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Preface

This book deals with several aspects of what is now called “explicit number
theory,” not including the essential algorithmic aspects, which are for the
most part covered by two other books of the author [Coh0] and [Cohl]. The
central (although not unique) theme is the solution of Diophantine equa-
tions, i.e., equations or systems of polynomial equations that must be solved
in integers, rational numbers, or more generally in algebraic numbers. This
theme is in particular the central motivation for the modern theory of arith-
metic algebraic geometry. We will consider it through three of its most basic
aspects.

The first is the local aspect: the invention of p-adic numbers and their
generalizations by K. Hensel was a major breakthrough, enabling in particular
the simultaneous treatment of congruences modulo prime powers. But more
importantly, one can do analysis in p-adic fields, and this goes much further
than the simple definition of p-adic numbers. The local study of equations
is usually not very difficult. We start by looking at solutions in finite fields,
where important theorems such as the Weil bounds and Deligne’s theorem
on the Weil conjectures come into play. We then lift these solutions to local
solutions using Hensel lifting.

The second aspect is the global aspect: the use of number fields, and
in particular of class groups and unit groups. Although local considerations
can give a considerable amount of information on Diophantine problems,
the “local-to-global” principles are unfortunately rather rare, and we will
see many examples of failure. Concerning the global aspect, we will first
require as a prerequisite of the reader that he or she be familiar with the
standard basic theory of number fields, up to and including the finiteness of
the class group and Dirichlet’s structure theorem for the unit group. This can
be found in many textbooks such as [Sam] and [Marc]. Second, and this is
less standard, we will always assume that we have at our disposal a computer
algebra system (CAS) that is able to compute rings of integers, class and unit
groups, generators of principal ideals, and related objects. Such CAS are now
very common, for instance Kash, magma, and Pari/GP, to cite the most useful
in algebraic number theory.
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The third aspect is the theory of zeta and L-functions. This can be consid-
ered a unifying theme® for the whole subject, and it embodies in a beautiful
way the local and global aspects of Diophantine problems. Indeed, these func-
tions are defined through the local aspects of the problems, but their analytic
behavior is intimately linked to the global aspects. A first example is given by
the Dedekind zeta function of a number field, which is defined only through
the splitting behavior of the primes, but whose leading term at s = 0 contains
at the same time explicit information on the unit rank, the class number, the
regulator, and the number of roots of unity of the number field. A second
very important example, which is one of the most beautiful and important
conjectures in the whole of number theory (and perhaps of the whole of math-
ematics), the Birch and Swinnerton-Dyer conjecture, says that the behavior
at s = 1 of the L-function of an elliptic curve defined over QQ contains at the
same time explicit information on the rank of the group of rational points
on the curve, on the regulator, and on the order of the torsion group of the
group of rational points, in complete analogy with the case of the Dedekind
zeta function. In addition to the purely analytical problems, the theory of
L-functions contains beautiful results (and conjectures) on special values, of
which Euler’s formula 3, -, 1/n? = 72 /6 is a special case.

This book can be considered as having four main parts. The first part gives
the tools necessary for Diophantine problems: equations over finite fields,
number fields, and finally local fields such as p-adic fields (Chapters 1, 2, 3,
4, and part of Chapter 5). The emphasis will be mainly on the theory of
p-adic fields (Chapter 4), since the reader probably has less familiarity with
these. Note that we will consider function fields only in Chapter 7, as a tool
for proving Hasse’s theorem on elliptic curves. An important tool that we will
introduce at the end of Chapter 3 is the theory of the Stickelberger ideal over
cyclotomic fields, together with the important applications to the Eisenstein
reciprocity law, and the Davenport—Hasse relations. Through Eisenstein reci-
procity this theory will enable us to prove Wieferich’s criterion for the first
case of Fermat’s last theorem (FLT), and it will also be an essential tool in
the proof of Catalan’s conjecture given in Chapter 16.

The second part is a study of certain basic Diophantine equations or
systems of equations (Chapters 5, 6, 7, and 8). It should be stressed that
even though a number of general techniques are available, each Diophantine
equation poses a new problem, and it is difficult to know in advance whether
it will be easy to solve. Even without mentioning families of Diophantine
equations such as FLT, the congruent number problem, or Catalan’s equation,
all of which will be stated below, proving for instance that a specific equation
such as 23 +y° = 27 with 2, y coprime integers has no solution with zyz # 0
seems presently out of reach, although it has been proved (based on a deep
theorem of Faltings) that there are only finitely many solutions; see [Dar-Gra)

3 Expression due to Don Zagier.
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and Chapter 14. Note also that it has been shown by Yu. Matiyasevich (after
a considerable amount of work by other authors) in answer to Hilbert’s tenth
problem that there cannot exist a general algorithm for solving Diophantine
equations.

The third part (Chapters 9, 10, and 11) deals with the detailed study
of analytic objects linked to algebraic number theory: Bernoulli polynomi-
als and numbers, the gamma function, and zeta and L-functions of Dirichlet
characters, which are the simplest types of L-functions. In Chapter 11 we
also study p-adic analogues of the gamma, zeta, and L-functions, which have
come to play an important role in number theory, and in particular the Gross—
Koblitz formula for Morita’s p-adic gamma function. In particular, we will
see that this formula leads to remarkably simple proofs of Stickelberger’s con-
gruence and the Hasse-Davenport product relation. More general L-functions
such as Hecke L-functions for Grossencharacters, Artin L-functions for Galois
representations, or L-functions attached to modular forms, elliptic curves, or
higher-dimensional objects are mentioned in several places, but a systematic
exposition of their properties would be beyond the scope of this book.

Much more sophisticated techniques have been brought to bear on the
subject of Diophantine equations, and it is impossible to be exhaustive. Be-
cause the author is not an expert in most of these techniques, they are not
studied in the first three parts of the book. However, considering their impor-
tance, I have asked a number of much more knowledgeable people to write
a few chapters on these techniques, and I have written two myself, and this
forms the fourth and last part of the book (Chapters 12 to 16). These chap-
ters have a different flavor from the rest of the book: they are in general not
self-contained, are of a higher mathematical sophistication than the rest, and
usually have no exercises. Chapter 12, written by Yann Bugeaud, Guillaume
Hanrot, and Maurice Mignotte, deals with the applications of Baker’s explicit
results on linear forms in logarithms of algebraic numbers, which permit the
solution of a large class of Diophantine equations such as Thue equations
and norm form equations, and includes some recent spectacular successes.
Paradoxically, the similar problems on elliptic curves are considerably less
technical, and are studied in detail in Section 8.7. Chapter 13, written by
Sylvain Duquesne, deals with the search for rational points on curves of genus
greater than or equal to 2, restricting for simplicity to the case of hyperelliptic
curves of genus 2 (the case of genus 0—in other words, of quadratic forms—is
treated in Chapters 5 and 6, and the case of genus 1, essentially of elliptic
curves, is treated in Chapters 7 and 8). Chapter 14, written by the author,
deals with the so-called super-Fermat equation 2P +y? = 2", on which several
methods have been used, including ordinary algebraic number theory, classi-
cal invariant theory, rational points on higher genus curves, and Ribet—Wiles
type methods. The only proofs that are included are those coming from alge-
braic number theory. Chapter 15, written by Samir Siksek, deals with the use
of Galois representations, and in particular of Ribet’s level-lowering theorem
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and Wiles’s and Taylor—Wiles’s theorem proving the modularity conjecture.
The main application is to equations of “abc” type, in other words, equations
of the form a + b + ¢ = 0 with a, b, and ¢ highly composite, the “easiest”
application of this method being the proof of FLT. The author of this chapter
has tried to hide all the sophisticated mathematics and to present the method
as a black box that can be used without completely understanding the un-
derlying theory. Finally, Chapter 16, also written by the author, gives the
complete proof of Catalan’s conjecture by P. Mihailescu. It is entirely based
on notes of Yu. Bilu, R. Schoof, and especially of J. Boéchat and M. Mischler,
and the only reason that it is not self-contained is that it will be necessary to
assume the validity of an important theorem of F. Thaine on the annihilator
of the plus part of the class group of cyclotomic fields.

Warnings

Since mathematical conventions and notation are not the same from one
mathematical culture to the next, I have decided to use systematically un-
ambiguous terminology, and when the notations clash, the French notation.
Here are the most important:

— We will systematically say that a is strictly greater than b, or greater than
or equal to b (or b is strictly less than a, or less than or equal to a), although
the English terminology a is greater than b means in fact one of the two
(I don’t remember which one, and that is one of the main reasons I refuse
to use it) and the French terminology means the other. Similarly, positive
and negative are ambiguous (does it include the number 0)? Even though
the expression “r is nonnegative” is slightly ambiguous, it is useful, and I
will allow myself to use it, with the meaning x > 0.

— Although we will almost never deal with noncommutative fields (which is
a contradiction in terms since in principle the word field implies commu-
tativity), we will usually not use the word field alone. Either we will write
explicitly commutative (or noncommutative) field, or we will deal with spe-
cific classes of fields, such as finite fields, p-adic fields, local fields, number
fields, etc., for which commutativity is clear. Note that the “proper” way
in English-language texts to talk about noncommutative fields is to call
them either skew fields or division algebras. In any case this will not be an
issue since the only appearances of skew fields will be in Chapter 2, where
we will prove that finite division algebras are commutative, and in Chapter
7 about endomorphism rings of elliptic curves over finite fields.

— The GCD (respectively the LCM) of two integers can be denoted by (a, b)
(respectively by [a,b]), but to avoid ambiguities, I will systematically use
the explicit notation ged(a, b) (respectively lem(a, b)), and similarly when
more than two integers are involved.
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— An open interval with endpoints a and b is denoted by (a,b) in the En-
glish literature, and by ]a,b[ in the French literature. I will use the French
notation, and similarly for half-open intervals (a,b] and [a,b), which T will
denote by ]a,b] and [a, b[. Although it is impossible to change such a well-
entrenched notation, I urge my English-speaking readers to realize the
dreadful ambiguity of the notation (a,b), which can mean either the or-
dered pair (a,b), the GCD of a and b, the inner product of a and b, or the
open interval.

— The trigonometric functions sec(z) and csc(z) do not exist in France, so
I will not use them. The functions tan(z), cot(x), cosh(x), sinh(x), and
tanh(x) are denoted respectively by tg(x), cotg(z), ch(x), sh(z), and th(x)
in France, but for once to bow to the majority I will use the English names.

— R(s) and I(s) denote the real and imaginary parts of the complex number
s, the typography coming from the standard TEX macros.

Notation

In addition to the standard notation of number theory we will use the fol-
lowing notation.

— We will often use the practical self-explanatory notation Z~o, Z>o, Z<o,
Z<o, and generalizations thereof, which avoid using excessive verbiage. On
the other hand, I prefer not to use the notation N (for Zxg, or is it Z~¢?).

— If a and b are nonzero integers, we write ged(a,b>) for the limit of the
ultimately constant sequence ged(a,b™) as n — oo. We have of course
ged(a, b)) = I, scd(an) p* (@) and a/ ged(a, b>) is the largest divisor of a
coprime to b.

— If n is a nonzero integer and d | n, we write d||n if gecd(d,n/d) = 1. Note
that this is not the same thing as the condition d? { n, except if d is prime.

— If z € R, we denote by |x| the largest integer less than or equal to = (the
floor of x), by [x] the smallest integer greater than or equal to x (the ceiling
of x, which is equal to |z] 41 if and only if z ¢ Z), and by |z] the nearest
integer to x (or one of the two if @ € 1/2 + Z), so that |z] = [z + 1/2].
We also set {z} =« — | ], the fractional part of x. Note that for instance
|—1.4] = —2, and not —1 as almost all computer languages would lead us
to believe.

— For any o belonging to a field K of characteristic zero and any k € Z>¢

we set
a\ ala—1)---(a—k+1)
(k) k! '
In particular, if a« € Z>( we have (2‘) = 0if £ > «, and in this case we will
set (‘z) = 0 also when k£ < 0. On the other hand, (‘z) is undetermined for
k<0if a ¢ Z;().
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— Capital italic letters such as K and L will usually denote number fields.

— Capital calligraphic letters such as K and £ will denote general p-adic fields
(for specific ones, we write for instance K,).

— Letters such as E and F will always denote finite fields.

— The letter Z indexed by a capital italic or calligraphic letter such as Zg,
Zy, Zi, etc., will always denote the ring of integers of the corresponding
field.

— Capital italic letters such as A, B, C, G, H, S, T, U, V, W, or lowercase
italic letters such as f, g, h, will usually denote polynomials or formal power
series with coefficients in some base ring or field. The coefficient of degree m
of these polynomials or power series will be denoted by the corresponding
letter indexed by m, such as A,,, By, etc. Thus we will always write (for
instance) A(X) = Ag X%+ Az 1 X9 1. ..+ Ay, so that the ith elementary
symmetric function of the roots is equal to (—1)"A4_;/Aq4.
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9. Bernoulli Polynomials and the Gamma
Function

We now begin our study of analytic methods in number theory. This is of
course a vast subject, but we will not deal with what is usually called “an-
alytic number theory,” but with the methods that are related to the study
of L-functions, which we will study in the next chapter. This essentially in-
volves Bernoulli numbers and polynomials, the Euler—-MacLaurin summation
formula, and the gamma function and related functions.

9.1 Bernoulli Numbers and Polynomials

9.1.1 Generating Functions for Bernoulli Polynomials

We start by recalling some properties of Bernoulli numbers and polynomials.

Definition 9.1.1. We define the Bernoulli polynomials By (x) and their ex-
ponential generating function E(t,x) by

tel® Bi(z)

et —1 W
k>0

E(t,z) =

and the Bernoulli numbers By by By = By(0).

The first few polynomials are By(z) = 1, Bi(z) = z — 1/2, By(z) =
22 — 2 +1/6, and Bs(x) = 2° — 32%/2 + x/2. Note that most of the results
that we give in this section for Bernoulli polynomials also apply to Bernoulli
numbers by specializing to 0 the variable x.

The reader will notice as we go along that more natural numbers would
be By /k instead of By. However, it is impossible to change a definition that
is centuries old.

Proposition 9.1.2. We have the following properties:

(1) By(x) = kBi1(2).

(2) Bi(x) is a monic polynomial of degree k.

(3) For k # 1 we have Bi(1) = By(0) = By, while for k = 1 we have
B1(1) =1/2 = B1(0) + 1. In other words, if we set 61 =1 if k=1 and
Ok,1 = 0 otherwise, we have By(1) = By + k1.



4 9. Bernoulli Polynomials and the Gamma Function

(4) By =0 if k is odd and k > 3.

(5) We have
By(z) = zk: (j) Bjzh I

=0

Proof. All these results are immediate consequences of the definition: (1)
is equivalent to % =tE(t,z), (2) follows by induction, (3) is equivalent
to E(t,1) — E(t,0) =t, (4) to the fact that E(¢t,0) +t/2 = (¢/2) cotanh(t/2)
is an even function, and (5) by formal multiplication of the power series for
e'* by E(t,0). O

It is immediate to check that (1) and (3) together with By(z) =1 in fact
characterize Bernoulli polynomials (Exercise 1).

In addition to the initial values By = 1 and By = —1/2, the first few
nonzero values are By = 1/6, By = —1/30, Bg = 1/42, Bs = —1/30, Byp =
5/66, Bia = —691/2730, B14 = 7/6, B1g = —3617/510. For instance, every
time that you meet the (prime) number 691, you must immediately think of
the Bernoulli number Bis.

Further immediate properties of Bernoulli polynomials are the following.

Proposition 9.1.3. We have

Bi(z +1) = By(z) + ka*~1 |

By(~x) = (=1)*(Bk(z) + kz" 1),
Bi(1— ) = (=1)"By() ,
"k
Z ( ,>yijj (x) = Bi(z +y), and in particular
Jj=0 /
=1
( ,)Bj (z) = k"1 | hence
=0
el
(.)szOfork;zél,
=0 M
' Bi(Nzx
S B x+]‘<[) :% for N € Zs, .
0<j<N

Proof. Tt is immediate that these formulas are equivalent respectively to
the trivial identities E(t,x + 1) = E(t,z) + te!®, E(—t,—x) = ¢'E(t,z) =
E(t,x)+te!®, E(~t,1—x) = E(t,x), E(t,z+y) = e E(t, 1), (¢! 1)E(t,z) =
te', and Y oy E(Nt,z + j/N) = NE(t, Nz). o
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Note that the formula for By(—z) generalizes the fact that By = 0 for
k > 3 odd. Like all formulas involving j/N for 0 < j < N, the last formula
is called the distribution formula for Bernoulli polynomials.

Bernoulli numbers and polynomials are by definition Taylor coefficients
of certain power series. Thus they occur in the Taylor expansion of a number
of classical functions, as follows.

Proposition 9.1.4. We have the following Taylor series expansions with
radii of convergence R indicated in parentheses:

B
cotanh(t) = — —|— Z 22]C Qk t2k=1 (R=m),
k=1
cotan(t) = L Z(—nk*lg% Bor o1 (R=r)
t = (2k)!
tanh(t Z 22k ( sz 2kl (R=1/2)
= 2k) '
B
tan(t) = Y (—1)F122R (2 — 1) 2Ll (R=7/2),
= (2k)!
1 sz
4 2(22k~1 _ 12k—1 _
s1nh ot Z: 2k)! (B=m),
1 k 1o (92k—1 Bok ok
- 2(2 —1)—=t R =
sin(t) ¢ g >(Qk)! ( ™
Z 22k B2k $2k—1 (R=r)
et 1 = 2k)!

Proof. By definition

cosh(t) et+et e*+1 1 2t
cotanh(t) = sinh(t) el —e ! e2—1 T

and since cotan(t) = i cotanh(it) the first two formulas follow. Next, we note
the trigonometric identity tan(t) = cotan(t) — 2cotan(2t), which immedi-
ately leads to the expansion for tan(t), and the one for tanh(t) follows from
tanh(t) = tan(it)/i. Next, we note that 1/(e! —e~%) = 1/(e! —=1) —1/(e** - 1),
giving the formula for 1/sinh(¢), hence for 1/sin(¢), and we also note that
1/(et +1) = 1/(e! — 1) — 2/(e? — 1), giving the last formula. The state-
ments about the radii of convergence can be proved either directly from the
asymptotic estimate for Bernoulli numbers that we will give below (Corollary
9.1.22), or from the fact that it is equal to the distance from the origin of the
nearest singularity. O

Corollary 9.1.5. We have
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1 1
M- s
and in particular the polynomial By (x) is divisible by x(x —1/2)(x — 1) when

k is odd and k > 3.

Proof. For the first formula we note that te/?/(e! — 1) = (t/2)/ sinh(t/2),
and the second statement follows from the vanishing of By, for & > 3 odd and
the fact that By (1) = By(0) for k # 1. O

Definition 9.1.6. We define the tangent numbers T for k > 0 by

By
T :2k+1 2k+1_1ﬁ.
g ( Vi1

Thus tanh(t) = Zk>1 Tor_1t2¢71/(2k — 1)! and similarly for tan(t). We
have Ty = —1, 15, = 0 for k£ > 1, and the first few values of T}, for k odd are
T =1,T3=-2,T5 =16, Ty = =272, Ty = 7936.

Corollary 9.1.7. The tangent numbers satisfy the recurrence

k

2k — 1
Z( )ng_llfork>0,
= 27 —1

and in particular Tog_1 € Z for all k > 1.
Proof. This immediately follows from the identity cosh(¢)tanh(t) =
sinh(¢), and the details are left to the reader. O
The fact that Ts,_1 € Z also follows from the Clausen—von Staudt theo-

rem that we will prove below (Exercise 59).

Definition 9.1.8. We define the Fuler numbers Ey for k > 0 by setting
FEok41 =0 for k>0 and

Bog41(1/4)
E — _42k+1 2k+1
2k 2k + 1

The first few values are Eg = 1, Es = —1, B4 =5, Eg = —61, Eg = 1385,
so once again if you meet the prime 61 in a computation, you may suspect
that it comes from Ej.

Proposition 9.1.9. We have

Bop(1/4) = Bak(3/4) = w = —2% (1 - 22,1_1> Bay

and the Taylor series expansions
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1 Eop o B
cosh(t) ;) et (B=T/2),

! —Z(l)kgz’;!t% (R=7/2).

cos(t) =
Proof. Multiplying the identity 1/(ef +1) = 1/(e’ — 1) —2/(e?* — 1) given
above by e'/2 and replacing t by 2¢t, we obtain
cosh(t) e*?+1 k!

k>1

Since cosh(t) is an even function, we first deduce that 22¥Bg;(1/4) =
Boi(1/2), and since B (1 — x) = Bag(x), we obtain the first formula. Fur-
thermore, since Bog11(1/2) = 0 for k > 0 by the above corollary, we have

. Bak+1 1/4)15

cosh (2k + 1)! ’

k>0

giving the formula for 1/ cosh(t), the last formula following by changing ¢
into t. a

Corollary 9.1.10. The Euler numbers satisfy the recurrence

2k
Z< J)EQJOfOTk>O

=0
and in particular Foy, € 7. for all k.

Proof. This immediately follows from the identity cosh(t)(1/ cosh(t)) =1
It also follows from the second formula of PI‘OpOSlthn 9.1.14 below applied to
x =y = 1/4. We thus have Ey = ZO<]<k ( )EQJ, from which we deduce
by induction that Ey is an integer for all k. a

Remark. Although Bernoulli numbers satisfy the recurrence Zj (k) B; =
0, which is very similar to the one for Ej, if we replace k by 2k and B by 0
when j > 1 is odd, the main difference is that this recurrence leads to

k—2
1 k

Bp_1=—+ E ()B
kao Jj

for k > 2, and the denominator 1/k implies that the By are not necessarily
integers (we will study some of their arithmetic properties in Section 9.5, and
in particular we will see that the only integral By is By = 1).
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Interestingly enough, although the natural generating function for Bernoulli
polynomials is the ezponential generating function E(t,x) =3, By (2)t* /K,
it is also possible to consider the ordinary generating function

S(t.a) = Y S

k>0

and I thank D. Zagier for pointing this out to me. We could of course consider
the generating function >, By (z)t* = S(1/t,x)/t, but the corresponding
formulas would be slightly more complicated.

It is easy to check that the series S(t, z) does not converge for any value
of t, but as a formal power series it makes sense, and we will also see that
even though the series is divergent we can assign to it a specific value. Note,
however, that in Chapter 11 we will see that it converges for all p-adic values
of ¢ such that [t| > 1, and that S(t,z) = v,'(t — 2 + 1) (which follows
immediately from Proposition 11.5.2 (2)), to be compared with Corollary
9.1.13, which is formally identical.

Proposition 9.1.11. We have
S(—t,—x)=-S(,2) — ——
St,x+1)=8St,z)+ ———

S(t—y,$) :S(t7$+y),

and in particular

St —1,z) =—-S(—t,—x) = S(t,z) +

(t —=)?
S(t,z) =S8t —=,0).

Proof. Using the formula for B,,(—x) mentioned above we have

By (—x) By () + kak—1

k+1 22k k

Sct-n) = Yy B 5 Bula) et
k>0 k>0

1 1 1
=-Str) - 5——==-St2)— —
proving the first formula, and the second follows similarly from the formula

for Bi(z + 1) (or from the first and the formula for By (1 — x)).
For the third, we use the formula for By (x + y), which gives
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St = S0 S (om0

k>0 j=0

=SB 00 S (D)t
j=0 k>j

= ZB YD (1 — /)=
7=0

proving the third formula. The final two follow from this and the first two.
O

Proposition 9.1.12. As a formal power series in t, S(t,x) is the Laplace
transform of E(t,x); in other words, we have formally

S(t, x) :/ e "EB(u, ) du .
0

Furthermore, fort > x — 1 the above integral converges absolutely.

Proof. The first statement is clear by expanding E(u, z) as a power series

in u since
/OO —tu kd k!
e "Mudu = ——,
o tk+1

and the second follows since the integrand is continuous everywhere and is
asymptotic to ue*@=171 as u — oo. O
Corollary 9.1.13. Fort > x — 1 we have

1

S(t,:c):1//(t—x+1):¢’(t—m)—m,

where ¢ = T'/T is the logarithmic derivative of the gamma function (see
Definition 9.6.13).
Proof. From Corollary 9.6.43 below we have

w’<s+1)=/ooovf_

SV

d
eflv

so the result follows from the proposition. ad

See also Theorems 9.6.48 and 9.6.49 for continued fraction expansions of

S(t,x).
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9.1.2 Further Recurrences for Bernoulli Polynomials

There are a great many useful recurrences for Bernoulli numbers and poly-
nomials. We begin with the following.

Proposition 9.1.14. For k > 0 we have

k X
3 (kﬁ) i Bjyi(x)  Bru(z+y) —y*!

2\ j+1 k1
Lk/2] k
3 k\ 1 Baji(x)  Brpa(r+y)+ (=1)"Bea(z —y)
S\ Y 2+ (2k + 2)y* ’
[k/2] k-1 k+1
3 kN 1 Byj(z) Brna(z+y)+ (D" Bz —y) —2
2 \2j-1) 97 2 (2k + 2)yF+1 '

Proof. We could give a proof of the first formula directly from the generat-
ing function, as we did for Proposition 9.1.3. It is however instructive to give
an alternative proof. After all, if we integrate with respect to = the formula
for Bi(z + y) given in Proposition 9.1.3 and use B} (z) = (j + 1)B;(x), we
obtain the result up to addition of a function of y, which is not easy to de-
termine. This approach almost never works. What does almost always work
is to use trivial transformations of binomial coefficients. Here we note that
for j > 1 we have (J) (k/])( 1), so that

"k (k-1
k (r) = b(x
+24j<j_1>BA) Br(z+y) ,

from which the first formula follows by dividing by k& and changing j into
j+1and k into £+ 1. The other two formulas follow by computing the sum
and difference of the first formula applied to y and to —y. a

Corollary 9.1.15. For k > 0 We have

T (M) Bl _ e 1
i) J+1 k+1°

i=o M

i(Zk)Bzﬁl z) a2 —(z—1)%

—~\2j) 2j+1 2 ’
53(2 )&J)_x%+m—n%_ 1
—\2j —1 27 2 2k+1"

k 2k
Z 2k 22] BQJ( ) 22k T — 1 _ 1
, 2j—1 2j 2 2k+1"
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Zk: 2% + 1\ Byj1(z) g2k H1 4 (g — 1)2k+1
j 25 +1 2 ’

Jj=

=0
i <2k + )ng(m) Pl (g )2 1

2i—1) 25 2 2k + 27

Z 2k + 1 22jB2j+1(£E):22k x_} 2k+1
: 2j 2j + 1 2 :

Jj=0

Proof. These formulas are obtained by suitable specializations to y = 1
or y = 1/2 of the formulas of the proposition. ad

Remarks. (1) If we want formulas involving B;(x) itself instead of B;(z)/j,
we simply differentiate with respect to z the formulas of the proposition
and of the corollary. We can of course differentiate several times. In-
versely, if we want formulas involving B;(z)/(j(j + 1)) for instance, we
must in principle integrate the given formulas, but as explained above this
will not glve the constant term, so we simply use as above the relation
( ) = (k/j)( ) for j > 1; see Exercise 23.

(2) Smce Bk(:rJr 1) and By (1 — ) have simple expressions in terms of By (z),
if we want to specialize again the above formulas (or their derivatives),
we may as well restrict to 0 < « < 1/2. Using the formulas By (0) = By,
Br(1/2) = —(1—-1/2¥"1)By, Bor(1/4) = —(1/22%)(1 —1/22%=1) By, and
the analogous formulas for Bay(1/3) and Bak(1/6) given by Exercise 10,
we obtain in this way a very large number of recurrence relations for
Bernoulli numbers. We can obtain even more such relations by replacing
directly « and y in the formulas of Proposition 9.1.14, for instance x =
y = 1/4 in the third formula. We also obtain the standard relation for
Euler numbers given in Corollary 9.1.10 by choosing @ = y = 1/4 in the
second formula. It is to be noted, however, that all these formulas have
approximately k terms; in other words, they express Bsj in terms of all
the By; for 1 < j < k. We are going to see that we can reduce this by a
factor of 2.

The second type of recurrence that we are going to study is not well
known, although it is essentially due to Seidel in 1877, and Lucas soon af-
terward. It has the advantage of having half as many terms in the sum,
and smaller binomial coefficients. I thank my colleague C. Batut for having
pointed it out to me.

Proposition 9.1.16. For any k and m in Zxo we have
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max(k,m)
() o)
— \\ i))k+m+i—j

(o

—xka:— m
=e(@=1) (k+m+1)("1m)

)

= Yo — )™ Y ((k 4+ m)z — k),

[(k—1)/2] ( k >BQk—2j(x) 7 :Ck(l'f 1)k (71)k+1

. . - 2k )
= \2j+1) 2k-2j 2 (4k +2)(3)

Lk/2]
k k+1Y\ Baky1-2i(z) k
— = -1 —1/2

]ZZ:O (<2j+1> +(2j+1>) hyi-g; o@Dl
(in all the above we recall that when k € Z=o we have (];) =017 <0 orif
Jj>k).

Proof. Consider z as a fixed parameter and set

E(t et B

Py = 200 _ Ly Binlo)

0
k>0 k+1 k

let D = d/dt be the differentiation operator with respect to ¢, and let I be
the identity operator. We begin with the following lemma.

Lemma 9.1.17. With the above notation we have
(e!D™(D + I)* — D*(D — I)™)F,(t) = 2" (x — 1)™e*" .

Proof. For simplicity write F, instead of F,(t). Leibniz’s rule can be writ-
ten in operator notation

N
N . .
DN(eFy) = [ ( ,)aN_Je’”DJ F, =e(D+al)VF, .
: J
j=0

If we apply D* to the defining identity e'F, — F, = e** we thus obtain
e'(D+ I)FF, — DFF, = 2%e**, so multiplying by e~! we have

(D+ D*F, — e 'D*F, = gFet®=1) |
and finally applying D™ we obtain
D™D+ 1)*F, —e (D — I)"DFE, = 2F(x — 1)me!®=1) |
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proving the lemma after multiplication by et. O

Proof of the proposition. Denote by G[0] (not G(0)) the constant term in
a Laurent series G(t). Taking constant terms in the lemma we obtain

k

> (?)( EDFTTTI R ( +Z J“( ) (DM B (4))[0] = 2 (z—1)™

=0

By definition we have (DN F,)[0] = By+1(z)/(N + 1), and

-1V NI Biinii(z)t?
DNFI t :( J+N+ v
®) tN+1 Zoj+N+1j!’

—I)NN! BN 1($) (—I)N BN 1(1‘)
tDNFa; t 0] = ( + — +

(e (1)10] (N+1)!+ N+1 N+1jL N+1 7
so replacing in the formula we obtain

k m— i max(k,m)
O 8 () o (et
iJktm—j+1 J J))k+m+1—j

J=0

= xk(x -nm

where the second sum starts at j = 1, since for j = 0 the binomial coefficients
cancel. Furthermore, we have

k 1 1
_— = tmt—lkdt
S ()= = [ e

_(_1\k ! m _n\k _ (_1)k
= [t = e

since it is easily shown by induction on k that

1
k!m! 1
t"™(1 -tk dt = =
/0 O = G L om0

(see Proposition 9.6.39 below for a more general formula). Replacing gives
the first formula of the proposition. The second immediately follows by dif-
ferentiating with respect to z, the third follows by choosing m = k in the
first formula, and the fourth by choosing m = k + 1 in the first formula and
subtracting the third. a

Corollary 9.1.18. For any k and m in Z>o we have

max(k,m) m
o (G () it -
: J i)) k+m+1—j (k+m+1)("t™)

j=0
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T ()

j=0
fork>1
[(k—1)/2] ( L ) Bok_sj (_1>k+1
o 2+ 2%-2  (@h+2())
fork>2
e k E+1 B R
j;) (<2j+ 1) " <2j+1>> B
and

Lk/2]
k k+1 2 o &
2 (<2j+1)+(2j+1>)4 Faroag = (97

Jj=0

Proof. The first four formulas follow by taking £ = 0 in the proposition
and using the formulas for the odd Bernoulli numbers. The replacement of
(—=1)7 by £(—1)*+™ and the fact that we begin at j = 0 removes the special
cases. The details are left to the reader. The last formula is obtained by
taking x = 1/4 in the last formula of the proposition. a

A restatement of the fourth formula is the following:

Corollary 9.1.19. For k > 2 we have

1k/2)
1 k+1
Bop= - > (2k—2j+1 Bop_oi .
T T Rk T 1) j:l( I+ )<2j+1) 2k=2j

We could of course restate in the same way the last formula to obtain a
shorter recurrence for Euler numbers, but it is not certain that this would be
any better than the standard one since the recurrence would involve nonin-
tegral rational numbers.

Thus, as mentioned above, we obtain a recurrence giving By as a linear
combination of the preceding Baj_2;, but only those with 2k — 25 > 2[k/2],
hence half as many as the formulas obtained using the more standard recur-
rences. Furthermore, the coefficients of the linear combinations are smaller
binomial coefficients since (forgetting the simple factor (2k — 25 + 1)) they
have the form (k;fl) instead of (ij).

9.1.3 Computing a Single Bernoulli Number

If we want to compute a table of Bernoulli numbers up to a desired limit, the
above recurrence or others are suitable. But if we want to compute a single
value of a Bernoulli number Bj, for k even, computing all the preceding B;
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up to By using recurrences is a waste of time and space since there exist
more efficient direct methods. We assume of course that k is even. The first
method is based on a direct formula for By, given in Exercise 26. The second
method is based on two results that we shall prove below (Corollary 9.1.21
and Theorem 9.5.14). One is the well-known formula

k21 2 k! 1
(2m)k

By = (-1 —
k= (=1) 5
m>1

which gives a very precise asymptotic estimate on the size of By. The other is
the Clausen—von Staudt congruence, which gives the exact denominator Dy
of the rational number By:

Dk: Hp7

(p—1)|k

where the product is over prime numbers p such that (p — 1) | k. It is thus
sufficient to compute an approximation Ay to Dy By, such that |Ay — Dy By| <
1/2, and the numerator of By, will then be equal to the nearest integer to Ag.
This indeed gives a very efficient method to compute an individual value of
By.

Note that the implementation of this method should be done with care.
We first compute the denominator Dy and k! in a naive way. We must then
estimate the number of decimal digits d with which to perform the computa-
tion, and the number N of terms to take in the zeta series. A cursory analysis
shows that one can take

d =3+ [di/log(10)] N =1+ [exp((dy —log(k—1))/(k—1))],
where
dy =log(Dg) + (k + 1/2)log(k) — k(log(27) + 1) + log(27) /2 + log(2) + 0.1 .

Thanks to Stirling’s formula the reader will recognize that d; is close to
log(Dy|Bk|), and the 3+ and 1+ are safety precautions. Note that the above
computations should be done to the lowest possible accuracy, since at this
point we only want integers d and N.

The computation of m can be done using many different methods, but
since anyway you will have to use a CAS for the multiprecision operations,
this is always built in. Of course 7% is computed using a binary powering
method.

When £ is large all this takes only a small fraction of the time, almost all
the time being spent in the computation of ((k) = Zm>1 m ™" to the desired
number of decimal digits d. Note that since k is large, ((k) is very close to
1. Once again there are several methods to do this computation, but in the
author’s opinion the best method is as follows. First, instead of computing
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the series ((k), we compute the Buler product 1/((k) = [],(1 — 1/p*), the
product being over all prime numbers up to the precomputed limit N. Second,
the multiplication of the current product P by 1 — 1/p* is not done naively
as P(1 — 1/p*) but as P — t(P,d — klog(p))/p", where t(P,d') is equal to
P truncated to the accuracy d’. Indeed, contrary to most computations in
numerical analysis, here we need absolute and not relative accuracy. Although
this is a technical remark it can in itself gain a factor of 3 or 4.

Note that when suitably implemented the above method is so efficient
that it can even be faster than the method using recurrences for computing
a table.

To give an idea of the speed, on a Pentium 4 at 3 Ghz the computation of
Bioooo requires 33 seconds using the formula of Exercise 26, but only 0.3 sec-
onds using the above method. The computation of all Bernoulli numbers up
to Bsooo requires 205 seconds using the standard recurrences given above and
26 seconds using the above method that computes each number individually,
which is indeed considerably faster.

9.1.4 Bernoulli Polynomials and Fourier Series

In this section we give a direct link between Bernoulli polynomials and cer-
tain Fourier series. This will later be useful for computing special values of
Dirichlet L-functions (see Section 10.3).

It is important to compute the Fourier series corresponding to the func-
tions By () for k > 1 (for k = 0 it is trivial), more precisely to the functions
obtained by extending by periodicity of period 1 the kth Bernoulli polyno-
mial on the interval [0,1[. We will denote by {x} the fractional part of x,
in other words the unique real number in [0,1[ such that z — {z} € Z, i.e.,
{z} =« — |«]. The function By({z}) is evidently periodic of period 1. The
result is as follows.

Theorem 9.1.20. (1) Forn > 2 even we have

cos(2rkzx —1)/2+ (o B, ({z
3 ( ) (=1 (2m)" By ({z})

kn 2 n!

k>1

(2) Forn > 1 odd we have

3 sin(2rkz)  (—1)"*Y/2 27" B, ({z})

kn N 2 n! ’
k=1
except forn =1 and x € Z, in which case the left-hand side is evidently
equal to 0.
(3) For x ¢ Z we have

cos(2mkx
3 (2ka)

= —log(2| sin(r)]) .

E>1
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Proof. (1) and (2). Since B, (1) = B,(0) for n # 1, the function B, ({z})
is piecewise C*° and continuous for n > 2, with simple discontinuities at the
integers if n = 1. If n > 2 we thus have

Bn({x}) _ Z Cn7k-62iﬂ-kx 7
k€Z
with L
Cnk = / Bn(t)e_%”kt dt .
0
For n = 1, the same formula is valid for z ¢ Z, and for 2 € Z we must replace
Bi({z}) by (B1(17) + B1(07))/2 = 0.

Using the definitions and the formulas B (z) = nB,_1(z) and B,(1) =
B, (0) for n # 1, by integration by parts we obtain for k # 0

n and 1
= — _ 11 = ——
k= Qi Lk k= ik
hence by induction
n!
k= T Qirk)n
On the other hand, we clearly have
By+1(1) — Bp4a(0
- +1(1) +1(0) _,

n+1
as soon as n > 1. Thus, with the above interpretation for x € Z when n = 1,
we obtain that for n > 1 we have

217rkr

Bleh =i

k+#£0

Separating the cases n even and n odd, and grouping the terms k and —k
proves (1) and (2).
For (3) we proceed differently. We have

cos(2mkx) eZimhe P
ZT:% Z ’ = —R (log(1 — €*™))

E>1 k>1
—log (’1 —e¥™|) = —log(2|sin(rz)])

proving the theorem. m]
Corollary 9.1.21. Forn > 1 we have

Z - n 1 (271')2nt
k:2” B 2 (2n)! '
E>1
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and for n > 0 we have

(CDF (DM 0P B (1/4) _ (S (/27 By,
2T

2k + 1)2ntl 2 (2n +1)! 2 (2n)!

k>0

In particular, the sign of Ba, is equal to (—1)"~! for n > 1 and the sign of
Es,, is equal to (—1)™ for n > 0, so both have alternating signs.

Proof. This is a direct consequence of the theorem by choosing = = 0 for
n even and x = 1/4 for n odd. Note that Zk>0(*1)k/(2k+ 1)1 > 0 since
it is an alternating series with decreasing terms. a

Note that these are special cases of Theorem 10.3.1, which we will prove in
the next chapter. Conversely, we can give an alternative proof of this theorem
using Theorem 9.1.20; see Exercise 35 of Chapter 10.

Corollary 9.1.22. Asn tends to infinity, we have

_12(2n)!
B ~ (=17 1
2n ~ (—1) (2m)2n
2(2n)!
Eop ~ (1) —— -
2 (=1) (mr/2)2n+1
Proof. Clear since Y, -, 1/k** and Y7, 5 o(— 1)*/(2k+1)?"*! tend to 1 as
n — oo. a

This corollary shows that, as already mentioned, most asymptotic expan-
sions involving Bernoulli numbers or Euler numbers will diverge, since (2n)!
grows much faster than any power of n. Only rare expansions which have an
expression such as (2n)! in the denominator may converge.

Examples.
1 72 1 7 1 76

D ETE W0 0B Zk8*945o

k>1 k>1 k>1
Z (—1)k - T (—1)k o 7'('3 Z (—1)k - 571'5

— 791, L 1\3 ~ 29’ 5 )
= 2k + 1 4 = (2k + 1) 32 = (2k+1) 1536
7

3 (-1)F  6lx 3 (-DF 2770
2k +1)7 184320’ 2k +1)° 8257536
k>0

Note also the following corollary, which is very useful for giving upper
bounds on the remainder terms in the Euler-MacLaurin summation formula.

Corollary 9.1.23. If n is even we have
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sup | By, ({})] = |Bn|
zeR
and if n is odd we have

7|Bn+1|
B < —F.
igﬁ‘ n({z})] 1

Proof. The first statement immediately follows from Theorem 9.1.20 and
the fact that | cos(2mkx)| < 1, with equality for all k if & = 0. This proof is not
valid for n odd. For n = 1 we have By (z) = x—1/2, hence sup, |B1({z})| =
1/2 < 7|B2/2|, since By = 1/6. For n > 3 odd, we have

T

SN €' G < ()
2((n+N¢(n+1) n+1l(n+1)°

It is easily checked that for s > 3 the function ((s)/{(s + 1) is decreasing,
S0 it attains its maximum value for s = 3, and the second result follows
since 2w((3)/¢(4) < 7. Note that one can prove the same result with 27
instead of 7, and that 27 is the optimal constant, but we do not need this
for applications since we only want to give a reasonable upper bound for the
error terms. O

9.2 Analytic Applications of Bernoulli Polynomials

Even though for us the main use of Bernoulli numbers is of number-theoretic
nature, as we shall see for special values of L-functions (we have already
seen some examples above) and, as we shall see in Chapter 11, in congru-
ence properties leading to the definition of p-adic zeta and L-functions, it
is important to note that they are also essential for purely analytic reasons,
mainly because of the Euler-MacLaurin summation formula.

In addition to the above section on generating functions and recurrences,
we will thus devote four sections to Bernoulli polynomials. The present sec-
tion and the next deal with the analytic properties, i.e., essentially those
linked to the Euler-MacLaurin formula, Section 9.4 deals with x-Bernoulli
polynomials; and Section 9.5 deals with the arithmetic properties of Bernoulli
numbers.

9.2.1 Asymptotic Expansions

We begin by recalling the definition of an asymptotic expansion. Even though
we can define this in a more general setting, we will assume that we deal with
asymptotic expansions at infinity.
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Definition 9.2.1. Let uy be a sequence of complex numbers. We will say
that a sequence (a,,) is the sequence of coefficients of an asymptotic expansion
(at infinity) of un if for every k >0, as N — oo we have

un =ap+ 2 4 92 4 9k L h1/NFY

N N2 Nk
where we recall that f(N) = o(1/N¥) means that N*¥f(N) tends to 0 as
N — oo.

It is easy to see by induction on k that an asymptotic expansion, if it
exists, is unique. However, I emphasize the fact that in practice it is quite
rare that the corresponding power series Zj>0 a; /N7 converges; in other
words, the power series > >0 ajz? usually has a radius of convergence equal
to 0. Nevertheless, by abuse of notation we will write

UN = Gg + 3 N ~ + ﬁ +-
when it is understood that it is an asymptotic expansion in the above sense,
and not a convergent power series.

Even though the series converges nowhere in general, we can usually use
an asymptotic expansion to compute uy numerically to quite high accuracy,
by bounding the error term o(1/N*). We will see below as applications of the
Euler-MacLaurin summation formula many examples of asymptotic expan-
sions, of bounds on the error terms, and of numerical computations. For the
moment consider the following example.

Example. Let uy be defined by

ooeft
uNzeN/ —dt
N t

(this is equal to eV By (N), see Section 8.5.3). Successive integration by parts
shows by induction that

0! 1! 2! w1 (k—1)! e N [ et
It is easy to show that this defines an asymptotic expansion in the above
sense, so we will write

N k—1
7dt _— . —1 - 7 S
¢ /N ¢ A ERE (=1) NF

knowing that this expansion converges for no value of N. From the explicit
expression of the remainder term it is however clear that uy is always be-
tween two consecutive terms (this is very frequently the case in asymptotic
expansions), and in particular the error is less than the absolute value of the
first neglected term. If for instance we choose N = 40, taking k = 40 we see
that the error is less than 40!/40*" < 2-10718 so that we can compute very
accurately the value of uyg (we obtain uysg = 0.024404115079628577. . .).
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In practice we generalize the notion of asymptotic expansion in two ways:
first by allowing a finite number of auxiliary functions of N such as positive
powers of N, powers of logarithms or exponentials, etc., either additively or
multiplicatively; second by allowing the expansion to be in powers of some
other function of N than 1/N, most frequently 1/N'/? or more generally
1/N® for some « > 0.

9.2.2 The Euler—-MacLaurin Summation Formula

The Euler-MacLaurin summation formula is a simple but powerful tool that
enables us to solve (for instance) the following problems:

— Find the asymptotic expansion of the Nth partial sum of a divergent series.
— Find the asymptotic expansion of the Nth remainder of a convergent series,
and consequently considerably accelerate the convergence of the series.

— Find the asymptotic expansion of the difference between a definite integral
and corresponding Riemann sums, which allows us to compute much more
accurately and much faster the numerical value of the integral.

— Determine whether a given series converges by comparison with the corre-
sponding integral.

We will see several examples of all of this. The general Euler-MacLaurin
formula is not complicated, and is easy to prove, but this does not prevent
it from being very useful. Taylor’s formula is of a similar kind, and in fact
Bourbaki calls formulas analogous to Euler-MacLaurin generalized Taylor
expansions.

Although we could directly state and prove the formula, we prefer to begin
with some preliminary remarks. We have seen above that B, (z+1)— B, (z) =
nz"~ 1. This should be compared with the identity (z")" = naz""!. Here the
operation is derivation, and the antiderivative of nz”~1 is ™. In our case, the
operation is close to the derivation, it is the difference operator f(z+1)—f(x),
and the “antidifference” of na™ ! is B,, (). This is why Bernoulli polynomials
(and numbers) are so important in everything having to do with sums, as we
will see in the Euler—-MacLaurin summation formula.

The aim of this summation formula is to give an asymptotic expansion
for a general sum of the type >,y f(m), where f is a regular function
(for instance real analytic) on R. Before giving a formal and rigorous proof,
we will use a heuristic argument that is useful in other contexts. Denote by
D the derivation operator d/dt. If f is an entire function, we have by Taylor’s
expansion

(k) mk Dk
fomy =Y w0 (Z ,f)(f)(O) = (@ )0).

k>0 k>0

in a reasonable operator sense. Thus
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IS eND -1
m
Z f(m) = Z e f (O)Z(ele>(O)
0<m<N—1 o<m<N -1

- (6;1:1f> )~ (=1f) .

since all power series operators in D commute and once again by Taylor we
have eMP f(0) = f(N). By definition 1/(e” —1) =1/D+3,-,(B;/5)D'~".
The operator 1/D is of course the antiderivative operator, i.é., the integral,
hence the above formal reasoning leads to the formula

= [ s Y B - 1500

0<m<N 1 j=1

This heuristic reasoning is essentially correct, but we have not taken into
account the convergence conditions since in general the series that we have
obtained is not convergent. In fact, the goal of the Euler-MacLaurin sum-
mation formula is to give an asymptotic expansion of the left-hand side, not
an exact formula. The precise theorem is as follows, which we give in a more
general form.

Theorem 9.2.2 (Euler—-MacLaurin). Let a and b be two real numbers
such that a < b, and assume that f € C*([a,b]) for some k > 1. Then

/f ar+ 32 C L (BT 0) - By({ahy ()

a<m<b Jj=1

meZ
—1 b
+ CO [ ws a

Proof. We give a clean proof, using (very little) the language of distribu-
tions, and explain very briefly afterward how to avoid it.

By the basic properties of Bernoulli polynomials, we know that B, ({t}) =
kBy_1({t}) for k > 2, except for k = 2 on a set of measure zero (the integers).
Furthermore, Bf ({t}) = Bo({t}) — 0z (t), where z(t) is the Dirac distribution
concentrated on Z. Thus, if we set

s N LIOENIT

integration by parts gives for k > 2

k-1
Ry = U (BN 0) — By{a)f (@) + Rucr

For k = 1 we first assume that a ¢ Z and b ¢ Z. Integration by parts gives
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B2 = Bi@HIO) ~ Billahs@) - [ 10 @+ Y s

a<m<b

Furthermore, we note that Ry = Ry (a,b) is a continuous function of ¢ and b,
and it is easily checked by letting a or b tend to integers that the right-hand
side of this formula is also continuous, so it is valid for all a and b, integral
or not. Using the recurrence on Ry we thus obtain

k

Rk=2<_?_j_l( (NI 90) - Bi({a}) 9V (@)

/f ydt+ > f(m)

a<m<b

proving the theorem.

To avoid the (very elementary) use of the Dirac distribution, we proceed
as follows. Setting ap = |a] and by = |b], we split the integral into the sum
of an integral from a to ag + 1, of integrals from a9 + i to ag + 7 + 1 for
1 <i<by—ap—1, and of an integral from by to b. We then perform the
same integrations by parts as above on each individual integral, and putting
everything together we of course obtain the same result. ad

The following corollary gives three alternative forms of the Euler—-MacLaurin
formula, which for simplicity we give only for b = a + N with N € Z3, so

that {b} = {a}.
Corollary 9.2.3. Leta € R, N € Zxg, and k € Z>;.
(1) If f € C*(la, N + a]) we have

N-1 N+a
> fmta) = [ f dt—i—z - (FUDN +a) — FO(@))+Ri(f N)
m=0 a .

_ o—1 N+a
win R, = COL [ 0B apy

(2) If f € C?*([a, N + a]) we have
Z f(m+a) /N+af(t)dt+f(N+a2)+f(a)

m=0

o

J=1

(f(ZJ D(N +a)— f(zj_l)(a)) + Roi(f,N) ,

1

N+a
with Boy(f.N) =~ / OO (1) Bo ([t — a}) dit
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(3) If f € C%:([1, N]) we have

N N
JIN) + (1)
> fm) / ()dt+f

m=1
k

( FED(N) — f(Qj—l)(l)) + Raw(f, N) ,

1 N
with Ra(f:) =~ 51 / OB (1) By ({1)) dt

Note that the main term of the last formula is equivalent to the one
that we have obtained by our heuristic reasoning. Note also that we use the
notation Ry(f, N) with slightly different meanings.

Proof. For (1) we apply the theorem to a = 0 and b = N, replace the
function f(¢) by f(t+ a), and subtract f(N + a) — f(a). Formula (2) follows
by changing k into 2k and using the values of the odd Bernoulli numbers.
Formula (3) follows from (2) by choosing a = 1 and changing N into N — 1.

O

Corollary 9.2.4. Let f € C*([a,c[) for some a € R. Assume that both
the series » f(m) and the integral foof t)dt com;erge and that the

m2=a
derivatives fI=V(N) tend to 0 as N — oo for 1 < j < k. Then
"B
/ f t_i_z 2Jf2j 2 )+R2k(faN)a
m= N+1 ]:1
with
Row(f,N) = — )(t) Bax ({t}) dt
(fN) =~ (1) Bax({2})
Proof. Immediate and left to the reader (Exercise 52). O

Remark. If it is inconvenient to compute the successive derivatives of the
function f, we could hope to replace them for instance by the iterated forward
differences obtained by iterating (6f)(t) = f(t+1) — f(¢) (or by the centered
differences f(t+1/2) — f(t —1/2) if preferred). In this case, we would need a
formula involving this operator instead of the derivative operator D = d/dt.
This is where the heuristic reasoning made at the beginning comes in handy:
by Taylor we have § = e” — 1, hence D = log(1 + 6). Thus the operator
1/(e? —1) that is involved in the Euler-MacLaurin formula can be rewritten
formally as

LS S G S N S SR B
el -1 D eP-1 D) D § log(l1+4d)/) "
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Thus if we define the §-Bernoulli numbers by by

t B br ik
log(1+1t) = k! ’
we have
1 _ i bﬁék—l
eP—1" D k!
k>1

From the formal Euler—-MacLaurin formula we can thus deduce an asymptotic
expansion for } 3, -y, f(m+a) involving the antiderivative operator 1/D
and the iterates of the forward difference operator instead of the iterates of the
derivative operator. An analogous argument also holds for similar operators
(everywhere-convergent power series in D with zero constant term).

9.2.3 The Remainder Term and the Constant Term

To use the Euler-MacLaurin formula (usually in the form of Corollary 9.2.3)
we must give an estimate for the remainder term. We give it for the second
formula of the corollary, the third being obtained by replacing [a, N +a] with
1, N].

Proposition 9.2.5. Assume that f € C?**2(Ja, N + a]) and denote by
Topt2(f, N) the first “neglected term” in Corollary 9.2.3 (2), in other words
Torso(f, N) = (Bagya/(2k + 2))(fEHD(N 4 a) — fP++1)(a)). Assume that
f@R+2(t) has constant sign on [a,a + N|. Then

(1) The remainder term Rap(f, N) has the same sign as Topro(f, N) and
satisfies | Rop (f, N)| < 2(1 — 2725 72)[Top o (f, N)|.

(2) If, in addition, f € C***4([a,a+ N]) and f**+1(t) are also of constant
sign on [a,a + N] then |Rak(f, N)| < |Tar+2(f, N)|; in other words, the
remainder term is in absolute value smaller than the first neglected term.

The term Togyo(f, N) is of course not to be confused with the tangent
numbers Toj_1.

Proof. (1). For notational simplicity set K = 2k + 2, and let ¢ = £1 be
such that e f(5)(t) > 0 for t € [a, N + a]. Since |Bk(t)| < |Bg| for t € [0,1]
(Corollary 9.1.23) we have

% N+a (K) ‘ ‘ N+a )
Rt M) < B oo an < Bl [T go0 6y
< Bl (e 4 a) = 0 ) < e, V)1

On the other hand, applying Corollary 9.2.3 to k and to k + 1 it is clear
that Ror(f,N) = Tk (f,N) + Rk (f,N). Since we have just proved that
|Ri(f,N)| < |Tk(f,N)| it follows that Rox(f,N) has the same sign as
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Tk (f,N) and also that |Ror(f,N) < 2Tk (f,N). To obtain the slightly
stronger inequality given in the proposition we write

BK N+a
Te(fN) =2 [ W,
so that

1

Rok(f,N) =Tk (f, N)+Rk(f,N) = i

N+a
/ U (6)(B—Br ({t—a})) dt |

By Exercise 15 we have |Bx — Br ({t — a})| < 2(1 — 27%)|Bg|, proving (1).
(2). Applying (1) to 2k + 2 instead of 2k, for ¢t € [a, N + a] we have

sign(Rogt2(f, N)) = sign(Topra(f, N)) = sign(Boy4) sign(f2*T4(2))

= —sign(Boy2) sign(f 2 (1)) = — sign(Tars2(f, N)) |
where sign(0) agrees with any value of +1. Since Ro(f, N) = Tor12(f, N) +
Rop+o(f, N) it follows that |Rak(f, N)| < |Tak+2(f, N)| as claimed. O

The following is another useful form of the Euler-MacLaurin formula,
where we introduce the notion of “constant term,” used by Ramanujan with-
out any justification.

Corollary 9.2.6. Let k > 1, and let f € C*([a, o).

(1) Assume that the sign of f%*)(t) is constant on [a,o0[ and that f*=1(t)
tends to 0 as t — oo. There exists a constant z(f,a) such that

N-1 N+a k—1 B] G-1)
fmta) =afa)+ [ f@)d+Y LI (N0 +RASN)
m=0 a j=1
where

(-DF [

Rk(f’N): k! Nt

FP () (Br({t — a}) — By) dt

tends to 0 as N — oo.

(2) Let ko > 1 be an integer. If the sign of f*)(t) is constant and f*=1(t)
tends to 0 ast — oo for all k = ko, then for k > kg the constant zi(f, a)
is independent of k. It will be simply denoted by z(f,a) and called the
constant term of the formula, and we have the following identity, valid
for any fixed k > ky:

k

. . _1\k—1 00
A0 = -3 2@ + S [T Owm - apar.

=
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Proof. By the Euler-MacLaurin formula, we have for all £ > 1

N-1 N+a
> fm+a) =a(faN)t [ dt+z BN +a),
m=0 a

where

k o _1\k—=1 pN+a
alaN) = =3 2@+ S0 [ 0B - ) a

Jj=1

Since the sign of f*)(t) is constant it follows that the above integral is
bounded in absolute value by sup,cp 1 |Be(t)|| fE=D(N + a) — fED(a)).
Since by assumption f(k_l)(t) tends to 0 as t — o0, it is in particular
bounded, and it follows that the integral [ F®) () By ({t—a}) dt is absolutely
convergent. Thus 2z (f,a, N) = zx(f, a) + Ix(f, N) with

k

2(f,a) = — Z Bi -1 (q) + 71,3;671 /Oof(k)(t)Bk({t—a})dt

jl

and

—1)k foe

() = S8 [ 008G - ) a
k! N+a

Since the integral of f(*)(t)By({t — a}) converges (absolutely) at infinity,

It (f,N) tends to 0 as N — oo. Finally, by assumption f*~1(N + a) also

tends to 0 and we have

B B e
ZEp-D(N 4 a) = — =2 F® (@) dt

! K xia

proving (1).

If in addition we assume that f(*)(¢) has constant sign and that f*=1(¢)
tends to 0 as t — oo for all k& > kg, then subtracting (1) for k& from (1) for
k + 1 we obtain

0= 2ti1(f,) = 24(f>0) + 25 FED(N +a) + (1)

so letting N — oo and using the fact that f*~1(¢) tends to 0, we deduce
that zx41(f,a) = zk(f,a), hence that z;(f,a) is indeed independent of k,
proving (2). O

9.2.4 Euler—-MacLaurin and the Laplace Transform

See Section 9.7.4 for more details on the Laplace transform. Recall the fol-
lowing definition:
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Definition 9.2.7. Let g be a piecewise continuous function on [0,00[ such
that for all a > 0, the function g(t)e™* tends to 0 as t — oco. We define the
Laplace transform L(g) of g by the formula

L(g)(x) = / Tty dr

Thanks to the assumptions on g it is clear that £(g) is well defined and
defines a holomorphic function on R(x) > 0, and that

L(g)® (@) = (-1)* /OOO e~ thg(t) dt = (~1)"L(t"g)(x) .

In addition, note that by Fubini’s formula we have

oo —at _ ,—bt
/[, dm—/ %g(t)dt.

Applying this with ¢g(¢) = 1, hence L£(z) = 1/z, and a = 1 gives the well-
known and important formula

oo -t _ ,—xt
log(x) = / % dt .
0

The relation between the Laplace transform and the Euler—-MacLaurin
formula is clear: if f(x) = L(g)(z), then for instance

o) —Nt

> fm / e swar.
1<mEN et -1
From this we obtain both a formula for the sum of the infinite series if it
converges (or more generally for the constant term z(f, 1) defined above) by
letting IV tend to infinity, and a formula for the remainder term in Euler—
MacLaurin by expanding 1/(e* — 1) in terms of Bernoulli numbers and using
the formula given above for f*)(N).

Since there are many forms of the Euler—-MacLaurin formula, there are as
many expressions for the remainder term and the constant term. We give the
following:

Proposition 9.2.8. Keep the above assumptions on g and set f(x) =
L(g)(x). For k > 1 we have

(1)

_1\k—1 pN+a
S [ o aa

:/Oo < - J - 1) ( —at _e—(N+a)t> dt |
0 _
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(2) If f satisfies the assumptions of Corollary 9.2.6 (1) then

_1\k [o©
Ri(f,N) = ( kl!) /N+ FE @ (Be({t — a}) — By) dt

k—1

> 1 7Bj i—1 | _—(N+a)t
:7/0 g(t)(et_lzﬂtﬂ >e< Mt .

Jj=0

Proof. Immediate from the above remarks and left to the reader (Exercise
31). Note that the result is false for k = 0. ad

Corollary 9.2.9. Keep the above assumptions on g and assume that f and

all its derivatives have constant sign and tend to 0 as t — oo. With the
notation of Corollary 9.2.6 we have

(=L [T (-a-5) @

[z 1 1\
7/0 g(t)<1—e—tt)6 dt .

Proof. Simply take k = 1 in the proposition. a

Examples. As examples of the proposition and its corollary, we give the
following formulas. The functions I'(x), ¢ (x), and (s, x) will be defined and
studied in more detail below.

Proposition 9.2.10. (1) For R(s) > 0 and z > 0 we have

xl—s {t — x} 1 o0 ps—le—at
1) = — dt = dt .
C(s,o+1) s—1 S/L s+l I'(s) /o et —1

(2) In particular, for R(s) > 0 we have

1 < {t} 1 et
¢(s) s—1 * 8/1 tstl F(s) /0 et —1

(3) For x>0 we have

{t

Yz +1) =log(x

1 oo eft efta:
=1 g = — dt .
0g()+/0 <t €_1>e /0 (t et—1>

(4) In particular,

o {t} o0 1 et
=1- —dt = — dt .
v /1 t2 /0 (et—l t )
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(5) For x> 0 we have

log(T(z + 1)) = (30 + ;) log(z) — 7 + %1og(277) @),

where

Ct—x}—1/2 >~ /1 1 1\ e %t
x 0 e = 3

so that - . ot
log(T'(z + 1)) = / (g;e - _e> dt .
0

(6) In particular,

1 > {t} —1/2 /1 et 1 dt
= =1 — L dt= - —— - —.
5 log(2m) +/1 ; dt /0 ; 5 o1 7

Proof. All the results except (5) and (6) are direct consequences of the
definitions and of the proposition and its corollary. For (5) and (6), the for-
mulas involving fractional parts come from Euler—-MacLaurin, the formula for
log(27)/2 coming from Stirling’s formula (see below). It is to be noted that
the integrals are only conditionally convergent. If you are uncomfortable with
this, do an integration by parts to obtain formulas involving Bs({t}), which
will be absolutely convergent.

For the Laplace-type formulas we integrate the formula for ¢)(z + 1), use
Stirling’s formula, do some rearrangements, and use the Laplace formula for
log(x) seen above. The details will be seen below when we study the gamma
function (Proposition 9.6.29 and Corollary 9.6.31). O

If we assume only that f is a holomorphic function of = for R(x) > 0, but
not necessarily given as a Laplace transform, we have the following.

Proposition 9.2.11 (Abel-Plana). Assume that f is a holomorphic func-
tion on R(z) > 0, that f(z) = o(exp(27|](2)])) as | (z)] — oo uniformly in
vertical strips of bounded width, and that f and all its derivatives have con-
stant sign and tend to 0 as x — oo in R.

(1) If a > 0 we have

> fla+it) — f(a—it)

S dt .

z(f,a) 7—1—1

(2) If a > 1/2 we have
1/2

2(f,a) = ; fla—1/24t)dt

* fla—1/241it) — f(a —1/2 — it)
627Tt+1

dt .
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Proof. See Exercise 33. ad

Remarks. (1) If f(z) = L(g)(z) this proposition implies Corollary 9.2.9;
see Exercise 29.

(2) The formula is usually given in the first form. However, the second one
is better suited for numerical computation since there is no problem in
computing the integrand close to ¢t = 0, while with the first form we must
use some sort of Taylor expansion to obtain the result accurately.

9.2.5 Basic Applications of the Euler—-MacLaurin Formula

As already mentioned, the Euler—-MacLaurin formula has many applications.
We begin with the easiest.

Proposition 9.2.12. For every k > 1 we have

k
1 k+1 k+1 )
k _ k+1 k k+1—
-— (N NS B Nk+1-i
mn k+1< T +j_2< j > i )

Bii1(N) = Bry1(0) _ Bry1i(N +1) — Biya(0)
k+1 k+1 ’

N

m=1

= Nk 4

and more generally

Z (m+ )k = By y1(N +x) — Bryi () _

o<m<N k+1

Proof. Immediate application of Euler-MacLaurin with f(t) = t*. The

proposition is also easily proved directly using Proposition 9.1.3. O
Examples.
N N
_ N(N+1) N(N+1)(2N +1)
mZ:1 m= 2 ’ Z m’ 6 ’
N N
Zm3: N2(N +1)? Zm N(N +1)(2N +1)(3N? + 3N — 1) .
m=1 4 7 =1 30

Proposition 9.2.13. Let a € C be different from —1.
(1) For every k > R(a) + 1 such that k > 1 we have

o k

a @ __ Na+1 N JNa J+1 R N
Zm —C(—Oé)-‘r ++Z<31) + Ry(a,N) ,

m=1 J=
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Ri(a, N) = (~1)* <g) /Noo 1=k B ({t)) dt

When k is even we have

R V)| < \(

)

o Bit2 —k—1
N&
k+ 1) k+2

in other words, |Ry(a, N)| is smaller than the modulus of the first omitted
term, and in particular Ri(«, N) tends to 0 as N — oo.
(2) With the same assumptions, we have the formula

(0) =~ —i (2) 2o (3) [ et e

Proof. The first statement follows directly from the Euler—-MacLaurin for-
mula and Proposition 9.2.5, apart from the determination of the constant.
Fix some integer ko > R(a) 4+ 1 such that kg > 1, and let f,(t) = ¢t*. For all
k > ko the sign of fék)( t) is constant and f(k 1)(t) tends to 0 as t — o0, 0
that we can apply Corollary 9.2.6. The first formula applied to f,(t), a =1,
and N replaced by N — 1 gives

N—-2 k

Netl— 1  Ne a \ B ,
1 = ) ZJ ya—itl 1) .
E (m+1) 2(fa, 1)+ ot 5 +j§:2 <j_1> 7 +o(1)

m=0
Adding N“ to both sides shows that the constant is equal to z(fs,1)—1/(a+
1).

Now using again Corollary 9.2.6 (2), we obtain that for any fixed k > kg
we have

2(far1) Z( _1) . (1)“(2) /100takBk({t})dt

From this formula it is immediately obvious that for all & € C the function
2(fa, 1) is a complex differentiable function of «, hence a holomorphic func-
tion. On the other hand, for @« < —1 in the formula that we have proved we
may choose kg = 1, hence

1 Notl e 1
1) — 4 0(1) = 2(fa, 1) - ——
Zm ol = =g+ oo+ 5 Tol) = 2(fa ) = g Fol1)

and since the left-hand side converges to ((—«), we deduce that z(f,,1) =
((—a) + 1/(a+1). Since this is true on an open subset of C and both sides
are meromorphic functions, it is true for all @ € C such that a@ # —1, proving
(1). Statement (2) follows by taking N = 1. O

On the other hand, for « = —1 we have the following.
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Proposition 9.2.14. (1) For k > 1 we have
N

Z; 1ogN+v+i—Z Jf\m (-1,N),

m=1

where v is Euler’s constant and

quﬁwzjffFHMﬁnﬁ

When k is even we have

| B2
Ri(—1,N)| < —=2k+2l
| k( ) )| (k+2)Nk+2
in other words, |Ri(—1, N)| is smaller than the modulus of the first omit-
ted term.
(2) Fork > 1 we have
1 . > 1-k
= d T Br({t}) dt
1=zt X2 (1)

Jj=2
(3) We have limg_1(¢(s) —1/(s — 1)) =

Proof. (1) is again a direct application of Euler-MacLaurin and the defi-
nition of v, and (2) follows by choosing N = 1. If we choose k = 1 in (2) of
the preceding proposition with o = —s we obtain

1

()= —+ 35— s/loot_s_lBl({t})dt

so by absolute convergence

tig (¢ 25 ) =5 - [ =

by (2). O
Examples.
N
> — =logN+7+O0(1/N),
m=1
N
> = =2VN +¢(1/2)+ O1/VE),

[

m=

> Vm = fN\/>+ \F+c( 1/2) + O(1/VN) .

m=1
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An important practical question is how to compute Euler’s constant
(or ¢(—a), or other constants of the type z(f,a) occurring in the Euler—
MacLaurin formula). It is out of the question to use the above definition
since the convergence is much too slow. The whole point is that one can use
the Euler-MacLaurin formula with suitably chosen parameters N and n.

As a toy example, assume for instance that we do not want to use Bernoulli
numbers B; for j > 12. We will thus use £ = 12 in the formula. Since all the
conditions of Proposition 9.2.5 are satisfied, we deduce that the modulus of
the remainder 715 is bounded by

|B14| 13! 1

141 N1 12N14
Thus if we only take N = 10, we obtain 15 decimal digits of the cor-
rect result, using only the partial sum of the first ten terms plus a few
corrective terms coming from the Euler-MacLaurin formula (we obtain
v = 0.577215664901533.. . .).

The same method can be used for many other sums or limits of the same
kind. For instance, we can easily compute to 15 decimal digits any reasonable
value of ((s); see Exercise 42.

If we choose f(N) = log N, the summation formula immediately gives
Stirling’s formula in the following weak form:

log(N!) = (N +1/2)log N — N + C + O(1/N)

for a certain constant C. As above, it is easy to compute C numerically. The
asymptotic expansion given by Euler—-MacLaurin is
By By

1-2N+3~4N3

log(N!)<N+;>logN—N+C+ +-
However, the constant C' can also be computed exactly. Classically this is
done using Wallis’s formulas (see Proposition 9.6.22). However, a more so-
phisticated, but more natural, way to compute it is to take the derivative
with respect to « of the formulas of Proposition 9.2.13. Let us explain how
this is done, since it can be used in other situations (see Exercise 44). Assume
that R(«) < 1, so that we can choose k = 1. We have

a+1 «@ [e%e}
N +N——a/ Lt} — 1/2)dt .
N

N
T;lma:C(_o‘)J’ a+l ' 2

Differentiating with respect to o and setting o = 0, we obtain
N
1 > {t} —1/2
S logm = —¢'(0) + Nlog N — N + 51ogN—/ W12y,
m=1 N

Since the last integral tends to 0 as N — oo, we deduce that our constant C'
is equal to —¢’(0) = log(27)/2, as we will see in Section 10.2.4.
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Remark. As already mentioned, if you are uncomfortable with the condi-
tionally convergent integrals that occur in the above reasoning, simply choose
k = 2 instead of k = 1. Everything will be absolutely convergent but the com-
putations will of course be slightly longer.

