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Preface

This book deals with several aspects of what is now called “explicit number
theory,” not including the essential algorithmic aspects, which are for the
most part covered by two other books of the author [Coh0] and [Coh1]. The
central (although not unique) theme is the solution of Diophantine equa-
tions, i.e., equations or systems of polynomial equations that must be solved
in integers, rational numbers, or more generally in algebraic numbers. This
theme is in particular the central motivation for the modern theory of arith-
metic algebraic geometry. We will consider it through three of its most basic
aspects.

The first is the local aspect: the invention of p-adic numbers and their
generalizations by K. Hensel was a major breakthrough, enabling in particular
the simultaneous treatment of congruences modulo prime powers. But more
importantly, one can do analysis in p-adic fields, and this goes much further
than the simple definition of p-adic numbers. The local study of equations
is usually not very difficult. We start by looking at solutions in finite fields,
where important theorems such as the Weil bounds and Deligne’s theorem
on the Weil conjectures come into play. We then lift these solutions to local
solutions using Hensel lifting.

The second aspect is the global aspect: the use of number fields, and
in particular of class groups and unit groups. Although local considerations
can give a considerable amount of information on Diophantine problems,
the “local-to-global” principles are unfortunately rather rare, and we will
see many examples of failure. Concerning the global aspect, we will first
require as a prerequisite of the reader that he or she be familiar with the
standard basic theory of number fields, up to and including the finiteness of
the class group and Dirichlet’s structure theorem for the unit group. This can
be found in many textbooks such as [Sam] and [Marc]. Second, and this is
less standard, we will always assume that we have at our disposal a computer
algebra system (CAS) that is able to compute rings of integers, class and unit
groups, generators of principal ideals, and related objects. Such CAS are now
very common, for instance Kash, magma, and Pari/GP, to cite the most useful
in algebraic number theory.
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The third aspect is the theory of zeta and L-functions. This can be consid-
ered a unifying theme1 for the whole subject, and it embodies in a beautiful
way the local and global aspects of Diophantine problems. Indeed, these func-
tions are defined through the local aspects of the problems, but their analytic
behavior is intimately linked to the global aspects. A first example is given by
the Dedekind zeta function of a number field, which is defined only through
the splitting behavior of the primes, but whose leading term at s = 0 contains
at the same time explicit information on the unit rank, the class number, the
regulator, and the number of roots of unity of the number field. A second
very important example, which is one of the most beautiful and important
conjectures in the whole of number theory (and perhaps of the whole of math-
ematics), the Birch and Swinnerton-Dyer conjecture, says that the behavior
at s = 1 of the L-function of an elliptic curve defined over Q contains at the
same time explicit information on the rank of the group of rational points
on the curve, on the regulator, and on the order of the torsion group of the
group of rational points, in complete analogy with the case of the Dedekind
zeta function. In addition to the purely analytical problems, the theory of
L-functions contains beautiful results (and conjectures) on special values, of
which Euler’s formula

∑
n�1 1/n2 = π2/6 is a special case.

This book can be considered as having four main parts. The first part gives
the tools necessary for Diophantine problems: equations over finite fields,
number fields, and finally local fields such as p-adic fields (Chapters 1, 2, 3,
4, and part of Chapter 5). The emphasis will be mainly on the theory of
p-adic fields (Chapter 4), since the reader probably has less familiarity with
these. Note that we will consider function fields only in Chapter 7, as a tool
for proving Hasse’s theorem on elliptic curves. An important tool that we will
introduce at the end of Chapter 3 is the theory of the Stickelberger ideal over
cyclotomic fields, together with the important applications to the Eisenstein
reciprocity law, and the Davenport–Hasse relations. Through Eisenstein reci-
procity this theory will enable us to prove Wieferich’s criterion for the first
case of Fermat’s last theorem (FLT), and it will also be an essential tool in
the proof of Catalan’s conjecture given in Chapter 16.

The second part is a study of certain basic Diophantine equations or
systems of equations (Chapters 5, 6, 7, and 8). It should be stressed that
even though a number of general techniques are available, each Diophantine
equation poses a new problem, and it is difficult to know in advance whether
it will be easy to solve. Even without mentioning families of Diophantine
equations such as FLT, the congruent number problem, or Catalan’s equation,
all of which will be stated below, proving for instance that a specific equation
such as x3 + y5 = z7 with x, y coprime integers has no solution with xyz �= 0
seems presently out of reach, although it has been proved (based on a deep
theorem of Faltings) that there are only finitely many solutions; see [Dar-Gra]

1 Expression due to Don Zagier.
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and Chapter 14. Note also that it has been shown by Yu. Matiyasevich (after
a considerable amount of work by other authors) in answer to Hilbert’s tenth
problem that there cannot exist a general algorithm for solving Diophantine
equations.

The third part (Chapters 9, 10, and 11) deals with the detailed study
of analytic objects linked to algebraic number theory: Bernoulli polynomi-
als and numbers, the gamma function, and zeta and L-functions of Dirichlet
characters, which are the simplest types of L-functions. In Chapter 11 we
also study p-adic analogues of the gamma, zeta, and L-functions, which have
come to play an important role in number theory, and in particular the Gross–
Koblitz formula for Morita’s p-adic gamma function. In particular, we will
see that this formula leads to remarkably simple proofs of Stickelberger’s con-
gruence and the Hasse–Davenport product relation. More general L-functions
such as Hecke L-functions for Grössencharacters, Artin L-functions for Galois
representations, or L-functions attached to modular forms, elliptic curves, or
higher-dimensional objects are mentioned in several places, but a systematic
exposition of their properties would be beyond the scope of this book.

Much more sophisticated techniques have been brought to bear on the
subject of Diophantine equations, and it is impossible to be exhaustive. Be-
cause the author is not an expert in most of these techniques, they are not
studied in the first three parts of the book. However, considering their impor-
tance, I have asked a number of much more knowledgeable people to write
a few chapters on these techniques, and I have written two myself, and this
forms the fourth and last part of the book (Chapters 12 to 16). These chap-
ters have a different flavor from the rest of the book: they are in general not
self-contained, are of a higher mathematical sophistication than the rest, and
usually have no exercises. Chapter 12, written by Yann Bugeaud, Guillaume
Hanrot, and Maurice Mignotte, deals with the applications of Baker’s explicit
results on linear forms in logarithms of algebraic numbers, which permit the
solution of a large class of Diophantine equations such as Thue equations
and norm form equations, and includes some recent spectacular successes.
Paradoxically, the similar problems on elliptic curves are considerably less
technical, and are studied in detail in Section 8.7. Chapter 13, written by
Sylvain Duquesne, deals with the search for rational points on curves of genus
greater than or equal to 2, restricting for simplicity to the case of hyperelliptic
curves of genus 2 (the case of genus 0—in other words, of quadratic forms—is
treated in Chapters 5 and 6, and the case of genus 1, essentially of elliptic
curves, is treated in Chapters 7 and 8). Chapter 14, written by the author,
deals with the so-called super-Fermat equation xp +yq = zr, on which several
methods have been used, including ordinary algebraic number theory, classi-
cal invariant theory, rational points on higher genus curves, and Ribet–Wiles
type methods. The only proofs that are included are those coming from alge-
braic number theory. Chapter 15, written by Samir Siksek, deals with the use
of Galois representations, and in particular of Ribet’s level-lowering theorem
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and Wiles’s and Taylor–Wiles’s theorem proving the modularity conjecture.
The main application is to equations of “abc” type, in other words, equations
of the form a + b + c = 0 with a, b, and c highly composite, the “easiest”
application of this method being the proof of FLT. The author of this chapter
has tried to hide all the sophisticated mathematics and to present the method
as a black box that can be used without completely understanding the un-
derlying theory. Finally, Chapter 16, also written by the author, gives the
complete proof of Catalan’s conjecture by P. Mihăilescu. It is entirely based
on notes of Yu. Bilu, R. Schoof, and especially of J. Boéchat and M. Mischler,
and the only reason that it is not self-contained is that it will be necessary to
assume the validity of an important theorem of F. Thaine on the annihilator
of the plus part of the class group of cyclotomic fields.

Warnings

Since mathematical conventions and notation are not the same from one
mathematical culture to the next, I have decided to use systematically un-
ambiguous terminology, and when the notations clash, the French notation.
Here are the most important:

– We will systematically say that a is strictly greater than b, or greater than
or equal to b (or b is strictly less than a, or less than or equal to a), although
the English terminology a is greater than b means in fact one of the two
(I don’t remember which one, and that is one of the main reasons I refuse
to use it) and the French terminology means the other. Similarly, positive
and negative are ambiguous (does it include the number 0)? Even though
the expression “x is nonnegative” is slightly ambiguous, it is useful, and I
will allow myself to use it, with the meaning x � 0.

– Although we will almost never deal with noncommutative fields (which is
a contradiction in terms since in principle the word field implies commu-
tativity), we will usually not use the word field alone. Either we will write
explicitly commutative (or noncommutative) field, or we will deal with spe-
cific classes of fields, such as finite fields, p-adic fields, local fields, number
fields, etc., for which commutativity is clear. Note that the “proper” way
in English-language texts to talk about noncommutative fields is to call
them either skew fields or division algebras. In any case this will not be an
issue since the only appearances of skew fields will be in Chapter 2, where
we will prove that finite division algebras are commutative, and in Chapter
7 about endomorphism rings of elliptic curves over finite fields.

– The GCD (respectively the LCM) of two integers can be denoted by (a, b)
(respectively by [a, b]), but to avoid ambiguities, I will systematically use
the explicit notation gcd(a, b) (respectively lcm(a, b)), and similarly when
more than two integers are involved.
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– An open interval with endpoints a and b is denoted by (a, b) in the En-
glish literature, and by ]a, b[ in the French literature. I will use the French
notation, and similarly for half-open intervals (a, b] and [a, b), which I will
denote by ]a, b] and [a, b[. Although it is impossible to change such a well-
entrenched notation, I urge my English-speaking readers to realize the
dreadful ambiguity of the notation (a, b), which can mean either the or-
dered pair (a, b), the GCD of a and b, the inner product of a and b, or the
open interval.

– The trigonometric functions sec(x) and csc(x) do not exist in France, so
I will not use them. The functions tan(x), cot(x), cosh(x), sinh(x), and
tanh(x) are denoted respectively by tg(x), cotg(x), ch(x), sh(x), and th(x)
in France, but for once to bow to the majority I will use the English names.

– �(s) and �(s) denote the real and imaginary parts of the complex number
s, the typography coming from the standard TEX macros.

Notation

In addition to the standard notation of number theory we will use the fol-
lowing notation.

– We will often use the practical self-explanatory notation Z>0, Z�0, Z<0,
Z�0, and generalizations thereof, which avoid using excessive verbiage. On
the other hand, I prefer not to use the notation N (for Z�0, or is it Z>0?).

– If a and b are nonzero integers, we write gcd(a, b∞) for the limit of the
ultimately constant sequence gcd(a, bn) as n → ∞. We have of course
gcd(a, b∞) =

∏
p|gcd(a,b) pvp (a), and a/ gcd(a, b∞) is the largest divisor of a

coprime to b.
– If n is a nonzero integer and d | n, we write d‖n if gcd(d, n/d) = 1. Note

that this is not the same thing as the condition d2 � n, except if d is prime.
– If x ∈ R, we denote by �x	 the largest integer less than or equal to x (the

floor of x), by 
x� the smallest integer greater than or equal to x (the ceiling
of x, which is equal to �x	+1 if and only if x /∈ Z), and by �x� the nearest
integer to x (or one of the two if x ∈ 1/2 + Z), so that �x� = �x + 1/2	.
We also set {x} = x− �x	, the fractional part of x. Note that for instance
�−1.4	 = −2, and not −1 as almost all computer languages would lead us
to believe.

– For any α belonging to a field K of characteristic zero and any k ∈ Z�0

we set (
α

k

)
=

α(α− 1) · · · (α− k + 1)
k!

.

In particular, if α ∈ Z�0 we have
(
α
k

)
= 0 if k > α, and in this case we will

set
(
α
k

)
= 0 also when k < 0. On the other hand,

(
α
k

)
is undetermined for

k < 0 if α /∈ Z�0.
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– Capital italic letters such as K and L will usually denote number fields.
– Capital calligraphic letters such as K and L will denote general p-adic fields

(for specific ones, we write for instance Kp).
– Letters such as E and F will always denote finite fields.
– The letter Z indexed by a capital italic or calligraphic letter such as ZK ,

ZL, ZK, etc., will always denote the ring of integers of the corresponding
field.

– Capital italic letters such as A, B, C, G, H, S, T , U , V , W , or lowercase
italic letters such as f , g, h, will usually denote polynomials or formal power
series with coefficients in some base ring or field. The coefficient of degree m
of these polynomials or power series will be denoted by the corresponding
letter indexed by m, such as Am, Bm, etc. Thus we will always write (for
instance) A(X) = AdX

d +Ad−1X
d−1+ · · ·+A0, so that the ith elementary

symmetric function of the roots is equal to (−1)iAd−i/Ad.
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1. Introduction to Diophantine Equations

1.1 Introduction

The study of Diophantine equations is the study of solutions of polynomial
equations or systems of equations in integers, rational numbers, or sometimes
more general number rings. It is one of the oldest branches of number theory,
in fact of mathematics itself, since its origins can be found in texts of the
ancient Babylonians, Chinese, Egyptians, and Greeks. One of the fascinations
of the subject is that the problems are usually easy to state, but more often
than not very difficult to solve, and when they can be solved, they sometimes
involve extremely sophisticated mathematical tools.

Perhaps even more importantly, mathematicians must often invent or
extensively develop entirely new tools to solve the number-theoretical prob-
lems, and these become in turn important branches of mathematics per se,
which often have applications in completely different problems from those
from which they originate.

1.1.1 Examples of Diophantine Problems

Let me give five examples. The first and most famous is “Fermat’s last the-
orem” (FLT), stating that for n � 3, the curve xn + yn = 1 has no rational
points other than the ones with x or y equal to 0 (this is of course equivalent
to the usual statement).1

In the nineteenth century, thanks in particular to the work of E. Kummer
and P.-G. Lejeune-Dirichlet, the theorem was proved for quite a large number

1 Incidentally, this is the place to destroy the legend concerning this statement,
which has produced an enormous number of “Fermatists” claiming to have found
an “elementary” proof that Fermat may have found himself: Fermat made this
statement in the margin of his copy of the book by Diophantus on number theory
(at the place where Diophantus discusses Pythagorean triples, see below), and
claimed to have found a marvelous proof and so on. However, he wrote this
statement when he was young, never claimed it publicly, and certainly never
imagined that it would be made public, so he forgot about it. It may be possible
that there does exist an elementary proof (although this is unlikely), but we can
be positively sure that Fermat did not have it, for otherwise he would at least
have challenged his English colleagues, as was the custom at that time.
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of values of n, including all n � 100. Together with the theory of quadratic
forms initiated by A.-M. Legendre and especially by C. F. Gauss, one can
without exaggeration say that this single problem gave rise to algebraic num-
ber theory (rings, ideals, prime ideals, principal ideals, class numbers, units,
Dirichlet series, L-functions, etc.). As is well known, although these methods
were pushed to the extreme in the twentieth century, they did not succeed in
solving the problem completely. The next progress on FLT came from alge-
braic geometry thanks to the work of G. Faltings, who proved the so-called
Mordell conjecture, which in particular implies that for a fixed n � 3 the num-
ber of solutions to the Fermat equation is finite. However, it was only thanks
to the work of several mathematicians starting with Y. Hellegouarch and
G. Frey, and culminating with the work of K. Ribet, then finally of A. Wiles
(helped for a crucial part by R. Taylor), that the problem was finally com-
pletely solved using completely different tools from those of Kummer (and
even Faltings): elliptic curves, Galois representations, and modular forms.
Although these subjects were not initiated by FLT, their development was
certainly accelerated by the impetus given by FLT. In particular, thanks to
the work of Wiles, the complete proof of the Taniyama–Shimura–Weil con-
jecture was obtained a few years later by C. Breuil, B. Conrad, F. Diamond,
and R. Taylor. This latter result can be considered in itself a more important
(and certainly a more useful) theorem than FLT.

A second rather similar problem whose history is slightly different is Cata-
lan’s conjecture. This states that when n and m are greater than or equal to
2, the only solutions in nonzero integers x and y of the equation xm− yn = 1
come from the equality 32 − 23 = 1. This problem can be naturally attacked
by the standard methods of algebraic number theory originating in the work
of Kummer. However, it came as a surprise that an elementary argument due
to Cassels (see Theorem 6.11.5) shows that the “first case” is impossible, in
other words that if xp − yq = 1 with p and q primes then p | y and q | x.
The next important result, due to R. Tijdeman using Baker’s theory of lin-
ear forms in logarithms of algebraic numbers, was that the total number of
quadruplets (m,n, x, y) satisfying the required conditions is finite. Note that
the proof of this finiteness result is completely different from Faltings’s proof
of the corresponding one for FLT, and in fact in the latter his result did not
imply the finiteness of the number of triples (x, y, n) with n � 3 and xy �= 0
such that xn + yn = 1.

Until the end of the 1990s the situation was quite similar to that of FLT
before Wiles: under suitable conditions on the nondivisibility of the class
number of cyclotomic fields, the Catalan equation was known to have no
nontrivial solutions. It thus came as a total surprise that in 1999 P. Mihăilescu
proved that if Catalan’s equation xp− yq = 1 with p and q odd primes has a
solution then p and q must satisfy the so-called double Wieferich condition
pq−1 ≡ 1 (mod q2) and qp−1 ≡ 1 (mod p2). These conditions were known
before him, but he completely removed the conditions on class numbers. The



1.1 Introduction 3

last step was again taken by Mihăilescu in 2001, who finished the proof of
Catalan’s conjecture. His proof was improved and simplified by several people,
including in particular Yu. Bilu and H. W. Lenstra. The remarkable thing
about the final proof is that it uses only algebraic number theory techniques
on cyclotomic fields. However, it uses a large part of the theory, including the
relatively recent theorem of F. Thaine, that has had some very important
applications elsewhere. It does not use any computer calculations, while the
initial proof did.

A third example is the congruent number problem, stated by Diophantus
in the fourth century A.D. The problem is to find all integers n (called con-
gruent numbers) that are equal to the area of a Pythagorean triangle, i.e.,
a right-angled triangle with all three sides rational. Very simple algebraic
transformations show that n is congruent if and only if the Diophantine
equation y2 = x3 − n2x has rational solutions other than those with y = 0.
The problem was in an “experimental” state until the 1970s; more precisely,
one knew the congruent or noncongruent nature of numbers n up to a few
hundred (and of course of many other larger numbers). Remarkable progress
was made on this problem by J. Tunnell in 1980 using the theory of modular
forms, and especially of modular forms of half-integral weight. In effect, he
completely solved the problem, by giving an easily checked criterion for n to
be a congruent number, assuming a weak form of the Birch–Swinnerton-Dyer
conjecture, see Theorem 6.12.4. This conjecture (for which a prize of 1 mil-
lion U.S. dollars has been offered by the Clay foundation) is probably one of
the most important, and also one of the most beautiful, conjectures in all of
mathematics in the twenty-first century.

A fourth important example is the Weil conjectures. These have to do
with the number of solutions of Diophantine equations in finite fields. In-
deed, one of the main themes of this book is that to study a Diophantine
equation it is essential to start by studying it in finite fields. Let us give a
simple example. Let N(p) be the number of solutions modulo p of the equa-
tion y2 = x5 − x. Then |N(p) − p| can never be very large compared to p,
more precisely |N(p) − p| < 4

√
p, and the constant 4 is best possible. This

result is already quite nontrivial, and the general study of the number of
points on curves culminated with work of A. Weil in 1949 proving that this
phenomenon occurs for all (nonsingular) curves and many other results be-
sides. It was then natural to ask the question for surfaces, and more generally
varieties of any dimension. This problem (in a very precise form, which in par-
ticular implied excellent bounds on the number of solutions) became known
as the Weil conjectures. A general strategy for solving these conjectures was
put forth by Weil himself, but the achievement of this goal was made possible
only by an amazing amount of work by numerous people. It included the cre-
ation of modern algebraic geometry by A. Grothendieck and his students (the
famous EGA and SGA treatises). The Weil conjectures were finally solved
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by P. Deligne in the early 1970s, exactly following Weil’s strategy, but using
all the tools developed since.

As a last example we mention Waring’s problem. One of its forms (by far
not the only one) is the following: given an integer k � 2, find the smallest
integer g(k) such that any nonnegative integer can be represented as a sum
of g(k) nonnegative kth powers. It has been known since J.-L. Lagrange that
any integer is a sum of 4 squares, and that integers congruent to 7 modulo 8
are not the sum of 3 squares, so that g(2) = 4. It was proved by D. Hilbert
that g(k) is finite (this can be proved with not too much difficulty from
Lagrange’s result, but is still not completely trivial: try it as an exercise).
However, the major advances on this problem were made by G. H. Hardy and
J. Littlewood, who invented the circle method in order to treat the problem.
One of the important aspects of the circle method is the so-called singular
series, which regroups all the arithmetic information obtained by studying
the problem modulo p for each prime p. The other major advances were
made by I.-M. Vinogradov using the theory of trigonometric sums. Both the
circle method and trigonometric sums have found universal application in the
branch of number theory called “additive number theory,” and also in other
branches of number theory. To finish this example, we note that Waring’s
problem as given above (as already mentioned, there are other versions) is
completely solved. Perhaps surprisingly, when one compares it with FLT for
example, the hardest cases are not for large k but for small k: the most difficult
is k = 4, solved only in the 1980s by R. Balasubramanian, J.-M. Deshouillers,
and F. Dress, see [BDD]. For the record, we have g(2) = 4, g(3) = 9, and
g(4) = 19.

Additive number theory forms a large part of what is usually called “an-
alytic number theory” because many sophisticated analytic techniques come
into play. Analytic number theory will not be studied in this book, with
the exception of a few basic results such as the prime number theorem and
Dirichlet’s theorem on primes in arithmetic progression. The expression “an-
alytic methods” used in the third part of this book (Chapters 9 to 11) refer to
the study of Bernoulli polynomials, gamma and L-functions, integral trans-
forms, summation formulas, and the like. We refer for instance to [Ell] and
[Iwa-Kow] among many others for excellent expositions of analytic number
theory.

1.1.2 Local Methods

As is explicit or implicit in all of the examples given above (and in fact in
all Diophantine problems), it is essential to start by studying a Diophantine
equation locally, in other words prime by prime (we will see later precisely
what this means). Let p be a prime number, and let Fp � Z/pZ be the prime
finite field with p elements. We can begin by studying our problem in Fp (i.e.,
modulo p), and this can already be considered as the start of a local study.
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This is sometimes sufficient, but usually not. In that case, keeping the same
prime p, we will see that there are two totally different ways to refine the
study of the equation.

The first is to consider it modulo p2, p3, and so on, i.e., to work in Z/p2Z,
Z/p3Z,. . . An important discovery, made by K. Hensel in the beginning of the
twentieth century, is that it is possible to regroup all these rings with zero di-
visors into a single object, called the p-adic integers, and denoted by Zp, which
is an integral domain. Not only do we have the benefit of being able to work
conveniently with all the congruences modulo p, p2, p3,. . . simultaneously,
but we have the added benefit of having topological properties, which add a
considerable number of tools that we may use, in particular analytic methods
(note that this type of limiting construction is very frequent in mathematics,
with the same type of benefits). When we say that we study our Diophantine
problem locally at p, this means that we study it in Zp, or in the field of
fractions Qp of Zp. We will devote the entirety of Chapter 4 to the study
of p-adic numbers and their generalizations. The reason for the word “local”
will become clear when we study p-adic numbers.

A second way to refine the study of our equation, which is explicit for
example in Weil’s estimates and conjectures, is to study our equations in
the finite fields Fp2 , Fp3 , etc. (Note that usually this does not bring any
information for equations over Q, since in that case only local methods are
useful.) At this point, recall that the main theorem on finite fields (which
we will recall, with proof, in Chapter 2) is that for any prime power q = pn

there exists up to isomorphism exactly one finite field Fpn of that cardinality,
and all finite fields have this form. They are of course not isomorphic to
Z/p2Z, Z/p3Z,. . . since the latter are not even fields. We will come back to the
structure of finite fields in the text. Once again, we can use a limiting process
of a slightly different kind so as to put all these finite fields of characteristic
p together: this leads to Fp, the algebraic closure of Fp. In this case we of
course do not say that we study it locally, but simply over Fp.

Let us give simple but typical examples of all this. Consider first the Dio-
phantine equation x2+y2 = 3 to be solved in rational numbers or equivalently,
the Diophantine equation x2 + y2 = 3z2 to be solved in rational integers. We
may assume that x and y are coprime (exercise). Looking at the equation
modulo 3, i.e., in the field F3, we see that it has no solution (x2 and y2 are
congruent to 0 or 1 modulo 3; hence x2 + y2 is congruent to 0 modulo 3 if
and only if x and y are both divisible by 3, excluded by assumption). Thus,
our initial Diophantine equation does not have any solution.

We are here in the case of a quadratic Diophantine equation. It is crucial
to note that this type of equation can always be solved by local methods.
In other words, either we can find a solution to the equation (often helped
by the local conditions), or it is possible to prove that the equation does not
have any solutions using positivity conditions together with congruences as
above (or equivalently, real and p-adic solubility). This is the so-called Hasse
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principle, a nontrivial theorem (see Theorem 5.3.3) that is valid for a single
homogeneous quadratic Diophantine equation, but is in general not true for
higher-degree equations or for systems of equations.

Consider now the Diophantine equation x3+y3 = 1 to be solved in nonzero
rational numbers, or equivalently, the Diophantine equation x3 + y3 = z3 to
be solved in nonzero rational integers. Once again we may assume that x, y,
and z are pairwise coprime. It is natural to consider once more the problem
modulo 3. Here, however, the equation has nonzero solutions (for example
13 + 13 ≡ 23 (mod 3)). We must go up one level, and consider the equation
modulo 9 = 32 to obtain a partial result: since it is easily checked that an
integer cube is congruent to −1, 0, or 1 modulo 9, if we exclude the possibility
that x, y, or z is divisible by 3 we see immediately that the equation does not
have any solution modulo 9, hence no solution at all. Thus we have proved
that if x3 + y3 = z3, then one of x, y, and z is divisible by 3. This is called
solving the first case of FLT for the exponent 3. To show that the equation
has no solutions at all, even with x, y, or z divisible by 3, is more difficult
and cannot be shown by congruence conditions alone (see Sections 6.4.5 and
6.9). Indeed Proposition 6.9.11 tells us that the equation x3 + y3 = z3 has a
solution with xyz �= 0 in every p-adic field, hence modulo pk for any prime
number p and any exponent k (and it of course has real solutions). Thus,
the Hasse principle clearly fails here since the equation does not have any
solution in rational integers with xyz �= 0. When this happens, it is necessary
to use additional global arguments, whose main tools are those of algebraic
number theory developed by Kummer et al. in the nineteenth century, and in
particular class and unit groups, which are objects of a strictly global nature.

1.1.3 Dimensions

An important notion that has come to be really understood only in the
twentieth century is that of dimension. It is not our purpose here to define
it precisely,2 but to give a feeling of its meaning. We stick to the algebraic
and/or arithmetic case, since the topological or analytic case is simpler.

Consider first the classical (algebraic) situation, say over the complex
numbers C. A point is clearly of dimension 0, and more generally a finite
set of points defined by a system of algebraic equations has dimension 0.
Similarly, a curve (for example defined by a single equation in two variables
f(x, y) = 0 in affine coordinates) has dimension 1 (note however that a
complex curve has dimension 1 over C but has dimension 2 over R), and so
on with surfaces which have by definition dimension 2, or arbitrary varieties
of higher dimension.

Consider now the arithmetic situation, say over the integers Z. If f(x, y)
is a polynomial in two variables with integer coefficients, we can of course
2 in the language of schemes, it is the maximal length of an ascending chain of

irreducible subschemes.



1.1 Introduction 7

consider the curve f(x, y) = 0 as defining a complex curve of dimension 1.
But when we consider the Diophantine equation f(x, y) = 0, then as we have
seen, it is essential to consider it also modulo p and more generally in the p-
adic fields Qp for every prime p (including the prime “at infinity,” which gives
the field R). Thus, as a Diophantine equation, f(x, y) = 0 should not be seen
as a curve (i.e., of dimension 1), but in fact as a surface, called an arithmetic
surface. In other words, the ring Z must be considered to be of dimension
1 (its points being the prime numbers p together with 0 corresponding to
the prime at infinity), and any system of equations considered as a system
of Diophantine equations over Z should be considered to have one additional
dimension compared to its ordinary complex dimension. See Exercise 4 for
an illustration.

One of the goals of the modern theory of arithmetic geometry is to ex-
tend to arithmetic surfaces and more generally to arithmetic varieties of any
dimension results known for ordinary surfaces and varieties.

Using these notions, we can quite naturally put a hierarchy on the objects
that naturally occur in algebraic number theory.

– Finite fields. These are the simplest objects, not only because they are
finite (finite rings and groups are extremely difficult to study; see Exercise
3) but because they have a very simple structure, which we will recall in
detail in the text. They occur as residue fields (we will see the meaning of
this later, but Z/pZ is a typical example).

– Local fields. Local fields of characteristic 0 are the p-adic fields Qp, the
real numbers R, and their finite extensions, which are the p-adic fields Kp

and the field C. There are also local fields of nonzero characteristic, which
we will not consider in this book.

– Global fields, and rings of dimension 1. Global fields are the field
of rational numbers Q, its finite extensions (i.e., number fields), and in
nonzero characteristic the fields Fq(X) and their finite extensions, which
are the function fields of curves. The corresponding rings of integers of
these global fields (Z, ZK , Fq[X], etc.) are of dimension 1.

– Any object of higher dimension will be called a curve, surface, etc. Be
careful with the terminology: when we speak of a curve, it usually means
a variety of dimension 1 over the base field, but if we consider it over Z, it
then becomes an arithmetic surface, hence of dimension 2 = 1+1. Another
possible confusion is that a complex curve is a real manifold of dimension
2, i.e., a surface, here because 2 = 2 · 1.

The reason and necessity of using this language cannot be clearly under-
stood without a course in modern algebraic geometry, but nevertheless it is
a good thing to have in mind, since it explains the utmost importance of the
objects that we are going to study.
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1.2 Exercises for Chapter 1

1. The following problem seems similar to the congruent number problem, but is
much simpler. Show that for any integer n there exists a (not necessarily right-
angled) triangle with rational sides a, b, and c and area n (recall that the area
is given by n2 = s(s − a)(s − b)(s − c), where s = (a + b + c)/2). Try to give
a complete parametrization of such triangles (I do not know the answer to this
latter question).

2. Let us say that a triangle is almost equilateral if it satisfies the following two
conditions: its vertices have integer coordinates, and the lengths of its sides are
three consecutive integers a − 1, a, and a + 1. Show that such a triangle exists
if and only if a has the form a = (2 +

√
3)k + (2−

√
3)k for k � 1 (you will first

need to know the solution to the Pell–Fermat equation, see Proposition 6.3.16).

3. This exercise is mainly to emphasize that finite fields are really simple objects.
Let G(n) (respectively R(n), F (n)) be the number of groups (respectively rings
with nonzero unit, fields) of order n up to isomorphism. Compute G(n) for
1 � n � 11 (you will need a little group theory for this), F (n) for 1 � n � 100
(using the theory recalled in the next chapter), and R(n) for as many consecutive
values of n starting at n = 1 as you can. In the same ranges compute the number
Ga(n) of abelian groups, and Rc(n) the number of commutative rings.

4. The goal of this exercise is to illustrate the fact that Z[X] has dimension 2.

(a) Let I be a nonzero ideal of Z[X]. Prove that there exists a primitive polynomial
G(X) ∈ Z[X] such that QI = G(X)Q[X], and that I ⊂ G(X)Z[X]. We set
J = I/G(X), which is again a nonzero ideal of Z[X], and it contains I.

(b) Prove that there exists n ∈ Z�1 such that J ∩ Z = nZ (you must prove that
n �= 0).

(c) From now on, assume that I is a prime ideal. Prove that either J = Z[X], or
that J is a prime ideal.

(d) If J = Z[X] prove that G(X) is irreducible in Q[X], and conversely that if
G(X) is irreducible then I = G(X)Z[X] is a prime ideal.

(e) Finally, we assume from now on that J �= Z[X], or equivalently, that G(X) /∈ I,
hence that J is a prime ideal. Prove that J ⊂ I, hence that I = J , and deduce
that G(X) = 1.

(f) Prove that the integer n defined above is a prime number p, and in particular
that n �= 1.

(g) Prove that there exists a polynomial H(X) ∈ Z[X] such that I = pZ[X] +

H(X)Z[X], and that the reduction H(X) in Fp [X] is either 0 or is irreducible in

Fp [X]. In particular, you must show that H(X) cannot be a nonzero constant.

Conversely, if H(X) is irreducible in Fp [X] prove that the above ideal I is a
prime ideal.

(h) Conclude that the (nonzero) prime ideals of Z[X] have three types: first the
ideals I = G(X)Z[X] with G(X) ∈ Z[X] irreducible and primitive, second the
ideals I = pZ[X] for p prime, and third the prime ideals pZ[X] + H(X)Z[X]

with H(X) irreducible in Fp [X].

The ascending chains of prime ideals

{0} ⊂ pZ[X] ⊂ pZ[X]+H(X)Z[X] and {0} ⊂ H(X)Z[X] ⊂ pZ[X]+H(X)Z[X]

mean that the dimension of Z[X] is equal to 2.
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2. Abelian Groups, Lattices, and Finite Fields

This chapter introduces a number of necessary tools for the rest of the book,
at different levels. The theory of finitely generated abelian groups, including
the elementary divisor theorem and the structure theorem, as well as the
theory of finite fields, should be known at the undergraduate level, but expe-
rience shows that this is not always the case, so for completeness we will give
all the important proofs. Note that the theory of finitely generated abelian
groups extends almost completely verbatim to finitely generated modules over
a principal ideal domain; we will have the occasion to use this more general
setting over the ring of p-adic integers Zp.

At a deeper level in this chapter we will also describe important results
on the number of solutions of systems of polynomial equations over finite
fields, culminating with the Weil conjectures proved by Deligne. Finally, we
also include a section on lattices, seen mainly from the point of view of the
LLL algorithm, which will be the main tool that we will use in applications
to Diophantine equations.

2.1 Finitely Generated Abelian Groups

A set G is an abelian group if and only if it is a Z-module. We will use
indifferently both terms, but we will usually use abelian group when we want
to emphasize group-theoretic properties, while we will use Z-module when
considering bases or generating families.

2.1.1 Basic Results

Lemma 2.1.1. Let G be a finitely generated torsion-free abelian group gen-
erated by x1, . . . , xn, and assume that G cannot be generated by fewer than n
elements. Then there is no nontrivial relation

∑
1�i�n aixi = 0 with ai ∈ Z.

Proof. Assume the contrary, and among all sets of n generators and all
such relations on them, choose one for which

∑
1�i�n |ai| is the smallest. We

distinguish two cases:
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– If at least two of the ai are nonzero, then permuting subscripts and chang-
ing signs if necessary we may assume that a1 � a2 > 0. Clearly x1, x1 +x2,
x3, . . . , xn still generate G, and the relation between these generators is
(a1 − a2)x1 + a2(x1 + x2) + · · · + anxn = 0, and the corresponding sum
of absolute values of coefficients is thus strictly smaller than the preceding
one, a contradiction.

– If only one of the ai, say a1, is nonzero, the relation is a1x1 = 0, and
since G is torsion-free x1 = 0; hence G is generated by the n− 1 elements
x2, . . . , xn, a contradiction. ��

Corollary 2.1.2. Any finitely generated torsion-free Z-module is free.

Proof. Indeed, choose a generating system (xi) having the smallest number
of elements. By the lemma, it is a Z-basis of G. ��

Theorem 2.1.3 (Elementary divisor theorem I). Let G be a finitely gen-
erated torsion-free (hence free) abelian group, and let H be a subgroup of G.
There exists a basis x1, . . . , xn of G and strictly positive integers m1, . . . ,mr

for some r � n such that mi | mi+1 for 1 � i � r− 1 and such that the mixi

for 1 � i � r form a basis for H. In addition, if H has finite index in G then
r = n.

Proof. We can assume H nontrivial, otherwise we can choose r = 0.
For the moment let y1, . . . , yn be any basis of G. For any nonzero h =∑

1�i�n aiyi ∈ H, set d(h) = gcd(a1, . . . , an). I claim that this does not
depend on the chosen basis, but only on h: indeed, any other Z-basis is given
in terms of the initial one by an n×n integral matrix P whose inverse is also
integral, in other words that has determinant ±1 (the group of such matrices
is denoted by GLn(Z)). If A is the column vector of the (ai), the new coeffi-
cients are given by the vector P−1A. Clearly the GCD of the coefficients of
A divides that of P−1A, and since A = PP−1A, the converse is also true;
hence the GCD is the same, proving our claim.

Choose for h a nonzero element of H for which d(h) is as small as pos-
sible, and choose a basis y1, . . . , yn of G for which the corresponding sum∑

1�i�n |ai| is as small as possible. If two of the ai were nonzero, as in the
proof of Lemma 2.1.1, we could decrease

∑
1�i�n |ai| by modifying the basis,

a contradiction. Thus only one ai is nonzero, and after permuting subscripts
we may assume that a1 = m1 > 0 is the only nonzero coefficient.

Now let z =
∑

1�i�n biyi be any element of H. Then we obtain succes-
sively

– m1 | b1 since otherwise 0 < b1 − cm1 < m1 for the Euclidean quotient c of
b1 by m1 would give d(z − ch) � b1 − cm1 < m1 = d(h), a contradiction.

–
∑

2�i�n biyi = z − (b1/m1)h ∈ H clearly.
– For each i, m1 | bi, for otherwise t = m1y1 +

∑
2�i�n biyi ∈ H would have

d(t) < m1 = d(h).
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Finally, let G1 be the group generated by y2, . . . , yn, let H1 = G1 ∩ H,
and choose x1 = y1. We have proved that

G = Zx1 ⊕G1 and H = Zm1x1 ⊕H1 ,

and that the coefficients of the elements of H1 on y2, . . . , yn, hence on any
Z-basis of G1, are divisible by m1.

We now repeat the process on G1 and H1 instead of G and H, and by
the last remark, we obtain m1 | m2, and we continue until H is exhausted,
proving the main part of the theorem. If r < n, then the mxn for m ∈ Z
belong to distinct cosets of H, so H does not have finite index in G, proving
the last point. ��

Corollary 2.1.4. With the notation of the theorem, if we denote by x the
class of an element of G in G/H, we have

G/H =
⊕

1�i�r

(Z/miZ)xi ⊕
⊕

r<i�n

Zxi .

Proof. Clear. Note that this is an equality, not only an isomorphism. ��

Corollary 2.1.5. Any subgroup of a finitely generated free abelian group is
a finitely generated free abelian group of lower dimension.

Proof. Also clear, H being free on the mixi for 1 � i � r and r � n. ��

In a different direction we have the following result, which can also be
proved directly (see Exercise 1).

Corollary 2.1.6. Let V ∈ Zn be a column vector of n globally coprime in-
tegers. There exists an integral matrix A ∈ GLn(Z) (in other words with
determinant ±1) having V as first column.

Proof. In the proposition, we let G = Zn and H = ZV . There exists a basis
A1, . . . , An of G and d ∈ Z�1 such that dA1 is a basis of H. In particular,
V ∈ dkA1 for some k ∈ Z, and since the coefficients of V are globally coprime
it follows that d = 1 and k = ±1; hence ±V = A1 is the first column of the
matrix of the Ai, which is in GLn(Z). ��

We now come to the general structure theorem for finitely generated
abelian groups.

Theorem 2.1.7 (Elementary divisor theorem II). Let G be a finitely
generated abelian group. There exist elements x1, . . . , xn of G and positive in-
tegers m1, . . . ,mr for some r � n such that mi > 1 for 1 � i � r, mi | mi+1

for 1 � i � r − 1, mixi = 0 for 1 � i � r, and such that every element of
G can be written uniquely in the form

∑
1�i�n aixi with 0 � ai < mi when

1 � i � r. Furthermore, n, r, and the mi are unique.
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Proof. To prove existence, let y1, . . . , yN be any generators of G, and let
G∗ =

⊕
1�i�N ZYi � ZN be the free abelian group on N generators Yi.

There is a natural surjection from G∗ to G sending Yi to yi for all i, and if
H∗ is its kernel, we have a natural isomorphism G � G∗/H∗, so under this
isomorphism we can identify G with G∗/H∗. Since G∗ is free, we can apply
the above theorem and corollary to G∗ and H∗, obtaining generators Xi and
integers Mi for 1 � i � R. If we denote by xi the image of Xi in G, we thus
have

G =
⊕

1�i�R

(Z/MiZ)xi ⊕
⊕

r<i�N

Zxi .

We can evidently suppress from this equality all the components with Mi = 1,
and if we call mi the remaining Mi (in the same order), all the conditions of
the theorem are satisfied, proving existence.

To prove uniqueness, assume that we have a second such representation,
where we add ′ to all the letters. We first prove that n = n′. Indeed, assume
for instance that n > n′, and let p be a prime dividing m1 if r > 0, and let p
be any prime otherwise. Using the first representation, we have a surjection
from G to (Z/pZ)n sending

∑
aixi to the vector of ai modulo p, which makes

sense since p | mi for all i. Since the (x′
i) generate G, it follows that (Z/pZ)n

must be generated by the images of the x′
i, which is absurd since there exist

at most n′ < n such images.
Now for any m > 0, consider the group mG = {mx, x ∈ G}. We can

obtain a representation as above by replacing the xi by the mxi, mi by
mi/ gcd(mi,m), and deleting the mxi for which mi | m. It follows that for
a fixed i, mi is uniquely defined by the property that mi is the smallest
m > 1 for which a canonical representation of mG as above uses at most
n− i generators. ��

As in Corollary 2.1.4, we can restate the existence part of the theorem by
writing

G =
⊕

1�i�r

(Z/miZ)xi ⊕
⊕

r<i�n

Zxi .

Corollary 2.1.8. Any subgroup of a finitely generated abelian group is finitely
generated.

Proof. Once again, we use a finitely generated free abelian group G∗ and
a surjective map from G∗ to G. If H is a subgroup of G, denote by H∗ the
inverse image of H by this map. By Corollary 2.1.5, H∗ is finitely generated,
and the images of a finite set of generators of H∗ generate H. ��

We now easily deduce the structure theorem for finite abelian groups:

Theorem 2.1.9. Let G be a finite abelian group. There exist unique integers
mi > 1 for 1 � i � k such that mi | mi+1 for 1 � i < k, and nonunique
elements gi ∈ G such that
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G =
⊕

1�i�k

(Z/miZ)gi ,

so that in particular G �
⊕

1�i�k(Z/miZ).

Proof. Indeed, if G is finite it is finitely generated. We have seen above as
a consequence of Theorem 2.1.7 that any such group can be written

G =
⊕

1�i�r

(Z/miZ)gi ⊕
⊕

r<i�k

Zgi ,

for some gi ∈ G and mi > 1 such that mi | mi+1 for 1 � i < r. If r < k, then
G contains copies of Z; hence it is infinite. Thus, if G is finite we must have
r = k, proving the theorem. ��

Finally, note that there is a matrix version of the elementary divisor the-
orem, called the Smith normal form. Recall that a matrix is unimodular if
it is an element of GLk(Z), i.e., an integral square matrix with determinant
equal to ±1 (not only +1).

Theorem 2.1.10 (Smith normal form). Let A be a square integral ma-
trix with nonzero determinant. There exist two unimodular matrices U and V
and a diagonal integral matrix D with strictly positive diagonal entries such
that D = UAV , and if D = (di,j) then di,i | di+1,i+1 for all i � k − 1.

Proof. We apply Theorem 2.1.3 to G = Zk and H the group of Z-linear
combinations of columns of A considered as elements of Zk. We leave to the
reader to check that we thus obtain the present theorem (Exercise 2). ��

Note that D is unique but U and V are not (for instance if A is the
identity matrix I, then D = I and we can take any matrix U and V = U−1).

To finish this section, recall the following.

Definition 2.1.11. Let G be a group and g ∈ G. The set E of elements
e ∈ Z such that ge = 1 is of the form kZ for a unique k � 0. If k = 0 we say
that g has infinite order, otherwise we call k the order of g in G. It is thus
characterized by the following: gk = 1, and gn = 1 if and only if k | n.

Proposition 2.1.12. Let G be an abelian group and let g ∈ G be an element
of finite order k = k1k2 with k1 and k2 coprime. There exist g1 and g2 in G
of respective orders k1 and k2 such that g = g1g2.

Proof. Since k1 and k2 are coprime there exist integers u1 and u2 such
that u1k1 + u2k2 = 1. We set g1 = gu2k2 and g2 = gu1k1 . It is clear that
g1g2 = g, and furthermore by definition gn

1 = 1 if and only if gu2k2n = 1 if
and only if k | u2k2n if and only if k1 | u2n, and since u1k1 + u2k2 = 1, k1

and u2 are coprime, hence k1 | n, so that g1 has order k1, and similarly g2

has order k2. ��
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2.1.2 Description of Subgroups

Given a finite abelian group G, it is often useful to enumerate the subgroups
of G. This can easily be done using the Hermite normal form of a matrix.
Recall the following definition.

Definition 2.1.13. An n × n matrix M is said to be in (upper triangu-
lar)Hermite normal form (HNF for short) if M is upper triangular with non-
negative integral entries, the diagonal entries mi,i of M are strictly positive,
and the nondiagonal entries mi,j with j > i are such that 0 � mi,j < mi,i.

Note that this definition can easily be generalized to nonsquare matrices
(see Definition 6.2.1), but here we do not need this generality.

It is easy to show that if A is an integral matrix with nonzero determinant,
there exists a unimodular matrix U such that H = AU is in HNF, and H
(and therefore U) is unique. More generally, if A is an n×k matrix with n � k
of maximal rank n, there exists a unimodular matrix U and a matrix H in
HNF such that AU = (H|0), concatenation of H with k − n zero columns,
and H is unique (but not U if k > n); see Exercise 3 and Proposition 6.2.2.

The HNF is useful in many contexts, essentially of algorithmic nature. Its
relevance here is the following result.

Theorem 2.1.14. Let G be a finite abelian group, and using the notation of
Theorem 2.1.9, write

G =
⊕

1�i�k

(Z/miZ)gi .

Denote by D be the k × k diagonal matrix whose diagonal entries are the
integers mi and by E the row vector whose entries are the generators gi. The
subgroups G′ of G are in one-to-one correspondence with left divisors M of
D in HNF, i.e., integral matrices M in HNF such that M−1D has integral
entries. The correspondence is as follows:

(1) If M = (mi,j)1�i,j�k is such an HNF matrix, the subgroup G′ is generated
by E′ = EM with relations given by the columns of the matrix M−1D.

(2) Conversely, if G′ is a subgroup of G generated by a row of elements E′,
there exists an integer matrix P such that E′ = EP , and the corre-
sponding HNF matrix M is the HNF of the matrix (P |D) obtained by
concatenation of the matrices P and D.

(3) In this correspondence, we have |G′| = |G| /det(M), or equivalently,
|G/G′| = [G : G′] = det(M).

Proof. By definition, the following sequence is exact:

1 −→
k⊕

i=1

miZ −→ Zk φ−→ G −→ 1 ,

where
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φ(x1, . . . , xk) =
∏

1�i�k

xigi .

Let (εi)1�i�k be the canonical basis of Zk, and let Λ be the subgroup of Zk

defined by Λ =
⊕

i miεi (this is a lattice, see Section 2.3.1). We thus have a
canonical isomorphism G � Zk/Λ, obtained by sending the ith generator gi

of G to the class of εi.
Subgroups of Zk/Λ have the form Λ′/Λ, where Λ′ is a lattice such that

Λ ⊂ Λ′ ⊂ Zk. By existence and uniqueness of the HNF of a matrix of maximal
rank, such a lattice Λ′ can be uniquely defined by a matrix M in HNF such
that the columns of this matrix express a Z-basis of Λ′ on the εi. The con-
dition Λ′ ⊂ Zk means that M has integer entries, and the condition Λ ⊂ Λ′

means that M−1D also has integer entries, since it is the matrix that ex-
presses the given basis of Λ in terms of that of Λ′. In terms of generators,
this correspondence translates into the equality E′ = EM . Furthermore, if
0G denotes the unit element of G then E′X = 0G if and only if EMX = 0G;
hence MX = DY , or X = M−1DY , and so if G′ is the subgroup of G
corresponding to Λ′/Λ, it is given in terms of generators and relations by
(EM,M−1D), proving (1).

For (2), we note that the entries of ED are equal to 0G; hence if E′′ =
E(P |D), we have simply added some 1G′ ’s to the generators of G′. Thus,
the group can be defined by the generators E′′ and the matrix of relations
of maximal rank (P |D), hence also by (E′′,M), where M is the HNF of this
matrix.

For (3), we know that M−1D expresses a basis of Λ in terms of a basis of
Λ′; hence

|G′| = |Λ′/Λ| = det(M−1D) = |G| /det(M) .

��

Example. The matrix M corresponding to the subgroup {0G} of G is M =
D, and the matrix corresponding to the subgroup G of G is M = Ik, the
k × k identity matrix.

Remark. Thanks to the above theorem the algorithmic enumeration of sub-
groups of a finite abelian group is reduced to the enumeration of the integral
left divisors of a diagonal matrix. This is considerably more technical, and
since the present book is not primarily algorithmic in nature we refer to
[Coh1] Section 4.1.10 for complete details on the subject.

2.1.3 Characters of Finite Abelian Groups

First, an important notation. Here and in the rest of this book we use the sym-
bol ζn for a primitive nth root of unity, either viewed as an (abstract) alge-
braic number (see Chapter 3), or as an element of C (for instance exp(2iπ/n)),
or sometimes of other fields such as p-adic fields. If d | n, it is understood
that we choose ζd such that ζd = ζ

n/d
n .
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Definition 2.1.15. Let G be a finite abelian group. A character of G is
a group homomorphism from G to the multiplicative group C∗ of nonzero
complex numbers. The group of characters of G is called the dual group of
G and denoted by Ĝ. The character sending all elements of G to 1, which is
the unit element of Ĝ, is called the trivial character.

Let χ ∈ Ĝ. If |G| = n, then for every g ∈ G we have χ(g)n = χ(gn) =
χ(1) = 1. It follows that any character takes values in the unit circle of
complex numbers of modulus 1, more precisely in the group of nth roots of
unity, which we denote by µn.

Proposition 2.1.16. Let G be a finite abelian group. The dual group Ĝ is
noncanonically isomorphic to G (hence has the same cardinality).

Proof. By the structure theorem for finite abelian groups (Theorem 2.1.9)
we know that

G =
⊕

1�i�k

(Z/miZ)gi �
⊕

1�i�k

(Z/miZ)

for certain integers mi and gi ∈ G. On the other hand, we clearly have
̂G1 ⊕G2 � Ĝ1⊕Ĝ2. It follows that to prove the first part of the proposition it

is sufficient to prove it for finite cyclic groups. But such a group is isomorphic
to Z/mZ for some m, and characters of Z/mZ are simply determined by the
image of the class of 1, which can be any mth root of unity. Thus we have
(canonically) Ẑ/mZ � µm, and (noncanonically) µm � Z/mZ, proving the
result. ��

Remark. It follows from the proof that characters of a finite abelian group
G can be described very concretely. We write G =

⊕
1�i�k(Z/miZ)gi as in

Theorem 2.1.9, and for each i we choose some ai ∈ Z/miZ. We then define

χa1,...,ak

 ∑
1�i�k

xigi

 =
∏

1�i�k

ζai xi
mi

,

where the ζmi
are fixed primitive mith roots of unity in C. Even more explic-

itly, since all the mi divide mk = m, we fix ζ = ζm and choose ζmi
= ζm/mi ,

so that

χa1,...,ak

 ∑
1�i�k

xigi

 = ζS with S =
∑

1�i�k

aixi(m/mi) ,

so the value of the character χ can be represented by the integer S.

Corollary 2.1.17. Let G be a finite abelian group and H a subgroup of G.
Any character of H can be extended to exactly [G : H] characters of G. In
particular, the natural restriction map from Ĝ to Ĥ is surjective.
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Proof. Let f be the above restriction map. The kernel of f is the group
of characters χ of G that are trivial on H, in other words the characters of
G/H. It follows by the proposition that the cardinality of the image of f is
equal to

|Ĝ|
|Ĝ/H|

=
|G|
|G/H| = |H| = |Ĥ| ;

hence f is surjective, as claimed, and the number of preimages of a character
by the restriction map is equal to |Ker(f)| = [G : H]. ��

Remarks. (1) Since we have proved surjectivity using a counting argument,
the above reasoning cannot be applied to infinite abelian groups. See
Proposition 4.4.43 for a generalization using Zorn’s lemma.

(2) The importance of the above corollary is not so much the exact number
of extensions of a character, but the simple fact that such extensions
exist. For instance:

Corollary 2.1.18. If g is not the unit element of G there exists χ ∈ Ĝ such
that χ(g) �= 1.

Proof. If n > 1 is the order of g we set χ(gk) = ζk
n, which defines a

character such that χ(g) �= 1 on the subgroup H of G generated by g, and
we extend χ to G using the above corollary. ��

Corollary 2.1.19. The natural map a �→ (χ �→ χ(a)) gives a canonical iso-
morphism from G to the dual of its dual.

Proof. By the preceding corollary this map is injective, and since both
groups have the same cardinality it is an isomorphism. ��

One of the most important properties of characters is their orthogonality
properties as follows.

Proposition 2.1.20. Let G be a finite abelian group and let K be a commu-
tative field.

(1) If χ1 and χ2 are distinct group homomorphisms from G to K∗ then∑
g∈G

χ1(g)χ−1
2 (g) = 0 ,

or equivalently, if χ is not the constant homomorphism equal to 1 then∑
g∈G

χ(g) = 0 .
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(2) In the special case K = C then if g1 and g2 are distinct elements of G
we have ∑

χ∈Ĝ

χ(g1g
−1
2 ) = 0 ,

or equivalently, if g is not the unit element of G then∑
χ∈Ĝ

χ(g) = 0 .

Proof. The two statements of (1) are clearly equivalent, as are those of
(2). Set S =

∑
g∈G χ(g). Let h ∈ G such that χ(h) �= 1. Then

χ(h)S =
∑
g∈G

χ(h)χ(g) =
∑
g∈G

χ(hg) =
∑
g′∈G

χ(g′) = S ,

hence S = 0 since χ(h) �= 1.
In the special case K = C, if g is not the unit element of G, Corollary

2.1.18 shows that there exists ψ ∈ Ĝ such that ψ(g) �= 1. The reasoning we
have just presented is thus applicable (we set S =

∑
χ χ(g) and show that

ψ(g)S = S). ��

Note that if K �= C (more precisely if K is not an algebraically closed
field of characteristic 0 or of characteristic not dividing |G|), then (2) is not
necessarily true, see Exercise 4.

2.1.4 The Groups (Z/mZ)∗

We first recall that for any commutative ring R, R∗ denotes the group of
units of R, i.e., invertible elements in R. This is equal to R \ {0} if and only
if R is a field.

Lemma 2.1.21. Let v � 2 be an integer and a ∈ Z.

(1) If p is an odd prime number, the following statements are equivalent:
(a) ap ≡ 1 (mod pv).
(b) a ≡ 1 (mod pv−1).
(c) For any w � v − 1 there exists b ∈ Z coprime to p such that

a ≡ b(p−1)pv−2
(mod pw) .

In particular, vp(ap − 1) = vp(a− 1) + 1 when vp(a− 1) � 1.
(2) If p = 2 and a ≡ 1 (mod 4) the following statements are equivalent:

(a) a2 ≡ 1 (mod 2v).
(b) a ≡ 1 (mod 2v−1).
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If in addition v � 4, they are also equivalent to the following statement:
c) For any w � v − 1 there exists b ∈ Z odd such that

a ≡ b2v−3
(mod 2w) .

Proof. (1). To prove that a) is equivalent to b) we set a = 1 + b. By
Fermat’s theorem we have ap ≡ a (mod p); hence we may assume that p | b,
so that

ap = 1 + pb +
∑

2�j�p−1

(
p

j

)
bj + bp .

Since p |
(
p
j

)
it follows that all the terms with 2 � j � p − 1 are divisible

by pb2. Furthermore, since p � 3 and p | b, we also have pb2 | bp. It follows
that all the terms after pb have p-adic valuation strictly greater than that of
pb; hence vp(ap − 1) = vp(pb) = 1 + vp(a − 1), proving that a) and b) are
equivalent.

By the Euler–Fermat theorem, if b is coprime to p we have b(p−1)pv−2
=

bφ(pv−1) ≡ 1 (mod pv−1); hence c) implies b). To prove the converse, we
consider the map f from (Z/pw−v+2Z)∗ to the subgroup G of elements of
(Z/pwZ)∗ congruent to 1 modulo pv−1 induced by y �→ y(p−1)pv−2

. By the
equivalence of a) and b), y ≡ 1 (mod pw−v+2) implies ypv−2 ≡ 1 (mod pw);
hence the map f is well defined. Since y(p−1)pv−2 ≡ 1 (mod pv−1) its image lies
in G. Furthermore, f(y) = 1 if and only if y(p−1)pv−2 ≡ 1 (mod pw) if and only
if yp−1 ≡ 1 (mod pw−v+2), again by the equivalence of a) and b). Since we will
prove below that (Z/pw−v+2Z)∗ is a cyclic group, the number of y of order
dividing p−1 in that group is equal to p−1, so that |Ker(f)| = p−1. It follows
that |Im(g)| = φ(pw−v+2)/p = pw−v+1, and since clearly |G| = pw−v+1, this
means that f is surjective, proving the equivalence of b) and c).

(2). If a = 1 + b with 2v−1 | b then a2 = 1 + 2b + b2 ≡ 1 (mod 2v) since
v � 2. Conversely, if a2 ≡ 1 (mod 2v), then 2v | (a−1)(a+1), and since a ≡ 1
(mod 4), v2(a + 1) = 1, and therefore 2v−1 | a − 1, proving the equivalence
of the first two conditions.

If b is odd we have b2v−3 = (b2)2
v−4 ≡ 1 (mod 2v−1) by what we have

just shown and b2 ≡ 1 (mod 8). Conversely, we consider as above the map
f from (Z/2w−v+3)∗ to the subgroup G of elements of (Z/2wZ)∗ congruent
to 1 modulo 2v−1 induced by y �→ y2v−3

. Since w − v + 3 � 2, by what we
have just shown y ≡ 1 (mod 2w−v+3) implies y2v−3 ≡ 1 (mod 2w); hence f

is well defined, and as above y2v−3 ≡ 1 (mod 2v−1) so the image of f lies in
G. We have f(y) = 1 if and only if y2v−3 ≡ 1 (mod 2w) if and only if y2 ≡ 1
(mod 2w−v+4) by what we have just shown. Writing y2 − 1 = (y + 1)(y − 1)
and noting that w − v + 4 � 3 we see that this is equivalent to y ≡ ±1
(mod 2w−v+3); hence |Ker(f)| = 2. It follows that |Im(g)| = φ(2w−v+3)/2 =
2w−v+1, and since clearly |G| = pw−v+1, this again means that f is surjective,
finishing the proof. ��
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Note also the following generalization, which we will need later.

Lemma 2.1.22. Let p be a prime number, s an integer such that s ≡ 1
(mod p), and let n ∈ Z>0. When p = 2, assume that either s ≡ 1 (mod 4) or
n is odd. Then

vp(sn − 1) = vp(s− 1) + vp(n) .

Proof. Write n = pvm with p � m. We prove the lemma by induction on
v. Assume first that v = 0, so that n = m. By the binomial theorem, we have

sm − 1 =
∑

1�k�m

(
m

k

)
(s− 1)k .

Since p � m, we have

vp

((
m

1

)
(s− 1)1

)
= vp(m(s− 1)) = vp(s− 1) ,

while for 2 � k � m we have

vp

((
m

k

)
(s− 1)k

)
� kvp(s− 1) � 2vp(s− 1) .

Since vp(s − 1) � 1 by assumption it follows that vp(sm − 1) = vp(s − 1) as
claimed.

When v � 1 we apply Lemma 2.1.21 (1) to a = spv−1m ≡ 1 (mod p) (since
s ≡ 1 (mod p)), hence vp(ap − 1) = vp(a− 1), so the result for p odd follows
by induction on v. Similarly the result for p = 2 follows by induction from
Lemma 2.1.21 (2). ��

Corollary 2.1.23. If p = 2 and s ≡ 1 (mod 2) then for all n ∈ Z>0 we have

vp(sn − 1) =

{
vp(s− 1) if n is odd,
vp(s2 − 1) + vp(n/2) if n is even.

Proof. The case n odd is given by the lemma. When n is even, since s2 ≡ 1
(mod 4) the lemma gives vp(sn−1) = vp((s2)n/2−1) = vp(s2−1)+vp(n/2).

��

Proposition 2.1.24. Let m � 2 be an integer, and let m =
∏

1�i�g pvi
i be

its decomposition into a product of powers of distinct primes. The abelian
group structure of (Z/mZ)∗ is given as follows:

(1) We have
(Z/mZ)∗ �

∏
1�i�g

(Z/pvi
i Z)∗ .



2.1 Finitely Generated Abelian Groups 23

(2) If p � 3 and v � 1, we have

(Z/pvZ)∗ � Z/(pv−1(p− 1))Z ;

in other words the group (Z/pvZ)∗ is cyclic.
(3) If p = 2 and v � 3, we have

(Z/2vZ)∗ � Z/2v−2Z× Z/2Z .

In addition, if desired we can always take the class of 5 as generator of
the group Z/2v−2Z, and −1 as generator of Z/2Z.

(4) If p = 2 and v � 2, then (Z/2Z)∗ is the trivial group and (Z/4Z)∗ �
Z/2Z.

Proof. (1). I first claim that if m = m1m2 with gcd(m1,m2) = 1, then
(Z/mZ)∗ � (Z/m1Z)∗ × (Z/m2Z)∗. Indeed, there exist integers u and v
such that um1 + vm2 = 1. Denoting by a + nZ the class in Z/nZ of an
integer a modulo any integer n (which is in fact the correct notation), we
consider the map f1 from (Z/mZ)∗ to (Z/m1Z)∗ × (Z/m2Z)∗ defined by
f1(a + mZ) = (a + m1Z, a + m2Z), and the map f2 in the other direction
defined by f2(b + m1Z, c + m2Z) = cm1u + bm2v + mZ. Since m = m1m2

these maps are clearly well defined, and we immediately check that they are
group homomorphisms which are inverse to one another, proving my claim.
By induction on g, this proves (1).

(2). For any integers m and a, we will say that a is a primitive root
modulo m if the class of a modulo m generates (Z/mZ)∗ (so that in particular
(Z/mZ)∗ is cyclic and gcd(a,m) = 1). By Corollary 2.4.3 below we know that
(Z/pZ)∗ is cyclic; in other words there exists g ∈ Z that is a primitive root
modulo p. By Fermat’s theorem, i.e., the fact that |(Z/pZ)∗| = p−1, we know
that gp−1 ≡ 1 (mod p). Assume first that gp−1 �≡ 1 (mod p2). I claim that g is
a primitive root modulo pv for any v � 1. Indeed, otherwise there would exist
a prime divisor q of φ(pv) = pv−1(p − 1) such that gφ(pv )/q ≡ 1 (mod pv).
Since ap ≡ a (mod p) for all a, if q | p−1 we have gpv−1(p−1)/q ≡ g(p−1)/q ≡ 1
(mod p), which is absurd since g is a primitive root modulo p. If q � p − 1
then q = p, and since by Lemma 2.1.21, ap ≡ 1 (mod pk) for k � 2 implies
that a ≡ 1 (mod pk−1), the congruence gpv−2(p−1) ≡ 1 (mod pv) implies that
gp−1 ≡ 1 (mod p2), contrary to our assumption.

Assume now that gp−1 ≡ 1 (mod p2). Then g + p is also a primitive root
modulo p, and since p � 3,

(g + p)p−1 ≡ gp−1 + (p− 1)pgp−2 ≡ 1− pgp−2 �≡ 1 (mod p2) ,

so it follows from what we have just proved that g + p is a primitive root
modulo pv for all v � 1, proving (2).

(3). Let H denote the subgroup of (Z/2vZ)∗ formed by the classes of
integers congruent to 1 modulo 4. Since any odd integer is congruent to
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±1 modulo 4, we clearly have (Z/2vZ)∗ � H × Z/2Z, so that in particular
|H| = φ(2v)/2 = 2v−2. I claim that H is cyclic, generated by the class of 5.
Since the only prime dividing 2v−2 is 5, it is enough to show that 52v−3 �≡ 1
(mod 2v). If we assume the contrary, then since 5 ≡ 1 (mod 4), using once
again Lemma 2.1.21 we would obtain that 5 ≡ 1 (mod 23), a contradiction.
(4) is trivial. ��

Corollary 2.1.25. For m � 2, the group (Z/mZ)∗ is cyclic if and only if
m = 2, 4, pk, or 2pk for p an odd prime and k � 1.

Proof. Note that in a cyclic group the number of elements of order dividing
2 is less than or equal to 2. From the proposition it follows that the number of
such elements is exactly equal to 2ωo (m)+ω2(m), where ωo(m) is the number of
distinct odd prime divisors of m and ω2(m) = 0, 1, or 2 according to whether
v2(m) � 1, v2(m) = 2, or v2(m) � 3 respectively. The corollary follows from
the inequality ωo(m) + ω2(m) � 1. ��

Remark. The proofs made in this subsection sometimes use forward refer-
ences, so we must be careful to check that we do not use a circular argument.
Assume for instance p odd, the remark is the same for p = 2. The correct
order of proof (which would be less practical for presentation) is as follows:
the equivalence of (a) and (b) of Lemma 2.1.21 (1), as well as the cyclicity
of (Z/pZ)∗ which follows from Corollary 2.4.3, are proved directly, without
any reference to results of this subsection. From these two results we deduce
by induction as in the proof of Proposition 2.1.24 (2) that (Z/pkZ)∗ is cyclic
for all k � 1. Using this, we can finally prove the equivalence of (b) and (c)
of Lemma 2.1.21 (1).

When working in a group (Z/pvZ)∗ with p and odd prime and v � 2,
it is tempting to use the existence of a primitive root g modulo pv, since
all elements a can simply be written as a = gx for some x uniquely defined
modulo φ(pv). However, this is not always a good idea. For future reference,
we note the following lemma, which usually gives a better representation.

Lemma 2.1.26. Let p be an odd prime, let v � 2, and let g be a primitive
root modulo pv. For any a coprime to p there exist x and y such that

a ≡ gpv−1x(1 + p)y (mod pv) ,

and x is unique modulo p− 1, y is unique modulo pv−1.

Proof. Since g is a primitive root, we can write a ≡ gx (mod pv), so that
apv−1 ≡ gpv−1x (mod pv), and since g has order pv−1(p− 1), it is clear that x

is unique modulo p−1. Since apv−1−1 ≡ 1 (mod p) by Fermat’s little theorem,
we must simply show that for any b ≡ 1 (mod p) there exists y such that
b ≡ (1+p)y (mod pv). Indeed, the map y �→ (1+p)y is clearly a group homo-
morphism from the additive group Z/pv−1Z to the multiplicative subgroup of
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(Z/pvZ)∗ of elements congruent to 1 modulo p. The groups having the same
cardinality, and the map being injective by Lemma 2.1.22, it follows that it
is bijective, showing the existence of y and its uniqueness modulo pv−1. ��

Remark. This lemma can be better understood in the context of p-adic
numbers (see Chapter 4): indeed, 1 + p is naturally called a topological gen-
erator, and the exponent y such that b ≡ (1 + p)y (mod pv) can be given
explicitly in terms of p-adic logarithms as y = logp(b)/ logp(1 + p) mod pv.
Note also that 1 + p is only one possible choice, and that we could just as
well choose 1 + kp for any k �≡ 0 (mod p).

2.1.5 Dirichlet Characters

According to Proposition 2.1.16, the group ̂(Z/mZ)∗ of characters of (Z/mZ)∗

is (noncanonically) isomorphic to (Z/mZ)∗. It is convenient to extend such a
character to the whole of Z/mZ by setting it equal to 0 outside of (Z/mZ)∗,
and then to Z by composing with the natural surjection from Z to Z/mZ:

Definition 2.1.27. A Dirichlet character modulo m is a map χ from Z to
C such that there exists a character ψ ∈ ̂(Z/mZ)∗ such that χ(n) = 0 if
gcd(n,m) > 1, while χ(n) = ψ(n) otherwise, where n denotes the class of n
modulo m.

Note that χ is still multiplicative, and that χ(m + n) = χ(n) for all n, in
other words χ is periodic of period dividing m. Furthermore, the values of χ
are either equal to 0 or φ(m) = |(Z/mZ)∗|th roots of unity in C. By abuse
of language we will say that χ has order n if the corresponding character
ψ ∈ ̂(Z/mZ)∗ has order n, in other words if n is the positive generator of the
group of integers k such that χk is equal to the trivial character modulo m
(see the following definition). Thus the order of a character modulo m divides
φ(m).

Definition 2.1.28. Let χ be a character modulo m.

(1) If d | m we say that χ can be defined modulo d if there exists a Dirichlet
character χd modulo d such that χ(n) = χd(n) as soon as gcd(n,m) = 1.

(2) The conductor of a Dirichlet character is the smallest (for divisibil-
ity) positive integer f | m such that χ can be defined modulo f .

(3) We will say that χ is primitive if the conductor of χ is equal to m, in
other words if χ cannot be defined modulo a proper divisor of m.

(4) The trivial character, often denoted by χ0, is the character defined by
χ(n) = 1 when gcd(n,m) = 1 and χ(n) = 0 when gcd(n,m) > 1. It is
the unique character modulo m of conductor 1.

Remarks. (1) It is clear that χ is primitive if and only if χ cannot be defined
modulo m/p for every prime p | m.
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(2) If χ can be defined modulo d | m and χd is the corresponding character
modulo d, it is clear that χ = χ0χd.

Proposition 2.1.29. The number of primitive characters modulo m is equal
to q(m), where

q(m) = m
∏
p‖m

(
1− 2

p

) ∏
p2|m

(
1− 1

p

)2

.

In particular, there are none if and only if m ≡ 2 (mod 4).

Proof. I refer the reader to Section 10.1 for the elementary techniques used
here. For any integer f denote by q(f) the number of primitive characters
modulo f . By definition we have

φ(m) = |(Z/mZ)∗| = | ̂(Z/mZ)∗| =
∑
f |m

q(f) .

In terms of formal Dirichlet series, this means that

ζ(s)
∑
m�1

q(m)m−s =
∑
m�1

φ(m)m−s =
ζ(s− 1)

ζ(s)
;

hence
∑

m�1 q(m)m−s = ζ(s−1)/ζ(s)2, and the proposition follows by look-
ing at the Euler factor at p. ��

Corollary 2.1.30. Let χ be a primitive character modulo m with m even.
Then for all n we have χ(n + m/2) = −χ(n).

Proof. By the proposition we know that 4 | m. The result is thus trivial
if n is even since both sides vanish; otherwise, denoting by n−1 an inverse of
n modulo m we have since n is odd

χ(n + m/2) = χ(n)χ(1 + (m/2)n−1) = χ(n)χ(1 + m/2) .

We have χ((1+m/2)2) = χ(1+m(m/4+1)) = 1, hence χ(1+m/2) = ±1. If we
had χ(1+m/2) = 1 then we would have χ(k) = χ(k+(m/2)k) = χ(k+m/2)
for all k odd and evidently for all even k, so χ would be defined modulo m/2,
a contradiction. Thus χ(1 + m/2) = −1; hence χ(n + m/2) = −χ(n). ��

A similar reasoning will lead to a useful characterization of primitive
characters. We first need a lemma which is useful in many contexts.

Lemma 2.1.31. If gcd(a, b, c) = 1 there exists an integer k such that

gcd(a + kb, c) = 1 .
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Proof. Note that this lemma would immediately follow from Dirichlet’s
theorem on primes in arithmetic progression (see Theorem 10.5.30), but it is
not necessary to use such a powerful tool. In fact, we can give k explicitly: I
claim that

k =
∏
p|c

p�(a/ gcd(a,b))

p

is a suitable value. Indeed, let p be a prime dividing c. We must show that
it does not divide a + kb. Assume first that p � a/ gcd(a, b). Thus p | k;
hence p � a/ gcd(a, b) + kb/ gcd(a, b), and since gcd(a, b, c) = 1, we have
p � a + kb as desired. Assume now that p | a/ gcd(a, b), hence p � k. Since
a/ gcd(a, b) is coprime to b/ gcd(a, b) by definition of the GCD, it follows that
p � kb/ gcd(a, b); hence p � a/ gcd(a, b)+kb/ gcd(a, b) and once again p � a+kb
as desired. ��

The characterization of primitive characters is a consequence of the fol-
lowing lemma:

Lemma 2.1.32. Let χ be a character modulo m and let d | m. Then χ can
be defined modulo d if and only if for all a such that a ≡ 1 (mod d) and
gcd(a,m) = 1 we have χ(a) = 1.

Proof. The condition is clearly necessary: if χ(a) = χd(a) for all a such
that gcd(a,m) = 1, then if in addition a ≡ 1 (mod d) we have χ(a) = 1.
Conversely, assume the condition satisfied, and let a be such that gcd(a, d) =
1. We want to define χd(a). By the preceding lemma, there exists k such
that gcd(a + kd,m) = 1. We will set χd(a) = χ(a + kd). Since gcd(a +
kd,m) = 1, this is nonzero, and furthermore if k′ is another integer such that
gcd(a + k′d,m) = 1, then b = (a + k′d)(a + kd)−1 (inverse taken modulo m,
which makes sense since gcd(a + kd,m) = 1) is such that b ≡ 1 (mod d). By
assumption it follows that χ(b) = 1, in other words that χ(a+k′d) = χ(a+kd),
so our definition of χd(a) does not depend on the choice of k. It is then
immediate to check that χd is a character modulo d such that χd(a) = χ(a)
when gcd(a,m) = 1. ��

Corollary 2.1.33. Let χ be a character modulo m, let d | m with d < m,
and assume that χ cannot be defined modulo d.

(1) For all r we have ∑
a mod m

a≡r (mod d)

χ(a) = 0 .

(2) If f is a periodic function of period dividing d, then∑
0�a<m

χ(a)f(a) = 0 .
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In particular, if χ is a primitive character, these properties are true for all
d | m such that d < m.

Proof. The proof of (1) is identical to that of Proposition 2.1.20: by the
lemma, there exists b ≡ 1 (mod d) with gcd(b,m) = 1 and such that χ(b) �=
1. The map a �→ ab is clearly a bijection from the set of integers modulo
m congruent to r modulo m to itself, so that by multiplicativity we have
χ(b)S = S, hence S = 0, where S is the sum to be computed. For (2) we
write a = qd + r so that∑

0�a<m

χ(a)f(a) =
∑

0�r<d

f(r)
∑

0�a<m
a≡r (mod d)

χ(a) = 0

by (1). ��

Proposition 2.1.34. Let m ∈ Z�1, let m1 and m2 be two coprime positive
integers such that m = m1m2, and let χ be a Dirichlet character modulo m.

(1) There exist unique characters χi modulo mi such that χ = χ1χ2, in other
words such that χ(n) = χ1(n)χ2(n) for all n.

(2) The order of χ is equal to the LCM of the orders of χ1 and χ2.
(3) The character χ is primitive if and only if both χ1 and χ2 are primitive.

Proof. (1). Since the mi are coprime, there exist integers u and v such that
um1 + vm2 = 1. In view of the map f2 defined in the proof of Proposition
2.1.24 (1), it is natural to set χ1(x) = χ(xm2v+m1u) and χ2(x) = χ(ym1u+
m2v). Since these maps are obtained by composing the homomorphism f2

with the natural injections of (Z/miZ)∗ into (Z/m1Z)∗×(Z/m2Z)∗, it follows
that they are group homomorphisms hence define Dirichlet characters modulo
m1 and m2 respectively, and it is also clear that χ = χ1χ2.

(2). We have χ(n)k = 1 for all n coprime to m if and only if χ1(n)k =
χ2(n)−k for all such n, hence if and only if the primitive character equivalent
to χ−k

1 is equal to the one equivalent to χ−k
2 . However, the conductor of χ−k

i

divides mi, and m1 and m2 are coprime, so this is possible if and only if χk
1

and χk
2 are trivial characters, hence if and only if k is a multiple of the orders

of χ1 and χ2, proving (2).
The proof of (3) is immediate and left to the reader (Exercise 10). ��

It follows in particular from this proposition that any Dirichlet character χ
modulo m can be written in a unique way as a product of Dirichlet characters
modulo the coprime prime powers dividing m.

Corollary 2.1.35. Let m =
∏

p pvp (m) with vp(m) � 1 be the decomposition
into prime powers of m ∈ Z�1. The order of any primitive character modulo
m is divisible by h(m) =

∏
p pvp (m)−1, except if 8 | m in which case it is only

divisible by h(m)/2.
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Proof. Let χ be a primitive character modulo m. By the above proposition
applied inductively we can write χ =

∏
p χp, where χp is a primitive character

modulo pvp (m), and the order of χ will be equal to the LCM of the orders
of the χp. It is thus sufficient to prove that the order of χp is divisible by
pvp (m)−1, or by 2v2(m)−2 if v2(m) � 3. For simplicity of notation, write v
instead of vp(m). Assume first that p � 3 and let a ≡ 1 (mod pv−1). By
Lemma 2.1.21 (1) c), there exists b such that a ≡ b(p−1)pv−2

(mod pv), hence
χp(a) = χp(b)(p−1)pv−2

. Since φ(pv) = (p− 1)pv−1, if the order of χp was not
divisible by pv−1 it would divide (p−1)pv−2, hence we would have χp(a) = 1
for all a ≡ 1 (mod pv−1). However, by Lemma 2.1.32 this would imply that
χp can be defined modulo pv−1, contradicting the fact that it is a primitive
character modulo pv and proving the result for p � 3. Assume now that
p = 2, hence that v � 2 since there are no primitive characters for m ≡ 2
(mod 4). If v = 2 or v = 3 the only primitive characters modulo 4 or 8 are
the characters

(−4
.

)
,
(−8

.

)
, and

(
8
.

)
which have order 2 = h(4) = h(8)/2,

hence we may assume that v � 4. Let a ≡ 1 (mod 2v−1). By Lemma 2.1.21
(2), there exists b such that a ≡ b2v−3

(mod 2v), and as for the case p � 3
we deduce that if the order of χ2 was not divisible by 2v−2 it would divide
2v−3, and we again deduce a contradiction. ��

In the context of Dirichlet characters, Proposition 2.1.20 reads as follows:

Proposition 2.1.36. We have

∑
a mod m

χ(a) =

{
φ(m) if χ is the trivial character modulo m,
0 otherwise.

Dually, if a ∈ Z is such that gcd(a,m) = 1 then

∑
χ mod m

χ(a) =

{
φ(m) if a ≡ 1 (mod m),
0 otherwise.

Corollary 2.1.37. Let χ be a nontrivial character modulo m, let I = [1,m−
1], and let

S =
∑

a∈I, a even

χ(a) = −
∑

a∈I, a odd

χ(a) .

(1) If either m is even or χ is an even character then S = 0.
(2) If m is odd and χ is an odd character, then if in addition χ is primitive

and m is not a prime power we have S ≡ 0 (mod 2), in other words S/2
is an algebraic integer.

Proof. (1). The fact that the two sums given in the corollary are opposite
follows of course from Proposition 2.1.36, and if m is even then χ(a) = 0 for
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all even a, hence S = 0 trivially. On the other hand, if m is odd and χ is even
we have

S =
∑

a∈I, a even

χ(a) =
∑

a∈I, a even

χ(m− a) =
∑

a∈I, b odd

χ(b) = −S ,

hence S = 0 also in this case, proving (1).
(2). Consider the sum S1 =

∑
a∈I χ(a)a. We have

S1 ≡
∑

a∈I, a odd

χ(a)a ≡ S (mod 2) ,

so we must show that S1 ≡ 0 (mod 2). Since m is not a prime power we can
write m = m1m2 with mi > 1 coprime, and by the Proposition 2.1.34 there
exist primitive, hence nontrivial characters χi modulo mi such that χ = χ1χ2.
Any a ∈ [0,m − 1] can be written in a unique way as a = m1a2 + a1 with
0 � a2 < m2 and 0 � a1 < m1, hence S1 = m1T2 + T1 with

Tj =
∑

0�a1<m1, 0�a2<m2

χ1(a1)χ2(m1a2 + a1)aj .

Since m1 and m2 are coprime we have∑
0�a2<m2

χ2(m1a2 + a1) = χ2(m1)
∑

0�a2<m2

χ2(a2 + a1m
−1
1 ) = 0

by Proposition 2.1.36 since χ2 is nontrivial, hence T1 = 0. On the other hand,
if we write T2 =

∑
a1,a2

f(a1, a2) with f(a1, a2) = χ1(a1)χ2(m1a2 + a1)a2,
then since m2− 1 is even, it is clear that f(m1− a1,m2− a2− 1) ≡ f(a1, a2)
(mod 2), and since this involution has no fixed points (m1 being odd), we
deduce that T2 ≡ 0 (mod 2), hence that S1 ≡ 0 (mod 2), proving (2). ��

Remarks. (1) We will study sums generalizing S1 in much more detail in
Section 9.5.1, and use exactly the same reasoning as above.

(2) The result of (2) is not true in general when m is a prime power, as can
easily be seen on examples.

2.1.6 Gauss Sums

We are going to meet Gauss sums in two related, but different, contexts:
first in the present section, those related to a Dirichlet character, second
in the context of finite fields, those related to additive and multiplicative
characters of finite fields. Although the results are similar we must prove
them separately.
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Definition 2.1.38. Let χ be a (not necessarily primitive) character modulo
m. For a ∈ Z we define the Gauss sum τ(χ, a) by the formula

τ(χ, a) =
∑

x mod m

χ(x)ζax
m .

It is clear that this makes sense, in other words it does not depend on the
representatives chosen for x modulo m, both in χ(x) and in the exponential.

By abuse of notation we will also set τ(χ) = τ(χ, 1) and call it the Gauss
sum associated with the character χ.

Proposition 2.1.39. If gcd(a,m) = 1 we have

τ(χ, a) = χ(a)τ(χ) .

Proof. Since gcd(a,m) = 1, the map multiplication by a is a bijection of
(Z/mZ)∗ to itself; hence setting y = ax we have

τ(χ, a) =
∑

y mod m

χ(ya−1)ζy
m .

Since χ(ya−1) = χ(y)χ(a) because χ(a) has modulus 1, the proposition fol-
lows. ��

Proposition 2.1.40. Let d = gcd(a,m) and assume that χ cannot be defined
modulo m/d. Then τ(χ, a) = 0.

Proof. Since χ cannot be defined modulo m/d, by Lemma 2.1.32 we can
find b such that b ≡ 1 (mod m/d), gcd(b,m) = 1, and χ(b) �= 1. Thus

χ(b)τ(χ, a) =
∑

x mod m

χ(bx)ζax
m =

∑
y mod m

χ(y)ζayb−1

m .

However, since b ≡ 1 (mod m/d), we have

ayb−1 = (a/d)dyb−1 ≡ ay (mod m)

(and not only modulo m/d, because of the factor d); hence

χ(b)τ(χ, a) =
∑

y mod m

χ(y)ζay
m = τ(χ, a) ,

so that τ(χ, a) = 0 since χ(b) �= 1. ��

Corollary 2.1.41. If χ is a nontrivial character modulo m, then∑
x mod m

χ(x) = 0 .
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Proof. Apply the above proposition to a = 0. ��

This corollary is of course a special case of Proposition 2.1.20.

Corollary 2.1.42. Assume that χ is a primitive character. For all a (not
necessarily prime to m)we have

τ(χ, a) = χ(a)τ(χ) .

Proof. If gcd(a,m) = 1 this is Proposition 2.1.39, and if d = gcd(a,m) > 1,
then χ cannot be defined modulo m/d so the result follows from Proposition
2.1.40. ��

The reader will find in Exercise 12 a general formula giving τ(χ, a).

Corollary 2.1.43. Assume that χ is a primitive character modulo m and
let n = km be a multiple of m. Then

∑
x mod n

χ(x)ζax
n =

{
0 if k � a

kχ(a/k)τ(χ) if k | a.

Proof. Immediate by writing x = mq + r with r mod m and q mod k and
left to the reader. ��

The above results have in fact little to do with Gauss sums. Indeed, let f
be any function defined on mth roots of unity with values in some field, and
set τf (χ, a) =

∑
x mod m χ(x)f(ζax

m ) and τf (χ) = τf (χ, 1). Exactly the same
proofs as above show the following (Exercise 13).

Proposition 2.1.44. Set d = gcd(a,m). If d = 1 we have τf (χ, a) =
χ(a)τf (χ), if χ cannot be defined modulo m/d we have τf (χ, a) = 0, and
if χ is a primitive character then for all a we have τf (χ, a) = χ(a)τf (χ).

A very important result concerning Gauss sums is the following.

Proposition 2.1.45. If χ is a primitive character modulo m then |τ(χ)| =
m1/2.

Proof. We have τ(χ) =
∑

a mod m χ(a)ζ−a
m ; hence multiplying by τ(χ) and

applying the above corollary we obtain

|τ(χ)|2 =
∑

a mod m

τ(χ, a)ζ−a
m =

∑
a mod m

∑
x mod m

χ(x)ζax
m ζ−a

m

=
m∑

x=1

χ(x)
m∑

a=1

ζa(x−1)
m .

The inner sum is a geometric series, whose sum is equal to 0 if m � (x−1); in
other words x �= 1, and is equal to m otherwise, proving the proposition. ��
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Corollary 2.1.46. Let χ be a not necessarily primitive character modulo
m, and let f be its conductor. Then |τ(χ)| = f1/2 if m/f is squarefree and
coprime to f ; otherwise τ(χ) = 0.

Proof. This follows from the above proposition and the formula τ(χ) =
µ(m/f)χf (m/f)τ(χf ) proved in Exercise 12. ��

Corollary 2.1.47. If χ is a primitive character we have

τ(χ)τ(χ) = χ(−1)m .

In particular, if χ is real, in other words takes only values ±1 on integers
coprime to m, we have τ(χ)2 = χ(−1)m.

Proof. Indeed, by Proposition 2.1.39 we have

τ(χ) =
∑

x mod m

χ(x)ζ−x
m = χ(−1)τ(χ) ,

so multiplying by τ(χ) and using Proposition 2.1.45 gives m = χ(−1)τ(χ)τ(χ),
proving the corollary. ��

2.2 The Quadratic Reciprocity Law

2.2.1 The Basic Quadratic Reciprocity Law

Let p be an odd prime. We set
(

a
p

)
= 0 if p | a, and otherwise

(
a
p

)
= 1 if a

is congruent to a square modulo p,
(

a
p

)
= −1 otherwise. This is called the

Legendre symbol. We recall the following easy result.

Proposition 2.2.1. (1) The symbol
(

a
p

)
is a real primitive character modulo

p, and in particular
(

ab
p

)
=
(

a
p

)(
b
p

)
.

(2)

a(p−1)/2 ≡
(

a

p

)
(mod p) ,

and in particular
(−1

p

)
= (−1)(p−1)/2.

(3) There are exactly (p − 1)/2 values of a modulo p (called quadratic
residues) such that

(
a
p

)
= 1, and (p − 1)/2 values of a modulo p (called

quadratic nonresidues) such that
(

a
p

)
= −1.

Proof. By Corollary 2.4.3 below we know that (Z/pZ)∗ is cyclic (of order
p − 1). Let g ∈ Z be such that the class of g modulo p is a generator. Then
if a ∈ Z is coprime to p, there exists an exponent k uniquely defined modulo
p−1 such that a ≡ gk (mod p). We will call k a discrete logarithm of a modulo
p to base g, and write k = logg(a). It is clear that a is congruent to a square
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modulo p if and only if logg(a) is even (since p−1 is even this does not depend
on the chosen representative modulo p − 1); hence

(
a
p

)
= (−1)logg (a). This

immediately implies that
(

a
p

)
is a real character, and it is primitive since it is

not defined modulo 1, i.e., trivial. Also, since g is a generator, g(p−1)/2 ≡ −1
(mod p), so that

a(p−1)/2 ≡ g(p−1)/2 logg (a) ≡ (−1)logg (a) ≡
(

a

p

)
(mod p) .

In particular, when a = −1 both sides are equal to ±1 and congruent modulo
p > 2, so they are in fact equal. Finally, there are exactly (p−1)/2 even values
and (p−1)/2 odd values of k = logg(a) modulo p−1, proving the proposition.

��

Remark. When a is not divisible by p and a ≡ x2 (mod p), it is clear
that a(p−1)/2 ≡ xp−1 ≡ 1 (mod p); hence one direction of statement (2)
is trivial. The converse statement says that if a(p−1)/2 ≡ 1 (mod p) then
there exists x such that a ≡ x2 (mod p). We have just proved this using
the cyclicity of (Z/pZ)∗, and indeed the result is not entirely trivial: the
algorithmic computation of x (i.e., the square root of a modulo p) can be
done using an algorithm due to Tonelli and Shanks; see [Coh0].

We will now prove a lemma that is basic to two of the results that we
need, and in particular to the quadratic reciprocity law.

Lemma 2.2.2. Let χ be a real primitive character modulo m, and let p be
an odd prime. Then

χ(p) =
(

χ(−1)m
p

)
.

Proof. Let R = Z[ζm], which is a ring and a finitely generated free Z-
module since ζm is an algebraic integer (in fact of degree φ(m), but we do
not need this). We do not need to know that in fact R is the ring of algebraic
integers of Q(ζm).

Let p be any odd prime such that p � m. By the binomial theorem, and
using either the fact that all intermediate binomial coefficients

(
p
k

)
are divis-

ible by p or the fact that in a ring of characteristic p (here R/pR) the map
x �→ xp is additive, we have

τ(χ)p ≡
∑

x mod m

χp(x)ζpx
m (mod pR) .

Since χ is a real character and p is odd, χp(x) = χ(x), so by Proposition
2.1.39 we have

τ(χ)p ≡ χ(p)τ(χ) (mod pR) .
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On the other hand, since χ is primitive, Corollary 2.1.47 tells us that τ(χ)2 =
χ(−1)m, so that multiplying the above congruence by τ(χ) we obtain

χ(−1)m((χ(−1)m)(p−1)/2 − χ(p)) ≡ 0 (mod pR) .

Since (χ(−1)m)(p−1)/2 ≡
(χ(−1)m

p

)
(mod p) and p � m, if we multiply the

above congruence by any integer u such that um ≡ 1 (mod p) (in Z), we
obtain

χ(p) ≡
(

χ(−1)m
p

)
(mod pR) .

Both sides of this congruence are in fact in Z, and clearly Z∩ pR = pZ since
R is a free Z-module with basis 1, ζm, . . . , ζn−1

m for some n. Thus the above
congruence holds not only modulo pR but modulo pZ, i.e., modulo p. Since
both sides are equal to ±1 and p > 2, it follows finally that we have the
equality

χ(p) =
(

χ(−1)m
p

)
for p odd not dividing m. Clearly this is also true (both sides vanish) when
p divides m, proving the lemma. ��

Corollary 2.2.3 (The basic quadratic reciprocity law). (1) If p and q
are distinct odd primes, we have(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4 .

(2) If p is an odd prime, we have the two so-called complementary laws:(
−1
p

)
= (−1)(p−1)/2 and

(
2
p

)
= (−1)(p

2−1)/8 .

Proof. Set χ(n) =
(

n
q

)
, which is a real primitive character modulo q. We

have χ(−1) = (−1)(q−1)/2, hence the above lemma gives(
p

q

)
=
(

(−1)(q−1)/2q

p

)
= (−1)(p−1)(q−1)/4

(
q

p

)
,

proving (1). We have already proved the first equality of (2). For the second,
set χ(x) = (−1)(x

2−1)/8 for x odd, 0 otherwise. This simply means that
χ(x) = 1 for x ≡ ±1 (mod 8), and χ(x) = −1 for x ≡ ±3 (mod 8). It
follows immediately from this that χ is a real character modulo 8, which is
primitive, and is such that χ(−1) = 1. Thus, again by the above lemma we
obtain χ(p) =

(
8
p

)
, in other words

(
2
p

)
= (−1)(p

2−1)/8 as desired. ��
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2.2.2 Consequences of the Basic Quadratic Reciprocity Law

We define the Jacobi symbol
(

a
n

)
for a positive odd integer n by requiring

multiplicativity in n: if n =
∏

i pvi
i then(a

n

)
=
∏

i

(
a

pi

)vi

.

Clearly this symbol is still multiplicative in a. Furthermore, since each
(

a
pi

)
is periodic of period dividing pi, hence a fortiori dividing n,

(
a
n

)
is periodic

of period dividing n.

Proposition 2.2.4. If m and n are coprime positive odd integers, the same
quadratic reciprocity formula holds:(m

n

)( n

m

)
= (−1)(n−1)(m−1)/4 .

In addition, if n is an odd positive integer, the same complementary laws
hold: (

−1
n

)
= (−1)(n−1)/2 and

(
2
n

)
= (−1)(n

2−1)/8 .

Proof. We note that if n1 and n2 are odd, then

n1n2−1 = (n1−1)+(n2−1)+(n1−1)(n2−1) ≡ (n1−1)+(n2−1) (mod 4) .

It follows that the right-hand side of the first formula is multiplicative in n,
and by symmetry it is also multiplicative in m. Since the left-hand side of
the formula is also multiplicative in m and in n, to prove equality it suffices
to prove it when m and n are coprime odd primes, and then it is simply the
basic quadratic reciprocity law.

The first complementary law follows from the same congruence for n1n2−
1, and the second from

n1n
2
2 − 1 = n2

1 − 1 + n2
2 − 1 + (n2

1 − 1)(n2
2 − 1) ≡ (n2

1 − 1)(n2
2 − 1) (mod 16) .

��

Definition 2.2.5. The Kronecker symbol (still denoted by
(

a
b

)
) is the exten-

sion of the Jacobi symbol to (Z\{0})2 obtained by setting
(

a
−1

)
= sign(a) and(

a
2

)
=
(

2
a

)
for a odd (

(
a
2

)
= 0 for a even), and extending by multiplicativity.

Note that sign(a) = 1 if a > 0 and sign(a) < 0 if a < 0.

Proposition 2.2.6. (1) For two nonzero integers m and n write m =
2v2(m)m1 and n = 2v2(n)n1 with m1 and n1 odd. Then( n

m

)
= (−1)((m1−1)(n1−1)+(sign(m)−1)(sign(n)−1))/4

(m

n

)
.
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(2) If D1 and D2 are nonzero integers congruent to 0 or 1 modulo 4, we have(
D2

D1

)
= (−1)((sign(D1)−1)(sign(D2)−1))/4

(
D1

D2

)
.

Proof. We may assume that either m or n is odd; otherwise they are not
coprime and the result is trivial. Since

(
2
a

)
=
(

a
2

)
, it is clear that statement

(1) follows from Proposition 2.2.4 for m, n both positive. Using the definition
of
(

m
−1

)
and considering separately the cases m > 0, n < 0 (or the reverse),

we obtain (1) after a short computation. Statement (2) immediately follows
from (1) since either D1 and D2 are not coprime, or either D1 or D2 is odd,
hence congruent to 1 modulo 4. ��

Our aim is now to study the periodicity of the Kronecker symbol, espe-
cially when the numerator is fixed congruent to 0 or 1 modulo 4.

Lemma 2.2.7. If m is odd, for any k we have(
a + km

m

)
= (−1)(sign(m)−1)(sign(a+km)−sign(a))/4

( a

m

)
.

Proof. When m > 0, we have periodicity because of the periodicity of the
Legendre symbol. If m < 0, by definition of the Kronecker symbol we have(

a + km

m

)
= sign(a + km)

(
a + km

|m|

)
= sign(a + km)

(
a

|m|

)
sign(a + km) sign(a)

( a

m

)
,

and clearly sign(a) sign(b) = (−1)(sign(a)−sign(b))/2. ��

Remark. The symbol
(

a
2

)
being periodic of period 8 and not 2, it is in

general not useful to consider periodicity of the symbol
(

a
m

)
when m is a

fixed even integer.

Lemma 2.2.8. If m is odd, then writing n = 2v2(n)n1 and n + km =
2v2(n+km)(n + km)1, we have(

m

n + km

)
= (−1)(m−1)((n+km)1−n1)/4

(m

n

)
.

Proof. By Proposition 2.2.6 and the above lemma, we have(
m

n + km

)
= (−1)(m−1)((n+km)1−1)/4+(sign(m)−1)(sign(n+km)−1)/4

(
n + km

m

)
= (−1)(m−1)((n+km)1−1)/4+(sign(m)−1)(sign(n)−1)/4

( n

m

)
= (−1)(m−1)((n+km)1−n1)/4

(m

n

)
,
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proving the lemma. ��

We can finally state the main result concerning the Kronecker symbol.

Theorem 2.2.9. If m ≡ 0 or 1 modulo 4 is fixed, the Kronecker symbol
(

m
n

)
is periodic of period dividing |m|; in other words for all k, n we have(

m

n + km

)
=
(m

n

)
.

Proof. If m ≡ 1 (mod 4) the result follows from the above lemma since in
that case (m− 1)((n + km)1 − n1) ≡ 0 (mod 8). So assume m ≡ 0 (mod 4),
and write as usual m = 2v2(m)m1. We may of course assume that n is odd,
so that n + km is also odd. We have therefore (n + km)1 − n1 = km ≡ 0
(mod 4), so by the above lemma(

m

n + km

)
=
(

2
n + km

)u(
m1

n + km

)
=
(

2
n + km

)u(m1

n

)
=
(

2
n(n + km)

)u(m

n

)
.

If u = 2,
(

2
n(n+km)

)u = 1 trivially, and if u � 3, then m ≡ 0 (mod 8); hence
n(n + km) ≡ n2 ≡ 1 (mod 8), so

(
2

n(n+km)

)
= 1, proving the theorem. ��

Proposition 2.2.10. There are exactly two extensions
(

a
b

)
of the Jacobi

symbol to (Z \ {0})2 that are equal to 0 if and only if gcd(a, b) �= 1, and are
multiplicative in a and b and periodic in b of period dividing |a| when a ≡ 0
or 1 modulo 4. One is the Kronecker symbol

(
a
b

)
defined above, the other is(

a
b

)(−4
a

)v2(b), where it is understood that
(−4

a

)v2(b) = 1 when b is odd.

Proof. Assume first that a ≡ 0 (mod 4) with a �= 0, and write a =
sign(a)2um with m odd and positive. Then we have(

a

−1

)
=
(

a

|a| − 1

)
=
(

sign(a)|a|
|a| − 1

)
= sign(a)(|a|−2)/2

(
|a|

|a| − 1

)
= sign(a)

(
2

2um− 1

)u(
m

2um− 1

)
.

Now since u � 2, we note that for u = 2,
(

2
2u m−1

)u = 1 trivially, while
for u � 3, 2um − 1 ≡ −1 (mod 8), hence

(
2

2u m−1

)u = 1 once again. Thus,
applying Proposition 2.2.4 and the fact that 2um−1 ≡ 3 (mod 4), we obtain(

a

−1

)
= sign(a)(−1)(m−1)/2

(
2um− 1

m

)
= sign(a)(−1)(m−1)/2

(
−1
m

)
= sign(a) ,
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once again by periodicity in the upper argument since m is odd and positive.
If now a �= 0 is arbitrary, we must have(

a

−1

)
=
(

a

−1

)(
2
−1

)2

=
(

4a

−1

)
= sign(4a) = sign(a)

as desired.
Let us now compute

(
a
2

)
. If a is even, we must have

(
a
2

)
= 0; hence we

may assume that a is odd. Consider first the case a ≡ 1 (mod 4). Then by
periodicity and Proposition 2.2.4, we have(a

2

)
=
(

a

2 + |a|

)
=
(

sign(a)
2 + |a|

)(
|a|

2 + |a|

)
= sign(a)(|a|+1)/2(−1)(|a|−1)(|a|+1)/4

(
2 + |a|
|a|

)
= sign(a)(|a|+1)/2

(
2
|a|

)
= sign(a)(|a|+1)/2

(
2
a

)
.

Thus, when a ≡ 1 (mod 4), if a > 0 then
(

a
2

)
=
(

2
a

)
, while if a < 0, then

|a| ≡ 3 (mod 4); hence
(

a
2

)
=
(

2
a

)
once again.

Consider now the case a ≡ 3 (mod 4). By what we have just proved,(a

2

)
=
(
−1
2

)(
−a

2

)
=
(
−1
2

)(
2
−a

)
=
(
−1
2

)(
2
a

)
.

Thus, if we choose
(−1

2

)
= 1 we obtain the first extension, which is the

Kronecker symbol, and if we choose
(−1

2

)
= −1 we obtain the second exten-

sion, and we have thus shown that only these two possible extensions can
exist. Conversely, by definition all the necessary conditions are satisfied, and
periodicity in the lower variable for the first extension is the statement of
Theorem 2.2.9. Note that if a ≡ 1 (mod 4) then

(−4
a

)
= 1, while if a ≡ 0

(mod 4), then
(

a
b

)
�= 0 implies b odd hence

(−4
a

)v2(b) = 1, so periodicity for
the second extension follows from that of the first. ��

2.2.3 Gauss’s Lemma and Quadratic Reciprocity

Another approach to quadratic reciprocity, due to Gauss, deserves to be stud-
ied in detail. Although there exist nearly two hundred proofs of the quadratic
reciprocity law, it is not just for the sake of it that we will give another
proof here, but because we need the results that we will prove elsewhere (see
Theorem 11.6.14) and because it sheds some additional light on Kronecker–
Jacobi’s generalization of the Legendre symbol to composite denominators.

In this subsection, r (or r′) will always denote a positive odd integer. By a
convenient and common abuse of notation, when r is implicit we will identify
integers with their class modulo r in Z/rZ.
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Definition 2.2.11. A half-system H modulo r is a subset of Z/rZ such that
Z/rZ = H ∪ (−H)∪{0}, the unions being disjoint, with the evident notation
−H = {−h/ h ∈ H}.

If H is a half-system modulo r we evidently have |H| = (r − 1)/2.
Now let a be an integer coprime to r. For any j ∈ H we have aj �≡ 0

(mod r); hence we can write uniquely

aj ≡ εH(j)σH(j) (mod r) ,

where εH(j) = ±1 and σH(j) ∈ H. It is clear that σH is bijective: indeed,
since it is a map from the finite set H to itself, it is enough to show that it is
injective. But σH(j1) = σH(j2) implies that aj1 ≡ ±aj2 (mod r) hence that
j1 ≡ ±j2 (mod r) since gcd(a, r) = 1, and since j1 ≡ −j2 (mod r) is excluded
by definition of a half-system, we have therefore j1 = j2 as claimed, so that
σ is indeed a permutation of H.

Define
fH(a, r) =

∏
j∈H

εH(j) ∈ {±1} .

Proposition 2.2.12. The quantity fH(a, r) does not depend on the half-
system H.

Proof. Let H ′ be another half-system. Then for any j ∈ H there exists
η(j) = ±1 such that j = η(j)π(j), where π is a (necessarily bijective) map
from H to H ′. For simplicity of notation, set σ1 = π−1◦σH′◦π, a permutation
of H. Then

εH(j)σH(j) ≡ aj = η(j)aπ(j) = η(j)εH′(π(j))σH′(π(j))
= η(j)εH′(π(j))π(σ1(j)) = η(j)εH′(π(j))η(σ1(j))σ1(j) .

Since σH(j) and σ1(j) are both in H, by definition of a half-system we must
have σ1 = σH and moreover

εH(j) = η(j)εH′(π(j))η(σ1(j)) .

Since π and σ1 are bijections, taking the product on j ∈ H gives

fH(a, r) = fH′(a, r)

(∏
j∈H

η(j)

)2

= fH′(a, r) ,

finishing the proof. ��

Since fH(a, r) does not depend on H, we will of course drop the index H.
This proposition will thus allow us to choose the half-system as we please.

The main result of this section is the following.
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Theorem 2.2.13. As above let r be odd and positive and let a be coprime
to r. Then

f(a, r) =
(a

r

)
.

Proof. Since the Kronecker–Jacobi symbol is defined by complete multi-
plicativity in the denominator, we will prove the theorem in the same way.
Note that it gives an additional justification for this generalization of the
Legendre symbol. I claim first that the theorem is true for r an odd prime.
Indeed, in that case for any half-system H we have (as usual in Z/rZ)

a(r−1)/2
∏
j∈H

j =
∏
j∈H

aj =
∏
j∈H

εH(j)σH(j) = f(a, r)
∏
j∈H

j

since σH is a permutation. On the other hand, since r is a prime,
∏

j∈H j

is coprime to r and a(r−1)/2 ≡
(

a
r

)
by definition, proving my claim and the

theorem in the prime case.
We must now show that when a is fixed, f(a, r) is a completely multi-

plicative function of r (restricted to odd r), which will finish the proof. Thus
let r and r′ be odd integers. We must show that f(a, rr′) = f(a, r)f(a, r′).
Let H and H ′ be half-systems modulo r and r′ respectively. It is immediate
to check that

J = {j + rk/ j ∈ H, k mod r′} ∪ {rj′/ j′ ∈ H ′}

is a half-system modulo rr′. Furthermore, if a is coprime to rr′ we have

a(j + rk) ≡ εH(j)σH(j) (mod r) ;

hence a(j + rk) = εH(j)(σH(j) + rk′), and it follows that εJ(a(j + rk)) =
εH(j). In addition

a(rj′) = r(aj′) ≡ r(εH′(j′)σH′(j′)) ;

hence εJ(rj′) = ε′H(j′). Thus

f(a, rr′) = fJ(a, rr′) =
∏

j∈H, k mod r′

εH(j)
∏

j′∈H′

ε′H(j′)

= fH(a, r)r′
fH′(a, r′) = f(a, r)f(a, r′)

since r′ is odd, proving multiplicativity and finishing the proof of the theorem.
��

Before stating the main corollary of this result, recall that we define (n−
1)\2 to be equal to the integer part of (n−1)/2. Furthermore, for two integers
n and m with n > 0 define

S(m,n) =
∑

1�j�(n−1)\2

⌊
jm

n

⌋
.
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Corollary 2.2.14. Let r be an odd positive integer and let a be any integer
coprime to r. Then

(1)

(−1)S(a,r) =


(a

r

)
when a is odd,(

2a

r

)
when a is even.

(2) Assume that a > 0. Then

(−1)S(r,a) =


(−1)(a−1)(r−1)/4

(a

r

)
when a is odd,

(−1)(a−2)(r−1)/4

(
2a

r

)
when a is even.

(3) If n and m are positive odd coprime integers we have the quadratic reci-
procity law (m

n

)( n

m

)
= (−1)(m−1)(n−1)/4 .

Proof. (1). Choose as half-system H modulo r the integers from 1 to
(r − 1)/2 and keep the above notation. In particular, multiplication by a
defines a function εH(j) with values ±1 and a permutation σH of H. For
ε = 1 and ε = −1, set

Rε =
∑

j∈H/ εH (j)=ε

σH(j) .

We have clearly R+ + R− =
∑

j∈H j = (r2 − 1)/8. On the other hand

ja = r�ja/r	+

{
σH(j) if εH(j) = 1,
r − σH(j) if εH(j) = −1.

Summing over j ∈ H we obtain

a(r2 − 1)/8 = rS(a, r) + R+ −R− + r� ,

where � is the number of j ∈ H such that εH(j) = −1. Subtracting from this
the expression for R+ + R−, we obtain

(a− 1)(r2 − 1)/8 = rS(a, r)− 2R− + r� .

Now we have (−1)� =
∏

j∈H εH(j) = fH(a, r) =
(

a
r

)
by the above theorem.

Since r is odd, we therefore obtain

(−1)S(a,r) = ε(r)(a−1)
(a

r

)
,

where ε(r) = (−1)(r
2−1)/8 depends only on r. We will show below that it is

indeed equal to
(

2
r

)
(we are not allowed to use our other proof of quadratic
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reciprocity), and up to this assumption this proves (1) upon separating the
cases a odd and a even.

(2). For simplicity write a′ = (a− 1)\2, in other words a′ = (a− 1)/2 if a
is odd and a′ = (a− 2)/2 if a is even. Consider the lattice points (i, j) ∈ Z2

such that 1 � i � a′ and 1 � j � (r−1)/2, which are evidently a′(r−1)/2 in
number. Since r and a are coprime, the line y = (r/a)x does not go through
any lattice point for 0 < x < a, in particular for 1 � x � a′. It is easy to see,
for instance by drawing a picture, that the number of lattice points under
that line is exactly S(r, a), while the number of lattice points above that line
is S(a, r). It follows that

(−1)S(r,a) = (−1)a′(r−1)/2(−1)S(a,r) .

Using (1), this gives the desired formula when a is odd. When a is even, (1)
gives

(−1)S(r,a) = (−1)(a−2)(r−1)/4ε(r)
(a

r

)
.

Choosing a = 2, we see that S(r, a) = 0, and hence ε(r) =
(

2
r

)
, proving the

claim made in (1) above and finishing the proof of (2).
(3) Follows immediately from (1) and (2) using the variables m and n

instead of a and r. ��

2.2.4 Real Primitive Characters

Real primitive characters are easy to characterize. Recall that a fundamental
discriminant is 1 or the discriminant of a quadratic field, in other words
either a squarefree integer congruent to 1 modulo 4, or 4 times a squarefree
integer congruent to 2 or 3 modulo 4.

Theorem 2.2.15. If D is a fundamental discriminant, the Kronecker symbol(
D
n

)
defines a real primitive character modulo m = |D|. Conversely, if χ is

a real primitive character modulo m then D = χ(−1)m is a fundamental
discriminant D and χ(n) =

(
D
n

)
.

Proof. The definition of the Kronecker symbol and Theorem 2.2.9 show
that

(
D
n

)
is a character modulo |D|. To show that it is primitive, it is sufficient

to show that for any prime p | D it cannot be defined modulo D/p. Assume
first that p �= 2, and let a be a quadratic nonresidue modulo p. Since D is
fundamental and p is odd we have gcd(p, 4|D|/p) = 1; hence by the Chinese
remainder theorem there exists n > 0 such that n ≡ a (mod p) and n ≡ 1
(mod 4|D|/p), and in particular n ≡ 1 (mod 4). Thus by Theorem 2.2.9 and
the quadratic reciprocity law for positive odd numbers we have(

D

n

)
=
( p

n

)(D/p

n

)
=
( p

n

)(4D/p

n

)
=
( p

n

)
=
(

n

p

)
= −1 ,
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proving that
(

D
n

)
cannot be defined modulo D/p. Assume now that p = 2,

so that D ≡ 8 or 12 modulo 16, and choose n = 1+ |D|/2. If D ≡ 8 (mod 16)
we have n ≡ 5 (mod 8) and n ≡ 1 (mod |D|/2) and so(

D

n

)
=
(

2
n

)(
D/2
n

)
=
(

2
n

)
= −1

since D/2 ≡ 0 (mod 4). If D ≡ 12 (mod 16) we have n ≡ 7 (mod 8) and
n ≡ 1 (mod D/4) hence(

D

n

)
=
(
−4
n

)(
−D/4

n

)
=
(
−4
n

)
= −1

since −D/4 ≡ 1 (mod 4), proving in both cases that
(

D
n

)
cannot be defined

modulo D/2 hence that it is a primitive character.
Conversely, let χ be a real primitive character modulo m and let p be

any odd prime such that p � m. By Lemma 2.2.2 we have χ(p) =
(

D
p

)
with

D = χ(−1)m. Since both sides are multiplicative in p, we deduce that for
any odd positive n we have χ(n) =

(
D
n

)
. In addition, by definition of the

Kronecker symbol we have
(

D
−1

)
= sign(D) = χ(−1); hence the equality

χ(n) =
(

D
n

)
is valid for any odd n ∈ Z.

I now claim that D ≡ 0 or 1 mod 4. Indeed, since χ is periodic of period
m = |D|, by what we have just proved and the properties of the Kronecker
symbol, we have

1 = χ(1 + 2D) =
(

D

1 + 2D

)
.

Thus, if we had D ≡ 3 (mod 4) we would have

1 =
(

−1
1 + 2D

)(
−D

1 + 2D

)
= (−1)D

(
−D

1

)
= −1 ,

a contradiction, and if we had D ≡ 2 (mod 4) we would have

1 =
(

2
1 + 2D

)(
2D

1 + 2D

)
=
(

2
1 + 2D

)
=
(

2
5

)
= −1 ,

also a contradiction.
We must now prove that χ(2) =

(
D
2

)
. We may of course assume D (or

m) odd, otherwise both sides vanish. Thus (D + 1)/2 is odd; hence

1 = χ(D + 1) = χ(2)χ((D + 1)/2)

= χ(2)
(

D

(D + 1)/2

)
= χ(2)

(
D

D + 1

)(
D

2

)
= χ(2)

(
D

2

)
,

showing that χ(2) =
(

D
2

)
. By multiplicativity it follows that χ(n) =

(
D
n

)
for

all n.
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Finally, since D ≡ 0 or 1 modulo 4, we can write (uniquely) D = D0f
2,

where D0 is a fundamental discriminant. It is clear that the character
(

D0
n

)
takes the same values as the character

(
D
n

)
on integers n coprime to D; hence(

D
n

)
is primitive if and only if D = D0, i.e., D is a fundamental discriminant,

finishing the proof of the theorem. ��

Remark. If χ is a nonprimitive real character modulo m there still exists
D such that χ(n) =

(
D
n

)
(if f is the conductor of χ we can for instance take

D = χ(−1)fm2 by the above theorem), but we cannot in general choose D
equal to χ(−1)m: as an example, choose m = 12 and let χ(n) =

(−4
n

)
for

gcd(n, 12) = 1.

2.2.5 The Sign of the Quadratic Gauss Sum

Corollary 2.1.47 gives the square of τ(χ) when χ is a real character, in other
words by the preceding section, when χ is the Legendre–Kronecker symbol. A
more difficult result due to Gauss is that one can give the value of τ(χ) itself
(Proposition 2.2.24). Before proving it, we need some results of independent
interest.

Proposition 2.2.16 (Poisson summation formula). Let f be a continu-
ous function and locally of bounded variation on some not necessarily bounded
interval [A,B]. Then

∑ ′

A�n�B

f(n) =
∑
m∈Z

∫ B

A

f(t) exp(2iπmt) dt ,

where
∑′ means that the terms for n = A and n = B, if present, must be

counted with coefficient 1/2.

Proof. Let f1 be a piecewise continuous function locally of bounded vari-
ation, that tends to zero sufficiently rapidly (we will in fact have f1 with
compact support, so this is no problem). Set g(x) =

∑
n∈Z f1(n + x). Then

g(x) is an absolutely convergent series that converges normally in any com-
pact subset of R, and clearly g(x) is periodic of period dividing 1. Thus we
may apply the standard theorem on Fourier series that tells us that for all x
we have

g(x+) + g(x−)
2

=
∑
m∈Z

cm exp(2iπmx) ,

where as usual
g(x±) = lim

ε→0, sign(ε)=±
g(x + ε) ,

and the Fourier coefficients cm are given by
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cm =
∫ 1

0

g(t) exp(−2iπmt) dt =
∑
n∈Z

∫ 1

0

f1(n + t) exp(−2iπmt) dt

=
∑
n∈Z

∫ n+1

n

f1(t) exp(−2iπmt) dt = f̂1(m) ,

where the Fourier transform f̂1(y) is defined as usual by

f̂1(y) =
∫ +∞

−∞
f1(t) exp(−2iπyt) dt .

Setting in particular y = 0, we obtain∑
n∈Z

f1(n+) + f1(n−)
2

=
∑
m∈Z

f̂1(m) .

Choose now f1(t) = f(t) for t ∈ [A,B] and f1(t) = 0 elsewhere. Then

f̂1(y) =
∫ B

A

f(t) exp(−2iπyt) dt .

Furthermore, since f is continuous on ]A,B[ , when A < n < B we have
(f1(n+) + f1(n−))/2 = f(n), while if n = A (of course only when A ∈ Z)
then (f1(n+) + f1(n−))/2 = f(n+)/2 = f(n)/2, and similarly if n = B
(when B ∈ Z), then (f1(n+) + f1(n−))/2 = f(n−)/2 = f(n)/2, proving the
proposition after changing m into −m. ��

Corollary 2.2.17. Let f be a continuous function and locally of bounded
variation on R. Then for all x ∈ R we have∑

n∈Z

f(x + n) =
∑
m∈Z

f̂(m) exp(2iπmx) ,

where as above f̂(m) is the Fourier transform of f . In particular
∑

n∈Z f(n) =∑
m∈Z f̂(m).

Proof. Apply the proposition to [A,B] = R, and note that by an evident
change of variable the Fourier transform of f(x + t) at y is f̂(y)e2iπyx. ��

Lemma 2.2.18. Let p be an odd prime number, and let χ(n) =
(

n
p

)
be the

Legendre symbol. Then
τ(χ) =

∑
x mod p

ζx2

p .

Proof. This immediately follows from the trivial observation that the num-
ber of solutions modulo p to x2 ≡ n (mod p) is equal to 1+χ(n) and the fact
that

∑
n mod p χ(n) = 0. ��

We can now obtain the fundamental result on the sign of the Gauss sum.
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Theorem 2.2.19. Let p be an odd prime number, and let χ(n) =
(

n
p

)
be the

Legendre symbol. Then

τ(χ) =

{
p1/2 if p ≡ 1 (mod 4) ,

p1/2i if p ≡ 3 (mod 4) .

Proof. By the above lemma, we have τ(χ) =
∑

0�x�p−1 exp(2iπx2/p).
We apply the Poisson summation formula proved above to [A,B] = [0, p] and
f(x) = exp(2iπx2/p). Since f(0) = f(p), we have∑ ′

0�n�p

f(n) =
∑

0�n�p−1

f(n) = τ(χ) .

On the other hand,∫ p

0

f(t) exp(2iπmt) dt =
∫ p

0

exp(2iπ(t2 + pmt)/p) dt

= exp(−2iπpm2/4)
∫ p

0

exp(2iπ(t + pm/2)2/p) dt

= exp(−2iπpm2/4)
∫ p(m+2)/2

pm/2

exp(2iπt2/p) dt .

Changing t into p1/2t it follows that∑
m∈Z, 2|m

∫ p

0

f(t) exp(2iπmt) dt =
∫ +∞

−∞
exp(2iπt2/p) dt = p1/2I ,

where

I =
∫ +∞

−∞
exp(2iπt2) dt .

The value of this integral is well known, but we do not need it since it will
follow from the proof. Note that we know in advance that it converges, but
this can be checked directly for example by setting t2 = x and integrating by
parts.

Similarly we find that∑
m∈Z, 2�m

∫ p

0

f(t) exp(2iπmt) dt = exp(−2iπp/4)p1/2I .

Putting everything together, we thus obtain

τ(χ) = (1 + i−p)p1/2I .

We can first deduce from this the value of I: indeed, we simply choose a small
value of p, for example p = 3. Then
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τ(χ) = exp(2iπ/3)− exp(4iπ/3) = i31/2

hence I = i/(1 + i) = (1 + i)/2.
Thus

τ(χ) =
(1 + i)(1 + i−p)

2
p1/2 ,

proving the theorem after separation of cases. ��

For simplicity of notation, when D is a fundamental discriminant we de-
note by χD the character such that χD(n) =

(
D
n

)
. By quadratic reciprocity,

we note that the above theorem can be reformulated as τ(χD) = D1/2 for
D = (−1)(p−1)/2p, where p is an odd prime, choosing the principal branch of
the square root, i.e., such that −π/2 < Arg(z1/2) � π/2. We are now going
to show that this is true for any fundamental discriminant D by proving a
few lemmas.

Lemma 2.2.20. We have τ(χD) = D1/2 for D = −4, D = −8, and D = 8.

Proof. Clear by direct computation. ��

Lemma 2.2.21. Let D1 and D2 be two coprime fundamental discriminants.
If τ(χD1) = D

1/2
1 and τ(χD2) = D

1/2
2 , then τ(χD1D2) = (D1D2)1/2.

Proof. First note the important fact that it is not true that (D1D2)1/2 =
D

1/2
1 D

1/2
2 (example D1 = −3, D2 = −7).

Since D1 and D2 are coprime, by the Chinese remainder theorem a residue
modulo D1D2 can be written uniquely in the form n2D1 + n1D2, where n2

is modulo D2 and n1 is modulo D1. Thus,

τ(χD1D2) =
∑

n mod D1D2

(
D1D2

n

)
ζn
|D1D2|

=
∑

n1 mod D1

∑
n2 mod D2

(
D1D2

n2D1 + n1D2

)
ζn2D1+n1D2
|D1D2|

=
(

D1

D2

)(
D2

D1

) ∑
n1 mod D1

(
D1

n1

)
ζn1
|D1|

∑
n2 mod D2

(
D2

n2

)
ζn2
|D2|

= (−1)(sign(D1)−1)(sign(D2)−1)/4τ(χD1)τ(χD2)

by Proposition 2.2.6. It is clear that (D1D2)1/2 = D
1/2
1 D

1/2
2 except if both

D1 and D2 are negative, in which case (D1D2)1/2 = −D
1/2
1 D

1/2
2 , and this is

exactly compensated by (−1)(sign(D1)−1)(sign(D2)−1)/4, proving the lemma.
��



2.2 The Quadratic Reciprocity Law 49

Definition 2.2.22. A fundamental discriminant D is said to be a prime
discriminant if it is either equal to −4, −8, or 8, or equal to (−1)(p−1)/2p for
p an odd prime.

Note that all these expressions are indeed fundamental discriminants.

Lemma 2.2.23. Any fundamental discriminant D can be written in a unique
way as a product of prime fundamental discriminants.

Proof. Since D is fundamental, no odd prime can divide D to a power
larger than 1. Thus, we may write D = 2u

∏
p∈S p, where S is a finite set

of odd primes. It follows that D = ε2u
∏

p∈S(−1)(p−1)/2p for some ε = ±1.
Note that the product over p ∈ S is congruent to 1 modulo 4. Thus, either
u = 0, in which case we must have ε = 1 (since D ≡ 1 (mod 4)); or u = 2,
in which case we must have ε = −1 (otherwise D/4 is also a discriminant),
so the factor in front of the product is −4; or finally u = 3, in which case
ε can be ±1, giving the two factors ±8. Uniqueness of the decomposition is
clear. ��

The proof of the result that we are after is now immediate.

Proposition 2.2.24. Let χ be a real primitive character modulo m, so that
χ(n) =

(
D
n

)
for D = χ(−1)m a fundamental discriminant. Then

τ(χ) =

{
m1/2 if χ(−1) = 1 ,
m1/2i if χ(−1) = −1 .

Proof. By Theorem 2.2.15, we know that χ = χD with D = χ(−1)m
a fundamental discriminant. By Lemma 2.2.23, D is equal to a product of
prime fundamental discriminants that are necessarily coprime. By Lemma
2.2.21, it is thus sufficient to prove the proposition for prime fundamental
discriminants, and this is exactly the content of Theorem 2.2.19 and Lemma
2.2.20. ��

In view of the functional equation for Dirichlet L-functions that we will
study in Chapter 10 we make the following definition:

Definition 2.2.25. Let χ be any primitive character modulo m. We define
the root number W (χ) by the formula

W (χ) =


τ(χ)
m1/2

if χ(−1) = 1 ,

τ(χ)
m1/2i

if χ(−1) = −1 .

Thus a restatement of Proposition 2.2.24 is that when χ is real we have
W (χ) = 1. In the general case, since |τ(χ)| = m1/2 we have |W (χ)| = 1, and
one can show that W (χ) is a root of unity if and only if χ is real, in which
case W (χ) = 1 (see Exercise 17).
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2.3 Lattices and the Geometry of Numbers

2.3.1 Definitions

In this section, we let V be an R-vector space of dimension n.

Proposition 2.3.1. Let Λ be a sub-Z-module of V . Consider the following
three conditions:

(1) Λ generates V as an R-vector space.
(2) Λ is discrete for the natural topology of V .
(3) Λ is a free Z-module of rank n.

Then any two of these conditions imply the third.

Note that (3) alone does not imply (1) since Λ may be a free Z-module
without being a free R-module.

Proof. Assume (1) and (2). Since Λ generates V , by linear algebra there
exists a set of n elements b1, . . . ,bn in Λ that are R-linearly independent,
hence that form an R-basis of V , and let Λ0 be the Z-module generated by
the bi. Since Λ is discrete in V there exists an integer M > 0 such that the
only element

∑
xibi of V with |xi| < 1/M for all i and that belongs to Λ

is the zero vector. It is clear that the Mn small cubes of the form mi/M �
xi < (mi +1)/M for all i, where mi are integers such that 0 � mi < M , form
a partition of the big cube C defined by 0 � xi < 1 for all i. Let β1, . . . , βN

be some (not necessarily all) representatives of Λ/Λ0. Translating them if
necessary by elements of Λ0, we may assume that βj ∈ C for all j. It is then
clear that two distinct βj cannot belong to the same small cube: indeed, if βj

and βk both belong to the same cube, then βk − βj would be an element of
Λ with coordinates |xi| < 1/M for all i, a contradiction since by assumption
the only element of Λ lying in this cube is the origin. Thus the number of βj

is less than or equal to the number of small cubes, in other words N � Mn.
It follows that Λ/Λ0 is finite (since N is uniformly bounded), and since Λ0 is
finitely generated, Λ is also finitely generated.

Thus Λ is a finitely generated Z-module, and is of course torsion-free
since Λ ⊂ V ; hence by the standard theorem on finitely generated torsion-
free modules (see Corollary 2.1.2 for the case of Z) we deduce that Λ is a free
Z-module. In addition, since Λ/Λ0 is finite, Theorem 2.1.3 implies that the
rank of Λ is equal to the rank of Λ0, which is equal to n, proving (3).

Assume (1) and (3); hence let b1, . . . ,bn be a Z-basis of Λ. Thus they
also form an R-basis of V . If we consider the neighborhood Ω of 0 consisting
of x =

∑
1�i�n xibi with |xi| < 1 for all i, it is clear that the only element

of Λ belonging to Ω is 0 itself, proving that Λ is discrete.
Finally, assume (2) and (3), and let W be the R-vector space generated

by Λ. Then (1) and (2) hold with V replaced by W ; hence by what we
have proved, Λ is a free Z-module on dim(W ) generators. It follows that
dim(W ) = n, hence that W = V , proving (1). ��
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A Z-module Λ satisfying the above three conditions (or any two of them,
by the proposition) will be called a lattice in V .

From now on, we will assume that V is a Euclidean vector space, in other
words equipped with a Euclidean inner product x · y. For instance, the most
common case V = Rn will be considered as a Euclidean vector space with
the inner product x · y =

∑
1�i�n xiyi with evident notation. We also let

‖x‖ = (x · x)1/2 be the Euclidean norm.

Definition and Proposition 2.3.2. Let (bj)1�j�n be a family of n vectors
in V .

(1) The absolute value of the determinant of the matrix of the bj on some
orthonormal basis of V is independent of that basis. It will be called
(with a slight abuse) the determinant of the family and denoted by
det(b1, . . . ,bn).

(2) The Gram matrix associated with the bj is by definition the matrix of
scalar products G = (bi·bj)1�i,j�n, and we have det(G) = det(b1, . . . ,bn)2.

Proof. (1) follows from the fact that two orthonormal bases of V differ
by a transition matrix P that is an orthogonal matrix, in other words such
that P tP = I, hence with determinant equal to ±1. For (2) we note that if
B is the matrix of the (bj) on some orthonormal basis then G = BtB; hence
det(G) = det(B)2. ��

Remark. This terminology is the one used by Cassels and by all the liter-
ature dealing with the LLL algorithm, which is the main reason for which
we study lattices. It is to be noted however that most modern experts in the
geometry of numbers such as Conway–Sloane [Con-Slo] and Martinet [Mar]
use a notation that is more adapted to the number-theoretic aspects of lat-
tices: to avoid square roots, they call the determinant the determinant of the
Gram matrix, hence the square of what we call the determinant.

Proposition 2.3.3. Let Λ be a lattice in V and let (bj)1�j�n be a Z-basis
of Λ.

(1) The quantity det(b1, . . . ,bn) is independent of the choice of the Z-basis
bj. It is called the determinant of the lattice and will be denoted by det(Λ).

(2) The determinant of the Gram matrix of the bj is equal to det(Λ)2.
(3) If V = Rn the volume of the set

{∑
1�i�n xjbj/ 0 � xj < 1

}
(called a

fundamental parallelotope for the lattice Λ) is equal to det(Λ), hence in
particular is independent of the basis.

Thus det(Λ) can also be called the covolume of Λ.
Proof. (1). If b′

j is another Z-basis of Λ the transition matrix from the bi

to the b′
j is a matrix P with integral entries whose inverse also has integral

entries, hence is such that det(P ) = ±1, so it follows that the absolute value
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of the determinant of the matrix B of the bj on some orthonormal basis of
V is equal to that of the b′

j .
(2). Clear from the preceding proposition.
(3). This immediately follows from the Jacobian formula for changing

variables in multiple integrals. In fact, it is the very reason for the existence
of this formula. ��

Corollary 2.3.4. Let b1, . . . ,bn belong to a lattice Λ, and let B be the matrix
of the bj on some orthonormal matrix of V . The (bi) form a Z-basis of Λ if
and only if |det(B)| = det(Λ).

Proof. Clear. ��

Finally, we recall the standard Gram–Schmidt construction.

Proposition 2.3.5. Let (bj)1�j�n be an R-basis of V . There exists a unique
orthogonal (but not necessarily orthonormal) basis (b∗

j )1�j�n of V whose ma-
trix on the bi is upper triangular with 1’s on the diagonal. It is obtained by
the inductive formulas

b∗
i = bi −

∑
1�j<i

µi,jb∗
j with µi,j =

bi · b∗
j

b∗
j · b∗

j

.

Proof. The transition matrix is upper triangular with 1 on the diagonal
if and only if its inverse is also of this form, hence if and only if b∗

i = bi −∑
1�j<i µi,jb∗

j for some µi,j ∈ R. The conditions b∗
i · b∗

j = 0 for j < i give
the formulas for the µi,j , proving both existence and uniqueness. ��

Remark. The coefficient µi,j is the coefficient of column i and row j of the
transition matrix, which is the opposite of the usual convention, but which
is almost always used when one is dealing with Gram–Schmidt orthogonal-
ization.

Definition 2.3.6. The Gram–Schmidt basis associated with the (bj) is the
R-basis (b∗

j ) of V constructed above.

Corollary 2.3.7 (Hadamard’s inequality). Let (bj) be an R-basis of V
and let (b∗

j ) be the associated Gram–Schmidt basis of V . We have

det(b1, . . . ,bn) = det(b∗
1, . . . ,b

∗
n) =

n∏
j=1

‖b∗
j‖ �

n∏
j=1

‖bj‖ .

In particular, if (bj) is a Z-basis of a lattice Λ we have

det(Λ) =
n∏

j=1

‖b∗
j‖ �

n∏
j=1

‖bj‖ .
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Proof. Since the transition matrix from the (bj) to the (b∗
j ) has deter-

minant 1, we have det(b1, . . . ,bn) = det(b∗
1, . . . ,b

∗
n). Furthermore, since the

b∗
j are orthogonal, the Gram matrix of the b∗

j is the diagonal matrix whose
diagonal entries are the ‖b∗

j‖2; hence det(b∗
1, . . . ,b

∗
n)2 =

∏
1�j�n ‖b∗

j‖2,
proving the first two equalities. On the other hand, the formula bi =
b∗

i +
∑

1�j<i µi,jb∗
j and the orthogonality of the b∗

j implies that

‖bi‖2 = ‖b∗
i ‖2 +

∑
1�j<i

µ2
i,j‖b∗

j‖2 � ‖b∗
i ‖2 ,

so that
∏

1�j�n ‖b∗
j‖ �

∏
1�j�n ‖bj‖, proving the inequality, and the last

statement is a trivial rephrasing. ��

Remark. This classical inequality can of course be rephrased purely in ma-
trix terms: the absolute value of the determinant of a matrix is bounded from
above by the product of the L2 norm of its columns.

2.3.2 Hermite’s Inequality

We begin with a few preliminary results on orthogonal projections.

Lemma 2.3.8. Let (b1, . . . ,bn) be an R-basis of V , let W = b⊥
1 be the

orthogonal supplement of b1, and let b′
2, . . . ,b

′
n be the orthogonal projection

on W of b2, . . . ,bn respectively. Then b′
2, . . . ,b

′
n is a basis of W and we have

det(b1, . . . ,bn) = ‖b1‖det(b′
2, . . . ,b

′
n) .

Proof. Let (e2, . . . , en) be an orthonormal basis of W , so that if we set
e1 = b1/‖b1‖, (e1, . . . , en) is an orthonormal basis of V . For j � 2 we thus
have bj = b′

j + αje1 for some αj ∈ R; hence if B (respectively B′) denotes
the matrix of the bj on (e1, . . . , en) (respectively of the b′

j on (e2, . . . , en))
we have

B =


‖b1‖ α2 · · · αn

0
... B′

0

 .

We thus have det(B) = ‖b1‖det(B′), proving the formula and the fact that
det(B′) �= 0, hence that the b′

j form a basis of W . ��

Corollary 2.3.9. Let Λ be a lattice in V , let b1 be an element of a Z-basis
of Λ, let W = b⊥

1 be its orthogonal supplement, and let Λ′ be the projection
of Λ on W . Then Λ′ is a lattice in W and det(Λ) = ‖b1‖det(Λ′).

Proof. Applying the above lemma to a Z-basis (b1, . . . ,bn) of Λ, it is clear
that (b′

2, . . . ,b
′
n) satisfy conditions (1) and (3) of Proposition 2.3.1; hence Λ′
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is a lattice, and the formula for its determinant also comes from the above
lemma. ��

Since a lattice Λ is discrete there exists an element of Λ that has the
minimal nonzero Euclidean norm. We can thus set the following definition.

Definition 2.3.10. We define the minimum min(Λ) of a lattice Λ to be the
minimal norm of a nonzero element of Λ.

Once again, if we want to do number theory (which is not our purpose in
the present context), it would be nicer to define min(Λ) to be the square of
the minimal norm so as to avoid square roots.

Lemma 2.3.11. Keep the notation of the above corollary, and assume that
b1 is a nonzero vector of Λ with minimal norm. Then every x′ ∈ Λ′ is the
orthogonal projection of some x ∈ Λ such that ‖x‖2 � (4/3)‖x′‖2.

Proof. We may of course assume that x′ �= 0. Let x0 be any element of Λ
that projects on x′, so that x0 = x′ − αb1 for some α ∈ R. The elements of
Λ that project on x′ are the vectors x = x0 + mb1 = x′ + (m − α)b1, and
since x′ ∈ W = b⊥

1 we have

‖x‖2 = ‖x′‖2 + (m− α)2‖b1‖2 .

If we choose m = �α� to be the nearest integer to α we have (m−α)2 � 1/4,
and since b1 has minimal nonzero norm we have ‖b1‖2 � ‖x‖2, hence

‖x‖2 � ‖x′‖2 +
1
4
‖x‖2 ,

proving the lemma. ��

We are now ready to prove Hermite’s theorem, which gives an upper
bound for min(Λ) in terms of det(Λ).

Theorem 2.3.12 (Hermite’s inequality). Let Λ be a lattice in V . There
exists a Z-basis (b1, . . . ,bn) of Λ such that

det(Λ) �
n∏

j=1

‖bj‖ �
(

4
3

)n(n−1)/4

det(Λ) .

In particular, we have

min(Λ) �
(

4
3

)(n−1)/4

det(Λ)1/n .
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Proof. The first inequality is simply Hadamard’s inequality (Corollary
2.3.7). We prove the second one by induction on n, the case n = 1 being
trivial. Let n � 2, assume the result true up to n − 1, let b1 be a nonzero
vector of Λ with minimal norm, and keep the notation of the above lemmas
and corollary. By induction there exists a basis (b′

2, . . . ,b
′
n) of Λ′ such that∏

2�j�n ‖b′
j‖ � (4/3)(n−1)(n−2)/4 det(Λ′). Using the above lemma, for j � 2

each b′
j is the orthogonal projection of some bj ∈ Λ such that ‖bj‖2 �

(4/3)‖b′
j‖2. I claim that (b1, . . . ,bn) is a Z-basis of Λ. Indeed, let x ∈ Λ. By

definition its projection x′ on W is such that x′ =
∑

2�j�n xjb′
j for some

xj ∈ Z. It follows that the projection of y =
∑

2�j�n xjbj is also equal to
x′, hence x − y ∈ Λ ∩ Rb1. But since b1 is a vector of minimal norm in Λ
it generates Λ ∩ Rb1, so that x is indeed a Z-linear combination of the bi,
proving my claim.

By Corollary 2.3.9 we have det(Λ) = ‖b1‖det(Λ′), hence

n∏
j=1

‖bj‖2 � ‖b1‖2
(

4
3

)n−1 n∏
j=2

‖b′
j‖2

� ‖b1‖2
(

4
3

)n−1(4
3

)(n−1)(n−2)/2

det(Λ′)2 �
(

4
3

)n(n−1)/2

det(Λ)2 ,

proving the first inequality by induction. The second inequality follows since
by definition min(Λ) � ‖bj‖ for all j. ��

It is easy to see that the inequality for min(Λ)/det(Λ)1/n given by this
theorem is best possible for n = 2 (see Exercise 18), and Corollary 2.3.25
below shows that it is not best possible for n � 9 (it can be shown that it is
not best possible for all n � 3. For the best known bounds see [Con-Slo] and
[Mar]. Note that the best possible bound is known only for 1 � n � 8 and
n = 24, this latter result having been proved by Elkies et al. in 2004).

An amusing very simple corollary of the above theorem is the following
important result due to Fermat.

Corollary 2.3.13 (Fermat). Every prime p ≡ 1 (mod 4) is the sum of two
squares of integers.

Proof. See Exercise 41. ��

2.3.3 LLL-Reduced Bases

Hermite’s theorem clearly shows that there are good bases of Λ, in other
words bases that are reasonably sized as a function of det(Λ), and we would
like to find these bases. In principle the proof of the theorem is completely
constructive. Unfortunately the main step in the induction proof is to find a
vector of minimal nonzero norm in Λ. Since Λ is discrete this problem can
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be solved by straightforward enumeration in a suitable compact set, but the
time required will be very large. In fact it has been shown that the problem
is very close to being NP-complete (whatever that means; just consider that
it is probably impossible to solve it in polynomial time). A crucial discovery
made in the early 1980s by H. W. Lenstra, A. Lenstra, and L. Lovasz is that
even though in general it is not possible to find rapidly a basis satisfying
Hermite’s conditions, and in particular a minimal vector, it is possible to
find a very good approximation to it in a very precise sense in polynomial
time. This LLL algorithm has become the cornerstone of many algorithms in
several parts of mathematics, computer science, and operations research.

Definition 2.3.14. Let γ be a fixed real number such that γ > 4/3. We say
that the basis (bj) of Λ is γ-LLL-reduced if the corresponding Gram–Schmidt
basis (b∗

j ) (see Proposition 2.3.5) satisfies the following two conditions:

(1) For all j < i we have |µi,j | � 1/2.
(2) For all i � 2 we have

‖b∗
i + µi,i−1b∗

i−1‖2 �
(

1
γ

+
1
4

)
‖b∗

i−1‖2 .

Note that the second condition is equivalent to

‖b∗
i ‖2 �

(
1
γ

+
1
4
− µ2

i,i−1

)
‖b∗

i−1‖2 .

Proposition 2.3.15. Let (bj) be a γ-LLL-reduced basis of Λ, and let (b∗
j )

be the corresponding Gram–Schmidt basis of Rn.

(1) For 1 � j � i � n we have ‖bj‖2 � γi−1‖b∗
i ‖2.

(2) We have

det(Λ) �
n∏

j=1

‖bj‖ � γn(n−1)/4 det(Λ) .

(3) We have ‖b1‖ � γ(n−1)/4 det(Λ)1/n.

Proof. (1). Since |µi,i−1| � 1/2 we have ‖b∗
i ‖2 � ‖b∗

i−1‖2/γ; hence by
induction, for j � i we have ‖b∗

j‖2 � γi−j‖b∗
i ‖2. By definition and the

inequalities for the |µi,j | we thus have

‖bj‖2 = ‖b∗
j‖2 +

∑
1�k<j

µ2
j,k‖b∗

k‖2 �
(

1 +
1
4

∑
1�k<j

γj−k

)
‖b∗

j‖2

�
(

1 +
γ − 1

γ

(
γj − γ

γ − 1

))
γi−j‖b∗

i ‖2 � γi−1‖b∗
i ‖2 ,

using the fact that γ > 4/3 implies 1/4 < (γ − 1)/γ, proving (1).
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(2). Corollary 2.3.7 (3) implies the first inequality and also that det(Λ) =∏
1�j�n ‖b∗

j‖; hence applying (1) above to i = j and multiplying over all
values of j we obtain

n∏
j=1

‖bj‖2 � γn(n−1)/2
n∏

j=1

‖b∗
j‖2 � γn(n−1)/2 det(Λ)2 ,

proving (2).
(3). Choosing j = 1 in (1) and multiplying over all values of i we obtain

‖b1‖2n � γn(n−1)/2
n∏

i=1

‖b∗
i ‖2 � γn(n−1)/2 det(Λ)2 ,

proving (3). ��

We thus see from (2) and (3) that an LLL-reduced basis (whose existence
we shall prove in the next subsection) satisfies similar inequalities to those
of Hermite’s theorem with the number 4/3 replaced by γ > 4/3. In addition,
we deduce the following information on min(Λ):

Corollary 2.3.16. Let (bi) be a γ-LLL-reduced basis of Λ and let (b∗
i ) be

the corresponding Gram–Schmidt basis. Set

c1 = max
1�i�n

‖b1‖
‖b∗

i ‖
.

Then:

(1) We have 1 � c1 � γ(n−1)/2.
(2) For any nonzero vector x ∈ Λ we have

min(Λ) � ‖x‖ � ‖b1‖/c1 = min
1�i�n

‖b∗
i ‖ .

Proof. Since ‖b∗
1‖2 � ‖b1‖2 we have c1 � 1, while by (1) of the proposition

we have ‖b1‖2 � γi−1‖b∗
i ‖2 � γn−1‖b∗

i ‖2, so (1) is clear. For (2), write

x =
n∑

i=1

xibi =
n∑

i=1

x∗
i b

∗
i ,

where xi ∈ Z and x∗
i ∈ R. If i0 is the largest index such that xi �= 0 then by

definition of the Gram–Schmidt basis we have x∗
i0

= xi0 ; hence since it is a
nonzero integer we have |x∗

i0
| � 1, and so

‖x‖2 =
n∑

i=1

x∗
i
2‖b∗

i ‖2 � x∗
i0

2‖b∗
i0‖

2 � ‖b∗
i0‖

2 � ‖b1‖2/c2
1
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by definition of c1. ��

The final result of this subsection gives an estimate of the distance of a
vector y /∈ Λ to the vectors of the lattice. If u ∈ R we will let 〈u〉 = |u− �u�|
be the distance of u to the nearest integer, so that 0 � 〈u〉 � 1/2.

Corollary 2.3.17. Let (bi) be a γ-LLL-reduced basis of Λ, let y /∈ Λ, let
Y = (yi) be the vector of coordinates of y on the basis of the (bi), and let i0
be the largest index such that 〈yi〉 �= 0. Then for all x ∈ Λ we have

‖x− y‖ � 〈yi0〉‖b1‖/c1 ,

where c1 is as above.

Proof. We use essentially the same proof as the preceding corollary. We
write as above

x =
n∑

i=1

xibi =
n∑

i=1

x∗
i b

∗
i ,

y =
n∑

i=1

yibi =
n∑

i=1

y∗
i b

∗
i ,

where xi ∈ Z and yi, x
∗
i , y

∗
i ∈ R. Let i1 be the largest index such that yi �= xi,

so that as above (applied to the vector y − x) we have y∗
i1
− x∗

i1
= yi1 − xi1 ,

hence
‖y − x‖2 � (y∗

i1 − x∗
i1)

2‖b∗
i1‖

2 � (yi1 − xi1)
2‖b1‖2/c2

1

by definition of c1. Now if i1 < i0 we would have yi0 = xi0 ∈ Z by definition of
i + 1, hence 〈yi0〉 = 0, contradicting the definition of i0. If i1 = i0 then |yi1 −
xi1 | = |yi0 − xi0 | � 〈yi0〉 by definition of 〈u〉, giving the desired inequality.
Finally, if i1 > i0 then yi1 ∈ Z by definition of i0, and since yi1 �= xi1 we have
|yi1 − xi1 | � 1 � 〈yi0〉, proving the inequality also in this case. ��

Thus the two corollaries above enable us to give an explicit lower bound
on the quantity d(Λ,y) defined to be the minimal distance from y to a vector
of Λ distinct from y (when y ∈ Λ this is clearly the same as the norm of the
smallest nonzero vector of Λ).

2.3.4 The LLL Algorithms

I refer to my book [Coh0] for a comprehensive treatment of the LLL algorithm
and its variants, and many of its applications. In this short subsection we
mention only what the reader needs to know about it.

The basic idea is quite simple: we begin with a Z-basis and compute
its associated Gram–Schmidt basis. It is then easy to see that by simple
Z-linear transformations we can modify the initial lattice basis so that the
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Gram–Schmidt coefficients µi,j become such that |µi,j | � 1/2. We now look
at the size condition on the ‖b∗

i ‖2. If it is not satisfied, we exchange the
corresponding vectors of the lattice, backtrack, then start again. We give the
algorithm in more detail.

Algorithm 2.3.18 (LLL Algorithm) Given a basis b1,b2, . . . ,bn of a lat-
tice Λ ⊂ Rn, this algorithm transforms the vectors bj so that when the algorithm
terminates, the bj form a γ-LLL-reduced basis of Λ.

1. [Initial Gram–Schmidt] Using the formulas given above, compute the Gram–
Schmidt basis of Rn associated with the bj , and set k ← 2.

2. [Reduce µk,k−1] Set q ← �µk,k−1�, bk ← bk − qbk−1, µk,k−1 ← µk,k−1− q,
and for all i such that 1 � i � k − 2, set µk,i ← µk,i − qµk−1,i.

3. [Test LLL condition] If ‖b∗
k +µk,k−1b∗

k−1‖2 < (1/γ+1/4)‖b∗
k−1‖2, exchange

bk and bk−1 and update the corresponding Gram–Schmidt coefficients µi,j

and basis vectors b∗
j , set k ← max(2, k− 1) and go to Step 2. Otherwise, for

l = k − 2, k − 3, . . . , 1, set q ← �µk,l�, bk ← bk − qbl, µk,l ← µk,l − q, for
all i � l − 1 set µk,i ← µk,i − qµl,i, and finally set k ← k + 1.

4. [Finished?] If k � n, then go to Step 2. Otherwise, output the LLL-reduced
basis (bj) and terminate the algorithm.

We have not given the detailed formulas for updating the Gram–Schmidt
basis in Step 3, but the reader can easily work them out (or see [Coh0]).

An easy examination of this algorithm shows that if it terminates, the
output is indeed a γ-LLL-reduced basis of Λ. What must be shown is that
it does terminate, in a polynomial number of steps. This can easily be done
and is left as an exercise for the reader (Exercise 20).

Of course we have simply given the basic LLL algorithm, and many prac-
tical improvements are possible. However, one of the most important, due to
B. de Weger, is that if the bj have integral coordinates, or more generally if
the Gram matrix of the bj is integral, all the computations in the algorithm
(which a priori must be done with rational numbers of possibly very large
size) can in fact be done entirely in integers of polynomially bounded size;
see Exercise 21. We thus have the following theorem:

Theorem 2.3.19. There exists a polynomial-time algorithm that, given a
basis of a lattice Λ outputs an LLL-reduced basis of Λ. Furthermore, if Λ is
a sublattice of Zn (or more generally if the Gram matrix of a basis of Λ has
integral entries) all the computations can be done in integers of polynomially
bounded size.

Since we always assume that the reader has a number theory package at
his disposal, we mention that in GP the commands are qflll(B) for the gen-
eral LLL algorithm on a matrix B, and qflll(B,1) for the integral version,
which is the one which must be used in the context of Diophantine appli-
cations. The output H is the transition matrix from the initial basis to the
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LLL-reduced one, so that the matrix of the LLL-reduced basis is in fact the
matrix product BH.

Remark. We would of course like to choose the constant γ > 4/3 as close
as possible to 4/3 to improve the quality of the basis. There are however two
good reasons not to do this. The first is that the analysis done in Exercise 20
shows that the algorithm will become much slower. Second, in applications
to Diophantine equations the quality of the basis is not important, as long as
it is γ-LLL reduced for some reasonable value of γ. As a compromise, we will
choose γ = 2 and simply talk of LLL-reduced bases instead of 2-LLL-reduced
bases. This is the default in the GP function qflll.

2.3.5 Approximation of Linear Forms

One of the most spectacular applications of the LLL algorithm is to linear
forms in real or complex numbers. We can either use the algorithm to find Z-
linear (or more generally algebraic) relations, or we can use it to show that a
Z-linear form cannot be too small unless the coefficients of the form are very
large. This is explained in rough terms in [Coh0], but here we need precise
quantitative statements, which will follow from the corollaries proved above.

We begin with the case where the αi are all real, and then explain the
simple modifications to be made for the general case. Let α0, . . . , αn be real
numbers, and fix a (large) positive constant C. If (ei) is the canonical basis
of Rn, for j � n − 1 we set bj = ej + �Cαj�en and bn = �Cαn�en, so that
the matrix B of the bj is the n× n integer matrix obtained by replacing the
last row (0, 0, . . . , 1) of the identity matrix by (�Cα1�, . . . , �Cαn�), and let Λ
be the lattice generated by the bj . Finally, set y = −�Cα0�en. Recall that
we have defined d(Λ,y) as the distance from y to the nearest element of Λ
distinct from y, and that Corollaries 2.3.16 and 2.3.17 give us lower bounds
for d(Λ,y).

Proposition 2.3.20. Keep the above notation, and in particular assume
that the αi are all real. Let X1, . . . , Xn be strictly positive integers, set Q =∑

1�i�n−1 X2
i , T = (1+

∑
1�i�n Xi)/2, and assume that d(Λ,y)2 � T 2 +Q.

If the xi are any integers such that |xi| � Xi for all i, then either we have∣∣∣∣∣α0 +
∑

1�i�n

xiαi

∣∣∣∣∣ �
√

d(Λ,y)2 −Q− T

C
,

or we have x1 = · · · = xn−1 = 0 and xn = −�Cα0�/�Cαn�.

Proof. If we set

S = α0 +
∑

1�i�n

xiαi and K = �Cα0�+
∑

1�i�n

xi�Cαi�
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then by definition |K − CS| � 1/2 +
∑

1�i�n Xi/2 = T , hence

|K| = |K − CS + CS| � |K − CS|+ C|S| � T + C|S| .

On the other hand, if we set x =
∑

1�j�n xjbj ∈ Λ then by definition of the
bj we have

x =
n−1∑
j=1

xjej +

(
n∑

j=1

xj�Cαj�
)

en ,

so that x− y =
∑

1�j�n−1 xjej + Ken. Thus either x = y or

d(Λ,y)2 � ‖x− y‖2 =
∑

1�j�n−1

x2
j + K2 � Q + (T + C|S|)2 .

Since by assumption d(Λ,y)2 � T 2 + Q � Q we deduce that |S| �
(
√

d(Λ,y)2 −Q − T )/C as claimed. When x = y we deduce from the for-
mula for x − y that xj = 0 for 1 � j � n − 1 and that K = 0, hence that
�Cα0�+ xn�Cαn� = 0. ��

Remarks. (1) It is usually impossible to apply the proposition directly since
d(Λ,y) is unknown. On the other hand, it is clear that in the proposition
we may replace d(Λ,y) by any lower bound c2 such as the one given by
Corollary 2.3.17 when α0 �= 0 or by Corollary 2.3.16 when α0 = 0, as
long as c2

2 � T 2 + Q.
(2) This proposition is sufficient for applications to Diophantine problems.

However, it is easy to see that the bounds can be improved; see Exercise
24.

(3) To apply Corollary 2.3.17, we should choose C larger than Xn, where
X = max1�i�n Xi, for instance C of the order of 10 ·Xn. Indeed, for such
a choice of C we have det(Λ) of the order of Xn, hence by Proposition
2.3.15 ‖b1‖ will be of the order of X, hence by Corollary 2.3.17, if c1 is
not too large d(Λ,y)2 will have a lower bound also of the order of X2,
which has the same order of magnitude as Q.

Example. To illustrate the above results and remarks we give an example
presented in two different ways. We would first like to compute a lower bound
for |x1 log(2) + x2π + x3γ| (where γ = 0.577 . . . is Euler’s constant, not the
constant used in the LLL algorithm), where the xi are integers such that
|xi| � 1030 and not all equal to 0. We have X1 = X2 = X3 = 1030, so we
choose C > 1090, for instance C = 10100, and we form the 3× 3 matrix

B =

 1 0 0
0 1 0

�C log(2)� �Cπ� �Cγ�

 .

An application of the (integral) LLL algorithm shows that the first vector
of an LLL-reduced basis of the lattice generated by the columns of B is an
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explicit vector whose entries have 34 decimal digits, and which we need not
write explicitly. We easily compute that ‖b1‖/‖b∗

2‖ = 0.969 < 1 and that
‖b1‖/‖b∗

3‖ = 0.704 < 1, so that c1 = 1. Thus by Corollary 2.3.17 we deduce
that

d(Λ, 0) � ‖b1‖/c1 � 1.57 1033 .

Replacing this lower bound and the values of Q and T in the proposition
gives |S| � 10−67. We have thus proved that if |xi| � 1030 for 1 � i � 3 then
|x1 log(2) + x2π + x3γ| � 10−67.

We give the same example posed differently in a way that is much closer
to the type of applications that we have in mind. Assume that we know that
|x1 log(2) + x2π + x3γ| � e−X with X = max(|xi|) � 1030. We want to
compute all possible values of the xi (they are now finite in number). We
perform exactly the same computations as above, but now we conclude that
10−67 � |S| � e−X , hence that X � 153. As announced at the beginning,
we have thus drastically reduced the bound on X. Now we can start again
the whole process, using this much smaller value of X. We choose for in-
stance C = 108 > 1533, and apply the (integral) LLL algorithm. We obtain
b1 = (−148,−243, 129)t, and once again we compute that c1 = 1, hence that
d(Λ, 0)2 � 118634, so that replacing this lower bound in the proposition gives
|S| � 3.5 10−7, in other words X � 14. This is again substantially lower than
the preceding bound of 154. By choosing C = 106 the reader can check that
we could again reduce the bound to X � 9. However, this is not really nec-
essary since we only need to search for 0 � x1 � 14 and −14 � x2, x3 � 14,
which is very fast, and we find that the only values of (x1, x2, x3) satisfying
the given inequality are (x1, x2, x3) = (0, 0, 0), ±(1, 0,−1), ±(2,−1, 3), and
±(5, 0,−6).

It is very easy to modify Proposition 2.3.20 when the αi are not real. If the
R-vector space generated by the αi for 1 � i � n has dimension 1, generated
by some nonzero complex number z, say, we can apply the proposition to the
real numbers αi/z for 1 � i � n together with �(α0/z), and we can obtain
an even better lower bound if �(α0/z) �= 0 (Exercise 22).

We may therefore assume that at least two of the αi for i � 1 are R-
linearly independent, and by reordering the αi we may assume that αn−1 and
αn are R-linearly independent. The modifications to be done to the above
procedure are as follows. For 1 � j � n− 2 we set

bj = ej + �C�(αj)�en−1 + �C�(αj)�en

and for n− 1 � j � n we set

bj = �C�(αj)�en−1 + �C�(αj)�en ,

so that the matrix B of the bj is the n×n integer matrix obtained by replacing
the last two rows of the identity matrix by
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(�C�(α1)�, . . . , �C�(αn)�) and (�C�(α1)�, . . . , �C�(αn)�) ,

and let Λ be the lattice generated by the bj . Finally, set

y = −�C�(α0)�en−1 − �C�(α0)�en .

Then the conclusion of Proposition 2.3.20 is valid almost verbatim; in other
words, either ∣∣∣∣∣α0 +

∑
1�i�n

xiαi

∣∣∣∣∣ �
√

d(Λ,y)2 −Q− T

C
,

or we have x1 = · · · = xn−2 = 0 and

xn−1�C�(αn−1)�+ xn�C�(αn)�+ �C�(α0)� = 0
and xn−1�C�(αn−1)�+ xn�C�(αn)�+ �C�(α0)� = 0 .

The proof is essentially identical to that of Proposition 2.3.20 and is left to
the reader (Exercise 23).

2.3.6 Minkowski’s Convex Body Theorem

The aim of this subsection is to prove Minkowski’s convex body theorem and
a number of corollaries. We assume that V = Rn and that the subsets of Rn

that we consider are measurable for Lebesgue measure. In actual applications,
they will in fact be much nicer than that.

Theorem 2.3.21 (Blichfeldt). Let S be a (measurable) subset of Rn with
volume Vol(S), and let Λ be a lattice of Rn. If Vol(S) > det(Λ) there exist
distinct elements a and b in S such that a− b ∈ Λ.

Proof. Let b1, . . . ,bn be a Z-basis of Λ, let as above U =
{
x =∑

1�j�n xjbj/ 0 � xj < 1
}

be a fundamental parallelotope of Λ, and let
χ(x) be the characteristic function of S, equal to 1 on S and to 0 elsewhere.
We thus have

Vol(S) =
∫

Rn

χ(x) dx =
∫

U

(∑
g∈Λ

χ(x + g)

)
dx .

Since by Proposition 2.3.3 we have Vol(S) > det(Λ) =
∫

U
dx, there exists

x0 ∈ U such that
∑

g∈Λ χ(x0 + g) > 1. It follows that there exist distinct
elements g0 and g1 of Λ such that a = x0 +g0 ∈ S and b = x0 +g1 ∈ S, hence
a− b = g0 − g1 ∈ Λ. ��

We will say that a measurable set C ⊂ Rn is symmetric if a ∈ C if and
only if −a ∈ C. It is convex if whenever a, b are in C the line segment
ta + (1− t)b for 0 � t � 1 is in C.
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Theorem 2.3.22 (Minkowski). Let C ⊂ Rn be symmetric and convex, let
Λ be a lattice in Rn, and assume that Vol(C) > 2n det(Λ). Then there exists
c �= 0 such that c ∈ Λ ∩ C.

Proof. Let S = C/2 = {x/2, x ∈ C} be the homothetic of C by a factor
1/2, so that Vol(S) > det(Λ). By Blichfeldt’s theorem there exist a and b
in S such that c = a − b ∈ Λ with c �= 0. Thus 2a and 2b belong to C;
hence −2b ∈ C by symmetry, so that c = (1/2)(2a) + (1/2)(−2b) ∈ C by
convexity. ��

Corollary 2.3.23. With the same assumptions, if in addition C is compact,
the conclusion of the theorem still holds if we only have Vol(C) � 2n det(Λ).

Proof. Applying Minkowski’s theorem to the homothetic set (1 + ε)C for
any ε > 0, we see that there exists cε ∈ Λ \ {0} such that (1 + ε)−1cε ∈ C.
By compactness, the (1 + ε)−1cε have a limit point c ∈ C when ε → 0+, and
c is also a limit point of cε, hence belongs to Λ \ {0} since it is discrete. ��

Corollary 2.3.24. For 1 � j � n, let Lj(y) =
∑

1�i�n aj,iyi be a linear
form in the n variables yi with real coefficients, and set ∆ = |det(aj,i)|. Let
C be symmetric and convex, and assume that Vol(C) > 2n∆. There exists
a nonzero element c ∈ Zn such that (L1(c), . . . , Ln(c)) ∈ C. If, in addition,
∆ �= 0 and C is compact, the result still holds if we have Vol(C) � 2n∆.

Proof. Set D = {y ∈ Rn/ (L1(y), . . . , Ln(y)) ∈ C}. Clearly D is symmetric
and convex (tL(y) + (1− t)L(z) = L(ty + (1− t)z) if L is a linear form), and
Vol(D) = Vol(C)/∆ (since ∆ is the absolute value of the determinant of the
Jacobian of the change of variables from the yi to the Li(y)). Furthermore,
D is compact when C is compact and ∆ �= 0. We can thus apply Minkowski’s
theorem and the preceding corollary to Λ = Zn and to D, proving the result.

��

As an application of Minkowski’s theorem we now show that Hermite’s
inequality (Theorem 2.3.12) on the minimum of a lattice can be considerably
improved.

Corollary 2.3.25 (Minkowski). If Λ is a lattice in Rn we have

min(Λ) � 2
π1/2

Γ
(n

2
+ 1
)1/n

det(Λ)1/n ,

where Γ(x) is the gamma function (see Chapter 9).

Note that

Γ
(n

2
+ 1
)

=

(n/2)! if n is even,
n!

2n((n− 1)/2)!
π1/2 if n is odd.



2.4 Basic Properties of Finite Fields 65

Proof. We choose for C = Cλ the closed ball centered at the origin with
radius λ, where λ will be chosen presently. It is clear that Cλ is convex,
symmetric, and compact; hence if Vol(Cλ) � 2n det(Λ) there exists a nonzero
vector c ∈ Λ such that c ∈ Cλ; in other words, ‖c‖ � λ, so that min(Λ) � λ.
Clearly Vol(Cλ) = λn Vol(C1), so if we choose λ = 2(det(Λ)/Vol(C1))1/n

we have Vol(Cλ) � 2n det(Λ) hence min(Λ) � 2(det(Λ)/Vol(C1))1/n. It is a
well-known calculus exercise that the volume of the unit ball C1 is given by
Vol(C1) = πn/2/Γ(n/2 + 1), proving the corollary. ��

By Stirling’s formula (see Chapter 9 once again if you do not know it),
as n → ∞ we have Γ(n/2 + 1)1/n ∼ (n/(2e))1/2, so that the upper bound
for min(Λ)/det(Λ)1/n is asymptotic to (2n/(πe))1/2, which is considerably
smaller than (4/3)(n−1)/4 given by Hermite’s inequality. However, for 2 �
n � 8, Hermite’s bound is better, although not optimal for n � 3.

2.4 Basic Properties of Finite Fields

2.4.1 General Properties of Finite Fields

Let K be a not necessarily commutative finite division algebra (a skew field
if you prefer).1 Consider the natural map s from Z to K defined by s(1) = 1
(where the “1” on the right denotes the identity of K), and extended by
additivity. By definition it is a group homomorphism, and it is easily seen
that it is in fact a ring homomorphism. Its kernel I is therefore an ideal of Z,
i.e., has the form pZ for a certain p ∈ Z�0, which cannot be equal to 1 since
s is not the zero map (otherwise 1 = 0 in K). It follows that s induces an
injective map from Z/pZ to K. Since K is finite, p is nonzero. Furthermore,
since K is a skew field, hence in particular has no zero divisors, Z/pZ is an
integral domain; hence p is a prime number, called the characteristic of K.
The image of s in K is thus a subfield k of K isomorphic to Z/pZ, which we
will call the prime subfield of K. Clearly any subfield of K, hence also any
field containing K, also has characteristic p.

It is trivially checked that the field (or skew field) axioms imply that when
we have a field extension such as K/k, then K is naturally a k-vector space.
In our case, this implies that as a vector space K is isomorphic to kn for some
integer n = dimk(K). Of course K is not isomorphic to kn as a ring, since
the latter is not even a field for n � 2. We have thus shown the following:

Proposition 2.4.1. Let K be a finite skew field. The cardinality of K has the
form pn, where n ∈ Z�1 and p is a prime number equal to the characteristic
of K. In addition, the additive group of K is isomorphic to (Z/pZ)n.

1 Refer to the introduction for discussion on this terminology. We will see below
that K is indeed commutative.
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Theorem 2.4.2. Any finite skew field is commutative, i.e., is a field.

Proof. Let K be a finite skew field, let C be the center of the multiplicative
group K (i.e., the set of elements of K∗ that commute with all elements of
K) together with 0. Note that C is a subfield of K. We let q = |C| (which is
therefore a power of the characteristic p of K) and n = dimC(K). If we let
K∗ act on itself by conjugation, the class equation for groups gives

|K∗| = |C∗|+
∑

x

[K∗ : K∗
x] ,

where the summation is over a system of representatives of the orbits that
are not reduced to a single point, K∗

x denotes the stabilizer subgroup of x,
and [K∗ : K∗

x] denotes the finite group index. Note that the set of elements
commuting with x in K form a subfield Kx = K∗

x ∪{0} of K distinct from K
since x /∈ C. Thus |Kx| = qnx with nx = dimC(Kx), and since dimC(K) =
dimC(Kx) dimKx

(K) we have nx | n and nx < n. We thus obtain an equality
of the form

qn − 1 = q − 1 +
∑

x

qn − 1
qnx − 1

.

We now use some easy properties of cyclotomic polynomials which we will
prove in Section 3.5.1. From Definition 3.5.1 and Proposition 3.5.2, since
nx < n we know that Φn(q) divides each quotient (qn − 1)/(qnx − 1) and
divides also qn − 1. Thus, by the above formula, it divides q − 1. However,
for n > 1 there exists a primitive nth root of unity different from 1, hence if,
as in Section 3.5.1, we denote by U ′

n the set of primitive nth roots of unity,
we have

|Φn(q)| =
∏

ζ∈U ′
n

|q − ζ| >
∏

ζ∈U ′
n

|q − 1| = (q − 1)φ(n) � (q − 1) ,

contradicting Φn(q) | (q−1) (note that it is crucial to have a strict inequality
above). Thus we must have n = 1, in other words K = C, so that K is
commutative. ��

Corollary 2.4.3. Any finite subgroup of the multiplicative group of a com-
mutative field K is cyclic. In particular, the multiplicative group of a finite
field is cyclic; in other words, if K is a finite field with pn elements then

(K∗,×) � (Z/(pn − 1)Z,+) .

Proof. Let G be such a finite subgroup, say of order n. For every d | n,
let ρ(d) be the number of x ∈ G of order exactly equal to d in G. We clearly
have n =

∑
d|n ρ(d). On the other hand, since in a commutative field an

equation of degree d has at most d roots (trivial, and not necessarily true
in a noncommutative skew field), the equation xd − 1 = 0 has at most d
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solutions in K. If G has at least an element x of order exactly d, then the xk

for 0 � k < d are all the roots of the equation xd − 1 = 0, and among those,
φ(d) are of order exactly equal to d. Thus for every d | n, either ρ(d) = 0 or
ρ(d) = φ(d), so that

ρ(n) = n−
∑

d|n, d 	=n

ρ(d) � n−
∑

d|n, d 	=n

φ(d) = φ(n) ,

the last equality coming from the identity
∑

d|n φ(d) = n (which can trivially
be proved directly, or obtained by taking degrees in Definition 3.5.1). In
particular, ρ(n) > 0, proving that the group G is cyclic, and has in fact φ(n)
generators. ��

Remark. The result would be false without the commutativity assumption.
For instance, in the field of quaternions over R, the set {±1,±i,±j,±k} (with
the usual notation) is evidently a noncommutative subgroup of order 8.

Corollary 2.4.4. Let y ∈ Fq and m ∈ Z�1.

(1) The number of solutions in Fq of the equation xm = y is equal to the
number of solutions of xd = y, where d = gcd(m, q − 1).

(2) If y �= 0 and d | (q− 1), the number of solutions of xd = y is equal either
to 0 or to d.

Proof. If y = 0 there is the unique solution x = 0, so we may assume that
y �= 0. Since the group F∗

q is cyclic, the image of the map x �→ xm is F∗
q
d,

the subgroup of dth powers, and for each y ∈ F∗
q
d it is clear that there are

exactly d preimages. ��

We will now see that finite fields are characterized by their cardinality.
Set Fp = Z/pZ, and denote by Fp an algebraic closure of Fp.

Theorem 2.4.5. For any integer n � 1 there exists a finite subfield of Fp

with q = pn elements. This subfield is unique and is equal to the set of roots
in Fp of the equation Xq −X = 0. Up to isomorphism, there exists a unique
finite field of cardinality q = pn.

Proof. Assume first that a subfield F of Fp with q elements exists. Since
|F ∗| = q − 1, any element x ∈ F ∗ satisfies the equation xq−1 = 1, hence any
element x ∈ F satisfies the equation xq − x = 0. Conversely, set Ωq(X) =
Xq −X. Note that Ω′

q(X) = −1 (since we are in characteristic p), hence the
polynomial Ωq is separable. Thus, denote by F the set of its q distinct roots
in the algebraically closed field Fp. For any x ∈ F \ {0} we have (x−1)q−1 =
(xq−1)−1 = 1, so that x−1 ∈ F , and for any x and y in F , we have (xy)q =
xqyq = (xy), hence xy ∈ F , and also since we are in characteristic p, (x+y)q =
xq+yq = x+y, so that x+y ∈ F , proving the first statement. The last follows
immediately from the uniqueness of algebraic closure up to isomorphism. ��
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Definition 2.4.6. When q = pn for n � 1, we denote by Fq the unique
subfield of cardinality q of an algebraic closure Fp of Fp, fixed once and for
all.

Remark. It is important to distinguish between “unique up to isomorphism”
and “unique.” Here, we fix an algebraic closure Fp of Fp, so that Fq is unique.
Similarly, we will see later that although number fields can be considered up
to isomorphism, they are better seen as subfields of a fixed algebraic closure
Q of Q.

We end this subsection with an important remark concerning the lattice
of extensions of Fp.

Proposition 2.4.7. If n and m are in Z�1 then

Fpn ⊂ Fpm ⇐⇒ n | m .

In particular, Fpn ∩ Fpm = Fpgcd(n .m ) and Fpn Fpm = Fplcm(n ,m ) .

Proof. Left as an easy exercise to the reader. ��

Thus, note for instance that Fp3 is not an extension of Fp2 . We give for
example the lattice of subextensions of F4096/F2:
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2.4.2 Galois Theory of Finite Fields

We start by studying the automorphism group of a finite field.

Theorem 2.4.8. Let E/F be an extension of finite fields. Then E/F is a
Galois (i.e., normal and separable) extension and the Galois group Gal(E/F)
of F-automorphisms of E is the cyclic group of order [E : F] generated by the
Frobenius automorphism σq : x �→ xq, where q = |F|.

Proof. Up to isomorphism, we may assume that we are in a fixed algebraic
closure Fp of Fp, and that F = Fq (with q = pf for some f) and E = Fqs for
s = [E : F]. Thus, by Theorem 2.4.5, E is equal to the set of roots in Fp of
the separable polynomial Ωqs (X) = Xqs −X.

Let x be a primitive element of E/F, i.e., such that E = F(x). Note that
the primitive element theorem states that such an element exists in any finite
separable extension, which is the case here, but in fact it is clear directly that
any generator x of the cyclic group E∗ must be a primitive element. Denote
by Px(X) the minimal polynomial of x over F. Since x ∈ E, by definition of
the minimal polynomial, Px(X) divides Ωqs (X); hence all its roots belong to
E and are distinct. Since E = F(x) we may define s = [E : F] = deg(Px(X))
automorphisms of E/F by sending x to any of the roots of Px(X). It follows
that E/F is Galois with |Gal(E/F)| = s.

Since we are in characteristic p, and since F is the set of roots of Ωq(X) in
Fp, it is immediately checked that the Frobenius automorphism σq : x �→ xq

is an F-automorphism of E, i.e., it belongs to Gal(E/F). To complete the
proof, we must show that it has order exactly s. Indeed, if 1 � k � s, then
the fixed field of σk

q in E is equal to Fqs ∩Fqk = Fqgcd(s,k ) by Proposition 2.4.7,
and this is equal to the fixed field of the identity, i.e., to Fqs , if and only if
k = s, finishing the proof. ��

Corollary 2.4.9. Let E/F be an extension of finite fields, q = |F|, and s =
[E : F]. The trace and norm from E to F are given by the formulas

TrE/F(x) =
∑

0�i<s

xqi

,

N E/F(x) = x(qs−1)/(q−1) .

Corollary 2.4.10. For any q = pf , the subfield Fq of Fp is the fixed field of
σf

p , and
Gal(Fq/Fp) = σZ

p/σfZ
p � Z/fZ .

The statements are clear. Please note the subtle but essential distinction
between the first equality and the second isomorphism.

Proposition 2.4.11. Let E/F be an extension of finite fields with |F| = q.

(1) The trace map TrE/F is a surjective homomorphism from E to F.
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(2) The kernel of TrE/F is the F-vector space of elements a ∈ E of the form
a = xq − x for some x ∈ E.

(3) The map (x, y) �→ TrE/F(xy) defines a nondegenerate bilinear pairing
from E× E to F.

Proof. (1). By Corollary 2.4.9 we have

TrE/F(x) =
∑

0�i<s

xqi

.

The right-hand side is a polynomial of degree qs−1, hence has at most qs−1 <
qs = |E| roots in E. Therefore there exists u ∈ E such that TrE/F(u) =
c �= 0. By F-linearity it follows that for any a ∈ F we have TrE/F(ua/c) =
(a/c)TrE/F(u) = a, proving surjectivity.

(2). For simplicity, write V = Ker(TrE/F). Since TrE/F is surjective by (1),
it follows that dimF(V ) = s−1, where as usual we set s = [E : F]. On the other
hand, since xqs

= x it follows from Corollary 2.4.9 that TrE/F(xq − x) = 0,
so that the map f defined by f(x) = xq − x is a map from E to V , which
is evidently linear. Its kernel is the set of x such that xq − x = 0, so that
dimF(Ker(f)) = 1, from which it follows that dimF(Im(f)) = s−1 = dimF(V ),
so that f is surjective, as claimed.

(3). This is a general property of separable extensions: it is clear that
the pairing is bilinear, so the only thing that we need to prove is that it is
nondegenerate, but this is clear since if TrE/F(ax) = 0 for all x ∈ E with
a �= 0 then TrE/F(y) = 0 for all y ∈ E; in other words, the trace map would
be identically zero, contradicting its surjectivity. ��

The F-subspace of E of elements of the form xq − x is called the Artin–
Schreier subspace (or subgroup) of E, and will be used several times; see for
instance Section 3.1.8 and Exercise 2 of Chapter 7.

Proposition 2.4.12. Let E/F be an extension of finite fields. The norm map
N E/F is a surjective homomorphism from E∗ to F∗.

Proof. Let g be a generator of the cyclic group E∗. The subgroup F∗ is
the unique subgroup of cardinality q − 1; hence it is the group generated by
g(qs−1)/(q−1). Thus if a ∈ F∗ we can write a = gk(qs−1)/(q−1) for a unique k
defined modulo q − 1, and thus N E/F(gk) = a by Corollary 2.4.9. ��

Although the study of infinite topological Galois extensions goes slightly
beyond our purpose, we mention here that given the appropriate definitions,
it is immediate to deduce from the above that the infinite Galois group
Gal(Fp/Fp) is a profinite group isomorphic to the profinite completion Ẑ
of Z, and topologically generated by the Frobenius automorphism σp.
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2.4.3 Polynomials over Finite Fields

We begin with the following proposition.

Proposition 2.4.13. Let F = Fq be some finite field and let n � 1.

(1) In F[X] we have the decomposition into irreducibles

Ωqn (X) = Xqn −X =
∏

P monic irreducible
deg(P )|n

P (X) ,

where the product is over all monic irreducible polynomials of degree di-
viding n.

(2) A polynomial P of degree n is irreducible in F[X] if and only if P (X) |
Xqn −X and gcd(P (X),Xqn /d −X) = 1 for all d | n, d > 1.

Proof. (1). Since Fq is perfect, irreducible polynomials have only simple
roots in Fq (see Proposition 3.1.1). Monic irreducible polynomials being pair-
wise coprime, it follows that both sides of the equation are polynomials with
only simple roots in Fq. To prove equality, it is thus sufficient to show that
they have the same roots. If x is a root of Xqn −X, then x ∈ Fqn , and the
minimal polynomial of x defines a subextension of Fqn /Fq, hence has degree
d | n, and is of course irreducible. Thus, x is a root of the right-hand side.
Conversely, if x is a root of an irreducible polynomial P of degree d dividing
n, then x belongs to the unique extension Fqd /Fq of Fq of degree d; hence
x ∈ Fqn , so x is a root of Xqn −X = 0.

(2). Assume first that P is irreducible. Then by (1), P (X) | Xqn −X, and
if x is a root of P then x ∈ Fqn , but x /∈ Fqn /d for d > 1 since otherwise the
minimal polynomial of x would be of degree strictly less than n and would
divide P , which is absurd. Thus xqn /d −x �= 0, hence gcd(P (X),Xqn /d −X) =
1. Conversely, if these conditions are satisfied and x is a root of P (X), then x
belongs to Fqn and to no smaller subextension; hence the minimal polynomial
of x has degree n, and since it divides P it is equal to P , so P is irreducible.

��

We leave to the reader to show that in fact in (2), it is sufficient to test
the GCD condition for d a prime divisor of n.

Corollary 2.4.14. Let p(n) be the number of monic irreducible polynomials
of degree n in Fq[X]. Then p(n) � 1 and p(n) is given by the explicit formula

p(n) =
1
n

∑
d|n

µ(n/d)qd .
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Proof. If x ∈ Fqn generates Fqn over Fq, then the degree of the minimal
polynomial of x is equal to n; hence p(n) � 1. Taking degrees in the decom-
position of Xqn −X given in the above proposition, we obtain the equality

qn =
∑
d|n

dp(d) .

The Möbius inversion formula (Proposition 10.1.5) gives the required equality.
��

If desired, it is immediate to show once again from this equality that
p(n) � 1, and in fact much stronger results.

2.5 Bounds for the Number of Solutions in Finite Fields

It is essential to be able to give bounds for the number of solutions (neces-
sarily finite) of a system of algebraic equations over finite fields, in particular
with reference to Diophantine equations. This is a very old, important, and
extremely difficult subject, which we consider here. In this section, we let
q = pf be a prime power, and we will work in the field Fq with q elements.

2.5.1 The Chevalley–Warning Theorem

We begin with a simple lemma.

Lemma 2.5.1. (1) For 0 � m < q − 1 we have
∑

a∈Fq
am = 0.

(2) For any m ∈ Z we have

∑
a∈F∗

q

am =

{
0 when (q − 1) � m ,
−1 when (q − 1) | m .

Proof. The result is clear for m = 0 since p | q, so assume 0 < m < q − 1.
It is clear that the map a �→ am is a group homomorphism χ from F∗

q to
F∗

q . Furthermore, by Corollary 2.4.3 we know that F∗
q is cyclic, so let g be a

generator. Since 0 < m < q− 1 we have χ(g) �= 1, so χ is not always equal to
1; hence (1) follows from the orthogonality of characters (Proposition 2.1.20
(1)), and (2) is an immediate consequence since aq−1 = 1 for all a ∈ F∗

q and
since p | q. ��

See also Exercise 29.

Theorem 2.5.2 (Chevalley–Warning). (1) Let (Pi(X))1�i�r be a family
of r polynomials in Fq[X1, . . . , Xn] of respective total degrees di, and let



2.5 Bounds for the Number of Solutions in Finite Fields 73

V = {(a1, . . . , an) ∈ Fn
q , Pi(a1, . . . , an) = 0 for all i}

be the set of their common zeros. If n >
∑

1�i�r di then |V | is divisible
by p.

(2) In particular, if P (X) ∈ Fq[X1, . . . , Xn] is a polynomial in n variables of
total degree d and if n > d, the number of solutions to P (a1, . . . , an) = 0
in Fn

q is divisible by p.
(3) If, in addition, P (X) is a nonconstant homogeneous polynomial, there

exists (a1, . . . , an) �= (0, . . . , 0) such that P (a1, . . . , an) = 0.

Proof. Define P (X) =
∏

1�i�r(1 − Pi(X)q−1). Since aq−1 = 1 when a ∈
F∗

q , it is clear that if A = (a1, . . . , an) ∈ V then P (A) = 1 and if A /∈ V then
P (A) = 0. It follows that |V | ≡

∑
A∈Fn

q
P (A) (mod p). Note that this makes

sense since there is a natural map from Z to Fq obtained by composition of
the canonical surjection from Z to Z/pZ = Fp with the canonical injection
from Fp to Fq.

Let d be the total degree of P , so that d � (q − 1)
∑

1�i�r di, and write

P (X1, . . . , Xn) =
∑

m1,...,mn

c(m1, . . . ,mn)Xm1
1 · · ·Xmn

n

for some coefficients c(m1, . . . ,mn), the sum being over certain n-tuples
m1, . . . ,mn such that m1 + · · ·+ mn � d(q− 1) < n(q− 1) by assumption. It
follows that for any such n-tuple there exists a j such that mj < q−1, and by
the lemma above, that

∑
aj ∈Fq

a
mj

j = 0. Thus every term in the expression∑
A∈Fn

q
P (A) is zero, proving (1), and (2) is a special case. For (3) we note

that if P is homogeneous then trivially P (0, . . . , 0) = 0; hence by (1) there
exist at least p− 1 nonzero solutions to P (a1, . . . , an) = 0. ��

Remarks. (1) If we want to apply Hensel’s Lemma 4.1.37, the simple exis-
tence of a solution in Fp is not sufficient since we also need a condition
on the derivative. The important fact is that the solution that we find
is nonsingular, in other words that it is not also a root of all the partial
derivatives of P , see Corollary 4.1.39.

(2) It has been shown by Ax and Katz that we have the following stronger
and essentially optimal statement: with the same notation, if we set

k =
⌈

n−
∑

1�i�r di

max1�i�r di

⌉
,

then pk | |V |; see [Ax] and [Kat1].

2.5.2 Gauss Sums for Finite Fields

We have studied above characters associated with the multiplicative group
(Z/nZ)∗ and their corresponding Gauss sums. In the present section we study
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Gauss sums associated with characters on finite fields: while the notions are
closely related (and in fact almost identical if the finite field is Fp) they are
different on Fq when q is not a prime. In particular the notion of primitive
character is irrelevant. I refer to [Ber-Eva-Wil] for an extensive compilation
of results on Gauss and Jacobi sums over finite fields.

Definition 2.5.3. (1) An additive character ψ on Fq is a group homomor-
phism from the additive group of Fq to the multiplicative group Q

∗
, and

a multiplicative character χ is a group homomorphism from the multi-
plicative group F∗

q to Q
∗
.

(2) The trivial additive character ψ0 is such that ψ0(x) = 1 for all x ∈ Fq,
and the trivial multiplicative character ε is such that ε(x) = 1 for all
x ∈ F∗

q .
(3) If χ is a multiplicative character we extend χ to Fq by setting by conven-

tion χ(0) = 0 if χ �= ε, and ε(0) = 1.

Remarks. (1) Setting χ(0) = 0 for a nontrivial multiplicative charac-
ter preserves the multiplicative property of χ. In addition, we have
(χ−1)(x) = χ(x), even for x = 0, denoting by χ−1 the inverse of χ
in the group of characters of F∗

q .
(2) We will always keep the notation of the definition and reserve the letter

χ for multiplicative characters.
(3) If χ is a multiplicative character, it is clear that the order n of χ divides

q − 1. Furthermore, we note for future reference that χ(−1) = 1 if n is
odd, while χ(−1) = (−1)(q−1)/n if n is even (see Exercise 31).

(4) We will usually assume, either implicitly or explicitly, that the additive
characters that we consider are nontrivial. On the other hand, it is nec-
essary to consider the trivial multiplicative character together with the
others.

(5) Beware that we define χ(0) = 0 only for χ �= ε, while ε(0) = 1. We will
see that this convention is quite useful (Lemma 2.5.21). This is the main
reason why we denote the trivial character by ε and not by χ0 as we have
done for Dirichlet characters, since in the latter case χ0(0) = 0 if χ0 is
the trivial character modulo m.

(6) Although very useful, the convention at x = 0 has pitfalls: for instance it
is not true that (χ1χ2)(0) = χ1(0)χ2(0) when χ1 is a nontrivial character
and χ2 = χ−1

1 in the group of characters.

Let ζp ∈ Q be a primitive pth root of unity. If e1, . . . , ef is an Fp-basis
of Fq, it is easy to see that the additive characters are given (with a slight
abuse of notation) by

ψ

(∑
j

xjej

)
= ζ

∑
j aj xj

p
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for some fixed aj ∈ Fp, which determine the character ψ (so that there are
q = pf additive characters, as expected). However, a better description is as
follows.

Proposition 2.5.4. Let b ∈ Fq be fixed. The map

ψb : x �→ ζ
TrFq /Fp (bx)
p

is an additive character of Fq. Furthermore, the map b �→ ψb is a group
isomorphism from the additive group Fq to the multiplicative group of additive
characters.

Proof. The first statement is clear by linearity of the trace and the fact
that we are in characteristic p. For the second statement, we note that the
map b �→ ψb is clearly a group homomorphism from Fq to F̂q, which are two
groups with the same cardinality q. Thus to prove that it is an isomorphism
it is sufficient to show that its kernel is 0. To say that ψb is the trivial additive
character means that TrFq /Fp

(bx) = 0 in Fp for all x ∈ Fq, and since the trace
is nondegenerate (Proposition 2.4.11) it follows that b = 0, as claimed. ��

We will keep the notation ψb in the sequel. Thus, any additive character
has the form ψb for a unique b ∈ Fq, and ψb(x) = ψ1(bx).

