of a module M if and only
if there exists an endomorphism η of M such that η ◦ η = η and Im η = A.

Exercises
1. Show that the direct product of a family of modules, and its projections, are characterized

up to isomorphism by their universal property.

2. Prove the following: if Ai is a submodule of Mi for every i ∈ I , then
∏

i∈I Ai is a

submodule of
∏

i∈I Mi , and
(∏

i∈I Mi
)
/
(∏

i∈I Ai
)
∼=
∏

i∈I (Mi/Ai ) .

3. Prove the following associativity property of direct products: if I =
⋃

j∈J Ij is

a partition of I , then
∏

i∈I Ai ∼=
∏

j∈J

(∏

i∈Ij
Ai
)

, for every family (Ai )i∈I of left

R-modules.

4. Show that the direct sum of a family of modules, and its injections, are characterized up
to isomorphism by their universal property.

5. Prove the following: if Ai is a submodule of Mi for every i ∈ I , then
⊕

i∈I Ai is a

submodule of
⊕

i∈I Mi , and
(⊕

i∈I Mi
)
/
(⊕

i∈I Ai
)
∼=
⊕

i∈I (Mi/Ai ) .

6. Prove the following: if Ai ∼= Bi for all i , then
⊕

i∈I Ai ∼=
⊕

i∈I Bi .

7. Show by an example that A ⊕ B ∼= A′ ⊕ B′ does not imply B ∼= B′ even when
A ∼= A′ .
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8. Prove the following associativity property of direct sums: if I =
⋃

j∈J Ij is a partition

of I , then
⊕

i∈I Ai ∼=
⊕

j∈J

(⊕

i∈Ij
Ai
)

, for every family (Ai )i∈I of left R-modules.

9. Show that a family (ϕi )i∈I of module homomorphisms ϕi : A −→ B can be added
pointwise if, for every a ∈ A , ϕi (a) = 0 for almost all i , and then the pointwise sum is a
module homomorphism ϕ =

∑

i∈I ϕi : A −→ B .

10. Let M and (Mi )i∈I be left R-modules. Show that M ∼=
⊕

i∈I Mi if and only if
there exist module homomorphisms µi : Mi −→ M and ρi : M −→ Mi for every i ∈ I ,
such that (1) ρi ◦ µi = 1Mi for all i ; (2) ρi ◦ µj = 0 whenever i =/ j ; (3) for every x ∈ M ,
ρi (x) = 0 for almost all i ; and (4)

∑

i∈I µi ◦ ρi = 1M (pointwise, as in the previous
exercise).

11. Let µ : A −→ B and σ : B −→ A be module homomorphisms such that σ ◦µ = 1A .
Show that B = Im µ ⊕ Ker σ .

12. Let I be totally ordered. Show that a module M is the internal direct sum of sub-
modules (Ai )i∈I if and only if M =

∑

i∈I Ai and Aj ∩
(∑

i< j Ai
)

= 0 for all j ∈ I .

13. Show that a sum
∑

i∈I Ai of submodules is direct if and only if every finite subsum
∑

i∈J Ai is direct.

14. Let A, B, C be submodules of some module. Prove the following: if A ⊆ C and
A ∩ B = 0, then (A ⊕ B) ∩ C = A ⊕ (B ∩ C) .

15. Let A, B, C be submodules of some module. Prove the following: if A ∩ B = 0
and (A + B) ∩ C = 0, then B ∩ C = 0 and A ∩ (B + C) = 0 (in other words, if the sum
(A + B) + C is direct, then so is the sum A + (B + C) ).

16. Prove the following associativity property of internal direct sums: if (Ai )i∈I are
submodules of some module and I =

⋃

j∈J Ij is a partition of I , then
∑

i∈I Ai is direct if

and only if
∑

i∈Ij
Ai is direct for every j ∈ J and

∑

j∈J

(∑

i∈Ij
Ai
)

is direct.

17. Give an example of a submodule that is not a direct summand.

18. Prove that a submodule A of a module M is a direct summand of M if and only if
there exists an endomorphism η of M such that η ◦ η = η and Im η = A .

4. Free Modules

A module is free when it has a basis. Free modules share a number of properties
with vector spaces.

Definition. In what follows, all rings have an identity element, and all modules
are unital. Most definitions and results are stated for left modules but apply equally
to right modules.

Bases of modules are defined like bases of vector spaces. They can be regarded
as subsets or as families. Indeed, every set S can be written as a family (xi )i∈I
in which xi =/ xj when i =/ j ; for instance, let I = S and xs = s for all s ∈
S . Conversely, every family (xi )i∈I gives rise to a set { xi

∣
∣ i ∈ I } , and
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the mapping i �−→ xi is bijective if xi =/ xj whenever i =/ j ; the bases and linearly
independent families defined below have this property.

Definitions. Let M be a left R-module. A subset S of M is linearly independent
(over R ) when

∑

s∈S rs s = 0 , with rs ∈ R for all s and rs = 0 for almost all s ,
implies rs = 0 for all s . A family (ei )i∈I of elements of M is linearly independent
(over R ) when

∑

i∈I ri ei = 0 , with ri ∈ R for all i and ri = 0 for almost all i ,
implies ri = 0 for all i .

Definitions. A basis of a left R-module M is a linearly independent subset or
family of M that generates (spans) M . A module is free when it has a basis, and
is then free on that basis.

Readers will verify that a basis of a module M is, in particular, a maximal lin-
early independent subset of M , and a minimal generating subset of M ; moreover,
Zorn’s lemma ensures that every module has maximal generating subsets. But a
maximal generating subset of a module is not necessarily a basis; in fact, some
modules have no basis at all (not like the theorems in this book).

Proposition 4.1. A family (ei )i∈I of elements of a [unital] left R-module M is
a basis of M if and only if every element of M can be written uniquely as a linear
combination x =

∑

i∈I xi ei (with xi ∈ R for all i and xi = 0 for almost all i ).

Proof. By 1.6, (ei )i∈I generates M if and only if every element of M is a
linear combination x =

∑

i∈I xi ei . If this expression is unique for all x , then
∑

i∈I ri ei = 0 implies ri = 0 for all i , and (ei )i∈I is linearly independent.
Conversely, if (ei )i∈I is a basis, then x =

∑

i∈I xi ei =
∑

i∈I yi ei implies
∑

i∈I (xi − yi ) ei = 0 and xi − yi = 0 for all i . �

If (ei )i∈I is a basis of M and x =
∑

i∈I xi ei , then the scalars xi ∈ R are
the coordinates of x ∈ M in the basis (ei )i∈I . The uniqueness in Proposition 4.1
implies that the i coordinate of r x is r xi , and that the i coordinate of x + y is
xi + yi , so that x �−→ xi is a module homomorphism M −→ RR .

Proposition 4.1 suggests that bases are related to direct sums. The details are
as follows. Let

⊕

i∈I RR denote the direct sum of |I | copies of RR (the direct
sum

⊕

i∈I Mi in which Mi = RR for all i ).

Proposition 4.2. Let M be a [unital] left R-module.

(1) If (ei )i∈I is a basis of M , then there is an isomorphism M ∼=
⊕

i∈I RR
that assigns to every element of M its coordinates in the basis (ei )i∈I .

(2) Every
⊕

i∈I RR has a canonical basis (ei )i∈I , in which the components of
ej are (ej )i = 1 if i = j , (ej )i = 0 if i =/ j .

(3) M is free if and only if M ∼=
⊕

i∈I RR for some set I .

In particular, an abelian group is free (as a Z-module) if and only if it is a direct
sum of copies of Z .
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Proof. (1). If x =
∑

i∈I xi ei in M , then (xi )i∈I∈
⊕

i∈I RR by 4.1. The
mapping (xi )i∈I �−→ x is bijective, by 4.1; the inverse bijection x �−→ (xi )i∈I is
a module homomorphism, by the remarks following 4.1.

(2). We see that ei = ιi (1) , where ιi : RR −→
⊕

i∈I RR is the i injection.
By 3.3, every x ∈

⊕

i∈I RR can be written uniquely in the form
∑

i∈I ιi (ri ) =
∑

i∈I ri ei , with ri ∈ R and ri = 0 for almost all i . By 4.1, (ei )i∈I is a basis.
(3) follows from (1) and (2). �

Proposition 4.2 shows that some modules are free. In fact, when supplemented
by surgery, Proposition 4.2 implies that every set is a basis of some free module:

Corollary 4.3. Given any set X , there exists a left R-module that is free on X ,
and it is unique up to isomorphism.

Readers will prove this when they feel like, well, cutting up. We invoked
Corollary 4.3 in Chapter III when we constructed polynomial rings.

Corollary 4.4. Every free left R-module M has a right R-module structure,
which depends on the choice of a basis (ei )i∈I of M , in which

(∑

i∈I xi ei
)

r
=
∑

i∈I xi r ei .

Proof. First,
⊕

i∈I RR is a right R-module, on which R acts component-
wise,

(

(xi )i∈I
)

r = (xi r)i∈I . If (ei )i∈I is a basis of M , then the isomorphism
⊕

i∈I RR ∼= M that sends (xi )i∈I to
∑

i∈I xi ei transfers this right R-module
structure from

⊕

i∈I RR to M , so that
(∑

i∈I xi ei
)

r =
∑

i∈I xi r ei in M. �

In Corollary 4.4, M is free as a right R-module, with the same basis. The
right action of R on

⊕
R is canonical, but the right R-module structure on M

depends on the choice of a basis, since the isomorphism
⊕

R ∼= M does. If R
is commutative, however, then the right action of R on M coincides with its left
action and does not depend on the choice of a basis.

Universal property. Free modules have a universal property:

Proposition 4.5. Let X = (ei )i∈I be a basis of a left R-module M . Every
mapping f of X into a left R-module N extends uniquely to a module homomor-
phism ϕ of M into N , namely ϕ

(∑

i∈I xi ei
)

=
∑

i∈I xi f (ei ) :

If N is generated by f (X) , then ϕ is surjective.

Proof. If ϕ extends f to M , then ϕ
(∑

i∈I xi ei
)

=
∑

i∈I xi ϕ(ei ) =
∑

i∈I xi f (ei ) for all x =
∑

i∈I xi ei ∈ M ; hence ϕ is unique. Conversely,
it is immediate that the mapping ϕ : M −→ N defined by ϕ

(∑

i∈I xi ei
)

=
∑

i∈I xi f (ei ) is a module homomorphism and extends f . �
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Corollary 4.6. For every left R-module M there exists a surjective homomor-
phism F −→ M where F is free; if M is generated by a subset X one may
choose F free on X .

Homomorphisms. The relationship between linear transformations of vector
spaces and matrices extends to free modules. We do this for modules with finite
bases, a restriction that is easily removed (see the exercises). For reasons which
will soon become clear we begin with right modules.

Proposition 4.7. Let A and B be free right R-modules with bases e1, . . ., en
and f1, . . . , fm respectively. There is a one-to-one correspondence between
module homomorphisms of A into B and m × n matrices with entries in R .

Proof. Let ϕ : A −→ B be a module homomorphism. Then ϕ(ej ) =
∑

i fi ri j
for some unique ri j ∈ R , i = 1, . . ., m , j = 1, . . ., n . This defines an m × n
matrix M(ϕ) = (ri j ) with entries in R , the matrix of ϕ in the given bases, in
which the jth column holds the coordinates of ϕ(ej ) . This matrix determines ϕ ,
since ϕ

(∑

j ej xj
)

=
∑

j
(∑

i fi ri j
)

xj =
∑

i fi
(∑

j ri j xj
)

.

Conversely, if M = (ri j ) is an m × n matrix with entries in R , then the
mapping ϕ : A −→ B defined by ϕ

(∑

j ej xj
)

=
∑

i fi
(∑

j ri j xj
)

is a module
homomorphism with matrix M in the given bases. �

In the above, the matrix of ϕ is constructed in the usual way, with the coordinates
of ϕ(ej ) in the jth column; the coordinates of ϕ

(∑

j ej xj
)

are computed by the
usual matrix multiplication of M(ϕ) by the column matrix (xj ) .

Proposition 4.8. If ϕ,ψ : A −→ B and χ : B −→ C are homomorphisms of
free right R-modules with finite bases, then, in any given bases of A , B , and C ,
M(ϕ + ψ) = M(ϕ) +M(ψ) and M(χ ◦ ϕ) = M(χ) M(ϕ) .

Proof. We prove the last equality. Let e1, . . . , en , f1, . . ., fm , g1, . . ., g�
be bases of A , B , and C , respectively. Let ϕ(ej ) =

∑

i fi ri j and χ( fi ) =
∑

g h shi . Then M(ϕ) = (ri j ) , M(χ) = (shi ) , χ(ϕ(ej )) =
∑

i
(∑

h gh shi
)

ri j
=
∑

h gh
(∑

i shi ri j
)

, and M(χ ◦ ϕ) =
(∑

i shi ri j
)

= M(χ) M(ϕ) . �

Module homomorphisms can be added and composed. Hence the endomor-
phisms of any right R-module M constitute a ring EndR(M) , under pointwise
addition and composition. Proposition 4.8 describes this ring when M is free:

Corollary 4.9. If M is a free right R-module and M has a basis with n
elements, then EndR(M) is isomorphic to the ring Mn(R) of all n × n matrices
with entries in R .

We now consider left R-modules. Left R-modules are right Rop-modules, and
a homomorphism of left R-modules is also a homomorphism of right Rop-mod-
ules. Moreover, a module that is free as a left R-module is also free as a right
Rop-module, with the same basis. If now A and B are free left R-modules with
bases e1, . . ., en and f1, . . ., fm respectively, then, by 4.7, there is a one-to-
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one correspondence between module homomorphisms of A into B and m × n
matrices with entries in Rop . The latter look just like matrices with entries in R
but are multiplied differently: the hj entry in (shi )(ri j ) is now

∑

i ri j shi when
calculated in R . This rule is likely to increase sales of headache medicines. The
author prefers to stick with Rop . By 4.9:

Corollary 4.10. If M is a free left R-module and M has a basis with n elements,
then EndR(M) ∼= Mn(Rop) .

Rank. All bases of a vector space have the same number of elements (the next
section has a proof). Modules in general do not have this property; the exercises
give a counterexample.

Definition. If all bases of a free module M have the same number of elements,
then that number is the rank of M , rank M .

Proposition 4.11. Let M be a free left R-module with an infinite basis. All
bases of M have the same number of elements.

Proof. The proof is a cardinality argument. Let X and Y be bases of M . Every
x ∈ X is a linear combination of elements of a finite subset Yx of Y . Hence the
submodule of M generated by

⋃

x∈X Yx contains X and is all of M . Therefore
Y =

⋃

x∈X Yx : otherwise, some element of Y \
⋃

x∈X Yx is a linear combination
of elements of

⋃

x∈X Yx and Y is not linearly independent. Hence |Y | � ℵ0|X | ;
if X is infinite, then |Y | � ℵ0|X | = |X | , by A.5.9.

Similarly, X is the union of |Y | finite sets. If X is infinite, then Y is infinite,
and |X | � ℵ0|Y | = |Y | ; therefore |X | = |Y | . �

Proposition 4.12. Let M be a free left R-module. If R is commutative, then all
bases of M have the same number of elements.

Proof. The proof uses quotient rings of R . Let (ei )i∈I be a basis of M and
let a be an ideal of R . Then aM is generated by products r x with r ∈ a ,
x ∈ M , whose coordinates are all in a . Conversely, if xi ∈ a for all i , then
∑

i xi ei ∈ aM . Thus x =
∑

i xi ei ∈ aM if and only if xi ∈ a for all i .

Since a is an ideal of R , readers will verify that M/aM is an R/a -module,
in which (r + a)(x + aM) = r x + aM . Then (ei + aM)i∈I is a basis of
M/aM : every element of M/aM is a linear combination of ei + aM’s, and if
∑

i∈I (ri + a)(ei + aM) = 0 in M/aM , then
∑

i∈I ri ei ∈ aM , ri ∈ a for all i
by the above, and ri + a = 0 in R/a for all i .

Now, let a be a maximal ideal of R . Then R/a is a field, M/aM is a vector
space over R/a , and all bases of M/aM (over R/a ) have the same number of
elements. Therefore all bases of M (over R ) have that same number of elements.
(By 4.11 we need only consider finite bases in this argument.) �

Exercises
1. Show that the Z-module Q has no basis, even though all its maximal linearly independent

subsets have the same number of elements.
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2. Show that every left R-module M has a maximal linearly independent subset, and that
a maximal linearly independent subset of M generates a submodule S that is essential in M
( S ∩ A =/ 0 for every submodule A =/ 0 of M ).

3. Fill in the details of the surgical procedure that, given any set X , constructs a left
R-module in which X is a basis.

4. Prove that a direct sum of free left R-modules is free.

5. Show that a module that is free on a given basis is characterized, up to isomorphism, by
its universal property.

In the following three exercises, I and J are sets; an I × J matrix is a rectangular array
(ri j )i∈I, j∈J ; an I × J matrix is column finitary when every column has only finitely many
nonzero entries (for every j ∈ J , ri j = 0 for almost all i ∈ I ).

6. Prove the following: when A and B are free right R-modules with bases (ej ) j∈J and
( fi )i∈I respectively, there is a one-to-one correspondence between module homomorphisms
of A into B and column finitary I × J matrices with entries in R .

7. Explain how column finitary matrices can be multiplied. Prove directly that this multi-
plication is associative.

8. Prove the following: when ϕ : A −→ B and ψ : B −→ C are homomorphisms of
free right R-modules, then, in any given bases of A , B , and C , M(χ ◦ ϕ) = M(χ) M(ϕ) .
(In particular, when M is a free right R-module with a basis (ei )i∈I , then EndR(M) is
isomorphic to the ring MI (R) of all column finitary I × I matrices with entries in R .)

*9. Cook up a definition of “the left R-module generated by a set X subject to set R of
defining relations”, and prove its universal property.

10. Let R = EndK (V ) , where V is a vector space over a field K with an infinite basis
e0, e1, . . . , en, . . . . Let α and β ∈ R be the linear transformations ( K-endomorphisms) of
V such that α(e2n) = en , α(e2n+1) = 0, and β(e2n) = 0, β(e2n+1) = en for all n � 0 .
Show that {1} and {α, β} are bases of RR .

11. Prove that the module RR in the previous exercise has a basis with m elements, for
every integer m > 0 .

5. Vector Spaces

In this section we give a more general definition of vector spaces and prove their
dimension property.

Definitions. A division ring is a ring with identity in which every nonzero
element is a unit. A vector space is a unital module over a division ring.

A commutative division ring is a field; the quaternion algebra H is a division
ring, but is not commutative. Division rings are still sometimes called skew fields.
If D is a division ring, then so is Dop ; hence we need only consider left D-modules
in what follows.

In a module over a division ring, if r1 x1 + · · · + rn xn = 0 and r1 =/ 0, then
x1 = r−1

1 r2 x2 + · · · + r−1
1 rn xn is a linear combination of x2, . . ., xn . As a
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result, the main properties of bases and dimension in vector spaces over a field
extend, with little change in the proofs, to vector spaces over division rings.

Lemma 5.1. Let X be a linearly independent subset of a vector space V . If
y ∈ V \X , then X ∪ {y} is linearly independent if and only if y is not a linear
combination of elements of X .

Proof. If X ∪ {y} is not linearly independent, then ry y +
∑

x∈X rx x = 0,
where rx , ry are not all zero. Then ry =/ 0: otherwise, X is not linearly indepen-
dent. Therefore y is a linear combination of elements of X . �

Theorem 5.2. Every vector space has a basis.

Proof. Let V be a left D-module, where D is a division ring. The union
X =

⋃

i∈I Xi of a nonempty chain (Xi )i∈I of linearly independent subsets of V
is linearly independent: if

∑

x∈X rx x = 0, with rx ∈ D , rx = 0 for almost all
x ∈ X , then the finite set { x ∈ X

∣
∣ rx =/ 0 } is contained in some Xi , whence

rx = 0 for all x since Xi is linearly independent. Also the empty set is linearly
independent. By Zorn’s lemma there exists a maximal linearly independent subset
M of V . Then M generates V , by 5.1. �

Intrepid readers will show that Theorem 5.2 characterizes division rings.
Tweaking the proof of 5.2 readily yields a slightly more general result:

Proposition 5.3. Let V be a vector space. If Y ⊆ V generates V and X ⊆ Y
is linearly independent, then V has a basis X ⊆ B ⊆ Y .

There is an exchange property for bases:

Lemma 5.4. Let V be a vector space and let X , Y be bases of V . For every
x ∈ X there exists y ∈ Y such that (X\{x}) ∪ {y} is a basis of V .

Proof. If x ∈ Y , then y = x serves. Assume that x /∈ Y , and let S be the
subspace (submodule) of V generated by X\{x} . If Y ⊆ S , then S = V , x ∈ S ,
and x is a linear combination of elements of X\{x} , causing X to lose its linear
independence. Therefore Y � S and some y ∈ Y is not a linear combination of
elements of X\{x} . Then y /∈ X\{x} ; in fact, y /∈ X , since x /∈ Y . By 5.1,
X ′ = (X\{x}) ∪ {y} is linearly independent.

Now, x is a linear combination of elements of X ′ : otherwise, X ′ ∪ {x} =
X ∪ {y} is linearly independent by 5.1, even though y /∈ X is a linear combination
of elements of X . Therefore every element of X is a linear combination of
elements of X ′ , and X ′ generates V . �

The exchange property implies our second main result:

Theorem 5.5. All bases of a vector space have the same number of elements.

Proof. Let X and Y be bases of a vector space V . If X is infinite, or
if Y is infinite, then |X | = |Y | , by 4.11. Now, assume that X and Y are
finite. Repeated applications of Lemma 5.4 construct a basis of V in which
every element of X has been replaced by an element of Y . This is possible
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only if |X | � |Y | . Exchanging the roles of X and Y then yields |Y | � |X | ,
whence |X | = |Y | . �

Definition. The dimension dim V of a vector space V is the number of
elements of its bases.

Familiar properties of subspaces extend to vector spaces over division rings.
The proofs will delight readers who miss the simpler pleasures of linear algebra.

Proposition 5.6. Every subspace S of a vector space V is a direct summand;
moreover, dim S + dim V/S = dim V .

Proposition 5.7. Let S be a subspace of a vector space V . If dim V is finite
and dim S = dim V , then S = V .

Exercises
1. Prove the following: let M be a module over a division ring; when Y ⊆ M generates

M and X ⊆ Y is linearly independent, then M has a basis X ⊆ B ⊆ Y .

2. Prove the following: every subspace S of a vector space V is a direct summand;
moreover, dim S + dim V/S = dim V .

3. Prove the following: let S be a subspace of a vector space V ; if dim V is finite and
dim S = dim V , then S = V .

4. Prove the following: when S and T are subspaces of a vector space, then dim (S ∩
T ) + dim (S + T ) = dim S + dim T .

5. Prove the following: let V and W be vector spaces over the same division ring; when
T : V −→ W is a linear transformation, then dim Im T + dimKer T = dim V .

6. Let D ⊆ E ⊆ F be division rings, each a subring of the next. Show that [ F : D ] =
[ F : E ] [ E : D ] . (As in the case of fields, [ E : D ] denotes the dimension of E as a vector
space over D .)

In the following exercises R is a ring with an identity element.

7. Show that R is a division ring if and only if it has no left ideal L =/ 0, R .

8. Suppose that R has a two-sided ideal that is also a maximal left ideal. Prove that all
bases of a free left R-module have the same number of elements.

*9. Prove that R is a division ring if and only if every left R-module is free.

6. Modules over Principal Ideal Domains

A number of properties of abelian groups extend to modules over a principal ideal
domain. In this section we construct finitely generated modules. The next section
has applications to linear algebra.

Free modules. First we look at submodules of free modules.

Theorem 6.1. Let R be a principal ideal domain and let F be a free R-module.
Every submodule of F is free, with rank at most rank F .
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Proof. Let X be a basis of F and let M be a submodule of F . Every subset
Y of X generates a submodule FY of F .

Assume that Y =/ X and that MY = FY ∩ M has a basis B . Let Z = Y ∪ {x} ,
where x ∈ X\Y , so that MZ = { r x + t ∈ M

∣
∣ r ∈ R, t ∈ FY } . The basic step

of the proof enlarges B to a basis of MZ . Let

a = { r ∈ R
∣
∣ r x + t ∈ MZ for some t ∈ FY } .

If a = 0, then MZ = MY and B is a basis of MZ . Now, let a =/ 0. Since a is an
ideal of R we have a = Ra for some a ∈ R , a =/ 0, and ax + p = c ∈ MZ for
some p ∈ FY . We show that C = B ∪ {c} is a basis of MZ . If

rc c +
∑

b∈B rb b = 0,

where rb, rc ∈ R and rb = 0 for almost all b ∈ B , then rc c ∈ MY and
rc ax = rc c − rc p ∈ FY . Since X is linearly independent, this implies rc a = 0
and rc = 0. Then

∑

b∈B rb b = 0 and rb = 0 for all b ∈ B . Thus C is linearly
independent (and c /∈ B ). Next let r x + t ∈ MZ , where r ∈ R and t ∈ FY .
Then r = sa for some s ∈ R , (r x + t) − sc = t − sp ∈ FY ∩ M = MY , and
(r x + t) − sc is a linear combination of elements of B . Thus C ⊆ MZ generates
MZ , and is a basis of MZ . Note that |B| � |Y | implies |C | = |B| + 1 � |Y | + 1 =
|Z | .

We now apply Zorn’s lemma to the set S of all pairs (Y, B) such that Y ⊆ X , B
is a basis of MY , and |B| � |Y | . We have S =/ Ø, since (Ø, Ø)∈ S . Partially order
S by (Y, B)� (Z , C) if and only if Y ⊆ Z and B ⊆ C . If (Yi , Bi )i∈I is a chain of
elements of S , then (Y, B) =

(⋃

i∈I Yi ,
⋃

i∈I Bi
)

∈ S : indeed, FY =
⋃

i∈I FYi
,

since a linear combination of elements of Y is a linear combination of finitely
many elements of Y and is a linear combination of elements of some Yi ; hence
MY =

⋃

i∈I MYi
; MY is generated by B , since a linear combination of elements of

B is a linear combination of elements of some Bi ; and B is linearly independent,
for the same reason. Therefore Zorn’s lemma applies to S and begets a maximal
element (Y, B) of S . The beginning of the proof shows that (Y, B) is not
maximal when Y =/ X . Therefore Y = X , and then B is a basis of MX = M and
|B| � |X | . �

Theorem 6.1 can be sharpened when F is finitely generated.

Theorem 6.2. Let R be a principal ideal domain; let F be a free R-module
of finite rank n and let M be a submodule of F . There exist a basis e1, . . ., en
of F , an integer 0 � r � n , and nonzero elements a1, . . ., ar of R , such that
ai+1 ∈ Rai for all i < r and a1 e1, . . . , ar er is a basis of M .

Moreover, r = rank M is unique; it can be arranged that a1, . . ., ar are
representative elements, and then a1, . . ., ar are unique, by 6.3.

Proof. The proof is by induction on the rank n of F . The result holds if n � 1,
since R is a PID, or if M = 0; hence we may assume that n � 2 and M =/ 0.
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If Theorem 6.2 holds, then so does the following: if ϕ : F −→ RR is a module
homomorphism, then ϕ(s) ∈ Ra1 for all s ∈ M , and ϕ(M) ⊆ Ra1 . Moreover,
ϕ(M) = Ra1 when ϕ :

∑

i∈I xi ei �−→ x1 . Thus Ra1 is the largest ideal of R of
the form ϕ(M) . With this hint we begin by finding a1 .

Since R is Noetherian, the set of all ideals of R of the form ϕ(M) , where ϕ :
F −→ RR is a homomorphism, has a maximal element µ(M) . Let µ(M) = Ra ,
where a ∈ R , and let a = µ(m) , where m ∈ M .

We show that ϕ(m) ∈ Ra for every homomorphism ϕ : F −→ RR . Indeed,
Ra + Rϕ(m) = Rd for some d = ua + vϕ(m)∈ R . Then ψ : uµ + vϕ : F −→ RR
is a homomorphism and ψ(m) = ua + vϕ(m) = d ; hence µ(M) = Ra ⊆ Rd ⊆
ψ(M) , Ra = Rd by the choice of µ , and ϕ(m) ∈ Ra .

In any basis e1, . . ., en of F , ϕj :
∑

i xi ei �−→ xj is a homomorphism of F
into RR . Since M =/ 0, we have ϕj (M) =/ 0 for some j , whence µ(M) =/ 0 and
a =/ 0. By the above, ϕj (m)∈ Ra for all j ; hence m = ae for some e ∈ F . Then
a = µ(m) = a µ(e) and µ(e) = 1. Hence Re ∩Ker µ = 0, and F = Re + Ker µ ,
since x − µ(x) e ∈ Ker µ for all x ∈ F . Thus F = Re ⊕ Ker µ . If x ∈ M ,
then µ(x) ∈ Ra , µ(x) e ∈ Rae = Rm ⊆ M , and x − µ(x) e ∈ Ker µ ∩ M ;
hence M = Rm ⊕ (Ker µ ∩ M) .

Now, Ker µ has rank at most n , by 6.1. In fact, Ker µ has rank n − 1:
if e2, . . ., ek is a basis of Ker µ , then e, e2, . . . , ek is a basis of F , since
F = Re ⊕ Ker µ and re = 0 implies r = µ(re) = 0; hence k = n . By
the induction hypothesis, there exist a basis e2, . . ., en of Ker µ , an integer
1 � r � n , and nonzero elements a2, . . ., ar of R , such that ai+1 ∈ Rai for all
i < r and a2 e2, . . ., ar er is a basis of Ker µ∩ M . Then e, e2, . . ., en is a basis
of F , and ae, a2 e2, . . . , en is a basis of M , since M = Rae ⊕ (Ker µ ∩ M)
and rae = 0 implies r = 0. It remains to show that a2 ∈ Ra .

As above, Ra + Ra2 = Rd for some d = ua + va2 ∈ R . By 4.5 there is a homo-
morphism ϕ : F −→ RR such that ϕ(e) = ϕ(e2) = 1 and ϕ(ei ) = 0 for all i > 2.
Then d = ua + va2 = ϕ(uae + va2 e2) ∈ ϕ(M) and µ(M) = Ra ⊆ Rd ⊆ ϕ(M) .
Therefore Ra = Rd and a2 ∈ Ra . �

Finitely generated modules. Theorem 6.2 implies that every finitely gener-
ated module over a PID is a direct sum of cyclic modules. We state this in two
essentially equivalent forms, that also include uniqueness statements.

Theorem 6.3A. Let R be a principal ideal domain. Every finitely generated
R-module M is the direct sum

M ∼= F ⊕ R/Ra1 ⊕ · · · ⊕ R/Ras

of a finitely generated free R-module F and cyclic R-modules R/Ra1 , . . . , R/Ras
with annihilators R � Ra1 ⊇ · · · ⊇ Ras � 0 . Moreover, the rank of F , the
number s , and the ideals Ra1, . . ., Ras are unique.

Theorem 6.3B. Let R be a principal ideal domain. Every finitely generated
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R-module M is the direct sum

M ∼= F ⊕ R/Rpk1
1 ⊕ · · · ⊕ R/Rpkt

t

of a finitely generated free R-module F and cyclic R-modules R/Rpk1
1 , . . . ,

R/Rpkt
t whose annihilators Rpk1

1 , . . . , Rpkt
t are generated by positive powers

of prime elements of R . Moreover, the rank of F , the number t , and the ideals
Rpk1

1 , . . . , Rpkt
t are unique, up to their order of appearance.

In Theorem 6.3A, we can arrange that a1, . . . , as are representative elements;
then a1, . . ., as are unique. Similarly, in Theorem 6.3B we can arrange that
p1, . . ., pt are representative primes; then p1, . . ., pt and k1, . . . , kt are unique.
If R = Z , Theorem 6.3 becomes the fundamental theorem of finitely generated
abelian groups, a particular case of which, Theorem II.1.2, was seen in Chapter II.

Proof. Existence follows from 6.2. By 4.6, there is a surjective homomorphism
ϕ : F ′ −→ M , where F ′ is a finitely generated free R-module. By 6.2, there exist
a basis e1, . . . , en of F ′ , an integer 0 � r � n , and nonzero elements a1, . . . , ar
of R , such that Ra1 ⊇ · · · ⊇ Rar and a1 e1, . . . , ar er is a basis of Ker ϕ . Then

F ′ = Re1 ⊕ · · · ⊕ Rer ⊕ Rer+1 ⊕ · · · ⊕ Ren,

Ker ϕ = Ra1 e1 ⊕ · · · ⊕ Rar er ⊕ 0 ⊕ · · · ⊕ 0, and

M ∼= F ′/Ker ϕ ∼= Re1/Ra1 e1 ⊕ · · · ⊕ Rer/Rar er ⊕ Rer+1 ⊕ · · · ⊕ Ren .

Deleting zero terms from this decomposition yields

M ∼= Rek/Rak ek ⊕ · · · ⊕ Rer/Rar er ⊕ F,

where R � Rak ⊇ · · · ⊇ Rar and F is free of rank n − r . Finally, Rei/Rai ei
∼=

R/Rai , since r �−→ rei is an isomorphism of RR onto Rei and sends Rai to
Rai ei . By 2.12, R/Rai is a cyclic R-module with annihilator Rai .

Torsion. Completing the proof of Theorem 6.3 requires additional definitions.

Definitions. An element x of an R-module is torsion when Ann (x) =/ 0 (when
r x = 0 for some r ∈ R , r =/ 0), torsion-free when Ann (x) = 0 (when r x = 0
implies r = 0). A module is torsion when all its elements are torsion, torsion-free
when all its nonzero elements are torsion-free.

For example, finite abelian groups are torsion (as Z-modules); when R has no
zero divisors, free R-modules F ∼=

⊕

RR are torsion-free.

Proposition 6.4. If R is a domain, then the torsion elements of an R-module
M constitute a submodule T (M) of M , and M/T (M) is torsion-free.

The proof is an exercise. The submodule T (M) is the torsion part of M .
Torsion modules are analyzed as follows.



340 Chapter VIII. Modules

Proposition 6.5. Let R be a principal ideal domain and let P be a set of
representative prime elements of R . Every torsion R-module M is a direct sum
M =

⊕

p∈P M(p) , where

M(p) = { x ∈ M
∣
∣ pk x = 0 for some k > 0 } .

Proof. Let x ∈ M . If ax = 0 and a = bc =/ 0, where b, c ∈ R are
relatively prime, then 1 = ub + vc for some u, v ∈ R and x = ubx + vcx , where
c (ubx) = 0 and b (vcx) = 0. If now a = u pk1

1 · · · pkr
r is the product of a unit

and positive powers of distinct representative primes, then u pk1
1 · · · p

kr−1
r−1 and

pkr
r are relatively prime, and it follows, by induction on r , that x = x1 + · · · + xr ,

where pki
i xi = 0, so that xi ∈ M(pi ) . Hence M =

∑

p∈P M(p) .

Let p ∈ P and x ∈ M(p) ∩
(∑

q∈P, q=/ p M(q)
)

. Then pk x = 0 and

x =
∑

q∈P, q=/ p xq , where xq ∈ M(q) for all q =/ p , qkq xq = 0 for some

kq > 0, and xq = 0 for almost all q . Let a =
∏

q∈P, q=/ p, xq =/ 0 qkq . Then

axq = 0 for all q =/ p and ax = 0. As above, 1 = ua + vpk for some u, v ∈ R , so

that x = uax + vpk x = 0. Thus M(p) ∩
(∑

q∈P, q=/ p M(q)
)

= 0 for all p ∈ P ,
and M =

⊕

p∈P M(p) . �

Proposition 6.5 yields decompositions of cyclic modules:

Proposition 6.6. Let R be a principal ideal domain and let M ∼= R/Ra be a
cyclic R-module, where a = u pk1

1 · · · pkr
r ∈ R is the product of a unit and positive

powers of distinct representative prime elements of R . Then M(pi ) ∼= R/Rpki
i

and M ∼= R/Rpk1
1 ⊕ · · · ⊕ R/Rpkr

r .

Proof. We have ax = 0 in M = R/Ra , for all x ∈ M . Let x ∈ M(p) , with
pk x = 0. If p =/ p1, . . ., pr , then a and pk are relatively prime, 1 = ua + vpk

for some u, v ∈ R , and x = uax + vpk x = 0. Thus M(p) = 0.

Now, let 1 � i � r and b =
∏

j=/ i p
kj
j . If x = r + Ra ∈ M(pi ) , then pk

i x = 0

in M = R/Ra for some k > 0, pk
i r ∈ Ra , b divides pk

i r , and b divides r .

Conversely, if b divides r , then r ∈ Rb , pki
i r ∈ Ra , pki

i x = 0 in M = R/Ra ,
and x ∈ M(pi ) . Thus M(pi ) = Rb/Ra . Since R is a domain, r �−→ br is a

module isomorphism of RR onto Rb , that sends Rpki
i onto Rpki

i b = Ra . Hence

M(pi ) = Rb/Ra ∼= R/Rpki
i . �

The existence part of Theorem 6.3B follows from Proposition 6.6 and the
existence part of Theorem 6.3A.

Uniqueness. We first prove uniqueness when M = M(p) in Theorem 6.3B.

Lemma 6.7. Let R be a PID and let p ∈ R be a prime element. If
M ∼= R/Rpk1 ⊕ · · · ⊕ R/Rpkt and 0 < k1 � · · · � kt , then the numbers t
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and k1, . . ., kt are uniquely determined by M .

Proof. If A is an R-module, then A/p A is an R/Rp -module, since
(Rp)(A/p A) = 0, and A/p A is a vector space over the field R/Rp . More-
over, p(A ⊕ B) = p A ⊕ pB , so that (A ⊕ B)/p(A ⊕ B) ∼= A/p A ⊕ B/pB .
Since (R/Rpk)/p(R/Rpk) = (R/Rpk)/(Rp/Rpk) ∼= R/Rp , it follows from
M ∼= R/Rpk1 ⊕ · · · ⊕ R/Rpkt that M/pM is a direct sum of t copies of R/Rp .
Hence t = dim M/pM is uniquely determined by M .

We use induction on kt to show that k1, . . ., kt are uniquely determined
by M . First, M ∼= R/Rpk1 ⊕ · · · ⊕ R/Rpkt , with k1 � · · · � kt , implies
Ann (M) = Rpkt ; hence kt is uniquely determined by M . Since p (R/Rpk) =
Rp/Rpk ∼= R/Rpk−1 , we have

pM ∼= p
(

R/Rpk1 ⊕ · · · ⊕ R/Rpkt
)

∼= pR/Rpk1 ⊕ · · · ⊕ pR/Rpkt ∼= R/Rpk1−1 ⊕ · · · ⊕ R/Rpkt−1.

Deleting zero terms yields a direct sum

pM ∼= R/Rpks+1−1 ⊕ · · · ⊕ R/Rpkt−1,

where s � 0, k1 = · · · = ks = 1, and 0 < ks+1 − 1 � · · · � kt − 1. By the
induction hypothesis, t − s and ks+1 − 1, . . . , kt − 1 are uniquely determined by
M . Therefore s and k1, . . ., kt are uniquely determined by M . �

If M is torsion, uniqueness in Theorem 6.3B now follows from Lemma 6.7.
Let

M ∼= R/Rpk1
1 ⊕ · · · ⊕ R/Rpkt

t ,

where p1, . . ., pt are representative primes and k1, . . ., kt > 0. For every prime
p , (A ⊕ B)(p) = A(p) ⊕B(p) , as readers will verify. Hence

M(p) ∼=
⊕

i (R/Rpki
i )(p) =

⊕

pi =p R/Rpki ,

by 6.6. By 6.7, the number of primes pi = p , and the corresponding exponents
ki , are uniquely determined by M , up to their order of appearance. Since this
holds for every prime p , the number t , the representative primes p1, . . ., pt ,
and their exponents k1, . . ., kt , are uniquely determined by M , up to their order

of appearance. If in the direct sum M ∼= R/Rpk1
1 ⊕ · · · ⊕ R/Rpkt

t the primes
p1, . . ., pt are arbitrary, they can be replaced by representative primes without

changing the ideals Rpki
i , which are therefore uniquely determined by M , up to

their order of appearance.

Uniqueness in Theorem 6.3A is proved as follows when M is torsion. Let

M ∼= R/Ra1 ⊕ · · · ⊕ R/Ras ,

where R � Ra1 ⊇ · · · ⊇ Ras � 0. Then as is a product of units and pos-

itive powers pkis
i of representative prime elements p1, . . ., pr of R . Since
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a1, . . ., as−1 divide as , every aj is a product of units and positive powers p
ki j
i of

p1, . . ., pr ; moreover, 0 � ki1 � · · · � kis , since Raj ⊇ Ra j+1 for all j < s .

By 6.5, M is isomorphic to the direct sum of all the cyclic modules R/Rp
ki j
i .

Therefore the primes p1, . . ., pr and their exponents ki j are uniquely determined
by M , up to their order of appearance. Hence a1, . . ., as are uniquely determined
by M up to multiplication by units, and the ideals Ra1, . . ., Ras are uniquely
determined by M .

Finally, let M ∼= F ⊕ R/Ra1 ⊕ · · · ⊕ R/Ras = M ′ be any finitely generated
R-module, where F is free and a1, . . ., as =/ 0, as in Theorem 6.3A. Every
nonzero element of F is torsion-free, and every element of T = R/Ra1 ⊕ · · · ⊕
R/Ras is torsion. If f ∈ F and t ∈ T , then x = f + t is torsion if and
only if f = 0; thus T (M ′) = T and M ′ = F ⊕ T (M ′) . Hence T ∼= T (M) ,
F ∼= M ′/T (M ′) ∼= M/T (M) , and the rank of F are uniquely determined by M ,
up to isomorphism (in fact, rank F = rank M ). The uniqueness of the ideals
Ra1, . . ., Ras then follows from the torsion case. Uniqueness in Theorem 6.3B
follows similarly from the torsion case. �

Exercises
1. Let R be a PID and let M be an R-module that is generated by r elements. Show that

every submodule of R can be generated by at most r elements.

2. Let R be a PID. Show that every submodule of a cyclic R-module is cyclic.

3. Let R be a domain. Show that the torsion elements of an R-module M constitute a
submodule T (M) of M , and that M/T (M) is torsion-free.

4. Let R be a domain. Show that Ra/Rab ∼= R/Rb whenever a, b ∈ R , a, b =/ 0 .

5. Let A and B be modules over a PID R . Show that (A ⊕ B)(p) = A(p) ⊕B(p) for
every prime p of R .

6. Let R be a PID and let M be a finitely generated R-module. Show that M(p) = 0 for
almost all representative primes p .

7. What is Ann (M) when R is a PID and M ∼= R/Rp
k1
1 ⊕ · · · ⊕ R/Rpkt

t is a finitely
generated torsion R-module?

8. Let R be a commutative ring such that every submodule of a free R-module is free.
Prove that R is a PID.

7. Jordan Form of Matrices

In this section, V is a finite-dimensional vector space over a field K , and T :
V −→ V is a linear transformation. We use results in the previous section to show
that T has a matrix in Jordan form when K is algebraically closed. Jordan [1870]
proved this when K = C .

K[X]-modules. First we show that the linear transformation T : V −→ V
makes V a K [X ]-module. This gives access to the properties in Section 6.
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Proposition 7.1. Let V be a vector space over a field K . Every linear
transformation T : V −→ V induces a K [X ]-module structure on V , in which
(a0 + a1 X + · · · + an Xn) v = a0v + a1T v + · · · + anT nv .

Proof. The ring EndK (V ) of all linear transformations of V comes with
a homomorphism σ : K −→ EndK (V ) that assigns to a ∈ K the scalar
transformation σ (a): v �−→ av . Now, T commutes with every scalar trans-
formation. By the universal property of K [X ] , there is a homomorphism ϕ :
K [X ] −→ EndK (V ) ⊆ End

Z
(V ) that extends σ and sends X to T , namely

ϕ(a0 + a1 X + · · · + an Xn) = σ (a0) + σ (a1)T + · · · + σ (an)T n . This makes
V a K [X ]-module, in which (a0 + a1 X + · · · + an Xn) v = ϕ(a0 + a1 X + · · · +
an Xn)(v) = a0v + a1T v + · · · + anT nv , as in the statement. �

If f (X) = a0 + a1 X + · · · + an Xn ∈ K [X ] , then a0 + a1T + · · · + anT n = f (T )
in EndK (V ) ; with this notation, f (X)v = f (T )v .

Proposition 7.2. In the K [X ]-module structure on V induced by T , a submod-
ule of V is a subspace S of V such that T S ⊆ S , and then the K [X ]-module
structure on S induced by V coincides with the K [X ]-module structure on S
induced by the restriction T|S of T to S .

Proof. Either way, Xs = T s = T|Ss for all s ∈ S . (Then f (T )|S = f (T|S) for
all f ∈ K [X ] .) �

Proposition 7.3. If V is finite-dimensional, then the ideal Ann (V ) of K [X ]
is generated by a unique monic polynomial mT ∈ K [X ] ; then mT (T ) = 0 , and
f (T ) = 0 if and only if mT divides f , for all f ∈ K [X ] .

Proof. Ann (V ) = { f ∈ K [X ]
∣
∣ f (T ) = 0 } is an ideal of K [X ] . Moreover,

Ann (V ) =/ 0: Ann (V ) is the kernel of the homomorphism ϕ : f �−→ f (T ) of
K [X ] into EndK (V ) , which cannot be injective since dimK EndK (V ) is finite
but dimK K [X ] is infinite. Since K [X ] is a PID, the nonzero ideal Ann (V ) is
generated by a unique monic polynomial mT . �

Definition. In Proposition 7.3, mT is the minimal polynomial of T .

We now bring in the heavy artillery. If V is finite-dimensional, then V is
finitely generated as a K [X ]-module (since V is already finitely generated as a K-
module). Moreover, V is torsion, since mT (X) v = 0 for all v ∈ V . By Theorem
6.3B, V is a direct sum of cyclic submodules S1, . . ., St whose annihilators are

generated by positive powers qk1
1 , . . . , qkt

t of prime elements (irreducible polyno-
mials) q1, . . ., qt ∈ K [X ] ; moreover, we can arrange that q1, . . ., qt are monic,
and then the number t , the polynomials q1, . . . , qt , and the positive exponents

k1, . . ., kt are unique, up to their order of appearance. By 7.2, 7.3, qki
i is the

minimal polynomial of T|Si
. Moreover, f (T ) = 0 if and only if f (T|Si

) = 0 for
all i , since V =

⊕

i Si . Thus we obtain the following result:

Theorem 7.4. Let V be a finite-dimensional vector space over a field K ,
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and let T : V −→ V be a linear transformation. As a K [X ]-module, V is the
direct sum V = S1 ⊕ · · · ⊕ St of cyclic submodules S1, . . ., St , such that the

minimal polynomial of T|Si
is a positive power qki

i of a monic irreducible poly-
nomial qi ∈ K [X ] . The number t , the polynomials q1, . . ., qt , and the positive
exponents k1, . . ., kt are unique, up to their order of appearance, and the minimal

polynomial of T is the least common multiple of qk1
1 , . . . , qkt

t .

Cyclic modules. We now take a closer look at cyclic K [X ]-modules.

Lemma 7.5. If dimK V = n is finite and V = K [X ] e is a cyclic K [X ]-module,
then deg mT = n and e, T e, . . ., T n−1e is a basis of V over K .

Proof. Let m = deg mT . Every element of V has the form f (X) e for some
f ∈ K [X ] . Now, f = mT q + r , where deg r < m , and f (X) e = r(X) e .
Hence every element of V is a linear combination of e, T e, . . ., T m−1e with
coefficients in K . If a0 e + a1T e + · · · + am−1T m−1e = 0, where a0, a1, . . .,
am−1 ∈ K , and g(X) = a0 + a1 X + · · · + am−1 Xm−1 ∈ K [X ] , then g(X) e = 0,
g(X)v = 0 for all v = f (X) e ∈ V , g(T ) = 0, g is a multiple of mT , and
g = 0, since deg g < deg mT ; hence a0 = a1 = · · · = am−1 = 0. Therefore
e, T e, . . ., T m−1e is a basis of V . In particular, m = dimK V . �

If K is algebraically closed, then the monic irreducible polynomials qi in

Theorem 7.4 have degree 1 and the minimal polynomials qki
i have the form

(X − λi )
ki , where λi ∈ K . In this case, Lemma 7.5 simplifies and yields a

triangular matrix.

Lemma 7.6. If dimK V = n is finite, V is a cyclic K [X ]-module, and mT =
(X − λ)m for some λ ∈ K , then m = n and V has a basis e1, . . . , en over K
such that T e1 = λe1 and T ei = λei + ei−1 for all i > 1 .

Proof. First, m = n , by 7.5. Let V = K [X ] e , where e ∈ V . Let ei =
(T − λ)n−i e for all i = 1, 2, . . ., n . By the binomial theorem, en−i = (T − λ)i e
is a linear combination of T i e , T i−1e , . . . , e , in which the coeficient of T i e is 1 .
Hence the matrix of en, . . ., e1 in the basis e, T e, . . ., T n−1e is upper triangular,
with 1’s on the diagonal, and is invertible. Therefore e1, . . . , en is a basis of V .
If i > 1, then (T − λ) ei = ei−1 . If i = 1, then (T − λ) e1 = (T − λ)ne = 0. �

In Lemma 7.6, the matrix of T in the basis e1, . . ., en is
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ 1 0 . . . 0 0

0 λ 1
. . . 0 0

0 0 λ
. . . 0 0

...
...

. . . . . . 1 0
0 0 . . . 0 λ 1
0 0 . . . 0 0 λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.



7. Jordan Form of Matrices 345

A square matrix in this form is a Jordan block with λ on the diagonal. Jordan
blocks are also defined with 1’s below the diagonal rather than above.

Jordan form. A square matrix is in Jordan form when it consists of Jordan
blocks arranged along the diagonal, with zeros elsewhere:

⎛

⎜
⎜
⎜
⎝

J1 0 . . . 0
0 J2 . . . 0
...

. . .
...

0 0 . . . Jt

⎞

⎟
⎟
⎟
⎠

.

If K is algebraically closed and dimK V is finite, then, by 7.4, V is a direct sum
V = S1 ⊕ · · · ⊕ St of cyclic submodules S1, . . . , St , such that the minimal poly-
nomial of T|Si

is a positive power (X − λi )
ki of a monic irreducible polynomial

qi = X − λi ∈ K [X ] ; moreover, the number t , the polynomials q1, . . . , qt , and
the positive exponents k1, . . ., kt are unique, up to their order of appearance. By
7.6, Si has a basis Bi over K in which the matrix of T|Si

is a Jordan block with
eigenvalue λi . Then B1 ∪ · · · ∪ Bt is a basis of V in which the matrix of T is in
Jordan form, and we have proved our main result:

Theorem 7.7. Let V be a finite-dimensional vector space over an algebraically
closed field K , and let T : V −→ V be a linear transformation. There exists a
basis of V in which the matrix of T is in Jordan form. Moreover, all such matrices
of T contain the same Jordan blocks.

Readers may prove the following properties:

Corollary 7.8. If the matrix of T is in Jordan form, then:

(1) the diagonal entries are the eigenvalues of T ;

(2) the minimal polynomial of T is (X − λ1)
�1 · · · (X − λr )

�r , where
λ1, . . ., λr are the distinct eigenvalues of T and �i is the size of the largest
Jordan block with λi on the diagonal;

(3) when λ is an eigenvalue of T , the dimension of the corresponding eigenspace
equals the number of Jordan blocks with λ on the diagonal.

Corollary 7.9. Let V be a finite-dimensional vector space over an algebraically
closed field K . A linear transformation T : V −→ V is diagonalizable (there
is a basis of V in which the matrix of T is diagonal) if and only if its minimal
polynomial is separable.

Theorem 7.7 has another consequence that concerns the characteristic polyno-
mial cT of T , cT (X) = det (T − X I ) (where I is the identity on V ).

Theorem 7.10 (Cayley-Hamilton). If V is a finite-dimensional vector space
over a field K , then cT (T ) = 0 for every linear transformation T of V .

Proof. If K is algebraically closed, then V has a basis in which the matrix
of T is in Jordan form. Then cT (X) = (X − λ1)

n1 · · · (X − λr )
nr , where
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λ1, . . . , λr are the distinct eigenvalues of T and ni is the number of appearances
of λi on the diagonal. By 7.8, mT divides cT , and cT (T ) = 0.

In general, the characteristic polynomial cT of T is also the characteristic
polynomial cM of its matrix M in any basis of V . Now, cM does not change
when M is viewed as a matrix with entries in the algebraic closure K of K , rather
than as a matrix with entries in K . Hence cM (M) = 0, and cT (T ) = 0. �

Exercises

1. State the theorem obtained by using Theorem 6.3A rather than Theorem 6.3B in the
proof of Theorem 7.4.

2. Define the minimal polynomial m A of an n × n matrix A with coefficients in a field
K . Prove that m A does not change when K is replaced by one of its field extensions. (You
may want to use the previous exercise.)

3. Let dimK V = n be finite and let T : V −→ V be a linear transformation whose
matrix in some basis of V is a Jordan block, with λ on the diagonal. Show that V is a cyclic
K [X ]-module and that mT (X) = (X − λ)n .

4. Having studied this section, what can you say about nilpotent linear transformations?
( T is nilpotent when T m = 0 for some m > 0 .)

5. Let the matrix of T be in Jordan form. Show that the minimal polynomial of T is
(X − λ1)

�1 · · · (X − λr )
�r , where λ1, . . . , λr are the distinct eigenvalues of T and �i is

the size of the largest Jordan block with λi on the diagonal.

6. Let the matrix of T be in Jordan form, and let λ be an eigenvalue of T . Show that the
dimension of the corresponding eigenspace equals the number of Jordan blocks with λ on the
diagonal.

7. Let dimK V be finite. Show that a linear transformation of V is diagonalizable if and
only if its minimal polynomial is separable.

8. Chain Conditions

This section contains basic properties of Noetherian modules, Artinian modules,
and modules of finite length, for use in the next chapter. As before, all rings have
an identity element and all modules are unital.

Noetherian modules. Applied to the submodules of a left R-module M , the
ascending chain condition or a.c.c. has three equivalent forms:

(a) every infinite ascending sequence A1 ⊆ · · · ⊆ An ⊆ An+1 ⊆ · · · of submod-
ules of M terminates: there exists N > 0 such that An = AN for all n � N ;

(b) there is no infinite strictly ascending sequence A1 � · · · � An � An+1 � · · ·
of submodules of M ;

(c) every nonempty set S of submodules of M has a maximal element (an
element S of S such that there is no S � A ∈ S ).
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The equivalence of (a), (b), and (c) is proved as in Section III.11 (see also Sec-
tion A.1).

Definition. A module is Noetherian when its submodules satisfy the ascending
chain condition.

For example, a commutative ring R is Noetherian if and only if the module RR
is Noetherian.

Definition. A ring R is left Noetherian when the module RR is Noetherian. A
ring R is right Noetherian when the module RR is Noetherian.

Equivalently, R is left (right) Noetherian when its left (right) ideals satisfy the
ascending chain condition.

In a module, the a.c.c. has a fourth equivalent form, proved like III.11.1:

Proposition 8.1. A module M is Noetherian if and only if every submodule of
M is finitely generated.

Proposition 8.2. If N is a submodule of a module M , then M is Noetherian if
and only if N and M/N are Noetherian.

Proof. Let N and M/N be Noetherian and let A1 ⊆ A2 ⊆ · · · ⊆ An ⊆
An+1 ⊆ · · · be an infinite ascending sequence of submodules of M . Then

A1 ∩ N ⊆ A2 ∩ N ⊆ · · · ⊆ An ∩ N ⊆ An+1 ∩ N ⊆ · · ·

is an infinite ascending sequence of submodules of N , and

(A1 + N)/N ⊆ (A2 + N)/N ⊆ · · · ⊆ (An + N)/N ⊆ (An+1 + N)/N ⊆ · · ·

is an infinite ascending sequence of submodules of M/N . Since N and M/N are
Noetherian, both sequences terminate: there exists m > 0 such that An ∩ N =
Am ∩ N and (An + N)/N = (Am + N)/N for all n � m . Then An + N = Am + N
for all n � m . It follows that An = Am for all n � m : indeed, x ∈ An implies
x ∈ Am + N , x = y + z for some y ∈ Am and z ∈ N , z = x − y ∈ An ∩ N =
A + m ∩ N , and x = y + z ∈ Am . Therefore M is Noetherian. The converse is
an exercise. �

Proposition 8.3. If R is left Noetherian, then every finitely generated left
R-module is Noetherian.

Proof. A finitely generated free left R-module F is the direct sum F = R(n) of
n copies of RR and is Noetherian, by induction on n : R(1) = RR is Noetherian,
and if R(n) is Noetherian, then so is R(n+1) by 8.2, since R(n) ⊆ R(n+1) and
R(n+1)/R(n) ∼= RR are Noetherian. If now M is a finitely generated left R-mod-
ule, then M ∼= F/N for some finitely generated free R-module F and submodule
N of F , by 4.6, and M is Noetherian, by 8.2. �

Artinian modules. Applied to the submodules of a left R-module M , the
descending chain condition or d.c.c. has three equivalent forms:
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(a) every infinite descending sequence A1 ⊇ · · · ⊇ An ⊇ An+1 ⊇ · · · of submo-
dules of M terminates: there exists N > 0 such that An = AN for all n � N ;

(b) there is no infinite strictly descending sequence A1 � · · · � An � An+1 �

· · · of submodules of M ;

(c) every nonempty set S of submodules of M has a minimal element (an element
S of S such that there is no S � A ∈ S ).

Readers will prove the equivalence of (a), (b), and (c), as in Section III.11, by
reversing inclusions; again, a more general proof is given in Section A.1.

Definitions. A module is Artinian when its submodules satisfy the descending
chain condition. A ring R is left Artinian when the module RR is Artinian. A ring
R is right Artinian when the module RR is Artinian.

Equivalently, R is left (right) Artinian when its left (right) ideals satisfy the
descending chain condition. Artinian rings and modules are named after Emil
Artin, who pioneered the use the d.c.c. in rings. Finite abelian groups are Artinian
Z-modules; the next chapter has examples of Artinian rings. The following prop-
erties make fine exercises:

Proposition 8.4. If N is a submodule of a module M , then M is Artinian if
and only if N and M/N are Artinian.

Proposition 8.5. If R is left Artinian, then every finitely generated left R-module
is Artinian.

Modules of finite length. We saw in Section 2 that the isomorphism theorems
for groups extend to every module. So does the Jordan-Hölder theorem. Rather
than repeating proofs, we only sketch the main results, and leave the details to our
more intrepid readers.

In a module, normal series are replaced by finite chains of submodules, also
called series. The length of a series A0 � A1 � · · · � An is its number n of
intervals; its factors are the quotient modules Ai/Ai−1 . A refinement of a series
is a series that contains it (as a set of submodules). Two series are equivalent when
they have the same length and, up to isomorphism and order of appearance, the
same factors. Schreier’s theorem has a module form:

Theorem 8.6. Any two series of a module have equivalent refinements.

A composition series of a module M is a finite chain of submodules that is also
a maximal chain of submodules (has no proper refinement). Not every module
is blessed with a composition series. But modules that are so blessed, are also
blessed with a Jordan-Hölder theorem:

Theorem 8.7. Any two composition series of a module are equivalent.

Definition. A module M is of finite length when it has a composition series;
then the length of M is the common length of all its composition series.
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For example, finite abelian groups are of finite length as Z-modules. Modules
with compositions series also turn up in the next chapter.

Proposition 8.8. The following conditions on a module M are equivalent:

(1) M is both Noetherian and Artinian;

(2) every chain of submodules of M is finite;

(3) M is of finite length ( M has a composition series).

Then (4) all chains of submodules of M have length at most n , where n is the
length of M .

Proof. (1) implies (2). Suppose that M is Artinian and contains an infinite
chain C of submodules. Since M is Artinian, C has a minimal element A1 ,
which is in fact the least element of C since C is a chain. Then C\{A1} is
an infinite chain and has a least element A2 � A1 . Continuing thus builds up
an infinite strictly ascending sequence of submodules of M . Therefore, if M is
Artinian and Noetherian, then every chain of submodules of M is finite.

(2) implies (3). The union of a chain (Ci )i∈I of chains Ci of submodules of
M is a chain of submodules: if A, B ∈

⋃

i∈I Ci , then A, B ∈ Ci for some i , and
A ⊆ B or B ⊆ A . By Zorn’s lemma, M has a maximal chain of submodules,
which is a composition series if (2) holds.

(3) implies (4) and (2). Let n be the length of a composition series. By
Schreier’s theorem, any series of M and the composition series have equivalent
refinements; hence every series of M can be refined to a composition series.
Therefore every finite chain of submodules of M has length at most n , and there
cannot be an infinite chain of submodules.

(2) implies (1). An infinite strictly ascending or descending sequence of sub-
modules would contradict (2). �

Modules of finite length have another property. A module M is indecomposable
when M =/ 0 and M has no proper direct summand; equivalently, when M =/ 0,
and M = A ⊕ B implies A = 0 or B = 0.

Proposition 8.9. Every module of finite length is a direct sum of finitely many
indecomposable submodules.

This is proved like II.2.2, a fun exercise for our readers. More courageous
readers will wade through the proof of the Krull-Schmidt theorem (Theorem
II.2.3) and adapt it to prove the module version, which is a uniqueness property
for Proposition 8.9:

Theorem 8.10. If a module M of finite length is a direct sum

M = A1 ⊕ A2 ⊕ · · · ⊕ Am = B1 ⊕ B2 ⊕ · · · ⊕ Bn

of indecomposable submodules A1, . . . , Am and B1, . . . , Bn , then m = n and
B1, . . ., Bn can be indexed so that Bi

∼= Ai for all i � n and, for all k < n ,

M = A1 ⊕ · · · ⊕ Ak ⊕ Bk+1 ⊕ · · · ⊕ Bn .
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Exercises
In the following exercises, all rings have an identity element and all modules are unital. Prove
the following:

1. A module M is Noetherian if and only if every submodule of M is finitely generated.

2. Every submodule of a Noetherian module is Noetherian.

3. Every quotient module of a Noetherian module is Noetherian.

4. Every submodule of an Artinian module is Artinian.

5. Every quotient module of an Artinian module is Artinian.

6. If N is a submodule of M , and N , M/N are Artinian, then M is Artinian.

7. If R is a left Artinian ring, every finitely generated left R-module is Artinian.

8. Let E be an infinite extension of a field K . Let R be the set of all matrices
(
α β
0 c

)
with

α, β ∈ E and c ∈ K . Show that R is a subring of M2(E) . Show that R is left Noetherian
and left Artinian, but is neither right Noetherian nor right Artinian.

9. A direct sum of finitely many left R-modules of finite length is a left R-module of finite
length.

10. Every finitely generated torsion module over a PID is of finite length.

*11. Any two series of a module have equivalent refinements.

12. Any two composition series of a module are equivalent (use the previous exercise).

13. Every module of finite length is a direct sum of finitely many indecomposable submod-
ules.

14. If R is a PID, then RR is indecomposable, and R/Rpk is indecomposable when
p ∈ R is prime and k > 0 .

*15. Prove the module version of the Krull-Schmidt theorem.

9. Gröbner Bases

Gröbner bases of ideals of K [X1, ..., Xn] were seen in Section III.12. Similar
bases are readily found for submodules of finitely generated free modules over
K [X1, ..., Xn] . Applications include a test for membership in a submodule, given
some generators; the determination of all linear relations between these generators;
and, in Chapter XII, effective computation of free resolutions. We have omitted
some proofs that nearly duplicate similar proofs in Section III.12.

Monomial orders. In what follows, K is a field, R = K [X1, ..., Xn] , and
F is a free R-module with a finite basis E = { ε1, . . ., εr } . A monomial of F
is an element Xmεj of F , where Xm is a monomial of R and εj ∈ E . For
instance, K [X1, ..., Xn] is a free R-module, with basis {1} ; its monomials are the
usual monomials. In general, the elements of F resemble polynomials in that they
are linear combinations, with coefficients in K , of monomials of F . We denote
monomials of F by Greek letters α, β, . . . .
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Definition. A monomial order on F over a monomial order < on K [X1,

..., Xn] is a total order on the monomials of F such that Xa < Xb implies
Xaα < Xbα , and α < β implies Xmα < Xmβ .

Monomial orders on F are readily constructed from monomial orders on R :

Proposition 9.1. Let < be a monomial order on K [X1, ..., Xn] . A monomial
order on F is defined by Xaεi < Xbεj if and only if either Xa < Xb in

K [X1, ..., Xn] , or Xa = Xb and i < j .

The proof is an exercise. Note that, in any monomial order, α � β whenever
α = Xmβ is a multiple of β .

Proposition 9.2. Every monomial order on F satisfies the descending chain
condition.

This is proved like Proposition III.12.2, using the following lemma.

Lemma 9.3. An submodule of F that is generated by a set S of monomials is
generated by a finite subset of S .

Proof. First, F is a Noetherian module, by 8.3. Hence the submodule M
generated by S is generated by finitely many f1, . . ., ft ∈ F . Every nonzero
term of fi is a multiple of some σ ∈ S . Let T be the set of all σ ∈ S that divide
a nonzero term of some fi . Then T ⊆ S is finite and the submodule generated
by S is all of M , since it contains every fi . �

Gröbner bases. In all that follows we assume that F has a monomial order,
which is used in all subsequent operations.

Definitions. Let f =
∑

α aαα ∈ F , f =/ 0 . The leading monomial of f is the
greatest monomial ldm f = λ such that aλ =/ 0 ; then the leading coefficient of f
is ldc f = aλ and the leading term of f is ldt f = aλλ .

Other notations, for instance, in ( f ) , are in use for ldt f . An element of F
can now be divided by several others; as before, the results are not unique.

Proposition 9.4. Let f, g1, . . ., gk ∈ F , g1, . . ., gk =/ 0 . There exist
q1, . . ., qk ∈ K [X1, ..., Xn] and r ∈ F such that

f = q1g1 + · · · + qk gk + r,

ldm (qi gi ) � ldm f for all i , ldm r � ldm f , and none of ldm g1 , . . . , ldm gk
divides a nonzero term of the remainder r .

This is proved like Proposition III.12.4. Division in K [X1, ..., Xn] is a partic-
ular case.

The membership problem for submodules of F is, does f ∈ F belong to
the submodule generated by g1, . . ., gk ∈ F ? We saw in Section III.12 that
unbridled division does not provide a reliable test for membership. This is where
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Gröbner bases come in: as in Chapter III, division by a Gröbner basis is a good
membership test (see Proposition 9.6 below).

Definition. Let M be a submodule of F . Let ldm M be the submodule of
F generated by all ldm f with f ∈ M . Nonzero elements g1, . . ., gk of F
constitute a Gröbner basis of M (relative to the given monomial order) when
g1, . . ., gk generate M and ldm g1, . . ., ldm gk generate ldm M .

Proposition 9.5. Let M be a submodule of F . If g1, . . . , gk ∈ M and
ldm g1, . . ., ldm gk generate ldm M , then g1, . . . , gk is a Gröbner basis of M .

Proof. We need only show that g1, . . ., gk generate M . Let f ∈ M . By 9.4,
f =
∑

i qi gi + r , where none of ldm g1 , . . . , ldm gk divides a nonzero term of
r . Then r = 0: otherwise, r ∈ M , ldm r ∈ ldm M , ldm r =

∑

i pi ldm gi for
some p1, . . ., pk ∈ K [X1, ..., Xn] , ldm r must appear in some pi ldm gi , and
ldm r is a multiple of ldm gi . �

Proposition 9.6. Let g1, . . ., gk be a Gröbner basis of a submodule M of F .
All divisions of f ∈ F by g1, . . . , gk yield the same remainder r , and f ∈ M if
and only if r = 0 .

Proof. This is proved like Proposition III.12.5. Let r be the remainder in a
division of f by g1, . . . , gk . If r = 0, then f ∈ M . Conversely, if f ∈ M ,
then r = 0: otherwise, r ∈ M , ldm r ∈ ldm M is a linear combination of
ldm g1, . . ., ldm gk , and ldm r is a multiple of some ldm gj . If now r1 and r2
are remainders in divisions of any f ∈ F by g1, . . ., gk , then r1 − r2 ∈ M , and
no ldm gj divides a nonzero term of r1 − r2 . As above, this implies r1 − r2 = 0:
otherwise, r1 − r2 ∈ M , ldm (r1 − r2) ∈ ldm M is a linear combination of
ldm g1, . . ., ldm gk , and ldm (r1 − r2) is a multiple of some ldm gj . �

Buchberger’s algorithm. We now give an effective procedure, which con-
structs a Gröbner basis of a submodule from any finite set of generators. First we
extend Buchberger’s criterion to F .

In F , two monomials α = Xaεi and β = Xbεj have a common monomial
multiple if and only if εi = εj . Thus the least common multiple of α = Xaεi and

β = Xbεj is defined if and only if εi = εj (if and only if α and β are multiples of

the same εi ), and then lcm (α, β) = lcm (Xa, Xb) εi .

Proposition 9.7 (Buchberger’s Criterion). Let g1, . . ., gk =/ 0 generate a sub-
module M of F . For all i, j such that λi j = lcm (ldm gi , ldm gj ) is defined, let
di, j = (λi j/ldt gi ) gi − (λi j/ldt gj ) gj and let ri, j be the remainder in a division
of di, j by g1, . . ., gk . Then g1, . . ., gk is a Gröbner basis of M if and only if
ri, j = 0 for all possible i < j , and then ri, j = 0 for all possible i, j .

Proof. We may assume that ldc g1 = · · · = ldc gk = 1, since the submodules
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M and ldm M generated by g1, . . . , gk and ldm g1, . . ., ldm gk do not change
when g1, . . ., gk are divided by their leading coefficients.

If g1, . . ., gk is a Gröbner basis of M , then ri, j = 0 by 9.6, since di, j ∈ M .

The converse follows from two properties of di, j . Let ldt gi = λi , so that
di, j = (λi j/λi ) gi − (λi j/λj ) gj , when λi j is defined.

(1) If g′i = Xti gi , g′j = Xtj gj , and λ′i j = lcm (Xti λi , Xtj λj ) , then

d ′
i, j = (λ′i j/ldt g′i ) g′i − (λ′i j/ldt g′j ) g′j

= (λ′i j/Xti λi ) Xti gi − (λ′i j/Xtj λj ) Xtj gj = (λ′i j/λi j ) di, j .

(2) If ldm gi = λ for all i and ldm (a1g1 + · · · + ak gk) < λ , where
a1, . . ., ak ∈ K and k � 2, then di, j = gi − gj for all i, j � k and

a1g1 + · · · + ak gk

= a1 (g1 − g2) +(a1 + a2) (g2 − g3) + · · · + (a1 + · · · + ak−1) (gk−1 − gk)
+ (a1 + · · · + ak) gk

= a1 d1,2 + (a1 + a2) d2,3 + · · · + (a1 + · · · + ak−1) dk−1, k,

since ldm (a1g1 + · · · + ak gk) < λ implies a1 + · · · + ak = 0.

Now, assume that ri j = 0 for all possible i < j . Then ri, j = 0 for all possible
i and j , since di,i = 0 and d j,i = −di, j . Every nonzero f ∈ M is a linear
combination f = p1g1 + · · · + pk gk with coefficients p1, . . ., pk ∈ R . Let µ be
the greatest ldm (pj gj ) . By 9.3, every nonempty set of monomials of F has a
minimal element. Choose p1, . . ., pk so that µ is minimal.

Suppose that µ does not appear in f . Number g1, . . ., gk so that µ is the
leading monomial of the first products p1g1 , . . . , ph gh . Then k � 2: otherwise, µ

is not canceled in the sum p1g1 + · · · + pk gk . Also ldm (p1g1 + · · · + pk gk) < µ ,
since µ does not appear in f or in pk+1gk+1 + · · · + pk gk .

Let ldt pj = aj Xtj (in the underlying monomial order on R ) and g′j = Xtj gj .
Then ldm g′j = ldm (pj gj ) ; hence ldm g′j = µ for all j � h and ldm (a1g′1 +
· · · + ah g′h) < µ . By (2) and (1),

a1g′1 + · · · + ah g′h = c1d ′
1,2 + · · · + ch−1d ′

h−1, h

for some c1, . . . , ch−1 ∈ K , where

d ′
i, j = g′i − g′j = (µ/λi j ) di, j .

Note that ldm d ′
i, j < µ when i < j � h , since ldm g′i = ldm g′j = µ . By the

hypothesis, every di, j can be divided by g1, . . ., gk with zero remainder when
i < j ; so can d ′

i, j and c1d ′
1,2 + · · · + ck−1d ′

h−1, h , and 9.4 yields

a1 Xt1 g1 + · · · + ah Xth gh = c1d ′
1,2 + · · · + ch−1d ′

h−1, h = q ′
1g1 + · · · + q ′

k gk ,
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where q ′
1, . . ., q ′

k ∈ R and ldm (q ′
i gi ) � µ for all i , since ldm (c1d ′

1,2 + · · · +
ch−1d ′

h−1, h) < µ . Since aj Xtj = ldt pj this implies

p1g1 + · · · + ph gh = q1g1 + · · · + qk gk,

where q1, . . . , qk ∈ R and ldm (qi gi ) < µ for all i . Then

f = p1g1 + · · · + ph gh + · · · + pk gk = p′1g1 + · · · + p′k gk ,

where p′1, . . . , p′k ∈ R and ldm (p′i gi ) < µ for all i , contradicting the minimal-
ity of µ . Therefore µ appears in f .

Every nonzero f ∈ M is now a linear combination f = p1g1 + · · · + pk gk in
which ldm (pj gj ) � ldm f for all j . Then ldt f is a linear combination of those
ldt (pj gj ) such that ldm (pj gj ) = ldm f , and ldm f is a linear combination of
ldm g1, . . ., ldm gk . Thus ldm g1, . . ., ldm gk generate ldm M . �

Proposition 9.8 (Buchberger’s Algorithm). Let g1, . . ., gk =/ 0 generate a
submodule M of F . Compute a sequence B of elements of F as follows. Start
with B = g1, . . . , gk . Compute all polynomials ri, j with i < j of B as in 9.7
and add one ri, j =/ 0 to B in case one is found. Repeat until none is found. Then
B is a Gröbner basis of M .

Proof. Let L be the submodule generated by ldm g1, . . ., ldm gk . Since
ri, j is the remainder of some di, j ∈ M in a division by g1, . . ., gk we have
ri, j ∈ M , but, if ri, j =/ 0, then no ldm gt divides ldm ri, j and ldm ri, j /∈ L .
Hence L increases with each addition to B . Therefore the procedure terminates
after finitely many additions; then B is a Gröbner basis of M , by 9.7. �

Syzygies. A syzygy of g1, . . . , gk ∈ F is a formal linear relation between
g1, . . ., gk , with coefficients in R . In detail, let G be the free R-module with
basis ζ1, . . . , ζk . Let ψ : G −→ F be the module homomorphism such that
ψζi = gi for all i , ψ

(∑

i pi ζi
)

=
∑

i pi gi . A syzygy of g1, . . ., gk is an
element of Ker ψ , and Ker ψ is the syzygy submodule of g1, . . . , gk . Thus
∑

i pi ζi is a syzygy of g1, . . . , gk if and only if
∑

i pi gi = 0.

Syzygies of monomials are readily found:

Lemma 9.9. The syzygy submodule S of monomials α1, . . ., αk ∈ F is
generated by all si, j = (λi j/αi ) ζi − (λi j/αj ) ζj , where λi j = lcm (αi , αj ) .

Proof. First, si, j ∈ S , since (λi j/αi )αi − (λi j/αj )αj = 0.

For every monomial γ of F let

Sγ = {
∑

h ah Xmh ζh ∈ S
∣
∣ γ = Xmh αh, ah ∈ K }.

We show that S =
∑

γ Sγ . Let s =
∑

h ph ζh ∈ S , so that
∑

h ph αh = 0. In
∑

h ph αh , the coefficients of every γ add to 0: if ph =
∑

m ah,m Xm , then
∑

h
(∑

m (ah,m Xmαh
∣
∣ Xmαh = γ )

)

= 0
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and sγ =
∑

h
(∑

m (ah,m Xm ∣∣ Xmαh = γ )
)

ζh ∈ Sγ . Then s =
∑

γ sγ . Thus
S =
∑

γ Sγ . (In fact, this is a direct sum.)

To conclude the proof we show that every s =
∑

h ah Xmh ζh ∈ Sγ is a linear
combination of si, j ’s. The proof is by induction on the number of nonzero terms
of s . Let s =/ 0. Since

∑

h ah Xmh αh = 0 there exists i =/ j such that ai , aj =/ 0
and Xmi αi = Xmj αj . Then λi j exists and γ = Xmi αi = Xmj αj is a multiple of
λi j . Hence Xmi is a multiple of λi j/αi , Xmi = βλi j/αi , and s − aiβsi, j has
fewer nonzero terms than s . �

In general, the computations in Buchberger’s algorithm yield syzygies of
g1, . . ., gk ∈ F : when λi j exists, then ri, j is the remainder in a division

(λi j/ldt gi ) gi − (λi j/ldt gj ) gj = di, j =
∑

h qi, j,h gh + ri, j ,

where ldm (qi, j,h gh) � ldm di, j for all h , by 9.4. If ri, j = 0, then

si, j = (λi j/ldt gi ) ζi − (λi j/ldt gj ) ζj −
∑

h qi, j,h ζh

is a syzygy.

Theorem 9.10 (Schreyer [1980]). Let g1, . . . , gk be a Gröbner basis of a
submodule M of F . Let G be the free R-module with basis ζ1, . . ., ζk . The
syzygy submodule S of g1, . . ., gk is generated by all

si, j = (λi j/ldt gi ) ζi − (λi j/ldt gj ) ζj −
∑

h qi, j,h ζh

such that i < j and λi j exists; in fact, these elements constitute a Gröbner basis

of S relative to the monomial order on G in which Xaζi < Xbζj if and only if

either ldm (Xagi ) < ldm (Xbgj ) , or ldm (Xagi ) = ldm (Xbgj ) and i > j .

Proof. Readers will verify that < is a monomial order on G .

For the rest of the proof we may assume that g1, . . ., gk are monic. Indeed, let
ah be the leading coefficient of gh . Then g′h = a−1

h gh is monic, and
∑

h ph gh = 0
if and only if

∑

h ah ph g′h = 0: the syzygy submodule S′ of g′1, . . . , g′k is the
image of S under the automorphism θ :

∑

h fh ζh �−→
∑

h ah fh ζh of G . We see
that θsi, j = s′i, j , and that g1, . . . , gk and g′1, . . ., g′k induce the same monomial
order on G . Hence the si, j with i < j constitute a Gröbner basis of S if and
only if the s′i, j with i < j constitute a Gröbner basis of S′ .

Therefore we may assume that g1, . . . , gk are monic. Then

di, j = (λi j/ldm gi ) gi − (λi j/ldm gj ) gj

and

si, j = (λi j/ldm gi ) ζi − (λi j/ldm gj ) ζj −
∑

h qi, j,h ζh .
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Let λi j exist, where i < j . In F , (λi j/ldm gi ) gi and (λi j/ldm gj ) gj have the
same leading monomial λi j , which is greater than the remaining monomials of gi
and gj . Hence ldm di, j < λi j and ldm (qi, j,h gh) � ldm di, j < λi j for all h .
Since i < j it follows that ldm si, j = (λi j/ldm gi ) ζi .

Let s =
∑

h ph ζh =/ 0 be a syzygy, so that p1, . . ., pk ∈ R and
∑

h ph gh = 0.
Then ldm s = ldm piζi for some i . Let H be the set of all h � k such that
ldm ph gh = ldm pi gi in F . If h ∈ H , then h � i : otherwise, ldm ph ζh >

ldm pi ζi , whereas ldm pi ζi = ldm s ; thus i is the least element of H . If
h /∈ H , then similarly ldm ph gh =/ ldm pi gi , and ldm ph gh < ldm pi gi .
Hence

∑

h∈H ldm ph ldm gh = 0: otherwise,
∑

h ph gh =/ 0.

This yields a syzygy t =
∑

h∈H ldm ph ζh of the monomials ldm gh with h ∈
H . By 9.9, t belongs to the submodule of G generated by all (λ jh/ldm gj ) ζj −
(λ jh/ldm gh) ζh with j > h ∈ H . We have ldm t = ldm pi ζi = ldm s , since
ldm ph gh = ldm pi gi and h � i for all h ∈ H , and ldm t is a multiple of

ldm
(

(λ jh/ldm gj ) ζj − (λ jh/ldm gh) ζh
)

= (λ jh/ldm gh) ζh

for some j > h ; hence h = i and ldm s = ldm t is a multiple of ldm si, j =
(λi j/ldm gj ) ζj for some j > i . Thus the monomials ldm si, j with i < j
generate ldm S ; since si, j ∈ S , the si, j with i < j constitute a Gröbner basis of
S , by 9.7. �

Example. In Example III.12.9 we saw that g1 = XY − X , g2 = Y − X2 ,
g3 = X3 − X constitute a Gröbner basis of the ideal of C[X, Y ] generated by g1
and g2 , relative to the lexicographic order with Y > X on C[X, Y ] . We saw that

ldt g1 = XY, ldt g2 = Y, ldt g3 = X3,

and

d1,2 = g1 − Xg2 = X3 − X = g3,

d1,3 = X2g1 − Y g3 = XY − X3 = g1 − g3,

d2,3 = X3g2 − Y g3 = XY − X5 = g1 − (X2 + 1) g3.

By 9.10,

s1,2 = ζ1 − Xζ2 − ζ3,

s1,3 = (X2ζ1 − Y ζ3) − (ζ1 − ζ3) = (X2 − 1) ζ1 − (Y − 1) ζ3,

s2,3 = (X3ζ2 − Y ζ3) −
(

ζ1 − (X2 + 1) ζ3
)

= − ζ1 + X3ζ2 − (Y − X2 − 1) ζ3

generate all syzygies of g1, g2, g3 . In other words, every relation p1 g1 +
p2 g2 + p3 g3 = 0, where p1, p2, p3 ∈ C[X, Y ] , is a consequence of the
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relations
g1 − Xg2 − g3 = 0,

(X2 − 1) g1 − (Y − 1) g3 = 0, and

− g1 + X3g2 − (Y − X2 − 1) g3 = 0.

In fact, s1,2, s1,3, s2,3 is a Gröbner basis of the syzygy submodule of g1, g2, g3
for a suitable monomial order.

The syzygies of g1 and g2 are found by eliminating g3 . We saw that g3 =
g1 − Xg2 . Hence every relation p1 g1 + p2 g2 = 0, where p1, p2 ∈ C[X, Y ] ,
is a consequence of the relations g1 − Xg2 − (g1 − Xg2) = 0, (X2 − 1) g1 −
(Y − 1)(g1 − Xg2) = 0, and −g1 + X3g2 − (Y − X2 − 1) (g1 − Xg2) = 0;
equivalently, of (X2 − Y ) g1 − (XY − X) g2 = 0. (This is not surprising, since
g1 and g2 are relatively prime in C[X, Y ] .) Equivalently, the syzygies of g1 and
g2 are generated by

ζ1 − Xζ2 − (ζ1 − Xζ2) = 0,

(X2 − 1) ζ1 − (Y − 1), (ζ1 − Xζ2) = (X2 − Y ) ζ1 − (XY − X) ζ2, and

−ζ1 + X3ζ2 − (Y − X2 − 1) (ζ1 − Xζ2) = (Y − X2) ζ1 + (XY − X) ζ2.

Exercises
In the following exercises, K is a field, R = K [X1, ..., Xn] , and F is a free R-module with
a finite basis ε1, . . . , εr .

1. Let M and N be submodules of F generated by monomials α1, . . . , αk and
β1, . . . , β� . Show that M ∩ N is generated by all lcm (αi , βj ) .

2. Let M be a submodule of F generated by monomials α1, . . . , αk . Let Xm ∈ R . Find
generators of { f ∈ F

∣
∣ Xm f ∈ M } .

3. Let < be a monomial order on R . Show that the relation Xaεi < Xbεj if and only if
either Xa < Xb in R , or Xa = Xb and i < j , is a monomial order on F over < .

4. Let < be a monomial order on R . Show that the relation Xaεi < Xbεj if and only if
either i < j , or i = j and Xa < Xb in R , is a monomial order on F over < .

5. Show that every monomial order on F satisfies the descending chain condition.

6. Let < be a monomial order on F and let g1, . . . , gk ∈ F , g1, . . . , gk =/ 0 . Let G
be the free R-module with basis ζ1, . . . , ζs . Show that a monomial order on G is defined
by Xaζi < Xbζj if and only if either ldm (Xa gi ) < ldm (Xbgj ) , or ldm (Xa gi ) =
ldm (Xbgj ) and i > j .

7. Given a monomial order on F , prove the following: for every f, g1, . . . , gk ∈ F ,
g1, . . . , gk =/ 0 , there exist q1, . . . , qk ∈ R and r ∈ F such that f = q1g1 + · · · + qk gk +
r , ldm (qi gi ) � ldm f for all i , ldm r � ldm f , and none of ldm g1 , . . . , ldm gk
divides a nonzero term of r .

8. Without using Buchberger’s algorithm, show that, relative to any monomial order on F ,
every submodule of F has a Gröbner basis. (You may be inspired by the proof of Proposition
III.12.6.)
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9. Let < be a monomial order on F and let M be the submodule of F generated by
g1, . . . , gk ∈ F , g1, . . . , gk =/ 0 . Suppose that f ∈ M if and only if, in any division of f
by g1, . . . , gk (using the given monomial order) the remainder is 0 . Show that g1, . . . , gk
is a Gröbner basis of M .

In the following exercises, K = C ; use the lexicographic order with Y > X .

10. Find all syzygies of the polynomials 2XY 2 + 3X + 4Y 2 , Y 2 − 2Y − 2 , XY . (First
find a Gröbner basis.)

11. Find all syzygies of the polynomials 2XY 2 + 3X + 4Y 2 , Y 2 − 2Y − 2 , X2Y . (First
find a Gröbner basis.)



IX
Semisimple Rings and Modules

The main result of this chapter is the Artin-Wedderburn theorem, which con-
structs the rings traditionally called semisimple Artinian. Wedderburn called a
ring semisimple when it has no nonzero nilpotent ideal and considered in [1907]
the particular case of finite-dimensional ring extensions of C . Artin [1927] showed
that Wedderburn’s result depends only on the descending chain condition; this gave
birth to noncommutative ring theory.

We follow current terminology, which increasingly calls semisimple Artinian
rings just “semisimple”. Sections 1,2,3 give the module proof of the Artin-
Wedderburn theorem, and Sections 5,6 connect it with the nil and Jacobson
radicals. Sections 7,8,9 are a brief introduction to representations of finite groups,
and, like Section 4 on primitive rings, may be skipped.

In this chapter, all rings have an identity element and all modules are unital.
Exercises indicate how this restriction can be removed from the Artin-Wedderburn
theorem.

1. Simple Rings and Modules

Simple R-modules occur as factors of composition series and are readily con-
structed from R . This section also studies a class of simple rings: matrix rings
over a division ring.

Definition. A module S is simple when S =/ 0 and S has no submodule
M =/ 0, S . �

For example, an abelian group is simple as a Z-module if and only if it is simple
as a group, if and only if it is cyclic of prime order. A vector space is simple if and
only if it has dimension 1.

Simple R-modules are readily constructed from R :

Proposition 1.1. A left R-module is simple if and only if it is isomorphic to

RR/L for some maximal left ideal L of R .

Proof. A simple module is necessarily cyclic, generated by any nonzero ele-
ment. If M is cyclic, M ∼= RR/L for some left ideal L of R , the submodules
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of M correspond to the submodules L ⊆ L ′ ⊆ R of RR ; hence M is simple if
and only if L is maximal. �

When M is a left R-module, we denote by EndR(M) the ring of all module
endomorphisms of M , written on the left.

Proposition 1.2 (Schur’s lemma). If S and T are a simple left R-modules, then
every homomorphism of S into T is either 0 or an isomorphism. In particular,
EndR(S) is a division ring.

Proof. If ϕ : S −→ T is not 0, then Ker ϕ � S and 0 � Im ϕ ⊆ T , whence
Ker ϕ = 0, Im ϕ = T , and ϕ is an isomorphism. In particular, every nonzero
endomorphism of S is a unit in the endomorphism ring EndR(S) . �

Simple modules can also be constructed from minimal left ideals, when there
are enough of the latter.

Definition. A left ideal L of a ring R is minimal when L =/ 0 and there is no
left ideal 0 � L ′

� L ; equivalently, when L is simple as a left R-module.

Proposition 1.3. If S is a simple left R-module, L is a minimal left ideal of
R , and L S =/ 0 , then S ∼= L . If R is a sum of minimal left ideals (Li )i∈I , then
every simple left R-module is isomorphic to some Li .

Proof. If L S =/ 0, then Ls =/ 0 for some s ∈ S , � �−→ �s is a nonzero homo-
morphism of L into S , and L ∼= S by 1.2. Now, let R =

∑

i∈I Li be a sum of
minimal left ideals Li . If Li S = 0 for all i , then S = RS =

∑

i∈I Li S = 0; but
S =/ 0, since S is simple; therefore S ∼= Li for some i . �

Matrix rings provide the first nontrivial examples of simple rings.

Definition. A ring R [with identity] is simple when R =/ 0 and R has no
two-sided ideal I =/ 0, R .

Fields and division rings are simple (as rings, not in real life). Rings Mn(R)
of n × n matrices provide other examples, due to the following property.

Proposition 1.4. Every two-sided ideal of Mn(R) has the form Mn(I ) for some
unique two-sided ideal I of R .

Proof. If I is an ideal of R , then Mn(I ) , which consists of all matrices with
entries in I , is an ideal of Mn(R) . Conversely, let J be an ideal of Mn(R) . Let
I be the set of all (1, 1) entries of matrices in J . Then I is an ideal of R . We
show that J = Mn(I ) .

Let Ei j be the matrix whose (i, j) entry is 1 and all other entries are 0.
Then Ei j AEk� = a jk Ei� for every A = (ai j ) ∈ Mn(R) . Hence A ∈ J implies
ai j E11 = E1i AE j1 ∈ J and ai j ∈ I for all i, j ; thus J ⊆ Mn(I ) . Conversely,
if r ∈ I , then r = c11 for some C = (ci j ) ∈ J , and r Ei j = Ei1C E1 j ∈ J for all
i, j ; hence A = (ai j ) ∈ Mn(I ) implies A =

∑

i, j ai j Ei j ∈ J . �
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Corollary 1.5. If D is a division ring, then Mn(D) is simple.

The exercises give other examples of simple rings.

Proposition 1.6. For every ring R , Mn(R)op ∼= Mn(Rop) .

Proof. Matrices A, B over a field can be transposed, and then (AB)t = Bt At .
Matrices A, B over an arbitrary ring R can also be transposed, and if At , Bt

are regarded as matrices over Rop , then (AB)t = Bt At still holds. In particular,
A �−→ At is an isomorphism of Mn(R)op onto Mn(Rop) . �

Proposition 1.7. If D is a division ring, then Mn(D) is a direct sum of n
minimal left ideals; hence Mn(D) is left Noetherian and left Artinian.

By Proposition 1.6, Mn(D) is also right Noetherian and right Artinian.

Proof. Let Li be the set of all n × n matrices M ∈ Mn(D) whose entries
are all 0 outside the ith column. We see that Li is a left ideal of Mn(D) and
that Mn(D) =

⊕

i Li . Readers will verify that Li is a minimal left ideal. Hence
Mn(D) (as a left module over itself) has a composition series

0 � L1 � L1 ⊕ L2 � · · · � L1 ⊕ · · · ⊕ Ln = Mn(D). �
Proposition 1.8. If R = Mn(D) , where D is a division ring, then all simple

left R-modules are isomorphic; every simple left R-module S is faithful and has
dimension n over D ; moreover, EndR(S) ∼= Dop .

Proof. Identify D with the subring of R = Mn(D) that consists of all scalar
matrices (scalar multiples of the identity matrix). Then every left R-module
becomes a D-module. In particular, every left ideal of R is a D-module, on which
D acts by scalar multiplication. Let Li be the set of all n × n matrices whose
entries are all 0 outside the ith column. Let Ei j denote the matrix whose (i, j)
entry is 1 and all other entries are 0. Then E1i , . . ., Eni is a basis of Li over D .
We saw that Li is a minimal left ideal of R , and that R =

⊕

i Li . By 1.3, every
simple left R-module is isomorphic to some Li .

For every matrix A ∈ Mn(D) we have AEi j ∈ Lj , and the j-column of AEi j
is the ith column of A . Hence A �−→ AEi j is an isomorphism Li

∼= Lj (of left
R-modules). Moreover, if AB = 0 for every B ∈ Lj , then AEi j = 0 for all i ,
every column of A is 0, and A = 0; thus Lj is a faithful R-module.

If d ∈ D , then right multiplication by [the scalar matrix] d is an
R -endomorphism ηd : A �−→ Ad of L1 , since (AB) d = A(Bd) for all A
and B . Conversely, let η ∈ EndR(L1) . Let d be the (1, 1) entry of ηE11 . For
all A ∈ L1 , ηA = η(AE11) = A ηE11 = Ad . Hence d �−→ ηd is a bijection of
D onto EndR(L1) . We see that ηdd′ = ηd′ ◦ ηd . Thus EndR(L1) ∼= Dop . �

Proposition 1.9. Let D and D′ be division rings. If Mn(D) ∼= Mn′(D′) , then
n = n′ and D ∼= D′ .

Proof. Let R = Mn(D) and R′ = Mn′(D′) . By 1.7, RR is of length n ;
therefore R′ R′ is of length n and n = n′ . If θ : R′ −→ R is an isomorphism,
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then a simple left R-module S is also a simple left R′-module, in which r ′x =
θ(r ′) x for all x and r ′ ; then the R-endomorphisms of S coincide with its
R′-endomorphisms. By 1.8, D ∼= EndR(S)op = EndR′(S)op ∼= D′ . �

Exercises
1. Show that the following properties are equivalent for a ring R [with identity]: (i) RR is

simple; (ii) RR is simple; (iii) R is a division ring.

2. Show that Mm
(

Mn(R)
)
∼= Mmn(R) .

3. Let D be a division ring. Show that the set Li of all n × n matrices M ∈ Mn(D)
whose entries are all 0 outside the ith column is a minimal left ideal of Mn(D) .

4. Let D be a division ring and let Rn = M2n (D) . Identify a 2n × 2n matrix M ∈ Rn

with the 2n+1 × 2n+1 matrix
(M 0
0 M

)
∈ Rn+1 , so that Rn becomes a subring of Rn+1 .

Show that R =
⋃

n>0 Rn is simple. Show that R is not left Artinian.

5. Let V be an infinite-dimensional vector space over a division ring D . Let
R = EndD(V ) and let F be the two-sided ideal of all linear transformations of V of
finite rank. Show that R/F is simple. Show that R/F is not left Artinian.

2. Semisimple Modules

A semisimple R-module is a direct sum of simple modules. These modules are
readily constructed from R and have interesting properties.

Definition. Semisimple modules are defined by the following equivalent con-
ditions.

Proposition 2.1. For a module M the following properties are equivalent:

(1) M is a direct sum of simple submodules;

(2) M is a sum of simple submodules;

(3) every submodule of M is a direct summand.

Proof. (1) implies (2).

(2) implies (1) and (3). Let M be a sum M =
∑

i∈I Si of simple submodules
Si . Let N be a submodule of M . Let S be the set of all subsets J of I such that
the sum N +

∑

i∈J Si is direct; equivalently, such that N ∩
∑

i∈J Si = 0 and
Si ∩

(

N +
∑

j∈J, j=/ i Sj
)

= 0 for all i ∈ J . Then Ø ∈ S . Moreover, the union
of a chain of elements of S is an element of S , since x ∈

∑

i∈J Si if and only if
x ∈

∑

i∈K Si for some finite subset K of J , and similarly for x ∈
∑

j∈J, j=/ i Sj .
By Zorn’s lemma, S has a maximal element.

We show that J cannot be maximal if N +
∑

i∈J Si � M . Indeed,
N +

∑

i∈J Si � M implies Sk � N +
∑

i∈J Si for some k ∈ I . Then
(

N +
∑

i∈J Si
)

∩ Sk � Sk and
(

N +
∑

i∈J Si
)

∩ Sk = 0, since Sk is
simple. Hence k /∈ J , the sum

(

N +
∑

i∈J Si
)

+ Sk is direct, the sum
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N +
∑

i∈J∪{k} Si is direct, and J is not maximal. If therefore J is a maximal
element of S , then N +

∑

i∈J Si = M ; since this is a direct sum, N is a direct
summand of M . The case N = 0 yields M =

∑

i∈J Si =
⊕

i∈J Si .

(3) implies (2). First we show that a cyclic submodule Ra =/ 0 of M contains a
simple submodule. The mapping ϕ : r �−→ ra is a module homomorphism of RR
onto Ra , whose kernel is a left ideal of R and is contained in a maximal left ideal
L of R . Then La = ϕ(L) is a maximal submodule of Ra , and Ra/La is simple.
By (3), M = La ⊕ N for some submodule N of M . Then Ra = La ⊕ (Ra ∩ N) :
indeed, La ∩ (Ra ∩ N) = 0, and Ra = La + (Ra ∩ N) , since every x ∈ Ra is
the sum x = y + n of some y ∈ La and n ∈ N , with n = x − y ∈ Ra ∩ N .
Hence Ra ∩ N ∼= Ra/La is a simple submodule of Ra .

Now, let N be the sum of all the simple submodules of M . Then M = N ⊕ N ′

for some submodule N ′ of M , and N ′ = 0: otherwise, N ′ contains a cyclic
submodule Ra =/ 0, N ′ has a simple submodule S , and N ∩ N ′ ⊇ S =/ 0,
contradicting M = N ⊕ N ′ . �

Definition. A semisimple module is a direct sum of simple submodules.

Semisimple modules are also called completely reducible. Vector spaces are
semisimple. But Z is not semisimple as a Z-module.

Properties. Readers will enjoy proving the following properties.

Proposition 2.2. (1) A direct sum of semisimple left R-modules is semisimple.

(2) Every submodule of a semisimple module is semisimple.

(3) Every quotient module of a semisimple module is semisimple.

Next we prove some properties of endomorphism rings, for use in the next
section. First we look at endomorphisms of finite direct sums. Readers may work
out similar results for infinite direct sums.

Proposition 2.3. Let A1, . . . , Am, B1, . . ., Bn, C1, . . ., C p be left R-mod-
ules. There is a one-to-one correspondence between module homomorphisms
ϕ :

⊕

j Bj −→
⊕

i Ai and m × n matrices (ϕi j ) of module homomorphisms
ϕi j : Bj −→ Ai . If ψ :

⊕

k Ck −→
⊕

j Bj , then the matrix that corresponds to
ϕ ◦ ψ is the product of the matrices that correspond to ϕ and ψ .

Proof. Let ιj : Bj −→
⊕

j Bj be the jth injection and let πi :
⊕

i Ai =
∏

i Ai −→ Ai be the ith projection. By the universal properties of
⊕

j Bj and
∏

i Ai there is for every matrix (ϕi j ) of homomorphisms ϕi j : Bj −→ Ai a
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unique homomorphism ϕ :
⊕

j Bj −→
⊕

i Ai such that ϕi j = πi ◦ ϕ ◦ ιj for all
i, j . This provides the required one-to-one correspondence.

Let ψ :
⊕

k Ck −→
⊕

j Bj , let κk : Ck −→
⊕

k Ck be the kth injection and
let ρj :

⊕

j Bj =
∏

j Bj −→ Bj be the jth projection. Since
∑

j ιj ◦ ρj is the
identity on

⊕

j Bj , we have

πi ◦ ϕ ◦ ψ ◦ κk = πi ◦ ϕ ◦
(∑

j ιj ◦ ρ j
)

◦ ψ ◦ κk =
∑

j ϕi j ◦ ψ jk

for all i, k ; thus the matrix of ϕ ◦ ψ is obtained by a matrix multiplication, in
which entries are added and multiplied by pointwise addition and composition. �

In particular, homomorphisms of one finitely generated free left R-module into
another correspond to matrices of endomorphisms of RR . In this case, Propo-
sition 2.3 reduces to Proposition VIII.4.7, since EndR(RR) ∼= Rop by Corollary
VIII.4.10.

Corollary 2.4. If S is a simple left R-module and D = EndR S , then
EndR(Sn) ∼= Mn(D) for all n > 0 . ( Sn is the direct sum of n copies of S .)

Proposition 2.5. Let M be a left R-module. If M is a direct sum of finitely
many simple submodules, then EndR(M) is isomorphic to the direct product of
finitely many rings of matrices Mni

(Di ) over division rings Di .

Proof. Let M =
⊕

k Sk be the direct sum of finitely many simple submodules
Sk . Grouping together the modules Sj that are isomorphic to each other rewrites M
as a direct sum M ∼= Sn1

1 ⊕ · · ·⊕ Snr
r , where ni > 0 and no two Si are isomorphic.

By 2.3, EndR(M) is isomorphic to a ring of r × r matrices (ηi j ) , whose entries

are module homomorphisms ηi j : S
nj
j −→ Sni

i , added and multiplied by pointwise
addition and composition. If i =/ j , then ηi j corresponds, by 2.3 again, to an
ni × nj matrix of module homomorphisms Sj −→ Si , which are all 0 by 1.2,
since Si and Sj are not isomorphic; hence ηi j = 0. Thus the matrix (ηi j ) is
diagonal, with diagonal entries ηi i ∈ EndR(Sni

i ) ∼= Mni
(Di ) , by 2.4. Therefore

EndR(M) ∼= Mn1
(D1) × · · · × Mnr

(Dr ) . �
Products. Finally, we look at direct products of rings. The direct products in

Proposition 2.5 are “external” but rings also have “internal” direct products.

Proposition 2.6. Let R be a ring [with identity]. If R is isomorphic to
a direct product R1 × · · · × Rn of finitely many rings, then R has two-sided
ideals A1, . . ., An =/ 0 such that Ai

∼= Ri (as a ring) for all i , R =
∑

i Ai ,
and Ai Aj = 0 whenever i =/ j . Conversely, if (Ri )i∈I are nonzero two-sided
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ideals of R such that R =
∑

i Ri , and Ri Rj = 0 whenever i =/ j , then I is finite;
every Ri is a ring; the identity element of R is the sum of the identity elements of
the rings Ri ; and R ∼=

∏

i∈I Ri .

Proof. If R = R1 × · · · × Rn , then the sets

Ai = { (x1, . . . , xn) ∈ R1 × · · · × Rn
∣
∣ xj = 0 for all j =/ i }

have all the properties in the statement.

Conversely, let (Ri )i∈I be nonzero two-sided ideals of R such that R =
∑

i Ri ,
and Ri Rj = 0 whenever i =/ j . We have 1 =

∑

i ei , where ei ∈ Ri and ei = 0
for almost all i . Then x ∈ Ri implies x =

∑

j xej = xei , since Ri Rj = 0 when
j =/ i . Similarly, x ∈ Ri implies x =

∑

j ej x = ei x . In particular, ei =/ 0 for
all i , since ei = 0 would imply Ri = 0. Therefore I is finite. Also Ri , which
is an additive subgroup of R and is closed under multiplication, has an identity
element ei , and is a ring (though not a subring of R , unless |I | = 1). The sum
R =

∑

i Ri is direct, since x ∈ Ri ∩
∑

j =/ i Rj implies x = ei x = 0. Hence
every element of R can be written uniquely as a sum x =

∑

i xi , where xi ∈ Ri .
These sums add and multiply componentwise, since Ri Rj = 0 when j =/ i , so
that R ∼=

∏

i∈I Ri . �
It is common practice to write R = R1 × · · · × Rn when R1, . . ., Rn are ideals

of R such that R =
∑

i∈I Ri and Ri Rj = 0 whenever i =/ j . This notation does
not distinguish between “internal” and “external” direct products; as with direct
sums, the distinction should be clear from context.

Proposition 2.7. In a direct product R = R1 × · · · × Rn of rings [with identity],
every left (right, two-sided) ideal of Ri is a left (right, two-sided) ideal of R ; every
minimal left (right, two-sided) ideal of Ri is a minimal left (right, two-sided) ideal
of R ; every minimal left (right, two-sided) ideal of R is a minimal left (right,
two-sided) ideal of some Ri .

Proof. If L is a left ideal of Rj , then RL =
(∑

i Ri
)

L =
∑

i Ri L = Rj L ⊆ L
and L is a left ideal of R . Conversely, a left ideal of R that is contained in Rj
is a left ideal of Rj . If now L is a minimal [nonzero] left ideal of Rj , then L
is a minimal left ideal of R , since any left ideal 0 � L ′

� L of R would be a
left ideal of Rj ; if L ⊆ Rj is a minimal left ideal of R , then L is a minimal left
ideal of Rj , since any left ideal 0 � L ′

� L of Rj would be a left ideal of R .
Conversely, if L is a minimal left ideal of R , then Ri L =/ 0 for some i , since
∑

i Ri L = RL =/ 0, 0 =/ Ri L ⊆ Ri ∩ L ⊆ L , and L = Ri ∩ L ⊆ Ri for some
Ri . Right and two-sided ideals are handled similarly. �

Proposition 2.8. If R = R1 × · · · × Rn is a direct product of rings, then the
simple left R-modules are the simple left Ri-modules of the rings Ri .

Proof. Let S be a simple R-module. Then
∑

i Ri S = RS = S =/ 0, Ri S =/ 0
for some i , Ri S = R Ri S is a submodule of S , and Ri S = S . Let ei be the
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identity element of Ri . If j =/ i , then Rj S = Rj Ri S = 0. Hence ei x = 1x = x
for all x ∈ S , since 1 =

∑

i∈I ei by 2.6. Thus S is a [unital] Ri-module. Since
Rj S = 0 for all j =/ i , S has the same submodules as an R-module and as an
Ri-module, and S is a simple Ri-module.

Conversely, let S be a simple Ri-module. Let R act on S so that Rj S = 0 for
all j =/ i . Then S is an R-module. As above, S has the same submodules as an
R-module and as an Ri-module, and S is a simple R-module. �

Exercises

1. When is an abelian group semisimple (as a Z-module)?

2. Prove that every quotient module of a semisimple module is semisimple.

3. Prove that every submodule of a semisimple module is semisimple.

4. Show that a semisimple module is of finite length if and only if it is finitely generated.

5. Show that a module M is semisimple if and only if every cyclic submodule of M is
semisimple.

6. Find a module M with a submodule N such that N and M/N are semisimple but M
is not semisimple.

7. Let R = R1 × · · · × Rn be a direct product of rings. Show that every two-sided ideal
of Ri is a two-sided ideal of R ; every minimal two-sided ideal of Ri is a minimal two-sided
ideal of R ; and every minimal two-sided ideal of R is a minimal two-sided ideal of some Ri .

8. How would you extend Propositions 2.3 and 2.5 to arbitrary direct sums?

3. The Artin-Wedderburn Theorem

The Artin-Wedderburn theorem constructs all rings R , called semisimple, such
that every left R-module is semisimple. It has remained a fundamental result of
ring theory.

As in the rest of this chapter, all rings have an identity element, and all modules
are unital. (The main result holds without this restriction; see the exercises.)

Definition. A ring R is semisimple when every left R-module is semisimple.

By rights these rings should be called left semisimple; but we shall show that
R is semisimple if and only if every right R-module is semisimple.

Division rings are semisimple. More elaborate examples arise from the next
result.

Proposition 3.1. A ring R is semisimple if and only if the module RR is
semisimple, if and only if R is a direct sum of minimal left ideals, and then R is
a direct sum of finitely many minimal left ideals.
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Proof. If every left R-module is semisimple, then so is RR . Conversely, if RR
is semisimple, then, by 2.2, every free left R-module F ∼=

⊕

RR is semisimple,
and every left R-module is semisimple, since it is isomorphic to a quotient module
of a free module.

By definition, RR is semisimple if and only if it is a direct sum of simple
submodules, and a simple submodule of RR is a minimal [nonzero] left ideal.
Now, a direct sum RR =

⊕

i∈I Li of nonzero left ideals is necessarily finite.
Indeed, the identity element of R is a sum 1 =

∑

i∈I ei , where ei ∈ Li for all i
and ei = 0 for almost all i . If x ∈ Lj , then

∑

i∈I xei = x ∈ Lj , with xei ∈ Li ,
which in the direct sum implies xej = x . Hence ej = 0 implies Lj = 0, and
Li = 0 for almost all i . If Li =/ 0 for all i ∈ I , then I is finite. �

Proposition 3.1 yields additional semisimple rings. Matrix rings Mn(D) over
a division ring are semisimple, by 1.7. More generally, all direct products of such
rings are semisimple:

Proposition 3.2. A direct product of finitely many semisimple rings is a semisim-
ple ring.