The reader is strongly advised to solve Exercise 44 for analogous results.

The Euler-MacLaurin summation formula also permits the determination
of the convergence behavior of certain series. We give the following example.
Let x be a nonzero real number and let a € R. We want to know the behavior
(convergent or divergent) of the series

g >, sin(zlogm)
- Z me .
m=1

Since | sin(zlogm)| < 1, if a > 1 the series trivially converges absolutely, and
if & < 0 the general term does not tend to 0, so the series diverges. We can
thus assume that 0 < o < 1.

We use Euler-MacLaurin with £ = 2, obtaining

ﬁ: sin(z logm) _ /N sin(z logt) g+ sin(z log N) v
1

me e 2N«

m=1

with N
x cos(xlogt) — asin(zlogt)
.- /1 Bi({t}) = dt .

Since By ({t}) is bounded and av+ 1 > 1, it is clear that the integral defining
rq is absolutely convergent as N — oo, and in particular has a limit. The
term sin(tlog N)/(2N®) tends to 0 as N — oo. It follows that our series has
the same convergence properties as the integral. In the integral we make the
change of variables t = ¢*, and we obtain

N . log N
logt &
/ sin(zlogt) ,, _ / sin(u)el= gy |
1 0

ta

It is now an easy exercise (for instance by explicit computation) to show that
for 0 < a < 1 the integral does not converge as N — oo, and so neither
does our series (there are, of course, other ways to prove this, for instance by
grouping terms such that exp(kn/|x|) < m < exp((k + 1)x/|z|)).

9.3 Applications to Numerical Integration

It is clear that in the opposite direction to the above examples, the Euler—
MacLaurin formula gives approximations of integrals by sums, which often
allows the numerical computation of these integrals. It is to be stressed from
the start that our goal is to give high-precision approximations to integrals,
not only 15 decimal digits, say.
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9.3.1 Standard Euler—-MacLaurin Numerical Integration

We begin with a direct application of Euler-MacLaurin. In the next subsec-
tions we will give little-known but very powerful methods for high-precision
numerical integration.

Let f € C"([a,b]), where [a,b] is a finite interval. When N is large the
integral from a to b of f can be reasonably well approximated by the Riemann
sum

=

b—a

N—
> fla+m(b—a)/N).

m=0
The Euler-MacLaurin formula allows us to state this much more precisely,
and as usual gives us both an asymptotic expansion of the difference and an

efficient method to compute the integral numerically.

Proposition 9.3.1. Let [a,b] be a finite closed interval, and assume that
f € C*([a,b)) for some k > 1. Then for any integer N > 1, if we set h =
(b —a)/N we have

/bf(t)dtzhz_:f(a+mh)+hf(b)gf(a)
@ m=0

- Bi i (-1 (p) — $G-D
X (£9790) - 97V (@)

1)k b
+ S | 1B —aym i

Proof. For t € [0, N], set g(t) = f(a + ht) and apply the formula to the
function g on the interval [0, N]. Since gU)(t) = h? fU)(a 4 ht), we obtain

N—

3 f(b) — f(a)

N
f(aJrhm):/O fla+ ht)dt — 5

m=0
k
n Z_; %hy‘—l (fu—l)(b) _ f(j—n(a))

-~ N
+ | 1@ By

hence by making the change of variables a + ht = ¢’ in both integrals we
obtain
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N-1

’ - a
> ot =5 [ sy LOZI

m=0

k
B; i i
+;7!Jhy 1 (f(J D) — fu U(a))

_1)k—1 b
+ S [ OB - ayhp e

hence, transferring to the left the integral that we want, we obtain the desired
formula. 0

Remarks. (1) To avoid the term h(f(b) — f(a))/2, it is neater to replace
the asymmetrical Riemann sum Zogmg N_1 by the symmetrical sum

Zggmng where the ’ indicates that the extremal terms m = 0 and
m = N must be counted with coefficient 1/2.

(2) In the sum from j = 2 to k we can of course restrict only to j even, and
we may also choose k even (or k odd) as desired.

Example. Let us use the above formula to compute log 2. We choose f(t) =
1/(1 + t), whose integral from 0 to 1 is equal to log2. We have fU)(t) =
(=1)751/(1+t)?*t and f(m/N) = N/(N +m). We deduce that for all ¥ and
N we have

k

N —j 1

log2= > NI o (Ul S L/ BNt oy
o N+m AN o= N NE Jo (14 t)ktt

To bound the remainder, we choose as usual k even, and we can then bound
|Br({Nt})| by |Bk|. We bound 1/(1 + )**! by 1, and we deduce that the
remainder is bounded by | Bg|/N*. Choosing k = 12, we see that with N = 10
the remainder is bounded by 3-107!3. Thus, as usual with Euler-MacLaurin,
by dividing the interval of integration into only 10 subintervals, and adding
a few corrective terms, we obtain 13 decimal digits of the result.

9.3.2 The Basic Tanh-Sinh Numerical Integration Method

We now consider a little-known but much more powerful method, due to
Takahashi and Mori, see [Tak-Mor] and [Mori], which the author learned
from [Bor-Bai-Gir]. Apart from the evident fact that this method is quite
recent, the main reason that this method is not widespread is that the usual
practitioners of numerical integration are engineers and numerical analysts,
who in general do not need more than 15 correct decimal places. In contrast,
in number theory we often want to identify certain integrals using linear
dependence techniques (see Section 2.3.5). For this we often need hundreds
if not thousands of decimal places, and the standard methods are totally
unsuitable for that purpose.
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Assume first that FF € C°°(R) is such that for all k¥ > 0 the derivatives
F®)(z) tend to 0 as |z| — oo at least as fast as 1/|z|® for some o > 1, and let
h be a small positive parameter. Applying Corollary 9.2.3 with N replaced
by 2N and f(t) replaced by F(h(t — N)), we obtain the following formula
valid for all k > 1:

N e F(N)+ F(=N)
h m;NF(mh) _ /_ R e

By h2I _ ,
- (22];;' (F (QJ‘WN)—F(?J‘”(—N)) + B2 Ry (F,N)
j=1 '
with N
1 )
Ran(FN) =~ [ PO @Bt
(2k)! J_y

From the assumptions on F' we can let N tend to infinity and we obtain the
simple estimate

|/°O P(t)di—h i F(mh)

m=—0o0

g CZk h2k+1 3

with B -

Cor = '@;’;!' e
In other words, for such functions F', as h tends to 0 the difference between
the sum and the integral tends to O faster than any power of h. In actual
practice the convergence is usually (although not always) at least as fast as
e~ ¢/l for some C' > 0; see Exercise 47.

Now let f € C°°(]—1,1]) be integrable on [—1, 1] (it may have singularities
at the endpoints). The fundamental trick is as follows. We introduce the magic
function ¢(t) = tanh(sinh(¢)). This function has the following evident proper-
ties: it is a one-to-one odd map from R to |—1, 1[, and as t — +oc it tends to
+1 doubly exponentially fast; more precisely, sign(t) — tanh(sinh(¢)) behaves
approximately like 2/ exp(exp(|t])). Thus the function F(t) = f(o(t))¢' (¢)
will certainly satisfy our assumptions above, and in fact its derivatives will
tend to zero extremely rapidly (and in particular F'(¢t) will be in the so-called
Schwartz class). Changing variables and applying the above remark based on
Euler-MacLaurin we obtain

[ @i [ T W)W dt=h S F(émh)d (mh) + R(h) |

m=—0o0

where the remainder term R(h) tends to 0 very fast.
If f is a meromorphic function in C, and not only a C*° function on R, it
can be shown that |R(h)| < e~ ¢/l for some C' > 0, and that with N function
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evaluations we can reach an accuracy on the order of exp(—CN/log(N)) for
some (other) C' > 0.

Remark. It can also be shown that double-exponential convergence at in-
finity is optimal: choosing for instance functions giving triple-exponential
convergence would give worse results. In particular, as we will see below, it
is necessary to adapt the magic function ¢(t) to the class of functions to be
integrated.

Assume for instance that we want to compute the integral with an accu-
racy of approximately 500 decimal digits (this would be completely impossible
with classical methods). We note that, due to the doubly exponential behav-
ior, we have ¢(t) < 10759 for ¢t > 7.05, so we sum only for |m| < 7.05/h.
Although it is not easy to estimate R(h) accurately we try successive values
h =1/2" for r = 2, 3, etc., until the value of the sum stabilizes. For instance,
for 500 decimals, h = 1/2% is almost always sufficient.

Since this method is so useful we give an explicit algorithm essentially
copied from [Bor-Bai-Gir] (the case in which we want to integrate on more
general intervals than [—1,1] is studied in the next section). The algorithm
needs to be given a small integral parameter r such that h = 1/2", which is
found empirically by trying two or three values (for instance, as mentioned
above we choose r = 8 for 500 decimal digits).

Algorithm 9.3.2 (Tanh-Sinh Numerical Integration) Given an integra-
ble C*° function f on |—1, 1[, an accuracy ¢, and a small integral parameter r > 2

as above, this algorithm computes an approximation to f_ll f(z) dx of order e.

1. [Initialize] Set h « 1/2", e; « e, es « 1, i « 0.

2. [Fill Arrays z[] and w[]] Set ¢ « ex + 1/e3, s < ez — ¢, e3 « 2/ (e** + 1),
z[i] =1 — e3, w[i] « ce3(1l + x[i]), ea < eres. If e3 > ¢, set i« i+ 1 and
go to Step 2. Otherwise set w([0] «— w[0]/2, n «— i, S < 0, and p — 2" (n
will be the largest index i for which we have computed x[i] and wli]; it will
never exceed 20 - 2").

3. [Outer Loop] Set p < p/2 and i < 0.

4. [Inner Loop] If (2p) tiorif p=2""1 thenset S « S+wli](f(—=z[i])+f(z[])).
Set i« i+ p, and if i <n go to Step 4.

5. [Terminate?] If p > 2 go to Step 3; otherwise, output pS/2" and terminate
the algorithm.

Steps 1 and 2 should of course be done once and for all, independently of
the function f.

9.3.3 General Doubly Exponential Numerical Integration

The above method computes f_ll f(x)dx in a quite general setting, but one
in which f must be a C'**° function and have at most reasonable type singular-
ities at the endpoints +1. We now consider more general cases. We start by
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splitting the integral into a sum of integrals where the possible singularities
are at the endpoints, so we assume that we are in this case. For integration
on a finite interval [a,b] we of course use the formula

b b—a (! b+a b—a
/af(;c)dx: 5 /_1f( 5 + 5 x)dw.

For integration on a semi-infinite interval [a, co| (or symmetrically |—oo, a])
we could use a change of variable x — 1/z, but this would give wild singular-
ities at 0. Thus in these cases it is better to use other integration methods of
“doubly exponential” type, similar to the tanh-sinh method. For instance, for
an integral of the form I = fooc f(x) dx, where f tends to 0 not too rapidly
as © — oo (for instance like 1/2™ for some n > 1). we may use the change
of variable x = exp(K sinh(t)) for some constant K > 0, and write that I is
very well approximated by

h Z f(exp(K sinh(mh))) K cosh(mh) exp(K sinh(mh)) .
me”L

On the other hand, if f tends to 0 exponentially fast as x — oo, say as
exp(—z) for some a > 0, then we may use the change of variables z =
exp(t — exp(—t)) and write that I is very well approximated by

h Z flexp(mh — exp(—mh)))(1 + exp(—t)) exp(t — exp(—t)) .
meZ

It is essential to adjust the change of variable to the rate at which f tends to
0 at infinity (if it does! but see below for oscillatory functions). For instance,
if f tends to 0 as exp(—g(x)) for some strictly increasing function g going to
oo with z we should use the change of variables = g~ (exp(t — exp(—t))).
See Exercise 48 for [7_ f(x)dx.

None of the above solutions is satisfactory for dealing with an oscillatory
integral. Let us consider a typical example. Assume that we want to compute
o sin(z)/x dz. The change of variable gives

0o - 1 . 1 .
/ sin(z) e :/ sin(z) dx—i—/ sin(1/x) dr .
0 x o T 0 r

and the singularity of the function sin(1/x)/z at * = 0 is too wild to be

accessible to any integration method. We must therefore proceed differently.

Once again there are two completely different methods: one consists in trying

to save what we can from the tanh-sinh method; the other is to choose another

function ¢(t). We consider first what we can salvage of the tanh-sinh method.
Assume that we want to compute an integral of the form

| stistds.
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where s and f are C* functions satisfying the following additional properties
(note that much weaker assumptions are possible):

(1) The function f(x) is nonnegative and decreases monotonically to 0 as
T — 00.

(2) There exists a “half-period” P > 0 such that s(x + P) = —s(x) for all
(hence s(z + 2P) = s(x)), and such that s(z) > 0 for x € [0, P].

We can then write

(k+1)P

/aoo s(x)f(x)dx = /ao s(x)f(x) dm+}§/kp s(2)f(z) dz

0
:/ s(@)f(z)do+ Y (-DFIy,

k>0

where »
Ik:/ s(z)f(z+ kP)dx .
0

Each individual integral can be computed using the tanh-sinh (or any other)
method, and note that the values of s(x) for z € [0, P] (more precisely of
s((P/2)(1 £ z[i])) for 0 < 7 < n in the notation of the algorithm) should
be computed and tabulated once and for all since they are used in all the
integrals.

The infinite alternating sum will in general converge very slowly. However,
there is a nice trick due to F. Rodriguez-Villegas, D. Zagier, and the author
for accelerating alternating series in a very simple manner as follows (see
[Coh-Vil-Zag]).

Algorithm 9.3.3 (Alternating Sums) Given an “alternating” series S =

Ek;o(_l)kfk and an accuracy &, this algorithm computes an approximation to

S of order e.

1. [Initialize] Set n « [0.57|log(e)[], d «— (14+v/2)?", d « (d+1/d)/2, b+ —1,
c— —d, s 0, k0.

2. [Loop] Set c «—b—c¢, s — s+cl, b— (k+n)(k—n)b/((k+1/2)(k+ 1)),
k—k+1 If k<n—1goto Step 2; otherwise, output s/d and terminate
the algorithm.

The (easy) proof of the validity of this algorithm for a wide class of
sums (not only alternating, and not necessarily convergent) is given in
[Coh-Vil-Zag].

Applied to our specific problem, it gives a reasonably efficient method
(although much slower than standard tanh-sinh integration) for integrating
reasonable oscillatory functions on an infinite interval.

The second method consists in changing the function ¢(t). Contrary to
the preceding methods we must choose ¢ depending on the summation step
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h. Assume that the integral has the form fooo sin(x) f(z) dx, where f(x) is as
above, and in particular nonoscillating. The above-mentioned authors show

that the choice (x /)t
™
z = ¢(t) = .
1 — exp(—sinh(t))
leads to an excellent doubly exponential method. It should be stressed that

this is specific to an integral from 0 to infinity, and with the specific oscillating
function s(z) = sin(z). This leads to the following:

(1) For an integral whose lower bound is not 0, write

/:o sin(x) f(z) de = /Ooo sin(z) f(z) dz — /Oasin(x)f(x) dz |

the second integral being computed by ordinary tanh-sinh integration.
(2) If s(z) = sin(kx), write

/000 sin(kx) f(x) dx = ]16/000 sin(z) f (%) dz .

(3) If s(z) = cos(kx), write

/OOO cos(kz) f(z) da = ;/:2 sin(z) f (‘T ‘km) dz

and then use (1).
(4) If s(x) is a general periodic function, compute its Fourier coefficients and
apply the above.

Although more complicated to use practice, this is much faster than the
use of alternating sums as above.

Examples. To compute our initial example fooo sin(x)/x dx we apply di-
rectly the above method with f(x) =1/, s(x) = sin(x), and P = .

To compute [, sin®(z)/2? dx we first write sin®(z) = (1 — cos(2z))/2, so
that

/OO sin? () dr — 1/”/4 1 — cos(2x) d:v—f—l/oo 1 l/oo cos(2z)
0 IEQ 2 0 IQ 2 /4 1'2 2 /4 "132

1 /"/41—608(233) 2 1 /Oo sin(2:)
0 0 (

de + 21 =
x2 ThTty r+7/4)2

2

and this last integral is computed by the above method with f(x) =1/(x +
7/4)%, s(x) = sin(2x), and P = /2.
To the required accuracy we obtain the well-known values (see Proposition

9.6.38

) 00 : 00 1.2
/ sin(x) i _/ sin“(z)
0 x ) r2 2
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9.4 x-Bernoulli Numbers, Polynomials, and Functions

We now want to generalize the Euler-MacLaurin summation formula to more
general sums of the form ; Xx(J)f(j), where x is a periodic arithmetic func-
tion, for instance x(j) = (—1)7, or x a Dirichlet character (see the next
chapter). For this we must generalize Bernoulli numbers and polynomials.
Thus we let x be a function from Z to C that is assumed to be m-periodic
with m € Zx1, in other words such that x(r +m) = x(r) for all r € Z, where
m is not necessarily the minimal period. We do not necessarily assume that
X is a Dirichlet character.

9.4.1 x-Bernoulli Numbers and Polynomials

There are essentially four possible definitions of the y-Bernoulli numbers and
polynomials, which differ only slightly from one another. Each definition has
advantages and disadvantages. The most common one, found for instance in
[Was], is mainly given for its application to p-adic L-functions, but is not well
suited to the xy-Euler-MacLaurin formula or, for that matter, to special values
of L-functions when y is not necessarily a character. We will use a slight
variant of that definition, which has the advantage of being more elegant
in many formulas, and of exactly generalizing ordinary Bernoulli numbers
and polynomials, but which gives slightly less uniform formulas for p-adic
L-functions.

Definition 9.4.1. We define the x-Bernoulli polynomials By(x,x) by

E(x,t,r) = te'®

ZO<r<m X Bk X7
6mt - Z
k>0

and the x-Bernoulli numbers By(x) by Bi(x) = Br(x,0).

The definition of the x-Bernoulli numbers (hence implicitly of the x-
Bernoulli polynomials) used in [Was] and many other places consists in re-
placing the sum from 0 to m — 1 by the sum from 1 to m. This has the effect
of replacing By (x, ) by Bi(x,z) + x(0)kx*~1, so that in particular the x-
Bernoulli numbers themselves differ from the present ones only when k =1
and x(0) # 0, which in the context of Dirichlet characters means that x is
the trivial character.

Since there is an important alternative definition of Bernoulli numbers
and polynomials, it is essential to introduce the following definition, which
will enable us to use both definitions concurrently.

Definition 9.4.2. For any function x defined on Z we define the function
X~ by x™(n) = x(—n).



44 9. Bernoulli Polynomials and the Gamma Function

Thus, if x is a Dirichlet character we have y~
to X, X~ is not a Dirichlet character when x(—
arithmetic function.

= x(—1)x, so that, contrary
1) = —1, but only a periodic

Lemma 9.4.3. We have

—rt

Pi<rem X(T)E _ Z Br(x~,z) i .

1 —emt

tet®

Proof. Immediate and left to the reader. ad

See also Proposition 9.4.9 below.

The alternative definition would be to use Bi(x ™, ) as x-Bernoulli poly-
nomials. We will see that this is indeed the natural definition to use in many
applications.

Proposition 9.4.4. We have By(x,z) = kBi_1(x, ).
Proof. Clear since (d/dz)E(x,t,xz) = tE(x,t, ). O

Proposition 9.4.5. We have the following formulas:

7 '] o<r<m
r Ny
Bl =t 30 o (5) =3 () B s 0.
o<r<m 7=0

where Sn(X) = 20<r<m X(r)rn'

Proof. The first formula follows from the identity F(x,t,z) = e* E(x, t,0).
The second follows from

mte((w-}-r)/m)mt
emt — 1

0y B (2 e

o<r<m k>0

Bluta)=— 3 x0)

by definition of Bernoulli polynomials. The third formula follows from By (z) =

E?:o (’;) B;zF~7 and the last two are obtained by specializing to z = 0. O

For example,
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o<r<m

x(r) <r2 —mr + n:) .

o<r<m
For future reference, note the following results.
Corollary 9.4.6. If x € Z>( we have

w5 x4 (T0) = Btk 3D o

o<r<m osr<e

Proof. Indeed, for any function f and x € Z> 0 we have

Yo flatry= Y f)= Y0 f)+ Y (flrm) = f(r),

o<r<m r<r<m-4x o<r<m os<r<e

so the formula follows from By (z + 1) — By(z) = kz*~! and the proposition.
O

Lemma 9.4.7. If m | M then

Blvn) =M S0 s ()

o<r<M

Proof. Write n = M/m, and for 0 < r < M let r = gm + s with 0 <
s <m and 0 < ¢ < n. By the distribution formula for Bernoulli polynomials
(Proposition 9.1.3) we have

MY x(r)Bk(”“"Ay)zM'f-l S ) Y B (x;jﬂ)

n
o<r<M o<s<m 0<g<n
M

S YRCLAC o

0<s<m

— bl Y X(S)Bk(zﬂts>=Bk(va)

0<s<m

as claimed. ad
Proposition 9.4.8. We have

Bi(x,z+m) = Bi(x,z) + k Z Yz + 1)k
o<r<m
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Proof. Follows from the formula

E(x,t,x+m) — E(x,t,z) =t Z x(r)e@Hnt
o<r<m

Proposition 9.4.9. (1) We have
Bi(x, —2) = (=1)*(Br(x ", ) + x(0)kz" 1),
or equivalently,
Bi(x™,x) = (~=1)*Bi(x, —z) — x(0)kz""" .

In particular, Br(x~) = (—=1)*Br(x) — x(0)x,1, where we recall that
o1 =11ifk=1, and dx1 = 0 otherwise.

(2) In particular, if x is an even function then By(x) =0 for k > 3 odd and
Bi(x) = —x(0)/2, while if x is an odd function then By(x) = 0 for all
k > 0 even.

Proof. An easy computation shows that
E(x™,t,x) — E(x, —t,—x) = —x(0)te*" ,

which is clearly equivalent to the first formula, and the other statements
follow by specializing to = = 0. a

The above proposition will be used in particular when x is a Dirichlet
character.
9.4.2 x-Bernoulli Functions

Definition 9.4.10. We define the x-Bernoulli functions and we denote by
Bi(x,{z}y) the functions defined for x € R by

Bi(x. {eh) =m* " 3 x(r)By ({erD '

r mod m

Note that since x(r) and {(z+r)/m} are periodic functions in 7 of period
dividing m it is not necessary to specify the precise range of summation for
r, so we simply write r mod m. It is clear that By(x,{z},) generalizes the
function By ({z}), and that By (x, {0}y) = Br(x).

Proposition 9.4.11. The x-Bernoulli functions satisfy the following prop-
erties:

(1) We have Bo(x,{z}y) = Bo(x) = So(x)/m.
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(2) We have

Bi(x. {z}y) = Box. {z}x) = D _x~(1d(x) ,
reZ

where 0, is the Dirac distribution concentrated at the point r.

We have By, (x,{z}y) = kBr—1(x,{z}y) for allk > 1 and all = ¢ Z.
The function By(x,{z}y) is continuous for k > 2.

We have [)" Bi(x.{z}y)dz =0 for k > 1.

If n € Z we have

lim By (v, {e},) = Bix. {n}y) and

r>n

lim Bi(x: {z}) = Bi(x {nh) +x7 () -

x<n

D O = W

NN N N
o — — —

(7) On any interval |r,r + 1] with v € Z the function By(x,{x}y) is a poly-
nomial of degree less than or equal to k.

(8) For k > 2 we have Bi(x,{z}y) € C*72(R).

(9) Br(x,{z+m}y) = Br(x,{z}y) for allz € R and k > 0.

Conversely, the sequence of x-Bernoulli functions is the only sequence satis-
fying properties (1) to (5) above.

Proof. All these properties are essentially clear from the definition and
the basic properties of ordinary Bernoulli polynomials. For instance, let us
prove (2) and (8). An easy exercise in distributions (Exercise 50) shows that

{x+r} :7_25% (@)

qEZ

and (2) immediately follows. Property (8) follows from the fact that By ({z}) €
C*=2(R). The easy proofs of the other properties are left to the reader (Ex-
ercise 50).

Let us now prove the converse. Let Cy,(z) be another sequence of functions
satisfying the first five properties above and set Dy (z) = Ci(x)—Br(x, {x}y)-
We prove by induction that Dy = 0. This is clear for £ = 0. For £ = 1 we
have D/ (z) = 0 in the sense of distributions, so Dy (z) is a constant, and this
constant is 0 since fom Di(x)dx = 0. Assume now k > 2 and that Dy_; = 0.
By (3) the function Dg(z) is constant on any interval |r,r 4+ 1] with r € Z.
But since k > 2, by (4) we know that Dy (z) is continuous on R. It follows
that Dy(z) is constant on R, and as in the case k = 1 this constant is 0 since
fom Dy.(x) dz = 0, proving the proposition. O

In the context of this proposition, which is the key to the y-Euler—
MacLaurin formula, it is clear that By(x~) would be a better definition of
the y-Bernoulli numbers. In fact, we have the following:
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Proposition 9.4.12. We have

Br(x: {=a}hy) = (=) Be(x ™ {z}x) = X(2)80,20k.1 ,

where 657 =1 if x € Z and 6, 7 = 0 otherwise.

Proof. Left to the reader (Exercise 51). Note that this generalizes Propo-
sition 9.4.9. ad

Proposition 9.4.13. For z € Ry we have

Bulx fohy) = Bulxoa) —k 3 % ()@ — )"

1<r<z

Proof. Denote by Rj(z) the right-hand side of this formula. We could
show that Ry(x) satisfies the first five conditions of Proposition 9.4.11, but
it is easier to reason directly. Set Cy () = Yy, X~ (r)(z —r)* L. If 2 >0
we have

Cr(x+m) = Z X~ (r)(@+m—r)kt

1<r<z+m

= > x(M@tm-nfT+ > ) @+m—r)!
1<r<m m+1<r<z+m

= > X (MN@+m—r)"+Chlz),
1<r<m

so that
y Br(x,z+m) — Bi(x,
Culetm) ~Cul) = 3 x(r)(a 4! = DT EM = Bl )
o<r<m

by Proposition 9.4.8. It follows that Ry(x) = Bi(x,z) — kCk(x) is periodic
of period dividing m, as is the left-hand side of the equality to be proved, so
we may assume that 0 < z < m. In that case

Bi(x. {z}y) =m*" Y x(r)Bs ({xZD

o<r<m

:mkl( > x(r)By (x;T>+ > x(rBx (z:;r—1>)’

o<r<m—x m—x<r<m

so by Proposition 9.1.3,

Bi(x, feh) =m* " Y x(r)By ("E;’")k S X @+ —m)r

o<r<m

m—x<r<m

=Bilx,x)—k Y x (r)@—rr"

1<r<e
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after changing r into m — r, proving the proposition. ad

Note that even for x = 1, in other words for ordinary Bernoulli polyno-
mials, the above proposition gives the not completely trivial formula

Bi({z}) = Bua) =k 3 (e —r)F",

1<r<x
which is of course an immediate consequence of the formula By(x) = k(x —
1)*! + By(x —1).

Since the x-Bernoulli functions are the natural generalizations of the func-
tions By, ({z}), it is natural to compute their Fourier expansions as periodic
functions of period m. Recall from Definition 2.1.38 that we have defined
Gauss sums by the formula

rva)= 3 X
r mod m

Proposition 9.4.14. For n > 2 we have the Fourier expansion

n[mn—l

(2im)™

Z 7(x: k) Q2imha/m

Bn(x,{z}y) = — L

kEZ, k#£0

Forn =1 this formula must be modified as follows: the right-hand side must
be understood as a symmetrical summation, in other words as the limit as
N — oo of the sum for |k| < N, and the left-hand side must be changed to

Bi(x, {z}y) + x(z)/2 if w € Z.
Proof. We have seen above that the function B, (x,{z}y) is piecewise

C* and continuous for n > 2, with simple discontinuities at the integers
if n = 1, and periodic of period (dividing) m. Thus for n > 2 we have

Br (X, {}y) = D kez Cnk exp(2imkaz /m) with

1 m )
Cnk = —/ B, (x, {t}X)e*%”kt/m dt .
m 0

For n = 1 the same formula is valid for x ¢ Z, and for 2 € Z we must replace
Bi(x. {z}y) by (Bi(x,z") + Bi(x,27))/2 = Ba(x. {z}y) + x(x)/2.

For k = 0 and n > 0, we have ¢, o = 0 by property (5) of Proposition
9.4.11. For k # 0 and n > 2, by integration by parts we compute that
ek = (nm/(2imk))cn_1 , so that ¢, x = (ntm"~1/(2ink)" 1)ey k. For k # 0
and n = 1, by integration by parts we find that

.
L (™ oiekey
_ itkt/m 5—7" t) dt
Clk /0+ e 5 X(r)d—r ()

2k
reZ
_ 1 2imkr/m __ T(X k)
=5 2 e T 2ink

r mod m
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proving the proposition. As before, it is immediate to transform this proof
into one not using distributions explicitly. ad

9.4.3 The x-Euler-MacLaurin Summation Formula

The y-Euler-MacLaurin formula, which is the exact generalization of Theo-
rem 9.2.2, is the following.

Proposition 9.4.15. As above, let x be a periodic arithmetic function of
period (dividing) m, let a and b be two real numbers such that a < b, and
assume that f € C*([a,b]) for some k > 1. Then

b
> xnf0) =By ) [ sy

a<r<b
re’

k .
+ 3 S8 (B0, 01079790) - By ), 0797V @)

1
A

k 1
T / SO @B (i) dt

Proof. The Bernoulli functions have been defined exactly in order for this
proposition to be valid, and as can clearly be seen, in the present context it
would have been much better to choose By (x ™, x) as definition of y-Bernoulli
polynomials. By their basic properties, if we set

k=1 b
R ) = S0 [P @BGC k) @

then for k£ > 2 integration by parts gives

k-1
Ry, £) = S (B0 010 £5700) B {074 @)
+ kal(X_a f) .

For k =1, as in the proof of Theorem 9.2.2 we first assume that a and b are
not in Z, in which case we obtain

Ra(x™, f) = F(0)Ba(x™ {b}y) — fa)Ba(x™ {a}y)

— Bo(x /f ydt+ Y x

a<r<b
reZ
We then note that R1(x—, f) = Ri(x~, f,a,b) is a continuous function of a
and b, and that the right-hand side of the above equality is also continuous,
since by Proposition 9.4.11 (6), for n € Z we have lim, .y, z>n B1(X ™, {z}y) =
Bi(x~,{n}y) and limy_.;, z<n B1(x ", {z}y) = B1(x ", {n}y)+x(n), and the
result follows. O
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Corollary 9.4.16. If N € Zx is such that m | N and if f € C*([0, N]) we
have for k > 1

S xS Bo/f

0<r<N

k
430 B (100 () — 0(0)) + Rae ).

j=1
with
(=D Y -
Rl ) = [ FO0BOC (o dr
: 0
Proof. This follows from the above proposition and the formulas

B;(x~ . {0}x) = Bj(x7) = (1)’ B;(x) — x(0)d;.1

coming from Proposition 9.4.9.

Corollary 9.4.17. If m | N and k > 0 we have

Z () (@ + 1) = Biy1(x, N +2) — Bry1(x, @) .

0<r<N k+1

Proof. Clear. O

This corollary exactly generalizes Proposition 9.2.12.

Corollary 9.4.18. Assume in addition that f € C¥([1,00]), that both the se-
ries y,~1 X(r) f(r) and the integral J1° f(t) dt converge, and that the FO(N)
tend to 0 as N — oo for 0 < j<k-—1. Thenfork>1fwehave

0 k ) )
> a0 0) = Bol) [ sayan— Yy B pimn)
N = Y

r>N :
(_l)kfl

el ML O U T
k! N
Proof. Immediate and left to the reader (Exercise 52). O

Examples. As a first example we choose x(r) = (—=1)"~1, so that m = 2 and
So(x) = 0. By the explicit formulas for By (x) and for By(1/2) we find that
for all k& we have By (x) = (—1)*2¥1(B(1/2) — Bx(1)) = — (2% — 1)By,. For
instance, choosing f(t) = 1/t we obtain the following asymptotic expansion
for N even:
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© Uy U

r>N+1 1<r<N
1 - By 1 Toi 1
=— N (¥ -1)—2L = _— - I
2N _Z( )2jN2J 2N Z (2N)2J
jz1 j=>1

where the T5;_1 € 7Z are the tangent numbers.

As second example we choose x(r) = (=), in other words x(r) = 0 for
r even and x(r) = (=1)""1/2 for r odd, so that m = 4 and Sy(x) = 0.
By the explicit formulas for By (x) and for the Euler numbers, we find that
By(x) = 0 for k even and By (x) = kEk_1/2 for k odd. Thus, for instance,
choosing again f(¢) = 1/t and multiplying by 2 we obtain for 4 | N the
asymptotic expansion

(=t o« (=t 2y
2 = —-— — 2 = " .
Z o —1 9 Z 2 —1 £ N2Zj+1
r>N/2+1 1<r<N/2 j=0

The two formulas above are given in [Bor-Bai] as the explanation of an amus-
ing numerical phenomenon. If we compute the sum S of the first 5000000
terms of the above series for /2, in other words if we choose N = 107, and
if we put below it the value of 7/2, we find that

S = 1.570796226794896619232321691639751392098584699693652910487470911 . . . ,

g = 1.570796326794896619231321691639751442098584699687552910487472296 . . . .
Thus, even though S and 7/2 differ by approximately 1077, the digits
of 7/2 can still be recognized much further. In fact, we see that at 10~7
we must subtract 11077, at 1072" we must subtract —1 - 10721, at 1073°
we must subtract 5-1073%, at 10~%° we must subtract —61 - 10749, etc., and
similarly for log(2). We thus recognize the Euler numbers and the asymptotic
expansion given above.

9.5 Arithmetic Properties of Bernoulli Numbers

9.5.1 x-Power Sums

The following notation will be essential.

Definition 9.5.1. (1) We denote by Z,, the ring of p-adic integers of C,, in
other words elements o such that |o| < 1.

(2) If a, B, and vy are in Z, with v # 0, we write o = § (mod ) (or a =
(mod v2,)) if (v = B)/7 € 2.
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If £ > 0 and x is a primitive character modulo f, we set

o<r< f

Lemma 9.5.2. (1) For any m € Zxo we have

Z x(r)r* = mSi(x) (mod f) .

o<r<mf

(2) If, in addition, ged(m, f) = 1 and x is nontrivial, then

Z x(r)r* = mSy(x) (mod mf) .

o<r<mf

Proof. Immediate by writing » = gf 4+ s or r = gm + s respectively, and
left to the reader (Exercise 55). O

The goal of this technical section is to give rather precise estimates on
the divisibility properties of Si(x). We may of course assume that x is a
nontrivial character. In particular, So(x) = 0, so we may assume that k& > 1.
We will divide our study into three cases: the case that f is not a prime
power, the case that f is an odd prime power, which is more difficult, and
the case that f is a power of 2.

Theorem 9.5.3. Let x be a nontrivial primitive Dirichlet character of con-
ductor f, and assume that f is not a prime power.

(1) We have Si(x) =0 (mod 2f).
(2) If ged(f, k) # f then Sk(x) =0 (mod 2f ged(k, f°°)).

Proof. (1). Since f is not a prime power there exist coprime integers f;
and fy such that f = fify, with fi > 1 and fy > 1. By Proposition 2.1.34
there exist primitive characters y; of conductor f; and yo of conductor fs

such that xy = x1x2. For 0 < r < f we can write in a unique way r = fira+r;
with 0 <71 < f1 and 0 < 79 < fo, so that

Sc) = Y. xixe(fira+r)(firz+r1) = Y (?)fka,j(X),

0sr1<fi 0<i<k
0<ra<f2

where

Ti00= Y. xitr)ry™ D xelfira+r)rb .

0<ri<f1 0<r2<f2

Since f1 and fo are coprime we have
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Z x2(fir2 +71) = x2(f1) Z Xa(rz +r1fi )

0<ra< fa ro mod fa

Y. xa(rs) =0

r3 mod fa

since 2 is a primitive, hence nontrivial, character modulo f, > 1, so that
Ti.0(x) = 0. This shows that S;(x) = 0 (mod fi1), and by symmetry Si(x) =
0 (mod f3), so Sk(x) =0 (mod f) since f1 and fo are coprime. To prove the
stronger congruence modulo 2f, without loss of generality we may assume
that fs is odd.

Assume first that f; is even, hence that 4 | fi. Since T 0(x) = 0 we have
Sk(x) =nfi1Trk1(x) (mod 4f1). If we write

Ty ( Z fOri,me)  with  f(r1,79) = x1(r1)x2(fare + 71) 78 "1y,
o<ri<fi
0<ra<f2
we see that f(f1 — 71, fo —r2 — 1) = f(r1,7r2) (mod 2). Since the involution
(ri,72) — (f1 —r1, foa —re — 1) has a single fixed point (ry,72) = (f1/2, (f2 —
1)/2) and f(r1,72) = 0 (since x1(f1/2) = 0), it follows that T} 1(x) = 0
(mod 2), so we deduce that Si(x) = 0 (mod 2f;) in this case, hence that
Sk(x) = 0 (mod 2f) since fy is coprime to 2f7, as claimed. Note for future
reference that the same proof shows that T} ;(x) = 0 (mod 2) when f; is
even and fy is odd.
If f1 is odd then f is odd, and since k > 0 we have

Sc)= Y. x(r)=0 (mod 2)

o<r<f, r odd

by Corollary 2.1.37, since by assumption x is primitive and f is not a prime
power, proving (1) in general since we already know that S;(x) =0 (mod f).

(2). If f and k are coprime there is nothing more to prove, so we assume
that ged(f, k) > 1. Here we choose specifically f; = ged(f, £°°). By definition
filf, f2= f/f1is coprime to fi, and ged(f, k) | fi1, so in particular f; > 1,
and finally by assumption we have fo > 1. From the proof of (1) we know
that there exist algebraic integers T} ; such that Si(x) = Zlgjgk (?) fka,j.
I claim that ged(k, f>°) | (’;)ff_l for all j € [1,k]. Indeed, by definition we
have ged(k, f°) = lefp“l’(k); hence let p be a prime dividing f and k, so
that p | fi. By Lemma 4.2.8 we have

o () 7) 2 5= 14 max(uy )~ 0,3).0).

If vp(k) = vp(J) this is greater than or equal to v,(k) +j — 1 — v,(j), and
—1—v,(j) = 0forall j >1.If v,(k) < v,(j) this is greater than or equal to
] —1=j7—1—-v,(j) +vp(j) > vp(k) for the same reason, proving my claim.
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We thus have Sk (x) =0 (mod f; ged(k, £°°)), and since Sk(x) =0 (mod f3)
and fy is coprime to kf1, we deduce that Si(x) =0 (mod f ged(k, f°°)).

To prove the stronger congruence, we reason as follows. If k is odd, (1) and
what we have just proved imply that Sk(x) =0 (mod flem(2,ged(k, f°°))),
hence modulo 2f ged(k, f°°). We may therefore assume that & is even. Using
the same notation as above, since f is coprime to kf7 it is odd, and we have
Sk(x) =0 (mod f3). Since f; is divisible by 4, we have seen in the proof of
(1) that T} ; = 0 (mod 2) for all j, so that the formula for Si(x) given above
implies that Si(x) = 0 (mod 2f; ged(k, f°°)), proving the theorem. ad

We now consider the more delicate case that f = p is an odd prime
power. We begin with the case v = 1.

Lemma 9.5.4. Let x be any character modulo p for some odd prime p, let
o(x) | (p — 1) be the order of x, and let K = Q(x) = Q((o(y)) be the corre-
sponding cyclotomic field.

(1) I o(x) # (p— 1)/ ged(p — 1, k) then Sk(x) =0 (mod p).

(2) If o(x) = (p—1)/ged(p — 1, k) there exists a (necessarily unique) prime
ideal p of K above p such that Si(x) =0 (mod q) for all prime ideals q
above p with q # p, while Sp(x) = —1 (mod p).

Proof. Let L = Q({p—1) D K. Since p = 1 (mod p — 1), by Proposition
3.5.18 the prime p splits completely in L. Let 8 be some prime ideal of L
above p. By definition of the Teichmiiller character (Definition 3.6.2) we have
wy(z) = x (mod P), so that

pS() = > x(r)rF = > (xw§)(r) (mod ) .

0<r<p r mod p

Thus, by orthogonality of characters, if x # wq}k we have pSip(x) = 0
(mod P), and otherwise pSi(x) =p — 1= —1 (mod P). Since wy has order
p—1, wq}k has exact order (p — 1)/ ged(p — 1, k), hence if this is not equal to
o(x) we deduce that pSi(x) = 0 (mod p), proving (1). On the other hand,
since all characters of order p — 1 are of the form wy for some (unique) P,
all characters of order (p — 1)/ ged(p — 1, k) are of the form wq}k for some ‘P.

It follows that if o(x) = (p — 1)/ ged(p — 1, k) we have x = wq}k for some ‘P.

By Lemma 3.6.3 (3), P may not be unique, but the ideal p of K = Q((, x))
below ‘B is unique, and since p is totally split the result follows.

We can deduce from this the general case v > 1 and p odd, as follows.

Theorem 9.5.5. Let p be an odd prime, let v € Zx., let x be a primitive
Dirichlet character of conductor f = p¥, let o(x) be the order of x, and let
K = Q(x) = Q(¢o(y)) be the cyclotomic field generated by the values of x.

(1) If either o(x) # p* " (p —1)/ged(p — 1,k) or p | k and v > 2, we have
Sik(x) =0 (mod f).
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(2) Ifo(x) = p*~'(p— 1)/ ged(p — 1,k), and pt k or v =1, then Sy(x) =0
(mod f/p).

(3) More precisely, there exists a unique prime ideal p of K above p such that
vq(Sk(x)/f) = 0 for all prime ideals q of K above p different from p, and

such that
Up <Sk;,X) +;) >0 ifv=1,
Selx) k ,
vP( ;T ioaaap) 0 Y

(4) If x is an even character then Si(x) = 0 (mod 2), so that Si(x) = 0
(mod 2f) or (mod 2f/p) depending on whether we are in case (1) or
(2) above.

Proof. (1), (2), and (3). The case v = 1 is nothing else than Lemma 9.5.4,
so assume v > 2. Let r be coprime to p. Writing r» = ry7r2 (mod p¥) with
ro= rpvfl, it is clear that 7y is unique modulo p and that ro = 1 (mod p)
(see Lemma 2.1.26). Dually, we can write x = x1x2 with x; = ', and it
is immediate to see that x; is a (possibly trivial) character modulo p, and x»
is a primitive character of exact order p*~!. Since ro = 1 (mod p) we have
x1(r2) = 1, and since r; is a p~!th power we have x2(r1) = 1. It follows
that

x(r) = xa(ri)xz(ro)xa(r2)x(r2) = x1(r1)xz(rz) -

Thus
Sk = Y x(rrt
0<r<p?
= Z X1(7”1)7“’f Z xz(rg)rlg = 5155 (mod p”)
r1 mod p r2 mod p"

ro=1 (mod p)

with evident notation. Since S is the sum studied in Lemma 9.5.4, we now
study S3. By Lemma 2.1.26, for any a = 1 (mod p) there exists a unique x
modulo p”~! such that a = (1 + p)® (mod p?), so that

v—1

(L+p* -1
x2(1+p)(1+p)F—1

So= Y xa(l+p)*(1+p* =
z (mod pv—1)

(mod p") .

Since v > 2 we have (1 + p)*»" " =1+ kp® (mod p**1). Furthermore, (1 +

p)* =1 (mod p), x2(1 + p) is a primitive p*~'th root of unity, so v,(x2(1 +

p) —1) =1/¢(p*~1) < 1 by Proposition 3.5.5. Since x1(1 + p) = 1, it follows
finally that

k (0

52 = p

=01 (mod p") .
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Since we want S7S2 modulo p¥ and we have v, (x(1+p)—1) < 1, it is enough
to know S; modulo p. Since x; = XPUA, we deduce from Lemma 9.5.4 that
if o(x) # p*~Y(p —1)/ged(p — 1,k) then S; = 0 (mod p), so that S1.5, =0
(mod pv), proving (1). Otherwise, there exists a unique prime ideal p above p
in K1 = Q({(p—1)/ ged(p—1,k)) such that S; =0 (mod gq) for any prime ideal g
of K7 above p and S; = —1 (mod p). However, in the extension K/K; all the
prime ideals above p are totally ramified; in other words, every prime ideal
q of K; above p splits as qZg = Q¢(pv71), and in particular there is a single
prime ideal of K above each prime ideal q of K7 that is above p. Furthermore,
x(1+p)—1 € Q((pv-1) has norm p by Proposition 3.5.5, so va (x(14+p)—1) =1
for every prime ideal  of K above p. If we denote by 8 the one above p we
thus have v (S/p¥) > 0 for Q # P, and vy (S/p” —k/(1 — x(1+p))) = 0,
proving (3).
For (4), we simply note that

Sk(x) = Z x(r)yrt = Z Xx(r) =0 (mod 2)

osr<f o<r<f, r odd

by Corollary 2.1.37 (1), since we have assumed that y is an even character
(the result of (4) is trivially false if x is an odd character). O

We finally consider the last remaining case, that f = 2v.

Theorem 9.5.6. If x is a primitive Dirichlet character of conductor f = 2Y
for some v > 1 we have

0 mod 2 if k is even,
( f)
2
Sk(x) = 1_>J;(5) (mod 2f) if k is odd and v > 3,
6 (mod 2f) if k is odd and v = 2.

Proof. Since there are no primitive characters modulo 2, we may assume
that v > 2. The only primitive character modulo 4 is x(r) = (=1)"=1/2 for
r odd, so that Sp(x) = 1 — 3%, and this is congruent to 0 modulo 8 if k is
even, and to 6 modulo 8 if k is odd, proving the case v = 2. Thus assume
that v > 3, so that if 0 < r < f satisfies 7 = 1 (mod 4) there exists a unique
z € [0,2°72 such that r = 5* (mod f). Thus

Sso= 3 xS et

o<r<f o<r<f
r=1 (mod 4) r=3 (mod 4)
= > xtrf+ Y x(f-n(f -t

osr<f osr<f
r=1 (mod 4) r=1 (mod 4)



58 9. Bernoulli Polynomials and the Gamma Function

=1+ (=Dx(-1) > x(r)r*

or<f
r=1 (mod 4)
+ (=D (=) > x(r)rF! (mod 4f)
o<r< f
r=1 (mod 4)

by the binomial theorem, since 4 | f. The second sum is easily treated: we

have
Z x(r)yrk 1t = Z x(r) = Z x(5)% (mod 4) .
osr<f osr<f 0<z<2v—2
r=1 (mod 4) r=1 (mod 4)

This is a geometric series, and x(5) # 1; otherwise x(5*) = 1 for all z, so
that x would be the trivial character if x(—1) = 1, and equal to (=) if
X(—1) = —1, both of which are excluded since by assumption x is a primitive
character modulo f > 8. It follows that the last sum is equal to

N R BT
x(5) =1 x(5) =1
since 52" ° =1 (mod f). We have thus shown that
S0 =1+ (=D x(=1) > x(r)r* (mod 4f),

osr<f
r=1 (mod 4)

so that Si,(x) = 0 (mod 4f) if x(—1) = (—1)*~!. Thus assume that y(—1) =
(—1)*. As above, we have

B B 5k2v72 o 1
E x(r)rk = E x(5)*5" = ) 1 (mod f)
o<r<f 0<z<2v—2 X
r=1 (mod 4)

where here the denominator trivially cannot vanish. Since 14 (—1)Fy(—1) = 2
we can thus write

2

Sk(x) = (5,&”72 - I)W

(mod 2f) .

Since va(x(5) — 1) < 1, as in the case p > 3 we deduce that 2/(5%x(5) —
1) =2/(x(5) — 1) (mod 22,), so its 2-adic valuation is nonnegative. Finally,
since v3(52° — 1) = v, we have vo(5*2 " — 1) = v + vy(k), so that the
first factor is divisible by 2f if k is even, while if k is odd we deduce that
St(x)/f=2/(x(5)=1)=2/(1—-x(5)) (mod 225), proving the theorem. 0O

Corollary 9.5.7. Let x be a nontrivial primitive Dirichlet character of con-
ductor f and of order o(x).



9.5 Arithmetic Properties of Bernoulli Numbers 59

(1) If either f is not a prime power, or if f = p¥ is an odd prime power and
either o(x) # p*~*(p—1)/ged(p — 1,k) orp | k orv =1, orif f =2V
with either v > 3 or k even, then Si(x) =0 (mod f).

(2) If either f is not a prime power, or if f = p¥ is an odd prime power and
either o(x) # p*~t(p —1)/ged(p — 1,k) orp | k orv > 2, and x is an
even character, or if f =2V with k even, then Si(x) =0 (mod 2f).

Proof. Clear. ad

Corollary 9.5.8. Let D be the discriminant of a quadratic field, let k € Z>,
and set Si(D) = Zo<r<\D\ (%)rk.

(1) If|D| is a prime p such that k = (p—1)/2 (mod p—1) then Si(D) = —1
(mod D).
(2) (a) If D = —4, then for k odd we have Si(D) = —2 (mod 2D) and for
k even we have Sk(D) =0 (mod 2D).
(b) If D = —8, then for k odd we have Sk(D) = 8 (mod 2D) and for k
even we have Si(D) =0 (mod 8D).
(¢) If D = 8, then for k odd we have Si(D) = 0 (mod 8D) and for k
even we have Si(D) =0 (mod 2D).
(3) In all other cases Sp(D) = 0 (mod D). More precisely, if we are not in
case (1) or (2) then:
(a) If D # —p for an odd prime p then Si(D) =0 (mod 2D).
(b) If D = —p then Sx(D) = D (mod 2D)
(¢) If D # —p and D {4k then Si(D) =0 (mod 2D ged(k, D*)).

The fact that negative prime discriminants are singled out by this corol-
lary corresponds to an important algebraic fact: for instance by Dirichlet’s
class number formula, for D < —4 the class number h(D) of the imaginary
quadratic field of discriminant D, which is of course an integer, is equal to
S1(D)/D. Statements (3) (a) and (b) mean that h(D) is odd if and only if
D = —p for an odd prime p (and in addition for D = —8 and D = —4).

Corollary 9.5.9. Let D be the discriminant of a quadratic field, and assume
that either D =0 (mod 4) or D > 0.

(1) We have
DY 5 _
> (T) =0 (mod 4D) ,
0<r<|D|
except if D = —4, 5, or 8, in which case the left-hand side is equal
respectively to —8, 4, or 16.
(2) We have

> (f)r‘*z (mod 8D) ,

0<r<|D|

except if D = —4 or 8, in which case the left-hand side is equal respectively
to —80 = —2%.5 or 1696 = 2° - 53.
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Proofs. Immediate consequences of the theorem and of the fact that when
X is an even character and k > 2 is even, then S;(x) = 0 (mod 8), except
when k = 2, in which case the congruence is only modulo 4 (Exercise 56). O

Corollary 9.5.10. Let x be a primitive character of conductor f such that
41 f, and let k € Zo.

(1) If f is not a power of 2 we have

e Jomod )i x(-1) = (1),
K;/QX( = {o (mod 4)  if x(=1) = (1)1 .

(2) If f =2Y with v > 3 we have

f :
— = (mod f) if x(=1) = (-1)*,
> =t
0<r<f/2 =0 (mod 4) i x(=1) = (=1)*"*.
If f =4 we have of course } o, /o x(r)rk = 1.
Proof. Assume first that x(—1) = (—1)¥. We have
Sk = > ()t x(f =) =)
0<r<f/2
EQZx(r—X kfz )=t (mod f?) .
0<r<f/2 0<r<f/2

Now it is clear that

XD Y X = Y x(r) (mod 2) .

0<r<f/2 0<r<f/2

This last sum vanishes when x is an even (nontrivial) character, and by Corol-
lary 2.1.30 when y is odd we have x(f/2—r) = x(r), so that 3 o<, _ ;o X(r) =
2> o<r<fsaX(r) =0 (mod 2). It follows from Theorem 9.5.3 that if f is not
a power of 2 then 23,/ x(r)r* = 0 (mod 2f), and from Theorem 9.5.6
that if f = 2" withv > 3 then 23 5, _;/» x(r)r¥ =2f/(1—x(5)) (mod 2f),
proving the theorem when x(—1) = (—1).

Assume now that x(—1) = (—1)¥~1. Since we only want congruences
modulo 4 and since 72 = 1 (mod 8) when 2 { r, we have

Z x(r)rk = Z x1(r) (mod 4) ,

o<r<f/2 0<r<f/2
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where x; = x if k is even and x; = (#)X if k£ is odd, so that in both cases
the character x; is odd and its conductor is still equal to f (note that f # 4).
By Corollary 2.1.30 once again, we have

dooxalr=> Calr+xalr+f/2)+1/2) = =(f/2) DY xi(r).
osr<f o<r<f/2 o<r<f/2

As before it follows from Theorems 9.5.3 and 9.5.6 that the left hand side is
divisible by 2f when f is not a power of 2 and congruent to 2f/(1 — x(5))
modulo 2f if f = 2? with v > 3, so that 20<r<f/2 x1(r) is congruent to 0 or
to 4/(x(5) — 1) modulo 4, proving the theorem when y(—1) = (—=1)*~! (note
that 4/(x(5) — 1) =4/(1 — x(5)) (mod 4)). O

9.5.2 The Generalized Clausen—von Staudt Congruence

Lemma 9.5.11. Let x be a primitive Dirichlet character of conductor f and
let p be a prime number.

(1) If f > 1 and either f is not a power of p, or p = 2 and [ = 2" with
v > 3, then v,(Br(x)) = 0 for all k > 0.

(2) In all other cases, in other words if either f =1, or f = p¥ with p odd,
or f =4, then v,(Br(x)) = —1 for all k > 0.

Proof. Set N = lem(f,p). By Corollary 9.4.17 we have
1 k+1 )
k _
Z x(r)r' = Pl Z ( j )Bk+1 ()N

0<r<N 1<j<k+1
k NI+l
= Z <.>Bkj(X).+1,
o<k ™ J

so we obtain the induction formula

1 k NI
Bi(x) = — k_ By, :
W=y X a0t - ¥ (Naom
0<r<N 1<k
Set z = 0 in case (1) and z = —1 in case (2). We prove by induction on k

that v,(Bg(x)) = z for all £ > 0. Let k& > 0, and assume that we have shown
that v,(B;) > 2z for j < k, so that v,(Br—;(x)) = 2z for 1 < j < k. Since
trivially v,(j +1) < j for j > 1 and p | N, we have v,(N7/(j + 1)) = 0, so
the valuation of the second sum in the induction formula is also greater than
or equal to z. For the first term we consider three cases.

Case 1: pf f and f > 1. Then N = pf, and writing r = ¢gp + s we have

> x = > > xlap+s)ap+s)t

o<r<N 0<s<p 0<Lg< f

Z Z (gp + s) (mod p) .

0<s<p 0<g<f
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Since p is coprime to f the map ¢ — ¢p+ s is a bijection from (Z/fZ)* onto
itself, and since x is a nontrivial character, 3 ., x(gp + s) = 0, so that
D o<ren x(r)r* =0 (mod p). Thus the p-adic valuation of the first term in
our induction is nonnegative, so is greater than or equal to z, proving the
result in this case.

Case 2: f = 1. This case is immediate: we have N = p, so the valuation of
the first term of our induction formula is greater than or equal to z = —1.

Case 3: p | f. In this case we have N = f so the first term of our induction
formula is equal to Sk(x)/ f, with the usual notation Sk(x) = o<, < ¢ x(r)rk.
Note that since p | f, if f is a prime power it must be a power of p. Thus
if f is not a power of p or if p = 2 and f = 2¥ with v > 3, it follows from
Theorems 9.5.3 and 9.5.6 that v,(Sk(x)/f) = 0 > z. On the other hand, if f
is an odd prime power or if f = 4, it follows from Theorems 9.5.5 and 9.5.6
that v,(Sk(x)/f) = —1 = z, proving the lemma. O

Lemma 9.5.12. Let x be a primitive Dirichlet character of conductor f and
let p be a prime number. Assume that we are in case (2) of the preceding
lemma, in other words that either f =1, or f = p¥ with p odd or with p = 2
and v = 2. Then for all k such that x(—1) = (=1)* we have

Sk(x) ‘
pBr(x) =< pv! (mod p) if f>1,

ZO<T<1) ¥ (mod p) if f=1
Note that if x(—1) = (—=1)*~! we have By (x) = 0 except if & = 1 and

f =1, in which case Bj(x) = B1 = —1/2; see Proposition 9.4.9.

Proof. Keep the notation of the preceding proof. Since p | N it is immedi-
ate to check that v,(N7=1/(j+1)) = 0 for j > 2, and also for j = 1 if p # 2.
Since from the preceding lemma we know that v,(B;(x)) = —1, it follows
that for j > 1 we have

Up(Br—i (X)N7 /(j + 1)) = vp(NBe—; (x)N' 7' /(j +1)) > 0,

except perhaps for j = 1 when p = 2. Thus by our induction formula we have
kpN

pBi(x) = % > x(r)rt = = =Bi-a(x) (mod p)
0<r<N

where the last term can be omitted if p # 2, and must be omitted if & = 0.
Note, in addition, that by Proposition 9.4.9, since we have assumed that
x(=1) = (=1)* we have By_1(x) = 0 except if x is even and k = 2, but then
v2(kpN/2) > 2, so the last term can also be omitted in that case. We deduce
that

PBi() =5 D x()r* (mod p) .

0<r<N
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When f > 1 we have N = f = p¥, and when f = 1 we have N = p, so the
lemma follows. a

From this lemma and the results of the preceding subsection, it is now
immediate to deduce the generalized Clausen—von Staudt congruence.

Theorem 9.5.13. Let x be a primitive Dirichlet character of conductor f,
denote as usual by o(x) the order of x, and let K = Q(x) = Q(Co(y)). For any
k > 0 such that x(—1) = (=1)*, the number By(x) is an algebraic integer,
with the following exceptions:

(1) When f = 1:if p is a prime such that (p — 1) 1 k then vy(Bg) > 0, and
if (p—1) | k we have v,(By +1/p) > 0.

(2) When f =4: we have By(x) +1/2 € Z.

(3) When f = p” with p an odd prime and v > 1, and o(x) = p* " (p —
1)/ ged(p — 1,k), and either p 4 k or v = 1: in this case, there exists a
unique prime ideal p of K above p such that vy(Bi(x)) = 0 for any prime
ideal q £ p of K (above p or not), and such that for ¢ = p we have

1
Uy <Bk(X) + p) >0 ifv=1,

k ,
o (B0~ Ty ) 20 o0

Proof. All these results follow immediately from Lemma 9.5.12: for f =1
we apply Lemma 9.5.4, for f = 4 we use the evaluation Si(x) = 1 — 3%, and
for the other values of f we use Theorems 9.5.3, 9.5.5, and 9.5.6. a

See Corollary 11.4.2 for the corresponding and stronger result for By () /k.

The special case f = 1 of the above theorem is the usual Clausen—von
Staudt congruence, which we restate because of its importance:

Theorem 9.5.14 (Clausen—von Staudt). For any even k € Z~o we have

By = — Z 1(modl),

-k P
where it is understood that p is a positive prime number.

The Clausen—von Staudt theorem means that v,(By) = 01if (p — 1) 1 k
and By = —1/p (mod 1) if (p — 1) | k. We will see in Proposition 11.4.4 and
especially in Corollary 11.4.7 that this can be strengthened. For instance,
(when (p — 1) | k) we have By = (1 — 1/p) (mod p) for p =2, 5, and 13.

Write By, = Ny /Dy uniquely with N and Dy, coprime and Dy > 0.
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Corollary 9.5.15. For even k > 0 we have

Lh;z II p .

(p—1)k

Proof. Indeed, from the theorem it is clear that Dy divides H(p_1)|kp,
but conversely for any prime p such that (p — 1) | k£ the theorem implies that
vp(Bj) = —1, so that the product of such p divides Dy,. O

Corollary 9.5.16. (1) For even k > 0 we have 6 | Dy,.

(2) If k = 2q, where q is a prime such that 2q+ 1 is not prime, then Dy = 6.

(3) The number of even k < X such that Dy, > 6 is greater than or equal to
X/4, and in particular has a strictly positive lower density.

Proof. The fact that 6 | Dy is clear from the above corollary. If k = 2¢
with ¢ prime, the only divisors of k are 1, 2, ¢, and 2¢, so the only possible
primes p are 2, 3, ¢+ 1, and 2¢g + 1. But ¢ + 1 is even (unless ¢ = 2, which is
excluded since 2¢ + 1 must not be prime) so is not prime, and 2¢q + 1 is not
prime by assumption, so Dy = 6 as claimed. Finally, note that if for instance
4| k then 30 | Dy, so that at least half of even k’s have Dy, > 6. O

This corollary applies for instance when ¢ is a prime such that ¢ = 1
(mod 6) or ¢ =7 (mod 10).
It is, however, possible to prove a stronger result as follows (see [Erd-Wag]):

Theorem 9.5.17. For every given D divisible by 6 the density of even pos-
itiwe integers k such that Dy = D exists and is strictly positive.

For instance, for Dy = 6 the proportion seems experimentally to be
around 0.14 of all even numbers.

9.5.3 The Voronoi Congruence

The exposition of the this subsection and the next two is taken with little
change from Ireland—Rosen [Ire-Ros]. As already mentioned, almost all of the
results will be given in a stronger form in Chapter 11, using the expansion
around s = 1 of p-adic L-functions (Theorem 11.3.21), although the tools
used are not really any deeper.

Recall that we have written canonically By = Nj/Dy. By abuse of nota-
tion, since in the rest of this chapter we will no longer consider x-power sums
or x-Bernoulli numbers, for k£ > 1 we will set

Sk(n) = Z k.
o<r<n

We begin with the following result.
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Proposition 9.5.18. For all even k > 2 and all n > 1 we have
Dy Sk(n) = Npn (mod n?) .

Proof. By the Euler-MacLaurin formula (which we used more generally
in the proof of Lemma 9.5.11), we can write

ni—1

k
k
:§Av2 ith Ay, = B .
i=0 e o <.7> - ].7+1

I first claim that for j > 1, if p | n and p > 5, then Ay, ; is p-integral. Indeed,
for j = 1 the result is tr1v1al for £ > 2 since k — 1 is odd, and for k = 2 since
As1 = —1/2, and we exclude p = 2 for the moment. Similarly for j = 2,
n?=1/(j + 1) = n/3 is divisible by p since p # 3, and we have shown that
pBj_o is p-integral. For j > 3, note that since p > 5 it is easy to show that
p?=2/(j + 1) is p-integral, so that v,(n’~!/(j + 1)) > 1, and since we have
shown that v,(By_;) > —1 my claim follows.

I now claim that for j > 1 then vo(Ag ;) > —1 and v3(A ;) > —1 when
3| n. Consider first the case p = 2. If j = 1 we have as usual By_; = 0 if
k> 2, and Ay = —1/2 as already mentioned. For j > 1 we have Bj_; =0
except if j is even or j = k — 1. But if j is even then vy(j + 1) = 0, so that
va(Ak,;) = va(By—;) = —1, while for j = k — 1 we have Ay 1 = —nF2/2,
and hence vo(Ag x—1) = —1.

Consider now the case p = 3 and p | n. Since Ay = (’;)Bk_gn/?) and
Aps = ( )B;€ 3n?/4, it is clear that v3(Ay ;) == —1 for j = 2 and j = 3.
For j > 4 we easily check that 3772/(j 4+ 1) is 3-integral, so that v3(Ax ;) =0
in that case, proving my claim.

Summarlzlng my claims, we have proved that for all j > 1 the number
6Ay, ; is p-integral for all p | n. If we write 64y ; = ay,;/br,; with ax; and
bi,; coprime, this means that ged(by ;,n) = 1. Thus

k k

Sk(n) =nDBy + ZAk,jn2 = Z QL’]‘.W? .

Jj=1 Jj=1

Let B be the LCM of the by j, which is still coprime to n. Multiplying by
BD,;. we obtain

k
BDySk(n) = BnNy + (Dy/6) Zak7j(B/bk7j)n2 = BnN; (mod n?)
j=1
since 6 | Dy, by the Clausen—von Staudt congruence. Since B is coprime to n

we can divide this congruence by B, proving the proposition. ad

Lemma 9.5.12 tells us that (for k even) pBr = Sk(p) (mod p), and it is
immediate to see that the above proposition together with the Clausen—von
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Staudt theorem tells us that if (p—1) { & we even have pBy, = Si.(p) (mod p?).
In fact, not only is the restriction (p — 1) 1 k& unnecessary, but even more is
true.

Corollary 9.5.19. If p > 5 and k is even then
pBy, = Si(p) (mod p°) ,

except if (p—1) | (k—2) and p { k(k — 1), in which case the congruence is
only modulo p?.

Proof. Using again the expression for Si(p) used at the beginning of the
proof of Proposition 9.5.18, the Clausen—von Staudt theorem, and By_1 =0
when k > 4 is even, we deduce that

k(E—1)p?
%BH’

and the conclusion again follows from the Clausen—von Staudt theorem for
p > 5. It is immediate to see that the congruence is true modulo p? for k = 2.
O

Sk(p) = pBy +

We can now state and prove the Voronoi congruences.

Proposition 9.5.20 (Voronoi). For any even k > 2 and for all coprime
integers a and n in Z~qo we have

n—1
Kk — k=1 k—1 | Ma
~ )Ny = ka* 1D, S {—
(a )Ng a kaIm -

J (mod n) .

Proof. For 1 < m < n — 1, write ma = ¢,,n + 7, with 0 < r,,, < n, so
Gm = |ma/n]|. By the binomial theorem we have
k — .k k=1 _ k k—1 | ma 2
(ma)® =r;, + kngpry, - =1y, + kn(ma) {—J (mod n~) .
n

However, since a and n are coprime, 71, ..., r,_1 is a permutation of 1, ...,
n — 1. Thus, summing the above congruence for 1 < m < n — 1 gives

ma

a*Sy(n) = S(n) + kna*1 Ti:l mF=1 {—J (mod n?) .

n

Multiplying by Dy, using Proposition 9.5.18, and dividing by n gives the
desired result. O

Corollary 9.5.21. Let p be a prime such that p = 3 (mod 4) and p > 3.

Then
9 (p—1)/2 m
2(2-(2)) Berva=— X (5) oan.

m=1
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Proof. We set k = (p+1)/2, a = 2, and n = p in the above proposition.
Since for any a we have a(P~1)/2 = (%) (mod p), we obtain

(3) ) =252 o 5) 2]

m=1

Now [2m/p| is equal to 0 for m < (p—1)/2, and to 1 for (p+1)/2 < m < p—1.
Since v, (D(p41y/2) = 0 by Corollary 9.5.15 (since otherwise (p—1) | (p+1)/2,
hence p — 1 < (p + 1)/2, which is possible only for p = 3, which we have
excluded), it follows that

() =) 8 (2)

m=(p+1)/2

The result follows from the fact that Zlgmgp—l (%) =0. O

Corollary 9.5.22. Let p be a prime such thatp = 3 (mod 4) andp > 3. If we
denote by h(—p) the class number of the imaginary quadratic field Q(v/—p),
then

h(—p) = —2B(p+1)/2 (mod p) .

Proof. The classical Dirichlet class number formula gives for any funda-
mental discriminant D < —4 the identity

(- (B)o- 5 (2)

When D = —p with p = 3 (mod 4), thanks to the quadratic reciprocity law
this can be rewritten

(- (2)n=3 (5)

The corollary thus immediately follows from the preceding one. a

Note that even though this is not a very practical method of computation
of h(—p), it does determine the value of h(—p) exactly from that of B(,1)/2
modulo p since it is well known and easy to show that h(—p) < p'/?logp/m <
p for all p > 3.

9.5.4 The Kummer Congruences

We begin with the following result.
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Proposition 9.5.23 (J. Adams). If (p — 1) t k then By /k is p-integral.

Proof. By Theorem 9.5.14, we already know that Bj is p-integral. Write
k = p®ko with p 1 ko. Choosing n = p® in Proposition 9.5.20, we see that
(a* —1) N, = 0 (mod p®). Take for a a primitive root modulo p. Since (p—1) {
k, we have p { a* — 1. Thus Ny = 0 (mod p°), so By/k = (Ny/k)/Dy is p-
integral. ad

The main result of this section is the following theorem, essentially due
to Kummer.

Theorem 9.5.24 (Kummer). For any k > 2 even, set
2(k) = (0"t = 1)Br/k = (1—p" (1 k).
Then if (p— 1)tk and k' = k (mod ¢(p©)) we have z(k') = z(k) (mod p°).
Proof. If we set s = v,(k), the above proposition shows that p® | Ni. In
Proposition 9.5.20 we choose n = p°**. Since p* divides both k and N}, we

can divide the congruence by p*, and since k/p® and Dy, are coprime to p we
can divide by both and we obtain the congruence

ets _q

k_1)B P
(a - ) k = ak—l Z mk—l \‘pTZiJ (mod pe> )

‘We have

1<mpets—1 1<m<pe s —1

ptm

k—1 k—1 ma
+p Z m \‘pe+s—1J :

1<m<pets—1-1

Using the congruence that we have obtained above with e replaced by e — 1,
since k > 2 we deduce that

k—1(,k
p" N a" —1)Br .1 e ma
T =D 1a L E m 1 W (mod pe) .

1<mpets —1

Putting the two congruences and the above identity together, we obtain

(1-pF (" —1)By _ _1 | ma .
p =ad! Z mF=1 pr (mod p°) .
1<m<pe T —1
pim

Now note that when p { m as in the last sum, &’ = k (mod ¢(p®)) implies that
mF =% =1 (mod p®) (Euler’s theorem for the group (Z/p°Z)* of cardinality
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#(p°)), so that m* =1 = m*=! (mod p?). It follows that the right-hand side
of the above congruence is unchanged modulo p¢ if we replace k by k' = k
(mod ¢(p?¢)) (recall that a is coprime to n = p®** hence not divisible by p).
We deduce that

(1—p" D@ =By _ (1=p" (" -~ 1)Bs

k' k
when k' = k (mod ¢(p°)). We now choose for a a primitive root modulo p.
Since (p — 1) t k (hence (p — 1) t k'), it follows that a* — 1 and a* — 1 are
coprime to p, and as above, a¥ —1=d*-1 (mod p?). We can thus divide the
above congruence by a® — 1, thus giving the congruence of the theorem. 0O

(mod p®)

Corollary 9.5.25. If k and k' are even with min(k, k') > e+ 1, and p is
a prime such that (p — 1)t k and k' = k (mod ¢(p°)), then By /k' = By/k
(mod p®).