Definition 2.5.5. Let χ be a multiplicative character and ψ a nontrivial
additive character of Fq. We define the Gauss sum attached to χ and ψ by
the formula

τ(χ,ψ) =
∑
x∈F∗

q

χ(x)ψ(x) .

Remarks. (1) Note that we omit x = 0 in the definition.
(2) Since ψ has order p and χ has order dividing q − 1 we have τ(χ,ψ) ∈

Q(ζp, ζq−1).
(3) As the reader will notice as we study Gauss sums in the sequel, almost

all of the formulas involving Gauss sums as defined above have annoying
signs in them, the simplest being Lemma 2.5.9 (2) below, which says that
τ(ε, ψ) = −1 for the trivial character. For this and many other good rea-
sons, following A. Weil it would thus be a good idea to include a minus
sign in the definition given above, as well as in the corresponding defini-
tion for Jacobi sums that we will give below. However, I have preferred
not doing so, at the price of keeping minus signs in many formulas.

(4) Independently of the sign issue, several notation are used for Gauss sums
in the literature: essentially τ , g, and G. Since we use the letter J for
Jacobi sums it would be reasonable to use the letter G, but unfortunately
this letter is too often used in connection with Gauss sums to denote
finite abelian groups. Thus we stick to τ , which is one of the traditional
notations.
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We have the following trivial lemmas.

Lemma 2.5.6. For b �= 0 and any a we have τ(χ,ψab) = χ(b)−1τ(χ,ψa),
and in particular τ(χ,ψb) = χ(b)−1τ(χ,ψ1).

Proof. This is the analogue of Proposition 2.1.39 and is proved in the
same way:

τ(χ,ψab) =
∑
x∈F∗

q

χ(x)ψa(xb) =
∑
y∈F∗

q

χ(yb−1)ψa(y) = χ(b)−1τ(χ,ψa) .

��

Because of this lemma and Proposition 2.5.4 it is reasonable to set the
following definition.

Definition 2.5.7. If ψ is an additive character on Fq and b is the unique
element of Fq such that ψ = ψb, for any a ∈ Fq we set ψa = ψab.

Note that this agrees with the usual definition when a ∈ Fp since the
trace is Fp-linear.

Lemma 2.5.8. Let ψ be a nontrivial additive character.

(1) We have τ(ε, ψ) = −1.
(2) For any character χ we have

τ(χ−1, ψ) = χ(−1)τ(χ,ψ) .

(3) If b ∈ Fq is such that ψ = ψb then

τ(χp, ψ) = χ1−p(b)τ(χ,ψ) = τ(χ,ψbp−1) .

Proof. We have τ(ε, ψ) = −ψ(0)+
∑

a∈Fq
ψ(a) = −1 by Proposition 2.1.20,

proving (1). For (2), note that 1 = ψ(0) = ψ(x)ψ(−x); hence ψ(−x) = ψ(x)
since it is a root of unity. Since χ−1(x) = χ(x) we have

τ(χ−1, ψ) =
∑
x∈F∗

q

χ(x)ψ(x) =
∑
y∈F∗

q

χ(−y)ψ(y) = χ(−1)τ(χ,ψ) ,

proving (2). Let us first prove (3) for ψ = ψ1. We note that the map x �→ xp is
an automorphism of Fq (the Frobenius automorphism, which is a canonical
generator of Gal(Fq/Fp)). Furthermore, for the same reason TrFq /Fp

(x) =∑
0�i<f xpi

; hence

TrFq /Fp
(xp) =

∑
1�i�f

xpi

=
∑

0�i<f

xpi

+ xq − x = TrFq /Fp
(x) .

It follows that
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ψ1(xp) = ζ
TrFq /Fp (xp )
p = ζ

TrFq /Fp (x)
p = ψ1(x) ,

hence that

τ(χ,ψ1) =
∑
x∈F∗

q

χ(x)ψ1(x) =
∑
x∈F∗

q

χ(xp)ψ1(xp) =
∑
x∈F∗

q

χp(x)ψ1(x) = τ(χp, ψ1) ,

proving (3) for ψ = ψ1. The general case immediately follows from Lemma
2.5.6. ��

One of the main elementary results concerning Gauss sums is the following
proposition, which gives their modulus.

Proposition 2.5.9. Let ψ be a nontrivial additive character.

(1) If χ is a nontrivial multiplicative character then |τ(χ,ψ)| = q1/2.
(2) If χ = ε then τ(χ,ψ) = −1.

Proof. Setting z = xy−1, we have

|τ(χ,ψ)|2 = τ(χ,ψ)τ(χ,ψ) =
∑

x,y∈F∗
q

χ(x)χ(y)ψ(x)ψ(y)

=
∑
z∈F∗

q

χ(z)
∑
y∈F∗

q

ψ(y(z − 1)) .

Now it is clear that y �→ ψ(y(z − 1)) is an additive character, and it is
nontrivial if and only if (z−1) ∈ F∗

q (since in that case the map y �→ y(z−1) is
a bijection of F∗

q onto itself). Thus by orthogonality of characters (Proposition
2.1.20), we have

∑
y∈Fq

ψ(y(z − 1)) = 0 when z �= 1, hence

|τ(χ,ψ)|2 = χ(1)(q − 1) +
∑

z∈F∗
q , z 	=1

(−1)χ(z) = q −
∑
z∈F∗

q

χ(z) = q ,

once again by orthogonality, this time applied to χ, proving (1), and (2) has
already been proved above. ��

Corollary 2.5.10. Let ψ be a nontrivial additive character and let b ∈ F∗
q .

Then ∣∣∣∣∣∑
x∈Fq

ψ(bxm)

∣∣∣∣∣ � (gcd(m, q − 1)− 1)q1/2 � (m− 1)q1/2 .

Proof. Set d = gcd(m, q − 1). By Corollary 2.4.4 we have∑
x∈Fq

ψ(bxm) = 1 + d
∑

y∈F∗
q

d

ψ(by) .



78 2. Abelian Groups, Lattices, and Finite Fields

By the orthogonality relations in the group F∗
q/(F∗

q)
d, we clearly have for

c ∈ F∗
q , ∑

χd =ε

χ(b)χ(c) =

{
d if c ∈ bF∗

q
d ,

0 otherwise.

Furthermore, since d | q − 1, if c = bxd has one solution, it has exactly d. It
follows that∑

x∈Fq

ψ(bxm) = 1 +
∑
c∈F∗

q

ψ(c)
∑

χd =ε

χ(b)χ(c) = 1 +
∑
χd =ε

χ(b)τ(χ,ψ) .

Since
τ(ε, ψ) =

∑
x∈F∗

q

ψ(x) = −ψ(0) = −1

by orthogonality, using the proposition and the fact that |F∗
q/(F∗

q)
d| = d, we

obtain the corollary. ��

For instance, this implies that when p � b and p ≡ 1 (mod 3) (otherwise
the sum vanishes) we have |

∑
0�x<p e2iπbx3/p| � 2p1/2, see Exercise 33.

We give the following result as example of an application.

Proposition 2.5.11. Let a, b, and c be nonzero elements of Fq, let m � Z�1,
and set d = gcd(m, q − 1).

(1) The number N of solutions (x, y, z) ∈ F3
q of the equation axm + bym +

czm = 0 satisfies |N − q2| � (d− 1)3(q − 1)q1/2.
(2) The number M of projective solutions (x, y, z) ∈ P2(Fq) to the equation

axm + bym + czm = 0 satisfies

|M − (q + 1)| � (d− 1)3q1/2 .

Proof. By orthogonality, denoting as usual by ψ0 the trivial additive char-
acter, we have

qN =
∑

(x,y,z)∈F3
q

∑
ψ

ψ(axm + bym + czm)

= q3 +
∑

ψ 	=ψ0

∑
(x,y,z)∈F3

q

ψ(axm + bym + czm) .

The inner sum splits into a product of three simple sums; hence using the
corollary we obtain |qN − q3| � (q− 1)((d− 1)q1/2)3, so dividing by q proves
(1).

For (2) we simply note that by definition of projective space we have
N = 1 + (q − 1)M , so (2) immediately follows from (1). ��

Note that although not difficult, the above result is already not entirely
trivial. The bounds that we obtain below using Jacobi sums show that we
can replace (d− 1)3 by (d− 1)(d− 2), and this is optimal.
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2.5.3 Jacobi Sums for Finite Fields

Let ψ be a nontrivial additive character and χ a multiplicative character
on Fq. We have already mentioned that τ(χ,ψ) ∈ Q(ζp, ζq−1), where ζm

denotes a primitive mth root of unity. This number field is quite large, and
this is one of the reasons why Gauss sums are often unsatisfactory. A second
more important reason is that Jacobi sums, which we now introduce, are an
essential tool in counting the number of solutions of diagonal forms in finite
fields, as we shall see.

Definition 2.5.12. Let χ1, . . . , χk be multiplicative characters on Fq.

(1) We define the Jacobi sum with parameter a ∈ Fq associated with these
characters by the formula

Jk(χ1, . . . , χk; a) =
∑

xi∈Fq

x1+···+xk =a

χ1(x1) · · ·χk(xk) .

(2) We simply write Jk(χ1, . . . , χk) instead of Jk(χ1, . . . , χk; 1), and call it
the Jacobi sum associated with the χi’s.

(3) For notational simplicity, by abuse of notation we will often write Jk(a)
instead of Jk(χ1, . . . , χk; a), the characters χi being implicit.

Remarks. (1) We have J1(χ1) = 1 for any character χ1, and more generally
J1(χ1; a) = χ1(a).

(2) It is clear that the value of Jk(χ1, . . . , χk; a) does not depend on the
ordering of the characters χi.

(3) As desired we have Jk(χ1, . . . , χk; a) ∈ Q(ζq−1), which is a much smaller
number field.

(4) The introduction of a parameter a is analogous to that of τ(χ, a) for
Gauss sums associated with a Dirichlet character. In fact, as for Gauss
sums, the following lemma shows that there is a close link between
Jk(χ1, . . . , χk; a) and Jk(χ1, . . . , χk).

Lemma 2.5.13. For a �= 0 we have

Jk(χ1, . . . , χk; a) = (χ1 · · ·χk)(a)Jk(χ1, . . . , χk) ,

while (abbreviating as above Jk(χ1, . . . , χk; 0) to Jk(0))we have

Jk(0) =


qk−1 if χj = ε for all j ,
0 if χ1 · · ·χk �= ε ,
χk(−1)(q − 1)Jk−1(χ1, . . . , χk−1) if χ1 · · ·χk = ε and χk �= ε .

Proof. The formula for a �= 0 is clear by setting yk = xk/a, so assume
a = 0. If all the χj are equal to ε then Jk(0) is equal to the number of
(x1, . . . , xk) ∈ Fk

q such that x1 + · · · + xk = 0, hence to qk−1, which is the
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first formula, so we may assume that not all the χj are equal to ε, and since
Jk(a) is invariant under permutation of the indices we assume that χk �= ε.
We thus have χk(0) = 0, hence

Jk(0) = χk(0)Jk−1(0) +
∑

xi∈Fq , xk 	=0
(−x1/xk )+···+(−xk−1/xk )=1

χ1(x1) · · ·χk(xk)

= χk(−1)
∑

xk ∈F∗
q

(χ1 · · ·χk)(−xk)
∑

yi∈Fq

y1+···+yk−1=1

χ1(y1) · · ·χk−1(yk−1)

= χk(−1)Jk−1(χ1, . . . , χk−1)
∑
y∈F∗

q

(χ1 · · ·χk)(y) ,

and since |F∗
q | = q − 1 the result follows from Proposition 2.1.20.

The main result concerning Jacobi sums is the following close link with
Gauss sums:

Proposition 2.5.14. Let ψ be a nontrivial additive character and let χ1,
. . . , χk be multiplicative characters of Fq. Denote by t the number of such χi

equal to the trivial character ε.

(1) If t = k then Jk(χ1, . . . , χk) = qk−1.
(2) If 1 � t � k − 1 then Jk(χ1, . . . , χk) = 0.
(3) If t = 0 and χ1 · · ·χk �= ε then

Jk(χ1, . . . , χk) =
τ(χ1, ψ) · · · τ(χk, ψ)

τ(χ1 · · ·χk, ψ)
.

(4) If t = 0 and χ1 · · ·χk = ε then

Jk(χ1, . . . , χk) = −τ(χ1, ψ) · · · τ(χk, ψ)
q

= −χk(−1)
τ(χ1, ψ) · · · τ(χk−1, ψ)

τ(χ1 · · ·χk−1, ψ)
= −χk(−1)Jk−1(χ1, . . . , χk−1) .

In particular, in this case we have

τ(χ1, ψ) · · · τ(χk, ψ)
q

= χk(−1)Jk−1(χ1, . . . , χk−1) .

Proof. (1) and (2). For k = 1 the result is trivial, so assume that k � 2.
We can write

Jk(χ1, . . . , χk) =
∑

x1,...,xk−1∈Fq

χ1(x1) · · ·χk−1(xk−1)χk(1−(x1 + · · ·+xk−1)) .
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If t = k, in other words if all the χi are equal to ε, this is evidently equal to
qk−1, which is (1). If 1 � t � k−1, then since Jk is invariant by permutation of
the characters we may assume that χk = ε. Thus the above sum decomposes
into a product:

Jk(χ1, . . . , χk) =
∏

1�i�k−1

∑
xi∈Fq

χi(xi) .

Since t � k − 1, at least one of the χi for i � k − 1 is a nontrivial character,
hence

∑
xi∈Fq

χi(xi) = 0, proving (2).

(3) and (4). We therefore assume that all the χi are nontrivial characters.
For simplicity, write τ(χ) instead of τ(χ,ψ), since in the present proof the
additive character ψ does not change. Thus τ(χi) =

∑
xi∈Fq

χi(xi)ψ(xi),
where we may include xi = 0, since χi(0) = 0, χi being nontrivial. Hence
grouping terms with given x1 + · · ·+ xk = a and using the above lemma we
have

τ(χ1) · · · τ(χk) =
∑

xi∈Fq

χ1(x1) · · ·χk(xk)ψ(x1 + · · ·+ xk)

=
∑
a∈Fq

ψ(a)
∑

xi∈Fq

x1+···+xk =a

χ1(x1) · · ·χk(xk)

= Jk(0) +
∑
a∈F∗

q

ψ(a)(χ1 · · ·χk)(a)Jk(χ1, . . . , χk)

= Jk(0) + τ(χ1 · · ·χk)Jk(χ1, . . . , χk) .

If χ1 · · ·χk �= ε the lemma tells us that Jk(0) = 0, proving (3). If χ1 · · ·χk =
ε then on the one hand by the lemma we have Jk(0) = χk(−1)(q −
1)Jk−1(χ1, . . . , χk−1). However, since χk �= ε while χ1 · · ·χk = ε we have
χ1 · · ·χk−1 �= ε (and all the χi still different from ε), so by (3) and Proposi-
tion 2.5.8 we have

Jk−1(χ1, . . . , χk−1) =
τ(χ1) · · · τ(χk−1)

τ(χ−1
k )

= χk(−1)
τ(χ1) · · · τ(χk−1)

τ(χk)

= χk(−1)
τ(χ1) · · · τ(χk−1)τ(χk)

q

by Proposition 2.5.9, so Jk(0) = (1− 1/q)τ(χ1) · · · τ(χk). On the other hand,
again by Proposition 2.5.9 since χ1 · · ·χk = ε we have τ(χ1 · · ·χk) = −1, so
putting this in the above formula gives the first formula of (4), and the others
follows from Lemma 2.5.8 and from (3). ��

Corollary 2.5.15. If χ is a character of order dividing m then τ(χ,ψ)m ∈
Q(ζm).
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Proof. This is trivial if χ or ψ is a trivial character. Otherwise we apply
the last formula of the above proposition to k = m and χi = χ for all i, and
we deduce the result since evidently Jk(χ, . . . , χ) ∈ Q(ζm). ��

Corollary 2.5.16. As above, denote by t the number of indices i such that
χi = ε. Then

Jk(0) =


qk−1 if t = k ,
0 if 1 � t � k − 1 or if χ1 · · ·χk �= ε ,(

1− 1
q

)
τ(χ1, ψ) · · · τ(χk, ψ) if t = 0 and χ1 · · ·χk = ε .

Proof. By Lemma 2.5.13, the result is clear for t = k and when χ1 · · ·χk �=
ε. Otherwise, we may assume by symmetry that χk �= χ0, and the lemma
gives Jk(0) = χk(−1)(q−1)Jk−1(χ1, . . . , χk−1). Since χ1 · · ·χk−1 = χ−1

k �= ε,
the proposition shows that Jk(0) = 0 for 1 � t � k − 1, and for t = 0, the
desired result follows from Lemma 2.5.8. ��

Remark. Gauss sums are the finite analogue of the gamma function de-
fined in Section 9.6.2. This can be better seen in the context of Gauss sums
attached to Dirichlet characters by comparing Proposition 9.6.35 with Defi-
nition 2.1.38. The Jacobi sums for k = 2 are then the finite analogues of the
beta function defined in Proposition 9.6.39, and the above corollary is the
exact analogue of that proposition. We will see in Section 3.7 that there also
exists an exact analogue of the distribution formula for the gamma function
(Proposition 9.6.33) called the Hasse–Davenport product relation.

2.5.4 The Jacobi Sums J(χ1, χ2)

Because of their importance, for simplicity we will usually write J(χ1, χ2) in-
stead of J2(χ1, χ2). We first note that the special case k = 2 of the proposition
is the following:

Corollary 2.5.17. Let ψ be a nontrivial additive character of Fq.

(1) If χ1 and χ2 are two multiplicative characters we have

J(χ1, χ2) =


τ(χ1, ψ)τ(χ2, ψ)

τ(χ1χ2, ψ)
if χ1χ2 �= ε ,

−χ1(−1) if χ1χ2 = ε but χ1 �= ε ,
q if χ1 = χ2 = ε .

(2) In particular, if none of χ1, χ2, and χ1χ2 is the trivial character we have
|J(χ1, χ2)| = q1/2, and if χ2 is nontrivial we have J(ε, χ2) = −1.
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(3) If q is odd and ρ is a multiplicative character of order 2 then

τ(ρ, ψ)2 = ρ(−1)q = (−1)(q−1)/2q .

We will also need to identify more precisely the Jacobi sums in certain
cases. For this we give some equalities and weak congruences in the following
sense: if α, β, and γ are algebraic integers we will write α ≡ β (mod γ) if
(α − β)/γ is an algebraic integer. In the following, all the characters that
occur are nontrivial multiplicative characters.

Proposition 2.5.18. For any n � 2 denote as usual by ζn a primitive nth
root of unity.

(1) Assume that q is odd. If χ is a character of order n > 2 and ρ is the
character of order 2 we have the identity

χ(4)J(χ, χ) = J(χ, ρ) .

(2) For i = 1, 2, let χi be characters of order ni > 1. We have

J(χ1, χ2) ≡ −q (mod (1− ζn1)(1− ζn2)) .

(3) For i = 1, 2, let χi be characters of odd order ni > 1, and let n3 be the
order of the character χ1χ2. We have the more precise congruence

J(χ1, χ2) ≡ −1 (mod (1− ζn1)(1− ζn2)(1− ζn3)) ,

except if n1 = n2 = n3 = 3 (hence q ≡ 1 (mod 3)), in which case

J(χ1, χ2) ≡ q − 2 (mod (1− ζn1)(1− ζn2)(1− ζn3)) .

Proof. (1) is an easy exercise left to the reader (Exercise 40). For (2) we
note that since the χi are nontrivial we have by orthogonality∑
x∈Fq \{0,1}

(1−χ1(x))(1−χ2(1−x)) = q−2+1+1+J(χ1, χ2) = q+J(χ1, χ2) .

On the other hand, χi(x) is an nith root of unity for x �= 0; hence (1− ζni
) |

(1− χi(x)), proving (2). Generalizing this method, set

Tk(χ1, . . . , χk) =
∑

x1+···+xk =1

∏
1�i�k

(1− χi(xi))

and Sk(χ1, . . . , χk) =
∑

x1+···+xk =1
∀ixi 	=0

∏
1�i�k

(1− χi(xi)) .

As in (2), we easily find by expanding that

Tk(χ1, . . . , χk) = qk−1 + (−1)kJk(χ1, . . . , χk) ,
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and on the other hand, if we denote by ni the order of χi we have

Sk(χ1, . . . , χk) ≡ 0 (mod
∏

1�i�k

(1− ζni
)) .

If χ is nontrivial it is clear that S1(χ) = 1 − χ(1) = 0; hence finally the
inclusion–exclusion principle shows that if all the χj are nontrivial and if we
set K = {1, 2, . . . , k} then

Tk(χ1, . . . , χk) =
∑

J⊂K, |J|�2

S|J|((χj)j∈J)

with evident notation.
Specializing to k = 2 and k = 3 we obtain that

S2(χ1, χ2) = T2(χ1, χ2) = q + J(χ1, χ2)

(which was in fact used in (2)), and

q2 − J3(χ1, χ2, χ3) = T3(χ1, χ2, χ3)
= S3(χ1, χ2, χ3) + S2(χ1, χ2) + S2(χ1, χ3) + S2(χ2, χ3) ;

hence

J3(χ1, χ2, χ3) ≡ q2 − 3q − J(χ1, χ2)− J(χ1, χ3)− J(χ2, χ3)
(mod (1− ζn1)(1− ζn2)(1− ζn3)) .

The proof of (3) is now immediate. First note that since the ni are odd then
χi(−1) = 1. Next, if χ1χ2 is the trivial character, then by Corollary 2.5.17 we
have J(χ1, χ2) = −1, so the result is trivial. In the above formula we choose
χ3 = (χ1χ2)−1, which we may therefore assume to be nontrivial of order n3.
By Proposition 2.5.14 (4) and the symmetry of Jacobi sums we have

J3(χ1, χ2, χ3) = −J(χ1, χ2) = −J(χ2, χ3) = −J(χ1, χ3) .

Thus, if we set x = J(χ1, χ2) the above congruence reads

2x ≡ q2 − 3q (mod (1− ζn1)(1− ζn2)(1− ζn3)) .

Furthermore, it is well known (and will be proved in Chapter 3) that 1− ζn

is a unit if n is not a prime power, and otherwise (1 − ζn)φ(n) divides n;
hence using again the fact that the ni are odd we may divide the congruence
by 2. Finally, again since ni > 1 is odd, we have φ(ni) � 2 if and only if
ni = 3, in which case φ(ni) = 2. Thus (1 − ζn1)(1 − ζn2)(1 − ζn3) divides
q − 1, hence (q − 1)/2, unless (n1, n2, n3) = (3, 3, 3). Since (q2 − 3q)/2 ≡ −1
(mod (q−1)/2), the result follows except in that special case. In that case we
have q ≡ 1 (mod 3) and x ≡ q(q−3)/2 (mod (1−ζ3)3), and since (1−ζ3)3 | 9
and q(q − 3)/2 ≡ q − 2 (mod 9) when q ≡ 1 (mod 3) the result follows. ��
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Corollary 2.5.19. (1) Assume that q is odd. If χ is a character of order
n > 2 then

J(χ, χ) ≡ −χ−1(4)q (mod 2(1− ζn)) .

(2) Let �k be an odd prime power such that �k | (q − 1), let χ be a character
of order �k, and let a and b be integers such that � � ab(a + b). We have

J(χa, χb) ≡ −1 (mod (1− ζ�k )3) ,

except for �k = 3, in which case

J(χa, χb) ≡ q − 2 (mod (1− ζ3)3) .

Proof. By (1) and (2) of the proposition we have

χ(4)J(χ, χ) = J(χ, ρ) ≡ −q (mod 2(1− i))

since ζ2 = −1. Since � � ab(a+ b), the characters χa, χb, and χa+b have order
�k; hence (2) is a special case of statement (3) of the proposition. ��

An important application of Jacobi sums is in the explicit representation
by binary quadratic forms. For instance, we have the following:

Proposition 2.5.20. (1) Let q be a prime power such that q ≡ 1 (mod 4),
let χ be one of the two characters of order 4 on F∗

q , and write J(χ, χ) =
a + bi. Then a2 + b2 = q, 2 | b, and a ≡ −1 (mod 4). In particular, every
prime p ≡ 1 (mod 4) is a sum of two squares.

(2) Let q be a prime power such that q ≡ 1 (mod 3), let χ be one of the two
characters of order 3 on F∗

q , and write J(χ, χ) = a + bρ, where ρ is a
primitive cube root of unity. Then a2−ab+b2 = q, 3 | b, a ≡ −1 (mod 3),
and a + b ≡ p− 2 (mod 9). In particular, every prime p ≡ 1 (mod 3) has
the form a2 − ab + b2.

(3) If p is a prime such that p ≡ 1 (mod 3), there exist c and d in Z such
that 4p = c2 + 27d2.

(4) If p is a prime such that p ≡ 1 (mod 3) then p itself has the form p =
u2 + 27v2 if and only if 2 is a cube in F∗

p, in other words if and only if 2
is a cubic residue modulo p.

Proof. (1). Since the group of characters of F∗
q is isomorphic to F∗

q , hence
is cyclic of order q − 1, for any n | q − 1 there exists a character of order
exactly equal to n. Thus, when q ≡ 1 (mod 4) let χ be a character of order
4. By uniqueness of the character ρ of order 2 (coming from the fact that F∗

q

is cyclic) we have χ2 = ρ; hence χ(4) = ρ(2) =
(

2
q

)
, where

(
2
q

)
is equal to 1

if 2 is a square in F∗
q and to −1 otherwise. Since J(χ, χ) ∈ Z[ζ4] = Z[i] we

can write J(χ, χ) = a + bi, and the first congruence of the corollary means
that b is even and that b − a ≡

(
2
q

)
(mod 4). On the other hand, we know

that |J(χ, χ)|2 = q = a2 + b2, hence since a is odd that b2 ≡ q − 1 (mod 8).
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By separating the cases q ≡ 1 (mod 8) and q ≡ 5 (mod 8) and using the
quadratic character of 2 (which is easily seen to be valid also in this more
general context), we see that we always have a ≡ −1 (mod 4).

For (2) the proof is simpler: if χ is a character of 3 we have J(χ, χ) ∈ Z[ρ]
and |J(χ, χ)|2 = |a+bρ|2 = a2−ab+b2 = p, and by Corollary 2.5.19 we have
J(χ, χ) ≡ q−2 (mod (1−ρ)3), in other words J(χ, χ) ≡ q−2 (mod 3(1−ρ))
since 3/(1 − ρ)2 = −ρ2 is a unit. Since q ≡ 1 (mod 3) this last congruence
considered modulo 3 gives 3 | b and a ≡ −1 (mod 3), and the full congruence
is easily seen to give the congruence modulo 9. Thus, if we set b = 3d we have
4p = 4a2 − 12ad + 36d2 = (2a− 3d)2 + 27d2, proving (3).

For (4), we note that in (3) we have simply shown in an explicit manner
that a prime p ≡ 1 (mod 3) is split in the field K = Q(ρ) = Q(

√
−3)

as p = ππ, with π = (c + 3d
√
−3)/2. It is clear that π is unique up to

conjugation and multiplication by a unit, in other words by a power of −ρ,
and it is immediate to check that only conjugation, or multiplication by −1,
or both, preserve the fact that the coefficient of

√
−3 is divisible by 3. Thus

p has the form u2 + 27v2 if and only if J(χ, χ) = a + bρ with b = 3d even,
and since a2− ab + b2 = p is odd, if and only if J(χ, χ) ≡ 1 (mod 2). Now by
Corollary 2.5.19 (1) we have in particular

J(χ, χ) ≡ −χ−2(2) ≡ −χ(2) (mod 2) .

Thus p has the given form if and only if χ(2) ≡ 1 (mod 2), and since neither
(ρ−1)/2 nor (ρ2−1)/2 is an algebraic integer, this is equivalent to χ(2) = 1.
As in the case of quadratic residues, by writing 2 ≡ gx (mod p) for some
primitive root g modulo p, it is immediate to see that this is equivalent to 2
being a cubic residue modulo p. ��

Remarks. (1) Although Jacobi sums give nice explicit formulas for the in-
tegers a and b such that p = a2 + b2 or p = a2 − ab + b2, they are not
at all efficient for computing a and b in practice, since their execution
time is linear in p. For this one uses instead Cornacchia’s algorithm (see
Exercise 41 and Algorithms 1.5.2 and 1.5.3 of [Coh0]), whose execution
time is the same as that of the Euclidean algorithm, hence polynomial in
log(p).

(2) All the identities that we have given for Gauss and Jacobi sums, such
as |τ(χ,ψ)| = q1/2 and J(χ1, χ2) = τ(χ1, ψ)τ(χ2, ψ)/τ(χ1χ2, ψ) for non-
trivial characters, are quite elementary in nature. Gauss’s computation of
quadratic Gauss sums (Proposition 2.2.24) lies slightly deeper, but is still
reasonably simple. On the other hand, there exist further relations be-
tween Gauss sums associated with finite fields, due to Hasse–Davenport,
which are considerably more difficult (see Theorems 3.7.3 and 3.7.4). In
fact, although they deal only with explicit finite sums, nobody knows
of an “elementary” proof except in special cases, so we will delay till
Chapter 3 the statement and proofs of these relations. Note, however,
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that they are not exotic identities but fundamental results that are used
for instance in Weil’s proof of the rationality of the zeta function of cer-
tain varieties that we will mention below. We will in fact give such an
application in Section 3.7.3.

2.5.5 The Number of Solutions of Diagonal Equations

We will now use Jacobi sums to count the number of solutions in Fq of
diagonal equations. Let k and mi for 1 � i � k be strictly positive integers,
and let a1, . . . , ak be nonzero elements of Fq. We want to count the number
N(q) of solutions (x1, . . . , xk) ∈ Fk

q to the equation

a1x
m1
1 + · · ·+ akxmk

k = 0 .

When all the mi are equal, we will immediately deduce from the result the
number of projective solutions. We first note that by Corollary 2.4.4 the
number of solutions to xm = y is the same as that of xd = y for d =
gcd(m, q − 1). Thus we set di = gcd(mi, q − 1), and N(q) is equal to the
number of solutions to a1x

d1
1 + · · ·+ akxdk

k = 0. We may thus replace mi by
di, so that di | (q − 1).

Lemma 2.5.21. Let d | (q−1), and denote by Gd the group of multiplicative
characters χ on Fq such that χd = ε. Then |Gd| = d, and if y ∈ Fq we have

∑
χ∈Gd

χ(y) =


0 if xd = y has no solution,
1 if y = 0,
d if y �= 0 and xd = y has a solution.

.

In particular, the number of solutions in Fq of xd = y is equal to
∑

χ∈Gd
χ(y).

Proof. The group Gd is canonically isomorphic to the group of characters
of the abelian group F∗

q/F∗
q
d; hence the lemma is an immediate consequence

of the orthogonality of characters (Proposition 2.1.20). ��

Note that the result for y = 0 comes from the convention ε(0) = 1, and
it is the main reason for this choice.

Theorem 2.5.22. (1) For any nontrivial additive character ψ we have

N(q) = qk−1 +
(

1− 1
q

) ∑
χi∈Gdi

\{ε}
χ1···χk =ε

τ(χ1, ψ
a1) · · · τ(χk, ψak ) .

(2) We have the inequality

|N(q)− qk−1| � (1− 1/q)qk/2
∑

1�yi �di−1∑
1�i�k ((q−1)/di )yi≡0 (mod q−1)

1 .
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(3) In particular, if all the di are equal to d then

|N(q)− qk−1| � (d− 1)k + (−1)k(d− 1)
d

(
1− 1

q

)
qk/2 .

(4) If all the mi are equal to m and d = gcd(m, q − 1), the number M(q) of
projective solutions in Pk−1(Fq) to the equation a1x

m
1 + · · ·+ akxm

k = 0
satisfies

|M(q)− |Pk−2(Fq)|| �
(d− 1)k + (−1)k(d− 1)

d
q(k−2)/2 .

Proof. (1). By the above remark we have

N(q) =
∑

yi∈Fq

y1+···+yk =0

∏
1�i�k

∑
χ∈Gdi

χ(yi/ai)

=
∑

χi∈Gdi

(χ1(a1) · · ·χk(ak))−1Jk(χ1, . . . , χk; 0) .

By Corollary 2.5.16 we know that Jk(0) = 0 if either χ1 · · ·χk �= ε or if at
least one (but not all) of the χi is equal to ε. In addition, Jk(0) = qk−1 when
all the χi are equal to ε. Thus again by the corollary we have

N(q) = qk−1 +
∑

χi∈Gdi
\{ε}

χ1···χk =ε

(χ1(a1) · · ·χk(ak))−1Jk(χ1, . . . , χk; 0)

= qk−1 +
(

1− 1
q

) ∑
χi∈Gdi

\{ε}
χ1···χk =ε

(χ1(a1) · · ·χk(ak))−1τ(χ1, ψ) · · · τ(χk, ψ)

= qk−1 +
(

1− 1
q

) ∑
χi∈Gdi

\{ε}
χ1···χk =ε

τ(χ1, ψ
a1) · · · τ(χk, ψak ) ,

by Lemma 2.5.8, proving (1).
(2). By Proposition 2.5.9, since all the additive characters ψai are still

nontrivial, we have |τ(χi, ψ
ai )| = q1/2, hence

|N(q)− qk−1| � (1− 1/q)qk/2S(d1, . . . , dk) ,

where S(d1, . . . , dk) is the number of k-tuples of characters χi ∈ Gdi
different

from ε whose product is equal to ε. By duality, this is equal to the number
of k-tuples of nonzero elements xi in ((q − 1)/di)Z/(q − 1)Z that sum to 0,
so (2) follows by setting xi = ((q − 1)/di)yi.

(3). The proof of (3) is of course purely combinatorial. We must compute
the number S(d, . . . , d) = S(d) defined above, in other words the number of
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k-tuples (y1, . . . , yk) ∈ Z/dZ such that yi �= 0 for all i while
∑

1�i�k yi = 0 in
Z/dZ. We proceed by induction. For 0 � j � k, define fk(j) to be the number
of k-tuples summing to 0 in Z/dZ such that yi �= 0 for 1 � i � j. We want to
compute fk(k). We start the induction by noting that evidently fk(0) = dk−1

for k � 1, since yk is uniquely determined by yi for 1 � i � k − 1. Now for
0 � j � k − 1 and k � 2 we have

fk(j) =
∑

∑
i yi =0

yi 	=0 for i�j+1

1 +
∑

∑
i yi =0

yi 	=0 for i�j
yj+1=0

1 = fk(j + 1) + fk−1(j) ,

while for k = 1 and j = 0 we evidently have f1(1) = 0, leading to the
convention that f0(0) = 1 if we want the above recurrence to be valid.

Since fk(0) = dk−1 for k � 1, it is now clear by induction that for k �
j + 1 the solution to the above recurrence is fk(j) = dk−j−1(d − 1)j . On
the other hand, set uj = (−1)jfj(j), so that u1 = 0. The above recurrence
applied to k = j + 1 gives for j � 2, fj+1(j) = fj+1(j + 1) + fj(j), in other
words, since fj+1(j) = (d− 1)j , (−1)j+1uj+1 = (d− 1)j + (−1)j+1uj ; hence
uj+1 = uj − (1− d)j . Since u1 = 0, this gives

uj = −
j−1∑
n=1

(1− d)n =
(1− d)j − (1− d)

d
=

(−1)j(d− 1)j + d− 1
d

,

so that fj(j) = (−1)juj = ((d− 1)j + (−1)j(d− 1))/d, proving (3).
(4). This is immediate since by the definition of projective space we have

N(q) = 1 + (q − 1)M(q) and in particular qk−1 = 1 + (q − 1)|Pk−2(Fq)|. ��

Note that when the di are not all equal it is still possible to obtain an
explicit formula for S(d1, . . . , dk). For instance, if k = 3 we have shown above
that S(d, d, d) = (d− 1)(d− 2) = d2 − 3d + 2, but the general formula is

S(d1, d2, d3) = gcd(d1d2, d1d3, d2d3)
− (gcd(d1, d2) + gcd(d1, d3) + gcd(d2, d3)) + 2 ;

see Exercise 42.

Corollary 2.5.23. Let a, b, and c be nonzero elements of Fq, let m � Z�1,
and set d = gcd(m, q−1). The number M(q) of projective solutions in P2(Fq)
to the equation axm + bym + czm = 0 satisfies

|M(q)− (q + 1)| � (d− 1)(d− 2)q1/2 .

This is a stronger result than Proposition 2.5.11, and it can be shown that
the bound is optimal.
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Corollary 2.5.24. Assume that mi = m for all i and that the ai are all
nonzero, and as usual set d = gcd(m, q − 1). The number M(q) of projective
solutions in Pk−1(Fq) to the equation a1x

m
1 + · · ·+ akxm

k = 0 is given by the
exact formula

M(q) =
qk−1 − 1

q − 1
+

∑
χ1,...,χk−1∈Gd\{ε}∏

1�i�k−1 χi 	=ε

∏
1�i�k−1

χi(−ak/ai)Jk−1(χ1, . . . , χk−1) .

Proof. This immediately follows from Theorem 2.5.22 and Proposition
2.5.14, using as above the fact that M(q) = (N(q) − 1)/(q − 1), and
χ−1

k (−ak) =
∏

1�i�k−1 χi(−ak) when
∏

1�i�k χi = ε. ��

Corollary 2.5.25. Assume that q ≡ 1 (mod 6), and let χ be a character
of order 3 on Fq. The number M(q) of projective solutions in P2(Fq) to the
equation x3 + y3 + z3 = 0 is equal to q + 1 + c, where c is the unique integer
such that 4q = c2 + 27d2 with c ≡ 1 (mod 3).

Proof. This immediately follows from the above corollary and Proposition
2.5.20 and is left to the reader (Exercise 43 (1)). ��

2.5.6 The Weil Bounds

We will place ourselves in the context of plane projective geometry. In this
context, a (plane projective) curve is an equation P (X,Y,Z) = 0, where P is
a homogeneous polynomial, and a point on the curve is any projective point
(x : y : z) such that P (x, y, z) = 0 (this makes sense since P is homogeneous).
The affine equation corresponding to P is the equation P (x, y, 1) = 0.

A curve has a genus g, which is a nonnegative integer. Although not
difficult to define, we simply give a few examples.

– If the total degree of P is equal to d, then g � (d − 1)(d − 2)/2. In fact,
if the plane curve is nonsingular, that is if the partial derivatives with
respect to x, y, and z never vanish simultaneously, then in fact we have
g = (d− 1)(d− 2)/2.

– If P (x, y, 1) = y2 − f(x), where f has no multiple root and is of degree
d � 2, then g = �(d− 1)/2	.
The fundamental results of Weil, which we will not prove, are the follow-

ing:

Theorem 2.5.26 (Weil). Let C be a nonsingular absolutely irreducible pro-
jective curve defined on a finite field Fq. Denote by NC(qn) the number of
projective points on C that are defined over Fqn , and set

ζC(T ) = exp

∑
n�1

NC(qn)
Tn

n


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(this is called the Hasse–Weil zeta function of the curve C). Then

(1) ζC(T ) is a rational function of T of the form

ζC(T ) =
P2g(T )

(1− T )(1− qT )
,

where P2g(T ) is a polynomial of degree 2g with integral coefficients,
constant term 1, leading term qgT 2g, and such that P2g(1/(qT )) =
q−gT−2gP2g(T ).

(2) The roots of P2g(1/T ) all have modulus exactly equal to q1/2; in other
words,

P2g(T ) =
∏

1�j�2g

(1− αjT ) with |αj | = q1/2 .

Remarks. (1) Terminology: recall that a plane curve defined by some ho-
mogeneous equation F = 0 is nonsingular if the partial derivatives of
F do not all vanish simultaneously on the curve. A similar definition
applies for nonplane curves. A curve is absolutely irreducible if it is irre-
ducible as a curve over the algebraic closure of the field of definition. For
a plane curve, it means that the homogeneous polynomial F defining it
is irreducible over the algebraic closure.

(2) Note that since the constant term of P2g(T ) is known and since it satisfies
a functional equation, the polynomial P2g(T ) is entirely determined by
the knowledge of NC(qn) for 1 � n � g. For instance, if g = 1, the
number of points over Fq determines the number of points over Fqn for
all n (see Exercise 45).

(3) Statement (2) (known as the Riemann hypothesis for curves) is the most
difficult, and also the most useful part of the theorem.

Example. If C is the projective line, then trivially NC(qn) is the number of
points of the projective line over Fqn , in other words qn + 1. An immediate
computation thus gives in this case

ζC(T ) =
1

(1− T )(1− qT )

in accordance with Weil’s theorem, since the projective line has genus 0.

Corollary 2.5.27. With the above notation and assumptions, we have the
formula

NC(qn) = qn + 1−
∑

1�j�2g

αn
j .

In particular, the number NC(q) of projective points on a curve of genus g
defined over Fq satisfies

|NC(q)− (q + 1)| � 2gq1/2 .
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Proof. Expanding into power series log(ζC(T )) and replacing by the for-
mula given by Weil’s theorem immediately gives the first result. The second
follows from |αj | = q1/2. ��

It is to be noted that although the above bound is not always optimal, it
is usually very close to the truth. As mentioned above, the genus of the curve
axd+byd+czd = 0 is equal to (d−1)(d−2)/2, and this is still true over Fq if q is
coprime to abcd, so the Weil bound gives |NC(q)−(q+1)| � (d−1)(d−2)q1/2,
which is exactly the bound of Corollary 2.5.23. In fact, it was the study of
this example that led Weil to the general case.

2.5.7 The Weil Conjectures (Deligne’s Theorem)

The Weil bounds are limited to curves. It is natural to ask for the same kind
of results for higher-dimensional algebraic varieties. These results were put
forward as conjectures by Weil himself, together with a vast plan for solving
them, but it took twenty years to achieve that goal. The Weil conjectures
were stated around 1949, and the plan to solve them was put into extremely
detailed form by A. Grothendieck and his school between 1956 and 1968. It
culminated with Deligne’s proof of the Weil conjectures in 1969, using all the
tools developed for that goal (but of course his added genius was necessary!).

Although they have been Deligne’s theorem for more than thirty years,
they are still called the Weil conjectures. This is the case for other famous
results in mathematics, in particular, in number theory Ramanujan’s conjec-
ture about bounds for the Ramanujan τ function (see Section 10.1.3), also
proved by Deligne, and Mordell’s conjecture on the finiteness of the number
of rational points on a curve of genus g � 2, proved by G. Faltings in the
1980s.

Essentially, what the Weil conjectures assert is that the results of Theorem
2.5.26 and its corollary can be generalized to higher dimensions. It would
carry us too far to state them (although it is not difficult). We will prove
them in Section 3.7.3 in the special case of diagonal hypersurfaces. For now
we simply note one of the corollaries, analogous to Corollary 2.5.27 above.

Theorem 2.5.28. There exist constants c(n, d, r) such that if V is an alge-
braic variety defined over Fq of dimension r and degree d in n-dimensional
projective space, then the number N of points of V defined over Fq satisfies

|N − qr| � (d− 1)(d− 2)qr−1/2 + c(n, d, r)qr−1 .

Since we have seen that the genus of a general curve of degree d is bounded
by (d−1)(d−2)/2, we see that the above theorem exactly generalizes (without
specifying c(n, d, r)) Corollary 2.5.27.



2.6 Exercises for Chapter 2 93

2.6 Exercises for Chapter 2

1. Give a direct proof of Corollary 2.1.6 as follows. Let m be the minimum absolute
value of the nonzero entries of V . Show first that by exchanging rows we may
assume that this minimum is attained for the first entry. Then prove the result
by induction on m, directly for m = 1, and using Euclidean division by the first
entry for m > 1.

2. Fill in the details of the proof of Theorem 2.1.10.

3. Prove the existence and uniqueness of the HNF of an integral matrix of maximal
rank (see [Coh0] Algorithm 2.4.4 for help).

4. Let G be a finite abelian group of cardinality m, and let K be a commutative
field.

(a) Show that Proposition 2.1.20 (2) is still true if we assume only that the equation
xm −1 = 0 has m distinct roots in K, and in particular if K is an algebraically

closed field of characteristic 0 or not dividing m, where Ĝ is to be interpreted
as the group of morphisms from G to K∗.

(b) Give two counterexamples to the above result, the first with K not algebraically
closed but of characteristic 0, the second with K algebraically closed with
nonzero characteristic.

5. Let p be a prime number, v ∈ Z�1, and a ∈ Z coprime to p.

(a) Assume first that p � 3, and let g be a primitive root modulo p2, hence modulo
pv for all v by the proof of Proposition 2.1.24. Set u = p/(gp−1 − 1) mod p,
b = a−1 mod pv , and let x1 be a discrete logarithm of a to base g modulo p,
in other words such that gx1 ≡ a (mod p). Show that if we define xk for k � 2
by the inductive formula

xk = xk−1 − (p − 1)u
gxk−1b − 1

p
mod pk−1(p − 1)

then xv is a discrete logarithm of a to base g modulo pv .
(b) Assume now that p = 2 and that v � 3 (otherwise the problem is trivial). By

Proposition 2.1.24, there exist unique ε = ±1 and x defined modulo 2v−2 such
that a ≡ ε5x (mod 2v), and ε =

(−4
a

)
= (−1)(a−1)/2. Show that if we define

b = εa−1 mod 2v , x3 = 0 if b ≡ 1 (mod 8), and x3 = 1 if b ≡ 5 (mod 8), and
define xk for k � 4 by the inductive formula

xk = xk−1 −
5xk−1b − 1

4
mod 2k−2 ,

then xv = x is such that a ≡ ε5x (mod 2v).

6. The aim of this exercise is to study Carmichael numbers. A Carmichael number
is an integer N � 2 that is not a prime number and is such that aN−1 ≡ 1
(mod N) for all a such that gcd(a, N) = 1.

(a) Recall that the exponent of a group G is the least integer e � 1 such that
ge = 1 for all g ∈ G. Show that for any integer N � 1 (Carmichael number or
not), the exponent of the group (Z/NZ)∗ is equal to λ(N), where

λ(N) = lcm(2f (v2(N )), lcmpi |N, pi �3(p
vi−1
i (pi − 1))) ,

with f(v) = v − 2 if v � 3, f(v) = v − 1 if 1 � v � 2, and f(0) = 0. The
function λ(N) is called Carmichael’s function.
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(b) Show that N � 2 is a Carmichael number if and only if N is not prime and
λ(N) | N − 1.

(c) Show that a Carmichael number N is odd, and then that it is squarefree, i.e.,
that vi = 1 for all i.

(d) Prove that a Carmichael number has at least three distinct prime factors.
(e) Prove that if N is a Carmichael number, then for all a (not necessarily coprime

with N) we have aN ≡ a (mod N).

Note: The Carmichael numbers under 10000 are 561, 1105, 1729, 2465, 2821,
6601, and 8911. In 1994 R. Alford, A. Granville, and C. Pomerance [AGP]
succeeded in proving that there are an infinite number of them, in fact asymp-
totically more than c · X2/7 up to X for some strictly positive constant c.

7. Let p � 5 be a prime number.

(a) Prove that when p ≡ 1 (mod 6) then 7p − 6p − 1 is divisible by 77658 p, while
when p ≡ 5 (mod 6) then 7p − 6p − 1 − 1806p is divisible by 77658 p.

(b) Prove further that when p ≡ 1 (mod 6) then 7p − 6p − 1 − 12943p(p − 1) is
divisible by 3339294 p, and find the corresponding property for p ≡ 5 (mod 6).

8. (Apostol–Saias.) Let f be a nonzero arithmetic function satisfying f(mn) =
f(m)f(n) for all m, n and such that there exists m ∈ Z�1 such that f(x+m) =
f(x). Prove that f is a Dirichlet character modulo some divisor d of m.

9. For r ∈ Z and m � 1 let Sr(m) =
∑

χ mod m, χ primitive χ(r), so that for instance

S1(m) is the number of primitive characters modulo m.

(a) It is clear that Sr(m) = 0 when r is not coprime to m. Generalizing Proposition
2.1.29 show that when r is coprime to m we have

Sr(m) = µ

(
m

gcd (m, (r − 1)∞)

)
q (gcd (m, (r − 1)∞)) ,

where (a, b∞) =
∏

p|b pvp (a) (see the notation introduced in the preface).

(b) Let D(m) be the difference between the number of even and odd primitive
characters modulo m. Deduce that D(m) = µ(m) if m is odd, and otherwise
D(m) = 2v−2µ(m/2v), with v = v2(m) � 2.

10. Prove Proposition 2.1.34 (3).

11. Recall that for any commutative ring R, SL2(R) denotes the group of 2 × 2
matrices with determinant 1 and coefficients in R. Using Lemma 2.1.31, show
that for any N � 2, the natural projection map from SL2(Z) to SL2(Z/NZ) is
surjective. (Hint: first show that if gcd(a, b, c, d) = 1, there exist u and v such
that gcd(au+bv, cu+dv) = 1.) See Lemma 6.3.10 for the proof of the analogous
statement for SLn(Z/NZ).

12. (Study the Möbius inversion formula (Proposition 10.1.5) and its uses before
solving this exercise.) Let χ be a Dirichlet character modulo m, let f be its
conductor, and let χf be the character modulo f equal to χ on numbers prime
to m. Prove the following general formula:

τ(χ, a) = τ(χf )
∑

d|gcd
(

m
f

,a
) dµ

(
m

fd

)
χf

(
m

fd

)
χf

(a

d

)
.

For this, note that
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∑
x mod m

χ(x)e2iπax/m =
∑

gcd(x,m/f )=1
x mod m

χf (x)e2iπax/m ,

replace the condition gcd(x, m/f) = 1 by a sum of Möbius functions (see
Proposition 10.1.5), and finally write x/d = fx1 + x2. In particular, we have
τ(χ) = µ(m/f)χf (m/f)τ(χf ).

13. Prove Proposition 2.1.44.

14. Let p be an odd prime, and set S = (1+ i)p . Noting that S ≡ 1+ ip (mod pZ[i])

and S ≡ (1 + i)i(p−1)/2
(

2
p

)
(mod pZ[i]), give another proof of the formula for(

2
p

)
.

15. Generalizing the computation made in Theorem 2.2.19, show that if m � 1 and
a �= 0, then∑

x mod m

e2iπ(ax2+bx)/m =
1 + i

2

√
m

a
e−2iπb2/(4am)

∑
x mod 2a

e−2iπ(mx2+2bx)/(4a) .

16. (H. Stark.) Let χ be a real primitive character modulo m > 0, and let Q
be a positive definite quadratic form of discriminant d < 0. Assuming that
gcd(m, d) = 1, prove the following reciprocity formula: for all y and z in Z we
have

m∑
x=1

χ(Q(x, y))e2iπxz/m =

m∑
x=1

χ(Q(x, z))e2iπxy/m .

(Hint: use Corollary 2.1.42.)

17. Let χ be a primitive character modulo m, and let W (χ) be as in Definition
2.2.25, so that |W (χ)| = 1 by Proposition 2.1.45. If χ is real, we know by
Proposition 2.2.24 that W (χ) = 1. Prove that if W (χ) is a root of unity then χ
is real, hence W (χ) = 1.

18. Show that there exists a 2-dimensional lattice L in R2 which reaches the upper
bound for min(L)/ det(L)1/2 given by Theorem 2.3.12.

19.

(a) Give the detailed formulas for updating the Gram–Schmidt basis in Step 3 of
the LLL algorithm.

(b) Show that after this update the LLL condition is satisfied for the new vectors
b∗

k−1 and b∗
k .

20. With the notation of the LLL algorithm, let dk be the determinant of the Gram
matrix of the bj for j � k and D =

∏
1�k�n−1 dk .

(a) Show that dk =
∏

1�j�k ‖b
∗
j ‖2 and that D stays fixed in the algorithm except

in Step 3, where it is multiplied by a factor at most equal to 1/γ + 1/4.
(b) Using Hermite’s Theorem 2.3.12, show that dk is bounded from below by a

strictly positive constant depending only on L.
(c) Deduce from this that Step 3 will be executed only a finite number of times,

hence that the LLL algorithm will terminate after a number of steps polynomial
in n and max(‖bj‖2). How does this number of steps vary in terms of the
constant γ > 4/3?

Note that it is unknown whether the LLL algorithm is still polynomial time for
γ = 4/3.

21. Assume that the Gram matrix of the bj is integral, and as in the preceding
exercise let dk be the determinant of the Gram matrix of the bj for j � k.
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(a) Prove that for all k we have dk−1‖b∗
k‖2 ∈ Z, for all j < i we have djµi,j ∈ Z,

and for all m such that j < m � i we have dj

∑
1�k�j µi,kµm,k‖b∗

k‖2 ∈ Z.

(b) Deduce from this a modification of the LLL algorithm that works entirely with
integers.

(c) Show that these integers will be bounded by a polynomial in 2n and max(‖bj‖2).

22. Let α0, . . . , αn be complex numbers, and assume that there exists z ∈ C∗ such
that αi/z ∈ R for 1 � i � n. Using Proposition 2.3.20 give a lower bound for
|α0 +

∑
1�i�n xiαi| in terms of the same quantities occurring in the proposition

together with �(α0/z).

23. Prove the generalization to complex numbers of Proposition 2.3.20 given in the
text.

24.

(a) In Proposition 2.3.20 show that one can replace the value of T by T = 〈Cα0〉+∑
Xi〈Cαi〉 (where we recall that 〈u〉 is the distance of u to the nearest integer),

which may be considerably smaller especially if we make a little search on C.
(b) Using this improved value and making C vary in a reasonable range, compute

a lower bound for |x1 log(2)+x2π+x3γ|, where the xi are integers not all equal
to 0 such that |xi| � 100.

(c) Make a systematic search for 0 � x1 � 100 and −100 � x2, x3 � 100 to find
the exact minimum of the above expression, and compare with the bound that
you have found.

25. As in Proposition 3.5.2, denote by Un (respectively U ′
n) the set of nth roots of

unity (respectively primitive nth roots of unity) in C. Using cyclotomic poly-
nomials, compute

∑
ζ∈Un

1/(x − ζ),
∑

ζ∈U ′
n

1/(x − ζ),
∑

ζ∈Un
ζ/(1 − ζ)2, and∑

ζ∈U ′
n

ζ/(1 − ζ)2.

26. Let p � 3 be a prime number. Prove that there exists a unique value of k modulo
2p such that

∑
ζ∈U ′

p
(−ζ)k/(1 − ζ) = 0, and compute k explicitly.

27. Let E/F be an extension of finite fields, and set q = |F| and s = [E : F].

(a) Generalizing Proposition 2.4.11 (2), show that if k ∈ Z�1 with gcd(k, s) = 1,

the kernel of TrE/F is equal to the set of a ∈ E of the form a = xqk −x for some
x ∈ E.

(b) Assume that gcd(qk, s) = 1. Show that for any a ∈ E there exist u ∈ F and

x ∈ E such that xqk − x = a + u. For instance, if a ∈ E = F2s with s odd, one
of the two equations x2 − x = a or x2 − x = a + 1 has a solution x ∈ E.

28. Prove that the polynomial Xn + Xn−1 + · · · + X + 1 is irreducible in Fp [X] if
and only if n + 1 is a prime different from p and the order of p modulo n + 1 is
equal to n.

29. Give another proof of Lemma 2.5.1 using the identity

Xq − X =
∏

a∈Fq

(X − a)

and the Newton relations between elementary symmetric functions and power
sums.

30. Let p be a fixed prime number and define integers ak by the polynomial identity∏
1�j�p−1

(X − j) =
∑

0�k�p−1

akXk .
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(a) Using the field Fp show that p | ak for 1 � k � p − 2.
(b) Compute explicitly a0 and a1.
(c) Assume that p � 5. Setting X = p in the polynomial identity defining the ak ,

prove that p2 | a1.
(d) Deduce Wolstenholme’s congruence: if p � 5 is prime then∑

1�j�p−1

1

j
≡ 0 (mod p2) ;

in other words, the numerator of the left-hand side is divisible by p2.
(e) Prove that if p � 5 is prime then∑

1�j�p−1

1

j2
≡ 0 (mod p) .

(f) More generally, prove that p2 | ak for every odd k such that 1 � k � p−3, and
show that if p � k + 3 then ∑

1�j�p−1

1

jk
≡ 0 (mod pv) ,

where v = 2 if k is odd and v = 1 if k is even.
(g) Deduce from (d) and (e) that if p � 5 and n � 1 we have(

(n + 1)p − 1

np

)
=

1

n + 1

(
(n + 1)p

np

)
≡ 1 (mod n(n + 1)p3) .

Note that this is a special case of a general congruence that we will prove in
Chapter 11 (Theorem 11.6.22).

See Exercise 50 of Chapter 11 for a sequel to this exercise giving stronger con-
gruences.

31. Let χ be a multiplicative character of order n on Fq . Prove that χ(−1) = 1 if n

is odd and χ(−1) = (−1)(q−1)/n if n is even.

32. This exercise follows closely the exposition of Section 2.1.6 of [Coh1]. Let Fq be
a finite field of odd order, let P ∈ Fq [X] be a monic irreducible polynomial of
degree n, let α be a root of P in some algebraic closure of Fq , let σ denote the
Frobenius automorphism x �→ xq of L = Fq(α), and finally for k ∈ Z set

Dk = (−1)k
∏

0�j<n

(σj+k(α) − σj (α)) .

(a) Show that disc(P ) =
∏

1�k�n−1 Dk .

(b) Show that Dk is invariant by Gal(L/Fq), hence that Dk ∈ Fq .
(c) Show that Dn−k = Dk .
(d) Assume that n is even and set

E =
∏

0�j<n/2

(σj+n/2(α) − σj (α)) .

Prove that Dn/2 = E2.
(e) Let a be a nonsquare in Fq . Show that E/

√
a ∈ Fq .
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(f) By abuse of notation write
(

x
q

)
for the value at x of the unique nontrivial

character of order 2 on Fq . Conclude from the above(
disc(P )

q

)
= (−1)n−1 .

See Exercise 2 of Chapter 10 for a sequel to this exercise.

33. Let P (x) be an integer-valued polynomial of degree m whose values are not
always divisible by a prime p. Generalizing Corollary 2.5.10, it seems that ex-
perimentally we always have |

∑
x∈Fp

ψ(P (x))| � (m−1)p1/2. Prove or disprove,

and if true, generalize to all finite fields (the Weil bounds give Kp1/2 with a
constant K larger than m − 1 in general).

34. Using the method of finite Fourier series, show the following.

(a) The number M of projective solutions x, y, z in Fq of the equation y2z2 =

ax4 + bz4 with a, b in F∗
q satisfies |M − (q + 1)| � Cq1/2, for an absolute

constant C.
(b) The number M of projective solutions x, y, z in Fq of the equation y2z =

x3 + b2z3 with b in F∗
q satisfies |M − (q + 1)| � Cq1/2, for an absolute constant

C.
(c) Using Jacobi sums instead of finite Fourier series, show that in both cases one

can choose C = 2 (this is a special case of a theorem of Hasse that we will
prove in Chapter 7).

35. In the text we have defined and studied Gauss sums attached both to Dirich-
let characters and to characters on finite fields, and we have only studied Ja-
cobi sums attached to finite fields. It is of course immediate to define Jacobi
sums attached to Dirichlet characters, for instance in the case of two charac-
ters modulo m by J(χ1, χ2) =

∑
x mod m χ1(x)χ2(1 − x). Prove that if χ1χ2

is a primitive character modulo m then, as in the finite field case, we have
J(χ1, χ2) = τ(χ1)τ(χ2)/τ(χ1χ2).

36. Let p be a prime such that p ≡ 1 (mod 4), let g be a primitive root modulo p,
let χ be a character of order 4 on F∗

p , and write J(χ, χ) = a+ ib. By Proposition

2.5.20 we know that a2 + b2 = p, 2 | b, and a ≡ −1 (mod 4), so that a and b are
uniquely determined apart from a possible sign change of b, which is natural
since there are two possible choices for χ. If g is a primitive root modulo p such
that χ(g) = i, show that a + bg(p−1)/4 ≡ 0 (mod p), which thus determines b
uniquely. Similarly, show that if p ≡ 1 (mod 3), χ is a character of order 3 such

that χ(g) = ρ, and J(χ, χ) = a + bρ, then a + bg(p−1)/3 ≡ 0 (mod p).

37. (Jacobstahl.) Let p be a prime such that p ≡ 1 (mod 4), and let r be a quadratic
residue and s be a quadratic nonresidue modulo p. Prove that p = a2 + b2 with

a =
1

2

p−1∑
i=1

(
i(i2 − r)

p

)
and b =

1

2

p−1∑
i=1

(
i(i2 − s)

p

)
.

38. Let q be such that q ≡ 1 (mod 6) and let χ be a character of order exactly
equal to 6 on Fq . By Proposition 2.5.20 we can write J(χ2, χ2) = a + bρ with
a2 − ab + b2 = q, 3 | b, and a ≡ −1 (mod 3).

(a) Separating cases, compute explicitly J(χn , χm) for 0 � n, m � 5 both even.
(b) Generalizing the results of Section 2.5.4, compute these sums for all n, m.
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39. Let p be a prime such that p ≡ 1 (mod 3). Proposition 2.5.20 tells us among
other things that if we write 4p = c2 + 27d2 then 2 is a cubic residue modulo
p if and only if 2 | d. Show similarly that 3 is a cubic residue modulo p if and
only if 3 | d.

40. Let χ be a nontrivial character on Fq and let ρ be a character of order exactly
equal to 2 (so that q is odd).

(a) Prove that the number of solutions of x2 = a in Fq is equal to 1 + ρ(a), and
deduce that

∑
x∈Fq

χ(q − x2) = J(χ, ρ).

(b) Prove that for any m ∈ F∗
q we have

∑
x∈Fq

χ(x(m − x)) = χ(m2/4)J(χ, ρ).

(c) If χ2 �= ε, deduce that for any nontrivial additive character ψ we have the
following formulas:

τ(χ, ψ)2 = χ−2(2)J(χ, ρ)τ(χ2, ψ) ,

J(χ, χ) = χ−2(2)J(χ, ρ) ,

τ(χ, ψ)τ(χρ, ψ) = χ−2(2)τ(χ2, ψ)τ(ρ, ψ) .

Note that this last formula is the special case m = 2 of the Hasse–Davenport
product relation, which we will prove in Section 3.7.

41. Let p be a prime such that p ≡ 1 (mod 4).

(a) Prove that there exists an integer i such that i2 ≡ −1 (mod p), and explain
how to find one efficiently using a probabilistic algorithm.

(b) Using Hermite’s inequality on the lattice Λ in R2 generated over Z by the
columns of the matrix

(
p i
0 1

)
, prove that p is a sum of two squares of integers.

(c) Using the LLL algorithm, give a fast algorithm for finding these two squares.
(d) Show that in this special case the LLL algorithm reduces to a partial Euclidean

algorithm, and write this algorithm explicitly (the resulting algorithm is called
Cornacchia’s algorithm; see Section 1.5.2 of [Coh0]).

42. Prove the formula for S(d1, d2, d3) given in the text after the proof of Theorem
2.5.22. More generally, find an expression for S(d1, . . . , dk).

43. Let q be such that q ≡ 1 (mod 6) and let χ be a character of order 3 on Fq .

(a) Using Corollary 2.5.24 and Proposition 2.5.20, prove Corollary 2.5.25, in other
words that the number of projective solutions to x3 + y3 + z3 = 0 is equal to
q + 1 + c, where 4q = c2 + 27d2 and c ≡ 1 (mod 3).

(b) Prove that J(χ, χ, χ2) = q.
(c) Using once again Corollary 2.5.24, prove that the number of (affine) solutions

to the equation x3 + y3 + z3 = 1 in Fq is equal to q2 + 6q − c, where c is as
above.

44. Let K = F2k be a finite field of characteristic 2.

(a) Show that when k is odd the equation x2 + x + 1 = 0 has no solutions in K.
(b) Using the fact that, when k is even K∗ contains a subgroup of order 3, count

the number N(2k) of projective solutions of x3 + y3 + z3 = 0 in P2(K).
(c) Compute the Hasse–Weil zeta function of the projective curve x3 +y3 + z3 = 0

over F2.

45. Let E be a curve of genus 1 defined over a field Fq , and let N = N(q) be
the number of points of E defined over Fq . Give an explicit formula for the
number N(qn) of points of E defined over Fqn (see Theorem 2.5.26 and remarks
following).
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46. The goal of this long exercise is to study some elementary properties of Kloost-
erman sums. Let p be an odd prime, a and b in Z, and set S(a, b; p) =∑∗

x mod p exp(2iπ(ax + bx−1)/p), where from now on
∑∗ means that the sum

is restricted to elements coprime to p.

(a) Show that S(a, b; p) = S(b, a; p) and that if p � n we have S(an, b; p) =
S(a, bn; p).

(b) For k � 1, set Vk(p) =
∑∗

a mod p S(a, 1; p)k . Show that if p � b we have Vk(p) =∑∗
a mod p S(a, b; p)k , and deduce that

(p − 1)Vk(p) =
∑

a,b mod p

S(a, b; p)k − (p − 1)k − 2(−1)k(p − 1) .

(c) Compute (p−1)Vk(p) in terms of the number Nk(p) of solutions (x1, . . . , xk) ∈
((Z/pZ)∗)k of the system

∑
1�i�k xi =

∑
1�i�k x−1

i = 0.

(d) Deduce from this the values of V1(p) and V2(p).
(e) Let M(u, v) be the number of solutions (x, y) ∈ ((Z/pZ)∗)2 of the system

x + y = u, x−1 + y−1 = v. Compute M(0, 0), M(0, v) for p � v, and show that

for p � uv we have M(u, v) = 1 +
( 1−4(uv)−1

p

)
.

(f) Deduce from this and the nontriviality of the Legendre symbol the value of
N4(p), hence of V4(p).

(g) Deduce from the values obtained that if p � ab we have |S(a, b; p)| < 2p3/4, and
that there exists a �≡ 0 (mod p) such that |S(a, 1; p)| >

√
2p − 2.

Note that it has been shown by Weil that if p � ab we have in fact S(a, b; p) �
2p1/2.



3. Basic Algebraic Number Theory

In this chapter, we recall (sometimes without proof) the main definitions
and results that we need from basic algebraic number theory. These can be
found in many books, for example [Sam], [Bor-Sha], [Coh0], [Marc], [Frö-Tay],
[Ire-Ros].

3.1 Field-Theoretic Algebraic Number Theory

3.1.1 Galois Theory

We begin by recalling (with proof) the main results concerning Galois theory
of finite extensions of perfect fields.

Let K be a commutative field. We fix an algebraic closure K of K and we
assume implicitly that all algebraic extensions and all elements are chosen
in this algebraic closure. For simplicity, we will assume that our base field
K is perfect : this means that either K has characteristic 0, or that K has
characteristic p > 0 and the map x �→ xp from K to K is surjective. The
reason for this hypothesis is the following proposition.

Proposition 3.1.1. Let K be a perfect field and α an element that is alge-
braic over K. Then the minimal polynomial of α in K[X] is separable; in
other words, it is coprime to its derivative, or equivalently, it has no multiple
roots in K.

Proof. First, it is easy to check and left to the reader that over any field
K a polynomial is coprime to its derivative if and only if it has no multiple
roots in K. Now assume that K is perfect, and let A ∈ K[X] be the min-
imal polynomial of α. Since K is a field, it is clear that A is irreducible in
K[X] (otherwise one of the factors would have α as a root, contradicting the
minimality of A). Since the GCD of A and A′ is in particular a divisor of
A, it must thus be equal to 1 or A. Assume that it is equal to A. Then A
divides A′, and since A′ has degree strictly less than that of A this means
that A′ = 0. If the characteristic of K is 0, this means that A is constant,
which is impossible. If the characteristic of K is equal to p > 0, looking at the
coefficients, we see that this means that A(X) =

∑
0�k�n akXpk for some
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ak ∈ K. But since K is perfect, there exist bk with ak = bp
k, and since K

has characteristic p we have A(X) = B(X)p with B(X) =
∑

0�k�n bkXk,
contradicting the irreducibility of A. We thus have a contradiction, showing
that gcd(A,A′) = 1, hence the proposition. ��

Fields of characteristic 0 are by definition perfect, as are all finite fields
(Exercise 1). An important example of a field that is not perfect is K = Fp(T ):
it has characteristic p, but T ∈ K is not a pth power. In fact, if α = T 1/p,
the minimal polynomial of α is A(X) = Xp − T , and A′(X) = 0, so A is not
separable.

Definition 3.1.2. Let K be a perfect field and let L/K be a finite field ex-
tension (in other words, L is a field containing K as a subfield, and L is
finite-dimensional as a K-vector space). A map σ from L to L is called a
K-automorphism of L if σ is a field isomorphism that leaves K pointwise
fixed. A map σ from L to K is called a K-embedding of L into K if σ is a
field homomorphism (necessarily injective) that leaves K pointwise fixed.

In other words, a K-automorphism σ must be a bijection that preserves
the field structure and such that σ(a) = a for all a ∈ K. In particular, σ is
a K-endomorphism of L. Since L is finite-dimensional over K it follows that
the bijectivity of σ is equivalent to its injectivity or its surjectivity.

Proposition 3.1.3. Let K be a perfect field, and let L/K be an extension
of degree n.

(1) Any embedding of K into K extends to exactly n K-embeddings of L into
K.

(2) There exist at most n K-automorphisms of L, which are the K-embeddings
σ of L into K such that σ(L) ⊂ L.

Proof. By the primitive element theorem (which is true because we have
assumed K to be perfect) we can write L = K(α) for some α ∈ L. Let
A(X) ∈ K[X] be the minimal polynomial of α, which is therefore of degree n
(a K-basis of L is given by 1, α, α2, . . . , αn−1). Any element of L is therefore
of the form U(α) with U(X) ∈ K[X], and U(X) is unique modulo A(X).

For (1), let τ be an embedding of K into K. To extend τ to an embedding
of L, for any U ∈ K[X] we must define τ(U(α)) = Uτ (τ(α)), where Uτ is
the polynomial obtained from U by applying τ to all the coefficients. For this
to make sense we must have 0 = τ(A(α)) = Aτ (τ(α)); hence τ(α) must be
one of the roots of the polynomial Aτ , which has degree n, and since K is
algebraically closed, Aτ has exactly n roots in K; this proves (1).

Furthermore, it is clear that if σ is a K-automorphism of L then σ is in
particular a K-embedding of L into K, and conversely, such an embedding
is an automorphism if and only if σ(L) = L if and only if σ(L) ⊂ L (since
[L : K] < ∞), proving (2). ��
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Definition 3.1.4. Let α ∈ K and let A(X) ∈ K[X] be its minimal monic
polynomial over K. The roots of A(X) = 0 in K are called the conjugates
of α in K. In other words, two elements α and β of K are conjugate if they
have the same minimal monic polynomial over K.

Thus, if deg(A) = d, α has exactly d conjugates. The elements σ(α) in
the above proof are the conjugates of α.

Proposition 3.1.5. Let K be a perfect field and L/K a finite extension. The
following three properties are equivalent:

(1) L is closed under conjugation over K (i.e., if α ∈ L, every conjugate of
α also belongs to L).

(2) There exist exactly n = [L : K] K-automorphisms of L.
(3) If σ is a K-embedding of L into K, then σ(L) ⊂ L.

Proof. By the proof of the above proposition, if L is closed under conju-
gation then all the roots of the minimal polynomial A(X) of α belong to L;
hence there are indeed n K-automorphisms, so (1) implies (2). The equiva-
lence of (2) and (3) is clear from Proposition 3.1.3. Assume (3), let α ∈ L,
let β be a conjugate of α over K, and denote by A(X) ∈ K[X] their common
minimal monic polynomial. As above, we can define a field isomorphism σ
from K(α) to K(β) by the formula σ(U(α)) = U(β), and this makes sense
only because β is a conjugate of α. In particular, σ is an embedding of K(α)
into K(α) = K. By Proposition 3.1.3 (1), σ can be extended to an embedding
of L into K (in fact, to [L : K(α)] such embeddings, but we do not need more
than one). By (3) it follows that σ(α) = β ∈ L; hence (3) implies (1). ��

Definition 3.1.6. Let K be a perfect field. We say that an extension L/K is
normal or Galois if one of the three equivalent conditions of the proposition is
satisfied. The set of K-automorphisms of L forms a group under composition,
called the Galois group of L/K and denoted by Gal(L/K).

Note that this is the definition of a normal extension. A Galois extension
is one that is normal and separable. Since we have assumed that K is perfect,
this last condition is unnecessary, so the two notions coincide.

We will say that an extension is Abelian (respectively cyclic) if it is Ga-
lois and its Galois group is abelian (respectively cyclic). Since the simplest
finite groups are the groups Z/�Z with � prime, clearly the simplest Galois
extensions are the cyclic extensions of prime degree. In that case we use the
letter � for the cardinality of the Galois group so that the letter p (and p,
etc.) is still available for prime numbers or places.

Proposition 3.1.7. If L = K(α1, . . . , αk) and L contains the conjugates of
all the αi, then L/K is Galois.
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Proof. Any element x ∈ L has the form x = U(α1, . . . , αk), where U has
coefficients in K. If σ is a K-embedding of L into K, then the coefficients of
U are fixed by σ; hence

σ(x) = U(σ(α1), . . . , σ(αk)) ,

and since the σ(αi) are conjugates of αi, by assumption they belong to L,
and hence σ(x) ∈ L. It follows from Proposition 3.1.5 that L is Galois over
K. ��

Corollary 3.1.8. If L/K is a finite extension, there exists a finite extension
N of L that is Galois over K, and any such N will also be Galois over L.

Proof. Write L = K(α), and let α1, . . . , αk be the conjugates of α in
K. Then by the above proposition, N = K(α1, . . . , αk) is a finite Galois
extension of K. Furthermore, if σ is an L-embedding of N into L = K, then
it is also a K-embedding; hence it is a K-automorphism of N , hence an L-
automorphism of N . ��

From now on, we use the following standard notation. If L is a field and
H is a group of automorphisms of L, then LH denotes the fixed field of L
under H, in other words, the set of elements of L that are fixed by all the
elements of H. It is clear that LH is a subfield of L.

The following proposition is the key result that we need before proving
the main theorem of Galois theory.

Proposition 3.1.9. Let L/K be a Galois extension with Galois group G and
let H be a subgroup of G. Then LH = K if and only if H = G.

Proof. We have clearly LH ⊃ K for all H. Choose first H = G, assume
that x ∈ LG, and set K1 = K(x). Then L/K1 is a field extension, and
by assumption every σ ∈ G is a K1-automorphism of L. It follows from
Proposition 3.1.3 that n = |G| � [L : K1] � [L : K] = n, so that [L : K1] = n.
In other words, K1 = K, proving that LG = K. Now let H be any subgroup,
and assume that LH = K. Write L = K(α), and consider

A(X) =
∏
σ∈H

(X − σ(α)) .

The coefficients of the polynomial A are the elementary symmetric functions
of the σ(α), hence are fixed by H, so A(X) ∈ K[X]. Since α is a root of A,
it follows that |H| = deg(A) � [L : K] = |G|, so that H = G as claimed. ��

We can now state and prove the fundamental theorem.

Theorem 3.1.10 (Fundamental theorem of Galois theory). Let K be
a perfect field, let L/K be a finite Galois extension, and set G = Gal(L/K).
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There exists a one-to-one reverse-ordering correspondence between on the
one hand subfields L1 of L containing K and on the other hand, subgroups
H of G. The correspondence is as follows: if H is a subgroup of G, the
corresponding subfield is LH . Conversely, if L1 is a subfield of L containing
K, the corresponding subgroup is Gal(L/L1). In other words Gal(L/LH) = H
and LGal(L/L1) = L1.

Furthermore, the extension LH/K is Galois if and only if H is a normal
subgroup of G, and in this case we have a natural isomorphism G/H �
Gal(LH/K).

Proof. Let L1 be a subfield of L containing K. Since L/K is Galois, any
K-embedding of L into K is a K-automorphism; hence any L1-embedding of
L into L1 = K is an automorphism, hence an L1-automorphism, so L/L1 is
Galois by Proposition 3.1.5.

Thus, for each subextension L1 of L/K the group Gal(L/L1) exists, and
we denote by L′

1 the fixed field of L by Gal(L/L1). Applying Proposition 3.1.9
to the Galois extension L/L1, we obtain LGal(L/L1) = L1. Now let H be a
subgroup of G and L1 = LH . By Proposition 3.1.9 once again, L1 = LH if and
only if H = Gal(L/L1). Thus the two maps H �→ LH and L1 �→ Gal(L/L1)
are indeed inverse maps, proving the first part of the theorem.

For the second part, let H be a subgroup of G and L1 = LH the extension
corresponding to H under the above correspondence. Clearly, for each σ ∈ G
the field corresponding to σHσ−1 is σ(L1). Now, L1/K is Galois if and only
if σ(L1) = L1 for each K-embedding σ of L1 into K, and such an embedding
extends to a K-embedding of L, hence to an element of G since L/K is Galois.
Thus L1/K is Galois if and only if σ(L1) = L1 for all σ ∈ G, hence by the
correspondence if and only if σHσ−1 = H for all σ ∈ G, in other words if
and only if H is a normal subgroup of G. Finally, if this is the case, we have
a natural group homomorphism from G to Gal(L1/K) whose kernel is equal
to H. We therefore obtain an injective group homomorphism from G/H to
Gal(L1/K), and since

|G/H| = |G|/|H| = [L : K]/[L : L1] = [L1 : K] = Gal(L1/K) ,

both groups have the same order; hence the homomorphism is an isomor-
phism. ��

Another important result is the following.

Theorem 3.1.11. Assume that L/K is Galois, and let M/K be any finite
extension. Then the extension LM/M is also Galois, and Gal(LM/M) can
be considered as a subgroup of Gal(L/K) by restriction of automorphisms.
Furthermore, we have Gal(LM/M) � Gal(L/K) if and only if M and L are
linearly disjoint over K, or equivalently in the present case, M ∩ L = K.
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Proof. Write L = K(α) for some α ∈ L. Clearly LM = M(α), and since
the conjugates of α belong to L, hence to LM , Proposition 3.1.7 implies that
LM/M is Galois.

The restriction of an M -automorphism of ML to L gives an embedding
of L into K, hence a K-automorphism of L since L/K is Galois, so we
have a natural map from Gal(ML/M) to Gal(L/K). Furthermore, if σ ∈
Gal(ML/M) is the identity on L, then since it is an M -automorphism it
is also the identity on M , hence on LM , so our map is injective, showing
that Gal(LM/M) can be considered as a subgroup of Gal(L/K). Finally, let
H be the image of Gal(LM/M) in Gal(L/K). Since the fixed field of LM
under Gal(LM/M) is M , the fixed field of L under H is M ∩ L (in detail:
x ∈ LH iff x ∈ L and σ(x) = x for all σ ∈ H iff x ∈ L and x ∈ M). The
fundamental theorem of Galois theory that we have just proved shows that
H = Gal(L/(M ∩ L)), so that H = Gal(L/K) iff M ∩ L = K. ��

3.1.2 Number Fields

Recall that a number field is a finite extension of the field Q of rational num-
bers, i.e., a commutative field of characteristic 0 that is a finite-dimensional
Q-vector space (note that any field of characteristic 0 is a Q-vector space).

If K is a number field and x ∈ K, then x is an algebraic number ; in other
words, it is a root of a nonzero polynomial equation with rational coefficients.
The monic polynomial Px(X) of lowest degree of which x is a root is called
the minimal (monic) polynomial of x. If Q(X) is any polynomial with rational
coefficients such that Q(x) = 0, then Px | Q; in other words, Px is a generator
of the principal ideal of polynomials in Q[X] that vanish at x (note that Q[X]
is a principal ideal domain (PID) since Q is a commutative field).

We can thus view K as a subfield of an algebraic closure of Q, which will
often be chosen to be the algebraic closure Q of Q in C.

The Q-dimension of the vector space K is denoted by [K : Q] and called
the degree of K.

Proposition 3.1.12. Let K be a number field and let Ω be an algebraically
closed field containing K. If L/K is an extension of degree n, there exist
exactly n K-embeddings of L into Ω, i.e., injective field homomorphisms from
L to Ω that leave K pointwise fixed. In particular, for K = Q, any number
field of degree n has exactly n embeddings into an algebraically closed field of
characteristic zero.

Proof. The proof is essentially the same as that of Proposition 3.1.3 and
is left to the reader (Exercise 2). ��

Remark. The proofs of the above proposition and of Proposition 3.1.3 are
naturally based on the primitive element theorem, in other words, on the
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representation of K as Q(α). It is easily shown (see Exercise 3) that any ra-
tional function in α with rational coefficients is in fact a polynomial of degree
less than or equal to n− 1 with rational coefficients. Thus, 1, α, . . . , αn−1 is
a Q-basis for K, and of course this basis is not at all canonical since any
α ∈ K of degree n satisfies the conditions. Although this is rarely mentioned
in texts, note that this kind of basis, called a power basis, is not always the
most convenient type of basis. For instance, in M. Bhargava’s work on the
enumeration of quartic number fields ([Bha1] and especially [Bha2]), such
fields are viewed as defined by two quadratic equations is two unknowns,
instead of one quartic equation in one unknown.

Proposition 3.1.13. Let K be a number field of degree n. The number of
embeddings of K into C whose image is not contained in R (we will simply
say nonreal embeddings, or sometimes complex embeddings) is even.

Proof. If σ is such an embedding and if c denotes complex conjugation,
it is clear that c ◦ σ is also such an embedding, and we have c ◦ σ �= σ since
otherwise the image of σ would be contained in R. ��

Definition 3.1.14. Let K be a number field of degree n. The signature of
K is the pair (r1, r2), where r1 is the number of real embeddings and 2r2 is
the number of complex embeddings, so that n = r1 + 2r2.

Remark. although the notation (r1, r2) is the most common, note that some
authors also use (r, c) (for real and complex), (r, i) (for real and imaginary),
or (r, s) (for real and the letter after r).

When r1 = n (hence r2 = 0) we say that K is totally real, and when
r2 = n/2 (hence r1 = 0) we say that K is totally complex (of course in this
case n is even).

The signature of a number field K can easily be found by looking at the
proof of Proposition 3.1.12: Using the primitive element theorem, we write
K = Q(α), and we let A ∈ Q[X] be the minimal monic polynomial of α (which
will in fact then be also the characteristic polynomial of α in K). Then r1

(respectively 2r2) is equal to the number of real (respectively nonreal) roots
of A in C. This number can be found using Sturm’s algorithm if desired; see
for example [Coh0].

An important remark concerning signatures is that Galois theory often
forbids certain signatures. The following are two examples, but of course we
could give as many as we like.

– If K/Q is a Galois extension of degree n, then either (r1, r2) = (n, 0) or,
if n is even, (r1, r2) = (0, n/2). Indeed, in that case the images of all the
embeddings of K into C are the same, so either they are all real, or they
are all nonreal.
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– If K/Q is an extension of degree n such that the Galois group of the Galois
closure of K/Q is isomorphic to a transitive subgroup of the alternating
group An, then r2 must be even. Indeed, the discriminant of such an ex-
tension is a square, and it is easily shown that the sign of the discriminant
is (−1)r2 (see Definition 3.3.12). For example, if n = 4 the only possible
signatures for A4 are (4, 0) and (0, 2).

A purely topological property of embeddings that we will need is the
following.

Proposition 3.1.15. Let σ be a continuous field homomorphism from R or
C into C. Then either σ is the identity or it is complex conjugation.

Proof. We have σ(1) = 1; hence for any positive integer n, by induction
we have σ(n) = n, hence σ(−n) = −n, so that σ(n) = n for all n ∈ Z, and
σ(p/q) = σ(p)/σ(q) = p/q hence σ(x) = x for all x ∈ Q. If x ∈ R, we can find
a sequence of rational numbers xn tending to x, hence by continuity σ(x) is
the limit of σ(xn) = xn, hence σ(x) = x for all x ∈ R. Of course continuity
is essential here. Finally, if i =

√
−1 we have σ(i)2 = σ(−1) = −1, hence

σ(i) = εi for some fixed ε = ±1. Thus, for any z = x + iy ∈ C we have

σ(z) = σ(x) + σ(i)σ(y) = x + εiy ,

proving the proposition. ��

Note that if σ is any field homomorphism from R to R, then σ is necessarily
continuous, hence equal to the identity by the above result; see Exercise 4.

3.1.3 Examples

The simplest number field is of course Q. Apart from Q, the simplest number
fields are quadratic fields, i.e., number fields K that are of degree n = 2 over
Q. Such a number field has the form K = Q(

√
d) for some d ∈ Q, d not

a square (see Exercise 7). Because Q(
√

d1) is isomorphic to Q(
√

d2) if and
only if d2/d1 is a square, it follows that we can always assume that d is a
squarefree integer different from 1. Thus quadratic number fields are exactly
the fields Q(

√
d) for d squarefree integers different from 1.

When d > 0, then Q(
√

d) has 2 real embeddings and 0 nonreal ones, so
that r1 = 2, r2 = 0. We then say that it is a real quadratic field. When
d < 0, then Q(

√
d) has no real embeddings and 2 complex conjugate nonreal

embeddings, so that r1 = 0, r2 = 1. We then say that it is an imaginary
quadratic field.

In degree three, new phenomena appear. First of all, since r1+2r2 = 3, we
have either r1 = 3, r2 = 0 (so that K is totally real), or r1 = 1, r2 = 1 (then
K is neither totally real nor totally complex, and is simply called a complex
cubic field). However, there are important subclasses of fields among cubic
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fields. First of all the pure cubic fields, which are the analogues of quadratic
fields: they are the fields of the form K = Q( 3

√
d) for some d ∈ Q not a cube.

We may once again assume that d is a cubefree positive integer different from
1. Contrary to the case of quadratic fields, this does not guarantee uniqueness.
More precisely, two such fields corresponding to cubefree positive integral d1

and d2 are isomorphic if and only if d1 = d2 or d1d2 is a cube.
Second, there are the cyclic cubic fields, i.e., cubic fields K such that the

extension K/Q is a Galois extension, necessarily cyclic. For example, consider
the field K = Q(θ), where θ is a root of the polynomial

T (X) = X3 + X2 − 2X − 1 .

Then one easily checks that the three roots of this polynomial are θ, θ2 − 2,
and −θ2 − θ + 1. The fact that they are polynomials in θ is exceptional, and
characterizes Galois extensions. In contrast, if K = Q(θ) with θ = 3

√
2 a root

of T (X) = X3 − 2, the other roots of T are θ(−1 ±
√
−3)/2, which cannot

be expressed as polynomials in θ since they are not real (it is thus clear that
a Galois extension is either totally real or totally complex). Note that Galois
extensions are rare: any degree-2 extension is of course Galois (change

√
d

into −
√

d), but in higher degrees, Galois extensions can be shown to have
density zero in a suitable sense.

3.1.4 Characteristic Polynomial, Norm, Trace

Let α be an algebraic number and let T be its monic minimal polynomial. The
roots αj of T in some algebraic closure of Q are by definition the conjugates
of α. By definition, the absolute trace of α is equal to the sum of the αj ,
and the absolute norm is equal to the product of the αj . If we write T (X) =
Xn + an−1X

n−1 + · · · + a0, the trace is thus equal to −an−1 and the norm
is equal to (−1)na0.

However, these notions are not very useful as such: indeed, we would
naturally like the trace to be additive, and the norm to be multiplicative, but
this is in general not the case. For example, if α =

√
2 and β =

√
3, the norm

of α is equal to −2 and that of β is equal to −3, while that of αβ =
√

6 is
equal to −6, different from (−2) · (−3).

The reason for this lack of additivity or multiplicativity is that we must
stay in a fixed number field. This leads to the following definitions.

Definition 3.1.16. Let L/K be an extension of number fields of degree n,
and let α ∈ L. The characteristic polynomial CL/K,α(X) of α with respect to
this extension is the characteristic polynomial of the K-linear map multiplica-
tion by α from L to itself. If we write CL/K,α(X) = Xn+cn−1X

n−1+· · ·+c0,
we set TrL/K(α) = −cn−1 (the relative trace of α) and NL/K(α) = (−1)nc0

(the relative norm of α).

The following proposition is then immediate and left to the reader.
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Proposition 3.1.17. Let L/K be an extension of number fields of degree n.

(1) If α and β are in L, we have TrL/K(α + β) = TrL/K(α) + TrL/K(β) and
NL/K(αβ) = NL/K(α)NL/K(β).

(2) If α ∈ L and a ∈ K, then TrL/K(aα) = aTrL/K(α) and NL/K(aα) =
anNL/K(α).

(3) If σi for 1 � i � n are the n K-embeddings of L into an algebraic closure
of K, then TrL/K(α) =

∑
1�i�n σi(α) and NL/K(α) =

∏
1�i�n σi(α).

(4) If α ∈ L and Tα(X) is the minimal monic polynomial of α, of degree m,
say, then m divides n, CL/K,α(X) = Tα(X)n/m, and hence TrL/K(α) =
(n/m)Tr(α) and NL/K(α) = N (α)n/m, where Tr and N denote the
absolute trace and norm.

One of the most important properties of the trace is the following propo-
sition. It is a general property of separable extensions, and we have already
seen it in the context of finite fields (Proposition 2.4.11). In characteristic
zero the proof is even simpler.

Proposition 3.1.18. Let K be a number field of degree n. The map (x, y) �→
TrK/Q(xy) defines a nondegenerate Q-bilinear form on K×K with values in
Q.

Proof. The above proposition shows immediately that this map is a Q-
bilinear form. If x is such that TrK/Q(xy) = 0 for all y ∈ K, then if x �= 0 we
can choose y = 1/x, so that 0 = TrK/Q(1) = n, a contradiction because we
are in characteristic zero, proving that the map is nondegenerate. ��

3.1.5 Noether’s Lemma

Lemma 3.1.19 (Noether). Let L/K be a Galois extension with Galois
group G, and let φ be a map from G to L∗. We will say that φ satisfies
the cocycle condition if for all g, h in G we have

φ(gh) = φ(g) · g(φ(h)) .

Then φ satisfies the cocycle condition if and only if there exists α ∈ L∗ such
that

∀g ∈ G, φ(g) =
α

g(α)
.

Proof. If φ(g) = α/g(α), we have

φ(g) · g(φ(h)) =
α

g(α)
g

(
α

h(α)

)
=

α

g(h(α))
= φ(gh) ,

so φ satisfies the cocycle condition. Conversely, assume that φ satisfies the
cocycle condition. For x ∈ L, set



3.1 Field-Theoretic Algebraic Number Theory 111

σ(x) =
∑
h∈G

φ(h)h(x) .

Then σ is an additive map from L to L. Applying Corollary 3.2.2, which we
will prove below, to the distinct homomorphisms h ∈ G, we deduce that σ is
not identically zero (recall that φ(h) �= 0 for all h by assumption). Hence let
x ∈ L be such that α = σ(x) �= 0. We have

g(α) = g

(∑
h∈G

φ(h)h(x)

)
=
∑
h∈G

g(φ(h))gh(x) ;

hence by the cocycle condition

g(α) = φ(g)−1
∑
h∈G

φ(gh)gh(x) = φ(g)−1
∑
h∈G

φ(h)h(x) = φ(g)−1α ,

proving the lemma. ��

3.1.6 The Basic Theorem of Kummer Theory

Let K be a commutative field, K a fixed algebraic closure of K. We will
assume as usual that all algebraic extensions of K are in K. Let n � 1 be
an integer, and denote by ζn a primitive nth root of unity. In this section,
we make the fundamental assumptions that n is not divisible by the charac-
teristic of K (or that K has characteristic 0) and that ζn ∈ K. What this
last statement means is that the equation Xn−1 = 0 (which has no multiple
roots in K since the characteristic of K does not divide n) has exactly n
roots, which are then powers of a single one, which we denote by ζn.

Theorem 3.1.20. Let n � 1 be an integer, and let K be a commutative field
of characteristic not dividing n and such that ζn ∈ K. There is a natural
bijection between finite subgroups of K∗/K∗n and finite Abelian extensions
of K whose Galois group has exponent dividing n. This bijection is obtained
as follows. If B is a finite subgroup of K∗/K∗n, the corresponding Abelian
extension is obtained by adjoining to K all nth roots of lifts of elements of
B. If L is a finite Abelian extension of K whose Galois group has exponent
dividing n, then B = (L∗n∩K∗)/K∗n. In addition, under this correspondence
the Galois group Gal(L/K) is isomorphic to B.

Proof. Let B be a finite subgroup of K∗/K∗n, and let S = {s1, . . . , sk} be
a set such that the classes of elements of S in K∗/K∗n generate the group B
(for example, representatives of all the elements of B). Note that conversely,
if S is a finite set, the subgroup of K∗/K∗n generated by the classes of the
elements of S is also finite, since it has at most n|S| elements. We let

KB = K ( n
√

s1, . . . , n
√

sk) .
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This makes sense since ζn ∈ K (it could also be made to make sense oth-
erwise). Note for future reference that for all b ∈ K∗ such that b ∈ B, the
equation xn − b = 0 has a solution in K∗

B (and, in fact, n solutions since
ζn ∈ K). Indeed, if b = ωn

∏
i si

ai for some integers ai and some ω ∈ K∗,
then x = ω

∏
i( n
√

si)ai is a solution.
We are going to prove that the map B �→ KB is the desired bijection. Note

first that KB/K is a finite Abelian extension. Indeed, it is the compositum
of the extensions K( n

√
si)/K, and these are Abelian extensions since ζn ∈ K,

and so all the roots of the polynomial Xn− si = 0 belong to K( n
√

si) for any
choice of the root. In fact, all these extensions are cyclic extensions of degree
dividing n; hence the Galois group of their compositum is isomorphic to a
subgroup of (Z/nZ)k, hence in particular has an exponent dividing n.

Let G be the Galois group of KB/K, and denote by µn = µn(K) the
subgroup of K∗ of nth roots of unity. We define the following pairing 〈 , 〉
from G × B to µn as follows. Let σ ∈ G and b ∈ B. As we have seen, there
exists β ∈ KB such that βn = b. We will set

〈σ, b〉 =
σ(β)

β
.

First, note that this is indeed an nth root of unity. In fact, (σ(β)/β)n =
σ(b)/b = 1 since b ∈ K∗. Second, the definition does not depend on the
choice of β. Indeed, if β′ is such that β′n = bγn for some γ ∈ K∗, then for
some j we have β′/β = ζj

nγ ∈ K∗, and so σ(β′)/β′ = σ(β)/β.
Furthermore, we evidently have

〈σ, bb′〉 = 〈σ, b〉〈σ, b′〉 and

〈στ, b〉 =
στ(β)

β
=

σ(τ(β))
τ(β)

τ(β)
β

= τ(〈σ, b〉)〈τ, b〉 ,

and since τ acts trivially on K, hence on µn, we have

〈στ, b〉 = 〈σ, b〉〈τ, b〉 .

This means that 〈 , 〉 is a Z-bilinear pairing. In other words, the map σ �→
〈σ, ·〉 is a group homomorphism from G to Hom(B,µn), and the map b �→ 〈·, b〉
is a group homomorphism from B to Hom(G,µn). We are going to compute
the kernels of these two homomorphisms.

First, fix σ ∈ G, and assume that 〈σ, b〉 = 1 for all b ∈ B. Thus, if
βn = b, then σ(β) = β. This implies that for all our generators si we have
σ( n
√

si) = n
√

si, and so σ(x) = x for all x ∈ KB ; hence σ = 1, so the left
kernel is trivial.

Second, fix b ∈ B, and assume that 〈σ, b〉 = 1 for all σ ∈ G. If βn = b,
we thus have σ(β) = β for all σ ∈ G, and hence by Galois theory, β ∈ K∗.
Thus, b ∈ K∗n, so b = 1 in B, and the kernel is again trivial. Therefore, we
obtain what is called a perfect pairing between G and B.
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Thus, the two maps we deduce from the pairing are injective, and in
particular we obtain

|G| � |Hom(B,µn)| and |B| � |Hom(G,µn)| .

On the other hand, if A is a finite abelian group of exponent di-
viding n then Hom(A,µn) � A noncanonically (see Exercise 5). Hence
|Hom(G,µn)| = |G| and |Hom(B,µn)| = |B|, so both our injective homo-
morphisms are also surjective, from which we deduce that

B � Hom(G,µn) � G .

Thus, with each finite subgroup B of K∗/K∗n we have associated a fi-
nite Abelian extension KB of K whose Galois group G has exponent n and
isomorphic to B.

Conversely, let L be such an Abelian extension. We must show that L =
KB for a suitable B. Let G be the Galois group of L/K. We are going to show
that B = (L∗n ∩ K∗)/K∗n is such that L = KB . Clearly, B is a subgroup
of K∗ of exponent dividing n. Let us show that B is finite. Using the same
pairing 〈 , 〉 as before, we see that the proof of the injectivity of the map
B → Hom(G,µn) did not use the finiteness of B. Thus this map is still
injective, and since G is a finite group, we deduce that B is finite.

Lemma 3.1.21. Any homomorphism from G to µn has the form

σ �−→ 〈σ, b〉

for some b ∈ B.

Assuming this lemma, it follows that the map B → Hom(G,µn) is a
bijection and hence that |B| = |G|. By definition of B we have K ⊂ KB ⊂ L.
Since Gal(KB/K) � B, Gal(L/K) = G, and |B| = |G|, it follows that
[KB : K] = [L : K] and so L = KB , as claimed.

To prove the lemma, let φ be a homomorphism from G to µn. Recall that
µn ⊂ K, hence that any element of G = Gal(L/K) fixes µn pointwise. Thus,
for all σ and τ in G we have

φ(στ) = φ(σ)φ(τ) = φ(σ)σ(φ(τ)) .

Thus the map φ considered as a map from G to L∗ satisfies the conditions
of Noether’s theorem (Lemma 3.1.19); therefore there exists α ∈ L∗ such
that φ(σ) = σ(α)/α for all σ ∈ G. Since we also have φ(σ)n = 1, we obtain
σ(α)n = αn for all σ ∈ G. Hence by Galois theory αn ∈ K∗, and so αn ∈
L∗n ∩ K∗. It is clear that b = αn is such that φ(σ) = 〈σ, b〉, proving the
lemma and hence the theorem. ��
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Corollary 3.1.22. Let K be a commutative field and n � 1 an integer not
divisible by the characteristic of K such that ζn ∈ K.

(1) An extension L/K is a cyclic extension of degree n if and only if there
exists α ∈ K∗ such that α is exactly of order n in K∗/K∗n and such that
L = K( n

√
α).

(2) The cyclic extensions L1 = K( n
√

α1) and L2 = K( n
√

α2) are K-
isomorphic if and only if there exists an integer j coprime to n and
γ ∈ K∗ such that α2 = αj

1γ
n.

Proof. (1) Let L/K be a cyclic extension of degree n. By Theorem
3.1.20, there exists a subgroup B of K∗/K∗n such that L = KB and B �
Gal(L/K) � Z/nZ. If α is a generator of B, it is clear that KB = K( n

√
α).

Conversely, if L = K( n
√

α) with α ∈ K∗, then L/K is a cyclic extension of
degree n if and only if α generates a subgroup of order n of K∗/K∗n.

(2) Since L1 and L2 are cyclic extensions contained in K, L1 and L2

are isomorphic if and only if they are equal, hence if and only if B1 = B2,
where Bi is the cyclic subgroup of K∗/K∗n corresponding to Li. Let αi be
a generator of Bi, so that Li = K( n

√
αi). Then B1 = B2 if and only if there

exist integers j and k such that α2 = α1
j and α1 = α2

k, hence α1
kj−1 = 1.

Since α1 is a generator of B1 it follows that kj ≡ 1 (mod n), hence that j is
coprime to n, as claimed. ��

Definition 3.1.23. Let K be a commutative field and n � 1 an integer not
divisible by the characteristic of K such that ζn ∈ K. Let α1 and α2 be
elements of K∗ of order exactly equal to n in K∗/K∗n. We will say that
α1 and α2 are n-Kummer equivalent (or simply Kummer equivalent if n
is understood) if K( n

√
α1) is K-isomorphic to K( n

√
α2), hence by the above

corollary, if there exists an integer j coprime to n and γ ∈ K∗ such that
α2 = αj

1γ
n.

Since any finite Abelian extension of K can be obtained as a compositum
of cyclic extensions of prime-power degree, to build finite Abelian extensions
it suffices to build cyclic extensions of prime-power degree. In turn, these
extensions can be built as towers of extensions of prime degree (although
this is not a nice way to look at such extensions).

3.1.7 Examples of the Use of Kummer Theory

Let K be a commutative field with characteristic 0 or strictly larger than
the degrees of the extensions that we will consider. Using Kummer theory,
we want to construct explicitly up to K-isomorphisms all finite Abelian ex-
tensions L of K of small degree n (we can even do this more generally for
non-Galois extensions, but it is beyond the scope of this book; see [Coh1]).
We are going to see that this can be done quite explicitly in small cases. We
denote by Cn the cyclic group of order n.
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– For n = 2, we must have G = C2. The condition ζ2 ∈ K is always satisfied,
and hence the above results imply that the general C2-extension is L =
K(α1/2) for some α ∈ K∗ \K∗2, Kummer equivalence being simply α′/α ∈
K∗2.

– For n = 3 and G = C3, we have two cases. If ζ3 ∈ K the situation is as in
the C2 case: L = K(α1/3) for some α ∈ K∗ \ K∗3, Kummer equivalence
being either α′/α or α′α in K∗3.
If ζ3 /∈ K, we may still apply Kummer theory, but we first have to adjoin
ζ3 to K: We set Kz = K(ζ3), which is an extension of degree 2, and we
denote by τ the generator of Gal(Kz/K). The compositum Lz of Kz and L
is an Abelian extension of K with Galois group C6, and this is easily seen
to imply that Lz = Kz(θ) with θ = α1/3 for some α ∈ K∗

z \K∗
z
3, and that

τ(θ) = θ−1 (otherwise we do not have θσ = σθ, where σ is a generator of
Gal(L/K) � Gal(Lz/Kz)); hence ατ(α) = NKz /K(α) = 1, and hence by
Hilbert’s Theorem 90 (which is trivial for quadratic extensions) α = τ(β)/β
for some β ∈ Kz, which is 3-Kummer equivalent to α = β2τ(β). It can then
be shown that L = K(θ + θ−1). To find an equation for L/K, we write
β = (u+ v

√
−3)/2, e = (u2 +3v2)/4, and the equation satisfied by θ + θ−1

is
X3 − 3eX − eu = 0 .

The reader can fill in the details in the above construction, and also
consider the cases C4, C5, and C2 × C2.

3.1.8 Artin–Schreier Theory

In the case that the characteristic of K divides n, we must replace Kummer
theory by another one called Artin–Schreier theory. Although not more diffi-
cult than Kummer theory, and in some sense easier, we will not consider it in
detail in this book, but look only at the special case n = p, where the prime
p is the characteristic of K. We begin with n = p = 2, which is especially
simple.

Proposition 3.1.24. Let K be a perfect field of characteristic 2. Quadratic
extensions L of K have the form K(θ), where θ is a root of an Artin–Schreier
polynomial X2 −X − a for some a ∈ K not of the form x2 − x for x ∈ K.
Furthermore, a and a′ define K-isomorphic extensions if and only if a′ − a
has the form x2 − x for some x ∈ K.

Proof. Since K is perfect, the extension is separable, and hence by the
primitive element theorem, L = K(θ), where θ is a root of X2 − bX − c = 0
for some b and c in K. Since K is perfect we cannot have b = 0, otherwise
X2−c would be the square of a polynomial in K[X]. Thus if we set Y = X/b,
we obtain the equation (bY )2− b(bY )− c = 0; in other words, Y 2−Y −a = 0
with a = c/b2, as desired. Such an equation defines a quadratic extension
if and only if it is irreducible, if and only if it has no roots, meaning that
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a /∈ G, where G is the additive subgroup of K formed by the x2 − x (note
that x2 − x + y2 − y = (x + y)2 − (x + y)). For the last statement, let φ
be an isomorphism from K to K ′ with evident notation. Then φ is entirely
determined by φ(θ), which must be of the form uθ′ + v with u, v in K and
u �= 0. Therefore

0 = φ(θ2− θ− a) = u2θ′
2 + v2−uθ′− v− a = (u2−u)θ′ + u2a′ + v2− v− a .

Since 1 and θ′ are K-linearly independent and u �= 0, we must have u = 1,
hence a− a′ = v2 − v as claimed. ��

The general result for n = p > 2 is essentially the same (compare it with
Corollary 3.1.22), but we must work a little more.

Proposition 3.1.25. Let K be a perfect field of characteristic p. An exten-
sion L/K is a cyclic extension of prime degree p if and only if L = K(α),
where α is a root of an Artin–Schreier polynomial Xp − X − a for some
a ∈ K not in the Fp-vector space G of elements of the form xp−x for x ∈ K.
The conjugates of α are then the α + k for k ∈ Fp. Furthermore, a and a′

define K-isomorphic extensions if and only if there exists j ∈ F∗
p such that

a′ − ja ∈ G.

Proof. Let σ be a generator of Gal(L/K). By the normal basis Theorem
3.2.12, which we will prove below, there exists θ ∈ L such that the σi(θ)
for 0 � i � p − 1 form a K-basis of L. We can thus write in particular
1 =

∑
0�i�p−1 aiσ

i(θ) for some ai ∈ K. Since 1 is stable by σ, applying σ
we deduce that ai = ai−1 for all i, in other words that all the ai are equal to
some nonzero u ∈ K, say. Since uθ is still a normal basis, replacing θ by uθ,
we may assume that u = 1, in other words that 1 =

∑
0�i�p−1 σi(θ).

Now choose α = −
∑

0�i�p−1 iσi(θ). Then

σ(α)−α = −(p−1)θ−
∑

1�i�p−1

(i−1)σi(θ)+
∑

0�i�p−1

iσi(θ) =
∑

0�i�p−1

σi(θ) = 1 ,

so that σ(α) = α + 1, and hence σk(α) = α + k for all k. It follows that the
characteristic (and minimal) polynomial of α is∏

0�i�p−1

(X − σi(α)) =
∏

0�i�p−1

(X − (α + i)) =
∏
i∈Fp

(X − α− i)

= (X − α)p − (X − α) = Xp −X − (αp − α) ,

hence is indeed an Artin–Schreier polynomial. Note that, although this is
automatic from the proof, a = αp − α ∈ K by Galois theory, since σ(a) =
(α + 1)p − (α + 1) = αp + 1− (α + 1) = a.

A necessary condition for Xp −X − a to be irreducible in K[X] is that
it have no roots in K, in other words that a /∈ G, where G is the additive
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subgroup of the elements of K of the form xp − x for x ∈ K. This condition
is in fact sufficient. Indeed, let P (X) be a nonconstant irreducible factor of
Xp −X − a of degree d � p, say. Fix some root α of P in K. Then all the
α + k for k ∈ Fp are roots of Xp − X − a, and exactly d among them are
roots of P . Furthermore, the set of k ∈ Fp such that α + k is a root of P
forms an additive subgroup of Fp since if P (α + k) = 0 for some α root of P ,
then P (X + k) is divisible by, hence equal to, P (X), so the set in question is
the set of k ∈ Fp such that P (X + k) = P (X), which is clearly an additive
group. Since the cardinality of this group is d, we have d | p, hence d = 1 or
d = p. The case d = 1 is excluded since we assume that a /∈ G, so that d = p.
In other words Xp −X − a is irreducible, as claimed.

Finally, let L = K(α) and L′ = K(α′) be K-isomorphic cyclic extensions
defined by roots of Artin–Schreier polynomials Xp−X − a and Xp−X − a′

respectively, and let φ be a K-isomorphism from L′ to L. Thus φ(α′) is a
polynomial in α of degree d such that 1 � d � p − 1, so write φ(α′) =∑

0�k�d akαk for some ak ∈ K with ad �= 0. Since we are in characteristic p
and αp = α + a we have

0 = φ(α′p − α′ − a′) =
∑

0�k�d

ap
kαkp −

∑
0�k�d

akαk − a′

=
∑

0�k�d

ap
k(α + a)k −

∑
0�k�d

akαk − a′ .

The right-hand side is now a polynomial of degree less than or equal to
d � p − 1 in α, hence must be the zero polynomial since α has degree p.
Identifying the coefficients of degree d, we see that ap

d − ad = 0. Identifying
now the coefficients of degree d − 1 and assuming that d > 1, we obtain
ap

d−1 − ad−1 + daap
d = 0. Since by assumption ad �= 0, and since d �= 0 also

satisfies dp − d = 0 in characteristic p, it follows that a = xp − x, where
x = −ad−1/(dad), which is absurd since by assumption a is not of this form.
It follows that we must have d = 1. In that case since ap

1 = a1 we can set
j = a1 as an element of F∗

p, and the identification of the coefficients of degree
0 gives ap

0 − a0 + ja− a′ = 0, in other words a′ − ja ∈ G, as claimed. ��

3.2 The Normal Basis Theorem

3.2.1 Linear Independence and Hilbert’s Theorem 90

In this section, all fields that are considered are commutative (thus corre-
sponding to the usual English meaning). We begin with the Dedekind inde-
pendence theorem.

Lemma 3.2.1 (Dedekind independence). Let G be a group, L a field,
and let σ1, . . . , σm be distinct group homomorphisms from G to L∗. Then
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they are L-linearly independent. In other words, if there exist ai ∈ L and a
relation

∑
1�i�m aiσi(h) = 0 for all h ∈ G, then ai = 0 for all i.

Proof. Assume that there exists a nontrivial relation. Choose such a rela-
tion of minimal length, so that, up to reordering of the σi,

∀h ∈ G
∑

1�i�k

aiσi(h) = 0 (1)

with k minimal. For any g ∈ G, we have for all h,
∑

1�i�k aiσi(gh) = 0.
Multiplying relation (1) by σ1(g) and subtracting, we obtain that for all g
and h in G we have ∑

1�i�k

ai(σi(g)− σ1(g))σi(h) ,

and since the first coefficient vanishes, this is a relation of length k−1 between
the characters. By the minimality of k, this must be the trivial relation, and
again by minimality the ai are nonzero; hence σi(g) = σ1(g) for all i � n and
all g ∈ G. Since the characters are distinct, this implies n = 1, hence σ1 = 0,
which is absurd. ��

Corollary 3.2.2. Let K and L be fields, and let σ1, . . . , σm be distinct field
homomorphisms from K to L. Then the σi are L-linearly independent in the
vector space of linear maps from K to L.

Proof. Clear by applying the above lemma to G = K∗. ��

Corollary 3.2.3. Let E/F be a finite extension of commutative fields of de-
gree n. The elements of Gal(E/F ) form an E-basis of the space LF (E) of
F -linear maps from E to E. In other words, we have the direct sum decom-
position

LF (E) =
⊕

σ∈Gal(E/F )

Eσ .

Proof. Indeed, LF (E) is an F -vector space of dimension n2, hence an
E-vector space of dimension n, so any family of n E-linearly independent
elements form an E-basis. ��

The next result is valid for finite cyclic extensions of commutative fields,
hence it applies in particular to extensions of finite fields, since finite fields
are commutative and extensions of finite fields are cyclic generated by the
Frobenius automorphism.

Proposition 3.2.4 (Hilbert’s Theorem 90). Let E/F be a finite cyclic
extension of commutative fields of degree n and let σ be a generator of the
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Galois group G = Gal(E/F ). If α ∈ E∗ is such that
∏

0�j<n σj(α) = 1, there
exists β ∈ E∗ such that α = β/σ(β). In other words, for the action of the
group algebra Z[G] on E∗, we have Ker(

∑
0�j<n σj) = Im(1− σ).

Proof. Consider the map φ from G to E∗ defined for k � 0 by φ(σk) =∏
0�j<k σj(α). Since

∏
0�j<n σj(α) and σ has order n, the map φ is well

defined, in other words depends only on k modulo n. It is immediately checked
that φ satisfies the cocycle condition of Noether’s lemma:

φ(σk)σk(φ(σ�)) =
∏

0�j<k

σj(α)σk(
∏

0�i<�

σi(α))

=
∏

0�j<k

σj(α)
∏

k�j<k+�

σj(α)

=
∏

0�j<k+�

σj(α) = φ(σk+�) .

It thus follows from Noether’s Lemma 3.1.19 that there exists β ∈ E∗ such
that φ(σk) = β/σk(β), and the proposition follows by taking k = 1 since
φ(σ) = α. ��

Remarks. (1) There is an additive version of Hilbert’s Theorem 90, as well
as a version for ideals. The modern way of looking at this theorem is to
say that a certain 1-cohomology group vanishes; see Section 4.4.4.

(2) If β ∈ L∗ is such that α = β/σ(β), then by Galois theory all other
possible β have the form γβ for γ ∈ K∗.

(3) Even though Hilbert’s Theorem 90 is not true as written for an arbitrary
Abelian extension E/F , there exist suitable generalizations to this case.
Note that Noether’s lemma has no cyclicity assumption.

3.2.2 The Normal Basis Theorem in the Cyclic Case

The following theorem can be called the fundamental theorem of linear alge-
bra.

Theorem 3.2.5. Let F be a commutative field, let σ be an endomorphism
of a finite-dimensional F -vector space E, let P be its minimal polynomial
over F , and let s be the degree of P . There exists θ ∈ E such that the
minimal polynomial of the restriction of σ to the vector space generated by
θ, σ(θ), . . . , σs−1(θ) is still equal to P .

Proof. First, let A and B be coprime polynomials in F [X]. We leave as
an easy exercise for the reader (Exercise 10) to show that

Ker((AB)(σ)) = Ker(A(σ))⊕Ker(B(σ)) .
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Thus, let P =
∏

i Pni
i be the factorization into irreducibles in F [X] of P , and

set Ei = Ker(Pni
i (σ)). Using the above remark, since the Pni

i are pairwise
coprime, we obtain by induction E = Ker(P (σ)) =

⊕
i Ei. The subspaces Ei

are clearly stable under σ, and the minimal polynomial of the restriction σi

of σ to Ei must be equal to Pni
i since otherwise P would not be the minimal

polynomial of σ. Thus there exists θi ∈ Ei such that Pni−1
i (σ)(θi) �= 0. Thus

the minimal polynomial of the restriction of σi to the vector space generated
by θi, σi(θi),. . . divides Pni

i and does not divide Pni−1
i , hence is equal to Pni

i .
It is now clear that θ =

∑
i θi satisfies the required conditions. ��

We can now state and prove the normal basis theorem in the cyclic case.
Since extensions of finite fields are always cyclic, this proves in particular the
normal basis theorem for finite fields.

Theorem 3.2.6. Let E/F be a finite cyclic extension of commutative fields
of degree n and let G = Gal(E/F ) be its Galois group. There exists an element
θ ∈ E whose conjugates under the action of G form an F -basis of E, in other
words E is a free F [G]-module of dimension 1.

Proof. Let σ be a generator of G (in the case of finite fields, we have seen
that we can choose for σ the Frobenius automorphism corresponding to F ).
Since the n elements σi for 0 � i � n − 1 are distinct, they are F -linearly
independent by Corollary 3.2.2; hence the minimal polynomial of σ over F
is equal to Xn − 1 (and since it has degree n this is also its characteristic
polynomial). By the above theorem, it follows that there exists θ ∈ E such
that the minimal polynomial of the restriction of σ to the subspace generated
by θ, σ(θ), . . . , σn−1(θ) is still equal to Xn − 1. In particular, they are F -
linearly independent, proving the theorem. ��

The goal of the next subsections is to prove that this theorem is still valid
in the noncyclic case. In particular, we will assume that the field F is infinite.
This more general result will not be used in the rest of this book, so can be
skipped at first. We follow closely [Lan0].

3.2.3 Additive Polynomials

From now on, let F be an infinite commutative field. In this case, we note the
important fact that if P ∈ F [X1, . . . , Xn] is a polynomial in n variables, then
the formal polynomial P can be identified with the function that it induces
from Fn to F . In other words, if P (x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ Fn,
then P is the zero polynomial (evidently this is not true when F is finite;
consider Xp −X over Fp).

Definition 3.2.7. We say that a polynomial P is an additive polynomial if
it satisfies one of the following two equivalent conditions:



3.2 The Normal Basis Theorem 121

(1) The function corresponding to P from Fn to F is an additive homomor-
phism.

(2) If X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) then P (X + Y ) = P (X) +
P (Y ) as formal polynomials.

The equivalence of the above two conditions comes from the above remark.

Proposition 3.2.8. A polynomial P ∈ F [X1, . . . , Xn] is additive if and only
if it has the form

∑
1�i�n Pi(Xi), where the Pi(Xi) are additive polynomials

in one variable. Furthermore,

(1) When F has characteristic 0 the additive polynomials in one variable are
the polynomials aX with a ∈ F .

(2) When F has characteristic p > 0, the additive polynomials in one variable
are the polynomials

P (X) =
∑

0�k�m

akXpk

with the ak ∈ F .

Proof. We can write

(X1, . . . , Xn) =
∑

1�i�n

(0, . . . , Xi, . . . , 0) ,

and so by definition of additive polynomials we have

P (X1, . . . , Xn) =
∑

1�i�n

Pi(Xi) ,

where Pi(Xi) = P (0, . . . , Xi, . . . , 0) is clearly an additive polynomial in one
variable. Thus let now P (X) be an additive polynomial in one variable, and
let arX

r with ar ∈ F ∗ be a nonzero monomial. The monomials of total degree
r in P (X + Y )− P (X)− P (Y ) are thus given by ar((X + Y )r −Xr − Y r),
which must therefore be identically zero. This is indeed the case if r = 1. If
r > 1 it contains the term rXr−1Y , so that r = 0. In other words, F has
positive characteristic p dividing r. Furthermore, if we write r = pks with
p � s, then

(X + Y )r −Xr − Y r = (Xpk

+ Y pk

)s − (Xpk

)s − (Y pk

)s ,

and the same reasoning shows that s = 1, so that the nonzero monomials
have degree r = pk, as claimed. ��

3.2.4 Algebraic Independence of Homomorphisms

Definition 3.2.9. Let A be an abelian group (written additively), and let
σ1, . . . , σn be additive homomorphisms from A to F . We say that the σi are
algebraically dependent over F if there exists a nonzero polynomial P ∈
F [X1, . . . , Xn] such that P (σ1(x), . . . , σn(x)) = 0 for all x ∈ A. If such a P
does not exist, we say that the σi are algebraically independent.
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The main result that we need is the following.

Theorem 3.2.10 (Artin). If the σi are algebraically dependent as above,
we can choose P to be a (nonzero) additive polynomial.

Proof. For simplicity, we will write Σ(x) instead of (σ1(x), . . . , σn(x)).
Let P (X1, . . . , Xn) be the polynomial of lowest possible total degree that is
nonzero and is such that P (Σ(x)) = 0 for all x ∈ A. We will prove that P is
additive. Set Q(X,Y ) = P (X + Y )− P (X)− P (Y ), so that for all x, y in A
we have

Q(Σ(x),Σ(y)) = P (Σ(x + y))− P (Σ(x))− P (Σ(y)) = 0

since the σi are additive. Assume by contradiction that Q is not the zero
polynomial, hence (since F is infinite) that Q is not identically zero on Fn×
Fn. We consider two cases.
Case 1: We have Q(v,Σ(y)) = 0 for all v ∈ Fn and all y ∈ A. By assumption
there exists v′ ∈ Fn such that P1(Y ) = Q(v′, Y ) is not the zero polynomial.
By definition of Q the degree of P1 in Y is strictly less than that of P . On
the other hand, P1(Σ(y)) = Q(v′,Σ(y)) = 0, so we obtain a contradiction
with the minimality of the degree of P .
Case 2: There exist v ∈ Fn and y ∈ A such that Q(v,Σ(y)) �= 0. Here we
set P1(X) = Q(X, Σ(y)). Then P1 is not the zero polynomial, P1(Σ(x)) = 0
for all x ∈ A by the defining property of Q, and the degree of P1 is strictly
less than that of P , again a contradiction.

We have thus shown that Q is identically 0, hence is the zero polynomial,
so P is additive. ��

Theorem 3.2.11. As above, let F be an infinite field, and let σ1, . . . , σn be
distinct elements of a finite group of automorphisms of F . Then the σi are
algebraically independent over F .

Proof. By Theorem 3.2.10, there exists a nonzero additive polynomial
P such that P (Σ(x)) = 0 for all x. If F has characteristic 0, by Theorem
3.2.8 such a polynomial is simply a linear form, and hence the result follows
from linear independence (Corollary 3.2.2). Thus assume now that F has
characteristic p > 0. By Theorem 3.2.8 we can thus write∑

1�i�n

∑
1�k�m

ai,kσi(x)pk

= 0

for all x ∈ F , and at least one coefficient ai,k not equal to 0. Denote by
φ the map x �→ xp from F to itself. Since F has characteristic p, φ is a
homomorphism of F into F , and σ(x)pk

= σ ◦φk(x). Note that σ(x)pk

is not
equal to σpk

(x). The above relation is thus a nontrivial linear dependence
relation between the homomorphisms σi ◦ φk. By Corollary 3.2.2 once again,
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it follows that these homomorphisms cannot be distinct. In other words, there
exist distinct pairs (i, k) and (j, �) such that σi ◦ φk = σj ◦ φ�, so that

σi(x)pk

= σj(x)p�

for all x ∈ F . Now note that in characteristic p we have (x− y)p = xp − yp;
hence it follows that xp = yp implies that x = y. Thus if we assume for
instance that k � �, we obtain

σi(x) = σj(xp�−k

)

for all x ∈ F . If we set σ = σ−1
j σi, this means that σ(x) = xp�−k

for all x ∈ F .
Since σ belongs to a finite group of automorphisms of a certain order r, say,
σr is the identity. In other words,

xrp�−k

= x

for all x ∈ F . But such an equation has only a finite number of roots in the
commutative field F , unless � − k = 0 (and r = 1). Since F is infinite, it
follows that � = k, hence σi = σj , hence i = j (since the σi are distinct), in
contradiction to the fact that (i, k) �= (j, �). ��

Remark. Do not confuse σp(x) with σ(x)p, for instance. Indeed, σp(x)
means that we compose σ with itself p times, and apply to x, while σ(x)p =
σ ◦ φ(x) with the above notation. Similarly, the fact that σr = σ1, where σ1

is the identity automorphism does not mean that σ and σ1 are algebraically
dependent, the polynomial P being P (X,Y ) = Xr − Y . Indeed,

P (σ(x), σ1(x)) = σ(x)r − x = σ(xr)− x ,

and this has no reason to be equal to 0 for all x since σ(x)r is not in general
equal to σr(x).

3.2.5 The Normal Basis Theorem

We are now in a position to prove the normal basis theorem in complete
generality.

Theorem 3.2.12. Let E/F be a finite Galois extension of commutative
fields of degree n, and let G = Gal(E/F ) be its Galois group. There exists an
element θ ∈ E whose conjugates under the action of G form an F -basis of
E, in other words E is a free F [G]-module of dimension 1.

Proof. If F is a finite field, then E/F is a cyclic extension, so that the
result is Theorem 3.2.6. We can therefore assume that F is infinite.

Let σ1, . . . , σn be the (distinct) elements of G, numbered so that σ1 is the
identity. We can write
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σ−1
i σj = σt(i,j)

for some function t from [1, n]× [1, n] to [1, n]. Set

P (X1, . . . , Xn) = det((Xt(i,j))1�i,j�n) .

Since Xt(i,j) = X1 if and only if σi = σj if and only if i = j, it follows
that P (1, 0, . . . , 0) = 1, since it is equal to the determinant of the identity
matrix, so that P is a nonzero polynomial. By Theorem 3.2.11, it follows
that there exists θ ∈ F such that P (σ1(θ), . . . , σn(θ)) �= 0. Since by definition
σt(i,j)(θ) = σ−1

i (σj(θ)), this can be written

det(σ−1
i (σj(θ))) �= 0 .

I claim that θ is the desired element. Indeed, assume that there exists a
nontrivial linear dependence relation

∑
1�j�n ajσj(θ) = 0. Applying σ−1

i to
this relation for all i shows that∑

1�j�n

ajσ
−1
i σj(θ) = 0 ,

which is a nontrivial linear dependence relation between the columns of the
matrix (σ−1

i σj(θ))i,j , contradicting the fact that its determinant is nonzero.
��

3.3 Ring-Theoretic Algebraic Number Theory

The field-theoretic properties seen in the preceding sections are evidently
essential for any further study. However, the most interesting part of algebraic
number theory deals with the ring-theoretic properties, which we summarize
in this section.

3.3.1 Gauss’s Lemma on Polynomials

Definition 3.3.1. Let A ∈ Z[X] be a nonzero polynomial. We define the
content of A and denote by c(A) the GCD of all the coefficients of A.

Proposition 3.3.2 (Gauss’s lemma). If A and B are two nonzero poly-
nomials in Z[X], we have c(AB) = c(A)c(B).

Proof. Let us say that a polynomial A ∈ Z[X] is primitive if its con-
tent is equal to 1. Since A = c(A)A1 with A1 primitive, it is clear that the
proposition is equivalent to the statement that the product of two primitive
polynomials A and B is primitive. Assume the contrary, so that there exists a
prime number p that divides all the coefficients of AB; in other words AB = 0
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where, for any P ∈ Z[X], P ∈ (Z/pZ)[X] denotes the polynomial obtained by
reducing the coefficients of P modulo p. Since we evidently have AB = A B
and since (Z/pZ)[X] is an integral domain, it follows that A = 0 or B = 0,
in other words that p divides all the coefficients of A or all the coefficients of
B, in contradiction with the fact that A and B are primitive. ��

Corollary 3.3.3. Let C ∈ Z[X] be a monic polynomial and assume that
A ∈ Q[X] is a monic polynomial such that A | C in Q[X]. Then in fact
A ∈ Z[X].

Proof. Write C = AB with B ∈ Q[X]. Let dA (respectively dB) be the
smallest integer such that dAA (respectively dBB) is in Z[X], in other words,
the LCM of the denominators of the coefficients of A (respectively B). We
can write dAdBC = (dAA)(dBB). By the minimality assumption, we have
c(dAA) = c(dBB) = 1, hence by Gauss’s lemma c(dAdBC) = 1, and in
particular dA = 1, hence A ∈ Z[X]. ��

3.3.2 Algebraic Integers

We begin with the following basic proposition.

Proposition 3.3.4. Let α be an algebraic number. The following four prop-
erties are equivalent.

(1) The number α is a root of a monic polynomial with coefficients in Z.
(2) The minimal monic polynomial of α has coefficients in Z.
(3) The ring Z[α] of polynomials in α with integer coefficients is a finitely

generated Z-module.
(4) There exists a commutative ring with unit R that is a finitely generated

Z-module and such that α ∈ R.

Proof. (1) =⇒ (2): Assume that P (α) = 0 with P ∈ Z[X] monic, and
let T be the minimal monic polynomial of α. By definition, T divides P in
Q[X], and T is monic, so we conclude by Corollary 3.3.3.

(2) =⇒ (3): Let T (α) = 0, where T is the minimal monic polynomial
of α, hence with integral coefficients, and set n = deg(T ). If L is the Z-
module generated by 1, α1, . . . , αn−1, then by assumption αn ∈ L; hence by
induction αk ∈ L also for any k � n. Thus L = Z[α], so that the elements
1, α1, . . . , αn−1 form a generating set of Z[α]; hence Z[α] is a finitely generated
Z-module.

(3) =⇒ (4): Simply choose R = Z[α].
(4) =⇒ (1): This is the only really amusing part of the proof. Since

R is a finitely generated Z-module, there exist ω1, . . . , ωn that generate R
as a Z-module. Since R is a ring and α ∈ R, there exist ai,j ∈ Z such that
for 1 � j � n we have αωj =

∑
1�i�n ai,jωi. If A = (ai,j)1�i,j�n is the



126 3. Basic Algebraic Number Theory

matrix of the ai,j , if we set M = αIn −A with In the n× n identity matrix,
and finally if B = (ω1, . . . , ωn) is the row vector of the ωj , then this can
be written BM = 0. If M was invertible as a matrix with coefficients in
the field Q(α), then multiplying by M−1, we would obtain B = 0, hence
R = {0}, contradicting the fact that 1 ∈ R (unless α = 0, but in that case
the implication is trivial). Thus M is not invertible, so that det(M) = 0. This
means that α is a root of det(XIn −A), the characteristic polynomial of the
matrix A, and this is clearly a monic polynomial with integral coefficients.

��

Note that we could not use directly the Cayley–Hamilton theorem since
R is not necessarily a free Z-module, and even so the ωj are not necessarily
Z-linearly independent.

Definition 3.3.5. (1) An algebraic number satisfying one of the above equiv-
alent properties is called an algebraic integer.

(2) A nonzero algebraic integer whose inverse is also an algebraic integer is
called a unit.

By Proposition 3.3.4, when α is not an algebraic integer, Z[α] is not
finitely generated. The simplest example is with α = 1/2: the ring Z[1/2] is
the subring of elements of Q whose denominator is a power of 2. This ring
is also not free (although it has no torsion), since two rational numbers are
always Z-linearly dependent.

Proposition 3.3.6. If α and β are algebraic integers, then so are α+β and
αβ. In other words, algebraic integers belonging to a fixed algebraic closure
of Q form a ring.

Proof. Consider R = Z[α, β], the ring of polynomials in α and β. Since α
and β are algebraic integers, of respective degree m and n, say, it is clear that
the (αiβj)0�i<m, 0�j<n form a finite set that generates R as a Z-module, and
since α + β and αβ belong to R we conclude by Proposition 3.3.4. ��

It is possible to give a direct (but less elegant) proof of this proposition
that directly uses the fact that α and β are roots of monic integral polynomi-
als. This uses the notion of resultant, and gives an algorithm for computing
the minimal polynomials of α + β and of αβ; see Exercise 12.

Proposition 3.3.7. Let P (X) be a monic polynomial whose coefficients are
algebraic integers, and let α be such that P (α) = 0. Then α is an algebraic
integer.

Proof. Write P (X) = Xn +
∑

1�i�n−1 βiX
i. Since the βi are algebraic

integers, it follows that Z[β1, . . . , βn−1] is a finitely generated Z-module. Let
γ1, . . . , γN be a finite generating set, and let R = Z[α, β1, . . . , βn−1]. As in
the proof of the implication (2) =⇒ (3) of Proposition 3.3.4, it is clear that
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the γiα
j for 1 � i � N and 0 � j � n− 1 form a finite generating set for R.

We conclude by Proposition 3.3.4. ��

When an algebraic number α is not necessarily an algebraic integer, we
can still obtain finitely generated free Z-modules as follows.

Proposition 3.3.8 (Dedekind). Let α be an algebraic number and let T ∈
Z[X] be a nonzero polynomial such that T (α) = 0. Write T (X) = anXn +
an−1X

n−1 + · · ·+ a1X + a0, let ω0 = 1, and for 1 � j � n− 1, set

ωj = anαj + an−1α
j−1 + · · ·+ an−j .

The finitely generated Z-module R generated by the ωj for 0 � j � n − 1 is
a subring of Z[α]. In particular, the ωj are algebraic integers for all j.

Note that this proposition does not claim that α ∈ R (otherwise α would
be an algebraic integer).

Proof. If we define ωj for all j � 1 by the formula of the proposition, it
is clear by definition that ωj = 0 for j � n. We can thus consider R as the
Z-module generated by all the ωj for j � 0. Now it is clear that for all k � 1
we have the induction formula ωk+1 = αωk + an−k−1. We are going to prove
by induction on k that for all i we have ωiωk ∈ R. For k = 0 or i = 0 this is
clear, and for k = 1 and i � 1 we have

ωiω1 = ωi(anα + an−1) = an(ωi+1 − an−i−1) + an−1ωi ∈ R .

Thus assume k � 1 and that our induction hypothesis is true for k. For i � 1
we have

ωiωk+1 = ωi(αωk + an−k−1) = ωk(ωi+1 − an−i−1) + an−k−1ωi

= ωi+1ωk − an−i−1ωk + an−k−1ωi ∈ R

by our induction hypothesis, proving our claim. It follows that R is a subring
of Z[α], and since all the ωj belong to the ring R, which is a finitely generated
Z-module, it follows by Proposition 3.3.4 that they are algebraic integers. ��

Remarks. (1) The result of this proposition is not entirely trivial: for in-
stance try to prove directly that anα2 + an−1α (which is equal to
ω2 − an−2) is an algebraic integer.

(2) The ring R is not determined by α alone, but also by the polynomial
T , even when α is an algebraic integer. Let us consider an example. Let
α =

√
2/2. If we choose T (X) = 2X2 − 1, we have R = Z[

√
2]. But more

generally we can choose T (X) = d(2X2−1) for any integer d, and in that
case we have R = Z[d

√
2], which is a different ring. We could of course

also choose higher-degree polynomials.
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(3) If α is an algebraic integer and T is the minimal monic polynomial of α,
then since an = 1 the matrix that sends the αj to the ωj is an integral
triangular matrix with 1 on the diagonal; hence the ring R is equal to Z[α]
in that case. Otherwise, the best possibility for R is to choose R = Z[α]∩
ZQ(α), which is the largest subring of Z[α] that is a finitely generated
Z-module; see Exercise 14.

We finish this subsection with the following easy but important result due
to Kronecker.

Proposition 3.3.9 (Kronecker). Let T (X) ∈ Z[X] be a monic polynomial
with integer coefficients. Assume that all the roots of T in C have modulus
equal to 1. Then all the roots of T are roots of unity.

Proof. Without loss of generality we may assume that T (X) is irreducible.
Write T (X) =

∏
1�i�n(X − αi) with αi ∈ C, and for any k � 1, consider

the polynomial Tk(X) =
∏

1�i�n(X − αk
i ). The coefficients of Tk(X) are

symmetric polynomials with integer coefficients in the αi, hence are polyno-
mials in the coefficients of T , and in particular are in Z. Furthermore, since
|αk

i | = 1 for all i, the coefficient of Xn−m of Tk(X) is bounded in absolute
value by

(
n
m

)
. This implies in particular that the number of possible polyno-

mials Tk(X) is finite; hence the number of possible values of αk
i for 1 � i � n

and k � 1 is finite. Therefore there must exist i and k1 �= k2 such that
αk1

i = αk2
i , hence αk1−k2

i = 1, so that αi is a root of unity. Since T has been
assumed to be irreducible, all of its roots are conjugate to αi, hence are also
roots of unity. ��

Corollary 3.3.10. If α is an algebraic integer all of whose conjugates have
absolute value equal to 1 in C then α is a root of unity.

Remarks. (1) The hypothesis of the corollary means that for every embed-
ding σ of Q(α) in C we have |σ(α)| = 1.

(2) The result is trivially false if α is not an algebraic integer: consider for
instance α = (3 + 4

√
−1)/5.

3.3.3 Ring of Integers and Discriminant

Let K be a number field of degree n. The set of algebraic integers belonging
to K is clearly a subring of K, which we denote by ZK (many authors denote
it by OK). It is naturally called the ring of algebraic integers of K.

Proposition 3.3.11. Let K be a number field of degree n. The ring ZK is
a free Z-module of rank n.

Proof. Let α1, . . . , αn be a Q-basis of K. Multiplying if necessary each
αi by some nonzero element of Z, we may assume that αi ∈ ZK for all i.
Let Λ be the free Z-module of rank n generated by the αi, so that Λ ⊂
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ZK . By Proposition 3.1.18, we know that the map (x, y) �→ TrK/Q(xy) is a
nondegenerate Q-bilinear form from K ×K to Q. We can thus consider the
dual basis β1, . . . , βn of α1, . . . , αn, i.e., the unique Q-basis such that for all
i, j we have TrK/Q(αiβj) = δi,j , where δ is the Kronecker symbol. Denote by
Λ∗ the free Z-module of rank n generated by the βj . Since for any y ∈ K we
have

y =
∑

1�j�n

TrK/Q(αjy)βj

(see why?) it is clear that y ∈ Λ∗ if and only if for all j, TrK/Q(αjy) ∈ Z. It
follows that if y ∈ ZK then y ∈ Λ∗. We have thus proved the double inclusion

Λ ⊂ ZK ⊂ Λ∗ .

Since Λ and Λ∗ are free Z-modules of the same rank n, it follows from Corol-
lary 2.1.5 that ZK is also a free Z-module of rank n, proving the proposition.

��

We want to give a measure of the size of ZK . For this we introduce the
following definition.

Definition 3.3.12. Let O be a free submodule of rank n of K. We de-
fine the discriminant disc(O) of O as the determinant of the n × n matrix
(TrK/Q(ωiωj))i,j, where (ωi)1�i�n is any Z-basis of O. By abuse of language
disc(ZK) is simply called the discriminant of K and denoted by disc(K) or
sometimes simply d(K).

Note that if (ω′
i) is another Z-basis of O, the base-change matrix from

the ωi to the ω′
i is an invertible integral matrix P , hence a matrix with

determinant equal to ±1. Since

det(TrK/Q(ω′
iω

′
j)) = det(P )2 det(TrK/Q(ωiωj)) = det(TrK/Q(ωiωj)) ,

we see that the definition makes sense. Furthermore, since ωiωj is an alge-
braic integer, its trace is integral, hence disc(O) ∈ Z, and since the ωi are
linearly independent, we have disc(O) �= 0. Finally, using the same argu-
ment as above it is clear that if [ZK : O] = f then disc(O) = disc(K)f2.
For instance, if α is an algebraic integer with minimal monic polynomial
A(X), then (1, α, . . . , αn−1) is a Z-basis of Z[α], and it is easily checked that
disc(Z[α]) is equal to the discriminant of the polynomial A(X) in the usual
sense, so that disc(A) = disc(K)f2 with f = [ZK : Z[α]].

It is important to generalize the above notions to the case of a relative
extension L/K of number fields. The main difficulty here is that ZK is not
necessarily a principal ideal domain (PID). It is always, however, a Dedekind
domain, and the structure of finitely generated torsion-free modules over
Dedekind domains is almost as nice as that over a PID. We state the following
only for an extension L/K, but it is true more generally.
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Proposition 3.3.13. Let I be a fractional ideal of L.

(1) There exist elements ωi ∈ I and fractional ideals ai of K for 1 � i � n
such that I =

⊕
1�i�n aiωi in an evident sense.

(2) The fractional ideal of K defined by

d(I) = det((TrL/K(ωiωj))1�i,j�n)
∏

1�i�n

a2
i

is independent of the ωi and ai.

Proof. Left to the reader (Exercise 16). ��

When I = ZL is the ring of integers of L, we write d(L/K) instead of
d(ZL) and call it the relative discriminant of L/K. It is clear that it partially
generalizes the usual notion of discriminant, in that d(L/Q) = disc(L)Z.

3.3.4 Ideals and Units

This is the most important part of the section on ring-theoretic properties
of number fields, and was in fact historically the main motivation for the
creation of algebraic number theory by Kummer. We recall without proof
the following basic definitions and results.

Definition 3.3.14. Let K be a number field. An ideal I of ZK is a sub-
ZK-module of ZK ; in other words, it is an additive subgroup of ZK such that
αx ∈ I for all α ∈ ZK and x ∈ I. By extension, a fractional ideal is a nonzero
ZK-module of the form I/d, where I is an ideal and d ∈ K∗. A nonzero ideal
will be called an integral ideal.

If I and J are two ideals we can naturally define their sum (as a sum
of ZK-modules), but also their product: if I and J are ideals then IJ is the
smallest ideal containing xy for all x ∈ I and y ∈ J , in other words, the set
of finite Z-linear combinations

∑
xiyi with xi ∈ I and yi ∈ J .

Proposition 3.3.15. Let K be a number field such that [K : Q] = n.

(1) Any fractional ideal is a free Z-module of rank n, and an integral ideal
has finite index in ZK .

(2) The set of fractional ideals forms an abelian group under ideal multipli-
cation.

Definition 3.3.16. A prime ideal p of ZK is an integral ideal different from
ZK such that ZK/p is an integral domain.

Since ZK/p is finite when p �= 0, and since every finite integral domain is
a field, it follows that any nonzero prime ideal p is a maximal ideal. In other
words, p ⊂ I ⊂ ZK for an ideal I implies that I = p or I = ZK . Since the zero
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ideal is always excluded, when we talk of a prime ideal p in the context of
number fields, we always implicitly assume that p is nonzero, in other words,
that p is a maximal ideal.

The first important theorem concerning ideals in number fields is the
existence and uniqueness of prime ideal factorization.

Theorem 3.3.17. Let I be a fractional ideal of K. There exists a factoriza-
tion

I =
g∏

i=1

p
vi
i ,

where the pi are distinct prime ideals and vi ∈ Z \ {0}, and this factorization
is unique up to permutation of the factors.

This theorem is one of the most important consequences of the fact that
ZK is a Dedekind domain.

In Kummer’s study of Fermat’s last theorem, as in many other Diophan-
tine equations, one side of the equation can be factored algebraically, and
the other side is a perfect power. If we are in Z, or more generally in a PID,
we can conclude by unique factorization that the algebraic factors are them-
selves perfect powers, at least up to units (more on units below). Unfortu-
nately, most number rings are not PIDs. However, they are always Dedekind
domains, and as such by the above theorem they have unique factorization
into prime ideals. Thus each of the algebraic factors is a perfect power of an
ideal. Thus assume that we know that an ideal a is such that an = γZK for
some element γ. This is where the second basic theorem on ideals and units
of algebraic number theory comes into play.

Theorem 3.3.18 (Finiteness of the class group). Define two fractional
ideals a and b to be equivalent if there exists α ∈ K∗ such that b = αa. This
equivalence relation is compatible with the multiplicative group structure of
ideals, and the quotient group is a finite abelian group.

The group of ideal classes of K is denoted by Cl(K), and the class number,
in other words |Cl(K)|, is denoted by h(K). Standard group theory implies
that for any ideal a the ideal ah(K) has the form βZK for some element β of
ZK . Thus if we know that an = γZK , then if n and h(K) are coprime, the
extended Euclidean algorithm implies that a itself has the form a = αZK for
some α ∈ ZK . It follows that αnZK = γZK . Thus, even though we are not
working in a PID, the conclusion is very similar: the principal ideal generated
by γ is indeed equal to the nth power of a principal ideal.

This can be refined further. The above equality can be written γ = εαn,
where ε is a unit of ZK , in other words an element of ZK such that ε−1 ∈ ZK .
The group of units of K will be denoted by U(K). We now need the third
basic theorem on ideals and units.
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Theorem 3.3.19 (Unit group structure). There exist units ε0, ε1, . . . , εr

having the following properties:

(1) The group of roots of unity in K is the finite cyclic group (of order w(K),
say) generated by ε0.

(2) Any unit ε of K can be written in a unique way as

ε =
∏

0�i�r

εni
i ,

with ni ∈ Z for 1 � i � r and 0 � n0 < w(K).

The rank of the unit group is thus equal to r, and we have r = r1 + r2 − 1,
where (r1, r2) is the signature of K.

Such a family (ε1, . . . , εr) (with ε0 not included) is called a basis of fun-
damental units of K.

A last easy but important remark concerning roots of unity: if K is not
a totally complex number field, in other words if r1 > 0, then w(K) = 2,
so that the only roots of unity are ±1, since all the embeddings of all other
roots of unity in C are nonreal.

3.3.5 Decomposition of Primes and Ramification

Definition and Proposition 3.3.20. Let L/K be an extension of number
fields, let p be a prime ideal of K, and let

pZL =
g∏

i=1

P
ei
i

be its prime ideal decomposition in ZL, where ei � 1 and the prime ideals Pi

are above p.

(1) The exponent ei is denoted by e(Pi/p) and is called the ramification index
of Pi.

(2) The degree of the finite field extension [ZL/Pi : ZK/p] is called the resid-
ual degree, and denoted by f(Pi/p). If p = pZ, we call it simply the
degree of Pi.

(3) We have the equality [L : K] =
∑

1�i�g e(Pi/p)f(Pi/p).
(4) We say that Pi is ramified if e(Pi/p) � 2, and we say that p itself is

ramified if there exists a ramified Pi above p.

An easy but fundamental result concerning ramification and residual in-
dices is their transitivity.

Proposition 3.3.21. Let M/L and L/K be extensions of number fields, p

an ideal of K, PL an ideal of L above p, and PM an ideal of M above PL.
We have the transitivity relations:

e(PM/p) = e(PM/PL)e(PL/p) and f(PM/p) = f(PM/PL)f(PL/p) .
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Proof. Left to the reader (Exercise 18). ��

A simple case in which it is easy to obtain explicitly the prime ideal decom-
position is the following, which we state only in the absolute case, although
it is immediate to generalize to relative extensions; see [Coh1], Proposition
2.3.9.

Proposition 3.3.22. Let K = Q(θ) be a number field, where θ is an alge-
braic integer, and denote by T (X) its (monic)minimal polynomial. Let f be
the index of θ, i.e., f = [ZK : Z[θ]]. Then for any prime p not dividing f we
can obtain the prime decomposition of pZK as follows. Let

T (X) ≡
g∏

i=1

Ti(X)ei (mod p)

be the decomposition of T into monic irreducible factors in Fp[X]. Then

pZK =
g∏

i=1

p
ei
i ,

where
pi = (p, Ti(θ)) = pZK + Ti(θ)ZK ,

with Ti any monic lift of Ti. Furthermore, the residual index fi is equal to
the degree of Ti.

A basic result concerning ramification is the following.

Proposition 3.3.23. Let L/K be an extension of number fields, p a prime
ideal of K, and P a prime ideal of L above p. Then p is ramified in the
extension L/K if and only if it divides the relative discriminant d(L/K).

Note that there exist much more precise results concerning ramification,
which will not be needed.

The next lemma is technical but is needed elsewhere.

Lemma 3.3.24. Let L = K(θ), where θ is an algebraic integer, and denote
by f = [ZL : ZK [θ]] the index of ZK [θ] in ZL. Let p be a prime ideal of
ZK and let P be a prime ideal of ZL above p, and assume that there exist x
and y in ZK such that the ideal xZK + yZK is coprime to p and such that
P | x + yθ. Then either p | f or f(P/p) = 1; in other words, P is a prime
ideal of relative degree one.

Please do not confuse f (traditionally denoted in this way because of the
German word Führer) with the residual index f(P/p).

Proof. Clearly p � y; otherwise, P | x, and hence p | x and p | y, contradict-
ing the fact that the ideal xZK +yZK is coprime to p. Assume that p � f , and
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let y1 be an inverse of y modulo p and f1 an inverse of f modulo p. We have
θ ≡ −xy1 (mod P). On the other hand, if α ∈ ZL, then fα ∈ ZK [θ], hence
there exists a polynomial P ∈ ZK [X] such that α ≡ f1P (−xy1) (mod P).
Thus any element of ZL is congruent modulo P to an element of ZK ; hence
the natural injection from ZK/p to ZL/P is an isomorphism, proving that
f(P/p) = 1. ��

Note that it is immediate to replace the condition p | f by p | f, where f

is the index-ideal of ZK [θ] in ZL; see Definition 1.2.33 of [Coh1].

3.3.6 Galois Properties of Prime Decomposition

If the extension L/K is Galois, the decomposition of a prime ideal in an
extension is as regular as we can dream of.

Proposition 3.3.25. Let L/K be a Galois extension, let G = Gal(L/K),
and let p be a prime ideal of ZK . The decomposition of p in L is given by
pZL =

∏
1�i�g Pe

i , where all the ramification indices e(Pi/p) are equal to a
single integer e, all the residual degrees f(Pi/p) are equal to a single integer
f , with efg = n = [L : K]. Furthermore, the action of G on the ideals Pi

above p is transitive. In other words, for any i and j there exists σ ∈ G such
that Pj = σ(Pi).

Proof. Left to the reader (Exercise 18). ��

Definition 3.3.26. Keep the same notation. If P is a prime ideal of L above
p the decomposition group D(P/p) is the group of σ ∈ G such that σ(P) = P.
The inertia group I(P/p) is the group of σ ∈ G such that σ(x) ≡ x (mod P)
for all x ∈ ZL.

It is clear that I(P/p) ⊂ D(P/p) ⊂ G.

Proposition 3.3.27. We have |D(P/p)| = e(P/p)f(P/p), |I(P/p)| =
e(P/p), and D(P/p)/I(P/p) is canonically isomorphic to the (cyclic)Galois
group of the finite field extension Gal((ZL/P)/(ZK/p)).

Proof. Left to the reader (Exercise 18). ��

Note in particular that p is unramified if and only if I(P/p) is the trivial
group for one (or for all) prime ideal(s) P above p.

We will also need the following results dealing with prime decomposition
in Galois extensions.

Lemma 3.3.28. Let K1/K and K2/K be two extensions of number fields,
and let p be a prime ideal of ZK . Denote by P a prime ideal of the compositum
K1K2 above p, and by p1 and p2 the prime ideals below P in K1 and K2 re-
spectively (which are also above p). Assume that K1/K is a Galois extension.
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Then K1K2/K2 is a Galois extension, and the restriction map to K1 induces
an injective group homomorphism from Gal(K1K2/K2) to Gal(K1/K), from
D(P/p2) to D(p1/p), and from I(P/p2) to I(p1/p). In particular, e(P/p2)
divides e(p1/p), so that if p is unramified in K1/K then all the prime ideals
above p in K2 are unramified in K1K2/K2.

Proof. Let σ be a K2-embedding of K1K2 into C, so that σ is the identity
on K2, and σ|K1 is a K-embedding of K1 into C. Since K1/K is Galois,
σ(K1) ⊂ K1, and since σ(K2) = K2 we have σ(K1K2) ⊂ K1K2, so that
K1K2/K2 is a Galois extension. The map σ �→ σ|K1 from Gal(K1K2/K2)
is evidently a group homomorphism. If σ belongs to the kernel of this map
then σ is the identity on K2 and on K1, hence on K1K2, proving that the
map is injective. We have thus shown that the restriction to K1 map gives
an injection from Gal(K1K2/K2) to Gal(K1/K).

Now let σ ∈ D(P/p2) (the decomposition group of P/p2), so that σ(P) ⊂
P. It follows that

σ(p1) = σ(P ∩K1) ⊂ σ(P) ∩ σ(K1) ⊂ P ∩K1 = p1 ,

so that σ|K1 ∈ D(p1/p). Thus our injective map restricts to an injective map
from D(P/p2) to D(p1/p).

Similarly, let σ ∈ I(P/p2) (the inertia group of P/p2), so that σ(x) ≡ x
(mod P) for all x ∈ ZK1K2 . In particular, if x ∈ ZK1 ⊂ ZK1K2 we have
σ(x) − x ∈ P ∩ K1 = p1, so that σ|K1 ∈ I(p1/p). Thus our injective map
restricts also to an injective map from I(P/p2) to I(p1/p). In particular,
e(P/p2) = |I(P/p2)| divides e(p1/p) = |I(p1/p)| as claimed. ��

Let pL be a prime ideal above p. By abuse of language, we will say that
pL/p is totally split if e(pL/p) = f(pL/p) = 1. This corresponds to the usual
definition when L/K is Galois.

Lemma 3.3.29. Let N/K be a Galois extension of number fields with G =
Gal(N/K), let H be a (not necessarily normal) subgroup of G, and let L =
NH be the corresponding subfield, so that Gal(N/L) = H by Galois theory.
Let p be a prime ideal of K, pL a prime ideal of L above p, and P a prime
ideal of N above pL. Then

e(pL/p) = [I(P/p) : I(P/p) ∩H] and

e(pL/p)f(pL/p) = [D(P/p) : D(P/p) ∩H] .

In particular, pL/p is unramified if and only if I(P/p) ⊂ H, and pL/p is
totally split if and only if D(P/p) ⊂ H.

Proof. By transitivity of ramification and residual indices we have

|I(P/p)| = e(P/p) = e(pL/p)e(P/pL) = e(pL/p)|I(P/pL)|
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and similarly

|D(P/p)| = e(P/p)f(P/p) = e(pL/p)f(pL/p)e(P/pL)f(P/pL)
= e(pL/p)f(pL/p)|D(P/pL)| .

However, we have by definition I(P/pL) = I(P/p) ∩ H and D(P/pL) =
D(P/p) ∩H, so the lemma follows. ��

Lemma 3.3.30. Let K1/K and K2/K be two extensions of number fields,
and let p be a prime ideal of ZK . Denote by P a prime ideal of the compositum
K1K2 above p, and by p1 and p2 the prime ideals below P in K1 and K2

respectively (which are also above p).

(1) If p1/p is unramified then e(P/p) = e(p2/p). In particular, if p1/p and
p2/p are unramified then P/p is unramified.

(2) If p1/p is totally split then f(P/p) = f(p2/p). In particular, if p1/p and
p2/p are totally split then P/p is totally split.

Proof. Denote by N the Galois closure of K1K2/K, set Hi = Gal(N/Ki)
for i = 1, 2, so that Gal(N/K1K2) = H1 ∩H2, and let PN be a prime ideal
of N above P.

(1). By Lemma 3.3.29 we have I(PN/p) ⊂ H1, so that

I(PN/p) ∩ (H1 ∩H2) = (I(PN/p) ∩H1) ∩H2 = I(PN/p) ∩H2 .

Thus, once again by Lemma 3.3.29 we have

e(P/p) = [I(PN/p) : I(PN/p) ∩ (H1 ∩H2)]
= [I(PN/p) : I(PN/p) ∩H2] = e(p2/p) ,

proving (1).
(2). Similarly, here we have D(PN/p) ⊂ H1, so that the same reason-

ing gives e(P/p)f(P/p) = e(p2/p)f(p2/p). By (1) we already know that
e(P/p) = e(p2/p), so the lemma follows. ��

3.4 Quadratic Fields

3.4.1 Field-Theoretic and Basic Ring-Theoretic Properties

By definition a quadratic field K is an extension of degree 2 of Q, hence by
Kummer theory (or trivially directly), of the form K = Q(

√
d), where d is a

squarefree integer different from 1. The extension K/Q is clearly Galois with
Galois group isomorphic to Z/2Z, generated by σ such that σ(a + b

√
d) =

a− b
√

d for a, b in Q. When d < 0 we say that K is an imaginary quadratic
field, while when d > 0 we naturally say that K is a real quadratic field. Note



3.4 Quadratic Fields 137

that in the imaginary case σ is complex conjugation, but in the real case σ
is a highly nontrivial map from a topological standpoint.

The field-theoretic properties of quadratic fields are thus very simple. We
now recall the basic ring-theoretic properties.

Proposition 3.4.1. Let K = Q(
√

d) be a quadratic field with d squarefree,
and let ZK be its ring of integers. A Z-basis of ZK is given by (1, ω), where
ω =

√
d when d ≡ 2 or 3 modulo 4, while ω = (1+

√
d)/2 when d ≡ 1 (mod 4).

In the first case the discriminant D of K is equal to 4d; in the second case it
is equal to d.

Proof. Although the proof is simple, it is not completely trivial, and the
reader who has never seen it should try it for himself before reading on. Let
α = a+b

√
d ∈ ZK with a, b in Q. The characteristic polynomial of α is equal

to (X−a)2− b2d = X2−2aX +a2− b2d; hence α ∈ ZK if and only if 2a ∈ Z
and a2− b2d ∈ Z. If we write 2b = p/q with p and q coprime integers we thus
have q2 | q2((2a)2−4(a2−b2d)) = p2d, and since q and p are coprime we have
q2 | d, so that q = ±1 since d is squarefree, showing that we also have 2b ∈ Z.
We can thus write a = A/2 and b = B/2 with A and B in Z, satisfying
automatically the condition 2a ∈ Z, and the condition a2 − b2d ∈ Z gives
A2−B2d ≡ 0 (mod 4), which is immediately seen to imply either that A and
B are both even, or that they are both odd when d ≡ 1 (mod 4), proving
the first statement. The second follows from Definition 3.3.12 applied to the
basis (1, ω). ��

Definition 3.4.2. An integer D is called a fundamental discriminant if D
is either equal to 1 or to the discriminant of a quadratic field, in other words,
if either D ≡ 1 (mod 4) is squarefree, or D ≡ 8 or 12 modulo 16 and D/4 is
squarefree.

We will often exclude D = 1 from the set of fundamental discriminants,
but this will be explicitly mentioned.

Remark. Thanks to the above proposition, it is clear that if D is the dis-
criminant of K we have K = Q(

√
D) and ZK = Z[ω] with ω = (D +

√
D)/2,

or more generally, ω = (δ+
√

D)/2 for any integer δ such that δ ≡ D (mod 2).
This notation has the advantage of being completely uniform, and will there-
fore be systematically used, instead of notation using the squarefree integer
d.

Proposition 3.4.3. Let K = Q(
√

D) be a quadratic field of discriminant
D, set ω = (D +

√
D)/2, and let p be a prime number. The prime ideal

decomposition of pZK is given as follows.

(1) If p | D then p is ramified; in other words, pZK = p2, and we have
p = pZK + ωZK except when p = 2 and D ≡ 12 (mod 16), in which case
p = pZK + (ω + 1)ZK .
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(2) If p is odd and
(

D
p

)
= −1, or p = 2 and D ≡ 5 (mod 8), then p is inert;

in other words, pZK is a prime ideal of K.
(3) If p is odd and

(
D
p

)
= 1, or p = 2 and D ≡ 1 (mod 8), then p is split;

in other words, pZK = p+p−, where p+ and p− are distinct prime ideals
given by p± = pZK + (ω − (D ± b)/2)ZK , where b is any solution to the
congruence b2 ≡ D (mod 4p).

Proof. Since ZK = Z[ω], this follows immediately from Proposition 3.3.22
and is left to the reader (Exercise 21). ��

3.4.2 Results and Conjectures on Class and Unit Groups

The unit group of quadratic fields is also easily described as follows.

Proposition 3.4.4. Let K be a quadratic field of discriminant D, and let
UK be its unit group, in other words, the group of invertible elements of ZK .

(1) If D < −4 we have UK = {±1}, hence |UK | = 2.
(2) If D = −4 we have UK = {±1,±i} = {ik/ 0 � k � 3} (where i2 = −1),

hence |UK | = 4.
(3) If D = −3 we have UK = {±1,±ρ,±ρ2} = {(−ρ)k/ 0 � k � 5} (where

ρ = (−1 +
√
−3)/2 is a primitive cube root of unity), hence |UK | = 6.

(4) If D > 0 there exists ε ∈ UK (called a fundamental unit) such that UK =
{±1} × εZ, in other words, such that any η ∈ UK can be written in a
unique way as η = ±εk for some sign ± and some k ∈ Z. In addition, ε
is unique up to change of sign and change of ε into ε−1.

Let εD be a fundamental unit of the real quadratic field K = Q(
√

D). By
definition the regulator R(D) of K is | log(|ε|)|, which does not depend on
the choice of ε. Denote by h(D) the class number of K, and finally by ω(D)
the cardinality of the torsion group of UK (hence equal to 2, 4, 6, or 2 in the
four cases of the proposition). The Dirichlet class number formula, which we
do not prove, is the following.

Proposition 3.4.5. We have

h(D)R(D)
w(D)

=
|D|1/2

csign(D)

∑
n�1

(
D
n

)
n

=
|D|1/2

csign(D)
L(
(

D
.

)
, 1) ,

where c+ = 2 and c− = π, where by convention we set R(D) = 1 if D < 0,
and where L(

(
D
.

)
, 1) is the value at 1 of the L-series associated with the

Legendre–Kronecker character
(

D
n

)
.

We will study in detail L-series in Chapter 10, and in particular we will
see that L(

(
D
.

)
, 1) = O(log(|D|)). On the other hand, it is immediate to see

from the definition that R(D) > log(D)/2 + o(1) for D > 0. Since h(D) is
an integer, these inequalities imply that h(D) = O(|D|1/2 log(|D|)) and that
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R(D) = O(D1/2 log(D)). Apart from the factor log(|D|), these upper bounds
are close to best possible. However, lower bounds are much more difficult to
obtain, apart from the trivial lower bound R(D) > log(D)/2 + o(1). There
are many conjectures and a few results on these subjects, some of them quite
deep.

Concerning the unit group, and in particular the size of the regulator, the
main conjecture, which is at present totally out of reach, is as follows.

Conjecture 3.4.6. For any α < 1/2 there exists an infinite sequence of real
quadratic fields Q(

√
Dn) such that R(Dn) > cDα

n .

In fact, even α = 1/2 may be possible. As far as the author is aware, the
best (very weak) result in this direction is due to Yamamoto; see [Yam]:

Theorem 3.4.7. There exists an infinite sequence of real quadratic fields
Q(
√

Dn) such that R(Dn) > c log(Dn)3 for some strictly positive constant c.

Concerning the size of the class group, the situation is evidently quite
different for imaginary and real quadratic fields, since in the latter case the
size of R(D) comes into play (recall that the quantity that plays a common
role is h(D)R(D)). In the imaginary quadratic case, the situation is “almost”
proved, thanks to the following theorem of Siegel, which is the analogue (and
stronger) version of the above conjecture for R(D) for real quadratic fields.

Theorem 3.4.8 (Siegel). For any α < 1/2 there exists a constant cα > 0
such that for all quadratic fields of discriminant D we have h(D) > cα|D|α for
imaginary quadratic fields and h(D)R(D) > cαDα for real quadratic fields.

This essentially solves the problem for imaginary quadratic fields, since
it can be shown that it cannot be true that h(D) > c1/2|D|1/2 for some
c1/2 > 0, although this is almost certainly true for an infinite sequence of D.

Unfortunately there is a serious drawback in Siegel’s theorem, which is the
notion of “ineffectivity.” Intrinsically, it is impossible using Siegel’s method of
proof to find an explicit value for cα for any α > 0 or, for that matter, to find
any explicit lower bound for h(D) tending to infinity with |D|. This latter
problem had to wait for much deeper methods of Gross–Zagier, building on
previous work of Goldfeld, to indeed obtain an explicit bound h(D) > f(D),
where f(D) tends explicitly to infinity (slowly) with D.

Remarks. (1) We will use explicitly the Gross–Zagier formula in Section
8.6 for computing Heegner points.

(2) Although the Goldfeld–Gross–Zagier lower bound is explicit, it is still
necessary to do quite a lot of work to find, for instance, all imaginary
quadratic fields with h(D) � B for some given bound B. This has been
done for B = 100 by M. Watkins.

For real quadratic fields, the most important conjecture, also totally out
of reach at present, is certainly the following.
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Conjecture 3.4.9. There exist an infinite number of real quadratic fields
of class number 1. More precisely, among the real quadratic fields Q(

√
p)

with prime discriminant p ≡ 1 (mod 4) there should exist a strictly positive
proportion of class number 1.

Thanks to Siegel’s theorem, this means that the dominating term in the
quantity h(D)R(D) should be R(D), in accordance with the above conjecture
on the size of R(D).

Note that it is not even known whether there exists an infinite number
of nonisomorphic number fields of class number 1, with no limitation on the
degree.

Essentially nothing is known concerning the above conjecture. How-
ever, the so-called Cohen–Lenstra heuristics give conjectural answers to such
questions, and in particular, the positive proportion of class-number-1 real
quadratic fields of prime discriminant should be equal to an explicit con-
stant close to 0.75446, in excellent agreement with tables; see [Coh-Len] and
[Coh-Mar].

3.5 Cyclotomic Fields

Apart from quadratic fields, probably the most important class of number
fields is that of cyclotomic fields. There are at least two related reasons for
this. The first is that the basic algebraic structure of such fields (ring of
integers, discriminant, decomposition of primes) can be completely and easily
described, as well as a large part of the unit group. On the other hand, as usual
the class group is more mysterious. The second reason for their importance is
the Kronecker–Weber theorem, which states that every Abelian extension of
Q is a subfield of a cyclotomic field, hence inherits most of its nice properties;
see Theorem 3.5.13. We begin by studying in some detail the cyclotomic
polynomials Φn(X).

3.5.1 Cyclotomic Polynomials

To study most easily cyclotomic polynomials we need some very elementary
properties of simple arithmetic functions such as the Möbius function, Euler’s
φ function and the von Mangoldt function Λ(n) that the reader can find for
instance at the beginning of Chapter 10.

Definition 3.5.1. We define the cyclotomic polynomials Φn(X) as the unique
rational functions satisfying∏

d|n
Φd(X) = Xn − 1 ,

in other words by Φ1(X) = X − 1 and the induction Φn(X) = (Xn −
1)/
∏

d|n, 1�d<n Φd(X).
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Proposition 3.5.2. (1) We have

Φn(X) =
∏
d|n

(Xd − 1)µ(n/d) ,

where µ is the Möbius function (see Definition 10.1.4).
(2) Denote by Un the group of nth roots of unity in C and by U ′

n the subset
of primitive nth roots of unity in C, in other words, the numbers ζa

n for
0 � a < n, gcd(a, n) = 1. We then have

Φn(X) =
∏

ζ∈U ′
n

(X − ζ) .

(3) Φn(X) is a monic polynomial in Z[X] of degree φ(n), where φ is Euler’s
function.

Proof. (1). Let us show that the right-hand side satisfies the defining
property of Φn: it is equal to X − 1 for n = 1, and otherwise∏

d|n

∏
e|d

(Xe − 1)µ(d/e) =
∏
e|n

(Xe − 1)S(e) ,

where
S(e) =

∑
d, e|d|n

µ(d/e) =
∑

k|n/e

µ(k) ,

which by definition of µ is equal to 0 unless n/e = 1, in which case it is
equal to 1. Note that (1) is a special case of the Möbius inversion formula
(Proposition 10.1.5).

(2) and (3). Let us define fn(X) =
∏

ζ∈U ′
n
(X − ζ). Since ζ ∈ Un is a

primitive dth root of unity for a unique d | n, it is clear that
∏

d|n fd(X) =
Xn−1; hence fn(X) = Φn(X). It follows that Φn(X) is a polynomial (this was
not clear from the inductive definition), that it is monic, and that deg(Φn) =
|U ′

n| = φ(n), since it is the number of k ∈ [0, n− 1] such that gcd(k, n) = 1.
Finally, from (1) we see that Φn(X) is the quotient of two monic polynomials
with integer coefficients, and since we now know that it is a polynomial, it
also has integer coefficients. ��

Remark. We will prove later (Proposition 3.5.10 or Corollary 4.1.36) that
the polynomials Φn(X) are irreducible in Q[X].

Lemma 3.5.3. Let m ∈ Z�1. For all d | m we have Φm(X) | Φm/d(Xd).

Proof. For any a we have Xd − ad =
∏

k mod d(X − ζk
d a), so applying this

to a = ζi
m, we deduce that

Xd − ζi
m/d =

∏
k mod d

(X − ζk(m/d)+i
m ) =

∏
j mod m

j≡i (mod m/d)

(X − ζj
m) ,
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so that by definition of Φm/d we have

Φm/d(Xd) =
∏

j mod m
gcd(j,m/d)=1

(X − ζj
m) .

Since, on the other hand,

Φm(X) =
∏

j mod m
gcd(j,m)=1

(X − ζj
m) ,

the lemma follows. ��

Proposition 3.5.4. For all n > 1 we have

Φn(1) =
∏

a∈(Z/nZ)∗

(1− ζa
n) =

{
p if n = pk ,
1 otherwise.

Proof. By definition of the Möbius function (Definition 10.1.4), for n > 1
we have

∑
d|n µ(d) =

∑
d|n µ(n/d) = 0. It follows from Proposition 3.5.2 (1)

that Φn(X) =
∏

d|n((Xd − 1)/(X − 1))µ(n/d), so that

Φn(1) =
∏
d|n

dµ(n/d) .

It follows from Proposition 10.1.14 that log(Φn(1)) =
∑

d|n µ(n/d) log(d) =
Λ(n), where Λ is the von Mangoldt function, so the proposition follows from
the explicit formula for Λ(n) also given by Proposition 10.1.14. ��

Proposition 3.5.5. (1) Let a and b be integers coprime to n. The elements
Ca,b = (1− ζa

n)/(1− ζb
n) are units, called cyclotomic units.

(2) If n = pk is a power of a prime p, there exists a unit u such that (1 −
ζn)φ(pk ) = up.

(3) If n is not a prime power then 1− ζn is a unit.

Proof. (1). Since a and b are coprime to n there exists c such that a ≡ bc
(mod n). It follows that

Ca,b =
1− ζbc

n

1− ζb
n

=
∑

0�j<c

ζbj
n

is an algebraic integer, and similarly 1/Ca,b = Cb,a is an algebraic integer,
proving that Ca,b is a unit.

(2). If n = pk, by Proposition 3.5.4 we have
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p =
∏

a∈(Z/nZ)∗

(1− ζn)Ca,1 = (1− ζn)φ(n)/u ,

where 1/u =
∏

a∈(Z/nZ)∗ Ca,1, and u is a unit by (1).

(3). By Proposition 3.5.4, if n is not a prime power we have
∏

a∈(Z/nZ)∗(1−
ζa
n) = Φn(1) = 1; hence all the 1− ζa

n divide 1, hence are units. ��

For the next result, we recall the definition of the resultant of two poly-
nomials.

Definition 3.5.6. Let K be a commutative field, let A and B be two poly-
nomials in K[X] with respective leading terms a and b, and let αi and βj be
the roots of A and B in some algebraic closure of K, repeated with multi-
plicity. We define the resultant R(A,B) of A and B by one of the following
equivalent formulas:

R(A,B) = adeg(B)
∏

i

B(αi) = (−1)deg(A) deg(B)bdeg(A)
∏
j

A(βj)

= adeg(B)bdeg(A)
∏
i, j

(αi − βj) .

It is clear that R(A,B) = 0 if and only if A and B have a common root,
hence if and only if gcd(A,B) is not constant. Furthermore, the resultant is
clearly multiplicative in A and B, in other words, for instance R(A1A2, B) =
R(A1, B)R(A2, B). We give without proof the following slightly less trivial
proposition.

Proposition 3.5.7. Let O be a subring of K, and assume that A and B are
in O[X].

(1) We have R(A,B) ∈ O.
(2) There exist polynomials U(X) and V (X) in O[X] such that

U(X)A(X) + V (X)B(X) = R(A,B) .

Note that the second statement of the proposition does not simply follow
from the extended Euclidean algorithm.

Proposition 3.5.8. Let 1 � m < n. Then R(Φm,Φn) = 1, unless m | n and
n/m = pa is a power of a prime p, in which case R(Φm,Φn) = pφ(m).

Proof. Assume first that gcd(m,n) = 1 and that m > 1. Thus Φm(X) |
(Xm−1)/(X−1), so by multiplicativity of the resultant R(Φm,Φn) | R(Xm−
1,Φn)/R(X − 1,Φn). By definition of the resultant we have

R(Xm − 1,Φn) = ±NQ(ζn )/Q(ζm
n − 1) .

Since m and n are coprime, ζm
n − 1 is a conjugate of ζn − 1, hence
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R(Xm − 1,Φn) = ±NQ(ζn )/Q(ζn − 1) = ±R(X − 1,Φn) ,

proving that R(Φm,Φn) = ±1 when gcd(m,n) = 1 and m > 1.
If gcd(m,n) = 1 and m = 1, we simply have R(Φm,Φn) = R(X−1,Φn) =

Φn(1), and by Proposition 3.5.4 this is equal to 1 unless n = pk for some prime
p and k � 1, in which case it is equal to p.

Consider now the general case, and set d = gcd(m,n). By Lemma 3.5.3 we
know that Φm(X) | Φm/d(Xd) and Φn(X) | Φn/d(Xd), and since the resultant
is multiplicative it follows that R(Φm,Φn) | R(Φm/d(Xd),Φn/d(Xd)). In ad-
dition, it is clear that we also have R(Φm/d(Xd),Φn/d(Xd)) | R(Φm/d,Φn/d)d.
Since gcd(m/d, n/d) = 1, by what we have shown in the coprime case we de-
duce that R(Φm,Φn) = 1, except perhaps when m/d = 1 (in other words
m | n), and n/d = n/m = pk is a prime power. We leave to the reader the
proof that in this case R(Φm,Φn) = ±pφ(m), and that the signs of the resul-
tants are always positive (see Exercise 22). ��

3.5.2 Field-Theoretic Properties of Q(ζn)

Definition 3.5.9. Let n � 1 and let ζn be a primitive nth root of unity. The
nth cyclotomic field is the field Kn = Q(ζn).

Since ζ4m+2 = −ζ2m+1, we have K4m+2 = K2m+1, so we will in general
assume that n �≡ 2 (mod 4). The basic field-theoretic properties of cyclotomic
fields are summarized in the following proposition.

Proposition 3.5.10. (1) The polynomial Φn(X) is irreducible in Q[X]; in
other words, Φn(X) is the minimal polynomial of ζn over Q, and [Q(ζn) :
Q] = φ(n), Euler’s phi function.

(2) The extension Q(ζn)/Q is a Galois extension, the Galois group G being
canonically isomorphic to (Z/nZ)∗ by the map that sends a ∈ (Z/nZ)∗

to the automorphism σa ∈ G such that σa(ζn) = ζa
n.

Proof. (I thank J.-F. Jaulent for the following proof of this very classical
result.) Let P be an irreducible factor of Φn in Q[X], let ζ be a root of P ,
and let p be a prime number such that p � n. I claim that ζp is also a root
of P . Indeed, assume otherwise, and let Q be the minimal monic polynomial
of ζp over Q, so that Q ∈ Z[X]. Since ζp is not a root of P we have P �= Q;
hence the irreducible polynomials P and Q are coprime. On the other hand,
P (X) | Φn(X) | (Xn − 1) by assumption, and since (ζp)n = 1 we also have
Q(X) | (Xn − 1), hence P (X)Q(X) | (Xn − 1) since P and Q are coprime.
On the other hand, ζ is a root of Q(Xp), so that P (X) | Q(Xp), and using

to denote reduction modulo p we deduce that P (X) | Q(Xp) = Q(X)p,
since Q ∈ Fp[X]. In particular, if R is an irreducible factor of P in Fp[X]
then R | Q. But since P (X)Q(X) | (Xn − 1) it follows that R

2 | Xn − 1 in
Fp[X], in other words that Xn−1 is not coprime to its derivative (i.e., is not
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separable), which is absurd since its derivative is nXn−1 and p � n, proving
my claim.

By induction on the number of prime divisors of k counted with multi-
plicity, it follows from my claim that for any k coprime with n, ζk is a root of
P . Since ζ is a root of Φn, hence a primitive nth root of unity, it follows that
all primitive nth roots of unity are roots of P , hence that Φn | P , so that
Φn = P , proving that Φn is irreducible. The other statements of (1) have
been proved in passing, and (2) is an immediate consequence and left to the
reader. ��

Note that the irreducibility of Φpk (X) follows immediately from the Eisen-
stein criterion (see Corollary 4.1.36).

Corollary 3.5.11. There is a one-to-one correspondence between subfields
of Q(ζn) and subgroups of (Z/nZ)∗.

Proof. This is simply Galois theory. ��

Corollary 3.5.12. The subgroup of roots of unity of Q(ζn) is the group of
±ζi

n for 0 � i < n, or equivalently, the subgroup of order 2n generated by
ζ2n = −ζn when n is odd, or the subgroup of order n generated by ζn when
4 | n.

Proof. Let ζm be an mth root of unity in Q(ζn). We thus have Q(ζm) ⊂
Q(ζn), hence by the proposition φ(m) | φ(n). Since φ(m) tends to infinity
with m, it follows that m is bounded as a function of n; hence the group of
roots of unity in Q(ζn) is finite (this is of course true in any number field).
By Corollary 2.4.3 it follows that it is a cyclic subgroup 〈ζm〉 generated by
ζm for some m. We thus have ζn ∈ 〈ζm〉, from which we deduce the following
two consequences: first 〈ζn〉 is a subgroup of 〈ζm〉, so that n | m. Second
Q(ζn) ⊂ Q(ζm); hence Q(ζn) = Q(ζm), so that φ(n) = φ(m). If we write
m =

∏
p pvp with vp � 1 and n =

∏
p pwp we thus have wp � vp for all p,

hence φ(pwp ) � φ(pvp ) for all p. Since φ(n) =
∏

p φ(pwp ) =
∏

p φ(pvp ) we
must have φ(pwp ) = φ(pvp ) for all p. Since vp � 1, it is clear that this means
that wp = vp for p � 3, and that either w2 = v2, or w2 = 0 and v2 = 1. In
the first case m = n with n even (hence 4 | n since n �≡ 2 (mod 4)), and in
the second case m = 2n with n odd, proving the corollary. ��

A special element of (Z/nZ)∗ is the class of −1. Through the bijection
with Gal(Q(ζn)/Q) it corresponds to σ−1, which sends ζ to ζ−1; hence it
corresponds to complex conjugation, which we will denote by ι. The fixed
field of ι is thus the maximal totally real subfield K+ of K = Q(ζn), which
is such that [K : K+] = 2. It is easy to see that K+ = Q(ζ + ζ−1). We will
study it in more detail in Section 3.5.4.

As mentioned above, one of the main reasons for the importance of cy-
clotomic fields is the following:
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Theorem 3.5.13 (Kronecker–Weber). Any Abelian extension K of Q is
a subfield of some cyclotomic field Q(ζn).

Proof. The reader will find a proof of an essential special case of this
theorem in Exercises 28 and 29, from which it is not difficult to deduce the
general statement. ��

Remarks. (1) The smallest n having this property is called the conductor
of the field K.

(2) The corresponding theorem for Abelian extensions of an imaginary
quadratic field is known, and corresponds to the theory of complex mul-
tiplication (the exponential function, which can be used to define cyclo-
tomic fields, is replaced by the Weierstrass ℘ function).

(3) On the other hand, very little is known for Abelian extensions of arbitrary
number fields. This problem is called Kronecker’s Jugendtraum (youthful
dream).

An easy special case of the Kronecker–Weber theorem is the following.

Proposition 3.5.14. Let k = Q(
√

D) be a quadratic field of discriminant
D, and set m = |D|. Then k is a subfield of Q(ζm).

Proof. Set

τ =
∑

x mod m

(
D

x

)
ζx
m ,

where
(

D
x

)
is the Legendre–Kronecker symbol (see Definition 2.2.5). Since it

is a primitive character, Corollary 2.1.47 shows that τ2 = sign(D)m = D.
Thus

√
D = τ ∈ Q(ζm). ��

3.5.3 Ring-Theoretic Properties

To simplify notation we write ζ instead of ζn and K = Q(ζ). We begin with
the following.

Proposition 3.5.15. Assume that n = pk is a prime power. The ideal (1−
ζ)ZK is the unique prime ideal of K above p, and p is totally ramified in K.

Proof. By Proposition 3.5.5, there exists a unit u ∈ K such that (1 −
ζ)φ(pk ) = up. It follows that if we set p = (1−ζ)ZK we have the ideal equality
pφ(k) = pZK , and since [K : Q] = φ(pk), we see that p is the unique prime
ideal above p in K, that it has degree 1, and that it is totally ramified. This
is of course also a consequence of the fact that Φpk (X + 1) is an Eisenstein
polynomial, as we shall see in the next chapter. ��

Definition 3.5.16. The subgroup of the unit group generated by the roots of
unity and the cyclotomic units defined in Proposition 3.5.5 is called the group
of cyclotomic units.
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For the rest of this section we will assume that n = pk is a prime power,
which simplifies some proofs and is the only case that we need.

Proposition 3.5.17. Set ζ = ζpk .

(1) The ring of integers of K = Q(ζ) is equal to Z[ζ].
(2) The discriminant of K is equal to ±pφ(pk )−1.
(3) The only ramified prime in the extension K/Q is p, which is totally ram-

ified as pZK = (1− ζ)φ(pk ).

Proof. Since ζ ∈ ZK we clearly have Z[ζ] ⊂ ZK , so we must show the
reverse inclusion. Since evidently K = Q(ζ) = Q(1 − ζ), by Proposition
3.5.10 the (1− ζ)j for 0 � j < φ(pk) form a Q-basis of K. Thus, let α ∈ ZK ,
and write

α =
∑

0�j<φ(pk )

aj(1− ζ)j with aj ∈ Q .

Denote by p the prime ideal (1− ζ)ZK , so that pZK = pφ(pk ). For aj �= 0 we
thus have

vp(aj(1− ζ)j) = φ(pk)vp(aj) + j .

Since 0 � j < φ(pk) it follows that all these valuations are distinct modulo
φ(pk), and a fortiori they are distinct. Thus vp(α) = φ(pk)vp(aj0)+ j0 for the
index j0 realizing the smallest valuation, hence such that for all j

φ(pk)vp(aj) + j � φ(pk)vp(aj0) + j0 = vp(α) � 0

since α is an algebraic integer. Since j < φ(pk) this implies that vp(aj) � 0
for all j.

On the other hand, by Proposition 3.5.5 the discriminant of the polynomial
Φpk (X) is equal to

D = ±
∏

a,b∈(Z/pk Z)∗, a	=b

(ζa − ζb) = u(1− ζ)φ(pk )(φ(pk )−1) = vpφ(pk )−1 ,

where u and v are units, and since D ∈ Z we have v = ±1. Thus D is a
power of p, proving the formula for the discriminant, that p is the only prime
number which can ramify in K/Q, and also that [ZK : Z[ζ]] is a power of
p. Thus the aj in the above reasoning cannot have any other denominators
than powers of p, and since we have shown that these cannot occur either it
follows that aj ∈ Z, as claimed. Thus ZK = Z[ζ], hence D is also equal to
the field discriminant of K. ��

Although not needed, note that it is easy to determine the sign of D, see
Exercise 23.

We know that p is totally ramified in Q(ζpk )/Q. The decomposition of
the other primes is given by the following proposition which is not difficult
but that we do not prove, and which we state for a general cyclotomic field.
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Proposition 3.5.18. Let K = Q(ζm) be a cyclotomic field, let q be a prime
number not dividing m, and let f be the smallest strictly positive integer such
that qf ≡ 1 (mod m). Then qZK =

∏
1�j�g qj, where the distinct prime

ideals qj have degree f(qj/q) = f and g = φ(m)/f , and the decomposition
group D(qj/q) is the cyclic subgroup of Gal(K/Q) generated by the map σq

sending ζm to ζq
m.

3.5.4 The Totally Real Subfield of Q(ζpk)

A particularly important subfield of the cyclotomic field K = Q(ζpk ) is the
field K+ fixed by complex conjugation ι, which is evidently a totally real field
of index 2, hence called the maximal totally real subfield of K. As already
mentioned it is immediate to check that K+ = K(ζpk + ζ−1

pk ), and it is not
difficult to show that ZK+ = Z[ζpk + ζ−1

pk ]. We denote by U(K) and U(K+)
the corresponding unit groups and by Cl(K) and Cl(K+) the corresponding
class groups. Finally, we set hpk = |Cl(K)| and h+

pk = |Cl(K+)|. We are
going to give several results linking the unit and class groups of K and K+.

Lemma 3.5.19. Let α ∈ K be such that α/ι(α) ∈ ZK . Then α/ι(α) is in
fact a root of unity. In particular, if u ∈ U(K) then u/ι(u) is a root of unity.

Proof. Since complex conjugation belongs to Gal(K/Q), which is abelian,
it commutes with all elements of Gal(K/Q). Thus if σ ∈ Gal(K/Q) we have
σ(α/ι(α)) = σ(α)/ι(σ(α)), hence |σ(α/ι(α))| = 1. Thus α/ι(α) is an alge-
braic integer all of whose conjugates have absolute value equal to 1; hence by
Kronecker’s Corollary 3.3.10 we deduce that it is a root of unity. ��

Proposition 3.5.20. If p �= 2 we have U(K) = 〈ζpk 〉U(K+).

Proof. The right-hand side is clearly a subgroup of the left-hand side.
Thus let u ∈ U(K), and write for simplicity ζ instead of ζpk . By the above
lemma u/ι(u) is a root of unity. The group of roots of unity in Q(ζ) is
equal to {±1} · 〈ζ〉, hence u = ει(u) with ε = ±ζj for some j and some
sign ±. Since p is odd, changing if necessary j into j + pk we may assume
that j = 2i is even. Thus if we set v = uζ−i we have vζi = ±ζ2iι(v)ζ−i,
in other words v = ±ι(v). I claim that the + sign holds, so that v = ι(v),
and hence v ∈ U(K+) and u = ζiv ∈ 〈ζ〉U(K+). Indeed, since ZK = Z[ζ]
we can write v =

∑
0�j<φ(pk ) viζ

j with vi ∈ Z, hence v ≡
∑

0�j<φ(pk ) vi

(mod (1 − ζ)ZK). Since the ideal (1 − ζ)ZK and the integers vi are stable
under complex conjugation, it follows that ι(v) ≡ v (mod (1 − ζ)ZK). Thus
if we had v = −ι(v) we would have 2v ≡ 0 (mod (1− ζ)ZK), which is absurd
since v is a unit and 1 − ζ divides p, hence is prime to 2, proving my claim
and the proposition. ��

Note that the above proposition is also true for p = 2 (Exercise 30).
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Proposition 3.5.21. If p � 3 is prime, the map sending an ideal a of ZK+

to aZK induces an injective homomorphism from Cl(K+) to Cl(K). In par-
ticular, h+

pk divides hpk .