Proof. If R1, . . . , Rn are semisimple, then every Ri is a sum of minimal left
ideals of Ri , which by 2.7 are minimal left ideals of R = R1 × · · · × Rn ; hence
R is a sum of minimal left ideals. �

The Artin-Wedderburn theorem can now be stated and proved.

Theorem 3.3 (Artin-Wedderburn). A ring R is semisimple if and only if it is
isomorphic to a direct product Mn1

(D1)× · · · × Mns
(Ds) of finitely many matrix

rings over division rings D1, . . ., Ds .

In particular, semisimple rings are direct products of simple rings.

Proof. If R is semisimple, then Rop ∼= EndR(RR) ∼= Mn1
(D1) × · · · ×

Mns
(Ds) for some division rings D1, . . ., Ds , by VIII.4.10 and 2.5. Hence

R ∼= Mn1
(D1)

op × · · · × Mns
(Ds)

op ∼= Mn1
(Dop

1 ) × · · · × Mns
(Dop

s ),

by 1.6, where Dop
1 , . . ., Dop

s are division rings. �

Corollary 3.4. A ring R is semisimple if and only if Rop is semisimple.

Proof. If R ∼= Mn1
(D1) × · · · × Mnr

(Ds) is semisimple, where D1, . . . , Ds
are division rings, then Rop ∼= Mn1

(Dop
1 ) × · · · × Mns

(Dop
s ) is semisimple. �

Corollary 3.5. Every semisimple ring is left Noetherian, left Artinian, right
Noetherian, and right Artinian.

Proof. By 3.1, RR is a finite direct sum RR = L1 ⊕ · · · ⊕ Ln of finitely many
simple submodules. Hence RR has a composition series

0 � L1 � L1 ⊕ L2 � · · · � L1 ⊕ · · · ⊕ Ln = R
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and R is left Noetherian and left Artinian. So is Rop , by 3.4, and R is right
Noetherian and right Artinian. �

Simple modules. We complete Theorem 3.3 by a look at modules and by
some uniqueness properties. If R is semisimple, then every simple left R-module
is isomorphic to a minimal left ideal of R , by Proposition 1.3; hence every left
R-module is a direct sum of copies of minimal left ideals of R . This construction
didn’t even hurt, and it yields all R-modules.

Proposition 3.6. If R ∼= Mn1
(D1)× · · ·× Mns

(Ds) is a semisimple ring, where
D1, . . ., Ds are division rings, then every simple left R-module is isomorphic to a
minimal left ideal of some Mni

(Di ) ; hence there are exactly s isomorphy classes
of simple left R-modules.

Proof. By 2.6, 3.3, R = R1 × · · · × Rs , where Ri
∼= Mni

(Di ) . By 2.7, L
is a minimal left ideal of R if and only if L is a minimal left ideal of some Ri .
By 1.8, all minimal left ideals of Ri are isomorphic as Ri-modules, hence also as
R-modules. But minimal left ideals Li of Ri and Lj of Rj are not isomorphic as
R-modules when i =/ j : by 1.8, AnnRi

(Li ) = 0, so that AnnR(Li ) =
⊕

j=/ i Rj ;
hence AnnR(Li ) =/ AnnR(Lj ) when i =/ j . �

Corollary 3.7. Let R be semisimple and let S1, . . ., Ss are, up to isomor-
phism, all the distinct simple left R-modules (so that every simple left R-module is
isomorphic to exactly one of S1, . . . , Ss ). Every left R-module is isomorphic to a
direct sum Sm1

1 ⊕ · · · ⊕ Sms
s , for some unique cardinal numbers m1, . . ., ms .

Proof. Up to isomorphism, R = R1 × · · · × Rs , where Ri
∼= Mni

(Di ) ,
and S1, . . ., Ss can be numbered so that Si is isomorphic to a minimal left
ideal of Ri . Then Rj Si = 0 whenever i =/ j . Every R-module is a direct
sum of simple modules, mi of which are isomorphic to Si . In the direct sum
M ∼= Sm1

1 ⊕ · · · ⊕ Sms
s , Smi

i
∼= Ri M is unique up to isomorphism. Then mi is

unique, since Smi
i has dimension mi ni over Di and ni is finite. �

The uniqueness of m1, . . ., ms in Corollary 3.7 also follows from the Jordan-
Hölder theorem, or from the Krull-Schmidt theorem, if m1, . . ., ms are finite.

Theorem 3.8. For a ring R the following properties are equivalent:

(1) R is simple and semisimple;

(2) R is semisimple and all simple left R-modules are isomorphic;

(3) R ∼= Mn(D) for some n > 0 and some division ring D ∼= End
op
R (S) , where

S is a simple left R-module;

(4) R is left Artinian and there exists a faithful, simple left R-module;

(5) R is simple and left Artinian.

Proof. (1) implies (3), and (2) implies (3). Let R ∼= Mn1
(D1) × · · · ×

Mns
(Ds) be semisimple, where D1, . . ., Ds are division rings. If R is simple,
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then s = 1. If all simple left R-modules are isomorphic, then s = 1, by 3.6.

(3) implies (1), (2), and (5), by 1.5, 1.7, and 1.8.

(5) implies (4). Since R is left Artinian, R has a minimal left ideal L , which
is a simple left R-module. Then Ann (L) is an ideal of R , Ann (L) =/ R since
1 /∈ Ann (L) , Ann (L) = 0 since R is simple, and L is faithful.

(4) implies (2). Let S be a faithful simple left R-module. Since R is left
Artinian, there is a module homomorphism ϕ : RR −→ Sn whose kernel is
minimal among all kernels of module homomorphisms RR −→ Sm , where m > 0
is finite. If Ker ϕ =/ 0, then ϕ(r) = 0 for some 0 =/ r ∈ R , rs =/ 0 for some s ∈ S
since S is faithful, ψ : x �−→

(

ϕ(x), xs
)

is a homomorphism of RR into Sn ⊕ S ,
and Ker ψ � Ker ϕ . This sneaky contradiction shows that Ker ϕ = 0. Hence

RR is isomorphic to a submodule of Sn , and is semisimple by 2.2. If L is a
minimal left ideal of R , then L S =/ 0 since S is faithful, and L ∼= S ; hence every
simple left R-module is isomorphic to S , by 1.3. �

In Theorem 3.3, R is a product of simple Artinian rings Ri
∼= Mni

(Di ) . These
rings can now be constructed from R :

Proposition 3.9. Let R be semisimple and let S1, . . ., Ss be, up to isomorphism,
all the distinct simple left R-modules. Let Ri be the sum of all the minimal left
ideals L ∼= Si of R . Then Ri is a two-sided ideal of R , Ri is a simple left
Artinian ring, and R = R1 × · · · × Rs .

Proof. Let L be a minimal left ideal of R . If a ∈ R and La =/ 0, then the
left ideal La is a minimal left ideal: if A ⊆ La is a nonzero left ideal, then so is
L ′ = { x ∈ L

∣
∣ xa ∈ A } , whence L ′ = L and A = L ′a = La . Since x �−→ xa is

a nonzero module homomorphism of L onto La , 1.2 yields La ∼= L . Therefore
Ri is a two-sided ideal. Then Ri Rj = 0 when i =/ j , since L L ′ = 0 when L and
L ′ are minimal left ideals and L � L ′ , by 1.3; and R =

∑

i Ri , since R is the
sum of its minimal left ideals. Hence R = R1 × · · · × Rs , by 2.6.

By 2.7, Ri is a sum of minimal left ideals. Hence Ri is semisimple. Moreover,
all minimal left ideals of Ri are isomorphic as left R-modules, hence also as left
Ri-modules. Therefore Ri is simple and left Artinian, by 3.8. �

The rings R1, . . . , Rs in Proposition 3.9 are the simple components of R .
Readers will enjoy proving their uniqueness:

Proposition 3.10. Let R be a direct product R = R1 × · · · × Rs of simple left
Artinian rings R1, . . ., Rs . The ideals R1, . . ., Rs of R are unique, up to their
order of appearance.

The uniqueness statement for Theorem 3.3 now follows from Propositions 3.10
and 1.9:

Corollary 3.11. If Mn1
(D1) × · · · × Mns

(Ds) ∼= Mn′1
(D′

1) × · · · × Mn′t
(D′

t ) ,
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where D1, . . ., Ds, D′
1, . . ., D′

t are division rings, then s = t and D′
1, . . ., D′

t
can be reindexed so that ni = n′i and Di

∼= D′
i for all i .

Exercises
In the following exercises, all rings have an identity element, and all modules are unital. An
idempotent in a ring R is an element e of R such that e2 = e .

1. Prove that a left ideal of a ring R is a direct summand of RR if and only if it is generated
by an idempotent.

2. Prove that a ring R is semisimple if and only if every left ideal of R is generated by an
idempotent.

3. A ring R is von Neumann regular when for every a ∈ R there exists x ∈ R such that
axa = a . Prove that every semisimple ring is von Neumann regular.

4. Let R be a direct product R = R1 × · · · × Rn of simple rings R1, . . . , Rn . Show that
every two-sided ideal of R is a direct sum of some of the Ri .

5. Let R be a direct product R = R1 × · · · × Rn of simple rings R1, . . . , Rn . Show that
the ideals R1, . . . , Rn of R are unique, up to their order of appearance.

6. Show that a commutative ring is semisimple if and only if it is isomorphic to a direct
product of finitely many fields.

7. Prove the following: if R is semisimple, then Mn(R) is semisimple.

8. Prove that a semisimple ring without zero divisors is a division ring.

9. Prove the following: in a semisimple ring R , xy = 1 implies yx = 1.

The ring R in the following exercises does not necessarily have an identity element.

10. Show that R is semisimple if and only if R1 is semisimple, and then R and R1 have
the same simple left modules.

11. Show that R is semisimple if and only if R is isomorphic to a direct product
Mn1(D1) × · · · × Mns (Ds) of finitely many matrix rings over division rings D1, . . . , Ds .
(In particular, R has an identity element anyway. Thus, the Artin-Wedderburn theorem holds
even if R is not assumed to have an identity element. You may want to show that R is a
two-sided ideal of R1 , and use one of the previous exercises.)

4. Primitive Rings

This section may be skipped at first reading, but is quoted in Section 7. A ring is
primitive when it has a faithful simple module. The Jacobson density theorems
[1945b] in this section extend properties of simple Artinian rings to all primitive
rings. They also provide an alternate proof of the Artin-Wedderburn theorem.

In this section, all rings have an identity element, and all modules are unital.

Endomorphisms. We begin with further properties of endomorphism rings.

Let R be a ring and let M be a left R-module. Section 2 made use of
the ring EndR(M) of R-endomorphisms of M , written on the left. If the
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endomorphisms of M are written on the right, then EndR(M) becomes the
opposite ring End

op
R (M) . The operations x (η + ζ ) = xη + xζ , x (ηζ ) = (xη) ζ ,

x1 = x on E = End
op
R (M) show that M is a right E-module. As a right

E-module, M has an ring of endomorphisms EndE (M) (written on the left).

Proposition 4.1. For every left R-module M there is a canonical homomor-
phism Φ : R −→ EndE (M) , defined by Φ(r): x �−→ r x .

Proof. Since (r x) η = r (xη) for all r ∈ R , x ∈ M , η ∈ E , the action
Φ(r): x �−→ r x of r on M is an E-endomorphism. It is immediate that Φ is a
ring homomorphism. �

In general, Φ is neither injective nor surjective. We see that Φ is injective
if and only if M is faithful. Readers will show that Φ is an isomorphism when
M = RR . If M is semisimple, then the Jacobson density theorem for semisimple
modules states that Φ is not far from surjective:

Theorem 4.2 (Jacobson Density Theorem). Let M be a semisimple left R-mod-
ule and let E = End

op
R (M) . For every ξ ∈ EndE (M) and x1, . . ., xn ∈ M

there exists r ∈ R such that ξ xi = r xi for all i .

Proof. We first prove 4.2 when n = 1. Since M is semisimple we have
M = Rx ⊕ N for some submodule N of M . Then the projection π : M −→ Rx
may be viewed as an R-endomorphism of M , such that (r x)π = r x for all
r x ∈ Rx . Hence π ∈ E and ξ x = ξ (xπ) = (ξ x)π = r x for some r ∈ R .

For the general case, let Mn be the direct sum of n copies of M and F =
End

op
R (Mn) . Then Mn is semisimple and ξn : (x1, . . . , xn) �−→ (ξ x1, . . ., ξ xn)

belongs to EndF (Mn) , by 4.3 below. By the case n = 1, applied to Mn ,
there is for every (x1, . . ., xn) ∈ Mn some r ∈ R such that ξn(x1, . . ., xn) =
r (x1, . . ., xn) . �

Lemma 4.3. Let M be a left R-module, let E = End
op
R (M) , let n > 0 ,

and let F = End
op
R (Mn) . If ξ : M −→ M is an E-endomorphism, then

ξn : Mn −→ Mn , (x1, . . . , xn) �−→ (ξ x1, . . . , ξ xn) , is an F-endomorphism;
moreover, ξ �−→ ξn is an isomorphism EndE (M) ∼= EndF (Mn) .

Proof. Let ιi : M −→ Mn and πj : Mn −→ M be the injections and
projections. Let η ∈ F . As in the proof of 1.4, every η : Mn −→ Mn is
determined by a matrix (ηi j ) , where ηi j = πj ◦ η ◦ ιi , namely,

(x1, . . ., xn) η =
(∑

i xi ηi1 , . . . ,
∑

i xi ηin
)

,

since (x1, . . ., xn) =
∑

i∈I ιi xi and xηi j is the j component of (ιi x) η . If
ξ ∈ EndE (M) , then (ξ x) ηi j = ξ (xηi j ) for all x ∈ M ; hence (ξn y) η = ξn (yη)
for all y ∈ Mn and η ∈ F , and ξn ∈ EndF (Mn) . The second part of the
statement is not needed for Theorem 4.2; we leave it to our readers. �

Theorem 4.2 suggests the following definition.



372 Chapter IX. Semisimple Rings and Modules

Definition. Let M be an E-module. A subset S of EndE (M) is dense in
EndE (M) when, for every ξ ∈ EndE (M) and x1, . . ., xn ∈ M , there exists
s ∈ S such that ξ xi = sxi for all i .

With this definition, Theorem 4.2 reads, when M is a semisimple left R-module
and E = End

op
R (M) , and Φ : R −→ EndE (M) is the canonical homomorphism,

then Φ(R) is dense in EndE (M) .

When M is viewed as discrete, the compact-open topology on the set of all
transformations of M induces a topology on EndE (M) , with basic open sets

U(a1, . . ., an, b1, . . . , bn) = { ξ ∈ EndE (M)
∣
∣ ξai = bi for all i },

where n > 0 and a1, . . ., an, b1, . . ., bn ∈ M . Readers may verify that a subset
of EndE (M) is dense as above if and only if it is dense in this topology.

We note two of the many consequences of Theorem 4.2; a third is given below.

Corollary 4.4. If D is a division ring, then the center of Mn(D) consists of all
scalar matrices whose diagonal entry is in the center of D .

Proof. We prove this for Dop . Let I denote the identity matrix. Let V be
a left D-module with a basis e1, . . ., en , so that EndD(V ) ∼= Mn(Dop) . Let
E = End

op
D (V ) . The isomorphism EndD(V ) ∼= Mn(Dop) assigns to every

η ∈ EndD(V ) its matrix in the basis e1, . . ., en . If C is in the center of
Mn(Dop) , then the corresponding endomorphism ξ ∈ EndD(V ) commutes with
every η ∈ EndD(V ) , and ξ ∈ EndE (V ) . By 4.2 there exists r ∈ D such that
ξei = rei for all i . Hence the matrix C of ξ is the scalar matrix r I , and r is in
the center of Dop , since r I commutes with all scalar matrices. Conversely, if r
is in the center of Dop , then r I is in the center of Mn(Dop) . �

If D is a field, then Corollary 4.4 also follows from Proposition II.8.3.

Corollary 4.5 (Burnside [1905]). Let K be an algebraically closed field, let V
be a finite-dimensional vector space over K , and let R be a subring of EndK (V )
that contains all scalar transformations v �−→ av with a ∈ K . If V is a simple
R-module, then R = EndK (V ) .

Proof. Identify a ∈ K with the scalar transformation aI : v �−→ av , so that
K becomes a subfield of EndK (V ) that is contained in the center of EndK (V )
(in fact, K is the center of EndK (V ) , by 4.4) and K ⊆ R . Let

D = EndR(V ) = { δ ∈ End
Z
(V )

∣
∣ δ commutes with every η ∈ R }.

Since V is simple, D = EndR(V ) is a division ring; D consists of linear
transformations, since δ ∈ D must commute with every aI ∈ R ; K ⊆ D , since
every aI commutes with all η ∈ EndK (V ) ; K is contained in the center of D ;
and D has finite dimension over K , since EndK (V ) has finite dimension over
K . Then D = K : if α ∈ D , then K and α generate a commutative subring
K [α] of D , α is algebraic over K since K [α] has finite dimension over K , and
α ∈ K since K is algebraically closed. Thus EndR(V ) = K .
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Now, K = End
op
R (V ) . Let e1, . . ., en be a basis of V over K . For every

η ∈ EndK (V ) , there exists, by 4.2, some ρ ∈ R such that ηei = ρei for all i .
Then η = ρ . Thus R is all of EndK (V ) . �

Primitive rings. Fortified with Theorem 4.2 we turn to primitive rings.

Definition. A ring R is left primitive (right primitive) when there exists a
faifthful simple left (right) R-module.

This definition is due to Jacobson [1945a]. Readers will verify that simple
rings are left primitive, but that not all left primitive rings are simple. The other
Jacobson density theorem applies to primitive rings.

Theorem 4.6 (Jacobson Density Theorem). A ring R is left primitive if and
only if it is isomorphic to a dense subring of EndD(V ) for some division ring D
and right D-module V .

Proof. If S is a faithful simple left R-module, then D = End
op
R (S) is a division

ring by 1.2, the canonical homomorphism Φ : R −→ EndD(S) is injective since
S is faithful, and Φ(R) ∼= R is dense in EndD(S) , by 4.2.

Conversely, let D be a division ring, let V be a right D-module, and let R be
a dense subring of EndD(V ) . Then V is a left R-module; V is faithful since
ηv = 0 for all v ∈ V implies η = 0, when η ∈ EndD(V ) . If x, y ∈ V , x =/ 0,
then x is part of a basis of V over D , some linear transformation η ∈ EndD(V )
sends x to y , and y = ηx = ρx for some ρ ∈ R since R is dense. Thus Rx = V
for every 0 =/ x ∈ V , and V is a simple R-module. �

Theorem 4.6 yields another proof that simple left Artinian rings are isomorphic
to matrix rings over division rings. We prove a more general result.

Theorem 4.7. Let R be a left primitive ring and let S be a faithful simple left
R-module, so that D = End

op
R (S) is a division ring.

(1) If R is left Artinian, then n = dimD S is finite and R ∼= Mn(D) .

(2) If R is not left Artinian, then dimD S is infinite and for every n > 0 there
exists a subring Rn of R with a surjective homomorphism Rn −→ Mn(D) .

Proof. As in the proof of Theorem 4.6, the canonical homomorphism Φ :
R −→ EndD(S) is injective, and Φ(R) is dense in EndD(S) .

(1). If a basis of S contains an infinite sequence e1, . . ., en, . . . , then

Ln = { r ∈ R
∣
∣ rei = 0 for all i � n }

is a left ideal of R , Ln ⊇ Ln+1 . Also, there exists η ∈ EndD(S) such that
ηei = 0 for all i � n and ηen+1 = en+1 ; hence there exists r ∈ R such that
rei = ηei = 0 and ren+1 = ηen+1 =/ 0, and Ln � Ln+1 . This cannot be allowed
if R is left Artinian. Therefore S has a finite basis e1, . . ., en over D . For
every η ∈ EndD(S) there exists r ∈ R such that ηei = rei for all i , and
then ηx = r x for all x ∈ S . Thus Φ : R −→ EndD(S) is surjective and
R ∼= EndD(S) ∼= Mn(D) .
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(2). Now, assume that R is not left Artinian. Then dimD S is infinite:
otherwise, R ∼= Mn(D) as above and R is left Artinian. Hence any basis of S
contains an infinite sequence e1, . . . , en, . . . . Let Sn be the submodule of SD
generated by e1, . . ., en . Then Rn = { r ∈ R

∣
∣ r Sn ⊆ Sn } is a subring of R ,

In = { r ∈ R
∣
∣ rei = 0 for all i � n } = { r ∈ R

∣
∣ r Sn = 0 }

is a two-sided ideal of Rn , and Sn is a left Rn/In-module, in which (r + In) x = r x
for all r ∈ Rn and x ∈ Sn . Then Sn has the same endomorphism ring D as
an R-module and as an Rn/In-module. Moreover, Φ : Rn/In −→ EndD(Sn)
is surjective: every η ∈ EndD(Sn) extends to a D-endomorphism of S ; hence
there exists r ∈ R such that ηei = rei = (r + In) ei for all i � n . This provides
a surjection Rn −→ Rn/In −→ EndD(Sn) ∼= Mn(D) . �

Exercises

1. Let M = RR and E = End
op
R (M) . Show that the canonical homomorphism

R −→ EndE (M) is an isomorphism.

2. Let M be a left R-module, E = End
op
R (M) , n > 0 , and F = End

op
R (Mn) . Show

that ξ �−→ ξn is an isomorphism EndE (M) −→ EndF (Mn) (where ξn : (x1, . . . , xn )
�−→ (ξ x1, . . . , ξ xn) ). (By Lemma 4.3 you only need to show that this construction yields
every ω ∈ EndF (Mn) . You may note that ω must commute with every ιi ◦ πk .)

3. Let R = Z , M = Q , E = End
op
R (M) , and Φ : R −→ EndE (M) . Show that Φ(R)

is not dense in EndE (M) .

4. Verify that a dense subset of EndE (M) is dense in the topology induced by the
compact-open topology on the set of all transformations of M , where M is discrete.

5. Show that every simple ring is left primitive.

6. Let V be an infinite-dimensional vector space over a division ring D . Show that
EndD(V ) is left primitive. Show that EndD(V ) is not simple or left Artinian.

7. Prove that a commutative ring is left primitive if and only if it is a field.

8. If R is left primitive, show that Mn(R) is left primitive.

9. If R is left primitive and e ∈ R is idempotent, show that eRe is left primitive.

10. Let M be a D-module. A subring S of EndD(M) is transitive when there exists
for every x, y ∈ M , x =/ 0 some η ∈ S such that ηx = y . Prove the following: if D is a
division ring, then every transitive subring of EndD(M) is left primitive.

11. Show that a left Artinian ring is left primitive if and only if it is simple.

5. The Jacobson Radical

Jacobson [1945a] discovered this radical, which provides a, well, radically different
approach to semisimplicity. This section contains general properties. As before,
all rings have an identity element, and all modules are unital.
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Definition. The Jacobson radical J (R) of a ring R is the intersection of all its
maximal left ideals.

By rights, J (R) should be called the left Jacobson radical of R , but we shall
prove that J (R) is also the intersection of all the maximal right ideals of R . We
begin with simpler properties.

Proposition 5.1. In a ring R , J (R) is the intersection of all the annihilators
of simple left R-modules; hence J (R) is a two-sided ideal of R .

Proof. If L is a maximal left ideal of R , then S = RR/L is a simple left
R-module and Ann (S) ⊆ L . Hence the intersection of all Ann (S) is contained
in J (R) . Conversely, let r ∈ J (R) and let S be a simple left R-module. If x ∈ S ,
x =/ 0, then RR/Ann (x) ∼= Rx = S is simple, Ann (x) is a maximal left ideal of
R , r ∈ Ann (x) , and r x = 0. Hence r x = 0 for all x ∈ S and r ∈ Ann (S) . �

By Proposition 5.1, the elements of J (R) are “close to 0” in that they have
the same effect on simple modules. These elements are also “close to 0” in the
following senses.

Lemma 5.2. If x ∈ R , then x ∈ J (R) if and only if 1 + t x has a left inverse
for every t ∈ R .

Proof. If x /∈ J (R) , then x /∈ L for some maximal left ideal L , L + Rx = R ,
1 = � + r x for some � ∈ L and r ∈ R , and 1 − r x ∈ L has no left inverse,
since all its left multiples are in L . Conversely, if some 1 + t x has no left inverse,
then R(1 + t x) =/ R , R(1 + t x) is contained in a maximal left ideal L of R , and
x /∈ L , since 1 + t x ∈ L and 1 /∈ L ; hence x /∈ J (R) . �

Proposition 5.3. In a ring R , J (R) is the largest two-sided ideal I of R such
that 1 + x is a unit of R for all x ∈ I ; hence J (R) = J (Rop) .

Proof. If x ∈ J (R) , then, by 5.2, 1 + x has a left inverse y , whence y = 1− yx
and y has a left inverse z . Since y already has a right inverse 1 + x , it follows
that 1 + x = z , and y is a two-sided inverse of 1 + x . Thus J (R) is one of the
two-sided ideals I of R such that 1 + x is a unit of R for all x ∈ I . Moreover,
J (R) contains every such ideal I : when x ∈ I , then, for all t ∈ R , t x ∈ I and
1 + t x has a left inverse, whence x ∈ J (R) , by 5.2. �

By Proposition 5.3, J (R) is also the intersection of all maximal right ideals of
R , and the intersection of all the annihilators of simple right R-modules.

The following properties are easy exercises:

Proposition 5.4. J (R1 × · · · × Rn) = J (R1) × · · · × J (Rn) , for all rings
R1, . . . , Rn .

Proposition 5.5. J
(

R/J (R)
)

= 0 .

A radical in ring theory assigns to a ring R a two-sided ideal Rad R with
nice properties, one of which must be that Rad (R/Rad R) = 0. The Jacobson
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radical has this property; so does the nilradical { x ∈ R
∣
∣ xn = 0 for some n > 0 }

of a commutative ring R .

Definitions. An element r of a ring R is nilpotent when rn = 0 for some
n > 0 . A left (right, two-sided) ideal N of a ring R is nilpotent when N n = 0 for
some n > 0 .

Proposition 5.6. In a ring R , J (R) contains all nilpotent left or right ideals of
R . If R is commutative, then J (R) contains all nilpotent elements of R .

Proof. Let N be a nilpotent left ideal and let S be a simple left R-module. If
N S =/ 0, then N S = S and S = N S = N 2S = · · · = N n S = 0, a contradiction;
therefore N S = 0 and N ⊆ Ann (S) . Hence N ⊆ J (R) , by 5.1. Then J (R)
contains every nilpotent right ideal, by 5.3. If R is commutative, then r ∈ R
nilpotent implies Rr nilpotent, and J (R) contains every nilpotent element. �

Thus J (R) contains the nilradical of R when R is commutative. In general,
there may be plenty of nilpotent elements outside of J (R) (see the exercises).

Last, but not least, are two forms of Nakayama’s lemma (proved by Nakayama
as a student, according to Nagata [1962]):

Proposition 5.7 (Nakayama’s Lemma). Let M be a finitely generated left
R-module. If J (R)M = M , then M = 0 .

Proof. Assume M =/ 0. Since M is finitely generated, the union of a chain
(Ni )i∈I of proper submodules of M is a proper submodule of M : otherwise, the
finitely many generators of M all belong to some Ni , and then Ni = M . By
Zorn’s lemma, M has a maximal (proper) submodule N . Then M/N is simple
and J (R)(M/N) = 0 by 5.1. Hence J (R)M ⊆ N and J (R)M =/ M . �

Proposition 5.8 (Nakayama’s Lemma). Let N be a submodule of a finitely
generated left R-module M . If N + J (R)M = M , then N = M .

Proof. First, M/N is finitely generated. If N + J (R)M = M , then
J (R)(M/N)= M/N and M/N = 0, by 5.7. �

The exercises give some neat applications of Nakayama’s lemma.

Exercises
1. Show that x ∈ J(R) if and only if 1 + r xs is a unit for every r, s ∈ R .

2. Find J(Z) .

3. Find J(Zn) . When is J(Zn) = 0?

4. Let D be a division ring. Show that J
(

Mn(D)
)

= 0. Show that J(R) does not
necessarily contain every nilpotent element of R , and may in fact contain no nonzero nilpotent
element of R .

5. Find a commutative ring in which the Jacobson radical strictly contains the nilradical.

6. Show that J(R) contains no idempotent e2 = e =/ 0 .
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7. Show that J(R1 × · · · × Rn) = J(R1) × · · · × J(Rn) , for all rings R1, . . . , Rn .

8. Show that J
(

R/J(R)
)

= 0, for every ring R .

9. Let ϕ : R −→ S be a ring homomorphism. Show that ϕ
(

J(R)
)
⊆ J(S) . Give an

example in which ϕ
(

J(R)
)

� J(S) .

10. A left or right ideal is nil when all its elements are nilpotent. If R is left Artinian, show
that J(R) contains every nil left or right ideal of R .

In the next two exercises, an element r of a ring R is quasiregular when 1 − r is a unit of
R , and left quasiregular when 1 − r has a left inverse.

11. Prove that every nilpotent element is quasiregular.

12. Prove that J(R) is the largest left ideal L of R such that every element of L is left
quasiregular.

13. Prove the following: if a ring R has only one maximal left ideal L , then L is a
two-sided ideal and a maximal right ideal.

14. Let e2 = e be an idempotent of a ring R . Show that J(eRe) = J(R) ∩ eRe . (Hint:
when S is a simple left R-module, either eS = 0 or S is a simple eRe-module.)

15. Let R be a ring. Show that a matrix A ∈ Mn(R) is in J
(

Mn(R)
)

if and only if every
entry of A is in J(R) . (Hint: when S is a simple left R-module, matrix multiplication makes
Sn a simple left Mn(R)-module.)

16. Explain how every simple left R-module is also a simple left R/J(R)-module, and
vice versa.

17. Let L be a left ideal of R . Prove that L ⊆ J(R) if and only if, for every finitely
generated left R-module M , L M = 0 implies M = 0.

In the following exercises, M is a finitely generated left R-module and M = M/J(R)M .

18. Show that every module homomorphism ϕ : M −→ M ′ induces a module homomor-
phism ϕ : M −→ M

′
that makes a commutative square with the projections

19. Prove the following: if ϕ is surjective, then ϕ is surjective.

20. Prove the following: if x1, . . . , xn generate M , then x1, . . . , xn generate M .

21. Let m be a maximal ideal of a commutative ring R . Prove the following: if A is
a finitely generated R-module, and x1, . . . , xn is a minimal generating subset of A , then
x1 + mA , . . . , xn + mA is a basis of A/mA over R/m .

6. Artinian Rings

Following Jacobson [1945a,b], this section introduces the classical definition of
semisimplicity and relates it to the module definition and to the Jacobson radical,
with further applications to ring theory.
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Definition. A ring R is Jacobson semisimple when J (R) = 0 .

Jacobson [1945a] called these rings semiprimitive. Current terminology tends
to name semisimplicity of the Rad R = 0 kind after the name or initial of the
radical, keeping unadorned semisimplicity for the semisimple rings and modules
in our Sections 2 and 3.

Semisimple rings are Jacobson semisimple, by Theorem 6.1 below; left prim-
itive rings are Jacobson semisimple, by Proposition 5.1. Jacobson semisimple
rings abound, since R/J (R) is Jacobson semisimple for every ring R .

Wedderburn called a ring semisimple when it has no nonzero nilpotent ideal.
The main result in this section is the following:

Theorem 6.1. A ring R is semisimple if and only if R is left Artinian and
J (R) = 0 , if and only if R is left Artinian and has no nonzero nilpotent ideal.

Proof. The last two conditions are equivalent, by 6.2 below.

By 3.5, 3.3, a semisimple ring R is left Artinian, and is isomorphic to a direct
product Mn1

(D1) × · · · × Mns
(Ds) of finitely many matrix rings over division

rings D1, . . ., Ds . Readers will have verified that J
(

Mn(D)
)

= 0 when D is a
division ring; hence J (R) ∼= J

(

Mn1
(D1)

)

× · · · × J
(

Mns
(Ds)

)

= 0, by 5.4.

Conversely, let R be left Artinian. Then J (R) is the intersection of finitely
many maximal left ideals of R . Indeed, let S be the set of all intersections
of finitely many maximal left ideals of R . Since R is left Artinian, S has
a minimal element J . For every maximal left ideal L of R we now have
J ⊇ J ∩ L ∈ S , whence J = J ∩ L ⊆ L . Therefore J = J (R) . If J (R) = 0,
then 0 is the intersection of finitely many maximal left ideals L1, . . ., Ln of R .
The projections RR −→ R/Li induce a module homomorphism ϕ : RR −→
R/L1 × · · · × R/Ln , r �−→ (r + L1, . . . , r + Ln) , which is injective since
ker ϕ = L1 ∩ · · · ∩ Ln = 0. Hence RR is isomorphic to a submodule of the
semisimple module R/L1 ⊕ · · · ⊕ R/Ln , and RR is semisimple. �

Lemma 6.2. If R is left Artinian, then J (R) is nilpotent, and is the greatest
nilpotent left ideal of R and the greatest nilpotent right ideal of R .

Proof. Let J = J (R) . Since R is left Artinian, the descending sequence
J ⊇ J 2 ⊇ · · · ⊇ J n ⊇ J n+1 ⊇ · · · terminates at some J m ( J n = J m for all
n � m ). Suppose that J m =/ 0. Then the nonempty set { L

∣
∣ L is a left ideal of

R and J m L =/ 0 } has a minimal element L . We have J ma =/ 0 for some a ∈ L ,
a =/ 0. Then J ma ⊆ L , J m(J ma) = J ma =/ 0, and J ma = L by the choice of L .
Hence a = xa for some x ∈ J m . But then 1 − x has a left inverse, by 5.2, and
(1 − x) a = 0 implies a = 0, a red contradiction. Therefore J is nilpotent. By
5.6, J contains every nilpotent left or right ideal of R . �

Applications. If R is left Artinian, then so is R/J (R) , and then R/J (R)
is semisimple, by Theorem 6.1. Thus R has a nilpotent ideal J (R) such that
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R/J (R) has a known structure. This yields properties of left Artinian rings. We
give two examples.

Proposition 6.3. If R is left Artinian, then a left R-module M is semisimple if
and only if J (R)M = 0 .

Proof. Let J = J (R) . We have J S = 0 for every simple R-module S , since
J ⊆ Ann (S) ; hence J M = 0 whenever M is semisimple. Conversely, assume
that J M = 0. Then M is a left R/J-module, in which (r + J ) x = r x for all
x ∈ M , and with the same submodules as R M . Since R/J is semisimple, every
submodule of R/J M is a direct summand, every submodule of R M is a direct
summand, and M is semisimple. �

Theorem 6.4 (Hopkins-Levitzki). If R is left Artinian, then for a left R-mod-
ule M the following properties are equivalent: (i) M is Noetherian; (ii) M is
Artinian; (iii) M is of finite length.

Proof. If M is semisimple, then (i), (ii), and (iii) are equivalent, since a
Noetherian or Artinian module cannot be the direct sum of infinitely many simple
submodules.

In general, let J = J (R) . Let M be Noetherian (or Artinian). By 6.2, J n = 0
for some n > 0, which yields a descending sequence

M ⊇ J M ⊇ J 2 M ⊇ · · · ⊇ J n M = 0.

For every i < n , J i M ⊆ M is Noetherian (or Artinian) and J i M/J i+1 M is
Noetherian (or Artinian). But J i M/J i+1 M is semisimple, by 6.3. Hence every
J i M/J i+1 M has a composition series. Then M has a composition series. �

Corollary 6.5 (Hopkins [1939]). Every left Artinian ring is left Noetherian.

Exercises
1. A left or right ideal is nil when all its elements are nilpotent. If R is left Artinian, show

that every nil left or right ideal of R is nilpotent.

2. Let L1, . . . , Ln be left ideals of a ring R . Prove the following: if L1, . . . , Ln are
nilpotent, then L1 + · · · + Ln is nilpotent.

3. Let R be a ring and let U be its group of units. Suppose that U ∪ {0} is a subring of
R . Show that R is Jacobson semisimple.

4. Show that D[X ] is Jacobson semisimple when D is a division ring.

5. Show that every von Neumann regular ring is Jacobson semisimple. (A ring R is von
Neumann regular when for every a ∈ R there exists x ∈ R such that axa = a .)

6. Show that a ring R is Jacobson semisimple if and only if it there exists a faithful
semisimple left R-module.

7. Prove the following: if R/J(R) is semisimple, then a left R-module M is semisimple
if and only if J(R)M = 0.

8. Prove the following: if J(R) is nilpotent and R/J(R) is semisimple, then for a
left R-module M the following properties are equivalent: (i) M is Noetherian; (ii) M is
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Artinian; (iii) M is of finite length. [If R is left Artinian, then J(R) is nilpotent and R/J(R)
is semisimple, but the converse implication is known to be false.]

9. Show that a left Artinian ring contains no nilpotent element if and only if it is isomorphic
to the direct product of finitely many division rings.

10. Prove the following: if R is left Artinian and a ∈ R is not a right zero divisor, then a
is a unit of R . (Hint: right multiplication by a is a module homomorphism RR −→ RR .)

11. Prove the following: in a left Artinian ring, xy = 1 implies yx = 1.

7. Representations of Groups

Representations of groups were first considered in the late nineteenth century;
the first systematic studies are due to Schur [1904] and Burnside [1905]. This
section defines group representations, gives their basic properties, and explains
their relationship with semisimplicity.

Matrix representations. As defined originally, a representation of a group G
is a representation of G by matrices or by linear transformations:

Definitions. A representation of a group G over a field K is a homomorphism
of G into the group GL(n, K ) of invertible n × n matrices with entries in K ,
or into the group GL(V ) of invertible linear transformations of a vector space V
over K . The dimension of V is the degree or dimension of the representation.

For instance, in any dimension a group G has a trivial representation g �−→ 1.
In general, let V be a vector space with basis G ; left multiplication by g ∈ G
permutes the basis and extends to an invertible linear transformation of V ; this
yields the regular representation of G , which has dimension |G| .

A representation ρ of Z is determined by the single linear transformation
or matrix ρ(1) . In general, however, group representations of a group G are
typically more difficult to classify than single matrices. As with single linear
transformations, we look for bases in which the matrices of all ρ(g) consist of
simpler diagonal blocks.

Definition. Two representations ρ1 : G −→ GL(V1) , ρ2 : G −→ GL(V2) are
equivalent when there is an invertible linear transformation T : V1 −→ V2 such
that ρ2(g) = T ◦ ρ1(g) ◦ T−1 for all g ∈ G .

Thus, two representations of Z are equivalent if and only if their matrices are
similar. In general, representations need only be classified up to equivalence.

Definition. The direct sum of representations ρi : G −→ GL(Vi ) is the
representation ρ =

⊕

i∈I ρi : G −→ GL
(⊕

i∈I Vi
)

that assigns to g ∈ G the
linear transformation (vi )i∈I �−→

(

ρi (g) vi
)

i∈I of
⊕

i∈I Vi .

Given a basis Bi of every Vi , the disjoint union B =
⋃

i∈I Bi is a basis of
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⊕

i∈I Vi , in which the matrix of ρ(g) consists of diagonal blocks
⎛

⎜
⎝

Mi (g) 0 . . .
0 Mj (g) . . .
...

...
. . .

⎞

⎟
⎠ ,

where Mi (g) is the matrix of ρi (g) in the basis Bi .

For example, the trivial representation of G is a direct sum of trivial represen-
tations of dimension 1. Less trivially, when ρ is a representation of Z , putting the
matrix ρ(1) in Jordan form finds an equivalent representation that is a direct sum
of simpler representations; for instance, ρ(1) is diagonalizable if and only if ρ is
a direct sum of representations of dimension 1.

Definition. A representation ρ : G −→ GL(V ) is irreducible when V =/ 0
and ρ = ρ1 ⊕ ρ2 implies V1 = 0 or V2 = 0 (where ρ1 : G −→ GL(V1) and
ρ2 : G −→ GL(V2) ) .

Proposition 7.1. Every finite-dimensional representation is a direct sum of
irreducible representations.

Proof. This is shown by induction on the dimension of V : if ρ is not irreducible,
then ρ = ρ1 ⊕ ρ2 , where V = V1 ⊕ V2 and V1, V2 have lower dimension
than V . �

Every representation of dimension 1 is irreducible, but not every irreducible
representation has dimension 1: for instance, when a matrix is not diagonalizable,
the corresponding representation of Z is a direct sum of irreducible representations,
not all of which can have dimension 1. Our goal is now to classify irreducible
representations, up to equivalence.

The group algebra. Modules over algebras give a different view of represen-
tations. An algebra over K , or K-algebra (with an identity element) is a vector
space over K with a bilinear associative multiplication for which there is an iden-
tity element. For example, the matrix ring Mn(K ) is a K-algebra; more generally,
when V is a vector space over K , the linear transformations of V into itself
constitute a K-algebra EndK (V ) , in which the multiplication is composition.

Now, let G be a group. Let K [G] be a vector space in which G is a basis
(constructed perhaps as in Section VIII.4), so that every element of K [G] is a
linear combination x =

∑

g∈G xg g for some unique xg ∈ K (with xg = 0 for
almost all g , in case G is infinite). Define a multiplication on K [G] by

(∑

g∈G xg g
)(∑

h∈G yh h
)

=
∑

k∈G zk k ,

where zk =
∑

g,h∈G, gh=k xg yh . Skeptical readers will verify that this multiplica-
tion is well defined, associative, and bilinear, and induces the given multiplication
on G . The identity element 1 of G is also the identity element of K [G] . Thus
K [G] is a K-algebra.
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Definition. If G is a group and K is a field, then K [G] is the group ring or
group algebra of G over K .

Similar constructions were used in Chapter III to define polynomial rings. We
note that K [G] contains a subfield { a1

∣
∣ a ∈ K } that consists of scalar multiples

of its identity element and is isomorphic to K . Multiplication by a1 on either
side is just scalar multiplication by a . In particular, a1 is central in K [G] : a1
commutes with every x ∈ K [G] , since the multiplication on K [G] is bilinear.
We identify a1 with a , so that K becomes a central subfield of K [G] .

A homomorphism of K-algebras is a linear transformation that preserves prod-
ucts and identity elements. The group algebra K [G] has a universal property,
which produces this very kind of homomorphism:

Proposition 7.2. Every multiplicative homomorphism of a group G into a
K-algebra A extends uniquely to an algebra homomorphism of K [G] into A .

Proof. Let ϕ : G −→ A be a multiplicative homomorphism (meaning
ϕ(gh) = ϕ(g)ϕ(h) for all g, h ∈ G , and ϕ(1) = 1). Since G is a basis of
K [G] , ϕ extends uniquely to a linear transformation ϕ : K [G] −→ A , namely
ϕ
(∑

g∈G ag g
)

=
∑

g∈G ag ϕ(g) . Readers will easily verify that ϕ preserves
products; already ϕ(1) = ϕ(1) = 1. �

In what follows we denote ϕ by just ϕ , so that ϕ extends to K [G] by
ϕ
(∑

g∈G ag g
)

=
∑

g∈G ag ϕ(g) .

Our astute readers have probably guessed what comes next:

Proposition 7.3. There is a one-to-one correspondence between representa-
tions of a group G over a field K and K [G]-modules. Two representations are
equivalent if and only if the corresponding modules are isomorphic.

Proof. By 7.2, a representation ρ : G −→ GL(V ) ⊆ EndK (V ) extends
uniquely to an algebra homomorphism ρ : K [G] −→ EndK (V ) that makes V
a K [G]-module. Conversely, let V be a K [G]-module. Since K is a subfield
of K [G] , the K [G]-module structure ρ : K [G] −→ End

Z
(V ) on V induces a

K-module structure on V , in which av = ρ(a)(v) for all a ∈ K and v ∈ V .
Then every ρ(x) is a linear transformation: ρ(x)(av) = ρ(xa)(v) = ρ(ax)(v) =
a ρ(x)(v) , since every a ∈ K is central in K [G] . Similarly, ρ(ax) = a ρ(x) .
Hence ρ is an algebra homomorphism K [G] −→ EndK (V ) . If g ∈ G , then
ρ(g) is invertible, since ρ(g) ◦ ρ(g−1) = 1 = ρ(g−1) ◦ ρ(g) . Thus ρ|G : G −→
GL(V ) is a representation of G ; by 7.2, the corresponding K [G]-module structure
on V is ρ itself. We now have our one-to-one correspondence.

Let ρ1 : G −→ GL(V1) and ρ2 : G −→ GL(V2) be equivalent, so
that there is an invertible linear transformation T : V1 −→ V2 such that
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ρ2(g) = T ◦ ρ1(g) ◦ T−1 for all g ∈ G , equivalently T (gv) = T
(

ρ1(g)(v)
)

=
ρ2(g)

(

T (v)
)

= gT (v) for all g ∈ G , v ∈ V1 . Then T is a K [G]-module
isomorphism:

T
((∑

g∈G xg g
)

v
)

= T
(∑

g∈G xg (gv)
)

=
∑

g∈G xgT (gv)

=
∑

g∈G xg gT (v) =
(∑

g∈G xg g
)

T (v)

for all v ∈ V1 and
∑

g∈G xg g ∈ K [G] . Conversely, if T : V1 −→ V2 is a K [G]-
module isomorphism, then T is a linear transformation and T (gv) = gT (v) for
all g and v , so that ρ1 and ρ2 are equivalent. �

The calculation
(∑

g∈G xg g
)

v =
∑

g∈G xg (gv) shows that the K [G]-module
structure on V is determined by its vector space structure and the action of
G . Accordingly, left K [G]-modules are usually called just G-modules (it being
understood that they already are vector spaces over K ). A submodule of a
G-module V is a subspace W that is closed under the action of G (v ∈ W
implies gv ∈ W for all g ∈ G ).

Maschke’s theorem. If ρ : G −→ GL(V ) is a direct sum ρ =
⊕

i∈I ρi of
representations ρi : G −→ GL(Vi ) , then V =

⊕

i∈I Vi as a vector space, and

g (vi )i∈I = ρ(g)(vi )i∈I =
(

ρi (g) (vi )
)

i∈I = (gvi )i∈I

for all g ∈ G , so that V =
⊕

i∈I Vi as a G-module. Conversely, direct sums
of G-modules yield direct sums of representations. Hence a group representation
is irreducible if and only if the corresponding G-module V is indecomposable
( V =/ 0, and V = V1 ⊕ V2 implies V1 = 0 or V2 = 0). Our goal is now the
classification of indecomposable G-modules, up to isomorphism. This does not
seem very tractable. Fortunately, there is Maschke’s theorem:

Theorem 7.4 (Maschke [1898]). Let G be a finite group and let K be a field. If
K has characteristic 0 , or if K has characteristic p =/ 0 and p does not divide
the order of G , then K [G] is semisimple.

Proof. We show that every submodule W of a G-module V is a direct summand
of V . We already have V = W ⊕ W ′ (as a vector space) for some subspace W ′ .
The projection π : V −→ W is a linear transformation and is the identity on W .
Define ϕ : V −→ W by

ϕ(v) =
1
n
∑

g∈G g−1 π(gv),

where n = |G| =/ 0 in K by the choice of K . Then ϕ is a linear transformation;
ϕ is the identity on W : for all w ∈ W ,

ϕ(w) =
1
n
∑

g∈G g−1 π(gw) =
1
n
∑

g∈G g−1 gw = w; and

ϕ(hv) =
1
n
∑

g∈G g−1 π(ghv) =
1
n
∑

g∈G h (gh)−1 π(ghv)

=
1
n
∑

k∈G h k−1 π(kv) = h ϕ(v)



384 Chapter IX. Semisimple Rings and Modules

for all h ∈ G and v ∈ V , so that ϕ is a module homomorphism. Then W is a
direct summand of V (as a G-module) by VIII.3.8. �

Corollary 7.5. Let G be a finite group and let K be a field whose characteristic
does not divide the order of G .

(1) Up to isomorphism, there are only finitely many simple G-modules S1 , . . . , Ss ,
and they all have finite dimension over K .

(2) Every G-module is isomorphic to a direct sum Sm1
1 ⊕ · · · ⊕ Sms

s for some
unique cardinal numbers m1, . . ., ms .

(3) Up to equivalence, there are only finitely many irreducible representations
of G , and they all have finite dimension over K .

Proof. That there are only finitely many simple G-modules follows from 3.6.
By 1.3, every simple G-module is isomorphic to a minimal left ideal of K [G] ,
and has finite dimension over K , like K [G] . Then (2) follows from 3.7, and (3)
follows from (1) and 7.3. �

One can say more when K is algebraically closed:

Proposition 7.6. Let G be a finite group and let K be an algebraically closed
field whose characteristic does not divide the order of G . Let the nonisomorphic
simple G-modules have dimensions d1, . . ., ds over K . The simple components
of K [G] are isomorphic to Md1

(K ) , . . . , Mds
(K ) , and

∑

i d2
i = |G| .

Proof. By 7.4, K [G] is semisimple. The simple components R1, . . ., Rr
of K [G] are simple left Artinian rings Ri

∼= Mni
(Di ) , where D1, . . ., Dr are

division rings, as well as two-sided ideals of R . Hence every Ri is a vector space
over K , and its multiplication is bilinear; then Ri , like K [G] , has a central subfield
that consists of all scalar multiples of its identity element and is isomorphic to K .
Then Mni

(Di ) has a central subfield that etc. etc. By 4.4, this central subfield
consists of scalar matrices, with entries in the center of Di . Therefore Di too has
a central subfield Ki that consists of all scalar multiples of its identity element and
is isomorphic to K . Up to this isomorphism, Ki and K induce the same vector
space structure on Di . Hence Di , like Ri , has finite dimension over K . By 7.7
below, Di = Ki ; hence Ri

∼= Mni
(K ) .

By 3.6, every simple left R-module is isomorphic to a minimal left ideal of
some Ri , which has dimension ni over K by 1.8. Hence di = ni for all i . Then
K [G] ∼= Md1

(K ) × · · · × Mds
(K ) has dimension |G| =

∑

i d2
i . �

Lemma 7.7. Let D be a division ring that has finite dimension over a central
subfield K . If K is algebraically closed, then D = K .

Proof. If α ∈ D , then K and α generate a commutative subring K [α] of D ,
α is algebraic over K since K [α] has finite dimension over K , and α ∈ K since
K is algebraically closed. �

Corollary 7.8. Let G be a finite group and let K be an algebraically closed
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field whose characteristic does not divide the order of G . If G is abelian, then
every irreducible representation of G over K has dimension 1.

The proof is an exercise. More generally, when G is finite, every conjugacy
class C of G has a sum

∑

g∈C g in K [G] . These sums are linearly independent
over K , since the conjugacy classes of G constitute a partition of G . Readers
will enjoy showing that they constitute a basis (over K ) of the center of K [G] .

Theorem 7.9. Let G be a finite group with s conjugacy classes and let K be
an algebraically closed field whose characteristic does not divide the order of G .
Up to equivalence, G has s distinct irreducible representations over K .

Proof. We look at the center Z(K [G]) of K [G] . By 7.6, K [G] ∼= R1 × · · · ×
Rs , where s is now the number of distinct irreducible representations of G and
Ri

∼= Mni
(K ) . By 4.4, Z(Mni

(K )) ∼= K ; hence Z(K [G]) ∼= K s . Therefore G
has s conjugacy classes. �

Proposition 7.10. Let G be a finite group and let K be an algebraically closed
field whose characteristic does not divide the order of G . Let ρ : G −→ EndK (S)
be an irreducible representation and let c be the sum of a conjugacy class. Then
ρ : K [G]−→ EndK (S) is surjective, and ρ(c) is a scalar linear transformation.

Proof. First, S is a simple K [G]-module. Let E = End
op
K [G]

(S) . Since K
is central in K [G] , the scalar linear transformations λ1 : x �−→ λx are K [G]-
endomorphisms of S and constitute a subfield K ′ ∼= K of E . By Schur’s lemma,
E is a division ring; then E = K ′ by 7.7, so that E contains only scalar linear
transformations. Hence EndE (S) = EndK (S) .

Let e1, . . ., ed be a basis of S over K . If T ∈ EndK (S) = EndE (S) , then
Theorem 4.2 yields x ∈ K [G] such that T (ei ) = xei for all i . Then T (v) = xv

for all x ∈ S , that is, T = ρ(x) . Since c commutes with every x ∈ K [G] , ρ(c)
commutes with every ρ(x) , and commutes with every T ∈ EndK (S) . Hence
ρ(c) is a scalar linear transformation, by 4.4. �

Exercises

1. Find all irreducible representations of Z (up to equivalence), over an algebraically
closed field.

2. True or false: there exists a group G with an irreducible representation over C of
dimension n for every n > 0 .

3. Find all irreducible representations of Zn (up to equivalence) over an algebraically
closed field.

4. Verify that the multiplication on K [G] is well defined, associative, and bilinear, and that
the identity element of G is also the identity element of K [G] .

5. Let G be a totally ordered group (a group with a total order � such that x � y implies
xz � yz and zx � zy for all z ). Show that K [G] has no zero divisors.
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6. Show that every K-algebra (with an identity element) contains a central subfield that is
isomorphic to K .

7. Find a division ring D that has finite dimension over an algebraically closed subfield K
but is not equal to K .

8. Let G be a finite group and let K be a field. Show that the sums of the conjugacy
classes of G constitute a basis of the center of K [G] .

9. Let G be a finite abelian group and let K be an algebraically closed field whose
characteristic does not divide the order of G . Without using Theorem 7.9, show that every
irreducible representation of G over K has dimension 1.

In the next problems, Cn is a cyclic group of order n .

10. Show that K [Cn] ∼= K [X ]/(Xn − 1) , for every field K .

11. Write C[Cn] as a direct sum of minimal left ideals. (You may want to use the previous
exercise and the Chinese remainder theorem.)

12. Write Q[Cn] as a direct sum of minimal left ideals.

13. Let C2 = { e, a } be cyclic of order 2. Show that Z2[C2] is not semisimple. (You
may want to show that the ideal of Z2[C2] generated by e + a is not a direct summand.)

14. Let H be a normal subgroup of a group G and let K be any field. Prove Clifford’s
theorem: if V is a simple G-module, then V is a semisimple H-module. (You may want to
look at

∑

g∈G gW , where W is a simple sub-H-module of V .)

15. Let G be a finite group and let K be a field of characteristic p =/ 0 . Show that every
normal p-subgroup N of G acts trivially on every simple G-module. Show that the simple
G-modules are the same as the simple G/N-modules. (You may want to use induction on
|N | , the previous exercise, and the fact that |Z(N)| > 1 when |N | > 1 .)

16. Let G be a finite group and let K be a field of characteristic p =/ 0 . Let N be
the intersection of all the Sylow p-subgroups of G . Show that g ∈ N if and only if
g − 1 ∈ J(K [G]) . Show that J(K [G]) is the ideal of K [G] generated by all g − 1 with
g ∈ N . (Hint: K [G/N ] is semisimple.)

8. Characters

Characters are mappings that arise from representations. They have become a
major tool of finite group theory. This section contains a few basics.

Definition. Every linear transformation T of a finite-dimensional vector space
V has a trace Tr T , which is the trace of its matrix in any basis of V .

Definitions. Let ρ be a finite-dimensional representation of a group G over a
field K . The character of ρ is the mapping χρ : G −→ K defined by

χρ(g) = Tr ρ(g).

A character of G over K is the character of a finite-dimensional representation
of G ; an irreducible character of G over K is the character of an irreducible
finite-dimensional representation of G .
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For example, the trivial representation τ (g) = 1 of dimension d has a constant
trivial character χτ (g) = d for all g ∈ G . The regular character of a finite
group G is the character χρ of its regular representation ρ ; readers will verify
that χρ(1) = |G| and χρ(g) = 0 for all g =/ 1. A homomorphism of G into the
multiplicative group K\{0} is a one-dimensional character.

In general, χρ(1) = Tr 1 is the dimension of ρ . Moreover, χρ is a class func-

tion (constant on every conjugacy class): χρ(hgh−1) = χρ(g) for all g, h ∈ G ,

since ρ(g) and ρ(hgh−1) = ρ(h) ◦ ρ(g) ◦ ρ(h)−1 have the same trace.

Proposition 8.1. If ρ =
⊕

j∈J ρj , then χρ =
∑

j∈J χρj
. Hence every

character is a pointwise sum of irreducible characters.

From now on, G is finite and the characteristic of K does not divide the order
of G . We use the following notation: R1, . . ., Rs are the simple components
of K [G] ; ei is the identity element of Ri ; Si is a minimal left ideal of Ri , so
that K [G] acts on Si by left multiplication in K [G] ; di = dimK Si ; ρi is the
corresponding irreducible representation ρi : G −→ EndK (Si ) (ρi (x) s = xs
is the product in K [G] , for all x ∈ K [G] and all s ∈ Si ); and χi is the
character of ρi . Up to isomorphism, S1, . . . , Ss are all the simple G-modules;
hence ρ1, . . ., ρs are, up to equivalence, all the irreducible representations and
χ1, . . ., χs are all the irreducible characters.

Let χ be the character of a finite-dimensional representation ρ . By Corollary
7.5, the corresponding G-module is isomorphic to a direct sum Sm1

1 ⊕ · · · ⊕ Sms
s

for some nonnegative integers m1, . . ., ms . Hence ρ is equivalent to a direct
sum of m1 copies of ρ1 , . . . , ms copies of ρs , and χ = m1χ1 + · · · + msχs . For
example, the regular character has the following expansion:

Proposition 8.2. If K is an algebraically closed field whose characteristic does
not divide |G| , then the regular character is χr =

∑

i di χi .

Proof. By 7.6, Ri
∼= Mdi

(K ) ∼= Sdi
i ; hence K [G] ∼= Sd1

1 ⊕ · · · ⊕ Sds
s , as a

G-module, and χr =
∑

i diχi . �
In addition, every character χ extends to a linear mapping

∑

g∈G xg g �−→
∑

g∈G xg χ(g) of K [G] into K , also denoted by χ . Then

χρ(x) =
∑

g∈G xg Tr ρ(g) = Tr
(∑

g∈G xg ρ(g)
)

= Tr ρ(x)

for all x =
∑

g∈G xg g ∈ K [G] . We note the following properties.

Lemma 8.3. If the characteristic of K does not divide |G| , then:

(1) χi (x) = 0 when x ∈ Rj and j =/ i ;

(2) χi (ej ) = 0 if j =/ i and χi (ei ) = χi (1) = di ;

(3) χi (ei x) = χi (x) for all x ∈ K [G] .

Proof. If x ∈ Rj and j =/ i , then ρi (x)(s) = xs = 0 for all s ∈ Si ,



388 Chapter IX. Semisimple Rings and Modules

ρi (x) = 0, and χi (x) = Tr ρi (x) = 0. In particular, χi (ej ) = 0 when j =/ i .
Since 1 =

∑

j ej by 2.4, this implies χi (ei ) = χi (1) = di . Finally, ρi (ei ) is the
identity on Si , since ei is the identity element of Ri ; hence, for all x ∈ K [G] ,

χi (ei x) = Tr ρi (ei x) = Tr ρi (ei ) ρi (x) = Tr ρi (x) = χi (x). �

Main properties. Equivalent representations have the same character, since
T ◦ ρ(g) ◦ T−1 and ρ(g) have the same trace when T is invertible. The
converse holds when K has characteristic 0, so that χ1, . . . , χs determine all
finite-dimensional representations.

Theorem 8.4. If G is finite and K has characteristic 0:

(1) the irreducible characters of G are linearly independent over K ;

(2) every character of G can be written uniquely as a linear combination of
irreducible characters with nonnegative integer coefficients;

(3) two finite-dimensional representations of G are equivalent if and only if they
have the same character.

Proof. If ai ∈ K and
∑

i aiχi = 0, then di ai =
∑

j ajχj (ei ) = 0 for all i ;
since K has characteristic 0 this implies ai = 0 for all i .

Let χ be the character of a representation ρ . By 7.5, the corresponding G-mod-
ule V is isomorphic to a direct sum Sm1

1 ⊕ · · ·⊕ Sms
s for some nonnegative integers

m1, . . ., ms . Then χ = m1χ1 + · · · + msχs , and χ(ei ) = miχi (ei ) = mi di by 8.3.
Therefore V ∼= Sm1

1 ⊕ · · · ⊕ Sms
s is uniquely determined, up to isomorphism, by

χ , and then ρ is uniquely determined by χ , up to equivalence. �

Readers will show that (2) and (3) need not hold in characteristic p =/ 0.

The next result is an orthogonality property of the irreducible characters. The
exercises give another orthogonality property.

Theorem 8.5. If G is a finite group and K is an algebraically closed field
whose characteristic does not divide |G| , then di =/ 0 in K and

∑

g∈G χi (g)χj (g−1) =
{ |G| if i = j ,

0 if i =/ j .

In case K = C we shall see in the next section that χ(g−1) = χ(g) , so that
χ1, . . ., χs are indeed pairwise orthogonal for a suitable complex inner product.

Proof. Let eig be the g coordinate of ei in K [G] , so that ei =
∑

g∈G eig g .
Since χr (1) = |G| and χr (g) = 0 for all g =/ 1 we have

χr (ei g−1) = χr
(∑

h∈G eih hg−1) =
∑

h∈G eih χr (hg−1) = eig |G|.

By 8.2, 8.3,

eig |G| = χr (ei g−1) =
∑

j djχj (ei g−1) = diχi (ei g−1) = diχi (g−1).
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Since |G| =/ 0 in K , this implies

ei =
∑

g∈G eig g =
di
|G|

∑

g∈G χi (g−1) g.

Hence di =/ 0 in K , since ei =/ 0. Then

χj (ei ) =
∑

g∈G
di
|G| χi (g−1) χj (g).

If j =/ i , then χj (ei ) = 0 by 8.3 and
∑

g∈G χi (g−1) χj (g) = 0. If j = i , then

χj (ei ) = di by 8.3 and
∑

g∈G χi (g−1) χj (g) = |G| . �

Exercises

In the following exercises, G is a finite group and K is a field whose characteristic does not
divide the order of G . Characters are characters of G over K .

1. Show that χr (1) = |G| and χr (g) = 0 for all g =/ 1 (χr is the regular character).

2. Show that the irreducible characters are linearly independent over K even when K has
characteristic p =/ 0 .

3. If K has characteristic p =/ 0 , show that two representations that have the same character
need not be equivalent.

4. Prove the following: if g and h are not conjugate, then
∑

i χi (g) χi (h) = 0; otherwise,
∑

i χi (g) χi (h) is the order of the centralizer of g (and of the centralizer of h ).

5. Find all irreducible characters of V4 over C .

6. Find all irreducible characters of S3 over C .

7. Find all irreducible characters of the quaternion group Q over C . (It may be useful to
note that Q/Z(Q) ∼= V4 .)

8. Show that every normal subgroup of G is the kernel of some representation of G
over K .

9. If K is algebraically closed, show that the values of any character are sums of roots of
unity in K . (You may use restrictions to cyclic subgroups.)

9. Complex Characters

This section brings additional properties of complex characters, and a proof of
Burnside’s theorem that groups of order pmqn are solvable for all primes p, q .

Character values. Representations and characters over C are complex rep-
resentations and characters. Complex characters have all properties in Section 8.
They also have a few properties of their own.

Proposition 9.1. Let G be a finite group and let χ be the character of a complex
representation ρ : G −→ GL(V ) of dimension d . For every g ∈ G :
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(1) ρ(g) is diagonalizable;

(2) χ(g) is a sum of d roots of unity, and is integral over Z ;

(3) χ(g−1) = χ(g);

(4) |χ(g)| � d ; χ(g) = d if and only if ρ(g) = 1; |χ(g)| = d if and only if
ρ(g) = λ1 for some λ ∈ C , and then λ is a root of unity.

Proof. (1). Let H = 〈 g 〉 . By 7.8 the representation ρ|H : H −→ GL(V ) is
a direct sum of representations of dimension 1. Hence V , as an H-module, is a
direct sum of submodules of dimension 1 over C , and has a basis e1, . . ., ed over
C that consists of eigenvectors of every ρ|H (h) . The matrix of ρ(g) = ρ|H (g) in
that basis is a diagonal matrix

⎛

⎜
⎜
⎜
⎝

ζ1 0 . . . 0
0 ζ2 . . . 0
...

...
. . . . . .

0 0 . . . ζd

⎞

⎟
⎟
⎟
⎠

.

(2), (3). Since g has finite order k in G we have ρ(g)k = ρ(gk) = 1 and
ζ1, . . . , ζd are kth roots of unity. Hence χ(g) = Tr ρ(g) = ζ1 + · · · + ζd is a sum
of d kth roots of unity. Since kth roots of unity are integral over Z , so is χ(g) .
Moreover, the matrix of ρ(g−1) = ρ(g)−1 in the same basis is

⎛

⎜
⎜
⎜
⎜
⎝

ζ−1
1 0 . . . 0

0 ζ−1
2 . . . 0

...
...

. . . . . .
0 0 . . . ζ−1

d

⎞

⎟
⎟
⎟
⎟
⎠

.

Now, ζ−1
i = ζi , since ζi is a kth root of unity; hence χ(g−1) = χ(g) .

(4) follows from (2): |ζi | = 1 for all i , hence |χ(g)| = |ζ1 + · · · + ζd | � d ,
with equality if and only if ζ1 = · · · = ζd , equivalently, ρ(g) = ζ1 where
ζ = ζ1 = · · · = ζd is a root of unity. Then χ(g) = ζd ; in particular, χ(g) = d if
and only if ζ1 = · · · = ζd = 1, if and only if ρ(g) = 1. �

Conjugacy classes. We keep the notation in Section 8. By Theorem 7.9, G
has s conjugacy classes C1, . . . , Cs , on which χ1, . . ., χs are constant. Let c j =
∑

g∈Cj
g ∈ K [G] . By Proposition 7.10, ρi (cj ) is a scalar linear transformation

v �−→ ci j v . Then χi (cj ) = Tr ρi (cj ) = di ci j . Since χi is constant on Cj we
have χi (g) = di ci j/|Cj | for all g ∈ Cj .

Lemma 9.2. ci j is integral over Z .

Proof. First, cj ck =
(∑

h′∈Cj
h′
)(∑

h′′∈Ck
h′′
)

=
∑

g∈G ng g , where ng is

the number of ordered pairs (h′, h′′)∈ Cj × Ck such that h′h′′ = g . If g and g′

are conjugate, then ng = ng′ ; hence cj ck is a linear combination of c1, . . ., cs
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with (nonnegative) integer coefficients. Then ρi (cj ) ρi (ck) = ρi (cj ck) is a linear
combination of ρi (c1), . . . , ρi (cs) with integer coefficients, and ci j cik is a linear
combination of ci1, . . ., cis with integer coefficients.

Let A be the additive subgroup of C generated by 1 and ci1, . . ., cis . By
the above, A is closed under multiplication, and is a ring; A is also a finitely
generated Z-module; hence A is integral over Z , by VII.3.1. �

Proposition 9.3. If di and |Cj | are relatively prime, then either |χi (g)| = di
for all g ∈ Cj , or χi (g) = 0 for all g ∈ Cj .

Proof. Assume |χi (g)| < di , where g ∈ Cj . Let α = χi (g)/di = ci j/|Cj | .
Then |α| < 1. Also, udi + v|Cj | = 1 for some u, v ∈ Z ; hence α = udiα +
v|Cj |α = uχi (g) + vci j is integral over Z , by 9.1, 9.2.

There is a finite Galois extension E of Q that contains α . If σ ∈ Gal (E : Q),
then σα is integral over Z ; moreover, σχi (g) is, like χi (g) , a sum of di roots
of unity; hence |σχi (g)| � di and |σα| � 1. Then N(α) =

∏

σ∈Gal (E : Q) σα

is integral over Z and |N(α)| < 1. But N(α) ∈ Q ; since Z is integrally closed,
N(α) ∈ Z , N(α) = 0, α = 0, and χi (g) = 0. �

Burnside’s pmqn theorem now follows from the properties above.

Theorem 9.4 (Burnside). Let p and q be prime numbers. Every group of order
pmqn is solvable.

Proof. It is enough to show that simple groups of order pmqn are abelian.

Assume that G is a simple nonabelian group of order pmqn . Since p-groups
are solvable we may assume that p =/ q and that m, n > 0. Number χ1, . . . , χs
so that χ1 is the trivial character χ1(g) = 1 for all g .

Let Zi = { g ∈ G
∣
∣ |χi (g)| = di } . Since the center of GL(V ) consists of all

scalar linear transformations, Zi = { g ∈ G
∣
∣ ρi (g) ∈ Z(GL(Si )) } by 9.1, and

Zi is a normal subgroup of G . If Zi = G , then |χi (g)| = di for all g ∈ G ,

|G| d2
i =

∑

g∈G χi (g)χi (g) =
∑

g∈G χi (g) χi (g)−1 = |G|

by 8.5, di = 1, and ρi : G −→ C\{0} . Now, Ker ρi =/ 1, since G is not abelian;
therefore Ker ρi = G , and χi = χ1 . Thus Zi = 1 for all i > 1.

Let S be a Sylow q-subgroup of G . There exists h ∈ Z(S) , h =/ 1, and then
h /∈ Zi when i > 1. The centralizer of h contains S ; its index is a power pk > 1
of p , and the conjugacy class of h has pk elements. If i > 1 and p does not
divide di , then χi (h) = 0 by 9.3, since h /∈ Zi . By 8.2,

0 = χr (h) =
∑

i diχi (h) = 1 +
∑

i>1, p|di
diχi (h) = 1 + pα,

where α is integral over Z since every χi (h) is integral over Z . But Z is integrally
closed, so α = −1/p ∈ Q\Z cannot be integral over Z ; this is the long awaited
contradiction. �
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Exercises
In the following exercises, G is a finite group; all representations and characters are over C .

1. Let F be the vector space of all class functions of G into C . Show that 〈α , β 〉 =
1
|G|
∑

g∈G α(g) β(g) is a complex inner product on F . Show that χ1, . . . , χs is an
orthonormal basis of F .

2. Show that 〈 x , y 〉 = 1
|G|
∑

i χi (x) χj (y) is a complex inner product on Z(C[G]) .
Show that c1, . . . , cs is an orthonormal basis of Z(C[G]) .

3. In the previous two exercises, show that F and Z(C[G]) are dual spaces, and that
1

d1
χ1, . . . , 1

ds χs and c1, . . . , cs are dual bases, under the pairing 〈α , x 〉 = α(x) .

4. Show that a character χ is irreducible if and only if 〈χ , χ 〉 = 1.

5. Let χ be a character such that χ(g) = 0 for all g =/ 1 . Show that χ is an integer
multiple of the regular character.

6. Show that G is abelian if and only if every irreducible character of G has dimension 1.

7. Find all irreducible representations of S4 . (You may want to consider a vector space
with basis e1, . . . , e4 , on which S4 permutes e1, . . . , e4 .)



X
Projectives and Injectives

This chapter contains some basic tools and definitions of module theory: exact
sequences, pullbacks and pushouts, projective and injective modules, and injective
hulls, with applications to rings. Sections 5 and 6 may be skipped.

As before, all rings have an identity element; all modules are unital. Results
are generally stated for left R-modules but apply equally to right R-modules.

1. Exact Sequences

This section introduces exact sequences and proofs by “diagram chasing”. It can
be covered much earlier, immediately after Section VIII.2.

Definition. A finite or infinite sequence · · · Mi
ϕi−→ Mi+1

ϕi+1−→ Mi+2 · · · of
module homomorphisms is null when ϕi+1 ◦ ϕi = 0 for all i .

Thus the sequence A
ϕ−→ B

ψ−→ C is null if and only if Im ϕ ⊆ Ker ψ , if
and only if ϕ factors through the inclusion homomorphism Ker ψ −→ B , if and
only if ψ factors through the projection B −→ Coker ϕ defined as follows:

Definition. The cokernel of a module homomorphism ϕ : A −→ B is the
quotient Coker ϕ = B/Im ϕ .

Definition. A finite or infinite sequence · · · Mi
ϕi−→ Mi+1

ϕi+1−→ Mi+2 · · · of
module homomorphisms is exact when Im ϕi = Ker ϕi+1 for all i .

Exact sequences first appear in Hurewicz [1941] (see MacLane [1963]). If

A
ϕ−→ B

ψ−→ C is exact, then B contains a submodule Im ϕ ∼= A/Ker ϕ such
that B/Im ϕ = B/Ker ψ ∼= Im ψ ; this provides information about the size and
structure of B .

We note some particular kinds of exact sequences:

0 −→ A
ϕ−→ B is exact if and only if ϕ is injective;

A
ϕ−→ B −→ 0 is exact if and only if ϕ is surjective;

0 −→ A
ϕ−→ B −→ 0 is exact if and only if ϕ is an isomorphism.
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Exact sequences 0 −→ A −→ B −→ C are sometimes called left exact;
exact sequences A −→ B −→ C −→ 0 are sometimes called right exact. These
sequences have useful factorization properties.

Lemma 1.1. If 0 −→ A
µ−→ B

ϕ−→ C is exact, then every homomorphism ψ

such that ϕ ◦ ψ = 0 factors uniquely through µ :

Proof. We have Im ψ ⊆ Ker ϕ = Im µ . Since µ is injective there is a unique
mapping χ : M −→ A such that ψ(x) = µ

(

χ(x)
)

for all x ∈ M . Then χ is a
module homomorphism, like ψ and µ . �

Lemma 1.2. If A
ϕ−→ B σ−→ C −→ 0 is exact, then every homomorphism ψ

such that ψ ◦ ϕ = 0 factors uniquely through σ :

Proof. This follows from Theorem VIII.2.5, since Ker σ = Im ϕ ⊆ Ker ψ . �

A short exact sequence is an exact sequence 0 −→ A −→ B −→ C −→ 0.
Then B contains a submodule B′ ∼= A such that B/B′ ∼= C . All exact sequences
are “compositions” of short exact sequences (see the exercises).

Diagram chasing. Exact sequences lend themselves to a method of proof,
diagram chasing, in which elements are “chased” around a commutative diagram.

Lemma 1.3 (Short Five Lemma). In a commutative diagram with exact rows,

if α and γ are isomorphisms, then so is β .

Proof. Assume that β(b) = 0. Then γ
(

ρ(b)
)

= ρ′(β(b)
)

= 0 and ρ(b) = 0.
By exactness, b = µ(a) for some a ∈ A . Then µ′(α(a)

)

= β
(

µ(a)
)

= β(b) = 0.
Hence α(a) = 0, a = 0, and b = µ(a) = 0. Thus β is injective.

Let b′ ∈ B′ . Then ρ′(b′) = γ (c) for some c ∈ C , and c = ρ(b) for some
b ∈ B . Hence ρ′(β(b)

)

= γ
(

ρ(b)
)

= γ (c) = ρ′(b′) . Thus b′ − β(b) ∈ Ker ρ′ ;
by exactness, b′ − β(b) = µ′(a′) for some a′ ∈ A′ . Then a′ = α(a) for some
a ∈ A ; hence b′ = β(b) + µ′(α(a)

)

= β
(

b + µ(a)
)

. Thus β is surjective. �
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The proof of Lemma 1.3 does not use all the hypotheses. The exercises give
sharper versions, as well as other diagram lemmas, including the nine lemma:

Lemma 1.4 (Nine Lemma). In a commutative diagram with exact columns:

(1) if the first two rows are exact, then the last row is exact.

(2) if the last two rows are exact, then the first row is exact.

Split exact sequences. For every pair of left R-modules A and C there is a
short exact sequence 0 −→ A ι−→ A ⊕ C π−→ C −→ 0, where ι is the injection
and π is the projection. The resulting short exact sequences are characterized as
follows, up to isomorphism.

Proposition 1.5. For a short exact sequence 0 −→ A
µ−→ B

ρ−→ C −→ 0 the
following conditions are equivalent:

(1) µ splits (σ ◦ µ = 1A for some homomorphism σ : B −→ A );

(2) ρ splits (ρ ◦ ν = 1C for some homomorphism ν : C −→ B );

(3) there is an isomorphism B ∼= A ⊕ C such that the diagram

commutes, where ι is the injection and π is the projection.

Proof. (1) implies (3). Assume that σ ◦ µ = 1A . There is a homomor-
phism θ : B −→ A ⊕ C such that π ′ ◦ θ = σ and π ◦ θ = ρ (where π ′ :
A ⊕ C −→ A is the projection), namely θb =

(

σ (b), ρ(b)
)

. Then θ
(

µ(a)
)

=
(

σ (µ(a)), ρ(µ(a))
)

= (a, 0) and θ ◦ µ = ι . Hence θ is an isomorphism, by 1.3.
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(2) implies (3). Assume that ρ ◦ ν = 1C . There is a homomorphism ζ :
A ⊕ C −→ B such that µ = ζ ◦ ι and ν = ζ ◦ ι′ (where ι′ : C −→ A ⊕ C
is the injection), namely ζ (a, c) = µ(a) + ν(c) . Then ρ

(

ζ (a, c)
)

= ρ
(

µ(a)
)

+
ρ
(

ν(c)
)

= c and ρ ◦ ζ = π ; hence ζ is an isomorphism, by 1.3.

(3) implies (1) and (2). If θ : B −→ A ⊕ C is an isomorphism and θ ◦ µ = ι ,
π ◦ θ = ρ , then σ = π ′ ◦ θ and ν = θ−1 ◦ ι′ satisfy σ ◦ µ = π ′ ◦ ι = 1A and
ρ ◦ ν = π ◦ ι′ = 1C , by VIII.3.4. �

Exercises
Given a commutative square β ◦ ϕ = ψ ◦ α :

1. Show that ϕ and ψ induce a homomorphism Ker α −→ Ker β .

2. Show that ϕ and ψ induce a homomorphism Coker α −→ Coker β .

3. Explain how any exact sequence A
ϕ−→ B

ψ−→ C can be recoved by “composing” the
short exact sequences 0 −→ Ker ϕ −→ A −→ Im ϕ −→ 0 , 0 −→ Im ϕ −→ B −→
Im ψ −→ 0 , and 0 −→ Im ψ −→ C −→ C/Im ψ −→ 0 .

4. Show that a module M is semisimple if and only if every short exact sequence 0 −→
A −→ M −→ C −→ 0 splits.

Given a commutative diagram with exact rows:

5. Show that 0 −→ Ker α −→ Ker β −→ Ker γ is exact.

6. Show that Coker α −→ Coker β −→ Coker γ −→ 0 is exact.

(Five Lemma). Given a commutative diagram with exact rows:

7. If α is surjective and β, δ are injective, show that γ is injective.

8. If ε is injective and β, δ are surjective, show that γ is surjective.
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(Nine Lemma). Given a commutative diagram with exact columns:

9. If the first two rows are exact, show that the last row is exact.

10. If the last two rows are exact, show that the first row is exact.

2. Pullbacks and Pushouts

Pullbacks and pushouts are commutative squares with universal properties.

Definition. A pullback of left R-modules is a commutative square α ◦ β′ = β ◦ α′

with the following universal property: for every commutative square α ◦ ϕ = β ◦ψ

(with the same α and β ) there exists a unique homomorphism χ such that
ϕ = β′ ◦ χ and ψ = α′ ◦ χ :

Readers will verify that the following squares are pullbacks:

Proposition 2.1. For every pair of homomorphisms α : A −→ C and β :
B −→ C of left R-modules, there exists a pullback α ◦ β ′ = β ◦ α′ , and it is
unique up to isomorphism.

Proof. Uniqueness follows from the universal property. Let α ◦ β ′ = β ◦ α′

and α ◦ β′′ = β ◦ α′′ be pullbacks. There exist homomorphisms θ and ζ such
that β ′′ = β ′ ◦ θ , α′′ = α′ ◦ θ and β ′ = β ′′ ◦ ζ , α′ = α′′ ◦ ζ . Then α′ = α′ ◦ θ ◦ ζ

and β′ = β′ ◦ θ ◦ ζ ; by uniqueness in the universal property of α ◦ β ′ = β ◦ α′ ,
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θ ◦ ζ is the identity. Similarly, α′′ = α′′ ◦ ζ ◦ θ and β′′ = β ′′ ◦ ζ ◦ θ ; by
uniqueness in the universal property of α ◦ β′′ = β ◦ α′′ , ζ ◦ θ is the identity.
Thus θ and ζ are mutually inverse isomorphisms.

Existence is proved by constructing a pullback, as in the next statement. �

Proposition 2.2. Given homomorphisms α : A −→ C and β : B −→ C
of left R-modules, let P = { (a, b) ∈ A ⊕ B

∣
∣ α(a) = β(b) } , α′ : P −→ B ,

(a, b) �−→ b , and β ′ : P −→ A, (a, b) �−→ a ; then α ◦ β ′ = β ◦ α′ is a pullback.

By Proposition 2.1, this construction yields every pullback, up to isomorphism.

Proof. First, α ◦ β′ = β ◦ α′ , by the choice of P . Assume α ◦ ϕ = β ◦ ψ ,
where ϕ : M −→ A and ψ : M −→ B are module homomorphisms. Then
(

ϕ(m), ψ(m)
)

∈ P for all m ∈ M . Hence χ : m �−→
(

ϕ(m), ψ(m)
)

is a
homomorphism of M into P , and ϕ = β′ ◦ χ , ψ = α′ ◦ χ . If χ ′ : M −→ P
is another homomorphism such that ϕ = β ′ ◦ χ ′ and ψ = α′ ◦ χ ′ , then the
components of every χ ′(m) are ϕ(m) and ψ(m) ; hence χ ′ = χ . �

Properties. The following properties can be proved either from the definition
of pullbacks or from Proposition 2.2, and make nifty exercises.

Proposition 2.3 (Transfer). In a pullback α ◦ β′ = β ◦ α′ :

(1) if α is injective, then α′ is injective;

(2) if α is surjective, then α′ is surjective.

Proposition 2.4 (Juxtaposition). In the commutative diagram

(1) if α ◦ β′ = β ◦ α′ and α′ ◦ γ ′ = γ ◦ α′′ are pullbacks, then α ◦ (β′ ◦ γ ′) =
(β ◦ γ ) ◦ α′′ is a pullback;

(2) if α ◦ β ′ = β ◦ α′ and α ◦ (β ′ ◦ γ ′) = (β ◦ γ ) ◦ α′′ are pullbacks, then
α′ ◦ γ ′ = γ ◦ α′′ is a pullback.

Pushouts. It is a peculiarity of modules that reversing all arrows in a definition
or construction usually yields an equally interesting definition or construction.
Pushouts are obtained from pullbacks in just this fashion:
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Definition. A pushout of left R-modules is a commutative square β ′ ◦ α = α′ ◦ β

with the following universal property: for every commutative square ϕ ◦ α = ψ ◦ β

(with the same α and β ) there exists a unique homomorphism χ such that
ϕ = χ ◦ β′ and ψ = χ ◦ α′ .

Readers will verify that the following squares are pushouts:

Proposition 2.5. For every pair of homomorphisms α : C −→ A and β :
C −→ B of left R-modules, there exists a pushout β′ ◦ α = α′ ◦ β , and it is unique
up to isomorphism.

Uniqueness follows from the universal property, and existence from a cons-
truction:

Proposition 2.6. Given homomorphisms α : C −→ A and β : C −→ B of
left R-modules, let K =

{(

α(c), −β(c)
)

∈ A ⊕ B
∣
∣ c ∈ C

}

, P = (A ⊕ B)/K ,
α′ = π ◦ κ , and β ′ = π ◦ ι , where π : A ⊕ B −→ P is the projection and
ι : A −→ A ⊕ B , κ : B −→ A ⊕ B are the injections. Then β ′ ◦ α = α′ ◦ β is a
pushout.

Proof. First, Ker π = K = Im (ι ◦ α − κ ◦ β) ; hence β ′ ◦ α = π ◦ ι ◦ α =
π ◦ κ ◦ β = α′ ◦ β . Assume that ϕ ◦ α = χ ◦ β , where ϕ : A −→ M and ψ :
B −→ M are module homomorphisms. Let ω : A ⊕ B −→ M be the unique ho-
momorphism such that ϕ = ω ◦ ι and ψ = ω ◦ κ . Then ω

(

ι(α(c))
)

= ϕ
(

α(c)
)

=
ψ
(

β(c)
)

= ω
(

κ(β(c))
)

for all c ∈ C . Hence Ker π = K ⊆ Ker ω and ω

factors through π : ω = χ ◦ π for some unique homomorphism χ : P −→ M .
Then χ ◦ β ′ = χ ◦ π ◦ ι = ω ◦ ι = ϕ and χ ◦ α′ = χ ◦ π ◦ κ = ω ◦ κ = ψ .
Moreover, χ is unique with these properties: if χ ′ ◦ β ′ = ϕ and χ ′ ◦ α′ = ψ , then
χ ′ ◦ π ◦ ι = ϕ = χ ◦ π ◦ ι and χ ′ ◦ π ◦ κ = ψ = χ ◦ π ◦ κ ; hence χ ′ ◦ π = χ ◦ π

and χ ′ = χ . �

By Proposition 2.5, this construction yields every pushout, up to isomorphism.

Properties. The following properties can be proved either from the definition
of pushouts or from Proposition 2.6, and make cool exercises.

Proposition 2.7 (Transfer). In a pushout β′ ◦ α = α′ ◦ β′ :
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(1) if α is injective, then α′ is injective;

(2) if α is surjective, then α′ is surjective.

Proposition 2.8 (Juxtaposition). In the commutative diagram

(1) if β ′ ◦ α = α′ ◦ β and γ ′ ◦ α′ = α′′ ◦ γ are pushouts, then (γ ′ ◦ β ′) ◦ α =
α′′ ◦ (γ ◦ β) is a pushout;

(2) if β ′ ◦ α = α′ ◦ β and (γ ′ ◦ β′) ◦ α = α′′ ◦ (γ ◦ β) are pushouts, then
γ ′ ◦ α′ = α′′ ◦ γ is a pushout.

Exercises

1. Let A and B be submodules of C . Show that Square 1 is a pullback.

2. Let ϕ : A −→ B be a module homomorphism. Show that Square 2 is a pullback.

3. Let ϕ : B −→ C be a module homomorphism and let A be a submodule of C . Show
that Square 3 is a pullback.

4. Let α ◦ β′ = β ◦ α′ be a pullback. Prove the following: if α is injective, then α′ is
injective.

5. Let α ◦ β′ = β ◦ α′ be a pullback. Prove the following: if α is surjective, then α′ is
surjective.

Given a commutative diagram:

6. Let α ◦ β′ = β ◦ α′ and α′ ◦ γ ′ = γ ◦ α′′ be pullbacks. Show that α ◦ (β′ ◦ γ ′) =
(β ◦ γ ) ◦ α′′ is a pullback.

7. Let α ◦ β′ = β ◦ α′ and α ◦ (β′ ◦ γ ′) = (β ◦ γ ) ◦ α′′ be pullbacks. Show that
α′ ◦ γ ′ = γ ◦ α′′ is a pullback.
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8. Let A and B be submodules of C . Construct Square 4 and show that it is a pushout.

9. Let ϕ : A −→ B be a module homomorphism. Show that Square 5 is a pushout.

10. Let β′ ◦ α = α′ ◦ β′ be a pushout. Prove the following: if α is surjective, then α′ is
surjective.

11. Let β′ ◦ α = α′ ◦ β′ be a pushout. Prove the following: if α is injective, then α′ is
injective.

Given a commutative diagram:

12. Let β′ ◦ α = α′ ◦ β and γ ′ ◦ α′ = α′′ ◦ γ be pushouts. Show that (γ ′ ◦ β′) ◦ α =
α′′ ◦ (γ ◦ β) is a pushout.

13. Let β′ ◦ α = α′ ◦ β and (γ ′ ◦ β′) ◦ α = α′′ ◦ (γ ◦ β) be pushouts. Show that
γ ′ ◦ α′ = α′′ ◦ γ is a pushout.

14. Given a short exact sequence 0 −→ A −→ B −→ C −→ 0 and a homomorphism
C ′ −→ C , construct a commutative diagram with exact rows:

15. Given a short exact sequence 0 −→ A −→ B −→ C −→ 0 and a homomorphism
A −→ A′ , construct a commutative diagram with exact rows:

16. Define pullbacks of sets and prove their existence and uniqueness, as in Propositions
2.1 and 2.2.

17. Define pushouts of not necessarily abelian groups. Show that examples includes free
products of two groups amalgamating a subgroup.

3. Projective Modules

Projective modules are an important class of modules. Their effective use began
with Cartan and Eilenberg [1956]. This section contains basic properties.

Definition. A left R-module P is projective when every homomorphism of
P can be factored or lifted through every epimorphism: if ϕ : P −→ N and
ρ : M −→ N are homomorphisms, and ρ is surjective, then ϕ = ρ ◦ ψ for some
homomorphism ψ : P −→ M :
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The proof of 3.1 below shows that this factorization is in general far from unique
(ψ need not be unique in the above).

Vector spaces are projective. More generally, so are free modules:

Proposition 3.1. Every free module is projective.

Proof. Let ϕ : F −→ N and ρ : M −→ N be homomorphisms and let (ei )i∈I
be a basis of F . If ρ is surjective, there is for every i ∈ I some mi ∈ M such that
ϕ(ei ) = ρ(mi ) . There is a homomorphism ψ : F −→ M such that ψ(ei ) = mi
for all i . Then ρ

(

ψ(ei )
)

= ϕ(ei ) for all i and ρ ◦ ψ = ϕ . �
If P is projective, then every epimorphism ρ : M −→ P splits (ρ ◦ µ = 1P

for some µ : P −→ M ), since 1P can be lifted through ρ .

Proposition 3.2. A left R-module P is projective if and only if every epimor-
phism M −→ P splits, if and only if every short exact sequence 0 −→ A −→
B −→ P −→ 0 splits.

Proof. By 1.5, 0 −→ A −→ B −→ P −→ 0 splits if and only if B −→ P
splits. Assume that every epimorphism M −→ P splits. Let ϕ : P −→ N
and ρ : M −→ N be homomorphisms, with ρ surjective. In the pullback
ϕ ◦ ρ′ = ρ ◦ ϕ′ , ρ′ is surjective by 2.3, hence splits: ρ′ ◦ ν = 1P for some
ν : P −→ Q ; then ρ ◦ ϕ′ ◦ ν = ϕ ◦ ρ′ ◦ ν = ϕ and ϕ can be lifted through ρ . �

Corollary 3.3. A ring R is semisimple if and only if every short exact sequence
of left R-modules splits, if and only if every left R-module is projective.

Proof. A left R-module B is semisimple if and only if every submodule of B is
a direct summand, if and only if every short exact sequence 0 −→ A −→ B −→
C −→ 0 splits. �

Corollary 3.3 readily yields projective modules that are not free. Readers will
establish two more basic properties:

Proposition 3.4. Every direct summand of a projective module is projective.

Proposition 3.5. Every direct sum of projective left R-modules is projective.

In particular, every finite product of projective modules is projective. This
property does not extend to infinite products; for instance, the direct product of
countably many copies of Z is not a projective Z-module (see the exercises).
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Corollary 3.6. A module is projective if and only if it is isomorphic to a direct
summand of a free module.

Proof. For every module P there is by VIII.4.6 an epimorphism ρ : F −→ P
where F is free; if P is projective, then the exact sequence 0 −→ Ker ϕ −→
F −→ P −→ 0 splits, and P is isomorphic to a direct summand of F . Con-
versely, every direct summand of a free module is projective, by 3.1 and 3.4. �

Corollary 3.7. If R is a PID, then an R-module is projective if and only if it is
free.

Proof. Every submodule of a free R-module is free, by Theorem VIII.6.1. �
Local rings share this property; the exercises prove a particular case.

Exercises
1. Let F be free with basis (ei )i∈I ; let ϕ : F −→ N and ρ : M −→ N be homomor-

phisms, with ρ surjective. In how many ways can ϕ be lifted through ρ ?

2. Show that every direct summand of a projective module is projective.

3. Show that every direct sum of projective left R-modules is projective.

4. Show that a ring R is semisimple if and only if every cyclic left R-module is projective.

5. Let m > 1 and n > 1 be relatively prime. Show that Zm is a projective, but not free,
Zmn-module.

6. Give another example of a projective module that is not free.

7. Let R be a local ring with maximal ideal m . Prove the following: if A is a finitely
generated R-module, and x1, . . . , xn is a minimal generating subset of A , then x1 + mA ,
. . . , xn + mA is a basis of A/mA over R/m . (Invoke Nakayama.)

8. Let R be a local ring. Prove that every finitely generated projective R-module is free.
(You may wish to use the previous exercise.)

9. Show that the direct product A = Z × Z × · · · × Z × · · · of countably many copies of
Z is not a free abelian group (hence not projective). (Let B be the subgroup of all sequences
(x1, x2, . . . , xn, . . .) ∈ A such that, for every k > 0 , xn is divisible by 2k for almost all n .
Show that B is not countable and that B/2B is countable, whence B is not free.)

4. Injective Modules

Injective modules are another important class of modules, first considered by Baer
[1940]. Their systematic use began with Cartan and Eilenberg [1956]. This section
contains basic properties, and applications to abelian groups.

Reversing arrows in the definition of projective modules yields the following:

Definition. A left R-module J is injective when every homomorphism into J
can be factored or extended through every monomorphism: if ϕ : M −→ J and
µ : M −→ N are module homomorphisms, and µ is injective, then ϕ = ψ ◦ µ

for some homomorphism ψ : N −→ J :
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This factorization need not be unique (ψ need not be unique in the above).

If J is injective, then every monomorphism µ : J −→ M splits (ρ ◦ µ = 1J
for some ρ : M −→ J ), since 1J can be extended through µ .

Proposition 4.1. For a left R-module J the following conditions are equivalent:

(1) J is injective;

(2) every monomorphism J −→ M splits;

(3) every short exact sequence 0 −→ J −→ B −→ C −→ 0 splits;

(4) J is a direct summand of every left R-module M ⊇ J .

Proof. We prove that (2) implies (1); the other implications are clear. Assume
(2). Let ϕ : M −→ J and µ : M −→ N be homomorphisms, with µ injective. In
the pushout ϕ′ ◦ µ = µ′ ◦ ϕ , µ′ is injective, by 2.7. Hence µ′ splits: ρ ◦ µ′ = 1J
for some ρ : P −→ J . Then ρ ◦ ϕ′ ◦ µ = ρ ◦ µ′ ◦ ϕ = ϕ and ϕ can be extended
through µ . �

Vector spaces are injective and, as in Corollary 3.3, we have:

Corollary 4.2. A ring R is semisimple if and only if every short exact sequence
of left R-modules splits, if and only if every left R-module is injective.

Readers will easily establish two basic properties:

Proposition 4.3. Every direct summand of an injective module is injective.

Proposition 4.4. Every direct product of injective left R-modules is injective.

In particular, every finite direct sum of injective modules is injective. This
property does not extend to infinite direct sums; see Theorem 4.12 below.

Baer’s criterion. The next result provides more interesting examples.

Proposition 4.5 (Baer’s Criterion). For a left R-module J the following condi-
tions are equivalent:

(1) J is injective;

(2) every module homomorphism of a left ideal of R into J can be extended
to RR ;
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(3) for every module homomorphism ϕ of a left ideal L of R into J , there exists
m ∈ J such that ϕ(r) = rm for all r ∈ L .

Proof. (1) implies (2), and readers will happily show that (2) and (3) are
equivalent. We show that (2) implies (1): every module homomorphism ϕ :
M −→ J extends through every monomorphism µ : M −→ N . Then M is
isomorphic to a submodule of N ; we may assume that M ⊆ N and that µ is the
inclusion homomorphism.

We show that ϕ has a maximal extension to a submodule of N . Let S be the
set of all ordered pairs (A, α) in which A is a submodule of N that contains M ,
and α : A −→ J is a module homomorphism that extends ϕ . Then (M, ϕ) ∈ S

and S =/ Ø. Order S by (A, α) � (B, β) if and only if A ⊆ B and β extends
α . In S every nonempty chain (Ai , αi )i∈I has an upper bound (A, α) , where
A =

⋃

i∈I Ai and α(x) = αi (x) whenever x ∈ Ai . By Zorn’s lemma, S has a
maximal element (C, γ ) . We show that (A, α) ∈ S is not maximal if A =/ N ;
hence C = N , and γ extends ϕ to all of N .

Given (A, α) ∈ S with A =/ N , let b ∈ N\A and B = A + Rb . Then

L = { r ∈ R
∣
∣ rb ∈ A }

is a left ideal of R , and r �−→ α(rb) is a module homomorphism of L into J .
By (2) there is a homomorphism χ : RR −→ J such that χ(r) = α(rb) for all
r ∈ L . A homomorphism β : B −→ J is then well defined by

β(rb + a) = χ(r) + α(a)

for all r ∈ R and a ∈ A : if rb + a = r ′b + a′ , then (r − r ′)b = a′− a , r − r ′ ∈ L ,
χ(r − r ′) = α(rb − r ′b) = α(a′ − a) , and χ(r) + α(a) = χ(r ′) + α(a′) . Then β

extends α , (A, α) < (B, β) , and (A, α) is not maximal. �

Proposition 4.5 gives a simple criterion for injectivity in case R is a PID.

Definition. A left R-module M is divisible when the equation r x = m has a
solution x ∈ M for every 0 =/ r ∈ R and m ∈ M .

Proposition 4.6. If R is a domain, then every injective R-module is divisible.

Proof. Let J be injective. Let a ∈ J and 0 =/ r ∈ R . Since R is a domain,
every element of Rr can be written in the form tr for some unique t ∈ R . Hence
ϕ : tr �−→ ta is a module homomorphism of Rr into J . By 4.5 there exists
m ∈ J such that ϕ(s) = sm for all s ∈ Rr . Then a = ϕ(r) = rm . �

Proposition 4.7. If R is a PID, then an R-module is injective if and only if it is
divisible.

Proof. Let M be a divisible R-module. Let Rr be any (left) ideal of R and
let ϕ : Rr −→ M be a module homomorphism. If r = 0, then ϕ(s) = s0 for all
s ∈ Rr . Otherwise ϕ(r) = rm for some m ∈ M , since M is divisible. Then
ϕ(tr) = trm for all tr ∈ Rr . Hence M is injective, by 4.5. �
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Abelian groups. By 4.7, an abelian group is injective (as a Z-module) if
and only if it is divisible. For example, the additive group Q of all rationals is
divisible. For another example, define for every prime number p an additive group
Zp∞ = 〈 a1, . . . , an, . . .

∣
∣ pa1 = 0, pan = an−1 for all n > 1 〉 .

Proposition 4.8. The group Zp∞ is the union of cyclic subgroups C1 ⊆ C2 ⊆
· · · ⊆ Cn ⊆ · · · of orders p, p2, . . . , pn, . . . and is a divisible abelian group.

Proof. First we find a model of Zp∞ . Let U be the multiplicative group of

all complex numbers of modulus 1. Let αn = e2iπ/pn ∈ U . Then α
p
1 = 1 and

α p
n = αn−1 for all n > 1. Hence there is a homomorphism ϕ : Zp∞ −→ U such

that ϕ(an) = αn for all n . (Readers will show that ϕ is injective.)

By induction, pnan = pa1 = 0 for all n � 1, so an has order at most pn . On

the other hand, ϕ(pn−1an) = α pn−1
n = α1 =/ 1. Therefore an has order pn and

Cn = 〈 an 〉 ⊆ Zp∞ is cyclic of order pn . Also Cn ⊆ Cn+1 , since an = pan+1 .
Since ai , aj ∈ Cj if i � j , the generators an commute with each other, and
Zp∞ is abelian. An element of Zp∞ is a linear combination x =

∑

n>0 xnan
with coefficients xn ∈ Z , xn = 0 for almost all n ; then x ∈ Cm when xn = 0 for
all n > m . Hence Zp∞ =

⋃

n>0 Cn .

Let 0 =/ m ∈ Z ; write m = pk� , where p does not divide � . Let x ∈ Zp∞ .

Then x ∈ Cn for some n and x = tan = pktan+k = pk y is divisible by pk .
Next, pn+k y = tpn+kan+k = 0 and upn+k + v� = 1 for some u, v ∈ Z ; hence
y = upn+k y + v�y = �vy is divisible by � and x = pk�vy is divisible by m . �

Theorem 4.9. An abelian group is divisible if and only if it is a direct sum of
copies of Q and Zp∞ ( for various primes p ).

Proof. Direct sums of copies of Q and Zp∞ are divisible. Conversely, let A
be a divisible abelian group. The torsion part

T = { x ∈ A
∣
∣ nx = 0 for some n =/ 0 }

of A is divisible, since n =/ 0 and nx = t ∈ T implies x ∈ T . By 4.7, T is
injective. Hence A = T ⊕ D , where D ∼= A/T is torsion-free, and divisible like
every quotient group of A . In D every equation nx = b (where n =/ 0) has a
unique solution. Hence D is a Q-module, in which (m/n)b is the unique solution
of nx = mb . Therefore D is a direct sum of copies of Q .

By VIII.6.5, T is a direct sum of p-groups: T =
⊕

p prime T (p) , where

T (p) = { x ∈ T
∣
∣ pk x = 0 for some k > 0 }.

Every T (p) is divisible, like every quotient group of T . To complete the proof
we show that a divisible abelian p-group P is a direct sum of copies of Zp∞ .

First we show that every element b =/ 0 of P belongs to a subgroup B ∼= Zp∞
of P . Let pm > 1 be the order of b . Define b1, . . ., bn, . . . as follows. If
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n � m , let bn = pm−nb ; in particular, bm = b . Since P is divisible, we may
choose bm+1, bm+2, . . . such that bn = pbn+1 for all n � m . Then bn = pbn+1
for all n . Since bm has order pm it follows that bn has order pn for every n .
Let B be the subgroup of P generated by b1, . . ., bn, . . . . Since pb1 = 0 and
pbn = bn−1 for all n > 1, there is a homomorphism ϕ of Zp∞ onto B such that
ϕ(an) = bn for all n . Then ϕ is injective on every Cn = 〈 an 〉 ⊆ Zp∞ , since bn
has order pn . Hence ϕ is an isomorphism and B ∼= Zp∞ .

Let S be the set of all sets D of subgroups B ∼= Zp∞ of P such that the sum
∑

B∈D B is direct ( B ∩
(∑

C∈D, C=/ B C
)

= 0 for all B ∈ D). By Zorn’s lemma,
S has a maximal element M . Then M =

∑

B∈M B =
⊕

B∈M B is divisible,
hence injective, and P = M ⊕ D for some subgroup D of P . Now, D ∼= P/M
is a divisible p-group. If D =/ 0, then D contains a subgroup C ∼= Zp∞ , and then
∑

B∈M∪{C} B is direct, contradicting the maximality of M . Therefore D = 0,
and P =

⊕

B∈M B is a direct sum of copies of Zp∞ . �
Theorem 4.9 affects all abelian groups, due to the following property:

Proposition 4.10. Every abelian group can be embedded into a divisible abelian
group.

Proof. For every abelian group A there is an epimorphism F −→ A where
F is a free abelian group. Now, F is a direct sum of copies of Z and can be
embedded into a direct sum D of copies of Q . Then D is divisible, like Q .
By 2.7, in the pushout below, D −→ B is surjective, so that B is divisible, and
A −→ B is injective. �

We shall further refine this result. In Section 5 we embed A into a divisible
abelian group B so that every 0 =/ a ∈ A has a nonzero integer multiple in B .
In Section XI.2 we use other methods to extend Theorem 4.10 to all modules:

Theorem 4.11. Every module can be embedded into an injective module.

Noetherian rings. Our last result is due to Bass (cf. Chase [1961]).

Theorem 4.12. A ring R is left Noetherian if and only if every direct sum of
injective left R-modules is injective.

Proof. Assume that every direct sum of injective left R-modules is injective,
and let L1 ⊆ L2 ⊆ · · · ⊆ Ln ⊆ · · · be an ascending sequence of left ideals of R .
Then L =

⋃

n>0 Ln is a left ideal of R . By 4.11 there is a monomorphism
of R/Ln into an injective R-module Jn . By the hypothesis, J =

⊕

n>0 Jn is
injective. Construct a module homomorphism ϕ : L −→ J as follows. Let ϕn
be the homomorphism R −→ R/Ln −→ Jn . If x ∈ L , then x ∈ Ln for some
n , and then ϕk(x) = 0 for all k � n . Let ϕ(x) =

(

ϕk(x)
)

k>0 ∈ J .
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Since J is injective, ϕ extends to a module homomorphism ψ : RR −→ J .
Then ψ(1) = (tk)k>0 ∈ J for some tk ∈ Jk , tk = 0 for almost all k . Hence
ψ(1) ∈

⊕

k<n Jk for some n . Then ϕ(x) = ψ(x1) = x ψ(1) ∈
⊕

k<n Jk for all
x ∈ L ; in particular, ϕn(x) = 0 and x ∈ Ln , since R/Ln −→ Jn is injective.
Thus L = Ln , and then Lk = Ln for all k � n .

Conversely, assume that R is left Noetherian, and let J =
⊕

i∈I Ji be a direct
sum of injective R-modules Ji . Let L be a left ideal and let ϕ : L −→ J be
a module homomorphism. Since R is left Noetherian, L is finitely generated:
L = Rr1 + · · · + Rrn for some r1, . . ., rn ∈ L . Each ϕ(rk) has finitely many
nonzero components in

⊕

i∈I Ji and belongs to a finite direct sum
⊕

i∈Sk
Ji .

Hence there is a finite direct sum
⊕

i∈S Ji , S = S1 ∪ · · · ∪ Sn , that contains every
ϕ(rk) and contains ϕ(L) . Since S is finite,

⊕

i∈S Ji is injective, by 4.4; hence
ϕ : L −→

⊕

i∈S Ji extends to a module homomorphism RR −→
⊕

i∈S Ji ⊆
⊕

i∈I Ji . Hence
⊕

i∈I Ji is injective, by 4.5. �

Exercises
1. Show that every direct summand of an injective module is injective.

2. Show that every direct sum of injective left R-modules is injective.

3. Let L be a left ideal of R and let ϕ : L −→ M be a module homomorphism. Show
that ϕ can be extended to RR if and only if there exists m ∈ M such that ϕ(r) = rm for all
r ∈ L .

4. Let J be an injective left R-module. Let a ∈ J and r ∈ R satisfy Ann (r)⊆ Ann (a)
(if t ∈ R and tr = 0, then ta = 0). Prove that a = r x for some x ∈ J .

5. Show that the quotient field of a Noetherian domain R is an injective R-module.

6. Find all subgroups of Zp∞ .

7. Show that Zp∞ is indecomposable.

8. Let U be the multiplicative group of all complex numbers of modulus 1. Show that
U(p) ∼= Zp∞ .

9. Show that the additive group Q/Z is isomorphic to the direct sum
⊕

p Zp∞ with one
term for every prime p .

*10. Can you extend Theorem 4.9 to modules over any PID?

5. The Injective Hull

In this section we show that every module has, up to isomorphism, a smallest
injective extension. We show this by comparing injective extensions to another
kind of extensions, essential extensions.

Definition. A submodule S of a left R-module M is essential when S ∩ T =/ 0
for every submodule T =/ 0 of M .

Essential submodules are also called large. Readers may prove the following:
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Proposition 5.1. If A ⊆ B are submodules of C , then A is essential in C if
and only if A is essential in B and B is essential in C .

A monomorphism ϕ : A −→ B is essential when Im ϕ is an essential
submodule of B .

Proposition 5.2. If µ is an essential monomorphism, and ϕ ◦ µ is injective,
then ϕ is injective.

Proof. If ϕ ◦ µ is injective, then Ker ϕ ∩ Im µ = 0; hence Ker ϕ = 0. �
Definition. An essential extension of a left R-module A is a left R-module B

such that A is an essential submodule of B ; more generally, a left R-module B
with an essential monomorphism A −→ B .

These two definitions are equivalent up to isomorphisms: if A is an essential
submodule of B , then the inclusion homomorphism A −→ B is an essential
monomorphism; if µ : A −→ B is an essential monomorphism, then A is
isomorphic to the essential submodule Im µ of B ; moreover, using surgery, one
can construct a module B′ ∼= B in which A is an essential submodule.

Proposition 5.3. If µ : A −→ B and ν : B −→ C are monomorphisms, then
ν ◦ µ is essential if and only if µ and ν are essential.

This follows from Proposition 5.1; the details make nifty exercises.

Proposition 5.4. A left R-module J is injective if and only if J has no proper
essential extension J � M , if and only if every essential monomorphism J −→ M
is an isomorphism.

Proof. Let J be injective. If J ⊆ M , then J is a direct summand of M ,
M = J ⊕ N ; then N ∩ J = 0; if J is essential in M , then N = 0 and J = M .
If in turn J has no proper essential extension, and µ : J −→ M is an essential
monomorphism, then Im µ ∼= J has no proper essential extension, hence M =
Im µ and µ is an isomorphism.