Proof. Clear from the above theorem since By /k is p-integral by Proposi-
tion 9.5.23. o

In Section 11.4.2 we will see that the Kummer congruences are closely
related to the p-adic zeta function and L-functions. In fact, we will give a
statement (Proposition 11.4.4) that includes the case (p — 1) | k. These con-
gruences can also be used in connection with Fermat’s last theorem, because
of the following result, which we will prove in Chapter 11 (Theorem 11.4.10;
see also [Was|):

Theorem 9.5.26. An odd prime p is irreqular if and only if it divides the
numerator of some By, for k <p— 3.

Proposition 9.5.27. The set of irregular primes is infinite.

Proof. Let {p1,...,ps} be a nonempty set of irregular primes (this is
possible since 37 is irregular). In the way of Euclid’s proof of the infinitude
of primes, we will construct an irregular prime that is not in this set, proving
the proposition. Set n = ngigs(pi — 1). Since p; > 37 for all ¢, we have
n = 36, so by trivial estimates we have |B,/n| > 1. It follows that there
exists a prime p such that v,(B,/n) > 0. I claim that p is irregular and
distinct from the p;. Indeed, by the Clausen—von Staudt congruence we know
that (p — 1) t n, so that p # p; and p # 2. Furthermore, if r is the remainder
of the Euclidean division of n by p — 1 we have 2 < r < p — 3 and r even,
and by Corollary 9.5.25 we have B, /n = B,./r (mod p). Since v,(B,/n) >0
it follows that v,(B,) = v,(B,/r) > 0, so that p is irregular. O

As already mentioned in the section on FLT, a famous conjecture is that
the set of regular primes is also infinite, with density among primes equal to

exp(—1/2).
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9.5.5 The Almkvist—Meurman Theorem

We will give two proofs of this theorem, the first one in this section, the second
as Exercise 63. Furthermore, in Section 11.4.3, we will prove a stronger result.
We begin with a lemma of independent interest.

Lemma 9.5.28 (Hermite). Let p be a prime number and let n > 1 be an
integer. We have the congruence

S () =0 tmedn)

1<i<(n=1)/(p=1)

Proof. By Lemma 2.5.1 we know that for m > 1 we have Eae]F,, am =
—0m,p—1, Where 6, p—1 = 1 if (p — 1) | m and 0,,,p—1 = 0 otherwise, while
Eae]F,, a® =0, so in F,, we have

=St =3 Y () .S 5m,p1(;)_

a€lF, a€lF, 0<m<n 1<m<n

It follows that Z1<jg(n71)/(pf1) ((pfl)j) = 0 (mod p), proving the lemma.
O

See Exercise 62 and Proposition 11.4.11 for generalizations.

Theorem 9.5.29 (Almkvist—-Meurman). For any n > 0, k € Z>1, and
h € Z we have k™ (B, (h/k) — B,) € Z.

Proof. If we set En(az) = B, (z) — B,, then by Proposition 9.1.3 we have

Buw+)= Y (2) B}y ™" + Baly) .

m=0

so by induction on A it is enough to prove the theorem for A = 1. In addition,
it is trivially true by inspection for n < 1, so we may assume that n > 2. Set
b, (k) = k"B, (1/k). By the basic formula for Bernoulli polynomials we have

nk n
bo(k) =1— — + > ( )Bmkm.
2 2<m<n—1, m even m

Thus, by the Clausen—von Staudt Theorem 9.5.14, with the understanding
that p is prime, we have

LT () 25

2<m<n—1, m even p—1)|m

Z 3 (T’:L) k™ (mod 1) .

p<n 2<m<n—1
lem(2,p—1)|m
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If p | k then £ =0 (mod p), and if pt k and (p — 1) | m we have k™ =1
(mod p) by Fermat’s little theorem. Thus

nk 1 n
hi=2- 3 1% <m> (mod 1).
p<n, plk 2<m<(n—1)

lem(2,p—1)|m

Denote by S(n,p) the inner sum. Assume first that p # 2, so that p — 1 is
even. Setting m = (p — 1)j we thus have

n
S(n,p) = Z ((p B 1)j> =0 (mod p)
1<j<(n—1)/(p—1)

by Lemma 9.5.28. It follows that b,,(k) = 0 (mod 1) (in other words, b, (k) €
Z) when k is even, and otherwise

1
ba(k) = = — Z8(n,2) (mod 1) .
2 2
But
wwo- ¥ (p)-fE mene
L<ie nl)/2 27 2 —1 ifnisodd;
hence S(n,2) = n (mod 2) since n > 2, proving that b, (k) = 0 (mod 1) in
all cases. U

9.6 The Real and Complex Gamma Functions

Although the complex gamma function is quite classical, and we have already
mentioned it in Chapter 8, since it occurs in all the functional equations of
functions linked to number theory (and in particular in so-called “motivic”
L-functions), it is essential to have a thorough understanding of this function.
We give here a slightly nonstandard approach that emphasizes the formulas
that we need and is well suited to generalizations. The impatient reader can
jump directly to Section 9.6.2. The main idea of our approach is that most
basic formulas involving the gamma function are in fact specializations of
formulas for the Hurwitz zeta function, which we now study.

9.6.1 The Hurwitz Zeta Function

The Hurwitz zeta function is an important tool, not only for the definition
of the gamma function, but also in the study of L-functions.
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Definition 9.6.1. We define the Hurwitz zeta function for x € Ry and
s € C with R(s) > 1 by

1
C(s,aﬁ)zzm.

n=0

We could extend this definition to x € C\ Z¢o by deciding that 1/(n +
x)® = exp(—slog(n+x)), where we choose the principal determination of the
logarithm. However, this would create too many determination problems, so
we restrict to x € R (. The only exception to this is when s € Z~ 1, in which
case we can define ((s,z) unambiguously (see Exercise 66 for an application
of this).

We will see below that it is very easy to give the analytic continuation
of ((s,x) to the whole s-plane. Before that, we prove a number of simple
formulas for which we assume implicitly that $(s) > 1, but which will auto-
matically be valid for all s by analytic continuation.

Proposition 9.6.2. We have the functional equation
Cls,x+1)=((s,x) —a™*,
the (partial) differential equation

a((s, )
ox

= 7S<(5 =+ 17$) )

the asymptotic formula ((s,x) ~ x~° as R(s) — oo, and the special cases
C(s,1) =¢(s) and ((s,1/2) = (2° = 1)((s)
where ((s) is the Riemann zeta function.

Proof. The first formula corresponds to changing n into n + 1, and the
next two formulas are immediate by normal convergence of the series and its
derivative. By definition we have {(s,1) = ((s). Finally,

(012 =2 Y o =2 [ €0 = X s | =240 (1 - 21) ,

m=0

proving the last formula. a

Corollary 9.6.3. We have the following series expansion valid for |y| < x:

(s—i—k;—l

o) =30 (TR T et b

k>0

In particular, for 0 < x <1 we have
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o) =+ (TR e 1) and

k
k>0

o) = 0 (TR T - et e b

k>0

Proof. Denote by RHS the right-hand side of the first formula, so that by
definition of ((s,x) and of () we have

_ AW 1
RHS-Z(k)y Z(n+x)s+k ’
k>0 n>0

Since |y| < x the double sum is absolutely convergent, so we may interchange
the order of summation and obtain

RHS = Z(n +ax)? Z (;S) (y/(n+ m))k

n>0 k>0
=Y (n+a2)(+y/(n+2) =Y n+z+y) " =C((sz+y),
n=0 n=0

proving the first formula. The second follows by choosing x = 1 and exchang-
ing z and y, and the last by choosing x = 1/2, exchanging x and y, and using
the formula for ((s,1/2). O

Lemma 9.6.4. For |y| < x we have the formulas

Clove) = RIS LN | S gy (R

y(s —1) = k k+1
_Cs-lLaz-y —C(s-1z+y) s+2k =1\ 5, ((s +2k,x)
e i B D (A T T

k>1
C(s— 2,0 —y) —2(s = 2,0) +((s — 2,7+ )
(s —2)(s — 1)
s+2k—1\ op ((s+2k,x)
_2Z< 2%k )yk(2k+1)(2k+2)'

k>1

C@vz):

Proof. The first formula is a simple rearrangement of terms of the first
formula of the corollary. The second and third formulas follow by changing y
into —y in the first formula and computing the sum and the difference. O

Corollary 9.6.5. We have the following formulas, valid for x > 1, except
for the fourth, which is also valid for x > 1/2:



74 9. Bernoulli Polynomials and the Gamma Function

C(s,z) = > _1<S+Z_1>W’
C(s’x):w_;<s+:_l)w,

R
c(s,x)—@;l_/i)”_;;g(wgzq)gw,
((s,2) = (x(;i)i)(ss__m;)s 7212 (s+§llz— 1)m |

Proof. This follows by taking y = 1 and y = —1 in the first formula of
the lemma, y = 1 and y = 1/2 in the second formula, and y = 1 in the third
formula. O

Remarks. (1) If we want formulas valid for z € Ry, we can apply the
above formulas to = + 1 and use ((s,z) = ((s,z+ 1) + 2z~ °.

(2) We can of course obtain similar formulas for the Riemann zeta function
by choosing for instance z = 2 (not = 1) and using the formula ((s,2) =
¢(s) — 1. Only in the fourth formula can we directly set x = 1.

Proposition 9.6.6. The parameter x € R~ being fized, the function ((s,x)
(hence in particular the function ((s)) can be analytically continued to the
whole complex plane to a meromorphic function with a single pole, at s =1,
which is simple with residue 1.

Proof. To prove this proposition, we can use any of the formulas of the
above corollary. First note that since ((s,z+ 1) = ((s,x) — 2%, it is enough
to prove analytic continuation when = > 1. In that case, since by Proposition
9.6.2 we know that (s + k,z) ~ 2~z F as k — oo, it follows that the first
formula above (for instance) expresses ((s,x) as a geometrically convergent
series involving only ((s + k,z) for k > 1. We can thus extend analytically
¢(s,x) by strips of width 1: first to R(s) > 0, then to R(s) > —1, and so on.
The only polar part is obtained with the term x'=%/(s — 1), hence at s = 1,
which gives a pole, which is simple, with residue equal to 1. Note that the pole
at s = 1—k of ((s+k,z+1) is canceled by (Hﬁ*l) =s(s=1)---(s—k+1)/k!,
which vanishes for s =1 — k when k > 1. O

Note that Proposition 10.2.2, which we will prove in the next chapter,
also gives an easy proof of analytic continuation of ((s,z) and its values at
negative integers, which we shall give in Corollary 9.6.10 below; see Exercise
17 of Chapter 10.
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In Proposition 9.2.13 we have seen how to express ((—a«) for any o €
C\{—1} using the Euler-MacLaurin formula. Now that we know the analytic
continuation of {(s,z) to the whole plane, exactly the same reasoning gives
the following more general statements.

Proposition 9.6.7. Let o € C be different from —1, and let © € Rsg.
(1) For every k > R(a) + 1 such that k > 1 we have

N
a_ (N +z)tt (N 4x)*
b o B; :
+Z<. )?(N+x>a-ﬂ+1+Rk<a,x,N>,
PV A VA
where

/Oo(t +2) B ({t}) dt .

N

Rp(a,z,N) = (-1)’6(‘2)

When k is even we have

3

« Bk a—k—
|Rk(a,x,N)|<‘(k+1)k++;(N+z) kot

in other words, |Rp(c,x,N)| is smaller than the modulus of the first
omitted term, and in particular Ri(«,z, N) tends to 0 as N — oo.
(2) With the same assumptions, we have the formula

a+1 = ji—1) 3
+ (1)~ <?:) / (t+2)* " Br({t})dt .
0
Similarly, for « = —1 we have the following:

Proposition 9.6.8. For x ¢ Z<, define

N
w(;v):—Nli_Igo (Z m+x_10g(N+x)> '

m=0

(1) For k > 1 we have

AR | . B

E = — log(N —E - —~1,2, N
m:om—Fl‘ Y(z) + log(N +2) j=1 J(N + )7 (=12, N)
where

Rt = [C D,

N (EFz)E
and |Ri(=1,z,N)| < |Bis2/((k 4+ 2)(N + 2)**2)| when k is even.
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(2) Fork > 1 we have

W(z) = log(z —*_Zyxa /OO Bk{tgﬂdt.

(3) We have limg_1(¢(s,x) —1/(s — 1)) = —¢(x), in other words

C(s,7) = 5%1 (@) + O(s—1).

We will study below the properties of the function ¢ (), and in particular
we will see that 1 (x) = TV(x)/T'(x) is the logarithmic derivative of the gamma
function; see Definition 9.6.13. Indeed, since we will define the gamma func-
tion by log(I'(x)) = %(O x) — E(O, 1) and since ((s, z) is meromorphic in s,
around s = 1 we have

C(s—1,2) = ¢(0,z) + (s — 1) log(T'(x)) + - --
=1/2—2+4(s—1)log(T'(z)) + ---

(using ¢(0,2) = 1/2 — x, which is immediate from Proposition 9.6.7), so that
by Proposition 9.6.2,

(5= )Gl ) = 5o (5~ 1,7 = 1+ (5 = Da) -+

as claimed in the proposition.

Corollary 9.6.9. As x — oo we have:
(1) For R(s) > 1 and s # 1,
xlfs

C(s,x) = ] +O0(x™%).

(2) ForR(s) <1

((s,x) = — lxl—s s Z (—s) sz g2 O(:c_l) 7

Jj=1

where p = (3 —N(s))/2].
Proof. Clear by Proposition 9.6.7. ad
Corollary 9.6.10. If k € Z>; we have

By (z)

C(l_k?x):_ k )

and in particular (1 — k) = —By/k — k1.
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Proof. Setting a = k — 1 in Proposition 9.6.7, we find that for n > k,
v o (K i
k(1= k) =aF +> () B = By() .
: J
j=1
(|
The statement for (1 — k) will be proved again in the next chapter us-

ing the functional equation of the zeta function. Historically it was the first
indication of the existence of this functional equation, discovered by L. Euler.

Proposition 9.6.11. As z — 0 we have

x5+ ((s) + o(1) if R(s) =20,
1/2+o(1) ifs=0,

C(s,z) = ¢ C(s) +o(1) if R(s) <0, s# —2k with k € Z>1 ,
—Bopw + O(2?) if s =—2k with k € Z>, ,

—Box +2?/3+0(23)  ifs=-2.
Proof. For s # —2k with k € Z>; this immediately follows from
Cs,2) =z +((s,z+1)=a°+((s) +o(1) .
For s = —2k, by the above corollary we have ((—2k, x) = —Bagy1(x)/(2k+1),

so the result follows from the explicit formula for B, (x). O

Proposition 9.6.12. We have the duplication formula

Glove) + (s 5 ) = 2(s,20)

and more generally for N € Z>; the distribution formula
Z C(s,aH— ]j\7> = N°C(s,Nz) .
0<j<N

Proof. Follows from an easy rearrangement of terms and left to the reader
(Exercise 64). O

9.6.2 Definition of the Gamma Function

Since we have seen above that ((s,z) can be extended to the whole complex
plane with a simple pole at s = 1, the following definition makes sense.
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Definition 9.6.13. (1) We define the real gamma function for x € Rsq by
the formula

log(I'(x)) = ¢'(0,2) — ¢'(0,1) = ¢'(0,2) = ¢'(0) ,

where here and elsewhere the derivative is taken with respect to the first
variable.

(2) We define the real i function for x € Rsq as the logarithmic derivative
of T'(x); in other words, (x) =T"(x)/T(z).

We will see later that in fact ¢/(0) = —log(27)/2, but for the moment we
do not need this result. We will also see how to generalize this definition to
all z € C \ Zgo.

As already mentioned, since the gamma function is very often used in
conjunction with L-series, it is customary to use the variable s and not the
variable z, hence to write I'(s). The reader should be aware that although
this will be the variable used in zeta and L-functions, it is not the variable
s of the Hurwitz zeta function used to define the gamma function. For the
moment, since we handle simultaneously ((s,z) and the gamma function,
we keep the variable z, but we will switch to the variable s later, after the
introduction of the complex gamma function.

We will study later in great detail the properties of the function I'(x). For
the moment we note the following basic results.

Proposition 9.6.14. For all z € R<y we have T'(x + 1) = 2T'(x) and when
n € Zx1 we have I'(n) = (n — 1)\

Proof. Since ((s,z + 1) = ((s,x) — z~° we obtain the first formula
by derivation with respect to x. The second follows by induction since
log(T'(1)) =¢’(0,1) — ¢'(0,1) = 0. O

Proposition 9.6.15. (1) Let u € Ryq. For |x| < u we have

log(T'(z +u)) = log(T'(u)) + ¥ (u)x + Z(—l)k@xk .

k>2
(2) In particular, for |x| <1 we have
log((e + 1) = S (-1 S

k>1
where by convention we set ((1) = ~y, FEuler’s constant.

Proof. This follows by differentiating with respect to s the first and second
formulas of Corollary 9.6.3, and using the fact that around s = 1 we have
C(s,u) =1/(s —1) — ¢p(u) + O(s — 1), and in particular {(s) = 1/(s — 1) +
v+ O(s —1). O
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Proposition 9.6.16. For z > 0 we have for any k > 1
1 1 1 (% Bi({t})
"0,2) = (2 —= )1 B 1 / dt
¢0m) (x )Og x+z iG+Dxi ko (E+a)k

and in particular

(0, 2) = (;v _ 1) log(e) — o — [ =24

0 t+w

and
1 < {tp—-1/2
log(T" = —— 1 — 1 -1 ———dt.
ou0(o) = (o - 5 Jtogte) o+ 14 (@ - 1) [ AL
Proof. This follows by derivation after a short computation from the for-

mula for ¢(—a, z) given in Proposition 9.6.7. O

Remark. As already noted in Section 9.2.5, the integral [, By({t})/(t +
x) dt is convergent, albeit only conditionally. If you are uncomfortable with
this, simply choose k = 2 instead of k = 1.

Proposition 9.6.17. For all x € C\ Zg( set

Ne—LN!
zle+1)--(z4+N-1)"

un(x) =

Then for all x € Rso we have

[(z) = lim upn(x) .

N—o0

Proof. By differentiating the first formula of Proposition 9.6.7 a short
computation gives

N-1
Z log(m +z) = —¢'(0,z) + (N +x— ) log(N + z)

NG

(N _

hence in particular
log(N) Z log(m + 1)

:_C/(O)+(N+2)10g(N+1)_(N+1)—/00{t}_1/2dt.

N L+l
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Since the integrals converge, expanding log(N + z) and log(N + 1) we obtain

N—-1
log(I(x)) = log(N!) = Y log(m + z) + (z — 1)log(N) + o(1) ,

m=0

proving the proposition. a

Recall from Definition 9.6.13 that we have denoted by ¢ (z) the logarith-
mic derivative of T'(x). By differentiating the formulas of the above proposi-
tions, it is easy to see that this definition of ¥ (x) coincides with the notation
used in Proposition 9.6.8, and also proves (2) and (3) of that proposition. It
is also immediate to give analogous formulas for the derivatives of 1(z); see
Exercise 77.

Thanks to the above proposition, we can now define the complex gamma
function in a more traditional manner:

Definition 9.6.18. For s € C\ Zgo we define I'(s) = limy_oc un(s).

Proposition 9.6.19. The above limit exists and defines a meromorphic
function on C that generalizes the real gamma function defined above for
s € Rsq. It has no zeros in C, and it has simple poles on Zgy, the residue at
s = —k being equal to (—1)*/k!.

Proof. Since
un+1(s)/un(s) = (1 +1/N)*/(1+s/N) =1+ O(1/N?)

it is clear that the limit exists and that it converges uniformly on any compact
subset of C\ Zgy. It follows that I'(s) is indeed a meromorphic function on C
with simple poles on Zq, and by Proposition 9.6.17 that it does generalize
the real gamma function. By the functional equation, as s tends to —k with
k € Zxo we have

_ D(s+k+1)  (-DF 1
7H0<¢<k(5+i) Bl s+ k’

giving the residues. Finally, since

F(S)ZU1(S)HM:}HM’

o1 un(s) 5 i1 1+s/N

T'(s)

the absolute convergence of this infinite product implies that it does not
vanish anywhere. a

It follows from this proposition that if we set ¢)(s) = I'(s)/T'(s) then ) is
also a meromorphic function with the same poles, residues equal to —1, and
that it generalizes the real ¢ function defined above.
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Corollary 9.6.20. There exists a unique holomorphic function LogI'(s) de-
fined on the simply connected set C\Rgq such that exp(LogI'(s)) =T'(s) and
Logl'(1) = 0. We have Logl”(s) = 1(s) and the formulas

LogT'(s) = ngnoo ((s —1)log(N) + log(N!) — Z log(s + k;))

0<k<N—1

—log(s) + > _ (slog(1+1/N) —log(1 + s/N)) .
N>1

Proof. Let © = C\Rgy. Since I'(s) has no zeros or poles on 2 and since 2 is
simply connected, it follows that there exists a holomorphic function log(T'(s))
defined on €2, which is unique if we specify its value at a single point, for
instance at 1, where it can be any integral multiple of 24, Speciﬁcally, if Cs is
any contour from 1 to s and lying in Q, we set LogI'(s) = [, ¥ c. z) dz, and this
does not depend on the contour since 1 is holomorphlc in Q. Furthcrmorc the
two given formulas are clearly equivalent, and since by uniform convergence
the sum

—log(s) + Z slog(1+1/N) —log(1+ s/N))
N>1

defines a holomorphic function on €2, equal to 0 at s = 1 and whose expo-
nential is equal to I'(s) by the proposition, it follows by uniqueness that it is
equal to Logl'(s). O

Remark. If we denote by log the principal determination of the logarithm,
we have evidently LogI'(s) = log(I'(s)) + 2imm(s) for some m(s) € Z, but
m(s) is not equal to 0 in general (and it can be estimated approximately
when R(s) or J(s) is large; see Exercise 35).

9.6.3 Preliminary Results for the Study of I'(s)

In the sequel we are going to study in some detail the gamma function. For
this we need some classical undergraduate material that we recall here with
proof.

Proposition 9.6.21.

/ e dt = /7,

— 00

and more generally for a > 0 we have

/ et dt = Vr/a .

Proof. There are several classical proofs of this result, and we give two.
The first is using polar coordinates. Set Iy = fiVN e~t" dt. Then I3 =
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Jsany e~ (*+4*) dt du, where S(N) is the square [N, N]2. If D(R) is the disk

centered at the origin of radius R, we clearly have D(N) C S(N) C D(N+/2).
On the other hand, by passing to polar coordinates we have

N

2 N
/ =) gt gy = / da/ e pdp=m(—e*")| =n(l-eN),
D(N) 0 0 0

Since the function e~ ®"+v”) is nonnegative, it follows that
m(l— efNQ) <I3 <7m(1— 672N2) ,

proving the first result by letting N — oo. The second follows by making
the evident change of variable u = a'/?t. A second proof is given in Exercise
72. O

Note that this result is still true when a is complex with $(a) > 0 and
a # 0; see Lemma 10.2.9 in the next chapter.

Proposition 9.6.22 (Stirling’s formula). Asn — co we have
nl ~n"e "V2mn ,

or equivalently,

log(n!) = (n + ;) log(n) —n + %log(%r) +o(1).

Proof. Once again there are several classical proofs. Certainly the most
classical is as follows: if we set u,, = log(n!/(n™e~"y/n)) then

—1 + ) 1o (142 LIy
Untl = Un = LESY It n 12n2

hence this is the general term of an absolutely convergent series, so as n — oo,
uy, tends to some limit log(A), say (we could also apply the Euler-MacLaurin
summation formula). To obtain A we can use Wallis’s formulas. We let C,, =

Oﬂ/z cos™(t) dt. By integrating by parts, it is immediate that for n > 2 we
have C,, = (n—1)(Cp_2— Cy,), hence C,, = ((n—1)/n)C),_5. Since Cy = 7/2
and C7 = 1, we deduce that

(2k)! = 22k (k1)?
Cop = 55— d C = —"
2T oz MM VLT o)
On the other hand, the sequence C), is clearly decreasing, so that in par-
ticular Corq1 < Cop < Coi—1. If we replace C), by its asymptotic value
n"e~"n'/2A (where A is the unknown nonzero constant above) a short com-
putation shows that A% = 27, proving Stirling’s formula. Of course the o(1)
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in the expression for log(n!) can be given a complete asymptotic expansion
by the Euler-MacLaurin summation formula; see Section 9.2.5.

A more sophisticated, but easier to generalize, way of finding the value
of the constant A has been explained in Section 9.2.5: by derivation of the
formulas of Proposition 9.2.13, which come from the Euler-MacLaurin sum-
mation formula, we find that

log(n!) = (n+1/2)log(n) —n —¢'(0) + O(1/n) .

The value of ¢’(0) is immediate to compute from the functional equation for
the zeta function, which itself is a simple application of the Poisson sum-
mation formula; see Section 10.2.4. Once again we urge the reader to study
Exercise 44 for generalizations of this idea. ad

Corollary 9.6.23. For any m > 1 we have

1 log(27) Bsy,
Logl'(s) = [ s — = ) log(s) — I LR—
ogT(s) <s 2) og(s) —s+—5—+ ; 2% (2k — 1)s2h—1

L[ B,

C2m+1 (t + s)2mtl

Proof. Clear from Stirling’s formula and Proposition 9.6.16. a

Proposition 9.6.24. We have the following expansions:
(1)

7 cotan(wx) = — —|— 2x E - -
x2—n
n>1

(2)

(3)
sin(rz) = mz || (1—) .

n>1

Proof. Let a ¢ Z be a parameter, and define f(x) to be the 2w-periodic
function such that f(x) = cos(az) for —m < x < m. This function is clearly
continuous and piecewise differentiable. It is thus everywhere equal to the
sum of its Fourier series. A short computation gives

fla) = sin(ma) + 9%, Z " cos(nx) 7

— n2
n=1
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and taking z = 7 gives

1 1
ﬂCOtan(Wa) = g + 2a Z m y
n>1

proving (1). Note incidentally that this formula immediately implies the for-
mulas for ((2k); see Exercise 74. (2) follows by differentiation, after writ-
ing 22/(2? — n?) = 1/(x —n) + 1/(z + n). For (3), consider the function
g(a) = sin(ma)/(ra[],,(1 — a®/n?)). Clearly the product converges abso-
lutely, so the function is defined for all a ¢ Z. In addition, as a tends to 0 it is
clear that g(a) tends to 1, and since by writing (1—a?/n?) = (1—a/n)(1+a/n)
it is clear that g(a) is a periodic function of period 1, it follows that g(a) tends
to 1 as a tends to any integer. Moreover, it is also clear that g(a) is differen-
tiable (in fact infinitely). If we compute the logarithmic derivative of g(a) we
find using (1) that

1 1
= 7 cotan(wa) — E+2azm =0.

=

It follows that g(a) is a constant, and since ¢g(0) = 1, that g(a) = 1 for all a,
proving (3). O

Proposition 9.6.25. For all s such that R(s) > 0 we have

o -t _ ,—st
log(s) = / % dt ,
0

where the left-hand side is the principal determination of the logarithm. More
generally, if R(s1) > 0 and R(s2) > 0 we have

o ,—sot _ ,—s1t
log(s1/s2) = / % dt .
0

Proof. Let I(s) be the first integral above. It is clearly absolutely conver-
gent for R(s) > 0, and its (for the moment formal) derivative with respect to
sis [ e dt, which is normally convergent in the domain R(s) > & > 0 for
any fixed e. It follows that the derivation under the integral sign is justified;
hence I'(s) = 1/s, so that I(s) = log(s) with the principal determination
of the logarithm, since clearly I(1) = 0. The second formula follows from
log(s1/s2) = log(s1) —log(s2) when R(s;) > 0, with the principal determina-
tions. ad

9.6.4 Properties of the Gamma Function

With this out the way, we can now begin our detailed study of the gamma
function. Recall that we have set u,(s) = n*~'n!/(s(s +1)---(s + n — 1))
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and that we have defined T'(s) = lim, .o t,(s) in Definition 9.6.18. Since
R+ is not a discrete subset of C\ Zgg, an important remark is that all the
identities that we prove on the real gamma function (usually as byproducts
of corresponding results for the Hurwitz zeta function) will be automatically
valid for the complex gamma function by analytic continuation. In particular,
by Proposition 9.6.14 we have I'(s + 1) = sI'(s) for all s € C\ Zo.

Proposition 9.6.26 (Hadamard product). We have

es/n

1+s/n’

P(s+1)=e " ]]

n>1
where v = 0.57721 ... is Fuler’s constant.

Note that this is the Hadamard product expansion of the entire function
1/T(s + 1); see Theorem 10.7.6.

Proof. If we divide the numerator and the denominator of u,(s) by n! =
1-2---n we obtain

s s/k

n s _—sH, €
n 1) = — n .
unlo +1) [lichen(l+s/k) "e H 1+s/k

1<k<n
where H,, = )", ,, 1/k is the harmonic sum. Since
AN

SB_SH" — e—s(H,,,—log(n)) :

n
by definition of + this tends to e~ 7%, proving the proposition. Note that this
implies that the infinite product is convergent, which is clear directly by
noting that the logarithm of its general term is O(1/n?). 0

Proposition 9.6.27 (Complex Stirling formula). For any s € C set
p(s) = max(R(s), |I(s)|). Then as p(s) — oo we have

LogT'(s) = (s - ;) log(s) — s + %log(Zw) +0(1/p(s)) .

Proof. First note that the region Ry = {s € C/ p(s) > N} is a subset of
C\ Rgo, hence we can choose the principal determination of the logarithm,
which will be analytic in that region. Furthermore, if s belongs to Ry then
so does s+ k for k € Z>(. Now an immediate exercise in complex integration
shows that if z € Ry we have [ log(u) du = zlog(z) — z, where the principal
determination is also chosen on the right-hand side. Note that this equality
is true as such, and not only modulo 2i7. Thus, using an exact version of the
Euler-MacLaurin summation formula and this remark we obtain
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:Z_:log(s—i—k):(s+n—;)log(n+s) (n+ s) ((S—)log )
}

n 1 1 1 / " By({t )
12\s+n s 2 0 (t+s)
where once again I emphasize that this is true not only modulo 2iw, but as
written. Thus, by Corollary 9.6.20 and the ordinary Stirling formula we have

LogI'(s) = (s — 1) log(n) + log(n!) + o Zlog (s+ k)

= (3 +n— ;) log(n) —n + 3 10g(27T) +o(1)

- <s—|—n—> log(n+s) + (n+s) + ((s—é) 10g(5)—s>
(1)1 B

Since s — (s +n —1/2)log(1 + s/n) = O(1/n), letting n — oo it follows that
we have the following integral representation for LogI'(s):

1 1

Logr(s) = (s - 3 ) tou(s) — s+ g2 + 11— [

* By({t))
12s 2 dt

(t+ s)2

Since Bs({t}) is bounded in absolute value by By = 1/6, it follows that

I A e

and an easy computation shows that

/w#dt— ! atan(|%(8)>
o lt+sl2 T IS(s)] R(s)
(or 1/R(s) if S(s) = 0). Since atan(z) < z for > 0, it follows that this is less

than or equal to (7/2)/|3(s)| and to 1/R(s) < (7/2)/R(s) when R(s) > 0
hence to (7/2)/p(s), proving the proposition. O

Remark. Once the slightly delicate estimate above is made, we can of course
apply Euler—-MacLaurin to any order and deduce that the asymptotic ex-
pansion for log(n!) obtained in Section 9.2.5 is valid more generally for
Logl'(s + 1). Note also that the expansion of log(T'(s 4+ 1)) would involve
an additional multiple of 2imw.

Corollary 9.6.28. (1) Asz — oo in R we have I'(x) ~ 2%~ /2= (21)1/2,
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(2) Let o € R be fivred. Then as |t| — oo we have
IT(o + it)| ~ |t|"_1/26_”|t|/2(277)1/2 .
Proof. The first statement is clear. By the above proposition we have

log(|T'(o +it)|) = R(log(T' (o +it)))
=R((oc + it —1/2)log(o + it) — o — it) + log(27)/2 4+ o(1)
= R((o +it — 1/2)(log(c* + t?)/2 + i atan 2(o, 1))
— o +log(2m)/2 + o(1)
= (o —1/2)(log(|t]) + o(1)) — tatan 2(o, t)
— o +log(2m)/2 + o(1) ,

where atan2(x,y) = Arg(z + iy) is the unique angle 6 in |—m, 7] such that

cos(0) = x/+/x? + y? and sin(f) = y/+/2? + y2. Changing ¢ into —¢ does not
change the above expression, so we may assume ¢ > 0. Clearly atan2(x,y) =
atan(y/x) + km, where k = 0 if z > 0, while k = sign(y) if z < 0. In both
cases ¢ > 0 and o < 0, we see that

log(|T'(o +it)|) = (o — 1/2) log(|t]) — t(7/2 — atan(c /t))
— o +log(2m)/2 + o(1)
= (o —1/2)log(|t]) — tw/2 + log(27)/2 + o(1) ,

proving the result, and the same proof gives the result when o = 0. a

Remark. This result, which shows that the gamma function tends to zero
exponentially fast as |t| — oo in bounded vertical strips of the complex plane
(which may seem paradoxical compared to its behavior on R ), is essential
in all proofs dealing with L-functions with functional equations involving
products of gamma functions, since it easily allows us to shift the contours
of integration.

Proposition 9.6.29. We have the following integral representation, valid

for R(s) > —1:
[e9) —t __ ,—st
Logl'(s+1) = /0 <set - tl(ete—1)> dt .

Proof. By Corollary 9.6.20, as n — oo we have LogI'(s + 1) = slog(n) —
> i<ken 108((s +k)/k) + o(1), so by Proposition 9.6.25 we have

[eS) —t _ —nt —kt _ —(s+k)t
LogI'(s + 1) = o(1) —|—/ s —° Z £ - )
0

t t
1<k<n

es} e—t e—nt 1 — e—st 1— e—nt
=o(1 _— = — dt
0()+/0 (St " t et—1>
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Ooe—nt 1_e—st
— — ) dt
f 7 ()

converges normally it is clear that it tends to 0 as n — oo, proving the
proposition. a

and since

Corollary 9.6.30. We have the following integral representations:
oo 1 et
= —— ) dt
7 /0 (et -1 t )

1 [e%e) tk*l
¢(k) = (1<;—1)!/0 g1

Proof. This follows by expanding in powers of s the integrand of the
proposition and comparing with Proposition 9.6.15. O

and for k > 2

Note that these formulas can easily be proved directly by writing 1/ (e’ —
D= > ekt (see also Corollary 10.2.3). In particular, we have more
generally for R(s) > 1,

1 0o tsfl
= — dt .
¢(s) I'(s) /0 et —1
Corollary 9.6.31. We have the integral representation

1 © /1 et 1 dt
~log(27) = S e
5 los(2m) /0 (t 2 et1) t

Proof. Integrating the first formula of Proposition 9.6.25 we obtain

® /et 1St
log(s) — s = SR 7S
slog(s) —s /0 (s ; e )

Subtracting this and log(s)/2 given by Proposition 9.6.25 from the integral
representation of Logl'(s + 1), the result follows from Stirling’s formula by
letting s — oo in the positive integers for instance. a

Corollary 9.6.32. For R(s) > 0 we have

1 1 o g8t 1 1 1
Logl(s) = (s — = ) log(s) — s + = log(2 Sy c) ar.
ogl'(s) (s 2) og(s) s+2 og( 7r)—|—/0 ; (et—l . + 2) dt

Proof. Immediate from Propositions 9.6.29 and the integral representa-
tions of slog(s) — s, log(s), and log(27)/2 given above. O

By expanding into a power series the function 1/(et — 1) — 1/t + 1/2 we
once again recover Stirling’s asymptotic expansion for LogI'(s + 1).
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Proposition 9.6.33. We have the duplication formula
T(s)I'(s+1/2) = 21_23771/21"(23)
and more generally for N € Z>; the distribution formula
IIr (g + ]]V> = NV/2=Ns (o) (N=D/2p(N) .
0<j<N
In particular, we have
i o) (N=1)/2
(-
N N1/2
I<ySN
Proof. Differentiating with respect to s the formula of Proposition 9.6.12,
setting s = 0, and using Definition 9.6.13 gives
> log(T'(z +j/N)) = log(T(Nz)) — (N = 1)¢'(0) + (0, N) log(N) ,
0<j<N

and since ¢’(0) = —log(27)/2 and (0, Nz) = —B;(Nz) = —(Nz — 1/2)
by Corollary 9.6.10, the result follows for x € R<(, hence for all z € C by
analytic continuation.

Another proof is to use the alternative definition of the gamma function
given by Proposition 9.6.17; see Exercise 85.

The last statement is immediate by setting s = 1/m in the distribution
formula. a

Proposition 9.6.34. We have the reflection formula

™

T(s)I'(1 —s) = Sn(rs) -

Proof. By Propositions 9.6.26 and 9.6.24 we have
M1+ s)(1—s)= H (1 — s%/n?) = ms/ sin(7s) ,
n>1

so the result follows since I'(1 + s) = sI'(s). O

Remarks. At this point, several remarks are in order.

(1) The function sin(ws) is a natural function because it is Z-periodic. The
above reflection formula shows that I'(s) is in a certain sense “one half”
of the sine function. Another way of saying this is that formulas obtained
by summing (or taking products) over Z, such as the Poisson summation
formula, will be simpler than formulas obtained by summing over Z-.
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A case in point is the zeta function: the natural definition would be
¢(s) = >,z 1/n®. This is not defined for n = 0, so we have to exclude
n = 0 from the sum. But this is not the important point: n° is multivalued
when n < 0, so we have to agree on some determination, except if s € Z.
And then ¢(2k + 1) = 0, which removes all difficulties for zeta values at
odd integers!

We have proved all the properties of the gamma function as consequences
of corresponding properties of the Hurwitz zeta function (for s € Z~, and
then deduced their validity by analytic continuation), with the exception
of the reflection formula. It can also be obtained in this way, but the
proof is much less natural; see Exercise 67.

It is not difficult to prove that the functional equation and the distribu-
tion formulas extend naturally to the function LogI'(s) (for instance we
have LogI'(s + 1) = LogI'(s) + log(s) with the principal determination,
and this would not be true with LogI'(s) replaced by log(I'(s))). On the
other hand, the extension of the reflection formula is slightly more subtle;
see Exercise 68.

The reader may be surprised that I have not yet mentioned the most

standard definition of the gamma function. Indeed, we have the following
classical result, which is usually taken as the definition of the gamma function:

Proposition 9.6.35. For R(s) > 0 we have

o dt
I'(s) = / tSe”t —
0 t

Proof. Recall that for any function f € C°°(]0,1]) we have Taylor’s for-

mula (which is trivially proved by integration by parts)

(k) 1
fy= > ! (0)+1/0 (1 —t)"fr D () de

k! n!
0<k<n

Applying this to f(t) = t"**, we deduce since R(s) > 0 that

1= 8(S+ 1)n'(3+n) /01<1 _t>nts—1 dt

so that

1
vp(s) = nS/ (1—t)"t*tat,
0

where

nn! n

on(s) = s(st1)--(s+tn) stn

n(s)

clearly tends to I'(s) as n — co. Changing ¢ into ¢/n in the integral gives
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vn(s) = /0"(1 /) dt

Since (1 —t/n)™ tends to e~! as n — oo, this starts to look like the desired
result. However, we must justify the limiting process. An easy exercise in real
analysis (Exercise 93) shows that for 0 < t < n we have

oty -,

where 0 < ¢(t) < t?e'. Tt follows that

vn(s):/ e*ttS*ldtf%/ o)ttt .
0 0

Since |p(t)| < t2e7t, it follows that as n — oo the rightmost integral tends
to some finite limit, and since we divide by n the quotient tends to 0. Thus

n—oo

o0
I'(s) = lim v,(s) :/ ettt dt
0
proving the proposition. a

Corollary 9.6.36. Let a and s be two complex numbers such that R(a) > 0
and R(s) >0, or R(a) =0, a #0, and 0 < R(s) < 1. Then

o0 dt
/ te” " — =a""T'(s),
O t

s —slog(

where as usual a™° = e @) with the principal determination of the loga-
rithm, i.e., —m < S(log(a)) < 7. In particular, if © € R* and 0 < R(s) < 1
we have

2
/ % cos(xt) at _ L) cos (S—W) .
0 t 2

sl

o Tr
/0 t* sin(xt) % = |x(ss) sin (ﬂ) sign(x) and

Proof. The integral converges (absolutely) at ¢ = 0 if and only if (s) > 0.
When $(a) > 0 it is clear that the integral converges absolutely at infinity.
When R(a) = 0 and a # 0, then f(t) = e % is such that ff f(t)dt is
bounded independently of A and B, so by integration by parts we see that
the integral converges at infinity if and only if R(s) < 1.

Setting u = at, we obtain

/OO tsefat @ — afs/ uSe Y dﬂ
0 t L. u’
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where L, is the line going from 0 to aco. If we consider the natural contour
going from £ > 0 to R > ¢, then on the circle of radius R to ¢ R (where
is the argument of a), back on the line L, to ae and on the circle of radius
e back to e, the above convergence proof shows that the integral over the
two circles will tend to 0 as € tends to 0 and R tends to infinity. Since the
integrand has no poles inside the contour, it follows that the integral over L,
is equal to the integral from 0 to co, proving the first formula. The other two
are special cases. a0

Corollary 9.6.37. For 0 < R(s) < 1 we have

/o t*~ 1 cos(t) dt = cos (%S) (s) and /0 t*~!sin(t) dt = sin (%S) I(s) -
Proof. Clear. H

The following proposition shows that the formula involving sin(at) is still
valid as a limiting case for s = 0, and that there exists a similar formula for
cos(xt).

Proposition 9.6.38. We have

00 1 t
/ sin(wt) dt == sign(z) ,
0 2

t

and for a >0,

/Ows(xf)—ldtJr/a Cosimt) dt = — (v + log(|az])) .

Proof. By integration by parts we have for s < 1,

o e dt e 11— [ et
/ tsezmtiz—'——k - / Tdt
1 t 1T w Jy t°7F

This last integral is absolutely convergent, so that

lim Ootse”t a = /OC eiot a .
s—0 /¢ t 1 t

Furthermore, since (e?** — 1)/t is a continuous function on the compact set
[0,1] we also have

1 1
. t . t
lim [ #5(e"™" —1) d = / (et —1) dt .
s—0 0 t 0 t

To prove the proposition we may of course assume z > 0. By Corollary 9.6.36
we have for 0 < s < 1,
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/OO 150wt @ _ F(S + 1)eis7r/2
0 t sTs ’

hence

1 [eS)
; dt codt T 1) . 1
/ ts(ewt o 1) +/ 5Tt _ (3 + )67,87'(/2 .
0 t 1 t

sxs s

By what we have proved above we can take the limit as s — 07, so that

1 ixt oo ixt
-1 T 1) .. 1
/ ¢ dt+/  _dt= lim (M)e“”/%) .
0 t 1 t s—0+ s s

Using the expansion I'(s + 1) = 1 — s + O(s?) we immediately obtain the
first formula of the proposition and the second for ¢ = 1, and the general
case follows by changing z into ax and ¢ into t/a. ad

A direct classical proof of the first formula is given in Exercise 95.

Proposition 9.6.39. For R(a) > 0 and R(b) > 0 define the beta function
B(a,b) by

1
Bla,b) = / 11— )L gt
0
Then
I'(a)l'(b)
I'(a+b)
Proof. By Proposition 9.6.35 we have

r(a)r(b):/ / b e ) g
0 0

B(a,b) =

so that setting v =t + u we obtain

(@)D (b) = /OOO e (/0 t“‘l(v—t)b_ldt> dv

hence making the change of variable ¢ = vz in the inner integral gives

e} 1
T'(a)l'(b) = / peti=lemy (/ 20711 — 2)bt dz) dv = B(a,b)I'(a+0) .
0 0
O
Corollary 9.6.40. (1) For 0 < R(a) < 2R(b) we have

©  ja-1 | (a/2)T (b — a/2)
/0 T it = 5Bla/2b—aj2) = LRt
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(2) For R(a) > 0 and R(b) > 0 we have

/0 a1 -2l = %B(“/Q’b) B m '

(3) For R(s) > 0 we have

! g2vs—1 g, 23—2L5)2 an ot _ I(s/2)?
/0(1 By di =2 (2s) I /0(1+t2)sdt_ 4r(s)

(4) We have

T vs g 12P((s +1)/2)
/0 sin(t) dt—wl/Qm,

7Tsin s dt = 7'/? tan(rs 7F(8/2)
| sin(0y e = 2 tanGes 2) 5 S
x1/2 T'(s/2)

/0 sinh(t) "% dt = 2cos(ms/2) T((s +1)/2)

/2 T(s/2)
2 I'((s+1)/2)°

where the first formula is valid for R(s) > —1, the second for R(s) < 1,
the third for 0 < R(s) < 1, and the fourth for R(s) > 0.

/ cosh(t)™°dt =
0

See Exercise 105 (e) for an interesting application of (4).
Proof. If we set u = t2/(1+2) then 1+ = 1/(1—u), t = (u/(1—u))"/?,
and dt = du/(2(1 — u)3/?u'/?), so

ol 1t B(a/2,b—a/2)
dt = = a/2—1 1— —(L/2—1+bd — ’
/0 1+ 2) 2/0 w1 =) b 2 :

proving (1). (2) follows immediately from the proposition by making the
change of variable u = t2. The first formula of (3) is a consequence of (2)

applied to a = 1 and of the duplication formula for the gamma function. For
the second, the change of variable u = 1/t gives

o0 1
/ 572+ 1) dt = / uw T/ (u? 4 1) du,
1 0

so the result follows from (1). For (4) we set u = tan(¢/2), so that sin(t) =
2u/(1 + u?), dt = 2du/(1 + u?); hence by (1) we have

" . s _ os+1 * u® _ 5F<(S+1)/2)2
/0 sin(t)® dt = 2 /0 7(1+u2)s+ldu—2711(5+1) ,

and we obtain the first formula using the duplication formula, and the second
using the reflection formula. Note that we could obtain this result directly
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using the composite change of variable u = sin?(t/2). For the third formula
of (4) we set u = sinh(t/2), so that sinh(¢) = 2u(1+u?)"/? and dt = 2du/(1+
u?)'/2; hence we obtain by (1)

s o o1es [ u” _ 5-s L((1 = 5)/2)T'(s)
/0 sinh(t) ™% dt = 2 /0 T a?) 7z — 2 (s +1)/2)

giving the third formula after applying the duplication and reflection formu-
las. For the fourth formula we set u = tanh?(t), so that cosh(t) = 1/(1 — u),
dt = du/(2u'/?(1 — u)), and hence

oo 1 1
/ cosh(t)™*dt = 5/ w2 (1 —w)¥2 gy
0

0
1 B /2 I'(s/2)
= 58(5/2, 1/2) = 2 T((s+1)/2)

9.6.5 Specific Properties of the Function (s)

Recall from Definition 9.6.13 that 1(s) = I''(s)/I'(s). All the formulas that
we have seen up to now can of course be logarithmically differentiated several
times if necessary to give formulas for ¢ and its derivatives:

Proposition 9.6.41. Let k € Zx¢.

(1) We have
AR
w(s) = Jim_ (10%<N> “2 T )
=—7+(s—1)§m - _VJF;)(TLH - n+5) '
(2) Fork >1,
1
W) = (CDRGE+ 108) = (DM Y
(3) We have
—1)kk!
PF (s 4+1) = pF) (s) + (ski)ﬂ ;
n—1
v®(n) = (1)K <c<k +1) - k1+1> ,
=17

where we set by convention ((1) = .
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(4) We have
S s + j/m) = —mlog(m) + mip(ms) |

o<j<m

and for k > 1

> B (s +/m) =m*pE) (ms)

0<j<m

(5) We have
P(s) — (1 — ) = —mcotan(rws) .

Proposition 9.6.42. As s — oo we have ¥(s) = log(s) + O(1/s) and
PpF)(s) = (1) 1k —1)!/s*"1 + O(1/s*) for k> 1.

Proposition 9.6.43. We have for R(s) > —1,

e} —t —st
w(s+1)=/0 (et— efl) dt

and for k > 1

(k) R
1) =(-1)"" dt .
W91 = (- [ 5
Proofs. Immediate and left to the reader (Exercise 77). O

Remarks. (1) In Proposition 9.2.10 we have already given without proof
the integral representations of Proposition 9.6.43, together with integral
representations involving fractional parts.

(2) Thanks to the formulas of Proposition 9.6.41 we can express exactly in
terms of complex values of the function v and its derivatives the sum of
any infinite series of rational function values, and similarly for infinite
products. More precisely, we have the following:

Proposition 9.6.44. Let f be a rational function, and let its decomposition
into partial fractions be

- Z Z (waj’g)k ’

a pole 1<k<—v(a)

where a runs through the poles of f, —v(a) = 1 denotes the order of the pole
a, and anp € C. Assume that z°f(x) is bounded when x — oo, in other
words that Y~ aq,1 = 0. Then

Zf Z Z k: ey, kl)!d)(kfl)(_a) )

n=0 a pole 1<k<v(a)
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Proposition 9.6.45. Let f be a rational function, and write

f@=c ] @-a®®,

« zero or pole

where o runs through the zeros and poles of f, v(a) € Z is the order of «
(positive for a zero, negative for a pole), and C € C*. Assume that x*(f(z) —
1) is bounded as x — oo, in other words that C = 1, Y v(a) = 0, and
Yo av(a) =0. Then

[Trm=" I Ty .
n=0 « zero or pole
Proof. Again immediate and left to the reader (Exercise 78). O
In addition to the above, the function v has specific properties that do not
immediately follow by derivation from corresponding properties of LogI'(x).

Perhaps the most interesting is the fact that it can be evaluated exactly at
rational arguments in terms of elementary functions:

Proposition 9.6.46. Assume that 0 < r < m are integers, and set as usual
Cm = exp(2im/m). We have

¢ ()

—y—log(m)+ Y ¢ Flog(1—¢h)

1<k<m—1

m—1
T r 2mkr . 7k
—v —log(m) — 5 cotan (E) + g cos ( - > log <2 sin <m>) .

k=1

Proof. By Proposition 9.6.41 we have

1 m
¢(T/m):—7+7§)<n+1 _mn—I-r) '

By Abel’s theorem on the continuity of power series on their circle of con-
vergence, since 1/(n + 1) — m/(mn +r) = O(1/n?) we have (r/m) =
—v +lim;_,— f(t), where

f(t):Z <n+1 B mn+r> '

n=0

Ast — 17 we have

Z "/ (n+1) = —t""log(l —t™) = —log(l —t) — log(m) + o(1) .

n=0

On the other hand, we have
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N —rk N " (n—r)
Do G flog(l—tGr)y=>"— > G

0<k<m n>1 = 0<k<m

The inner sum vanishes unless m | (n — r), in other words n = gm + r for
some ¢ > 0, in which case it is equal to m. Note that we use here the fact
that 0 <7 < m. Thus

= D G log(l—t¢k)=m)

o<k<m q=0

tqm+'r

gm+r

It follows that as t — 1~ we have

F(t) = —log(1 —t) —log(m) + 7" Y (" log(1 —t(y,) +o(1)

0<k<m

=—log(m)+ Y ¢ log(1—¢h) +o(1),

1<k<m—1

where once again we use Abel’s theorem mentioned above, proving the first
formula. For the second, we use the following trick: replacing r by m — r,
adding, and dividing by 2, we have

Y(r/m) + 7/’2(1 — (r/m)) = —v—log(m)+ Z cos(2nrk/m) log(lfdfl) .

1<k<m—1

On the other hand, by the reflection formula for the ¢ function (Proposition
9.6.41 (5)) we have ¥(1 — (r/m)) = ¥(r/m) + 7 cotan(7r/m). Replacing in
the above formula and taking the real part gives the desired result, since
Y(r/m) € R and R(log(1 — ¢*)) = log(2sin(wk/m)). O

Using the functional equation ¢ (z+1) = ¢(x)+1/x, the above proposition
gives the value of () for any a € Q.
In a similar manner we can prove the following result:

Proposition 9.6.47. We have

1
Soow (L) p2imar/m _ ) 108 (’28111 (%G)D Timm ({T‘;} B 2) ——
ersm —m(log(m) +7) ifm| a.
Proof. Left to the reader (Exercise 103). -

We also have the following results, which we will not prove:
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Theorem 9.6.48. We have the continued fraction expansion

99

2
QZ}/(S) = 14
1(2s —1) + Y
32s—1)+
525 —1) +
which converges when s # 1/2, and
2
1/)”(5) - - 16

1(2s2 — 254+ P(1)) —

26
3(252 — 25+ P(2)) —

5(2s2 —2s+ P(3)) + -

2

where P(n) = n® —n+ 1, which converges for all s.

These results come implicitly from the work of Apéry on the irrational-
ity of ¢(2) and ((3), and were made explicit by the author, C. Batut, and
M. Olivier (see [Bat-Oli] and [Coh4]). It has also been extended to ((4) by
G. Rhin and the author (see [Coh-Rhi] and [Coh4]), so that there also exists
a similar but more complicated continued fraction for "/, which however is
only an asymptotic expansion. In a different form, some of these continued

fractions can also be found in the work of Stieltjes.

Finally, note also the following continued fractions due to Bender (see

[Bor-Bai-Gir], page 324):
Theorem 9.6.49. We have the continued fraction erpansions

2

22(22 - 1)
32(32-1)

42(4% - 1)

252’ (s) = 1+ 25 +

6s +
10s +

14s +
185+ .

1
=1+4+2s+

25(141/2) +

1

25(1/2 + 1/3) +

2s(1/34+1/4) +
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—s%"(s) =14 s+ 113.2
2s + 123
3s + 233
4s + . 5.3
65+ -
1
=1+s+ 1
2s/1 + T
s(14+1/2) + 1
2s/2 + T
5(1/241/3) +
2s/3+

and these continued fractions converge for all s # 0.

9.6.6 Fourier Expansions of {(s,z) and log(T'(x))

We begin with the following.
Proposition 9.6.50. Letn € Z, x € Ry, s € C, and set

x+1 )
Cr(z) = / X (s, 1) dt .
Then Co(z) = 2175 /(s — 1), and when n # 0 we have

. N(l—s) . .
— [T eRimnty—s qy i(1—s)m/2sign(n) R <1
Cumy =l * el Jor o) <1
[ ety dt for R(s) > 0.
Proof. Assume first that 0 < R(s) < 1 and set F,(z) = [, e*™((s, ) dt,
which converges since R(s) < 1. We have F/,(x) = e?™%((s,z) and C,(x) =
F,(x+ 1) — F,(x), so that

C;L({L‘) _ e2i7m($+1)C(s,{,C +1)— e2i7rmc<(s’ ) = _2imna . —s 7

and hence

Ch(x) = —/ et 4t + C,,
0

for some constant C,, = C,,(0) to be determined. Setting ¢ = = + u we have

1
Cp(x) = 62”":’3/ 2T (s, x4 u) du .
0
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By Taylor’s formula to order 2 and the formula (d/dz)((s,x) = —s((s+1,x)
there exists 6 = 0(u,x) €]0, 1] such that

2
C(s,x+u)) =C((s,x) —usC(s+ 1,x) + %s(s—l— D¢(s+2,2+0).

By Corollary 9.6.9, since R(s) > 0 we have ((s + 2,z + ) = O(z=179)
uniformly in u, {(s,z) = 2175 /(1—5)+275/24+0(x~17%), and {(s+1,7) =
x7%/s+ O(x=17%). Thus

1—s

_ _ 1 1
Cn((L') _ eQiTrnz <(_ X " x 5) / 62i7rnu du — xfs/ ue2i7rnu du)
1—s 2 0 0

+0(z7179).

For n = 0 this gives Cp,(x) = —217°/(1 — s) + O(z~17%), and since Cy(z) =
— [yt dt + Cp = —2'7*/(1 — s) + Cp we deduce that Cy = 0. Assume
now that n # 0. Since fol ue? ™ dy = 1/(2imn), the above estimate gives
Cp(z) = —27%/(2imn) + O(x~17%) = o(1) since R(s) > 0. On the other hand,
I, = [;° €™t~ dt converges, so Cy,(x) = —I,, + Cy, 4+ 0(1). Comparing the
two expressions and using Corollary 9.6.36 we deduce that

Cn _ In _ /oc egiﬂ—ntt—s dt = (F(l - 3) ei(l—s)ﬂ'/2sign(n) ,
0

2m|n])t=*

proving the proposition for 0 < R(s) < 1. For general s such that R(s) <
1 we note that all the integrals converge absolutely, so both sides of the
formula define analytic functions of s, so the formula is still valid by analytic
continuation. For R(s) > 1 and for n # 0 we again have C/,(z) = —e?™% 35
and since ((s,z) = O(x'7%) tends to zero as z — oo we deduce that C, (z) =
[.7 e*™t¢== dt. Once again we conclude by analytic continuation that the
formula is valid for R(s) > 0. O

Corollary 9.6.51. For z € R\ Z and R(s) < 1 we have

sin(2mna + sw/2)
nl-s :

((s,{x}) =2(2m)" ' T(1—9) )

n>1

Proof. The variable s being fixed, the periodic function (s, {«}) is a piece-
wise C'*° function with simple discontinuities at the integers, so the corollary
follows by a simple computation from the proposition and the fundamental
theorem on Fourier series, which implies that outside of the discontinuities
we have ((s,{z}) =3, o7 Crn(0)e 2™ O

This result has many important consequences, in particular the functional
equation for the Riemann zeta function and for Dirichlet L-functions, which
we will study in the next chapter. For now we give the following.
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Corollary 9.6.52. For x € R\ Z and R(s) > 0 we have

y o) (s el (s (1))

ST T AR cosGn/2)

sin(2mnx) (27)*
T;l ns  4T(s)sin(sm/2) (C(1—s,{z})—C(1—s,{1—2})).
Proof. Immediate and left to the reader. -

Corollary 9.6.53. For all x € R\ Z the Fourier expansion of log(I'({x}))
s given by

log(N({})) = 5 log(2m) + 3 3 % + 13 tog(2mn) + 7)sin<2nim>

n>1 n>1

= 3198 ey ) ~ Gosm +) () - 3)
L1 o Lo 108(1) i (2na) |

s n
n>1

Proof. Using for instance Abel summation, we note that for fixed = ¢
Z, the series Zn>1 log(n)e?™¥n =% is uniformly convergent in any compact
subset of the right half-plane R(s) > 0. It follows that we can differentiate
termwise the series for ((s, {z}) for R(s) < 1, so that

C’(S, {1'}) = 2(27‘-)5*11‘\(1 _ S) ((10g(2ﬂ') _ w(l _ S)) Z sin(27rnx + 571'/2)

nl—s
n>1

N Z log(n) sin(2rnx 4+ sm/2) + (7/2) cos(2mnx + 87T/2)> .

nl s
n=1

Setting s = 0 and using
log(P({z})) = ¢'(0,{z}) — ¢'(0,1) = ¢'(0,{=}) + log(27)/2

we obtain the corollary. An equivalent proof is to compute directly the Fourier
coefficients of log(I'({z})) by differentiating with respect to s the formulas of
Proposition 9.6.50. We obtain the following result, whose proof is left to the
reader (Exercise 98).

Corollary 9.6.54. Forn € Z and x > 0 set

r+1
Ch(z) = / 2™ og(T'(t)) dt .

Then
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1
xlog(x) — x + = log(27) forn=0,
Culz) = 2

Jy €™ log(t) dt + 1] + 2;—”(7 +log(2m|n])) forn#0.

The case n = 0 of the above formula is called Raabe’s formula.

Example. Setting £ = 1/4 in the second formula of Corollary 9.6.53 we
obtain

D (m(r (1) - (e 252)

We will see in the next chapter (Proposition 10.3.5) that this is a special case
of a more general result giving L'(x, 1) for an odd primitive character .

9.7 Integral Transforms

Before studying integral transforms, we recall three theorems of undergrad-
uate real analysis, which although very classical, are not always sufficiently
well known (see for instance [Rud)):

Theorem 9.7.1 (Monotone convergence theorem). Let X C R, and
let f,, be a sequence of measurable functions on X such that f(x) = lim, o fn(z)
exists for every x € X. If for all x € X we have 0 < fo(z) < fr(z) < ---
then f(x) is measurable, and

lim fn )dx = / flx

Theorem 9.7.2 (Dominated convergence theorem). Let X C R, and
let fr, be a sequence of measurable functions on X such that f(x) = lim, e fn(z)
exists for every x € X. If there emists a function g € L'(X) such that
|fn(z)| < g(x) for allx € X, then f € LY(X), and

lim \fn() f(z)|de=0 and lim fn )dmz/f(m)d:r
b

n—oo n—0oo

Theorem 9.7.3 (Riemann—Lebesgue lemma). Let f € L'(R) be a peri-
odic function of period 1, and let

1
:/ f(t)e—zmntdt
0

be the nth Fourier coefficient of f. Then as n — £o0o we have ¢, — 0.
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9.7.1 Generalities on Integral Transforms

Let C' be a contour in the complex plane, and in particular a real interval.
An integral transform is a map that sends a function f belonging to some
reasonable class to another function F' defined by

Fla) = [ KG@.os.

where K (z,t), called the kernel function, is also a reasonable function of
two variables (which, however, may have mild singularities, for instance for
x =1).

There are many reasons why integral transforms are important. For in-
stance, they can transform some properties of the function f into some quite
different property of the function F'. Furthermore, linear operations on f can
be transformed into the same operations on K, thus giving explicit formulas.
Finally, useful integral transforms can be inverted; in other words, we can re-
cover the function f from the function F' through another integral transform,
evidently called the inverse transform.

The three simplest and most important transforms used in number theory
and elsewhere are the Fourier transform, the Laplace transform, and the
Mellin transform. We will study each one, but we will see that they are
closely related.

Intimately linked to integral transforms are convolutions. If F' and G are
the integral transforms of f and g respectively, the convolution of f and g is
the function whose integral transform is F'G. It can usually be expressed as
an integral involving f and g, but not involving explicitly the kernel K.

9.7.2 The Fourier Transform

This is probably the most important, and the oldest of all integral transforms,
and should be part of every undergraduate curriculum. We give here the main
results that we need.

Definition 9.7.4. The Fourier transform of a function f is defined by

[ee]

A = [ e o
— 00

Although the “correct” context in which to study the Fourier transform

is the space L?(R), we will usually assume that our functions are nicer than

simply L2. Since our goal is concreteness and not abstraction we focus on

the formulas and not on the minimal assumptions. The following theorem
summarizes all that we need to know.

Theorem 9.7.5. (1) (Inversion formula.) Assume that both f and F(f) are
in L'(R). Then
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f@=[%ﬁmﬂﬂ@ﬁ

for all x, where f is continuous. In other words, we have the formula
F(FU)() = f(—=).

(2) (Conwvolution formula.) If we set

(f * 9)a / f(tg(e —t)d

then F(f  g) = F(/)Flg) and F(fg) = F(f)  F(g).

(3) If f € CYR) and zf(x) tends to 0 as |z| — oo we have F(f')(x) =
2ireF(f)(x) and F(f) (x) = =2inF(tf(t))(x) (hence F(tf(t))(x)
—(1/(2im)) F () (x)). ,

(4) Assume that f € CF(R), that fU)(z) tends to 0 as |z| — oo for 0 < j <
k—1, and that f9)(z) € L*(R) for 0 < j < k. Then *F(f)(z) tends to
0 as x — oo; in other words, F(f)(x) = o(x~F).

(5) Conversely, if f(x) = o(z~") then F(f) € C*(R).

(6) The functions f(z) = e~™" and 1/ cosh(mz) are invariant under Fourier
transform.

Proof. Set for T' > 0,

fr(z) = [ i <1 - %) XTI (f)(t) dt .

Replacing F(f)(t) by its expression we find after an easy computation that

= 1§ [
- /jo f(u) </T (1 - %) eimt(r=u) dt) du

/‘ P wT@L—;»(m

1 °°sm2(t) t

Using the well-known formula ffooo sin?(t)/t? dt = 7, which can be proved in
a number of ways (see Exercise 97), we thus have

fr(@) — f(z) = %/O; Sin;(t) (f (x + %) — f(x)) dt .

Let € > 0 be given, and set X = T/2. Since f is continuous at x there exists
n > 0 such that |h| < 5 implies |f(z + h) — f(x)| < e. Since f € L'(R), for
X/(xT) < n, in other words for T' > (7n)~2, we have
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sin?(t)

o di

.2 X
wlfr(x) — F()] < / S0, £y dt 4 22 /

2
t>x t

g/ \f(£)]dt +emr .
t|>T1/2

Since f € L'(R), as T — oo this upper bound tends to e, and since ¢
is arbitrary we thus have limy_,o fr(z) = f(z). On the other hand, since
F(f) € LY(R), by the dominated convergence theorem we have

lim fr(z) = / - 2T E(F)(t) dt

T—o00 0

proving (1).
(2). We have

F(f=g)(x) = T g imat Oof(u)g(t—u)du dt
[ ([ omin)

_ /oo e_giﬂxuf(u) </ e—2i7rac(t—u)g(t _ ’U,) dt) du

= F(N)@)F(g)(=)

proving the first formula of (2), and the second follows from the inversion
formula (1).

(3). Follows immediately by differentiation under the integral sign and by
integration by parts.

(4) and (5). By (3) we have F(f)(z) = F(f*))(x)/(2irz)*. We are thus
reduced to proving (4) for k = 0, in other words that if f € L!(R) is continu-
ous, then F(f)(z) tends to 0 as © — oo. But this is exactly the statement of
the Riemann—Lebesgue lemma. The converse follows immediately from this
and the inversion formula, but can be proved directly if desired.

(6). The Fourier-invariance of e ™ is very classical and fundamental for
the functional equation of theta and L-functions that we will study in the next
chapter, and it has been proved in Proposition 9.6.21. The Fourier-invariance
of 1/ cosh(wx) is less well known, although it is essentially equivalent to the
functional equation of the square of the usual theta function. See Exercise
101 for the proof. ad

Remarks. (1) The fact that, up to a multiplicative constant, the Fourier
transform converts derivatives into multiplication by x, hence more gen-
erally higher derivatives into multiplication by powers of x, is very useful
in the fields of differential equations and partial differential equations,
since it can transform them into polynomial equations. The same is true
for the Laplace transform (see below), which is closely related.
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(2) Because of (2), in other words of the formula F(F(f))(z) = f(—x), it
is reasonable to consider the Fourier transform as a dualizing operator
(it is indeed self-dual on even functions). Thus, to emphasize this aspect
we can also write f(x) instead of F(f)(z), and this is the notation that
we have used in Proposition 2.2.16. A deeper reason for this dualizing

property is given by the Weil representation; see Exercise 108.

9.7.3 The Mellin Transform

Definition 9.7.6. The Mellin transform of f is defined by the formula

oo
M) = [ e ar.
0

As a basic and crucial example for number theory, the Mellin transform
of f(x) = e ® is the gamma function. There of course exist many other
important examples useful for number theory, which we will see mainly in
the next chapter. The Mellin transform is in fact a version of the Fourier
transform, as the following proposition shows. However, its applications are
slightly different.

Proposition 9.7.7. Assume that f is continuous on ]0,00[, that f(t) =
O(t=®) for some o € R ast — 0, and that f(t) tends to O faster than
any power of t as t — 00.

(1) The Mellin transform of f converges absolutely for R(s) > « and defines
a holomorphic function in that right half-plane.
(2) If we let s = o + 4T with o > « and set

go(t) — e—Qﬂotf(e—ert)

then
M(f)(o +iT) = 2rF (9o )(T) -

(3) We have the Mellin inversion formula, valid for all o > «: for all x > 0,

1 o+ioco .
f@) =5 [ e M.

Proof. (1). By our assumptions on f the integral converges absolutely
in a neighborhood of infinity, and in any compact interval not containing
0. Since [t>71f(t)] = O(t®®)=2=1) the integral converges absolutely also
at 0 when R(s) > a. Furthermore, since [t*~!log(t)f(t)] = O(t®(s)—a—1=¢)
for all € > 0, the integral of the derivative with respect to s also converges
absolutely and normally on compact intervals for R(s) > a, so by the theorem
on differentiation of improper integrals we deduce that M(f)(s) is complex-
differentiable for R(s) > «a, hence is holomorphic.
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(2). Making the change of variable t = e~ in the defining integral we
have
M(f)(s) = 271'/ e 2T f (e dy,
—00
= 271'/ e 2T g (u) du = 2 F (95)(T) ,

proving (1). For (2) the Fourier inversion formula tells us that for all z € R,

@)= [ AmTEg )@ ar = o [ AT Mgy i) ar

1 o+1i00
= — 62”(8_")./\/1(]‘)(5) ds .
2'L'IT o—i00
Thus .
—27x 2nox 1 e 27rwsM d
Fe25) = g (o) = g [ M) ds.
and the Mellin inversion formula follows by setting X = e~2™* > (. a

The Mellin transform evidently also has a convolution formula, which is
immediately deduced from that for the Fourier transform, but we will not
need it.

9.7.4 The Laplace Transform

Definition 9.7.8. The Laplace transform of f is defined by the formula

L@ = [ et ar.

0

Proposition 9.7.9. Assume that [ is piecewise continuous on ]0,00[, that
f(t) =0(@{"®) for some a <1 ast — 0, and that e~ f(t) tends to 0 for all
a>0ast— oo.