Proof. This map evidently induces a group homomorphism from Cl(K+)
to Cl(K), and we must show that it is injective. Thus assume that a is an
ideal of ZK+ (which we may assume integral) such that aZK = αZK is a
principal ideal of K. Since ι(a) = a we deduce that ι(α)ZK = αZK , hence
that α/ι(α) is a unit of K. It follows from Lemma 3.5.19 that α/ι(α) is a
root of unity; hence since p is odd, α/ι(α) = (−ζ)j for some integer j. I claim
that j is even. Indeed, set π = 1 − ζ, p = πZK , and let p+ = p ∩ ZK+ be
the prime ideal below p. Since p totally ramifies in ZK we have e(p/p+) = 2,
hence vp(aZK) = 2vp+(a) ≡ 0 (mod 2), so that vp(α) ≡ 0 (mod 2). Since
π/ι(π) = (1 − ζ)/(1 − ζ−1) = −ζ, we have α/ι(α) = (π/ι(π))j , so that if
we set β = αι(π)j we have β = ι(β), in other words β ∈ K+. Thus once
again vp(β) ≡ 0 (mod 2); hence j = vp(ι(π)j) = vp(β) − vp(α) ≡ 0 (mod 2)
as claimed. Setting j = 2i and γ = α(−ζ)−i, we see as in the proof of
Proposition 3.5.20 that γ = ι(γ), in other words that γ ∈ K+. Since α and
γ differ only by a unit, we have aZK = αZK = γZK . Since a and γZK+

are ideals of ZK+ , it follows by intersecting with K+ that a = γZK+ (see
Exercise 17), in other words that a is a principal ideal of K+, proving the
proposition. ��

The above result is in fact valid much more generally for so-called complex-
multiplication fields as follows:

Proposition 3.5.22. Let K be a totally complex field, K+ its maximal to-
tally real subfield, and assume that [K : K+] = 2. If we denote by h (respec-
tively h+) the class number of K (respectively of K+), then h+ | h.

Proof. We give a proof that assumes the basic definitions and properties
of the Hilbert class field. Denote by H the Hilbert class field of K+, so that
H/K+ is an everywhere unramified Abelian extension, and [H : K+] = h+.
Consider the field compositum HK. Clearly K+ ⊂ H ∩ K ⊂ K, and since
[K : K+] = 2, H∩K can be equal either to K or to K+. But H∩K = K would
mean that H ⊃ K, and in particular that K/K+ is everywhere unramified,
which is not the case since all the infinite places of K+, which are all real,
are ramified. Thus H ∩ K = K+. This means that H and K are linearly
disjoint over K+, hence that [HK : K] = [H : K+] = h+ and [HK : H] = 2.
By Lemma 3.3.28, HK/K is an unramified Abelian extension; hence H is a
subfield of the Hilbert class field of K. In particular, [H : K+] divides h as
claimed. ��

Definition 3.5.23. With the above notation and assumptions, we set h− =
h/h+ ∈ Z and call it the minus class number. In particular, for cyclotomic
fields we set h−

pk = hpk /h+
pk .
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Note that h−
pk is easy to compute for pk of reasonable size, and we will

give a formula for it in Corollary 10.5.27. On the other hand, it is much more
difficult to compute h+

pk . For instance, the value of h+
p is known rigorously

only for p � 61 (for which it is equal to 1), under the generalized Riemann
hypothesis (GRH) for p � 163 (for which it is also equal to 1, except for
h+

163 = 4), although thanks in particular to work of R. Schoof, a conjectural
value can be given for much larger p; see pages 420–423 in [Was].

Finally, we give without proof the following fundamental result concerning
the unit group and the class group.

Theorem 3.5.24. Let K = Q(ζpk ) and let U(K) be the unit group of K. The
subgroup of cyclotomic units of U(K) (see Definition 3.5.16) is a subgroup of
finite index of U(K), and this index is equal to h+

pk .

3.6 Stickelberger’s Theorem

3.6.1 Introduction and Algebraic Setting

In this section, let K be a number field, for the moment arbitrary, and let
h(K) be its class number. One of the most important applications of the
class group is that for any ideal a of K the ideal ah(K) is a principal ideal.
This is in fact the reason for which (in another language) it was introduced
by Kummer in his work on Fermat’s last theorem. Together with results on
the unit group, which is inseparable from the class group, this allows us to
treat K almost as if it had unique factorization (as foremost example, see the
proof of FLT I for regular primes, i.e., Proposition 6.9.8).

In the case of a cyclotomic field (and more generally of an Abelian ex-
tension of Q, which, by the Kronecker–Weber Theorem 3.5.13, is simply a
subfield of a cyclotomic field), there is a more powerful theorem, due to Stick-
elberger, which gives more precise information about the Galois structure of
the class group, hence also tells us how to construct principal ideals from
arbitrary ideals. This theorem has a large number of important applications,
of which we will see three in this book: the Eisenstein reciprocity law, the
Hasse–Davenport relations, and Catalan’s conjecture. Although perhaps less
“basic” than the rest of this chapter, it is important to study it at this point,
and since it is slightly less classical than class and unit groups (although it
can be found in many excellent textbooks such as [Was]), we give completely
detailed proofs. In fact, we will give two proofs. In this chapter we give the
classical one. As the reader will see, it is quite lengthy and seems roundabout.
It uses in a fundamental way the prime ideal decomposition of Gauss sums,
and some additional technical machinery. In Chapter 11, however, we will see
that thanks to the Gross–Koblitz formula, Gauss sums can be reinterpreted
via Morita’s p-adic gamma function Γp(x). Thanks to this interpretation, in



3.6 Stickelberger’s Theorem 151

Section 11.7.3 we will give a much shorter and natural proof of the Stickel-
berger congruence.

We begin by explaining the setting in which we work. Let p be a prime
number, let ζ = ζp be a primitive pth root of unity; set K = Q(ζ), so that
ZK = Z[ζ]; let π = 1 − ζ, and let p = πZK be the unique ideal above
p, hence such that pZK = pp−1. Finally, let q = pf be a power of p with
f � 1, and let L = Q(ζq−1, ζp). Since p and q − 1 are coprime, the fields
Q(ζq−1) and K = Q(ζp) are linearly disjoint, and in fact it is clear that
L = Q(ζp(q−1)), although we will never use this. Later we will also have an
integer m dividing q − 1, and we will consider the fields Q(ζm) ⊂ Q(ζq−1)
and Q(ζm, ζp) ⊂ L. Since so many different cyclotomic fields are involved,
we will use the following notation, which is probably the least confusing.
For any integer n we will denote by Kn the cyclotomic field Q(ζn) and for
m | (q − 1) we will denote by Lm the field Q(ζm, ζp). Thus for example
K = Kp, Q(ζq−1) = Kq−1, and L = Lq−1.

Let P be a fixed prime ideal of L above p. The prime ideal of Lm below P

will be denoted by Pm, so that P = Pq−1, and if Km ⊂ Kq−1 the prime ideal
below P will be denoted by pm. Since p � q−1, we have e(pq−1/p) = 1; hence
by Proposition 3.5.18, f(pq−1/p) = f since q = pf is evidently the smallest
power of p congruent to 1 modulo q−1. It follows that P is unramified in the
extension L/K and that we also have f(P/p) = f . The following diagram
summarizes all of the above notation.

P L = Q(ζq−1, ζp)

�������������
P

pq−1 Kq−1 = Q(ζq−1) Lm = Q(ζm, ζp)

�������������

������������
Pm

pm Km = Q(ζm)

����������������
K = Q(ζp)

��������������
p

p Q p

3.6.2 Instantiation of Gauss Sums

In Chapter 2 we introduced the Gauss sum τ(χ,ψ) associated with a mul-
tiplicative and an additive character on a finite field Fq, and we have seen
for instance that |τ(χ,ψ)|2 = q when the characters are nontrivial. Since the
values of ψ are in K = Q(ζ) and the values of χ are in Kq−1 = Q(ζq−1),
it follows that τ(χ,ψ) ∈ L. In the present subsection we will see that we
can give much more precise information. In particular, we will give the exact
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description of the principal ideal generated by τ(χ,ψ), and congruences sat-
isfied by the Gauss sum. As mentioned above, in Section 11.7.3 we will see
how to compute τ(χ,ψ) in terms of the p-adic gamma function, leading to a
simpler proof of the Stickelberger formula.

To be able to compute τ(χ,ψ) we must instantiate all the mathematical
objects that occur (otherwise, the computation would not make sense), in
other words, Fq and the characters χ and ψ. To instantiate Fq we use the fixed
prime ideal P of L chosen above, and set Fq = ZL/P, which is an extension
of Fp = ZK/p. By Proposition 2.5.4, any additive character ψ has the form
ψ = ψb for a unique b ∈ Fq, where ψb(x) = ζTrFq /Fp (bx). Since we will almost
always use ψ = ψ1, we will simply write τ(χ) instead of τ(χ,ψ1), although
it will occasionally be useful to use ψb because of the formula τ(χ,ψb) =
χ(b)−1τ(χ,ψ1) of Lemma 2.5.6. To instantiate multiplicative characters, we
need a lemma.

Lemma 3.6.1. Let µq−1 = {ζj
q−1, 0 � j � q − 2} ⊂ L be the group of

(q − 1)st roots of unity in L. The map uP sending x ∈ µq−1 to its class
modulo P in F∗

q = (ZL/P)∗ is a group isomorphism.

Proof. It is clear that uP is a group homomorphism, and since µq−1 and
F∗

q both have q − 1 elements it is sufficient to show that the kernel of uP is
equal to 1. Now ∏

1�k�q−2

(x− ζk
q−1) =

xq−1 − 1
x− 1

;

hence
∏

1�k�q−2(1 − ζk
q−1) = q − 1. However, uP(ζk

q−1) = 1 means that
P | (ζk

q−1 − 1), hence if 1 � k � q − 2 this implies that P | (q − 1), which is
absurd since P | p and p is coprime to q − 1 = pf − 1. ��

Definition 3.6.2. We define ωP = u−1
P

, in other words the unique group
isomorphism from F∗

q = (ZL/P)∗ to µq−1 such that ωP(x) ≡ x (mod P).

By definition ωP is a multiplicative character of Fq of order equal to
q − 1 since it is an isomorphism (in the p-adic context it will be called the
Teichmüller character; see Proposition 4.3.4). Since F∗

q is a cyclic group of
order q − 1, its group of characters is also cyclic of order q − 1, so it follows
that any multiplicative character χ on Fq has the form ω−r

P
for a unique r

such that 0 � r < q − 1 (equivalently, by transitivity of the Galois action on
prime ideals above p, any multiplicative character χ on Fq is one of the ωQ for
a suitable prime ideal Q above p). Thus with an evident abuse of notation,
any Gauss sum over Fq has the form τ(ω−r

P
, ψb) for a unique r ∈ Z/(q − 1)Z

and a unique b ∈ Fq. This now depends only on the triple (P, r, b); hence
we will compute its properties only in terms of this triple. In fact, since
τ(ω−r

P
, ψb) = ωr

P(b)τ(ω−r
P

), we may assume that b = 1. Finally, since in this
section P is fixed, for notational convenience we will simply write ω instead
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of ωP, but we have to keep in mind for later that the definition of ω depends
on the choice of the ideal P of L above p. In fact, since by Galois theory
all other ideals have the form σ(P) for σ ∈ Gal(L/K), the following lemma
makes explicit the dependence on P:

Lemma 3.6.3. (1) For all σ ∈ Gal(L/Q) we have

ωσ(P) = σ ◦ ωP ◦ σ−1 .

(2) For all σ ∈ Gal(L/Q) and r ∈ Z we have

τ(ω−r
σ(P)) = σ(τ(ω−r

P
)) .

(3) If m | (q − 1) and x ∈ Km then ω
−(q−1)/m
P

(x) depends only on the ideal
pm of Km below P and not on P itself.

(4) If m | (q−1) then τ(ω−(q−1)/m
P

)m ∈ Km, and it depends only on the ideal
pm of Km below P and not on P itself.

Proof. Since ωP(σ−1(x)) is a (q− 1)st root of unity, so is σ(ωP(σ−1(x))).
Furthermore, ωP(σ−1(x)) ≡ σ−1(x) (mod P), hence applying σ we have
σ(ωP(σ−1(x))) ≡ x (mod σ(P)). Since these two properties characterize
ωσ(P), (1) follows. Set P1 = σ(P). With evident notation we have

τ(ω−r
P1

) =
∑

x∈(ZL /P1)∗

ωP1(x)−rζ
Tr(ZL /P1)/(Z/pZ)(x)
p ,

so that setting x = σ(y) and using (1) we obtain

σ−1(τ(χP1)) =
∑

y∈(ZL /P)∗

ωP(y)−rζ
Tr(ZL /P)/(Z/pZ)(y)
p = τ(ω−r

P
) ,

proving (2). For (3) and (4), set d = (q − 1)/m, a notation that we shall
in fact use in the rest of this chapter. By definition, ωd

P(x) ≡ xd (mod P),
and ωd

P(x) is an mth root of unity, and in particular belongs to Km. If in
addition x ∈ Km, then ωd

P(x) ≡ xd (mod P ∩Km), proving (3) since ωd
P(x)

is characterized by the above two properties. For (4), Corollary 2.5.15 tells
us that τ(ω−d

P
)m ∈ Km. If P1 is some other prime ideal of L above the

same prime ideal pm of Km, by transitivity of the Galois action on prime
ideals there exists σ ∈ Gal(L/Km) such that P1 = σ(P). Thus by (2) we
have τ(ω−d

P1
)m = σ(τ(ω−d

P
)m). Since σ leaves Km fixed it does not act on the

values of the multiplicative characters, but only on the additive characters;
hence by Lemma 2.5.6 we have for some integer a coprime to p,

σ(τ(ω−d
P

)m) = τ(ω−d
P

, ψa)m = (ωP(a)dτ(ω−d
P

))m = τ(ω−d
P

)m ,

since ωP(a) is a (q − 1)st root of unity, proving (4). ��
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3.6.3 Prime Ideal Decomposition of Gauss Sums

We begin by proving the following congruence for Jacobi sums.

Proposition 3.6.4. If a and b are integers such that 1 � a, b � q − 2 we
have J(ω−a, ω−b) ≡ 0 (mod P) if a + b � q, and otherwise

J(ω−a, ω−b) ≡ −
(

a + b

a

)
≡ − (a + b)!

a!b!
(mod P) .

Proof. For any x ∈ F∗
q = (ZL/P)∗ we let x′ ∈ µq−1 ⊂ ZL be such

that x′ ≡ x (mod P), so that ω(x) = x′. Setting c = q − 1 − b and noting
that ωq−1 = ε we see that ω−b = ωc. In particular, for x �= 1 we have
ω−b(1−x) = ωc(1−x) ≡ (1−x′)c (mod P) , and we note that this congruence
is trivially also true for x = 1 since b < q − 1, and hence c > 0. Thus

J(ω−a, ω−b) =
∑
x∈F∗

q

ω−a(x)ω−b(1− x) ≡
∑
x∈F∗

q

x′−a(1− x′)c

≡
∑
x∈F∗

q

x−a
∑

0�j�b

(
c

j

)
(−1)jxj

≡
∑

0�j�c

(−1)j

(
c

j

) ∑
x∈F∗

q

xj−a (mod P) .

Thanks to Lemma 2.5.1 we see that the inner sum vanishes except if j ≡ a
(mod q−1), in other words if j = a since 1 � a � q−2. Thus if a > c, in other
words a + b > q − 1, all the inner sums vanish, so we get J(ω−a, ω−b) ≡ 0
(mod P). On the other hand, if a � c we have a single nonzero inner sum for
j = a, which is congruent to −1 modulo p, so that

J(ω−a, ω−b) ≡ (−1)a−1

(
c

a

)
(mod P) ,

and the proposition follows since(
c

a

)
=

(q − 1− b)(q − 2− b) · · · (q − a− b)
a!

≡ (−1)a (b + 1)(b + 2) · · · (b + a)
a!

≡ (−1)a

(
a + b

a

)
(mod p) .

��

Remarks. (1) It is easy to show that when a + b � q we have
(
a+b

a

)
≡ 0

(mod p) (see Exercise 25), so the second congruence of the proposition is
in fact valid in all generality.

(2) This proposition again shows the analogy between Jacobi sums and the
beta function.
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Definition 3.6.5. Let r be an integer such that 0 � r < q − 1, and let r =∑
0�i<f rip

i be the decomposition of r in base p with 0 � ri � p− 1. We set
sp(r) =

∑
0�i<f ri and tp(r) =

∏
0�i<f (ri)!. If r ∈ Z is arbitrary, we define

the (q− 1)-periodic functions s(r) and t(r) by setting s(r) = sp(r mod q − 1)
and t(r) = tp(r mod q − 1), where r mod q − 1 is the unique integer in [0, q−
1[ congruent to r modulo q − 1.

Stickelberger’s basic result is the following.

Theorem 3.6.6. For all r ∈ Z we have

τ(ω−r)
(ζ − 1)s(r)

≡ − 1
t(r)

(mod P) .

Proof. By periodicity we may assume that 0 � r < q − 1. We prove the
theorem by induction on s(r) = sp(r). If s(r) = 0 we have r = 0, hence
t(0) = 1 and τ(ω0) = τ(ε) = −1 by Lemma 2.5.8. The crucial case to be
proved is the case s(r) = 1, in other words, r = pk. In that case t(r) = 1, and
since by Lemma 2.5.8 (3) we have τ(ω−pa) = τ(ω−a), it follows that we may
assume that r = 1. Since ω is a nontrivial character we have

τ(ω−1) =
∑
x∈F∗

q

ω−1(x)
(
ζ
TrFq /Fp (x)
p − 1

)
.

Since p = (ζp − 1)ZK we have

ζm
p − 1
ζp − 1

=
∑

0�j<m

ζj
p ≡

∑
0�j<m

1 ≡ m (mod p) ,

hence
τ(ω−1)
ζp − 1

≡
∑
x∈F∗

q

ω−1(x)TrFq /Fp
(x) (mod p) .

Now TrFq /Fp
(x) =

∑
0�i<f xpi ∈ Fp, and on the other hand, by definition,

ω−1(x) ≡ x−1 (mod P). It follows that

τ(ω−1)
ζp − 1

≡
∑

0�i<f

∑
x∈F∗

q

xpi−1 (mod P) .

Now again by Lemma 2.5.1 the inner sum vanishes if 1 � i < f , and it is
congruent to −1 modulo p if i = 0. It follows that τ(ω−1)/(ζp − 1) ≡ −1
(mod P), proving the theorem when s(r) = 1.

Now let r be such that 0 � r < q − 1 with s(r) > 1, assume by induction
that the theorem is true for all r′ < q − 1 such that s(r′) < s(r), and let
r =

∑
0�i<f rip

i with 0 � ri � p− 1. Thanks once again to Lemma 2.5.8 (3)
we may assume that r0 � 1. It follows in particular that s(r − 1) = s(r)− 1
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and r − 1 � 1. Since all the characters involved are nontrivial, by Corollary
2.5.17 we have

τ(ω−1)τ(ω−(r−1)) = J(ω−1, ω−(r−1))τ(ω−r) .

Using Proposition 3.6.4 we know that

J(ω−1, ω−(r−1)) ≡ −
(

r

1

)
≡ −r ≡ −r0 (mod P) .

Since 1 � r0 � p− 1, r0 is invertible modulo P, so by induction and the case
r = 1 we see that

τ(ω−r)
(ζp − 1)s(r)

≡ − 1
r0

τ(ω−1)
ζp − 1

τ(ω−(r−1))
(ζp − 1)s(r−1)

≡ − 1
r0

1
t(r − 1)

≡ − 1
t(r)

(mod P) ,

since t(r) = r0t(r − 1) when r0 �= 0, proving our induction hypothesis and
hence the theorem. ��

To use this theorem, we will also need the following lemma.

Lemma 3.6.7. As usual denote by {z} the fractional part of a real number z.

(1) For all r ∈ Z we have

s(r) = (p− 1)
∑

0�i<f

{
pir

q − 1

}
.

(2) For 0 � r < q − 1 we have

t(r) ≡ (−p)−vp (r!)r! (mod p) .

Proof. (1). Both sides of the formula are periodic of period dividing q−1;
hence we may assume that 0 � r < q − 1, so that r =

∑
0�j<f rjp

j with
0 � rj � p− 1. For 0 � i � f − 1 we have

pir =
∑

0�j<f−i−1

rjp
j+i +

∑
f−i�j<f

rjp
j+i

≡
∑

0�j<f−i−1

rjp
j+i +

∑
f−i�j<f

rjp
j+i−f (mod q − 1) ,

hence {
pir

q − 1

}
=

1
q − 1

 ∑
0�j<f−i−1

rjp
j+i +

∑
f−i�j<f

rjp
j+i−f

 .
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It follows that ∑
0�i<f

{
pir

q − 1

}
=

1
q − 1

∑
0�j<f

rjSj ,

where

Sj =
∑

0�i<f−j−1

pj+i +
∑

f−j�i<f

pj+i−f =
∑

0�i<f

pi =
pf − 1
p− 1

=
q − 1
p− 1

,

proving (1).
(2) is easily proved by induction on r: it is trivially true for r � 1. Assume

r � 2 and that the formula is true for r − 1, and let r =
∑

k�j�f−1 rjp
j be

the base-p decomposition of r, with 0 � rj � p− 1 and rk �= 0. Since

r − 1 =
∑

0�j�k−1

(p− 1)pj + (rk − 1)pk +
∑

k+1�j�f−1

rjp
j

it follows from Wilson’s theorem that

t(r − 1) ≡ (−1)k(rk − 1)!
∏

k+1�j�f−1

(rj)! (mod p) ,

hence that

t(r) ≡ (−1)krkt(r − 1) ≡ r

(−p)vp (r)
t(r − 1) mod p .

The result follows by induction. ��

Corollary 3.6.8. We have vP(τ(ω−r)) = s(r).

Proof. By definition t(r) is coprime to p hence is invertible modulo P, so
by the theorem vP(τ(ω−r)) = s(r)vP(ζ − 1) = s(r)e(P/p) = s(r). ��

Definition 3.6.9. Let m | (q − 1) be such that m > 1.

(1) For notational simplicity we will set d = (q − 1)/m.
(2) If t is coprime to m we denote by σt the element of Gal(Lm/K) such

that σt(ζm) = ζt
m (and of course leaving fixed ζp).

Although strictly speaking σt depends on m, since these maps are com-
patible under restriction, there is no possibility of confusion.

Proposition 3.6.10. Let m | (q − 1), set d = (q − 1)/m, and recall that
Lm = Q(ζm, ζp) and that Pm is the prime ideal of Lm below P. Then

τ(ω−rd)ZLm
=

∏
t∈(Z/mZ)∗/〈p〉

σ−1
t (Pm)s(rtd) .
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Proof. First note that the values of ω−rd are in Km, so that τ(ω−rd) ∈ Lm.
Since Pm is a prime ideal of Lm above p, by Galois theory all the prime ideals
of Lm above p have the form σ(Pm) for σ ∈ Gal(Lm/K) � Gal(Km/Q) �
(Z/mZ)∗. By definition of the Gauss sum we have σt(τ(ω−rd)) = τ(ω−rtd).
Thus by the above corollary

vσ−1
t (Pm )(τ(ω−rd)) = vPm

(σt(τ(ω−rd))) = vP(τ(ω−rtd))) = s(rtd) ,

since P is unramified over Pm. Furthermore, the decomposition group
D(Pm/p) is isomorphic to D(pm/p); hence by Proposition 3.5.18 it is iso-
morphic to the cyclic subgroup of Gal(Lm/K) generated by σp, using the
same notation as above. This means that the ideals of Lm above p are ob-
tained once and only once as σ−1

t (Pm) for σt ∈ Gal(Lm/K)/D(Pm/p), in
other words for t ∈ (Z/mZ)∗/〈p〉x. Finally, since τ(ω−rd)τ(ω−rd) = q = pf

for r �= 0, it follows that the only ideals of Lm dividing τ(ω−rd) are the
ideals above p, hence the ideals above p, in other words the σ−1

t (Pm) for
t ∈ (Z/mZ)∗/〈p〉, so the proposition follows. ��

Corollary 3.6.11. Let m | (q − 1), and recall that Km = Q(ζm) and that
pm is the prime ideal of Km below P. Then

τ(ω−d)mZKm
=

∏
t∈(Z/mZ)∗/〈p〉

σ−1
t (pm)vt ,

where

vt =
m

p− 1
s

(
t
q − 1
m

)
= m

∑
0�i<f

{
pit

m

}
.

Proof. By Corollary 2.5.15 we know that τ(ω−d)m ∈ Km. Since e(Pm/pm) =
e(p/p) = p− 1 we have

vpm
(τ(ω−d)m) = (m/(p− 1))vPm

(τ(ω−d)) ,

so the corollary immediately follows from the proposition, the second formula
for vt coming from Lemma 3.6.7. ��

The above results are expressed much more nicely in the language of group
rings, which we recall for the convenience of the reader.

Definition 3.6.12. Let A be a commutative ring and let G be a finite abelian
group. We define the group algebra A[G] by

A[G] =

∑
g∈G

agg, ag ∈ A

 ,
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in other words the set of formal linear combinations with coefficients in A of
the elements of G, the addition law coming from that of A and the multipli-
cation law from that of A and of the group law of G, in other words,∑

g∈G

agg

(∑
h∈G

bhh

)
=
∑

g,h∈G

agbhgh =
∑
g∈G

(∑
h∈G

ahbh−1g

)
g .

It is immediately checked that A[G] is a commutative ring. If E is a
group (written multiplicatively, say) on which the group G acts, then E has
a natural structure of a (left) Z[G]-module through the formula∑

g∈G

agg

 · v =
∏
g∈G

(g · v)ag .

If θ =
∑

g∈G agg, it is customary to write vθ instead of θ · v, so that the
formula θ1 · (θ2 · v) = (θ1θ2) · v translates into the identity vθ1θ2 = (vθ1)θ2 ,
where it is essential that G be an abelian group.

The situation considered in practice will be the following. We will be given
an Abelian extension K/Q with commutative Galois group G. The group G
acts naturally on all natural objects linked to K, for instance on elements,
units, ideals, ideal classes, etc., so by the above we have an action of Z[G],
written in an exponential manner.

As a first application of this notation we have the following proposition,
which is a restatement of Corollary 3.6.11.

Proposition 3.6.13. Set

Θ =
∑

t∈(Z/mZ)∗

{
t

m

}
σ−1

t =
1
m

∑
1�t�m−1
gcd(t,m)=1

tσ−1
t .

With the same notation as above we have τ(ω−d)mZKm
= pmΘ

m .

Proof. Let T be a system of representatives of (Z/mZ)∗ modulo the cyclic
subgroup 〈p〉 generated by p. Proposition 3.6.11 can be restated by saying
that τ(ω−d)mZKm

= pmθ
m with

θ =
∑
t∈T

∑
0�i<f

{pit/m}σ−1
t

(note that it would not make sense to replace T by (Z/mZ)∗/〈p〉 in the above
expression since σt would not be defined). By definition, as t ranges in T and
i ranges from 0 to f − 1 the elements pit modulo m range through (Z/mZ)∗,
so that
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θ =
∑

t∈(Z/mZ)∗

{t/m}σ−1
t1 ,

where t1 is the representative in T of the class of t modulo 〈p〉. Since the
decomposition group of pm/p is the group generated by σp, it follows that
pmθ

m = pmΘ
m , where Θ is as in the proposition. ��

The following corollary is one of the most important consequences.

Corollary 3.6.14. Let Q(ζm) be a cyclotomic field and let Θ be defined as
above. For all fractional ideals a of Q(ζm) the ideal amΘ is a principal ideal.

Proof. We know that in any ideal class there exists an integral ideal co-
prime to any fixed ideal, in particular to m. In other words, there exists an
element α such that b = αa is an integral ideal coprime to m. If pm is a prime
ideal dividing b above some prime p we have p � m; hence the proposition
implies that pmΘ

m is a principal ideal. Since this is true for every prime ideal
dividing b, by multiplicativity it is true for b itself, and hence for a. ��

3.6.4 The Stickelberger Ideal

Although the above results and in particular Corollary 3.6.14 are remarkable
results, they suffer from the presence of m in the exponent. We are now going
to show how to get rid of this exponent m. We keep all the above notation,
and we set G = Gal(Km/Q), which is canonically isomorphic to (Z/mZ)∗.

Definition 3.6.15. (1) We define the Stickelberger ideal Is(m) by Is(m) =
Z[G] ∩ΘZ[G].

(2) If b is an integer coprime to m we define Θb ∈ Q[G] by the formula
Θb = (σb − b)Θ.

It is clear that Is(m) is an ideal of the commutative ring Z[G].

Lemma 3.6.16. We have Θb ∈ Is(m). More precisely, we have

Θb = −
∑

1�t�m−1, gcd(t,m)=1

⌊
bt

m

⌋
σ−1

t .

Proof. Since evidently Θb ∈ Z[G]Θ, we must show that Θb ∈ Z[G]. Setting
u = b−1t we have

σbΘ =
∑

t∈(Z/mZ)∗

{t/m}σ−1
b−1t =

∑
u∈(Z/mZ)∗

{bu/m}σ−1
u ,

hence Θb =
∑

u∈(Z/mZ)∗ cuσ−1
u with

cu = {bu/m} − b{u/m} ≡ bu/m− b(u/m) ≡ 0 (mod Z) ,

proving the first part of the lemma. The formula follows by summing over
u ∈ [1,m− 1] coprime to m, since in that case {u/m} = u/m. ��
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Example. If m = p is an odd prime and b = 2 we have

Θ2 = −
∑

(p+1)/2�t�p−1

σ−1
t .

Lemma 3.6.17. The ideal Is(m) is generated by the Θb as a Z-module
(hence also as an ideal). More precisely, it is generated over Z by Θm+1

and the Θb for 1 � b � m with gcd(b,m) = 1.

Proof. By definition an element δ ∈ Is(m) has the form δ = γΘ, where
γΘ ∈ Z[G] and γ ∈ Z[G]. If we write γ =

∑
t∈(Z/mZ)∗ ctσt with ct ∈ Z we

have
γΘ =

∑
t,u∈(Z/mZ)∗

ct{u/m}σ−1
t−1u =

∑
v∈(Z/mZ)∗

dvσ−1
v

with
dv =

∑
t∈(Z/mZ)∗

ct{tv/m} .

Since γΘ ∈ Z[G] we have dv ∈ Z for all v, and in particular

d1 =
∑

t∈(Z/mZ)∗

ct{t/m} =
∑

0�t�m−1
gcd(t,m)=1

ctt/m ∈ Z .

Thus

δ = γΘ =
∑

t∈(Z/mZ)∗

ct(σt − t)Θ +
∑

0�t�m−1
gcd(t,m)=1

cttΘ =
∑

t∈(Z/mZ)∗

ctΘt + md1Θ ,

and the lemma follows since ct ∈ Z, d1 ∈ Z, and mΘ = (m + 1− σm+1)Θ =
−Θm+1 (note that σm+1 = σ1 = 1). ��

Lemma 3.6.18. Recall that d = (q − 1)/m. For all b coprime to m we have
τ(ω−d)σb−b ∈ Km.

Proof. Since m is coprime to p, Gal(Lm/Km) is the cyclic group of order
p − 1 formed by the maps αk such that αk(ζp) = ζk

p and αk(ζm) = ζm for
k ∈ (Z/pZ)∗1. By Galois theory, to prove the lemma we must show that the
left-hand side is invariant by each αk. Since ω−d has order m and the implicit
additive character has order p, we have by Definition 2.5.7 and Lemma 2.5.6,

αk(τ(ω−d)) = τ(ω−d, ψk) = ω(k)dτ(ω−d) ,

hence since αk and σb commute,

1 It is not possible to use here the notation σk since this is reserved for elements
of Gal(L/K), hence those that leave ζp invariant.
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αk(τ(ω−d)σb−b) = ω(k)d(b−σb )τ(ω−d)σb−b ,

and the lemma follows since ω(k)d is a power of ζm, whence ω(k)dσb = ω(k)db.
��

It is now easy to deduce the main theorem on the Stickelberger ideal.

Theorem 3.6.19 (Stickelberger). The Stickelberger ideal Is(m) annihi-
lates the class group of Km = Q(ζm); in other words, for any γ ∈ Is(m)
and any fractional ideal a of Km the ideal aγ is a principal ideal.

Proof. As in the proof of Corollary 3.6.14, it is sufficient to prove that pγ
m

is a principal ideal for any γ ∈ Is(m) and any prime ideal pm coprime to m.
Raising the equality of Proposition 3.6.13 to the power σb − b for b prime to
m we obtain

pmΘb
m = τ(ω−d)m(σb−b)ZKm

= αmZKm
,

where α = τ(ω−d)σb−b ∈ Km by the above lemma. Since pΘb
m and αZKm

are
ideals of Km whose mth powers are equal, by uniqueness of the prime ideal
decomposition in the Dedekind domain ZKm

we deduce that they are equal,
and in particular that pΘb

m is a principal ideal. Since by Lemma 3.6.17 the Θb

generate Is(m), it follows that pγ
m is a principal ideal for all γ ∈ Is(m), as

was to be proved. ��

It is important to note that the above theorem does not bring any new
information on the “plus” part of Km, but only on the “minus” part. More
precisely, we have the following:

Proposition 3.6.20. Let m �≡ 2 (mod 4) and denote by K+
m = Q(ζm + ζ−1

m )
the maximal totally real subfield of Km. Then for any ideal a of K+

m and any
b coprime to m we have

(aZKm
)Θb = NK+

m /Q(a)b−1ZKm
.

Proof. Recall that we denote complex conjugation by ι, and that ισt =
σm−t, so that when a ⊂ K+

m we have σm−t(aZKm
) = σt(aZKm

). Thus

(aZKm
)Θb =

∏
1�t�m/2, gcd(t,m)=1

σt(aZKm
)nt

with nt = �bt/m	 + �b(m − t)/m	 = b − 1 as is easily seen, since b and t
are coprime to m. Since the σt for 1 � t � m/2 with gcd(t,m) = 1 restrict
to Gal(K+

m/Q) and since NK+
m /Q(a)ZKm

=
∏

σ∈Gal(K+
m /Q) σ(a), the result

follows. ��

Since Is(m) is generated by the Θb as a Z-module, it follows from the
above proposition that for any ideal a of K+

m and any γ ∈ Is(m) the ideal
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(aZKm
)γ is the principal ideal generated by a power of the norm of a, so

that Stickelberger’s ideal theorem does not bring any new information on the
class group of K+

m. We will see in Chapter 16 devoted to Catalan’s conjec-
ture that there is a beautiful theorem of F. Thaine that partially replaces
Stickelberger’s theorem for K+

m.

3.6.5 Diagonalization of the Stickelberger Element

In this section, we will use some simple analytic results that will be proved
in Chapters 9 and 10, but which can easily be proved directly except for the
nonvanishing of L(χ, 1). Thus, in contrast to almost all places in this book,
there are a couple of forward references.

Keep the above notation, and in particular G = Gal(Km/Q) � (Z/mZ)∗.
Denote as usual by Ĝ the group of characters of G, which is noncanonically
isomorphic to G by Proposition 2.1.16. For χ ∈ Ĝ we define

eχ =
1

φ(m)

∑
σ∈G

χ(σ)σ−1 ∈ C[G] .

It is immediately checked that the eχ form a complete set of orthogonal
idempotents, in other words that e2

χ = eχ, that eχ1eχ2 = 0 if χ1 �= χ2, and
that

∑
χ∈Ĝ eχ = 1. Indeed, these properties are immediate consequences of

the orthogonality of characters (and in fact are equivalent to them). As an
immediate consequence we deduce that

C[G] =
⊕
χ∈Ĝ

eχC[G] .

Since eχ �= 0 all the eχC[G] are nonzero, and on the other hand the number
of terms in the direct sum is equal to |Ĝ| = |G| = dimC C[G]. It follows that
all the terms are 1-dimensional, hence that eχC[G] = Ceχ, so that the eχ

form a C-basis of C[G]. Since eχC[G] is the principal ideal of C[G] generated
by eχ, it follows that Ceχ is an ideal of C[G].

Lemma 3.6.21. Denote by j the canonical isomorphism from (Z/mZ)∗ to G
such that j(t) = σt, and complex conjugation σ−1 by ι. We have Θeχ = λχeχ

with

λχ =


φ(m)/2 if χ is the trivial character,
0 if χ(ι) = 1 and χ is nontrivial,
−L(χ ◦ j, 0) if χ(ι) = −1.

Proof. By definition of eχ we have

σteχ =
1

φ(m)

∑
σ∈G

χ(σ)σtσ
−1 =

1
φ(m)

∑
σ∈G

χ(σσt)σ−1 = χ(σt)eχ .
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Thus
Θeχ =

1
m

∑
1�t�m−1
gcd(t,m)=1

tχ(σt)eχ = λχeχ ,

say. By definition of the χ-Bernoulli numbers (see Section 9.4.1) we thus have
λχ = B1(χ ◦ j) + (m/2)B0(χ ◦ j). We have B0(χ ◦ j) = φ(m)/m when χ is
trivial, and B0(χ ◦ j) = 0 otherwise. Furthermore, by Proposition 9.4.9 we
have B1(χ ◦ j) = 0 when χ ◦ j is an even character, in other words when
χ(ι) = 1 (even when χ is trivial, since m > 1). Finally, using Corollary 10.2.3
we have B1(χ ◦ j) = −L(χ ◦ j, 0) when χ is an odd character, proving the
lemma. ��

Note that although for brevity we have referred to definitions and results
of Section 9.4.1, the proof can be done completely independently, apart from
the equality B1(χ ◦ j) = −L(χ ◦ j, 0).

Remark. The fact that λχ = 0 when χ is a nontrivial even character is
another way of saying that the Stickelberger ideal gives information only on
the minus part of the ideal class group, as we have already seen in Proposition
3.6.20. In fact, if we define

C[G]− = {x ∈ C[G], ιx = −x} = (1− ι)C[G]

(the last equality being immediate), we have the following.

Lemma 3.6.22. (1) A C-basis of C[G]− is given by the eχ for χ(ι) = −1,
in other words such that χ ◦ j is an odd character.

(2) If m = pk is a power of a prime number, multiplication by Θ induces a
bijective C-linear map from C[G]− to itself.

Proof. (1). Since σteχ = χ(σt)eχ we have ιeχ = χ(ι)eχ = −eχ if χ(ι) =
−1, so such eχ are in C[G]−. When m � 2, m �≡ 2 (mod 4) (which is the
hypothesis that we always make in the cyclotomic case) the number of odd
characters modulo m is equal to φ(m)/2. On the other hand, since ισt =
σ−t,

∑
t∈(Z/mZ)∗ atσt ∈ C[G]− if and only if a−t = −at, so that the σt

for 1 � t � m/2 such that gcd(t,m) = 1 form a basis of C[G]−; hence
dimC C[G]− = φ(m)/2, proving (1) since the eχ are C-linearly independent.

(2). By the preceding lemma, on the C-basis (eχ)χ(ι)=−1 of C[G]− the
matrix of multiplication by Θ is diagonal, the diagonal elements being
−L(χ ◦ j, 0) for χ(ι) = −1. However, since m = pk, by Lemma 10.2.1 if χ
is nontrivial its L-series is equal to that of the corresponding primitive char-
acter. It follows therefore from the functional equation (or Theorem 10.3.1)
that

L(χ ◦ j, 0) =
√

p

W (χ ◦ j)π
L(χ ◦ j, 1) ,
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and by the nonvanishing of L(χ, 1) (Theorem 10.5.29) we have L(χ ◦ j, 0) �= 0.
It follows that the matrix of multiplication by Θ on the basis of the eχ is a
diagonal matrix with nonzero diagonal entries, hence is invertible, proving (2).

��

Remarks. (1) Since L(χ ◦ j, 0) may be equal to 0 when χ ◦ j is a nontrivial
character, the above result may not be true when m is not a prime power.

(2) We will see in Proposition 10.5.26 that if m = pk with p � 3, the deter-
minant of the map multiplication by Θ from C[G]− to itself is equal to
−(−2)φ(m)/2−1h−

pk /pk, where we recall that h−
pk is the minus class number

of the pkth cyclotomic field (see Definition 3.5.23).

3.6.6 The Eisenstein Reciprocity Law

In this subsection I follow quite closely the exposition of [Ire-Ros]. We restate
the theorem on the Stickelberger ideal, but now emphasizing the dependence
on p. Thus, instead of letting p be a prime, q = pf , and m a divisor of q−1, we
fix an integer m � 2 such that m �≡ 2 (mod 4), we let Θ be as in Proposition
3.6.13, and we set γ = mΘ, in other words,

γ =
∑

1�t�m−1, gcd(t,m)=1

tσ−1
t .

For all primes p not dividing m we let f be the order of p modulo m, we set
q = pf ≡ 1 (mod m), so that m | (q− 1), and as above we set d = (q− 1)/m.

Important Warning. Since m is fixed, we denote simply by p instead of
pm a prime ideal of Km = Q(ζm) above p. Note that previously, p denoted
the unique prime ideal of K = Q(ζp) above p, but here the context is different
and p is not given but will vary, only m is fixed. Note also that since f is
the order of p modulo m, by Proposition 3.5.18 we have f(p/p) = f , hence
N (p) = pf = q.

For any prime ideal P of L = Q(ζq−1, ζp) above p (hence above p) recall
that we have defined ωP and τ(ω−d

P
). In addition, in the sequel we will make

the following common abuse of terminology: we will say that two (possibly
fractional) ideals a and b (or elements) are coprime if for every prime ideal q

we have either vq(a) = 0 or vq(b) = 0.

Definition 3.6.23. For x ∈ Km coprime to p we set(
x

p

)
m

= ωd
P(x) and G(p) = τ(ω−d

P
)m .

In addition, to simplify notation we will often write χp(x) instead of
(

x
p

)−1

m
,

so that G(p) = τ(χp)m.
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This notation is justified by Lemma 3.6.3 (3) and (4), which tells us that
ωP(x)d and τ(ω−d

P
)m ∈ Km depend only on p = P ∩Km. The above defini-

tion generalizes the well-known quadratic reciprocity symbol
(

x
p

)
studied in

Section 2.2, hence is naturally called the mth-power reciprocity symbol. The
following series of definitions and formulas is completely analogous to what
is done in the classical case of quadratic reciprocity.

Lemma 3.6.24. (1)
(

x
p

)
m

is characterized by the fact that it is a character
of order m such that (

x

p

)
m

≡ x(q−1)/m (mod p) .

(2) We have
τ(χp) =

∑
t∈(ZK m /p)∗

χp(t)ψ1(t) ,

where as usual ψ1(t) = ζ
Tr(ZK m

/p)/(Z/pZ)(t)
p .

Proof. (1) is the translation of the corresponding properties of the char-
acter ωP, and (2) from the fact that the natural inclusion map from Km to
L induces a canonical isomorphism between ZKm

/p and ZL/P. ��

Definition 3.6.25. Let a be an integral ideal of Km coprime to m, and x be
coprime to a. We define

(
x
a

)
m

and G(a) by the formulas(x

a

)
m

=
∏
p|a

(
x

p

)vp(a)

m

and G(a) =
∏
p|a

G(p)vp(a) .

If a = αZKm
is a principal ideal, we will write

(
x
α

)
m

and G(α) instead of(
x

αZK m

)
m

and G(αZKm
).

Thus by definition we have
(

x
ab

)
m

=
(

x
a

)
m

(
x
b

)
m

and G(ab) = G(a)G(b).

Proposition 3.6.26. We have:

(1) |G(a)|2 = N (a)m.
(2) G(a)ZKm

= aγ , where γ = mΘ is as above.
(3) If α ∈ ZKm

there exists a unit ε(α) of ZKm
such that G(α) = ε(α)αγ .

Proof. If p is a prime, by Proposition 2.5.9 we have |G(p)|2 = |τ(ω−d
P

)|2m =
qm = N (p)m, so (1) follows by multiplicativity. Statement (2) for a prime
ideal is exactly Proposition 3.6.13, and the general result follows by multi-
plicativity. By (2) we have G(α)ZKm

= αγZKm
, hence G(α) = ε(α)αγ for

some unit ε(α). ��

We now want to show that ε(α) is a root of unity. For this we need two
lemmas.
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Lemma 3.6.27. For any integral ideal a prime to m and any σ ∈ Gal(Km/Q)
we have G(a)σ = G(aσ).

Proof. By definition, if p is a prime ideal coprime to m we have G(p) =
τ(ω−d

P
)m. Thus by Lemma 3.6.3 we have G(p)σ = τ(ω

−d
σ(P))

m = G(σ(p)) since
σ(p) is the prime ideal of Km below σ(P). As usual, the lemma follows by
multiplicativity. ��

Lemma 3.6.28. If α ∈ ZKm
then |αγ |2 = N (α)m.

Proof. Since σ−1 sends ζm to ζ−1
m it is complex conjugation. Thus

|αγ |2 = αγσ−1(αγ) = α(1+σ−1)γ .

Denoting by
∑∗

t a sum for 1 � t � m− 1 such that gcd(t,m) = 1 we have

(1 + σ−1)γ =
∑ *

t

tσ−1
t +

∑ *

t

tσ−1
−t =

∑ *

t

tσ−1
t +

∑ *

t

(m− t)σ−1
t

= m
∑ *

t

σ−1
t = m

∑
σ∈Gal(Km /Q)

σ .

It follows that

α(1+σ−1)γ =
∏

σ∈Gal(Km /Q)

σ(α)m = NKm /Q(α)m .

Proposition 3.6.29. The element ε(α) is a root of unity. In other words,
there exist i ∈ Z and a sign ± such that G(α) = ±ζi

mαγ .

Proof. By Proposition 3.6.26 (1) and (3) we have

|G(α)|2 = | N (α)|m = |ε(α)|2|αγ |2 = |ε(α)|2N (α)m ,

hence |ε(α)| = 1 (note that N (α) is automatically positive). On the other
hand, applying Lemma 3.6.27 to a = αZKm

and using Proposition 3.6.26 (3)
we deduce that for all σ ∈ Gal(Km/Q),

ε(α)σαγσ = G(α)σ = G(ασ) = ε(ασ)αγσ ,

so that ε(α)σ = ε(ασ). Since we have shown that |ε(α)| = 1 for all α ∈ ZKm
,

and in particular for ασ, it follows that |ε(α)σ| = 1 for all σ. We conclude by
Kronecker’s theorem (Corollary 3.3.10) that ε(α) is a root of unity, and the
proposition follows from Corollary 3.5.12. ��

We can now proceed to the statement and proof of Eisenstein’s reciprocity
law. As the reader will notice, the proof of the following proposition is essen-
tially identical to that of the classical proof of the quadratic reciprocity law
(see the proof of Lemma 2.2.2).
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Proposition 3.6.30. Let p1 and p2 be two distinct prime numbers not divid-
ing m and let p1 and p2 be prime ideals of Km above p1 and p2 respectively.
Then (

G(p1)
p2

)
m

=
(
N (p2)

p1

)
m

.

Proof. Let f1 and f2 respectively be the orders of p1 and p2 modulo m,
so that by Proposition 3.5.18 we have f(pi/p) = fi. Set qi = N (pi) = pfi

i ≡ 1
(mod m) and recall the notation of Definition 3.6.23. Since χp1(t) is an mth
root of unity and m | (q2 − 1), by Lemma 3.6.24 we have

τ(χp1)
q2 ≡

∑
t∈(ZK m /p1)∗

χp1(t)
q2ψ1(t)q2

≡
∑

t∈(ZK m /p1)∗

χp1(t)ψ1(q2t) ≡ χp1(q2)−1τ(χp1) (mod p2ZKm
) .

On the other hand, again by Lemma 3.6.24 we have

τ(χp1)
q2−1 = G(p1)(q2−1)/m ≡

(
G(p1)

p2

)
m

≡ χp2(G(p1))−1 (mod p2) .

Since |τ(χp1)|2 = q1 is coprime to p2, it follows from these two congruences
that

χp2(G(p1))−1 ≡ χp1(q2)−1 ≡ χp1(N (p2))−1 (mod p2) .

Since both sides are mth roots of unity and since p2 is coprime to m, it follows
that they are equal, proving the proposition. ��

Corollary 3.6.31. For all ideals a and b coprime to m such that N (a) and
N (b) are coprime we have

(G(a)
b

)
m

=
(N (b)

a

)
m

.

Proof. Clear since by definition
( ·

a

)
m

is a character and is multiplicative
in a, and G(a) and N (a) are also multiplicative. ��

Corollary 3.6.32. In addition to the assumptions of the preceding corollary,
assume that a = αZKm

is a principal ideal. Then(
N (b)

α

)
m

=
(

ε(α)
b

)
m

(
α

N (b)

)
m

.

Proof. By multiplicativity we have(
G(α)

b

)
m

=
(

ε(α)
b

)
m

(
αγ

b

)
m

=
(

ε(α)
b

)
m

∏
1�t�m−1, gcd(t,m)=1

A(t) ,

where



3.6 Stickelberger’s Theorem 169

A(t) =
(

σ−1
t (α)

b

)t

= σt

((
σ−1

t (α)
b

)
m

)
=
(

α

σt(b)

)
m

by Lemma 3.6.3. The result follows since N (b) =
∏

1�t�m−1, gcd(t,m)=1 σt(b).
��

From now on we will assume that m = � is a prime number, we will let
R = Z[ζ�] be the ring of integers of Q(ζ�), and we denote by L = (1 − ζ�)R
the unique prime ideal of R above �.

Lemma 3.6.33. If a is an ideal coprime to � then G(a) ≡ ±1 (mod �R).

Proof. If p is a prime ideal coprime to � we have as above

G(p) = τ(χp)� ≡ τ(χ�
p, ψ�) ≡

∑
t∈(Z/�Z)∗

ψ1(�t) ≡ −1 (mod �R)

since ψ1 is a nontrivial additive character, so the lemma follows by multi-
plicativity. ��

Definition 3.6.34. Let α ∈ R. We say that α is primary if it is not a unit
and if there exists x ∈ Z with � � x such that α ≡ x (mod L2).

Lemma 3.6.35. If α ∈ R is coprime to � there exists i ∈ Z, unique modulo
�, such that ζi

�α is primary.

Proof. Since f(L/�) = 1 we have R/L � Z/�Z, so there exists a ∈ Z,
evidently unique modulo �, such that α ≡ a (mod L). Thus β = (α−a)/(1−
ζ�) ∈ R, so in the same way there exists b ∈ Z, unique modulo �, such
that β ≡ b (mod L). It follows that α ≡ a + b(1 − ζ�) (mod L2). By the
binomial theorem we have ζi

� = (1− (1−ζ�))i ≡ 1− i(1−ζ�) (mod L2), hence
ζi
�α ≡ a + (b − ai)(1 − ζ�) (mod L2), so we choose i = ba−1 mod �, which is

possible since � � a, otherwise α would not be coprime to �. ��

Lemma 3.6.36. If α is primary we have ε(α) = ±1.

Proof. Since L is the unique prime ideal above �, for all σ ∈ Gal(Q(ζ�)/Q)
we have σ(L) = L. By definition of γ it follows that Lγ ⊂ L. Thus

αγ ≡ xγ ≡ x
∑

1�t��−1 t ≡ x�(�−1)/2 (mod L2) .

By Fermat’s theorem we have x(�−1)/2 ≡ ±1 (mod �), hence αγ ≡ ±1
(mod L2). On the other hand, by the preceding lemma we have G(α) =
ε(α)αγ ≡ ±1 (mod �R), hence ε(α) ≡ ±1 (mod L2). Now by Proposition
3.6.29 we have ε(α) = ±ζi

� for some integer i, hence ζi
� ≡ ±1 (mod L2). I

claim that � | i (this follows in fact from the uniqueness statement of Lemma
3.6.35). Indeed, as we have already seen, by the binomial theorem
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ζi
� = (1− (1− ζ�))i ≡ 1− i(1− ζ�) (mod L2) .

Thus the + sign must hold in the congruence (otherwise L | 2); hence i(1−
ζ�) ≡ 0 (mod L2), so that L | i, and hence � | i as claimed. It follows that
ε(α) = ±1. ��

Proposition 3.6.37. If α is primary and b is an ideal coprime to � such
that N (b) is coprime to αR then(

α

N (b)

)
�

=
(
N (b)

α

)
�

.

Proof. Since α is primary the above lemma tells us that ε(α) = ±1.
On the other hand, for all p coprime to �, χp is a character of order �, we
have χp(±1)� = 1 and χp(±1)2 = χp(1) = 1, and since � is odd it follows
by multiplicativity that for all b prime to � we have χb(±1) = 1, and in
particular χb(ε(α)) = 1. The result thus follows from Corollary 3.6.32. ��

The Eisenstein reciprocity law immediately follows:

Theorem 3.6.38 (Eisenstein). Let � be an odd prime, a ∈ Z an integer
not divisible by �, α ∈ R a primary element, and assume that αR and aR are
coprime. Then (α

a

)
�
=
( a

α

)
�
.

Proof. As usual, by multiplicativity it is enough to prove this when a = p
is a prime number different from � and prime to αR. Let p be a prime ideal
of R above p, f = f(p/p), so that N (p) = pf . By the above proposition with
b = p we have χp(α)f = χα(p)f . Since f | (�− 1) = [Q(ζ�)/Q], f is coprime
to �, and since both χ-values are �th roots of unity it follows that they are
equal. ��

3.7 The Hasse–Davenport Relations

Thanks to Stickelberger’s congruence (Theorem 3.6.6), we can return to
Gauss sums over finite fields considered in Chapter 2 and prove the impor-
tant Hasse–Davenport (HD for short) relations. The first one is called the HD
product relation; the second is called the HD lifting relation. As mentioned
in that chapter, although these relations are explicit finite identities between
algebraic numbers, of the same type as those giving the modulus of Gauss
sums or the links between Gauss and Jacobi sums, no really “elementary”
proof has been found of the product relation, except in special cases (the case
m = 2 of the product relation is proved in Exercise 40 of Chapter 2). Be-
cause of their importance I have thus decided to include two proofs of these
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relations. In the present section, I will show how Stickelberger’s congruence
combined with some basic algebraic number theory and suitable distribution
relations leads to the proof of both relations (the product relation only for
p � 3). In Exercise 32 I give a direct elementary proof of the HD lifting re-
lation. Finally, in Section 11.7.4 I will show how the Gross–Koblitz formula
together with the distribution relation for the p-adic gamma function leads
to a painless proof of the HD product relation for all p.

3.7.1 Distribution Formulas

To prove the Hasse–Davenport relations we need distribution formulas for
the functions s(r) and t(r) given by Definition 3.6.5, analogous to several
such relations that we have already seen. The result for s(r) is as follows.

Proposition 3.7.1. Recall that {z} denotes the fractional part of z ∈ R.

(1) If k and m are coprime integers and z ∈ R we have∑
0�a<m

{
ka + z

m

}
=

m− 1
2

+ {z} .

(2) If m | (q − 1) and d = (q − 1)/m, then for all b ∈ Z we have∑
0�a<m

s(da + b)−
∑

0�a<m

s(da) = s(mb) .

In addition, ∑
0�a<m

s(da) = (p− 1)(m− 1)f/2 .

Proof. (1). The expression {(ka + z)/m} depends only on a modulo m;
hence we may replace the summation by

∑
a∈Z/mZ. Since k is coprime to m,

multiplication by k is an automorphism of Z/mZ, and the map a �→ a + �z	
is also an automorphism of Z/mZ. It follows that if we set y = {z} we have∑

0�a<m

{
ka + z

m

}
=
∑

0�a<m

{
a + y

m

}

=
∑

0�a<m

a + y

m
−
∑

0�a<m

⌊
a + y

m

⌋
=

m− 1
2

+ y

since 0 � a + y < m for 0 � a < m, proving (1).
(2). This is an immediate consequence of (1) and of Lemma 3.6.7: by that

lemma we have
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∑
0�a<m

s(da + b) = (p− 1)
∑

0�i<f

∑
0�a<m

{
pi(da + b)

q − 1

}

= (p− 1)
∑

0�i<f

∑
0�a<m

{
pia + pib/d)

m

}

= (p− 1)
∑

0�i<f

(
m− 1

2
+ {pib/d}

)
= (p− 1)(m− 1)f/2 + (p− 1)

∑
0�i<f

{pib/d}

since m | (q − 1) is coprime to pi, which already gives the second formula of
(2). It follows that∑

0�a<m

s(da + b)−
∑

0�a<m

s(da) = (p− 1)
∑

0�i<f

{
pimb

q − 1

}
= s(mb)

by Lemma 3.6.7, proving the proposition. ��

Similarly, we have the following distribution relation for the function t(r),
completely analogous to the one for s(r), except that it is multiplicative
instead of additive.

Proposition 3.7.2. If m | (q − 1) and d = (q − 1)/m, then for all b ∈ Z we
have

mmb
∏

0�a<m t(da + b)
t(mb)

∏
0�a<m t(da)

≡ 1 (mod p) .

Proof. Consider the left-hand side as a function F (b) of b. We have ev-
idently F (0) = 1. Furthermore, t(m(b + d)) = t(mb + q − 1) = t(mb),∏

0�a<m t(da + b + d) =
∏

1�a�m t(da + b) =
∏

0�a<m t(da + b) since
t(dm + b) = t(b), and mm(b+d) = mmbmq−1 ≡ mmb (mod p). It follows that
F (b) modulo p is periodic of period d, hence we may assume that 0 � b < d.
We prove the proposition by induction on b ∈ [0, d−1]. For b = 0 the result is
clear, so assume that 1 � b < d. Since 0 � da � da+ b < q− 1 for 0 � a < m
and using Lemma 3.6.7, for some integer x we have

F (b)
F (b− 1)

≡ mm(−p)x

∏
0�a<m(da + b)

(mb)!/(m(b− 1))!
≡ (−p)x

∏
0�a<m(mb + (q − 1)a)∏

0�a<m(mb− a)

≡ (−p)x
∏

0�a<m

mb− a + pfa

mb− a
(mod p) .

Since 0 < mb− a < q− 1 we have vp(mb− a) < f , hence vp(mb− a + pfa) =
min(vp(mb−a), f+vp(a)) = vp(mb−a), so that vp((mb−a+pfa)/(mb−a)) =
0. Since we also have vp(F (b)) = 0 it follows that x = 0. Furthermore, for
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the same reason vp(pfa/(mb − a)) � 1; hence (mb − a + pfa)/(mb − a) ≡ 1
(mod p), so that F (b)/F (b − 1) ≡ 1 (mod p), proving the proposition by
induction. ��

3.7.2 The Hasse–Davenport Relations

We now have all the tools necessary to prove the Hasse–Davenport relations,
at least when p � 3.

Theorem 3.7.3 (Hasse–Davenport product relation). Let ρ be a mul-
tiplicative character of exact order m | (q−1), and let χ be any multiplicative
character on the finite field Fq. For any nontrivial additive character ψ we
have ∏

0�a<m

τ(χρa, ψ) = −χ−m(m)τ(χm, ψ)
∏

0�a<m

τ(ρa, ψ) .

Proof. Since we know the valuations of Gauss sums for all primes and also
their moduli, the proof of this theorem amounts to computing a specific root
of unity, and for p � 3 this will follow from the distribution relation for the
function t proved above. There is a similar proof for p = 2, which will be
given as Exercise 54 of Chapter 11.

First note that if χ is equal to a power of ρ then χm = ε, and the identity
is trivial since τ(ε, ψ) = −1. We may therefore assume that this is not the
case, hence that none of the characters occurring in the identity is the trivial
character.

We use the notation of the proof of Stickelberger’s Theorem 3.6.6, and
especially that of Section 3.6.2. Let P be a prime ideal of L = Q(ζq−1, ζp)
above p, and let ω = ωP be the corresponding character of order q− 1. Since
ρ has exact order m we have ρ = ω−dk with d = (q − 1)/m for some k
coprime to m, and replacing ρ by ω−k (which does not change the set of ρa

for 0 � a < m), we may assume that k = 1. On the other hand, let b be such
that χ = ω−b. We thus have τ(χρa, ψ) = τ(ω−(da+b), ψ). Set

ζ = −
χm(m)

∏
0�a<m τ(χρa, ψ)

τ(χm, ψ)
∏

0�a<m τ(ρa, ψ)
= −

ω−mb(m)
∏

0�a<m τ(ω−(da+b), ψ)
τ(ω−mb, ψ)

∏
0�a<m τ(ω−da, ψ)

.

It follows from Stickelberger’s theorem (more precisely from Corollary 3.6.8)
that

vP(ζ) =
∑

0�a<m

s(da + b)−
∑

0�a<m

s(da)− s(mb) = 0

by the distribution relation for the function s(a). Since this is true for every
prime ideal P above p and since these are the only ones that can occur in the
prime ideal decomposition of Gauss sums over the field Fq, it follows that ζ
is a unit in Q. Furthermore, from Proposition 2.5.14 we have
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ζ = χm(m)
Jm(χ, χρ, . . . , χρm−1)
Jm(χm, ρ, . . . , ρm−1)

∈ Q(ζq−1) .

Since χ is not a power of ρ, each Gauss sum has modulus equal to q1/2 except
τ(ρ0, ψ) = −1, so ζ has modulus 1. Since σk ∈ Gal(Q(ζq−1)/Q) sends ζq−1 to
ζk
q−1, hence χ to χk, it follows for the same reason that all the conjugates of

ζ have modulus equal to 1. Thus by Kronecker’s theorem (Corollary 3.3.10)
it follows that ζ is a root of unity belonging to Q(ζq−1); hence ζ = ±ζk

q−1

for some k ∈ Z. From the above expression of ζ in terms of Jacobi sums,
it is clear that ζ does not depend on the choice of the nontrivial additive
character ψ, so as usual we will choose ψ = ψ1.

Let again P be any prime ideal of L. By Stickelberger’s Theorem 3.6.8
we have

τ(ω−r, ψ1) ≡ −
(ζp − 1)s(r)

t(r)
(mod Ps(r)+1) .

Since the powers of ζp − 1 cancel by the distribution formula for s, it follows
from the distribution formula for t that

ζ ≡
t(mb)

∏
0�a<m t(da)

ωmb(m)
∏

0�a<m t(da + b)
≡ (m/ω(m))mb ≡ 1 (mod P) ,

since by definition ω(m) ≡ m (mod P). Now
∏

1�k<q−1(1 − ζk
q−1) = q − 1;

hence if ζ = ζk
q−1 for 1 � k < q−1 we would have (1−ζ) | (q−1), so that 1−ζ

would be prime to p, in contradiction with the above congruence. Similarly,
it is immediate that for p � 3 we have

∏
0�k<q−1, k 	=(q−1)/2(1+ζk

q−1) = q−1,
giving again a contradiction if ζ = −ζk

q−1. Thus ζ = ζ0
q−1 = 1, proving the

theorem for p � 3. ��

Remarks. (1) For p = 2 we have
∏

0�k<q−1, k 	=(q−1)/2(1 + ζk
q−1) = 2, so

that the possibility that ζ = −1 is not excluded by the last argument of
the proof. To be able to exclude it we must compute ζ modulo P2, thus
essentially modulo 4, and this will be done in Exercise 54 of Chapter 11.

(2) Since mp−1 ≡ 1 (mod p), it follows that as an element of Fq we have
mp−1 = 1, hence χ(mp−1) = 1, so that χ(m) is a (p− 1)st root of unity,
and not simply a (q − 1)st root of unity.

(3) By Proposition 2.5.9 the modulus of the product on the right-hand side
is equal to q(m−1)/2. We will see in Theorem 11.7.16 that it is in fact
equal to q(m−1)/2 times an explicit fourth root of unity.

Theorem 3.7.4 (Hasse–Davenport lifting relation). Let Fqn /Fq be an
extension of finite fields of degree n, let χ (respectively ψ) be a nontrivial mul-
tiplicative (respectively additive) character on Fq. Define χ(n) = χ ◦ N Fq n /Fq

and ψ(n) = ψ ◦ TrFq n /Fq
. Then

τ(χ(n), ψ(n)) = (−1)n−1τ(χ,ψ)n .



3.7 The Hasse–Davenport Relations 175

Despite its simplicity, this theorem is not so easy to prove, although in
contrast to the HD product relation there does exist a relatively simple direct
proof, which we give in Exercise 32.

Proof. If x ∈ Fqn , the conjugates of x are the xqi

for 0 � i < n. Thus

N Fq n /Fq
(x) =

∏
0�i<n

xqi

= x(qn −1)/(q−1) .

On the other hand, by transitivity of the trace we have

TrFq /Fp
(TrFq n /Fq

(x)) = TrFq n /Fp
(x) .

Keeping the notation of the preceding sections, we have ψ = ψb and χ = ω−a

for a unique b ∈ F∗
q and integer a modulo q − 1. It follows that

ψ(n)(x) = ψ ◦ TrFq n /Fq
(x) = TrFq n /Fp

(bx) = ψ
(n)
b (x)

χ(n)(x) = ω−a(x(qn −1)/(q−1)) = (ω(n))−a(qn −1)/(q−1) ,

using the additional upper index (n) on ψb and ω to indicate that they are
with respect to the larger finite field Fqn . This implies in particular that χ(n)

is also a nontrivial character since (qn − 1) | a(qn − 1)/(q − 1) is equivalent
to (q − 1) | a, which is excluded since χ is nontrivial. Equivalently, this
also immediately follows from the surjectivity of the norm from Fqn to Fq

(Proposition 2.4.12), and the surjectivity of the trace (Proposition 2.4.11)
implies that ψ(n) is also nontrivial. These immediate preliminaries out of the
way, we can now mimic the proof of the HD product relation.

As above, set L = Q(ζq−1, ζp), and set ζ = (−1)n−1τ(χ(n), ψ(n))/τ(χ,ψ)n.
Since the values of χ and ψ are in L, we have ζ ∈ L. Furthermore,
Gal(L/Q(ζq−1)) is the group of maps αk defined by σk(ζp) = ζk

p for k coprime
to p (see the footnote in the proof of Lemma 3.6.18). Clearly

αk(τ(χ,ψ)) = τ(χ,ψk) = χ−1(k)τ(χ,ψ)

by Lemma 2.5.6, and similarly

αk(τ(χ(n), ψ(n))) = (χ(n))−1(k)τ(χ(n), ψ(n))

= χ−1(N Fq n /Fq
(k))τ(χ(n), ψ(n)) = χ−n(k)τ(χ(n), ψ(n)) .

It follows that αk(ζ) = ζ for all k coprime to p, hence that ζ ∈ Q(ζq−1) (this
part of the proof is the analogue of the use of Jacobi sums to prove the same
result).

Let P be a prime ideal of L above p. By Corollary 3.6.8 we have

vP(τ(χ(n), ψ(n))) = vP

(
τ(ω−a(qn −1)/(q−1), ψ(n))

)
= s(a(qn − 1)/(q − 1)) .

Since a(qn − 1)/(q − 1) =
∑

0�i<n aqi and q is a power of p, it follows from
the definition of s that when 0 � a < q − 1 we have
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s(a(qn − 1)/(q − 1)) =
∑

0�i<n

s(aqi) =
∑

0�i<n

s(a) = ns(a) = nvP(τ(χ,ψ)) ,

proving that vP(ζ) = 0 for all P above p. Since the moduli of all Gauss sums
are powers of p, it follows that ζ is a unit. More precisely, since ψ(n) and
ψ(n) are nontrivial we have |τ(χ(n), ψ(n))| = qn/2 and |τ(χ,ψ)| = q1/2, hence
|ζ| = 1. Changing ζq−1 into ζk

q−1 for some k coprime to q − 1 is equivalent
to changing χ into χk hence χ(n) into (χ(n))k. Thus all the conjugates of ζ
also have modulus equal to 1. Since ζ is a unit it follows from Kronecker’s
theorem that ζ is a root of unity, and since ζ ∈ Q(ζq−1), that ζ is a (q− 1)st
root of unity. Finally, by Theorem 3.6.6 we have

τ(χ(n), ψ(n)) ≡ − (ζp − 1)ns(a)

t(a(qn − 1)/(q − 1))
(mod Pns(a)+1) .

As we have seen above, the digits in base p of a(qn− 1)/(q− 1) are the same
as those of a repeated n times; hence by Lemma 3.6.7 for 0 � a < q − 1 we
have t(a(qn − 1)/(q − 1)) ≡ t(a)n (mod p). Thus ζ ≡ 1 (mod P), and we
conclude as for the HD product relation that ζ = 1, finishing the proof. ��

Corollary 3.7.5. If χ1, . . . , χk are multiplicative characters on Fq that are
not all trivial, and ψ is a nontrivial additive character, then

Jk(χ(n)
1 , . . . , χ

(n)
k ) = (−1)(n−1)(k−1)(Jk(χ1, . . . , χk))n .

Proof. Immediate by inspection of the cases of Proposition 2.5.14. ��

Corollary 3.7.6. Assume that p is odd, let q = pf , and let χq be the unique
multiplicative character of order 2 of Fq. We have

τ(χq, ψ1) =

{
(−1)f−1q1/2 if p ≡ 1 (mod 4) ,
(−1)f−1ifq1/2 if p ≡ 3 (mod 4) .

Proof. Denote by χp the Legendre symbol modulo p. We haveN Fq /Fp
(x) =∏

0�i<f xpi

= x(q−1)/(p−1), hence

χp ◦ N Fq /Fp
(x) ≡ x(q−1)/2 ≡ χq(x) (mod p) ,

since evidently χq(x) = x(q−1)/2 in the field Fq. It follows from Theorem 3.7.4
that (with an evident abuse of notation)

τ(χq, ψ1) = τ(χ(f)
p , ψ

(f)
1 ) = (−1)f−1τ(χp, ψ1)f .

This last Gauss sum over the finite field Fp is the same as the Gauss sum
corresponding to the Dirichlet character χp, so thanks to the determination
of the sign of the quadratic Gauss sum (Theorem 2.2.19) we know its exact
value: if p ≡ 1 (mod 4) it is equal to p1/2, so that τ(χq, ψ1) = (−1)f−1q1/2,
and if p ≡ 3 (mod 4) it is equal to p1/2i, so that τ(χq, ψ1) = (−1)f−1ifq1/2.

��
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3.7.3 The Zeta Function of a Diagonal Hypersurface

We have already mentioned (without making the formulas explicit) the Weil
conjectures (now proved by Deligne) in Section 2.5.7. These theorems im-
ply very sharp bounds for the number of solutions of systems of polynomial
equations over finite fields. In the present subsection we show how the HD
lifting relation leads to an easy proof of the Weil conjectures in the special
case of a diagonal hypersurface, in other words the set of projective solutions
to
∑

1�i�k aix
d
i = 0, where the ai are nonzero constants and d � 1. Recall

from Section 2.5.5 that this depends only on gcd(d, q−1); hence without loss
of generality we may assume that d | (q − 1).

Theorem 3.7.7. Assume that d | (q − 1), and for 1 � i � k let ai ∈ F∗
q .

For n � 1 denote by Mn(q) the number of projective solutions in Fqn

of
∑

1�i�k aix
d
i = 0. There exist algebraic numbers αi (independent of

n) indexed by a finite set I, and having the following properties:

(1)

Mn(q) =
qn(k−1) − 1

qn − 1
+ (−1)k

∑
i∈I

αn
i .

(2) We have |I| = ((d− 1)k + (−1)k(d− 1))/d.
(3) We have αi ∈ Z[ζd], and in particular the αi are algebraic integers.
(4) All the conjugates of αi have modulus equal to q(k−2)/2.

Proof. We use the notation of Section 2.5.5 and also keep the notation
used in the proof of the HD lifting relation. By Corollary 2.5.24 we have

Mn(q) =
qn(k−1) − 1

qn − 1
+ Rn(q) with

Rn(q) =
∑

χ′
1,...,χ′

k−1∈Gn ,d\{ε}∏
1�i�k−1 χ′

i 	=ε

∏
1�i�k−1

(χ′
i)

−1(−ai)Jk−1(χ′
1, . . . , χ

′
k−1) ,

where Gn,d denotes the group of characters of Fqn of order dividing d. I
claim that the map χ �→ χ(n) from G1,d = Gd to Gn,d is a group isomor-
phism: indeed it clearly maps G1,d to Gn,d, and is a group homomorphism.
Furthermore, since by Lemma 2.5.21, |Gn,d| = |G1,d| = d, both groups have
the same cardinality. Finally, if χ(n) is the trivial character, we have seen in
the proof of the HD lifting relation as a consequence of the surjectivity of
the norm on finite fields that χ is also trivial;x hence the kernel of our map
is trivial, proving my claim. Using the HD lifting relation, more precisely
Corollary 3.7.5, we thus obtain
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Rn(q) =
∑

χ1,...,χk−1∈Gd\{ε}∏
1�i�k−1 χi 	=ε

∏
1�i�k−1

(χ(n)
i )−1(−ai)Jk−1(χ

(n)
1 , . . . , χ

(n)
k−1)

= (−1)k(n−1)
∑

χ1,...,χk−1∈Gd\{ε}∏
1�i�k−1 χi 	=ε

∏
1�i�k−1

χ−1
i ((−ai)n)Jk−1(χ1, . . . , χk−1)n

= (−1)k
∑

χ1,...,χk−1∈Gd\{ε}∏
1�i�k−1 χi 	=ε

S(χ1, . . . , χk−1)n ,

where we have set

S(χ1, . . . , χk−1) = (−1)k
∏

1�i�k−1

χ−1
i (−ai)Jk−1(χ1, . . . , χk−1) .

In the above derivation we have of course used in an essential way the fact
that ai belongs to Fq and not only to Fqn . This proves the first formula of the
theorem. The set I is the set of (k− 1)-tuples (χ1, . . . , χk−1) ∈ (Gd \ {ε})k−1

such that
∏

1�i�k−1 χi �= ε, whose cardinality has been computed in the
proof of part (3) of Theorem 2.5.22. Since χd

i = 1, the values of χi are powers
of ζd, and by definition, Jk−1(χ1, . . . , χk−1) ∈ Z[ζd]. For the final statement
concerning the moduli of the conjugates of αi, we first note that the moduli
of the conjugates of the values of χi are equal to 1. Furthermore, since the
χi are nontrivial as well as

∏
1�i�k−1 χi, we have

Jk−1(χ1, . . . , χk−1) =

∏
1�i�k−1 τ(χi, ψ)

τ(
∏

1�i�k−1 χi, ψ)
;

hence for all σ ∈ Gal(Q(ζq−1, ζd)/Q) we have |σ(Jk−1(χ1, . . . , χk−1))| =
q(k−2)/2, proving the theorem. ��

It follows trivially from this theorem that

|Mn(q)− |Pk−2(Fqn )|| � (d− 1)k + (−1)k(d− 1)
d

qn(k−2)/2 ,

a result that we have already proved in Theorem 2.5.22. What is important
in the present theorem is that thanks to the HD lifting relation we have been
able to relate exactly the Mn(q) for different values of n. In fact, it is now
immediate to prove Weil’s conjecture in the present situation.

Corollary 3.7.8. Define the zeta function of our hypersurface by Zq(T ) =
exp(

∑
n�1 Mn(q)Tn/n). Then Zq(T ) is a rational function of T of the form

Zq(T ) =
P (T )(−1)k−1∏

0�i�k−2(1− qiT )
=

P (T )(−1)k−1

(1− T )(1− qT ) · · · (1− qk−2T )
,
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where P (T ) is a polynomial of degree ((d−1)k+(−1)k(d−1))/d with constant
term 1 whose reciprocal roots (i.e., the inverses of its roots) have modulus
equal to q(k−2)/2.

Proof. Using the formal expansion of the logarithm and the explicit for-
mula for Mn(q) (where we replace (qn(k−1) − 1)/(qn − 1) by

∑
0�i�k−2 qin)

we find that∑
n�1

Mn(q)
Tn

n
= −

∑
0�i�k−2

log(1− qiT ) + (−1)k−1
∑
i∈I

log(1− αiT ) ;

hence Zq(T ) has the given form with P (T ) =
∏

i∈I(1 − αiT ), so the other
statements of the corollary follow from the theorem. ��

3.8 Exercises for Chapter 3

1. Show that every finite field is perfect.

2. Fill in the details of the proof of Proposition 3.1.12.

3. Show that, as claimed in the text, if θ is an algebraic number of degree n then
any rational function in θ with rational coefficients is equal to a polynomial in
θ with rational coefficients of degree less than or equal to n − 1.

4. Let σ be a field homomorphism from R to R. Using the identity f(x + a2) =
f(x) + f(a)2 and the positivity of a square in R, prove that σ is continuous,
hence that σ(x) = x for all x.

5. Let A be a finite abelian group of exponent dividing n. Show that Hom(A, µn) 

A noncanonically by first proving it for cyclic groups and then using the ele-
mentary divisor theorem giving the structure of finite abelian groups (Theorem
2.1.9).

6. Let p be a prime number, let K be a commutative field of characteristic different
from p, set L = K(ζp), G = Gal(L/K) 
 (Z/pZ)∗, and M = L(a1/p) for some
a ∈ L∗ \ L∗p . Using Corollary 3.1.22 prove that the extension M/K is Abelian
if and only for all k there exists ck ∈ L such that σk(a) = cp

kak , where as usual

σk(ζp) = ζk
p .

7. (Kummer extensions of degree 2.) Let k be a commutative field of characteristic
different from 2. Show that any extension K of degree 2 of k has the form
K = k(

√
d) for some d ∈ k that is not a square, and that k(

√
d1) and k(

√
d2)

are k-isomorphic (i.e., there exists a field isomorphism from one to the other
which leaves k pointwise fixed) if and only if d2/d1 is a square in k.

8. Generalize Proposition 3.1.25 by proving the following. Let K be a perfect field
of characteristic p, let q = pm be a power of p, and assume that the equation
Xq−X = 0 has all its q roots in K, in other words that K contains an isomorphic
copy of Fq (which we denote by Fq by abuse of notation). An extension L/K
is an Abelian extension with Galois group isomorphic to Fq 
 (Z/pZ)m if and
only if L = K(α), where α is a root of an Artin–Schreier polynomial Xq −X−a
for some a ∈ K not in the Fq -vector space G of elements of the form xq − x for
x ∈ K. The conjugates of α are then the α + k for k ∈ Fq . Furthermore, a and
a′ define K-isomorphic extensions if and only if there exists j ∈ F∗

q such that
a′ − ja ∈ G.
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9. Generalize Proposition 3.1.25 to cyclic extensions of prime-power order pm (use
induction on m).

10. Prove that, as stated in the text, if A and B are coprime polynomials then with
the notation of Theorem 3.2.5 we have

Ker((AB)(σ)) = Ker(A(σ)) ⊕ Ker(B(σ)) .

11. In the proof of Proposition 3.3.4, we showed that α is an eigenvalue of the
multiplication by α map. Give a corresponding eigenvector.

12. Let α and β be algebraic numbers, and let A and B in Q[X] be their respective
minimal monic polynomials. Denoting by RY the resultant with respect to the
variable Y (see Definition 3.5.6), show that α + β is a root of RY (A(Y ), B(X −
Y )) and αβ is a root of XdRY (A(Y ), B(X/Y )) for a suitable d � 1. Deduce
from this an alternative proof of Proposition 3.3.6.

13. With the notation of Proposition 3.3.8, prove directly (i.e., without using that
proposition) that anα2 + an−1α is an algebraic integer.

14. Let α be an algebraic number. Prove that R = Z[α]∩ZQ(α) is the largest subring
of Z[α] that is a finitely generated Z-module.

15. (H. W. Lenstra.) As an application of Kronecker’s Proposition 3.3.9, prove the
following amusing result. Let P be a (closed) polygon in the plane having the
following two properties:

(a) All of its sides have the same length.
(b) All the angles between two consecutive sides are rational multiples of 2π, except

perhaps for two consecutive angles.

Prove that in fact all angles are rational multiples of 2π.

16. Prove Proposition 3.3.13. If you need help, see Section 1.4.1 of [Coh1].

17. Let L/K be an extension of number fields, and let a and b be ideals of K. Prove
that aZL = bZL if and only if a = b. (Hint: prove that ab

−1 and ba
−1 are

integral ideals.)

18. Prove Propositions 3.3.21, 3.3.25, and 3.3.27. In particular, define the Frobenius
homomorphism on L when p is unramified. For help see any text on algebraic
number theory.

19. Let L be a cyclic extension of Q of degree p, let M = L(ζp), so that by Kummer

theory M = K(a1/p) for some a ∈ K, and let q be a prime ideal of K. If L/Q
is unramified outside p and p � vq(a), prove that the prime number q below q

splits completely in K/Q. (Hint: show that the decomposition group D(q/q) is
trivial.)

20. Let K be a number field, p a prime ideal of K, and p the prime number below
p. For α and β in ZK show that the following three properties are equivalent:

(a) α ≡ β (mod p).
(b) αp ≡ βp (mod p).
(c) αp ≡ βp (mod p

2).

(Hint: prove that (b) implies (a) implies (c) implies (b). See also Lemma 2.1.21.)
In particular, deduce that if p is unramified in K then the same properties are
equivalent by replacing p by pZK .

21. Prove Proposition 3.4.3 using the quadratic reciprocity law.

22. Let m and n be distinct strictly positive integers.
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(a) Show that if m | n and n/m = pk is a prime power then R(Φm , Φn) = ±pφ(m)

(using Proposition 3.5.5 show that R(Φm , Φn) = upφ(m) for some unit u, and
conclude from the fact that R(Φm , Φn) ∈ Z).

(b) Show that R(Φm , Φn) > 0 except when m = 2 and n = 1, finishing the proof
of Proposition 3.5.8.

23.

(a) Let K be a number field having r1 real and r2 pairs of nonreal complex em-
beddings. Using directly the definition of the discriminant, show that its sign
is equal to (−1)r2 .

(b) Deduce that the discriminant of the cyclotomic field K = Q(ζpk ) is equal to

εpφ(pk )−1 with ε = 1 if p ≡ 1 (mod 4) or if p = 2 and k � 3, and ε = −1 if
p ≡ 3 (mod 4) or if pk = 4.

24. Let K = Q(ζn) be a cyclotomic field and α ∈ ZK an algebraic integer of K.
Assume that |α|2 ∈ Z, where |α| denotes the complex modulus of α for some
chosen embedding of K in C. Prove that |σ(α)|2 = |α|2 for all σ ∈ Gal(K/Q).
Show that this is not necessarily true if |α|2 /∈ Z.

25. Prove that if 1 � a, b � q − 2 and a + b � q then
(

a+b
a

)
is divisible by p.

26. Generalize Proposition 3.6.4 by showing that if 1 � ai � q − 2 we have

Jk(ω−a1 , . . . , ω−ak ) ≡ (−1)k−1 (a1 + · · · + ak)!

a1! · · · ak !
(mod P) .

27. Let s(a) be as in Definition 3.6.5. Prove that for any m | (q − 1) and any t
coprime to m the quantity (m/(p−1))s(t(q−1)/m) is an integer (this is proved
indirectly in Proposition 3.6.11).

28. The goal of this exercise and the next is to prove the theorem of Kronecker–
Weber, using an idea of F. Lemmermeyer in [Lem]. Assume that p � 3, let L be
a cyclic extension of Q of degree p that is unramified outside p, let K = Q(ζp),

let M = L(ζp) = K(a1/p) for some a ∈ K, and let p = (1−ζp)ZK be the unique
ideal of K above p.

(a) Prove that if q is a prime ideal of K different from p then p | vq(a).
(b) Using the preceding exercise, prove that p | vp(a), hence that aZK = a

p for
some ideal a of K.

(c) Using Exercise 6, show that σk(a) = cka
k for some ck ∈ K∗.

(d) Using Stickelberger’s Corollary 3.6.14 show that a
p−1 is a principal ideal, hence

that a itself is principal.
(e) Deduce first that M = K(u1/p) for some unit u of K, then by Proposition 3.5.20

and Exercise 6 applied to complex conjugation σ−1, prove that M = Q(ζp2).
(f) Using Galois theory, show that this implies that if Gal(L/Q) 
 (Z/pZ)n for

n � 1 and L/Q unramified outside p, then n = 1 and L is the subfield of degree
p of Q(ζp2).

(g) Still with p � 3, let now L be a cyclic extension of Q of degree pn unramified
outside p. Show that L is the subfield of degree pn of Q(ζpn+1). (Hint: if L′ is

the subfield in question and if L′L/Q is not cyclic, prove that there exists a
subextension whose Galois group is isomorphic to (Z/pZ)2, thus contradicting
the preceding result.)

29. Assume now that p = 2.
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(a) Show that the only extensions of degree 2 of Q that are unramified outside 2

are Q(
√

D) for D = −8, −4, and 8.
(b) As in the case p odd, show that this implies that the only real extension L/Q

unramified outside 2 such that Gal(L/Q) 
 (Z/2Z)n for some n � 1 is Q(
√

8).
(c) Now let L be a cyclic extension of degree 2n for n � 2 unramified outside 2.

If L is not real, prove that L is a subfield of Q(ζ2n+2) if and only if so is the
maximal real subfield of L(ζ4), hence that we can assume that L is real.

(d) If L is a real extension of degree 2n unramified outside 2 prove that L is
the maximal real subfield L′ of Q(ζ2n+2). (Hint: as in the preceding exercise,
consider L′L/Q.)

(e) Deduce from this exercise and the preceding one that if L/Q is a cyclic extension
of degree pn and unramified outside p, then L is a subfield of a cyclotomic field.

It is then not difficult to show that this implies the full Kronecker–Weber the-
orem in two steps (see for instance [Marc] for details): if L/Q is an arbitrary
cyclic extension of degree pn , possibly ramified at other primes than p, one first
shows that one can reduce to a similar cyclic extension but ramified at one
prime fewer outside p, so that ultimately one can reduce to one that is unram-
ified outside p. As a second, easier, step, this implies that an arbitrary Abelian
extension is a subfield of a cyclotomic field by decomposing the Galois group as
a product of cyclic groups of prime-power order.

30. Show that Proposition 3.5.20 is also true for p = 2.

31. Generalize the Eisenstein reciprocity law (Theorem 3.6.38) to the case that
m = �r is a prime power, separating the cases � > 2 and � = 2.

32. The goal of this exercise is to give a direct proof of the Hasse–Davenport lifting
relation. For hints, the reader is referred to Section 11.4 of [Ire-Ros]. Keep the
notation of that relation. For any monic polynomial f(x) =

∑
0�i�n aix

i (thus

with an = 1) we define as usual the trace of f by Tr(f) = −an−1 and the norm
of f by N (f) = (−1)na0. For a nonconstant f we set λ(f) = χ(N (f))ψ(Tr(f)),
and by convention we set λ(1) = 1.

(a) Prove that λ(fg) = λ(f)λ(g).
(b) Let x ∈ Fqn , let f be the monic minimal polynomial of x over Fq , and let

d = deg(f) | n. Prove that χ(n)(x)ψ(n)(x) = λ(f)n/d .
(c) Prove the identity

τ(χ(n), ψ(n)) =
∑

f

deg(f)λ(f)n/ deg(f ) ,

where the sum is over all monic irreducible polynomials over Fq with degree
dividing n.

(d) Using existence and uniqueness of the decomposition into irreducibles, prove
the following formal identity, analogous to the Euler product for the zeta func-
tion: ∑

f

λ(f)Xdeg(f ) =
∏
f

(1 − λ(f)Xdeg(f ))−1 ,

where the sum is over all monic polynomials, and the product over all monic
irreducible polynomials.

(e) Prove that ∑
deg(f )=n

λ(f) =

{
τ(χ, ψ) if n = 1 ,

0 if n > 1.

(f) Finally, deduce the HD lifting relation.



4. p-adic Fields

There are many books dealing with p-adic numbers and local fields. My pref-
erence is for the books by Cassels [Cas1] and Serre [Ser2]. The analytic aspects
are treated in detail in [Kob1] and [Rob1]. On a more elementary level, we
can cite [Ami], [Bac], [Bor-Sha], and [Gou].

In this chapter, all fields are assumed to be commutative (see the warnings
at the beginning of this book).

4.1 Absolute Values and Completions

We begin with some general observations valid over any field.

4.1.1 Absolute Values

Definition 4.1.1. Let K be any field. An absolute value is a map ‖ ‖ from
K to R satisfying the following properties:

(1) (Definiteness.)For all x ∈ K we have ‖x‖ � 0, and ‖x‖ = 0 if and only
if x = 0.

(2) (Multiplicativity.)For all x and y in K we have ‖xy‖ = ‖x‖‖y‖.
(3) (Generalized triangle inequality.)There exists a > 0 such that for all x

and y in K we have ‖x + y‖a � ‖x‖a + ‖y‖a.

Before going any further, it is important that the reader keep in mind the
following three examples:

– If K is a subfield of R, the ordinary absolute value |x| is clearly an absolute
value in the above sense, with a = 1. More generally, if K is a subfield of
C the modulus |x| is also an absolute value with a = 1.

– If K is a subfield of C, the square of the modulus |x|2 is clearly an absolute
value in the above sense, with a = 1/2.

– If K = Q and p is a prime number, the map defined by |0|p = 0 and
|x|p = C−vp (x), where vp(x) is the exponent of p in the decomposition of
x into a product of prime powers and C > 1 is a fixed constant, is an
absolute value called a p-adic absolute value.
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It is clear that an absolute value ‖ ‖ makes K into a metric space, the
distance being defined by d(x, y) = ‖x− y‖a. This metric depends on a, but
it is immediate that the induced topology does not.

Definition 4.1.2. Two absolute values on a field K are called equivalent if
they induce the same topology on K.

Lemma 4.1.3. Two absolute values ‖ ‖1 and ‖ ‖2 are equivalent if and only
if there exists c > 0 such that ‖x‖2 = ‖x‖c

1 for all x ∈ K.

Proof. If ‖x‖2 = ‖x‖c
1, for each R > 0 we have B1(0, R) = B2(0, Rc),

where Bi(0, R) denotes the open ball of radius R for the metric induced
by ‖ ‖i; hence the topologies are equivalent. Conversely, assume that the
topologies are equivalent. Since for any absolute value, ‖x‖ < 1 if and only
if ‖xn‖ → 0 as n → ∞ if and only if xn → 0 as n → ∞, it follows that
‖x‖1 < 1 if and only if ‖x‖2 < 1. We may assume that there exists x0 �= 0
satisfying this; otherwise, we would have ‖x‖1 = ‖x‖2 = 1 for all x �= 0. We
define c by the equality ‖x0‖2 = ‖x0‖c

1, so that by what we have said we
have c > 0. If x ∈ K∗ is such that ‖x‖1 < 1, we can define a real number
λ > 0 by the equality ‖x‖1 = ‖x0‖λ

1 . If m and n are positive integers such
that m/n > λ, then ‖xm

0 /xn‖1 = ‖x0‖m−nλ
1 < 1, whence ‖xm

0 /xn‖2 < 1; in
other words, ‖x‖2 > ‖x0‖m/n

2 . If we let m/n tend to λ keeping m/n � λ,
then since ‖x0‖ < 1, by continuity we have ‖x‖2 � ‖x0‖λ

2 . Using a sequence
of rational numbers m/n such that m/n < λ and tending to λ, we obtain in
the same way ‖x‖2 � ‖x0‖λ

2 , so that finally

‖x‖2 = ‖x0‖λ
2 = ‖x0‖cλ

1 = ‖x‖c
1 ,

proving the lemma. ��

As we have done in the above proof, from now on when we speak of
absolute values we will implicitly assume that we exclude the trivial absolute
value ‖x‖ = 1 for x �= 0, which induces the discrete topology on K.

Definition 4.1.4. We say that an absolute value ‖ ‖ on a field K is
Archimedean if K has characteristic 0 and if there exists m ∈ Z such that
‖m‖ > 1. Otherwise, it is said to be non-Archimedean.

The important result of this section, called Ostrowski’s theorem, gives a
complete description of all absolute values on a number field. We begin by
describing the Archimedean ones.

4.1.2 Archimedean Absolute Values

Lemma 4.1.5. Let K be a number field. The Archimedean absolute values
are given by ‖α‖ = |σ(α)|c, where c > 0 and σ is any fixed embedding from
K to C.
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Proof. It is clear that the maps defined in this way are Archimedean
absolute values; hence conversely, let ‖ ‖ be an Archimedean absolute value.
Since any element of K may be written as x/y with x and y in ZK , it is enough
to prove the lemma for elements of ZK . In addition, replacing if necessary
‖ ‖ by ‖ ‖a, we may assume that a = 1 in Definition 4.1.1, in other words
that we have the ordinary triangle inequality ‖x + y‖ � ‖x‖+ ‖y‖. We first
prove the following claim:
Claim. There exists c > 0 such that ‖m‖ = |m|c for all m ∈ Z.

Indeed, by multiplicativity we know that ‖1‖ = 1 and ‖ ± 1‖2 = ‖1‖ = 1;
hence again by multiplicativity we may assume that m > 1. For the moment
fix some m0 > 1, and for any positive m and N write mN in base m0, i.e.,
in the form

mN =
∑

0�n�N log(m)/ log(m0)

anmn
0 with 0 � an < m0 .

Let A be an upper bound for all the ‖a‖ with 0 � a < m0. By the triangle
inequality, if ‖m0‖ � 1 we would have for all positive m and N

‖m‖N � A(1 + N log(m)/ log(m0)) ;

hence by taking Nth roots and letting N →∞ we would obtain ‖m‖ � 1 for
all m, in contradiction with the Archimedean assumption. Since this is true
for all m0 > 1, it follows that for all m > 1 we have ‖m‖ > 1. Applying again
the triangle inequality, but using ‖m0‖ > 1, we obtain

‖m‖N � A(1 + N log(m)/ log(m0))‖m0‖N log(m)/ log(m0) ,

hence again by taking Nth roots and letting N → ∞ we now obtain
‖m‖ � ‖m0‖log(m)/ log(m0), in other words ‖m‖1/ log(m) � ‖m0‖1/ log(m0). Ex-
changing m and m0, we deduce that we have equality, in other words that
C = ‖m‖1/ log(m) is independent of m > 1. Thus

‖m‖ = C log(m) = exp(log(C) log(m)) = mlog(C) = mc

with c = log(C) > 0, proving our claim.
We now fix this value of c. For any nonzero α ∈ ZK , order the complex

embeddings σi so that |σi(α)| � |σi+1(α)| (ordinary modulus in C). This
ordering of course depends on α. Let N be a positive integer, and write∏

σ

(X − σ(αN )) = Xn + an−1X
n−1 + · · ·+ a0 ,

and for all m � n define Pm =
∏

1�i�m |σi(αN )|. The ±an−m are the ele-
mentary symmetric functions of the σ(αN ), and are equal to a sum of

(
n
m

)
monomials in the σ(αN ). Because of our ordering, the largest modulus of



186 4. p-adic Fields

these monomials is equal to ±Pm; hence |an−m| �
(

n
m

)
Pm � 2nPm. In ad-

dition, if |σm+1(α)| < |σm(α)|, then when N is large this largest mono-
mial is much larger than any other occurring in an−m, so that for instance
|an−m| > Pm/2. Finally, since the an−m are symmetric functions they are in
Z, so ‖an−m‖ = |an−m|c.

We first prove that ‖α‖ = |σk(α)|c for some k. Indeed, assume first that
for some k we have

|σk+1(α)|c < ‖α‖ < |σk(α)|c .

If we replace X by αN in the formula for
∏

σ(X − σ(αN )), we obtain (with
an = 1)

0 =
∑

0�j�n

ajα
Nj .

However, we have∥∥∥∥ an−jα
N(n−j)

an−kαN(n−k)

∥∥∥∥ �
(

(2nPj)c

(Pk/2)c

)
‖αN(k−j)‖ .

Thus, if k > j we have∥∥∥∥ an−jα
N(n−j)

an−kαN(n−k)

∥∥∥∥ �
(

2n+1Pj

Pk
|σk(α)|N(k−j)

)c( ‖α‖
|σk(α)|c

)N(k−j)

.

Since |σi(α)| � |σk(α)| for i � k, it follows that

Pj

Pk
=

1∏
j<i�k |σi(αN )| � 1

|σk(αN )|k−j
.

Thus, ∥∥∥∥ an−jα
N(n−j)

an−kαN(n−k)

∥∥∥∥ � 2(n+1)c

(
‖α‖

|σk(α)|c
)N(k−j)

.

Since ‖α‖ < |σk(α)|c, as N tends to∞ the right-hand side tends to 0, showing
that an−jα

N(n−j) is negligible compared to an−kαN(n−k). A similar result
holds if j > k. Since 0 =

∑
0�j�n an−jα

N(n−j), dividing by an−kαN(n−k)

and letting N tend to infinity gives 0 = 1, a contradiction. Note that α has
been chosen nonzero and that |an−k| > Pk/2 is also nonzero.

A similar proof shows that the inequalities ‖α‖ > |σ1(α)|c and ‖α‖ <
|σn(α)|c are impossible. It follows that there exists k such that ‖α‖ =
|σk(α)|c.

This construction of k depends a priori on α, so temporarily we write
k = k(α). I claim that k(α) is independent of α ∈ ZK . Indeed, if α and β are
nonzero elements of ZK we have

|σk(αβN )(αβN )|c = ‖αβN‖ = ‖α‖‖β‖N = ‖α‖|σk(β)(β)|cN ,



4.1 Absolute Values and Completions 187

hence
|σk(αβN )(β)|
|σk(β)(β)| =

(
‖α‖

|σk(αβN )(α)|c
)1/(cN)

.

Now note that when γ is nonzero and fixed, |σi(γ)|/|σj(γ)| can take only a
finite number of (nonzero) values. It follows in particular that as N tends
to infinity, the right-hand side of the above equality tends to 1. Thus, for
N sufficiently large, |σk(αβN )(β)|/|σk(β)(β)| is very close to 1, hence is equal
to 1 since there are only a finite number of possible values. It follows that
we may choose k(αβN ) = k(β) (there may be other possibilities for k but
we do not care, our only purpose being to show that the same k is valid
for all α). Replacing in the above formula, we obtain for N sufficiently large
‖α‖ = |σk(β)(α)|c, so that we may also take k(α) = k(β). Since this is true for
any nonzero α and β, this shows that k(α) can indeed be chosen independent
of α, finishing the proof of the lemma. ��

Corollary 4.1.6. Let K be a number field and (r1, r2) its signature. There
exist exactly r1 + r2 inequivalent Archimedean absolute values on K, corre-
sponding to the r1 real embeddings and to the r2 pairs of complex conjugate
embeddings.

Proof. By the above lemma, an Archimedean absolute value is equivalent
to one defined by ‖α‖ = |σ(α)| for some fixed embedding σ of K into C,
and conversely, any such embedding gives rise to an Archimedean absolute
value. Thus, there are at most n = r1 + 2r2 Archimedean absolute values.
The embeddings σ1 and σ2 define equivalent absolute values if and only if
for all α ∈ K we have |σ1(α)| = |σ2(α)|c for some c ∈ R>0, and choosing
for instance α = 2, it is clear that c = 1. The map λ = σ2σ

−1
1 is clearly a

field homomorphism from σ1(K) to σ2(K). For i = 1 and 2, denote by Ki

the completion of σi(K) in C. If y ∈ K1, we can write y = limn→∞ σ1(xn)
for xn ∈ K, where σ1(xn) is a Cauchy sequence for the absolute value on
C. I claim that we can extend λ to K1 by defining λ(y) = limn→∞ σ2(xn).
Indeed, since

|σ2(xn)− σ2(xm)| = |σ2(xn − xm)| = |σ1(xn − xm)| = |σ1(xn)− σ1(xm)| ,

it is clear that σ2(xn) is also a Cauchy sequence. Furthermore, for the same
reason the definition of λ(y) is independent of the chosen sequence xn, so λ
is a field homomorphism. Since λ ◦ σ1 = σ2, it is clear that this is indeed
an extension of the initial λ, and since we can apply the construction to
λ−1 = σ1σ

−1
2 , λ is a field isomorphism from K1 to K2. By construction, λ is

continuous. Thus, applying Proposition 3.1.15 we deduce that λ is either the
identity or complex conjugation, proving the corollary. ��
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4.1.3 Non-Archimedean and Ultrametric Absolute Values

We now do a similar (but simpler) study for non-Archimedean absolute val-
ues. We start with the following simple but essential result:

Lemma 4.1.7. An absolute value ‖ ‖ on a field K is non-Archimedean if
and only if it satisfies the so-called ultrametric inequality

‖x + y‖ � max(‖x‖, ‖y‖) .

Thanks to this lemma, from now on we will use indifferently the word
ultrametric or the word non-Archimedean, and such an absolute value will
be called an ultrametric absolute value.

Proof. Assume first that ‖ ‖ satisfies the ordinary triangle inequality, i.e.,
that we can choose a = 1 in Definition 4.1.1. Then by the binomial theorem,
for any positive integer N we have

‖x + y‖N =

∥∥∥∥∥ ∑
0�n�N

(
N

n

)
xN−nyn

∥∥∥∥∥ �
∑

0�n�N

∥∥∥∥(N

n

)∥∥∥∥ ‖x‖N−n‖y‖n

� (N + 1)max(‖x‖, ‖y‖)N

since ‖
(
N
n

)
‖ � 1 by the non-Archimedean property. Taking Nth roots and

letting N →∞ gives the result in this case. For a general absolute value ‖ ‖,
we apply the above result to ‖ ‖a, where a is as in Definition 4.1.1.

Conversely, since ‖1‖ = ‖ − 1‖ = 1 by definition of an absolute value, it
follows that an ultrametric absolute value is non-Archimedean. ��

The p-adic absolute value introduced in one of the above examples is a
foremost example of an ultrametric absolute value. The ultrametric property
has several interesting consequences, which seem at first surprising:

Corollary 4.1.8. Let ‖ ‖ be an ultrametric absolute value.

(1) When ‖x‖ �= ‖y‖ we have equality in the ultrametric inequality:

‖x + y‖ = max(‖x‖, ‖y‖) .

(2) Every “triangle” is an isosceles triangle.
(3) Every point inside an open ball of radius R can be taken as the center of

the ball, and with the same radius.
(4) When two open balls have nonempty intersection one is a subset of the

other.

Proof. (1) Assume for instance that ‖y‖ < ‖x‖. Writing x = (x+y)+(−y),
we see that ‖x‖ � max(‖x+ y‖, ‖y‖). The maximum cannot be equal to ‖y‖,
for that would give a contradiction. Thus ‖x‖ � ‖x + y‖. On the other hand,
the ultrametric inequality gives directly ‖x+y‖ � ‖x‖, showing equality. (2) is
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a reformulation of (1) in geometric terms. For (3), let B(x,R) denote the open
ball of radius R centered at x, and let y ∈ B(x,R). Then for any z ∈ B(x,R)
we have d(z, y) = ‖z − y‖ = ‖(z − x) + (x − y)‖ < R by the ultrametric
inequality, so that z ∈ B(y,R), whence B(x,R) ⊂ B(y,R). Exchanging x and
y gives the reverse inclusion, proving (3). (4) is an immediate consequence of
(3). ��

Although the above results may seem at first amusing, the fourth one is
in fact quite annoying. Recall that when using the process of analytic con-
tinuation in the complex numbers, we use power series expansions around
points near the circle of convergence to enlarge the domain of definition of
our functions. Here, nothing of the sort is possible since the new circle of
convergence will be the same however close we are to the initial circle of con-
vergence. Thus, to perform analytic continuation we need new tools, which
are more sophisticated than in the complex case, for instance “analytic ele-
ments,” introduced by Krasner (see Section 4.5.2 for a special case).

Let us return to the characterization of non-Archimedean absolute values.
We first note the following easy but crucial result.

Proposition 4.1.9. Let ‖ ‖ be an ultrametric absolute value on a field K.
Let A = {x ∈ K/ ‖x‖ � 1} and p = {x ∈ K/ ‖x‖ < 1}. Then A is a local
ring with maximal ideal p and field of fractions K.

Proof. The fact that A is a ring immediately follows from the ultrametric
inequality. It is clear that if x ∈ K∗ then either x or 1/x belongs to A, so K
is the field of fractions of A. Finally, x ∈ A is invertible in A if and only if
‖x‖ = 1, i.e., x /∈ p, showing that A is a local ring with maximal ideal p, in
other words that p is a maximal ideal and is the only maximal ideal of A. ��

Definition 4.1.10. Under the above assumptions and notation, the field A/p

is called the residue field of K for the absolute value ‖ ‖.

Similarly to the case of the p-adic absolute value introduced above, if K
is a number field and p is a (nonzero) prime ideal of ZK , we can introduce
the p-adic absolute value in a similar way: for x ∈ K∗ we let vp(x) be the
exponent of p in the decomposition of the principal ideal xZK into a product
of powers of prime ideals, and we let |x|p = C−vp(x) for some C > 1 (and
|0|p = 0). As for Q, it is immediate to check that it is a non-Archimedean
absolute value. These are in fact the only ones:

Lemma 4.1.11. Let ‖ ‖ be a non-Archimedean absolute value on a number
field K. There exists a (nonzero) prime ideal p of ZK and a constant C > 1
such that for all α ∈ K∗ we have ‖α‖ = C−vp(α).

Proof. Let α ∈ ZK , α �= 0. Then α is a root of a monic polynomial with
integral coefficients, say



190 4. p-adic Fields

αm + am−1α
m−1 + · · ·+ a0 = 0

with ai ∈ Z. If ‖α‖ > 1, the ultrametric inequality implies that

‖am−1α
m−1 + · · ·+ a0‖ � ‖α‖m−1 ,

while ‖αm‖ > ‖α‖m−1, a contradiction. Thus, for any α ∈ ZK we have
‖α‖ � 1. Since the absolute value is nontrivial, there exists a nonzero α ∈ ZK

such that ‖α‖ �= 1, so that ‖α‖ < 1. Let p be the set of α ∈ ZK such that
‖α‖ < 1. This set is nonzero and strictly included in ZK , and the ultrametric
inequality combined with the just-proved fact that ‖α‖ � 1 for all α ∈ ZK

immediately implies that p is a nonzero ideal of ZK . Since ‖αβ‖ < 1 implies
that ‖α‖ < 1 or ‖β‖ < 1, it follows that p is a prime ideal.

Let π be a uniformizer of p, in other words an element of p that does
not belong to p2 (recall that p �= p2 since otherwise p = ZK). If α ∈ K∗

we can thus write α/πvp(α)ZK = a1/a2, where a1 and a2 are integral ideals
coprime to p. Thus p � a2, in other words a2 �⊂ p, hence we can find β2 ∈ a2

such that β2 /∈ p; hence by definition of p we have ‖β2‖ = 1. If we set
β1 = β2α/πvp(α), we have β1 ∈ β2a1/a2 ⊂ a1; hence β1 ∈ ZK , and β1 /∈ p

as well since vp(β1) = vp(β2). It follows that we also have ‖β1‖ = 1; hence
finally, by multiplicativity

‖α‖ = C−vp(α) with C = ‖π‖−1 > 1 ,

proving the lemma. ��

Remark. It is easy to check that the ring A given by Proposition 4.1.9 is
the set of x ∈ K that can be written in the form x = a/b with a, b in ZK

and b /∈ p. This set is usually denoted by S−1ZK , with S = ZK \ p. It is
thus strictly larger than ZK , and should not be confused with Zp introduced
below, which is its completion.

It is trivial to show that different prime ideals p give inequivalent absolute
values: indeed, if p and q are distinct (nonzero) prime ideals, we can find α ∈ p

such that α /∈ q (otherwise q | p), so that |α|p < 1 while |α|q = 1.

4.1.4 Ostrowski’s Theorem and the Product Formula

The two lemmas above describe completely all the absolute values on a num-
ber field. We restate them slightly using the following definition.

Definition 4.1.12. A place of a number field K is an equivalence class of
nontrivial absolute values, where equivalence is characterized either by Defi-
nition 4.1.2 or by Lemma 4.1.3.
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Theorem 4.1.13 (Ostrowski). The places of a number field K are in one-
to-one correspondence with on the one hand the r1 real embeddings and r2

pairs of nonreal complex conjugate embeddings of K into C, corresponding
to the Archimedean absolute values (called the infinite places of K), and on
the other hand, the (nonzero) prime ideals of ZK corresponding to the non-
Archimedean absolute values (called the finite places of K).

Although places are determined up to equivalence, there is a canonical
way to define them uniquely. This comes from the action of multiplication by
an element on a Haar measure, but we simply give the formulas.

If σ is one of the r1 real embeddings of K, we choose

‖α‖σ = |σ(α)| ,

in other words c = 1 in the above notation.
If (σ, σ) is one of the r2 pairs of complex conjugate nonreal embeddings

of K, we choose

‖α‖σ = |σ(α)|2 = |σ(α)|2 = σ(α)σ(α) ,

in other words c = 2 in the above notation.
If p is a (nonzero) prime ideal of ZK , we choose

‖α‖p = Np−vp(α) ,

where Np = |ZK/p| is the norm of the prime ideal p, in other words C = Np

in the above notation.
The main point of these normalizations is the product formula:

Proposition 4.1.14 (Product formula). With the above normalizations,
for any α ∈ K∗ the set of places v of K for which ‖α‖ �= 1 is finite, and we
have ∏

v

‖α‖v = 1 ,

where v runs over all the places of K (so that the product is in fact a finite
product).

Proof. Let αZK =
∏

p
pvp(α) be the decomposition of the ideal αZK into

a product of powers of prime ideals. Thus, ‖α‖v = 1 if v is neither an infinite
place nor a prime ideal p such that vp(α) �= 0, proving the first statement.
Then ∏

v finite

‖α‖v =
∏
p

Np−vp(α) = 1/N (αZK) = 1/| NK/Q(α)|

by multiplicativity of the norm and the fact that N (αZK) = | NK/Q(α)|
(note the absolute value). On the other hand,
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∏
v infinite

‖α‖v =
∏

σ real

|σ(α)|
∏

(σ,σ) nonreal

|σ(α)σ(α)| =
∏
σ

|σ(α)| = | NK/Q(α)| .

Taking the product of the finite and infinite primes proves the proposition.
��

4.1.5 Completions

Let K be a field with an absolute value ‖ ‖ and a corresponding distance
d(x, y) = ‖x− y‖. We recall the following definitions.

Definition 4.1.15. A Cauchy sequence in K is a sequence (xn) of elements
of K satisfying the following property: for all ε > 0 there exists a positive
integer N such that for any n, m both greater than or equal to N , we have
d(xn, xm) < ε.

If (xn) is a convergent sequence, say with limit x, then for N suffi-
ciently large, for all n � N we have d(xn, x) < ε/2; hence by the trian-
gle inequality, for all n and m both greater than or equal to N we have
d(xn, xm) � d(xn, x) + d(x, xm) < ε. It follows that any convergent sequence
is a Cauchy sequence.

Definition 4.1.16. A field K is complete if every Cauchy sequence con-
verges (a convergent sequence being always a Cauchy sequence by what we
just said).

If the reader is not very familiar with Cauchy sequences and complete
spaces, he should note that the definition is quite remarkable: using Cauchy
sequences one can test the convergence of a sequence without knowing or
guessing its limit. In many cases including the most fundamental ones, it is
the only way to prove the convergence of a sequence. For this method to
work, one needs of course the space to be complete.

It is a crucial fact that there exists a canonical smallest complete field
containing a given field endowed with an absolute value. We recall how this
is done.

Proposition 4.1.17. Let (K, d) be as above. There exists a complete field
(K̂, d̂) and a uniformly continuous injective map i from K to K̂ such that
i(K) is dense in K̂ and such that d̂ extends d. Any two such complete fields
are canonically isomorphic. Furthermore, if (L, e) is any complete field and f
is a uniformly continuous map from K to L, there exists a unique uniformly
continuous map f̂ from K̂ to L that extends f , i.e., such that f̂ ◦ i = f .

Proof. Assume first the existence of (K̂, d̂). Since i is injective we identify
K with i(K). If (L, e) is any complete field and f a continuous map from
K to L, then there is only one way to extend f by continuity: since K is
dense in K̂, for any x ∈ K̂ there exists a sequence (xn) of elements of K
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converging to x in K̂, and we must set f(x) = lim f(xn). Since f is not only
continuous but uniformly continuous, for any ε > 0 there exists η(ε) > 0 such
that d(x, y) < η(ε) implies e(f(x), f(y)) < ε. Since (xn) converges to x it is
a Cauchy sequence; hence there exists N such that for n, m greater than or
equal to N we have d(xn, xm) < η(ε), hence e(f(xn), f(xm)) < ε, so that
f(xn) is a Cauchy sequence; hence f(x) = lim f(xn) exists, and it is clear
that it is independent of the sequence xn of elements of K converging to x.
Finally, by writing

e(f(x), f(y)) � e(f(x), f(xn)) + e(f(xn, ym)) + e(f(ym), f(y))

it is immediately checked that f is uniformly continuous on K̂, proving the
last assertion. Furthermore, if (K̂ ′, d̂′) has the same properties as (K̂, d̂), so
that i′ is a uniformly continuous injective map from K to K̂ ′ with dense
image, the above reasoning shows that i extends uniquely to a map î from
K̂ ′ to K̂, and i′ extends uniquely to a map î′ from K̂ to K̂ ′; hence these maps
are canonical inverse isomorphisms, proving the uniqueness statements.

It remains to prove the existence of (K̂, d̂). This is a standard construction,
which we recall here. Denote by C the set of all Cauchy sequences of elements
of K, and by M the subset consisting of Cauchy sequences of elements of K
converging to 0. It is clear that C is a commutative ring for termwise addition
and multiplication, and that M is an ideal of C. We will set K̂ = C/M and
show that there exists a distance d̂ on K̂ such that (K̂, d̂) has the required
properties.

By construction, K̂ is a ring. Let us show that it is a field, so let (xn) be
a representative in C of an element of K̂ that does not belong to M. This
means that there exists ε0 > 0 such that for all N there exists n(N) � N with
d(0, xn(N)) � ε0. Since (xn) is a Cauchy sequence there exists N0 such that
d(xn, xm) < ε0/2 for all n, m greater than or equal to N0. Thus if m > N0

we have

d(xm, 0) � d(xn(N0), 0)− d(xm, xn(N0)) � ε0 − ε0/2 = ε0/2 ;

hence d(xm, 0) is bounded from below. Thus, after changing a finite number
of terms in the sequence (xn), which does not change the class modulo M,
we may assume that xn �= 0 for all n. Furthermore, since

d(1/xn, 1/xm) =
∥∥∥∥ 1

xn
− 1

xm

∥∥∥∥ =
‖xm − xn‖
‖xn‖‖xm‖

� 4
ε2
0

d(xn, xm) ,

it immediately follows that 1/xn is a Cauchy sequence, so K̂ is a field.
Let x ∈ K̂ and let (xn) be a representative in C of x. The triangle in-

equality gives
‖xn − xm‖ � |‖xn‖ − ‖xm‖| ,

from which it immediately follows that ‖xn‖ is a Cauchy sequence in R. We
set ‖x‖′ = limn→∞ ‖xn‖, which exists since R is complete. By definition ofM,
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this is independent of the chosen representative (xn) of x. If fact, we embed
K in K̂ by the “diagonal” map i that sends x ∈ K to the constant sequence
xn = x. It is clear that this map is an injective field homomorphism, and
that ‖ ‖′ extends ‖ ‖, so that i is uniformly continuous. If (xn) is a Cauchy
sequence of elements of K representing an element x ∈ K̂, it is trivially
checked that this sequence converges to x for the topology of K̂, so that i(K)
is dense in K̂. Finally, let (xn) be a Cauchy sequence of elements of K̂. By
density, for each n we can find an element yn ∈ K such that ‖xn−yn‖ < 1/n.
Thus

‖yn− ym‖ � ‖yn−xn‖+‖xn−xm‖+‖xm− ym‖ � ‖xn−xm‖+1/n+1/m ,

and since (xn) is a Cauchy sequence it follows that (yn) is a Cauchy sequence
of elements of K. If y is the class in K̂ of (yn), it is clear that y is the limit of
the sequence (xn) in K̂, showing that K̂ is complete and finishing the proof
of the proposition. ��

Note that if the map f from K to a complete field L is assumed to be
only continuous, it does not necessarily extend to a continuous map from K̂
to L; see Exercise 1.

The field (K̂, d̂) whose existence and uniqueness is ensured by the above
proposition is called the completion of K for the absolute value ‖ ‖ (or for
the distance d). It is clear that d̂ is ultrametric if and only if d is ultrametric.
Also, as for the field R, the whole point of taking completions is that one
can do analysis in complete fields. For instance, it will be very useful to use
series:

Lemma 4.1.18. Let K be a field with an ultrametric absolute value. A se-
quence (an) in K is a Cauchy sequence if and only if ‖an+1 − an‖ tends to
0 as n tends to infinity. In particular, if K is complete, a series

∑
k�0 uk of

elements of K converges if and only if uk tends to zero as k tends to infinity.

Proof. The condition is of course necessary. Conversely, by the ultrametric
inequality, for m � n we have

‖am − an‖ =

∥∥∥∥∥ ∑
n�j<m

(aj+1 − aj)

∥∥∥∥∥ � max
n�j<m

‖aj+1 − aj‖ ,

so that if N is such that ‖an+1 − an‖ < ε for all n � N , then we have also
‖am − an‖ < ε for all m � n � N , so that (an) is indeed a Cauchy sequence.
The last statement follows from this applied to the sequence of partial sums
an =

∑
0�k�n uk. ��

It is convenient to identify K with its isomorphic image i(K) in K̂, so
that we can consider K as a subfield of K̂. From now on we make this
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identification. We will also usually speak of the completion of K for the
absolute value ‖ ‖.

In the special case that K is a number field, we also need the following
trivial lemma.

Lemma 4.1.19. Let K be a number field and p a (nonzero) prime ideal of
ZK . If we denote by Kp the completion of K for the p-adic absolute value,
then for all x ∈ K∗

p there exists k ∈ Z such that |x|p = Npk.

Proof. Let (xn) be a sequence of elements of K converging to x. Since
x �= 0, without loss of generality we may assume that xn �= 0 for all n.
Set kn = log(|xn|p)/ log(Np). It is clear that kn is a Cauchy sequence in
R. However, we have kn ∈ Z, which is discrete in R. It follows that kn is
an ultimately constant sequence, so that its limit (which by definition is
log(|x|p)/ log(Np)) belongs to Z, proving the lemma. ��

It follows from this lemma that it is reasonable to let vp(x) be the integer
such that |x|p = Np−vp(x), extending the usual valuation to the completion
Kp. Also, we will set vp(0) = +∞, so that the formula |x|p = Np−vp(x) still
holds.

4.1.6 Completions of a Number Field

Let K be a number field. Since we know all the absolute values of K, we can
describe explicitly all its completions. If v is a place of K (i.e., an equivalence
class of nontrivial absolute values), we will denote by Kv a completion of K
at v.

– If v is a place at infinity, i.e., corresponds to an Archimedean absolute value
induced by an embedding σ of K into C, then Kv is isomorphic to R if
σ is a real embedding, and Kv is isomorphic to C if not. Since the basic
properties of these fields should be well known to the reader, we will not
expand more on them.

– Every prime ideal p of ZK , corresponding to a finite place, gives rise to a
non-Archimedean (hence ultrametric) absolute value. The completion of K
will be denoted by Kp, and called the field of p-adic numbers. In the case
K = Q and p = pZ, we will write Qp instead of QpZ, and call it the field
of p-adic numbers. We describe here some basic properties of these fields.
We fix a prime ideal p of ZK , and by an abuse of notation that we will

always use, we denote by | |p the extension to Kp of the p-adic absolute
value on K. By the above lemma, its nonzero values are also of the form
Npk for k ∈ Z.

Definition 4.1.20. We denote by Zp the subset of elements x ∈ Kp such
that |x|p � 1 (or equivalently, vp(x) � 0). Such an element will be called a
p-adic integer.
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Proposition 4.1.21. The set Zp is a discrete valuation ring: more precisely,
the only nonzero ideals of Zp are the pkZp for k � 0, the only maximal ideal
is pZp, and x ∈ Zp is invertible if and only if x /∈ pZp; in other words if
|x|p = 1.

Proof. Since | |p is an ultrametric absolute value, it is clear that Zp is a
subring of Kp. Moreover, x ∈ Zp is invertible in Zp if and only if |x|p = 1.
Thus, let I be a nonzero ideal of Zp, and let k be the integer such that Np−k

is the largest absolute value of a nonzero element x0 of I. Denote by π a
uniformizer of p, i.e., an element of p\p2, so that |π| = 1/Np. It follows that
x ∈ I implies that |x/πk|p � 1, so that x ∈ πkZp; hence I ⊂ pkZp. Conversely,
|x0/πk|p = 1; hence x0/πk is invertible in Zp, so that πk ∈ x0Zp ⊂ I; hence
pkZp ⊂ I, proving the equality I = pkZp. ��

Proposition 4.1.22. Let A and B be two monic polynomials of Kp[X] such
that B | A. If A ∈ Zp[X], then also B ∈ Zp[X].

Proof. Write A = BC, and let π be a uniformizer of p. Let vB and vC be
the smallest exponents such that πvB B(X) ∈ Zp[X] and πvC C(X) ∈ Zp[X],
necessarily nonnegative since B and C are monic. Denoting by reduction
modulo p, by minimality of the exponents, b(X) = πvB B(X) and c(X) =
πvC C(X) are nonzero in the integral domain (Zp/pZp)[X]. It follows that
πvB +vC A(X) = b(X)c(X) is also nonzero, hence that vB + vC = 0, so vB =
vC = 0 as claimed. ��

Recall that we identify K with a subfield of Kp.

Lemma 4.1.23. Under the above identification ZK is a subring of Zp and
is dense in Zp.

Proof. If x ∈ ZK then x is a root of xn +
∑

0�i�n−1 aix
i = 0 with ai ∈ Z.

Applying the ultrametric inequality we see that

|x|np = |xn|p =

∣∣∣∣∣ ∑
0�i�n−1

aix
i

∣∣∣∣∣
p

� max
0�i�n−1

|x|ip ,

which evidently leads to a contradiction if |x|p > 1, so that ZK ⊂ Zp. Now
let x ∈ Zp, and let (xn) be any sequence of elements of K that converges to
x in Kp. In particular, for n sufficiently large we have |xn − x|p < 1. Since
|x|p � 1, the ultrametric inequality implies that |xn|p = |xn−x+x|p � 1 for
n sufficiently large, say n � N . Modifying the first N values of xn, we may
therefore assume that this is true for all n.

Write xnZK = anb−1
n , where an and bn are two coprime integral ideals

of ZK , hence such that p � bn for n � N . Since the ideals pn and bn are
coprime, we have pn +bn = ZK , so there exist un ∈ pn and vn ∈ bn such that
un + vn = 1; in other words, vn ∈ bn and vn ≡ 1 (mod pn). Thus bn | vn, so
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that vnxnZK = an(vn/bn) ⊂ ZK ; hence vnxn ∈ ZK . On the other hand, vn

tends to 1 in Kp, so that vnxn tends to x, proving the lemma. ��

Proposition 4.1.24. For any k � 1, the natural map from ZK to Zp induces
a ring isomorphism from ZK/pk to Zp/pkZp.

Proof. It is clear that the map induces a ring homomorphism φ from
ZK/pk to Zp/pkZp. Furthermore, x ∈ ZK/pk is such that φ(x) = 0 if and
only if for some (or any) representative x of x in ZK we have x ∈ pkZp, hence
vp(x) � k, hence x ∈ pk, so that x = 0, showing that φ is injective. Finally,
let x ∈ Zp. By the above lemma, there exists a sequence (xn) of elements
of ZK that converges p-adically to x. This is a Cauchy sequence, so for N
sufficiently large and for all n and m greater than or equal to N we have
|xn − xm|p � Np−k, hence in particular |xn − xN |p � Np−k. By definition,
this means that vp(xn − xN ) � k, in other words that xn ≡ xN (mod pk).
Thus the sequence xn modulo pk is a constant y for n sufficiently large, and
it is clear that the image by φ of the class of y modulo pk is equal to the class
of x modulo pkZp. ��

In particular, it follows from this proposition that Zp/pkZp is a finite
ring. This proposition also allows us to describe in a very concrete way the
elements of Kp.

Proposition 4.1.25. Let R be a set of representatives in ZK of the elements
of ZK/p, and for each m ∈ Z let πm ∈ pm \ pm+1 be an element of exact
p-adic valuation m. An element x ∈ Kp can be written in a unique way as
the sum of an infinite series of the form

x =
∑

m�vp(x)

amπm with am ∈ R and avp(x) �≡ 0 (mod p) .

Note in particular that elements of Qp can be written in a unique way in
the form x =

∑
m�vp (x) ampm with 0 � am � p− 1.

Proof. Since amπm tends to 0 for the p-adic topology, any series of this
form converges. Dividing by πvp(x), we may assume that vp(x) = 0, i.e., that
x0 = x is an invertible element of Zp.

By the above proposition, there exists a surjective map φ from Zp to
R obtained by composing the projection map from Zp to Zp/pZp with the
inverse isomorphism of the one given in the proposition for k = 1 and finally
with the natural lifting map from ZK/p to R. This map satisfies φ(x) ≡ x
(mod p). By induction, it is clear that the sequence am is determined uniquely
by the double recurrence am = φ(xm), xm+1 = (xm−am)πm/πm+1, and this
proves both uniqueness and existence. ��

In practice we usually choose πm = πm
1 , but we need the above generality

below.



198 4. p-adic Fields

Corollary 4.1.26. The field Kp is locally compact and totally discontinuous.
The ring of p-adic integers Zp is compact.

Proof. We first check that the open unit ball B = {x ∈ Kp/ |x|p < 1}
is compact. By the proposition, x ∈ B if and only if x =

∑
m�1 amπm

for am ∈ R. Thus, if (xn) is any sequence of elements of B we can write
xn =

∑
m�1 an,mπm, and since R is finite it follows that an infinite number

of an,1 are equal, to a1, say. Among those, an infinite number of an,2 are equal,
to a2, say. By induction, we thus construct an element x =

∑
m�1 amπm ∈ B

that is a limit point of (xn), proving that B is compact. A similar reasoning
shows that the closed unit ball is compact. In fact, |x|p < 1 being equivalent
to |x|p � 1/Np, B is in fact the closed ball of radius 1/Np.

Finally, recall that a topological space is totally discontinuous if and only
if its connected components are reduced to points. By what we have just
shown, all balls are both open and closed, so the corollary follows. ��

See also Exercise 2.

Corollary 4.1.27. Let K be a number field, let L be a finite extension of
K, let p be a (nonzero) prime ideal of ZK , and finally let P be a prime ideal
of ZL above p. Denote as usual by e(P/p) and f(P/p) the ramification index
and residual index of P over p, so that e(P/p) = vP(pZL) and f(P/p) =
[ZL/P : ZK/p]. Then LP is a finite extension of Kp of degree e(P/p)f(P/p).
Furthermore, ZP is a free Zp-module of the same rank.

Proof. Let Π ∈ P \ P2 be a uniformizer of P in L, let π ∈ p \ p2 be a
uniformizer of p in K, and for simplicity write e = e(P/p) and f = f(P/p).
It is clear that if we set

Πm = π�m/e�Πm−e�m/e�

we have vP(Πm) = m; hence in Proposition 4.1.25 we can choose the Πm as
elements of exact P-adic valuation m. Furthermore, since [ZL/P : ZK/p] = f ,
we can choose a basis e1, . . . , ef of ZL/P as a ZK/p-vector space, so that a
system R of representatives of ZL/P can be chosen to be the

∑
1�j�f ajej

with the ai being chosen in any system of representatives R of ZK/p. Thus,
by Proposition 4.1.25, any element x ∈ LP can be written in a unique way
in the form

x =
∑

m�vP(x)

∑
1�j�f

aj,mejΠm

=
∑

m�vP(x)

∑
1�j�f

aj,mejπ
�m/e�Πm−e�m/e�

=
∑

0�i�e−1

Πi
∑

1�j�f

ej

( ∑
k�k0(i,j)

ai,j,kπk

)
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for some k0(i, j) and ai,j,k ∈ R. Once again by Proposition 4.1.25, now applied
to p, the expression in parentheses is the expansion of an arbitrary element
of Kp with respect to πm = πm. Thus we see that the Πiej for 0 � i � e− 1
and 1 � j � f form a Kp-basis of Lp. Furthermore, we clearly have x ∈ ZP

if and only if k0(i, j) � 0 for all i and j, so that the Πiej also form a Zp-basis
of ZP, proving the corollary. ��

Corollary 4.1.28. With the same notation, if in addition L/K is a Galois
extension then LP/Kp is also a Galois extension with Galois group isomor-
phic to the decomposition group D(P/p) of P over p.

Proof. Immediate and left to the reader. ��

4.1.7 Hensel’s Lemmas

The crucial tool that allows us to work in p-adic fields is a simple result, called
(in many different contexts) Hensel’s lemma, and which is nothing else than
a non-Archimedean version of Newton’s root-finding method. We begin with
the following result, where for any object x, we denote by x the reduction
of x modulo p. Thanks to Proposition 4.1.24, we will identify Zp/pZp with
ZK/p.

Proposition 4.1.29 (Hensel). Let f ∈ Zp[X], and assume that f(X) =
φ1(X)φ2(X) with φi ∈ (ZK/p)[X] coprime. There exist polynomials f1 and
f2 in Zp[X] such that f(X) = f1(X)f2(X), fi(X) = φi(X), and deg(f1) =
deg(φ1).

Proof. We prove by induction on k that there exist polynomials Ak, Bk,
Uk, Vk in Zp[X] such that f(X) ≡ Ak(X)Bk(X) (mod pk), Uk(X)Ak(X) +
Vk(X)Bk(X) ≡ 1 (mod p), Ak(X) − Ak−1(X) ≡ Bk(X) − Bk−1(X) ≡
0 (mod pk−1), deg(Ak(X)) = deg(φ1(X)), and deg(Bk(X)) � deg(f) −
deg(φ1(X)). It is true for k = 1 by choosing A1(X) = φ1(X), A2(X) = φ2(X)
and using the fact that φ1 and φ2 are coprime in (ZK/p)[X]. Assume
this assertion true for k, and set gk = (f − AkBk)/πk ∈ Zp[X] by as-
sumption. We must set Ak+1 = Ak + πkSk, Bk+1 = Bk + πkTk, and
the main condition f(X) ≡ Ak+1(X)Bk+1(X) (mod pk+1) is equivalent to
AkTk+BkSk ≡ (f−AkBk)/πk = gk (mod p). Since UkAk+VkBk ≡ 1 (mod p)
the general solution is Sk ≡ Vkgk + WAk (mod p) and Tk ≡ Ukgk −WBk

(mod p) for some polynomial W . The degree condition implies that Sk and
Tk exist and are unique modulo p; hence Ak+1 and Bk+1 exist and are unique
modulo pk+1. Passing to the limit as k tends to infinity, we obtain the propo-
sition. ��

Note that the degree condition given in the proposition is essential to
ensure uniqueness, and that the proof is completely constructive.
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Lemma 4.1.30. Let L/K be an extension of number fields, let p be a prime
ideal of ZK , and let P be a prime ideal of ZL above p. Finally, let α ∈ LP

and let f(X) = Xm +fm−1X
m−1+ · · ·+f0 ∈ Zp[X] be any monic polynomial

such that f(α) = 0. Then α ∈ ZP.

Proof. The proof is identical to that of the first part of Lemma 4.1.23 and
is left to the reader. ��

Proposition 4.1.31. Let L/K be an extension of number fields, let p be a
prime ideal of ZK , and let P be a prime ideal of ZL above p. Finally, let
α ∈ LP and let f(X) = fmXm + fm−1X

m−1 + · · ·+ f0 be its minimal monic
polynomial over Kp (so that fm = 1). Then α ∈ ZP if and only if fj ∈ Zp

for all j, and α is a P-adic unit if and only if in addition f0 is a p-adic unit.

Proof. Note first that the fact that LP is a finite extension of Kp follows
from Corollary 4.1.27. Assume first that α ∈ ZP, and by contradiction that
not all fk belong to Zp. Let −v with v > 0 be the smallest valuation of
vp(fk). If the constant term f0 is of valuation −v and is the only one of
minimal valuation, the ultrametric inequality and f(α) = 0 with vP(α) � 0
lead to

vP(f0) = vP

(
−
∑

1�i�m

fiα
i

)
� min

1�i�m
vP(fi) > vP(f0) ,

a contradiction (note that for any c ∈ Kp we have vP(c) = e(P/p)vp(c)).
Now consider the polynomial g(X) = πvf(X) ∈ Zp[X] and its reduction

g(X) ∈ (Zp/pZp)[X]. Since v > 0 and fm = 1, it follows that deg(g) < m, and
by what we have just shown, that deg(g) > 0. If we apply Proposition 4.1.29
to the trivial factorization into coprime polynomials g(X) = g(X)·1, it follows
that there exist polynomials g1 and g2 in Zp[X] with g(X) = g1(X)g2(X),
g1(X) = g(X), g2(X) = 1, and deg(g1) = deg(g), and since 0 < deg(g) < m,
this gives a nontrivial factorization of g(X) in Zp[X], contradicting the fact
that f , being a minimal polynomial, is irreducible.

The converse is Lemma 4.1.30. Finally, if α ∈ ZP, α is a P-adic unit if
and only if 1/α ∈ ZP. We then apply the first part of the proposition to the
minimal monic polynomial of 1/α, equal to Xm+(f1/f0)Xm−1+· · ·+(fm/f0).

��

Corollary 4.1.32. Let L/K be an extension of number fields, let p be a
prime ideal of ZK , and let P be a prime ideal of ZL above p. Then any element
α ∈ ZP is integral over Zp. In particular, TrLP/Kp

(α) and NLP/Kp
(α) are in

Zp, where the trace and norm are defined as usual in terms of the coefficients
of the characteristic polynomial of α in Kp[X].

Proof. Clear from the above proposition. ��

Another result of the same kind is the following.
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Proposition 4.1.33. Let f(X) = fmXm + fm−1X
m−1 + · · · + f0 ∈ Kp[X]

be a monic polynomial (so that fm = 1). If f is irreducible in Kp[X], then
either vp(fj) � vp(f0) for all j (and in particular vp(f0) � vp(fm) = 0), or
vp(fj) � 1 (i.e., fj ∈ pZp) for all j < m.

Proof. Let v = mink vp(fk) � 0 since fm = 1, and let j0 be the smallest
index j such that vp(fj0) = v, so that in particular vp(fj) > vp(fj0) for j < j0.
If g(X) = f(X)/fj0 = gmXm + · · · + g0, we have therefore g(X) ∈ Zp[X],
gj0 = 1, hence g(X) = Xj0g2(X) with g2(0) = 1. The polynomials g1(X) =
Xj0 and g2(X) are therefore coprime in (ZK/p)[X]; hence by Proposition
4.1.29 there exist g1 and g2 in Zp[X] such that g(X) = g1(X)g2(X) and
deg(g1) = deg(g1) = j0. Since f , hence also g, is irreducible in Kp[X] it
follows that the above factorization must be trivial, so that j0 = 0 or j0 = m.
If j0 = 0 then vp(fj) � vp(f0) for all j, and if j0 = m, then for all j < m we
have vp(fj) > vp(fj0) = 0, as claimed. ��

Corollary 4.1.34. With the same assumptions as in the proposition, if f0 ∈
Zp then f(X) ∈ Zp[X], and if f0 ∈ pZp then fj ∈ pZp for all j < m.

Proof. Clear. ��

Still another result of the same kind is the famous “Eisenstein criterion.”

Proposition 4.1.35 (Eisenstein). Let f(X) = Xn + fn−1X
n−1 + · · · +

f0 ∈ Zp[X] be a monic polynomial with p-integral coefficients. Assume that
vp(fj) � 1 for all j such that 0 � j � n − 1 and that vp(f0) = 1. Then f is
irreducible in Kp[X].

Proof. Note first that if α is a root of f(X) = 0 in some finite extension
of Zp, then by the same reasoning as that used in the “converse” part of
the proof of Proposition 4.1.31 (which does not use the irreducibility of f)
we deduce that α is a P-adic integer for a prime ideal P above p. Thus by
Proposition 4.1.31 itself, the minimal monic polynomial of α belongs to Zp[X].
It follows that the monic irreducible factors of f(X) belong to Zp[X]; hence
it is enough to prove irreducibility in Zp[X]. Assume by contradiction that
f = gh with g, h nonconstant monic polynomials in Zp[X] (we may clearly
assume g and h monic since their leading terms are p-adic units). Denote
as usual by reduction modulo p of elements or polynomials. By the first
assumption on f , we have f(X) = Xn, hence g(X) = Xr and h(X) = Xs,
where r = deg(f) and r = deg(g). It follows that the constant terms of g
and h have p-adic valuation greater than or equal to 1, so the constant term
of f = gh, which is the product of the constant terms, has p-adic valuation
greater than or equal to 2, a contradiction. ��

A polynomial satisfying the conditions of the above proposition will be
called an Eisenstein polynomial. See also Exercise 5.
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Corollary 4.1.36. The polynomial

Φpn (X) =
Xpn − 1

Xpn−1 − 1
= Xpn−1(p−1) + Xpn−1(p−2) + · · ·+ 1

is irreducible in Qp[X].

Proof. It suffices to show that Φpn (X + 1) is an Eisenstein polynomial.
For n = 1, by the binomial theorem we have directly

Φp(X + 1) = Xp−1 +
∑

2�j�p−2

(
p

j

)
Xp−1−j + p ,

so that Φp(X + 1) is indeed an Eisenstein polynomial. For n > 1, again by
the binomial theorem we have (X + 1)p ≡ Xp + 1 (mod pZ[X]), so that by
induction we have (X + 1)pn−1 ≡ Xpn−1

+ 1 (mod pZ[X]). Thus

Φpn (X + 1) = Φp((X + 1)pn−1
) ≡ Φp(Xpn−1

+ 1) ≡ Xpn−1(p−1) (mod pZ[X])

since Φp(X + 1) ≡ Xp−1 (mod pZ[X]), so that the first condition for an
Eisenstein polynomial is satisfied. Furthermore, the constant term of Φpn (X+
1) is Φpn (1) = Φp(1pn−1

) = p, so the second condition is also satisfied. ��

Another version of Hensel’s lemma is very useful to show the existence of
roots in p-adic fields:

Proposition 4.1.37 (Hensel). Let f(X) ∈ Zp[X] be a monic polynomial
and let α ∈ Zp be such that |f(α)|p < |f ′(α)|2p, where f ′(X) is the formal
derivative of f(X). There exists a unique root α∗ of f(X) = 0 in Zp such
that

|α∗ − α|p � |f(α)|p
|f ′(α)|p

< |f ′(α)|p .

Proof. We prove by induction that there exists a sequence αk of elements
of Zp such that

|f(αk+1)|p � (|f(α)|p/|f ′(α)|2p)|f(αk)|p < |f(αk)|p ,

|f ′(αk+1)|p = |f ′(α)|p, |αk+1 − αk|p � |f(αk)|p/|f ′(α)|p .

It is clear that these relations will imply that |f(αk)|p tends to zero (since it
is a strictly decreasing sequence of numbers of the form Np−n with n ∈ Z),
hence that αk+1 − αk tends to 0, hence that the sequence αk converges to
some limit α∗, as a sum of a series of terms tending to 0. Since |f(αk)|p tends
to zero, we have f(α∗) = 0, and the other inequality also follows by passing
to the limit.

To prove the existence of αk, we use Newton’s method. Assuming the
existence of αk, we will set αk+1 = αk +βk with βk = −f(αk)/f ′(αk), which
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makes sense since by induction |f ′(αk)|p = |f ′(α)|p �= 0. In fact, by induction,
since |f(αk)|p is a strictly decreasing sequence we have

|βk|p = |f(αk)|p/|f ′(α)|p � |f(α)|p/|f ′(α)|p
and also

|βk|2p � (|f(α)|p/|f ′(α)|2p)|f(αk)|p .

By Taylor’s formula for polynomials, there exists γk ∈ Zp such that

f(αk+1) = f(αk) + βkf ′(αk) + β2
kγk = β2

kγk

by our choice of βk, so that

|f(αk+1)|p � (|f(α)|p/|f ′(α)|2p)|f(αk)|p < |f(αk)|p .

Similarly, there exists δk ∈ Zp such that

f ′(αk+1) = f ′(αk) + βkδk .

Since
|βk|p � |f(α)|p/|f ′(α)|p < |f ′(α)|p = |f ′(αk)|p ,

it follows from the ultrametric inequality that |f ′(αk+1)|p = |f ′(αk)|p =
|f ′(α)|p, finishing the proof of the existence of the αk.

To prove uniqueness, assume that α∗
1 and α∗

2 are distinct roots of f(X) = 0
satisfying the inequality of the proposition. We can write f(X) = (X −
α∗

1)(X − α∗
2)g(X) for some g ∈ Zp[X], so that

|f ′(α∗
1)|p = |α∗

1 − α∗
2|p|g(α∗

1)|p � |α∗
1 − α∗

2|p < |f ′(α)|p ,

a contradiction. ��

Note that the above proposition in not true in general if f does not have
p-integral coefficients.

When f(α) ∈ pZp and f ′(α) is a p-adic unit, the condition of the proposi-
tion is satisfied. Here is an important consequence. First recall the following
definition.

Definition 4.1.38. Let P (X1, . . . , Xn) = 0 be a (not necessarily polyno-
mial) homogeneous equation. We say that a nontrivial solution (x1, . . . , xn)
of P (x1, . . . , xn) = 0 is nonsingular if ∂P

∂Xj
(x1, . . . , xn) �= 0 for at least one

index j. We say that the equation itself is nonsingular if it has no nontrivial
singular solutions.

Corollary 4.1.39. Let P (X) ∈ Zp[X1, . . . , Xn] be a homogeneous polyno-
mial in n variables, and let (x1, . . . , xn) ∈ Fn

p be a nontrivial nonsingular
solution of P (X) = 0, where P is obtained by reducing the coefficients of
P modulo p in Zp/pZp � Fp. Then there exist (α1, . . . , αn) ∈ Zn

p satisfying
P (α1, . . . , αn) = 0 such that αi = xi for all i.
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Proof. By definition, there exists j such that ∂P
∂Xj

(x1, . . . , xn) �≡ 0 (mod pZp);
hence it is a p-adic unit, while P (x1, . . . , xn) ∈ pZp. We can thus apply
the above proposition to the single-variable polynomial P (x1, . . . , X, . . . , xn),
where X is at the place of the variable Xj , and we obtain the corollary. ��

Corollary 4.1.40. (1) Let P (X) ∈ Zp[X1, . . . , Xn] be a homogeneous poly-
nomial in n variables of degree d, and assume that the reduction P modulo
pZp is nonsingular over Fp and that d < n. Then there exists a nontrivial
solution of P (x1, . . . , xn) = 0 in Zp.

(2) Let P (X) =
∑

1�j�n ajX
k
j be a diagonal form of degree k with coefficients

in Z such that n > k. Then for all primes p � k
∏

1�j�n aj there exists a
nontrivial solution of P = 0 in Qp.

Proof. (1). When we reduce the polynomial P modulo pZp, the degree
may decrease; hence the condition d < n is still satisfied for the reduced
polynomial. Thus we may apply Chevalley–Warning’s Theorem 2.5.2 to de-
duce the existence of a nontrivial solution in Fp. Since P is nonsingular, this
solution is nonsingular and we conclude by the preceding corollary.

(2). We have ∂P
∂Xj

= kajX
k−1
j , so that if p � k

∏
1�j�n aj , this vanishes

modulo p for some (x1, . . . , xn) if and only if xj = 0; hence P is nonsingular
for these p. We conclude by (1). ��

An example that we shall study in detail in the next chapter is that of
ternary quadratic forms P = aX2+bY 2+cZ2: we indeed have 3 = n > k = 2;
hence if p � 2abc we know that P = 0 has a nontrivial solution in Qp.

It is sometimes possible to start the process of successive approximations
even when one has a worse starting estimate α. An example which we will
use later is the following.

Lemma 4.1.41. Let p be the prime number below p, denote by e = e(p/p)
the absolute ramification index, and assume given p-adic units α0 and β such
that β ≡ αp

0 (mod pe+r) for some integer r such that r > e/(p − 1). Then
there exists a p-adic unit α such that β = αp.

Proof. We again construct a sequence αn of p-adic units such that β ≡ αp
n

(mod pe+r+n) and αn+1 ≡ αn (mod pn+r). Then αn converges p-adically to
some p-adic unit α that clearly satisfies β = αp.

The first congruence is satisfied for n = 0 by assumption. Assume αn

constructed. To satisfy the second congruence we must set αn+1 = αn +
πn+rγn with γn ∈ Zp. Thus by the binomial theorem

αp
n+1 ≡ αp

n + pπn+rαp−1
n γn (mod pk)

with k = min(e + 2(n + r), p(n + r)) � e + r + n + 1 since r(p− 1) � e + 1.
Hence to satisfy the first congruence for n + 1 we must choose γn such that
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β − (αp
n + pπn+rαp−1

n γn) ≡ 0 (mod pe+r+n) ,

which is possible since the p-adic valuation of pπn+rαp−1
n is exactly equal to

e + n + r. ��

As mentioned above, it would not have been possible to apply Proposition
4.1.37 directly. Indeed, if f(X) = Xp − β the condition of that proposition
is vp(f(α0)) > 2vp(f ′(α0)), in other words e + r > 2e, i.e., r > e, while the
above lemma shows that the weaker condition r > e/(p−1) is sufficient. This
is due to the special nature of the polynomial f(X).

On the other hand, we could directly apply Corollary 4.2.15 below to
obtain α = α0(1 + x)1/p with x = (β − αp

0)/αp
0.

4.2 Analytic Functions in p-adic Fields

4.2.1 Elementary Properties

In this section, we let K be a complete field containing Qp whose absolute
value | | extends that of Qp, so that it is necessarily ultrametric. If x ∈ K∗

we define vp(x) ∈ R by the formula |x| = p−vp (x), which extends the usual
definition on Qp. It will be frequently nicer to work with vp(x) than with |x|
although the two notions are of course equivalent. When K is the completion
of a number field then vp(x) ∈ Q; more precisely, when K = Kp and e =
e(p/p), then vp(x) = vp(x)/e. It is also true that vp(x) ∈ Q when x ∈ C∗

p

(which we will define below), but not necessarily in other fields.
The aim of this section is to study functions defined by series expansions.

We have already mentioned that a series converges if and only if its general
term tends to 0. This already shows that analysis of convergence will be
much simpler than over the complex numbers. For instance, interchange of
summation usually becomes easy, as the following lemma shows (see, however,
Proposition 4.2.7 for a situation in which one must be careful).

Lemma 4.2.1. Let (bi,j) be a double sequence of elements of K. Assume that
for all ε > 0 there exists N(ε) such that |bi,j | < ε when max(i, j) � N(ε).
Then the double series

∑
i(
∑

j bi,j) and
∑

j(
∑

i bi,j) both converge and their
sums are equal.

Proof. Immediate from the ultrametric inequality and left to the reader.
��

Now let
f(X) = f0 + f1X + · · ·+ fnXn + · · ·

be a power series. As for complex numbers, we set
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R =
1

lim sup |fn|1/n
,

so that 0 � R � +∞, and call it the radius of convergence of the series.

Lemma 4.2.2. Denote by D the set of elements x ∈ K for which the series
f(x) converges. Then:

(1) When R = 0 then D = {0}.
(2) When R = +∞ then D = K.
(3) When 0 < R < +∞ and |fn|Rn tends to 0 then D = {x ∈ K/ |x| � R}

is the “closed” ball of radius R.
(4) When 0 < R < +∞ and |fn|Rn does not tend to 0 then D = {x ∈

K/ |x| < R} is the “open” ball of radius R.

Proof. This immediately follows from the fact that a series converges if
and only if its general term tends to zero. ��

Remark. When K = Kp and R is not of the form Npv for v ∈ Z, then
the “closed” and “open” balls coincide (this is not in general true for an
arbitrary ultrametric field). Note however that in any case the “closed” and
“open” balls are both open and closed for the ultrametric topology.

Lemma 4.2.3. Keep the notation of the above lemma, and let y ∈ D. For
any m � 0, set

gm =
∑
n�m

(
n

m

)
fnyn−m .

Then the series g(X) =
∑

m�0 gmXm has again D as domain of convergence
and g(x) = f(x + y) for all x ∈ D.

Proof. Since fnyn tends to 0, we note that the series defining gm converges.
The above lemma shows that the series g(x) converges and the interchange
of summation justified by the same lemma shows that g(x) = f(x+y) by the
binomial theorem. In particular, the domain of convergence of g contains that
of f , but reversing the roles of f and g, we see that they are the same. ��

As we have already mentioned several times, this lemma prevents us from
using the usual tools of analytic continuation, since we cannot extend the
domain of definition of a function in this way.

Corollary 4.2.4. A function defined by a power series is infinitely differen-
tiable in its domain of convergence. In particular, if two power series with
strictly positive radius of convergence coincide on some open ball with nonzero
radius, their coefficients coincide.

Proof. Indeed, the kth derivative of g(x) is equal to
∑

m�k m(m −
1) · · · (m − k + 1)gmxm−k, and since |m(m − 1) · · · (m − k + 1)| � 1, the
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radius of convergence of this series is at least equal (in fact is equal) to that
of g, proving the first statement of the corollary, and the second follows. ��

As in usual complex analysis, it is immediate to show that the radius of
convergence of the sum, difference, or product of two power series is greater
than or equal to the smallest one, and that the value of the result is respec-
tively equal to the sum, difference, or product of the values of the operands.
For the product we sometimes need slightly finer information than the radius
of convergence. First note the following:

Lemma 4.2.5. For all n ∈ Z�0 denote by sp(n) the sum of the digits of n
in base p, and let k ∈ Z�0.

(1) We have sp(k) � k.
(2) For all i such that 0 � i � k we have sp(i) + sp(k − i) � sp(k).

Proof. (1) follows from the formula 0 � vp(k!) = (k − sp(k))/(p− 1) that
we shall prove below (Lemma 4.2.8), and (2) from

0 � vp

((
k

i

))
=

sp(i) + sp(k − i)− sp(k)
p− 1

.

��

Proposition 4.2.6. Let A(X) =
∑

k�0 akXk and B(X) =
∑

k�0 bkXk be
two power series with coefficients in K, and set C(X) = A(X)B(X) =∑

k�0 ckXk. Assume that there exist constants α > 0, α′ � 0, β > 0, and
β′ � 0 such that vp(ak) � −αk + α′sp(k) and vp(bk) � −βk + β′sp(k) for all
k � 0. Without loss of generality assume that α � β. Then

vp(ck) � −βk + min(β − α + α′, β′)sp(k) .

Proof. We have ck =
∑

0�i�k aibk−i, hence

vp(ck) � min
0�i�k

(vp(ai)+vp(bk−i)) � min
0�i�k

(−αi−β(k−i)+α′sp(i)+β′sp(k−i)) .

Set β1 = min(β−α+α′, β′). By the lemma we have sp(i) � sp(k)− sp(k− i)
and k − i � sp(k − i). Since β � α and 0 � β1 � β′ we obtain

−αi− β(k − i) + α′sp(i) + β′sp(k − i)
� −βk + β1sp(k) + (β − α)(k − i) + (α′ − β1)sp(k − i)
� −βk + β1sp(k) + (β − α + α′ − β1)sp(k − i)
� −βk + β1sp(k) ,

giving the result. ��

It is also important to give estimates for the composite of two power
series. The situation is as follows. Let f(X) =

∑
n�0 anXn and g(X) =
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∑
m�1 bmXm be two formal power series (hence with g(0) = b0 = 0). We let

F (X) be the composite power series of f and g, defined in the following way.
If we set ang(X)n =

∑
k�n cn,kXk, then by definition we have

F (X) = f ◦ g(X) =
∑
k�0

( ∑
0�n�k

cn,k

)
Xk .

The important point to note is that even if all the power series converge, if x ∈
K we do not necessarily have F (x) = f(g(x)) (see for instance Proposition
4.2.11). The following proposition gives a sufficient condition for this to be
true.

Proposition 4.2.7. Let f(X) =
∑

n�0 anXn and g(X) =
∑

m�1 bmXm be
two formal power series, let F = f ◦ g be defined as above, and let R be
the radius of convergence of f . If x ∈ K is such that the power series g(x)
converges, and if |bmxm| < R for all m � 1, then the power series F (x)
converges and we have F (x) = f(g(x)).

Proof. We use the above notation. Consider the double series
∑

i,j ci,jx
j .

By definition of the ci,j we have

cn,mxm =
∑

k1,...,kn �1
k1+···+kn =m

anbk1x
k1 · · · bkn

xkn .

Set r = maxm�1 |bmxm|, which exists since g(x) converges. Then

|cn,mxm| � max
ki

|anbk1x
k1 · · · bkn

xkn | � |an|rn .

By assumption r < R, hence f(r) converges, so that |an|rn tends to 0 as
n →∞; hence |cn,mxm| tends to 0 as n →∞ uniformly in m. Furthermore,
for n fixed the series ang(x)n converges as a finite product of convergent
power series. It follows that |cn,mxm| tends to 0 as m → ∞, and applying
Lemma 4.2.1 proves the proposition. ��

Note that the condition of the proposition is that |bmxm| < R for all m,
and not only for all sufficiently large m.

4.2.2 Examples of Analytic Functions

We begin with an important lemma on the valuation of n! and of binomial
coefficients. Recall that for any commutative field K of characteristic 0 we
define for x ∈ K and n ∈ Z�0(

x

n

)
=

x(x− 1) · · · (x− n + 1)
n!

.

When x ∈ Z�0 we recover the usual binomial coefficients, whence the nota-
tion.
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Lemma 4.2.8. (1) We have

vp(n!) =
�log(n)/ log(p)�∑

k=1

⌊
n

pk

⌋
=

n− sp(n)
p− 1

.

In particular, for n � 1 we have vp(n!) � (n − 1)/(p − 1), with equality
if and only if n is a power of p, and as n →∞ we have vp(n!) = n/(p−
1) + O(log(n)), and more precisely p−n/(p−1) � |n!|p � np−n/(p−1).

(2) Let a ∈ K. Then
(a) When vp(a) < 0 we have

vp

((
a

n

))
= −(n|vp(a)|+ vp(n!)) ∼ −n

(
|vp(a)|+ 1

p− 1

)
.

(b) When vp(a) � 0, writing vp(a) = q − θ with 0 � θ < 1, we have

vp

((
a

n

))
� − n

pq

(
1

p− 1
+ θ

)
,

and in particular vp(
(

a
n

)
) � −n/(p− 1).

(c) When vp(a) � 0 and K = Qp we have

vp

((
a

n

))
� 0 ,

in other words
(

a
n

)
∈ Zp. If, in addition, a �= 0 and n � 1 then

vp

((
a

n

))
� max(vp(a)− vp(n), 0) .

Proof. (1). We have

vp(n!) =
∑

1�i�n

vp(i) =
∑
k�0

k
∑

1�i�n, vp (i)=k

1

=
∑
k�0

k(�n/pk	 − �n/pk+1	) =
∑
k�1

�n/pk	

by Abel summation, proving the first formula, and the others are immediate
consequences and left to the reader (Exercise 7).

(2). If vp(a) < 0 then vp(a− i) = vp(a) for all i ∈ Z, so the given formulas
are immediate. If vp(a) � 0 then vp(a−i) � min(vp(a), vp(i)), so that (setting
by convention vp(0) = +∞)

vp

(
n!
(

a

n

))
=
∑

0�i<n

vp(a− i) �
∑

0�i<n

min(vp(a), vp(i))

�
∑

0�i<n
vp (i)<vp (a)

vp(i) + vp(a)
∑

0�i<n
vp (i)�vp (a)

1 .
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Thus, since vp(a) = q − θ with 0 � θ < 1 we have q = 
vp(a)� and q ∈ Z�0,
so that vp(i) < vp(a) is equivalent to vp(i) < q; hence

vp

(
n!
(

a

n

))
�
∑

0�k<q

k
∑

0�i<n
vp (i)=k

1 + vp(a)
∑

0�i<n
vp (i)�q

1

=
∑

0�k<q

k(�n/pk	 − �n/pk+1	) + vp(a)�n/pq	

=
∑

1�k�q

�n/pk	 − r�n/pq	

again by Abel summation. Since by (1) we have vp(n!) =
∑

k�1�n/pk	, it
follows that

vp

((
a

n

))
� −θ�n/pq	 −

∑
k�q+1

�n/pk	 .

In addition ∑
k�q+1

�n/pk	 �
∑

k�q+1

n/pk � n/(pq(p− 1)) ,

so that

vp

((
a

n

))
� − n

pq

(
1

p− 1
+ θ

)
,

as claimed.
In the special case K = Qp, we reason as follows. Since

(
a
n

)
is a polynomial

in a it is a continuous function on K. Furthermore,
(

a
n

)
∈ Z when a ∈ Z, and

since Z is dense in Zp it follows that
(

a
n

)
∈ Zp when a ∈ Zp. Since for n � 1

we have (
a

n

)
=

a

n

(
a− 1
n− 1

)
,

it follows that

vp

((
a

n

))
= vp(a)− vp(n) + vp

((
a− 1
n− 1

))
� vp(a)− vp(n) ,

finishing the proof. ��

See also Exercises 9 and 10.

Remark. It is essential to note that when vp(a) � 0 but a /∈ Zp, we not not
have in general vp(

(
a
n

)
) � 0; see for example Exercise 6.

We will also need the following lemma, closely related to (2) above:

Lemma 4.2.9. As in the preceding lemma, when vp(a) � 0, write vp(a) =
q − θ with 0 � θ < 1. Then
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max
m�1

(
1/(p− 1)− vp(a) + vp(m)

m

)
=

{
1/(p− 1)− vp(a) when vp(a) < 0 ,
(1/(p− 1) + θ)/pq when vp(a) � 0 .

Proof. For simplicity, set A = 1/(p− 1)− vp(a) and m = pun with p � n.
We must compute maxu�0, n�1(A + u)/(pun). Consider for the moment n
fixed, and set f(u) = (A + u)/pu. We have

f(u)− f(u + 1) =
p− 1
pu+1

(u− vp(a)) .

When vp(a) < 0 this is strictly positive; hence the maximum of f(u) is
attained for u = 0, and is equal to A, and since A > 0 in that case, the
maximum over n is obtained for n = 1, proving the lemma for vp(a) < 0. Thus
assume now that vp(a) � 0. By the above equality we have f(u + 1) � f(u)
if u � 
vp(a)� and f(u + 1) > f(u) if u < 
vp(a)�, so the maximum of f is
attained for u = 
vp(a)� = q (and also for u = q + 1 if vp(a) ∈ Z, but we do
not need this), and we have

max
u�0

f(u) =
1/(p− 1)− vp(a) + q

pq
=

1/(p− 1) + θ

pq
.

Since this quantity is positive, the maximum over n � 1 is again attained for
n = 1, proving the lemma. ��

As in the case of C, we can define the exponential and logarithm functions.
The main difference is that the radius of convergence of the exponential
function is finite.

Proposition 4.2.10. Let K be as above, and set rp = p−1/(p−1). Consider
as usual the formal power series

exp(X) =
∑
n�0

Xn

n!
and log(1 + X) =

∑
n�1

(−1)n−1 Xn

n
.

(1) The series obtained by replacing the formal variable X by x ∈ K in
exp(X) converges if and only if |x| < rp = p−1/(p−1) (or equivalently,
vp(x) > 1/(p− 1)), and its sum is denoted by expp(x).

(2) The series obtained by replacing the formal variable X by x ∈ K in
log(1 + X) converges if and only if |x| < 1 (or equivalently, vp(x) > 0),
and its sum is denoted by logp(1 + x).

(3) If |x| < rp we have | logp(1 + x)| = |x| and | expp(x) − 1| = |x|, and if
|x| = rp we have | logp(1 + x)| � |x|.

(4) If max(|x|, |y|) < rp we have expp(x + y) = expp(x) expp(y), and if
max(|x|, |y|) < 1 we have logp((1+x)(1+ y)) = logp(1+x)+ logp(1+y).

(5) If |x| < rp we have logp(expp(x)) = x and expp(logp(1 + x)) = 1 + x.
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Note that it is useful to use a notation that distinguishes the formal power
series for exp(X) and for log(1 + X) (which have nothing to do with p-adic
fields, and can be defined in any field of characteristic 0) from their sum when
X is replaced by x ∈ K, which now depends on the base field, whence the
above notation, which we will consistently use.

Proof. (1) and (2). By the above lemma, we have lim sup(vp(n!)/n) =
1/(p − 1), so the radius of convergence of exp(X) is 1/ lim sup(|1/n!|1/n) =
p−1/(p−1) = rp. Since vp(n!) − n/(p − 1) does not tend to zero as n tends
to infinity, the series does not converge on the circle of convergence, proving
the first statement. For log(1 + X), we clearly have 1/ lim sup(|1/n|)1/n = 1,
so that the radius of convergence is equal to 1, and once again since |1/n|
does not tend to 0, the series does not converge on the circle of convergence.
Furthermore, if |x| < rp and n � 1 we have

|xn−1/n!| < rn−1
p pvp (n!) � p−(n−1)/(p−1)p(n−1)/(p−1) � 1 .

It follows that |xn/n!| < |x| and a fortiori that |xn/n| = |(n− 1)!xn/n!| < |x|
for all n � 2, hence that | exp(x) − 1| = |x| and | log(1 + x)| = |x| by ultra-
metricity, proving (3) if |x| < rp. If |x| = rp we only have |xn/n| � |xn/n!| �
|x|, hence | log(1 + x)| � |x|. The equalities of (4) are formal consequences of
the power series definition since thanks to Lemma 4.2.1 we can rearrange the
power series product as we like inside the disks of convergence.

For (5) we must be more careful. We are going to show that the conditions
of Proposition 4.2.7 are satisfied. For the first formula we choose f(X) =
log(1 + X) and g(X) = exp(X)− 1, so that the radius of convergence R of f
is equal to 1. If |x| < rp then g(x) converges by (1), and for m � 1 we have

|bmxm| = |xm/m!| < |x|rm−1
p /p−(m−1)/(p−1) � rp < 1 ,

so Proposition 4.2.7 implies the result. For the second formula we choose
f(X) = exp(X) and g(X) = log(1+X), so that R = rp. If |x| < rp then g(x)
converges since rp < 1, and

|bmxm| = |xm/m| = |(m− 1)!||xm/m!| < rp

by the above inequality, and we again conclude thanks to Proposition 4.2.7.
��

Important Remark. Since expp(x) converges only for |x| < rp, this condi-
tion is evidently necessary for the first statement of (5) to make sense. On
the other hand, the second statement of (5) may be false if we assume only
that |x| < 1 and | logp(1 + x)| < rp, which are necessary conditions for the
statement to make sense. For instance, we have the following easy result:

Proposition 4.2.11. Assume that x ∈ 2Z2. Then | log2(1 + x)| < r2, but
exp2(log2(1+x)) = ε(1+x) with ε = 1 if x ∈ 4Z2 and ε = −1 if x ∈ 2+4Z2.
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Proof. Left to the reader (Exercise 11). ��

Lemma 4.2.12. Let f(x) =
∑

n�0 anxn/n!, and let k � 1. Assume that
there exists z ∈ R such that vp(an) � z for all n � k, and that vp(x) >
1/(p− 1). Then the series f(x) converges and we have

vp

(
f(x)−

∑
0�n<k

anxn/n!
)

� kvp(x) + z − (k − 1)/(p− 1) > vp(x) + z .

If, in addition, p � k + 1 and vp(x) � 1/(p− k) we have

vp

(
f(x)−

∑
0�n<k

anxn/n!
)

� kvp(x) + z .

Proof. By Lemma 4.2.8 for n � k we have by assumption

vp(anxn/n!) � kvp(x) + z + (n− k)vp(x)− (n− sp(n))/(p− 1) .

Furthermore, if sp(n) � k we have

(n− k)vp(x)− (n− sp(n))/(p− 1) � (n− k)(vp(x)− 1/(p− 1)) > 0 ,

proving that vp(anxn/n!) > kvp(x) + z, which is what we need for both
statements. If 1 � sp(n) < k then since (n− k)vp(x)− (n− 1)/(p− 1) is an
increasing function of n and n � k, the minimum is attained for n = k, so
that

(n− k)vp(x)− (n− sp(n))/(p− 1) � −(k − 1)/(p− 1) > −(k − 1)vp(x) ,

proving the first result. If, in addition, vp(x) � 1/(p− k), we have instead

(n− k)vp(x)− (n− sp(n))/(p− 1) � (n− k)/(p− k)− (n− 1)/(p− 1)
= (k − 1)(n− p)/((p− k)(p− 1)) � 0 ,

since n � p; otherwise, sp(n) = n � k, proving the second result. ��

Corollary 4.2.13. If vp(x) > 1/(p− 1) then

vp(logp(1 + x)− x) > 2vp(x)− 1/(p− 1) and

vp(expp(x)− 1− x) > 2vp(x)− 1/(p− 1) .

If p � 3 and vp(x) � 1/(p− 2) then

vp(logp(1 + x)− x) � 2vp(x) and vp(expp(x)− 1− x) � 2vp(x) ;

in other words, logp(1+x) ≡ x (mod x2Zp) and expp(x) ≡ 1+x (mod x2Zp).
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Proof. Clear. ��

When vp(x) � 1/(p− 1) we can also give a rather precise estimate of the
valuation of logp(1 + x) as follows.

Proposition 4.2.14. Let x be such that v = vp(x) > 0, assume that v �
1/(p− 1), and set

k0 =
⌈
− log((p− 1)v)

log p

⌉
.

(1) When v � 1/(p− 1) then

vp(logp(1 + x)) � pk0v − k0

with equality when 1/((p−1)v) is not an integral power of p (in particular
if it is not an integer).

(2) In the special case K = Qp, if v � 1/(p − 1) (which can happen only if
p = 2 and v = 1)we have vp(logp(1 + x)) = vp(x + 2) � 2, and more
precisely vp(logp(1 + x)− (x + 2)) � 3.

Proof. Let un = (−1)n−1xn/n be the nth summand of the series for
logp(1 + x). If we write n = pkm with p � m, then vp(un) = pkmv − k.
This is a function of the two integer variables m and k. Since v > 0, for
fixed k it attains its minimal value for m = 1. If wk = pkv − k we have
wk+1 −wk = pk(p− 1)v− 1, and since v � 1/(p− 1) we have wk+1 −wk � 0
if and only if k � k0 as given in the proposition. It follows that n = pk0

is such that vp(un) has minimum valuation, and it is unique if and only if
1/((p− 1)v) is not a power of p, proving (1). In the case K = Q2 and v = 1
we can write x + 2 = 4y with y ∈ Z2; hence since 2 log2(−1) = log2(1) = 0
we have log2(1 + x) = log2(1− 4y). Now it is immediate that v2((4y)n/n) �
2n − v2(n) � 3 for n � 3; hence log2(1 + x) ≡ −(4y + 8y2) ≡ 4y ≡ x + 2
(mod 8Z2), proving (2) since v2(x + 2) � 2. ��

In the next results we consider (1 + x)y from two points of view, one in
which the main variable is x, the other in which it is y. We begin with the
most natural one, where we assume that it is x.

Corollary 4.2.15. Let a ∈ K be fixed and consider the power series

(1 + X)a =
∑
n�0

(
a

n

)
Xn .

Define

V (a) =

{
1/(p− 1)− vp(a) when vp(a) < 0 ,
(1/(p− 1) + θ)/pq when vp(a) � 0 ,

where in this last case we write vp(a) = q − θ with 0 � θ < 1.
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(1) The power series for (1 + x)a converges when vp(x) > V (a), and in
particular when vp(x) > 1/(p − 1) −min(vp(a), 0), and we have vp((1 +
x)a) = 0.

(2) When vp(a) < 0 or when vp(a) � 0 and vp(a) /∈ Z, it converges if and
only if vp(x) > V (a).

(3) In the special case in which a ∈ Zp (in particular for K = Qp), it con-
verges for vp(x) > 0.

(4) If vp(x) > V (a) we also have

(1 + x)a = expp(a logp(1 + x)) .

(5) In the special case K = Qp, a ∈ Zp, and vp(x) > 0, we have

(1 + x)a = ε expp(a logp(1 + x)) ,

where ε = 1 except when p = 2, vp(a) = 0, and vp(x) = 1, in which case
ε = −1.

(6) If vp(x) > 0 we have

logp(1 + x) = lim
a→0

(1 + x)a − 1
a

.

Proof. (3) and the first and last statement of (1) immediately follow from
Lemma 4.2.8. In addition, for vp(a) � 0 we have V (a) � 1/(p − 1), while
V (a) = 1/(p−1)−vp(a) for vp(a) < 0. Thus V (a) � 1/(p−1)−min(vp(a), 0)
in all cases, so that the series converges when vp(x) > 1/(p−1)−min(vp(a), 0),
proving the second statement of (1). For (2), note that when vp(a) < 0 we
have the equality

vp

((
a

n

))
= −(n|vp(a)|+ (n− 1)/(p− 1))

for an infinity of n, so the series does not converge on its circle of convergence.
The case vp(a) � 0 and vp(a) /∈ Z is left to the reader (Exercise 9).

(4). As in the proof of Proposition 4.2.10 (5) we must be careful, and not
only check that everything is well defined. Once again we are going to apply
Proposition 4.2.7, this time to f(X) = exp(X) and g(X) = a log(1 + X),
so that R = rp = p−1/(p−1). Since vp(x) > 0 the series g(x) converges.
On the other hand, g(X) = a

∑
m�1(−1)m−1xm/m, so to apply Proposition

4.2.7 we must show that |axm/m| < rp for all m � 1, in other words that
mvp(x) + vp(a)− vp(m) > 1/(p− 1). But since vp(x) > V (a), this is exactly
what Lemma 4.2.9 tells us, proving (4).

(5) is proved exactly in the same way as Proposition 4.2.11, and is left
to the reader (Exercise 11). Finally, for (6) we note that the real number
V (a) tends to 0 as vp(a) tends to +∞; hence for a sufficiently close p-adically
to 0 we have vp(x) > V (a), so that (4) is applicable, and the power series
expansion of the exponential immediately gives the result. ��
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Examples and Warnings. (1) As an example of (4), already seen in Propo-
sition 4.2.11, note that for instance exp2(log2(1 + 2)) = −3.

(2) Consider the special case K = Q7, a = 1/2, x = 7/9. Since |x|7 < 1 and
v7(a) = 0 the series converges, and by Proposition 4.2.10 (or directly)
the sum of the series is one of the square roots of 1 + x = 16/9, in other
words ±4/3. Since the series begins with 1+O(x) = 1+O(7) the sum of
the series is congruent to 1 modulo 7Z7, hence is equal to −4/3. On the
other hand, in R the series also converges, but since |x| < 1, it converges
to a positive value, hence to 4/3. Thus, beware that even though a given
series may converge to elements of Q in several p-adic or local fields, the
sum is not necessarily the same.

Corollary 4.2.16. Assume that vp(x) = v > 1/(p − 1). If vp(a) > 1/(p −
1)− v the series (1 + x)a converges, and vp((1 + x)a) = 0.

Proof. By the above corollary, if vp(a) � 0 the series converges when
vp(x) > 1/(p − 1), and if vp(a) < 0 the series converges when vp(x) >
1/(p − 1) − vp(a), in other words when vp(a) > 1/(p − 1) − vp(x), both of
which are true by assumption. ��

Corollary 4.2.17. Let a ∈ Zp.

(1) If p � 3 then for all x ∈ K such that vp(x) � 1/(p− 2) we have

vp((1 + x)a − 1− ax) � 2vp(x) + vp(a) ,

in other words (1 + x)a ≡ 1 + ax (mod ax2Zp).
(2) If p = 2 then for all x ∈ K such that vp(x) > 1 we have

vp((1 + x)a − 1− ax) � 2vp(x) + vp(a)− 1 .

Proof. By the above corollary (or by Lemma 4.2.12) we have the conver-
gent series (1+x)a =

∑
n�0

(
a
n

)
xn, and since vp(n!

(
a
n

)
) = vp(a(a− 1) · · · (a−

n + 1)) � vp(a) for n � 1, (1) follows from Lemma 4.2.12, and (2) is proved
similarly. ��

Corollary 4.2.18. Let a ∈ K be fixed.

(1) When vp(a) > 1/(p− 1) the power series in x

φa(x) = (1 + a)x = expp(x logp(1 + a))

converges if and only if vp(x) > 1/(p− 1)− vp(a), and in particular has
a radius of convergence strictly greater than 1.

(2) When 1 � vp(a) � 1/(p− 1) the power series φa(x) above converges for

vp(x) >
1

p− 1
− pk0vp(a) + k0
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(and possibly for smaller values of vp(x)), where

k0 =
⌈
− log((p− 1)vp(a))

log p

⌉
.

(3) In the special case in which a ∈ Zp, vp(a) = 1, and p = 2, the power
series φa(x) converges for vp(x) > −1, and in particular has radius of
convergence greater than or equal to 2.

Note that, contrary to Corollary 4.2.15, in the above corollary the equality
(1 + a)x = expp(x logp(1 + a)) is the definition of (1 + a)x.

Proof. This immediately follows from Proposition 4.2.14 since expp(x)
converges when vp(x) > 1/(p−1), and since v2(log2(1+a)) � 2 when a ∈ 2Z2.

��

4.2.3 Application of the Artin–Hasse Exponential

The fact that the radius of convergence of the p-adic exponential function is
strictly less than 1 is annoying. We introduce a modification of the exponen-
tial function, which will no longer be a homomorphism, but which has radius
of convergence 1.

Definition 4.2.19. The Artin–Hasse exponential is the power series Ep(X) =∑
k�0 ekXk defined by

Ep(X) = exp
(

X +
Xp

p
+ · · ·+ Xpn

pn
+ · · ·

)
.

To compute the radius of convergence, we need the following lemma, due
to B. Dwork. We state it only over Qp, but it is easily generalized.

Lemma 4.2.20. Let S(X) =
∑

k�0 skXk ∈ 1 + XQp[[X]] be a power series
with coefficients in Qp such that s0 = 1. Then sk ∈ Zp for all k (in other
words S(X) ∈ 1 + XZp[[X]]) if and only if S(X)p/S(Xp) ∈ 1 + pXZp[[X]].

Proof. If S(X) =
∑

k�0 skXk ∈ 1 + XZp[[X]] then clearly

S(X)p ≡
∑
k�0

sp
kXpk ≡

∑
k�0

skXpk ≡ S(Xp) (mod pZp[[X]]) ,

hence S(X)p/S(Xp) ∈ 1 + pZZp[[X]] (note that we use the fact that
sp ≡ s (mod pZp) when s ∈ Zp). Conversely, assume that this is the
case. Using an obvious recurrence (valid for any commutative ring R, not
only Qp), we can write S(X) =

∏
k�1(1 + akXk) for some ak ∈ Qp. Let

us show by induction that in fact ak ∈ Zp, which clearly implies that
S(X) ∈ 1+XZp[[X]]. Assume that a1, . . . , an−1 are in Zp, initially with n = 1,
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and let Sn(X) =
∏

1�k�n−1(1+ akXk), so that by what we have just shown,
Sn(X)p/Sn(Xp) ∈ 1+pZp[[X]], whence Rn(X)p/Rn(Xp) ∈ 1+pZp[[X]] with

Rn(X) =
S(X)
Sn(X)

=
∏
k�n

(1 + akXk) = 1 + anXn + O(Xn+1) .

We thus have

Rn(X)p

Rn(Xp)
=

1 + panXn + O(Xn+1)
1 + anXpn + O(Xp(n+1))

= 1 + panXn + O(Xn+1) ,

hence by assumption pan ∈ pZp, in other words an ∈ Zp, proving our induc-
tion and the lemma.

Corollary 4.2.21. The Artin–Hasse power series Ep(X) defined above has
p-integral coefficients (in other words belongs to 1 + XZp[[X]]), and in par-
ticular has radius of convergence greater than or equal to 1.

Proof. Indeed, we have Ep(X)p = exp(pX +
∑

n�1 Xpn

/pn−1) and

Ep(Xp) = exp(
∑

n�0 Xpn+1
/pn), hence

Ep(X)p

Ep(Xp)
= exp(pX) = 1 + p

∑
k�1

pk−1

k!
Xk .

Since vp(k!) � (k − 1)/(p − 1) for k � 1, it follows that vp(pk−1/k!) �
k−1− (k−1)/(p−1) � 0, so that pk−1/k! ∈ Zp, and by the lemma it follows
that Ep(X) ∈ 1+XZp[[X]], proving that the radius of convergence is greater
than or equal to 1. ��

It can be shown that the radius of convergence of Ep(X) is in fact equal
to 1, but we will not need this.

Theorem 4.2.22. Set exp(X + Xp/p) =
∑

k�0 ukXk. Then

vp(uk) � − 2p− 1
(p− 1)p2

(k − sp(k)) .

Proof. We trivially have

exp(X + Xp/p) = Ep(X)
∏
n�2

exp(−Xpn

/pn) .

Write exp(−Xpn

/pn) =
∑

k�0 cn,kXk. We have cn,k = 0 if pn � k, and other-
wise cn,k = (−1)k/pn

/((k/pn)!pnk/pn

). It follows in particular that

vp(cn,k) � −
(

nk

pn
+ vp((k/pn)!)

)
� −

(
nk

pn
+

k

pn(p− 1)

)
+

sp(k/pn)
p− 1

� − k

pn

(
n +

1
p− 1

)
+

sp(k)
p− 1

.
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Now if we set an = n/pn we have an+1/an = ((n + 1)/n)/p < 1 for n � 2, so
when n � 2, for fixed k the expression (k/pn)(n + 1/(p− 1)) is maximal for
n = 2; hence vp(cn,k) � −βpk + sp(k)/(p− 1) with βp = (2+1/(p− 1))/p2 =
(2p− 1)/((p− 1)p2), which gives a lower bound independent of n. It follows
by induction from Proposition 4.2.6 that if we write

B(X) =
∏
n�2

exp(−Xpn

/pn) =
∑
k�0

bkXk

then vp(bk) � −βpk + sp(k)/(p − 1) (note that bk is obtained by computing
only a finite number of products). Now if we set Ep(X) =

∑
ekXk the above

corollary tells us that vp(ek) � 0; hence by Proposition 4.2.6 applied with
α = α′ = 0 and β = βp, β′ = 1/(p− 1) we obtain

vp(uk) � −βpk + min(βp, 1/(p− 1))sp(k) � −βp(k − sp(k))

since clearly βp � 1/(p− 1) for all p � 2. ��

Note that although proved by “elementary” methods, this result is not
trivial (the trivial bound gives vp(uk) � −k/(p−1)). It can be shown that the
bound given above is essentially best possible (this is essentially equivalent to
showing that the radius of convergence of Ep(X) is equal to 1 and no larger),
so it is not an artifact of the proof.

Corollary 4.2.23. (1) Set

uk =
�k/p�∑
j=0

1
pjj!(k − pj)!

.

Then
vp(uk) � − 2p− 1

(p− 1)p2
(k − sp(k)) .

(2) For 0 � r < p set

ar,k = (−1)k
k∑

j=0

pjj!
(pj + r)!

(
k

j

)
.

Then vp(ar,0) = 0, and for k � 1,

vp(ar,k) �
(

1− 1
p

)(
k − sp(k)

p

)
=
(

1− 1
p

)2

vp((pk)!) .

Proof. The result for uk is simply a reformulation of the theorem since
the formula for uk is obtained by computing the product of the series exp(X)
and exp(Xp/p). For ar,k it is immediate that ar,k = (−p)kk!upk+r, so the
result follows by a short computation. ��
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4.2.4 Mahler Expansions

We begin with the following.

Lemma 4.2.24. For any sequence ak such that ak ∈ Zp and tending to 0
p-adically as k →∞ the function

f(x) =
∑
k�0

ak

(
x

k

)
is well defined and is continuous on Zp.

Proof. Since by Lemma 4.2.8 we have
(
x
k

)
∈ Zp, the term ak

(
x
k

)
tends to

0 as k → ∞ so that f(x) is well defined. Furthermore, for the same reason
(i.e., |

(
x
k

)
|p � 1) it is uniformly convergent on Zp, hence defines a continuous

function. ��

For n ∈ Z�0 we set bn = f(n). Since
(
n
k

)
= 0 when k > n, it is clear that

bn depends linearly on a0, . . . , an and the coefficient of an is equal to 1. It
follows that the ak are determined by the bn, i.e., by the values taken by f
on Z�0. This is of course not surprising since Z�0 is dense in Zp. In fact we
have an explicit formula, which we will need.

Proposition 4.2.25. If

bn =
∑

0�k�n

ak

(
n

k

)
then

ak =
∑

0�m�k

(−1)k−mbm

(
k

m

)
.

Proof. One can of course prove this directly. However, the simplest proof
is by using generating functions: if A(T ) =

∑
k�0 akT k/k! and B(T ) =∑

k�0 bkT k/k!, then by definition B(T ) = exp(T )A(T ), so that A(T ) =
exp(−T )B(T ), giving the formula for ak. ��

The main theorem of this subsection, due to Mahler, is that the converse
of the above lemma is true. More precisely:

Theorem 4.2.26 (Mahler). Let f be a function from Zp to Zp and set

ak =
∑

0�m�k

(−1)k−m

(
k

m

)
f(m) .

(1) If f(x) is continuous on Zp then vp(ak) tends to infinity with k.
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(2) The function f(x) is continuous if and only if f(x) can be written in the
form

f(x) =
∑
k�0

ak

(
x

k

)
for some sequence ak ∈ Zp tending to 0 p-adically as k → ∞. If f(x) is
continuous the coefficients ak are uniquely determined and given by the
above formula, and called the Mahler coefficients of f .

Proof. (1). Introduce the forward difference operator ∆ on any function
g from Zp to Zp by setting (∆g)(x) = g(x + 1)− g(x). It is well known and
trivial to prove by induction that for all k � 0 we have

(∆kg)(x) =
∑

0�m�k

(−1)k−m

(
k

m

)
g(m + x) .

Thus ak = (∆kf)(0).
We prove (1) by induction. Let r � 0, and assume that there exists Nr � 0

such that vp((∆kf)(x)) � r for all k � Nr and all x ∈ Zp. This is trivially true
for r = 0 with N0 = 0 since f(x) ∈ Zp for all x. Let g(x) = (∆Nr f)(x)/pr.
This is a continuous function from Zp to Zp. Since Zp is compact it is uni-
formly continuous, so there exists M � 1 such that x ≡ y (mod pMZp)
implies g(x) ≡ g(y) (mod pZp) for all x and y in Zp. Since p |

(
pM

k

)
for all k

except k = 0 and k = pM , this implies that for all x ∈ Zp we have

(∆pM

g)(x) =
∑

0�m�pM

(−1)pM −m

(
pM

m

)
g(m + x)

≡ g(x + pM )− g(x) ≡ 0 (mod pZp) .

It follows that vp((∆Nr +pM

f)(x)) � r + 1 for all x ∈ Zp; hence by induction
vp((∆kf)(x)) � r + 1 for all k � Nr+1 = Nr + pM , proving our induction
hypothesis, hence (1) since ak = (∆kf)(0).

(2). We have already seen in Lemma 4.2.24 that an expansion of the
given form defines a continuous function. Conversely, assume that f(x) is
continuous on Zp. By (1), the ak tend to 0 p-adically as k tends to infinity.
Thus, again by Lemma 4.2.24 the function g(x) =

∑
k�0 ak

(
x
k

)
is well defined

and continuous. However, by definition of ak and Proposition 4.2.25 we have
f(n) = g(n) for all n ∈ Z�0. Since f and g are continuous and since Z�0 is
dense in Zp it follows that f(x) = g(x) for all x ∈ Zp, proving (2), and hence
the theorem. ��

Remark. Assume that f is continuous. Since ak tends to 0 p-adically it
follows that the series

∑
k�0 ak

(
x
k

)
tends to f(x) uniformly in x ∈ Zp. It is

also easy to show that supx∈Zp
|f(x)| = supk�0 |ak|; see Exercise 16.
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Corollary 4.2.27. Let bn be a sequence of elements of Zp. The following
conditions are equivalent.

(1) This sequence is p-adically continuous; in other words, for all k � 0 there
exists j � 0 such that vp(n−m) � j implies that vp(bn − bm) � k.

(2) There exists a continuous function f(x) from Zp to Zp such that f(n) =
bn for n � 0.

(3) If ak is given by the formula of Theorem 4.2.26 then vp(ak) → ∞ as
k →∞.

Proof. Clear. ��

Note that Mahler’s theorem, which characterizes only continuous func-
tions, implies rather weak results. For instance, in Chapter 9 we will study
the p-adic gamma function, which can easily be proved to be continuous. This
implies that with the notation of Corollary 4.2.23, vp(ar,k) tends to infinity
with k, which is much weaker than the statement of the corollary (see Ex-
ercise 44 of Chapter 11). To get the full strength we would need to use the
analyticity and not only the continuity of the gamma function.

The following proposition gives a lower bound on the radius of convergence
of the power series corresponding to a Mahler expansion.

Proposition 4.2.28. Let f(x) =
∑

k�0 ak

(
x
k

)
, and assume that for all k we

have vp(ak) � αk + α′sp(k) + α′′ for some constants α, α′, and α′′ such
that α > 1/(p − 1) and α′ � −α. Then f(x) is equal to the sum of a power
series

∑
k�0 bkxk with radius of convergence greater than or equal to R =

pα−1/(p−1) > 1. More precisely, we have

vp(bk) � (α− 1/(p− 1))k + β′sp(k) + α′′

for all k, where β′ = 0 if α′ � −1/(p − 1) and β′ = −(α − 1/(p − 1)) if
−α � α′ < −1/(p− 1).

Proof. Define integers s(k, j) (called Stirling numbers of the first kind) by
the formula

X(X − 1) · · · (X − k + 1) =
∑
j�0

(−1)k−js(k, j)Xj ,

with s(k, j) = 0 for j > k, and for all n set fn(x) =
∑

0�k�n ak

(
x
k

)
. This

is a polynomial of degree less than or equal to n, and we have fn(x) =∑
j�0 bn,jx

j with bn,j =
∑

j�k�n(−1)k−js(k, j)ak/k!. It follows from the
formula for vp(k!) that

vp(bn,j) � min
j�k�n

(α− 1/(p− 1))k + (α′ + 1/(p− 1))sp(k) + α′′ .
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Since 0 � sp(k) < (p − 1)(log(k)/ log(p) + 1) for k � 1, it follows that
|ak/k!| � AkBR−k and |bn,j | � AjBR−j for some constants A > 0 and B,
where as in the proposition R = pα−1/(p−1) > 1.