Finally, assume that every essential monomorphism J −→ A is an isomor-
phism. We show that J is a direct summand of every module M ⊇ J . By Zorn’s
lemma there is a submodule K of M maximal such that J ∩ K = 0. Readers
will verify that the projection M −→ M/K induces an essential monomorphism
µ : J −→ M/K . By the hypothesis, µ is an isomorphism; hence J + K = M
and M = J ⊕ K . �

Proposition 5.5. Let µ : M −→ N and ν : M −→ J be monomorphisms.
If µ is essential and J is injective, then ν = κ ◦ µ for some monomorphism
κ : N −→ J .

Proof. Since J is injective, there exists a homomorphism κ : N −→ J such
that ν = κ ◦ µ , which is injective by 5.2. �

By 5.5, every essential extension of M is, up to isomorphism, contained in
every injective extension of M . This leads to the main result in this section.
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Theorem 5.6. Every left R-module M is an essential submodule of an injective
R-module, which is unique up to isomorphism.

Proof. By Theorem 4.11, M is a submodule of an injective module K . Let
S be the set of all submodules M ⊆ S ⊆ K of K in which M is essential (for
instance, M itself). If (Si )i∈I is a chain in S , then S =

⋃

i∈I Si ∈ S : if N =/ 0 is a
submodule of S , then Si ∩ N =/ 0 for some i , and then M ∩ N = M ∩ Si ∩ N =/ 0
since M is essential in Si ; thus M is essential in S . By Zorn’s lemma, S has
a maximal element J . If J had a proper essential extension, then by 5.5 J
would have a proper essential extension J � J ′ ⊆ K and would not be maximal;
therefore J is injective, by 5.4.

Now, assume that M is essential in two injective modules J and J ′ . The
inclusion monomorphisms µ : M −→ J and ν : M −→ J ′ are essential. By 5.5
there is a monomorphism θ : J −→ J ′ such that ν = θ ◦ µ . Then θ is essential,
by 5.3, and is an isomorphism by 5.4. �

Definition. The injective hull of a left R-module M is the injective module,
unique up to isomorphism, in which M is an essential submodule.

The injective hull or injective envelope E(M) of M can be characterized in
several ways: E(M) is injective and an essential extension of M , by definition;
E(M) is a maximal essential extension of M , by 5.4; in fact, E(M) is, up to
isomorphism, the largest essential extension of M , by 5.5; E(M) is a minimal
injective extension of M , by 5.4, 5.1; and E(M) is, up to isomorphism, the
smallest injective extension of M , by 5.5. The exercises give some examples.

Exercises
1. Let µ : A −→ B and ν : B −→ C be essential monomorphisms. Show that ν ◦ µ is

essential.

2. Let µ : A −→ B and ν : B −→ C be monomorphisms. If ν ◦ µ is essential, then
show that µ and ν are essential.

3. Show that every nonzero ideal of a [commutative] domain R is essential in R .

4. Show that every domain R is essential (as an R-module) in its quotient field.

5. Let N be a submodule of M . Show that there is a submodule C of M maximal such
that C ∩ N = 0. Show that N + C is essential in M . Show that N is, up to isomorphism,
essential in M/C .

6. Prove the following: if Ai is an essential submodule of Bi for all i = 1, 2, . . . , n , then
A1 ⊕ A2 ⊕ · · · ⊕ An is essential in B1 ⊕ B2 ⊕ · · · ⊕ Bn .

7. Show that
⊕

i∈I Mi need not be essential in
∏

i∈I Mi .

8. Show that Q is the injective hull of Z (as a Z-module).

9. Show that Zp∞ is the injective hull of Zpn , when n > 0 .

10. Show that E(A ⊕ B) ∼= E(A) ⊕ E(B) .

11. If R is a Noetherian domain, show that the quotient field of R serves as E(RR) .
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6. Hereditary Rings

Hereditary rings generalize PIDs. This section contains basic properties, with
applications to Dedekind domains.

Definition. A ring R is left hereditary when every submodule of a projective
left R-module is projective.

For example, PIDs are left hereditary: if R is a PID, then every projective
R-module is free, by 3.7, and every submodule of a free R-module is free. Semisim-
ple rings are left hereditary. Crouching in the exercises lies a ring that is left
hereditary but not right hereditary.

Proposition 6.1. A ring R is left hereditary if and only if every left ideal of R
is projective, and then every submodule of a free left R-module is isomorphic to a
direct sum of left ideals of R .

Proof. If R is left hereditary, then every left ideal of R is projective (as an
R-module), since RR is projective. Conversely, assume that every left ideal of R
is projective. We show that every submodule of a free module is isomorphic to
a direct sum of left ideals of R ; then submodules of free modules are projective,
and R is left hereditary.

Let S be a submodule of a free R-module F with basis (ei )i∈I . We may
assume that the set I is well ordered (Theorem A.2.4). For every i ∈ I , let
Fi =

⊕

t<i Ret be the free submodule of F with basis (et )t<i ; let Si = S ∩ Fi
and S′i = S ∩ (Fi + Rei ) . Every x ∈ S′i ⊆ Fi + Rei is a sum x = y + rei for
some unique y ∈ Fi and r ∈ R . Then ξ : x �−→ r is a module homomorphism
of S′i into RR . Since Ker ξ = Si , there is an exact sequence

0 −→ Si −→ S′i −→ L −→ 0,

in which L = Im ξ is a left ideal of R . This sequence splits, since L is projective,
and S′i = Si ⊕ Ti , where Ti ⊆ S′i ⊆ F and Ti

∼= L is isomorphic to a left ideal of
R . We show that S =

⊕

i∈I Ti .

First we prove by induction on k ∈ I that Sk =
∑

i<k Ti for all k . If x ∈ Sk ,
x =/ 0, then x =

∑

i<k ri ei , where ri ∈ R for all i < k , ri = 0 for almost all
i < k , and ri =/ 0 for some i < k . There is a greatest j < k such that rj =/ 0.
Then x ∈ S′j , x = y + m for some y ∈ Sj and m ∈ Tj , y ∈

∑

i< j Ti by the
induction hypothesis, and x = y + m ∈

∑

i<k Ti .

If now x ∈ Tj ∩
(∑

i< j Ti
)

, then x ∈ Tj ∩ Sj = 0. If x ∈ S , then x ∈ Sk for
some k ∈ I and x ∈

∑

i<k Ti ⊆
∑

i∈I Ti . Hence S =
⊕

i∈I Ti . �
We give another characterization, based on the following lemma.

Lemma 6.2. (1) A module P is projective if and only if every module homo-
morphism P −→ B factors through every epimorphism J −→ B in which J is
injective.
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(2) A module J is injective if and only if every module homomorphism A −→ J
factors through every monomorphism A −→ P in which P is projective.

Proof. We prove (1) and let readers reverse arrows to prove (2). Assume
that every module homomorphism P −→ B factors through every epimorphism
J −→ B in which J is injective. Let ϕ : P −→ B be a homomorphism and
let σ : A −→ B be any epimorphism. Let K = Ker σ . Let µ : A −→ J
be a monomorphism into an injective module J and let π : J −→ J/µ(K ) be
the projection. Since µ is injective, π

(

µ(a)
)

= 0 if and only if µ(a) ∈ µ(K ) , if
and only if a ∈ K ; thus Ker (π ◦ µ) = K = Ker σ and π ◦ µ = ν ◦ σ for some
homomorphism ν : B −→ J/µ(K ) , by 1.2, which completes the diagram:

Then ν is injective: if ν
(

σ (a)
)

= 0, then π
(

µ(a)
)

= 0, µ(a) ∈ µ(K ) , a ∈ K ,
and σ (a) = 0; since σ is surjective this implies Ker ν = 0.

By the hypothesis, ν ◦ ϕ factors through π : ν ◦ ϕ = π ◦ ψ for some
homomorphism ψ : P −→ J . Now, Im ψ ⊆ Im µ : for every p ∈ P ,
ϕ(p) = σ (a) for some a ∈ A , whence π

(

ψ(p)
)

= ν
(

ϕ(p)
)

= ν
(

σ (a)
)

=
π
(

µ(a)
)

, ψ(p) − µ(a) ∈ Ker π = µ(K ) , and ψ(p) ∈ Im µ . Hence ψ fac-
tors through µ : ψ = µ ◦ χ for some homomorphism χ : P −→ A . Then
ν ◦ ϕ = π ◦ µ ◦ χ = ν ◦ σ ◦ χ and ϕ = σ ◦ χ , since ν is injective. �

Proposition 6.3. A ring R is left hereditary if and only if every quotient of an
injective left R-module is injective.

Proof. Assume that R is left hereditary. Let J be an injective module and let
σ : J −→ B be an epimorphism. To prove that B is injective we use 6.2 and show
that every homomorphism ϕ : A −→ B factors through every monomorphism
µ : A −→ P in which P is projective:

Now, A is projective, since R is hereditary; hence ϕ = σ ◦ψ for some homomor-
phism ψ : A −→ J . Since J is injective, ψ = χ ◦ µ for some homomorphism
χ : P −→ J . Hence ϕ = σ ◦ χ ◦ µ factors through µ .

The converse is similar. Assume that every quotient of an injective module is
injective. Let A be a submodule of a projective module P and let µ : A −→ P
be the inclusion homomorphism. To prove that A is projective we use 6.2 and
show that every homomorphism ϕ : A −→ B factors through every epimorphism
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σ : J −→ B in which J is injective. Now, B ∼= J/Ker σ is injective by the
hypothesis; hence ϕ = ψ ◦ µ for some homomorphism ψ : P −→ B . Since P
is projective, ψ = σ ◦ χ for some homomorphism χ : P −→ J (see the diagram
below). Hence ϕ = σ ◦ χ ◦ µ factors through σ . �

Dedekind domains were defined in Section VII.5. Here we give other char-
acterizations. Recall that a fractional ideal of a domain R is a set A = a/c =
{ x/c ∈ Q

∣
∣ x ∈ a } where a is an ideal of R , c ∈ R , c =/ 0, and Q is the

quotient field of R . Then x �−→ xc is a module isomorphism of A onto a .

Proposition 6.4. A nonzero fractional ideal of a domain R is invertible if and
only if it is projective as an R-module.

Proof. Let A =/ 0 be a fractional ideal of R . Let AB = R for some fractional
ideal B . As in the proof of VII.5.2, 1 = a1b1 + · · · + anbn for some a1, . . . , an ∈
A and b1, . . ., bn ∈ B . Then A = Ra1 + · · · + Ran , since a = ab1a1 + · · · +
abnan for all a ∈ A . Let F be a free R-module with basis e1, . . . , en . Then
ρ : F −→ A , r1e1 + · · · + rnen �−→ r1a1 + · · · + rnan and µ : A −→ F ,
a �−→ ab1e1 + · · · + abnen are module homomorphisms. Since ρ ◦ µ = 1A , the
sequence 0 −→ Ker ρ −→ F −→ A −→ 0 splits, A is isomorphic to a direct
summand of F , and A is projective.

Conversely, assume that A is projective. There exist a free R-module F , with
a basis (ei )i∈I , and homomorphisms ρ : F −→ A , µ : A −→ F such that
ρ ◦ µ = 1A . For every a ∈ A let µ(a) =

∑

i∈I ai ei , where ai ∈ R . Then
a �−→ ai is a module homomorphism for every i .

Let a, b ∈ A , b =/ 0. We have
∑

i∈I (bi/b) ρ(ei ) = 1, since

b = ρ
(

µ(b)
)

= ρ
(∑

i∈I bi ei
)

=
∑

i∈I bi ρ(ei ) = b
(∑

i∈I (bi/b) ρ(ei )
)

.

Also, ra, sc ∈ R for some r, s ∈ R , r, s =/ 0. Since a �−→ ai is a module
homomorphism, r (sab)i = (rsab)i = s (rab)i and

a bi = ra bi/r = (rab)i/r = (sab)i/s = sb ai/s = b ai .

Hence abi/b = ai ∈ R for all a ∈ A and bi/b ∈ A′ = { x ∈ Q
∣
∣ xA ⊆ R } for

all i . Therefore 1 =
∑

i∈I (bi/b) ρ(ei ) ∈ A′A and A′A = R . �

Since every fractional ideal of R is isomorphic to an ideal of R , Proposition
6.4 begets the following result:

Proposition 6.5. For a domain R the following conditions are equivalent: (i)
R is a Dedekind domain; (ii) every fractional ideal of R is projective; (iii) every
ideal of R is projective; (iv) R is [left] hereditary.
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Proposition 6.6. A domain R is a Dedekind domain if and only if every divisible
R-module is injective.

Proof. Injective modules are divisible, by 4.6, and quotients of divisible mod-
ules are divisible. If divisible R-modules are injective, then quotients of injec-
tive R-module are injective, R is hereditary by 6.3, and R is Dedekind by 6.5.

Conversely, let R be a Dedekind domain and let M be a divisible R-module.
Let a be an ideal of R and let ϕ : a −→ M be a module homomorphism.
Since a is invertible, 1 = a1 b1 + · · · + an bn for some a1, . . ., an ∈ a and
b1, . . ., bn ∈ a′ . We may assume that ai =/ 0 for all i . Then ϕ(ai ) = ai mi for
some mi ∈ M . If a ∈ a , then abi ∈ aa′ = R and

ϕ(a) = ϕ
(∑

i ai bi a
)

=
∑

i (abi )ϕ(ai ) =
∑

i abi ai mi = am,

where m =
∑

i ai bi mi ∈ M does not depend on a . By 4.5, M is injective. �

Exercises
1. Let R be the ring of all matrices

(a b
0 c

)
in which a, b ∈ Q and c ∈ Z . Show that R is

left hereditary but not right hereditary.

2. Prove that a module J is injective if and only if every module homomorphism A −→ J
factors through every monomorphism A −→ P in which P is projective.

3. Prove that an ideal of a UFD is projective if and only if it is principal; hence a Dedekind
domain is a UFD if and only if it is a PID.

A ring R is left semihereditary when every finitely generated left ideal of R is projective.

4. Show that every valuation domain is left semihereditary.

5. Show that every von Neumann regular ring is left semihereditary.

6. Prove the following: if R is left semihereditary, then every finitely generated submodule
of a free left R-module is isomorphic to a direct sum of finitely many finitely generated left
ideals of R .

7. Prove that a ring R is left semihereditary if and only if every finitely generated submodule
of a projective left R-module is projective.



XI
Constructions

This chapter introduces basic module constructions: groups of homomorphisms,
direct and inverse limits, tensor products, and completions.

Sections 3, 4, 7, 8, and 9 may be skipped at first reading. As before, all rings
have an identity element; all modules are unital; results that are generally stated
for left R-modules apply equally to right R-modules.

1. Groups of Homomorphisms

This section studies groups and modules of homomorphisms, with emphasis on
their functorial properties.

Definition. Let M and A be left R-modules. Recall that module homomor-
phisms ϕ, ψ : M −→ A can be added pointwise: (ϕ + ψ)(x) = ϕ(x) + ψ(x) ,
the result being another homomorphism. With this operation, the module homo-
morphisms of M into A become the elements of an abelian group.

Definition. If M and A are left R-modules, or if M and A are right R-modules,
then HomR(M, A) is the abelian group of all module homomorphisms of M into
A , under pointwise addition.

For example, Hom
Z

(Z, A) ∼= A for every abelian group A . If R is a field,
then HomR(M, A) is the abelian group of all linear transformations of M into
A , under pointwise addition.

Let M , A , and B be left R-modules. Every module homomorphism ϕ : A −→
B induces a mapping

ϕ∗ = HomR(M, ϕ): HomR(M, A) −→ HomR(M, B), α �−→ ϕ ◦ α :

The following properties are clear:
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Proposition 1.1. If ϕ : A −→ B is a homomorphism of left R-modules, then
ϕ∗ = HomR(M, ϕ): HomR(M, A) −→ HomR(M, B) is a homomorphism of
abelian groups. Moreover:

(1) if ϕ is the identity on A , then ϕ∗ is the identity on HomR(M, A) ;

(2) (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ whenever ϕ : A −→ B and ψ : B −→ C ;

(3) (ϕ + ψ)∗ = ϕ∗ + ψ∗ whenever ϕ,ψ : A −→ B .

Similarly, when M , N , and A are left R-modules, every module homomor-
phism ϕ : M −→ N induces a mapping

ϕ∗ = HomR(M, ϕ): HomR(N , A) −→ HomR(M, A), α �−→ α ◦ ϕ :

Proposition 1.2. If ϕ : M −→ N is a homomorphism of left R-modules,
then ϕ∗ = HomR(ϕ, A): HomR(N , A) −→ HomR(M, A) is a homomorphism
of abelian groups. Moreover:

(1) if ϕ is the identity on M , then ϕ∗ is the identity on HomR(M, A) ;

(2) (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ whenever ϕ : M −→ N and ψ : N −→ P ;

(3) (ϕ + ψ)∗ = ϕ∗ + ψ∗ whenever ϕ,ψ : M −→ N .

Proposition 1.3. For every ϕ : A −→ B and ψ : M −→ N the following
square commutes:

Proof. For every α : N −→ A , ϕ∗
(

ψ∗(α)
)

= ϕ ◦ α ◦ ψ = ψ∗(ϕ∗(α)
)

. �
Functors. Propositions 1.1, 1.2, and 1.3 can be expressed more compactly

using a language that will be defined less informally in Section XVI.2.

A functor from bidules to doohickeys is a construction that assigns to every
bidule B a doohickey F(B) , and to every homomorphism ϕ : B −→ C of bidules
a homomorphism F(ϕ): F(B)−→ F(C) of doohickeys, so that F(1B) = 1F(B) ,
and F(ψ ◦ ϕ) = F(ψ) ◦ F(ϕ) whenever ψ ◦ ϕ is defined.

Functors are also called covariant functors. A contravariant functor from
bidules to doohickeys is a construction that assigns to every bidule B a doohickey
F(B) , and to every homomorphism ϕ : B −→ C of bidules a homomorphism
F(ϕ): F(C) −→ F(B) of doohickeys, so that F(1B) = 1F(B) , and F(ψ ◦ ϕ) =
F(ϕ) ◦ F(ψ) whenever ψ ◦ ϕ is defined.
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If homomorphisms of bidules can be added, and homomorphisms of doohickeys
can be added, then a functor F from modules to doohickeys is additive when
F(ψ + ϕ) = F(ϕ) + F(ψ) for all ϕ,ψ : B −→ C .

Propositions 1.1 and 1.2 now read as follows:

Proposition 1.1 (revisited). For every left R-module M , HomR(M,−) is an
additive functor from left R-modules to abelian groups.

Proposition 1.2 (revisited). For every left R-module A , HomR(−, A) is a
contravariant additive functor from left R-modules to abelian groups.

If F and G are functors from bidules to doohickeys, then a natural trans-
formation τ from F to G is a construction that assigns to every bidule B a
homomorphism τB : F(B) −→ G(B) of doohickeys, so that the square

commutes for every homomorphism ϕ : B −→ C of bidules. One also says that
the homomorphism τB is natural in B .

Natural transformations of contravariant functors are defined similarly. As
we shall see, homomorphisms that are “natural” in the ordinary sense, or are
constructed in some canonical fashion, tend to be natural as defined above.

Proposition 1.3 (revisited). If ϕ is a homomorphism of left R-modules, then
HomR(M, ϕ) is natural in M . If ψ is a homomorphism of left R-modules, then
HomR(ψ, A) is natural in A .

Bimodules. The abelian group HomR(M, A) now wants to catch up with
his neighbors and acquire module structures. Propositions 1.1 and 1.2 show that
endomorphisms of HomR(M, A) arise readily from module endomorphisms of
M and A ; this suggests additional module structures on A and M .

Definition. A left R-, right S-bimodule or just R-S-bimodule is an abelian
group M with a left R-module structure and a right S-module structure such that
r(xs) = (r x)s for all r ∈ R , x ∈ M , and s ∈ S .

The notation RMS indicates that M is an R-S-bimodule. Examples abound: R
is an R-R-bimodule; every left R-module is an R-Z-bimodule; every left R-module
M is a left R-, right End

op
R (M)-bimodule; the right R-module structure on a free

left R-module, which depends on the choice of a basis, makes it an R-R-bimodule;
if R is commutative, then every R-module is an R-R-bimodule.

R-S-bimodule structures on an abelian group M can be viewed as pairs of
ring homomorphisms R −→ End

Z
(M) , S −→ End

op
R (M) , or as pairs of ring

homomorphisms S −→ End
op
Z

(M) , R −→ EndS (M) (see the exercises).
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Proposition 1.4. If M is an R-S-bimodule and A is an R-T-bimodule, then
HomR(M, A) is an S-T-bimodule, in which

(sα)(x) = α(xs) and (αt)(x) = α(x) t

for all s ∈ S , x ∈ M , t ∈ T , and α ∈ HomR(M, A) .

Proof. In the above, sα and αt are homomorphisms of left R-modules, since
M and A are bimodules. Moreover, s(α + β) = sα + sβ , and

s (s′α)(x) = (s′α)(xs) = α
(

(xs)s′
)

= α
(

x(ss′)
)

=
(

(ss′)α
)

(x),

so that s(s′α) = (ss′)α ; thus HomR(M, A) is a left S-module. Similarly,
HomR(M, A) is a right T-module, and

(

s (αt)
)

(x) = (αt)(xs) = α(xs) t =
(

(sα)(x)
)

t =
(

(sα) t
)

(x),

so that s(αt)= (sα) t and HomR(M, A) is a bimodule. �
Thus, R MS and R AT imply SHomR(M, A)T . In particular, for every left

R-module A , HomR(RR, A) is an R-Z-bimodule, that is, a left R-module, since

RR is an R-R-bimodule; readers will verify that HomR(RR, A) ∼= A .

Proposition 1.4 becomes simpler if R is commutative:

Corollary 1.5. If R is commutative, then HomR(M, A) is an R-module, for all
R-modules M and A.

For instance, if R = K is a field and V, W are vector spaces over K , then
HomK (V, W ) is a vector space over K ; the dual space HomK (V, K ) is a vector
space over K .

A homomorphism of R-S-bimodules is a homomorphism of left R-modules that
is also a homomorphism of right S-modules.

Proposition 1.6. If M is an R-S-bimodule and ϕ is a homomorphism of R-T-
bimodules, then HomR(M, ϕ) is a homomorphism of S-T-bimodules. If A is an
R-T-bimodule and ψ is a homomorphism of R-S-bimodules, then HomR(ψ, A)
is a homomorphism of S-T-bimodules.

The proof is an exercise. In Proposition 1.6, HomR(M,−) is now a func-
tor from R-T-bimodules to S-T-bimodules, and HomR(−, A) is a contravariant
functor from R-S-bimodules to S-T-bimodules.

Exercises
1. Produce a one-to-one correspondence between R-S-bimodule structures on an abelian

group M and pairs of ring homomorphisms R −→ EndZ(M) , S −→ End
op
R (M) .

2. Explain how HomR(M, A) is a T-S-bimodule when M is an S-R-bimodule and A is
a T-R-bimodule.

3. Show that HomR(RR, A) ∼= A for every left R-module A , by an isomorphism that is
natural in A .
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4. Show that HomR(M, ϕ) is a homomorphism of S-T-bimodules when M is an
R-S-bimodule and ϕ is a homomorphism of R-T-bimodules.

5. Show that HomR(ϕ, A) is a homomorphism of S-T-bimodules when A is an
R-T-bimodule and ϕ is a homomorphism of R-S-bimodules.

The dual of a left R-module M is the right R-module M∗ = HomR(M, R) .

6. Let M be a left R-module. Give details of the right action of R on M∗ and of the left
action of R on the double dual module M∗∗ .

7. Produce a canonical homomorphism M −→ M∗∗ and show that it is natural in M .

2. Properties of Hom

This section brings basic properties of the Hom functors in Section 1, with appli-
cations to injective modules. These properties apply equally to left R-modules,
right R-modules, and bimodules of various stripes.

Exactness. We begin with preservation of exact sequences.

Proposition 2.1 (Left Exactness). If 0 −→ A
µ−→ B

ρ−→ C is exact, then

0 −→ HomR(M, A)
HomR(M,µ)−−−−−−→ HomR(M, B)

HomR(M,ρ)−−−−−−→ HomR(M, C)

is exact.

Proof. If µ∗(α)= 0, then µ ◦ α = 0, Im α ⊆ Ker µ = 0, and α = 0.
Similarly, ρ∗

(

µ∗(α)
)

= ρ ◦ µ ◦ α = 0. Conversely, if ρ∗(β) = 0, where
β ∈ HomR(M, B) , then ρ ◦ β = 0, Im β ⊆ Ker ρ = Im µ , and β factors
through µ : β = µ ◦ α = µ∗(α) for some α : M −→ A . �

A covariant functor is left exact when it transforms left exact sequences into
left exact sequences, and exact when it transforms short exact sequences into short
exact sequences. Readers will show that an exact functor transforms all exact
sequences into exact sequences. Proposition 2.1 now reads as follows:

Proposition 2.1 (revisited). HomR(M,−) is left exact.

HomR(M,−) does not preserve all exact sequences; the next result easily
yields counterexamples.

Proposition 2.2. For a left R-module P the following conditions are equivalent:
(i) P is projective; (ii) HomR(P,−) preserves epimorphisms; (iii) HomR(P,−)
is exact.

HomR(−, A) has similar properties, which, like 2.2, make fine exercises. A
contravariant functor is left exact when it transforms right exact sequences into
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left exact sequences, and exact when it transforms short exact sequences into short
exact sequences. Readers may prove the following:

Proposition 2.3 (Left Exactness). HomR(−, M) is left exact: if

A
ϕ−→ B

ρ−→ C −→ 0 is exact, then so is

0 −→HomR(C, M)
HomR(ρ,M)−−−−−−→ HomR(B, M)

HomR(ϕ,M)−−−−−−→HomR(A, M).

Proposition 2.4. For a left R-module J the following conditions are equivalent:
(i) J is injective; (ii) HomR(µ, J ) is an epimorphism for every monomorphism
µ ; (iii) HomR(−, J ) is exact.

Direct sums and products. HomR(M,−) preserves direct products:

Proposition 2.5. There is an isomorphism

HomR
(

M,
∏

i∈I Ai
)
∼=
∏

i∈I HomR(M, Ai ),

which is natural in M and in (Ai )i∈I .

Proof. The projections πi :
∏

i∈I Ai −→ Ai induce homomorphisms
HomR(M, πi ): HomR

(

M,
∏

i∈I Ai
)

−→ HomR(M, Ai ) and a homomorphism
θ : HomR

(

M,
∏

i∈I Ai
)

−→
∏

i∈I HomR(M, Ai ) that sends α : M −→
∏

i∈I Ai to (πi ◦ α)i∈I . The universal property of
∏

i∈I Ai states precisely that
θ is bijective.

HomR
(

−,
∏

i∈I Ai
)

and
∏

i∈I HomR(−,Ai ) are contravariant functors
that assign to every homomorphism ϕ : M −→ N a homomorphism ϕ∗ =
HomR

(

ϕ,
∏

i∈I Ai
)

, and a componentwise homomorphism ϕ that sends
(αi )i∈I to (αi ◦ ϕ)i∈I . Naturality in M means that the square

commutes for every ϕ . Happily, for every α : N −→
∏

i∈I Ai , θ
(

ϕ∗(α)
)

=
(πi ◦ α ◦ ϕ)i∈I = ϕ

(

θ(α)
)

. Thus θ is natural in M .

HomR
(

M,
∏

i∈I −i
)

and
∏

i∈I HomR(M,−i ) are covariant functors that
assign to every family (ϕi )i∈I of homomorphisms ϕi : Ai −→ Bi a homomor-
phism ϕ∗ = HomR

(

M,
∏

i∈I ϕi
)

, α �−→
(∏

i∈I ϕi
)

◦ α , and a componentwise
homomorphism ϕ =

∏

i∈I ϕi∗ that sends (αi )i∈I to (ϕi ◦ αi )i∈I . Naturality in
(Ai )i∈I means that the following square
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commutes for every ϕi . Let ρi :
∏

i∈I Bi −→ Bi be the projection. Then
ρi ◦

∏

i∈I ϕi = ϕi ◦ πi for all i . For every α : M −→
∏

i∈I Ai ,

θB
(

ϕ∗(α)
)

=
(

ρi ◦
(∏

i∈I ϕi
)

◦ α
)

i∈I = (ϕi ◦ πi ◦ α)i∈I

= ϕ
(

(πi ◦ α)i∈I
)

= ϕ
(

θA(α)
)

.

Thus θ is natural in (Ai )i∈I . In other words, naturality is straightforward. �
Readers will concoct an entirely similar proof for the next result:

Proposition 2.6. There is an isomorphism

HomR
(⊕

i∈I Mi , A
)
∼=
∏

i∈I HomR(Mi , A),

which is natural in (Mi )i∈I and in A .

Injective modules. We complete this section with the proof of Theorem X.4.11.
The main lemma for this will seem more natural after Proposition 6.6.

Lemma 2.7. Let A be an abelian group and let M be a left R-module. If
ϕ ∈ Hom

Z
(M, A) , then the mapping ξ that sends x ∈ M to ξ(x): r �−→

ϕ(r x) is a module homomorphism of M into Hom
Z

(RR, A) . This defines an
isomorphism Hom

Z
(M, A) ∼= HomR

(

M,Hom
Z

(RR, A)
)

of abelian groups,
which is natural in M and A.

Proof. Hom
Z

(RR, A) is a left R-module, in which (rα)s = α(sr) for all
r, s ∈ R . If x ∈ M , then ξ(x): r �−→ ϕ(r x) is in Hom

Z
(RR, A) , since ϕ is a

homomorphism; similarly, ξ(x + y) = ξ(x) + ξ(y) , and
(

r ξ(x)
)

(s) = ξ(x)(sr) = ϕ(sr x) = ξ(r x)(s),

so that r ξ(x) = ξ(r x) . Hence ξ ∈ HomR
(

M,Hom
Z

(RR, A)
)

.

To show that ϕ �−→ ξ is an isomorphism we construct the inverse isomorphism.
Let ξ : M −→ Hom

Z
(RR, A) be any module homomorphism. Then ξ(r x)(s) =

(

rξ(x)
)

(s) = ξ(x)(sr) for all x ∈ M and r, s ∈ R . With s = 1 this reads
ξ(x)(r) = ξ(r x)(1) , so that ξ is determined by the additive homomorphism
ξ : x �−→ ξ(x)(1) of M into A . Hence Θ : ξ �−→ ξ is an injection of
HomR

(

M,Hom
Z

(RR, A)
)

into Hom
Z

(M, A) ; Θ is an additive homomor-
phism, since (ξ + ζ )(x) = ξ(x) + ζ (x) . If ϕ ∈ Hom

Z
(M, A) , and ξ : M −→

Hom
Z

(RR, A) is the homomorphism constructed above, then ϕ = Θ(ξ) . Hence
Θ is an isomorphism.

Naturality in M means that the square

commutes for every module homomorphism ψ : M −→ N . Let ξ : N −→
Hom

Z
(RR, A) . Then Θ(ξ) = ξ sends y ∈ N to ξ(y)(1) , and ψ∗(Θ(ξ)

)

=
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Θ(ξ) ◦ ψ sends x ∈ M to ξ
(

ψ(x)
)

= ξ
(

ψ(x)
)

(1) , which is exactly where
Θ
(

ψ∗(ξ)
)

= Θ(ξ ◦ ψ) sends x . Hence Θ ◦ ψ∗ = ψ∗ ◦ Θ and Θ is natural in
M . Naturality in A is not used and is left to our readers. �

Proposition 2.8. If A is a divisible abelian group, then Hom
Z

(RR, A) is an
injective left R-module.

Proof. Let ψ : M −→ N be any monomorphism of left R-modules. Since D
is injective as a Z-module, ψ∗ : Hom

Z
(N , A) −→ Hom

Z
(M, A) is surjective,

by 2.4. Since the diagram above commutes,

ψ∗ : HomR
(

N ,Hom
Z

(RR, A)
)

−→ HomR
(

M,Hom
Z

(RR, A)
)

is surjective. Hence Hom
Z

(RR, A) is injective, by 2.4. �
Theorem X.4.11 can now be proved as follows. Let M be a left R-module.

By X.4.10 there is a monomorphism µ ∈ Hom
Z

(M, D) into a divisible abelian
group D . Then Hom

Z
(RR, D) is an injective left R-module, by 2.8. By 2.7, the

mapping ξ that sends x ∈ M to ξ(x): r �−→ µ(r x) is a module homomorphism
of M into Hom

Z
(RR, D) . If ξ(x) = 0, then µ(x) = ξ(x)(1) = 0 and x = 0.

Hence ξ is injective. �

Exercises
1. Prove that the following conditions are equivalent for a left R-module P : (i) P is

projective; (ii) HomR(P,−) preserves epimorphisms; (iii) HomR(P,−) is exact.

2. Give an example of a module M and a short exact sequence 0 −→ A −→ B −→
C −→ 0 such that 0 −→ HomR(M, A) −→ HomR(M, B) −→ HomR(M, C) −→ 0 is
not exact.

3. Prove that HomR(−, M) is left exact.

4. Prove that the following conditions are equivalent for a left R-module J : (i) J is injec-
tive; (ii) HomR(µ, J) is an epimorphism for every monomorphism µ ; (iii) HomR(−, J)
is exact.

5. Show that a functor that transforms short exact sequences into short exact sequences,
also transforms every exact sequence into an exact sequence.

6. Prove that 0 −→ A −→ B −→ C is exact if and only if 0 −→ HomR(M, A) −→
HomR(M, B) −→ HomR(M, C) is exact for every module M .

7. Prove that A −→ B −→ C −→ 0 is exact if and only if 0 −→ HomR(C, M) −→
HomR(B, M) −→ HomR(A, M) is exact for every module M .

8. Define direct products of R-S-bimodules and prove their universal property.

9. Show that HomR
(

M,
∏

i∈I Ai
)
∼=
∏

i∈I HomR(M, Ai ) is an isomorphism of
S-T-bimodule s when M is a R-S-bimodule and (Ai )i∈I are R-T-bimodules.

10. Show that HomR(M,−) preserves pullbacks of left R-modules (if ϕ ◦ ψ ′ = ψ ◦ ϕ′

is a pullback, then ϕ∗ ◦ ψ ′
∗ = ψ∗ ◦ ϕ′

∗ is a pullback).

11. Show that HomR(−, A) sends pushouts of left R-modules to pullbacks (if ϕ1 ◦ ψ =
ψ1 ◦ ϕ is a pushout, then ψ∗ ◦ ϕ∗

1 = ϕ∗ ◦ ψ∗
1 is a pullback).
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3. Direct Limits

Direct limits generalize directed unions. We study them for left R-modules, but,
unlike most other constructions in this chapter, they are not specific to modules
but apply to most algebraic objects.

Direct systems. Direct systems generalize directed families.

Definition. A preordered set or quasiordered set is an ordered pair (I,� ) of
a set I and a binary relation � on I that is reflexive ( i � i for all i ∈ I ) and
transitive (if i � j and j � k , then i � k ).

For example, every partially ordered set is a preordered set. If (Si )i∈I is a
family of subsets of a set, then I is a preordered set when i � j if and only if
Si ⊆ Sj . If (X,� ) is a partially ordered set and π : I −→ X is a surjection,
then I is a preordered set when i � j if and only if π(i) � π( j) ; in fact, this
construction yields all preordered sets (see the exercises).

Definition. A preordered set I is directed upward, or just directed, when for
every i, j ∈ I there exists k ∈ I such that i � k and j � k .

If I is directed, then every finite subset of I has an upper bound: for every
i1, . . . , in ∈ I there exists k ∈ I such that it � k for all t . For example, every
totally ordered set is directed; when (Si )i∈I is a directed family of subsets of a
set, then the preordered set I is directed.

Direct systems of sets and direct systems of modules are defined as follows.

Definition. Let I be a preordered set that is directed upward. A direct system
of sets (of left R-modules) over I is an ordered pair A = (A, α) of a family
A = (Ai )i∈I of sets (left R-modules) and a family α = (αi j )i, j∈I, i� j of mappings
(module homomorphisms) αi j : Ai −→ Aj ( i � j ) such that αi i is the identity
on Ai , and α jk ◦ αi j = αik for all i � j � k :

Thus, direct systems are large commutative diagrams with arrows running
upward. For example, a directed family (Ai )i∈I of subsets of a set can be viewed
as a direct system of sets over I (preordered so that i � j if and only if Ai ⊆ Aj )
in which αi j : Ai −→ Aj is the inclusion mapping when i � j ; a directed family
of submodules can be viewed as a similar direct system.

Definition. Let A = (A, α) , B = (B, β) be direct systems of sets (of left R-
modules) over the same directed preordered set I . A homomorphism ϕ of A into
B is a family ϕ = (ϕi )i∈I of mappings (module homomorphisms) ϕi : Ai −→ Bi
such that ϕj ◦ αi j = βi j ◦ ϕi whenever i � j :
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Homomorphisms of direct systems behave like other homomorphisms. There is
an identity homomorphism 1A = (1Ai

)i∈I : A −→ A . If ϕ = (ϕi )i∈I : A −→ B

and ψ = (ψi )i∈I : B −→ C are homomorphisms of direct systems over I , then
so is ψ ◦ ϕ = (ψi ◦ ϕi )i∈I : A −→ C . Homomorphisms of direct systems of left
R-modules can be added: if ϕ = (ϕi )i∈I and ψ = (ψi )i∈I are homomorphisms
of A into B , then so is ψ + ϕ = (ψi + ϕi )i∈I .

Cones. Direct limits arise from cones with a universal property.

Definition. Let A = (A, α) be a direct system of sets (of left R-modules) over
a directed preordered set I . A cone ϕ : A −→ B from A to a set (left R-module)
B is a family ϕ = (ϕi )i∈I of mappings (module homomorphisms) ϕi : Ai −→ B
such that ϕj ◦ αi j = ϕi whenever i � j :

Equivalently, a cone from A to B is a homomorphism of A into the constant
direct system (B, β) in which Bi = B for all i ∈ I and βi j = 1B for all
i � j . For example, if A = (Ai )i∈I is a directed family of submodules of a
module M , and B is a submodule of M that contains

⋃

i∈I Ai , then the inclusion
homomorphisms Ai −→ B constitute a cone from A to B .

If ϕ = (ϕi )i∈I is a cone from A to B and ψ : B −→ C is a mapping (or a
module homomorphism), then ψ ◦ ϕ = (ψ ◦ ϕi )i∈I is a cone from A to C . A
limit cone of A is a cone that yields every cone uniquely in this fashion.

Definitions. Let A = (A, α) be a direct system of sets (of left R-modules) over
a directed preordered set I . A cone λ = (λi )i∈I : A −→ L is a limit cone of
A , and L is a direct limit of A , L = lim

−→
A = lim

−→ i∈I Ai , when, for every cone

ϕ = (ϕi )i∈I : A −→ B , there exists a unique mapping (module homomorphism)
ϕ : L −→ B such that ϕ = ϕ ◦ λ (ϕi = ϕ ◦ λi for all i ):

Direct limits are also called inductive limits and directed colimits. Direct limits
of groups, rings, fields, and bidules are defined similarly.
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If λ : A −→ L is a limit cone and θ : L −→ M is a bijection (or an
isomorphism), then θ ◦ λ : A −→ M is a limit cone. It follows in the usual way
from the universal property of λ that this construction yields all limit cones:

Proposition 3.1. The direct limit and limit cone of a direct system are unique
up to isomorphism.

Readers will verify that directed unions are direct limits:

Proposition 3.2. If (Ai )i∈I is a directed family of subsets of a set (of sub-
modules of a left R-module), then the inclusion mappings (homomorphisms)
Ai −→

⋃

i∈I Ai constitute a limit cone, and
⋃

i∈I Ai = lim
−→ i∈I Ai .

For instance, Zp∞
∼= lim

−→ n>0 Zpn . Similarly, the finitely generated submod-
ules of a module M constitute a directed family whose union is M :

Proposition 3.3. Every left R-module is a direct limit of finitely generated left
R-modules.

A different direct limit arises from any directed family (Ai )i∈I of submodules
of a module M , namely, M/

(⋃

i∈I Ai
)

= lim
−→ i∈I M/Ai (see the exercises).

Construction. We now prove the existence of direct limits.

Proposition 3.4. Every direct system of sets has a direct limit.

Proof. Let A = (A, α) be a direct system of sets over a directed preordered set
I . Every cone ϕ : A −→ M sends x ∈ Ai and αi j (x) ∈ Aj to the same element
ϕi (x) = ϕj

(

αi j (x)
)

of M . More generally, if x ∈ Ai and y ∈ Aj have a common
higher image in A (if αik(x) = α jk(y) for some k � i, j ), then ϕ sends x and
y to the same element ϕi (x) = ϕk

(

αik(x)
)

= ϕk
(

α jk(y)
)

= ϕj (y) . We construct
a limit cone that sends x ∈ Ai and y ∈ Aj to the same element if and only if x
and y have a common higher image in A .

Let S = { (x, i)
∣
∣ i ∈ I, x ∈ Ai } . ( S is, up to bijections, the disjoint union of

all Ai .) Let ∼ be the binary relation on S defined by

(x, i) ∼ (y, j) if and only if αik(x) = α jk(y) for some k � i, j

(and then αi�(x) = α j�(y) for all � � k ). For instance, (x, i) ∼ (αi j (x), j)
when j � i . The relation ∼ is an equivalence relation on S : it is symmetric,
reflexive since αi i is the identity on Ai , and transitive: if αi�(x) = α j�(y) for
some � � i, j , and α jm(y) = αkm(z) for some m � j, k , then n � �, m for some
n ∈ I , since I is directed, and then n � i, j, k and αin(x) = α jn(y) = αkn(z) .
We denote by cls (x, i) the ∼-class of (x, i) .

Let L = S/∼ and let λi : Ai −→ L , x �−→ cls (x, i) . Then λj ◦ αi j = λi
whenever j � i , since (x, i) ∼ (αi j (x), j) ; thus λ = (λi )i∈I is a cone from
A to L . Let ϕi : Ai −→ M be mappings such that ϕj ◦ αi j = ϕi whenever
j � i . If (x, i) ∼ (y, j) , then αik(x) = α jk(y) for some k � i, j and ϕi (x) =



426 Chapter XI. Constructions

ϕk
(

αik(x)
)

= ϕk
(

α jk(y)
)

= ϕj (y) . Therefore a mapping ϕ : L −→ M is well
defined by ϕ

(

cls (x, i)
)

= ϕi (x) . Then ϕi = ϕ ◦ λi for all i , and ϕ is the only
mapping of L into M with this property; so λ is a limit cone of A . �

Proposition 3.5. Every direct system of left R-modules has a direct limit.

Proof. Let A = (A, α) be a direct system of left R-modules over a directed
preordered set I . As a direct system of sets, A has a limit cone λ : A −→ L ,
in which L = S/∼ and λi (x) = cls (x, i) for all x ∈ Ai . We show that there is
a unique left R-module structure on L such that every λi is a module homomor-
phism, and then λ is a limit cone of A as a direct system of left R-modules. A
similar argument can be used for groups, rings, fields, etc.

We have L = { cls (x, i)
∣
∣ i ∈ I, x ∈ Ai } =

⋃

i∈I λi (Ai ) , and this is a
directed union, since i � j implies λi = λj ◦ αi j and λi (Ai ) ⊆ λj (Aj ) . Hence
every a, b ∈ L can be written in the form a = λi (x) , b = λi (y) for some i ∈ I
and x, y ∈ Ai . Then an addition on L is well defined by a + b = λi (x + y)
whenever a = λi (x) and b = λi (y) : if λi (x) = λj (u) , λi (y) = λj (v) , then
αik(x) = α jk(u) , αik(y) = α jk(v) for some k � i, j ,

(x + y, i) ∼
(

αik(x + y), k
)

=
(

αik(x) + αik(y), k
)

=
(

α jk(u) + α jk(v), k
)

=
(

α jk(u + v), k
)

∼ (u + v, j),

and λi (x + y) = λj (u + v) . This addition makes L an abelian group, in which
0 = cls (0, i) (for any i ) and − cls (x, i) = cls (−x, i) .

Similarly, a left action of R on L is well defined by ra = λi (r x) whenever
a = λi (x) : by the above, λi (x) is any element of L , and λi (x) = λj (y) implies
αik(x) = α jk(y) for some k � i, j ,

(r x, i) ∼
(

αik(r x), k
)

=
(

r αik(x), k
)

=
(

r α jk(y), k
)

=
(

α jk(r y), k
)

∼ (r y, j),

since αik and α jk are homomorphisms, and λi (x + y) = λj (u + v) . It is immediate
that this action makes L a left R-module. (Moreover, lucky L received the
only module structure such that every λi is a module homomorphism.) Now,
λ : A −→ L consists of module homomorphisms and is a cone of A as a direct
system of left R-modules.

Let M be a left R-module and let ϕ : A −→ M be a cone. By 3.4 there is a
unique mapping ϕ : L −→ M such that ϕ ◦ λi = ϕi for every i ∈ I . This ϕ is a
module homomorphism: if a = λi (x) , b = λi (y) ∈ L , then

ϕ(a + b) = ϕ
(

λi (x + y)
)

= ϕi (x + y)

= ϕi (x) + ϕi (y) = ϕ
(

λi (x)
)

+ ϕ
(

λi (y)
)

= ϕ(a) + ϕ(b),

since ϕi is a homomorphism; similarly, ϕ(ra) = r ϕ(a) for all r ∈ R and a ∈ A .
Hence ϕ is the only homomorphism such that ϕ ◦ λi = ϕi for all i . �
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Readers will be happy to hear that direct limits of modules have a simpler
characterization, which makes the construction above superfluous.

Proposition 3.6. Let A = (A, α) be a direct system of left R-modules over a
directed preordered set I . A cone ϕ : A −→ M is a limit cone of A if and only if
(i) M =

⋃

i∈I Im ϕi and (ii) Ker ϕi =
⋃

j�i Ker αi j for every i ∈ I . Then (iii)
ϕi (x) = ϕj (y) if and only if αik(x) = α jk(y) for some k � i, j .

Proof. The limit cone λ : A −→ L constructed above, λi (x) = cls (x, i) , has
properties (i) L =

⋃

i∈I λi (Ai ) and (iii) λi (x) = λj (y) if and only if αik(x) =
α jk(y) for some k � i, j ; hence (ii) λi (x) = 0 = λi (0) if and only if αi j (x) =
αi j (0) = 0 for some j � i . If ϕ : A −→ M is another limit cone, then ϕ = θ ◦ λ

for some isomorphism θ : L −→ M , by 3.1; therefore ϕ also has properties (i),
(ii), and (iii).

Conversely, let ϕ : A −→ M be a cone with properties (i) and (ii). There
is a homomorphism ϕ : L −→ M such that ϕi = ϕ ◦ λi for all i . Then
Im ϕ = ϕ

(⋃

i∈I λi (Ai )
)

=
⋃

i∈I ϕi (Ai ) = M by (i), and ϕ is surjective. If a ∈ L
and ϕ(a) = 0, then a = λi (x) for some x ∈ Ai , ϕi (x) = 0, αi j (x) = 0 for
some j � i by (ii), and a = λj

(

αi j (x)
)

= 0; hence ϕ is injective. Thus ϕ is an
isomorphism, and ϕ = ϕ ◦ λ is a limit cone. �

Properties (i) and (ii) show that every direct limit is compounded from two
simpler types of direct limits: when λ : A −→ L is a limit cone, then L =
⋃

i∈I Im λi is a directed union;
⋃

j�i Ker αi j is also a directed union, so that
Im λi

∼= Ai/Ker λi
∼= lim

−→ j�i Ai/Ker αi j .

Properties. First, lim
−→ i∈I is an additive functor from direct systems of left

R-modules (over I ) to left R-modules:

Proposition 3.7. Let A = (A, α) and B = (B, β) be direct systems of left
R-modules over the same directed preordered set I , with limit cones λ : A −→ L
and µ : B −→ M . Every homomorphism ϕ = (ϕi )i∈I : A −→ B induces a
homomorphism ϕ = lim

−→
ϕi : lim

−→
Ai −→ lim

−→
Bi unique such that ϕ ◦ λ = µ ◦ ϕ :

Moreover, if ϕ is the identity on A , then ϕ is the identity on lim
−→

Ai ; if ψ : B −→ C

is another homomorphism, then ψ ◦ ϕ = ψ ◦ ϕ ; if χ : A −→ B is another
homomorphism, then χ + ϕ = χ + ϕ .

Proof. In the statement, µ ◦ ϕ : A −→ M is a cone and factors uniquely
through λ . The last parts of the statement follow from this uniqueness. �

Proposition 3.8. Let ϕ : A −→ B and ψ : B −→ C be homomorphisms
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of direct systems of left R-modules over the same directed preordered set I . If

Ai
ϕi−→ Bi

ψi−→ Ci is exact for every i , then lim
−→

Ai −→ lim
−→

Bi −→ lim
−→

Ci is
exact.

Proof. Let λ : A −→ L , µ : B −→ M , and ν : C −→ N be limit cones; let
ϕ = lim

−→
ϕi , ψ = lim

−→
ψi , so that the diagram below commutes for every i ∈ I :

Exactness of the top row is proved by diagram chasing, using properties (i) and
(ii) in 3.6. First, ψ ◦ ϕ = 0, since ψi ◦ ϕi = 0 for every i , and Im ϕ ⊆ Ker ψ .
Let m ∈ Ker ψ . Then m = µi (b) for some i ∈ I and b ∈ Bi , by (i). Then
νi
(

ψi (b)
)

= ψ
(

µi (b)
)

= 0. Hence γi j
(

ψi (b)
)

= 0 for some j � i , by (ii). Then
ψj
(

βi j (b)
)

= γi j
(

ψi (b)
)

= 0. By exactness, βi j (b) = ϕj (a) for some a ∈ Aj .
Then b = µj

(

βi j (b)
)

= muj
(

ϕj (a)
)

= ϕ
(

λj (a)
)

∈ Im ϕ . �

Corollary 3.9. If every ϕi is a monomorphism (an epimorphism), then lim
−→

ϕi
is a monomorphism (an epimorphism).

The exercises give additional properties.

Exercises

1. Let I be a preordered set. Show that an equivalence relation on I is defined by i ∼ j
if and only if i � j and j � i . Prove that I is a preordered set if and only if there exists a
surjection π of I to a partially ordered set J such that i � j in I if and only if π(i) � π( j)
in J .

2. Let I be a preordered set with a greatest element. Show that I is directed. How do you
find direct limits over I ?

3. Show that the direct limit and limit cone of a direct system of left R-modules are unique
up to isomorphism.

4. Let (Ai )i∈I be a directed family of submodules of a left R-module. Show that the
inclusion homomorphisms Ai −→

⋃

i∈I Ai constitute a limit cone.

5. Explain how Zp∞ ∼= lim
−→ n>0 Zpn .

6. Show that every direct sum of left R-modules is a direct limit of finite direct sums:
⊕

i∈I Ai = lim
−→ J⊆I, J finite

⊕

j∈J Aj .

7. Let (Ai )i∈I be a directed family of submodules of a left R-module M . Arrange the
quotients M/Ai into a direct system over I ; show that M/

(⋃

i∈I Ai
)

= lim
−→ i∈I M/Ai .

8. For direct systems of left R-modules over a given directed preordered set I , what is the
analogue of submodules? of quotient modules?
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9. A subset J of a preordered set I is cofinal when, for every i ∈ I , J contains some
j � i . If I is directed, then so is J . Show that a direct system over I , and its restriction to
J , have the same direct limit.

10. Define and construct direct limits of (not necessarily abelian) groups.

11. Define and construct direct limits of rings. Show that a direct limit of fields is a field.

12. Let ϕ be a homomorphism of direct systems of left R-modules. If every ϕi is an
epimorphism, then prove, without using exactness, that lim

−→
ϕi is an epimorphism.

13. Let ϕ be a homomorphism of direct systems of left R-modules. If every ϕi is a
monomorphism, then prove, without using exactness, that lim

−→
ϕi is a monomorphism.

14. Show that direct limits of left R-modules preserve finite direct sums ( lim
−→

(A ⊕
B) ∼= (lim

−→
A) ⊕ (lim

−→
B) , whenever A and B are over the same directed preordered set).

15. Show that direct limits of left R-modules preserve pullbacks (if ϕ, ϕ′, ψ, ψ ′ are homo-
morphisms of direct systems over the same directed preordered set I , and ϕi ◦ ψ ′

i = ψi ◦ ϕ′
i

is a pullback for every i ∈ I , then (lim
−→

ϕi ) ◦ (lim
−→

ψ ′
i ) = (lim

−→
ψi ) ◦ (lim

−→
ϕ′

i ) is a pullback).

16. Show that direct limits of left R-modules preserve pushouts (if ϕ, ϕ′, ψ, ψ ′ are homo-
morphisms of direct systems over the same directed preordered set I , and ϕ′

i ◦ ψi = ψ ′
i ◦ ϕi

is a pushout for every i ∈ I , then (lim
−→

ϕ′
i ) ◦ (lim

−→
ψi ) = (lim

−→
ψ ′

i ) ◦ (lim
−→

ϕi ) is a pushout).

17. Prove that a ring R is left Noetherian if and only if every direct limit of injective left
R-modules is an injective left R-module.

4. Inverse Limits

Inverse limits are obtained from direct limits by reversing all arrows. We study
them for left R-modules but, like direct limits, they are not specific to modules but
apply to most algebraic objects.

Inverse systems. Inverse systems are direct systems with arrows reversed.

Definition. Let I be a directed preordered set. An inverse system of left
R-modules over I is an ordered pair A = (A, α) of a family A = (Ai )i∈I
of left R-modules and a family α = (αi j )i, j∈I, i� j of module homomorphisms
αi j : Ai −→ Aj (i � j ) such that αi i is the identity on Ai , and α jk ◦ αi j = αik
for all i � j � k :

Thus, inverse systems are commutative diagrams with arrows running down-
ward. For example, a descending sequence A1 ⊇ · · · ⊇ An ⊇ An+1 ⊇ · · · of sub-
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modules can be viewed as an inverse system over N , in which αnm : An −→ Am
is the inclusion mapping when n � m .

Definition. Let A = (A, α) and B = (B, β) be inverse systems of left
R-modules over the same directed preordered set I . A homomorphism ϕ : A −→
B of A into B is a family ϕ = (ϕi )i∈I of module homomorphisms ϕi : Ai −→ Bi
such that ϕj ◦ αi j = βi j ◦ ϕi whenever i � j :

As in the case of direct systems, there is an identity homomorphism 1A =
(1Ai

)i∈I : A −→ A . If ϕ = (ϕi )i∈I : A −→ B and ψ = (ψi )i∈I : B −→ C

are homomorphisms of inverse systems over I , then so is ψ ◦ ϕ = (ψi ◦ ϕi )i∈I :
A −→ C . If ϕ = (ϕi )i∈I and ψ = (ψi )i∈I are homomorphisms of A into B ,
then so is ψ + ϕ = (ψi + ϕi )i∈I .

Inverse limits come from cones with a universal property.

Definition. Let A = (A, α) be an inverse system of left R-modules over a
directed preordered set I . A cone ϕ : M −→ A from a left R-module M to A

is a family ϕ = (ϕi )i∈I of module homomorphisms ϕi : M −→ Ai such that
αi j ◦ ϕi = ϕj whenever i � j :

Equivalently, a cone from M to A is a homomorphism of the constant inverse
system (M, µ) (in which Mi = M for all i ∈ I and µi j = 1M for all i � j )
into A . For example, if A is a descending sequence A1 ⊇ · · · ⊇ An ⊇ · · · of
submodules, and N is a submodule contained in

⋂

n>0 An , then the inclusion
homomorphisms N −→ An constitute a cone from N to A .

If ϕ = (ϕi )i∈I is a cone from M to A and ψ : N −→ M is a module homo-
morphism, then ϕ ◦ ψ = (ϕi ◦ ψ)i∈I is a cone from N to A . A limit cone of A

is a cone λ that yields every cone ϕ uniquely in this fashion:

Definitions. Let A = (A, α) be an inverse system of left R-modules over a
directed preordered set I . A cone λ = (λi )i∈I : L −→ A is a limit cone of
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A , and L is an inverse limit of A , L = lim
←−

A = lim
←− i∈I Ai , when, for every

cone ϕ = (ϕi )i∈I : M −→ A , there exists a unique module homomorphism
ϕ : M −→ L such that ϕ = λ ◦ ϕ (ϕi = λi ◦ ϕ for all i ).

Inverse limits are also called projective limits and directed limits. Inverse limits
of sets, groups, rings, and bidules are defined similarly.

If λ : L −→ A is a limit cone and θ : M −→ N is an isomorphism, then
λ ◦ θ : M −→ A is a limit cone. The universal property of λ implies in the usual
way that this construction yields all limit cones.

Proposition 4.1. The inverse limit and limit cone of an inverse system are unique
up to isomorphism.

The exercises give some examples of inverse limits. For instance, readers will
verify that intersections of decreasing sequences are inverse limits:

Proposition 4.2. If A is a descending sequence A1 ⊇ · · · ⊇ An ⊇ · · · of
submodules, then the inclusion homomorphisms

⋂

n>0 An −→ An constitute a
limit cone of A .

Construction. The existence of inverse limits is proved as follows.

Proposition 4.3. Every inverse system of left R-modules has an inverse limit.

Proof. Let A = (A, α) be an inverse system of left R-modules over a directed
preordered set I . We retrieve an inverse limit of A from the direct product
P =

∏

i∈I Ai and its projections πi : P −→ Ai . Let

L = { (xi )i∈I∈ P
∣
∣ xj = αi j (xi ) whenever i � j }.

Equivalently, L =
⋂

i, j∈I, i� j Ker (πj − αi j ◦ πi ) ; hence L is a submodule of
P . Let λi = πi |L : (xi )i∈I �−→ xi . The definition of L shows that λ is a cone
from L to A . Let ϕ : M −→ A be any cone. In the diagram:

the homomorphisms ϕi : M −→ Ai induce a unique homomorphism ϕ : M −→
P such that πi ◦ ϕ = ϕi for all i , namely ϕ(x) =

(

ϕi (x)
)

i∈I for all x ∈ M .
Since ϕ is a cone, ϕj (x) = αi j

(

ϕi (x)
)

whenever i � j , and ϕ(x) ∈ L for all
x ∈ M . Hence ϕ may be viewed as a homomorphism of M into L , and is then
the only homomorphism such that λi ◦ ϕ = ϕi for all i . �

Inverse limits of sets, groups, rings, etc., are constructed similarly. The follow-
ing properties may be used as a substitute for this construction.

Proposition 4.4. Let A = (A, α) be an inverse system of left R-modules over
a directed preordered set I . A cone ϕ : M −→ A is a limit cone of A if and



432 Chapter XI. Constructions

only if (i)
⋂

i∈I Ker ϕi = 0 and (ii) if xi ∈ Ai and αi j (xi ) = xj whenever i � j ,
then there exists x ∈ M such that ϕi (x) = xi for all i .

Proof. The limit cone λ : L −→ A constructed in the proof of 4.3 has
properties (i) and (ii): if x ∈ L and λi (x) = 0 for all i , then x = 0; if xi ∈ Ai
and αi j (xi ) = xj whenever i � j , then x = (xi )i∈I∈ L and λi (x) = xi for all
i . If ϕ : M −→ A is another limit cone, then ϕ = λ ◦ θ for some isomorphism
θ : M −→ L , by 4.1; therefore ϕ also has properties (i) and (ii).

Conversely, let ϕ : M −→ A be a cone with properties (i) and (ii). There
is a homomorphism ϕ : M −→ L such that ϕi = λi ◦ ϕ for all i . Then
ϕ(x) = 0 implies ϕi (x) = 0 for all i and x = 0, by (i); thus ϕ is injective. Let
x ∈ L . Then x = (xi )i∈I∈

∏

i∈I Ai and αi j (xi ) = xj whenever i � j , by the
construction of L . By (ii) there exists y ∈ M such that ϕi (y) = xi for all i . Then
λi
(

ϕ(y)
)

= ϕi (y) = λi (x) for all i and ϕ(y) = x . Thus ϕ is surjective. Hence ϕ

is an isomorphism, and ϕ = λ ◦ ϕ is a limit cone. �

Properties. First, lim
←− i∈I is an additive functor from inverse systems of left

R-modules (over I ) to left R-modules. This is proved like Proposition 3.7:

Proposition 4.5. Let A = (A, α) and B = (B, β) be inverse systems of left
R-modules over the same directed preordered set I , with limit cones λ : L −→ A

and µ : M −→ B . Every homomorphism ϕ = (ϕi )i∈I : A −→ B induces a
homomorphism ϕ = lim

←−
ϕi : lim

←−
Ai −→ lim

←−
Bi unique such that µ ◦ ϕ = ϕ ◦ λ :

Moreover: if ϕ is the identity on A , then ϕ is the identity on lim
←−

Ai ; if ψ :

B −→ C is another homomorphism, then ψ ◦ ϕ = ψ ◦ ϕ ; if ψ : A −→ B is
another homomorphism, then ψ + ϕ = ψ + ϕ .

Proposition 4.6. Let ϕ : A −→ B and ψ : B −→ C be homomorphism
of inverse systems of left R-modules over the same directed preordered set I . If

0 −→ Ai
ϕi−→ Bi

ψi−→ Ci is exact for every i , then 0 −→ lim
←−

Ai −→ lim
←−

Bi −→
lim
←−

Ci is exact.

Proof. Let λ : A −→ L , µ : B −→ M , and ν : C −→ N be limit cones; let
ϕ = lim

←−
ϕi , ψ = lim

←−
ψi , so that the diagram below commutes for every i ∈ I :
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If ϕ(x) = 0, then ϕi
(

λi (x)
)

= µi
(

ϕ(x)
)

= 0 for all i , λi (x) = 0 for all i , and
x = 0 by (i); thus ϕ is injective. Next, ψ ◦ ϕ = 0, since ψi ◦ ϕi = 0 for every i ,
and Im ϕ ⊆ Ker ψ . Let m ∈ Ker ψ . Then ψi

(

µi (m)
)

= νi
(

ψ(m)
)

= 0 and
µi (m) = ϕi (ai ) for some ai ∈ Ai . If i � j , then

ϕj
(

αi j (ai )
)

= βi j
(

ϕi (ai )
)

= βi j
(

µi (m)
)

= µj (m) = ϕj (aj )

and αi j (ai ) = aj , since ϕj is injective. By (ii) there exists � ∈ L such that
ai = λi (�) for all i . Then µi

(

ϕ(�)
)

= ϕi
(

λi (�)
)

= ϕi (ai ) = µi (m) for all i , and
ϕ(�) = m by (i). Thus m ∈ Im ϕ . �

Corollary 4.7. An inverse limit of monomorphisms is a monomorphism.

Corollary 4.7 does not extend to epimorphisms (readers will eagerly pursue
counterexamples). This sad shortcoming keeps inverse limits from preserving
exact sequences in general. But the exercises give additional properties.

Exercises

1. Show that the inverse limit and limit cone of an inverse system of left R-modules are
unique up to isomorphism.

2. Let A be a descending sequence A1 ⊇ · · · ⊇ An ⊇ · · · of submodules. Show that the
inclusion homomorphisms

⋂

n>0 An −→ An constitute a limit cone of A .

3. Define directed intersections of submodules and show that they are inverse limits.

4. Show that every direct product of left R-modules is an inverse limit of finite direct
products:

∏

i∈I Ai = lim
←− J⊆I, J finite

∏

j∈J Aj .

5. Define inverse limits of sets. Show that the inverse limit and limit cone of an inverse
system of sets exist and are unique up to isomorphism.

6. Let A = (A, α) be an inverse system of left R-modules over a directed preordered set I .
Let λ : L −→ A be a limit cone of A regarded as an inverse system of sets. Show that there
exists a unique left R-module structure on L such that every λi is a module homomorphism,
and then λ is a limit cone of A regarded as an inverse system of left R-modules.

7. Find an inverse limit of epimorphisms that is not an epimorphism.

8. Given a module M and an inverse system A = (A, α) of modules, find an isomorphism
HomR(M, lim

←−
Ai ) ∼= lim

←−
HomR(M, Ai ) that is natural in M and A .

9. Given a module M and a direct system A = (A, α) of modules, find an isomorphism
HomR(lim

−→
Ai , M) ∼= lim

←−
HomR(Ai , M) that is natural in M and A .

10. Show that inverse limits of modules preserve finite direct sums ( lim
←−

(A ⊕ B) ∼=
(lim
←−

A) ⊕ (lim
←−

B) , whenever A and B are over the same directed preordered set).

11. Show that inverse limits of modules preserve pullbacks (if ϕ, ϕ′, ψ, ψ ′ are homomor-
phisms of inverse systems over the same directed preordered set I , and ϕi ◦ ψ ′

i = ψi ◦ ϕ′
i is

a pullback for every i ∈ I , then (lim
←−

ϕi ) ◦ (lim
←−

ψ ′
i ) = (lim

←−
ψi ) ◦ (lim

←−
ϕ′

i ) is a pullback).
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12. Prove the following: a group G is an inverse limit of finite groups if and only if {1}
is the intersection of all normal subgroups of G of finite index. (These groups are called
profinite; for example, all Galois groups are profinite.)

5. Tensor Products

This section gives the construction and first examples of tensor products. Properties
are in the next section. As in the rest of this chapter, all rings have an identity
element, and all modules are unital.

Bilinear mappings. Tensor products originate with vector spaces. Let V be
a vector space over a field K with a finite basis e1, . . ., em , and let W be a
vector space over K with a finite basis f1, . . ., fn . The tensor product V ⊗ W
is a vector space of dimension mn over K , with a basis e1 ⊗ f1 , e2 ⊗ f2 , . . . ,
em ⊗ fn . Every x =

∑

i xi ei ∈ V and y =
∑

j xj yj ∈ W have a tensor product
x ⊗ y =

∑

i, j xi yj ei ⊗ fj in V ⊗ W . The tensor map τ : (x, y) �−→ x ⊗ y is
bilinear: (x + x ′) ⊗ y = (x ⊗ y) + (x ′ ⊗ y) , x ⊗ (y + y′) = (x ⊗ y) + (x ⊗ y′) ,
and (λx) ⊗ y = λ(x ⊗ y) = x ⊗ (λy) .

Conversely, if β is a bilinear mapping of V × W into another vector space VW ,
then β(x, y) = β

(∑

i xi ei ,
∑

j yj fj
)

=
∑

i, j
(

xi yj β(ei , fj )
)

by bilinearity,
and the linear transformation T : V ⊗ W −→ VW that sends ei ⊗ fj to β(ei , fj )
also sends x ⊗ y to β(x, y) , for all x ∈ V and y ∈ W . In fact, T is the only
linear transformation such that β = T ◦ τ . In this sense every bilinear mapping of
V × W factors uniquely through τ .

Tensor products of modules over a commutative ring R can be defined by the
same universal property (which does not require bases). For the record:

Definition. Let R be a commutative ring and let A, B, C be R-modules. A
mapping β : A × B −→ C is bilinear when

β(a + a′, b) = β(a, b) + β(a′, b),
β(a, b + b′) = β(a, b) + β(a, b′), and

β(ra, b) = r β(a, b) = β(a, rb),

for all a, a′ ∈ A, b, b′ ∈ B , and r ∈ R .

If β : A × B −→ C is bilinear, then the mappings β(a,−): b �−→ β(a, b) ,
B −→ C and β(−, b): a �−→ β(a, b) , A −→ C are module homomorphisms.
This property characterizes bilinear mappings:

Proposition 5.1. Let R be a commutative ring and let A, B, C be R-modules.
For a mapping β : A × B −→ C the following conditions are equivalent:

(1) β is bilinear;

(2) a �−→ β(a,−) is a module homomorphism of A into HomR(B, C) ;

(3) b �−→ β(−, b) is a module homomorphism of B into HomR(A, C) .
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Bihomomorphisms. Bilinear mappings can be defined in the same way for
left R-modules over an arbitrary ring R , but then lose properties (2) and (3) above,
if only because HomR(A, C) and HomR(B, C) are only abelian groups. It is
more fruitful to keep properties (2) and (3), and to forgo bilinearity unless R is
commutative. In the simplest form of (2) and (3), C is an abelian group; if B is a
left R-module, then Hom

Z
(B, C) is a right R-module and A needs to be a right

R-module; then B and Hom
Z

(A, C) are left R-modules.

Proposition 5.2. Let R be a ring, let A be a right R-module, let B be a left
R-module, and let C be an abelian group. For a mapping β : A × B −→ C the
following conditions are equivalent:

(1) for all a, a′ ∈ A, b, b′ ∈ B , and r ∈ R ,

β(a + a′, b) = β(a, b) + β(a′, b),
β(a, b + b′) = β(a, b) + β(a, b′) (β is biadditive),

β(ar, b) = β(a, rb) (β is balanced);

(2) a �−→ β(a,−) is a module homomorphism of A into Hom
Z

(B, C) ;

(3) b �−→ β(−, b) is a module homomorphism of B into Hom
Z

(A, C) .

Proof. Addition on Hom
Z

(B, C) is pointwise and that r ∈ R acts on
ϕ ∈ Hom

Z
(B, C) by (ϕr)(b) = ϕ(rb) for all b ∈ B ; hence (1) states that

β(a + a′, −) = β(a,−) + β(a′,−) , β(a,−) ∈ Hom
Z

(B, C) , and β(ar,−) =
β(a,−) r , and is equivalent to (2). The equivalence of (1) and (3) is similar. �

Balanced biadditive mappings have been called middle linear mappings,
R-biadditive mappings, and balanced products (a good name). The author prefers
bihomomorphisms:

Definition. A bihomomorphism of modules is a mapping that satisfies the
equivalent conditions in Proposition 5.2.

For example, the left action (r, x) �−→ r x of R on any left R-module M is a
bihomomorphism of RR × M into the underlying abelian group M .

The tensor product. If β : A × B −→ C is a bihomomorphism and ϕ :
C −→ D is a homomorphism of abelian groups, then ϕ ◦ β : A × B −→ D is a
bihomomorphism. The tensor product of A and B is an abelian group A ⊗R B
with a bihomomorphism τ of A × B , from which every bihomomorphism of
A × B can be recovered uniquely in this fashion:

Definition. Let A be a right R-module and let B be a left R-module. A tensor
product of A and B is an abelian group A ⊗R B together with a bihomomor-
phism τ : A × B −→ A ⊗R B , (a, b) �−→ a ⊗ b , the tensor map, such that, for
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every abelian group C and bihomomorphism β : A × B −→ C there exists a
unique homomorphism β : A ⊗R B of abelian groups such that β = β ◦ τ .

Proposition 5.3. For every right R-module A and left R-module B , A ⊗R B
and its tensor map exist, and they are unique up to isomorphism.

Proof. Uniqueness follows from the universal property. Existence is proved
by constructing a tensor product. Let T = F/K , where F is the free abelian
group on the set A × B , and K is the subgroup of F generated by all (a +
a′, b)− (a, b)− (a′, b) , (a, b + b′)− (a, b)− β(a, b′) , and (ar, b)− (a, rb) ∈
F , where a, a′ ∈ A , b, b′ ∈ B , and r ∈ R . Let τ : A × B −→ F −→
F/K be the canonical mapping. The definition of K shows that τ (a + a′, b) =
τ (a, b) + τ (a′, b) , τ (a, b + b′) = τ (a, b) + τ (a, b′) , and τ (ar, b) = τ (a, rb) , for
all a, a′ ∈ A , b, b′ ∈ B , and r ∈ R . Thus τ is a bihomomorphism.

Every mapping β : A × B −→ C extends to a homomorphism ϕ : F −→ C .
If β is a bihomomorphism, then

ϕ
(

(a + a′, b) − (a, b) − (a′, b)
)

= β(a + a′, b) − β(a, b) − β(a′, b) = 0

and (a + a′, b)− (a, b)− (a′, b)∈ Kerϕ ; similarly, (a, b + b′)− (a, b)− (a, b′)
∈ Ker ϕ , and (ar, b) − (a, rb) ∈ Ker ϕ . Thus, Ker ϕ contains every generator
of K . Hence Ker ϕ contains K , and ϕ factors through the projection π : F −→
F/K : ϕ = β ◦ π for some homomorphism β : F/K −→ C :

Then β ◦ τ = β . Moreover, β is the only homomorphism β : F/K −→ C such
that β ◦ τ = β , since F/K = π(F) is generated by π (A × B) = τ (A × B) .
Thus T is a tensor product of A and B , with tensor map τ . �

Corollary 5.4. (1) Every element of A ⊗R B is a finite sum
∑

i (ai ⊗ bi ) , where
ai ∈ A and bi ∈ B . (2) If

∑

i (ai ⊗ bi ) = 0 in A ⊗R B , then
∑

i (ai ⊗ bi ) = 0
in A′ ⊗R B′ for some finitely generated submodules A′ ⊆ A and B′ ⊆ B .

Proof. (1). Let T = F/K as above. Every element of F is a finite linear
combination

∑

i ni (ai , bi ) with integer coefficients. Hence every element of
T = π(F) is a finite linear combination

∑

i ni (ai ⊗ bi ) , and a finite sum
∑

i (ni ai ⊗ bi ) by bilinearity. Then (1) holds in every A ⊗R B ∼= T , by 5.3.

(2). If
∑

i (ai ⊗ bi ) = 0 in A ⊗R B , then
∑

i (ai ⊗ bi ) = 0 in T and
∑

i (ai , bi ) ∈ K is a linear combination with integer coefficients of finitely many
generators kj of K . Let A′ be the submodule of A generated by the finitely
many elements of A that appear in

∑

i (ai , bi ) and in the generators kj ; let B′

be the similar submodule of B . Let T ′ = F ′/K ′ be constructed as above from
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A′ and B′ . Then K ′ contains all kj ,
∑

i (ai , bi ) ∈ K ′ ,
∑

i (ai ⊗ bi ) = 0 in T ′ ,
and

∑

i (ai ⊗ bi ) = 0 in any A′ ⊗R B′ ∼= T ′ . �
In general, not every element of A ⊗R B can be put in the form a ⊗ b (see

the exercises). Corollary 5.4 excepted, the contruction above is not very helpful:
only in a few cases will we know exactly what A ⊗R B looks like. Hence tensor
products are usually manipulated through their properties, not their construction.

Homomorphisms. Tensor products yield additive functors, as follows.

Proposition 5.5. If ϕ : A −→ A′ is a homomorphism of right R-modules,
and ψ : B −→ B′ is a homomorphism of left R-modules, then there is a unique
homomorphism ϕ ⊗ ψ : A ⊗R B −→ A′ ⊗R B′ such that

(ϕ ⊗ ψ)(a ⊗ b) = ϕ(a) ⊗ ψ(b)

for all a ∈ A and b ∈ B :

Moreover, 1A ⊗ 1B = 1A⊗R B , (ϕ ◦ ϕ′) ⊗ (ψ ◦ ψ ′)= (ϕ ⊗ ψ) ◦ (ϕ′ ⊗ ψ ′) ,
(ϕ + ϕ′) ⊗ ψ = (ϕ ⊗ ψ) + (ϕ′ ⊗ ψ) , and ϕ ⊗ (ψ + ψ ′)= (ϕ ⊗ ψ) + (ϕ ⊗ ψ ′) ,
whenever defined. Thus, for every right R-module A , A ⊗R − is an additive
functor from left R-modules to abelian groups; for every left R-module B , −⊗R B
is an additive functor from right R-modules to abelian groups.

Proof. Let τ : A × B −→ A ⊗R B and τ ′ : A′ × B′ −→ A′ ⊗R B′ be
the tensor maps. Since τ ′ is a bihomomorphism, τ ′ ◦ (ϕ × ψ): (a, b) �−→
ϕ(a) ⊗ ψ(b) is a bihomomorphism and factors uniquely through τ . Uniqueness
in this factorization yields the properties in the second part of the statement. The
last part follows, with A ⊗ ψ = 1A ⊗ ψ and ϕ ⊗ B = ϕ ⊗ 1B . �

If ϕ : A −→ A′ and ψ : B −→ B′ are homomorphisms, then the square
below commutes, since (ϕ ⊗ 1B′) ◦ (1A ⊗ ψ) = ϕ ⊗ ψ = (1A′ ⊗ ψ) ◦ (ϕ ⊗ 1B) ;
hence A ⊗ ψ is natural in A and ϕ ⊗ B is natural in B .

Bimodules. So far tensor products of modules are only abelian groups. As was
the case for HomR(A, B) , module structures on A ⊗R B arise from bimodule
structures on A and B . Tensor products of bimodules can also be defined in terms
of enhanced bihomomorphisms. These two approaches yield the same tensor
products. First we define bihomomorphisms of bimodules.



438 Chapter XI. Constructions

Proposition 5.6. Let R, S, T be rings; let A be a left S-, right R-bimodule, let
B be a left R-, right T-bimodule, and let C be a left S-, right T-bimodule. For a
mapping β : A × B −→ C the following conditions are equivalent:

(1) for all a, a′ ∈ A, b, b′ ∈ B , r ∈ R , s ∈ S , and t ∈ T :

β(a + a′, b) = β(a, b) + β(a′, b),
β(a, b + b′) = β(a, b) + β(a, b′),

β(sa, b) = s β(a, b), β(ar, b) = β(a, rb), β(a, bt) = β(a, b) t ;

(2) a �−→ β(a,−) is a bimodule homomorphism of A into HomT (B, C) ;

(3) b �−→ β(b,−) is a bimodule homomorphism of B into HomS (A, C) .

In (2), A and HomT (B, C) are S-R-bimodule, by 6.4, and similarly for B and
HomS (A, C) in (3). A bihomomorphism of bimodules is a mapping that satisfies
the equivalent conditions in Proposition 5.6.

Proposition 5.7. Let A be a right R-module and let B be a left R-module.

(1) if A is an S-R-bimodule, then A ⊗R B is a left S-module, in which s (a ⊗ b) =
sa ⊗ b for all a ∈ A, b ∈ B , and s ∈ S ;

(2) if B is an R-T-bimodule, then A ⊗R B is a right T-module, in which
(a ⊗ b) t = a ⊗ bt for all a ∈ A, b ∈ B , and t ∈ T .

If A is an S-R-bimodule and B is an R-T-bimodule, then:

(3) A ⊗R B is an S-T-bimodule;

(4) the tensor map A × B −→ A ⊗R B is a bihomomorphism of bimodules;

(5) for every S-T-bimodule C and bihomomorphism β : A × B −→ C of
bimodules, there exists a unique bimodule homomorphism β : A ⊗R B −→ C
such that β(a, b) = β(a ⊗ b) for all a ∈ A and b ∈ B ;

(6) if ϕ : A −→ A′ and ψ : B −→ B′ are bimodule homomorphisms, then
ϕ ⊗ ψ is a bimodule homomorphism;

(7) A ⊗R − is an additive functor from R-T-bimodules to S-T-bimodules, and
−⊗R B is an additive functor from S-R-bimodules to S-T-bimodules.

Proof. We prove (1), (2), and (3), and leave the other parts to eager readers.
Let A be an S-R-bimodule. If s ∈ S , then αs : a �−→ sa is a right R-module
endomorphism of A . By 5.5, there is a unique endomorphism αs = αs ⊗ 1B of
A ⊗R B such that αs (a ⊗ b) = αs(a) ⊗ b = sa ⊗ b for all a ∈ A and b ∈ B .
Since s �−→ αs is a ring homomorphism, the addition and composition properties
in 5.5 imply that s �−→ αs is a ring homomorphism of S into End

Z
(A ⊗R B) .

Thus A ⊗R B is a left S-module, in which s (a ⊗ b) = sa ⊗ b for all s, a, b .

Similarly, when B is an R-T-bimodule, then A ⊗R B is a right T-module, in
which (a ⊗ b) t = a ⊗ bt for all a, b, t . In (3), s(xt) = (sx)t holds for all s ∈ S ,
t ∈ T , and x ∈ A ⊗R B , since it holds for every generator x = a ⊗ b :

s
(

(a ⊗ b) t
)

= s (a ⊗ bt) = sa ⊗ bt =
(

s (a ⊗ b)
)

t. �
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Thus S AR and R BT implies S(A ⊗R B)T . If R is commutative, then
R-modules are R-R-bimodules and Proposition 5.7 becomes nicer:

Corollary 5.8. If R is a commutative ring and A, B are R-modules, then:

(1) A ⊗R B is an R-module;

(2) the tensor map (a, b) �−→ a ⊗ b is bilinear;

(3) for every R-module C and bilinear mapping β : A × B −→ C , there exists
a unique module homomorphism β : A ⊗R B −→ C such that β(a, b) = β(a ⊗ b)
for all a ∈ A and b ∈ B ;

(4) if ϕ : A −→ A′ and ψ : B −→ B′ are R-module homomorphisms, then
ϕ ⊗ ψ is an R-module homomorphism;

(5) A ⊗R − and −⊗R B are additive functors from R-modules to R-modules.

Applications. We give two applications of tensor products of bimodules. First
are tensor products by free modules, one of the rare cases in which we know
what A ⊗R B looks like. A free right R-module F , with a basis (ei )i∈I , is an
R-R-bimodule, in which r

(∑

i∈I ei xi
)

=
∑

i∈I ei (r xi ) for all r, xi ∈ R . If
R is commutative, this yields the usual R-R-bimodule on any right R-module. In
general, the left R-module structure on F depends on the choice of a basis.

Similarly, a free left R-module F with a basis (ei )i∈I is an R-R-bimodule, in
which

(∑

i∈I xi ei
)

r =
∑

i∈I (xi r) ei for all r, xi ∈ R . In general, this bimodule
structure depends on the choice of a basis. So do the isomorphisms in the next
result.

Proposition 5.9. If F is a free right R-module with a basis (ei )i∈I , and B is a
left R-module, then F ⊗R B ∼=

⊕

i∈I B ; the isomorphism sends
∑

i∈I (ei ⊗ bi )
to (bi )i∈I , and is natural in B . In particular, RR ⊗R B ∼= B .

If F is a free left R-module with a basis (ei )i∈I , and A is a right R-module,
then A ⊗R F ∼=

⊕

i∈I A ; the isomorphism sends
∑

i∈I (ai ⊗ ei ) to (ai )i∈I , and
is natural in A . In particular, A ⊗R RR ∼= A.

Proof. First we show that F ⊗R B ∼=
⊕

i∈I B as abelian groups. The equality
τ
(∑

i∈I ei xi , b
)

= (xi b)i∈I defines a bihomomorphism τ : F × B −→
⊕

i∈I B . We show that every bihomomorphism β : F × B −→ C fac-
tors uniquely through τ . Indeed, β induces an additive homomorphism β :
(bi )i∈I �−→

∑

i∈I β(ei , bi ) of
⊕

i∈I B into C . Then β ◦ τ = β :

β
(∑

i∈I ei xi , b
)

=
∑

i∈I β(ei xi , b) =
∑

i∈I β(ei , xi b)

= β
(

(xi b)i∈I
)

= β
(

τ
(∑

i∈I ei xi , b
))

.

Now, τ (ei ,−) is the i injection ιi : B −→
⊕

i∈I B . If β = ϕ ◦ τ for some
other additive homomorphism ϕ :

⊕

i∈I B −→ C , then ϕ ◦ ιi = ϕ
(

τ (ei , −)
)

=
β(ei , −) = β ◦ ιi ; hence ϕ = β .

Since F ⊗R B and its tensor map are unique up to isomorphism, there is an
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additive isomorphism θ : F ⊗R B −→
⊕

i∈I B such that

θ
((∑

i∈I ei xi
)

⊗ b
)

= τ
(∑

i∈I ei xi , b
)

= (xi b)i∈I

for all
∑

i∈I ei xi ∈ F and b ∈ B . Now, F ⊗R B is a left R-module by 5.7, since
F is an R-R-bimodule. Then

θ
(

r
((∑

i∈I ei xi
)

⊗ b
))

= θ
((∑

i∈I ei (r xi )
)

⊗ b = (r xi b)i∈I

= r (xi b)i∈I = r θ
((∑

i∈I ei xi
)

⊗ b
)

and θ(r t) = rθ(t) for every generator t =
(∑

i∈I ei xi
)

⊗ b of F ⊗R B . Hence
θ(r t) = rθ(t) for all r ∈ R and t ∈ F ⊗R B , and θ is a module isomor-
phism. Readers will verify that θ is natural in B . The other isomorphism
A ⊗R F ∼=

⊕

i∈I A is similar (or follows from the first, by 6.1 below). �

Change of rings. Readers know that a vector space over R can be enlarged
to a vector space over C : when (ei )i∈I is a basis of V over R , V consists of
all linear combinations

∑

i∈I xi ei with real coefficients, and can be enlarged to
the vector space of all linear combinations

∑

i∈I xi ei with complex coefficients.
Similarly, a vector space over a field K can be enlarged to a vector space over any
field extension of K . Tensor products provide a general construction that does not
depend on bases and has a universal property.

Let ρ : R −→ S be a ring homomorphism. Every left S-module M is also a
left R-module, in which r ·x = ρ(r) x for all r ∈ R and x ∈ M ; the R-module
structure on M is the composition R −→ S −→ End

Z
(M) . For example, vector

spaces over C are also vector spaces over R . The converse construction “enlarges”
R-modules into S-modules.

Proposition 5.10. Let M be a left R-module and let ρ : R −→ S be a
homomorphism of rings [with identity].

(1) S ⊗R M is a left S-module, and ι : x �−→ 1 ⊗ x is a homomorphism of left
R-modules of M into S ⊗R M ;

(2) every R-module homomorphism of M into a left S-module factors uniquely
through ι ;

(3) if (ei )i∈I is a basis of M , then
(

ι(ei )
)

i∈I is a basis of S ⊗R M .

Proof. (1). S is an S-R-bimodule, in which s ·r = s ρ(r) for all s ∈ S and
r ∈ R . By 5.7, S ⊗R M is a left S-module. Hence S ⊗R M is also a left R-module,
in which r (s ⊗ x) = ρ(r) s ⊗ x for all r, s, x . Then r ι(x) = ρ(r)⊗ x = 1·r ⊗ x =
1 ⊗ r x = ι(r x) for all r and x .

(2). Let N be an S-module and let ϕ : M −→ N be a homomorphism of left R-
modules. Then s ϕ(r x) = s ρ(r)ϕ(x) = (s ·r)ϕ(x) ; hence β : (s, x) �−→ s ϕ(x) ,
S × M −→ N is a bihomomorphism of bimodules of S × M into the S-Z-bimod-
ule N and induces a unique S-module homomorphism ψ : S ⊗R M −→ N such
that ψ (s ⊗ x) = s ϕ(x) for all s, x ; ψ is the only S-module homomorphism such
that ψ ◦ ι = ϕ , since this equality implies ψ(s ⊗ x) = s ψ(1 ⊗ x) = s ϕ(x) :
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(3). If M has a basis (ei )i∈I , then 5.9 yields an isomorphism θ : S ⊗R
M ∼=

⊕

i∈I S , which sends
∑

i∈I (si ⊗ ei ) to (si )i∈I , and every element of
S ⊗R M can be written uniquely in the form

∑

i∈I (si ⊗ ei ) =
∑

i∈I si ι(ei ) . �

Exercises
1. Prove the following: if A and B are finitely generated modules, then A ⊗R B is a

finitely generated abelian group.

2. Give a direct proof that RR ⊗R M ∼= M for every left R-module M .

3. Let M be a left R-module and let I be a two-sided ideal of R . Show that there is an
isomorphism R/I ⊗R M ∼= M/I M that is natural in M .

4. Show that Zm ⊗Z Zn ∼= Zd , where d = gcd (m, n) .

5. Let R and S be rings. Make R ⊗Z S a ring, in which (r ⊗ s)(r ′ ⊗ s′) = rr ′ ⊗ ss′ .

6. For any abelian group M , produce a one-to-one correspondence bewteen R-S-bimodule
structures on M and left R ⊗Z Sop -module structures on M .

7. Let A be an S-R-bimodule, let B be an R-T-bimodule, and let C be an S-T-bimod-
ule. Construct an abelian group Bihom (A × B, C) of bihomomorphisms of bimodules of
A × B into C .

8. Study the functorial properties of Bihom (A × B, C) in the previous exercise.

In the next two exercises, ρ : R −→ S is a ring homomorphism.

9. For every left S-modules A and B construct a monomorphism HomS (SA, SB) −→
HomR (RA, RB) that is natural in A and B .

10. For every right S-module A and left S-module B construct an epimorphism
AR ⊗R RB −→ AS ⊗S SB that is natural in A and B .

In the next three exercises, R is commutative, M is an R-module, and S is a proper multi-
plicative subset of R .

11. Construct a module of fractions S−1M .

12. State and prove a universal property of the canonical homomorphism M −→ S−1M .

13. Prove that S−1R ⊗R M ∼= S−1M .

6. Properties of Tensor Products

This section contains basic properties of tensor products of modules, including
commutativity, associativity, adjoint associativity, and right exactness.

First we look at the tensor product as a binary operation. The natural isomor-
phisms A ⊗R R ∼= A and R ⊗R B ∼= B in Proposition 5.9 provide an identity
element of sorts, the R-R-bimodule R .



442 Chapter XI. Constructions

Commutativity requires swapping left and right modules. Recall that a right
R-module A is a left Rop-module, under the opposite action r ∗ a = ar ; similarly,
a left R-module B is a right Rop-module.

Proposition 6.1. For every right R-module A and left R-module B there is a
commutativity isomorphism B ⊗Rop A ∼= A ⊗R B , which sends b ⊗ a to a ⊗ b
and is natural in A and B . If A and B are bimodules, then the commutativity
isomorphism is a bimodule isomorphism.

Proof. If C is an abelian group, then β is a bihomomorphism of AR × RB into
C if and only if βop : (b, a) �−→ β(a, b) is a bihomomorphism of BRop × Rop A
into C . In particular, τop : (b, a) �−→ τ (a, b) = a ⊗ b is a bihomomorphism of
BRop ×Rop A into A ⊗R B and induces a unique homomorphism θ : B ⊗Rop A −→
A ⊗R B such that θ (b ⊗ a) = a ⊗ b for all a ∈ A and b ∈ B . Similarly, there is
a unique homomorphism ζ : A ⊗R B −→ B ⊗Rop A such that ζ (a ⊗ b) = b ⊗ a
for all a ∈ A and b ∈ B . Then θ and ζ are mutually inverse isomorphisms:
θ
(

ζ (a ⊗ b)
)

= a ⊗ b for all a, b ; hence θ
(

ζ (t)
)

= t for all t ∈ A ⊗R B .
Similarly, ζ

(

θ(u)
)

= u for all u ∈ B ⊗Rop A . Naturality and the bimodule case
are left to readers. �

Associativity requires at least one bimodule B , so that (A ⊗R B) ⊗S C and
A ⊗R (B ⊗S C) are defined.

Proposition 6.2. For every right R-module A , R-S-bimodule B , and left S-mod-
ule C , there is an associativity isomorphism (A ⊗R B) ⊗S C ∼= A ⊗R (B ⊗S C) ,
which sends (a ⊗ b)⊗ c to a ⊗ (b ⊗ c) and is natural in A , B , and C . If A and
C are bimodules, then the associativity isomorphism is a bimodule isomorphism.

Proof. We prove the bimodule case and let A be a Q-R-bimodule and C be an
S-T-bimodule, so that (A ⊗R B) ⊗S C and A ⊗R (B ⊗S C) are Q-T-bimodules;
the first part of the statement is the case Q = T = Z . For every a ∈ A and
b ∈ B , β(a, b): c �−→ a ⊗ (b ⊗ c) is a right T-module homomorphism of C
into A ⊗R (B ⊗S C) . Moreover,

β(ar, b)(c) = ar ⊗ (b ⊗ c) = a ⊗ r(b ⊗ c) = a ⊗ (rb ⊗ c) = β(a, rb)(c)

for all a, b, c, r ; similarly, q β(a, b)(c) = β(qa, b)(c) and
(

β(a, b) s
)

(c) =
β(a, b)(sc) = β(a, bs)(c) for all a, b, c, q, s . Hence

β : A × B −→ HomT
(

C, A ⊗R (B ⊗S C)
)

is a bihomomorphism of bimodules, and there is a unique homomorphism

β : A ⊗R B −→ HomT
(

C, A ⊗R (B ⊗S C)
)

of bimodules such that β(a ⊗ b) = β(a, b) for all a, b . By 5.6, (u, c) �−→ β(u)(c)
is a bihomomorphism of (A ⊗R B) × C into A ⊗R (B ⊗S C) . Hence there is a
bimodule homomorphism

θ : (A ⊗R B) ⊗S C −→ A ⊗R (B ⊗S C)
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such that θ (u ⊗ c) = β(u)(c) for all u ∈ A ⊗R B and c ∈ C ; in particular,
θ
(

(a ⊗ b) ⊗ c
)

= β(a, b)(c) = a ⊗ (b ⊗ c) for all a, b, c . Similarly, there is
a bimodule homomorphism ζ : A ⊗R (B ⊗S C) −→ (A ⊗R B) ⊗S C such that
ζ
(

a ⊗ (b ⊗ c)
)

= (a ⊗ b) ⊗ c for all a, b, c . Then θ and ζ are mutually inverse
isomorphisms. Readers will verify naturality. �

If R is commutative, then Proposition 5.9, 6.1, and 6.2 yield module iso-
morphisms R ⊗R A ∼= A , B ⊗R A ∼= A ⊗R B , and (A ⊗R B) ⊗R C ∼= A ⊗R
(B ⊗R C) , for all R-modules A , B , and C . Moreover, the tensor maps
(a, b, c) �−→ (a ⊗ b) ⊗ c and (a, b, c) �−→ a ⊗ (b ⊗ c) are trilinear.

Longer tensor products. The above suggests that A1 ⊗ · · · ⊗ An can be
constructed directly. If R is commutative and A1, . . ., An, C are R-modules,
then a mapping µ : A1 × · · · × An −→ C is n-linear or multilinear when

µ (a1, . . ., ai−1, −, ai+1, . . ., an): ai �−→ µ (a1, . . ., ai , . . . , an)

is a module homomorphism of Ai into C , for every i . In fact, µ is multilinear if
and only if, for any i , the mapping

(a1, . . ., ai−1, ai+1, . . ., an) �−→ µ (a1, . . ., ai−1, −, ai+1, . . ., an)

of A1 × · · · × Ai−1 × Ai+1 × · · · × An into HomR(Ai , C) is (n − 1)-linear.

If R is commutative, then a tensor product of n R-modules A1, . . ., An is
an R-module A1 ⊗R · · · ⊗R An with an n-linear mapping τ : (a1, . . ., an) �−→
a1 ⊗ · · · ⊗ an of A1 × · · · × An into A1 ⊗R · · · ⊗R An , the tensor map, such that
for every R-module C and n-linear mapping γ : A1 × · · · × An −→ C , there
exists a unique homomorphism γ : A1 ⊗R · · · ⊗R An −→ C such that γ ◦ τ = γ .
Readers will easily prove the following.

Proposition 6.3. Let R be a commutative ring and let A1, . . ., An be R-mod-
ules. A tensor product A1 ⊗R · · · ⊗R An and its tensor map exist, and they are
unique up to isomorphism.

For bimodules in general, we define multihomomorphisms A1 × · · · × An −→
C of bimodules, also called balanced products. We do this when n = 3, and leave
the general case and the proofs to interested readers.

Proposition 6.4. Let Q, R, S, T be rings; let A be a left Q-, right R-bimodule,
let B be a left R-, right S-bimodule, let C be a left S-, right T-bimodule, and let
D be a left Q-, right T-bimodule. For a mapping γ : A × B × C −→ D the
following conditions are equivalent:

(1) for all a, a′ ∈ A, b, b′ ∈ B , c, c′ ∈ C , q ∈ Q , r ∈ R , s ∈ S , t ∈ T ,

γ (a + a′, b, c) = γ (a, b, c) + γ (a′, b, c),
γ (a, b + b′, c) = γ (a, b, c) + γ (a, b′, c),
γ (a, b, c + c′) = γ (a, b, c) + γ (a, b, c′),

γ (qa, b, c) = q γ (a, b, c),
γ (ar, b, c) = γ (a, rb, c),
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γ (a, bs, c) = γ (a, b, sc),
γ (a, b, ct) = γ (a, b, c) t ;

(2) (a, b) �−→ γ (a, b,−) is a bihomomorphism of bimodules of A × B into
HomT (C, D) ;

(3) (b, c) �−→ γ (−, b, c) is a bihomomorphism of bimodules of B × C into
HomQ (A, D) .

A trihomomorphism of A × B × C into D is a mapping that satisfies the
equivalent conditions above. For example, the tensor maps (a, b, c) �−→ (a ⊗
b) ⊗ c and (a, b, c) �−→ a ⊗ (b ⊗ c) in Proposition 6.2 are trihomomorphisms.

Let A be a Q-R-bimodule, B be an R-S-bimodule, and C be an S-T-bimodule.
A tensor product of A, B, and C is a Q-T-bimodule A ⊗R B ⊗S C together with
a trihomomorphism τ : A × B × C −→ A ⊗R B ⊗S C , (a, b, c) �−→ a ⊗ b ⊗ c ,
the tensor map, such that for every Q-T-bimodule D and trihomomorphism γ :
A × B ×C −→ D there exists a unique homomorphism γ : A ⊗R B ⊗S C −→ D
of bimodules such that γ = γ ◦ τ .

Proposition 6.5. For every Q-R-bimodule A , R-S-bimodule B , and
S-T-bimodule C , a tensor product A ⊗R B ⊗S C and its tensor map exist, and
they are unique up to isomorphism.

To Proposition 6.2 can be added natural isomorphisms (A ⊗R B) ⊗S C ∼=
A ⊗R B ⊗S C ∼= A ⊗R (B ⊗S C) , which send (a ⊗ b) ⊗ c to a ⊗ b ⊗ c and to
a ⊗ (b ⊗ c) . These triple tensor products are normally written without parentheses.

Adjoint associativity is directly related to the definition of tensor products.

Proposition 6.6 (Adjoint Associativity). Let A be a right R-module, let B be
a left R-module, and let C be an abelian group. There are adjoint associativity
isomorphisms

Θ : Hom
Z

(A ⊗R B, C) ∼= HomR
(

A, Hom
Z

(B, C)
)

,

Ξ : Hom
Z

(A ⊗R B, C) ∼= HomR
(

B, Hom
Z

(A, C)
)

,

which are natural in A , B , and C . For all ϕ ∈ Hom
Z

(A ⊗R B, C) ,
(

Θ(ϕ)(a)
)

(b) =
(

Ξ(ϕ)(b)
)

(a) = ϕ (a ⊗ b) .

Proof. The set Bihom (A × B, C) of all bihomomorphisms of A × B into C
is an abelian group under pointwise addition. The universal property of the tensor
map τ : (a, b) �−→ a ⊗ b provides a bijection ϕ �−→ ϕ ◦ τ of Hom

Z
(A ⊗R B, C)

onto Bihom (A × B, C) , which preserves pointwise addition. Proposition 5.2
provides two more bijections:

Bihom (A × B, C) −→ HomR
(

A,Hom
Z

(B, C)
)

,

Bihom (A × B, C) −→ HomR
(

B,Hom
Z

(A, C)
)

,

which send β ∈ Bihom (A × B, C) to the homomorphisms a �−→ β(a,−) in
HomR

(

A, Hom
Z

(B, C)
)

and b �−→ β(−, b) in HomR
(

B, Hom
Z

(A, C)
)

,
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and preserve pointwise addition. Composing with Hom
Z

(A ⊗R B, C) −→
Bihom (A × B, C) yields Θ and Ξ . Readers will establish naturality. �

There is a bimodule version of Proposition 6.6 (see the exercises). If R is
commutative, then Θ and Ξ are module isomorphisms

HomR(A ⊗R B, C) ∼= HomR
(

A, HomR(B, C)
)

,

HomR(A ⊗R B, C) ∼= HomR
(

B, HomR(A, C)
)

.

Right exactness. Adjoint associativity yields other properties.

Proposition 6.7 (Right Exactness). For every right R-module M and left R-
module N , the functors M ⊗R − and − ⊗R N are right exact: if A −→ B −→
C −→ 0 is exact, then so is

M ⊗R A −→ M ⊗R B −→ M ⊗R C −→ 0;

if A′ −→ B′ −→ C ′ −→ 0 is exact, then so is

A′ ⊗R N −→ B′ ⊗R N −→ C ′ ⊗R N −→ 0.

Proof. We prove the first half of the statement; then 6.1 yields the second half.

Let A
ϕ−→ B

ψ−→ C −→ 0 be exact; let ϕ = 1M ⊗ ϕ and ψ = 1M ⊗ ψ .

In the diagram above, G is any abelian group, ϕ∗ = Hom
Z

(M, ϕ) , ψ
∗ =

Hom
Z

(M, ψ) , and the horizontal arrows are adjoint associativity isomorphisms
from 6.6. The diagram commutes, since the latter are natural, and the right col-
umn is exact by 2.3 and 2.1. Therefore, the left column is exact. Suitable choices

of G now yield exactness of M ⊗R A
ϕ−→ M ⊗R B

ψ−→ M ⊗R C −→ 0.

Let π : M ⊗R C −→ Coker ψ = (M ⊗R C)/Im ψ be the projection. Then
ψ
∗(π) = π ◦ ψ = 0. Hence π = 0, Im ψ = M ⊗R C , and ψ is surjective.

Let G = Coker ϕ = (M ⊗R B)/Im ϕ and let ρ : M ⊗R B −→ G be the
projection:



446 Chapter XI. Constructions

Then ϕ∗(ρ) = ρ ◦ ϕ = 0. Therefore ρ ∈ Im ψ
∗ and ρ = ψ

∗(χ) = χ ◦ ψ

for some homomorphism χ : M ⊗R C −→ G . Hence Ker ψ ⊆ Ker ρ = Im ϕ .
Conversely, Im ϕ ⊆ Ker ψ , since ψ ◦ ψ = 1M ⊗ (ψ ◦ ϕ) = 1M ⊗ 0 = 0. �

The functors M ⊗R − and −⊗R N are in general not exact: readers will show
that they may fail to preserve monomorphisms. Modules M such that − ⊗R M
is exact are studied in Section 8.

Readers may prove a two-variable analogue of Proposition 6.7:

Proposition 6.8. If A −→ B −→ C −→ 0 and A′ −→ B′ −→ C ′ −→ 0 are
exact, then so is

(A ⊗R B′) ⊕ (A′ ⊗R B) −→ B ⊗R B′ −→ C ⊗R C ′ −→ 0.

Direct sums. The functors M ⊗R − and −⊗R N preserve direct sums:

Proposition 6.9. There are natural isomorphisms M ⊗R
(⊕

i∈I Bi
)
∼=

⊕

i∈I (M ⊗R Bi ) and
(⊕

i∈I Ai
)

⊗R N ∼=
⊕

i∈I (Ai ⊗R N) , which send
x ⊗ (bi )i∈I to (x ⊗ bi )i∈I and (ai )i∈I ⊗ y to (ai ⊗ y)i∈I .

Proof. Let M be a right R-module and let (Ai )i∈I be a family of left
R-modules. The injection ιi : Ai −→

⊕

i∈I Ai induces a homomorphism
ιi = 1M ⊗ ιi : M ⊗R Ai −→ M ⊗R

(⊕

i∈I Ai
)

. For every abelian group G there
is a commutative diagram

in which ι∗i = HomR
(

M,Hom
Z

(ιi , G)
)

and ι∗i = HomR(ιi , G) , 2.6 and 2.5 pro-
vide the top triangle, and the remaining two vertical arrows are adjoint associativity
isomorphisms. Since the diagram commutes, there is for every family (ϕi )i∈I
of additive homomorphisms ϕi : M ⊗R Ai −→ G a unique homomorphism
ϕ : M ⊗R

(⊕

i∈I Ai
)

−→ G such that ϕi = ι∗i (ϕ) for all i , equivalently,
ϕi = ϕ ◦ ιi for all i . This universal property characterizes the direct sum and its
injections. Therefore there is an additive isomorphism θ :

⊕

i∈I (M ⊗R Ai ) −→
M ⊗R

(⊕

i∈I Ai
)

such that θ ◦ κi = ιi for all i , where κi : M ⊗R Ai −→
⊕

i∈I (M ⊗R Ai ) is the injection:
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Then θ
(

(m ⊗ ai )i∈I
)

= m ⊗ (ai )i∈I . Naturality is straightforward. �

If M , N , (Ai )i∈I , and (Bi )i∈I are bimodules, then the isomorphisms in 6.8
are bimodule isomorphisms.

Direct limits. The functors M ⊗R − and −⊗R N also preserve direct limits.
The following result is proved like 6.8.

Proposition 6.10. There are natural isomorphisms M ⊗R
(

lim
−→ i∈I Bi

)
∼=

lim
−→ i∈I (M ⊗R Bi ) and

(

lim
−→ i∈I Ai

)

⊗R N ∼= lim
−→ i∈I (Ai ⊗R N) .

Exercises
1. Show that the associativity isomorphism (a ⊗ b) ⊗ c �−→ a ⊗ (b ⊗ c) is natural.

2. Find a definition of multihomomorphisms of bimodules by equivalent properties.

3. Prove the existence of triple tensor products A ⊗R B ⊗S C of bimodules.

4. Let R be a commutative ring and let A1, . . . , An be R-modules. Prove the existence
and uniqueness of A1 ⊗R · · · ⊗R An and its tensor map.

5. Choose one of the two adjoint associativity isomorphisms and prove that it is natural.

6. Let SAR , RBT , and SCT be bimodules. Obtain natural isomorphisms

HomST (A ⊗R B, C) ∼= HomSR
(

A, HomT (B, C)
)
,

HomST (A ⊗R B, C) ∼= HomRT
(

B, HomS (A, C)
)
.

(HomST , HomSR , and HomRT are abelian groups of bimodule homomorphisms.)

7. Choose one of the two adjoint associativity isomorphisms and prove that it is a module
isomorphism when R is commutative.

8. Prove directly that −⊗R N is right exact.

9. Prove the following: if M is a projective left R-module, then −⊗R M is exact.

10. Find a monomorphism A −→ B of abelian groups such that Z2 ⊗Z A −→ Z2 ⊗Z B
is not a monomorphism.

11. Prove the following: if ψ and ψ are epimorphisms, then ϕ ⊗ ψ is an epimorphism.

12. Use right exactness to give another proof that R/I ⊗R M ∼= M/I M when I is a
two-sided ideal of R .

13. Prove the following: if A −→ B −→ C −→ 0 is an exact sequence of right
R-modules, and A′ −→ B′ −→ C ′ −→ 0 is an exact sequence of left R-modules, then

(A ⊗R B′) ⊕(A′ ⊗R B) −→ B ⊗R B′ −→ C ⊗R C ′ −→ 0
is exact.

14. Prove the following: if A is a projective right R-module and B is a projective left
R-module, then A ⊗R B is a projective (= free) abelian group.

15. Let M be a right R-module and let A = (A, α) be a direct system of left R-modules over
a directed preordered set I . Show that there is a natural isomorphism M ⊗R

(
lim
−→ i∈I Ai

)
∼=

lim
−→ i∈I (M ⊗R Ai ) .
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16. Show that M ⊗R − preserves pushouts (if β′ ◦ α = α′ ◦ β is a pushout, then so is
(M ⊗ β′) ◦ (M ⊗ α) = (M ⊗ α′) ◦ (M ⊗ β) ).

17. A submodule N of a left R-module M is pure when, for every n > 0 and a1, . . . , an ∈
N , every finite system of linear equations

∑

j ri j aj = ai with a solution in M has a
solution in N . Show that a submodule N of a left R-module M is pure if and only if
A ⊗R N −→ A ⊗R M is injective for every right R-module A .

7. Dual Modules

This section extends to modules some familiar properties of vector spaces, and
provides additional examples of tensor products, for use in the next section.

Definitions. The dual of a left R-module M is the right R-module M∗ =
HomR(M, RR) ; the dual of a right R-module N is the left R-module N∗ =
HomR(N , RR) .

The R-R-bimodule structure on R provides the right action of R on M∗ ,
(αr)(x) = α(r x) for all α ∈ M∗ , r ∈ R , x ∈ M , and the left action of R on
N∗ , (rβ)(y) = β(yr) , for all β ∈ N∗ , r ∈ R , y ∈ N .

By Propositions 1.6, 2.1, 2.3, and 2.6, HomR(−, RR) and HomR(−, RR) are
additive contravariant functors, from left R-modules to right R-modules and vice
versa; both functors are left exact (if A −→ B −→ C −→ 0 is exact, then
0 −→ C∗ −→ B∗ −→ A∗ is exact);

(⊕

i∈I Ai
)∗ ∼=

∏

i∈I A∗
i ; in particular,

(A1 ⊕ · · · ⊕ An)∗ ∼= A∗
1 ⊕ · · · ⊕ A∗

n , and we have:

Proposition 7.1. If F is a free left (or right) R-module with a finite basis (ei )i∈I ,
then F∗ is free with a finite basis (e∗i )i∈I , such that e∗i (ei ) = 1 , e∗i (ej ) = 0 for
all j =/ i .