(1) The Laplace transform of f converges absolutely for R(x) > 0 and defines
a holomorphic function in that right half-plane.
(2) We have L(f) () = —L(tf)(x) and if f € C*[0, 0] we have

L(f)(x) = zL(f)(x) - £(0) .
(3) If we let g(t) = f(—log(t)) fort € [0,1] and g(t) =0 for t > 1 then



9.8 Bessel Functions 109

(4) We have the Laplace inversion formula: for all o > 0 and all x > 0,

1 0’+iOO s
f@) =g [ e,
In addition, for x < 0 we have
1 o+i0o

5in | €TLN(s)ds =0

(5) If we set f*g(x) = [ f(t)g(x —t)dt we have the convolution formula
L(f xg)(x) = L(f)(x)L(g)(x) .

Proof. Thanks to the assumptions made on f, (1) and the first formula
of (2) are clear, and the second is immediate by integration by parts. For (3)
we make the change of variable v = e~*, which gives for z > 0,

1 e’}
£(f)(x) = / w1 f(~ log(u)) du = / u g () du = M(g)(x) |

proving (3). Thus by the Mellin inversion formula we have for all o > 0 and
x>0,
1 o+1i00 .
o)== [ L.

When z < 1 we replace z by e~! for ¢t > 0, giving the inversion formula,
and when z > 1 we obtain the other result since g(z) = 0. Note that this
latter result can be proved directly by showing that it is legitimate to shift
the path of integration infinitely to the right. Finally, (4) can be proved from
the convolution formula for the Fourier transform, but better directly as we
did for the Fourier transform. ad

Note that we have already met the Laplace transform in the context of
the Euler-MacLaurin summation formula (Section 9.2.4). However, one of its
main uses is in the theory of ordinary differential equations, because of prop-
erty (2), which essentially says that the operator £ transforms differentiation
with respect to x into multiplication by z. This is of course nothing else than
the corresponding property of the Fourier transform, which is also used in
the context of differential equations.

9.8 Bessel Functions

9.8.1 Definitions

We refer to [Wats] and [Abr-Ste] for more details on Bessel functions. Al-
though we will not need all the standard Bessel functions, it is convenient
and not longer to define them all.
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Proposition 9.8.1. Forv € C, let E,, be the differential equation

! 2
yl/+y7 <1V2)y—0.
x xr

(1) When v ¢ Z, a basis of the space of solutions of E,, is given by the two
linearly independent solutions Ji, such that

T +v
Taula) = P Sl

where Sy, (x) is a power series such that S+, (0) = 1. Explicitly, we have
the series expansion with infinite radius of convergence

A e Vo)
Fela) = @™ Y iR

(2) Forv &7 set
Jy(x) cos(mv) — J_p ()
sin(mv)

Y, (z) = ,
and forn € 7 set
Yo(z)= lim Y, (z).

v—n, vEZ

For any v a basis of the space of solutions of E,, is given by the functions
J, andY,.

(3) For n = 0 the function Yy(x) — (2/7)(log(x/2) + v)Jo(z) has a power
series expansion around x = 0 with no constant term, where as usual v
1s Euler’s constant. More precisely, we have

Yola) =~ 2 3 CDR (g rog(ay))

k12
k>0
where Hy, = Z1<j<k 1/7 is the harmonic sum.

Proof. This is a classical undergraduate exercise, so we only give a sketch
(see Exercise 110). If v ¢ Z, we can set y = z&" > k>0 apx® with ag #
0. The differential equation gives a; = 0 and a simple recurrence for ago
in terms of ag, which shows the existence of the power series Si,(z), the
fact that its radius of convergence is infinite, and the explicit formula for
Jy(x), proving (1). For (2) the above procedure works for n, but not for
—n, which gives the zero solution. On the other hand, the given expression
(Jo () cos(mv) — J_,(x))/ sin(mv) is evidently a solution of E, for v ¢ Z, and
it is easily checked on the explicit expansions both that it has a limit when
v — n and that this limit is indeed a solution of E,,, clearly independent of
J, since it is also easily seen that it has a logarithmic singularity at z = 0
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(the fact that the limit exists will also follow from the integral representation
that we give below). The same explicit expansions also give (3). O

Similarly we have the following:

Proposition 9.8.2. For v € C, let I, be the differential equation
/ V2
v+ L <1+2>y:0.
x T

(1) When v ¢ Z, a basis of the space of solutions of F,, is given by the two
linearly independent solutions 11, such that

(z/2)*
Iiy(x) = == Twu(2) ,
+v(2) T(£v +1) (@)
where Ty, (x) is a power series such that T'v,,(0) = 1. Ezplicitly, we have
the series expansion with infinite radius of convergence

. (2/2)%*
L) = @/D™ ) pres, T g

(2) Forv ¢&Z set
7l (2) - L(2)

Ky(z) = 2 sin(vm)

and for n € Z set
Ky(x)= 1 K, (x) .
(2) , M (x)
For any v a basis of the space of solutions of F), is given by the functions
I, and K.
(3) For n =0 the function Ko(x) + (log(x/2) + v)Ip(z) has a power series
expansion around x = 0 with no constant term. More precisely, we have

Kole) = 5 2% (o)

k2
k>0

Proof. Exactly the same proof as the preceding proposition. Note that
Tiy(m) = Siy(ia?). O

Definition 9.8.3. The functions J,(x) and I,,(x) are called the Bessel func-
tions of the first and second kind respectively, and the functions Y, (x) and
K, (x) the modified Bessel functions of the first and second kind.

Remarks. (1) As will become clear from the asymptotic expansions given
below, the reader should think of the functions J(z) and Y (z) as the
functions cos(z) and sin(x) respectively, and of the functions I(x) and
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K (z) as the functions e* and e~*. In particular, the functions J, Y, and
K often occur in expansions, but almost never the function I since it is
exponentially large.

(2) The normalization of the functions J and I is natural. That of the func-
tions K is canonical up to multiplication by a constant, since it is the
only solution to the differential equation that tends exponentially fast to
zero at infinity. On the other hand, the normalization of the function Y
(which is sometimes denoted by N) is less natural, but we have chosen
the one occurring in the literature.

X
Proposition 9.8.4. We have

Joa(@) 4 Ja@) = g @) (@) — o () = 27,()

2v

Y,—1(x) + Yo (x) = ?Yy(x) y Yoa(z) = Yoq(r) = QYV/(x) )
loma(o) = Toga(@) = 0 (0), Tea @)+ o (0) = 2(0)
2v

Kypi(z) — Ky1(z) = ?KV(m) o Kyoa(z) + Kppa(2) = —2K,,(2) -

Proof. Immediate from the series expansions and the definitions of ¥ and
K,usingT'(w+k+1) = (v+ k)T'(v + k), and left to the reader (Exercise
116). 0

Proposition 9.8.5. When v € (1/2) + Z the four Bessel functions are ele-
mentary functions. More precisely:

(1) We have

Jija(w) =Y_q)9(x) = \/zsin(x), J_1)2(x) = =Yy 2(x) = \/Zcos(x) ,
I () = \/Zsinh(m), I_1)5(x) = \/Zcosh(x) ,

[
K1/2<CL'):K_1/2(ZL'): %6 .

(2) More generally, there exist polynomials P,(X) and Q.(X) satisfying
deg(Pn) = deg(Qr) =n, Pp(—=X) = (=1)"Pp(X), Qn(—X) = (=1)"Qn(X),
and such that for k € Z>o we have
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Jpq1/2(x) = \/Z(Pk(l/x)sin(m) — Qr-1(1/x) cos(x)) ,

J_p_12(x) = (—1)k\/z(Pk(1/x) cos(z) + Qx—1(1/z) sin(z)) ,
Vir2(2) = (=1)F N1 p0(x) . Yopoije = (=1 T ye(@)

Iiyay2(x) = \/Z(ikPk(i/x) sinh(x) 4+ "1 Qg _1(i/z) cosh(z)) ,
I _q)o(z) = \/Z(ikpk(i/w) cosh(z) +i*71Qy_1 (i/x) sinh(z)) ,
K afe) = K a/a(e) = |30 01/ ) + 97 Qu a1/ G))e

Proof. The formulas for Jiq/5(x) and I4q/5(x) follow immediately from
the power series expansion, using the formula

D(k+3/2) = (2k + 1)1v/a/(k1226+1) |

which is an immediate consequence of the duplication formula of the gamma
function. The formulas for Y and K then follow from the definition. Finally,
the assertions of (2) follow from (1) and the recurrences of Proposition 9.8.4.
The details are left to the reader (Exercise 117). ad

9.8.2 Integral Representations and Applications

Apart from the power series expansions around x = 0, which are readily
found, the only results that we need are given in the following propositions.

Proposition 9.8.6. We have the integral representations

1 ™ : oo .
Jy(x) = f/ cos(zsin(t) — vt) dt — M/ e~ wsinh(t)—vt gp
T Jo m 0
1 " : 1 - —ax sinh(t) (vt —vt
Y, (z) = =) sin(z sin(t) — vt) dt — = e (€' + cos(mv)e™"") dt
1 " x cos(t) sin(mr) > —xz cosh(t)—vt
I,(x) = = e cos(vt) dt — - ; e dt ,

o
K,(x) = /0 e~ = h(®) cosh(vt) dt .

Proof. We first prove the formula for J, (x). By Proposition 9.8.1 we have

Jo(x) =)

k>0

(=1)*(z/2) 2
ET(wv+1+k)

On the other hand, by Exercise 99, for all z € C and all ¢ > 0 we have
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L1
I'(z) 27 Jo

t~%et dt |

where C' is any contour coming from —oo, turning in the positive direction
around 0, and going back to —oo. Since the radius of convergence of the series
is infinite, we deduce that

2 2 Qk:t v—k—1
g () = 22 / x/) et dt
2im ¢ !
_ (95/2 /t_” 1,t— z?/(4t) dt
20T C

so setting ¢ = (x/2)u we obtain

JU(J? — L u—u—le(z/Q)(u—l/u) du

21 c
for some other contour C” of the same type.

We now make the change of variable u = e*. We choose as contour C
the rectangular contour with vertices oo — imw, —im, im, oo + im. It is clear
that as w goes along this contour, u = e goes from —oo to —1, around the
trigonometric circle back to —1, and then returns to —oo, hence is (the limit
of) a suitable contour C. Thus

1

Ju - = —vw jx sinh(w) d
(x) 5im /C1 e e w

which gives the desired integral representations after splitting the contour C
into its three sides and making the evident necessary changes of variable.

It is now immediate to deduce the integral for Y, (x) from the definition:
we have

sin(vm)Y, () = cos(vm)J, (z) — J_,(z) = % _ @]2 ,

where
I = cos(vm) / cos(zsin(t) — vt) dt — / cos(zsin(t) + vt)dt and
0 0

I, = / e =5 (cos(vm)e ™t + eV dt .
0

Now since
cos(vm) cos(z sin(t) — vt) = cos(zsin(t) + v(m —t)) + sin(v) sin(z sin(t) — vt)

and

/ cos(zsin(t) + v(r —t))dt = / cos(zsin(t) + vt) dt ,
0 0
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we have .
IL = sin(yﬂ')/ sin(x sin(t) — vt) dt .
0

Combining this with the formula for /5 we obtain the integral representation
of Y, for v ¢ Z, hence for all v by continuity.

For I, (x) the proof is identical to that of J, (x) since the series expansion
is obtained by removing the factor (—1)¥, so that

I,(z) = ZL/ uw v le@/ DA/ gy
i Jo

Finally, the formula for K,(z) immediately follows from the definition
K, (z) = (r/(2sin(vm)))(I_,(x) — I,(x)), even more simply than for Y, (z).
(|

Note that the above integral representations give another proof of the
existence of Y,, and K,, when n € Z.

Proposition 9.8.7. As z — oo in R we have

J(x) ~ (mx/2)"V2 cos(z — 7 /4 — v /2),
Y, (@) ~ (m2/2)"Y?sin(z — w/4 — v /2),
I(z) ~ (2rn2) " 2e", K, (z) ~ (2z/7)" /2™ .
Proof. We prove this in the reverse order of the formulas. For K, we make
the bijective change of variable u = 22/2 sinh(#/2). An easy calculation gives

—x

du
AT /@)

e

K,/(ZE) = W

o0
/ e™"*/2 cosh (2w sinh ™" (u/(22%/2)))
0
By normal convergence it is clear that as * — oo the integral tends to
I e /2du = (7/2)Y/% by Proposition 9.6.21, proving the result. For I,
we first note that [~ exp(—x cosh(t) — vt) dt tends to 0 exponentially fast, so
we need only consider the first integral. We split it into an integral from 0 to
/2 and an integral from 7/2 to 7. Since cos(t) < 0 in this second interval,

the second integral is bounded. Thus, setting u = 22'/2sin(¢/2) in the first
integral we obtain

x

du
(1 —u?/4x)1/2 "

(&

I,(z) = O(1)+m

(22)1/2 ,
/ e~ /2 cos(2usin ™ (u/(221/2)))
0

Once again we have normal convergence, proving the result for I,.

As for I, the integrals from 0 to oo occurring in the integral representa-
tions of J, and Y, tend to 0 exponentially fast, so they can be ignored. Thus
for any A > 0,



116 9. Bernoulli Polynomials and the Gamma Function

1 T .
Jy(x) +1iY,(x) = O(x_A) + = / et@sin(t)—vt) gy

T Jo
Simple changes of variables give

e—i‘n’y/Q
J, () + 1Y, (z) = O(z=") + QT(Il () + I(z)) ,

where

/3 /2
L(z) = / ¢imost) cosh(vt) dt and  Ip(x) — / i 05(1) cosh(ut) dt .
0 w/3

We first consider I3(x). We make the change of variables cos(t) = u and
obtain

12
B = [ emodu,

where
cosh(v cos™t(u))

P(u) = - (1 —u2)1/2 :
By integration by parts we have

1T
e

1/2 1 1/2
I(z) = —¢(u)

= i L/ _ -1
. A e (u)du=0(x™")

since u < 1/2 stays away from the singularities at 1 of (1—u?)~/2 and ¢'(u).
For I;(z) we set u = (22)'/?sin(t/2) and we obtain

du
(= w2/@a)

21/26ia:

(/242
Ii(z) = W/o e ™ cosh(2vsin~" (u/(22)"/?))

Once again we have normal convergence, so we obtain that as x — oo,
o0
Ii(z) ~ 21/26”331/2/ e dt .
0
Now it is well known, and we will prove in the next chapter, that
/2

/ Tt gy = T s
0 2 .

Thus
21/26i(w77r/477ru/2)

T1/2,1/2 )

Jy(x) +iY,(x) ~

proving the asymptotic formulas for J, and Y. a
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Remark. For the reader having some knowledge of numerical analysis, the
proof that we have given for K, and I, is essentially the method of steepest
descent, while the proof for J, and Y, is the method of stationary phase.

Proposition 9.8.8. For 0 < R(s) < 1 we have the following Mellin trans-

forms:
o8} 2s—1
/ =1 Jo(t) dt = —— sin (E) I(s/2)%,
O 2
/OO 1Y (t) dt = 2 (ls) I(s/2)?
0 0 - T 2 )

/Oo 57 Ko (t) dt = 2°72T(s/2)? .
0

Proof. All of these formulas immediately follow from the corresponding
integral representations, so we simply prove the first. Exchanging the orders
of integration, which is legal since 0 < R(s) < 1, and making the change of
variable y = xsin(t), we have

o0 L[m [
/ T (t) dt = */ / * =" cos( sin(t)) du dt
0 T Jo 0
1 (" -
7/ sin(t)‘Sdt/ y* ! cos(y) dy -
0 0

™

Thus, by Corollaries 9.6.40 and 9.6.37 we have

/0 57V (t) dt = WI/QW cos(ws/2)[(s) ,
and the formula for Jj follows by using the reflection and duplication formula
for the gamma function.
The Mellin transforms of Y and K are obtained in a similar way, using
all the formulas of Corollaries 9.6.40 (4) and 9.6.37, and the details are left
to the reader; see Exercise 113. a

Finally, we prove an additional result on the function K, (z) that we will
need in the next chapter. We change on purpose the index from v to s (in
fact to s — 1/2) since it will become a variable in the next chapter.

Theorem 9.8.9. For x > 0 and R(s) > 1/2 we have

< cos(xt) . /2 (x/2)5-1/2
/0 @iy T T e @)




118 9. Bernoulli Polynomials and the Gamma Function

Proof. Set I (x) = [~ cos(xt)/(t? + 1)* dt. Using the integral definition

of T'(s) we have by Fubini’s theorem

()1, (z) = /0 ~ cos(at) ( /0 sl du) dt

o o 0
:/ ut e (/ cos(wt)e dt) du .
0 0

Since cos(zt) = (et + e~¥!) /2 we have by Lemma 10.2.9,

> 2 1 o 2, . 1 1/2 2
/ cos(zt)e ™™ dt = (/ e Ut it dt) == (I) e~ /()
0 2\J_x 2 \u

Thus, making the change of variable u = (x/2)e” we obtain

1/2 o
[(s)Is(x) = ﬂ-2/ w3/ 2= (uta?/(4w) g
0
1/2 o
_ s / (E) 1/2 /oo e_a;cosh('u)e(s—l/Q)'U dv ,
2 \2 .

and since e(*71/2)¥ = cosh((s — 1/2)v) +sinh((s — 1/2)v) and sinh((s —1/2)v)
is an odd function of v, the result follows from Proposition 9.8.6. ad

9.9 Exercises for Chapter 9

1. Prove that the Bernoulli polynomials B, (z) are characterized by B; (z) =
nB,_1(z), Bo(z) =1, and B, (1) = B,(0) for n # 1.
2.

(a) Let P, = (pi,j)o<i,j<n—1 be the n X n matrix such that p; ; = (;), in other

words the lower triangular Pascal triangle. Compute P, L

(b) Let Qu = (gi)o<ij<n—1 be such that gi; = (;1}), in other words Pascal’s
triangle without the left column of 1’s. Compute le.

(C) Let Rn = (Ti,j)Ogi,jgnfl be such that Tij = (z-;l) for j g 7 and Tij = 0
otherwise, in other words Pascal’s triangle without the diagonal of 1’s. Compute
R; ' in terms of Bernoulli numbers.

3. Prove that

=42n+5/3 when a =2,

2n + 1 when a =0,
>Bﬁk+u
—n—7/6 when a =4 .

e 6k + a
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(a) By expressing '@t /(¢! —1)? in terms of the derivative of e!@¥) /(¢! — 1),
prove that

> (Z) Bi()Bn-k(y) =n(z+y —1)Ba1(z+y) — (n—1)Bu(z +y) .
0<k<n
(b) Deduce that for n > 3 the Bernoulli numbers satisfy the quadratic recurrence

1 n
B, = - Z <k>Bank .

2<k<n—2

(c) ?et m € Zz1. Compute 3 o, jBn(j/m) for n even, and for n =1, 3, and
(d) Generalizing (a), show that if for n > 1 we write

" t*
m = Z C""'"’E and Z dn, k ,

k>0 k>0

then ¢, and d, , can each be expressed as an explicit linear combination of
the Bernoulli numbers Bj_; for 0 < j < n involving Stirling numbers of the
first kind (see the proof of Proposition 4.2.28 for the definition).

5. Prove the following reciprocity formula:

| m—; n+;+1 ' m+j+1 - _B )
TTLZ ]+1 Z n—j ]_'_1) m-+n

See Exercise 3 of Chapter 11 for another proof.
6.

(a) Show that two of the identities of Corollary 9.1.18 can be restated as follows:
if m and n are in Z>o not both zero, then

> (mj 1) (1) By (1" 3 ("j 1) (m+j+1) By = 0,

j=0
and for n € Z>1,
n 1 )
Z (nj— >(n+J+1)Bn+j =0,
=0

formulas rediscovered by Momiyama and Kaneko respectively.
(b) Generalize the above formulas to Bernoulli polynomials.

7. Using the same method as that for evaluating Ramanujan sums (see Proposition
10.1.6), prove that

J\_ B k—1
> a(L)-sTo-»
0<j<m p|m
ged(j,m)=1



120 9. Bernoulli Polynomials and the Gamma Function

8. Let I = fol B, () By (z) dz. By integration by parts, show that when m > 1
and n > 1,
1B
m—1 DOn+m
(71) (m+n) )
m

and that I,,,0 =0 when m > 1 and Ipo = 1.

Im,n ==

9.
(a) Show that any P(X) € R[X] can be written in the form P(X) = 37, . ; ar B (X)

for some unique ar € R, and compute the a; in terms of f01 P(t)dt and the
coefficients of the polynomial P(X + 1) — P(X).

(b) Apply this to the polynomial P(X) = >, Bi(X)Bn-x(X), and deduce
the identity

Z Bi(X)B, x(X) = n-2l-2 ni <n_]L—2)B"kBk(X) +(n+1)Bn(X) .

0<k<n k=0
(c) Setting as usual Hy, = >, ;, 1/j, find a similar identity for the polynomial
P(X) =2 ocrcn Br(X)Bni(X)/(k(n — k).

(a) Show that

ng(l/?)):sz(Q/?)):—% (1—$) and

Bay(1/6) = Bai,(5/6) = % (1 - 22,}_1) (1 - 32;}_1) .

(b) Compute in terms of Bar41(1/3) and Bag41(1/6) the Taylor series expansions
of 1/(2cosh(t) +1), 1/(2cosh(t) — 1), and cosh(¢/2) /(2 cosh(t) + 1) (hence also
the corresponding ones where cosh(¢) is replaced by cos(t)).

11. Let p > 5 be a prime number, and assume that k € Z is such that 1 < k < p/2.
(a) Show that for all m € Z>1 we have

Z j2k71 = BQk({p/m}) — Bay, (mod p) .
‘ 2k
1<j<p/m
(b) Assume that m = 4 or 6. Show that
Z j2k-—1 _ B%(l/;? — Boy, (mod p) .

1<j<p/m

(¢) Using the preceding exercise, deduce that for 1 < k < p/2 we have

7(21772](2 _ 1)(3}772]4: _ 2?7276 o 1)@ = Z j2k71 (mod p) .

p/6<j<p/4
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Using this we can check whether p is a regular prime approximately six times
faster than the naive method (we must of course be careful when the factor in
front of Bay/(4k) is divisible by p). There are, however, much faster FFT-based
methods to make tables of irregular primes.

12. Compute explicitly the Taylor expansion of log ((et - 1) /t) around t = 0.

13. Find the Taylor expansion of the following functions in terms of Bernoulli and
Euler numbers: f(t) = e'/(e* +1), f(t) = 1/(cos(t) +sin(t)), f(t) = 1/ cos(t)*,
and f(t) = 1/sin(t)* for 2 < k < 4.

14. (I thank V. Arnold for this exercise.) Define the Bernoulli-Euler triangle A, i
as follows. We set Ap,o =1, and for n > 1 and 0 < k < n we set

-1 .
A ZZ:k An_1j when n is odd,
n.k = o—1 .
Z;‘:o An_1j when n is even.

(a) Compute the evident triangle for n < 6.

(b) Prove that A(n,n) = |E,| and that A(n,0) = |T},|.
15. By induction show that for z € [0, 1] we have the following:

(a) Bai(xz) — Bz =0if and only if z =0 or z = 1.

(b) For k > 1, Bogt1(z) — Bagy1 =0 if and only if 2 =0, 2 = 1/2, or z = 1.
(¢) [Box(2)| < |Basl and |Bax(z) — Bau| < 2(1 — 272)| B .
16.

(a) Prove that

_ 2] ] (-=D)*?  if kis even.
0<j<k
(b) Deduce from Corollary 9.1.10 that the Euler numbers Esj, are not only integers,
but odd integers, and more precisely that Ea, = (—1)* (mod 4).

17. Let p be a prime number such that (p — 1) | (2k). Show that
—4
Egk =1- (?) (mod p) .

18. Define the Euler polynomials Ej(z) by the generating series

26“ o Ek(iﬂ) k

= t
t ! ’
et +1 = k!

so that the Euler numbers are given by Ej, = 2"E;(1/2). Express Ej(z) as
a linear combination of two Bernoulli polynomials and show that essentially
all of the formulas given for Bernoulli polynomials have analogues for Euler
polynomials.

19. Generalizing Corollary 9.1.13, prove that with a suitable integral definition of
the left-hand sides, for ¢ > 2 — 1 (and also formally) we have

> % = —(t —x+1) +log(|t|) and
k>0
3 - gzzzaizl))t“l = log(I(t — x + 1)) — (t —z+ %) log([t]) + £ — % .

k>0
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20. (D. Zagier.) The present exercise is due to D. Zagier. All the power series or
Laurent series are formal. Let

T(u,x) = Z M

RN
= kE+1)u

so that 4T (u,x) = —(S(u,x) — 1/u), with the notation of Proposition 9.1.11
(see also Exercise 19). For n € Z>, define

- n+r\ By (z) B n+r\ B (z
f(n,z) = Z < o >n+r and g(n,z) = Z < o )nJrT’
og<r<n o<r<n
r#n (mod 2)

and let F(t,z) =3, -, f(n,2)t" and G(t,z) = >_ -, g(n,)t".
(a) Show that

~

d T(-u,1—2z)=T .
T, o (—u, x) (u, x)

T(u—1,2)=T(u,z) +log <1 - %) +

(b) Show that

F(t,x) = %T((l_tt) ,:v> —log(l—t).

(¢) Deduce that

t t
et T+ id2’

2F(t,z) =T (t + %71‘) —log(1 +t%) +
(d) Conclude that

4G(ta) = 2F(ta) — F(-t1-2) = Y m ,

in other words that 4g(n, z) is the coefficient of t" in

oot/ —(@+g)t+1t7).
—2¢ <1
(e) Deduce for instance that if 0 < z < 1 is fixed then |g(n, z)| is bounded.
We now specialize to = 0 and write f(n) = f(n,0).
(f) Prove that for odd n we have

=3 +4(32).

and in particular that f is periodic of period 12 on oﬂd/d integers.
(g) From now on we assume that n is even, and we set B, = 2nf(n) — B,. Prove
the following analogue of the Clausen—von Staudt congruence, for n > 2 even:

B, = Z 1(rnodl).

(p+1)|n

p prime
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(h) Still assuming n even, prove that as n — oo we have

n)~\(— n/271' ) ~ (— WQ—lu
fn) ~ (=1)" 7Y (4m) ~ (—1) G

(i) More precisely, compute asymptotic estimates as n — oo for E, fn) —
(—=1)"27Y, (47), and f(n) — (—1)"/?"1(n —1)!/(2n)".

21. Prove the convergence of the continued fractions for ’(z) and %" (z) in the
domains given by Theorem 9.6.48.

22. Compute explicitly

n—1 n—1
2n — 1\ Bagy1(x) 2n — 1\ Bak(z)
Z(%l) kr1 nd B2"(I)+kz %—2) 2%

k=0

23. Compute explicitly

= n n—k Bk+2(‘7’.)
Y D)k +2
2 CECES)
and generalize.

24. This exercise is indirectly related to the recurrences of Proposition 9.1.16.

(a) Show that for k € Z>o we have

> <2nn— k:) = Fitr s

k/2<n<k

where Fj, is the Fibonacci sequence. In fact, show that this is true for all k£ € Z
with a suitable interpretation of both sides.
(b) Compute explicitly in its domain of absolute convergence the sum of the power

series Z (71)%2”
n>0 @n+1)(%)
25. With the notation of Lemma 9.1.17, prove the identities
(D> —I)'"F —D"(D —2I)"F = z"(z — 2)"e"

and
e'D"(D+2I)'"F — (D* - I)"F = (2* —1)"e"
and deduce from them identities analogous to those of Proposition 9.1.16.
26.

(a) By computing the mth derivative of (1 —e™")" at ¢t = 0, compute

> (=" <k> K™

k=1

for 0 < m < n, and compute this quantity also for m = —1.
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(b)

(c)

27.

28.

29.

30.

31.
32.

(a)
(b)

()
(d)

9. Bernoulli Polynomials and the Gamma Function
By expanding the inner sum in terms of B,,(z), prove that
n+1 k—1 k—1
-1 n+ 1 . n
Bn(m)zz(li< ! )Z(]—}—x) .
k=1 j=0
Similarly, show that

n 1\k—1 n k—1 o n+17’L.
B, (z) = (Gl 111 (k) ;J(j+1:)"+( 7?+1 L

k=1

In particular, if x = 0 these formulas give reasonable methods for computing a
single value of B,,, but the method given in Section 9.1.3 is much more efficient
for large n.

In the text and in the exercises we have given many methods and recurrences
for Bernoulli numbers. Let N be a large integer, and assume that we want to
compute exactly all the Bernoulli numbers Bsy for 2k < N. Implement many
different methods, and compare their efficiency. In particular, implement the
method explained in Section 9.1.3 where each Bernoulli number is computed
separately, and implement the recurrences given in Proposition 9.1.3, Corollary
9.1.19, and Exercise 3.

Show that for all t € R,

i) k+2 2 im)*
s~ (w2 ) Cin) Bl
k>0

and estimate the speed of convergence of the series.
Using the power series for sin(at), Proposition 9.2.10 (2), and Corollary 9.1.21,

show that
/°° sin(at) dt—l 1 71+1
o et —1 """ 2\ea—-1 a 2/

In connection with Proposition 9.2.8, let m(k) be the maximum on [0, co[ of
the absolute value of the function (1/(e —1) — doci<k(Bj /it~ 1)e™", which
exists since the function is continuous and tends to 0 at infinity. Compute m(k)
for k < 18, but show that m(k) tends to infinity as k — co. Give an asymptotic
estimate for the growth of m(k).

Prove Proposition 9.2.8.
Assume that the hypotheses of Corollary 9.2.6 (1) and (2) are satisfied.

Show that z(f,a+1) = z(f,a) — f(a) + faH t)dt.
Deduce that the quantity

(1) = =(f,0) + m = [ 1)

1<m<a 1

is independent of a € Z~o.

Give an expression for z(f), both in terms of Bernoulli polynomials and in
terms of the inverse Laplace transform of f.

Compute z(f) for the usual functions f seen in the text.
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33. Assume that f satisfies the assumptions of Proposition 9.2.11. Let C be the
rectangle with vertices £¢7 and N 44T, with a small indentation around z = a
and z = N (including the points a and N), where T is large.

(a) By considering [, cotan(rt)f(t)dt and letting the indentations tend to zero
and T tend to infinity, show that when a € Z-o,

S fm) /f e + L)+ S0)

H./ fla+1y) —f(N+iy)—f(a—iy)+f(N—iy)d

ey —1

Y .

(b) Deduce the first formula for z(f,a) given in Proposition 9.2.11 for a > 0, not
necessarily integral.
(¢) In a similar manner, prove the second formula.

34.

(a) Using the formula of the preceding exercise, prove that for (s) > 0 we have
the following integral representation due to Binet:

LogI'(s) = (s - 7> log(s) — s+ %log(%r) + 2/0

> atan(t/s)
e2nt 1

dt .

(b) Using the second Abel-Plana formula, prove that we also have

LogI’ (s + %) = slog(s) — s+ %log(%r) — 2/
0

Note that this formula can also be obtained directly from (a) by using the
duplication formula for the gamma function.

(¢) By differentiation under the integral sign, compute in the range of convergence
the integral

° atan(t/s)

dt .
e2rt + 1

fa) = [ e sint) §

(d) Deduce from this another proof of (a), using Corollary 9.6.32 and the formula
of Exercise 29.

(a) Set f(t) =1/(e"—1)—1/t+1/2. Show that for t € R~ we have 0 < f(t) < 1/12.
(b) Set s = z + 4y with  and y in R. Deduce from Corollary 9.6.32 that for
z = R(s) > 0 we have

S(LogI'(s)) = (Jc - %) atan <%) + %log(ac2 +4°) —y + R(s),

with [R(s)| <y/(12(2® + y?)).

(¢) Writing S(LogI'(s)) = S(log(I'(s))) + 2mm(s) for some m(s) € Z, where log is
the principal determination, deduce an approximate formula for m(s) when x
or y is large.

The goal of the following three exercises is to prove the results given in Exercise
38.

36. Define the Stirling numbers of the second kind by the formula

X" =Y S(nk)X(X—1)-- (X —k+1).

k>0
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(a) Show that S(n,k) =0 for k > n, S(n,0) =0 for n > 1, S(n,n) = 1, and the
recurrence formula S(n + 1,k) = kS(n, k) + S(n,k — 1) for k > 1, so that in
particular S(n,k) € Z>o for all n and k. Prove also the explicit formula

Stk =g > (-1 (k.>j”.

T o<i<k J

(b) Let D = d/dT be the differentiation operator with respect to 7. Define the
Eulerian polynomials P,(X) by

o () =0

Show that P, (X) € Z[X], prove the recurrence formula

Pot1(X) = (n+ DX Pu(X) — (X - 1)XP(X),
and show that we have the explicit formula
Pu(X+1)= > Sn+1k+1kX""".
0<k<n

(¢) Show that if we define the Eulerian numbers A(n, k) (not to be confused with
the Euler numbers of Definition 9.1.8) by P (X) = <<, A(n, k)X* we have
the explicit formula

k
A(n, k) = Z(_l)j(k_ Y <n;—1) .

Show also that the A(n,k) for 1 < k < n (A(n,0) = 0 being excluded) form a
symmetrical array whose first rows are as follows:

1
1 1
1 4 1
1 11 11 1
1 26 66 26 1
1 57 302 302 57 1

37. Let n > 0, let N € Zz1, and set Sn(N) = 3 .,y 7" (with the convention

that 0° = 1 for n = 0). Let p be a prime number dividing N (otherwise there is
nothing to prove). Using the Clausen—von Staudt theorem, show that:

(a) If p > 3 we have

vp(N) if2tn,orn=0,o0r (p—1)1{n,
vp(N) =1 if (p—1) [n,

and that in the latter case, we have more precisely v, (Sn (N)+ N/p) = v,(N).
(b) If p = 2 we have v, (Sp(N)) = v, (N) — 1.
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In particular, show that for all v > 1 we have

’Up(Z Tn)>v_17

o<r<p?

and that for any prime number p we have v, (p" S, (N)) = v, (N).

38. Let n € Zxo, let N € Z>1, let  be an Nth root of unity different from 1, let
o(¢) be the order of (, so that o(¢) | N and o(¢) > 1, and set # = { — 1 and

Sn(N)=>0cren "¢

(a) By considering the formal power series >,y r"e"T and Exercise 36, show
that
- el . . 7!
Sp(N)=NY (-1)" N 1(;‘) 3 Stn—j+1i+1)— .
j=1 0<i<n—j

(b) Deduce that if o(¢) is not a prime power we have S, (N) = 0 (mod N ged(n, N°°)),
where we recall that ged(n, N*) = ][,y p" ),
(c) Show that if o(¢) = p* for some prime p and k > 2, then

Sn(N) =0 (mod (N/(1 = ¢)") ged(n, N*)Z[(])

and in particular modulo (N/p) ged(n, N°°)Z[C].
(d) Show that if o(¢) = p for some prime p then

Su(N) =0 (mod (N/(1 —¢)" ™ @) ged(n, (N/p" ™)*)Z[c]) ,

where n mod (p — 1) is defined as the unique integer congruent to n modulo
p— 1 in the interval [1,p — 1], and in particular the congruence is true modulo

(N/p) ged(n, (N/p*r )>)Z[(].
39. Deduce from Proposition 9.2.11 that

1 o t
= - 19 - dt
i z*fo A+ ey —1) "

and more generally find analogous expressions for the functions and constants
occurring in Proposition 9.2.10.

40. Define Catalan’s constant G by the formula
(—1)* 1 1
G=) st =1-t 55—
& @k 1) 325
(we have
G = L(x-4,2) = 0.91596559417721901505460351493238411 . .. ,

using a notation introduced in the next chapter). Find integral formulas for G
analogous to those given for v in Proposition 9.2.10 (4) and in Exercise 39.
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41. Let m € Z)l.
(a) Show that we have the convergent series

mSC(S)_Z<s+k—2>(j(s+k—1)Bk(m)—lBk '

k—1 k mk—
k>1

For instance, if n € Z>2 we have
n+k—2 By (m) — By n
Z( . )g(n+k1)(m,31—(n1)m ¢(n) .
k>1

(b) Do these series converge for any other value of m?
(c) Show that

B - B 7T2 2

k>1
ZC TIBIQ = mlog(m) ,
k>2
;c ~ 1) T = = 1)log(2m) ) — log(m)
Bk(m) — B 11—y 3 1 log(m)
D Ck-2)g Dk —2)mF 6 <m_§+%)+ 12m

k>4

-1 1
(log(2m) — 1) + ¢'(—1) <m - —) .
m
(d) Explain why the ¢’(—1) that occurs in this last formula is “the same” as the
¢’(—1) that occurs in Exercise 44; see also Exercise 71.

42. Using Proposition 9.2.13, compute to 15 decimal digits ¢((—3), ¢(1/2), and
¢(=1/2).

43. Using the general Euler-MacLaurin formula prove that for a # —1 and 0 < z <
1 we have

N-—1
Neth a \ Bj(z) ka1
+o) =% —— ) SN
mZ:Om D) = et g Y (31) = )

1<5<n

+ (=) ! (Z) /IN "B, ({t — x}) dt

Deduce from this that for 0 < z < 1,

R S a |\ Bj(x)
(Cam) == oo Z(j—1> j

1<jsn

b (-1 (Z) /:O B ({t— a}) db .
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44.
(a) Using the idea explained in the proof of Stirling’s formula given in Section

9.2.5, prove the following asymptotic estimate as N — oo:

Z mlog(m):BQ(N)log(N)—E+i—C( 1) +o(1) .

2
1<m<N

(b) Denoting as usual by H, =37, ;. 1/j the harmonic sum, show more gener-
ally that when r € Z>(o we have

> togm) = P tog(v) 111, )

1<m<N
1= (r
_ <k> H, ByN"" —¢'1-=r)+0(1).

(c) Using ¢(t) = limy —oo(log(N) — 3" o<, o n 1/(t +n)), the explicit computation
of fol t* /(t + n) dt, and the preceding question, show that for k € Z>, we have

./(;1 t*p(t) dt = i(—l)j (I;) (¢'(=4) + Hi<(—5))

(note that the sum stops at j = k — 1).
(d) Generalizing Raabe’s formula (Theorem 9.6.54) deduce that for k € Zso we
have

/0 t* log(I'(t)) dt = lerljZ_;(—l)j“ (k;r1> (¢'(=7) + Hi¢(—9)) -

See Exercise 105 (d) for an interesting consequence of this formula.

45. The aim of this exercise is to give another proof of the last formula of the
preceding exercise, and to give more general results.

(a) Using generating functions, prove the identity

-~ Yt m!
; J_1< )‘B(m“’l_s)_ 1—9)2—s) (m+i—s)

(here B is of course the beta function, not the Bernoulli polynomial).
(b) By integrating by parts, show that for s # 1 we have

Lo - u yml k! C(s—m,x+1)
/OtC(S’“t)dt—Z( SR oy ey T e S ppy e

m=1

kL k! LhHi—s
LA e e pvy g :
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(¢) Deduce the following formula, which is a generalization both of Raabe’s formula
(for & = 0) and of the formula of the preceding exercise (for z = 0):

k+1

kT 1 log(2m)

1 — H, —
(g(a) ~ Hinn) + g 258

|t roarie+ 0y e = (<) 5

k

1 ; k+1 oC, . .

S (-1 % - 1)+ Hi¢(— 1)) .
+k+1j:1( ) ( ] )(as( ],$+ )+ JC( ],$+ ))
(d) By integration by parts, compute fol thp™) (2 4 t) dt for k

> m, and deduce
the value of fol t"¢(m + 1,2 4 t) dt for m € Z such that 1 < m
p

k.
0

<
46. If wy and ws are two nonzero complex numbers we define for p >

P
Cp(wi,w2) = Z (Z) BkBpfkwllc_IWg_k_l ,
k=0

so that by abuse of notation

p—1
Cp(wr,w2) = wjjl Cp (ﬂ) )

w2

)

with for instance

Colz) =1, Cu(2) = — 21 chz) =

2243241 ) = 224z
2 ’ '

6
(a) Let f be a complex function that is holomorphic in a suitable region of the

complex plane, and let z € C. Prove the following complex generalization of
the Euler—-MacLaurin summation formula:

Cp(wi,w2)
p!

Z f(z+miwi + mows) = Z

o<my, ma<N p=0

= STz 4 Nen) = [0 (2 4 Nn) + f772(2)) + Ra(N)

(£ + N +w2))

where R, (N) is a suitable “remainder term,” and by convention f(~V(z) is an

antiderivative of f(z) and similarly for f~2(z).

(b) As an application, assume that #(w1) > 0, R(w2) > 0, and R(z) > 0, and that
in what follows we choose the principal determination of the logarithm. Prove
that there exists a function F,, ., (z) such that as N — oo,

Z log(z + miw1 + mow2) = N2 log(N) — g

N2 - N
N2 + QQ (7)
0smy, ma<N

2

log(wiw2) Wi + 3wiws + wi
5 N ey loeV)
w1 + w2 2
N log(N) ) — log(N) + Fly o 1),
b2 (0N 92 b0g() ) = 2 tog(N) o+ Py () + 0(1)

where

(w1 4 w2)F log(wr + w2) — Wi log(w1) — wh log(ws)
- wiw?2 '

978
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(¢) Prove that as N — oo,

Z log(z + Nwi + mows) = Nlog(N) — N

0<mao< N

w1 + (IJQ) log(wl + wg) — w1 log(un)
w2

z 1 w1 + w2

(Warning: you cannot use Euler-MacLaurin directly.)
(d) Prove that the function F,, ., (2) defined above satisfies the homogeneity prop-
erty Fow, awy(az) = Fu, w,(2) and the relation

ey (2)) - (5 (252)

(and of course the symmetrical one obtained by exchanging wq and ws).
(e) Relate this function F' to Barnes’s I'; function defined in Exercise 71.

+N(

47. Compute an upper bound for

‘/w gt)dt—h Y g(mh)

m=—00

for some standard C'° functions g(t) satisfying the hypotheses of Section 9.3.2,
for instance for g(t) = 1/(1 + %) or g(t) = exp(—t?).
48.

(a) Show experimentally that to compute f_oooo f(z) dz using the doubly exponen-
tial integration method, one can use z = sinh(sinh(t)) if the function does not
tend to zero exponentially fast as z — +o0, and = = sinh(¢) if it does.

(b) Give two solutions in the case that f(z) tends to zero exponentially fast as
x — —o00, but not as * — +oo. (Hint: consider sinh(t) exp(exp(t)).)

(¢) Find an analytic function f satisfying the above assumptions, and compare the
two solutions on f.

49. Assume that we want to compute I = [ f(z)sin(x) dz, where f is a priori a
nonoscillatory function tending sufficiently rapidly to 0 at infinity. Implement
the change of variable z = (27 /h)t/(1 —exp(— K sinh(t))) suggested in the text,
and compare the efficiency with that of other methods.

50.
(a) Let ¢ be a test function in the Schwartz space. Show that

(g+1)m—r ’ (g+1)m—r
/ (2 ooy do = - Bla) dz — o((q + Vm — 7).

m—=nr m m qm—r

and deduce that, as claimed in the text, we have
x+r) 1
() = LSt
qEZL

(Warning: you cannot simply replace {(z + r)/m}’ by 1/m.)
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(b) Complete the proof of Proposition 9.4.11.

51. Prove Proposition 9.4.12.
52. Prove Corollaries 9.2.4 and 9.4.18.
53. Let x be a primitive character of conductor f > 1, and for all £ > 0 set

b= (Socrep/o X)) /£ and Ri = (2" = X(2))Qu.
(a) By splitting in two different ways the formulas for By (x) given in Proposition

9.4.5 and separating the cases f odd and f even, show that if x(—1) = (—1)*
we have

fk 1 - Z < )Bij_j and
k Bi(x ka1 1
@ - xe) o) — 2 Z( >< -5 ) BiQus

(b) Show that if x(—1) = (=1)*~! we have

o B/20 1)
_ 2% _ o
Ria =7 ; (2]_) (2% —1)Baj Ry —2; -

(¢) Deduce that when x is an odd primitive character we have

Bs(x) X(2)
f? X(2)

(2-X(2)Q1 = 51~ X(2)Qo, (8~ X()Qs = 54~ X(2)@ — 7 (1 ~X(2)Q

and when y is an even nontrivial primitive character we have Qo =0,

(2-X(2)Bi(x) = —Quo, (8 -%(2)) =—12Q: + 3 Qo

(a-x@) 2 ——aQr, (o-x) Y = —320s + 23230,
(4-%(2))Qz2 = (2—X(2))Q1, (16 —X(2))Qa =2(8 —X(2))Qs — ( = X(2))Q1
54. Using the y-Euler-MacLaurin formula, compute ZOSmdN(—l)m_lmk and

ZogmdN(fl)m_l(Qm +1)* in completely factored form for 0 < k < 5.
55. Prove Lemma 9.5.2.
56.

(a) Prove Corollaries 9.5.8 and 9.5.9.
(b) Generalize Corollary 9.5.9 to exponents 6 and 8 by showing that, under the
same conditions on D, we have

D
Z <—>r6 =0 (mod 4D) ,
0<r<|D]| "
except for D = —4, 5, 8, and 13, and
E (Q)rs =0 (mod 16D) ,
0<r<|D]| T

except for D = —4, 8, and 17, and compute the value of the left-hand side for
the excluded values of D.



57.

58.

59.

60.

61.

62.

63.
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(Balog-Darmon-Ono). Let p > 5 be prime, let N > 0 be such that (—%) =

1, assume that D = (—1)<p+1)/2pN is the discriminant of a quadratic field,
and recall that we set S, (D) = Y, p (7)r". Corollary 9.5.8 tells us that
Sn(D) = 0 (mod D). Prove that in fact S(,41),2(D) = 0 (mod pD) (for help
and several other results of the same type, see [Bal-Dar-Ono)).

Prove that for k € 2Z-¢ the numerator of |By/k| is equal to 1 if and only if
k =2, 4, 6,8, 10, and 14. Note that these are exactly the (strictly positive)
values of k for which there are no modular cusp forms of weight &k over SLa(Z).
Indeed, if there are such cusp forms, then one can prove that there exists one
that is congruent to an Eisenstein series modulo a prime factor of the numerator
of | By /k|. For instance, 7(n) = o11(n) (mod 691), where 7(n) is Ramanujan’s
tau function (see Section 10.1.3).

Using the Clausen—von Staudt theorem give another proof that the tangent
numbers To,_1 are integral (see Definition 9.1.6).

By Corollary 9.1.10, the Euler numbers Eyj, = —4%* T By, 1(1/4)/(2k + 1) are
in Z, which is a slightly stronger statement than what the Almkvist—Meurman
Theorem 9.5.29 asserts. More generally, show that if ¢ = 2™ with m > 1, then
for any p € Z we have ¢** 7! Bay11(p/q)/(2k + 1) € Z (see Theorem 11.4.12 for
a more general statement). What happens for m = 0?7

Using the Voronoi congruences (Proposition 9.5.20) prove the following congru-
ence, due to Kummer. Let e > 1, k an even integer such that k > e+ 1, and p
a prime such that (p — 1) t k. Then

- ife) Berio-n _ c
Z(—I)J (]) #]()_)1) =0 (mod p°) .

§=0

Generalizing Hermite’s Lemma 9.5.28, prove the following congruence due to
Glaisher: for 1 <r <p—1and n > 1 we have

1<m<n
m=r (mod p—1)

where n mod p — 1 is the unique integer congruent to n modulo p — 1 in the
interval [1,p — 1] (not [0,p — 2]). (Hint: use a similar proof, but now with
expressions of the form Zaele a®(a 4 1)" for a suitable k.)

The aim of this exercise is to give an alternative proof of Theorem 9.5.29. As in
the proof given in the text, we may assume that h = 1 and we must show that

an = bn(k) = k" Bn(1/k) is an integer.

(a) Compute explicitly the exponential generating series Zn>0ant"/n!, and by

multiplying by e** — 1 or by Zog]’gkq et prove that the a, satisfy the fol-
lowing two recurrences:

n—1 n—1
1 ;
(n+ 1)1 —an) = g n—k a;jk"7 and —ka, = E " ajSn—j ,
Jj=1 J Jj=1 J

where s, = El<j<k71jm for m > 1.
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(b)

64.

65.

66.

67.
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We prove that a, € Z by induction, the result being clear for n < 1. Assume
n > 2 and that a; € Z for 1 < j < n— 1. Write k = ngiggpfi, where the p;
are distinct primes and v; > 1, and n 4+ 1 = qugigg pi’ with ged(q, k) =1
and w; > 0. Using the recurrences, prove that p;’* | (n + 1)a, for all . (Hint:
for w; = 0 this is trivial, and for w; > 1 prove that vy, (("}Ll)k"ﬂ') > w; for
1 < j <n—1 by separating the cases j <n—w; andn —w; +1<j<n—1
and using Lemma 4.2.8.)

Keeping the above notation, deduce that (n + 1)a, is divisible by (n + 1)/q,
and then that a, € Z.

Prove the distribution relation for the Hurwitz zeta function (Proposition
9.6.12).
Prove that for © ¢ Z we have
mt sin(mt)
sin(mx) sin(w(z + 1))

Z(C(k7 1—z)+ (_1)kg(k7 m))tk =

k>2

Prove that for (s) > 0 we have the convergent series expansion

Logl(s) = (s - %) log(s) — s + %log(QTr) + % 3 %C(k, s+1),
k>2

where ((k, s+ 1) can be defined for complex s by the usual series, since k € Z>».

The attentive reader will have noticed that we have proved all the functional
equations of the gamma function as corollaries of corresponding formulas for the
Hurwitz zeta function, with the exception of the reflection formula (Proposition
9.6.34).

As a consequence of the first formula of Corollary 9.6.52, prove that for x €
R>0 \ Z>o and R(s) > 0 we have

C(1—s,2)+¢(1—s,1—x)=4(27) °['(s) cos(sm/2) Z Cos(i#x)
(e -1) X Gt

Deduce from this the reflection formula for the gamma function.
What can one deduce in the same manner from the second formula of Corollary
9.6.527

Prove that the function LogI'(s) satisfies the functional equation Logl'(s+1) =
LogI'(s) + log(s) and the distribution formula

Z Logl' (s + %) = (% - ns) log(n) + n g ! log(27) + Log'(ns) .
0<j<n

Write s = x + iy with  and y in R. Prove that the reflection formula for the
function Logl is given for s ¢ R by

LogI'(s) 4+ LogIl'(1 — s) = log(7) — log(sin(ws)) + 2imwk(s) ,



9.9 Exercises for Chapter 9 135

where k(s) is an integer given for y # 0 by

K(s) = sign(y) {%WJ .

69. For this exercise you will first need to study the elementary properties of
Dirichlet L-functions, in particular Corollary 10.3.2 and Proposition 10.3.5. Let
m € Zs» and let x be a nontrivial (but not necessarily primitive) character
modulo m.

(a) For z € Rzo and R(s) > 1 set {(s,z) = >0, 5, x(n)(z + n)~*. Compute
Cx(s,z) in terms of the ordinary Hurwitz zeta function, and deduce that it
can be extended to a holomorphic function of s € C. Note that in particular

G (s,0) = L(x;, ).

(b) Show that ¢, (0,z) = L(x,0) and (,(0,0) = L’(x,0), where here and below
¢y denotes derivation with respect to the first variable s. For simplicity of
notation, set

COO) = L'(x,0) +log(m)L(x,0) = >~ x(r)log (I' (<)) .

1<r<m
(¢) In analogy with the ordinary gamma function, define
I\ (2) = exp(C, (0, 2) — C(0,0)) = exp(CL(0,2) — L'(x,0)) ,
so that in particular I'y (0) = 1. Show that

Fx(m)=exp(—0(x)+ > X(?")log(F(T;I)))

og<r<m

(d) Deduce the analogues of all the standard formulas for the ordinary gamma
function such as the functional equation, the reflection formula, the distribution
formula, Raabe’s formula, the Hadamard product expansion, the power series
expansion of its logarithm, and Stirling’s formula.

/O°° cosh(t/2) — 1 g — llog (E) .

t(et — 1) 2 2

70. Prove that

71. Let r € Z>,. Define Barnes’s multiple gamma function I',- (z) (which has no rela-
tion with the function defined in Chapter 8) by the following formula analogous
to that used to define I'(z) = I'1 (x):

log(T'(z)) =¢'(1 —r,z) — ¢'(1 —7,0) .

In particular, we have I';(z + 1) = 2@ T, (), so when N € Zso we have
Lr(N) = [licmen mm (see Exercise 44). Prove as many results as you

can that generalize those for I'(s), such as a distribution formula, a reflection
formula, and so on. You may also want to study the properties of the modified

function .
Z(_l)r—i (i : 1) log(T;(x)) .

i=1
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72. Set K = [[Te ~t* gt and for z > 0 set

ok T 2 i S 6—22(1+t2) dt
(l‘) = A e +A 1-'!‘7752 .

Prove that f'(z) = 0, then that f(z) = m/2 for all z > 0, and deduce that
K =./7/2.

73.

(a) Show that under reasonable assumptions on a function f we have

/_O:of(tfl/t)dt:/_o;f(t)dt

(you must give a sufficient condition on f for this to be valid).
(b) For example, deduce from Proposition 9.6.21 that

/ eftz 1/t? dt = ﬁ

62
74. Using the proof of Proposition 9.6.24, give another proof of the formula

2k—1 2k
k—12 Bay,

C2k) = (-1 g

75. For k € Zx2 let
n® 1
Pk =] =

nk —1
n=2
which is clearly a convergent product for k >

(a) Using Proposmon 9.6.24 show that P(2) = smh(7r)/7r
(b) By decomposing z*£1, Compute explicitly by induction [[, (n*+1)/(n® -

1) and deduce that P(3) = 3/2.
(¢) Compute P(k) for general k € Z>» in terms of a finite product of values of the
gamma function at complex arguments.
(d) Compute explicitly P(k) for k even in terms of trigonometric and hyperbolic
functions.

76. Prove that in a suitable domain of the complex plane we have

oS} 1— —st —st
S:/ (75786 )dt
o t t

77. Prove Propositions 9.6.41, 9.6.42, and 9.6.43.
78. Prove Propositions 9.6.44 and 9.6.45.

79.

(a) Show that

w’u%% 5= /0°° (t“_l )dt and
Wy - 1oL /°° (t/2+1+<j/12—1> )dt.
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(b) Deduce that for all x > 0 we have

1 1 , 1 1
E+ﬁ<¢(i)<5+ﬁ'

80. This exercise has nothing to do with the topics studied in this book, but serves
as a motivation for the next one, and I thank B. Conrey for it. Its aim is to
prove a weak form of the large sieve inequality, sufficient for most applications.
The optimal form will be given below in Exercise 83.

Let f be a continuously differentiable periodic function of period 1 on R.

(a) Using integration by parts, prove that for all z € [0, 1] we have

f(a:):/Olf(t)dt—k/omtf’(t)dt—f—/l(t—l)f’(t)dt.
(b) Deduce that
s < [rola+g [1rol.

(¢) Deduce that more generally, for any « € [0,1] and any § > 0 we have

1 a+d/2 1 a+d/2 ,
fel<s [ irwldesy [ 1@l
a—§/2 a—6/2
(d) For z € R define ||z|| = min, ez |z — n|; in other words, ||z|| is the distance
from x to the nearest integer, and let x1,...,zr be real numbers such that

||z — xs|| = 0 for all r # s (such numbers are said to be d-spaced), where
0 < 6 < 1/2 is given. Deduce from the preceding inequality that

R 1 1
Suei< s [y [rol.

(e) Let a1,...,an be arbitrary complex numbers and let

N .
S(O[) _ Z an6217rna )
n=1

Applying the above inequality to the function f(a) = e~V §(a)?, and using
Parseval’s equality and the Cauchy—Schwarz inequality, prove the following
large sieve inequality:

R 1 N
S 15 < (5+mV) 3ol
r=1 n=1
We will see in Exercise 83 that 7 can be replaced by 1.

81. (I thank J. Rivat for the following exercises.) Define the Beurling—Selberg func-
tion H(z) by the formula

16 = () (v v+ 2) |

set
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(with sign(0) = 0), and finally set also

K(z) = (bm(”))z and B(z) = H(z) + K(2) .

TZ

(a) Prove that although the function H(z) is a priori defined only for z ¢ Z, it can
be extended to z € Z into a holomorphic function. Compute H(z) for z € Z,
and draw a picture of its graph for real values of z (between —4 and 4 for
instance). You will of course need to be careful around integral values of z.

(b) Show that limy e Hy(2) = H(z) and limy_.oc Hy (2) = H'(z) uniformly on
R.

(¢) Compute the Fourier transform of the function with compact support f(z) =
max(1 — |z[,0), and deduce from the Fourier inversion formula the Fourier
transform of the function K (x).

(d) Using the preceding exercise, show that for all z € R we have

\H(z)| <1, |sign(z)— H(z)| < K(z), and /_OO (B(t) — sign(t)) dt = 1.

82. (Continuation of the preceding exercise.) The aim of this exercise is to compute
the Fourier transform of the function H(z).

(a) Using the preceding exercise, show that

Hy(z) = Z sign(n)K(z —n) + 22K (z) ,

n=—N

and deduce that

Hy(2) = /_ 1 ((1 — 1t (cotan(me) _ cos((@N + 1)”)) + Sign(t)) T

1 sin(7rt) ™ i

(b) We would now like to apply the Riemann-Lebesgue lemma, but this is not
possible because of the singularity of the integrand at ¢ = 0. We can make
this singularity disappear by computing the derivative with respect to z. Thus,
compute H'(z) as a Fourier integral, and using the Fourier inversion formula
deduce the Fourier transform of H’(z). In particular, show that it vanishes
outside [—1,1].

(¢) Finally, by a careful integration by parts compute the Fourier transform of the
function H(x) —sign(x), and in particular show that it is equal to i/(7z) when
|z] > 1 and to 0 when z = 0.

(d) Let a, b, and ¢ be fixed real numbers such that a < b and ¢ > 0, and set

F(a) = S(B(3(x — a)) + BGb ) -

Prove that F(z) > 0 for all z € R, that F(z) > 1 for z € [a,b], that F(z) =0

for |z| > 6, and that F(0) = b— a4 1/8, where as usual F denotes the Fourier
transform of F.
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83. (Continuation of the preceding exercises.) The aim of this exercise is to show how
the Beurling—Selberg function gives a reasonably simple proof of the optimal
form of the discrete large sieve inequality, improving on Exercise 80, and which
was initially obtained by more complicated means. We keep the notation of that
exercise, we set by convention a; = 0 for j < 0 and j > N, and we let F(x) be
the function defined in the preceding exercise with a =1 and b = N.

(a) Using the Poisson summation formula and the properties of the function F,
show that

Z F(n)e 2imnler =) — {13(0) ifr=s,

0 otherwise.
nez

(b) By expanding

>

nez

I

R
30 VEmS e

o £(0)

deduce the large sieve inequality

R 1 N
> 18 < (548 -1) 3 fonf
r=1

n=1
where as above S(a) =3, cn ane?mre,
<n<

Note that this improves on the inequality obtained in Exercise 80, and it is not
difficult to show that it is optimal. Also see any good book on analytic number
theory such as [Iwa-Kow] for numerous number-theoretic applications of large
sieve inequalities.

84. By expanding 1/(e’ — 1) in powers of e *, show directly that

o (s-57) = [ (7)o

(see also Corollary 10.2.3 (2)). Deduce from this another proof of the formula
lims—1(¢(s) —1/(s — 1)) =~y seen in Proposition 9.2.14.

85. Give an alternative proof of Proposition 9.6.33 using Proposition 9.6.17 and
Stirling’s formula.

86.
(a) Using the change of variables (z1,y1) = (z, —log(zy)), compute in terms of

the gamma function
1ol
[ [ ot gt dedy
o Jo

for k € Z>o, € € Z>0, and s € C, and specify for which s it converges. You may
assume k > ¢, and should separate the cases k > ¢ and k = /.

(b) Deduce the value of
/ / ety (~log(xy))* d dy
1—zy '
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(¢) Deduce Sondow’s formula

i / / et

¢(2n + 1) in terms of Catalan’s constant G defined in Ex-

n
nz1 24n

87. Compute Y
ercise 40.
88. For z € C with (z) > 0, or for € C, with |z| > 1, set

1
n—+x

n

Z and T(z) = Z

n>=0

S(m)zzn}rl

n>0

)
x

where ["] =n!/(z(z+1)--- (x4 n)) is the inverse binomial symbol introduced
in Exercise 37 of Chapter 4.

(a) Show that these series converges absolutely and that

and T(z)+T(x+1)= 2

S(Jc)—S(ac—i—l):i =

22

(use Exercise 37 (a) of Chapter 4).
(b) Deduce from Proposition 9.6.41 that for z € C with R(z) > 0 we have S(z) =

' (z) and
-1)" ’ ’
T =2 5 = a2~ 20/ (@)
n=0
in other words that
/ 1 / / 1
W@=3 — |0 and ¥@2) 2w @)=Y ——]|"
n=>0 n=>0

(the analogues of these results in the p-adic case are proved in Exercises 21 and
23 of Chapter 11).
(c¢) Similarly, show that

Y sl =0 -ow@ e

n=0

n
T

(d) Deduce for instance that in R we have the equalities

1 n 2 1
Zn+1 1/2} ~ 2 Zn+2

n=>0 n=0

n

1| =86

2
n T 1
= —41 _
1/2] g b n;)n—i—l/Q

where G is Catalan’s constant.
(e) (Harder.) More generally, show that for k € Z>1 we have

1
Zn+k

n=0

n
T k—1

= (—1)’“_1 (m n 1) (' (z) + hy, (z)), where

z) = 1 (_1)j($—k+2j)
s 1<G<kh—1 <(‘” k+j)? - §2(x — k:+j)(z_f+j)> ’
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Note for experts: hi(z) is essentially the function that occurs in the Padé ap-
proximation table used by Apéry in his proof of the irrationality of {(2).

89. (Continuation of the preceding exercise.)

(a) By decomposing ["] into partial fractions and computing its asymptotic ex-
pansion as x — 00, prove that

oSt ()

(b) More generally, prove directly that

S (e

Show also directly that this is equivalent to the identity of Exercise 26 (b).
(¢) By decomposing [ﬂ/(n + z) into partial fractions, prove that as x — oo we
have the asymptotic expansion

’ _ / _ (_1)m+1 — o jnm_jm n
Vi) -2 @) = 3 i Y Y = ()

m>0 n=0 j=0 -J

m m—1

and where (n™ — j™)/(n — j) is to be interpreted as mn if j =n.
(d) Deduce that for all m > 0 we have the following formula for Bernoulli numbers:

(e) More generally, prove directly that

—2(2" By (2/2) — B (2)) = L1y (n+2)" =G +2)" <n> |

n—=7
where ((n + 2)™ — (j + 2)™)/(n — j) is to be interpreted as m(n + 2)™ " if
7 =n.

90. Let (by)n>0 be a sequence. In analogy with Exercise 38 of Chapter 4, define its
2-Stirling transform as the sequence (a,)n>0 given by the formal identity

T/2 n|222n+1 b (T2 ontl "
2 (1" Gyt (T2 = D an
n=>0 n=0
(a) Prove that we have the Taylor series expansion
2n+1

sinh~*(z) n_|202n T
—— =) (=1)"'nI27"—.
V1+a? ; (2n +1)!

(b) Prove that under suitable conditions on z and the sequence b,,, either in C or
in C,, we have the Laurent series expansion

SN

n=>0 n=>0

where a,, is the 2-Stirling transform of b,,.
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(¢) Deduce from this another proof of the formula for T'(z) given in Exercise 88.
(d) Show that for suitable values of x € C we have

1 n "
Zn—|—1 [1_x:|—’¢($)

n=>0
(the p-adic analogue of this result is proved in Exercise 24 of Chapter 11).
(e) Set f(n,x) =["][,",]. Prove that

n
T

n+1
T

n

f(n,ac)—f(n,m+1)—2|:

l1-2z
and deduce from this a more direct proof of the formula of the preceding

question. (Hint: find a sequence w, = un(x) such that (f(n,z) — f(n,z +

1))/(n + 1) = Un+1 — un«)
(f) Generalize as much as you can all the results of Exercises 88 and 89. In partic-
ular, the experts should recover the Padé approximation table used by Apéry

for ¢(3).

(a) Using the duplication formula, prove that the Taylor expansion of LogI'(s)
around s = 1/2 is given by

k
Logl(s) = log(m) —(2log(2)+7) (s — %) —|—Z(_1)k(2k _1)% (5 - %) ,

2
k>2

with radius of convergence 1/2.

(b) Deduce from this the value of 1) (1/2) and more generally of 1) (n + 1/2)
for n € Z.

92. Recall that the harmonic sum H,, is defined as H,, = Zlgrgm 1/r.
(a) Show that

1 _am _.m
Z Y(1 tr/m) — (YHm+In) with I :/ (1-=z )110g£1 x )dx
0 —

1<r<m

(b) Show that the asymptotic expansion as m — oo of I, is given by

Im:_K'i_Z% 1_% Z C(]) ’

k>1 2<j<k+1
where
1 1 _ —
Py (= PR T
0 € 0 zlog(x)
- (=t o , - log(k+1) log(1+ 1/k)
=D )= M=) GaTny =X
n>1 n>2 k>1 E>1

= 1.2577468869443696300098998304958815285115408905088848689775 . .. .

I do not know if this constant can be given more “explicitly”, for instance by
a formula similar to that of I in Exercise 104.
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93. Prove that for n € Z>1 and 0 < ¢t < n we have the double inequality
t

-2/ < (A —t/n)" <e .
(Hint: for the inequality on the left, show that the derivative of the auxiliary
function f(t) = nlog(1—t/n)+t—log(1—t>/n) is nonnegative for 0 < t < n'/2.)

94.
(a) Using complex exponentials (i.e., de Moivre’s formulas) prove that

k k
. 2k + . )
sin2+1 (z) = 22k E ( _ > sin(2k + 1 — 25)(x) .

(b) Using Proposition 9.6.38, deduce that
< sin? (1) g — 2k
o T T ome | g )

95. For y > 0, set
1) = [T,
0 t

Show that for y > 0 it is legal to differentiate under the integral sign, compute
f'(y), then f(y) for y > 0. Finally, show that f(y) tends to f(0) as y tends to

!
Yy)
0 from above, and deduce the value of [ sin(xt)/t dt.

96. Prove the formulas

/Ooo Sir;gx) dx = cos(ms/2)['(1 — s) = m )
/OOO M;i(zs(a:)dx = —sin(ws/2)[(1 — s) = —m )
* sin?(z) — 952 in(rs =93 T
/o e dr = =2 (ms/2)P(1 — ) = -2 cos(sm/2)[(s) ’

the first one for 0 < R(s) < 2, and the next two for 1 < R(s) < 3, so that in

particular
oo i 2
/ sin 2(3:) de— T
0 T 2

97. Prove the formula [*_sin®(¢)/t* dt = 7

(a) By solving Exercise 96.
(b) By using a similar method to that of Exercise 95.

(¢) By integrating along a suitable contour in the complex plane
98. Prove Corollary 9.6.54, both directly and by differentiating the formulas of

Proposition 9.6.50.
99. The following two exercises are taken from [Bor-Bai] and [Bor-Bai-Gir|. Let C!

be the contour in the complex plane going from —oco —ie to —e —ie, then around
the circle of radius £v/2 to € + ie and finally to —oo + ie, where £ > 0. Set
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I(z) = / te " dt
Ce

where t7% = exp(—=zlog(t)) and we choose the principal determination of the
logarithm —7 < S(log(t)) < .

(a) Show that for ®(z) < 1 the integral I(z) is independent of € > 0, and by letting
e tend to 0, show that I(z) = 2isin(mz)['(1 — z).
(b) Deduce that for all z € C and for all € > 0 we have

1 1

= t el dt .
T(z) ~ 2im Jo, €

(¢) Deduce that for all € > 0,

" dx 1 " et
/o r(m)‘ﬂ/ o ™

(d) By choosing € > 1 (explain why this is necessary), prove finally the formula

/wdiw_ﬁ/“’ei’tdt
o T(2) o log?(t) +m2

(e) In a similar manner, show that

/ooLil dm*/widx 76_/0076% dt
o TI'(z) o D(+1) o t(log?(t) +72)
and compute [ 2" /T'(z) dx for small positive integral values of k.

100. An alternative way to prove the above results, not using complex integration,
is as follows. Set

* a® o grarpttl sin(7t)
Ia,t)= [ —% 4 e r ¢y — S, da .
(a,t) / T s / T (cosm - og(x)) v

(a) Prove that this integral converges absolutely for a > 0 and ¢ > 0, and that its
derivative with respect to ¢ vanishes, hence that it is a function I(a) of a alone.

(b) Prove that I'(a) = I(a).

(c) By letting @ — 0" and using the change of variable = exp(—t), deduce the
value of I(a) = I(a,t).

(d) In particular, prove that for k£ > 0,

/Oom(m—l)---(a:—k—i—l)az
0

de — afet 4 (1)1 k/
T+ 1) v=de 0T | ol )

[eS) mk*lefaz

dx

so that in particular,
[e's} aacx—l [e's} e—{m;
7da::ea—/ ——————dr and
/0 I(x) o (2 +log*(x))

/OO —az da[:—aea—|—a/OO 767“ dx
o I'(z) o 7w2+4log®(z)
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101.
(a) Prove that for z ¢ Z,

> S;i)x =1(z) —¥(z/2) —log(2) and
(=™ =
'mZGZ m4x  sin(mz)

(b) By splitting the integral at ¢ = 1, show that for all s such that R(s) > 0 we
have

[e5S] ts—l T
5 dt = — .
o t24+1 2sin(ms/2)
(c) By making the change of variable u = ™, deduce from this that the function
1/ cosh(mx) is equal to its Fourier transform.

(a) Prove the following formulas for R(s) > 0:

| = v —vs/2) ~ox(2).

/01 "' log(1 + t)dt = é (1/)(8) —(s/2) — é) )

(b) Set _
R N AU |
F@=3 =] w(a) and Gla)= D ity

i>1 i1

Deduce from (a) that

! log(1 + t*) n?
L(a)—/o ﬁdt—*@ﬁ%’F(G)*F(ZG),

and show that F'(a) = —ylog(2) —an?/12+G(a), so that L(a) = G(a) —G(2a).
(c) Show that

_1)iti 1 log(] _ 49
L(“):,;li((aillj) and G(a):—/ %dt.

0

See Exercise 60 of Chapter 10 for the sequel.
103. Prove Proposition 9.6.47.