Let x be fixed such that |x| < R, set u = max(|x|, 1), and let R1 be such
that u < R1 < R. Since kB(R1/R)k tends to 0 as k → ∞ it is bounded, so
increasing A if necessary, we may assume that |ak/k!| � AR−k

1 and |bn,j | �
AR−j

1 . We have |x(x − 1) · · · (x − k + 1)| � uk, hence |ak

(
x
k

)
| � uk|ak/k!| �

A(u/R1)−k, which tends to 0 as k →∞, so that fn(x) tends to f(x). On the
other hand, since ak/k! tends to 0 bn,j tends to bj =

∑
k�j(−1)k−js(k, j)ak/k!

as n →∞, and more precisely, since s(k, j) = 0 for k < j, we have

|bn,j − bj | � max
k>n

|s(k, j)ak/k!| � max
k�max(j,n+1)

AR−k
1 = AR

−max(j,n+1)
1 .

In addition, since |bn,j | � AR−j
1 we have |bj | � AR−j

1 , so that the series
g(x) =

∑
j�0 bjx

j converges since |x| < R1. Now, for any n we have fn(x)−
g(x) =

∑
j�0(bn,j − bj)xj ; hence

|fn(x)− g(x)| � max( max
0�j�n

|bn,j − bj ||x|j ,max
j>n

|bn,j − bj ||x|j)

� max(AR
−(n+1)
1 un,max

j>n
AR−k

1 uj) � A(u/R1)n ,

which tends to 0 as n →∞; hence fn(x) tends to g(x), and since it also tends
to f(x) we have f(x) = g(x).

Since bn,j tends to bj as n→∞ we deduce from the inequality for vp(bn,j)
that vp(bj) � mink�j(α − 1/(p − 1))k + (α′ + 1/(p − 1))sp(k) + α′′. If α′ �
−1/(p − 1) we obtain immediately vp(bj) � (α − 1/(p − 1))j + α′′ since
sp(k) � 0. If α′ < −1/(p − 1), then since by assumption α′ � −α we have
α′ + 1/(p− 1) � −(α− 1/(p− 1)), hence

vp(bj) � min
k�j

(α− 1/(p− 1))(k − sp(k)) + α′′

= min
k�j

(α− 1/(p− 1))(p− 1)vp(k!) + α′′

= (α− 1/(p− 1))(p− 1)vp(j!) + α′′ = (α− 1/(p− 1))(j − sp(j)) + α′′

since vp(k!) is a nondecreasing function of k, finishing the proof of the propo-
sition. ��

Remarks. (1) The proof is simpler when α′ = 0, but we will need the more
precise statement.

(2) It is clear that this proposition implies the first statement of Corollary
4.2.18.

(3) The converse of this proposition is essentially true; see Exercise 17.

Corollary 4.2.29. Let (ck)k�0 be a sequence of elements of Z, set
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ak =
∑

0�m�k

(−1)k−m

(
k

m

)
cm ,

and assume that as k →∞ we have vp(ak) � αk+o(k) for some α > 1/(p−1).
Then there exists a function f having the following properties:

(1) For any x ∈ Zp, f(x) is defined, is a continuous function on Zp, and is
such that f(k) = ck for all k ∈ Z�0.

(2) For any normed field extension K of Qp and any x ∈ K such that |x| <
pα−1/(p−1), f(x) is defined as a power series expansion, and is a p-adic
analytic function in that disk.

Proof. Clear from the above results. ��

It follows from this corollary that if a p-adic function is defined on Zp by
simple interpolation, we often get for free an extension to a sufficiently small
ball of K. We will see examples of this in Chapter 11 for K = Cp.

4.3 Additive and Multiplicative Structures

In this section we let K be a number field, p a (nonzero) prime ideal of ZK ,
and K = Kp the completion of K for the p-adic absolute value. We denote
by p the prime number below p and we let π ∈ p \ p2 be a uniformizer at p.
We denote as usual by e = e(p/p) the ramification index and by f = f(p/p)
the residual degree. Depending on the context, we will use the (rational-
valued) p-adic valuation vp or the (integer-valued) p-adic valuation vp, where
by definition vp(x) = vp(x)/e.

4.3.1 Concrete Approach

By definition, any x ∈ Zp is the p-adic limit of a sequence of xn that can be
chosen to be in ZK . Furthermore, without loss of generality (see Proposition
4.1.25 for instance), we may assume that vp(xn+1−xn) � n. Thus if we let yn

to be the class of xn in the quotient ring ZK/pn, we see that yn is the image
of yn+1 by the natural surjection φn from ZK/pn+1 to ZK/pn. When one has
such a setup, one says that Zp is the projective limit (or inverse limit) of the
ZK/pn for the natural maps, and that x is the projective limit of the yn. The
general theory of projective limits is not difficult but is of little use to us.
We mention this because it corresponds to the concrete approach to p-adic
numbers (for instance Proposition 4.1.25 is more palatable than completions
at finite places). Also, this approach naturally gives both the ring structure
and the topology of Zp, Kp being then obtained as the quotient field of Zp.

We give a few sample computations in Qp using this type of representa-
tion, which is of course the one used in practice.
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By Proposition 4.1.25, any element x ∈ Q∗
p can be written in the form x =

akpk +ak+1p
k+1 + · · · with ak �= 0. In particular, x ∈ Zp if and only if k � 0.

After appropriate scaling by a power of p, we can evidently concentrate on
elements of Zp. Then addition is done from left to right, in contrast to ordinary
addition. For example, choose p = 5, x = 3+2 · 5+4 · 52 +1 · 53 +3 · 54 + · · · ,
and y = 4 + 3 · 5 + 3 · 52 + 2 · 53 + 3 · 54 + · · · . We compute successively

x + y = 7 + (2 · 5 + 4 · 52 + 1 · 53 + 3 · 54 + · · · )
+ (3 · 5 + 3 · 52 + 2 · 53 + 3 · 54 + · · · )

= 2 + 6 · 5 + (4 · 52 + 1 · 53 + 3 · 54 + · · · )
+ (3 · 52 + 2 · 53 + 3 · 54 + · · · )

= 2 + 1 · 5 + 8 · 52 + (1 · 53 + 3 · 54 + · · · ) + (2 · 53 + 3 · 54 + · · · )
= 2 + 1 · 5 + 3 · 52 + 4 · 53 + (3 · 54 + · · · ) + (3 · 54 + · · · )
= 2 + 1 · 5 + 3 · 52 + 4 · 53 + 6 · 54 + · · ·
= 2 + 1 · 5 + 3 · 52 + 4 · 53 + 1 · 54 + · · · .

An alternative way of doing this computation is to find representatives in
Z of the approximations to the p-adic numbers: here x = 2113 + O(55),
y = 2219 + O(55); hence x + y = 4332 + O(55), which of course gives the
same expansion in base 5.

Note also that −1 has the representation

−1 = (p− 1) + (p− 1) · p + (p− 1) · p2 + · · · .

Similarly, multiplication and division can be done either directly, or by using
representatives in Z. For instance, if p is odd, by the above representation of
−1 we have

1/2 = 1+(−1/2) = (p+1)/2+(p−1)/2 ·p+(p−1)/2 ·p2 +(p−1)/2 ·p3+ · · · .

As we can see from the above examples, there is a fundamental difference
between computations on p-adic numbers and computations on formal power
series

∑
m�m0

amXm, which are also done from left to right. In the latter case,
there are no carries, while for p-adic numbers we must take into account the
carries, from left to right.

There is nothing much to say concerning the additive structure of Kp or
of Zp. We know that all ideals of Zp have the form pkZp; hence if π is a
uniformizer, multiplication by πk gives a noncanonical isomorphism between
the additive groups of Zp and pkZp. We thus now look at the multiplicative
structure.

4.3.2 Basic Reductions

Proposition 4.3.1. An element x ∈ Zp is invertible in Zp if and only if
vp(x) = 0, i.e., |x|p = 1.
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Proof. Clear since x ∈ Zp if and only if |x|p � 1. ��

An invertible element of Zp will be called a p-adic unit, and when the
prime ideal p is understood, the multiplicative group of p-adic units will be
denoted by U0. Clearly U0 = Zp \ pZp. Since any x ∈ K∗

p can be written in a
unique way as x = πvp (x)y with y ∈ U0, we have

K∗
p = πZ × U0 � Z× U0 .

Note that this isomorphism is not canonical since it depends on the chosen
uniformizer π. We are thus reduced to the study of U0. The following result
will be of constant use.

Proposition 4.3.2. Let ζ1 and ζ2 in Q be distinct roots of unity of order not
divisible by p. Then ζ1−ζ2 is invertible modulo p; in other words, there exists
an algebraic integer α such that α(ζ1 − ζ2) ≡ 1 (mod pZQ). In particular, if
ζ1 and ζ2 are in Kp then ζ1 − ζ2 ∈ U0.

Proof. Let m be the LCM of the orders of ζ1 and ζ2, so that ζm
1 = ζm

2 = 1
and p � m. From the identity

Xm − 1
X − ζ1

=
∏

ζm =1, ζ 	=ζ1

(X − ζ) ,

setting X = ζ1 we deduce that

mζm−1
1 =

∏
ζm =1, ζ 	=ζ1

(ζ1 − ζ) .

Since ζ1 is invertible, and m is invertible modulo p, it follows that ζ1 − ζ is
invertible modulo p for every ζ �= ζ1, proving the proposition. ��

Before continuing we need a very simple lemma.

Lemma 4.3.3. Set

k0 =
⌊

log(e/(p− 1))
log(p)

⌋
+ 1 .

Then if x ≡ 1 (mod pZp), for k � k0 we have vp(xpk − 1) > 1/(p− 1).

Proof. We write x = 1 + y with vp(y) � 1, in other words vp(y) � 1/e, so
that

xpk

= 1 + ypk

+
∑

1�m�pk −1

(
pk

m

)
ym .

For 1 � m � pk−1 we have p |
(
pk

m

)
; hence vp

((
pk

m

)
ym
)

� 1+m/e � 1+1/e >

1/(p− 1). Since by definition of k0 we have vp(ypk

) � pk/e > 1/(p− 1), the
lemma is proved. ��



4.3 Additive and Multiplicative Structures 227

Note that k0 � 0, and that k0 = 0 if and only if e < p− 1.

Proposition 4.3.4. Let x ∈ U0 be a p-adic unit.

(1) The sequence xNp
n

converges to some ω(x) ∈ U0 characterized by the
two properties ω(x) ≡ x (mod pZp) and ω(x)Np−1 = 1.

(2) Furthermore, ω is a group homomorphism; in other words, if x and y are
in U0 we have ω(xy) = ω(x)ω(y).

(3) For any m such that Npm > e/(p− 1) we have the explicit formula

ω(x) = xNp
m

expp

(
− logp

(
xNp

m (Np−1)
)
/(Np− 1)

)
(where logp is computed using the power series expansion), so that in the
special case of Qp, for p > 2 we have

ω(x) = x expp(− logp(x
p−1)/(p− 1)) .

Proof. (1) and (2). Since |(Zp/paZp)∗| = Npa−1(Np − 1), when x ∈ U0

we have xNp
a−1(Np−1) ≡ 1 (mod pa). It follows that when n � m � N we

have

xNp
n − xNp

m

= xNp
m (

xNp
m (Np

n−m −1) − 1
)
≡ 0 (mod pN+1)

since (Np− 1) | (Npn−m − 1). Thus xNp
n

is a Cauchy sequence, hence con-
verges to some ω(x), and clearly ω(x) ∈ U0. Furthermore, again by Fermat’s
theorem we have xNp

n − x = x(xNp
n −1 − 1) ≡ 0 (mod p), so ω(x) ≡ x

(mod pZp). Since as above xNp
n (Np−1) tends to 1 p-adically as n → ∞, it

follows that ω(x)Np−1 = 1. These two conditions characterize ω(x) since
Proposition 4.3.2 tells us that (Np− 1)st roots of unity are distinct modulo
p. Finally, the fact that ω is a group homomorphism is trivial.

(3). Since xNp−1 ≡ 1 (mod p), logp(xNp−1) converges. However, Propo-
sition 4.2.14 shows that we do not sufficiently control the valuation of this
logarithm unless vp(xNp−1 − 1) > 1/(p− 1), which is not true in general, so
we need to use the above lemma to increase the valuation. More precisely,
if Npm > e/(p − 1) then since Npm = pk for k = fm, we have k � k0

with k0 as in the lemma, so applying that lemma to xNp−1 we deduce that
vp(xNp

k (Np−1) − 1) > 1/(p− 1), so by Propositions 4.2.14 and 4.2.10 we can
write

xNp
m (Np−1) = expp

(
logp

(
xNp

m (Np−1)
))

,

where the logarithm is directly defined by its power series, not by an exten-
sion. Thus for n � m we have

xNp
n

= xNp
m

xNp
m (Np−1)(Np

n−m −1)/(Np−1)

= xNp
m

expp

(
((Npn−m − 1)/(Np− 1)) logp

(
xNp

m (Np−1)
))

,
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and sinceNpn−m converges p-adically to 0 as n →∞ and expp is a continuous
function, we obtain the formula given in the proposition. ��

The map ω given by the above lemma is called the Teichmüller character.
It is essentially the same, in the p-adic context, as the map ωP given by
Definition 3.6.2.

Corollary 4.3.5. There exists a canonical group isomorphism ω between
(ZK/p)∗ and the subgroup µp of z ∈ U0 such that zNp−1 = 1. In particu-
lar, Kp contains a primitive (Np− 1)st root of unity.

Proof. Let φ be the canonical isomorphism from ZK/p to Zp/pZp given
by Proposition 4.1.24. The map ω = ω ◦ φ is then a canonical group homo-
morphism from (ZK/p)∗ to µp. Since ω(x) ≡ x (mod p), this map is injective.
On the other hand, the equation XNp−1 = 1 has at most Np − 1 roots in
the field Kp; hence µp has at most Np − 1 elements, showing that the map
is bijective, hence an isomorphism. ��

Define

U1 = {x ∈ U0/ vp(x− 1) � 1} = {x ∈ U0/ |x− 1| < 1} .

Note that in the above, and a few times below, we use the p-adic valuation
vp and not the p-adic valuation vp (with vp(x) = vp(x)/e), which is more
natural in this context. The reader should be careful since the symbols are
visually very similar.

Corollary 4.3.6. The Teichmüller character induces a canonical isomor-
phism from (ZK/p)∗ × U1 to U0.

Proof. For (a, x) ∈ (ZK/p)∗ × U1 define ψ1((a, x)) = ω(a) · x ∈ U0, and
for x ∈ U0 define ψ2(x) = (ω−1(ω(x)), x/ω(x)) ∈ (ZK/p)∗ × U1. These maps
are clearly inverse to one another, proving the corollary. ��

Corollary 4.3.7. We have

K∗
p = πZ × µp × U1 � Z× (ZK/p)∗ × U1 ,

where µp is the group of (Np− 1)st roots of unity.

Proof. Clear. ��

Please note the difference between the first equality and the second iso-
morphism.

We are thus reduced to the study of U1.

Definition 4.3.8. For i � 1 we define Ui to be the subgroup of elements
x ∈ Zp such that vp(x− 1) � i.
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Clearly U0 ⊃ U1 ⊃ U2 ⊃ · · ·Ui ⊃ · · · , and
⋂

i�1 Ui = {1}. We have the
following easy lemma.

Lemma 4.3.9. For every i � 1, the multiplicative group Ui/Ui+1 is non-
canonically isomorphic to the additive group ZK/p, hence to (Z/pZ)f(p/p).
In particular, for every i � 1 we have [U1 : Ui] = Npi−1 = p(i−1)f(p/p).

Proof. Let π be a uniformizer of p. If x and y are in Ui we have

xy − 1
πi

− x− 1
πi

− y − 1
πi

=
(x− 1)(y − 1)

πi
≡ 0 (mod p) ;

hence the map x �→ (x − 1)/πi induces an isomorphism from Ui/Ui+1 to
ZK/p, and the other isomorphism follows from Proposition 2.4.1. ��

In the special case p = 2 and K = Q2, we have ω(x) = 1, (ZK/p)∗ is the
trivial group, and U0 = U1; hence although the above results remain true,
the Teichmüller character does not give any interesting information. In this
special case we prefer to modify the definition as follows. Since K = Q2, if
x ∈ U0 then either x or −x is congruent to 1 modulo 4, and we set ω(x) = ±1,
so that x ≡ ω(x) (mod 4).

Definition 4.3.10. For x ∈ U0, we define 〈x〉 = x/ω(x) and call it the
diamond of x.

Proposition 4.3.11. If we are not in the special case p = 2 and K = Q2

then 〈x〉 is the unique element of U1 such that x/〈x〉 is an (Np − 1)st root
of unity. On the other hand, if p = 2 and K = Q2 then 〈x〉 is the unique
element of U2 such that x/〈x〉 ∈ {±1}. In particular, for any prime number
p, if K = Qp then expp(logp(〈x〉)) = 〈x〉.

Proof. Immediate and left to the reader. ��

4.3.3 Study of the Groups Ui

We begin with the following result.

Proposition 4.3.12. Set z(p) =
⌊

e(p/p)
p−1

⌋
+ 1. Then for all i � z(p) the p-

adic logarithm and exponential give inverse isomorphisms between the multi-
plicative group Ui and the additive group piZp. In particular, if e(p/p) < p−1
then U1 is isomorphic to pZp.

Proof. If x ∈ Uz(p) then |x − 1| < 1, so that the logarithm converges.
Furthermore, writing as usual e = e(p/p), we have

vp((x− 1)k−1/k) = (k − 1)vp(x− 1)− vp(k) � (k − 1)z(p)/e− vp(k) .
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Now vp(k) � log(k)/ log(p) (the ordinary logarithm here!) and z(p) � (e +
1)/(p− 1); hence

vp

(
(x− 1)k−1

k

)
� (k − 1)

e + 1
e(p− 1)

− log(k)
log(p)

,

so that for k > 1 we have

vp

(
(x− 1)k−1

k

)
>

k − 1
p− 1

− log(k)
log(p)

=
log(k)
p− 1

(
k − 1
log(k)

− p− 1
log(p)

)
.

Since the function (k−1)/ log(k) is an increasing function of k > 1, it follows
that vp((x− 1)k−1/k) > 0 for k � p. On the other hand, when k < p we have
vp(k) = 0, hence vp((x − 1)k−1/k) � (k − 1)/e > 0 for k > 1. Thus for each
k � 2 the term in (x−1)k in the power series expansion of logp(x) has a p-adic
valuation strictly greater than that of the term with k = 1. It follows that
vp(logp(x)) = vp(x− 1); hence if x ∈ Ui, we have logp(x) ∈ piZp. Conversely,
if y ∈ piZp for some i � z(p), then vp(y) � z(p)/e > 1/(p − 1), so that by
Proposition 4.2.10 the power series for expp(y) converges, and if y = logp(x)
we have expp(y) = x, and similarly we check that vp(expp(y)− 1) = vp(y) �
i/e, so that logp(expp(y)) = y, proving the proposition. ��

Corollary 4.3.13. (1) For every i � 1, Ui has a natural Zp-module struc-
ture.

(2) For i � z(p), Ui is a free Zp-module of dimension [Kp : Qp].
(3) For every i � 1, Ui is finitely generated of rank [Kp : Qp], and more

precisely
Ui � µp,i × Z[Kp:Qp ]

p ,

where µp,i is the finite cyclic group of roots of unity in Kp congruent to 1
modulo pi, and |µp,i| = pm for some m such that 0 � m � f�e/(p− 1)	.

Proof. (1). For x = 1 + y ∈ Ui with i � 1 and α ∈ Zp, we set directly

(1 + y)α =
∑
n�0

(
α

n

)
yn .

By Corollary 4.2.15 this series converges and we have xα ≡ 1 (mod piZp),
so thanks again to the above-mentioned corollary this clearly induces a Zp-
module structure on Ui.

(2). If π is a uniformizer of p, then multiplication by πi clearly gives
a noncanonical isomorphism between the additive groups Zp and piZp. By
Corollary 4.1.27, Zp is a free Zp-module of dimension [Kp : Qp], proving (2).
Note that we have (1 + y)α = expp(α logp(1 + y)), so that the Zp-structures
are the same.

(3). We have already proved this for i � z(p). For i < z(p), we note that
by Lemma 4.3.9, Uz(p) has finite index in Ui equal to a power of p, hence
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is finitely generated with the same rank. Thus by the structure theorem for
finitely generated modules over the principal ideal domain Zp we deduce that
Ui � Ti×Z[Kp:Qp ]

p , where Ti is the finite torsion subgroup of Ui. In particular,
Ti is a finite subgroup of K∗

p ; hence by Corollary 2.4.3, Ti is cyclic, hence
contains only roots of unity congruent to 1 modulo pi (and conversely such
elements evidently belong to Ti). Finally, since Ti is a finite Zp-module its
order must be a power of p. More precisely, since Uz(p) is torsion-free and
[U1 : Uz(p)] = Npz(p)−1, then a generator y of the cyclic group Ti satisfies
yNp

z (p)−1
= 1, so that |Ti| | Npz(p)−1 as claimed. ��

Corollary 4.3.14. As usual set e = e(p/p) and f = f(p/p). As abelian
groups we have the isomorphism

K∗
p � µ′

p × Z× Zef
p ,

where µ′
p is a cyclic group such that

|µ′
p| = (Np− 1)pk for some k such that 0 � k � f�e/(p− 1)	 .

If in addition p is above 2 then k � 1.

Proof. By Corollary 4.3.7 and the above corollary we have K∗
p � µp×µp,1×

Z×Zef
p and |µp| = Np− 1, while |µp,1| | Np�e/(p−1)�, so the result follows. If

p is above 2 we have −1 ≡ 1 (mod p) hence −1 ∈ µp,1, so 2 | |µp,1| | |µ′
p|. ��

Examples. If p � 3, then

Q∗
p = µp × (1 + pZp)× pZ and 1 + pZp = (1 + p)Zp ,

where as above, µp is the group of (p− 1)st roots of unity in Qp.
If p = 2, then

Q∗
2 = {±1} × (1 + 4Z2)× 2Z and 1 + 4Z2 = 5Z2 .

4.3.4 Study of the Group U1

We now want to determine explicitly a minimal system of generators for
U1. We begin with a very classical lemma, which is useful in many parts of
algebra.

Lemma 4.3.15 (Nakayama). Let M be a finitely generated Zp-module.
The equality M = pM implies that M = 0. In particular, a set (xi) of
elements of M is a generating set for M if and only if the classes modulo
pM of the xi generate M/pM as a ZK/p-vector space.
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Proof. Assume that M = pM �= 0, and let (mi)1�i�k be a system of
generators of M with k minimal. If π is a uniformizer of p, we have πM = pM
since any element of p can be written as πu with u ∈ Zp. Thus from M = πM ,
we deduce that there exist λi ∈ Zp such that mk =

∑
1�i�k πλimi, so that

mk(1−πλk) =
∑

1�i�k−1 πλimi. However, since λk ∈ Zp, 1−πλk is invertible
in Zp; hence mk is a Zp-linear combination of the other mi, so it can be
suppressed from the generating family, contradicting the minimality of k. The
second assertion of the lemma follows by applying the first to the quotient
module M/(

∑
i Zpxi). ��

Thanks to Nakayama’s lemma, to study the Zp-module structure of U1 it
is enough to study that of the quotient module U1/Up

1 .

Proposition 4.3.16. Let π be a uniformizer of Zp, and let x = 1+uπi with
u a p-adic unit be an element of Ui \Ui+1. Denote by e = e(p/p) the absolute
ramification index of p. Then

xp ≡


1 + upπip (mod pip+1Zp) for i < e/(p− 1) ,

1 + upπip + puπi (mod pip+1Zp) for i = e/(p− 1) ,

1 + puπi (mod pi+e+1Zp) for i > e/(p− 1) .

Proof. Simply look at the valuations in the binomial expansion. ��

Definition 4.3.17. As above, let Kp be a p-adic field, π a uniformizer, and
e = e(p/p). We set ε = −p/πe, which is a p-adic unit. We say that the field
Kp is regular if either e/(p− 1) /∈ Z, or if e/(p− 1) ∈ Z and the congruence
up ≡ εu (mod pZp) has no solution in U0.

It follows from this definition and the above proposition that if Kp is
regular then vp(xp− 1) depends only on vp(x− 1). Indeed, this is clear when
vp(x − 1) = i �= e/(p − 1), and when i = e/(p − 1) then e + i = ip, so
that xp − 1 ≡ πip(up − εu) (mod pip+1), and by definition of a regular field
vp(up − εu) = 0.

Theorem 4.3.18. Let ζp be a primitive pth root of unity.

(1) We have equality of p-adic fields

Qp((−p)1/(p−1)) = Qp(ζp) ;

in other words, the field extensions of Qp defined by the irreducible poly-
nomials Xp−1 + p and Xp−1 + · · ·+ X + 1 are equal.

(2) Let Kp be a p-adic field such that e/(p−1) ∈ Z. The following conditions
are equivalent:
(a) Kp is irregular.
(b) Kp ⊃ Qp(ζp).
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(c) Kp ⊃ Qp((−p)1/(p−1)).
(d) The congruence up ≡ εu (mod pZp) has a solution in U0.

Proof. (1). The polynomial Xp−1 +p is an Eisenstein polynomial, and the
polynomial Xp−1 + · · · + 1 is a shifted Eisenstein polynomial (see Corollary
4.1.36), so both are irreducible in Qp[X] hence define extensions of the same
degree p−1. Thus to show equality it is sufficient to show that (−p)1/(p−1) ∈
K, where K = Qp(ζp) is the pth cyclotomic extension of Qp. Indeed, if we set
π = 1− ζp and let ZK be the ring of integers of K then

0 =
1− ζp

p

1− ζp
=

1− (1− π)p

π
= p +

∑
2�j�p−1

(−1)j−1

(
p

j

)
πj−1 + (−1)p−1πp−1

≡ p + πp−1 (mod pπZK) ;

hence −p/πp−1 ≡ 1 (mod pZK), since πp−1/p is invertible in K. By Corollary
4.2.15 we know that elements of U1 = U1(K) are (p−1)st powers, so −p/πp−1;
hence −p itself is a (p − 1)st power, as was to be proved. Note that we do
not need to specify which (p − 1)st root of −p we choose since Qp contains
all (p− 1)st roots of unity (but see Section 4.4.8 below).

(2). By definition, (a) is equivalent to (d), and (b) is equivalent to (c) by
(1). Furthermore, (c) trivially implies (d) by choosing u = (−p)1/(p−1)/πe/(p−1).
Conversely, if we assume (d) then since u ∈ U0 is invertible we have up−1 ≡ ε
(mod pZp), so we may apply Hensel’s Lemma 4.1.37, which tells us that ε is
also a (p− 1)st power in Zp; hence −p = επe = ε(πe/(p−1))p−1 is a (p− 1)st
power, proving (c). ��

Corollary 4.3.19. Let Kp be a regular field, and denote by e and f its ram-
ification and residual indices. Let π be a uniformizer, and let ζ1, . . . , ζf be
lifts to µp of an Fp-basis of the residue field Zp/pZp � Fpf given by Corollary
4.3.5. The ef elements

ηi,j = 1 + ζjπ
i with 1 � j � f, 1 � i � pe

p− 1
and p � i

constitute a Zp-basis of the multiplicative module U1.

Proof. By Lemma 4.3.9, the ηi,j for fixed i and 1 � j � f form a generating
set of Ui modulo Ui+1. Let us call this (for this proof only) a generating set of
level i. With the notation of Proposition 4.3.12, when i = 1, 2, . . . , �e/(p−1)	,
z(p), z(p)+1, . . . , z(p)+e−1, by Proposition 4.3.16, the ηp

i,j form a generating
system of respective levels p, 2p, . . . , �e/(p− 1)	p, z(p) + e, z(p) + e + 1,. . . .
By Nakayama’s lemma, all these levels can be removed from the levels of the
generating system; hence we obtain levels i for 1 � i � e + �e/(p − 1)	 =
�pe/(p − 1)	, where those divisible by p are suppressed. Since there are ef
such elements ηi,j and we know that the Zp-rank of Zp is equal to ef , it
follows that they form a Zp-basis. ��
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4.3.5 The Group K∗
p
/K∗

p

2

We begin with the following general result and then specialize to Qp.

Proposition 4.3.20. Let p be a prime ideal, let p be the prime number below
p, let π be a uniformizer of p, and set e = e(p/p) and f = f(p/p).

(1) If p is not above 2 then K∗
p/K∗

p
2 � (Z/2Z)2, and in particular |K∗

p/K∗
p
2| =

4. More precisely, a system of representatives of K∗
p/K∗

p
2 is given by

{1, a, π, aπ}, where a is any element of U0 \ U2
0 .

(2) If p is above 2 then K∗
p/K∗

p
2 � (Z/2Z)ef+2, and in particular |K∗

p/K∗
p
2| =

2ef+2.

Proof. (1). By Proposition 4.3.7 we have K∗
p = πZ×µp×U1. By Corollary

4.2.15 for p � 2 the series (1+x)1/2 converges for |x| < 1; hence every element
of U1 is a square. Since |µp| = Np − 1 is even, it follows that K∗

p/K∗
p
2 �

(Z/2Z)2 as claimed. It is clear that the four elements given in the proposition
are not equivalent modulo K∗

p , so they form a system of representatives.
(2). Here we use Corollary 4.3.14, which tells us in particular that when

p | 2 we have K∗
p � µ′

p × Z × Zef
2 , where µ′

p is a cyclic group of even order.
It follows that

K∗
p/K∗

p

2 � (Z/2Z)2 × (Z2/2Z2)ef � (Z/2Z)ef+2 .

��

Corollary 4.3.21. Up to isomorphism there are exactly three quadratic ex-
tensions of Kp when p � 2, and 2ef+2 − 1 when p | 2.

Proof. Clear since quadratic extensions of a field L of characteristic dif-
ferent from 2 are in one-to-one correspondence with the classes in L∗/L∗2

other than the unit class. ��

We now specialize to Qp, and note that if p > 2 and a ∈ Zp, we may
define the Legendre symbol

(
a
p

)
as being equal to

(
a0
p

)
for any a0 ∈ Z such

that a ≡ a0 (mod p).

Proposition 4.3.22. Assume that p � 3, and let a ∈ Q∗
p. A necessary

and sufficient condition for a to be a square in Q∗
p is that v(a) be even and(a/pv (a)

p

)
= 1. Furthermore, a system of representatives of Q∗

p/Q∗
p
2 is given

by 1, a, p, and pa, where a is any integer such that
(

a
p

)
= −1.

Proof. Clear. ��

For p = 2 we have the following.
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Proposition 4.3.23. A necessary and sufficient condition for some a ∈ Q∗
2

to be a square in Q∗
2 is that v(a) be even and a/pv(a) ≡ 1 (mod 8). Further-

more, a system of representatives of Q∗
2/Q∗

2
2 is given by ±1, ±5, ±2, and

±6.

Proof. Since the square of an odd number is congruent to 1 modulo 8, as
above the condition is necessary. For the converse, note that by Lemma 4.2.8
we have

v2

((
1/2
k

))
= −(k + v2(k!)) � −2k ;

hence the expansion of (1+x)1/2 is 2-adically convergent as soon as v2(x) � 3.
��

Example. −7 is a square in Q2. The 2-adic expansion of one of the square
roots of −7 is

√
−7 = 1 + 22 + 24 + 25 + 27 + 214 + O(215) .

Corollary 4.3.24. If p � 3, up to isomorphism there are three quadratic
extensions of Qp given by Qp(

√
D) for D = p, a, and ap, where

(
a
p

)
= −1.

If p = 2, up to isomorphism there are seven quadratic extensions of Q2 given
by Qp(

√
D) for D = −1, ±5, ±2, and ±6.

See also Section 4.4.7 for another representation of these seven quadratic
extensions of Q2.

4.4 Extensions of p-adic Fields

We now consider the situation in which we have several p-adic fields, all
containing Qp. As above, we will let K be a number field and p a (nonzero)
prime ideal of K, and we let K = Kp.

4.4.1 Preliminaries on Local Field Norms

For the moment, we let K be a field complete for some absolute value. We
will specialize to K = Kp later. In this subsection, we will denote simply by
| | the absolute value on K. Let V be a K-vector space. Recall that a norm on
V is a map ‖ ‖ from V to the nonnegative real numbers, equal to 0 only on
the zero vector, satisfying the triangle inequality, and such that for all x ∈ V
and λ ∈ K we have ‖λx‖ = |λ|‖x‖. Clearly a norm makes V into a metric
space, and in particular into a topological space.

Recall also that two norms ‖ ‖1 and ‖ ‖2 are said to be equivalent if
they induce the same topology on V . This is easily seen to be equivalent
to the existence of strictly positive real numbers c1 and c2 such that for all
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x ∈ V , c1‖x‖1 � ‖x‖2 � c2‖x‖1. This is clearly an equivalence relation.
The following result is a classical undergraduate result, but considering its
importance we prove it again here.

Proposition 4.4.1. Let K be a complete field with respect to some absolute
value | |, and let V be a finite-dimensional K-vector space. Any two norms
on V are equivalent, and the corresponding topology makes V into a complete
metric space.

Proof. Let e1, . . . , en be a fixed K-basis of V . We consider the sup norm∥∥∥ ∑
1�i�n

xiei

∥∥∥
∞

= max
1�i�n

|xi| .

It is indeed clearly a norm, and V is complete for this norm. Thus, it is suffi-
cient to show that any norm ‖ ‖ is equivalent to it. First, if x =

∑
1�i�n xiei,

by the triangle inequality we have

‖x‖ �
∑

1�i�n

|xi|‖ei‖ � c2‖x‖∞

with c2 =
∑

1�i�n ‖ei‖, so one inequality is clear. Assume now by contradic-
tion that the other inequality does not hold. This means that for all ε > 0 we
can find b = b(ε) ∈ V , b �= 0, such that ‖b‖ � ε‖b‖∞. Writing b =

∑
1�i�n biei

and permuting the ei if necessary, we may assume that ‖b‖∞ = |bn|, and re-
placing b by b/bn (which does not change the inequality), that ‖b‖∞ = bn = 1.
In other words, b = c+en, where c belongs to the subspace W spanned by the
ei for 1 � i � n−1. Thus, we can find a sequence c(m) of elements of W such
that ‖c(m) + en‖ → 0 as m →∞. By the triangle inequality, this implies that
‖c(m1) − c(m2)‖ → 0 as m1 and m2 both tend to infinity; in other words, the
sequence c(m) is a Cauchy sequence of elements of W . We can now reason by
induction on the dimension n, the result being trivially true for n = 0. Thus,
by induction we may assume that W , which has dimension n−1, is complete.
Thus, the Cauchy sequence c(m) converges to some c∗ ∈W . It follows that

‖c∗ + en‖ = lim
m→∞

‖c(m) + en‖ = 0 ,

hence en = −c∗ ∈W , a contradiction, proving the proposition. ��

Corollary 4.4.2. Let K be a complete field with respect to some nontrivial
absolute value | |, and let L be a finite extension of K. There exists at most
one extension ‖ ‖ of | | to L. In addition, L is complete for this extension, if
it exists.

Proof. We can consider L as a finite-dimensional K-vector space, and an
absolute value ‖ ‖ on L clearly satisfies the conditions of a norm. By the
above proposition, any two such absolute values ‖ ‖1 and ‖ ‖2 are equivalent;
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in other words, they induce the same topology on L. By Lemma 4.1.3, there
exists c > 0 such that for all x ∈ L we have ‖x‖2 = ‖x‖c

1. Since the absolute
values coincide on K, choosing any x ∈ K∗ such that ‖x‖1 �= 1 (which is
possible since otherwise we would have a trivial absolute value), we deduce
that c = 1, hence that the absolute values coincide. ��

We are now ready to prove the main theorem of this subsection.

Theorem 4.4.3. Let K be a completion of a number field K with respect to
some nontrivial absolute value | |, and let L be a finite extension of K with
[L : K] = n. There exists a unique extension ‖ ‖ of | | to L, given by

‖x‖ = | NL/K(x)|1/n ,

and L is complete for this extension.

Proof. Uniqueness and completeness have been proved above. Further-
more, if x ∈ K we have NL/K(x) = xn, hence ‖x‖ = |x|, so this is indeed
an extension of | |. It remains to show that it is an absolute value on L.
By multiplicativity of the norm we have ‖xy‖ = ‖x‖‖y‖, and since ‖1‖ = 1
if x ∈ L∗ we have ‖x‖‖x−1‖ = 1, hence ‖x‖ �= 0. It remains to show the
triangle inequality. If K is isomorphic to R or C, then either L = K and there
is nothing to prove, or K is isomorphic to R and L is isomorphic to C, in
which case the triangle inequality for ‖ ‖ is nothing else than the triangle
inequality for the ordinary modulus on C. We may thus assume that K is not
isomorphic to R or C, in other words that the absolute value is ultrametric
and that K = Kp for some number field K and prime ideal p of ZK .

Let x and y be in L, with x and y nonzero (otherwise the inequality is
trivial). Exchanging x and y if necessary, we may assume that ‖y‖ � ‖x‖; in
other words, ‖a‖ � 1 with a = y/x. Let C(X) = Xn+Cn−1X

n−1+· · ·+C0 be
the characteristic polynomial of a in the extension L/K, so that NL/K(a) =
(−1)nC0; hence |C0| � 1 by assumption. Then C(X) = M(X)r for some
r � 1, where M(X) = Xd + Md−1X

d−1 + · · · + M0 is the minimal monic
polynomial of a. Since C0 = Mr

0 we also have |M0| � 1. Furthermore, M(X)
is irreducible in K[X]. Thus, by Corollary 4.1.34 we have M ∈ Zp[X], hence
also C ∈ Zp[X]. Since C(X) is the characteristic polynomial of a, we have
NL/K(1+a) = (−1)nC(−1), hence ‖1+a‖ = | NL/K(1+a)|1/n � 1. Replacing
a by y/x gives ‖x + y‖ � ‖x‖ = max(‖x‖, ‖y‖), proving the ultrametric
inequality. ��

Corollary 4.4.4. Let K be a completion of a number field K with respect
to some nontrivial absolute value | |. There exists an extension of | | to the
algebraic closure K of K, and this extension is unique.

Proof. Since the algebraic closure is the union of all finite extensions in-
cluded in it, the result is clear. ��
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Remark and Warning. (1) The above theorem is valid for a general field
K complete for some absolute value, and not only for the completion of
a number field; see Exercise 26.

(2) The unique extension given by Theorem 4.4.3 is not the natural p-adic
absolute value defined in Section 4.1.4 to obtain the product formula.
More precisely, we have the following:

Proposition 4.4.5. Let K = Kp, let L/K be an extension, let P be a prime
ideal of L above p, let L = LP, and set n = [L : K] = e(P/p)f(P/p). Denote
by ‖ ‖ the extension to L of the absolute value of K. Then for all x ∈ L we
have ‖x‖ = |x|1/n

P
.

.
Proof. Since both norms define the same topology on L they are equiv-

alent, so that one is a power of the other. To determine which power, we
simply choose x = π, where π is a uniformizer of p, and the result immedi-
ately follows. ��

Remarks. (1) It follows that there are (at least) two possible natural nor-
malizations for the absolute value on a p-adic field K: when K is consid-
ered as the completion Kp of a number field K, usually together with
other completions, the natural normalization is the one that we chose for
the product formula, in other words ‖x‖ = Np−vp (x). On the other hand,
if K is considered as a field with a non-Archimedean absolute value to-
gether with extensions of K, then the natural normalization is to choose
the one compatible with extensions as given above.

(2) In the rest of this book, unless indicated otherwise, we will use the latter
normalization, and since the extension of | | to a finite extension or to
an algebraic closure exists and is unique, as we have already done in
preceding sections we denote it simply by | |.

4.4.2 Krasner’s Lemma

Proposition 4.4.6 (Krasner’s lemma). Let K be a completion of a num-
ber field K with respect to some nontrivial absolute value | | and let L be a
finite extension of K.

(1) If x and y in L are conjugate over K then |x| = |y|.
(2) If x and y in L are conjugate over K then for all a ∈ K we have |x−y| �

|a− x|.
(3) Let x ∈ L, and assume that a ∈ L is such that |a− x| < |y− x| for every

conjugate y of x in L different from x. Then x ∈ K(a); in other words,
K(x) ⊂ K(a).

Proof. (1) is clear since x and y have the same norm. If (2) were not true,
in other words if for some a ∈ K we had |x− y| > |a− x|, we would have
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|a− y| = max(|a− x|, |x− y|) = |x− y| > |a− x| ,

contradicting (1) since a− x and a− y are conjugate. For (3), let M be the
Galois closure of L over K. If x /∈ K(a), by Galois theory there exists a K(a)-
automorphism σ of M such that σ(x) �= x. Applying (2) to the extension
M/K(a) and to the K(a)-conjugate elements x and y = σ(x), we deduce that
|y − x| � |a− x|, a contradiction. ��

For the following proposition, if P is a polynomial we denote by ‖P‖ the
maximum of the absolute values of the coefficients of P .

Proposition 4.4.7. As above let L/K be an extension of p-adic fields of
degree n, let a ∈ L be such that L = K(a), and let P (X) be the minimal
monic polynomial of a over K. There exists ε > 0 such that any monic
polynomial Q ∈ K[X] of degree n such that ‖P − Q‖ < ε has a root b ∈ L
such that L = K(b) = K(a).

Proof. For any monic Q ∈ K[X], let Q =
∏

(X−bi) be the factorization of
Q in an algebraic closure of K. We thus have

∏
(a−bi) = Q(a) = Q(a)−P (a),

so if we set M = max0�i�n |a|i = max(1, |a|n) we have∏
|a− bi| = |Q(a)− P (a)| � ‖Q− P‖M .

Thus for at least one index i we must have |a− bi| � ‖Q− P‖1/nM1/n, and
so by Krasner’s lemma (Proposition 4.4.6 (3)) if ‖Q − P‖ < ε with ε small
enough we will have K(bi) ⊃ K(a). On the other hand, since bi is a root of
the nth-degree polynomial Q we have [K(bi) : K] � n = [K(a) : K], hence
K(bi) = K(a). ��

Corollary 4.4.8. Let P ∈ K[X] be a monic irreducible polynomial, let a
be a root of P in an algebraic closure of K, and let (Qi) be a sequence of
monic polynomials in K[X] of the same degree as P such that Qi tends to P
coefficientwise. Then there exists a sequence (bi) of roots of the polynomials
Qi such that bi ∈ K(a) for i sufficiently large and such that bi tends to a as
i→∞.

Proof. As soon as ‖Qi−P‖ < ε we can apply the above proposition, which
shows that |a − bi| is small for at least one root bi of Qi belonging to K(a),
more precisely that |a− bi| � ‖Qi − P‖1/nM1/n. This inequality shows that
|a− bi| tends to 0, hence that bi tends to a in K(a). ��

4.4.3 General Results on Extensions

Proposition 4.4.9. Any finite extension L of Kp is isomorphic to LP for
some finite extension L of K such that [L : K] = [L : Kp] and some prime
ideal P of L above p.
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Proof. Set n = [L : Kp]. By the primitive element theorem, there exists
x ∈ L such that L = Kp(x), and we may of course assume that x is integral,
i.e., that v(x) � 0, where v is an extension of the p-adic valuation on Kp.
Thus, let P (X) = Xn +

∑
1�i<n aiX

i be the minimal polynomial of x over
Kp, with ai ∈ Zp for all i. By density, we can find elements ãi ∈ ZK that are
p-adically as close as we like to ai. Set

P̃ (X) = Xn +
∑

1�i<n

ãiX
i ,

and let x̃j be the roots of this polynomial in some algebraic closure K of K.
Since K ⊂ Kp = L, we may also consider x̃j as elements of L. By Corollary
4.4.8 it follows that when the ãi are sufficiently close to the ai one of the roots
x̃j of P̃ tends to x, and also that Kp(x̃j) = Kp(x). Thus if we set L = K(x̃j),
we have [L : K] = n, and

L⊗K Kp = Kp(x̃j) = Kp(x) = L .

I claim that this implies that there is a unique prime ideal P of L above p.
Indeed, if there were two distinct such prime ideals P1 and P2, then L⊗Kp

would contain LP1⊕LP2 , which has zero divisors, in contradiction to the fact
that L is a field, proving my claim. We then clearly have L = L⊗Kp = LP,
finishing the proof of the proposition. This last argument can be replaced by
the use of the more general Theorem 4.4.41 (2), which we shall prove below,
and whose proof does not depend on the present proposition. ��

By Corollary 4.1.27, we know that [LP : Kp] = e(P/p)f(P/p). If we
consider the fields L and K = Kp abstractly, i.e., without reference to the
global situation, it is very useful to set e(L/K) = e(P/p) and f(L/K) =
f(P/p). Note that these can be defined directly: f is simply the degree of the
residual field extension, and e the index of the value groups of the valuations
on K and L.

As in the absolute case, we set the following definitions.

Definition 4.4.10. With the above notation, we say that the extension
LP/Kp of degree n is:

– unramified if e(P/p) = 1 (or equivalently, f(P/p) = n),
– totally ramified if e(P/p) = n (or equivalently, f(P/p) = 1),
– tamely ramified if p � e(P/p), where p is the prime number below p, i.e.,

the characteristic of ZK/p.

Clearly any unramified extension is tamely ramified. On the other hand,
note that a totally ramified extension may or may not be tamely ramified.

The study of p-adic fields is very much simplified by the fact that any
extension of p-adic fields can be obtained canonically as a totally ramified
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extension of an unramified extension, and that these types of extensions can
be studied very precisely.

In the sequel, it is useful to let K = Kp and L = LP, and we let k =
Zp/pZp and l = ZP/PZP be the residue fields.

Theorem 4.4.11. Let a ∈ l be a class. There exists a representative α ∈ ZP

of α such that [K(α) : K] = [k(a) : k]. Furthermore, the field K(α) depends
only on a and not on the chosen representative, and the extension K(α)/K
is unramified.

Proof. Let φ(T ) ∈ k[T ] be the minimal monic polynomial of a over k. Since
k is a perfect field, φ is separable, so φ′(a) �= 0. Let Φ be any monic lift of φ to
Zp[T ], and let α0 be any representative of a in ZP. We thus have |Φ(α0)| < 1
and |Φ′(α0)| = 1. By Hensel’s Lemma 4.1.37 applied to the field K(α0), there
exists α ∈ K(α0) ⊂ L such that Φ(α) = 0 and |α− α0| < 1. This means that
α is a representative of the class of α0, i.e., of a, and since the degree of Φ is
equal to that of φ, we have equality of degrees, as claimed. Furthermore, if
we assume that [K(β) : K] = [k(a) : k] for some other representative β of a,
applying the above reasoning with β and α instead of α0 gives K(β) = K(α).
Finally, since [K(α) : K] is equal to the residue field index [k(a) : k], it follows
by definition that the extension K(α)/K is unramified. ��

Corollary 4.4.12. With the same assumptions, there is a bijection between
the unramified subextensions M/K of L/K and the fields m such that k ⊂
m ⊂ l. The field m corresponding to M is M∩ ZP modulo the prime ideal
of M below P.

Proof. Since an extension m/k is an extension of finite fields, it is sepa-
rable; hence by the primitive element theorem we have m = k(a) for some
a ∈ m. The corollary then follows immediately from the theorem. ��

Corollary 4.4.13. There exists a field M such that K ⊂ M ⊂ L such that
M/K is unramified and such that every M′ ⊂ L that is unramified over K
is contained in M. In addition, L/M is totally ramified.

Proof. We simply let M be the field corresponding to l in the previous
corollary. ��

Corollary 4.4.14. Recall that K = Kp and L = LP. There exists a unique
unramified subextension M of L that contains all unramified subextensions of
L/K, and that is such that L/M is totally ramified. Furthermore, e(M/K) =
1, f(M/K) = f(P/p), [M : K] = f(P/p), e(L/M) = e(P/p), f(L/M) = 1,
[L : M] = e(P/p).

Proof. The first assertion is a restatement of the above corollary. For
the second, note that since M/K is unramified, we have e(M/K) = 1,
and since L/M is totally ramified we have e(L/M) = [L : M]. Thus by
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transitivity, e(P/p) = e(L/K) = e(L/M)e(M/K) = [L : M], and since
e(L/M)f(L/M) = [L : M] we have f(L/M) = 1. The other statements
again follow by transitivity. ��

We thus see that, as claimed above, any finite extension of p-adic fields is
a totally ramified extension of an unramified extension, and this unramified
subextension is maximal and unique.

Corollary 4.4.15. The residue field of the algebraic closure K of K is equal
to k, the algebraic closure of k. There exists a (unique) subfield Ku of K such
that a finite extension L/K in K is unramified if and only if L ⊂ Ku.

Proof. If φ(T ) ∈ k[T ] is monic and irreducible and Φ(T ) ∈ K[T ] is any
monic lift, then K contains all the roots of Φ(T ); hence its residue field
contains all the roots of φ(T ), so that it is equal to the algebraic closure of
k. The second statement follows from the above corollary. ��

Obviously, the field Ku is called the maximal unramified extension of K.

Example. Take K = Qp, the field of p-adic numbers. It follows from the
above results that there is a canonical one-to-one correspondence between the
finite fields Fpn and the unramified extensions of Qp. If Ln is the unique (up
to isomorphism) degree-n unramified extension of Qp, then Ln is called the
canonical lift of Fpn in characteristic 0. To obtain it explicitly, it is sufficient
to take Ln = Qp[X]/Pn(X)Qp(X) with Pn ∈ Zp[X] monic of degree n such
that the reduction of Pn modulo p is irreducible in Fp[X]; see examples in
Section 4.4.5. Many authors denote by Qq this canonical lift, with q = pn, so
that Qq/Zq = Fq.

4.4.4 Applications of the Cohomology of Cyclic Groups

The goal of this (sub)section is the proof of Theorem 4.4.22 and its corollary
Proposition 4.4.24, so it can be skipped on first reading, apart from the
statement of the results.

First, a friendly word to the reader. When I first heard words like “co-
homology,” I immediately ran away, and usually stopped listening to talks
using this abstract phraseology. Thus, if in turn I use this expression (and
some others), I can easily understand the reactions of some of my readers.
However, have no fear. In the present book (and in fact only in the present
subsection) we will need only the cohomology of finite cyclic groups, and the
reader will easily convince himself that it is nothing more than a series of
exercises in linear algebra (the only prerequisite is understanding the notion
of exact sequences of Z-modules, i.e., of abelian groups, and corresponding
diagram chasing), so it does not really need much abstract knowledge. It is
simply easier to write H1 than Ker(f)/Im(g). I have found the exposition in
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the book by Janusz [Jan] to be quite appropriate for my goal, so I follow it
very closely.

Let G be a group, for the moment arbitrary, and let A be an abelian group.
Recall that we say that G acts on A if we are given a group homomorphism
from G into the automorphism group of A. The action of g ∈ G on a ∈ A can
be written indifferently g ·a, g(a) (or ag when G is commutative), so that the
fundamental homomorphism rule reads gh · a = g · (h · a) or gh(a) = g(h(a)).
When G acts on A we say that A is a G-module. If we let as usual Z[G] be the
group ring associated with G, in other words the set of finite formal Z-linear
combinations of elements of G, then A is a Z[G]-module thanks to the action(∑

g∈G

ngg

)
(a) =

∑
g∈G

ngg(a) or

(∑
g∈G

ngg

)
(a) =

∏
g∈G

g(a)ng ,

depending on whether the group law on A is written additively or multiplica-
tively.

Some examples of G-modules that will be important for us are Galois
modules as follows. Let L/K be a Galois extension of number fields with
Galois group G. Then L∗, the group of fractional ideals of L, the ideal class
group, and the unit group of L are all G-modules.

From now on let G be a finite cyclic group of order n, and fix a generator
σ of G. In particular, if A is a G-module the action of G on A is entirely
determined by the action of σ on A. The following are essential elements
of Z[G]. First the norm N ∈ Z[G] defined by N =

∑
g∈G g =

∑
0�i<n σi.

The reason for the name is clear, since if G = Gal(L/K) and a ∈ L∗, then
NL/K(a) = N(a). Second D = 1−σ, which by Galois theory has the property
that D(a) = 0 if and only if a ∈ K. Note that although the element N can be
defined for any group, and corresponds to the norm, the element D is specific
to cyclic groups: indeed, Galois theory says that a ∈ K if and only if g(a) = a
for any g ∈ G, and this is in general not equivalent to D(a) = 0 for a single
element D ∈ Z[G].

In Z[G] we have DN = ND = 0, hence Im(D|A) ⊂ Ker(N |A) and
Im(N |A) ⊂ Ker(D|A), where the symbol |A is included to emphasize that
we consider the action on A. Also, note that Ker(D|A) = AG; in other words
the group of elements of A that are invariant by G.

Definition 4.4.16. Let A be a G module, and let D and N be as above. We
define the zeroth and first cohomology groups of A by

H0(A) =
Ker(D|A)
Im(N |A)

=
Ker(D|A)

N(A)
and H1(A) =

Ker(N |A)
Im(D|A)

=
Ker(N |A)

D(A)
.

Remarks. (1) These groups should more properly be denoted by H0(G,A)
and H1(G,A), but since in our exposition G will be fixed, we do not
include it.
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(2) It is easy to define more generally groups Hi(A) for i ∈ Z. However, for
finite cyclic groups it is not difficult to show that H2i(A) = H0(A) and
H2i+1(A) = H1(A), so we do not need any more than the above two
groups.

We leave to the reader to check that if f is a map of G-modules from A to
B (in other words a Z[G]-module homomorphism, or again an abelian group
homomorphism such that f(σ(a)) = σ(f(a)) for all a ∈ A) then f naturally
induces maps fi from Hi(A) to Hi(B) for i = 0 and i = 1; in other words,
Hi is a functor.

When one defines cohomology groups, the first thing is to prove that
they satisfy a long cohomology exact sequence. Since here we have only two
groups, this is reduced to the following exact hexagon lemma.

Proposition 4.4.17. Let

0 −→ A
f−→ B

g−→ C −→ 0

be an exact sequence of G-modules and G-module homomorphisms. There
exist natural homomorphisms δi for i = 0 and i = 1 such that the following
hexagon is exact at each group:

H0(A)
f0 �� H0(B)

g0

�����������

H1(C)

δ1

�����������
H0(C)

δ0

�����������

H1(B)

g1

�����������

H1(A)
f1��

Proof. We have already mentioned the existence of the maps fi and gi.
Let us define the maps δi. First let c ∈ H0(C), so c ∈ Ker(D|C). There exists
b ∈ B with g(b) = c; hence g(D(b)) = D(g(b)) = D(c) = 0, so that D(b) ∈
Ker(g) = Im(f). It follows that there exists a ∈ A such that f(a) = D(b),
so that f(N(a)) = N(f(a)) = N(D(b)) = 0; hence N(a) ∈ Ker(f) = {0},
so finally a ∈ Ker(N |A). We can thus define δ0 by sending c to the class of
a in H1(A). Let us show that it is well defined. If c′ ∈ Ker(D|C) is another
representative of c and b′ ∈ B and a′ ∈ A are as above, then c′ − c = N(c′′)
for some c′′ ∈ C, so there exists b′′ ∈ B with

g(b′ − b) = c′ − c = N(g(b′′)) = g(N(b′′)) .

It follows that b′ − b−N(b′′) ∈ Ker(g) = Im(f), so there exists a′′ ∈ A with
b′ − b−N(b′′) = f(a′′); hence

f(a′ − a) = f(a′)− f(a) = D(b′)−D(b) = D(f(a′′)) = f(D(a′′)) ,
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and since f is injective we thus have a′ − a = D(a′′). We deduce that the
classes of a′ and a in H1(A) are equal, as claimed. As usual, this immediately
implies that δ0 is a homomorphism.

In a similar way we define δ1 by sending the class modulo D(C) of c ∈
Ker(N |C) to the class modulo N(A) of a ∈ Ker(D|A) such that g(b) = c and
f(a) = N(b), and show that δ1 is a homomorphism. The rest of the proof is
standard diagram chasing (as in fact was the definition of the δi) and is left
to the reader. ��

Definition 4.4.18. Let A be a G-module, and assume that the groups Hi(A)
are finite. The Herbrand quotient q(A) is defined by q(A) = |H0(A)|/|H1(A)|,
and we say that q(A) is defined in this case, otherwise undefined.

Remark. The usual definition of the Herbrand quotient (for instance that
of [Jan]) is |H1(A)|/|H0(A)| = 1/q(A), but in view of the results that we
shall prove, and also in analogy with the Euler characteristic, the present
definition is more natural.

Proposition 4.4.19. Let 0 −→ A −→ B −→ C −→ 0 be an exact sequence
of G-modules. If two of the quotients q(A), q(B), q(C) are defined, so is the
third, and we have q(A)q(C) = q(B).

Proof. By the exact hexagon lemma (Proposition 4.4.17) and the standard
kernel–image formula we have

|H1(C)| = |Ker(δ1)||Im(δ1)| = |Im(g1)||Im(δ1)| .

If q(A) is defined then Im(δ1) is a subgroup of the finite group H0(A), hence
is finite, and if q(B) is defined then Im(g1) is the image of the finite group
H1(B), hence is finite, so if both q(A) and q(B) are defined the group H1(C)
is finite. Similarly the group H0(C) is finite, so that q(C) is defined. Exactly
analogous arguments prove the corresponding result for the two other pairs
of groups.

Finally, the exact hexagon lemma and the kernel–image formula give

|H0(A)|·|H0(C)|·|H1(B)| = |Im(δ1)||Im(f0)|·|Im(g0)||Im(δ0)|·|Im(f1)||Im(g1)| ,

while

|H1(A)|·|H1(C)|·|H0(B)| = |Im(f1)||Im(δ0)|·|Im(δ1)|||Im(g1)|·|Im(f0)||Im(g0)|

= |H0(A)| · |H0(C)| · |H1(B)| ,
which is equivalent to q(A)q(C) = q(B). ��

Corollary 4.4.20. If A ⊂ B are G-modules and the index [B : A] is finite
then q(A) = q(B) whenever either one is defined.
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Proof. If we set C = B/A, by the proposition we must show that q(C) = 1
when C is finite. But in that case

q(C) =
|Ker(D|C)/N(C)|
|Ker(N |C)/D(C)| =

|Im(D|C)||Ker(D|C)|
|Ker(N |C)|Im(N |C)

=
|C|
|C| = 1 ,

proving our claim. ��

The fundamental example that we need in the text is the computation
of the cohomology of the unit group of a P-adic extension. We first need
the following result of independent interest concerning permutation modules,
defined as follows. Let R be an integral domain of characteristic 0, let d be a
divisor of n = |G|, and let A = Rd be the free R-module on d generators. We
can define a natural action of G on A by setting σ(ei) = ei+1, where (ei)0�i<d

is the canonical basis of A, and where here and elsewhere the indices are
considered modulo d. Clearly σd acts as the identity on A, and we define
GA = 〈σd〉, which is the (unique) subgroup of index d in G.

Proposition 4.4.21. Set m = n/d and assume that R/mR is finite. Then
q(A) is defined and equal to |R/mR|. In particular, when R = Z we have
q(A) = m = |GA|.

Proof. We have (again with indices modulo d)

σk

(∑
i

niei

)
=
∑

i

ni−kei ,

hence

N

(∑
i

niei

)
=
∑

0�i<n

ni

∑
i

ei = m
∑

0�i<d

ni

∑
i

ei .

It follows that

Ker(N) =
{∑

i

niei/
∑

0�i<d

ni = 0
}

, Im(N) = mR
∑

i

ei .

Furthermore,
∑

i niei ∈ Ker(D) if and only if ni = ni−1 for all i, hence
Ker(D) = R

∑
i ei. Finally, we always have Im(D) ⊂ Ker(N), but conversely

if a =
∑

i niei ∈ Ker(N) it is immediately checked that a = D(a′) for
a′ =

∑
i piei with pi =

∑
1�j�i nj , hence Im(D) = Ker(N). Thus H0(A) =

R/mR, H1(A) = 0 and the result follows. ��

Let us now come to our fundamental situation. Let L/K be an extension
of number fields, let p be a prime ideal of K and P be a prime ideal of L
above p. From Corollary 4.1.27 we know that LP/Kp is an extension of degree
e(P/p)f(P/p). If this extension is Galois with Galois group G the group UP

of P-adic units is evidently a G-module, and our goal is to compute the
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cohomology groups of UP. Note that although we consider a local situation
obtained by localizing a global situation, the result is purely local, and we
could state it without reference to the global fields K and L. The result is as
follows.

Theorem 4.4.22. If LP/Kp is a cyclic extension we have

[Up : NLP/Kp
(UP)] = |H0(UP)| = |H1(UP)| = e(P/p) ,

hence q(UP) = 1.

Proof. Let G = Gal(LP/Kp) and let σ be a generator of G. We first note
that if A = UP then N(A) = NLP/Kp

(UP), and Ker(D|A) is the set of P-adic
units of LP invariant by σ hence by G, and is thus equal to UP ∩Kp = Up,
so the first equality is clear by definition of H0.

By definition of the Herbrand quotient the second equality is equivalent
to q(UP) = 1. By Corollary 4.3.13, we know that Un is a subgroup of finite
index of UP such that Un � PnZP as soon as n � z(P). By Corollary 4.4.20
for such an n we thus have

q(UP) = q(Un) = q(PnZP) = q(ZP) ,

since PnZP has finite index in ZP. Now by the normal basis theorem (The-
orem 3.2.12) there exists α ∈ LP, which after multiplication by a suitable
element of Zp we may assume to be in ZP, such that the σk(α) for 0 � k < |G|
form a Kp-basis of LP. If we set

B =
∑

0�k<|G|
σk(α)Zp

then B is a free Zp-module with the same rank as ZP and is a submodule of
ZP, hence it has finite index. It follows once again from Corollary 4.4.20 that
q(ZP) = q(B), so that q(UP) = q(B). However, B is clearly a permutation
module in the sense of the above example, so by the above proposition we
have q(B) = |Zp/mZp| with m = |G|/dim(B) = |G|/|G| = 1, hence q(B) = 1
as claimed, proving the second equality.

For the third equality we first appeal to Hilbert’s Theorem 90 (Proposition
3.2.4) which implies in particular that

Ker(N |UP
) = UP ∩D(L∗

P) .

Let Π be a uniformizer of P. Since σ is a bijection of P onto itself σ(Π) is
also a uniformizer, in other words σ(Π) = Πω for some ω ∈ UP. It follows
that for any x ∈ L∗

P, if we write x = Πvy with y ∈ UP then

D(x) =
x

σ(x)
=

Πvy

Πvωvσ(y)
∈ UP .
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We thus have D(L∗
P) ⊂ UP, so that Ker(N |UP

) = D(L∗
P). On the other

hand, since by Galois theory the kernel of the map D on L∗
P is K∗

p we have
D(L∗

P) � L∗
P/K∗

p and

D(UP) � UP

K∗
p ∩ UP

�
K∗

pUP

K∗
p

,

hence

H1(UP) =
D(L∗

P)
D(UP)

�
L∗

P

K∗
pUP

.

Finally, if we let π be a uniformizer of p then by definition of the ramification
index we have π = Πe(P/p)u for some u ∈ UP. It follows that

L∗
P = πZ × UP and K∗

pUP = πe(P/p)Z × UP ,

so that |H1(UP)| = e(P/p) as claimed, finishing the proof of the theorem. ��

Corollary 4.4.23. If LP/Kp is unramified then the norm is surjective on
units.

Proof. Clear since LP/Kp is cyclic in that case. ��

Proposition 4.4.24. If LP/Kp is a cyclic extension then

[K∗
p : NLP/Kp

(L∗
P)] = [LP : Kp] = e(P/p)f(P/p) .

Proof. With the above notation we have L∗
P = πZ × UP, hence L∗

P/UP

is isomorphic to Z and G acts trivially on it (since σ(π)/π ∈ UP). It follows
from Proposition 4.4.21 that q(L∗

P/UP) = |G|. Since q(UP) = 1 we have
q(L∗

P) = |G|. On the other hand, by definition we have

q(L∗
P) =

|H0(L∗
P)|

|H1(L∗
P

)| = |H0(L∗
P)|

since H1(L∗
P) = 1 by Hilbert’s Theorem 90. It follows that

|H0(L∗
P) = |G| = [LP : Kp] = e(P/p)f(P/p) ,

proving the proposition since by definition H0(L∗
P) = K∗

p/NLP/Kp
(L∗

P). ��

Note that Theorem 4.4.22 is in fact valid more generally for Abelian ex-
tensions, but we will omit the proof, which originates in local class field
theory:

Theorem 4.4.25. If LP/Kp is an Abelian extension we have

[Up : NLP/Kp
(UP)] = e(P/p) .
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4.4.5 Characterization of Unramified Extensions

Thanks to Corollary 4.4.14, we need only study unramified and totally ram-
ified extensions. In this subsection, we begin with unramified extensions. We
have already seen above that unramified extensions are in one-to-one corre-
spondence with extensions of residue fields. Since these are finite fields whose
extensions are well known, we can make this more precise.

Lemma 4.4.26. For every n, up to isomorphism there exists exactly one
unramified extension K of Qp of degree n, which is the splitting field of Xq−X
over Qp, where q = pn.

Proof. The residue field of Qp is the finite field Fp � Z/pZ. Up to isomor-
phism, for every n there exists one extension k of Fp of degree n: it has q = pn

elements and is the splitting field of Xq − X over Fp. By Corollary 4.4.15
there exists exactly one unramified extension K of Qp in the algebraic closure
of Qp whose residue field is k, and K = Kp for some K and p by Proposition
4.4.9. By Theorem 4.4.11, we know that [K : Qp] = n. We claim that K is the
splitting field of f(X) = Xq −X over Qp. Indeed, since f ′(X) = qXq−1 − 1,
for all α ∈ Zp we have |f ′(α)| = 1. Therefore, by Hensel’s Lemma 4.1.37, for
every a ∈ Zp/pZp there exists a representative α in Zp such that f(α) = 0.
It follows that f(X) splits in K. Finally, the splitting field of f(X) over Qp

cannot be smaller than K since its residue field must contain at least q ele-
ments. ��

Remarks. (1) The element α corresponding to the class a in the above proof
is nothing else than the Teichmüller character ω(a) given by Corollary
4.3.5. It is called the Teichmüller representative of a.

(2) As mentioned above, if q = pn it is quite reasonable to use the notation
Qq to denote the unique (up to isomorphism) unramified extension of
degree n of Qp. Its ring of integers is denoted by Zq, and its residue
field Zq/m will be isomorphic to Fq, where m is the maximal ideal of
elements of norm strictly less than 1. We will, however, not make use of
this notation in this book.

Now that we have proved the above lemma for Qp, we can generalize it
to any p-adic field.

Corollary 4.4.27. Let K = Kp be any p-adic field, and let q = Np be the
cardinality of its residue field. For every n, up to isomorphism there exists
exactly one unramified extension L of K of degree n, which is the splitting
field of XQ − X over K, where Q = qn. The extension L/K is Galois with
cyclic Galois group, and there is a generator σ of Gal(L/K) (also called the
Frobenius automorphism of L/K) that induces the Frobenius automorphism
x �→ xq on the residue fields.
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Proof. Once again by Corollary 4.4.15 there exists exactly one unramified
extension L of K in the algebraic closure of K whose residue field is FQ, and
L = LP for some L and P by Proposition 4.4.9. It follows from the above
lemma that L must contain the splitting field M of XQ−X over Qp, so that
L is equal to the compositum of M with K. It follows that L is the splitting
field of XQ −X over K.

Every splitting field is Galois. The theory of finite fields tells us that the
Galois group of the residue field extensions of L and K is cyclic and generated
by the Frobenius x �→ xq. Since L/K is unramified, it is easy to see that its
Galois group is canonically isomorphic under the reduction map to that of
the corresponding residue fields, so the corollary follows. ��

Corollary 4.4.28. The unramified closure Ku (see Corollary 4.4.15) is ob-
tained by adjoining to K the mth roots of unity for all m prime to the residue
field characteristic p.

Proof. By the previous corollary, Ku is obtained by adjoining the (qn−1)st
roots of unity for all n � 1. Since for any m prime to p, hence to q, there
exists n such that qn ≡ 1 (mod m) (the order of the class of q in (Z/mZ)∗),
the corollary follows. ��

Corollary 4.4.29. As above let K = Kp, q = Np, L the unique unramified
extension of K of degree n, and Q = qn, so that L is the splitting field of
XQ −X over K. If σ is the Frobenius automorphism of L/K then for any a
such that aQ = a we have σ(a) = aq.

Proof. Recall first that σ(x) = xq only at the level of the residue field. Let
µQ−1 be the group of (Q−1)st roots of unity in L. By definition |µQ−1| = Q−1
and it is a finite subgroup of L∗, so it is cyclic generated by an element a.
Thus σ(a)Q−1 = σ(1) = 1, so that σ(a) = ak for some k ∈ [0, Q − 2] since
a is a generator. On the other hand, σ(a) ≡ aq (mod P). It follows that ak

and aq are roots of unity of order dividing Q−1, hence prime to p, which are
congruent modulo P. Thus by Proposition 4.3.2 applied to L we deduce that
they must be equal, hence that σ(a) = aq. Since this is true for the generator
a it is true for all of µQ−1. ��

Remark. The above results are of a theoretical nature, but are also very
explicit. If K = Kp is a p-adic field and n � 1, to find an equation for the
unramified extension of degree n of K, we first search for a monic polynomial
P (X) ∈ (ZK/p)[X] of degree n that is irreducible in (ZK/p)[X]. A root of
P (X) defines the finite field of degree n over ZK/p. Therefore, by the above
results, if P (X) ∈ ZK [X] is any monic lift of P (X), then L = K(α) is the
unramified extension of degree n of K, where α is a root of P (X) = 0.
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Examples. Following this procedure, for p � 5 and n � 5, the unramified
extension of degree n of Qp is equal to Qp(α), where α is a root of Pn(X) = 0,
with:

– For p = 2, P2(X) = X2+X+1, P3(X) = X3+X+1, P4(X) = X4+X+1,
P5(X) = X5 +X2 +1 (note that X5 +X +1 ≡ (X2 +X +1)(X3 +X2 +1)
(mod 2)).

– For p = 3, P2(X) = X2 + 1, P3(X) = X3 −X + 1, P4(X) = X4 + X − 1,
P5(X) = X5 −X + 1.

– For p = 5, P2(X) = X2 + 2, P3(X) = X3 + X + 1, P4(X) = X4 + 2,
P5(X) = X5 −X − 1.

See Exercises 28 and 29 for simple methods for explicitly computing the
Frobenius automorphism.

4.4.6 Properties of Unramified Extensions

As above, let K be a number field, L a finite extension of K, p a (nonzero)
prime ideal of K, and P a prime ideal of L above p. We denote by k =
Zp/pZp and l = ZP/PZP the corresponding residue fields. By the normal
basis theorem (Theorem 3.2.12), there exists a normal basis α, i.e., an element
of l such that together with its Galois conjugates, α generates l as a k-vector
space.

Proposition 4.4.30. Keep the above notation, and assume that LP/Kp is
an unramified extension of p-adic fields. Then any lift of a normal basis α
of l over k gives a normal basis of ZP over Zp. In particular, such a normal
basis exists; in other words, ZP is a free Zp[G]-module of rank 1, where G =
Gal(LP/Kp) and Zp[G] denotes the ring of formal Zp-linear combinations of
elements of G.

Proof. We simply apply Nakayama’s Lemma 4.3.15 to the Zp-module M =
ZP/(Zp[G]α), where α is a lift of a normal basis α of l over k. Note that we
know in advance the existence of a normal basis by the normal basis theorem
itself. The point of the proposition is to show that it can be obtained by
lifting the normal basis of the residue field. ��

Corollary 4.4.31. Under the same assumptions, the trace map TrLP/Kp
is

a surjective map from ZP to Zp.

Proof. Again set G = Gal(LP/Kp), and let α ∈ ZP be a normal basis
of ZP over Zp. I claim that under the above isomorphism between ZP and
Zp[G] the set of fixed points of ZP under G is the image of the trace map.
Since by Galois theory this is equal to ZP ∩ Kp = Zp, this will prove the
corollary. Indeed,

∑
σ∈G xσσ(α) fixed by G means that for all τ ∈ G we have
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0 =
∑
σ∈G

xσ(τ(σ(α))− σ(α)) =
∑
σ∈G

(xτ−1σ − xσ)σ(α) .

Since the σ(α) are linearly independent, this means that xσ = xτ−1σ for all
σ and τ , in other words that xσ is independent of σ, proving our claim. ��

Since an unramified extension is automatically cyclic the above result
concerning the trace is also valid for the norm on units, as we have seen
above (Theorem 4.4.22). However, considering its importance we restate it
here.

Theorem 4.4.32. Let LP/Kp be an unramified extension of p-adic fields.
Denote by Up the group of p-adic units of Kp, and similarly UP for LP.
Then NLP/Kp

(UP) = Up; in other words, the norm is surjective on p-adic
units.

Since we know that unramified extensions are in bijective correspondence
with extensions of the residue fields, these surjectivity results on the trace
and norm also follow from Propositions 2.4.11 and 2.4.12.

Corollary 4.4.33. Let π be a uniformizer of p. We have

NLP/Kp
(L∗

P) = πf(P/p)ZUp .

In particular, the map that sends π to the Frobenius automorphism induces
an isomorphism

K∗
p/NLP/Kp

(L∗
P) � Gal(LP/Kp) .

Proof. Since LP/Kp is unramified, a uniformizer π of p is also one of P.
It follows that L∗

P = πZUP; hence NLP/Kp
(L∗

P) = πf(P/p)ZUp by the above
theorem and the fact that [LP : Kp] = f(P/p), proving the first assertion.
For the second, consider the map ω sending πiu with i ∈ Z and u ∈ Up to
σi ∈ Gal(LP/Kp), where σ is the Frobenius automorphism, which is clearly
a surjective group homomorphism since σ generates the Galois group. We
have ω(πiu) = 1 ∈ Gal(LP/Kp) if and only if i ≡ 0 (mod f(P/p)), which is
the order of σ in the Galois group. It follows that

Ker(ω) = πf(P/p)ZUp = NLP/Kp
(L∗

P)

by the first part, proving the corollary. ��

Note that in Proposition 4.4.24 (where we did not assume that the ex-
tension was unramified) we obtained only an equality of cardinalities, not an
isomorphism.
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4.4.7 Totally Ramified Extensions

Since we have seen that any finite extension of a p-adic field is a totally
ramified extension of an unramified extension, it remains to study totally
ramified extensions.

Proposition 4.4.34. An extension LP/Kp is totally ramified if and only if
LP = Kp(α), where α is a root of an Eisenstein polynomial (see Proposition
4.1.35).

Proof. We denote by | | the absolute value on LP and on Kp (we know
that they are the same). First, if α is a root of an Eisenstein polynomial
f(X) = Xn+fn−1X

n−1+· · ·+f0 ∈ Zp[X], then by the ultrametric inequality,
since |fj | � |f0| < 1 we have clearly |α|n = |f0| (indeed, |α| � 1 together with
|α|n = |fn−1α

n−1+· · ·+f0| < |α|n−1 leads to a contradiction, so that |α| < 1,
and hence |fiα

i| < |fi| for all i > 0, so that |α|n = |fn−1α
n−1 + · · · + f0| =

|f0|). It follows that vP(f0) = e(P/p)vp(f0) = e(P/p) = nvP(α) � n; hence
e(P/p) = n and Kp(α) is totally ramified.

Conversely, assume that LP/Kp is totally ramified of degree n, and let Π
be a uniformizer of P. Then the Πj for 0 � j < n are Kp-linearly independent,
since each nonzero term xjΠj in any relation

∑
0�j<n xjΠj = 0 is unique with

P-adic valuation congruent to j modulo e(P/p) = n. Since the degree of the
extension is n, Πn is a Kp-linear combination of the Πj for 0 � j < n; in
other words, there exist fj ∈ Kp such that f(Π) = 0, with

f(X) = Xn + fn−1X
n−1 + · · ·+ f0 .

I claim that this is an Eisenstein polynomial. Indeed, in a nontrivial sum equal
to 0 the minimal valuation must occur at least twice. Since Πn +fn−1Πn−1 +
· · ·+ f0 = 0 and since the valuations of fiΠi are distinct modulo n, it follows
that Πn and f0 must be the two terms with minimal and equal valuation. Thus
vP(f0) = nvp(f0) = vP(Πn) = n; hence vp(f0) = 1, and for 1 � i � n − 1
we have vP(fiΠi) = nvp(fi) + i � n; hence vp(fi) � 1, proving my claim and
the proposition. ��

Example. In Corollary 4.3.24 we have seen that up to isomorphism there
exist seven quadratic extensions of Q2. Among these we know that there
exists a unique unramified extension, and it is easily checked that it is
Q2(

√
5) = Q2(

√
−3) (these two fields are the same since 5/(−3) ≡ 1 (mod 8)).

The six others are ramified, hence totally ramified. We check that Eisenstein
polynomials for Qp(

√
D) with D = −1, −5, ±2, ±6 can be taken equal to

X2 + 2X + 2, X2 + 2X + 6, X2 ∓ 2, and X2 ∓ 6 respectively.

It is possible to be much more precise in the case of tamely ramified totally
ramified extensions.
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Theorem 4.4.35. Let LP/Kp be a totally ramified extension of degree n that
is tamely ramified (in other words such that p � n). There exists a generator
π of pZKp

such that LP = Kp(α), where α is a root of Xn − π = 0.

Note that since vp(π) = 1, Xn − π is evidently an Eisenstein polynomial,
but of a very special kind.

Proof. Set for simplicity K = Kp and L = LP, and let πK and πL be
any generators of pZK and PZL respectively. Since the extension is totally
ramified we have vP(πK) = n, so u = πn

L/πK is a P-adic unit of L. Again
since the extension is totally ramified we have f(P/p) = 1 so the residue
fields are the same. It follows that there exists a p-adic unit ζ of K such that
u ≡ ζ (mod PZL). Thus πn

L = πKu with u = ζ +πLv for some v ∈ ZL; hence
if we set π = ζπK then π is still a generator of pZK and πn

L = π +ππLw with
w = vζ−1 ∈ ZL. Let us show that π is suitable. Since Xn−π is an Eisenstein
polynomial, it is irreducible in K[X]. In addition, f(πL) = πn

L − π = ππLw,
so that |f(πL)| < |π|. Let us factor f in an algebraic closure of K as f(X) =
Xn − π =

∏
1�i�n(X − αi), where of course

∏
1�i�n αi = (−1)n−1π. By

Proposition 4.4.6 (1) all the |αi| are equal, to c say. It follows that cn = |π|;
hence |αi| = c = |π|1/n = |πL|, so that |πL−αi| � max(|πL|, |αi|) � |πL|. On
the other hand, ∣∣∣∣∣ ∏

1�i�n

(πL − αi)

∣∣∣∣∣ = |f(πL)| < |π| = |πL|n .

It follows that there exists i such that |πL−αi| < |πL|, and we set α = αi. All
the roots αj have the form αj = ζjα, where the ζj are the nth roots of unity.
Now since the extension is tamely ramified we have p � n, so that ζj − 1 is a
unit when ζj �= 1 by Proposition 4.3.2. Thus when j �= i we have |ζj −1| = 1;
hence |αj − α| = |α||ζj − 1| = |α| = c = |πL| and |πL − α| < |πL| = |αj − α|.
It follows from Krasner’s lemma (Proposition 4.4.6 (3)) that K(α) ⊂ K(πL).
Since K(πL) ⊂ L and [L : K] = n = [K(α) : K], this inclusion must be an
equality, proving the theorem. ��

For instance, if K = Qp and L = Qp(ζp) is the field obtained by adjoining
a pth root of unity, which is a totally and tamely ramified extension of degree
p− 1 of Qp, we have seen in Proposition 4.3.18 that L = Qp((−p)1/(p−1)), so
we can choose π = −p as a generator of pZp satisfying the conditions of the
theorem.

4.4.8 Analytic Representations of pth Roots of Unity

Proposition 4.4.36. Let K = Qp(ζp) = Qp((−p)1/(p−1)), and let p be the
prime ideal of K above p (generated by ζ − 1 or by (−p)1/(p−1)). For each
element π ∈ K such that πp−1 + p = 0 there exists a unique primitive pth
root of unity ζπ ∈ K such that ζπ ≡ 1 + π (mod p2), and the map π �→ ζπ is
a bijection between elements π as above and primitive pth roots of unity.
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Proof. In the proof of Theorem 4.3.18 (1) we have seen that if ζ is a
primitive pth root of unity there exists π such that πp−1 + p = 0 with (ζ −
1)/π ≡ 1 (mod p), or equivalently, ζ ≡ 1 + π (mod p2). Furthermore, if π1

and π2 satisfy this congruence then we have π2/π1 ≡ 1 (mod p), while π1/π2

is a (p− 1)st root of unity, so by Proposition 4.3.2 we have π1 = π2, proving
that π is unique. We thus have a well-defined map ζ �→ π from primitive
pth roots of unity to elements π satisfying πp−1 + p = 0. This map is clearly
injective since when ζ1 �= ζ2 we have vp(ζ1 − ζ2) = vp(1 − ζ2/ζ1) = 1. Since
both sets have the same cardinality p−1, it follows that our map is bijective.
The map of the proposition is the inverse bijection. ��

Definition 4.4.37. Let π ∈ K be an element such that πp−1 + p = 0. The
Dwork power series Dπ(X) associated with π is the power series defined for-
mally by

Dπ(X) = exp(π(X −Xp)) .

Proposition 4.4.38. (1) The series Dπ(X) converges at least for vp(x) >
−(p−1)/p2, and in particular has a radius of convergence strictly greater
than 1.

(2) More precisely, if we set Dπ(X) =
∑

k�0 dkXk (with dk depending on
π), then vp(dk) � k(p− 1)/p2.

(3) We have d0 = 1, d1 = π, and vp(dk) � 2 for k � 2, or equivalently,
vp(dk) � 2/(p− 1) for k � 2.

Proof. (1) and (2). We have

Dπ(X/π) = exp(X + Xp/p) =
∑
k�0

ukXk ,

where vp(uk) � −k (2p− 1)/((p− 1)p2) by Theorem 4.2.22. Since dk = πkuk

and vp(π) = 1/(p− 1) we deduce (2), and (1) follows.
(3). The values for d0 and d1 are trivial. Assume k � 2. It is preferable

to work here with the p-adic valuation vp instead of vp (which are related
by vp(x) = (p − 1)vp(x)), since it is integer-valued. We already know that
vp(dk) � k(p−1)2/p2. For p � 5 and k � 2 we have k(p−1)2/p2 � 2·16/25 =
32/25, so that vp(dk) � 2. If k � 5 we have k(p − 1)2/p2 � 5 · 1/4 = 5/4,
so once again vp(dk) � 2. For p = 3 and k � 3 we have k(p − 1)2/p2 �
3 · 4/9 = 12/9. For p = 3 and k = 2, we compute directly that d2 = π2/2, so
vp(d2) = 2. Finally, for p = 2 we have π = −2 and we compute that

D−2(X) = exp(−2X + 2X2) = 1− 2X + 4X2 − 16
3

X3 +
20
3

X4 + · · · ,

so that we also have vp(dk) � 2 for 2 � k � 4. ��
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The main result of this section, due to Dwork, is that the value of the
function Dπ(X) at X = 1 gives explicitly the pth root of unity ζπ of Propo-
sition 4.4.36. Note that to compute Dπ(x) we must compute the power series∑

k�0 dkxk, and not replace in the formal expression expp(π(x− xp)), which
would give 1 (note for instance that expp(π) does not give a convergent se-
ries).

Theorem 4.4.39. With the above notation we have Dπ(1) = ζπ; in other
words, Dπ(1) is equal to the unique pth root of unity congruent to 1 + π
modulo p2 (and in particular is not equal to 1). Furthermore, for any a ∈ Zp

such that ap = a we have Dπ(a) = Dπ(1)a = ζa
π.

Note that since ζπ is a pth root of unity it makes perfect sense to write
ζa
π for a ∈ Zp.

Proof. Since the radius of convergence of Dπ(X) is strictly greater
than 1, we may compute Dπ(a) for any a ∈ Zp. Furthermore, Dπ(X)p =
exp(pπX) exp(−pπXp), and by Proposition 4.2.10, for a ∈ Zp the series
expp(pπa) and expp(−pπap) converge (this was not the case before rais-
ing to the power p). It follows that if ap = a we have Dπ(a)p = 1, so
Dπ(a) is a pth root of unity. In addition, by (2) of the above proposition
we have Dπ(1) ≡ 1+π (mod p2), and we conclude by Proposition 4.4.36 that
Dπ(1) = ζπ. Similarly, Dπ(a) is a pth root of unity such that

Dπ(a) ≡ 1 + aπ ≡ (1 + π)a ≡ ζa
π (mod p2) ,

so by the same uniqueness argument used in the proof of Proposition 4.4.36
we deduce that we have the equality Dπ(a) = ζa

π . ��

See also Exercise 35.
It is useful to generalize the above constructions as follows. Let f � 1 and

set q = pf . We define the formal power series

Dπ,f (X) = exp(π(X −Xq)) ,

where π is as above such that πp−1 = −p, so that Dπ(X) = Dπ,1(X). On
the other hand, we let L be the unique unramified extension of degree f of
K, which is therefore the splitting field of Xq −X by Lemma 4.4.26.

Proposition 4.4.40. (1) The series Dπ,f (X) converges at least for vp(x) >
−(p − 1)/pf+1, and in particular has a radius of convergence strictly
greater than 1.

(2) More precisely, if we set Dπ,f (X) =
∑

k�0 dk,fXk then vp(dk,f ) � k(p−
1)/pf+1.

(3) If a ∈ L is such that aq = a then Dπ,f (a) is a pth root of unity and in
fact,

Dπ,f (a) = ζ
TrL/K(a)
π .
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Proof. We can write formally

Dπ,f (X) =
∏

0�j<f

exp(π(Xpj −Xpj+1
)) .

By Proposition 4.4.38, the jth series converges at least for vp(xpj

) > −(p −
1)/p2; in other words, vp(x) > −(p− 1)/pj+2. Since j � f − 1 this proves (1)
since the product of convergent series is convergent.

We prove (2) by induction on f . The case f = 1 is Proposition 4.4.38.
Assume f > 1 and the assertion true for f − 1. We can write

Dπ,f (X) = Dπ,f−1(X) exp(π(Xpf −1 −Xpf

))

= Dπ,f−1(X)Dπ(Xpf −1
) =
∑
k�0

di,f−1X
i
∑
j�0

djX
pf −1j .

It follows that
dk,f =

∑
0�pf −1j�k

djdk−pf −1j,f−1 ;

hence by the ultrametric property and the induction hypothesis,

vp(dk,f ) � min
0�pf −1j�k

vp(dj) + vp(dk−pf −1j,f−1)

� (p− 1) min
0�pf −1j�k

(
j

p2
+

k − pf−1j

pf

)
� (p− 1)

(
k

pf
− max

0�pf −1j�k
j

(
1
p
− 1

p2

))
� (p− 1)

(
k

pf
− k

pf−1

(
1
p
− 1

p2

))
� k(p− 1)

pf+1
,

proving the assertion for f .
For (3), since Dπ,f (X) has a radius of convergence strictly greater than

1, Dπ,f (a) makes sense when vp(a) � 0, and reasoning as in the case f =
1, the individual formal power series exp(pX) and exp(pXq) also have a
radius of convergence strictly greater than 1, so we may write Dπ,f (a)p =
expp(pa) expp(−paq) = 1 when aq = a. Since all the series involved have a
radius of convergence strictly greater than 1, if aq = a (or more generally if
vp(a) � 0) we have

Dπ,f (a) =
∏

0�j<f

expp(π(apj − apj+1
)) =

∏
0�j<f

Dπ(apj

) .

By Proposition 4.4.38 we have

Dπ(apj

) ≡ 1 + πapj

(mod p2)
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(note that Dπ(apj

) is not in general a pth root of unity). It follows that

Dπ,f (a) ≡ 1 + π
∑

0�j<f

apj

(mod p2) .

Since aq = a and a �= 0, by Corollary 4.4.29 we know that the conjugates
of a over K are the apj

. Thus TrL/K(a) =
∑

0�j<f apj

, so that Dπ,f (a) ≡
1 + π TrL/K(a) (mod p2). Since TrL/K(a) ∈ K and Dπ,f (a) is a pth root of

unity, it follows from Dwork’s Theorem 4.4.39 that Dπ,f (a) = ζ
TrL/K(a)
π . ��

4.4.9 Factorizations in Number Fields

We begin this section with an important warning. Let L = K(θ) be any
finite extension of perfect fields, and let T (X) ∈ K[X] be the minimal monic
polynomial of θ over K. Let K be any extension of K, finite or not. We want
to define K(θ). There are (at least) two ways to do this.

(1) We can set

K(θ) = K ⊗K K(θ) = K ⊗K L � K[X]
T (X)K[X]

.

In this case, K(θ) is not necessarily a field, but only a semisimple algebra,
i.e., isomorphic to a finite direct sum of fields. It will be a field if and
only if T (X) is irreducible in K[X].

(2) We can define K(θ) to be the set of polynomials in θ with coefficients in
K.

To see the difference between these two notions, consider the following
example. Let K = Q, L = K(i) (with i2 = −1), and K = Q5, chosen because
−1 is the square of some element I ∈ Q5 by Hensel’s lemma. Then according
to the first definition, we have

Q5(i) �
Q5[X]

(X2 + 1)Q5[X]
� Q5[X]

(X + I)(X − I)Q5[X]
� Q5 ⊕Q5

by the Chinese remainder theorem.
On the other hand, according to the second definition we have Q5(i) =

Q5(I) = Q5. Clearly the first definition is more natural. Therefore in the
above context, when we speak of K(θ) it is implicitly understood that we use
the first definition. This is analogous to the definition of the trace, norm, and
characteristic polynomial of θ: we can define them as objects related either
to the extension L/K, or only to θ itself. Only the former definition gives
reasonable results.

This being said, the aim of this subsection is the proof of the following
theorem.
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Theorem 4.4.41. Let L = K(θ) be an extension of number fields, let
T (X) ∈ K[X] be the minimal monic polynomial of θ over K, let p be a
prime ideal of K, let pZL =

∏
1�j�g P

ej

j be the prime ideal decomposition of
pZL with ej = e(Pj/p), and set fj = f(Pj/p). Then:

(1) The only absolute values of L extending | |p are the | |1/(ej fj )
Pj

.
(2) There exist canonical isomorphisms

Kp(θ) � Kp ⊗K L �
⊕

1�j�g

LPj
.

(3) For any algebraic number θ the algebra Kp(θ) is isomorphic to the direct
sum of the completions of K(θ) for the absolute values corresponding to
the prime ideals of K(θ) above p.

(4) The decomposition of T (X) into monic irreducible factors in Kp[X] is
T (X) =

∏
1�j�g Tj(X), where deg(Tj) = ejfj.

Proof. (1). It is clear that | |1/(ej fj )
Pj

is an absolute value and that if x ∈ Zp,
we have

|x|Pj
= N (Pj)

−vPj
(x) = N (p)−ej fj vp (x) ,

so that | |1/(ej fj )
Pj

extends | |p. Conversely, if | | extends | |p, then it is non-
Archimedean, and by Ostrowski’s theorem it has the form | |aP for some prime
ideal P and some a > 0. If q is the prime ideal of K below P then on K this
absolute value has the form | |bq for some b > 0, and since distinct prime ideals
give inequivalent absolute values, we must have q = p; hence P is indeed one
of the Pj , and the exponent must be 1/(ejfj) as we have just seen, proving
(1).

(2). The first isomorphism is the definition of Kp(θ), as we have seen
above. Since we can identify K, Kp, and L with subfields of LPj

, we have
a natural K-bilinear map from Kp × L to

∏
1�j�g LPj

sending (x, α) to
(xα)1�j�g. It follows that there exists a natural Kp-linear map Φ from Kp⊗K

L to L =
∏

1�j�g LPj
. I claim that the diagonal image of L in L is dense:

indeed, let (y1, . . . , yg) ∈ L, and let N > 0. By definition of the completion,
for all k such that 1 � k � g there exists xk ∈ L such that |yk − xk|k < 2−N ,
where | |k denotes the Pk-adic absolute value. By the Chinese remainder
theorem for ideals there exists x ∈ L such that |x − xk|k < 2−N ; hence
|x− yk|k < 2−N by the ultrametric inequality, proving my claim.

It follows a fortiori that the image F of Φ in L is dense. On the other
hand, F is a subspace of the Kp-vector space L, which is finite-dimensional.
Since Kp is complete, it is well known that such a subspace is closed. Since
the image of Φ in L is both dense and closed, it is equal to L; in other words,
Φ is surjective.

Finally, Kp⊗K L is a Kp-vector space of finite dimension n. On the other
hand, by Corollary 4.1.27 the Kp-dimension of LPj

is equal to ejfj , so that
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the Kp-dimension of L is equal to
∑

1�j�g ejfj = n. It follows that Φ is also
injective, proving (2).

(3). This immediately follows from (1) and (2).
(4). By definition, as already seen above we have canonical isomorphisms

Kp ⊗K L � Kp(θ) � Kp[X]/T (X)Kp(X) .

Furthermore, LPj
is a finite extension of Kp of degree ejfj , and since L =

K(θ) it is clear that LPj
is generated by θ over Kp (note that we cannot use

the notation Kp(θ) since this is reserved for Kp⊗K L). Let Tj(X) ∈ Kp[X] be
the minimal monic polynomial of θ for the extension LPj

/Kp. Then Tj(X) is
irreducible in Kp[X], and deg(Tj) = [LPj

: Kp] = ejfj by Corollary 4.1.27.
Now, in the above canonical isomorphism the characteristic polynomial of θ
is equal to T when θ is considered as an element of the right-hand side, and
is equal to

∏
1�j�g Tj when it is considered as an element of the left-hand

side, so we must have equality. ��

4.4.10 Existence of the Field Cp

The first goal of this subsection is the proof of the following result.

Theorem 4.4.42. The algebraic closure Qp of Qp is not complete for the
extension of the natural absolute value given by Corollary 4.4.4. However,
the completion Cp of Qp is algebraically closed (and evidently complete), and
there exists a unique absolute value on Cp extending that of Qp.

Proof. Denote as usual by ζm a primitive mth root of unity in Qp, and
set

α =
∞∑

n=1

ζn′pn ,

where n′ = n if p � n and n′ = 1 (so ζn′ = 1) if p | n. Assume by contradiction
that Qp is complete. Since ζn′

n′ = 1, we have |ζn′ | = 1, so the series defining α
converges. Since ζn′ ∈ Qp, it follows that α ∈ Qp, so the field K = Qp(α) is
a finite extension of Qp. We prove by induction that ζn′ ∈ K for all n, which
is trivially true for n = 1. Assume this true for all n < m, and we want to
prove this for n = m. Since n′ = 1 when p | m, we may assume that p � m.
Set

αm = p−m
(
α−

m−1∑
n=1

ζn′pn
)

=
∞∑

n=m

ζn′pn−m .

From the first formula we see that αm ∈ K, and from the second we have
αm ≡ ζm (mod p). Thus αm is a root modulo p of Xm − 1 ≡ 0 (mod p) in
K such that |αm| = 1. By Hensel’s lemma (Proposition 4.1.37, since p � m) it
follows that there exists a root ζ ∈ K of Xm − 1 = 0 such that ζ ≡ αm ≡ ζm

(mod p). Since p � m, from Proposition 4.3.2 we know that the mth roots
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of unity are distinct modulo p in K, so we have the equality ζ = ζm, hence
ζm ∈ K, proving our induction hypothesis. Thus all mth roots of unity for
p � m are in K, and since they are distinct modulo p (for a fixed m) this
means that the set of residue classes modulo p (in other words the set of
representatives of the ring Zp/pZp, where p is the ideal above p in K) is
arbitrarily large, which is a contradiction since this set is finite, proving the
first statement of the theorem.

We must now show that the completion Cp of Qp is algebraically closed.
Any polynomial P (X) ∈ Cp[X] of degree d > 0 is the limit of a sequence
of polynomials Pn(X) ∈ Qp[X] with the same degree, which by definition of
Qp have d roots in Qp counted with multiplicity. We must show that we can
choose consistently one of these xn, so that the sequence (xn) is a Cauchy
sequence. Since the limit x of xn will exist in Cp, and since P (X) is the limit
of Pn(X), it will follow that x is a root of P (X) = 0 in Cp.

We may of course assume that P (X) and the Pn(X) are monic. If P (X) =∑
i aiX

i we set ‖P‖ = maxi |ai|. Assume that m is such that ‖Pn+1−Pn‖ < 1
for all n � m, and assume by induction on n � m that we have chosen a
root xj of Pj(X) = 0 for m � j � n (we can choose any root xj of Pj(X) for
j � m). Denote by xn+1,i for 1 � i � d the d roots of Pn+1(X) = 0. Then

d∏
i=1

|xn − xn+1,i| = |Pn+1(xn)| = |Pn+1(xn)− Pn(xn)|

� ‖Pn+1 − Pn‖max(1, |xn|d) .

It follows that at least one of the roots xn+1,i, which we will choose to be xn+1,
is such that |xn − xn+1| � ‖Pn+1 − Pn‖1/d max(1, |xn|). By the ultrametric
inequality, this implies that

|xn+1| � max(|xn|, ‖Pn+1 − Pn‖1/d max(1, |xn|))
= max(|xn|, ‖Pn+1 − Pn‖1/d)

since ‖Pn+1 − Pn‖ < 1. It follows first that the sequence |xi| is bounded by
some b (for example b = max(max0�j�m |xj |, 1)), and therefore that |xn −
xn+1| � max(1, b)‖Pn+1 − Pn‖1/d, so that (xn) is a Cauchy sequence since
(Pn) is a Cauchy sequence. ��

Note that it would be simpler to apply Krasner’s lemma (Proposition
4.4.6 (3)) in the second part of this proof, in other words to copy the proof of
Proposition 4.4.7, but we cannot do so since we have proved that result only
in the context of finite extensions of Qp, and not in the general context where
we would need it here, although it is also true in that case (see Exercise 26).

We denote by | | the natural absolute value on Cp. As we have already
done in preceding sections, when x ∈ C∗

p it is also convenient to denote by
vp(x) the unique exponent such that |x| = p−vp (x), so that vp(x) ∈ Q.



262 4. p-adic Fields

Remark. The image of the absolute value from Qp or from Cp to R�0 is the
same and is equal to pQ∪{0} with an evident notation. This is dense in R�0,
but is not equal to it. Thus we could argue that Cp is still not large enough,
and that we would like to use a larger field such that the image of the absolute
value is R�0. This can be done, and leads to the notion of spherically closed
fields; see [Rob1] for details.

To obtain the multiplicative group C∗
p, we first need a technical but impor-

tant result, which we give in a special case. This result generalizes Corollary
2.1.17, which corresponds to the case of finite abelian groups.

Proposition 4.4.43. Let K be an algebraically closed field, let G be an
abelian group, and let H be a subgroup of G. Any group homomorphism φ
from H to K∗ can be extended to a homomorphism from G to K∗.

Proof. Consider the set of subgroups H ′ of G containing H and on which φ
can be extended. It is evidently nonempty since H belongs to it, and is ordered
by set inclusion. Thus by Zorn’s lemma there exists a maximal subgroup Hm

in this set (the use of the axiom of choice is necessary in this proof), and let
φm be the extension of φ to Hm. Assume by contradiction that Hm �= G, let
g ∈ G \ Hm, and consider the group Hn generated by Hm and g, in other
words the group of gkh for k ∈ Z and h ∈ Hm (recall that G is abelian). If
no power of g except the trivial one belongs to Hm then we can evidently
extend φm to a homomorphism φn on Hn by setting φn(gkh) = φm(h), since
h is uniquely determined by gkh. Otherwise, let e be the order of the class
of g in G/Hm, in other words the Z-generator of all exponents k such that
gk ∈ Hm. Since K is algebraically closed, we may choose z ∈ K such that
ze = φm(ge), and we set φn(gkh) = zkφm(h). It is immediately checked
that this does not depend on the decomposition of an element of Hn as gkh:
indeed, if gk1h1 = gk2h2 with hi ∈ Hm then on the one hand, gk1−k2 ∈ Hm,
and hence e | (k1 − k2), so φn(gk1−k2) = φm(ge)(k1−k2)/e = zk1−k2 , and on
the other hand,

φn(gk1h1)φn(gk2h2)−1 = zk1−k2φm(h1h
−1
2 ) = zk1−k2φm(gk2−k1) = 1 ,

as claimed. Furthermore, it is clear that φn is a group homomorphism from
Hn to K∗ extending φ, contradicting the maximality of Hm and proving the
proposition. ��

Applying the proposition to K = Cp, G = Q, H = Z, and the map
φ(a) = pa from Z to Cp, we see that there exists a group homomorphism φm

from Q to Cp extending the map φ. By abuse of notation we will still write
φm(a) = pa ∈ Cp for a ∈ Q. Note that we have used Zorn’s lemma to define
pa, so the choice is not at all unique. We will denote by pQ the group of pa

for a ∈ Q.
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Proposition 4.4.44. Denote by µ the group of roots of unity of order not
divisible by p, and by U1 the group of x such that |x− 1| < 1. Then

C∗
p = pQ × µ× U1 .

Proof. Let α ∈ C∗
p. By definition, we can find a sequence of αi ∈ Qp

tending to α as i→∞. Thus for i sufficiently large, |αi−α| < |α|, so that by
the ultrametric property, |αi| = |αi−α +α| = |α|. Since αi ∈ Qp, αi belongs
to a finite extension of Qp, so |αi| = pa for some a ∈ Q (see Proposition 4.4.5).
Conversely, note that since |p| = p−1, by multiplicativity we have |p−a| = pa

for all a ∈ Q, so any pa is a norm.
It is thus sufficient to restrict to α ∈ C∗

p such that |α| = 1. Once again, let
αi ∈ Qp be sufficiently close to α, and let L = Qp(αi). We have |αi| = |α| = 1,
so αi is a unit. It follows from Corollary 4.3.7 that αi = ωβ, where ω is a root
of unity of order prime to p and |β − 1| < 1. This decomposition is unique
since by Proposition 4.3.2, if ω1 and ω2 are distinct roots of unity of order
prime to p then |ω1 − ω2| = 1, so the proposition follows. ��

It follows from this proposition that if x ∈ C∗
p is such that |x| = 1, we can

write uniquely x = ω(x)〈x〉, where ω(x) is the root of unity of order prime
to p such that |x−ω(x)| < 1 and |〈x〉− 1| < 1. This generalizes to the p-adic
units of x ∈ C∗

p the Teichmüller character and the function 〈x〉 seen above.

4.4.11 Some Analysis in Cp

In Section 4.2 we introduced power series and in particular the p-adic loga-
rithm and exponential functions over an arbitrary complete field containing
Qp, so that this applies in particular to the field Cp. It was necessary to do
so at an early stage in this chapter so as to be able to use the logarithm and
exponential in the algebraic study of p-adic fields. In this short subsection, we
mainly want to study the extension to C∗

p of the logarithm function logp(x),
initially defined only for those x such that |x− 1| < 1.

Proposition 4.4.45. There exists a unique extension of logp(x) (as defined
by the power series for |x−1| < 1) to C∗

p satisfying logp(p) = 0 and logp(xy) =
logp(x) + logp(y) for all x and y in C∗

p. Furthermore, logp(x) = 0 if and only
if x has the form x = paη, where a ∈ Q and η is a root of unity of any order.

Proof. If α ∈ C∗
p we can write α = paω(x)〈x〉 with |〈x〉 − 1| < 1. This

decomposition is not unique since it depends on the choice of pa (note that
here we do not need the homomorphism a �→ pa, so we do not need the axiom
of choice). However, any other pa differs multiplicatively from any other by
a root of unity η (of order dividing the denominator of a). Since logp(η) = 0,
it follows that if we define logp(α) = logp(〈x〉), this does not depend on the
choice of pa, although 〈x〉 itself does. It is also clear that this function has
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the required properties. If f(α) is another extension, then since ωm = 1 for
some m coprime to p, we must have f(pa) = af(p) = 0 (by induction on
the numerator and denominator of a), and mf(ω) = 0; hence f(ω) = 0, so
f(α) = f(〈x〉) = logp(〈x〉), proving uniqueness.

For the second statement, we first note that we clearly have logp(paη) = 0.
Conversely, assume logp(α) = 0; in other words, writing α = paω(x)〈x〉,
assume that logp(〈x〉) = 0, where 〈x〉 = 1+y with vp(y) > 0. Choose N large
enough so that pN > 1/((p− 1)vp(y)), and write

〈x〉pN

= (1 + y)pN

= 1 +
∑

1�j�pN −1

(
pN

j

)
yj + ypN

.

Since p |
(
pN

j

)
for 1 � j � pN − 1, we have vp(

(
pN

j

)
yj) � 1 + vp(y) >

1/(p−1), while by the choice of N we have vp(ypN

) > 1/(p−1). It follows that
vp(〈x〉p

N −1) > 1/(p−1); hence by Proposition 4.2.14 we have | logp(〈x〉p
N

)| =
|〈x〉pN −1|, and since by assumption logp(〈x〉p

N

) = pN logp(〈x〉) = 0, we have
〈x〉pN − 1 = 0, so 〈x〉 is a pN th root of unity, proving the proposition. ��

Remarks. (1) The above definition of the p-adic logarithm is called the
Iwasawa logarithm. It would also be possible to set logp(p) = L for a fixed
L ∈ Cp, but this would lead to slightly more complicated formulas. The
choice of the constant L (here taken to be equal to 0) can be considered
as an analogue of the choice of the determination of the logarithm in the
complex case.

(2) Using Zorn’s lemma it is easy to show that there also exist extensions of
the p-adic exponential to the whole of Cp. There are, however, infinitely
many, of which none are canonical, but the Iwasawa logarithm is the
inverse function to all of them.

For practical computation of logp(x), we proceed as follows. Since logp(p) =
0, after dividing x by pa for a suitable a ∈ Q we may assume that vp(x) = 0,
and by choosing a sufficiently close approximation to x (sufficiently close
depending on the desired accuracy for logp(x)) we may assume that x is a
p-adic unit in Kp for some number field K and some prime ideal p of K.
Since |(Zp/pZp)∗| = Np−1 we know that xNp−1 ≡ 1 (mod p). Thus, writing
xNp−1 = 1+y, we have |y| < 1, so we could compute logp(1+y) by the power
series expansion and deduce that logp(x) = logp(1 + y)/(Np − 1). However,
the power series usually converges quite slowly, so it is preferable to do one
more step before computing the power series. An easy exercise shows that if
z ≡ 1 (mod p) and if k = 
log(e+1)/ log(p)� (where as above e = e(p/p) and
log is the ordinary real logarithm) then zpk ≡ 1 (mod pe+1) (see Exercise
32). Thus x(Np−1)pk

= 1 + t with vp(t) � 1 + 1/e > 1/(p − 1), so we are
in the domain where the p-adic logarithm and the exponential are inverse
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functions, and the convergence will be much faster and more controllable.
We thus compute logp(x) as logp(1 + t)/((Np − 1)pk), where logp(1 + t) is
computed using the power series. This procedure is of course the same as the
one that we used to prove Proposition 4.3.4 (3). As an application, we note
the following results, which will be used in Chapter 11.

Proposition 4.4.46. Set qp = p if p � 3 and q2 = 4, and let x ∈ Z∗
p.

(1) We have

logp(x) ≡
{

1− xp−1 (mod p2Zp) if p � 3
(x2 − 1)/2 (mod 8Z2) if p = 2.

(2) We have
ω(x) ≡ x(1− logp(x)) (mod pqpZp) .

Proof. (1). Assume first that p � 3. Note that 1/(p− 1) = −1/(1− p) ≡
−(1 + p) (mod p2Zp). Thus by Corollary 4.2.13 we have

logp(x) =
1

p− 1
logp(x

p−1) ≡ −(1 + p)(xp−1 − 1) ≡ 1− xp−1 (mod p2Zp) .

When p = 2 we have x2 ≡ 1 (mod 8Z2); hence by the first statement of
Corollary 4.2.13 we have log2(x2) ≡ x2 − 1 (mod 16Z2), so that

logp(x) =
1
2

logp(x
2) ≡ x2 − 1

2
(mod 8Z2) ,

proving (1).
(2). Once again assume first that p � 3. By definition we have ω(x) ≡ x

(mod pZp), from which it clearly follows that ω(x)p ≡ xp (mod p2Zp) by the
binomial expansion. Since ω(x) is a root of unity of order p−1 we deduce that
ω(x)p = ω(x), so that ω(x) ≡ xp ≡ x(1− logp(x)) (mod p2Zp) by (1). When
p = 2 we can write x = ε + 4y with ε = ω(x). By (1) we have logp(x) ≡ 4εy
(mod 8Z2), hence

x(1− logp(x)) ≡ ε(ε + 4y)(ε− 4y) ≡ ε ≡ ω(x) (mod 8Z2) ,

proving the proposition. ��

Remarks. (1) The notation qp will be used extensively in Chapter 11 (see
Definition 11.2.1).

(2) By Proposition 4.3.4, for p � 3 we have the exact formula

ω(x) = x
∑
n�0

(−1)n
logp(x)n

n!
= x

(
1− logp(x) +

logp(x)2

2!
− · · ·

)
,

from which (2) is immediate.
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Proposition 4.4.47. Assume that a ∈ Cp and x ∈ Z∗
p. The series 〈x〉a =

expp(a logp(〈x〉)) converges as a power series in 〈x〉 − 1.

Proof. Immediate from Corollary 4.2.16 since by definition of 〈x〉 we have
vp(〈x〉 − 1) � vp(qp) > 1/(p− 1). ��

Note that although the conditions are the same, this is not the same
statement as Corollary 4.2.18, which gives a result for the convergence of the
power series in a with the present notation.

4.5 The Theorems of Strassmann and Weierstrass

From now on, unless explicitly mentioned otherwise, we assume that we work
on Cp, with the absolute value | |, and we let Zp = {x ∈ Cp/ |x| � 1}.

4.5.1 Strassmann’s Theorem

The following theorem can be useful in applications to Diophantine equations,
and is in striking contrast to the case of complex numbers.

Theorem 4.5.1 (Strassmann). Let f(X) = f0 + f1X + · · ·+ fnXn + · · · ,
and assume that fn tends to 0 (in other words that the domain of convergence
contains Zp, so that the radius of convergence is greater than or equal to 1),
but that not all the fn are equal to 0. Denote by N the largest integer (which
exists) such that |fN | = maxn |fn|. Then there exist at most N elements
x ∈ Zp such that f(x) = 0, and in particular there is only a finite number of
such x.

Proof. We use induction on N . First, let N = 0 and assume that f(x) = 0
for some x ∈ Zp, so that f0 = −

∑
n�1 fnxn. Since |fn| < |f0| for n � 1 and

|x| � 1, the ultrametric inequality gives |
∑

n�1 fnxn| � maxn�1 |fn| < f0, a
contradiction.

Now let N > 0, and let x ∈ Zp be such that f(x) = 0. For y ∈ Zp, we
have

f(y) = f(y)− f(x) =
∑
n�1

fn(yn − xn) = (y − x)
∑
n�1

fn

∑
0�j<n

yjxn−1−j .

Since by Lemma 4.2.1 we can rearrange terms, we have f(y) = (y − x)g(y)
with g(X) =

∑
j gjX

j and gj =
∑

r�0 fj+1+rx
r. By definition of N we have

|gj | � |fN | for all j, |gN−1| = |fN |, and |gj | < |fN | for j > N − 1. It follows
that N − 1 is the largest integer such that |gN−1| = maxj |gj |, so that g
satisfies the hypotheses of the theorem with N replaced by N − 1. By our
induction hypothesis, g has at most N − 1 zeros in Zp, and since f(y) = 0
if and only if y = x or g(y) = 0, f has at most N zeros in Zp, giving the
result. ��
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Remark. It is important to note that in fact f has at most N zeros in Zp,
counting multiplicity in a precise sense that we will make clear below. This
will follow from Theorem 4.5.12, but can easily be proved directly as above.

As immediate corollaries, the reader can prove the following results:

Corollary 4.5.2. If f(X) and g(X) converge for all |x| < R with R > 0 and
if f(x) = g(x) for infinitely many such x, then f(X) and g(X) are identical
as power series.

Corollary 4.5.3. If f(X) converges in Zp and f(X + a) = f(X) for some
a ∈ Zp different from 0 then f is constant (both as a function on Zp and as
a power series).

4.5.2 Krasner Analytic Functions

Before going on to the Weierstrass preparation theorem, we define and study
the basic properties of so-called Krasner analytic functions. As for the next
subsection, this is taken with little change from [Cas1].

Definition 4.5.4. We denote by W the ring of power series that converge
in Zp, in other words whose coefficient of Xn tends to 0, and we set ‖f‖ =
maxn |fn|.

It is immediately checked that this is a metric on W that satisfies the
ultrametric inequality, and that ‖fg‖ = ‖f‖‖g‖.

An example that we will need below is the following.

Lemma 4.5.5. Let f(X) be a rational function with no poles in Zp. Then
f ∈ W .

Proof. Decompose f into partial fractions: the polynomial part is of course
in W . The polar part is a linear combination of fractions of the form 1/(X −
α)k with k � 1. By assumption, α /∈ Zp, so that

1
(X − α)k

= α−k(1−X/α)−k = α−k
∑
n�0

(
k + n− 1

n

)
α−nXn ∈ W

since |α−1| < 1. ��

Lemma 4.5.6. (1) The ring W is complete for the topology induced by ‖ ‖.
(2) If f ∈ W we have ‖f‖ = supx∈Zp

|f(x)|.
(3) Let f (n) be a sequence of elements of W . A necessary and sufficient condi-

tion that it converge (for the topology induced by ‖ ‖) is that the sequence
f (n)(x) converge uniformly in Zp.
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Proof. Let f j(X) =
∑

n�0 f
(j)
n Xn be a Cauchy sequence in W . In partic-

ular, for each n the sequence f
(j)
n is a Cauchy sequence in Cp, hence has a

limit, which we denote by f∗
n. We set f∗(X) =

∑
n�0 f∗

nXn, and we first show
that f∗(X) ∈ W . Thus, let ε > 0. By definition of a Cauchy sequence there
exists J = J(ε) such that ‖f (J) − f (j)‖ < ε for all j � J . Thus by definition
of the metric on W , |f (J)

n − f∗
n| < ε for all n. Since f (J) ∈ W , there exists

m = m(ε) such that |f (J)
n | < ε for all n � m. By the ultrametric inequality it

follows that |f∗
n| < ε for all n � m, and since ε is arbitrary, that f∗

n tends to
0, hence that f∗ ∈ W as claimed. A similar proof now shows that f∗ is the
limit of f (j) in W , proving (1).

(2). By definition we have |f(x)| � ‖f‖ for all x ∈ Zp, so we must show
that we have equality. Since the result is trivial for f = 0, dividing by ‖f‖
we may assume that ‖f‖ = 1, so that fn ∈ Zp for all n. Let φ be the natural
surjective map from Zp to the residue field F = Zp/m, where m = {x ∈
Zp, |x| < 1} is the maximal ideal of Zp. Since fn tends to 0 it follows that
φ(fn) = 0 for n sufficiently large, so that φ(f)(X) =

∑
n�0 φ(fn)Xn is a

polynomial in X, in other words belongs to F[X]. However, F is isomorphic
to the algebraic closure of Fp, and in particular is infinite. It follows that we
may choose some element α ∈ F such that φ(f)(α) �= 0. Since φ is surjective,
we thus have |f(x)| = 1 for any x such that φ(x) = α.

(3) is an immediate consequence of (1) and (2). ��

Lemma 4.5.7. Let f ∈ W , and assume that f vanishes in some nonempty
open set S ⊂ Zp. Then f = 0. Equivalently, let f and g be in W and assume
that f and g coincide on some nonempty open subset of Zp. Then f = g.

Proof. Assume first that 0 ∈ S, so that f(x) = 0 for all x such that
|x| < δ for some δ > 0. Let ζ ∈ Zp be such that ζ �= 0 and |z| < δ,
and set F (x) = f(ζx). Since ζ ∈ Zp we have F ∈ W , and by assumption
supx∈Zp

F (x) = 0. By the above lemma it follows that ‖F‖ = 0, so that
ζnfn = 0 for all n; hence fn = 0 since ζ �= 0.

If 0 /∈ S, let x0 ∈ S, and consider the function f0(x) = f(x + x0), which
vanishes in a nonempty open set containing 0. It is immediate to check that
we still have f0 ∈ W , and by (2) of the above lemma we have ‖f0‖ = ‖f‖, so
we are reduced to the previous case. ��

Lemma 4.5.8. Let f be a function from Zp to Cp. A necessary and sufficient
condition that f belong to W is that it be a uniform limit of rational functions
all having their poles outside Zp.

Proof. Assume first that f(X) =
∑

n�0 fnXn ∈W . Then f is the uniform
limit of the polynomials h(n)(X) =

∑
0�j�n fjX

j , which have no poles (or
simply the point at infinity, if we look projectively). Conversely, assume that
f is the uniform limit of rational functions h(n) without poles in Zp. By
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Lemma 4.5.5 these functions are in W , and since W is complete it follows
that f ∈W . ��

We can now define Krasner analytic functions. Although they can be
defined in much greater generality, we only give two examples.

Definition 4.5.9. Let S be either the set Zp = {x ∈ Cp, |x| � 1} or the set
D = {x ∈ Cp, |x−1| � 1}. We say that a function f defined on S is Krasner
analytic if f is the uniform limit on S of rational functions having all their
poles outside S.

Thus the above lemma states that f is Krasner analytic on Zp if and only
if f ∈W , in other words if and only if its power series coefficients tend to 0.
For the set D the characterization is less simple, but we will need only the
analogue of Lemma 4.5.7.

Lemma 4.5.10. Let f and g be two Krasner analytic functions on the set D
defined above. If f and g coincide on some nonempty open subset of D then
f = g.

Proof. Consider the map from D to Cp sending x to t = 1/(x− 1). Since
|x−1| � 1 for x ∈ D, this map is a well-defined map from D to Zp, and since
x = 1 + 1/t for t �= 0, its image is equal to Zp minus the origin. A uniformly
convergent sequence of rational functions of x ∈ D gives a uniformly conver-
gent sequence of rational functions h(n) of t ∈ Zp \ {0}. However, since all
the poles of these h(n) are outside Zp, it follows that the sequence h(n)(0) is
well defined and is a Cauchy sequence, hence converges, so that the sequence
h(n) is uniformly convergent on the whole of Zp. The map t = 1/(x− 1) thus
gives a one-to-one correspondence between Krasner analytic functions on D
and on Zp, so the lemma follows from Lemma 4.5.7. ��

For future reference, we also note the following characterization of ele-
ments of D.

Lemma 4.5.11. Let z ∈ Cp. The following conditions are equivalent:

(1) |z − 1| � 1; in other words, z ∈ D.
(2) |z| �= 1 or |z| = |z − 1| = 1.
(3) |z/(1− z)| � 1.
(4) For all N � 0, |zpN − 1| � 1.
(5) For all N � 0, |zpN

/(1− zpN

) � 1.

Proof. Left to the reader (Exercise 40). ��
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4.5.3 The Weierstrass Preparation Theorem

Strassmann’s theorem is in fact a consequence of a more precise theorem,
which for complex power series is known as the Weierstrass preparation theo-
rem. However, due to its importance we have preferred to give Strassmann’s
theorem separately first.

Theorem 4.5.12 (Weierstrass preparation theorem). Let f(X) = f0+
f1X + · · · + fnXn + · · · , assume that fn tends to 0, and denote by N
the largest integer such that |fN | = maxn |fn|. There exists a polynomial
g(X) = g0+g1X+· · ·+gNXN and a power series h(X) = 1+h1X+h2X

2+· · ·
satisfying the following conditions:

(1) f(X) = g(X)h(X).
(2) |hn| < 1 for n � 1 and hn tends to 0 as n →∞.
(3) |gN | = maxn |gn|.

Since |hn| < 1 for n � 1, the function h(x) cannot have any zeros in
Zp, so that the zeros of f(X) in Zp are the zeros of the polynomial g(X)
that belong to Zp (or to Cp since |gn|/|gN | ∈ Zp), hence are at most N in
number as claimed by Strassmann’s theorem. When there are fewer than N ,
Strassmann’s bound is not attained.

Proof. We need some lemmas.

Lemma 4.5.13. Let R(X) ∈ Cp[X] and let G(X) = G0 + G1X + · · · +
GNXN ∈ Cp[X] be a nonzero polynomial such that |GN | = maxn |Gn|. If
R(X) = L(X)G(X) + M(X) with deg(M) < deg(G) = N is the Euclidean
division of R(X) by G(X), we have ‖L‖‖G‖ � ‖R‖ and ‖M‖ � ‖R‖.

Proof. Denote by Rm (respectively Lm) the coefficient of Xm in R(X)
(respectively in L(X)), and let d = deg(R(X)), so that d−N = deg(L(X)).
For all j we have

Rd−j = GNLd−N−j + GN−1Ld−N−j+1 + · · ·+ GN−jLd−N .

Since |GN | = maxn |Gn| = ‖G‖, it follows by induction on j that

|Ld−N−j |‖G‖ � ‖R‖ .

We thus obtain ‖L‖‖G‖ � ‖R‖, so ‖M‖ � ‖R‖ by the ultrametric inequality.
��

Lemma 4.5.14. Let R(X) ∈ W and let G(X) = G0 +G1X + · · ·+GNXN ∈
Cp[X] be a nonzero polynomial such that |GN | = maxn |Gn|. There exist
L(X) ∈ W and M(X) ∈ Cp[X] such that

R(X) = L(X)G(X) + M(X) with deg(M) < N .

Furthermore, ‖L‖‖G‖ � ‖R‖ and ‖M‖ � ‖R‖.
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In other words, we can replace in the preceding lemma a polynomial R(X)
by any element of W with the same conclusion.

Proof. Let R(j)(X) ∈ Cp[X] be a sequence of polynomials tending to
R(X). If we perform the Euclidean division of R(j)(X) by G(X), we can
find polynomials L(j)(X) and M (j)(X) such that R(j)(X) = L(j)(X)G(X) +
M (j)(X) and deg(M (j)) < deg(G) = N ; hence for all i and j we have

R(i)(X)−R(j)(X) = (L(i)(X)− L(j)(X))G(X) + (M (i)(X)−M (j)(X)) .

This is the Euclidean division of R(i)(X) − R(j)(X) by G(X), so by the
preceding lemma we have ‖L(i) − L(j)‖ � ‖R(i) − R(j)‖/‖G‖ and ‖M (i) −
M (j)‖ � ‖R(i)−R(j)‖, so that both L(i) and M (i) are Cauchy sequences. By
Lemma 4.5.6, they converge to some limits L and M that clearly satisfy the
conditions of the lemma. ��

Lemma 4.5.15. Assume that for some c < 1 there exist G ∈ Cp[X] and
H ∈ W such that deg(G) = N , ‖f−G‖/‖f‖ � c, and ‖H−1‖ � c. Then there
exist G1 and H1 satisfying the same conditions and such that ‖f −G1H1‖ �
c‖f −GH‖.

Proof. We have f −GH = H(f −G) + f(1−H), hence

‖f −GH‖ � max(‖H‖‖f −G‖, ‖f‖‖1−H‖) � c‖f‖

since ‖H−1‖ � c < 1 implies that ‖H‖ = 1. Thus if we set δ = ‖f−GH‖/‖f‖,
we have δ � c.

Now since ‖f −G‖ < ‖f‖, we have ‖G‖ = ‖f‖ = |fN | and |fN −GN | <
|fN |, hence |GN | = |fN | = ‖G‖. Thus, we may apply Lemma 4.5.14 to
R = f −GH. Thus, there exist L ∈W and M ∈ Cp[X] such that f −GH =
LG + M , deg(M) < N , ‖L‖‖G‖ � ‖f − GH‖, and ‖M‖ � ‖f − GH‖. It
follows in particular that ‖L‖ � δ‖f‖/‖G‖ = δ. We set G1 = G + M and
H1 = H + L. Then deg(G1) = N and

‖f −G1‖ � max(‖f −G‖, ‖M‖) � max(c‖f‖, δ‖f‖) � c‖f‖ ,

since δ � c by what we saw above. Furthermore,

‖H1 − 1‖ � max(‖H − 1‖, ‖L‖) � max(c, δ‖f‖/‖f‖)

since ‖G‖ = ‖f‖. Thus, all the conditions satisfied by G and H are also
satisfied by G1 and H1. In addition, since f −GH = LG + M we have

‖f −G1H1‖ = ‖(H − 1)M + ML‖ � max(‖H − 1‖‖M‖, ‖M‖‖L‖)
� max(cδ‖f‖, δ2‖f‖) = cδ‖f‖ = c‖f −GH‖ ,

proving the lemma. Note that this proof has the same nature as the proof of
Hensel’s lemmas. ��
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Proof of Theorem 4.5.12. We can of course assume that the coefficients
of f are not all 0, since otherwise the result is trivial. By definition of N , we
can write ‖f(X)−

∑
0�n�N fnXn‖ = c‖f‖ for some c < 1. By induction, it is

clear that we can construct G(j)(X) ∈ Cp[X] and H(j)(X) ∈ W satisfying the
conditions of the lemma and such that ‖f−G(j)H(j)‖ � cj+1‖f‖: for j = 0 we
set G(0) =

∑
0�n�N fnXn and H(0) = 1, and for j > 0 we apply the lemma

to G(j−1) and H(j−1). The sequences G(j) and H(j) clearly tend to elements
g and h of Cp[X] and W respectively satisfying the conditions of the lemma,
with in addition the equality f = gh. Furthermore, since ‖h‖ = |h0| = 1,
replacing g by h0g (which preserves |gN | = maxn |gn|) and h by h/h0 we may
assume that h0 = 1, as stated. ��

As an application of the Weierstrass preparation theorem, we prove the
following result, which is the p-adic analogue of the similar result over C.

Corollary 4.5.16. Let f(X) =
∑

i�0 fiX
i be an entire function, in other

words a power series with infinite radius of convergence. Then either f has
a zero in Cp or f = f0 is constant.

Proof. Assume that f has no zeros in Cp (which implies in particular
that f0 �= 0), let n > 0, and consider fn(X) = f(X/pn). By the preparation
theorem there exist a polynomial gn(X) and a power series hn(X) = 1 +∑

i�1 hn,iX
i with |hn,i| < 1 for i � 1 such that fn(X) = gn(X)hn(X), in

other words f(X) = gn(Xpn)hn(Xpn). Since f has no zeros in Cp and Cp is
algebraically closed, the polynomial gn must be constant, necessarily equal
to f0 �= 0. Thus f(X) = f0hn(Xpn), in other words fi = f0hn,ip

ni. Since
|hn,i| < 1 for i � 1 we thus have |fi| < |f0||p|ni = |f0|p−ni since |p| = 1/p.
The integer n being arbitrarily large, we deduce that |fi| = 0, in other words
fi = 0 for i � 1, proving the corollary. ��

4.5.4 Applications of Strassmann’s Theorem

We now come to deeper applications of p-adic fields to solutions of Dio-
phantine equations. We begin with the following very simple application of
Strassmann’s theorem.

Proposition 4.5.17. The only integral solution to the Diophantine equation
x3 + 6y3 = 1 is (x, y) = (1, 0).

Proof. Set θ = 61/3 and let K = Q(θ). Our equation can be rewritten
NK/Q(x + yθ) = 1, and since x and y are integral this means that x + yθ is
a unit of norm 1 in K. We compute that ε = 3θ2 − 6θ + 1 is a fundamental
unit of K, which has norm 1, and since the roots of unity in K are ±1, and
−1 has norm −1, it follows that x + yθ = εk for some k ∈ Z. Now we note
that ε = 1 + 3α with α = θ2− 2θ ∈ ZK , so by the binomial theorem we have
x+ yθ = εk = 1 + 3kα +

∑
j�2 3j

(
k
j

)
αj ; hence there exists β ∈ Z[θ] such that
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x + yθ = 1 + 3k(θ2− 2θ) + 9β. Identifying the coefficients of θ2 on both sides
we deduce that 0 ≡ 3k (mod 9), hence that k ≡ 0 (mod 3). This is not at all
sufficient for solving our equation, not because we did not work hard enough,
but because we used our 3-adic information näıvely.

Indeed, we first note that X3 + 6 is irreducible in Q3[X] because it has
no roots modulo 9 (or because it is an Eisenstein polynomial). Thus K =
Q3(θ) is a cubic extension of Q3. Let p be the unique ideal of K above 3, so
that e = e(p/3) = 3. We can apply Corollary 4.2.18 to a = 3α ∈ K, since
vp(a) � vp(3) = 1 > 1/2 (in fact it is clear that vp(a) = 4/3); hence we
know that the power series in k for (1 + 3α)k converges for all k ∈ Z3. Now,
log3(1 + 3α) ≡ 3α (mod 32Zp), so

x + yθ = (1 + 3α)k = exp3(k log3(1 + 3α)) =
∑
j�0

cjk
j

with c0 = 0, c1 ≡ 3α (mod 32Zp), and cj ≡ 0 (mod 32Zp). Since 1, θ, θ2 are
Q3-linearly independent, we can identify the coefficients of θ2 and we obtain
0 =

∑
j�0 fjk

j with f0 = 0, f1 ≡ 3 (mod 32Z3), and fj ≡ 0 (mod 32Z3). The
hypotheses of Strassmann’s theorem are now clearly satisfied with N = 1, so
there is at most one possible k ∈ Z3 satisfying the equation, and since k = 0
does satisfy it, k = 0 is the only solution, proving that x + yθ = ε0 = 1. ��

The reader is advised to examine closely the difference between the näıve
approach given at the beginning of the proof, which is insufficient to conclude,
and the use of Strassmann’s theorem, which does not seem to use much more
3-adic information, since we still reason modulo 32. The key extra 3-adic
information that we use is that the power series for (1 + 3α)k converges for
all k such that |k|p � 1.

We now give a more sophisticated use of Strassmann’s theorem.

Proposition 4.5.18 (Nagell). Let un be the sequence defined by u0 = 0,
u1 = 1, and un = un−1 − 2un−2 for n � 2. Then un = ±1 if and only if
n = 1, 2, 3, 5, and 13.

Proof. Note that the values of un for 0 � n � 13 are respectively 0, 1, 1,
−1, −3, −1, 5, 7, −3, −17, −11, 23, 45, −1, so that the indicated values of
n indeed give un = ±1.

If α and β are the roots of the characteristic equation X2−X +2 = 0, we
obtain the explicit formula un = (αn−βn)/(α−β). We have α = (1+

√
−7)/2

and β = (1−
√
−7)/2, which considered as complex numbers have the same

modulus. Thus we cannot trivially say that |un| tends to infinity, for instance.
However, we need not work in C; indeed, we can also work in any field of
characteristic zero in which X2 − X + 2 splits. Let us choose for example
K = Q11. Since X2 −X + 2 ≡ (X − 5)(X − 7) (mod 11Z11), one of Hensel’s
lemmas (either Proposition 4.1.29 or Proposition 4.1.37) implies that there
exist distinct roots α and β of X2 − X + 2 in Z11, and we check that we
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may choose α ≡ 5 + 1 · 11 ≡ 16 (mod 112Z11), so that β ≡ 1 − α ≡ 106
(mod 112Z11). We would now like to apply Corollary 4.2.18 and Strassmann’s
theorem. However, α− 1 does not satisfy |α− 1|11 < 11−1/10. Thus, we first
apply Fermat’s little theorem in Z/11Z, which implies that A = α10 ≡ 1
(mod 11Z11) and B = β10 ≡ 1 (mod 11Z11). Thus |A − 1|11 � 1/11 and
|B− 1|11 � 1/11, so we can apply Corollary 4.2.18 to A− 1 and B− 1. Thus,
setting a = A − 1 and b = B − 1, there exist power series φa and φb that
converge on Z11 and are such that φa(x) = Ax and φb(x) = Bx.

For any n, we write n = 10s + r with 0 � r � 9. Thus, u10s+r =
(αrAs − βrBs)/(α − β). Since A ≡ B ≡ 1 (mod 11Z11) and α − β ≡ 9 �≡ 0
(mod 11Z11), it follows that u10s+r ≡ ur (mod 11), so that by the small table
of un that we have given, un = ±1 implies that r = 1, 2, 3, or 5. For r = 1,
2, 3, 5, and 10, we compute that αr ≡ 16, 14, 103, 111, and 100 modulo 112,
and βr ≡ 106, 104, 13, 21, and 78 modulo 112. Thus a ≡ 99 (mod 112Z11)
and b ≡ 77 (mod 112Z11). If we set ε = ur = ±1 for r = 1, 2, 3, and 5, we
have

(α− β)(u10s+r − ε) = αrφa(s)− βrφb(s)− ε(α− β) .

Let φ(s) be the power series on the right-hand side. If we write φ(X) =
c0+c1X+c2X

2+· · · , then c0 = φ(0) = αr−βr−ur(α−β) = 0. Furthermore,
by Taylor’s theorem, since log11(1 + a) ≡ log11(1 + b) ≡ 0 (mod 11Z11), it is
clear that for j � 2 the coefficients of Xj of φa(X) and φb(X) are divisible
by 112, so that cj ≡ 0 (mod 112Z11) for j � 2.

Since log11(1 + a) ≡ a ≡ 99 (mod 112Z11) and log11(1 + b) ≡ b ≡ 77
(mod 112Z11), it follows that c1 ≡ 11(9αr − 7βr) (mod 112Z11); hence using
the table above, for r = 1, 2, 3, and 5 we have c1 ≡ 77, 33, 0, and 55 modulo
112Z11. In particular, for r = 1, 2, and 5 we have v11(c1) = 1 and v11(cj) � 2
for all other j, so that we must take N = 1 in Strassmann’s theorem, proving
that φ(X) has at most 1 zero in Zp. Since 0 is trivially such a zero, there are
no others, so it follows that for r = 1, 2, and 5 the only solution to un = ±1
with n ≡ r (mod 10) is n = r.

Since for r = 3 we have c1 ≡ 0 (mod 112Z11), we must work a little more.
Again by Taylor’s theorem we know that cj ≡ 0 (mod 113Z11) when j � 3.
Furthermore, a similar computation to that done above shows that

φa(X) ≡ 1 + 86 · 11X + 2 · 112 X2 (mod 113Z11) ,

φb(X) ≡ 1 + 51 · 11X + 8 · 112 X2 (mod 113Z11) ,

so
φ(X) ≡ 8 · 112 X + 3 · 112 X2 (mod 113Z11) .

In particular, c2 �≡ 0 (mod 113Z11); hence we must take N = 2 in Strass-
mann’s theorem, proving that φ(X) has at most two zeros in Zp. Since we
know the trivial zero s = 0, but also s = 1 (corresponding to n = 13), there
are no others, finishing the proof of Nagell’s result. ��
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Remark. There are two important things to note in the above proof. First,
we had to choose a prime p such that the polynomial X2 − X + 2 splits in
Qp. This is easy, since one-half of the primes (those that satisfy

(−7
p

)
= 1,

in other words p ≡ 1, 2, and 4 modulo 7) satisfy this condition. We did not
use p = 2 for other reasons. On the other hand, we needed to choose a prime
p such that the upper bound on the number of solutions of φ(X) = 0 in Zp

given by Strassmann’s theorem is equal to the number of known solutions.
If this is not the case, we must change the prime p. Note that the failure in
using Strassmann’s theorem may come from two different reasons. First, of
course, Strassmann’s bound may not be optimal, as one can see by looking
at the Weierstrass preparation Theorem 4.5.12. Second, even if Strassmann’s
bound is optimal, it counts all solutions in Zp, and there may be some that
do not correspond to elements of Z. For example, if we had chosen p = 23,
we would have found a spurious solution in Zp, which does not correspond
to a solution in Z; see Exercise 41.

Corollary 4.5.19. The only solutions in Z of

x2 + 7 = 2m

are (x,m) = (±1, 3), (±3, 4), (±5, 5), (±11, 7), and (±181, 15).

Proof. It is clear that x is odd; hence set x = 2y − 1 with y ∈ Z, so that
we obtain y2− y +2 = 2m−2. Let α = (1+

√
−7)/2 in some algebraic closure

of Q, and β = 1− α, so that α and β are the roots of X2 −X + 2 = 0. Then
Z[α] is Euclidean, hence a principal ideal domain. Thus

(y − α)(y − β) = 2m−2 = (αβ)m−2 .

Now, α and β have norm 2 hence generate prime ideals, so (y − α)Z[α] =
αiβjZ[α] and (y − β)Z[α] = αm−2−iβm−2−jZ[α] for some i and j, and since
y − β = y − α we must have j = m− 2− i. Since the only units in Z[α] are
±1, this means that y − α = ±αiβm−2−i and y − β = ±αm−2−iβi.

However, since α− β =
√
−7 has odd norm so is coprime to 2, it follows

that y − α and y − β are coprime in Z[α] since otherwise a common divisor
would divide α − β and 2. Thus min(i,m − 2− i) = 0, in other words i = 0
or i = m − 2, so that either y − α = ±βm−2 and y − β = ±αm−2 or
y − α = ±αm−2 and y − β = ±βm−2. In both cases, by subtracting we
deduce that α− β = ±(αm−2− βm−2), which is exactly the problem studied
above. Thus the only solutions are for m− 2 = 1, 2, 3, 5, and 13, which give
the solutions stated in the corollary. ��

4.6 Exercises for Chapter 4

1. In Proposition 4.1.17 choose K = Q and ‖ ‖ to be the ordinary absolute value,

so that K̂ = R. Let f be the map from Q to R such that f(x) = 0 for x2 < 2
and f(x) = 1 for x2 > 2.
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(a) Show that f is continuous on Q.
(b) Show that f cannot be extended by continuity to a map from R to R.
(c) Let xn be the sequence in Q defined by x0 = 1 and xn+1 = xn + (2 − x2

n)/2.
Show that (xn) is a Cauchy sequence, but that f(x2n) = 0 and f(x2n+1) = 1,
so that f(xn) does not converge.

2. Prove that a locally compact topological space is totally discontinuous if and
only if any point has a fundamental system of neighborhoods that are both
open and closed.

3. Recall that we set qp = p for p � 3 and q2 = 4. Let a and b be in qpZp , and
assume that a ≡ b (mod pvZp) for some v � 2. Prove that for all n � 1 we have
an/n! ∈ qpZp and that

an

n!
≡ bn

n!
(mod (qn−1

p /n!)pvZp) .

Note that by Lemma 4.2.8 we have qn−1
p /n! ∈ Zp , so this implies in particular

the congruence modulo pvZp .

4. (N. Elkies.) Let p be a prime number, and let Sp(k) be the series in Qp defined
by

Sp(k) =
∑
n�0

nkn! .

Show that this series converges in Zp and that there exist integers A(k) and
B(k) in Z, independent of p, such that

Sp(k) = A(k)Sp(0) + B(k) .

Find recurrence formulas and generating functions for A(k) and B(k), and com-
pute the first few values.

5. Generalizing Eisenstein’s criterion (Proposition 4.1.35), prove the following. Let
f(X) = X2m+1 + f2mX2m + · · · + f0 ∈ Zp [X] be a polynomial of odd degree,
and assume that vp(fj ) � 1 for m +1 � j � 2m, vp(fj ) � 2 for 0 � j � m, and
vp(f0) = 2. Show that f is irreducible in Kp [X].

6. Show that
(√

2
p

)
is not necessarily in Zp [

√
2]. More precisely, show that it is in

Zp [
√

2] if and only if p ≡ ±1 (mod 8).

7.

(a) Show that as claimed in the text we have
∑

k�1�n/pk� = (n − sp(n))/(p − 1),

where sp(n) is the sum of the digits of n in base p.
(b) Deduce that the p-adic valuation of a binomial coefficient

(
n
m

)
for n � m is

equal to the number of carries in the base-p subtraction of m from n.

8.

(a) Prove that for all x ∈ R the expression

{15x} + {10x} + {6x} − {30x} − {x}

takes only the values 0 and 1, where as usual {y} denotes the fractional part
of y.

(b) (Čebyshev.) Deduce that for all n ∈ Z�0 we have Cn ∈ Z, where

Cn =
(30n)!n!

(15n)!(10n)!(6n)!
.
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(c) Deduce that for any prime p we have

sp(15n) + sp(10n) + sp(6n) � sp(30n) + sp(n) ,

where as usual sp(m) is the sum of the digits in base p of m.
(d) (More difficult, and due to F. Rodriguez-Villegas.) Prove that the power series

C(T ) =
∑

n�0 CnT n is an algebraic function of T , and that the degree of its

minimal polynomial over Q(T ) is equal to 483840 (!).

9. Prove that if vp(a) � 0 but vp(a) /∈ Z, then writing as usual vp(a) = q − θ with
0 < θ < 1, as n → ∞ we have

vp

((
a

n

))
∼ −n

1

pq

(
1

p − 1
+ θ

)
,

and deduce that Corollary 4.2.15 (2) is still valid in this case, in other words
that the power series (1 + x)a converges if and only if vp(x) > V (a) (note that
this is trivially false if vp(a) � 0 and vp(a) ∈ Z, as can be seen by choosing
a ∈ Z>0 for instance, since in that case it converges for all x).

10. As a complement to Lemma 4.2.8, prove that if K = Qp , a ∈ Zp , a �= 0, and

1 � n < pvp (a), then in fact

vp

((
a

n

))
= vp(a) − vp(n) .

11. Prove Proposition 4.2.11 and Corollary 4.2.15 (5).

12. Compute the sum of the binomial series expansion for (1+ x)1/2 at x = 45/4 in
Q3 and in Q5. Are they equal? Find an example for which the series converge to
different rational values for two different p-adic fields, and also in R (necessarily
to the same value as in one of the p-adic fields since only two values are possible).

13. (This exercise uses the elementary properties of the Möbius function; see Chap-
ter 10.)

(a) Prove that we have the formal infinite product

exp(X) =
∏
n�1

(1 − Xn)−µ(n)/n .

(b) Show that the Artin–Hasse exponential has the formal infinite product

exp(X + Xp/p + · · · ) =
∏

n�1, p�n

(1 − Xn)−µ(n)/n .

(c) Deduce from Corollary 4.2.15 and the above another proof that it has p-integral
coefficients, in other words Corollary 4.2.21.

14. By choosing k = p in Corollary 4.2.23, prove Wilson’s theorem (p − 1)! ≡ −1
(mod p).

15. It follows from Corollary 4.2.23 that for p � 3 we have 1+2/(p−1)!+p/(2p−1)! ≡
0 (mod p2Zp).

(a) Prove this directly (i.e., without using Dwork’s theorem).
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(b) Using Exercise 30 of Chapter 2, prove more precisely that 1 + 2/(p − 1)! +
p/(2p − 1)! ≡ (1 + 1/(p − 1)!)2 (mod p3Zp) for p � 5.

16. Let f be a continuous function from Zp to Zp , and let ak be defined as in
Mahler’s Theorem 4.2.26. Prove that supx∈Zp

|f(x)| = supk�0 |ak |.
17. This exercise gives a converse to Proposition 4.2.28. Let f(x) =

∑
k�0 bkxk

be a power series, and assume that for all k we have vp(bk) � βk + β′′ for
some constants β and β′′ with β > 0. Prove that f(x) has a Mahler expansion
f(x) =

∑
k�0 ak

(
x
k

)
with

vp(ak) � (β + 1/(p − 1))k − (1/(p − 1))sp(k) + β′′ .

18. Let µp as in Corollary 4.3.5 be the group of z ∈ Zp such that zq−1 = 1, where
we set q = Np. Let g0 be the image in Zp of any lift in ZK of a generator of the
cyclic group (ZK /p)∗. Show that the sequence un in Zp defined by u0 = g0 and

un+1 =
(q − 2)uq−1

n + 1

(q − 1)uq−2
n

for n � 0

converges to χ(g0), which is a generator of µp . Compare the speed of convergence
with that of the sequence defining χ(g0).

19. Extend the Teichmüller homomorphism ω to all of Zp by setting ω(x) = 0 if
x ∈ pZp , in other words if x is not a p-adic unit. Let

Gp = µp ∩ {0} = {z ∈ Zp , zNp = z} .

Define an addition law ⊕ on Gp by setting x⊕y = ω(x+y), and keep the usual
multiplication. Prove that Gp is a (finite) field and that ω is a canonical field
isomorphism from ZK /p to Gp .

20. Let p and q be distinct prime numbers. Prove that when p �≡ 1 (mod q) the
only qth root of unity in Qp(ζp) is 1, while when p ≡ 1 (mod q) there are q
such roots of unity, which are all distinct modulo pZp , where p = (1− ζp)Z[ζp ].
(Hint: if η is such a root of unity you may consider the subextension Qp(η)/Qp

of Qp(ζp)/Qp .)

21. By Proposition 3.5.5 we know that (1 − ζp)p−1/p is a unit.

(a) Using the fact that logp(1 − (1 − ζp)) = 0, prove more precisely that

(1 − ζp)p−1

p
≡ −1 (mod (1 − ζp)Z[ζp ]) .

(b) More generally, if k � p − 1 show that

k!
(1 − ζp)p−1

p
≡ −k!

( ∑
1�i�k

(1 − ζp)i−1

i

)
(mod (1 − ζp)kZ[ζp ]) .

22. For k � 1, set Lik(X) =
∑

n�1 Xn/nk , so that for instance Li1(X) = − log(1 −
X). These are the polylogarithm series.
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(a) Show that we have the formal power series identity

Li2(X) + Li2(−X/(1 − X)) = −1

2
log2(1 − X) ,

and show that this identity is also valid with X replaced by x ∈ pZp (use
Proposition 4.2.7).

(b) Deduce that for n � 1 we have the (equivalent) combinatorial identities

1

n2
+

1

n

n∑
k=1

(−1)k

k

(
n

k

)
= −1

2

n−1∑
k=1

1

k(n − k)
and

n∑
k=1

(−1)k−1

k

(
n

k

)
=

n∑
k=1

1

k
.

(c) Show that in the field K = Qp(ζp) we have
∑

n�1(1 − ζp)n/n = 0.

(d) From now on we assume that p = 2. Show that in Q2 we have

Li1(2) =
∑
n�1

2n

n
= 0 and Li2(2) =

∑
n�1

2n

n2
= 0 ,

but that v2(Lik(2)) � −2 (and in particular Lik(2) �= 0) for all k � 3.
(e) Set Sk(N) =

∑
1�n�N 2n/nk . Show that in Q2 we have

S1(N) = −2N
∑
j�1

2j

j + N
= N2N

∑
j�1

2j

j(j + N)
= −N22N

∑
j�1

2j

j2(j + N)
.

(f) Prove that for m � 4 we have v2(2
j/(j2(j + 2m))) � −1, except for j = 4, for

which v2(2
j/(j2(j + 2m))) = −2.

(g) Deduce that for m � 4 we have v2(S1(2
m)) = 2m + 2m − 4.

(h) In a similar way, show that

S2(N) = N2N
∑
j�1

2j(2j + N)

j2(j + N)2
,

and that for m � 4 we have v2(S2(2
m)) = 2m + m − 1.

23. Give alternative proofs of Propositions 4.3.22 and 4.3.23 by proving by induction
on k that for all k � 1 (when p � 3) or k � 3 (when p = 2) there exists bk such

that a/pvp (a) ≡ b2
k (mod pk).

24.

(a) Let p � 3 be a prime. Using Proposition 4.3.22, show that, up to isomorphism,

there are exactly 3 quadratic extensions of Qp given by Qp(D1/2) for D = n,
p, pn, where n is any integer such that

(
n
p

)
= −1, and that among those the

unique unramified one is for D = n.
(b) Similarly, using Proposition 4.3.23, show that, up to isomorphism, there exist

exactly seven quadratic extensions of Q2 given by Q2(D
1/2) for D = 2, 3, 5, 6,

7, 10, 14, and that among those the unique unramified one is for D = 5.

25. (This is more difficult.) Compute the number of isomorphism classes of cubic
extensions of Qp , separating the cases p ≡ 1 (mod 3), p ≡ 2 (mod 3), and p = 3.
In the first case, show that there exists an integer n such that the congruence
x3 ≡ n (mod p) has no solution and that there exists ζ ∈ Qp with ζ3 = 1 and
ζ �= 1.
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26.

(a) Prove that Theorem 4.4.3 is still valid if K is a non-Archimedean complete field
of characteristic 0, and not only the completion of a number field.

(b) Under the same conditions show that Krasner’s lemma (Proposition 4.4.6 (2)
and (3)) is also still valid.

27. Recall that if L/K is any finite extension of commutative fields and x ∈ L, the
trace TrL/K (x) is the trace of the linear map multiplication by x from L to L.
Show that if Kp is a p-adic field and if x ∈ pZp then TrKp/Qp (x) ∈ pZp .

28.

(a) Show that a root θ of the polynomial X3 − 3X + 1 defines an unramified
cubic extension of Q2. Then show that the Frobenius automorphism is given
by σ(θ) = θ2 − 2.

(b) Now consider the unramified cubic extension of Q2 (necessarily isomorphic to
the preceding one) defined by a root α of the polynomial X3 +X +1. Compute
σ(α) as a polynomial of degree 2 in α in two different ways: either directly, or
by giving explicitly a Q2-isomorphism with the preceding field. It will be useful
to set v = (−31)1/2/3 ∈ Q2.

29. Denote by K the unique unramified cubic extension of Q7 up to isomorphism.
The aim of this exercise is to show how to express the Frobenius automorphism
σ of K depending on the way in which K is represented.

(a) Show that there exists a unique u ∈ Z7 such that u2 = −3 and u ≡ 2
(mod 7Z7).

(b) Let θ be a root of x3−2 = 0. Show that Q7(θ) is isomorphic to K, give explicitly
the three roots of x3−2 = 0 in terms of θ and u, and finally compute explicitly
σ(θ) as a polynomial of degree less than or equal to 2 in θ.

(c) Let α be a root of x3 − 3x + 1 = 0. Show that Q7(α) is also isomorphic to K,
check that α2 − 2 is also a root, then as before give explicitly all three roots
and compute explicitly σ(α).

(d) Let β be a root of x3 + x + 1 = 0. Show that Q7(β) is also isomorphic to
K. Explain how to compute σ(β) by induction on the p-adic precision, and
compute σ(β) explicitly to precision O(73).

30. Let L/K be a ramified cyclic extension of degree p of p-adic fields. Prove that
ζp ∈ K, where as usual ζp is a primitive pth root of unity.

31. Show that if α ∈ Qp then logp(α) ∈ Qp(α).

32. With evident notation, set r = �log(e(p/p) + 1)/ log(p)�. Show that when z ≡ 1

(mod pZp) then for k � r we have zpk ≡ 1 (mod p
e(k−r)+1Zp).

33. Let n � 1.

(a) Prove that for all x ∈ Cp such that |x| � 1 we have |(1 + x)pn − 1| �
|x|max(|x|, 1/p)n .

(b) Prove that if |x| � p−1/(p−1) then |(1 + x)pn − 1| � |x|/pn , which is a stronger

inequality when 1/p < |x| � p−1/(p−1).

34. Let p be an odd prime, and let a, b, and d in Z be such that d �= 0 and
a2 − db2 �= 0.

(a) Show that

1

2
√

d
logp

(
a + b

√
d

a − b
√

d

)
∈ Zp .
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Note that the argument of logp is not necessarily in the disk of convergence,
and that you must show both that the expression belongs to Qp and that it is
a p-adic integer.

(b) Assume that a + b
√

d has norm ±1, in other words that a2 − b2d = ±1. Show

that logp(a + b
√

d)/(2
√

d) ∈ Zp .
(c) Deduce from this that if ζ5 denotes a primitive 5th root of unity in C5, then

for a suitable choice of
√

5 we have

1√
5

log5(1 − ζ5) =
1

2
√

5
log5

(
1 +

√
5

2

)
∈ Z5 .

We will see in Chapter 11 that in fact

1√
5

log5

(
1 +

√
5

2

)
= −2

5
ψ5

(
1

5

)
− 1

2
γ5 ,

where ψ5 is a 5-adic generalization of the logarithmic derivative of the gamma
function and γ5 is the 5-adic Euler constant.

35. With the notation of Definition 4.4.37 and Theorem 4.4.39, show that for p � 3,
we have more precisely

Dπ(1) = ζπ ≡ 1 + π +
π2

2
(mod p

3) ,

so that in particular vp(ζπ − (1 + π)) = 2 (for p = 2 we have ζπ = 1 + π).

36. Let f(x) =
∑

n�0 anx−n be a series that converges in Cp for all x such that

|x| > 1. Assume that there exists a ∈ Z�1 such that for all such x we have
f(x + a) = f(x). Show that f(x) is a constant equal to a0 (note that this is not
the same result as Corollary 4.5.3).

The following three exercises define and give some properties of the inverse
binomial symbol, introduced, I believe, by J. Diamond in [Dia1] and [Dia2].
More properties will be given in the exercises to Chapters 9 and 11.

37. Define the inverse binomial symbol
[
n
x

]
by the formula[

n

x

]
=

n!

x(x + 1) · · · (x + n)
.

(a) Prove that the inverse binomial symbol satisfies properties similar to the ordi-
nary binomial symbol, more precisely show that[

n

x

]
−
[

n

x + 1

]
=

[
n + 1

x

]
and

[
n

x + 1

]
=

x

n + 1

[
n + 1

x

]
.

(b) If x ∈ Cp is such that |x| > 1, prove that∣∣∣∣∣
[
n

x

]∣∣∣∣∣ � n

|x|n+1pn/(p−1)
,

and if x ∈ C, using Proposition 9.6.17 prove that
[
n
x

]
∼ Γ(x)n−x , so that in

particular |
[
n
x

]
| � |Γ(x)|n−�(x).
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38. Given a sequence (bn)n�0, define its Stirling transform as the sequence (an)n�0

given by the formal identity∑
n�0

bn(1 − e−T )n =
∑
n�0

anT n/n! ,

so that the bn can be recovered from the an by the inverse Stirling transform
given by the formal identity∑

n�0

(an/n!)(− log(1 − T ))n =
∑
n�0

bnT n

(so for example a0 = b0, a1 = b1, a2 = 2b2 − b1, a3 = 6b3 − 6b2 + b1, etc.).

(a) Assume that a function f from Cp to Cp has an expansion of the form

f(x) =
∑
n�0

bn

[
n

x

]

that converges for |x| > R � 1. Prove that for the same values of x we have
the Laurent series expansion

f(x) =
∑
n�0

an

xn+1
,

where an is the Stirling transform of bn (Hint: first show that this is true if
bn = 0 for n sufficiently large; then use a suitable uniformity argument to
justify passing to the limit.)

(b) Prove that the converse is true.
(c) Prove similar results for a function f from to C to C.
(d) As special cases, prove that

1

x2
=
∑
n�1

1

n

[
n

x

]
,

where |x| > 1 if x ∈ Cp , and �(x) > 0 if x ∈ C, and that

1

x − a
=

1

x
+
∑
n�1

a(a + 1) · · · (a + n − 1)

x(x + 1) · · · (x + n)
,

where |x| > |a| if x and a are in Cp , and �(x) > �(a) if x and a are in C.

39. Let x be a parameter in C or in Cp , and let k ∈ Z�0.

(a) Assuming that �(x) > k + 1 if x ∈ C, or |x| > 1 if x ∈ Cp , use the previous
exercise to prove the identity

∑
n�0

(
n

k

)[
n

x

]
= (−1)k+1

[
k

1 − x

]

(see Exercise 19 of Chapter 11 for another proof).
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(b) Prove that if x and y are in C with �(x) < 1 and �(x + y) > 1 or if x and y
are in Cp with vp(x) < 0 and vp(y) < 0, with the notation used above we have

∑
n�0

[
n

x

][
n

y

]
= −

∑
n�0

1

n + y

[
n

1 − x

]

(note that the symmetry in x and y of the right-hand side of this expression is
not clear directly).

40. Prove Lemma 4.5.11.

41. Instead of choosing p = 11 in the proof of Proposition 4.5.18, choose p = 23.
Show that α ≡ 33 (mod 232), β ≡ 497 (mod 232), and that if φ(s) = (α −
β)u22s+12 has the power series expansion φ(X) = c0 + c1X + c2X

2 + · · · , then
v23(c0) = v23(c1) = 1, and cj ≡ 0 (mod 232) for j � 2, so that Strassmann’s
theorem says that there exists at most one zero of φ(X) in Zp . Show that there
indeed exists such a zero, and using Nagell’s result that it does not belong to
Z. Deduce that for all v there exists s such that u22s+12 ≡ −1 (mod 23v).

42. Let θ = tan−1(
√

7). Using Proposition 4.5.18, find the positive integers n such
that sin((2n + 1)θ) = ± sin(θ)/2n .

43. Using Strassmann’s theorem with p = 3, find all the integral solutions to the
equation x3 + 2y3 = 1.

44. Using Strassmann’s theorem with p = 3, find all the integral solutions to the
equation x3 + 6xy2 − y3 = 1.

45. Let un be defined by u0 = u1 = 0, u2 = 1, and un = 2un−1 − 4un−2 + 4un−3

for n � 3. Prove the following result due to M. Mignotte: un = 0 if and only if
n = 0, 1, 4, 6, 13, or 52 (use p = 47).

46. Let un be defined by u0 = 1, u1 = 2, un = 3un−1 − 5un−2 for n � 2. Show that
un = 1 if and only if n = 0, 2, or 6 (use p = 3).

47. Let un be defined by u0 = 0, u1 = 1, un = 3un−1 − 7un−2 for n � 2. Show
(without using Strassmann’s theorem!) that un = 0 only for n = 0. Find the
smallest m > 0 such that um ≡ 0 (mod 54), and show that for every v there
exists n > 0 such that un ≡ 0 (mod 5v).

48. Let un be defined by u0 = u1 = 1, un = 5un−1 − 11un−2 for n � 2. Show that
un = 1 if and only if n = 0 or 1 (use p = 5). Can one have un = 0?

49. Let un be defined by u0 = 0, u1 = 1, un = 2un−1 − 3un−2 for n � 2. Show
that un = ±1 if and only if n = 1 or 3 (use p = 11). Deduce from this all the
solutions for x ∈ Z and m � 0 of x2 + 2 = 3m .

50. (Mahler–Lech–Cassels.) More generally, let un be defined by a linear recurrence
relation with constant coefficients, and let c ∈ Z. Show that either un = c occurs
only for finitely many n, or un = c for all n in some arithmetic progression
(prove first, for instance using one of Hensel’s lemmas, that for any polynomial
P (X) ∈ Q[X] there exists a prime p for which P (X) splits completely in Qp [X]).



5. Quadratic Forms and Local–Global
Principles

The aim of this chapter is to give the most important examples (and also
some counterexamples, but these abound) of local to global principles.

In rough terms, a local–global principle is a statement that asserts that a
certain property is true globally (usually in a number field) if and only if it
is true everywhere locally (usually in p-adic fields). It is important to know
when this is indeed true, and when it may not be true.

We will give three local–global principles. The best known is certainly
the Hasse–Minkowski theorem, stating that the principle is valid for a single
quadratic form in any number of variables. The second is the Hasse norm
principle, stating that the principle is valid for the norm form of a cyclic ex-
tension of number fields. The third one is a local–global principle for powers.
We will prove the Hasse–Minkowski theorem only for the number field Q,
the general case being more difficult, and not really more instructive. We will
mention the Hasse norm theorem and a couple of consequences, but we will
not prove it. As main reference for the Hasse–Minkowski theorem, we will
follow very closely the beautiful little book by Serre [Ser1], with also some
ideas from [Bor-Sha] (see also an unorthodox presentation in [Con]). For the
norm principle we follow [Jan], and for powers we follow [Gras].

5.1 Basic Results on Quadratic Forms

The first four sections of this chapter will be devoted to quadratic forms,
culminating in the proof of the Hasse–Minkowski theorem and some appli-
cations. In the first section, we study quadratic forms in complete generality
over a commutative field K, which will always be assumed to be of charac-
teristic different from 2 (this will be an implicit assumption that will usually
not be repeated in the statements). Although the traditional way of study-
ing quadratic forms is to consider them as homogeneous polynomials in n
variables, it is much more intrinsic to consider them in the more abstract
context of quadratic modules, exactly in the same way as doing linear algebra
with general vector spaces and linear maps is much cleaner than doing linear
algebra on Kn using row or column vectors and matrices.

We then specialize the field K in the same order of complexity as that
explained at the end of Chapter 1, in other words first to finite fields, then
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to p-adic fields (including p = ∞), and finally to number fields, in fact only
to K = Q. In each case, we solve completely the problem of representation
of an element of the field by a quadratic form.

It is to be noted that a slightly different and shorter approach to the proof
of the Hasse–Minkowski theorem has been given by J.-H. Conway in [Con],
which gives an unconventional, elementary, and useful approach to quadratic
forms over Q.

5.1.1 Basic Properties of Quadratic Modules

Let V be a K-vector space of finite dimension n. Recall that a quadratic form
on V is a map q from V to K such that q(ax) = a2q(x) for all x ∈ V and
a ∈ K, and b(x, y) = (q(x+y)−q(x)−q(y))/2 is a (symmetric) bilinear form
(so that q(x) = b(x, x)). If (ei)1�i�n is a basis of V , the matrix Q of q in this
basis is the matrix b(ei, ej), also called the Gram matrix of the vectors ei with
respect to q. Thus, if x =

∑
1�i�n xiei ∈ V , and if X is the column vector

of the xi, then q(x) = XtQX and b(x, y) = Y tQX = XtQY with evident
notation. The matrix Q is a symmetric matrix. If (e′i) is another basis of
V and if P is the matrix expressing the e′i in terms of the ei, then again
with evident notation X = PX ′, so that q(x) = XtQX = X ′tP tQPX ′;
hence the matrix of q in the new basis is equal to P tQP . In particular,
det(P tQP ) = det(Q) det(P )2, so the class of det(Q) modulo nonzero squares
of K is independent of the chosen basis and called the discriminant of q,
denoted by d(q).

A pair (V, q) as above will be called a quadratic module, and if x and y are
elements of (V, q) we will write x · y (the dot product of x and y) instead of
b(x, y), and in particular q(x) = x · x. If f is a map from a quadratic module
(V, q) to another (V ′, q′), we will say that f is a morphism if f is a linear
map such that for all x and y we have f(x) · f(y) = x · y for the respective
dot products.

We will say that two elements x and y are orthogonal if x · y = 0. The
set of elements orthogonal to a given subset H of V will be denoted by H⊥,
and it is clearly a subspace of V . Two subspaces V1 and V2 of V are said to
be orthogonal if V1 ⊂ V ⊥

2 (or equivalently, if V2 ⊂ V ⊥
1 ), in other words if

every element of V1 is orthogonal to every element of V2. We will say that
V is the orthogonal direct sum of V1 and V2 if V = V1 ⊕ V2 and if V1 and
V2 are orthogonal. This of course generalizes to any number of subspaces. To
indicate the orthogonality, we will write V = V1 ⊕⊥ V2.

The space V ⊥ of vectors orthogonal to all of the vectors of V is called
the radical of V and denoted by rad(V ). It is clear that if W is a supplement
to rad(V ), in other words if W ⊕ rad(V ) = V , then automatically V =
W ⊕⊥ rad(V ).

Let Q be the matrix of q in some basis. It is clear that X ∈ V ⊥ if and
only if Y tQX = 0 for all Y , hence if and only if QX = 0. Thus V ⊥ is equal
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to the kernel of the matrix Q, and in particular dim(V ⊥) = dim(V )− rk(q),
where rk(q) is the rank of the matrix Q (which is clearly independent of the
chosen basis). Thus V ⊥ = {0} if and only if Q has maximal rank, hence if
and only if d(q) �= 0.

Definition 5.1.1. We will say that a quadratic form (or the corresponding
quadratic module) is nondegenerate if rad(V ) = V ⊥ = {0}, or equivalently,
if d(q) �= 0.

Proposition 5.1.2. Let (V, q) be a nondegenerate quadratic module.

(1) All morphisms from (V, q) into some other quadratic module (V ′, q′) are
injective.

(2) If U is a subspace of V then

(U⊥)⊥ = U, dim(U)+dim(U⊥) = dim(V ), rad(U) = rad(U⊥) = U∩U⊥ .

Furthermore, the quadratic module (U, q) is nondegenerate if and only if
(U⊥, q) is nondegenerate, if and only if V = U ⊕⊥ U⊥.

(3) If V = V1 ⊕⊥ V2, then (V1, q) and (V2, q) are nondegenerate.

Proof. (1). If f is a morphism from (V, q) to (V ′, q′) and x is such that
f(x) = 0, then for all y ∈ V we have x · y = f(x) · f(y) = 0, hence x = 0
since q is nondegenerate.

(2) and (3). For any subspace U of V , define a linear map qU from V
to the dual U∗ of U by qU (x) = (y �→ x · y). The kernel of qU is clearly
equal to U⊥, and in particular, since q is nondegenerate, qV is injective,
hence bijective. Furthermore, we clearly have qU = sU ◦ qV , where sU is the
canonical surjection from V ∗ to U∗. It follows that qU is surjective. Thus
dim(Ker(qU )) = dim(V ) − dim(U∗); in other words, dim(V ) = dim(U) +
dim(U⊥). In particular, U and (U⊥)⊥ have the same dimension, and since
the first is contained in the second they are equal. The other assertions follow
immediately from this. ��

Definition 5.1.3. We say that x ∈ V is isotropic if q(x) = 0. A subspace U
of V is isotropic if all its elements are isotropic.

It is clear that U is isotropic if and only if U ⊂ U⊥ if and only if the
restriction of q to U is identically 0.

Definition 5.1.4. A quadratic module (U, q) is called a hyperbolic plane if
it has a basis formed by two isotropic elements x and y such that x · y �= 0.

Multiplying one of the vectors by 1/(x · y), we may assume if desired that
in fact x · y = 1, and then the matrix of q in this basis will be ( 0 1

1 0 ). In
particular, d(q) = −1 so q is nondegenerate.
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Lemma 5.1.5. Let x �= 0 be an isotropic vector of a nondegenerate quadratic
module (V, q). There existsn a subspace U of V containing x that is a hyper-
bolic plane.

Proof. Since q is nondegenerate, there exists z ∈ V such that x · z �= 0.
The element y = 2z − (z · z/x · z)x is clearly isotropic and x · y �= 0, so the
subspace U generated by x and y is a hyperbolic plane containing x. ��

Corollary 5.1.6. If (V, q) is nondegenerate and contains a nonzero isotropic
vector then q(V ) = K. In another language (which we will soon use system-
atically), if q represents 0 nontrivially then q represents every element of
K.

Proof. Thanks to the lemma we know that there exists an isotropic vector
y such that x ·y = 1. Thus if a ∈ K it is clear that a = q(x+(a/2)y), proving
the corollary. ��

Let B = (e1, . . . , en) be a basis of V . Recall that the basis is an orthogonal
basis if the ei are pairwise orthogonal. This is equivalent to saying that the
matrix Q of q in the basis B is a diagonal matrix, so that if x =

∑
1�i�n xiei

then q(x) =
∑

1�i�n aix
2
i .

Proposition 5.1.7. Every quadratic module has an orthogonal basis.

Proof. We prove this by induction on n = dim(V ), the case n = 0 being
trivial. If V is isotropic, then all bases are orthogonal. Otherwise, choose
some nonisotropic element e1 ∈ V , and let H = e⊥1 . This is a subspace of
V of dimension exactly n − 1, and since e1 /∈ H by assumption we have
V = Ke1 ⊕⊥ H. By our induction hypothesis H has an orthogonal basis
(e2, . . . , en), so (e1, . . . , en) is an orthogonal basis of V . ��

Note that there exist more “computational” proofs of this result, based
for instance on Gauss’s reduction of quadratic forms.

5.1.2 Contiguous Bases and Witt’s Theorem

We will now prove a result that is technical, but is crucial for what follows.
We begin with the following definition.

Definition 5.1.8. We say that two orthogonal bases B and B′ of V are con-
tiguous if they have a common element.

Theorem 5.1.9. Let (V, q) be a nondegenerate quadratic module of dimen-
sion at least 3 and let B and B′ be two orthogonal bases of V . There exists
a finite sequence (B(i))0�i�m of orthogonal bases of V such that B(0) = B,
B(m) = B′ and such that B(i) and B(i+1) are contiguous for 0 � i < m.
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Proof. Let B = (e1, . . . , en) and B′ = (e′1, . . . , e
′
n). We consider three

different cases.
Case 1: (e1 · e′1)2 �= (e1 · e1)(e′1 · e′1).

Thus e1 and e′1 are not collinear and the plane P = Ke1 + Ke′1 is nonde-
generate, since the determinant of q restricted to P is given by the difference
of the above two expressions. It follows that there exist vectors v2 and v′

2

such that (e1, v2) and (e′1, v
′
2) are orthogonal bases of P . Let H = P⊥, so

that V = H ⊕⊥ P by Proposition 5.1.2, and let (v3, . . . , vn) be an orthogonal
basis of H. We then clearly have the following chain of contiguous orthogonal
bases from B to B′ (recall that n � 3):

B −→ (e1, v2, v3, . . . , vn) −→ (e′1, v
′
2, v3, . . . , vn) −→ B′ ,

proving the theorem in this case.
Case 2: (e1 · e′2)2 �= (e1 · e1)(e′2 · e′2).

Same proof replacing e′1 by e′2.
Case 3: (e1 · e′i)2 = (e1 · e1)(e′i · e′i) for i = 1 and i = 2.

This case is slightly more difficult. We begin with the following lemma.

Lemma 5.1.10. There exists a ∈ K such that ea = e′1 + ae′2 is not isotropic
and generates with e1 a nondegenerate plane.

Proof. We enumerate the forbidden values of a. The vector ea is not
isotropic if and only if a2 �= −(e′1 · e′1)/(e′2 · e′2). The subspace Ke1 + Kea is
a nondegenerate plane if and only if (e1 · e1)(ea · ea)− (e1 · ea)2 �= 0, and by
the assumption of Case 3 this boils down to −2a(e1 · e′1)(e1 · e′2) �= 0. Since
Case 3 implies that e1 · e′i �= 0 for i = 1 and i = 2, this is equivalent to a �= 0.
To summarize, we have to avoid at most three values of a ∈ K, finishing the
proof of the lemma if K has at least four elements. Since the characteristic
of K is not equal to 2, there remains the case K = F3, and then we check
immediately that a = 1 is a suitable value. ��

Resuming the proof of the theorem, let us choose ea satisfying the condi-
tions of the lemma. Since ea is not isotropic there exists v2 such that (ea, v2)
is an orthogonal basis of Ke′1 + Ke′2. Set

B′′ = (ea, v2, e
′
3, . . . , e

′
n) ,

which is clearly an orthogonal basis of V . Since Ke1+Kea is a nondegenerate
plane by construction, using ea instead of e′1 in the proof of Case 1, we see
that there exists a chain of contiguous bases from B to B′′. Since n � 3, B′′

is contiguous to B′, so the result follows also in this case. ��

The above technical theorem will be essential for the proof of the invari-
ance of a quantity ε(q) that we will define later (Theorem 5.2.15).
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We now come to Witt’s theorem, which is probably the most important
theorem on general quadratic forms or modules. Let (V, q) and (V ′, q′) be
nondegenerate quadratic modules, let U be a subspace of V , and let s be an
injective morphism of quadratic modules from U to V ′. The problem is to
extend s to a morphism defined on a subspace larger than U , and if possible
to all of V . We begin with the degenerate case, which we will need.

Lemma 5.1.11. With the above assumptions, if (U, q) is degenerate we can
extend s to an injective morphism s1 from U1 to V ′, where U1 is a subspace
of V containing U as a hyperplane.

Proof. Let x ∈ rad(U) be nonzero. There exists a linear form k on U
such that k(x) = 1. Since V is nondegenerate, as we have seen in the proof of
Proposition 5.1.2 the canonical map qU from V to U∗ is surjective; hence there
exists y ∈ V such that k(u) = u · y for all u ∈ U . If we set z = y− (y · y)x/2,
we note that u · z = u · y = k(u) for all u ∈ U (since x ∈ rad(U)), and z · z =
y ·y−(y ·y)x ·y = 0 since x ·y = k(x) = 1. We set U1 = U⊕Kz, which clearly
contains U as a hyperplane since otherwise z ∈ U , hence k(x) = x · z = 0
since x ∈ rad(U), a contradiction. We can apply the same construction to
U ′ = s(U), x′ = s(x), and k′ = k◦s−1 and obtain z′ ∈ V ′ and U ′

1 = U ′+Kz′.
It is clear that the linear map s1 from U1 to V ′ that coincides with s on U
and sends z to z′ is an isomorphism from U1 to U ′

1. ��

Theorem 5.1.12 (Witt). If (V, q) and (V ′, q′) are isomorphic and nonde-
generate quadratic modules, every injective morphism s from a subspace U of
V to V ′ can be extended to an isomorphism from V to V ′.

Proof. Since V and V ′ are isomorphic, we may assume that V = V ′.
Furthermore, thanks to the above lemma, as long as (U, q) is degenerate
we can extend s to a subspace having one extra dimension. Thus we may
assume that (U, q) is nondegenerate. We prove the theorem by induction on
the dimension of U .

Assume first that dim(U) = 1, which is in fact the only case in which we
have to do some real work. Since (U, q) is nondegenerate, we have U = Kx
for some nonisotropic element x, and if we set y = s(x) we have by definition
y · y = x · x. It is clear that one can choose ε = ±1 such that x + εy is not
isotropic. Indeed, otherwise we would have 2x ·x+2x · y = 2x ·x− 2x · y = 0,
hence x ·x = 0, absurd. Set z = x+εy for such a choice of ε, and let H = z⊥,
so that V = Kz ⊕⊥ H by Proposition 5.1.2. Let σ be the symmetry with
respect to H, defined by σ(w) = w − 2((w · z)/(z · z))z, which is clearly an
automorphism. Noting that (x− εy) · z = x · x− y · y = 0, we have therefore
σ(x− εy) = x− εy, and σ(x + εy) = σ(z) = −x− εy, hence σ(x) = −εy, so
that −εσ is an automorphism extending s.

Assume now that dim(U) > 1, and decompose U as U = U1 ⊕⊥ U2 with
U1 and U2 nonzero. By induction, we know that the restriction s1 of s to U1

extends to an automorphism σ1 of V . If x ∈ U1 and z ∈ U2, we have
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x · σ−1
1 (s(z)) = σ1(x) · s(z) = s(x) · s(z) = x · z = 0 ;

hence if we set V1 = U⊥
1 , we see that σ−1

1 ◦ s(U2) ⊂ V1, and by assumption
U2 ⊂ V1, so by our inductive hypothesis on the dimension, the injective
morphism σ−1

1 ◦ s restricted to U2 extends to an automorphism σ2 of V1,
so that in particular σ1 ◦ σ2(x) = s(x) for all x ∈ U2. It is now clear that
if we define σ to be equal to s on U1 and to σ1 ◦ σ2 on V1, then σ is an
automorphism of V extending s. ��

Corollary 5.1.13. Two isomorphic subspaces of a nondegenerate quadratic
module have isomorphic orthogonal supplements.

Proof. Indeed, we simply extend the isomorphism between the subspaces
to an automorphism of the quadratic module, and then restrict to the or-
thogonal supplements. ��

5.1.3 Translations into Results on Quadratic Forms

If V = Kn and (ei) is the canonical basis of V , we can identify a quadratic
form on V with a homogeneous polynomial of degree 2 in n variables over K
by the formula

q(x1, . . . , xn) =
∑

1�i,j�n

qi,jxixj ,

where the qi,j are the entries of the symmetric matrix Q. We will then simply
speak of a quadratic form with coefficients in K. Note that we may also write

q(x1, . . . , xn) =
∑

1�i�n

qi,ix
2
i + 2

∑
1�i<j�n

qi,jxixj .

Conversely, if q is given as a homogeneous polynomial of degree 2 as above,
we can of course consider q as a quadratic form on Kn.

Definition 5.1.14. We will say that two quadratic forms q and q′ are equiv-
alent if the quadratic modules (Kn, q) and (Kn, q′) are isomorphic, and we
write q ∼ q′.

Thus q and q′ are equivalent if and only if there exists γ ∈ GLn(K) such
that q′(x) = q(γ(x)). If P is the matrix of γ in the canonical basis (ei) of
Kn, then q′(x) = (PX)tQ(PX), so the matrix of q′ is P tQP .

From now on, we we will denote by ⊕ the orthogonal sum of quadratic
forms. More precisely, if q(x1, . . . , xn) and q′(x1, . . . , xm) are two quadratic
forms in n and m variables respectively, the form q⊕ q′ is the quadratic form
in n + m variables defined by

(q ⊕ q′)(x1, . . . , xn+m) = q(x1, . . . , xn) + q′(xn+1, . . . , xn+m) .
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We also set q " q′ = q ⊕ (−q′).
In this subsection, we essentially give translations into the more classi-

cal language of quadratic forms of the results we have proved on quadratic
modules.

Definition 5.1.15. A form q(x1, x2) in two variables is hyperbolic if

q(x1, x2) ∼ x1x2 ∼ x2
1 − x2

2 .

This clearly means that the quadratic module (K2, q) is a hyperbolic
plane.

Recall that we say that a form q represents a ∈ K if there exists x ∈ Kn

such that q(x) = a, with the added condition that x �= 0 when a = 0. Thus
q represents 0 if and only if (Kn, q) contains a nonzero isotropic element.

Proposition 5.1.16. If q is nondegenerate and represents 0, then there ex-
ists a hyperbolic form h and a nondegenerate form q′ such that q ∼ h ⊕ q′.
Furthermore, q represents all elements of K.

Proof. This is Lemma 5.1.5 and Corollary 5.1.6. The fact that q′ is non-
degenerate follows from Proposition 5.1.2. ��

Corollary 5.1.17. Let q be a nondegenerate quadratic form in n variables
and let c ∈ K∗. The following three conditions are equivalent:

(1) The form q represents c.
(2) There exists a quadratic form q1 in n−1 variables such that q ∼ cx2

0⊕q1.
(3) The quadratic form q " cx2

0 represents 0 in K.

Proof. (2) implies (1) is trivial by taking x0 = 1 and the other variables
equal to 0. Conversely, if q represents c, there exists x ∈ Kn such that q(x) =
x · x = c. Since q is nondegenerate, if H = x⊥ we have Kn = H ⊕⊥ Kx,
hence q ∼ q1⊕ cx2

0, where q1 is the quadratic form corresponding to a choice
of basis of H, proving (2). (1) implies (3) is trivial by choosing x0 = 1 and
(x1, . . . , xn) a representation of c. Finally, if −cα2

0 + q(α1, . . . , αn) = 0, then
either α0 �= 0, in which case c = q(α1/α0, . . . , αn/α0), or α0 = 0, and we
conclude by Proposition 5.1.16. ��

Corollary 5.1.18. Let q1 and q2 be two nonzero nondegenerate quadratic
forms and let q = q1 " q2 as defined above. The following properties are
equivalent:

(1) The form q represents 0.
(2) There exists c ∈ K∗ represented by both q1 and q2.
(3) There exists c ∈ K∗ such that both q1 " cx2

0 and q2 " cx2
0 represent 0.
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Proof. The equivalence of (2) and (3) follows from the above corollary,
and (2) implies (1) is trivial. Let us prove that (1) implies (2). If q = q1 " q2

represents 0 there exist x and y in the corresponding quadratic modules
such that q1(x) = q2(y), with x and y not both zero. Consider the element
c = q1(x) = q2(y). If c �= 0, then (2) is proved. Otherwise, since x and
y are not both zero, at least one of the forms, say q1, represents 0; hence
by Proposition 5.1.16 it represents all elements of K, and in particular all
nonzero values taken by q2. ��

Theorem 5.1.19. Let q be a quadratic form in n variables. There exists an
equivalent form that is a diagonal quadratic form; in other words, there exist
ai ∈ K such that q ∼

∑
1�i�n aix

2
i .

Proof. This is a translation of Proposition 5.1.7. As already mentioned,
this can be proved computationally using Gauss’s reduction of quadratic
forms into sums of squares, which gives an explicit algorithm for finding the
ai and the linear equivalence from q to the diagonal form. ��

Note that things are much easier to read in diagonal form: the rank of q is
equal to the number of nonzero ai, and q is nondegenerate if and only if the
rank is equal to n, in which case d(q) =

∏
1�i�n ai up to squares as usual.

However, note that the above theorem is valid only over a field. For in-
stance, the quadratic form x2

1 +x1x2 +x2
2 is not equivalent to a diagonal form

over Z, but only over Q (Exercise 2).

Theorem 5.1.20 (Witt). Let q = q1 ⊕ q2 and q′ = q′1 ⊕ q′2 be two nonde-
generate quadratic forms. If q ∼ q′ and q1 ∼ q′1, then q2 ∼ q′2.

Proof. This is the translation of Corollary 5.1.13, the corollary to Witt’s
theorem. It is this theorem to which one usually refers when talking about
Witt’s theorem. ��

Corollary 5.1.21. If q is nondegenerate there exist hyperbolic forms hi for
1 � i � m and a form q′ that does not represent 0 such that

q ∼ h1 ⊕ · · · ⊕ hm ⊕ q′ ,

and this decomposition is unique up to equivalence.

Proof. Existence follows from Proposition 5.1.16. Let us prove uniqueness.
With evident notation let

q ∼
∑

1�i�m

hi ⊕ q1 ∼
∑

1�i�m′

h′
i ⊕ q2 ,

and assume for instance that m′ � m. Since all hyperbolic forms are equiv-
alent the above theorem implies that

∑
1�i�m−m′ hi ⊕ q1 ∼ q2, which is a

contradiction if m �= m′, since q2 does not represent 0, while a hyperbolic
form does. ��
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5.2 Quadratic Forms over Finite and Local Fields

After having studied general properties of quadratic forms, we now specialize
the base field K.

5.2.1 Quadratic Forms over Finite Fields

We begin with the simplest possible fields, the finite fields. Recall that what
makes them simple is not the fact that they are finite, but the fact that their
structure and hierarchy are very simple; see Chapter 2. For instance, finite
groups are extremely complicated and only partly understood objects.

Thus let q = pk be a prime power, with p �= 2.

Proposition 5.2.1. A quadratic form over Fq of rank n � 2 represents all
elements of F∗

q , and a quadratic form of rank n � 3 represents all elements
of Fq.

Proof. Corollary 5.1.17 tells us that both statements are equivalent. To
prove the first we could apply the Chevalley–Warning Theorem 2.5.2, but
we give a direct proof that is a direct application of the so-called pigeonhole
principle (“principe des tiroirs” in French). Indeed, by Theorem 5.1.19 we
may assume that our quadratic form is

∑
1�i�m aix

2
i with a1a2 �= 0. Let

a ∈ Fq. We choose xi = 0 for i � 3. Since q is odd the map x �→ x2 is a
group homomorphism of F∗

q onto itself, and its kernel has two elements since
Fq is a field. It follows that its image has (q − 1)/2 elements, so adding the
element 0 there are (q + 1)/2 squares in Fq. Since a1a2 �= 0 it follows that
the subsets {a1x

2
1} and {a− a2x

2
2} of Fq also have (q + 1)/2 elements hence

have a nonempty intersection, proving the proposition. ��

Proposition 5.2.2. Let c ∈ F∗
q that is not a square in F∗

q . A nondegenerate
quadratic form over Fq is equivalent to x2

1 + · · · + x2
n−1 + ax2

n with a = 1 if
its discriminant is a square, and with a = c otherwise.

Proof. Since q is odd, the map x �→ x2 is a group homomorphism from F∗
q

to itself with kernel {±1}; hence F∗
q/F∗

q
2 has order 2, generated by the class

modulo squares of c. Thus if n = 1 the result is true. Assume n � 2 and the
result true by induction up to n − 1. Thanks to the preceding proposition
the form represents any nonzero element, hence 1, so thanks to Corollary
5.1.17 there exists a quadratic form g in n − 1 variables such that our form
is equivalent to x2

0 + g, and the result follows by induction. ��

Corollary 5.2.3. Two nondegenerate quadratic forms over Fq are equivalent
if and only if they have the same rank and the same discriminant in F∗

q/F∗
q
2.

Proof. Clear from the above proposition. ��
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5.2.2 Definition of the Local Hilbert Symbol

The crucial case in the study of quadratic forms over p-adic fields is the case
of three variables, so it is necessary to study in detail this case first. For this,
we introduce the Hilbert symbol, which will be sufficient for the local study
of quadratic forms.

In this section, we let K be a completion of Q, in other words either Qp

or R.

Definition 5.2.4. If a and b are in K∗, we set (a, b) = 1 if the equation
ax2 + by2 = z2 has a nontrivial solution (in other words with (x, y, z) �=
(0, 0, 0)), and (a, b) = −1 otherwise. The number (a, b) is called the (lo-
cal)Hilbert symbol of a and b.

When using several completions as we will do in the global situation, we
will write (a, b)p or (a, b)∞ to specify the prime, or simply (a, b)v to indicate
the place v.