Then (e∗i )i∈I is the dual basis of the given basis (ei )i∈I . Proposition 7.1 does
not extend to all free modules: for instance,

(⊕

i∈I Z
)∗ ∼=

∏

i∈I Z is not free
when I is infinite (see the exercises for Section X.3).

Corollary 7.2. If M is a finitely generated projective module, then so is M∗ .

Double dual. The double dual of a left (or right) R-module M is M∗∗ =
(M∗)∗ . The following result is straightforward:

Proposition 7.3. For every left (or right) R-module M there is a canonical
evaluation homomorphism εM : M −→ M∗∗ , which is natural in M : namely,
(εM (x))(α) = α(x) for all x ∈ M and α ∈ M∗ .

Readers will recall that εV is an isomorphism when V is a finite-dimensional
vector space over a field. In general we have:

Proposition 7.4. If M is a finitely generated projective module, then the
evaluation homomorphism M −→ M∗∗ is an isomorphism.
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Proof. If F is free, with a basis (ei )i∈I , then applying 7.1 twice yields a basis
(e∗∗i )i∈I of F∗∗ such that e∗∗i (e∗i ) = 1, e∗∗i (e∗j ) = 0 for all j =/ i . We see that
e∗∗i = εF (ei ) . Therefore εF is an isomorphism.

If now P is finitely generated and projective, then there exist a finitely gen-
erated free module F and homomorphisms π : F −→ P , ι : P −→ F such
that π ◦ ι = 1P . Then 7.3 yields the two commutative squares below, in which
π∗∗ ◦ ι∗∗ = 1P∗∗ and εF is an isomorphism. Hence ι∗∗ ◦ εP = εF ◦ ι is
injective, so that εP is injective, and εP ◦ π = π∗∗ ◦ εF is surjective, so that εP is
surjective. �

Some finiteness hypothesis is necessary in Proposition 7.4: when V is an
infinite-dimensional vector space, then dim V ∗ > dim V , and V ∗∗

� V (see the
exercises).

Tensor products. The previous properties yield canonical homomorphisms
and isomorphisms of tensor products.

Proposition 7.5. Let A and B be left R-modules. There is a homomor-
phism ζ : A∗ ⊗R B −→ HomR(A, B) , which is natural in A and B , such that
ζ (α ⊗ b)(a) = α(a) b for all a ∈ A, b ∈ B , and α ∈ A∗ . If A is finitely
generated and projective, then ζ is an isomorphism.

Proof. For every α ∈ A∗ and b ∈ B , β(α, b): a �−→ α(a) b is a module
homomorphism of A into B . We see that β : A∗ × B −→ HomR(A, B) is a
bihomomorphism. Hence β induces an abelian group homomorphism ζ = β :
A∗ ⊗R B −→ HomR(A, B) such that ζ (α ⊗ b)(a) = β(α, b)(a) = α(a) b for all
a, b, α . Our tireless readers will prove naturality in A and B .

If A is free with a finite basis (ei )i∈I , then A∗ is free, with the dual basis
(e∗i )i∈I , and every element of A∗ ⊗R B can be written in the form

∑

i∈I e∗i ⊗ bi
for some unique bi ∈ B , by 5.9. Then

ζ
(∑

i∈I e∗i ⊗ bi
)

(ej ) =
∑

i∈I
(

e∗i (ej ) bi
)

= bj ,

and ζ
(∑

i∈I e∗i ⊗ bi
)

is the homomorphism that sends ej to bj for every j .
Therefore ζ is bijective.

If now A is finitely generated and projective, then there exist a finitely gen-
erated free module F and homomorphisms π : F −→ A , ι : A −→ F such
that π ◦ ι = 1F . Naturality of ζ yields the two commutative squares below, in
which ζF is an isomorphism and ι′ = ι∗ ⊗ B , π ′ = π∗ ⊗ B , ι′′ = HomR(ι, B) ,
π ′′ = HomR(π, B) , so that ι∗ ◦ π∗ , ι′ ◦ π ′ , and ι′′ ◦ π ′′ are identity mappings.
Hence π ′′ ◦ ζA = ζF ◦ π ′ is injective, so that ζA is injective, and ζA ◦ ι′ = ι′′ ◦ ζF
is surjective, so that ζA is surjective. �
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Corollary 7.6. Let A be a finitely generated projective right R-module. There
is an isomorphism A ⊗R B ∼= HomR(A∗, B) , which is natural in A and B .

Proof. By 7.4, 7.5, A ⊗R B ∼= A∗∗ ⊗R B ∼= HomR(A∗, B) . �

Corollary 7.7. Let R be commutative and let A, B be finitely generated
projective R-modules. There is an isomorphism A∗ ⊗R B∗ ∼= (A ⊗R B)∗ , which
is natural in A and B .

Proof. By 7.5, 6.6, A∗ ⊗R B∗ ∼= HomR(A, B∗) = HomR
(

A,HomR(B, R)
)

∼= HomR(A ⊗R B, R) = (A ⊗R B)∗ . �

Exercises

1. Prove that (RR)∗ ∼= RR and (RR)∗ ∼= RR .

2. Let F be a free left R-module with a finite basis (ei )i∈I . Show that F∗ is a free right
R-module with a finite basis (e∗i )i∈I such that e∗i (ei ) = 1, e∗I (ej ) = 0 for all j =/ i .

3. Prove the following: if M is a finitely generated projective left R-module, then M∗ is
a finitely generated projective right R-module.

4. Let ϕ : E −→ F be a module homomorphism, where E and F are free left R-modules
with given finite bases. Show that the matrix of ϕ∗ : F∗ −→ E∗ in the dual bases is the
transpose of the matrix of ϕ .

5. Let N be a submodule of M . Let N⊥ = { α ∈ M∗ ∣∣ α(N) = 0 } . Show that

N⊥ ∼= (M/N)∗ . Construct a monomorphism M∗/N⊥ −→ N∗ .

6. Verify that the evaluation homomorphism M −→ M∗∗ is natural in M .

7. Let V be an infinite-dimensional vector space. Show that dim V ∗ > dim V . (Use
results from Section A.5.)

8. Show that M∗ is isomorphic to a direct summand of M∗∗∗ .

9. Let R be commutative and let A, B be finitely generated projective R-modules. Let
θ : A∗ ⊗R B∗ ∼= (A ⊗R B)∗ be the isomorphism in Corollary 7.7. Show that θ (α ⊗ β)
sends a ⊗ b to α(a) β(b) , for all α ∈ A∗ and β ∈ B∗ .

8. Flat Modules

This section gives basic properties of flat modules and proves Lazard’s theorem
[1969], which constructs flat modules as direct limits of free modules.

Definition. A left R-module M is flat when the functor −⊗R M is exact.
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Equivalently, M is flat when, for every short exact sequence 0 −→ A −→
B −→ C −→ 0 of right R-modules, the sequence

0 −→ A ⊗R M −→ B ⊗R M −→ C ⊗R M −→ 0

is exact. By 6.7, M is flat if and only if, for every monomorphism µ : A −→ B
of right R-modules, µ ⊗ M : A ⊗R M −→ B ⊗R M is a monomorphism.

Proposition 8.1. Every projective module is flat.

Proof. Readers will verify that free modules are flat. Now, let P be a projective
left R-module. There exist a free left R-module F and homomorphisms π : F −→
P , ι : P −→ F such that π ◦ ι = 1P . Every monomorphism µ : A −→ B of
right R-modules begets two commutative squares:

in which π ′ = A ⊗ π , ι′ = A ⊗ ι , π ′′ = B ⊗ π , ι′′ = B ⊗ ι . Then µ ⊗ F
is injective, since F is flat, and ι′ is injective, since π ′ ◦ ι′ = 1A⊗P . Hence
ι′′ ◦ (µ ⊗ P) = (µ ⊗ F) ◦ ι′ is injective, and µ ⊗ P is injective. �

Properties. Readers will easily prove the following properties:

Proposition 8.2. Every direct summand of a flat module is flat.

Proposition 8.3. Every direct sum of flat modules is flat.

Proposition 8.4. Every direct limit of flat modules is flat.

Proposition 8.5. A module M is flat if and only if M ⊗ µ is a monomorphism
whenever µ : A −→ B is a monomorphism and A, B are finitely generated.

Proposition 8.6. An abelian group is flat (as a Z-module) if and only if it is
torsion-free.

Proposition 8.6 immediately yields examples, such as Q , showing that flat
modules need not be projective, even when the ring R has very nice properties.

Proof. Finitely generated torsion-free abelian groups are free, and are flat by
8.1. Now every torsion-free abelian group is the direct limit of its finitely generated
subgroups, which are also torsion-free, and is flat by 8.4.

On the other hand, finite cyclic groups are not flat: if C is cyclic of order
m > 1, then multiplication by m is a monomorphism µ(x) = mx of Z into Z ,
but µ ⊗ C is not a monomorphism since (µ ⊗ c)(x ⊗ c) = mx ⊗ c = x ⊗ mc = 0
for all x ∈ Z and c ∈ C , whereas Z ⊗ C ∼= C =/ 0.

If now the abelian group A is not torsion-free, then A contains a finite cyclic
subgroup C =/ 0. The monomorphism µ : Z −→ Z above and the inclusion
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homomorphism ι : C −→ A yield the commutative square below, in which
Z ⊗ ι is injective, but µ ⊗ A is not injective: otherwise, (Z ⊗ ι) ◦ (µ ⊗ C) =
(µ ⊗ A) ◦ (Z ⊗ ι) and µ ⊗ C would be injective. Therefore A is not flat. �

There is a duality of sorts between flat modules and injective modules.

Proposition 8.7. A left R-module M is flat if and only if the right R-module
Hom

Z
(M, Q/Z) is injective.

Proof. First, Hom
Z

(−, Q/Z) is exact, since the divisible abelian group
Q/Z is an injective Z-module. If M is flat, then −⊗R M is exact, Hom

Z
(−⊗R

M, Q/Z) is exact, HomR
(

−,Hom
Z

(M, Q/Z)
)

is exact by adjoint associativity,
and Hom

Z
(M, Q/Z) is injective.

For the converse we show that the homomorphisms of any abelian group G
into Q/Z separate the elements of G : if g =/ 0 in G , then ϕ(g) =/ 0 for some
ϕ : G −→ Q/Z . Indeed, let g ∈ G , g =/ 0. Let ψ : 〈 g 〉 −→ Q/Z send g
to 1

n + Z if g has finite order n > 1, and to, say, 1
2 + Z if g has infinite order.

Since Q/Z is injective, ψ extends to a homomorphism ϕ : G −→ Q/Z , and then
ϕ(g) =/ 0.

We show that Hom
Z

(C, Q/Z)
β∗
−→ Hom

Z
(B, Q/Z) α∗−→ Hom

Z
(A, Q/Z)

exact implies A α−→ B
β−→ C exact. If c = β

(

α(a)
)

∈ Im (β ◦ α) , then
ϕ(c) = ϕ

(

β
(

α(a)
))

=
(

α∗(β∗(ϕ)
))

(c) = 0 for all ϕ : C −→ Q/Z ; therefore
c = 0, and β ◦ α = 0. Conversely, let b ∈ Ker β . Let π : B −→ B/Im α =
Coker α be the projection. For every homomorphism ϕ : B/Im α −→ Q/Z

we have α∗(ϕ ◦ π) = ϕ ◦ π ◦ α = 0. Hence ϕ ◦ π ∈ Ker α∗ = Im β∗ and
ϕ ◦ π = β∗(ψ) = ψ ◦ β for some homomorphism ψ : C −→ Q/Z :

and ϕ
(

π(b)
)

= ψ
(

β(b)
)

= 0. Therefore π(b) = 0 and b ∈ Im α .

If now Hom
Z

(M, Q/Z) is injective, then HomR
(

−,Hom
Z

(M, Q/Z)
)

is
exact, Hom

Z
(−⊗R M, Q/Z) is exact by adjoint associativity, −⊗R M is exact

by the above, and M is flat. �
The exercises list some consequences of these results.

Lazard’s theorem. Lazard’s theorem states that a module is flat if and only if
it is a direct limit of free modules. A more detailed version is given below.
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First we prove some preliminary results. A left R-module M is finitely presented
when there is an exact sequence F1 −→ F2 −→ M −→ 0 in which F1 and F2 are
finitely generated free left R-modules; equivalently, when M has a presentation
M ∼= F2/K with finitely many generators ( F2 is finitely generated) and finitely
many defining relations ( K is finitely generated).

Proposition 8.8. Every module is a direct limit of finitely presented modules.

Proof. Let M ∼= F/K , where F is free with a basis X . We show that M
is the direct limit of the finitely presented modules FY /S , where FY is the free
submodule of F generated by a finite subset Y of X and S is a finitely generated
submodule of FY ∩ K .

Let P be the set of all ordered pairs p = (Yp, Sp) of a finite subset Yp of X
and a finitely generated submodule Sp of FYp

∩ K . Partially order P by p � q if
and only if Yp ⊆ Yq and Sp ⊆ Sq . Then P is directed upward: for all p, q ∈ P ,
(Yp, Sp), (Yq , Sq) � (Yp ∪ Yq , Sp + Sq) ∈ P .

Let Ap = FYp
/Sp . If p � q in P , then Sp ⊆ Sq and there is a unique

homomorphism αpq : Ap −→ Aq such that the following square commutes:

where the vertical arrows are projections; namely, αpq : x + Sp �−→ x + Sq . This
constructs a direct system over P . We show that M = lim

−→ p∈P Ap .

Since Sp ⊆ K , there is for every p = (Yp, Sp) ∈ P a unique homomorphism
λp : Ap −→ M such that the square

commutes; namely, λp : x + Sp �−→ π(x) , where π : F −→ M is the projection.
This constructs a cone λ = (λp)p∈P , which we show is a limit cone. Every element
of F belongs to a finitely generated submodule FY ; therefore M =

⋃

p∈P Im λp .
If λp(x + Sp) = 0, where x ∈ FYp

, then x ∈ FYp
∩ K belongs to a finite-

ly generated submodule T of FYp
∩ K , Sq = Sp + T ⊆ FYp

∩ K is finitely
generated, q = (Yp, Sq) ∈ P , and αpq(x + Sp) = x + Sq = 0 in Aq . Hence
Ker λp =

⋃

q�p Ker αpq . Then λ is a limit cone, by 3.6. �

Proposition 8.9. Every homomorphism of a finitely presented module into a flat
module factors through a finitely generated free module.
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Proof. Let ϕ : M −→ A be a homomorphism of a flat left R-module
M into a finitely presented left R-module A . There is an exact sequence
F1

τ−→ F2
σ−→ A −→ 0 in which F1 and F2 are free and finitely generated.

Then 0 −→ A∗ σ∗
−→ F∗

2
τ∗−→ F∗

1 is exact and 7.5 yields a commutative diagram

in which σ ∗ = σ ∗ ⊗ M , τ∗ = τ∗ ⊗ M , τ ′ = HomR(τ, M) , the vertical maps are
isomorphisms, and the top row is exact since M is flat.

Since τ ′(ϕ ◦ σ ) = ϕ ◦ σ ◦ τ = 0 we have ζ−1(ϕ ◦ σ ) ∈ Ker τ∗ and
ϕ ◦ σ = ζ

(

σ ∗(t)
)

for some t ∈ A∗ ⊗R M . By 5.4, t =
∑

i a∗i ⊗ xi for
some a∗1 , . . . , a∗n ∈ A∗ and x1, . . ., xn ∈ M . Let F be a free right R-module
with basis e1, . . . , en . Then F∗∗ is free on e∗∗1 , . . . , e∗∗n , there is a homomor-
phism α : F∗∗ −→ A∗ such that α(e∗∗i ) = a∗i for all i , and t = α(u) for some
u ∈ F∗∗ ⊗R M , where α = α ⊗ M . Since F∗∗

2
∼= F2 and F∗∗∗ ∼= F∗ we have

σ ∗ ◦ α = ξ∗ : F∗∗ −→ F∗
2 for some homomorphism ξ : F2 −→ F∗ . Then

τ∗ ◦ ξ∗ = τ∗ ◦ σ ∗ ◦ α = 0, ξ ◦ τ = 0, Ker σ = Im τ ⊆ Ker ξ , and ξ factors
through σ , ξ = χ ◦ σ for some homomorphism χ : A −→ F∗ :

We now have a commutative square (below) in which ξ ′ = HomR(ξ, M) and
the vertical arrows are isomorphisms. Then ψ = ζ (u) ∈ HomR(F∗, M) satisfies
ψ ◦ χ ◦ σ = ψ ◦ ξ = ξ ′(ψ) = ζ

(

ξ
∗(u)

)

= ζ
(

σ ∗(α(u)
))

= ζ
(

σ ∗(t)
)

= ϕ ◦ σ ;
hence ψ ◦ χ = ϕ . �

Corollary 8.10. Every finitely presented flat module is projective.

Proof. The identity on such a module factors through a free module. �

In fact, Proposition 8.9 characterizes flat modules. This is part of the detailed
version of Lazard’s theorem:
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Theorem 8.11 (Lazard [1969]). For a left R-module M the following conditions
are equivalent:

(1) M is flat;

(2) every homomorphism of a finitely presented free module into M factors
through a finitely generated free module;

(3) M is a direct limit of finitely generated free modules;

(4) M is a direct limit of free modules.

Proof. (3) implies (4); (4) implies (1), by 8.1 and 8.4; (1) implies (2), by 8.9.
Now assume (2). Let π : F −→ M be an epimorphism, where F is free with
a basis X . Choose π : F −→ M so that there are for every m ∈ M infinitely
many x ∈ X such that π(x) = m ; for instance, let F be free on X = M × N

and let π be the homomorphism such that π(m, n) = m . To prove (3) we use the
construction in the proof of 8.8. Let P be the set of all ordered pairs p = (Yp, Sp)
of a finite subset Yp of X and a finitely generated submodule Sp of FYp

∩Ker π ;
then M is the direct limit of the finitely presented modules Ap = FYp

/Sp , with
limit cone λp : Ap −→ M , x + Sp �−→ π(x) .

We show that Q = { p ∈ P
∣
∣ A p is free} is cofinal in P . Let p = (Yp, Sp)∈ P .

By (2), λp : Ap −→ M factors through a finitely generated free module
F ′ : λp = ψ ◦ χ , where χ : Ap −→ F ′ , ψ : F ′ −→ M , and F ′ has
a finite basis B . By the choice of π there is for each b ∈ B at least one
z ∈ X\Yp such that π(z) = ψ(b) . Picking one for each b yields a finite
subset Z of X\Yp and an isomorphism θ : FZ −→ F ′ such that ψ

(

θ(z)
)

=
π(z) for all z ∈ Z . Then FYp

−→ Ap −→ F ′ and θ : FZ −→ F ′ induce an
epimorphism ρ : FYp∪Z −→ F ′ such that the diagram below commutes:

Now, Sp ⊆ Ker ρ ⊆ Ker π and Ker ρ is finitely generated, since ρ

splits; hence q = (Yp ∪ Z , Ker ρ) ∈ P . Then p � q and q ∈ Q , since
Aq = FYp∪Z /Ker ρ ∼= F ′ is free. Thus Q is cofinal in P , and M = lim

−→ p∈P Ap =
lim
−→ q∈Q Aq is a direct limit of finitely generated free modules. �

Exercises

Prove the following:
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1. Every direct summand of a flat module is flat.

2. Every direct sum of flat modules is flat.

3. Every direct limit of flat modules is flat.

4. Every abelian group can be embedded into a direct product of copies of Q/Z .

5. A right R-module M is flat if and only if HomR(M, ρ) is an epimorphism for every
finitely presented module N and epimorphism ρ : N −→ M .

6. I ⊗R J ∼= I J when I and J are ideals of R and I is flat as a right R-module.

7. If R is commutative and S is a proper multiplicative subset of R , then S−1R is a flat
R-module.

8. If M is generated by (mi )i∈I , then every element of M ⊗R A is a finite sum
∑

i∈I mi ⊗ ai , and
∑

i∈I mi ⊗ ai = 0 in M ⊗R A if and only if there exist finitely
many (bj ) j∈J ∈ A and ri j ∈ R such that ai =

∑

j∈J ri j bj for all i and
∑

i∈I mi ri j = 0
for all j .

9. A right R-module M is flat if and only if I ⊗R M −→ RR ⊗R M is injective for
every right ideal I of R , if and only if I ⊗R M −→ RR ⊗R M is injective for every finitely
generated right ideal I of R . (You may want to use Proposition 8.5 and 8.7.)

10. A right R-module M is flat if and only if, for every finitely many (ri )i∈I ∈ R and
(mi )i∈I ∈ M such that

∑

i∈I mi ri = 0, there exist finitely many (nj ) j∈J ∈ M and ti j ∈ R
such that mi =

∑

j∈J nj ti j for all i and
∑

i∈I ti j ri = 0 for all j . (You may want to use
the previous two exercises.)

9. Completions

Completions of modules are similar to the completions of rings in Section VI.9.
They provide applications of inverse limits. In this section the emphasis is on
completions relative to an ideal; the main results are the Artin-Rees lemma and a
flatness property for ring completions.

Filtrations are infinite descending sequences of submodules. More general
filters can be used (see the exercises).

Definition. A filtration on an R-module M is an infinite descending sequence
M1 ⊇ M2 ⊇ · · · ⊇ Mi ⊇ Mi+1 ⊇ · · · of submodules of M .

For instance, if a is a two-sided ideal of R , then, for any R-module M ,

aM ⊇ a2 M ⊇ · · · ⊇ ai M ⊇ ai+1 M ⊇ · · ·
is a filtration on M , the a-adic filtration on M , our main focus of interest in this
section. Unfortunately, the a-adic filtration on a module M does not in general
induce a-adic filtrations on its submodules ( N ∩ ai M need not equal ai N ). This
leads to a larger class of filtrations that are more easily inherited, as shown by the
Artin-Rees lemma, Lemma 9.2 below.

Definitions. Let a be an ideal of R and let M be an R-module. An a-fil-
tration on M is a filtration M1 ⊇ M2 ⊇ · · · on M such that aMi ⊆ Mi+1
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for all i . An a-stable filtration on M is an a-filtration M1 ⊇ M2 ⊇ · · · such that
aMi = Mi+1 for all sufficiently large i .

For instance, the a-adic filtration on M is a-stable.

Lemma 9.1. Let a be an ideal of a commutative ring R , let M be an R-module,
and let M1 ⊇ M2 ⊇ · · · be an a-filtration on M .

(1) R+ = R ⊕ a⊕ a2 ⊕ · · · is a ring (the blown-up ring of R );

(2) M+ = M ⊕ M1 ⊕ M2 ⊕ · · · is an R+-module (the blown-up module of M );

(3) if M and all Mi are finitely generated R-modules, then the given filtration
on M is a-stable if and only if M+ is finitely generated as an R+-module.

Proof. (1). The elements of R+ are infinite sequences a = (a0, a1, . . . , ai ,

. . .) in which a0 ∈ R , ai ∈ ai for all i > 0, and ai = 0 for almost all
i . Addition in R+ is componentwise; multiplication is given by ab = c when
ck =

∑

i+ j=k ai bj for all k . Then R+ is a ring: R+ is isomorphic to a subring of

R[X ] , { a(X) = a0 + a1 X + · · · + an Xn ∈ R[X ]
∣
∣ ai ∈ ai for all i > 0 } .

(2). The elements of M+ are infinite sequences x = (x0, x1, . . . , xi , . . .) in
which x0 ∈ M , xi ∈ Mi for all i > 0, and xi = 0 for almost all i . Now, R+ acts
on M+ by ax = y when yk =

∑

i+ j=k ai xj for all k (note that ai xj ∈ Mi+ j when

ai ∈ ai , xj ∈ Mj , since M1 ⊇ M2 ⊇ · · · is an a-filtration). It is straightforward
that M+ is an R+-module.

(3). If M+ is a finitely generated R+-module, then its generators are contained
in M ⊕ M1 ⊕ · · · ⊕ Mn for some n ; then M+ is generated, as an R+-module, by
the generators of M, M1, . . ., Mn over R , and every element x of M+ is a sum
of ri xj’s in which ri is a product of i elements of a (or an element of R , if i = 0),
xj ∈ Mj , and j � n . If x ∈ Mk and k � n , then either j = n or ri xj is the

product of i + j − n elements of a and an element of an− j Mj ⊆ Mn . Therefore

Mk ⊆ ak−n Mn , and the filtration M1 ⊇ M2 ⊇ · · · is a-stable. Conversely, if the
filtration M1 ⊇ M2 ⊇ · · · is a-stable and n is large enough, then Mk = ak−n Mn
for all k � n and M+ is generated, as an R+-module, by M ⊕ M1 ⊕ · · · ⊕ Mn ;
hence M+ is finitely generated, like M, . . ., Mn . �

Lemma 9.2 (Artin-Rees). Let a be an ideal of a commutative Noetherian ring
R , and let M be a finitely generated R-module. If M1 ⊇ M2 ⊇ · · · is an a-stable
filtration on M , then N ∩ M1 ⊇ N ∩ M2 ⊇ · · · is an a-stable filtration on N ,
for every submodule N of M .

Proof. First, N ∩ M1 ⊇ N ∩ M2 ⊇ · · · is an a-filtration on N ; M is
a Noetherian R-module, by VIII.8.5; N and all Mi , N ∩ Mi are finitely gen-
erated; and N + is an R+-submodule of M+ . Since R is Noetherian, a is a
finitely generated ideal; R+ is generated, as a ring, by R and the finitely many
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generators of a ; and R+ is Noetherian, by III.11.5. By 9.1, M+ is a finitely
generated R+-module; hence M+ is a Noetherian R+-module, by VIII.11.5, N +

is a finitely generated R+-module, and N ∩ M1 ⊇ N ∩ M2 ⊇ · · · is a-stable,
by 9.1. �

Completions. We saw in Section VI.9 that the completion of R relative to a
filtration A : a1 ⊇ a2 ⊇ · · · on R is the ring R̂A = lim

←− i→∞ R/ai of all infinite

sequences (x1 + a1 , . . . , xi + ai , . . .) such that xi ∈ R and xi + aj = xj + aj
whenever i � j . Similarly, when M1 ⊇ M2 ⊇ · · · is a filtration on an R-mod-
ule M , there is for every i � j a canonical homomorphism M/Mi −→ M/Mj ,
x + Mi �−→ x + Mj ; the modules M/Mi and homomorphisms M/Mi −→ M/Mj
constitute an inverse system.

Definition. The completion of an R-module M relative to a filtration M :
M1 ⊇ M2 ⊇ · · · on M is M̂M = lim

←− i→∞ M/Mi . If a is an ideal of R , then the

a-adic completion of M is its completion M̂a = lim
←− i→∞ M/ai M relative to the

a-adic filtration on M .

Thus, M̂ consists of all infinite sequences (x1 + M1 , . . . , xi + Mi , . . .) such
that xi ∈ M and xi + Mj = xj + Mj whenever i � j ; equivalently, xi+1 ∈ xi + Mi

for all i � 1 ( xi+1 ∈ xi + ai M , for the a-adic completion). The exercises give
an alternate construction of M̂ by Cauchy sequences.

The projections M −→ M/Mi constitute a cone from M and induce a homo-
morphism M −→ M̂ .

Definition. If M : M1 ⊇ M2 ⊇ · · · is a filtration on M , then ι : x �−→
(

x + M1, x + M2, . . .
)

is the canonical homomorphism of M into M̂M.

Readers will verify that ι is injective if and only if
⋂

i>0 Mi = 0.

Definition. An R-module M is complete relative to a filtration (or to an ideal
of R ) when the canonical homomorphism ι : M −→ M̂ is an isomorphism.

Properties. We show that M̂M is always complete.

Proposition 9.3. If M : M1 ⊇ M2 ⊇ · · · is a filtration on an R-module M ,
then M̂j = {

(

x1 + M1, . . ., xi + Mi , . . .
)

∈ M̂M

∣
∣ xj ∈ Mj } is a submodule of

M̂M, M̂ : M̂1 ⊇ M̂2 ⊇ · · · is a filtration on M̂M, and M̂M is complete relative
to M̂ .

Note that M̂j = {
(

x1 + M1, x2 + M2, . . .
)

∈ M̂M

∣
∣ xi ∈ Mi for all i � j } ;

thus
(

x1, x2, . . .
)

∈ M̂j if and only if xi = 0 in M/Mi for all i � j .

Proof. Let N = M̂ . The alternate description of M̂j shows that M̂1 ⊇
M̂2 ⊇ · · · . Also, M̂j is a submodule of M̂ , since it is the kernel of the
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homomorphism
(

x1 + M1, x2 + M2, . . .
)

�−→ xj + Mj of M̂ into M/Mj . In

particular, there is an isomorphism θi : N/M̂j −→ M/Mj , which sends y + M̂j =
(

x1 + M1, x2 + M2, . . .
)

+ M̂j to the j component xj + Mj of y .

We see that (θi )i∈I is an isomorphism of inverse systems. Therefore (θi )i∈I
induces an isomorphism θ : N̂ −→ M̂ , which sends

(

y1 + M̂1, y2 + M̂2, . . .
)

∈
N̂ to

(

x1 + M1, x2 + M2, . . .
)

, where xj + Mj is the j component of yj . If y ∈
N , then ι(y) =

(

y + M̂1, y + M̂2, . . .
)

and θ
(

ι(y)
)

=
(

x1 + M1, x2 + M2, . . .
)

,
where xj + Mj is the j component of y ; in other words, θ

(

ι(y)
)

= y . Therefore

ι = θ−1 : N −→ N̂ is an isomorphism. �
Let M1 ⊇ M2 ⊇ · · · be a filtration of M and let N1 ⊇ N2 ⊇ · · · be a filtration

of N . If ϕ : M −→ N is a homomorphism of R-modules and ϕ(Mi )⊆ Ni for all
i , then there is for every i a homomorphism ϕi : M/Mi −→ N/Ni , x + Mi �−→
ϕ(x) + Ni , and then (ϕi )i∈I is a homomorphism of inverse systems and induces
a module homomorphism ϕ̂ : M̂ −→ N̂ , which sends

(

x1 + M1, x2 + M2, . . .
)

to
(

ϕ1(x1 + N1), ϕ2(x2 + N2), . . .
)

=
(

ϕ(x1) + N1, ϕ(x2) + N2, . . .
)

.

In particular, when a is an ideal of R , then ϕ(ai M) ⊆ ai N for all i , so that
every module homomorphism ϕ : M −→ N induces a module homomorphism
ϕ̂ : M̂a −→ N̂a . This yields a completion functor:

Proposition 9.4. For every ideal a of R , ̂a is an additive functor from
R-modules to R-modules. In particular, ̂a preserves finite direct sums.

Proposition 9.5. If ϕ : M −→ N is surjective, then ϕ̂ : M̂a −→ N̂a is
surjective.

Proof. Since ai N is generated by all r y with r ∈ ai and y ∈ N we have
ai N = ϕ(ai M) . Let

(

y1 + aN , y2 + a2 N , . . .
)

∈ N̂a . Then y1 = ϕ(x1) for
some x1 ∈ M . Construct x1, . . . , xi , . . . ∈ M by induction so that yi = ϕ(xi )
and xi+1 ∈ xi + ai M for all i . Given ϕ(xj ) = yj , we have y j+1 = ϕ(t) for

some t ∈ M , ϕ(t − xj ) = y j+1 − yj ∈ a j N , and ϕ(t − xj ) = ϕ(q) for some

q ∈ a j M . Then x j+1 = xj + q ∈ xj + a j M and ϕ(xj + q) = ϕ(t) = y j+1 . Now

x =
(

x1 + aM, x2 + a2 M, . . .
)

∈ M̂ and ϕ̂(x) = y . �
Proposition 9.6. Let R be a commutative Noetherian ring and let a be an ideal

of R . If A, B, C are finitely generated R-modules and 0 −→ A −→ B −→
C −→ 0 is exact, then 0 −→ Âa −→ B̂a −→ Ĉa −→ 0 is exact.

Proof. Let 0 −→ A
µ−→ B σ−→ C −→ 0 be exact. We may assume that A =

Ker σ ⊆ B and that µ is the inclusion homomorphism. By 9.5, σ̂ is surjective.

Let b ∈ B . If σi (b + ai B) = 0 in C/ai C , then σ (b) ∈ ai C , σ (b) = σ (x)
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for some x ∈ ai B , b − x ∈ Ker σ = A , and b ∈ A + ai B . Conversely, if
b ∈ A + ai B , then σ (b) ∈ ai C . Hence Ker σi = (A + ai B)/ai B . Then
A/(A ∩ ai B) ∼= Ker σi ; the isomorphism sends a + (A ∩ ai B) to a + ai B . We
now have an exact sequence

0 −→ A/(A ∩ ai B)
νi−→ B/ai B

σi−→ C/ai C

where νi sends a + (A ∩ ai B) to a + ai B . Then the sequence

0 −→ lim
←− i→∞ A/(A ∩ ai B) ν̂−→ B̂ σ̂−→ Ĉ ,

where ν̂ = lim
←− i→∞ νi , is exact, since inverse limits are left exact, by 4.6.

Since ai A ⊆ A ∩ ai B there is also a homomorphism ρi : A/ai A −→
A/(A ∩ ai B) , which sends a + ai A to a + (A ∩ ai B) . Then νi ◦ ρi = µi .
Moreover, (ρi )i∈I is a homomorphism of inverse systems and induces a homo-
morphism ρ̂ : Â = lim

←− i→∞ A/ai A −→ lim
←− i→∞ A/(A ∩ ai B) .

Since R is Noetherian and B is finitely generated, the a-stable a-adic filtration
on B induces on A a filtration A ∩ aB ⊇ A ∩ a2 B ⊇ · · · , which is a-stable by
the Artin-Rees lemma. Hence ai (A ∩ a j B) = A ∩ ai+ j B for all i , whenever j
is sufficiently large, j � k . Then A ∩ ai B ⊆ ai− j A when i > j � k . Since
already ai A ⊆ A ∩ ai B , Lemma 9.7 below, applied to M = A , Mi = A ∩ ai B ,
and Ni = ai A , shows that ρ̂ is an isomorphism. Then ν̂ ◦ ρ̂ = µ̂ implies that

0 −→ Â
µ̂−→ B̂ σ̂−→ Ĉ is exact. �

Lemma 9.7. Let M : M1 ⊇ M2 ⊇ · · · and N : N1 ⊇ N2 ⊇ · · · be filtrations
on M such that Mi ⊇ Ni and every Ni contains some Mj . The homomor-
phisms ρi : M/Ni −→ M/Mi , x + Ni �−→ x + Mi induce an isomorphism
ρ̂ : M̂N −→ M̂M.

Proof. The homomorphism ρ̂ : M̂N −→ M̂M induced by (ρi )i∈I sends
x =
(

x1 + N1, x2 + N2, . . .
)

∈ M̂N to
(

x1 + M1, x2 + M2, . . .
)

. Since every Ni
contains some Mj we can choose t(i) by induction so that Ni ⊇ Mt(i) , t(i) � i ,

and j � i implies t( j) � t(i) . If x =
(

x1 + N1, x2 + N2, . . .
)

∈ M̂N and
ρ(x) = 0, then, for all i , xi ∈ Mi , xt(i) ∈ Mt(i) ⊆ Ni , and xi ∈ Ni since
xt(i) + Ni = xi + Ni ; hence x = 0. Thus ρ̂ is injective.

Let x =
(

x1 + M1, x2 + M2, . . .
)

∈ M̂M. Let yi = xt(i) . If j � i ,
then t( j) � t(i) , yj + Mt(i) = yi + Mt(i) , and yj + Ni = yi + Ni . Hence

y =
(

y1 + N1, y2 + N2, . . .
)

∈ M̂N . For all i , yi + Mi = xt(i) + Mi = xi + Mi ,
since t(i) � i ; hence ρ̂(y) = x . Thus ρ̂ is surjective. �

Proposition 9.8. Let R be a commutative Noetherian ring, let a be an ideal
of R , and let M be a finitely generated R-module. There is an isomorphism
M̂a

∼= R̂a ⊗R M , which is natural in M .
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Proof. For every i > 0 there is an isomorphism R/ai ⊗R M ∼= M/ai M ,
which sends (r + ai ) ⊗ x to r x + ai M and is natural in M . Hence the pro-
jections R̂ −→ R/ai induce homomorphisms R̂ ⊗R M −→ R/ai ⊗R M −→
M/ai M and a homomorphism α : R̂ ⊗R M −→ M̂ , which sends

(

r1 + a,

r2 + a2, . . .
)

⊗ x to
(

r1x + aM, r2x + a2 M, . . .
)

and is natural in M .

If M = RR , then R̂ ⊗ M ∼= R̂ ∼= M̂ (as R-modules); the isomorphism sends
(

r1 + a, r2 + a2, . . .
)

⊗ 1 to
(

r1 + a, r2 + a2, . . .
)

and coincides with α . By
9.4, ̂a preserves finite direct sums; hence α is an isomorphism whenever M is
free and finitely generated.

Let M be any finitely generated R-module. There is an exact sequence 0 −→
K −→ F −→ M −→ 0 in which F is finitely generated free and K is a
submodule of F . Since R is Noetherian, F is Noetherian by VIII.11.5, K is
finitely generated, and there is an exact sequence E

ϕ−→ F σ−→ M −→ 0 in which
E and F are free and finitely generated. This yields a commutative diagram

in which ϕ = 1 ⊗ ϕ , σ = 1 ⊗ σ , αE and αF are isomorphisms by the above, and
the top and bottom rows are exact by 6.7 and 9.6. Hence αM is an isomorphism:
indeed, Ker σ̂ = Im ϕ̂ = αF (Im ϕ) = Ker (σ ◦ α−1

F ) ; hence σ ◦ α−1
F = ζ ◦ σ̂

for some homomorphism ζ : M̂ −→ R̂ ⊗R M ; since σ and σ̂ are epimorphisms,
then ζ and αM are mutually inverse isomorphisms. �

Corollary 9.9. If R is Noetherian, then R̂a is a flat R-module, for every ideal
a of R .

Proof. If µ : A −→ B is a monomorphism of R-modules, and A, B are
finitely generated, then R̂a ⊗ µ is a monomorphism, by 9.6 and 9.8. �

Exercises

1. Let M : M1 ⊇ M2 ⊇ · · · be a filtration on an R-module M and let N : N1 ⊇ N2 ⊇ · · ·
be a filtration on an R-module S . Let ϕ : M −→ N be a module homomorphism such that
ϕ(Mi ) ⊆ Ni for all i . Show that ϕ induces a homomorphism ϕ̂ : M̂M −→ N̂N .

2. State and prove a uniqueness property in the previous exercise. Then state and prove a
universal property of M̂M .

3. Let M : M1 ⊇ M2 ⊇ · · · and N : N1 ⊇ N2 ⊇ · · · be filtrations on an R-module M .
Suppose that every Mi contains some Nj and that every Nj contains some Mi . Show that
M̂M

∼= M̂N .
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In the following exercises, M is an R-module with a filtration M : M1 ⊇ M2 ⊇ · · · ; x ∈ M
is a limit of a sequence (xn)n>0 of elements of M when for every i > 0 there exists N > 0
such that x − xn ∈ Mi for all n � N .

4. Prove the following limit laws: if r ∈ R , x is a limit of (xn)n>0 , and y is a limit of
(yn)n>0 , then x + y is a limit of (xn + yn)n>0 and r x is a limit of (r xn)n>0 ; if M is the
a-adic filtration and r is a limit of (rn)n>0 in R , then r x is a limit of (rn xn)n>0 .

5. A sequence (xn)n>0 of elements of M is Cauchy when for every i > 0 there exists
N > 0 such that xm − xn ∈ Mi for all m, n � N . Show that every sequence of elements of
R that has a limit is Cauchy. Show that M is complete if and only if every Cauchy sequence
of elements of M has a unique limit in M .

6. Show that Cauchy sequences of elements of M constitute an R-module; show that
sequences with limit zero constitute a submodule of that module; show that the quotient
module is isomorphic to M̂M .

In the following exercises, a filter on a module M is a set F of submodules of M that is
directed downward (for every A, B ∈ F there exists C ∈ F such that A ∩ B ⊇ C ).

7. Define a completion M̂F = lim
←− F∈F M/F , and study its general properties (other than

the following exercises). Don’t expect to reach much depth.

8. Let R be commutative. Show that the submodules r M of an R-module M constitute a
filter on M . State and prove a universal property of the corresponding completion.

9. Let F be a filter on an R-module M . Show that the cosets of the elements of F constitute
a basis for a topology on R . (This is the Krull topology on R , similar to the topology on
Galois groups.) Show that the operations on R are continuous for this topology.

10. Let M be complete relative to a filter. Show that the Krull topology on M is Hausdorff
and totally disconnected.



XII
Ext and Tor

Homological algebra, the study of homology groups and related constructions,
was a branch of algebraic topology until Eilenberg and MacLane [1942] devised
a purely algebraic cohomology of groups, which shared many features with the
cohomology of topological spaces. Recognition as a separate branch of algebra
came with the book Homological Algebra [1956], by Cartan and Eilenberg. This
chapter contains the basic properties of homology groups, resolutions, Ext, and
Tor, with applications to groups and rings. As before, all rings have an identity
element, and all modules are unital.

1. Complexes

This section covers basic properties of complexes of modules and their homology
and cohomology. The results apply equally to left modules, right modules, and
bimodules (over any given ring or rings).

Roots. Complexes and other concepts in this section arose from algebraic
topology. Standard simplexes are generic points, straight line segments, triangles,
tetrahedrons, etc., in Euclidean space; the standard simplex of dimension n � 0
may be defined as ∆n = { (x0, x1, . . ., xn) ∈ R

n+1 ∣∣ x0, x1, . . ., xn � 0, x0 +
x1 + · · · + xn = 1 } . In a topological space X , a singular simplex of dimension n
is a continuous mapping ∆n −→ X ; singular chains of dimension n are formal
linear combinations of simplexes with integer coefficients, and constitute a free
abelian group Cn(X) . The boundary of a simplex of dimension n � 1 has a
natural definition as a chain of dimension n − 1. This yields boundary homo-
morphisms ∂n : Cn(X) −→ Cn−1(X) such that ∂n ◦ ∂n+1 = 0. The nth singular
homology group of X is Hn(X) = Ker ∂n/Im ∂n+1 . These groups are determined
by the singular chain complex of X , which is the null sequence C(X) of groups
and homomorphisms C0(X) ←− C1(X) ←− C2(X) ←− · · · .

A cochain on X of dimension n , with coefficients in an abelian group G , is a
homomorphism of Cn(X) into G , such as might result from the assignment of an
element of g to every singular simplex of dimension n . These homomorphisms
constitute an abelian group Cn(X, G) = Hom

Z
(Cn(X), G) . Every cochain

c : Cn(X) −→ G has a coboundary δn(c) = c ◦ ∂n+1 : Cn+1 −→ G . Then
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δn+1 ◦ δn = 0. The singular cohomology groups of X with coefficients in G
are the groups Hn(X, G) = Ker δn+1/Im δn determined by the singular cochain
complex C0(X, G) −→ C1(X, G) −→ C2(X, G) −→ · · · . Homology groups
with coefficients in G are similarly defined by Hn(X, G) = Ker ∂n/Im ∂n+1 ,
where ∂n : Cn(X) ⊗

Z
G −→ Cn−1(X) ⊗

Z
G is induced by ∂n .

Homology. Homological algebra begins with the general concept of a complex
and its homology groups or modules.

Definition. A chain complex of modules is an infinite sequence

C : · · · ←− Cn−1
∂n←− Cn

∂n+1←− Cn+1 ←− · · ·

of modules and boundary homomorphisms such that ∂n ∂n+1 = 0 for all n .

A positive complex C has Cn = 0 for all n < 0 and is usually written
C0 ←− C1 ←− · · · . The singular chain complex of a topological space is an
example. A negative complex C has Cn = 0 for all n > 0, and is usually rewritten
for convenience as a positive complex C0 −→ C1 −→ · · · , with Cn = C−n and
homomorphisms δn = ∂−n : Cn −→ Cn+1 , so that δn+1 δn = 0. The singular
cochain complexes of a topological space are examples.

Definition. Let C be a chain complex of modules. The nth homology module
of C is Hn(C) = Ker ∂n/Im ∂n+1 .

As in the case of singular chains in topology, the elements of Cn are n-chains;
the elements of Ker ∂n are n-cycles; the elements of Im ∂n+1 are n-boundaries.
Ker ∂n and Im ∂n+1 are often denoted by Zn and Bn . We denote the homology
class of z ∈ Ker ∂n by cls z = z + Im ∂n+1 .

Definition. Let A and B be chain complexes of modules. A chain transforma-
tion ϕ : A −→ B is a family of module homomorphisms ϕn : An −→ Bn such
that ∂B

n ϕn = ϕn−1 ∂A
n for all n :

For example, every continuous mapping f : X −→ Y of topological spaces
induces a chain transformation C( f ): C(X)−→ C(Y ) of their singular chain com-
plexes. In general, chain transformations are added and composed componentwise,
the results being chain transformations.

Proposition 1.1. Every chain transformation ϕ : A −→ B induces a homo-
morphism Hn(ϕ): Hn(A) −→ Hn(B) , which sends cls z to cls ϕn(z) for all
z ∈ Ker ∂A

n . Then Hn(−) is an additive functor from chain complexes of
modules to modules.
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Proof. Since ∂n ϕn = ϕn−1 ∂n for all n we have ϕn
(

Im ∂A
n+1
)

⊆ Im ∂B
n+1

and ϕn
(

Ker ∂A
n
)

⊆ Ker ∂B
n . By the factorization theorem there is a unique

homomorphism Hn(ϕ): Hn(A) −→ Hn(B) such that the diagram

commutes, where the other vertical maps are restrictions of ϕn . By uniqueness
in the above, Hn(1A) is the identity on Hn(A) ; Hn(ψ ϕ) = Hn(ψ) Hn(ϕ) when
ϕ : A −→ B and ψ : B −→ C ; and Hn(ψ + ϕ) = Hn(ψ) + Hn(ϕ) when
ϕ, ψ : A −→ B . �

We give a sufficient condition that Hn(ϕ) = Hn(ψ) for all n .

Definitions. Let ϕ, ψ : A −→ B be chain transformations. A chain homotopy
σ : ϕ −→ ψ is a family of homomorphisms σn : An −→ Bn+1 such that
ϕn − ψn = ∂B

n+1 ◦ σn + σn−1 ◦ ∂A
n for all n :

When there exists a chain homotopy σ : ϕ −→ ψ , ϕ and ψ are homotopic.

For example, if C( f ), C(g): C(X) −→ C(Y ) are induced by continuous trans-
formations f, g : X −→ Y , then a homotopy (continuous deformation) of f into
g induces just such a chain homotopy of C( f ) into C(g) .

Proposition 1.2. If ϕ and ψ are homotopic, then Hn(ϕ) = Hn(ψ) for all n .

Proof. If ϕn − ψn = ∂n+1σn + σn−1∂n for all n , and z ∈ Ker ∂n , then
ϕn(z) − ψn(z) = (∂n+1σn + σn−1∂n)(z) = ∂n+1

(

σn(z)
)

and Hn(ϕ)(cls z)
− Hn(ψ)(cls z) = cls ϕn(z) − cls ψn(z) = 0. �

The exact homology sequence. A short exact sequence of complexes induces
a long exact sequence that connects all their homology modules.

Definition. A sequence A
ϕ−→ B

ψ−→ C of chain complexes and transforma-

tions is exact when the sequence An
ϕn−→ Bn

ψn−→ Cn is exact for every n .

Theorem 1.3 (Exact Homology Sequence). Every short exact sequence E :
0 −→ A −→ B −→ C −→ 0 of chain complexes induces an exact sequence

· · · Hn+1(C) −→ Hn(A) −→ Hn(B) −→ Hn(C) −→ Hn−1(A) · · · ,
which is natural in E .
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Proof. Exactness at Hn(B) is proved by diagram chasing in:

First, Hn(ψ)
(

Hn(ϕ)(cls a)
)

= Hn(a)(cls ϕna) = cls ψn ϕna = 0.

Conversely, if b ∈ Ker ∂B
n and Hn(ψ)(cls b) = cls ψnb = 0 in Hn(C) ,

then ψnb = ∂n+1c′ for some c′ ∈ Cn+1 , c′ = ψn+1b′ for some b′ ∈ Bn+1 ,
ψn ∂n+1b′ = ∂n+1 ψn+1b′ = ψnb , b − ∂n+1b′ ∈ Ker ψn , b − ∂n+1b′ = ϕna for
some a ∈ An , and a ∈ Ker ∂n , since ϕn−1 ∂na = ∂n ϕna = ∂nb = 0; then
b = ϕna + ∂n+1b′ yields cls b = cls ϕna = Hn(ϕ)(cls a) .

Next, construct the connecting homomorphism χn+1 : Hn+1(C) −→ Hn(A) :

Lemma 1.4. In Theorem 1.3, a connecting homomorphism Hn+1(C)
χn+1−→

Hn(A) is well defined by χn+1cls c = cls a whenever c ∈ Ker ∂n+1 , c = ψn+1b ,
and ∂n+1b = ϕna , for some b ∈ Bn+1 . This assigns a connecting homomorphism
to every sequence E and integer n + 1 .

Proof. First, ∂n+1b = ϕna implies ϕn−1 ∂na = ∂n ϕna = ∂n ∂n+1b = 0,
∂na = 0 since ϕn−1 is injective, and a ∈ Ker ∂n . Assume that c1, c2 ∈
Ker ∂C

n+1 and cls c1 = cls c2 , c1 = ψn+1b1 , ∂n+1b1 = ϕna1 , c2 = ψn+1b2 ,
∂n+1b2 = ϕna2 . Then c2 − c1 = ∂n+2 c′ for some c′ ∈ Cn+2 , c′ = ψn+2 b′

for some b′ ∈ Bn+2 , ψn+1(b2 − b1) = c2 − c1 = ∂n+2 ψn+2 b′ = ψn+1 ∂n+2 b′ ,
b2 − b1 − ∂n+2 b′ ∈ Ker ψn+1 = Im ϕn+1 , b2 − b1 − ∂n+2 b′ = ϕn+1a for some
a ∈ An+1 , ϕn(a2 − a1) = ∂n+1(b2 − b1) = ∂n+1 ϕn+1a = ϕn ∂n+1a , a2 − a1 =
∂n+1a since ϕn is injective, and cls a1 = cls a2 . Thus χn+1 is well defined. It is
immediate that χn+1 is a homomorphism. �

Exactness at Hn(A) is proved as follows. If c ∈ Ker ∂n+1 and χn+1cls c =
cls a , then c = ψn+1b and ∂n+1b = ϕna for some b ∈ Bn+1 , and Hn(ϕ)(cls a) =
cls ϕna = 0, since ϕna ∈ Im ∂n+1 . Conversely, if Hn(ϕ)(cls a) = 0, where
a ∈ Ker ∂n , then ϕna = ∂n+1b for some b ∈ Bn+1 and ∂n+1 ψn+1b = ψn ∂n+1b =
ψn ϕna = 0; hence ψn+1b ∈ Ker ∂n+1 and cls a = χn+1 cls ψn+1b .

Exactness at Hn+1(C) is similar. If cls c = Hn+1(ψ)(cls b) , then in the compu-
tation of χn+1cls c we may let c = ψn+1b , and then χn+1cls c = cls a , where
ϕna = ∂n+1b = 0, and χn+1cls c = 0. Conversely, if χn+1cls c = 0,
then c = ψn+1b and ∂n+1b = ϕna for some b ∈ Bn+1 and a ∈ Im ∂n+1 ,
a = ∂n+1a′ for some a′ ∈ An+1 , ∂n+1 ϕn+1a′ = ϕn ∂n+1a′ = ϕna = ∂n+1b ,
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b′ = b − ϕn+1a′ ∈ Ker ∂n+1 , ψn+1b′ = ψn+1b , and cls c = Hn+1(ψ)(cls b′) .

We show naturality in E : if α, β, γ are chain transformations and the diagram

has exact rows and commutes, then the diagram

where the vertical maps are induced by α, β, γ , also commutes. The mid-
dle squares commute since β ϕ = ϕ′ α , γ ψ = ψ ′ β implies Hn(β) Hn(ϕ) =
Hn(ϕ′) Hn(α) , Hn(γ ) Hn(ψ) = Hn(ψ ′) Hn(β) .

For the left square (hence also for the right square) let χn+1cls c = cls a , so
that c = ψn+1b and ∂n+1b = ϕna for some b ∈ Bn+1 . Then Hn(α)(χn+1cls c) =
cls αna ; now γn+1c = γn+1 ψn+1b = ψ ′

n+1 βn+1b and ∂ ′n+1βn+1b = βn ∂n+1b =
βn ϕna = ϕ′

n αna ; hence χ ′
n+1cls γn+1c = cls αna and χ ′

n+1 Hn(γ )
(cls c) = χ ′

n+1cls γn+1c = cls αna = Hn(α)(χn+1cls c) . �

Theorem 1.3 also follows from the diagram lemma below (see the exercises):

Lemma 1.5 (Ker-Coker Sequence). Every commutative diagram D

with exact rows induces an exact sequence, which is natural in D ,

Ker α −→ Ker β −→ Ker γ −→ Coker α −→ Coker β −→ Coker γ.

Cohomology. Complexes of modules have cohomology groups with coeffi-
cients in modules:

Definitions. Let A be a chain complex of left R-modules,

A : · · · ←− An−1
∂n←− An

∂n+1←− An+1 ←− · · · .

An n-cochain of A with coefficients in a left R-module G is a module homomor-
phism u of An into G ; its coboundary is the (n+1)-cochain δn(u) = u ◦ ∂n+1 .
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Under pointwise addition, the n-cochains of A with coefficients in G constitute
an abelian group Cn

R(A, G) = HomR(An, G) . If G is a bimodule, or if A is a
complex of bimodules, or both, then Cn

R(A, G) is a module or bimodule.

Definition. Let A be a chain complex of left R-modules and let G be a left
R-module. The cohomology groups of A with coefficients in G are the homology
groups Hn

R(A, G) = Ker δn/Im δn−1 of the cochain complex

HomR(A, G): · · · Cn−1
R (A, G) δn−1

−→ Cn
R(A, G) δn

−→ Cn+1
R (An, G) · · · .

As in case of cochains in topology, the elements of Ker δn are n-cocycles;
the elements of Im δn+1 are n-coboundaries. Ker δn and Im δn+1 are often
denoted by Zn and Bn . We denote the cohomology class of z ∈ Ker δn by
cls z = z + Im δn−1 .

One of our goals is to compute the cohomology groups of a complex from its
homology groups or modules. Some results to that effect are given in Section 6. For
now, Theorem 1.3 yields exact sequences for cohomology groups. This requires
some restrictions, since short exact sequences of modules or chain complexes do
not always induce short exact sequences of cochain complexes.

Theorem 1.6 (Exact Cohomology Sequence). Let G be a left R-module and let
E : 0 −→ A −→ B −→ C −→ 0 be a short exact sequence of chain complexes
of left R-modules. If every An is injective, or if every Cn is projective, then E

induces an exact sequence, which is natural in E and G ,

· · · −→ Hn
R(C, G) −→ Hn

R(B, G) −→ Hn
R(A, G) −→ Hn+1

R (C, G) −→ · · · .

Proof. If every An is injective, or if every Cn is projective, then the sequence
0 −→ An −→ Bn −→ Cn −→ 0 splits; hence the sequence

0 −→ HomR(Cn, G) −→ HomR(Bn, G) −→ HomR(An, G) −→ 0

splits, in particular is short exact; then

0 −→ HomR(C, G) −→ HomR(B, G) −→ HomR(A, G) −→ 0

is a short exact sequence of complexes (of abelian groups), which is natural in E

and G , and the result follows from Theorem 1.3. �

Theorem 1.7 (Exact Cohomology Sequence). Let A be a chain complex of left
R-modules and let E : 0 −→ G −→ G′ −→ G′′ −→ 0 be a short exact sequence
of left R-modules. If every An is projective, then E induces an exact sequence,
which is natural in E and A ,

· · · −→ Hn
R(A, G) −→ Hn

R(A, G′) −→ Hn
R(A, G′′) −→ Hn+1

R (A, G) −→ · · · .

Proof. If every An is projective, then the sequence

0 −→ HomR(An, G) −→ HomR(An, G′) −→ HomR(An, G′′) −→ 0
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is exact, by XI.2.2; hence

0 −→ HomR(A, G) −→ HomR(A, G′) −→ HomR(A, G′′) −→ 0

is a short exact sequence of complexes (of abelian groups), which is natural in E

and A , and the result follows from Theorem 1.3. �

In Theorems 1.6 and 1.7, connecting homomorphisms can be assigned to every
short exact sequence E and integer n . This follows from Lemma 1.4 (or from
Lemma 1.5). Lemma 1.4 yields constructions of these homomorphisms.

Lemma 1.8. If A
ϕ−→ B

ψ−→ C′ in Theorem 1.6, then the connecting homomor-

phism Hn(A, G)
χn
−→ Hn+1(C, G) is well defined by χncls α = cls γ whenever

α∂n+1 = 0 , α = βϕn , and β∂n+1 = γψn+1 for some β : Bn −→ G :

Proof. The map χn is induced by HomR(C, G)
ψ∗
−→ HomR(B, G)

ϕ∗−→
HomR(A, G) , in which HomR(C, G) has coboundary δn = ∂∗n+1 = HomR
(∂n+1, G) , and similarly for HomR(B, G) and HomR(A, G) . By 1.4, χncls α

= cls γ whenever α ∈ Ker δn , α = ϕ∗
n (β) , and δn(β) = ψ∗

n+1(γ ) for some
β ∈ HomR(Bn, G) ; equivalently, α∂A

n+1 = 0, α = βϕn , and β∂B
n+1 = γψn+1 for

some β : Bn −→ G . �

Lemma 1.9. If G
ϕ−→ G′ ψ−→ G′′ in Theorem 1.7, then the connecting ho-

momorphism Hn(A, G′′)
χn
−→ Hn+1(A, G) is well defined by χncls α′′ = cls α

whenever α′′∂n+1 = 0 , α′′ = ψα′ , and α′∂n+1 = ϕα for some α′ : An −→ G′ :

Proof. The map χn is induced by HomR(A, G)
ϕ∗−→ HomR(A, G′)

ψ∗−→
HomR(A, G′′) , in which HomR(A, G) has coboundary δn = ∂∗n+1 = HomR
(∂n+1, G) and similarly for HomR(A, G′) and HomR(A, G′′) . By 1.4,
χncls α′′ = cls α whenever α′′ ∈ Ker δn , α′′ = ψ∗(α

′) , and δn(α′) = ψ∗(α)
for some α′ ∈ HomR(An, G′) ; equivalently, α′′∂n+1 = 0, α′′ = ψα′ , and
α′∂n+1 = ϕα for some α′ : An −→ G′ . �
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Exercises

All complexes in the following exercises are chain complexes of left R-modules.

1. Define direct products of complexes and prove that Hn preserves direct products.

2. Define direct sums of complexes and prove that Hn preserves direct sums.

3. Define direct limits of complexes and prove that Hn preserves direct limits.

4. State and prove a homomorphism theorem for complexes.

5. Let ϕ, ψ : A −→ B and χ, ω : B −→ C be chain transformations. Prove the
following: if there are chain homotopies ϕ −→ ψ and χ −→ ω , then there is a chain
homotopy χ ◦ ϕ −→ ω ◦ ψ .

6. Prove the following: if 0 −→ A −→ B −→ C −→ 0 is a short exact sequence of
complexes, and Hn(A) = Hn(C) = 0 for all n , then Hn(B) = 0 for all n .

7. Give a short proof of the nine lemma.

8. The mapping cone (also called mapping cylinder) of a chain transformation ϕ : A −→ B

is the complex M in which Mn = An−1 ⊕ Bn and ∂(a, b) = (−∂a, ∂b + ϕa) . Verify that
M is a complex and show that ϕ induces a sequence, which is natural in ϕ ,

· · · −→ Hn(B) −→ Hn(M) −→ Hn−1(A) −→ Hn−1(B) −→ · · · .

9. Given a commutative diagram with exact rows

in which every γn is an isomorphism, show that there is an exact sequence

· · · An
ζn−→ A′

n ⊕ Bn
ηn−→ B′

n
λn−→ An−1

ζn−1−→ A′
n−1 ⊕ Bn−1 · · ·

in which ζna = (αna, ϕba) , ηn(a′, b) = ϕ′
na′ − βnb , and λn = ξn γ−1

n ψ ′
n . (This is the

purely algebraic version of the Mayer-Vietoris sequence in topology.)

10. Show that ∂n : An −→ An−1 induces a homomorphism ∂n : An/Im ∂n+1 −→
Ker ∂n−1 , which is natural in A , such that Ker ∂n = Hn(A) and Coker ∂n = Hn−1(A) .

11. Show that a commutative diagram D

with exact rows induces an exact sequence, the Ker-Coker sequence, which is natural in D ,

Ker α −→ Ker β −→ Ker γ −→ Coker α −→ Coker β −→ Coker γ.

12. Derive the exact homology sequence from the previous two exercises.
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2. Resolutions

Projective resolutions and injective resolutions are exact sequences of projective
modules, or of injective modules, used to analyze modules.

Definition. A module A can be analyzed by what we call projective presenta-
tions, which are short exact sequences 0 −→ K −→ P −→ A −→ 0, where P
is projective. A projective presentation can be assigned to every module A : e.g.,
let P be the free module

⊕

A RR generated by the set A , let P −→ A be the
module homomorphism induced by the identity on A , and let K be its kernel.

Module homomorphisms lift to projective presentations:

Lemma 2.1. Given a diagram with exact rows (solid arrows) in which P is
projective, there exist homomorphisms α and β (dotted arrows) that make the
diagram commutative.

Proof. Since P is projective, γ σ factors through the epimorphism σ ′ : γ σ =
σ ′ β for some homomorphism β : P −→ B′ . Then σ ′ β µ = γ σ µ = 0; hence
β µ factors uniquely through µ′ . �

Projective resolutions give a more extensive analysis by composting projective
presentations into a long exact sequence.

Definition. A projective resolution of a module A is an exact sequence

· · · −→ Pn
∂n−→ Pn−1 −→ · · · ∂1−→ P0

ε−→ A −→ 0

of modules and homomorphisms in which P0, P1, . . ., Pn, . . . are projective. A
free resolution is a projective resolution in which P0, . . ., Pn, . . . are free.

Thus, a projective resolution P
ε−→ A of A consists of a positive complex

P : · · · −→ Pn
∂n−→ Pn−1 −→ · · · ∂1−→ P0 −→ 0

of projective modules and an epimorphism ε : P0 −→ A , such that Hn(P) = 0
for all n > 0 and Im ∂1 = Ker ε . Then H0(P) = P0/Im ∂1

∼= A ; in particular,
A is determined by P , up to isomorphism. Moreover, P

ε−→ A is a composition
of projective presentations

0 −→ K0 −→ P0 −→ A −→ 0, . . . , 0 −→ Kn −→ Pn −→ Kn−1, . . .,

where K0 = Ker ε = Im ∂0 , Kn = Ker ∂n = Im ∂n+1 for all n > 0; Kn is the
nth syzygy of A in the given projective resolution.

Every module has a projective resolution. In fact, a free resolution can be
assigned to every module A : we saw that a presentation 0 −→ K0 −→ F0 −→
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A −→ 0 (with F0 free) can be assigned to A ; continuing with the presentation
0 −→ K1 −→ F1 −→ K0 −→ 0 assigned to K0 , the presentation assigned to
K1 , and so forth, assigns to A a free resolution · · · −→ F1 −→ F0 −→ A −→ 0.
We saw that in Section VIII.9 that free resolutions can be effectively computed for
all finitely generated free R-modules if R = K [X1, ..., Xn] .

Properties. Module homomorphisms lift to chain transformation of projective
resolutions, and do so with considerable zest and some uniqueness.

Theorem 2.2 (Comparison Theorem). Let P
ε−→ A and Q

ζ−→ B be projec-
tive resolutions, and let ϕ : A −→ B be a homomorphism. There is a chain
transformation ϕ = (ϕn)n�0: P −→ Q such that ζ ϕ0 = ϕ ε :

Moreover, any two such chain transformations are homotopic.

Proof. Since P0 is projective, and ζ : Q0 −→ B is surjective, ϕ ε factors
through ζ , and ϕ ε = ζ ϕ0 for some ϕ0 : P0 −→ Q0 :

From this auspicious start ϕn is constructed recursively. Assume that ϕ0,
. . ., ϕn have been constructed, so that ∂n ϕn = ϕn−1 ∂n . Then ∂n ϕn ∂n+1 =
ϕn−1 ∂n ∂n+1 = 0 (or ζ ϕ0 ∂1 = ϕ ∂0 ∂1 = 0, if n = 0). Since Q is exact this
implies Im ϕn ∂n+1 ⊆ Im ∂n+1 (or Im ϕ0 ∂1 ⊆ Im ∂1 , if n = 0). Hence
ϕn ∂n+1 and ∂n+1 induce a homomorphism Pn+1 −→ Im ∂n+1 and an epimor-
phism Qn+1 −→ Im ∂n+1 . Since Pn+1 is projective, ϕn ∂n+1 factors through
∂n+1 , and ϕn ∂n+1 = ϕn+1 ∂n+1 for some ϕn+1 : Pn+1 −→ Qn+1 :

Let (ψn)n�0: P −→ Q be another chain transformation that lifts ϕ (ζ ψ0 =
ϕ ε ). Then (ψn − ϕn)n�0 is a chain transformation that lifts 0. To complete the
proof we show that if ϕ = 0 in the above (if ζ ϕ0 = 0), then (ϕn)n�0 is homotopic
to 0: ϕn = ∂n+1 σn + σn−1 ∂n for some σn : Pn −→ Qn+1 .

Since P and Q are positive complexes we start with σn = 0 for all n < 0.
Since ζ ϕ0 = 0, ϕ0 induces a homomorphism P0 −→ Ker ζ = Im ∂1 , which
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factors through the epimorphism Q1 −→ Im ∂1 since P0 is projective; then
ϕ0 = ∂1 σ0 = ∂1 σ0 + σ−1 ∂0 :

The remaining σn are constructed recursively. Assume that σ0, . . ., σn have
been constructed, so that ϕn = ∂n+1 σn + σn−1 ∂n . Then ∂n+1 ϕn+1 = ϕn ∂n+1 =
∂n+1 σn ∂n+1 . Hence Im (ϕn+1 − σn ∂n+1) ⊆ Ker ∂n+1 = Im ∂n+2 and ϕn+1 −
σn ∂n+1 induces a homomorphism Pn+1 −→ Im ∂n+2 , which factors through the
epimorphism Qn+2 −→ Im ∂n+2 induced by ∂n+2 , since Qn+2 is projective; thus
ϕn+1 − σn ∂n+1 = ∂n+2 σn+1 for some σn+1 : Pn+1 −→ Qn+2 : �

Lifting. We complete Theorem 2.2 by lifting short exact sequences and certain
commutative diagrams to projective resolutions. This follows from the corre-
sponding properties of projective presentations.

Lemma 2.3. The diagram below (solid arrows) with exact row and columns, in
which P and R are projective, can be completed to a commutative 3 × 3 diagram
(all arrows) with exact rows and columns, in which Q is projective.

Proof. Since the middle row must split we may as well let Q = P ⊕ R , with
κ : p �−→ (p, 0) and π : (p, r) �−→ r . Then Q is projective and the middle row
is exact. Maps Q −→ B are induced by homomorphisms of P and R into B .
Already µε : P −→ B . Since R is projective, η = σ λ for some λ : R −→ B .
The resulting ζ : Q −→ B sends (p, r) to µεp + λr . Then ζ κ = µε , η π =
σ ζ , and ζ is surjective: if b ∈ B , then σb = ηr for some r ∈ R ,
σ (b − λr) = 0, b − λr = µa = µεp for some a ∈ A , p ∈ P , and b = ζ (p, r) .
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Let L = Ker ζ and let j : L −→ Q be the inclusion homomorphism. Since
ζ κ i = µε i = 0 there is a homomorphism ν : K −→ L such that κ i = j ν .
Similarly, there is a homomorphism τ : L −→ M such that π j = k τ . Now, the
whole 3 × 3 diagram commutes, and its columns and last two rows are exact. By
the nine lemma, the top row is exact, too. �

Proposition 2.4. For every short exact sequence 0 −→ A −→ B −→ C −→ 0
of modules, and projective resolutions P −→ A, R −→ C , there exist a projective
resolution Q −→ B and a short exact sequence 0 −→ P −→ Q −→ R −→ 0
such that the following diagram commutes:

Proof. By 2.3, applied to the given sequence and to 0 −→ K0 = Ker ε −→
P0

ε−→ A −→ 0, 0 −→ M0 = Ker η −→ R0
η−→ C −→ 0, there is a commuta-

tive 3 × 3 diagram with short exact rows and columns:

in which Q0 is projective. Applying 2.3 again, to the top row and exact sequences
0 −→ K1 = Ker ∂P

1 −→ P1 −→ K0 −→ 0, 0 −→ M1 = Ker ∂Q
1 −→ R1 −→

M0 −→ 0, yields two more exact sequences, 0 −→ P1 −→ Q1 −→ R1 −→ 0
and 0 −→ K1 −→ L1 −→ M1 −→ 0. Repetition yields the required sequence
P −→ Q −→ R . �

Next, we lift two short exact sequences together. (But we haven’t tried three.)

Lemma 2.5. The commutative diagram next page (solid arrows) with short exact
rows and columns, in which P , P ′ , R , and R′ are projective, can be completed
to a comutative diagram (all arrows) with short exact rows and columns, in which
Q and Q′ are projective.

Proof. By 2.3, the front and back faces can be filled in so that they commute,
their rows and columns are short exact, and Q, Q′ are projective. As in the
proof of 2.3, we can let Q = P ⊕ R , κ : p �−→ (p, 0) , π : (p, r) �−→ r
and Q′ = P ′ ⊕ R′ , κ ′ : p′ �−→ (p′, 0) , π ′ : (p′, r ′) �−→ r ′ ; let ζ (p, r) =
µεp + λr , where λ : R −→ B and σ λ = η , and ζ ′ (p′, r ′) = µ′ ε′ p′ + λ′r ′ ,
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where λ′ : R′ −→ B′ and σ ′ λ′ = η′ ; and let L = Ker ζ , L ′ = Ker ζ ′ and
j : L −→ Q , j ′ : L ′ −→ Q′ be the inclusion homomorphisms.

Maps Q −→ Q′ are induced by homomorphisms of P and R into P ′ and R′ .
We use α′ , γ ′ , and 0 : P −→ R′ , and choose ξ : R −→ P ′ so that the resulting
homomorphism β′ : Q −→ Q′ , β′(p, r) = (α′ p + ξr , γ ′r) makes the two lower
cubes commute. Their upper faces commute for any ξ : β′ µ′ p = β ′(p, 0) =
(α0 p, 0) = κ ′ α′ p and π ′ β ′ (p, r) = π ′ (α′ p + ξr , γ ′r) = γ ′r = γ ′ π ′ (p, r) .
This leaves the face ζ ′, β ′, β, ζ . Since β µ ε = µ′ α ε = µ′ ε′ α′ :

β ζ (p, r) = β µ εp + β λr = µ′ ε′ α′ p + β λr,
ζ ′ β ′ (p, r) = ζ ′ (α′ p + ξr , γ ′r) = µ′ ε′ α′ p + µ′ ε′ ξr + λ′ γ ′r.

Hence ζ ′ β ′ = β ζ if and only if µ′ ε ξ = β λ − λ′ γ ′ . Now,

σ ′ (β λ − λ′ γ ′) = γ σ λ − σ ′ λ′ γ ′ = γ η − η′ γ ′ = 0

by the hypothesis; hence β λ− λ′ γ ′ induces a homomorphism of R into Ker σ ′ =
Im µ′ = Im µ′ε′ , which factors through the epimorphism P ′ −→ Im µ′ε′

induced by µ′ε′ , since R is projective: thus, β λ − λ′ γ ′ = µ′ ε′ ξ for some
homomorphism ξ : R −→ P ′ . Then the two lower cubes commute.

Since the two lower cubes commute, β ′ induces a homomorphism β′′ : L −→
L ′ : since ζ ′ β ′ j = β ζ j = 0, we have β ′ j = j ′ β ′′ for some β ′′ : L −→ L ′ .
Then all faces of the two upper cubes commute, except perhaps the two upper
faces. Since j ′, k′ are monomorphisms, these also commute: indeed, k′ τ ′ β ′′ =
π ′ j ′ β ′′ = π ′ β ′ j = γ ′ π j = γ ′ k τ = k′ γ ′′ τ , whence τ ′ β ′′ = γ ′′ τ ; similarly,
ν′ α′′ = β ′′ ν , and the entire diagram commutes. �

Proposition 2.6. For every commutative diagram
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with short exact rows, projective resolutions P −→ A, R −→ C , P′ −→ A′ ,
R′ −→ C ′ , and chain transformations P −→ P′ , R −→ R′ that lift α and
γ , there exist projective resolutions Q −→ B , Q′ −→ B′ and a commutative
diagram with short exact rows:

Proof. This follows from repeated applications of Lemma 2.5, just as Proposi-
tion 2.4 follows from repeated applications of Lemma 2.3. �

Injective resolutions. A module A can also be analyzed by short exact
sequences 0 −→ A −→ J −→ L −→ 0, where J is injective. In fact, the con-
struction in Section XI.2 assigns to every module A an embedding µ : A −→ J
into an injective module J ; the short exact sequence 0 −→ A −→ J −→
Coker µ −→ 0 may then be assigned to A .

Injective resolutions are compositions of these injective “copresentations”:

Definition. An injective resolution of a module A is an exact sequence

0 −→ A −→ J 0 −→ J 1 −→ · · · −→ J n −→ J n+1 −→ · · ·

of modules and homomorphisms in which J0, J1, . . ., Jn, . . . are injective.

Thus, an injective resolution A
η−→ J of A consists of a negative complex

J : 0 −→ J 0 δ0
−→ J 1 −→ · · · −→ J n δn

−→ J n+1 −→ · · ·

of injective modules and a monomorphism η : A −→ J 0 , such that Hn(J) = 0
for all n > 0 and Ker δ0 = Im η . Then H0(J) = Ker δ0 ∼= A . Also, A

η−→ J is
a composition of injective “copresentations”

0 −→ A −→ J0 −→ L0 −→ 0, . . ., 0 −→ Ln−1 −→ Jn −→ Ln, . . .,

where L0 = Im δ0 ∼= Coker η , Ln = Im δn ∼= Coker ∂n−1 for all n > 0; Ln is
the nth cosyzygy of A (in the given injective resolution).

Every module has an injective resolution. In fact, an injective resolution can
be assigned to every module A : we saw that an injective module J 0 and mono-
morphism η : A −→ J 0 can be assigned to A ; an injective module J 1 and
monomorphism Coker η −→ J 1 can then be assigned to Coker η , so that
0 −→ A −→ J 0 −→ J 1 is exact; and so forth.
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Module homomorphisms lift, uniquely up to homotopy, to chain transformations
of injective resolutions.

Lemma 2.7. In a diagram with exact rows (solid arrows) in which J is injective,
there exist homomorphisms β and γ (dotted arrows) that make the diagram
commutative.

Theorem 2.8 (Comparison Theorem). Let A
η−→ J and B

ζ−→ K be injec-
tive resolutions, and let ϕ : A −→ B be a homomorphism. There is a chain
transformation (ϕn)n�0: J −→ K such that ϕ0 η = ζ ϕ :

Moreover, any two such chain transformations are homotopic.

Proposition 2.9. For every short exact sequence 0 −→ A −→ B −→ C −→ 0
of modules, and injective resolutions A −→ J , C −→ L , there exist an injective
resolution B −→ K and a short exact sequence 0 −→ J −→ K −→ K −→ 0
such that the following diagram commutes:

Proposition 2.10. For every commutative diagram

with short exact rows, injective resolutions A −→ J , C −→ L , A′ −→ J′ ,
C ′ −→ L′ , and chain transformations J −→ J′ , L −→ L′ that lift A −→ A′

and C −→ C ′ , there exist injective resolutions B −→ K , B′ −→ K′ and a
commutative diagram with short exact rows:
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These results are obtained from 2.1, 2.2, 2.4, 2.6 by reversing all arrows. They
have largely similar proofs, which may safely be left to readers as exercises.

Exercises
1. Given a diagram with exact rows (solid arrows)

in which J is injective, show that there exist homomorphisms β and γ (dotted arrows) that
make the diagram commutative.

2. Prove the comparison theorem for injective resolutions.

3. Show that a short exact sequence of modules lifts to a short exact sequence of their
injective resolutions, as in Proposition 2.9.

4. Prove Proposition 2.10, in which a diagram of short exact sequence of modules lifts to a
diagram of short exact sequences of their injective resolutions.

3. Derived Functors

The derived functors of a functor F are constructed by applying F to projective
or injective resolutions. These functors repair the lack of exactness of F , when F
is only right exact or left exact. Ext and Tor will be our main examples.

Left derived functors. Let F be a covariant functor from modules to modules,
such as M ⊗R − or −⊗R M , that is right exact but not (in general) left exact: when
0 −→ A −→ B −→ C −→ 0 is short exact, then F A −→ F B −→ FC −→ 0 is
only right exact. The lack of left exactness in this last sequence can be measured
by an exact sequence F1 A −→ F1 B −→ F1C −→ F A −→ F B , where F1 is
another functor. In turn, the lack of left exactness of F1 A −→ F1 B −→ F1C
can be measured by an exact sequence F2 A −→ F2 B −→ F2C −→ F1 A −→
F1 B , where F2 is another functor. Then F, F1, F2, . . . constitute a connected
sequence:

Definition. A positive connected sequence of covariant functors consists of
covariant functors G0, G1, . . ., Gn, . . . and of connecting homomorphisms
GnC −→ Gn−1 A, one for every integer n > 0 and short exact sequence
E : 0 −→ A −→ B −→ C −→ 0 , such that the sequence

· · · −→ Gn+1C −→ Gn A −→ Gn B −→ GnC −→ · · ·
· · · G1C −→ G0 A −→ G0 B −→ G0C −→ 0

is exact and natural in E .

Our goal is the construction of a connected sequence of functors that ends
with a given right exact functor F . If F is additive, then there is a “best” such
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sequence, which is constructed as follows. We saw in Section 2 that to every
module A can be assigned a projective resolution PA −→ A . Then FPA is a
positive complex of modules · · · −→ F P A

2 −→ F P A
1 −→ F P A

0 −→ 0.

Proposition 3.1. Let F be a covariant additive functor. Assign a projective reso-
lution PA −→ A to every module A . For every n � 0 , let Ln A = Hn(FPA) ;
for every module homomorphism ϕ : A −→ B , let Lnϕ = Hn(Fϕ) , where
ϕ : PA −→ PB is a chain transformation that lifts ϕ . Then Ln F = Ln is a well
defined additive functor, which, up to natural isomorphisms, does not depend on
the initial assignment of PA to A .

Proof. If ϕ and ψ both lift ϕ , then ϕ and ψ are homotopic, by 2.2; since F
is additive, Fϕ and Fψ are homotopic, and Hn(Fϕ) = Hn(Fψ) , by 1.2. Hence
Lnϕ does not depend on the choice of ϕ , and is well defined.

If ϕ is the identity on A , then 1PA lifts ϕ to PA ; hence Ln1A = Hn(F1PA)
is the identity on Ln A . If ϕ : A −→ B and ψ : B −→ C are module homomor-
phisms, and ϕ , ψ lift ϕ , ψ , then ψ ψ lifts ψ ϕ ; hence Ln(ψ ϕ) = (Lnψ) (Lnϕ) .
Similarly, if ϕ, ψ : A −→ B and ϕ, ψ lift ϕ, ψ , then ϕ + ψ lifts ϕ + ψ ; hence
Ln(ψ + ϕ) = Lnψ + Lnϕ . Thus Ln F is an additive functor.

Finally, let Ln, L ′
n be constructed from two choices P −→ A , P′ −→ A

of projective resolutions. By 2.2, 1A : A −→ A lifts to θ : P −→ P′ and to
ζ : P′ −→ P . Then 1A also lifts to ζ θ : P −→ P and to θ ζ : P′ −→ P′ . Since
1P and 1P′ also lift 1A , ζ θ is homotopic to 1P , and θ ζ is homotopic to 1P′ .
Hence (Fζ ) (Fθ) is homotopic to 1F(P) , (Fθ) (Fζ ) is homotopic to 1F(P′) ,
and Hn(Fθ)): Ln A −→ L ′

n A , Hn(Fζ )): L ′
n A −→ Ln A are mutually inverse

isomorphisms. That Hn(Fθ) is natural in A is proved similarly. �

Definition. In Proposition 3.1, Ln F is the nth left derived functor of F .

Theorem 3.2. Let F be a covariant additive functor.

(1) If P is projective, then (L0 F)P ∼= F P and (Ln F)P = 0 for all n > 0 .

(2) If F is right exact, then there is for every module A an isomorphism
(L0 F)A ∼= F A, which is natural in A .

(3) L0 F, L1 F, . . ., Ln F, . . . is a positive connected sequence of functors.

(4) If F is right exact, then F, L1 F, . . ., Ln F, . . . is a positive connected
sequence of functors.

Proof. (1). If P is projective, then P has a projective resolution

P
ε−→ P : · · · −→ 0 −→ 0 −→ P ε−→ P −→ 0

in which ε = 1P . Then FP : · · · −→ 0 −→ 0 −→ F P −→ 0 −→ · · · ,
H0(FP) ∼= F P , and Hn(FP) = 0 for all n =/ 0.
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(2). If F is right exact, then F P1
F∂1−→ F P0

Fε−→ F A −→ 0 is right exact, like

P1
∂1−→ P0

ε−→ A −→ 0. Hence

L0 A = H0(FP) = F P0/Im F∂1 = F P0/Ker Fε ∼= F A.

The isomorphism θ A : L0 A −→ F A sends cls t = t + Im F∂1 = t + Ker Fε

to (Fε)(t) . If ϕ : A −→ B is a homomorphism and ϕ = (ϕn)n�0: PA −→
PB lifts ϕ , then εB ϕ0 = ϕ εA , L0ϕ = H0(Fϕ) sends cls t = t + Im F∂1
to cls (Fϕ0)t = (Fϕ0)t + Im F∂1 , and θ B((L0ϕ) cls t) = θ B cls (Fϕ0)t =
F(εB ϕ0)t = F(ϕ εA)t = (Fϕ)θ Acls t . Thus θ A is natural in A .

(3). Let E : 0 −→ A −→ B −→ C −→ 0 be a short exact sequence.
By 2.3, E lifts to a short exact sequence 0 −→ PA −→ PB −→ PC −→ 0.
Since PC

n is projective, 0 −→ P A
n −→ P B

n −→ PC
n −→ 0 splits for every

n ; hence 0 −→ F P A
n −→ F P B

n −→ F PC
n −→ 0 splits for every n and

0 −→ FPA −→ FPB −→ FPC −→ 0 is short exact. Then 1.3 yields an exact
homology sequence and its connecting homomorphisms

· · · −→ Hn+1(FPC ) −→ Hn(FPA) −→ Hn(FPB) −→ Hn(FPC ) −→
· · · H1(FPC ) −→ H0(FPA) −→ H0(FPB) −→ H0(FPC ) −→ 0,

ending at H0(FPC ) , since all subsequent modules are null; equivalently,

· · · −→ Ln+1C −→ Ln A −→ Ln B −→ LnC −→ · · ·
· · · L1C −→ L0 A −→ L0 B −→ L0C −→ 0.

We prove naturality. Given a commutative diagram with short exact rows:

there is, by 2.6, a commutative diagram with exact rows:

in which P = PA , etc. Since the exact homology sequence in 1.3 is natural, the
top two squares induce a commutative diagram:
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which, up to natural isomorphisms, is none other than

(4) follows from (2) and (3). �
If F is right exact in Theorem 3.2, then the left derived functors of F constitute

the “best” connected sequence that ends with F :

Theorem 3.3. Let F be a right exact, covariant additive functor, and let
G0, G1, . . ., Gn, . . . be a positive connected sequence of covariant functors.
For every natural transformation ϕ0 : G0 −→ F there exist unique natural
transformations ϕn : Gn −→ Ln F such that the square

commutes for every short exact sequence E : 0 −→ A −→ B −→ C −→ 0 and
every n � 0 , where χ and ξ are the connecting homomorphisms.

Proof. We construct ϕn recursively. For every module A choose a projective

presentation EA : 0 −→ K
µ−→ P −→ A −→ 0 (with P projective). Since

ϕ0 is natural, and F, L1, . . ., Ln, . . . and G0, G1, . . ., Gn, . . . are connected
sequences, there is a commutative diagram

with exact rows, in which ξ A = ξEA
1 , χ A = χEA

1 and L1 P = 0 by 3.2. We want
ϕA

1 to make the left square commute. Happily, Fµ ϕK
0 ξ A = ϕP

0 G0µ ξ A = 0, so
that ϕK

0 ξ A factors through χ A :

ϕK
0 ξ A = χ A ϕA

1 (1), case n = 0

for some unique ϕA
1 : G1 A −→ L1 A . In particular, ϕ1 is unique, if it exists.
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The construction of ϕn+1 from ϕn when n > 0 is similar but simpler: now

EA : 0 −→ K
µ−→ P −→ A −→ 0 induces a commutative diagram

with exact rows, in which ξ A = ξEA
n+1 , χ A = χEA

n+1 and Ln+1 P = 0, Ln P = 0 by
3.2. We want ϕA

n+1 to make the square commute. Since χ A is an isomorphism,

ϕK
n ξ A = χ A ϕA

n+1 (1), case n > 0

for some unique homomorphism ϕA
n+1 : Gn+1 A −→ Ln+1 A . In particular, ϕn+1

is unique, if it exists.

To show that ϕn+1 has all required properties, consider a diagram

with exact rows (solid arrows). By 2.1, there are dotted arrows such that the
diagram commutes. Then the squares

commute, since ϕ0 and χ1 , ξ1 are natural, and ϕL
0 ξC = χC ϕC

1 , by (1). Hence
ϕA′

0 ξE′
G1γ = ϕA′

0 G0α ξC = Fα ϕL
0 ξC = Fα χC ϕC

1 = χE′
L1γ ϕC

1 and

ϕA′
0 ξE′

G1γ = χE′
L1γ ϕC

1 . (2), case n = 0

If n > 0, then, similarly,

ϕA′
n ξE′

Gn+1γ = χE′
Ln+1γ ϕC

n+1. (2), case n > 0

The required properties of ϕn+1 follow from (2):

Let γ = 1C and let E′ : 0 −→ M −→ R −→ C −→ 0 be another projective
presentation of C . By (2), ϕM

n ξE′
= χE′

ϕC
n+1 . Hence ϕC

n+1 does not depend on
the choice of EC , and ϕn+1 is well defined by (1) (given ϕn ).

Next, let γ : C −→ C ′ be any homomorphism and E′ = EC ′
: 0 −→ L ′ −→

Q′ −→ C ′ −→ 0. By (1) and (2), χE′
ϕC ′

n+1 Gn+1γ = ϕC ′
n ξE′

Gn+1γ =
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χE′
Ln+1γ ϕC

n+1 . But χE′
is (at least) a monomorphism, since Ln+1 Q′ = 0 by

3.2. Hence ϕC ′
n+1 Gn+1γ = Ln+1γ ϕC

n+1 ; thus ϕC
n+1 is natural in C .

Finally, if E′ = E : 0 −→ A −→ B −→ C −→ 0 is any short exact sequence
and γ = 1, then (2) reads ϕA

n ξE = χE ϕC
n+1 . �

Readers who are still awake will verify that the universal property in Theorem
3.3 determines the left derived functors of F , up to natural isomorphisms.

Theorem 3.4. Let G0, G1, . . . , Gn, . . . be a positive connected sequence of
covariant functors. If Gn P = 0 whenever P is projective and n > 0 , then, up to
natural isomorphisms, G1, . . ., Gn, . . . are the left derived functors of G0 .

Proof. First, G0 is right exact, by definition. By 3.3, the identity G0 −→ G0
induces natural transformations ϕn : Gn −→ Ln to the derived functors L0 =
G0, L1, . . ., Ln, . . . of G0 , which form a commutative square

with the connecting homomorphisms, for every n � 0 and short exact sequence
E : 0 −→ A −→ B −→ C −→ 0. We prove by induction on n that ϕA

n is an
isomorphism for every module A . Let EA : 0 −→ K −→ P −→ A −→ 0 be a
projective presentation. First,

is a commutative diagram with exact rows, in which ξ = ξEA
1 and χ = χEA

1 are the
connecting homomorphisms and L1 P = 0, G1 P = 0 by 3.2 and the hypothesis.
This readily implies that ϕA

1 is an isomorphism. If n > 0, then

is a commutative diagram with exact rows, in which ξ = ξEA
n+1 and χ = χEA

n+1
are the connecting homomorphisms and Ln+1 P = 0, Ln P = 0, Gn+1 P = 0,
Gn P = 0, by 3.2 and the hypothesis. Therefore ξ and χ are isomorphisms; if
ϕK

n is an isomorphism, then so is ϕA
n+1 . �

Left exact functors. Covariant left exact functors from modules to modules,
such as HomR(M,−) , give rise to another kind of connected sequence:
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Definition. A negative connected sequence of covariant functors consists of
covariant functors G0, G1, . . ., Gn, . . . and of connecting homomorphisms
GnC −→ Gn+1 A, one for every integer n � 0 and short exact sequence
E : 0 −→ A −→ B −→ C −→ 0 , such that the sequence

0 −→ G0 A −→G0 B −→ G0C −→ G1 A −→ G1 B −→ · · ·
· · · −→ Gn A −→ Gn B −→ GnC −→ Gn+1 A −→ · · ·

is exact and natural in E .

We seek a connected sequence of functors that begins with a given left exact
functor F . If F is additive, then there is again a “best” such sequence. We
saw in Section 2 that to every module A can be assigned an injective resolution
A −→ JA . Then FJA is a negative complex of modules. The following result is
proved like Proposition 3.1:

Proposition 3.5. Let F be a covariant additive functor. Assign an injective
resolution A −→ JA to every module A . For every n � 0 , let Rn A = Hn(FJA) ;
for every module homomorphism ϕ : A −→ B , let Rnϕ = Hn(Fϕ) , where
ϕ : JA −→ JB is a chain transformation that lifts ϕ . Then Rn F = Rn is a well
defined additive functor, which, up to natural isomorphisms, does not depend on
the initial assignment of JA to A .

Definition. In Proposition 3.5, Rn F is the nth right derived functor of F .

The following properties are proved much like Theorems 3.2, 3.3, 3.4:

Theorem 3.6. Let F be a covariant additive functor.

(1) If J is injective, then (R0 F)J ∼= F J and (Rn F)J = 0 for all n > 0 .

(2) If F is left exact, then there is for every module A an isomorphism
(R0 F)A ∼= F A, which is natural in A .

(3) R0 F, R1 F, . . ., Rn F, . . . is a negative connected sequence of functors.

(4) If F is left exact, then F, R1 F, . . ., Rn F, . . . is a negative connected
sequence of functors.

Theorem 3.7. Let F be a left exact, covariant additive functor, and let G0, G1,
. . ., Gn, . . . be a positive connected sequence of covariant functors. For every
natural transformation ϕ0 : F −→ G0 there exist unique natural transformations
ϕn : Rn F −→ Gn such that the square

commutes for every short exact sequence E : 0 −→ A −→ B −→ C −→ 0 and
every n � 0 , where χ and ξ are the connecting homomorphisms.
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Theorem 3.8. Let G0, G1, . . ., Gn, . . . be a negative connected sequence of
covariant functors. If Gn J = 0 whenever J is injective and n > 0 , then, up to
natural isomorphisms, G1, . . ., Gn, . . . are the right derived functors of G0 .

Contravariant functors. Contravariant left exact functors from modules to
modules, such as HomR(−, M) , give rise to a third kind of connected sequence:

Definition. A negative connected sequence of contravariant functors consists
of contravariant functors G0, G1, . . . , Gn, . . . and of connecting homomor-
phisms Gn A −→ Gn+1C , one for every integer n � 0 and short exact sequence
E : 0 −→ A −→ B −→ C −→ 0 , such that the sequence

0 −→ G0C −→G0 B −→ G0 A −→ G1C −→ G1 B −→ · · ·
· · · −→ GnC −→ Gn B −→ Gn A −→ Gn+1C −→ · · ·

is exact and natural in E .

If F is an additive, contravariant left exact functor, then a “best” connected
sequence that begins with F is constructed as follows. Assign to every module A
a projective resolution PA −→ A . Applying F to PA yields a negative complex.
Readers will easily establish the following properties.

Proposition 3.9. Let F be a contravariant additive functor. Assign a projec-
tive resolution PA −→ A to every module A . For every n � 0 , let Rn A =
Hn(FPA) ; for every module homomorphism ϕ : A −→ B , let Rnϕ = Hn(Fϕ) ,
where ϕ : PA −→ PB is a chain transformation that lifts ϕ . Then Rn F = Rn is
a well defined additive contravariant functor, which, up to natural isomorphisms,
does not depend on the initial assignment of PA to A .

Definition. In Proposition 3.9, Rn F is the nth right derived functor of F .

Theorem 3.10. Let F be a contravariant additive functor.

(1) If P is projective, then (R0 F)P ∼= F P and (Rn F)P = 0 for all n > 0 .

(2) If F is left exact, then there is for every module A an isomorphism
(R0 F)A ∼= F A, which is natural in A .

(3) R0 F, R1 F, . . ., Rn F, . . . is a negative connected sequence of contra-
variant functors.

(4) If F is left exact, then F, R1 F, . . ., Rn F, . . . is a negative connected
sequence of contravariant functors.

Theorem 3.11. Let F be left exact, contravariant additive functor, and let
G0, G1, . . ., Gn, . . . be a negative connected sequence of contravariant functors.
For every natural transformation ϕ0 : F −→ G0 there exist unique natural
transformations ϕn : Rn F −→ Gn such that the square below, where χ and
ξ are the connecting homomorphisms, commutes for every short exact sequence
E : 0 −→ A −→ B −→ C −→ 0 and every n � 0 .
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Theorem 3.12. Let G0, G1, . . ., Gn, . . . be a negative connected sequence of
contravariant functors. If Gn P = 0 whenever P is projective and n > 0 , then, up
to natural isomorphisms, G1, . . ., Gn, . . . are the right derived functors of G0 .

Contravariant right exact functors. A fourth construction of derived functors
applies to contravariant right exact functors, where connected sequences of left
derived contravariant functors are constructed from injective resolutions. But this
construction has no applications here, due a serious shortage of good contravariant
right exact functors. Details are left to interested readers.

Exercises
1. Let F be a covariant additive functor. Assign an injective resolution A −→ JA to

every module A . Let Rn A = Hn(FJA) ; when ϕ : A −→ B , let Rnϕ = Hn(Fϕ) , where
ϕ : JA −→ JB is a chain transformation that lifts ϕ . Show that Rn is a well defined additive
functor and, up to natural isomorphisms, does not depend on the initial assignment of JA to A .

2. Let F be a covariant additive functor. Show that (R0F)J ∼= F J and (Rn F)J = 0
for all n > 0 , whenever J is injective.

3. Let F be a covariant additive functor. If F is left exact, then show that there is for every
module A an isomorphism (R0F)A ∼= F A , which is natural in A .

4. Let F be a covariant additive functor. Show that R0F, R1F, . . . , Rn F, . . . is a
negative connected sequence of functors; if F is left exact, then F, R1F, . . . , Rn F, . . . is
a negative connected sequence of functors.

5. Let F be a left exact, covariant additive functor, G0, G1, . . . , Gn, . . . be a positive
connected sequence of covariant functors, and ϕ0 : F −→ G0 be a natural transformation.
Show that there exist unique natural transformations ϕn : Rn F −→ Gn such that the square

commutes for every n � 0 and short exact sequence E : 0 −→ A −→ B −→ C −→ 0 ,
where χ and ξ are the connecting homomorphisms.

6. Let G0, G1, . . . , Gn, . . . be a negative connected sequence of covariant functors.
Prove the following: if Gn J = 0 whenever J is injective and n > 0 , then, up to natural
isomorphisms, G1, . . . , Gn, . . . are the right derived functors of G0 .

7. Let F be a contravariant additive functor. Assign a projective resolution PA −→ A to
every module A . Let Rn A = Hn(FPA) ; when ϕ : A −→ B , let Rnϕ = Hn(Fϕ) , where
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ϕ : PA −→ PB is a chain transformation that lifts ϕ . Show that Rn is well defined and, up
to natural isomorphisms, does not depend on the initial assignment of PA to A .

8. Let F be a contravariant additive functor. Show that (R0F)P ∼= F P and (Rn F)P = 0
for all n > 0 , whenever P is projective.

9. Let F be a contravariant additive functor. If F is left exact, then show that there is for
every module A an isomorphism (R0F)A ∼= F A , which is natural in A .

10. Let F be a contravariant additive functor. Show that R0F, R1F, . . . , Rn F, . . . is a
negative connected sequence of contravariant functors; if F is left exact, then F, R1F, . . . ,
Rn F, . . . is a negative connected sequence of contravariant functors.

11. Let F be a left exact, contravariant additive functor; let G0, G1, . . . , Gn, . . . be a
negative connected sequence of contravariant functors, and let ϕ0 : F −→ G0 be a natural
transformation. Show that there exist unique natural transformations ϕn : Rn F −→ Gn such
that the square

commutes for every n � 0 and short exact sequence E : 0 −→ A −→ B −→ C −→ 0 ,
where χ and ξ are the connecting homomorphisms.

12. Let G0, G1, . . . , Gn, . . . be a negative connected sequence of contravariant functors.
Prove the following: if Gn P = 0 whenever P is projective and n > 0 , then, up to natural
isomorphisms, G1, . . . , Gn, . . . are the right derived functors of G0 .

*13. Define the left derived functors of a contravariant additive functor; then state and prove
their basic properties.

4. Ext

This section constructs the functors Extn and gives their basic properties. All
results are stated for left R-modules but apply equally to right R-modules.

Definition. For every left R-module A , HomR(A,−) is a covariant, left
exact, additive functor from left R-modules to abelian groups, and has right
derived functors, temporarily denoted by RExtn

R(A,−) . As in Section 3,
HomR(A,−) = RExt0

R(A,−) , RExt1
R(A,−) , RExt2

R(A,−) , . . . , is a negative
connected sequence of covariant functors from left R-modules to abelian groups,
and RExtn

R(A, J ) = 0 whenever J is injective and n > 0.

We find how RExtn
R(A,−) depends on A . Every module homomorphism

ϕ : A −→ A′ induces a natural transformation HomR(ϕ,−): HomR(A′,−) −→
HomR(A,−) , which by Theorem 3.7 induces unique natural transformations
RExtn

R(ϕ,−): RExtn
R(A′,−) −→ RExtn

R(A,−) such that the square
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commutes for every n � 0 and short exact sequence 0 −→ B −→ B′ −→
B′′ −→ 0, where χ and χ ′ are the connecting homomorphisms. Uniqueness in
Theorem 3.7 implies that RExtn

R(1A, B) is the identity on RExtn
R(A, B) and

that RExtn
R(ϕ ◦ ψ, −) = RExtn

R(ψ,−) ◦ RExtn
R(ϕ,−) , RExtn

R(ϕ + ψ, −) =
RExtn

R(ϕ,−) + RExtn
R(ψ,−) whenever these operations are defined; moreover,

commutes for every homomorphism ψ : B −→ B′ , since RExtn
R(ϕ, B) is natural

in B . Thus RExtn
R(−,−) is, like HomR(−,−) , an additive bifunctor from left

R-modules to abelian groups, contravariant in the first variable and covariant in
the second variable.

For every left R-module B , the contravariant functor HomR(−, B) also has
right derived functors, temporarily denoted by LExtn

R(−, B) . By Theorem 3.10,
HomR(−, B) = LExt0

R(−, B) , LExt1
R(−, B) , LExt2

R(−, B) , . . . , is a nega-
tive connected sequence of contravariant functors from left R-modules to abelian
groups, and LExtn

R(P, B) = 0 whenever P is projective and n > 0.

Like RExtn
R , LExtn

R is a bifunctor. Every module homomorphism ψ :
B −→ B′ induces a natural transformation HomR(−, ψ): HomR(−, B) −→
HomR(−, B′) , which by Theorem 3.11 induces natural transformations
LExtn

R(−, ϕ): LExtn
R(−, B) −→ LExtn

R(−, B′) such that the square

commutes for every n � 0 and short exact sequence 0 −→ A −→ A′ −→
A′′ −→ 0, where χ and χ ′ are the connecting homomorphisms. As above, this
makes LExtn

R(−,−) an additive bifunctor from left R-modules to abelian groups,
contravariant in the first variable and covariant in the second variable.

We show that LExtn
R(A, B) and RExtn

R(A, B) are naturally isomorphic;
hence there is, up to this natural isomorphism, a single bifunctor Extn

R .



4. Ext 489

Theorem 4.1. For every n > 0 and left R-modules A and B there is an
isomorphism LExtn

R(A, B) ∼= RExtn
R(A, B) , which is natural in A and B .

Proof. Let A : 0 −→ K −→ P −→ A −→ 0 and B : 0 −→ B −→ J −→
L −→ 0 be short exact sequences, with P projective and J injective. We have a
commutative diagram, where R A = RExt1

R(A, B) and RK = RExt1
R(K , B) ,

which is natural in A and B . The first and third rows are exact by Theorem
3.6 and end with zeros, since RExt1

R(M, J ) = 0 for all M when J is injective.
The first and third columns are exact by Theorem 3.10 and end with zeros, since
LExt1

R(P, M) = 0 for all M when P is projective. The second row is exact
since P is projective, and the second column is exact since J is injective.

Lemma 1.5, applied to α, β, γ , yields an exact sequence

HomR(A, J ) −→ HomR(A, L) −→ LExt1
R(A, B) −→ 0.

So does the first row of the diagram:

HomR(A, J ) −→ HomR(A, L) −→ RExt1
R(A, B) −→ 0.

By Lemma X.1.2, HomR(A, L) −→ LExt1
R(A, B) and HomR(A, L) −→

RExt1
R(A, B) factor uniquely through each other, which provides mutually

inverse isomorphisms LExt1
R(A, B) ∼= RExt1

R(A, B) . These isomorphisms are
natural in A and B ; hence they are natural in A and B , since homomorphisms
of A and B lift to homomorphisms of A and B , by 2.1 and 2.7. This proves 4.1
when n = 1. Since σ and β are epimorphisms we also have isomorphisms

LExt1
R(A, L) ∼= Coker γ = Coker γ σ

= Coker τ β = Coker τ ∼= RExt1
R(K , B)

that are natural in A and B .

For n � 1 we prove by induction on n that there are isomorphisms

LExtn
R(A, B) ∼= RExtn

R(A, B) and LExtn
R(A, L) ∼= RExtn

R(K , B)
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that are natural in A and B . We just proved this when n = 1. In general,
Theorem 3.6, applied to B , yields for every module M an exact sequence

RExtn
R(M, J ) −→ RExtn

R(M, L) −→ RExtn+1
R (M, B) −→ RExtn+1

R (M, J ),

which begins and ends with 0 since J is injective, and an isomorphism

RExtn
R(M, L) ∼= RExtn+1

R (M, B) (1)

that is natural in M and B . Similarly, Theorem 3.10, applied to A , yields for
every module M an exact sequence

LExtn
R(P, M) −→ LExtn

R(K , M) −→ LExtn+1
R (A, M) −→ LExtn+1

R (P, M),

which begins and ends with 0 since P is projective, and an isomorphism

LExtn
R(K , M) ∼= LExtn+1

R (A, M) (2)

that is natural in A and M . Then (2) with M = B , (1) with M = A , and the
induction hypothesis, yield isomorphisms

LExtn+1
R (A, B) ∼= LExtn

R(K , B) ∼= RExtn
R(K , B)

∼= LExtn
R(A, L) ∼= RExtn

R(A, L) ∼= RExtn+1
R (A, B)

that are natural in A and B ; and (2) with M = L , (1) with M = K , and the
induction hypothesis, yield isomorphisms

LExtn+1
R (A, L) ∼= LExtn

R(K , L) ∼= RExtn
R(K , L) ∼= RExtn+1

R (K , B)

that are natural in A and B . This completes the induction. As before, the
isomorphism LExtn

R(A, B) ∼= RExtn
R(A, B) is then natural in A and B . �

Not surprisingly, Extn
R(A, B) is now defined as follows, up to natural isomor-

phisms:

Definition. Up to isomorphisms that are natural in A and B , Extn
R(A, B) ∼=

LExtn
R(A, B) ∼= RExtn

R(A, B) , for every left R-modules A and B .

The name Ext comes from a one-to-one correspondence between elements
of Ext1

R(C, A) and equivalence classes of extensions of A by C (short exact
sequences 0 −→ A −→ B −→ C −→ 0). See, for instance, MacLane, Homology
[1963], for the details of this relationship and its generalization to every Extn .

Properties. First, Extn
R enjoys all the properties of LExtn

R and RExtn
R .

Proposition 4.2. The functor Extn
R(−,−) is an additive bifunctor from left

R-modules to abelian groups, contravariant in the first variable and covariant in
the second variable.

Proposition 4.3. For every projective resolution P −→ A and injective resolu-
tion B −→ J there are natural isomorphisms

Extn
R(A, B) ∼= Hn(HomR(P, B)

)
∼= Hn(HomR(A, J)

)

.
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This follows from the definition of Ext and the definitions of derived functors.

Theorem 4.4. (1) If A is projective, then Extn
R(A, B) = 0 for all n � 1 .

(2) If B is injective, then Extn
R(A, B) = 0 for all n � 1 .

(3) For every exact sequence A : 0 −→ A −→ A′ −→ A′′ −→ 0 and module
B , there is an exact sequence, which is natural in A and B ,

0 −→HomR(A′′, B) −→ HomR(A′, B) −→ HomR(A, B)

−→ Ext1
R(A′′, B) −→ Ext1

R(A′, B) −→ Ext1
R(A, B) −→ · · ·

−→ Extn
R(A′′, B) −→ Extn

R(A′, B) −→ Extn
R(A, B) −→ · · · .

(4) For every exact sequence B : 0 −→ B −→ B′ −→ B′′ −→ 0 and module
A , there is an exact sequence, which is natural in A and B ,

0 −→HomR(A, B) −→ HomR(A, B′) −→ HomR(A, B′′)

−→ Ext1
R(A, B) −→ Ext1

R(A, B′) −→ Ext1
R(A, B′′)−→ · · ·

−→ Extn
R(A, B) −→ Extn

R(A, B′) −→ Extn
R(A, B′′) −→ · · · .

This follows from Theorems 3.6 and 3.10. In fact, up to natural isomorphisms,
Extn

R(A, B) is the only bifunctor with properties (1) and (3), and the only bifunctor
with properties (2) and (4), by Theorems 3.8 and 3.12.

In addition, ExtR inherits properties from HomR . Readers may establish the
following properties:

Proposition 4.5. Ext1
R(C, A) = 0 if and only if every short exact sequence

0 −→ A −→ B −→ C −→ 0 splits; a module M is projective if and only if
Ext1R(M, B)= 0 for all B ; a module M is injective if and only if Ext1

R(A, M) = 0
for all A .

Proposition 4.6. If A is a left R-, right S-bimodule and B is a left R-, right
T-bimodule, then Extn

R(A, B) is a left S-, right T-bimodule. In particular, if R
is commutative and A, B are R-modules, then Extn

R(A, B) is an R-module.

Proposition 4.7. For every family (Bi )i∈I of left R-modules there is an iso-
morphism Extn

R
(

A,
∏

i∈I Bi
)
∼=
∏

i∈I Extn
R(A, Bi ) , which is natural in A and

(Bi )i∈I .

Proposition 4.8. For every family (Ai )i∈I of left R-modules there is an isomor-
phism Extn

R
(⊕

i∈I Ai , B
)
∼=
∏

i∈I Extn
R(Ai , B) , which is natural in (Ai )i∈I

and B .

Abelian groups. The case R = Z provides some examples of Ext groups.

Proposition 4.9. Extn
Z
(A, B) = 0 for all n � 2 and abelian groups A

and B .
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Proof. Let R be a PID. Every submodule of a free R-module is free. Hence
every R-module A has a free resolution F : 0 −→ F1 −→ F0 −→ A in
which Fn = 0 for all n � 2. Then HomR(Fn, B) = 0 and Extn

R(A, B) ∼=
Hn(HomR(F, B)

)

= 0 when n � 2, for every R-module B . �

If A ∼= Z is infinite cyclic, then Ext1
Z
(A, B) = 0 for all B , since A is projec-

tive. The case of A ∼= Zm finite cyclic is an exercise:

Proposition 4.10. For every abelian group B there is an isomorphism
Ext1

Z
(Zm, B) ∼= B/m B , which is natural in B .