104. Set )
2 1 2y
I —/0 <1/J (z) i R ) dx

Show that I is a convergent integral, and using Proposition 9.6.41 show that

2 . 2
o . . log(j) _ log™(N)
f=lzg o v %—Jz&( D B A

ISISN

(see Section 10.3.5 for ;). Using Exercise 49 of Chapter 10, deduce that



146 9. Bernoulli Polynomials and the Gamma Function
1 = —2.4354998246638063226660030850418530167133724790822727806691 . . . .

105. For a and b in Z3¢ set

I(a,b) = /0 "1 log® (2 sin()) dt

The aim of this exercise is to compute I(a,b) explicitly for certain values of
a and b in terms of usual quantities, including ((k) for k € Zs>2. Note that
evidently I(a,0) = 7" /(a + 1).

(a) Prove the identity
. (mk\ _ m
H S E - om—1"

1<kE<m-—1

and using Riemann sums deduce that 7(0,1) = I(1,1) = 0.
(b) Using Proposition 9.6.46 or Proposition 9.6.47 show that

> 0 (L) =T m -1 -2

1<r<m
+ m((’y + log(m))® + Z log® (QSin <ﬂ-k))> .
1<h<m—1 m

(¢) Using Riemann sums and (a), deduce that

3 4
1(0,2):7{—2 and J(1,2)=72r—4

(see the proof of Proposition 10.3.17 (3) for help).
(d) Using Exercise 44 (d), the reflection formula, and Exercise 19 of Chapter 10,
show that

Lk/2]

I(k1) =Y (;21].)] T f'_ zj)!nk“*%(zy’ +1).

j=1

(e) By considering the exponential generating series - (Z(0, k)/k!)z* and using
Corollary 9.6.40 (4), show that I(0,k) satisfies the following recurrence for
k> 1:

k
1(0,k) =
J

|
™)

(k — 1)!
0 J'

(k= j)ar—;1(0,5), with a = (-1)" (1 - 2;@1,1) %

(recall that 1(0,0) = m and I(0,1) = 0). Note also that trivially I(1,k) =
(m/2)I(0, k). We thus have for instance

1(0,3):-%@(3) and 1(1,3):-%24(3).
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(f) Using the LLL algorithm and the numerical integration methods of Section
9.3.2, the author has found the following experimental equalities, but has been
too lazy to prove them. Do it for him:

r2:2) = e = g2 10,3 = - (3re)+ 5%
1(2,5):_( nem+ o) + g5rcs))
1(4,3) = 2re(r) - 2 3«5)% @),

(g) Deduce that

1(3,2) = 37%¢C(4) = ;LO, 1(3,3) = — (%&;(5) + 1367#4(3)) ,

_ 1375 2 E 4 il 6
1.5) = - (3250 + o) + 3r®) |
_ 225 2 45 4 3 6
1(5,3) = == C(7) = 15 ¢(5) = 77m¢(3) -
106. For k € Z> set
Sy = / w(log(Qsinh(t))—t)k dt and Cj = / m(log(?cosh(t))—t)kdt.
0 0

(a) By a series of successive changes of variable, or using Proposition 9.6.43 in a
manner similar to the previous exercise, show that Sy = (—1)"k!I¢(k + 1)/2.

(b) Show that C1 = ((2)/4 = 7©%/24 and C> = ((3)/8 (note that for & > 3
the expression for C}, involves Lig+1(1/2), which is believed not to have any
“explicit” form).

107. Let k € Z>,. Generalizing Proposition 9.6.46, show that when 0 < r < m we
have

v ® (L) = ()" kit (c(k +1) + 1<J;H G Lik+1(§f§n)) :

where Lig1 is the polylogarithm function defined in Exercise 22 of Chapter 4.
108.

(a) For any nice function f defined on R and tending to zero sufficiently rapidly
at +oo, and for any 0 ¢ 7Z, set

(1)) = e [ e (im (1042 ot - 205) )

(5 () ()

Show that r¢/(re(f)) = 16/ 16 (f) (it may be useful to use Lemma 10.2.9 proved
in the next chapter; see also the proof of Theorem 9.7.5 (1)).
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(b) Show that limg—o e (f)(z) and limg_ 79(f)(x) exist and are equal to f(z) and
f(—x) respectively. (Hint: one way of doing this is to first show convergence in
the sense of distributions.)

(c) Noting that F(f)(x) = rx/2(f)(x), deduce the Fourier inversion formula
FFEN@) = f(-2).

(d) If f(t) = e ™", show that r¢(f) = f for all 6.

Remark. The map exp(if) — r¢(f) is therefore a representation of the group
S! of complex numbers of modulus 1 to functions, called the Weil representation.
The Fourier transform is thus only a special case. As for the Fourier transform,
it is easily generalized to R".

109. Compute (in a suitable range of the variable s) the Mellin transforms of the
functions cos(a(z+1/x)/2) and sin(a(x£1/x)/2), where a is a fixed parameter.

110. Fill in the details of the proof of Propositions 9.8.1 and 9.8.2, and in particular
find explicitly the expansions of all the Bessel functions around x = 0.

111.
(a) Show directly on the power series expansion that for fixed z, as v — +oco we

have
)~ 1o ~ 7o (3)

hence tends to 0 very fast.

(b) Again using directly the power series expansion, deduce that for all ¢ € C*
and = € C we have the absolutely convergent Laurent generating series due to
Schlémilch:

Zthn(m) _ e(z/2)(t71/t) )
nez

(¢) By multiplying this series with the one in which ¢ is changed into 1/¢, prove
the following identities, valid for all © € C. For all N € Zq:

S J(@)usne(a) =0,

nez

and
Jo(x)+2)  Ja(z)=1.

nz=1
This shows in particular that for all z € R we have |Jo(z)| < 1 and |J,(z)| <
1/\6 for n € Z;,g().

112.

(a) Similarly to the first question of the preceding exercise, show that for fixed z,
as v — 400 we have

iS5

(b) Find the corresponding results for the two other Bessel functions I, (z) and
K, (x).
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113. Fill in the details of the proof of Proposition 9.8.8 in the case of Yy and Kp.

114. Compute Y, -, I'(k)/T®(k) in terms of K-Bessel functions.
115. For ¢ ¢ Z<o define Gauss’s hypergeometric series F(a, b, c; x) by

F(a,b,c;x) = Z 7(”&57" ) (—z)"

)

n=0

B ala+1)---(a+n—-1bb+1)---(b+n—1)a"
_nZ;o c(e+1)--(c+n—1) n!

Note that F (b, a,c;z) = F(a, b, c; x), so in all of the formulas that we will obtain
below we can exchange a and b.

(a) Compute the radius of convergence of this series in C, and determine the set
of triples (a,b,c) € C* for which the series converges absolutely at o = 1.
(b) Show that in a suitable range of the parameters we have the integral represen-

tation

F(a,b,c;x) = %/g A=) (L — )t

(Hint: expand in powers of  and use Proposition 9.6.39.)
(¢) Deduce that in a suitable range of the parameters, we have the following eval-

uation, also due to Gauss:

I'(c—a—0b)I(c)

F(a,b,c;1) = m .

(d) Using Corollary 9.6.40 (2), prove that in a suitable range of the parameters (in
particular with R(b) < 0), we have

) _ Tla—b+1)I'(a/2)
Flab,a=b+ 1L —1) = Sn Tz —b+1) -

(e) Prove the following contiguity relation:
(c—b)F(a,b,c+ 1;2) + bF(a,b+ 1,c+ 1;2) = cF(a,b,c;x) .

See Exercise 19 of Chapter 11 for the p-adic analogue of this exercise.

116. Prove Proposition 9.8.4.

117.

(a) Fill in the details of the proof of Proposition 9.8.5.
(b) Compute explicitly the polynomials P, and Q.

118. Prove that K,y/o(x) = /7/(2x)e”" by making the change of variable u =
sinh(¢/2) in the integral representation of Proposition 9.8.6.

119. Prove the following Mellin transform formulas and give their range of validity:



150 9. Bernoulli Polynomials and the Gamma Function

oo 4s—1
/ t df = — T 7
o 1+t sin(7rs)

[e')

log(1+ )t Yt = ——
Jo og(1+1) ssin(ms) ’
oo . .
/ ez(z/2)(t71/t)tsfl dt — 2Ks(x)ez7rs/2 ’
0

S
/ ev,(:v/Q)(t-‘-l/T,)ts—l dt = 7T€”TS/2(’L‘JS($) _ Ys(m)) )
0



10. Dirichlet Series and L-Functions

This chapter deals with the analytic and arithmetic properties of Dirichlet
series and in particular of L-functions, of which the Riemann zeta function
is the prototypical example. In a sense it is analytic number theory, but it
would be inappropriate to use this expression since it now means a part of
number theory that extensively uses tools from real and complex analysis,
while our purpose is slightly different. Perhaps more appropriate would be
“elementary number theory,” which deals with elementary number-theoretic
functions, but which is also a misnomer since in no way should it be un-
derstood as “easy” number theory. In fact, the Riemann hypothesis, one of
the most famous number-theoretical conjectures, can be considered as ele-
mentary number theory since it can be stated in “elementary” terms, for
instance through the use of the Mébius function.

10.1 Arithmetic Functions and Dirichlet Series

An arithmetic function a(n) is simply a complex-valued function defined on
Z~¢ (or sometimes only on a subset). By extension, we will also use the term
to denote functions defined on integral ideals of number fields for instance.
Almost all of the definitions and properties given in this section extend to
this more general setting.

To an arithmetic function a(n) is associated a formal Dirichlet series of

a variable s:! .
L(a,s) = Z aln) .

nS

n=1
Many manipulations on arithmetic functions need only the formal aspect
of these Dirichlet series, while others need convergence. In that case, s is a
complex number, and L(a, s) is the complex number equal to the sum of the
series, when it converges. We start by studying only the formal aspects.

! Most authors write L(s, a) instead of L(a, s). I believe, however, that it is better
to put the fixed parameters, here the arithmetic function a, at the beginning,
and the variables after. After all, the usual notation for the L-function associated
with an elliptic curve (or a more general algebro-geometric object) E and to a
modular form f is L(E, s) and L(f, s). Thus, later I will write L(y, s) instead of
the more usual L(s, x).
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10.1.1 Operations on Arithmetic Functions

If a(n) and b(n) are two arithmetic functions and a and [ are complex
numbers, then ¢(n) = aa(n) + Bb(n) is an arithmetic function, and clearly
L(c,s) = al(a,s) + BL(b,s). Thus arithmetic functions form naturally a
C-vector space (of infinite dimension).

Much more important is the multiplicative aspect. Although a(n)b(n)
is an arithmetic function in its own right, it is usually uninteresting. The
interesting product is the so-called arithmetic convolution as follows.

Proposition 10.1.1. Let a(n), b(n), and c(n) be three arithmetic functions.
The following two conditions are equivalent:

(1)
L(e,s) = L(a, s)L(b, s) .

c(n) = Za(d)b(n/d) = Za(n/d)b(d) .

d|n d|n

If these conditions are satisfied, we say that the function c is the arithmetic
convolution (or simply the convolution) of the functions a and b, and we some-
times write ¢ = a * b.

Note that when we write d | n, we mean that d is a positive divisor of n.
Proof. We simply write

=L a(n) w= b(m a(n)b(m
L(a Z T(LS Z fns) = Z ((n)?n()s)
1

= Ns (l Z Z N/TL

N>1 m:N N>1 n|N

The last equality of the proposition comes of course from the symmetry
d — n/d among divisors of n. O

The following proposition is now clear:

Proposition 10.1.2. The set A of (complez-valued) arithmetic functions to-
gether with the natural C-vector space structure and arithmetic convolution
as multiplication forms a commutative algebra with unit, the unit being the
function §(n) defined by L(d,s) = 1, in other words 6(1) =1 and §(n) =0 if
n>1.

We will denote by 1 the arithmetic function defined by 1(n) =1 for all n
(not to be confused with the function ¢), so that by definition
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SRR
—n’
This defines the (formal for the moment) Riemann zeta series.

The following proposition is easily proved by induction and left to the
reader.

Proposition 10.1.3. An arithmetic function a(n) is invertible in A if and

only if a(1) # 0.

Definition 10.1.4. We denote by u(n) the inverse in A of the function 1,
so that 3, 1(d) = 6(n), or equivalently, L(p, s) =1/((s).

Proposition 10.1.5 (Mobius inversion formula). Let a and b be arith-
metic functions.

(1) (First form.) Assume that b(n) = 3_,,, a(d). Then
Zu b(n/d) = 3" (n/d)b(d)
d|n

(2) (Second form.) Assume that b(n) = ;- a(kn), where all the series are
absolutely convergent. Then

n) =Y u(k)b(kn
k=1

Proof. By definition, b is the arithmetic convolution of a with 1; hence

L(b,s) = L(a, s)((s), so that L(a,s) = L(b,s)/((s) = L(u,s)L(b, s), and (1)
follows.
For (2), we have

> uk)b(kn) =" p(k) Y aldkn) =Y a(Nn) > pu(k) =
k>1 k>1 d>1 N>1 k|IN

where the interchanges of summation are justified by absolute convergence,
proving (2). O

The Mobius inversion formula is useful in many contexts. One of its
frequent uses is to replace the “rigid” function § by the more tractable
convolution of p with 1. For example, a summation of the type S(b) =
Za’ ged(a,b)=1 f(a,b) is very often advantageously replaced by

D)=> > pd)f(a,b)=> u(d)> fday,b),
a d|ged(a,b) d|b ay

and we see that in the inner sum the GCD condition has disappeared.
The following proposition gives an application of this:
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Proposition 10.1.6 (Evaluation of Ramanujan sums). We have

R(m,a) = Z exp(2imax/m) = Z u(m/d)d .
x mod m d|ged(m,a)

ged(z,m)=1

Proof. Using the above argument, setting « = dy we have

Roma) =Y uld) Y exp(Rimay/(m/d)).
dlm

y mod m/d

The inner sum is now an honest geometric series that vanishes if (m/d) { a
and is equal to m/d otherwise. Thus

Rima)= Y. p@m/d)= Y u(m/dyd

dlm, (m/d)|a d|ged(m,a)

after changing d into m/d, giving the proposition. ad

Remark. The reader should understand in this example what we mean by
“evaluation” or “explicit computation” of an expression. One could argue
that the formula that we have obtained for R(m, a) is barely simpler than the
defining expression. But there is a huge difference, which is perhaps best seen
in algorithmic terms: using the initial definition, we need to sum essentially
m terms, which is extremely long if m > 10°, say. On the other hand, using
the result of the proposition, we need to sum only on the divisors of (m,a),
of which there are very few, even if m and a are large. Even the (necessary)
work of factoring m is small compared to the defining expression.

10.1.2 Multiplicative Functions

Most useful arithmetic functions a have a fundamentally number-theoretic
property called multiplicativity:

Definition 10.1.7. A (nonzero) arithmetic function a is said to be multi-
plicative if for all coprime integers n and m we have a(nm) = a(n)a(m). It
is said to be completely multiplicative if this is true for all n and m, not
necessarily coprime.

The crucial point about multiplicative functions is the following easy
proposition.

Proposition 10.1.8. A function a is multiplicative if and only if L(a, s) has
a formal Euler product, i.e., can be written formally as

8

L(a,s) = HLp(a,s), where Ly(a,s) =1+ Z a(is .
P k=1
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Here and in the sequel, it is understood that a product such as Hp 1s over all
prime numbers.
In addition, the function a is completely multiplicative if and only if for

all p we have
a(p) ) B
Ly(a,s)=(1——=
o) = (128
(Note that Ly (a, s) has no relation to the p-adic L-functions that we will
study later.)

Proof. If we expand formally the product L,(a,s), we obtain a formal
Dirichlet series of the form >_ -, b(n)/n®, where

pFn

The notation p¥||n (read: p* exactly divides n) means that p* | n and p**! ¢
n. More generally, it will be useful to write d||n if d | n and ged(d,n/d) = 1.
This is the same as the previous definition when d is a prime power.

Resuming our proof, since a is multiplicative and the p*||n are pairwise
coprime, we obtain that b(n) = a(n), so [[, Ly(a,s) = L(a,s), as claimed.
Furthermore, if a is completely multiplicative, then Y7, a(p")/p** = (1 —
a(p)/p*)~t, proving the second statement. It is clear that the converse state-
ments are also true. d

Corollary 10.1.9. If a and b are multiplicative functions, then so is the
arithmetic convolution of a and b, and if a is invertible, then its inverse is
also multiplicative.

Proof. Clear from the above interpretation of multiplicativity in terms of
formal Euler products. Of course this can also be proved directly. a

Note the important fact that the arithmetic convolution of two completely
multiplicative functions is almost never a completely multiplicative function.
Indeed, since the Euler factors L,(a, s) of completely multiplicative functions
are inverses of polynomials of degree at most 1 in p~°, the Euler factor of
the arithmetic convolution of two such functions will be the inverse of a
polynomial of degree at most 2 in p~*%, but usually not of degree 1.

On the other hand, the ordinary product (which is rarely used) of two mul-
tiplicative (respectively completely multiplicative) functions is clearly multi-
plicative (respectively completely multiplicative).

10.1.3 Some Classical Arithmetical Functions

We give a list of the most important arithmetic functions, with their Dirichlet
series when appropriate, their multiplicativity properties, and corresponding
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Euler products. We also give some important relations between them. It
should be emphasized that the list given here covers the large majority of
the functions that are used in practice. Furthermore, the proofs of the given
results can always be trivially obtained either from the Dirichlet series or
from the Euler products when they exist, so the proofs are omitted and left
as excellent exercises for the reader. Remember that for now all Dirichlet
series and Euler products are formal, so there are no convergence problems.
We will come to these problems later.

Completely Multiplicative Functions

— The function ¢: a(n) = §(n), L(a,s) =1, L,(a,s) =1 for all p.
— The function 1: a(n) =1, L(a, s) = {(s), Ly(a,s) = (1 — 1/p*)~* for all p.

ta(n) = nt,

— More generally, for any complex number ¢ the function n
L(a,s) = ((s —t), Ly(a,s) = (1 —pt/p*)~ L.

— Dirichlet characters y modulo m: a(n) = x(n), L(a,s) = L(x, s) by defini-
tion, Ly(a,s) = (1 - x(p)/p*)~"
For any integer n, we will denote by w(n) the number of distinct prime
factors of n, and by Q(n) the number of prime factors of n counted with
multiplicity. In other words, if n = []; <i<g pf is the decomposition of n
into powers of distinct primes, then we set w(n) = g and Q(n) = >, ., ki.

— For any complex number z the function a(n) = 24" is completely multi-
plicative, and Ly (a,s) = (1 — z/p*) ™.

Elementary Multiplicative Functions

— The Mébius function u: L(p, s) = 1/¢(s), Ly(u, s) = 1—1/p®. In particular:

Proposition 10.1.10. The Mdbius function is uniquely defined by p(n) =
0 if n is divisible by p* for some prime p (we say in this case that n is not
squarefree), and otherwise pu(n) = (—1)~™).

— If z is any complex number, then a,(n) = 2¢(") is a multiplicative function

with - /o
z —(1-2
Ly(a.,s) =1+ — = P
ps—1 1-1/ps
The most important such function that occurs in practice is the function
2¢(") which is equal to the number of divisors of n when n is squarefree

(see the function d(n) below), and we have L(as,s) = ((5)?/((2s).
— The Euler totient function ¢: L(¢,s) = ((s — 1)/¢(s), Ly(¢,s) = (1 —
1/p®)/(1 — p/p®). In particular:
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Proposition 10.1.11(1) We have
1
¢(n)=n]] =)
pln

where the product is over primes dividing n.
(2) We have the identity
> d(d)=n.
d|n

(3) We have ¢p(n) = |(Z/nZ)*|, the number of invertible elements of the ring
Z/nZ of integers modulo n.

Proof. By expanding the formal power series we have

1—1/p® -1 p?— F(1—1
[P pl P p+m:1+zp( /p);

_ s s 2s ks
1—p/p p p =

hence for k& > 1 we have ¢(p*) = p*(1 — 1/p), so (1) follows by multi-
plicativity. (2) is trivial since it corresponds to the Dirichlet series iden-
tity L(¢, s)((s) = ((s — 1). Finally, by the Chinese remainder theorem we
know that |(Z/nZ)*| is a multiplicative function (in our sense), and clearly

\(Z/p*Z)*| = p* — p*~1 = p*(1 — 1/p), proving (3). O

Note that we have already proved and used the last two results of this
proposition in Section 2.4.1.

Corollary 10.1.12. We have

¢(n) = _ud)(n/d) = p(n/d)d.
d|n

d|n

Proof. Simply apply the Mobius inversion formula to (2). ad

— Let ¢ be a fixed complex number. The tth power divisor sum function o;(n)
is defined by oy(n) = 32, d". Then L(ot,s) = ((s — t)((s), Ly(0t,5) =
(1 —pt/p*)(1 —1/p%))~L, so for t # 0 we have

(k+1)t _ 1

or(m) =[] *

pHn

)

pr—1

while for ¢ = 0 we have

oo(n) = [ (k+1) =]](vp(n) +1).

pk|In pln
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Special cases: the number of divisors function og(n) is denoted by d(n)
(analytic number theorists often use the notation 7(n), but this is also
used to denote another multiplicative function, the Ramanujan 7 function),
and we have L(d, s) = ((s)?. The sum of divisors function oy (n) is simply
denoted by o(n) and we have L(co,s) = (s — 1)((s).

Very precise results are known about the size of the functions ¢(n) and
o¢(n) which do not concern us here. The main thing to remember in practice
about these functions is the following proposition:

Proposition 10.1.13. (1) There exists a constant ¢ > 0 such that for all n,

en/log(log(n)) < ¢(n) < n.

(2) There exists a constant ¢ > 0 such that for all n,

N

n < o(n) < cnlog(log(n)) .

(3) For anyt > 1 and for all n we have
n' <oi(n) <C(H)n',

where ((t) > 1 is Riemann’s zeta function at t.
(4) There exists a constant ¢ > 0 such that for all n,

0 < w(n) < log(n)/log(log(n)) .

(5) There exists a constant ¢ > 0 such that for all n,

1 < d(n) < exp(clog(n)/log(log(n))) -

In particular, for any € > 0 there exists ¢ > 0 such that for all n,
d(n) < een®.

Remarks. (1) All these results are easy consequences of very weak forms of
the prime number theorem that can be proved much more simply than
the strong versions that we will prove in Section 10.7: we need to know
only the existence of strictly positive constants C; and Cs such that
Cyz/log(z) < m(x) < Cax/log(x), where m(x) is the number of primes
less than or equal to x.

(2) The results of this proposition are all best possible, apart from the de-
termination of the best constants. In particular, for any k there exist
infinitely many n such that d(n) > log(n)*.

(3) The result for w(n) is evidently false for Q(n) since Q(2%) = k.

Since p(n) = 0 or £1, there is nothing to say about the size of the Mébius
function. It follows from the prime number theorem (and in fact is equivalent
to it) that u(n) = £1 with equal probability, in other words that if we let
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M(z) = 321 cpcp #(n) then M(z) = o(x), or equivalently, M(z)/z — 0 as
x — o00. More precise results are known, corresponding to more precise forms
of the prime number theorem. What is completely conjectural, however, is
the size of M (x) as © — oo. In fact, it is conjectured that for all € > 0 we have
M(x) = O(z'/?*%) as & — oo, and it can be shown that this is equivalent to
the Riemann hypothesis.

The von Mangoldt Function

Although not multiplicative, this function deserves a short study. We define
the von Mangoldt function A(n) by L(A,s) = —¢'(s)/¢(s).

Proposition 10.1.14. (1) We have A(n) = 0 if n is not a prime power,
and A(n) = log(p) if n = p* is a power of a prime p with k > 1.
(2) We have

ZA =log(n) and A(n Zu n/d)log(d) .

dln
Proof. (1) is immediate since

¢'(s) log(p log
S C(s) 2> p(l—l/p ZZ ’

p prime p prime k>1

and the two formulas of (2) are equivalent to the equality ((s)L(A,s) =
—('(s). 0

Nonelementary Multiplicative Functions

There are of course many other interesting multiplicative functions in number
theory. However, a particular class deserves to be mentioned, although it is
outside the scope of this book: functions coming from the theory of modular
forms. The sum of divisors functions o;(n) are in fact of this type when ¢ is
an odd positive integer since they are the Fourier coefficients of holomorphic
Eisenstein series. The most famous of the nonelementary functions is certainly
Ramanujan’s 7 function defined by the formal expansion

g [[a=gm*=> 7(n
m=1 n=1

Of course, for someone not at all familiar with the theory of modular forms,
this looks like a very artificial definition: for instance, why take the exponent
247 In any case, it was proved by Ramanujan and Mordell that 7(n) is indeed
a multiplicative function (the proof is not difficult), and in addition that
7 is equal to the arithmetic convolution of two (noncanonical) completely
multiplicative functions o and §. This means that L(7,s) =[], Ly(7, s) and

S

that L,(7,s) is the inverse of a second-degree polynomial in p~*, and in fact

Ly(t,s) = (L —7(p)/p® +p*'/p*)~*
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A deep conjecture of Ramanujan, which was proved by Deligne only in
1970 using all the machinery of modern algebraic geometry, is that the com-
pletely multiplicative functions « and 8 have modulus exactly equal to n''/2,
or equivalently, that they are conjugate (since their product is equal to n'l).

10.1.4 Numerical Dirichlet Series

As we have seen above, in many cases it is sufficient to consider formal Dirich-
let series and formal Euler products. We now consider convergence problems,
so that in this section s is a complex variable. The term Dirichlet series will
thus denote numerical (or functional) Dirichlet series, and no longer formal
ones.

For power series, the domain of convergence is a disk (possibly reduced
to a point or infinite), where the behavior is a priori undetermined on the
boundary. For Dirichlet series, we have a similar result:

Proposition 10.1.15. Let f(s) = }_, 5 a(n)/n® be a Dirichlet series.
There exists a o € [—o0,+00] (i.e., a real number or £o00), called the ab-
scissa of absolute convergence of the series, such that f converges absolutely
in the half-plane R(s) > o, and does not converge absolutely for R(s) < o.
Furthermore, for any e > 0, the series f(s) converges normally, hence uni-
formly, in the closed half-plane R(s) > o + ¢.

Before proving this result, we note that ¢ = +00 means that the series
never converges absolutely, while 0 = —oo means that it converges absolutely
for all s € C. Contrary to the case of power series, note that in number-
theoretical practice, these situations do not occur, although of course they
are possible (see below).

Proof. Assume that f(sg) converges absolutely for some sy € C. Then
since

|a(n)| _ |a’(n)| |nso—s| _ |a’(n)|n§)‘i(so—s)

- ]

R |

it follows that the series f(s) is dominated in absolute value by the series f(s)
as soon as R(s) = RN(sp). Thus, denote by o the infimum in [—oo, +00] of the
real parts of s such that f(s) converges absolutely. It follows that if R(s) > o
then R(s) > R(sg) > o for some sy such that f(sgp) converges absolutely,
hence that f(s) converges absolutely. The domination inequality that we
have shown also proves normal hence uniform convergence in R(s) > R(sg).
In addition, by definition if R(s) < o then f(s) does not converge absolutely,
proving the proposition. O

It follows in particular from this proposition that the series f(s) defines
an analytic function (which by abuse of notation we will again denote by
f(s)) on the half-plane R(s) > o.

Another useful result is the following.
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Proposition 10.1.16. Let f(s) = >_,-, an/n® be a Dirichlet series with
nonnegative coefficients, i.e., such that a, = 0 for alln, let o be the abscissa
of convergence of f, and assume that oy # too. Then f cannot be analytically
continued into a holomorphic function in the neighborhood of s = oq; in other
words, s = o is a singularity of f (pole or otherwise).

Proof. Assume the contrary. Then for ¢ > 0 sufficiently small, f is holo-
morphic in a circle centered at og + 1 of radius 1 + 2¢, so inside this circle it
is equal to the sum of its power series expansion

fle) =2 Wﬂ“(ml) with f®(og+1) = 3 (;Llif(””’“ .
k>0 : 1

Thus for instance we have

1 k n(l k
flog o) = Yo Gl y- anllost)
k>0 n>1

In this convergent double sum all the terms are nonnegative, so we can in-
terchange the order of summation and obtain

an (1+¢)*log(n)* an
f(UO B E) = Z noo+1 k! = Z noo—e
n=1 k>0 n=1

since Z (1 + ) log(n)*

k! = eXP((l + 8) log(n)) — plte

k>0

. s _
Thus the series }, -, a,/n’ converges (absolutely of course) for s = 09 —¢ <
00, a contradiction since o is the abscissa of convergence. a

Corollary 10.1.17. Let f(s) = >_,~, an/n® be a Dirichlet series with non-
negative coefficients and abscissa of convergence different from 4oo. If f(s)
can be holomorphically continued to R(s) > o then the series f(s) converges

for R(s) > o.

Proof. Indeed, if o0y < oo is the abscissa of convergence of f(s) then either
09 = —oo and there is nothing to prove, or oy # oo and by the above
proposition we know that f(s) has a singularity at s = 0. In particular, f(s)
cannot be holomorphically continued at oy, so by assumption, oy < o, and
hence f(s) converges for R(s) > o. O

Examples. — Clearly Zn>1 2™ /n® does not converge anywhere, so o = +00
in this case. In the opposite direction, Zn>1 27" /n® converges for any
value of s, so that 0 = —oo in this case. However, as already mentioned, in
almost all number-theoretic applications of Dirichlet series we have o € R,
i.e., not equal to oo, so there really is a half-plane of convergence.
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— The Riemann zeta function ((s) = >, -, 1/n® has abscissa of absolute
convergence o = 1, for example because of the comparison theorem be-
tween series and integrals. On the line o = 1, the series diverges (both
absolutely and not; see Exercise 10). The corresponding Euler product
C(s) =1L, (1 - 1/p*)~1 also converges absolutely only for R(s) > 1.

— It follows from the deep result of Deligne mentioned above that the abscissa
of absolute convergence of L(7,s) = 3, -, 7(n)/n® is equal to o = 13/2
(one can easily prove that ¢ < 7, and with a little more difficulty that
o< 7-1/4).

The reader will have noticed that we have only mentioned absolute con-
vergence. There are two reasons for this. The first one is that only absolutely
convergent series are safe for computations; others should be avoided when-
ever possible. The second reason is more subtle: in the case of power series,
the radius of absolute convergence and the radius of convergence are the same
(although on the circle of convergence itself there may be differences). For
Dirichlet series, the situation is different: the abscissa of convergence (which
also exists; see Exercise 7) may be smaller than the abscissa of absolute con-
vergence. To give an example, the abscissa of convergence of -, (—1)"/n*
is ¢ = 0, while its abscissa of absolute convergence is that of the Riemann
zeta function, i.e., o = 1; see Exercise 11. It can (easily) be proved, however,
that the difference between the two abscissas is less than or equal to 1, and
1 is best possible as this example shows; see Exercise 8.

For a much deeper example, the abscissa of absolute convergence of the
Dirichlet series 1/((s) = >_,~; #(n)/n® is equal to 1 (see Exercise 9), but
nobody knows its abscissa of convergence o. It is trivial to prove that 1/2 <
o < 1, but even the proof that ¢ < 1 would be a major accomplishment
worthy of the Fields medal plus a million US dollar Clay prize. The Riemann
hypothesis is equivalent to the strongest possible statement that o = 1/2.
An equivalent formulation is that M(z) = >, ., <, u(n) satisfies M(z) =
O(z'/?+#) for all € > 0. The best currently known result in that direction
(using sophisticated techniques of trigonometric sums in analytic number
theory) is M (x) = O(z exp(—clog(z)3/° log(log(z))~1/?)) for some ¢ > 0, and
this result has not been improved upon for half a century; see the remarks
after Theorem 10.7.8 below.

10.2 The Analytic Theory of L-Series

Let x be a Dirichlet character modulo m. Recall that for £(s) > 1 we have
the absolutely convergent series and Euler products (see the footnote at the
beginning of Section 10.1)

Lo = S XD LT (1)

s
p p
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Lemma 10.2.1. Let x be a character modulo m, let f | m be the conductor
of X, and x5 the corresponding primitive character modulo f. We have

xs(p)
plm
In particular, if m = p* is a power of a prime p and x is a nontrivial character
we have L(x,s) = L(xy, s).

Proof. Clear. O

Since a finite Euler product is easy to study, it suffices to limit our study to
primitive characters. Thus, in the rest of this section, we will usually assume
that y is a primitive character modulo m.

The basic results that we need about Dirichlet L-functions are their an-
alytic continuation, functional equation, and their special values, either at
negative integers, or at positive integers of suitable parity. It is important
to note that Dirichlet L-functions are very simple objects compared to more
complicated L-functions such as Dedekind zeta functions, Artin L-functions,
or L-functions attached to elliptic curves or to modular forms. Thus we can
use tools that are difficult if not impossible to generalize to these more gen-
eral contexts. We will thus first give the simplest possible proofs. We will also
give the more complicated proofs, so that the reader can have an idea of how
to generalize to more complicated L-functions.

To obtain analytic continuation and special values at negative integers, we
are going to see that a very simple approach based on integration by parts is
sufficient, and in that case it is not necessary to assume that y is a character.
To obtain the functional equation and the special values at positive integers,
we must assume that y is a Dirichlet character, and the tool that we will use
is the fundamental theorem on Fourier series. To treat more general L-series
we would need a generalization of this tool, when it exists.

10.2.1 Simple Approaches to Analytic Continuation

We begin with the following general result. Recall that a function f tends
rapidly to O at infinity if for any k > 0, as * — +oo the function x*f(z)
tends to 0.

Proposition 10.2.2. Let f be a C* function on [0, 0] tending rapidly to 0
at infinity, and for R(s) > 0 define

L) =i [ s0r

(1) For any k € Z>¢ we have for R(s) > —k,
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D(s +k)L(f,s) = (_1)’6/0 ﬁ(t)t”k@.

t

(2) The function L(f,s) can be analytically continued to the whole of C into
a holomorphic function.
(3) For any n € Zso we have

nd"f

L(f,—n)=(-1) dt—n(O) = (-1)"nla, ,

where Zn>0 ant™ is the formal Taylor expansion of f around 0.

Proof. Assume first that all the derivatives of f also tend rapidly to 0 at
infinity. Integrating by parts the definition of L(f,s) and using the fact that
f tends rapidly to 0 at infinity, we obtain

° d
L) = =5 [ 00 = L s ).

so (1) follows by induction. Since I'(s+k) # 0 for all s and k, and the integral
in (1) defines an analytic function for R(s + k) > 0, it follows that L(f,s)
can be analytically continued into a holomorphic function for R(s) > —k,
hence in the whole of C since k is arbitrary, proving (2). Finally, (1) applied
to s =1—k gives

oo gk k—1
pga-b =0t [ Gwa- o gto.

which is equivalent to the two formulas of (3).

We now assume only that f is a C'"°° function that tends rapidly to 0
at infinity. We must show that we can reduce to the case in which all its
derivatives also do. In fact, we are going to show that we can reduce to the
case in which f has compact support, which is stronger than what we need. Let
¢ be an auxiliary C*° function equal to 1 on [0, 1] and to 0 on [2, co[. We can
evidently write f = ¢f + (1 —¢)f, so that L(f,s) = L(¢f,s)+ L((1—)f, s).
Since (1 — ¢)f vanishes in a neighborhood of 0 and tends rapidly to 0 at
infinity, it is clear that the integral defining L((1—¢)f, s) converges absolutely
for all s and hence defines a holomorphic function on C. Furthermore, since
1/T(—n) = 0 for n € Zx( we also have L((1 — ¢)f,—n) = 0. It follows that
we may replace f by ¢f, in other words by a C'*° function with compact
support, as claimed, thus finishing the proof. |

Applying this to L-functions attached to arithmetic functions, we obtain
the following.

Corollary 10.2.3. Let x be any arithmetic function of period dividing m,
and recall that Bo(x) = so(x)/m = (Zogr<m x(r))/m.
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(1) For any k € Zx¢ and R(s) > —k we have

o gk
F(S + k) <L(X,S) — SOT(XI)) — (_l)k/o dd%(t)tﬁk % ,

where .
B Dicrem X(1)eTT ~ Bl )e_t
1—emt oW

(2) In particular, for any k € Z>o and R(s) > —k we have

By (#)

0o gk
I'(s + k) (C(S) ~ 3 i 1) = (_1)k i %(t)tsﬁ-k% ’

with .
1 e~
Flt)=————.
®) et —1 t
(3) The function L(x,s) can be analytically continued to the whole complex
plane into a holomorphic function if Bo(x) = 0 (in particular if x is a
nontrivial character modulo m), and otherwise to a meromorphic func-
tion with a single pole, at s = 1, with residue By(x).
(4) If Bo(x) = 0 the series 3, -, x(n)/n converges and its sum is equal to
L(x,1).
(5) Fork € Z>1 we have

Lix,1=k) = ——=

(see Definition 9.4.1).

Proof. (1), (2), and (3). The integral definition of the gamma function
immediately implies that

e T
/ €7ntts ﬂ — (S) )
0

t ns

It follows by absolute convergence that for R(s) > 1,

L(s)L(x,s) = /0OO Gx(t)tsf1 dt ,

where

m o0

Got) = 3 xme™ = 3 x(n) Yo et - Zagren X T

1—emt
r=1 q=0

We cannot yet apply the proposition to f(¢) = G,(t), since f is not defined
at 0 except if >, ., X(r) = mBy(x) = 0. However, for R(s) > 1 we have
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oo t
/0 5~ 1et dt =T(s—1) = L(s)

henee I'(s) (L(X, s) — fO(Xl)) - /ooO Fx(t)ts_l dt

with F\(t) = G, (t) — Bo(x)e */t. In the above formula, we could replace
By(x) by any constant, but the point of choosing specifically By(x) is that
now F,(t) is defined at ¢t = 0, and is in C*°([0, +-00[), so that the proposition
is applicable, and (1), (2), and (3) immediately follow.

(4). Since so(x) = 0 the quantity >, x(n) is bounded, and it follows by
Abel summation that the series S = Zn>1 x(n)/n converges. It also follows
from Abel’s theorem that »_, -, x(n)/n® tends to S as s tends to 1, %(s) > 1
uniformly in any sector | Arg(s — 1)| < 0 < 7/2. 0

(5). Keep the above notation. By Lemma 9.4.3 and Proposition 9.4.9, we
have

Rt =% Bi(x") — (=1)*Bo(x) o1

|
k>0 ki
Bi(x) — Bo(X)
k k ( 0 k—1
)+ (-1 o 1
E>1
Thus, if we write F\(t) = >, 5,ant" we have (—=1)"nla, = —x(0)dn,0

(Bn+1(x) — Bo(x ))/(n+ 1), so we deduce from the proposition that for k > 1
we have

L(x;1 = k) + Bo(x)/k = —=x(0)dk, 1 = Bi(x)/k + Bo(x)/k ,
proving (5). O

Remarks. (1) The above approach does not give the functional equation of
the L-functions. The essential reason is that we use only the periodicity of
x(n), and not its multiplicativity, which implies, through the use of Gauss
sums, that its finite Fourier transform is a constant times its conjugate
(see Proposition 2.1.39).

(2) A deeper reason for which the above approach ezists is the fact that
Dirichlet characters, or more generally periodic arithmetic functions, are
intimately linked to Abelian extensions of QQ via the Kronecker—Weber
theorem asserting that any Abelian extension is a subextension of a cy-
clotomic field. Another way of stating this is that the Dedekind zeta
function of an Abelian extension of QQ splits as a product of L-functions
of Dirichlet characters. Thus if we consider L or zeta functions attached to
non-Abelian extensions (such as non-Galois cubic fields), no elementary
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method of the above type is known even to prove analytic continuation.
This is the reason for that Artin’s conjecture, claiming essentially that
all such L-functions are holomorphic, is so difficult to prove. Continuing
with this language, Dirichlet characters are in one-to-one correspondence
with characters of the group GL1(Z/mZ) = (Z/mZ)*. To be able to work
with more general extensions it is necessary to understand characters of
more general groups such as GL,,(Z/mZ) and generalizations: this is the
main thrust of the Langlands program.

Using the Fourier expansion of the y-Bernoulli functions, we can also
easily give the values of L(x,s) at positive integers of suitable parity. In
accordance with remark (1) above, here it is necessary to restrict to Dirichlet
characters, and for simplicity we will even restrict to primitive characters.

Proposition 10.2.4. Let x be a primitive Dirichlet character modulo m, let
W (x) be the root number given by Definition 2.2.25, let k € Z=1 be such that
x(=1) = (=1)*, and let e = 0 or 1 be such that k = e (mod 2). We have

Qk—lﬂ_kBk (X)

L(X7k) _ (_1)k—1+(k+e)/2W(X) — i,

Proof. Applying Proposition 9.4.14 to x¥ and z = 0 (with £ and n ex-
changed) we obtain

mF=1k! T(x,n)
Bi(x) = - ™ il
W= 2,

This is a priori valid only for & > 2, but for £ = 1 the corrective term is
x(0)/2 = 0 since x(—1) = —1 in that case, so x cannot be a trivial character.
Since y is a primitive character, by Corollary 2.1.42 and Proposition 2.1.45
we have
m

(X, n) = x(n)7(X) = x(=n)7(x) = (=1) x(n)T(X

~—

Furthermore, we clearly have By () = Bx(x). Thus

Balx) = (—1)F 12 ””“' ZX

227T

proving the proposition after 7(x) is replaced by i¢m'/2W (x). 0

We will see below other proofs of the above proposition. In particular, it
is a special case of the functional equation of L(x, s).
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10.2.2 The Use of the Hurwitz Zeta Function ((s, x)

Another simple approach to the study of L-functions of Dirichlet characters is
based on the use of the Hurwitz zeta function ((s, ), which we have studied
in detail in the preceding chapter. We are going to see that this approach,
which again is quite simple and works because we have periodic functions,
gives not only analytic continuation and values at negative integers, but also
the functional equation in a painless way.

Proposition 10.2.5. Let x be any arithmetic function of period dividing m.
(1) We have
1
L(x,s) = ms Z x(r)¢(s,m/m) .
1<r<m

(2) The function L(x,s) has an analytic continuation to the whole complex
plane, to a holomorphic function if Bo(x) = 0, and to a meromorphic
function with a single pole at s = 1, simple with residue By(x) otherwise.

(3) For any k € Z>1 we have

Lx,1—-k)= _Bkk(X) = x(0)0k,1 = _mz_l > X(1)Bx (%) '

(4) If Bo(x) = 0 we have

L(x,1)=—% > X (%) :
1<r<m

where as usual Y (x) is the logarithmic derivative of T'(x).

Proof. Since

o) =2 M = Y Y = X X0/

n=1 1<r<m q=0 1<r<m

the first formula is clear, and analytic continuation, residue, and special values
at negative or zero integers follow from the corresponding properties of (s, x)
seen in Proposition 9.6.6 and Corollary 9.6.10, together with the formula
for Bi(x) given by Proposition 9.4.5. The formula for L(x, 1) follows from
Proposition 9.6.8 (3) since By(x) = 0. O

The functional equation for L-functions is in fact an immediate conse-
quence of the Fourier expansion of ((s, {z}) that we computed in the previous
chapter (Corollary 9.6.51):

Theorem 10.2.6. For R(s) > 1 set Z(s,z) =Y, €™ /n®.
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(1) For R(s) > 1 we have the functional equation
C(1—s,{z}) = (2m)~°I(s) (e—m/QZ(s, )+ e*/2 7 (5,1 — x)) .

(2) For all s we have the functional equation

C(1—s)=2(2m)"°T(s) cos(sm/2)((s) .

(3) More generally let x be any primitive character modulo m. For all s we
have the functional equation

L(x,1—s) = 2W(x)m*~/2(2x)~*T(s) cossin(sm/2) L(X, s) ,

where cossin(z) = cos(x) when x(—1) = 1 and cossin(z) = sin(x) when
x(—=1) = =1, and W (x) is as in Definition 2.2.25.

Proof. Statement (1) is a simple rephrasing of Corollary 9.6.51 seen in the
previous chapter. For (2), assume first that %(s) > 1. Then by Proposition
9.6.11 the function ((1 — s, {z}) is an everywhere continuous function of x,
including at the integers, where it takes the value ((1 — s). Thus letting =
tend to 0, we obtain

C(1=s) = (2m)~°T(s) (e_”/QC(s) + es”/zg(s)> = 2(27) " °T'(s) cos(sm/2)C(s) .

By analytic continuation this equation is valid for all s (as usual interpreting
suitably the values at the poles). The same proof is valid for (3) except that
we do not have to worry about integers: for (s) > 1 we have

Lo1—s) = —— 3 x()¢(1 - 5,7/m)

ml—a

L(2m) =T (s) f:X(T) (e—iSTr/2Z (s, %) L eisT/2g (s, _%))
27T —T(s ( —ism/2 Z T(i;”) 4 eisT/2 Z T(X;ﬁ‘”))

n>1 n>1
=m* 1 (27) " *T(s)7(x)L(X, s) (e—isw/Q n X(—l)ei”/2>

by Corollary 2.1.42, which is applicable since  is a primitive character, prov-
ing (3) after separating the cases x(—1) =1 and x(—1) = —1 and extending
to all s by analytic continuation. a

10.2.3 The Functional Equation for the Theta Function

Perhaps the most classical way of proving the functional equation of Dirichlet
L-series is to apply the Poisson summation formula (Proposition 2.2.16) to
closely related series called theta functions. We will prove in fact more than
is necessary.
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Definition 10.2.7. Let z € C* be any nonzero complex number.

(1) We define the principal determination of the argument of z, and denote by
Arg(z), with a capital A, the unique 0 € |—m, | such that z = |z| exp(if).

(2) We define the principal determination of the square root of z by the for-
mula 2% = |z|"/? exp(i Arg(2)/2), in other words as the unique complex
number w such that w? = z with Arg(w) € |—7/2,7/2].

(3) If k € Z, we define z*/? by the formula 2*/? = (2'/?)F.
Note that in this definition we allow negative real numbers.

Warning. When k is even, we evidently have (2'/2)¥ = 2¥/2 in the usual
sense. On the other hand, when k is odd, we do not in general have 2¥/2 =
( Zk)1/2.

The following lemma is very easy and left to the reader.

Lemma 10.2.8. Let x and y be two nonzero complex numbers. Then

(1) Arg(zy) = Arg(x) + Arg(y) — 2k, where k = [(Arg(z) + Arg(y) —
m)/(2m)].

(2) (zy)'/? = ex/?y/2, where ¢ = £1, and € = 1 if and only if Arg(z) +
Arg(y) € |—m, 7.

(3) Arg(1/z) = — Arg(z), except if © € R, in which case Arg(l/z) =
Arg(z) = 7.

(4) z'/2(1/2)"/? =1 except if x € Reg, in which case z*/?(1/x)Y/? = —1.

We also need the following integral evaluation.

Lemma 10.2.9. Assume that $(a) > 0, and that when $(a) = 0 we have
a#0 and (b) =0. Then

+oo -\ 1/2 2
dac—b
/ exp(im(at® 4+ bt + ¢)) dt = <Z> exp <i7rac4> ,
a a

— 00
where as usual we use the principal determination of the square root.

Proof. Note that when $(a) = 0, we need the condition a # 0 and $(b) = 0
to ensure the convergence of the integral.
Since a/i is not a negative real number, by Lemma 10.2.8, we have

(a/i)Y/?(i/a)'/? = 1. If we set u = (t + b/(2a))(a/i)'/?, the integral thus

becomes 12
. 4 _ 2
(l) exp (iﬂ'aCb) / exp(—mu?) du ,
a 4a c

where C' is the line (t + b/(2a))(a/i)'/? as t goes from —oo to 4oc. Since
Arg((a/i)'/?) € [~m/4,7/4], it is easy to show that we can modify the contour
of integration C' to the horizontal line R without changing the integral, and
since fjoos exp(—mu?) du = 1, the result follows. 0



10.2 The Analytic Theory of L-Series 171

Proposition 10.2.10. Let x be a primitive character modulo m and let e =
0Oifx(=1)=1ande=1 if x(—1) = —1. For S(r) > 0 and any z € C, set

<i7T7l2T + 2i7mz)

m

@(Xﬂ T, Z) = Z X(n) €xXp

nez

We have the functional equation

1 2 1% 7\ 1/2 imz?
6(X7?> = # (7) eXp( >®(Xa7-7z) ’
T ) 7 mT

where W (x) = 7(x)/(i°m*/?) is as in Definition 2.2.25.

Proof. We have

im(km + 1)1 im(km + 1)z
o= 3 x(r>zexp( (km 4 r)"7 + 2im(km + 1) )

m
r mod m keZ

Since J(7) > 0, the function f(z) = exp(in((zm + r)%r + 2(zm + r)z)/m)
tends rapidly to 0 at infinity, so we may apply the Poisson summation formula
(Corollary 2.2.17) to the function f(z). We thus apply Lemma 10.2.9 to
a=m7,b=2(rr +y+ 2), and ¢c = (7?7 + 2rz)/m, and we obtain

[ rerepimn = () e (i (22 0P

Thus

O(x, 7, 2) = (i)l/zm‘l/z Y x(r))exp (‘” (2:: + W))

r mod m nez
i\? 1/2 n? ™
(T> Zexp ( mmr) Z x(r)exp ( im—
nez r mod m

By Corollary 2.1.42, since x is primitive we have

> xr)exp (<2in=t ) = X(=m)r(x) = (DX

r mod m

Thus

O(x,7,2) = ()/ (D m 2 S x(w) exp (—im

=
neZ

ot 2.

mT

giving the result after changing 7 into —1/7 and z into z/7. a
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Definition 10.2.11. We say that x is an even (respectively odd) character
if x(=1) = 1 (respectively x(—1) = —1), and as in the proposition we let
e =0 or 1 such that x(—1) = (—=1)°. Finally, we define

0(x,7) = Y nx(n) exp (”;fT) .

neZ

Corollary 10.2.12. The function 0(x,T) satisfies the functional equation

0 (x-3) =weo (5)* o).

i
where (1/i)2¢+1/2 s given by Definition 10.2.7.

Proof. If e = 0, i.e., if x is even, the corollary immediately follows from
the proposition by setting z = 0. Assume now that e = 1. We clearly have

00

2
E(XVE 0) - WQ(X7T) .

On the other hand, the above proposition implies that

20 1\ W) m\/2 00 ,_
g <X7_T70> - TT (;) E(X’Ta 0)

and the corollary follows. O

This corollary shows that the function 6(x, 7) is a modular form of weight
e + 1/2 on a suitable congruence subgroup of SLy(Z). In fact, we need the
transformation formula only when 7 = it with ¢ > 0 real.

Corollary 10.2.13. Let t be a real positive number. As t — 400, then
(x, it) = x(0)+O(exp(—nt/m)), and ast — 0%, then O(x, it) =t~ /2(x(0)+
O(exp(=m/(tm)))) -

Proof. As t — +o0, this follows immediately from the definition. As t —
07, we have by the functional equation

0(x.it) = W)t 20(x,i/t) = W)t~ 2 (x(0) + Olexp(—/(tm)))) -

Now x(0) # 0 if and only if x = 1, so that W (x) = 1, giving the corollary. O

10.2.4 The Functional Equation for Dirichlet L-Functions

Recall from Definition 8.5.9 that the incomplete gamma function is defined
for x> 0and s € C by I'(s,z) = [~ t*e~"dt/t.
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Theorem 10.2.14 (Functional Equation for Dirichlet L-Functions).
Let x be a primitive character modulo m, let e = 0 (respectively e = 1) if x
is an even (respectively odd) character, and set

v(s) =70 (s/2) and A(x,s)=mT9/ 2 (s+e)L(x,s) .

Then A(x, s) and L(x, s) can be analytically continued to meromorphic func-
tions in the whole complex plane and satisfy the functional equation

A(Xa 1- 5) = W(X)A(Xa 8) .

In addition, these functions are holomorphic except when x = 1, in which
case A(x, s) has two poles at s =0 and s = 1, which are simple with residues
—1 and 1 respectively, and L(x, s) = ((s) has a single pole at s = 1, which is
simple with residue 1.

Furthermore, we have the following rapidly convergent formula valid for
all A > 0:

s+e ) A(s—l)/2 As/2
r (55 2ocs) = xlom? (A - 2

s—1 s
x(n) . [(s+e mn2A
+Z ns F( 2 " m
n=1
m\s—1/2 X(n) . (1—s+e wn?
W -~ o
W) (m) =~ nl—s 2 T Am

Proof. Set

o ) dt
Iows) = [ 8200000 x(0) T

0
By the above corollary, this integral converges (exponentially fast in fact)
when ¢ is large, while when ¢ is close to 0, either we have x # 1, in which
case we also have exponential convergence, or we have y = 1, and then by
the corollary the integrand is asymptotic to t¢=3)/2 as t — 01, Thus, for
R(s) > 1 the integral is absolutely convergent.

An easy computation gives

e > (s+e)/2 —mn’t/m dt
I06s) =23 nex(n) [ ierezemtym &
n>1 0
(s+e)/2 o d
_ e m (s+e)/2 ,—u J
2%” X(n) m(ste)/2pste /0 u € u

= 2m(5T9/ 2y (s + €)L(x, s) = 2A(x, ) -

The exchange of summation is justified by absolute and normal convergence
for R(s) > 1, and it also proves that A(x, s) is holomorphic in that region.
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Let A > 0 be arbitrary. We can write, still for R(s) > 1,

dt

I = [0 i) - x(0) F z

. /A t6+2(9(y, it) — x(0)) —

O t

oo A s/2
- / H+92(p i) — x(0) L + / 102y, ity & o)
A t 0 t 5/2

since x(0) # 0 implies e = 0. In the second integral we change ¢ into 1/t.
Since by Proposition 10.2.10 we have for all real ¢ > 0,

0(x.i/t) = W()t"/*Te0(x, it) |

we obtain

A [eS)
/ s+e)/29(X ’Lt) =W(x )/ t(l—s+e)/20(y’ it) @
0 t /A t

o (s—1)/2
=W [ 0700 —x0) T 3O 75

since x(0) # 0 implies e = 0 and W (x) = 1. We thus obtain the the prelimi-
nary formula

A(sfl)/Q As/2 00 dt
(s+e) /2 A i
T~ ) [ i) - x(0)

LW () /Zt“ (0 %, it) — 1(0)) &

2A(x.5) = x(0) (

A

This has three consequences. First of all, since (x, it)—x(0) and 0(x, it)—x/(0)
tend to zero exponentially as t — oo, the integrals converge normally in
any compact subset of C, so A(x, s) has a meromorphic continuation to C.
Furthermore, its only possible poles can occur when x(0) # 0, i.e., x =1, in
which case they are at s = 0 and s = 1, are simple, with residues —1 and 1
respectively, as claimed. Furthermore, since L(x, s) = A(x, )/ (m+)/2~ (s +
e)) and since m*+€)/2y(s + ¢) never vanishes, it follows that L(x, s) is also
holomorphic on the whole of C, except perhaps at s = 0 and s = 1 when
x = 1. But if xy = 1, then m©+¢)y(s + ¢) = 775/2T(s/2) has a simple pole
with residue 2 at s = 0, which cancels the simple pole of A(x,s) at s = 0,
and proves in fact that ((0) = L(x,0) = —1/2. On the other hand, for s = 1,
7=%/2T'(s/2) = 1, so that ((s) = L(x, s) has a simple pole with residue 1, as
claimed.

Second, since by definition

() = (¢, —1) = x(-1)7(x)

and |7(x)[2 = m and x(—1) = (—1)¢, it follows that
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Woow () = (1) Ty

Thus, if we change simultaneously s into 1—s and A into 1/A, our preliminary
formula immediately gives the functional equation A(x, 1—s) = W(x)A(X, $).

Third, by definition of T'(s, ), we have
o 2 dt
/ tsemmmt/m 5= (m/m)*n = 2T (s, mn’x) .

Thus, replacing explicitly the theta functions in our preliminary formula and
exchanging summation and integration (which is justified since the integrals
converge exponentially fast), we obtain

A(sfl)/Z AS/Q)

m+2 s 4 )L 8) = x0) (4= -

s
m (s+e)/2 x(n) . (s+e
+ (—) r ,mn A

T ns 2
n>1

my (1—s+e)/2 xX(n) 1—s+e mn?
W (7) w="\T2 o a)

e
n>1

We obtain the final formula of the proposition by multiplying with (/m)(s+€)/2,
O

Remarks. (1) When x = 1, in other words L(x, s) = ((s), we will simply
write A(s) instead of A(1,s).

(2) Although the additional formula of the theorem seems to be a “plus”
compared to the functional equation, this is not so: it is not difficult to
prove (see [Cohl], Appendix A) that the functional equation alone in
turn implies the formula. We have already mentioned this phenomenon
in Proposition 8.5.10 in the context of L-functions attached to elliptic
curves.

(3) The point of the formula given above is not the formula itself, which is
not very pretty, but its use for the algorithmic computation of L(x;, s):
since for fixed s, I'(s,z) behaves roughly like e™* as ¢ — oo, we thus
have a formula that converges exponentially fast to L(y, s). In addition,
it is not difficult to give rapidly convergent methods for the computation
of T'(s,x); see for instance Sections 8.5.4 and 8.5.5.

(4) The formula converges fastest when A = 1/A, i.e., when A = 1. However,
it is essential to use the formula with a variable value of A for at least
three reasons. First of all, it gives an excellent check on the correctness of
the implementation, since the result must be independent of A. Second,
although W () can be computed directly from the definition of 7(x), this
takes O(m) operations, hence is very costly when m is large. We can use
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the formula with a given value of s and two slightly different values of A
to compute W(x), and this will be in only O(m'/?log(m)) operations.
Third, the formula can be applied to complex values of A (using Definition
8.5.9 to define I'(s,x)), and gives in this case the so-called approxzimate
Sfunctional equation.

(5) Another even faster way to compute W(x) that avoids the expensive
computations of T'(s, x) is to use directly the functional equation of the
theta function: by Proposition 10.2.10, for any ¢ > 0 such that 6(x,it) # 0

we have _
i/
te-i—l/Qe(X7 it) ’
The optimal value of ¢ in terms of convergence is t = 1, and it seems that

we always have (7, i) # 0 for all x, so this can be applied. If this is not
the case, we can simply use a value of ¢ close to 1 for which (%, it) # 0.

W(x)

Corollary 10.2.15. (1) If x is a primitive character modulo m and e = 0
or 1 such that x(—1) = (=1)¢, the functional equation may be rewritten
in the form

271—)8 L(Yv 1 - S)
m ) cos(m/2(s—e))(s)

(2) If x is any character, primitive or not, the function L(x,s) does not
vanish for R(s) > 1, and in the domain R(s) < 0 it vanishes if and only
if s =e—2k for k € Z>1, where it vanishes to order 1.

(3) The function L(x,s) vanishes at s = 0 if and only if x is a nontrivial
even character.

L) = (—i)7(x) (

Proof. (1) immediately follows from the functional equation and the for-
mulas T'(s)['(1 — s) = 7/sin(s7) and T'(s/2)T((s + 1)/2) = 7'/22'=5T(s).
For (2) we note that for $(s) > 1 we have the convergent Euler product
L(x,s) =1],(1 —x(p)/p*)~1, so that L(y, s) # 0. Furthermore, if x is a non-
primitive character of conductor f | m, and if x is the primitive character
equivalent to y then

L(x.s) = L(xs.s) [[ (1_Xf(p)>.

S
plmaptf P

Thus L(x,s) = 0 if and only if either L(xs,s) = 0 or p° = x(p) for some
p | m, ptf,in other words s = (Log (x¢(p)) + 2ikn)/log(p) for some k € Z,
where Log denotes the principal determination of the complex logarithm.
Since |xs(p)| = 1, these latter values (infinite in number) are such that R(s) =
0, in other words are on the imaginary axis, so we do not need to deal with
them for now. We can thus restrict to primitive characters. In that case for
R(s) < 0 we have L(X,1 —s) # 0 by what we have just said, so (1) implies
that in that region L(x,s) = 0 if and only if cos(7/2(s — €))I'(s) has a pole,
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which evidently occurs if and only if s € Z¢g is such that s = e (mod 2), and
since I'(s) has only simple poles, these zeros have order 1. Finally, if x is the
trivial character then L(x,1 — s) has a pole at s = 0 that cancels the pole
of I'(s) (and it is immediate to compute L(xo,0); see below), and otherwise
L(X,1 — s) does not have a pole at s = 0, while cos(7/2(s — €))I'(s) has one
if and only if e = 0. ad

Note that (1) is equivalent to the form of the functional equation that we
obtained in Theorem 10.2.6 (3) using ((s, z).

Definition 10.2.16. Denote by Log the principal determination of the com-
plex logarithm. The zeros s = (Log (x¢(p)) + 2ikm)/log(p) for k € Z, p | m,
and p t f of the function L(x,s) for a nonprimitive character x are called
extraneous zeros. The zeros s = e — 2k for k € Z>1, and in addition s = 0 if
X 18 a nontrivial even character, are called trivial zeros. All other zeros are
called nontrivial.

Note that if m = p* with k > 1 is a power of a prime number p and if y
is a nontrivial character then all primes dividing m also divide the conductor
f =p’ for some j such that 1 < j < k, so in that case L(x, s) = L(xy,s). In
particular, L(y,s) will have a clean functional equation and no extraneous
Z€ros.

It follows from the above corollary that the problem of localizing the zeros
of L-functions is reduced to the strip 0 < R(s) < 1, and in fact as we will
see in Section 10.5.7, to the strip 0 < R(s) < 1. Furthermore, thanks to the
functional equation and the elementary property L(s, x) = L(3,X) we may
even restrict the study to the smaller strip 1/2 < R(s) < 1 and (s) > 0.

10.2.5 Generalized Poisson Summation Formulas

We have given several proofs of the functional equation of Dirichlet L-
functions. Although perhaps the longest, the most “natural” such proof is
via the functional equation of the theta function, itself an immediate conse-
quence of the Poisson summation formula (Proposition 2.2.16). In fact, it is
quite easy to see that this summation formula (which of course is quite sim-
ple) can be deduced from the functional equation of Dirichlet L-functions.
We will do this in quite a general context as follows.

Let a(n) be an arithmetic function and f(z) a nice function as occurs for
instance in the Poisson summation formula (we will make this precise later).
We would like to give an exact Poisson-style formula for -, a(n)f(n), the
Poisson formula itself corresponding to the case a(n) =1 and f(z) even. To
simplify we will first assume that f is in the Schwartz space, in other words
that f € C°°(R) and that f(x) and all its derivatives tend to 0 faster than
any power of |z| as |z| — oo, and will mention below how to prove the result
under much milder assumptions.
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To obtain the desired formula we recall that the L-function associ-
ated with the arithmetic function a(n) is defined as usual by L(a,s) =
Zn>1 a(n)n~*. We make the following assumptions, which are essential,
contrary to the assumptions on f(z). We assume that L(a,s) converges
for R(s) > 1, that it has an analytic continuation to the whole complex
plane with a possible single pole at 1 of exact order r > 0, say, and that it
has a functional equation of the type A(a,s) = wA(a*,1 — s), where a*(n)
is some other arithmetic function, |w| = 1, A(a,s) = ~(s)L(a,s), where
v(s) = A°[l1<ic, I'(ais + b;), for strictly positive constants A and a;, and
similarly for a*. Note that this is the form of the functional equation of L-
series of Dirichlet characters, and up to a shift of the variable s it is the form
of essentially all global functional equations occurring in number theory and
algebraic geometry.

The result is as follows.

Theorem 10.2.17. Keep all the above notation and assumptions. For any
o such that 0 < o <1 and © > 0 set

1 V(s) /
K(x) = — ———x"%ds and

( ) 2w R(s)=0c 7(1 - 8) g f
(1) We have

O .
/Ot Koy dt = 20, /Og(t)K( 1 dt = f(x), and

/ " Kt K (yt)dt = 5z —y) |

where §(x) is the Dirac distribution.
(2) If we set a(0) = —L(a,0) we have the summation formula

S atnf () = Res.os (Lla.s) [0 0 at) 40 30 olglo)

n=0 n>1

Proof. (1). Recall from Section 9.7.3 that the Mellin transform of f is de-
fined by M (f)(s) = [;° f(t)t*"! dt. Since f is in the Schwartz space, M (f)(s)
converges for R(s) > 0 and can be analytically continued to the whole com-

plex plane with possible poles only in Z«g, since by integration by parts for
R(s) > 0 we have

M = f05| 1 [7 e a— MR

The Mellin inversion formula (Proposition 9.7.7) tells us that for all ¢ > 0
and z > 0 we have
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L
2w R(s)=0c

fz) = M(f)(s)z™"ds ,

so the first formula of (1) is clear. For the second we have for 0 < R(s) < 1,

/0 x %g(x dxf/ / FO)K (xt)dt = /Ooct51f(t)/ooo:rsK(x)dx

K)(1 =) = (v(L = s)/7(s)) M(f)(s)

by the first formula. Thus for 0 < o < 1,

/Ooog(t)K(xt) dt = % . V(Z(S)S)x—s (/OOO t=2g(t) dt) ds

. e M(f)(s) ds = f(z)

- % R(s)=0c

by Mellin inversion, proving the second formula For the third let ¢(z) be
a functlon in the Schwartz space, and let ¥ (x fo K (xt)dt, so that
= [T ¥ (t)K (xt) dt by what we have just proved We have

/OOo (/OOO K(zt)K (yt) dt) dy—/ K(at) (/ dWK YY) dy) a
:/0 K(xt)p(t)dt = ¢(z) ,

(2). For simplicity of notation set F' = M (f). By Mellin inversion we have
forall o > 1,

proving the last formula of (1).

Z a(n)f(n) = % /%( . F(s) Z a(n)n™*ds = i F(s)L(a,s)ds,

n>1 n>1 R(s)=0

where here and elsewhere all the interchanges of summation are justified by
the fact that f is in the Schwartz space. We now shift the line of integration
from R(s) = o > 1 to R(s) = —1/2, say. By assumption L(a, s) has at most
a pole at s = 1. From the formula F(s) = M(f)(s) = =M (f")(s+1)/s we
deduce that F(s) may have a pole only at s = 0, which is simple with residue
—M(f =— |7/ = f(0) (hence no pole at all if f(0) = 0). Thus,
applymg the functlonal equatlon for L(a,s) we obtain

Z a(n)f(n) = Ress=1(L(a, s)F(s)) + f(0)L(a,0) + I,

n=1

where
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1
I=— F(s)L(a,s)ds
2T JR(s)=—1/2
1—

. F(s)u[/(a*,l —s)ds
2T JR(s)=—1/2 v(s)

— F(l—s)ﬂL(a*,s)dS.
2T JR(s)=3/2 (1 —s)

Thus, if we set G(s) = F(1 — s)v(s)/v(1 — s) then as above we have
Za(n)f(n) = Ress—1(L(a,s)F(s)) + f(0)L(a,0) +wz
n=1 n>1

where for o > 1,

1 1 —s_(s)
_ s _ s F(1 .
g(x) = - “ G(s)x™%ds = : " x S0 =9 (1—s)ds

We choose o = 3/2 so that we can use the convergent formula

F(l—s):—ll M(f)(2—s) = /f ()= dt .

— S T 1-s

If we set for 0 < o < 1,

1 W)
K@) = 5 Rs)—o (L —5)7(1—9) d

(no connection with Bessel functions), then

o)== [ a2 T gy aeas

2im Jy(s)=o (1—=s)y(1—s) Jo
-/ " PO t) di

B _/Ooo f’(t)Klixt) gt — —f(t)K at
:/Oo FIOK (wt) dt

proving the theorem.

Remarks. (1) The second formula of (1) means that K (z) is a self-dual in-
tegration kernel, generalizing the same fact for the cosine Fourier trans-
form. This is essentially equivalent to the fact that its Mellin transform

~(s)/v(1 — s) changes into its inverse when s is changed into 1 — s.

(2) Note that if around s = 1 we have L(a,s) = >~ . A(k)(s — 1)*, then

since t*~! = exp((s — 1) log(t)) we have

r—1

Res51< as/ f(t t51dt)z)\ / £(t)log(t)

=0
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Although we have proved the theorem for a function f belonging to
the Schwartz space, it is not difficult to show by approximation tech-
niques that it is still valid if f is only piecewise C*° and piecewise mono-
tonic (Exercise 32). In particular, we can multiply f by the characteristic
function of a finite interval [A, B] and obtain a summation formula for
> a<n<p a(n) f(n), the integrals from 0 to co being replaced by integrals
from A to B (see for instance Proposition 2.2.16).

Examples. (1) As already mentioned at the beginning, the basic example

is a(n) = 1, so that L(a,s) = ((s), v(s) = 7~%/?T(s/2). By Corollary
9.6.37 we have

/ " cos(2rt)t L dt = (27)~* cos(rs 2)T(s)
0

On the other hand, the reflection and duplication formulas for the gamma
function give
7°/?T(s/2)
T PT((1 - 5)/2)

=2(27) % cos(ms/2)T(s) .
Tt follows that K(x) = 2cos(2mx) and the theorem reads

n LO): N h cos(2mn
> fn)+ = /Of(t)dt+22/0 F(t) cos(2mnt) dt |

n>1 n>1

which is the Poisson summation formula for an even function f.

We now choose a(n) = ra(n), where r9(n) is the number of decomposi-
tions of n as a sum of two squares. By Corollary 10.5.8 and Proposition
10.5.5, which we will prove below, we have L(a,s) = 4(g)(s), w = 1,
and v(s) = (2m)~°I'(s). From Proposition 9.8.8 we deduce that

0o 1 o0 w \25—1
s—1 1/2 _ -
/0 e o (mt P de= o | ( 47T) Jo(u) du
r 1
— (27‘(’)_25 (8) _ 7(5)

r1—s) 2ry(1—s)"

It follows that K (z) = 2mJo(4mz!/?), and since (for instance by Corollary
10.2.3) we know that L(x—_4,1) = 7/4 and L(x—4,0) = 1/2, the theorem
gives the summation formula

> ra(n)f(n) = w/om ft)dt+2m> ra(n) /Ooo F() Jo(dm(nt)/?) dt

n=0 n=1

where we set r2(0) = 1.
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(3) Finally, we choose a(n) = d(n), where d(n) is the number of (positive) di-
visors of n. We have seen that L(a, s) = ((s)?, so that y(s) = 7°T'(s/2)?.
From the computation made for {(s) itself we have

v(8) /(1 — 8) = 4(27) 2% cos(sm/2)°T(s)? .