It is clear that (a, b) does not change when a or b is multiplied by a nonzero
square. Thus (a, b) can be considered as defining a map from (K∗/K∗2) ×
(K∗/K∗2) to {±1}.

Proposition 5.2.5. Let a and b be in K∗. We have (a, b) = 1 if and only if
a ∈ N (K(

√
b)∗), i.e., if and only if a is the norm of an element of K(

√
b)∗.

Proof. If b is a square, then (0, 1,
√

b) is evidently a solution to our equa-
tion, and K(

√
b) = K, so the proposition is clear in this case. Otherwise the

elements of the quadratic extension K(
√

b) have the form u+ v
√

b, hence a is
a norm if and only if it has the form a = u2 − bv2. If this is the case (1, v, u)
is a solution to our equation, and conversely if ax2 + by2 = z2, then x �= 0
(otherwise b is a square), hence a is the norm of (z/x) + (y/x)

√
b. ��

Proposition 5.2.6. We have the following formulas, where all the elements
that occur are assumed to be nonzero:

(1) (a, b) = (b, a) and (a, c2) = 1.
(2) (a,−a) = 1 and (a, 1− a) = 1.
(3) (a, b) = 1 implies (aa′, b) = (a′, b).
(4) (a, b) = (a,−ab) = (a, (1− a)b).

Proof. (1) is clear. When b = −a, (respectively b = 1 − a), then (1, 1, 0)
(respectively (1, 1, 1)) is a nontrivial solution to ax2 + by2 = z2, proving
(2). For (3), by the preceding proposition if (a, b) = 1 then a ∈ N (K(

√
b)∗)

hence by multiplicativity of the norm a′ ∈ N (K(
√

b)∗) if and only if aa′ ∈
N (K(

√
b)∗). Note that this formula is a special case of the bilinearity of the

Hilbert symbol (aa′, b) = (a, b)(a′, b), which we will prove below. Finally, (4)
follows immediately from (1), (2), and (3): for instance, since (−a, a) = 1, we
have (a,−ab) = (−ab, a) = (b, a) = (a, b). ��
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5.2.3 Main Properties of the Local Hilbert Symbol

The two main results on the local Hilbert symbol are first an explicit formula
in terms of the Legendre symbol, and as a corollary the fact that the Hilbert
symbol is a nondegenerate bilinear form. We begin with the explicit compu-
tation of the Hilbert symbol. When K = Qp, we denote as usual by Up the
group of p-adic units.

Theorem 5.2.7. (1) For K = R, we have (a, b) = −1 if a < 0 and b < 0,
and (a, b) = 1 if a or b is positive.

(2) For K = Qp with p �= 2, write a = pαa1, b = pβb1 with a1 and b1 in Up.
Then

(a, b) = (−1)αβ(p−1)/2

(
a1

p

)β(
b1

p

)α

.

(3) For K = Q2, with the same notation we have

(a, b) = (−1)(a1−1)(b1−1)/4
(a1

2

)β
(

b1

2

)α

(recall that
(

a
2

)
= (−1)(a

2−1)/8 when a is odd).

Proof. (1) is trivial, so we assume that K = Qp. Note first the following
lemma.

Lemma 5.2.8. Assume that b ∈ Up. Then if the equation px2 + by2 = z2

has a nontrivial solution in Qp, it has one such that x ∈ Zp and y and z are
in Up.

Proof. Let (x, y, z) be a nontrivial solution. Dividing by pv with v =
min(vp(x), vp(y), vp(z)), we may assume that x, y, and z are in Zp with at
least one of them in Up. If we had y /∈ Up, then vp(y) � 1, hence vp(z) � 1,
hence vp(px2) � 2, so vp(x) � 1, contradicting the fact that one of x, y, and
z is in Up. Thus y ∈ Up, hence z ∈ Up also. ��

(2). Assume that p �= 2. The Hilbert symbol (a, b) depends only on a and
b modulo squares, hence on the parity of α and β. We thus consider three
cases.
Case 1: α = β = 0.

By Proposition 5.2.1, we know that the equation a1x
2 + b1y

2 = z2 has a
nontrivial solution modulo p, and by Hensel’s lemma since a1 and b1 are p-
adic units and p �= 2, this solution lifts to a p-adic solution, so that (a, b) = 1
as claimed.
Case 2: α = 1, β = 0.

By Case 1 we have (a1, b1) = 1. Thus by Proposition 5.2.6 (3) we have
(a, b) = (pa1, b1) = (p, b1). If b1 is a square in Qp then (p, b1) = 1 and
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(
b1
p

)
= 1, so we have (a, b) =

(
b1
p

)
= 1 in this case. If b1 is not a square in Qp,

then
(

b1
p

)
= −1, and the above lemma implies that px2 + b1y

2 = z2 does not
have a nontrivial solution; otherwise, since y ∈ Up, b1 would be congruent to
(z/y)2 modulo p; hence (a, b) =

(
b1
p

)
= −1 in this case.

Case 3: α = β = 1.
By Proposition 5.2.6 (4) and Case 2, we have

(a, b) = (pa1, pb1) = (pa1,−p2a1b1) = (pa1,−a1b1)

=
(
−a1b1

p

)
= (−1)(p−1)/2

(
a1

p

)(
b1

p

)
,

giving the desired formula.

(3). Assume now that p = 2. The proof will be very similar, but as usual
with the added complications coming from the prime 2. We consider the same
three cases.
Case 1: α = β = 0.

We must show that (a1, b1) = 1 if either a1 or b1 is congruent to 1 modulo
4, and to −1 otherwise. Thus assume first that a1 ≡ 1 (mod 4Z2). Then
either a1 ≡ 1 (mod 8Z2), in which case a1 is a square by Proposition 4.3.23,
hence (a, b) = 1 in that case. Or a1 ≡ 5 (mod 8Z2). But then a1 + 4b1 ≡ 1
(mod 8Z2) is the square of some w ∈ Z2; hence (1, 2, w) is a nontrivial solution
to a1x

2 + b1y
2 = z2, so once again (a, b) = 1.

Assume now that a1 ≡ b1 ≡ −1 (mod 4Z2), and by contradiction assume
that there exists a nontrivial solution (x, y, z) to the equation a1x

2 + b1y
2 =

z2, where as above we may assume that x, y, and z are in Z2, with at least
one in U2. Then x2 + y2 + z2 ≡ 0 (mod 4Z2), and since the squares modulo 4
are 0 or 1, this implies that x, y, and z are all three nonunits, a contradiction,
so that (a, b) = −1 in this case.
Case 2: α = 1, β = 0.

We begin by proving the result when a1 = 1, i.e., we must show that
(2, b1) =

(
b1
2

)
, in other words that (2, b1) = 1 if and only if b1 ≡ ±1

(mod 8Z2). If (2, b1) = 1, the above lemma implies that there exist x, y,
and z in Z2 with y and z in U2 such that 2x2 + b1y

2 = z2. Thus y2 ≡ z2 ≡ 1
(mod 8Z2), hence b1 ≡ 1− 2x2 (mod 8Z2), so that b1 ≡ ±1 (mod 8Z2). Con-
versely, if b1 ≡ 1 (mod 8Z2) then b1 is a square, so (2, b1) = 1, and if b1 ≡ −1
(mod 8Z2) then −b1 is a square; hence (2, b1) = (2,−1), and (1, 1, 1) is a
nontrivial solution to 2x2 − y2 = z2, so that (2, b1) = 1 also in this case.

We now prove the general result, in other words the fact that (2a1, b1) =
(a1, b1)(2, b1). By Proposition 5.2.6 (3), this is true when either (2, b1) = 1 or
(a1, b1) = 1, so assume that (2, b1) = (a1, b1) = −1. By what we have proved
above, this means that a1 ≡ b1 ≡ −1 (mod 4Z2) and b1 ≡ ±3 (mod 8Z2), so
b1 ≡ 3 (mod 8Z2). After multiplication by elements that are congruent to 1
modulo 8Z2, hence squares, we may assume that a1 = −1 and b1 = 3 or a1 = 3



298 5. Quadratic Forms and Local–Global Principles

and b1 = −5. The equations −2x2 + 3y2 = z2 and 6x2 − 5y2 = z2 having
(1, 1, 1) as nontrivial solution, we have therefore (2a1, b1) = 1 as claimed,
finishing the proof of Case 2.
Case 3: α = β = 1.

As in the case p > 2, Proposition 5.2.6 (4) and Case 2 show that

(2a1, 2b1) = (2a1,−4a1b1) = (2a1,−a1b1)

= (−1)(a1−1)(b1−1)/4

(
−a1b1

2

)
= (−1)(a1−1)(b1−1)/4

(a1

2

)(b1

2

)
,

finishing the proof of the theorem. ��

From this theorem it is now easy to deduce the following, of which Propo-
sition 5.2.6 (3) is a special case.

Corollary 5.2.9. The Hilbert symbol is a nondegenerate bilinear form on
the F2-vector space K∗/K∗2.

Proof. When K = R, K∗/K∗2 is a vector space of dimension 1 over F2

having {1,−1} as representatives, and the result is trivial. When K = Qp,
the bilinearity comes from the multiplicativity of the Legendre–Kronecker
symbol. To show that it is nondegenerate, let a ∈ K∗/K∗2 not the identity
class. We consider separately the cases p �= 2 and p = 2. If p �= 2, by
Proposition 4.3.22 we can take as representative in K∗ either a = n, p, or
np, where n is a quadratic nonresidue modulo p, i.e., an integer such that(

n
p

)
= −1. Then clearly (n, p) = −1, so that if we choose b equal respectively

to the class of p, n, and n, we have (a, b) = −1, showing that the form is
nondegenerate. If p = 2, by Proposition 4.3.23 we can take as representatives
in K∗ the numbers 5,−1,−5, 2, 10,−2,−10, and we check that (2a1, 5) = −1,
while (5, 2) = (−1,−1) = (−5,−1) = −1, proving nondegeneracy also in this
case. ��

Corollary 5.2.10. If b is not a square in K∗, then N (K(
√

b)∗) is a subgroup
of index 2 in K∗.

Proof. Clear since the map a �→ (a, b) from K∗ to {±1} has kernel
N (K(

√
b)∗) by Proposition 5.2.5, and is surjective since the Hilbert sym-

bol is nondegenerate. ��

Remark. More generally, local class field theory asserts that if L/K is an
Abelian extension of local fields with Galois group G, then K∗/N (L∗) is
isomorphic to G and the extension L/K is determined by N (L∗).

It is clear that the Hilbert symbol allows us to treat completely the prob-
lem of representation of 0 by quadratic forms in three variables. More pre-
cisely, we have the following result.
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Proposition 5.2.11. Let q(x, y, z) = ax2 + by2 + cz2 be a nondegenerate
quadratic form in three variables with coefficients in Qp (including p = ∞).
Set ε = ε(q) = (a, b)(a, c)(b, c), and let d = d(q) = abc be the discriminant of
q. Then q represents 0 in Qp if and only if (−1,−d) = ε.

Proof. The form q represents 0 if and only if the form −cq does, hence if
and only if −acx2 − bcy2 = z2 has a nontrivial solution, in other words by
definition (−ac,−bc) = 1. By bilinearity this condition is

1 = (−ac,−bc) = (−1,−1)(−1, a)(−1, b)(a, b)(a, c)(b, c)(c, c) ,

and since (c, c) = (−1, c), this can be written (−1,−abc) = (a, b)(a, c)(b, c),
proving the proposition. ��

Corollary 5.2.12. Let c ∈ Q∗
p, and let q(x, y) = ax2+by2 be a nondegenerate

quadratic form in two variables. Then q represents c in Qp if and only if
(c,−ab) = (a, b).

Proof. By Corollary 5.1.17, q represents c if and only if the form q′(x, y, z) =
ax2 + by2 − cz2 represents 0 nontrivially. By the above proposition, this is
true if and only if (−1, abc) = (a, b)(a,−c)(b,−c), and since (c,−c) = 1, if
and only if

(a, b) = (−1, abc)(ab,−c) = (−1, abc)(−c, abc) = (c, abc)
= (c,−c)(c,−ab) = (c,−ab) .

��

Corollary 5.2.13. Let c ∈ Q∗
p. Then c is a sum of two squares of elements

of Qp if and only if one of the following holds:

(1) p ≡ 1 (mod 4).
(2) p ≡ 3 (mod 4) and vp(c) is even.
(3) p = 2 and c/2v2(c) ≡ 1 (mod 4).

Proof. By the preceding corollary c is a sum of two squares if and only
if (c,−1) = 1. By Theorem 5.2.7 we have (c,−1) =

(−1
p

)vp (c) for p �= 2 and
(c,−1) = (−1)(c/v2(c)−1)/2 for p = 2, giving the result. ��

To finish this subsection, we prove the following lemma, which we will
need later.

Lemma 5.2.14. Let K = Qp with p �=∞.

(1) We have |K∗/K∗2| = 2r with r = 2 for p �= 2 and r = 3 for p = 2.
(2) If a ∈ K∗/K∗2 and ε = ±1, define Hε(a) to be the set of x ∈ K∗/K∗2

such that (x, a) = ε. Then |H1(1)| = 2r, H−1(1) = ∅ and |Hε(a)| = 2r−1

if a �= 1.



300 5. Quadratic Forms and Local–Global Principles

(3) Let a and a′ in K∗/K∗2, and ε and ε′ equal to ±1, and assume that Hε(a)
and Hε′(a′) are nonempty. Then Hε(a)∩Hε′(a′) = ∅ if and only if a = a′

and ε = −ε′.

Proof. (1) has been proved in the preceding chapter (Proposition 4.3.20).
For (2), the case a = 1 is trivial. When a �= 1, since the Hilbert symbol is
nondegenerate and bilinear, H1(a) is the kernel of the surjective map x �→
(a, x), hence has 2r−1 elements, and so the same is true for its complement
H−1(a). Finally, for (3), if E = Hε(a) and F = Hε′(a′) are nonempty and
disjoint, by (2) they both have 2r−1 elements hence one is the complement of
the other. Thus H1(a) is either E (if ε = 1) or F (if ε = −1), and similarly
H1(a′) is either E or F . Since 1 ∈ H1(a) for all a, H1(a) and H1(a′) are not
disjoint, so H1(a) = H1(a′). This means that for all x we have (x, a) = (x, a′),
and since the Hilbert symbol is nondegenerate we thus have a = a′, hence
necessarily ε = −ε′, as claimed. ��

5.2.4 Quadratic Forms over Qp

Thanks to the study of the Hilbert symbol, in other words of quadratic forms
of rank 3 over Qp, we are now in a position to study general quadratic forms
over Qp. Let q be a quadratic form in n variables. Our first goal will be to find
necessary and sufficient conditions under which q represents 0 nontrivially in
Qp. Since degenerate forms represent 0 nontrivially, we will always assume
that q is nondegenerate. As always, the discriminant d(q) of q, considered as
an element of Q∗

p/Q∗
p
2, is an invariant of the class of q modulo equivalence.

By abuse of notation, we will also denote by d(q) any representative in Q∗
p.

We now define a second invariant. Up to equivalence, we can assume that q
is in diagonal form as q(x) =

∑
1�i�n aix

2
i , and we set

ε((a1, . . . , an)) =
∏

1�i<j�n

(ai, aj) ,

where (ai, aj) is the Hilbert symbol, so that ε((a1, . . . , an)) = ±1. We have
the following theorem.

Theorem 5.2.15. The value of ε((a1, . . . , an)) is independent of the linear
change of variables that transforms q into diagonal form, hence is an invari-
ant of the quadratic form itself, which we will denote by ε(q).

Proof. We use once again the language of quadratic modules, which is
more suitable for this kind of proof. Let V = Kn and let (V, q) be the
quadratic module associated with q. The theorem states that ε does not
depend on the orthogonal basis B of V , and we will write ε(B) instead of
ε((a1, . . . , an)). Consider first the the case n � 2. If n = 1 we have ε(B) = 1.
If n = 2, by definition of the Hilbert symbol ε(B) = 1 if and only if the
form x2

0 − a1x
2
1 − a2x

2
2 represents 0, hence by Corollary 5.1.17 if and only
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if a1x
2
1 + a2x

2
2 represents 1, in other words if and only if q represents 1, a

condition that is independent of the basis.
Assume now that n � 3, so that we can use Theorem 5.1.9. We use

induction on n. Let B and B′ be two orthogonal bases. By Theorem 5.1.9,
it is enough to prove the above theorem when B and B′ are contiguous, and
by definition of ε and the symmetry properties of the Hilbert symbol we
may assume that B = (e1, . . . , en) and B′ = (e′1, . . . , e

′
n) with e′1 = e1, and

ai = ei · ei, a′
i = e′i · e′i, hence in particular a′

1 = a1. Thus by multiplicativity
of the Hilbert symbol and the formula d(q) = a1a2 · · · an, we have

ε(B) = (a1, a2 · · · an)
∏

2�i<j�n

(ai, aj) = (a1, d(q)a1)
∏

2�i<j�n

(ai, aj) .

Similarly
ε(B′) = (a1, d(q)a1)

∏
2�i<j�n

(a′
i, a

′
j) .

Applying our induction hypothesis to the orthogonal complement of e1, we
deduce that ∏

2�i<j�n

(ai, aj) =
∏

2�i<j�n

(a′
i, a

′
j) ,

and the result follows. ��

It follows from this theorem that just as for the discriminant d(q), ε(q) is
an invariant of the equivalence class of q.

Theorem 5.2.16. Let q be a nondegenerate quadratic form in n variables,
and set d = d(q) and ε = ε(q). Then q represents 0 nontrivially in Qp if and
only if one of the following holds:

(1) n = 2 and d = −1.
(2) n = 3 and (−1,−d) = ε.
(3) n = 4 and either d �= 1, or d = 1 and (−1,−d) = ε.
(4) n � 5.

In particular, every quadratic form in at least five variables represents 0 non-
trivially in Qp.

Proof. Since d and ε are invariants, we may assume that q is in diagonal
form. Clearly q cannot represent 0 nontrivially when n = 1. When n = 2,
a1x

2
1 + a2x

2
2 represents 0 nontrivially if and only if −a1/a2 ∈ Q∗

p
2, hence if

and only if −d = −a1a2 ∈ Q∗
p
2, which means that d = −1 ∈ Q∗

p/Q∗
p
2. The

case n = 3 is exactly Proposition 5.2.11. It is thus sufficient to prove the cases
n = 4 and n � 5.
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Case n = 4.
By the equivalence of (1) and (2) in Corollary 5.1.18, q(x) =

∑
1�i�4 aix

2
i

represents 0 nontrivially if and only if there exists c ∈ Q∗
p that is represented

simultaneously by the forms a1x
2
1 + a2x

2
2 and −a3x

2
3 − a4x

2
4.

Thus by Corollary 5.2.12, q represents 0 if and only if there exists c ∈ Q∗
p

such that (c,−a1a2) = (a1, a2) and (c,−a3a4) = (−a3,−a4). Let A be the
set of classes of c modulo Q∗

p satisfying the first condition, and B the second.
We thus know that q does not represent 0 if and only if A ∩ B = ∅. On
the other hand, A and B are clearly nonempty (for instance a1 ∈ A and
−a3 ∈ B). Applying Lemma 5.2.14 (3), we deduce that A∩B = ∅ is equivalent
to a1a2 = a3a4 and (a1, a2) = −(−a3,−a4). The first relation means that
d = 1 ∈ Q∗

p/Q∗
p
2, and if it is satisfied we have

ε = (a1, a2)(a1a2, a3a4)(a3, a4) = (a1, a2)(a3, a4)(a3a4, a3a4) .

By the elementary properties of the Hilbert symbol, we know that for all
x ∈ Q∗

p we have (x, x) = (−1, x)(−x, x) = (−1, x), hence

ε = (a1, a2)(a3, a4)(−1, a3a4) = (a1, a2)(a3, a4)(−1, a3)(−1, a4)
= (a1, a2)(−a4, a3)(−a4,−1)(−1,−1) = (a1, a2)(−a3,−a4)(−1,−1) ,

so the second condition is equivalent to ε = −(−1,−1), proving the theorem
in the case n = 4.
Case n � 5.

It is clearly sufficient to prove the result for n = 5. By Corollary 5.2.12, a
nondegenerate form q1 = a1x

2
1+a2x

2
2 of rank 2 represents c ∈ Q∗

p if and only if
(c,−a1a2) = (a1, a2); hence by Lemma 5.2.14 (2) the number of c ∈ Q∗

p/Q∗
p
2

represented by q1 is not zero (for instance a1 is represented), hence is at least
2r−1, hence at least 2 since r � 2. A fortiori this is true for a form in more
than two variables, in particular for q. Thus let c ∈ Q∗

p/Q∗
p
2 different from

d(q) and represented by q. By Lemma 5.1.17, there exists a form q1 in four
variables xi for 2 � i � 5 such that up to equivalence q = cx2

1 + q1, and we
have clearly d(q) = cd(q1). Since c �= d(q), d(q1) �= 1 ∈ Q∗

p/Q∗
p
2, so by the

case n = 4 we deduce that q1 represents 0 nontrivially, hence also q, finishing
the proof of the theorem. ��

Corollary 5.2.17. Let c ∈ Q∗
p/Q∗

p
2. A nondegenerate form q in n variables

with invariants d and ε represents c if and only if one of the following holds:

(1) n = 1 and c = d.
(2) n = 2 and (c,−d) = ε.
(3) n = 3 and either c �= −d or c = −d and (−1,−d) = ε.
(4) n � 4.

Proof. By Corollary 5.1.17, q represents c if and only if the nondegenerate
form in n + 1 variables q1 = −cx2

0 + q represents 0 nontrivially. We have
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d(q1) = −cd(q) and ε(q1) = (−c, d(q))ε(q); hence applying the theorem to q1

we deduce the corollary using the properties of the Hilbert symbol (the case
n = 2 is Corollary 5.2.12). ��

The classification of quadratic forms over Qp is easily performed.

Proposition 5.2.18. Two quadratic forms over Qp are equivalent if and
only if they have the same rank, discriminant, and invariant ε(q).

Proof. Left to the reader (Exercise 5). See Exercises 6, 7, and 8 for further
properties of quadratic forms over Qp. ��

5.3 Quadratic Forms over Q

After studying in great detail quadratic forms over p-adic fields, we are now
in a position to study quadratic forms over Q, and in particular to prove the
Hasse–Minkowski theorem. As usual, the crucial case is the case n = 3, and
for this we need global properties of the Hilbert symbol, which we now study.

5.3.1 Global Properties of the Hilbert Symbol

Let P be the set of places of Q, which can be identified with the prime
numbers together with the symbol ∞. For convenience, we will set Q∞ = R.
As mentioned above, we will now write (a, b)v or (a, b)p to denote the Hilbert
symbol corresponding to the place v or the prime p. There are two important
global properties of the Hilbert symbol: one is the product formula, which is
essentially a restatement of the quadratic reciprocity law, and the second is
the existence of rational numbers having prescribed Hilbert symbols.

Theorem 5.3.1 (Product formula). If a and b are in Q∗ then (a, b)v = 1
for almost all v ∈ P (in other words for all but a finite number), and we have
the product formula ∏

v∈P

(a, b)v = 1 .

Proof. By bilinearity, it is sufficient to prove the theorem when a and b
are equal to −1 or to a prime number. In these cases, Theorem 5.2.7 gives
the answer:

– If a = −1 and b = −1, then (−1,−1)∞ = (−1,−1)2 = −1, and (−1,−1)v =
1 for v �= 2 and ∞, so the product is equal to 1.

– If a = −1 and b = � with � prime, then if � = 2 we have (−1, 2)v =
(−1, (1− (−1)))v = 1 for all v ∈ P , while if � �= 2 then (−1, �)v = 1 if v �= 2
and �, and

(−1, �)2 = (−1, �)� = (−1)(�−1)/2 ,

so the product is again equal to 1.
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– If a = � and b = �, then by Proposition 5.2.6 (4) we have (�, �)v = (−1, �)v,
so we are reduced to the preceding case.

– If a = 2 and b = � with � an odd prime, then (2, �)v = 1 for v �= 2 and �,
and

(2, �)2 =
(

�

2

)
=
(

2
�

)
= (2, �)� ,

so here the product is equal to 1 by the complementary law to quadratic
reciprocity.

– If a = � and b = �′ with � and �′ distinct odd primes, then (�, �′)v = 1 for
v �= 2, �, and �′, and

(�, �′)2 = (−1)(�−1)(�′−1)/4, (�, �′)� =
(

�′

�

)
, (�, �′)� =

(
�

�′

)
,

so here the product is equal to 1 by the quadratic reciprocity law. ��

Theorem 5.3.2. Let (ai)i∈I be a finite set of elements of Q∗ and let
(εi,v)i∈I, v∈P be a set of numbers equal to ±1. There exists x ∈ Q∗ such
that (ai, x) = εi,v for all i ∈ I and all v ∈ P if and only if the following three
conditions are satisfied:

(1) Almost all of the εi,v are equal to 1.
(2) For all i ∈ I we have

∏
v∈P εi,v = 1.

(3) For all v ∈ P there exists xv ∈ Q∗
v such that (ai, xv)v = εi,v for all i ∈ I.

Proof. The necessity of conditions (1) and (2) follows from the above
theorem, and that of (3) is trivial by taking xv = x. Thus let us show that
these conditions are sufficient. After multiplying the ai by nonzero squares,
we may assume that ai ∈ Z for all i. Denote by S the (finite) subset of P
containing ∞, 2, and the prime factors of all the ai, and by T the (finite) set
of v ∈ P such that there exists i ∈ I with εi,v = −1.

Assume first that S ∩ T = ∅, and set

a =
∏

�∈T,� 	=2,∞
� and m = 8

∏
�∈S,� 	=2,∞

� .

Since S ∩ T = ∅ the integers a and m are coprime; hence by Dirichlet’s
theorem on primes in arithmetic progression (Theorem 10.5.30) there exists
a prime number p ≡ a (mod m) such that p /∈ S ∪T . I claim that x = ap has
the required property. We consider two cases.
Case 1: v ∈ S.

Since S∩T = ∅ we have εi,v = 1 for all i, so we must check that (ai, x)v =
1. Since x > 0, this is clear for v =∞. If v = � is a prime number, then x ≡ a2

(mod m), so x ≡ a2 (mod 8) for � = 2 and x ≡ a2 (mod �). Since a is an
�-adic unit, Hensel’s lemma implies that x is a square in Q∗

� , so (ai, x)v = 1
for all i.
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Case 2: v = � /∈ S.
In this case ai is an �-adic unit, and since � �= 2 by Theorem 5.2.7 we have

for all b ∈ Q∗
� ,

(ai, b)� =
(ai

�

)v� (b)

.

– If � /∈ T ∪{p}, then x is an �-adic unit; hence (ai, x)� = 1 = εi,� since � /∈ T .
– If � ∈ T then v�(x) = 1, and condition (3) implies that there exists x� ∈ Q∗

�

such that (ai, x�) = εi,� for all i ∈ I. Since � ∈ T at least one of the εi,� is
equal to −1; hence v�(x�) ≡ 1 (mod 2) by Theorem 5.2.7, so for all i ∈ I
we have

(ai, x)� =
(ai

�

)
= (ai, x�)� = εi,� .

– Finally, if � = p the product formula implies that

(ai, x)p =
∏
v 	=p

(ai, x)p =
∏
v 	=p

εi,v = εi,p

by Condition (2), proving the theorem in the special case S ∩ T = ∅.

Consider now the general case. By the approximation theorem, we know
that there exists x′ ∈ Q∗ such that x′/xv ∈ Q∗

v
2 for all v ∈ S (we can

for instance ask that x′/xv ≡ 1 (mod pZp) for v = p �= 2,∞, x′/xv ≡ 1
(mod 8Z2) for v = 2 and x′/xv > 0 for v = ∞). Thus (ai, x

′)v = (ai, xv)v =
εi,v for all v ∈ S. If we set ηi,v = (ai, x

′)vεi,v, then clearly the family ηi,v

satisfies conditions (1), (2), and (3), and by definition ηi,v = 1 if v ∈ S. Thus,
by the special case that we have treated above there exists y ∈ Q∗ such that
(ai, y)v = ηi,v for all i ∈ I and v ∈ P , and it is clear that x = yx′ has the
required properties. ��

5.3.2 Statement of the Hasse–Minkowski Theorem

The first important local–global principle is the Hasse–Minkowski theorem,
which says that the principle is valid for a single quadratic form.

Theorem 5.3.3 (Hasse–Minkowski). Let K be a number field and let q
be a quadratic form in n variables with coefficients in K. Then q represents
0 in K if and only if it represents 0 in every completion of K.

The proof of this theorem for a general number field is outside the scope
of this book. Even for K = Q, the proof is not short, and we will prove the
theorem only in this case, as well as stronger statements.

This theorem is in itself very satisfying. It must be understood, however,
that it is quite specific to a single quadratic form: it is in general (not always
of course) false for several simultaneous quadratic equations, or for forms of
higher degree, as we will see below.
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In the modern way of looking at this kind of problem, a local–global
principle does not hold if there is some sort of obstruction to it, which can
usually be realized as a cohomology group. Thus, in the case of a quadratic
form there is no obstruction. In the case of an elliptic curve, for instance,
the obstruction is essentially given by a group (believed but not known to be
always finite) called the Tate–Shafarevich group of the curve.

We will prove the Hasse–Minkowski theorem in the case K = Q, which is
due to Minkowski. Of course, the condition that the quadratic form have a
nontrivial solution in every completion is necessary. Thus we need only prove
the converse, i.e., we assume that the quadratic form has a nontrivial solution
in every completion, and we must prove that it has a nontrivial solution in
Q.

5.3.3 The Hasse–Minkowski Theorem for n � 2

For n = 1 the result is trivial since ax2 = 0 has a nonzero solution if and
only if a = 0. For n = 2, we note the following lemma.

Lemma 5.3.4. Over any field K of characteristic different from 2 the form
ax2 + bxy + cy2 represents 0 nontrivially if and only if b2 − 4ac is a square
in K.

Proof. We note the formal identity

(2ax + by)2 − y2(b2 − 4ac) = 4a(ax2 + bxy + cy2) .

We consider two cases. If a �= 0, then if (x, y) �= (0, 0) is such that ax2 +
bxy + cy2 = 0 we must have y �= 0 (otherwise ax2 = 0, hence a = 0), so
b2−4ac = ((2ax+by)/y)2 is a square. Conversely, if b2−4ac = u2, then from
the above identity it is clear (since a �= 0) that (x, y) = (u − b, 2a) satisfies
ax2 + bxy + cy2 = 0 and is different from (0, 0). On the other hand, if a = 0
then b2 − 4ac = b2 is a square, and ax2 + bxy + cy2 = y(bx + cy) represents
0 nontrivially, for example with (x, y) = (1, 0). ��

Thus, let q(x, y) = ax2 + bxy + cy2 be a binary quadratic form. Since it
represents 0 nontrivially in R, its discriminant d = b2− 4ac must be nonneg-
ative (trivially, but also by the above lemma!). If d = 0, then q is a square of
a linear form hence clearly represents 0 nontrivially in Q. Otherwise, d > 0,
and let d =

∏
i pvi

i be the prime power decomposition of d. Since q represents
0 nontrivially in every Qpi

, by the above lemma d is a square in Qpi
. This

implies in particular that vpi
(d) = vi is even for all i, hence that d is a square.

Thus q(x, y) is in fact the product of two linear forms with coefficients in Q
hence represents 0 nontrivially in Q. ��
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5.3.4 The Hasse–Minkowski Theorem for n = 3

The most important part of the proof is the case n = 3, which we now
consider. Up to equivalence (which does not change the problem), we may
assume that our quadratic form is a diagonal form q(x, y, z) = ax2+by2+cz2.
If one of the coefficients is equal to 0 then q has clearly a nontrivial zero in
Q. Thus we may assume abc �= 0. Furthermore, changing q by a rational
multiple, and the variables by rational multiples, we may assume first that
a, b, and c are in Z, then (multiplying by a and changing x into x/a) that
a = 1, and finally that b and c are squarefree. Changing notation, we thus
write q(x, y, z) = x2 − ay2 − bz2 with a and b squarefree integers, where we
assume |a| � |b|. We prove the theorem by induction on m = |a| + |b|. If
m = 2 then q(x, y, z) = x2 ± y2 ± z2, and since the case x2 + y2 + z2 is
excluded since q represents 0 in R, in the other cases the form represents 0.

Thus assume now that m > 2, in other words |b| � 2, and let b =
±
∏

1�i�k pi be the prime factorization of the squarefree number b. Let p = pi

for some i. I claim that a is a square modulo p. This is trivial if a ≡ 0 (mod p).
Otherwise, a is a p-adic unit, and by assumption there exists a nontrivial p-
adic solution to ay2 +bz2 = x2, where as usual we may assume that x, y, and
z are in Zp with at least one in Up. Thus x2 ≡ ay2 (mod pZp). Now, y is a p-
adic unit, since otherwise vp(x) � 1, so that vp(bz2) � 2, and hence vp(z) � 1
(b being squarefree), contradicting the fact that one of x, y, and z is in Up.
It follows that a ≡ (x/y)2 (mod pZp), so a is a square modulo p, proving my
claim. Since this is true for all p | b, by the Chinese remainder theorem this
implies that a is a square modulo b, in other words that there exist b′ and k
such that k2 = a + bb′, where k may be chosen such that |k| � |b|/2. Since
bb′ = k2 − a, bb′ is a norm in the extension K(

√
a)/K, where K = Q or any

Qv. Thus, as in the proof of Proposition 5.2.5 we deduce that q represents 0
in K if and only if the same is true for q′, with q′(x, y, z) = x2 − ay2 − b′z2.
In particular, by assumption q′ represents 0 in all the Qv. But since |b| � 2
and |a| � |b|, we have

|b′| =
∣∣∣∣ t2 − a

b

∣∣∣∣ � |b|
4

+ 1 < |b| .

Thus we may apply our induction hypothesis to the form q′ (more precisely
to the form q′′, where b′ is replaced by its squarefree part); hence q′ represents
0 in Q, and so the same is true for the form q. ��

To be able to prove the Hasse–Minkowski theorem for n � 4 variables,
we need a strengthening of the result for n = 3, asserting that we can omit a
single place in the assumption of local solubility as follows.

Proposition 5.3.5. Let q(x, y, z) be a quadratic form in three variables, and
assume that q(x, y, z) = 0 has a nontrivial solution in every completion of Q
except perhaps in one. Then it has a nontrivial solution in Q, hence in all
places.
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Proof. As usual we may assume that q is nondegenerate, since other-
wise the result is trivial, and by changing q into an equivalent form, that
q(x, y, z) = ax2 + by2 + cz2 is a diagonal form. By Proposition 5.2.11, q
represents 0 in Qv if and only if

(−1,−abc)v = (a, b)v(a, c)v(b, c)v .

By assumption this is true for all v except perhaps one. Since both sides
satisfy the product formula, it follows that this equality is true for all v;
hence once again by the above proposition q represents 0 in Qv for all v,
hence in Q by the proof of the Hasse–Minkowski theorem for n = 3 given
above. ��

Remark. This result implies for instance that the existence of solutions in
each Qp implies the existence of a solution in R, in other words that the
quadratic form is indefinite or singular. This has an interesting relationship
with quadratic reciprocity. For example, let p and q be distinct odd primes
such that q ≡ 3 (mod 4) and

(−p
q

)
= 1. The equation x2+py2+qz2 = 0 clearly

has a nontrivial solution in Q2 and in Qq, and since there is no nontrivial
solution in Q, there cannot be any nontrivial solution in Qp; in other words,(−q

p

)
= −1 (Exercise 9). This is of course not surprising since the proof of the

above theorem uses in an essential way the product formula for the Hilbert
symbol, which is equivalent to the quadratic reciprocity law.

5.3.5 The Hasse–Minkowski Theorem for n = 4

Theorem 5.3.6. Let q be a quadratic form in four variables such that q = 0
has a nontrivial solution in R and every Qp. Then q = 0 has a nontrivial
solution in Q.

Proof. We may assume that q = a1x
2
1 + a2x

2
2 − a3x

2
3 − a4x

2
4. Let v be a

place of Q. Since q represents 0 in Qv, Corollary 5.1.18 tells us that there
exists cv ∈ Q∗

v that is represented both by a1x
2
1 + a2x

2
2 and by a3x

2
3 + a4x

2
4,

and Corollary 5.2.17 (2) (which is trivially true also for R) implies that for
all v we have

(cv,−a1a2)v = (a1, a2)v and (cv,−a3a4)v = (a3, a4)v .

By the product formula for the Hilbert symbol, we deduce from Theorem
5.3.2 that there exists c ∈ Q∗ such that for all places v,

(c,−a1a2)v = (a1, a2)v and (c,−a3a4)v = (a3, a4)v .

The form in three variables a1x
2
1 + a2x

2
2 − cx2

0 thus represents 0 in each Qv,
hence by the proof of the Hasse–Minkowski theorem for n = 3 also in Q, so
c is represented by a1x

2
1 + a2x

2
2. Similarly c is represented by a3x

2
3 + a4x

2
4, so

q represents 0. ��
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Remark. In the above proof it was essential to use Theorem 5.3.2, which
needs for its proof Dirichlet’s Theorem 10.5.30 on primes in arithmetic pro-
gression, which is not a completely elementary result. In [Cas1] it is shown
how the use of Dirichlet’s theorem can be avoided by introducing an auxiliary
quadratic form in six variables. See also [Sim1] for an algorithmic application.

5.3.6 The Hasse–Minkowski Theorem for n � 5

Theorem 5.3.7. Let q be a quadratic form in five variables, and assume
that q = 0 has a real solution, in other words that q is indefinite or singular.
Then q = 0 has a solution in Q.

Note that we no longer need to assume the existence of p-adic solutions
since by Theorem 5.2.16 we know that any quadratic form in n � 5 variables
has a nontrivial solution in Qp for every p.

Proof. The proof is very similar to the case n = 4, so we only give a sketch.
We may assume q nonsingular and diagonal, and with evident notation we
write g = a1x

2
1 + a2x

2
2, h = −a3x

2
3 − a4x

2
4 − a5x

2
5, and we assume a1 > 0 and

a5 < 0. Thanks to Dirichlet’s theorem, we find an integer a > 0 representable
both by g and h in R and all the Qp except perhaps in Qq for a unique odd q
not dividing a1a2a3a4a5. I claim that g and h also represent a in Qq. Indeed,
for g this follows as above using Proposition 5.3.5 and the auxiliary form in
three variables g1 = −ax2

0 + g. For h, we note that it has a nontrivial zero
in Qq by Corollary 4.1.40; hence it represents all elements of Qq by Lemma
5.1.16, proving my claim.

Using Corollary 5.1.17, we see that the forms g1 = −ax2
0 + g and h1 =

−ax2
0 + h in three and four variables respectively have a nontrivial solution

in every completion of Q; hence by the Minkowski–Hasse theorem proved for
three and four variables, they have a solution in Q, so that a is representable
by g and h in Q, proving as before that q = 0 has a nontrivial rational
solution. ��

Corollary 5.3.8. Let q be a quadratic form in n � 5 variables, and assume
that q represents 0 in R, in other words that q is indefinite or singular. Then
q represents 0 in Q.

Proof. We may assume q nonsingular and diagonal, and that a1 > 0,
a5 < 0 for instance. Then q = q1 + q2 with q1 =

∑
1�i�5 aix

2
i . By the above

theorem q1 = 0 has a nontrivial solution, and we choose xi = 0 for 5 < i � n,
proving the corollary. ��

This finishes the proof of the Hasse–Minkowski theorem for K = Q.
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5.4 Consequences of the Hasse–Minkowski Theorem

5.4.1 General Results

Proposition 5.4.1. A nondegenerate quadratic form with coefficients in Q
represents c ∈ Q∗ if and only if it represents c in R and in every Qp.

Proof. Clear from Corollary 5.1.17 and the Hasse–Minkowski theorem.
��

Let q be a nondegenerate quadratic form defined over Q. The Hasse–
Minkowski theorem gives us local necessary and sufficient conditions for q to
represent 0 over Q, a priori infinite in number. We can easily make this more
precise as follows.

Proposition 5.4.2. Let q be a nondegenerate quadratic form in n variables
with coefficients in Q, and let d(q) ∈ Q∗/Q∗2 be its discriminant. Then q
represents 0 in Q if and only one of the following holds:

(1) n = 2 and −d(q) = 1 ∈ Q∗/Q∗2.
(2) 3 � n � 4 and q represents 0 in R, Q2, and the Qp for the primes p such

that vp(d(q)) is odd (note that this makes sense).
(3) n � 5 and q represents 0 in R.

Proof. Clearly the given conditions do not change by an invertible linear
change of variables, since the discriminant is well defined modulo squares.
We may thus assume that q is in diagonal form. For n = 2, a1x

2
1 + a2x

2
2

represents 0 in Q if and only if −a1/a2 is a square, so −d(q) is a square.
Note that this corresponds to an infinite number of local conditions. For
3 � n � 4, recall that by the explicit computation of the Hilbert symbol,
when p �= 2 and vp(a) = vp(b) = 0 we have (a, b)p = 1. Thus if p � 2d, we have
(−1,−d) = ε = 1, so that q represents 0 by the theorem in both cases. ��

Remark. Thus to test these conditions for forms in three or four variables
we must find those p such that vp(d(q)) is odd. This is essentially equivalent
to factoring d(q), which of course may be difficult when the coefficients are
large. Once these p have been found, we must look at the form modulo a
sufficiently large pk for which Hensel’s lemma is applicable, and we then can
check whether the local conditions are satisfied.

Corollary 5.4.3. Let q be a nondegenerate quadratic form in n variables. A
number c ∈ Q∗ is represented by q in Q if and only if one of the following
holds:

(1) n = 1 and c/d(q) = 1 ∈ Q∗/Q∗2.
(2) 2 � n � 3 and q represents c in R, Q2, and the primes p such that

vp(d(q)) �≡ vp(c) (mod 2).
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(3) n � 4 and q represents c in R.

Proof. Clear from Corollary 5.1.17 and the above proposition. ��

5.4.2 A Result of Davenport and Cassels

Thanks to the Hasse–Minkowski theorem the problem of representing ratio-
nal numbers by quadratic forms is completely solved in theory, and also in
practice thanks to the work of Gauss, Legendre, and very recently D. Simon
(see Section 6.3.3). On the other hand, the problem of representing integers
is much more difficult, and in fact many unsolved problems remain. In this
subsection we give an easy but interesting result due to Davenport–Cassels
that often allows us to go from the existence of rational representations to
integral representations by quadratic forms. In the next subsection we give
some results and conjectures on this question.

First, it is important to distinguish between two types of integral quadratic
forms. A quadratic form q is represented over a suitable basis by a symmetric
matrix Q, so that q(x) = XtQX if X is the (column) vector of coordinates
of x in the given basis; in other words, q(x) =

∑
i,j qi,jxixj with qi,j = qj,i.

We will say that q is an integer-valued (or simply integral) quadratic form if
for any x ∈ Zk, q(x) ∈ Z. This is clearly equivalent to saying that qi,i ∈ Z
and 2qi,j ∈ Z for i �= j. We will say that q is matrix-integral if the bilinear
form b(x, y) = (q(x+y)− q(x)− q(y))/2 associated with q takes only integral
values when x and y are in Zk. This is equivalent to saying that qi,j ∈ Z
for all i, j, whence the name. For instance, q(x1, x2) = x2

1 + x1x2 + x2
2 is an

integer-valued quadratic form but is not matrix-integral.

Proposition 5.4.4. Let q be a positive definite matrix-integral quadratic
form in k variables. Assume that for every x ∈ Qk there exists y ∈ Zk

such that q(x − y) < 1. Then if n ∈ Z is represented by q in Q, it is also
represented by q in Z.

Proof. If x and y in Qk are represented by column vectors X and Y , and
if Q is the matrix of q with respect to the canonical basis of Qk, we denote
by x · y their scalar product with respect to the quadratic form q; in other
words, x · y = Y tQX = XtQY , so that in particular q(x) = x · x. Let n ∈ Z
be represented by q in Q. Thus there exist x ∈ Zk and an integer d > 0 such
that (x/d) · (x/d) = n; in other words, x · x = d2n. Choose d and x such
that d is minimal. We are going to show that d = 1, which will prove the
proposition.

By assumption there exists y ∈ Zk such that x/d = y + z with q(z) =
z ·z < 1. Since q is positive definite, if z ·z = 0 we have z = 0, so x/d = y ∈ Zk,
and since d is minimal we have d = 1. Thus assume that z · z �= 0. We set

a = y · y − n, b = 2(nd− x · y), d′ = ad + b, x′ = ax + by .
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Clearly a, b, and d′ are in Z, x′ ∈ Zk, and

x′ · x′ = a2x · x + 2abx · y + b2y · y = a2d2n + ab(2nd− b) + b2(n + a)

= n(a2d2 + 2abd + b2) = d′
2
n .

We have thus found a new square multiple of n represented by q in Z. Let us
compare d′ with d. We have

dd′ = ad2 + bd = d2y · y − d2n + 2d2n− 2dx · y
= d2y · y − 2dx · y + x · x = (dy − x) · (dy − x) = d2z · z .

Since by assumption 0 < z · z < 1, we thus have 0 < d′ < d, contradicting
the minimality of d hence proving the proposition. ��

The number of equivalence classes of quadratic forms satisfying the as-
sumptions of the above proposition is in fact finite. Define a matrix-integral
quadratic form to be strongly Euclidean if the assumptions of the propo-
sition are satisfied, and to be Euclidean if we have the weaker inequality
q(x − y) � 1. J. Houriet has kindly computed for me the short list of such
forms. The strongly Euclidean forms exist only for k � 3 and are ax2

1 for
1 � a � 3, x2

1 + x2
2, x2

1 + 2x2
2, 2x2

1 + 2x1x2 + 2x2
2, x2

1 + x2
2 + x2

3, and
x2

1 + 2x2
2 + 2x2x3 + 2x2

3. The additional simply Euclidean forms (of which
we will meet the fundamental example

∑
1�i�4 x2

i below) are 4x2
1, x2

1 + 3x2
2,

2(x2
1 + x2

2), x2
1 + x2

2 + 2x2
3, 2(x2

1 + x2
2 + x2

3 + x1x2 + x2x3), x2
1 + x2

2 + x2
3 + x2

4,
2(x2

1 + x2
2 + x2

3 + x2
4 − x1x3 − x2x3 − x3x4), and

2

 ∑
1�i�8

x2
i −

∑
1�i�7, i 	=4

xixi+1 − x3x5

 .

Of these simply Euclidean forms, only x2
1 +3x2

2, x2
1 +x2

2 +2x2
3, and x2

1 +x2
2 +

x2
3 + x2

4 satisfy the conclusion of the above proposition (Exercise 13).

5.4.3 Universal Quadratic Forms

We begin with the following definitions.

Definition 5.4.5. Let q be a positive definite integral quadratic form in n
variables and S a subset of the nonnegative integers. We say that q is uni-
versal for S if for every k ∈ S there exists x ∈ Zn such that k = q(x).

For instance, Lagrange’s four-square theorem (Corollary 5.4.14 below)
states that x2

1 + x2
2 + x2

3 + x2
4 is universal for S = Z�0.

Definition 5.4.6. Let S ⊂ Z�0 and T ⊂ S. We say that T is a witness for
S if for any positive definite integral quadratic form q that is not universal
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for S there exists k ∈ T that is not represented integrally by q. Equivalently,
T is a witness for S if a positive definite integral quadratic form q is universal
for S if and only if it represents integrally all the elements of T . Similarly,
we define a strong witness for S by replacing integral quadratic forms by
matrix-integral quadratic forms.

Theorem 5.4.7 (Bhargava). For any S ⊂ Z�0 there exists a minimal wit-
ness T = Φ(S) for S, in other words such that T ′ is a witness for S if and
only if T ⊂ T ′ ⊂ S. This minimal witness is clearly unique and is finite.
Similarly there exists a minimal strong witness T = Φs(S), and we evidently
have Φs(S) ⊂ Φ(S).

Note that we also have the trivial equality Φ(S) = Φs(2S)/2, with evident
notation, so if desired we can consider only the map Φ, or only the map Φs.

It is sometimes but not always possible to compute Φ(S) or Φs(S) explic-
itly. For instance, we have the following results:

Φs(Z�0) = {1, 2, 3, 5, 6, 7, 10, 14, 15} ,

Φ(Z�0) = {1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31,

34, 35, 37, 42, 58, 93, 110, 145, 203, 290} ,

Φs(2Z�0 + 1) = {1, 3, 5, 7, 11, 15, 33} ,

Φs(P ) = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 67, 73} ,

where P is the set of primes.
The result for Φ(Z�0) (the “290-theorem”) is due to Bhargava and Hanke,

see [Bha-Han], and involves a considerable amount of computer calculation
and a number of tricks. In the same paper, the authors also show that there
are exactly 6436 quaternary quadratic forms that are universal for Z�0, and
of these, 204 are matrix-integral.

A remarkable aspect of Bhargava’s theorem stated above is that it is
ineffective; in other words, there exist sets S for which the computation of
Φs(T ) or of Φ(S) is impossible (with present knowledge), even in theory. For
instance, although Φs(2Z�0 + 1) is given above, Φ(2Z�0 + 1) is unknown.
The reason for this is that there exist forms for which it is unknown whether
they are universal for S. For instance:

Conjecture 5.4.8. The positive definite integral quadratic forms

q1(x, y, z) = x2 + 2y2 + 5z2 + xz ,

q2(x, y, z) = x2 + 3y2 + 6z2 + xy + 2yz ,

q3(x, y, z) = x2 + 3y2 + 7z2 + xy + xz ,

represent integrally all odd positive integers, in other words are universal for
S = 2Z�0 + 1.



314 5. Quadratic Forms and Local–Global Principles

With all the knowledge on quadratic forms, it is quite incredible that
such a simple conjecture has not yet been resolved. It is known that all
sufficiently large odd positive integers are represented by these forms, but the
corresponding upper bounds are ineffective. See [Kap] for more information
on this subject.

5.4.4 Sums of Squares

Proposition 5.4.9 (Fermat). Let n be a positive integer. The following
three conditions are equivalent:

(1) The integer n is a sum of two squares of elements of Z.
(2) The integer n is a sum of two squares of elements of Q.
(3) For every prime p | n such that p ≡ 3 (mod 4) we have 2 | vp(n).

Proof. By Corollary 5.2.13, n is a sum of two squares in every Qp if and
only if n > 0, 2 | vp(n) for every p ≡ 3 (mod 4), and n/2v2(n) ≡ 1 (mod 4).
However, this condition is evidently a consequence of the other, so can be
omitted. Thus by the Hasse–Minkowski theorem, (2) and (3) are equivalent,
and the equivalence of (1) and (2) immediately follows from Proposition 5.4.4,
which is clearly applicable. ��

A special case of this theorem is Fermat’s important result saying that a
prime p ≡ 1 (mod 4) is a sum of two squares, which we have already proved
in Corollary 2.3.13.

Using the above proposition and methods from analytic number theory,
one can prove the following:

Proposition 5.4.10 (Landau). As X → ∞ the number N2(X) of n � X
that are sums of two squares satisfies

N2(X) ∼ C
X√

log(X)
,

with

C =
1√
2

∏
p≡3 (mod 4)

(
1− 1

p2

)−1/2

=
π

4

∏
p≡1 (mod 4)

(
1− 1

p2

)1/2

= 0.76422365358922066299069873125009232811679054139340951472 . . . .

The value of C is computed using the methods explained in Section 10.3.6;
see Exercise 53 of Chapter 10.

For three squares we begin with the following lemma.

Lemma 5.4.11. A number c ∈ Q∗ is represented over Q by the quadratic
form x2 + y2 + z2 if and only if c > 0 and −c is not a square in Q2.
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See Proposition 4.3.23 for a description of the squares of Q2.
Proof. Let q be the quadratic form x2 + y2 + z2. We have trivially

d(q) = ε(q) = 1. Thus by Corollary 5.2.17, for p �= ∞, q represents c in
Qp if and only if either −c is not a square in Q∗

p or −c is a square and
(−1,−1)p = 1. However, by the explicit computation of the Hilbert symbol,
we have (−1,−1)p = 1 for p �= 2 and (−1,−1)2 = −1. Thus when p �= 2 the
condition is automatically satisfied, so that q represents c in Q∗

p, while when
p = 2 the condition is that −c is not a square in Q2, proving the lemma. ��

Theorem 5.4.12 (Gauss). Let n be a positive integer. The following three
conditions are equivalent:

(1) The integer n is a sum of three squares of elements of Z.
(2) The integer n is a sum of three squares of elements of Q.
(3) The integer n is not of the form 4a(8k − 1) for a � 0 and k � 1.

Proof. By Proposition 4.3.23, the condition that n has the form 4a(8k−1)
is equivalent to −n being a square in Q2. Thus by the above lemma the
positive integer n is a sum of three squares in Q if and only if n is not of
the form 4a(8k − 1); hence (2) is equivalent to (3), and (1) trivially implies
(2). Finally, to show that (2) implies (1) we apply Proposition 5.4.4: indeed
if x = (x1, x2, x3) ∈ Q3 and if yi is the closest integer to xi, then q(x− y) �
3/4 < 1, so the condition of the proposition is satisfied; hence n is indeed a
sum of three squares. ��

Corollary 5.4.13. As X →∞ the number of integers n � X that are sums
of three squares is asymptotic to 5X/6.

Proof. Immediate from the proposition and left to the reader (Exercise
15). ��

Corollary 5.4.14 (Lagrange). Every positive integer n is a sum of four
squares of integers.

Proof. We write n = 4a(8k + m) with a � 0, 4 � m, and 1 � m � 7. By
the above theorem, if m �= 7, then n is a sum of three squares. On the other
hand, if m = 7, n− 4a = 4a(8k + m− 1) is a sum of three squares, so that n
is a sum of four squares. ��

There exist simpler and more direct proofs of this result. A classical one
is as follows.

Proof. We first note the important and easy identity coming from the
multiplicativity of the norm on quaternions:

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4) = z2
1 + z2

2 + z2
3 + z2

4
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with

z1 = x1y1 − x2y2 − x3y3 − x4y4, z2 = x1y2 + x2y1 + x3y4 − x4y3 ,

z3 = x1y3 − x2y4 + x3y1 + x4y2, z4 = x1y4 + x2y3 − x3y2 + x4y1 .

Assume by contradiction that the result is not true, and let p be the smallest
integer that is not a sum of four squares. Thanks to this identity it is clear that
p is a prime; otherwise, p would be a product of two strictly smaller integers,
hence sums of four squares, so p itself would be one. Thus by Proposition
5.2.1 there exist x1 and x2 in Z such that x2

1 + x2
2 ≡ −1 (mod p); hence

setting x3 = 1 and x4 = 0, there exist xi ∈ Z not all divisible by p such that
x2

1 + x2
2 + x2

3 + x2
4 = kp for some integer k. Note that p is odd (2 is a sum

of four squares!), so changing xi by some multiple of p, we may assume that
|xi| < p/2 for 1 � i � 4, hence that k < p (note the strict inequality). Since p
is a minimal counterexample, it follows that k is a sum of four squares; hence
using again the above identity, k2p = k(kp) is a sum of four squares. Dividing
by k2, we see that we have shown that p is a sum of four squares in Q. We
would now like to apply Proposition 5.4.4. In principle, this proposition is
not applicable since if q(x) = x2

1 + x2
2 + x2

3 + x2
4 then for x ∈ Q4 there exists

y ∈ Z4 such that q(x − y) � 1, the inequality being not necessarily strict.
However, we have q(x−y) = 1 if and only if xi ∈ 1

2 +Z for all i. Let us follow
the proof of the proposition. We choose d > 0 minimal such that q(x) = d2p
for some x ∈ Z4. There exists y ∈ Z4 such that x/d = y + z with q(z) � 1.
If q(z) < 1, the reasoning of the proposition goes through without change; in
other words, we prove that d = 1. Thus assume that q(z) = 1. As mentioned,
this means that xi/d ∈ 1

2 + Z for 1 � i � 4. In particular, d is even and
xi/(d/2) ∈ 1 + 2Z. We can thus divide all the xi (hence d) by d/2, and
this contradicts the minimality of d except if d = 2. We thus have four odd
integers xi such that

∑
1�i�4 x2

i = 4p. Changing xi into −xi if necessary,
we may assume that xi ≡ 1 (mod 4). Now if we use our identity above with
y1 = 1/4 and y2 = y3 = y4 = −1/4, we see that

p =

( ∑
1�i�4

x2
i

)
/4 =

∑
1�i�4

z2
i

with zi as given, and the condition xi ≡ 1 (mod 4) is immediately seen to
imply that the zi are integers, contradicting the minimality of d. ��

Remarks. (1) Instead of reasoning by contradiction, we can of course say
that we have shown that every prime is a sum of four squares, and this
implies the same for all integers thanks to the identity.

(2) The necessity of the last step, where we had to divide by 4, is due to the
fact that the canonical ring to consider in the rational quaternions is not
the ring with xi ∈ Z but the larger ring where 2xi are integers with the
same parity.
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Using the theory of modular forms, it is in fact not difficult to give an
explicit formula for the number rk(n) of representations of an integer n as a
sum of k squares for k � 8, where all permutations and changes of signs of
the variables are considered to give different representations. For the sake of
completeness, and because the formulas are not easily found in the literature,
we give the result here. The results for k even and for k odd have a completely
different nature because in the first case we are dealing with modular forms
of integral weight, and in the second case with modular forms of half-integral
weight, so we separate the cases. We denote by σk(n) the sum of the kth
powers of the (positive) divisors of n. By convention we set σk(n) = 0 if n /∈ Z,
and for any nonzero D ≡ 0 or 1 modulo 4 we denote by χD(n) =

(
D
n

)
the

Kronecker–Legendre symbol and by L(χD, s) the corresponding L-function
(see Chapter 10).

Theorem 5.4.15. Let n � 1 be an integer. We have

r2(n) = 4
∑
d|n

(
−4
d

)
,

r4(n) = 8(σ1(n)− 4σ1(n/4)) ,

r6(n) = 4
∑
d|n

d2

(
4
(
−4
n/d

)
−
(
−4
d

))
,

r8(n) = 16(σ3(n)− 2σ3(n/2) + 16σ3(n/4)) = (−1)n−116(σ3(n)− 16σ3(n/2)) .

Remarks. (1) The formula for r2(n) can easily be obtained from Proposi-
tion 5.4.9; see Exercise 18.

(2) It immediately follows from this theorem that r4(n) = 8
∑

d|n, 4�d d > 0,
giving another proof that any positive integer is a sum of four squares.

For the case k odd we note that any nonzero m ∈ Z can be written in a
unique way as m = D(2vf)2, where D is a fundamental discriminant, f is an
odd integer, and v � −1.

Theorem 5.4.16. Let n � 1 be an integer, for k odd write as above
(−1)(k−1)/2n = D(2vf)2, and for j � 0 set

Sj(D, f) =
∑
d|f

djµ(d)
(

D

d

)
σ2j+1(f/d) .

We have

r3(n) = 12L(χD, 0)
(

1−
(

D

2

))
S0(D, f) ,

r5(n) = −40
7

L(χD,−1)
(

23v+5 + 3− 2
(

D

2

)
(23v+2 + 3)

)
S1(D, f) ,

r7(n) = −28
31

L(χD,−2)
(

5 · 25v+8 − 9− 4
(

D

2

)
(5 · 25v+3 − 9)

)
S2(D, f) .
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Remarks. (1) From the formula for r3(n) we immediately recover the char-
acterization of integers n that are not sums of three squares given by
Theorem 5.4.12. In fact, using Dirichlet’s class number formula, the for-
mula for r3(n) implies that if n > 4 and −n is the discriminant of an
imaginary quadratic field K then

r3(n) = 12
(

1−
(
−n

2

))
h(−n) ,

where h(−n) denotes the class number of K.
(2) The above formulas are essentially the same as those that we will give in

Corollary 10.3.13.
(3) The quantities L(χD,−j) are in fact rational numbers that can be com-

puted exactly (although not efficiently) using Theorem 10.3.1. More pre-
cisely, Corollary 11.4.3 says that they are in Z with the exception of
D = −3 and D = −4 for j = 0, of D = 5 for j = 1, and of D = −3,
−4, and −7 for j = 2, and they even belong to 2Z with the additional
exceptions of D = −8 and D = −p with p � 7 prime congruent to 3
modulo 4 for j = 0, of D = 8 for j = 1, and of D = −8 for j = 2.

5.5 The Hasse Norm Principle

This section should be skipped on first reading. We assume that the reader
has some knowledge of local and global class field theory, so we do not define
many of the notions that are mentioned.

The second local–global principle that we will consider very briefly is
the so-called Hasse norm principle. We state it together with an interesting
corollary in a single theorem as follows.

Theorem 5.5.1. Let L/K be a finite cyclic extension of number fields, de-
note by f(L/K) its conductor, and let α ∈ K∗.

(1) The element α is the norm of some element β ∈ L∗ if and only if this is
the case everywhere locally, i.e., for every place v of K and place w of L
above v, α considered as an element of Kv is a norm of some element of
Lw.

(2) If α is such that α ≡ 1 (mod ∗f(L/K)) and is such that there exists an
ideal I of L with αZK = NL/K(I), then α is the norm of some element
β ∈ L∗.

Note that it is essential that the extension be cyclic for the theorem to
be true, and that we do not need any local conditions at the infinite places.

Proof. The proof of (1) is based on the first basic inequality of global
class field theory, and can be found for instance in [Lan1]. It is not especially
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difficult, but since the present book is not about class field theory we will not
reproduce it. We will, however, show that (1) and (2) are equivalent.

(1) implies (2). By (1), to show that α is a norm we must show that
α is everywhere a local norm, or equivalently, that it belongs to the kernel
of all local Artin maps. But at primes p | f(L/K) this is clear since α ≡ 1
(mod ∗p). On the other hand, let p � f(L/K), so that p is unramified in L/K,
and let v be the corresponding place of K. If P is a prime ideal above p

corresponding to the place w of L, denote by Artp the local Artin map and
by σp the Frobenius automorphism, which generates the local Galois group
Gal(Lw/Kv). For every prime ideal P of L above p we have NL/K(P) =
pf(p), where f(p) = f(P/p) is independent of P above p; hence vp(α) =
vp(NL/K(I)) is a multiple of f(p). It follows that Artp(α) is a power of
σ

f(p)
p , so is the identity; hence α is indeed in the kernel of all the local Artin

maps, as claimed, proving that (1) implies (2).
(2) implies (1). Set G = Gal(L/K). Assume first that α = NL/K(β) for

some β ∈ L∗, denote by D(w/v) the decomposition group of w, in other words
the group of elements of G fixing w, and let R be a system of representatives
in G of G/D(w/v). We set

βw =
∏
τ∈R

τ(β) .

Since τ(β) ∈ L ⊂ Lw we have βw ∈ Lw, and by definition of D(w/v) we
clearly have NLw /Kv

(βw) = NL/K(β) = α, so that α is indeed a local norm.
Conversely, assume that α is a local norm everywhere. Let p be some

prime ideal of K, let P be a prime ideal of L above p, and as above let
f(p) = f(P/p). To simplify notation we will write NP instead of NLP/Kp

.
Since α is a local norm there exists βP ∈ LP such that α = NP(βP). Let
b = vP(βP), so that βPZP = PbZP. Taking norms it follows that αZp =
pf(p)bZp, hence that f(p) | vp(α). We have thus already proved that the
principal ideal αZK is the norm of an ideal of L, more precisely

αZK = NL/K

(∏
p

Pvp(α)/f(p)

)
,

where as usual P denotes any ideal of L above p.
Write f(L/K) =

∏
i p

bi
i , where we include the infinite places with exponent

0 or 1, for each i let Pi be some ideal of L above pi (or some infinite place if
pi is infinite), and finally let ei = e(Pi/pi) be the ramification index of Pi.

By assumption there exist elements βi ∈ LPi
such that α = NPi

(βi).
Since L is dense in LPi

, we can find an element of L as close Pi-adically
as we want to βi, so we choose β′

i ∈ L such that β′
i − βi ∈ P

bi ei
i . By the

approximation theorem in L we can find γ ∈ L such that for all i we have{
γ ≡ β′

i (mod ∗Pbi ei
i ) ,

γ ≡ 1 (mod ∗Pbi ei ) for all P | p, P �= Pi.
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Fix an index i and write G =
⋃

j τjD(Pi/pi) (disjoint union), where as
above, the τj form a set of representatives for the cosets of G modulo the
decomposition group, where we may choose τ1 = 1. For j �= 1 we have
τ−1
j (Pi) | p but τ−1

j (Pi) �= Pi′ for any i′, hence

γ ≡ 1 (mod ∗τ−1
j (Pbi ei

i )) hence τj(γ) ≡ 1 (mod ∗Pbi ei
i ) .

It follows that

NL/K(γ) =
∏
j

∏
σ∈D(Pi /pi )

τjσ(γ) ≡
∏

σ∈D(Pi /pi )

σ(γ)

= NPi
(γ) ≡ NPi

(β′
i) (mod ∗Pbi ei

i ) .

On the other hand, since α = NPi
(βi) and β′

i ≡ βi (mod ∗Pbi ei
i ) it follows

that
α ≡ NPi

(β′
i) ≡ NL/K(γ) (mod ∗Pbi ei

i ) .

Since both sides are in K and ei = e(Pi/pi), it follows that

α ≡ NL/K(γ) (mod ∗pbi
i ) .

Since this is true for all i, we finally deduce that

α1 = α/NL/K(γ) ≡ 1 (mod ∗f(L/K)) .

We have thus found an element α1 ∈ K such that α1 ≡ 1 (mod ∗f(L/K)) and
such that the principal ideal α1ZK is the norm of an ideal of L (this is clearly
a consequence of the corresponding property of α). This element α1 satisfies
the conditions of (2); hence by (2), α1 = NL/K(β1) for some β1 ∈ L∗, so that
α = NL/K(β) with β = β1γ, proving that (2) implies (1). ��

The following corollary is an immediate consequence of the proof, but is
trivial to prove directly (Exercise 22).

Corollary 5.5.2. In the above theorem, it is sufficient to consider finite and
infinite places v, w such that w is ramified over v, together with finite places
v corresponding to prime ideals p of K such that vp(α) �= 0, and all places w
above these v.

(Recall that an infinite place w is ramified above v if and only if v is real
and w is complex.)

Example. Let K = Q and L = Q(i) with i2 = −1. The only ramified places
v in L/K are the place at infinity and the place corresponding to the prime
2. An element a ∈ Q∗ is a norm from L to K if and only if a is a sum of two
squares of elements of Q. By the above corollary and Corollary 5.2.13, this
is true if and only if the following conditions are satisfied:
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(1) Local condition at infinity: a > 0.
(2) Local condition at 2: a/2v2(a) ≡ 1 (mod 4).
(3) Other local conditions: for any prime p ≡ 3 (mod 4), vp(a) is even.

Clearly the second condition is a consequence of the other two, hence can
be removed.

5.6 The Hasse Principle for Powers

In this section we follow closely the book by G. Gras [Gras].

5.6.1 A General Theorem on Powers

For any integer n, denote as usual by ζn a primitive nth root of unity.

Proposition 5.6.1 (Hilbert’s Theorem 90 for roots of unity). Let K
be a field of characteristic zero, let p be a prime number, let e � 1, set L =
K(ζpe ), let µpe be the group of peth roots of unity in L, and let G = Gal(L/K).
Assume that G is cyclic (which is always the case if p �= 2) generated by σ,
say. An element ζ ∈ µpe satisfies NL/K(ζ) = 1 if and only if there exists
η ∈ µpe such that ζ = σ(η)/η, except in the following so-called exceptional
case: p = 2, e � 2, [L : K] = 2, σ(ζ2e ) = ζ−1

2e , and ζ is a primitive 2eth root
of unity, i.e., an odd power of ζ2e .

Proof. The condition is clearly sufficient. Thus assume that NL/K(ζ) = 1.
We have σ(ζpe ) = ζs

pe for some s ∈ Z coprime to p and defined uniquely
modulo pe. If s ≡ 1 (mod pe) then by Galois theory L = K; henceNL/K(ζ) =
ζ, so there is nothing to prove. Thus we may assume that s �≡ 1 (mod pe). We
have σi(ζpe ) = ζsi

pe , hence NL/K(ζpe ) = ζS
pe with S = (sn − 1)/(s− 1), where

n = [L : K] = |Gal(L/K)| is the order of σ (or equivalently of s modulo pe).
Thus if ζ has exact order p� with 0 � � � e (i.e., if ζ = ζpe−� m

pe for some m
such that p � m), then NL/K(ζ) = 1 if and only if vp((sn − 1)/(s− 1)) � �.

We want to find an integer k such that σ(η)/η = ζ for η = ζk
pe . This can

be written
(s− 1)k ≡ pe−�m (mod pe) .

Now, a congruence ax ≡ b (mod c) is soluble in x if and only if the equation
ax − cy = b is soluble, hence if and only if the GCD of a and c divides b.
In our case, since p � m this means that gcd(s − 1, pe) | pe−�, hence that
vp(s− 1) � e− �. Assume by contradiction that vp(s− 1) > e− �. Since we
have excluded the case s ≡ 1 (mod pe), this implies in particular that � � 2.
Since vp((sn − 1)/(s− 1)) � �, it follows that vp(sn − 1) > e.

Consider first the case p �= 2. By Lemma 2.1.22 we thus have vp(s− 1) +
vp(n) > e, and since we have excluded the case s ≡ 1 (mod pe), it follows in
particular that vp(n) > 0, hence that p | n. But then again by Lemma 2.1.22,
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vp(sn/p − 1) = vp(s− 1) + vp(n)− 1 � e ;

hence sn/p ≡ 1 (mod pe), so that σn/p is the identity on L, contradicting the
fact that σ has exact order n.

Consider now the case p = 2. In this case n divides φ(2e) = 2e−1, so it is
a power of 2. If n = 1 we have L = K and there is nothing to prove. If 4 | n,
Corollary 2.1.23 would give as in the case p odd

vp(sn/2 − 1) = vp(s2 − 1) + vp(n/4) = vp(s2 − 1) + vp(n/2)− 1 � e ,

hence sn/2 ≡ 1 (mod pe), again contradicting the fact that σ has exact order
n. Thus the proposition can fail only if p = 2 and n = 2. In this case vp((sn−
1)/(s − 1)) = vp(s + 1). Since � � 2, the inequality vp((sn − 1)/(s − 1)) � �
thus implies that s ≡ −1 (mod 4), hence that vp(s − 1) = 1, and this is
strictly greater than e− � if and only if � = e, which is the exceptional case
that has been excluded.

We have thus shown that vp(s− 1) � e− �, hence that our congruence is
soluble, finishing the proof of the proposition, except when the conditions of
the exceptional case are satisfied.

This exceptional case can occur only if p = 2, n = 2, and ζ = ζm
2e for some

odd m, and for s ≡ 3 (mod 4) and s2 ≡ 1 (mod 2e). Thus s ≡ −1 (mod 2e−1),
so that σ(ζ2e ) = ±ζ−1

2e . If the sign is −, then NL/K(ζ) = ζσ(ζ) = −1, so
there are no primitive peth roots of unity of norm 1. On the other hand, if
the sign is + then all peth roots of unity have norm 1, so this is the only case
in which there exist counterexamples to the assertion of the proposition. In
fact it is clear that

σ(ζ2e )/ζ2e = ζ−2
2e = ζ−1

2e−1 ;

hence a primitive 2eth root of unity cannot be of the form σ(η)/η for η ∈ µ2e .
��

We can now state the following general theorem on powers, which will be
essential in the proof of the local–global principle.

Theorem 5.6.2. Let K be any field of characteristic zero, let p be a prime
number, let e � 1 be an integer, and finally let L = K(ζpe ).

If x ∈ K∗, then x is a peth power in L∗ if and only if it is a peth power
in K∗, except if the following three conditions (comprising the so-called ex-
ceptional cases) are all satisfied:

(1) p = 2 and e � 2.
(2) There exists n with 0 � n � e− 2 such that

K ∩Q(ζ2e ) = Q(ζ2n+2 + ζ−1
2n+2) .

(3) The element x has the form

x = (−1)2
e−n−2

x0y
2e

, with x0 = (2 + ζ2n+2 + ζ−1
2n+2)2

e−1
and y ∈ K∗ .
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In this exceptional case we have x = ((1 + ζ2n+2)y)2
e

, which is a peth
power only in the quadratic extension K(ζ2n+2) of K and not in K.

Proof. If x is a peth power in K (or for the exceptional cases in a quadratic
extension of K contained in L), then evidently x is a peth power in L. Con-
versely, let x ∈ K∗ and assume that x = zpe

for some z ∈ L∗. We first
assume that G is cyclic, use the same notation as in the proposition, and set
ζ = σ(z)/z. Since x ∈ K∗ we have ζpe

= σ(x)/x = 1, hence ζ ∈ µpe . On
the other hand, we have NL/K(ζ) = 1. Thus if we are not in the exceptional
case of the proposition there exists η ∈ µpe such that ζ = σ(η)/η. If we set
y = z/η, we thus have σ(y)/y = ζ/ζ = 1, hence y ∈ K∗, and ype

= zpe

= x
since η ∈ µpe , proving the theorem in this case. It thus remains to consider
the exceptional case of the proposition, and the case in which G is noncyclic,
both of these cases occurring only for p = 2, which we now consider.

We let L = K(ζ2e ), where we may assume that e � 2, G = Gal(L/K),
and k = K ∩ Q(ζ2e ). By Theorem 3.1.11, we know that G is canonically
isomorphic to Gal(Q(ζ2e )/k). Furthermore, Gal(Q(ζ2e )/k) is the subgroup of
Gal(Q(ζ2e )/Q) of elements fixing k, hence in particular is a subgroup of the
group (Z/2eZ)∗ generated by the class of −1 (of order 2) and the class of 5
(of order 2e−2).

Now, for instance by applying Theorem 2.1.14, it is easily seen that the
subgroups of (Z/2eZ)∗ (which necessarily have cardinality 2e−1−n for some
n such that 0 � n � e− 1) have the following three types (see Exercise 23):

– Case An: the cyclic group generated by 52n−1 for 1 � n � e − 1, when
e � 3.

– Case Bn: the cyclic group generated by −52n−1 for 1 � n � e − 1, when
e � 3

– Case Cn: the noncyclic group generated by 52n and −1 for 0 � n � e − 3
when e � 3, or the cyclic group generated by −1 when e = 2 and n = 0.

Thus G is canonically isomorphic to one of these groups. In cases An and
Bn, G is cyclic; hence we can apply the proposition, so the theorem is valid
as long as we are not in the exceptional case. But this case occurs only if
|G| = 2 and σ(ζ2e ) = ζ−1

2e , hence if n = e − 2 (hence e � 3 since n � 1),
and 52e−3 ≡ −1 (mod 2e) in case An, −52e−3 ≡ −1 (mod 2e) in case Bn.
The case An is impossible since e � 3 and 5 ≡ 1 (mod 4), and the case Bn

is impossible since the class of 5 has exact order 2e−2 in (Z/2eZ)∗. Thus we
cannot have any exceptional cases in cases An and Bn; hence it remains to
consider the case G � Cn. In this case, as stated we will set n = 0 if e = 2,
which indeed corresponds to a group of cardinality equal to 2e−1−n = 2.

In this case Gal(Q(ζ2e )/k) � G � Cn, so that k is the fixed field of
Q(ζ2e ) by Cn, which is clearly equal to Q(ζ2n+2 + ζ−1

2n+2), which is the second
condition of the exceptional cases given in the theorem. Since this field occurs
frequently we set

kn = Q(ζ2n+2 + ζ−1
2n+2) .
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Let K1 be the fixed field of L by the subgroup generated by the class
of 52n

in Cn. By Galois theory K1 is a quadratic extension of K, and in
fact K1 = K(ζ2n+2), and ζ2n+2 + ζ−1

2n+2 ∈ k ⊂ K. Since L = K1(ζ2e ) and
Gal(L/K1) is cyclic, the case An implies that if x ∈ K∗ is a 2eth power in
L, it will be a 2eth power in K1. Hence write x = z2e

with z ∈ K1, and
let τ (complex conjugation) be the generator of Gal(K1/K). Then as usual
(τ(z)/z)2

e

= 1, so τ(z)/z ∈ µ2e∩K1 = µ2n+2 . Thus if τ(z)/z is not a primitive
2n+2th root of unity, we are not in the exceptional case of the proposition,
so that as usual we deduce that x is a 2eth power in K. Assume now that
τ(z)/z is a primitive 2n+2th root of unity. Note the identity

τ(1 + ζ2n+2)/(1 + ζ2n+2) = ζ−1
2n+2 .

It follows that if we set z1 = z/(1 + ζ2n+2), then τ(z1)/z1 will indeed be
a 2n+2th root of unity of norm 1 in the extension K1/K, but will not be
a primitive 2n+2th root. Thus we are not in the exceptional case of the
proposition for z1, so there exists η ∈ µ2n+2 such that τ(z1)/z1 = τ(η)/η;
hence z1 = yη with y ∈ K∗, so that

x = z2e

= (1 + ζ2n+2)2
e

y2e

= ζ2e

2n+2(2 + ζ2n+2 + ζ−1
2n+2)2

e−1
y2e

= (−1)2
e−n−2

(2 + ζ2n+2 + ζ−1
2n+2)2

e−1
y2e

,

showing that up to 2eth powers in K there exists a single counterexample to
the theorem given in the exceptional cases, and finishing the proof. ��

5.6.2 The Hasse Principle for Powers

We can now state and prove the local–global principle for powers.

Theorem 5.6.3. Let K be a number field, let p be a prime number, let e � 1
be an integer, and let S be a finite set of places of K. Let x ∈ K∗, and
assume that for all places v /∈ S the element x considered as an element of
the completion Kv is a peth power. Then x is a peth power in K except if
the following four conditions (comprising the so-called S-special cases) are all
satisfied, where we recall that we have set kn = Q(ζ2n+2 + ζ−1

2n+2).

(1) p = 2 and e � 3.
(2) There exists n with 0 � n � e− 3 such that K ∩Q(ζ2e ) = kn.
(3) For all places v above 2 and not belonging to S the field Kv contains one

of the numbers

1 + ζ2n+2 , ζ2n+3 + ζ−1
2n+3 , ζ4(ζ2n+3 + ζ−1

2n+3) .

(4) The element x has the form

x = x0y
2e

, with x0 = (2 + ζ2n+2 + ζ−1
2n+2)2

e−1
and y ∈ K∗ .
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Proof. We set L = K(ζpe ), and consider the Kummer extension M of
L defined by M = L(x1/pe

). This extension is evidently a cyclic extension
with Galois group canonically isomorphic to a subgroup of Z/peZ. By the
Čebotarev density theorem there exists an infinity of prime ideals of L whose
corresponding Frobenius automorphism is a generator of Gal(M/L). In par-
ticular, since M/L can be ramified only at prime ideals dividing p and x, if
we avoid those prime ideals and those corresponding to the places above S,
which are finite in number, we see that there exists a finite place v0 of L not
above a place of S, unramified in M/L, and such that the Frobenius at v0 is
a generator of Gal(M/L).

Let v be the place of K below v0. Since v /∈ S, the element x is a peth
power in Kv, hence a fortiori in Lv0 , which is an extension of Kv. It follows
that for any place w0 of M above v0 we have Mw0 = Lv0(x

1/pe

) = Lv0 ; hence,
since v0 is unramified, the place v0 is totally split in M/L; in other words,
the decomposition group of v0 in the extension M/L, which is generated by
the Frobenius at v0, is trivial. Since the Frobenius at v0 generates Gal(M/L),
this means that Gal(M/L) is trivial, hence that M = L. We have thus shown
that the hypothesis of the theorem implies that x is a peth power in L.

By Theorem 5.6.2, this implies that x is indeed a peth power in K except
in the exceptional cases given by that theorem, finishing the proof of our
theorem outside of these exceptional cases.

Let us now consider in detail the exceptional cases. Here we have p = 2,
K ∩ Q(ζ2e ) = kn for some n such that 0 � n � e − 2, and x is of the form
x = (−1)2

e−n−2
x0y

2e

with x0 = (2 + ζ2n+2 + ζ−1
2n+2)2

e−1
and y ∈ K∗. I claim

first that the theorem is still true if n = e− 2. Indeed, in that case x has the
form −z2 for some z ∈ K; hence the fact that x is locally a 2eth power for all
v /∈ S implies in particular that −1 is locally a square for all v /∈ S. Reasoning
as in the beginning of the proof, we see that if we had

√
−1 /∈ K we could find

a place v0 of K totally split in K(
√
−1)/K and not belonging to S, which

is absurd since −1 is locally a square at v0. It follows that
√
−1 ∈ K, but

this contradicts the second condition of the exceptional cases stating that
K ∩Q(ζ2e ) = Q(ζ2e + ζ−1

2e ), proving my claim.
Thus we may assume that 0 � n � e − 3, and in particular e � 3. We

have K ∩ Q(ζ2e ) = kn and x = x0y
2e

with x0 = (2 + ζ2n+2 + ζ−1
2n+2)2

e−1
.

Set K1 = K(ζ2n+3). Since n � e − 3, K1/K is a subextension of L/K. In
fact, using the notation of the proof of Theorem 5.6.2, K is the fixed field
of L = K(ζ2e ) by the group Cn generated by the classes of 52n

and −1, and
K1 is the fixed field by the group An+2 generated by the class of 52n+1

. Since
the three subgroups of index 2 of An+2 containing Cn are An+1, Bn+1, and
Cn+1, it follows that K1 is a biquadratic extension of K, the three quadratic
subextensions being generated by 1 + ζ2n+2 (fixed by An+1), ζ2n+3 + ζ−1

2n+3

(fixed by Cn+1), and ζ4(ζ2n+3 + ζ−1
2n+3) (fixed by Bn+1); see Exercise 24.

Furthermore, in K1 we can write

x0 = (1 + ζ2n+2)2
e

= (ζ2n+3 + ζ−1
2n+3)2

e

= (ζ4(ζ2n+3 + ζ−1
2n+3))2

e

.
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Now let v be a place above 2 and not belonging to S, and set k = Kv ∩
Q(ζ2e ) ⊃ kn. Assume first that k = kn. By assumption there exists z ∈ Kv

such that x0 = z2e

. It follows (for example) that 1 + ζ2n+2 = zζm
2e for some

integer m; hence z ∈ Kv ∩ Q(ζ2e ) = k = K ∩ Q(ζ2e ), so that z ∈ K, and
hence x0 is a 2eth power in K. Thus we may assume that k is strictly larger
than kn. Since k ⊂ Q(ζ2e ), by Galois theory this means that k contains one of
the three quadratic extensions of kn contained in Q(ζ2e ) (the ones mentioned
above), which is exactly the third condition of the S-special case, finishing
the proof of the theorem. ��

Example. We let K = Q, e = 3, n = 2, S = {2}, and x = 16. Then x is not
an 8th power in K. On the other hand, x is an 8th power in R, and since the
four 4th roots of x are ±2 and ±(1 + i)2, and since for p odd we have either(

2
p

)
= 1,

(−2
p

)
= 1, or

(−1
p

)
= 1, it follows by Hensel’s lemma that 16 is an

8th power in Qp for all p /∈ S. This is a minimal example of failure for the
local–global principle for powers.

5.7 Some Counterexamples to the Hasse Principle

A Hasse principle is a statement asserting that a given property is true
globally if and only if it is true everywhere locally. In the preceding sections
we have seen some of the most important examples where it is valid. It is
however not at all true in general, and in this short section we give several
examples in which it is not applicable (we will see many more in the next
chapter). We assume implicitly that our base field is always Q.

Historically, perhaps the most famous counterexample to the Hasse prin-
ciple, due to Selmer, is the homogeneous cubic equation 3x3 +4y3 +5z3 = 0,
which has a nontrivial solution everywhere locally, but not in Q; see Corol-
lary 6.4.12. More generally, the Hasse principle is not valid outside a very
narrow range of equations (the most important being the ones seen above),
and we will see several examples of failure in the sequel. It is however a very
interesting subject to study quantitatively the obstructions to this principle,
but this is another, much deeper, matter.

We begin with an example that could be considered artificial, but gives a
first idea.

Proposition 5.7.1. The equation

(x2 − 2)(x2 − 17)(x2 − 34) = 0

has solutions everywhere locally but not globally.

Proof. It is clear that the equation has a solution in R. It has a solution
in Q2 since 17 is a square in Q2 by Proposition 4.3.23, and 2 is a square in
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Q17 by Proposition 4.3.22, so it has a solution in Q17. If p is not equal to 2 or
17, the product of the three Legendre symbols

(
2
p

)
,
(

17
p

)
, and

(
34
p

)
is equal

to 1; hence at least one of them is equal to 1, so by Proposition 4.3.22 the
equation has a solution in Qp. On the other hand, it is clear that there are
no solutions in Q. ��

It is of course immediate to generalize the above example (Exercise 26).
The following example (for which I am indebted to J.-L. Colliot-Thélène)

is much less artificial and also quite instructive.

Proposition 5.7.2. The equation

y2 + z2 = (3− x2)(x2 − 2)

has solutions everywhere locally but not globally.

Proof. It is clear that the equation has a solution in R. For p = 3, we take
x = 1, and by Corollary 5.2.13, −2 is a sum of two squares in Q3. For all
other p, we choose x = 0. Since vp(−6) = 0 for p �= 2 and 3, Corollary 5.2.13
once again tells us that −6 is a sum of two squares for all p �= 2. Finally,
since v2(−6) = 1 is odd and −6/2 = −3 ≡ 1 (mod 4), it also tells us that −6
is a sum of two squares in Q2.

We must now show that this equation does not have solutions in Q. Usu-
ally in nontrivial counterexamples to the Hasse principle, this is the most dif-
ficult part. Here, luckily we can get away with simple congruence arguments
(which in a sense is surprising since we have just shown that the equation
is everywhere locally soluble). After clearing out denominators, we can write
the equation as

Y 2 + Z2 = (3D2 −X2)(X2 − 2D2) ,

where now all the variables are integers with D �= 0. Assume that this equa-
tion has a solution, and choose one with D minimal. I first claim that the GCD
of X and D cannot be divisible by p = 2 or by a prime p ≡ 3 (mod 4). Indeed,
if that were the case then Y 2 +Z2 ≡ 0 (mod p4), and since −1 is not a square
modulo p2, we would have Y ≡ Z ≡ 0 (mod p), hence (Y/p)2 + (Z/p)2 ≡ 0
(mod p2), hence Y ≡ Z ≡ 0 (mod p2), so we could divide our equation by
p4, contradicting the minimality of D.

Note by positivity that we must have 2D2 < X2 < 3D2. We consider two
cases. If D or X is even (but not both, by what we have just proved) then
3D2 − X2 ≡ 3 (mod 4) and is positive, hence is divisible by a prime p ≡ 3
to an odd power. Since p cannot divide X2 − 2D2 (otherwise it would divide
the GCD of X and D, contradicting what we have proved), it follows that
p divides Y 2 + Z2 to the same odd power, which is absurd. In the second
case, we assume that D and X are both odd. We apply the same reasoning
to X2− 2D2 ≡ 3 (mod 4), which thus also leads to a contradiction, finishing
the proof of the proposition. ��
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I am indebted to S. Siksek for the following example, initially due to Lind.

Proposition 5.7.3 (Lind). The equation 2y2 = x4 − 17z4 has nontrivial
solutions everywhere locally, but not globally.

Proof. For the local solubility, we prove the stronger statement that the
equation 2y2 = x4 − 17 is everywhere locally soluble. The advantage of this
equation is that like any hyperelliptic quartic, it represents a curve of genus 1,
which is immediately seen to be nonsingular outside 2, 17, and ∞ (our initial
equation is of genus 3). Thus, if p is a prime different from 2 and 17, the
Weil bounds tell us that the number of affine (hence nonsingular) solutions
modulo p is greater than or equal to p − 2

√
p, which is strictly positive as

soon as p � 5, so by Hensel lifting our equation is locally soluble at least for
p �= 2, 3, 17, and ∞. We leave as an exercise for the reader that it is also
locally soluble for these values of p (Exercise 27).

As usual, the amusing part is to show that our equation has no nontrivial
global solution. Assume that it does. Let d be the unique strictly positive
rational number such that x/d and z/d are coprime integers (which we can
reasonably call the GCD of x and z, even when x and z are in Q). Replacing
(x, y, z) by (x/d, y/d2, z/d) we may therefore assume that gcd(x, z) = 1, and
also that y ∈ Z>0. Let q be an odd prime divisor of y. We cannot have q | z,
so that (x/z)4 ≡ 17 (mod q); hence in particular

(
17
q

)
= 1, so by quadratic

reciprocity
(

q
17

)
= 1. Since

(
2
17

)
= 1 and y > 0 it follows that

(
y
17

)
= 1, so

let y0 be such that y ≡ y2
0 (mod 17). We thus have 2y4

0 ≡ x4 (mod 17), and
since 17 � y0 it follows that 2 ≡ (x/y0)4 (mod 17). But this is a contradiction
since it is immediately checked that 2 is not a fourth power modulo 17. ��

This type of reasoning can be generalized to more general equations of
the type y2 = f(x, z), where f is a homogeneous polynomial of even degree;
see Exercise 28.

We finish this section with the following example, which is also very in-
structive for other reasons. Usually, proving local solubility everywhere is not
difficult, although for the preceding example we had to use the nontrivial Weil
bounds (it is possible to avoid them, however). On the other hand, proving
that the equation is not globally soluble is often much harder. The following
result, communicated to me by M. Stoll, shows other ways of dealing with
both problems.

Proposition 5.7.4. The equation y2 = −(x2 + x− 1)(x4 + x3 + x2 + x + 2)
has solutions everywhere locally, but not globally.

Proof. Denote by f(x) the sixth-degree polynomial on the right-hand side.
We note that f(0) = 2, f(1) = −2·3, and f(−2) = −3·22; hence in particular
f(0) > 0, so the equation is soluble in R. If p is a prime different from 2 and 3
the product of the three Legendre symbols

(
2
p

)
,
(−2·3

p

)
, and

(−3·22

p

)
is equal

to 1, so that they cannot all be equal to −1. Thus for x = 0, 1, or −2, f(x) is
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a nonzero quadratic residue modulo p, and since p �= 2 it follows that f(x) is
a square in Qp, so the equation is locally soluble for p �= 2 and 3. Note that
here it has not been necessary to appeal to the Weil bounds to prove this. For
p = 3 we note that f(4) = −6498 = 32 +O(33), so that f(4) ∈ (Q∗

3)
2, and for

p = 2 we note that f(14) = −8646748 = 22 + O(25); hence f(14) ∈ (Q∗
2)

2, so
the equation is also locally soluble for p = 2 and 3.

Let us now show that it is not globally soluble. Let (x, y) ∈ Q2 be a
solution and set f1(X) = −(X2 +X−1) and f2(X) = X4 +X3 +X2 +X +2,
so that y2 = f(x) = f1(x)f2(x). We easily compute that the resultant of f1

and f2 is equal to 19, and an easy extended GCD computation shows that
in fact (X3 + 5X2 + 2X + 9)f1(X) + (X + 5)f2(X) = 19 (you of course do
not need to know anything about resultants to check this!). Writing x = n/d
with n and d in Z coprime, it is clear that this implies that if p is a prime
number such that vp(d2f1(x)) > 0 and vp(d4f2(x)) > 0 then p = 19. Since
vp(d2f1(x)d4f2(x)) = vp(d6y2) ≡ 0 (mod 2), this implies that for p �= 19 we
have vp(d2f1(x)) ≡ vp(d4f2(x)) ≡ 0 (mod 2), hence that f1(x) = mu2 and
f2(x) = mv2, where m ∈ {±1,±19} and u and v are in Q. It is now easy
to obtain a contradiction: since f2(x) does not have any real roots, we have
f2(x) > 0 for all x, so that m < 0 is impossible. On the other hand, it is
immediately checked by looking at the six possible cases that either d2f1(x)
or d4f2(x) is congruent to 2 modulo 3; hence since 19 ≡ 1 (mod 3) they
cannot both be congruent to squares modulo 3, so that m = 1 and m = 19
are also impossible. ��

5.8 Exercises for Chapter 5

1. Let q be a nondegenerate quadratic form in n variables that represents 0, and
let c ∈ K∗. Proposition 5.1.16 being only an existence result, find explicitly an
x ∈ Kn such that q(x) = c. It will be useful to first reduce to diagonal form,
although algorithmically this may not be a good idea.

2. Show that x2 + xy + y2 is not equivalent over Z to a diagonal form.

3. (A. Pfister.) Let K be a field of characteristic different from 2.

(a) Using a simple identity, show that if a ∈ K∗ is represented by the form bx2+cy2

then bx2+cy2 ∼ ax2+abcy2, where as usual ∼ denotes equivalence of quadratic
forms.

(b) Deduce that for any quadratic forms q1 and q2 we have bq1⊕cq2 ∼ aq1⊕abcq2.
Let q be a nondegenerate quadratic form. Define q to be multiplicative if for
every c ∈ K∗ represented by q we have cq ∼ q. Let q be a multiplicative
quadratic form, let b and c (possibly equal to 0) be represented by q, let a ∈ K∗

be arbitrary (not necessarily represented by q), and set d = b + ac. We assume
that d �= 0.

(c) Show that if b = 0 or if c = 0, d(q ⊕ aq) ∼ q ⊕ aq.
(d) Show that if b and c are nonzero then d(q ⊕ aq) ∼ dq ⊕ abcdq.
(e) Deduce from (b) that also in that case we have d(q ⊕ aq) ∼ q ⊕ aq, hence that

if q is multiplicative then q ⊕ aq is also multiplicative for any a ∈ K∗.
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(f) For instance, show that for any k � 1 the form in 2k variables
∑

1�i�2k x2
i is

multiplicative.

4. Continuing the previous exercise, assume that −1 is a sum of squares in K
(it is known that this is equivalent to the fact that there is no ordering on K
compatible with the field structure), and let m(K) be the minimum number
of squares necessary to represent −1. Let k be the unique integer such that
2k � m(K) < 2k+1.

(a) Show that there is a representation −1 = (b + 1)/a, where a is a nonzero sum
of 2k squares and b is a sum of 2k − 1 squares.

(b) Deduce from the preceding exercise that −1 is a sum of 2k squares, hence
that m(K) = 2k . In other words, the minimal number of squares necessary to
represent −1 is always a power of 2.

(c) Show that any element of K is a sum of squares.
(d) Let s(K) be the smallest integer, if it exists, such that every element of K is

a sum of s(K) squares. Using Corollary 5.1.17 show that s(K) exists and that
s(K) = m(K) or s(K) = m(K) + 1.

(e) Compute m(K) and s(K) for K = Fq(X1, . . . , Xn) and for K = Qp(X1, . . . , Xn)
for n � 0 (distinguish between p or q equal to 2 and congruent to 1 or 3 modulo
4).

5. Show that two quadratic forms over Qp are equivalent if and only if they have
the same rank, discriminant d ∈ Q∗

p/Q∗
p
2, and ε invariant (use induction on the

rank and Corollary 5.2.17).

6. Show that up to equivalence there exists a unique form of rank 4 that does not
represent 0 over Qp , the form x2 −ay2 − bz2 +abt2, where a and b are such that
(a, b) = −1.

7. Let d ∈ Q∗
p/Q∗

p
2 and ε = ±1. Show that there exists a form q of rank n,

discriminant d, and invariant ε if and only if n = 1 and d = ε = 1, n = 2 and
d �= −1, n = 2 and ε = 1, or n � 3.

8. Compute the number of classes of quadratic forms of rank n over Qp .

9. Fill in the details of the remark following the proof of Proposition 5.3.5.

10. Let K be a field with at least seven elements and characteristic different from
2.

(a) If a and δ are in K∗, show that for any b ∈ K∗ there exist α and β in K∗ (i.e.,
nonzero) such that aδ2 = aα2 + bβ2.

(b) Let q(x) =
∑

1�i�n aix
2
i be a diagonal quadratic form on K with ai �= 0

for all i, and assume that q represents 0. Then there exist (αi)1�i�n with∑
1�i�n aiα

2
i = 0 with all the αi not equal to 0.

(c) Deduce from this an alternative proof of the Hasse–Minkowski theorem for
n = 4 (see [Bor-Sha] for hints).

11. (I. Cassels.) Reasoning as in the proof of Proposition 5.4.4, show the following.
Let q be a nondegenerate quadratic form over a field K of characteristic different
from 2. If q represents P ∈ K[X] in K(X), then q already represents P in K[X].

12. This exercise requires some knowledge of the geometry of numbers as can be
found in [Con-Slo] and [Mar]. Prove the results of Houriet mentioned after
Proposition 5.4.4; in other words:

(a) Show that, up to equivalence, there is only a finite number of quadratic forms
q satisfying the assumption of Proposition 5.4.4, and compute the list of all
such forms.
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(b) Compute the list of forms satisfying the weaker assumption that for every
x ∈ Qk there exists y ∈ Zk such that q(x − y) � 1.

(c) Find among the above forms those that satisfy the conclusion of Proposition
5.4.4, in other words such that if n ∈ Z is represented by q in Q it is also
represented by q in Z (we have shown for example in the second proof of
Corollary 5.4.14 that this is the case for x2

1 + x2
2 + x2

3 + x2
4).

13. Show that the simply Euclidean forms found by Houriet that satisfy the con-
clusion of Proposition 5.4.4 are exactly those given in the text. (Hint: look at
the second proof of Corollary 5.4.14.)

14. Call an integer triangular if it has the form m(m+1)/2. Using Theorem 5.4.12,
prove that every positive integer is the sum of 3 triangular numbers.

15. Prove Corollary 5.4.13.

16. Prove the formula for r4(n) given by Theorem 5.4.15 in the special case n = 2k .

17. Show that the two formulas for r8(n) given by Theorem 5.4.15 are equivalent.

18. Prove directly that if gcd(m, n) = 1 we have r2(m)r2(n) = 4r2(mn) (in other
words that r2(n)/4 is multiplicative; see Section 10.1.2), and deduce from Fer-
mat’s Proposition 5.4.9 the formula for r2(n) given in Theorem 5.4.15.

19.

(a) Using Theorem 5.4.15, prove that for k = 1, 2, 4, and 8 the functions fk(n) =
rk(n)/(2k) are multiplicative, in other words that gcd(n, m) = 1 implies that
fk(nm) = fk(n)fk(m) (see also Section 10.1.2).

(b) Compute fk(6) − fk(2)fk(3) as a polynomial in k and deduce that the above
values of k are the only ones for which fk(n) is multiplicative.

20. Let D be the discriminant of a quadratic field and p a prime number.

(a) Generalizing Corollary 5.2.13, find a necessary and sufficient condition for an
element a ∈ Q∗ to be of the form a = x2 − Dy2 in Qp . It will of course be
necessary to distinguish the cases p | D and p � D.

(b) Generalizing the example given in Section 5.5, deduce from the above necessary
and sufficient conditions for a to be of the form x2 − Dy2 with x and y in Q.

21. Show that the Hasse norm principle is in general not valid for Abelian but
noncyclic extensions by studying the following example. Let K = Q and L =
Q(

√
13,

√
17). Show that any element of Q∗2 is everywhere a local norm, but

show that for instance 25 is not a global norm.

22. Prove directly Corollary 5.5.2.

23. Using Theorem 2.1.14, prove that, as stated in the proof of Theorem 5.6.2, the
subgroups of (Z/2eZ)∗ having cardinality 2e−1−n are given by cases An , Bn ,
and Cn .

24. With the notation of the proof of Theorem 5.6.3, show that the quadratic
subextensions of K1/K are indeed generated by the given elements.

25. Using the preceding exercise, prove that for all n � 0 the element 2− ζ2n − ζ−1
2n

is a square in Q(ζ2n+1 + ζ−1
2n+1).

26. Let p1 and p2 be distinct prime numbers. Assume that
(

p1
p2

)
=
(

p2
p1

)
= 1, where

(contrary to the usual definition)
(

p
2

)
is to be understood as equal to 1 if and

only if p ≡ 1 (mod 8). Generalizing Proposition 5.7.1, show that the equation
(x2 − p1)(x

2 − p2)(x
2 − p1p2) = 0 is everywhere locally soluble but not globally

soluble. Generalize to the case that the pi can be of the form ±qi for some
primes qi.
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27. Prove that the equation 2y2 = x4 − 17 has a nontrivial solution in R and in Qp

for p = 2, 3, and 17.

28. (S. Siksek.) Generalizing the method used for Proposition 5.7.3, consider the
Diophantine equation y2 = f(x, z), where f is a homogeneous polynomial of
even degree. Assume that there exists a nontrivial solution (x, y, z). Without
loss of generality we may assume that gcd(x, z) = 1 and z > 0. For any u and
v such that gcd(u, v) = 1, write F (u, v) = ab2 with a squarefree.

(a) Prove that a is a quadratic residue modulo vx − uz, so that we can obtain
congruences for vx − uz, and repeating with several pairs (u, v), we can hope
to reach a contradiction.

(b) As an application, consider the equation

y2 = F (x, z) = −4x4 + 4x3z + 92x2z2 − 104xz3 − 727z4 ,

which occurs naturally in the search for rational points on an elliptic curve
of conductor 571 using the 2-descent method that we will explain in Section
8.3.4, where as usual we may assume that gcd(x, z) = 1 . By looking modulo
powers of 2 show that 4 � z, and that if q is an odd prime dividing z then
q ≡ 1 (mod 4). Then noting that F (−53, 16) = 22 show that the equation has
no nontrivial solutions.



Part II

Diophantine Equations



6. Some Diophantine Equations

6.1 Introduction

This chapter can be considered as the culmination of the tools that we have
introduced in the first part of this book. We have already solved a number
of Diophantine problems, but here we are going to solve many more. Al-
though we have already mentioned that each Diophantine equation poses a
new problem, there does exist a large number of general techniques, and in
this introduction we will briefly describe these techniques and give a sim-
ple example of each (where “simple” is relative to the technique: for instance
FLT is the “simplest” example (!) of the use of Ribet’s level-lowering theorem,
which we will study in Chapter 15).

Whatever method is used, a general principle is that it is usually easier to
show that a Diophantine equation has no solutions at all than it is to show
that it has only a specific nonempty set of solutions. A case in point is FLT,
since it unfortunately has the solution 1p + (−1)p = 0, which in a certain
sense is nontrivial.

6.1.1 The Use of Finite Fields

We can use finite fields in two opposite ways. The first is when we want to
prove that an equation does not have a solution. In that case the finite field
that is used is Fp for a suitable prime p. We have seen in Chapter 1 the toy
example x2+y2 = 3z2, which is seen to have no nonzero solutions by working
in F3.

The second way is on the contrary to prove that an equation does have
a solution in a finite field. If both the equation and the finite field are given,
this is at least in theory very easy, since we simply make the variables of the
equation range over the finite number of elements of our field. The situation
changes completely when we are studying either a fixed equation, but over
all finite fields at once, or a family of equations over a finite field, or both. In
that case we must use general theorems such as those given in Chapter 2, and
in particular the powerful Weil bounds (Corollary 2.5.27), either due to Weil
himself in the case of curves, or from Deligne’s proof of the Weil conjectures
in the general case.

As an example we prove the following proposition.



336 6. Some Diophantine Equations

Proposition 6.1.1. Let � � 3 be prime and let C be the affine equation
y2 = x� + t for some fixed t ∈ Z. This equation has a solution in Zp for
all p if and only if it has one for primes p of the form p = 2k� + 1 with
1 � k � (�− 3)/2.

Proof. Consider first the corresponding projective curve over Fp. Even
though the equation is singular at infinity when � � 5, if t �= 0 in Fp and the
characteristic of Fp is different from 2 and � the Weil bounds apply, and since
it is a hyperelliptic curve its genus is equal to (�− 1)/2, so we have

−(�− 1)p1/2 � |C(Fp)| − (p + 1) � (�− 1)p1/2 .

In fact it is easy to compute directly |C(Fp)| in the cases t = 0 or characteristic
2 or � and to see that these bounds are still valid; see Exercise 3.

In particular, |C(Fp)| � p+1−(�−1)p1/2, and this is strictly greater than
1 for p > (�− 1)2, so |C(Fp)| � 2 for such p. In addition, if p �≡ 1 (mod �) the
map x �→ x� is a bijection from Fp to itself, so that for a given y, x� = y2 − t
has one solution, so |C(Fp)| = p + 1 � 2 also for such p.

Since we must exclude the point at infinity, it follows in particular that
there exists an affine nonsingular point in C(Fp) for all p > (�− 1)2 and for
p �≡ 1 (mod �). Then a standard Hensel-type argument shows that we can
lift this solution to Zp. On the other hand, if p � (�− 1)2 and p ≡ 1 (mod �)
we can clearly write p = 2k� + 1 with 1 � k � (�− 3)/2. ��

Remark. The equation y2 = x� + t is always locally soluble; in other words,
it always has a solution in every Qp, as opposed to Zp: simply choose x = 1/p2

and y = (1/p�)(1 + p2�t)1/2, which is p-adically convergent.

Corollary 6.1.2. Let � be a prime such that 3 � � � 31. The equation
y2 = x�+t has a solution in Zp for all p if and only if the following conditions
are satisfied:

(1) For � = 3, 7, 13, 17, 19, and 31, no condition.
(2) For � = 5, t �≡ 7 (mod 11).
(3) For � = 11, t �≡ 21 or 22 modulo 23.
(4) For � = 23, t �≡ 30, 39, 40, 44, or 45 modulo 47, and t �≡ 18, 60, or 61

modulo 139.
(5) For � = 29, t �≡ 31, 32, 33, 38, 39, 43, 55 modulo 59.

Proof. Since the above proposition reduces the problem to a reasonably
small finite computation, this corollary is proved by a simple computer search,
and can be extended at will. ��

We will come back to this equation in Section 6.7.
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6.1.2 Local Methods

Since we have performed Hensel lifts, we have of course already used local
methods. They can be used in several ways. One of the most common, as
above, is to show that a Diophantine equation does not have any solutions
in Z, or at least to specify as much as possible which congruence classes a
possible solution can belong to. We have seen in Chapter 5 the important
example of quadratic forms, for which the Hasse–Minkowski theorem asserts
that everywhere local solubility is a necessary and sufficient condition for
global solubility, and we have also given methods to check local solubility at
the finite number of places where this must be done.

As an additional isolated example taken almost at random from Chapter
14, consider the Diophantine equation to be solved in integers

y2 = −2x4 − 12x2z2 + 6z4 .

We of course exclude the trivial solution (x, y, z) = (0, 0, 0). Otherwise, if d =
gcd(x, z) then d4 | y2, hence d2 | y, so replacing (x, y, z) by (x/d, y/d2, z/d)
we may assume that gcd(x, z) = 1. We must have 2 | y, so setting y = 2y1

we obtain 2y2
1 = −x4− 6x2z2 + 3z4. Thus x and z have the same parity, and

since they are coprime they are both odd. Since the square of an odd number
is congruent to 1 modulo 8 it follows that 2y2

1 ≡ −1 − 6 + 3 = −4 (mod 8),
so y2

1 ≡ −2 (mod 4), which is clearly impossible. We have thus shown the
impossibility of our Diophantine equation by working in Z2, and not only
modulo powers of 2. More precisely, if we do not remove the GCD then
modulo 2m we always have the nonzero solution x = y = 0 and z = 2�m/4�,
which tends 2-adically to the trivial solution. On the other hand, after removal
of the GCD, our proof shows that the equation does not have any solution
modulo 16, but (1, 0, 1) is clearly a solution modulo 8.

A legitimate question is to ask how one checks the local solubility of an
equation. As we have seen above, the usual way is to prove solubility in
the residue field, and then apply a Hensel lift. It is sometimes necessary to
work modulo higher powers of the prime before performing the lift. Generally
speaking, checking local solubility for a given prime is easy, and usually to
check everywhere local solubility one needs to consider only a finite number
of primes.

A more sophisticated use of local methods is through p-adic analysis, for
instance Strassmann’s theorem; see Section 4.5.4 for examples. Here the fact
that we work fnot only modulo pk for all k but in the characteristic-zero
topological field Qp gives us new tools of analytic nature.

6.1.3 Global Methods

Given a Diophantine problem, the first thing to do is always to see whether
the problem has a solution locally, using one of the methods mentioned above.
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If it has none, the problem is solved since we know that our equation has
no solution. Evidently the only interesting problems are those for which the
equations are everywhere locally soluble. The local information that we obtain
may already completely solve the problem, or may give useful information on
the global problem through local–global principles. However, such principles
are rather rare (see Chapter 5), so it is necessary to study the equation
globally, either by simply factoring over Z, or by working in some appropriate
number field K. There are many methods for doing this, which we mention
briefly in turn, since we will come back to them in much more detail in the
rest of this book.

– The first and most classical method, originating with Fermat, Euler, Gauss,
and especially Kummer, applies when it is possible to factor the Diophan-
tine equation in K, a typical example being FLT, where one factors the
equation in the cyclotomic field K = Q(ζp). It is then essential to know
explicitly the structure of the class group of K and of the unit group (i.e., a
system of fundamental units), and to be able to find explicitly a generator
of a principal ideal.
It is important to note that in the twenty-first century, these computational
problems can (for reasonable K) be solved at the click of a computer mouse
button using computer algebra systems specializing in such tasks, such as
Kant/Kash, magma, and Pari/GP. We will therefore always assume that we
have available the basic data concerning the number fields that occur. This
method will be used at length in the present chapter, as well as in Chapter
14.

– A second global method for solving Diophantine equations is based on
Diophantine approximation techniques, and on Baker-type results on lin-
ear forms in logarithms of algebraic numbers, and I refer to Chapter 12 for
a survey of the method. It is used in particular to solve Thue equations, in
other words equations of the form f(x, y) = m, where f is a homogeneous
polynomial in two variables. This is now in complete but quite techni-
cal algorithmic form; see Algorithm 12.10.3. In Section 8.7 we will study
in detail a variant that involves linear forms in elliptic logarithms, which
paradoxically is easier to explain. This will enable us to find in reasonable
cases all integral points on an elliptic curve.

– A third global method for solving certain types of Diophantine equations,
mostly those that can be reduced to a cubic, is the use of elliptic curves,
either via the method of infinite descent (initiated by Fermat, and which
does not necessarily involve elliptic curves explicitly), or via the Birch and
Swinnerton-Dyer conjecture (BSD for short), which we will state and study
in detail in Chapter 8. As mentioned in the introduction, this remarkable
conjecture enables us to predict the Z-rank of the group of points of an
elliptic curve over Q by computing a purely analytic quantity, and in par-
ticular tells us whether this group is finite or infinite. The fact that this
method is based on a conjecture is not important, since either the analytic
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result says that the group is finite, and in that case BSD is proved, or it
says that the group is infinite, and we can then search for generators of
the group using other techniques. All this will become much clearer in the
numerous examples that we will give.
Although the theory of elliptic curves, and in particular of elliptic curves
over Q and the BSD conjecture, is explained only in Chapters 7 and 8, I
will assume in some places in the present chapter that the reader is familiar
with this theory. Thus, to be able to fully understand the corresponding
sections, the reader not conversant with the theory of elliptic curves is
advised to read first the corresponding chapters.

– The most modern and sophisticated method for solving Diophantine equa-
tions is that used by Ribet, Wiles, and Taylor–Wiles for solving completely
Fermat’s last theorem, using modular forms and Galois representations.
The kind of Diophantine equations that it is able to solve is usually of the
form a+ b+ c = 0, where a, b, and c are highly divisible by certain integers
(FLT being a typical example). This is linked to the famous abc conjecture
(Conjecture 14.6.4). This method is based on a combination of a theorem
of Ribet on “level lowering” of modular forms with the theorem of Wiles
and Taylor–Wiles saying that the L-function attached to an elliptic curve
defined over Q is in fact the L-function of a modular form. The proof of
these theorems is very difficult, and Wiles’s theorem has justly been cel-
ebrated as one of the great mathematical achievements of the end of the
twentieth century. However, it is not necessary to understand the proof to
use the theorems, if one understands the underlying concepts. Thanks to
S. Siksek, I have included as Chapter 15 a detailed black-box explanation
of the method. I advise the reader to look also at the expository paper by
M. Bennett [Ben2] (see also [Ben-Ski]), which has a similar purpose.

6.2 Diophantine Equations of Degree 1

The simplest of all Diophantine equations are equations of degree 1. The
two-variable case is well known: the equation ax + by = c has a solution in
integers x, y if and only if gcd(a, b) divides c, and in that case if (x0, y0) is
a particular solution, the general solution is given by x = x0 + kb/ gcd(a, b),
y = y0 − ka/ gcd(a, b) for any integer k. Furthermore a particular solution
can easily be found with the extended Euclidean algorithm.

The case of more than two variables is slightly more difficult, because
of the necessity of writing down explicitly the solution to the homogeneous
equation (once again it is easy to find a particular solution with the extended
Euclidean algorithm). For example, in the case of three variables, the equation
ax+by+cz = d has a solution if and only if gcd(a, b, c) divides d, and in that
case if (x0, y0, z0) is a particular solution, the general solution is given by
x = x0 + mb/ gcd(a, b)− �c/ gcd(a, c), y = y0 + kc/ gcd(b, c)−ma/ gcd(a, b),
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z = z0 + �a/ gcd(a, c)−kb/ gcd(b, c) for any integers k, �, and m; see Exercise
4.

To state the solution in the case of n variables, we must use the notion
of Hermite normal form (HNF) of a general (not necessarily square) integer
matrix. However, it is not simpler to state it in that case than in the gen-
eral case of a system of m linear Diophantine equations in n variables. The
definition and result are as follows.

Definition 6.2.1. Let H = (hi,j) be an m × n matrix with m � n. We
will say that H is in Hermite normal form (HNF ) if there exists a strictly
increasing function f from [1, n] to [1,m] such that for all j � n we have
mf(j),j � 1, mi,j = 0 for i > f(j), and 0 � mf(j),k < mf(j),j for k > j.

For instance, if m = n we have necessarily f(j) = j, so in that very
common and important case an integer matrix H is in HNF if and only
if it is upper triangular with strictly positive diagonal elements, and its off-
diagonal elements are nonnegative and strictly less than the diagonal element
in the same row, which is exactly Definition 2.1.13 that we gave for square
matrices.

Proposition 6.2.2. Let A be an m× n integer matrix, and let B be an m-
component integer column vector. There exists a matrix U ∈ GLn(Z) and a
matrix H in HNF such that AU = (0|H). If k is the number of zero columns
in the right-hand side, write U = (U1|U2), where U1 and U2 are n × k and
n × (n − k) matrices respectively. Then the Diophantine system AX = B
has a solution if and only if there exists an inverse image Z2 of B by H
(which can easily be checked), and in that case the general solution is given
by U2Z2 + U1Y , for any k-component integer vector Y .

Proof. Recall that GLn(Z) denotes the group of integer matrices that are
invertible, i.e., of determinant ±1. The first statement is proved in a manner
very similar to the existence of the column echelon form (proved using Gauss-
ian elimination). Here, we must perform all operations using only integer
matrices of determinant ±1. This is done by using as elementary operations
either column exchanges or operations transforming a matrix ( x y

a b ) into a

matrix of the form ( A B
0 D ) by right multiplication by

(
−b/ gcd(a,b) u
a/ gcd(a,b) v

)
, where

u and v are such that au + bv = gcd(a, b). We leave the (well-known) details
to the reader (see [Coh0], Section 2.4.2).

Once this basic statement proved, the rest is immediate: the equa-
tion AX = B is equivalent to AUX1 = B (with X1 = U−1X), hence
to (0|H)X1 = B, which is soluble if and only if HZ2 = B is soluble.
This last equation is in echelon form, so its solubility can be checked im-
mediately one component after the other. If such a vector Z2 exists, we
can choose for X1 the vector

(
0

Z2

)
with evident notation. We then have

X = UX1 = (U1|U2)X1 = U2Z2 as claimed. Finally, if X1 is a general solution
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to AUX1 = B, then AU
(
X1 −

(
0

Z2

))
= 0, hence (0|H)

(
X1 −

(
0

Z2

))
= 0.

If we write X1 −
(

0
Z2

)
=
(

Y1
Y2

)
, then we obtain HY2 = 0, and since

H is in HNF and in particular in column echelon form, the columns of
H are linearly independent, so that Y2 = 0. Thus X1 =

(
Y1
Z2

)
, so that

X = (U1|U2)X1 = U1Y1 + U2Z2, finishing the proof of the proposition. ��

In the special case in which A = (aj) has a single row, thus corresponding
to a single linear Diophantine equation, the equation AX = b has a solution
if and only if the GCD of the aj divides b, but the general solution must be
written as explained in the proposition.

6.3 Diophantine Equations of Degree 2

We have already studied Diophantine equations of degree 2 in Section 5.3.2
in the context of the Hasse–Minkowski theorem. We will study them in more
detail in this section.

6.3.1 The General Homogeneous Equation

Let f(x1, . . . , xn) be a quadratic form in n variables with integer coefficients,
represented by a symmetric matrix Q with integral diagonal entries and half-
integral off-diagonal entries. If X = (x1, . . . , xn)t is a column vector, then
f(x1, . . . , xn) = XtQX. The discriminant D of the form f is by definition
D = (−1)n(n−1)/2 det(2Q). We will always assume that f is nondegenerate,
in other words that D �= 0 (a degenerate quadratic form being equivalent to
a quadratic form with a strictly smaller number of variables, we do not lose
any generality in doing so). Since we are looking for rational solutions, we
will also always assume that f is not positive definite or negative definite, so
that the condition at the place at infinity of the Hasse–Minkowski theorem
is satisfied. In this case, we will simply say that f is indefinite.

By the Hasse–Minkowski theorem, we can determine whether a nontrivial
rational solution to f = 0 exists by looking at the equation locally. More
precisely, we have the following proposition.

Proposition 6.3.1. The Diophantine equation f(x1, . . . , xn) = 0 has a non-
trivial rational solution if and only if it has a nontrivial solution in every Qp

for every p such that p | 2D.

Proof. The necessity of the conditions is clear. Conversely, assume that
they are satisfied. By the Chevalley–Warning Theorem 2.5.2, if n � 3 the
equation has a nontrivial solution X0 = (x0,1, . . . , x0,n)t ∈ Fn

p for all p. Now
if p � 2D, the partial derivatives of f cannot all vanish modulo p at X0. If
for instance ∂f

∂xi
(X0) �≡ 0 (mod p), the simple form of Hensel’s Lemma 4.1.37

tells us that there exists αi ∈ Zp such that f(x0,1, . . . , αi, . . . , x0,n) = 0, so
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that there exists a local solution for all these p. We conclude by the Hasse–
Minkowski theorem.

For n = 2 we reason differently. Write f(x1, x2) = ax2
1 + bx1x2 + cx2

2,
so that D = b2 − 4ac. For any field K of characteristic zero it is clear that
f(x1, x2) = 0 has a nontrivial solution in K if and only if D is a square in
K. Thus by assumption D is a square in every Qp such that p | 2D. But in
particular this means that vp(D) is even for every p | D, in other words that
D is a square in Q, so that f(x1, x2) = 0 has a nontrivial rational solution.
Finally, for n = 1 the equation evidently has no nontrivial solutions. ��

The test of local solubility at the “bad” primes p dividing 2D is done by
looking modulo pk for a suitable k for which Hensel’s lemma can be used,
hence is easy. The only difficult part is thus factoring the discriminant D.

Finding explicitly a nontrivial rational solution can be done using an
efficient algorithm. We will see below such an algorithm in the important
special case n = 3.

Once a solution X0 = (x1,0, . . . , xn,0)t is found, we can ask for the gen-
eral solution in rational numbers (the general solution in integers is a more
difficult task, which we will consider only in special cases). The result is as
follows.

Proposition 6.3.2. Let X0 = (x1,0, . . . , xn,0)t be a nontrivial solution to the
Diophantine equation f(x1, . . . , xn) = XtQX = 0.

(1) The general solution X to the equation in rational numbers such that
XtQX0 �= 0 is given by X = d((RtQR)X0−2(RtQX0)R), where R ∈ Qn

is a vector of parameters such that RtQX0 �= 0, and d ∈ Q∗.
(2) In addition, if we choose a matrix M ∈ GLn(Q) whose last column Mn

is equal to X0, we may assume that R is a Z-linear combination of the
first n− 1 columns of M , with the GCD of the coefficients equal to 1.

(3) In (2 ) the matrix R is unique up to changing R into −R, and the coeffi-
cient d ∈ Q is unique.

Proof. (1). Since f is homogeneous, we consider nontrivial solutions of
f = 0 as elements of the projective space Pn(Q). The parametric equation of
a general line passing through X0 is X = uX0 + vR with (u, v) ∈ P2(Q), for
some fixed R ∈ Pn(Q) not equal (projectively) to X0. Let us find the values
of (u, v) for which such an X is a solution of our equation. We write

0 = XtQX = u2Xt
0QX0 + 2uvRtQX0 + v2RtQR = v(2uRtQX0 + vRtQR) .

Solutions with XtQX0 �= 0 correspond to vRtQX0 �= 0, hence to v �= 0 and
RtQX0 �= 0, so that we can choose (u, v) = (RtQR,−2RtQX0) ∈ P2(Q).
Since we have considered X as an element of the projective space, to obtain
all solutions we must multiply by an arbitrary d ∈ Q∗, proving (1).
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(2). Since X0 is nonzero, there exists a matrix M such that M ∈ GLn(Q)
whose last column Mn is equal to X0. If we set S = M−1R = (y1, . . . , yn)t,
then R = MS =

∑
1�j�n yjMj = T + ynX0, so that

(RtQR)X0 − 2(RtQX0)R = (T tQT + 2ynT tQX0)X0 − 2(T tQX0)(T + ynX0)

= (T tQT )X0 − 2(T tQX0)T ,

proving that we can replace R by T , in other words take only a linear com-
bination of the first n − 1 columns of M . Furthermore, if u is the unique
positive rational number such that the yi/u for 1 � i � n − 1 are integers
with global GCD equal to 1, we may replace T by T/u and d by du2, proving
(2).

(3). For simplicity, let us say that a Z-linear combination is primitive if
the GCD of the coefficients is equal to 1. If we set M−1X = (y1, . . . , yn)t for
some yi ∈ Q, we have X =

∑
1�i�n yiMi. Since XtQX0 �= 0, the vector R

has the form R = aX + bX0 for some a, b in Q. It follows that

R =
∑

1�i�n−1

(ayi)Mi + (ayn + b)Mn ,

and since the columns of M are linearly independent, if R is a primitive Z-
linear combination of the first n − 1 columns this means that ayn + b = 0
and that for 1 � i � n− 1 the ayi are integers with global GCD equal to 1.
Thus, if as in (2) we denote by u the unique positive rational number such
that the yi/u for 1 � i � n− 1 are integers with global GCD equal to 1, we
have necessarily a = ±1/u, hence b = ±yn/u, so that R is indeed determined
up to sign, as claimed. In addition, we have

(RtQR)X0 − 2(RtQX0)R = 2ab(XtQX0)X0 − 2a(XtQX0)(aX + bX0)

= −2a2(XtQX0)X ,

and this is equal to X/d with d = −1/(2a2XtQX0), so that d is also uniquely
determined. ��

Note that clearly the solutions of our Diophantine equation such that
XtQX0 = 0 cannot be attained by this parametrization, since XtQX0 = 0
is equivalent to RtQX0 = 0, which is excluded.

6.3.2 The Homogeneous Ternary Quadratic Equation

As we have seen during the proof of the Hasse–Minkowski theorem, the case
n = 3 is the most important. In that case, the above proposition can be
refined. We begin with a lemma.

Lemma 6.3.3. Let Q be a nonsingular 3× 3 real symmetric matrix, and let
X0 be a nonzero real vector such that Xt

0QX0 = 0. For X ∈ R3, XtQX =
XtQX0 = 0 is equivalent to X = λX0 for some λ ∈ R.
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Proof. By diagonalizing Q, we may assume that Q is a diagonal matrix
with real nonzero diagonal entries a, b, c. Thus XtQX = XtQX0 = 0 is equiv-
alent to ax2 +by2 +cz2 = axx0+byy0 +czz0 = 0. Since (x0, y0, z0) �= (0, 0, 0),
we may assume for instance that z0 �= 0. Thus z = −(axx0 + byy0)/(cz0);
hence

0 = XtQX = (ax2 + by2)cz2
0 + (axx0 + byy0)2

= (axx0 + byy0)2 − (ax2 + by2)(ax2
0 + by2

0) = −ab(xy0 − yx0)2 ,

so that xy0 − yx0 = 0, and hence

cz0(zx0 − xz0) = −x0(axx0 + byy0) + x(ax2
0 + by2

0) = by0(xy0 − yx0) = 0 ,

so that X and X0 are proportional, as claimed. ��

Proposition 6.3.4. Let X0 = (x0, y0, z0) be a nontrivial solution of the Dio-
phantine equation f(x, y, z) = XtQX = 0 and let M be a matrix in GL3(Q)
whose last column M3 is equal to X0. The general rational solution X to the
equation is given by X = d((RtQR)X0−2(RtQX0)R), where R = sM1+tM2,
s and t are coprime integers, and d ∈ Q.

Proof. By Proposition 6.3.2, the above parametrization with RtQX0 �= 0
gives all solutions such that XtQX0 �= 0. Furthermore, if R = s1M1 + s2M2

for some s1 and s2 in Q not both 0, setting u = gcd(s1, s2), s = s1/u, t = s2/u,
hence changing R into R/u, and finally changing d into du2, it is clear that
we may assume that s and t are coprime integers. In addition, by the above
lemma, the solutions such that XtQX0 = 0 are the multiples of X0. Now since
Q is nonsingular and X0 �= 0, we have QX0 �= 0. It follows that the subspace
V ⊂ Q3 of R such that RtQX0 = 0 is exactly 2-dimensional. I claim that
there exists R equal to a linear combination of M1 and M2 that belongs to V ,
and that is not proportional to X0. Indeed, since M ∈ GL3(Q), no nonzero
linear combination of M1 and M2 is proportional to M3 = X0. Furthermore,
for R = sM1 + tM2 the equation RtQX0 = 0 reads sM t

1QX0 + tM t
2QX0 = 0.

If, for instance, M t
1QX0 = 0, we can choose R = M1. Otherwise, we choose

s1 = −M t
2QX0, t1 = M t

1QX0, and set s = s1/ gcd(s1, t1), t = t1/ gcd(s1, t1),
proving my claim. Thus, using once again the above lemma, it follows that
for this R we have RtQR �= 0, hence X = d((RtQR)X0 − 2(RtQX0)R) =
d(RtQR)X0. Since RtQR �= 0, by choosing a suitable value of d ∈ Q we can
thus obtain any multiple of X0. ��

Remark. The above construction is of course explicit: to obtain X0 itself
for instance, either M t

1QX0 = 0, in which case we choose R = M1 and
d = 1/(M t

1QM1), which exists by the lemma, or M t
1QX0 �= 0, and we choose

s and t as explained, R = sM1 + tM2, and then d = 1/(RtQR).
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Corollary 6.3.5. Let f(x, y, z) be a nonsingular rational quadratic form in
three variables. There exist three polynomials Px, Py, Pz with integer coef-
ficients that are homogeneous of degree 2 in two variables (i.e., integral bi-
nary quadratic forms) such that the general rational solution of the Diophan-
tine equation f(x, y, z) = 0 is given by the parametrization x = dPx(s, t),
y = dPy(s, t), and z = dPz(s, t), where s and t are coprime integers and
d ∈ Q, uniquely determined (up to simultaneous change of sign of s and t) by
x, y, z.

Proof. Clear from the above proposition. Note that by multiplying d by
a suitable rational number we may indeed assume that the polynomials Px,
Py, and Pz have integral coefficients. ��

Remark. Although we have proved the above corollary in the context of
quadratic forms defined over Q, it is clear that the proofs remain valid over
any field of characteristic different from 2; hence the corollary is true if we
remove all mention of integrality, coprimeness, or uniqueness.

Corollary 6.3.6. Assume that ABC �= 0, let (x0, y0, z0) be a particular non-
trivial solution of Ax2 + By2 = Cz2, and assume that z0 �= 0. The general
solution in rational numbers to the equation is given by

x = d(x0(As2 −Bt2) + 2y0Bst) ,

y = d(2x0Ast− y0(As2 −Bt2)) ,

z = dz0(As2 + Bt2) ,

where s and t are coprime integers and d is any rational number. Moreover,
s, t, and d are uniquely determined, up to a simultaneous change of sign of
s and t.

Proof. We apply the above proposition to the diagonal quadratic form
with diagonal (A,B,−C), and to the particular solution (−x0,−y0, z0) (so
as to obtain a parametrization with fewer minus signs). Since z0 �= 0, we may
choose

M =

1 0 −x0

0 1 −y0

0 0 z0

 ∈ GL3(Q) ,

so that R = (s, t, 0)t with s and t coprime integers, and set E = (RtQR)X0−
2(RtQX0)R. We compute that

E = (As2 + Bt2)(−x0,−y0, z0)t + 2(Asx0 + Bty0)(s, t, 0)t

= (x0(As2 −Bt2) + 2y0Bst,−y0(As2 −Bt2) + 2x0Ast, (As2 + Bt2)z0)t ,

giving the above parametrization. The uniqueness statement (up to sign) has
been proved in complete generality above. ��
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Remark. Although evidently (−x, y, z) (for instance) is also a solution if
(x, y, z) is one, it is not clear from the formulas how to obtain it. We leave
this as an exercise for the industrious reader; see Exercise 5.

Assume now that f(x, y, z) has integral coefficients, and that we want to
parametrize all integral solutions. Writing d = u/v with gcd(u, v) = 1, we
see that we want v | Px(s, t), v | Py(s, t), and v | Pz(s, t). By a well-known
property of resultants, there exist polynomials U and V say with integer
coefficients such that

U(S, T )Px(S, T ) + V (S, T )Py(S, T ) = RS(Px(S, T ), Py(S, T )) ,

where RS denotes the resultant with respect to the variable S. Clearly
RS(Px(S, T ), Py(S, T )) = r(x, y)T 4 for some r(x, y) ∈ Z, and by homogene-
ity we also have RT (Px(S, T ), Py(S, T )) = r(x, y)S4 for the same constant
r(x, y), where RT denotes the resultant with respect to T . By abuse of lan-
guage we will call r(x, y) the resultant of the polynomials Px and Py. It
follows that v | r(x, y)s4 and v | r(x, y)t4, and since gcd(s, t) = 1 we have
v | r(x, y). We have thus proved the following.

Proposition 6.3.7. In the parametrization of Corollary 6.3.5, if x, y, and
z are integers, and if we write d = u/v with gcd(u, v) = 1, then v |
gcd(r(x, y), r(x, z), r(y, z)).

Note that the converse is not necessarily true.
In the context of Corollary 6.3.6, assume that A, B, and C are integers

and that (x0, y0, z0) is chosen to be an integral solution. We then have the
following:

Corollary 6.3.8. In the parametrization given by Corollary 6.3.6, if x, y,
and z are integers then d = u/v with v | 2BCz2

0 .

Proof. If we simply used the above proposition, we would obtain v |
4ABCz4

0 . However, we can do better (also in the general case) by using re-
duced resultants. Without entering into this theory, we simply note that if we
set Px(S, T ) = x0(AS2 − BT 2) + 2y0BST , Py(S, T ) = 2x0AST − y0(AS2 −
BT 2), and Pz(S, T ) = z0(AS2 + BT 2) then

U(S, T )Px(S, T ) + V (S, T )Py(S, T ) = 2BCz2
0T 2 ,

where

U(S, T ) = A(y0S − 2x0T ) and V (S, T ) = Ax0S + 2By0T .

As above, we deduce that v | 2BCz2
0 , proving the corollary. Note that if we

also consider Px and Pz or Py and Pz, we would obtain a right-hand side
equal to 2BCz3

0T 3, hence a multiple of the above, so we would not obtain
any additional information. ��
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6.3.3 Computing a Particular Solution

We see from the above results that the main task for finding a parametriza-
tion of a homogeneous ternary equation XtQX = 0 is to find a particular
solution X0. Note that the proof of the Hasse–Minkowski theorem is com-
pletely effective, but it leads to a rather inefficient algorithm for finding X0.
Although this book is not mainly algorithmic in nature, we give a very elegant
and efficient algorithm for doing so, initially due to Gauss and Legendre, but
streamlined in the present nice form by D. Simon; see [Sim1]. We begin with
two lemmas of independent interest, where as usual we denote by Mn(Z) the
ring of n× n matrices with integral entries.

Lemma 6.3.9. Let M ∈ Mn(Z), let p be a prime number, and let d =
dimFp

(Ker(M)), where M denotes the reduction of M modulo p. Then pd |
det(M); in other words, d � vp(det(M)).

Proof. Let U1, . . . , Ud be an Fp-basis of Ker(M), let U1, . . . , Un be a
completion to an Fp-basis of Fn

p , let U ∈ GLn(Fp) be the matrix whose
columns are the Uj , and finally let U be any lift of U to Mn(Z). By
assumption the first d columns of the matrix MU are divisible by p, so
pd | det(MU) = det(M) det(U). On the other hand, p � det(U) since
U ∈ GLn(Fp), so pd | det(M) as claimed. ��

Lemma 6.3.10. For any M ∈ SLn(Z/pZ) there exists a lift M such that
M ∈ SLn(Z); in other words, the natural reduction map from SLn(Z) to
SLn(Z/pZ) is surjective (here p is not necessarily a prime number).

Proof. The following proof is taken from [Shi]. We prove this by induction
on the size n of the matrix, the result being trivial for n = 1. Assume n >
1 and the result true for n − 1, and let N be any lift to Mn(Z) of the
matrix M . By the elementary divisor theorem (i.e., the Smith normal form
in algorithmic terms) we can find two matrices U and V in SLn(Z) such that
UNV = D = diag(d1, . . . , dn) is a diagonal matrix with diagonal elements
di such that dn | dn−1 | · · · | d1, and we have det(D) = d1 · · · dn ≡ 1
(mod p). If we can find a matrix E ∈ SLn(Z) such that E ≡ D (mod p)
then U−1EV −1 ∈ SLn(Z) will be such that U−1EV −1 ≡ N ≡ M (mod p).
Thus we may assume that N = D and forget the matrices U and V . Set
b = d2 · · · dn, a = det(D) = d1b, and define

W =
(

1 −1
1− b b

)
and X =

(
1 d2

0 1

)
,

both of determinant 1. We check that

W

(
1 0

1− d1 d1d2

)
X =

(
d1 0

1− a d2

)
≡
(

d1 0
0 d2

)
(mod p)

since a ≡ 1 (mod p) by assumption.
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By our induction hypothesis there exists a matrix C ∈ SLn−1(Z) such
that C ≡ diag(d1d2, d3, . . . , dn) (mod p). It follows that if we let W1, X1 in
SLn(Z) be defined as block matrices by

W1 =
(

W 0
0 In−2

)
and X1 =

(
X 0
0 In−2

)
,

where as usual In−2 is the identity matrix of order n− 2, and if we set

C1 =


1 0 . . . 0

1− d1

0
... C
0

 ,

which is also clearly in SLn(Z), then W1C1X1 ≡ D (mod p) and W1C1X1 ∈
SLn(Z), proving the lemma by induction. ��

The algorithm for finding a particular solution to a homogeneous ternary
quadratic equation is based on the following theorem.

Theorem 6.3.11. Let Q ∈M3(Z) be the (symmetric)matrix of a nondegen-
erate ternary quadratic form that has a nontrivial solution in Qp for every
p | det(Q). There exists a matrix V ∈M3(Z) such that

det(V ) = |det(Q)| and Q1 =
1

det(Q)
V tQV ∈M3(Z) ,

and in particular det(Q1) = 1.
Furthermore, if the prime factorization of det(Q) is known, V can be

found by a polynomial-time algorithm, and the entries of V are bounded by a
polynomial in det(Q).

Proof. We prove the theorem by induction on |det(Q)| � 1. If det(Q) =
±1 there is nothing to prove. Thus let p be a prime number dividing det(Q),
so that in particular Ker(Q) is nontrivial, and let d = dimFp

(Ker(Q)) � 1, so
that pd | det(Q) by the above lemma. We consider three cases.
Case 1: vp(det(Q)) = 1. By Lemma 6.3.9 we must have d = dimFp

(Ker(Q)) =
1, and as in the proof of that lemma let U ∈ GL3(Fp) such that the first col-
umn of U forms a basis of Ker(Q). Multiplying a column of U by a suitable
element of F∗

p we may assume that U ∈ SL3(Fp). From Lemma 6.3.10 it fol-
lows that we can lift U to a matrix U ∈ SL3(Z), whose columns we denote
by Ui. By assumption we know that p | QU1, so p | U t

i QU1 for all i. Thus
if we set R = U tQU = (ri,j), the first column (hence the first row) of R is
divisible by p. Clearly p2 � r1,1; otherwise, p2 | det(R) = det(Q), contrary to
our assumption, as can be seen by dividing by p the first row and then the
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first column. By assumption, we know that XtRX = 0 has a nontrivial p-adic
solution X = (a1, a2, a3)t, where after suitable rescaling we may assume that
the ai are p-integral with one of them a p-adic unit. I claim that either a2 or
a3 is a p-adic unit. Indeed, otherwise we would have vp(a2) � 1, vp(a3) � 1,
hence vp(a1) = 0, so setting Y = (0, a2, a3)t and e1 = (1, 0, 0)t we would have

0 = XtRX = a2
1e

t
1Re1 + 2a1Y

tRe1 + Y tRY ,

and we would have

vp(a2
1e

t
1Re1) = 2vp(a1) + vp(r1,1) = 1 ,

vp(2a1Y
tRe1) � 2 (since p | Y and p | Re1, which is the first column of R),

and vp(Y tRY ) � 2 since p | Y , leading to a contradiction and proving my
claim.

Exchanging the indexes 2 and 3 if necessary we may assume that vp(a2) =
0, and let x ∈ Z be such that x ≡ a3a

−1
2 (mod p). Set

N =

1 0 0
0 p x
0 0 1


and V = UN . It is clear that V ∈ M3(Z) with det(V ) = p. Furthermore,
the above computation of XtRX shows that Y tRY ≡ 0 (mod p); hence
N t

3RN3 ≡ 0 (mod p), where as usual Nj denotes the jth column of N . Since
p | N2 and N1 = e1, it immediately follows that the matrix N tRN = V tQV
is divisible by p. Thus we can replace Q by V tQV/p, whose determinant is
equal to det(Q)/p, hence is strictly smaller than that of Q in absolute value.

Algorithmic Remarks.

(1) When p | r2,2 it is not necessary to use this construction since it is
immediate that N tRN is divisible by p for

N =

1 0 0
0 1 0
0 0 p

 .

(2) Although we have used p-adic solubility we do not need an explicit p-
adic solution. We only want N t

3RN3 ≡ 0 (mod p) with N3 = (0, x, 1)t, in
other words a solution to the quadratic equation

r2,2x
2 + 2r2,3x + r3,3 ≡ 0 (mod p) .

Thus we take x ∈ Z such that

x ≡
(
−r2,3 +

√
r2
2,3 − r2,2r3,3

)
r−1
2,2 (mod p) ,

and the existence of V is equivalent to the existence of the square root.
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(3) We have p � (r2
2,3 − r2,2r3,3), otherwise p2 | det(Q). Thus for p = 2 the

square root always exists, so we do not need to assume local solubility at
2 in this case.

Case 2: vp(det(Q)) � 2 and d = dimFp
(Ker(Q)) = 1. Let U ∈ SL3(Z) be

defined as in Case 1 and set R = U tQU = (ri,j). We know that the first row
and column of R are divisible by p, so expanding det(R) this implies that

det(Q) = det(R) ≡ r1,1 det(S) (mod p2), where S =
(

r2,2 r2,3

r3,2 r3,3

)
.

Since p | r1,j we cannot have p | det(S); otherwise, the last two columns
of R would be linearly dependent over Fp, so that d � 2, contrary to our
assumption. Thus p � det(S) and since p2 | det(Q) we deduce that p2 | r1,1.
If we set V = UN with

N =

1 0 0
0 p 0
0 0 p


it is clear that det(V ) = p2 and V tQV is divisible by p2. We thus replace Q
by V tQV/p2, whose determinant is equal to det(Q)/p2 hence strictly smaller
than that of Q in absolute value.

Case 3: vp(det(Q)) � 2 and d = dimFp
(Ker(Q)) � 2. Here we take for U

a matrix in SL3(Z) whose first two columns reduced modulo p are linearly
independent elements of Ker(Q) and we set R = U tQU . The first two rows
and columns of R are divisible by p, so it is clear that if we set V = UN with

N =

1 0 0
0 1 0
0 0 p


we have det(V ) = p and V tQV is divisible by p. We thus replace Q by
V tQV/p, whose determinant is equal to det(Q)/p, hence strictly smaller than
that of Q in absolute value.

Since in all three cases we have obtained a new symmetric matrix with
strictly smaller determinant in absolute value, the first statement of the the-
orem is proved by induction. The other statements immediately follow from
the proof. ��

Thanks to Theorem 6.3.11 the search for a particular solution to XtQX =
0 can be algorithmically reduced to the search for a particular solution to such
an equation for which det(Q) = ±1. The second result that enables us to find
such a solution is based on a natural modification of the LLL algorithm
(Algorithm 2.3.18) due to D. Simon.

Denote by · the bilinear form associated with the quadratic form Q. Since
Q is indefinite, this is never a scalar product, but the notation is useful
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nonetheless. We will write (x)2 instead of Q(x) = x · x, since for the same
reason we cannot write Q(x) = ‖x‖2. Thus (x)2 may be negative, so we will
have to include absolute values in all the necessary inequalities.

Now let (bj)1�j�n be a Z-basis of the lattice Λ = Zn (which is more than
what we ask in the usual LLL algorithm, where the bj are required only to
be linearly independent) and let (b∗

i ) be the corresponding Gram–Schmidt
vectors obtained using the standard formulas of Proposition 2.3.5. First note
that the induction used to define these vectors may fail since some vector
b∗

j may be such that b∗
j · b∗

j = 0. If this happens either here or in the rest
of the algorithm we are in fact happy since we have a nonzero vector b∗

j

such that Q(b∗
j ) = 0, and since b∗

j ∈ Qn throughout the algorithm, it is not
necessary to search any further because this is a particular solution. We will
thus implicitly assume that this never happens, so that we indeed have a
Gram–Schmidt basis.

Let γ > 4/3 be fixed. We define the notion of γ-LLL reduced basis in the
same way as in Definition 2.3.14, except that we must add absolute value
signs to the norms: in other words we must have |µi,j | � 1/2 for all j < i and

∣∣(b∗
i + µi,i−1b∗

i−1)
2
∣∣ � ( 1

γ
+

1
4

) ∣∣(b∗
i−1)

2
∣∣ ,

the absolute value signs being necessary since the form Q is indefinite (we will
see that in our special case we must take 4/3 < γ < 2). Note that contrary
to the positive definite case this is not equivalent to |(b∗

i )
2| � (1/γ + 1/4 −

µ2
i,i−1)|(b∗

i−1)
2|; see Exercise 8.

Given any Z-basis (bj) of Zn we apply a straightforward modification of
the LLL algorithm to obtain a γ-LLL-reduced basis of Zn by adding suitable
absolute values in Step 3 of Algorithm 2.3.18.

The proof used in the positive definite case shows that the algorithm
terminates in polynomial time and that the final basis that we obtain is in
particular such that

1 �
∣∣(b1)2

∣∣ � γ(n−1)/2|det(Q)|1/n .

An easy modification of the proof shows that if Q is indefinite the above
inequality can be slightly improved (see [Sim1]), but this is not important
although useful in practice.

The second result, although very easy, is the key to finding a particular
solution.

Proposition 6.3.12. Assume that n � 5, that Q is a quadratic form with
integral entries such that det(Q) = ±1, and choose γ such that 4/3 < γ <
22/(n−1). Then either we find a b∗

j such that Q(b∗
j ) = 0 during the algorithm

(hence a particular solution), or the Gram matrix of Q on the final LLL-
reduced basis is diagonal with diagonal entries equal to ±1.
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Proof. It follows from the inequality for |(b1)2| that 1 � |(b1)2| < 2, so
that (b1)2 = ±1 since it is an integer. Since b∗

1 = b1, for 1 < i � n we have

µi,1 =
bi · b1

(b1)2
= ±bi · b1 ,

and since the Gram matrix has integral entries and |µi,1| � 1/2 we have
µi,1 = bi · b1 = 0. It follows that b∗

2 = b2, so we can continue the same
reasoning by induction. Note that the double inequality for γ is possible only
if n � 5, whence the restriction. ��

In our case we have n = 3 and the inequality for γ is 4/3 < γ < 2.
Summarizing, to find a particular solution of XtQX for an indefinite ternary
quadratic form Q that is p-adically soluble for all p | det(Q) we proceed as
follows. After factoring det(Q) (which is theoretically the longest part of the
algorithm) we apply the algorithm implicit in the proof of Theorem 6.3.11 to
find a matrix V ∈M3(Z) such that Q1 = V tQV/det(Q) ∈M3(Z) and such
that det(Q1) = 1. We then use the modified LLL algorithm explained above
applied to Q1 and the canonical basis of Z3. Then either we directly find a
vector X1 = b∗

j such that Q1(b∗
j ) = 0, in which case X = V X1 is a particular

nontrivial solution to XtQX = 0, or we find a matrix W ∈ GL3(Z) such that
Q2 = W tQ1W is a diagonal matrix with diagonal entries equal to ±1. Since
Q2 is indefinite the signs of two diagonal entries must be opposite, so we
can trivially find a solution X2 to Xt

2Q2X2 = 0 of the form (1, 1, 0)t up to
permutation. It follows that X = V WX2 is a particular nontrivial solution
to XtQX = 0.

6.3.4 Examples of Homogeneous Ternary Equations

We now apply the above results to a number of important special cases.

Corollary 6.3.13. Up to exchange of x and y the general integral solution
to the Pythagorean equation x2 +y2 = z2 is given by x = d(s2−t2), y = 2dst,
z = d(s2 + t2), where s, t are coprime integers of opposite parity and d ∈ Z.
In addition, we have |d| = gcd(x, y) = gcd(x, z) = gcd(y, z). The general
solution with x and y coprime is (up to exchange of x and y)x = s2 − t2,
y = 2st, z = ±(s2 + t2).

This is the well-known parametrization of Pythagorean triples, which we
will use several times.

Proof. Using Corollary 6.3.6 with the particular solution (1, 0, 1), we ob-
tain the formulas of the corollary. If s ≡ t (mod 2), we set s1 = (s+ t)/2 and
t1 = (s− t)/2, so that s = s1 + t1, t = s1− t1. Then x = 4dst, y = 2d(s2

1− t21),
z = 2d(s2

1 + t21), which is the same parametrization with x and y exchanged
and d replaced by 2d. Since gcd(s, t) = 1, s and t are odd, so s1 and t1 have
opposite parity, showing that we can always reduce to this case. Finally, if
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this is the case then gcd(s2 − t2, 2st) = 1, so x and y are in Z if and only
if d ∈ Z (and then |d| = gcd(x, y) and the other statement follows). Finally,
if we want gcd(x, y) = 1, we must have d = ±1, but two of the signs in the
formulas can be absorbed by exchanging s and t, and by changing s into −s,
proving the corollary. ��

Corollary 6.3.14. (1) Let p = ±2. The general integral solution of x2 +
py2 = z2 with x and y coprime is given by x = ±(s2 − pt2), y = 2st,
z = ±(s2 + pt2), where s and t are coprime integers with s odd and the
± signs are independent.

(2) The general integral solution of x2 − 2y2 = −z2 (in other words of x2 +
z2 = 2y2)with x and y coprime is given by x = ±(s2 − 2st − t2), y =
±(s2 + t2), z = ±(s2 + 2st − t2), where s and t are coprime integers of
opposite parity and the ± signs are independent.

Proof. Using Corollary 6.3.6 with the particular solution (1, 0, 1) we obtain
the formulas x = d(s2 − pt2), y = 2dst, z = d(s2 + pt2), where s and t are
coprime integers and d ∈ Q. We consider two cases.

If 2 � s, then gcd(s2 − pt2, 2st) = 1, so for x and y to be coprime integers
we must have d = ±1, giving the first parametrization.

If 2 | s then t is odd, so that gcd(s2 − pt2, 2st) = 2. Thus for x and y
to be coprime integers we must have d = ±1/2, and this leads to another
parametrization, which is the same as the first with s and t exchanged and
some signs changed, proving (1).

In a similar manner for (2), using the particular solution (1, 1, 1) we obtain
the parametrization x = ±(s2−4st+2t2), y = ±(s2−2st+2t2), z = ±(s2−2t2)
with s and t coprime and s odd, and (2) follows by replacing s with s + t,
giving the more symmetrical parametrization of the corollary. ��

Corollary 6.3.15. Let p be a positive or negative prime number with p �= 2.
The general integral solution of x2 + py2 = z2 with x and y coprime is given
by one of the following two disjoint parametrizations.

(1) x = ±(s2 − pt2), y = 2st, z = ±(s2 + pt2), where s and t are coprime
integers of opposite parity such that p � s.

(2) x = ±(((p−1)/2)(s2 +t2)+(p+1)st), y = s2−t2, z = ±(((p+1)/2)(s2 +
t2)+(p−1)st), where s and t are coprime integers of opposite parity such
that s �≡ t (mod p).

In the above, the ± signs are independent.

Proof. Using Corollary 6.3.6 with the particular solution (1, 0, 1) we again
obtain the formulas x = d(s2 − pt2), y = 2dst, z = d(s2 + pt2), whnere s and
t are coprime integers and d ∈ Q. We consider two cases.

If p � s, we easily check that gcd(s2 − pt2, 2st) = gcd(s2 − pt2, 2), and
since p is odd, this is equal to 1 if s and t have opposite parity, and to 2
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otherwise. If it is equal to 1, for x and y to be coprime integers we must
have d = ±1, giving the first parametrization. If it is equal to 2, then s
and t have the same parity, so they are both odd. We set s1 = (s + t)/2,
t1 = (t − s)/2, which are coprime of opposite parity such that p � (s1 − t1),
and we obtain x = −d((p − 1)(s2

1 + t21) + 2(p + 1)s1t1), y = 2d(s2
1 − t21),

z = d((p + 1)(s2
1 + t1)2 + 2(p − 1)s1t1). For x and y to be coprime integers

we must have d = ±1/2, giving the second parametrization.
If p | s, then p � t, so if we exchange s/p and t and change d into d/p we

reduce to the preceding case, up to the sign of x, which plays no role, so that
we do not obtain any extra parametrizations. ��

6.3.5 The Pell–Fermat Equation x2 − Dy2 = N

Introduction and Reductions.
A degree-2 equation of another kind that deserves special mention is the
Pell–Fermat equation, often simply called the Pell equation.

This equation is x2 −Dy2 = N for given integers D and N , to be solved
in integers x and y. It is evidently closely linked to the arithmetic properties
of Q(

√
D). Its nature is very different from that of the degree-2 equations

that we have studied above for two reasons. First, it is not a homogeneous
equation. But most importantly, we want the solutions in integers, and not
in rational numbers. Indeed, finding for instance the rational solutions to
x2 −Dy2 = 1 is very easy; see Exercise 10.

We make a number of reductions.

– We may assume that D � 0, since otherwise there is only a finite number
of pairs (x, y) to be checked. This can be done either in a näıve manner, or
more intelligently by working in the imaginary quadratic field Q(

√
D) and

using a computer algebra system (CAS) to check whether N is the norm
of an element.

– We may assume that D is not a square, since otherwise if D = d2 the
equation can be written (x − dy)(x + dy) = N , so it is only a matter of
listing all (positive or negative) divisors g of N such that g + N/g is even
and d | (N/g − g).

– Hence we are reduced to working in the real quadratic field Q(
√

D), where
D is not necessarily the discriminant of the field. As in the case D < 0, the
existence of a solution can be proved intelligently using a CAS to check
whether N is the norm of an element in the real quadratic order Z[

√
D]. If

a solution does exist, multiplicativity of the norm (equivalent to the simple
identity (x2 −Dy2)(z2 −Dt2) = (xz + Dyt)2 −D(xt + yz)2) implies that
the general solution is obtained by multiplying the corresponding element
x + y

√
D of the quadratic field by a unit of norm 1, i.e., a solution to

x2 −Dy2 = 1.

Once these reductions are made, it is natural to consider the following
three special cases:
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(1) x2 −Dy2 = 1.
(2) x2 −Dy2 = ±1, where ±1 means that we accept both signs as solutions.
(3) x2 −Dy2 = ±4, when D ≡ 0 or 1 modulo 4.

We note that each equation is a special case of the next one. Indeed, if
(x, y) is a solution of (1), it is also a solution of (2). But conversely, we will
see that the set of solutions of (2) has the form x + y

√
D = ±(x0 + y0

√
D)k

for any k ∈ Z, and then either (x0, y0) is already a solution of (1), in which
case all solutions of (2) are also solutions of (1), or it is not, in which case it is
immediately seen that the solutions of (1) are the solutions of (2) with k even.
In both cases the solutions of (1) are also given by x+y

√
D = ±(x0+y0

√
D)k

for any k ∈ Z for suitable (possibly different) (x0, y0).
Finally, if (x, y) is a solution of (2), then (X, y) is a solution of (3) with

X = 2x and D replaced by 4D. Conversely, any solution to X2 −DY 2 = ±4
with X ≡ 0 (mod 2) gives a solution to x2 − (D/4)y2 = ±1 with x = X/2.
This is automatic if D ≡ 0 (mod 4). If D ≡ 1 (mod 4) and X (hence Y ) is
odd, then we obtain a solution to x2 − Dy2 = ±1 by setting x = X(X2 +
3DY 2)/8 and y = Y (3X2 +DY 2)/8, which are easily seen to be integral, and
correspond to the identity x + y

√
D = ((X + Y

√
D)/2)3.

To summarize, what we will call the Pell equation is an equation of the
form x2 −Dy2 = ±4 with D > 0 nonsquare and congruent to 0 or 1 modulo
4. There are two main results concerning this equation. One deals with the
structure of the set of solutions, the other with the algorithmic construction
of that set.

The Structure Theorem.

Proposition 6.3.16. If D > 0 is not a square and is congruent to 0 or 1
modulo 4 the Pell equation x2 −Dy2 = ±4 has an infinity of solutions given
in the following way. If (x0, y0) is a solution with the least strictly positive y0

(and x0 > 0, say), the general solution is given by

x + y
√

D

2
= ±

(
x0 + y0

√
D

2

)k

for any k ∈ Z.

Proof. The equation can be written N (ε) = ±1, with ε = (x + y
√

D)/2,
and since x and y are integers and x ≡ Dy (mod 2), ε is an algebraic integer
of norm equal to ±1, hence a unit. Since the set of elements of the form
(x+ y

√
D)/2 with x ≡ yD (mod 2) is the quadratic order of discriminant D,

we must thus find the structure of the group of units of this order.
Let D0 be the discriminant of the quadratic field Q(

√
D), so that D =

D0f
2 for some positive integer f . We prove the result by induction on the

number of prime factors of f . If f = 1, by an easy special case of Dirichlet’s
unit theorem we know that ε = ±εk

0 for some sign ± (having nothing to do
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with the sign of the equation), and k ∈ Z, where ε0 is the fundamental unit of
Q(
√

D0), i.e., the solution of the equation with the smallest strictly positive
y.

Assume now that f is arbitrary, and by induction that the result has been
proved for all g | f having a strictly smaller number of prime factors. We can
thus write D = D1p

2, where p is a prime, and by induction we may assume
that the result has already been proved for D1. Thus, our Pell equation can
be written x2−D1(py)2 = ±4, so that by induction the equation is equivalent
to

x + py
√

D1

2
= ±

(
x1 + y1

√
D1

2

)k

,

where ε1 = (x1 + y1

√
D1)/2 is the fundamental unit of the order of discrim-

inant D1. We have

±py =
((x1 + y1

√
D1)/2)k − ((x1 − y1

√
D1)/2)k

√
D1

.

It will thus be sufficient to prove the following lemma.

Lemma 6.3.17. The set of k ∈ Z such that (εk
1 − ε1

k)/
√

D1 ∈ pZ has the
form k0Z, where k0 | p−

(
D1
p

)
.

Proof. We may clearly assume that p � y1, since otherwise we can choose
k0 = 1. Assume first that p �= 2. If p | D1, expanding the right-hand side gives
±2k−1py ≡ kxk−1

1 y1 (mod p), so that the set of suitable k is pZ if p � x1y1,
and Z otherwise, so that k0 = p or 1 respectively. Otherwise, ε1, ε1 can be
considered as distinct elements e1 and e1 of Fp2 (since (e1− e1)2 = y2

1D1 �= 0
since p � y1), so our equation is equivalent to (e1/e1)k = 1. The first claim
of the lemma is thus proved, with k0 being equal to the order of (e1/e1)
in Fp2 . For the second, we note that if

(
D1
p

)
= 1 then in fact e1 ∈ Fp,

so k0 | (p − 1). On the other hand, if
(

D1
p

)
= −1 then by the theory of

finite fields we have e1 = ep
1 (the action of the Frobenius automorphism).

This can also be seen directly by applying the Frobenius automorphism to
the equation e2

1 − x1e1 ± 1 = 0. Thus the order of e1/e1 = ep−1
1 divides

(p2 − 1)/(p− 1) = p + 1, proving the lemma, hence the proposition. ��

The Algorithmic Method.
Now that we know the structure of the solution set of x2 − Dy2 = ±4, it
remains to find in an efficient manner the fundamental solution (x0, y0), or
equivalently, the fundamental unit of the quadratic order of discriminant D.
There are essentially four methods for doing this, which differ by their com-
plexity. The first is the näıve method, consisting in trying y = 1, 2 etc., until
Dy2 ∓ 4 is a square. This method is absolutely correct but highly inefficient,
since one can prove that the number of binary digits of y0 may often be
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larger than
√

D. Thus, the running time can be of order O(exp(D1/2)). In
fact, since the result we are computing is so large, the fundamental unit must
be represented in a nontrivial manner (the so-called compact representation,
see [Coh0]), which we will not discuss here. We will always assume that this
representation is used.

The second method uses continued fractions, and will be described more
precisely in a moment. Its running time has order O(D1/2).

The third method is a remarkable improvement of the continued fraction
method due to D. Shanks, using a combination of two of his most important
algorithmic ideas: the baby-step giant-step algorithm and the infrastructure
of the continued fraction cycle. We refer the reader to Chapter 5 of [Coh0]
for a detailed description of these ideas and algorithms. The running time of
this method has order O(D1/4).

The fourth method is a combination of the third method with a method
coming from the theory of factoring, the use of factor bases, introduced in
this context by J. Buchmann. Its heuristic running time, well supported by
practical evidence, is subexponential, of order O(exp(c

√
log(D) log(log(D))))

for a small strictly positive constant c. However, its correctness depends on
the truth of the Generalized Riemann Hypothesis (GRH) (although a slower
variant has recently been found that runs in time O(D1/6+ε), and which does
not need the GRH). Using this record-breaking method, it is possible to com-
pute the fundamental unit in a reasonable amount of time for discriminants
up to 1080, say.

The continued fraction method is based on the following result, which is
not difficult but which we will not prove.

Proposition 6.3.18. Let D > 0 be a nonsquare integer congruent to 0 or
1 modulo 4. Denote by r the largest integer such that r2 < D and r ≡ D
(mod 2). The continued fraction expansion of the quadratic number α = (r +√

D)/2 is purely periodic. Furthermore, if (a0, a1, . . . , an−1) is the period of
that expansion, then the rational number pn−1/qn−1 whose continued fraction
expansion is given by that period is such that ε = pn−1 − qn−1(r −

√
D)/2 is

a fundamental unit of the quadratic order of discriminant D.

To apply this proposition we simply note that to compute the continued
fraction expansion of a quadratic number we must not compute any decimal
or other approximation to the number, but work formally directly only on
quadratic numbers. We leave the (easy) details to the reader, or refer once
again to [Coh0].

6.4 Diophantine Equations of Degree 3

From now on, as mentioned at the beginning of this chapter, it will be neces-
sary to have some knowledge of elliptic curves over Q as explained in Chapters
7 and 8.
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6.4.1 Introduction

In the case of a Diophantine equation of degree 3 or higher (or of several equa-
tions of degree 2), a new and very annoying phenomenon occurs: the failure of
the Hasse principle. In other words our equations may be everywhere locally
soluble without having a global solution. We have already seen examples of
this in the preceding chapter, and we will see more here. Note that it is usu-
ally very easy to check for local solubility everywhere. On the other hand, to
prove that a Diophantine equation has no global solutions is often very diffi-
cult, and often gives rise to unsolved problems. Even in the simplest case of a
homogeneous diagonal equation of degree 3 in three variables, no algorithm
is known, and it would be a remarkable advance in number theory to find
one (we will see that this problem can be reduced to the computation of the
Mordell–Weil group of an elliptic curve; see Proposition 6.4.15).

We thus consider Diophantine equations of the form f(x1, . . . , xn) = 0,
where f is a homogeneous polynomial of degree 3 with integral coefficients.
We will always assume that f is nonsingular (in other words that the partial
derivatives of f do not simultaneously vanish except at the origin); otherwise,
the problem is much easier and essentially reduces to Diophantine equations
of degree 1 or 2. When n = 2 there is nothing much to say since by de-
homogenizing the equation the problem boils down to the determination of
rational roots of a polynomial in one variable, which can easily be done (see
Exercise 11). When n = 3, then, if we know a nontrivial solution we are
by definition dealing with an elliptic curve, and we will see in Section 7.2.4
how to transform our equation into an equivalent one in Weierstrass form
y2z = x3 +axz2 +bz3 for suitable a and b. We will devote the whole of Chap-
ter 8 to the study of the global solubility of such equations. In particular, we
will prove the Mordell–Weil theorem, which states that the set of rational
points on the corresponding projective curve is a finitely generated abelian
group.

When n � 4, contrary to the case of quadratic forms, there is no really
simple reduction to a canonical form. For n = 4 we are dealing with a cubic
surface S. If P and Q are distinct rational points on S, the line through P
and Q either intersects S in a single third point, which must be rational, or
is entirely contained in S, so that we may obtain new points by this secant
process. Starting from a single point P we can consider the tangent plane
of S at P . It will intersect S along a singular cubic curve, and any tangent
at P with rational slope will intersect this curve, hence S, at a third point,
which will also be rational, or again be entirely contained in S. This will be
called a tangent process. We will see that for elliptic curves this does lead to
the whole set of rational points starting from a finite number (the Mordell–
Weil theorem). There is a conjecture of Yu. Manin that states that the same
should be true here:

Conjecture 6.4.1 (Manin). Let S be a cubic surface defined by a projec-
tive equation f(x1, x2, x3, x4) = 0, where f has integer coefficients and is
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nonsingular. There exists a finite number of rational points P1, . . . , Pr on S
such that any rational point of S can be obtained from them by a succession
of secant and tangent processes.

In view of all the above, in this section we will consider diagonal equations,
in other words equations of the form

∑
1�i�n aix

3
i = 0, or inhomogeneous

versions.

6.4.2 The Equation axp + byp + czp = 0: Local Solubility

Some explanations about the title and subject matter of this subsection and
the next two are in order. There are essentially two distinct methods to
study equations of the form ax3 + by3 + cz3 = 0. The first one, mainly
used in the nineteenth century, but expanded later by Selmer and Cassels
in the twentieth, is the use of tools coming from algebraic number theory:
factorization in suitable number fields together with the use of class and unit
groups, and the use of reciprocity laws (such as the Eisenstein reciprocity law
that we will use in Section 6.9.6 to prove Wieferich’s criterion for the first case
of Fermat’s last theorem). The second one, more recent, uses elliptic curves
and in some sense is more complete; we will study it in detail in Section 6.4.4;
see in particular Proposition 6.4.15 for the definitive result.

The methods using algebraic number theory apply with little change to
the more general equations axp + byp + czp = 0 where p is an odd prime, so
it is natural to consider the case of general p together with the case p = 3.
It is important to note, however, that p will be assumed to be quite small,
for instance 3 � p � 31, and suitable assumptions will have to be made to
obtain interesting results. In addition, our study will not include the study
of the equation xp + yp + zp = 0, in other words the initial Fermat equation
for two reasons: first because that equation does have the nontrivial solu-
tion (x, y, z) = (1,−1, 0) for instance, and second because in the context of
Fermat’s theorem p can be large. We will study FLT itself in Section 6.9,
where we will of course be looking for solutions with xyz �= 0. Finally note
that, to simplify the presentation, we will not use reciprocity laws such as
Eisenstein’s, although they do give important additional information, as the
proof of Wieferich’s criterion shows (see Corollary 6.9.10); see [Sel1] for more
details on the use of reciprocity laws for the equation ax3 + by3 + cz3 = 0,
and [Den] for the equation xp + yp + czp = 0.

The method using elliptic curves is specific to the equation ax3 + by3 +
cz3 = 0 since this represents a curve of genus 1. However, it can be partially
generalized to the equation axp + byp + czp = 0 by using Chabauty-type
techniques on a suitable hyperelliptic curve, and we will also briefly mention
this; see Proposition 6.4.13 and the comments following it.

Thus, until further notice, we let p be an odd prime, and consider the
equation axp + byp + czp = 0 with abc �= 0. We begin of course with local
solubility.
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First note that even if a, b, and c are initially in Q, after multiplying
by a suitable denominator we may assume that they are integers such that
gcd(a, b, c) = 1. Furthermore, we may also assume that a, b, and c are pth
power-free (in other words not divisible by pth power of a prime), since if for
instance �p | a, we can rewrite our equation as (a/�p)(�x)p + byp + czp = 0
(see Exercise 13, however). We will always implicitly or explicitly make these
two reductions in the sequel.

The question of local solubility is answered by the following theorem (note
that since p is odd the equation axp + byp + czp = 0 has a trivial solution in
R).

Theorem 6.4.2. Let a, b, and c be nonzero pth power-free integers such
that gcd(a, b, c) = 1, let � be a prime number, and denote by S� the statement
that the equation axp + byp + czp = 0 has a nontrivial solution in Q�. Set
L = � if � �= p, and L = �2 = p2 otherwise. Reorder a, b, and c so that
0 = v�(a) � v�(b) � v�(c), and set vb = v�(b) and vc = v�(c).

(1) If 1 � vb < vc then S� is false.
(2) If 1 � vb = vc, then S� is true if and only if b/c is a pth power in

(Z/LZ)∗ (in other words, if and only if either p � φ(L), or p | φ(L) and
(b/c)φ(L)/p ≡ 1 (mod L)), or if vb = vc = p− 1 and � = p.

(3) If vb = 0 and L | c, then S� is true if and only if a/b is a pth power in
(Z/LZ)∗.

(4) If vb = 0, vc = 1, and � = p, then S� is true.
(5) Assume finally that vb = vc = 0, and denote by G� the group of pth

powers in (Z/LZ)∗. Then S� is true if and only if at least one of the
following conditions is satisfied:
(a) p � φ(L).
(b) � � ((p− 1)(p− 2))2;
(c) −b/a ∈ G�, −c/a ∈ G�, −c/b ∈ G�, or there exists m ∈ G� such that

−(c + am)/b ∈ G�.

Note that since v�(a) = 0, the condition vb = vc = 0 means that � � abc.

Proof. Let (x, y, z) be a nontrivial solution in Q�, where we may clearly
assume that x, y, and z are in Z� and that at least one of them is an �-adic
unit, so that in fact at least two are �-adic units since the coefficients are pth
power-free.

(1). It is clear that if 1 � vb < vc then axp + byp ≡ 0 (mod �2); hence
� | x, so byp ≡ 0 (mod �2); hence � | y since vb = 1, which is absurd since x
or y is an �-adic unit.

(3). If vb = 0 and L | c, then a necessary condition for solubility in Q� is
that axp + byp ≡ 0 (mod L) be nontrivially soluble, in other words that a/b
be a pth power in (Z/LZ)∗ (since both x and y must be �-adic units). But
conversely, if a/b ≡ up (mod L) then a/b is a pth power of y ∈ Z� given by
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the series y = u(1 + (a/(bup)− 1))1/p, which is convergent in Z� since either
� �= p, or � = p and v�(L) = 2, so we can choose z = 0 and x = −1.

(4). If vb = 0, vc = 1, and � = p, consider the set E of integers of the
form bup + cvp, with 1 � u < p and 0 � v < p. I claim that E is a set of
representatives of (Z/p2Z)∗. Indeed, there are p(p − 1) = φ(p2) pairs (u, v),
and since p | c and p � bx, it is clear that if z ∈ E then p � z; finally, the
elements of E are distinct modulo p2: indeed, if b(up

1 − up
2) + c(vp

1 − vp
2) ≡ 0

(mod p2) then u1 ≡ up
1 ≡ up

2 ≡ u2 (mod p), so that u1 = u2, and hence
v1 ≡ vp

1 ≡ vp
2 ≡ v2 (mod p) since vp(c) = 1, so that we also have v1 = v2,

proving my claim. In particular, there exist x and y such that bxp +cyp ≡ −a
(mod p2), and by Hensel’s lemma we conclude that there exists a nontrivial
solution to our equation in Qp, proving (4).

(2). If 1 � vb = vc < p, then necessarily � | x, so our equation is equivalent
to (a�p−vb )(x/�)p +(b/�vb )yp +(c/�vc )zp = 0, which has one of the forms that
we have studied, hence is soluble in Q� if and only if either −c/b is a pth power
in (Z/LZ)∗ (when v�(L) � p− vb), or if vb = p− 1 and � = p.

(5). The only remaining case is vb = vc = 0. If p � φ(L), the map x �→ xp

is a bijection of (Z/LZ)∗ onto itself, so it is clear that our equation has a
nontrivial solution modulo L, hence in Z� by Hensel’s lemma, proving (a).
Since vb = vc = 0 we have � � abc, so that if N(F�) denotes the number
of projective points on the curve with coordinates in F�, Corollary 2.5.23
implies that when � �= p we have N(F�) > � + 1− (p− 1)(p− 2)�1/2; hence if
� � ((p− 1)(p− 2))2 (which implies that � �= p) we have N(F�) > 0, proving
(b). For (c), assume for instance that −b/a ∈ G�. Then −b/a ≡ up (mod L),
so that aup+b(1)p+c(0)p ≡ 0 (mod L), and we conclude as usual by Hensel’s
lemma that our solution has a solution in Q�, and the same conclusion holds
if −c/a ∈ G� or if −c/b ∈ G�. If this is not the case we have necessarily
v�(z) = 0, otherwise v�(x) = v�(y) = 0, so that −b/a ≡ (x/y)p (mod �p),
and in particular −b/a ∈ G�. Thus, setting m = (x/z)p we evidently have
m ∈ G�, and −(c + am)/b = (y/z)p ∈ G�, proving (c). ��

Remarks. (1) It is easy to see that for p = 3 condition (c) of (5) can be
removed, and the proof shows that condition (a) can be replaced by � �= p;
see Exercise 32. For p = 5, condition (a) can be weakened to � > 11, and
for p = 7 it can be weakened to � > 71, these values being optimal;
see Exercise 33. More generally, it seems experimentally that it can be
weakened perhaps to something like � > p3/3, but I do not know if this
is true.

(2) If � � u, then u ∈ G� if and only if uφ(L)/p ≡ 1 (mod L), which is easier
to test, although not any faster if the elements of G� have been sorted.

Lemma 6.4.3. Let a, b, and c be pth power-free integers. If the equation
axp + byp + czp = 0 has a nontrivial solution with x, y, z in Q, it has
a nontrivial solution with x, y, z in Z pairwise coprime. Furthermore, if in
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addition a, b, and c are pairwise coprime, then axp, byp, and czp are pairwise
coprime.

Proof. Easy and left to the reader; see Exercise 13. ��

6.4.3 The Equation axp + byp + czp = 0: Number Fields

We first note that over an integral domain of characteristic zero the equation
axp + byp + czp = 0 is equivalent to the equation Xp + BY p + Czp = 0
with for instance B = ap−1b, C = ap−1c, and (X,Y,Z) = (ax, y, z). It is
thus sufficient to study such equations with a = 1. As already mentioned,
in the case p = 3 we can use methods using elliptic curves, and we will do
this is the next subsection; in particular, 3-descent will give us a complete
theoretical answer to the problem of the existence of a global solution, which
unfortunately relies on the explicit computation of the Mordell–Weil group of
the associated elliptic curve, which is feasible in practice for small cases, but
which is one of the major unsolved algorithmic problems on elliptic curves.
In the present section, however, we will apply classical tools of algebraic
number theory (class numbers, units, etc.) to give sufficient conditions that
imply that these equations are not soluble in Q. This has two advantages:
first, it gives an alternative (although not complete) approach in the case
p = 3, but second and most importantly it is the only method that enables
us to study equations axp +byp +czp = 0 with p > 3 prime. Note also that, in
contrast to some equations that we will study later (for instance, in Section
6.4.5), there are no “evident” solutions. We begin with a few lemmas.

Lemma 6.4.4. Let c be a pth power-free integer different from ±1, set θ =
c1/p, let K = Q(θ), let f = [ZK : Z[θ]] be the index of Z[θ] in ZK , let m be a
nonzero integer, and let u0, u1, . . . , up−1 be integers.

(1) If m | (u0 + u1θ)ZK then m | gcd(u0, u1).
(2) If m |

(∑
0�i�p−1 uiθ

i
)
ZK then m | f gcd(u0, u1, . . . , up−1).

Proof. (1). Set α = (u0 + u1θ)/m, so that (mα − u0)p − cup
1 = 0. The

characteristic polynomial of α is thus
∑

1�k�p

(
p
k

)
(−u0/m)p−kXk − (up

0 +
cup

1)/mp. Since α is an algebraic integer the coefficients of this polynomial
are in Z, and in particular for k = 1 we have mp−1 | pup−1

0 , hence m | u0

(look at the valuations), so that mp | cup
1, and since c is pth power-free m | u1

(again look at valuations), as claimed.
(2). Set α =

(∑
0�i�p−1 uiθ

i
)
/m. Since by assumption α ∈ ZK , by defi-

nition of f we have fα ∈ Z[θ], in other words m | fui for all i. ��

Lemma 6.4.5. Let K be a number field, and let a, b, c1, and c2 be integral
ideals of K. Assume the following:

(1) We have an ideal equality c1c2 = bap.
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(2) We have gcd(c1, c2, a) = 1.

Then there exist integral ideals ai and bi such that ci = bia
p
i for i = 1, 2,

b1b2 = b, a1a2 = a, gcd(a1, a2) = 1, and gcd(c1, c2) = gcd(b1, b2).

Proof. If we set d = gcd(c1, c2) then by assumption d and a are coprime;
hence d2 | b, so that

(c1d−1)(c2d−1) = (bd−2)ap .

Since by definition of d the two factors on the left are coprime, for any ideal
I we have

gcd((c1d−1)(c2d−1), I) = gcd(c1d−1, I) gcd(c2d−1, I) ;

hence if we set di = gcd(cid
−1, bd−2) and ei = cid

−1d
−1
i we have d1d2 = bd−2,

hence e1e2 = ap. Now, since c1d
−1 and c2d

−1 are coprime, a fortiori so are
e1 and e2; hence there exist coprime integral ideals ai such that ei = a

p
i and

a1a2 = a. Thus if we set bi = ddi we have ci = bia
p
i and b1b2 = d2d1d2 = b.

By construction we have d = gcd(c1, c2) | gcd(b1, b2), and conversely it is
clear that gcd(b1, b2) | gcd(c1, c2), proving the lemma. ��

Recall that an integral ideal a is said to be primitive if m = 1 is the only
m ∈ Z>0 such that a/m is an integral ideal. For simplicity we introduce the
following definition, which will only be used in this section.

Definition 6.4.6. Let θ be an algebraic integer, K = Q(θ), and f = [ZK :
Z[θ]]. We say that an integral ideal b of K dividing bZK is a suitable divisor
of b (relative to θ) if it satisfies the following three conditions:

(1) b is primitive and b/N (b) is the pth power of a rational number.
(2) If m ∈ Z divides bZK/b then m | gcd(b, f).
(3) Every prime ideal dividing b and not dividing fZK has degree 1.

For instance, if b and f are coprime then this means that b and bZK/b

are primitive, that b/N (b) is the pth power of a rational number, and that
all prime ideals dividing b have degree 1. The following lemma is the key to
the theorems that we are going to prove.

Lemma 6.4.7. Let c be an integer not equal to a pth power and such that
cp−1 �≡ 1 (mod p2), set θ = c1/p, and let K = Q(θ). Let b be a nonzero integer,
let x, y, and z be pairwise coprime integers such that xp + byp + czp = 0, and
set L = x + zθ and Q =

∑
0�k<p(−1)kxp−1−kzkθk.

(1) There exist integral ideals ai and bi of K such that LZK = b1a
p
1, QZK =

b2a
p
2, b1b2 = bZK , a1a2 = yZK , and the ai are coprime to pZK .

(2) If c is pth power-free the ideal b1 is a suitable divisor of b.
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Proof. (1). We note first that p � y: indeed, if p | y then p � xz by
coprimality, so c ≡ (−x/z)p (mod p2), and hence cp−1 ≡ (−x/z)φ(p2) ≡ 1
(mod p2), contrary to our assumption. Now with the notation of the lemma,
in the field K our equation can be written LQ = −byp. Let q, if it exists, be
a prime ideal of K dividing both L and Q. Then q divides

pxp−1 = Q +
∑

2�k�p

(−1)k

(
p

k

)
Lk−1xp−k

(this identity is an easy combinatorial argument), so that either q | pZK or
q | x, and since y is coprime to x and is not divisible by p it follows that
q � yZK , so gcd(LZK , QZK) is coprime to yZK . By Lemma 6.4.5 it follows
that there exist integral ideals ai and bi such that LZK = b1a

p
1, QZK = b2a

p
2,

b1b2 = bZK , and a1a2 = yZK , proving (1).
(2). If m ∈ Z>0 divides b1 then m | (x + zθ)ZK ; hence by Lemma 6.4.4

m | gcd(x, z) = 1, so b1 is primitive. By the same lemma if m ∈ Z>0

divides bZK/b1 = b2 then m |
(∑

0�k<p(−1)kxp−1−kzkθk
)
ZK ; hence m |

f gcd(xp−1, zp−1) = f since gcd(x, z) = 1, and since b2 | bZK we also have
m | b, so m | gcd(b, f). Since LZK = b1a

p
1 and N (L) = xp + czp = −byp, it

follows that N (b1)N (a1)p = |byp|, so that b/N (b1) = (±N (a1)/y)p is the
pth power of a rational number. Finally, let q be a prime ideal divisor of b1

and q the prime number below q. Since by assumption q � fZK , we have q � f ,
and since x and z are coprime, by Lemma 3.3.24 we deduce that q has degree
1, proving that b1 is a suitable ideal divisor of b. ��

Thanks to the above lemma we can easily give some sufficient conditions
for the insolubility of the equation xp + byp + czp = 0. We give two results,
corresponding to the cases in which the class number of K = Q(c1/p) is
divisible by p or not.

Theorem 6.4.8. Let b and c be pth power-free integers not equal to ±1,
set θ = c1/p, and let K = Q(θ). Assume that the following conditions are
satisfied:

(1) We have cp−1 �≡ 1 (mod p2).
(2) The class number h(K) of K is divisible by p.
(3) For every suitable divisor b of b the ideal be/p is not principal, where

e | h(K) is the exponent of the class group of K.

Then the equation xp + byp + czp = 0 has no nontrivial rational solutions.

Proof. By Lemma 6.4.3 it is sufficient to prove that the equation has no
solution with x, y, z in Z pairwise coprime. By Lemma 6.4.7 there exist
integral ideals ai and bi of K such that LZK = b1a

p
1, QZK = b2a

p
2, b1b2 =

bZK , a1a2 = yZK , and since c is pth power-free b1 is a suitable divisor of
b. Since Le/pZK = b

e/p
1 ae

1 and by definition of the exponent the ideal ae
1 is

principal, it follows that b
e/p
1 is also principal, a contradiction. ��
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Example. Among the 84 fields Q(c1/3) with c cubefree such that 2 � c �
100, 41 are such that c �≡ ±1 (mod 9) and class number divisible by 3.

Before stating the next theorem we need an easy lemma.

Lemma 6.4.9. Keep the above notation and assume that p � f = [ZK : Z[θ]].
Then if α ∈ ZK we have αp ≡ N (α) (mod pZK). In particular, if α is coprime
to p there exists a ∈ Z with p � a and such that αp ≡ a (mod pZK).

Proof. By definition of f we have fα ∈ Z[θ], so that fα =
∑

0�j<p ajθ
j

with aj ∈ Z. Thus (fα)p ≡
∑

0�j<p ap
j c

j (mod pZ[θ]). Denote by ζp a primi-
tive pth root of unity and set L = K(ζp). We thus have

N (fα) =
∏

0�i<p

∑
0�j<p

ajζ
ij
p θj ≡

∏
0�i<p

∑
0�j<p

ajθ
j = (fα)p

≡
∑

0�j<p

ap
j c

j (mod (1− ζp)ZL) .

Since both ends of this congruence are integers and since (1−ζp)ZL∩Z = pZ,
it follows that (fα)p ≡ N (fα) (mod pZ[θ]), and since p � f and α is coprime
to p if and only if p � N (α), the lemma follows. ��

We can now prove a result which is also valid when the class number is
not necessarily divisible by p.

Theorem 6.4.10. Let b and c be pth power-free integers, set θ = c1/p, let
K = Q(θ), f = [ZK : Z[θ]], denote by e = e(K) the exponent of the class
group of K, set r = e mod p, so that r ≡ e (mod p) and 0 � r < p, and as
usual let U(K) be the unit group of K. Assume that the following conditions
are satisfied:

(1) We have p2 � c and cp−1 �≡ 1 (mod p2); equivalently, we have p � f .
(2) For every suitable divisor b of b, let β be a fixed generator of be. For

any ε ∈ U(K) modulo pth powers, set εβ =
∑

0�j<p bjθ
j with bj ∈ Q

(of course depending on ε), and let P (X) be the polynomial P (X) =∑
0�j�r fbjX

j. Assume that for every pair (b, ε), either there exists j
such that r < j < p with vp(bj) = 0, or there exists k such that 0 �
k � r − 2 with vp(disc(P (k)(X))) = 0 (where P (k)(X) denotes the kth
derivative of P (X) and disc the discriminant).

Then the equation xp + byp + czp = 0 has no nontrivial rational solutions.

Proof. First note that it follows from the Dedekind criterion (see Theorem
6.1.4 of [Coh0]) that the condition on c in (1) is indeed equivalent to p � f .
Thus, by elementary algebraic number theory the prime ideal decomposition
of p in the extension K/Q is the same as the decomposition of Xp − c in
Fp[X]. Since Xp − c ≡ (X − c)p (mod pZ[X]) it follows that p is totally
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ramified in K/Q; in other words there exists a unique prime ideal p of K
above p, and we have pZK = pp. Now I claim that if e � p and if b is a
suitable divisor of b then b is coprime to pZK (equivalently, to p). Indeed,
otherwise pZK = pp | bp | be, so if β is a generator of be then β = pγ for some
γ ∈ ZK . With the notation of the theorem, it follows that for any ε ∈ U(K)
we have p | fbj for all j, so that vp(bj) � 1 for all j and vp(disc(P (k))) � 1
for all k � p− 2, and in particular for all k � r− 2, in contradiction with our
assumption, proving my claim. We can now begin the proof proper.

As before, by Lemma 6.4.3 we may assume that x, y, z are pairwise
coprime integers. Writing our equation LQ = −byp as above, by Lemma 6.4.7
there exist integral ideals ai and bi of K such that LZK = b1a

p
1, QZK = b2a

p
2,

b1b2 = bZK , a1a2 = yZK , where b1 is a suitable divisor of b and the ai are
coprime to pZK . By assumption we have be

1 = βZK with β ∈ ZK , so that
(x + zθ)eZK = βαpZK , where α is a generator of ae

1. It follows that there
exists a unit ε such that (x+zθ)e = εβαp, so that if we set εβ =

∑
0�j<p bjθ

j

with bj ∈ Q we have

(x + zθ)e =

( ∑
0�j<p

bjθ
j

)
αp .

Now note that ae
1 = αZK is coprime to pZK , and since p � f by (1), it follows

from Lemma 6.4.9 that there exists m ∈ Z with p � m and such that

(fx + fzθ)e ≡ m
∑

0�j<p

fbjθ
j (mod pZ[θ]) ,

where all the coefficients are in Z. I claim that in fact

(fx + fzθ)r ≡ n
∑

0�j<p

fbjθ
j (mod pZ[θ])

for some integer n such that p � n. This is trivial if e < p since in that case
r = e. Otherwise, by what we have shown above b1 is coprime to pZK ; hence
(fx + fzθ)ZK = fb1a

p
1 is also coprime to pZK , so again by Lemma 6.4.9 we

have (fx + fzθ)e ≡ m′(fx + fzθ)r (mod pZ[θ]) for some m′ ∈ Z such that
p � m′, proving my claim. Note also that by the same lemma, the congruence
depends only on ε modulo pth powers of units.