Combining Propositions 4.8 and 4.10 yields Ext1
Z
(A, B) when A is finitely

generated.

Exercises

1. Show that a left R-module P is projective if and only if Ext1R(P, B) = 0 for every left
R-module B . (In particular, the ring R is semisimple if and only if Ext1R(A, B) = 0 for all
left R-modules A and B .)

2. Show that a left R-module J is injective if and only if Ext1R(A, J) = 0 for every left
R-module A .

3. Prove that Ext1R(C, A) = 0 if and only if every short exact sequence 0 −→ A −→
B −→ C −→ 0 splits.

4. Show that a left R-module J is injective if and only if Ext1R(R/L , J) = 0 for every
left ideal L of R .

5. Explain how Extn
R(A, B) becomes a left S-, right T-bimodule when A is a left R-,

right S-bimodule and B is a left R-, right T-bimodule.

6. Prove the following: for every family (Bi )i∈I of left R-modules there is an isomorphism
Extn

R
(

A,
∏

i∈I Bi
)
∼=
∏

i∈I Extn
R(A, Bi ) , which is natural in A and (Bi )i∈I . (You

may want to follow the proof of Theorem 4.1.)

7. Prove the following: for every family (Ai )i∈I of left R-modules there is an isomorphism
Extn

R
(⊕

i∈I Ai , B
)
∼=
∏

i∈I Extn
R(Ai , B) , which is natural in (Ai )i∈I and B . (You

may want to follow the proof of Theorem 4.1.)

8. Prove that a ring R is left hereditary if and only if Extn
R(A, B) = 0 for all left R-modules

A and B .

9. Prove the following: for every abelian group B there is an isomorphism Ext1
Z
(Zm , B)

∼= B/m B , which is natural in B .

10. Show that, if the abelian group A is divisible by m (if m A = A ), then every short
exact sequence 0 −→ A −→ B −→ Zm −→ 0 splits.

11. Give another proof of Schur’s theorem for abelian groups: if m and n are relatively
prime, and m A = nC = 0, then every short exact sequence 0 −→ A −→ B −→ C −→ 0
splits.

12. Show that Ext1
Z
(A, Z) ∼= HomZ (A, Q/Z) for every torsion abelian group A .
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13. Let A be an abelian group such that p A = 0, where p is prime. Show that
Ext1

Z
(A, B) ∼= HomZ (A, B/pB) , for every abelian group B .

5. Tor

Tor is to tensor products as Ext is to Hom.

Definition. For every right R-module A and left R-module B , the right exact
functors A ⊗R − and − ⊗R B have left derived functors, temporarily denoted
by RTorR

n (A,−) and LTorR
n (−, B) , which with A ⊗R B = RTorR

0 (A, B) =
LTorR

0 (A, B) constitute positive connected sequences, such that RTorR
n (A, P)

= LTorR
n (Q, B) = 0 whenever P, Q are projective and n > 0.

Module homomorphisms ϕ : A −→ A′ and ψ : B −→ B′ induce natural
transformations ϕ ⊗R − from A ⊗R − to A′ ⊗R − and − ⊗R ψ from − ⊗R B
to −⊗R B′ , which by Theorem 3.3 induce natural transformations RTorR

n (ϕ,−)
from RTorR

n (A,−) to RTorR
n (A′,−) and LTorR

n (−, ψ) from LTorR
n (−, B)

to LTorR
n (−, B′) . As in Section 4, this makes RTorR

n and LTorR
n additive

bifunctors from right and left R-modules to abelian groups, covariant in both
variables.

Theorem 5.1. For every right R-module A and left R-module B and every
n > 0 there is an isomorphism LTorR

n (A, B) ∼= RTorR
n (A, B) , which is natural

in A and B .

The proof of Theorem 5.1 is similar to that of Theorem 4.1, and may be entrusted
to readers.

Definition. Up to isomorphisms that are natural in A and B , TorR
n (A, B) ∼=

LTorR
n (A, B) ∼= RTorR

n (A, B) , for every right R-module A and left R-module B .

The abelian groups TorR
n (A, B) are torsion products of A and B , after the

case of abelian groups, where TorZ

1 (A, B) is determined by the torsion parts of
A and B (see Proposition 5.9 below and the exercises).

Properties. First, TorR
n enjoys all the properties of LTorR

n and RTorR
n .

Proposition 5.2. TorR
n (−,−) is an additive bifunctor from right and left

R-modules to abelian groups, covariant in both variables.

Proposition 5.3. For every projective resolution P −→ A and Q −→ B there
are natural isomorphisms

TorR
n (A, B) ∼= Hn(P ⊗R B) ∼= Hn(A ⊗R Q).
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This follows from the definition of Tor and the definition of left derived
functors.

Theorem 5.4. (1) If A is projective, then TorR
n (A, B) = 0 for all n � 1 .

(2) If B is projective, then TorR
n (A, B) = 0 for all n � 1 .

(3) For every exact sequence A : 0 −→ A −→ A′ −→ A′′ −→ 0 and left
R-module B , there is an exact sequence, which is natural in A and B ,

· · · −→ TorR
n (A, B) −→ TorR

n (A′, B) −→ TorR
n (A′′, B) −→ · · ·

−→ TorR
1 (A′′, B) −→ A ⊗R B −→ A′ ⊗R B −→ A′′ ⊗R B −→ 0

(4) For every exact sequence B : 0 −→ B −→ B′ −→ B′′ −→ 0 and right
R-module A , there is an exact sequence, which is natural in A and B ,

· · · −→ TorR
n (A, B) −→ TorR

n (A, B′) −→ TorR
n (A, B′′) −→ · · ·

−→ TorR
1 (A, B′′) −→ A ⊗R B −→ A ⊗R B′ −→ A ⊗R B′′ −→ 0

This follows from Theorem 3.2. In fact, up to natural isomorphisms, TorR
n is the

only bifunctor with properties (1) and (3), and the only bifunctor with properties
(2) and (4), by Theorem 3.4.

Moreover, Tor inherits a number of properties from tensor products.

Proposition 5.5. For every right R-module A and left R-module B there is an
isomorphism TorR

n (A, B) ∼= TorRop
n (B, A) , which is natural in A and B .

Proof. There is an isomorphism A ⊗R B ∼= B ⊗Rop A , a ⊗ b �−→ b ⊗ a ,
which is natural in A and B . If P −→ A is a projective resolution of A as a right
R-module, then P −→ A is a projective resolution of A as a left Rop-module,
and the isomorphisms Pn ⊗R B ∼= B ⊗Rop Pn constitute a chain transformation
P ⊗R B ∼= B ⊗Rop P . Hence 5.3 yields isomorphisms

TorR
n (A, B) ∼= Hn(P ⊗R B) ∼= Hn(B ⊗Rop P) ∼= TorRop

n (B, A)

that are natural in P and B . Then TorR
n (A, B) ∼= TorRop

n (B, A) is natural in
A , since homomorphisms of A lift to its projective resolutions. �

Hence TorR
n (B, A) ∼= TorR

n (A, B) if R is commutative.

The next two results are exercises.

Proposition 5.6. If A is a left S-, right R-bimodule and B is a left R-, right
T-bimodule, then TorR

n (A, B) is a left S-, right T-bimodule. In particular, if R is
commutative and A, B are R-modules, then TorR

n (A, B) is an R-module.

Proposition 5.7. For every family (Bi )i∈I of left R-modules there is an isomor-

phism TorR
n
(

A,
⊕

i∈I Bi
)
∼=
⊕

i∈I TorR
n (A, Bi ) , which is natural in A and

(Bi )i∈I .
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Similarly, TorR
n
(⊕

i∈I Ai , B
)
∼=
⊕

i∈I TorR
n (Ai , B) .

Abelian groups. The case R = Z provides examples of Tor groups.

Proposition 5.8. TorZ

n (A, B) = 0 for all n � 2 and abelian groups A and B .

Proof. More generally, let R be a PID. Every submodule of a free R-module is
free. Hence every R-module A has a free resolution F : 0 −→ F1 −→ F0 −→ A
in which Fn = 0 for all n � 2. Then Fn ⊗R B = 0 and TorZ

n (A, B) ∼= Hn(F ⊗R
B) = 0 when n � 2, for every R-module B . �

If A ∼= Z is infinite cyclic, then TorZ

1 (A, B) = 0 for all B , since A is projec-
tive. The case of A ∼= Zm finite cyclic is an exercise:

Proposition 5.9. For every abelian group B there is an isomorphism
TorZ

1 (Zm, B) ∼= { b ∈ B
∣
∣ mb = 0 } , which is natural in B .

Propositions 5.7 and 5.9 yield TorZ

1 (A, B) whenever A is finitely generated.

Flat modules. Tor brings additional characterizations of flat modules.

Proposition 5.10. For a right R-module A the following properties are equi-
valent: (1) A is flat; (2) TorR

1 (A, B) = 0 for every left R-module B ; (3)
TorR

n (A, B) = 0 for every left R-module B and n � 1 .

Proof. Let Q −→ B be a projective resolution. If A is flat, then A ⊗R − is
exact, the sequence · · · −→ A ⊗R Q1 −→ A ⊗R Q0 −→ A ⊗R B −→ 0 is exact,
and TorR

n (A, B) ∼= Hn(A ⊗R Q) = 0 for all n � 1.

Conversely, if TorR
1 (A, B) = 0 for every left R-module B , and 0 −→ B −→

B′ −→ B′′ −→ 0 is a short exact sequence, then

0 = TorR
1 (A, B′′) −→ A ⊗R B −→ A ⊗R B′ −→ A ⊗R B′′ −→ 0

is short exact; hence A is flat. �

In particular, an abelian group A is torsion-free if and only if TorZ

1 (A, B) = 0
for every abelian group B .

Proposition 5.11. A right R-module A is flat if and only if A ⊗R L −→ A ⊗R RR
is injective for every left ideal L of R .

Proof. Assume that A ⊗R L −→ A ⊗R R is injective for every left ideal L of
R . Then 0 −→ L −→ RR −→ R/L −→ 0 induces an exact sequence

TorR
1 (A, RR) −→ TorR

1 (A, R/L) −→ A ⊗R L −→ A ⊗R RR

in which TorR
1 (A, RR) = 0 by Theorem 5.4 and A ⊗R L −→ A ⊗R RR is

injective. Therefore TorR
1 (A, R/L) = 0.
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Now, let B be a submodule of a finitely generated left R-module C . Since C
is finitely generated there is a tower

B = C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆ Cn = C

in which every Ci+1 is generated by Ci and one of the generators of C . Then
Ci+1/Ci is cyclic and Ci+1/Ci

∼= R/L for some left ideal L of R . Hence
TorR

1 (A, Ci+1/Ci ) = 0 and the exact sequence

TorR
1 (A, Ci+1/Ci ) −→ A ⊗R Ci −→ A ⊗R Ci+1

shows that A ⊗R Ci −→ A ⊗R Ci+1 is injective. Therefore A ⊗R B −→ A ⊗R C
is injective. Since this holds whenever C is finitely generated, A is flat, by
Proposition XI.8.5. �

Exercises

1. Adjust the proof of Theorem 4.1 to show that the two definitions of TorR
n are equivalent

(Theorem 5.1).

2. Explain how TorR
n (A, B) becomes a left S-, right T-bimodule when A is a left S-, right

R-bimodule and B is a left R-, right T-bimodule.

3. Prove the following: for every family (Bi )i∈I of left R-modules there is an isomorphism
TorR

n
(

A,
⊕

i∈I Bi
)
∼=
⊕

i∈I TorR
n (A, Bi ) , which is natural in A and (Bi )i∈I .

4. Let (Bi )i∈I be a direct system of left R-modules. Show that there is an isomorphism
TorR

n
(

A, lim
−→ i∈I Bi

)
∼= lim

−→ i∈I TorR
n (A, Bi ) , which is natural in A and (Bi )i∈I .

5. Let R be left hereditary. Show that TorR
n (A, B) = 0 for all A and B .

6. Prove that TorZ
1 (A, B) is torsion, for all abelian groups A and B .

7. Prove the following: for every abelian group B there is an isomorphism TorZ
1 (Zm , B)

∼= { b ∈ B
∣
∣ mb = 0 } , which is natural in B .

8. Prove that TorZ
1 (A, B) ∼= A ⊗Z B for all finite abelian groups A and B (the

isomorphism is not natural or canonical).

9. Let m and n be relatively prime, and let A, B be abelian groups such that m A = nB =
0. Show that TorZ

1 (A, B) = 0.

10. Show that there is a natural isomorphism TorZ
1 (Q/Z, B) ∼= B for every torsion

abelian group B .

11. Let T (B) = { b ∈ B
∣
∣ nb = 0 for some n =/ 0 } be the torsion part of B . Use the

previous exercise to show that there is a natural isomorphism TorZ
1 (Q/Z, B) ∼= T (B) .

12. Show that a right R-module A is flat if and only if TorR
1 (A, R/L) = 0 for every

finitely generated left ideal L of R .

13. A flat resolution of a right R-module A is an exact sequence F −→ A in which
F0, F1, F2, . . . are flat. Show that TorR

n (A, B) ∼= Hn(F ⊗R B) , by an isomorphism that
is natural in F and B .
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6. Universal Coefficient Theorems

For suitable complexes C , universal coefficient theorems compute the homology
groups of HomR(C, A) and C ⊗R A from the homology of C . In particular, the
homology and cohomology groups of a topological space (with coefficients in any
abelian group) are determined by its singular homology groups.

Both universal coefficient theorems require projective modules of cycles and
boundaries. This occurs most naturally when every Cn is projective and R is
hereditary, meaning that submodules of projective modules are projective. For
example, R may be any Dedekind domain or PID, such as Z .

Theorem 6.1 (Universal Coefficient Theorem for Cohomology). Let R be a
left hereditary ring; let C be a complex of projective left R-modules, and let M be
any left R-module. For every n ∈ Z there is an exact sequence

0 −→ Ext1
R
(

Hn−1(C), M
)

−→ Hn(C, M) −→ HomR
(

Hn(C), M
)

−→ 0,

which is natural in C and M and splits, by a homomorphism that is natural in M .

In particular, the singular cohomology of a topological space X is determined
by its homology: Hn(X, G) ∼= Hom

Z

(

Hn(X), G
)

⊕ Ext1
Z

(

Hn−1(X), G
)

.

Proof. Every ∂n : Cn −→ Cn−1 induces a commutative square

where Zn−1 = Ker ∂n−1 , ιn−1 and κn−1 are inclusion homomorphisms, Bn−1 =
Im ∂n , and πn x = ∂n x for all x ∈ Cn . Then the sequence

0 −→ Zn
ιn−→ Cn

πn−→ Bn−1 −→ 0

is exact. By definition of Hn = Hn(C) there is also a short exact sequence

0 −→ Bn
κn−→ Zn

ρn−→ Hn −→ 0.

These two sequences induce a commutative diagram D (top of next page) which
is natural in C and M ; the bottom row and first two columns are parts of the
long exact sequences in Theorem 4.4, and end with 0 since Bn, Zn ⊆ Cn are
projective, so that Ext1

R(Bn, M) = 0, Ext1
R(Zn, M) = 0 for all n . Then Lemma

6.2 below yields the universal coefficients sequence

0 −→ Ext1
R
(

Hn−1(C), M
) µ−→ Hn(C, M) σ−→ HomR

(

Hn(C), M
)

−→ 0,

which is natural in D and therefore in C and M .
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Moreover, the exact sequence

0 −→ Zn
ιn−→ Cn

πn−→ Bn−1 −→ 0

splits, since Bn−1 is projective, so that ξn ιn = 1Zn
for some ξn : Cn −→ Zn .

By Lemma 6.2 below, σ τ ξ∗n ρ∗
n is the identity on HomR(Hn, M) , where τ :

Ker ∂∗n+1 −→ Ker ∂∗n+1/Im ∂∗n is the projection; hence the universal coefficients
sequence splits. The homomorphism τ ξ∗n ρ∗

n is natural in M (when C is fixed)
but not in C , since there is no natural choice for ξn . �

Lemma 6.2. Every commutative diagram D in which the middle row is null

and the other rows and columns are exact induces an exact sequence

0 −→ C ′′ µ−→ Ker ψ/Im ϕ
σ−→ A′ −→ 0,

which is natural in D . Moreover, β ′ξ = 1B′ implies σπξϕ′ = 1A′ , where
π : Ker ψ −→ Ker ψ/Im ϕ is the projection.

Proof. Since γ is injective and α is surjective,

Ker ψ/Im ϕ = Ker γψ ′β ′/Im β ′′ϕ′′α = Ker ψ ′β ′/Im β ′′ϕ′′.

Now, β ′ sends Ker ψ ′β ′ = β ′−1Ker ψ ′ onto Ker ψ ′ = Im ϕ′ ∼= A′ , and
Im β ′′ϕ′′ onto 0. Therefore β′ induces a homomorphism σ : Ker ψ/Im ϕ −→
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A′ , which sends πb = b + Im ϕ to ϕ′−1β ′ b , for all b ∈ Ker ψ .

Next, β′′ sends B′′ onto Ker β ′ ⊆ Ker ψ and sends Im ϕ′′ onto Im β ′′ϕ′′ =
Im ϕ , so that πβ′′ = 0. By Lemma X.1.2, πβ′′ = µψ ′′ for some homomorphism
µ : C ′′ −→ Ker ψ/Im ϕ ; µ sends ψ ′′b′′ to πβ ′′b′′ , for all b′′ ∈ C ′′ :

The construction of µ and σ shows that they are natural in D . Exactness of

0 −→ C ′′ µ−→ Ker ψ/Im ϕ
σ−→ A′ −→ 0

is easy. If µψ ′′b′′ = 0, then β ′′b′′ ∈ Im ϕ = Im β ′′ϕ′′ , β ′′b′′ = β ′′ϕ′′a′′

for some a′′ ∈ A′′ , b′′ = ϕ′′a′′ , and ψ ′′b′′ = 0; hence µ is injective. Next,
ϕ′σµψ ′′ = ϕ′σπβ′′ = β ′β ′′ = 0; hence σµ = 0. Conversely, if σ πb = 0, then
β ′b = 0, b = β ′′b′′ for some b′′ ∈ B′′ , and πb = πβ ′′b′′ = µψ ′′b′′ ∈ Im µ . If
a′ ∈ A′ , then ϕ′a′ = β ′b for some b ∈ B , b ∈ Ker ψ since ψb = γψ ′β ′b =
γψ ′ϕ′a′ = 0, ϕ′σπb = β′b = ϕ′a′ , and a′ = σπb ; hence σ is surjective.

Finally, β′ξ = 1B′ implies ψξϕ′ = γψ ′β ′ξϕ′ = γψ ′ϕ′ = 0, Im ξϕ′ ⊆
Ker ψ , ϕ′σπξϕ′ = β ′ξϕ′ = ϕ′ , and σπξϕ′ = 1A′ . �

Theorem 6.3 (Universal Coefficient Theorem for Homology). Let R be a right
hereditary ring; let C be a complex of projective right R-modules, and let M be
any left R-module. For every n ∈ Z there is an exact sequence

0 −→ Hn(C) ⊗R M −→ Hn(C ⊗R M) −→ TorR
1
(

Hn−1(C), M
)

−→ 0,

which is natural in C and M and splits, by a homomorphism that is natural in M .

In particular, the singular homology of a topological space X with coefficients
in an abelian group G is determined by its plain homology:

Hn(X, G) ∼=
(

Hn(X) ⊗
Z

G
)

⊕ TorZ

1
(

Hn−1(X), G
)

.

Proof. The commutative square and exact sequences

0 −→ Zn
ιn−→ Cn

πn−→ Bn−1 −→ 0, 0 −→ Bn
κn−→ Zn

ρn−→ Hn −→ 0

in the proof of Theorem 6.1 induce a commutative diagram D (top of next page)
which is natural in C and M , whose bottom row and first two columns are parts
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of the long exact sequences in Theorem 5.4, and end with 0 since Bn, Zn ⊆ Cn
are projective, so that TorR

1 (Bn, M) = 0, TorR
1 (Zn, M) = 0 for all n . Lemma

6.2 then yields the universal coefficients sequence

0 −→ Hn(C) ⊗R M
µ−→ Hn(C ⊗R M) σ−→ TorR

1
(

Hn−1(C), M
)

−→ 0,

which is natural in D and therefore in C and M . Moreover, the exact sequence

0 −→ Zn
ιn−→ Cn

πn−→ Bn−1 −→ 0

splits, since Bn−1 is projective, and πn ξn = 1Bn−1
for some ξn : Bn−1 −→

Cn . By Lemma 6.2, σ τ ξn χ is the identity on TorR
1 (Hn, M) , where τ :

Ker ∂n+1 −→ Ker ∂n+1/Im ∂n is the projection. Thus, the universal coefficients
sequence splits like a dry log. As before, τ ξn χ is natural in M (when C is fixed)
but not in C . �

7. Cohomology of Groups

The cohomology of groups was discovered by Eilenberg and MacLane [1942]
and has become an essential tool of group theory. This section contains a few
definitions and early facts.

Cochains. In what follows, G is an arbitrary group, written multiplicatively.
By Corollary II.12.7, a group extension 1 −→ A −→ E −→ G −→ 1 of an
abelian group A (written additively) by G is determined by a group action of G
on A by automorphisms, equivalently, a homomorphism G −→ Aut (A) , and
a factor set s , which is a mapping s : G × G −→ A such that sx,1 = 0 = s1,y
and

sx,y + sxy, z = xsy,z + sx, yz

for all x, y, z ∈ G . By Corollary II.12.8, two extensions of A by G are equiv-
alent if and only if they share the same action of G on A and their factor



7. Cohomology of Groups 501

sets s, t satisfy

sx,y − tx,y = ux + xuy − uxy

for all x, y ∈ G , where ux ∈ A and u1 = 0, that is, s − t is a split factor set.

Cochains and their coboundaries are defined in every dimension n � 0 so that
factor sets are 2-cocycles and split factor sets are 2-coboundaries.

Definitions. Let A be an abelian group on which the group G acts by auto-
morphisms. For every n � 0 , an n-cochain on G with values in A is a mapping
u : Gn −→ A such that ux1, . . . , xn

= 0 whenever xi = 1 for some i . The
coboundary of an n-cochain u is the (n + 1)-cochain

(δnu)x1, . . . , xn+1
= x1 ux2, . . . , xn+1

+
∑

1�i�n (−1)i ux1, . . . , xi xi+1, . . . , xn+1
+ (−1)n+1 ux1, . . . , xn

.

Readers will verify that (δu)x1, . . . , xn+1
= 0 whenever xi = 1 for some i . The

equality δn+1 δnu = 0 follows from Proposition 7.5 below but may be verified
directly.

Definitions. Let A be an abelian group on which the group G acts by automor-
phisms. Under pointwise addition, n-cochains, n-cocycles, and n-coboundaries
constitute abelian groups Cn(G, A) , Zn(G, A) = Ker δn , and Bn(G, A) =
Im δn−1 ⊆ Zn(G, A) (with B0(G, A) = 0). The nth cohomology group of
G with coefficients in A is Hn(G, A) = Zn(G, A)/Bn(G, A) .

In particular, a 0-cochain u : G0 = {Ø} −→ A is an element of A ; its
coboundary is (δu)x = xu − u . A 1-cochain is a mapping u : G −→ A such that
u1 = 0. A 2-coboundary (δu)x,y = xuy − uxy + ux is a split factor set. A 2-
cochain is a mapping u : G × G −→ A such that ux,1 = 0 = u1,y for all x, y ∈ G ;
its coboundary is (δu)x,y,z = xuy,z − uxy,z + ux,yz − ux,y . Hence factor sets
are 2-cocycles. By the above, there is a one-to-one correspondence between the
elements of H2(G, A) and the equivalence classes of group extensions of G by
A with the given action: H2(G, A) classifies these extensions.

Readers will verify the following simpler examples:

Proposition 7.1. (1) H0(G, A) ∼= { a ∈ A
∣
∣ xa = a for all x ∈ G } .

(2) If G acts trivially on A (if xa = a for all x, a ), then H0(G, A) ∼= A and
H1(G, A) ∼= Hom(G, A) .

In (2), group homomorphisms of G into A can be added pointwise, since A is
abelian; this makes the set Hom(G, A) an abelian group.

Proposition 7.2. If G is finite and n � 1 , then Hn(G, A) is torsion, and the
order of every element of Hn(G, A) divides the order of G ; if A is divisible and
torsion-free, then Hn(G, A) = 0 .
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Proof. Let u be an n-cochain. Define an (n − 1)-cochain vx1, . . . , xn−1
=

∑

x∈G ux1, . . . , xn−1, x . Then
∑

x∈G (δnu)x1, . . . , xn , x = x1
∑

x∈G ux2, . . . , xn , x

+
∑

1�i<n (−1)i ∑
x∈G ux1, . . . , xi xi+1, . . . , x

+ (−1)n∑
x∈G ux1, . . . , xn−1, xn x + (−1)n+1∑

x∈G ux1, . . . , xn

= x1 vx2, . . . , xn
+
∑

1�i<n (−1)i vx1, . . . , xi xi+1, . . . , xn

+ (−1)n vx1, . . . , xn−1
+ (−1)n+1 mux1, . . . , xn

= (δn−1v)x1, . . . , xn
+ (−1)n+1 mux1, . . . , xn

,

where m = |G| . If u is an n-cocycle, then mu ∈ Im δn−1 and m cls u = 0.

Let u be an n-cocycle and let v be as above. If A is divisible and torsion-free,
then there is for every a ∈ A a unique b ∈ A such that mb = a . Therefore there
is a unique n-cochain w such that mw = v . Then m δw = δv = (−1)n mu ; since
A is torsion-free this implies u = (−1)n δw and cls u = 0. �

G-modules. We now construct a complex of modules whose cohomology
groups are the cohomology groups of G .

With group algebras (just escaped from Section IX.7), abelian groups on which
G acts by automorphisms acquire module status. Let R be a commutative ring
[with identity]. There is a free R-module R[G] with basis G ; the elements of
R[G] are linear combinations k =

∑

x∈G kx x of elements of G with coefficients
kx ∈ R such that kx = 0 for almost all x ∈ G . On R[G] there is a bilinear
multiplication that extends the multiplication of G : when k, � ∈ R[G] , then
m = k� has

mx =
∑

y,z∈G, yz=x ky �z

for all x ∈ G . This makes R[G] a ring, the group ring or group algebra of G .

Proposition 7.3. For every abelian group A, there is a one-to-one corre-
spondence between group actions of G on A by automorphisms, and [unital]
Z[G]-module structures on A .

This is similar to Proposition IX.7.3. A group action (g, a) �−→ ga of G
extends to a module action

(∑

x∈G kx x
)

a =
∑

x∈G kx xa of Z[G] ; readers will
verify that this defines the one-to-one correspondence in Proposition 7.3.

In what follows, a G-module is a Z[G]-module; equivalently, an abelian group
on which G acts by automorphisms.

The bar resolution. The bar resolution derives its name from the original
notation [ x1 | x2 | . . . | xn] for the generators [ x1, . . ., xn] of Bn below.

For every n � 0 let Bn be the free G-module generated by all sequences
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[ x1, . . ., xn] of n elements xi =/ 1 of G . It is convenient to let

[ x1, . . ., xn] = 0 whenever xi = 1 for some i .

In particular, B0 is the free G-module Z[G] with one generator [ ] .

Lemma 7.4. For every n � 1 there is a unique module homomorphism ∂n :
Bn −→ Bn−1 such that

∂n[ x1, . . ., xn] = x1 [ x2, . . ., xn]

+
∑

1�i<n (−1)i [ x1, . . ., xi xi+1, . . ., xn] + (−1)n [ x1, . . ., xn−1]

for all x1, . . ., xn ∈ G . Moreover, ∂n+1 ∂n = 0 .

The proof is an exercise. Another proof that ∂n+1 ∂n = 0 is given below.

Definition. The positive complex · · · −→ B2
∂2−→ B1

∂1−→ B0 −→ 0 · · · of
G-modules is the bar complex of G .

Proposition 7.5. For every G-module A , there is an isomorphism Cn(G, A)
∼= Hom

Z[G] (Bn, A) , which is natural in A , such that the square

commutes for every n � 0 . Hence the cohomology groups of G are those of its
bar complex, up to isomorphisms that are natural in A .

Proof. Since Bn is free on all [ x1, . . ., xn] such that xi =/ 1 for all i , every
n-cochain u induces a unique homomorphism θnu : Bn −→ A such that

(θnu) [ x1, . . . , xn] = ux1, . . . , xn

whenever xi =/ 1 for all i . Then θnu [ x1, . . . , xn] = ux1, . . . , xn
for all x1, . . . ,

xn ∈ G , since both sides are 0 if any xi = 1. It is immediate that θn :
Cn(G, A) −→ Hom

Z[G] (Bn, A) is an isomorphism and is natural in A .

The definition of ∂n was tailored to ensure that ∂∗n+1 θn = θn+1 δn : for every
u ∈ Cn(G, A) , ∂∗n+1(θ

nu) = (θnu) ◦ ∂n+1 ; hence, for all x1, . . ., xn+1 ∈ G ,
(

∂∗n+1 θnu
)

[ x1, . . . , xn+1] = (θnu) ∂n+1 [ x1, . . ., xn+1]

= (θnu) x1 [ x2, . . ., xn+1]

+
∑

1�i�n (−1)i (θnu) [ x1, . . ., xi xi+1, . . ., xn+1]

+ (−1)n+1 (θnu) [ x1, . . . , xn]

= x1 ux2, . . . , xn+1

+
∑

1�i�n (−1)i ux1, . . . , xi xi+1, . . . , xn+1
+ (−1)n+1 ux1, . . . , xn

= (δnu)x1, . . . , xn+1
=
(

θn+1(δnu)
)

[ x1, . . ., xn+1]. �
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Since every Bn is a projective G-module, Theorem 1.7 yields:

Theorem 7.6 (Exact Cohomology Sequence). For every short exact sequence
E : 0 −→ A −→ A′ −→ A′′ −→ 0 of G-modules there is an exact sequence

· · · −→ Hn(G, A) −→ Hn(G, A′) −→ Hn(G, A′′) −→ Hn+1(G, A) −→ · · · ,
which is natural in E .

The bar complex has another property. Let Z be the trivial G-module. There
is a unique module homomorphism ε : B0 −→ Z such that ε[ ]= 1. Since G acts
trivially on Z we have ε x [ ] = x1 = 1 and

ε
(∑

x∈G kx x [ ]
)

=
∑

x∈G kx for all k =
∑

x∈G kx x ∈ Z[G] .

Proposition 7.7. B : · · · −→ B2
∂2−→ B1

∂1−→ B0
ε−→ Z is a free resolution of

the trivial G-module Z .

Proof. Without its G-module structure, Bn is a free abelian group: every
element of Bn is uniquely a linear combination with coefficients in Z[G] of
generators [ x1, . . ., xn] with xi ∈ G and xi =/ 1 for all i ; therefore every
element of Bn is uniquely a linear combination with coefficients in Z of elements
of the form x [ x1, . . ., xn] with x ∈ G and xi ∈ G , xi =/ 1 for all i .

By the above there is a unique homomorphism sn : Bn −→ Bn+1 of abelian
groups (which will yield a chain homotopy from 1B to 0) such that

sn x [ x1, . . . , xn] = [ x, x1, . . ., xn]

whenever xi =/ 1 for all i . The equality sn x [ x1, . . ., xn] = [ x, x1, . . ., xn] also
holds if some xi = 1. Let s−1 : Z −→ B0 , m −→ m [ ] ; let sn = 0 for all
n < −1. Then ε s−1 = 1

Z
. Since ε x [ ] = 1,

∂1s0x [ ] = ∂1[ x] = x [ ] − [ ] = x [ ] − s−1 ε x [ ]

for all x ∈ G , and ∂1s0 + s−1 ε = 1B0
. Similarly,

∂n+1sn x [ x1, . . . , xn] = ∂n+1[ x, x1, . . . , xn]

= x [ x1, . . . , xn] − [ xx1, . . ., xn]

+
∑

2�i�n (−1)i [ x, . . ., xi xi+1, . . ., xn] + (−1)n+1 [ x, x1, . . ., xn−1],

sn−1∂n x [ x1, . . . , xn] = sn−1 xx1 [ x2, . . ., xn]

+
∑

1�i<n (−1)i sn−1 x [ x1, . . . , xi xi+1, . . . , xn]

+ (−1)n sn−1 x [ x1, . . . , xn−1];

hence ∂n+1sn x [ x1, . . . , xn] = x [ x1, . . ., xn] − sn−1∂n x [ x1, . . ., xn] and
∂n+1sn + sn−1∂n = 1Bn

.

The equality ε ∂1 = 0 then yields ∂1 ∂2s1 = ∂1 (1 − s0∂1) = ∂1 − ∂1s0∂
1 =

∂1 − (1 − s−1 ε) ∂1 = 0, whence ∂1 ∂2 = 0, since B2 is generated by Im s1 .
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Similarly, ∂n−1 ∂n = 0 implies ∂n ∂n+1sn = ∂n (1 − sn−1∂n) = ∂n − ∂nsn−1∂
n =

∂n − (1 − sn−2 ∂n−1) ∂n = 0 and ∂n ∂n+1 = 0, since Im sn generates Bn+1 .
Hence ∂n ∂n+1 = 0 for all n .

Now, s is a chain homotopy from the identity on B to 0 : B −→ B . By 1.2,
Hn(1B) = Hn(0) ; hence Hn(B) = 0 for all n and B is exact. �

Definition. B : · · · −→ B2
∂2−→ B1

∂1−→ B0
ε−→ Z is the bar resolution of G .

Propositions 7.7 and 4.3 now team up and produce the next result:

Theorem 7.8. There is an isomorphism Hn(G, A) ∼= Extn
Z[G](Z, A) that is

natural in A , where Z is the trivial G-module.

Free groups. With Theorem 7.8, the cohomology of some groups can be
calculated from other projective resolutions of Z . We do this for free groups and
leave cyclic groups as exercises. Let

I (G) =
{∑

x∈G kx x ∈ Z[G]
∣
∣
∑

x∈G kx = 0
}

;

equivalently, I (G) = { k ∈ Z[G]
∣
∣ ε
(

k[ ]
)

= 0 } , so I (G) is an ideal of Z[G] .

Lemma 7.9. If G is the free group on (xi )i∈I , then I (G) is a free G-module,
with basis (xi − 1)i∈I .

Proof. Let M be the submodule of I (G) generated by all xi − 1. We show by
induction on the length of the reduced word x ∈ G that x − 1 ∈ M for all x ∈ G :
indeed, if x =/ 1, then either x = xi y or x = x−1

i y , where y is shorter than x ,
and the induction hypothesis yields either xi y − 1 = xi (y − 1) + (xi − 1) ∈ M
or x−1

i y − 1 = x−1
i (y − 1) − x−1

i (xi − 1) ∈ M . Then k =
∑

x∈G kx x ∈ I (G)
implies k =

∑

x∈G kx (x − 1) ∈ M , since
∑

x∈G kx = 0. Thus I (G) = M is
generated by all xi − 1.

To prove that (xi − 1)i∈I is linearly independent in I (G) we show that, for
every G-module A and ai ∈ A , there is a module homomorphism ϕ : I (G)−→ A
such that ϕ (xi − 1) = ai for all i . In particular, there is a homomorphism
ϕj : I (G) −→ Z[G] such that ϕj (xj − 1) = 1 and ϕj (xi − 1) = 0 for all i =/ j ;
hence

∑

i∈I ki (xi − 1) = 0 implies kj = ϕj
(∑

i∈I ki (xi − 1)
)

= 0 for all j .
(Alternately, (xi − 1)i∈I has the universal property that characterizes bases.)

Given ai ∈ A , define u(x) ∈ A as follows for all x ∈ G (so that u(x) =
ϕ(x − 1) , once we construct ϕ ). If x = 1, then u(x) = 0. If x =/ 1, then either
x = xi y or x = x−1

i y , where y is shorter than x ; let

u(xi y) = xi u(y) + ai , u(x−1
i y) = x−1

i u(y) − x−1
i ai , (1)

when xi y or x−1
i y is reduced. In particular, u(xi ) = ai . Then (1) holds for

all xi and y : if xi y is not reduced, then y = x−1
i z and xi u(x−1

i z) + ai =
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xi
(

x−1
i u(z)− x−1

i ai
)

+ ai = u(z) = u(xi y) ; if x−1
i y is not reduced, then y = xi z

and x−1
i u(xi z) − x−1

i ai = x−1
i
(

xi u(z) + ai
)

− x−1
i ai = u(z) = u(x−1

i y) .

We show, by induction on the length of x ∈ G , that

u(xy) = x u(y) + u(x) (2)

for all x, y ∈ G (so that u is a 1-cocycle). Indeed, (2) holds when x = 1. If
x =/ 1, then either x = xi z or x = x−1

i z , where z is shorter than x ; by (1) and the
induction hypothesis, either

u(xy) = u(xi zy) = xi u(zy) + ai
= xi z u(y) + xi u(z) + ai = x u(y) + u(x),

or

u(xy) = u(x−1
i zy) = x−1

i u(zy) − x−1
i ai

= x−1
i z u(y) + x−1

i u(z) + x−1
i ai = x u(y) + u(x).

Now, define, for every k =
∑

x∈G kx x =
∑

x∈G kx (x − 1) ∈ I (G) ,

ϕ(k) =
∑

x∈G kx u(x) ∈ A.

Then ϕ is additive and ϕ(xi − 1) = u(xi ) − u(1) = ai . For all x ∈ G and
k =
∑

y∈G ky y ∈ I (G) , xk =
∑

y∈G ky xy and (2) yields

ϕ(xk) =
∑

y∈G ky u(xy) =
∑

y∈G ky xu(y) +
∑

y∈G ky u(x)

=
∑

y∈G ky xu(y) = x ϕ(k),

since
∑

y∈G ky = 0. Hence ϕ is a module homomorphism. �

Proposition 7.10. Hn(G, A) = 0 for all n � 2 when G is a free group.

Proof. By Lemma 7.9, · · · −→ 0 −→ 0 −→ I (G) −→ Z[G] −→ Z is a
projective resolution of Z ; hence Extn

Z[G](Z, A) = 0 when n � 2. �

Exercises
1. Let A be an abelian group. Show that there is a one-to-one correspondence between

group actions of G on A by automorphisms, and [unital] Z[G]-module structures on A .

2. Let u ∈ Cn(G, A) . Verify directly that δnu ∈ Cn+1(G, A) and that δn+1δnu = 0.

3. Give a direct proof that ∂n+1 ∂n = 0 in the bar resolution.

4. Show that H0(G, A) ∼= { a ∈ A
∣
∣ xa = a for all x ∈ G } .

5. Show that H1(G, A) ∼= Hom(G, A) when G acts trivially on A .

6. Show that H2(G, Z) ∼= Hom(G, R/Z) when R and Z are trivial G-modules.

7. Use Proposition 7.2 to give another proof of Maschke’s theorem: if G is finite and
K is a field whose characteristic does not divide |G| , then K [G] is semisimple. (Hint:
multiplication by |G| is an automorphism of any K [G]-module.)
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8. Show that Hom
Z[G] (I (G), A) ∼= Z1(G, A) for every group G and G-module A .

(Hint: the isomorphism sends ϕ : I (G) −→ A to x �−→ ϕ(x − 1) .)

9. Prove the following: if G is finite and A is a finitely generated G-module, then A is
finitely generated as an abelian group and Hn(G, A) is finite for all n � 1 .

10. Let G = 〈 c
∣
∣ cm = 1 〉 be cyclic of order m and let p = 1 + c + · · · + cm−1 ,

q = c − 1 ∈ Z[G] . Show that Z has a free resolution

· · · Z[G]
q∗−→ Z[G]

p∗−→ Z[G]
q∗−→ Z[G]

ε−→ Z,

in which multiplication by p and q induces p∗ and q∗ . Then find Hn(G, A) .

8. Projective Dimension

The projective dimension of a module M is the least integer n for which there
exists a projective resolution 0 −→ Pn −→ · · · −→ P0 −→ A −→ 0. This
section contains general properties.

Syzygies. We begin with some properties of the syzygies of a module A ,

which, in a projective resolution · · · P2
∂2−→ P1

∂1−→ P0
ε−→ A −→ 0 of A , are the

modules K0 = Ker ε , Kn = Ker ∂n . Syzygies come with short exact sequences
0 −→ K0 −→ P0 −→ A −→ 0, 0 −→ Kn −→ Pn −→ Kn−1−→ 0.

Proposition 8.1. For every module B and n � 1 there are isomorphisms

Extn+1(A, B) ∼= Extn(K0, B) ∼= Extn−1(K1, B) ∼= · · · ∼= Ext1(Kn−1, B)

that are natural in B .

Proof. Since all Pm are projective, Theorem 4.4 and the exact sequences
0 −→ K0 −→ P0 −→ A −→ 0, 0 −→ Km −→ Pm −→ Km−1 −→ 0 yield
exact sequences that are natural in B , for every k, m � 1:

0 −→ Extn+1(A, B) −→ Extn(K0, B) −→ 0,

0 −→ Extk+1(Km, B) −→ Extk(Km−1, B) −→ 0. �

There is also a uniqueness result for syzygies.

Definition. Two modules A and B are projectively equivalent when P ⊕
A ∼= Q ⊕ B for some projective modules P and Q .

Proposition 8.2. If K0, K1, . . . and L0, L1, . . . are the syzygies of a module
A in two projective resolutions P −→ A, Q −→ A of A , then Kn and Ln are
projectively equivalent for all n � 0 .

Proof. First we prove Schanuel’s lemma: in the diagram with exact rows (solid
arrows, next page), if P and Q are projective and θ is an isomorphism, then
P ⊕ L ∼= Q ⊕ K :
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By 2.1, the diagram can be completed to a commutative diagram (all arrows).
Define κ : K −→ P ⊕ L and ρ : P ⊕ L −→ Q by κx = (µx, αx) and
ρ(p, y) = βp − νy . Then κ is injective like µ , ρ is surjective like β , and
ρµ = 0; moreover, ρ(p, y) = βp − νy = 0 implies θσ p = τβp = τνy = 0,
σ p = 0, p = µx for some x ∈ K , ναx = βµx = βp = νy , y = αx , and
(p, y) = κx . Thus the sequence

0 −→ K κ−→ P ⊕ L
ρ−→ Q −→ 0

is exact. Since Q is projective, this sequence splits, and P ⊕ L ∼= Q ⊕ K .

That Kn and Ln are projectively equivalent is now proved by induction on n .
First, K0 and L0 are projectively equivalent, by Schanuel’s lemma. In general,
arbitrary modules P and Q beget an exact sequence

0 −→ Kn+1
µ−→ P ⊕ Pn+1

σ−→ P ⊕ Kn −→ 0,

in which µx = (0, x) and σ (x, y) = (x, ∂y) , and a similar sequence

0 −→ Ln+1
ν−→ Q ⊕ Qn+1

τ−→ Q ⊕ Ln −→ 0.

If P and Q are projective and P ⊕ Kn
∼= Q ⊕ Ln , then P ⊕ Pn+1 and Q ⊕ Qn+1

are projective and Schanuel’s lemma yields P ⊕ Pn+1 ⊕ Ln+1
∼= Q ⊕ Qn+1 ⊕

Kn+1 . �

The cosyzygies of a module A in an injective resolution 0 −→ A
η−→ J 0 δ0

−→
J 1 δ1

−→ · · · are the modules L0 = Coker η , L1 = Coker δ0 , . . . . They have
similar properties (see the exercises).

Modules. We now define the projective dimension of a module.

Proposition 8.3. For a module A the following conditions are equivalent:

(1) A has a projective resolution 0 −→ Pn −→ · · · −→ P0 −→ A −→ 0 ;

(2) Extm(A, B) = 0 for all m � n + 1 and all modules B ;

(3) Extn+1(A, B) = 0 for all modules B ;

(4) the (n−1)th syzygy is projective in every projective resolution of A;

(5) the (n−1)th syzygy is projective in some projective resolution of A .

Proof. (3) implies (4): by 8.1, Ext1(Kn−1, B) = Extn+1(A, B) = 0 for all
B ; hence Kn−1 is projective, by 4.5. Clearly (1) implies (2), (2) implies (3), (4)
implies (5), and (5) implies (1). �

Definition. If there is an integer n � 0 such that the equivalent conditions
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in Proposition 8.3 hold, then the least such integer is the projective dimension
pd A or pdR A of the module A; otherwise, pd A = ∞ .

For example, pd A = 0 if and only if A is projective, by 4.5; pd
Z

A � 1 for
every abelian group A , by 4.9. The exercises give an example with pd A = ∞ .

Proposition 8.4. If 0 −→ A −→ B −→ C −→ 0 is exact, then:

(1) pd B � max (pd A,pd C) ;

(2) pd A � max (pd B,pd C − 1);

(3) pd C � max (pd A + 1, pd B) ;

(4) if B is projective, then either A and C are projective or pd C = 1 + pd A.

Proof. (1). If pd A, pd C � n , then 0 = Extn+1(C, M) −→ Extn+1(B, M)
−→ Extn+1(A, M) = 0 is exact for every module M ; hence Extn+1(B, M) = 0
for all M and pd B � n .

(2). If pd B � n , pd C � n + 1, then 0 = Extn+1(B, M)−→Extn+1(A, M)
−→ Extn+2(C, M) = 0 is exact for every module M ; hence Extn+1(A, M) = 0
for all M and pd A � n .

(3). If pd A � n , pd B � n + 1, then 0 = Extn+1(A, M)−→Extn+2(C, M)
−→ Extn+2(B, M) = 0 is exact for every module M ; hence Extn+2(C, M) = 0
for all M and pd C � n + 1.

(4). If B and C are projective, then the sequence splits, B ∼= A ⊕ C , and
A is projective. If B is projective but not C , then pd B = 0, pd C � 1, and
pd A � pd C − 1, pd C � pd A + 1 by (2), (3); hence pd C = pd A + 1. �

Proposition 8.5. pd
(⊕

i∈I Ai
)

= l.u.b. i∈I pd Ai .

The proof is an exercise.

Injective dimension is defined similarly:

Proposition 8.6. For a module B the following conditions are equivalent:

(1) B has an injective resolution 0 −→ B −→ J0 −→ · · · −→ Jn −→ 0 ;

(2) Extm(A, B) = 0 for all m � n + 1 and all modules A;

(3) Extn+1(A, B) = 0 for all modules A .

Definition. If there is an integer n � 0 such that the equivalent conditions in
Proposition 8.6 hold, then the least such integer is the injective dimension id B
or idR B of the module B ; otherwise, id B = ∞ .

The injective dimension has properties similar to Propositions 8.4 and 8.5 (see
the exercises).

Exercises
1. Let A and B be projectively equivalent. Show that Extn(A, C) ∼= Extn(B, C) for

every module C .
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2. Let F be a covariant right exact functor with left derived functors L1, L2, . . . . Let
K0, K1, . . . be syzygies of A . Show that

Ln+1 A ∼= Ln K0 ∼= Ln−1K1 ∼= · · · ∼= L1Kn−1 .

3. Let F be a contravariant left exact functor with right derived functors R1, R2, . . . . Let
L0, L1, . . . be cosyzygies of B . Show that

Rn+1B ∼= Rn L0 ∼= Rn−1L1 ∼= · · · ∼= R1Ln−1 .
Hence Extn+1(A, B)∼= Extn(A, L0)∼= Extn−1(A, L1) ∼= · · · ∼= Ext1(A, Ln−1) for
every module A .

4. Define injectively equivalent modules. If L0, L1, . . . and M0, M1, . . . are the
cosyzygies of a module A in two injective resolutions A −→ J , A −→ K of A , show that
Ln and Mn are injectively equivalent for all n � 0 .

5. Let p be prime and let R = Z/p2
Z and A = pZ/p2

Z . Show that R
p∗−→ R

p∗−→ R
ε−→ A −→ 0 is exact, where p∗ is multiplication by p and ε1 = p ; hence pdR A = ∞ .

6. Prove that pd
(⊕

i∈I Ai
)

= l.u.b. i∈I pd Ai .

7. For every R-module A , show that pd A = n < ∞ implies Extn
R(A, R) =/ 0 .

8. Prove that a module B has an injective resolution 0 −→ B −→ J0 −→ · · · −→
Jn −→ 0 if and only if Extn+1(A, B) = 0 for all A , and then Extm(A, B) = 0 for all A
and all m � n + 1.

9. Show that id B � max (id A, id C) when 0 −→ A −→ B −→ C −→ 0 is exact.

10. Prove that id
(∏

i∈I Ai
)

= l.u.b. i∈I id Ai .

In the following exercises, ρ : S −→ R is a ring homomorphism, so that every left R-module
A is also a left S-module. Use Propositions 8.4, 8.5 to prove:

11. pdS A � pdR A + pdS R for every left R-module A .

12. If pdS A = pdR A + pdS R whenever A =/ 0 and pdR A � 1 , then pdS A =
pdR A + pdS R whenever A =/ 0 and pdR A < ∞ .

9. Global Dimension

The left global dimension of a ring R is the upper bound of the projective dimen-
sions of its left R-modules. We prove Hilbert’s theorem on syzygies, which gives
the global dimension of K [X1, ..., Xn] when K is a field.

By Propositions 8.3 and 8.6, the following properties are equivalent for any
ring R : (1) pd A � n for every left R-module A ; (2) Extn+1

R (A, B) = 0 for all
left R-modules A and B ; (3) id B � n for every left R-module B .

Definition. If there is an integer n � 0 such that Extn+1
R (A, B) = 0 for all

left R-modules A and B , then the least such integer is the left global dimension
lgld R of the ring R ; otherwise, lgld R = ∞ .

For example, lgld R = 0 if and only if every left R-module is projective, if and
only if R is semisimple. By Proposition 4.9, lgld Z = 1. In fact, lgld R = 1 if
and only if R is left hereditary, but not semisimple (see the exercises).
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A ring R also has a right global dimension rgld R , which is defined similarly,
using right R-modules instead of left R-modules. The example in Section X.6 of
a ring that is left hereditary but not right hereditary shows that the left and right
global dimensions may be different. If R is commutative, however, then the two
global dimensions of R are equal, and R has a global dimension gld R = lgld R =
rgld R .

Our main result gives gld K [X1, ..., Xn] when K is a field:

Theorem 9.1 (Hilbert’s Theorem on Syzygies). gld K [X1, ..., Xn] = n , for
every field K .

Hilbert’s original statement applied to ideals of K [X1, ..., Xn] and stated that
their syzygies vanish in dimensions above n in a suitable projective resolution.
We deduce Theorem 9.1 from a more general statement:

Theorem 9.2. For any ring R , lgld R[X ] = lgld R + 1 .

The proof of Theorem 9.2 uses change of ring constructions. Since R is a
subring of R[X ] , every left R[X ]-module is, in particular, a left R-module. Con-
versely, every left R-module A has a universal left R[X ]-module A = R[X ]⊗R A
(Proposition XI.5.10). We note the following properties.

Lemma 9.3. Let A be a left R-module. Every element of A = R[X ] ⊗R A can
be written uniquely as a sum

∑

k Xk ⊗ ak , where ak ∈ A for all k and ak = 0
for almost all k . So A is, an an R-module, a direct sum of copies of A .

Proof. As a right R-module, R[X ] is free with basis 1, X, X2, . . . ; hence 9.3
follows from XI.5.9. �

Lemma 9.4. If P is a projective R-module, then P is a projective R[X ]-module.
Conversely, a projective R[X ]-module is also projective as an R-module.

Proof. If F ∼=
⊕

i∈I RR is a free left R-module, then

F ∼=
⊕

i∈I R[X ] ⊗R RR ∼=
⊕

i∈I R[X ]

is a free left R[X ]-module. If now P is a projective R-module, then some P ⊕ Q
is a free R-module, P ⊕ Q ∼= P ⊕ Q is a free R[X ]-module, and P is a projective
R[X ]-module. Conversely, a free R[X ]-module

⊕

i∈I R[X ] is a direct sum of
copies of RR and is free as an R-module; hence a projective R[X ]-module is also
projective as an R-module. �

Lemma 9.5. pdR[X ] A = pdR A for every left R-module A .

Proof. If pdR A � n , then A has a projective resolution 0 −→ Pn −→
· · · −→ P0 −→ A −→ 0 (over R ); since R[X ] is flat as a right R-module,
0 −→ Pn −→ · · · −→ P0 −→ A −→ 0 is exact, and is, by 9.4, a projective
resolution over R[X ] ; hence pdR[X ] A � n . Conversely, if pdR[X ] A � n , then
A has a projective resolution 0 −→ Qn −→ · · · −→ Q0 −→ A −→ 0 over
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R[X ] , which, by 9.4, is also a projective resolution over R ; hence pdR A � n ,
and pdR A = pdR A � n by 8.5, 9.3. �

Lemma 9.6. For every R[X ]-module A there is an exact sequence 0 −→ A −→
A −→ A −→ 0 .

Proof. By 9.3, every element of A is a sum
∑

0�k�m Xk ⊗ ak , where ak ∈ A .

Hence there is an R[X ]-homomorphism σ : A −→ A such that σ (Xk ⊗ a) = Xka ,
and σ is surjective. Since A is an R[X ]-module, there is also an R[X ]-homo-
morphism µ : A −→ A such that µ (Xk ⊗ a) = (Xk ⊗ Xa) − (Xk+1 ⊗ a) .
Then

µ
(∑

0�k�m Xk ⊗ ak
)

=
∑

0�k�m Xk ⊗ Xak −
∑

0�k�m Xk+1 ⊗ ak

= 1 ⊗ Xa0 +
∑

1�k�m Xk ⊗ (Xak − ak−1) − Xm+1 ⊗ am .

We show that 0 −→ A
µ−→ A σ−→ A −→ 0 is exact.

If µ
(∑

0�k�m Xk ⊗ ak
)

= 0, then Xa0 = 0, Xak − ak−1 = 0 for all
1 � k � m , and am = 0; hence ak = 0 for all 0 � k � m . Thus µ is injective.

Next, σµ = 0, since σ µ (Xk ⊗ a) = σ (Xk ⊗ Xa) − σ (Xk+1 ⊗ a) = 0 for all
k and a .

Finally, let σ
(∑

0�k�m+1 Xk ⊗ ck
)

=
∑

0�k�m+1 Xkck = 0. Define am, . . .,
a1, a0 by

−am = cm+1 , ak−1 = Xak − ck for all 1 � k � m .

Then Xa0 = X2a1 − Xc1 = X3a2 − X2c2 − Xc1 = · · · = Xm+1am − Xmcm −
· · · − Xc1 = −Xm+1cm+1 − Xmcm − · · · − Xc1 = c0 and

µ
(∑

0�k�m Xk ⊗ ak
)

=
∑

0�k�m+1 Xk ⊗ ck . �

Corollary 9.7. lgld R[X ] � lgld R + 1 .

Proof. If lgld R = ∞ , then, for every n < ∞ , some R-module A has pdR A �
n , whence pdR[X ] A � n , by 9.5; thus lgld R[X ] = ∞ . If lgld R = n < ∞ , and
A is any R[X ]-module, then pdR[X ] A = pdR A � n , by 9.5; by 9.6 and 8.4,
pdR[X ] A � n + 1; hence lgld R[X ] � n + 1. �

To prove the converse inequality we use another change of rings. As a ring,
R ∼= R[X ]/(X) ; the projection R[X ]−→ R sends r0 + r1 X + r2 X2 + · · · ∈ R[X ]
onto r0 . Hence every left R-module A is also a left R[X ]-module, in which
(r0 + r1 X + · · · ) a = r0 a , in particular, X A = 0. Moreover, HomR(A, B)
= HomR[X ] (A, B) for all R-modules A and B .

If C is an R[X ]-module, then XC is a submodule of C , since X is central
in R[X ] , and C/XC is an R-module, in which r (c + XC) = rc + XC for
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all r ∈ R and c ∈ C . Readers will verify that C/XC ∼= R ⊗R[X ] C is the
universal R-module of C .

Lemma 9.8. For every left R-module A there is a natural isomorphism
HomR(A, R) ∼= Ext1

R[X ](A, R[X ]) .

Proof. Let µ : R[X ] −→ R[X ] be multiplication by X . The exact sequence

0 −→ R[X ]
µ−→ R[X ]−→ R −→ 0

of R[X ]-modules and homomorphisms induces an exact sequence

HomR(A, R) = HomR[X ] (A, R[X ]) −→ HomR[X ] (A, R)

−→ Ext1
R[X ](A, R[X ])

µ∗−→ Ext1
R[X ](A, R[X ]),

which is natural in A , where µ∗ = Ext1
R[X ](A, µ) . If ϕ : A −→ R[X ] is a

homomorphism of R[X ]-modules, then Xϕa = ϕ (Xa) = 0 for all a ∈ A , since
A is an R-module; hence ϕ = 0. Thus, HomR[X ] (A, R[X ]) = 0.

Next, Ext1
R[X ](A, R[X ]) = H1(HomR[X ] (A, J)

)

for any injective resolution

J : J 0 −→ J 1 · · · of R[X ] over R[X ] . Multiplication by X is a homomorphism
µn : J n −→ J n ; these homomorphisms constitute a chain transformation that lifts
µ , hence induces all Ext1

R[X ](A, µ) . In particular, µ∗(cls α) = cls µ1α for every

cocycle α : A −→ J 1 . Since A is an R-module, µ1αa = Xαa = α(Xa) = 0 for
all a ∈ A . Hence µ∗ = 0. Therefore HomR[X ] (A, R) −→ Ext1

R[X ](A, R[X ])
is an isomorphism. �

Lemma 9.9. Extn
R(A, R) ∼= Extn+1

R[X ](A, R[X ]) , for every R-module A .

Proof. First, we show that Extn
R[X ](P, R[X ]) = 0 for every projective R-mod-

ule P and n > 0. By 9.4, 9.3, P is a projective R[X ]-module and P/X P ∼= P .
Now, multiplication by X , µ : P −→ P , is injective on P since it is injective on
some free R[X ]-module F ⊇ P . Hence the sequence

0 −→ P
µ−→ P −→ P −→ 0

of R[X ]-modules and homomorphisms is exact, and induces an exact sequence

Extn
R[X ](P, R[X ]) −→ Extn

R[X ](P, R[X ]) −→ Extn+1
R[X ](P, R[X ])

in which Extn
R[X ](P, R[X ]) = Extn+1

R[X ](P, R[X ]) = 0 since P is projective.
Hence Extn

R[X ](P, R[X ]) = 0.

We now have functors G0 = HomR(−, R) and Gn = Extn+1
R[X ](−, R[X ]) ,

n > 0, which by 9.8, 4.4 constitute a negative connected sequence of contravariant
functors, from R-modules to abelian groups. Since Gn P = 0 whenever P is
projective and n > 0, it follows from 3.12 that G1, . . ., Gn, . . . are, up to
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natural isomorphisms, the right derived functors of G0 ; in other words, there
are natural isomorphisms Extn+1

R[X ](A, R[X ]) ∼= Extn
R(A, R) . �

We can now complete the proof of Theorem 9.2. By 9.7, lgld R[X ] � lgld R +
1, with equality if lgld R = ∞ . Assume that lgld R = n < ∞ . Then pdR A = n
for some R-module A : Extn+1

R (A, B) = 0 for all B but Extn
R(A, B) =/ 0.

There is a short exact sequence 0 −→ K −→ F −→ B −→ 0 of R-modules
in which F is free; then Extn

R(A, F) −→ Extn
R(A, B) −→ Extn+1

R (A, K ) =
0 is exact; since Extn

R(A, B) =/ 0 it follows that Extn
R(A, F) =/ 0. By 8.5,

Extn
R(A, R) =/ 0. Then Extn+1

R[X ](A, R[X ]) ∼=Extn
R(A, R) =/ 0, by 9.9. Hence

lgld R[X ] � n + 1. �

Exercises
1. Show that lgld R = 1 if and only if R is left hereditary, but not semisimple.

2. Show that lgld R = l.u.b. (pd R/L
∣
∣ L is a left ideal of R) . (Use cosyzygies.)

3. Verify that R ⊗R[X] C ∼= C/XC for every R[X ]-module C , where R is the left R-,
right R[X ]-bimodule in which r X = 0 for all r ∈ R .

4. Let B be an R[X ]-module on which the action of X is injective. Show that
Extn

R(A, B/X B) ∼= Extn+1
R[X]

(A, B) for every R-module A . (You may want to adapt

the proof of Lemma 9.8.)

5. Let S be a ring. Let R = S/Sc , where c is a central element of S and is not a unit
or a zero divisor. Let B be an S-module on which the action of c is injective. Show that
Extn

R(A, B/cB) ∼= Extn+1
R[X]

(A, B) for every R-module A .



XIII
Algebras

Algebras, the last of the major algebraic objects in this book, are rings with a
compatible vector space or module structure. Interest in algebras began with
Hamilton’s construction of the quaternions [1843] and Benjamin Peirce’s paper
Linear Associative Algebras [1864]. Algebras are fundamental to algebraic
geometry and to the study of group representations (see Chapters VII and IX).

This chapter proves some basic properties, constructs algebras with various
universal properties, and concludes with Frobenius’s theorem [1877], which finds
all division algebras over R . The results add to our understanding of rings and
fields and provide additional applications of tensor products.

1. Algebras over a Ring

This section contains the definition and initial properties of algebras and graded
algebras. In what follows, R is a commutative ring (with identity element), and
all modules are unital.

Definition. An algebra over a commutative ring R , or R-algebra, is an R-module
A with a multiplication that is bilinear (a (b + c) = ab + ac , (a + b) c = ac + bc ,
and (ra) b = a (rb) = r (ab) , for all a, b, c ∈ A and r ∈ R ), associative
(a (bc) = (ab) c for all a, b, c ∈ A ), and has an identity element 1 (1a = a = a1
for all a ∈ A ).

Equivalently, an R-algebra is a ring (with identity element) with an R-module
structure such that (ra) b = a (rb) = r (ab) , for all a, b ∈ A and r ∈ R . Algebras
as defined above are also called associative algebras (with identity); nonassociative
algebras are defined similarly, but without the requirements that the multiplication
be associative or have an identity element.

The earliest examples of algebras are C and the quaternion algebra H , which
are algebras over R . Every ring is an algebra over Z . Examples of R-algebras also
include polynomial rings R[X ] , R[(Xi )i∈I ] in one or several variables; power
series rings R[[X ]] , R[[(Xi )i∈I ]] ; matrix rings Mn(R) ; quotients R/a of R by
its ideals; commutative ring extensions of R ; and group algebras.

In an R-algebra A , r1 + s1 = (r + s) 1 and (r1)(s1) = (rs) 1 for all r, s ∈ R ,
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so that ι : r �−→ r1 is a ring homomorphism of R into A . Moreover, ι is a central
homomorphism, meaning that every ι(r) = r1 is central in A ((r1) a = a (r1)
for all a ∈ A ). If ι is injective, then r1 may be identified with r and R becomes
a subring of A ; for instance, this is the case when R is a field and A =/ 0. In
general, the R-module structure on A is determined by ι , since the action of r ∈ R
is simply multiplication by ι(r) . Readers will prove a converse:

Proposition 1.1. For every ring A , there is a one-to-one correspondence
between central ring homomorphisms of R into A , and R-module structures on
A that make A an R-algebra.

Definition. A homomorphism of R-algebras is a ring homomorphism that is
also an R-module homomorphism.

Equivalently, an R-algebra homomorphism ϕ : A −→ B is a mapping ϕ :
A −→ B such that ϕ (a + b) = ϕ(a) + ϕ(b) , ϕ (ab) = ϕ(a) ϕ(b) , ϕ (ra) = r ϕ(a) ,
and ϕ(1) = 1, for all a, b ∈ A and r ∈ R .

We state and prove a homomorphism theorem for algebras. This unsurprising
result requires some equally unsurprising definitions.

Definition. A subalgebra of an R-algebra A is a subset S of A that is both a
subring of A and a submodule of A .

Every subalgebra S of A inherits from A a ring structure and an R-module
structure that make S an R-algebra in its own right; this R-algebra is also called a
subalgebra of A .

Definitions. A two-sided ideal of an R-algebra A is a subset I of A that is
both a two-sided ideal of A and a submodule of A . Then A/I is an R-algebra,
the quotient algebra of A by I .

In the above, A/I is both a ring and an R-module; it is immediate that this
makes A/I an R-algebra. Moreover, the projection A −→ A/I is an algebra
homomorphism.

Theorem 1.2 (Homomorphism Theorem). If ϕ : A −→ B is a homomor-
phism of R-algebras, then Im ϕ is a subalgebra of B , Ker ϕ is an ideal
of A , and A/Ker ϕ ∼= Im ϕ ; in fact, there is a unique algebra isomorphism
θ : A/Ker ϕ −→ Im ϕ such that the following square commutes:

Proof. The homomorphism theorems for rings and modules both yield the
diagram above, with the same unique isomorphism θ ; hence θ is an algebra
isomorphism. �
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Theorem 1.3 (Factorization Theorem). Let I be a two-sided ideal of an R-alge-
bra A . Every algebra homomorphism whose kernel contains I factors uniquely
through the projection A −→ A/I :

Proof. The factorization theorems for rings and modules both yield the diagram
above, with the same unique homomorphism ψ ; hence ψ is an algebra homo-
morphism. �

Graded algebras. A much longer book would show the importance of graded
rings and modules in commutative algebra and homological algebra. Here, our
interest is limited to the algebras in the next three sections.

Definition. A graded R-algebra is an R-algebra A with submodules (An)n�0
such that A =

⊕

n�0 An , 1 ∈ A0 , and Am An ⊆ Am+n for all m, n � 0 .

For example, the polynomial algebra R[(Xi )i∈I ] is a graded R-algebra, in
which the submodule An in the definition consists of all homogeneous polynomi-
als of degree n . In any graded algebra A =

⊕

n�0 An , every element a is a sum
a =

∑

n�0 an for some unique an ∈ An (such that an = 0 for almost all n ); an
is the nth homogeneous component of a .

Definitions. A graded submodule (subring, subalgebra, two-sided ideal) of a
graded R-algebra A =

⊕

n�0 An is a submodule (subring, subalgebra, two-sided
ideal) S of A such that S =

⊕

n�0 (An ∩ S) .

Readers will verify that a submodule S of a graded algebra is a graded submod-
ule if and only if the homogeneous components of every s ∈ S are all in S . For
example, in Z[X ] , polynomials with even coefficients constitute a graded ideal;
multiples of X2 + 1 do not.

A graded subalgebra S =
⊕

n�0 (An ∩ S) of a graded algebra A =
⊕

n�0 An
is itself a graded algebra, since 1 ∈ A0 ∩ S and (Am ∩ S)(An ∩ S) ⊆ Am+n ∩ S
for all m, n � 0. Readers will show that the quotient algebra A/I of a graded
algebra A =

⊕

n�0 An by a graded two-sided ideal I =
⊕

n�0 (An ∩ I ) is a
graded algebra A/I =

⊕

n�0 (An + I )/I .

Definition. A homomorphism ϕ : A −→ B of graded R-algebras
A =

⊕

n�0 An , B =
⊕

n�0 Bn is a homomorphism of R-algebras such that
ϕ(An) ⊆ Bn for all n � 0 .

The next result is a (graded?) exercise:

Theorem 1.4 (Homomorphism Theorem). If ϕ : A −→ B is a homomor-
phism of graded R-algebras, then Im ϕ is a graded subalgebra of B , Ker ϕ

is a graded ideal of A , and A/Ker ϕ ∼= Im ϕ ; in fact, there is a unique
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isomorphism θ : A/Ker ϕ −→ Im ϕ of graded algebras such that the following
square commutes:

Exercises
In the following exercises, R is a commutative ring (with identity).

1. Verify that R/a is an R-algebra for every ideal a of R .

2. Verify that EndR(M) is an R-algebra for every R-module M .

3. Let A be a ring. Show that there is a one-to-one correspondence between central ring
homomorphisms of R into A , and R-module structures on A that make A an R-algebra.

4. Let A be an R-module. Show that there is a one-to-one correspondence between multi-
plications on A that make A an R-algebra, and pairs of module homomorphisms ι : R −→ A ,
µ : A ⊗ A −→ A such that the following diagrams commute (tensor products are over R ):

5. Show that R[X ] serves a the “free R-algebra” with one generator.

6. Show that R[(Xi )i∈I ] serves a the “free commutative R-algebra” on the set I .

7. Show that the quotient algebra A/I of a graded algebra A =
⊕

n�0 An by a graded

two-sided ideal I =
⊕

n�0 (An ∩ I ) is a graded algebra A/I =
⊕

n�0 (An + I )/I .

8. Let A and B be graded R-algebras. Show that an algebra homomorphism ϕ : A −→ B
is a homomorphism of graded algebras if and only if ϕ preserves the decomposition of elements
into sums of homogeneous components.

9. Prove the homomorphism theorem for graded algebras.

2. The Tensor Algebra

The tensor algebra of a module is an algebra that is “freely” generated by that
module, as shown by a suitable universal property. It is named after the tensor
products used in its construction.

In what follows, R is a commutative ring (with identity element); all modules
are unital; all algebras and tensor products are over R . Since R is commutative,
the tensor product of n R-modules is an R-module; its tensor map is universal for
n-linear mappings.

Generation. Let A be an R-algebra. Every intersection of subalgebras of A
is a subalgebra of A . Hence there is for every subset S of A a smallest subal-
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gebra of A that contains S , the subalgebra 〈 S 〉 of A generated by S , which is
the intersection of all subalgebras of A that contain S , and is described as follows
when S is a submodule:

Proposition 2.1. The subalgebra 〈 M 〉 of an R-algebra A generated by a
submodule M of A consists of all sums of a scalar multiple of the identity element
and finitely many nonempty products of elements of M .

The elements of M usually satisfy relations in A , meaning that there usually
are equalities between the sums in 2.1. The tensor algebra of M is constructed so
that it is generated by M with the fewest possible relations. It is the “simplest,”
and also the “largest,” algebra generated by M , as specified by 2.4, 2.5 below.

Seeking clues to the construction of the tensor algebra, we detect that the
product a1 · · · an ∈ A of n � 2 elements of M is an n-linear function of
a1, . . ., an and induces a module homomorphism of M ⊗ · · · ⊗ M into A , which
sends a1 ⊗ · · · ⊗ an to a1 · · · an . These maps, together with the central homomor-
phism R −→ A and the inclusion homomorphism M −→ A , induce a module
homomorphism of R ⊕ M ⊕ (M ⊗ M) ⊕ · · · into A , which is surjective by 2.1
when A is generated by M . In this sense every R-algebra that is generated by
M is a child of the direct sum R ⊕ M ⊕ (M ⊗ M) ⊕ · · · . We build the tensor
algebra of M from this direct sum.

Construction. Let M be an R-module. The nth tensor power T n(M) or
⊗n M of M is defined as follows: T 0(M) = R ; T 1(M) = M ; when n � 2,

T n(M) = M ⊗ · · · ⊗ M

is the tensor product of n copies of M : T n(M) = M1 ⊗ · · · ⊗ Mn , where M1 =
· · · = Mn = M . For every m, n > 0 there is an isomorphism T m(M) ⊗ T n(M)
∼= T m+n(M) and a bilinear multiplication ⊗ ,

T m(M) × T n(M) ⊗−→ T m(M) ⊗ T n(M)
∼=−→ T m+n(M),

which sends (a1 ⊗ · · · ⊗ am, b1 ⊗ · · · ⊗ bn) to a1 ⊗ · · · ⊗ am ⊗ b1 ⊗ · · · ⊗ bn .
Similarly, for every n > 0, the left and right actions of R on T n(M) , and the
multiplication on R itself, are bilinear multiplications T 0(M) × T n(M) −→
T n(M) , T n(M) × T 0(M) −→ T n(M) , and T 0(M) × T 0(M) −→ T 0(M) ,
which send (r, t) , (t, r) , and (r, s) , respectively, to r t , r t , and rs , and which
we also denote by ⊗ . (This uses the isomorphisms R ⊗ T n(M) ∼= T n(M) ,
T n(M) ⊗ R ∼= T n(M) , R ⊗ R ∼= R , as a pretext to identify r ⊗ t and r t , t ⊗ r
and tr = r t , r ⊗ s and rs , when r, s ∈ R and t ∈ T n(M) .)

Definition. The tensor algebra of an R-module M is

T (M) =
⊕

n�0 T n(M)

with multiplication given by
(∑

m�0 tm
)(∑

m�0 un
)

=
∑

m,n�0 (tm ⊗ un) .

Proposition 2.2. The tensor algebra of a [unital] R-module M is a graded
R-algebra and is generated by M .
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Corollary 2.3. If M is the free R-module on a set X , then T (M) is a free
R-module, with a basis that consists of 1 ∈ R , all x ∈ X , and all x1 ⊗ · · · ⊗ xn
with n � 2 and x1, . . . , xn ∈ X .

The proofs are exercises, to enliven readers’ long winter evenings.

Proposition 2.4. Every module homomorphism of an R-module M into an
R-algebra A extends uniquely to an algebra homomorphism of T (M) into A .

Proof. Let ϕ : M −→ A be a module homomorphism. For every n � 2,
multiplication in A yields an n-linear mapping (a1, . . ., an) �−→ ϕ(a1) · · · ϕ(an)
of Mn into A , which induces a module homomorphism ϕn : T n(M) −→ A
that sends a1 ⊗ · · · ⊗ an to ϕ(a1) · · · ϕ(an) for every a1, . . ., an ∈ M . The
central homomorphism ϕ0 = ι : R −→ A , the given map ϕ1 = ϕ : M −→ A ,
and the homomorphisms ϕn : T n(M) −→ A induce a module homomorphism
ϕ : T (M) −→ A , which sends t =

∑

n�0 tn to
∑

n�0 ϕn(tn) .

The equality ϕ(t)ϕ(u) = ϕ(tu) holds whenever t = a1 ⊗ · · · ⊗ am and
u = b1 ⊗ · · · ⊗ bn are generators of T m(M) and T n(M) (since ϕn is a module
homomorphism, in case m = 0 or n = 0); therefore it holds whenever t ∈ T m(M)
and u ∈ T n(M) ; therefore it holds for all t, u ∈ T (M) . Also ϕ(1) = ϕ0(1) = 1.
Hence ϕ is an algebra homomorphism. If ψ is another algebra homomorphism
that extends ϕ , then S = { t ∈ T (M)

∣
∣ ψ(t) = ϕ(t) } is a subalgebra of T (M)

that contains M ; therefore S = T (M) and ψ = ϕ . �
Corollary 2.5. Every R-algebra that is generated by a submodule M is iso-

morphic to a quotient algebra of T (M) .

Proof. If A = 〈ϕ(M) 〉 in the proof of 2.4, then ϕ is surjective, by 2.1. �
Corollary 2.6. If M is the free R-module on a set X , then T (M) is the free

R-algebra on the set X : every mapping of X into an R-algebra A extends uniquely
to an algebra homomorphism of T (M) into A .

Proof. This follows from Proposition 2.4, since every mapping of X into an
R-algebra A extends uniquely to a module homomorphism of M into A . �

Exercises

Prove the following:

1. The tensor algebra of an R-module M is a graded R-algebra and is generated by M .

2. T (RR) ∼= R[X ] .

3. If M is the free R-module on a set X , then T (M) is a free R-module, with a basis that
consists of 1 ∈ R , all x ∈ X , and all x1 ⊗ · · · ⊗ xn with n � 2 and x1, . . . , xn ∈ X .

4. If M is free with basis (ei )i∈I , then T (M) is isomorphic to the polynomial ring
R[(Xi )i∈I ] with indeterminates Xi that commute with constants but not with each other.

5. Every homomorphism M −→ N of R-modules extends uniquely to a homomorphism
T (M) −→ T (N) of graded R-algebras.
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3. The Symmetric Algebra

The symmetric algebra of an R-module M is the commutative analogue of its tensor
algebra: a commutative R-algebra that is “freely” generated by M , as shown by
its universal property. As before, R is a commutative ring [with identity]; all
modules are unital; all algebras and tensor products are over R .

Construction. By 2.5, the symmetric algebra must be, up to isomorphism,
the quotient algebra of T (M) by some two-sided ideal I . Since the symmetric
algebra must be commutative, there is an obvious candidate for I :

Definition. The symmetric algebra of an R-module M is the quotient algebra
S(M) = T (M)/I , where I is the ideal of T (M) generated by all t ⊗ u − u ⊗ t
with t, u ∈ T (M) .

We show that M may be identified with a submodule of S(M) .

Lemma 3.1. I ⊆
⊕

n�2 T n(M) .

Proof. Let t ∈ T m(M) and u ∈ T n(M) . If m + n � 2, then t ⊗ u − u ⊗ t ∈
⊕

n�2 T n(M) . If m + n < 2, then m = 0 or n = 0, and t ⊗ u − u ⊗ t = 0 since
r ⊗ t = r t = t ⊗ r in T (M) , for all r ∈ R and t ∈ T (M) . Now,

⊕

n�2 T n(M)
is an ideal of T (M) ; hence I ⊆

⊕

n�2 T n(M) . �

By 3.1, the projection T (M) −→ S(M) = T (M)/I is injective on R ⊕ M ;
therefore we may identity R and M with their images in S(M) . The product
a1 · · · an of a1, . . . , an ∈ M in S(M) is the image in S(M) of their product
a1 ⊗ · · · ⊗ an in T (M) . By 2.1, 2.2, S(M) is generated by M :

Corollary 3.2. The symmetric algebra of a [unital] R-module M is a commu-
tative R-algebra and is generated by M .

The definition of S(M) also yields a universal property:

Proposition 3.3. Every module homomorphism of an R-module M into a
commutative R-algebra A extends uniquely to an algebra homomorphism of S(M)
into A .

Proof. Let π : T (M) −→ S(M) be the projection and let ϕ : M −→ A
be a module homomorphism. By 2.4, ϕ extends to an algebra homomorphism
ψ : T (M) −→ A . Since A is commutative we have ψ(t ⊗ u) = ψ(u ⊗ t) and
t ⊗ u − u ⊗ t ∈ Ker ψ , for all t, u ∈ T (M) . Hence I ⊆ Ker ψ . By 1.3,
ψ = χ ◦ π for some algebra homomorphism χ : S(M) −→ A :

Then χ extends ϕ , since we identified a ∈ M with π(a) ∈ S(M) for every
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a ∈ M ; as in the proof of 2.4, χ is the only algebra homomorphism with this
property, since S(M) is generated by M . �

If M is the free R-module on a set X , then S(M) is the free commutative
R-algebra on the set X : every mapping of X into a commutative R-algebra A
extends uniquely to a module homomorphism of M into A and thence to an
algebra homomorphism of S(M) into A . Since polynomial rings already have
this universal property, we obtain the following:

Corollary 3.4. If M is the free R-module on a set (xi )i∈I , then S(M) is
isomorphic to the polynomial ring R[(Xi )i∈I ] .

Corollary 3.5. If M is the free R-module on a totally ordered set X , then
S(M) is a free R-module, with a basis that consists of all x1 · · · xn with n � 0 ,
x1, . . ., xn ∈ X , and x1 � · · · � xn .

Proof. The monomials of R[(Xi )i∈I ] constitute a basis of R[(Xi )i∈I ] as an
R-module. Hence S(M) is a free R-module when M is a free R-module, by
3.4. If X = (xi )i∈I is totally ordered, every monomial in R[(Xi )i∈I ] can be
rewritten uniquely in the form X1 · · · Xn with n � 0, X1, . . ., Xn ∈ X , and
X1 � · · · � Xn (with X1 · · · Xn = 1 ∈ R if n = 0, as usual); this yields the basis
in the statement. �

Description. We now give a more precise description of the ideal I and of
S(M) when M is not free.

First we note that the construction of T (M) works because multiplication in
an R-algebra is n-linear and the tensor map Mn −→ T n(M) = M ⊗ · · · ⊗ M is
universal for n-linear mappings. Multiplication in a commutative R-algebra yields
n-linear mappings f that are symmetric ( f (aσ1, . . ., aσn) = f (a1, . . ., an) for
every permutation σ ).

Lemma 3.6. Let Sn(M) = T n(M)/In , where n � 2 and In is the submodule
of T n(M) = M ⊗ · · · ⊗ M generated by all aσ1 ⊗ · · · ⊗ aσn − a1 ⊗ · · · ⊗ an ,
where a1, . . ., an ∈ M and σ is a permutation of { 1, . . ., n } . The mapping
µn : Mn −→ T n(M)−→ Sn(M) is symmetric and n-linear. For every symmetric
n-linear mapping ν of Mn into an R-module N there is a unique module homo-
morphism ν : Sn(M) −→ N such that ν = ν ◦ µn :

Proof. Let π : T n(M) −→ Sn(M) be the projection. Then µn(a1, . . ., an)=
π (a1 ⊗ · · · ⊗ an) is symmetric, by the choice of In , and n-linear.

Let ν : Mn −→ N be n-linear. There is a module homomorphism ξ :
Mn −→ T n(M) such that ξ (a1 ⊗ · · · ⊗ an) = ν (a1, . . ., an) for all a1, . . .,
an ∈ M . If ν is symmetric, then aσ1 ⊗ · · · ⊗ aσn − a1 ⊗ · · · ⊗ an ∈ Ker ξ
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for all a1, . . . , an ∈ M and permutations σ ; hence In ⊆ Ker ξ , and ξ factors
through π : there is a module homomorphism ν : Sn(M) −→ N such that
ν ◦ π = ξ . Then ν ◦ µn = ν ; ν is the only module homomorphism with this
property since Sn(M) is generated by all µn(a1, . . ., an) . �

The module Sn(M) is the nth symmetric power of M . It is convenient to let
I0 = 0, I1 = 0, so that S0(M) = R and S1(M) = M .

Proposition 3.7. For every R-module M , I is a graded ideal of T (M) ,
I =
⊕

n�0 In , and S(M) = T (M)/I =
⊕

n�0 Sn(M) is a graded R-algebra.

Proof. Let a1, . . ., an ∈ M , where n � 2. Since S(M) is commutative,
aσ1 · · · aσn = a1 · · · an for every permutation σ , and aσ1 ⊗ · · · ⊗ aσn − a1 ⊗
· · · ⊗ an ∈ I for every permutation σ . Hence In ⊆ I , and

⊕

n�0 In ⊆ I .

To prove the converse inclusion we note that

(aσ1 ⊗ · · · ⊗ aσm − a1 ⊗ · · · ⊗ am) ⊗ bm+1 ⊗ · · · ⊗ bm+n ∈ Im+n

for all m, n > 0, permutations σ , and a1, . . . , am, bm+1, . . ., bm+n ∈ M , since
σ1, . . ., σm, m + 1, . . ., m + n is a permutation of 1, . . . , m + n . Hence

aσ1 ⊗ · · · ⊗ aσm ⊗ u − a1 ⊗ · · · ⊗ am ⊗ u ∈ Im+n

for all u ∈ T n(M) . Therefore t ⊗ u ∈ Im+n for all t ∈ Im and u ∈ T n(M) .
Similarly, t ⊗ u ∈ Im+n for all t ∈ T m(M) and u ∈ In . This also holds if m = 0
or n = 0. Therefore

⊕

n�0 In is an ideal of T (M) .

If t = a1 ⊗ · · · ⊗ am and u = bm+1 ⊗ · · · ⊗ bm+n are generators of T m(M)
and T n(M) , then t ⊗ u − u ⊗ t ∈ Im+n , since m + 1, . . . , m + n, 1, . . ., m is a
permutation of 1, . . ., m + n . Hence t ⊗ u − u ⊗ t ∈ Im+n for all t ∈ T m(M)
and u ∈ T n(M) ; t ⊗ u − u ⊗ t ∈

⊕

n�0 In for all t ∈ T m(M) and u ∈ T (M) ;
and t ⊗ u − u ⊗ t ∈

⊕

n�0 In for all t, u ∈ T (M) . Since
⊕

n�0 In is an ideal
of T (M) , this implies I ⊆

⊕

n�0 In . �

4. The Exterior Algebra

The exterior algebra of an R-module M is the “greatest” algebra generated by
M in that ab = −ba (and a2 = 0) for all a, b ∈ M , according to its universal
property.

Exterior algebras originate in the calculus of differential forms (due to
Grassmann [1844]). If ω = Pdx + Qdy + Rdz is a differential form in three
variables, the “exterior” differential dω = (Ry − Qz) dy dz + (Pz − Rx ) dz dx +
(Qx − Py) dx dy can be found by substituting d P = Px dx + Py dy + Pz dz ,
d Q = Qx dx + Qy dy + Qz dz , d R = Rx dx + Ry dy + Rz dz into ω , and using
the rules dx dx = dy dy = dz dz = 0, dz dy = −dy dz , dx dz = −dz dx ,
dy dx = −dx dy . Differential forms are multiplied using the same rules. Terms



524 Chapter XIII. Algebras

in these products are usually separated by wedges ∧ to distinguish them from
ordinary products. Then ω ∧ ω = 0 for every first order differential form.

A submodule M of an algebra is anticommutative in that algebra when a2 = 0
for all a ∈ M ; then a2 + ab + ba + b2 = (a + b)2 = 0 and ba = −ab for all
a, b ∈ M . (The converse holds when 2 is a unit.) The exterior algebra of M
(named after exterior differentiation) is the “greatest” algebra generated by M in
which M is anticommutative; examples include algebras of differential forms.

Construction. As before, R is a commutative ring [with identity]; all modules
are unital; all algebras and tensor products are over R . By Corollary 2.5, the
exterior algebra must be, up to isomorphism, the quotient algebra of T (M) by
some two-sided ideal J . There is an obvious candidate for J :

Definition. The exterior algebra of an R-module M is the quotient algebra
Λ(M) = T (M)/J , where J is the ideal of T (M) generated by all a ⊗ a with
a ∈ M .

We have J ⊆
⊕

n�2 T n(M) , since the latter is an ideal of T (M) and contains
a ⊗ a for all a ∈ M . Hence the projection T (M) −→ Λ(M) = T (M)/J is
injective on R ⊕ M ; therefore we may identity R and M with their images in
Λ(M) . The product a1 ∧ · · · ∧ an of a1, . . ., an ∈ M in Λ(M) is the image in
Λ(M) of their product a1 ⊗ · · · ⊗ an in T (M) .

Proposition 4.1. The exterior algebra of a (unital) R-module M is an R-algebra
generated by M , in which M is anticommutative.

The definition of Λ(M) also yields a universal property:

Proposition 4.2. Every module homomorphism ϕ of an R-module M into an
R-algebra A in which ϕ(M) is anticommutative extends uniquely to an algebra
homomorphism of Λ(M) into A:

Proof. Let π : T (M) −→ Λ(M) be the projection. By 2.4, ϕ extends to an
algebra homomorphism ψ : T (M) −→ A . Since ϕ(M) is anticommutative in A
we have ψ(a ⊗ a) = ϕ(a)2 = 0 and a ⊗ a ∈ Ker ψ , for all a ∈ M . Therefore
J ⊆ Ker ψ , and ψ = χ ◦ π for some algebra homomorphism χ : Λ(M) −→ A ,
by 1.3. Then χ extends ϕ , since we identified a ∈ M with π(a) ∈ Λ(M) for
every a ∈ M ; χ is the only algebra homomorphism with this property, since
Λ(M) is generated by M . �

Further results require a more precise description of the ideal I and of Λ(M) .

Alternating maps. In an R-algebra in which M is anticommutative, multi-
plication of elements of M yields n-linear mappings f that are alternating:
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f (a1, . . ., an) = 0 whenever ai = aj for some i =/ j , hence f (aτ1, . . ., aτn) =
− f (a1, . . ., an) for every transposition τ .

Lemma 4.3. Let Λn(M) = T n(M)/Jn , where n � 2 and Jn is the submodule
of T n(M) = M ⊗ · · · ⊗ M generated by all a1 ⊗ · · · ⊗ an , where a1, . . ., an ∈ M
and ai = aj for some i =/ j . The mapping µn : Mn −→ T n(M) −→ Λn(M)
is n-linear and alternating, and for every n-linear alternating mapping ν of Mn

into an R-module N there is a unique module homomorphism ν : Λn(M) −→ N
such that ν = ν ◦ µn .

Proof. Let π : T n(M) −→ Λn(M) be the projection. Then µn(a1, . . . , an)
= π (a1 ⊗ · · · ⊗ an) is alternating, by the choice of Jn , and n-linear.

Let ν : Mn −→ N be n-linear. There is a module homomorphism ξ :
T n(M)−→ N such that ξ (a1 ⊗ · · · ⊗ an) = ν (a1, . . ., an) for all a1, . . ., an
∈ M . If ν is alternating, then a1 ⊗ · · · ⊗ an ∈ Ker ξ whenever a1, . . ., an ∈ M
and ai = aj for some i =/ j ; hence Jn ⊆ Ker ξ and there is a module homomor-
phism ν : Λn(M) −→ N such that ν ◦ π = ξ :

Then ν ◦ µn = ν ; ν is the only module homomorphism with this property since
Λn(M) is generated by all µn(a1, . . ., an) . �

The module Λn(M) is the nth exterior power of M . It is convenient to let
J0 = 0, J1 = 0, so that Λ0(M) = R and Λ1(M) = M .

Proposition 4.4. For every R-module M , J is a graded ideal of T (M) ,
J =

⊕

n�0 Jn , and Λ(M) = T (M)/J =
⊕

n�0 Λn(M) is a graded R-algebra.

Proof. Let a1, . . . , am ∈ M , where m � 2. Since M is anticommutative in
Λ(M) , ai = aj for some i =/ j implies a1 ∧ · · · ∧ am = ± ai ∧ aj ∧ a1 ∧ · · · ∧ am =
0 and a1 ⊗ · · · ⊗ am ∈ J . Hence Jm ⊆ J , and

⊕

n�0 Jm ⊆ J . The converse
inclusion is proved as follows.

If ai = aj for some i =/ j , then a1 ⊗ · · · ⊗ am ⊗ b1 ⊗ · · · ⊗ bn ∈ Jm+n for
all b1, . . . , bn ∈ M ; hence a1 ⊗ · · · ⊗ am ⊗ t ∈ Jm+n for all t ∈ T n(M) and
j ⊗ t ∈ Jm+n for all t ∈ T n(M) , and j ∈ Jm . Similarly, t ⊗ j ∈ Jm+n for
all t ∈ T n(M) and j ∈ Jm . Hence

⊕

n�0 Jn is an ideal of T (M) . Since
a ⊗ a ∈ J2 ⊆

⊕

n�0 Jn for all a ∈ M , it follows that J ⊆
⊕

n�0 Jn . �

Free modules. We use the last two results to give a more precise description
of Λ(M) when M is free.

Proposition 4.5. If n � 2 and M is a free R-module with a totally ordered basis
X , then Λn(M) is a free R-module, with a basis that consists of all x1 ∧ · · · ∧ xn
with x1, . . . , xn ∈ X and x1 < x2 < · · · < xn .
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Proof. Let x1, . . . , xn ∈ X . If there is a duplication xi = xj for some i =/ j ,
then x1 ⊗ · · ·⊗ xn ∈ Jn . Since M is anticommutative in Λ(M) , xτ1 ∧ · · · ∧ xτn =
− x1 ∧ · · · ∧ xn in Λ(M) for every transposition τ ; hence, for every permutation
σ , xσ1 ∧ · · · ∧ xσn = sgn σ x1 ∧ · · · ∧ xn and

xσ1 ⊗ · · · ⊗ xσn − sgn σ x1 ⊗ · · · ⊗ xn ∈ J ∩ T n(M) = Jn .

We show that Jn is the submodule of T n(M) generated by the set Yn of all
x1 ⊗ · · · ⊗ xn with a duplication and all x1 ⊗ · · · ⊗ xn − sgn σ xσ1 ⊗ · · · ⊗ xσn
where x1, . . ., xn are distinct. By the above, Yn ⊆ Jn . We show that every
generator a1 ⊗ · · · ⊗ an of Jn (with a1, . . ., an ∈ M and aj = ak for some
j =/ k ) is a linear combination of elements of Yn . Indeed, aj =

∑

i∈I ri j xi and

a1 ⊗ · · · ⊗ an =
∑

i1, . . . , in∈I r1i1
· · · rnin xi1

⊗ · · · ⊗ xin = S.

In the sum S , xi1
⊗ · · · ⊗ xin ∈ Yn whenever xi1

, . . . , xin are not all distinct.
If a1 = a2 , then r1i = r2i for all i and the terms of S in which xi1

, . . ., xin are
distinct can be grouped in pairs

r1i1
· · · rnin (xi1

⊗ xi2
⊗ xi3

⊗ · · · ⊗ xin + xi2
⊗ xi1

⊗ xi3
⊗ · · · ⊗ xin ),

with xi1
⊗ xi2

⊗ xi3
⊗ · · · ⊗ xin + xi2

⊗ xi1
⊗ xi3

⊗ · · · ⊗ xin ∈ Yn . Thus
a1 ⊗ · · · ⊗ an is a linear combination of elements of Yn . This also holds whenever
aj = ak for some j =/ k ; the proof is the same, except for the notation, which is
much worse. Hence Jn is the submodule generated by Yn .

To complete the proof, let B be the basis of T n(M) that consists of all
x1 ⊗ · · · ⊗ xn . The symmetric group Sn acts on B : if b = x1 ⊗ · · · ⊗ xn , then
σb = xσ1 ⊗ · · · ⊗ xσn . If b = x1 ⊗ · · · ⊗ xn has no duplication (if x1, . . ., xn
are all distinct), then the orbit of b contains exactly one strictly ascending element
xσ1 ⊗ · · · ⊗ xσn such that xσ1 < · · · < xσn . Let

C = { c ∈ B
∣
∣ c is strictly ascending} , D = { d ∈ B

∣
∣ d has a duplication} ,

and let B′ be the set of all b′ = b − εc where b ∈ B\(C ∪ D) , c = σb is strictly
ascending, and ε = sgn σ . Then C ∪ D ∪ B′ is a basis of T n(M) . An element
of Yn is either in D or is a difference of two elements of B′ ; hence Jn is the
submodule generated by D ∪ B′ ⊆ Yn . Therefore T n(M) = Jn ⊕ Kn , where
Kn is the submodule generated by C , and there is an isomorphism Kn

∼= Λn(M) ,
which sends the basis C of Kn to a basis of Λn(M) that consists of all x1 ∧ · · · ∧ xn
with x1, . . . , xn ∈ X and x1 < x2 < · · · < xn . �

Corollary 4.6. If M is the free R-module on a totally ordered set X , then Λ(M)
is a free R-module, with a basis that consists of all x1 ∧ · · · ∧ xn with n � 2 ,
x1, . . ., xn ∈ X , and x1 < · · · < xn .

Exterior algebras provide an alternative approach to determinants that does
not rely on Gauss elimination. Let M = (RR)n and let e1, . . ., en be its stan-
dard basis, totally ordered by e1 < e2 < · · · < en . Then Λn(M) is free on
{ e1 ∧ · · · ∧ en } , by Proposition 4.5. Hence there is an n-linear alternating form
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δ (a1, . . ., an) such that a1 ∧ · · · ∧ an = δ e1 ∧ · · · ∧ en ; δ is nontrivial, since
δ (e1, . . ., en) = 1, and every n-linear alternating form is a multiple of δ , by
Lemma 4.3. Readers will verify that δ is the usual determinant.

Exercises

1. Show that v ∧ u = (−1)mn u ∧ v for all u ∈ Λm(M) and v ∈ Λn(M) .

2. Let M be free of rank r . Show that Λn(M) has rank
(r

n

)
and that Λ(M) has rank 2r .

3. Let M be free of rank n , with a basis x1 < x2 < · · · < xn . Let a1, . . . , an ∈ M ,
ai =

∑

j ri j ej . Show that a1 ∧ · · · ∧ an = det (ri j ) x1 ∧ · · · ∧ xn .

4. Let M be free with a totally ordered basis X = (xj ) j∈J . Let a1, . . . , an ∈ M ,
ai =

∑

j ri j xj . Show that a1 ∧ · · · ∧ an =
∑

det (ri ji ) x j1 ∧ · · · ∧ x jn , where the sum
has one term for every strictly increasing sequence x j1 < x j2 < · · · < x jn .

5. Show that every homomorphism M −→ N of R-modules extends uniquely to a homo-
morphism Λ(M) −→ Λ(N) of graded R-algebras.

5. Tensor Products of Algebras

Tensor products are a fundamental tool in the study of algebras. This section
contains basic properties and (in the exercises) applications to tensor, symmetric,
and exterior algebras; the next section has applications to field theory. In what
follows, all algebras and tensor products are over a commutative ring R .

Proposition 5.1. If A and B are R-algebras, then A ⊗ B is an R-algebra, in
which (a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ for all a, a′ ∈ A and b, b′ ∈ B .

Proof. The mapping (a, b, a′, b′) �−→ aa′ ⊗ bb′ of A × B × A × B into
A ⊗ B is multilinear, since ⊗ and the multiplications on A and B are bilinear.
Hence there is a unique module homomorphism µ : A ⊗ B ⊗ A ⊗ B −→ A ⊗ B
such that µ (a ⊗ b ⊗ a′ ⊗ b′) = aa′ ⊗ bb′ for all a, a′, b, b′ . A bilinear
multiplication on A ⊗ B is then defined by t t ′ = µ (t ⊗ t ′) , for all t, t ′ ∈ A ⊗ B ;
in particular, (a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ . This multiplication is associative:
when t = a ⊗ b , t ′ = a′ ⊗ b′ , t ′′ = a′′ ⊗ b′′ , then

(t t ′) t ′′ = (aa′) a′′ ⊗ (bb′) b′′ = a (a′a′′) ⊗b (bb′′) = t (t ′t ′′);

since every element t of A ⊗ B is a finite sum t =
∑

i ai ⊗ bi , it follows that
(t t ′) t ′′ = t (t ′t ′′) for all t, t ′, t ′′ ∈ A ⊗ B . Also, 1 ⊗ 1 is the identity element of
A ⊗ B : indeed, (1 ⊗ 1)(a ⊗ b) = a ⊗ b = (a ⊗ b)(1 ⊗ 1) for all a, b , whence
(1 ⊗ 1) t = t = t (1 ⊗ 1) for all t ∈ A ⊗ B . �

Definition. Let A and B be R-algebras. The R-algebra A ⊗ B in Proposition
5.1 is the tensor product of A and B .

Properties. Tensor products of algebras inherit properties from tensor products
of modules.
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Proposition 5.2. If ϕ : A −→ A′ and ψ : B −→ B′ are homomorphisms of
R-algebras, then so is ϕ ⊗ ψ : A ⊗ B −→ A′ ⊗ B′ .

Proof. For all a, a′ ∈ A and b, b′ ∈ B ,

(ϕ ⊗ ψ)
(

(a ⊗ b)(a′ ⊗ b′)
)

= ϕ(aa′) ⊗ψ(bb′)
= ϕ(a) ϕ(a′) ⊗ψ(b) ψ(b′) =

(

(ϕ ⊗ ψ)(a ⊗ b)
)(

(ϕ ⊗ ψ)(a′ ⊗ b′)
)

.

Therefore (ϕ ⊗ ψ)(t t ′) = (ϕ ⊗ ψ)(t) (ϕ ⊗ ψ)(t ′) for all t, t ′ ∈ A ⊗ B .
Moreover, (ϕ ⊗ ψ)(1 ⊗ 1) = 1 ⊗ 1. �

For all R-algebras A and B , A ⊗ − and − ⊗ B are now covariant functors
from R-algebras to R-algebras, and −⊗− is a bifunctor. Readers may show that
the canonical isomorphisms R ⊗ A ∼= A , A ⊗ B ∼= B ⊗ A , (A ⊗ B)⊗ C ∼= A ⊗
(B ⊗ C) are algebra isomorphisms when A, B, C are R-algebras.

Next, we note that the algebra A ⊗ B has a bimodule structure: since the
multiplications on A and B are bilinear, A is a left A-, right R-bimodule, B is
a left R-, right B-bimodule, and A ⊗ B is a left A-, right B-bimodule, in which
a (a′ ⊗ b) = aa′ ⊗ b and (a ⊗ b) b′ = a ⊗ bb′ for all a, a′ ∈ A and b, b′ ∈ B .

Proposition 5.3. If A and B are commutative R-algebras, then A ⊗ B is a
commutative R-algebra, and is also an A-algebra and a B-algebra.

Proof. The algebra A ⊗ B is commutative since its generators a ⊗ b com-
mmute with each other. Its multiplication is bilinear over A : (at) t ′ = a (t t ′)=
t (at ′) for all a ∈ A and t, t ′ ∈ A ⊗ B , since commutativity in A yields

(

a (a′ ⊗ b′)
)

(a′′ ⊗ b′′) = aa′a′′ ⊗ b′b′′ = (a′ ⊗ b′)
(

a (a′′ ⊗ b′′)
)

;

similarly, t (t ′b) = (t t ′) b = (tb) t ′ for all t, t ′ ∈ A ⊗ B and b ∈ B . �
Proposition 5.4. If A is free as an R-module, with basis (ei )i∈I , then A ⊗ B

is free as a right B-module, with basis (ei ⊗ 1)i∈I .

Proof. As R-modules, A ∼=
⊕

i∈I RR and A ⊗ B ∼=
(⊕

i∈I RR
)

⊗ B ∼=⊕

i∈I B ; when a =
∑

i∈I ri ei , these isomorphisms send a to (ri )i∈I and a ⊗ b
to (ri b)i∈I . The latter isomorphism θ preserves the right action of B ; hence
A ⊗ B is a free right B-module. Next, ej =

∑

i∈I δi j ei , where δi j = 1 if i = j ,
δi j = 0 if i =/ j ; hence θ sends ej ⊗ 1 to fj = (δi j )i∈I . Now, ( fi )i∈I is the
standard basis of the free right B-module

⊕

i∈I B ; hence (ei ⊗ 1)i∈I is a basis
of the right B-module A ⊗ B . �

Finally, the algebra A ⊗ B comes with canonical algebra homomorphisms
ι : A −→ A ⊗ B , κ : B −→ A ⊗ B , defined by ι(a) = a ⊗ 1, κ(b) = 1 ⊗ b . We
see that ι and κ agree on R , and that ι(a) and κ(b) commute for all a ∈ A and
b ∈ B . Readers may show that ι and κ are injective in some cases:

Proposition 5.5. If A is free as an R-module, then ι : A −→ A ⊗ B is injective.
If B is free as an R-module, then κ : B −→ A ⊗ B is injective. If R is a field,
then ι and κ are always injective.
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The tensor product of algebras and its “injections” have a universal property:

Proposition 5.6. Let A and B be R-algebras and let ι : A −→ A ⊗ B ,
κ : B −→ A ⊗ B be the canonical homomorphisms. For every R-algebra C and
algebra homomorphisms ϕ : A −→ C , ψ : B −→ C such that ϕ(a) and ψ(b)
commute for all a ∈ A and b ∈ B , there is a unique algebra homomorphism
χ : A ⊗ B −→ C such that χ ◦ ι = ϕ and χ ◦ κ = ψ , which sends a ⊗ b to
ϕ(a)ψ(b) :

Proof. If χ is an algebra homomorphism and χ ◦ ι = ϕ and χ ◦ κ = ψ , then
χ (a ⊗ b) = χ

(

ι(a) κ(b)
)

= ϕ(a) ψ(b) for all a, b ; therefore χ is unique.

Conversely, the bilinear mapping (a, b) �−→ ϕ(a) ψ(b) of A × B into C
induces a unique module homomorphism χ : A ⊗ B −→ C such that χ (a ⊗ b) =
ϕ(a) ψ(b) for all a ∈ A and b ∈ B . Then χ ◦ ι = ϕ , χ ◦ κ = ψ , and
χ(1) = ϕ(1) ψ(1) = 1. For all a, a′, b, b′ ,

χ
(

(a ⊗ b)(a′ ⊗ b′)
)

= ϕ(a) ψ(b) ϕ(a′) ψ(b′)
= ϕ(a) ϕ(a′) ψ(b) ψ(b′) = χ (a ⊗ b) χ (a′ ⊗ b′),

since ϕ(a′) and ψ(b) commute; therefore χ(t t ′) = χ(t) χ(t ′) for all t, t ′ ∈
A ⊗ B , and χ is an algebra homomorphism. �

We note a first consequence of Proposition 5.6:

Proposition 5.7 (Noether [1929]). Let A and B be R-algebras. For every
abelian group M there is a one-to-one correspondence between the left A-, right
B-bimodule structures on M (with the same actions of R ) and the left A ⊗ Bop-
module structures on M .

Proof. Let M be an left A-, right B-bimodule, with the same actions of R
on M , so that M is, in particular, an R-module. A left A-, right B-bimodule
structure on M consists of ring homomorphisms α : A −→ End

Z
(M) and

β : B −→ End
op
Z

(M) , equivalently β : Bop −→ End
Z
(M) , such that α(a)

and β(b) commute for all a ∈ A and b ∈ B . Since R is central in A and B ,
all a ∈ A and b ∈ B act on M by R-endomorphisms, and α, β are algebra
homomorphisms A, Bop −→ EndR(M) . By 5.6 they induce a unique algebra
homomorphism γ : A ⊗ Bop −→ EndR(M) such that γ ◦ ι = α , γ ◦ κ = β ,
which is, in particular, a left A ⊗ Bop module structure on M .

Conversely, let γ : A ⊗ Bop −→ End
Z
(M) be a left A ⊗ Bop module

structure on M . Then α = γ ◦ ι : A −→ End
Z
(M) is a left A-module

structure on M and β = γ ◦ κ : Bop −→ End
Z
(M) is a right B-module

structure on M , which induces the same R-module structure on M as α , since
ι and κ agree on R . Moreover, α(a) and β(b) commute for all a ∈ A and
b ∈ B , since ι(a) and κ(b) commute for all a ∈ A and b ∈ B . Hence α
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and β constitute a left A-, right B-bimodule structure on M . That we have
constructed a one-to-one correspondence now follows from uniqueness in 5.6. �

Exercises
1. Let A, B, C be R-algebras. Show that the canonical isomorphisms R ⊗ A ∼= A ,

A ⊗ B ∼= B ⊗ A , (A ⊗ B) ⊗C ∼= A ⊗ (B ⊗ C) are algebra isomorphisms.

2. Let A and B be R-algebras. Show that ι : A −→ A ⊗ B is injective when A is free
as an R-module.

3. Give an example in which ι : A −→ A ⊗ B and κ : B −→ A ⊗ B are not injective.

4. Show that S(M ⊕ N) ∼= S(M) ⊗S(N) , for all R-modules M and N .

In the next three exercises, K −→ M −→ N −→ 0 is an exact sequence of R-modules.

5. Construct an exact sequence T (M) ⊗ K ⊗ T (M) −→ T (M) −→ T (N) −→ 0 .

6. Construct an exact sequence K ⊗ S(M) −→ S(M) −→ S(N) −→ 0 .

7. Construct an exact sequence K ⊗ Λ(M) −→ Λ(M) −→ Λ(N) −→ 0 .

In the next three exercises, M is an R-module and A is an R-algebra. Prove the following:

8. There is an isomorphism TA(A ⊗R M) ∼= A ⊗R TR(M) that is natural in M .

9. There is an isomorphism SA(A ⊗R M) ∼= A ⊗R SR(M) that is natural in M .

10. There is an isomorphism ΛA(A ⊗R M) ∼= A ⊗R ΛR(M) that is natural in M .

11. Let A =
⊕

n�0 An and B =
⊕

n�0 Bn be graded algebras. Construct a skew tensor

product A ⊗′ B , in which (a ⊗ b)(a′ ⊗ b′) = (−1)�m (aa′ ⊗ bb′) when a ∈ Ak , a′ ∈ A� ,
b ∈ Bm , b′ ∈ Bn .

12. Show that Λ(M ⊕ N) ∼= Λ(M) ⊗′ Λ(N) for all R-modules M and N , using the
skew tensor product in the previous exercise.

6. Tensor Products of Fields

A field extension of a field K is, in particular, a K-algebra. Hence any two field
extensions of K have a tensor product that is a K-algebra. This section gives a
few basic properties and examples, with applications to separability.

In what follows, K is any given field; unless otherwise specified, all algebras
and tensor products are over K . Since a ring extension of K is a K-algebra,
it follows from 5.1, 5.3 that any two commutative ring extensions of K have a
tensor product over K , which is a commutative K-algebra. In particular, any two
field extensions E and F of K have a tensor product E ⊗ F over K , which is a
commutative K-algebra (but not, in general, a field, or even a domain, as we shall
see). The canonical homomorphisms E −→ E ⊗ F , F −→ E ⊗ F are injective,
by 5.5, so that E ⊗ F can be regarded as a ring extension of both E and F . Since
a field extension of K is free as a K-module, hence flat, E ⊗ F −→ E ′ ⊗ F is
injective whenever E is a subfield of E ′ .
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We give two examples.