On the other hand, Proposition 9.8.8 gives

™

e 1
/ 571y (4t ) dt = —=(2m) 72 cos(sm)T(s)?
0
o 1
/ 1 Ko (4t ?) di = 3 (2) 2T (s)?
0

Since 4 cos(sm/2)? = 2(cos(sm) + 1) we have
K(x) = 4Ky (4mz'/?) — 27y (4wt /?) |

and using the expansion ((s) = 1/(s — 1) + v+ O(s — 1) the theorem
gives the summation formula

Y dn)f(n) = /Ooo f()(log(t) + 27) dt + f(0)/4

n>1

+ Y d(n) /0 h FO)(AKo(4m(nt)/?) — 27Yo (4w (nt) /?)) dt .

n>1

The above summation formulas are due to Voronoi and are used to give error
estimates in the circle problem (estimate A(X) =2, ., <y r2(n) — 7X) and
in the divisor problem (estimate A(X) =37, d(n) — (X log(X) + (27 —
1)X)). In both cases we have the “trivial” estimate A(X) = O(X'/?) (see
Exercise 33), and from Voronoi’s formulas it is not difficult to obtain A(X) =
O(X'/3), which we will prove below for the circle problem (Theorem 10.2.18).
It is also not too difficult to show that we cannot have A(X) = O(X®) for
a < 1/4. Several mathematicians have succeeded in obtaining values of «
such that o < 1/3, but at the price of considerable additional effort, and it
is an ongoing race. The present record, due to Huxley, is « = 131/416 + ¢ for
any € > 0.

10.2.6 Voronoi’s Error Term in the Circle Problem

We are now going to show that Voronoi’s summation formula leads to a
quite simple but powerful estimate for the error term in the circle problem.
Recall that the circle problem consists in computing a precise estimate for
the number of points with integral coordinates in the closed disk of radius
X172 in other words in estimating > o<n<x T2(n). A heuristic shows that
this should be close to the area of the disk, in other words to 7X, and a
rigorous and easy argument shows that more precisely it is 7.X + O(X1/?),
see Exercise 33. We will prove the following stronger result.
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Theorem 10.2.18 (Voronoi). As X — oo we have
> ran) =1X +0(X'?).
o<n<X

Proof. By Voronoi’s summation formula that we have seen above we have
for all reasonable functions f (for instance piecewise continuous and tending
to zero sufficiently rapidly at infinity)

n%%rz(n)f(n) = ﬂ/ooo f(t)dt + 2w;r2(n) /Ooo F(6)Jo(dn(nt)/2) dt .

If we apply this formula to f(t) =1 for 0 < ¢t < X and f(t) =0 for t > X
we obtain

X
S mm) =7X 4213 ra(n) / Jo(4m(nt)1/2) dt |
0<n<X n>1 0

Now from Proposition 9.8.4 (2) we have J{(z)+ Ji(z)/z = Jo(x), from which
a short computation shows that

(tY2 ], (47 (at)?)) = 2mat? Jo (47 (at)/?) |

giving the formula

_ 1/2 r2(n) 1/2
Z rao(n) = X + XV Z e J1(4r(nX)Y/?) .
o<n<X n>1

At first sight this formula seems quite nice since by Proposition 9.8.7 we have

X4 cos(4m(nX)V/? — 31 /4)

Ji(4m(nX)"/?) ~ o172 /i :

and we could even easily strengthen this asymptotic estimate into one with
a negligible remainder term. However, estimating the series

3 T{S”) cos(4m(nX)/? — 37 /4)
n3/4

n>1
is not a trivial task.

Thus we prefer to avoid taking a function f having a brutal cutoff at
X, and the simplest method is to choose the function f defined in the the
following way for ¢ > 0. We set Y = X'/3 (which will be seen in the course
of the proof to give the best results), and define
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in other words f(¢t) = min(l — (t — X)/Y,1) for 0 <t < X +Y and f(t) =
elsewhere. For this function f, Voronoi’s summation formula given above
reads

doonm+ Y mm)-(n-X)/Y)

0<n<X X<n<X+Y

(X+Y/2 +27TZ’I“2 hx( )

n>1

where
X+Y
hx(n) = /0 min(1 — (£ — X)/Y, 1)Jo(4r(nt)"/2) dt .

We can thus write

Z ro(n) =X + 7Y /24 2751 + 2755 — S3
0<n<X

with

Si= Y rmn)hx(n), Sp= Y  ra(n)hx(n), and

1<n<X1/3 n>X1/3
Ss= Y rmml-m-X)/Y).
X<n<X+Y

We first estimate S; and Sy. From Proposition 9.8.4 (2) we easily deduce

that
1

2mnl/2

Thus if we integrate by parts once, then another time, we obtain

/
(t(”ﬂ)/zJVH(47r(nt)1/2)) = /2], (4n(nt)V/?) .

min(1 — (t — X)/Y,1) Xy
px(n) = PR () )|
1 Y e 1/2
+ m A t J1 (47r(nt) ) dt

X+Y

1
= 2.7, (4r(nt)/?) dt = tJo (47 (nt)'/?
27rn1/2Y/ Ji(dm(nt) %) A2ny Joldm(nt) ) <

B 47r2nY <(X +Y) T (4m(n(X + Y))l/z) — XJ2(47r(nX)1/2)) )

We are going to use both of these last two formulas.

(S1). We use the last formula involving J;. Using the asymptotic estimate
Ji(z) = O(z~/2) given by Proposition 9.8.7 we obtain

hX(’I’L) _ O(X1/2’I’L_1/2X_1/4TL_1/4) _ O(X1/4n_3/4) .
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Let R(N) =3, <,<n72(n) be the summatory function of ra(n), so that by
a trivial estimate we know that R(N) = O(N). By Abel summation we thus
have

S, = O(X1/4) Z R(TL) — R(n — 1)

n3/4
1<n<X1/3
X1/4 ( Z R( )( —3/4 _ (n+1)—3/4)
1<n<X1/3

+ O(R(X1/3)X1/4)>

=O0(X"%) > Rmn M+ 0O(XVP) =0(X?).
1<n<X1/3

(S2). Here we use the formula involving Jo and the asymptotic estimate
Jo(x) = O(x=1/?). Since Y = X'/3 it follows that

hx(n) = O(X—1/3n—1X3/4n—1/4> _ O(X5/12n_5/4) ’

so that we obtain similarly

3 rmhx(n) = 0(X*1%) 3 R(n) — R(n—1)

no/4
n>X1/3 n>X1/3

O(X?/1?) ( > R(n —(n+1)7%%)

n>X1/3

+ 0(R(X1/3)X5/12)>

=O0(X*") 3" Rm)n~* + O(X/%) = O(x'/3) .
n>X1/3
Estimating S5 directly is not so easy, although it follows immediately from
Exercise 18 of Chapter 5 or directly that S3 = O.(X'/3+), which is not quite
sufficient. Thus, we use only the trivial fact that S3 > 0, and deduce that
doncx Te(n) < TX + O(X1/3).
To obtain an inequality in the other direction is completely analogous: we

now use the function f(¢) defined by f(¢t) = min((X —¢)/Y, 1) for ¢t < X and
f(t) = 0 elsewhere. Here Voronoi’s summation formula gives

Z T‘g(n) = 7T(X — Y/Q) + 2751 + 2wSs + S3
0<n< X

where 57 and S; are defined as before (for the new function f(t)), and



186 10. Dirichlet Series and L-Functions

Ss= Y rmml-(X-n)/Y).

X-Y<n<X

The computations made above are valid verbatim, so that S; = O(X'/3),
Sy = O(X'/3), and evidently S5 > 0, so that Y-,y 72(n) = 7X + O(X/3),
finishing the proof. a

As already mentioned above it is much harder but possible to obtain an
error term in O(X®) with o < 1/3.

10.3 Special Values of Dirichlet L-Functions

10.3.1 Basic Results on Special Values

The aim of this section is to give still another proof of the following theorem.

Theorem 10.3.1. Let x be any periodic arithmetic function with period di-
viding m and let k > 1 be an integer.

(1) We have
Bi(x)

L1 = k) = =252~ (03

(2) If, in addition, x is a primitive character modulo m, then

2F=17k By ()
mF=172kl cos((r/2)(k — €)) '

L(x, k) = (=)W (x)

where we recall that we have set e = 0 or 1 so that x(—1) = (=1)¢. In
other words, when k # e (mod 2), then L(x,1 — k) = Br(x) =0, except
when k=1 and m = 1, and when k = e (mod 2) we have

2k717rkBk (X)

L(Xa ]{3) _ (71)k71+(1€+6)/2W(X) — i,

Note that of course, this theorem does not tell us anything about L(x;, k)
when k # e (mod 2), k > 2 (otherwise we would know the value of ((3)), and
that we have already proved the vanishing of the higher x-Bernoulli numbers
in that case.

Proof. Thanks to the functional equation (for instance from Corollary
10.2.15) it is clear that (2) follows from (1), so it is enough to prove (1).
We have already given two proofs of (1), one using Corollary 10.2.3, the
other using ((s,z) in Proposition 10.2.5. We will give a third proof, which is
complex analytic, and which can be generalized to other contexts. This proof
can be skipped.

Let p and € be real numbers with 0 < e < p, and let C,, . be the contour in
the complex plane starting at 400 + ic and proceeding to the circle of radius
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p centered at the origin, then following this circle in the counterclockwise di-
rection, and then from the circle to +oo—ie. We set 2°~! = exp((s—1) log(z))
(any determination of the logarithm, but continuous on the contour), and

I(s) = /C t5 L exp(—t) dt .

p.E

Since t*~! exp(—t) has no pole and is single-valued in the difference of two
contours, it is clear that I(s) is independent of p and e, whence the notation.
If R(s) > 0, then it is clear that the integral around the circle tends to 0 as
p — 0. As p and € tend to 0, the integral from +oo + i€ to the circle tends to
— fooo ts~Lexp(—t) dt, and since the argument of the logarithm has increased
by 27w as we go around the circle, the integral from the circle to +oo — ie
tends to exp(2im(s — 1)) fooo t*~Lexp(—t). Thus, for R(s) > 0 we have

exp(iTs)

I(s) = 2iexp(ims)sin(mws)['(s) = 2i7rm

by the reflection formula for the gamma function.
Let z € C be such that |z] < 1, and consider

J(s,2) =

/ ps—1 Z1<r<m x(r)2" exp(—rt)
C

1 — zmexp(—mt)

pie

Note that this integral converges absolutely for R(s) > 1, and that as above,
it is independent of p and e, at least for p sufficiently small. If we choose

—log(|#]), then |z exp(mp)| < 1 so that |z™ exp(—mt)| < 1 for all ¢ on
the contour, uniformly in ¢. We can thus expand 1/(1 — 2™ exp(—mt)) as a
power series in 2™ exp(—mt), and the exchange of summation and integration
will be justified. We thus obtain for R(s) > 1

J(s,z):/c tsflz Z X(r)2"TF ™ exp(—(r + km)t) dt

P k>01<r<m

:/ 5~ IZX 2" exp(—nt) dt

Cp,
[e%S)
> M
n=1

where we have set

" exp(iTs)

/C ts_l exp(—t) dt = 22WmL(X,S,Z> s
np,n

o0
L(x.s,2) Z

Although this expression is valid only for R(s) > 1, since the integral J(s, z)
converges for all complex s, this in fact gives a meromorphic continuation of
L(x, s,z) to the whole complex plane. Furthermore, its only possible poles
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are those of T'(1 — s), i.e., at Zsg. But by absolute convergence, it is clear
that these s are not poles, except perhaps for s = 1 and |z| = 1, and we check
that s = 1 is a pole if and only if z = 1 and y is a trivial character.

I claim that for R(s) > 1, both sides of the equality that we have proved
are continuous as z tends to 1, z < 1 real, and tend to the expected limits.
Indeed, for J(s, z) on the two straight lines of the contour there is no problem
since | exp(—t)| < exp(—p) < 1. On the circle, since R(s) > 1, it is easy to
see that the same result holds. Finally, the result holds also for L(x, s, z) and
R(s) > 1 by normal convergence. Thus, we have the identity

J(s) = /c o1 Zagrem Xr) XD(7rE) dt = ZiWeXp(iWS)L(X, s) .

- 1 — exp(—mt) I(1-—ys)
A priori this identity is valid only for R(s) > 1, but since both sides have
analytic continuation to C, the identity is valid for all s.

Set
£t) = Zlgrgm x(r) exp(—rt)

N 1 — exp(—mt) ’

so that by Lemma 9.4.3,
o~ Biri(x ) i
t) = — 1"
1) Z (k+ 1)
k=—1
By Cauchy’s formula we deduce that for k£ > 1 integral we have
Bi(x") 1 ft) 1 (D!
= —rdt=—J(1—-k)=-——L(x,1—k
k! 2ir Jo . tF 2 =k = Gyt =k,

proving (1) thanks to Proposition 9.4.9, and hence the theorem. a

Corollary 10.3.2. Let x be a character modulo m. Then

0 ifx(=1)=1andm>1,
L(x,0) = _% ifm=1,
Ly i1 =1
In particular, if x(—1) = =1 and x is a primitive character we have

m—1
L(x61) = =W —75 > X0

Corollary 10.3.3. Let x be a nontrivial character modulo m.
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(1) If x is even we have L(x,1 — k) =0 for k > 1 odd, and otherwise

1 m—1
L(x, 1) m x(r)r?,
r=1
1 m—1
Lo =3) = == > x()r2(r® — 2m?)
r=1

(2) If x is odd we have L(x,1 —k) =0 for k > 2 even, and otherwise

1 m—1
L(x, - ~3 x(r)r(r* —m?),
r=1
1 m—1
L(x,—4) = T x(r)r(r? —m?)(3r* — Tm?) .
r=1

Corollary 10.3.4. We have ((0) = —1/2, and for k > 1 we have ((—2k) =
0, ¢(1 — 2k) = —Bay/(2k), and

2k—1,2k
12 ™ ng

2k) = (—1)*~
ctek) = (-1 s
Proofs. Left to the reader (Exercise 12). O
Examples.
1 1 w2
(@ =1tz +m+ ==,
1 mt
(W=1tg+g+ =g,

See Exercise 41 for a general formula giving L (( ) 2k + 1)

It is often very useful to know the value of L(y,1) in all cases. This is
given by the above theorem when y is an odd character. However, when x is
an even character, we can still give an explicit expression.

Proposition 10.3.5. Let x be a character modulo m. Then
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-z ZT 1 X( ) log (Sin (%)) if x is even and nontrivial

St x(r) log (F (%)) —log(m)L(x,0) if x is odd ,

LI(Xvo) = 1
7§A(m) if x is trivial and m > 1,
1
—ilog(Qﬂ') ifm=1,

where A(m) is the von Mangoldt function (see Proposition 10.1.11).
(2) If x is an even primitive character and m > 1, we have

m—1

L(x,1) 1/ Z x(r (sm (%)) .

r=1

(3) If x is an odd primitive character we have

L1 = 0 <m2 ) og (1 (1)) = (os(2m) +)L(x. o>> .

The arithmetic function A(m) should of course not be confused with the
meromorphic function A(y, s).
Proof. We have seen in Proposition 10.2.5 that we have

Lics)=m= 3 x(r)(s.r/m).,

1<r<m

where ((s,z) is the Hurwitz zeta function. Since by Definition 9.6.13 we
have ¢'(0,z) = log(I'(z)) + ¢’(0) and by the functional equation we find that
¢'(0) = —(1/2) log(27), we thus have

D0 = 3 ) i(sr/m)],_y ~loa(m)L(x,0)

1<r<m

“logm(0) + 3 x(r) (1og(T(r/m) - log2m))

1<r<m

We consider the four cases of the proposition, using Corollary 10.3.2. If x is
a nontrivial even character, we have
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L'(x,0) = ( ) log(I'(r/m))
r)log(I'(r/m)) + x(m — r)log(L'((m — r)/m)))

X( )log(/ sin(rm /m))

<m—
\<
<r<

Z x(r)log(sin(rm /m))

1<r<m—1

using the reflection formula for the gamma function, giving the first case. If
X is an odd character, then

U0 = ST et Y () loa(Tlr/m))

1<r<m—1 1<r<m—1

giving the second case.
If x is a trivial character, we can use the above formula, but it is easier
to work directly. In that case,

zoes) =TT (1- 5 ) <.

plm

so if m > 1,

0)=—3 o) ] 0.

plm qlm, q#p

Thus, if m is not a prime power we have L'(x,0) = 0, while if m = p* we
have L'(x,0) = —log(p)/2, which gives the third case. The fourth case is the
formula for ¢’(0).

Finally, consider L(, 1) when y is a nontrivial character (otherwise there
is a pole at s = 1). For x even, the functional equation is easily seen to give

2W (x)

L'(x,0)
and the formula follows. For x odd, the functional equation gives

1U(1/2) L0 om0 L)
T2T1/2) Lo ¢ ( ) 2T(1) ' L% 1)

and using the values V(1) = —y and I"(1/2) = —I'(1/2)(21og(2) 4+ ) coming
from the duplication formula (see Exercise 91 of Chapter 9) the last formula
follows. m
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Remarks. (1) The reader will have noticed that the formula for L'(x,0)
when x is odd is considerably more complicated than when x is even. This
is due to the fact that when y is even we have L(x, 0) = 0, so that L'(x, 0),
if nonzero, is the first significant coefficient in the Taylor expansion of
L(x, s) around s = 0. This is a general philosophy for special values in
number theory: f’(k) will almost certainly have a nicer expression when
f(k) = 0 than when f(k) # 0, and similarly for higher derivatives. See
Corollary 8.5.14 and Section 10.6, and see Exercise 39 for an example.

(2) When x is a nontrivial even character, and if we let ¢, = e2™/™ be this
specific primitive mth root of unity, then

log(1 —¢;,) = log(sin(mr/m)) + imr/m + log(2) — in /2,

and since Y., X(r) =0and >3, _prx(r) =0, it follows that

mz:lx 10g(sm< )) mzjlx )log(1—¢,) -
r=1 r=1

(3) We can give similar formulas for L'(x,1 — k) for any k; see for example
Exercise 40, and remark (1) is still valid if we replace the ordinary loga-
rithm by the polylogarithm of order k, and the ordinary gamma function
by Barnes’s gamma functions of higher order.

Corollary 10.3.6. Let D > 1 be a fundamental discriminant, and set as

usual xXp = (2)
(1) We have
2log(ep)
L(xp,1) = iz
where
[D/2]
H sin(rm/D) X0 (")
r=1

and €p is the fundamental unit of K = Q(v/D) such that ep > 1.
(2) If ¢ = *™/P s any primitive Dth root of unity we have

H (1 _ C?")X[) (r) — EBQXD (u) )

1<r<D

Proof. The formula of (1) follows immediately from the above proposition
since we know that W ((£)) =1 and xp, and the fact that p is the funda-
mental unit of K follows from Dirichlet’s class number formula (Proposition
3.4.5). Note that this formula tells us that L(xp,1) > 0, so that ep > 1, but
this can be proved directly; see Corollary 10.5.6 below. The formula of (2)
follows from Remark (2) above when u = 1. For general u coprime to D we
have
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3 (f) log(1 — Clr) = (S) 3 (f) log(1 — C3) ,

1<r<D 1<s<D

so the result follows in general. a

For instance, we have

~ 2log((1+ V5)/2)

L(X571) - 51/2 9
2log(1 + V/2)
L(xs,1) = iz

The fact that L(xp,1) (or L'(xp,0)) is equal to a simple factor times the
logarithm of an algebraic unit is a special (proved!) case of an important
conjecture due to H. Stark that essentially states that the same thing will
happen for much more general L-functions.

10.3.2 Special Values of L-Functions and Modular Forms

This section assumes some knowledge of modular forms of integral and half-
integral weight and can be skipped on first reading.

There are several close links between special values of L-functions and
modular forms. We will give without proof two related types of examples,
referring to the literature for more details.

The first type of examples comes from Hilbert modular forms attached to
a totally real number field K. We refer for instance to [Fre] for the (easy)
definition. As usual in the theory of modular forms it is not too difficult to
construct explicitly Fisenstein series, a construction due in this case to Hecke.
Also as usual, the generalized Fourier coefficients of these Eisenstein series
are given by simple formulas generalizing the divisor function in the one-
variable case. Also, we can restrict a Hilbert modular form to the diagonal,
thus obtaining an ordinary modular form whose weight is equal to n times
the weight k of the initial Hilbert modular form. The remarkable fact about
the restrictions of the Hecke—Eisenstein series is that their constant term is
essentially the value of the Dedekind zeta function of the number field K
at the negative integer 1 — k. Finally, a nice argument due to Siegel, which
amounts to the finite dimensionality of spaces of modular forms, shows that
the constant term of a modular form in a given space can be expressed as
a universal linear combination of a small finite number of the nonconstant
terms. Applying this to the restrictions of the Hecke—FEisenstein series, we
thus obtain explicit formulas for (x (1 — k).

In the special case thatn K = Q(\/ﬁ) is a real quadratic field, the formulas
are especially easy to state, and have been given in many places, see [Coh2]
for a comprehensive treatment. The simplest occur when the dimension of
the corresponding space of modular forms is equal to 1, and this happens
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only for kK = 2 and 4. Using (@(@)(s) = ((s)L((£),s) and the functional
equations, we obtain the following theorem, which is thus essentially due to
Siegel.

Theorem 10.3.7. Recall that we denote by or(n) the sum of the kth powers
of the (positive) divisors of n. Let D be the discriminant of a real quadratic

field.
(7)) 2 (7))

(1)
SEZ, s><D
s=D (mod 2)

and by the functional equation

L((B)2) =5 ((2) )
(7)) = w(750).

SEZ, s><D
s=D (mod 2)

and by the functional equation

£((%)4) = e (7)) -

Remarks. (1) As already mentioned, such formulas exist for all even k, not
only k£ =2 and 4.

(2) This gives a fast O(D'/?*¢) method for computing special values. Note
that the explicit formulas given in the preceding section are O(D), hence
much slower. The main point was to show that such explicit formulas
exist, but they are not really practical for actual computation, except for
small conductors. The rapidly convergent explicit formula coming from
the functional equation given in Theorem 10.2.14, which is valid for any s,
special or not, also gives a O(Dl/ 2+2) method, but is nonetheless slower
and more complicated because of the need to compute the incomplete
gamma function. In fact, it is only very recently that algorithms have been
given that compute L((£), —1) (or equivalently L((£),2)) to reasonably
high accuracy, using K-theory, see [Bel-Gan)].

(3) The above formulas show that L((£),—3) € Z, which is not completely
trivial. We prove this directly, and in fact a little more.

Proposition 10.3.8. Let D # 1 be a fundamental discriminant.
(1) If D # 5 and D # 8 then L((2),—1) € 2Z, and L((2),—1) = —2/5 and
L((%),-1) = -1.
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(2) If D # 8 then L((£),-3) € 2Z, and L((8),-3) = 11.

Proof. By Corollary 10.3.3, for D < 0 we have L((Q), -1)= L((Q)7 -3) =
0. For D > 0 we have

(2 ) - LS (D),
)7 2D )
r=1
so by Corollary 9.5.9 we see that L((£),—1) € 2Z, except if D =5 or 8, in

which case it is equal to —2/5 or —1 respectively.
Similarly, for D > 0 we have

(25 @

r=

and again by Corollary 9.5.9 we see that L((Q) —3) € 27, except perhaps for
D =5 or 8, but a direct check shows that L((2), —3) = 2, while L((2),-3) =
11. O

Note that if we combine this proposition with Theorem 10.3.7 we obtain
the following result.

Corollary 10.3.9. If D # 5 and D # 8 are positive fundamental discrimi-
nants, we have

2

Yoo (D;S )EO(mole).

SEZ, s2<D
s=D (mod 2)

We have an analogous result for D < 0:

Proposition 10.3.10. Let D # 1 be a fundamental discriminant.

(1) If D # —3, —4, =7, and —8 then L((2),—-2) € 2Z, and L((=2), -2
-2/9, L((=2),-2) = —1/2, L((=£),—2) = —16/7, and L((=%), -2
-3.

(2) If D # —3, —4, —8, and —11 then L((2),—4) € 2Z, and L((=2),—4)

2/3, L((=%),—4) = 5/2, L((=8),~4) = 57, and L((=L),—
2550/11.

)

Proof. Left as an exercise for the reader (Exercise 13). O
We will generalize the above two propositions to all negative arguments
in the next chapter (Corollary 11.4.3).

The second link between special values of L-functions and modular forms
is provided by the theory of modular forms of half-integral weight. The theory
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of modular forms of half-integral weight was invented by G. Shimura, and
developed by several people such as Waldspurger, Kohnen-Zagier, and the
author. The link with special values of L-functions was found by Shimura
and systematically explored by the author.

Remarkably enough, the process is very similar to the case of Hilbert
modular forms. One defines in a natural way Eisenstein series of half-integral
weight k + 1/2 for k € Zso, and as usual one finds that it is possible to
compute their Fourier coefficients explicitly. They happen to be simply ex-
pressible in terms of the special values of L-functions of quadratic characters
at k (or equivalently at 1 —k). Thus, contrary to the case of Hecke—Eisenstein
series where the special values occur as constant terms, here they occur all
together (for a given value k) in a single Eisenstein series of half-integral
weight. We refer to [Coh3] for details.

To state the theorem, we first need a definition.

Definition 10.3.11. Let &k > 1 be an integer. For any n > 1 such that
(—=1)kn = 0 or 1 modulo 4, write (—1)kn = Df?, where f € Z and D is a
fundamental discriminant (including 1). We define the functions Hy(n) by
the formula

) =2 ((2) =) St (§ ) toucss/a.

dlf
and we also set by convention Hy(0) = ¢(1 — 2k).

The theorem is then as follows.
Theorem 10.3.12. For k > 2 the Fourier series
Hi(7) =Y Hi(n)g"
n=0

is a modular form of weight k+1/2 on the congruence subgroup T'o(4), where
as usual g = exp(2imT).

Since the space of modular forms is finite-dimensional, it is then an easy
matter to identify precisely a given form from its first few Fourier coefficients,
given a specific basis.

It is easy to show that the function

0(r)=> q" =1+2> q"
neZ n>1

(of weight 1/2) and the function

94(T+1/2):<Z(—1)nqn2> = [1+23 (-1)mg™

nez n>1
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(of weight 2) generate the algebra of all modular forms of half-integral weight
on I'g(4). In other words, any modular form of integral or half-integral weight
on I'y(4) is an isobaric polynomial in these two functions. A little computation
gives the following corollary, which is very useful for the computation of
special values when many of them are needed.

Corollary 10.3.13. We have
B 50(7)0* (1 4+ 1/2) — 6°(7)

Ha(7) 480 ’
3 T 4 T 7 T
Hg(T):_'m (T)0*( 2—5116/2)—1-9 (1) 7
Ha(r) = O(1)03 (T + 1/2) + 1465 (1)0* (7 + 1/2) + 6°(7) .

3840

Remarks. (1) Since the 6 function is lacunary, even applied naively these
formulas give a very efficient method for computing large batches of spe-
cial values of L-functions of quadratic characters. However, it is still
O(D'/?%¢) on average. On the other hand, if we use FFT-based tech-
niques for multiplying power series, we can compute large numbers of
coefficients even faster, and go down to O(D?) on average.

(2) The above formulas are essentially equivalent to those that we have given
in Theorem 5.4.16.

(3) Because Hilbert modular forms exist only for totally real number fields,
the method using Hecke—Eisenstein series is applicable for computing
special values of real quadratic characters only, while the present method
is applicable both to real and to imaginary quadratic characters.

The formulas obtained by the above two methods are in fact closely re-
lated. For instance, if we set classically

EQ(T) =1- 24201(n)q" 5
n=1
which is not quite a modular form, it is easy to check directly that
_8'(r)/(2im) n E5(47)0(T)
20 120

is a true modular form of weight 5/2, and the first coefficients show that
it is equal to Ha(7). Similarly it is not difficult to check that Hy(r) =
E,(47)0(T)/240, where

Ey(7) =1+240 ) o3(n)q" .

n>1

This gives the following formulas, which generalize to arbitrary N > 0 (and
not only discriminants of real quadratic fields) Siegel’s formulas coming from
Hecke-FEisenstein series:
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Proposition 10.3.14. By convention set o,(0) = ((—k)/2 (so that o1(0) =
—1/24 and 03(0) = 1/240). We have

HQ(N):% 3 cn(NSQ) NSy,

- 4 ) 10
SEZ, s°<N
s=N (mod 2)
N — 2
n= Y w255
s€Z, s°<N
s=N (mod 2)

where §(v/N) =1 if N is a square and 0 otherwise.

Remarks. (1) There also exist similar formulas for H3(N) and H5(N) in-

(2)

volving modified o9 functions; see Exercise 52.

Since the formulas coming from modular forms of half-integral weight
include those coming from Hilbert modular forms, the reader may won-
der why we have included the latter. The main reason is that they also
give explicit formulas for computing the special values of Dedekind zeta
functions at negative integers of all totally real number fields, not only
quadratic ones, and this is in fact how Siegel’s Theorem 10.5.3 on the
rationality of such values is proved.

The reader will have noticed that we do not mention the function Hy (),
which is essentially a class number, and the corresponding Fourier series
H1(7). The theory is here complicated by the fact that the latter is not
quite a modular form of weight 3/2 (analogous to but more complicated
than the situation for E2(7)). However, the theory can be worked out
completely, and it gives beautiful formulas on class numbers, due to Hur-
witz, Eichler, Zagier, and the author. We refer for instance to [Coh2] for
details.

10.3.3 The Pdlya—Vinogradov Inequality

In the next subsection we will give some bounds for L(x, 1). For this, it is
useful, although not essential, to have some good estimates on Zlgngx x(n).
Such an estimate is the following Pdlya—Vinogradov inequality:

Proposition 10.3.15 (Pdlya—Vinogradov). Let x be a nontrivial charac-
ter modulo m of conductor f > 1. For all X > 0 we have the inequality

<d(m/f)f?log(f),

> xla)

1<a<X

where d(n) denotes the number of positive divisors of n.
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Proof. Assume first that y is a primitive character and set S(X) =
Y icacx X(@). It is clear that S(X) = S([X]), so we may assume that
X =N € Zso. By Corollary 2.1.42 and the fact that x(z) = 0 when
ged(z,m) > 1 we have

T(X)S(N) = Z 7(x,a) = Z Z X(x)eziﬂ'aa:/m

1<a<N 1<a<N z mod m
— 2imax/m
= > xl@) Y e
x mod m 1<aN
62i7r(N+1);c/m _ eQiTrz/m

= Z X(.’E) e2imz/m _

z mod m, ged(z,m)=1

Note that the denominator does not vanish since ged(z,m) =1 and m > 1.
We bound this crudely as follows:

rosm< Y !

1<z<m—1, x#£m/2 Sln(ﬂ'l‘/m)

1 1
22 ST 2

T
1<z<(m—1)/2 1<z<(m—1)/2

using the high-school inequality sin(t) > (2/7)t for ¢t € [0,7/2]. Now since
1/z is a convex function, we have the inequality

z+1/2 dt 1
[
z—1/2 t T

1 m/2
E - < / — =log(m) .
1 t

1<a<(m-1)/2 © /2

(see Exercise 43). Thus

Since |7(x)| = m'/? by Proposition 2.1.45, the result follows for primitive
characters.

Now let x be any nontrivial character modulo m, let f be the conductor of
X, and let x ¢ be the character modulo f equivalent to x. Since ged(a, f) =1
and ged(a,m/f) = 1 implies ged(a, m) = 1, using the definition of the Mébius
function we have

> x(a) Yo oxs@= > xpl@) D u(d)

1<a<X 1<a<X 1<a<X d|ged(a,m/f)
ged(a,m/ f)=1

ST oudxsld) D xs(b)

dlm/ f 1<b<X/d
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Thus using the bound for primitive characters and the fact that |u(d)| < 1 and

Ix(d)] < 1 we deduce that | >, <, x x(a)| < d(m/f)f/*1og(f), proving the
proposition in general. a

Remark. Tt is easy to improve the bound to Kd(m/f)f'/?log(f) for some
K < 1; see Exercise 43. On the other hand, it is much more difficult to im-
prove on the factor log(f). More precisely, assuming the extended Riemann
hypothesis (ERH) for all Dirichlet L-functions, Montgomery and Vaughan
showed in [Mon-Vau] that it can be replaced by O(log(log(f))) for an ex-
plicit O-constant. Very recently, Granville and Soundararajan have shown in
[Gra-Sou] that without the assumption of ERH it is nonetheless possible to
improve on the factor log(f) for characters of odd order. More precisely, they
show that we may replace it by log(f)'~% for some d, > 0, by log(f)?/3+¢
for g = 3, and by log(log(f))'~% under the ERH.

10.3.4 Bounds and Averages for L(x,1)

Although we have given reasonably explicit formulas for L(y,1), these for-
mulas do not lead to any reasonable estimate on the size of L(x,1). Finding
lower bounds is quite difficult, and in fact we will prove in Section 10.5.5
the important but very weak result that L(x,1) # 0. On the other hand,
finding upper bounds is quite easy (although the best bounds, which we will
not mention, rely on the extended Riemann hypothesis). Such a result is as
follows.

Proposition 10.3.16. Let x be a nontrivial character modulo m of conduc-
tor f > 1.

(1) We have

L0 1)| < 5 log(f) + log(log(f)) + log(d(m/ ) +2.8.

(2) Let 8> 1/2. As m — oo we have
m?
x\n _
Lix,1)=)Y" (T> + O(m** Plog(m)) .
n=1
Proof. This proof is fundamentally based on partial (or Abel) summation.

For X > 0 set S(X) = >_,,.<x x(n). For any integers M and N such that
N > M > 1 we have

N N N
x(n) Sn) =Sn-1) _ (n) S(n)
Z n :%:+ n o Z n o n+1

n=M+1 n
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Since Y is periodic of period m and since S(m) = 0 by orthogonality, S is also
a periodic function on Zx(, and in particular it is bounded by some constant
B, say, which for the moment we do not specify. Letting N — oo gives

x(n)| _ |S(M)] 1 1 2B
2 o lsmatE X <nn+1><M-

n>M+1 n>M+1

On the other hand, by Euler-MacLaurin or any other method it is clear that

> x(n) < Y %glog(M)—i-l.

n
1<n<M 1<n<M
We thus obtain for any M € Z>1,

2B
LG )] < log(M) +1+ = .
M
By differentiating, we see that the optimal choice of M is M = 2B, but
since this is not necessarily an integer we choose instead M = 2B + 6 with
0 € 0 < 1. An immediate computation shows that for this choice of M we
obtain

1
L(x.1)| <log(2B) + 2 + — .
IL(x,1)| < log(2B) + + 15

By Proposition 10.3.15, we can choose B = d(m/f)f'/?log(f), and since
f =3 (why?), we have 1/(4B?%) < 1/12, and replacing proves (1).

For (2), we use the bound obtained above for }, -, x(n)/n with M =
m?”. By Corollary 10.2.3 (4) we thus have

L(x,1) — i ngn) < 2d(m/f)f1/2 log(f) < 2d(m/f)(f/m)1/2 log(m)

mP = mP—1/2 '

The result follows since d(n)/n® is bounded for any a > 0, and in particular
for « = 1/2. O

Remark. Evidently the constant 2.8, and even the term log(log(f)), are
unimportant. On the other hand, the main term log(f)/2 is difficult to im-
prove. As mentioned above, the best results are obtained assuming the ex-
tended Riemann hypothesis, and the main term is then O(log(log(f))).

As usual with analytic techniques, we can obtain much better results if
we want only average (as opposed to individual) estimates for L(y,1).

Proposition 10.3.17. By convention set L(xo,1) = y$(m)/m for the triv-
tal character xo modulo m, which is the constant term in the expansion of
L(xo,s) around s =1, and let A(m) = 3_,,,, log(p)/(p —1).
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(1) The average of L(x,1) over all characters modulo m is equal to

L (¢ (;) + log(m) +A(m>) =1 R A 20y <n1 > '

m

(2) As m — oo we have A(m) = O(log(log(m))).
(3) The average of |L(x,1)|? over all characters modulo m is equal to

LY (D) A oglm) + Agm) +7)? —4?)
1<r<m
ged(r,m)=1

_ 7:}1 (1 - pt) - ‘1’751”;) ((log(m) + A(m)) + C) + O <7:L2) ,

where

1 2
1 2y s
C=1-29%— 2)— =) de=2("=—~*—
y /O(w(w) = x)x (6 ¥ -m
= 2.769143977048368974 . . . |,

. log(j log?(N
%21&5%0< 5 gj(g)_ g2< >>

1SN

with

(see Section 10.5.5).

Proof. (1). By Proposition 10.2.5 (4) and orthogonality of characters we
have

S L= 3 wlr/m) Y )

XF#X0 1<r<m X#Xo
1
= —m<¢(m)¢(1/m) - > z/J(?"/m)> :
1<r<m
ged(r,m)=1

Using the Mobius function as explained after Proposition 10.1.5, we have

Yo Wwr/my= Y wlr/m) Y u(d)

1<r<m 1<r<m d|(r,m)
ged(r,m)=1
= uld) > (k/(m/d)).
dlm 1<k<m/d

If we differentiate logarithmically the distribution formula for the gamma
function (Proposition 9.6.33) we obtain } .., ; ¥(s+j/m) = my(ms) —
mlog(m), hence >, ., o, ¥(r/m) = —m(log(m) + 7). Thus
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Z W(r/m) = —mz d)/d)(log(m) — log(d) + ) .
1<r<m d|m
ged(r,m)

By multiplicativity (Corollary 10.1.12 and Exercise 45) we have the identities

> uld)/d = ¢(m)/m, > pu(d)log(d)/d = —(¢(m)/m) Y log(p)/(p —

d|m d|m plm
so that
> W(r/m) = —¢(m)(log(m) + A(m) +7) ,
1<r<m
ged(r,m)=1

proving the first formula of (1) after adding the contribution y¢(m)/m of
the trivial character to the average. The second formula follows from the
functional equation ¥ (z + 1) = ¥ (x) + 1/2 and Proposition 9.6.15, which tell
us that ¥(1/m) = —m — v+ O(1/m) as m — oc.

(2). Denote by p; the jth prime number and let m = H1<]<k pfj be
the prime-power decomposition of m with v; > 1. We have p;;, > pj,
and since the function log(p)/(p — 1) is decreasmg it follows that A( ) <
> 1<k 108(pj)/(p;j — 1). Using the estimate p; = O(jlog(j)), which is
much weaker than the prime number theorem and is very easy to prove
(see the remarks following Proposition 10.1.13), we deduce that A(m) =
O <<k 1/7) = O(log(k)). But k = w(m) and trivially m > 2F: hence
k = O(log(m)) (in fact the above-mentioned proposition tells us that
k = O(log(m)/log(log(m))) but we do not need this), so that we obtain
A(m) = O(log(log(m))), proving (2).

(3). For simplicity denote by Xa(m) the average of |L(x,1)|* over all
characters modulo m, and set

Sa(m)= Y |ILOGDP,

x mod m
XF#Xo0

so that Xo(m) = (Sa(m) +v2¢(m)?/m?)/¢(m). As in (1) we find that
Salm)= S0 wlr/mhb(s/m) 3 X(IX(s)

1<r,s<m XF#X0

Since we restrict to r and s coprime to m, we have x(r)x(s) = x(rs!);
therefore once again by orthogonality of characters the inner sum is equal to
—1 unless r = s, and otherwise is equal to ¢(m) — 1. Thus

Som) = 25 w(r/m)—ﬂ;( > wwm)),

1<r<m 1<r<m
ged(r,m)=1 ged(r,m)=1
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so that by the formula proved in (1) we obtain

m 2
So(m) = (m) Bafm) — “7 1og(m) + A(m) +)?

where By(m) = (1/m?) > <pcpm. wcd(rm)=1 ¥?(r/m), proving the first for-
mula of (3). For the second formula, using M6bius inversion we have

> WPe/m) D> p(d)

1<r<m d|ged(r,m)
1 i p(d) , (m
= L) Y /i) =3 B ()
dlm 1<s<m/d d|m

where we set B(m) = (1/m?) 32, <,.,,, ¥*(r/m). It remains to estimate B(m)
(see Exercise 105 (b) of Chapter 9 for an “explicit” formula for B(m)). As
in (1), when z is small we have ¥(z) = —1/x — v + (72/6)z + O(2?), so that
P(x)? = 1/2% +2v/2 + (v — 7%/3) + O(x). Thus if we set f(z) = ¥(x)? —
1/2? — 2v/x then f(z) € C4([0,1]), say (in fact f(z) € C*°(] — 1,00]), but
we do not need this). Thus the Riemann sum (1/m) >, .., f(r/m) tends
to a limit I = fol f(t)dt as m — oco. More precisely, by Euler-MacLaurin it
is easy to see that (1/m) > ., f(r/m) =1+ Ci/m+ Co/m* + O(1/m?)
as m — oo for some constants 5’1 and (. It follows that

ST Wr/m)= Y mP/r*+2y Y m/r+I-m+Ci+Ca/m+O(1/m?)
1<r<m 1<r<m 1<r<m
so using the standard Euler—-MacLaurin expansions we obtain

2 241 C C C 1
> ¢2(L>:1+7Fy og(m) | G5 C1 G5 (LY
m m2  m3 m?

6 m m
1<r<m

with C3 = I +2v? — 1 and some other constants Cy and C5. We could of
course push this expansion further if desired, but this is sufficient. Indeed,
note that

1 2 g2 (m) 1
‘d2 | Sqa == =0(a
dlm
by Proposition 10.1.13, so the term O(1/m?) in the expansion of B(m) con-
tributes O(1/m?) to the average X2(m) (if we had stopped the expansion
at O(1/m?) we would have obtained a superfluous factor of log(log(m))).
Furthermore, by multiplicativity we have

M( k—2 _ 1 k—2
W~ LSt = Ta-»
plm

d|m d|m
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Since | [ [, (1=p)| < I, P < m, the term Cs/m? also contributes O(1/m?)
to Xao(m). For k = 2 the above expression vanishes (except for m = 1), so
the term C,/m? does not contribute. For k = 1, the term C3/m contributes
Cs3¢(m)/m?, and for k = 0, the term 72 /6 contributes (72/6) lem(lfl/pz).
Finally, there remains to consider the term 2+log(m)/m. Using Exercise 45
once again we obtain

d2 m/d
= <log Z uld log )
_ p(m < )+ Z log ) .

plm

dlm

Putting everything together proves the second formula of (3) with C' = —Cs.
The second expression for the constant C' in terms of 71 is proved in Exercise
104 of Chapter 9. a

10.3.5 Expansions of {(s) Around s = k € Z¢;

In this subsection we give for completeness some expansions of {(s) around
s = k € Z<,. In practice, only the leading term is really useful, but around
the special points s = 0 and 1 it is sometimes useful to have extra terms or
even the whole expansion.

We begin with the following definitions.

Definition 10.3.18. For m > 0 we define

o log(k)™  log(N)™*!
Ym = ngnoo (Z k B m+1

k=1

and constants 0., for m =1 by the recurrence formula

Om—
Om+1 = (erl—JrZ%C i

Note that by the Euler-MacLaurin summation formula the limit defining
Ym exists and that in fact we have

N

log(k)™ _ log(N)™*! log(N)™
]; ko mer O TN )

or even more precisely an asymptotic expansion that as usual enables us to
compute 7, to any desired number of decimal digits.
For example we have §; = 79 = v and 6y = 271 + 2.
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Proposition 10.3.19. (1) For s around 1 we have

((s) = ! + Z(—l)mm(s—l)mzi—k’%FO(s—l).

s—1 m/! s—1
m=0

(2) For s around 0 we have

log(—2¢(s)) = log(2m) s + Z %sm ,

m>=2

= C(m) (1-”5;1)77 .

where

In particular,

C(s) = f% - %log(Qw) s+ 0(s%) .

(3) For s around —2k with k € Z>1, we have

@R ok + 1)(s + 28) + O(s + 2k)?

C(s) = (‘Ukm

Proof. (1). Let us restrict to s € R, and for k > 1 set

1 kat
uk(s)—ﬁ—/k_lt—s.

By Taylor’s formula to order 2 it is clear that as s — oo we have wuy(s) ~
(s/2)k=*7", so that the series Y, -, uk(s) converges for s > 0. For 5 > 1 we

have . o g )
> u(s) = E*/l =) -1-—.

k>2 k>2

Since the series on the left converges normally for s > ¢ > 0, it follows by
analytic continuation of ((s) that this equality is still valid for s > 0.

On the other hand, expanding around s = 1 it is easy to see that we have
the following power series in s — 1 with infinite radius of convergence:

() = Y (=n™ (log(k)m _ log(k)"*! —log(k — 1)’”“) (s— 1)

m)! k m-+1

m2=0

Thus by absolute convergence we can reorder the terms in the double sum
> k2 Uk (s) and obtain

1 —1)m
() -1- 2= oy
m>0 '




10.3 Special Values of Dirichlet L-Functions 207

where

, log(k)™  log(k)™*! —log(k —1)™*!
> ( )

Vm =

= k m+1
N m m—+1
— lim Z log(k)™  log(N) 7
N—o0 ez k m+ 1

and by definition we have v/, = 7y, for m > 1, while v = 7 — 1, proving
(1).

(2). By Corollary 10.2.15 we can rewrite the functional equation in
the form —2((s) = (2m)°(—s¢(1 — s))/(cos(mws/2)T'(s + 1)). Taking for-
mally the logarithm of both sides, we see that we can obtain the expan-
sion of log(—2((s)) around s = 0 as soon as we know the expansions of
the logarithms of the factors occurring on the right-hand side. Evidently
log((27)®) = slog(2m). We note that the derivative of log(cos(x)) is — tan(x),
whose expansion is given in Proposition 9.1.4 in terms of Bernoulli num-
bers, which can of course be translated in terms of ((2k) thanks to Corol-
lary 9.1.21, so by integration we obtain that of log(cos(z)). Finally, the
expansion of log(I'(s 4+ 1)) is given by Proposition 9.6.15. We thus need
only to compute the expansion of log(—s((1 — s)) around 0. By (1) w
know that —s¢(1 —s) =1 — Zm>0('ym/m!)sm+1. It follows that if we set

log(—s((1 = s)) = = 3451 (0k/k)s" we have (—s((1 —s))'/(—s((1 = s)) =

— Y451 0ks* 7L hence
=

Do m+ DI = (1= 37 ()™ Y st

m>0 m>0 k>1

and identifying the coeflicients of s™ on both sides gives

’Yk5m k

Oma1 = (m+1) —+Z

as claimed. We leave the detailed computations to the reader (Exercise 47).

(3). This immediately follows from the functional equation. O

For the reader’s convenience we give a small table of the constants v,y,;
see Exercise 48 (the constants d,,, a,, and the Taylor expansion of ((s) itself
around s = 0 are immediate to compute from the 7,,). Note that this table
gives the wrong impression that the -, are small. In fact, it can be shown
that the v, are unbounded; for instance

Y50 = 126.823602651322716596725253648657 . . . .
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Ym \
0.577215664901532860606512090082
—0.072815845483676724860586375875
—0.009690363192872318484530386035
0.002053834420303345866160046543
0.002325370065467300057468170178
0.000793323817301062701753334877
—0.000238769345430199609872421842
—0.000527289567057751046074097505
—0.000352123353803039509602052165
—0.000034394774418088048177914624
0.000205332814909064794683722289

Table of ~,, for 0 <m < 10

—
SoowoNo ok wn e~ o3

10.3.6 Numerical Computation of Euler Products and Sums

Functions such as Dirichlet L-functions (and in particular the Riemann zeta
function) or more general L-functions can be expressed in two quite different
ways, related by the underlying number theory: they are both Dirichlet series
and Euler products. To compute numerically an L-function to reasonably
high accuracy (say 28 decimal digits), we must use the Dirichlet series and
not the Euler product since there are several available methods to accelerate
the convergence of the series, such as for instance methods based on the
Euler-MacLaurin summation formula, or on the functional equation. In this
section we make the important remark that conversely, any reasonable Euler
product or sum (i.e., a product or sum over prime numbers) can be computed
to high accuracy using Dirichlet series. We first give a useful notation.

Definition 10.3.20. Let Z(s) =[], Z,(s) be an Euler product. We denote
by Z,~n the Buler product

Zp>N(s) = H Zy(s) = I Z(e)

PN p<N Zp(s)

The following proposition gives a basic example of the computation of
sums over primes.

Proposition 10.3.21. Let A(z) = -, a(m)z™ be a power series with
radius of convergence strictly larger than 1/2 and such that A(0) = A’(0) =0
(hence with a(1) = 0), and set S(A) =3 A(1/p). Define

o =32 ()

Then for all N > 1 we have
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A= 3 A (5] + 3 el 08

p<N n=2

Proof. Using the Euler product for the zeta function we have for n > 2,

log( <p>N Z Z Z Z kn )

p>N k>1 i1 SN P

By the second form of the Mébius inversion formula (Proposition 10.1.5 (2))

we thus have
4 Z Z 10&’; Cp>N(k”))
p>N k>1
so that

N=F4(2)+ ¥ X atm

p<N p>N m>=2
lo mk
_ZA< ) Z Z“ ng>N( )
p<N m>=2 k>1
~ ZA( ) > toa(Gron () 3 W aayry
p<N n>1 k\n

where the interchanges of summations are justified by absolute convergence,
proving the proposition. a

Example. In milliseconds, we can in this way compute that
1
Z s = 0.45224742004106549850654336483224793417323134323989.. .. ,
P
although the sum is over primes, which do not display a regular behavior.

This basic example can be generalized in many different ways; see Exer-
cise 53. A particularly important application is to the computation of Euler
products as follows.

Corollary 10.3.22. Let B(x) = 1+3_, -, b(m)z™ be a power series with
radius of convergence strictly greater than 1/2, and such that B(0) = 1
and B'(0) = 0 (hence with b(1) = 0), and set P(B) = [], B(1/p). Write
log(B(x)) = >_,,5; a(m)z™ and define

=Xt (i)

Then for all N > 1 we have
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pe) = I1 5 (5) TGt

PN nz2

In addition, c(n) satisfies the recurrence

c(n):b(n)—% S keth) S bn—gh).

1<k<n—1 1<g<n/k

Proof. If we write A(X) = log(B(z)) we have P(B) = %) so the
first formula follows from the proposition. For the second we note that by
definition ne(n) = p* na(n), where * is the arithmetic convolution, so that
> de(d) = na(n) (we are simply reversing Mdbius inversion). The last
formula now follows from

B'(z)
B'(x) = Z mb(m)z™ ! = B(x) = B(x) Z ma(m)z™
m=>=1 B(.I‘) m>=1
after computing explicitly the product of the power series. a

Remarks. (1) The coefficients ¢(n) are simply the unique integers such that
we have the formal expansions

Blx)=1+ Y bm)z™ =] (1 jxn)cw .

m2=1 n>1

(2) It is usually better to use the definition of ¢(n). However, in some cases
the function a(n) is not easy to compute directly, and it is then necessary
to use the recurrence for c¢(n).

Example. Again in milliseconds we compute that

1
| I (1 — (1)> = 0.3739558136192022880547280543464164151116.. .. .
pp—
p

I refer to the author’s unpublished and unfinished preprint at the URL
http://www.math.u-bordeauxl.fr/"cohen/hardylw.dvi
for many more examples and details on this subject.

10.4 Epstein Zeta Functions

These are other types of zeta functions that are also useful and quite beautiful.
Before defining and studying them we introduce a nonholomorphic Eisenstein
series that is very useful in many contexts.
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10.4.1 The Nonholomorphic Eisenstein Series G(T, s)

Although properly speaking the study of this function belongs to the realm
of modular forms, we study it completely independently. However, the most
interesting properties of G(7, s) are linked to its modularity properties.

Definition 10.4.1. Let T = x+iy be a complex number such thaty = (1) >
0. For R(s) > 1 we set

Grs)=3 3 Y

(m,n)€ez? |mT + n‘QS ’

S

/
where Y means that the term (m,n) = (0,0) must be omitted.

Recall that SLy(Z) is the group of 2 x 2 integral matrices with determi-
nant 1.

Proposition 10.4.2. The above series converges for R(s) > 1, and for any

(2Y) € SLy(Z) we have
at +b
G <c7‘+d’s> =G(r,s);

in other words, G(t,s) is a (nonholomorphic) modular form of weight 0 on
SLa(Z).

Proof. Left to the reader (Exercise 55). O

The main result that we need is the Fourier expansion of G(r, s).

Theorem 10.4.3. Let 7 = x + iy with y > 0. For N(s) > 1 we have

/20 (s — 1/2)

F(S) <(2S - l)ylis

G(r,5) = C(2s)y° +

s o
) Zn Yo1_25(n)Fy_1/2(2mny) cos(2mnz)

n>1

+2
where o,(n) = Zd‘n d? is the sum of the zth powers of the divisors of n and

Fo_12(2) = (22/77)1/21(8_1/2(2), where K _1/5(2) is the K-Bessel function.

Proof. First a friendly word to the reader: this result is quite technical;
however, its proof is instructive and completely straightforward. Set

yS
S(r,s) = Z |7 +n|? :
nez

By the Poisson summation formula (Corollary 2.2.17) applied to the function
f(t) = liy + t|** = (£ + y?)® we have
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67217rkt

s 2imkx : _ -
S(r,8) =y ch(y)e with ¢k (y) —/700 CESEIE dt

kEZ

Since (t? +12)* is an even function and y > 0, making the change of variable
t = yu we have

ce(y) = y' " *L,(2n|kly), with Is(a):/oo (COS(at) "

oo (2418

By Corollary 9.6.40 we have I,(0) = 7/2T'(s — 1/2)/T(s), while for a > 0 we
have by Theorem 9.8.9,

71/2(0/2)5-1/2
Is<a’) = 2(1—\(/82))1(51/2(@) .

It follows that
T /2T(s —1/2) , 4rr® J!
IR S TP St /2 s—1/2
y i+ = E k K,_1/5(2mky) cos(2mkx)
T'(s) F(s) = /

/20 (s — 1/2)
I(s)

S(7,s) =

—S

Fy_1/2(2mky) cos(2mkz) .
k>1

The proof of the theorem is now immediate: separating the terms with m = 0,
m < 0, and m > 0 we have

S(mr,s) . T/PT(s—1/2 _
G(r, C@s)y + Y = =((2s)y° + IE()/)C(QS — 1y
m>=1 5
2 Y ’“:F (2mkmy) cos(2mkma)
M) 2, o s—1/2(2mkmy) cos(2rkma) .

For a given N = km > 1, we have

s—1 m)s~1
Z k _ Z &:Nsil(fl—%(]\[)?

ms m25—1
km=N km=N

and replacing gives the desired expansion of G(7, s). a

This technical theorem has a large number of corollaries.

Corollary 10.4.4. The function G(t,s) has a meromorphic continuation to
the whole complex s-plane, with a single pole, at s = 1, which is simple with
residue /2 (in particular which is independent of 7). Moreover, if we set

G(r,s) =7 °T(s)G(r,s)

we have the functional equation G(1,1 — s) = G(7,s).
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Proof. Indeed, by Proposition 9.8.6 the function K,_;,5(2) is a holomor-
phic function of s € C that tends to zero faster than any power of z as z — oco.
It follows from the known analytic continuation of the other functions occur-
ring in the expansion of G(7,s) that this function can also be analytically
continued to the whole complex plane into a meromorphic function. If as
usual we set A(s) = 7*/2T'(5/2)((s), by the functional equation of the zeta
function we have A(1 — s) = A(s) so the theorem gives

G(r,8) = 7 °T(s)G(7,5) = A(25)y" + A(2 — 2s)y' *
+2 Z n* o1 gs(n)Fy_1/2(2mny) cos(2mnz) .

n=1

The possible poles are thus those of the A functions, hence at s = 0, 1/2,
and 1. The residue at s = 1/2 is equal to y/2/2 — y*/2/2 = 0, so there is no
pole. At s = 0 the function G(7, s) clearly has no pole. At s = 1 the function
A(2 —2s) = A(2s — 1) has a simple pole with residue 1/2, so G(7,s) has a
simple pole with residue /2, as claimed.

Finally, note that by definition K,(z) is an even function of s, so that
K,_1/2() is invariant under the change s into 1 — s, and similarly

nToag(n) = Y (dide) T = Y dytds!
dida=n dida=n

is also invariant under the change s into 1—s, proving the functional equation.
(|

Corollary 10.4.5. We have G(1,0) = —1/2 and G(r,—k) = 0 for all k €
Z>1.

Proof. Immediate from the preceding corollary and left to the reader. O

Note that, as for Dirichlet L-series, we may also ask for the value at
positive integers s of G(7, s). This can be done in the case that 7 is imaginary
quadratic, in other words when a, b, ¢ are integers, and is a part of the theory
of complex multiplication, which we will not study in this book for lack of
space, although it is a very beautiful part of number theory.

10.4.2 The Kronecker Limit Formula

By Corollary 10.4.4 we know that when s is close to 1 we have G(7,s) =
(7/2)(1/(s — 1) + C(7) + O(s — 1)) for a certain constant C'(7). The goal of
Kronecker’s limit formula is to give an explicit formula for C'(7). The result
is as follows.

Theorem 10.4.6 (Kronecker’s limit formula). Define

q= 20T — 2wy 2imx g 77(7_) _ €i7r'r/12 H(l _ qn) )
n=1
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(1) Around s = 1 we have
Glrs) = <S_11 +C(r) +0(s — 1)> ,
where
C(r) =2 (7 = log(2) — log (S(7) (7)) ) -
(2) We have G(1,0) = —1/2 and

¢/ (7,0) = — log(2r) — log (3(r)/2n(r)?) .

where of course G' denotes the derivative with respect to s.

Proof. We must give the Taylor expansions around s = 1 up to terms
in O(s — 1) of all the terms occurring in the Fourier expansion of G(7,s).
For notational simplicity set G(s) = 7'/?T'(s — 1/2)¢(2s — 1)y*~*/T(s). By
Proposition 9.6.15 and Exercise 91 of Chapter 9 we have

I'(1/2)

T(1/2) (s—1)+0(s— 1)

log(G(s)) = %log(w) +log(T(1/2)) +

+ log (2(31—1) +v4+0(s— 1)) —log(y)(s —1) — () (s—1)

— log(m) — (210g(2) +7)(5 — 1) — log(2) — log(s — 1)
+2v(s — 1) —log(y)(s — 1) + v(s — 1) + O(s — 1),

hence
71,1/2 6 s — 1-s T
I( 1/13()5)(2 Dy _ 2 <S i o+ 27— 2log(2) - 1og(y))
+0(s—1).

It follows from Proposition 9.8.5 (1) that Fj/5(2) = e™7, hence that

71.2

C(r) = oy + (27 — 21og(2) — log(y)) +27S(7)

T
2 6

where

Now note that

nk
10g<H(1—Q")> = - %=— Ny R ==Y o (V)Y
n>1k>1

n>1

It follows that
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S(r) = —%(log(Hu - q">)> = —tog(| [0~

n>1
my
-1 7) ,
(1og(In(r)) + 15
proving (1) after simplifications, and (2) immediately follows from the func-
tional equation. a

We have seen that G(v(7),s) = G(r,s) for all y = (¢ %) € SLy(Z), where
v(1) = (a7+b)/(cT+d). It follows from the above theorem that I(7)'/2|n(7)|?
is invariant under the change 7 into (7). Since S(y(7))/2 = I(1)Y/?/|er+d|,
this means that [n(y(7))| = |er + d|*/?|n(7)]. In fact, the function n(7) is the
well-known Dedekind eta modular function of weight 1/2, which satisfies
n(—=1/7) = (7/i)"/?n(r), and as a consequence n(y(7)) = v(y)(cr + d)*/?n(7)
for an explicit 24th root of unity v(v).

Definition 10.4.7. Let Q(z,y) = axz? + bxy + cy? be a positive definite
quadratic form with real coefficients (in other words a > 0, ¢ > 0, and
b2 —4ac < 0). The Epstein zeta function attached to Q is the function defined
for R(s) > 1 by

1 / 1
=3 D G
2 (m,n)€Z2 Q(m7 'fl)
where here and elsewhere Y means that we omit the term (m,n) = (0,0).
If for any n > 1 we write rg(n) for the number of representations of n

by the form @, in other words the number of pairs (z,y) € Z? such that
Q(z,y) = n, then we clearly have

Gols) = 3 3 ")
n=1

Corollary 10.4.8. Let Q) be as above and set T = (—b+ iv/4ac — b2)/(2a),
so that (1) > 0, and let D = b* — 4ac be the discriminant of Q. Then

(1) Ca(s) = (IDI/4)~*/*G(7, ).

(2) Co(s) can be analytically continued to the whole complex plane with a
simple pole, at s = 1, with residue w/|D|"/?, and satisfies the functional
equation Aq(1 — s) = Ag(s), where

M) = (217) T)als)-

(3) Around s = 1 we have the expansion

™

Ca(s) = iz (527 + 0@+ 06 1))
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where

_ log(|DI/4)

C(Q) = 2y - 2log(2) - B

— 210 (S()*n(r)P?) -
(4) We have (g(0) = —1/2 and

_ log(|D]/4)

G(0) = <5

~ log(2r) — log (S(7)/2n(r)?) -

Proof. By definition we have

—S

a

S = (@S() " G(rs) = (D426, s)

(m,n)€Z? |m - TLT|2S

Co(s) =

proving both (1) and (2) because of the corresponding properties of G(7, s).
Around s = 1 we have

(ID1/4)7*/% = (ID|/4)7/2(1 = (s — 1) log(|D| /4)/2 + O(s = 1)*) ;
hence Kronecker’s limit formula gives

T 1

Co(s) = \/ﬁ (s—l

with C(Q) = C(r) — log(|D|/4)/2, proving (3), and (4) follows from the
functional equation or directly from Theorem 10.4.6 (2). O

+C(Q) +0O(s — 1)) )

10.5 Dirichlet Series Linked to Number Fields

10.5.1 The Dedekind Zeta Function (k(s)

As we have seen above, the exact analytic translation of the existence and
uniqueness of prime decomposition in Z is the fact that the Dirichlet series
associated with a completely multiplicative function has an Euler product,
and in particular the Riemann zeta function ((s) = [[,(1 —p )y LIfKisa
general number field and Z its ring of integers, the existence and uniqueness
of prime decomposition are valid for ideals, as is the case for every Dedekind
domain. Thus, it is natural to define the Dedekind zeta function

1 1
) = 2 s~ Uiwgrs

aCZg p

where a runs through all integral ideals of Zx and p through all prime ideals
of Zk, and N denotes the absolute norm. The (formal) equality of the two
definitions is the exact translation of existence and uniqueness of prime ideal



10.5 Dirichlet Series Linked to Number Fields 217

decomposition. We of course have (g(s) = ¢(s), the ordinary Riemann zeta
function.

Set n = [K : QJ. Denoting as usual by p ordinary prime numbers, if s is
a real number such that s > 1 we can write

[Ta-~NE)y™) =TT IT @ -p @) <TIA-p*) " =¢(s)",

p P plpZk

since there are at most n prime ideals above p, so that (x(s) < ((s)". In
particular, this shows that (x(s) converges for s > 1 real, hence converges
absolutely (since it has nonnegative coefficients) for $(s) > 1. It follows that
Ck(s) is a holomorphic function for $(s) > 1. This proof is only to show
convergence, but we will soon see that (x(s) has only a simple pole at s = 1,
not a pole of order n.

The basic analytic properties of (x(s) are summarized in the following
theorem.

Theorem 10.5.1. Let K be a number field of degree n and signature (r1,73).
Denote by d(K), h(K), R(K), and w(K) (standard notation) the discrimi-
nant, class number, requlator, and number of roots of unity in K. Then

(1) The function Ck(s) extends analytically to the whole complex plane to a
meromorphic function having a single pole at s = 1, which is simple.
(2) It satisfies the functional equation Ak (1 —s) = Ak(s), where

A (s) = |d(E)[* 2 (s)" 2y (s + 1) Cre(5)

and (s) = m%/?T(s/2) is as in Theorem 10.2.1}.
(3) If we set r =1y 4+ ro — 1, which is the rank of the unit group of K, then
Ck(8) has a zero at s = 0 of order r (no zero if r = 0 of course) and we

have W(K)R(K)
R—— o
iy s (8) = =0
(4) Equivalently, by the functional equation, the residue of the pole at s =1
18 given by
hEK)R(K)

3 — 9T1 T2

lim (s — 1)Cxe(s) = 2" (2m) W) AE) 2
Proof. We will not prove this theorem, but we will make a number of
remarks on the proof. There are two ways to prove the analytic continuation
and functional equation of (x(s) to the whole plane. One is Hecke’s initial
proof: he essentially copies the proof that we have given for the ordinary
zeta function and Dirichlet L-series using the Poisson summation formula.
For this, one must introduce theta functions in n variables, use a generalized
Poisson summation formula, and so on. A large part of the difficulty, which
does not occur for K = Q, is the existence of an infinite unit group, which
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makes the domains of integration noncompact, so suitable regularization pro-
cedures have to be applied. The proof gives at the same time the residue at
s = 1, hence the leading term at s = 0.

The other more recent proof is due to J. Tate. He gives an adelic proof,
explaining each factor (1 — A(p)~*)~! as a p-adic integral, and the factors
~(s) and (s + 1) as the factors corresponding to the places at infinity of K.
This proof is more elegant, and more amenable to generalizations, but not
really much shorter.

Finally, it is not difficult to prove the analytic continuation of (x(s) to
R(s) > 1—1/n using quite simple means, and from that a volume computation
gives the residue at s = 1. This is done for example in [Marc|. This is sufficient
for many purposes, but does not give the functional equation. ad

Corollary 10.5.2. For k € Zgo, the order of the (possible) zero at s =k of
Ck () is given by

7”1+T2—1 ka:(),
1+ T2 if k<0, k=0 (mod 2),
T2 if k<0, k=1 (mod 2) .

Proof. Follows immediately from the fact that v(s) has simple poles for
all s € Zgp, and left to the reader. O

In particular, we see that (x(—2k) = 0 for all number fields K when
k > 1. Furthermore, if the field K is not totally real (ro > 0), we also have
Cr(1—2K) = 0 for all £ > 1. Thus the only fields for which some of the values
of (x(—k) can be nonzero are totally real fields, whose complex embeddings
are in fact all real. The field K = Q is of course the simplest example. We have
seen that in that case the values ((1 — 2k) are in fact rational numbers, more
precisely that ((1 — 2k) = —Bay/(2k) (Corollary 10.3.4). For the Dedekind
zeta function, there is a similar result, but the proof is more difficult and
uses the Fourier expansion of the Hecke—Eisenstein series (see the discussion
at the beginning of Section 10.3.2):

Theorem 10.5.3 (Siegel). Let K be a totally real number field. For all k >
1 we have Cx (1 — 2k) € Q*.

Corollary 10.5.4. Let K be a totally real number field of degree n. For every
k > 1 there exists r, € Q* such that

2kn

CK(Qk) = TkW .

Proof. Clear by using the functional equation. O
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10.5.2 The Dedekind Zeta Function of Quadratic Fields

Another very important property of Dedekind zeta functions is that they can
be factored into L-functions having a simpler functional equation. This is in
fact linked to one of the most famous conjectures in number theory, Artin’s
conjecture on the analytic continuation of L-series. We will speak a little
about this below, but note for now that everything is well understood for
number fields that are Abelian extensions of Q. We begin with the simplest
nontrivial extensions of QQ: quadratic fields.

Proposition 10.5.5. Let K = Q(v/D) be a quadratic field of discriminant
D. We have

CK(S) = C(S)L(XDa S) s

where as usual xp(n) = (%) is the Legendre—Kronecker character.

Proof. Indeed, if p is a prime number, then we know that p is inert, splits,
or ramifies in K/Q according to whether (%) = —1, 1, or 0. Thus

proving the proposition. O

Since we have proved the functional equation of L-functions of Dirichlet
characters, this proposition implies Theorem 10.5.1 for quadratic fields.

Corollary 10.5.6. Let D be a nonsquare integer congruent to 0 or 1 modulo
4, and let xp = (Q) be the corresponding Legendre—Kronecker symbol. Then
L(XD, 1) > 0.

Proof. Write D = Dy 2, where Dy is a fundamental discriminant. Since
L(xp,1) = I, ;;(1 = xpo(p)/P)L(xD,,1) and 1 — xp,(p)/p > 0, we may
assume that D is a fundamental discriminant. In that case we note that by
the above proposition we have L(xp, s) = (x(s)/((s), and that by definition
Ck(s) > 1 and ((s) > 1 for s € Rsq. The result follows by letting s tend
to 1. a

In the special case of imaginary quadratic fields K, i.e., when D < 0, the
function (x(s) is closely related to the Epstein zeta functions that we have
studied in Section 10.4. Indeed, for every ideal class A € CI(K) define the
partial zeta function by the formula
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CK(A7 S) = Z N(l )

aCZg, a€A
We then have the following:

Proposition 10.5.7. Let K be an imaginary quadratic field of discriminant
D, and denote by w(D) the number of roots of unity of K (so that w(D) = 2
if D < —4, w(—4) =4, w(-3) =6).

(1) We have the finite sum decomposition
> Ck(As) .
AECIU(K)

(2) Let b be an ideal of K such that b € A~ and 1 € b, and let (1,7) be a
Z-basis of b. We have

—s/2
CK(A“S) - ‘D( )/2CQA( ) )
where 1
Qa(m,n) = F(T)(m2 —2mnR(1) + n?|7]?)

and (g, (s) is the Epstein zeta function attached to the positive definite
quadratic form Q 4.