Identifying the coefficients of θj for r < j < p we deduce that 0 ≡ nfbj

(mod p), and since p � nf , this implies that vp(bj) � 1 for all such j. Thus,
if we set P (X) =

∑
0�j�r(fbj)Xj , using the fact that the θj are Q-linearly

independent, we deduce that in Fp[X] we have nP (X) = (u+vX)r for some u

and v in Fp. Thus nP (k)(X) = k!
(

r
k

)
(u+vX)r−k, whose discriminant is equal

to 0 for 0 � k � r − 2, so that p | disc(P (k)) for all such k since p � n. Since
by assumption either one of these discriminants or one of the bj for r < j < p
is coprime to p we obtain a contradiction, proving the theorem. ��
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Remarks. (1) When p � 7, it becomes costly to test the existence of
a congruence of the type (fx + fzθ)r ≡ nfβε (mod pZ[θ]) for all
ε ∈ U(K)/U(K)p, since there are p(p−1)/2 such classes of units. The
problem can in fact easily be linearized, so that the number of tests is
only polynomial-time instead of exponential-time in p; see Exercise 17.

(2) Recall that we replaced the equation axp + byp + czp = 0 by the equation
xp + B(y/a)p + C(z/a)p = 0 with B = bap−1 and C = cap−1. Evidently
the initial equation has a solution if and only if a′xp + b′yp + c′zp = 0 has
one, where (a′, b′, c′) is any permutation of (a, b, c). Since we completely
broke the symmetry by dividing specifically by a and by considering
the field Q(C1/p), it follows that to apply Theorems 6.4.8 and 6.4.10,
one should try the six permutations. On the equation xp + byp + czp =
0 this corresponds to the six pairs (b, c) = (b, c), (c, b), (bp−1, bp−1c),
(bp−1c, bp−1), (cp−1, cp−1b), and (cp−1b, cp−1), which should all be tested
to use the theorems to their maximum extent.

Corollary 6.4.11. The equations xp + byp + czp = 0 have a nontrivial solu-
tion in every completion of Q but no nontrivial solutions in Q:

(1) For p = 3 and b � c � 22, if and only if (b, c) = (3, 20), (3, 22),
(4, 15), (5, 12), (6, 10), (6, 11), (6, 17), (10, 15), (10, 22), (11, 15), (11, 20),
(12, 17), (15, 17), (15, 20), (15, 22), (17, 20), or (17, 22).

(2) For p = 5 and b � c � 12, if and only if (b, c) = (2, 9), (2, 10), (3, 7),
(3, 10), (4, 7), (5, 7), (5, 12), (6, 10), (7, 10), or (7, 12).

(3) For p = 7 and b � c � 12, if and only if (b, c) = (2, 5), (2, 7), (3, 6),
(3, 10), (4, 9), (5, 7), (6, 11), (7, 9), (7, 10), or (7, 12).

(4) For p = 11 and b � c � 22, if and only if (b, c) = (2, 21), (2, 22), (3, 19),
(3, 21), (3, 22), (5, 17), (9, 22), (10, 22), (15, 22), or (19, 22).

Proof. Since we have at our disposal a CAS that can say immediately
whether the conditions of the theorems are satisfied, a simple computer pro-
gram proves the corollary, which can of course be extended at will. ��

Remark. For p = 3 and (b, c) = (19, 30), or for p = 3 and (b, c) = (25, 29),
or for p = 5 and (b, c) = (19, 24) (and many other examples), the equation is
everywhere locally soluble, none of the above theorems apply, and a search
does not seem to give any global solutions. For p = 3 and (b, c) = (19, 30)
we can prove that the equation does not have any global solution by using
elliptic curves as described in the next section. For p = 3 and (b, c) = (25, 29)
the same method shows that the equation does have global solutions. For
p = 5 and (b, c) = (19, 24), using coverings by hyperelliptic genus 2 curves (see
Proposition 6.4.13), at my request the problem has been solved by M. Stoll. It
can also probably be solved by using modular methods, in particular Theorem
15.8.1.
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Remarks. (1) We will come back to the equation x3 + 15y3 + 22z3 = 0 at
the end of Section 7.2.4.

(2) For p = 3 and if the equation is everywhere locally soluble, Theorem
6.4.10 is applicable only when the fundamental unit ε is such that ε ≡ ±1
(mod 3ZK), in which case in condition (3) it is sufficient to test the
condition for a single generator α of be; see Exercise 16. However, this is
not true when p � 5, as can easily be seen on examples.

(3) Again for p = 3, it seems experimentally that when 3 | e, then if Theorem
6.4.10 is applicable, so is Theorem 6.4.8; I do not know how to prove this,
although it may be easy.

Example. Among the 84 fields Q(c1/3) with c cubefree such that 2 � c �
100, 19 are such that c �≡ ±1 (mod 9), c �≡ 0 (mod 9), and class number not
divisible by 3, and among those, 7 satisfy ε ≡ ±1 (mod 3ZK).

Corollary 6.4.12 (Selmer). The equation 3x3 + 4y3 + 5z3 = 0 has a non-
trivial solution in every completion of Q but no nontrivial solutions in Q.

Proof. Multiplying the equation by 2 and setting (X,Y,Z) = (2y, x, z),
it is clear that its solubility in any field of characteristic 0 is equivalent to
that of the equation X3 + 6Y 3 + 10Z3 = 0, and it is easy to check that the
conditions of Theorem 6.4.10 are satisfied for c = 6 and b = 10 (the pair
(6, 10) is among those given above). ��

This equation has historical value since it was the first example of an
equation of that type violating the Hasse principle.

To conclude this subsection, let me repeat once again that there are a
number of other sufficient conditions that are also based on algebraic number
theory that imply the nonglobal solubility of our equations, in particular
conditions based on reciprocity laws; see for instance the first paper by Selmer
[Sel1] on the subject.

6.4.4 The Equation axp + byp + czp = 0: Hyperelliptic Curves

It is also natural to study the global solubility of the equation axp+byp+czp =
0 using algebraic geometry. This is particularly efficient for p = 3, where the
problem reduces to computing the Mordell–Weil group of an elliptic curve,
but we first briefly mention the general case.

By Faltings’s theorem on Mordell’s conjecture we know that for p � 5
and abc �= 0 the projective curve axp +byp +czp = 0 has only a finite number
of rational points. The proof is ineffective, and although several methods are
known which give effective results in special cases, they are almost impossible
to apply directly, in particular because the genus of the curve is equal to
(p−1)(p−2)/2, which is large when p � 5. However, the following immediate
proposition shows that we can reduce to a curve of much lower genus.
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Proposition 6.4.13. Assume that p is odd. If axp+byp+czp = 0 with x �= 0
then

Y 2 = Xp + a2(bc)p−1/4 , with

X = −bcyz/x2 and Y = (−bc)(p−1)/2(byp − czp)/(2xp) .

Proof. The proof is of course a simple verification: using the given formulas
for X and Y , since p is odd we have

4x2p(Y 2 −Xp) = (bc)p−1(byp − czp)2 + 4(bc)pypzp

= (bc)p−1(byp + czp)2 = a2(bc)p−1x2p ,

proving the result. ��

The main advantage of this proposition is that the hyperelliptic curve
Y 2 = Xp + a2(bc)p−1/4 has genus (p − 1)/2, which is much smaller than
the genus of our initial curve, so that Chabauty-type methods may be appli-
cable; see Chapter 13 (these methods would not be practical for the initial
equation). In addition, note that by permuting a, b, and c, for p > 3 we
have in fact three hyperelliptic curves available, thus improving the chances
that Chabauty methods be applicable. If we succeed in proving that the hy-
perelliptic curve has no rational point, this of course implies that our initial
equation has no nontrivial global solution. On the other hand, if the hyper-
elliptic curve has rational points, then it is necessary to find all of them, and
it is then an immediate matter to check whether they correspond to global
solutions to our equation.

In the case p = 3, the hyperelliptic curve is an elliptic curve, so we can
say much more. First note the following easy result.

Proposition 6.4.14. Assume that neither b/a, c/a, nor c/b is the cube of a
rational number. If the elliptic curve E with affine equation Y 2 = X3+(4abc)2

has zero rank then the equation ax3 + by3 + cz3 has no nontrivial rational
solutions.

Proof. This is essentially a restatement of Corollary 8.1.15, and also imme-
diately follows from the above proposition after rescaling. Note that Propo-
sition 8.4.3 tells us that the elliptic curve Y 2 = X3−432(abc)2 is 3-isogenous
with the elliptic curve Y 2 = X3 + (4abc)2. ��

The general result on the equation ax3 + by3 + cz3 = 0 is a very nice
application of 3-descent (see Section 8.4), and I thank T. Fisher for explana-
tions. The relation is the following. Let a, b, and c be three nonzero rational
numbers, and as above, let E = Eabc be the elliptic curve with projective
equation Y 2Z = X3 +(4abc)2Z3. This curve has the point T = (0, 4abc, 1) as
rational point of order 3. In Section 8.4 we will define a 3-descent map α from
E(Q) to Q∗/Q∗3 by setting α(O) = 1, α(T ) = (abc)2, and for P = (X,Y,Z)
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with P �= O and P �= T by setting α(P ) = Y/Z−4abc, modulo multiplication
by cubes of Q∗. The fundamental property of α is that it induces a group
homomorphism from E(Q)/3E(Q) to Q∗/Q∗3 (Proposition 8.4.8).

Proposition 6.4.15. Let C be the cubic curve with projective equation ax3+
by3 + cz3 = 0, let E be the elliptic curve with projective equation Y 2Z =
X3 + (4abc)2Z3, and define

φ(x, y, z) = (−4abcxyz, −4abc(by3 − cz3), ax3) .

(1) The map φ sends C(Q) into E(Q).
(2) The image φ(C(Q)) is equal to the set of P ∈ E(Q) such that α(P ) =

b/c ∈ Q∗/Q∗3. More precisely, if P = (X,Y,Z) ∈ φ(C(Q)) with P dif-
ferent from O and T , and if λ ∈ Q∗ is such that Y/Z − 4abc = (b/c)λ3

then
(x, y, z) = (2bcλZ, −cX, bλ2Z) ∈ C(Q)

is a preimage of P ; in addition, O ∈ φ(C(Q)) if and only if c/b = λ3

for some λ ∈ Q∗, and in that case (0,−λ, 1) is a preimage of O; finally,
T ∈ φ(C(Q)) if and only if b/a = λ3 for some λ ∈ Q∗, and in that case
(−λ, 1, 0) is a preimage of T .

(3) The set C(Q) is nonempty if and only if the class of b/c modulo cubes
belongs to the image of the 3-descent map α from E(Q) to Q∗/Q∗3. In
addition, C(Q) is infinite if and only if the class of b/c modulo cubes is
equal to α(G) for some nontorsion point G ∈ E(Q).

Proof. (1). As for Proposition 6.4.13, of which up to rescaling this is a
special case, the proof is a simple verification: setting φ(x, y, z) = (X,Y,Z),
then if ax3+by3+cz3 = 0 we check that Y 2Z−(4abc)2Z3 = X3. Furthermore,
we cannot have X = Y = Z = 0 since otherwise x = 0, so that by3 + cz3 = 0,
and by3 − cz3 = 0, and hence x = y = z = 0, which is excluded. Thus
φ(x, y, z) ∈ E(Q), proving (1).

(2). Note that if P = φ(x, y, z) = (X,Y,Z), then

c(Y − 4abcZ) = −4abc2(by3 − cz3 + ax3) = 8abc3z3 = bZλ3

with λ = 2cz/x ∈ Q∗ when x and z are nonzero, so that α(P ) = b/c ∈
Q∗/Q∗3. Now, x can be equal to 0 if and only if b/c = (−z/y)3 ∈ Q∗3, and in
that case we have φ(0, y, z) = O and α(O) = b/c ∈ Q∗/Q∗3. Similarly z can
be equal to 0 if and only if b/a = (−x/y)3 ∈ Q∗3, and in that case it is clear
that φ(x, y, 0) = T and α(T ) = (abc)2 = (b/c)(ac)3(b/a) = b/c ∈ Q∗/Q∗3,
proving (2).

(3). Evidently C(Q) is nonempty if and only if φ(C(Q)) is nonempty, and
since clearly the number of preimages of an element of φ(C(Q)) is finite, C(Q)
is infinite if and only if φ(C(Q)) is infinite. Thus, it follows from (2) that
C(Q) is nonempty if and only if b/c modulo cubes belongs to the image of
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α, and it is infinite if and only if b/c = α(G) for a point of infinite order,
proving (3). ��

Thus, to check whether an equation ax3 + by3 + cz3 = 0 has a nontrivial
solution we proceed as follows. Using either mwrank or the 2-descent methods,
we compute if possible the complete Mordell–Weil group E(Q) of the curve
with affine equation Y 2 = X3 + (4abc)2, and we also compute the torsion
subgroup (which we know will contain the subgroup of order 3 generated by
T ). If P1, . . . , Pr form a basis of the free part of E(Q) then P0 = T , P1, . . . ,
Pr form an F3-basis of E(Q)/3E(Q). We then check whether the class of b/c
modulo cubes belongs to the group generated by the α(Pi) ∈ Q∗/Q∗3, which
is done using simple linear algebra over F3.

Example. To illustrate, consider the equation x3 +55y3 +66z3. Using The-
orem 6.4.2 we check that it is everywhere locally soluble, but none of the
results given in Section 6.4.3 allow us to determine whether the equation is
globally soluble.

Thus we consider the curve E with affine equation Y 2 = X3 +(4 ·55 ·66)2.
We find that the torsion subgroup has order 3 and is generated by P0 =
T = (0, 14520). In less than a second the mwrank program tells us that the
curve has rank 1, a generator being P1 = (504, 18408) (so that Proposition
6.4.14 is not applicable). We have (modulo cubes) α(P0) = 22 · 32 · 52 · 11,
α(P1) = 2·32, and b/c = 22 ·32 ·5. Here the linear algebra can be done näıvely:
if b/c = α(uP0 + vP1) = α(P0)uα(P1)v, where u and v are defined modulo 3,
we see that u = 0 because of the 11 factor, which is impossible since there is
a factor of 5 in b/c and none in α(P1). This shows that our equation has no
nontrivial solutions in Q, although our curve has nonzero rank.

For the convenience of the reader, in the following table we give in a
very compact form detailed information on the solubility of the equation
x3 + by3 + cz3 = 0 for 1 � b, c � 64. The entry in line b and column c of
the table means the following: - means locally insoluble, L, M, and E mean
everywhere locally soluble but not globally soluble (hence a failure of the
Hasse principle) obtained using Theorems 6.4.8 and 6.4.10, and Proposition
6.4.15, used in that order (note that in the range of our table it is sufficient
to use Proposition 6.4.14 instead of Proposition 6.4.15, but this is of course
not true in general). In every other case, the equation is globally soluble,
hence the curve x3 + by3 + cz3 = 0 is the projective equation of an elliptic
curve, and the entry (0, 1, 2, or 3 in the limits of the table) gives the rank
of the curve (see Chapters 7 and 8 for all these notions). In particular, if the
entry is equal to 0 this means that the equation has only a finite nonzero
number of (projective) solutions, which can all easily be found. By Corollary
8.1.15 this implies that either b, c, or b/c is a cube. The same corollary also
gives the torsion subgroup. Note that some solutions are rather large, for
instance 1491053 +17 · (−140161)3 +41 · 1019883 = 0 for (b, c) = (17, 41) and
1472673 + 41 · (−6040)3 + 59 · (−37793)3 = 0 for (b, c) = (41, 59).
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Note that the visual rows, columns, and diagonals that can easily be seen
in the table reflect the existence of simple global solutions. For instance, on
the diagonal c = 64 − b we see that the equation is always globally soluble,
and this is clear since there exists the solution (x, y, z) = (−4, 1, 1).

c 1111111111222222222233333333334444444444555555555566666
b 1234567890123456789012345678901234567890123456789012345678901234
1 0000011010011010102101000101021011102000011000011110100101001110
2 001--1-0-11---201------11-0-1L--L1--------2--111--L-102------2-0
3 01111--0-21----11--L-L111-0-11-1-L-----11--2-E1--L2-11E--L1-2--0
4 0-101--0---1--L-1-----11--0---202------11--1------L-1-L---12---0
5 0-1102-0-1-L2-1-1----211-10--L-1L-----101--L-L-2--L-1-1--L1L---0
6 11--2011-ML--1-1M---22L-L-1-L---1L2-1--22----M201L--M1L1-2L----1
7 1----111------1----1------1-2----1-------1-----1------112------1
8 0000011010011010102101000101021011102000011000011110100101001110
9 1------101------21--------1--------1-------111------2-1--------1

10 012-1M-0102---M111---LL2--0-LE--LL--2--1L---11LM--L-111--L2----0
11 011--L-0-202--L11-2L---11-0-1L--1L--21----E1-21L--L-111-1--L2--0
12 1--1L--1--201-1-M-12--L-L-1-2--1------2LL--M--L----1M-L---L----1
13 1---2--1---112------2-----1------------2---1------1-E------L---1
14 0----1-0----202------1----0-------1-----1------1-1----L--------0
15 12-L1-11-ML1-202M--L-L2---122-1L-M1----121-L-LL-1---M221-L2--2-1
16 001--1-0-11---201------11-0-1L--L1--------2--111--L-102------2-0
17 11111M-1211M--M111-L-L111-1-1L-1M1-1---11--1111M-L1-211--L13---1
18 0------011------112------20-----------------21------1-L--------0
19 2------2--21-----201------2--E--------------22---1-------1-----2
20 1-L---11--L2--L-L-112--L--11L---L-1--------2--2---3-L-L12--L1--1
21 0----2-0----2------212----011----2------1-2----2-L----2--------0
22 1-L-22-1-L---1L-L---212L--1--1--L-L----2L2---L-21L3-L-L--LL----1
23 0-111L-0-L-L--2-1----201--0--L21L---2--11--E-1-L-2L-1-2--L1L-3-0
24 01111--0-21----11--L-L111-0-11-1-L-----11--2-E1--L2-11E--L1-2--0
25 011--L-0--1L---11------1010-1---2L----1----L-21L--L111---------0
26 1---1--1---------2------111------1---211------1---E-2---3------1
27 0000011010011010102101000101021011102000011000011110100101001110
28 1------1------2----11-----111------2----1-------------1--------1
29 011--L20-L12--211--L1--11-0101--2L1-2----L-L-L1L--L-1122---L-3-0
30 2L1-L--2-EL----LL-E--1L1--2-112--3---2-LL----LL---L-LLL-1LL--E-2
31 1--2---1------1-------2---1--2121-----2------3-----------3-L-E-1
32 0-101--0---1--L-1-----11--0---202------11--1------L-1-L---12---0
33 1L-2L1-1-L1----LM--L-LL-2-1-2-1203-----L2--M-L21-L--ML2--L22L2-1
34 11L--L11-LL---M11---2--LL11-L3--312---L--2---LLL--L-L1L1----1--1
35 1----2-1-----11----1-L----1-1----211----1-2----2------2------221
36 0------01-------1---------02------112------1M-------1-2-------10
37 2----1-2-22-----------2---2-2------202------2-21--1--------L---2
38 0------0--1--------------20--2------203------1----------1------0
39 0---1--0---2------------110---2--L---311---L--1-----1----------0
40 0-1102-0-1-L2-1-1----211-10--L-1L-----101--L-L-2--L-1-1--L1L---0
41 0-1112-0-L-L-12-1---1L11--01-L-12-1----102-2-E-2222-1-2--L1L---0
42 1-----11------1------2----1-L----2------201------2----31-------1
43 12-----1--E----2----2-----1-------2------113--2---1--2---------1
44 0-21L--01-1M1-L-1--2--E2L-0-L--1M--1--LL2-302-L---L11-1---LL---0
45 0------011------122-------0--------M2------212------1-1--------0
46 01E-LM-0112---L1112--L1E2-0-LL3-LL---1-LE---202M-L3-11E-ELL--E-0
47 011--2-0-L1L--L11--2---1110-1L--2L--2-1---2L-202--E1112----L-3-0
48 11--2011-ML--1-1M---22L-L-1-L---1L2-1--22----M201L--M1L1-2L----1
49 1----1-1------1------1----1-------------2------111----1-2------1
50 1-L--L-1-----1--L-1-LL2L--1-----L-------22---L-L111-L---22L----1
51 1L2LL--1-LL-1--L1--3-3L2LE1-LL-L-L--1--L2-1L-3E--102LL3--L2----1
52 0------0---1------------1-0----------------1--1---201------2---0
53 11111M-1211ME-M121-L-L11121-1L-1ML-1--111--1111M-LL1111--L1L2--1
54 001--1-0-11---201------11-0-1L--L1--------2--111--L-102------2-0
55 02EL1L10111L-L221L-L2L2E--012L-L2L22---123-11E2L1-3-1201-LLL--30
56 1----111------1----1------1-2----1-------1-----1------112------1
57 0-----20--1--------2-----30--1-------1-------E--22-----212-----0
58 1-L-L2-1-L----L-L-1--LLL--1--L3-L------LL----L-2-2L-L-L-212--L-1
59 0-111L-0-2-L--2-1----L11--0--L-12------11--L-L-L-L2-1-L--201---0
60 0--2L--0--L-L---3--L--L---0-L-L22---L--LL--L--L----2L-L---112--0
61 1-2----1--2--------1---2--1-----L1------------------2------212-1
62 12-----1------22------3---1-3EE-2-2----------E3------2---L--2121
63 1------1------------------1-------21------------------3------201
64 0000011010011010102101000101021011102000011000011110100101001110

Solubility of x3 + by3 + cz3 = 0 up to max(b, c) = 64
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6.4.5 The Equation x3 + y3 + cz3 = 0

This equation has the evident global solution (x, y, z) = (1,−1, 0), hence is
everywhere locally soluble, so we are now going to study whether it has global
rational solutions with xyz �= 0. Note that proving that the equation has no
such solutions for c = 1 is Fermat’s “last theorem” for exponent 3, which
was probably already solved by Fermat using the method of infinite descent,
together with a touch of algebraic number theory, although a proof was given
only later by Euler. Also for c = 1, a (slightly) more complicated proof that
generalizes to the more general Fermat equation xp +yp +zp = 0 for so-called
regular prime exponents will be given in Proposition 6.9.14 below.

Remarks. (1) The solubility of the equation x3 +y3 + cz3 = 0 with z �= 0 is
evidently equivalent to the representability of c as a sum of two rational
cubes. This question will be considered in more detail (but with some
proofs omitted) in Section 6.4.6.

(2) The algebro-theoretic method used in Section 6.4.3 is not applicable here
since the theorems that we have seen only prove the nonexistence of
solutions, while the present equation does have a solution.

(3) The general result of Section 6.4.4 is of course applicable, but we need to
determine whether the curve Y 2 = X3 + 16c2 has nonzero rank. This is
often done using 2-descent (or 3-descent in this case since there exists a
rational 3-torsion point) as we will see in Chapter 8, but it is instructive
and more elementary to use 2-descent directly on the equation without
explicitly mentioning elliptic curves, and this is what we are going to do
in this section.

We begin with the following proposition, which is typical of the type of
reasoning which one uses to solve Diophantine equations by factoring and al-
gebraic number theory. We will see many other such examples in this chapter
and in Chapter 14.

Proposition 6.4.16. The equation x2−3xy+3y2 = z3 with x and y coprime
integers has the three disjoint parametrizations

(x, y, z) = (s3 + 3s2t− 6st2 + t3, 3st(s− t), s2 − st + t2) ,

(x, y, z) = (s3 + 3s2t− 6st2 + t3, s3 − 3st2 + t3, s2 − st + t2) ,

(x, y, z) = ((s + t)(s− 2t)(2s− t), s3 − 3st2 + t3, s2 − st + t2) ,

where in all three s and t are coprime integers such that 3 � s + t, and the
parametrizations correspond to the solutions for which 6 | y, 6 | x − y, and
6 | x− 2y respectively.

Proof. Let ρ = (−1 +
√
−3)/2 be a primitive cube root of unity. In the

principal ideal domain Z[ρ] our equation factors as (x − (1 − ρ)y)(x − (1 −
ρ2)y) = z3. If p is a prime ideal of Z[ρ] that divides the two factors on
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the left then p divides their difference and (1 − ρ) times the second minus
(1− ρ2) times the first, so p divides (1− ρ) gcd(x, y); hence p | (1− ρ) since
x and y are coprime, so that 3 | z. However, this would imply 3 | x, so
9 | 3y2, and hence 3 | y, contradicting gcd(x, y) = 1. Thus 3 � z and the
two factors on the left are coprime. It follows that there exist α ∈ Z[ρ] and
an integer k with 0 � k � 2 such that x − (1 − ρ)y = ρkα3, so z = αα.
Writing α = s + tρ, the condition 3 � z translates into 3 � s + t, and choosing
successively k = 0, 1, and 2 gives the three parametrizations, where in the
second we have exchanged s and t. The divisibilities by 6 are trivially checked,
and show that the parametrizations are disjoint. ��

Thanks to this proposition we can now prove that many of our equations
x3 + y3 + cz3 = 0 do not have any global solutions with xyz �= 0:

Theorem 6.4.17. (1) Let p be a prime number such that p ≡ 2 (mod 3).
The equation x3 +y3 + cz3 = 0 has no solutions in nonzero integers x, y,
and z when c = 1, 3, p, or p2 with p ≡ 2 or 5 modulo 9, except for c = 2,
where it has the unique solution (x, y, z) = (1, 1,−1) (up to multiplication
by a constant).

(2) If p is a prime number such that p ≡ 8 (mod 9), the equation x3 + y3 +
cz3 = 0 has no nontrivial solutions with 3 | z when c = p or p2.

(3) If p and q are prime numbers such that p ≡ 2 (mod 9) and q ≡ 5 (mod 9),
the equation x3 +y3 + cz3 = 0 has no nontrivial solutions with 3 | z when
c = pq.

Proof. We may clearly assume that x, y, and z are pairwise coprime
integers. We prove all the results simultaneously, and consider two cases.
Case 1: 3 | cz. Then 3 | x + y; hence 3 | (x2 − xy + y2) = ((x + y)2 − 3xy),
so that 9 | cz3 = −(x3 + y3). Since 9 � c it follows that 3 | z, so we set
y1 = (x + y)/3, z1 = −z/3 and our equation is y1(x2 − 3xy1 + 3y2

1) = 3cz3
1 .

Since y1 and x are coprime the two factors on the left are coprime. Since
3 | z we have 3 � x hence 3 | y1. Furthermore, if a prime number � divides
x2− 3xy1 + 3y2

1 then � � y1, and we check that (2x/y1)− 3 is a square root of
−3 modulo �, so � ≡ 1 (mod 3). Since in all cases considered in the theorem
c has no such prime divisors, it follows that x2 − 3xy1 + 3y2

1 is coprime to
3c. Therefore our equation implies that there exist coprime integers a and b
such that y1 = 3ca3 and x2−3xy1 +3y2

1 = b3. By Proposition 6.4.16 this last
equation has three disjoint parametrizations, but we keep only the first since
we know that 3 | y1. Thus there exist coprime integers s and t with 3 � s + t
such that in particular y1 = 3st(s − t), so ca3 = st(s − t). To symmetrize
we write u = −s, v = t, w = s − t, which are pairwise coprime and satisfy
u + v + w = 0 and uvw = c(−a)3.

In statements (1) and (2) of the theorem, c is a power of a prime, and since
s and t are coprime it follows that c divides one and only one of u, v, and w,
and without loss of generality we may assume that c | w. Then c is coprime
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to u and v, so that u = e3, v = f3, w = cg3, and hence e3 + f3 + cg3 = 0,
so we have found a new solution to our initial equation. Clearly efg �= 0,
and it is easily checked that |efg| < |xyz|, so that the magic of Fermat’s
descent method applies: if we had started with a nontrivial solution with
minimal |xyz|, we would have thus obtained a smaller one, a contradiction
that proves the impossibility of the initial equation.

In (3), we have c = pq. Then up to permutation of u, v, and w, either
pq | w, or p | v and q | w. But in this last case, we would have u = e3,
v = pf3, w = qg3, hence e3 +pf3 + qg3 = 0. Since a cube is congruent to 0 or
±1 modulo 9 and p ≡ 2 (mod 9) and q ≡ 5 (mod 9), it is easily checked that
the congruence e3 + pf3 + qg3 ≡ 0 (mod 9) implies that e, f , and g are all
divisible by 3, which is absurd since u, v, and w are pairwise coprime. Thus
this case is impossible, so that pq = c | w and we can descend as above.
Case 2: 3 � cz. Thus here c = 1, p, or p2 with p ≡ 2 or 5 modulo 9. In the
special case c = 1 our equation is completely symmetrical in x, y, and z, so
we may assume 3 � xyz, and we deduce an immediate contradiction modulo 9
since we have x3, y3, and z3 all congruent to ±1 modulo 9. Thus we assume
c = p or p2.

We set here y1 = x + y, so our equation is y1(y2
1 − 3xy1 + 3x2) = −cz3,

and since 3 � z, we have 3 � y1 so the factors on the left are coprime. As
above, a prime p ≡ 2 (mod 3) cannot divide y2

1 − 3xy1 + 3x2 when x and
y1 are coprime, so that there exist integers a and b such that y1 = ca3,
y2
1 − 3xy1 + 3x2 = b3. By Proposition 6.4.16 once again this last equation

has three disjoint parametrizations. However, we note that 3 � x and 3 � y;
otherwise, x3 + y3 ≡ ±1 (mod 9), so c ≡ ±1 (mod 9), which is impossible
when c ≡ 2 or 5 modulo 9 (this is where we must exclude 8 modulo 9,
for which the theorem would be false). Thus we can keep only the third
parametrization, for which x ≡ y (mod 3), and we deduce that there exist
coprime s and t with 3 � s+t such that in particular y1 = (s+t)(s−2t)(2s−t).
To symmetrize we set u = s + t, v = s − 2t, w = t − 2s, which are pairwise
coprime since 3 � s + t, and satisfy u + v + w = 0 and uvw = c(−a)3. Exactly
the same reasoning as in the first case allows us to conclude that the descent
method works, with one exception: if c = 2 and x = y = −z = 1, we obtain
the same solution. Thus the descent also works in this case and shows that
(x, y, z) = (1, 1,−1) is the only solution. ��

Remarks. (1) As already mentioned, this theorem includes in particular
Fermat’s last theorem for exponent 3.

(2) It is clear that the theorem is still valid for c = pk for all k if p ≡ 2 or
5 modulo 9, since it is then a special case of x3 + y3 + pmz3 = 0 with
m = 0, 1, or 2.

(3) When c = p ≡ 8 (mod 9), solutions not only may exist, but we will see
below that as a consequence of the BSD conjecture solutions should exist
for every p. For instance, we have 183 + (−1)3 + 17(−7)3 = 0.
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(4) When c = 32 there is the trivial solution (x, y, z) = (1, 2,−1), and it
is immediate to check using the methods of Chapter 8 that this gives a
point of infinite order on the corresponding elliptic curve, so that there
exists an infinity of distinct coprime solutions. On the other hand, for
c = 2 the above descent method shows that (x, y, z) = (1, 1,−1) is the
only coprime solution (up to sign), and this means that the point is a
torsion point on the corresponding elliptic curve.

(5) When c = pq with p and q primes such that p ≡ 2 (mod 9) and q ≡ 5
(mod 9), there are in fact no solutions also when 3 � z; see Exercise 15.

6.4.6 Sums of Two or More Cubes

The problem of representing integers or rational numbers by sums of squares
is completely understood thanks to the Hasse–Minkowski theorem and Propo-
sition 5.4.4 (see Section 5.4.4). On the other hand the problem for cubes is
much more difficult and far from being understood. First, as we have seen
above in several analogous situations (Section 6.4.3) the local–global prin-
ciple fails. The analogue of Proposition 5.4.4 also fails: representations as
sums of cubes of rational numbers and as sums of cubes of integers are two
quite different problems. For instance, we will see below that every integer
is the sum of three cubes of rational numbers, while it is trivial to see that
the integer 4 cannot be equal to the sum of three cubes of integers. Hence
in this subsection we give an assortment of results and conjectures on those
subjects, including the proof of a beautiful result of Dem′yanenko.

Finally, note that the natural setting for the problems that we consider
is Q or Z, and not the positive rationals or the positive integers, so we do
not consider the problem of representations as sums of positive cubes, in
other words Waring’s problem (in brief: every positive integer is a sum of 9
nonnegative cubes and 9 is optimal; every sufficiently large integer is a sum of
7 nonnegative cubes, and it is conjectured that every sufficiently large integer
is a sum of 4 nonnegative cubes, and 4 is evidently optimal). Thus when we
speak of an integer, we always mean an element of Z, not necessarily of Z�0.
In addition, since the exponent 3 is odd, in contrast to the quadratic case we
do not need to look at signs. Note however the following result.

Proposition 6.4.18. An integer n � 1 is a sum of two rational cubes if and
only if it is a sum of two nonnegative rational cubes.

Proof. We may evidently assume that n is not a cube, so let n = x3
0 + y3

0

be a decomposition of n as a sum of two cubes. If x0 and y0 are nonnegative
there is nothing to prove, so we may assume without loss of generality that
y0 > 0 and x0 < 0. It is easily checked that if x3

k+y3
k = n then x3

k+1+y3
k+1 = n

with

xk+1 =
y4

k + 2x3
kyk

y3
k − x3

k

and yk+1 = −x4
k + 2xky3

k

y3
k − x3

k

.
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The existence of such an identity comes from Fermat’s tangent method and
will be explained in detail in Chapter 7 (see also Exercise 10 of Chapter 7),
but the direct verification is immediate. We thus define a sequence of points
on the curve x3 + y3 = n. I claim that there exists k ∈ Z�0 such that xk > 0
and yk > 0. Indeed, if we set uk = yk/xk this is equivalent to uk > 0 (since
n > 0), and uk satisfies the recurrence uk+1 = f(uk) with

f(x) = − 2x3 + 1
x(x3 + 2)

.

Furthermore, since y0 > 0, x0 < 0, and x3
0 + y3

0 = n, we have u3
0 + 1 < 0, so

that u0 < −1. Now we have

f(x)− 8x− 7 = − (x + 1)2(8x3 − 9x2 + 12x + 1)
x(x3 + 2)

,

and since for x < −1 we have 8x3−9x2+12x+1 < −28 it follows in particular
that for − 3

√
2 < x < −1 we have f(x)− 8x− 7 < 0. Thus if − 3

√
2 < uk < −1

we have uk+1 + 1 < 8(uk + 1). Since u0 + 1 < 0 it follows that there exists
k � 0 such that uk < − 3

√
2. But then clearly uk+1 = f(uk) > 0, as was to be

proved. ��

Proposition 6.4.19. There are infinitely many integers that are not the sum
of two cubes of rational numbers.

Proof. Indeed, Theorem 6.4.17 tells us for instance that odd primes con-
gruent to 2 or 5 modulo 9 cannot be the sum of two cubes of rational numbers,
and by Dirichlet’s theorem on primes in arithmetic progression (Theorem
10.5.30) there are infinitely many such primes. ��

It is reasonable to ask whether, in a manner analogous to Proposition
5.4.9, we can characterize the integers that are sums of two cubes, either
of integers or of rational numbers. The answer for integers is trivial. For
rational numbers there is a conjecture and a theorem for prime numbers that
is a combination of work of N. Elkies with a theorem of F. Rodriguez-Villegas
and D. Zagier [Rod-Zag].

Proposition 6.4.20. An integer n is a sum of two cubes of (positive or
negative) integers if and only if there exists a positive divisor d of n such that
(4n/d − d2)/3 is the square of an integer. For example, a (positive) prime
p is a sum of two cubes of integers if and only if p = 2 or p has the form
p = 3x2 − 3x + 1 for x � 2.

Proof. Left to the reader (Exercise 18). ��

The conjecture for sums of two cubes of rational numbers is the following.
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Conjecture 6.4.21. (1) Any squarefree integer congruent to 4, 6, 7, or 8
modulo 9 is a sum of two rational cubes.

(2) Denote by S(X) the set of squarefree integers less than or equal to X
that are congruent to 1, 2, 3, or 5 modulo 9 and that are the sum of two
rational cubes. Then S(X) has density 0, and more precisely there exists
a strictly positive constant c such that

S(X) ∼ cX5/6 log(X)
√

3/2−1/8 .

The first conjecture immediately follows from the BSD conjecture, hence
is almost certainly correct. The second conjecture has been obtained using
methods coming from random matrix theory, and is more speculative al-
though supported by numerical evidence [Kea]. Note that it is possible to
state a conjecture for cubefree integers, which is a more natural condition,
but the statement is more complicated.

To state the theorems of Elkies and Rodriguez-Villegas–Zagier we first
need to define a sequence of polynomials.

Definition 6.4.22. We define the Villegas–Zagier polynomials Vn(t) by the
initial conditions V−1(t) = 0, V0(t) = 1 and the recurrence

Vn+1(t) = (8t3 − 1)V ′
n(t)− (16n + 3)t2Vn(t)− 4n(2n− 1)tVn−1(t)

for n � 1.

Theorem 6.4.23. Assume the Birch and Swinnerton-Dyer conjecture (Con-
jecture 8.1.7), and let p be a prime number. Then p is the sum of two cubes
of rational numbers if and only if one of the following conditions is satisfied:

(1) p = 2.
(2) p ≡ 4, 7, or 8 modulo 9.
(3) p ≡ 1 (mod 9) and p | V(p−1)/3(0).

The proof of this theorem uses the classical theory of modular forms,
complex multiplication, and central values of L-series. For example, it implies
that the only p � 100 such that p ≡ 1 (mod 9) that are sums of two cubes of
rational numbers are p = 19 and p = 37.

Note that in Theorem 6.4.17 we have proved by descent arguments that
if p = 3 or p � 5 and p ≡ 2 or 5 modulo 9 then p is not a sum of two
cubes. When p ≡ 4 or 7 modulo 9, N. Elkies has shown that p is a sum of
two cubes of rational numbers without assuming BSD. (Note that there does
not even exist a preprint of this proof, and that no one else has been able
to reconstruct it.) The result for p ≡ 1 (mod 9) is also independent of the
correctness of BSD. The only case for which the BSD conjecture is needed is
for p ≡ 8 (mod 9).

It is possible that this theorem can be extended to a complete charac-
terization of all integers that are sums of two cubes of rational numbers.
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Note, however, that if we are willing to reason in a heuristic manner and
in particular to believe the BSD conjecture, it is easy to determine whether
a given integer (or rational number) c is a sum of two cubes. Without loss
of generality assume that c is a cubefree integer and that c > 2. It follows
from Proposition 7.2.3 and the remarks following it, combined with Corollary
8.1.15 and BSD, that c is a sum of two cubes if and only if the elliptic curve
Ec with affine equation y2 = x3 + 16c2 has rank greater than or equal to 1.
To check this, we first compute the root number (in the case of squarefree
c it will be equal to −1 for c ≡ 4, 6, 7, or 8 modulo 9, and to 1 otherwise,
explaining Conjecture 6.4.21 (1)). If it is equal to −1, then by BSD c is a sum
of two cubes (and BSD is not necessary if the rank is equal to 1, which can be
checked by computing L′(Ec, 1) using Corollary 8.5.14). If the root number is
equal to 1, we compute L(Ec, 1) using Corollary 8.5.11, which gives a rapidly
convergent series for L(Ec, 1). If the result is different from 0 (which can
always be proved if true), then by the proved results on the BSD conjecture
we know that the rank of Ec is equal to 0, hence that c is not a sum of two
cubes. On the other hand, if the result seems to be very close to 0, then it is
highly plausible (but not proved, even assuming BSD) that c is a sum of two
cubes since the rank of Ec will probably be greater than or equal to 2.

111111111122222222223333333333444444444455555555556666
123456789012345678901234567890123456789012345678901234567890123

0 TT00011T1001101T1021010001T10210111020000110000111101T010100111
63 T201111110010011000011210112101011100001111100200011010010012T2
126 2T0102110100111110000000122001101111210100111100011111022001101
189 00010101100212011012211111T222001110001101010010102101102111T10
252 020001100001101010212110111102111110100001120000101011012100110
315 100101111100001101021101012T12102101000111110001001100201100010
378 21010111110211111120210110102110101100010211011011111T202201101
441 001121111012100111102111112200001002000101110010100111122101111
504 0200011T2001101211211100010100111111000101101101121010210100110
567 100111101012021100001121011010101111110101111022001100001001211
630 2101201120001111100120011032011010100101211101001111100T0201100
693 00110111100010011112211111120001012T201101111010100110101111111
756 000001101001101010110100110102111110220001100001101012012100111
819 100112111200101101001001011110020132100111110021001101211101210
882 212100111100101111202021100001101211210102011002111111200201101
945 201111011012101110102101110201001101001101210020120112T20111112

1008 000001120003121T00210100111102111111000000100022111011210100110
1071 120011110000001110001101010202100110100111110000103101001121211
1134 010102111100111210002101101001101011210110110100101110020001101
1197 000121012012000110200111112100201100001101030010101101102111111
1260 200021300201100011010100110102111111000101121001101110012100111
1323 1101113T2000001300020101011012102111102111111020001011221101011
1386 210100112100101110020101101001101010011302111100111111002011100
1449 10012121T210122111100101101020003100001121011012101110020111111
1512 202001101001001010212100110100111110012003100001101011202100010
1575 120111111001201100021101011212102112100111110220211101000101010
1638 010102111101111110200001112001101211110102001120111111010101111
1701 02110101101010011010211011T200000121021121210010002112120101110
1764 000001102011101010012100111102111310200201101001102011010101010
1827 100111111002001101001111032002100111102111110001201100001101111
1890 230120111000111111000001101002101021010100110000111111022000111
1953 0211210100101221101000111122021011200011212100T2102111120111130

Sums of Two Rational Cubes up to 2016

In this manner, it is easy to construct the above table, whose validity
does not depend on BSD since in the range of the table we have curves only
of analytic rank 0 or 1, or curves with proved rank 2 or 3. The entry in row
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numbered R and column C (with R going from 0 to 1953 and C going from 1
to 63) gives the rank of the curve Ec with c = R+C, except when the rank is
0 and the curve has nontrivial torsion (which occurs if and only if c is equal
to a cube or twice a cube), in which case the letter T occurs, corresponding
to the trivial solutions 03 + 13 = 1 and 13 + 13 = 2, and their multiples.

To find explicitly the decomposition of a cubefree integer c � 2016 as a
sum of two cubes the reader should proceed as follows. If the above table
indicates 0, there are no solutions. If it indicates T, there is only one solution,
either c = x3 if c is a cube, or c = x3 + x3 if c is twice a cube. If it indicates
2 or 3, then for all c � 2016 the mwrank program or the 2-descent methods
of Chapter 8 will succeed in finding a nontrivial point on the elliptic curve
y2 = x3 + 16c2, which can then be transformed into a solution of x3 + y3 = c
thanks to Proposition 7.2.3 and the remarks following it. Finally, if it indicates
1, then either mwrank or 2-descent will find a nontrivial rational point, or we
apply the Heegner point method described in Section 8.6.

We now consider the case of three cubes. The main conjecture, now widely
believed to be true, is the following.

Conjecture 6.4.24. An integer n is a sum of three cubes of integers if and
only if n �≡ ±4 (mod 9).

Note that since the cube of an integer is congruent to 0 or ±1 modulo 9,
an integer n ≡ ±4 (mod 9) cannot be the sum of three cubes. The conjecture
claims that this is the only restriction.

It is also conjectured that any integer not congruent to ±4 modulo 9 is
a sum of three cubes of integers in an infinite number of ways. However, to
the author’s knowledge the only known representations of the integer 3 are
3 = 13 + 13 + 13 = 43 + 43 + (−5)3 (and permutations of the latter).

A large amount of computer work has been done on these conjectures.
For a long time the smallest positive integer n �≡ ±4 (mod 9) not known to
be a sum of three cubes was n = 30, until the discovery by M. Beck, E. Pine,
W. Tarrant, and K. Yarbrough of the decomposition

30 = (−283059965)3 + (−2218888517)3 + (2220422932)3 .

As of 2007 the only integers n such that 0 � n � 100 and n �≡ ±4 (mod 9)
that are not known to be a sum of three cubes are n = 33, 42, 52, and 74.
The size of the solutions found suggests that they are at least exponential
in n.

Note that, contrary to similar results for squares, we must not assume
that n is cubefree. To take a simple example, 5 is evidently not a sum of
three cubes, but 135 = 33 · 5 = 23 + (−6)3 + 73 is one.

Indeed, as for two cubes, the situation changes dramatically for the rep-
resentation with rational numbers:
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Proposition 6.4.25. Every integer (and in fact every rational number) is
the sum of three cubes of rational numbers. For instance, we have n = x3 +
y3 + z3, with

x = m− 1, y =
3(m2 + m)
m2 + m + 1

, z =
−m3 + 3m + 1
m2 + m + 1

,

where we have set m = n/9.

Proof. Just check. Of course this does not explain how to obtain such
identities or why they exist. ��

We now consider the case of four or more cubes. Because of the above
proposition we no longer need to consider representations as sums of cubes
of rational numbers. For integers there is a conjecture (a weak version and a
strong version) and two results.

Conjecture 6.4.26. (1) (Weak version.)Every integer is a sum of four
cubes of integers.

(2) (Strong version.)Every integer has the form 2x3+y3+z3, hence is a sum
of four cubes of integers of which two at least are equal.

The two known results on this subject are as follows. The first is very
easy, and the second is due to Dem′yanenko [Dem1].

Proposition 6.4.27. Every integer is a sum of five cubes of integers, where
we can in fact assume that at least two are equal. In other words, every integer
has the form 2x3 + y3 + z3 + t3.

Proof. The identity 6x = (x − 1)3 + (−x)3 + (−x)3 + (x + 1)3 shows
that every multiple of 6 is a sum of four cubes of which two are equal. If
n is an integer, n − n3 is divisible by 6 hence is a sum of four cubes, so
n = (n− n3) + n3 is a sum of five cubes of which two are equal. ��

Theorem 6.4.28 (Dem′yanenko). Every integer n such that n �≡ ±4
(mod 9) is a sum of four cubes of integers.

Note that this theorem was certainly conjectured as far back as the end
of the nineteenth century, but was proved only in 1966 by Dem′yanenko; see
[Dem1].

Proof. First, the polynomial identities

6x = (x− 1)3 + (−x)3 + (−x)3 + (x + 1)3 and

6x + 3 = x3 + (−x + 4)3 + (2x− 5)3 + (−2x + 4)3

show that every multiple of 3 is a sum of four cubes. Next, the identities
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18x + 1 = (2x + 14)3 + (−2x− 23)3 + (−3x− 26)3 + (3x + 30)3 ,

18x + 7 = (x + 2)3 + (6x− 1)3 + (8x− 2)3 + (−9x + 2)3 ,

18x + 8 = (x− 5)3 + (−x + 14)3 + (−3x + 29)3 + (3x− 30)3 ,

together with the complementary identities obtained by changing x into −x
and multiplying by −1 show that every n ≡ ±1, ±7, or ±8 modulo 18 is a sum
of four cubes. The only remaining congruence classes are n ≡ ±2 (mod 18).
Finally, the polynomial identities

54x + 2 = (29484x2 + 2211x + 43)3 + (−29484x2 − 2157x− 41)3

+ (9828x2 + 485x + 4)3 + (−9828x2 − 971x− 22)3

54x + 20 = (3x− 11)3 + (−3x + 10)3 + (x + 2)3 + (−x + 7)3

216x− 16 = (−27x + 13)3 + (24x− 12)3 + (18x− 8)3 + (3x− 3)2 and

216x + 92 = (3x− 164)3 + (−3x + 160)3 + (x− 35)3 + (−x + 71)3

together with their complementary identities leave only the congruence
classes n ≡ ±38 (mod 108), so let n ∈ Z be of this form. Changing if necessary
n into −n, we may assume that n ≡ 38 (mod 108).

In the sequel, denote by p the prime number p = 83. Assume first that
p | n. Then n/p ≡ 38p−1 ≡ 46 (mod 108), and the identity

83(108x + 46) = (29484x2 + 25143x + 5371)3 + (−29484x2 − 25089x− 5348)3

+ (9828x2 + 8129x + 1682)3 + (−9828x2 − 8615x− 1889)3

shows that n is a sum of four cubes. We may thus assume that n ≡ 38
(mod 108) with p � n.

Let a, b, m be integers and set

w = −(24m− 25a + 2937b), x = 27m− 19a + 2746b,

y = −(19m + 9a + 602b), z = 10m + 27a− 928b .

We check that w3 + x3 + y3 + z3 = 18p(a2 − 3420b2)m + P (a, b), with

P (a, b) = (25a− 2937b)3 +(−19a+2746b)3 +(−9a− 602b)3 +(27a− 928b)3 .

Thus, if a and b are chosen as solutions of the Pell equation a2 − 3420b2 = 1
we have w3 + x3 + y3 + z3 = 18pm + P (a, b); hence, given such a pair (a, b),
the equation w3 + x3 + y3 + z3 = n is solvable in m if and only if P (a, b) ≡ n
is solvable modulo 2, 9, and p. Since n ≡ 2 (mod 18), the condition modulo
2 is 2 | b, and the condition modulo 9 is easily seen to be a ≡ 1 (mod 3) and
b ≡ 2 mod 3. Thus the condition modulo 18 is a ≡ 1 (mod 3) and b ≡ 2
(mod 6). There remains the condition modulo p.

The fundamental unit of the order Z[
√

3420] is easily computed to be
ε = 3041 + 52

√
3420, which has norm 1. Thus a + b

√
3420 = sεk for any

k ∈ Z and s = ±1, in other words
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a = s
εk + εk

2
and b = s

εk − εk

2
√

3420
.

Since a and b satisfy a second-order linear recurrence, it is immediately seen
that the congruence conditions modulo 3 and 6 on a and b are equivalent
to a + b

√
3420 = (−ε)k with k ≡ 1 (mod 3). Thus if we set η = −ε3 and

j = (k − 1)/3 we have

a =
(−ε)ηj + (−ε)ηj

2
and b =

(−ε)ηj − (−ε)ηj

2
√

3420
.

We note that 3420 ≡ 102 (mod p), hence that ε ≡ 75 (mod p), ε ≡ 31
(mod p), η ≡ 14 (mod p), and η ≡ 6 (mod p), so that

a ≡ 8 · 14j − 31 · 6j

2
(mod p) and b ≡ 8 · 14j + 31 · 6j

2 · 10
(mod p) ,

and replacing gives finally

P (a, b) ≡ 71 · 50j (mod p) .

Now it is immediately checked that 50 is a primitive root modulo p. Since
gcd(71, p) = 1 it follows that for any n such that p � n there exists j ∈ Z
with 71 · 50j ≡ n (mod p); hence there exist a and b such that P (a, b) ≡ n
(mod p), proving that the condition modulo p can be satisfied and finishing
the proof of the theorem. ��

Remarks. (1) The above proof is translated essentially verbatim from
Dem′yanenko’s paper, but with a few minor improvements. First it is
not at all clear from this proof how one obtains the second-degree poly-
nomial identities and why we define w, x, y, and z as above (for instance,
why use the identity (−24)3 + 273 + (−19)3 + 103 = 0 among so many
similar ones?). This has been explained by M. Watkins in an unpublished
manuscript. Furthermore, Dem′yanenko chooses the prime p = 3323, but
Watkins shows that one can use the smaller prime p = 83, so I have
used this p instead. Finally, the identity for 216x− 16 was sent to me by
D. Alpern; it can be obtained very simply from the identity for 18x + 7
by a linear change of variable. It replaces a more complicated identity
involving quadratic polynomials analogous to the one for 54x + 2 found
by Dem′yanenko.

(2) I would like to emphasize that the above proof gives a covering set of 83
identities for all integers n ≡ 38 (mod 108), one for n = 83(108x + 46) =
108(83x + 35) + 38 involving quadratic polynomials, and the 82 others
involving linear polynomials. For instance, the choice a + b

√
3420 = −ε

and a linear change of variable leads to the identity
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108(83x− 2) + 38 = (−144x− 213614285)3 + (162x + 240317344)3

+ (−114x− 169113356)3 + (60x + 89004059)3 ,

and the choice a + b
√

3420 = (−ε)−2 leads to a similar identity for
108(83x + 16) + 38.

(3) The use of polynomial identities is essential in the above proof. It is
natural to ask whether it is possible to use such identities also for integers
congruent to ±4 modulo 9 (with a left-hand side that is linear in x). It has
been proved by Schinzel, Mordell, and successors that such an identity
does not exist with polynomials of degree less than or equal to 7. It is
reasonable to conjecture that no such identity exists.

To conclude this section, we note the following related result.

Proposition 6.4.29. Up to permutation of the variables the equation w3 +
x3 + y3 + z3 = 0 in Q has the trivial parametrization x = −w, z = −y, and
the parametrization

w = −d((s− 3t)(s2 + 3t2) + 1) ,

x = d((s + 3t)(s2 + 3t2) + 1) ,

y = −d((s2 + 3t2)2 + (s + 3t)) ,

z = d((s2 + 3t2)2 + (s− 3t)) ,

with d, s, and t in Q.

Proof. If we set W = (w + x)/2, X = (x − w)/2, Y = (y + z)/2, and
Z = (z− y)/2 the equation is equivalent to W (W 2 +3X2) = −Y (Y 2 +3Z2).
Excluding the trivial parametrization we have W �= 0 and Y �= 0, so that if
we define s and t by (Y + Z

√
−3)/(W + X

√
−3) = s + t

√
−3, we have by

definition sW − 3tX = Y and sX + tW = Z, and the equation is equivalent
to W = −Y (s2 + 3t2). Thus −3tX = Y (1 + s(s2 + 3t2)), or equivalently,
X = d(1 + s(s2 + 3t2)) and Y = −3dt; hence W = 3dt(s2 + 3t2) and Z =
d(s + (s2 + 3t2)2), so we obtain the given parametrization. ��

When s, t, and d are integers the solution is trivially integral, but
the converse is not true (choose for instance d = −361/42, s = −10/19,
t = −7/19, which gives one of the smallest nontrivial integral solutions
(w, x, y, z) = (12, 1,−10,−9)). No complete parametrization of the equation
in integers is known, but nontrivial partial ones are easy to find; see Exercise
20. Note that Elkies gives the following homogeneous rational parametriza-
tion:
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w = d(−(r + s)t2 + (s2 + 2r2)t− s3 + rs2 − 2r2s− r3) ,

x = d(t3 − (r + s)t2 + (s2 + 2r2)t + rs2 − 2r2s + r3) ,

y = d(−t3 + (r + s)t2 − (s2 + 2r2)t + 2rs2 − r2s + 2r3) ,

z = d((s− 2r)t2 + (r2 − s2)t + s3 − rs2 + 2r2s− 2r3) .

Here d = 1/7, r = 1, s = −4, and t = −2 give the solution (9,−1, 10,−12).

6.4.7 Skolem’s Equations x3 + dy3 = 1

The aim of this section is to prove the following theorem.

Theorem 6.4.30 (Skolem). If d ∈ Z is given with d �= 0, there exists at
most one pair (x, y) ∈ Z× Z with y �= 0 such that x3 + dy3 = 1.

Proof. If d = c3 with c ∈ Z, then (x+cy) | (x3 +dy3) = 1, so x+cy = ±1.
Replacing in the equation gives ±1 − 3cy ± 3c2y2 = 1, so looking modulo 3
we have ± = +, hence cy(cy−1) = 0. Thus since we assume d �= 0 and y �= 0,
we obtain y = 1/c as the only possible solution (if d = ±1), otherwise none.
Thus, assume that d is not a perfect cube, and let K = Q(θ) with θ = d1/3

be the corresponding pure cubic field. In particular, its signature is (1, 1), so
by Dirichlet’s unit theorem there exists a fundamental unit ε such that any
unit has the form ±εk for k ∈ Z. Changing if necessary ε into −ε we may
assume that ε has norm +1.

Assume now that there exist two solutions (x1, y1) and (x2, y2) to our
equation with y1 �= 0 and y2 �= 0, and set εi = xi + yiθ for i = 1 and 2.
Our equation is equivalent to NK/Q(εi) = 1; hence since the εi are algebraic
integers, they are units in K of norm 1, so that εi = εpi for some pi ∈ Z.
Writing p1/p2 = n1/n2 with gcd(n1, n2) = 1, we thus have (x1 + y1θ)n2 =
(x2+y2θ)n1 , and if necessary exchanging (x1, y1) and (x2, y2) we may assume
that 3 � n1. Thus N = n2/n1 can be considered as an element of Z3. To
simplify, write x = x1 and y = y1. By definition of θ, we have

(x + yθ)3 = x3 + 3x2yθ + 3xy2θ2 + dy3 = 1 + 3xyG with G = xθ + yθ2 .

We will work in Q3(θ), which by Proposition 4.4.41 is isomorphic to the direct
sum of the completions of Q(θ) for the absolute values corresponding to the
prime ideals of ZK dividing 3. Write N = 3M + r with 0 � r � 2. Since N ∈
Z3, by Corollary 4.2.15 we can thus write x2 + y2θ = (1 + 3xyG)M (x + yθ)r,
where (1 + 3xyG)M is defined by a convergent binomial series. Thus, using
Corollary 4.2.17 (which was proved for a p-adic field but is clearly still true
for a product of such), we have

x2+y2θ = (1+3xyG)M (x+yθ)r = (1+3Mxy(xθ+yθ2)+9Mx2y2B)(x+yθ)r

for some B ∈ Z3[θ]. Note that even though Q3(θ) is not in general a field,
1, θ, and θ2 are still Q3-linearly independent, so that we may identify the
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coefficients of powers of θ in the above formula. In particular, if we write
B = B0 + B1θ + B2θ

2 with Bi ∈ Z3 and identify the coefficients of θ2 we
obtain

0 =


3Mxy2(1 + 3xB2) for r = 0 ,
3Mx2y2(2 + 3(yB1 + xB2)) for r = 1 ,
y2(1 + 9Mx2(x + B2x

2 + 2B1xy + B0y
2)) for r = 2 .

Since x and y are nonzero, and N is not equal to 0 or 1, we can divide
respectively by 3Mxy2, 3Mx2y2, and y2, and we immediately obtain a con-
tradiction modulo 3. ��

6.4.8 Special Cases of Skolem’s Equations

Since we can replace y3 by c3y3 for any c ∈ Z, in Skolem’s theorem we may
assume that d is a positive cubefree integer.

Corollary 6.4.31. For d = 1, 2, 7, 9, 17, 19, 20, 26, 28, 37, 43, 63, 65, and
91 the equation x3 + dy3 = 1 has a (necessarily unique) integral solution with
y �= 0, given respectively by (x, y) = (0, 1), (−1, 1), (2,−1), (−2, 1), (18,−7),
(−8, 3), (−19, 7), (3,−1), (−3, 1), (10,−3), (−7, 2), (4,−1), (−4, 1), and
(9,−2).

Proof. Clear by direct check, the uniqueness coming from Skolem’s theo-
rem. ��

Corollary 6.4.32. The only integral solutions to the equation y2 = x3 + 1
are (x, y) = (−1, 0), (0,±1), and (2,±3).

Proof. We rewrite the equation as (y − 1)(y + 1) = x3. If y is even, y − 1
and y + 1 are coprime, hence are both cubes, and since the only two cubes
that differ by 2 are −1 and 1 we deduce that (x, y) = (−1, 0). Otherwise y is
odd, so x is even. Changing if necessary y into −y we may assume that y ≡ 1
(mod 4). Thus ((y − 1)/4)((y + 1)/2) = (x/2)3; hence there exist integers
a and b such that y − 1 = 4a3 and y + 1 = 2b3, so that b3 − 2a3 = 1. By
Skolem’s theorem above, the only solutions to this equation are (a, b) = (0, 1)
and (−1,−1), giving the solutions (x, y) = (0,±1) and (2,±3). ��

The following result can be shown using only slightly more complicated
methods.

Theorem 6.4.33 (Delone). Let d be a positive cubefree integer. The equa-
tion x3 + dy3 = 1 has a nontrivial integral solution if and only if the funda-
mental unit ε of the ring Z[d1/3] (which is not necessarily equal to the full
ring of integers of Q(d1/3)) such that 0 < ε < 1 has the form x + yd1/3 with
x and y in Z.
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Using this theorem, it is immediate to check that the values of d given
in Corollary 6.4.31 are the only positive cubefree values of d less than or
equal to 100 for which Skolem’s equation has a solution with y �= 0. The only
additional such values for d � 1000 are d = 124, 126, 182, 215, 217, 254, 342,
422, 511, 614, 635, 651, 730, and 813. Let us show how we can prove that
there are no nontrivial solutions in the particular case d = 11.

Proposition 6.4.34. The only integral solution to x3+11y3 = 1 is the trivial
solution (x, y) = (1, 0).

Proof. We work in the number field Q(θ) with θ = 111/3. A fundamental
unit is ε = 1 + 4θ − 2θ2, with NK/Q(ε) = 1. Since our Diophantine equation
is equivalent to NK/Q(x + yθ) = 1, Dirichlet’s unit theorem tells us that
x + yθ = εn for some n ∈ Z.

The smallest prime p in which X3 − 11 splits completely is p = 19, sox
we work in Q19, in which the three roots are c1 ≡ −3 + 5 · 19 (mod 192),
c2 ≡ −2+8 · 19 (mod 192), and c3 ≡ 5+6 · 19 (mod 192). The corresponding
values of the embeddings of ε are e1 ≡ 9+2 ·19 (mod 192), e2 ≡ 4 (mod 192),
e3 ≡ 9 + 16 · 19 (mod 192), and for j = 1, 2, and 3 we have x + ycj = en

j .
Since TrK/Q(θ) = TrK/Q(θ2) = 0, we have

∑
j cj =

∑
j c2

j = 0, so that
c1e

n
1 + c2e

n
2 + c3e

n
3 = 0. On the other hand, since NK/Q(ε) = 1 we have

e1e2e3 = 1, so replacing e1 by (e2e3)−1 and multiplying by (e2e3)n we obtain

c1 + c2e
2n
2 en

3 + c3e
n
2 e2n

3 = 0 .

We first consider this equation modulo 19. We obtain 16 + 17 · 11n + 5 ≡ 0
(mod 19), in other words 11n ≡ 1 (mod 19), or equivalently, since the order
of 11 modulo 19 is equal to 3, n ≡ 0 (mod 3). Thus, we must have n = 3m for
some m ∈ Z. But then we have (e2

2e3)3 ≡ 1 + 7 · 19 (mod 192) and (e2e
2
3)

3 ≡
1 + 11 · 19 (mod 192). Thus, with the notation of Corollary 4.2.18, we have
(e2

2e3)n = φa(m) and (e2e
2
3)

n = φb(m) for a = e2
2e3 − 1 and b = e2e

2
3 − 1. We

immediately see that φa(X) = 1+7·19X (mod 192) and φb(X) = 1+11·19X
(mod 192), and since c1 + c2 + c3 = 0, our equation has the form φ(m) = 0
with φ(X) ≡ 3 ·19X (mod 192). In the notation of Strassmann’s theorem we
thus have N = 1, so there exists only one solution m = 0 corresponding to
(x, y) = (1, 0), as claimed. ��

6.4.9 The Equations y2 = x3 ± 1 in Rational Numbers

In Corollary 6.4.32 we have found all integral solutions to the equation y2 =
x3+1. It is instructive to see how to find all rational solutions to this equation.
The method that we use is not related to Skolem’s, but is an example of a
descent method that we will explore in more detail in Section 8.2. This proof
is essentially due to L. Euler. I would like to thank B. de Weger and R. Schoof
for showing me their versions, and the one below is a (slight) blend of the
two. We slightly simplify Euler’s argument by using the following lemma.
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Lemma 6.4.35. Let K = Q(
√
−3) and α ∈ ZK . Then αα is a square in Z

if and only if there exist n ∈ Z and β ∈ ZK such that α = nβ2.

Proof. Since ZK is a principal ideal domain, simply decompose α into a
product of a root of unity and a product of powers of prime elements of ZK .
The details are left to the reader (Exercise 22). ��

The key descent result of Euler is the following.

Proposition 6.4.36. Let ε = ±1. The only nonzero integral solutions to the
Diophantine equations Y 2 = XZ(X2− 3εXZ + 3Z2) with gcd(X,Z) = 1 are
for ε = 1, with (X,Z) = ±(1, 1) (hence Y = ±1) or ±(3, 1) (hence Y = ±3).

Proof. Since the discriminant of X2 − 3εX + 3 is negative it follows that
XZ > 0, so X and Z have the same sign. Thus if necessary changing (X,Z)
into (−X,−Z) we may assume they are both positive.

Assume first that 3 � X, and consider a solution to our equation where
|Y | > 1 is minimal. As always in descent arguments we are going to construct
another solution with a strictly smaller value of |Y |, hence giving a contra-
diction. Thus X, Z, and X2 − 3εXZ + 3Z2 are pairwise coprime, and since
they are all positive they are all three squares, so we write X = x2, Z = z2,
and X2 − 3εXZ + 3Z2 = a2, say. If we set α = X + Z(−3ε +

√
−3)/2 ∈ ZK ,

we see that αα = a2, so that by the above lemma we have α = nβ2 with
n ∈ Z and β ∈ ZK . Since (1, (−3ε +

√
−3)/2) is a Z-basis of ZK , we write

β = u+v(−3ε+
√
−3)/2, and equating coefficients we obtain X = n(u2−3v2),

Z = n(2uv − 3εv2). Since X and Z are coprime, it follows that n = ±1,
that u and v are coprime, and 3 � u. Since X is a square and 3 � u we
have X ≡ nu2 ≡ n (mod 3), hence n ≡ 1 (mod 3), so in fact n = 1. We
thus obtain the system of equations u2 = x2 + 3v2, z2 = v(2u − 3εv). If
α1 = x + v

√
−3 we have α1α1 = u2, so again by the above lemma there

exists β1 = (s + t
√
−3)/2 ∈ ZK (thus, with s ≡ t (mod 2)) and n1 ∈ Z such

that α1 = n1β
2
1 , which gives by equating coefficients x = n1(s2 − 3t2)/4,

v = n1st/2, hence u = n1(s2 + 3t2)/4. Replacing in the formula for z2, we
obtain z2 = (n1/2)2st(s2 − 3εst + 3t2). It follows that Y1 = z/(n1/2) is an
integer such that Y 2

1 = st(s2 − 3εst + 3t2), so we have obtained a new solu-
tion to our Diophantine equation. Evidently s and t are nonzero (otherwise v,
hence Z, is zero). If g = gcd(s, t) (equal in fact to 1 or 2), replacing (s, t, Y1)
by (s/g, t/g, Y1/g2) we may assume that s and t are coprime. Let us show
that |Y1| < |Y |. Indeed, we have

Y 2

Y 2
1

=
XZ(X2 − 3εXZ + 3Z2)

4z2/n2
1

� X(X2 − 3εXZ + 3Z2)
4

.

Now X2 − 3εXZ + 3Z2 � 7 for ε = −1. For ε = 1, since Z = z2 we have
X2 − 3XZ + 3Z2 = (X − 3Z/2)2 + 3Z2/4 � 3z4/4 > 1 for |z| � 2. For
ε = Z = 1, since X = x2 we have X(X2 − 3εX + 3) � x2(x4 − 3x2 + 3) > 4
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for |x| > 1. It follows from all this that |Y | > |Y1| unless ε = X = Z = 1.
But in that case we have |Y | = 1, and since we have initially assumed that
|Y | > 1, this gives the desired contradiction showing that when 3 � X the
only possible solution has |Y | = 1, which is indeed possible with ε = 1 and
X = Z = 1, but not possible if ε = −1.

If 3 | X then 3 | Y , so (Y/3)2 = Z(X/3)(Z2 − 3εZ(X/3) + 3(X/3)2), and
since gcd(X,Z) = 1 we have 3 � Z, so by what we have just proved we have
ε = 1, (Z,X/3) = ±(1, 1), hence (X,Z) = ±(3, 1). ��

Corollary 6.4.37. The only rational solution to the equation y2 = x3 − 1
is (x, y) = (1, 0), and the only rational solutions to the equation y2 = x3 + 1
are (x, y) = (−1, 0), (0,±1), and (2,±3).

As already mentioned we will later give a similar proof of this result
(Proposition 8.2.14), this time using 2-descent explicitly.

Proof. Write x = m/n with gcd(m,n) = 1. Multiplying the equation
y2 = x3+ε by n4 we see that n(m3+εn3) is a square, and if we set c = m+εn
this means that nc(m2−εmn+n2) = nc(c2−3εnc+3n2) is a square. Clearly
gcd(c, n) = gcd(m,n) = 1, n �= 0, and c �= 0 except if m = −εn, i.e., x = −ε.
Thus by the above proposition we deduce that otherwise we have ε = 1, and
(c, n) = ±(1, 1) or ±(3, 1), giving x = 0 or x = 2 respectively, and proving
the corollary. ��

6.5 The Equations ax4 + by4 + cz2 = 0 and
ax6 + by3 + cz2 = 0

Equations of the type axp + byq + czr = 0 are called super-Fermat equations,
and we will devote a special chapter to them (Chapter 14). Simple heuristic
reasoning shows that if 1/p + 1/q + 1/r < 1, we expect only a finite number
of solutions up to a reasonable notion of equivalence, and if 1/p + 1/q +
1/r > 1 we expect infinitely many solutions (see Chapter 14 for details). The
intermediate case 1/p + 1/q + 1/r = 1 reduces to the study of elliptic curves,
and the existence or not of solutions essentially depends on the rank of the
curve. It is clear that up to permutation of p, q, and r we have (p, q, r) =
(3, 3, 3), (4, 4, 2), or (6, 3, 2). We have studied in great detail the case (p, q, r) =
(3, 3, 3) in Section 6.4. It is thus natural to study the other two cases here,
and in fact we are going to see that the (4, 4, 2) case is very similar to the
(3, 3, 3) case, although the equation is not homogeneous.

6.5.1 The Equation ax4 + by4 + cz2 = 0: Local Solubility

The question of local solubility is answered by the following proposition.

Proposition 6.5.1. Let a, b, and c be nonzero integers such that a and b
are 4th power-free and c is squarefree, and such that gcd(a, b, c) = 1.
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(1) The equation ax4 + by4 + cz2 = 0 has a nontrivial solution in every Qp

for which p � 2abc, and it has a nontrivial solution in R if and only if a,
b, and c do not all have the same sign.

(2) Let p | abc, p �= 2, reorder a and b so that vp(a) � vp(b), and set v =
(vp(a), vp(b), vp(c)).
(a) If v = (2, 2, 0) the equation has a nontrivial solution in Qp.
(b) If v = (0, 2, 1) or v = (1, 3, 0) the equation does not have any non-

trivial solutions in Qp.
(c) If v = (0, 0, 1), v = (1, 1, 0), or v = (3, 3, 0) the equation has a

nontrivial solution in Qp if and only if −a/b is a fourth power in F∗
p.

(d) If v = (0, 2, 0) the equation has a nontrivial solution in Qp if and
only if either −a/c or −b/(p2c) is a square in F∗

p.
(e) Otherwise, if v = (0, 1, 0) or v = (0, 3, 0), set α = −a/c, if

v = (0, 1, 1) set α = −b/c, if v = (0, 3, 1) or v = (1, 2, 0) set
α = −b/(p2c), and if v = (2, 3, 0) set α = −a/(p2c). The equa-
tion has a nontrivial solution in Qp if and only if α is a square in
F∗

p.
(3) Assume that p = 2, reorder a and b so that vp(a) � vp(b), and set

w = (vp(a), vp(b), vp(c)). For w = (0, 3, 0), (0, 3, 1), (1, 1, 0), (1, 2, 0),
(2, 2, 0), (2, 3, 0), or (3, 3, 0) replace (a, b, c) by (b/8, 2a, 2c), (b/8, 2a, c/2),
(a/2, b/2, 2c), (a/2, b/2, 2c), (a/4, b/4, c), (a/4, b/4, c), or (a/8, b/8, 2c)
respectively, otherwise keep a, b, and c unchanged. Finally, set v =
(vp(a), vp(b), vp(c)).
(a) If v = (0, 2, 1) or v = (1, 3, 0) the equation does not have any non-

trivial solutions in Q2.
(b) If v = (0, 0, 0) the equation has a nontrivial solution in Q2 if and

only if 8 | (a + c), 8 | (b + c), 16 | (a + b), or 16 | (a + b + 4c).
(c) If v = (0, 0, 1) the equation has a nontrivial solution in Q2 if and

only if 8 | (a + b) or 16 | (a + b + c).
(d) If v = (0, 1, 0) the equation has a nontrivial solution in Q2 if and

only if 8 | (a + c) or 8 | (a + b + c).
(e) If v = (0, 2, 0) the equation has a nontrivial solution in Q2 if and

only if 8 | (a + c), 8 | (a + b + c), or 16 | (b + 4c).
(f) If v = (0, 1, 1) the equation has a nontrivial solution in Q2 if and

only if 16 | (b + c).

Proof. This follows from an easy but tedious case-by-case examination
analogous to the proof of Theorem 6.4.2 and is left to the reader (Exercise
28). ��

In the special case of the equation x4 + y4 = cz2 the above proposition
simplifies considerably.

Corollary 6.5.2. Assume that c is squarefree. The equation x4 + y4 = cz2

is everywhere locally soluble if and only if c > 0 and the odd prime divisors
of c are congruent to 1 modulo 8.
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Proof. Indeed, by the proposition the equation is locally soluble in Qp for
an odd prime divisor p of c if and only if −1 is a fourth power in F∗

p, hence if
p ≡ 1 (mod 8), and it is locally soluble in Q2 if and only if c ≡ 1 (mod 8) or
c ≡ 2 (mod 16), which is automatically satisfied when the conditions at the
odd primes are. ��

To check global solubility we have at least two methods: one using alge-
braic number theory, the other using elliptic curves. We begin with the first
one, but we treat only special cases.

6.5.2 The Equations x4 ± y4 = z2 and x4 + 2y4 = z2

The equation x4 +y4 = z2 was solved by Fermat using the method of infinite
descent, similar but simpler than the one we used in Theorem 6.4.17. The
proof is also based on the parametric solution of a simpler equation, here of
the Pythagorean equation x2 + y2 = z2, which we have given in Corollary
6.3.13.

Proposition 6.5.3 (Fermat). Let ε = ±1. The Diophantine equation x4 +
εy4 = z2 has no solutions with xyz �= 0.

Proof. We may clearly assume that x, y, and z are pairwise coprime.
Assume first that z is even. This can happen only if ε = −1, since otherwise we
would get a contradiction modulo 8. Writing the equation as y4+z2 = x4 with
y odd, by Corollary 6.3.13 we obtain y2 = s2−t2, z = 2st, and x2 = s2+t2 for
some coprime s and t of opposite parity. It follows that s4 − t4 = (xy)2 = u2

with u odd, so we have reduced our equation to one in which the right-hand
side is odd.

We may thus assume that z is odd. If ε = 1 we exchange x and y if
necessary so that x is odd and y is even, while if ε = −1, reasoning modulo
4 we see that these conditions are automatic. By Corollary 6.3.13 there exist
coprime s and t of opposite parity such that x2 = s2 − εt2, y2 = 2st, and
z = ±(s2+εt2) (the sign of x2 for ε = −1 can be removed since x2 � 0). Since
st � 0, changing if necessary (s, t) into (−s,−t) we may assume that s � 0
and t � 0. Exchanging if necessary s and t if ε = −1, we may assume that s
is odd and t is even, this being automatic if ε = 1. Using once again Corollary
6.3.13 on the equation x2 = s2 − εt2, we deduce the existence of coprime u
and v of opposite parity such that x = ±(u2 − εv2), s = ±(u2 + εv2), and
t = 2uv, and since t � 0 we may assume u � 0 and v � 0. The last remaining
equation to be solved is therefore (y/2)2 = ±uv(u2 + εv2), where the ± sign
must be + if ε = 1, and it can be removed by exchanging u and v otherwise.
Since gcd(u, v) = 1 the three factors on the right are clearly pairwise coprime
and are nonnegative, so each one is a square. Thus, if u = u2

1, v = v2
1 , and

u2 + εv2 = w2 we have u4
1 + εv4

1 = w2. This is exactly our initial equation
with new values of the variables. However, following through the reductions
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it is immediate that |w| < |z| when z �= 0. Thus, if we start with a solution
with the smallest nonzero value of |z| we obtain a strictly smaller one, a
contradiction that shows that there cannot be any such solution. ��

Proposition 6.5.4. The Diophantine equation x4+2y4 = z2 has no solution
with y �= 0.

Proof. Let (x, y, z) be integers such that x4 + 2y4 = z2, where we may
assume that x, y, and z are pairwise coprime. By Corollary 6.3.14 there exist
coprime integers s and t with s odd such that x2 = ±(s2−2t2) and y2 = 2st.
It follows that s = ±u2 and t = ±2v2, so x2 = ±(u4 − 8v4), and u is odd
and coprime to v. If the sign were −, we would have x2 + u4 = 8v4, and
since u and x are odd, x2 + u4 ≡ 2 (mod 8), a contradiction. Thus the sign
is +, so that x2 + 8v4 = u4, so again by Corollary 6.3.14 there exist coprime
a and b such that 2v2 = 2ab and u2 = a2 + 2b2. It follows that a = ±c2,
b = ±d2, so that c4 + 2d4 = u2, which is our initial Diophantine equation,
and we conclude by the usual descent argument since clearly |u| < |z|. ��

We will see below that the equation x4−2y4 = z2 has nontrivial solutions
(in fact infinitely many), for instance (x, y, z) = (3, 2, 7).

6.5.3 The Equation ax4 + by4 + cz2 = 0: Elliptic Curves

We will say that two nonzero rational solutions (x, y, z) and (x′, y′, z′) of
our equation are the same under twisted projective equivalence if there exists
λ ∈ Q∗ such that x′ = λx, y′ = λy, and z′ = λ2z. It is easy to see that in
each equivalence class there exists (x, y, z) ∈ Z3 such that gcd(x, y) = 1, and
(x, y, z) is unique up to sign.

In Definition 8.2.3, we will see that on the elliptic curve Y 2Z = X3 +
AX2Z+BXZ2 with 2-torsion point T = (0, 0, 1), we can define (in projective
coordinates) a 2-descent map α from E(Q) to Q∗/Q∗2 by setting α(O) = 1,
α(T ) = B, and for P = (X,Y,Z) with P �= O and P �= T by setting
α(P ) = X/Z, modulo multiplication by squares of Q∗. The fundamental
property of α is that it induces a group homomorphism from E(Q)/2E(Q)
to Q∗/Q∗2 (see Proposition 8.2.4, which in fact gives a better result). The
main result concerning global solubility is the following.

Proposition 6.5.5. Let E be the elliptic curve with projective equation
Y 2Z = X3 + abc2XZ2, and define φ(x, y, z) = (−bcxy2, bc2yz, x3).

(1) The map φ sends the set of nonzero rational solutions of ax4+by4+cz2 =
0 up to twisted projective equivalence into E(Q).

(2) Let S be the set of (X,Y,Z) ∈ E(Q) \ {O, T} such that there exists
λ ∈ Q∗ such that −bcX = Zλ2. The image of φ is equal to S, to-
gether with O if −b/c is a square, and with T if −a/c is a square.
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More precisely, if (X,Y,Z) is such a point different from O and T then
(x, y, z) = (cλZ, −cX, cλY Z) is a preimage of (X,Y,Z), (0, 1, β) is a
preimage of O if −b/c = β2 is a square, and (1, 0, γ) is a preimage of T
if −a/c = γ2 is a square.

(3) The equation ax4 + by4 + cz2 has nonzero solutions if and only if the
class of −b/c modulo squares belongs to the image of the 2-descent map
α from E(Q) to Q∗/Q∗2. In addition, it has an infinity of inequivalent
solutions if and only if the class of −b/c modulo squares is equal to α(G)
for some nontorsion point G ∈ E(Q).

Proof. Setting X = −bcxy2, Y = bc2yz, and Z = x3, it is clear that P =
φ((x, y, z)) = (X,Y,Z) ∈ E(Q), and P is unchanged as a point in projective
space if (x, y, z) is replaced by a twisted projectively equivalent solution.
Conversely, if P = (X,Y,Z) ∈ E(Q) \ {O, T} is such that −bcX = Zλ2 for
some λ ∈ Q∗, then we check that (x, y, z) = (cλZ,−cX, cλY Z) is a solution
to our equation that is a preimage of (X,Y,Z) by φ, and it is nonzero if and
only if X �= 0, in other words if and only if P �= O and P �= T . On the other
hand, P = O corresponds to the solutions with x = 0, which exist if and only
if −b/c is a square, and P = T corresponds to the solutions with y = 0, which
exist if and only if −a/c is a square, proving (1) and (2). Statement (3) is an
immediate consequence since by definition −b/c = α(P ) with P = (X,Y,Z)
if and only if −bcX = Zλ2 for some λ ∈ Q∗ when P �= O and P �= T , and
−b/c = α(O) if and only if −b/c is a square, and −b/c = α(T ) if and only if
−a/c is a square. ��

Thus, after testing for everywhere local solubility, to check whether an
equation ax4 + by4 + cz2 = 0 has a nontrivial solution we proceed as fol-
lows. Using either mwrank or the 2-descent methods, we compute if possible
the complete Mordell–Weil group E(Q) of the curve with affine equation
Y 2 = X3 + abc2X, together with its torsion subgroup (given by Proposition
8.1.14). If G1, . . . , Gk are representatives of an F2-basis of E(Q)/2E(Q), we
then check whether the class of −b/c modulo squares belongs to the group
generated by the α(Gi) ∈ Q∗/Q∗2, which is done using simple linear algebra
over F2. It is also immediate to check in this way whether the equation has
infinitely many solutions.

6.5.4 The Equation ax4 + by4 + cz2 = 0: Special Cases

Several special cases of this equation are worth mentioning. In Section 6.12
we will define a congruent number as a rational number equal to the area of
a Pythagorean triangle, i.e., a right triangle with rational sides, and we will
prove the elementary fact that c is congruent if and only if the elliptic curve
y2 = x(x2 − c2) has nonzero rank. The most important result concerning
congruent numbers is Tunnell’s Theorem 6.12.4 which allows us to check
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very rapidly whether or not c is congruent. Thus any result which can at
least partly reduce to testing congruent numbers is very useful.

A first result of this kind is the following, which corresponds to the special
case a = 1 and b = −1 (or, more generally, b = −a).

Proposition 6.5.6. Let c be a nonzero integer. The equation x4 − y4 = cz2

has a solution with xyz �= 0 if and only if |c| is a congruent number. More
precisely, if x4−y4 = cz2 with xyz �= 0 then Y 2 = X(X2− c2) with (X,Y ) =
(−cy2/x2, c2yz/x3), and conversely if Y 2 = X(X2 − c2) with Y �= 0 then
x4 − y4 = cz2, with

x = X2 + 2cX − c2, y = X2 − 2cX − c2, and z = 4Y (X2 + c2) .

Proof. These formulas can of course be checked directly, but are not in-
verse of each other. More precisely the formula for (X,Y ) comes directly from
Proposition 6.5.5, and the formula for (x, y, z) is the inverse of the formula
giving twice the point (X,Y ) plus the 2-torsion point (0, 0). ��

See Section 6.12.3 for a small table of congruent numbers.
A similar result, now valid in the special case a = b = 1 (or, more gen-

erally, a = b), gives a necessary condition for our equation to be globally
soluble, which is usually also sufficient.

Corollary 6.5.7. Assume that c ∈ Z�3 is squarefree and that the equation
x4 + y4 = cz2 is everywhere locally soluble, in other words that the odd prime
divisors of c are congruent to 1 modulo 8, and let Ec be the elliptic curve with
affine equation Y 2 = X3 + c2X.

(1) The equation x4 + y4 = cz2 has nonzero solutions if and only if the class
of c modulo squares belongs to the image of the 2-descent map α, and in
that case it has infinitely many inequivalent solutions.

(2) If x4 + y4 = cz2 has a nonzero solution then 2c is a congruent number.
More precisely, if x4 + y4 = cz2 then Y 2 = X(X2 − 4c2) with

X = −4x2y2

z2
and Y =

4xy(x4 − y4)
z3

.

Proof. It follows from Proposition 6.5.5 that the torsion points of Ec

cannot come from nonzero solutions to our equation and that T is the only
nontrivial torsion point, proving (1). Note that for c = 2 the torsion subgroup
of Ec has order 4, generated by P = (2, 4), which corresponds to the solutions
(±1,±1,±1) to our equation, which are the only ones since Ec has rank
0. For (2) we note that by Proposition 8.2.1 the curve Ec is 2-isogenous
to the curve Y 2 = X3 − 4c2X, which is the curve corresponding to the
congruent number n = 2c by Proposition 6.12.1, and the explicit formulas
follow from Proposition 8.2.1. Using Proposition 6.12.1 one can also easily
give the formulas for the sides of the corresponding right triangle; see Exercise
29, and see also Exercise 30. ��
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Remarks. (1) Since α(T ) = c2 = 1 modulo squares in this case, it is not
necessary to include T in an F2-basis of E(Q)/2E(Q) to see whether −b/c
belongs to the image of α.

(2) Since we assume that c is squarefree and that its odd divisors are con-
gruent to 1 modulo 8, it is not difficult to show that the root number of
the curve Ec is +1, so that assuming the BSD conjecture, the rank of Ec

is always even.
(3) It is not true that when the local conditions are satisfied, the equation

x4 + y4 = cz2 has nonzero solutions if and only if 2c is a congruent
number. The smallest counterexample is c = 1513 = 17·89, which satisfies
the local conditions and is such that 2c is a congruent number, but for
which the above corollary enables us to prove that the equation x4 +
y4 = cz2 does not have any nonzero solution. Nonetheless, thanks to
Tunnell’s Theorem 6.12.4 we can very rapidly check that our equation
has no nonzero solution when 2c is not congruent, and if 2c is indeed
congruent, there is a good chance that it does have a solution.

In fact, thanks to these remarks and the above corollary, it is easy to
build the following table, which lists the squarefree values of c � 10001 such
that x4 + y4 = cz2 has a nonzero solution (and these solutions can be given
explicitly). For c = 1513, 2993, 4658, 4777, 7361, 8633, 9266, and 9881, which
are the other squarefree values of c � 10001 satisfying the local conditions
and such that 2c is a congruent number, the above corollary shows that
the equation x4 + y4 = cz2 does not have any nonzero solution (I thank
J. Cremona for computing for me the Mordell–Weil group for c = 2801,
which I could not do with mwrank alone, but which can be done using 4-
descent, as programmed in the recent version of magma; see Exercise 31). For
completeness we include c = 0, 1, and 2, but for 3 � c � 10001 the rank of
the corresponding elliptic curve is always equal to 2.

0 1 2 17 82 97 113 193 257 274
337 433 514 577 593 626 641 673 706 881
914 929 1153 1217 1297 1409 1522 1777 1873 1889

1921 2129 2402 2417 2434 2482 2498 2642 2657 2753
2801 2833 2897 3026 3121 3137 3298 3329 3457 3649
3697 4001 4097 4129 4177 4226 4289 4481 4546 4561
4721 4817 4993 5281 5554 5617 5666 5729 5906 6002
6353 6449 6481 6497 6562 6577 6673 6817 6866 7057
7186 7489 7522 7537 7633 7762 8017 8081 8737 8753
8882 8962 9281 9298 9553 9586 9649 9778 9857 10001

Solubility of x4 + y4 = cz2, c squarefree up to 10001

A final interesting special case is the following:

Corollary 6.5.8. (1) For any a ∈ Z \ {0} the equation x4 + ay4 = z2 has
solutions with xy �= 0 if and only if the elliptic curve Y 2 = X3 + aX
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has nonzero rank, and in that case it has infinitely many inequivalent
solutions.

(2) Assume the BSD conjecture and that a is squarefree. Then if a > 0 and
a ≡ 3, 5, 13, or 15 modulo 16, or if a < 0 and a ≡ 1, 2, 6, 7, 9, 10, 11,
or 14 modulo 16, the equation x4 +ay4 = z2 has infinitely many coprime
solutions with xy �= 0.

Note that this equation is everywhere locally soluble since it has the non-
trivial global solution (x, y, z) = (0, 1, 1).

Proof. (1). The solutions with xy = 0 correspond to the points O and
T on the elliptic curve E. Thus by Proposition 6.5.5 our equation has solu-
tions with xy �= 0 if and only if there exists a nontorsion point G such that
α(G) = 1 modulo squares. If such solutions exist then E has nonzero rank,
but conversely if H is a nontorsion point of E(Q) then G = 2H is a nontor-
sion point such that α(G) = α(H)2 = 1 modulo squares, so the condition of
the proposition is satisfied.

(2). Using an algorithm to compute root numbers, which we have not
given, but which is included in packages such as Pari/GP and magma, it is
easy to show that the root number of the elliptic curve E is −1 for the given
values of a, and +1 for the others, so that assuming the BSD conjecture the
rank is odd, hence nonzero when the sign is −1. ��

6.5.5 The Equation ax6 + by3 + cz2 = 0

We first note that this equation has the nontrivial global solution (x, y, z) =
(0,−bc, b2c), so in particular it is everywhere locally soluble; see also Exercise
54. Here we will say that two nonzero rational solutions (x, y, z) and (x′, y′, z′)
are the same under twisted projective equivalence if there exists λ ∈ Q∗ such
that x′ = λx, y′ = λ2y, and z′ = λ3z. The result is as follows.

Proposition 6.5.9. Let E be the elliptic curve with projective equation
Y 2Z = X3 − ab2c3Z3.

(1) The map (x, y, z) �→ (X,Y,Z) = (−bcxy, bc2z, x3) is a one-to-one corre-
spondence between the nonzero rational solutions of ax6 + by3 + cz2 = 0
up to twisted projective equivalence and the points of E(Q). More pre-
cisely (x, y, z) = (bcZ,−bcXZ, b2cY Z2) is a preimage of (X,Y,Z) ∈
E(Q) \ {O}, and (x, y, z) = (0,−bc, b2c) is a preimage of O.

(2) The equation ax6 + by3 + cz2 = 0 has infinitely many solutions up to
twisted projective equivalence if and only if E has nonzero rank.

(3) The equation ax6 + by3 + cz2 = 0 always has solutions with x = 0, for
instance (0,−bc, b2c). Otherwise, if E has rank zero it has solutions with
x �= 0 only in the following cases:
(a) If −a/b = m3 is a cube and not a sixth power the only solutions have

z = 0, for instance (1,m, 0).



6.6 The Fermat Quartics x4 + y4 = cz4 397

(b) If −a/c = m2 is a square and not a sixth power, the only solutions
have y = 0, for instance (1, 0,m).

(c) If −ab2c3 = m6 is a sixth power, in addition to the solutions with
y or z equal to 0, we have the two solutions (bc,−2bcm2,±3b2cm3),
which are unique up to twisted projective equivalence.

(d) If ab2c3/432 = m6 is a sixth power, we have the two solutions
(bc,−12bcm2,±36b2cm3), which are unique up to twisted projective
equivalence.

Proof. (1). Setting X = −bcxy, Y = bc2z, and Z = x3, it is clear that
P = (X,Y,Z) ∈ E(Q), and P is unchanged as a point in projective space if
(x, y, z) is replaced by a twisted projectively equivalent solution. Conversely,
if P = (X,Y,Z) ∈ E(Q) then (x, y, z) = (bcZ,−bcXZ, b2cY Z2) is a solution
to our equation that is nonzero if and only if Z �= 0, in other words if and
only if P �= O, while P = O corresponds to the solutions with x = 0, for
instance to (x, y, z) = (0,−bc, b2c).

(2) and (3). It follows that our equation has a solution with x �= 0 if and
only if either the curve E has nonzero rank, in which case it has infinitely
many inequivalent solutions, or if E has nontrivial torsion. By Proposition
8.1.14, we have four cases:

– If −a/b is a cube and not a sixth power we have Et(Q) � (Z/2Z), so the
only nontrivial torsion point corresponds to Y = 0, hence to z = 0.

– If a/c is a square and not a sixth power, we have Et(Q) � (Z/3Z), and the
nontrivial torsion points correspond to X = 0, hence to xy = 0.

– If −ab2c3 = m6 is a sixth power, we have Et(Q) � (Z/6Z), and the non-
trivial torsion points are, in addition to the above three points, the two
points (X,Y,Z) = (2m2,±3m3, 1), corresponding to the solutions given in
the proposition.

– If −ab3c3 = −432m6 we have Et(Q) � (Z/3Z), and the nontrivial torsion
points are the two points (X,Y,Z) = (12m2,±36m3, 1), corresponding to
the solutions given in the proposition.

Otherwise E has no torsion, so our equation does not have any solutions with
x �= 0 if the rank of E is equal to 0. ��

6.6 The Fermat Quartics x4 + y4 = cz4

For a more detailed study of these Diophantine equations, in particular over
number fields, I refer to [Cal].

An evident necessary condition for the existence of solutions to the
equation of the title is the existence of solutions to the simpler equation
x4 + y4 = cZ2, which we have studied in detail in Section 6.5.3, so for a
given value of c one should first consider the simpler equation. In particular,
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we know that 2c must be a congruent number. However, it is interesting to
study the equation x4 + y4 = cz4 independently.

We will denote by Cc the projective curve defined by the equation x4+y4 =
cz4. We may clearly assume that c is 4th power-free, in other words that it
is not divisible by a fourth power strictly larger than 1.

6.6.1 Local Solubility

We begin by studying local solubility over Q, in order to give a necessary and
sufficient condition for the equation to be everywhere locally soluble.

Proposition 6.6.1. Assume that c is 4th power-free.

(1) We have Cc(Q2) �= ∅ if and only if c ≡ 1 or 2 modulo 16.
(2) If p is an odd prime divisor of c, then Cc(Qp) �= ∅ if and only if p ≡ 1

(mod 8).
(3) If p ≡ 3 (mod 4) is a prime not dividing c then Cc(Qp) �= ∅.
(4) If p � 37 is a prime not dividing c then Cc(Qp) �= ∅.
(5) We always have Cc(Q17) �= ∅.
(6) Let p ∈ {5, 13, 29} be a prime not dividing c. Then

(a) Cc(Q5) �= ∅ if and only if c �≡ 3 or 4 modulo 5.
(b) Cc(Q13) �= ∅ if and only if c �≡ 7, 8, or 11 modulo 13.
(c) Cc(Q29) �= ∅ if and only if c �≡ 4, 5, 6, 9, 13, 22, or 28 modulo 29.

Proof. If (x : y : z) ∈ Cc(Qp), we may clearly assume that x, y, and z
are p-adic integers and that at least one is a p-adic unit. If p � c, reduction
modulo p gives a projective curve Cc over Fp, which is smooth (nonsingular)
if p �= 2.

(1). Let u be a 2-adic unit. I claim that u ∈ Q4
2 if and only if u ≡ 1

(mod 16Z2). Indeed, if v is a 2-adic unit we can write v = 1+2t with t ∈ Z2,
and

v4 = 1 + 8t + 24t2 + 32t3 + 16t4 ≡ 1 + 8(t(3t + 1)) ≡ 1 (mod 16) .

Conversely, if u ≡ 1 (mod 16Z2) we write u = 1 + x with v2(x) � 4, and
it is easy to check that the binomial expansion for (1 + x)1/4 converges for
v2(x) � 4. Alternatively, we set f(X) = X4 − u and use Hensel’s lemma
(Proposition 4.1.37): if u ≡ 1 (mod 32) we have |f ′(1)|2 = 1/4 and |f(1)|2 �
1/32 < |f ′(1)|22, while if u ≡ 17 (mod 32) we have |f ′(5)|2 = 1/4 and |f(5)|2 �
1/32 < |f ′(5)|22, proving my claim.

Now assume that x4 + y4 = cz4. Since v2(c) � 3, either x or y is a 2-adic
unit. It follows that x4 + y4 ≡ 1 or 2 modulo 16; hence z is a 2-adic unit, so
that c ≡ 1 or 2 modulo 16 as claimed. Conversely, if c ≡ 1 (mod 16) then
c = t4 by my claim above, so that (t : 0 : 1) ∈ Cc(Q2), while if c ≡ 2 (mod 16),
then c− 1 = t4 for some t, so that (t : 1 : 1) ∈ Cc(Q2), proving (1).
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(2). Assume that p | c is odd. Since vp(c) � 3, x and y are p-adic units, so
that −1 is a fourth power in Fp. If g is a generator of the cyclic group F∗

p, then
−1 = g(p−1)/2, so that −1 is a fourth power in Fp if and only if p ≡ 1 (mod 8).
If this is the case, let x0 ∈ Z be such that x4

0 ≡ −1 (mod p). By Hensel’s
lemma (which is trivial here since the derivative of X4 + 1 at x0 is a p-adic
unit), there exists x ∈ Zp such that x4 = −1, so that (x : 1 : 0) ∈ Cc(Qp),
proving (2).

The following lemma shows that for the remaining p it is sufficient to
consider the equation in Fp.

Lemma 6.6.2. Let p � 2c be a prime number. Then Cc(Qp) �= ∅ if and only
if Cc(Fp) �= ∅. In particular, if p �≡ 1 (mod 8) then

Cc(Qp) �= ∅ if and only if c mod p ∈ F4
p + F4

p .

Proof. One direction is clear. Conversely, assume that Cc(Fp) �= ∅, and let
(x0 : y0 : z0) with x0, y0, and z0 not all divisible by p such that x4

0 +y4
0 ≡ cz4

0

(mod p). Since p � c, either p � x0 or p � y0. Assume for instance that p � x0,
and set f(X) = X4 + y4

0 − cz4
0 . Clearly |f ′(x0)|p = 1 and |f(x0)|p < 1,

so that by Hensel’s lemma there exists t ∈ Qp such that f(t) = 0; hence
(t : y0 : z0) ∈ Cc(Qp), proving the converse.

Finally, assume that p �≡ 1 (mod 8). If x4 + y4 ≡ cz4 (mod p) with x or
y not divisible by p, we cannot have p | z; otherwise, x4 ≡ −y4 (mod p),
so that −1 is a fourth power modulo p, a contradiction. Thus p � z, so
(xz−1)4 + (yz−1)4 ≡ c (mod p), finishing the proof of the lemma. ��

(3). Let p � c, p ≡ 3 (mod 4). I claim that there exist x and y in Z such
that x4 + y4 ≡ c (mod p). Indeed, in a finite field F any element is a sum
of two squares (in characteristic 2 any element is a square so the result is
trivial; otherwise, if q = |F| then there are (q + 1)/2 squares hence (q + 1)/2
elements of the form c−y2, so the two sets have a nonempty intersection; see
Proposition 5.2.1). Thus there exist u and v such that c ≡ u2 + v2 (mod p).
However, when p ≡ 3 (mod 4) we have F∗

p
2 = F∗

p
4: indeed, we have a trivial

inclusion, and the kernel of the map x �→ x4 from F∗
p into itself is ±1, so that

|F∗
p
4| = (p− 1)/2 = |F∗

p
2|, proving the equality. Thus c = x4 + y4, as claimed,

and the above lemma proves (3).
(4). If p � 2c we may apply Corollary 2.5.23, which tells us in particular

that |Cc(Fp)| � p + 1 − 6p1/2. This is strictly positive (for p prime) if and
only if p � 37, so that (4) follows from the above lemma. Note that Corollary
2.5.23 is a special case of the Weil bounds, but in the present (diagonal) case
we do not need these general bounds but only the case that we have proved.

(5) and (6). Thanks to the above cases, it remains to consider the primes
p not dividing c such that 3 � p � 31 and p ≡ 1 (mod 4), in other words
p ∈ {5, 13, 17, 29}. For such a p,−1 is a fourth power modulo p only for p = 17,
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in which case as usual Hensel’s lemma shows that there exists t ∈ Q17 such
that −1 = t4, proving (5). Otherwise, we compute that

F4
5 = {0, 1}, F4

13 = {0, 1, 3, 9}, F4
29 = {0, 1, 7, 16, 20, 23, 24, 25} ,

and we deduce the list of nonzero elements of F4
p + F4

p, proving (6). ��

Note that it is easy to generalize this proposition to the more general
equation ax4 + by4 + cz4 = 0; see Exercise 52.

Corollary 6.6.3. The curve Cc is everywhere locally soluble (i.e., has points
in every completion of Q) if and only if c > 0 and the following conditions
are satisfied:

(1) c ≡ 1 or 2 modulo 16.
(2) p | c, p �= 2 implies p ≡ 1 (mod 8).
(3) c �≡ 3 or 4 modulo 5.
(4) c �≡ 7, 8, or 11 modulo 13.
(5) c �≡ 4, 5, 6, 9, 13, 22, or 28 modulo 29.

Proof. Clear. ��

Corollary 6.6.4. For all primes p such that p ≡ 1 (mod 1160) the curve Cp2

is everywhere locally soluble, but is not globally soluble, so is a counterexample
to the Hasse principle.

Proof. It is clear that the above conditions are satisfied modulo 16, 5,
and 29, and also modulo 13 since 7, 8, and 11 are quadratic nonresidues
modulo 13. On the other hand, by Fermat’s Proposition 6.5.3, the equation
x4 + y4 = Z2 does not have any nontrivial solutions, so this is in particular
the case for our equation x4 + y4 = (pz2)2. ��

Since by Dirichlet’s theorem on primes in arithmetic progressions (Theo-
rem 10.5.30) there exist infinitely many primes p ≡ 1 (mod 1160) this corol-
lary gives infinitely many counterexamples to the Hasse principle.

6.6.2 Global Solubility: Factoring over Number Fields

Now that we know necessary and sufficient conditions for our equation to
be everywhere locally soluble, we begin the study of sufficient conditions for
our equation to have no global solutions, since is does not seem reasonable to
hope for necessary and sufficient ones. We will give two types of conditions.
The first uses classical techniques of algebraic number theory and the other
uses the theory of elliptic curves. Thus, for an integer c � 1 we consider the
equation

x4 + y4 = cz4 .
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Without loss of generality we may assume that c is 4th power-free, so we
may also assume that x, y, and z are pairwise coprime. The cases c = 1 and
c = 2 (which are in fact the easiest) are treated in Section 6.5.2 and Exercise
24; hence we will assume that c � 3, so that in particular xyz �= 0. Finally,
we assume that our equation is everywhere locally soluble (otherwise there
is nothing more to be done), in other words that the conditions of Corollary
6.6.3 are satisfied.

Since x and y are coprime one of them at least is odd, so by exchanging
x and y if necessary, we can assume that x is odd. If necessary, by changing
the signs of x and y we may assume that x ≡ 1 (mod 4), and that either y
is even or y ≡ 1 (mod 4). In addition, since c ≡ 1 or 2 modulo 16 it follows
that z is necessarily odd.

In this section, to study our equation we will factor it over the natural
number field that occurs, which is here the field K = Q(ζ), where ζ = ζ8 is
a primitive 8th root of unity (whose minimal polynomial is P (X) = X4 +1).
Luckily, the ring of integers ZK of K is as simple as can be desired: we have
ZK = Z[ζ], ZK has class number 1, in other words is a principal ideal domain,
and the group of units of ZK is the group of elements of the form ζjεk with
0 � j � 7, k ∈ Z, and for instance ε = 1 + ζ − ζ3, which is equal to 1 +

√
2

if we choose ζ = (1 + i)/
√

2 as primitive 8th root of unity. The prime 2 is
totally ramified in K as 2ZK = p4, and we have p = (1+ζ)ZK . It is also clear
that G = Gal(K/Q) = {σ1, σ3, σ5, σ7} is a Klein 4-group, where σj sends ζ
to ζj .

All these facts are obtained immediately using a CAS, but are also very
easy to show directly. Finally, to simplify notation we will denote by N the
absolute norm NK/Q from K to Q.

Definition 6.6.5. Let γ = A+Bζ+Cζ2+Dζ3 ∈ Z[ζ] be such that vp(γ) � 1.

(1) If vp(γ) = 0 we say that γ is normalized if

A ≡ 1 (mod 4), B ≡ 0 (mod 2), C ≡ 0 (mod 2), and D ≡ 0 (mod 4) .

(2) If vp(γ) = 1 we say that γ is normalized if

A ≡ 1 (mod 4), B ≡ 1 (mod 4), C ≡ 0 (mod 2), and D ≡ 0 (mod 4) .

Lemma 6.6.6. Let γ be such that vp(γ) � 1.

(1) There exists a unit u of K such that uγ is normalized; in other words,
there exists an associate of γ that is normalized.

(2) If γ and uγ are both normalized, with u a unit, then u is equal to ε4k for
some k ∈ Z.

Proof. (1). Assume first that vp(γ) = 0. Multiplication by ζ maps the
coefficients (A,B,C,D) of γ to (−D,A,B,C); in other words, it is a circular
permutation up to sign changes. Since γ is coprime to 2 we have A + B +
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C + D ≡ 1 (mod 2); hence either a single coefficient is odd or a single one
is even, so that with a suitable circular permutation we may put the single
odd coefficient as the constant coefficient, or the single even coefficient as the
coefficient of ζ2. It follows that there is an associate of γ such that A is odd
and C even, and then necessarily B ≡ D (mod 2).

Now multiplication by the unit ζε is easily seen to change (A,B,C,D) into
(A+B−D,A+B+C,B+C+D,−A+C+D). This transformation preserves
the fact that A is odd, C even, and B ≡ D (mod 2), but changes the parity
of B and D. Therefore we may assume that B, C, and D are all even, and
changing γ into −γ that A ≡ 1 (mod 4). These congruences being satisfied we
check that multiplication by −ζ2ε2 preserves all the congruences, and changes
(A,B,C,D) into (A′, B′, C ′,D′) with (A′, B′, C ′,D′) ≡ (A,B + 2, C,D + 2)
(mod 4), so that we may assume that D ≡ 0 (mod 4), and hence the result
is normalized.

Assume now that vp(γ) = 1 and set γ1 = γ/(1 + ζ) = A1 + B1ζ + C1ζ
2 +

D1ζ
3 ∈ ZK , so that vp(γ1) = 0. By the first part of the proof there exists an

associate of γ1 that is normalized. Since A = A1 − D1, B = A1 + B1, C =
B1 + C1, and D = C1 + D1, we deduce that A ≡ 1 (mod 4), B ≡ 1 (mod 2),
and C ≡ D ≡ 0 (mod 2). Multiplication by ε2 preserves these congruences
and changes (C,D) into (2B + 3C + 2D,−2A + 2C + 3D) ≡ (C + 2,D + 2)
(mod 4), so that we may assume that D ≡ 0 (mod 4). If B ≡ 1 (mod 4) then
γ is already normalized. Thus assume that B ≡ 3 (mod 4). When C ≡ 0
(mod 4), multiplication by ζ2ε preserves existing congruences and leads to
B ≡ 1 (mod 4). When C ≡ 2 (mod 4), the same is true with ζ6ε3 instead of
ζ2ε, thus proving the existence of a normalized associate of γ in all cases.

(2). If vp(γ) = 0 and γ and uγ are normalized, then u ≡ 1 (mod 2Z[ζ]).
An immediate computation among units of the form ζjεk for 0 � j � 7 and
0 � k � 3 shows that the only such units up to powers of ε4k are ±1 and ±ε2,
and it is immediate that the only one of these that respects the additional
congruences modulo 4 is u = 1. Since ε4 ≡ 1 (mod 4Z[ζ]) the result follows
in this case. If vp(γ) = 1 and C ≡ 0 (mod 4), we must now have uγ ≡ γ
(mod 4) (since it is easily checked that the coefficient of ζ3 of uγ is congruent
to C modulo 4); hence u ≡ 1 (mod 4/p), and this implies as above that u is
a power of ε4. Finally, if vp(γ) = 1 and C ≡ 2 (mod 4), we have eight units
u ≡ 1 (mod 2/p) of the form ζjεk for 0 � j � 7, and it is immediate that the
congruences modulo 4 imply u = 1, proving the lemma. ��

Definition 6.6.7. Let p be a prime number such that p ≡ 1 (mod 8). For
each of the four values of r ∈ Fp such that r4 = −1 we denote by φp,r the
ring homomorphism from Z[ζ] to Fp that sends 1 to 1 and ζ to r.

Note that it is clear that φp,r is well defined, and since 8 | (p − 1) that
there exist eight distinct 8th roots of unity in Fp, of which four are such that
r4 = −1.
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The main result that we are going to prove is the following, due in essence
to Bremner and Morton [Bre-Mor].

Proposition 6.6.8. Let c � 3 be 4th power-free. A necessary condition for
the global solubility in Q of x4 + y4 = cz4 is the existence of a normalized
divisor γ of c in Z[ζ] of the form γ = A + Bζ + Cζ2 + Dζ3 satisfying the
following properties:

(1) There exists α ∈ Z[ζ] such that x + yζ = γα4.
(2) We have vp(γ) = 0 when c ≡ 1 (mod 16) and vp(γ) = 1 when c ≡ 2

(mod 16).
(3) When c ≡ 1 (mod 16) the conjugates of γ are pairwise coprime, and when

c ≡ 2 (mod 16) the conjugates of γ/(1 + ζ) are pairwise coprime.
(4) We have N (γ) = c.
(5) The coefficients of γ satisfy the congruences

C ≡ D ≡ 0 (mod 4) ,

AC ≡ BD (mod 8) ,

C(A + C) ≡ D(B −D) (mod 3) .

(6) For each odd prime number p dividing c (hence such that p ≡ 1 (mod 8)),
there exists a unique fourth root r of −1 in Fp such that φp,r(γ) = 0. Then
both

1− r2

2
φp,r(σ5(γ))
φp,r(σ3(γ))

and
1 + r2

2
φp,r(σ5(γ))
φp,r(σ7(γ))

are fourth powers in F∗
p.

Proof. (1) and (2). Factoring our equation in ZK gives

x4 + y4 = (x + ζy)(x + ζ3y)(x + ζ5y)(x + ζ7y) = cz4 .

Assume that π is a prime element such that π | gcd(x+ ζmy, x+ ζny) for two
distinct odd exponents m and n such that 1 � m,n � 7. Then π | (ζm− ζn)y
and π | ζm(x + ζny)− ζn(x + ζmy) = (ζm− ζn)x, so that π | (ζm− ζn) since
x and y are coprime. Since the norm of ζm − ζn is a power of 2, it follows
that π is a prime dividing 2; in other words (up to multiplication by a unit),
π = 1 + ζ. From our factored equality and the fact that z is odd, we deduce
that when c ≡ 1 (mod 16) the four factors on the left are pairwise coprime,
and when c ≡ 2 (mod 16) (hence with x and y odd) the factors divided by
1 + ζ are (algebraic integers and) also pairwise coprime. Assume for instance
that c ≡ 1 (mod 16) and set γ = gcd(x + ζy, c), defined for the moment only
up to multiplication by a unit. Since (x+ ζy)/γ is coprime to the other three
factors and to c/γ, it follows that it must be a fourth power of an ideal in
ZK . Since ZK is a principal ideal domain, this means that there exist α and
γ (equal to a unit multiple of the initially chosen one) in ZK , coprime to 2,
and such that x + ζy = γα4. Since we may change simultaneously γ into γv4



404 6. Some Diophantine Equations

and α into α/v for any unit v, we note for future reference that if some γ is
fixed, it is necessary to consider only associates of γ modulo fourth powers
of units. Similarly, if c ≡ 2 (mod 16) we deduce that x + ζy = γα4, where α
is coprime to 2 and vp(γ) = 1, proving (1) and (2).

(3) and (4). We take the norm down to Q of the relation obtained in (1).
Setting m = N (α) we thus obtain cz4 = x4 + y4 = N (γ)m4; hence m4 | cz4,
and since c is 4th power-free we have m | z, so that N (γ) = c(z/m)4, and
hence c | N (γ). Conversely, we have γ | x+ζy, so for any σ ∈ G = Gal(K/Q)
we have σ(γ) | x + σ(ζ)y. When c ≡ 1 (mod 16) the numbers x + σ(ζ)y
are pairwise coprime, so the conjugates σ(γ) are pairwise coprime. Since
σ(γ) | σ(c) = c it follows thatN (γ) =

∏
σ∈G σ(γ) | c, and combining this with

c | N (γ) we deduce that c = N (γ). When c ≡ 2 (mod 16) the same reasoning
shows that the σ(γ/(1 + ζ)) are pairwise coprime hence that N (γ)/2 | c/2,
and we conclude in the same way, proving (3) and (4).

(5). Possibly after changing γ into −γ, we may multiply α by any power
of ζ without changing (1). If we write α = a+ bζ + cζ2 +dζ3, the condition α
coprime to 2 means that a+b+c+d ≡ 1 (mod 2); in other words, either one or
three of the coefficients are odd, and the others are even. Since multiplication
by ζ sends (a, b, c, d) to (−d, a, b, c), in other words is a circular permutation
up to changes of sign, it is clear that we may assume that a is odd and c
even, and then b ≡ d (mod 2).

Write α4 = U + V ζ + Wζ2 + Xζ3. An easy calculation shows that

U ≡ 1 (mod 8), V ≡ X ≡ 4b (mod 8), and W ≡ 0 (mod 8) .

On the other hand, since γ = A + Bζ + Cζ2 + Dζ3 we have

x + ζy = γα4

= (AU −BX − CW −DV ) + (AV + BU − CX −DW )ζ

+ (AW + BV + CU −DX)ζ2 + (AX + BW + CV + DU)ζ3 .

It follows in particular that AW + BV + CU −DX = 0 and AX + BW +
CV +DU = 0. Since V , W , and X are divisible by 4 and U is odd, we already
deduce that 4 | C and 4 | D. Also, since we have chosen x ≡ 1 (mod 4) we
have 1 ≡ x ≡ AU−BX−CW−DV ≡ A (mod 4). If c ≡ 1 (mod 16) we must
have B ≡ 0 (mod 2), so that γ is normalized. If c ≡ 2 (mod 16) then since
we have chosen y ≡ 1 (mod 4) we have 1 ≡ y ≡ AV + BU −CX −DW ≡ B
(mod 4), so that γ is normalized also in this case.

Working now modulo 8, we deduce from the same two equations above
that 4bB+C−4bD ≡ 4bA+4bC +D ≡ 0 (mod 8), and since 4 | C and 4 | D,
we have C ≡ 4bB (mod 8) and D ≡ 4bA (mod 8), from which we evidently
obtain AC ≡ BD (mod 8). For the result modulo 3, another easy calculation
using the trivial relations x3 ≡ x (mod 3) and xy(x2−y2) ≡ 0 (mod 3) shows
that U ≡ a2− b2 + c2− d2 (mod 3), V ≡ X ≡ ab− bc + cd + da (mod 3), and
W ≡ 0 (mod 3). The equalities obtained above thus imply that
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(B −D)V + CU ≡ 0 (mod 3) and (A + C)V + DU ≡ 0 (mod 3) ,

hence that

(D(B −D)− C(A + C))V ≡ (D(B −D)− C(A + C))U ≡ 0 (mod 3) .

Now we cannot have U ≡ V ≡ 0 (mod 3). Indeed, otherwise

(a + b + d)2 + (c− b + d)2 ≡ (a− b− d)2 + (c + b− d)2 ≡ 0 (mod 3)

by the congruences obtained above, and since a sum of two squares is divisible
by 3 if and only if both squares are, we would have a + b + d ≡ c − b + d ≡
a− b− d ≡ c + b− d ≡ 0 (mod 3), hence 3 | gcd(a, b, c, d), so 3 | gcd(x, y) in
contradiction with our assumption, proving the congruence modulo 3 of the
proposition.

(6). Let r ∈ Fp be such that r4 = −1. The four roots of this equation are
rj for 1 � j � 7, j odd, and it is clear that φp,r(σj(γ)) = φp,rj (γ). It follows
that ∏

1�j�7, j odd

φp,rj (γ) = φp,r(N (γ)) .

Since N (γ) = c and p | c we have φp,r(N (γ)) = 0; hence there exists j such
that φp,rj (γ) = 0, proving the existence of r such that φp,r(γ) = 0.

From the equation x + ζy = γα4 we deduce by application of the σj that
x + ζjy = σj(γ)σj(α)4 for j odd; hence by application of the homomorphism
φp,r we deduce that there exist f3, f5, and f7 such that in Fp we have x+ry =
0 and

x + r3y = φp,r(σ3(γ))f4
3 , x + r5y = φp,r(σ5(γ))f4

5 , x + r7y = φp,r(σ7(γ))f4
7 .

From the first equation we deduce that x = −ry, so replacing and using
r4 = −1 we obtain

(r3−r)y = φp,r(σ3(γ))f4
3 , −2ry = φp,r(σ5(γ))f4

5 , −(r3+r)y = φp,r(σ7(γ))f4
7 .

Since r3 − r �= 0, 2r �= 0, and r3 + r �= 0, this shows in particular that
φp,r(σj(γ)) �= 0 for j �= 1, since otherwise y ≡ 0 (mod p), so x ≡ 0 (mod p),
contradicting the assumption that x and y are coprime, proving the unique-
ness of r since φp,r(σj(γ)) = φp,rj (γ). Finally, by dividing the second relation
by the first and the third respectively we obtain the conditions given in (6).

��

Remarks. (1) A short computation shows that if c ≡ 1 (mod 16) and γ is
normalized then N (γ) ≡ 1+2C2 (mod 16), and since N (γ) = c it follows
that in this case the condition C ≡ D ≡ 0 (mod 4) is automatic as soon
as γ is normalized.
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(2) Once γ is known to be normalized it is clear that the congruence modulo
8 is equivalent to C ≡ 0 (mod 8) when c ≡ 1 (mod 16), and to C ≡ D
(mod 8) when c ≡ 2 (mod 16).

Lemma 6.6.9. Let c ≡ 1 (mod 16) (respectively c ≡ 2 (mod 16)). An ele-
ment γ is normalized and satisfies conditions (1) to (6) of Proposition 6.6.8
if and only if σ5(γ) (respectively ζσ7(γ)) does.

Proof. Since σ5(A+Bζ +Cζ2 +Dζ3) = A−Bζ +Cζ2−Dζ3 and ζσ7(A+
Bζ + Cζ2 + Dζ3) = B + Aζ −Dζ2 − Cζ3, the lemma is clear. ��

Definition 6.6.10. We will say that γ is a suitable divisor of c if γ is a
normalized divisor of c which satisfies properties (3) and (4) of Proposition
6.6.8, in other words such that N (γ) = c, and γ coprime to its conjugates if
c ≡ 1 (mod 16), or γ/(1 + ζ) coprime to its conjugates if c ≡ 2 (mod 16).

Corollary 6.6.11. Assume that the equation x4 +y4 = cz4 is everywhere lo-
cally soluble, in other words that c satisfies the conditions of Corollary 6.6.3.
Let F be a set of representatives of suitable divisors γ of c modulo multiplica-
tion by powers of ε4, and modulo σ5 if c ≡ 1 (mod 16), or modulo the action
of ζσ7 if c ≡ 2 (mod 16). If for every γ ∈ F one of the conditions (5) and
(6) of Proposition 6.6.8 is not satisfied, then the equation x4+y4 = cz4 has no
nontrivial global solution. Furthermore, if c is not a square or twice a square
we have |F| = 22k−1, where k is the number of distinct odd prime divisors of
c.

Proof. Indeed, it is clear that multiplication of γ by a power of ε4 does
not change the conditions in (6). Furthermore, it is immediate to check that
multiplication by ε4 does not change AC −BD mod 8 or C(A+C)−D(B−
D) mod 3, so that it is enough to consider γ up to powers of ε4 (we have
already mentioned this fact in the proof of (4)), and by the preceding lemma
up to the action of σ5 or ζσ7. Finally, it is clear from the uniqueness of the
normalization up to powers of ε4 that the number of suitable γ is equal to 4k,
since every prime congruent to 1 modulo 8 splits completely into 4 factors
(since γ is coprime to its conjugates we cannot mix different factors above
the same prime even when c is not squarefree). Now we check that if c ≡ 1
(mod 16) and σ5(γ) = γ then c = N (γ) = (A2 + C2)2, and if c ≡ 2 (mod 16)
and ζσ7(γ) = γ then c = N (γ) = 2(A2 − 2AC − C2)2, so that when c is not
a square or twice a square we have |F| = 22k−1. ��

Note that if c is a square our equation has no global solutions by Proposi-
tion 6.5.3, and if c is twice a square it has no solutions for c > 2 by Exercise
24.

Remark. The conditions of Proposition 6.6.8 are all useful. For instance,
to exclude c = 4801 the condition modulo 8 is the only one that applies.
To exclude c = 5266 the condition modulo 3 is the only one that applies.
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To exclude c = 5281 we need the condition on fourth powers for one of the
values of γ. In many examples we can use only one of the two conditions on
fourth powers; in others we can use both. We will give a summary of results
in a table below.

6.6.3 Global Solubility: Coverings of Elliptic Curves

Although Corollary 6.6.11 is very powerful in proving that a Fermat quartic
has no global solution, it is not the whole story. For instance, as will be clear
from the table given below, of the 107 suitable values of c such that 3 �
c � 10000, 99 can be treated using this corollary, leaving eight indeterminate
cases. Another natural (and in fact easier) approach is to use maps from the
curve Cc with affine equation x4 + y4 = c to two elliptic curves, and then
to use results on elliptic curves to conclude. This will enable us to solve five
of the remaining eight cases with c � 10000. This section assumes that the
reader is familiar with the theory of elliptic curves over Q, which will be
explained in Chapter 8.

Let c be as above, and consider the two elliptic curves with affine Weier-
strass equations

Ec : Y 2 = X3 − cX and Fc : Y 2 = X3 + c2X .

It is immediate to check that the maps φ and ψ defined in affine coordinates
by

φ((x, y)) = (−x2, xy2) and ψ((x, y)) = (cx2/y2, c2x/y3)

are maps from Cc to Ec and Fc respectively. Since all rational points of Cc are
affine, it is clear that if P ∈ Cc(Q) then φ(P ) ∈ Ec(Q) and ψ(P ) ∈ Fc(Q).
In particular, since the inverse image of a point by φ or ψ is finite, if either
Ec(Q) or Fc(Q) is an explicit finite set, it will be immediate to determine
Cc(Q). We will see in Chapter 8 that this means that Ec(Q) or Fc(Q) has
rank 0, hence is equal to its easily determined torsion subgroup. Thus in this
favorable case it is very easy to determine Cc(Q):

Proposition 6.6.12. Let c � 3 be a 4th power-free integer. If either Ec(Q)
or Fc(Q) has rank 0 then Cc(Q) = ∅.

Proof. Note first that the trivial 2-torsion point (X,Y ) = (0, 0) on Ec

corresponds to x = 0 on Cc, hence to c = y4, which is absurd by assumption.
We now use Proposition 8.1.14, which we will prove in Chapter 8. It tells
us that there can be other torsion points only if c (for Ec) or −c2 (for Fc)
is equal to m2 or to −4m4. Consider first Ec. Since c > 0 (or because c is
4th power-free) we cannot have c = −4m4. On the other hand, c = m2 is a
priori possible, and gives as affine torsion points the ones with Y = 0. But this
implies that either x or y is equal to 0, which is impossible, proving the result
for Ec. Consider now Fc. We cannot have −c2 = m2, so the only possibility is
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c = 2m2, and the extra torsion points are clearly (X,Y ) = (2m2,±4m3). The
inverse images (x, y) of these points by the map ψ are easily seen to be such
that y = ±x and y3 = ±x, and since x �= 0 this gives m = ±x2. Thus x is an
integer and c = 2m2 = 2x4, which implies that c = 2 since c is assumed to be
4th power-free, and this is excluded since we have assumed that c � 3. ��

Examples. We first choose c = 562, for which Cc is locally soluble by Corol-
lary 6.6.3. The 2-descent method that we will study in Section 8.2 or Cre-
mona’s mwrank program shows that Ec(Q) has rank 1, but that Fc(Q) has
rank 0, so that C562(Q) = ∅.

We now choose c = 226 or c = 977. The 2-descent methods and mwrank tell
us only that the rank of Fc(Q) is equal to 0 or 2. However, the computation
of L(Fc, 1) (see Section 8.5) shows that in both cases we have L(Fc, 1) �= 0;
hence since the BSD conjecture is a theorem in this case (in fact here due to
Coates–Wiles [Coa-Wil] since Fc has complex multiplication), this proves that
the rank of Fc(Q) is equal to 0, and once again this implies that Cc(Q) = ∅.

It is important to note that we have the following stronger result due to
Dem′yanenko (see [Dem3]). See Section 13.3.1 for an indication of the method
of proof.

Theorem 6.6.13 (Dem′yanenko). If c � 3 is a 4th power-free integer and
if the rank of Ec(Q) is less than or equal to 1 then Cc(Q) = ∅.

This theorem sometimes allows us to show that the Fermat quartic is not
globally soluble, even when both Ec(Q) and Fc(Q) have nonzero rank. For
instance, if c = 2642, for which Cc is again everywhere locally soluble, it can
be shown that Ec(Q) has rank 1 and Fc(Q) has rank 2, so that thanks to
Dem′yanenko’s theorem we can conclude that Cc(Q) = ∅, which we would
not have been able to do using only the rank-0 conditions.

Remarks. (1) It is easy to compute that the root number (see Theorem
8.1.4) of Ec is equal to 1 when c ≡ 1 (mod 16) and to −1 when c ≡ 2
(mod 16), and that the root number of Fc is always equal to 1. Thus,
it follows from a weak form of the BSD conjecture that Fc will always
have even rank, and Ec will have even or odd rank according to whether
c is odd or even. This shows in particular that Dem′yanenko’s theorem is
absolutely necessary if we want to use the curve Ec when c ≡ 2 (mod 16).

(2) The existence of the maps φ and ψ, together with the map φ from Cc

to Ec defined by φ((x, y)) = (−y2, yx2), means that the Jacobian of
Cc is isogenous to Ec × Ec × Fc, the map (φ, φ, ψ) composed with the
isogeny giving the embedding of Cc into its Jacobian (see Section 13.2 for
these notions). The proof of Dem′yanenko’s theorem amounts to showing
that if (x, y) ∈ Cc(Q), the two points φ((x, y)) and φ((x, y)) in Ec are
generically independent, so that Ec must have rank greater than or equal
to 2.
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6.6.4 Conclusion, and a Small Table

When there do exist solutions to our Fermat quartic, for instance when c = 1,
2, or 17, we can ask for all the solutions (since a Fermat quartic is a curve of
genus 3, we know by Faltings’s theorem that there are only finitely many).
For c = 1, Fermat’s theorem for n = 4 (which follows from Proposition 6.5.3
below) tells us that the points (±1, 0) and (0,±1) are the only rational points
on the curve x4 + y4 = 1. By a similar method of descent, for c = 2 it is easy
to show that the points (±1,±1) are the only rational points on the curve
x4 + y4 = 2 (Exercise 24). On the other hand, it is much more difficult to
prove that for c = 17 the only rational points on x4+y4 = 17 are (±1,±2) and
(±2,±1). This problem was posed by J.-P. Serre as the simplest nontrivial
case of the Fermat quartic equations, and also because it was known that
the standard methods using Chabauty-type techniques failed on this curve.
It was solved only in 1999 by Flynn and Wetherell using covering techniques,
and their proof is not easy (see also Section 13.3.4).

A table up to 10000. The following table gives numerical data obtained
using all of the preceding results. It first lists the 109 values of c � 1 that are
4th power-free and for which the equation x4 + y4 = c is everywhere locally
soluble, together with c = 0. Below each such value of c is either a pair (x, y)
of rational numbers such that x4+y4 = c (except for c = 5906, where ∗ means
(x, y) = (25/17, 149/17)), or a code made with one or more letters. The letter
A (for Algebraic) means that we can prove the nonexistence of global solutions
using Corollary 6.6.11. The letter D means that Ec(Q) has rank 1, so that
Dem′yanenko’s Theorem 6.6.13 is applicable (this can occur only for c even,
see above), E means that Ec(Q) has rank 0 (this can occur only for c odd),
and F means that Fc(Q) has rank 0, so that in both of these cases Proposition
6.6.12 is applicable. Thus if at least one of these letters occurs this implies
that Cc(Q) = ∅. Finally, the letter U (for undetermined), which occurs three
times, means that the results given above, together with a computer search,
do not allow us to conclude anything. We refer to [Bre-Mor] for still other
methods that can prove nonglobal solubility of our equation in other cases, in
particular for the first undetermined case c = 4481. Evidently all the values
of c for which any of the letters A, D, E, and F occur are counterexamples
to the Hasse principle. It can be seen that the purely algebraic method using
the factorization of our equation is much more powerful than the method
using elliptic curves, although the latter is necessary in five cases. If we push
the computation to 105, there are 833 suitable values of c � 3 for which the
equation is everywhere locally soluble, 90 for which we find a global solution,
692 that can be shown to have no global solutions by the algebraic method,
and of the 49 remaining ones, 33 can be shown to have no global solutions
using elliptic curves, leaving 16 undetermined cases (the smallest above 10000
being c = 33377).
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0 1 2 17 82 97 146 226 257 337
(0,0) (0,1) (1,1) (1,2) (1,3) (2,3) ADF AF (1,4) (3,4)
482 562 577 626 641 706 802 881 977 1042

ADF ADF A (1,5) (2,5) (3,5) ADF (4,5) AF AF
1186 1201 1297 1361 1522 1777 1921 2017 2066 2161
DF AF (1,6) AEF A A (5,6) AF ADF EF
2306 2402 2417 2482 2642 2657 2722 2801 2866 3026
ADF (1,7) (2,7) (3,7) AD (4,7) ADF A ADF (5,7)
3041 3106 3121 3202 3217 3442 3506 3617 3697 3761
AF AF AE DF AF ADF ADF AF (6,7) AF
3826 4097 4162 4177 4226 4241 4306 4322 4481 4657
ADF (1,8) ADF (3,8) AD AF ADF ADF U AEF
4721 4786 4801 4946 5186 5266 5281 5297 5426 5521
(5,8) ADF AF ADF AF ADF AE AF AF AF
5617 5906 5986 6242 6337 6497 6562 6577 6626 6722
A ∗ AF AF AF (7,8) (1,9) (2,9) ADF ADF

6817 6961 6977 7121 7186 7297 7361 7537 7666 7762
(4,9) AF EF AF (5,9) AEF A U ADF D
7841 8161 8306 8402 8482 8546 8737 8882 8962 9026
AEF AF ADF ADF ADF AF AE U (7,9) AF
9122 9266 9281 9346 9377 9442 9586 9697 9857 9986
ADF A A ADF AEF ADF A AF AE ADF

Sums of Two Rational Fourth Powers up to 10000

An amusing corollary of this table is the following result, due to Bremner
and Morton [Bre-Mor]:

Corollary 6.6.14. The integer c = 5906 is the smallest integer that is the
sum of two fourth powers of rational numbers, and not the sum of two fourth
powers of integers.

Proof. Indeed, for all smaller values of c except c = 4481 we see that
either the equation x4 +y4 = c has no rational solutions, or it has an integral
solution. It is an immediate verification that 5906 is not a sum of two fourth
powers of integers, and it is the sum of the two fourth powers of rational
numbers given above. There remains to prove that x4 + y4 = 4481z4 is not
globally soluble, and this is done using the more general factoring methods
explained in [Bre-Mor]. ��

6.7 The Equation y2 = xn + t

For general results on this equation, we refer to [Cohn1] and [Cohn2], from
which a large part of this section is taken.
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In this section, we look for integral solutions to the equation y2 = xn + t,
where t and n are given integers with n � 3 (otherwise the equation is
trivial). If n is even this equation factors as (y−xn/2)(y +xn/2) = t, which is
trivially solved: if t < 0 (which will be the main case that we will consider),
we may assume that x > 0, so we let d = xn/2 − y, which will be a positive
divisor of |t| less than or equal to |t|1/2, and the condition to be satisfied is
that (d + |t|/d)/2 = xn/2 must be an exact (n/2)th power with n/2 � 2.
From this, a short calculation shows the following, which we give for future
reference:

Proposition 6.7.1. Let n � 4 be even and let t be a squarefree negative
integer not congruent to 1 modulo 8. The only values of n and t with n � 4
even and −100 < t � −1 squarefree and not congruent to 1 modulo 8 for
which the Diophantine equation y2 = xn + t has solutions are for t = −1
with solutions (x, y) = (±1, 0), and for (n, t) = (4,−17), (6,−53), (4,−65),
(4,−77), and (4,−97) with respective solutions (x, y) = (±3,±8), (±3,±26),
(±3,±4), (±3,±2), and (±7,±48).

We leave to the reader to state and prove the corresponding statement
for 1 � t � 100 squarefree and not congruent to 1 modulo 8 (Exercise 35).

If n is odd and p | n, we can write xn = (xn/p)p, so we can reduce to the
exponent p. Thus in the sequel we will usually assume that n is an odd prime
number p.

6.7.1 General Results

For reasons that will soon become clear, we make the following definitions.

Definition 6.7.2. We will say that condition H(p, t) is satisfied if p is an
odd prime, t is a squarefree negative integer not congruent to 1 modulo 8, and
p does not divide the class number of the imaginary quadratic field Q(

√
t).

By abuse of notation we will say that H(t) is satisfied if t is a squarefree
negative integer not congruent to 1 modulo 8.

Proposition 6.7.3. Assume H(p, t), and define Ap(t) to be the (possibly
empty) set of nonnegative integers a such that

(p−1)/2∑
k=0

(
p

2k

)
a2kt(p−1)/2−k = ±1 .

The set of solutions (x, y) ∈ Z2 to the Diophantine equation y2 = xp + t is
given by the pairs

(x, y) =

a2 − t,±
(p−1)/2∑

k=0

(
p

2k + 1

)
a2k+1t(p−1)/2−k


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for each a ∈ Ap(t), with in addition the so-called special pairs

(x, y) = (a2 + 2ε,±(a3 + 3εa))

if p = 3 and t = −(3a2 + 8ε) for any ε = ±1 and odd a such that a � 1 if
ε = 1 or a � 3 if ε = −1.

Proof. Let (x, y) be a solution to the equation y2 = xp+t. In the quadratic
field K = Q(

√
t) we can write (y −

√
t)(y +

√
t) = xp. I claim that the

ideals generated by the two factors on the left are coprime. Indeed, assume
otherwise, so let q be a prime ideal of ZK dividing these factors. It thus divides
their sum and difference, so if q is the prime number below q we have q | 2y
and q | 2t. If x is even, then y is odd since otherwise 4 | t, contradicting the
squarefreeness of t, so t = y2−xp ≡ 1 (mod 8), contradicting our assumption
on t. Thus x is odd; hence q cannot be above 2, so q | gcd(y, t), and hence
q | x, so q2 | t, again contradicting the fact that t is squarefree and proving my
claim. Since the product of the two coprime ideals (y−

√
t)ZK and (y+

√
t)ZK

is a pth power, it follows that (y+
√

t)ZK = ap for some ideal a of ZK . On the
other hand, if h denotes the class number of K then essentially by definition
the ideal ah is a principal ideal. Since by assumption p and h are coprime,
there exist integers v and w such that vp+wh = 1, so that a = (ap)v(ah)w is
itself a principal ideal, say a = αZK for some α ∈ ZK (this type of reasoning
involving the class number is typical, and will be met again, for instance in
Fermat’s last theorem). We thus deduce that there exists a unit ε ∈ K such
that y +

√
t = εαp. However, since K is an imaginary quadratic field, there

are not many units, and more precisely the group of units is {±1} except for
t = −1 and t = −3, for which it has order 4 and 6 respectively. Since p is
odd, it follows that apart from the special case (p, t) = (3,−3) the order of
the group of units is coprime to p; hence any unit is a pth power, so in these
cases we are reduced to the equation y +

√
t = αp with α ∈ ZK . We will

see in Proposition 6.7.5 below that there are no solutions for (p, t) = (3,−3).
Otherwise, we write α = (a + b

√
t)/d with a and b integral, where either

d = 1, or, only in the case t ≡ 5 (mod 8), also d = 2 and a and b odd.
Expanding the relation y +

√
t = αp gives the two equations

dpy =
(p−1)/2∑

k=0

(
p

2k + 1

)
a2k+1bp−2k−1t(p−1)/2−k and

dp =
(p−1)/2∑

k=0

(
p

2k

)
a2kbp−2kt(p−1)/2−k .

Note that we may assume a � 0 since changing a into −a does not change
the second equation, and changes y into −y in the first. From the second
equation we deduce that b | dp, and since b is coprime to d this means that
b = ±1. It follows that
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dp = ±
(p−1)/2∑

k=0

(
p

2k

)
a2kt(p−1)/2−k .

If d = 1, we obtain the formula for y by replacing in the first equation, and
we have x = a2 − b2t. If d = 2, then since p is an odd prime we have

2 ≡ 2p ≡ ±t(p−1)/2 ≡ ±
(

t

p

)
≡ 0, ±1 (mod p) ,

which is possible only for p = 3, giving t = −(3a2 ∓ 8), y = −a3 ± 3a,
x = a2 ∓ 2, whence the additional cases of the proposition. ��

Remarks. (1) When t is not squarefree, it is easy to obtain similar but more
complicated results; see for example Exercise 36.

(2) For given t and p, it is trivial to find all possible values of a ∈ Ap(t).
What is considerably more difficult in general is to find the sets Ap(t)
when only p is fixed. Thanks to a remarkable theorem of Bilu, Hanrot,
and Voutier, this problem is completely solved; see below.

(3) Considering the formula modulo p, it is clear that the ± sign on the
right-hand side of the formula defining Ap(t) is equal to

(
t
p

)
.

(4) Much more important is the fact that in the cases that we have not
treated (t ≡ 1 (mod 8), t > 0, or p not coprime to the class number of
Q(
√

t)) the problem is considerably more difficult but can be reduced to a
finite number of so-called Thue equations. First, if t ≡ 1 (mod 8) (positive
or negative, but squarefree), we see that either x is odd, in which case y
is even and the proof goes through as above, or x is even, and hence y
is odd, so that y −

√
t and y +

√
t are both divisible by 2 in ZK , and we

can easily deduce that (y +
√

t)/2 = p
p−2
2 ap for some ideal a and some

ideal p2 above 2. Thus for any squarefree t we can reduce our equation
either to (y +

√
t)/d = ap, or to (y +

√
t)/d = p

p−2
2 ap for d = 1 or 2. Since

the number of possibilities for d and p2 is finite, since the class group
and the unit group modulo pth powers are also finite, an easy argument
shows that our Diophantine equation reduces to a finite set of equations
of the form y +

√
t = βiα

p
i , for a known finite set of elements βi ∈ K∗,

and unknowns αi ∈ ZK (the above proof corresponds to the special case
βi = 1). When we expand this equation after writing αi = (a + b

√
t)/d,

the enormous simplification of having b as a common factor of all the
coefficients of

√
t (implying b = ±1) no longer occurs, and we have to

solve equations of the form P (a, b) = dp, where P is a homogeneous
polynomial of degree p in a and b with integral coefficients depending on
t. These are called Thue equations, and there are excellent methods for
solving them, based on linear forms in logarithms; see Algorithm 12.10.3.
The problem is that the equations depend on t, so for a fixed t and p it is
“easy” to solve the equation; however, when we fix p, say, and let t vary
it is more difficult to give a general solution.
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Proposition 6.7.3 can be rephrased in a more positive way as follows.

Corollary 6.7.4. Let p � 3 be a prime, let x and y be integers, and assume
that t = y2−xp satisfies H(t) (so that in particular x and y are coprime and
x is odd). Assume in addition that t + x is not a square, and furthermore
when p = 3 that we do not have (x, t) = (a2 + 2ε,−(3a2 + 8ε)) for some odd
a and some ε = ±1. Then the class number of the imaginary quadratic field
Q(
√

t) is divisible by p.

Proof. Clear since x = a2 − t, except in the given special case. ��

6.7.2 The Case p = 3

To apply Proposition 6.7.3 (assuming H(p, t)), there remains to find the sets
Ap(t). As already mentioned, this is trivial if p and t are fixed. The difficulty
is to give general results when only one of these two variables is fixed. We will
give detailed results below, and in particular complete results for some fixed
values of t. In the next subsections we give the complete results for fixed p.

Proposition 6.7.5. Assume H(3, t).

(1) When t ≡ 2 or 3 modulo 4 then if t is not of the form t = −(3a2 ± 1)
the equation y2 = x3 + t has no integral solutions. If t = −(3a2 + ε) with
ε = ±1, the integral solutions are x = 4a2 + ε, y = ±(8a3 + 3εa).

(2) When t ≡ 5 (mod 8) then if t is not of the form t = −(12a2 − 1) or
−(3a2 ± 8), both with a odd, the equation y2 = x3 + t has no integral
solutions. If t = −(12a2 − 1) with a odd, the integral solutions are x =
16a2 − 1, y = ±(64a3 − 6a). If t = −(3a2 + 8ε) with ε = ±1 and a odd,
the integral solutions are x = a2 + 2ε, y = ±(a3 + 3aε).

Proof. This case is especially simple since the equations defining the sets
A3(t) are linear in t. We obtain t = −(3a2±1), x = a2−t, and y = ±(a3+3at),
giving the solutions of the proposition, to which we must add the solutions
for the special case t = −(3a2 ± 8). Recall that we have postponed the
case t = −3, which we now consider. In the proof of Proposition 6.7.3 we
found that y +

√
t = uα3 for some unit u. Thus either we are led to the

equations of the proposition (if u = ±1), or there exists ε = ±1 such that
y +

√
t = ((a + b

√
t)/2)3(−1 + ε

√
t)/2. Equating coefficients of

√
t gives

16 = ε(a3 − 9b2a)− 3b(a2 − b2) .

If a ≡ 0 (mod 3), the right-hand side is divisible by 3, a contradiction. If
b ≡ 0 (mod 3), the right-hand side is congruent to ±1 modulo 9 since a cube
is such, again a contradiction. Thus neither a nor b is divisible by 3; hence
a2 ≡ b2 ≡ 1 (mod 3), so the right-hand side is still congruent to ±1 modulo
9, a contradiction once again, so there are no solutions for t = −3. ��
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Note that the case t = −2 of the above equation was already solved by
Fermat, who posed it as a challenge problem to his English contemporaries.

Although usually the problem for t > 0 or for t ≡ 1 (mod 8) is much more
difficult, in certain cases it is quite easy to find the set of integral solutions.
A classical example is the following, for which the special case t = 7 is also
due to Fermat.

Proposition 6.7.6. Let a be an odd integer and let b be an integer such that
3 � b. Assume that either t = 8a3 − b2 with b odd, or that t = a3 − 4b2 with
t �≡ 1 (mod 8). Then if t is squarefree but of any sign, the equation y2 = x3+t
has no integral solution.

Proof. Note that in both cases t is odd. I claim that x must be odd
and y even. Indeed, if x were even then y2 = x3 + t would be odd, so that
t ≡ y2 − x3 ≡ 1 (mod 8), which contradicts the assumption of the second
case and contradicts the congruence t ≡ −b2 ≡ −1 (mod 8) of the first case.
We now separate the cases.

We rewrite the first equation y2 = x3 + (8a3 − b2) as

y2 + b2 = (x + 2a)((x− a)2 + 3a2) .

Since x and a are odd it follows that (x − a)2 + 3a2 ≡ 3 (mod 4), and
since this is a positive number (why is this needed?) this implies that there
exists a prime p ≡ 3 (mod 4) dividing it to an odd power. Thus y2 + b2 ≡ 0
(mod p), and since

(−1
p

)
= −1 this implies that p divides b and y. I claim

that p � (x + 2a). Indeed, since

(x− a)2 + 3a2 = (x + 2a)(x− 4a) + 12a2

if we had p | (x + 2a) we would have p | 12a2, so either p | a or p = 3 (p = 2
is impossible since p ≡ 3 (mod 4)). But p | a implies p2 | t = 8a3 − b2, a
contradiction since t is squarefree, and p = 3 implies 3 | b, which has been
excluded, proving my claim. Thus the p-adic valuation of y2 + b2 is equal to
that of (x − a)2 + 3a2 hence is odd, a contradiction since this would again
imply that

(−1
p

)
= 1.

Since y is even we write y = 2y1, so we rewrite the second equation
y2 = x3 + (a3 − 4b2) as

4(y2
1 + b2) = x3 + a3 = (x + a)(x(x− a) + a2) .

Since x−a is even and a is odd, it follows that 4 | (x+a). Writing x+a = 4x1,
we obtain

y2
1 + b2 = x1((4x1 − a)(4x1 − 2a) + a2) = x1(16x2

1 − 12ax1 + 3a2) .

Since a is odd we have 16x2
1−12ax1+3a2 ≡ 3 (mod 4), so as in the preceding

proof there exists a prime p ≡ 3 (mod 4) dividing it to an odd power. As
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above, this implies that p divides y1 and b. I claim that p � x1. Indeed,
otherwise p | 3a2, so either p | a or p = 3. As above, p | a is impossible
since it implies p2 | t, a contradiction since t is squarefree, and p = 3 implies
3 | b, which has been excluded. Thus the p-adic valuation of y2

1 + b2 is odd,
a contradiction since this would imply

(−1
p

)
= 1. ��

Proposition 6.7.5 applies to negative squarefree t not congruent to 1 mod-
ulo 8 such that the class number of Q(

√
t) is not divisible by 3. The above

proposition solves our equation for the following additional values of t with
|t| < 250:

t = −241, −129 (class number divisible by 3), 7, 11, 13, 23, 39, 47, 53,
61, 67, 83, 87, 95, 109, 139, 155, 159, 167, 191, 215, 239 (t > 0).

Finally, note that we have already solved the case t = 1 (Corollary 6.4.32),
as an application of Skolem’s theorem.

6.7.3 The Case p = 5

In this case we can also give the complete answer as follows.

Proposition 6.7.7. Assume H(5, t). The only values of t for which the equa-
tion y2 = x5 + t has a solution are t = −1 (with only solution (x, y) = (1, 0)),
t = −19 (with only solutions (x, y) = (55,±22434)), and t = −341 (with only
solutions (x, y) = (377,±2759646)).

Proof. The equation defining the set A5(t) of Proposition 6.7.3 is t2 +
10a2t + 5a4 ± 1 = 0. This has a rational solution in t if and only if the
discriminant is a square, hence if and only if 20a4 ∓ 1 = b2 for some integer
b. Looking modulo 4 shows that the sign must be +, so b2 = 20a4 + 1, and
hence (2b)2 = 5(2a)4 + 4. This is one of the equations that we will solve
in Corollary 6.8.4 as a consequence of our study of squares in Lucas and
Fibonacci sequences. We deduce from that corollary that a = 0 or a = ±6.
The value a = 0 leads to t = −1 (giving the universally trivial solution
(x, y) = (1, 0)), and a = ±6 leads to t = −19, (x, y) = (55,±22434) and
t = −341, (x, y) = (377,±2758646). ��

The following is a strengthening of Corollary 6.7.4 in the case p = 5.

Corollary 6.7.8. Let x and y be integers such that the pair (x, y) is not
equal to (1, 0), (55,±22434), or (377,±2758646). Assume that t = y2 − x5

satisfies H(t) (so that in particular x and y are coprime and x is odd). Then
the class number of the imaginary quadratic field Q(

√
t) is divisible by 5.

Proof. Clear. ��

Note that it is necessary to impose some conditions on x and y. For
instance, if (x, y) = (2, 5) we have t = −7 ≡ 1 (mod 8), but the class number
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of Q(
√
−7) is 1. However, it can be shown that if we assume only that x and

y are coprime, but t not necessarily squarefree, then the class number of the
quadratic order of discriminant t (or 4t if t ≡ 2 or 3 modulo 4) is divisible
by 5.

6.7.4 Application of the Bilu–Hanrot–Voutier Theorem

To treat the case p � 7, we use a remarkable theorem of the above authors.
We need a definition.

Definition 6.7.9. Let α and β be such that α + β and αβ are nonzero co-
prime integers and such that α/β is not a root of unity.

(1) The Lucas sequence associated with α, β is the sequence defined by un =
un(α, β) = (αn − βn)/(α− β) for n ∈ Z�0.

(2) We say that a prime number p is a primitive divisor of un if p | un but
p � ui for 0 < i < n and p � (α− β)2.

Note that I use the original name “Lucas sequence,” but it should more
properly be called a generalized Fibonacci sequence since the usual Lucas
sequence is rather un = αn + βn.

A special case of the theorem of Bilu, Hanrot, and Voutier is the following
(see [Bil-Han-Vou], and also [Abou] for a slight addition):

Theorem 6.7.10. Let un = un(α, β) be a Lucas sequence as above. Then

(1) If n > 30, un always has a primitive divisor.
(2) If 5 < n < 30 is prime and un(α, β) has no primitive divisors, then

either n = 7 and (α, β) = ((1 +
√
−7)/2, (1 −

√
−7)/2), or n = 7 and

(α, β) = ((1 +
√
−19)/2, (1 −

√
−19)/2), or n = 13 and (α, β) = ((1 +√

−7)/2, (1−
√
−7)/2).

This theorem solves a century-old problem, and its proof involves both
very delicate estimates on linear forms in logarithms and new algorithms for
solving Thue equations. It is thus a beautiful mixture of difficult mathematics
with an extensive rigorous computer computation (as the epigraph of the
paper remarkably illustrates).

An immediate application of the above theorem to our problem is the
following.

Corollary 6.7.11. Let p � 7 be prime, and assume H(p, t). The only value
of t for which the equation y2 = xp + t has a solution is t = −1 with only
solution (x, y) = (1, 0).

Proof. Indeed, the equation defining the set Ap(t) is (αp−βp)/(α−β) = ±1
with α = a +

√
t and β = a −

√
t; hence with the notation of the above

definition up(α, β) = ±1. We have 0 ∈ Ap(t) if and only if t = ±1, so that
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t = −1 since we assume t < 0. Otherwise, it is clear that α + β and αβ
are integers, and α/β belongs to the imaginary quadratic field Q(

√
t). Since

α/β �= ±1 for a �= 0 it can be a root of unity only when t = −1 or t = −3.
However, it is easily checked that for t = −1 the only nonzero values of a
such that α/β is a root of unity are a = ±1, and for t = −3 they are a = ±1
and a = ±3; see Exercise 41. In all these cases the same exercise shows that
for p � 7 we have |up(α, β)| > 1. Thus these cases do not give any elements
of Ap(t), so we may apply the above theorem. Thus for p > 30, Ap(t) must
have a primitive divisor, and in particular it cannot be equal to ±1, while
for 7 � p < 30 all the possibilities listed in the theorem give α = (u +

√
v)/2

with u and v odd, which thus cannot be of the form a +
√

t. ��

I would again like to emphasize that the above corollary, which immedi-
ately follows from the theorem of Bilu, Hanrot, and Voutier, is very deep.

6.7.5 Special Cases with Fixed t

The above corollary essentially solves the problem when the condition H(p, t)
is satisfied. However, it is not completely satisfactory for two reasons. The
first is mathematical: we must comment on what we can do when the con-
dition H(p, t) is not satisfied, although we will have to assume H(t). The
second is pedagogical: in the study of Catalan’s equation we will need the
case t = −1, and to be entirely self-contained we treat it without using the
difficult theorem of Bilu–Hanrot–Voutier. The following result is due to V.-
A. Lebesgue (see [Leb]).

Proposition 6.7.12 (V.-A. Lebesgue). For p � 3 prime the only integral
solution to the equation y2 = xp − 1 is (x, y) = (1, 0).

Proof. First note that since the class number of Q(
√
−1) is equal to 1 the

condition H(p,−1) is satisfied for all p. Furthermore, t = −1 does not occur
in the special cases, so we must show that 0 is the only element of Ap(t).
Thus, let a ∈ Ap(t), so that by definition we have

(p−1)/2∑
k=0

(
p

2k

)
a2k(−1)(p−1)/2−k = ±1 .

Since p |
(

p
2k

)
for 1 � k � (p − 1)/2 and p � 3 it follows by looking at the

equation modulo p that the right-hand side is equal to (−1)(p−1)/2. We thus
have L = 0 with

L =
(p−1)/2∑

k=1

(
p

2k

)
a2k(−1)(p−1)/2−k .

I claim that a is even. Indeed, otherwise looking at the equation modulo 2
we would obtain
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(p−1)/2∑
k=0

(
p

2k

)
≡ 1 (mod 2) ,

which is absurd since the left-hand side is equal to 2p−1, which is even. Now
set

uk =
(

p

2k

)
a2k =

p(p− 1)
2k(2k − 1)

(
p− 2
2k − 2

)
a2k .

Since u1 = p(p− 1)a2/2, we have

uk

u1
=

1
k(2k − 1)

(
p− 2
2k − 2

)
a2k−2 ,

so that for k > 1 (hence p > 3) we have

v2(uk)− v2(u1) � (2k − 2)v2(a)− v2(k) � (2k − 2)− v2(k)

since a is even. It is immediately checked that the rightmost expression is
always greater than or equal to 1, hence that v2(uk) > v2(u1) for k > 1. Since
L =

∑(p−1)/2
k=1 (−1)(p−1)/2−kuk it follows that v2(L) = v2(u1) = v2((p(p −

1)/2)a2), which is impossible if a �= 0 since L = 0. Thus we must have a = 0,
proving the proposition. ��

It is easy to generalize the above reasoning to other values of t (see Ex-
ercises 38 and 39), but thanks to the Bilu–Hanrot–Voutier theorem we do
not need to do so. In fact, for small values of t satisfying H(t) we have the
following definitive result:

Theorem 6.7.13. Assume H(t), in other words that t is a squarefree neg-
ative integer such that t �≡ 1 (mod 8). For n � 3 and −100 � t � −1 the
Diophantine equations y2 = xn + t do not have any integral solutions except
for the solutions with y = 0 when t = −1, and for the pairs (t, n) given in
the table below, for which the only solutions (x, y) are as indicated.

Proof. For t = −1, we have the trivial solutions (x, y) = (1, 0) if n is odd,
(x, y) = (±1, 0) if n is even. Thanks to Proposition 6.7.1 we know that for
−100 < t < −1 the only ones for which there are solutions with n even are
the given ones. Otherwise we may restrict to n = p an odd prime and deduce
the others from that case. When the condition H(p, t) is satisfied, we obtain
the equations and the solutions of the theorem. The only values of t such
that −100 < t < −1 for which H(t) is true but the condition H(p, t) is not
satisfied are t = −26, −29, −38, −53, −59, −61, −83, and −89 for p = 3, and
t = −74 and t = −86 for p = 5. In the case p = 3 we must find all integral
solutions to y2 = x3 + t for the eight given values of t. This is done without
difficulty using the techniques of Section 8.7; see Exercise 29 of Chapter 8. On
the other hand, in the case p = 5 and t = −74 or t = −86, we must find the
integral points on y2 = x5 + t, which is a hyperelliptic curve of genus 2. This
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is more difficult, and I refer either to Chapter 13 for the general methods of
attack of this kind of problem, or to the original paper by Mignotte and de
Weger [Mig-Weg]. ��

(t, n) (x, y) (t, n) (x, y)
(−2, 3) (3,±5) (−11, 3) (3,±4) and (15,±58)
(−13, 3) (17,±70) (−17, 4) (±3,±8)
(−19, 3) (7,±18) (−19, 5) (55,±22434)
(−26, 3) (3,±1) and (35,±207) (−35, 3) (11,±36)
(−53, 3) (9,±26) and (29,±156) (−53, 6) (3,±26)
(−61, 3) (5,±8) (−65, 4) (±3,±4)
(−67, 3) (23,±110) (−74, 3) (99,±985)
(−74, 5) (3,±13) (−77, 4) (±3,±2)
(−83, 3) (27,±140) (−83, 9) (3,±140)
(−89, 3) (5,±6) (−97, 4) (±7,±48)

Solubility of y2 = xn + t for (t, n) as in the Theorem

6.7.6 The Equations ty2 + 1 = 4xp and y2 + y + 1 = 3xp

We study these equations in this section because the methods are very sim-
ilar, and because we will need the second one in Chapter 16 in the proof of
Theorem 16.1.11.

Proposition 6.7.14. Let t ∈ Z�1 and let p be an odd prime not dividing the
class number of the imaginary quadratic field K = Q(

√
−t). The equation

ty2 + 1 = 4xp has no integer solutions except for t = 3, for which it has the
solutions (x, y) = (1,±1) for any p.

Proof. If the equation has a solution then ty2 ≡ 3 (mod 4), so y is odd,
and hence t ≡ 3 (mod 4). Furthermore, writing −t = Df2 for a fundamental
discriminant D, our equation is equivalent to −D(fy)2 + 1 = 4yp, so we
may assume that −t is a fundamental discriminant. In K our equation can
be written ββ = xp with β = (1 + y

√
−t)/2. Since β + β = 1 the ideals

βZK and βZK are coprime, so that each is a pth power of an ideal. Since p
does not divide the class number of K, as in the proof of Proposition 6.7.3
we deduce that there exist α ∈ ZK and a unit ε of K such that β = εαp.
Since K is imaginary quadratic ε is a pth power, except perhaps in the case
(p, t) = (3, 3), which we leave to the reader (Exercise 42), so that we can
simply write β = αp. Setting α = (a + b

√
−3)/2 with a and b in Z, since

p is odd the equation β + β = 1 translates into (γ + a)p − γp = 1, with
γ = −α = (−a + b

√
−t)/2 ∈ ZK . Expanding the left-hand side of this

equation by the binomial theorem we see that it is divisible by a, so that a
is a unit, and therefore a = ±1. On the other hand, looking at the equation
modulo pZK gives a ≡ ap ≡ 1 (mod p), so that we must have a = 1 since
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p �= 2. Since γ �= 0 (otherwise β = (−γ)p = 0), we deduce that P (γ) = 0,
where

P (X) =
(X + 1)p −Xp − 1

pX
.

Since p is prime it is clear from the binomial theorem that P ∈ Z[X] and
that P is monic with constant term 1, so that the roots of P are units.
When t �= 3 the units of K are ±1, so the equation P (γ) = 0 with γ ∈ K
implies that γ = ±1, so that β = (1 + y

√
−t)/2 = (−γ)p = ±1, which is

impossible. When t = 3 the units of K are the 6th roots of unity, so similarly
β = (1 + y

√
−3)/2 = (−γ)p is a 6th root of unity. The 6th roots of unity of

the form (1 + y
√
−3)/2 being (1±

√
−3)/2, we have y = ±1, giving the two

solutions for t = −3, and if −t = −3f2 for f > 1 it also shows that there are
no solutions for such t. ��

Corollary 6.7.15 (Nagell). Let p � 3 be a prime. The only integer solu-
tions to the equation y2 + y +1 = 3xp are (x, y) = (1, 1) and (x, y) = (1,−2).

Proof. This equation is equivalent to (2y + 1)2 + 3 = 12xp; it follows that
3 | (2y + 1), so setting 2y + 1 = 3z with z odd we obtain 3z2 + 1 = 4xp, and
the result follows from the proposition. ��

6.8 Linear Recurring Sequences

6.8.1 Squares in the Fibonacci and Lucas Sequences

We have already seen in Section 4.5.4 how to apply p-adic methods to find
specific values of linear recurring sequences. I emphasize the fact that these
methods (for instance using Strassmann’s theorem) are really p-adic in na-
ture, and not simply based on simple congruence arguments. In the present
section, we will study similar problems that on the other hand can be solved
by congruence arguments and quadratic reciprocity.

We let α = (1 +
√

5)/2 and β = (1 −
√

5)/2 be the two roots of the
equation x2 − x − 1 = 0. Recall that we define the classical Fibonacci and
Lucas sequences Fn and Ln by the formulas

Fn =
αn − βn

α− β
and Ln = αn + βn ,

so that these sequences both satisfy the linear recurrence un+1 = un + un−1,
with initial terms F0 = 0, F1 = 1 and L0 = 2, L1 = 1.

Before stating the Diophantine theorems, we need some elementary prop-
erties of these sequences, summarized in the following proposition.

Proposition 6.8.1. (1) L−n = (−1)nLn, F−n = (−1)n−1Fn, L2
n − 5F 2

n =
4(−1)n, 2Lm+n = 5FmFn + LmLn, 2Fm+n = FmLn + FnLm, L2m =
L2

m + 2(−1)m−1, F2m = FmLm.
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(2) gcd(Ln, Fn) = 1 if 3 � n, gcd(Ln, Fn) = 2 if 3 | n.
(3) When k ≡ ±2 (mod 6) then for all t ∈ Z we have

Ln+2kt ≡ (−1)tLn (mod Lk) and Fn+2kt ≡ (−1)tFn (mod Lk) .

Proof. The formulas of (1) are proved by direct computation from the
definitions in terms of α and β, which can be summarized by the equality
(Ln +Fn

√
5)/2 = αn. For (2), we note that since |L2

n−5F 2
n | = 4, the GCD of

Ln and Fn is equal to 1 or 2. Because of that same formula it is equal to 2 if
and only if 2 | Fn, and since evidently the sequence Fn modulo 2 is periodic
of period 3, we see that 2 | Fn if and only if 3 | n, proving (2).

For (3), since 2 | k we have

2Ln+2k = 5FnF2k + LnL2k = 5FnFkLk + Ln(L2
k − 2) ≡ −2Ln (mod Lk) .

Since 3 � k we have 2 � Lk, hence Ln+2k ≡ −Ln (mod Lk), so the result for L
follows by induction on t. Similarly

2Fn+2k = FnL2k + F2kLn = Fn(L2
k − 2) + FkLkLn ≡ −2Fn (mod Lk) ,

and we conclude as before.

Theorem 6.8.2. (1) For n � 0 we have Ln = x2 with x ∈ Z if and only if
n = 1 or n = 3.

(2) Similarly Ln = 2x2 if and only if n = 0 or n = 6.

Proof. Since L2m = L2
m+2(−1)m−1, L2m = x2 implies that |x2−L2

m| = 2,
which is impossible. Thus we may assume that n is odd. Clearly L1 = 1 and
L3 = 4 are squares, so we may assume that n > 3. We can write n = r+2·3sk
with r = 1 or 3, 2 | k, and 3 � k, so k ≡ ±2 (mod 6) and k > 0. By the above
proposition we thus have

Ln ≡ (−1)3
s

Lr ≡ −Lr (mod Lk) .

On the other hand, since L1 = 1 and L3 = 4, we have −Lr = −1 or −4. Note
also that since k/2 ≡ ±1 (mod 3), we have

Lk = L2
k/2 + 2(−1)k/2−1 ≡ 1± 2 ≡ 3 (mod 4) ,

hence (
Ln

Lk

)
=
(
−Lr

Lk

)
=
(
−1
Lk

)
= −1 .

If follows that Ln cannot be a square, proving (1).
To prove (2), let Ln = 2x2 with x ∈ Z. We consider several cases.

– If n is odd, then 4x4 = L2
n = 5F 2

n − 4; hence Fn is even, so that x4 =
5(Fn/2)2 − 1. But x4 ≡ 0 or 1 modulo 8, so (Fn/2)2 ≡ 5 or 2 modulo 8, a
contradiction.
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– If 4 | n and n �= 0, we can write n = 2 · 3sk with k ≡ ±2 (mod 6), so that
by the proposition

2Ln ≡ −2L0 ≡ −4 (mod Lk) ;

hence as above,
(

2Ln

Lk

)
= −1, so that 2Ln cannot be a square.

– If n ≡ 6 (mod 8) and n �= 6, we can write n = 6 + 2 · 3sk with k ≡ ±2
(mod 6), so that by the proposition

2Ln ≡ −2L6 ≡ −36 (mod Lk) .

On the other hand, note that 3 | Lm if and only if m ≡ 2 (mod 4), so that
since 4 | k we have 3 � Lk. Thus as above

(
2Ln

Lk

)
= −1, so that 2Ln cannot

be a square.
– If n ≡ 2 (mod 8) then L−n = Ln and −n ≡ 6 (mod 8), so the preceding

reasoning (which is applicable for n < 0) shows that Ln = 2x2 if and only
if −n = 6, and in particular n < 0. ��

Theorem 6.8.3. (1) We have Fn = x2 with x ∈ Z if and only if n = 0, ±1,
2, or 12.

(2) Similarly Fn = 2x2 if and only if n = 0, ±3, or 6.

Proof. The proof of this theorem is similar and left to the reader (see
Exercise 43). ��

As an application of the above theorem, we give the following corollary.

Corollary 6.8.4. Consider the Diophantine equation

y2 = 5x4 + a .

(1) For a = 1, the only integral solutions are (x, y) = (0,±1) and (±2,±9).
(2) For a = −1, the only integral solutions are (x, y) = (±1,±2).
(3) For a = 4, the only integral solutions are (x, y) = (0,±2), (±1,±3),

(±12,±322).
(4) For a = −4, the only integral solutions are (x, y) = (±1,±1).

Proof. If we write the equations as y2 − 5x4 = εb2 with ε = ±1 and
b = 1 or b = 2, we see that we can apply the solution to the Pell equation
y2−5X2 = ±1 or ±4. The fundamental unit of the order Z[

√
5] is 2+

√
5 = α3,

of norm −1, so the general solution with X � 0 to y2 − 5X2 = ±1 is given
by y + X

√
5 = α3n, and hence

2x2 = 2X =
α3n − β3n

α− β
= F3n .

By the above theorem, this implies n = 0, ±1, or 2. The value n = 0 gives
the solution x = 0 to the first equation (hence y = ±1), and n = 2 gives the
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solution x = ±2 to the first equation (hence y = ±9). On the other hand,
n = ±1 gives the solution x = ±1 to the second equation (hence y = ±2).

Similarly the general solution to y2−5X2 = ±4 is given by (y+X
√

5)/2 =
αn, so x2 = X = Fn. By the above theorem this implies n = 0, ±1, 2, or 12.
The values n = 0, 2, and 12 give the solutions x = 0 (hence y = ±2), x = ±1
(hence y = ±3), and x = ±12 (hence y = ±322) to the third equation, while
n = ±1 gives the solution x = ±1 (hence y = ±1) to the fourth equation. ��

Remark. Using a combination of Baker-type methods giving lower bounds
for linear forms in two or three logarithms of algebraic numbers (see Chapter
12), and the Ribet–Taylor–Wiles level lowering method (see Chapter 15),
Y. Bugeaud, M. Mignotte, and S. Siksek have recently proved the following
remarkable result:

Theorem 6.8.5 (Bugeaud–Mignotte–Siksek). (1) The only nontrivial
perfect powers in the Fibonacci sequence are F1 = F2 = 1, F6 = 8,
and F12 = 144.

(2) The only nontrivial perfect powers in the Lucas sequence are L1 = 1 and
L3 = 4.

We also mention without proof the following results of the same type.

Theorem 6.8.6 (Ljunggren, Ellenberg). The only integral solutions to
the Diophantine equation y2 = 2x4 − 1 are (x, y) = (±1,±1) and (x, y) =
(±13,±239).

Theorem 6.8.7 (Cohn, Ljunggren). (1) For fixed D, the Diophantine
equation x4 − Dy2 = 1 has at most one integral solution with x > 0
and y > 0, except for D = 1785, for which it has the two solutions
(x, y) = (13, 4) and (239, 1352).

(2) If D is prime, the above equation has such a solution if and only if D = 5
or D = 29, for which it has the respective solutions (x, y) = (3, 4) and
(x, y) = (99, 1820).

6.8.2 The Square Pyramid Problem

A classical problem due to E. Lucas asks for all integral solutions to the
equation y2 = 12 + 22 + · · ·+ x2, in other words to the Diophantine equation
x(x + 1)(2x + 1) = 6y2 (this problem is equivalent to finding all possible
numbers of “cannonballs” that can be piled up in a square pyramid as well
as on one level as a square, so it is also called the cannonball problem). This
problem was until relatively recently solved only using rather sophisticated
methods, but in the 1980s a completely elementary proof was found, which
we paraphrase in this section; see [Ma] and [Ang]. We need some preliminary
results.



6.8 Linear Recurring Sequences 425

Lemma 6.8.8. The only integral solutions to the Diophantine equation y2 =
8x4 + 1 are (x, y) = (0,±1) and (±1,±3).

Proof. We may assume y > 0. Since y is odd we can write y = 2s + 1,
so that 2x4 = s(s + 1). If s is even there exist coprime integers u and v
such that s = 2u4 and s + 1 = v4, so that 1 + 2u4 = v4. By Proposition
6.5.4 this implies u = 0, hence s = 0, x = 0, and y = ±1. So assume
that s is odd. In this case there exist coprime integers u and v such that
s = u4 and s + 1 = 2v4, so that u4 + 1 = 2v4. This implies that u is
odd, hence (by looking modulo 8) that v is odd. If we set a = |v2 − u|
and b = |v2 + u|, we see that a2 + b2 = 2v4 + 2u2 = (u2 + 1)2, so that
(a, b, u2 + 1) are the three sides of a Pythagorean triangle, and its area is
equal to ab/2 = |(v4 − u2)/2| = ((u2 − 1)/2)2, a square. Since we will show
that 1 is not a congruent number (Proposition 6.12.2), it follows that the
triangle must be degenerate, i.e., that u = ±1, so that s = 1, x = ±1, and
y = 3, proving the lemma. ��

Remark. It would have been more pleasing to consider the more general
equation y2 = 8x4 + z4 with x, y, and z pairwise coprime. Unfortunately, as
is shown in Exercise 13 of Chapter 8, this equation has an infinity of integral
solutions (because the corresponding elliptic curve has nonzero rank), so the
result would not be suitable for our purposes.

We can now solve Lucas’s problem for even values of x.

Proposition 6.8.9. The only integral solutions to the Diophantine equation
x(x + 1)(2x + 1) = 6y2 with y �= 0 and x even are (x, y) = (24,±70).

Proof. Clearly x is nonnegative. Since x is even and x, x + 1, and 2x + 1
are pairwise coprime, the equation implies that the odd numbers x + 1 and
2x + 1 are either squares or triples of squares. It follows that x + 1 �≡ 2
(mod 3) and 2x + 1 �≡ 2 (mod 3), which is equivalent to x ≡ 0 (mod 3).
Thus we can find integers s, t, and u such that x = 6s2, x + 1 = t2, and
2x + 1 = u2, and of course u and t are odd and coprime. The equality
6s2 = (u− t)(u + t) implies that 4 | 6s2 hence that 2 | s. Thus write s = 2v,
so that 6v2 = ((u−t)/2)((u+t)/2). Since u and t are coprime so are (u−t)/2
and (u+ t)/2. Changing if necessary the signs of u and t, it follows that there
exist integers a and b such that either (u + t)/2 = 6a2 and (u− t)/2 = b2, or
(u+ t)/2 = 3a2 and (u− t)/2 = 2b2. In the first case we have t = 6a2−b2 and
s = 2ab, and since 6s2+1 = t2 we obtain the equation 24a2b2+1 = (6a2−b2)2,
hence 36a4−36a2b2+b4 = 1, which can be rewritten by completing the square
(6a2 − 3b2)2 − 8b4 = 1. By the above lemma, since 3 | (6a2 − 3b2) we have
b = ±1 and a = ±1, giving s = 2ab = ±2, so that x = 24 and hence y = ±70.
In the second case we have t = 3a2 − 2b2 and s = 2ab, giving here the
equation 24a2b2 + 1 = (3a2 − 2b2)2, hence 9a4 − 36a2b2 + 4b4 = 1, so that
1 + 2(2b)4 = (3a2− 6b2)2. By Proposition 6.5.4 (which is stronger than what
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we need) we deduce that b = 0, hence 9a4 = 1, which is impossible, so there
are no solutions in the second case. ��

To solve the problem in the odd case we make an analysis similar to that
done in Section 6.8.1. We set α = 2+

√
3, β = 2−

√
3, Mn = (αn+βn)/2, and

Gn = (αn−βn)/(α−β). The reason for dividing by 2 in Mn is that αn +βn

is trivially always an even integer. Clearly Mn and Gn both satisfy the linear
recurrence un+1 = 4un − un−1 with initial terms M0 = 1, M1 = 2, G0 = 0,
G1 = 1. We have of course an exact analogue of Proposition 6.8.1, which is
in fact slightly simpler since αβ = 1 instead of −1 (i.e., a fundamental unit
of norm 1) and since there is no denominator 2 in α and β (the full ring of
integers of Q(

√
3) is Z[

√
3]).

Proposition 6.8.10. (1) M−n = Mn, G−n = −Gn, M2
n − 3G2

n = 1,
Mm+n = 3GmGn +MmMn, Gm+n = GmMn +GnMm, M2m = 2M2

m−1,
G2m = 2GmMm.

(2) gcd(Mn, Gn) = 1.
(3) For any integers k and t in Z we have

Mn+2kt ≡ (−1)tMn (mod Mk) and Gn+2kt ≡ (−1)tGn (mod Mk) .

Proof. Essentially identical to the proof of Proposition 6.8.1, this time
using Mn + Gn

√
3 = αn. ��

Lemma 6.8.11. Assume that n is even. Then Mn is odd, 5 � Mn,
(

5
Mn

)
= 1

if and only if 3 | n and
( −2

Mn

)
= 1 if and only if 4 | n.

Proof. Write n = 2m. Since M2m = 2M2
m − 1, it is clear that Mn is

odd, and since M2
m ≡ 0 or ±1 modulo 5, Mn ≡ −1, 1, or 2 modulo 5 and

in particular 5 � Mn. Since Mn satisfies a linear recurrence with integral
coefficients it is periodic modulo k for any given k, and for k = 5 the period
is clearly (1, 2, 2) of length 3, and for k = 8 the period is (1, 2, 7, 2) of length
4, leading immediately to the desired results. ��

The key proposition in the proof is the following result, first proved by
Ma in [Ma].

Proposition 6.8.12 (Ma). If n � 0, then Mn has the form 4x2 + 3 if and
only if n = 2, so Mn = 7.

Proof. Assume that Mn = 4x2 + 3, so that Mn ≡ 3 or 7 modulo 8. Since
the period of Mn modulo 8 is (1, 2, 7, 2), this implies that n ≡ 2 (mod 4), or
equivalently, that n ≡ ±2 (mod 8). Assume that n > 2, hence that Mn > 7,
and write n = 2t · 2s± 2 with t odd and s � 2 (for n = 2 we could not choose
t odd). By Proposition 6.8.10 we have

Mn ≡ (−1)tM±2 ≡ −7 (mod M2s ) ,
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so 4x2 ≡ −10 (mod M2s ). Since s � 2, M2s is odd, so it follows that(
−2
M2s

)(
5

M2s

)
=
(
−10
M2s

)
=
(

4x2

M2s

)
= 1

since everything is nonzero by the above lemma. On the other hand, the
above lemma also tells us that

( −2
M2s

)
= 1 since s � 2, and that

(
5

M2s

)
= −1

since 3 � 2s, so we obtain a contradiction, proving the proposition. ��

Thanks to this proposition we can now completely solve Lucas’s problem.

Theorem 6.8.13. The only integral solutions with y �= 0 to the Diophantine
equation x(x + 1)(2x + 1) = 6y2 are (x, y) = (1,±1) and (x, y) = (24,±70).

Proof. The case that x is even has been proved in Proposition 6.8.9. So
assume that x is odd. As in the even case, since x, x+1, and 2x+1 are pairwise
coprime, x is either a square or three times a square, so x �≡ 2 (mod 3). Since
x + 1 is even and the other two factors are odd, it is either twice a square or
six times a square, so x + 1 �≡ 1 (mod 3). Thus x ≡ 1 (mod 3), so x + 1 ≡ 2
(mod 3) and 2x+1 ≡ 0 (mod 3). It follows that there exist pairwise coprime
integers s, t, and u such that x = s2, x + 1 = 2t2, and 2x + 1 = 3u2. We thus
obtain the equation

(6u2 + 1)2 − 3(4tu)2 = (4x + 3)2 − 8(x + 1)(2x + 1) = 1 ,

and since 2 +
√

3 is the fundamental unit of Z[
√

3], we deduce that there
exists n ∈ Z such that, using the above notation,

6u2 + 1 + 4tu
√

3 = ±(Mn + Gn

√
3) .

In particular, Mn = ±(6u2 +1) = 6u2 +1, since Mn � 0. On the other hand,
6u2 + 1 = 4x + 3 = 4s2 + 3, so that Mn has the form 4s2 + 3. By Ma’s result
above this implies that n = ±2 and Mn = 7; hence s = ±1, so x = 1, as
claimed, finishing the proof of the theorem. ��

6.9 Fermat’s “Last Theorem” xn + yn = zn

6.9.1 Introduction

This is certainly the most famous of all Diophantine equations. It claims that
for all n � 3 there are no integral solutions to xn + yn = zn with xyz �= 0.
We may clearly assume that x, y, and z are pairwise coprime. Furthermore,
since any integer n � 3 is divisible either by an odd prime number or by 4,
it is sufficient to prove the result for n = 4 and for n = p an odd prime.

For n = 2 Fermat’s equation does have solutions, which we have param-
etrized completely in Corollary 6.3.13, and which we restate as follows.
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Proposition 6.9.1. The general solution in Z to the equation x2 + y2 = z2

is
x = d(s2 − t2), y = 2dst, z = d(s2 + t2) ,

where s and t are coprime integers such that s �≡ t (mod 2) and d ∈ Z, or the
same with x and y exchanged. Furthermore, we have gcd(x, y) = gcd(x, z) =
gcd(y, z) = |d|.

Corollary 6.9.2. The general solution of x2 + y2 = z2 with gcd(x, y) = 1
and x odd is

x = s2 − t2, y = 2st, z = ±(s2 + t2) ,

and the general solution of x2 − y2 = z2 with gcd(x, y) = 1 and x odd is

x = ±(s2 + t2), y = 2st, z = s2 − t2 ,

where s and t are as above.

Proof. Immediate from the above proposition and the fact that two out
of three sign changes can be included in the exchange of s and t or in the
exchange of s with −s. ��

We have shown in Theorem 6.4.17 that Fermat’s equation does not have
any solution for n = 3. We will give below a slightly different proof, which
has the advantage of being generalizable to all regular prime exponents. In
Proposition 6.5.3 we have shown that the equation x4 + y4 = z2 has no non-
trivial solutions, so a fortiori Fermat’s equation does not have any nontrivial
solution for n = 4. We may thus assume that n is an odd prime.

6.9.2 General Prime n: The First Case

From now on we assume that n = p is an odd prime. In the traditional attacks
on Fermat’s “Last Theorem” (FLT for short), one distinguishes the so-called
first case (or FLT I), in which we assume that p � xyz, and the second case
(or FLT II), in which we assume that p | xyz. In the modern attack that
culminated in the work of Wiles and Taylor–Wiles solving FLT completely,
the distinction between these two cases is unimportant.

The first case is much easier to treat (although nobody knows a complete
proof of the first case using traditional methods). Using Wendt’s criterion
(Proposition 6.9.6), it is easy to check the validity of FLT I for a given p.
Furthermore, using generalizations of Wieferich’s criterion (Corollary 6.9.10),
it is possible to check FLT I for all primes p up to a reasonable bound. This
has in fact been done on a computer for p < 1018 at least. On the other
hand, the second case depends on some “luck” that in practice is always true
but cannot be proved to be the case. Thus it may be that for some p the
traditional method for proving FLT II fails, in that it does not succeed in
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proving the result (of course since FLT II is true by Wiles, it will not find a
counterexample either).

There exist several elementary but nontrivial results on FLT I. We prove
two of them. The first is a straightforward p-adic approach (more precisely a
congruence approach modulo p2), and I am indebted to A. Kraus for pointing
it out in an unpublished manuscript. A second is a remarkable result due to
Sophie Germain, and generalized by Wendt.

6.9.3 Congruence Criteria

We begin with the following.

Proposition 6.9.3. The following three conditions are equivalent:

(1) There exist three p-adic units α, β, and γ such that αp + βp = γp (in
other words, FLT I is soluble p-adically).

(2) There exist three integers a, b, c in Z such that p � abc with ap + bp ≡ cp

(mod p2).
(3) There exists a ∈ Z such that a is not congruent to 0 or −1 modulo p with

(a + 1)p ≡ ap + 1 (mod p2).

Proof. From the binomial theorem it is clear that if u ≡ 1 (mod pZp) then
up ≡ 1 (mod p2Zp). Thus if u ≡ v (mod pZp) and u and v are p-adic units,
then up ≡ vp (mod p2Zp). We will use this several times without further
mention. Taking a, b, and c to be residues modulo p of α, β, and γ thus
shows that (1) implies (2). Conversely, assume (2). We would like to apply
Hensel’s lemma. However, the congruence is not quite good enough, so we
have to do one step by hand. Let ap + bp = cp + kp2 for some k ∈ Z, and set
d = c + kp, so that p � d. Then by the binomial theorem dp ≡ cp + kp2cp−1

(mod p3), so that

ap + bp − dp ≡ kp2(1− cp−1) ≡ 0 (mod p3)

since p � c. We can now apply Hensel’s lemma (Proposition 4.1.37) to the
polynomial f(X) = Xp + bp−dp and to α = a: we have |f ′(a)|p = |pap−1|p =
1/p since p � a, while |f(a)|p � 1/p3 by the above, so |f(a)|p < |f ′(a)|2p, and
hence Hensel’s lemma is applicable, proving (1).

Clearly (3) implies (2). Conversely, assume (2), i.e., that cp ≡ ap + bp

(mod p2) with p � abc. In particular, c ≡ a + b (mod p). Thus, if we set
A = ba−1 modulo p, then by the above remark Ap ≡ bpa−p (mod p2) and
(A + 1)p ≡ cpa−p (mod p2), so that (A + 1)p ≡ Ap + 1 (mod p2), proving (3)
and the proposition. ��

Corollary 6.9.4. FLT I cannot be proved by congruence conditions (i.e., p-
adically) if and only if condition (3 ) of the proposition is satisfied for some a
such that 1 � a � (p− 1)/2.
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Proof. Indeed, condition (3) is invariant when we change a modulo p, and
also under the change a �→ p− 1− a, so the result is clear. ��

Corollary 6.9.5. If for all a ∈ Z such that 1 � a � (p − 1)/2 we have
(a + 1)p − ap − 1 �≡ 0 (mod p2), then the first case of FLT is true for p.

Proof. Indeed, if ap + bp = cp with p � abc then condition (2) of the
proposition is satisfied; hence by (3), as above there exists a such that 1 �
a � (p− 1)/2 with (a + 1)p − ap − 1 ≡ 0 (mod p2), proving the corollary. ��

For instance, thanks to this corollary we can assert that FLT I is true
for p = 3, 5, 11, 17, 23, 29, 41, 47, 53, 71, 89, 101, 107, 113, 131, 137, 149,
167, 173, 191, 197, which are the prime numbers less than 200 satisfying the
condition of the corollary.

We will see below that a theorem of Wieferich (Corollary 6.9.10) says that
it is sufficient to take a = 1 in the above corollary, in other words that FLT
I is true as soon as 2p − 2 �≡ 0 mod p2.

6.9.4 The Criteria of Wendt and Germain

As mentioned there is another elementary and more powerful approach to
FLT I, initially due to Sophie Germain, and generalized by Wendt. Recall
that we denote by R(P,Q) the resultant of two polynomials P and Q.

Proposition 6.9.6 (Wendt). Let p > 2 be an odd prime. If there exists an
integer k � 1 such that q = kp + 1 is a prime number satisfying

q � (kk − 1)R(Xk − 1, (X + 1)k − 1) ,

then FLT I is valid; in other words, xp + yp + zp = 0 implies p | xyz.

Proof. Assume that xp + yp + zp = 0 with p � xyz. We may of course as
usual assume that x, y, and z are pairwise coprime. We can write

−xp = yp + zp = (y + z)(yp−1 − yp−2z + · · ·+ zp−1) .

Clearly the two factors are relatively prime: we cannot have p | (y + z),
since otherwise p | x, and if r �= p is a prime dividing both factors then
y ≡ −z (mod r); hence the second factor is congruent to pyp−1 modulo r,
and since r �= p we have r | y, hence r | z, contradicting the fact that y and
z are coprime. Since p is odd (otherwise we would have to include signs), it
follows that there exist coprime integers a and s such that y + z = ap and
yp−1 − yp−2z + · · ·+ zp−1 = sp. By symmetry, there exist b and c such that
z + x = bp and x + y = cp.

Consider now the prime q = kp + 1. The Fermat equation implies that

x(q−1)/k + y(q−1)/k + z(q−1)/k ≡ 0 (mod q) .
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I claim that q | xyz. Indeed, assume by contradiction that q � xyz, and let
u = (x/z)(q−1)/k mod q, which makes sense since q � z. Since q � x we have
uk − 1 ≡ 0 (mod q). On the other hand, u + 1 ≡ −(y/z)(q−1)/k (mod q),
and since k is even and q � y we deduce that (u + 1)k − 1 ≡ 0 (mod q). It
follows that the polynomials Xk− 1 and (X +1)k − 1 have the common root
u modulo q, contradicting the assumption that q � R(Xk − 1, (X + 1)k − 1).

Thus q | xyz, and by symmetry we may assume for instance that q | x.
Thus

0 ≡ 2x = (x + y) + (z + x)− (y + z) = cp + bp + (−a)p

= c(q−1)/k + b(q−1)/k + (−a)(q−1)/k (mod q) .

As above, it follows that q | abc. Since q | x and x, y, and z are pairwise
coprime, we cannot have q | bp = z + x or q | cp = x + y. Thus q | a. It
follows that y ≡ −z (mod q), so that sp ≡ pyp−1 (mod q). On the other
hand, y = (x + y)− x ≡ cp (mod q), so that

s(q−1)/k = sp ≡ pc((q−1)/k)(p−1) (mod q) ,

and since q � c we have p ≡ d(q−1)/k (mod q) with d = s/cp−1 modulo q.
Since a and s are coprime we have q � s, and hence q � d, so pk ≡ 1 (mod q).
Since k is even it follows that

1 = (−1)k = (kp− q)k ≡ kkpk ≡ kk (mod q) ,

contradicting the assumption that q � kk − 1. ��

A computer search shows that for every prime p � 3 up to very large
bounds we can find an integer k satisfying the conditions of the proposition,
and it can reasonably be conjectured that such a k always exists, so that
in practice FLT I can always be checked thanks to this criterion; see also
Exercise 47.