Proposition 6.1. Let K ⊆ E be any field extension. Let α be algebraic over
K and let q = Irr (α : K ) = qm1

1 · · · qmr
r , where q1, . . ., qr ∈ E[X ] are distinct

monic irreducible polynomials. Then

E ⊗K K (α) ∼= E[X ]/(qm1
1 ) × · · · × E[X ]/(qmr

r ).

Proof. Readers will verify that there is an isomorphism E ⊗ K [X ] ∼= E[X ] that
sends γ ⊗

(∑

n�0 an Xn) to
∑

n�0 γ an Xn . Hence the inclusion (q)−→ K [X ]
induces a homomorphism ξ : E ⊗ (q) −→ E ⊗ K [X ] ∼= E[X ] , which sends
γ ⊗

(∑

n�0 an Xn) to
∑

n�0 γ an Xn whenever
∑

n�0 an Xn is a multiple of
q(X) . Then ξ sends γ ⊗ Xmq to γ Xmq and Im ξ consists of all multiples of
q in E[X ] . The exact sequence (q) −→ K [X ] −→ K (α) −→ 0 induces exact
sequences E ⊗ (q) −→ E ⊗ K [X ] −→ E ⊗ K (α) −→ 0 and

0 −→ Im ξ −→ E[X ] −→ E ⊗ K (α) −→ 0.

Hence E ⊗ K (α) ∼= E[X ]/Im ξ . In E[X ] , Im ξ = (qm1
1 ) ∩ · · · ∩ (qmr

r ) , with
(qmi

i ) + (q
mj
j ) = E[X ] when i =/ j , since qmi

i and q
mj
j are relatively prime; by the

Chinese remainder theorem, E[X ]/Im ξ ∼= E[X ]/(qm1
1 )× · · · × E[X ]/(qmr

r ) . �

Using 6.1, readers will easily construct a tensor product of fields that is not a
field, in fact, contains zero divisors and nontrivial nilpotent elements.

Proposition 6.2. For every field extension K ⊆ E , E ⊗K K ((Xi )i∈I ) is a
domain, whose field of fractions is isomorphic to E((Xi )i∈I ) .

Proof. Just this once, let X = (Xi )i∈I . As before, am Xm denotes the
monomial am

∏

i∈I Xmi
i of K [X ] , and similarly in E[X ] . Readers will verify

that there is an isomorphism E ⊗ K [X ] ∼= E[X ] that sends
∑

m (γ am ⊗ Xm) =
γ ⊗

(∑

m am Xm) to
∑

m γ am Xm . The inclusion K [X ] −→ K (X) induces a
monomorphism E[X ] ∼= E ⊗ K [X ]−→ E ⊗ K (X) , which sends

∑

m αm Xm to
∑

m αm ⊗ Xm . Identify
∑

m αm Xm and
∑

m αm ⊗ Xm , so that E[X ] becomes
a subalgebra of E ⊗ K (X) .

Every t ∈ E ⊗ K (X) is a finite sum t =
∑

i αi ⊗ ( fi/gi ) . Rewriting
all fi/gi ∈ K (X) with a common denominator g ∈ K [X ] , g =/ 0, yields
t =
∑

i αi ⊗ ( fi/g) =
(∑

i αi ⊗ fi
)

(1/g) in the K (X) -module E ⊗ K (X) , so
that t = f/g for some f ∈ E[X ] and 0 =/ g ∈ K [X ] . Moreover, in the K (X) -
module E ⊗ K (X) , f/g = f ′/g′ if and only if g′ f = g f ′ in E ⊗ K [X ] , if
and only if g′ f = g f ′ in E[X ] . Hence E ⊗ K (X) is isomorphic to the ring
of fractions R = S−1 E[X ] , where S is the proper multiplicative subset of all
nonzero g ∈ K [X ] . Therefore E ⊗ K (X) is a domain, and its field of fractions
is isomorphic to that of R , which is E(X) since E[X ] ⊆ R ⊆ E(X) . �
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Separability. By MacLane’s theorem IV.9.7, E is separable over K if and
only if E and K

1/p∞ are linearly disjoint over K .

Tensor products yield another definition of linear disjointness. If K ⊆ E ⊆ L
and K ⊆ F ⊆ L are fields, then E and F are linearly disjoint over K if and
only if there exists a basis of E over K that is linearly independent over F , if and
only if there exists a basis of F over K that is linearly independent over E (by
Propositions IV.9.1 and IV.9.2). By Proposition 5.6, the inclusion homomorphisms
of E and F into their composite E F ⊆ L induce a multiplication homomorphism
µ of E ⊗ F into E F , which sends α ⊗ β to αβ and is a homomorphism of
E-modules and of F-modules.

Proposition 6.3. If K ⊆ E ⊆ L and K ⊆ F ⊆ L are fields, then E and F are
linearly disjoint over K if and only if the homomorphism E ⊗ F −→ E F ⊆ L is
injective.

Proof. Let (αi )i∈I be a basis of E over K . By 5.4, (αi ⊗ 1)i∈I is a basis
of E ⊗ F over F , which µ sends back to (αi )i∈I . If µ is injective, then
(αi )i∈I = µ

(

(αi ⊗ 1)i∈I
)

is linearly independent over F , hence E and F are
linearly disjoint over K . Conversely, if E and F are linearly disjoint over K ,
then µ sends the basis (αi ⊗ 1)i∈I of E ⊗ F over F to a family (αi )i∈I that is
linearly independent over F ; therefore µ is injective. �

Definition. A commutative ring R is reduced when it contains no nonzero
nilpotent element; equivalently, when its nilradical is 0 .

Corollary 6.4. Let K ⊆ E and L be fields. If E and F are linearly disjoint
over K and E ⊗K L is reduced, then E F ⊗F L is reduced.

Proof. By 6.3, E ⊗K F −→ E F is injective, so that E ⊗K F is a domain;
since E ⊗K F contains both E and F , its field of fractions is E F . Now, every
t ∈ E F ⊗F L is a finite sum t =

∑

1�i�n αi ⊗ γi in which α1, . . . , αn ∈ E F
can be rewritten with a common denominator αi = βi/δ , where βi , δ ∈ E ⊗K
F . If t = (1/δ)

(∑

i βi ⊗ γi
)

is nilpotent, then u =
∑

i βi ⊗ γi ∈ (E ⊗K
F) ⊗F L ∼= E ⊗K L is nilpotent, u = 0, and t = 0. �

We can now prove an souped-up version of MacLane’s theorem.

Theorem 6.5 (MacLane). Let K be a field of characteristic p =/ 0 . For a field
extension K ⊆ E the following conditions are equivalent:

(1) E is separable over K;

(2) for every field extension F of K the ring E ⊗K F is reduced;

(3) the ring E ⊗K K
1/p∞

is reduced;

(4) E and K
1/p∞

are linearly disjoint over K .
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Proof. (2) implies (3) since K
1/p∞ is a field extension of K ; that (4) implies

(1) was proved in Section IV.9 (Theorem IV.9.7).

(1) implies (2). First let E be a finite separable extension of K . Then E = K (α)
for some separable α ∈ E . By 6.1, E ⊗ F ∼= F[X ]/(qm1

1 ) × · · · × F[X ]/(qmr
r ) ,

where q1, . . ., qr ∈ F[X ] are distinct monic irreducible polynomials and q =
qm1

1 · · · qmr
r . Now, m1 = · · · = mr = 1, since α is separable over K; hence

E ⊗ F is isomorphic to a direct product of fields, and is reduced.

Next, let E be finitely generated and separable over K, so that E has a tran-
scendence base B such that E is (algebraic and) finite separable over K (B) .
Then E ⊗K F ∼= (E ⊗K (B) K (B))⊗K F ∼= E ⊗K (B) (K (B)⊗K F) , since tensor
products are associative, and these isomorphisms are algebra isomorphisms. By
6.2, K (B) ⊗K F is a domain, with quotient field Q ∼= F(B) . Since E ⊗K (B) Q
is reduced (by the above), the injection E ⊗K F ∼= E ⊗K (B) (K (B) ⊗K F) −→
E ⊗K (B) Q shows that E ⊗K F is reduced.

Finally, let E be any separable extension of K . Every t ∈ E ⊗ F is a finite
sum α1 ⊗ β1 + · · · + αn ⊗ βn , where α1, . . ., αn ∈ E belong to a finitely gene-
rated extension E ′ = K (α1, . . ., αn) ⊆ E . Since E is separable over K, E ′

has a transcendence base B such that E ′ is separable over K (B) . By the above,
α1 ⊗ β1 + · · · + αn ⊗ βn ∈ E ′ ⊗ F is either zero or not nilpotent in E ′ ⊗ F . Since
E ′ ⊗ F −→ E ⊗ F is injective, it follows that t = α1 ⊗ β1 + · · · + αn ⊗ βn ∈
E ⊗ F is either zero or not nilpotent in E ⊗ F .

(3) implies (4). First we show that E contains no α ∈ K 1/p\K . Indeed, α has

a pth root β in K
1/p∞ , so that Irr (α : K ) = X p − α = (X − β)p ∈ K

1/p∞
[X ] .

By 6.1, K (α)⊗K
1/p∞ ∼= K

1/p∞
[X ]/(X − β)p . Now, the coset of X − β

in K
1/p∞

[X ]/(X − β)p is nilpotent. Hence K (α) ⊗K
1/p∞ has a nonzero

nilpotent element. If α ∈ E , then the injection K (α)⊗K
1/p∞ −→ E ⊗ K

1/p∞

puts a nonzero nilpotent element in E ⊗ K
1/p∞ , contradicting (3).

To establish (4), we prove by induction on [ F ′ : K ] that E and F ′ are linearly

disjoint over K , for every finitely generated extension K ⊆ F ′ ⊆ K
1/p∞ (⊆ E)

of K ; then E and K
1/p∞ are linearly disjoint over K , by IV.9.1 and IV.9.2.

We may assume that F ′
� K . Readers will verify that F ′ = F(α) for some

subfield K ⊆ F � F ′ and some α ∈ F ′ such that α p ∈ F but α /∈ F .
Then E F ′ = (E F)(α) . Now, E and F are linearly disjoint over K , by

the induction hypothesis. By (3) and 6.4, E F ⊗F K
1/p∞ is reduced. But

F
1/p∞ = K

1/p∞ , so E F ⊗F F
1/p∞ is reduced. By the first part of the proof,

E F does not contain α ∈ F1/p\F . Hence E F and F ′ are linearly disjoint over
F : since [ E F ′ : E F ] = p = [ F ′ : F ] , F ′ has a basis 1, α, . . ., α p−1 over F
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that is also a basis of E F ′ over E F . Since E and F are linearly disjoint over
K , it follows from IV.9.4 that E and F ′ are linearly disjoint over K . �

Exercises

1. Let K ⊆ E and let α is algebraic over K . Show that E ⊗ K (α) is a domain if and
only if Irr (α : K ) is irreducible over E .

2. Let A be a K-algebra. Show that there is an isomorphism A ⊗ K [(Xi )i∈I ] ∼=
A[(Xi )i∈I ] that sends γ ⊗

(∑

m am Xm) to
∑

m γ am Xm .

3. Give an example of fields K ⊆ E, F such that E ⊗K F contains zero divisors. Give
an example of fields K ⊆ E, F such that E ⊗K F contains nonzero nilpotent elements.

4. Let K � F ′ ⊆ K
1/p∞

be a finite extension of K . Show that F ′ = F(α) for some
subfield K ⊆ F � F ′ and some α ∈ F ′ such that α p ∈ F and α /∈ F .

7. Simple Algebras over a Field

This section explores some of the remarkable properties of simple Artinian algebras
and division algebras over a field, culminating with Frobenius’s theorem that finds
all finite-dimensional division algebras over R .

The center. In what follows, K is any given field. In a K-algebra A with
identity element 1, we saw that to every x ∈ K corresponds a central element
x1 of A (meaning that (x1) a = a (x1) for all a ∈ A ) and that x �−→ x1 is a
homomorphism of K into A , injective since K is a field. We identify x ∈ K and
x1 ∈ A , so that K becomes a central subfield of A .

An algebra is simple (left Artinian, a division algebra) when its underlying ring
is simple (left Artinian, a division ring). For example, a field extension of K is a
division K-algebra; a finite field extension of K is an Artinian division K-algebra.
The quaternion algebra H is an Artinian division algebra over R .

Matrix rings provide other examples of simple Artinian algebras. Let D be a
division algebra over K . For every x ∈ K , the scalar n × n matrix with x on its
diagonal is central in Mn(D) ; this provides a central homomorphism of K into
Mn(D) , which by Proposition 1.1 makes Mn(D) a K-algebra. Then Mn(D) is
a simple Artinian K-algebra.

The basic result about Artinian simple algebras is Wedderburn’s theorem,
Theorem IX.3.8, which, recast in terms of K-algebras, reads as follows:

Theorem 7.1 (Wedderburn). Let K be a field. A K-algebra A is a simple left
Artinian K-algebra if and only if it is isomorphic to Mn(D) for some n > 0 and
division K-algebra D ∼= End

op
A (S) , where S is a simple left A-module.

Proof. Let A be a simple Artinian K-algebra. By IX.3.8, A ∼= Mn(D) for
some n > 0 and some division ring D ∼= End

op
A (S) , where S is a simple left
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A-module. Since K is central in A , S is, in particular, a K-module, D is
a K-algebra, Mn(D) is a K-algebra, and the isomorphism A ∼= Mn(D) is an
isomorphism of K-algebras. We proved the converse above. �

Definition. The center of a K-algebra A is

Z(A) = { z ∈ A
∣
∣ az = za for all z ∈ A } .

The following example is an exercise:

Proposition 7.2. Let D be a division ring. The center of Mn(D) is isomor-
phic to the center of D ; so the center of a simple Artinian K-algebra is a field.

Central simple algebras. If A is a simple Artinian K-algebra, then its center
C = Z(A) is a central subfield, by 7.2, which contains K ; by 1.1, A is a
C-algebra, and is then a simple Artinian C-algebra with center C . The study of
simple Artinian algebras may therefore be limited to the case C = K .

Definition. A K-algebra A is central when Z(A) = K .

Theorem 7.3 (Noether [1929]). Over any field, the tensor product of two central
simple algebras is a central simple algebra.

Proof. Let A and B be K-algebras. Buoyed by 5.5 we identify a and a ⊗ 1,
b and 1 ⊗ b , for all a ∈ A and b ∈ B , so that A and B become subalgebras of
A ⊗K B . Theorem 7.3 then follows from a more detailed result:

Lemma 7.4 (Noether [1929]). Let B be central simple. If A is simple, then
A ⊗K B is simple. If A is central, then A ⊗K B is central. In fact:

(1) if J =/ 0 is an ideal of A ⊗K B , then J ∩ A =/ 0 ;

(2) every ideal of A ⊗K B has the form I ⊗K B for some ideal I of A;

(3) Z(A ⊗ B) = Z(A) .

Proof. (1). Choose t = a1 ⊗ b1 + · · · + am ⊗ bm ∈ J\0 (where ai ∈ A ,
bi ∈ B ) so that m is the least possible. Then a1, . . ., am are linearly independent
over K , and so are b1, . . ., bm . In particular, bm =/ 0.

Since B is simple there exist xj , yj ∈ B such that 1 =
∑

j xj bm yj . Then

u =
∑

j (1 ⊗ xj ) t (1 ⊗ yj ) =
∑

i, j ai ⊗ xj bi yj =
∑

i ai ⊗ ci ,

where ci =
∑

j xj bi yj ∈ B . Then u ∈ J . We show that u ∈ A and u =/ 0.

Since a1, . . ., am are linearly independent over K , they are part of a basis of
A over K ; hence a1 ⊗ 1, . . . , am ⊗ 1 are part of a basis of A ⊗ B over B , by
5.4, and are linearly independent over B . Hence u =

∑

i (ai ⊗ 1) ci =/ 0, since
cm =/ 0. For every b ∈ B we now have

v = (1 ⊗ b) u − u (1 ⊗ b) =
∑

1�i�m ai ⊗ (bci − ci b)

=
∑

1�i�m−1 ai ⊗ (bci − ci b),
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since cm = 1. Since v ∈ J , it follows from the choice of t that v = 0. Since
a1 ⊗ 1, . . ., am ⊗ 1 are linearly independent over B , this implies bci − ci b = 0,
for all i and all b ∈ B . Thus c1, . . ., cm ∈ Z(B) = K and u =

∑

i ai ⊗ ci =
∑

i ai ci ⊗ 1 ∈ A .

(2). Let J be an ideal of A ⊗ B . Then I = J ∩ A is an ideal of A and
I ⊗ B ⊆ J . We show that I ⊗ B = J . Since vector spaces are flat, there is an
exact sequence of vector spaces and homomorphisms

0 −→ I ⊗ B −→ A ⊗ B π−→ (A/I ) ⊗B −→ 0,

in which π is induced by the projection A −→ A/I and is, therefore, an algebra
homomorphism. Hence π(J ) is an ideal of (A/I ) ⊗B . If t ∈ J and π(t) ∈
A/I , then π(t) = π(a) for some a ∈ A , t − a ∈ Ker π = I ⊗ B ⊆ J ,
a ∈ J ∩ A = I , and π(t) = π(a) = 0; thus π(J ) ∩ (A/I ) = 0. By (1), applied to
A/I and B , π(J ) = 0; therefore J ⊆ I ⊗ B .

(3). In A ⊗ B , every a ∈ A commutes with every b ∈ B ; hence Z(A) ⊆
Z(A ⊗ B) . Conversely, let t ∈ Z(A ⊗ B) . As in the proof of (1), write
t = a1 ⊗ b1 + · · · + am ⊗ bm , where ai ∈ A , bi ∈ B , and m is the least pos-
sible (given t ). Then a1, . . . , am are linearly independent over K and a1 ⊗
1, . . ., am ⊗ 1 are linearly independent over B . For all b ∈ B ,

∑

i ai ⊗ (bbi − bi b) =
∑

i
(

(1 ⊗ b) t − t (1 ⊗ b)
)

= 0;

hence bbi − bi b = 0 for all i and all b ∈ B , bi ∈ Z(B) = K for all i ,
t =
∑

i ai ⊗ bi =
∑

i ai bi ⊗ 1 ∈ A , and t ∈ Z(A) . �
Theorem 7.5 (Skolem-Noether [1929]). Let A be a simple K-algebra and let

B be a central simple K-algebra, both of finite dimension over K . Any two
homomorphisms ϕ,ψ : A −→ B are conjugate (there exists a unit u of B such
that ψ(a) = u ϕ(b) u−1 for all a ∈ A ).

Proof. Since dimK B is finite, then B is left Artinian; by 7.1, B ∼= Mn(D)
∼= EndD (S) for some division K-algebra D ∼= End

op
B (S) , where S is a simple

left B-module. Then S is a faithful B-module (by IX.3.8), a finite-dimensional
right D-module S ∼= Dn , and a left B-, right D-bimodule. Then ϕ : A −→ B
makes S a left A-, right D-bimodule and a left A ⊗K Dop-module, in which
(a ⊗ d) s = ϕ(a) sd (by 5.7). Similarly, ψ yields another left A ⊗K Dop-module
structure on S . We now have two left A ⊗K Dop-modules S1 and S2 on S with
the same finite dimension over K .

The ring R = A ⊗K Dop is simple by 7.4, and left Artinian since it has
finite dimension over K . Hence there is, up to isomorphism, only one sim-
ple left R-module T , and every left R-module is a direct sum of copies of T .
Hence S1

∼= T k and S2
∼= T � . Since S1 and S2 have the same finite dimen-

sion over K , this implies k = � . Hence S1
∼= S2 as R-modules, and as left

A-, right D-bimodules. The isomorphism θ : S1 −→ S2 is a D-automorphism
of S such that θ

(

ϕ(a) s
)

= θ (as) = a θ(s) = ψ(a) θ(s) for all a ∈ A and
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s ∈ S . The isomorphism EndD (S) ∼= B sends θ to a unit u of B such that
u ϕ(a) s = ψ(a) us for all a ∈ A and s ∈ S ; since S is a faithful B-module this
implies u ϕ(a) = ψ(a) u for all a ∈ A . �

In a K-algebra A , the centralizer of a subset B of A is

C = { a ∈ A
∣
∣ ab = ba for all b ∈ B } .

Theorem 7.6. Let A be a simple K-algebra of finite dimension over K and let
B be a simple subalgebra of A . The centralizer C of B is a simple subalgebra
of A . Moreover, B is the centralizer of C and dimK A = (dimK B)(dimK C) .

In fact, readers may show that B ⊗K C ∼= A .

Proof. As in the proof of 7.5, A ∼= Mn(D) ∼= EndD (S) for some division
K-algebra D ∼= End

op
A (S) , where S is a simple left A-module. Then S is a

left A-, right D-bimodule and a left A ⊗K Dop module, and the isomorphism
θ : A −→ EndD (S) induces the given left A-module structure on S . We
may also view S as a left B-, right D-bimodule and a left B ⊗K Dop module.
Again R = B ⊗K Dop is simple, by 7.4, and left Artinian, since dimK R =
(dimK B)(dimK D) is finite; hence R ∼= Mm(E) ∼= EndE (T ) for some divi-
sion K-algebra E ∼= End

op
R (T ) , where T is a simple left R-module.

Since θ : A ∼= EndD (S) is an isomorphism, then a ∈ A is in C if and
only if θ(a) commutes with θ(b) for all b ∈ B , if and only if θ(a) is a
left B-, right D-bimodule endomorphism of S . Hence θ induces an isomor-
phism C ∼= EndR (S) . Since R is simple we have S ∼= T r for some r > 0 and
C ∼= EndR (S) ∼= Mr

(

EndR (T )
)
∼= Mr (E) . Hence C is simple.

Since A ∼= Mn(D) and C ∼= Mr (E) we have

dim A = n2 dim D and dim C = r2 dim E

(dimensions are over K ). Similarly, B ⊗K Dop ∼= R ∼= Mm(E) and 5.4 yield

(dim B)(dim D) = m2 dim E .

Since S ∼= Dn , T ∼= Em , and S ∼= T r , we also have

n dim D = dim S = r dim T = rm dim E .

Hence

(dim B)(dim C) =
m2 dim E
dim D

r2 dim E = n2 dim D = dim A.

Finally, if B′ is the centralizer of C , then B ⊆ B′ and, by the above,
(dim C)(dim B′) = dim A ; hence dim B = dim B′ and B = B′ . �

Division algebras. We now apply the previous theorems to division rings and
algebras. First we note that every division ring D has a center, which is a subfield
of D . The following properties make a tasty exercise:
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Proposition 7.7. Let D be a division ring with center K . If dimK D is finite,
then dimK D is a square. In fact, every maximal subfield F ⊇ K of D is its own
centralizer in D , so that dimK D = (dimK F)2 .

Theorem 7.8 (Frobenius [1877]). A division R-algebra that has finite dimension
over R is isomorphic to R , C , or the quaternion algebra H .

Proof. Let D be a division R-algebra with center K and let F ⊇ K be
a maximal subfield of D , so that R ⊆ K ⊆ F ⊆ D . By 7.7, dimK D =
(dimK F)2 . Now, [ F : R ] is finite; hence either F = R or F ∼= C .

If F = R , then K = R = F , dimK D = (dimK F)2 = 1, and D = R .

If F ∼= C and K = F , then again dimK D = 1 and D = K ∼= C .

Now, let F ∼= C and K � F . Then K = R and dim
R

D = 4. We identify
F and C in what follows. There are two algebra homomorphisms of F into D ,
the inclusion homomorphism and complex conjugation. By 7.5 there exists a unit
u of D such that z = uzu−1 for all z ∈ F . Then u2 z u−2 = z for all z ∈ F
and u2 is in the centralizer of F . By 7.7, u2 ∈ F . In fact, u2 ∈ R , since
u2 = u u2 u−1 = u2 . However, u /∈ F , since uiu−1 = i =/ i . Hence u2 < 0,
since u2 � 0 would imply u2 = r2 for some r ∈ R and u = ±r ∈ F ; thus,
u2 = −r2 for some r ∈ R , r =/ 0.

Let j = u/r and k = i j . Then j /∈ F ; hence { 1, j } is a basis of
D over F , and { 1, i, j, k } is a basis of D over R . Also, j2 = −1, and
j z j−1 = jr zr−1 j−1 = uzu−1 = z for all z ∈ F . Hence j i = −i j = −k ,
k2 = i j i j = −i j i j−1 = −i i = −1, ik = − j , ki = i j i = −i2 j = j , k j = −i , and
jk = j i j = − j i j−1 = −i = i . Thus D ∼= H . �

Exercises
1. Let D be a division ring. Show that the center of Mn(D) consists of scalar matrices

and therefore is isomorphic to the center of D .

2. Let D be a division ring with center K . Show that every maximal subfield F ⊇ K of
D is its own centralizer in D , so that dimK D = (dimK F)2 . (Use Theorem 7.6.)

3. Show that a finite group is not the union of conjugates of any proper subgroup.

4. Use the previous exercise to prove that every finite division ring is a field.

In the following exercises, K is an arbitrary field, and A is a central simple K-algebra of
finite dimension n over K . Prove the following:

5. dimK A is a square. (You may want to use Proposition 7.7.)

6. A ⊗K Aop ∼= Mn(K ) .

7. B ⊗K C ∼= A when B is a simple subalgebra of A and C is the centralizer of B .



XIV
Lattices

Lattices abound throughout many branches of Mathematics. This seems to have
first been noticed by Dedekind [1897]. They are also of interest as algebraic
systems. Systematic study began in the 1930s with the work of Birkhoff and
Stone, and with Birkhoff’s Lattice Theory [1940]. Lattice theory unifies various
parts of algebra, though perhaps less successfully than the theories in the next two
chapters.

This chapter draws examples from Chapters I, III, V, and VIII, and is otherwise
independent of other chapters.

1. Definitions

This section introduces two kinds of partially ordered sets: semilattices and lattices.

Semilattices.

Definitions. In a partially ordered set (S,�) , a lower bound of a subset T of
S is an element � of S such that � � t for all t ∈ T ; a greatest lower bound or
g.l.b. of T , also called a meet or infimum of T , is a lower bound g of T such
that � � g for every lower bound � of T .

A subset T that has a g.l.b. has only one g.l.b., which is denoted by
∧

t∈T t ;
by
∧

i∈I ti , if T is written as a family T = (ti )i∈I ; or by t1 ∧ · · · ∧ tn , if
T = { t1, . . . , tn } (by virtue of Proposition 1.1 below).

Definition. A lower semilattice is a partially ordered set in which every two
elements a and b have a greatest lower bound a ∧ b .

By definition, a ∧ b � a , a ∧ b � b , and x � a , x � b implies x � a ∧ b .
For example, the set 2X of all subsets of a set X , partially ordered by inclusion,
is a lower semilattice, in which the g.l.b. of two subsets is their intersection. This
extends to any set of subsets of X that is closed under intersections: thus, the
subgroups of a group, the subrings of a ring, the ideals of a ring, the submodules
of a module, all constitute lower semilattices.

Proposition 1.1. The binary operation ∧ on a lower semilattice (S,�) is
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idempotent ( x ∧ x = x for all x ∈ S ), commutative, associative, and order
preserving ( x � y implies x ∧ z � y ∧ z for all z ). Moreover, every finite subset
{ a1, . . ., an } of S has a greatest lower bound, namely a1 ∧ · · · ∧ an .

The proof is an exercise.

Definitions. In a partially ordered set (S,�) , an upper bound of a subset T
of S is an element u of S such that u � t for all t ∈ T ; a least upper bound or
l.u.b. of T , also called a join or supremum of T , is an upper bound � of T such
that � � u for every upper bound u of T .

A subset T that has an l.u.b. has only one l.u.b., which is denoted by
∨

t∈T t ;
by
∨

i∈I ti , if T is written as a family T = (ti )i∈I ; or by t1 ∨ · · · ∨ tn , if
T = { t1, . . . , tn } (by virtue of Proposition 1.2 below).

Definition. An upper semilattice is a partially ordered set in which every two
elements a and b have a least upper bound a ∨ b .

By definition, a � a ∨ b , b � a ∨ b , and a � x , b � x implies a ∨ b � x .
For example, the set 2X of all subsets of a set X , partially ordered by inclusion,
is an upper semilattice, in which the l.u.b. of two subsets is their union. The
subgroups of a group constitute an upper semilattice, in which the supremum of
two subgroups is the subgroup generated by their union; the ideals of a ring and the
submodules of a module also constitute upper semilattices, in which the supremum
of two ideals or submodules is their sum.

Least upper bounds and greatest lower bounds are related as follows.

Definition. The dual or opposite of a partially ordered set (S,�) is the par-
tially ordered set (S,�)op = (S,�op) on the same set with the opposite order
relation, x �op y if and only if y � x .

An l.u.b. in (S,�) is a g.l.b. in (S,�)op , and vice versa. Hence S is an
upper semilattice if and only if Sop is a lower semilattice. Therefore the following
statement follows from Proposition 1.1:

Proposition 1.2. The binary operation ∨ on an upper semilattice (S,�) is
idempotent ( x ∨ x = x for all x ∈ S ), commutative, associative, and order
preserving ( x � y implies x ∨ z � y ∨ z for all z ). Moreover, every finite subset
{ a1, . . ., an } of S has a least upper bound, namely a1 ∨ · · · ∨ an .

There is a more general principle:

Metatheorem 1.3 (Duality Principle). A theorem that holds in every partially
ordered set remains true when the order relation is reversed.

The duality principle is our first example of a metatheorem, which does not
prove any specific statement, but is applied to existing theorems to yield new
results. Like nitroglycerine, it must be handled with care. Order reversal in
1.3 applies to hypotheses as well as conclusions. Hence the duality principle
does not apply to specific partially ordered sets: if Theorem T is true in S ,
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then Theorem T op is true in Sop , but it does not follow that T op is true in S
(unless T is also true in Sop ). For example, every subset of N has a g.l.b., but it
is deranged logic to deduce from the duality principle that every subset of N has
a l.u.b.

Lattices.

Definition. A lattice is a partially ordered set that is both a lower semilattice
and an upper semilattice.

Equivalently, a lattice is a partially ordered set in which every two elements a
and b have a g.l.b. a ∧ b and an l.u.b. a ∨ b .

Every totally ordered set is a lattice: if, say, a � b , then a ∧ b = a and
a ∨ b = b ; thus N , Q , and R , with their usual order relations, are lattices. The
subsets of a set, the subgroups of a group, the ideals of a ring, the submodules of
a module, all constitute lattices.

Proposition 1.4. If X is a set, and L is a set of subsets of X that is closed
under intersections and contains X , then L , partially ordered by inclusion, is a
lattice.

Proof. Let A, B ∈ L . Then A ∩ B ∈ L is the g.l.b. of A and B . The l.u.b.
of A and B is the intersection of all C ∈ L that contain A ∪ B (including X ),
which belongs to L by the hypothesis. �

Finite partially ordered sets and lattices can be specified by directed graphs in
which the elements are vertices and x < y if and only if there is a path from x
to y . Arrow tips are omitted; it is understood that all arrows point upward. For
example, in the graph

0 < 1, but a � b ; the graph shows that a ∧ b = a ∧ c = b ∧ c = 0 and
a ∨ b = a ∨ c = b ∨ c = 1, and represents a lattice.

Properties. If L is a lattice, then so is the opposite partially ordered set Lop ;
hence there is a duality principle for lattices:

Metatheorem 1.5 (Duality Principle). A theorem that holds in every lattice
remains true when the order relation is reversed.

As was the case with 1.3, order reversal in Metatheorem 1.5 applies to
hypotheses as well as conclusions; the duality principle does not apply to spe-
cific lattices.

Readers will verify that lattices can be defined as sets equipped with two
operations that satisfy certain identities:
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Proposition 1.6. Two binary operations ∧ and ∨ on a set S are the infimum
and supremum operations of a lattice if and only if the identities

(1) (idempotence) x ∧ x = x , x ∨ x = x ,

(2) (commutativity) x ∧ y = y ∧ x , x ∨ y = y ∨ x ,

(3) (associativity) (x ∧ y) ∧ z = x ∧ (y ∧ z) , (x ∨ y) ∨ z = x ∨ (y ∨ z) ,

(4) (absorption laws) x ∧ (x ∨ y) = x , x ∨ (x ∧ y) = x

hold for all x, y, z ∈ S ; and then ∧ and ∨ are the infimum and supremum
operations of a unique lattice, in which x � y if and only if x ∧ y = x , if and only
if x ∨ y = y .

Definition. A sublattice of a lattice L is a subset of L that is closed under
infimums and supremums.

Equivalently, S ⊆ L is a sublattice of L if and only if x, y ∈ S implies
x ∧ y ∈ S and x ∨ y ∈ S . Then it follows from Proposition 1.6 that S is a lattice
in its own right, in which x � y if and only if x � y in L ; this lattice is also
called a sublattice of L .

Definitions. A homomorphism of a lattice A into a lattice B is a mapping
ϕ : A −→ B such that ϕ (x ∧ y) = ϕ(x) ∧ ϕ(y) and ϕ (x ∨ y) = ϕ(x) ∨ ϕ(y) for
all x, y ∈ A. An isomorphism of lattices is a bijective homomorphism.

By Proposition 1.6, a lattice homomorphism ϕ is order preserving: x � y
implies ϕ(x) � ϕ(y) . But order preserving mappings between lattices are not
necessarily homomorphisms; readers will easily find counterexamples. However,
a bijection θ between lattices is an isomorphism if and only if both θ and θ−1

are order preserving (see the exercises); then θ−1 is also an isomorphism. More
generally, an isomorphism of partially ordered sets is a bijection θ such that θ and
θ−1 are order preserving.

There is a homomorphism theorem for lattices, for which readers are referred
to the very similar result in Section XV.1.

Exercises

1. Show that the binary operation ∧ on a lower semilattice (S, �) is idempotent, commu-
tative, associative, and order preserving.

2. Prove the following: in a lower semilattice, every finite subset { a1, . . . , an } of S has
a g.l.b., namely a1 ∧ · · · ∧ an .

3. Show that a binary operation that is idempotent, commutative, and associative is the
infimum operation of a unique lower semilattice, in which x � y if and only if xy = x .

4. Show that two binary operations on the same set are the infimum and supremum opera-
tions of a lattice if and only if they are idempotent, commutative, associative, and satisfy the
absorption laws; and then they are the infimum and supremum operations of a unique lattice.

5. Prove that every intersection of sublattices of a lattice L is a sublattice of L .
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6. Prove that every directed union of sublattices of a lattice L is a sublattice of L .

7. Find an order preserving bijection between lattices that is not a lattice homomorphism.

8. Show that a bijection θ between lattices is an isomorphism if and only if both θ and
θ−1 are order preserving.

2. Complete Lattices

A lattice is complete when every subset has an l.u.b. and a g.l.b. Most of the
examples in the previous section have this property. This section contains basic
examples and properties, and MacNeille’s completion theorem.

Definition. A complete lattice is a partially ordered set L (necessarily a lattice)
in which every subset has an infimum and a supremum.

In particular, a complete lattice L has a least element 0 (such that 0 � x for
all x ∈ L ), which is the g.l.b. of L (and the l.u.b. of the empty subset of L ). A
complete lattice L also has a greateast element 1 (such that x � 1 for all x ∈ L ),
which is the l.u.b. of L (and the g.l.b. of the empty subset of L ).

The opposite of a complete lattice is a complete lattice. Hence there is a duality
principle for complete lattices: a theorem that holds in every complete lattice
remains true when the order relation is reversed.

Examples. Every finite lattice is complete (by Propositions 1.1 and 1.2). On
the other hand, the lattices N , Q , R are not complete; but every closed interval
of R is complete.

The following results are proved like Proposition 1.4:

Proposition 2.1. If X is a set, and L is a set of subsets of X that is closed
under intersections and contains X , then L , partially ordered by inclusion, is a
complete lattice.

Proposition 2.2. A partially ordered set S is a complete lattice if and only if it
has a greatest element and every nonempty subset of S has an infimum.

In particular, the subsets of a set, the subgroups of a group, the ideals of a ring,
the submodules of a module, all constitute complete lattices. We mention two
more classes of examples.

Definitions (Moore [1910]). A closure map on a partially ordered set S is
a mapping Γ : S −→ S that is order preserving (if x � y , then Γx � Γy ),
idempotent (ΓΓx = Γx for all x ∈ S ), and expanding (Γx � x for all x ∈ S ).
Then x ∈ S is closed relative to Γ when Γx = x .

The closure mapping A �−→ A on a topological space is a quintessential closure
map. Algebraic closure maps include the subgroup generated by a subset, the ideal
generated by a subset, and so forth.
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Proposition 2.3. Relative to a closure map on a complete lattice L , the set of
all closed elements of L is closed under infimums and is a complete lattice.

The proof is an exercise.

Definition. A Galois connection between two partially ordered sets X and Y
is an ordered pair (α, β) of mappings α : X −→ Y and β : Y −→ X that are
order reversing (if x ′ � x ′′ , then αx ′ � αx ′′ ; if y′ � y′′ , then βy′ � βy′′ ) and
satisfy βαx � x , αβy � y for all x ∈ X and y ∈ Y .

The fixed field and Galois group constructions in Chapter V constitute a Galois
connection; the exercises give other examples.

Proposition 2.4. If (α, β) is a Galois connection between two partially ordered
sets X and Y , then α and β induce mutually inverse, order reversing bijections
between Im α and Im β ; α ◦ β and β ◦ α are closure maps; if X and Y are
complete lattices, then Im α and Im β are complete lattices.

The proof is an exercise. In a Galois extension, Proposition 2.4 provides the
usual bijections between intermediate fields and (closed) subgroups of the Galois
group.

MacNeille’s theorem is the following result.

Theorem 2.5 (MacNeille [1935]). Every partially ordered set can be embedded
into a complete lattice so that all existing infimums and supremums are preserved.

Proof. Let (X,�) be a partially ordered set. For every subset S of X let

L(S) = { x ∈ X
∣
∣ x � s for all s ∈ S },

U(S) = { x ∈ X
∣
∣ x � s for all s ∈ S }

be the sets of all lower and upper bounds of S . Then S ⊆ T implies L(S)⊇ L(T )
and U(S) ⊇ U(T ) ; also, S ⊆ U(L(S)) and S ⊆ L(U(S)) for every S ⊆ X .
Hence (L , U) is a Galois connection between 2X and 2X . By 2.4, L ◦ U is a
closure map on 2X ; by 2.3, the set X̂ of all closed subsets of X is closed under
intersections and is a complete lattice, in which infimums are intersections. For
every t ∈ X let

λ(t) = L({t}) = { x ∈ X
∣
∣ x � t }, υ(t) = U({t}) = { x ∈ X

∣
∣ x � t }.

Then U
(

λ(t)
)

= υ(t) and L
(

υ(t)
)

= λ(t) . Therefore λ(t) is closed. Hence λ is
a mapping of X into X̂ . We see that λ is injective, and that x � y in X if and
only if λ(x) ⊆ λ(y) in X̂ .

For every subset S of X we have L(S) =
⋂

s∈S λ(s) . If S has a g.l.b. t in X ,
then L(S) = λ(t) and λ(t) =

⋂

s∈S λ(s) is the g.l.b. of λ(S) in X̂ .

Similarly, assume that S has an l.u.b. u in X . Then U(S) = υ(u) ,
L
(

U(S)
)

= λ(u) , λ(u) is closed, and λ(u) ⊇ λ(s) for every s ∈ S . Con-
versely, if C is a closed subset of X that contains λ(s) for every s ∈ S , then
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S ⊆ C and λ(u) = L
(

U(S)
)

⊆ L
(

U(C)
)

= C . Hence λ(u) is the l.u.b. of λ(S)
in X̂ . �

The complete lattice X̂ in the proof of Theorem 2.5 is the MacNeille completion
of X . Exemples include Dedekind’s purely algebraic construction of R (see the
exercises).

Exercises

1. Show that a partially ordered set S is a complete lattice if and only if it has a greatest
element and every nonempty subset of S has a greatest lower bound.

2. Prove the following: when Γ is a closure map on a complete lattice L , then the set of
all closed elements of L is closed under infimums and is a complete lattice.

3. Let L be a complete lattice and let C be a subset of L that is closed under infimums
and contains the greatest element of L . Show that there is a closure map on L relative to
which C is the set of all closed elements of L .

4. Let X be a set. When is a closure map on 2X the closure mapping of a topology
on X ?

5. Prove the following: when (α, β) is a Galois connection between two partially ordered
sets X and Y , then α and β induce mutually inverse, order reversing bijections between
Im α and Im β ; moreover, if X and Y are complete lattices, then Im α and Im β are
complete lattices.

6. Let R be a ring. The annihilator of a left ideal L of R is the right ideal Ann (L) =
{ x ∈ R

∣
∣ Lx = 0 } of R . The annihilator of a right ideal T of R is the left ideal

Ann (T ) = { x ∈ R
∣
∣ xT = 0 } of R . Show that these constructions constitute a Galois

connection between left ideals and right ideals of R .

7. Let G be a group. The centralizer of a subgroup H of G is C(H) = { x ∈ G
∣
∣ xh = hx

for all h ∈ H } . Show that (C, C) is a Galois connection between subgroups of G and
subgroups of G .

8. Inspired by the previous exercise, construct a “centralizer” Galois connnection for
subrings of a ring R .

9. Find the MacNeille completion of N .

10. Show that the MacNeille completion of Q is isomorphic ro R ∪ {∞} ∪ {−∞} .

3. Modular Lattices

Modular lattices have interesting chain properties. In this section we show that the
length properties of abelian groups and modules are in fact properties of modular
lattices.

Definition. A lattice L is modular when x � z implies x ∨ (y ∧ z) =
(x ∨ y) ∧ z , for all x, y, z ∈ L .
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In any lattice, x � z implies that x and y ∧ z are lower bounds of { x ∨ y, z } ,
whence x ∨ (y ∧ z) � (x ∨ y) ∧ z . Thus, a lattice L is modular if and only if
x � z implies x ∨ (y ∧ z) � (x ∨ y) ∧ z .

The opposite of a modular lattice is a modular lattice. Hence there is a duality
principle for modular lattices: a theorem that holds in every modular lattice remains
true when the order relation is reversed.

Examples. Modular lattices are named after the following example:

Proposition 3.1. The lattice of submodules of any module is modular.

Proof. We saw that the submodules of a module constitute a lattice, in which
A ∧ B = A ∩ B and A ∨ B = A + B . Let A, B, C be submodules such
that A ⊆ C . Then A + (B ∩ C) ⊆ (A + B) ∩ C (this holds in every lattice).
Conversely, if x ∈ (A + B) ∩ C , then x = a + b ∈ C for some a ∈ A ⊆ C and
b ∈ B , whence b = x − a ∈ C and x = a + b ∈ A + (B ∩ C) . �

Readers will also verify that every totally ordered set is a modular lattice, and
that the following lattice, which we call M5 , is modular:

But the following unfortunate lattice, which we call N5 , is not modular:

since b � c , b ∨ (a ∧ c) = b ∨ 0 = b , and (b ∨ a) ∧ c = 1 ∧ c = c . The next
result shows that N5 is the quintessential nonmodular lattice.

Theorem 3.2. A lattice is modular if and only if it contains no sublattice that is
isomorphic to N5 .

Proof. A sublattice of a modular lattice is modular and not isomorphic to N5 .

Conversely, a lattice L that is not modular contains elements a, b, c such that
b � c and u = b ∨ (a ∧ c) < (b ∨ a) ∧ c = v . Then v � b ∨ a , a � u < v � c ,
and b ∨ a � b ∨ u � b ∨ v � b ∨ a , so that b ∨ u = b ∨ v = b ∨ a .
Similarly, b ∧ c � u , v � b ∧ c , and b ∧ c � b ∧ u � b ∧ v � b ∧ c , so
that b ∧ u = b ∧ v = b ∧ c . Thus b , u , v , b ∧ u = b ∧ v , and b ∨ u = b ∨ v

constitute a sublattice of L . We show that these five elements are distinct, so that
our sublattice is isomorphic to N5 :
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Already u < v . Moreover, b � c : otherwise, b = b ∧ c � u < v and
u = b ∨ u = b ∨ v = v ; and a � b : otherwise, b = b ∨ a � v > u and
u = b ∧ u = b ∧ v = v . Hence v < b ∨ v (otherwise, b � v � c ), b ∧ u < u
(otherwise, a � u � b ), b ∧ u < b (otherwise, b = b ∧ u = b ∧ c � c ),
b < b ∨ v (otherwise, b = b ∨ v = b ∨ a � a ). �

Chains. A minimal element m of a lattice L is necessarily a least element, since
m ∧ x � m implies m = m ∧ x � x , for all x ∈ L . Dually, a maximal element
of a lattice is necessarily a greatest element. If a finite chain x0 < x1 < · · · < xn
is a maximal chain of L , then x0 is a minimal element of L and xn is a maximal
element of L ; hence a lattice that has a finite maximal chain has a least element
0 and a greatest element 1, and every finite maximal chain x0 < x1 < · · · < xn
has x0 = 0 and xn = 1.

Theorem 3.3. In a modular lattice, any two finite maximal chains have the same
length.

For example, a finite maximal chain of submodules of a module is a composition
series; by Theorem 3.3, all composition series of that module have the same length.

Proof. In a partially ordered set X , an element b covers an element a when
a < b and there is no x ∈ X such that a < x < b . We denote this relation by
b � a , or by a ≺ b . In a lattice, a finite chain x0 < x1 < · · · < xn is maximal if
and only if x0 = 0, xn = 1, and xi ≺ xi+1 for all i < n .

Lemma 3.4. In a modular lattice, x ∧ y ≺ x if and only if y ≺ x ∨ y .

Proof. Suppose that x ∧ y ≺ x but y ⊀ x ∨ y . Then x ∧ y < x , x � y ,
y < x ∨ y , and y < z < x ∨ y for some z . Then x ∨ y � x ∨ z � x ∨ y
and x ∨ z = x ∨ y . Also x ∧ y � x ∧ z � x , and x ∧ z < x : otherwise,
x � z and x ∨ z = z < x ∨ y . Hence x ∧ z < x , and x ∧ z = x ∧ y . Then
y ∨ (x ∧ z) = y ∨ (x ∧ y) = y < z = (y ∨ x) ∧ z , contradicting modularity.
Therefore x ∧ y ≺ x implies y ≺ x ∨ y . The converse implication is dual. �

With Lemma 3.4 we can “pull down” maximal chains as follows.

Lemma 3.5. In a modular lattice, if n � 1 , 0 ≺ y1 ≺ · · · ≺ yn , and x ≺ yn ,
then 0 ≺ x1 ≺ · · · ≺ xn−1 = x for some x1, . . . , xn−1 .
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Proof. By induction on n . There is nothing to prove if n = 1. Let n > 1.
If x = yn−1 , then y1, . . ., yn−1 serve. Now, assume that x =/ yn−1 . Then
x � yn−1 , yn−1 < yn−1 ∨ x � yn , and yn−1 ∨ x = yn � yn−1 . By 3.4,
t = x ∧ yn−1 ≺ x and t ≺ yn−1 . Hence the induction hypothesis yields
0 ≺ x1 ≺ · · · ≺ xn−2 = t ≺ x for some x1, . . ., xn−2 . �

Armed with this property we assail Theorem 3.3. Let L be a modular lattice
with a finite maximal chain 0 = x0 ≺ x1 ≺ · · · ≺ xm = 1. We prove by
induction on m that in every such lattice all finite maximal chains have length
m . This is clear if m = 0 (then L = {0}) or m = 1 (then L = { 0, 1 } ). If
m > 1 and 0 = y0 ≺ y1 ≺ · · · ≺ yn = 1 is another finite maximal chain,
then, by 3.5, 0 ≺ z1 ≺ · · · ≺ zn−1 = xm−1 for some z1, . . . , zn−2 ; then
0 = x0 ≺ x1 ≺ · · · ≺ xm−1 and 0 = z0 ≺ z1 ≺ · · · ≺ zn−1 are finite maximal
chains of the modular lattice L(xm−1) = { x ∈ L

∣
∣ x � xm−1 } , and the induction

hypothesis yields m − 1 = n − 1 and m = n . �

Exercises
1. Show that a lattice L is modular if and only if the equality x ∨

(
y ∧ (x ∨ t)

)
=

(x ∨ y) ∧ (x ∨ t) holds for all x, y, t ∈ L .

2. Show that a lattice is modular if and only if x � t and z � y implies x ∨
(

y ∧ (z ∨ t)
)

=
(
(x ∨ y) ∧ z

)
∨ t .

3. Show that a lattice is modular if and only if a ∧ b = a ∧ c , a ∨ b = a ∨ c , b � c
implies b = c , when a, b, c ∈ L .

4. Show that every totally ordered set is a modular lattice.

5. Show that the normal subgroups of any group constitute a modular lattice.

6. Show that the lattice of all subgroups of a group need not be modular.

7. Verify directly that M5 is modular.

In the following two exercises, a closed interval of a lattice L is a sublattice [ a, b] = { x ∈
L
∣
∣ a � x � b } of L , where a � b in L .

8. In a modular lattice, show that [ a ∧ b, a] and [ b, a ∨ b] are isomorphic lattices, for
all a and b .

9. Let L be a lattice in which all maximal chains are finite and have the same length (the
length of L ). Further assume that [ a ∧ b, a] and [ b, a ∨ b] have the same length, for all
a, b ∈ L . Prove that L is modular.

10. Prove the following: in a modular lattice that has a finite maximal chain of length n ,
every chain is finite, of length at most n .

11. Let L be a lattice in which x ≺ x ∨ y and y ≺ x ∨ y implies x ∧ y ≺ x and
x ∧ y ≺ y . Prove that any two finite maximal chains of L have the same length.
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4. Distributive Lattices

Distributive lattices are less general than modular lattices but still include some
important examples. This section contains some structure results.

Distributive lattices are defined by the following equivalent properties.

Proposition 4.1. In a lattice L , the distributivity conditions

(1) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ L ,

(2) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z ∈ L ,

are equivalent, and imply modularity.

Proof. Assume (1). Then x � z implies x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) =
(x ∨ y) ∧ z . Hence L is modular. Then x ∧ z � x yields (x ∧ z) ∨ (y ∧ x) =
x ∧

(

z ∨ (y ∧ x)
)

= x ∧ (z ∨ y) ∧ (z ∨ x) = x ∧ (z ∨ y) and (2) holds. Dually,
(2) implies (1). �

Definition. A lattice is distributive when it satisfies the equivalent conditions in
Proposition 4.1.

For example, the lattice 2X of all subsets of a set X is distributive; so is every
sublattice of 2X . Other examples are given below and in the next section.

The opposite of a distributive lattice is a distributive lattice. Hence there is a
duality principle for distributive lattices: a theorem that holds in every distributive
lattice remains true when the order relation is reversed.

By Proposition 4.1, a distributive lattice is modular. The lattice M5 :

is modular but not distributive, since a ∨ (b ∧ c) = a but (a ∨ b) ∧ (a ∨ c) = 1.
In fact, M5 and N5 are the quintessential nondistributive lattices:

Theorem 4.2 (Birkhoff [1934]). A lattice is distributive if and only if it contains
no sublattice that is isomorphic to M5 or to N5 .

Proof. A sublattice of a distributive lattice is distributive and is not, therefore,
isomorphic to M5 or N5 .

Conversely, assume that the lattice L is not distributive. We may assume that L
is modular: otherwise, L contains a sublattice that is isomorphic to N5 , by 3.2, and
the theorem is proved. Since L is not distributive, a ∧ (b ∨ c) =/ (a ∧ b)∨ (a ∧ c)
for some a, b, c ∈ L . Let

u = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) and v = (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).
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Then u � v , since a ∧ b � a ∨ b , etc. Let

x = u ∨ (a ∧ v) = (u ∨ a) ∧ v,

y = u ∨ (b ∧ v) = (u ∨ b) ∧ v,

z = u ∨ (c ∧ v) = (u ∨ c) ∧ v.

Since L is modular and a ∧ v = a ∧ (b ∨ c) , b ∨ u = b ∨ (c ∧ a) ,

x ∧ y =
(

u ∨ (a ∧ v)
)

∧
(

u ∨ (b ∧ v)
)

= u ∨
(

(a ∧ v) ∧
(

(u ∨ b) ∧ v
))

= u ∨
(

(a ∧ v) ∧ (u ∨ b)
)

= u ∨
((

a ∧ (b ∨ c)
)

∧
(

b ∨ (c ∧ a)
))

= u ∨
(((

a ∧ (b ∨ c)
)

∧ b
)

∨ (c ∧ a)
))

= u ∨ (a ∧ b) ∨ (c ∧ a) = u.

Permuting a , b , and c yields y ∧ z = z ∧ x = u . Dually, x ∨ y = y ∨ z =
z ∨ x = v . Thus { u, v, x, y, z } is a sublattice of L . We show that u, v, x, y, z
are distinct, so that { u, v, x, y, z } ∼= M5 :

Since a ∧ (b ∨ c) =/ (a ∧ b) ∨ (a ∧ c) , but a ∧ b � a ∧ (b ∨ c) and
a ∧ c � a ∧ (b ∨ c) , we have

p = (a ∧ b) ∨ (a ∧ c) < a ∧ (b ∨ c) = q.

Now, a ∧ v = a ∧ (b ∨ c) = q and modularity yields

u ∧ a =
((

(a ∧ b) ∨ (a ∧ c)
)

∨ (b ∧ c)
)

∧ a
=
(

(a ∧ b) ∨ (a ∧ c)
)

∨
(

(b ∧ c) ∧ a
)

= (a ∧ b) ∨ (a ∧ c) = p.

Therefore u < v . Hence x, y, z are distinct (if, say, x = y , then u = x ∧ y =
x ∨ y = v ) and distinct from u and v (if, say, x = u , then y = x ∨ y = v and
z = x ∨ z = v = y ). �

Irreducible elements. We now turn to structure theorems, the first of which
uses order ideals and irreducible elements. An element i of a lattice L is
irreducible (short for sup irreducible) when i is not a minimal element of L
and x ∨ y = i implies x = i or y = i . For example, the irreducible elements of
2X are the one element subsets of X .

Lemma 4.3. In a lattice L that satisfies the descending chain condition, every
element of L is the supremum of a set of irreducible elements of L .
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Proof. Assume that there is an element of L that is not the supremum of a
set of irreducible elements of L . By the d.c.c., there is an element m of L that
is minimal with this unsavory property. Then m is not a minimal element of L :
otherwise, m is the least element of L and is the supremum of an empty set of
irreducible elements. Also, m is not irreducible: otherwise, m is the supremum
of the set {m} of irreducible elements. Therefore m = x ∨ y for some x, y =/ m .
Then x < m and y < m ; by the choice of m , x and y are supremums of sets of
irreducible elements. But then so is m = x ∨ y . �

We denote by Irr (L) the set of all irreducible elements of L ; Irr (L) ⊆ L is
partially ordered, with i � j in Irr (L) if and only if i � j in L .

Definition. An order ideal of a partially ordered set S is a subset I of S such
that x � y ∈ I implies x ∈ I .

Order ideals have been called a variety of other names.

Proposition 4.4. The order ideals of a partially ordered set S , partially ordered
by inclusion, constitute a distributive lattice Id (S) .

Proof. First, S is an order ideal of itself, and every intersection of order ideals
of S is an order ideal of S . By 2.1, Id (S) is a complete lattice, in which infimums
are intersections. Moreover, every union of order ideals of S is an order ideal of
S , so that supremums in Id (S) are unions. Hence Id (S) is a sublattice of 2S

and is distributive. �
We show that Proposition 4.4 yields all finite distributive lattices.

Theorem 4.5. A finite lattice L is distributive if and only if L ∼= Id (S) for
some finite partially ordered set S , namely S = Irr (L) .

In Theorem 4.5, S is unique up to isomorphism: readers will show that
Irr
(

Id (S)
)
∼= S when S is finite. hence L ∼= Id (S) implies S ∼= Irr

(

Id (S)
)

∼= Irr (L) .

Proof. Let L be distributive. For every x ∈ L ,

θ(x) = { i ∈ Irr (L)
∣
∣ i � x }

is an order ideal of Irr (L) . By 4.3, x is the supremum of a set J of irreducible
elements of L ; then J ⊆ θ(x) ; therefore x =

∨

i∈θ(x) i . Hence θ is injective.

Let I be an order ideal of Irr (L) . Let x =
∨

i∈I i . Then I ⊆ θ(x) .
Conversely, if j ∈ θ(x) , then, since L is distributive,

j = j ∧
(∨

i∈I i
)

=
∨

i∈I ( j ∧ i);

since j is irreducible, j = j ∧ i for some i ∈ I , so that j � i ∈ I and j ∈ I .
Hence I = θ(x) . Thus θ is a bijection of L onto Id

(

Irr (L)
)

. The inverse
bijection sends I to

∨

i∈I i ; both θ and its inverse are order preserving. �
Birkhoff’s theorem. Theorem 4.5 implies that a finite distributive lattice is

isomorphic to a sublattice of 2X for some set X . Birkhoff’s theorem extends
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this property to every distributive lattice. The proof uses ideals of lattices.

Definitions. An ideal of a lattice L is an order ideal I of L such that x, y ∈ I
implies x ∨ y ∈ I . A principal ideal of L is an ideal of the form L(a) = { x ∈
L
∣
∣ x � a } for some a ∈ L .

The name “ideal” was bestowed in earlier, more innocent times, when x ∧ y
was denoted by xy and x ∨ y was denoted by x + y , and the definition of ideals
of a lattice resembled the definition of ideals of a commutative ring. Ideals of
distributive lattices also share properties with ideals of rings, such as Proposition
4.6 and Lemma 4.7 below.

Every lattice L is an ideal of itself, and every intersection of ideals of L is an
ideal of L ; by Proposition 2.1, the ideals of L constitute a complete lattice, in
which infimums are intersections. Supremums are more complex; however, we
have:

Proposition 4.6. Let A and B be ideals of a distributive lattice L . In the
lattice of ideals of L , A ∨ B = { a ∨ b

∣
∣ a ∈ A, b ∈ B } .

Proof. Let C = { a ∨ b
∣
∣ a ∈ A, b ∈ B } . An ideal of L that contains

both A and B also contains C . Hence it suffices to show that C is an ideal. If
x � y ∈ C , then y = a ∨ b for some a ∈ A and b ∈ B , and x = x ∧ (a ∨ b) =
(x ∧ a) ∨ (x ∧ b) ∈ C , since x ∧ a ∈ A and x ∧ b ∈ B . Moreover, x, y ∈ C
implies x ∨ y ∈ C , since both A and B have this property. �

Definition. A prime ideal of a lattice L is an ideal P =/ Ø, L such that x ∧ y ∈ P
implies x ∈ P or y ∈ P .

Lemma 4.7. Let I be an ideal of a distributive lattice L . For every a ∈ L ,
a /∈ I there exists a prime ideal P of L that contains I but not a .

Proof. The union of a chain of ideals of L is an ideal of L ; hence the union
of a chain of ideals of L that contain I but not a is an ideal of L that contains I
but not a . By Zorn’s lemma, there is an ideal P of L that contains I but not a
and is maximal with this property. Then P is prime: Let x, y ∈ L , x, y /∈ P . In
the lattice of ideals of L , P ∨ L(x) and P ∨ L(y) properly contain P . By the
choice of P , both P ∨ L(x) and P ∨ L(y) contain a . By 4.6, a = p ∨ z = q ∨ t
for some p, q ∈ P and z � x , t � y . Hence

a = (p ∨ z) ∧ (q ∨ t) = (p ∧ q) ∧ (p ∧ t) ∧ (z ∧ q) ∧ (z ∧ t).

Now, p ∧ q, p ∧ t, z ∧ q ∈ P but a /∈ P ; therefore z ∧ t /∈ P and x ∧ y /∈ P . �
We can now prove Birkhoff’s theorem:

Theorem 4.8 (Birkhoff [1933]). A lattice L is distributive if and only if it is
isomorphic to a sublattice of 2X for some set X .

Proof. Let X be the set of all prime ideals of L . Define V : L −→ 2X by

V (x) = { P ∈ X
∣
∣ x /∈ P }.
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By 4.9 below (stated separately for future reference), V is a lattice homomorphism,
so that Im V is a sublattice of 2X . Since x � y if and only if V (x) ⊆ V (y) , V
is an isomorphism of L onto Im V . �

Lemma 4.9. Let L be a distributive lattice. Define

V (a) = { P ∈ X
∣
∣ a /∈ P } , where a ∈ L .

Then V is injective; a � b if and only if V (a)⊆ V (b) ; V (a ∧ b) = V (a)∩ V (b) ;
and V (a ∨ b) = V (a) ∪ V (b) , for all a, b ∈ L .

Proof. If P is a prime ideal, then a ∧ b /∈ P if and only if a /∈ P and b /∈ P ;
therefore V (a ∧ b) = V (a) ∩ V (b) . If P is any ideal, then a ∨ b /∈ P if and only
if a /∈ P or b /∈ P ; therefore V (a ∨ b) = V (a) ∪ V (b) .

If a � b , then 4.7 provides a prime ideal P that contains L(b) but not
a , so that P ∈ V (a) \ V (b) . If b =/ a , then either a � b or b � a ; in
either case, V (b) =/ V (a) . Hence V is injective. Then V (a) ⊆ V (b) implies
V (a) = V (a) ∩ V (b) = V (a ∧ b) and a = a ∧ b � b . Conversely, a � b implies
V (a) ⊆ V (b) . �

Exercises

1. Show that a lattice L is distributive if and only if (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) =
(x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) for all x, y, z ∈ L .

2. Show that a lattice L is distributive if and only if a ∧ b = a ∧ c , a ∨ b = a ∨ c implies
b = c , when a, b, c ∈ L .

3. Prove or disprove: the lattice of all subgroups of Z is distributive.

4. Find an abelian group G such that the lattice of all subgroups of G is not distributive.

5. Show that Irr
(
Id (S)

)
∼= S for every finite partially ordered set S .

6. Say that x = x1 ∨ x2 ∨ · · · ∨ xn is an irredundant supremum when x1 ∨ · · · ∨ xi−1 ∨
xi+1 ∨ · · · ∨ xn < x for all i . Show that every element of a finite distributive lattice can be
written uniquely as an irredundant supremum of irreducible elements.

7. Prove that every maximal chain of a finite distributive lattice L has length
∣
∣Irr (L)

∣
∣ .

8. Show that the lattice of subgroups of a group G is distributive if and only if every finitely
generated subgroup of G is cyclic.

5. Boolean Lattices

Boolean lattices generalize the lattice of subsets of a set. They were introduced
by Boole [1847] for use in mathematical logic, as formal algebraic systems in
which the properties of infimums, supremums, and complements match those of
conjunctions, disjunctions, and negations. Boolean lattices are still in use today,
as a source of models of set theory, and in the design of electronic logic circuits.
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Definition. Let L be a lattice with a least element 0 and a greatest element 1.
A complement of an element a of L is an element a′ of L such that a ∧ a′ = 0
and a ∨ a′ = 1. For example, the usual complement X\Y of a subset Y of a set
X is a complement in the lattice 2X .

Proposition 5.1. In a distributive lattice with a least element and a greatest
element: (1) an element has at most one complement; (2) if a′ is the complement
of a and b′ is the complement of b , then a′ ∨ b′ is the complement of a ∧ b , and
a′ ∧ b′ is the complement of a ∨ b .

Proof. (1). If b and c are complements of a , then

b = b ∧ (a ∨ c) = (b ∧ a) ∨ (b ∧ c) = b ∧ c � c;

exchanging b and c then yields c � b . (2). By distributivity,

(a ∧ b) ∧ (a′ ∨ b′) = (a ∧ b ∧ a′) ∨ (a ∧ b ∧ b′) = 0 ∨ 0 = 0.

Dually, (a′ ∨ b′) ∨ (a ∧ b) = 1. Hence a′ ∨ b′ is a complement of a ∧ b . Dually,
a′ ∧ b′ is a complement of a ∨ b . �

Definition. A Boolean lattice, also called a Boolean algebra, is a distributive
lattice with a least element and a greatest element, in which every element has a
complement.

For example, the lattice 2X of all subsets of a set X is a Boolean lattice.

The opposite of a Boolean lattice L is a Boolean lattice; in fact, Lop ∼= L , by
Proposition 5.1. Hence there is a duality principle for Boolean lattices: a theorem
that holds in every Boolean lattice remains true when the order relation is reversed.

Boolean rings. The next examples come from rings.

Definition. A Boolean ring is a ring R [with an identity element] in which
x2 = x for all x ∈ R .

The name “Boolean” is justified by Proposition 5.3, 5.4 below.

Lemma 5.2. A Boolean ring is commutative and has characteristic 2.

Proof. If R is Boolean, then

x + x = (x + x)(x + x) = x2 + x2 + x2 + x2 = x + x + x + x

and x + x = 0, for all x ∈ R . Then

x + y = (x + y)(x + y) = x2 + xy + yx + y2 = x + xy + yx + y,

whence yx = −xy = xy , for all x, y ∈ R . �

Proposition 5.3. If R is a Boolean ring, then R , partially ordered by x � y
if and only if xy = x , is a Boolean lattice L(R) , in which x ∧ y = xy , x ∨ y =
x + y + xy , and x ′ = 1 − x .
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The proof is an exercise.

Proposition 5.4 (Stone [1936]). If L is a Boolean lattice, then L , with addition
and multiplication

x + y = (x ′ ∧ y) ∨ (x ∧ y′), xy = x ∧ y,

is a Boolean ring R(L) . Moreover, L(R(L)) = L and R(L(R)) = R for every
Boolean ring R .

Proof. The addition on L is commutative; readers who love computation will
delight in showing that it is associative. Moreover, x + 0 = x and x + x = 0 for
all x ∈ L ; hence (L , +) is an abelian group.

The multiplication on L is commutative, associative, and idempotent, by 1.2.
Moreover, 1x = x for all x ∈ L , and 5.1 yields

xz + yz =
(

(x ′ ∨ z′) ∧ (y ∧ z)
)

∨
(

(x ∧ z) ∧ (y′ ∨ z′)
)

= (x ′ ∧ y ∧ z) ∨ (z′ ∧ y ∧ z) ∨ (x ∧ z ∧ y′) ∨ (x ∧ z ∧ z′)
= (x ′ ∧ y ∧ z) ∨ (x ∧ z ∧ y′)
=
(

(x ′ ∧ y) ∨ (x ∧ y′)
)

∧ z = (x + y) z

for all x, y, z ∈ L . Thus R(L) is a Boolean ring. Readers will verify that
L(R(L)) = L and R(L(R)) = R for every Boolean ring R . �

Finite Boolean lattices. We now apply Theorems 4.5 and 4.8 to Boolean
lattices. An atom of a Boolean lattice is a minimal nonzero element (an element
a > 0 with no a > b > 0). For example, the atoms of 2X are the one element
subsets of X . Readers will verify that the atoms of a Boolean lattice are precisely
its irreducible elements.

Theorem 5.5. A finite lattice L is Boolean if and only if L ∼= 2X for some finite
set X .

Proof. The lattice 2X is always Boolean. Conversely, let L be Boolean.
By 4.5, L ∼= Id (S) , where S = Irr (L) is the partially ordered set of all atoms
(irreducible elements) of L . Since the atoms of L satisfy no strict inequality
i < j , every subset of S is an order ideal of S , and L ∼= Id (S) = 2S . �

A Boolean sublattice of a Boolean lattice L is a sublattice S such that 0 ∈ S ,
1 ∈ S , and x ∈ S implies x ′ ∈ S . A Boolean sublattice of L is a Boolean lattice
in its own right; this lattice is also called a Boolean sublattice of L .

We saw that groups, defined as sets with a suitable binary operation, also enjoy
a constant “identity element” operation and a unary x �−→ x−1 operation; and that
a subgroup is a subset that is closed under all three operations. Similarly, Boolean
lattices have, besides their two binary operations ∧ and ∨ , two constant 0 and 1
operations and a unary x �−→ x ′ operation; a Boolean sublattice is a subset that is
closed under all five operations.

Theorem 5.6 (Birkhoff [1933]). A lattice L is Boolean if and only if it is
isomorphic to a Boolean sublattice of 2X for some set X .
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Proof. Let L be Boolean and let X be the set of all prime ideals of L . Define
V : L −→ 2X by V (x) = { P ∈ X

∣
∣ x /∈ P } . By 4.9 and 5.7 below, V is a

homomorphism of Boolean lattices, so that Im V is a Boolean sublattice of 2X ,
and V is an isomorphism of L onto Im V . �

Stone’s theorem. Stone [1934] used topology to sharpen Theorem 5.6.

Lemma 5.7. Let L be a Boolean lattice. The sets

V (a) = { P ∈ X
∣
∣ a /∈ P } , where a ∈ L ,

constitute a basis for a topology on the set X of all prime ideals of L . Moreover,
V (0) = Ø , V (1) = X , and V (a′) = V (a)′ , for all a ∈ L .

Proof. By 4.9, V (a ∧ b) = V (a) ∩ V (b) for all a, b ∈ L ; hence the sets
V (a) with a ∈ L constitute a basis of open sets for a topology on X . If P
is a prime ideal of L , then 0 ∈ P , since P =/ Ø, and 1 /∈ P , since P =/ L ;
therefore V (0) = Ø and V (1) = X . By 4.9, V (a ∨ a′) = V (a) ∪ V (a′) = X ,
V (a) ∩ V (a′) = V (a ∧ a′)= Ø, and V (a′) = V (a)′ . �

The Stone space of a Boolean lattice L is set of all its prime ideals, with the
topology specified by Lemma 5.7.

Proposition 5.8. The Stone space of a Boolean lattice is compact Hausdorff
and totally disconnected.

Proof. Let X be the Stone space of a Boolean lattice L . If P =/ Q in
X , then, say, a ∈ P , a /∈ Q for some a ∈ L , and then Q ∈ V (a) and
P ∈ V (a′) = V (a)′ . Therefore X is Hausdorff. Moreover, every V (a) is open
and closed (since V (a)′ = V (a′) is open); hence X is totally disconnected.

To prove that X is compact we show that every ultrafilter U on X converges.
Since U is a ultrafilter, V (a) /∈ U implies V (a′) = V (a)′ ∈ U ; conversely,
V (a′) ∈ U implies V (a) /∈ U : otherwise, Ø = V (a) ∩ V (a′) ∈ U . Let

P = { a ∈ L
∣
∣ V (a) /∈ U }.

If a � b ∈ P , then V (a)⊆ V (b) /∈ U ; hence V (a) /∈ U and a ∈ P . If a, b ∈ P ,
then V (a), V (b) /∈ U , V (a′), V (b′) ∈ U , V (a′ ∧ b′) = V (a′) ∩ V (b′) ∈ U ,
V (a ∨ b) /∈ U , and a ∨ b ∈ P . If a, b /∈ P , then V (a), V (b) ∈ U , V (a ∧ b) =
V (a) ∩ V (b) ∈ U , and a ∧ b /∈ P . Thus P ∈ X . Then U converges to P :
when V (a) is a neighborhood of P , then P ∈ V (a) , a /∈ P , and V (a) ∈ U . �

A Stone space is a topological space that is compact Hausdorff and totally
disconnected. The Stone space of a Boolean lattice L has these properties.
Conversely, in any topological space X , every finite union, finite intersection, or
complement of closed and open subsets is closed and open; hence the closed and
open subsets of X constitute a Boolean sublattice L(X) of 2X .

Theorem 5.9 (Stone [1934]). Every Boolean lattice is isomorphic to the lattice
of closed and open subsets of its Stone space.
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Readers may prove a converse: every Stone space is homeomorphic to the
Stone space of its lattice of closed and open subsets.

Proof. Let L be a Boolean lattice and let X be its Stone space. For every
a ∈ L , V (a) is open in X , and is closed in X since X\V (a) = V (a′) is open.
Conversely, if U ∈ L(X) is a closed and open subset of X , then U is a union of
basic open sets V (a) ⊆ U ; since U is closed, U is compact, U is a finite union
V (a1) ∪ · · · ∪ V (an) = V (a1 ∨ · · · ∨ an) , and U = V (a) for some a ∈ L . Thus
V is a mapping of L onto L(X) . By 4.9 and 5.7, V : L −→ L(X) is a lattice
isomorphism. �

Exercises

1. Let D be the set of all positive divisors of some n ∈ N , partially ordered by x � y if
and only if x divides y . Show that D is a distributive lattice. When is D a Boolean lattice?

2. A cofinite subset of a set X is a subset S of X whose complement X\S is finite. Show
that the subsets of X that are either finite or cofinite constitute a Boolean lattice.

3. Show that a direct product of Boolean lattices is a Boolean lattice, when ordered com-
ponentwise.

4. A central idempotent of a ring R [with an identity element] is an element e of R such
that e2 = e and ex = xe for all x ∈ R . Show that the central idempotents of R constitute a
Boolean lattice when ordered by e � f if and only if e f = e . (Hint: e ∨ f = e + f − e f .)

5. Verify that a Boolean ring, partially ordered by x � y if and only if xy = x , is a
Boolean lattice, in which x ∧ y = xy , x ∨ y = x + y + xy , and x ′ = 1 − x .

6. Verify that the addition x + y = (x ′ ∧ y)∨ (x ∧ y′) on a Boolean lattice is associative.

7. Verify that L(R(L)) = L for every Boolean lattice L , and that R(L(R)) = R for every
Boolean ring R .

8. Show that a Boolean lattice L and its Boolean ring R(L) have the same ideals.

9. Construct a purely lattice-theoretic quotient L/I of a Boolean lattice L by a lattice ideal
I of L .

10. Verify that R
(∏

i∈I Li
)
∼=
∏

i∈I R(Li ) for all Boolean lattices (Li )i∈I .

11. Recall that a closed interval of a lattice L is a sublattice [ a, b] = { x ∈ L
∣
∣ a �

x � b } of L , where a � b in L . Show that every closed interval of a Boolean lattice L is
a Boolean lattice (though not a Boolean sublattice of L ).

12. Show that the irreducible elements of a Boolean lattice are its atoms.

A generalized Boolean lattice is a lattice L with a least element 0 such that every interval
[ 0, x] is a Boolean lattice.

13. Show that the finite subsets of any set X constitute a generalized Boolean lattice.

14. Show that Propositions 5.3 and 5.4 extend to generalized Boolean lattices, if rings are
not required to have an identity element.
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15. Show that the identities
(∨

i∈I x
)
∧ y =

∨

i∈I (xi ∧ y) and
(∧

i∈I x
)
∨ y =

∧

i∈I (xi ∨ y) hold in every Boolean lattice that is complete.

16. Show that the identities
(∨

i∈I x
)′

=
∧

i∈I x ′i and
(∧

i∈I x
)′

=
∨

i∈I x ′i hold in
every Boolean lattice that is complete.

17. Show that a complete Boolean lattice L is isomorphic to the lattice of all subsets of a
set if and only if every element of L is the supremum of a set of atoms of L .

18. Show that every compact Hausdorff and totally disconnected topological space is
homeomorphic to the Stone space of its lattice of closed and open subsets.



XV
Universal Algebra

Universal algebra is the study of algebraic objects in general, also called universal
algebras. These general objects were first considered by Whitehead [1898].
Birkhoff [1935], [1944] initiated their systematic study.

Varieties are classes of universal algebras defined by identities. Groups, rings,
left R-modules, etc., constitute varieties, and many of their properties are in fact
properties of varieties. The main results in this chapter are two theorems of
Birkhoff, one that characterizes varieties, one about subdirect decompositions.
The chapter draws examples from Chapters I, III, V, VIII, and XIV, and is other-
wise independent of previous chapters.

1. Universal Algebras

A universal algebra is a set with any number of operations. This section gives
basic properties, such as the homomorphism and factorization theorems.

Definitions. Let n � 0 be a nonnegative integer. An n-ary operation ω on a
set X is a mapping of Xn into X , where Xn is the Cartesian product of n copies
of X ; the number n is the arity of ω .

An operation of arity 2 is a binary operation. An operation of arity 1 or unary
operation on a set X is simply a mapping of X into X . By convention, the empty
cardinal product X0 is your favorite one element set, for instance, {Ø} ; hence an
operation of arity 0 or constant operation on a set X merely selects one element
of X . Binary operations predominate in previous chapters, but constant and unary
operations were encountered occasionally.

There are operations of infinite arity (for instance, infimums and supremums in
complete lattices), but many properties in this chapter require finite arity. Order
relations and partial operations are excluded for the same reason (a partial oper-
ation on a set X is a mapping of a subset of Xn into X and need not be defined
for all (x1, . . ., xn) ∈ Xn ).

Universal algebras are classified by their type, which specifies number of oper-
ations and arities:
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Definitions. A type of universal algebras is an ordered pair of a set T and a
mapping ω �−→ nω that assigns to each ω ∈ T a nonnegative integer nω , the
formal arity of ω . A universal algebra, or just algebra, of type T is an ordered
pair of a set A and a mapping, the type-T algebra structure on A, that assigns to
each ω ∈ T an operation ωA on A of arity nω .

For clarity ωA is often denoted by just ω . For example, rings and lattices
are of the same type, which has two elements of arity 2. Sets are universal al-
gebras of type T = Ø. Groups and semigroups are of the same type, which has
one element of arity 2. Groups may also be viewed as universal algebras with one
binary operation, one constant operation that selects the identity element, and one
unary operation x �−→ x−1 ; the corresponding type has one element of arity 0,
one element of arity 1, and one element of arity 2. Left R-modules are universal
algebras with one binary operation (addition) and one unary operation x �−→ r x
for every r ∈ R . These descriptions will be refined in Section 2 when we formally
define identities.

On the other hand, partially ordered sets and topological spaces are not readily
described as universal algebras. Section XVI.10 explains why, to some extent.

Subalgebras of an algebra are subsets that are closed under all operations:

Definition. A subalgebra of a universal algebra A of type T is a subset S of
A such that ω (x1, . . . , xn) ∈ S for all ω ∈ T of arity n and x1, . . ., xn ∈ S .

Let S be a subalgebra of A . Every operation ωA on A has a restriction ωS to
S (sends Sn into S , if ω has arity n ). This makes S an algebra of the same type
as A , which is also called a subalgebra of A .

Readers will verify that the definition of subalgebras encompasses subgroups,
subrings, submodules, etc., provided that groups, rings, modules, etc. are defined
as algebras of suitable types. Once started, they may as well prove the following:

Proposition 1.1. The intersection of subalgebras of a universal algebra A is a
subalgebra of A .

Proposition 1.2. The union of a nonempty directed family of subalgebras of a
universal algebra A is a subalgebra of A . In particular, the union of a nonempty
chain of subalgebras of a universal algebra A is a subalgebra of A .

Proposition 1.2 becomes false if infinitary operations are allowed.

Homomorphisms are mappings that preserve all operations.

Definition. Let A and B be universal algebras of the same type T . A homo-
morphism of A into B is a mapping ϕ : A −→ B such that

ϕ
(

ωA (x1, . . ., xn)
)

= ωB
(

ϕ(x1), . . ., ϕ(xn)
)

for all n � 0 , all ω ∈ T of arity n , and all x1, . . ., xn ∈ A.

Readers will see that this definition yields homomorphisms of groups, rings,
R-modules, lattices, and so forth. In general, the identity mapping 1A on a
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universal algebra A is a homomorphism. If ϕ : A −→ B and ψ : B −→ C are
homomorphisms of algebras of the same type, then so is ψ ◦ ϕ : A −→ C .

An isomorphism of universal algebras of the same type is a bijective homo-
morphism; then the inverse bijection is also an isomorphism. If S is a subalgebra
of A , then the inclusion mapping S −→ A is a homomorphism, the inclusion
homomorphism of S into A .

Quotient algebras. Universal algebras differ from groups, and from group
based structures like rings and modules, in that quotient algebras must in general
be constructed from equivalence relations, rather than from subalgebras. For
example, this is the case with sets, semigroups, and lattices.

In the case of sets, every mapping f : X −→ Y induces an equivalence
relation f (x) = f (y) on X , which we denote by ker f . Conversely, when E

is an equivalence relation on a set X , there is a quotient set X/E , which is the
set of all equivalence classes, and a canonical projection π : X −→ X/E , which
assigns to each x ∈ X its equivalence class; and then E = ker π .

Algebra structures are inherited by quotient sets as follows.

Proposition 1.3. Let A be a universal algebra of type T . For an equivalence
relation E on A the following conditions are equivalent:

(1) there exists a type-T algebra structure on A/E such that the canonical
projection π : A −→ A/E is a homomorphism;

(2) there exists a homomorphism ϕ : A −→ B of universal algebras of type T
such that ker ϕ = E ;

(3) x1 E y1 , . . . , xn E yn implies ω (x1, . . . , xn E ω (y1, . . . , yn) , for all
n � 0 , all ω ∈ T of arity n , and all x1, . . ., xn, y1, . . ., yn ∈ A.

Then the algebra structure in (1) is unique.

Proof. (1) implies (2); that (2) implies (3) follows from the definitions.

(3) implies (1). Let Q = A/E and let π : A −→ Q be the projection. For
every ω ∈ T of arity n and every equivalence classes E1, . . ., En , the set

ωA (E1, . . ., En) = {ωA (x1, . . ., xn)
∣
∣ x1 ∈ E1, . . ., xn ∈ En }

is contained in a single equivalence class, by (3). This yields a mapping ωQ :
Qn −→ Q , which assigns to (E1, . . ., En) ∈ Qn the equivalence class
ωQ (E1, . . ., En) that contains ωA (E1, . . ., En) . Then

π
(

ωA (x1, . . ., xn)
)

= ωQ
(

π(x1), . . ., π(xn)
)

for all x1, . . ., xn ∈ A , by definition of ωA (E1, . . . , En) ; equivalently, π ◦ ωA =
ωQ ◦ πn . Moreover, ωQ is the only mapping with this property, since πn is
surjective. This constructs a type-T algebra structure on Q , which is the only
structure such that π is a homomorphism. �
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Definitions. A congruence on a universal algebra A is an equivalence relation
E on A that satisfies the equivalent conditions in Proposition 1.3; then the uni-
versal algebra A/E is the quotient of A by E .

The quotient of a group G by a normal subgroup N is really the quotient of
G by a congruence on G , namely, the partition of G into cosets of N , which is
a congruence since x N yN ⊆ xyN for all x, y ∈ G . In fact, all congruences
on a group arise from normal subgroups (see the exercises). Readers will easily
establish the following properties:

Proposition 1.4. The intersection of congruences on a universal algebra A is
a congruence on A.

Proposition 1.5. The union of a nonempty directed family of congruences on a
universal algebra A is a congruence on A. In particular, the union of a nonempty
chain of congruences on A is a congruence on A.

Quotient algebras have a universal property:

Theorem 1.6 (Factorization Theorem). Let A be a universal algebra and let E

be a congruence on A. Every homomorphism of universal algebras ϕ : A −→ B
such that ker ϕ contains E factors uniquely through the canonical projection
π : A −→ A/E (there exists a homomorphism ψ : A/E −→ B unique such that
ϕ = ψ ◦ π ):

Readers will prove a more general property:

Theorem 1.7 (Factorization Theorem). Let ϕ : A −→ B be a homomorphism
of universal algebras. If ϕ is surjective, then every homomorphism ψ : A −→ C
of universal algebras such that ker ψ contains ker ϕ factors uniquely through ϕ

(there exists a homomorphism χ : B −→ C unique such that ψ = χ ◦ ϕ ):

The homomorphism theorem for universal algebras reads as follows:

Theorem 1.8 (Homomorphism Theorem). If ϕ : A −→ B is a homomorphism
of universal algebras, then ker ϕ is a congruence on A, Im ϕ is a subalgebra of
B , and

A/ker ϕ ∼= Im ϕ;

in fact, there is an isomorphism θ : A/ker f −→ Im f unique such that
ϕ = ι ◦ θ ◦ π , where ι : Im f −→ B is the inclusion homomorphism and
π : A −→ A/ker f is the canonical projection:
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Proof. First, ker ϕ is a congruence on A by definition, and it is clear that Im ϕ

is a subalgebra of B . Let θ : A/ker ϕ −→ Im ϕ be the bijection that sends an
equivalence class E of ker ϕ to the sole element of ϕ(E) . Then ι ◦ θ ◦ π = ϕ ,
and θ is the only mapping of A/ker ϕ into Im ϕ with this property. We show
that θ is a homomorphism. If ω ∈ T has arity n and x1, . . ., xn ∈ A , then

ι
(

θ
(

ω (π(x1), . . . , π(xn))
))

= ι
(

θ
(

π (ω(x1, . . ., xn))
))

= ω
(

ι
(

θ (π(x1))
)

, . . ., ι
(

θ (π(xn))
))

= ι
(

ω
(

θ (π(x1)), . . ., θ (π(xn))
))

,

since π , ϕ = ι ◦ θ ◦ π , and ι are homomorphisms. Hence

θ
(

ω (y1, . . . , yn)
)

= ω
(

θ(y1), . . ., ϕ(yn)
)

for all y1, . . ., yn ∈ A/ker ϕ , since ι is injective and π is surjective. �

The isomorphism theorems extend to universal algebras.

Proposition 1.9. Let ϕ : A −→ B be a homomorphism of universal algebras.
If E is a congruence on B , then ϕ−1(E) , defined by

x ϕ−1(E) y if and only if ϕ(x) E ϕ(y) ,

is a congruence on A. If ϕ is surjective, then A/ϕ−1(E) ∼= B/E , and the above
defines a one-to-one correspondence between congruences on B and congruences
on A that contain ker ϕ .

The proof is an exercise; so is the second isomorphism theorem.

Exercises

1. Show that the intersection of subalgebras of an algebra A is a subalgebra of A .

2. Show that the union of a nonempty directed family of subalgebras of an algebra A is a
subalgebra of A .

3. Let A = R ∪ {∞} be the algebra with one infinitary operation that assigns to each
infinite sequence its least upper bound in A . Show that a directed union of subalgebras of A
need not be a subalgebra of A .

4. Let ϕ : A −→ B be a homomorphism of universal algebras, and let S be a subalgebra
of A . Show that ϕ(S) = { ϕ(x)

∣
∣ x ∈ S } is a subalgebra of B .

5. Let ϕ : A −→ B be a homomorphism of universal algebras, and let T be a subalgebra
of B . Show that ϕ−1(T ) = { x ∈ A

∣
∣ ϕ(x) ∈ T } is a subalgebra of A .

6. Use the previous two exercises to produce a one-to-one correspondence between certain
subalgebras of A and certain subalgebras of B .
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7. Show that every congruence on a group is the partition into cosets of a unique nor-
mal subgroup; this defines a one-to-one correspondence between normal subgroups and
congruences.

8. Produce a one-to-one correspondence between the ideals of a ring and its congruences.

9. Let S be a semigroup in which xy = x for all x, y ∈ S . Show that every equivalence
relation on S is a congruence. If S has five elements, then show that S has more congruences
than subsets (hence there cannot be a one-to-one correspondence between suitable subsets of
S and congruences on S ).

10. Show that an equivalence relation on an algebra A is a congruence on A if and only if
it is a subalgebra of A × A .

11. Show that the intersection of congruences on an algebra A is a congruence on A .

12. Show that the union of a nonempty directed family of congruences on an algebra A is
a congruence on A .

13. Let ϕ : A −→ B be a surjective homomorphism. Show that every homomorphism
ψ : A −→ C such that ker ψ contains ker ϕ factors uniquely through ϕ .

14. Let ϕ : A −→ B be a homomorphism and let E be a congruence on B . Show that
ϕ−1(E) is a congruence on A .

15. If ϕ is surjective, then show that the previous exercise defines a one-to-one corres-
pondence between congruences on B , and congruences on A that contain ker ϕ ; and that
A/ϕ−1(E) ∼= B/E .

16. Let A be a universal algebra, let S be a subalgebra of A , and let E be a congruence
on A . Show that T = { x ∈ A

∣
∣ x E s for some s ∈ S } is a subalgebra of A . Show that E

induces congruences A on S and B on T , and that T/B ∼= S/A .

2. Word Algebras

Word algebras are free universal algebras of a given type, and lead to a formal
definition of identities.

Generators. Since every intersection of subalgebras of a universal algebra
A is a subalgebra of A , there is, for every subset X of A , a subalgebra of A
generated by X , which is the least subalgebra of A that contains X , and is the
intersection of all subalgebras of A that contain X . The following is an exercise:

Proposition 2.1. Let X be a subset of a universal algebra A of type T . Define
Sk ⊆ A for every integer k � 0 by S0 = X ; if k > 0 , then Sk is the set of all
ω (w1, . . ., wn) in which ω ∈ T has arity n and w1 ∈ Sk1

, . . . , wn ∈ Skn
, with

k1, . . ., kn � 0 and 1 + k1 + · · · + kn = k . The subalgebra 〈 X 〉 of A generated
by X is 〈 X 〉 =

⋃

k�0 Sk .

By 2.1, every element of 〈 X 〉 can be calculated in finitely many steps from
elements of X and operations on A (using k operations when x ∈ Sk ). In
general, this calculation can be performed in several different ways. The simplest
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way to construct an algebra of type T that is generated by X is to ensure that
different calculations yield different results. This is precisely what happens in the
word algebra. Thus, word algebras are similar to free groups, except that, in word
algebras, words like x (yz) and (xy) z are distinct, and words like xx−1 need not
be omitted. Indeed, free groups must satisfy certain identities; word algebras are
exempt from this requirement.

Construction. Given a type T of universal algebras and a set X , define a
set Wk as follows: let W0 = X ; if k > 0, then Wk is the set of all sequences
(ω, w1, . . . , wn) in which ω ∈ T has arity n and w1 ∈ Wk1

, . . . , wn ∈ Wkn
,

where k1, . . ., kn � 0 and 1 + k1 + · · · + kn = k . This classifies words by the
number k of operations ω ∈ T that appear in them.

For instance, if T consists of a single element µ of arity 2, then W0 = X ;
the elements of W1 are all (µ, x, y) with x, y ∈ X ; the elements of W2 are all
(µ, x, µ(y, z)) and (µ, µ(x, y), z) with x, y, z, t ∈ X ; and so forth.

Definition. The word algebra of type T on the set X is the union W =
W T

X =
⋃

k�0 Wk , with operations defined as follows: if ω ∈ T has arity n and
w1 ∈ Wk1

, . . ., wn ∈ Wkn
, then ωW (w1, . . . , wn) = (ω, w1, . . ., wn) ∈ Wk ,

where k = 1 + k1 + · · · + kn .

Proposition 2.2. If w ∈ W T
X , then w ∈ W T

Y for some finite subset Y of X .

Proof. We have w ∈ Wk for some k and prove the result by induction on k .
If w ∈ W0 , then w ∈ X and Y = {w} serves. If k > 0 and w ∈ Wk , then
w = (ω, w1, . . . , wn) , where ω ∈ T has arity n and w1 ∈ Wk1

, . . ., wn ∈ Wkn

for some k1, . . ., kn < k . By the induction hypothesis, wi ∈ W T
Yi

for some finite

subset Yi of X . Then w1, . . . , wn ∈ W T
Y , where Y = Y1 ∪ · · · ∪ Yn is a finite

subset of X , and w = (ω, w1, . . ., wn) ∈ W T
Y . �

Word algebras are blessed with a universal property:

Proposition 2.3. The word algebra W T
X of type T on a set X is generated by

X . Moreover, every mapping of X into a universal algebra of type T extends
uniquely to a homomorphism of W T

X into A .

Proof. W = W T
X is generated by X , by 2.1. Let f be a mapping of X into

a universal algebra A of type T . If ϕ : W −→ A is a homomorphism that
extends f , then necessarily ϕ(x) = f (x) for all x ∈ X and ϕ (ω, w1, . . ., wn) =
ωA
(

ϕ(w1), . . . , ϕ(xn)
)

for all (ω, w1, . . . , wn) ∈ Wk . These conditions define
(recursively) a unique mapping of W into A ; therefore ϕ is unique; and we see
that our mapping is a homomorphism. �

Identities. Word algebras yield precise definitions of relations and identities,
which resemble the definition of group relations in Section I.7, except that an
identity that holds in an algebra must hold for all elements of that algebra.

Formally, a relation of type T between the elements of a set X is a pair
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(u, v) , often written as an equality u = v , of elements of the word algebra W T
X of

type T ; the relation (u, v) holds in a universal algebra A of type T via a mapping
f : X −→ A when ϕ(u) = ϕ(v) , where ϕ : W T

X −→ A is the homomorphism
that extends f .

An identity is a relation that holds via every mapping. Since identities involve
only finitely many elements at a time, the set X needs only arbitrarily large finite
subsets and could be any infinite set. In the formal definition, X is your favorite
countable infinite set (for instance, N ).

Definitions. Let X be a countable infinite set. An identity of type T is a pair
(u, v) , often written as an equality u = v , of elements of the word algebra W T

X of
type T on the set X . An identity (u, v) holds in a universal algebra A of type T
when ϕ(u) = ϕ(v) for every homomorphism ϕ : W T

X −→ A; then A satisfies the
identity (u, v) .

In this definition, the choice of X is irrelevant in the following sense. Between
any two countable infinite sets X and Y , there is a bijection X −→ Y , which
induces an isomorphism θ : W T

X
∼= W T

Y . If u, v ∈ W T
X , then the identity (u, v)

holds in A if and only if the identity (θ(u), θ(v)) holds in A . In this sense the
identities that hold in A do not depend on the choice of X .

For example, associativity for a binary operation µ is the identity
(

(µ, x, µ(y, z)), (µ, µ(x, y), z)
)

,

where x, y, z are any three distinct elements of X . This identity holds in a
universal algebra A if and only if

µA
(

ϕ(x), µA(ϕ(y), ϕ(z))
)

= ϕ
(

(µ, x, µ(y, z)
)

= ϕ
(

µ, µ(x, y), z
)

= µA
(

µA(ϕ(x), ϕ(y)), ϕ(z)
)

for every homomorphism ϕ : W T
X −→ A . By 2.3, there is for every a, b, c ∈ A

a homomorphism ϕ : W T
X −→ A that sends x, y, z to a, b, c ; hence the associa-

tivity identity holds in A if and only if µA(a, µA(b, c)) = µA(µA(a, b), c) for all
a, b, c ∈ A , if and only if µA is associative in the usual sense.

Exercises

1. Let X be a subset of a universal algebra A of type T . Show that the subalgebra
〈 X 〉 of A generated by X is 〈 X 〉 =

⋃

k�0 Sk , where Sk ⊆ A is defined by: S0 = X ;

if k > 0 , then Sk is the set of all ω (w1, . . . , wn) in which ω ∈ T has arity n and
w1 ∈ Sk1 , . . . , wn ∈ Skn , with k1, . . . , kn � 0 and 1 + k1 + · · · + kn = k .

2. Show that every mapping f : X −→ Y induces a homomorphism W T
f : W T

X −→ W T
Y

of word algebras of type T , so that W T
− becomes a functor from sets to universal algebras of

type T .

3. Show that every universal algebra of type T is a homomorphic image of a word algebra
of type T .
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4. Let T = { ε, ι, µ } , where ε has arity 0, ι has arity 1, and µ has arity 2. Describe all
elements of W0 ∪ W1 ∪ W2 ⊆ W T

X .

5. Let T = {α} ∪ R , where α has arity 2 and every r ∈ R has arity 1. Describe all
elements of W0 ∪ W1 ∪ W2 ⊆ W T

X .

6. Write commutativity as a formal identity.

7. Write distributivity in a ring as a formal identity.

8. Given a countable infinite set X , show that the set of all identities that hold in a universal
algebra A of type T is a congruence on W T

X .

3. Varieties

A variety consists of all algebras of the same type that satisfy a given set of
identities. Most of the algebraic objects in this book (groups, rings, modules,
etc.) constitute varieties. Many of their properties extend to all varieties. This
section contains general characterizations and properties of varieties. Additional
properties will be found in Section XVI.10.

Definition. Let T be a type of universal algebras and let X be a given
countable infinite set. Every set I ⊆ W T

X × W T
X of identities of type T defines

a class V(I) , which consists of all universal algebras of type T that satisfy every
identity (u, v) ∈ I .

Definition. Let X be a given countable infinite set. A variety of type T is a
class V = V(I) , which consists of all universal algebras of type T that satisfy
some set I ⊆ W T

X × W T
X of identities of type T .

The class of all universal algebras of type T is a variety, namely V(Ø) . At the
other extreme is the trivial variety T of type T , which consists of all universal
algebras of type T with at most one element, and is characterized by the single
identity x = y , where x =/ y ; T is contained in every variety of type T .

Groups constitute a variety. The definition of groups as algebras with one binary
operation is not suitable for this, since the existence of an identity element, or the
existence of inverses, is not an identity. But we may regard groups as algebras
with one binary operation, one constant “identity element” operation 1, and one
unary operation x �−→ x−1 . An algebra of this type is a group if and only if
1x = x for all x ∈ G , x1 = x for all x ∈ G , xx−1 = 1 for all x ∈ G , x−1x = 1
for all x ∈ G , and x (yz) = (xy) z for all x, y, z ∈ G ; these five conditions are
identities. (Dedicated readers will write them as formal identities.)

Abelian groups constitute a variety (of algebras with one binary operation, one
constant “identity element” operation 0, and one unary operation x �−→ −x )
defined by the five identities above and one additional commutativity identity
x + y = y + x . Readers will verify that rings, R-modules, R-algebras, lattices,
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etc., constitute varieties, when suitably defined. But fields do not constitute a
variety; this follows from Proposition 3.1 below.

Properties. Every variety is closed under certain constructions.

A homomorphic image of a universal algebra A is a universal algebra B of
the same type such that there exists a surjective homomorphism of A onto B ;
equivalently, that is isomorphic to the quotient of A by a congruence on A .

The direct product of a family (Ai )i∈I of algebras of the same type T is the
Cartesian product

∏

i∈I Ai , equipped with componentwise operations,

ω
(

(x1i )i∈I , . . ., (xni )i∈I
)

, =
(

ω (x1i , . . ., xni )
)

i∈I

for all (x1i )i∈I , . . ., (xni )i∈I ∈
∏

i∈I Ai and ω ∈ T of arity n . The direct
product comes with a projection πj :

∏

i∈I Ai −→ Aj for each j ∈ J , which
sends (xi )i∈I ∈

∏

i∈I Ai to its j component xj . The operations on
∏

i∈I Ai are
the only operations such that every projection is a homomorphism.

A directed family of algebras is a family (Ai )i∈I of algebras of the same
type T , such that for every i, j ∈ I there exists k ∈ I such that Ai and Aj
are subalgebras of Ak . A directed union of algebras of the same type T is the
union A =

⋃

i∈I Ai of a directed family (Ai )i∈I of algebras of type T . Readers
will verify that there is unique type T algebra structure on A such that every
Ai is a subalgebra of A . Directed unions are particular cases of direct limits.

Proposition 3.1. Every variety is closed under subalgebras, homomorphic
images, direct products, and directed unions.

Proof. Let V = V(I) be the variety of all universal algebras A of type T that
satisfy a set I ⊆ W T

X × W T
X of identities. An algebra A of type T belongs to V if

and only if ϕ(u) = ϕ(v) for every (u, v) ∈ I and homomorphism ϕ : W T
X −→ A .

Readers will verify that V contains every subalgebra of every A ∈ V , and every
direct product of algebras Ai ∈ V .

Let A ∈ V and let σ : A −→ B be a surjective homomorphism. Let
ψ : W T

X −→ B be a homomorphism. Since σ is surjective one can choose
for each x ∈ X one f (x) ∈ A such that σ

(

f (x)
)

= ψ(x) . By 2.3, f extends to
a homomorphism ϕ : W T

X −→ A :

Then ψ = σ ◦ ϕ , since both agree on X . If now (u, v) ∈ I , then ϕ(u) = ϕ(v)
and ψ(u) = σ

(

ϕ(u)
)

= σ
(

ϕ(v)
)

= ψ(v) . Therefore B ∈ V .

Let A =
⋃

i∈I Ai be a directed union of universal algebras Ai ∈ V . Let
(u, v) ∈ I and let ψ : W T

X −→ A be a homomorphism. By 2.2, u, v ∈
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W T
Y for some finite subset Y of X . Since Y is finite, some Ai contains all

ψ(y) ∈ ψ(Y ) . By 2.3, the restriction of ψ to Y extends to a homomorphism
ϕ : W T

Y −→ Ai :

Then ϕ(w) = ψ(w) for all w ∈ W T
Y , since ϕ and ψ agree on Y . Hence

ψ(u) = ϕ(u) = ϕ(v) = ψ(v) . Therefore A ∈ V . �
By 3.1, fields do not constitute a variety (of any type), since, say, the direct

product of two fields is not a field.

Free algebras. Free algebras are defined by their universal property:

Definition. Let X be a set and let C be a class of universal algebras of type
T . A universal algebra F is free on the set X in the class C when F ∈ C and
there exists a mapping η : X −→ F such that, for every mapping f of X into
a universal algebra A ∈ C , there exists a unique homomorphism ϕ : F −→ A
such that ϕ ◦ η = f .

For example, free groups are free in this sense in the class of all groups; W T
X

is free on X in the class of all universal algebras of type T , by Proposition 2.3.
Some definitions of free algebras require the mapping η to be injective; readers
will verify that this property holds when C is not trivial (when some A ∈ C has at
least two elements). Readers will also prove the following:

Proposition 3.2. Let X be a set and let C be a class of universal algebras of the
same type. If there exists a universal algebra F that is free on X in the class C ,
then F and the mapping η : X −→ F are unique up to isomorphism; moreover,
F is generated by η(X) .

Existence of free algebras is a main property of varieties. More generally:

Theorem 3.3. Let C be a class of universal algebras of the same type, that
is closed under isomorphisms, direct products, and subalgebras (for instance, a
variety). For every set X there exists a universal algebra that is free on X in the
class C .

Proof. We give a direct proof; a better proof will be found in Section XVI.10.
Given a set X , let (Ei )i∈I be the set of all congruences Ei on W T

X such that
W T

X /Ei ∈ C ; let Ci = W T
X /Ei and πi : W T

X −→ Ci be the projection. Then
P =

∏

i∈I Ci ∈ C . Define a mapping η : X −→ P by η(x) =
(

πi (x)
)

i∈I .
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If C ∈ C , then every mapping f : X −→ C extends to a homomorphism ϕ

of W T
X into C . Then Im ϕ is a subalgebra of C ∈ C , W T

X /ker ϕ ∼= Im ϕ ∈ C ,
and ker ϕ = Ei for some i . Composing πi : W T

X −→ Ci = W T
X /ker ϕ and

W T
X /ker ϕ ∼= Im ϕ ⊆ C yields a homomorphism ψ : P −→ C such that

ψ ◦ η = f . But ψ need not be unique with this property.

Let F be the set of all p ∈ P such that ζ (p) = p for every endomorphism
ζ of P such that ζ

(

η(x)
)

= η(x) for all x ∈ X . Then η(X) ⊆ F , F is a
subalgebra of P , and F ∈ C . If C ∈ C and f : X −→ C is a mapping, then
the above yields a homomorphism ψ of F ⊆ P into C such that ψ ◦ η = f .
We show that ψ is unique, so that F is free on X in the class C .

Let ϕ, ψ : F −→ C be homomorphisms such that ϕ ◦ η = ψ ◦ η . Then
E = { p ∈ F

∣
∣ ϕ(p) = ψ(p) } contains η(X) and is a subalgebra of F . Since

η : X −→ E and E ∈ C , there is a homomorphism ζ : P −→ E such that
ζ ◦ η = η . Then ζ is an endomorphism of P , ζ

(

η(x)
)

= η(x) for all x ∈ X ,
p = ζ (p) ∈ E for every p ∈ F , ϕ(p) = ψ(p) for every p ∈ F , and ϕ = ψ . �

Birkhoff’s theorem on varieties is the converse of Proposition 3.1:

Theorem 3.4 (Birkhoff [1935]). A nonempty class of universal algebras of the
same type is a variety if and only if it is closed under direct products, subalgebras,
and homomorphic images.

Proof. First we prove the following: when F is free in a class C on an infinite
set, relations that hold in F yield identities that hold in every C ∈ C :

Lemma 3.5. Let X be a given infinite countable set, let Y be an infinite set,
and let p, q ∈ W T

Y .

(1) There exist homomorphisms σ : W T
Y −→ W T

X and µ : W T
X −→ W T

Y such
that σ ◦ µ is the identity on W T

X and µ
(

σ (p)
)

= p , µ
(

σ (q)
)

= q .

(2) Let F be free on Y in a class C of universal algebras of type T and let
ϕ : W T

Y −→ F be the homomorphism that extends η : Y −→ F . If ϕ(p) = ϕ(q) ,
then the identity σ (p) = σ (q) holds in every algebra C ∈ C .

Proof. (1). By 2.2, p, q ∈ W T
Z for some finite subset Z of Y . There is

an injection h : X −→ Y such that h(X) contains Z . The inverse bijection
h(X) −→ X can be extended to a surjection g : Y −→ X ; then g ◦ h is the
identity on X and h

(

g(z)
)

= z for all z ∈ Z . By 2.3, g : Y −→ W T
X and

h : X −→ W T
Y extend to homomorphisms σ and µ such that σ ◦ µ is the

identity on W T
X and µ

(

σ (z)
)

= z for all z ∈ Z :
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Then µ
(

σ (w)
)

= w for all w ∈ W T
Z , and µ

(

σ (p)
)

= p , µ
(

σ (q)
)

= q .

(2). Let ξ : W T
X −→ C be any homomorphism. Since C ∈ C , the restriction

of ξ ◦ σ to Y factors through η : there is a homomorphism χ : F −→ A such
that χ

(

η(y)
)

= ξ
(

σ (y)
)

for all y ∈ Y :

Then uniqueness in Proposition 2.3 yields χ ◦ ϕ = ξ ◦ σ . Hence ϕ(p) = ϕ(q)
implies ξ

(

σ (p)
)

= ξ
(

σ (q)
)

. Thus, the identity σ (p) = σ (q) holds in C . �

Lemma 3.6. Let C be a class of universal algebras of the same type T , that
is closed under isomorphisms, direct products, and subalgebras. Let A be a
nonempty universal algebra of type T such that every identity that holds in every
C ∈ C also holds in A . Then A is a homomorphic image of some C ∈ C .

Proof. There is an infinite set Y and a mapping f of Y into A such that A
is generated by f (Y ) : indeed, A is generated by some subset S ; if S is infinite,
then Y = S serves; otherwise, construct Y by adding new elements to S , which
f sends anywhere in A . Then 2.3 yields a homomorphism ψ : W T

Y −→ A
that extends f . Since W T

Y is generated by Y , Im ψ is generated by ψ(Y ) ,
Im ψ = A , and ψ is surjective. By 3.3 there exists an algebra F that is free
on Y in C . The homomorphism ϕ : W T

Y −→ F that extends η : Y −→ F is
surjective: since W T

Y is generated by Y , Im ϕ is generated by ϕ(Y ) = η(Y ) and
Im ϕ = F by 3.2. We show that ker ϕ ⊆ ker ψ : if ϕ(p) = ϕ(q) , then 3.5 yields
homomorphisms µ and σ such that σ ◦ µ is the identity on W T

X and the identity
σ (p) = σ (q) holds in every C ∈ C ; then the identity σ (p) = σ (q) holds in A ,
ψ
(

µ(σ (p))
)

= ψ
(

µ(σ (q))
)

, and ψ(p) = ψ(q) . Therefore ψ = χ ◦ ϕ for some
homomorphism χ : F −→ A ; then χ is surjective, like ψ : �

Now, let C be a class of universal algebras of the same type T , that is closed
under direct products, subalgebras, and homomorphic images (hence, closed under
isomorphisms). Let X be any given countable infinite set and let I ⊆ W T

X × W T
X

be the set of all identities that hold in every algebra C ∈ C . Then C ⊆ V(I) .
Conversely, let A ∈ V(I) . If A = Ø, then A is isomorphic to the empty
subalgebra of some C ∈ C and A ∈ C . If A =/ Ø, then A is a homomor-
phic image of some C ∈ C , by 3.6, and again A ∈ C . Thus C = V(I)
is a variety. �
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We note some consequences of Birkhoff’s theorem and its proof. First, every
intersection of varieties is a variety: indeed, let (Vi )i∈I be varieties of universal
algebras of type T ; then

⋂

i∈I Vi is, like every Vi , closed under direct products,
subalgebras, and homomorphic images, and is therefore a variety. Consequently,
every class C of algebras of type T generates a variety, which is the smallest
variety of type T that contains C .

Proposition 3.7. Let C be a class of universal algebras of type T . The variety
generated by C consists of all homomorphic images of subalgebras of direct
products of members of C .