Proof. (1) is a trivial consequence of the definition of the class group
CI(K). For (2), let b € A~! be an ideal belonging to the inverse class. Multi-
plying b by a suitable principal ideal we may assume that 1 € b. Then a € A
if and only if ab = A\Zj is a principal ideal, and in addition a C Zg if and
only if A € b, and by multiplicativity N'(a) = A (b) " N (A\)| = N(b) "L N(N)
since D < 0. Finally, again since D < 0, there is a finite number w(D) of
possibilities for A, so that

N (b)®
Cre(Ar8) = TS > N

AEb, A#£0

Since 1 € b we have Zx C b. I claim that N'(b) = [b : Zg|': indeed, if m is
any integer such that mb C Zg, then multiplication by m gives the equality
[b:Zk] = [mb:mZk], and

m? = [Zr : mZg] = [Zk : mb][mb : mZx] = N (mb)[b : Zg]
m2N(b)[b: Zk] ,

proving my claim. Since 1 € b we have b = Z + 7Z for some 7 € K, where
by changing if necessary 7 into —7 we may assume (7) > 0. On the other
hand, Zg = Z+wZ, where w = (§++/D)/2 for any integer ¢ such that § = D



10.5 Dirichlet Series Linked to Number Fields 221

(mod 2). Writing Vol(I) for the covolume in C ~ R? of any fractional ideal
I it follows that

Vol(b) _ S(r) _ 23(r)
Vol(Zk)  S(w) D]

N®b)=[b:Zx] " =

Finally, we can write A\ = m — n7 with (m,n) € Z? and N(\) = m? —
2mnR(7) + n?|7|2. We thus obtain

‘D‘ s/2 1 |D| s/2
CK (-’47 5) - g ( ) )
w(D) (m;)ep Qalm,my ~ w(D)j2>
where
2 212
Qa(m,n) = F(T)(m —2mnR(7) + n|7|%)
is a positive definite quadratic form, proving the proposition. O

Corollary 10.5.8. Let K be an imaginary quadratic field of discriminant
D, let 0 be any integer such that D = ¢ (mod 2), and assume that the class
number of K is equal to 1. Then

, 1
CK(S):M > (m? + mnd + ((62 — D)/4)n?)*

(m,n)€z?

Proof. Clear. ad

Example. As in Theorem 5.4.15 denote by ra(n) the number of decomposi-
tions of n as a sum of two squares. Then

1 /
C@(i)(s):Z Z m

(m,n)ez?

nz1

and the formula for r5(n) given in Theorem 5.4.15 is equivalent to the formula

Co(i)(s) = C(s)L(X -4, 5)-

Corollary 10.5.9. Let K be an imaginary quadratic field of discriminant
D. The statements of Corollary 10.4.8 (2), (3), and (4) are valid verbatim if
we replace Cgo(s) by (w(D)/2)Ck (A, s); in other words:

(1) ¢k (A,s) can be analytically continued to the whole complex plane with
a simple pole, at s = 1, with residue 2 /(w(D)|D|'/?), and satisfies the
functional equation Ax(A,1—8) = Ax(A,s), where

wdo) = (05) TEm(As).
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(2) Around s = 1 we have the expansion

2T 1
C(A,s) = BUIEE (s — +Cr(A)+ O(s — 1)) ,
where
Cr(A) = 27— 210g(2) - U 105 (5(7)120()2)

(3) We have (x(A,0) = —1/w(D) and

s (SR o) s (a6 i)

Proof. This is an immediate consequence of the proposition and of
Corollary 10.4.8: we note that the quadratic form Q4(z,y) has determi-

(k(A,0) =

nant (4R(7)? — 4|7?)/(4S(7)?) = —1, and we write a usual |[D|~%/2 =
|D|=1/2(1 — (s — 1)log(|D|)/2) around s = 1 and |D|~%/2 = 1 — slog(|D])/2
around s = 0. a

We can now combine this corollary with the decomposition (x(s) =
C(s)L(xp,s):
Proposition 10.5.10. Let D < 0 be a fundamental discriminant, and de-
note by h(D) the class number of K = Q(v/D). Denote by Q(D) the set of
equivalence classes of quadratic numbers T = (—=b + v/D)/(2a) of discrimi-
nant D, modulo the natural action of SLa(Z), which has cardinality h(D).
We have the following formulas:

Lixp, 1) = m , L(xp,0) = ih((g)) :

L'(xp,1) log(|D]) 2 n ,
Thon 70T iy 2 b (S 2nP) .
L'(xp,0) log(| D) 2 172

L(xi, 5y = logldm) - —5—+ h(D)Te%;D)log (J( 2| ) .

Proof. First note that if (1, 7) is another Z-basis of an ideal b with I(7) >
0 we have 7/ = ~(7) = (a7 + b)/(cT + d) for some (¢4) € SLy(Z) (and
conversely), and that if we replace b by another ideal ab in the same class
the corresponding 7 is unchanged. Thus the map b +— 7 induces a natural
map from the ideal class group CI(K) to the set of 7 = (=b+ v/D)/(2a)
of discriminant D, up to the action of SLa(Z), in other words to the set
Q(D). The above formulas are thus obtained by summing on ideal classes
the corresponding formulas for (x (A, s) and using the factorization (x(s) =
C(s)L(xp,s). The details are left to the reader (Exercise 57). O

Note that thanks to the above results we have proved Theorem 10.5.1 in
the special case of imaginary quadratic fields.
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10.5.3 Applications of the Kronecker Limit Formula

We can combine the above proposition, which is an immediate consequence of
Kronecker’s limit formula, with the formula for the same quantities obtained
in Proposition 10.3.5 in terms of the gamma function.

Proposition 10.5.11 (Lerch, Chowla—Selberg). For any negative fun-
damental discriminant D we have the identity

w(D)
|D]

[T SOl = @rlp?)- D><Hrr/|p|( ))

T€Q(D)

Proof. Since D < 0 we have L(xp,0) = 2h(D)/w(D), so Proposition
10.3.5 gives

| D]

st 508 (2o () i

r=1

hence comparing with Proposition 10.5.10 above we obtain the identity

3 s (3602 = Zi( Jes (r (7))

h(D
M) sogamp )
which gives the desired formula after doubling and exponentiation. a

The above formula was obtained at the end of the nineteenth century by
Lerch, and rediscovered by Chowla and Selberg in 1947.

It is also possible to generalize the Chowla—Selberg formula to nonfunda-
mental discriminants, but with some difficulty; see [Nak-Tag]. We give the
result without proof, but first need the following definition.

Definition 10.5.12. Let D < 0 be congruent to 0 or 1 modulo 4. We denote
by Q(D) the set of quadratic numbers (—b 4+ /D) /(2a) with b*> — 4ac = D
and ged(a, b, ¢) = 1, modulo the natural action of SLa(Z). We write h(D) for
the cardinality of Q(D).

Theorem 10.5.13. Let D < 0 be congruent to 0 or 1 modulo 4, and write
D = Dof?, where Dy is a fundamental discriminant, in other words the
discriminant of the quadratic field Q(v/D). Then

h(D) w(Dg)

e(p)\ MP) /|Dy| . Do) 2
1 somer = (M) (H r<r/|Do|><[i>> ,
r=1

T€Q(D)
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where
(1= poe () (1 _ (%))
(1 =1/p) (p— (2)/p)

Note that we have the following well-known formula, coming directly from
Dirichlet’s class number formula:

h(D) w(Do) _ w(D) D
nDo) 2 2 fg(1—<p>/1?>~

Examples. When h(D) = 1 there is a single term on the left-hand side,
and we can always choose 7 = (=8 + v/D)/2, where § = D (mod 2). Tt
follows from the definition of n(7) that n(r) = |n(7)| it D = 0 (mod 4) and
n(r) = e "/?4|n(r)| if D =1 (mod 4). Using the reflection formula for the
gamma function we obtain for instance the following formulas:

-1++-3
1(75
n(v=1) =277 "¥/r(1/4)

n(_l +2ﬁ

n(v=2) = 2718734 (0(1/8)(3/8))"/?
n(vV=1/2) = 27757 73/1(1/4)

the last formula coming from the theorem for nonfundamental discriminants.
As an example with h(D) = 2 we have for instance

n(V=6)n(v/—6/2) = 27 11/43=1/2=3/2 (I'(1/24)T'(5/24)['(7/24)['(11/24))*/?
(we will see below that these two eta values can be computed individually).

Corollary 10.5.14. We have the formulas
H (1 + e—m) — 9 1/8gm/24

e(p) =

) _ 67iﬂ/2427131/8ﬂ,711—1(1/3)3/2 ,

) = e S e )

H tanh(rn/2) = (2r)~3/40(1/4)
[T tanh(mn/v2) = 277574 (1/8)T(3/8)) "/ .

Proof. These formulas are simply obtained by replacing the eta function
by its infinite product expansion and using the special values. The details are
left to the reader (Exercise 59). O

When h(D) > 1 we can ask whether it is possible to compute all the n(7)
individually. The answer is yes, as follows.
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Theorem 10.5.15. For ecach 7 € Q(D) there exists an algebraic number
a(T) that can be given explicitly such that

D] Dy
()l = 4|D|1/2<HPT/D( )> .

Proof. This proof requires a basic knowledge of modular forms and com-
plex multiplication. If 71 and 75 are in Q(D) there exists some integral matrix
v = (%) with nonzero determinant N such that 75 = (am1+b)/(cri+d). If as
usual we set A(T) = n(7)?4, it follows that (n(72)/n(11))** = A(y(11))/A(11)
is the value at the quadratic number 71 of the function A(v(7))/A(7). This is
a modular function of weight 0 on a congruence subgroup of level N, so there
is an algebraic relation with algebraic coefficients between this function and
the modular invariant function j(7). By the basic theorem of complex mul-
tiplication we know that j(7y) is algebraic, so we conclude that n(72)/n(m)
is algebraic. It follows that all the terms on the LHS of the Chowla—Selberg
formula are equal to an algebraic number times one of them, proving the
theorem. a

One can in fact give an explicit formula for a(7); see [Poo-Wil]. We will
give a special case below, and the reader can easily work out himself many
other examples (Exercise 58).

The Kronecker limit formula for imaginary quadratic fields also has ap-
plications to real quadratic fields. We begin with the following lemma.

Lemma 10.5.16. Let Dy and D5 be two coprime fundamental discrimi-
nants, and set D = D1Dy and K = Q(v/D). Then:

(1) D is a fundamental discriminant.
(2) For any \ € Zk such that N'(\) is coprime to Dy we have (%) =1.
(3) For any integral ideal a of Zy such that N'(a) is coprime to D we have
o) =1

Proof. (1). If Dy and Dy are squarefree, hence congruent to 1 modulo 4,
then DiDs is squarefree and congruent to 1 modulo 4, so is fundamental.
Otherwise, by symmetry we may assume that Dy = 4d; with d; = 2 or 3
modulo 4 and squarefree. It follows that D5 is squarefree and is congruent to
1 modulo 4; hence Dy Dy = 4dy Do with dy Dy squarefree and congruent to 2
or 3 modulo 4, so DDy is fundamental.

(2). We can write A = (a+bv/D)/2 with a and b integers such that a = bD
(mod 2), so N(A) = (a? — b*>D) /4. Assume first that 4 f D;. Then

() = (#2%) = (2) =1
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as claimed, since Dy | D and the Kronecker symbol (%) is periodic of period

dividing D; when Dy = 0 or 1 modulo 4. Assume now that Dy = 4d;, hence
that Dy = 1 (mod 4). Then D = 4d with d = d1 Dy, and A = a1 + b1V d for
integers a; = a/2 and by = b. Since we assume N (\) coprime to D; we have

Dy \ _ (A N _ (N (),
NN ) \a?-b2d) \a?—-b3d) \a?)

again because d; | d and by the periodicity property of the Kronecker symbol.

(3). Since a is a product of prime ideals it is sufficient to prove this for
prime ideals p above p with p{ D. If p is inert then p = pZx and N (p) = p?,

so that (ﬁ) = (1%) = 1. If p is split then (%) = 1, while V'(p) = p, so
that (xf5y) = (5) = L. O

Corollary 10.5.17. Let Dy and Dy be two coprime fundamental discrimi-
nants, and set D = DDy and K = Q(\/ﬁ)

(1) For any ideal class A € CI(K) there exists an integral ideal a € A such
that ged(N (a), D) = 1.
(2) The quantity

o, (a) = (57755

does not depend on the choice of the integral ideal a € A, as long as
ged(N(a), D1) =1, and by abuse of notation it will be written xp, (A).
(3) The map A — xp,(A) defines a nontrivial character of the finite abelian
group Cl(K).
(4) We have xp,(A) = xp,(A).

Proof. (1). Let b € A be any integral ideal. By the approximation theorem
for Dedekind domains there exists o € K such that v, () = —v,(b) for every
prime ideal p above a prime number dividing p, and v, («) > 0 for all other
p. It is clear that a = ab is an integral ideal in A whose norm is coprime to
Dy, proving (1). Note for future reference that we can in fact ask for A/(a)
to be coprime to any fixed integer, not only to D;.

(2). Let a and b be ideals in A such that N'(a) and N'(b) are coprime to
Dy, so that a = Ab for some A € K such that v,(\) = 0 for all p above a
prime dividing D;. Once again by the approximation theorem we can find «
and (3 in Zg such that A = 3/a with V(«) and N (3) coprime to Dy, so that
aa = b. It follows from the lemma that

(N?im) - (A?@)) (Nl?;)) - (A?&))
and similarly (x757) = (574y)» proving (2).
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(3). Since the Kronecker symbol is multiplicative it follows from (2) that
XD, is a character of CI(K). Let us show that it is nontrivial. For ¢ = 1 and
i = 2 let p; be an inert prime in Q(v/D;), in other words (%) = (&) =

p2
—1. Since Dy and D5 are coprime, by the Chinese remainder theorem there

exists b such that b = p; (mod D;) and b = ps (mod D3). By Dirichlet’s
theorem on primes in arithmetic progression (which we will prove below; see
Theorem 10.5.30) we can find a prime number p such that p = b (mod D).
By periodicity of the Kronecker symbol we have

(5)-(3)-()

and similarly for Dy, and

3)-(F)E) -

P p/\»p '

It follows from this last equation that p is split in K = Q(v/D), and if p is
an ideal above p then N (p) is coprime to D, so that

i) = (375 = (2) =1

proving that the character xp, is nontrivial.

(4). Choose as representative of A any integral ideal a such that N (a) is
coprime to D, which is possible by (1), so that A(a) is coprime to D; and
D5. Then by (2) we have

i~ () (85) - ()~

by Lemma 10.5.16 (4). 0

Definition 10.5.18. Let K be a number field and x a character of the class
group of K. For any ideal a of K denote by [a] its ideal class. We define the
L-function Li(x,s) associated with x by the formula

_ x([a]) _ !
Li(x,s)= N()s — 11 L= x([p)N(p)=* "

aCZk p

where as usual a runs through all integral ideals of Zx and p through all
prime ideals of Z .

It is clear that

Lr(s) = Y, x(A)Cx(As).

AECI(K)
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Proposition 10.5.19. As above, let Dy and D2 be two coprime fundamental
discriminants, D = D1Dy, K = Q(\/D), and let xp, be the character of
CU(K) defined in the above corollary. Then

Lk (xp,»s) = L(xp,,5)L(XDs,$)

where the L-functions on the right-hand side are the ordinary Dirichlet L-
functions associated with the Dirichlet characters x p, .

Proof. 1t is sufficient to show that the corresponding Euler factors are the
same on both sides. Let p be a prime number. As usual we consider three
cases. If p is inert in K there is a single prime ideal p = pZ above p that is
a principal ideal, so that xp, ([p]) = 1, and in fact

The Euler factor on the LHS is thus equal to (1 — p~2%)~L. On the other
hand, since p is inert we have (%) = —1, hence (—1) ( 2) so the Euler
factor on the RHS is equal to (1 —p~%)"1(14+p~%)"1 = (1 —p~2%)" L Ifpis
split in K we have two ideals p and p above p, and

w6 = o, ) = (575 ) = (5)

-2
so the Euler factor on the LHS is equal to (1 — (%)p‘s) . On the other

hand, since p is split we have (%) = 1 hence (%) = (%), so the Euler

-2
factor on the RHS is equal to (1 — (%)p‘5> . Finally, if p is ramified in K

we have a single ideal p above p, and p | D. Since D = D1 D5 with Dy and Dy
coprime, p divides exactly one of the D;. We consider both cases. If p | Dy
then NV (p) = p is coprime to Dy; hence xp, ([p]) = (Dl) so the Euler factor

on the LHS is equal to (1 — (%)pfs) , which is equal to the Euler factor

on the RHS since (%) = 0. If p | Dy then p{ D2, and by Corollary 10.5.16
Do

(4) we have xp, ([p]) = xp,([p]) = (7)7 and since (%) = 0 we conclude

again that the Euler factors are equal. a

We can now obtain the desired result on real quadratic fields.

Corollary 10.5.20. Let Dy and Dy be two coprime fundamental discrimi-
nants, D = D1Dy, K = Q(v/D), and assume that Dy > 0, Dy < 0 hence
D < 0. Then

AD2) S (Ao (S0 )l

L(xp,,1) = ———"37
h(D2)D, A€CI(K)
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where T4 is the complex number corresponding to the ideal class A as above.
Equivalently, if we denote by ep, the fundamental unit greater than 1 of the
real quadratic field Q(v/D1) we have

—w(D2)/(h(D1)h(D2))

eov= | I S0 (e
AcCU(K)

Proof. By the proposition we have
Li(xpis) = Y, x0.(A)Ck (A 8) = L(xp,, 5) (XD, 5) -
AECI(K)

Note the trivial fact that D; > 5 and |Ds| > 3, so that |D| > 15 and
w(D) = 2. By Kronecker’s limit formula (here Corollary 10.5.9), around s = 1
we have

() = 57 (311 + CrelA) + O(s — 1)) ,
where
Or(A) = 27— 2108(2) — B 5105 (52219 P2)

Since xp, is a nontrivial character on CI(K) we have 3 4ccy(x) X1 (A) = 0,
so Lk (xp,,s) does not have a pole at s = 1 and we have

2

o 2 xo(A)10g (S )l

AECI(K)

LK(XD1? 1) =

On the other hand, by Proposition 10.5.10 (which is the simplest nontrivial
case of Dirichlet’s class number formula) we have

27Th(.D2)

L(XDQ, 1) = 7W(D2)|D2|1/2 .

Thus we obtain the formula

& o (T 1/2 T 2
1(Dy)D? Ae%l:(K)xDl(A)l g( (T4) 2 (1) ) ,

proving the first formula of the corollary. The second immediately follows
from Dirichlet’s class number formula for real quadratic fields L(xp,,1) =

2h(D1) log(ep, )/ Dy/. 0

L(XDU 1) =

Since ep, is the fundamental solution of Pell’s equation, this is called
Kronecker’s solution to Pell’s equation, expressing an algebraic number as a
combination of values of a transcendental function, which was part of Kro-
necker’s Jugendtraum.
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Example. Consider the case Dy = 8, Dy = —3, so that D = —24, K =
Q(+/—6). There are two ideal classes in Z, the corresponding 74 are /—6
and /—6/2, and the corresponding values of xp, (A) are 1 (for the trivial
class) and —1 (since otherwise xp, would be a trivial character). Since eg =
1+ v/2 we obtain the formula

21og(1 +v/2) 6 1/2 2
VA (g (VB (V)
~10g ((V8/2* [n(v=5/2)")) .

log (2 V=6)[?
log(1+V2) = -3 ( Ogg( ) 1 10g (M)) '

Since by definition n(v/—6) and n(v/—6/2) are positive real, this can also
be written

hence

n(v=6) _9—1/4 -1/6
V=) 27141+ v2)7V6

Combining with the formula given above for n(v/—6)n(/—6/2) coming from
the Chowla—Selberg formula we obtain

n(vV/=6) = 2732374 (1 4 v2) T/ 234 (D(1/24)0(5/24)T(7/24)T (11 /24) )/ *
n(vV—=6/2) = 27°/*37Y4(1 4 /2)/ 25734 (D(1/24)T(5/24)0(7/24)T (11 /24))/*

These are special cases of Theorem 10.5.15. The reader is advised to work
out for himself a few more examples (Exercise 58).

10.5.4 The Dedekind Zeta Function of Cyclotomic Fields

We now study the Dedekind zeta function of cyclotomic fields. We begin with
the following.

Proposition 10.5.21. Let m be an integer, and for all primes p 4 m denote
by fp the order of p modulo m (i.e., of the class of p in (Z/mZ)*), and set

gp = ¢(m)/ fp. Then

II zCes)=T[a—-p ),

x mod m ptm
where the product on the left is over all ¢(m) Dirichlet characters modulo m.

Proof. Let G be the group of Dirichlet characters modulo m and H,, the
group of fpth roots of unity. If x € G, then x(p) € H,. The map x — x(p)
is a group homomorphism from G to H,. I claim that this homomorphism
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is surjective. Indeed, if ¢ € H,, define ¢(p*) = ¢* for k modulo f,, where p*
denotes the class of p¥ in (Z/mZ)*. Since p has order f, in this group, this is
well defined and gives a character on the subgroup H of (Z/mZ)* generated
by p. By Corollary 2.1.17, ¢ can be extended to a character of (Z/mZ)*, and
the corresponding Dirichlet character x will thus satisfy x(p) = (, proving
my claim.

It follows from this that the kernel and all the cosets of the map x — x(p)
have cardinality g, = ¢(m)/fp; in other words, for any ¢ € H, there exist
exactly g, characters such that x(p) = ¢. Thus

I[I a-xwr)= [T Q-c)r = -1))”

x mod m CeH,

Replacing T by p~° and taking the product over p proves the result. a

Theorem 10.5.22. Let Q,,, = Q((n) be the mth cyclotomic field. We have

Go. ()= ] L),

x mod m

where x ¢ is the primitive character associated with x. In particular, if m is
a prime power we have (g, (8) = [, mod m L(X: 8). Furthermore, |d(Qy,)| =
Hx mod m J(X), where f(x) is the conductor of x.

Proof. We know from Proposition 2.1.29 that if m = 2 (mod 4) the
conductor of any character modulo m also divides m/2, and we also have
Q(Gm) = Q(¢my2), so we may assume that m # 2 (mod 4). Furthermore, the
theorem is trivial for m = 1, so we may also assume that m > 1. In that case,
Qyn, is a totally complex field of degree ¢(m); in other words, its signature is
(r1,72) = (0,6(m) /2).

Recall that if p { m, then the decomposition of pZg,, into prime ideals is
pZLg, = ngiggp pi, where e(p;/p) = fp, and f, and g, are as in the above
proposition. Thus

G () =TI T - ST = p )

plm plp pim

II Loes)=bs) JI Lixss),

x mod m x mod m

where a(s) and b(s) are finite products and quotients of expressions of the
form 1 — wp~/*, where |w| = 1 and f > 1 is an integer, and p | m. Now the
point is that (g, (s) and all the L(xy,s) have functional equations when s
goes to 1 —s, so that b(s) does also. More precisely, from above we know that

Ag,, (5) = (@) ?(s)?™ 2 (s + 1)/ 2 (g, (s)
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is invariant by s — 1 —s, and that if we set e(x) = 0 if x is even and e(x) = 1
if x is odd, we know from Theorem 10.2.14 that if we let

Ar(xss8) = A(xg, 8)f 02 = £2/25(s + e(x)) L(xs, 9)

then Aq(xs,1 —s) = Wi(xy)A(X7,s) for some complex number W(x;) of
modulus 1. Furthermore, by orthogonality of characters, if —1 Z 1 (mod m),
i.e., if m > 2, which we have assumed, we have - 4, x(—1) = 0; in other
words, there are exactly as many even as odd characters modulo m. Thus, if

we set g(s) = Ag,, (5)/ TLy mod m A1 (x5 8). we find that

(o, () ( 14(Qn)]

x mod m L(Xf7 S) Hx mod m f

where ¢(Qp) = [d(Qi)|/ T1,, mod m f(X). On the other hand, since x — X is
an involution on the group of characters modulo m, the functional equations
imply that g(1 —s) = Wg(s) for some W € C with |[W| = 1. Now the
possible zeros and poles of b(s), hence of g(s), satisfy p~/* = 1/w = exp(—it)
for some real ¢, hence have the form s = (¢t + 2kn)i/(flog(p)) for k € Z,
in any case are purely imaginary (or 0). By the functional equation, these
must also be zeros or poles of g(1 —s), which is impossible since those satisfy
R(s) = 1 instead. It follows that b(s) cannot have zeros or poles, hence since
it is equal to products or quotients of quantities of the form 1 —wp~/*, that
b(s) = 1. This is nothing else than the first equality of the theorem. Thus
g(s) = ¢(Q,,)*/?, but once more since g(1 — s) = Wg(s), this implies that
g(s) = ¢(Qp,) = 1, so that we obtain the second equality of the theorem.
We also obtain that W = 1, but this is a trivial consequence of the fact that
X — X is an involution of characters modulo m and the fact that W(x) =1
for real characters as we have seen above because of Proposition 2.2.24. O

s/2
5) = =b(s)c s/2
9(s) i (x)) b(s)e(Qm)**

Corollary 10.5.23. If p is a prime then
d(ka) _ €pkpk'_(k+1)pk71 ,
where e = —1 if p* =4 or p=3 (mod 4) and £ = 1 otherwise.

Proof. The above result is trivially true for p* = 2, so assume p* > 2. By
the above theorem and Proposition 2.1.29, whose notation we keep, we have

k) = [ reo=][rY=»",
x mod pk flp*
where

S= Y ) =5+ (1-3) X v =k - (st

1<isk
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after a short computation, proving the corollary up to sign. Furthermore,
we know that the 31gn of the discriminant of a number field is (—1)" =
(—1)?(m)/2 for m > 3. Since ¢(2k)/2 = 2F=2 is odd if and only if k = 2 and
for an odd prime p, ¢(p¥)/2 = p*=1(p — 1)/2 is odd if and only if p = 3
(mod 4), the corollary follows. O

An important theorem of Kronecker—Weber says that a number field K
is an Abelian extension of Q if and only if it is a subfield of a cyclotomic
field. Theorem 10.5.22 is in fact valid for such fields. More precisely, set the
following definition:

Definition 10.5.24. Let L be a subfield of Q((,,) and H the subgroup of
(Z/mZ)* corresponding to L by Galois theory and the canonical isomor-
phism with Gal(Q((,)/Q). The group of characters associated with L is
the group of characters of (Z/mZ)* (or equivalently, of Dirichlet characters

modulo m) that are trivial on H, in other words the group of characters of
(Z/mZ)*/H.

We then have the following analogous theorem, which we give without
proof, but is proved in the same way:

Theorem 10.5.25. Let L C Q((n) and let X be the group of characters
associated with L. We have
=TI ZGxs:9)

xeX

and |d(L)| = Tlyex £ 00)-
For instance, for a quadratic field this gives the easy decomposition
Recall that we have defined h,x and h;‘k to be the class numbers of Q((,x )

and Q((,+ )" respectively, and that we have shown that h;“k | hpr (see Section

3.5.4), so that ho = hy / h:k € Z. Thanks to the above theorem and Dirich-
let’s class number formula, it is easy to give a reasonably efficient explicit
formula for h}.

Prop051t10n 10.5.26. Let p = 3 be a prime number, let k € Zx1, and set
N = ¢(p*) =p*1(p—1). We have

k

k
- p _ N2 P
hy = oN/2—1 H L(x.0) = (=1) oN/2—1 H Bi(x)
X odd x odd

Proof. By Lemma 10.2.1, for all nontrivial characters x we have L(xy, s) =
L(x, ), so it follows from Theorem 10.5.22 that CQ(¢,e) (8) = C(8) [T 0 L(X: 8)-

The characters associated with Q((,+)" correspond to those that are trivial
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on ¢, in other words to the even characters, so Theorem 10.5.25 implies that
C@(Cpk)+ (8) = C(8) I £, x even L(X: 8). It follows that

Caie,)(5)/Cac e () = T L0 9)

x odd

Now recall that Dirichlet’s class number formula stated at s = 0 (which is
much nicer than at s = 1) states that for any number field L we have

~ _h(L)R(L) ri(L)+ra(L)—1

Cr(s) ) * ;

where h(L), R(L), and w(L) denote the class number, regulator, and number
of roots of unity of L, and (ri(L),r2(L)) is the signature of L. Setting as
usual K = Q((pr ), by Theorem 3.5.20 we know that U(K) = (G )U(K™).
The N/2 real embeddings of K lift to N/2 pairs of complex embeddings
of K. Since the elements of U(K™T) are totally real and since the regulator
matrix has order N/2 — 1, the regulator matrix of U(K ™) considered in K
will be equal to twice the regulator matrix of U(K™) considered in KT,
so that R(K) = 2V/271R(K*). Finally, it is clear that r(K) + ro(K) =
r(KY) +ro(K+) = N/2, w(K) = 2pF, and w(K*) = 2. Thus taking the
limit as s — 0 in the above quotient of Dedekind zeta functions we obtain

oN/2— 1h
el | RS

x odd

proving the first formula, and the second follows from Corollary 10.2.3 and
the fact that there are N/2 odd characters. ad

Corollary 10.5.27. Let p > 3 be a prime number, let g € Z be a primitive
root modulo p*, set N = gb(pk) =p" Y p—1), and let (y € C be a primitive
Nth root of unity. Denote by P the polynomial

P(X) = Z (¢7 mod p*) X7,

0<Gj<N

where (g7 mod p*) denotes the unique integer congruent to g7 modulo p*
the interval [l,pk [ Then

1<m<N/2

Res(P(X), XN/? +1)

— 1 2m—1
hy = T (—2pk)N/2-1 H LS
1

)N/21

(—2pF

where Res denotes the resultant of the two polynomials.
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Proof. Indeed, note that it is easy to describe all characters modulo pk_:
such a character is uniquely determined by its value on g; hence x1(¢?) = (%
defines a character modulo p that generates the group of characters modulo
p¥, so that any character is thus equal to some y,, = x¥ for a unique n such
that 0 < n < N. The character x,, is odd if and only if

N/2
—1=xu(-1)= Xn(gN/2) = C]T\Lf / )
hence if and only if n is odd. Finally, recall that since x, is nontrivial for
n # 0 we have

1 : ni
Bilxa) == > ()= Y (¢ modp*)Cy
p 1<r<ph —1 0<j<N
ptr

proving the first formula, and the second is the definition of the resultant. O

Corollary 10.5.28. With the same notation we have
1

S _W H Res(P(X), ®4(X)) ,
d|N, dtN/2

where ®4(X) denotes the dth cyclotomic polynomial.

Proof. This immediately follows from the equality

XN XL T @aux)
TOXN/2 1 d
d|N, dfN/2
together with the multiplicativity of the resultant. ad

10.5.5 The Nonvanishing of L(x, 1)

One of the main easy results on L(y,s), which will immediately imply a
weak form of Dirichlet’s theorem on primes in arithmetic progression, is that
L(x,1) # 0 for all nontrivial characters x (otherwise L(x,s) has a pole at
s = 1). Considering the importance of this result we give three proofs, of
which only two are really different.

Theorem 10.5.29. For any nontrivial Dirichlet character x we have L(x, 1) #
0.

First Proof. By what we have seen in the preceding section, we have

C@m (8) = C(S) H L(Xf: 8) ;

x mod m
X#X0
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and since both ((s) and (g,, (s) have simple poles at s = 1 and the L(xy, s)
do not have poles for x # xo, it follows that L(xy, 1) # 0, so that L(x,1) # 0
since both functions differ only by a finite nonvanishing Euler product.

The problem with this proof is that it assumes that we have proved that
Ca,, (s) has a pole at s = 1, which is not difficult but still not completely triv-
ial. It seems therefore appropriate to give another proof, which is in essence
identical, but avoids assuming any results on (g,, ().

Second proof. Set I, (s) =[] oam L(X;s) (which is of course equal to
Ca,, () up to a finite number of Euler factors, but the whole point is that we
forget this). By Proposition 10.5.21 we have

Fu(s)=[[=p )=,
ptm

where f, | ¢(m) and g, = ¢(m)/f,. Since

. s\—g, gy +k—1 1
(L=p )= :Z<p k >pkf

k>0

it follows that F,,(s) is a Dirichlet series with nonnegative coefficients. Fur-
thermore, since the L(x,s) can all be analytically continued to C (with a
simple pole at s =1 for x = x0), so can the function F,,(s).

Assume by contradiction that there exists a character x # xo such that
L(x,1) = 0. Since L(xo,s) has a simple pole at s = 1 it follows that
L(x,s)L(xo0, s), hence also F,,(s), is holomorphic in the whole of C. By Corol-
lary 10.1.17 this implies in particular that the series F},(s) converges for all
real s > 0, hence also the corresponding Euler product, which is a simple re-
arrangement of a series with positive terms (this would perhaps not be true if
s ¢ Rorif s < 0). However, it is easy to see that this leads to a contradiction.
Indeed, since f, | ¢(m) and g, > 1, for s > 1/¢(m) we have

Fu(s) = [[(t—p~ )9 = [T 90%) " = ¢((m)s) [[(1—p~ ™),

ptm ptm plm

and this is unbounded when s tends to 1/¢(m) from above, contradicting the
convergence of Fy,(s) for s > 0.

It is clear that this proof is a rephrasing of the preceding one that avoids
any assumption about (g, , and in fact that proves that (g, (s) has a simple
pole at s = 1.

Third proof. This proof is a little different. We start again from the ubig-
uitous function F,(s) above (although it now seems natural to us, it was
Dirichlet’s important intuition to understand that it is simpler to treat L-
functions modulo m all at once than individually). From its Euler product,
or the fact that it is a Dirichlet series with nonnegative coefficients, the first
one being equal to 1, it follows that for s > 1 real we have F,,(s) > 1.
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Assume first that there exists a nonreal character y such that L(y,1) = 0.
Then X # x and X is also a character modulo m. It follows that L(y, s)L(X, s)
has at least a double zero at s = 1. Since L(xo, ) has only a simple pole, this
implies that F,,,(s) would tend to 0 as s tends to 1 from above, contradicting
F,,(s) > 1. This part of the proof shows that nonreal characters are easy
to handle, and in fact it is immediate to deduce from this proof an explicit
lower bound for |L(,1)|; see Exercise 30. All the difficulty comes from the
real characters.

Thus it remains to show that L(x,1) # 0 when x is a real character
modulo m. We could “cheat,” and appeal to Dirichlet’s results on such char-
acters: we may of course assume that x is primitive, since L(x, 1) is equal to
a finite nonvanishing Euler product times L(x, 1), where x s is the primitive
character equivalent to x. By Theorem 2.2.15 such characters have the form
(%) for D = x(—1)m a fundamental discriminant. Furthermore, Dirichlet’s
theorem gives explicitly the value of L ((%), 1) in terms of a class number
and a regulator, and implies immediately that it is nonzero.

But this cheat proof is not in the spirit of the proofs that we want to
give, since Dirichlet’s theorem, while not very difficult, is not trivial. A more
proper proof is as follows. Let x be a real character. Consider the function

s)L(x, s
o)~ SOLOG)
¢(2s)
Although we will not need it, note that ¢(s)L(x, s) is equal to the Dedekind
zeta function of the quadratic field Q(v/D).
It is immediately checked that

do=T(1+3 X+ x@*

ks
P k>1 p

and since y(n) = 0 or +1 we have x(p)* + x(p)*~! > 0, so that g(s) is a
Dirichlet series with nonnegative coefficients and first coefficient equal to 1.
As usual we apply Corollary 10.1.17. If L(x, 1) = 0 then g(s) is holomorphic in
the half-plane $(s) > 1/2, hence converges in that half-plane, so that g(s) > 1
for s > 1/2. On the other hand, when s tends to 1/2 from above, ((s)L(x,s)
stays bounded and ¢(2s) tends to oo, so g(s) tends to 0, a contradiction. O

10.5.6 Application to Primes in Arithmetic Progression

Theorem 10.5.30 (Dirichlet). Let a and m be coprime integers. There ex-
ist infinitely many primes p that are congruent to a modulo m. More precisely,
the set of such primes has an analytic density 1/¢(m), where the analytic
density d(P) of a set P of primes is defined, when it exists, by

d(P) = tim =2<PP
s—1+t pr S
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Proof. First note that for s > 1 real,
log(L Z log(1 — Z
P

where S(s) = > (log(1—x(p)p~*)+x(p)p~*) converges absolutely for (s) >
1/2. It follows that the analytic behavior at s =1 of 3 x(p)p~* is the same
as that of log(L(x, s)). Thus, since we know by Theorem 10.5.29 that L(x, s)
can be analytlcally continued to C and that L(x,1) # 0 (and of course
L(x,s) # 0 for R(s) > 1 by the Euler product), it follows that

x(p (1) if X # xo
Z { log(s—1)+0(1) if x=

if x = xo -

Now by orthogonality of characters, we know that

40 if n # a (mod m) ,
¢(m) ifn=a (modm).

Therefore

1i__1 -1 X)) log(s — 1)
> > —¢(m)xr§mx() > o oy oW

p=a (mod m) p

by what we have seen above, and the result follows by taking quotients. O

Remark. It has been a long-standing conjecture that there exist arbitrarily
long arithmetic progressions of prime numbers. In other words, for any N
there should exist coprime integers a and b such that ak + b is prime for each
k such that 0 < k < N (note that this does not at all follow from Dirichlet’s
theorem). This was proved in 2004 by Green and Tao [Gre-Tao].

10.5.7 Conjectures on Dirichlet L-Functions

We have already seen, and will see again below, that there are many other
types of L-functions than Dirichlet L-functions, and for those L-functions
even basic questions such as analytic continuation are still conjectural. I
would like to point out that even for Dirichlet L-functions some outstanding
conjectures remain. Evidently the most famous one is the extended Riemann
hypothesis (ERH), a generalization of the Riemann hypothesis for ((s): it
states that the nontrivial zeros of L(x,s) in the sense of Definition 10.2.16
are such that $(s) = 1/2. Since we know from Exercise 67 that L(y,s) # 0
for R(s) = 1, it follows that the nontrivial zeros are exactly those s such that

0<R(s)<1
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The ERH can in fact be split into two parts, the first part stating that
all nonreal zeros s such that 0 < R(s) < 1 are such that R(s) = 1/2, and
the second part stating that L(y,s) does not vanish for 0 < s < 1, except
perhaps at s = 1/2. In fact a slightly stronger conjecture asserts that L(x, s)
does not vanish for 0 < s < 1, including at s = 1/2. Note that this stronger
conjecture is perhaps more rash since there do exist Artin L-series that vanish
at s =1/2.

On the first part, which exactly generalizes the RH for ((s), although a
huge amount of work has been done on this conjecture, which is one of the
most important of all mathematics, nothing much can be said (there are many
reasons to believe that the conjecture is true, although some people believe
the contrary). The second part, stating that L(x,s) # 0 for 0 < s < 1, is
of a different kind, although probably just as difficult. Such a real value of s
(which probably does not exist) is called a Siegel zero.

First of all, for a given x it is not difficult to check: indeed, it has been
checked for odd real characters up to conductor 3 -10% (see [Watk]), for even
real characters up to conductor 10°, and for all characters up to conductor
102 at least; see Exercise 31 for a simple approach.

Second, it has been shown by Conrey and Soundararajan in [Con-Sou]
that a positive proportion of real characters y are such that L(x,s) # 0 for
0<s< 1.

10.6 Science Fiction on L-Functions

I thank D. Zagier for considerable help in writing this section, but of course
I am solely responsible for remaining errors or inaccuracies.

In my opinion, conjectures about special points and special values of L-
functions are the most beautiful in all of mathematics. In this section, I
would briefly like to describe the landscape, in very imprecise terms. Thus
the reader is warned that nothing is defined, and even that what is defined
is imprecise and/or misleading. The theory is however too beautiful to be
overlooked, even in a graduate-level book such as this one.

First of all, we have to give some idea of what an L-function is. It is
important to understand that there are (at least) two levels of L-functions,
each with their own difficulties, although the second level is almost totally
out of reach at present (but it is the most fascinating and important one).

10.6.1 Local L-Functions

To simplify, let us say that the first-level (or local) L-functions correspond
to finite fields, or to a p-adic field whose residue field is the finite field in
question. The typical example of such an L-function is the Hasse—Weil zeta
function that we have described in Theorem 2.5.26. A more general example
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is the local zeta function of an arbitrary algebraic variety, which is defined in
the same way as for curves. A special case is the Fuler factor of the Dedekind
zeta function of a number field, where p~° is replaced by T. Indeed, let us
keep the notation of Theorem 2.5.26, where (¢ is defined in the same way for
any algebraic variety.

Lemma 10.6.1. Let P(X) € Z[X] be an irreducible monic polynomial, and
K = Q(0), where 0 is a root of P(X). If p is a prime number such that
p? t disc(P), then the Hasse—Weil zeta function of the 0-dimensional variety
defined by P(X) = 0 over F,, is the Euler factor at p of (x(s), where p~* is
replaced by T .

Proof. If p? { disc(P), then a fortiori p does not divide the index [Zf :
Z[0]], so the factorization of pZy into prime ideals mimics that of the poly-
nomial P(X) modulo p, i.e., if P(X) = H1<]<g P;(X)% with deg(P;) = f;
and the P; monic, then pZx =[], ¢, pj with f(p;/p) = f;. It follows that
the local factor at p of (k(s) is equal to ngjgg(l —p~fi%)~1 and replacing
p~* by T gives []) <, (1 - R

On the other hand, we must compute the number N(p") of solutions of
P(X) =0inFpy . Since P(X) = H1<]<g P;(X)% and the P;(X) are pairwise
coprime, we have N(p") = 37, ;< , N;(p"), where N;(p") is the number of

roots of Pj(X) in Fpn. Since P;(X) is irreducible, the theory of finite fields
tells us that N;(p™) =0 if f; t n, and N,;(p") = f; if f; | n. Therefore

Sk

1<i<y
jn

It follows that

'l . f]
I AR ID I LD IDIE S I

n>1 n>11<j<g 1<i<g k=1 1<i<yg
filn
so that (o (T) = [[,¢;¢,(1 - T%)~1, proving the lemma. O

Thus, to summarize, first-level zeta functions correspond to the local sit-
uation, where only one prime is involved (the characteristic of the finite field
or of the residue field).

In this case, the definitive result is the extraordinary work of Deligne
that proves the generalization of Theorem 2.5.26 to arbitrary nonsingular
projective varieties. Thus, the first result, initially proved by Dwork, is that
the local zeta function is always a rational function of T'. The second result
concerns the degree of its numerator and denominator, and the local func-
tional equation that it satisfies when T is changed into 1/(¢%T) (note that if
T = q* then 1/(¢%T) = ¢~(?=*), so the local functional equation relates s
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and d—s). But by far the most difficult result to prove is the third, saying that
the complex modulus of the reciprocal roots of the zeta function is exactly
equal to ¢"/? for specific integers k;. As we have seen with the Weil bounds,
this is also the essential ingredient that we need to estimate the number of
solutions of Diophantine equations over finite fields.

Deligne proved this by showing that, in accordance with the predictions
made by Weil, these reciprocal roots have an interpretation as the eigenvalues
of the “Frobenius map” z — x9 acting on an appropriate cohomology group
of the variety over F,,.

The refinements of Deligne’s result have mainly dealt with finding corre-
sponding estimates for singular varieties (which are unfortunately unavoid-
able in actual practice), and also applications to other problems such as the
proof of the Ramanujan conjecture, also by Deligne: he shows that it can be
related to local L-functions of certain varieties.

In any case, even though many problems remain to be solved, the local
theory for a given variety is well understood.

10.6.2 Global L-Functions

In rough terms, a global L-function is obtained by taking the product of
local L-functions corresponding to all prime numbers p, with the variable T'
replaced by p~* in the factor corresponding to p. The prototypical example
is the Riemann zeta function ((s) = [[,(1 — p~*)~! and more generally the
Dedekind zeta function of a number field by the lemma that we have proved
above.

Thus, we can also define the global L-function of a variety. However, many
other L-functions of global type exist, not always “visibly” coming from a
variety: for instance L-functions associated with modular forms as already
mentioned above, Artin L-functions, etc. In the past decade, all this has
been included in a vast theory of objects called “mixed motives” on which
cohomology theories are defined, hence corresponding local and global L-
functions.

In any case, just as there were three important conjectures concerning
local L-functions (now all proved), there are now four conjectures concerning
global L-functions, but except for some of these conjectures for specific classes
of global L-functions, essentially nothing has been proved, as we shall see.

The first conjecture is the existence of analytic continuation to the whole
complex plane of the L-series, with a possible finite number of poles at specific
points. Indeed, all the L-series occurring in nature, say all motivic L-series,
whatever this means, converge absolutely for $(s) sufficiently large. The con-
jecture is that they can be meromorphically continued to the whole complex
plane with a finite number of poles.

The second conjecture is that this continued L-function should satisfy a
functional equation of a similar type to the ones that we have already seen:
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after multiplication by a finite number of exponential functions and gamma
factors of the form I'(as + b) with positive rational a (in fact almost always
integral or half-integral) and complex b, one obtains a A-function that should
satisfy an equation of the type A(X,d—s) = WA(X™,s), where X* is “dual”
to X in a certain sense, d is an integer, and W is a complex number of
modulus 1 (see Theorem 10.2.14 for a typical example).

We have already proved these two simplest conjectures for the Riemann
zeta function and for Dirichlet L-series, as easy consequences of the Poisson
summation formula. But already for the Dedekind zeta function the proof
is not at all easy, and in fact we have not given it in this book. As we have
mentioned, there are two, related, proofs. The original one, due to Hecke, uses
generalized theta functions and Poisson summation formulas, and is quite
painful, although completely explicit. A more recent one due to Tate involves
slightly simpler computations, and has the great advantage of explaining each
of the local factors including the gamma factors individually as part of the
global function, hence is considerably more elegant, although not that much
shorter. In any case, the proof is not easy.

For Artin L-functions, the situation becomes already much more con-
jectural. A beautiful (and not too difficult) result of R. Brauer says that
these L-functions can be analytically continued to the whole complex plane
to meromorphic functions (with possibly an infinite number of poles) with
the expected functional equation. On the other hand, apart from very special
classes (including of course the Dirichlet L-functions, which are special cases),
the fact that they can be holomorphically continued (with a finite number
of known poles) is completely conjectural. A large body of theory called the
Langlands program is intimately related to the Artin conjecture. In the past
30 years, only two (almost three) highly nontrivial cases of the Artin con-
jecture have been proved, using the complex machinery of the Langlands
program: recall that a finite subgroup of PSLy(C) is either cyclic, dihedral,
or isomorphic to Ay, S4, or As (corresponding to the platonic solids); if the
projective image of an odd irreducible 2-dimensional representation is cyclic
or dihedral the Artin conjecture is easy to prove using the theory of induced
characters. On the other hand, the A4 and Sy cases are considerably more
difficult, and were solved only in the 1980s by Langlands and Tunnell. In
addition, considerable progress was made in 2000 on the A5 case by Buzzard
et al., explaining the “almost three” above. This incredibly small number of
solved cases shows the difficulty of the problem.

For global zeta functions of varieties of strictly positive dimension, the very
simplest case is that of elliptic curves over Q (i.e., genus 1). The analytic
continuation and functional equation of their L-series is one of the major
achievements of the second half of the twentieth century: it is the remarkable
work of Wiles, completed by Taylor-Wiles and proved in complete generality
by Breuil, Conrad, Diamond, and Taylor in [BCDT].



10.6 Science Fiction on L-Functions 243

Considering the difficulty of the above problem in the simplest case of
elliptic curves, it goes without saying that for more general L-functions of
varieties the problem is completely open.

On the other hand, some L-functions can naturally be extended analyti-
cally to the complex plane with a functional equation. This is for example the
case of L-functions attached to modular forms. In that case the two above
problems are easy. In fact, it is by showing that the L-function of an elliptic
curve over QQ is equal to the L-function of a modular form that Wiles et al.
prove their result.

We come now to the third conjecture about global L-functions: the
(global) Riemann hypothesis. It says the following. Define a A-function to
be an L-function of one of the above types multiplied by its exponential
and gamma factors so that it satisfies a functional equation when s goes to
1 — s. The Riemann hypothesis states that the only zeros of a A-function
are on the line (s) = 1/2 (A-functions do not have any trivial zeros since
they are canceled by the gamma factors; note also that the normalization
of the functional equation to be s — 1 — s is not natural. For example, the
A-function of an elliptic curve satisfies a natural functional equation when
s+ 2 —s, and it is only by setting A;(s) = A(s + 1/2) that one recovers a
functional equation when s — 1—s.) Another way to say this is the following:
if A(p,d — s) = WA(p, s), the interval [0, d] is called the critical strip. Then
the conjecture is that the zeros of A should be exactly in the middle of the
critical strip, i.e., such that R(s) = d/2.

This is perhaps the most famous conjecture in mathematics, and you can
earn 1 million US dollars by proving it. In my personal opinion, however,
it is not as nice as the next one (which, by the way, can also earn you 1
million dollars, since these are two of the seven Clay prize problems). In any
case, this global Riemann hypothesis is not known for even the simplest L-
function, i.e., the Riemann zeta function. Note, however, that some other
L-functions having an Euler product and a functional equation, the Selberg
zeta functions, are known to satisfy the corresponding Riemann hypothesis,
but unfortunately they do not shed any light on our Riemann hypothesis since
there seems to be no relation between the two types of zeta function. One
of the reasons is that Selberg zeta functions are complex functions of order
2, while usual L- and (-functions have order 1 (see definitions and examples
preceding Lemma 10.7.5).

The fourth conjecture concerns special values of L-functions. Following
Deligne we define a special point of an L- or A-function as follows. If X is
some algebro-geometric object, for instance a representation, an algebraic
variety, or more generally a motive, we assume that we have a natural global
functional equation A(X,d — s) = WA(X™,s), where A(X,s) = g(s)L(X, s),
|[W| =1, X* is another object “dual” to X, and ¢(s) is equal to a product
of exponential and gamma factors. A special point is then an integer k € Z
such that g(k) and g(d — k) (which are the gamma factors of A(X, k) and
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A(X™*,d — k) respectively) do not have poles. In other words, they are the
integers such that both L(X, k) and L(X*,d — k) can be computed from the
corresponding value of A by division by the gamma factor. For instance, for
the Riemann zeta function the special points are the strictly positive even
integers 2, 4, 6,. .., and the negative odd integers —1, —3, —5,. ... The strictly
negative even integers are not special points.

For any such X and each special point k& Deligne associates a number
wx,k 7# 0, which is a period, in other words the integral of some algebraic
differential form over some cycle, and he conjectures that A(X, k)/wx 1 is an
algebraic number. For instance, in the case of the Riemann zeta function we
can choose wx , = 7% if k is positive even, and wx i = 1 if k is negative and
odd.

Deligne’s conjecture has been proved in many cases, and has been verified
numerically in many others, for instance for higher symmetric powers of L-
functions associated with modular forms.

In some cases it is also possible to state precise conjectures giving ex-
plicitly the algebraic number occurring in Deligne’s conjecture. This is for
instance given by the Lichtenbaum conjectures; see more on this below.

An important generalization of the above is to compute the order of van-
ishing and the leading term of a “motivic” L-function at an integer s € Z,
this time not necessarily special. A very general “conjecture” is as follows:
if an L-function vanishes to order r, say, at some s € Z, there should ex-
ist a natural finitely generated abelian group of rank r closely related to
the L-function, and the leading term in the expansion around s should also
have some explanation in terms of this group and others. To understand this
general philosophy, the best approach is to give three examples.

The first and most classical one is the behavior of the Dedekind zeta
function (r(s) of a number field F' at s = 0. We have computed the order of
the zeros at integers in Corollary 10.5.2, and we have seen that at s = 0 there
is a zero of order r; + o — 1, which is exactly the rank of the unit group of
F, so that is the group in question. We have also given the leading term in
Theorem 10.5.1.

A second example, which generalizes this, deals with the behavior of (z(s)
at negative integers: one can define so-called higher K-groups K, (F) for
n > 0 such that in particular, Ko(F) ~ Z @ CI(F) and K;(F) ~ U(F).
A theorem of Borel tells us that for k& > 1, the group Ky (F) is a finite
abelian group, that Ko_1(F) is a finitely generated abelian group, and that
the rank 7 of Kop_1(F') is exactly equal to the order of vanishing of (r(s)
at s = 1 — k, in other words r; + ro when k > 3 is odd, and ry when
k is even. In addition, Ko,—1(F) ® Q is naturally a lattice in R", and its
covolume is equal to (g (k). Finally, the Lichtenbaum conjectures state that
if F' is totally real, for k¥ € Z>; the rational number |(p(1 — 2k)| is equal
to | Kok (F)|/|Kak+1,50rs(F)|, where we denote by Kopi1 tors(F) the torsion
subgroup of Kog11(F).
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A third example is that of the global L-function attached to an elliptic
curve over Q. In that case we have A(s) = (27) ~*T'(s)L(s), and the functional
equation is A(2 — s) = £A(s) for some sign +. At s = 1, which is the
center of the critical strip, there may be a zero (there is always one if the
sign of the functional equation is —), of order r, say. The beautiful Birch—
Swinnerton-Dyer conjecture (see Conjecture 8.1.7), also a 1 million dollar
problem, says that r should be equal to the rank of the group of rational
points of the curve. As for the preceding examples, the BSD conjecture also
gives a conjectural value for the leading term. After remarkable work by
Coates—Wiles, Gross—Zagier, Kolyvagin, Rubin, and others, it can reasonably
be said that we understand quite well what happens for r = 0 and r» = 1 (see
Theorem 8.1.8 and Corollary 8.1.9). On the other hand, for » > 2 not a
single example has been proved, although the numerical evidence (which is
very easy to compute; see Section 8.5) is absolutely overwhelming.

Work of Beilinson and Scholl made the above vague conjecture completely
precise by defining an actual group and regulator map of which one can
conjecture (and in some cases numerically check) that the rank is finite and
equal to the order of vanishing of the L-function, and that the covolume
corresponds to the leading term.

The conjectures mentioned above concerning special values, orders of van-
ishing, and leading terms, hence including the conjectures of Beilinson, Bloch—
Kato, Birch-Swinnerton-Dyer, Stark, Zagier, and others, form in my opinion
the most beautiful (and important) set of conjectures in the whole of math-
ematics.

For complete details on the material of this section, I refer to [Hul] and
[Rap-Sch-Sch].

10.7 The Prime Number Theorem

The prime number theorem (PNT for short) states that the number w(x)
of prime numbers less than or equal to z is asymptotic to z/logx. This
was observed experimentally by Gauss and Legendre in the eighteenth and
early nineteenth centuries, and a program to prove the result was put for-
ward in a famous paper by Riemann on the zeta function in 1859. However,
it was not before 1896 that the result was finally proved independently by
Hadamard and de la Vallée Poussin, based on Riemann’s remarkable insights,
using similar methods of complex analysis. Since then many other proofs
have been found, including a so-called “elementary” proof by P. Erdos and
A. Selberg, i.e., one not using complex analysis, but it is much less natural
than the complex-analytic ones. Furthermore, the PNT can be stated with
an error term that can be reasonably estimated only with complex-analytic
techniques. In this section we will present two proofs. The first one is essen-
tially due to D. Newman [New], as rewritten by D. Zagier. It uses an original
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“Tauberian theorem,” and as with most proofs of this type, it cannot give
an error term. The second proof is due to H. Iwaniec [Iwa-Kow], and gives
a weak but nontrivial error term, and I thank E. Kowalski for showing it to
me.

10.7.1 Estimates for ¢(s)

All results on the PNT come from the knowledge of zero-free regions of {(s).
In this subsection we give some elementary but useful estimates for ((s) in
some regions of the complex plane, which are much more than we need for
the versions of the PNT that we will prove. As always for s € C we use the
notation s = o + it, where o is the real part and ¢ the imaginary part. Since
all the meromorphic functions f(s) that we use satisty f(5) = f(s) we may
always assume t > 0, and to avoid trivial problems we will in fact implicitly
always assume that ¢ is sufficiently large.

Proposition 10.7.1. For any fized k > 0 we have (¥ (s) = O(log(t)**1)
uniformly in the region 1 —C/log(t) < o < 2, and in particular for s = 1+it
(recall that we also assume t > to > 0).

Proof. By the Euler-MacLaurin formula for n = 1 we have for ¢ > 0,
1 Ni=s N—s < By({t
vyl s A
oo ms 2 N tst

Differentiating k times (or applying Euler-MacLaurin directly to (log(m))* /m*)
we obtain

N k ;
log )* log(N)* 1—s log(N)?
(-1 =2 - s PR D gl(s — 1)k—i+1
m=1 j=0
< log(t)*=1B; ({t
+ /N o8 () pres) 1({t)) (k — slog(t))dt .

In the given region an easy estimate gives

(1)) = 3 loglm)* (N”(tloguv))k)

th+1

m=1

o (ot ko +los(N))

Finally, if mm < ¢t we have [m™%] = m™7 < m—(1=C/log(t)) < K/m for some
constant K. By choosing N = [¢], it is immediate that we obtain the desired
estimate. a

The basis of the initial proofs of the PNT is the first statement of the
following lemma.
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Lemma 10.7.2. For all c > 1 and t € R we have
C(0)?[¢(o +it)[*|¢ (o + 2it)| > 1

and

(o) (o it) | Co+2i)
" (3 ORMCED) <<a+2z't>) g

Proof. By expanding the logarithm of the Euler product defining ((s) it
is clear that ((s) = exp(D>_, >y, p~**/k), hence that

cos( k:t log
log(C()) = 2. —
p k=1
The trick is to note that we have the positivity condition
3+ 4cos(f) + cos(20) = 2(1 + cos(6))* =0,

so the logarithm of the first expression of the lemma is equal to

Z Z 3 + 4 cos(ktlog(p)) + cos(2ktlog(p))

kpkcf 2 0 ’

p k>1

proving the first inequality. The second follows in the same way since the
logarithmic derivative of log |((s)| is equal to R({'(s)/{(s)) and the derivative
of p~Fs is (—klog(p))p~*s. O

Corollary 10.7.3. For o > 1 we have

1 log(t)*/*
C(o +1it) O((J—1)3/4) '
Proof. Since {(0) = 1/(c—1)40(1), by the lemma and Proposition 10.7.1
we have |((o +it) =% = O(¢(0)3log(t)) = O((o — 1) log(t)). O

Corollary 10.7.4. The function ((s) does not vanish in the closed half-
plane R(s) = 1, and in particular on the line RN(s) = 1.

Proof. Since the Euler product is convergent for $(s) > 1 and none of
its terms vanish, we know that ((s) # 0 for (s) > 1. Now assume by
contradiction that ((1 + itg) = 0 for some t3 € R. The function (s + itg)*
thus has a zero of order greater than or equal to 4 at s = 1. Since the function
¢(s)? has a pole of order exactly equal to 3 and ¢(s+2it) has no pole at s = 1,
it follows that ((s)3¢(s +ito)*¢(s + 2ito) tends to 0 as s tends to 1, and this
contradicts the first inequality of the lemma. ad

In fact, using the same method it is easy to show that {(s) has no zeros
in a region of the form o > 1 — C/log(t)? and to give a uniform upper
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bound for 1/¢(s) in that region; see Exercise 64. However, for our purposes
the above corollary is sufficient. In addition, it is easy to obtain much better
estimates for 1/((s) (which we will not need for the versions of the PNT that
we prove here), but for this we need to appeal to some additional complex
analysis. Recall that an analytic function f(s) is said to be of order k (where
k € Zso) if it is an entire function (i.e., holomorphic in the whole of C,
although it is trivial to allow a finite number of poles) such that for all
e > 0 we have log(|f(s)|) = O(|s|**¢). The vast majority of functions in
current use have order 0 or 1 (polynomials being of order 0), for instance
the gamma function. Barnes’s multiple gamma functions (see Exercise 71
of Chapter 9) and Selberg’s zeta function mentioned above are examples of
functions of higher order. For L-series with functional equation it is a general
principle that they have the same order as the corresponding gamma factor.
For instance:

Lemma 10.7.5. The functions (s—1)((s) and s(1—s)7=%/T'(s/2)¢(s) have
order 1.

Proof. Indeed, for 0 > 0 by the integral representation we have for a
suitable constant A, |T'(s/2)| < |T'(¢6/2)] = O(eA71°8(?)), and on the other
hand, Euler-MacLaurin immediately gives for o > 1/2, |s — 1] > A, {(s) =
O (|s| [ ¢73/2dt) +O(1) = O(|s]). It follows that s(1—s)7~*/*T(s/2)¢(s) =
O(eAlslloglsly for ¢ > 1/2, |s — 1| > A, and since by the functional equation
it is invariant under s +— 1 — s and has no poles, it is an entire function of
order 1. The result for (s — 1){(s) follows. O

The result from complex function theory that we need is Hadamard’s
factorization theorem:

Theorem 10.7.6. Let f(s) be an entire function of order at most equal to
k € Zxo. For all s € C we have the absolutely convergent product

F) =t O (12 e | 3 B2

’ 1<k !

where r is the order of f at s =0 (r =0 if f(0) #0), Px(s) is a polynomial
of degree less than or equal to k, and the product is over all zeros of f(s)/s"
repeated with multiplicity.

Applying this to ((s) gives the following.

Corollary 10.7.7. Set b = log(2w) — 1 — /2. Then for all s € C we have
the convergent product

bs

0= (- 5) <
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the product being over all nontrivial zeros of ((s) (i-e., such that 0 < R(p) <
1).

Proof. We apply Hadamard’s theorem to the function
F(s) = 5(1 = s)m=/2(s/2)C(s) = 2(1 = $)n~*/2D(s/2 +1)C(s) -

Since the zeros of ((s) for s = —2k, k € Zx, are killed by the poles of
I'(s/2+ 1) and the pole of ((s) is killed by 1 — s, it follows that the zeros of
f(s) are the nontrivial zeros of ((s). Thus for suitable constants ag and a;

we have
f(s) = ape™® H (1 — S) e’
’ P

so that
bs

= arer il (1-5)"

for b = a; + log(m)/2. We deduce that ag = 2¢(0) = —1, and by logarithmic
differentiation that

=) _,_ 1 _ s/2+1 +Z(

(s) s—1 [(s/2+1)
so that () )
o T T
Using ¢’(0) = —log(2m)/2 and T'(1) = —v we obtain b = log(27) — 1 — /2.

O

We are now in a position to give a much better zero-free region than that
given by Exercise 64.

Theorem 10.7.8. There exists a constant C' > 0 such that ((s) # 0 for
t > tg in the region

C
log(t)

Proof. Here we will use the second inequality of Lemma 10.7.2. Fix some
o > 1 (we will see at the end of the proof how to choose it appropriately).
Since (o) = 1/(c — 1) + O(1) and ('(¢) = —1/(c — 1)* + O(1), we have
—('(0)/¢(0) < 1/(6—=1)4+0O(1). From the above corollary and trivial bounds
on I'(s)/T'(s) we also have

CGs) _ (!
-8 = Ottos(o) Z( 1),

R(s) >1-—

s—=p P

so if we write p = 4+ 4y with 0 < 8 < 1 and v € R we have
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- <C<((ss))) = Ollog(®) = 3. ((a e e R i72> |

p

Since 0 > 1 > 8 > 0, we deduce that for all s € C, —R({'(s)/((s)) <
O(log(t)) with t = J(s). Now fix some nontrivial zero pg = By + i79. Then
if s = o + 47 (same imaginary part but real part o > 1) we evidently have
the stronger inequality —R(¢'(s)/((s)) < O(log(yo)) — 1/(c — Bp). Putting
all this together in the second inequality of Lemma 10.7.2 applied to t = g

we obtain
3 4

o—1 o-— Bo
in other words 3/(c —1) —4/(c — ) > —Alog(~p) for some constant A that
we may choose strictly positive (since increasing A gives a worse estimate).
Solving for 1 — By gives

+ O(log(7)) = 0,

1 — (o —1)Alog(o)
3/(c — 1)+ Alog(vo) -

Choosing for instance 0 — 1 = 1/(2Alog(p)) (this is why we must have
A > 0), we obtain 1 — 3y > 1/(14Alog(v0)), proving the theorem. O

1—05 >

Important Remarks. (1) Using a slight refinement of this proof, it is not
difficult to show that in the given region we have 1/((s) = O(log(t)), and
this zero-free region can be shown to lead to the PNT in the form

7(x) = Li(z) + O(x exp(—clog(x)'/?))

for some ¢ > 0, where Li(x) is as defined before Corollary 10.7.20 below.

(2) With much more difficulty one can still improve the zero-free region
hence the error term in the PNT. The best-known result is as fol-
lows. Set g(t) = log(t)?/3log(log(t))*/3. There exists C' > 0 such that
C(s) = O(g(t)) and 1/¢(s) = O(g(t)) uniformly for o > 1 — C/g(t), and
in particular {(s) # 0 in that domain. This result is due to N. M. Korobov
and I. M. Vinogradov, and is described for instance in [Ell]. It leads to
the best known error term for the PNT:

m(x) = Li(z) + O(x exp(—clog(x)3/5 log(log(as))*lﬁ))

for some strictly positive constant c¢. This result has remained unchanged
for almost half a century, and even the tiny log(log(z))~'/° factor has
not been improved.

10.7.2 Newman’s Proof

For s € C and = € R we set
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D(s) = Z 1(;gsp and 6(z) = Zlogp .

P p<x
The proof proceeds through a series of lemmas.

Lemma 10.7.9. The function ®(s) —1/(s — 1) is holomorphic in the closed
half-plane R(s) > 1.

Proof. 1t is clear that the series for ®(s) converges absolutely for f(s) > 1
and normally for R(s) > 1 + ¢ for any fixed € > 0, hence defines an analytic
function in R(s) > 1. For R(s) > 1 the absolutely convergent Euler product
representation for ((s) implies that

_dls) _ ) 10gp1 —a5)+ Y logp

C(s)  *p° - =1

The rightmost sum converges absolutely for R(s) > 1/2, proving that ®(s)
extends meromorphically to R(s) > 1/2 with poles only at the pole s = 1 of
¢(s) and at the zeros of ((s). At s = 1 we have a simple pole with residue
1. Furthermore, by Corollary 10.7.4 we know that {(s) does not vanish for
R(s) > 1, so that ®(s) — 1/(s — 1) is holomorphic for R(s) > 1. O

Lemma 10.7.10. We have 6(z) = O(x).
Proof. For a positive integer n we have
2n 2n
2n __ _ 0(2n)—0(n)
oo 3 ()00 L
0<k<2n n<p<L2n

Since 0(x) changes by O(log(z)) when x changes by a bounded amount, we
deduce that 6(z) — 0(x/2) < Czx for any C' > log2 and = > z¢ = x0(C).
Summing this inequality for z,x/2,...,2/2", where x/2" > z9 > x/2" "1, we
obtain #(z) < 2Cz 4+ O(1), proving the lemma. O

Lemma 10.7.11. The integral
o0 0 _
/ bla) =z,
1 X

Proof. For (s) > 1 we have by Stieltjes integration

B(s) = logp _ /100 di(f) = s/loo z(ﬁ do = s/ooo e=0(e) dt .

s
s P

CONVETgES.

A reader not familiar with Stieltjes integration can prove directly (but slightly

more painfully) using Abel summation the equality ®(s) = s [~ 6(z)/z**! da.

The last equality above of course follows from the change of variable x = ef.
Assume for the moment the following analytic theorem.
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Theorem 10.7.12. Let f(t) be a bounded and locally integrable function for
t >0, and assume that the function g(z) = [ f(t)e=*" dt (defined for R(z) >
0) extends to a holomorphic function for R(z) > 0. Then [;° f(t)dt converges
and is equal to g(0).

Consider the function f(t) = 6(e')e~* — 1. By Lemma 10.7.10, f(¢) is
bounded, and it is clearly locally integrable. Furthermore, the corresponding
function g(z) is equal to ®(z+1)/(z+1) — 1/z by the above formula. Lemma
10.7.9 tells us that g(z) extends into a holomorphic function for R(z) > 0.
Thus the hypotheses of the theorem are satisfied, so we deduce that fooo ft)dt
converges. Making the change of variable = e proves Lemma 10.7.11. O

We will prove the above theorem later. We now have essentially all the
ingredients to finish the proof.
Lemma 10.7.13. 0(z) ~ z.

Proof. Assume that for some A > 1 there exist arbitrary large x such that
O(x) = Az. Since 0(x) is nondecreasing, we have

Az _ Az _ A _
/ 6(t) tdt>/ A tdt:/ AU >0
T t2 x t2 1 ’LL2

for such x, contradicting the convergence of the integral from 1 to co. Similar
reasoning shows that the existence of A < 1 such that there exist arbitrarily
large x such that 6(x) < Az leads to a contradiction. O

Theorem 10.7.14 (Prime number theorem). If w(z) denotes the num-
ber of prime numbers less than or equal to x we have

()

X

~ logz *
Proof. We have
O(x) = Zlogp < Zlogw =7(z)logx .

PST PST
On the other hand, for any ¢ > 0,
0(x) > Z logp > Z (1-e)logz = (1—¢)logz (w(z) + O(z' 7)) .
o= <p<a ol <p<a
It follows from the first inequality that
0(x) 0(x)

> liminf —* =lim —= =1
T T

1
lim inf ﬂ'(x)y

and from the second that
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1 1
lim sup () 98T < I
x —¢

b

and since € > 0 is arbitrary, that

1
lim sup W(%)ﬁ

<1,
so that lim w(z) log z/x exists and is equal to 1. O

It remains to prove the purely analytic Theorem 10.7.12, which is called
a Tauberian theorem.

Proof of Theorem 10.7.12. For T > 0 set gr(z fo e~ #t dt. This
defines a holomorphic function for all z. We must shovv that hmTHoo gr(0) =
9(0).

Let R be large and let C' be the boundary of the region
{zeC/ |z| < R,R(2) > -6},

where 0 is chosen small enough (depending on R) so that g(z) is holomorphic
in and on C' (J exists since analyticity on f(z) > 0 implies analyticity on an
open set containing R(z) > 0). Thus by the residue theorem

1
2w

dz

90) = 9r(0) = 5= [ (a(:) —gr(@)e T 1+ 2/

Set B = sup;>|f(t)], which exists since f is bounded. On the semicircle

Cy =Cn{z/ R(z) > 0} we have

—R(2)T
tht‘ B/ e | dt =
( )

l9(2) — gr(2)| =

and
T (1 + 2% /R?) /2| = e%(z)TLi(;) ;

since |1 + 22/R?| = 2cos() = 2R(z)/R for z = Re. Thus on C, the
integrand is bounded (in absolute value) by 2B/R?, so the contribution to
9(0) — gr(0) from the integral over C is bounded by B/R. For the integral
over C_ = CN{z/ N(z) < 0} we consider ¢g(z) and gr(z) separately. Since gr
is entire, the path of integration for the integral involving gr can be replaced
by the semicircle C* = {z € C/ |z| = R, R(z) < 0}, so the contribution
coming from the integral involving g7 over C” is bounded in absolute value
by B/R exactly as before, since for %(z) < 0

R(z)T
<B / le™*!|dt = .