The following is S. Germain’s initial criterion:

Corollary 6.9.7. Let p > 2 be an odd prime, and assume that q = 2p + 1 is
also a prime. Then FLT I is valid; in other words, if xp + yp + zp = 0 then
p | xyz.

Proof. Since for k = 2 we have (kk − 1)R(Xk − 1, (X + 1)k − 1) = −32,
the condition of the proposition is q �= 3, which is always true. ��

6.9.5 Kummer’s Criterion: Regular Primes

A less elementary attack on FLT I uses algebraic number theory. It gives a
result that is usually weaker than the above proposition since an infinity of
p cannot be obtained by this attack. However, it has the great advantage
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that it can be generalized to the second case FLT II, while none of the above
elementary approaches can.

In the sequel, we let ζ = ζp be a primitive pth root of unity in C, we
let K = Q(ζ), and we recall that the ring of integers of K is equal to Z[ζ].
We set π = 1 − ζ, and recall that the ideal πZK is a prime ideal such that
(πZK)p−1 = pZK , and p is the only prime number ramified in K. The first
successful attacks on FLT were based on the possibility of unique factorization
in Z[ζ]. Unfortunately this is true for only a limited number of small values
of p. With the work of E. Kummer it was realized that one could achieve the
same result with the much weaker hypothesis that p does not divide the class
number hp of ZK . Such a prime is called a regular prime. Note that it is
known that there are infinitely many irregular (i.e., nonregular) primes, see
Proposition 9.5.27, but that it is unknown (although widely believed) whether
there are infinitely many regular primes. In fact, there should be a positive
density equal to exp(−1/2) of regular primes among all prime numbers (see
Exercise 48). The irregular primes below 100 are p = 37, 59, and 67. See
Exercise 11 of Chapter 9 for an efficient regularity test.

We thus assume that p is a regular prime, i.e., that p � hp. The usefulness
of this assumption comes from the following easy fact: if an ideal a of K is
such that ap is a principal ideal, then so is a itself. Indeed, since p and hp

are coprime, we can find integers u and v such that up + vhp = 1, so that
a = (ap)u(ahp )v. Now by assumption ap is a principal ideal, and by definition
of the class group, so is ahp , proving our claim.

Proposition 6.9.8. If p � 3 is a regular prime then FLT I holds.

Proof. First note that if p = 3 and p � xyz we have x3, y3, and z3 congruent
to ±1 modulo 9, which is impossible if x3 + y3 = z3, so we may assume that
p � 5. The equation xp + yp = zp can be written

(x + y)(x + ζy) · · · (x + ζp−1y) = zp .

Since x and y are coprime, as ideals (otherwise it does not make sense since
ZK is not necessarily a PID) the factors on the left-hand side are pairwise
coprime: indeed, if some prime ideal p divides x + ζiy and x + ζjy for i �= j,
it divides also (ζi − ζj)y and (ζj − ζi)x, hence ζi − ζj . Thus p = π, so that
π | z; hence p | z, contrary to our hypothesis. We thus have a product of
pairwise coprime ideals that is equal to the pth power of an ideal, so that
each of them is a pth power. Thus for each j we have (x + ζjy)ZK = a

p
j for

some ideal aj . By the above remark, since p is a regular prime this implies
that aj itself is a principal ideal, say aj = αjZK . In particular, for j = 1 we
can write x + ζy = αpu with u a unit of K.

Denote complex conjugation by . By Lemma 3.5.19, which is an imme-
diate consequence of Kronecker’s theorem on roots of unity, u/u is a root
of unity, hence of the form η = ±ζm for some m. On the other hand, since
π | (ζj−ζ−j) for all j, it is clear that for any β ∈ Z[ζ] we have β ≡ β (mod π),
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so α ≡ α (mod π). Since π � z, it follows that π � α, so that α/α ≡ 1 (mod π).
Using the binomial expansion and the fact that π(p−1) | pZK , we deduce that
(α/α)p ≡ 1 (mod πp). Dividing x + ζy by its complex conjugate (and re-
membering that both are coprime to π), we obtain (x + ζy)/(x + ζ−1y) ≡ η
(mod πp), in other words

x + ζy − η(x + ζ−1y) ≡ 0 (mod πp) .

I claim that m = 1. Indeed, assume otherwise. If m = 0 we multiply the
above congruence by ζ, and if m = p− 1 we multiply it by ζ2; otherwise we
do nothing. Thus we see that there exists a polynomial f(T ) ∈ Z[T ] of degree
less than or equal to p−2 � 3 (since we have assumed p � 5), not divisible by
p, and such that f(ζ) ≡ 0 (mod πp). Set g(X) = f(1−X). It is also of degree
less than or equal to p − 2, it not divisible by p, and g(π) ≡ 0 (mod πp).
However, it is clear that different monomials in g(π) have valuations which
are noncongruent modulo p−1, hence are distinct, a contradiction. It follows
that m = 1, proving my claim. Thus η = ±ζ, and our congruence reads
x + ζy ∓ (xζ + y) = (x∓ y)(1∓ ζ) ≡ 0 (mod πp), so x∓ y ≡ 0 (mod p). We
cannot have x + y ≡ 0 (mod p), since otherwise p | z. Thus y ≡ x (mod p).
We may now apply the same reasoning to the equation (−x)p + zp = yp

and deduce that −z ≡ x (mod p). It follows that 0 = xp + yp − zp ≡ 3xp

(mod p), and since p � x, we obtain p = 3, which has been excluded and
treated directly, finishing the proof of FLT I when p is a regular prime. ��

For instance, the irregular primes less than or equal to 200 are p = 37,
59, 67, 101, 103, 131, 149, 157, so that FLT I is true up to p = 200 for all but
those primes.

Remark. It is interesting to note that the prime numbers p for which FLT I
can be proved using congruence conditions (i.e., Proposition 6.9.5) and those
for which it can be proved using global methods as above (i.e., Proposition
6.9.8) are essentially independent. For instance, by Proposition 6.9.5, FLT I
cannot be proved by congruence conditions for p = 7 or p = 13, but since
these are regular primes, FLT I follows from Proposition 6.9.8. On the other
hand, since p = 101 and p = 131 are irregular primes, FLT I does not follow
immediately from Proposition 6.9.8, although it does follow by congruence
conditions from Proposition 6.9.5. In fact, combining the two approaches, we
have thus proved FLT I for all primes p � 200 except for p = 37, 59, 67, 103,
157.

If we go up to p = 5000, there are 668 odd primes, and among those 279
can be solved by local considerations (Corollary 6.9.5), 407 by global consid-
erations (Proposition 6.9.8), and 522 by one or the other. Of course, using
Wendt’s criterion given above (Proposition 6.9.6), all cases can be solved.

Asymptotically, it is expected (but not proved) that Corollary 6.9.5 can
solve a proportion of 1 − exp(−1/2) = 0.393 . . . of prime numbers, while
Proposition 6.9.8 can solve a proportion of exp(−1/2) = 0.607 . . . of prime
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numbers, so that if they are independent, one or the other can solve a pro-
portion of 1− exp(−1/2) + exp(−1) = 0.761 . . . .

6.9.6 The Criteria of Furtwängler and Wieferich

Theorem 6.9.9 (Furtwängler). Let p � 3 be prime, let x, y, and z be
pairwise coprime nonzero integers such that xp + yp = zp, and assume that
p � yz. Then for every q | yz we have qp−1 ≡ 1 (mod p2).

Note that since x, y, and z are pairwise coprime, at most one can be
divisible by p, so the condition p � yz can always be achieved by permuting
x, y, and −z.

Proof. By multiplicativity, it is sufficient to prove the result for a prime
number q such that q | yz, and by symmetry we may assume that q | y. Let
ζ = ζp. As in the proof of Kummer’s theorem on FLT I (Proposition 6.9.8),
since x and y are coprime and p � z the ideals (x + ζiy)Z[ζ] are pth powers
of ideals for all i. In particular, if we set α = (x + y)p−2(x + ζy), the ideal
αZ[ζ] is a pth power. Furthermore, we have x + ζy = x + y + (ζ − 1)y, hence
α = (x+y)p−1+(ζ−1)u with u = y(x+y)p−2 ∈ Z. Since (x+y) | xp+yp = zp

we have p � (x + y), hence (x + y)p−1 ≡ 1 (mod p), and in particular α ≡
1+(ζ−1)u (mod p2), where p = (ζ−1)Z[ζ] is the unique prime ideal of Q(ζ)
above p. On the other hand, ζ−u = (1 + (ζ − 1))−u ≡ 1− (ζ − 1)u (mod p2),
so that ζ−uα ≡ 1 (mod p2); hence ζ−uα is a primary element in the sense of
Eisenstein reciprocity (see Definition 3.6.34, where � must be replaced by p
and L by p).

Since p � y and q | y, we have q �= p, and it is immediate to check that
q � N (α), since y is coprime to x and z. Thus applying Eisenstein’s reciprocity
law (Theorem 3.6.38) we have(

q

ζ−uα

)
p

=
(

ζ−uα

q

)
p

=
(

ζ

q

)−u

p

(
α

q

)
p

.

Since ζ−uαZ[ζ] = ap for some ideal a, by definition we have
(

q
ζ−u α

)
p

=(
q
a

)p
p

= 1 since
( ·

a

)
p

has order p. Furthermore, since q | y we have x + ζy =
x + y + y(ζ − 1) ≡ x + y (mod qZ[ζ]), hence α ≡ (x + y)p−1 (mod qZ[ζ]).
Since the value of

(
α
q

)
p

depends only on the class of α in Z[ζ]/qZ[ζ], and

since (x + y)p−1 ≡ 1 (mod p) is trivially a primary element, it follows once
again from Eisenstein reciprocity that(

α

q

)
p

=
(

(x + y)p−1

q

)
p

=
(

q

(x + y)p−1

)
p

= 1 ,

because the ideal (x + y)Z[ζ] is a pth power. Combining all these relations
we deduce that

(
ζ
q

)u
p

= 1.
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Let qZ[ζ] =
∏

1�i�g qi be the prime ideal decomposition of q in Z[ζ], so
that N (qi) = qf and g = (p − 1)/f for some f | (p − 1). By definition, for
any q = qi we have (

ζ

q

)
p

≡ ζ(qf −1)/p (mod q) ,

and since both sides are pth roots of unity and p and q are distinct primes it
follows that we have equality in the above congruence, hence by multiplica-
tivity that (

ζ

q

)
p

= ζg(qf −1)/p .

It follows that the identity
(

ζ
q

)u
p

= 1, which we have proved above, is equiv-

alent to ug(qf − 1)/p ≡ 0 (mod p). Since g | (p − 1), p � g, and since p � y
and p � (x + y), we have p � u. It follows that qf ≡ 1 (mod p2), proving the
theorem since f | (p− 1). ��

Corollary 6.9.10 (Wieferich). If FLT I for a prime exponent p � 3 has a
nonzero solution then 2p−1 ≡ 1 (mod p2).

Proof. Indeed, if xp + yp = zp with p � xyz, then exactly one of x, y,
and z is even. We may thus assume that 2 | y, so the result follows from the
theorem. ��

Remarks. (1) The only known values of p such that 2p−1 ≡ 1 (mod p2)
are p = 1093 and p = 3511, and there are no others up to 1.25 · 1015.
On simple probabilistic grounds it is however believed that there exist
infinitely many, and that their number up to X should be on the order
of log(log(X)).

(2) Wieferich’s criterion has been generalized by many authors, replacing
2 by larger integers, and it is by combining these criteria that FLT I
has been proved by “classical” methods up to 1018 as has already been
mentioned.

6.9.7 General Prime n: The Second Case

The second case of FLT, denoted by FLT II, is more difficult for several
reasons. We begin with a p-adic remark.

Proposition 6.9.11. For every prime number � there exist nonzero elements
α, β, and γ in Z� such that αβγ ≡ 0 (mod �) and αp + βp = γp.

Proof. Set F (X) = Xp + �p − 1. Assume first that � �= p. Then F (X) ≡
(X − 1)(Xp−1 + · · · + 1) (mod �). Since � �= p, it follows that 1 is a simple
root of F (X) ≡ 0 (mod �), so by Hensel’s lemma (Proposition 4.1.37) F (X)
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has a root α ∈ Z�, thus proving the proposition in this case with β = � and
γ = 1. Assume now that � = p. Then |F (1)|p = p−p and |F ′(1)|p = p−1.
Since p � 3, we can once again conclude from Hensel’s lemma that F (X) has
a root in Zp, proving the proposition. ��

We keep the notation of the first case. We begin with two results of Kum-
mer on units.

Lemma 6.9.12. Let p be a prime number, let ζ = ζp be a primitive pth
root of unity, let K = Q(ζ), and let π = 1 − ζ generate the prime ideal p

of ZK such that pZK = pp−1. Let β ∈ ZK be prime to p and assume that
the congruence αp

0 ≡ β (mod pp) has a solution in ZK , or even in Zp. If
L = K(β1/p), then p is unramified in the extension L/K.

Proof. Assume first that αp
0 ≡ β (mod pp+1). Since the absolute ramifica-

tion index e = e(p/p) is equal to p−1, Lemma 4.1.41 with r = 2 tells us that
there exists a p-adic unit α such that β = αp. Thus the polynomial Xp−β is
totally split in Kp, and since by Theorem 4.4.41 the splitting of a prime ideal
p in L/K mimics the splitting of the defining polynomial of L/K in Kp, it
follows that p is totally split in L/K, and in particular is unramified.

Assume now that vp(β − αp
0) = p. Since the statement is trivial when

L = K, we may assume that L �= K. Set η = (β1/p−α0)/π, so that L = K(η).
The minimal monic polynomial f(X) of η over K is

((πX + α0)p − β)/πp ≡ Xp + pπαp−1
0 /πpX + (αp

0 − β)/πp (mod p) .

Since this polynomial is monic and all its coefficients are p-integral (recall that
p/πp−1 is even a p-adic unit), it follows that η is p-integral (more correctly
P-integral for any prime ideal P of L above p, but it is shorter to talk this
way), and since the only prime ideals that can divide the denominator of η
are divisors of p, it follows that η ∈ ZL. Now recall that the discriminant of
η is up to sign the resultant of f(X) with f ′(X). However, since p/πp−1 is a
p-adic unit, the formula above shows that for any x ∈ ZL we have f ′(x) ≡
pxp−1 + p/πp−1αp−1

0 ≡ p/πp−1αp−1
0 �≡ 0 (mod p), so that the discriminant

of η is coprime to p. Since L = K(η), the relative discriminant ideal of the
extension L/K divides that of η, hence is prime to p, so that p is unramified
in L/K as claimed. In fact, in this case it is not difficult to show that p is
inert in L/K. ��

Corollary 6.9.13. Let p be a regular prime, and let ε be a unit of K such
that the congruence ε ≡ αp (mod πp) has a solution in ZK . Then ε = up for
some u ∈ ZK (necessarily a unit).

Proof. Assume the contrary, and consider the extension L = K(ε1/p).
Since ε is not a pth power and ζ ∈ K it follows that L/K is a cyclic extension
of degree p (the simplest case of a Kummer extension). The relative ideal
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discriminant of this extension divides the discriminant of the polynomial
Xp− ε, which is equal to (−1)(p−1)/2ppεp−1. Since ε is a unit, it follows that
it divides ppZK , hence that p = πZK is the only prime ideal that can divide
it. However, by the above lemma, under the above conditions we know that
even p is unramified. Thus no finite prime can ramify in the extension L/K,
and since K is totally complex, L/K is an unramified Abelian extension.
Applying one of the basic results of class field theory, this tells us that L/K
is a subextension of the Hilbert class field H/K. In particular, p = [L : K]
divides hp = [H : K], contrary to the assumption that p is a regular prime.

��

The above proof using quite elementary results of class field theory is very
simple. A direct proof without using class field theory would take two pages
and be much more painful.

We now begin the proof of FLT II for regular primes. We will use Fermat’s
method of infinite descent. For this to work we need to study an equation
that will descend to itself, so we will prove a stronger result.

Proposition 6.9.14. Let p � 3 be a regular prime, and recall that π = 1− ζ
and p = πZK . There are no solutions to xp + yp = εzp with x, y, z in ZK ,
with p | z, p � xy, and ε a unit of K. In particular, FLT II holds.

Proof. Assume the contrary. We again write the equation in the form

(x + y)(x + ζy) · · · (x + ζp−1y) = εzp .

At least one of the factors on the left must be divisible by p, so all of them
are. On the other hand, if q is any ideal of ZK , it is clear that if i �= j, q

divides both (x + ζiy)ZK and (x + ζjy)ZK if and only if both x + ζiy and
x + ζjy belong to q, which implies that πy and πx belong to q, hence that
q divides pa, where a is the ideal GCD of xZK and yZK . But conversely, a

clearly divides both (x+ ζiy)ZK and (x+ ζjy)ZK and is coprime to p since x
and y are, so that pa divides both. We have thus proved that the ideal GCD
of any two distinct factors in the above product is equal to pa. In particular,
the p residues modulo p of the (x+ζjy)/π are all distinct, and since ZK/p has
p elements, these residues form a complete system of representatives modulo
p. In particular, exactly one of them is divisible by p. Changing y into yζj

for some j, we may assume that p2 | (x + y). It follows that vp(x + ζjy) = 1
for 1 � j � p − 1, hence that vp(x + y) = p(n − 1) + 1, where n = vp(z). In
particular, we see that n � 2.

Since the product of the ideals (x + ζjy)ZK is the pth power of an ideal
and since the GCD of any two is equal to pa, it follows that there exist ideals
bj such that (x + ζjy)ZK = pab

p
j for 0 � j � p − 1. Now, we know that

in any ideal class there exists an integral ideal coprime to any fixed ideal.
In particular, we can find an integral ideal c0 belonging to the ideal class of
a−1b

−1
0 and coprime to p. We set c = ac0, which is still coprime to p and
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belongs to the ideal class of b
−1
0 . Since ab

p
0 = ((x + y)/π)ZK and cb0 are

principal ideals, it follows that a−1cp = (ab
p
0)

−1(cb0)p is a principal ideal
βZK , say, and β ∈ ZK since a | c. Multiplying by β/π our p equations, we
obtain

((βx + ζjβy)/π)ZK = (cbj)p .

Thus the pth power of the ideal cbj is a principal ideal, and since p is a regular
prime, as in FLT I we deduce that cbj itself is a principal ideal αjZK , so that
for some units εj we have

βx + ζjβy = πεjα
p
j .

Recall that a and c are prime to p; hence so is β. Since we know vp(x + ζjy)
for all j, we deduce that αj is prime to p for 1 � j � p − 1, and that
vp(α0) = n − 1. Adding to the equation for j = 1 ζ times the equation for
p− 1 we obtain

(1 + ζ)β(x + y) = π(ε1α
p
1 + ζεp−1α

p
p−1) ,

and since the equation for j = 0 gives β(x + y) = πε0α
p
0, we get

ε1α
p
1 + ζεp−1α

p
p−1 = (1 + ζ)ε0α

p
0 .

Since n � 2, vp(α0) = n − 1, and vp(αj) = 0 for 1 � j � p − 1, it follows
that ζεp−1ε

−1
1 ≡ (−α1/αp−1)p (mod pp). Now by the crucial Corollary 6.9.13

proved above, this implies that ζεp−1ε
−1
1 = ηp for some unit η. Note that this

is really the only difficult step in the proof, the rest being quite standard and
automatic. Thus, dividing by ε1 we obtain

αp
1 + (ηαp−1)p = (1 + ζ)ε0ε

−1
1 αp

0 ,

where we note that (1 + ζ)ε0ε
−1
1 is a unit, for instance because (1 + ζ)(ζ +

ζ3 + · · ·+ζp−2) = −1. We have thus obtained a new solution to our Diophan-
tine equation xp + yp = εzp, such that vp(z) = vp(α0) = n − 1. If we had
started with a solution for which vp(z) was minimal, we would have obtained
a solution with a strictly smaller value of vp(z), a contradiction, proving the
first statement of the proposition. In addition, if xp + yp = zp with p | x for
instance, we can write instead yp +(−z)p = (−x)p, so we may always assume
in FLT II that p | z, proving the second statement, hence FLT in general for
a regular prime. ��

Remark. Denote by h+
p the class number of the totally real subfield K+ =

Q(ζ + ζ−1) of K. By Proposition 3.5.21, we know that h+
p | hp. It can be

shown that if the much weaker condition p � h+
p is satisfied then it is not

difficult to check whether FLT holds. The advantage of this is that in fact we
do not know of any p such that p | h+

p . The hypothesis that such p do not exist
is known as Vandiver’s conjecture. It is however believed among experts that
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this conjecture is probably false, although the smallest counterexample may
be rather large (it has been verified up to several million). The problem with
this is that, although as already mentioned, there is an algorithm to verify
FLT I, if one finds a p such that p | h+

p (a counterexample to Vandiver’s
conjecture) it may be that one does not know of any way to prove FLT using
classical methods (i.e., not using Wiles) for that p.

6.10 An Example of Runge’s Method

Descriptions of this method can be found in [Ten] and [Wals]. We will only
give a typical example, and note that we will again use this method in the
context of Catalan’s equation; see Section 6.11. We begin with the following
lemma, which is typical of Diophantine approximation techniques in which
we need to bound both the denominator and the absolute value of certain
coefficients.

Lemma 6.10.1. Let S(X) =
∑

k�0 skXk be a power series with integral
coefficients such that s0 = 1 and not identically equal to 1, let d � 2 be an
integer, and write S(X)1/d =

∑
k�0 akXk with a0 = 1. Then

(1) We have Dkak ∈ Z, where Dk = dk
∏

p|d pvp (k!).
(2) Let k0 be the smallest strictly positive index such that sk0 �= 0, and assume

that there exists a prime p dividing d such that vp(sk0) = 0. Then when
k0 | k we have vp(ak) = −(kvp(d) + vp(k!)).

(3) Assume that S has a nonzero radius of convergence R in C, and let
M = inf |z|<R, S(z)=0 |z| be the infimum of the zeros of S(z) in the open
disk of radius R if there exists such a zero (otherwise, let M be arbitrary
such that 0 < M < R), and finally let N =

∑
k�0 |sk|Mk. Then M � 1,

and for all k we have the inequality |ak| � N1/dM−k.

Proof. (1). Set g(X) =
∑

k�1 skXk and write g(X)j =
∑

k�j gj,kXk. We
have

S(X)1/d = (1 + g(X))1/d = 1 +
∑
j�1

(
1/d

j

)∑
k�j

gj,kXk

= 1 +
∑
k�1

Xk
∑

1�j�k

(
1/d

j

)
gj,k ,

so that ak =
∑

1�j�k

(
1/d
j

)
gj,k. Since gj,k ∈ Z, Lemma 4.2.8 implies that

Dkak ∈ Z with Dk =
∏

p|d pkvp (d)+vp (k!), proving (1).

(2). We have g(X) =
∑

k�k0
skXk, hence g(X)j =

∑
k�jk0

gj,kXk with
gj,jk0 = sj

k0
, and ak =

∑
1�j�k/k0

(
1/d
j

)
gj,k. By Lemma 4.2.8, if p | d we have

vp(
(
1/d
j

)
) = −(jvp(d) + vp(j!)), which is a strictly decreasing function of j.
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Since vp(gk/k0,k) = (k/k0)vp(s0) = 0, it follows that vp(ak) = −(kvp(d) +
vp(k!)), proving (2).

(3). First note that the series S defines an analytic function for |z| < R,
so S(z) has only a finite number of zeros in this disk, and since S(0) = 1
we deduce that 0 < M < R. I claim that M � 1. We consider two cases. If
S(X) is not a polynomial, then sk �= 0 for an infinity of k, and since sk ∈ Z
it follows that R � 1, so that M < R � 1. On the other hand, if S(X) is
a polynomial of degree n, say, then the product of the roots of S is equal
to (−1)n/sn, and since sn ∈ Z we have |(−1)n/sn| � 1, so at least one root
must have a modulus less than or equal to 1, as claimed.

To obtain an inequality for |ak| we simply apply Cauchy’s formula. If Cr

denotes the circle of radius r centered at the origin, then if r < M we have

ak =
1

2iπ

∫
Cr

S(z)1/d

zk+1
dz ,

since S(z) has no zeros or poles in |z| � r, so that we can choose a fixed
determination of the logarithm to define S(z)1/d = exp(log(S(z))/d). Thus

|ak| � r−k

(
sup
|z|=r

|S(z)|
)1/d

� N1/dr−k .

Since this is true for all r < M we obtain (3). ��

We also need the following completely elementary lemma.

Lemma 6.10.2. Assume that for some integer d � 1 and real numbers a,
b, and r we have the inequality (a − r)d < b < (a + r)d. Then we have
| sign(r)b1/d − a| < |r|.

Proof. If d is odd, then a − r < b1/d < a + r (where from now on,
b1/d denotes the unique dth root of b when d is odd), so that r > 0 and
|b1/d − a| < r. If d is even then b > 0 and |a − r| < b1/d < |a + r| (where
from now on b1/d denotes the unique positive dth root of b when d is even and
b > 0). The first inequality gives r−b1/d < a < r+b1/d. The second inequality
gives a > −r + b1/d or a < −r − b1/d. If r > 0 the inequalities a > r − b1/d

and a < −r − b1/d are incompatible, so that −r + b1/d < a < r + b1/d; in
other words, once again |b1/d − a| < r. If r < 0 the inequalities a < r + b1/d

and a > −r + b1/d are incompatible, so that r − b1/d < a < −r − b1/d; in
other words, |b1/d + a| < |r|. ��

Proposition 6.10.3. Let f(X) =
∑

0�i�n fiX
i ∈ Z[X] be a monic polyno-

mial of degree n, let r � 2 be an integer, set d = gcd(r, n), m = n/d, and let
h(X) be the polynomial of degree m obtained by truncating the power series
expansion in 1/X of f(X)1/d. We assume that f(X) is not identically equal
to h(X)d (so that in particular d > 1). Let U (respectively L) be the largest
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(respectively smallest) real number that is a root of one of the two polynomials
g1(X) = f(X)− (h(X)− 1/Dm)d and g−1(X) = f(X)− (h(X) + 1/Dm)d.

(1) If (x, y) is an integral solution to the Diophantine equation yr = f(x) then
either L � x � U or x is a root of the nonzero polynomial f(x)− h(x)d.

(2) Let k0 be the largest index such that k0 < n with fk0 �= 0 (which must
exist; otherwise, f(X) = (Xn/d)d is a dth power), and assume that (n−
k0) | m. If in addition there exists a prime p | d such that vp(fk0) = 0
then when x ∈ Z we have f(x)−h(x)d /∈ Z, and in particular f(x)−h(x)d

has no integral roots.

Proof. By definition of h(x) we formally have f(X)1/d = h(X)+O(1/X);
hence for a = ±1 we obtain ga(X) = (da/Dm)Xn−m + O(Xn−m−1), so that
the degree of ga(X) is equal to n−m and the sign of its leading term is equal
to a.

If x > U we have g1(x) > 0 and g−1(x) < 0, in other words (h(x) −
1/Dm)d < f(x) < (h(x)+1/Dm)d, so by the above lemma |f(x)1/d−h(x)| <
1/Dm. Similarly, if x < L we have sign(g1(x)) = (−1)n−m and sign(g−1(x)) =
(−1)n−m−1, so if n−m is even we obtain the same conclusion, while if n−m
is odd we have (h(x) + 1/Dm)d < f(x) < (h(x) − 1/Dm)d; hence by the
above lemma |f(x)1/d +h(x)| < 1/Dm, and this can happen only if d is even.
Thus in any case when x > U or x < L there exists ε1 = ±1 such that
|f(x)1/d − ε1h(x)| < 1/Dm, and we have εd

1 = 1.
Now let (x, y) be an integral solution to yr = f(x) with x > U or x < L.

Writing Y = yr/d we see that f(x)1/d = ε2Y ∈ Z, where ε2 = ±1 is such
that εd

2 = 1. If we set I = ε2DmY − ε1Dmh(x) it follows from the above
inequality that |I| < 1. On the other hand, by Lemma 6.10.1 applied to the
series S(X) = Xnf(1/X) and the fact that Dk | Dm if k � m, we know that
Dmh(X) ∈ Z[X], so that Dmh(x) ∈ Z, so I ∈ Z. Since |I| < 1 it follows
that I = 0, in other words Y = ε1ε2h(x). Since εd

1 = εd
2 = 1 we thus have

f(x) = Y d = h(x)d, so that x is a root of the nonzero polynomial f(x)−h(x)d,
proving (1).

For (2), let x ∈ Z be such that f(x) − h(x)d ∈ Z, so that h(x)d ∈
Z. Since h(X) ∈ Q[X], h(x) ∈ Q and h(x) is an algebraic integer, so
that h(x) ∈ Z. However, with the notation of Lemma 6.10.1, we have
h(x) =

∑
0�k�m akxm−k, and since k0 | m we have by the lemma vp(am) =

−(mvp(d) + vp(m!)), while for k < m we have

vp(akxm−k) � vp(ak) � −(kvp(d)+vp(k!)) > −(mvp(d)+vp(m!)) = vp(am) .

Thus vp(h(x)) = vp(am) < 0, so h(x) /∈ Z, a contradiction. ��

Remarks. (1) It is easy to see that the type of reasoning used in the proof
can be generalized as soon as we are able to compute y (or some integral
power of y) as a formal power series in x. This is the case, for instance, for
hyperelliptic equations of the form y2 = f(x) with f ∈ Z[X], the leading
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term of f(X) being of the form a2X2k for a ∈ Z. More generally still,
the method can easily be extended to equations of the form g(y) = f(x),
where f and g are monic polynomials of noncoprime degree (see Exercise
50).

(2) More generally, let E ∈ Q be some expression involving a possible solution
to a Diophantine equation. Then we say that we use Runge’s method if
on the one hand we find some analytic bound of the form |E| < ε for
some small ε, say, and on the other hand, if we can find an arithmetic
bound D for the denominator of E. Then if Dε < 1 we deduce as above
that E = 0, leading to very strict restrictions on the possible solution.

(3) It has not been necessary to use the bounds for ak obtained in Lemma
6.10.1, since we can obtain much better inequalities for x directly as we
have done above. In other situations, however, these bounds (or stronger
ones obtained by similar methods) are the only available ones.

(4) Clearly this type of method can apply only to the search for integer
solutions to Diophantine equations, and not rational solutions.

(5) The above method cannot apply to equations yr = f(x) in which r and n
are coprime (for instance, think of the problem of finding integral points
on elliptic curves y2 = x3 + ax + b), or to such equations in which f
is nonmonic with a leading term not an exact rth power (for instance,
think of the “trivial” Pell equation y2 = dx2 + 1).

As an example, we have the following:

Corollary 6.10.4. (1) The only integer solutions to y2 = x4+x3+x2+x+1
are (x, y) = (−1,±1), (0,±1), and (3,±11).

(2) The only integer solutions to y2 = x6 − x4 + 1 are (x, y) = (±2,±7),
(x, y) = (±1,±1), and (0,±1).

Proof. For (1), we easily find that L = −1 and U = 3, and the second
condition is satisfied with k0 = 3. Thus we need only look at −1 � x � 3 to
prove the corollary, which is immediate. We leave (2) to the reader (Exercise
49). ��

6.11 First Results on Catalan’s Equation

I am very much indebted to Yu. Bilu and R. Schoof for help in writing this
section and showing me their simplifications of the proofs of Cassels’s and
Ko Chao’s theorems. I also invite the reader to read the notes of M. Mischler
available on the Web [Boe-Mis].

6.11.1 Introduction

Catalan’s conjecture, now a theorem, is the following:
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Theorem 6.11.1 (Mihăilescu). If n and m are greater than or equal to 2
the only nonzero integral solutions to

xm − yn = 1

are m = 2, n = 3, x = ±3, y = 2.

This conjecture was formulated by Catalan in 1844 (see [Cat]) and re-
ceived much attention. As already mentioned in Chapter 1, it was finally
solved in 2002 by P. Mihăilescu. Complete proofs are available on the Web
and at least two books are being written on the subject. We will prove this
conjecture in two parts. First, in this section we prove the classical results
of Cassels on the subject (see [Cas3]), which are essential for the final proof.
Then in Chapter 16 the reader will find Mihăilescu’s complete proof of the
conjecture in an essentially self-contained form except that we will have to
assume the validity of an important theorem of F. Thaine.

First, as for FLT we may evidently restrict ourselves to the case that
m and n are prime numbers (we do not have to treat the special case n or
m equal to 4 since the conjecture is enunciated also for n = 2 or m = 2).
In addition, the conjecture is clearly true if m = n; see Exercise 55. Thus,
Mihăilescu’s theorem can be stated as follows:

Theorem 6.11.2 (Mihăilescu). Let p and q be distinct primes, and let x
and y be nonzero integers such that xp− yq = 1. Then p = 2, q = 3, x = ±3,
and y = 2.

Note that we have already proved this theorem for q = 2 (see Proposition
6.7.12). We will prove it for p = 2 below (see Theorem 6.11.8).

Since we can write yq = (x− 1)((xp− 1)/(x− 1)), we can expect as usual
that each factor on the right will be close to a qth power. Indeed, first note
the following.

Lemma 6.11.3. Let p be prime, let x ∈ Z be such that x �= 1, and set
rp(x) = (xp − 1)/(x− 1).

(1) If p divides one of the numbers (x− 1) and rp(x) it divides both.
(2) If d = gcd(x− 1, rp(x)) then d = 1 or d = p.
(3) If d = p and p > 2, then rp(x) ≡ p (mod p2).

Proof. Expanding rp(x) = ((x − 1 + 1)p − 1)/(x − 1) by the binomial
theorem we can write

rp(x) = (x− 1)p−1 + p + (x− 1)
p−2∑
k=1

(
p

k + 1

)
(x− 1)k−1 ,

and all three results of the lemma immediately follow from this and the fact
that p |

(
p

k+1

)
for 1 � k � p− 2. Note that (3) is trivially false for p = 2. ��
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Corollary 6.11.4. Let (x, y, p, q) be such that xp−yq = 1. Then gcd(rp(x), x−
1) = p if p | y and gcd(rp(x), x− 1) = 1 otherwise.

Proof. Since yq = (x− 1)rp(x) it follows that p | y if and only if p divides
either x− 1 or rp(x), hence by the above lemma, if and only if gcd(rp(x), x−
1) = p. ��

The fundamental result of Cassels is the following.

Theorem 6.11.5 (Cassels). Let p and q be primes, and let x and y be
nonzero integers such that xp − yq = 1. Then p | y and q | x.

Thus the case gcd(rp(x), x− 1) = 1 of the above corollary does not hap-
pen. The proof of this theorem is the object of the next subsections, but we
immediately give the most important consequence.

Corollary 6.11.6. If x and y are nonzero integers and p and q are odd
primes such that xp−yq = 1, there exist nonzero integers a and b and positive
integers u and v with q � u and p � v such that

x = qbu, x− 1 = pq−1aq,
xp − 1
x− 1

= pvq,

y = pav, y + 1 = qp−1bp,
yq + 1
y + 1

= qup .

Proof. Since p | y, by the above corollary we have gcd(rp(x), x − 1) =
p, so by Lemma 6.11.3 (3) we have rp(x) ≡ p (mod p2), and in particular
vp(rp(x)) = 1. Thus the relation yq = (x − 1)rp(x) implies that there exist
integers a and v with p � v such that x − 1 = pq−1aq, rp(x) = pvq; hence
y = pav, and since rp(x) > 0, we also have v > 0. This shows half of the
relations of the theorem, and the other half follow by symmetry, changing
(x, y, p, q) into (−y,−x, q, p) and noting that p and q are odd. ��

6.11.2 The Theorems of Nagell and Ko Chao

Since by Proposition 6.7.12 we know that the equation xp − yq = 1 has
no solutions with xy �= 0 for q = 2, we may assume that q �= 2. The first
important step, due to Nagell, is to prove Theorem 6.11.5 for p = 2. This
will enable us to finish the proof of Catalan’s conjecture in that case (or
equivalently, of the equation y2 = xn + t with t = 1).

Proposition 6.11.7 (Nagell). If x and y are nonzero integers and q is a
prime such that x2 − yq = 1 then 2 | y and q | x.

Proof. As already mentioned, we may assume that q �= 2, and since xy �= 0,
we have y > 0 and we may assume x > 0. If y is odd, then x is even, so x− 1
and x+1 are coprime, and since (x−1)(x+1) = yq this means that x−1 and
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x + 1 are both qth powers, which is impossible since two distinct qth powers
cannot differ by 2. Thus 2 | y.

Assume by contradiction that q � x. From the equality x2 = (y +
1)rq(−y) = (y + 1)((yq + 1)/(y + 1)) and Lemma 6.11.3, we deduce that
y + 1 and (yq + 1)/(y + 1) (which are positive) are both squares, so we write
y + 1 = a2, (yq + 1)/(y + 1) = b2, so that x = ab, with a > 0, b > 0. In
particular, since y �= 0, y is not a square.

On the other hand, if α = x + y(q−1)/2√y ∈ Z[
√

y], then the norm of α is
equal to 1, and α is an algebraic integer, so it is a unit of the order Z[

√
y]. By

Proposition 6.3.16 we know that the group of units of a real quadratic order
is equal to {±1} times an infinite cyclic group. Furthermore, ε = a +

√
y

is clearly a fundamental unit (i.e., a generator strictly greater than 1 of the
infinite cyclic group): indeed, let ε0 = u + v

√
y be the fundamental unit, so

that ε = εk
0 for some k. Then ε0 − ε0 = 2v

√
y divides εk

0 − εk
0 = 2

√
y; hence

v | 1, so v = 1 and ε = ε0 as claimed. It follows that there exists k > 0 such
that

x + y(q−1)/2√y = (a +
√

y)k .

We first reduce this equation modulo y. We obtain x ≡ ak + kak−1√y
(mod yZ[

√
y]), in other words y | ak − x and y | kak−1, and since y and

a are coprime, y | k. Since y is even, it follows that k is even.
We now reduce the above equality modulo a, using x = ab ≡ 0 (mod a)

and y = a2− 1 ≡ −1 (mod a), so we obtain (−1)(q−1)/2√y ≡ yk/2 ≡ (−1)k/2

(mod aZ[
√

y]), in other words a | 1, so a = 1, contradicting the assumption
y �= 0. ��

We can now easily prove the theorem of Ko Chao (see [Ko]), using a proof
due to E. Chein.

Theorem 6.11.8 (Ko Chao). If q is prime there are no nonzero solutions
to the equation x2 − yq = 1 apart from (x, y) = (±3, 2) for q = 3.

Proof. We may clearly assume q �= 2. Furthermore, we have proved in
Corollary 6.4.32 that there are no solutions for q = 3 apart from the given
ones. We may thus assume that q � 5. By Nagell’s result, we know that x is
odd, and we may of course assume x > 0. Choose ε = ±1 such that x ≡ ε
(mod 4). As in the proof of Corollary 6.11.6 the equality (x− ε)(x + ε) = yq

with v2(x+ε) = 1 implies that there exist positive integers a and b such that
x− ε = 2q−1aq and x+ ε = 2bq. Since q � 5 we have aq = (bq− ε)/2q−2 < bq,
so that a < b. On the other hand, we have

(b2−2εa)
b2q − (2εa)q

b2 − 2εa
= b2q−(2εa)q =

(
x + ε

2

)2

−2ε(x−ε) =
(

x− 3ε

2

)2

.

By Nagell’s proposition above, we know that q | x. Since q � 5, it follows that
q � (x−3ε)/2; hence by Lemma 6.11.3 the two factors on the left are coprime,
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hence are both squares. However, since we have seen above that a < b, and
a > 0, we have

(b− 1)2 = b2 − 2b + 1 < b2 − 2a < b2 < b2 + 2a < b2 + 2b + 1 = (b + 1)2 ,

which shows that b2 − 2εa cannot be a square, a contradiction. ��

6.11.3 Some Lemmas on Binomial Series

Before proceeding to the proof of Cassels’s theorem below we need an arith-
metic result and two analytic results. The arithmetic result is the following.

Lemma 6.11.9. Set w(j) = j + vq(j!). Then qw(j)
(
p/q
j

)
is an integer not

divisible by q, and w(j) is a strictly increasing function of j.

Proof. By Lemma 4.2.8 (2) (a) and (c), we know that
(
p/q
j

)
is an �-adic

integer for � �= q, and that its q-adic valuation is equal to −w(j), proving the
first assertion. Since w(j +1)−w(j) = 1+ vq(j +1) � 1 the second assertion
is also clear. ��

The first analytic result that we need is the following.

Lemma 6.11.10. (1) For all x > 0 we have (x + 1) log(x + 1) > x log(x).
(2) Let b ∈ R>1. The function (bt + 1)1/t is a decreasing function of t from

R>0 to R>0 and the function (bt − 1)1/t is an increasing function of t
from R>0 to R>0.

(3) Assume that q > p ∈ R>0. If a ∈ R�1 then (aq + 1)p < (ap + 1)q and if
a ∈ R>1 then (aq − 1)p > (ap − 1)q.

Proof. Since log(x) is an increasing function of x and log(x + 1) > 0 we
have (x + 1) log(x + 1) > x log(x + 1) > x log(x), so (1) is clear. For (2), we
note that for ε = ±1 the derivative of the logarithm of (bt + ε)1/t is equal
to bt log(bt) − (bt + ε) log(bt + ε),n which has the sign of −ε by (1), so (2)
follows. Applying the first inequality of (2) to t = p and t = q, we deduce
that (aq + 1)1/q < (ap + 1)1/p, giving the first inequality of (3) for a > 1,
and the second follows similarly. Note that the first inequality of (3) is also
trivially true if a = 1. ��

The second analytic result that we need is more delicate.

Lemma 6.11.11. Assume that p > q, set F (t) = ((1 + t)p − tp)1/q, let
m = �p/q	+ 1, and denote by Fm(t) the sum of the terms of degree less than
or equal to m in the Taylor series expansion of F (t) around t = 0. Then for
all t ∈ R such that |t| � 1/2 we have

|F (t)− Fm(t)| � |t|m+1

(1− |t|)2 .
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Proof. Set G(t) = (1+ t)p/q. It is clear that the Taylor coefficients of F (t)
and G(t) around t = 0 are the same to order strictly less than p, and in
particular to order m since m � p/3 + 1 < p (since p � 5). In what follows,
assume that |t| < 1. By the Taylor–Lagrange formula applied to the functions
x1/q and G(x) respectively there exist t1 and t2 such that

|F (t)− Fm(t)| � |F (t)−G(t)|+ |G(t)− Fm(t)|

� |t|p
q

t
1/q−1
1 + |t|m+1 1

(m + 1)!
G(m+1)(t2)

� |t|p
q

t
1/q−1
1 + |t|m+1

(
p/q

m + 1

)
(1 + t2)p/q−m−1 ,

with t1 between (1 + t)p and (1 + t)p − tp, and t2 between 0 and t. Now
note that p/q < m � p/q + 1, so that −1 � p/q −m < 0 and for all j � 1
0 < p/q − (m− j) = j − (m− p/q) < j; hence

0 <
∏

1�j�m

(p/q − (m− j)) <
∏

1�j�m

j = m! .

It follows that∣∣∣∣( p/q

m + 1

)∣∣∣∣ = (m− p/q)
m + 1

∏
1�j�m(p/q − (m− j))

m!
� 1

m + 1
.

Since 1/q − 1 < 0 and p/q − m − 1 < 0 we must estimate t1 and 1 + t2
from below. If t > 0 both (1 + t)p and (1 + t)p − tp are greater than 1, so
t1 > 1 > 1 − tp. If t < 0 then (1 + t)p = (1 − |t|)p and (1 + t)p − tp =
(1− |t|)p + |t|p > (1− |t|)p, so that t1 > (1− |t|)p in all cases. On the other
hand, we have trivially |1 + t2| � 1 − |t|. Putting everything together we
obtain

|F (t)− Fm(t)| � |t|p
q

(1− |t|)−p+p/q +
|t|m+1

m + 1
(1− |t|)p/q−m−1 .

The above inequality is valid for all t such that |t| < 1. If we assume that
|t| � 1/2 then |t|p−m−1 � (1 − |t|)p−m−1 (since m � p− 1), so that |t|p(1 −
|t|)−p+p/q � |t|m+1(1− |t|)p/q−m−1. It follows that

|F (t)− Fm(t)| �
(

1
q

+
1

m + 1

)
|t|m+1(1− |t|)p/q−m−1 .

Since p/q −m− 1 � −2 and 1/q + 1/(m + 1) � 1 the lemma follows. ��

6.11.4 Proof of Cassels’s Theorem 6.11.5

We now prove Cassels’s theorem saying that if p and q are primes and xp −
yq = 1 with xy �= 0 then q | x and p | y. We have already seen that the
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case p = q is impossible. By Proposition 6.7.12 the case q = 2 is impossible,
and Nagell’s Proposition 6.11.7 is the special case p = 2 (in fact in this case
Ko Chao’s Theorem 6.11.8 shows that the only nontrivial solutions occur for
(x, y) = (±3, 2) and q = 3). We may thus assume that p and q are distinct
odd primes. It is then sufficient to prove that p | y since when p and q are
odd we can change (p, q, x, y) into (q, p,−y,−x). The proof of Theorem 6.11.5
will be done by considering separately the cases p < q and p > q. We begin
with the case p < q, which is considerably simpler.

Proposition 6.11.12. Let x and y be nonzero integers and p and q be odd
primes such that xp − yq = 1. Then if p < q we have p | y.

Proof. Assume on the contrary that p � y. It follows from Corollary 6.11.4
that x − 1 and rp(x) are coprime, and since their product is a qth power,
they both are. We can thus write x − 1 = aq for some integer a, and a �= 0
(otherwise y = 0) and a �= −1 (otherwise x = 0), so (aq + 1)p − yq = 1.
Consider the function f(z) = (aq +1)p−zq−1, which is trivially a decreasing
function of z. Assume first that a � 1. Then f(ap) = (aq + 1)p − apq − 1 > 0
by the binomial expansion, while f(ap +1) = (aq +1)p− (ap +1)q− 1 < 0 by
(3) of Lemma 6.11.10. Since f is strictly decreasing it follows that the root
of f(y) = 0 is not an integer, a contradiction. Similarly, assume that a < 0,
so that in fact a � −2, and set b = −a. Then since p and q are odd, f(ap) =
(aq + 1)p − apq − 1 = −((bq − 1)p − bpq + 1) > 0 by the binomial expansion,
while f(ap + 1) = (aq + 1)p− (ap + 1)q − 1 = −((bq − 1)p− (bp− 1)q + 1) < 0
again by (3) of the Lemma 6.11.10 since b > 1. Once again we obtain a
contradiction, proving the proposition. ��

The following corollary, essentially due to S. Hyyrö, will be used for the
case p > q.

Corollary 6.11.13. With the same assumptions as above (and in particular
p < q)we have |y| � pq−1 + p.

Proof. Since by the above proposition we have p | y, as in Corollary 6.11.6
we deduce that there exist integers a and v with a �= 0 and v > 0 such
that x − 1 = pq−1ap, (xp − 1)/(x − 1) = pvq and y = pav. Set P (X) =
Xp − 1− p(X − 1). Since P (1) = P ′(1) = 0, it follows that (X − 1)2 | P (X),
hence that (x − 1) | (xp − 1)/(x − 1) − p = p(vq − 1). Since pq−1 | x − 1
it follows that vq ≡ 1 (mod pq−2). However, the order of the multiplicative
group modulo pq−2 is equal to pq−3(p − 1), and since q > p this is coprime
to q. As usual this implies that v ≡ 1 (mod pq−2).

On the other hand, I claim that v > 1. Indeed, assume otherwise that
v = 1, in other words xp−1 + · · · + x + 1 = p. If x > 1 then 2p−1 > p,
so this is impossible. Since p and q are odd primes and a �= 0 we have
|x− 1| = pq−1|a|p � 9, so that when x � 1 we must have in fact z = −x � 8.
But then since p− 1 is even we have
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p = zp−1 − zp−2 + · · ·+ 1 � zp−1(z − 1) � zp−1 � 2p−1 ,

a contradiction that proves my claim. Since v ≡ 1 (mod pq−2), it follows that
v � pq−2 + 1, hence |y| = pav � pv � pq−1 + p, proving the corollary. ��

We now prove the more difficult case p > q of Cassels’s theorem.

Proposition 6.11.14. Let x and y be nonzero integers and p and q be odd
primes such that xp − yq = 1. Then if p > q we have p | y.

Proof. We keep all the notation of Lemma 6.11.11 and begin as for the
case p < q (Proposition 6.11.12): assuming by contradiction that p � y and
using Corollary 6.11.4, we deduce that there exists a ∈ Z \ {0} such that
x− 1 = aq; hence yq = (aq + 1)p − 1, so that y = apF (1/aq). Thus if we set
z = amq−py−amqFm(1/aq) we have z = amq(F (1/aq)−Fm(1/aq)). Applying
Lemma 6.11.11 to t = 1/aq (which satisfies |t| � 1/2 since a �= ±1) we obtain

|z| � |a|q
(|a|q − 1)2

� 1
|a|q − 2

� 1
|x| − 3

.

By Taylor’s theorem we have tmFm(1/t) =
∑

0�j�m

(
p/q
j

)
tm−j , and by

Lemma 6.11.9, D = qm+vq (m!) is a common denominator of all the
(
p/q
j

)
for 0 � j � m. It follows that DamqFm(1/aq) ∈ Z, and since mq � p that
Dz ∈ Z. We now estimate the size of Dz. By Hyyrö’s Corollary 6.11.13 (with
(p, q, x, y) replaced by (q, p,−y,−x)) we have |x| � qp−1 + q � qp−1 + 3, so
by the above estimate for |z| we have

|Dz| � D

|x| − 3
� qm+vq (m!)−(p−1) .

Now for m � 1 we have vq(m!) < m/(q − 1), and since m < p/q + 1 we have

m + vq(m!)− (p− 1) < m
q

q − 1
− (p− 1) =

3− (p− 2)(q − 2)
q − 1

� 0

since q � 3 and p � 5 (note that it is essential that the above inequality be
strict). Thus |Dz| < 1, and since Dz ∈ Z, it follows that Dz = 0. However,
note that

Dz = Damq−py −
∑

0�j�m

D

(
p/q

j

)
aq(m−j) ,

and by Lemma 6.11.9 we have

vq

((
p/q

j

))
< vq

((
p/q

m

))
= vq(D)

for 0 � j � m − 1, so that 0 = Dz ≡ D
(
p/q
m

)
�≡ 0 (mod q) by the same

lemma. This contradiction finishes the proof of the proposition, hence of
Cassels’s theorem. ��
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Remark. The reasoning that we have just used is a special case of Runge’s
method seen in Section 6.10 in a slightly different context.

We have seen that Corollary 6.11.6 summarizes the most important con-
sequences of Cassels’s theorem. For future reference, we note that Hyrrö’s
Corollary 6.11.13 is valid without restriction on p and q:

Proposition 6.11.15. Let p, q be odd primes and x, y be nonzero integers
such that xp − yq = 1. Then |x| � qp−1 + q and |y| � pq−1 + p.

Proof. Since we can change (p, q, x, y) into (q, p,−y,−x), it is enough to
prove the statement for y. If p < q, this is Hyrrö’s result. Otherwise we have
p � q, hence p > q since p �= q. By Cassels’s Corollary 6.11.6 we have y +1 =
qp−1bp, hence |y| � qp−1−1. I claim that when p > q we have qp−1 > pq−1+p,
which will prove the proposition. Indeed, set f(x) = log(x)/(x− 1), so that

f(q)− f(p) =
log(qp−1)− log(pq−1)

(p− 1)(q − 1)
.

The inequality to be proved is thus equivalent to f(q) − f(p) > log(1 +
1/pq−2)/((p− 1)(q − 1)), and since log(1 + x) < x for x > 0, this will follow
from the inequality f(q)− f(p) > 1/(pq−2(p− 1)(q − 1)). Now by the mean
value theorem we have f(q) − f(p) = (q − p)f ′(c) for some c ∈ ]q, p[. We
have f ′(x) = −(x log(x) − (x − 1))/(x(x − 1)2), and this is easily seen to
be strictly negative as soon as x > 1. Furthermore, we easily check that
f ′′(x) > 0 for x � 2; hence it follows that f ′(q) < f ′(c) < f ′(p) < 0, so
that (q − p)f ′(q) > (q − p)f ′(c) > (q − p)f ′(p) > 0 since p > q. It is thus
sufficient to prove that (q − p)f ′(p) > 1/(pq−2(p− 1)(q − 1)), in other words
that (p− q)(q − 1)pq−2(p log(p)− (p− 1))/(p(p− 1)) > 1, or

(p− q)(q − 1)pq−2

(
log(p)
p− 1

− 1
p

)
> 1 .

Now an immediate study shows that for x � 5 we have log(x)/(x− 1) > 2/x.
Since p > q � 3 are odd we have p � 5, hence

(p− q)(q − 1)pq−2

(
log(p)
p− 1

− 1
p

)
> 2(p− q)(q − 1)pq−3 > 1

since q � 3, proving the proposition. ��

6.12 Congruent Numbers

We give a short description of the congruent number problem, and refer to
the excellent book by N. Koblitz [Kob2], which is entirely devoted to that
problem.
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6.12.1 Reduction to an Elliptic Curve

Recall from the introduction that a congruent number is an integer n that is
the area of a right triangle with rational sides (i.e., a Pythagorean triangle).
Since an area is homogeneous of degree 2, it is clear that we can assume
without loss of generality that n is squarefree. For instance, from the well-
known (3, 4, 5) triangle we deduce that n = 6 is a congruent number. Several
problems can be asked about congruent numbers, but the most important
are the following: give a criterion for determining whether a given number n
is congruent; if it is, determine a corresponding Pythagorean triangle. Both
problems are difficult, and we will say a little of what is known about both.

Proposition 6.12.1. A number n is a congruent number if and only if there
exists a rational point on the curve y2 = x(x2 − n2) with y �= 0. More pre-
cisely, if (a, b, c) is a Pythagorean triangle of area n, then the four points
(a(a± c)/2, a2(a± c)/2) and (b(b± c)/2, b2(b± c)/2) are points on the curve
with nonzero y coordinate, and conversely such a point (x, y) gives rise to
a Pythagorean triangle (a, b, c) of area n with a = |y/x|, b = 2n|x/y|, and
c = (x2 + n2)/|y|.

Proof. The proof consists in simple verifications: if for example x = a(a+
c)/2, y = a2(a + c)/2, and n = ab/2 is the area of the triangle, then

x(x2 − n2) = a
a + c

2
a2(a + c)2 − a2b2

4
=

a3(a + c)
8

(a2 + 2ac + c2 − b2)

=
a4(a + c)2

4
= y2 ,

since c2 = a2 + b2. The other cases follow by exchanging a and b and/or
changing c into −c (even if this has little geometrical meaning). Conversely,
if (x, y) is a rational point on the curve with y �= 0 and if a, b, c are as given
in the proposition, then a, b, c are strictly positive, and we have

a2 + b2 =
y2

x2
+ 4n2 x2

y2
=

x2 − n2

x
+

4n2x

x2 − n2
=

(x2 − n2)2 + 4n2x2

x(x2 − n2)

=
(x2 + n2)2

y2
= c2 .

��

Thanks to this proposition, an easy computer search reveals for instance
that the integers n = 5, 6, and 7 are congruent numbers. However, the cor-
responding triangles are not as simple as the one for 6: for n = 5 we find
(for instance) the point (x, y) = (−4, 6), giving the triangle (3/2, 20/3, 41/6);
for n = 7 we find the point (x, y) = (−63/16, 735/64), giving the trian-
gle (35/12, 24/5, 337/60), which is already a little more complicated. On the
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other hand, a more extended computer search does not give any solution for
n = 1, 2, and 3, and indeed these are not congruent numbers. However, this
is more difficult and needs proof. We simply give the example of n = 1.

Proposition 6.12.2. The number n = 1 is not congruent.

Proof. Assume by contradiction that 1 is a congruent number, so that
there exists (x, y) ∈ Q2 with y �= 0 such that y2 = x(x2 − 1). Writing
x = p/q and y = u/v with gcd(p, q) = gcd(u, v) = 1, we obtain (q4/v2)u2 =
pq(p2 − q2). Since gcd(u, v) = 1, it follows that v2 | q4, i.e., v | q2, so that
pq(p2 − q2) is the square of an integer. Since gcd(p, q) = 1, the three factors
are pairwise coprime, so they are all squares. Writing p = p2

1, q = q2
1 , and

p2 − q2 = w2 we obtain the equation p4
1 − q4

1 = w2. By Proposition 6.5.3,
we know that this equation has no nontrivial solutions. Since q �= 0 hence
q1 �= 0, the only possible solution is thus with w = 0, in other words p = ±q,
hence y = 0, a contradiction. ��

6.12.2 The Use of the Birch and Swinnerton-Dyer Conjecture

By Proposition 6.12.1, we know that n is a congruent number if and only if
there exists a point (x, y) on the curve y2 = x(x2−n2) with y �= 0. Such curves
are called elliptic curves, and are among the most beautiful objects in mathe-
matics, certainly in number theory. Fermat noticed in the seventeenth century
(in another language) that such curves, considered in projective coordinates,
have an abelian group law, obtained simply by taking secants and tangents
though known points. This observation was strengthened by Mordell in the
beginning of the twentieth century, who proved that this group is finitely gen-
erated, in other words isomorphic to T × Zr, where T is a finite group. The
group T can easily be determined. For instance, for our curves it is indepen-
dent of n and always isomorphic to Z/2Z× Z/2Z (the elements of T are the
three points with y = 0 together with the point at infinity of projective coor-
dinates (0, 1, 0)). On the other hand, the rank r is in general very difficult to
compute. From Proposition 6.12.1 and our assertion concerning T , it is clear
that n is a congruent number if and only if the rank of the corresponding
elliptic curve is strictly positive. In particular, if n is congruent, i.e., if there
exists a Pythagorean triangle of area n, then there exist infinitely many such
triangles, obtained by taking multiples of the given one for the group law on
the curve (see Exercise 51).

Luckily, the BSD conjecture predicts that the rank r should be equal
to the order of vanishing at s = 1 of a certain natural analytic L-function
attached to the elliptic curve. Unfortunately, even this conjecture does not
answer the problem completely, although on a computer it does give strong
indications: the reason is that it is impossible to prove (except of course in
certain cases) that a certain analytic function vanishes exactly at a given
point.
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There is one important special case for which it does give a result. Like
most L-functions, the L-function of an elliptic curve satisfies a functional
equation, specifically of the form Λ(2 − s) = εΛ(s), where Λ(s) is equal to
L(s) times a suitable gamma and exponential factor, and ε = ±1 is the so-
called sign of the functional equation (what else?). Thus, when ε = −1, we
know that L(1) = 0, so that assuming the BSD conjecture we have r > 0,
so n is a congruent number. It is easily shown that when n is integral and
squarefree (which we always assume), then ε = −1 if and only if n ≡ 5, 6,
or 7 modulo 8. It follows that, assuming the conjecture, all of these numbers
should be congruent, and indeed, we have seen that 5, 6, and 7 are congruent.

On the other hand, when ε = 1, the order of vanishing of L(s) at s = 1
is even, so assuming the conjecture, the rank r should be even. It is in fact
very often equal to 0, but not always. For instance, we have r = 0 for n = 1,
2, and 3, so that these numbers are not congruent. On the other hand, it can
be shown that we have r = 2 for n = 34, 41, and 65 for instance (and for no
other squarefree n � 100), so that these numbers are indeed congruent.

The most precise conjecture on the distribution of congruent numbers is
the following, where the second part comes from random matrix theory as in
the case of sums of two cubes, so is quite speculative but well supported by
numerical evidence; see [Kea].

Conjecture 6.12.3. (1) Any squarefree integer congruent to 5, 6, or 7 mod-
ulo 8 is a congruent number.

(2) Denote by C(X) the set of squarefree integers less than or equal to X that
are congruent to 1, 2, or 3 modulo 8 and that are congruent numbers.
Then C(X) has density 0; more precisely there exists a strictly positive
constant c such that

C(X) ∼ cX3/4 log(X)11/8 .

6.12.3 Tunnell’s Theorem

The congruent number problem was finally completely solved by Tunnell in
1980, up to a weak form of the BSD conjecture. For this, in addition to the
standard ingredients in the theory of elliptic curves and the related theory of
modular forms, he used modular forms of half-integral weight. In fact, we will
see in Chapter 10 that the theta function attached to a Dirichlet character
is the prototypical example of such a form. It is impossible to enter into the
details of Tunnell’s proof, but we give his result; see [Tun].

Theorem 6.12.4 (Tunnell). Let n be a squarefree natural number, and set
u = 1 if n is odd and u = 2 if n is even. If n is a congruent number, the
number of solutions in Z of n/u = x2 + 2uy2 + 8z2 with z odd is equal to
the number of solutions with z even. Furthermore, if a weak form of the BSD
conjecture holds (more precisely if L(E, 1) = 0 implies that r > 0 for the
corresponding elliptic curve), then the converse also holds.
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The enormous advantage of this theorem is that it is very easy to check
Tunnell’s conditions, since we are dealing with representations by positive
definite ternary forms that can easily be enumerated. In particular, it is
easy (up to BSD) to make exhaustive tables of congruent numbers up to
any desired reasonable limit. Thus the problem is completely solved, except
of course that we must wait for the solution to the BSD conjecture to be
absolutely sure. Note that this is one of the most beautiful and important
conjectures in all of mathematics, and that a one-million-dollar Clay prize
has been offered for its solution (see also Section 10.6).

For instance, we see from Tunnell’s result what was already expected from
the BSD conjecture, i.e., that the (squarefree integral) congruent numbers
less than or equal to 100 are the numbers congruent to 5, 6, or 7 modulo 8
together with the three numbers n = 34, 41, and 65.

In the following table, which does not depend on BSD since in the range
of the table we have curves of analytic rank only 0 or 1 or of proved rank 2
or 3, the entry in row numbered R and column C (with C going from 1 to
64) gives the rank of the elliptic curve corresponding to n = R + C, so that
n is congruent if and only if the entry is greater than or equal to 1.

1111111111222222222233333333334444444444555555555566666
1234567890123456789012345678901234567890123456789012345678901234

0 0000111000001110000111110001111002001110200011100001111100011110
64 2000111000001111000111110001111100001110000011110001111100011110
128 0000111222001110200111110201111020021110000011100001111100011110
192 0200111000001111020111110021111102001110000011110001111100011110
256 2002111020001110000111110001111000201110002011100201111120011111
320 0020111002001111000111110001111120001110000011112021111100011111
384 0200111000201110000111110201111000001110020011100201111102011111
448 0000111020001111200111110001111100001110000011110001111120011110
512 0200111000001110000111110001111202021112000011102001111100011110
576 0002111020001111000111110201111120001112000011110001111100011110
640 0002111000201112020111110001111002001110000011102001111100011110
704 0000111000001111202111110021111100001110000011110001111120011110
768 0000111220001110000111112001111000001110000011100001111100011111
832 0000111200001111020111110001111102001110000211110001111122011111
896 0000111220001110002111110001111000001110000011100001111100011111
960 0000111000001111000111112021111100201110002011110001111100011110

1024 2002111000001112000111110001111020021110000011102001111120011110
1088 0000111000001111200111112001111102001110002011110001111122011110
1152 0220111000021110200111110201111022001110002211102001111100011110
1216 2000111200001111200111112201111120021310000011110001111100011111
1280 0200111000021110000111112001111000001112200011100201111100211111
1344 0200111000001111000111110001111100201110022011112001111100011111
1408 0022111000201110000111110201111000201110200011100001111100011111
1472 0002111002021111000111110001111100001110200011110001111100011111
1536 0000111200001110000111112001111000001110000211100001111100211110
1600 0000111002001111000111112001111120201112000011112021111100211110
1664 0200111000001110000111110001111000001112200011100001111100011110
1728 0020111200001111220111110001111102001112020011110001111120011111
1792 0200111000001110000111110001111000021110000011100001111100011111
1856 0202111000001111000111110001111102001110000011110001111100011111
1920 0000111000001110002111110001111000001110000011100021111100011111
1984 0000111000201111000111112001111100021110000011110221111100011110

Congruent Numbers up to n = 2048

Note that by Proposition 6.5.6, the above also gives a table of integers c
for which the equation x4 − y4 = cz2 has a solution with xyz �= 0.
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6.13 Some Unsolved Diophantine Problems

Evidently there are infinitely more unsolved Diophantine problems than there
are solved ones, and we have already mentioned a few. We recall them here,
and add a couple more. They all have some aesthetic value, and many people
have tried to solve them.

For many other such problems, we refer to the vast literature on the
subject, for instance the books by Mordell [Mord] and Guy [Guy]. Note that
we do not mention other well-known problems such as Waring’s problem,
Goldbach’s conjecture, or the twin prime conjecture, since these problems
are of quite a different nature and are not tackled using the tools developed
in this book.

In most cases, the reason for which the Diophantine equations are un-
solved is that they reduce to finding rational points on curves or higher-
dimensional varieties that are of general type, in a suitable sense. For curves,
this means curves of genus greater than or equal to 2; for surfaces it really
means surfaces of general type. We have no algorithmic way of searching for
the complete set of points except in very special situations. On the other
hand, if the Diophantine problem reduces to finding rational points on more
special kinds of varieties, for instance curves of genus 1 or K3 surfaces, then
even though we do not have real algorithms for finding rational points, we
do have a large number of available methods.

Here is a small list, including some that we have already mentioned.

(1) Show that the quadratic forms x2+2y2+5z2+xz, x2+3y2+6z2+xy+2yz,
and x2+3y2+7z2+xy+xz represent all odd positive integers (see Section
5.4.3). It is known that they represent all sufficiently large odd integers,
but the bound is ineffective.

(2) Show that any squarefree integer congruent to 4, 6, 7, or 8 modulo 9 is a
sum of two cubes of elements of Q (Conjecture 6.4.21).

(3) Show that an integer n is a sum of three cubes of integers if and only
if n �≡ 4 (mod 9) (it is clear that this latter condition is necessary). In
addition, show that there are infinitely many representations, in other
words that if n �≡ 4 (mod 9) the Diophantine equation x3 + y3 + z3 = n
has infinitely many integer solutions (Conjecture 6.4.24).

(4) Prove that every integer is a sum of four cubes of integers, in other
words that for all n the Diophantine equation x3 + y3 + z3 + t3 = n has
an integer solution (Dem′yanenko’s Theorem 6.4.28 shows that this is
true when n �≡ ±4 (mod 9)). In fact, show that it has an integer solution
with t = x, in other words that the equation 2x3 + y3 + z3 = n has an
integer solution (Conjecture 6.4.26).

(5) Prove that any squarefree integer n congruent to 5, 6, or 7 modulo 8 is a
congruent number, in other words that the equation y2 = x3−n2x has a
solution in rational numbers with y �= 0 (Conjecture 6.12.3). This would
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follow from the Birch and Swinnerton-Dyer conjecture, in fact from a
weak form of it.

(6) The rational cuboid problem: does there exist a rectangular parallelepiped
all of whose sides, face diagonals, and main diagonals are rational? In
other words, do there exist nonzero rational numbers a, b, and c such
that a2 +b2, a2 +c2, b2 +c2, and a2 +b2 +c2 are all rational squares? The
answer is positive if any one condition is dropped: for instance (a, b, c) =
(44, 117, 240) satisfies the first three conditions but not the fourth, and
(a, b, c) = (117, 520, 756) satisfies the first, second, and fourth conditions,
but not the third.

(7) The 4/n problem: is it true that for any integer n > 1 there exist positive
integers a, b, and c such that 4/n = 1/a + 1/b + 1/c? Note that it is
very easy to find arithmetic progressions of n for which this is true other
than the set of multiples of a given integer (for instance n = 3k + 2),
that the number of counterexamples has asymptotic density zero, that
the smallest counterexample, if any, is necessarily a prime number, and
that for a given n there seems to be a large number of solutions a, b,
c; see Exercises 56 and 57. The problem is that we do not know how to
prove that this large number is greater than or equal to 1! See Exercise
58 for a very similar but much easier problem.

6.14 Exercises for Chapter 6

1.

(a) Solve the Diophantine equation y2 = (x + 1)3 − x3 in integers.
(b) Solve the Diophantine equation (x− y)5 = x3 − y3 by reducing it to the above

equation.

2. Prove that for any positive integer n there exist x, y, and z such that n =
x2 + y2 + z3.

3. Let C be the curve y2 = x� + t with � � 3 prime. Compute |C(Fq)| in charac-
teristics 2 and � and when t = 0 in Fq .

4. Show that, as stated in the text, the general integral solution to ax + by +
cz = 0 is x = mb/ gcd(a, b) − �c/ gcd(a, c), y = kc/ gcd(b, c) − ma/ gcd(a, b),
z = �a/ gcd(a, c) − kb/ gcd(b, c) for any integers k, �, and m.

5. Consider the parametrization given by Proposition 6.3.6. It is quite trivial to
see how to obtain the values of s, t, and d corresponding to the solutions
(x0,−y0, z0) and (−x0, y0, z0).

(a) Find the values for s, t and d (which are unique up to a simultaneous change
of sign of s and t) corresponding to the point (x0, y0, z0) itself.

(b) More generally, if (x, y, z) is a solution of Ax2 + By2 = Cz2 with the parame-
ters s, t, and d, find the corresponding parameters for the solutions (−x, y, z),
(x,−y, z), and (x, y,−z).

6. Using the particular solution (1, 0, 1) to the equation x2 + Ny2 = z2, give a
complete family of disjoint parametric solutions to this equation. It will be
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useful to distinguish the cases N odd, N ≡ 2 (mod 4), 4 | N with v2(N) even,
and finally 4 | N with v2(N) odd.

7. Prove that the general integral solution of x2 + y2 = 2z2 with x and y coprime
is given by x = ±(s2 + 2st − t2), y = ±(s2 − 2st − t2), z = ±(s2 + t2), where s
and t are coprime integers of opposite parity and the ± signs are independent.

8. Let Q be an indefinite quadratic form, and with the usual Gram–Schmidt no-
tation assume that |µi,j | � 1/2 for all j < i. Show that |(b∗

i + µi,i−1b
∗
i−1)

2| �
(1/γ + 1/4)|(b∗

i−1)
2| implies |(b∗

i )
2| � (1/γ + 1/4 − µ2

i,i−1)|(b∗
i−1)

2|, but that
the converse is not necessarily true.

9. Let C be a cube of side a in Euclidean three-space R3. Assume that all the
vertices of C have coordinates in Z3. Translating C, we assume that one of its
vertices is at the origin, and we denote by (xj , yj , zj ) the coordinates of the
three vertices of C adjacent to the origin.

(a) Let M be the 3 × 3 matrix whose rows are the (xj , yj , zj ). Compute explicitly
MM t.

(b) For 1 � j � 3 let αj be the complex number αj = xj + iyj . Deduce from (a)
that α2

1 + α2
2 + α2

3 = 0.
(c) Find the general solution to the equation x2 + y2 + z2 = 0 in the Euclidean

domain Z[i], generalizing Corollary 6.3.13.
(d) Deduce finally a parametrization of triples ((x1, y1), (x2, y2), (x3, y3)) of points

in Z2 that are the orthogonal projections of cubes C as above.
(e) Give a few numerical examples of such triples, and draw the corresponding

pictures.

10. Let D be a nonsquare integer (in fact rational number is sufficient). Prove that
the general rational solution to the Diophantine equation x2 −Dy2 = 1 is given
by x = ±(s2 + D)/(s2 − D), y = 2s/(s2 − D) for s ∈ Q.

11. Let f(X) = anXn + · · · + a0 ∈ Z[X] be a polynomial with integer coefficients
with an �= 0 and a0 �= 0. If c/d ∈ Q is a root of f(X) = 0 with gcd(c, d) = 1,
show that d | an and c | a0.

12. Let S be the cubic surface with affine equation x3 + y3 + z3 = 10, on which
there is the evident point P = (1, 1, 2).

(a) In view of Manin’s Conjecture 6.4.1, using tangents at the point P find a two-
parameter family of rational points on S.

(b) Show that none of these points (except the point P ) have all three coordinates
strictly positive.

(c) By iterating the process starting from one of the new rational points, find
a rational point on S with strictly positive coordinates other than (1, 1, 2),
(1, 2, 1), and (2, 1, 1).

13.

(a) Prove Lemma 6.4.3.
(b) Show that the equation 27x3 + 2y3 + 3z3 = 0 has no solutions with x, y, z

integers such that gcd(y, z) = 1, although it has an infinity of rational solutions
(you may need to use the chapters on elliptic curves for this). This shows that
the pth power-free condition in Lemma 6.4.3 is necessary.

14. Show that an immediate corollary of Theorem 6.4.17 is the following: the equa-
tion x3 + cy3 + cz3 = 0 has no solutions in nonzero integers when c = 1, 9, p, or
p2 with p ≡ 2 or 5 modulo 9, except for c = 4, in which case it has the unique
solution (x, y, z) = (−2, 1, 1) (up to multiplication by a constant), and it has no
solutions with 3 | x when c = p or p2 with p ≡ 8 (mod 9).
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15. (Taken from [Cas2].) Let p and q be prime numbers such that p ≡ 2 (mod 9)
and q ≡ 5 (mod 9), and let c = pq. Theorem 6.4.17 (3) asserts that the equation
x3 +y3 +cz3 = 0 does not have any solutions with 3 | z. The aim of this exercise
is to show that it does not have any nontrivial solutions at all. For this, let ρ
be a primitive cube root of unity, and set λ = ρ − ρ−1 =

√
−3. We will show

more generally by descent that our equation has no solutions in Z[ρ]. Without
loss of generality, let (x, y, z) be a pairwise coprime solution to our equation in
Z[ρ] with |xyz| minimal.

(a) By factoring our equation, show that there exist elements α, β, γ, u, v, and w
in Z[ρ] with u, v, and w pairwise coprime, such that either

x + y = αu3, ρx + ρ−1y = βv3, ρ−1x + ρy = γw3, αβγ = c, or

x + y = λαu3, ρx + ρ−1y = λβv3, ρ−1x + ρy = λγw3, αβγ = c ,

and hence αu3 + βv3 + γw3 = 0 and αβγ = c in both cases.
(b) Noting that we may multiply simultaneously x, y, and z by any unit, show

that without loss of generality we may assume that (α, β, γ) is a permutation
of (±1,±1,±c) or of (±1,±p,±q).

(c) As in the proof of Theorem 6.4.17 (3), prove that u3+pv3+qw3 ≡ 0 (mod 9Z[ρ])
is impossible with u, v, and w pairwise coprime.

(d) Prove that |uvw| < |xyz|, and hence deduce by descent that our equation
x3 + y3 + cz3 = 0 has no nontrivial solutions.

16. Assume that p = 3 and that the equation x3 + by3 + cz3 = 0 is everywhere
locally soluble.

(a) Show that if conditions (1) and (2) of Theorem 6.4.10 are satisfied, then ε1 ≡ 1

(mod 3ZK ), where ε1 is a fundamental unit of K = Q(c1/3), so that in (2) it
is sufficient to test a single generator α of b

e instead of all the εα for ε a unit
modulo cubes.

(b) Under the same assumptions, if in addition we assume that 3 � e, show that in
fact c ≡ ±3 (mod 9).

Note that the condition ε1 ≡ 1 (mod 3ZK ) means that the p-adic regulator
R3(K) = log3(ε1) is divisible by 3, so that the combination of this condition
with the condition 3 | h(K) of Theorem 6.4.8 means that 3 | h(K)R3(K), which
is essentially the residue at 1 of the p-adic zeta function of K.

17. With the notation of Theorem 6.4.10, let p be the unique prime ideal of K above
p, so that p

p = pZK .

(a) Set L(x) =
∑

1�k�p−1(−1)k−1xk/k and E(x) =
∑

0�k�p−1 xk/k!, which are

truncations of the power series for log(1+x) and exp(x) respectively. Show that
if the αi ∈ ZK are such that vp(αi) � 1 then E(α1 +α2)−E(α1)E(α2) ∈ pZK ,
and if α ∈ ZK is such that vp(α) � 1 then E(L(α)) − (1 + α) ∈ pZK and
L(E(α) − 1) − α ∈ pZK .

(b) Assuming that β is coprime to p, show how to replace the conditions on β and
ε of Theorem 6.4.10 by conditions on L(β/b0 − 1) and L(ε/e0 − 1) for suitable
integers b0 and e0, and deduce that the conditions of Theorem 6.4.10 can be
easily checked by linear algebra instead of by exhaustive enumeration of the
p(p−1)/2 elements ε ∈ U(K)/U(K)p .

(c) Generalize to the case where β is not coprime to p.

18. Prove Proposition 6.4.20 by writing x3 + y3 = (x + y)(x2 − xy + y2).

19. Find parameters d, s, and t in Proposition 6.4.29 giving the solution (w, x, y, z) =
(1, 6, 8,−9) to w3 + x3 + y3 + z3 = 0.
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20. Let (a1, a2, a3, a4) be four integers satisfying a3
1 +a3

2 +a3
3 +a3

4 = 0 with ai �= −aj

for any (i, j).

(a) Show that there exists a (partial) parametrization of w3 + x3 + y3 + z3 = 0 of
the form

(w, x, y, z) = (a1u
2 + buv − a2v

2, a2u
2 − buv − a1v

2,

a3u
2 + cuv − a4v

2, a4u
2 − cuv − a3v

2)

with b and c rational numbers (not necessarily integers) if and only if P =
−(a1 + a2)(a3 + a4) is a square, and express b and c as a rational function of
the ai and of the square root of P .

(b) Find the parametrizations coming from the integral solutions (3, 5, 4,−6) and
(1,−9,−10, 12), and show that (1, 6, 8,−9) (in any order) does not give rise to
any such parametrization.

(c) By considering the integral solution (12, 86, 159,−167), show that b is not al-
ways an integer (when b or c is not an integer one can multiply the ai, b, and
c by a common denominator of b and c to obtain an integral parametrization).

(d) Give a complete parametrization of (a1, a2, a3, a4) such that a3
1 +a3

2 +a3
3 +a3

4 =
0, P a square, and b = −a1, c = −a3, and deduce that there exists an infinity
of parametrizations as in (a).

21. Find all integral solutions to the Diophantine equation y2 = x3 + 16.

22. Let K be a quadratic field and let α ∈ ZK .

(a) Assume that K is an imaginary quadratic field of odd class number and different
from Q(i). Show that αα is a square in Z if and only α = nβ2 for some n ∈ Z
and β ∈ ZK , thus in particular proving Lemma 6.4.35.

(b) How must this statement be modified if K is a real quadratic field of odd class
number?

(c) Give examples showing that the result is false if K = Q(i) or if K does not
have odd class number.

23.

(a) Find an analogue of Corollary 6.6.3 for everywhere local solubility in every com-
pletion of K = Q(i), with i2 = −1 (show for instance that the local condition
at 2 is c ≡ 1, 2, or −3 modulo p

7
2, where p2 = (1 + i)ZK ).

(b) What about the field K = Q(ζ8) generated by a primitive 8th root of unity?

24. Using a descent method, find all coprime integer solutions to the Diophantine
equation x4 + y4 = 2z4.

25. Using Corollary 6.6.11 prove that the equation x4 +y4 = c with c = 7361 has no
rational solutions, although it is everywhere locally soluble by Corollary 6.6.3,
and although the groups Ec(Q) and Fc(Q) have rank 2.

26. It follows from Proposition 5.7.3 and its proof that the equation 2y2 = x4 − 17
is everywhere locally soluble, but not globally soluble. The aim of this exercise
is to give an alternative proof of this last fact.

(a) Prove that if x, y is a rational solution, there exist a, b, and c in Z such that
x = a/c, y = b/c2, gcd(a, b, c) = 1, and

(5a2 + 17c2 + 4b)(5a2 + 17c2 − 4b) = 17(a2 + 5c2)2 .

(b) Show that p = 2 is the only prime that can divide both factors on the left.
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(c) Deduce that for a suitable choice of signs and e = 1 or 2, there exist u and v
in Z such that

5a2 + 17c2 ± 4b = 17eu2, 5a2 + 17c2 ∓ 4b = ev2, and a2 + 5c2 = euv .

(d) Show that there does not exist any solution of these equations in Q17, hence
that our initial equation has no global solution.

27. Generalize Exercise 26 as follows. Assume that c is a sum of two squares, say
c = c2

0 + c2
1. Using the identity

(ca2 + c0d
2 + c1b)(ca

2 + c0d
2 − c1b) = c(c0a

2 + d2)2

already used in Exercise 26, give sufficient conditions for the equation y2 =
cx4 − 1 to have no rational solutions (hence for the equation x4 + y2 = cz4 to
have no nontrivial integer solutions).

28. Prove Proposition 6.5.1 (Hint: for (1), reason as in Proposition 6.6.1 for p �
37 and for p ≡ 3 (mod 4), and for the remaining four values of p perform a
systematic search).

29. Assume that c ∈ Z�3 is squarefree, and let x, y, and z be integers such that
x4 + y4 = cz2 with z �= 0. By Corollary 6.5.7 we know that 2c is a congruent
number. Show that (u, v, w) are the sides of a Pythagorean triangle with area
2c, where

u =
|x4 − y4|

xyz
, v =

4cxyz

|x4 − y4| , and w =
x8 + 6x4y4 + y8

xyz|x4 − y4| .

30. Using the group law on the elliptic curve Y 2 = X3 + c2X (and not by a simple
check) show that if (x, y, z) is a solution to x4 + y4 = cz2 then so is (x2, y2, z2)
with

x2 = x(3c2z4 − 4x8), y2 = y(3c2z4 − 4y8), z2 = z(c4z8 + 24x4y4(x8 + y8)) ,

and for instance find a coprime integrer solution to x4 + y4 = 17z2 different
from (±1,±2,±1) and (±2,±1,±1).

31. The text states that 2-descent methods are not sufficient to determine the global
solubility of x4 + y4 = cz2 with c = 2801. Check that in fact

x = 270361295008966484650, y = 90462483365506215707,

z = 1389752065073123173431809988480200625001

is a solution.

32. Assume that p = 3.

(a) Show that condition (5) (a) of Theorem 6.4.2 can be replaced by � �= p; in other
words, show that if � � pabc condition S� is satisfied.

(b) Assume that � = p = 3. Show that if condition (5) (c) of Theorem 6.4.2 is
satisfied, then so is condition (5) (b), so that condition (5) (c) can be removed;
in other words, show that if 3 � abc and if a± b± c ≡ 0 (mod 9) for some signs
±, then in fact either a ± b ≡ 0 (mod 9), a ± c ≡ 0 (mod 9), or b ± c ≡ 0
(mod 9).

33. Let p and � be distinct odd primes. We will say that condition C(p, �) is satisfied
if for all integers a, b, and c such that � � abc the equation axp + byp + czp = 0
has a nontrivial solution in Z�.
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(a) Show that the equation x5+2y5+4z5 ≡ 0 (mod 11) has no nontrivial solutions,
so that C(5, 11) is not satisfied.

(b) Show that if � > 11 then C(5, �) is satisfied.
(c) Similarly, show that the equation x7+2y7+6z7 ≡ 0 (mod 71) has no nontrivial

solutions, so that C(7, 71) is not satisfied, but that if � > 71 then C(7, �) is
satisfied.

(d) From now on, let p be fixed and assume that C(p, �) is not satisfied. Show that
� ≡ 1 (mod 2p).

(e) Using the Weil bounds, show that � � B(p), where B(p) is an explicit function
depending only on p. It follows that for a given p the set E(p) of primes � such
that condition C(p, �) is not satisfied is finite.

(f) Using a computer, show that E(3) = ∅, E(5) = {11}, E(7) = {29, 43, 71},
E(11) = {23, 67, 89, 199, 419}, and E(13) = {53, 79, 131, 157, 313, 547}. Show
also that B(5) = 11, B(7) = 71, B(11) = 419, B(13) = 547, B(17) = 1429,
B(19) = 1597, B(23) = 1979, B(29) = 5279, and B(31) = 7193.

(g) For p = 5, 7, 11, and 13 give explicit values of a, b, and c for which one can easily
prove that axp + byp + czp = 0 has no nontrivial solution in Z by congruence
arguments.

34. Show that for b = 8, 9, 10, and 12 the equations x5 + by5 + 19z5 = 0 are
everywhere locally soluble but do not have any nontrivial solutions in Q.

35. Prove the analogue of Proposition 6.7.1, but now for squarefree t such that
1 � t � 100.

36. Generalizing Propositions 6.7.3, 6.7.5, and 6.7.7, find the integral solutions to
the Diophantine equation y2 = xp + 4t for general p, then for p = 3 and p = 5,
with the same assumptions on t as in the above propositions. As an example,
find all the integral solutions to y2 = x3 − 4.

37. Assume H(p, t). Prove that if a ∈ Ap(t) then |a| � p
√
−t/π, hence that apart

from the special solutions, if (x, y) is a solution to y2 = xp +t we have x = a2−t
with |a| � p

√
−t/π. (Hint: write the defining equation for Ap(t) in terms of

θ = atan(
√
−t/a).)

38. Assume H(p, t). Looking now also at 3-adic valuations and using a similar
reasoning to that of the preceding exercise, prove that if t is congruent to 3,
12, 15, 21, or 24 modulo 27 and not congruent to −1 or 3 modulo 16, or when
t ≡ 14 (mod 24), there are no integer solutions to the Diophantine equation
y2 = xp + t (for these two exercises, see [Cohn1] if you need help).

39. Assume H(p, t). Using similar reasoning to that of Proposition 6.7.12, prove
that if t ≡ 3 (mod 4) with v2(t+1) odd the equation y2 = xp + t has no integral
solutions.

40. Give explicitly 6 (respectively 16) integral points (x, y) ∈ Z2 satisfying the
Diophantine equation y2 = x3 + t for t = −39 (respectively t = 17). Note that
in these cases, we have t ≡ 1 (mod 8) (and even t > 0 in the second). Using the
techniques of Section 8.7, one can show that there are no other solutions.

41.

(a) Prove that the only roots of unity of the form (a +
√

t)/(a −
√

t) with a �= 0
are obtained for a = ±1 when t = −1, and for a = ±1 or a = ±3 when t = −3.

(b) With the notation of the proof of Corollary 6.7.11, prove that if p � 7 we have

|up(a +
√

t, a −
√

t)| > 1 for the above values of t and a.

42. Prove the special case (p, t) = (3, 3) of Proposition 6.7.14, which has been
omitted from the proof.
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43. Prove Theorem 6.8.3 (1) by considering separately the cases n ≡ 1 (mod 4),
n ≡ 3 (mod 4), n ≡ 0 (mod 6), and n ≡ ±2 (mod 6). Similarly, prove (2).

44. Using the results of Section 6.8.1, find all integral solutions to the Diophantine
equations 5y2 = x4 + a for a = ±1 and a = ±4.

45. Find all integers n such that Fn = 3x2 or Ln = 3x2 for some x ∈ Z.

46. (Bremner–Tzanakis.) Let P , Q be nonzero integers, and consider the sequence
Fn = Fn(P, Q) defined by F0 = 0, F1 = 1, and Fn+1 = PFn − QFn−1. This
generalizes the Fibonacci sequence that corresponds to (P, Q) = (1,−1). A
natural problem, which we have solved in the text for the Fibonacci sequence,
is to ask for which n is Fn(P, Q) a perfect square. We now ask the converse
problem: given n � 1, for which (P, Q) can Fn(P, Q) be a perfect square?

(a) Show that the answer to the direct problem is trivial when (P, Q) = (±1, 1)
and (±2, 1).

(b) Show that if we do not assume gcd(P, Q) = 1, there exists a solution to the
inverse problem for any even n. Thus from now on we exclude the values found
in (a) and we assume gcd(P, Q) = 1.

(c) Give a complete parametrization of the coprime pairs (P, Q) other than that
of (a) that solve the converse problem for 1 � n � 6. See Exercise 8 of Chapter
8 for the other values of n.

47. Show that the integers k occurring in Wendt’s criterion (Proposition 6.9.6)
satisfy k ≡ ±2 (mod 6).

48. Assuming that the numerators of the Bernoulli numbers B2, B4, . . . , Bp−3 are
divisible by p with probability 1/p, and that these probabilities are independent
(a strong assumption), show that the density of regular primes should be equal
to exp(−1/2).

49.

(a) Prove Corollary 6.10.4 (2).
(b) Show that there are 14 integer solutions (x, y) to the Diophantine equation

y2 = x4 − 3x3 − 4x2 + 2x + 4.
(c) Show that the only integer solutions (x, y) to the Diophantine equation y2 =

x4 − 5x3 − 5x2 − 5x − 2 are (x, y) = (−129,±16958), (−1,±2), and (6,±2).
(d) Show that there are 16 integer solutions (x, y) to the Diophantine equation

y2 = x6 − 3x5 + 3x4 − x3 − 4x2 + 4x + 1.
(e) Find all the solutions to Diophantus’s equation y2 = x6 + x2 + 1 for which x

is a rational number whose denominator is less than or equal to 4 (see Section
13.3.4).

50. Try to generalize Proposition 6.10.3 to equations of the form g(y) = f(x), where
f is a monic polynomial of degree n, g a monic polynomial of degree d such
that d | n, or such that gcd(d, n) > 1 (for help, see for instance [Ten]).

51. Assume that (a, b, c) are the sides of a Pythagorean triangle of area n. Using
the group law on the corresponding elliptic curve (more precisely the formula
for doubling a point, obtained by computing the coordinates of the third point
of intersection of a tangent), find another Pythagorean triangle with the same
area. It is easy to show that repeating this process gives an infinite number of
them.

52. Let a, b, and c be nonzero 4th power-free integers such that gcd(a, b, c) = 1.
It is clear that the equation ax4 + by4 + cz4 = 0 has a nontrivial solution in
R if and only if a, b, and c do not have the same sign. Now let � be a prime
number, and as in Theorem 6.4.2, denote by S� the condition that the equation
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ax4 +by4 +cz4 = 0 has a nontrivial solution in Q�. Generalizing Corollary 6.6.3,
prove the following results, which are quite similar to those of Theorem 6.4.2.
Reorder a, b, and c so that 0 = v�(a) � v�(b) � v�(c) < 4 and set vb = v�(b)
and vc = v�(c).

(a) Show that S2 is true if and only either a + b, a + c, a + b + c, (b + c)/b, or
(16a + b + c)/b is divisible by 16.

(b) Assume that � | abc with � �= 2. Show that if 1 � vb < vc then S� is false, if
1 � vb = vc then S� is true if and only if −b/c is a fourth power in (Z/�Z)∗,
and if vb = 0 then S� is true if and only if −a/b is a fourth power in (Z/�Z)∗.

(c) Assume finally that � � 2abc. Show that if � � 37 or � ≡ 3 (mod 4) then S� is
true. Otherwise, for � = 5, 13, 17, and 29, set G� = {1}, {1, 3, 9}, {1, 4, 13, 16},
and {1, 7, 16, 20, 23, 24, 25} respectively. show that S� is true if and only if
α ∈ G� for α = −b/a, −c/a, −c/b, or −(c + ma)/b for some m ∈ G�.

53. In Section 6.6 we have studied in detail the solubility of the equation x4 + y4 =
cz4. Consider now the equation x4 − y4 = cz4, where we do not necessarily
assume that c is 4th power-free.

(a) Show that if one of the elliptic curves y2 = x3−cx, y2 = x3+cx, or y2 = x3−c2x
has rank 0 our equation has no solution with xyz �= 0, and using mwrank or
2-descent, give the list of the 76 values of c with 1 � c � 100 for which one can
deduce in this way that the equation has no solution with xyz �= 0.

(b) By making a systematic search for 1 � y < x � 50, give a list of 7 values
of c with 1 � c � 100 for which there exists a solution to our equation with
xyz �= 0.

(c) By factoring the equation, try to solve the remaining 17 cases using algebraic
methods (I have not tried to do this; the first five values to be studied are
c = 14, 20, 21, 31, and 37).

54. Let a, b, and c be nonzero integers, and p, q, and r be in Z�2.

(a) Show that if at least two among p, q, and r are coprime, the equation axp +
byq + czr has a nontrivial integer solution.

(b) Show that the equation x6 + y10 + 4z15 = 0 has no nontrivial solution in Q2,
although gcd(6, 10, 15) = 1.

55. Let m ∈ Z�2. Show that xm − ym = 1 is impossible in nonzero integers x and
y (when for instance x > y > 0 prove that xm − ym � m + 1, and proceed
similarly otherwise).

56. This exercise and the next give some easy results on the 4/n problem. Let us
say that a positive integer n is Egyptian if there exist positive integers a, b, and
c such that 4/n = 1/a + 1/b + 1/c.

(a) Show that if there exists k ≡ 3 (mod 4) such that k | (n+4) then n is Egyptian.
(b) Deduce that if n is not Egyptian then n ≡ 1 (mod 3).
(c) Deduce also that if n + 4 is not the sum of two integer squares, then n is

Egyptian (by Proposition 5.4.10, the number of integers n � X that are sums

of two squares is asymptotic to CX/
√

log(X) for a suitable constant C > 0, so
this shows that non-Egyptian numbers, if they exist, have asymptotic density
zero).

(d) Find more general criteria than (a).
(e) Assume that 4/n = 1/a + 1/b + 1/c with a � b � c. Prove that (n + 1)/4 �

a � 3n/4, that an/(4a − n) < b � 2an/(4a − n), and deduce that for given
n the number N(n) of solutions is finite. More precisely, show that N(n) �
n2 log(n)/16 + O(n2) (this bound is far from optimal).
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57. Let n ∈ Z�2 be an integer.

(a) Prove that there exist positive integers a and b such that 3/n = 1/a + 1/b if
and only if not all prime divisors of n are congruent to 1 modulo 3.

(b) Deduce that if n is not represented by the quadratic form x2 −xy + y2, then n
is Egyptian (as in the preceding exercise, the number of n that are represented
by the quadratic form has asymptotic density zero).

58. Show that every positive rational number m/n can be written as m/n = 1/a1 +
1/a2 + · · · + 1/as for some s, with 1 � a1 < a2 < · · · < as . (Hint: reduce
to rational numbers less than 1/N for some N by using the divergence of the
harmonic series

∑
1/k, and then use induction.)



7. Elliptic Curves

7.1 Introduction and Definitions

7.1.1 Introduction

To make this book as self-contained as possible we include here most of the
important results that we need on elliptic curves, sometimes without proof.
We urge the reader to read further on the subject (for the proofs and for
a large amount of additional material) in the remarkable books by Cassels
[Cas2] and Silverman [Sil1], [Sil2], as well as the more elementary treatment
in Silverman–Tate [Sil-Tat]. The book by Darmon [Dar], which is available
on his home page, contains a great deal of very useful recent material.

Since we could literally write thousands of pages on elliptic curves, and
not as well as the above masters, we must target our needs. Our main purpose
is the Diophantine properties of elliptic curves, in other words properties of
elliptic curves defined over Q, or more generally over a number field or a global
function field. This will be done in detail over Q in the next chapter. Thus, as
usual in Diophantine problems it will be useful to study elliptic curves over
completions of number fields, in other words over R, C, and p-adic fields Kp.
Again as usual, to have properties over p-adic fields it is necessary to start by
studying curves over the residue fields Fp = Fq. For technical reasons, we will
also study special kinds of curves over function fields in one variable k(T ).

The plan of this chapter is thus as follows. We first spend several sections
describing properties of elliptic curves that are independent of the field of
definition (or with mild restrictions such as being of characteristic zero), and
then study curves over the above-mentioned fields, specifically over C, R,
k(T ), Fq, and Kp. We will then be equipped with the necessary tools for the
Diophantine study of the next chapter.

7.1.2 Weierstrass Equations

We should begin with the following abstract definition: an elliptic curve over
a field K is a smooth projective algebraic curve over K (i.e., a projective
algebraic variety of dimension 1 with no singular points) of genus 1, together
with a point defined over K, which by abuse of language we will call a rational
point, even when K �= Q. This may require some effort from the reader, in
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particular in the precise understanding of the notion of genus. Thanks to
the Riemann–Roch theorem, it is however not necessary to use this general
definition, although it is quite useful. Indeed, this theorem implies that there
exists a plane model of the curve with projective equation (called a general
Weierstrass equation)

y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3 ,

where ai ∈ K and (x, y, z) are the projective coordinates, and we can take
this as the definition of an elliptic curve. The numbering of the coefficients is
accepted worldwide and must not be changed; it is in fact very logical since
x can be considered of weight 2, y of weight 3, z of weight 0, and ai is then
of weight i.

Note that with this equation the implicit rational point on the curve is
the point O = (0, 1, 0), which is the only point at infinity (i.e., with z = 0)
on the curve. Note also that the fact that the curve is nonsingular translates
into the nonvanishing of a certain universal polynomial in the ai called the
discriminant of E and denoted by disc(E), which we will define below. Since
we will need the notation anyway, we recall the additional construction of
the standard numbers attached to E.

Assume for the moment that the characteristic is different from 2 and 3.
Setting Y = 2y + a1x + a3z we have

zY 2 = 4x3 + b2x
2z + 2b4xz2 + b6z

3

with
b2 = a2

1 + 4a2, b4 = a1a3 + 2a4, and b6 = a2
3 + 4a6 ,

and setting X = x + b2/12 we have

zY 2 = 4X3 − c4

12
Xz2 − c6

216
z3

with
c4 = b2

2 − 24b4 and c6 = −b3
2 + 36b2b4 − 216b6 .

This can be rewritten z(Y/2)2 = X3−(c4/48)Xz2−(c6/864)z3 or z(108Y )2 =
(36X)3 − 27c4(36X)z2 − 54c6z

3, and an equation of the form ZY 2 =
X3 + aXZ2 + bZ3 will be called a simple Weierstrass equation. We define
the discriminant of an elliptic curve given in this form as −16(4a3 + 27b2),
in other words 16 times the discriminant of the cubic polynomial. We will
soon see the reason for this factor 16. Thus when E is given by a general
Weierstrass equation it is natural to define disc(E) as the discriminant of the
corresponding simple equation, and we find that disc(E) = (c3

4 − c2
6)/1728.

All this is valid only in characteristic different from 2 and 3. However, a short
computation shows that we can express disc(E) as
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disc(E) = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 ,

where b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 ,

and this expression now makes sense in any characteristic, and is the precise
definition of disc(E). This is the main reason for the inclusion of the factor
16 in the definition of disc(E). Finally, we define the j-invariant of the curve
by j(E) = c3

4/disc(E), which exists since we assume that disc(E) �= 0. In all
discussions dealing with elliptic curves, the quantities ai, bi, ci, disc(E), and
j(E) will have the above meaning. Note that in characteristic different from 2
we have b8 = (b2b6−b2

4)/4, but this formula cannot be used in characteristic 2.

The human mind usually prefers to work with affine coordinates, so in
general we will write a Weierstrass equation as y2 +a1xy+a3y = x3 +a2x

2 +
a4x+a6, and keep in mind the additional point at infinity. It is easy to show
that the allowed affine transformations which preserve the Weierstrass form
are

x = u2x′ + r, y = u3y′ + su2x′ + t ,

where u ∈ K∗ and r, s, and t are in K. The coefficients a′
i of the Weierstrass

equation satisfied by x′ and y′ are given by the following formulas, that we
give for completeness:

ua′
1 = a1 + 2s

u2a′
2 = a2 − sa1 + 3r − s2

u3a′
3 = a3 + ra1 + 2t

u4a′
4 = a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st

u6a′
6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 .

In practice, an elliptic curve can be given in many other forms than by a
Weierstrass equation. We will see in Section 7.2 how to deal with the most
common cases. Note, however, that it is not always necessary or useful to
transform the equation into a Weierstrass equation. For instance, we shall
see below that the group law on an elliptic curve in Weierstrass form is
obtained by intersecting with a line. However, this is true more generally for
any nonsingular plane cubic, so it is worthwhile to use the group law in this
more general case without transferring to Weierstrass form. For other models
the group law is obtained differently; for instance, in the case of hyperelliptic
quartics with rational tangents it is obtained by intersecting with a parabola
with vertical axis; see Exercise 10 (c).

7.1.3 Degenerate Elliptic Curves

Let f(x, y, z) = 0 be a general Weierstrass equation with
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f(x, y, z) = y2z + a1xyz + a3yz2 − (x3 + a2x
2z + a4xz2 + a6z

3) .

We begin with the following.

Proposition 7.1.1. A general Weierstrass equation over any field K defines
an absolutely irreducible curve (i.e., irreducible over an algebraic closure of
K).

Proof. Without loss of generality we may assume that K is algebraically
closed. Let Ax + By + Cz = 0 be the general equation of a line in the
projective plane over K with (A,B,C) �= (0, 0, 0), and set P (x, z) = x3 +
a2x

2z+a4xz2+a6z
3. Assume that the line is a component of the curve defined

by f , in other words that there exists a homogeneous quadratic polynomial
Q(x, y, z) ∈ K[x, y, z] such that we have

y2z + a1xyz + a3yz2 − P (x, z) = (Ax + By + Cz)Q(x, y, z) .

Looking at the coefficient of x3 we see that A �= 0, so dividing the equation
of the line by A we may assume that A = −1. We can thus replace x by
By + Cz in the above equation, so we obtain

y2z + a1(By + Cz)yz + a3yz2 − P (By + Cz, z) = 0 .

Looking now at the coefficient of y3 we see that B = 0, so that there remains
y2z + (a1C + a3)yz2−P (Cz, z) = 0, which is impossible since the coefficient
of y2z is equal to 1. ��

By abuse of notation, if L is a field containing the field of definition K of E
and if (x, y, z) ∈ L3, we will write from now on (x, y, z) ∈ E as a shorthand
for (x, y, z) ∈ E(L), in other words when the triple (x, y, z) satisfies the
projective equation of the curve.

In the rest of this section we assume that f(x, y, z) = 0 does not define
an elliptic curve, in other words that it has singularities, or equivalently, that
disc(E) = 0.

Proposition 7.1.2. If a general Weierstrass equation has singularities it has
exactly one, and it is on the line 2y + a1x + a3z = 0. In particular, if the
characteristic of K is different from 2 and a1 = a3 = 0, it is on the x-axis.

Proof. A point P = (x0, y0, z0) ∈ E is singular if and only if the three
partial derivatives of the equation vanish at (x0, y0, z0) (note that because
of Euler’s relation

∑
xi

∂f
∂xi

= kf for a homogeneous function f of degree
k we must add the condition P ∈ E only in characteristic 3). We have
∂f
∂y = z(2y + a1x + a3z). Note that the point O (which is the only point
with z0 = 0) is nonsingular since one checks that ∂f

∂z (O) = 1. Thus we must
have 2y0 + a1x0 + a3z0 = 0 as claimed. Assume first that this defines a
line in projective space, in other words either that the field does not have
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characteristic 2, or that (a1, a3) �= (0, 0). If the curve had more than one
singularity the line would intersect the curve in at least four points counting
multiplicities, since a singularity counts at least for two, and this is impossible
for a cubic curve, except if the line is entirely in the curve, which is impossible
by Proposition 7.1.1.

If we are in characteristic 2 and a1 = a3 = 0 we have the equations
∂f
∂x = x2 +a4z

2 = 0 and ∂f
∂z = y2 +a2x

2 +a6z
2 = 0. Thus, given z0, which we

know is different from 0, we have x2
0 = a4z

2
0 , giving at most one value of x0

(recall that we are in characteristic 2), and similarly y2
0 = a2x

2
0 +a6z

2
0 , giving

again at most one value for y0, and proving that also in this case there is at
most one singular point. ��

Remark. It is interesting to note that if K is a perfect field of characteristic
2, in particular if K is finite or algebraically closed, then the equation y2z =
x3+a2x

2+a4x+a6 always has a singular point given by the above equations.
On the other hand, if K is not perfect (typically K = F2(T )) then there may
not exist a singular point defined over K but only on a finite extension; see
Exercise 4.

Let us now consider the possible types of singularity. For simplicity, we
assume that the characteristic of K is different from 2, so that we can also
assume that a1 = a3 = 0. The reader can check for himself that the situation
is similar in characteristic 2. In affine coordinates the equation of the curve is
thus y2 = P (x) with P (x) = x3 +a2x

2 +a4x+a6, and the above proposition
says that the singularity, if any, is such that y = 0; in other words, x is equal
to a root α of P . Clearly such a root gives a singularity if and only if it is
a multiple root. A line passing through (α, 0) has an equation of the form
ny+m(x−α) = 0, and it is tangent to the curve if and only if its multiplicity of
intersection with the curve is greater than or equal to 3, since the singularity
already counts for at least 2. Thus, either n = 0, m = 1, and we obtain y2 = 0,
giving multiplicity only 2, so this can never happen, or n �= 0, so we may
assume that n = −1; hence replacing we obtain m2(x−α)2 = (x−α)2(x−β),
where β is the third root of P , possibly equal to α if α is a triple root; in
other words, (x − α)2(x − β − m2) = 0. Thus the multiplicity at x = α is
greater than or equal to 3 if and only if m2 = α − β. We thus have three
cases:
A cusp. When β = α, in other words when α is a triple root of P , there is
a single tangent of slope m = 0, and the figure over R explains why this case
is called a cusp.
A double point with tangents defined over K. When α−β is a nonzero
square in K there exist two distinct values of m ∈ K∗ (since we are in
characteristic different from 2), so two distinct tangents defined over K.
A double point with tangents not defined over K. When α− β �= 0 is
not a square in K then there exist two distinct values of m, but defined in a
quadratic extension of K.
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In all these cases, since the curve is singular we have in fact a curve of
genus 0 with a distinguished point, hence a rational curve. More precisely,
changing x into x− α we may assume that the singularity is at the origin so
that our equation has the shape y2 = x2(x − β). If we set t = x/y (t = ∞
if y = 0 and x �= 0, i.e., x = β), which makes sense on nonsingular points,
we have 1/t2 = y2/x2 = x− β; hence x = β + 1/t2, y = β/t + 1/t3, and this
gives a rational parametrization of the nonsingular points of our curve by the
projective line P1(K), except that we have to exclude the values of t giving
the singular point, in other words such that 1/t2 = −β, if they exist. Note
that the point at infinity is parametrized by t = 0.

For future reference, note the following easy lemma.

Lemma 7.1.3. Let p � 3, let K = Fp, let E be a degenerate curve over
Fp as above, and let c6 = c6(E) be the invariant defined in Section 7.1.2.
Then E has a cusp (respectively a double point with tangents defined over Fp,
respectively a double point with tangents not defined over K) if and only if(−c6

p

)
= 0 (respectively

(−c6
p

)
= 1, respectively

(−c6
p

)
= −1).

Proof. Since E is degenerate it has a singular point, and changing coor-
dinates we may assume that it is at the origin, so that we can choose the
equation of our curve to be y2 = x2(x + a) for some a ∈ Fp. One com-
putes that c6(E) = −64a3. On the other hand, the general equation of a line
through the origin is y = tx, so such a line is tangent if and only if t2 = a.
Thus, we have a cusp when a = 0 (so that

(
c6
p

)
= 0), and the tangents are

defined over Fp if and only if a is a square; in other words,
(−c6

p

)
= 1 since

−c6 = (8a)2a. ��

7.1.4 The Group Law

In the sequel we let E be an elliptic curve defined over a field K by a gen-
eralized Weierstrass equation given in affine form as y2 + a1xy + a3y =
x3 + a2x

2 + a4x + a6. One of the most important properties of elliptic curves
is that there is a natural abelian group law on E that is defined by rational
equations. More precisely, we have the following:

Theorem 7.1.4. Let y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 be the gener-

alized Weierstrass equation of an elliptic curve E (hence nonsingular). We
define an addition law on E by asking that the point at infinity O be the
identity element, and that P1 + P2 + P3 = O if and only if the points Pi are
(projectively) collinear.

(1) This addition law defines an abelian group structure on E.
(2) If P1 = (x1, y1) and P2 = (x2, y2) are two points on E different from O,

their sum is equal to O if x1 = x2 and y2 = −y1−a1x−a3, and otherwise
is given as follows. Set
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m =


y2 − y1

x2 − x1
if P1 �= P2 ,

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
if P1 = P2.

Then P1 + P2 = P3 = (x3, y3) with x3 = m(m + a1)− x1 − x2 − a2 and
y3 = m(x1 − x3)− y1 − a1x3 − a3.

Proof. The proof of (1) is very classical and not too difficult, although
associativity is painful if one tries to prove it directly from the formulas
given in (2), but it is immediate in terms of divisors; see Exercise 6. The
formulas of (2) follow from an immediate computation; see Exercise 5. ��

Remarks. (1) If we write the equation as f(x, y) = 0, the case P1 = P2

gives m = −f ′
x/f ′

y as it should.
(2) In the case of a simple Weierstrass equation y2 = x3+ax+b, the formulas

reduce to m = (y2 − y1)/(x2 − x1) if P1 �= P2, m = (3x2
1 + a)/(2y1) if

P1 = P2, and x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1.
(3) The opposite of (x, y) is (x,−y − a1x− a3) (hence (x,−y) in the simple

case), and in particular the points of order dividing 2 are O together with
those such that 2y + a1x + a3 = 0 (hence y = 0 in the simple case).

When the equation defines a singular curve, we still have a group law, but
now on the set of nonsingular points:

Proposition 7.1.5. Let y2 = x3 + a2x
2 + a4x + a6 be a singular curve E

with singular point P0 = (α, 0). The set G = E(K)\{P0} has a natural group
structure, and furthermore G � (K,+) when P0 is a cusp, G � (K∗,×) when
P0 is a double point with distinct tangents defined over K, and finally G is
isomorphic to the multiplicative group of elements of relative norm 1 in the
quadratic extension of K generated by the slopes of the tangents at P0 when
P0 is a double point with distinct tangents not defined over K.

Proof. As in the preceding section we may assume that our equation has
the form y2 = x2(x − β) and is parametrized by (β + 1/t2, β/t + 1/t3).
Thus if the points P1 and P2 (which we may assume to be different from
the point at infinity) correspond to the respective parameters t1 and t2, a
short computation using the formulas given above, which are still valid in
the nonsingular case, shows that P3 = P1 + P2 is a nonsingular point that
corresponds to the parameter

t3 =
t1 + t2

1− βt1t2
.

Since one also checks that

β +
1
t23

=
t21t

2
2(β + 1/t21)(β + 1/t22)

(t1 + t2)2
,
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it follows that t3 cannot correspond to the singular point (recall that ti �= 0
since we assume that the points Pi are not at infinity). The results in the
elliptic curve case thus imply that we have an abelian group law on the
nonsingular points. However, as stated, we can say more about the group
structure G: if β = 0, we simply have t3 = t1+t2, so evidently G � (K,+) (the
excluded value of t being ∞). If −β = γ2 is a square in K∗ (the case in which
we have two distinct tangents defined over K), we set ui = (1+γti)/(1−γti),
in other words ti = (ui−1)/(γ(ui+1)). An easy computation shows that u3 =
u1u2, so G � (K∗, ·) (the excluded values of u being 0 and ∞, corresponding
to 1/t2 = −β). If −β is not a square in K, we let L = K(γ) with γ2 = −β.
The group law on G still corresponds to the multiplicative group law on L∗,
but now the acceptable values of u are such that uu = 1, where u is the Galois
conjugate of u over K. Conversely, if uu = 1 then by Hilbert’s Theorem 90
(which is here trivial by setting α = u + uu = u + 1), there exists α ∈ L∗

such that u = α/α. Writing α = s + γt with s and t in K, we note that
if s �= 0, dividing by s if necessary we may assume that s = 1, hence that
u = (1 + γt)/(1 − γt) as claimed. But the case s = 0 corresponds to t = ∞,
giving the value u = −1. To summarize, in this last case G is isomorphic to
the multiplicative group of elements of K(γ) of norm 1. ��

Because of this proposition, the case that P0 is a cusp is also called a case
of additive reduction, while the case that P0 is a double point with distinct
tangents defined over K (respectively not defined over K) is called a case of
split multiplicative reduction (respectively nonsplit multiplicative reduction).

Example. Assume that K = Fq.

(1) In the case of additive reduction we have G � Fq, a cyclic group of order
q, so that |E(Fq)| = q + 1.

(2) In the case of split multiplicative reduction we have G � F∗
q , a cyclic

group of order q − 1, so that |E(Fq)| = q.
(3) In the case of nonsplit multiplicative reduction, up to isomorphism Fq2 is

the unique quadratic extension of K, and since N Fq2/Fq
(x) = xq+1, the

group G isomorphic to the unique (cyclic) subgroup of F∗
q2 of order q +1,

so that |E(Fq)| = q + 2.

7.1.5 Isogenies

As usual in mathematics, when a class of objects is defined, we must also
define and study the natural maps between these objects (this is exactly the
definition of a category, the maps being called morphisms). An elliptic curve
E has three natural structures. The first one is the definition itself, which
says that E is an algebraic curve (of genus 1 with a rational point), whether
it is defined by a Weierstrass equation or by more complicated equation(s).
The second is the fact that it is an analytic manifold of dimension 1 over C,
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i.e., a compact Riemann surface. The third is that it has a natural abelian
group structure.

Thus to define morphisms between two elliptic curves it is natural to want
them to respect all three structures, and this is of course correct. However,
there is an amazing simplification, which in fact essentially reduces to the first
structure. First we have the beautiful theorem due to Riemann saying that
all compact Riemann surfaces are algebraic, i.e., can be defined by algebraic
equations, and that analytic morphisms between them are also algebraic.
Note that this is quite a remarkable theorem since algebraic curves are very
rigid, while a priori analytic manifolds can be deformed. Thus the first two
structures on an elliptic curve are in fact one and the same. The additional
theorem that enables us to almost forget about the abelian group structure
is the following.

Theorem 7.1.6. Let E and E′ be two elliptic curves with identity elements
O and O′ respectively, and let φ be a morphism of algebraic curves from E to
E′ (i.e., φ is defined by rational functions). Then φ is a group homomorphism
from E to E′ if and only if φ(O) = O′.

The condition is of course necessary, but what is remarkable is that the
simple fact that φ is a morphism of algebraic curves (together with the very
weak condition φ(O) = O′) implies that φ preserves the group law. Note that
when φ(O) �= O′ then φ1(P ) = φ(P ) − φ(O) (subtraction on the curve E′)
is still a morphism of algebraic curves, and is such that φ1(O) = O′, so is a
group homomorphism by the theorem. This leads to the following definition.

Definition 7.1.7. Let E and E′ be two elliptic curves with identity elements
O and O′ respectively. An isogeny φ from E to E′ is a morphism of algebraic
curves from E to E′ such that φ(O) = O′. A nonconstant isogeny is one
such that there exists P ∈ E such that φ(P ) �= O′. We say that E and E′ are
isogenous if there exists a nonconstant isogeny from E to E′.

We will implicitly assume that our isogenies are nonconstant. By the
above theorem, an isogeny φ preserves the group law, in other words is such
that φ(P + P ′) = φ(P ) + φ(P ′), where addition on the left is on the curve
E, and on the right is on the curve E′.

The following results summarize the main properties of isogenies; see [Sil1]
for details and proofs.

Theorem 7.1.8. Let φ be a nonconstant isogeny from E to E′ defined over
an algebraically closed field K. Then

(1) The map φ is surjective.
(2) φ is a finite map; in other words, the fiber over any point of E′ is constant

and finite.
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From these properties it is easy to see that φ induces an injective map
from the function field of E′ to that of E over some algebraic closure of
the base field. The degree of the corresponding field extension is finite and
called the degree of φ. If this field extension is separable, the degree of φ
is also equal to the cardinality of a fiber, in other words to |Ker(φ)|, but
this is not true in general. Thus, as algebraic curves, or equivalently, over an
algebraically closed field extension of the base field, a nonconstant isogeny
induces an isomorphism from E/ Ker(φ) to E′, where E/ Ker(φ) must be
suitably defined as an elliptic curve. If there exists a nonconstant isogeny φ
from E to E′ of degree m, we say that E and E′ are m-isogenous. Conversely,
we have the following:

Proposition 7.1.9. If G is a finite subgroup of E there exists a natural
elliptic curve E′ and an isogeny φ from E to E′ whose kernel (over some
algebraic closure) is equal to G. The elliptic curve E′ is well defined up to
isomorphism and is denoted by E/G.

Note that the equation of E′ can be given explicitly by formulas due to
Vélu [Vel].

Two isogenous elliptic curves are very similar, but are in general not iso-
morphic. For instance, Theorem 8.1.3 tells us that two elliptic curves defined
over Q that are isogenous over Q have for instance the same rank and the
same L-function. However, they do not necessarily have the same torsion sub-
group: for instance, it follows from Proposition 8.4.3 that the elliptic curves
y2 = x3 +1 and y2 = x3− 27 are 3-isogenous, but it is easily shown using for
instance the Nagell–Lutz Theorem 8.1.10 that the torsion subgroup of the
former has order 6, while the torsion subgroup of the latter has order 2.

Proposition 7.1.10. Let φ be a nonconstant isogeny from an elliptic curve
E to E′ of degree m. There exists an isogeny ψ from E′ to E, called the dual
isogeny of φ, such that

ψ ◦ φ = [m]E and φ ◦ ψ = [m]E′ ,

where [m] denotes the multiplication-by-m map on the corresponding curve.

An isogeny of degree m will also be called an m-isogeny. We define the
degree of the constant isogeny to be 0. We will see several examples of iso-
genies in the next chapter, for instance in Section 8.2 on rational 2-descent,
where the basic tools are 2-isogenies.

7.2 Transformations into Weierstrass Form

7.2.1 Statement of the Problem

In this section, we explain how to transform the most commonly encountered
equations of elliptic curves into Weierstrass form (simple or not, since it is
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trivial to transform into simple Weierstrass form by completing the square
or the cube, if the characteristic permits). We will usually assume that the
characteristic of the base field is different from 2 and 3, although some of
the transformations are valid in more general cases. Recall that a birational
transformation is a rational map with rational inverse, outside of a finite
number of poles. Although not entirely trivial, it can be shown that in the case
of curves (but not of higher-dimensional varieties), two curves are isomorphic
if and only if they are birationally equivalent, in other words if there exists a
birational transformation from one to the other.

It will be slightly simpler to work in projective coordinates instead of
affine ones. Thus whenever projective coordinates (x, y, z) appear, it is always
implicit that (x, y, z) �= (0, 0, 0). Apart from simple or generalized Weierstrass
equations, an elliptic curve can be given in the following ways, among others:

(1) f(x, y, z) = 0, where f is a homogeneous cubic polynomial whose three
partial derivatives do not vanish simultaneously, together with a known
rational point (x0, y0, z0).

(2) y2z2 = f(x, z), where f(x, z) is a homogeneous polynomial of degree 4
such that f(1, 0) �= 0 and without multiple roots, together with a known
rational point (x0, y0, z0) (this type of equation is called a hyperelliptic
quartic). Note that in this case the point at infinity (0, 1, 0) is a singular
point with distinct tangents, and if the given point is at infinity we ask
that the slopes of the tangents be rational. This is equivalent to the fact
that f(x, 1) is a fourth-ndegree polynomial whose leading coefficient is a
square.

(3) f1(x, y, z, t) = f2(x, y, z, t) = 0, where f1 and f2 are two homogeneous
quadratic polynomials together with a common projective rational solu-
tion (x0, y0, z0, t0), and additional conditions to ensure that the corre-
sponding curve is nonsingular and of genus 1.

We first explain how to transform each of the above equations into Weier-
strass form. More precisely, we will show how (3) and (2) transform into (1),
and explain how to transform (1) into Weierstrass form. In fact we will see
that (2) can also be directly transformed into Weierstrass form.

7.2.2 Transformation of the Intersection of Two Quadrics

Assume that we are given the homogeneous quadratic equations f1(x, y, z, t) =
f2(x, y, z, t) = 0 with common projective rational solution (x0, y0, z0, t0), and
assume that the intersection of the corresponding quadrics is nonsingular and
of genus 1. For i = 1 and 2 write

fi(x, y, z, t) = Ait
2 + Li(x, y, z)t + Qi(x, y, z) ,

where Ai is a constant, Li is linear, and Qi quadratic. By making a linear
coordinate change, we may send the rational solution to the projective point



476 7. Elliptic Curves

(0, 0, 0, 1), so that in the new coordinates we have Ai = 0; hence the equations
take the form tLi(x, y, z) + Qi(x, y, z) = 0. I claim that the linear forms L1

and L2 are linearly independent: indeed, otherwise we could replace one of
the equations, f1 say, by a suitable linear combination of f1 and f2 to make
the L1 term disappear, so that the equations would read Q1(x, y, z) = 0 and
tL2(x, y, z) + Q2(x, y, z) = 0. This second equation expresses t rationally in
terms of x, y, and z, and the first is a conic, which is of genus 0, a contradiction
that proves my claim.

Eliminating t between the two equations tLi(x, y, z) + Qi(x, y, z) = 0, we
thus have a new equation C(x, y, z) = 0 with C = L1Q2−L2Q1. This is a ho-
mogeneous cubic equation with a projective rational point obtained by solv-
ing the homogeneous system of linear equations L1(x, y, z) = L2(x, y, z) = 0,
which has a unique projective solution since the Li are independent. This
shows how (3) can be transformed into (1).

7.2.3 Transformation of a Hyperelliptic Quartic

Assume now that we are given the equation y2z2 = f(x, z) with f(x, z) a ho-
mogeneous polynomial of degree 4, and a rational point (x0, y0, z0), assumed
to have rational tangents if z0 = 0. If z0 = 0, we do nothing. Otherwise, by
a translation x �→ x + kz for a suitable k ∈ K, we may assume that x0 = 0,
so that the equation is y2z2 = f(x, z) with f(0, z) = (y2

0/z2
0)z4. Exchanging

x and z gives y2x2 = g(x, z) with g(x, z) = f(z, x), so g(x, 0) = (y2
0/z2

0)x4;
hence finally, setting Y = xy/z2 we obtain an equation of the form Y 2z2 =
g(x, z), where the term in x4z0 of g is a square. If we had had z0 = 0 from
the start, our equation would have already been in this form.

We have thus transformed our equation into one of the form y2z2 =
a2x4 + zP (x, z), where P is a homogeneous polynomial of degree 3. We set
y = ax2/z +y1, and we obtain 2ax2y1 +y2

1z−P (x, z) = 0, which is the equa-
tion of a cubic having the rational point (0, 1, 0). This shows how (2) can
be transformed into (1). In the next subsection we will see how (1) can be
transformed into Weierstrass form. Here, however, the equation of the cubic
is quite special, so we can do the transformation directly, and I thank J. Cre-
mona for this remark. To simplify we give the formulas in affine coordinates.

Proposition 7.2.1. Let y2 = a2x4 + bx3 + cx2 + dx + e be the equation of
a hyperelliptic quartic with rational point (0, 1, 0) and rational tangents at
infinity. We set

(a1, a2, a3, a4, a6) =
(

b

a
, −b2 − 4a2c

4a2
, 2ad, −4a2e, (b2 − 4a2c)e

)
and
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X = 2a(ax2 − y) + bx, Y = x

(
4a3x2 + 2abx− 4a2y − b2 − 4a2c

2a

)
,

x =
Y

2a(X + c)− b2/(2a)
, y = ax2 +

b

2a
x− X

2a
.

Then the maps (x, y) �→ (X,Y ) and (X,Y ) �→ (x, y) are inverse birational
transformations from the quartic to the elliptic curve Y 2 + a1XY + a3Y =
X3 + a2X

2 + a4X + a6.

Proof. This is a simple verification, which is left to the reader (Exercise
8). ��

Corollary 7.2.2. Let y2 = x4 + cx2 + e be the equation of an even hyperel-
liptic quartic with leading coefficient 1. Set

X = 2x2 − 2y + c, Y = 2x(2x2 − y + c), x =
Y

2X
, y =

Y 2

4X2
− X − c

2
.

Then the maps (x, y) �→ (X,Y ) and (X,Y ) �→ (x, y) are inverse birational
transformations from the quartic to the elliptic curve Y 2 = X(X2 − 2cX +
c2 − 4e).

Proof. This is a special case of the above proposition, after changing X
into X + c. ��

7.2.4 Transformation of a General Nonsingular Cubic

Finally, we must show how to transform a general cubic to Weierstrass form,
given a known rational point. Let

f(x, y, z) = Az3 + L(x, y)z2 + Q(x, y)z + C(x, y) ,

where A, L, Q, and C are constant, linear, quadratic, and cubic homo-
geneous polynomials respectively, and assume known a projective point
P0 = (x0, y0, z0) such that f(x0, y0, z0) = 0. Denote by C the projective
curve f(x, y, z) = 0. We consider two cases.
Case 1. Assume that P0 is an inflection point, in other words that the
multiplicity of intersection of the tangent to C at P0 is equal to 3. Then using
simply a linear projective transformation we can send this tangent to the line
at infinity z = 0 and the point P0 to the point (0, 1, 0). The intersection of the
line at infinity with the curve is given by C(x, y) = 0, and since this must be a
triple intersection at the point (x, y, z) = (0, 1, 0), in the new coordinates we
must have C(x, y) = cx3 for some nonzero constant c. It is now immediate to
transform the equation Az3 +L(x, y)z2 +Q(x, y)z + cx3 = 0 into Weierstrass
form.
Case 2. Assume now that the given rational point P0 is not an inflection
point, so that the tangent at P0 to the curve C intersects it at another point P ,
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necessarily unique. Using a linear projective transformation, we may assume
that the tangent at P0 becomes the line x = 0 and that P = (0, 0, 1) is the
origin of the affine coordinate axes. In the new coordinates the term in z3

must disappear, so that the affine form of our equation is L(x, y)+Q(x, y)+
C(x, y) = 0. By homogeneity, the intersection of our curve with the line x = 0
is given by yL(0, 1)+y2Q(0, 1)+y3C(0, 1). The solutions to this equation are
y = 0, corresponding to the point P , and the two others must be equal since
x = 0 is tangent to the curve at P0, so that Q2(0, 1)− 4L(0, 1)C(0, 1) = 0.

The final trick is now to consider the intersections of C with the lines
y = tx other than (x, y) = (0, 0). By homogeneity once again we obtain
L(1, t) + xQ(1, t) + x2C(1, t) = 0, which can be rewritten

(2xC(1, t) + Q(1, t))2 = Q(1, t)2 − 4C(1, t)L(1, t) .

Thus by a birational transformation we have obtained a hyperelliptic quartic
equation. But in fact since we know that Q2(0, 1)− 4L(0, 1)C(0, 1) = 0, it is
immediately checked that it is a hyperelliptic cubic, hence essentially already
in Weierstrass form.

Remark. In [Coh0] I have given an explicit algorithm that is essentially
the translation of the above description. There are, however, a number of
misprints in that algorithm, most (but not all) of which have been corrected
in the errata sheets available on the author’s home page. Since the aim of the
present book is not primarily algorithmic, I have thus preferred to give the
outline of the algorithm, closely following the exposition in [Cas2], and leave
to the reader the writeup of the detailed algorithm (Exercise 9).

Example. Consider the general Fermat cubic equation x3 + y3 = cz3 with
c �= 0, hence let f(x, y, z) = x3 + y3 − cz3 and P0 = (−1, 1, 0). The equation
of the tangent L0 at P0 is x + y = 0, and the intersection of L0 with the
curve is z = 0, so P0 is an inflection point. We are thus in Case 1. To send
L0 to the line at infinity and P0 to the point (0, 1, 0) we set for example
(X,Y,Z) = (z, y, x + y); hence (x, y, z) = (−Y + Z, Y,X), so replacing in
our equation gives Z3 − 3Y Z2 + 3Y 2Z = cX3. To transform this into simple
Weierstrass form, we first multiply by 1728c2, set Y1 = 72cY and X1 = 12cX,
thus giving Y 2

1 Z − 72cY1Z
2 + 1728c2Z3 = X3

1 , then set Y2 = Y1 − 36cZ,
obtaining finally Y 2

2 Z = X3
1 −432c2Z3. Putting everything together, we have

thus established the following result, expressed in affine coordinates:

Proposition 7.2.3. The curves x3 + y3 = c and Y 2 = X3 − 432c2 are
birationally equivalent over Q via the transformations

X =
12c

x + y
, Y =

36c(y − x)
x + y

, x = −Y − 36c

6X
, y =

Y + 36c

6X
.

More generally, using the same method we can prove the following.
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Proposition 7.2.4. Let a, b, c be nonzero rational numbers, and assume
that there exists a rational point (x0, y0, z0) �= (0, 0, 0) on the cubic ax3 +
by3 + cz3 = 0. Then this cubic is birationally equivalent to the elliptic curve
whose affine Weierstrass equation is Y 2 = X3 − 432(abc)2.

Proof. See Exercise 11. ��

Warning. The reader will notice that the coefficients of the Weierstrass
equation do not depend on the given rational point (x0, y0, z0). In geometric
terms, the curve Y 2 = X3 − 432(abc)2 is the Jacobian of the cubic ax3 +
by3 + cz3 = 0, and this does not depend on the existence of a rational point;
see Section 13.2 for the general definitions. The Jacobian of an elliptic curve
(i.e., of a curve of genus 1 having a rational point) is isomorphic to the curve,
but this is of course not the case for the Jacobian of a curve of genus 1 with
no rational points. Consider the following examples. The cubic x3 + y3 + 9z3

has the rational point (1, 2,−1), hence is an elliptic curve, so is isomorphic to
its Jacobian with Weierstrass equation Y 2 = X3−432 ·92. Cremona’s mwrank
program or the methods that we will study in the next chapter show that
this curve has rank 1, so that our initial cubic has an infinity of (projective)
rational solutions; see Exercise 9 of Chapter 8.

Consider now the cubic x3+15y3+22z3, which we have already mentioned
after Corollary 6.4.11. Although this equation is everywhere locally soluble
nontrivially, we know that it does not have any nontrivial solution in Q.
However, we can compute that its Jacobian Y 2 = X3−432 ·3302 has rank 1,
hence has an infinity of rational points. This phenomenon indicates that the
3-part of the Tate–Shafarevich group X of the elliptic curve is nontrivial,
and in fact using the method of Chapter 8 together with the BSD conjecture,
which is proved in the rank-1 case, one can show that |X| = 36.

Remarks. (1) We will see in Proposition 8.4.3 that an elliptic curve with
equation y2 = x3 − 27d is birationally equivalent (therefore isomorphic)
to the elliptic curve with equation Y 2 = X3 + d, where the maps are
given by

X =
x3 − 108d

9x3
, Y = y

x3 + 216d

27x3
, x =

X3 + 4d

X2
, y = Y

X3 − 8d

X3
,

and the two curves thus have the same rank. It follows that to study the
solubility of x3 +y3 = c, or more generally of ax3 + by3 + cz3 = 0, we can
replace the Jacobian with equation y2 = x3 − 432(abc)2 by the elliptic
curve with equation y2 = x3 + (4abc)2, whose rank is easier to compute
since its coefficients are smaller. This is in fact the curve Eabc that we
considered in Section 6.4.4.

(2) In Section 6.4.4 we have given the explicit equations for the map from
the curve ax3 + by3 + cz3 = 0 to the curve Eabc. For instance, the map
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from x3 + y3 = c to the curve Y 2 = X3 + 16c2 is clearly given by
X = −4xy, Y = 4(x3 − y3). The equation of the reverse map is however
more complicated; see Exercise 12.

7.2.5 Example: The Diophantine Equation x2 + y4 = 2z4

As an application of the above transformations, we solve the above equation,
where we assume that x, y, and z are integers with x and z coprime (which
immediately implies that x, y, and z are pairwise coprime). Several methods
can be used, and we begin with the one using the intersection of two quadrics
(which is not the simplest by far). We will in fact not use the method described
above, but yet another one, so as to illustrate the wide variety of available
methods.

By Corollary 6.3.14 there exist coprime integers s and t of opposite parity
such that x = ±(s2 − 2st − t2), y2 = ±(s2 + 2st − t2), and z2 = s2 + t2.
We can consider the first equation as simply giving the value of x in terms
of s and t, and the two others as defining the intersection of two quadrics.
Exchanging s and t and changing simultaneously the sign of s does not change
z2 and only changes the ± signs. Making this change if necessary, we may
thus assume that s is odd and t even. Looking modulo 4 we thus see that
y2 = s2 +2st− t2. Using the solution to the Pythagorean equation (Corollary
6.3.13), we deduce that there exist coprime integers u and v of opposite parity
such that s = u2 − v2, t = 2uv, and z = ±(u2 + v2). The values of x and
z are thus determined by u and v, hence we obtain the hyperelliptic quartic
equation

y2 = (u2− v2)2 +2(u2− v2)(2uv)− (2uv)2 = u4 +4vu3− 6v2u2− 4v3u+ v4 .

Since u and v are coprime, the case v = 0 implies u = ±1, hence leads to
s = 1, t = 0, giving the evident solution (x, y, z) = (±1,±1,±1). If v �= 0,
setting Y = y/v2 and X = u/v we obtain the affine equation

Y 2 = X4 + 4X3 − 6X2 − 4X + 1 .

Note that since u and v are coprime, so are y and v; hence y and v2 are
determined by the value of Y .

We have thus transformed the intersection of two quadrics to this hyper-
elliptic quartic. For a general equation it would also have been necessary to
follow the general algorithm, and also to keep track of the coordinate trans-
formations. Here there are evident rational points on the quartic that we can
use, including the point at infinity; in other words, the coefficient of X4 is
already a square.

At this point we should directly use Proposition 7.2.1, but to make life
more difficult we want to use the general algorithm of Section 7.2.4 instead.
As mentioned above, we set Y = X2 + Z, and we obtain the affine cubic
equation
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Z2 + 2X2Z − 4X3 + 6X2 + 4X − 1 = 0 ,

with for instance (X,Z) = (0, 1) as evident point.
The general algorithm tells us that to transform into Weierstrass form we

can make the change of variables

X = 4
y − 4x− 64

(x + 16)(x + 32)
, Z =

x3 + 16x2 − 8xy − 2048x− 32768
(x + 16)(x + 32)2

,

whose inverse is given by

x = 32
Z + 2

Z + 2X − 1
,

y = 64
Z2 + 4ZX2 − 6ZX + 4Z − 8X3 + 28X2 − 18X − 5

(Z + 2X − 1)2
,

leading to the Weierstrass equation y2 = x3 + 48x2 + 256x− 4096. If we set
x = 16x1, y = 64y1 this gives the simpler (although not simple) equation
y2
1 = x3

1 +3x2
1 +x1− 1. The mwrank program or the descent methods that we

will explain in the next chapter tell us that the group of rational points on
this curve is equal to (Z/2Z)(−1, 0)⊕Z(1, 2). It is easy to check that adding
the point (−1, 0) does not change the solution to x2 + y4 = 2z4, and that
the opposite of a point simply leads to a solution with the sign of y changed.
Thus, up to signs all the solutions will be obtained from k · (1, 2) for k � 1.
For k � 5 this gives (up to signs) the solutions

(x, y, z) = (1, 1, 1),
(239, 1, 13),
(2750257, 1343, 1525),
(3503833734241, 2372159, 2165017),
(2543305831910011724639, 9788425919, 42422452969).

There are no other solutions than those obtained in this way, and in particular
the above five solutions are the smallest.

A simpler method for solving the Diophantine equation x2 + y4 = 2z4

would have been to set Y = x/z2, X = y/z, so that the equation gives
Y 2 = −X4 + 2, with the evident point (X,Y ) = (1, 1). We set X = X1 + 1,
so that Y 2 = −X4

1 − 4X3
1 − 6X2

1 − 4X1 + 1 with the point (X1, Y ) = (0, 1).
Setting Y1 = Y/X2

1 and X2 = 1/X1 we obtain the equation Y 2
1 = X4

2 −
4X3

2 − 6X2
2 − 4X2 − 1, whose leading term in X4

2 is a square, and we can
then use Proposition 7.2.1 and a linear change of variable so as to obtain the
Weierstrass equation y2 = x3− 6x2− 12x− 24 isogenous to the one obtained
above, which of course leads to the same solutions. Note that Proposition
6.5.5 deals with the general equations ax4 + by4 + cz2 = 0, of which our
equation is a special case.
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Remark. Recall that we have solved the similar Diophantine equation
x2 + y4 = z4 by purely algebraic considerations (factoring and descent) in
Proposition 6.5.3. Here no amount of such manipulations would have led to
the result. In fact, what we did in Proposition 6.5.3 using descent is to prove
that the corresponding elliptic curve had finitely many points, in other words
rank 0 instead of strictly positive rank.

As an application of the solution of the above equation, we consider Fer-
mat triangles: a Fermat triangle is a right triangle with integer sides (hence a
Pythagorean triangle) such that both the hypotenuse and the sum of the two
other sides are perfect squares. Writing with evident notation c2 = a2 + b2,
c = z2, a + b = y2 we have

2z4 − y4 = 2c2 − (a + b)2 = (a− b)2 = x2 ,

for x = a − b. Thus if (a, b, c) is a Fermat triangle with a � b, say, then
(x, y, z) = (a−b, (a+b)1/2, c1/2) is a positive integral solution to the equation
x2 + y4 = 2z4, and conversely if (x, y, z) is such a solution then x and y have
the same parity, so a = (x + y2)/2, b = (y2 − x)/2, and c = z2, and such a
triangle will exist if and only if b > 0, in other words y2 > x. Among the first
five solutions given above, only the fourth satisfies this condition, giving the
smallest Fermat triangle with sides

(a, b, c) = (4565486027761, 1061652293520, 4687298610289) ,

thus having 13-digits. It is easy to show that there exists an infinity of so-
lutions such that y2 > x, hence an infinity of essentially distinct Fermat
triangles; see Exercise 13.

7.3 Elliptic Curves over C, R, k(T ), Fq, and Kp

The most interesting fields on which to consider elliptic curves are K = C,
K = R, K = Qp (or a p-adic field Kp), K = Q (or a number field), and
K = Fq, a finite field. We will also consider special kinds of curves over
K = k(T ). Each of these types of fields gives rise to an important and different
aspect of the subject, all useful for the case K = Q, and we will mention a
few. We will devote all of the next chapter to the case K = Q.

7.3.1 Elliptic Curves over C

Here the most important aspect is that an elliptic curve over C is isomorphic
(in a very strong sense, both analytically and algebraically) to the quotient
of C by a 2-dimensional lattice Λ = ω1Z + ω2Z with ω1/ω2 /∈ R. Recall that
we define the Weierstrass ℘-function ℘Λ(z) associated with Λ by the formula
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℘Λ(z) =
1
z2

+
∑

ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)

=
1
z2

+
∑

(m,n)∈Z2\{(0,0)}

(
1

(z − (mω1 + nω2))2
− 1

(mω1 + nω2)2

)
.

This defines a doubly periodic (or Λ-periodic) meromorphic function on C
with poles only for z ∈ Λ. The crucial (and easy) result is that ℘Λ(z) satisfies
the algebraic differential equation

℘′
Λ(z)2 = 4℘Λ(z)3 − g2(Λ)℘Λ(z)− g3(Λ) = 0

with
g2(Λ) = 60

∑
ω∈Λ\{0}

1
ω4

and g3(Λ) = 140
∑

ω∈Λ\{0}

1
ω6

(this is an easy application of Liouville’s theorem; see Exercise 36 of Chapter
10). We have therefore an explicit isomorphism between C/Λ and an elliptic
curve over C by sending a representative z ∈ C of an element of C/Λ to the
pair (℘Λ(z), ℘′

Λ(z)), and all elliptic curves are obtained in this way. The group
law is simply induced by addition on C and corresponds to the fact that the
℘-function has an addition formula; see Exercise 14. The point at infinity is
the unique pole of ℘ (up to translation by Λ), i.e., 0 ∈ C as it should, since
it is the neutral element for addition. The above isomorphism is reminiscent
of the ordinary exponential (which also has an addition formula), and the
reverse isomorphism is thus called the elliptic logarithm. It is more natural
to consider the elliptic logarithm with values in C and not in C/Λ, but then
it is evidently defined only up to addition of an element of Λ, exactly as the
ordinary complex logarithm is defined up to addition of an element of the
1-dimensional lattice 2iπZ.

If (ω1, ω2) is a given basis of Λ, the principal determination of the ellip-
tic logarithm is by definition the unique one belonging to the fundamental
parallelogram {x1ω1 + x2ω2, −1/2 < x1, x2 � 1/2}.

The lattice Λ and elliptic logarithms can be expressed in terms of the
equation of the elliptic curve thanks to elliptic integrals, themselves computed
thanks to the arithmetic–geometric mean (AGM); see for instance [Coh0]
Chapter 7 for details.

Another aspect of elliptic curves over C (which is also important over other
fields) is the phenomenon of complex multiplication. This is best understood
with the help of an example. Consider the two elliptic curves E4 with affine
equation y2 = x3 + ax and E3 with equation y2 = x3 + a, in both cases with
a �= 0. For any elliptic curve E and any integer m we have an endomorphism
of E denoted by [m] that sends P to m · P = P + P + · · ·+ P . However, for
the curves E3 and E4 we clearly have an additional endomorphism: in the
case of E4 we have the map sending (x, y) to (−x, iy) (with i2 = −1) and in
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the case of E3 the map sending (x, y) to (ρx, y), where ρ2 + ρ + 1 = 0, i.e.,
ρ is a primitive cube root of unity. It is easy to show that these are indeed
endomorphisms of the curve.

The general situation over C (or more generally over any field of character-
istic 0) is as follows. Clearly the set End(E) of endomorphisms of an elliptic
curve E is a ring, where addition is induced by that of E and multiplication
is composition of endomorphisms. This ring contains the maps [m] for all
m ∈ Z, and it is easily shown that these maps are distinct, so Z ⊂ End(E)
in a canonical way. The main result is that either End(E) = Z, i.e., there
are no additional endomorphisms, or End(E) is a (not necessarily maximal)
order in an imaginary quadratic field, in other words End(E) � Zτ + Z with
τ = (D +

√
D)/2 for some D < 0 such that D ≡ 0 or 1 modulo 4. In this last

case we say that E has complex multiplication by the order of discriminant
D.

Note that in the above two examples of E3 and E4 it was easy to give
explicitly the action of τ on E. In more general situations the computations
are more complicated, but completely algorithmic; see for instance [Sta2] for
a reasonable method.

When the curve E is defined over Q, the theory of complex multiplica-
tion leads to remarkable results, in particular to the complete description of
Abelian extensions of an imaginary quadratic field.

7.3.2 Elliptic Curves over R

Let E be an elliptic curve defined over R by a generalized Weierstrass equa-
tion. After the same transformations that are done over C we can transform
our curve into an equation of the form Y 2 = 4X3−g2X−g3 with g2 = c4/12,
g3 = c6/216, and discriminant

disc(E) =
c3
4 − c2

6

1728
= g3

2 − 27g2
3 .

We write
4X3 − g2X − g3 = 4(X − e1)(X − e2)(X − e3) ,

where the ei are the three complex roots of the cubic polynomial, necessarily
distinct since disc(E) �= 0. Note the important relation e1 + e2 + e3 = 0.

Warning. the coordinates that we are considering are evidently the coordi-
nates on the equation Y 2 = 4X3− g2X − g3, and not on the initial equation.
More precisely, since the transformation on the x-coordinate has only been
X = x+b2/12 (see above), we must make this replacement in all the formulas.

There are now two cases, which must always be distinguished in prac-
tice in dealing with elliptic curves defined over R (and in particular for the
Diophantine case in which the curve is defined over Q):
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Case 1: disc(E) > 0. In that case all three roots ei are real, which we order as
e1 < e2 < e3. It follows that the (affine) graph of the curve has two connected
components:

– A compact component called the egg because of its shape, formed by the
points (X,Y ) such that e1 � X � e2, and denoted by Egg.

– A noncompact component, called the component at infinity, and denoted
by E0, formed by the points (X,Y ) such that X � e3.

An easy exercise on the group law shows that the map from E(R) to {±1}
sending P to 1 if P ∈ E0 and to −1 if P ∈ Egg is a group homomorphism.
Another way of saying this is that E0 is the exact image of the map P �→ 2P
from E(R) to itself (Exercise 15).

All this can easily be seen on the lattice Λ associated with E. When
disc(E) > 0 it is easy to show that we can choose a basis (ω1, ω2) of the lattice
such that ω1 ∈ R>0 and ω2/i ∈ R<0 (because we require that �(ω1/ω2) > 0).
It follows that the associated fundamental domain is a rectangle, so that the
case disc(E) > 0 can be called the rectangular case. Under the canonical
isomorphism between E and C/Λ the points of E0 correspond to z ∈ C such
that z ∈ R (mod Λ), in other words E0 � R/(ω1Z), while the points of
Egg correspond to z ∈ C such that z − ω2/2 ∈ R (mod Λ), in other words
Egg � (ω2/2 + R)/(ω1Z). The above statements then become clear.

It is useful to note that the basis elements ωi above can be given as
integrals. Set f(X) = 4X3−g2X−g3 = 4(X−e1)(X−e2)(X−e3). We then
have the formulas

ω1 = 2
∫ e2

e1

dt√
f(t)

= 2
∫ ∞

e3

dt√
f(t)

and

ω2 = −2i

∫ e3

e2

dt√
−f(t)

= −2i

∫ e1

−∞

dt√
−f(t)

.

The above integral equalities are simple calculus exercises; see Exercise 16.
Note that all the square roots are of nonnegative real numbers.
Case 2: disc(E) < 0. In that case there is a single real root, say e3, and
the other two are complex conjugates. It follows that the (affine) graph of
the curve has a single connected component, which is noncompact. We again
denote it by E0, and it is again formed by the points (X,Y ) such that X � e3,
so that E0 = E(R). The same exercise as above now shows that the map
P �→ 2P from E(R) to itself is surjective, in other words that its image is E0.

Here we can choose a basis for Λ of the form (ω1, ω2) with ω1 ∈ R>0,
�(ω2) = ω1/2, and �(ω2) < 0, so this can be called the triangular case. The
points of E0 = E(R) correspond to z ∈ C such that z ∈ R (mod Λ), in other
words E0 � R/(ω1Z).

The integral formulas for the ωi are now
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ω1 = 2
∫ ∞

e3

dt√
f(t)

and

ω2 =
ω1

2
− i

∫ e3

−∞

dt√
−f(t)

.

Independently of the sign of disc(E), the formula for the elliptic logarithm
of a point P ∈ E0 is the same: since it must be the inverse function of a
function satisfying the differential equation y′2 = 4y3− g2y− g3, the formula
for the derivative of an inverse function implies that for P = (X,Y ) ∈ E0 we
can choose

ψ(P ) = sign(Y )
∫ X

∞

dt√
f(t)

.

If disc(E) > 0 and P ∈ Egg then

ψ(P ) =
ω2

2
+ sign(Y )

∫ X

e1

dt√
f(t)

,

in both cases with the convention sign(0) = 1, and this is exactly the principal
determination of the elliptic logarithm (recall that in terms of our initial
coordinates we must replace X by x + b2/12).

We have given all these integral formulas mainly for theoretical pur-
poses: indeed, in practice they are computed using the arithmetic–geometric
mean (AGM), and are included in many computer algebra systems; see
[Coh0] and [Sma]. In fact, with GP the constants bi, ci, disc(E), j(E),
and the periods ωi are among those that are computed with the command
e=ellinit([a1,a2,a3,a4,a6]). More precisely, the periods are obtained as
the two components e.omega. Note, however, that the second component of
e.omega is ω2 (equal to −ω2 or to ω1−ω2 depending on the sign of disc(E))
and not ω2, because the convention chosen in GP is to have �(ω2/ω1) > 0.
When z ∈ C, the point of E corresponding to z under the canonical iso-
morphism (essentially, but not exactly, (℘Λ(z), ℘′

Λ(z)) since some transfor-
mations have been made, see the above warning) can be obtained using
the command ellztopoint(e,z). Finally, the inverse isomorphism, in other
words the elliptic logarithm ψ(P ) of P ∈ E(Q) is given by the command
ellpointtoz(e,P), and the result is defined only up to addition of a point
of Λ. However, as explained above, since the curve is defined over R we can
choose ψ(P ) ∈ R when P ∈ E0, and ψ(P )− ω2/2 ∈ R otherwise (i.e., in the
case disc(E) > 0 and P ∈ Egg).

7.3.3 Elliptic Curves over k(T )

Before studying this we prove a very elementary but useful result.

Proposition 7.3.1. Let R be a principal ideal domain with field of fractions
K, let E be an elliptic curve given by a generalized Weierstrass equation as
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Y 2+a1XY +a3Y = X3+a2X
2+a4X+a6 with ai ∈ R, and let (X,Y ) ∈ E(K)

be an affine point defined over K. There exist M , N , and D in R such that

X =
M

D2
, Y =

N

D3
, gcd(M,D) = gcd(N,D) = 1 .

Proof. Write X = M/A and Y = N/B with gcd(M,A) = gcd(N,B) = 1.
Substituting in the equation and clearing denominators gives

A3N2+a1A
2BMN +a3A

3BN = B2M3+a2B
2AM2+a4B

2A2M +a6B
2A3 .

Let us call the sides of this equation the LHS and RHS. Since B2 divides the
RHS, it follows that B | A3N2, and since gcd(B,N) = 1 we have B | A3. But
B2 divides A times the LHS, and since B | A3 we deduce that B2 | A4N2,
hence that B2 | A4, so that B | A2. But then replacing once again we see
that B2 | A3N2, so that B2 | A3. By a similar process, let us prove the
converse. Since A2 divides the LHS, it follows that A | B2M3, so that A | B2

since gcd(A,M) = 1. Replacing in the RHS, we see that A2 | B2M3; hence
A2 | B2, so that A | B. Thus the LHS is divisible by A3, and replacing one
last time in the RHS we see that A3 | B2M3, so that A3 | B2. It follows that
there exists a unit u ∈ R∗ such that uB2 = A3, and since A | B, if we set
D = B/A we see that D2 = B2/A2 = A/u and that B = dA = uD3, proving
the proposition after dividing M and N by u. ��

In this subsection we let k be a commutative field, and to simplify the
exposition we will assume that the characteristic of k is different from 2,
although everything goes through in general. We set R = k[T ], K = k(T ),
and consider an elliptic curve E over k, which we may assume without loss
of generality to be given by an equation y2 = x3 + ax2 + bx + c, where a, b,
and c belong to k. We first show that the group E(K) of points of E with
values not only in k but in the function field K = k(T ) is equal to E(k) (this
result is true in much greater generality but we prove it only in this case).

Proposition 7.3.2. If E is an elliptic curve defined over k and K = k(T )
we have E(K) = E(k).

Proof. It is of course sufficient to prove that E(K) ⊂ E(k). Thus, let
(X,Y ) ∈ E(K) \ {O}. If the characteristic of k is equal to p �= 0, then it
is clear that if X′(T ) = 0 we have X = X1(T p) for some X1 ∈ k(T ), and
2Y Y ′ = f ′(X)X ′ = 0, and since p �= 2 we have Y ′ = 0, hence Y = Y1(T p)
for some Y1 ∈ k(T ). Since E is a constant elliptic curve it is clear that
(X1, Y1) ∈ E(K). Continuing this process, we may therefore assume that if
X ′(T ) = 0 then X and Y are constant.

By the above proposition there exist polynomials M , N , and D with
D coprime to M and N and such that (X,Y ) = (M/D2, N/D3), and our
equation is N2 = M3 + aM2D2 + bMD4 + cD6. Differentiating the equation



488 7. Elliptic Curves

Y 2 = X3 +aX2 +bX +c with respect to T gives 2Y Y ′ = (3X2 +2aX +b)X ′,
so after replacing and clearing denominators we obtain

2N(DN ′ − 3ND′) = (3M2 + 2aD2M + bD4)(DM ′ − 2MD′) .

Since E is an elliptic curve the polynomials x3+ax2+bx+c and 3x2+2ax+b
are coprime as polynomials in x, and it is immediate to check that this
implies that the GCD of the polynomials M3 + aM2D2 + bMD4 + cD6 and
3M2+2aD2M+bD4 divides a power of D. Since the first of these polynomials
is equal to N2, which is coprime to D, it follows that 3M2 + 2aD2M + bD4

is coprime to N . We thus deduce from the above equation that N | (DM ′ −
2MD′) and (3M2 + 2aD2M + bD4) | (DN ′ − 3ND′). For simplicity, call d,
m, and n the degrees of D, M , and N , respectively. We consider three cases.
Case 1: d < m/2. Then n = 3m/2 and if DM ′ − 2MD′ �= 0 we have

3m/2 = n � deg(DM ′ − 2MD′) � d + m− 1 < 3m/2− 1 ,

a contradiction showing that DM ′− 2MD′ = 0, in other words that X ′ = 0,
hence by the reduction made above, X and Y are constant.
Case 2: d > m/2. Since E is an elliptic curve we must have either b or c
different from 0. If c �= 0 we have n = 3d, while if c = 0 and b �= 0 we have
n = m/2 + 2d, so in both cases n � m/2 + 2d. On the other hand, since
N | (DM ′ − 2MD′) then if DM ′ − 2MD′ �= 0 we have

m/2 + 2d � n � deg(DM ′ − 2MD′) � d + m− 1 ,

hence d � m/2 − 1, a contradiction showing that DM ′ − 2MD′ = 0. As in
case 1 we deduce that X and Y are constant.
Case 3: d = m/2. In this case, call � the quotients of the leading terms of
the numerator and denominator of X, in other words the “limit as T →∞”
of X(T ). Our equation tells us that n = 3d if and only if � is not a root of
the polynomial f(x) = x3 + ax2 + bx + c. If � is not a root then as in Case 2
we have N | (DM ′ − 2MD′), and DM ′ − 2MD′ �= 0 thus implies

3d � deg(DM ′ − 2MD′) � d + m− 1 = 3d− 1 ,

a contradiction. On the other hand, if � is a root, then since E is an elliptic
curve, � is not a root of f ′(x), so that deg(3M2+2aD2M +bD4) = 2m; hence
if DN ′ − 3ND′ �= 0 we have

4d = 2m � deg(DN ′ − 3ND′) � d + n− 1 � 4d− 2 ,

a contradiction showing that DN ′ − 3ND′ = 0, hence that Y ′ = 0, so that
Y , and hence X, is constant thanks to the reduction made above. ��

An interesting alternative proof of this proposition has been communi-
cated to me by J. Cremona; see Exercises 19 and 20.
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The above proposition shows that constant elliptic curves over K = k(T )
are not very interesting. On the other hand, we can consider quadratic twists
Eg of such curves (see Definition 7.3.15 below), whose equations have the
form g(T )Y 2 = X3 + aX2 + bX + c, where a, b, and c are again in the base
field k, for some not necessarily constant g ∈ k(T ), and where the curve E
whose equation is y2 = x3+ax2+bx+c is assumed to be an elliptic curve over
k. When g is a polynomial of degree less than or equal to 2, the same proof
as above shows a similar result; see Exercise 18. Thus to be really interesting
we will need g to be of degree at least 3, and this will indeed be the case in
the application to Manin’s proof of Hasse’s theorem that we will give in the
next subsection.

The main result that we need on quadratic twists Eg is that the näıve
notion of “height” of a point is in fact a quadratic form. More precisely, if
P ∈ Eg(K) we define a height function h(P ) as follows. If P is the point
at infinity, we set h(P ) = 0. Otherwise, for P = (XP , YP ) ∈ Eg(K) we
write XP = NP /DP with NP and DP coprime polynomials (this should not
be confused with the notation used in Proposition 7.3.1 above), and we set
h(P ) = max(deg(NP ),deg(DP )). Clearly h(P ) ∈ Z�0 for all P , and under a
mild assumption h(P ) = 0 if and only if P = (u, 0) with u ∈ k (see Lemma
7.3.8 below).

Theorem 7.3.3. Let f(X) = X3 + aX2 + bX + c ∈ k[X] be such that
gcd(f, f ′) = 1, and let Eg be the elliptic curve defined over K = k(T )
by an equation g(T )Y 2 = f(X), where g(T ) ∈ k(T ) is nonzero. The map
h defined above is a quadratic form on Eg(K); in other words, B(P,Q) =
(h(P + Q)− h(P )− h(Q))/2 is a bilinear form on the Z-module Eg(K).

Note that this theorem is false for a general elliptic curve defined over
K; see Exercise 22. As we will do over Q, to obtain a quadratic form it is
necessary to modify the definition of h, but we will not consider this question
in this book, although the method is essentially the same.

Proof. By Exercise 21, we must show that h(P +Q)+h(P−Q) = 2(h(P )+
h(Q)) for all P and Q in Eg(K). If P or Q is the point at infinity this is
clear, so we assume that this is not the case. We thus write P = (XP , YP ),
Q = (XQ, YQ), and XP = NP /DP , XQ = NQ/DQ with gcd(NP ,DP ) =
gcd(NQ,DQ) = 1. In a first part we assume that Q �= ±P . If we write
P ±Q = (X±, Y±) the addition law gives

X± = g(T )
(

YP ∓ YQ

XP −XQ

)2

− (XP + XQ + a)

=
(XP XQ + b)(XP + XQ) + 2aXP XQ + 2c∓ 2g(T )YP YQ

(XP −XQ)2
.

After a short computation it follows that
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X+X− =
(XP XQ − b)2 − 4c(XP + XQ + a)

(XP −XQ)2
and

X+ + X−
2

=
(XP XQ + b)(XP + XQ) + 2aXP XQ + 2c

(XP −XQ)2
;

hence setting X± = N±/D± with gcd(N±,D±) = 1, this gives

N+N−
D+D−

=
AN,N

AD,D
and

N+D− + N−D+

2D+D−
=

AN,D

AD,D
,

where

AN,N = (NP NQ − bDP DQ)2 − 4cDP DQ(NP DQ + NQDP + aDP DQ),

AD,D = (NP DQ −NQDP )2, and

AN,D = (NP NQ + bDP DQ)(NP DQ + NQDP ) + 2aNP NQDP DQ + 2cD2
P D2

Q .

To prove Theorem 7.3.3, we need two results: One is of an arithmetic nature,
saying that up to constant multiples the numerators and denominators of
the above equalities of rational functions match. The second gives estimates
for the degrees of N± and D±. The proof of this second result will be a
slightly painful case distinction and should be skipped at first. Note that
there is a “highbrow” way of proving Theorem 7.3.3 in a simple manner
using some algebraic geometry, but to stay in the spirit of this book we give
an “elementary” but tedious proof.

Lemma 7.3.4. There exists u ∈ k∗ such that

N+N− = uAN,N , D+D− = uAD,D, and
N+D− + N−D+

2
= uAN,D .

Proof. Define S1 = gcd(N+N−,D+D−) and S2 = gcd(AN,N , AD,D). We
thus have

S2N+N− = S1AN,N , S2D+D− = S1AD,D, S2(N+D−+N−D+) = 2S1AN,D .

We are going to show that S1 | S2 and S2 | S1, which is clearly equivalent
to the lemma by setting u = S2/S1. First let F be an irreducible divisor
of S1. By symmetry we may assume that F | D+. By coprimality it follows
that F � N+, hence F | N−, hence F � D−, so in particular F is coprime to
N+D− + N−D+. Since this is true for every irreducible F | S1 it follows that
S1 is coprime to N+D− + N−D+; hence by the third equation we deduce
that S1 | S2. Conversely, let F be an irreducible divisor of S2/S1, hence a
divisor of AN,N and AD,D. It is clear that if F | DP we would have F � NP ;
hence by the first two equations F | NQ and F | DQ, which is absurd. By
symmetry, F � DQ. Using NQDP ≡ NP DQ (mod F ), multiplying the first
and third equations above by D2

P and DP respectively, and dividing by D2
Q,

which we can do since F � DQ, we easily obtain
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(3N2
P + 2aNP DP + bD2

P )2

− 4(2NP + aDP )(N3
P + aN2

P DP + bNP D2
P + cD3

P ) ≡ 0 (mod F ) and

N3
P + aN2

P DP + bNP D2
P + cD3

P ≡ 0 (mod F ) .

Since by assumption gcd(f, f ′) = 1 and gcd(NP ,DP ) = 1, as we have seen
in the proof of Proposition 7.3.2 this implies that F divides a power of DP ,
a contradiction that finishes the proof of the lemma. ��

To state the analytic lemma we introduce the following notation. The
degree z(X) of a rational function X(T ) is as usual the difference between the
degree of the numerator and that of the denominator, with z(0) = −∞ (we
use the notation z instead of the more natural d because we will need d below).
When X �= 0, the leading coefficient �(X) of X is the quotient of the leading
coefficients of the numerator and denominator, so that X(T ) = �(X)T z(X) +
O(T z(X)−1) as T → ∞. It is clear that the function z satisfies z(X1X2) =
z(X1) + z(X2) and z(X1 + X2) � max(z(X1), z(X2)), with equality if and
only if either z(X1) �= z(X2), or z(X1) = z(X2) but �(X1) �= −�(X2). For
simplicity we will denote by zP , zQ, z+, and z− the degrees of XP , XQ, X+,
and X−, and similarly for �.

Lemma 7.3.5. Recall that we have set f(x) = x3 + ax2 + bx + c.

(1) If zP and zQ are not both equal to 0 we have:
(a) If zP � 0 and zQ � 0 then z+ � 0 and z− � 0.
(b) If zP � 0 and zQ < 0 or if zP < 0 and zQ � 0 then z+ � 0 and

z− � 0.
(c) If zP < 0 and zQ < 0 and c �= 0 then either z+ � 0 and z− > 0 or

z+ > 0 and z− � 0.
(d) If zP < 0 and zQ < 0 and c = 0 then z+ > 0 and z− > 0.

(2) If zP = zQ = 0 we have:
(a) If �P �= �Q then z+ � 0 and z− � 0.
(b) If �P = �Q and f(�P ) �= 0 then either z+ � 0 and z− > 0 or z+ > 0

and z− � 0.
(c) If �P = �Q and f(�P ) = 0 then z+ > 0 and z− > 0.

Proof. From the formulas that we have proved for X± and X+X− it
follows that

X± =
A∓
C

=
B

A±
,

where

A± = (XP XQ + b)(XP + XQ) + 2aXP XQ + 2c± 2ε(f(XP )f(XQ))1/2,

B = (XP XQ − b)2 − 4c(XP + XQ + a), and C = (XP −XQ)2 ,

where ε = ±1 depends on the choice of the square root. Thanks to the
properties of the function z(X) given above, the lemma is easy to prove by
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inspection of all the cases, using the two formulas for X± just given. To
illustrate, let us show a few of the more subtle cases.

Assume that zP < 0 and zQ < 0. If c �= 0 we have z(f(XP )) =
z(f(XQ)) = 0 and �(f(XP )) = �(f(XQ)) = c. Choosing the sign of the
square root such that (f(XP )f(XQ))1/2 = c + O(1/T ), we have z(Aε) = 0,
z(B) � 0, and z(C) < 0, hence z(Xε) = z(B) − z(Aε) � 0 and z(X−ε) =
z(Aε) − z(C) > 0, proving case 1 (c). On the other hand, if zP < 0, zQ < 0
and c = 0 then necessarily b �= 0, since otherwise E would not be an elliptic
curve. It follows that z(B) = 0 and z(A±) < 0, so that z(X±) > 0, proving
case 1 (d).

Assume that zP = zQ = 0 and �P = �Q = �, say. We have z(B) � 0,
z(C) < 0, z(A±) � 0, and z(A±) = 0 if and only if f(�)(1 ± ε) �= 0. Thus if
f(�) �= 0 we have z(Aε) = 0 and z(A−ε) < 0, so z(Xε) = z(B) − z(Aε) � 0
and z(X−ε) = z(Aε)− z(C) > 0, proving case 2 (b). Finally, if f(�) = 0 then
z(A±) < 0, and f ′(�) �= 0, since otherwise E would not be an elliptic curve.
We have z(B) � 0 and z(B) = 0 if and only if (�2 − b)2 − 4c(2� + a) �= 0.
However, we check that

(�2 − b)2 − 4c(2� + a) = (3�2 + 2a� + b)2 − 4(2� + a)f(�) = f ′(�)2 �= 0 ,

so that z(B) = 0; hence z(X±) = z(B)− z(A±) > 0, proving case 2 (c).
The other cases are easier and left to the reader (Exercise 23). ��

Remark. We have given this lemma in complete generality. However, in
many cases it can be considerably simplified. For instance, if z(g) is odd
(which will be the case in the application to Hasse’s theorem in the next
section) and if c �= 0, then it is clear that z(X) < 0 is impossible, and
(whether or not c �= 0) z(X) = 0 implies that f(�(X)) = 0, in both cases
because otherwise z(Y ) = −z(g)/2 /∈ Z.

It is now easy to finish the proof of Theorem 7.3.3 when P �= ±Q, by
combining the inequalities for z(X±) given by Lemma 7.3.5 with the identities
of Lemma 7.3.4. For simplicity denote by nP , nQ, n+, dP , etc., the degrees of
the polynomials NP , NQ, N+, DP , etc., and by hP , hQ, and h± the heights
of the points P , Q, and P ± Q. Once again we give only a few illustrative
examples, leaving the other cases to the reader.

Assume that zP < 0 and zQ < 0, in other words that dP > nP , dQ > nQ,
hence hP = dP , hQ = dQ. If c �= 0 we have seen that z+ � 0 and z− > 0
(up to exchange of + with −), so n+ � d+, n− > d−; hence h+ = d+

and h− = n−. In particular, z(N+D−) < z(N−D+) (note that the strict
inequality z− > 0 is essential), so that z(N+D− + N−D+) = h+ + h−; hence
by the third identity of Lemma 7.3.4 we have, since c �= 0,

h+ + h− = 2(dP + dQ) = 2(hP + hQ) ,
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as desired. On the other hand, if c = 0 we have seen that b �= 0 and that
z+ � 0 and z− � 0; hence h+ = n+ and h− = n−, so that by the first identity
of Lemma 7.3.4 we have once again h+ + h− = 2(dP + dQ) = 2(hP + hQ).

Assume that zP = zQ = 0 and �P = �Q = �. If f(�) �= 0 we have seen
that z+ � 0 and z− > 0 (up to exchange of + and −), and as above, the
strict inequality z− > 0 together with the third identity of Lemma 7.3.4 gives
h+ + h− = 2(dP + dQ), since the coefficient of T dP +dQ is equal to 2f(�) �= 0.
If f(�) = 0 then z+ > 0 and z− > 0, and we conclude again by the first
identity of Lemma 7.3.4 since we have seen that the coefficient of T dP +dQ is
equal to f ′(�)2 − 4(2� + a)f(�) = f ′(�)2 �= 0.

As above, the other cases are similar and left to the reader (Exercise 23).
To finish the proof of the theorem, we must now treat the much simpler

case Q = ±P , so we must show that h(2P ) = 4h(P ). The addition law gives

X2P = X+ =
f ′(XP )2 − 4(2XP + a)f(XP )

4f(XP )
,

so that with the same notation as in the general case we have N+/D+ =
AN/AD with

AN = (3N2
P + 2aNP DP + bD2

P )2

− 4(2NP + aDP )(N3
P + aN2

P DP + bNP D2
P + cD3

P )

= (N2
P − bD2

P )2 − 4cD3
P (2NP + aDP ) and

AD = 4DP (N3
P + aN2

P DP + bNP D2
P + cD3

P ) .

Lemma 7.3.6. There exists u ∈ k∗ such that N+ = uAN and D+ = uAD.

Proof. This immediately follows from the fact that AN and AD are co-
prime and is left to the reader (Exercise 24). ��

Lemma 7.3.7. Keep all the above notation.

(1) If zP > 0 then z+ > 0.
(2) If zP < 0 and c �= 0 then z+ � 0.
(3) If zP < 0 and c = 0 then z+ > 0.
(4) If zP = 0 and f(�P ) �= 0 then z+ � 0.
(5) If zP = 0 and f(�P ) = 0 then z+ > 0.

Proof. Identical to that of Lemma 7.3.5 and left to the reader (Exercise
24). ��

As in the general case, the proof of the identity h(2P ) = 4h(P ) is obtained
as a combination of the above two lemmas and is left to the reader, finishing
the proof of the theorem. ��

To finish, we prove the following lemma (recall that we denote by O the
identity element of Eg, in other words the unique point at infinity).
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Lemma 7.3.8. Assume that g(T ) is not equal to a constant times the square
of a rational function, and let P ∈ Eg(K). The following are equivalent:

(1) h(P ) = 0.
(2) P ∈ Eg(k).
(3) Either P = O or there exists u ∈ k such that P = (u, 0).
(4) For all Q ∈ Eg(K) we have h(P +Q) = h(Q); in other words, B(P,Q) =

0.

Proof. Since the result is trivial when P = O, assume that this is not the
case and write as usual P = (XP , YP ). Clearly h(P ) = 0 if and only if XP ∈ k,
so we can write XP = u. We thus have g(T )Y 2

P = f(u), so that if f(u) �= 0,
g(T ) is equal to a constant times the square of the rational function 1/YP ,
contrary to our assumption. Thus f(u) = 0, so YP = 0 and P = (u, 0), proving
that (1) implies (3), and (3) implies (2) implies (1) is trivial, so that (1), (2),
and (3) are equivalent. To prove that (3) implies (4) we note that if Q = ±P
we have h(2P ) = 4h(P ) = 0 and h(P −P ) = 0, so (4) is clear, and (4) is also
clear if Q = O. Otherwise, a simple computation using the addition law gives
XP+Q = u+ f ′(u)/(XQ−u), and since f(u) = 0 we have f ′(u) �= 0, and this
is easily seen to imply that h(P + Q) = h(Q) as desired. Finally, (4) applied
to Q = kP for any k ∈ Z gives (k + 1)2h(P ) = h(P + Q) = h(Q) = k2h(P );
hence h(P ) = 0, so (4) implies (1). ��

7.3.4 Elliptic Curves over Fq

We begin with the following very easy lemma.

Lemma 7.3.9. Let q be an odd prime power, let ρ be the unique multi-
plicative character of order 2 on Fq, and let y2 = f(x) be the equation of
an elliptic curve over Fq, where f(X) is a polynomial of degree 3. Then
|E(Fq)| = q + 1 − aq with aq = −

∑
x∈Fq

ρ(f(x)). In particular, if q = p is
prime we have |E(Fp)| = p + 1− ap with

ap = −
∑
x∈Fp

(
f(x)

p

)
.

Proof. For a given X ∈ Fq it is clear that the number of y ∈ Fq such
that y2 = X is equal to 1 + ρ(X). Counting the point at infinity separately
it follows that

|E(Fq)| = 1 +
∑
x∈Fq

(1 + ρ(f(x))) = q + 1 +
∑
x∈Fq

ρ(f(x)) ,

proving the lemma. ��

The main result for curves over finite fields is Hasse’s theorem giving
precise bounds on the cardinality of E(Fq). Considering the importance of
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this result, we give a proof due to Manin that is taken from a book by Knapp
[Kna]. We have done most of the necessary groundwork in the preceding
subsection.

Theorem 7.3.10 (Hasse). For all elliptic curves E over a finite field Fq

we have the inequality

q + 1− 2q1/2 � |E(Fq)| � q + 1 + 2q1/2 .

Proof. We first assume that the characteristic of Fq is not equal to 2, and
we will see below how to modify the proof in characteristic 2. In this case
we know that E has a plane model whose affine equation is y2 = f(x) with
f(x) = x3 + ax2 + bx + c.

We define the curve Ef over K = Fq(T ) whose affine equation over K is

Y 2 =
1

T 3 + aT 2 + bT + c
(X3 + aX2 + bX + c) =

1
f(T )

f(X) .

This is therefore a quadratic twist of a constant elliptic curve, hence of the
form Eg studied in the preceding subsection in the special case g = f . We
thus know that the height function h(P ) is a quadratic form.

Apart from the point at infinity the point P = (T, 1) is evidently in
Ef (K). Furthermore, we have a Frobenius homomorphism σ from Ef (K) to
Ef (K) defined by

σ(X,Y ) = (Xq, f(T )(q−1)/2Y q) .

Indeed, this belongs to Ef (K) since

f(T )
(
f(T )(q−1)/2Y q

)2

= (f(T )Y 2)q = f(X)q = f(Xq) ,

since f ∈ Fq[T ]. In particular, the point Q = σ(P ) = (T q, f(T )(q−1)/2)
belongs to Ef (K). We will set hn = h(Q+nP ), where h is the height function.

Proposition 7.3.11. We have hn = n2+aqn+q, where aq = q+1−|E(Fq)|.

Proof. By Theorem 7.3.3 we have

hn = n2h(P ) + 2nB(P,Q) + h(Q) = n2 + aqn + q

for some constant aq = 2B(P,Q) to be determined, where B(P,Q) is the
bilinear form associated with h. To compute aq, we note that h(Q − P ) =
h−1 = q + 1− aq, so that aq = q + 1−h(Q−P ). On the other hand, we note
that T q �= T ; hence Q �= ±P , so the addition law gives
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XQ−P = f(T )
(

f(T )(q−1)/2 + 1
T q − T

)2

− T q − T − a

=
T 2q+1 + 2f(T )(q+1)/2 + T q+2 + 2aT q+1 + b(T q + T ) + 2c

(T q − T )2

=
T 2q+1 + O(T 2q)

(T q − T )2

in an evident sense. Thus if we set XQ−P = A/B with A and B coprime we
have z(XQ−P ) = deg(A)−deg(B) = 1, and in particular h(Q−P ) = deg(A)
(in fact it is easily shown that z(XQ+nP ) = 1 for all n �= 0; see Exercise 18).

For ε = −1, 0, 1 let Nε be the number of u ∈ Fq such that f(u)(q−1)/2 = ε,
so that N−1 + N0 + N1 = q. Since the roots of T q − T = 0 are the elements
of Fq and since f(T ) has no multiple roots, it is clear that the GCD of
f(T )(q−1)/2 + 1 and T q − T will be of degree N−1 and the GCD of f(T ) and
(T q − T )2 will be of degree N0. It thus follows from the above expression for
A/B that deg(B) = 2q − 2N−1 −N0. On the other hand, we have

|E(Fq)| = 2N1 + N0 + 1 = 2q + 1− (2N−1 + N0)
= deg(B) + 1 = deg(A) = h(Q− P ) ,

showing that aq = q + 1− |E(Fq)| and proving the proposition. ��

We can now finish the proof of Hasse’s theorem.
Proof of Theorem 7.3.10. If the characteristic of Fq is different from 2, by

Theorem 7.3.3 we have

h(nP + mQ) = n2h(P ) + 2nmB(P,Q) + m2h(Q) = n2 + aqnm + qm2 .

Since h(nP + mQ) � 0, it follows that x2 + aqxy + qy2 is a positive semi-
definite quadratic form, hence that a2

q − 4q � 0, proving Hasse’s inequality
in this case.

In characteristic 2, the process is similar but the formulas rather different.
In essence we must use “Artin–Schreier theory” (in other words the solution
of a second-degree equation in characteristic 2). Write q = 2n, and let y2 +
a1xy + a3y = x3 + a2x

2 + a4x + a6 = f(x) be an affine plane model of our
elliptic curve with ai ∈ Fq. Since this curve is nonsingular, we cannot have
a1 = a3 = 0. Thus we can define Ef by the equation

Y 2 + a1XY + a3Y = f(X) +
(

a1X + a3

a1T + a3

)2

f(T ) ,

and our points P and Q are

P = (T, 0) and Q = (T q, (a1T + a3)qA(f(T )/(a1T + a3)2)) ,

where A(Z) is the Artin–Schreier polynomial
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A(Z) =
∑

0�j�n−1

Z2j

= Z + Z2 + Z4 + · · ·+ Z2n−1
.

It is easy to check that the discriminant of Ef is equal to that of E, so that
Ef is indeed an elliptic curve, and that the points P and Q are in Ef (K).
It is now a routine (but slightly painful) matter left to the reader (Exercise
25) to check that everything that we have done above carries through to this
case, proving the theorem in general. ��

In addition to Hasse’s theorem, the following result, mainly due to Deur-
ing, tells us which values of |E(Fq)| are possible; see [Ruc] and the references
therein.

Theorem 7.3.12. Let q = pn be the cardinality of a finite field, and let t ∈ Z
be such that |t| � 2q1/2. There exists an elliptic curve E defined over Fq such
that |E(Fq)| = q + 1 − t if and only if one of the following conditions is
satisfied:

(1) p � t.
(2) n is even and t = ±2q1/2.
(3) n is even, p �≡ 1 (mod 3), and t = ±q1/2.
(4) n is even, p �≡ 1 (mod 4), and t = 0.
(5) n is odd, p = 2 or 3, and t = ±p(n+1)/2.
(6) n is odd and t = 0.

Thus, there are no restrictions if q = p. On the other hand, if for instance
q = 8 we cannot have |E(Fq)| = 9 or |E(Fq)| = 11.

Note also that it is easy to show that the group E(Fq) is the product of
at most two cyclic groups, and if we write E(Fq) � (Z/d1Z)× (Z/d2Z) with
d2 | d1, then d2 | q − 1.

As for any curve, we can define the so-called Hasse–Weil zeta function
attached to E by

ζq(E, T ) = exp

∑
n�1

∣∣E(Fqn )
∣∣

n
Tn

 .

It is not too difficult to show that ζq(E, T ) is a rational function, and more
precisely that

ζq(E, T ) =
1− aqT + qT 2

(1− T )(1− qT )
,

where as above, aq = q + 1− |E(Fq)|. When q = p is a prime number we will
set

Lp(E, T ) =
1

1− apT + pT 2
.
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This will be used as the local Euler factor in the definition of the global
L-function of an elliptic curve defined over Q when p is a prime of good
reduction.

The structure of the ring End(E) of Fq-endomorphisms of an elliptic curve
defined over Fq is slightly more complicated than over C (or over a field of
characteristic 0). We have seen that End(E) always contains a copy of Z
thanks to the multiplication-by-m maps [m]. Here End(E) contains an addi-
tional automorphism, the Frobenius automorphism φ defined (in affine coor-
dinates) by φ((x, y)) = (xq, yq). Indeed, more generally let P (x1, . . . , xn) = 0
be some polynomial equation with coefficients in Fq. If we raise to the qth
power and use the identity (X + Y )q = Xq + Y q together with the definition
of Fq, we see that P (xq

1, . . . , x
q
n) = 0. This shows that in our special case

(xq, yq) is still on our curve, and it is easily checked that it preserves the
group law (this is in fact automatic since any algebraic map from E to E
preserving the point O preserves the whole group law).

Coming back to elliptic curves, it can be shown that φ (like any isogeny
from E to E) satisfies a quadratic equation with discriminant less than or
equal to zero, and it is easy to see that φ cannot be equal to [m] for any m,
so that the discriminant is in fact strictly negative. It follows that over Fq

the ring End(E) always contains an order in an imaginary quadratic field; in
other words, E always has complex multiplication.

The ring End(E) may be even larger than this: in that case we say that
the curve E is supersingular. More precisely, denote by E[m] ⊂ E(K) the
kernel of the multiplication-by-m map from E(K) to itself. We then have the
following results, that we will not prove:

Proposition 7.3.13. Let K be a field of characteristic p > 0 and let E be
an elliptic curve defined over K. Then either E[pr] � Z/prZ for all r, or
E[pr] = {0} for all r � 1, in which case the curve is said to be supersingular.

Note that in if K has characteristic 0, we always have E[m] � (Z/mZ)×
(Z/mZ), where we again emphasize that the torsion subgroup E[m] is taken
over K.

Theorem 7.3.14. Let E be an elliptic curve over Fq with q = pn, and let
aq = q + 1− |E(Fq)|.
(1) The Frobenius endomorphism φ satisfies the equation

φ2 − aqφ + q = 0 .

(2) The curve E is supersingular if and only if p | aq, or equivalently,
|E(Fq)| ≡ 1 (mod p).

(3) If E is not supersingular the ring End(E) is isomorphic to the imaginary
quadratic order of discriminant a2

q − 4q < 0.
(4) If E is supersingular the ring End(E) is isomorphic to an order in a def-

inite quaternion algebra, and in particular is a Z-module of dimension 4.
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To finish this section, we need a very simple result on quadratic twists.

Definition 7.3.15. Let E be an elliptic curve defined over a field K of char-
acteristic different from 2 by an equation of the form y2 = f(x) for some cubic
polynomial f , and let D ∈ K∗. The quadratic twist of E by D is the elliptic
curve with equation

Dy2 = f(x) .

If f(x) = x3 + ax2 + bx + c and we want to convert this equation to
ordinary Weierstrass form we first note that if D is a square in K∗ we simply
set Y = y

√
D. Otherwise, we multiply the equation by D3 and set Y = D2y

and X = Dx, giving the equation Y 2 = X3 + aDX2 + bD2X + cD3.
The result that we need is the following.

Proposition 7.3.16. Let E be an elliptic curve defined over Fp by a Weier-
strass equation of the form y2 = f(x) for some cubic polynomial f , where p
is an odd prime, let D ∈ F∗

p, let ED be the quadratic twist of E by D, and
finally as above let ap(E) = p + 1− |E(Fp)| and similarly ap(ED). Then

ap(ED) =
(

D

p

)
ap(E) ,

where
(

D
p

)
is the usual Legendre symbol. More generally this result is true

for any finite field Fq of odd characteristic, replacing
(

D
p

)
by ρ(D), where ρ

is the unique multiplicative character of order 2.

Proof. By Lemma 7.3.9 we have

ap(E) = −
∑
x∈Fp

(
f(x)

p

)
.

On the other hand, the equation of ED is Dy2 = f(x), which is isomorphic
to Y 2 = Df(x) since D �= 0 in Fp, so

ap(ED) = −
∑
x∈Fp

(
Df(x)

p

)
=
(

D

p

)
ap(E)

by multiplicativity of the Legendre symbol. The same proof clearly works for
any finite field of odd characteristic. ��

This proposition will in particular be used in Section 8.5.2 to compute
efficiently ap(E) when E comes from an elliptic curve defined over Q with
complex multiplication.
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7.3.5 Constant Elliptic Curves over R[[T ]]: Formal Groups

In the next section we are going to study elliptic curves over p-adic fields
Kp. For this, we must first study elliptic curves over formal power series
rings R[[T ]], although if we only want to study curves over the field Qp of
p-adic numbers, this is not really necessary. In this section we thus let R be
an integral domain of characteristic zero (we will later specialize to the case
R = Zp), and we let R[[T ]] be the ring of formal power series with coefficients
in R. We denote by L = R[[T ]][1/T ] the ring of formal power series in T ,
where a finite number of negative integral powers of T are allowed.

Let E be an elliptic curve over R given by a generalized Weierstrass
equation y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6, where we may assume that
the ai are in R.

Proposition 7.3.17. There exists a unique formal power series s(T ) =∑
k�0 ukT k ∈ R[[T ]] with u0 �= 0 such that if we set (x(T ), y(T )) =

(s(T )/T 2,−s(T )/T 3) then (x(T ), y(T )) ∈ E(L).

Proof. We use a Hensel-type argument with the T -adic valuation instead
of a p-adic one. Set f(x, y) = y2 + a1xy + a3y − (x3 + a2x

2 + a4x + a6).
Identifying coefficients of T−6 in f(x(T ), y(T )) we find that u2

0 = u3
0, so

that u0 = 1 since we have assumed u0 �= 0. For all K � 0 let sK(T ) =∑
0�i<K ukT k be the truncated power series, and define xK(T ) = sK(T )/T 2

and yK(T ) = −sK(T )/T 3. Let K � 1, assume that we have proved existence
and uniqueness of ui for i < K such that f(xK(T ), yK(T )) = O(TK−6),
which is indeed the case for K = 1, and write f(xK(T ), yK(T )) = cKTK−6 +
O(TK−5). By Taylor’s formula we have

f(xK+1(T ), yK+1(T )) = f(xK(T ) + uKTK−2, yK(T )− uKTK−3)

= f(xK(T ), yK(T )) + uKTK−2f ′
x(xK(T ), yK(T ))

− uKTK−3f ′
y(xK(T ), yK(T )) + O(T 2K−6) .

Since K � 1 we have 2K − 6 � K − 5. Furthermore,

f ′
x(xK(T ), yK(T )) = a1yK(T )− (3xK(T )2 + 2a2xK(T ) + a4)

= −3T−4 + O(T−3) and

f ′
y(xK(T ), yK(T )) = 2yK(T ) + a1xK(T ) + a3 = −2T−3 + O(T−2) ,

so we deduce that

f(xK+1(T ), yK+1(T )) = (cK − uK)TK−6 + O(TK−5) .

We must thus choose uK = cK , simultaneously proving existence and unique-
ness by induction. ��
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Remark. It is important to note that in this proof we did not need any
division, so all the coefficients uK are indeed in R. In fact, the follow-
ing proposition shows that this is also true for the “invariant differential”
dx/(2y + a1x + a3):

Proposition 7.3.18. We have x′(T )/(2y(T ) + a1x(T ) + a3) ∈ R[[T ]].

Proof. Since x′(T ) = −2T−3 + O(T−2) we can write

g(T ) = x′(T )/(2y(T ) + a1x(T ) + a3) =
∑
k�0

gkT k .

Because of the factor 2 in the denominator we know only that 2kgk ∈ R.
However, because of the Weierstrass equation we also have

g(T ) = y′(T )/(3x2(T ) + 2a2x(T ) + a4 − a1y(T )) ,

and the factor 3 implies that 3kgk ∈ R. Since 2k and 3k are coprime (in Z,
not in R!) the proposition follows. ��

Although we will not need them, for completeness we give the beginning
of the expansions of s(T ) and of the invariant differential:

s(T ) = 1− a1T − a2T
2 − a3T

3 − (a1a3 + a4)T 4

− (a2
1a3 + a1a4 + a2a3)T 5 + O(T 6) ,

x′(T )
2y(T ) + a1x(T ) + a3

= 1 + a1T + (a2
1 + a2)T 2 + (a3

1 + 2a1a2 + 2a3)T 3

+ (a4
1 + 3a2

1a2 + 6a1a3 + a2
2 + 2a4)T 4 + O(T 5) .