Proof. For any class C of universal algebras of type T :

(1) a homomorphic image of a homomorphic image of a member of C is a
homomorphic image of a member of C ; symbolically, HHC ⊆ HC ;

(2) a subalgebra of a subalgebra of a member of C is a subalgebra of a member
of C ; symbolically, SSC ⊆ SC ;

(3) a direct product of direct products of members of C is a direct product of
members of C ; symbolically, PPC ⊆ PC ;

(4) a subalgebra of a homomorphic image of a member of C is a homomorphic
image of a subalgebra of a member of C ; symbolically, SHC ⊆ HSC ;

(5) a direct product of subalgebras of members of C is a subalgebra of a direct
product of members of C ; symbolically, PSC ⊆ SPC ;

(6) a direct product of homomorphic images of members of C is a homomorphic
image of a direct product of members of C ; symbolically, PHC ⊆ HPC .

Now, every variety V that contains C also contains all homomorphic images
of subalgebras of direct products of members of C : symbolically, HSPC ⊆ V .
Conversely, HSPC is closed under homomorphic images, subalgebras, and direct
products: by the above, HHSPC ⊆ HSPC , SHSPC ⊆ HSSPC ⊆ HSPC , and
PHSPC ⊆ HPSPC ⊆ HSPPC ⊆ HSPC ; therefore HSPC is a variety. �

Once generators are found for a variety, Proposition 3.7 provides very loose
descriptions of all members of that variety. This is useful for structures like
semigroups or lattices, that are difficult to describe precisely.

Another consequence of the above is a one-to-one correspondence between
varieties of type T and certain congruences on W T

X . A congruence E on a uni-
versal algebra A is fully invariant when a E b implies ζ (a) E ζ (b) , for every
a, b ∈ A and endomorphism ζ of A .

Proposition 3.8. Let X be a given infinite countable set. There is a one-to-one,
order reversing correspondence between varieties of type T and fully invariant
congruences on W T

X .

Proof. For each variety V , let I(V) ⊆ W T
X × W T

X be the set of all identities
that hold in every A ∈ V : the set of all (u, v) ∈ W T

X × W T
X such that ξ(u) = ξ(v)

for every homomorphism ξ : W T
X −→ A such that A ∈ V . If (u, v) ∈ I(V)

and ζ is an endomorphism of W T
X , then ξ

(

ζ (u)
)

= ξ
(

ζ (v)
)

for every homo-
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morphism ξ : W T
X −→ A such that A ∈ V , since ξ ◦ ζ is another such

homomorphism, and (ζ (u), ζ (v)) ∈ I(V) . Moreover, I(V) is the intersection of
congruences ker ξ and is a congruence on W T

X . Hence I(V) is a fully invariant
congruence on W T

X .

Conversely, a fully invariant congruence E on W T
X is a set of identities and

determines a variety V(E) of type T . The constructions I and V are order
reversing; we show that I

(

V(E)
)

= E and V
(

I(V)
)

= V for every fully invariant
congruence E and variety V , so that I and V induce the one-to-one correspon-
dence in the statement.

First we show that F = W T
X /E ∈ V(E) when E is fully invariant. Let

π : W T
X −→ F be the projection and let ξ : W T

X −→ F be any homomor-
phism. For every x ∈ X choose g(x) ∈ W T

X such that π
(

g(x)
)

= ξ(x) . By 2.3,
g : X −→ W T

X extends to an endomorphism ζ of W T
X ; then π ◦ ζ = ξ , since they

agree on X . Hence (u, v) ∈ E implies (ζ (u), ζ (v)) ∈ E and ξ(u) = π
(

ζ (u)
)

=
π
(

ζ (v)
)

= ξ(v) . Thus F ∈ V(E) . (Readers will verify that F is the free algebra
on X in V(E) , and generates V(E) .)

Now, E ⊆ I
(

V(E)
)

, since every (u, v) ∈ E holds in every A ∈ V(E) .
Conversely, if (u, v) ∈ I

(

V(E)
)

holds in every A ∈ V(E) , then (u, v) holds in
F ∈ V(E) , π(u) = π(v) , and (u, v) ∈ E . Thus I

(

V(E)
)

= E .

Conversely, let V be a variety of type T . Then V ⊆ V
(

I(V)
)

, since every
member of V satisfies every identity in I(V) . Conversely, let A ∈ V

(

I(V)
)

. If
A = Ø, then A is isomorphic to the empty subalgebra of some C ∈ V and A ∈ V .
If A =/ Ø, then A is a homomorphic image of some C ∈ V , by 3.6, and again
A ∈ V . Thus V = V

(

I(V)
)

. �

Exercises

1. Write a set of formal identities that characterize groups.

2. Write a set of formal identities that characterizes rings [with identity elements].

3. Show that lattices constitute a variety (of universal algebras with two binary operations).

4. Show that modular lattices constitute a variety (of universal algebras with two binary
operations).

5. Show that Boolean lattices constitute a variety.

6. Show that the direct product
∏

i∈I Ai of universal algebras (Ai )i∈I of type T , and its
projections πj :

∏

i∈I Ai −→ Aj , have the following universal property: for every universal
algebra A of type T and homomorphisms ϕi : A −→ Ai , there is a unique homomorphism
ϕ : A −→

∏

i∈I Ai such that πi ◦ ϕ = ϕi for all i ∈ I .

7. Let A =
⋃

i∈I Ai be the directed union A =
⋃

i∈I Ai of a directed family (Ai )i∈I of
universal algebras of the same type T . Show that there is unique type-T algebra structure on
A such that every Ai is a subalgebra of A .
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8. Define and construct direct limits of universal algebras of type T ; verify that the direct
limit is a directed union of homomorphic images.

9. Define and construct inverse limits of universal algebras of type T .

Prove the following:

10. Every variety is closed under subalgebras and closed under direct products.

11. If F is free on a set X in a class C that contains an algebra with more than one element,
then η : X −→ F is injective.

12. Let C be a class of universal algebras of the same type. The free algebra F on a set
X in the class C and the corresponding mapping η : X −→ F , if they exist, are unique up to
isomorphism.

13. Let C be a class of universal algebras of the same type. If F is free on a set X in the
class C , then F is generated by η(X) .

14. Let C be a class of universal algebras of the same type. If F is free in C on an infinite
set X , then every identity that holds in F holds in every member of C .

15. If V is a variety, and F is free in V on an infinite set, then V is generated by F (so
that every member of V is a homomorphic image of a subalgebra of a direct product of copies
of F ). (Use the previous exercice.)

16. The variety of all abelian groups is generated by Z .

17. The variety of all commutative semigroups is generated by N .

18. Given a countable infinite set X , when E is a fully invariant congruence on W T
X , then

W T
X /E is free on X in the variety V(E) .

19. There are no more than
∣
∣R

∣
∣ varieties of groups.

4. Subdirect Products

Subdirect products were introduced by Birkhoff [1944]. They provide loose
but useful descriptions of structures that are difficult to describe more precisely;
examples in this section include distributive lattices and commutative semigroups.

Definition. A subdirect product of a family (Ai )i∈I of universal algebras of
the same type T is a subalgebra P of the Cartesian product

∏

i∈I Ai such that
πi (P) = Ai for all i ∈ I , where πj :

∏

i∈I Ai −→ Aj is the projection.

For example, in the vector space R
3 = R × R × R , a straight line x = at ,

y = bt , z = ct is a subdirect product of R , R , and R if and only if a, b, c =/ 0.
Thus, a subdirect product of algebras may be very thinly spread in their direct
product. Only the conditions πi (P) = Ai prevent subdirect products from being
too dangerously thin.

Proposition 4.1. Let (Ai )i∈I be universal algebras of type T . A universal
algebra A of type T is isomorphic to a subdirect product of (Ai )i∈I if and only
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if there exist surjective homomorphisms ϕi : A −→ Ai such that
⋂

i∈I ker ϕi is
the equality on A .

Here,
⋂

i∈I ker ϕi is the equality on A if and only if ϕi (x) = ϕi (y) for all
i ∈ I implies x = y , if and only if x =/ y in A implies ϕi (x) =/ ϕi (y) for some
i ∈ I . Homomorphisms with this property are said to separate the elements of A .

Proof. Let P be a subdirect product of (Ai )i∈I . The inclusion homomor-
phism ι : P −→

∏

i∈I Ai and projections πj :
∏

i∈I Ai −→ Aj yield surjective
homomorphisms ρi = πi ◦ ι : P −→ Ai that separate the elements of P , since
elements of the product that have the same components must be equal. If now
θ : A −→ P is an isomorphism, then the homomorphisms ϕi = ρi ◦ θ are
surjective and separate the elements of A .

Conversely, assume that there exist surjective homomorphisms ϕi : A −→ Ai
that separate the elements of A . Then ϕ : x �−→

(

ϕi (x)
)

i∈I is an injective
homomorphism of A into

∏

i∈I Ai . Hence A ∼= Im ϕ ; moreover, Im ϕ is a
subdirect product of (Ai )i∈I , since πi (Im ϕ) = ϕi (A) = Ai for all i . �

Direct products are associative: if I =
⋃

j∈J Ij is a partition of I , then
∏

i∈I Ai
∼=
∏

j∈J
(∏

i∈Ij
Ai
)

. So are subdirect products, as readers will deduce
from Proposition 4.1:

Proposition 4.2. Let (Ai )i∈I be universal algebras of type T and let I =
⋃

j∈J Ij be a partition of I . An algebra A of type T is isomorphic to a sub-
direct product of (Ai )i∈I if and only if A is isomorphic to a subdirect product of
algebras (Pj ) j∈J in which each Pj is a subdirect product of (Ai )i∈Ij

.

Subdirect decompositions. A subdirect decomposition of A into algebras
(Ai )i∈I of the same type is an isomorphism of A onto a subdirect product of
(Ai )i∈I . By 4.1, subdirect decompositions of A can be set up from within A
from suitable families of congruences on A . They are inherited by every variety
V : when A has a subdirect decomposition into algebras (Ai )i∈I , then A ∈ V if
and only if Ai ∈ V for all i , by 3.1.

Subdirect decompositions of A give loose descriptions of A in terms of pre-
sumably simpler components (Ai )i∈I . The simplest possible components are
called subdirectly irreducible:

Definition. A universal algebra A is subdirectly irreducible when A has more
than one element and, whenever A is isomorphic to a subdirect product of (Ai )i∈I ,
at least one of the projections A −→ Ai is an isomorphism.

Proposition 4.3. A universal algebra A is subdirectly irreducible if and only
if A has more than one element and the equality on A is not the intersection of
congruences on A that are different from the equality.

The proof is an exercise in further deduction from Proposition 4.1.



576 Chapter XV. Universal Algebra

Theorem 4.4 (Birkhoff [1944]). Every nonempty universal algebra is isomor-
phic to a subdirect product of subdirectly irreducible universal algebras. In any
variety V , every nonempty universal algebra A ∈ V is isomorphic to a subdirect
product of subdirectly irreducible universal algebras Ai ∈ V .

Proof. Let A be a nonempty algebra of type T . By 1.5, the union of a chain
of congruences on A is a congruence on A . Let a, b ∈ A , a =/ b of A . If
(Ci )i∈I is a chain of congruences on A , none of which contains the pair (a, b) ,
then the union C =

⋃

i∈I Ci is a congruence on A that does not contain the pair
(a, b) . By Zorn’s lemma, there is a congruence Ma,b on A that is maximal such
that (a, b) /∈ Ma,b . The intersection

⋂

a,b∈A, a =/ b Ma,b cannot contain any pair
(a, b) with a =/ b and is the equality on A . By 4.1, A is isomorphic to a subdirect
product of the quotient algebras A/Ma,b .

The algebra A/Ma,b has at least two elements, since Ma,b does not contain
the pair (a, b) . Let (Ci )i∈I be congruences on A/Ma,b , none of which is the
equality. Under the projection π : A −→ A/Ma,b , the inverse image π−1(Ci )
is, by 1.9, a congruence on A , which properly contains ker π = Ma,b , hence
contains the pair (a, b) , by the maximality of Ma,b . Hence

(

π(a), π(b)
)

∈ Ci
for every i , and

⋂

i∈I Ci is not the equality on A/Ma,b . Thus A/Ma,b is
subdirectly irreducible, by 4.3. �

Abelian groups. Abelian groups can be used to illustrate these results.

Congruences on an abelian group are induced by its subgroups. Hence an
abelian group A (written additively) is isomorphic to a subdirect product of abelian
groups (Ai )i∈I if and only if there exist surjective homomorphisms ϕi : A −→ Ai
such that

⋂

i∈I Ker ϕi = 0; an abelian group A is subdirectly irreducible if and
only if A has more than one element and 0 is not the intersection of nonzero
subgroups of A .

By Theorem 4.4, every abelian group is isomorphic to a subdirect product of
subdirectly irreducible abelian groups. The latter are readily determined.

Proposition 4.5. An abelian group is subdirectly irreducible if and only if it is
isomorphic to Zp∞ or to Zpn for some n > 0 .

Proof. Readers will verify that Zp∞ and Zpn (where n > 0) are subdirectly
irreducible. Conversely, every abelian group A can, by X.4.9 and X.4.10, be
embedded into a direct product of copies of Q and Zp∞ for various primes p .
Hence A is isomorphic to a subdirect product of subgroups of Q and Zp∞ .

Now, Q has subgroups Z , 2Z , . . . , 2k
Z , . . . , whose intersection is 0; since

Q/ 2k
Z ∼= Q/Z , Q is isomorphic to a subdirect product of subgroups of Q/Z .

Readers will verify that Q/Z is isomorphic to a direct sum of Zp∞ ’s (for var-
ious primes p ). By 4.2, Q is isomorphic to a subdirect product of subgroups
of Zp∞ (for various primes p ). Then every abelian group A is isomorphic
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to a subdirect product of subgroups of Zp∞ (for various primes p ). If A is
subdirectly irreducible, then A is isomorphic to a subgroup of some Zp∞ . �

Distributive lattices. Birkhoff’s earlier theorem, XIV.4.8, states that every
distributive lattice is isomorphic to a sublattice of the lattice of all subsets 2X of
some set X . We give another proof of this result, using subdirect products.

Since distributive lattices constitute a variety, every distributive lattice is iso-
morphic to a subdirect product of subdirectly irreducible distributive lattices, by
4.4. One such lattice is the two-element lattice L2 = {0, 1} , which has only two
congruences and is subdirectly irreducible by 4.3.

Proposition 4.6. Every distributive lattice is isomorphic to a subdirect product
of two-element lattices. A distributive lattice is subdirectly irreducible if and only
if it has just two elements.

Proof. To each prime ideal P =/ Ø, L of a distributive lattice L there cor-
responds a lattice homomorphism ϕP of L onto L2 , defined by ϕP(x) = 0 if
x ∈ P , ϕP(x) = 1 if x /∈ P . The homomorphisms ϕP separate the elements of
L : if a, b ∈ L and a =/ b , then, say, a � b , and Lemma XIV.4.7 provides a prime
ideal P of L that contains the ideal I = { x ∈ L

∣
∣ x � b } but does not contain

a /∈ I , so that ϕP(b) =/ ϕP(a) . By 4.1, L is isomorphic to a subdirect product
of copies of L2 . If L is subdirectly irreducible, then some ϕP is an isomorphism
and L ∼= L2 has just two elements. �

A direct product
∏

i∈I L2 of copies of L2 is isomorphic to the lattice 2I

of all subsets of the index set I ; the isomorphism sends (xi )i∈I ∈
∏

i∈I L2 to
{ i ∈ I

∣
∣ xi = 1 } . Hence a subdirect product of copies of L2 is, in particular,

isomorphic to a sublattice of some 2I ; thus, Theorem XIV.4.8 follows from 4.6.

Commutative semigroups include abelian groups but can be much more com-
plex; for instance, there are about 11.5 million nonisomorphic commutative semi-
groups of order 9. We use subdirect products to assemble finitely generated
commutative semigroups from the following kinds of semigroups.

Definitions. A semigroup S is cancellative when ac = bc implies b = c , and
ca = cb implies a = b , for all a, b, c ∈ S . A nilsemigroup is a semigroup S with
a zero element z (such that sz = z = zs for all s ∈ S ) in which every element is
nilpotent (sm = z for some m > 0).

Finitely generated commutative semigroups are related to ideals of polynomial
rings. By Proposition 1.3, a congruence E on a commutative semigroup S is an
equivalence relation E on S such that a E b and c E d implies ac E bd .
We saw in Section I.1 that the free commutative semigroup with generators
x1, . . ., xn consists of all nonconstant monomials Xa = Xa1

1 Xa2
2 · · · Xan

n ∈
R[X1, ..., Xn] , where R is any commutative ring [with identity]. Every ideal
E of R[X1, ..., Xn] induces a congruence E on F , in which Xa E Xb if and
only if Xa − Xb ∈ E ; then E determines a commutative semigroup F/E and,
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by extension, every commutative semigroup S ∼= F/E .

Lemma 4.7. Let F be the free commutative semigroup on X1, . . ., Xn . Every
congruence E on F is induced by an ideal of Z[X1, ..., Xn] . Every commutative
semigroup with n generators is determined by an ideal of Z[X1, ..., Xn] .

Proof. Let E be the ideal of Z[X1, ..., Xn] generated by all binomials Xa − Xb

such that Xa E Xb in F . The ideal E induces a congruence E on F , in which
Xa E Xb if and only if Xa − Xb ∈ E . Then E ⊆ E . We prove the converse
inclusion. Since Xa E Xb implies Xa Xc E Xb Xc , the ideal E consists of all
finite sums

∑

i ni (Xai − Xbi ) in which ni ∈ Z and Xai E Xbi for all i . Since
E is symmetric we may further assume that ni > 0 for all i . Hence Xa E Xb if
and only if there is an equality

Xa − Xb =
∑

i ni (Xai − Xbi ) (1)

in which ni > 0 and Xai E Xbi for all i .

If E � E , then there is an equality (1) in which Xa E Xb does not hold, and in
which

∑

i ni is as small as possible. Since Xa appears in the left hand side of (1),
it must also appear in the right hand side, and Xak = Xa for some k . Subtracting
Xak − Xbk from both sides of (1) then yields an equality

Xbk − Xb =
∑

i mi (Xai − Xbi )

in which Xb E Xbk does not hold (otherwise, Xa E Xb ) and
∑

i mi =
(∑

i ni
)

− 1, an intolerable contradiction. Therefore E = E is induced by E .

Now, let S be a commutative semigroup with n generators x1, . . . , xn . There is
a homomorphism π : F −→ S that sends Xi to xi , defined by π

(

Xa1
1 · · · Xan

n
)

=
xa1

1 · · · xan
n ; π is surjective, since S is generated by x1, . . . , xn . The congruence

E = ker π on F is induced by an ideal E of Z[X1, ..., Xn] ; hence S ∼= F/E is
determined by E . �

Proposition 4.8. Every commutative semigroup with n generators has a sub-
direct decomposition into finitely many commutative semigroups determined by
primary ideals of Z[X1, ..., Xn] .

Proof. Let S be a commutative semigroup with n generators x1, . . . , xn .
By 4.7, S ∼= F/E , where E is induced by an ideal E of Z[X1, ..., Xn] . In the
Noetherian ring Z[X1, ..., Xn] , the ideal E is the intersection of finitely many
primary ideals Q1, . . . , Qr . Hence E is the intersection of the congruences
Q1, . . ., Qr induced by Q1, . . . , Qr . By 1.9, Q1, . . ., Qr are the inverse images
under π : F −→ S of congruences C1, . . ., Cr on S such that S/Ci

∼= F/Qi .
Since E = Q1 ∩ · · · ∩ Qr , the equality on S is the intersection of C1, . . . , Cr ,
and S is isomorphic to a subdirect product of the semigroups S/C1 , . . . , S/Cr
determined by Q1, . . ., Qr . �

Now, let S be determined by a primary ideal Q of Z[X1, ..., Xn] , so that



4. Subdirect Products 579

π(Xa) = π(Xb) if and only if Xa − Xb ∈ Q , where π : F −→ S is the
projection. The radical P of Q is a prime ideal of Z[X1, ..., Xn] . Moreover:

(1) If Xc ∈ Q , then z = π(Xc) is a zero element of S : indeed, Xa Xc − Xc ∈
Q for all Xa ∈ F , hence sz = z for all s = π(Xa) ∈ S .

(2) If Xc ∈ P , then (Xc)m ∈ Q for some m > 0; hence S has a zero element
z , and s = π(Xc)∈ S is nilpotent (sm = z ). Since P is an ideal of Z[X1, ..., Xn] ,
the elements s = π(Xc) such that Xc ∈ P constitute an ideal N of S (s ∈ N
implies st ∈ N for all t ∈ S ).

(3) If Xc /∈ P , then Xc (Xa − Xb) ∈ Q implies Xa − Xb ∈ Q ; hence
s = π(Xc) ∈ S is cancellative in S (st = su implies t = u , when t, u ∈ S ).
Since P is a prime ideal of Z[X1, ..., Xn] , Xc, Xd /∈ P implies Xc Xd /∈ P ;
hence the elements s = π(Xc) such that Xc /∈ P constitute a subsemigroup C of
S (s, t ∈ C implies st ∈ C ).

By (2) and (3), a semigroup that is determined by a primary ideal Q of
Z[X1, ..., Xn] is either a nilsemigroup (if P contains every Xc ∈ F ), or can-
cellative (if P contains no Xc ∈ F ), or subelementary in the following sense:

Definition. A subelementary semigroup is a commutative semigroup that is the
disjoint union S = N ∪ C of an ideal N and a nonempty subsemigroup C , such
that N is a nilsemigroup and every element of C is cancellative in S .

Subelementary semigroups are named for their relationship, detailed in the
exercises, to previously defined “elementary” semigroups.

Every finitely generated commutative semigroup is now a subdirect product of
finitely many nilsemigroups, cancellative semigroups, and subelementary semi-
groups. Readers will verify that a subdirect product of finitely many nilsemigroups
is a nilsemigroup, and that a subdirect product of cancellative semigroups is can-
cellative. Subdirect decompositions need only one of each; hence we have:

Theorem 4.9 (Grillet [1975]). Every finitely generated commutative semi-
group is isomorphic to a subdirect product of a nilsemigroup, a cancellative
semigroup, and finitely many subelementary semigroups.

Exercises

1. Let (Ai )i∈I be universal algebras of type T and let I =
⋃

j∈J Ij be a partition of I .
Show that a universal algebra A of type T is isomorphic to a subdirect product of (Ai )i∈I if
and only if A is isomorphic to a subdirect product of algebras (Pj ) j∈J in which each Pj is a
subdirect product of (Ai )i∈Ij .

2. Let C be a class of universal algebras of type T . If every Ai is a subdirect product of
members of C , then show that every subdirect product of (Ai )i∈I is a subdirect product
of members of C .

3. Let C be a class of universal algebras of type T . Show that every subalgebra of a
subdirect product of members of C is a subdirect product of subalgebras of members of C .
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4. Prove that an algebra A is subdirectly irreducible if and only if A has more than one
element and the equality on A is not the intersection of congruences that are different from
the equality.

5. Show that Zp∞ and Zpn are subdirectly irreducible (when n > 0).

6. Show that Z is isomorphic to a subdirect product of cyclic groups of prime order p , one
for each prime p .

Readers who are allergic to semigroups should avoid the remaining exercises.

7. Show that the zero element of a semigroup, if it exists, is unique.

8. Show that a finitely generated commutative nilsemigroup is finite.

9. Prove Rédei’s theorem [1956]: the congruences on a finitely generated commutative
semigroup satisfy the ascending chain condition.

10. Verify that a subdirect product of finitely many nilsemigroups is a nilsemigroup.

11. Verify that a subdirect product of cancellative semigroups is cancellative.

12. What can you say of a commutative semigroup that is determined by a prime ideal of
Z[X1, ..., Xn]? by a semiprime ideal of Z[X1, ..., Xn]?

13. Show that a finite cancellative semigroup is a group.

14. Show that a cancellative commutative semigroup has a group of fractions, in which it
can be embedded.

15. Show that a cancellative commutative semigroup is subdirectly irreducible if and only
if its group of fractions is subdirectly irreducible.

16. Prove the following: if a subelementary semigroup S = N ∪ C is subdirectly irreduc-
ible, then its cancellative part C is subdirectly irreducible, or has just one element.

17. Prove Malcev’s theorem [1958]: every subdirectly irreducible, finitely generated com-
mutative semigroup is finite; hence every finitely generated commutative semigroup is isomor-
phic to a subdirect product of of finite semigroups. (Use the previous two exercises.)

18. A commutative semigroup S is elementary when it is the disjoint union S = N ∪ G of
an ideal N and an abelian group G , such that N is a nilsemigroup, G is a group, and every
element of G is cancellative in S . Show that a subelementary semigroup S = N ∪ C can be
embedded into an elementary semigroup (e.g., a semigroup of fractions s/c ).

19. Show that every finite semigroup is isomorphic to a subdirect product of a nilsemigroup,
a group, and finitely many elementary semigroups.



XVI
Categories

A characteristic feature of abstract algebra is that it ignores what groups, rings,
modules, etc., are made of, and studies only how their elements relate to each other
(by means of operations, subgroups, etc.).

Category theory is the next step in abstraction: it ignores elements and studies
only how groups, rings, modules, etc., relate to each other (by means of homomor-
phisms). This fruitful idea was introduced by Eilenberg and MacLane [1945]. It
unifies concepts from many parts of mathematics and provides essential conceptual
understanding. It also gives quick access to a number of useful properties. This
chapter is a short introduction to the subject, including functors, limits, abelian
categories, adjoint functors, tripleability, and properties of varieties.

1. Definition and Examples

Category theory challenges the foundations of mathematics in that it applies to
collections called proper classes, such that the class of all sets, the class of all
groups, etc., that are too large to be sets and are banned from standard Zermelo-
Fraenkel set theory because their very consideration leads to paradoxes (see Section
A.3).

This difficulty can be finessed in at least three ways:

(1) Use the Gödel-Bernays axioms of set theory. These axioms are essentially
equivalent to Zermelo-Fraenkel’s (the same results can be proved from both), but
they recognize classes from the start and include an axiom of choice that applies
to classes as well as sets. But they are not the generally accepted standard axioms
of set theory.

(2) Like MacLane [1971], assume at the start that there exists a set model U
of Zermelo-Fraenkel set theory (a universe). This hypothesis is not part of the
Zermelo-Fraenkel axioms, but it is consistent with them, and allows all necessary
business to be conducted within the set U , avoiding proper classes.

(3) Sneak classes in through the back door, like Jech [1978]. Zermelo-Fraenkel
set theory does not allow classes but it allows statements of membership in
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classes, such as “G is a group.” This loophole allows limited use of “classes,” not
as actual collections, but as convenient abbreviations of membership statements.
One must then carefully avoid forbidden practices, such as applying the axiom of
choice to a proper class, or having it belong to another class.

The author thinks that the third approach is more natural for graduate students
(though not necessarily better for working mathematicians). It leads to a more
detailed if occasionally more awkward exposition.

Besides, life with classes is not all bleak. Some definitions extend from sets
to classes: for instance, inclusion, A ⊆ B means “ A ∈ A implies A ∈ B”, and
Cartesian products, X ∈ A×B means “ X is an ordered pair X = (A, B) in which
A ∈ A and B ∈ B .” A class function of A into B is a class F ⊆ A × B , such
that (A, B) ∈ F , (A, C) ∈ F implies B = C ; then (A, B) ∈ F is abbreviated as
B = F(A) , and F assigns B to A . A small class is a set.

Definition. Categories are defined so that sets and mappings constitute a cat-
egory, groups and their homomorphisms constitute a category, topological spaces
and continuous mappings constitute a category, and so forth.

Definition. A category C has

a class whose elements are the objects of C ;

a class whose elements are the morphisms or arrows of C ;

two class functions that assign to every morphism of C a domain and a codomain,
which are objects of C ;

a class function that assigns to certain pairs (α, β) of morphisms of C their
composition or product αβ , which is a morphism of C , such that:

(1) αβ is defined if and only if the domain of α is the codomain of β , and then
the domain of αβ is the domain of β and the codomain of αβ is the codomain
of α ;

(2) for every object A of C there exists an identity morphism 1A whose domain
and codomain are A , such that α1A = α whenever A is the domain of α and
1A β = β whenever A is the codomain of α ;

(3) if αβ and βγ are defined, then α (βγ ) = (αβ) γ .

Axiom (1) models morphisms on maps that are written on the left. A morphism
α with domain A and codomain B is from A to B and is denoted by an arrow,

α : A −→ B or A α−→ B . Then αβ is defined if and only if A
β−→ B α−→ C

for some objects A, B, C . Readers will show that the identity morphism 1A in
Axiom (2) is unique, for every object A . In Axiom (3), if αβ and βγ are defined,
then α (βγ ) and (αβ) γ are defined, by (1).

Examples. Sets and mappings become the objects and morphisms of a cat-
egory once a small adjustment is made in the definition of mappings: one
must regard as different morphisms a mapping A −→ B and its composition
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A −→ B ⊂−→ C with a strict inclusion, which consists of the same ordered pairs
but has a different codomain. This can be achieved by defining a mapping of A
into B as an ordered triple (A, f, B) in which f is the usual set of ordered pairs.
Then sets and mappings (written on the left) become the objects and morphisms
of a category Sets ; the identity morphism of a set is its usual identity mapping;
composition in Sets is the usual composition of mappings.

With the same definition of mappings, groups and their homomorphisms are
the objects and morphisms of a category Grps ; abelian groups and their homo-
morphisms are the objects and morphisms of a category Abs ; left R-modules and
their homomorphisms are the objects and morphisms of a categoryRMods ; etc.

A category is small when its class of objects and its class of morphisms are
sets; its components can be bundled into a single set. The categories Sets , Grps ,

RMods , etc., are not small, but there are useful examples of small categories.

Recall that a preordered set is a set with a binary relation � that is reflexive
and transitive; partially ordered sets are an example. Every preordered set I can
be viewed as a small category, whose objects are the elements of I and whose
morphisms are the elements of � (namely, ordered pairs (i, j) of elements of I
such that i � j ). Domain and codomain are given by (i, j): i −→ j , so that
“arrows point upward;” composition is given by ( j, k)(i, j) = (i, k) .

Graphs. Graphs are like small categories without composition and give rise to
additional examples of small categories.

Definition. A small directed graph or just graph G consists of

a set whose elements are the vertices or nodes of G ;

a set whose elements are the edges or arrows of G ;

two mappings, that assign to every edge of G an origin and a destination, which
are vertices of G .

An edge a with origin i and destination j is from i to j and is denoted by an
arrow, a : i −→ j or i a−→ j . Graphs will be used as abstract diagrams, such as
the square and triangle graphs:

Every small category is a graph. Conversely, every graph G generates a small
category, as follows. In a graph G , a nonempty path

i
a1−→ • a2−→ • · · · • an−→ j

from a vertex i to a vertex j is a sequence (i, a1, . . ., an, j) in which n > 0,
i is the origin of a1 , the destination of ak is the origin of ak+1 for all k < n ,
and the destination of an is j . For every vertex i there is also an empty path
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(i, i) from i to i . Paths are composed by concatenation:

( j, b1, . . ., bn, k)(i, a1, . . ., am, j) = (i, a1, . . ., am, b1, . . . , bn, k).

Proposition 1.1. The vertices and paths of a graph G are the objects and
morphisms of a small category Ĝ , the free category or category of paths of G .

This is an exercise. A universal property of Ĝ is stated in Section 3.

Monomorphisms and epimorphisms. Among mappings one distinguishes
injections, surjections, and bijections. The composition properties of these special
mappings are expressed by the following definitions.

Definitions. In a category, a monomorphism is a morphism µ such that
µα = µβ implies α = β ; an epimorphism is a morphism σ such that ασ = βσ

implies α = β ; an isomorphism is a morphism α : A −→ B that has an inverse
β : B −→ A such that αβ = 1B and βα = 1A .

In many categories, monomorphisms coincide with injective morphisms, and
the two terms are often used interchangeably.

Proposition 1.2. In the category Grps of groups and homomorphisms, a mor-
phism is a monomorphism if and only if it is injective.

Proof. Let µ : A −→ B be a monomorphism in Grps . Assume that µ(x) =
µ(y) . Since Z is free on {1} there exist homomorphisms α, β : Z −→ A such
that α(1) = x and β(1) = y . Then µ

(

α(1)
)

= µ
(

β(1)
)

, µ ◦ α = µ ◦ β , α = β ,
and x = y . Thus µ is injective. The converse is clear. �

Readers will prove similar results for Sets , Rings ,RMods , and so forth.

Identification of epimorphisms with surjective morphisms is more difficult, and
less successful. For Grps , it requires free products with amalgamation.

Proposition 1.3. In the category Grps of groups and homomorphisms, a mor-
phism is an epimorphism if and only if it is surjective.

Proof. Surjective homomorphisms are epimorphisms. Conversely, let ϕ :
G −→ H be a homomorphism of groups that is not surjective. Construct
isomorphic copies H1, H2 of H that contain Im ϕ as a subgroup and satisfy
H1 ∩ H2 = Im ϕ ; embed the group amalgam H1 ∪ H2 into its free product with
amalgamation P . The isomorphisms H ∼= Hi and injections Hi −→ P yields
homomorphisms α1 =/ α2 : H −→ P such that α1 ◦ ϕ = α2 ◦ ϕ . �

A similar result holds in Sets and RMods but not in the categories Rings and
R-Algs (see the exercises). In these categories, using “epimorphism” to mean
“surjective homomorphism” should be discouraged, or outright forbidden.

Duality. Every category C has an opposite category Cop , which is constructed
as follows. The objects and morphisms of Cop are those of C . The domain and
codomain functions of Cop are the codomain and domain functions of C , so that
α : A −→ B in C if and only if α : B −→ A in Cop . The composition α ∗ β
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of α and β in Cop is the composition βα of β and α in C . Thus, Cop is the
same as C but with all arrows and compositions reversed. The next result is an
easy exercise:

Proposition 1.4. If C is a category, then Cop is a category, the dual or opposite
of C .

For example, a preordered set I has an opposite preordered set I op , which is
the same set but preordered by i � j in I op if and only if i � j in I ; then I op is
the opposite category of I . Similarly, every graph G has an opposite graph Gop ,
and then Ĝop = Ĝop . Proposition 1.4 implies a duality principle:

Metatheorem 1.5 (Duality Principle). A theorem that applies to all categories
remains true when all arrows and compositions are reversed.

Like Metatheorem XIV.1.3, the duality principle does not prove any specific
statement, but is applied to existing theorems to yield new results. One should
keep in mind that reversal of arrows and compositions in 1.5 applies to hypotheses
as well as conclusions. The duality principle does not apply to specific categories:
if Theorem T is true in C , then Theorem T op is true in Cop , but it does not follow
that T op is true in C (unless T is also true in Cop ). For example, in the category
of fields and homomorphisms, every morphism is a monomorphism; it would be
a gross misuse of the duality principle to conclude that every homomorphism of
fields is an epimorphism; Artin would turn in his grave.

We illustrate proper use of duality with the following result (left to readers):

Proposition 1.6. Let α and β be morphisms in a category and let αβ be
defined. If α and β are monomorphisms, then αβ is a monomorphism. If αβ is
a monomorphism, then β is a monomorphism.

Reversing arrows and compositions transforms monomorphisms into epimor-
phisms, and vice versa. Hence 1.5, 1.6 yield the following result:

Proposition 1.7. Let α and β be morphisms in a category and let αβ be
defined. If α and β are epimorphisms, then αβ is an epimorphism. If αβ is an
epimorphism, then α is an epimorphism.

Exercises
1. Show that a small category is [the category that arises from] a preordered set if and only

if for every objects i and j there is at most one morphism from i to j .

2. Let I be a preordered set (viewed as a category). What are the monomorphisms of I ?
its epimorphisms? its isomorphisms?

3. Show that a mapping is a monomorphism in Sets if and only if it is injective.

4. Show that a homomorphism of rings [with identity elements] is a monomorphism in
Rings if and only if it is injective.

5. Show that a homomorphism of left R-modules is a monomorphism inRMods if and only
if it is injective.
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6. Show that a mapping is an epimorphism in Sets if and only if it is surjective.

7. Show that a homomorphism of left R-modules is an epimorphism inRMods if and only
if it is surjective.

8. Show that the inclusion homomorphism Z −→ Q is an epimorphism in Rings .

9. Let α and β be morphisms in a category and let αβ be defined. Prove the following: if
α and β are monomorphisms, then αβ is a monomorphism; if αβ is a monomorphism, then
β is a monomorphism.

10. Let α and β be morphisms in a category and let αβ be defined. Give a direct proof
of the following: if α and β are epimorphisms, then αβ is an epimorphism; if αβ is an
epimorphism, then α is an epimorphism.

11. Find an “objectless” set of axioms for categories, using only morphisms and composi-
tion. (Hint: replace objects by identity morphisms ε , which can be defined by the conditions:
αε = α , εβ = β , whenever αε and εβ are defined.)

2. Functors

Objects relate to each other by means of morphisms. Categories relate to each
other by means of functors; and functors, by means of natural transformations.

Definition. A functor or covariant functor F from a category A to a category
C assigns to each object A of A an object F(A) of C , and assigns to each
morphism α of A a morphism F(α) of C , so that

(1) if α : A −→ B , then F(α): F(A) −→ F(B) ;

(2) F(1A) = 1F(A) for every object A of A ;

(3) F(αβ) = F(α) F(β) whenever αβ is defined.

Examples. Our first official examples of functors (in Chapter XI) were the
functors HomR(A,−) from RMods to the category Abs of abelian groups and
homomorphisms, and the functors A ⊗R − , also fromRMods to Abs .

Other examples have been hiding as far back as Chapter I. The forgetful functor
from Grps to Sets assigns to every group G its underlying set, and to every
homomorphism of groups its underlying mapping. (The only difference between
a homomorphism of groups and its underlying mapping is that the domain and
codomain of the former are groups, whereas the domain and codomain of the latter
are sets.) There are similar forgetful functors from Rings to Abs , from RMods to
Abs , from R-Algs to Rings , from R-Algs toRMods , and so forth.

The free group functor F assigns to each set X the free group FX on X
constructed in Section I.6, which comes with an injection ιX : X −→ FX ; to a
mapping f : X −→ Y the free group functor assigns the unique homomorphism
Ff : FX −→ FY such that Ff ◦ ιX = ιY ◦ f . Curious readers will verify that F
is indeed a functor, and detect other free functors in previous chapters.
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Properties. Functors compose: if F is a functor from A to B , and G is a
functor from B to C , then G ◦ F is a functor from A to C . This composition is
associative. Moreover, there is for each category C an identity functor 1C on C ,
which is the identity on objects and morphisms of C .

Categories and functors now look like the objects and morphisms of an enor-
mous category . . . except that we may not collect proper classes into a class, or
collect all categories into a class. This restriction does not, however, apply to small
categories:

Proposition 2.1. Small categories and their functors are the objects and mor-
phisms of a category Cats .

Definition. Let F and G be functors from A to B . A natural transformation
τ : F −→ G assigns to each object A of A a morphism τA : F(A) −→ G(A) ,
so that G(α) τA = τB F(α) for every morphism α : A −→ B of A :

One also says that that the morphism τA (that depends on A ) is natural in A .
If every τA is an isomorphism, then the inverse isomorphism τ−1

A is natural in A ,
and τ is a natural isomorphism. Examples of natural transformations have been
seen in previous chapters.

Natural transformations compose: if F, G, H : A −→ B are functors and
τ : F −→ G , υ : G −→ H are natural transformations, then υτ : F −→ H is a
natural transformation, which assigns υA τA to A . This composition is associative.
Moreover, there is for each functor F : A −→ B an identity natural transforma-
tion 1F on F , which assigns 1F(A) to each object A of A . Functors from A to
B and their natural transformations now look like the objects and morphisms of a
category . . . but, in general, functors are proper classes and may not be collected
into a class. If A is small, however, then functors from A to B and their natural
transformations are sets, and we obtain a functor category:

Proposition 2.2. Let A be a small category and let B be a category. Functors
from A to B and their natural transformations are the objects and morphisms of
a category Func (A,B) .

Natural transformations also compose with functors, as readers will show:

Proposition 2.3. If F, G : A −→ B and H : B −→ C are functors, and
τ : F −→ G is a natural transformation, then H ◦ τ : H ◦ F −→ H ◦ G is a
natural transformation, which assigns H(τA) to A .

If F, G : A −→ B and K : C −→ A are functors, and τ : F −→ G is a natural
transformation, then τ ◦ K : F ◦ K −→ G ◦ K is a natural transformation, which
assigns τK (C) to C .
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With functors and natural transformations we can define when two categories
are essentially identical.

Definition. Two categories A and B are isomorphic when there exist functors
F : A −→ B and G : B −→ A such that F ◦ G = 1B and G ◦ F = 1A .

For example, an isomorphism of preordered sets is also an isomorphism of
categories; the category of Boolean lattices and the category of Boolean rings are
isomorphic. But isomorphisms of categories are somewhat rare. The exercises
explore a less restrictive definition:

Definition. Two categories A and B are equivalent when there exist functors
F : A −→ B and G : B −→ A and natural isomorphisms F ◦ G ∼= 1B and
G ◦ F ∼= 1A.

Contravariant functors. Some functors, like HomR(−, A) , reverse arrows:

Definition. A contravariant functor F from a category A to a category C

assigns to each object A of A an object F(A) of C , and assigns to each morphism
α of A a morphism F(α) of C , so that

(1) if α : A −→ B , then F(α): F(B) −→ F(A) ;

(2) F(1A) = 1F(A) for every object A of A ;

(3) F(αβ) = F(β) F(α) whenever αβ is defined.

Equivalently, a contravariant functor from A to C is a covariant functor from
A to Cop ; or a covariant functor from Aop to C .

Bifunctors. Bifunctors are functors with two variables, like HomR(−,−) and
−⊗R − . For a general definition, construct the following:

Definition. The Cartesian product of two categories A and B is the category
A × B defined as follows: an object of A × B is an ordered pair (A, B) of an
object A of A and an object B of B ; a morphism of A × B is an ordered pair
(α, β) of a morphism α of A and a morphism β of B ; domain, codomain, and
composition are componentwise.

Thus, if α : A −→ A′ in A and β : B −→ B′ in B , then (α, β): A × B −→
A′ × B′ in A × B . Also, 1(A,B) = (1A, 1B) .

Definition. A bifunctor from categories A and B to a category C is a functor
from A × B to C .

Strictly speaking, this defines bifunctors that are covariant in both variables.
For example, − ⊗R − is a bifunctor from ModsR and RMods to Abs ; − ⊗R −
also denotes a bifunctor from SBimsR and RBimsT to SBimsT . (PBimsQ is the
category of left P-, right Q-bimodules and homomorphisms.) A bifunctor from
A and B into C that is contravariant in the first variable and covariant in the
second variable is a functor from Aop × B to C . For example, HomR(−,−) is
a bifunctor that is contravariant in the first variable and covariant in the second
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variable, from ModsR and RMods to Abs ; HomR(−,−) also denotes the similar
bifunctors for bimodules.

Bifunctors relate to functors as functions of two variables everywhere relate to
functions of one variable, which readers will show:

Proposition 2.4. Let F be a bifunctor from A and B to C . For each object
A of A , F(A,−) is a functor from B to C . For each morphism α : A −→ A′

of A , F(α,−) is a natural transformation from F(A,−) to F(A′,−) . More-
over, F(1A,−)= 1F(A,−) and F(αα′,−) = F(α,−) ◦F(α′,−) whenever αα′ is
defined.

Conversely, assign to each object A of C a functor FA from B to C ; to each
morphism α : A −→ A′ of A , assign a natural transformation Fα from FA to
FA′ ; assume that F1A

= 1FA
and Fαα′ = Fα ◦ Fα′ whenever αα′ is defined. Then

there exists a unique bifunctor F from A and B to C such that FA = F(A,−)
and Fα = F(α,−) for all A and α .

In particular, if B is small, then Proposition 2.4 provides a one-to-one cor-
respondence between bifunctors from A and B to C , and functors from A to
Func (B,C) . If A is small, there is a similar one-to-one correspondence between
bifunctors from A and B to C , and functors from B to Func (A,C) .

Hom. A bifunctor Hom(−,−) can be defined in many categories. If A and B
are objects of a category C , then HomC (A, B) denotes the class of all morphisms
of C from A to B (also denoted by C(A, B) ).

Definition. A category C is locally small when HomC (A, B) is a set for all
objects A and B of C .

For example, Sets , Grps , Rings , RMods , are locally small categories. Every
small category is locally small.

If C is locally small, there is a bifunctor HomC (−,−) from Cop and C to Sets .
For each pair of objects A, C of C , HomC (A, C) is the set of all morphisms
A −→ C of C . For each pair of morphisms α : A −→ B , γ : C −→ D ,
HomC (α, γ ): HomC (B, C) −→ HomC (A, D) sends β : B −→ C to γβα :

Readers will verify that HomC (−,−) is indeed a bifunctor.

If C is locally small, then Proposition 2.4 yields for every object A of C a
functor HomC (A,−) from C to Sets and for every morphism α : A −→ B
of C a natural transformation HomC (α,−): HomC (B,−) −→ HomC (A,−) .
Proposition 2.4 also yields for every object C of C a contravariant functor
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HomC (−, C) and for every morphism γ : C −→ D of C a natural transfor-
mation HomC (−, γ ): HomC (−, C) −→ HomC (−, D) .

Exercises

1. Show that equivalence of categories is reflexive, symmetric, and transitive.

In the following three problems, a skeleton of a category C is a category S such that: (i) every
object of S is an object of C ; (ii) every object of C is isomorphic to a unique object of S ;
(iii) when S and T are objects of S , the morphisms from S to T are the same in S and C .
(And now it is out of the closet.)

2. Show that a category is equivalent to any of its skeletons.

3. Let S be a skeleton of A and let T be a skeleton of B . Show that A and B are
equivalent if and only if S and T are isomorphic.

4. Show that every preordered set is equivalent (as a category) to a partially ordered set.

5. Let B be a category and let A be a small category. Show that evaluation (A, F) �−→
F(A) is a bifunctor from A and Func (A, B) to B .

6. Show that there is a one-to-one correspondence between bifunctors from A and B to
C , and “functorial” assignments of functors from B to C to objects of A , as in 2.4.

7. Give a direct proof that there is a one-to-one correspondence between bifunctors from A

and B to C , and “functorial” assignments of functors from A to C to objects and morphisms
of B .

8. Prove Yoneda’s lemma: when C is locally small and F is a functor from C to Sets ,
there is for each object C of C a one-to-one correspondence between elements of F(C) and
natural transformations from HomC (C,−) to F . (You may use τC (1C ) ∈ F(C) when
τ : HomC (C,−) −→ F is a natural transformation.)

3. Limits and Colimits

Limits and colimits generalize many of the constructions seen in previous chapters:
direct products, direct sums, pullbacks, kernels, direct limits, and others.

Diagrams. Limits apply to diagrams, which are formally defined as follows.

Definition. A diagram in a category C over a [small] graph G is an ordered
pair of mappings, one that assigns to each vertex i of G an object Di of C , and
one that assigns to each edge a : i −→ j of G a morphism Da : Di −→ Dj of C .

For example, a direct system of left R-modules is, in particular, a diagram in

RMods over a preordered set, viewed as a graph. A square or a triangle in a
category C is a diagram in C over the square or triangle graph:
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Diagrams are objects of suitable categories:

Definition. Let D and E be diagrams in a category C over a graph G . A
morphism from D to E is a mapping ϕ that assigns to each vertex i of G a
morphism ϕi : Di −→ Ei of C , so that Ea ϕi = ϕj Da for every edge a : i −→ j
of G :

Morphisms of diagrams compose: if ϕ : D −→ E and ψ : E −→ F are
morphisms of diagrams over G (in the same category), then so is ψϕ : D −→ F ,
which assigns ψi ϕi : Di −→ Fi to each vertex i of G . Moreover, there is
for every diagram D an identity morphism 1D : D −→ D , which assigns
1Di

: Di −→ Di to each vertex i of G . We now have a category:

Proposition 3.1. Let C is a category and let G be a [small] graph. Dia-
grams in C over G and their morphisms are the objects and morphisms of a
category Diag (G,C) .

The category Diag (G,C) resembles a functor category and is in fact isomorphic
to one:

Proposition 3.2. Let C be a category and let G be a [small] graph. Every
diagram D : G −→ C extends uniquely to a functor D̂ : Ĝ −→ C ; every
morphism D −→ E of diagrams over G is a natural transformation D̂ −→ Ê ;
hence the categories Diag (G,C) and Func (Ĝ,C) are isomorphic.

Proof. The objects of Ĝ are the vertices of G , and the morphisms of Ĝ are
the empty paths (i, i) and all nonempty paths (i, a1, . . ., an, j) . The latter are
compositions in Ĝ : (i, a1, . . . , an, j) = (•, an, j) · · · (•, a2, •)(i, a1, •) . The
unique functor D̂ that extends D is given by D̂(i) = Di , D̂(i, i) = 1Di

, and

D̂(i, a1, . . ., an, j) = Dan
· · · Da2

Da1
. The remaining parts of the statement

are equally immediate. �

The construction of D̂ yields a precise definition of commutative diagrams:
D is commutative when D̂p = D̂q whenever p, q : i −→ j are nonempty paths
with the same domain and codomain.

Limits are generalizations of direct products, pullbacks, and inverse limits.

Definition. Let A be an object of a category C and let D be a diagram in C

over a graph G . A cone ϕ from A to D assigns to each vertex i of G a morphism
ϕi : A −→ Di , so that Da ϕi = ϕj for every edge a : i −→ j of G :
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Equivalently, a cone from A to D is a morphism from C(A) to D , where
C(A) is the constant diagram, which assigns A to every vertex and 1A to every
edge. Since morphisms of diagrams compose, the following hold: if ϕ : A −→ D
is a cone and ψ : D −→ E is a morphism of diagrams, then ψϕ : A −→ E
is a cone; if ϕ : B −→ D is a cone and ψ : A −→ B is a morphism, then
ϕψ : A −→ D is a cone.

Definitions. Let D be a diagram in a category C over a [small] graph G . A
limit cone of D is a cone λ : L −→ D such that, for every cone ϕ : A −→ D
there is a unique morphism ϕ : A −→ L such that ϕ = λϕ (ϕi = λi ϕ for every
vertex i of G ):

Then the object L is a limit of the diagram D .

Readers will easily establish the following properties:

Proposition 3.3. If λ : L −→ D and λ′ : L ′ −→ D are limit cones of D ,
then there is an isomorphism θ : L ′ −→ L such that λ′ = λθ . Conversely, if
λ : L −→ D is a limit cone of D and θ : L ′ −→ L is an isomorphism, then
λθ : L ′ −→ D is a limit cone of D .

Examples. Limits include a number of constructions from previous chapters.
Inverse limits are the most obvious example. We define some general types.

Definition. In a category C , the product of a family (Di )i∈I of objects of C con-
sists of an object P =

∏

i∈I Di and a family (πi )i∈I of projections πi : P −→ Di
such that, for every object A and family (ϕi )i∈I of morphisms ϕi : A −→ Di
there is a unique morphism ϕ : A −→ P such that ϕi = πi ϕ for every i ∈ I :

The object P is also called a product of the objects (Di )i∈I .

For example, every family of sets has a product in Sets , which is their Cartesian
product with the usual projections; and similarly for Grps ,RMods , etc. The product
of a finite family D1, . . ., Dn is denoted by D1 × · · · × Dn .

Products are limits of diagrams over certain graphs. A discrete graph is a
graph without edges, and may be identified with its set I of vertices. A diagram
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D over a discrete graph I is a family (Di )i∈I of objects; a cone ϕ : A −→ D is a
family (ϕi )i∈I of morphisms ϕi : A −→ Di . Thus, the object P and projections
πi : P −→ Di constitute a product of (Di )i∈I if and only if π : P −→ D is a
limit cone of D .

Readers will verify that products are associative: if I =
⋃

j∈J Ij is a partition of
I , then there is a natural isomorphism

∏

i∈I Di
∼=
∏

j∈J
(∏

i∈Ij
Dj
)

(when these
products exist). For instance, A × B × C is naturally isomorphic to (A × B)× C
and to A × (B × C) .

Definition. In a category C , the equalizer of two morphisms α, β : A −→ B is
a morphism ε : E −→ A such that (i) αε = βε and (ii) every morphism ϕ such
that αϕ = βϕ factors uniquely through ε :

For example, in RMods , the equalizer of α : M −→ N and 0 is the inclusion
homomorphism Ker α −→ M . The exercises give other examples.

In general, A
α−→−→
β

B is a diagram D over the graph •−→−→• . A cone into D

consists of morphisms ϕ : C −→ A , ψ : C −→ B such that ψ = αϕ = βϕ , and
is uniquely determined by ϕ . Hence (ε, η) is a limit cone of D if and only if ε

is an equalizer of α and β and η = αε = βε .

More generally, the equalizer of a set S of morphisms from A to B is a
morphism ε : E −→ A such that (i) σε = τε for all σ, τ ∈ S , and (ii) every
morphism ϕ with this property factors uniquely through ε . Every equalizer ε is
a monomorphism, since factorization through ε is unique.

A pullback in a category C is a commutative square αβ′ = βα′ such that for
every commutative square αψ = βϕ there exists a unique morphism χ such that
ϕ = α′χ and ψ = β ′χ ; pullbacks inRMods are an example. A pullback αβ ′ = βα′

consists of a limit and part of the limit cone of the following diagram:

Indeed, a cone into D consists of morphisms ϕ : X −→ A , ψ : X −→ B , and
ξ : X −→ C such that αϕ = βψ = ξ , and is uniquely determined by ϕ and ψ .
Hence (ϕ,ψ, ξ) is a limit cone of D if and only if αϕ = βψ is a pullback.

Colimits. A diagram in C over G is also a diagram in Cop over Gop .

Definition. The colimit and colimit cone of a diagram D in a category C are
the limit and limit cone of D in Cop .
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Thus, limits and colimits are dual concepts. We give more detailed definitions.

Definition. Let A be an object of a category C and let D be a diagram in C

over a graph G . A cone ϕ from D to A assigns to each vertex i of G a morphism
ϕi : Di −→ A, so that ϕj Da = ϕi for every edge a : i −→ j of G :

Equivalently, a cone from D to A is a morphism of diagrams from D to the
constant diagram C(A) . (No one could muster the nerve to use the rightful name,
cocone.) Thus, a colimit cone of D is a cone λ : D −→ L such that, for every
cone ϕ : D −→ A there is a unique morphism ϕ : L −→ A such that ϕ = ϕ λ

(ϕi = ϕ λi for every vertex i of G ):

Then the object L and cone λ constitute a colimit of D ; the object L is also
called a colimit of D .

Proposition 3.4. If λ : D −→ L and λ′ : D −→ L ′ are colimit cones of D ,
then there is an isomorphism θ : L −→ L ′ such that λ′ = θλ . Conversely, if
λ : D −→ L is a colimit cone of D and θ : L −→ L ′ is an isomorphism, then
θλ : D −→ L ′ is a colimit cone of D .

Examples. Direct limits and direct sums of modules are examples of colimits.
In general, the coproduct of a family of objects of C is their product in Cop :

Definition. In a category C , the coproduct of a family (Di )i∈I of objects
of C consists of an object P =

∐

i∈I Di and a family (ιi )i∈I of injections
ιi : Di −→ P such that, for every object A and family (ϕi )i∈I of morphisms
ϕi : Di −→ A there is a unique morphism ϕ : P −→ A such that ϕi = ϕ ιi for
every i ∈ I :

The object P is also called a coproduct of (Di )i∈I .

For example, the free product of a family of groups is its coproduct in Grps ; the
direct sum of a family of left R-modules is its coproduct inRMods . In the category
of commutative R-algebras, tensor products are coproducts.

We denote the coproduct of a finite family D1, . . ., Dn by D1
∐ · · · ∐ Dn

(a number of other symbols are in use for coproducts). Coproducts are asso-
ciative: if I =

⋃

j∈J Ij is a partition of I , then there is a natural isomorphism
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∐

i∈I Di
∼=
∐

j∈J
(∐

i∈Ij
Dj
)

(when these coproducts exist). For instance,
A
∐

B
∐

C is naturally isomorphic to (A
∐

B)
∐

C and to A
∐

(B
∐

C) .

The coequalizer of two coterminal morphisms of C is their equalizer in Cop ,
necessarily an epimorphism of C . In detail:

Definition. In a category C , the coequalizer of two morphisms α, β : A −→ B
is a morphism γ : B −→ C such that (i) γα = γβ and (ii) every morphism ϕ

such that ϕα = ϕβ factors uniquely through γ :

For example, inRMods , the coequalizer of α : M −→ N and 0 is the projection
N −→ Coker α . The exercises give other examples.

A pushout in a category C is a commutative square α′β = β′α such that for
every commutative square ψα = ϕβ there exists a unique morphism χ such that
ϕ = χα′ and ψ = χβ ′ . Pushouts inRMods are an example. A pushout α′β = β ′α
consists of a colimit and part of the colimit cone of a diagram:

Exercises.
1. Show that every diagram in a preordered set is commutative, and that preordered sets are

the only categories with this property.

2. Let I be a preordered set. What is the product of a family of elements of I ?

3. Let I be a preordered set. Show that the limit of a diagram in I is the product of the
objects in the diagram.

4. Prove the following associativity property of products: if I =
⋃

j∈J Ij is a partition of

I , then there is a natural isomorphism
∏

i∈I Di ∼=
∏

j∈J

(∏

i∈Ij
Dj
)

(when these products

exist).

5. Describe equalizers in (i) Sets ; (ii) Grps ; (iii) Rings ; (iv)RMods .

6. Show that every monomorphism of Grps is the equalizer of two homomorphisms.

7. Show that every monomorphism ofRMods is the equalizer of two homomorphisms.

8. Find a monomorphism of Rings that is not the equalizer of two homomorphisms.

9. Describe coproducts in Sets .

10. Let I be a preordered set. What is the coproduct of a family of elements of I ? Show
that the colimit of a diagram in I is the coproduct of the objects in the diagram.

11. Construct coequalizers in Sets .
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12. Construct coequalizers in Grps .

13. Show that every epimorphism of Grps is the coequalizer of two homomorphisms.

14. Describe coequalizers inRMods . Is every epimorphism ofRMods the coequalizer of two
homomorphisms?

15. Construct coequalizers in Rings . Is every epimorphism of Rings the coequalizer of
two homomorphisms?

4. Completeness

This section contains constructions of limits and colimits, and results pertaining
to their existence. In particular, in Sets , Grps , RMods , and so on, every diagram
has a limit and a colimit.

Definition. A category C is complete, or has limits, when every [small] diagram
in C has a limit.

Many applications require the stronger property, which holds in many cate-
gories, that a limit can be assigned to every diagram in C ; more precisely, that
there is for every [small] graph G a class function that assigns a limit cone to
every diagram in C over G . If C is small, then this property is equivalent to
completeness, by the axiom of choice.

Proposition 4.1. The category Sets is complete; in fact, in Sets , a limit can be
assigned to every diagram.

Proof. Let D be a diagram in Sets over a graph G . Let P =
∏

i∈G Di be
the Cartesian product (where “ i ∈ G” is short for “ i is a vertex of G”), with
projections πi : P −→ Di . We show that

L = { (xi )i∈G ∈ P
∣
∣ Da(xi ) = xj whenever a : i −→ j }

is a limit of D , with limit cone λi = πi |Di
: L −→ Di . Indeed, λ : L −→ D is

a cone, by definition of L . If ϕ : A −→ D is a cone, then Da
(

ϕi (x)
)

= ϕj (x) ,
for every edge a : i −→ j and x ∈ A . Hence ϕ(x) =

(

ϕi (x)
)

i∈G
∈ L for all

x ∈ A . This defines a mapping ϕ : A −→ L such that λi ◦ ϕ = ϕi for all i ∈ G ,
and ϕ is the only such mapping. �

We call the limit constructed above the standard limit of D .

Standard limits spill into neighboring categories. Let D be a diagram in Grps ,
over a graph G . Let P =

∏

i∈G Di be the Cartesian product and let

L = { (xi )i∈G ∈ P
∣
∣ Da(xi ) = xj whenever a : i −→ j }

be the standard limit of D in Sets , with limit cone λ : L −→ D . Since every
Da is a homomorphism, L is a subgroup of P ; then every λi is a homomor-
phism. If ϕ : A −→ D is a cone in Grps , then every ϕi is a homomorphism,
and so is the unique mapping ϕ(x) =

(

ϕi (x)
)

i∈G
such that λi ◦ ϕ = ϕi for all
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i ∈ G ; hence ϕ is the only homomorphism such that λi ◦ ϕ = ϕi for all i ∈ G .
Thus, the standard limit in Sets yields a limit in Grps .

Proposition 3.3 yields an additional property: if λ′ : L ′ −→ D is another limit
cone in Grps , then there is an isomorphism θ : L ′ −→ L such that λ′ = λθ ,
whence λ′ : L ′ −→ D is a limit cone of D in Sets .

Definition. A functor F : A −→ B preserves limits of diagrams over a graph
G when, for every diagram D over G with a limit cone λ = (λi )i∈G in A ,
F(λ) =

(

F(λi )
)

i∈G is a limit cone of F(D) in B .

We have proved the following:

Proposition 4.2. The category Grps is complete; in fact, in Grps , a limit can
be assigned to every diagram. Moreover, the forgetful functor from Grps to Sets
preserves all limits.

The categories Rings , RMods , R-Algs , etc., have similar properties. A general
result to that effect is proved in Section 10.

Readers may show that Hom functors preserve limits:

Proposition 4.3. Let C be a locally small category. For every object A of C ,
the functor HomC (A,−) preserves all existing limits. In fact, λ is a limit cone
of a diagram D in C if and only if HomC (A, λ) is a limit cone of the diagram
HomC (A, D) for every object A of C .

Dually, HomC (−A) changes colimit cones to limit cones and colimits to limits.
For R-modules, the properties HomR

(

A,
∏

i∈I Bi
)
∼=
∏

i∈I HomR(A, Bi ) and
HomR

(⊕

i∈I Ai , B
)
∼=
∏

i∈I HomR(Ai , B) are particular cases of Proposition
4.3 and its dual.

Limits by products and equalizers. Our next result is based on a general
construction of limits.

Proposition 4.4. A category that has products and equalizers is complete. If
in a category C a product can be assigned to every family of objects of C , and
an equalizer can be assigned to every pair of coterminal morphisms of C , then a
limit can be assigned to every diagram in C .

Proof. Let G be a graph, let E be the set of its edges, and let o, d be the
origin and destination mappings of G , so that a : o(a) −→ d(a) for every edge
a . Let D be a diagram over G . Let P =

∏

i∈G Di and Q =
∏

a∈E Dd(a) , with
projections πi : P −→ Di and ρa : Q −→ Dd(a) , be products in C (or be
the assigned products and projections in C ). The universal property of Q yields
unique morphisms α, β : P −→ Q such that ρa α = πd(a) and ρa β = Da πo(a)

for all a ∈ E . Let ε : L −→ P be an equalizer of α and β in C (or their assigned
equalizer) and let λi = πi ε :
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We show that λ = (λi )i∈G is a limit cone of D . (The standard limit in
Proposition 4.1 and its limit cone are constructed in just this way.) If a : i −→ j ,
then o(a) = i , d(a) = j , ρa α = πj , ρa β = Da πi , and Da λi = Da πi ε =
ρa βε = ρa αε = πj ε = λj . Thus λ is a cone from L to D . Now, let ϕ : A −→ D
be any cone. Let ψ : A −→ P be the unique morphism such that πi ψ = ϕi for
all i . Since ϕ is a cone, ρa αψ = πj ψ = ϕj = Da ϕi = Da πi ψ = ρa βψ for
every edge a : i −→ j . Therefore αψ = βψ and there is a unique morphism
ϕ : A −→ L such that ψ = εϕ . Then ϕ is unique such that ϕi = λi ϕ . �

A finite graph is a graph with finitely many vertices and finitely many edges. A
finite limit is a limit of a diagram over a finite graph.

Corollary 4.5. A category that has equalizers and finite products has finite
limits.

Cocompleteness. A category is cocomplete when its opposite is complete:

Definition. A category C is cocomplete, or has colimits, when every [small]
diagram in C has a colimit.

Many applications require the stronger property that a colimit can be assigned
to every diagram in C ; more precisely, that there is for every [small] graph G a
class function that assigns a colimit cone to every diagram in C over G . By the
axiom of choice, this property is equivalent to cocompleteness if C is small.

Proposition 4.6. The categoryRMods is cocomplete; in fact, inRMods , a colimit
can be assigned to every diagram.

Proof. Let D be a diagram in RMods over a graph G . Let S =
⊕

i∈G Di be
the direct sum and let ιi : Di −→ S be the injections. Let K be the submodule
of S generated by all ιj

(

Da(x)
)

− ιi (x) in which a : i −→ j and x ∈ Di . Let
L = S/K , let π : S −→ L be the projection, and let λi = π ◦ ιi . We show that
λ = (λi )i∈G is a colimit cone of D .

A cone ϕ : D −→ A induces a unique homomorphism ψ : S −→ A such that
ψ ◦ ιi = ϕi for all i . Since ϕ is a cone, ϕj

(

Da(x)
)

− ϕi (x) = 0 for all a : i −→ j
and x ∈ Di ; hence Ker ψ contains every generator of K , Ker ψ contains K ,
and there is a unique homomorphism ϕ such that ψ = ϕ ◦ π (see the diagram
next page). Then ϕ is unique such that ϕ ◦ π ◦ ιi = ψ ◦ ιi = ϕi for all i . �
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Readers will set up similar arguments, using coproducts, to show that Sets ,
Grps , etc., are cocomplete. The case of coproducts shows that forgetful functors
to Sets , though otherwise virtuous, do not in general preserve colimits.

Limit functors. Let λ : L −→ D and λ′ : L ′ −→ D′ be limit cones of
diagrams over the same graph G . If α : D −→ D′ is a morphism of diagrams,
then αλ is a cone to D′ and there is a unique morphism lim α : L −→ L ′ such
that αi λi = λ′i (lim α) for all i :

For instance, if
∏

i∈I Ai and
∏

i∈I Bi exist, every family of morphisms
αi : Ai −→ Bi induces a unique morphism α =

∏

i∈I αi :
∏

i∈I Ai −→
∏

i∈I Bi such that ρi α = αi πi for all i , where πi :
∏

i∈I Ai −→ Ai and
ρi :

∏

i∈I Bi −→ Bi are the projections.

In general, it is immediate that lim 1D = 1lim D and that lim (αβ) =
(lim α)(lim β) . Hence we now have a functor:

Proposition 4.7. Let G be a graph and let C be a category in which a limit can
be assigned to every diagram over G . There is a limit functor from Diag (G,C)
to C that assigns to each diagram D over G its assigned limit lim D , and
to each morphism α : D −→ D′ of diagrams over G the induced morphism
lim α : lim D −→ lim D′ .

Dually, if a colimit can be assigned to every diagram over G , then there is a
colimit functor Diag (G,C) −→ C .

Exercises
1. Show that RMods is complete; in fact, a limit can be assigned to every diagram in

RMods , and the forgetful functor fromRMods to Sets preserves limits.

2. Show that the forgetful functor from RMods to Abs preserves limits.

3. Show that the forgetful functor F from Grps to Sets creates limits: if D : G −→ Grps
is a diagram and µ : M −→ F(D) is a limit cone of F(D) in Sets , then there is a unique
cone λ : L −→ D such that F(λ) = µ , and it is a limit cone of D in Grps .

4. Show that the forgetful functor fromRMods to Sets creates limits.

5. Show that a category is complete if and only if it has products and pullbacks.

6. Prove that Sets is cocomplete; in fact, a colimit can be assigned to every diagram in Sets .
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7. Prove that Grps is cocomplete; in fact, a colimit can be assigned to every diagram
in Grps .

8. Let A be a small category and let C be a category in which a limit can be assigned
to every diagram. Prove that Func (A, C) is complete; in fact, a “pointwise” limit can be
assigned to every diagram in Func (A, C) .

9. Let C be a locally small category. Show that the functor HomC (A,−) preserves all
existing limits, for every object A of C ; in fact, λ is a limit cone of a diagram D in C if and
only if HomC (A, λ) is a limit cone of the diagram HomC (A, D) for every object A of C .

10. Let D be a diagram in a locally small category C . Prove that λ : D −→ L is a colimit
cone of D if and only if HomC (λ, A) is a limit cone of HomC (D, A) for every object A
of C .

11. Prove that every limit functor preserves products.

12. Prove that every limit functor preserves equalizers.

5. Additive Categories

Additive categories and abelian categories share some of the special properties of
Abs andRMods . This section contains definitions and elementary properties; it can
be skipped at first reading.

Definition. An additive category is a locally small category A with an abelian
group operation on each HomA (A, B) such that composition is biadditive:
(α + β) γ = αγ + βγ and α (γ + δ) = αγ + αδ whenever the sums and com-
positions are defined.

Some definitions of additive categories also require finite products; others omit
the locally small requirement. As defined above, Abs , RMods , and RBimsS are
additive categories; readers will verify that a ring [with an identity element] is
precisely an additive category with one object.

In an additive category A , the zero morphism 0 : A −→ B is the zero element
of HomA (A, B) (the morphism 0 such that 0 + α = α = α + 0 for every
α : A −→ B ). If 0β is defined, then 0β = (0 + 0)β = 0β + 0β and 0β = 0 (0β

is a zero morphism). Similarly, γ 0 = 0 whenever γ 0 is defined.

In an additive category A , a zero object is an object Z of A such that
HomA (A, Z) = {0} and HomA (Z , A) = {0} for every object A ; equivalently,
such that there is one morphism A −→ Z and one morphism Z −→ A for each
object A . Then α : A −→ B is a zero morphism if and only if α factors through
Z . A zero object, if it exists, is unique up to isomorphism, and is normally denoted
by 0.

The definition of additive categories is self-dual: if A is an additive category,
then Aop , with the same addition on each HomAop (A, B) = HomA (B, A) , is
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an additive category. We see that A and Aop have the same zero objects and the
same zero morphisms.

Biproducts. In an additive category, finite products (products of finitely many
objects) coincide with finite coproducts.

Proposition 5.1. For objects A, B, P of an additive category the following
conditions are equivalent:

(1) There exist morphisms π : P −→ A and ρ : P −→ A such that P is a
product of A and B with projections π and ρ .

(2) There exist morphisms ι : A −→ P and κ : B −→ P such that P is a
coproduct of A and B with injections ι and κ .

(3) There exist morphisms π : P −→ A, ρ : P −→ A, ι : A −→ P , and
κ : B −→ P such that πι = 1A , ρκ = 1B , πκ = 0 , ρι = 0 , and ιπ + κρ = 1P .

Proof. (1) implies (3). The universal property of products yields morphisms
ι : A −→ P , κ : B −→ P such that πι = 1A , ρι = 0, πκ = 0, and ρκ = 1B .
Then π (ιπ + κρ) = π , ρ (ιπ + κρ) = ρ , and ιπ + κρ = 1P .

(3) implies (1). Let α : C −→ A and β : C −→ B be morphisms. Then
γ = ια + κβ : C −→ P satisfies πγ = α and ργ = β . Conversely, if πδ = α

and ρδ = β , then δ = (ιπ + κρ) δ = ια + κβ = γ .

Dually, (2) and (3) are equivalent. �

Definitions. A biproduct of two objects A and B is an object A ⊕ B that is
both a product of A and B and a coproduct of A and B . A category C has
biproducts when every two objects of C have a biproduct in C .

For example, the (external) direct sum of two left R-modules is a biproduct in

RMods (and also a byproduct of Proposition 5.1).

We saw that morphisms α : A −→ C and β : B −→ D induce morphisms
α × β : A × B −→ C × D and α

∐

β : A
∐

B −→ C
∐

D (if the products and
coproducts exist). If the biproducts A ⊕ B and C ⊕ D exist, then α × β and
α
∐

β coincide (see the exercises) and α × β = α
∐

β is denoted by α ⊕ β .

A biproduct A ⊕ A with projections π, ρ and injections ι, κ has a diagonal
morphism ∆A : A −→ A ⊕ A such that π ∆A = ρ ∆A = 1A , and a codiagonal
morphism ∇A : A ⊕ A −→ A such that ∇A ι = ∇A κ = 1A . If biproducts exist,
then these maps determine the addition on HomA (A, B) :

Proposition 5.2. If α, β : A −→ B are morphisms of an additive category,
and the biproducts A ⊕ A and B ⊕ B exist, then α + β = ∇B (α ⊕ β)∆A .

Proof. Let π, ρ : A ⊕ A −→ A and π ′, ρ′ : B ⊕ B −→ B be the projections,
and let ι′, κ ′ : B −→ B ⊕ B be the injections. By 5.1, ι′π ′ + κ ′ρ′ = 1B⊕B .
Hence ∇B (α ⊕ β)∆A = ∇B (ι′π ′ + κ ′ρ′)(α × β)∆A = π ′ (α × β)∆A + ρ′ (α ×
β)∆A = απ∆A + βρ∆A = α + β . �
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Kernels and cokernels are defined as follows in any additive category.

Definition. In an additive category, a kernel of a morphism α is an equalizer
of α and 0 ; a cokernel of a morphism α is a coequalizer of α and 0 .

Thus, κ : K −→ A is a kernel of α : A −→ B if and only if ακ = 0, and
every morphism ϕ such that αϕ = 0 factors uniquely through κ :

Then κ is a monomorphism and is unique up to isomorphism. The object K is
also called a kernel of α . Dually, γ : B −→ C is a cokernel of α : A −→ B if
and only if γα = 0, and every morphism ϕ such that ϕα = 0 factors uniquely
through γ :

Then γ is an epimorphism and is unique up to isomorphism. The object C is also
called a cokernel of α .

Abelian categories. Abelian categories are blessed with additional properties
that hold in Abs ,RMods , RBimsS but not in every additive category.

Definition. An abelian category is an additive category that has a zero object,
biproducts, kernels, and cokernels, in which every monomorphism is a kernel and
every epimorphism is a cokernel.

Some applications (not included here) require the stronger property that a
biproduct can be assigned to every pair of objects, and a kernel and cokernel can
be assigned to every morphism. Abelian categories with this stronger property
include Abs ,RMods , and RBimsS . Conversely, some elementary properties of Abs ,

RMods , and RBimsS hold in every abelian category.

Proposition 5.3. An abelian category has finite limits and colimits.

Proof. In an abelian category, every nonempty finite family A1, . . . , An has
a product (...((A1 × A2) × A3) × . . . ) × An . The empty sequence also has
a product, the zero object. Hence an abelian category has finite products. Any
two coterminal morphisms α and β also have an equalizer, namely, any kernel of
α − β . By 4.5, every finite diagram has a limit. Dually, an abelian category has
finite coproducts, coequalizers, and finite colimits. �

Lemma 5.4. Let µ be a monomorphism and let σ be an epimorphism. In an
abelian category, µ is a kernel of σ if and only if σ is a cokernel of µ .

Proof. First, σ is a cokernel of some α . Assume that µ is a kernel of σ .
Then σµ = 0, and α factors through µ : α = µξ , since σα = 0. If ϕµ = 0,
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then ϕα = 0 and ϕ factors uniquely through σ . Thus σ is a cokernel of µ . The
converse implication is dual. �

Proposition 5.5. A morphism of an abelian category is a monomorphism if and
only if it has a kernel that is a zero morphism; an epimorphism if and only if it
has a cokernel that is a zero morphism; an isomorphism if and only if it is both a
monomorphism and an epimorphism.

Proof. We prove the last part and leave the first two parts as exercises. In
any category, an isomorphism is both a monomorphism and an epimorphism.
Conversely, let α : A −→ B be both a monomorphism and an epimorphism of
an abelian category. Let γ be a cokernel of α . Then γα = 0 = 0α and γ = 0,
since α is an epimorphism. By 5.4, α is a kernel of γ ; hence γ 1B = 0 implies
1B = αβ for some β : B −→ A . Then αβα = α = α 1A and βα = 1A . �

Definition. Let α be a morphism of an abelian category. An image of α is a
kernel of a cokernel of α . A coimage of α is a cokernel of a kernel of α .

The image and coimage of a morphism are, like kernels and cokernels, unique
up to isomorphism.

If ϕ : A −→ B is a homomorphism of abelian groups or modules, then the
projection B −→ B/Im ϕ is a cokernel of ϕ ; hence the inclusion homomor-
phism Im ϕ −→ B and its domain Im ϕ are images of ϕ as defined above; the
inclusion homomorphism Ker ϕ −→ B is a kernel of ϕ ; hence the projection
A −→ A/Ker ϕ and its codomain A/Ker ϕ are coimages of ϕ . In Abs and

RMods , the homomorphism theorem implies that the image and coimage of a
morphism are isomorphic. This holds in every abelian category.

Proposition 5.6 (Homomorphism Theorem). Let α be a morphism of an abelian
category; let ι be an image of α , and let ρ be a coimage of α . There exists a
unique isomorphism θ such that α = ιθρ .

If no specific image has been assigned to α , then ιθ is as good an image as ι ,
and α is the composition of an image and a coimage.

Proof. Construct the following diagram:

Let κ : K −→ A and γ : B −→ C be a kernel and cokernel of α : A −→ B .
Let ι : I −→ B be a kernel of γ and let ρ : A −→ Q be a cokernel of κ . Since
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γα = 0, α = ιβ for some β : A −→ I . Then βκ = 0, since ιβκ = ακ = 0, and
β = θρ for some θ : Q −→ I . Now, α = ιθρ ; since ι is a monomorphism and ρ

is an epimorphism, θ is the only morphism with this property. It remains to show
that θ is an isomorphism.

Suppose that ϕθ = 0. Let λ be a kernel of ϕ and let δ be a cokernel of
ιλ . Since ϕθ = 0 we have θ = λζ for some ζ . Then δα = διθρ = διλζρ = 0
and δ = ξγ for some ξ . Hence δι = ξγ ι = 0. By 5.4, ιλ is a kernel of δ ;
hence ι = ιλη for some η . Then λη = 1I and ϕ = ϕλη = 0. By 5.5, θ is an
epimorphism. Dually, θ is a monomorphism, hence an isomorphism, by 5.5. �

Exercises
1. Show that an object Z of an additive category A is a zero object if and only if 1Z = 0,

if and only if HomA (Z , Z) = 0.

2. Let A and B be additive categories. A functor F : A −→ B is additive when
F(α + β) = F(α) + F(β) whenever α + β is defined. If A has biproducts, show that a
functor from A to B is additive if and only if it preserves biproducts.

3. Extend Proposition 5.1 to all nonempty finite families of objects.

4. Assume that the biproducts A ⊕ B and C ⊕ D exist. Show that α × β and α
∐

β

coincide for all α : A −→ C and β : B −→ D .

5. Show that a morphism in an abelian category is a monomorphism if and only if it has a
kernel that is a zero morphism.

6. Let α be a morphism in an abelian category. Prove the following: if α = µσ , where µ

is a monomorphism and σ is an epimorphism, then µ is an image of α and σ is a coimage
of α .

7. Let αβ′ = βα′ be a pullback in an abelian category. Prove the following: if α is a
monomorphism, then α′ is a monomorphism.

8. Extend the construction of pullbacks inRMods to all abelian categories.

9. Define exact sequences and split exact sequences in any abelian category.

10. Let A be a small category and let B be an abelian category in which a limit and colimit
can be assigned to every finite diagram. Show that Func (A, B) is abelian.

11. Let A be a small category and let B be an abelian category in which a limit and colimit
can be assigned to every finite diagram. When is a sequence in Func (A, B) exact?

6. Adjoint Functors

Limits and colimits do not account for all universal properties encountered in
previous chapters. Free groups, free modules, tensor products, have universal
properties of a different kind; they are particular cases of adjoint functors.

Definition. A precise statement of the universal property of free groups
requires the two categories Grps and Sets , the free group functor F from
Sets to Grps , and the forgetful functor S from Grps to Sets . The injection
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ιX : X −→ FX is a morphism from X to S(FX ) and is natural in X by definition of
F . The universal property of FX reads: for every morphism f : X −→ S(G) (in
Sets ) there is a unique morphism ϕ : FX −→ G (in Grps ) such that S(ϕ) ◦ ιX = f .
Adjoint functors are defined by a very similar property and its dual.

Proposition 6.1. For two functors F : A −→ C and G : C −→ A the following
conditions are equivalent:

(1) there exists a natural transformation η : 1A −→ G ◦ F such that for every
morphism α : A −→ G(C) of A there exists a unique morphism γ : F(A)−→ C
of C such that α = G(γ ) ηA :

(2) there exists a natural transformation ε : F ◦ G −→ 1C such that for every
morphism γ : F(A)−→ C of C there exists a unique morphism α : A −→ G(C)
of A such that γ = εC F(α):

Proof. (1) implies (2). Applying (1) to 1G(C) : G(C) −→ G(C) yields a
morphism εC : F(G(C)) −→ C , unique such that

G(εC ) ηG(C) = 1G(C).

We show that εC is natural in C . Every γ : C −→ D induces a diagram

in which the side triangles commute by definition of ε , the back face commutes,
and the upper face commutes since η is a natural transformation. Hence

G(εD) G(F(G(γ ))) ηG(C) = G(γ ) = G(γ ) G(εC ) ηG(C)

and uniqueness in (1) yields εD F(G(γ )) = γ εC . Thus ε : F ◦ G −→ 1C is a
natural transformation.
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Now, let γ : F(A) −→ C be a morphism in C . If α : A −→ G(C) and
εC F(α) = γ , then α = G(εC ) ηG(C) α = G(εC ) G(F(α)) ηA = G(γ ) ηA , since
η is a natural transformation. Hence α is unique. If, conversely, α = G(γ ) ηA :
A −→ G(C) , then G(εC ) G(F(α)) ηA = G(εC ) ηG(C) α = α = G(γ ) ηA , and
uniqueness in (1) yields εC F(α) = γ . Thus (2) holds.

In particular, if γ = 1F(A) , then α = ηA and εC F(α) = γ becomes:
εF(A) F(ηA) = 1F(A) .

(2) implies (1). Reversing all arrows and compositions, and exchanging A and
C , F and G , ε and η , also exchanges (1) and (2). Therefore, that (2) implies (1)
follows from (1) implies (2). �

Definitions. If the equivalent conditions in Proposition 6.1 hold, then F and
G are a pair of mutually adjoint functors; F is a left adjoint of G ; G is a right
adjoint of F ; and (F, G, η, ε) is an adjunction from A to C .

The terminology “left adjoint” and “right adjoint” comes from the isomor-
phism HomC (F(A), C) ∼= HomA (A, G(C)) in Proposition 6.4 below, which
resembles the definition 〈Fx, y〉 = 〈x, Gy〉 of adjoint linear transformations.

As expected, the free group functor from Sets to Grps is a left adjoint of the
forgetful functor from Grps to Sets . The free left R-module functor from Sets to

RMods is a left adjoint of the forgetful functor fromRMods to Sets .

Limit functors are right adjoints. Let C be a category in which a limit can be
assigned to every diagram over some graph G , so that there is a limit functor from
Diag (G,C) to C . Let C : C −→ Diag (G,C) be the constant diagram functor.
The limit cone λD : C(lim D) −→ D of D is natural in D , and the universal
property of limits states that for every morphism ϕ : C(A) −→ D of Diag (G,C)
there exists a unique morphism ϕ : A −→ lim D such that ϕ = λD C(ϕ) . Thus
lim is a right adjoint of C . Dually, a colimit functor is a left adjoint of a constant
diagram functor.

Properties. We note two easy consequences of the definition.

Proposition 6.2. Any two left adjoints of the same functor are naturally isomor-
phic. Any two right adjoints of the same functor are naturally isomorphic.

This follows from the universal properties. There is also an easy condition for
existence (used in the next section for deeper existence results):

Proposition 6.3. A functor G : C −→ A has a left adjoint if and only if
to each object A of A can be assigned an object F(A) of C and a morphism
ηA : A −→ G(F(A)) of A , so that for every morphism α : A −→ G(C) of A

there exists a unique morphism γ : F(A) −→ C of C such that α = G(γ ) ηA .

In locally small categories, Proposition 6.1 can be expanded as follows:

Proposition 6.4. If A and C are locally small, then F : A −→ C and
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G : C −→ A are mutually adjoint functors if and only if there is a bijection

θA,C : HomC (F(A), C) −→ HomA (A, G(C))

that is natural in A and C .

In case A and C are locally small, an adjunction from A to C generally consists
of F , G , and at least one of η , ε , and θ .

Proof. Let F and G be mutually adjoint functors. By (1) in Proposition 6.1,
θA,C (γ ) = G(γ ) ηA is a bijection of HomC (F(A), C) onto HomA (A, G(C)) .
Let β : A −→ B and δ : C −→ D . Since η is a natural transformation,
G(F(β)) ηA = ηB β . Hence, for every γ : F(B) −→ C ,

θA,D
(

HomC (F(β), δ)(γ )
)

= θA,D
(

δγ F(β)
)

= G(δ) G(γ ) G(F(β)) ηA

= G(δ) G(γ ) ηB β = HomA (β, G(δ))
(

θB,C (γ )
)

.

Thus the square below commutes and θ is a natural transformation.

Conversely, assume that θ : HomC (F(−),−) −→ HomA (−, G(−)) is a
natural bijection. For all β : A −→ B , δ : C −→ D , and γ : F(B) −→ C ,

θA,D
(

δγ F(β)
)

= θA,D
(

HomC (F(β), δ)(γ )
)

= HomA (β, G(δ))
(

θB,C (γ )
)

= G(δ) θB,C (γ ) β.
(∗)

Let ηA = θA, F(A)(1F(A)): A −→ G(F(A)) . With A = B , C = F(A) = F(B) ,
β = 1A , and γ = 1F(A) , (∗) reads:

θA,D(δ) = G(δ) ηA , for all δ : F(A) −→ D .

With C = D = F(B) and γ = δ = 1F(B) , (∗) then yields:

G(F(β)) ηA = θA,F(B)(β) = ηB β , for all β : A −→ B ;

hence η is a natural transformation. Then (1) in Proposition 6.1 holds, since θA,C
is bijective. �

For example, the adjoint associativity of tensor products Hom
Z

(A ⊗R B, C)
∼= HomR(A, Hom

Z
(B, C)) shows that, for every left R-module B , − ⊗R B is

a left adjoint of the functor Hom
Z

(B,−) from Abs to ModsR .

If α : A −→ G(C) and γ : F(A) −→ C , then we saw in the proof of
Proposition 6.1 that α = G(γ ) ηA implies εC F(α) = γ . Hence the equality
θA,C (γ ) = G(γ ) ηA above implies θ−1

A,C (α) = εC F(α) . The remaining properties
in the next lemma were proved incidentally with Proposition 6.1:
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Lemma 6.5. If (F, G, η, ε) is an adjunction from A to C , then

G(εC ) ηG(C) = 1G(C) and εF(A) F(ηA) = 1F(A) ,

for all objects A of A and C of C . If A and C are locally small and (F, G, η, ε, θ)
is an adjunction from A to C , then

θA,C (γ ) = G(γ ) ηA and θ−1
A,C (α) = εC F(α) ,

for all objects A of A and C of C .

Proposition 6.6. Every right adjoint functor preserves limits. Every left adjoint
functor preserves colimits.

Proof. Let F : A −→ C be a left adjoint of G : C −→ A , and let λ : L −→ D
be a limit cone of a diagram D in C over some graph G . We want to show
that G(λ): G(L) −→ G(D) is a limit cone of G(D) . First, G(λ) is a cone to
G(D) . Let α : A −→ G(D) be any cone to G(D) . For every vertex i of G

there is a unique morphism γi : F(A) −→ Di such that αi = G(γi ) ηA , namely,
γi = εDi

F(αi ) . If a : i −→ j is an edge of G , then αj = G(Da)αi and

G(γj ) ηA = αj = G(Da)αi = G(Da γi ) ηA ;

therefore γj = Da γi . Thus γ is a cone to D . Hence there is a unique morphism
γ : F(A) −→ L such that γi = λi γ for all i . Then α = G(γ ) ηA satisfies

αi = G(γi ) ηA = G(λi ) G(γ ) ηA = G(λi )α

for all i . Also, α is unique with this property: if αi = G(λi )β for all i , then

λi εL F(β) = εDi
F(G(λi )) F(β) = εDi

F(αi ) = γi = λi γ

for all i ; this implies εL F(β) = γ and β = G(γ ) ηA = α . �
Proposition 6.6 implies, in one fell swoop, that limit functors preserve limits,

that the forgetful functors from Grps to Sets and from RMods to Sets preserve
limits, and that −⊗R B preserves colimits.

Exercises
1. Show that R ⊗Z − is a left adjoint of the forgetful functor fromRMods to Abs .

2. Show that, for every set B , − × B is a left adjoint of the functor Hom(B,−) from
Sets to Sets .

3. Show that an equivalence of categories is an adjunction.

4. Give examples of adjoint functors that have not been mentioned in this section, or in the
previous exercises.

5. Prove that any two left adjoints of a functor are naturally isomorphic.

6. Prove that (F, G, η, ε) is an adjunction from A to C if and only if G(εC ) ηG(C) =
1G(C) and εF(A) F(ηA) = 1F(A) for all objects A of A and C of C .

7. Let A and C be locally small. Deduce Proposition 6.6 from 6.5 and 4.3.
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8. Let F and G be mutually adjoint functors between abelian categories. Show that F
and G are additive.

9. Let (F, G, θ) be an adjunction between abelian categories. Show that θ is an isomor-
phism of abelian groups.

7. The Adjoint Functor Theorem

The adjoint functor theorem gives sufficient conditions for the existence of a
left adjoint functor. Its present formulation is essentially due to Freyd [1964].
Following MacLane [1971] we deduce it from more general results, and from a
most general view of universal properties.

Initial and terminal objects. First, a definition:

Definitions. An initial object of a category C is an object C such that there is
for every object A of C exactly one morphism from C to A . A terminal object of
a category C is an object C such that there is for every object A of C exactly one
morphism from A to C .

For example, in the category Sets , Ø is an initial object, and every one element
set is a terminal object. In an additive category, a zero object is both an initial and
a terminal object. The exercises give other examples.

The product of an empty family of objects, if it exists, is a terminal object.
Therefore every complete category has a terminal object. Dually, every cocomplete
category has an initial object.

Proposition 7.1. In every category, any two initial objects are isomorphic, and
any two terminal objects are isomorphic.

Proof. Let A and B be initial objects. There exists a morphism α : A −→ B
and a morphism β : B −→ A . Then 1A and βα are morphisms from A to A ;
since A is an initial object, βα = 1A . Similarly, αβ = 1B . Thus A and B are
isomorphic. Dually, any two terminal objects are isomorphic. �

Readers will recognize this proof as a standard uniqueness argument for objects
with universal properties. In fact, every universal property we have encountered
is equivalent to the existence of an initial object in a suitable category:

Let D be a diagram over a graph G in a category A . The cones from D are
the objects of a cone category C , in which a morphism from ϕ : D −→ A to
ψ : D −→ B is a morphism α : A −→ B such that αϕ = ψ (α ϕi = ψi for every
vertex i of G ). A colimit cone of D is precisely an initial object of C . Dually, a
limit cone of D is a terminal object in a category of cones to D .

Let (F, G, η) be an adjunction from A to C . The universal property of
ηA : A −→ G(F(A)) states that, for every α : A −→ G(C) , there is a unique
γ : F(A) −→ C such that α = G(γ )ηA . Let CA be the following category.
An object of CA is an ordered pair (α, C) in which C is an object of C and
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α is a morphism of A from A to G(C) . A morphism of CA from (α, C) to
(β, D) is a morphism γ : C −→ D of C such that β = G(γ )α . The universal
property of ηA states precisely that (ηA, F(A)) is an initial object of CA .

Existence. Due to this last example, existence results for initial objects yield
existence results for adjoint functors.

Proposition 7.2. A locally small, complete category C has an initial object if
and only if it satisfies the solution set condition:

there exists a set S of objects of C such that there is for every object A of C

at least one morphism from some S ∈ S to A .

Proof. If C has an initial object C , then {C} is a solution set. Conversely,
let C have a solution set S . Since C is complete, S has a product P in C . Then
{P} is a solution set: for every object A of C there is at least one morphism
P −→ S −→ A . Since C is locally small, HomC (P, P) is a set of morphisms
from P to P , and has an equalizer ε : E −→ P . For every object A of C there
is at least one morphism α : E −→ P −→ A . We show that α is unique.

Let α, β : E −→ A . Then α and β have an equalizer ζ : F −→ E . By the
above there exists a morphism ϕ : P −→ F :

Then εζϕ : P −→ P , εζϕε = 1P ε = ε 1E , ζϕε = 1E , and αζ = βζ yields
α = αζϕε = βζϕε = β . �

In Proposition 7.2, if every diagram can be assigned a limit, then the proof
constructs a specific initial object.

The adjoint functor theorem. As expected, Proposition 7.2 yields a sufficient
condition for the existence of adjoints:

Theorem 7.3 (Adjoint Functor Theorem). Let A be a category and let C be a
locally small category in which a limit can be assigned to every diagram. A functor
G : C −→ A has a left adjoint if and only if it preserves limits and satisfies the
solution set condition:

to every object A of A can be assigned a set S of morphisms σ : A −→ G(Cσ )
of C such that every morphism α : A −→ G(C) is a composition α = G(γ ) σ

for some σ ∈ S and homomorphism γ : Cσ −→ C .

Before proving Theorem 7.3, we show how it implies the existence of free
groups. We know that Grps is locally small, that a limit can be assigned to
every diagram of groups and homomorphisms, and that the forgetful functor
G : Grps −→ Sets preserves limits. The existence of free groups then follows
from the assignment of a solution set to every set X . We construct one as follows.
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Let X be a set. Every mapping f of X into a group G factors through the
subgroup H of G generated by Y = f (X) . Now, every element of H is a
product of finitely many elements of Z = Y ∪ Y−1 . If Z is finite, then H is finite
or countable. If Z is infinite, then, by A.5.10, there are |Z | finite sequences of
elements of Z and |H | � |Z | . In either case, |Z | � |X | + |X | and |H | � λ ,
where λ = max (|X |, ℵ0) depends only on X .

For every cardinal number κ � λ we can choose one set T of cardinality κ

(for instance, κ itself) and place all possible group operations T × T −→ T on
T . The result is a set T of groups such that every group H of cardinality |H | � λ

is isomorphic to some T ∈ T . Then every mapping f of X into a group factors
through some T ∈ T . There is only a set S of mappings X −→ T ∈ T ; thus, S

is a solution set that can be assigned to X .

Comma categories. To prove the adjoint functor theorem we apply Proposition
7.2 to the following comma category (A ↓ G) (denoted by CA earlier): given a
functor G : C −→ A and an object A of A , an object of (A ↓G) is an ordered
pair (α, C) in which C is an object of C and α is a morphism of A from A to
G(C) ; a morphism of (A↓G) from (α, C) to (β, D) is a morphism γ : C −→ D
of C such that β = G(γ )α .

Composition in (A ↓ G) is composition in C . It is immediate that (A ↓ G)
is a category. There is a projection functor from (A ↓ G) to C , which assigns
to each object (α, C) of (A ↓ G) the object C of C , and to each morphism
γ : (α, C) −→ (β, D) of (A↓G) the morphism γ : C −→ D of C .

Lemma 7.4. Let C be a locally small category in which a limit can be assigned
to every diagram, let G : C −→ A be a functor, and let A be an object of A . If
G preserves limits, then a limit can be assigned to every diagram in (A↓G) , and
the projection functor (A↓G) −→ C preserves limits.

Proof. Let ∆ be a diagram in (A ↓ G) over a graph G . For every vertex i
of G , ∆i = (δi , Di ) , where δi : A −→ G(Di ) ; for every edge a : i −→ j ,
∆a = Da : Di −→ Dj and δj = G(Da) δi . Then D is a diagram in C and δ

is a cone from A to G(D) . Let λ : L −→ D be the limit cone assigned to D .
Then G(λ): G(L) −→ G(D) is a limit cone of G(D) , and there is a morphism
δ : A −→ G(L) unique such that δi = G(λi ) δ for all i . We show that (δ, L) is
a limit of ∆ , with limit cone λ .

First, λi : (δ, L) −→ (δi , Di ) is a morphism of (A↓G) and ∆a λi = Da λi =
λj when a : i −→ j . Thus λ : (δ, L) −→ ∆ is a cone into ∆ . Let ϕ :
(α, C) −→ ∆ be any cone to ∆ . Then [the projection of] ϕ is a cone from C to
D , and there is a unique morphism ϕ such that ϕi = λi ϕ for all i :
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Since λi and ϕi : (α, C) −→ (δi , Di ) are morphisms of (A ↓ G) we have
G(λi ) G(ϕ)α = G(ϕi )α = δi = G(λi ) δ for all i ; since G(λ) is a limit cone of
G(D) this implies G(ϕ)α = δ . Thus ϕ : (α, C) −→ (δ, L) is a morphism of
(A↓G) , and is the only morphism of (A↓G) such that ϕi = λi ϕ for all i . �

We now prove Theorem 7.3. Let C be a locally small category in which a limit
can be assigned to every diagram, and let G : C −→ A be a functor. If there
is an adjunction (F, G, η) , then G preserves limits by 6.6, and every object A
of A has a solution set {ηA} . Conversely, assume that G preserves limits and
that a solution set S of morphisms σ : A −→ G(Cσ ) of C can be assigned to
every object A of A , so that every morphism α : A −→ G(C) is a composition
α = G(γ ) σ from some σ ∈ S and γ : Cσ −→ C . Then (A↓G) is complete, by
7.4, and { (σ, Cσ )

∣
∣ σ ∈ S } is a solution set in (A ↓ G) ; therefore (A ↓ G) has

an initial object, by 7.2. In fact, since every diagram in (A ↓G) can be assigned
a limit, a specific initial object (ηA, F(A)) can be selected in (A ↓G) . Then G
has a left adjoint, by 6.3. �

Exercises

1. Find all initial and terminal objects in the following categories: Grps ; Rings ;RMods ; a
partially ordered set I .

2. Prove directly that a limit cone of a diagram is a terminal object in a suitable cone
category.

3. Use the adjoint functor theorem to show that the forgetful functor from RMods to Sets
has a left adjoint.

4. Use the adjoint functor theorem to show that the forgetful functor from Rings to Sets
has a left adjoint.

5. Let G : C −→ A preserve limits. Show that the projection functor (A ↓ G) −→ C

creates limits.

In the following exercises, C is a locally small category. A functor F : C −→ Sets is
representable when it is naturally isomorphic to HomC (C,−) for some object C of C .
Representable functors provide one more approach to universal properties.

6. Let F ∼= HomC (C,−) be representable. Formulate a universal property for the object
C , and show that C is unique up to isomorphism.

7. Show that C has an initial object if and only if the constant functor X �−→ {1} is
representable.

8. Let D be a diagram in C . Define a functor F : C −→ Sets such that F(A) is the set
of all cones from D to A . Show that D has a colimit in C if and only if F is representable.

9. Let G : C −→ A be a functor, where A is locally small. Show that G has a left adjoint
if and only if HomA (A, G(−)) is representable for every object A of A .

10. Show that F : C −→ Sets is representable if and only if it preserves limits and satisfies
the solution set condition: there exists a set S of objects such that, for every object A of D and
every x ∈ F(A) , there exists S ∈ S , y ∈ F(S) , and α : S −→ A such that F(α)(y) = x .
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8. Triples

Triples provide a unified description of most algebraic systems, using one functor
and two natural transformations. This construction took its final shape in a paper
by Eilenberg and Moore [1965].

Definition. Our examples of adjunctions (F, G, η, ε) have emphasized η at
the expense of ε . To redress this injustice we look at ε when F is the free left
R-module functor and G is the forgetful functor from left R-modules to sets. For
every set X and module M , the natural bijection

θX,M : Hom
RMods (F(X), M) −→ HomSets (X, G(M))

sends a homomorphism F(X) −→ M to its restriction to X . By 6.5, εM =
θ−1

G(M),M (1G(M)) is the homomorphism F(G(M)) −→ M that extends the iden-
tity on M . Hence εM takes an element of F(G(M)) , written uniquely as a linear
combination

∑

i ri mi of elements of M with coefficients in R , and sends it to
∑

i ri mi ∈ M as calculated in M . In particular, the addition and action of R on
M are completely determined, within the category Sets , by the set G(M) and the
mapping G(εM ): G(F(G(M))) −→ G(M) .

To avoid unsightly pile-ups of parentheses, we write functors as left operators in
what follows ( F A instead of F(A) ). Every adjunction (F, G, η, ε) from A to C

determines a functor G F : A −→ A and natural transformations η : 1A −→ G F
and GεF : G FG F −→ G F , whose basic properties are as follows.

Proposition 8.1 Let (F, G, η, ε) be an adjunction from A to C . Let T = G F
and µ = GεF : T T −→ T . The following diagrams commute:

Proof. Since ε is a natural transformation, the square below left commutes

for every object C of C . If C = F A , applying G yields the square above
right; hence µA µT A = µA (T µA) for every object A of A . By 6.5, µA ηT A =
(GεF A) ηG F A = 1G F A and µA (T ηA) = (GεF A)(G FηA) = G1F A = 1G F A . �

Definition. A triple (T, η, µ) on a category A is a functor T : A −→ A with
two natural transformations η : 1A −→ T and µ : T T −→ T such that the
following diagrams commute:
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Triples are also called monads and (in older literature) standard constructions.
Monads have a formal similarity with monoids, which also have a multiplication
M × M −→ M and identity element {1} −→ M with similar properties.

T-algebras. By 8.1, every adjunction from A to C induces a triple on A . We
show that, conversely, every triple is induced by an adjunction.

Definitions. Let (T, η, µ) be a triple on a category A . A T-algebra is a pair
(A, ϕ) of an object A of A and a morphism ϕ : T A −→ A such that the following
diagrams commute:

A morphism or homomorphism α : (A, ϕ) −→ (B, ψ) of T-algebras is a mor-
phism α : A −→ B such that αϕ = ψ (T α) :

For example, let (T, η, µ) be the triple on Sets induced by the adjunction
(F, G, η, ε) from Sets to RMods . If M is a left R-module, then (G M, GεM ) is
a T-algebra, by 8.2 below. We saw that GεM : G FG M −→ G M determines
the operations on M ; thus, every left R-module “is” a T-algebra. A converse is
proved in the next section.

Proposition 8.2. Let (F, G, η, ε) be an adjunction from A to C and let
(T, η, µ)= (G F, η, GεF) be the triple it induces on A . For every object C
of C , (GC, GεC ) is a T-algebra. If γ : C −→ D is a morphism of C , then
Gγ : (GC, GεC ) −→ (G D, GεD) is a homomorphism of T-algebras.

Proof. The diagrams below commute, the first since ε is a natural transforma-
tion, the second by 6.5; hence (GC, GεC ) is a T-algebra.

If γ : C −→ D is a morphism of C , then the square below commutes, since ε is
a natural transformation; hence γ is a homomorphism of T-algebras. �
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Proposition 8.3. If (T, η, µ) is a triple on a category A , then T-algebras and
their homomorphisms are the objects and morphisms of a category AT ; moreover,
there is an adjunction (FT , GT , ηT , εT ) from A to AT that induces on A the
given triple, given by

GT (A, ϕ) = A, FT A = (T A, µA), ηT
A = ηA, εT

(A,ϕ) = ϕ.

Proof. It is immediate that T-algebras and their homomorphisms constitute a
category AT with a forgetful functor GT : AT −→ A . The definition of triples
shows that FT A = (T A, µA) is a T-algebra. If α : A −→ B is a morphism of A ,
then FT α = T α : (T A, µA) −→ (T B, µB) is a homomorphism of T-algebras,
since µ is a natural transformation. This constructs a functor FT : A −→ AT .
We have GT FT = T , so that η : 1A −→ GT FT .

We show that, for every morphism α : A −→ C = GT (C, ψ) of A ,
there is a unique homomorphism γ : FT A = (T A, µA) −→ (C, ψ) such that
γ ηA = (GT γ ) ηA = α . Necessarily γ µA = ψ (T γ ) and γ = γ µA (T ηA) =
ψ (T γ ) (T ηA) = ψ (T α) ; hence γ is unique. Conversely, let γ = ψ (T α) . Since
µ is a natural transformation and (C, ψ) is a T-algebra,

γ ηA = ψ (T α)µA = ψ µC (T T α) = ψ (T ψ) (T T α) = ψ (T γ );

hence γ is a homomorphism from (T A, µA) to (C, ψ) . Moreover, γ ηA = ψ

(T α) ηA = ψ ηC α = α , since η is natural and (C, ψ) is a T-algebra.

We now have an adjunction (FT , GT , ηT , εT ) , in which ηT = η . By 6.5,
εT
(A,ϕ) is the homomorphism from FT GT (A, ϕ) = FT A = (T A, µA) to (A, ϕ)

such that
(

GT εT
(A,ϕ)

)

ηT
GT (A,ϕ)

= 1GT (A,ϕ) , equivalently εT
(A,ϕ) ηA = 1A . But ϕ

has these properties, since (A, ϕ) is a T-algebra. Hence εT
(A,ϕ) = ϕ . �

In the following sense, the category AT of T-algebras is the “greatest” category
with an adjunction from A that induces T .

Proposition 8.4. Let (F, G, η, ε) be an adjunction from A to C and let
(T, η, µ)= (G F, η, GεF) be the triple it induces on A . There is a unique
functor Q : C −→ AT such that FT = QF and GT Q = G , given by

QC = (GC, GεC ), Qγ = Gγ.

Proof. By 8.2, (GC, GεC ) is a T-algebra for every object C of C , and, if
γ : C −→ D is a morphism of C , then Gγ : (GC, GεC ) −→ (G D, GεD)
is a homomorphism of T-algebras. Hence the equalities QC = (GC, GεC ) ,
Qγ = Gγ define a functor Q from C to AT . Moreover, QF = FT , GT Q = G .



616 Chapter XVI. Categories

Conversely, let Q : C −→ AT be a functor such that FT = QF and
GT Q = G . We have QεC = εT

QC for every object C of C , since both QεC and
εT

QC satisfy
(

GT εT
QC
)

ηT
GT QC = 1GT QC and

(

GT QεC
)

ηT
GT QC = (GεC ) ηGC =

1GC = 1GT QC . Since GT Q = G we have QC = (GC, ϕ) for some ϕ :

G FGC −→ GC . By 8.3, ϕ = εT
QC = QεC = GT QεC = GεC . Thus

QC = (GC, GεC ) , for every object C of C . Moreover, Gγ = GT Qγ = Qγ for
every morphism γ of C . Thus Q is unique. �

Exercises
1. Describe the triple on Sets induced by the free group functor from Sets to Grps and its

forgetful right adjoint.

2. Describe the triple on Abs induced by the forgetful functor fromRMods to Abs and its
left adjoint.

3. Describe the triple on Abs induced by the forgetful functor from commutative rings to
Abs and its left adjoint.

4. Let I be a preordered set, viewed as a category. What is a triple on I ? What is a
T-algebra?

5. Let G be a group. Show that a triple (T, η, µ) on Sets is defined by T X = G × X ,
ηX : x �−→ (1, x) , and µX :

(
g, (h, x)

)
�−→ (gh, x) . Show that T-algebras coincide with

group actions of G .

6. Let F and F ′ be two left adjoints of G . What can you say about the triples induced by
(F, G) and (F ′, G)?

7. Show that GT creates limits.

9. Tripleability

In this section we prove Beck’s theorem [1966], which characterizes categories of
T-algebras and implies that Grps , Rings ,RMods , etc., are isomorphic to categories
of T-algebras, for suitable triples T .

Definition. A functor G : C −→ A is tripleable when it has a left adjoint and
the functor Q in Proposition 8.4 is an isomorphism of categories.

Similarly, C is tripleable over A when there is a canonical functor G : C −→ A

(usually a forgetful functor) that is tripleable.

Beck’s theorem implies that Grps , Rings ,RMods , etc. are tripleable over Sets .
But not every category is tripleable over Sets . For example, let POS be the
category of partially ordered sets and order preserving mappings. The forgetful
functor G from POS to Sets has a left adjoint, which assigns to each set X
the discrete partially ordered set F X on X , in which x � y if and only if
x = y : indeed, every mapping of X into a partially ordered set S “extends”
uniquely to an order preserving mapping of F X into S . The induced triple
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(T, η, µ) has T X = X and ηX = µX = 1X for every set X . Hence T-algebras
“are” sets, that is, GT is an isomorphism of categories. But GT Q = G is not
an isomorphism, so Q is not an isomorphism. Readers will set up a similar
argument for the category Tops of topological spaces and continuous mappings.
Thus, tripleability is a property of sets with operations and is not generally shared
by other mathematical structures.