¢t W RGI

\QT \—
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Finally, the remaining integral involving g(z) over C_ tends to 0 as T — o0
since the integrand is the product of the function g(z)(1 + 22/R?)/z, which
is independent of T, by the function e*”, which tends to zero rapidly and
uniformly as " — oo on compact subsets of the half-plane R(z) < 0. Hence
limsups_, . [9(0) — g7(0)] < 2B/R. Since R is arbitrary, this finishes the
proof of the theorem. ]

Remark. The above proof can be extended to Dirichlet L-functions: using
exactly the same method as above and combining all L-functions correspond-
ing to a given modulus, it is easy to prove that L(,s) does not vanish for
all s € C such that R(s) = 1. From this result, as above one can show
the stronger statement that primes congruent to a modulo m have density
1/¢(m) among all primes in the ordinary sense, i.e., when counting up to x;
see Exercise 67.

10.7.3 Iwaniec’s Proof

This proof has a different style from the above proof in that it does not use
a Tauberian theorem, and as a consequence has the advantage of giving a
nontrivial error term.

We begin by noting the following formula from elementary complex anal-
ysis:

Lemma 10.7.15. For all y > 0 we have for any o > 1,

1 S
max(log(y),0) = / y—2 ds,
R

o ﬂ (s)=0 S
the integral being on the vertical line R(s) = o.

Proof. Indeed, the given integral is trivially less than O(y?). Thus, if y < 1
it is immediate to check that we can shift the line of integration to the right
without changing the value of the integral, and as o tends to +oo, y? tends to
0. On the other hand, if y > 1 we shift the line of integration to some o < 0,
catching a double pole at s = 0 with residue log(y). We now let o tend to
—o0, and the residue formula tells us that the integral is equal to log(y). O

We now introduce the following two functions, where k € Z> and « > 0:

Gels) = 3 7 ogom)* and

m>1

Fy(z) = Y pu(m)(log(m))* log(w/m)

1<m<z

= 3" u(m)(log(m))* max(log(x/m),0) .

m>1
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The factor max(log(xz/m),0) is a smoothing factor, and is a very common
tool in analytic number theory (we have already used a similar ideal in the
definition of the function f () used to prove Voronoi’s error term in the circle
problem, see Section 10.2.6). We will remove it below.

Lemma 10.7.16. Let o > 1 be fized. There exists s with R(s) = o such that
|Fr(@)] < 27| G(s)l]s| 712
Proof. From the above lemma we have

Fi(z) = 1 2*Gu(s)
um R(s)=c 82 ’

and since |G (s)| is bounded by the convergent series Em21(log(m))k/m",
we have

1 |ds|
|Fr(x)] < —2° sup |Gk(s)5_1/2| —_
2T R(s)=0 R(s)=o 15132

Since |G}, (s)||s] /2 is a continuous and bounded function, the sup is attained.
Furthermore,

|ds| /°° dt _3/2/ /°° dt
=9 < dt <
/ms)_a |s]3/2 o (o2 +2)3/4 T)oEr

proving the lemma. a

Lemma 10.7.17. For o > 1 and R(s) = o we have
Gi(s) = O (o= 1) /00D 10g(2]s]) R +D/1)

where the implied constant depends only on k.

Proof. By definition we have G (s) = (—1)*(1/¢(s))®). If s is close to
1, say |s| < 2 (still with R(s) = o > 1), then (1/¢(s))*) is bounded, so
the result is trivial, so we may assume that |s| > 2. By explicitly expanding
(1/¢(5))*), we see that ¢(s)FT1Gy(s) is a linear combination with coefficients

depending only on k of monomials of the form Hf:O(C () (s))% with Z jaj =
>_jjaj = k. Since we assume |s| > 2, by Proposition 10.7.1 we have Y (s) =
O(log(t)*1) = O(log(|s|)*1), so that (s)**+1Gx(s) = O(log(|s|)™), with

m = max j+1) —max ja; + a; | =
Y Yo+ T

Finally, by Corollary 10.7.3 we have [1/¢(s)| = O((o —1)~3/*1og(|s|)'/*) and
the lemma follows. ad
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Corollary 10.7.18. For xz > 1 we have
Fr(x) =0 (a: log(x)(3/4)(k+l)) .

Proof. Combining Lemmas 10.7.16 and 10.7.17, and using the fact that
any power of log(|s|) is negligible compared to |s|'/2, we deduce that for
all 0 > 1 we have Fj,(z) = O(z7 (0 — 1)~G/YF+1) 50 that choosing o =
1+ 1/log(x) we obtain the desired conclusion. O

Remark. If we estimated Fj(z) crudely by bounding u(m) by 1, we would
obtain Fj(z) = O(zlog(x)¥). The above bound is thus better as soon as
k> 3.

We can now obtain the PNT in the following form.
Theorem 10.7.19. For any A > 0 we have

1<m<z

Proof. We introduce the function

Hy(z)= Y p(m)(log(m))"

1<m<z

which is the function Fj(z) from which we have removed the smoothing factor
log(z/m). It is easily related to Fy(x) as follows:

Fule +9) - Fulo) = Hifa)og (222

+ > ulm)(og(m)* log (w;y)

r<m<z+y

= (Hi(x) + O(ylog(x)")) log ( . y) ’

X

as soon as y = o(x), say. It follows from the above corollary that
Hi(x) = Olylog(a)*) + O ((@?/y) log(x) /1)) .

The optimal choice of y makes the two terms of approximately equal size,
and is thus y = wxlog(x)™4 with Ay = (k — 3)/8, so that Hy(z) =
O(z log(x)k=4r).

Using partial (i.e., Abel) summation, we see that in the expression

Hi(m) — Hip(m —

1<m<e 1<m<e
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we may up to a multiplicative constant replace Hy(x) by 2 log(z)*~“*, hence
Hy.(m) — Hy(m — 1) by log(z)*=4*, so that

[M(z)| =0 | > (log(m))~* | = O(xlog(x)~ ™).

1<m<z

Since Ay = (k —3)/8 tends to infinity with k and k is arbitrary, the theorem
follows. O

For the final result, we define a slight variation of the function 6(x) as

follows:
Gy = > log(p),

1<p* <z

where the sum is over all nontrivial prime powers up to x (no relation to
the logarithmic derivative of the gamma function). It is easy to see that
Y(z) = 0(x) + O(x'/?), so that estimating ¥ and 6 is essentially the same.

Finally, we define
) rodt
Li(z) = —,
o log(t)

where the divergent integral is to be understood in the sense of the Cauchy
principal value, in other words

1—e x
dt
Li =1
i(x) E—l>%l+ o +/1+6 log(t)

(see Exercise 68). Note that this is completely unrelated to the polylogarithm
functions Lig(x) defined in Exercise 22 of Chapter 4. By successive integration
by parts, we have

N gt b
L) =5 |, 2= Toaty + (bg(x)’"“)

0<j<m

Corollary 10.7.20. For all A > 0 we have
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Proof. (Sketch). Since this is very standard (in contrast to the above proof
due to Iwaniec), we give only a sketch. Let d(n) be the number of divisors of

n and
A@)= 3 (log(n) - d(n) +27)
I<n<Lx
The standard application of the method of the hyperbola (3, <y d(n) is
equal to twice the number of integral points under the hyperbola zy = N
with 2 < N'/2 minus the number of integral points in the square [0, N1/2]?)
shows that A(z) = O(z'/2). In addition, Abel summation gives

Y(@) —x+2y =Y p(d)(log(k) — d(k) + 2v)

dk<z

k<zl/2 d<z/2?

and applying the estimate for A(x) as well as the estimate for M (x) given by
the theorem gives the estimate for ¢ (x) — x. As mentioned, the estimate for
0(x) follows, and the estimate for 7(z) is obtained in a way similar to that
used to obtain the PNT in the first proof. a

10.8 Exercises for Chapter 10

1. Let a € Z and n > 1.
(a) Assume that n > 2 and let p be a prime divisor of n. By writing n = p’ny
for p f n1, and similarly d = p*“ds, prove that >, wu(n/d)a® = 0 (mod p").

Deduce that for all n > 1 we have }_,, w(n/d)a® =0 (mod n) (note that this

is a consequence of Corollary 2.4.14, but only when a is a prime power).
(b) Deduce that 3, ¢(n/d)a” =0 (mod n).

2. This exercise is a sequel to Exercise 32 of Chapter 2. Let K be a commutative
field. For any P € K[X] different from 0, define the Mobius function as follows,
analogously to Proposition 10.1.10: if P is not squarefree, set u(P) = 0; oth-
erwise, set pu(P) = (—1)*Y), where w(P) is the number of irreducible monic
divisors of P.

(a) Prove that u is multiplicative, in other words that pu(PQ) = u(P)u(Q) when
ged(P, Q) = 1.
(b) Let N € K[X], N # 0. Show that

1 if deg(N) =0,
p(P) = :

PlzN {0 if deg(N) > 0,
P monic

so that this is a perfect analogue of the M&bius function.



(c)

(e)
3.
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(Stickelberger, Swan.) From now on, assume that K = F,, where ¢ is odd.
Denote by £(P) the leading coefficient of P. Using Exercise 32 of Chapter 2,
show that

(_1)deg(P) dlSC(P) if Z( )

L

w(P) = 4 1
_qydesP1 ((disc(P)\ o (P
=) ( q ) ! q b

~

For this, recall that disc(PQ) = disc(P) disc(Q)R(P, Q)?, where R(P, Q) is the
resultant of P and @, and that disc(P) = (—1)dcs(P)(des(P)=D/2p(p py /4(P),
so that disc(£P) = ¢e8(P)+dee(P)—1 gisc(P). Note also that we do not neces-
sarily have deg(P’) + 1 = deg(P).
(Conrad.) As an example, let H € F5[X]. Show that either H(0) = 0, in which
case X°® | (H(X)® + X?), or
V(H deg(H)
w(H(X)® + X°) = (%) .

In particular, if H is monic or has even degree, the polynomial H (X )5 +X3%is
never irreducible in F5[X].
Find a polynomial H of degree 3 such that H(X)® + X? is irreducible.

Show that o_;(n) = n"'o;(n) directly, and using formal Dirichlet series.

Find the formal Dirichlet series corresponding to a(n) = d(n)?. What is the
order of the pole at s = 1 of the corresponding numerical Dirichlet series?
More generally, find the order of the pole of the numerical Dirichlet series
corresponding to a(n) = d(n)"* for k € Z.

Same questions for a(n) = d(n*), and in addition prove the formula d(n*) =

Zm|n Zw(m).

If £ > 1 is a constant, find the formal Dirichlet series corresponding to d(kn)
in terms of {(s) and a finite Euler product depending on k.

Same question for R(k,n)d(n), where R(k,n) is Ramanujan’s sum defined in
Proposition 10.1.6.

Similarly to the above exercise, using the definition and properties of the Ra-
manujan 7 function given in the text, find the formal Dirichlet series corre-
sponding to 7(n)? in terms of the formal Dirichlet series corresponding to the
convolution of the completely multiplicative functions o and 32

Using similar reasoning to that of Proposition 10.1.15, show the existence of an
abscissa of convergence for a Dirichlet series.

Assume that }°, ~, a(n)/n® converges (not necessarily absolutely). Show that

a(n)/n® converges absolutely when R(s') > R(s) + 1. (Hint: as in the
n>=1

power series case, use only the fact that a(n)/n® is bounded.) Deduce from this
that the difference between the abscissas of absolute and ordinary convergence
is less than or equal to 1.

Let f1 and f2 be two Dirichlet series with respective abscissas of absolute conver-
gence o1 and o2. Show that when o1 # o2, the abscissa of absolute convergence
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10.

11.

12.
13.
14.

15.
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of f1 f2 is equal to min(co1,02), while when o1 = o2, the abscissa of absolute con-
vergence of f1 f2 is greater than or equal to this common value. In particular, if
a Dirichlet series f is invertible, show that the abscissa of absolute convergence
of its inverse is equal to that of f.

Show that the series defining ¢(s) diverges (absolutely and in the ordinary sense)
for any s such that R(s) =1

Show that the series >, -, (—1)"/n° converges for $(s) > 0, hence that its
abscissa of convergence is o = 0.

Prove Corollaries 10.3.2, 10.3.3, and 10.3.4.

Prove Proposition 10.3.10.

Generalize Propositions 10.3.8, 10.3.10, and Corollary 10.3.9, to the case that
D is congruent to 0 or 1 modulo 4, not necessarily fundamental.

(a) Prove that for all primes p > 3 we have L ((;), —(p+ 1)/2) € Z, where (%)

is the Legendre symbol.

(b) Generalize to L ((;), —(p+4k+ 1)/2) for k € Z\ {-1}.

16.

17.

18.

19.

20.

(J. Sondow.) Prove that for all s € C\ {1} we have the convergent series

1200 = 3 e S0 (3 e

n=0

and estimate the speed of convergence of this series.

Find an integral representation for I'(s)((s,x) and deduce from it and Proposi-
tion 10.2.2 another proof of analytic continuation and special values at negative
integers of ((s,x).
Using the Euler-MacLaurin summation formula, or directly, show that for —1 <
R(s) < 0 we have

=B ,

C(S) =-S5 0 s+l

Using Theorem 9.1.20 and Corollary 9.6.36, give another proof of the functional
equation of ((s) (in fact this is a hidden way of using the Poisson summation
formula).

Using the functional equation of {(s), show that for k € Z>1 we have

L (2K)! C(2k + 1)
2 (2m)

¢(=2k) = (-1)

Let ¢ = 1. Show that

Y oF = e (e (1 k) <00)

D fundamental
sign(D)=¢

where the sum is over fundamental discriminants (including 1) whose sign is
equal to €. For instance,

s L
D2 8x2

D fundamental
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21. For 7 € H set

R(T):ZW;M).

(a) Using Exercise 101 of Chapter 9, prove that R(—1/7) = 7R(7). Since clearly
R(7 +2) = R(7) this shows that R is a modular form of weight 1 on the same
group as the function

0(r) =0(1,m)=> ™.

new
(b) Show that in fact R(7) = 6(1,7)2.

22. (D. Zagier.) Let xp = (2) be the Kronecker symbol. Assume that D is odd
and squarefree, and set Zp(n) =0, 1, (%), -1,0, 1, —(%), —lforn=0,1,2,
3, 4, 5, 6, 7 modulo 8. Prove that

¢(2s) Zp(n)

L(XD7 5) = Z s Z 1

L(X74’S) n=1 w 2 b modn
b“=—D (mod n)

(note that the congruence is b = —D (mod n), not b> = D (mod n)).

23. Define x(n) = (1++/5)/2, 1,0, 0, 1 when n =0, 1, 2, 3, 4 modulo 5. Note that
X is not a character. Prove that L(y,s) satisfies the same functional equation
as L(xs,s). In fact, show that x and xs form a basis for functions modulo 5
satisfying that functional equation.

24. Let x be a nontrivial character modulo m. Prove that
-1
n
Do) = X M T (122
n>1 p

in other words, prove that the sum and product converge, and that they both
converge to L(x,1).

25. Let x(n) = (=12). Find all real numbers ¢ such that L(x,it) = 0.

26. For a sufficiently nice function f define D(f) by the formula

Do) = 3 (/@) - -1

(a) If, as usual, F(f) denotes the Fourier transform of f, show that for all n > 0
we have F(D"(f)) = 1"D"(F(f)).

(b) Set fo(z) = 677"12, n = D"(fo), and Ay (s) = M(fn)(s), where M(f) denotes
the Mellin transform of f. Show that Ao(s) = (1/2)7~*/?T'(s/2) and that

1 s—1
A‘!L = 3 An 1 7A7L -1 .
=5 (M + 56 )
(¢) Deduce that there exist polynomials P, and @, in R[X] such that

A%(s):%w*s/?r(s/mpn(s) and  Agnii(s) =7 CTV20((s+1)/2)Qu(s) .
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(d) Compute P, and Q, for 0 < n < 2, and show that they satisfy the recurrences

Poyi(s) = %(sPn(s +2)+(2s —1)P,(s)+ (s —1)Py(s —2)) and

@nt1(s) = %((S T 1D)Qn(s+2) + (25 = 1)Qn(s) + (s = 2)Qn(s — 2)) .

27. The goal of this exercise is to prove the Riemann hypothesis. .. for the functions
A, of the preceding exercise, which bear some resemblance to the functions
A(x, s) attached to a Dirichlet character.

(a) Let o € C be such that R(«) > 0. Prove that if R(z) > 0 we have |z — o] <
|z + @, while if R(z) < 0 we have |z — a| > |z +@|.

(b) Let P € C[X] be a nonconstant polynomial whose roots all have strictly positive
real part. Deduce from (a) that all the roots of the polynomials P(X)4 P(—X)
are purely imaginary, where P denotes the polynomial obtained from P by
complex conjugating all the coefficients.

(¢) Let P € R[X] be a nonconstant polynomial that is either odd or even and whose
roots are purely imaginary. Prove that the same is true for the polynomials
P(X —u) £ P(X +u), where u € R.

(d) Let P € R[X] be a nonconstant polynomial that is either odd or even and whose
roots are purely imaginary. Prove that the same is true for the polynomials
Qu(X)=(X—-u)P(X -2)+2XP(X)+ (X +u)P(X +2) for all > 0. (Hint:
apply (b) to the polynomial (X —u)(P(X)+ P(X —2)) and a suitable sign +.)

(e) Deduce that for n > 1 all the zeros of the functions A, of the preceding exercise
are on the line R(s) = 1/2 (I thank D. Bump for asking this question).

28. Assume the Riemann hypothesis. Using similar methods to that of the preced-
ing two exercises, but using also Hadamard’s factorization theorem (Corollary
10.7.7), prove that the only nontrivial zeros of the functions

(s—=1)¢(s+1)t2x¢(s—1) and

s(s+1)C(s+ 1) £2m(s —2)¢(s —1)
(as well as an infinite number of examples of the same type) are on the line
R(s) = 1/2 (the trivial zeros being s = —1 — 2n with n > 1 for the first two
functions, and n > 0 for the last two). Surprisingly enough, one can show using
the methods of [Tay] that these results are true unconditionally, in other words
without assuming the Riemann hypothesis.

29. Let x be a periodic function of period m, not necessarily a character, and assume
that 3o, ., X(r) = 0. Prove that as t tends to 0 from above, then for all N > 1

we have
—n2t — n tn N
S xme " = 3T (<)Ll ~20) =+ O()  and
n>1 n=0
—n2t — n tn N
Z x(n)ne = (—=1)"L(x, —2n — 1)5 +O0(t).
n>1 n=0 :

30.

(a) Show that the upper bound for |L(x, 1)| given in Proposition 10.3.16 (1) is still
valid for |L(x, s)| if s € R (better bounds are possible, but we need one that
is uniform in s).
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(b) Using a completely similar method, find a uniform upper bound for |L'(x, s)|
for s € Ryq.

(¢) Deduce from the third proof of the nonvanishing of L(x,1) given in the
text that for any nonreal character xy modulo m and any s € R-; we have
[L(x, 8)[*¢(s)| = C(m) for an explicit constant C'(m) not depending on s.

(d) Using (b), deduce an explicit lower bound for |L(),1)| when yx is nonreal.

31. Let x be a nontrivial character modulo m, as usual let e = 0 or 1 such that
x(—1) = (=1)°, and for all k > 0 set Sk(X) = >_ 1<, <, X(7)(Mm — 2r)k.

(a) Show that Si(x) =01if k # e (mod 2) and if k£ = 0.
(b) Using Corollary 9.6.3, show that

s+2k4e—1) (25T —2)((s + 2k +e)
v Z < 2k +e > 22k+ems+2kte Saete(X)

k>1—c

and give the speed of convergence of this series.

(c) Assume now that x is a nontrivial real character. Show that if k& > (m —

2)log(2)/2 and k = e (mod 2) then Si(x) > 0.

Deduce from this that if y is a nontrivial real character and Sy (x) > 0 for all

k = e (mod 2) such that k < (m — 2)log(2)/2 then L(s,x) > 0 for 0 < s < 1,

and in particular L(s,x) does not vanish in that interval.

(e) Using a small computer program, show that the only real character modulo m
with m < 100 that does not satisfy the above condition occurs for m = 68,
but show nonetheless that the corresponding L-function is strictly positive for
0<s<1.

(f) Adapt the above method to characters that may be nonreal, by considering
suitable expressions of the form R(Sk(x)) + AS(Sk(x)), and show in this way
that all L-functions of Dirichlet characters of conductor m < 30 do not vanish
for 0 < s < 1, except perhaps for a single character modulo 19 and its conju-
gate, and show by a specific argument that the result is also true for these two
characters.

—
o
=

32. Using approximation techniques, prove that the results of Theorem 10.2.17
are still valid if we assume for instance that f has a finite number of simple
discontinuities, that it is piecewise C°°, piecewise monotonic, and that f and
all its derivatives tend to 0 faster than any power of |z| as |z| — co.

33. With the notation of the examples following Theorem 10.2.17, prove the trivial
bounds A(X) = O(X'/?).

34. Imitating the proof of Voronoi’s Theorem 10.2.18, prove the estimate A(X) =
O(X'3) in the divisor problem explained in the examples given after Theorem
10.2.17.

35. Give an alternative proof of Theorem 10.3.1 using Theorem 9.1.20.

36. Fix 7 € C such that S(7) > 0, and let A = Z + Z7 be the lattice generated by
1 and 7. For z ¢ A set

r=pter= o T (1),

where the sum is over all nonzero elements of A (this is of course the Weierstrass
p-function for A), and for all k € Z>3 set
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/1 ! 1
G = = _—_
K(T) Z ok Z (m + nr)k
wEA (m,n)€r?

(these are the ordinary Eisenstein series of weight k).

(a) Prove that all the above series converge absolutely, that G, (7) = 0if 21 k, and
that around z = 0 we have the expansion

p(z) = o5 + D2k + )Garya(r) o™

E>1

(b) Show that for all z ¢ A and all @ € A we have p(z + a) = p(z).
(c) Set g2 = 60G4 and g3 = 140Gs and

F(2) = (¢/(2)* = 40(2)° — g20(2) — ga ,

so that f(z + a) = f(z) for all @ € A. Show that f(z) is an entire bounded
function in the whole complex plane that vanishes at z = 0, and deduce from
Liouville’s theorem that f is identically zero.

(d) Deduce that p”(z) = 6p(2)* — 30G4, and for k > 4 the recurrence

Gor() = =TS g )(2k — 2j — 1)Ga, ()G ()

37. (Sequel to the preceding exercise.) In this exercise we specialize to the cases
T =4dand 7 = p = (—1++/3i)/2, a primitive cube root of unity, which we treat
together. We let w be the number of roots of unity in Q(7), so that w = 4 when
7 =14 and w = 6 when 7 = p.

(a) Show that G (7) =0 if wt k, and that G, (1) > 0.
(b) Define Q,, > 0 by the formula Q,, = (dw G (7)™, with ds = 15 and ds = 945.
Show that if we define the Bernoulli-Hurwitz numbers HSJ,JC) by the formula

k—1 H(“];) wk

the H, are rational numbers of alternating signs satisfying the recurrence

k—1
for k > 2
(c) Show that
By B g
) = 550 Y = —%, 9 = e B =T
and HO — 7392263044375

(d) (Hard; for help, see [Kat2] and [Bar].) Find arithmetic properties of the Hif',;)
analogous to those of Bernoulli numbers (you may need to use results of Chap-
ter 11 for this). More precisely:
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— Prove that the denominator of HL“];) is equal to e, times the product of
primes p = 1 (mod w) such that (p — 1) | wk, where e4 = 2 and e = 12.
In particular, the denominator of H i? is always divisible by 10 and that of
Hé? is always divisible by 84.
— More precisely, prove the following analogue of the Clausen—von Staudt con-
gruence: if (p — 1) { wk then HS‘,;) is p-integral, while if (p — 1) | wk then
Hl(f,i) + aﬁkﬂp*l) is p-integral, where p + 1 — a, is the number of points on
the elliptic curve y? = x® — 4z for w = 4, or on the elliptic curve y? = 2 — 1
for w = 6 (see Corollary 8.5.2 and Proposition 8.5.3 for the explicit formulas
for the ap).
— Prove the analogue of the Kummer congruences, which will also involve a,.
(e) Show that the numerator also has interesting arithmetic properties, contrary
to the numerator of Bernoulli numbers; in particular, give a precise statement
implying that it is highly divisible by primes p = —1 (mod w). (Hint: its
valuation at such primes is very close to wkp/(p® — 1).)
(f) By computing ©(2/w), show that

1

1 1 /1 1 /oo
=2 ——dt= [ ———dt= dt
: /0 Vi Jo Vi—© L Ve —t

L | > 1 ! 1
and :3/ 7dt:\/§/ 7dt:/ -t
T Viee L VB 1 V1B

(see Section 7.3.2), and by using either the numerical integration methods given
in Section 9.3.2 or, better, the formula given in Exercise 38 (b), show that

Q4 = 2.622057554292119810464839589891119413682754951431623 - - -
and s = 4.206546315976362783525057237150882406389066616271958 - - -

Remark. The fact that G2y is equal to a rational number times the 2kth power
of a fixed “period” 2{2 is valid more generally when 7 is a root of a quadratic
polynomial with integral coefficients, in other words when 7 is a CM point. This
follows from the basic properties of complex multiplication, that we have already
mentioned. However, even more generally we can also define Bernoulli-Hurwitz
numbers as soon as g2 and gs are rational, and they also satisfy Clausen—von
Staudt and Kummer type congruences; see [Kat2] and [Bar].

38. Recall from Exercise 36 that for k € Z>3, S(7) > 0, and A = Z + Z7 we define
r1 / 1
GM=D 5= 2 i
wEA (m,n)€z2

and as usual set ¢ = ¢*"", so that |¢| < 1.

(a) By comparing the formula for 7 cotan(mwz) given in Proposition 9.6.24 and its
Taylor expansion, prove that for & € Z>3 we have

1 2im)* k=1 _m
Zm:(_l)k(;—)w > m "

new : m>=1

(b) Deduce that for k € Z>2 we have
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Gor(r) = (-1)"! ((2272)! Bay, (1 - % > 02k1(n)qn>
B 1 (27r)2k 4k an—lqn
= ()" 2! Boy, (1—3%7%:11_(1” ) )

(¢) Deduce from this and Exercise 36 that for k € Z>1 we have the identity

4k+1
ittt _ Bugyo

;e2ﬂn—1_8k+4'

(d) (More difficult.) Using the function G2(7) defined as the right-hand side of the
formula of (b), prove that

S onmo1 1
e2mm — 1 4 8t 24 8’

n=1

so that the identity of (c) is still valid for k£ = 0 with the corrective term 1/(8).
(e) Show that for R(s) > 0 we have

e} s—1
| g o= 2m T
(f) Deduce that for k € Z>¢ we have

oo 1,4k’+1 dr — B4k+2
o e —1 Sk+4°

Note that the equality of the expressions in (¢) and (f) is in the same vein as
the well-known identity

/lx_md:n:Zn_".

0 n>=1

39. Show that for D = —3 and D = —4, we have
L'(xp,0) = 21og(I'(1/|DI)) — log(2m) + cp log(|D])
with c_3 =1/6 and c_4 = —1/4.

40. Let x be a nontrivial character modulo m such that x(—1) = —1.

(a) Generalizing the technique used in the text for L’(x,0), compute L’(x, —1) in
terms of the function

S(z) = /OZ log(sin(t)) dt .

See also Exercise 71 of Chapter 9.
(b) If in addition y is primitive, find a formula for L(x, 2).
(¢) Compute explicitly S(7/2) and S(m).
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41. Compute L((=%), —2k) and

L((;‘*),%H) _go@”:ll);"“

in terms of the Euler numbers E,, (see Definition 9.1.8).
42.

(a) Using Corollary 9.1.21, show that

H L—’—l = ﬁ@ and H L—’—l :28<(3)

p3—1" 4 73 31 3

p=1 (mod 4) p=3 (mod 4) p

(b) Similarly, if G = L(x—4,2) denotes Catalan’s constant introduced in Exercise
40 of Chapter 9, show that

43.

(a) Let f(t) be a C? convex function. Prove the inequality
rx+1/2
o< [ .
z—1/2
(b) Using this for the function f(z) = 1/sin(wz/m) with = € ]0,7/2[, prove that

the upper bound in the Pélya—Vinogradov inequality can be improved to

2

—d(m/f)f*'*(log(f) + log(4e/(3m))
(note that using Euler-MacLaurin instead of (a) would only very slightly im-
prove the constant log(4e/(37))).

44. Let x be a nontrivial character modulo m, not necessarily primitive, and let
f > 1 be its conductor.

(a) Prove that

Lx,1) = i %”) +R with |R|< d(m/f){;/%og(f) .
n=1

Note that this is a slightly more precise statement than Proposition 10.3.16 (2)
for # =1, and that there is no factor 2 in the bound for R.
(b) Deduce from this and Proposition 10.2.5 that

<d(m/f)f*log(f) -

S X (1 +1/m)

Note that the right-hand side is exactly the one given by the Pélya—Vinogradov
inequality.

45. Set S(m) = 3>_,, u(d)log(d)/d.
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(a) Show that

S(m) _ {'(s+1)¢(s)
Z ms  ((s+1)

m>=1

(b) Show that
S(m) = = 3~ o(d)A(m/d)

dlm
where as usual A(n) is the von Mangoldt function (see Proposition 10.1.14).
(c) Show that

__¢(m) ¢ log(p) _ 1 log(p)
stm = -2 5 280 T (1-3) £ 228

plm plm

hence that S(m) < 0 for m > 1 and S(m) = O(log(log(m))) by Proposition
10.3.17 (1).

(d) Using Mertens’s theorem [[ (1 —1/p) ~ e”7/log(z) prove that there exists
a strictly positive constant C' such that |S(m)| > Clog(log(m)) for infinitely
many m, and in particular that it is not bounded. (Hint: choose m equal to
the product of all prime numbers between x and z? for large x.)

46. (I thank A. Granville for help on this exercise.)
(a) Prove that for all £ > 0 we have

Lo 4e(4 Ly L) O !

Yo o =@@]I (15 I-0i) +0e=) "
1<a,b,c,d<m plm

ged(abed,m)=1

ab=cd (mod m)

(Hint: prove that the main contribution is due to the terms where ab = cd.)
(b) Deduce an asymptotic estimate for

> LoDl

x mod m
XFX0

analogous to those of Proposition 10.3.17.

47. Fill in the details of the proof of Proposition 10.3.19 (2) and (3).
48. Recall that the Stirling numbers of the first kind are defined by
XX =1 (X —r+1) = 3 (=1 s k) x*
k=0
(see the proof of Proposition 4.2.28 for another occurrence).

(a) Show that the rth derivative of log(¢)™ /t is given by the formula

log(t)" \ " m! log(t)™*
(T =g 2. srHLEEDTE
0<k<min(r,m)

(b) Deduce an explicit Euler-MacLaurin-type formula for computing to a given
accuracy the constants v, occurring in the expansion of ((s) around s = 1.
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(¢) Using this formula, compute the v,, to 28 decimal digits for 0 < m < 10 and
for m = 50 (the values are given in the text).

49. Set A,, = Zk;l(_l)k_l log(k)"’/k

(a) Compute A,, as a linear combination of the «; for 0 < j < m — 1.
(b) Deduce the following recurrence for the v,:

_ log(z)erl _ A77L+l _ 1 e m + 1 m—j_
e (m+1)(m+2) (m+1)log(2) m+1 Z:: i log(2)™ ;.

(¢) Using the built-in sumalt function of Pari/GP, which can compute efficiently
sums of alternating series, compute values of 7, and compare the efficiency of
this computation with that of the preceding exercise.

50. By Proposition 10.3.19 and Cauchy’s formula (or Fourier analysis), for any p > 0

we have )

—1)™m! ™ ) »

Ym = (2)77:%/ C(l + p619) e im0 o ,
P 0

and this integral can be computed efficiently to high accuracy using Algorithm

9.3.2. Compare the efficiency of this method to that of the preceding two exer-
cises.

51. Define 7, (z) by the formula

Ym(z) = lim

N —oo

i log(k + = —1)"  log(N +x — 1m*t
k+z—1 m+1 '

k=1

(a) Show that this limit exists for = ¢ Zgo.

) Prove that vo(z) = —t(x), where ¢ (z) = I'(z)/T'(x) is the logarithmic deriva-
tive of the gamma function.
(¢) Generalizing Proposition 10.3.19 (1), show that

(o) = g+ 3 20 gy

m!

(d) Deduce a formula for the mth derivative L*)(x,1) at s = 1 of the L-function
of a Dirichlet character.

(e) Let K be a quadratic field of discriminant D, and denote by (x (1) the residue at
s =1 of the Dedekind zeta function of K. Deduce a formula for lims—1(Cx (s) —

Cx(1)/(s = 1))

52. Set A A
(1) _ — k (2) _ - k
o, (n) = ; (7)d and o, (n) = ; (n—/d)d .
Give formulas for Hs(N) and Hs(N) analogous to those of Proposition 10.3.14,
but involving the functions o'
53.

(a) Using the methods of Section 10.3.6, compute to 28 decimal digits of accu-
racy the following sums and products over primes: ZP 1/p* for k = 2 and 3,

>, Y(p-1)), 2, 1/(p=1)% 1,0 p(p—2)/(p—1)%, and I],, (1 -1/ (p(p—1))).

) and Ufli) respectively.
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(b) Generalizing the above methods, compute to the same accuracy log(p) /p?,

>, 1/(plog(p)), -, 1/(p* log(p)), and lim, _,+ (3, 1/p° — log({(s))).

(c) Generalizing in a different direction, compute to the same accuracy

n(-£2)

p>2

for D = -3, —4, —7, 5, and 8.
(d) Compute Landau’s constant (see Proposition 5.4.10)

o 08

p=3 (mod 4)
For help see the URL
http://www.math.u-bordeauxl.fr/~cohen/hardylw.dvi
54. For R(s) > 1, set P(s) =3 p~°, where the sum is over all primes.
(a) Prove that P(s) has a meromorphic continuation to R(s) > 0 with simple poles

at the points s = 1/n for n € Z>1.

(b) Using the method of Section 10.3.6, compute P(2/3) to 28 decimal digits.

55. This exercise assumes knowledge of the theory of modular forms. Define

s

1 Yy
E(r,s) = = v
(7 5) 2 Z ler + d|2s

(c.d)€Z2, ged(e,d)=1

Let H = {7 € C, S(r) > 0} be the upper half-plane, and let f(r) =
> ns1a(n)g" and g( ) =2_,>1b(n)g" be two modular cusp forms of weight &

on SL2(Z), and set

r dxdy
v

L(f,g,5) = / E(r,5) f(gmy
H/ SLa(Z)

(a) Show that the defining series for E(7,s) converges for R(s) > 1 and that
E((ar +b)/(cr + d), s) = E(r, ) for any (fj 2) € SLy(Z).

(b) Show that G(r,s) = ((2s)E(7,s) (which gives another proof of (a)).
(c) Show that for R(s) > 1 the formula for L(f, g, s) makes sense and that

L(f,g,8) = (4m)" "Ik + s - 1)) % .

n>1

(Hint: use the fact that an element (2 %) € SL2(Z) can be written uniquely as
(M) (%), where u and v are fixed 1ntegers such that ud —ve = 1.)

(d) Deduce that L(f, g, s) has an analytic continuation to the whole complex plane
into a meromorphic function satisfying a functional equation, and give the poles
of ¢(2s)L(f, g, s). Note that a much more difficult result due independently to
Shimura and Zagier shows that L(f, g, s) is holomorphic in C.



56.
(a)

(b)
57.
58.

(a)
(b)
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Show that

Z/ 1 @)y Z/ 1 _ 81°¢(3)
(m,n)€z? (m2 + TL2)3 - 8 (m,n)€z? (m2 +mn n2)3 - 27\/3 .

Generalize to higher powers, both odd and even.

Perform the detailed computations giving the formulas of Proposition 10.5.10.

Compute n((—b ++/D)/(2a)) for all equivalence classes of quadratic numbers
of negative discriminant D corresponding to those D such that h(D) =1 or 2.
Compute n((—1++/—23)/2) and n((—1++/—31)/2), the first two cases of class
number 3.

59. Fill in the details of the proof of Corollary 10.5.14 and compute fol (11—t dt

60.

(a)

and f01(1 — t3)Y8dt in terms of [1,.>, tanh(mm/2) and Hm%tanh(wm/\/i)
respectively.

(This is a research problem, and the author does not know the complete solu-
tion.) For a > 0 set

! log(1 +t%) ! atan(t®)
L(a) = / ————2dt and T(a)= / —— 2 dt.
0 1+t o L1+t

Using a modification of a partial Epstein zeta function associated with real
quadratic fields, H. Muzzafar (unpublished) claims to have obtained a Chowla—
Selberg-type formula that implies that when a is a unit in a real quadratic field
certain values of L(a) and T'(a) can be evaluated explicitly as rational linear
combinations of log(2)?, log(2) log(a), 7%, m2a, and similar quantities.

Using numerical integration methods or expansions in terms of the derivatives
of the gamma function (see for instance Exercise 102 of Chapter 9), compute
L(a) for a = 1 4++/2, 3+2v2, 2+ /3, 2+ /5, and 4 + /17, compute T(a)
for & = 3 +2v2 and 2 + /5, and show using a suitable linear dependence
relation algorithm such as LLL that Muzzafar’s claim is indeed correct, at
least numerically. Show that L((1++/5)/2) + L((3+4/5)/2) is also of the same
form.

Read the paper of Herglotz [Her] on the Kronecker limit formula for real
quadratic fields, and prove a result that is as general as possible and includes
the relations that you have found experimentally, as well as for instance

L(4+V15) = —g(\/ﬁ—Q)ﬁ-log(Z) log(vV/3+v/5) +log((1+/5)/2) log(2+V/3)

(I am indebted to C. Meyer for this reference).

61. Let p > 3 be prime and let M = (mi j)1<,, j<(p—1)/2 be the ((p—1)/2)x((p—1)/2)

matrix such that m, ; = |[(i + 1)(j + 1)/p]. Prove that the determinant of M
is equal to (%B)h; (see Corollary 10.5.27 and the remarks after the proof of

Lemma 3.6.22).

62. Combine the proofs of Proposition 10.5.21 and of Theorem 10.5.22 to prove the

following. Let m be an integer and p a prime number not necessarily prime to
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m. Write m = p”mo with p { mo and v = v,(m), denote by f, 0 the order of p
modulo mg, and set gp.0 = ¢(mo)/ fp,0. Then we have

pZo, = [ ®7 with  f(p;/p) = fry

1<i<9p,0

where ¢, = ¢(p") = p"~(p — 1).

63. Imitate the proof of Theorem 10.5.30 and use the quadratic reciprocity law to
prove the following: if a € Z is not a perfect square, the analytic density of
primes p such that a is a square modulo p is equal to 1/2.

64.
(a) Using Corollary 10.7.3 and the bound for (’(s) given by Proposition 10.7.1,
show that i
————— = O(log(t)") .
i = Olox(t))

(b) Deduce that for a suitable strictly positive constant C' we have 1/((s) =
O(log(t)") uniformly for ¢ > 1 — C/log(t)°, and in particular that ((s) has
no zeros in this region (this is of course much weaker than Theorem 10.7.8,
obtained using Hadamard’s factorization theorem).

65. As in Corollary 10.7.7, let p be the nontrivial zeros of ¢(s).

2/ 2y .

(a) Compute Hzp(l —s°/p°) in ter2ms of ¢(s) and ((s + 1). In particular, compute
I1,(1 =1/p%) and ], (1 — 4/p%).

(b) Set

ok
where Jj, is given by Definition 10.3.18. Prove that for k > 2 we have

bk:C(k)(l—i>—1—6k7

(¢) Deduce from Proposition 10.3.19 that for |s| < 1 we have

Zbkskflzg(s)_’_ 1 +r¢(5/2+1)

Y
1+ = —log(2m) .
(s) s—1 2 Tty 0g(27)

k>2

(d) Show that we can make s tend to 1 from below in the above formula, and
deduce that for £ = 1 we have

1 v log(m)
Zp—1+2 ) log(2) ,
P
where nontrivial zeros p and 1 — p are grouped together to make the left-hand
side converge.
(e) Conclude that if we group zeros in the same way we have the very simple
Hadamard product

s(s = DA(s) = s(s — D */*D(s/2)¢(s) = [[(1 = s/) ,

so that the term e’ disappears in this form. Note that it has been shown by
H. Stark in [Stal] that this is in fact the case for all Dedekind zeta functions.
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66. Let x be a nontrivial primitive character modulo m > 1, and as usual set e =0
or 1 such that x(—1) = (—1)°. Generalizing Corollary 10.7.7, show that

eb1()s s s/p
L(X:S) :bO(X)WIZI (1—;) e‘/ ,

where

bo(x) = W(x)m"*r~/*L(%,1) and

)
bi(x) = log(2m) — elog(2) — logém) + % LLI((g’ll)) '

67. As in the second proof of Theorem 10.5.29 set Fin(s) =[], n0a m L(X; 8)-
(a) Similarly to Lemma 10.7.2, prove that

F (0)3|Fon (0 + it)[*| Fon (0 + 2it)| > 1.

(b) Deduce from this that L(x, 1+it) # 0 for all ¢ € R and every Dirichlet character
X (strictly speaking, set L(xo,1) = 00).

(c) Using a similar method to that given in the text for the PNT, deduce the
stronger following form of Dirichlet’s theorem for primes in arithmetic progres-

sion:
1 T

¢(m) log(z) ’
where ged(a,m) = 1 and 7(x;m, a) is the number of primes up to x congruent
to a modulo m.

68.
(a) Using Corollary 9.6.30, prove that for z > 1 we have the two formulas

m(z;m,a) ~

Li(z) = /lx (1 - 1) lo‘gi—zt) + log(log(z)) +

t

:/Ow (%JFﬁ) dt + log(z — 1) .

(b) Deduce from this the following two convergent series representations:

1
Li(z) = v + log(log(x +Z log()"

n>=1

nn'

— P (log(z))
= v+ log(log(x)) + .7 ,

D+ 2= D Gy
where P, (u) = > ¢ icp u? /4! is the nth partial sum of the exponential series. In
particular, estimate the speed of convergence of the second series. Comments?



11. p-adic Gamma and L-Functions

Independently of its intrinsic interest, one of the most fascinating aspects of
the theory presented in this chapter is that, although completely “elemen-
tary” in the sense that it does not use any highbrow mathematical notions or
results, it implies in quite a straightforward manner many results of classical
(as opposed to p-adic) number theory, for instance strengthenings of almost
all the arithmetic results on Bernoulli numbers seen in Section 9.5, of the
Jacobstahl-Kazandzidis congruences (Corollary 11.6.22), of the Davenport—
Hasse product relation (Theorem 3.7.3, which will be improved in Theorem
11.7.16), and a simpler proof of the Stickelberger congruence (Theorem 3.6.6).
I would like to thank F. Rodriguez-Villegas for making me interested in the
whole subject thanks to a GP script for computing Morita’s p-adic gamma
function, to F. Beukers and E. Friedman for very interesting discussions, and
especially to P. Colmez for his help on proving the results of Section 11.5.3.

11.1 Generalities on p-adic Functions

11.1.1 Methods for Constructing p-adic Functions

There are many ways in which to define p-adic functions with nice properties
(at least continuous, but usually analytic), and we have already seen a few
in Chapter 4. These methods are of course interrelated. In this short section,
we survey a little more systematically these methods, and in the rest of this
chapter we will use them to define some p-adic analogues of the gamma, zeta,
and L-functions seen in the previous chapters.

— Perhaps the most natural method is as follows. Let (a,)n>0 be a sequence
of integers. Since Zx( is dense in Z, we can define a function f on Z,
thanks to the formula

= 1.
f(z) pogim

where of course n — z in the p-adic topology. It is clear that f(z) exists if
and only if (a,) is p-adically continuous, in other words if for all k € Zx¢
there exists j € Z>( such that
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n=m (mod p’) = a, = a,, (mod p*) .

By definition, f(z) will then be a continuous function on Z,. This is of
course the primary motivation for p-adic numbers: a sequence can be p-
adically interpolated if and only if it satisfies congruences modulo arbitrar-
ily high powers of p. In this chapter, we will see a prominent example of
this in the definition of Morita’s p-adic gamma function.

— An equivalent method of p-adic interpolation is the use of Mahler expan-
sions seen in Section 4.2.4. Recall from Mahler’s Theorem 4.2.26 that if we
set (with different notation)

ro = a(p) vt a= 3 0B,

k>0 0<m<k

then f(k) = ax, and f is p-adically continuous if and only if ¢ tends to 0
as k — oo. By Corollary 4.2.27, this method is equivalent to the preceding
one, but usually has some advantages.

We will see that Morita’s p-adic gamma function has a very simple Mahler
expansion that can serve as an alternative definition, and is, as far as I
know, the most efficient method for computing it.

— A third method, familiar from complex analysis, is to define p-adic func-
tions as sums of power series. The examples of the p-adic logarithm and
exponential studied in Chapter 4 are certainly the most important. In the
p-adic setting, however, power series are not as important as in the complex
setting, mainly because of the impossibility of doing analytic continuation
(because of the ultrametric topology), at least in a naive manner. Also, as
we have seen in Chapter 4 (see Proposition 4.2.28 and Exercise 17) it is
not difficult to go back and forth between Mahler expansions and power
series. We will see that all the p-adic functions that we will introduce in
this chapter have rather simple power series expansions.

— A fourth method is the use of p-adic measures, in particular the Amice
transform. This is explained in detail in Colmez’s lectures; see [Colm] and
a course on his web site. However, it needs some analytic preparation, so
we will not use it, although it can quite easily prove the two main results
that we will give in Section 11.5.3. Thus we will almost always use a more
naive method that is specific to the p-adic setting: the use of Volkenborn
integrals, which we briefly study in the next section.

11.1.2 A Brief Study of Volkenborn Integrals

A detailed study of the Volkenborn integral is completely elementary but
quite long, and will not be needed in this book, so we refer instead to the
exposition of A. Robert in [Robl]. We will simply give some definitions and
results.
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The simplest class of functions for which we can study classical Riemann
integration is the class of continuous functions on a compact interval. In
the p-adic case, we have to assume a much stronger property, that of strict
differentiability.

Definition 11.1.1. (1) We say that a function f is strictly differentiable
at a point a € Zy, if the function of two variables ®f(z,y) = (f(x) —

fW)/ (@ —y) has a limit £ = f'(a) as (z,y) — (a,a), T #y.
(2) We say that f is strictly differentiable on some subset X of Z,, and write
f e SYX), if f is strictly differentiable for all a € X.

It is easy to show that f € S1(X) if and only if ®f can be extended
to a continuous function on X x X, if and only if there exists a continuous
function e defined on X x X such that e(z,z) = 0 and satisfying f(y) =
f@)+(y—a)f(z)+ (y — x)e(x,y) for all (z,y) € X x X.

Theorem 11.1.2. Let f(z) = 3,5 ax (3) be the Mahler expansion of a
continuous function f on Z, (see Theorem 4.2.26).

(1) f is Lipschitz-continuous (in other words ®f is bounded) if and only if
klag| is bounded. In that case,

@ f|| = sup | @ f(z, y)| = sup plee®)/ lee@]|q, | .
k>1

a#y
(2) f € SYZy,) if and only if klax| — 0 as k — .

Definition 11.1.3. If f is Lipschitz-continuous we define the L'-norm of f
by the formula

£l = max(|f(0)], @) ,

which is indeed a norm.
We can now give the definition of the Volkenborn integral:

Definition 11.1.4. Let g be a function from Z, to C,. We define the Volken-
born integral of g on Z,, if it exists, by the formula

If g is a function from U, = Z;, to Cp, we define similarly

[ atd=tm S g,

p o<n<p", ptn
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Note that if g is a function on Z;, and if we define go to be the function on
Zy equal to g on Z;, and to 0 on pZ, then evidently fZ* g(t) fz go(t) dt.
P

On the other hand, because of the p-adic topology it is clear that g € S 1(Z;§)
if and only if gy € S*(Z,), so that we can always reduce an integral over
Z, to an integral over Z, if desired. The following result, which we will not
prove, ensures the existence of the Volkenborn integral of sufficiently regular
functions; see [Robl].

Proposition 11.1.5. If g € SY(Z,) then fZ t)dt exists, and similarly for
7.
P

We will thus be able to define p-adic functions by integrating functions of
two variables, in other words by setting

P

f(ac):/z g@t)dt or f(x):/*g(m,t)dt.

We will see that all the functions that we will introduce in this chapter (the
logarithm of Morita’s p-adic gamma function, Diamond’s p-adic log gamma
function, and p-adic zeta and L-functions) have a simple definition in terms
of Volkenborn integrals.

To avoid excessive technicalities, we will be a little sloppy, and often
assume without any justification that we can differentiate under the integral
sign. This is done in [Robl] for integrals of the form pr g(x + t)dt, and
otherwise it can be checked directly on the specific integral without appealing
to general theorems.

Here are some basic properties of these integrals, which we will not need.
We always assume that the functions f that occur are in S'(Z,).

‘/Z F(t) dt

(2) If Ifn — flli — O (in other words if f, — f in S*(Z,)) then

/Zp Falt) dt — /Z F(t) dt

/Z (F(E+1) — F(B)dt = 1'(0)

P

Proposition 11.1.6. (1)

<plfl-

In particular, if g(x fZ t)dt, then g(z + 1) — g(z) = f'(x).
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(4) If f(x) = Zk>0 ay (i) then

/Z Ft)dt = Z(_Dk/ffl .

k>0

(5) If f is an odd function (f(—x) = —f(x)), then

[ =10
z, 2

Examples. (1) For « € C, such that |z| < 1, we have

¢ log, (1 + z)
/Z (1+az)dt=—"L——".

€T
P

(2) For all z € Q, and k € Z>( we have

/ (z+t)Fdt = By(z) .

P

We invite the reader to prove these formulas (Exercise 1). Since the second
example above is essential, we give the proof of a more general result.

Lemma 11.1.7. Let x be a periodic function defined on Z of period a power
of p, and let k € Z>q. For all x € C,, we have

| xo+F de = Bt
ZP
In particular,

/ (z+t)*dt = By(z) and / x()t* dt = Bi(x) .
z z

P P

Proof. By definition and Corollary 9.4.17 we have

1
/ A+ dt = tim — 3 x(n)(n + )"
Zp e p 0<n<p”
~ lim Bi+1(x,p" + ) — Br1(x, 2)
7—00 pr(k + 1)
B.;+1(X7x)
=B
k‘+1 k(X?x)

as soon as p” is a multiple of the period of y, by definition of the derivative
and the fact that B;_,(x,x) = (k + 1)B(x, z). O
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11.2 The p-adic Hurwitz Zeta Functions

11.2.1 Teichmiiller Extensions and Characters on Z,

Introduction.

Recall that in the complex case, our fundamental building block was the
Hurwitz zeta function ((s,x), which enabled us first to motivate the defini-
tion of the gamma function and prove most of its properties as immediate
consequences of the corresponding ones for {(s, ), and second to define the
Dirichlet L-functions as a finite linear combination of {(s,x) for suitable ra-
tional values of z. We will proceed in exactly the same way in the p-adic case.
We are going to see, however, that it is essential to distinguish between the
cases vp(z) < 0 and v,(x) > 0.

Definition of g,.

The prime number p = 2 is always annoying in number theory, and especially
in p-adic theory: over a general p-adic field the annoying primes are those for
which e/(p—1) > 1, in other words e > p — 1. In the case of Q,,, which is the
main object of consideration in this chapter (although some variables will be
in C,), the only annoying prime is p = 2 (the “oddest prime” as a famous
saying goes). It is thus convenient to set the following notation, which we
have met briefly in Proposition 4.4.47:

Definition 11.2.1. We set g, = p when p > 3, and g2 = 4. In addition, we
define
CZyp ={z € Qp, vp(z) < —p(gp)} ,

s0 that when p > 3 we have CZ, = Q, \ Z,.

Extensions of the Teichmiiller character.

Recall from Definition 4.3.10 that if @ € Z; is a p-adic unit we let w(a)
be the Teichmiiller representative of a. With the above notation it is the
unique ¢(gp)th root of unity such that (a) = a/w(a) =1 (mod ¢,Z,). In par-
ticular, thanks to Corollary 4.2.18 we know that (a)® = exp,(slog,((a))) =
exp,,(slog,(a)) is well defined by a power series that converges for |s| < R, =
4p/p"/ P~V Note the crucial fact that R, > 1. It is essential to extend these
functions to Q,, as follows.

Definition 11.2.2. (1) We extend the notation () to Qj by setting (a) =
(a/p™(@).

(2) We extend the notation w to Z, as a Dirichlet character modulo p; in
other words, we set w(a) =0 for a € Z,, \ Z;, = pZ,. More generally, for
any k € Z we let w* be the kth power of w in the sense of characters, so
that w*(a) = 0 for a € pZ,, even when k < 0.

(3) In particular, we set xo = w, which is the trivial character modulo p on
Ly, equal to the characteristic function of Z.
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If a € Qy, we define w,(a) by the equivalent formulas

wo(a) = a/(a) = p Ww(a/p”V)

(the subscript v is simply to recall that the valuation is involved).

Remarks. (1) The use of the same notation (a) for a € Q; cannot lead to

any confusion. On the other hand, it is essential to distinguish the two
possible extensions of w(a). It is reasonable to keep the same notation
for the extension as a Dirichlet character, but the other extension must
be given another notation, which I have chosen to be w,,.

In particular, if @ € Z, we have w(a) = xo(a)w,(a) with the notation
Xo introduced above, and more generally for any v € Z we have w(a) =
p"Xo(a)wy(a/p®).

It is clear that (a), w(a), and w, (a) are still multiplicative functions, that
by definition w,(a)(a) = a, and that log,(w,(a)) = 0 since by definition
of the Iwasawa p-adic logarithm we have set logp(p) =0.

By Proposition 4.4.44, the functions w(a) and (a) can be canonically
defined on the p-adic units of C,. However, we cannot naturally extend
these symbols to a € C} since p? (@) is not uniquely defined (see the
remarks preceding Proposition 4.4.44).

For future reference, we note the following formula:

Lemma 11.2.3. We have

9, \1- (z)t (z)~*
—_— s = 1 — = 1 - .
e

Proof. Trivial and left to the reader. a

Dirichlet characters on Z,.

Let x be a Dirichlet character modulo p¥ for some v. If a € Z, and a,, is a
sequence of integers tending to a p-adically, we have v, (a,—am,) = v for n and
m sufficiently large, so x(a,) is an ultimately constant sequence, and we of
course set x(a) = x(ay) for v,(a—a,) > v. This is called a Dirichlet character

on

Z,, and it is clear that it has all the usual properties. In particular, it

is multiplicative, and x(a) = 0 if and only if a € pZ,. The characters w”
that we have defined above are examples of such Dirichlet characters (with
v = vp(gp)). Note that when the conductor of x is not a power of p we cannot
define an extension of x to Z,,.

11.

2.2 The p-adic Hurwitz Zeta Function for x € CZ,

Recall that CZ, is the set of z € Q, such that v,(z) < —v,(gp)-
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Proposition 11.2.4. Let z € CZ,, and let s € C,, be such that |s| < R, =
4p/p" P~V (in other words, vy(s) > 1/(p — 1) — v,(gp))-

(1) The Volkenborn integral [, (x 4 t)'=%dt exists, and more precisely we
have

1
(x+t)'dt = —
Zp p"

Y nta) 00 ),

0o<n<p”

where we recall that A = O(p*) means that v,(A) > k.
(2) We have the convergent Laurent series expansion

S D L

Proof. Since R, > 1, note first that |s| < R, is equivalent to |1 —s| < R,
and furthermore by Proposition 4.4.47 we know that the series defining (x)1~*
converges for |s| < Ry, for all z € Q, with the extended definition of (x) that
we have given. We can therefore write

(et )= = @) o1 nfa) = = (o 3 (1 e

>0/
so that
; = (1 _S> B () = By (0)
_ n + T S — T S ] T J g
o ( ) (@) > ; G Dy

o<n<p” j=0
by Euler-MacLaurin. In the proof of Lemma 11.1.7 we used the formula

lim Bj+1(p‘T> —Bj11(0) _ B, .
oo (G +Dp"

Here we of course use this same formula, but since we have an infinite series
of limits we must show that we can take the limit term by term. This can be
done in great generality, but in this special case it is very easy: we have

Bj11(p") — Bj+1(0) ( J )
- " =B+ E . B
U+ 1p acigg V1

pr(i—l)

We have trivially v, (i) < i—1 and by Clausen—von Staudt v,(Bj11-;) > —1,
so that for i > 2,

vp(Bir—p’ Vi) 2 (r=1)(i—1) =12 —2.
It follows that there exist p-adic integers A;(r) such that

Bj1(p") — Bj+1(0)
(j+1)p"

= Bj+p ?A(r),
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so that
1—s —j Bj+1(pr) - Bj+1(0)
Z( j >Z (j+p

o N J
1—s —j r—9 1_8 —j
:Z i B+ p Z i xlA(r).

>0 520

(5)

The series on the right-hand side is the (absolute value of the) power series ex-
pansion of (1+1/z)'~%, which converges by Corollary 4.2.16 since v,(1/z) >
0pl(,) > 1/(p—1) amd v,(1—5) > 1/(p— 1) —,(g,) > 1/(p — 1) — vy(1/2),
and in fact its absolute value is equal to 1. Thus the left-hand side is bounded
independently of r, so we may indeed deduce that

lim ir Z <n+x>1—s _ <x>l—sz <1 — S)x—ij ,
THOOp

o<n<p” 720 J

Since |A;(r)| < 1 it follows that

% (05 )

j=20

5>

j=20

as well as the last statement. O

By Proposition 9.6.6 and Lemma 11.1.7 we have for z € Q and k € Z>,

. (x+t)"dt = .

=C(1—k,x).

Since Zx is dense in Z,, this motivates the following definition, which makes
sense thanks to the above proposition:

Definition 11.2.5. For s € C, \ {1} such that |s| < R, and x € CZ, we
define (p(s,x) by the equivalent formulas

1 s (x)l=s 1—s .
o ernas T (1) e
v >0

Remarks. (1) In the case p = 2 and v,(x) = —1, which is not included in
the above definition, we can still define ¢, (s, ), but it is then necessary to
restrict to s € Z,, \ {1} and to slightly modify the formulas; see Exercise
5.

(2) We will see in the next section that there is an analogous definition for
vp(x) > 0, but this deserves a separate study.

(3) The first formula for ¢,(s,x) is the most natural one, but for many pur-
poses it will be simpler to use the second.

CP(57I) -
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(4) As already mentioned we cannot extend () to C,, so we must restrict to
z € Qp.

(5) Here and elsewhere, note that the p-adic analogue of a complex infinite
series (here of Y- - (n + 2)7°) is, up to sign, the Volkenborn integral
of the integral of the sum with respect to s, and not of the derivative as
could be expected.

Proposition 11.2.6. Assume that x € CZy,.
(1) For any k € Z\ {0} we have

wy(x)F dt
G(l+kz) = (k) /Z (z+ )k

(2) Fork € Z>1 we have

_k Br(z)
k b
and if in addition x € Q, then (1 — k,z) = w,(x)*¢(1 — k,z).

Gl —k,z) =—w,(z)

Proof. By definition of w,, if x € CZ, we have w,(1 4+ n/z) = 1, so that
wy(n+x) = w,(x) for all n € Z. It follows that (n+z) =% = (n+2z) *w,(2)k,
hence

1+ k) = 2 [ o ra,

P

proving (1). For (2) we deduce from Lemma 11.1.7 that if £ € Z>; we have

@O [ ot = o B

P

Gl—kx)=—

and this is equal to w,(z)"¥¢((1 — k,z) when x € Q by Corollary 9.6.10. O

Corollary 11.2.7. We have
9¢p s

(2N

ox
Proof. Formally, this follows from the integral definition and Lemma
11.2.3, but we would need to justify the derivation under the integral sign.
Instead, we use the series given by the proposition, since it is normally con-
vergent for x € CZjy. In that region we can therefore differentiate termwise.

Since ) )
Golsia) = —5 3 ( j5)3j<m>1sjwv(z)”

Jj=0

Cp(s+1,x2).

and since w, (y) = w,(z) if y is sufficiently close to z, it follows from Lemma
11.2.3 and the formula (1 — s — j)(lgs) = (1—s)(7°) that

—s
J
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S = 2 >oa-s-a( s

Wy (x)?

ST & (7B = st o

proving the corollary. ad

Proposition 11.2.8. For fized v € CZ, the function (,(s,z) is a p-adic
meromorphic function on |s| < R, = qp/pl/(p’l), which in addition is ana-
lytic, except for a simple pole at s = 1 with residue 1.

Proof. Since by definition (z) =1 (mod ¢,Z,), we know that (z)'~* is an
analytic function on |1 — s| < R, or equivalently, on |s| < 1 since R, > 1,
and in particular is defined and continuous on Z,,, so that we need to consider
only the infinite series.

By the Clausen-von Staudt Theorem 9.5.14 we have v,(B;) > —1, hence
vp(z7IBj) = jup(gp) — 1. Applying Proposition 4.2.28 with a = v,(g,), o/ =
0, and o = —1 we deduce that the series }_., (?)x_ij has a radius of
convergence greater than or equal to R, so that it defines an analytic function
for |s| < Rp, with value 1 at s = 0, proving the proposition after changing s

into 1 — s and noting again that |1 — s| < R, is equivalent to |s| < R,. O

Remarks. (1) We do not need any fancy definition of meromorphic p-adic
functions: the analyticity and meromorphy statements simply mean that
the function f(s) = (s — 1)(p(s,z) has a power series expansion that
converges for |s| < R, and that f(1) = 1.

(2) As in the complex case (see the statements following Proposition 9.6.8),
since we will define Logl', () to be wv(x)%ig(o, x), it follows from Corol-
lary 11.2.7 that around s = 1 we have more precisely

Gl5,2) = —= — () + Ols — 1),

where 1, (z) = (d/dz)(Logl',(z)) (see Proposition 11.5.6).

Theorem 11.2.9. Keep the above notation, and let x € CZ,.
(1) For k € Z>1 we have
_x Bi(z)
k )
which is also equal to w,(x) " *¢(1 — k,z) if x € Q.
(2) Ifx/u € CZy (and in particular if u € Zy), we have the Laurent expansion

st = S (1) B

o\ J

Gl —kx) = —w,(z)
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(3) We have the functional equation

Cp(s,x+1) = Gps,2) = —
(4) We have the reflection formula
Gp(s,1—x) = (s, @) -
(5) If N € Zx is such that Nx € CZ, we have the distribution formula
> G (s,x + zir) = Wy (N)(N)*¢p(s, Na) .
0<j<N

Proof. (1) Although we have already seen this in Proposition 11.2.6, which
was in fact the motivation of our definition of (,(s,x), we prove this from
the series expansion. Indeed, by definition of the Bernoulli polynomials, for
k > 1 we have

xXr k . xXr k X
1= k) = =555 (M) Bt = - S u) = o)+
j=0

2). Since z/u € CZ, we have v,(z + u) = v,(x), hence
P P P
(z + u)/p? @F = 2/p* @) (mod ¢,7Z,) .

Thanks to our extended definition of w, and () we have w,(z + u) = w,(x)
and (x + u) = (1 +u/x)(z), hence

Cols, x4+ u) = otu)™ > (1 . s) (z+u)"'B;

s—1 7

- <$>1—s ( .
s—1 o\ J k>0
(w)t=s 1-5\ . ~=/(n —
— n n B
s—1 n * Z i !
n=>0 7=0
(x)l=s 1—s\ _
= an P
s—1 n v (u)

proving (2).

(3) and (4). Since B;(1) — B;(0) = 0 for j # 1, B1(1) — B1(0) = 1, and
B;(1) = (=1)/Bj, (3) and (4) immediately follow from (2). Note that they
clearly also follow from the definition of ¢, as a Volkenborn integral.
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(5). By Proposition 9.1.3 and (2) we have

C)e S B

0<j<N

s x—n B" _ N<x>1_s
anl - <Nx>175

Z Cp(sax+j/N) =

S - <
0<Gj<N n>0

[—
|

Cp(s, Nx)

— N{N)*"'y(5, Na) = wo (N){N)G (s, Na)

since ( ) is multiplicative, proving (5). O

Formulas (3) and (5) should be compared with the complex case (Propo-
sitions 9.6.2 and 9.6.12).

Statement (5) does not make sense when v,(Nz) > 0, since (,(s, Nx) is
not defined, but since we will define (,(s,x) (and more general functions)
when v,(x) > 0 below, there does exist a suitable generalization (Corollary
11.2.15).

We end this section with the following formula, which is a p-adic gen-
eralization of Raabe’s formula (Proposition 9.6.50 and Corollary 9.6.54). I
thank E. Friedman for having suggested that such a formula might exist; see
[Coh-Fri].

Proposition 11.2.10. For |s| < R, and x € CZ, we have

/Cpsx—i-t)dt—sgp(sx) (x—l)agp( ,T)

s (Cp(s;2) = (z = Gp(s + 1,2))

Proof. The series given by Theorem 11.2.9 (2) being normally convergent
for w € Z,, can thus be integrated term by term, so that using Exercise 3 (a)
we obtain

/Zp Cp(s, o+ 1) dt = <8x>_1—15 ]; <1 ; 8>x—j/Z B (1) dt

'p
1—s 1— .
=" <$>_ 1 > ( , s) (JBj—1+ (G — 1Bz .
TN
Now by Corollary 11.2.7 we have
1— , — ,
Jj=0 J =0 J

_ 1 ; % s(x)*Cp(s + 1,2) = (s — 1)<x>8*1%(5,x) .

Furthermore, by a direct computation using Lemma 11.2.3 we have
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et ==L B (1 )im - - 600

hence

5
2
-
-

s—1 ¢
720

- - 0
(177)6 = 0B = <520 - sgy(oi0).

Replacing in the above formula for fzp Cp(s,x +t) dt gives the first formula,
and the second follows from Corollary 11.2.7. ad

Using Exercise 2 it is immediate to give a much simpler proof of this
proposition, which generalizes; see Exercise 3.

11.2.3 The Function {,(s,z) Around s =1

To finish the study of the function (,(s, ) for © € CZ, we need more infor-
mation on the coefficients of the power series expansion around s = 1. We
will see that this has important arithmetic applications. The main result is
as follows.

Theorem 11.2.11. Let x € CZ,,.
(1) We have 1/(s —1)3 ;5 (lgs)Bjx_j =1/(s = 1)+ ;50 ¢i(s = 1)7 with

1
=gt 12 (mod (gp/2)Zp) , 1 =
¢; =0 (mod (qp/7)Zy)  forj = 2.

(2) We have (p(s,z) =1/(s — 1)+ 32,50 a;(s — 1)7 with

1
1922 (mod (gp/2)Zy) , and

10 = 5+ g~ log, () (mod (g,/2)2,)
lo )% o x
ay = gp(2< >) o gpQ(Jf >) + 12]%2 (mod (qp/x)Zp)7 and
z))i Tt
0y = (i B O o (2, for gz

(7 +1)!

(3) I g | m and p t a, we have (m'=*/m)Gy(s,0/m) = 1/(m(s — 1)) +
> js0bi(s — 1) with

L m log,((a)

by = % + 1242 - (mod gpZy) ,
_ log,((a))* log,({a)) =~ m
by = 5 "  9g + 202 (mod gpZy) , and

bj

(=1

1 Jj+1
JHM (mod gpZ,) forj > 2.

G+ 1)Im
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Remark. For p > 5 we have 1/(1222?)

=0 (mod (gp/x)Z,), and for p > 3
we have log, ((x))/(2x) =0 (mod (q,/z)Zy).

Proof. For simplicity of notation, set v = |v,(x)| = —v,(z) = v,(gp). By
the Clausen—von Staudt theorem and Lemma 4.2.8, for j > 1 we have

vp(Bja ™ [j1) = —jup(@) —vp(j) =12 j(v = 1/(p—1)) =1+ 1/(p - 1).

Since v > v,(gp), this is an increasing function of j, so for j > 6 we have
vp(Bjz=9 /) = 6(v—1/(p—1))—(p—2)/(p—1). We have B3 = B; = 0, and
vp(Bar 4 /41) = 4v—0,(720). Using v > v,(g,), a case-by-case examination of
p=2,3,5and p > 7 shows that 4v—v,(720) < 6(v—1/(p—1))—(p—2)/(p—1).
Since R, > 1 we can transform the Mahler-type expansion of (1) into a power
series in (s — 1) with radius of convergence greater than or equal to R, so
that

1—s s s—=1 s(s=1) 4,
Bix =1 v U77(720)F 1
JZ;)( ' ) 7" T Y P (s=1)

1 1 (s —1)2 -
RN <2x - 123:2) + gt TR,

for some power series F' € Z,[[X]] with p-integral coeflicients such that
F(0) = 0. We check again on a case-by-case basis that 4v — v,(720) >
v+ vp(gp) = vp(gp/x), proving (1).

For (2), since by definition v, ({z)) > v,(q,), the series log, ({z)) converges,
and by Proposition 4.2.14 we have v, (log,((z))) = v,((x)) > v,(gp), so we
can write

_g)d
(a1 = exp, (1 = s)log () = 3 = tog, ()

Jj=0

For simplicity of notation set L = log,({z)). Since (,(s,z) = ({z)'7/(s —

1) > is0 (1;S)Bjx_j, it follows that

n+l (_1)n—jLn—j

an = (1) ‘
ORI - Rl

Cj .

Note first that by Lemma 4.2.8 we have for u > 1,

vp (L Jul) > uvy(gp) —u/(p — 1) = u(vp(gy) — 1/(p— 1)) .

In particular, we deduce that for v > 2 we have v, (L"/u!) > v,(gp)+1, hence
vp((L*/u)/(2x)) = vp(gp/x), and for u > 1