Split coequalizers. Beck’s theorem requires properties that are specific to
T-algebras and their forgetful functors GT . Beck observed that, in a T-algebra
(A, ϕ) , the morphism ϕ : T A −→ A is a coequalizer of µA and T ϕ . Indeed,
ϕ µA = ϕ (T ϕ) and ϕηA = 1A , since (A, ϕ) is a T-algebra, µA ηT A = 1T A since
(T, η, µ) is a triple, and (T ϕ) ηT A = ηA ϕ , since η is a natural transformation.
If now ψ µA = ψ (T ϕ) , then ψ = ψ µA ηT A = ψ (T ϕ) ηT A = ψ ηA ϕ factors
through ϕ ; this factorization is unique, since ϕηA = 1A . Thus, ϕ is a coequalizer
because ηA and ηT A have certain properties.

Definition. Let α, β : A −→ B . A split coequalizer of α and β is a morphism
σ : B −→ C such that σα = σβ and there exist morphisms κ : B −→ A and
ν : C −→ B such that ακ = 1B , σν = 1C , and βκ = νσ .

Proposition 9.1. (1) If (A, ϕ) is a T-algebra, then ϕ is a split coequalizer of
µA and T ϕ .

(2) A split coequalizer of α and β is a coequalizer of α and β .

(3) Every functor preserves split coequalizers.

Proof. (1). We saw that ϕ is a split coequalizer of α = µA and β = T ϕ , with
ν = ηA and κ = ηT A . (2). Assume σα = σβ and ακ = 1, σν = 1, βκ = νσ .
If ϕα = ϕβ , then ϕ = ϕακ = ϕβκ = ϕνσ factors through σ ; this factorization is
unique, since σν = 1. (3) is clear. �

Definition. Let γ, δ : C −→ D be morphisms of C . A functor G : C −→ A

creates coequalizers of γ and δ when every coequalizer of Gγ and Gδ in A

is the image under G of a unique morphism σ : D −→ K of C , and σ is a
coequalizer of γ and δ .

Proposition 9.2. The functor GT creates coequalizers of pairs α, β with a
split coequalizer in A .

Proof. Let α, β : (A, ϕ) −→ (B, ψ) be homomorphisms of T-algebras that
have a split coequalizer σ : B −→ C in A . We need to show that there is a unique
T-algebra (C, χ) such that σ is a homomorphism:

for then, σ is a split coequalizer in AT . By 9.1, T σ is a split coequalizer
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of T α and Tβ . Since σ ψ (T α) = σαϕ = σβϕ = σ ψ (Tβ) there is a unique
morphism χ : T C −→ C such that σψ = χ (T σ ) . We show that (C, χ) is a
T-algebra.

Since η is a natural transformation there is a commutative diagram:

Since (B, ϕ) is a T-algebra, we have χ ηC σ = σψ ηB = σ = 1C σ ; hence
χ ηC = 1C . Similarly, in the diagram

the top face commutes since (B, ψ) is a T-algebra, and the four side faces com-
mute, by definition of χ and naturality of µ . Hence the bottom face commutes:
using the other faces, χ (T χ) (T T σ ) = χ µC (T T σ ) , whence χ (T χ) = χ µC ,
since T T σ is a split coequalizer, hence an epimorphism. �

Beck’s theorem is the converse of 9.2:

Theorem 9.3 (Beck). A functor G : C −→ A with a left adjoint is tripleable if
and only if it creates coequalizers of pairs α, β such that Gα, Gβ have a split
coequalizer in A .

Theorem 9.3 follows from Proposition 9.2 and from a result that is similar to
Proposition 8.4:

Lemma 9.4. Let (F, G, η, ε): A −→ C and (F ′, G′, η′, ε′): A′ −→ C′

be adjunctions that induce on A the same triple (T, η, µ) = (G F, η, GεF) =
(G′F ′, η′, G′ε′F ′) . If G′ creates coequalizers of pairs α, β such that G′α, G′β
have a split coequalizer in A , then there is a unique functor R : C −→ C′ such
that F ′ = RF and G′R = G .

Proof. Existence. Let C be an object of C . By 8.2, 9.1, (GC, GεC ) is a
T-algebra and GεC is a split coequalizer of G′ε′F ′GC = µGC and G′F ′GεC =
T GεC . Then GεC is the image under G′ of a unique morphism ρ′

C : F ′GC −→
RC , which is a coequalizer of ε′F ′GC and F ′GεC : F ′G′F ′GC −→ F ′GC .
This defines R on objects. In particular, G′ρ′

C = GεC and G′RC = GC .
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For every morphism γ : C −→ D in C we have a diagram

in which

ρ′
D (F ′Gγ ) ε′F ′GC = ρ′

D ε′F ′G D (F ′G′F ′Gγ )

= ρ′
D (F ′GεD) (F ′G′F ′Gγ ) = ρ′

D (F ′Gγ ) F ′GεC ,

since ε′ is a natural transformation. Therefore ρ′
D (F ′Gγ ) = (Rγ ) ρ′

C for some
unique Rγ : RC −→ RD . Uniqueness in this factorization readily implies that
R is a functor.

We saw that GC = G′RC . In the above, (G′Rγ )(GεC ) = (G′Rγ )(G′ρ′
C ) =

(G′ρ′
D)(G′F ′Gγ ) = (GεD)(G FGγ ) = (Gγ )(GεC ) , since ε is a natural trans-

formation. Since (GεC ) ηGC = 1GC this implies G′Rγ = Gγ . Thus G′R = G.

If A is an object of A , then G′ε′F ′A = GεF A ; therefore ρ′
F A = ε′F ′A , and

RF A = F ′A . If α : A −→ B is a morphism of A , then

(RFα) ρ′
F A = ρ′

F B (F ′G Fα) = ε′F ′B (F ′G Fα) = (Fα)(ε′F A) = (Fα) ρ′
F A,

since ε′ is natural; therefore RFα = F ′α . Thus RF = F ′ .

Uniqueness. Let S : C −→ C′ be a functor such that F = SF ′ and G′S = G .
We have SεC = ε′SC for every object C of C , since

(

G′ε′SC
)

η′G′SC = 1G′SC and
(

G′SεC
)

η′G′SC = (GεC ) ηGC = 1GC = 1G′SC .

Let C be an object of C . As above, GεC is a split coequalizer of G′ε′F ′GC =
µGC and G′F ′GεC = T GεC , so that GεC is the image under G′ of a unique
morphism, namely the epimorphism ρ′

C : F ′GC −→ RC . Since G′ε′SC =
G′SεC = GεC , it follows that ε′SC = ρ′

C . In particular, SC = RC .

Let γ : C −→ D be a morphism of C . Since ε′ is a natural transformation,
we have (Sγ ) ε′SC = ε′SD (F ′G′Sγ ) , equivalently (Sγ ) ρ′

C = ρ′
D (F ′Gγ ) . Since

(Rγ ) ρ′
C = ρ′

D (F ′Gγ ) , it follows that Sγ = Rγ . Thus S = R . �

We now prove Theorem 9.3. By 8.3, 9.2, GT has a left adjoint and cre-
ates coequalizers of pairs α, β such that GT α, GT β have a split coequalizer in
A . These properties are inherited by GT Q whenever Q is an isomorphism of
categories, and by every tripleable functor G .

Conversely, let G : C −→ A have a left adjoint and create coequalizers of
pairs α, β such that Gα, Gβ have a split coequalizer in A . Let (F, G, η, ε)
be an adjunction and let (T, η, µ) = (G F, η, GεF) be the triple it induces on
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A . Let Q : C −→ AT be the unique functor in 8.4, such that FT = QF and
GT Q = G : QC = (GC, GεC ) and Qγ = Gγ for every C and γ in C .

Since G creates coequalizers of pairs α, β such that Gα, Gβ have a split
coequalizer in A , there is by 9.4 a functor R : AT −→ C such that F = RFT

and G R = GT . Then FT = Q RFT and GT Q R = GT ; by the uniqueness in
9.4, Q R = 1AT . Similarly, F = RQF and G RQ = G ; by the uniqueness in 9.4,
RQ = 1C . Thus Q is an isomorphism. �

Examples. We use Beck’s theorem to prove the following:

Proposition 9.5. The forgetful functor from Grps to Sets is tripleable.

Proof. We show that this functor creates coequalizers of pairs α, β : G −→ H
of group homomorphisms that have a split coequalizer σ : H −→ K in Sets .

Let mG : G × G −→ G and m H : H × H −→ H be the group operations on
G and H . Since α and β are homomorphisms we have α ◦ mG = m H ◦ (α × α)
and β ◦ mG = m H ◦ (β × β) . Hence σ ◦ m H ◦ (α × α) = σ ◦ m H ◦ (β × β) . By
9.1, σ × σ is a split coequalizer of α × α and β × β ; therefore there is a unique
mapping mK : K × K −→ K such that σ ◦ m H = mK ◦ (σ × σ ) :

Since σ is surjective, mK inherits associativity, identity element, and inverses
from m H . Thus, there is a unique group operation on the set K such that σ is a
homomorphism. It remains to show that σ is a coequalizer in Grps .

Let ϕ : H −→ L be a group homomorphism such that ϕ ◦ α = ϕ ◦ β . Since
σ is a coequalizer in Sets there is a unique mapping ψ : K −→ L such that
ϕ = ψ ◦ σ . Since ϕ and σ are homomorphisms, ψ

(

σ (x) σ (y)
)

= ψ
(

σ (xy)
)

=
ϕ(xy) = ϕ(x)ϕ(y) = ψ

(

σ (x)
)

ψ
(

σ (y)
)

; hence ψ is a homomorphism. �
Readers will prove similar results for Rings , RMods , etc. These also follow

from a theorem in the next section.

Exercises
1. Topological spaces and continuous mappings are the objects and the morphisms of a

category Tops . Show that the forgetful functor from Tops to Sets has a left adjoint but is not
tripleable. (But see Exercise 6 below.)

2. Prove that the forgetful functor from Rings to Sets is tripleable.

3. Prove that the forgetful functor fromRMods to Sets is tripleable.

4. Prove that the forgetful functor from Rings to Abs is tripleable.

5. Prove that the forgetful functor fromRMods to Abs is tripleable.
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*6. For readers who know some topology: show that the forgetful functor from compact
Hausdorff spaces to sets is tripleable.

*7. A coequalizer σ of two morphisms α and β is an absolute coequalizer when F(σ )
is a coequalizer of F(α) and F(β) for every functor F . For example, split coequalizers
are absolute coequalizers. Prove the following: a functor G : C −→ A with a left adjoint
is tripleable if and only if it creates coequalizers of pairs α, β such that Gα, Gβ have an
absolute coequalizer in A .

10. Varieties

This section collects categorical properties of varieties: completeness, cocom-
pleteness, existence of free algebras, and tripleability. The reader is referred to
Section XV.3 for examples and basic properties.

Every variety, more generally, every class C of algebras of the same type,
defines a category, whose class of objects is C , and whose morphisms are all
homomorphisms from a member of C to another. This category comes with a
forgetful functor to Sets , which assigns to each member of C its underlying set.

Proposition 10.1. If C is a class of universal algebras of type T that is closed
under products and subalgebras (for instance, a variety), then C is complete; in
fact, a limit can be assigned to every diagram in C , and the forgetful functor from
C to Sets preserves limits.

Proof. Let D be a diagram in C over a graph G . Let P =
∏

i∈G Di be the
direct product, with projections πi : P −→ Di and componentwise operations,

ω
(

(x1i )i∈G, . . ., (xni )i∈G

)

=
(

ω (x1i , . . ., xni )
)

i∈G

whenever ω ∈ T has arity n and x1, . . ., xn ∈ P , xk = (xki )i∈G . In Sets , the
[underlying] diagram D has a standard limit

L = { (xi )i∈G ∈ P
∣
∣ Da(xi ) = xj whenever a : i −→ j }

with limit cone λ = (λi )i∈G , where λi = πi |Di
: L −→ Di . Then L is a

subalgebra of P : if ω ∈ T has arity n , x1, . . ., xn ∈ L , and a : i −→ j , then
Da sends the i component ω (x1i , . . ., xni ) of ω (x1, . . . , xn) to

Da
(

ω (x1i , . . . , xni )
)

= ω
(

Da(x1i ), . . ., Da(xni )
)

= ω (x1 j , . . ., xnj ),

which is the j component of ω (x1, . . ., xn) ; hence ω (x1, . . ., xn) ∈ L . By the
hypothesis, L ∈ C . Also, every λi is a homomorphism, and λ : L −→ D is a
cone in C . Then λ is a limit cone in C : if ϕ = (ϕi )i∈G : A −→ D is another cone
in C , then ϕ is a cone in Sets , there is a unique mapping ϕ : A −→ L such that
ϕi = λi ◦ ϕ for all i , namely ϕ(x) =

(

ϕi (x)
)

i∈G
; ϕ is a homomorphism since

the operations on L are componentwise, and is the only homomorphism such that
ϕi = λi ◦ ϕ for all i . �
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Proposition 10.1 and the adjoint functor theorem yield a better proof of Theorem
XV.3.3:

Theorem 10.2. Let C be a class of universal algebras of the same type, that
is closed under isomorphisms, direct products, and subalgebras (for instance, a
variety). The forgetful functor from C to Sets has a left adjoint. Hence there is
for every set X a universal algebra that is free on X in the class C ; in fact, a
universal algebra that is free on X in the class C can be assigned to every set X .

Proof. We show that the forgetful functor G : C −→ Sets has a left adjoint F ;
then F assigns to each set X an algebra FX ∈ C that is free on X in the class C :
for every mapping f of X into a universal algebra A ∈ C , there exists a unique
homomorphism ϕ : FX −→ A such that ϕ ◦ η = f .

By 10.1, C is a locally small category in which a limit can be assigned to every
diagram, and G preserves limits. This leaves the solution set condition:

to every set X can be assigned a set S of mappings s : X −→ Cs of X into
algebras Cs ∈ C such that every mapping f of X into an algebra C ∈ C is a
composition f = γ ◦ s for some s ∈ S and γ : Cs −→ C .

Let S be the set of all mappings sE : X −→ W T
X −→ W T

X /E , where E is a
congruence on the word algebra W T

X and W T
X /E ∈ C . Every mapping f of X into

an algebra C ∈ C extends to a homomorphism ϕ : W T
X −→ C ; then E = ker ϕ

is a congruence on W T
X , and W T

X /E ∈ C , since W T
X /E ∼= Im ϕ ⊆ C ∈ C . Since

ker ϕ = E , ϕ factors through the projection π : W T
X −→ W T

X /E , ϕ = ψ ◦ π for
some homomorphism ψ : W T

X /E −→ C :

Then f = ψ ◦ sE . Thus S is a solution set. �

Proposition 10.3. Every variety V is cocomplete; in fact, a colimit can be
assigned to every diagram in V .

Proof. Let V be a variety of type T and let D be a diagram in V over a graph
G . Let X =

⋃

i∈G (Di × {i}) be the disjoint union of the underlying sets Di .
By 10.2 an algebra F ∈ V that is free on X can be assigned to X . Composing
η : X −→ F and the inclusion ιi : Di −→ X yields a mapping η ◦ ιi : Di −→ F .
Since every intersection of congruences on F is a congruence on F , there is a
least congruence E on F such that:

(1) η
(

ιi (ω (x1, . . ., xn))
)

E ω
(

η(ιi (x1)), . . ., η(ιi (xn))
)

for all i ∈ G , n � 0,
ω ∈ T of arity n , and x1, . . ., xn ∈ Di ; and

(2) η
(

ιi (x)
)

E η
(

ιj (Da(x))
)

for all a : i −→ j and x ∈ Di .
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Let L = F/E and let π : F −→ L be the projection. We show that L is a colimit
of D , with colimit cone λ = (λi )i∈G , λi = π ◦ η ◦ ιi .

First, λ is a cone from D to L in V : L = F/E ∈ V since V is a variety;
every λi is a homomorphism, since π is a homomorphism and (1) holds; when
a : i −→ j , then λi = λj ◦ Da , since (2) holds.

Let ϕ : D −→ A be a cone in V . The mappings ϕi : Di −→ A induce a
mapping g : X −→ A such that g ◦ ιi = ϕi for all i , and a homomorphism
ψ : F −→ A such that ψ ◦ η = g :

Then ψ ◦ η ◦ ιi = ϕi for all i , and ker ψ satisfies (1) and (2): for all i ∈ G ,
ω ∈ T of arity n , and x1, . . ., xn ∈ Di ,

ψ
(

η
(

ιi (ω (x1, . . ., xn))
))

= ω
(

ψ
(

η(ιi (x1))
)

, . . ., ψ
(

η(ιi (xn))
))

= ψ
(

ω
(

η(ιi (x1)), . . ., η(ιi (xn))
))

since ϕi and ψ are homomorphisms; for all a : i −→ j and x ∈ Di ,
ψ
(

η
(

ιi (x)
))

= ψ
(

η
(

ιj (Da(x))
))

, since ϕi = ϕj ◦ Da . Therefore ker ψ ⊇
E = ker π and ψ factors through π : ψ = ϕ ◦ π for some homomorphism
ϕ : L −→ A . Then ϕ ◦ λi = ϕi for all i ; ϕ is unique with this property, since F
is generated by η(X) by XV.3.2, so that L is generated by

⋃

i∈Gλi (Di ) . �
Theorem 10.4. For every variety V , the forgetful functor from V to Sets is

tripleable.

Proof. We invoke Beck’s theorem. Let V be a variety of type T . The
forgetful functor from V to Sets has a left adjoint by 10.2; we show that it creates
coequalizers of pairs α, β : A −→ B of homomorphisms of algebras A, B ∈ V ,
which have a split coequalizer σ : B −→ C in Sets .

Let α, β : A −→ B be homomorphisms of algebras A, B ∈ V that have
a split coequalizer σ : B −→ C in Sets . Let ω ∈ T have arity n . Since
α, β are homomorphisms, α ◦ ωA = ωB ◦ αn and β ◦ ωB = ωB ◦ βn ; hence
σ ◦ ωB ◦ αn = σ ◦ ωB ◦ βn . By 9.1, σ n is a split coequalizer of αn and βn ;
hence there is a unique operation ωC : Cn −→ C such that σ ◦ ωB = ωC ◦ σ n :

In this way C becomes an algebra of type T , and σ becomes a homomorphism.
Then C ∈ V , since σ is surjective, and C is the only algebra on the set C such
that σ is a homomorphism.
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It remains to show that σ is a coequalizer in V . Let X ∈ V and let ϕ : B −→ X
be a homomorphism such that ϕ ◦ α = ϕ ◦ β . Since σ is a coequalizer in Sets
there is a unique mapping ψ : C −→ X such that ϕ = ψ ◦ σ . If ω ∈ T has arity
n and x1, . . . , xn ∈ B , then

ψ
(

ω
(

σ (x1), . . ., σ (xn)
))

= ψ
(

σ
(

ω (x1, . . ., xn)
))

= ω
(

ψ(σ (x1)), . . ., ψ(σ (xn))
)

,

since σ and ϕ are homomorphisms; hence ψ is a homomorphism. �

Exercises
1. Let C be a class of universal algebras of type T that is closed under products and

subalgebras (for instance, a variety). Show that the forgetful functor from C to Sets creates
limits.

2. Let V be a variety. Show that V has direct limits; in fact, a direct limit can be assigned
to every direct system in V , and the forgetful functor from V to Sets preserves direct limits.

3. Let V be a variety. Show that the forgetful functor from V to Sets creates direct limits.

4. Give a direct proof that the forgetful functor from lattices to sets is tripleable.

5. Show that Boolean lattices constitute a variety (of algebras with two binary operations,
two constant operations 0 and 1, and one unary complement operation). Describe the free
Boolean lattice on finite set X : describe its elements and operations, and prove that your guess
is correct.

6. Show that distributive lattices constitute a variety (of algebras with two binary operations).
Describe the free distributive lattice on a three element set { a, b, c } : list its elements, draw
a diagram, and prove that your guess is correct. (Hint: it has 18 elements.)

*7. Show that modular lattices constitute a variety (of algebras with two binary operations).
Describe the free modular lattice on a three element set { a, b, c } : list its elements, draw a
diagram, and prove that your guess is correct. (Hint: it has 28 elements.)
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Appendix

This appendix collects various properties used throughout the text: several formu-
lations of the ascending and descending chain conditions; several formulations of
the axiom of choice; basic properties of ordinal and cardinal numbers.

1. Chain Conditions

The conditions in question are two useful finiteness conditions: the ascending
chain condition and the descending chain condition.

The ascending chain condition is a property of some partially ordered sets.
Recall that a partially ordered set, (X,�) or just X , is an ordered pair of a set
X and a binary relation � on X , the partial order relation on X , that is reflexive
( x � x ), transitive ( x � y , y � z implies x � z ), and antisymmetric ( x � y ,
y � x implies x = y ). (A total order relation also has x � y or y � x , for every
x, y ∈ X ; then X is totally ordered.)

Proposition 1.1. For a partially ordered set X the following conditions are
equivalent:

(1) every infinite ascending sequence x1 � x2 � · · · � xn � xn+1 � · · · of
elements of X terminates (is eventually stationary): there exists N > 0 such that
xn = xN for all n � N ;

(2) there is no infinite strictly ascending sequence x1 < x2 < · · · < xn <

xn+1 < · · · of elements of X ;

(3) every nonempty subset S of X has a maximal element (an element s of S
such that there is no s < x ∈ S ).

Proof. (1) implies (2), since a strictly ascending infinite sequence cannot
terminate.

(2) implies (3). If the nonempty set S in (c) has no maximal element, then one
can choose x1 ∈ S ; since x1 is not maximal in S one can choose x1 < x2 ∈ S ;
since x2 is not maximal in S one can choose x1 < x2 < x3 ∈ S ; this continues
indefinitely and, before you know it, you are saddled with an infinite strictly
ascending sequence. (This argument implicitly uses the axiom of choice.)
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(3) implies (1): some xN must be maximal in the sequence x1 � x2 � · · ·
(actually, in the set { xn

∣
∣ n > 0 } ), and then xN � xn implies xN = xn when

n � N , since xN < xn is impossible. �
A chain of a partially ordered set(X,�) is a subset of X that is totally ordered

by � . The infinite ascending sequences in (1) and (2) are traditionally called
chains; this has been known to lure unwary readers into a deranged belief that all
chains are ascending sequences.

Definition. The ascending chain condition or a.c.c. is condition (2) in Propo-
sition 1.1.

The a.c.c. is a finiteness condition, meaning that it holds in every finite partially
ordered set. Partially ordered sets that satisfy the a.c.c. are sometimes called
Noetherian; this terminology is more often applied to bidules such as rings and
modules whose ideals or submodules satisfy the a.c.c., when partially ordered by
inclusion. In these cases the a.c.c. usually holds if and only if the subbidules are
finitely generated. We prove this in the case of groups.

Proposition 1.2. The subgroups of a group G satisfy the ascending chain
condition if and only if every subgroup of G is finitely generated.

Proof. Assume that every subgroup of G is finitely generated, and let H1 ⊆
H2 ⊆ · · · ⊆ Hn ⊆ Hn+1 ⊆ · · · be an infinite ascending sequence of subgroups
of G . The union H =

⋃

n>0 Hn is a subgroup, by I.3.9, and is generated by
finitely many elements x1, . . ., xk of H . Then every xi belongs to some Hni

. If
N � max (n1, . . ., nk) , then HN contains every xi , H ⊆ HN , and Hn = HN
for all n � N , since HN ⊆ Hn ⊆ H ⊆ HN . Thus the subgroups of G satisfy
the ascending chain condition.

Conversely, assume that the subgroups of G satisfy the a.c.c. Let H be a
subgroup of G . The set S of finitely generated subgroups of H is not empty,
since, for instance, {1} ∈ S . Therefore S has a maximal element M , which
is generated by some x1, . . . , xk ∈ M . For every h ∈ H , the subgroup K of
H generated by x1, . . ., xk and h is finitely generated and contains M ; hence
K = M and h ∈ M . Thus H = M , and H is finitely generated. �

Noetherian induction uses the a.c.c. to produce maximal elements, as in this
last proof. Proposition 1.2 could be proved by ordinary induction: if H is not
finitely generated, then H has a finitely generated subgroup H1 � H ; adding a
generator h ∈ H\H1 to the generators of H1 yields a finitely generated subgroup
H1 � H2 � H , since H is not finitely generated; continuing thus contradicts the
a.c.c. We recognize the proof that (2) implies (3) in Proposition 1.1. Noetherian
induction is more elegant but not essentially different.

The descending chain condition is also a property of some partially ordered
sets, which the next result shows is closely related to the a.c.c.

Proposition 1.3. If � is a partial order relation on a set X , then so is the
opposite relation, x �op y if and only if y � x .
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We omit the proof, to avoid insulting our readers.

Definition. If X = (X,�) is a partially ordered set, then Xop = (X,�op) is
its opposite partially ordered set.

By Proposition 1.3, a theorem that holds in every partially ordered set X also
holds in its opposite, and remains true when all inequalities are reversed. Thus
Proposition 1.1 yields:

Proposition 1.4. For a partially ordered set X the following conditions are
equivalent:

(1) every infinite descending sequence x1 � x2 � · · · � xn � xn+1 � · · · of
elements of X terminates: there exists N > 0 such that xn = xN for all n � N ;

(2) there is no infinite strictly descending sequence x1 > x2 > · · · > xn >

xn+1 > · · · of elements of X ;

(3) every nonempty subset S of X has a minimal element (an element s of S
such that there is no s > x ∈ S ).

Definition. The descending chain condition or d.c.c. is condition (2) in Propo-
sition 1.4.

Like the a.c.c., the d.c.c. is a finiteness condition. Partially ordered sets that
satisfy the d.c.c. are sometimes called Artinian; this terminology is more often
applied to bidules such as rings and modules whose ideals or submodules satisfy
the d.c.c., when partially ordered by inclusion.

Artinian induction uses the d.c.c. to produce minimal elements. This includes
strong induction on a natural number n , in which the induction hypothesis is that
the desired result holds for all smaller values of n . This works because the natural
numbers satisfy the d.c.c.: if the desired result was false for some n , then it would
be false for some minimal n , and true for all smaller values of n , which is precisely
the situation ruled out by strong induction.

Exercises
1. Show that the subgroups of the additive group Z do not satisfy the d.c.c.

2. Show that the a.c.c. does not imply the d.c.c., and that the d.c.c. does not imply the a.c.c.
(Hence neither condition implies finiteness.)

3. Prove the following: when a partially ordered set X satisfies the a.c.c. and the d.c.c.,
then every chain of elements of X is finite.

4. Construct a partially ordered set X that satisfies the a.c.c. and the d.c.c., and contains a
finite chain with n elements for every positive integer n .

5. Show that a partially ordered set X satisfies the a.c.c. if and only if every nonempty
chain C of X has a greatest element (an element m of C such that x � m for all x ∈ C ).

6. Greatest elements are sometimes inaccurately called unique maximal elements. Construct
a partially ordered set X with just one maximal element and no greatest element.
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7. Let the partially ordered set X satisfy the d.c.c. You have just devised a proof that if a
certain property of elements of X is true for every y < x in X , then it is true for x (where
x ∈ X is arbitrary). Can you conclude that your property is true for all x ∈ X ?

2. The Axiom of Choice

This section contains the axiom of choice (first formulated by Zermelo [1904])
and some of its useful consequences, including the most useful, Zorn’s lemma.

Axiom of Choice: Every set has a choice function.

A choice function on a set S is a mapping c that assigns to every nonempty
subset T of S an element c(T ) of T . (Thus c chooses one element c(T ) in each
nonempty T .) Though less “intuitively obvious” than other axioms, the axiom
of choice became one of the generally accepted axioms of set theory after Gödel
[1938] proved that it is consistent with the other generally accepted axioms, and
may therefore be assumed without generating contradictions.

In this section we give a number of useful statements that are equivalent to the
axiom of choice (assuming the other axioms of set theory).

Proposition 2.1. The axiom of choice is equivalent to the following statement:
when I is a nonempty set, and (Si )i∈I is a family of nonempty sets, then

∏

i∈I Si
is nonempty.

Proof. Recall that
∏

i∈I Si is the set of all mappings (usually written as
families) that assign to each i ∈ I some element of Si . If I =/ Ø and Si =/ Ø for
all i , and the axiom of choice holds, then

⋃

i∈I Si has a choice function c , and
then

(

c(Si )
)

i∈I ∈
∏

i∈I Si , so that
∏

i∈I Si =/ Ø.

Conversely, assume that
∏

i∈I Si is nonempty whenever I is nonempty and
(Si )i∈I is a family of nonempty sets. Let S be any set. If S = Ø, then the empty
mapping is a choice function on S . If S =/ Ø, then so is

∏

T⊆S, T =/ Ø T ; an
element of

∏

T⊆S, T =/ Ø T is precisely a choice function on S . �

Zorn’s lemma is due to Zorn [1935], though Hausdorff [1914] and Kuratowski
[1922] had published closely related statements. Recall that a chain of a partially
ordered set X is a subset C of X such that at least one of the statements x � y ,
y � x holds for every x, y ∈ C . An upper bound of C in X is an element b of
X such that x � b for all x ∈ C .

Zorn’s Lemma: when X is a nonempty partially ordered set, and every
nonempty chain of X has an upper bound in X , then X has a maximal
element.

Theorem 2.2. The axiom of choice is equivalent to Zorn’s lemma.

We defer the proof. That Zorn’s lemma implies the axiom of choice is shown
later in this section, with Theorem 2.4. The converse is proved in Section 4.
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Zorn’s lemma provides a method of proof, transfinite induction, which is similar
to integer induction and to Noetherian induction but is much more powerful. For
instance, suppose that we want to prove that some nonempty partially ordered set
X has a maximal element. Using ordinary induction we could argue as follows.
Since X is not empty there exists x1 ∈ X . If x1 is not maximal, then x1 < x2 for
some x2 ∈ X . If x2 is not maximal, then x2 < x3 for some x3 ∈ X . Continuing
in this fashion yields a strictly ascending sequence, which is sure to reach a
maximal element only if X satisfies the ascending chain condition (equivalently,
if every nonempty chain of X has a greatest element). Zorn’s lemma yields a
maximal element under the much weaker hypothesis that every nonempty chain
of X has an upper bound. The proof in Section 4 reaches a maximal element by
constructing a strictly ascending sequence that is indexed by ordinal numbers and
can be as infinitely long as necessary.

Previous chapters contain numerous applications of Zorn’s lemma. The author
feels that this section should contain one; the exercises give more. Recall that a
cross section of an equivalence relation on a set X is a subset S of X such that
every equivalence class contains exactly one element of X .

Corollary 2.3. Every equivalence relation has a cross section.

Proof. Let X be a set with an equivalence relation. Let S be the set of all
subsets S of X such that every equivalence class contains at most one element
of S . Then S =/ Ø, since Ø ∈ S . Partially order S by inclusion. We show that
S =

⋃

i∈I Si ∈ S when (Si )i∈I is a chain of elements of S . If x, y ∈ S , then
x ∈ Si and y ∈ Sj for some i, j ∈ I , with Si ⊆ Sj or Sj ⊆ Si , since (Si )i∈I
is a chain, so that, say, x, y ∈ Si . If x and y are equivalent, then x = y , since
Si ∈ S . Thus S ∈ S : every chain of S has an upper bound in S .

By Zorn’s lemma, S has a maximal element S . Then every equivalence class
C contains an element of S : otherwise, S ∪ {c} ∈ S for any c ∈ C , in defiance
of the maximality of S . Hence S is a cross section. �

Readers can also derive Corollary 2.3 directly from the axiom of choice.

Well ordered sets. A well ordered set is a partially ordered set X in which
every nonempty subset S has a least element (an element s of S such that s � x
for every x ∈ S ).

For example, N is well ordered. A well ordered set is totally ordered (since
every subset {x, y} must have a least element) and satisfies the descending chain
condition (since a least element of S is, in particular, a minimal element of S ).

Theorem 2.4 (Zermelo [1904]). The axiom of choice is equivalent to the well-
ordering principle: every set can be well ordered.

Proof. A well ordered set S has a choice function, which assigns to each
nonempty subset of S its least element. Hence the well-ordering principle implies
the axiom of choice. We show that Zorn’s lemma implies the well-ordering
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principle (hence implies the axiom of choice). That the axiom of choice implies
Zorn’s lemma is proved in Section 4.

Given a set S , let W be the set of all ordered pairs (X,�X) such that X ⊆ S
and X is well ordered by �X . Then W =/ Ø, since Ø ⊆ S is well ordered by the
empty order relation. Let (X,�X) � (Y,�Y) in W when

(a) X ⊆ Y ;

(b) when x ′, x ′′ ∈ X , then x ′ �X x ′′ if and only if x ′ �Y x ′′ ; and

(c) if y ∈ Y and y �Y x ∈ X , then y ∈ X ;

equivalently, when (X,�X ) is the lower part of (Y,�Y ) with the induced order
relation. It is immediate that this defines an order relation on W .

Let (Xi ,�i )i∈I be a chain of W . If x, y ∈ X =
⋃

i∈I Xi , then let x �X y
if and only if x, y ∈ Xi and x �i y , for some i ∈ I . If also x, y ∈ Xj and
x �j y for some j ∈ I , then, say, (Xi ,�i) � (Xj ,�j) , and x �i y if and only
if x �j y by (b). Similarly, if x �X y and y �X x , then x, y ∈ Xi , x �i y and
x, y ∈ Xj , y �j x for some i, j ∈ I ; if, say, (Xi ,�i) � (Xj ,�j) , then x �j y
and y �j x , whence x = y . Thus �X is antisymmetric. Similar arguments show
that �X is reflexive and transitive.

Let T be a nonempty subset of X . Then T ∩ Xi =/ Ø for some i , and T ∩ Xi
has a least element t under �i . In fact, t is the least element of T . Indeed,
let u ∈ T , u ∈ Xj for some j . If (Xi ,�i ) � (Xj ,�j ) , then t �X u , since
u <j t ∈ Xi would imply u ∈ Xi by (c) and u <i t by (b), so that t would not be
the least element of T ∩ Xi . If (Xj ,�j) � (Xi ,�i) , then u ∈ Xi and t �X u .
Thus X is well ordered by �X , and (X,�X) ∈ W .

If x, y ∈ Xi , then we saw at the beginning of the proof that x �X y if and
only if x �i y . Let y ∈ X and y �X x ∈ Xi . Then x, y ∈ Xj and y �j x for
some j . If (Xi ,�i ) � (Xj ,�j ) , then y ∈ Xi by (c). If (Xj ,�j ) � (Xi ,�i ) ,
then again y ∈ Xi . Thus (Xi ,�i) � (X,�X) for all i , and (X,�X) is an upper
bound of (Xi ,�i)i∈I in W .

At this point we invoke Zorn’s lemma and are rewarded with a maximal element
(M,�M ) of W . We show that M = S . Suppose that (X,�X) ∈ W and X � S .
Let s ∈ S\X . Extend �X to Y = X ∪ {s} so that s is the greatest element of Y .
Then Y is well ordered: when T ⊆ Y , T =/ Ø, then s is the least element of T
if T = {s} : otherwise, the least element of T ∩ X is also the least element of
T . Hence (X,�X) < (Y,�Y) and (X,�X) is not maximal. Therefore M = S ,
and then S is well ordered by �M . �

Exercises

1. Prove that every equivalence relation on a set has a cross section, using the axiom of
choice but not Zorn’s lemma.
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2. The domain of a binary relation R is the set { x
∣
∣ (x, y) ∈ R for some y } . Show that

the axiom of choice is equivalent to the following statement: every binary relation contains a
mapping that has the same domain.

3. Show that a partially ordered set is well ordered if and only if it is totally ordered and
satisfies the descending chain condition.

4. Let G be a group and let a ∈ G , a =/ 1 . Use Zorn’s lemma to prove that there is a
subgroup M of G that is maximal such that a /∈ M (that is, a /∈ M , and M < H � G
implies a ∈ H ).

5. Let G be a group and let A be a subgroup of G . Use Zorn’s lemma to prove that there
is a subgroup M of G that is maximal such that M ∩ A = 1 (that is, M ∩ A = 1, and
M < H � G implies H ∩ A =/ 1).

6. Use Zorn’s lemma to prove that every vector space has a maximal linearly independent
subset; then show that the latter is a basis.

7. Use Zorn’s lemma to prove that every order relation is an intersection of total order
relations.

3. Ordinal Numbers

This section contains basic general properties of ordinal numbers.

Definition. Ordinal numbers are most naturally defined as isomorphy classes of
well ordered sets. Unfortunately, isomorphy classes of well ordered sets are very
large, and embarrassing contradictions arise when such large classes are collected
into sets or classes. The most famous is Russell’s paradox: Let R be the “set” of
all sets X such that X /∈ X . If R /∈ R , then R is one of the sets X such that
X /∈ X ; therefore R ∈ R . But then R is not one of the sets X such that X /∈ X ;
therefore R /∈ R .

Contradictions can be avoided if “large” collections like R are not allowed
among sets, and are denied all rights and privileges enjoyed by sets: in this case,
the right to belong to a set or collection. Modern ordinal numbers are well ordered
sets, chosen so that there is only one in each isomorphy class (as, for instance, in
Jech [1978]).

Definition. A set X is transitive when x ∈ X and t ∈ x implies t ∈ X ;
equivalently, when every element of X is a subset of X .

The empty set is transitive. Since X transitive implies X ∪ {X} transitive, the
sets {Ø} , {Ø, {Ø}} , {Ø, {Ø}, {Ø, {Ø}}} , etc., are transitive.

Definition. An ordinal number is a well ordered transitive set in which x < y
if and only if x ∈ y .

The first ordinals are readily found. The empty set is an ordinal. A nonempty
ordinal σ has a least element α , which must be empty since t ∈ α would imply
t ∈ σ and t < α . If σ has no other element, then σ = {Ø} . Otherwise,
there is a least β > α in σ . Then α ∈ β ; conversely, x ∈ β implies x ∈ σ ,
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α � x < β , and x = α ; hence β = {α} = {Ø} . If σ has no other element, then
σ = {α, β} = {Ø, {Ø}} . Continuing this process yields the first ordinals, which
are generally identified with nonnegative integers:

0 = Ø, 1 = {Ø}, 2 = {Ø, {Ø}}, 3 = {Ø, {Ø}, {Ø, {Ø}}}, etc.

We see that 1 = {0} , 2 = {0, 1} , 3 = {0, 1, 2} , etc.

Readers may prove the following:

Proposition 3.1. Every element of an ordinal number is an ordinal number.

Ordering. Ordinal numbers are ordered by inclusion:

Proposition 3.2. If α and β are ordinal numbers, then α ∈ β if and only
α � β . Hence the class Ord of all ordinal numbers is totally ordered, with α < β

if and only if α ∈ β .

Proof. Since β is transitive, α ∈ β implies α ⊆ β ; moreover, α /∈ α

(otherwise, α < α in β ), whence α � β . Conversely, assume α � β . Then β\α
has a least element γ . If x ∈ γ , then x ∈ α : otherwise, γ would not be least.
Conversely, x ∈ α implies x =/ γ , since γ /∈ α , and γ /∈ x , otherwise, γ ∈ α ;
in the totally ordered set β this implies x ∈ γ . Thus α = γ ∈ β .

Now, let α and β be any ordinal numbers. Then δ = α ∩ β is transitive, since
α and β are transitive, and is well ordered (as a subset of α ) with x < y in δ if
and only if x ∈ y . In other words, δ is an ordinal. If δ =/ α, β , then δ � α, β ,
δ ∈ α, β by the above, and δ ∈ δ , a contradiction. Therefore δ = α or δ = β ;
hence α ⊆ β or β ⊆ α . Thus Ord is totally ordered by inclusion. �

Propositions 3.1 and 3.2 imply α = {β ∈ Ord
∣
∣ β < α } for every ordinal α .

Proposition 3.3. Every nonempty class of ordinal numbers has a least element.

Proof. Let C be a nonempty class of ordinals. Let α ∈ C . We may assume
that α is not the least element of C . Then C ∩ α =/ Ø and C ∩ α ⊆ α has a least
element γ . In fact, γ is the least element of C : if β ∈ C , then, by 3.2, either
γ < α � β , or β ∈ α ∩ C and β � γ . �

Thus Ord is a well ordered class.

Proposition 3.4. The union of a set of ordinal numbers is an ordinal number.

Proof. Let S be a set of ordinal numbers. Then υ =
⋃

σ∈S σ is a set. By 3.2,
S is a chain, and any two elements of S are elements of some σ ∈ S . It follows
that υ is transitive, and is totally ordered, with x < y in υ if and only if x < y
in some σ ∈ S , if and only if x ∈ y .

Let T be a nonempty subset of υ . Then T ∩ σ =/ Ø for some σ ∈ S , and
T ∩ σ has a least element γ . As in the proof of 3.3, γ is the least element of T :
if τ ∈ T , then either γ < σ � τ , or τ ∈ σ ∩ T and τ � γ . �

Corollary 3.5. The class Ord of all ordinal numbers is not a set.
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Proof. Let α be an ordinal. The successor β = α ∪ {α} of α is also an ordinal,
as readers will verify. The result follows from this and 3.4. If Ord were a set, then
⋃

α∈Ord α would be an ordinal number, and would be the greatest ordinal number,
in particular, would be greater than his successor, a feat easily achieved by King
Louis XIV of France but not possible for ordinal numbers. �

Well ordered sets. Now, we show that there is one ordinal number in every
isomorphy class of well ordered sets. First, a lower section (or order ideal) of a
partially ordered set X is a subset S of X such that x � s ∈ S implies x ∈ S .
Then X is a lower section of itself; for every a ∈ X there is a lower section
X(a) = { x ∈ X

∣
∣ x < a } .

Lemma 3.6. A subset S of a well ordered set X is a lower section of X if and
only if either S = X or S = X(a) for some a ∈ X .

Proof. Let S =/ X be a lower section. Then X\S has a least element a . If
x < a , then x ∈ S : otherwise, a would not be the least element of X\S . If
x ∈ S , then x < a : otherwise, a � x ∈ S and a ∈ S . Thus S = X(a) . �

In general, an isomorphism of a partially ordered set X onto a partially ordered
set Y is a bijection θ : X −→ Y such that x ′ � x ′′ in X if and only if
θ(x ′) � θ(x ′′) in Y . If X and Y are totally ordered, one needs only the implication
“ x ′ � x ′′ implies θ(x ′) � θ(x ′′)”: then θ(x ′) � θ(x ′′) implies x ′ � x ′′ , since
x ′ > x ′′ would imply θ(x ′) > θ(x ′′) .

Lemma 3.7. Let S and T be lower sections of a well ordered set X . If S ∼= T ,
then S = T .

Proof. Let S =/ T and let θ : S −→ T be an isomorphism. By 3.6, S ⊆ T
or T ⊆ S , and we may exchange S and T if necessary and assume that S � T .
Then we cannot have θ(x) = x for all x ∈ S , and the set { x ∈ S

∣
∣ θ(x) =/ x }

has a least element a . Then θ(x) = x when x ∈ S and x < a , but θ(a) =/ a . If
a < θ(a) ∈ T , then a ∈ T , a = θ(x) for some x ∈ S , and θ(x) < θ(a) implies
x < a and θ(x) = x < a , a contradiction. Therefore θ(a) < a ∈ S , but then
θ(a) ∈ S , θ

(

θ(a)
)

= θ(a) , and θ(a) = a , another contradiction. �

Proposition 3.8. Every well ordered set is isomorphic to a unique ordinal
number.

Proof. Uniqueness follows from 3.7: if, say, α < β in Ord , then α = { γ ∈
β
∣
∣ γ < α } is a lower section of β , and α � β .

Now, let X be a well ordered set. Let ϕ be the set of all ordered pairs
(a, α) such that a ∈ X , α ∈ Ord , and X(a) ∼= α . Then ϕ is a mapping: if
(a, α), (b, β) ∈ ϕ and a = b , then α ∼= X(a) ∼= β and α = β . Similarly, ϕ is
injective: if (a, α), (b, β) ∈ ϕ and α = β , then X(a) ∼= X(b) , X(a) = X(b) by
3.7, and a = b since a is the least element of X\X(a) and similarly for b .

Assume that (a, α), (b, β) ∈ ϕ and a < b . Let θ : X(b) −→ β be an
isomorphism. Then θ(a) < β and θ induces an isomorphism of X(a) onto
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{ γ ∈ β
∣
∣ γ < θ(a) } = θ(a) . (This argument also shows that the domain dom ϕ

of ϕ is a lower section of X .) Therefore (a, θ(a)) ∈ ϕ . Hence α = θ(a) < β .

Similarly, assume that (a, α), (b, β) ∈ ϕ and α < β . Let ζ : β −→ X(b)
be an isomorphism. Then ζ (α) < b and ζ induces an isomorphism of α onto
X(ζ (α)) . Therefore (ζ (α), α) ∈ ϕ . (This argument also shows that the range
ranϕ of ϕ is a lower section of Ord .) Hence a = ζ (α) < b , since ϕ is injective.
Thus ϕ is an isomorphism of domϕ onto ranϕ .

Since Ord is not a set, ranϕ cannot be all of Ord , and there is a least ordinal
γ /∈ ranϕ . Then, as in the proof of 3.6, ranϕ = {α ∈ Ord

∣
∣ α < γ } = γ .

If dom ϕ is not all of X , then dom ϕ = X(c) for some c ∈ X by 3.6, ϕ is
an isomorphism of X(c) onto γ , (c, γ ) ∈ ϕ , and c ∈ domϕ , a contradiction;
therefore dom ϕ = X and X ∼= γ . �

Successor and limit ordinals. We show that all ordinals are generated by
two constructions: unions from Proposition 3.4, and successors, whose definition
follows.

Proposition 3.9. If α is an ordinal number, then so is α ∪ {α} ; in fact, α ∪ {α}
is the least ordinal β > α .

The proof is an exercise for our avid readers.

Definition. The successor of an ordinal number α is the ordinal number
α ∪ {α} .

The successor α ∪ {α} of α is normally denoted by α + 1. (The sum of
any two ordinals is defined in the exercises.) It covers α : there is no ordinal
α < β < α + 1, since there is no set α � S � α ∪ {α} .

Proposition 3.10. An ordinal number α is a successor if and only if it has a
greatest element; then the greatest element of α is

⋃

γ<α γ < α and α is its
successor. Otherwise,

⋃

γ<α γ = α .

Proof. A successor α = β ∪ {β} has a greatest element β . Conversely, assume
that α has a greatest element β . Then

⋃

γ<α γ = β < α , and β < δ implies
δ � α , since δ < α implies δ � β . Hence α is the successor of β .

The inclusion
⋃

γ<α γ ⊆ α holds for every ordinal α . If β =
⋃

γ<α γ � α ,
then β ∈ Ord by 3.4 and β < α , so that β is the greatest element of α . Therefore
⋃

γ<α γ = α when α does not have a greatest element. �

Definition. A limit ordinal is an ordinal α =/ 0 such that α =
⋃

γ<α γ .

Thus, a nonzero ordinal is either 0 or a successor or a limit ordinal (a union or
“limit” of lesser ordinals). We can now form a clearer picture of Ord . An ordinal
α and its successors constitute a sequence α < α + 1 < α + 2 < · · · < α + n < · · ·
whose union is a limit ordinal. Thus Ord is made of sequences

0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2 < · · · < ω + ω < ω + ω + 1 < · · ·
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that begin with 0 and with limit ordinals ω =
⋃

n<ω n , ω + ω =
⋃

n>0 (ω + n) ,
. . . . The limit ordinals themselves are arranged into similar sequences

ω < ω + ω < · · · < ω2 < ω2 + ω < · · · < ω2 + ω2 < ω2 + ω2 + ω < · · ·
that begin with ω and with unions of lesser limit ordinals; these sequences extend
indefinitely, with no end in sight.

Exercises
1. Prove the following: when the well ordered sets X and Y are isomorphic, then there is

only one isomorphism of X onto Y .

2. Prove the following: when α is an ordinal number, then so is α ∪ {α} ; in fact, α ∪ {α}
is the least ordinal β > α .

3. Let X and Y be disjoint well ordered sets. Order Z = X ∪ Y so that x � y in Z if
and only if either x � y in X , or x � y in Y , or x ∈ X and y ∈ Y . Show that Z is well
ordered. Show that X ∼= X ′ , Y ∼= Y ′ implies Z ∼= Z ′ .

The sum of two ordinal numbers α and β is the ordinal number α + β ∼= Z , where Z is
constructed as in the previous exercise from X ∼= α and Y ∼= β .

4. Show that ordinal addition is associative.

5. Show that ω + 1 =/ 1 + ω . (ω is the least infinite ordinal.)

6. Prove that every ordinal can be written uniquely as a sum α + n , where α is 0 or a limit
ordinal, and n is a finite ordinal.

7. Let X and Y be well ordered sets. Order Z = X × Y so that (x ′, y′) < (x ′′, y′′) in
Z if and only if either y′ < y′′ , or y′ = y′′ and x ′ < x ′′ . (Thus Z consists of |Y | copies
of X placed end to end.) Show that Z is well ordered. Show that X ∼= X ′ , Y ∼= Y ′ implies
Z ∼= Z ′ .

The product αβ of two ordinal numbers α and β is the ordinal number αβ ∼= Z , where Z
is constructed as in the previous exercise from X ∼= α and Y ∼= β .

8. Show that ordinal multiplication is associative.

9. Show that α (β + γ ) = αβ + αγ for all ordinals α, β, γ .

10. Show that 2ω =/ ω2 .

11. Show that (1 + 1) ω =/ 1ω + 1ω .

4. Ordinal Induction

Ordinal numbers can be used instead of integers in inductive proofs and construc-
tions. This method of proof, known as ordinal induction, is as powerful as Zorn’s
lemma, and sometimes more convenient or more natural.

Ordinary induction is based on the following property of natural numbers: if S
is a subset of N = { 1, 2, . . . } such that 1 ∈ S and that n ∈ S implies n + 1 ∈ S ,
then S = N . Ordinal numbers have a similar property:
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Proposition 4.1. Let C be a class of ordinal numbers such that

(1) 0 ∈ C ;

(2) α ∈ C implies α + 1 ∈ C ;

(3) if α is a limit ordinal and β ∈ C for all β < α , then α ∈ C .

Then C = Ord .

Proof. If C =/ Ord , then Ord\C has a least element α , by 3.3. Then C contains
every β < α . But α =/ 0, by (1); α is not a successor ordinal, by (2); and α is
not a limit ordinal, by (3). Therefore C = Ord . �

Ordinal induction is a method of proof based on Proposition 4.1. It resembles
ordinary induction, except for (3). There are some variants, which readers will
easily establish. Induction can be limited to a given ordinal σ :

Proposition 4.2. Let σ be an ordinal number and let C be a class of ordinal
numbers such that

(1) 0 ∈ C ;

(2) if α ∈ C and α + 1 < σ , then α + 1 ∈ C ;

(3) if α < σ is a limit ordinal and β ∈ C for all β < α , then α ∈ C .

Then C contains every ordinal number α < σ .

There are also “strong” versions of Propositions 4.1 and 4.2, which follow from
Proposition 3.3:

Proposition 4.3. Let C be a class of ordinal numbers such that β ∈ C for all
β < α implies α ∈ C . Then C = Ord .

Let σ be an ordinal number and let C be a class of ordinal numbers such that
β ∈ C for all β < α implies α ∈ C when α < σ . Then C contains every ordinal
number α < σ .

Recursion. A transfinite sequence is a family (xα)α∈Ord or (xα)α<σ indexed
by Ord or indexed by an ordinal number σ . By the well ordering principle, the
elements of every set can be arranged into a transfinite sequence: well order X , so
that X is isomorphic to some ordinal σ , and let xα = θ(α) , where θ : σ −→ X
is the isomorphism. On the other hand, we have:

Lemma 4.4. No set can contain a transfinite sequence (xα)α∈Ord indexed by
all ordinals, such that xα =/ xβ whenever α =/ β .

Proof. In the next section we shall see that such a sequence would force the
poor set to have entirely too many elements. For now we argue as follows. Let X
be the subset of all xα . Order X so that xα < xβ if and only if α < β . Then X
is well ordered, by 3.3; in fact, X is isomorphic to Ord . By 3.9, X is isomorphic
to an ordinal number σ . The isomorphism Ord ∼= X ∼= σ sends the lower section
σ of Ord to a lower section τ < σ of σ , contradicting 3.7. �

As a rather complicated first example of ordinal induction we show that trans-
finite sequences can be constructed recursively.
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Proposition 4.5 (Recursion). Let S be a set and let F : 2S −→ S be a mapping,
where 2S is the set of all subsets of S . There exists a unique transfinite sequence
(xα)α∈Ord indexed by all ordinals, such that

xα = F
(

{ xγ

∣
∣ γ < α }

)

(∗)

holds for all α ∈ Ord .

Informally we say that (∗) “defines xα by induction”. The exercises give more
general forms of recursion.

Proof. First we show by induction on σ ∈ Ord that there is at most one
sequence (xα)α<σ indexed by σ such that (∗) holds for all α < σ . Assume
this uniqueness for every τ < σ . Let (x ′α)α<σ and (x ′′α)α<σ satisfy (∗) for all
α < σ . If σ = 0, then x ′α = x ′′α for all α < σ , vacuously. If σ = τ + 1 is a
successor ordinal, then x ′α = x ′′α for all α < τ by the induction hypothesis and

x ′τ = F
(

{ x ′γ
∣
∣ γ < τ }

)

= F
(

{ x ′′γ
∣
∣ γ < τ }

)

= x ′′τ ;

hence x ′α = x ′′α for all α < σ . If σ is a limit ordinal, then x ′α = x ′′α for every
α < τ < σ by the induction hypothesis, and for every α < σ =

⋃

τ<σ τ .

Next we show by induction on σ ∈ Ord that there exists a sequence (xα)α<σ
indexed by σ such that (∗) holds for all α < σ . Assume that such a sequence
exists for all τ < σ . The empty sequence serves if σ = 0. If σ = τ + 1, then
by the induction hypothesis there is a sequence (xα)α<τ indexed by τ such that
(∗) holds for all α < τ ; define xτ = F

(

{ xγ

∣
∣ γ < τ }

)

; then (∗) holds
for all α < σ . Now, let σ be a limit ordinal. For every τ < σ the induction
hypothesis provides a sequence (xτ

α)α<τ indexed by τ such that (∗) holds for all
α < τ . By the first part of the proof, xτ

α = xυ
α whenever α < τ, υ < σ . Since

σ =
⋃

τ<σ τ , a sequence (xσ
α )α<σ indexed by σ is well defined by xσ

α = xτ
α

whenever α < τ < σ . Then xσ satisfies (∗) for all α < σ .

We now have for every ordinal σ a sequence (xσ
α )α<σ indexed by σ such that

(∗) holds for all α < σ . As above, the first part of the proof implies xσ
α = xτ

α
whenever α < σ, τ . Hence a sequence (xα)α∈Ord indexed by Ord is well defined
by xα = xσ

α whenever α < σ ; this sequence satisfies (∗) for all α , and is unique
by the first part of the proof. �

Zorn’s lemma. We use recursion to show that the axiom of choice implies
Zorn’s lemma. This completes the proofs of Theorems 2.2 and 2.4. Readers will
make sure that the author did not pull a fast one and invoked Zorn in proofs, in
either this section or Section 3.

Let X be a nonempty partially ordered set in which every nonempty chain has
an upper bound. Assume that X has a choice function c but no maximal element.
For every subset S of X let

u(S) = { x ∈ X
∣
∣ s < x for all s ∈ S }
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be the set of all (strict) upper bounds of S . Choose some a ∈ X and let

F(S) =

{

c
(

u(S)
)

if u(S) =/ Ø,

a if u(S) = Ø.

By 4.5 there is a transfinite sequence (xα)α∈Ord indexed by all ordinals, such that
xα = F

(

{ xγ

∣
∣ γ < α }

)

for all α ∈ Ord . We prove by induction on α that
xγ < xα for all γ < α ; this contradicts 4.4. There is nothing to prove if α = 0.
Let α > 0; assume that xγ < xβ whenever γ < β < α . Let

Sα = { xγ

∣
∣ γ < α }.

If α = β + 1 is a successor, then Sα is a chain. We have xβ < t for some t ∈ X ,
since xβ is not a maximal element of X . Then xγ � xβ < t for all γ < α and
u(Sα) =/ Ø. Hence xα ∈ u(Sα) and xγ < xα for all γ < α . If α is a limit
ordinal, then the nonempty chain Sα has an upper bound t in X . Since α is a
limit ordinal, γ < α implies γ + 1 < α , so that xγ < xγ +1 � t for all γ < α ;
hence again u(Sα) =/ Ø, xα ∈ u(Sα) , and xγ < xα for all γ < α .

The sequence (xα)α∈Ord in this proof is normally constructed more infor-
mally, as follows. Assume that xγ has been constructed for all γ < α , so
that xγ < xβ for all γ < β < α . Choose any x0 ∈ X . If α = β + 1 is a
successor, we can choose some xα > xβ , since xβ is not a maximal element
of X ; then xγ � xβ < xα for all γ < α . If α is a limit ordinal, we can
choose an upper bound xα ∈ X of the nonempty chain { xγ

∣
∣ γ < α } , and then

xγ < xγ +1 � xα for all γ < α . We now have xβ < xα whenever β < α , bla-
tantly contradicting 4.4. In this argument it is understood that xα is constructed
by ordinal recursion, and that a choice function provides all required choices.

Exercises
1. Let σ be an ordinal number and let C be a class of ordinal numbers such that (1) 0 ∈ C ;

(2) if α ∈ C and α + 1 < σ , then α + 1 ∈ C ; and (3) if α < σ is a limit ordinal and β ∈ C

for all β < α , then α ∈ C . Prove that C contains every ordinal number α < σ .

2. Let S be a set and let F : D −→ S be a mapping, where D is a set of subsets of S .
Prove that there exists a unique transfinite sequence (xα) , indexed by all ordinals or by some
ordinal σ , such that xα = F

(
{ xγ

∣
∣ γ < α }

)
whenever F

(
{ xγ

∣
∣ γ < α }

)
is defined

(whenever xγ is defined for all γ < α , and { xγ

∣
∣ γ < α } ∈ D ).

3. Let G be a group and let a ∈ G , a =/ 1 . Use ordinal induction to prove that there is a
subgroup M of G that is maximal such that a /∈ M .

4. Let G be a group and let A be a subgroup of G . Use ordinal induction to prove that
there is a subgroup M of G that is maximal such that M ∩ A = 1.

5. Use ordinal induction to prove that every vector space has a maximal linearly independent
subset.

6. Given a field K , use ordinal induction to construct a field F ⊇ K in which every
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irreducible polynomial q ∈ K [X ] has a root. (First, arrange these polynomials into a
transfinite sequence.)

7. Let G be a group. Construct a transfinite sequence of subgroups of G (the transfinite
ascending central series),

1 = Z0(G) �= Z1(G) �= · · · �= Zα(G) �= Zα+1(G) �= · · · ,

in which Zα+1(G) / Zα(G) = Z
(

G/Zα(G)
)

for every ordinal α .

5. Cardinal Numbers

Cardinal numbers, introduced by Cantor [1873], are used to assign a number of
elements to every set. This section contains a number of notable properties.

Number of elements. Deciding when one set has fewer elements than another,
or has as many elements, is easier than actually counting its elements.

Definitions. A set X has as many elements as a set Y when there exists a
bijection of X onto Y . A set X has at most as many elements as a set Y when
there exists an injection of X into Y . A set X has fewer elements than a set Y
when there exists an injection of X into Y but no bijection of X onto Y .

Thus, X has at most as many elements as Y if and only if X has as many
elements as a subset of Y . For example, we have:

Proposition 5.1. Let In = { 1, 2, . . ., n } . If m < n , then Im has fewer
elements than In ; in fact, there is no injection In −→ Im .

Proof. This is not obvious since we have not established that we can count
elements as usual. What is obvious is that Im ⊆ In has at most as many elements
as In . We prove by induction on m that there is no injection f : In −→ Im .

If m = 0 < n , then there is no injection of In into I0 = Ø. Let m > 0 and
let f : In −→ Im be any mapping. If f (n) = f (i) for some i < n , then f is
not injective. Assume that f (n) =/ f (i) for all i < n . Let σ be a permutation
of Im such that σ ( f (n)) = m . Let g = σ ◦ f : In −→ Im . Then g(n) = m
and g(i) =/ g(n) = m for all i < n . Hence g(In−1) ⊆ Im−1 . By the induction
hypothesis, the restriction of g to In−1 is not injective. Hence neither is g . �

Proposition 5.2 (Cantor [1883]). Every set X has fewer elements than the set
2X of all its subsets.

Proof. There is an injection x �−→ {x} of X into 2X . To show that X has
fewer elements than 2X we prove that there is no bijection of X onto 2X . Let
f : X −→ 2X be any mapping. Then S = { x ∈ X

∣
∣ x /∈ f (x) } ∈ 2X . But

x ∈ X implies either x ∈ S and x /∈ f (x) , or x /∈ S and x ∈ f (x) ; therefore
S =/ f (x) for all x ∈ X , and f is not surjective. �

The next result will fully establish that our terminology is sensible.
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Theorem 5.3 (Cantor-Bernstein). Let X and Y be sets. If there exist an
injection of X into Y and an injection of Y into X , then there exists a bijection
of X onto Y .

Proof. We may assume that X and Y are disjoint. Let f : X −→ Y and
g : Y −→ X be injections. Arrange X ∪ Y into disjoint families in which every
element of one set begets (all by itself) one child in the other set. This imagery is
due to Halmos. The child of x ∈ X is f (x) ∈ Y , and x is the parent of f (x)
(the sole parent, since f is injective); similarly, the child of y ∈ Y is g(y) ∈ X ,
and y is the sole parent of g(y) . The descendants of x ∈ X are f (x) , g( f (x)) ,
f (g( f (x))) , . . . ; the descendants of y ∈ Y are g(y) , f (g(y)) , g( f (g(y))) , . . .
The elements of f (X) or g(Y ) have a parent, but the elements of Y\ f (X) , and
the elements of X\g(Y ) , are orphans.

The ancestry of an element of X ∪ Y either extends indefinitely upward or ends,
or rather begins, with an orphan. Thus, an element of X either descends from
an orphan of X (or is an orphan itself), or descends from an orphan in Y , or has
infinite ancestry; these constitute disjoint sets XX , XY , X∞ whose union is X .
Similarly, an element of Y either descends from an orphan in X , or descends from
an orphan of Y (or is an orphan itself), or has infinite ancestry; these constitute
disjoint sets YX , YY , Y∞ whose union is Y .

We see that f (XX ) = YX , g(YY ) = XY , and f (X∞) = Y∞ (also, g(Y∞) =
X∞ ). Hence f and g induce bijections XX −→ YX , XY −→ YY , and
X∞ −→ Y∞ , which can be pasted together into a bijection X −→ Y . �

Cardinal numbers. The equipotence relation “ X has as many elements as
Y ” is reflexive, symmetric, and transitive. Cardinal numbers are most naturally
defined as equivalence classes of equipotent sets. Unfortunately, as was the case
with ordinals, equipotence classes are too large to be allowed membership in a set
or collection. Modern cardinal numbers are sets, chosen so that there is only one
in each equipotence class (as in Jech [1978], for instance).

Definition. A cardinal number is an ordinal number κ such that every ordinal
number α < κ has fewer elements than κ . �

For example, every finite ordinal number 0 = Ø, 1 = {0} , 2 = {0, 1} , . . . is a
cardinal number, by Proposition 5.1. These are the finite cardinals; the remaining
cardinals are infinite. The first limit ordinal ω is a cardinal: indeed, every finite
ordinal n < ω has fewer elements than ω : if there were a bijection ω −→ n ,
then there would be an injection n + 1 −→ n , in defiance of 5.1. Readers will
verify that infinite cardinals are limit ordinals and can be arranged into a transfinite
sequence, traditionally denoted by

ℵ0 < ℵ1 < · · · < ℵα < ℵα+1 < · · · ,

indexed by all ordinals. (Thus, ℵ0 is another name for ω .)

We show that there is one cardinal number in every equipotence class of sets.
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Proposition 5.4. For every set X there exists a unique cardinal number |X |
such that there is a bijection of X onto |X | .

Proof. By the axiom of choice, every set X can be well ordered (Theorem 2.4)
and has the same number of elements as an ordinal number, by 3.9. The least
ordinal number κ with this property is a cardinal number (since all ordinals α < κ

have fewer elements). Moreover, κ is the only cardinal number with a bijection
X −→ κ : there is no bijection κ −→ λ between cardinal numbers κ < λ , since
κ has fewer elements than λ . �

Definition. In Proposition 5.4, |X | is the cardinality or number of elements of
X .

Then X has as many elements as Y , as defined earlier, if and only if |X | = |Y | ;
readers will show that X has at most as many elements as Y if and only if
|X | � |Y | .

Countable sets. A set X is finite when its cardinality |X | is finite; equivalently,
when there is a bijection of X onto some In = {1, 2, . . ., n} . Then n = |X | ; in
particular, n is unique (by Proposition 5.1 or 5.4). Otherwise, X is infinite.

Definition. A set X is countable when |X | � ℵ0 .

Countable sets are often defined by the stricter condition |X | = ℵ0 ; then a set
X such that |X | � ℵ0 is finite or countable.

Readers will verify that 0 < |X | � ℵ0 = |N| if and only if there is a surjection
of N onto X ; hence a nonempty set X is countable if and only if all the elements
of X can be arranged into a finite or infinite sequence x1, . . ., xn, . . . (indexed by
natural numbers). For example, N and every In = {1, 2, . . . , n} are countable.
The next result yields more examples.

Proposition 5.5. A direct product of finitely many countable sets is countable.
A union of countably many countable sets is countable.

Proof. The elements of N × N can be arranged by increasing sums into a
sequence (1, 1); (1, 2), (2, 1); (1, 3), (2, 2), (3, 1); . . . Thus N × N is count-
able. If now X and Y are countable, there are injections X −→ N , Y −→ N ,
and X × Y −→ N × N , and X × Y is countable. It follows, by induction on n ,
that the direct product of n countable sets is countable (for every n ∈ N ).

A countable family of sets can be arranged into a finite or infinite sequence
X1, . . ., Xn, . . . . Its union X =

⋃

n>0 Xn is also the disjoint union of the
countable sets X ′

n = Xn\(X1 ∪ · · · ∪ Xn−1) . Injections X ′
n −→ N −→ N × {n}

then combine into an injection X −→ N × N . Hence X is countable. �

By Proposition 5.5, Z = {0} ∪ N ∪ −N and Q =
⋃

n∈N
{ a/n

∣
∣ a ∈ Z } are

countable. But not every set is countable.

Proposition 5.6 (Cantor [1873]). R is not countable.
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Proof. Let X be the set of all real numbers with a decimal expansion
0 . d1 d2 . . . dn . . . in which every digit dn is either 0 or 1. Every such
0 . d1 d2 . . . dn . . . is determined by a subset { n ∈ N

∣
∣ dn = 1 } of N . This

constructs a bijection X −→ 2N . By 5.2, |R| � |X | = |2N| > |N| = ℵ0 . �
Readers can now follow in Cantor’s footsteps and show that there are only

countably many real numbers that are algebraic over Q ; this leaves uncountably
many real numbers that are transcendental over Q .

Operations. Readers will verify that the union of a set of cardinals is a
cardinal (not a pope). Hence the next result is proved like Corollary 3.5 (but using
Proposition 5.2):

Proposition 5.7. The class Card of all cardinal numbers is not a set.

In particular, sets do not constitute a set: if they did, then the smaller classes
Ord and Card would be sets, contradicting 3.5 and 5.7.

Addition, multiplication, and exponentiation of cardinal numbers are defined as
follows. If κ and λ are cardinals, then

κ + λ = |X ∪ Y | , κλ = |X × Y | , and κλ = |XY | ,

where |X | = κ , |Y | = λ , X ∩ Y = Ø, and XY denotes the set of all mappings
of Y into X . The exercises also define infinite sums and products. Readers will
verify that these operations are well defined and have good properties. They also
have amusing little quirks.

Proposition 5.8. Let κ and λ be cardinal numbers. If κ or λ is infinite, then
κ + λ = max (κ, λ) .

Proof. We show that κ + κ = κ when κ is infinite. Then λ � κ implies
κ � κ + λ � κ + κ = κ and κ + λ = κ , and 5.8 holds.

For every set X , |X | + |X | = |2 × X | , since 2 × X = {0, 1} × X is the
disjoint union of {0} × X and {1} × X . Let A be an infinite set. Let S be
the set of all ordered pairs (X, f ) such that X ⊆ A and f is a bijection of X
onto 2 × X . Since |A| � ℵ0 there exists an injection N −→ A , A contains an
infinite countable subset X , 2 × X is countable by 5.5, and there is a bijection of
X onto 2 × X ; hence S =/ Ø. Partially order S by (X, f ) � (Y, g) if and only
if X ⊆ Y and f = g|X . It is immediate that every nonempty chain of S has an
upper bound in S . By Zorn’s lemma, S has a maximal element (M, m) . Then
|M | + |M | = |M | ; we show that |M | = |A| .

If A\M is infinite, then A\M contains an infinite countable subset X , and
any bijection f : X −→ 2 × X can be combined with m : M −→ 2 × M into a
bijection M ∪ X −→ 2 × (M ∪ X) that extends m , contradicting the maximality
of M . Therefore A\M is finite. Hence M is infinite and contains an infinite
countable subset Y . Then |Y ∪ (A\M)| = |Y | by 5.5 and

|A| = |Y ∪ (A\M)| + |M\Y | = |Y | + |M\Y | = |M |. �
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Proposition 5.9. Let κ and λ be nonzero cardinal numbers. If κ or λ is infinite,
then κλ = max (κ, λ) .

Proof. We show that κκ = κ when κ is infinite. Then 1 � λ � κ implies
κ � κλ � κκ = κ and κλ = κ , and 5.9 holds.

Let A be an infinite set. As in the proof of 5.8, let S be the set of all ordered
pairs (X, f ) such that X ⊆ A and f is a bijection of X onto X × X . Since
A is infinite, A contains an infinite countable subset X , X × X is countable by
5.5, and there is a bijection of X onto X × X ; hence S =/ Ø. Partially order S

by (X, f ) � (Y, g) if and only if X ⊆ Y and f = g|X . It is immediate that
every nonempty chain of S has an upper bound in S . By Zorn’s lemma, S has a
maximal element (M, m) . Then |M | |M | = |M | ; we show that |M | = |A| .

Assume |M | < |A| . Then |A\M | = |A| by 5.8, since |A| = |M | + |M\A| .
Hence there is an injection M −→ A\M and A\M contains a subset X such that
|X | = |M | . Then there is a bijection f : X −→ M −→ M × M −→ X × X ,
which can be combined with m : M −→ M × M into a bijection M ∪ X −→
(M ∪ X)× (M ∪ X) that extends m , in utter disregard of the maximality of M . �

Corollary 5.10. An infinite set X has |X | finite subsets; moreover, there are
|X | finite sequences of elements of X .

Proof. The set X has at least |X | finite subsets, since it has |X | subsets with
one element. On the other hand, X has 1 � |X | empty subset, |X | subsets with
one element, at most |X | |X | = |X | subsets with two elements, and generally at
most |X | |X | · · · |X | = |X |n = |X | subsets with n elements. Hence X has at most
|X | + |X | + · · · = ℵ0|X | finite subsets, and ℵ0|X | = |X | by 5.9. Subsets can be
replaced by sequences in this argument. �

Readers will use Propositions 5.8, 5.9 to show that there are groups of arbitrary
cardinality, and that for every ring R there are R-modules of arbitrary infinite
cardinality κ � |R| ; hence groups do not constitute a set, and modules over a
given ring R do not constitute a set.

Exercises

1. Given two sets X and Y , show that there exists an injection of X into Y if and only if
there exists a surjection of Y onto X .

2. Show that the union of a set of cardinal numbers is a cardinal number.

3. Show that every infinite cardinal number is a limit ordinal.

4. Show that all infinite cardinals can be arranged into a transfinite sequence ℵ0 < ℵ1

< · · · < ℵα < ℵα+1 < · · · indexed by all ordinals.

5. Prove the following: there exists an injection X −→ Y if and only if |X | � |Y | .

6. Prove that there are countably many real numbers that are algebraic over Q and
uncountably many real numbers that are transcendental over Q .
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7. Prove that there are uncountably many mappings of N into N .

8. For every cardinal κ > 0 , prove that sets of cardinality κ do not constitute a set.

Readers are warned that the sum and product of two cardinals are usually not the same as their
sum and product as ordinals.

9. Show that the addition of cardinals is commutative and associative.

10. Show that the multiplication of cardinals is commutative and associative.

11. Show that (κ + λ) µ = κµ + λµ for all cardinals κ, λ, µ .

12. Show that κλ+µ = κλ κµ for all cardinals κ, λ, µ .

13. Show that κλµ = (κλ)µ for all cardinals κ, λ, µ .

14. Verify that infinite sums and products of cardinals (κi )i∈I are well defined by
∑

i∈I κi =
∣
∣
⋃

i∈I Xi
∣
∣ and

∏

i∈I κi =
∣
∣
∏

i∈I Xi
∣
∣ , where |Xi | = κi for all i and the

sets Xi are pairwise disjoint.

15. Show that
∑

i∈I κi =
∑

j∈J

(∑

i∈Ij
κi
)

when I =
⋃

j∈J Ij is a partition of I .

16. Show that
∏

i∈I κi =
∏

j∈J

(∏

i∈Ij
κi
)

when I =
⋃

j∈J Ij is a partition of I .

17. Show that
∏

i∈I κλi = κΣi∈I λi .

18. Show that
(∏

i∈I κi
)λ

=
∏

i∈I κλ
i .

19. Show that every cardinal number is the cardinality of a group.

20. Let R be a ring. Show that every infinite cardinal number κ � |R| is the cardinality
of an R-module.
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[1877] Frobenius, G., Über lineare Substitutionen und bilineare Formen, J. reine angew. Math.
84 (1877), 1–63.

[1878] Frobenius, G. and Stickelberger, L., Über Gruppen mit vertauschbaren Elementen, J.
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[1926] Schreier, O., Über die Erweiterung von Gruppen, I, Monatsh. Math. Phys. 34 (1926),
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of field, 244, 243–246
of module, 461, 456–462
of partially ordered set, 544
of ring, 266, 266–268, 461

complex
bar, 503
chain, 463, 464
cochain, 464
negative, 464
positive, 464
singular, 463, 464

component
homogeneous, 517
simple, 369

composite of fields, 158, 159, 164, 185
composition, 582
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concatenation, 6
cone, 424, 430, 591, 594

colimit, 593, 594, 610
limit, 424, 430, 592, 610
mapping, 470

congruence, 562, 564
fully invariant, 572
induced by ideal, 577
on a group, 563
on a ring, 564
on a semigroup, 564

conjugate
elements, 36, 56, 194, 216
field extensions, 194
permutations, 62
subgroups, 65

connection, Galois. See Galois connection
constructible, 226, 226–230
construction

by straightedge and compass, 226,
225–230

standard. See triple
contraction, 286, 287
coordinates, 310, 330
coproduct, 594, 595
coset, 16, 15–17

left, 15
right, 15
of normal subgroup, 19

cosyzygy, 476, 508, 510
cover, 547, 634
create

coequalizers, 617
everything, Gen:1:1
limits, 599, 612, 616, 624

cross section, 629
of group extension, 95

curve, algebraic, 271, 307
cycle, 60, 464
cylinder, mapping, 470
D
d.c.c. See descending chain condition
decomposition, subdirect, 575, 578
Dedekind, R., 104, 155, 273, 290, 539
Dedekind domain, 293, 295–297, 413–414,

497
degree

of element, 162
of field extension, 160

of group representation, 380
of monomial, 127
of polynomial, 121, 127
residual class, 254, 254–257
separability, 170
transcendence, 184, 311

derivative, 123
destination, 583
determinant, 526, 527
Diag , 591
diagram, 590

commutative, 591
constant, 592

dimension
global, 510, 511, 510–514
injective, 509
Krull, 305, 306, 310
of algebraic variety, 309, 312
of group representation, 380
of vector space, 336
projective, 509, 507–510

direct limit, 424, 423–429, 433
of complexes, 470
of exact sequences, 428
of modules, 424, 427, 447, 451, 453,

455, 497
of sets, 424, 425
of universal algebras, 573, 624

direct product
of bimodules, 423
of Boolean lattices, 557
of complexes, 470
of groups, 43, 48, 43–49, 592
of homomorphisms, 325
of modules, 325, 328, 420, 491,

592
of injective modules, 404
of projective modules, 403
of rings, 364–366, 375
of universal algebras, 568

direct sum
external, 325
internal, 327
of complexes, 470
of group representations, 380
of groups, 44, 49
of homomorphisms, 326
of modules, 325, 325–329, 402, 421,

429, 433, 446, 451, 491, 494, 495,
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508, 594
of injective modules, 407
of projective modules, 402

Dirichlet, G., 188, 214
Dirichlet’s theorem, 214
discriminant, 179, 179–181, 206
distributivity, 105, 315, 548, 567
division

polynomial, 121, 149
divisor

greatest common, 135, 136, 142
domain, 116, 115–119, 582, 630

See also Dedekind domain
See also principal ideal domain
See also ring
See also unique factorization domain
of binary relation, 631
integral, 116
integrally closed, 283, 284, 287, 295,

296
normal, 283
valuation. See valuation ring

doohickey, 416
duality principle, 540, 541, 543, 546, 549,

553, 585
duplication of cube, 226
Dyck, W., 27, 31, 33
Dyck’s theorem, 33
E
edge, 583
eigenspace, 345
eigenvalue, 345
Eilenberg, S., 401, 403, 463, 500, 613
Eisenstein, G., 144
Eisenstein’s criterion, 144, 145, 262
element

See also elements
algebraic, 161, 162, 280
cancellative, 578
central, 382, 516
greatest, 627, 543
idempotent, 370
identity. See identity element
integral, 279, 280, 281
irreducible, 134, 142, 550
least, 629, 543
left quasiregular, 377
maximal, 625, 111, 145
minimal, 627

nilpotent, 112, 376, 377, 577
prime, 134, 142
primitive, 161
purely inseparable, 174
quasiregular, 377
radical, 218
representative, 133
separable, 171
torsion, 339
torsion-free, 339
transcendental, 161
unique maximal, 627
zero. See zero element

elementary
linear transformation, 77
matrix, 77

elements
See also element
associate, 133
algebraically dependent, 182
algebraically independent, 182

endomorphism
nilpotent, 51
normal, 50
of abelian group, 106
of group, 20
of module, 320
of vector space, 106
projection, 52

EndR , 332
End

op
R ,

EndZ, 316
envelope, injective. See hull, injective
epimorphism, 19, 107, 584

of modules, 320, 393
split, 395, 402

equalizer, 593, 595
equipotence, 640
equivalence

of categories, 588, 609
of group extensions, 95, 98

Erlanger Programme, 1
Euclid, 138
evaluation

of polynomials, 122, 128
of rational fractions, 124, 129

exchange property, 50, 182, 335
expansion, 286, 287
exponentiation of cardinals, 642, 644
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Ext, 490
extension

essential, 409, 408–410
of absolute values, 247–261
of fields. See field extension
of groups. See group extension
of rings. See ring extension
of valuations, 256–261

F
factor

of normal series, 71, 348
simple, 74

factor set, 96
factorization theorem

for algebras, 517
for groups, 23
for modules, 322
for rings, 114
for universal algebras, 562

family
algebraically dependent, 182
algebraically independent, 182
directed, 15, 423, 425, 568
linearly independent, 330

Feit, W., 83
Feit and Thompson theorem, 83
Fermat prime, 229
field, 116, 155–268, 569

See also field extension
algebraically closed, 166
archimedean, 232, 233
complete, 243, 249, 259, 264
cyclotomic, 212
finite, 192–193
fixed, 198, 202
formally real, 234, 234–239
Galois, 193
of fractions, 118, 119, 285
of rational fractions, 124, 128, 531
ordered, 231, 231–239
perfect, 196, 197, 237, 238
quotient. See field of fractions
real closed, 235, 235–239
residue class, 258, 258–261
skew, 334
splitting, 191, 192, 191–193

field extension, 159, 159–230, 530–534
algebraic, 164, 164–230
conjugate, 194, 199

cyclic, 219, 218–220
finite, 160, 164, 297
finitely generated, 161
Galois, 197, 197–225, 297–300
infinite, 160
infinite Galois, 200–204
linearly disjoint, 185, 186, 532
normal, 192, 191–197, 199, 225
purely inseparable, 173, 172–175, 192
purely transcendental, 181
quadratic, 283
radical, 221
separable, 171, 169–172, 189, 184–190,

195, 532
simple, 161, 162, 170
solvable by radicals, 221, 221–225
totally transcendental, 181
transcendental, 164, 181–190

filter, 462
filtration

a-, 456
a-adic, 266, 456
a-stable, 457, 458
on module, 456, 456–458
on ring, 266, 266–272

five lemma, 394
fixed point, 60
fraction, 118, 285

See also rational fraction
partial, 139
polynomial free, 139
reduced, 139

fractional ideal, 290, 291
finitely generated, 291
invertible, 291, 413

free product of groups, 40, 37–42, 594
with amalgamation, 41, 42, 584, 595

Freyd, P., 609
Frobenius, G., 45, 515, 538
Frobenius’s theorem, 538
Func , 587
function

choice, 628
class, 387, 582
coordinate, 106, 310
Euler’s, 46–47, 207
polynomial, 311
rational, 129, 311, 314

functor, 416, 586, 586–590
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additive, 417, 603
adjoint, 606, 604–612
colimit, 599, 606
completion, 459, 460
contravariant, 416, 588
covariant, 416, 586
derived, 478–487
direct limit, 427–429
dual, 448
exact, 419, 420
Ext, 488–493, 507
forgetful, 586, 596, 604, 607, 611, 621,

622
free group, 586, 604
free module, 605, 613
Hom, 417, 418–423, 589, 597, 599
homology, 464
identity, 587
inverse limit, 432–434
left adjoint, 606, 622
left derived, 479, 479–484, 486
left exact, 419
limit, 598, 599, 606
representable, 612
right adjoint, 606
right derived, 484, 485, 486
right exact, 445
⊗, 437, 438, 445–448, 607
Tor, 493, 493–496
tripleable, 616, 616–621, 623

fundamental theorem
of algebra, 137
of finitely generated abelian groups,

44, 339
of Galois theory, 198, 203

G
Galois, E., 1, 191, 192
Galois connection, 200, 544, 545
Galois group, 197, 204, 197–225, 224,

299–300
of polynomial, 204, 204–211
of extension of Q, 214

Garibaldi, S., viii
Gauss, G., 105, 137, 142, 229, 262
Gauss integer, 109
Gauss’s lemma, 143, 262
gcd , 135
geometry, algebraic, 271, 273, 275, 276,

307–314

GL , 76
g.l.b. See greatest lower bound
Gödel, K., 628
going up, 282
Gorenstein, D., 74
graph, 583

directed, 583
discrete, 592
finite, 598
square, 583
triangle, 583

Grassmann, H., 523
Grell, H., 285
Grillet, P.A., 579
Grillet’s theorem, 579
Gröbner, W., 148
Gröbner basis

of ideal, 150, 148–154
of module, 352, 350–358

group, 8, 1–104
See also abelian group
See also Galois group
action. See group action
alternating, 36, 60, 74
amalgam, 41
classical, 76–83
cohomology, 100, 464, 468, 500–507
cyclic, 14, 21, 24, 25, 35, 46, 68, 94,

100, 507
defined by generators and relations.

See presentation
derived, 83, 84
dihedral, 9, 14, 19, 20, 26, 34, 37, 68,

88
finite, 11, 13, 14, 16, 43–104
free, 29, 27–31, 505–506
fundamental, 8, 18, 20, 37, 43, 83
general linear, 76, 81
generated by a subset, 14
generated by ... subject to ..., 33
generator, 33
homology, 463, 464
indecomposable, 47, 49
isomorphic, 20
Klein four, 9, 13, 44
metabelian, 83
nilpotent, 89, 89–92
of automorphisms, 20, 55
of finite length, 49
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of homomorphisms, 415–423
of isometries, 9
of rotations and symmetries, 9
p-, 45, 57, 64, 67, 84, 91
profinite, 204, 434
projective special linear, 78, 81, 82
quaternion, 35
quotient, 20, 20–23
simple, 73, 73–76, 81, 82
solvable, 83, 83–88, 219, 391
special linear, 77, 77–82
symmetric, 8, 58–64, 88
transitive, 75
value, 248

group action
left, 54, 55
right, 54
trivial, 501

group extension, 95, 95–104
equivalent, 95, 98
split, 99

Grps, 583
H
H, quaternion algebra, 36, 37
Hall, P., 86
Hall theorems, 86–88
Halmos, P., 640
Hamilton, W.R., 37, 105, 515
Haupidealsatz, 303
Hausdorff, F., 628
height of prime ideal, 303, 304, 303–306
Hensel, K., 243, 261
Hensel’s lemma, 263, 264, 270
Hilbert basis theorem, 147
Hilbert, D., 105, 147, 218, 307, 510, 511
Hilbert’s Nullstellensatz, 307, 308
Hilbert’s Theorem 90, 218
Hilbert theorem on syzygies, 511
Hölder, O., 74, 100
Hölder’s theorem, 100
Hom, 415, 415–423, 433, 442, 589
homology, 463–471

singular, 463
homomorphism

boundary, 463, 464
central, 516
coboundary, 463, 467
connecting, 465, 466, 469, 478, 484, 485
evaluation, 122, 128, 448

inclusion, 18, 113, 156, 561
K -, 158
natural, 417
of algebras, 382, 516
of bimodules, 418
of direct systems, 423
of fields, 117, 156
of graded algebras, 517
of groups, 18, 18–25
of inverse system, 430
of lattices, 542
of modules, 320, 320–324
of rings, 107, 112–115
of rings with identity, 107
of T -algebras, 614
of universal algebras, 560

homomorphism theorem
for algebras, 516
for complexes, 470
for fields, 156
for graded algebras, 517
for groups, 23
for lattices, 542
for modules, 322
for rings, 114
for universal algebras, 562
in abelian category, 603

homotopic, 465
homotopy, 465, 470
Hopkins, C., 379
Hopkins-Levitski theorem, 379
Hopkins’s theorem, 379
hull, injective, 410, 408–410
Hurewicz, W., 393
I
ideal, 110, 516, 552

associated prime, 276
fractional. See fractional ideal
generated by monomials, 149
generated by 1 1

2 elements, 293
generated by subset, 110
graded, 517
irreducible, 275
left, 318
maximal, 111, 117, 134, 282, 301, 308
membership problem, 150
minimal left, 360
nil, 377
nilpotent, 376
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of quotient ring, 114
of semigroup, 578
of Z, 110, 117
order, 632, 551
p-primary, 275
primary, 275, 287
prime, 117, 133, 274, 281–282, 287, 298,

302–306
principal, 110, 552
proper, 110
right, 318
semiprime, 275, 308
two-sided, 318, 516

idempotent, 370, 376, 377
central, 557

identity
See also identity element
of type T , 566

identity element, 2
left, 12
of ring, 106

Im , image, 19, 113, 321
image, 603

direct, 18, 113, 321, 563
homomorphic, 568
inverse, 18, 113, 321, 563
of homomorphism, 19, 113, 321

indeterminate, 120, 126, 130, 131
index, 16, 17

nilpotency, 90
of centralizer, 56
of normalizer, 65
of stabilizer, 55
ramification, 258, 258–261

induction
Artinian, 627
Noetherian, 626
ordinal, 635, 635–639
strong, 627, 636
transfinite, 629

infimum. See greatest lower bound
injection

to coproduct, 594
to direct sum, 325
to free group, 29
to free product, 40
to group extension, 95
to semidirect product, 93

integer, 1

algebraic, 109, 283, 297, 297–300
Gauss, 109, 137
modulo n, 21, 114
p-adic, 245, 246, 266

intersection
of congruences, 562
of ideals, 110
of primary ideals, 275–276
of subalgebras, 560
of subgroups, 15
of submodules, 318
reduced, 276

interval, 548, 557
inverse

left, 12
of element, 8
of product, 10

inverse limit, 431, 429–434
of exact sequences, 432
of modules, 431, 432
of sets, 433
of universal algebras, 574

Irr (α : K ), 162
isometry, 9
isomorphism, 584, 602

K -, 160
natural, 587
of algebraic varieties, 313
of categories, 588
of fields, 156
of groups, 20
of lattices, 542, 543
of modules, 320, 393
of partially ordered sets, 633, 542
of rings, 107
of totally ordered abelian groups, 251
of universal algebras, 561

isomorphism theorems
first, 25
for groups, 23–26
for modules, 323
for rings, 115
for universal algebras, 563
second, 25
third, 25

J
Jacobson, N., 370, 372, 376, 377
Jabobson density theorem, 371, 373
Jech, T., 581, 631, 640
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join. See least upper bound
Jordan block, 345
Jordan, C., 74, 342
Jordan form, 345, 342–346
Jordan-Hölder theorem, 74, 348
K
K

1/p∞
, 173

Kempf, G., 166
ker, equivalence relation, 561
Ker, kernel, 19, 113, 321
kernel, 602

of homomorphism, 19, 113, 321, 396,
593

Klein, F., 1
Kramer, D., viii
Kronecker, L., 45
Krull intersection theorem, 301
Krull-Schmidt theorem, 50, 349
Krull’s Hauptidealsatz, 303, 305
Krull’s theorem, 203; 305
Krull, W., vii, 48, 105, 203, 251, 300, 301,

303, 304, 305
Kuratowski, C., 628
Kürschak, J., 243
L
Lagrange, J., 1
Lagrange’s theorem, 16
Lasker, E., 273
lattice, 541, 539–558, 573, 576, 624

Boolean, 554, 553–558, 573, 624
complete, 543, 543–545
complete Boolean, 557
distributive, 549, 549–553, 577, 624
generalized Boolean, 557
modular, 545, 545–548, 573, 624
of normal subgroups, 548
of submodules, 546
of subgroups, 548, 552, 553
of subsets, 539, 540, 549, 553, 554
subdirectly irreducible, 576

Laurent series, 131, 131–133, 245, 254
laws, absorption, 542
Lazard, D., 450, 455
Lazard’s theorem, 455
lcm , 135
length

of module, 348
of normal series, 70, 348

lift, 402, 471, 472, 477

Light’s test, 5, 35
fails, 5
passes, 5

limit, 592, 591–593
See also direct limit
See also inverse limit
directed. See inverse limit
finite, 598
inductive. See direct limit
inverse. See inverse limit
of sequence, 233, 243–245, 247–248,

268, 462
projective. See inverse limit
standard, 596

localization, 287, 285–290
Louis XIV, 633
l.u.b. See least upper bound
lying over, 281, 282
M
MacLane, S., vii, 184, 188, 393, 463, 490,

500, 532, 581, 609
MacLane’s theorem, 188, 532
MacNeille, H., 544
MacNeille’s theorem, 544
Mal’cev, A.I., 580
Malcev’s theorem, 580
map

See also mapping
closure, 543
tensor, 434, 436, 444

mapping, 582
See also multilinear mapping
biadditive balanced. See bihomomor-

phism
bilinear, 434, 435
middle linear. See bihomomorphism
n-linear. See multilinear mapping
order preserving, 542
polynomial, 312
regular, 312

Maschke, H., 383
Maschke’s theorem, 383, 506
matrix

column finitary, 334
of homomorphism, 332, 450

McCarthy, P., 203
meet. See greatest lower bound
metatheorem, 540, 585
M5, a lattice, 546, 549
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Mn , 1, 332
module, 278, 279, 315–366, 615

See also modules
Artinian, 300, 348
blown-up, 457
completely reducible, 363
complete, 458
cyclic, 318, 323
divisible, 405
double dual, 448
dual, 419, 448, 448–451
faithful, 317
finitely generated, 274, 318
finitely presented, 453, 453–455
flat, 450, 450–456, 461, 495, 496
free, 330, 329–338
homology, 464
indecomposable, 349
injective, 403, 403–410, 412, 414, 420,

422, 429, 452, 484, 491, 492
left, 315
Noetherian, 296, 347
of finite length, 348, 379
of fractions, 442, 456
over a PID, 336–342
over polynomial rings, 342, 350,

510–514
projective, 402, 401–403, 411, 419,

448–451, 480, 486, 491, 492, 494
quotient, 279
right, 317
semisimple, 363, 362–364, 371, 379
simple, 359, 360
torsion, 339
torsion-free, 339
unital, 315, 317

modules
See also module
injectively equivalent, 510
isomorphic, 320
projectively equivalent, 507

monad. See triple
monoid, 3, 614

commutative, 3
free, 6, 120
free commutative, 7, 126
of endomorphisms, 20

monomial, 6, 125
leading, 149, 351

monomorphism, 19, 107, 584
essential, 409
of modules, 320, 393
split, 395, 404

Moore, E., 543
Moore, J.C., 613
morphism, 582

See also homomorphism
codiagonal, 601
diagonal, 601
identity, 582
natural, 587
of algebraic varieties, 312
of diagrams, 591
of T -algebras, 614
zero, 600

multihomomorphism, 443
multilinear mapping, 443

alternating, 524, 525
symmetric, 522

multiple
integer, 4, 11, 106, 114–115
least common, 135, 136, 142

multiplication, 2
multiplicity of root, 122, 125
N
N, 1
Nagata, M., 376
Nakayama, I., 376
Nakayama’s lemma, 302, 303, 376
N5, a lattice, 546
Nielsen, J., 27
nilradical, 274
nilsemigroup, 577
nine lemma, 395, 397, 470
node, 583
Noether, E., vii, 105, 146, 273, 295, 529,

535, 534
Noether-Lasker theorem, 276
Noether’s theorem, 535
norm

of element, 215, 215–219
on vector space, 247

normalization, 283
normalizer, 65, 67
normal series, 70, 72

ascending central, 90, 639
central, 89
descending central, 89
equivalent, 71, 348
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notation
additive, 2, 4, 11, 13
multiplicative, 2

Nullstellensatz, 308
number

algebraic, 236
cardinal. See cardinal number
ordinal. See ordinal number
of elements, 639, 641
p-adic, 245, 246

O
object, 582

initial, 609, 612
terminal, 609, 612
zero, 600

ω, ordinal number, 634
op, opposite, 317, 540, 585, 627
operation

associative, 3
binary, 1, 559
commutative, 3
componentwise, 43
constant, 2, 559
idempotent, 540
n-ary, 2, 559
order preserving, 540
partial, 2, 559
unary, 2, 559

opposite
of element, 8
of sum, 11

orbit, 55
Ord , 632
order

degree lexicographic, 148
degree reverse lexicographic, 148
lexicographic, 148
monomial, 148, 351
of center, 57
of conjugacy class, 56
of element of a group, 24
of group, 16
of orbit, 55
of permutation, 62
of polynomial, 239
of power series, 130
of quotient group, 21
of subgroup, 16, 17
term, 148

order relation, 625, 631
opposite, 626
partial, 625
total, 625

ordered set
See also partially ordered set
See also preordered set
totally, 625, 423
well, 629, 633

ordinal number, 631, 631–639
limit, 634
successor, 633, 634

origin, 583
orthogonality of characters, 388, 389
Ostrowski, A., 241, 247
Ostrowski’s theorem, 249
P
partially ordered set, 625, 423

See also preordered set
dual, 540
Noetherian, 626
opposite, 627, 540

partition, 16, 45, 55, 62
path, 583

empty, 583
Peirce, B., 104, 515
permutation, 9, 58–63

conjugate, 62
disjoint, 60
even, 59
fixed point of, 60
odd, 59
sign of, 60
support of, 60

place, 255
polygon, regular, 9, 226
polynomial, 120, 126, 119–130

See also polynomial equation
See also ring of polynomials
characteristic, 216, 345
constant, 120, 126
cyclotomic, 211, 211–215
elementary symmetric, 177, 224
general, 223
homogeneous, 129
in one variable, 120, 119–125
in several variables, 126, 125–130
irreducible, 136–138, 143–145, 233
minimal, 343, 345
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monic, 121
of degree 2, 205
of degree 3, 205–207, 209, 210
of degree 4, 208–209, 210
primitive, 142, 258
separable, 169
splitting, 191
symmetric, 224

polynomial equation, vii, 1, 191
general, 223, 223–225
of degree 2, vii, 1, 191, 205
of degree 3, 191, 205–207
of degree 4, 191, 207–208
of degree 5, 191

POS, 616
power, 3, 10, 642

exterior, 525
symbolic, 298
symmetric, 523
tensor, 519

power series, 130, 130–133, 245, 254,
267–269

preimage. See inverse image
preordered set, 423, 428, 583, 585, 612, 616

See also partially ordered set
directed, 423

presentation, 34, 31–37
projective, 471

preserve colimits, 598, 608
preserve limits, 597, 608, 621
Preston, G.B., 5
primitive element theorem, 171
principal ideal domain, 133, 133–138, 254,

293, 294, 295, 336–342, 403, 405,
411, 497

product, 2, 592, 595
See also Cartesian product
See also direct product
See also free product
See also subdirect product
See also tensor product
balanced, 435, 443
empty, 2
of cardinal numbers, 642, 643, 644
of elements, 2
of ideals, 112, 269
of left ideal and submodule, 319, 320
of left ideals, 319
of morphisms, 582, 598

of ordinal numbers, 635
of subsets, 4
semidirect, 93, 92–94, 102
torsion. See Tor

projection
from direct product, 44, 325, 568
from group extension, 95
from product, 592
from semidirect product, 93
to quotient algebra, 561
to quotient group, 20
to quotient module, 321
to quotient ring, 113
to quotient set, 561

P SL , 79
pullback, 593, 604

of modules, 397, 398, 400, 423, 429,
433, 593

pushout, 595
of modules, 399, 398–401, 423, 429, 448

Q
Q, quaternion group, 35, 69
Q, 1
Q̂p , 245
quadrature of circle, 229
quotient

universal algebra, 562
group, 20
module, 321–322
of ideals, 273
ring, 113

R
R, 1
R1, 108
Rad , 274
radical, 375

Jacobson, 375, 374–377
nil, 274
of ideal, 274

R-Algs, 584
range, 19, 113, 321
rank of module, 334, 335
rational fraction, 124, 129, 139–141

symmetric, 224
recursion, 637, 638
Rédei, L., 148, 580
Rédei’s theorem, 148, 580
reduction, 27, 29, 38, 39
refinement of normal series, 71, 348
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relation
See also order relation
defining, 33
equivalence, 561
group, 27, 32
of type T , 565

Remak, R., 48
representation of group, 380, 382, 380–392

complex, 389, 389–392
equivalent, 380, 382
irreducible, 381, 384
regular, 380
trivial, 380

resolution, 471–478
bar, 505, 502–505
flat, 496
free, 471, 504
injective, 476, 476–478, 491, 508
projective, 471, 471–476, 491, 494, 507,

508
resultant, 176, 176–178
ring, 105, 105–154, 273–318, 366–379

See also algebra
See also domain
affine, 311
associative, 106
blown-up, 457
Boolean, 554
change of, 440, 441, 461
commutative, 106, 115–119, 269–314,

318
complete, 267, 267–272
coordinate, 310, 310–314
division, 116, 209, 334, 336, 360, 384,

538
Euclidean, 138
free commutative, 129
group, 120, 382; see also group algebra
isomorphic, 107
Jacobson semisimple, 378, 377–379
left Artinian, 348, 349, 377–379
left hereditary, 411, 411–414, 497, 499,

510
left Noetherian, 347, 349, 407, 429
left primitive, 372, 372–374, 377
local, 287, 403
Noetherian, 146, 146–148, 287, 296
nonassociative, 106
of endomorphisms, 316, 332, 360, 364,

370–374
of fractions, 285, 285–290
of matrices, 106, 332, 360–362, 364,

370, 371, 377, 515
of polynomials, 119–130, 147, 142–144,

276, 305–306, 308, 309,
510–514, 515, 517, 522, 577

opposite, 317, 332, 361, 442
reduced, 532
regular, 109, 370, 379
right Artinian, 348
right Noetherian, 347
right primitive, 372
semigroup, 120, 124
semiprimitive, 378
semisimple, 359, 366, 366–370, 377,

383, 402, 404, 510
simple, 360
valuation. See valuation ring
von Neumann regular, 109, 370, 379
with identity, 105
with unity, 104

ring extension, 277, 277–284, 515
finitely generated, 278, 288
integral, 280, 280–282, 287, 288

Rings, 584
RMods, 583
root, 122

See also root of unity
multiple, 122
simple, 122, 123

root of unity, 157
primitive, 157, 211

RR, 315
Russell’s paradox, 631
R[X ], 120
R(X), 124
R[[X ]], 130
R((X)), 131
R[(Xi )i∈I ], R[X1, ..., Xn], 126
R((Xi )i∈I ), R(X1, ..., Xn), 128, 129
S
Schanuel’s lemma, 507
Schering, E., 45
Schmidt, O., 48
Schreier, O., 41, 71, 97, 217, 231, 236
Schreier’s theorem, 71, 348; 97
Schreyer, F., 355
Schreyer’s theorem, 355
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Schur, I., 102, 360, 380
Schur’s lemma, 360
Schur’s theorem, 102, 493
Schur-Zassenhaus theorem, 102
section, lower, 632

See also order ideal
semigroup, 3, 1–7

cancellative, 577
commutative, 3, 577–579
determined by ideal, 577
elementary, 579, 580
free, 6
free commutative, 7, 577
nil. See nilsemigroup
subelementary, 579, 580

semilattice, 539–541, 542
lower, 539
upper, 540

separate the elements, 575
sequence

addible, 131, 268
Cauchy, 233, 243–245, 247–248, 268,

462
connected, 478, 484, 485
empty, 6
exact, 393, 393–397, 465, 604
exact cohomology, 468, 504
exact homology, 465
Hom-Ext, 491
Ker-Coker, 467, 471
left exact, 394, 419, 420
Mayer-Vietoris, 470
null, 393
right exact, 394, 420
short exact, 394
split exact, 395, 604
summable, 130
Tor, 494
transfinite, 635

series
See also Laurent series
See also power series
central, 89, 639
commutator, 84
composition, 73, 74
normal. See normal series
of submodules, 348
subnormal, 71

set

See also algebraic set
See also ordered set
See also preordered set
countable, 641, 642
finite, 641
infinite, 641
quasiordered. See preordered set
quotient, 561
transitive, 631
underlying, 3, 8
zero, 307

Sets, 583
sign of permutation, 60
simplex, 463

singular, 463
standard, 463

sk , 176
skeleton, 590
Skolem-Noether theorem, 536
SL , 77
Sn , 58
S−1R, 285
solution set condition, 610
space

affine, 307
projective, 79, 307
Stone, 555, 556, 557

spectrum, 301
Spencer, M., viii
stabilizer, 55
Steinitz, E., 155
Stickelberger, L., 45
Stone, M., 539, 555, 556
Stone space, 556, 557, 558
Stone’s theorem, 555; 556
structure

cycle, 61
module, 315, 316

subalgebra, 516, 560
generated by a subset, 519, 564
graded, 517

subdirect product, 574, 574–580
subfield, 155, 156, 157

generated by subset, 158
subgroup, 12, 12–18

characteristic, 58
commutator, 83
cyclic, 14
Frattini, 17



Index 667

fully invariant, 88, 91
generated by subset, 13
Hall, 86, 86–88
maximal, 17, 92
normal, 19
of quotient group, 21
of Z, 14
subnormal, 71
Sylow, 65, 65–67, 85, 91

sublattice, 542
Boolean, 555

submodule, 278, 318
anticommutative, 524
cyclic, 318
essential, 329, 408
finitely generated, 278, 318
generated by monomials, 351
generated by subset, 278, 318
graded, 517
large, 408
membership problem, 351
of free module, 336, 337, 411
of quotient module, 322
pure, 448
syzygy, 354

subring, 109, 110
generated by subset, 112, 158
of field, 155
of quotient ring, 114
of ring extension, 278

subsemigroup, 578
subset

algebraically dependent, 182
algebraically independent, 182
cofinal, 429
cofinite, 557
dense, 372
linearly independent, 330
multiplicative, 281
proper multiplicative, 281

substitution
in polynomials, 122, 125
in power series, 132

subtraction, 106
successor, 633, 634
sum

See also direct sum
direct, 328
infinite, 107

of cardinal numbers, 642, 644
of elements, 4
of ideals, 111
of ordinal numbers, 635
of power series, 131
of submodules, 319
of subsets, 4

summand, direct, 328, 402, 404, 451
of free module, 402

support of permutation, 60
supremum. See least upper bound
surgery, 160
Sylow, L., 64, 65
Sylow theorems, 64–67
system

direct, 423
inverse, 430

syzygy, 354, 471, 507–508
T
T , a group, 36, 69
table, 4

Light’s, 5
⊗, 434, 436
tensor product, 435, 434–448

of algebras, 527, 527–530, 594
of bimodules, 438, 438–441, 444
of elements, 434, 436
of exact sequences, 445, 446
of fields, 530–534
of free modules, 439
of graded algebras, 530
of modules, 435, 444, 449–451
of vector spaces, 434

term, 148
leading, 149, 351

terminate, 624, 626, 145, 292, 296, 346, 347
Thompson, J.G., 83
topology

algebraic, 8, 18, 20, 37, 41, 43, 83,
463, 464, 465, 470, 497, 500

compact-open, 372
finite, 201, 203
Krull, 202, 201–204, 272, 462
on power series ring, 132
profinite, 27
Stone, 555
Zariski, 309, 310

Tops, 617
Tor, 493, 493–496
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torsion, 339
tower

of field extensions, 158
property, 160, 164, 170, 172, 175, 183,

189, 195, 217, 281
trace

of element, 215, 215–219
of linear transformation, 215

transcendence base, 183
separating, 187

transformation, 2
chain, 464
diagonalizable, 345
linear, 320, 342–346
natural, 417, 587
nilpotent, 346
projective, 79
rational, 312

transporter, 273, 274
transposition, 58
trihomomorphism, 444
triple, 613, 613–620
trisection of angle, 226
2X , 539, 540, 549, 553, 554
type of universal algebra, 560
U
union

directed, 568
of congruences, 562
of ideals, 111
of subalgebras, 560
of subgroups, 15
of submodules, 318
of subrings, 112

unique factorization domain, 141, 141–145,
283, 304

unit
of ring, 109
of polynomial ring, 121, 127
of power series ring, 131

universal algebra, 560, 559–580
free, 569, 573, 622
of type T , 560
quotient, 561
subdirectly irreducible, 575
word, 565, 564–567

universal coefficient theorem, 497, 499
universal property, 610, 612

of category of T -algebras, 616

of coequalizer, 594
of cokernel, 393, 394, 601
of colimit, 594
of completion, 244, 459
of coproduct, 594
of derived group, 84
of direct limit, 425
of direct product, 47, 325
of direct sum, 326
of exterior algebra, 524
of exterior power, 525
of field of fractions, 117
of free category, 591
of free group, 30
of free module, 331
of free product, 40
of free product with amalgamation, 42
of free universal algebra, 569
of group algebra, 382
of initial object, 609
of inverse limit, 431
of kernel, 393, 394, 601
of left derived functor, 481
of left exact sequence, 394
of limit, 592
of localization, 285
of polynomial rings, 123, 128
of power series rings, 269
of presentation, 33
of product, 592
of pullback, 397, 593
of pushout, 399, 595
of quotient algebra, 517, 562
of quotient group, 23
of quotient module, 322
of quotient ring, 114
of R, 233
of R1, 108
of right derived functor, 484, 485
of right exact sequence, 394
of ring of fractions, 285
of simple field extension, 163
of symmetric algebra, 521
of symmetric power, 522
of tensor algebra, 520
of tensor product, 434, 436, 529
of terminal object, 609
of word algebra, 565
of Z (as a ring), 114
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universe, 581
Uzkov, A.I., 285
V
valuation, 251, 251–261

discrete, 254
domain. See valuation ring
induced by valuation ring, 253
real, 239

valuation ring, 252, 253, 254, 256, 288
discrete, 254, 255
of field, 253

value, absolute. See absolute value
van der Waerden, B., 155
variety

algebraic, 300, 309
generated by a class, 571
of type T , 567, 567–573, 575, 621–624

vector space, 315, 334, 334–336
normed, 247

vertex, 583
W
Wedderburn, J., 209, 359
Wedderburn’s theorem, 209, 534

Weil, A., 309
well defined, 23
Whitehead, A., 559
word, 6, 27, 38

reduced, 27, 38, 41
Y
Yoneda’s lemma, 590
Z
Z, 1, 14, 110
Zassenhaus, H., 72, 102
Zassenhaus’s lemma, 72
Zariski, O., 309
Zen Buddhism, 2
Zermelo, E., 628, 629
zero element

of ring, 106
of semigroup, 577

Zn , 21, 114, 116, 441
Zorn, M., 628
Zorn’s lemma, 628, 111, 636
Ẑp , 245
Zp∞ , 406, 425
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