For the next result, we will need the ring R[[T1, T2]] of formal power series
in two variables. Note that in writing an expansion in this ring the “remainder
term” cannot simply be written O(T k

1 ) or O(T k
2 ), since all possible monomials

could appear. We will thus use the following practical abuse of notation: if
we write F (T1, T2) = G(T1, T2) + O(T k), this means that all the monomials
occurring in the formal power series F −G have total degree greater than or
equal to k.

Proposition 7.3.19. (1) There exists a unique formal power series in two
variables F (T1, T2) ∈ R[[T1, T2]] such that F (T1, T2) = T1 + T2 + O(T 2)
and satisfying

(x(T1), y(T1)) + (x(T2), y(T2)) = (x(F (T1, T2)), y(F (T1, T2))) ,

where the + sign in the left-hand side denotes of course the addition law
on the elliptic curve E.
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(2) We have F (T2, T1) = F (T1, T2), F (F (T1, T2), T3) = F (T1, F (T2, T3)),
F (0, T ) = F (T, 0) = T , and F (T, i(T )) = F (i(T ), T ) = 0, where i(T ) =
−T/(1− a1T + a3/y(T ))), and y(T ) is as above.

Proof. For i = 1 and 2 let Pi = (x(Ti), y(Ti)), and let mx+ny = 1 be the
equation of the line through P1 and P2 (since T1 and T2 are formal variables
and x(T ) = T−2 +O(T−1) there are no special cases). By definition the third
point of intersection P3 = (x3, Y3) will be such that P1 + P2 + P3 = O, so
P1 + P2 = (x3, y3) with y3 = −Y3 − a1x3 − a3. Since we will want to expand
in Ti = −x(Ti)/y(Ti) we set t = −x/y and w = −1/y, so that the equation
of the line is w = mt− n, while the equation of E becomes

t3 + (a1t + a2t
2 − 1)w + (a3 + a4t)w2 + a6w

3 = 0 .

Writing the intersection gives

t1 + t2 + t3 =
−a1m− a3m

2 + n(a2 + 2a4m + 3a6m
2)

1 + a2m + a4m2 + a6m3
.

We must now compute m and n. Since y(T ) = −T−3+
∑

k�1(−uk)T k−3 with
uk ∈ R, we note that w(T ) = −1/y(T ) =

∑
k�3 vkT k with v3 = 1 and again

vk ∈ R for all k. It follows that

m =
w(T2)− w(T1)

T2 − T1
=
∑
k�3

vk

∑
0�i�k−1

T i
1T

k−1−i
2 ∈ R[[T1, T2]] ,

so of course n = mT1 − w(T1) ∈ R[[T1, T2]]. In fact, we have more precisely
m = T 2

1 + T1T2 + T 2
2 + O(T 3), so that n = T1T2(T1 + T2) + O(T 4), and

1 + a2m + a4m
2 + a6m

3 = 1 + O(T 2) is invertible in R[[T1, T2]]. Thus, using
the formula obtained above we obtain that t3 ∈ R[[T1, T2]] and that t3 =
−T1 − T2 − a1(T 2

1 + T1T2 + T 2
2 ) + O(T 3), so that

w3 = mt3 − n = −(T1 + T2)(T 2
1 + T1T2 + T2)2 − T1T2(T1 + T2) + O(T 4)

= −(T1 + T2)3 + O(T 4) .

We have thus obtained the (t, w)-coordinates of the point P3 = −(P1 + P2).
Recall that we have written P3 = (x3, Y3) and P1 + P2 = (x3, y3). The t-
coordinate of P1 + P2 is thus equal to

−x3

y3
=

x3

Y3 + a1x3 + a3
=

x3/Y3

1 + a1(x3/Y3) + a3/Y3
=

−t3
1− a1t3 − a3w3

= (T1 + T2 + a1(T 2
1 + T1T2 + T 2

2 ))(1− a1(T1 + T2)) + O(T 3)

= T1 + T2 − a1T1T2 + O(T 3) ,

and since a1t3+a3w3 = O(T ), we deduce that −x3/y3 ∈ R[[T1, T2]]. Similarly
the w-coordinate of P1 + P2 is given by
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− 1
y3

=
1

Y3 + a1x3 + a3
=

1/Y3

1 + a1x3/Y3 + a3/Y3
=

−w3

1− a1t3 − a3w3

= (T1 + T2)3 + O(T 4) ,

also with −1/y3 ∈ R[[T1, T2]].
Thus if we set F (T1, T2) = −x3/y3 it is clear that F (T1, T2) ∈ R[[T1, T2]]

with F (T1, T2) = T1+T2−a1T1T2+O(T 3), and by definition (x(T1), y(T1))+
(x(T2), y(T2)) = (x(F (T1, T2)), y(F (T1, T2))), proving (1).

For (2), it is clear that the given identities are equivalent to the commu-
tativity, associativity, and the existence of a unit element and of an inverse
in the group of points of E with coordinates in the fraction field of L. ��

As above, it is immediate to compute that

F (T1, T2) = T1 + T2 − a1T1T2 − a2T1T2(T1 + T2)

− T1T2(2a3(T 2
1 + T 2

2 ) + (3a3 − a1a2)T1T2) + O(T 5) .

Note that since F (T, 0) = F (0, T ) = T all the homogeneous terms starting
with degree 2 must be divisible by T1T2.

A formal power series F having the above properties is called a formal
group. We have thus shown that there is a unique formal group associated
with an elliptic curve. The essential property of F that we shall use is that
F ∈ R[[T1, T2]].

The two other foremost examples of formal groups are those associated
with degenerate elliptic curves, in other words to the additive group and to the
multiplicative group: for the additive group it is simply F (T1, T2) = T1 + T2,
for the multiplicative group it is

F (T1, T2) = T1 + T2 + T1T2 = (1 + T1)(1 + T2)− 1 .

Although we will not need to study general properties of formal groups,
we need to define the formal logarithm and exponential. Denote by K the
field of fractions of R.

Proposition 7.3.20. Let F (T1, T2) ∈ R[[T1, T2]] be a formal group.

(1) There exists a unique formal power series L ∈ K[[T ]] such that L(T ) =
T + O(T 2) and satisfying L(F (T1, T2)) = L(T1) + L(T2). In addition,
L′(T ) ∈ R[[T ]].

(2) If E = T + O(T 2) ∈ K[[T ]] is the unique formal power series such that
E(L(T )) = L(E(T )) = T then F (T1, T2) = E(L(T1) + L(T2)).

Proof. Denote by F ′
1 and F ′

2 the (formal) partial derivative of F with
respect to the first and second variables respectively. Assuming the existence
of L, we differentiate with respect to T1 its defining equation. We obtain
F ′

1(T1, T2)L′(F (T1, T2)) = L′(T1), so that setting T1 = 0 and using L(T ) =
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T + O(T 2) we obtain F ′
1(0, T2)L′(F (0, T2)) = 1, in other words L′(T ) =

1/F ′
1(0, T ) (which exists since F (T1, T2) = T1 + T2 + O(T 2)). Since L(0) =

0, this shows uniqueness, and also the fact that L′(T ) ∈ R[[T ]]. We now
prove existence. Differentiating the “associativity law” F (T3, F (T1, T2)) =
F (F (T3, T1), T2) with respect to T3 and setting T3 = 0 we obtain

F ′
1(0, F (T1, T2)) = F ′

1(0, T1)F ′
1(T1, T2) .

Thus, if we define L(T ) to be the unique formal power series with 0 constant
term such that L′(T ) = 1/F ′

1(0, T ) we have F ′
1(T1, T2)L′(F (T1, T2)) = L′(T1),

which is the identity obtained above. Integrating with respect to T1, it follows
that L(F (T1, T2)) = L(T1)+M(T2), where M(T2) is some power series in T2,
which is immediately seen to be equal to L(T2) by setting T1 = 0, proving
(1). (2) is an immediate consequence since any formal power series f(T ) =
T + O(T 2) has a functional inverse g(T ) = T + O(T 2) such that f(g(T )) =
g(f(T )) = T ; see Exercise 26. ��

The series L and E are called the formal logarithm and the formal ex-
ponential associated with the formal group F . Note that the formal log-
arithm and exponential associated with the multiplicative formal group
F (T1, T2) = T1 + T2 + T1T2 are log(1 + T ) and exp(T )− 1 respectively. The
above proposition implies in particular that the formal group F can easily be
computed explicitly by the sole knowledge of the power series in one variable
L. For the formal group associated with an elliptic curve we have explicitly

L(T ) = T + a1
T 2

2
+ (a2

1 + a2)
T 3

3
+ (a3

1 + 2a1a2 + 2a3)
T 4

4
+ O(T 5) ,

E(T ) = T − a1
T 2

2!
+ (a2

1 − 2a2)
T 3

3!
− (a3

1 − 8a1a2 + 12a3)
T 4

4!
+ O(T 5) .

Remarks. (1) It can be shown by an explicit but unilluminating compu-
tation that in fact L′(T ) = x′(T )/(2y(T ) + a1x(T ) + a3), which indeed
checks with the expansions given above. Since we will not need this, we
leave the proof to the reader (Exercise 27).

(2) We could have defined L(T ) as the antiderivative of x′(T )/(2y(T ) +
a1x(T ) + a3) vanishing at T = 0, then E(T ) as the functional inverse
of L(T ), and finally F (T1, T2) as E(L(T1) + L(T2)). But we would then
have to prove that F is indeed a formal group (this is essentially equiv-
alent to the above exercise), but above all we would need to prove that
F ∈ R[[T1, T2]], which is again a painful computation.

Definition 7.3.21. For any m ∈ Z we define the formal power series [m]T
by the formula [m]T = E(mL(T )).

We note that by definition of L and E we have [0]T = 0, [1]T = T ,
[−1]T = i(T ) = −T/(1− a1T + a3/y(T )), and
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[m + n]T = E(mL(T ) + nL(T )) = E(L([m]T ) + L([n]T )) = F ([m]T, [n]T ) ,

so we could also define [m]T by induction using these formulas. Note also that
since L(T ) = T +O(T 2) and E(T ) = T +O(T 2) we have [m]T = mT +O(T 2).

Proposition 7.3.22. (1) For any m ∈ Z we have

([m]T )′ = mL′(T )/L′([m]T ) .

(2) If p is a prime number there exist formal power series f(T ) = T+O(T 2) ∈
R[[T ]] and g(T ) = aT + O(T 2) ∈ R[[T ]] such that [p]T = pf(T ) + g(T p).
In other words when p � k the coefficient of T k in [p]T is divisible by p
(i.e., its quotient by p belongs to R).

Proof. If we differentiate the formula E(L(T )) = T with respect to
T we obtain E′(T ) = 1/L′(E(T )), so replacing T by mL(T ) = L([m]T )
gives E′(mL(T )) = 1/L′(E(L([m]T ))) = 1/L′([m]T ), and since by the
chain rule we have ([m]T )′ = mL′(T )E′(mL(T )) this proves (1). For (2)
we note that since L′(T ) = 1 + O(T ) ∈ R[[T ]] and [m]T = mT + O(T 2)
we have L′(T )/L′([m]T ) = 1 + O(T ) ∈ R[[T ]], hence (m[T ])′ = mhm(T )
with hm ∈ R[[T ]]. On the other hand, and this is the crucial fact, since
F ∈ R[[T1, T2]] it is clear that [m]T ∈ R[[T ]] thanks to the induction
[m]T = F ([m − 1]T, T ) seen above, so we can write [m]T =

∑
n�1 unTn

with un ∈ R. We thus have hm(T ) =
∑

n�1(n/m)unTn−1 ∈ R[[T ]]. Fix some
n � 1, set d = gcd(n,m) (in Z), and write (n/m)un = vn ∈ R. By definition
there exist x and y in Z such that 1 = x(n/d) + y(m/d), so

un = (m/d)(x(n/m)un + yun) = (m/d)(xvn + yun) ∈ (m/d)R .

In particular, if m is coprime to n we have un ∈ mR, which immediately
implies (2). ��

7.3.6 Reduction of Elliptic Curves over Kp

In this section we let Kp be the completion of a number field K at some prime
ideal p above a prime number p. For simplicity of notation we write v(α)
instead of vp(α), with the usual convention that v(0) = +∞, and we write | |
for the p-adic absolute value | |p. We denote by Zp the ring of p-adic integers
of Kp, i.e., the set of α such that |α| � 1, which is a local ring with maximal
ideal pZp, the set of α such that |α| < 1. We write Fp = Zp/pZp � ZK/p

for the residue field of Kp (and of K), we let q = |Fp| = Np = pf(p/p) be its
cardinality, so that Fp � Fq. Finally, we let π be a uniformizer of p, hence
such that v(π) = 1. Although not really necessary, for the sake of concreteness
we normalize the absolute value so that |α| = q−v(α) for all α ∈ Kp, and in
particular |π| = 1/q.

Although we will only need elliptic curves over Qp, the proofs are essen-
tially the same in the case of a general p-adic field. The only added difficulty is
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that we explicitly need formal groups as introduced in the preceding section,
while over Qp this can be bypassed; see Exercise 30. If desired, the reader
can thus restrict to this case.

As usual with p-adic questions, everything ultimately boils down to look-
ing at the residue field Fp and performing suitable Hensel liftings. We follow
[Cas2], but generalize to the number field case.

Since we work in projective coordinates, it is useful to make the following
convention: when (x, y, z) is used to represent projective coordinates for a
point P in the projective plane over Kp, we will always implicitly assume that
min(v(x), v(y), v(z)) = 0, in other words that max(|x|, |y|, |z|) = 1. This can
always be achieved by dividing (x, y, z) by πmin(v(x),v(y),v(z)). In particular,
one of x, y, and z will be a p-adic unit, and the projective coordinates of
P will now be defined up to multiplication by a p-adic unit and not by an
arbitrary element of K∗

p . These will be called canonical coordinates for P ,
thus defined up to multiplication by a p-adic unit. If desired we can even
assume that one of the coordinates is equal to 1, and that the others are in
Zp.

If x ∈ Zp, we will denote by x the class of x in Fp. Thanks to the above
remark, we can similarly define P for a point P in the projective plane over
Kp. Finally, to simplify we will assume that an elliptic curve E is given
by a plane homogeneous cubic equation f(x, y, z) = 0 (not necessarily in
Weierstrass form), the general case being similar. Once again by multiplying
by a suitable power of π we may assume that all the coefficients of f are in Zp

and one of them at least is a p-adic unit (or even equal to 1 if desired). Thus
f (obtained by reducing modulo p all the coefficients of f) is not identically
zero, hence defines a curve over Fp, which we will denote by E.

Important Remarks. (1) This is a dangerous although practical abuse of
notation: indeed, E does not depend only on E, but explicitly on the
model chosen to represent E, in other words on the function f (if we
chose a plane model).

(2) The curve E may be singular, hence not an elliptic curve. In this case,
we say that E (or more precisely the model that we have chosen for
E) has bad reduction (at p, but here p is fixed), otherwise that it has
good reduction. Note that because of the first remark, E may have bad
reduction in a given model, and good reduction in another. To give a
specific example, the model y2 = x3 + 16 of an elliptic curve E has
evidently bad reduction at 2, but the change of variable y = 8Y + 4,
x = 4X gives the model Y 2 + Y = X3, which has good reduction at 2.

(3) Because of the above remarks, it is important to note and is easily shown
that there always exists a minimal model, which is the one having the low-
est possible p-adic valuation of the discriminant, and there is an explicit
algorithm due to Tate for computing it; see Algorithms 7.5.1 and 7.5.2
of [Coh0], and Exercise 28. In particular, if the minimal model has bad
reduction, then all models will. Note finally that over a local field min-
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imal models always exist, but this is not necessarily the case for global
minimal models over a global field, which do exist over Q, but not in
general over number fields of class number strictly greater than 1.

Clearly if P ∈ E(Kp), then P ∈ E(Fp), whether E has good reduction or
not. The following proposition shows that the converse is partially true.

Proposition 7.3.23. Let E be an elliptic curve defined over Kp, and let
r ∈ E(Fp) be a nonsingular point. Then there exists R ∈ E(Kp) such that
r = R.

Proof. Let E be given by a plane model f(x, y, z) = 0 chosen as above,
and write r = P , where P = (x0, y0, z0) is any lift of r to Zp. Since r is a non-
singular point of E the partial derivatives of f do not simultaneously vanish
at r, so for instance we may assume that ∂f

∂x (x0, y0, z0) �= 0, in other words
that ∂f

∂x (x0, y0, z0) is a p-adic unit. Since |f(x0, y0, z0)| < 1 by assumption,
we may apply Hensel’s lemma (Proposition 4.1.37) and conclude that there
exists x ∈ Zp such that f(x, y0, z0) = 0 and x = x0, finishing the proof. ��

If r is a singular point, then a point R such that r = R may or may not
exist; see Exercise 29.

If f(x, y, z) = 0 is the equation of an irreducible nonsingular cubic curve
over Kp, it is possible that f(x, y, z) becomes reducible, as the example
f(x, y, z) = x3 + y3 + 3xz2 and p = 3 shows. However, if f is a (possibly
generalized) Weierstrass equation, Proposition 7.1.1 tells us that this cannot
happen.

7.3.7 The p-adic Filtration for Elliptic Curves over Kp

In this section we let E be an elliptic curve over Kp given by a generalized
Weierstrass equation y2z + a1xyz + a3yz2 = x3 + a2x

2z + a4xz2 + a6z
3,

where without loss of generality we may assume that ai ∈ Zp. We have seen
above that E, which may be singular, is at least absolutely irreducible over
Fp by Proposition 7.1.1. We let G = E(Kp) be the set of points of E defined
over Kp, as usual represented by projective coordinates (x, y, z) in canonical
coordinates. Although the curve E may have a singular point, by Proposition
7.1.5 the set G0 of nonsingular points of E(Fp) (which may be all of E(Fp)
if E has good reduction) does have a natural group structure. If we denote
by G0 the set of elements of G that reduce modulo p to a nonsingular point,
we have the following easy result:

Proposition 7.3.24. The group G0 is a subgroup of G of finite index, and
the natural reduction map modulo p induces a group homomorphism from
G0 to G0 ⊂ E(Fp). In particular, if E is nonsingular, it induces a group
homomorphism from E(Kp) to E(Fp).
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Proof. Left to the reader (Exercise 7). ��

Definition 7.3.25. The index [G : G0] is called the Tamagawa number of
E (or of E/Kp).

It is clear that [G : G0] = 1 if E is nonsingular, and more generally
[G : G0] can easily be computed using Tate’s algorithm; see for instance
Algorithms 7.5.1 and 7.5.2 of [Coh0].

By Proposition 7.3.23 we know that the natural reduction map from
G0 to G0 is surjective. Since O is not a singular point (otherwise G0 could
not be a group!), we can consider the kernel G1 of the reduction map , in
other words the group of elements of G0 (or of G) that map to O.

Lemma 7.3.26. A point P = (x, y, z) �= O in canonical coordinates is in
the kernel of the reduction if and only if there exists an integer N � 1 such
that v(x) = N , v(y) = 0, and v(z) = 3N , or equivalently, |x| = q−N , |y| = 1,
and |z| = q−3N .

Proof. Since O = (0, 1, 0), in canonical coordinates P is in the kernel of
reduction modulo p if and only if |x| < 1, |z| < 1, and |y| = 1. It follows from
the non-Archimedean inequality and |ai| � 1 that

|y2z − x3| = |a2x
2z + a4xz2 + a6z

3 − (a1xyz + a3yz2)| < |z| ,

and since |y2z| = |z| we have |x3| = |y2z − (y2z − x3)| = |z|, proving the
lemma since |x| = q−v(x) < 1. ��

Definition 7.3.27. The integer N � 1 as above will be called the level of
the point P �= O. We define the level of O to be ∞ (note that q−∞ = 0), and
the level of a point of G0 that is not in the kernel of reduction to be 0 (note
that in that case we have |z| = 1 but not necessarily |x| = |y| = 1). Finally,
we define GN to be the set of points of level greater than or equal to N .

Lemma 7.3.28. (1) The sets GN are groups such that G ⊃ G0 ⊃ G1 ⊃
· · ·GN ⊃ · · · and we have

⋂
N GN = {O}.

(2) The quotient G0/G1 is isomorphic to the group G0 of nonsingular points
of E(Fp).

(3) For N � 1 the quotient GN/GN+1 is isomorphic to the additive group
Fp, hence to (Z/pZ)f(p/p). In particular, if p is a prime ideal of degree 1
then GN/GN+1 is cyclic of order p.

Proof. For N � 1 make the change of variables x = πNX, y = Y , and
z = π3NZ in the Weierstrass equation. We obtain a new curve EN with
equation

Y 2Z +a1π
NXY Z +a3π

3NY Z2 = X3+a2π
2NX2Z +a4π

4NXZ2+a6π
6NZ3 ;
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hence the reduced curve EN has the simple equation Y 2Z = X3 with
singular point (0, 0, 1). A point (X,Y,Z) maps into the singular point of
EN if and only if min(v(X), v(Y )) > v(Z), hence transferring back into
the initial coordinates, if and only if min(v(x) − N, v(y)) > v(z) − 3N .
If (x, y, z) is not in the kernel of reduction we have v(z) = 0, hence
min(v(x)−N, v(y)) � min(−N, 0) = −N > −3N . If (x, y, z) is in the kernel
of reduction with a certain level M � 1, then by Lemma 7.3.26 the condition
min(v(x)−N, v(y)) > v(z)−3N can be rewritten min(M−N, 0) > 3(M−N),
which is true if and only if M < N . To summarize, the points that map into
the singular point of EN are exactly those with level strictly less than N .

It follows that GN is the set of points that map into the nonsingular points
of EN (Fp), and the reduction map is surjective by Proposition 7.3.23. Thus
GN is a group. Furthermore, a point is in the kernel of reduction for EN if
and only if v(Z) > 0, in other words v(z) > 3N , hence by Lemma 7.3.26
once again if and only if its level is strictly greater than N , i.e., if and only
if it belongs to GN+1. It follows that GN/GN+1 is isomorphic to the group
of nonsingular points of EN (Fp), which is isomorphic to Fp by Proposition
7.1.5 since EN has a cusp. The other statements of the lemma are clear (note
that G1 is by definition the kernel of reduction on the curve E). ��

The above sequence of groups Gi is called the p-adic filtration associated
with E. It is reminiscent of the filtration given by upper ramification groups
in algebraic number theory, which has similar but slightly more complicated
properties.

The aim of this section is to study the torsion subgroup of GN , and
in particular to prove that GN is torsion-free for N sufficiently large (see
Theorem 7.3.31). Note first the following consequence of the above lemma
(where we recall that p is the characteristic of Fp = Fq).

Corollary 7.3.29. If P ∈ G1 is a torsion point, its order is a power of p.

Proof. Assume that kP = O with k �= 0, write k = pum with p � m, and
consider Q = puP . If Q = O then the order of P divides pu so is a power of p.
Otherwise, by Lemma 7.3.28 there exists a unique N � 1 such that Q ∈ GN

and Q /∈ GN+1. But then mQ = kP = O ∈ GN+1, and since GN/GN+1

is a power of Z/pZ we have pGN ⊂ GN+1, hence pQ ∈ GN+1. Since p and
m are coprime, it follows that Q ∈ GN+1, a contradiction that proves the
corollary. ��

To go further, we will now use the machinery of formal groups that we
developed in Section 7.3.5, for the case in which the base ring R is the ring Zp

of p-adic integers. Recall in particular that we proved the existence of a formal
power series s(T ) = 1 + O(T ) ∈ Zp[[T ]] such that (x(T ), y(T )) is a formal
affine point on the curve, where x(T ) = s(T )/T 2 and y(T ) = −s(T )/T 3.
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Proposition 7.3.30. For all t ∈ pZp set P (t) = (ts(t),−s(t), t3) ∈ P2(Kp),
where s(T ) ∈ Zp[[T ]] is as above. Then GN is the group of points P (t) for
t ∈ pNZp together with the group law P (t1) ⊕ P (t2) = P (F (t1, t2)), identity
element P (0) = (0,−1, 0), and inverse "P (t) = P (i(t)).

Proof. Note first that since |t| < 1 and s(T ) ∈ Zp[[T ]] the series s(t)
converges, and more precisely s(t)−1 ∈ pZp, which also shows that P (t) is in
canonical coordinates since s(t) is a p-adic unit. Since (s(T )/T 2,−s(T )/T 3)
is a formal point on E, it follows that P (t) ∈ E(Kp), and its level is equal to
v(t) since s(t) is a unit. Conversely, it is clear that if (x, y, z) ∈ GN , then if
we set t = −x/y we have t ∈ pNZp and P (t) = (x, y, z), proving that GN is
indeed equal to the set of points P (t) for t ∈ pNZp. Now thanks to the crucial
fact that the formal group F associated with E satisfies F ∈ Zp[[T1, T2]] the
the double series F (t1, t2) will converge in Zp when |t1| < 1 and |t2| < 1. The
defining properties of a formal group immediately imply that ⊕ is a group
law with the given identity and inverse. Since by definition of F we have
P (t1)+P (t2) = P (F (t1, t2)), where here the + sign is addition on the elliptic
curve, it follows that the group law ⊕ and the addition law on the elliptic
curve coincide, proving the proposition. ��

Note that this proposition implies that GN/GN+1 is isomorphic to
pNZp/pN+1Zp, which is Lemma 7.3.28 (2). We have preferred proving that
lemma directly since it does not need the machinery of formal groups, which
we now use to bound the torsion in GN . Recall from Corollary 7.3.29 that if
P is a torsion point in G1, its order must be a power of p.

Theorem 7.3.31. Let N � 1. If P ∈ GN is a torsion point of order pk with
k � 1 then

pk � pe(p/p)
(p− 1)N

, or equivalently, N � e(p/p)
pk − pk−1

.

Proof. We may clearly assume that P has exact order k. We prove the
result by induction on k � 1. By the above proposition we let P = P (t) with
t �= 0, and assume first that pP (t) = O, or equivalently by the proposition,
that [p]t = 0. By Proposition 7.3.22 we deduce that there exist f(T ) = T +
O(T 2) ∈ Zp[[T ]] and g(T ) = aT +O(T 2) ∈ Zp[[T ]] such that pf(t)+g(tp) = 0.
Since v(f(t)) = v(t) and v(p) = e(p/p) we have

e(p/p) + v(t) = v(pf(t)) = v(g(tp)) � v(tp) � pv(t) ,

hence v(t) � e(p/p)/(p − 1), proving the result for k = 1 since the level of
P is equal to v(t). Assume now the result true for k � 1, and let P = P (t)
have exact order pk+1, so that pP (t) = P ([p]t) has exact order pk. By the
induction hypothesis and Proposition 7.3.22 once again we have

e(p/p)/(pk − pk−1) � v([p]t) = v(pf(t) + g(tp)) � min(v(pf(t)), g(tp))
� min(v(pt), v(tp)) ,
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since f(T ) = T + O(T 2) and g(T ) = aT + O(T 2). However, since k � 1
and v(t) � 1 we have v(pt) � e(p/p) + 1 > e(p/p) � e(p/p)/(pk − pk−1), so
the minimum cannot be equal to v(pt). It follows that e(p/p)/(pk − pk−1) �
v(tp) = pv(t), proving our induction hypothesis. ��

We now specialize to Q. For this, first note the following trivial lemma:

Lemma 7.3.32. Let G be an abelian group and Gt its torsion subgroup. If H
is a torsion-free subgroup of G the natural map from Gt to G/H is injective.

Proof. Indeed, if g ∈ Gt maps to the class of 0 in G/H, in other words to
H, we have g ∈ Gt ∩H = {0} since H is torsion-free, so g = 0. ��

Corollary 7.3.33. Assume that K = Q, so that p = pZ.

(1) If p > 2 or a1 is even the group G1 is torsion-free.
(2) If p = 2 and a1 is odd the group G2 is torsion-free, and the group G1 is

either torsion-free or isomorphic to G2 × (Z/2Z).
(3) If (X,Y ) are the affine coordinates of a torsion point of E(Qp) different

from O then either X and Y are in Zp, or else p = 2, a1 is odd, v2(X) =
−2, and v2(Y ) = −3, this last case occurring for at most a single torsion
point of order 2.

Proof. (1) and (2). Since e(p/p) = 1 for all p we have e(p/p)/(pk−pk−1) <
1 for all pk � 3, and e(p/p)/(pk − pk−1) = 1 for pk = 2. Thus G2 is always
torsion-free, and G1 is also torsion-free for p > 2, and for p = 2 its only
possible torsion is 2-torsion. Let P = (x, y, z) ∈ G1 be a 2-torsion point in
canonical coordinates. We thus have a1x = −2y−a3z, so when p = 2 we have
v(−2y) = 1 and v(−a3z) � 3, hence v(a1x) = 1, so v(a1) � 0 since v(x) � 1,
showing that a 2-torsion point can exist only if a1 is odd.

By Lemma 7.3.28 we have G1/G2 � Z/2Z. Denote temporarily by Gt

the torsion subgroup of G1. By Lemma 7.3.32 the natural map from Gt to
G1/G2 is injective, so its image is either equal to the trivial group, in which
case Gt = {O} so G1 is already torsion-free, or there exists a nonzero P0 ∈ G1

such that 2P0 = O, and we clearly have G1 � G2×{0, P0}. In particular, we
see that P0 is the only torsion point of G1 different from O.

(3). By definition elements of G\G1 are characterized in canonical coordi-
nates by v(z) = 0, and those of G1 \G2 by v(x) = 1, v(y) = 0, and v(z) = 3,
so the result follows since X = x/z and Y = y/z. ��

Remark. When p = 2 and a1 is odd the group G1 may indeed have 2-torsion
as the following example shows. Consider the curve with equation y2z+xyz =
x3 + 4x2z + xz2. It is easily checked that it is nonsingular. Completing the
square and passing to affine coordinates we see that the 2-torsion points are
such that X = x/z is a root of X3 + 17X2/4 + X = 0. The three roots of
this equation are rational, and it is clear that (x, y, z) = (−2, 1, 8), which
corresponds to X = −1/4, is a 2-torsion point that belongs to G1.
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In the same way, it is easy to work out the corresponding results for
number fields other than Q. For instance, we leave as an exercise to the
reader the proof of the following proposition (Exercise 31).

Proposition 7.3.34. Let K be a quadratic field of discriminant D, let p be
a prime ideal of K, and let p be the prime number below p.

(1) If p � 2D then G1 is torsion-free.
(2) If p = 2 and D is odd then G2 is torsion-free, and G1 is either torsion-free

or is isomorphic to G2 × Z/2Z.
(3) If p | D and p > 3 then G1 is torsion-free.
(4) If p = 3 and p | D then G2 is torsion-free, and G1 is either torsion-free

or is isomorphic to G2 × Z/3Z.
(5) If p = 2 and p | D then G3 is torsion-free, and G1 is either torsion-free

or isomorphic to G2 × Z/2Z, G3 × Z/4Z, or G3 × Z/2Z× Z/2Z.

We finish this section with the following result.

Proposition 7.3.35. Let again K = Q and p = pZ, and assume that p �
disc(E). The torsion subgroup Gt of E(Qp) is either isomorphic to a subgroup
of E(Fp) or is such that Gt/{0, P0} is isomorphic to a subgroup of E(Fp) for
the element P0 of order 2 of G1, this last case possibly occurring only when
p = 2 and a1 is odd.

Proof. First note that by definition of the discriminant p � disc(E) means
that the reduced curve E is nonsingular (this is true even for p = 2), in other
words that G = E(Qp) = G0. By Proposition 7.3.28, since E is nonsingular
we have G0/G1 � E(Fp); hence when G1 is torsion-free (in particular when
p > 2 or a1 is even) we deduce from Lemma 7.3.32 that the torsion subgroup
of G0 = E(Kp) is isomorphic to a subgroup of E(Fp). Otherwise, the same
proof as that lemma shows that Gt/{0, P0} is isomorphic to a subgroup of
E(Fp), where P0 is the unique element of order 2 in G1. ��

7.4 Exercises for Chapter 7

1.

(a) Let E be an elliptic curve over some field K of characteristic 2. Show that there
exists an extension L of K of degree 24 such that E is L-isomorphic to a curve
with equation y2 + axy + y = x3 for some a ∈ L.

(b) Show that this curve is supersingular (see Proposition 7.3.13) if and only if
a = 0, so that there exists exactly one supersingular elliptic curve up to L-
isomorphism (but not up to K-isomorphism, see the next exercise).

2. Study Proposition 2.4.11 and solve Exercise 27 of Chapter 2 before solving this
exercise.



7.4 Exercises for Chapter 7 513

(a) Using Proposition 7.3.13, show that over a field K of characteristic 2 any
nonsupersingular elliptic curve has an equation of the form y2+xy = x3+ax2+b
with b �= 0, and any supersingular elliptic curve has an equation of the form
y2 + a3y = x3 + ax + b with a3 �= 0, in both cases with coefficients in K.

(b) In the nonsupersingular case show that a can be chosen modulo the Artin–
Schreier F2-subspace A of elements of K of the form c2 − c (see Proposition
2.4.11), and in particular that when K is finite we can choose a = 0 or a = a0

a fixed element such that a0 /∈ A (or, equivalently, TrK/F2(a0) = 1).
(c) In the supersingular case, show that a3 can be chosen modulo the Kummer

multiplicative subgroup K∗3 of K∗.
(d) Assume that K = F2n is a finite field with n odd. Deduce that any elliptic

curve over K has a unique equation of the form y2 + xy = x3 + ax2 + b with
a ∈ F2 and b �= 0, or of the form y2 + y = x3 + ax + b with a and b ∈ F2 and
(a, b) �= (0, 1). In particular, there are exactly 3 supersingular elliptic curves
over K up to K-isomorphism.

(e) Assume now that K = F2n with n even, let g be a generator of K∗, let ρ =

g(2n −1)/3 be a primitive cube root of 1 in F4 ⊂ K, and finally let c ∈ K
be such that TrK/F4(c) = 1, which exists by Proposition 2.4.11. Show that a

supersingular elliptic curve over K has a unique equation of the form y2+gky =
x3 + acx + bρg2k with 0 � k � 2 and b ∈ F2, and a = 0 when k �= 0, or a ∈ F2

when k = 0, so that up to K-isomorphism there exist 8 supersingular elliptic
curves over K.

3.

(a) Show that over a field K of characteristic 3 any nonsupersingular elliptic curve
has an equation of the form y2 = x3+ax2+b with ab �= 0, and any supersingular
elliptic curve has an equation of the form y2 = x3 + ax + b with a �= 0, in both
cases with coefficients in K.

(b) Assume that K = F3n . Similarly to the previous exercise, give unique equations
for elliptic curves over K up to K-isomorphism, and in particular compute the
number of nonisomorphic supersingular curves.

4. Show that the curve y2z = x3 + Tz3 defined over K = F2[T ] does not have any
singular points defined over K, but that it has a singular point over a finite
extension of K.

5. Prove the equations given in the text for point addition on an elliptic curve
given in (general) Weierstrass form.

6. Prove that three points P1, P2, and P3 on an elliptic curve are collinear (in other
words are such that P1 + P2 + P3 = O) if and only if there exists a rational
function of x and y that has a simple zero at P1, P2, and P3, and a triple pole
at O (i.e., at infinity), and no zeros or poles elsewhere. Deduce from this that
the addition law on an elliptic curve is associative.

7. Using a similar method to that of the previous exercise, prove Proposition 7.3.24.

8. Check the formulas of Proposition 7.2.1.

9. Write the detailed algorithm corresponding to Section 7.2.4 (see Algorithm
7.4.10 of [Coh0], but beware that there are several misprints in that algorithm,
essentially in the formulas for the inverse coordinate transformations).

10.

(a) Let a, b, and c be nonzero elements in a field of characteristic 0. If Pi = (xi, yi)
for i = 1 and 2 are points on the cubic ax3 +by3 +c = 0, compute by the chord
and tangent method a third point on the cubic (since there is no point chosen
as the origin we cannot give the group law).
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(b) As a special case, give the group law on the cubic x3 + y3 + c = 0, where
the origin is taken as the unique point at infinity with projective coordinates
(1 : −1 : 0).

(c) Let u �= 0, set f(x) = u2x4 + ax3 + bx2 + cx + d, and assume that f has no
multiple roots. We know that the curve y2 = f(x) defines an elliptic curve,
the origin being the point at infinity (1 : u : 0). Write explicitly the group law
on this elliptic curve. (Hint: thanks to Section 7.2.3, show that one must use
parabolas y = ux2 + mx + n going through the two points.)

11. Prove Proposition 7.2.4, and give explicitly the birational transformations from
one curve to the other.

12. In the remarks following Proposition 7.2.4 we have seen that there is a very
simple birational map from x3 + y3 = c to the elliptic curve Y 2 = X3 + 16c2.
Show that the inverse map is as follows (try to do the computation without
looking at the result):

x =
36cX3 + 8Y 3 − 9Y X3

6X(4Y 2 − 3X3)
, y =

36cX3 − 8Y 3 + 9Y X3

6X(4Y 2 − 3X3)
.

13. Using the method explained in the text for constructing Fermat triangles, show
that there exists an infinity of essentially distinct Fermat triangles.

14. Using the algebraic differential equation of the ℘-function and the addition
formulas for elliptic curves, write explicitly the addition formula for the ℘-
functions giving ℘(z1 + z2) in terms of ℘(z1), ℘(z2), ℘′(z1), and ℘′(z2).

15. Let E be an elliptic curve defined over R by a reduced Weierstrass equation.

(a) Show algebraically that the map from E(R) to {±1} sending P to 1 if P ∈ E0

and to −1 if P ∈ Egg is a group homomorphism.
(b) Show algebraically that E0 is the image of the map P �→ 2P from E(R) to

itself.

16. Let E be an elliptic curve defined over R defined by an equation Y 2 = f(X)
with f(X) = 4X3 − g2X − g3, and assume that disc(E) > 0. By making a
change of variable of the form t = (e1t1 + b)/(t1 − e1) for a suitable value of b
show that ∫ e2

e1

dt√
f(t)

=

∫ ∞

e3

dt√
f(t)

,

and similarly show that∫ e3

e2

dt√
−f(t)

=

∫ e1

−∞

dt√
−f(t)

.

17. Let R be a principal ideal domain with field of fractions K, let g � 0 be an inte-
ger, and let f(X) ∈ R[X] and h(X) ∈ R[X] be two polynomials with coefficients
in R such that deg(f) = 2g+1 and deg(h) � g. Consider the hyperelliptic curve
C given by the affine equation Y 2 + h(X)Y = f(X). Generalizing Proposition
7.3.1, show that if (X, Y ) ∈ C(K) there exist M , N , and D in R such that

X =
M

D2
, Y =

N

D2g+1
, gcd(M, D) = gcd(N, D) = 1 .

18. This exercise generalizes Proposition 7.3.2. Let E be an elliptic curve defined
over a commutative field k of characteristic different from 2 by an equation
y2 = x3 + ax2 + bx + c, and consider the quadratic twist Eg with equation
g(T )Y 2 = X3 + aX2 + bX + c, where g is a polynomial with no multiple roots.



7.4 Exercises for Chapter 7 515

(a) Show that if deg(g) � 2 then X ′(T ) = 0.
(b) Deduce that if deg(g) = 1 or 2 then X(T ) = u ∈ k with u3 + au2 + bu + c = 0,

so that Y (T ) = 0 if g(u) �= 0.
(c) Assume that deg(g) = 3. Show that either X ′(T ) = 0, or z(X) = ±1, or

z(X) = 0 and f(�(X)) = 0, where z(X) and �(X) are as in Lemma 7.3.5.
(d) Show that with the notation of the proof of Theorem 7.3.10, for all n �= 0 we

have z(Q + nP ) = 1 and �(Q + nP ) = 1/n2.

19. This exercise is given as a preparatory result for the next one. Let k be an
algebraically closed field, and let A and B be nonconstant coprime polynomials
in k[T ]. Consider the set of polynomials S = {aA + bB, a, b ∈ k}. Since A and
B are nonconstant and coprime, these polynomials are all distinct.

(a) Assume that S contains at least four polynomials that are squares, and that
are not constant multiples of one another. Show that there exist polynomials
F and G and nonzero constants c and d such that F 2 − cG2 and F 2 − dG2 are
squares of polynomials that are not constant multiples of one another.

(b) By writing F 2 − cG2 = (F − c1/2G)(F + c1/2G), and similarly for the other,
prove that S1 = {aF + bG, a, b ∈ k} has the same property as S, in other
words that S1 contains at least four polynomials that are squares, and that are
not constant multiples of one another.

(c) Deduce a contradiction, in other words that such a set S cannot exist.
(d) Show that this is still true when k is not algebraically closed.

20. The goal of this exercise is to give an alternative proof of Proposition 7.3.2.
Let k be an algebraically closed field and let E be an elliptic curve given by
a Weierstrass equation Y 2 = f(X) = X3 + aX2 + bX + c. Set K = k(T ) and
let P = (X, Y ) ∈ E(K), so that X = M/D2, Y = N/D3 with gcd(M, D) =
gcd(N, D) = 1 by Proposition 7.3.1. Let ei be the roots in k of f(X) = 0.

(a) Show that M(T ) − eiD(T )2 is the square of a polynomial, and deduce that
S = {aM + bD2} satisfies the properties of the preceding exercise, in other
words that it contains at least four polynomials that are squares, and that are
not constant multiples of one another.

(b) Deduce from this that X and Y are constant, hence that E(K) = E(k).

(c) Show that this is still true when k is not algebraically closed. (Hint: k(T )∩k =
k.)

21. Let G be an abelian group, let h be a map from G to a field K of characteristic
different from 2, and define the map B from G×G to K by B(P, Q) = (h(P +
Q) − h(P ) − h(Q))/2. Show that B is a bilinear form (i.e., B(P + Q, R) =
B(P, R)+B(Q, R)) if and only if for all P , Q in G we have h(P +Q)+h(P−Q) =
2(h(P ) + h(Q)) (this is not as easy as it looks).

22. Let k be a commutative field of characteristic different from 2 and 3, let E be
the elliptic curve defined over K = k(T ) by the Weierstrass equation Y 2 =
X3 − (T 3 − T 2), and let P = (T, T ) ∈ E(K) so that h(P ) = 1.

(a) Show that h(2P ) = 2, hence that h is not a quadratic form on E(K).
(b) For any Q = (XQ , YQ) ∈ E(K) different from O write as usual XQ =

NQ/DQ with NQ and DQ coprime polynomials. Assume that Q is such that
NQ(T ) = TMQ(T ), where MQ(T ) is a polynomial coprime to T (T − 1).
Prove that N2Q(T ) = NQ(T )(TMQ(T )3 + 8(T − 1)DQ(T )) and D2Q(T ) =
4DQ(T )(TMQ(T )3 − (T − 1)DQ(T )3, and deduce that we also have N2Q(T ) =
TM2Q(T ), where M2Q(T ) is a polynomial coprime to T (T − 1).
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(c) Deduce from the preceding question that deg(N2n P ) = (4n + 2)/3 and
deg(D2n P ) = (4n−4)/3, hence that h(2nP ) = (4n+2)/3, so that the “canonical
height” of P , defined as limn→∞(h(2nP )/4n), is equal to 1/3.

23. Finish the proof of Lemma 7.3.5 and of Theorem 7.3.3 by filling in the easy
cases not done in the text.

24. Prove Lemmas 7.3.6 and 7.3.7.

25. Prove Hasse’s Theorem 7.3.10 in characteristic 2 using the indications given in
the text.

26. Show by induction or by a Hensel-type argument that for any formal power series
f(T ) = T + O(T 2) there exists a unique formal power series g(T ) = T + O(T 2)
such that f(g(T )) = g(f(T )) = T .

27. Let g(T ) be the formal power series defined by the formula g(T ) = x′(T )/(2y(T )+
a1x(T ) + a3). Prove in any order the following two statements:

(a) The derivative of the formal logarithm L(T ) associated with an elliptic curve
satisfies L′(T ) = f(T ).

(b) We have g(F (T1, T2)) = g(T1) + g(T2), where as usual F (T1, T2) is the formal
group associated with the elliptic curve.

28. Let E be an elliptic curve defined over Qp with p � 5, so that we may assume
that E is given by the simple Weierstrass equation y2 = x3 + ax + b with a
and b in Zp . Show that if p4 | a and p6 | b this model is not minimal, and that
conversely if p4 � a or p6 � b the model is minimal. Deduce an algorithm for
finding a minimal model over Qp for p � 5.

29. Give examples of (models of) elliptic curves over Qp for which the singular point
r of the reduction modulo p has or does not have a lift R to the curve (i.e.,

such that r = R), both when the reduction has a cusp and when it has a double
point with distinct tangents.

30. The aim of this exercise is to prove Corollary 7.3.33 without using formal groups.
Let E be an elliptic curve given by a generalized Weierstrass equation with
coefficients in Zp . We assume either that p > 2 or that p = 2 and ai is even. If
(x, y, z) ∈ G1 is not equal to O define u(P ) = x/(y + (a1/2)x + (a3/2)z).

(a) Show that u(P ) is well defined, and that v(u(P )) = N , where N is the level of
P .

(b) Show that if P1 and P2 are in G1 then

|u(P1 + P2) − u(P1) − u(P2)| � max(|u(P1)|3, |u(P2)|3)

(this is the longest part of the exercise: you will evidently have to use the
straight line going through P1 and P2).

(c) Deduce by induction that |u(kP ) − ku(P )| � |u(P )|3 and |u(kP )| � |u(P )|
for all k ∈ Z�0. Then deduce by a different induction that in fact |u(kP )| =
|k||u(P )|.

(d) Deduce that G1 is torsion-free.
(e) By replacing E by a different curve, deduce without further computation that

when p = 2 and a1 is odd, G2 is torsion-free.

31. Prove Proposition 7.3.34, and find the analogue of Corollary 7.3.33 (3).
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8.1 Elliptic Curves over Q

8.1.1 Introduction

The Hasse–Minkowski theorem implies that the existence of rational points
on a curve of genus 0 can be decided by local arguments, and then the rational
points have a parametrization in terms of rational functions of a single pa-
rameter t ∈ P1(Q), or equivalently a pair of coprime integers (see for example
Corollary 6.3.6).

On the other hand, the parametrization of the group of rational points on
an elliptic curve is of a more difficult kind, and we have already seen several
examples in which the local–global principles fail. Since it is the simplest case
after curves of genus 0, the Diophantine aspects of elliptic curves have been
extensively studied, and even though they are far from being solved, several
powerful techniques have been developed. Many proofs are quite difficult and
involved, so some of them will be omitted.

There are two main questions, and correspondingly two main theorems
about Diophantine aspects of elliptic curves. The first one is the existence and
structure of the set of rational solutions. The answer to this is that this set
is an abelian group (in essence this is due to Fermat), but the more difficult
theorem due to Mordell is that this group is finitely generated, in other words
isomorphic to Et × Zr, where Et is a finite abelian group consisting of the
rational torsion points on the curve. It is very easy to compute Et effectively.
On the other hand, the integer r, called the algebraic rank of the curve, is
much more difficult to compute, and no general algorithm is known.

The second question concerns the set of integral points on the curve.
Here the situation is more satisfactory: a theorem of C. L. Siegel says that
this set is finite, without giving any effective way of computing it. However,
recent techniques based on Baker-type bounds due to S. David on elliptic
logarithms, combined with the use of the LLL algorithm, make the search
for the complete set of integral points almost automatic when (and that is of
course a big “when”) one knows explicitly the group of rational points; see
for example the book by Smart [Sma]. We will give an outline of this method.
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8.1.2 Basic Results and Conjectures

There are basically five main results and conjectures on this subject (not
counting the existence of the group law, due in essence to Fermat in the sev-
enteenth century). In increasing order of difficulty, these are the Mordell–Weil
theorem, proved in the case of Q by Mordell in the 1920s; Siegel’s theorem,
proved in the 1930s; the isogeny conjecture, proved by Faltings in the 1980s
together with the Mordell conjecture; the Taniyama–Shimura–Weil conjec-
ture, proved by Wiles et al. between 1995 and 2000; and finally the Birch–
Swinnerton-Dyer conjecture, still unproved.

We begin with the celebrated theorem of Mordell (or Mordell–Weil in the
case of number fields or of Abelian varieties).

Theorem 8.1.1 (Mordell). Let E be an elliptic curve defined over Q. Then
E(Q) is a finitely generated abelian group. In other words, the torsion sub-
group Et(Q) of all T ∈ E(Q) such that there exists a nonzero integer k such
that k · T = 0 is finite, and there exists an integer r (called the algebraic
rank) and points Pi ∈ E(Q) for 1 � i � r such that any point P ∈ E(Q)
can be written uniquely as P = T +

∑
1�i�r xi · Pi, with T ∈ Et(Q) and the

xi ∈ Z.

The proof of this theorem is not too difficult, and we will give it below (see
Theorem 8.2.7 and Corollary 8.3.8). However, an important point must be
noted: it is easy to compute Et(Q) algorithmically (more on this below), but it
is difficult (and in fact there is no rigorous algorithm known) to compute the
rank r and a fortiori the generators Pi. It is conjectured that r is unbounded,
and the present record is r = 28 due to Elkies [Elk2], using a method first
introduced by Mestre; see Exercise 11 for a weak but nontrivial version.

The second theorem, due to Siegel, deals with integral points. Here an
important remark must be made. The group of rational points does not de-
pend on the particular model chosen for the curve E: if we transform the
equation(s) of E by a birational transformation, the structure of the group
of rational points will be unchanged. This is absolutely not true for the set
of integral points, which depends on the chosen model. To give an example
in the even simpler case of genus 0, the curve x2 + y2 = 1 has only (±1, 0)
and (0,±1) as integral points, while the Q-isomorphic curve x2 +y2 = 25 has
(±5, 0), (±4,±3), (±3,±4), and (0,±5) as integral points. Thus when one
speaks of the set of integral points, it is always with respect to an equation
or a family of equations. Furthermore, the notion of projective coordinates
loses much of its meaning. (When is the projective point (x, y, z) an integral
point? it cannot be when x, y, and z are integral since any rational point has
a representative of that form. It could be when x/z and y/z are integral, but
why choose z as special coordinate?) Siegel’s theorem is as follows.

Theorem 8.1.2 (Siegel). Let f(x, y) = 0 be the affine equation of a nonsin-
gular plane cubic with integer coefficients. There exists only a finite number
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of pairs (a, b) ∈ Z2 such that f(a, b) = 0; in other words, the equation has
only a finite number of integral points (possibly none).

This theorem is fundamentally ineffective; in other words, it does not give
any bound on the size of the solutions, or even on their number. A break-
through in this and many other types of similar subjects was made by Baker
at the end of the 1960s by his results on linear forms in logarithms of alge-
braic numbers (see Chapter 12 for an overview). Baker’s results transformed
all of this type of problem into effective results, although with huge constants.
Soon afterward it was realized that the use of lattice reduction algorithms,
and in particular the LLL algorithm when it was invented, could drastically
reduce these huge bounds to a point where they can be used for practical
computations.

As noted in the introduction, finding integral points on an elliptic curve
in practice has become a routine (if not completely trivial) task, and we
will devote Section 8.7 to a detailed explanation. We will proceed as follows.
We first need a basis (Pi)1�i�n of the torsion-free part of the Mordell–Weil
group, and this is of course the hardest part. Second, we use Baker-type
bounds on linear forms in elliptic logarithms to find a huge but effective
upper bound on the integer coefficients xi of the integral points expressed
as a linear combination of the Pi (for the group law of the curve). Third,
using the LLL algorithm in a suitable manner, possibly two or three times,
we reduce the upper bound to something manageable, often less than 10; see
Section 2.3.5. As a fourth and final step, we explore systematically all the
possible linear combinations of the Pi with coefficients up to the bound that
has been found, and all the integral points will be found during this search.
Of course many things must be explained, and many tricks exist to improve
on the above method (see [Sma]), but the main thing to understand is that
the method is quite straightforward.

To explain in more detail the other results, we now introduce the notion
of minimal model and of reduction modulo a prime. By making a suitable
change of variables, we may always assume that our elliptic curve is given
by an equation y2 = x3 + ax + b with a and b integral. If a prime number
p does not divide the discriminant of the curve disc(E) = −16(4a3 + 27b2),
it is clear that the curve obtained by taking the reduction modulo p of a
and b is still an elliptic curve, i.e., is nonsingular. For those p that divide
disc(E) the curve is singular, but we may hope that by using other changes
of variables certain other p may become acceptable. The fact is that the right
context in which to consider this problem (which readily follows from the
Riemann–Roch theorem) is that of generalized Weierstrass equations of the
form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

already considered in the preceding chapter.
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The main result is that there exists a minimal model in generalized Weier-
strass form with the ai ∈ Z, which among other properties has the smallest
possible discriminant. However, this is not a satisfactory definition: the im-
portant property is that if p divides this minimal discriminant then whatever
birational transformation is applied, the equation of the curve will remain
singular at p. It is to be noted that the existence of a minimal model is due
in large part (but not only) to the fact that Z is a principal ideal domain.
An elliptic curve over a number field of class number strictly greater than 1
does not always have a global minimal model.

Let E be given by a minimal Weierstrass equation. We now introduce
the global L-function of E. When p does not divide the (minimal) discrim-
inant of E, the reduction of E modulo p is nonsingular hence defines an
elliptic curve over Fp. We have seen in Section 7.3.4 how to define Lp(E, T )
in that case. When p does divide the minimal discriminant, we must proceed
a little differently. The singularity of the curve is necessarily unique, and by
Proposition 7.1.5 (which can easily be extended to more general equations)
it can come in one of three types. Assume for simplicity that the equation is
y2 = x3 + a2x

2 + a4x + a6 as in the proposition. The only possible singular-
ity is at a point P0 = (x0, 0), where x0 is a multiple root of the third-degree
polynomial. If P0 is a cusp (respectively a double point with distinct tangents
defined over K, respectively a double point with distinct tangents not defined
over K), in other words if we have additive (respectively split multiplicative,
respectively nonsplit multiplicative) reduction, we set Lp(E, T ) = 1 (respec-
tively Lp(E, T ) = 1/(1−T ), respectively Lp(E, T ) = 1/(1+T )). By the exam-
ple following Proposition 7.1.5, these three formulas can be unified using the
single formula Lp(E, T ) = 1/(1− apT ), where as usual ap = p + 1− |E(Fp)|.
Thus for all primes p we can write

Lp(E, T ) =
1

1− apT + χ(p)pT 2
,

where χ(p) = 1 if p is a prime of good reduction, and χ(p) = 0 otherwise.
Now that we have all the local L-functions, the global L-function of E is

defined as the Euler product

L(E, s) =
∏
p

Lp(E, p−s) =
∏
p

1
1− app−s + χ(p)p1−2s

,

which gives of course a Dirichlet series L(E, s) =
∑

n�1 ann−s by expanding.
Hasse’s inequality immediately implies that the above Euler product (as well
as the Dirichlet series) is absolutely convergent for �(s) > 3/2. The third
important result on elliptic curves is the following:

Theorem 8.1.3 (Faltings). Let E and E′ be two elliptic curves defined
over Q. If E and E′ are isogenous over Q then L(E, s) = L(E′, s), and
conversely, if L(E, s) = L(E′, s) then E and E′ are isogenous over Q.
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The first part of this theorem is not difficult, but the converse (known
previously as the isogeny conjecture) is a deep theorem of Faltings, proved in
the same paper as the proof of Mordell’s conjecture. Note that this theorem
is important mainly for theoretical reasons.

The fourth important theorem on elliptic curves over Q is the extremely
difficult and famous result of Wiles et al. (which, by using an older but also
highly nontrivial result of Ribet, implies FLT; see Chapter 15 for details)
proving the Taniyama–Shimura–Weil conjecture, and which states the fol-
lowing.

Theorem 8.1.4 (Wiles et al.). The function L(E, s) has an analytic con-
tinuation to the whole complex plane into a holomorphic function. Further-
more, there exists a positive integer N (which has the same prime divisors
as the discriminant disc(E) of a minimal model, and which divides it), called
the conductor of the curve, such that if we set

Λ(E, s) = Ns/2(2π)−sΓ(s)L(E, s) ,

then Λ satisfies the functional equation Λ(E, 2 − s) = ε(E)Λ(E, s), where
ε(E) = ±1.

The number ε(E) is called the (global) root number, or simply the sign of
the functional equation. It is to be noted that there exists a tedious but easy
algorithm due to Tate for computing the minimal model and the conductor
(see for example [Coh0]). There exists a more recent and even more tedious
algorithm for computing ε(E), due to Mestre–Henniart and Halberstadt.

Another way to state the above theorem that is useful for computation is
the following. For lack of space we cannot give the definition and properties
of modular forms, but we will come back to them in Chapter 15.

Theorem 8.1.5. There exists a modular cusp form f of weight 2 for Γ0(N)
that is a Hecke eigenform for all Hecke operators (in other words a newform),
such that the L-function L(f, s) is equal to L(E, s).

We will also need the following property of the conductor, which we of
course assume since we have not defined it.

Proposition 8.1.6. Let E be an elliptic curve defined over Q, let N be its
conductor, let p be a prime number, and denote by E the reduction modulo p
of a minimal model of E, considered as a curve over Fp. Then p | N if and
only if E is singular, p2 | N if and only if the singularity of E is a cusp (i.e.,
additive reduction); hence p‖N if and only if the singularity of E is a node
(i.e., multiplicative reduction).

The fifth and last important aspect of the theory of elliptic curves over
Q is unfortunately in a conjectural state: it is the conjecture of Birch and
Swinnerton-Dyer (BSD for short). As mentioned elsewhere, in the author’s
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opinion it is the most beautiful and important conjecture in the whole of
number theory (together with analogous or more general conjectures of the
same type), and probably in the whole of mathematics.

Conjecture 8.1.7 (Birch–Swinnerton-Dyer). Let E be an elliptic curve
defined over Q. The algebraic rank r defined by Mordell’s theorem is equal to
the order of vanishing of L(E, s) at s = 1. More precisely,

lim
s→1

L(E, s)
(s− 1)r

=
L(r)(E, 1)

r!
= ω1(E)

|X(E)|R(E)c∞(E)
∏

p|N cp(E)

|Et(Q)|2 ,

where ω1(E) is the real period of E, X(E) is the so-called Tate–Shafarevich
group of E, R(E) is the regulator of E, c∞(E) is the number of connected
components of E(R), and for each p | N , cp(E) is the Tamagawa number of
E/Qp (see Definition 7.3.25), which is a small easily computed integer.

The real period ω1(E) has been defined in Section 7.3.2, but we will
not give here the definitions of X(E) and R(E), which will be (partially)
introduced when necessary. The main point to note is that all the quantities
on the right-hand side are in principle computable (although there is no
known algorithm to compute R(E)), except for X(E), which is not even
known to be finite in general, except when r � 1. See Section 8.5.6 for an
example.

Because of this conjecture the order of L(E, s) at s = 1 is called the
analytic rank, and the main statement of the conjecture is that it is equal to
the ordinary (or algebraic) rank.

The main results concerning this conjecture are due to Coates–Wiles,
Gross–Zagier, Kolyvagin, Rubin, and others. A weak but sufficient form of
the known results is the following:

Theorem 8.1.8 (Kolyvagin et al.). Let E be an elliptic curve defined
over Q. Then

(1) If the analytic rank is equal to 0, in other words if L(E, 1) �= 0, then
r = 0.

(2) If the analytic rank is equal to 1, in other words if L(E, 1) = 0 and
L′(E, 1) �= 0, then r = 1.

(3) In both of these cases, X(E) is finite and the BSD conjecture is valid up
to a controlled rational factor.

Remark. Note that it is easy to check numerically that a given quantity
such as L(E, 1) or L′(E, 1) is nonzero, but that it is impossible in general to
prove numerically that a certain quantity is equal to 0. Thus, when we say
that L(E, 1) = 0, we mean in fact that the sign of the functional equation
ε(E) is equal to −1 (which can be checked algorithmically), so that indeed
L(E, 1) = 0. We also have the following:
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Corollary 8.1.9. Let E be an elliptic curve defined over Q, let r be its (al-
gebraic) rank, denote by ran its analytic rank, and let ε(E) the sign of the
functional equation. Then

(1) If r � 2, then ran � 2, in other words L(E, 1) = L′(E, 1) = 0.
(2) If r = 2, ε(E) = 1, and L′′(E, 1) �= 0, then ran = 2.
(3) If r = 3, ε(E) = −1, and L′′′(E, 1) �= 0, then ran = 3.

Proof. Immediate and left to the reader (Exercise 1). ��

Notwithstanding this corollary, which is in fact a restatement of the the-
orem, one can reasonably say that nothing is known on the BSD conjecture
when the analytic rank is greater than or equal to 2, even for a single curve.

Let us give two examples. To be able to find explicit lower bounds for
the class number of imaginary quadratic fields, Goldfeld had shown long ago
that it would be sufficient to find an L-function with suitable properties,
and having a zero of order at least 3 at s = 1. The L-functions attached
to modular elliptic curves over Q (at the time it was not known that all
elliptic curves over Q are modular by Wiles et al.) do satisfy the necessary
properties, but there remained to prove that one has a zero of order at least
3. The above corollary tells us that to find such an L-function it is enough
to find an elliptic curve of rank at least 3, which is very easy. For instance,
there exists a curve of rank 3 of conductor 5077 (and thanks to the work of
Cremona, it is known that this is the smallest conductor); see Section 8.5.6
for more properties of this curve. To prove that the L-function has a zero of
order 3 is immediate since we can compute algorithmically the sign of the
functional equation, which is equal to −1 (it better be, since otherwise BSD
would be false!), and using the methods of Section 8.5.3 it is also easy to
compute numerically that L′′′(E, 1) �= 0.

As a second example, let E be an elliptic curve of algebraic rank 4 and
ε(E) = 1 (infinite families of such curves are known). Then L′(E, 1) =
L′′′(E, 1) = 0 because of the functional equation, by the above corollary
we have ran � 2, so that in particular L(E, 1) = 0, and a numerical com-
putation easily shows that L′′′′(E, 1) �= 0. The BSD conjecture implies that
L′′(E, 1) = 0. This can easily be checked numerically to as many decimal
places as one likes, but nobody has any idea how to prove this. In fact, if it
could be proved in a single instance, it would be an exceedingly important
advance on the subject, certainly worth a million dollars from the Clay prize
plus a Fields medal.

From now on we assume that the curve E is given by a Weierstrass equa-
tion y2z = x3 + axz2 + bz3 with 4a3 + 27b2 �= 0, where we may assume
without loss of generality that a and b are in Z. Furthermore, we will work in
affine coordinates, simply remembering that the point at infinity is the neu-
tral element for the group law, and is the given rational point, so we write our
equation as y2 = x3+ax+b. We would like to determine the group of rational
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points on this curve. This is extremely difficult to do in complete generality
(no algorithm is known), but we can obtain a great deal of information from
different points of view, both rigorous and conjectural. In this section some
proofs will be omitted, and we refer to the numerous books on the subject
such as [Cas2], [Cre2], [Dar], [Sil1], [Sil2], or [Sil-Tat].

8.1.3 Computing the Torsion Subgroup

There are several algorithms that can be used to compute Et(Q). The most
efficient uses analytic techniques, and will not be described here. We begin
with the Nagell–Lutz theorem, which is sufficient for small cases.

Theorem 8.1.10 (Nagell, Lutz). Let E be given by a Weierstrass equa-
tion y2 = x3 + ax2 + bx + c = f(x) with a, b, and c in Z. If T = (x, y) ∈
Et(Q) \ {O}, then either T has order 2, in other words y = 0, or x and y are
integers such that y2 divides D = −(4a3c−a2b2−18abc+4b3+27c2) = disc(f).
In particular, if the equation is y2 = x3 + ax + b then either y = 0 or
y2 | D = −(4a3 + 27b2).

Proof. The statement concerning points of order 2 is clear, so assume that
T is not of order 2. Since the natural map from E(Q) to E(Qp) is injective,
it follows from Corollary 7.3.33 (3) that (x, y) ∈ Z2

p for all p including p = 2,
hence that (x, y) ∈ Z2. But 2T is also a torsion point different from O,
so if we write 2T = (x3, y3) we also have (x3, y3) ∈ Z2. By the addition
formula, x3 = m2 − 2x − a with m = (3x2 + 2ax + b)/(2y). Since x3 ∈ Z it
follows that m is a rational number that is a root of a monic second degree
equation with integral coefficients, hence that m ∈ Z, so that in particular
y | 3x2 + 2ax + b = f ′(x). Now we have the identity (see Exercise 2)

(27f(x)− (4a3 − 18ab + 54c))f(x)− (f ′(x)− a2 + 3b)f ′(x)2 = disc(f) = D ,

and since y2 = f(x) and y | f ′(x) it follows that y2 | D. ��

Note that the same proof shows that if E is given by a general Weierstrass
equation y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6 with ai ∈ Z and if T = (x, y)
is a torsion point of order not dividing 2, then again (x, y) ∈ Z2 but with the
slightly weaker condition (2y + a1x + a3)2 | 4 disc(E); see Exercise 3.

The following corollary is important.

Corollary 8.1.11. If P = (x, y) is a rational point on an elliptic curve given
as above (i.e., with integral coefficients), then P is a nontorsion point if and
only if there exists k such that k · P has nonintegral coordinates.

Proof. If k · P has nonintegral coordinates, then it cannot be a torsion
point by the above theorem, so P is also nontorsion. Conversely, if k · P
has integral coordinates for all k, these points cannot be distinct; otherwise,
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we would have an infinity of integral points, which is impossible by Siegel’s
Theorem 8.1.2. Thus two of them coincide for distinct values of k, so that P
is a torsion point. ��

Note that a point satisfying the hypothesis of the Nagell–Lutz theorem
is not necessarily a torsion point. For instance, the point P = (−1, 1) on
the curve y2 = x3 − 2x, which satisfies the conditions, is nontorsion since
2 · P = (9/4,−21/8) does not have integral coordinates.

A variant of the Nagell–Lutz theorem which is useful in some cases is the
following.

Proposition 8.1.12. Assume that E is given by an equation of the form
y2 = x3 +ax2 +bx with a and b integral, in other words that up to translation
of the x-coordinate the curve has a rational 2-torsion point. Then if (x, y) ∈
Et(Q) with y �= 0, we have x ∈ Z, x | b, and x + a + b/x is a square.

Proof. Assume that T = (x, y) ∈ Et(Q) with y �= 0. Then 2T ∈ Et(Q) and
2T �= O. The x-coordinate of 2T is equal to (b−x2)2/(4x(x2+ax+b)), and by
the Nagell–Lutz theorem this must be an integer. Let d = gcd(b, x), b1 = b/d,
x1 = x/d so that gcd(b1, x1) = 1 and 4x1(dx2

1 + ax1 + b1) | (b1 − dx2
1)

2. In
particular, x1 | b2

1, and since x1 and b1 are coprime we have x1 = ±1, in other
words d = ±x so x | b. Thus x2 | y2, so writing y = ±xy1 we deduce that
y2
1 = x + a + b/x, hence the latter quantity is a square. ��

Another consequence of the Nagell–Lutz theorem that is very useful for
computing Et(Q) is the following.

Proposition 8.1.13. Let E be given by y2 = x3 + ax2 + bx + c = f(x), and
let � be a prime number such that � � disc(E) = −16D, where D = disc(f)
is as in Theorem 8.1.10. Then Et(Q) is isomorphic to a subgroup of E(F�),
and in particular |Et(Q)| divides |E(F�)| for all such �.

Proof. Since � �= 2 and � � disc(f) the reduction E of the curve E modulo
� is again an elliptic curve. By the Nagell–Lutz theorem all the points of
Et(Q) different from the point at infinity O have integral coordinates. The
map reduction modulo � is thus well defined from Et(Q) to E(F�) by sending
the point at infinity of E to that of E, and sending (x, y) ∈ Et(Q) to (x, y) ∈
E(F�). By Proposition 7.3.24 this map is a group homomorphism with trivial
kernel, hence is injective, proving the proposition. ��

Thus for instance if we find two suitable values of � for which the cardi-
nalities |E(F�)| are coprime, we immediately know that Et(Q) is reduced to
the point at infinity. As an application we give the following classical result.

Proposition 8.1.14. Let d be a nonzero integer.
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(1) Let E be given by y2 = x3− dx. Then Et(Q) � Z/2Z×Z/2Z if and only
if d has the form d = m2, Et(Q) � Z/4Z if and only if d has the form
d = −4m4, and otherwise Et(Q) � Z/2Z.

(2) Let E be given by y2 = x3 + d. We have Et(Q) � Z/2Z if and only if d
is a cube and not a sixth power, Et(Q) � Z/3Z if and only if d is either
of the form −432m6 or a square and not a sixth power, Et(Q) � Z/6Z
if and only if d is a sixth power, and otherwise Et(Q) is trivial.

Proof. The proof of both statements relies on the essential fact that the
two types of curves under consideration have complex multiplication by Z[i]
and Z[ρ] respectively, where i2 + 1 = 0 and ρ2 + ρ + 1 = 0, but there is no
need to know the theory of CM to understand the very simple proof.

(1). We note that the discriminant of E is equal to −64d3. Let � be a
prime not dividing d and congruent to 3 modulo 4. Since

(−1
�

)
= −1, it

follows that for each x ∈ F� either x3− dx = 0, or exactly one of x3− dx and
(−x)3 − d(−x) = −(x3 − dx) is a quadratic residue modulo �. If k denotes
the number of roots of x3 − dx = 0 in F�, it follows that counting the point
at infinity we have |E(F�)| = 1 + k + �− k = � + 1. As mentioned above, this
reflects the fact that a prime congruent to 3 modulo 4 is inert in the complex
multiplication field Q(i).

When � varies among all primes congruent to 3 modulo 4 and not dividing
d, it is easy to see that the GCD of � + 1 is equal to 4. Indeed, assume the
contrary, and let p be a common prime divisor of all such (� + 1)/4. Assume
first that p �= 3. By Dirichlet’s theorem on primes in arithmetic progression
(Theorem 10.5.30), since gcd(4p, 3) = 1 we can find an infinity of primes �
such that � = 4kp+3, and in particular one such that � > d, hence that does
not divide d. But then (� + 1)/4 = kp + 1 must be divisible by p, which is
absurd. If now p = 3, we consider instead the arithmetic progression 4kp− 5,
and we again obtain a contradiction.

It thus follows from Proposition 8.1.13 that |Et(Q)| | 4. Since (0, 0) is
evidently a point of order 2 in E(Q), we have Et(Q) � Z/2Z, Z/2Z× Z/2Z,
or Z/4Z. Since points of order 2 other than the point at infinity are those of
the form (x, 0), it follows that Et(Q) � Z/2Z×Z/2Z if and only if x2−d = 0
has two rational roots, hence if and only if d is a square. On the other hand,
P is a point of order 4 if and only if 2P has zero y-coordinate. If P = (x, y),
a short computation shows that this happens if and only if x2 + d = 0 or
x4− 6dx2 +d2 = 0. This last case cannot occur since it would imply that the
equation X2− 6X +1 = 0 has the rational root x2/d. Thus d = −x2, so that
x and y are in Z, and y2 = x3 − dx = 2x3, so that (2x)3 = (2y)2; therefore
2x is a square, so x = 2m2 for some m; hence d = −4m4 as claimed, and in
that case the point (2m2, 4m3) has order 4.

(2). This case is completely similar. The discriminant of E is equal to
−432d2, and we choose primes � not dividing d and congruent to 5 modulo 6.
Since 3 � (�−1), for such primes the map x �→ x3 from F� to itself is a bijection;
hence for each y ∈ F� there exists exactly one x ∈ F� such that x3 = y2−d, so
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it follows once again that |E(F�)| = �+1, and this time it is because a prime
congruent to 5 modulo 6 is inert in the complex multiplication field Q(ρ).
Reasoning exactly as for (1) shows that this implies that |Et(Q)| divides 6.

Clearly |Et(Q)| is even if and only if there exists a rational point of order
2, hence if and only if d is a cube. On the other hand, there exists a point P =
(x, y) that has order 3 if and only if 2P = −P = (x,−y). It is immediately
checked that this occurs if and only if x(x3 + 4d) = 0, hence either when
x = 0, so d = y2 is a square, or if x3 = −4d. But then x = 2x1, and hence
d = −2x3

1 and y2 = x3 + d = 6x3
1, so (6x1)3 = (6y)2; hence 6x1 is a square,

so x1 = 6m2 for some m; hence d = −432m6, and in that case the point
(12m2, 36m3) has order 3, proving (2). ��

Corollary 8.1.15. Let a, b, c be nonzero rational numbers, and assume that
there exists a (projective) rational point (x0 : y0 : z0) on the cubic ax3 +by3 +
cz3 = 0.

(1) If there are only a finite number of such points then either b/a, c/a, or
c/b is the cube of a rational number.

(2) Let T be the group of torsion points of the projective cubic, considered
as an elliptic curve. We have T � Z/3Z if and only if b/a, c/a, and c/b
are all cubes, T � Z/2Z if and only if up to permutation of a, b, and c
we have that b/a and c/(2a) are cubes, or a/(2b) and a/(2c) are cubes,
otherwise T is trivial.

Proof. By Proposition 7.2.4 we know that the cubic is birationally equiv-
alent to the elliptic curve E whose affine Weierstrass equation is Y 2 =
X3 − 432(abc)2. It follows that if there are k projective points on our cu-
bic, the curve E has rank 0 and |Et(Q)| = k. We consider two cases.
Case 1: abc is not a cube or twice a cube. It follows from the proposition
that Et(Q) is trivial; hence k = 1, so the cubic must have a single projective
rational point. However, if we compute the intersection of the tangent to the
cubic at (x0 : y0 : z0) with the cubic we find that

(x1 : y1 : z1) = (x0(by3
0 − cz3

0) : y0(cz3
0 − ax3

0) : z0(ax3
0 − by3

0))

is another projective point on the cubic. Note that it is well defined (i.e.,
(x1, y1, z1) �= (0, 0, 0)): indeed otherwise, by symmetry assume that x0 �= 0.
Then by3

0 = cz3
0 , so y0 �= 0 (otherwise z0 = 0, so x0 = 0 since ax3

0+by3
0 +cz3

0 =
0); hence ax3

0 = by3
0 = cz3

0 , which implies that 0 = ax3
0 + by3

0 + cz3
0 = 3ax3

0,
so x0 = 0, again absurd and proving our claim.

Since k = 1 we must have (x1 : y1 : z1) = (x0 : y0 : z0). Since we
cannot have ax3

0 = by3
0 = cz3

0 , once again by symmetry we may assume that
by3

0 �= cz3
0 . If we had the equality

by3
0 − cz3

0 = cz3
0 − ax3

0 = ax3
0 − by3

0 ,
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then by adding these three quantities we would obtain 0 = 3(by3
0 − cz3

0),
contradicting our assumption that by3

0 �= cz3
0 . It follows that for instance

cz3
0 − ax3

0 �= by3
0 − cz3

0 , and since (x1 : y1 : z1) = (x0 : y0 : z0) this implies
that y0 = 0. But then z0 �= 0 and ax3

0 + cz3
0 = 0, so c/a = (−x0/z0)3 is a

cube, as claimed.
Case 2: abc is a cube or twice a cube. By elementary manipulations
that we have already explained in Section 6.4.3, without loss of generality
we may assume that a = 1 and that b and c are cubefree integers, and these
manipulations only modify the ratios b/a, c/a, and c/b by cubes. Assume first
that abc = bc = m3, and let p be a prime divisor of m. We have vp(b)+vp(c) ≡
0 (mod 3) and vp(b) + vp(c) �= 0, hence vp(b) ≡ 1 (mod 3) and vp(c) ≡ 2
(mod 3) or the reverse. But this is absurd since then vp(ax3) = vp(x3) ≡ 0
(mod 3), vp(by3) ≡ 1 (mod 3), and vp(cz3) ≡ 2 (mod 3), although these
three quantities sum to zero. Thus p cannot exist, so that m = ±1, and
since b and c are integers, b = ±c = ±1, so for instance b is a cube. If
abc = bc = 2m3, the same reasoning shows that the only possible prime
divisor of m is p = 2, so b = ±2j1 and c = ±2j2 with j1 + j2 ≡ 1 (mod 3). It
follows that (j1, j2) ≡ (0, 1), (1, 0), or (2, 2) modulo 3, so that either b, c, or
c/b is a cube, as claimed. We leave the proof of (2) to the reader (Exercise
5). ��

Although the determination of Et(Q) is very easy, the following deep
theorem of B. Mazur can also be useful.

Theorem 8.1.16 (Mazur). The group Et(Q) is isomorphic either to Z/NZ
with 1 � N � 10 or N = 12, or to (Z/NZ)× (Z/2Z) with N = 2, 4, 6, or 8.

For instance, if we find a point of order 7 in Et(Q), it is not necessary to
go any further (Et(Q) has order 7). If we find a point of order 5, then since
it is trivial to check whether there exists a point of order 2 (the points with
y = 0), we can immediately determine that Et(Q) is cyclic of order 5 or 10.
Note that it is easy to show that there is an infinity of nonisomorphic elliptic
curves E such that Et(Q) is isomorphic to one of the 15 groups given above,
and they can also be rationally parametrized ; see Exercise 18.

8.1.4 Computing the Mordell–Weil Group

Now that we have seen that Et(Q) is easily accessible, we consider the nontor-
sion part. There are essentially three different methods to attack the problem.
The first and historically the oldest (initiated by Fermat) is the method of
2-descent. The second method is that of Heegner points, initiated in principle
by Heegner in 1954, but really developed by Stark, Birch, and others start-
ing in 1967. The third method is partly conjectural since it is based on the
Birch–Swinnerton-Dyer (BSD) conjecture, which is proved (up to constants)
only in rank 0 and 1, but at least says what to expect.
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The 2-descent method is most useful when r = 0, i.e., when there are no
points of infinite order. It is then often (but not always) possible to prove
this in an elementary way, as we shall see below. However, even when r > 0 it
gives very useful information, and in many favorable cases allows the rigorous
computation of r and the Pi.

The Heegner point method is applicable if and only if r = 1. This may
seem like a severe restriction, but tables and heuristics seem to show that
the density (in some reasonable sense) of elliptic curves with r > 1 is equal
to 0, and that the others are equally divided between r = 0 and r = 1. Since
the group of rational points of an elliptic curve of rank 0 is reduced to its
torsion part, which is easily found, the Heegner point construction should be
applicable to 100% of all elliptic curves for which the Mordell–Weil group
needs to be computed.

Finally, the third method (which appears in several guises, for instance
Manin’s conditional algorithm) is based on the BSD conjecture, stating
among other things that the algebraic rank r should be equal to the ana-
lytic rank, which is the order of vanishing at s = 1 of the Dirichlet series
L(E, s) attached to the elliptic curve E. Even that order is not easy to com-
pute rigorously (in fact, as already mentioned, nobody has any idea how
to prove that L(E, s) vanishes to order greater than or equal to 4 when it
should), but at least we can use numerical approximations to guess its exact
value. This then gives strong guidelines on how to use the rigorous methods.

In the next sections we will describe the three methods described above.
Since the 2-descent method is the closest in spirit to the rest of this book we
will describe it in more detail than the two others.

8.1.5 The Näıve and Canonical Heights

Before studying practical methods for computing the rank and if possible,
also generators, an important point must be settled, which in fact is essential
for the completion of the proof of the Mordell–Weil theorem. Consider the
following problem. Let E be an elliptic curve defined over Q. If we are given
a point P ∈ E(Q), it is easy to determine whether P has infinite order,
for instance by using Corollary 8.1.11. But now assume that P and Q are
two points in E(Q), and for instance that there is no torsion. How do we
check that P and Q are independent points in E(Q), in other words that
mP + nQ �= O for all (m,n) �= (0, 0)? The answer is not as simple as one
mightn think, but luckily there is a very nice answer, given by the notion of
canonical height.

Let us begin by defining the (näıve) height of a nonzero rational number x.
Writing x = n/d with gcd(n, d) = 1 we define h(x) = max(log(|n|), log(|d|)).
This is also natural if we view x as an element of P1(Q) with coordinates
(n : d). Thus more generally if P ∈ Pn(Q) we can write (uniquely up to a
sign change) P = (x0 : x1 : · · · : xn), where xi ∈ Z and gcd(x0, . . . , xn) = 1,
and we define h(P ) = maxi(log(|xi|)), where by convention log(0) = −∞.
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Now assume for simplicity that the elliptic curve E is given by a single
equation, hence defined as a curve in P2, and let P ∈ E(Q) ⊂ P2(Q). We
could define the height of P as a point in P2(Q). However, for several reasons
we prefer to define the (näıve) height of P as the height of its x-coordinate. In
other words, thanks to Proposition 7.3.1, we can write the affine coordinates
of P as (m/d2, n/d3) with gcd(m, d) = gcd(n, d) = 1, and we define the
height as h(P ) = max(log(|m|), log(d2)), called again the näıve height of the
point P . Note that because of the equation of the curve, when h(P ) is large
then log(|n|) is comparable to 3h(P ), so h(P ) does take into account the
y-coordinate.

Please note that the function h(P ) is defined only on E(Q) (or more gen-
erally on a number field K), but not on E(C). Although it has some nice
properties, we also need a more regular function of P , called the canonical
height of P , and defined as follows. First note that when experimentally com-
puting h(kP ) for increasing values of k, we find immediately that it has the
appearance of a parabola, which in fact is approximately true. For instance,
if E is the curve y2 = x3 − 2x and P = (−1, 1), then the first values of the
integers exp(h(kP )) are

1
9
169
12769
2325625
3263037129
5627138321281
68970122119586689
1799664515907016914961
197970893765498628138595401
58648738806449243564537197828441
113430878631471464907295822495116028129
323984609740005211871964051960752674583281921
5716300836998474094483932787938713642068565888848009
204308996346238115515039274058960844791420732521825765430625

which visually form a parabola (see also Exercise 6). We thus define the
canonical height by the formula

ĥ(P ) = lim
k→∞

h(kP )
k2

.

Note that we evidently have h(P ) � 0, hence ĥ(P ) � 0 for all P . The following
theorem summarizes the main properties of the canonical height.

Theorem 8.1.17. The above limit exists, and defines a nonnegative function
ĥ(P ) on E(Q) with the following properties:
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(1) (Quadratic form.)The function ĥ(P ) is a quadratic form on E(Q); in
other words, if we define 〈P,Q〉 by the formula

〈P,Q〉 = (ĥ(P + Q)− ĥ(P )− ĥ(Q))/2

then 〈P,Q〉 is a symmetric bilinear form on E(Q) such that 〈P,P 〉 =
ĥ(P ), so that ĥ(kP ) = k2ĥ(P ).

(2) (Nondegeneracy.)We have ĥ(P ) = 0 if and only if P ∈ Et(Q), so that
ĥ induces a positive definite quadratic form on the finitely generated free
abelian group E(Q)/Et(Q).

(3) (Independence.)Points (Pi)1�i�n in E(Q) are linearly independent in
E(Q)/Et(Q) if and only if the determinant of the so-called height pair-
ing matrix M = ((〈Pi, Pj〉)1�i,j�n) is not equal to 0. More precisely,∑

1�j�n bjPj is a torsion point if and only if
∑

1�j�n bjMj = 0, where
Mj is the jth column of M .

(4) (Bound.)There exists an explicitly computable constant C(E) depending
only on E such that for all P ∈ E(Q) we have |ĥ(P ) − h(P )| � C(E)
(see below for a more precise estimate).

(5) (Finiteness.)For any B > 0 there exists only a finite number of points
P ∈ E(Q) such that ĥ(P ) � B (or equivalently, h(P ) � B).

We refer to [Sil-Tat] for proofs of the above properties, which are not
difficult.

Note that in practice, to check that points are independent (or dependent)
modulo the torsion subgroup one must use some care, since the determinant
of the matrix M is a real number that cannot be computed exactly. If this
determinant seems to be nonzero, then one should give an error bound on the
computation of the determinant so as to prove rigorously that the determi-
nant is nonzero. On the other hand, if the determinant seems to be equal to
0, one must then find a nonzero element of the kernel of the matrix M , which
must exist and have entries very close to an integer after multiplication by a
suitable denominator. Although it is usually impossible to prove rigorously
that a real number is exactly equal to 0, here it is possible because one simply
checks that the (integral) entries of the given element of the kernel produce
a linear combination of the generators that is in the torsion subgroup. If this
is the case, all is well; we have shown that the points are dependent modulo
torsion; otherwise, it shows that the determinant computation has not been
accurate enough, and it should be redone with a higher accuracy.

Because of the above theorem and remarks, it is essential to be able to
compute heights numerically. The definition can be used, but it is not very
well suited to accurate computation. A much better algorithm is given for
instance in Chapter 7 of [Coh0]. This is implemented in GP as the function
2*ellheight(P). Note that in versions at least up to 2.3 it is important to
multiply by 2 the result given by ellheight(P), since it corresponds to a
different normalization (this may change in future releases of the package).
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If we had taken a slightly different definition of the näıve height, such as
for instance max(log(|md|), log(|n|), log(d3)), which is the näıve height on the
projective plane, using the same definition it can be shown that we would
obtain a canonical height equal to (up to a constant multiple) the canonical
height defined above.

For practical applications, it is essential to give explicit bounds for the
difference between the näıve and canonical heights. Such a bound is the fol-
lowing (see [Sil3], and see [Cre-Pri-Sik] for much better bounds).

Theorem 8.1.18. Let E be an elliptic curve defined over Q by a generalized
Weierstrass equation. With the usual notation, set

µ(E) =
log(|disc(E)|) + log+(j(E))

6
+ log+(b2/12) + log(2∗) ,

where log+(x) = max(1, log(|x|)) and 2∗ = 2 if b2 �= 0 and 2∗ = 1 otherwise.
Then for P ∈ E(Q) we have

−h(j(E))
12

− µ(E)− 1.946 � ĥ(P )− h(P ) � µ(E) + 2.14

(recall that if gcd(n, d) = 1 then h(n/d) = max(log(|n|), log(|d|))).

As a direct application, we see that in the computation of the torsion
subgroup, for instance using Theorem 8.1.10, then if P = (x, y) ∈ Et(Q) we
have ĥ(P ) = 0, hence h(P ) = h(x) � h(j(E))/12 + µ(E) + 1.946, and since
we know that x ∈ Z, this gives a (usually small) upper bound for |x|.

8.2 Description of 2-Descent with Rational 2-Torsion

I emphasize from the start that my purpose is not to give the most efficient
algorithms, which are in fact in constant progress, but to describe a simple
version of the method that is already useful in treating many small cases. We
closely follow [Sil-Tat].

8.2.1 The Fundamental 2-Isogeny

As above, in this section we fix an elliptic curve E given by a not necessarily
reduced Weierstrass equation y2 = x3 + ax2 + bx + c with integers a, b, and
c and nonzero discriminant. We denote by O its point at infinity, which is
the neutral element for the group law. In this section we make the crucial
simplifying assumption that there exists a rational point of order 2 different
fromO, i.e., that there exists x0 ∈ Q (hence in Z) such that x3

0+ax2
0+bx0+c =

0. We will explain in Section 8.3 what must be done if this assumption is not
satisfied.
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By setting x = X + x0, we can send the point (x0, 0) to the origin T =
(0, 0), which is therefore a point of order 2, and our equation will now have
the form y2 = x3 + ax2 + bx for some other integers a and b. We will work
with equations of this form. It is easy to see that the discriminant of the
third-degree polynomial is given by the formula D = b2(a2 − 4b), so that
disc(E) = 16b2(a2 − 4b).

In this section we will work with a pair of elliptic curves, one being E
and the other denoted by Ê. All quantities and variables relative to Ê will
be denoted with a ,̂ which should not cause any notational confusion. The
curve Ê is defined by the equation y2 = x3 + âx2 + b̂x with â = −2a and

b̂ = a2 − 4b. Note that ̂̂a = 4a and ̂̂b = 16b, so the curve ̂̂E is the curve
y2 = x3 + 4ax2 + 16bx, which is trivially isomorphic to E by replacing x by
4x and y by 8y.

Proposition 8.2.1. For any P = (x, y) ∈ E set

φ(P ) = (x̂, ŷ) =
(

y2

x2
,
y(x2 − b)

x2

)
for P not equal to T or O, and set φ(T ) = φ(O) = Ô. Then φ is a group
homomorphism from E to Ê, whose kernel is equal to {O, T}. Applying the

same process to Ê gives a map φ̂1 from Ê to ̂̂E, and ̂̂E is isomorphic to E
via the map (x, y) �→ (x/4, y/8). Thus there is a homomorphism φ̂ from Ê to
E defined for P̂ = (x̂, ŷ) different from T̂ and Ô by

φ̂(P̂ ) = (x, y) =

(
ŷ2

4x̂2
,
ŷ(x̂2 − b̂)

8x̂2

)

and by φ̂(T̂ ) = φ̂(Ô) = O. Furthermore, for all P ∈ E we have φ̂◦φ(P ) = 2P ,
and for all P̂ ∈ Ê we have φ ◦ φ̂(P̂ ) = 2P̂ .

Proof. The proof consists in a series of explicit verifications, where in each
case we must separate the points O and T from the other points. It is done
with utmost detail in [Sil-Tat], to which we refer. We will simply show that φ

maps E to Ê, and that it maps three collinear points of E to three collinear
points of Ê. This is the essential part of the proof. Also, to simplify we will
assume that all the points that occur are distinct and different from O, T ,
Ô, and T̂ .

Let (x, y) be a point on E, and (x̂, ŷ) = φ(x, y). We compute that

x̂3 + âx̂2 + b̂x̂ =
y2

x2

(
y4

x4
− 2a

y2

x2
+ a2 − 4b

)
=

y2

x6
((y2 − ax2)2 − 4bx4)

=
y2

x6
((x3 + bx)2 − 4bx4) =

(
y(x2 − b)

x2

)2

= ŷ2 ,

proving that (x̂, ŷ) is on the curve Ê.
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Now for i = 1, 2, and 3 let Pi = (xi, yi) be three collinear points on E (so
that P1 +P2 +P3 = O by definition of the group law). We will show that the
points φ(Pi) = (x̂i, ŷi) are collinear. Let y = mx + n be the equation of the
line through the points Pi. We have n �= 0 since otherwise one of the points
would be equal to T = (0, 0), which we have excluded. I claim that the points
φ(Pi) are on the line y = m̂x + n̂, with

m̂ =
nm− b

n
and n̂ =

n2 − anm + bm2

n
.

Using the equation of the curve and the relations yi = mxi + n we compute
that

m̂x̂i + n̂ =
(nm− b)y2

i + (n2 − anm + bm2)x2
i

nx2
i

=
nm(y2

i − ax2
i )− b(yi −mxi)(yi + mxi) + n2x2

i

nx2
i

=
m(x3

i + bxi)− b(yi + mxi) + nx2
i

x2
i

=
x2

i (mxi + n)− byi

x2
i

=
yi(x2

i − b)
x2

i

= ŷi ,

proving my claim. The rest of the verifications are simpler and left to the
reader.

The proofs of the formulas for φ̂ and that φ̂◦φ(P ) = 2P and φ◦φ̂(P̂ ) = 2P̂
are also verifications left to the reader. ��

It follows from Definition 7.1.7 that φ is an isogeny from E to Ê, and
that φ̂ is its dual isogeny. Furthermore, since we are in characteristic zero
and the kernels (over Q) have two elements, these maps are 2-isogenies. This
is why this method is called 2-descent via 2-isogenies (we will study general
2-descent in Section 8.3 below).

8.2.2 Description of the Image of φ

Although we know by Theorem 7.1.8 that φ is surjective over Q, we now
restrict to rational points, and we want to determine the image of φ on
rational points (since T is assumed to be a rational point, here in fact (0, 0),
the kernel of φ is of course still equal to {O, T}). This is given by the following
result.

Proposition 8.2.2. Denote by I = φ(E(Q)) the image of the rational points
of E in Ê(Q). Then
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(1) Ô ∈ I, and T̂ ∈ I if and only if disc(E) is a square in Q∗, or equivalently,
if b̂ = a2 − 4b is a square in Q∗.

(2) Otherwise, a general point P̂ = (x̂, ŷ) ∈ Ê(Q) with x̂ �= 0 belongs to I if
and only if x̂ is a square in Q.

Proof. Since φ(O) = Ô the first statement is trivial. Since x = 0 implies
y = 0, hence (x, y) = T so φ((x, y)) = Ô, for the other statements we may
assume x �= 0. Then T̂ ∈ I if and only if there exists x �= 0 such that
y2/x2 = 0; hence y2 = x(x2 + ax + b) = 0, so x is a root of x2 + ax + b. Thus
x exists if and only if the discriminant a2 − 4b of this quadratic is a square,
proving (1).

For (2), the definition of φ shows that x̂ is a square. Conversely, assume
that (x̂, ŷ) ∈ Ê(Q) with x̂ �= 0 and x̂ = u2, and for ε = ±1 set

xε =
u2 − a + εŷ/u

2
, yε = εxεu .

I claim that both points (xε, yε) are in E(Q) and that φ(xε, yε) = (x̂, ŷ) (since
the kernel of φ has order 2, we must indeed have two preimages). To prove
that they are in E(Q), using the equation of Ê we compute that

x1x−1 =
(x̂− a)2 − ŷ2/x̂

4
=

x̂3 − 2ax̂2 + a2x̂− ŷ2

4x̂
= b .

Thus
xε + a +

b

xε
= xε + x−ε + a = u2 ,

so that
x3

ε + ax2
ε + bxε = (uxε)2 = y2

ε ,

proving that both points are on E, and of course with rational coordinates.
Furthermore, we have φ(xε, yε) = (x′, y′) with

x′ =
y2

ε

x2
ε

= u2 = x̂ ,

and using once again the equality b = xεx−ε,

y′ =
yε(x2

ε − b)
x2

ε

= εu(xε − x−ε) = εu(εŷ/u) = ŷ

as claimed. ��

8.2.3 The Fundamental 2-Descent Map

The fact that the image of φ consists essentially of points (x̂, ŷ) for which x̂
is a square is quite remarkable and will now be exploited in full.
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Definition 8.2.3. We define the 2-descent map α from the group E(Q) to
the multiplicative group Q∗/Q∗2 as follows.

(1) α(O) = 1, α(T ) = b.
(2) When x �= 0 and (x, y) ∈ E(Q) then α((x, y)) = x.

In the above, all the values are of course understood modulo the multiplicative
action of Q∗2.

The main result is the following.

Proposition 8.2.4. (1) The 2-descent map α is a group homomorphism.
(2) The kernel of α is equal to φ̂(Ê(Q)), so α induces an injective group

homomorphism from E(Q)/φ̂(Ê(Q)) to Q∗/Q∗2.
(3) Let pi for 1 � i � t be the distinct primes dividing b. The image of α

is contained in the subgroup of Q∗/Q∗2 generated by the classes modulo
squares of −1 and the pi.

(4) The index [E(Q) : φ̂(Ê(Q))] divides 2t+1.

Proof. (1) Clearly if P = (x, y) �= T then α(−P ) = α((x,−y)) = x; hence
α(P )α(−P ) = x2 ∈ Q∗2, and α(T )α(−T ) = α(T )2 = b2 ∈ Q∗2, so α sends
inverses to inverses. Thus to prove (1) we must prove that if P1+P2+P3 = O
then α(P1)α(P2)α(P3) ∈ Q∗2. If one of the Pi is equal to O, we are in the
case we have just treated. Let us first assume that none of the Pi is equal
to T . As usual, let y = mx + n be the equation of the line passing through
the three points (the only other possible lines x = n are excluded since none
of the Pi is equal to O). Writing the intersection of the line with the cubic
equation, we see that the three abscissas xi of the points Pi are the three
roots of the equation

x3 + (a−m2)x2 + (b− 2mn)x− n2 = 0

(this is of course how the algebraic formula for the group law is obtained in
the first place). In particular, x1x2x3 = n2 ∈ Q∗2, proving (1) when none
of the Pi is equal to T . If one of the Pi is equal to T (and only one since
otherwise the third point is equal to O), we may assume for instance that
P1 = T . The three abscissas are now x1 = 0, x2, and x3, and a line going
through P1 = T = (0, 0) has equation y = mx, so n = 0. It follows that the
xi are the roots of x3 + (a−m2)x2 + bx = 0, so x2 and x3 are the two roots
of x2 + (a−m2)x + b = 0. Thus x2x3 = b, so α(P1)α(P2)α(P3) = b2 ∈ Q∗2,
finishing the proof of (1) and explaining why we must choose α(T ) = b.

(2) Applying Proposition 8.2.2 with Ê instead of E and φ̂ instead of φ,
we see that α has in fact been constructed so that its kernel is exactly equal
to φ̂(Ê)(Q) (note that â2 − 4b̂ = 16b ≡ b (mod Q∗2)).

(3) Let P = (x, y) ∈ E(Q). We want to find conditions on x = α(P )
modulo squares. By Proposition 7.3.1 we know that there exist integers m,
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n, and d such that x = m/d2, y = n/d3, and gcd(m, d) = gcd(n, d) = 1.
Replacing in the equation of E and clearing denominators gives

n2 = m3 + am2d2 + bmd4 = m(m2 + amd2 + bd4) .

This is the key to the proposition: we have a product of two integers equal
to a square, so that as we have so often done in the study of Diophantine
equations, both are close to squares. To see how close, we must compute
the GCD of both factors. Assume first that x �= 0. Since gcd(m, d) = 1, we
see that the GCD of the factors is equal to gcd(m, b), and in particular is a
divisor of b. Thus if p � b, vp(m) is even. This means that m, hence x, is up to
a multiplicative square in the group generated by ±1 and the pi, as claimed.
If x = 0, then P = T and α(P ) = b, which of course belongs to the group
generated by its prime divisors and by −1.

(4) The subgroup described in (3) is the group of classes of the distinct
representatives

∏
0�i�t pei

i with p0 = −1 and ei = 0 or 1, which has 2t+1

elements. Thus (4) follows from (2) and (3). ��

Although the aim of the above results is to describe an explicit method
for computing the Mordell–Weil group in practice, it is to be noted that they
comprise a large part of the Mordell–Weil theorem itself, at least for the type
of curve that we are considering (having a rational torsion point of order 2).

Now note the following purely abelian group-theoretic lemma.

Lemma 8.2.5. Let A and B be abelian groups written additively, and let φ
from A to B and φ̂ from B to A be two group homomorphisms. Assume that
the indexes [B : φ(A)] and [A : φ̂(B)] are finite. Then the index [A : φ̂◦φ(A)]
is also finite, and more precisely we have

[A : φ̂ ◦ φ(A)]
∣∣[A : φ̂(B)][B : φ(A)] .

Proof. We have

[A : φ̂ ◦ φ(A)] = [A : φ̂(B)][φ̂(B) : φ̂(φ(A))] .

On the other hand, it is clear that the map φ̂ induces a surjective map from
B/φ(A) to φ̂(B)/φ̂(φ(A)), so the cardinality of the latter quotient divides
that of the former, proving the lemma. ��

We now immediately deduce what is commonly called the weak Mordell–
Weil theorem, and we will see that it easily implies the full theorem.

Corollary 8.2.6. The group E(Q)/2E(Q) is finite. More precisely, its car-
dinality divides 2s+t+2, where t is the number of distinct prime divisors of b,
and s is the number of distinct prime divisors of a2 − 4b.
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Proof. By Proposition 8.2.4, we have [E(Q) : φ̂(Ê(Q))] | 2t+1. Applying
the proposition to Ê and φ, we have [Ê(Q) : φ(E(Q))] | 2s+1. The result thus
follows from the lemma, since φ̂ ◦ φ is the multiplication by 2 map. ��

We can now prove the strong form of Mordell’s theorem.

Theorem 8.2.7 (Mordell). Let E be an elliptic curve defined over Q, and
assume known that for some m � 2 we know that E(Q)/mE(Q) is finite (by
the above corollary this is true for m = 2 when E has a rational 2-torsion
point). Then E(Q) is a finitely generated abelian group. More precisely, if B
is the largest canonical height of a system of representatives of E(Q) modulo
mE(Q), then the (finite) set S of rational points P ∈ E(Q) such that ĥ(P ) �
B generates E(Q).

Proof. Assume by contradiction that the subgroup H of E(Q) generated
by S is not equal to E(Q), and let Q1 ∈ E(Q) \ H. The set of points in
E(Q) \ H of height less than or equal to that of Q1 is finite, so let Q ∈
E(Q) \ H be of minimal height. By assumption there exist P ∈ S (in fact
in our chosen system of representatives modulo mE(Q)) and R ∈ E(Q) such
that Q = P + mR. Since P ∈ S ⊂ H and Q /∈ H we have R /∈ H, so
ĥ(R) � ĥ(Q) by our minimality assumption. Thus, since ĥ is a nonnegative
quadratic form we obtain

ĥ(P ) =
1
2
(ĥ(Q + P ) + ĥ(Q− P ))− ĥ(Q) � 1

2
ĥ(mR)− ĥ(Q)

� m2

2
ĥ(R)− ĥ(Q) � 2ĥ(R)− ĥ(Q) � ĥ(Q) > B

since Q /∈ H, and a fortiori Q /∈ S. This is a contradiction since P ∈ S and
hence ĥ(P ) � B. ��

An important consequence of the proof of this theorem is that once
E(Q)/mE(Q) is known for some m (for instance for m = 2), obtaining a
system of generators for E(Q) is completely algorithmic. Thus the only ob-
struction to the existence of an algorithm to compute E(Q) lies in the com-
putation of the finite group E(Q)/mE(Q) for some m. In practice, however,
better algorithms are used than the one implicit in the proof of the theorem.

8.2.4 Practical Use of 2-Descent with 2-Isogenies

Now that we have seen how to use 2-descent for theoretical purposes, we
will show how it can be used in practice to bound the rank of an elliptic
curve, and sometimes to compute it exactly. For this, we must analyze more
precisely the images of the 2-descent maps.

We will denote by r the algebraic rank of the group E(Q). Since E and Ê

are isogenous through the maps φ and φ̂, it is clear that r is also the rank of
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Ê. We naturally denote by α̂ the 2-descent map from Ê(Q) to Q∗/Q∗2. We
begin with the following proposition.

Proposition 8.2.8. We have the equality

|α(E(Q))||α̂(Ê(Q))| = 2r+2 .

Proof. As an abstract abelian group, we have E(Q) � Et(Q)⊕ Zr, hence

E(Q)/2E(Q) � Et(Q)/2Et(Q)⊕ (Z/2Z)r .

Furthermore, for any finite abelian group A, the exact sequence

0 −→ A[2] −→ A −→ A −→ A/2A −→ 1 ,

where the middle map is multiplication by 2 and A[2] is the kernel of that
map, shows that |A/2A| = |A[2]| (in fact A/2A is noncanonically isomorphic
to A[2]). In our case, with A = Et(Q) the points of order 2 are exactly O
and those with y = 0, hence x = 0, plus the two points corresponding to the
roots of x2 + ax + b = 0 if a2 − 4b is a square. Thus

|E(Q)/2E(Q)| = 2r+1+δ ,

where δ = 1 or 0 according to whether a2 − 4b is a square or not.
On the other hand, let us consider our 2-isogenies φ and φ̂. Since φ̂ ◦ φ is

the multiplication by 2 map, we evidently have

|E(Q)/2E(Q)| = [E(Q) : φ̂(Ê(Q))][φ̂(Ê(Q)) : φ̂(φ(E(Q)))] .

Now for any group homomorphism φ̂ and subgroup B of finite index in an
abelian group A we evidently have

φ̂(A)

φ̂(B)
� A

B + Ker(φ̂)
� A/B

(B + Ker(φ̂))/B
� A/B

Ker(φ̂)/(Ker(φ̂) ∩B)
.

Thus

[φ̂(A) : φ̂(B)] =
[A : B]

[Ker(φ̂) : Ker(φ̂) ∩B]
.

We are going to use this formula with A = Ê(Q) and B = φ(E(Q)). We know
that Ker(φ̂) has two elements Ô and T̂ , and we have shown in Proposition
8.2.2 that T̂ ∈ φ(E(Q)) if and only if a2−4b is a square. Using the δ-notation
above, it follows that

[φ̂(Ê(Q)) : φ̂(φ(E(Q)))] =
[Ê(Q) : φ(E(Q))]

21−δ
.

Putting everything together we obtain
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2r+2 = [E(Q) : φ̂(Ê(Q))][Ê(Q) : φ(E(Q))] ,

proving the proposition thanks to Proposition 8.2.4 (2). ��

It remains to give a reasonably practical method to compute |α(E(Q))|
(which we will of course also use for α̂(Ê(Q))). We have seen in Proposition
8.2.4 (3) and (4) how α(E(Q)) can be determined in principle by looking at
the factorization of b. We make this more precise in the following theorem.

Theorem 8.2.9. The group α(E(Q)) is equal to the classes modulo squares
of 1, b, and the positive and negative divisors b1 of b such that the quartic
equation

Y 2 = b1X
4 + aX2Z2 + (b/b1)Z4

has a solution with X, Y , and Z pairwise coprime integers such that XZ �= 0.
If (X,Y,Z) is such a solution we will have gcd(b/b1,X) = gcd(b1, Z) = 1,
and the point P = (b1X

2/Z2, b1XY/Z3) is in E(Q) and such that α(P ) = b1.

Proof. Clearly 1 ∈ α(E(Q)), so we can forget the point at infinity. Let
(x, y) ∈ E(Q), and assume for the moment that y �= 0, hence x �= 0. We
have seen in the proof of Proposition 8.2.4 that we can write x = m/d2,
y = n/d3 with d �= 0, gcd(m, d) = gcd(n, d) = 1 and the equation n2 =
m(m2 + amd2 + bd4). Let us now go further. Set b1 = sign(m) gcd(m, b).
We can thus write m = b1m1, b = b1b2 with m1 > 0 and gcd(m1, b2) = 1.
Substituting, we obtain n2 = b2

1m1(b1m
2
1 + am1d

2 + b2d
4). It follows that

b1 | n, so we write n = b1n1, so that n2
1 = m1(b1m

2
1 + am1d

2 + b2d
4).

Since gcd(m1, b2) = 1 and gcd(m1, d) | gcd(m, d) = 1 it follows that both
factors are relatively prime, so each of them is a square (since m1 > 0). Thus
there exist coprime integers X and Y such that m1 = X2, b1m

2
1 + am1d

2 +
b2d

4 = Y 2, and n1 = XY . Setting Z = d, this gives the desired quartic
Y 2 = b1X

4 + aX2Z2 + b2Z
4, and coming back to the initial point we have

x = m/Z2 = b1X
2/Z2 and y = n/Z3 = b1XY/Z3. Thus given a point on the

quartic we can come back to a point on E(Q), proving that we have exactly
described α(E(Q)) outside of the image of the points for which y = 0. Since
gcd(m, d) = gcd(n, d) = 1 we deduce that gcd(X,Z) = gcd(Y,Z) = 1, so
that X, Y , and Z are pairwise coprime. Finally, the points with y = 0 are
either the point T = (0, 0), which is such that α(T ) = b, which is taken into
account, or, when a2 − 4b = e2 is a square, the points with x = (−a± e)/2.
But in that case ((−a − e)/2)((−a + e)/2) = (a2 − e2)/4 = b, so we can
choose b1 = (−a ± e)/2, and clearly the point (X,Y,Z) = (1, 0, 1) is on the
corresponding quartic Y 2 = b1X

4 + aX2Z2 + (b/b1)Z4, so these points will
be included in the count. Note that Z = d �= 0, and that in every case X �= 0.
Finally, a simple inspection of the quartic equation shows that if X, Y , and
Z are pairwise coprime then gcd(b/b1,X) = gcd(b1, Z) = 1. ��

To use this theorem in practice it is useful to have some additional results.
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Definition 8.2.10. For any nonzero integer N ∈ Z, denote by s(N) the
squarefree part of N , i.e., the unique squarefree integer such that there exists
an integer f with N = s(N)f2.

Proposition 8.2.11. A divisor b1 of b is such that the quartic Y 2 = b1X
4 +

aZ2X2+(b/b1)Z4 is solvable with pairwise coprime X, Y , and Z with XZ �= 0
if and only if the quartic Y 2 = s(b1)X4 + aZ2X2 + (b/s(b1))Z4 is solvable
with gcd(X,Z) = 1 and XZ �= 0.

Proof. Assume that b1 is such that the quartic Y 2 = b1X
4 + aZ2X2 +

(b/b1)Z4 is solvable with pairwise coprime X, Y , and Z with XZ �= 0 and
write b1 = s(b1)f2. Then

(Y f)2 = s(b1)(Xf)4 + aZ2(Xf)2 + (b/s(b1))Z4 ,

so that if we set Y1 = Y f , X1 = Xf , the coprimality conditions of the
theorem imply that X and f | b1 are coprime to Z; hence so is X1.

Conversely, assume that Y 2 = s(b1)X4 +aZ2X2 +(b/s(b1))Z4 is solvable
with XZ �= 0 and gcd(X,Z) = 1, and set f = gcd(X,Y ), which is coprime
to Z since it divides X. Thus f2 divides (b/s(b1))Z4, hence also b/s(b1), so
we can write

(Y/f)2 = s(b1)f2(X/f)4 + aZ2(X/f)2 + (b/(s(b1)f2))Z4 .

It follows that (X/f, Y/f, Z) is a solution to the quartic with s(b1)f2 (still
dividing b) instead of b1, but now with gcd(X/f, Y/f) = 1. Next we have
evidently gcd(X/f,Z) = 1, and if p is a prime dividing gcd(Y,Z), then p2 |
s(b1)X4; hence since s(b1) is squarefree, p | X, a contradiction since p | Z and
gcd(X,Z) = 1. Thus gcd(Y,Z) = gcd(Y/f, Z) = 1. By Theorem 8.2.9, the
pairwise coprimality of X/f , Y/f , and Z implies the two other coprimality
conditions. ��

Corollary 8.2.12. Let b1 be a divisor of b such that both b1 and b/b1 are
squarefree (which is in particular the case if b is squarefree). If (X,Y,Z)
satisfies Y 2 = b1X

4 + aZ2X2 + (b/b1)Z4 with XZ �= 0 and gcd(X,Z) = 1,
then X, Y , and Z are pairwise coprime.

Proof. Note that b1 = s(b1). Thus from the proof of the above proposition
we see that if we set f = gcd(X,Y ) then f2 | b/b1, so that f = 1 since we
assume b/b1 squarefree. As in the above proof we also deduce that gcd(Y,Z) =
1. ��

Corollary 8.2.13. The group α(E(Q)) is equal to the set of classes modulo
squares of 1, of s(b), and of b1 and b/b1 for all positive and negative divisors
b1 of b such that b1 is squarefree, |b1| � |b|1/2, and such that the quartic
equation
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Y 2 = b1X
4 + aZ2X2 + (b/b1)Z4

has a solution with X, Y , Z integral, XZ �= 0, and gcd(X,Z) = 1.

Proof. Denote by G the set of classes modulo squares of the elements
described in this corollary. Clearly the classes of 1 and the squarefree part of
b belong to α(E(Q)). If b1 is squarefree we have s(b1) = b1, so the proposition
and the theorem imply that the class of b1 is in α(E(Q)); hence so is the class
of b/b1 since α(E(Q)) is a group. We have thus shown that G ⊂ α(E(Q)).
Conversely, let b1 be an arbitrary divisor of b such that there exist pairwise
coprime integers X, Y , and Z with XZ �= 0 such that Y 2 = b1X

4 +aZ2X2 +
(b/b1)Z4. By the proposition, the class of s(b1), which is equal to that of
b1, is such that the corresponding quartic is solvable with XZ �= 0 and
gcd(X,Z) = 1. If |b1| � |b|1/2, hence |s(b1)| � |b|1/2, this implies that the
class of b1 is in G. If |b1| > |b|1/2, then |b/b1| < |b|1/2, and we have Y 2 =
(b/b1)Z4 + aZ2X2 + (b/(b/b1))X4, so the quartic is solvable with X and Z
interchanged, XZ �= 0, and X, Y , Z pairwise coprime. By the proposition
we deduce that the class of s(b/b1), hence of b/b1, is in G, hence also that of
b1 = b/(b/b1) by definition of G. It follows that G = α(E(Q)), as claimed. ��

Remark. In the above results we have used in part the fact that α(E(Q))
is a group. In practice, this fact must be used to its maximum extent.

8.2.5 Examples of 2-Descent using 2-Isogenies

Let us consider several simple examples of 2-descent using 2-isogenies.

Proposition 8.2.14. (1) The curve y2 = x3 − 1 has rank 0 and torsion
group of order 2.

(2) The curve y2 = x3 + 1 has rank 0 and torsion group of order 6.

Note that we have already proved this result in Corollary 6.4.37, also
using 2-descent.

Proof. We treat both curves simultaneously. The point O and either (1, 0)
for the first curve or (−1, 0) for the second clearly are the only points of
order dividing 2. By the Nagell–Lutz Theorem 8.1.10 any other torsion point
is such that y is integral and y2 | 27, so that y2 = 1 or 9. For the first curve
this does not correspond to rational values of x, and for the second curve it
gives the points (0,±1) and (2,±3), which one can check are torsion points,
the torsion group being of order 6 generated by the point (2, 3).

Let us now compute the rank using 2-descent. Let y2 = x3 − ε be the
equation of our curve, with ε = ±1. We first set x = x1 + ε to put the curve
in the form that we have treated: y2 = x3

1+3εx2
1+3x1. Thus a = 3ε and b = 3.

The group α(E(Q)) contains 1 and 3. The divisors of b are ±1 and ±3, so it
is sufficient to check whether b1 = −1 gives a solvable quartic with X �= 0.
The quartic equation is Y 2 = −X4 + 3εX2Z2 − 3Z4. Since the discriminant
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of the quadratic −u2 + 3εu− 3 is negative, the quadratic is always negative,
so our quartic does not even have real solutions. Thus |α(E(Q))| = 2.

We must now compute |α̂(Ê(Q))|. The equation of Ê is y2 = x3
1− 6εx2

1−
3x1. Thus b = −3, and the group α̂(Ê(Q)) contains 1 and −3. Once again it is
sufficient to check whether b1 = −1 gives a solvable quartic with X �= 0. The
quartic equation is Y 2 = −X4− 6εX2Z2 +3Z4. There exist real solutions to
this quartic, so we cannot get away with the local condition in R. On the other
hand, there are no solutions modulo 3 since Y 2 ≡ −(X2)2 (mod 3) implies
that 3 | X and 3 | Y hence 9 | 3Z4 hence 3 | gcd(X,Z), a contradiction
since gcd(X,Z) = 1. Thus once again |α̂(Ê(Q))| = 2, and we deduce from
Proposition 8.2.8 that r = 0. ��

Proposition 8.2.15. Let p be a positive or negative prime number, and let
Ep be the elliptic curve with equation y2 = x3 − px. The torsion group of Ep

has order 2, and if rp is the rank of Ep(Q) we have the following results:

(1) When p > 0 and p ≡ 3, 11, or 13 modulo 16 or if p < 0 and p = −2 or
p ≡ 5 or 9 modulo 16 we have rp = 0.

(2) When p > 0 and p = 2 or p ≡ 5, 7, 9, or 15 modulo 16, or if p < 0 and
p ≡ 1, 3, 11, or 13 modulo 16, we have rp = 0 or 1 (and r2 = 1).

(3) When p > 0 and p ≡ 1 (mod 16) or p < 0 and p ≡ −1 (mod 8) we have
rp = 0, 1, or 2.

Remark. Assuming a very weak form of the Birch–Swinnerton-Dyer conjec-
ture, in case (2) of the proposition we always have r = 1 and in case (3) we
always have r = 0 or 2, and both cases can occur.

Proof. The points O and (0, 0) are clearly the only points of order dividing
2. By the Nagell–Lutz Theorem 8.1.10 and its refinement Proposition 8.1.12,
any other torsion point has integral x and y with x | p and y2 | 4p3, in other
words y2 | 4p2. This clearly implies that x = − sign(p) with |p− 1| a square
dividing 4p2, hence dividing 4 since it is coprime to p, or x = sign(p)p = |p|
with p2|p − 1| a square dividing 4p2, hence |p − 1| a square dividing 4, as
before. However, Proposition 8.1.12 also implies that x + p/x is a square, so
here that |p + 1| is a square. Since two squares cannot differ by 2, this is
impossible, proving the statement concerning the torsion subgroup (we could
also look at the finite number of remaining possibilities).

Let us now apply 2-descent. With the notation used in that context we
have a = 0 and b = −p. Thus α(E(Q)) contains the classes of 1 and of
−p. The only other divisors of b are −1 and p, and they will both be in
α(E(Q)) if and only if b1 = −1 is, hence if the quartic Y 2 = −X4 + pZ4

has a solution with XZ �= 0. If p < 0 this quartic has no real solution, so
in that case |α(E(Q))| = 2. On the other hand, if p > 0 there are cases in
which there exist solutions, and others in which there are none. For p = 2
we have the trivial solution (X,Y,Z) = (1, 1, 1), so |α(E(Q))| = 4; hence
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we exclude that case, so p is odd. Recall that by Theorem 8.2.9 we have
gcd(X,Z) = gcd(Y,Z) = gcd(p,X) = gcd(X,Y ) = 1. Since p � X, Y/X2

is a square root of −1 modulo p, so when p ≡ 3 (mod 4) once again we
obtain that |α(E(Q))| = 2. We may thus assume that p > 0 with p ≡ 1
(mod 4). If Z is even then X must be odd, hence Y also, which is impossible
if Y 2 ≡ −X4 (mod 16). Thus Z is odd, so that Z4 ≡ 1 (mod 16). If X is
even, we have 1 ≡ Y 2 ≡ p (mod 8). If X is odd we have X4 ≡ 1 (mod 16)
and Y is even, hence Y 2 ≡ 0 or 4 modulo 16, so p ≡ 1 or 5 modulo 16. Thus
if p ≡ 13 (mod 16) we see once again that |α(E(Q))| = 2. On the other hand,
for p ≡ 1, 5, and 9 modulo 16 there are no 2-adic conditions, and a short
computer search shows that the quartic is often (but not always) solvable
(the only exceptions for p � 500 and a search up to d = 1000 are p = 113,
193, and 353, out of 33 possible primes; of course this does not imply that
the quartic has no solutions for these values of p).

To summarize, if p < 0 or p ≡ 3 (mod 4) or p ≡ 13 (mod 16) we have
|α(E(Q))| = 2, if p = 2 we have |α(E(Q))| = 4, and otherwise (i.e., if p > 0
and p ≡ 1, 5, or 9 modulo 16) we have |α(E(Q))| = 2 or 4.

Let us now consider α̂(Ê)(Q). The equation of Ê is y2 = x3 + 4px, so
a = 0 and b = 4p, and we will apply Corollary 8.2.13 since b is not squarefree.
The classes of 1 and p belong to α̂(Ê)(Q), and otherwise the quartic to be
considered is Y 2 = b1X

4 + (4p/b1)Z4. The possible squarefree values of b1

less than |b|1/2 in absolute value are ±1 and ±2, except if p = ±3, for which
we also have ±3. When b1 = −1 the quartic is Y 2 = −X4 − 4pZ4, hence
has no real solutions when p > 0. When p < 0 we cannot have X odd;
otherwise, Y is also odd, which is impossible modulo 4. Thus X and Y are
both even, and writing Y = 2Y1, X = 2X1 we obtain Y 2

1 = −4X4
1 − pZ4.

Since gcd(X,Z) = 1, Z is odd, and p �= −2 since otherwise Y1 is even and
hence 4 | pZ4, so p is also odd. Thus Y1 is odd, so 1 + p ≡ 0 (mod 4) hence
p ≡ 3 (mod 4). To summarize, if either p > 0 or p < 0 and p �≡ 3 mod 4
then we cannot take b1 = −1 in Corollary 8.2.13.

When b1 = ±2 the quartic is Y 2 = ±(2X4 + 2pZ4). If b1 = −2 we must
have p < 0 since otherwise there are no real solutions. Writing Y = 2Y1, we
have 2Y 2

1 = ±(X4 + pZ4). If p is odd, X must be odd; otherwise, Z is even
and 2 | gcd(X,Z). Thus Z is also odd, so we deduce that p + 1 ≡ 0, ±2,
or 8 modulo 16, hence p ≡ 1, 7, 13, or 15 modulo 16. When p = 2ε with
ε = ±1, X must be even, hence Z must be odd, and writing X = 2X1 we
have Y 2

1 = ±(8X4
1 + εZ4). It follows that we must have ε = ± = sign(b1),

since otherwise we have a contradiction modulo 4, and for ε = ± we have the
solution (X1, Y1, Z) = (1, 3, 1) when b1 = p = 2 and (X1, Y1, Z) = (1, 1, 3)
when b1 = p = −2. To summarize, if p �= b1 or p odd and p �≡ ±2−1, 7, or 15
modulo 16 we cannot take b1 = ±2, while for p = b1 we can, but we already
have p in our list.

Assume now that p = 3ε with ε = ±1, so that we must also consider
b1 = ±3. Since the class of p already belongs to α̂(Ê)(Q), it is thus sufficient
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to consider b1 = −p, so that the quartic is Y 2 = −3εX4 − 4Z4. This has no
real solution if ε = 1. If ε = −1, i.e., p = −3, it has no solution modulo 4
with X odd. Thus X, hence Y , is even, so Z is odd since gcd(X,Z) = 1, and
writing X = 2X1 and Y = 2Y1 we obtain Y 2

1 = 12X4
1 − Z4, which has also

no solution modulo 4. Thus in all cases we do not obtain any extra element
of our group when b1 = ±3.

Using Corollary 8.2.13, we finally have the following cases.

– If p = ±2, then α̂(Ê)(Q) is equal to the classes of 1 and p, hence has 2
elements.

– If p > 0 and p ≡ 3, 5, 9, 11, or 13 modulo 16, then α̂(Ê)(Q) is equal to the
classes of 1 and p, hence has 2 elements.

– If p > 0 and p ≡ 1, 7, or 15 modulo 16, then α̂(Ê)(Q) may have 2 or 4
elements (when the class of b1 = 2 belongs to it). Both cases can occur.

– If p < 0 and p ≡ 5 or 9 modulo 16, then α̂(Ê)(Q) is equal to the classes of
1 and p, hence has 2 elements.

– If p < 0 and p ≡ 1 (mod 16), then α̂(Ê)(Q) may have 2 or 4 elements
(when the class of b1 = 2 belongs to it). Both cases can occur.

– If p < 0 and p ≡ 13 (mod 16), then α̂(Ê)(Q) may have 2 or 4 elements
(when the class of b1 = −2 belongs to it). Both cases can occur.

– If p < 0 and p ≡ 3 or 11 modulo 16, then α̂(Ê)(Q) may have 2 or 4 elements
(when the class of b1 = −1 belongs to it). Both cases can occur.

– If p < 0 and p ≡ 7 or 15 modulo 16, then α̂(Ê)(Q) may have 2, 4, or 8
elements (depending on the classes of b1 = −1 and b1 = ±2).

Putting together the results on both groups, we obtain the results of the
proposition. ��

As mentioned above, assuming a weak form of BSD, in case (3) we have
either r = 0 or r = 2. We give here an example in which r = 2, and in the
next section we will give an example with r = 0

Proposition 8.2.16. For p = −73 we have rp = 2, generators of E(Q)
modulo torsion being (9/16, 411/64) and (4/9, 154/27).

Proof. Since p < 0 we already know that |α(E(Q))| = 2, so we consider
only Ê whose equation is y2 = x3 − 292x. The squarefree divisors b1 of
b = −292 = −22 · 73 less than |b|1/2 are b1 = ±1 and ±2. The corresponding
quartics are Y 2 = b1X

4 − (292/b1)Z4, and for b1 = −1, 2, and −2 we obtain
(X,Y,Z) = (4, 6, 1), (3, 4, 1), and (1, 12, 1) respectively as solutions. It fol-
lows that |α̂(Ê(Q))| = 8, hence rp = 2, as claimed. To find the corresponding
points on E, we proceed as follows. By Theorem 8.2.9, we find the points
(−16,−24), (18, 24) on the curve Ê. We do not need the third point corre-
sponding to b1 = −2 = −1 ·2 since it will be the sum or difference of the first
two (in fact it is the difference), and we do not need the points corresponding
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to b/b1, which will be the opposites. We now apply the map φ̂ from Ê to
E, thus obtaining the two points (9/16,−411/64) and (4/9, 154/27). These
points are necessarily independent, and one can prove that they generate
E(Q) modulo torsion. ��

8.2.6 An Example of Second Descent

We now give an example showing how descent can be pushed one step further,
and also showing that the case rp = 0 can also occur in case (3) of Proposition
8.2.15.

Proposition 8.2.17. For p = −17, we have rp = 0.

Proof. As above, we note that since p < 0 we already know that
|α(E(Q))| = 2, so we consider only Ê whose equation is y2 = x3 − 68x.
The squarefree divisors b1 of b = −68 = −22 · 17 less than |b|1/2 are
b1 = ±1 and ±2, so we must consider the quartics Y 2 = −X4 + 68Z4 and
Y 2 = ε(2X4 − 34Z4) for ε = ±1. It is not difficult to see that these quartics
are everywhere locally soluble. On the other hand, a quick search does not
produce any solutions. We thus must work some more to show that they
indeed have no solutions.

Consider the first quartic. Dividing through by Z4 gives the conic y2 =
−x2 + 68 with y = Y/Z2 and x = X2/Z2. Conversely, if we have a rational
point (x, y) on that conic with x ∈ Q∗2, we can write x = X2/Z2 with
gcd(X,Z) = 1 and set Y = yZ2, so we will have a suitable integer point
on our quartic. Now (x, y) = (2, 8) is an evident point on our conic, so to
parametrize it we set y − 8 = t(x − 2) and intersect with the conic. An
easy computation gives the parametrization x = 2(t2 − 8t − 1)/(t2 + 1),
y = −4(2t2 + t− 2)/(t2 +1). Thus, writing t = u/v with gcd(u, v) = 1 we are
looking for such pairs (u, v) with 2(u2 − 8uv − v2)/(u2 + v2) ∈ Q∗2.

This is equivalent to the equation z2 = 2(u2 − 8uv − v2)(u2 + v2), which
is a new quartic, and we could hope to show that this quartic is not locally
soluble. However, it is simpler to proceed as follows. Writing 2(u2 − 8uv −
v2)/(u2 + v2) = a2/b2 with gcd(a, b) = 1, we see that there exists λ ∈ Z
(which we may assume squarefree if we drop the condition gcd(a, b) = 1)
such that 2(u2 − 8uv − v2) = λa2 and u2 + v2 = λb2. Now note that

(−8u + 66v)(u2 + v2) + (4u− v)(2(u2 − 8uv − v2)) = 68v3 ,

hence (exchanging u and v, and replacing v by −v)

(8v + 66u)(u2 + v2) + (4v + u)(2(u2 − 8uv − v2)) = 68u3 ,

so that λ | 68 since gcd(u, v) = 1. Since λ = (u2+v2)/b2 > 0 and is squarefree,
it follows that λ = 1, 2, 17, or 34.

Assume first that λ is odd. Then u2 + v2 = λb2, so u and v have opposite
parities; otherwise, they are both odd, and hence λb2 ≡ 2 (mod 8), so 2 | b
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which is absurd. But then u2 − 8uv − v2 is odd, so that λa2 ≡ 2 (mod 4)
which again is impossible since it implies 2 | a. Thus λ must be even, i.e.,
λ = 2 or 34, so that λ ≡ 2 (mod 32). Then u2 + v2 = λb2 and gcd(u, v) = 1
imply that u and v are both odd. We thus have

a2 ≡ (λ/2)a2 = u2− 8uv− v2 = 2((λ/2)b2− v2− 4uv) ≡ 2(b2 +3) (mod 16) ,

hence a2 ≡ 6, 8, or 14 modulo 16, which is impossible. Thus all four values of
λ are excluded, showing that our quartic Y 2 = −X4 +68Z4 has no solutions.

We proceed similarly for the quartics Y 2 = ε(2X4 − 34Z4) with ε = ±1.
We want to look for rational points on the conic y2 = ε(2x2 − 34) for which
x is a rational square. Clearly (x, y) = (4 + ε, 4) is on the conic, so we set
y − 4 = t(x− 4− ε). An easy computation gives the parametrization

x =
t2(4 + ε)− 8t + 8ε + 2

t2 − 2ε
, y =

−4t2 + 4t(4ε + 1)− 8ε

t2 − 2ε
.

As above, we write t = u/v with gcd(u, v) = 1 and x = a2/b2 hence we
deduce as above that there exists a squarefree integer λ such that

u2(4 + ε)− 8uv + (8ε + 2)v2 = λa2 and u2 − 2εv2 = λb2 ,

and since

(−10u− 9v)(u2 − 2v2) + (2u + 5v)(5u2 − 8uv + 10v2) = 68v3

and

(−6u + 25v)(u2 + 2v2) + (2u− 3v)(3u2 − 8uv − 6v2) = 68v3

and similar identities with 68u3 on the right-hand side, we deduce as above
that λ | 68 hence that λ = ±1, ±2, ±17, or ±34.

When ε = 1, the quadratic form 5u2 − 8uv + 10v2 has negative discrim-
inant; hence it is always positive, so we must have λ > 0. When ε = −1,
u2 + 2v2 > 0, so once again λ > 0. Thus in both cases we must have λ = 1,
2, 17, or 34.

Assume first that λ is odd, so that λ ≡ 1 (mod 8). From u2 − 2εv2 = λb2

we deduce that b is odd; otherwise, 4 | λb2 so 4 | u2 hence 2 | v2, contradicting
gcd(u, v) = 1. Thus u is odd. It follows that

u2(4 + ε)− 8uv + 8εv2 + 2v2 ≡ 4 + 2ε− ελ (mod 8)

is odd; hence a is odd, so that 3 + ε ≡ 0 (mod 8), which is absurd.
Assume now that λ is even, so that λ/2 ≡ 1 (mod 8). Then u is even, so

v is odd. We thus have

2(u/2)2(4 + ε)− 8(u/2)v + (4ε + 1)v2 = (λ/2)a2 ;
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hence a is odd, so

2ε(u/2)2 + 4ε + 1 ≡ 1 (mod 8) ,

hence (u/2)2 ≡ 2 (mod 4), a contradiction.
To conclude, we see that all values of λ are excluded, showing that our

quartics Y 2 = ε(2X4−34Z4) have no solutions. Putting everything together,
we obtain that |α̂(Ê(Q))| = 2 hence that rp = r(E) = 0. ��

Remark. For all three quartics we have been able to show local insolubility
at 2 directly. In general, however, it will be necessary to parametrize one of
the conics using the general theory of Diophantine equations of degree 2, and
replace it in the other.

8.3 Description of General 2-Descent

From now on, we do not assume that our elliptic curve y2 = x3 + ax + b has
a rational 2-torsion point, and in fact we explicitly assume that it does not,
in other words that the polynomial x3 + ax + b is irreducible. As usual we
may always assume that a and b are rational integers.

There are essentially two methods to deal with this case. The first method
is algebraic, and consists in imitating the above method by placing ourselves
in a larger number field containing a 2-torsion point. This has the advantage
of being easy to explain since it is a simple generalization, and also of being
useful also for the computation of the group of points of an elliptic curve
over an arbitrary number field in addition to Q. It has the disadvantage
of not being very efficient for small examples, although for large ones it is
competitive. The second method consists in using invariant theory. It is often
more efficient than the first, but has the disadvantage of being applicable
only over Q. We will describe only the first method, and refer to [Cre2] for
complete details on the second method.

8.3.1 The Fundamental 2-Descent Map

Let K = Q(θ) be the number field generated over Q by a root θ of the
equation x3 +ax+ b = 0. Consider the map α from E(Q) to K∗/K∗2 defined
by α(O) = 1 (mod K∗2) and

α(P ) = x− θ (mod K∗2) if P = (x, y) �= O ,

where of course modulo is taken in the multiplicative sense. As in the rational
2-torsion case, the main usefulness of this map comes from the following
result.
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Proposition 8.3.1. (1) The map α is a group homomorphism from E(Q)
to K∗/K∗2.

(2) The kernel of α is equal to 2E(Q).

Proof. (1). We treat the generic case, leaving the (easy) special cases to
the reader. Clearly if P = (x, y) then

α(−P )α(P ) = α((x,−y))α((x, y)) = (x− θ)2 ≡ 1 (mod K∗2) ,

so α sends inverses to inverses. Thus we must prove that if P1 +P2 +P3 = O
then α(P1)α(P2)α(P3) ≡ 1 (mod K∗2). Let y = mx + n be the equation of
the line passing through the three points. Writing the intersection of the line
with the cubic equation, we see that the three abscissas xi of the points Pi

are the three roots of the equation A(x) = 0 with

A(X) = (X3 + aX + b)− (mX + n)2 ,

so by definition of θ we have

(x1 − θ)(x2 − θ)(x3 − θ) = −A(θ) = (mθ + n)2 ≡ 1 (mod K∗2) ,

proving (1).
(2). It follows from (1) that

α(2P ) ≡ α(P )2 ≡ 1 (mod K∗2) ,

so that 2E(Q) ⊂ Ker(α). Conversely, assume that Q = (x, y) ∈ Ker(α) with
Q �= O, in other words that x − θ = u2 for some u = u2θ

2 + u1θ + u0 ∈ K
with ui ∈ Q for all i. Expanding u2 and using θ3 = −aθ − b, we obtain the
three equations 

au2
2 − u2

1 − 2u0u2 = 0 ,

bu2
2 + 2au1u2 − 2u0u1 = 1 ,

−2bu1u2 + u2
0 = x .

Clearly u2 �= 0, since otherwise u1 = 0 by the first equation, so 0 = 1 by
the second. I claim that the point P = (u1/u2, 1/u2) is in E(Q) and is such
that Q = ±2P for a suitable sign ±. As in the rational 2-torsion case this
is a simple but tedious verification. Indeed, first note that using the above
equations we have(

u1

u2

)3

+ a

(
u1

u2

)
+ b =

u3
1 + au1u

2
2 + bu3

2

u3
2

=
u1(au2

2 − 2u0u2) + au1u
2
2 + bu3

2

u3
2

=
2au1u2 − 2u0u1 + bu2

2

u2
2

=
1
u2

2

,

hence P ∈ E(Q). Furthermore, multiplying the first of the above equations
by 2u0 and subtracting u1 times the second, we obtain the identity
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u1 = u2(bu1u2 + 2au2
1 − 2au0u2 + 4u2

0) .

Thus if we set 2P = (x3, y3) we have x3 = m2 − 2(u1/u2) with

m =
3(u1/u2)2 + a

2/u2
=

3u2
1 + au2

2

2u2
=

3(au2
2 − 2u0u2) + au2

2

2u2
= 2au2 − 3u0 .

Using the above identity, it follows that

x3 = 4a2u2
2 − 12au0u2 + 9u2

0 − 2(bu1u2 + 2au2
1 − 2au0u2 + 4u2

0)

= u2
0 − 8au0u2 − 4au2

1 + 4a2u2
2 − 2bu1u2

= u2
0 − 2bu1u2 + 4a(au2

2 − 2u0u2 − u2
1) = x

by the first and third of the basic relations above. Since P ∈ E(Q), it follows
that y3 = ±y hence that Q = ±2P as claimed, proving the proposition. ��

Corollary 8.3.2. The map α induces an injective group homomorphism
from E(Q)/2E(Q) to K∗/K∗2 (which by abuse of notation we will still denote
by α). In addition, if the image of α is finite then E(Q) is finitely generated
of rank r equal to the dimension of the image of α as an F2-vector space.

Proof. The first statement is clear. For the second we note that by as-
sumption E has no rational 2-torsion; hence if d = dimF2(Im(α)) we have
|E(Q)/2E(Q)| = |Im(α)| = 2d, so Theorem 8.2.7 implies that E(Q) is finitely
generated of some rank r such that 2r = |E(Q)/2E(Q)|, hence that r = d as
claimed. ��

To have precise information on E(Q) we must therefore determine the
image of α. For this we need the notion of the T -Selmer group of a number
field (not to be confused with the Selmer group of the elliptic curve, although
the notions are related).

8.3.2 The T -Selmer Group of a Number Field

For the reader’s convenience in the following definitions we have included the
classical definitions of T -unit group and T -class group.1

Definition 8.3.3. Let T be a finite set of finite places of K.

(1) We say that an element u ∈ K∗ is a T -unit if vp(u) = 0 for every prime
ideal p such that p /∈ T . The group of T -units is denoted by UT (K).

(2) We define the T -class group ClT (K) as the quotient group of the ordinary
class group Cl(K) by the subgroup generated by the classes of the elements
of T .

1 We use T instead of the more standard S to avoid notation such as SS (K).
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(3) We say that an element u ∈ K∗ is a T -virtual square if vp(u) ≡ 0 (mod 2)
for every prime ideal p such that p /∈ T .

(4) We define the T -Selmer group ST (K) as the set of classes of virtual
squares modulo K∗2.

Remark. Most authors use the notation K(T, 2) instead of ST (K).

Denote by A the group of fractional ideals generated by the elements of
T . The reader can easily check that u is a T -unit if and only if uZK ∈ A and
that u is a T -virtual square if and only if uZK = q2a for some ideal q and
some a ∈ A.

The main properties of these notions are summarized in the following
proposition.

Proposition 8.3.4. Let K be a number field of signature (r1, r2), let T be a
finite set of finite places of K, and denote by t its cardinality.

(1) The group UT (K) is a finitely generated abelian group of rank r1 +
r2 + t − 1, whose torsion subgroup is independent of T and equal to the
(cyclic) group of roots of unity of K. In particular,∣∣∣∣ UT (K)

UT (K)2

∣∣∣∣ = 2r1+r2+t .

(2) We have a natural split exact sequence

1 −→ UT (K)
UT (K)2

−→ ST (K) −→ ClT (K)[2] −→ 1 ,

where as usual for an abelian group G, G[2] denotes the subgroup of G
killed by 2. In particular, ST (K) is finite and its cardinality is equal to
2r1+r2+t+s′

, where s′ denotes the 2-rank of ClT (K), so |ST (K)| divides
2r1+r2+t+s, where s denotes the 2-rank of Cl(K).

Proof. (1). Although the proof is well known and easy we repeat it here.
We have a natural exact sequence

1 −→ U(K) −→ UT (K) −→ A −→ Cl(K) −→ ClT (K) −→ 1 ,

where the map starting from UT (K) sends u to the ideal uZK , and the map
starting from A sends an ideal to its ideal class. It is immediately checked
that the sequence is indeed exact. Since Cl(K) and a fortiori ClT (K) are
finite groups, it follows that UT (K) is finitely generated and its rank is equal
to that of U(K) (r1 + r2 − 1) plus that of A, equal to t. The statement
concerning the torsion subgroup is clear.

(2). Let u ∈ UT (K), so that uZK = q2a for some a ∈ A. We send u to
the class of q in ClT (K). Clearly this does not depend on the decomposition
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q2a or on the chosen representative u of u in K∗. Since q2 = ua−1 it is clear
that the class of q belongs in fact to ClT (K)[2]. With this map defined, it is
then easily checked that the given sequence is exact and split. The statements
concerning the cardinality of ST (K) follow. ��

It is clear that ST (K) is an F2-vector space, and from the existence of these
two exact sequences it is not difficult to give an F2-basis for ST (K). As always
in this book we assume that we have at our disposal a CAS such as Pari/GP
that can efficiently compute class and unit groups of number fields. We first
compute explicitly UT (K) using the algorithm given in [Coh1] Proposition
7.4.7, and therefore also an F2-basis of UT (K)/UT (K)2. We compute ClT (K)
as a quotient of Cl(K) using the general quotient algorithm for abelian groups
([Coh1] Algorithm 4.1.7), and we can then easily compute ClT (K)[2] and use
the splitting of the exact sequence to obtain an F2-basis of ST (K). In the
frequent special case in which the class number h(K) = |Cl(K)| of K is odd
(in particular when it is equal to 1), then ST (K) = UT (K)/UT (K)2, and
as an F2 basis of ST (K) we can take the disjoint union of generators of the
h(K)th power of each prime ideal of T (which are principal ideals) together
with a system of fundamental units and a generator of the group of roots of
unity of K. We will see several explicit examples below.

8.3.3 Description of the Image of α

With these definitions and properties, it is now easy to determine the image
of α. We keep all the above assumptions and notation; in other words, E is an
elliptic curve defined over Q by a Weierstrass equation y2 = x3 + ax+ b with
a and b in Z, we let θ be a root of x3 +ax+ b = 0, assumed to be irreducible,
and we set K = Q(θ). Finally, we set I(θ) = [ZK : Z[θ]], the index of Z[θ] in
the full ring of integers ZK . Thus, if d(K) is the discriminant of the number
field K we have −(4a3 + 27b2) = d(K)I(θ)2.

Proposition 8.3.5. Let P = (x, y) ∈ E(Q) \ {O}, assume that q is a prime
ideal of K such that vq(x−θ) is odd, and denote by q the prime number below
q. Then vq(x− θ) � 1, q | (3θ2 + a), and q | gcd(y, 3x2 + a, I(θ)) (so that in
particular q2 | (4a3 + 27b2)).

Proof. Set γ = x − θ ∈ K. We can write y2 = γC with C = γ2 + 3θγ +
3θ2 + a. If vq(γ) were negative we would have vq(γ) = vq(y2) − vq(C) =
2(vq(y) − vq(γ)) ≡ 0 (mod 2), since a and θ are integral. Thus when vq(γ)
is odd we have vq(γ) � 1, and we deduce from the expression for C that
vq(C) � 0. Since vq(C) = 2vq(y) − vq(γ) ≡ 1 (mod 2), we have vq(C) � 1,
hence vq(3θ2 + a) = vq(C − γ(γ + 3θ)) � 1, proving the first two results.
Since y2 = γC and q | γ (or C), we have vq(y) � 1. Furthermore, 3x2 + a =
3(γ + θ)2 = 3γ2 + 6γθ + 3θ2 + a, and since q | γ and q | (3θ2 + a) it follows
that vq(3x2 +a) � 1. There remains to prove that q | I(θ), a result and proof
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that were communicated to me by D. Simon. Assume for the moment the
following lemma.

Lemma 8.3.6. If q � I(θ) then q is the only ideal qi above q such that x−θ ∈
qi, and it has residual degree 1.

If we assume by contradiction that q � I(θ) we thus have (x−θ)ZK = qva,
where v = vq(x − θ), and a is an ideal coprime to all ideals above q. Since
f(q/q) = 1 we thus have

y2 = |x3 + ax + b| = | NK/Q(x− θ)| = NK/Q(q)vNK/Q(a) = qvNK/Q(a) ,

so v = vq(x− θ) = 2vq(y) is even, in contradiction to the assumption of the
proposition, and finishing the proof. ��

Proof of Lemma 8.3.6. By Proposition 3.3.22, since q � I(θ) the decompo-
sition of qZK into prime ideals copies the decomposition of the polynomial
R(X) = X3 + aX + b modulo q. Thus, write R(X) ≡

∏
i Ri(X)ei (mod q),

where Ri(X) are monic polynomials in Z[X]. We then have qZK =
∏

i q
ei
i ,

where qi = qZK + Ri(θ)ZK , and f(qi/q) = deg(Ri), and we reorder the qi

so that q1 = q. If we write x = n/d with coprime n and d in Z, we see that
vq(d) = 0; otherwise, vq(x − θ) = vq(n/d − θ) < 0 since vq(θ) � 0. Thus if
we set x1 = nd−1 mod q we have vq(x − x1) � 1, hence x1 − θ ∈ q. Since
(R1(X) − R1(x1))/(X − x1) ∈ Z[X], it follows that R1(θ) − R1(x1) ∈ q,
hence that R1(x1) ∈ q, in other words R1(x1) ≡ 0 (mod q). Since R1 is ir-
reducible in (Z/qZ)[X], this means that R1(X) = X − x1, and in particular
that deg(R1) = 1, so that f(q/q) = 1. Furthermore, since the Ri are pairwise
coprime modulo q, x1 cannot be a root of Ri for i �= 1, so x−θ cannot belong
to qi for i �= 1. ��

Corollary 8.3.7. Denote by T the set of prime ideals q of K such that q |
(3θ2 + a) and q | I(θ), where q is the prime number below q. The image of α
is equal to the group of u ∈ ST (K) such that NK/Q(u) is a square in Q for
some (or every) lift of u to K∗, and for which there exists a lift u of the form
x− θ.

Proof. Let P = (x, y) ∈ E(Q) \ {O}, so that α(P ) = x − θ. By the
proposition, if vq(x−θ) is odd we have q | (3θ2 +a) and q | I(θ), hence q ∈ T ;
in other words, the class u of α(P ) belongs to ST (K). It is evidently the class
of an element of the form x− θ, and since NK/Q(u) = x3 + ax + b it follows
that (x, y) ∈ E(Q) if and only if NK/Q(u) = y2 is a square in Q. ��

Remarks. (1) If E is given by an equation y2 = R(x) with R(x) = x3 +
ax2 + bx+ c, it is clear that the above corollary is still valid if we replace
q | 3θ2 + a by q | R′(θ).
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(2) It can be shown (see [Sch-Sto]) that an additional condition on q is that
the Tamagawa number cq be even (see Definition 7.3.25), and it is easy
to see on examples that this condition does not follow from the others;
see Exercise 16.

Corollary 8.3.8 (Mordell). The group E(Q)/2E(Q) is finite and the group
E(Q) is finitely generated. More precisely, |E(Q)/2E(Q)| divides 2r1+r2+t+s,
using the above notation.

Proof. The finiteness and the bound for E(Q)/2E(Q) follow from the
above proposition and Proposition 8.3.4. The statement for E(Q) follows
from Theorem 8.2.7. ��

Although our aim is practical, note that we have finished the proof of the
Mordell–Weil theorem over Q.

8.3.4 Practical Use of 2-Descent in the General Case

We now explain how to use the above results in practice, keeping in mind
that, as in the rational 2-torsion case, there does not exist any unconditional
algorithm for computing the rank.

We begin by computing disc(R), the number field K = Q(θ), its discrim-
inant d(K) as well as the index I(θ) =

√
disc(R)/d(K), and finally the set

T of prime ideals q of K such that q | (3θ2 + a) and q | I(θ). Using the algo-
rithms explained at the end of Section 8.3.2 we then compute an F2-basis of
ST (K). Using [Coh1], Algorithm 4.1.11, we then compute the kernel ST (K, 1)
of the norm map from ST (K) to Q∗/Q∗2. By Corollary 8.3.7 the image of
α is exactly the group of elements u ∈ ST (K, 1) that have a lift u ∈ K∗ of
the form x− θ. Up to this point the computation is completely algorithmic.
However, the determination of such elements u is the nonalgorithmic part of
the method since we are going to see that, as in the rational 2-torsion case,
it leads to the determination of rational points on hyperelliptic quartics.

Let u = u2θ
2 + u1θ + u0 be any lift of u. We must determine whether

there exists γ = c2θ
2 + c1θ + c0 ∈ K∗ such that uγ2 = x− θ. Expanding, we

have
uγ2 = q2(c0, c1, c2)θ2 − q1(c0, c1, c2)θ + q0(c0, c1, c2) ,

where the qi are explicit integral quadratic forms in the cj . Thus we must solve
the equations q2(c0, c1, c2) = 0, q1(c0, c1, c2) = 1, and then x is determined
thanks to q0(c0, c1, c2) = x. The solubility of the first equation can easily
be determined thanks to the Hasse–Minkowski theorem, an explicit solution
can then be found using the algorithm explained in Section 6.3.3, and the
general solution is given by Proposition 6.3.4 and its corollary. Thus there
exist quadratic polynomials Pi(X,Y ) such that q2(c0, c1, c2) = 0 if and only
if there exist coprime integers s and t and d ∈ Q such that ci = dPi(s, t) for
0 � i � 2. The equation q1(c0, c1, c2) = 1 can thus be written
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q1(P0(s, t), P1(s, t), P2(s, t)) = 1/d2 ,

which is a hyperelliptic quartic equation. The rest of the process is similar
to the case of rational 2-torsion: we must determine whether this quartic
equation is everywhere locally soluble. If it is not, we exclude u from the
consideration of the points in the image of α. If it is, we look as intelligently
as possible for rational points on the quartic. If we find one, we include u in
the image of α (and x = d2q0(P0(s, t), P1(s, t), P2(s, t)) is the explicit abscissa
of the corresponding point in E(Q)). If we cannot find one, we are stuck and
cannot determine E(Q) without further work such as a second descent.

Remark. The group of u ∈ ST (K, 1) such that the corresponding quartic
is everywhere locally soluble is the smallest group containing E(Q)/2E(Q)
that can be determined algorithmically using only a 2-descent. It is called the
2-Selmer group of the elliptic curve E and denoted by S2(E). The quotient
of S2(E) by its subgroup E(Q)/2E(Q) is the part of the so-called Tate–
Shafarevich group X(E) of E killed by 2, so that we have an exact sequence
(analogous to the one for ST (K), whence the name and the notation)

1 −→ E(Q)
2E(Q)

−→ S2(E) −→X(E)[2] −→ 1 .

The group X(E)[2] is the the obstruction to performing a 2-descent. In the
rational 2-torsion case, the groups X(E)[2] and X(Ê)[2] are both obstruc-
tions to performing a 2-descent, although if either of them is trivial there is
no obstruction to performing a second descent (I owe this remark to J. Cre-
mona).

8.3.5 Examples of General 2-Descent

As examples of general 2-descent we consider two curves that we will need
for the proof of Corollary 14.6.11 in Chapter 14.

Proposition 8.3.9. (1) The curve E defined by y2 = x3 − 16 has rank 0
over Q and trivial torsion group; in other words, E(Q) = {O}.

(2) The curve E defined by y2 = x3 + 16 has rank 0 over Q and torsion
group of order 3 generated by (x, y) = (0, 4); in other words, E(Q) =
{O, (0,±4)}.

Proof. The statements concerning the torsion subgroups easily follow from
the results of Section 8.1.3, so we only compute the ranks. In both cases
we have K = Q(β) with β3 = 2, and θ = 2εβ, where ε = 1 for the first
equation and ε = −1 for the second. We compute that disc(R) = −28 · 33,
and disc(K) = −2233; hence I(θ) = 26, so T contains only prime ideals
above 2. Since 2 is totally ramified as 2ZK = p3

2 with p2 = βZKand p2 | θ,
we take T = {p2}. Since the class number of K is equal to 1, it follows that
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an F2-basis of ST (K) is given by the classes modulo squares of the union of a
generator of p2 with the fundamental units and generator of torsion units, so
here by the classes modulo squares of β, β− 1, and −1 of respective absolute
norms 2, 1, and −1. Thus if u = βa(β − 1)b(−1)c the norm of u is a square
in Q if and only if a and c are even. We deduce that the group ST (K, 1) of
elements of ST (K) whose norm is a square is an F2-vector space of dimension
1 generated by β − 1.

It follows that for both curves the only quartics to consider are those
corresponding to β− 1. Let us compute explicitly the quadratic forms q0, q1,
and q2 as above, in other words such that

(β− 1)(4c2β
2 +2εc1β + c0)2 = q2(c0, c1, c2)θ2− q1(c0, c1, c2)θ + q0(c0, c1, c2) ,

where we recall that θ = 2εβ. We obtain

q2(c0, c1, c2) = 8c2
2 − 2c0c2 − c2

1 + εc0c1 ,

q1(c0, c1, c2) = 16εc2
2 − 16c1c2 + 2c0c1 − εc2

0/2 ,

q0(c0, c1, c2) = −32εc1c2 + 16c0c2 + 8c2
1 − c2

0 .

The equation q2(c0, c1, c2) = 0 has the evident solution (c0, c1, c2) =
(ε, 1, 0). Thus by Proposition 6.3.4 we can easily parametrize the general
solution: we may choose

M =

1 0 ε
0 0 1
0 1 0

 ,

so that R = (s, 0, t)t; hence (after replacing d by εd in the formula of the
proposition) the general solution is given by

c0 = d(8t2 − s2), c1 = dε(8t2 − 2st), c2 = d(2t2 − st) .

The condition q1 = 1 gives the hyperelliptic quartic equations

ε(−96t4 + 96st3 − 24s2t2 + 4s3t− s4/2) = 1/d2 ,

and since s and t are (coprime) integers we have 1/d = Y with Y ∈ Z (we
cannot have 1/d = Y/2 with Y odd; otherwise, the left-hand side would have
a denominator 4), so s is even, and hence t is odd, and writing s = 2s1 we see
that 8 | Y 2, so that 4 | Y ; hence writing Y = 4Y1, this implies that s1 = 2s2

is even, giving the equation

2ε(−3t4 + 12s2t
3 − 12s2

2t
2 + 8s3

2t− 4s3
2) = Y 2

1 ,

implying that Y1 is even, hence that t is also even, a contradiction since s and
t are assumed coprime. It follows that the quartic associated with β − 1 is
not 2-adically soluble, so the image of the 2-descent map α is trivial, proving
that the rank of the two curves is equal to 0 by Corollary 8.3.2. ��
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8.4 Description of 3-Descent with Rational 3-Torsion
Subgroup

Although 2-descent (possibly followed by a second descent) often works, there
are many cases in which it does not. The obstruction to this is the fact that
the Tate–Shafarevich group X of the curve has a nontrivial 2-part, analogous
to the fact that the obstruction to nonunique factorization in number fields
is a nontrivial class group. It is not necessary to understand precisely the
definition of X to grasp the underlying philosophy.

When 2-descent does not work, we can try p-descent for a larger prime p
(I will not give the precise definition), hoping that the p-part of X is trivial.
In the present section I will give the example of 3-descent when there exists a
rational 3-torsion subgroup, and I thank T. Fisher and J. Cremona for many
explanations. It is very analogous to 2-descent when there exists a rational
2-torsion point (Section 8.2.3).

8.4.1 Rational 3-Torsion Subgroups

We first have to emphasize that there is a difference between having a rational
3-torsion point and having a rational 3-torsion subgroup, the latter meaning
that there exists a subgroup of order 3 of E(Q) that is stable under the action
of Galois conjugation, but not necessarily composed of three rational points.
More precisely, we set the following definition.

Definition 8.4.1. Let E be an elliptic curve defined over a perfect commu-
tative field K, and let T be a finite subgroup of E(L) for some extension
L/K, which without loss of generality we may assume to be finite and Ga-
lois. We say that T is a K-rational subgroup of E if it is globally stable by
any σ ∈ Gal(L/K), in other words if T ∈ T implies that σ(T ) ∈ T .

A more elegant (but strictly equivalent way) of expressing this definition
is simply to say that T is stable under Gal(K/K), without introducing the
field L.

Proposition 8.4.2. Let E be an elliptic curve defined over a perfect com-
mutative field K of characteristic different from 2 and having a K-rational
subgroup of order 3, necessarily of the form T = {O, T,−T}.
(1) The abscissa x(T ) of T is in K.
(2) Up to a change of x into x − x0 for some x0 ∈ K the equation of E is

y2 = x3 + d(ax+1)2 for some d ∈ K∗ and a ∈ K, and then T = (0,
√

d).
(3) If in addition E has a K-rational point T of order 3, up to the same

change the equation of E is y2 = x3 + (ax + b)2 for some a ∈ K and
b ∈ K∗, and then T = (0, b).
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Proof. We have necessarily T = {O, (x, y), (x,−y)} with x = x(T ) and
y = y(T ). Let L be as in the definition of a K-rational subgroup. If σ ∈
Gal(L/K) we must have (σ(x), σ(y)) ∈ T ; therefore since it is an affine point
we have (σ(x), σ(y)) = (x,±y) for a suitable sign ±. In particular, σ(x) = x
for all σ ∈ Gal(L/K), so by Galois theory x ∈ K, proving (1). For (2), we
note that thanks to (1), changing x into x−x0 we may assume that x(T ) = 0,
so that T = (0, θ) with θ not necessarily in K. If the equation of E in the
new coordinates is y2 = x3 + Ax2 + Bx + C then C = θ2, and C �= 0 since
otherwise T is also of order 2, which is impossible since T �= O. We thus have
x(2T ) = (B/(2y(T )))2 − A = (B2 − 4AC)/(4C), and T has order 3 if and
only if x(2T ) = x(−T ) = x(T ) = 0, hence if and only if B2− 4AC = 0. Since
C �= 0 we thus have Ax2 + Bx + C = d(ax + 1)2 for d = C and a = B/(2C),
proving (2), and (3) is an immediate consequence. ��

When E has a K-rational subgroup of order 3 it will be more convenient
to work with a more general equation of the form

y2 = x3 + d(ax + b)2

instead of y2 = x3 +d(ax+1)2, which is of course equivalent to the preceding
form since d(ax + b)2 = db2((a/b)x + 1)2 and b �= 0, keeping in mind that we
can change (d, a, b) into (df2, a/f, b/f). We note for future reference that the
discriminant of the elliptic curve E is given by

disc(E) = 16d2b3(27b− 4a3d) ,

so that in particular d �= 0, b �= 0, and 27b− 4a3d �= 0.

8.4.2 The Fundamental 3-Isogeny

From now on we follow what we have done for 2-descent in Section 8.2. The
proofs are very similar, the main difference being that we will have to deal
with elements of Q(

√
d) and not only of Q.

Thus from now on let E be an elliptic curve defined over Q having a ratio-
nal subgroup of order 3, so that by the above proposition, up to translation of
the x-coordinate we may assume that E is given by an equation of the form
y2 = x3 +d(ax+ b)2. We fix the 3-torsion point T = (0, b

√
d), which may not

be in E(Q), but the group {O, T,−T} of order 3 is a rational subgroup.
As in Section 8.2 we will work with a pair of elliptic curves E and Ê,

defined by a similar equation y2 = x3 + d̂(âx + b̂)2, where

d̂ = −3d, â = a, b̂ =
27b− 4a3d

9
.

Note that b̂ = −disc(E)/(144d2b3) �= 0, and since



8.4 Description of 3-Descent with Rational 3-Torsion Subgroup 559

disc(Ê) = 16d̂2b̂3(27b̂− 4â3d̂) = 1296d̂2b̂3b ,

the curve Ê is indeed nonsingular, hence is an elliptic curve.
This curve has the same form as E, and it thus has a rational subgroup

of order 3 generated by

T̂ =
(

0,
27b− 4a3d

9

√
−3d

)
.

Note that ̂̂d = 9d, ̂̂a = a, and ̂̂b = 9b, so that the curve ̂̂E is the curve
y2 = x3 + 9d(ax + 9b)2, which is trivially isomorphic to E by replacing x by
9x and y by 27y.

Proposition 8.4.3. For any P = (x, y) ∈ E set

φ(P ) = (x̂, ŷ) =
(

x3 + 4d((a2/3)x2 + abx + b2)
x2

,
y(x3 − 4db(ax + 2b))

x3

)
for P not equal to ±T or O, and set φ(T ) = φ(−T ) = φ(O) = Ô. Then φ is
a group homomorphism from E to Ê, whose kernel is equal to {O, T,−T}.
Dually, there exists a homomorphism φ̂ from Ê to E defined for P̂ = (x̂, ŷ)
different from ±T̂ and Ô by

φ̂(P̂ ) = (x, y) =

(
x̂3 + 4d̂((â2/3)x̂2 + âb̂x̂ + b̂2)

9x̂2
,

ŷ(x̂3 − 4d̂b̂(âx̂ + 2b̂))
27x̂3

)

and by φ̂(T̂ ) = φ̂(−T̂ ) = φ̂(Ô) = O. Furthermore, for all P ∈ E we have
φ̂ ◦ φ(P ) = 3P , and for all P̂ ∈ Ê we have φ ◦ φ̂(P̂ ) = 3P̂ .

Proof. As in the 2-descent case, it is enough to check the given formulas.
However, this is not satisfactory and does not explain how they have been
obtained. I give here a partial justification. For P = (x, y) ∈ E we will set
with evident notation x̂ = x(P )+x(P +T )+x(P −T )−x(T̂ ) and ŷ = y d

dx x̂
(in the case of a p-isogeny with a point T of order p we would set x̂ =∑

0�i�p−1 x(P + iT ) up to some constant translation). A small computation
gives the formula of the proposition. In any case, we check that φ(P ) ∈ Ê

and that its kernel (more precisely the inverse image of Ô) is our given group
of order 3. We must now show that φ is a group homomorphism. In fact,
since φ is a morphism of algebraic curves and sends O to Ô this follows from
Theorem 7.1.6, but let us show this directly, as usual putting ourselves in
the generic situation. Thus let P1, P2, P3 be three points on E such that
P1 +P2 +P3 = O, and let y = mx+n be the line through those three points
(which has this form since we are in the generic case). Once again I could
give directly the equation of the line passing through the P̂i, but instead let
us find this equation. We thus want to find m̂ and n̂ such that ŷ = m̂x̂ + n̂
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for (x, y) = (xi, yi), 1 � i � 3. Since yi = mxi + n this implies that the xi

are three roots of the equation

(mx + n)(x3 − 4db(ax + 2b))/x3 = m̂(x3 + 4d((a2/3)x2 + abx + b2))/x2 + n̂ ,

in other words

(m− m̂)x4 + (n− n̂− (4/3)a2dm̂)x3

− 4abd(m + m̂)x2 − 4bd(b(2m + m̂) + an)− 8b2dn = 0 .

Since we are in a generic situation this means that this polynomial must
be divisible by the third-degree polynomial of which the xi are roots, in
other words by x3 + d(ax + b)2 − (mx + n)2. Computing the remainder, we
obtain three linear equations in the two unknowns m̂ and n̂, and after some
computation we find that they are compatible and that

m̂ =
(n2 + 3db2)m− 4adbn

n2 − db2
and

n̂ =
n3 − (4/3)a2dmn2 + (4abm2 + (4/3)a3bd− 9b2)dn− 4db2m3

n2 − db2
.

As in the 2-descent case, we could now start from these values and check that
they satisfy ŷi = m̂x̂i + n̂ for 1 � i � 3, but here it is not necessary.

Applying the first part of the proposition to Ê gives a map φ̂1 from Ê

to ̂̂E, and composing with the isomorphism (x, y) �→ (x/9, y/27) between ̂̂E
and E gives the map φ̂ of in the proposition. ��

8.4.3 Description of the Image of φ

Although we want to copy almost verbatim what we have done in the 2-
descent case, a difficulty arises from the fact that the 3-torsion point T =
(0, b

√
d) does not necessarily have rational coordinates, although the group

it generates is rational. It will thus be necessary to work in the field Kd =
Q(
√

d), which is equal to Q if d is a square, and is a quadratic field otherwise.
Note however that this field is only a necessary tool, but that we will not need
to consider the whole group E(Kd).

Proposition 8.4.4. Denote by Î = φ(E(Q)) the image of the rational points
of E in Ê(Q).

(1) Ô ∈ Î, and ±T̂ ∈ Î if and only if d̂ = −3d is a square and disc(E) =
144d2b3b̂ is a cube in Q∗ (or equivalently, d̂/(2b̂) is a cube).

(2) Otherwise, a general point P̂ = (x̂, ŷ) ∈ Ê(Q) different from ±T̂ belongs
to Î if and only if there exists γ ∈ Kd̂ = Q(

√
−3d) such that

γ3 = ŷ − (âx̂ + b̂)
√

d̂ .
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Proof. (1). Since Î ⊂ Ê(Q), it is clear that a necessary condition for T̂

to be in Î is that its ordinate be in Q, in other words that d̂ = δ2 for some
δ ∈ Q. Thus assume that this is the case. Since the only affine points with
zero x-coordinates on Ê are ±T̂ , the definition of φ shows that T̂ ∈ Î if
and only if there exists x ∈ Q∗ such that x3 + 4d((a2/3)x2 + abx + b2) = 0,
and this last equation implies x �= 0 since bd �= 0. We compute that the
discriminant of this polynomial is equal to −(16/27)b2d2(4a3d−27b)2, which
is always strictly negative, so that our cubic equation has only one real root.
An application of Cardano’s formula or a direct check shows that this root
is given by the simple formula

x = − 3bδ

aδ − (a3δ3 + (81/4)bδ)1/3
.

It follows that there exists a rational root if and only if a3δ3 + (81/4)bδ is a
cube in Q∗, hence if and only if its square d̂(a3d̂ + (81/4)b)2 = (27/4)2d̂b̂2 is
a cube in Q∗, hence if and only if d̂/(2b̂) is a cube, if and only if disc(E) =
(d̂/(2b̂))2(4bb̂)3 is a cube, proving (1).

(2). Since x = 0 implies (x, y) = ±T hence φ((x, y)) = Ô, we may assume
x �= 0. Thus let (x, y) ∈ E(Q) with x �= 0. A short computation shows that

ŷ − (âx̂ + b̂)
√

d̂ =

(
y − ((a/3)x + b)

√
d̂

x

)3

,

showing that this expression is a cube in Kd̂, more precisely that it is equal to

γ3, where γ = (y− ((a/3)x+ b)
√

d̂)/x. Conversely, assume that P̂ = (x̂, ŷ) ∈
Ê(Q) is such that there exists γ such that γ3 = ŷ − (âx̂ + b̂)

√
d̂. Note that

γ = 0 implies that
0 = ŷ2 − d̂(âx̂ + b̂)2 = x̂3 ,

hence that x̂ = 0, i.e., P̂ = ±T̂ , and conversely. Therefore in the present case
we have γ �= 0. We have the following lemma.

Lemma 8.4.5. Set u = (γ + x̂/γ)/2 and v = (γ − x̂/γ)/(2
√

d̂).

(1) u and v are in Q.
(2) We have

(x̂/γ)3 = ŷ + (âx̂ + b̂)
√

d̂ .

(3) We have b = −(v + a/3)(u2 − d(v − 2a/3)2).

Proof. (1). This is trivial if
√

d̂ ∈ Q, so assume that this is not the case.
Then denoting by σ(γ) the conjugate of γ in the quadratic field Kd̂ we have

(γσ(γ))3 = ŷ2 − d̂(âx̂ + b̂)2 = x̂3 .
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Since γσ(γ) and x̂ are in Q this implies that γσ(γ) = x̂, so that x̂/γ = σ(γ),
proving (1).

(2). This is clear since(
x̂

γ

)3

=
ŷ2 − d̂(âx̂ + b̂)2

ŷ − (âx̂ + b̂)
√

d̂
= ŷ + (âx̂ + b̂)

√
d̂ .

(3). We may thus write γ = u + v
√

d̂ and x̂/γ = u − v
√

d̂, hence x̂ =
u2− d̂v2 = u2 +3dv2. We compute γ3− (x̂/γ)3 in two different ways. On the
one hand, we have

γ3 − (x̂/γ)3 = 2
√

d̂(3u2v + v3d̂) = −2
√

d̂(3dv3 − 3u2v) ,

while by (2) we have

γ3 − (x̂/γ)3 = −2
√

d̂(âx̂ + b̂) = −2
√

d̂(a(u2 + 3dv2) + (27b− 4a3d)/9) .

Identifying both expressions gives

b = −u2(v + a/3) + d(v3 − av2 + 4a3/27) = (v + a/3)(d(v − 2a/3)2 − u2) ,

proving the lemma. ��

It is now easy to finish the proof of the proposition. Since b �= 0, the
lemma implies that v + a/3 �= 0. Thus we can set

x = −b/(v + a/3) = u2 − d(v− 2a/3)2 and y = ux = u3 − du(v− 2a/3)2 .

We thus have y2 = u2x2 = u2b2/(v + a/3)2, while by the lemma we have

(v + a/3)3(x3 + d(ax + b)2) = −b3 + db2(v + a/3)(−a + v + a/3)2

= b2(−b + d(v + a/3)(v − 2a/3)2)

= b2(v + a/3)u2 ,

so that we indeed have y2 = x3+d(ax+b)2, hence (x, y) ∈ E(Q). Furthermore,
we have φ((x, y)) = (x̂1, ŷ1), with

x̂1 = x + 4d(a2/3 + a(b/x) + (b/x)2)

= u2 − d(v − 2a/3)2 + d(4a2/3− 4a(v + a/3) + 4(v + a/3)2)

= u2 + 3dv2 = x̂

and

ŷ1 = u(x− 4d(a(b/x) + 2(b/x)2))

= u(u2 − d(v − 2a/3)2 + d(4a(v + a/3)− 8(v + a/3)2)) = u(u2 − 9v2d) .
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On the other hand, by the above lemma we have

ŷ = (γ3 + (x̂/γ)3)/2 = u3 + 3uv2d̂ = u(u2 − 9v2d) = ŷ1 ,

finishing the proof. ��

The following corollary is immediate by considering the dual isogeny.

Corollary 8.4.6. Set I = φ̂(Ê(Q)).

(1) O ∈ I, and ±T ∈ I if and only if d is a square and d/(2b) is a cube in
Q∗.

(2) Otherwise, a general point P = (x, y) ∈ E(Q) different from ±T belongs
to I if and only if there exists γ ∈ Kd = Q(

√
d) such that γ3 = y− (ax+

b)
√

d.

8.4.4 The Fundamental 3-Descent Map

We continue to imitate what we have done for 2-descent. We keep the as-
sumptions and notation of the preceding sections. In particular, recall that
we have set Kd = Q(

√
d), which is equal to Q when d is a square.

Definition 8.4.7. We define the 3-descent map α from the group E(Q) to
the multiplicative group K∗

d/K∗
d
3 as follows:

(1) α(O) = 1, and if T ∈ E(Q) (in other words if
√

d ∈ Q∗) then α(T ) =
4db2.

(2) When P = (x, y) ∈ E(Q) with P �= T then α((x, y)) = y − (ax + b)
√

d.

In the above, all the values are of course understood modulo the multiplicative
action of K∗

d
3.

The main result is the following.

Proposition 8.4.8. (1) The 3-descent map α is a group homomorphism.
(2) The kernel of α is equal to φ̂(Ê(Q)).
(3) The map α induces an injective group homomorphism from E(Q)/φ̂(Ê(Q))

to the subgroup of K∗
d/K∗

d
3 of elements whose norm is trivial in Q∗/Q∗3

when
√

d /∈ Q, and to Q∗/Q∗3 otherwise.

Proof. If P = (x, y) �= T , then α(−P ) = α((x,−y)) = −y− (ax+b)
√

d, so
α(P )α(−P ) = −(y2 − d(ax + b)2) = (−x)3 ∈ Q∗3, and if P = T = (0, b

√
d)

then by definition

α(T )α(−T ) = 4db2α((0,−b
√

d)) = (−2b
√

d)3 ∈ K∗
d
3 ,

so α sends inverses to inverses. Thus we must show that if P1 + P2 + P3 = O
then α(P1)α(P2)α(P3) ∈ K∗

d
3. If one of the Pi is equal to O we are in the
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case that we have just treated, so we exclude that case. If one of the Pi is
equal to T then either all three Pi are equal to T , and the result is clear, or
only one, say P1, is equal to T . In that case none of the Pi is equal to 2T ,
since otherwise the third one would be equal to O. Thus by what we have
proved about inverses we have

α(P1)α(P2)α(P3) = (α(−P1)α(−P2)α(−P3))−1

(as usual modulo the multiplicative action of K∗
d
3), and now none of the −Pi

is equal to O or to T , so we are in the generic case, which we now treat.
Let y = mx + n be the equation of the line going through the points

Pi = (xi, yi). Note that we can indeed choose the equation to be of this form
since the excluded equations are x = k, which intersect the curve E in two
affine points together with O, a case that we have excluded. The xi are thus
the three roots of the polynomial f(x) = x3 + d(ax + b)2 − (mx + n)2. An
easy computation shows that∏

i

(yi − (axi + b)
√

d) =
∏

i

(mxi + n− (axi + b)
√

d) = (n− b
√

d)3 ∈ K3
d ,

finishing the proof of (1).
(2). This follows immediately from Corollary 8.4.6: O is evidently in the

kernel of α, and by definition T ∈ Ker(α) if and only if 4db2 is a cube, if and
only if (d/2b) = 4db2/(2b)3 is a cube, hence by the corollary if and only if
T ∈ I. Finally, a point P = (x, y) different from O and T is in the kernel of
α if and only if there exists γ ∈ K∗

d such that γ3 = y− (ax + b)
√

d, hence by
the corollary if and only if P ∈ I, proving (2).

(3). From (1) and (2) we deduce that α induces an injection α from
E(Q)/φ̂(Ê(Q)) to K∗

d/K∗
d
3. If

√
d ∈ Q∗ the image of α is in Q∗/Q∗3 and

there is nothing else to say. Otherwise, T /∈ E(Q) and for P = (x, y) �= O we
have that NKd /Q(α((x, y))) = x3 is a cube in Q∗, proving the proposition.

��

We leave to the reader to state and prove an analogue of Proposition 8.2.4
(3) and (4), see Exercise 17, and we will not study 3-descent any further.
See however Section 6.4.4 for a very nice application of 3-descent to the
Diophantine equations ax3 + by3 + cz3.

8.5 The Use of L(E, s)

8.5.1 Introduction

We have seen in Section 8.1.2 the definition and main properties of the L-
function L(E, s) attached to an elliptic curve E defined over Q. Thanks to the
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work of Wiles et al. (see Theorem 8.1.4), we know that L(E, s) extends to an
entire function with a functional equation of the form Λ(E, 2−s) = ε(E)Λ(s),
where Λ(E, s) = Ns/2(2π)−sΓ(s)L(E, s) and ε(E) = ±1. Finally, the Birch–
Swinnerton-Dyer Conjecture 8.1.7 predicts that the rank r(E) should be equal
to the order of vanishing of L(E, s) at s = 1. This conjecture is a theorem
when the order of vanishing is equal to 0 or 1.

Even though BSD is a conjecture, it suggests many useful approaches.
First, it implies the parity conjecture, saying that (−1)r(E) = ε(E). Since
there exists an algorithm to compute ε(E), this gives a conjectural parity for
r(E). For instance, this explains the remark made after Proposition 8.2.15.

When the parity does not suffice to determine the rank, we proceed as
follows. We search more or less intelligently for rational points on the curve.
There are many methods to do this, but we simply mention that even if a
2-descent has not succeeded in giving the rank, it still may help in the search
for points.

If after a sufficiently long search we find sufficiently many independent
points compared to the upper bound on the rank given by descent arguments,
we are happy and can conclude. Unfortunately, in many cases this does not
happen, either because the points we are looking for have a very large height,
or more simply because the rank is simply not equal to the upper bound
given by descent. It is in this case that we must appeal to the computation
of L(E, s), hence rely on the BSD conjecture.

The numerical computation of L(E, s) (and of its derivatives) involves two
completely different tasks: first the evaluation of some transcendental func-
tions (the exponential function in the simplest case), which will be studied
in great detail below, and second the arithmetic computation of the coef-
ficients ap(E). In the case of a general elliptic curve these coefficients are
computed either using Legendre symbol sums (Lemma 7.3.9) for small p,
by the Shanks–Mestre baby-step giant-step method (see Algorithm 7.4.12 of
[Coh0]) for moderate p, which should be sufficient for the computation of
L(E, s), or even by the Schoof–Elkies–Atkin algorithm for very large p (see
for instance [Coh-Fre]).

However, in the special case of an elliptic curve E with complex multipli-
cation the computation of ap(E) can be done much more efficiently, and we
now treat this case.

8.5.2 The Case of Complex Multiplication

In this section we explain how to compute efficiently ap(E) when the elliptic
curve E defined over Q has complex multiplication (CM). Apart from the
classical cases j = 1728 and j = 0, this section is a writeup of a C program
written by M. Watkins based on a series of published and unpublished pa-
pers,2 and does not contain any proof, except for the special cases j = 1728
2 To tell the truth, it is not even sure that the results have been proved, although

they are certainly correct
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and j = 0 mentioned above. Note that the “näıve” method using Lemma 7.3.9
requires time O(p), that Shanks’s baby-step giant-step method as modified
by Mestre (see for instance [Coh0], Algorithm 7.4.12) requires time O(p1/4),
while the method that we are going to study in this section requires time
O(log2(p)).

We first recall the important differences between isomorphism classes of
curves over C and over Q. Let y2 = x3 + ax + b be a reduced Weierstrass
equation of an elliptic curve E defined over Q, where we may assume that
a and b are in Z. The curves isomorphic to E over C are the curves hav-
ing the same j-invariant j(E) = 123(4a3/(4a3 + 27b2)), and whose reduced
Weierstrass equation is y2 = x3 + u2ax + u3b for some u ∈ C∗, or equiva-
lently, by the immediate change of variable (x, y) �→ (ux, u3/2y), the equation
uy2 = x3 + ax + b. Thus, they are the quadratic twists Eu of E by u (see
Definition 7.3.15).

Assume first that j(E) �= 0 and j(E) �= 123 = 1728, in other words that
a and b are nonzero. The curve Eu is defined over Q if and only if u2 and u3

are both in Q∗, hence if u = u3/u2 ∈ Q∗, and the curves Eu1 and Eu2 are
isomorphic over Q if and only if u1/u2 is a square in Q. Thus, multiplying if
necessary u by a square of Q, we may always assume that u is a fundamental
discriminant, in other words either equal to 1 or to the discriminant of a
quadratic field.

Assume now that b = 0, so that the reduced equation of E is y2 = x3 +ax
and j(E) = 1728 = 123. The curve E is in fact a quartic twist of any curve in
the family, for instance of the curve y2 = x3−x, and the curve with equation
y2 = x3 + a′x is isomorphic to E if and only if a′/a is a fourth power in Q.

Similarly assume that a = 0, so that the reduced equation of E is y2 =
x3 + b and j(E) = 0. The curve E is now a sextic twist of any curve in the
family, for instance of the curve y2 = x3 + 1, and the curve with equation
y2 = x3 + b′ is isomorphic to E if and only if b′/b is a sixth power in Q.

Computation of ap(E): the Case j = 1728
We first consider the case of complex multiplication by Z[i], in other words
of curves such that j(E) = 1728.

Proposition 8.5.1. Let EN be the elliptic curve with equation y2 = x3−Nx.
When p | 2N or p ≡ 3 (mod 4) we have ap(EN ) = 0, and when p ≡ 1 (mod 4)
and p � N we have

ap(EN ) = 2
(

2
p

)
−a if N (p−1)/4 ≡ 1 (mod p) ,
a if N (p−1)/4 ≡ −1 (mod p) ,
−b if N (p−1)/4 ≡ −a/b (mod p) ,
b if N (p−1)/4 ≡ a/b (mod p) ,

where p = a2 + b2 with a ≡ −1 (mod 4).
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Proof. Assume that p ≡ 3 (mod 4). Since
(−1

p

)
= −1 it follows that for

each x not equal to 0 or ±1 there is exactly one value in {x,−x} such that
x3 − x is a square. It follows that ap(EN ) = 0 in that case, and it is also
immediate that a2(EN ) = 0 (this is a special case of a general fact on curves
with CM that we will state in Proposition 8.5.5 below). Assume now that
p ≡ 1 (mod 4). By Proposition 2.5.20 we know that there exists a character
χ of order 4 and that J(χ, χ) = a + bi with a2 + b2 = p, 2 | b, and a ≡ −1
(mod 4). It is slightly more natural to reason backwards. Since χ has exact
order 4, When n is not a square we have χ(n) = ±i, hence �(χ(n)) = 0.
Since χ2 is equal to the Legendre symbol we have

2�(χ(N)J(χ, χ)) = 2
∑
x∈Fp

�(χ(Nx(1− x))) = 2
∑
x∈Fp

∃y∈Fp , Nx(1−x)=y2

(
y

p

)

=
∑

x,y∈Fp

(2Nx−N)2=N2−4Ny2

(
y

p

)
=
(

2
p

) ∑
X,Y ∈Fp

X2=N2−NY 2

(
Y

p

)

=
(

2
p

) ∑
Y ∈Fp

(
Y

p

) ∑
X∈Fp , X2=N2−NY 2

1

=
(

2
p

) ∑
Y ∈Fp

(
Y

p

)(
1 +
(

N2 −NY 2

p

))

=
(

2
p

) ∑
Y ∈Fp

(
N(Y 3 −NY )

p

)

since
∑

Y ∈Fp

(
Y
p

)
= 0 and

(−4
p

)
= 1. Since by Lemma 7.3.9 we have ap(EN ) =

−
∑

Y ∈Fp

(
Y 3−NY

p

)
, it follows that

ap(EN ) = −
(

2N

p

)
2�(χ(N)(a + bi)) .

If
(

N
p

)
= 1 we have χ(N) = ±1, where the sign is determined by χ(N) ≡

N (p−1)/4 (mod p), which gives the first two cases. If
(

N
p

)
= −1, we let g be a

primitive root modulo p such that χ(g) = i. By Exercise 36 of Chapter 2 we
have a+bg(p−1)/4 ≡ 0 (mod p). If N ≡ gk (mod p) then either k ≡ 1 (mod 4),
and then χ(N) = i and a + bN (p−1)/4 ≡ 0 (mod p), or k ≡ 3 (mod 4), and
then χ(N) = −i and a−bN (p−1)/4 ≡ 0 (mod p), proving the other two cases.

��

Corollary 8.5.2. For n �= 0 let En be the elliptic curve with affine equation
y2 = x3−n2x. When p | 2n or p ≡ 3 (mod 4) we have ap(En) = 0, and when
p � 2n and p ≡ 1 (mod 4) we have
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ap(En) = −
(

2n

p

)
2a ,

where p = a2 + b2 with a ≡ −1 mod 4.

Proof. Clear from the proposition, and also from Proposition 7.3.16 to-
gether with the proposition applied to N = 1. ��

Remark. It follows from this corollary that, even without using Tunnell’s
Theorem 6.12.4, but still assuming BSD, it is very easy to make large tables of
congruent numbers: using Cornacchia’s algorithm as explained in the remarks
following Proposition 2.5.20 we compute decompositions p = a2 + b2 with
a ≡ −1 (mod 4) for a large number of primes p ≡ 1 (mod 4). Thanks to
the above corollary it is then immediate to compute an approximate value of
L(En, 1), and we conclude thanks to BSD and Proposition 6.12.1.

Computation of ap(E): the Case j = 0
We now consider the case of complex multiplication by Z[ρ], where ρ = ζ3 is
a primitive cube root of unity, in other words curves such that j(E) = 0.

Proposition 8.5.3. Let EN be the elliptic curve with affine equation y2 =
x3 + N . When p | 3N or p ≡ 2 (mod 3) we have ap(EN ) = 0, and when
p � 3N and p ≡ 1 (mod 3) we have

ap(EN ) =
(

N

p

)
b− 2a if (4N)(p−1)/3 ≡ 1 (mod p) ,
a + b if (4N)(p−1)/3 ≡ −a/b (mod p) ,
a− 2b if (4N)(p−1)/3 ≡ −b/a (mod p) ,

where p = a2 − ab + b2 with 3 | b and a ≡ −1 mod 3.

Proof. The case p | 3N being immediate we assume p � 3N . When p ≡ 2
(mod 3) the map x �→ x3 is a bijection of Fp onto itself, since 3 � |F∗

p| = p−1.
It follows that for every value of y there is exactly one value of x, hence that
|EN (Fp)| = p + 1, so that ap(EN ) = 0. Assume now that p ≡ 1 (mod 3), fix
a primitive root g modulo p, and let χ be a character of order 3. Changing
if necessary χ into χ = χ2 we may assume that χ(g) = ρ. By Proposition
2.5.20, we know that J(χ, χ) = a+bρ with a2−ab+b2 = p, 3 | b, and a ≡ −1
(mod 3). On the other hand, since 1+ρ+ρ2 = 0 it is clear that the expression
1 + χ(x) + χ(x2) is equal to 1 if x = 0, to 3 if x is a cube in F∗

p, and to 0
otherwise. Since χ(x2) = χ(x) it follows that for a given y the number of x
such that x3 = y2 − 1 is equal to 1 + χ(y2 − 1) + χ(y2 − 1), so that

|EN (Fp)| = p + 1 + 2�
(∑

y∈Fp

χ(y2 −N)

)
,

in other words
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ap(EN ) = −2�
(∑

y∈Fp

χ(y2 −N)

)
.

Assume first that
(

N
p

)
= 1, and let k ∈ Z be such that k2 ≡ N (mod p).

Setting y = k(2t−1) (which is a bijection since p � 2N) and using χ(−1) = 1,
we thus have

ap(EN ) = −2�
(

χ(−4k2)
∑
t∈Fp

χ(t− t2)

)
= −2�(χ(4N)J(χ, χ)) .

Now by Exercise 36 of Chapter 2 we know that the integers a and b such that
J(χ, χ) = a+bρ are completely determined by the congruence a+bg(p−1)/3 ≡
0 (mod p), since we have chosen χ such that χ(g) = ρ, so that g(p−1)/3 ≡ −a/b
(mod p). Since g is a primitive root modulo p there exists k such that 4N ≡ gk

(mod p), so that χ(4N) = χ(g)k = ρk = ρk mod 3. On the other hand,

(4N)(p−1)/3 ≡ gk(p−1)/3 ≡ (−a/b)k (mod p) ,

and k mod 3 is determined by this congruence. The proposition follows when
N is a quadratic residue modulo p by distinguishing the three possible values
of k mod 3 and noting that (−a/b)2 ≡ −b/a (mod p).

If N is a quadratic nonresidue modulo p, we note that the twist EN,N

of EN by N itself has equation Ny2 = x3 + N , which is isomorphic to
Y 2 = X3 + N4 by setting Y = Ny and X = Ny. Since N4 is trivially a
quadratic residue, on the one hand by what we have just proved we have

ap(EN,N ) = −2�
(
χ(4N4)(a + bρ)

)
= −2� (χ(4N)(a + bρ)) ,

and on the other hand, by Proposition 7.3.16 we have ap(EN,N ) =
(

N
p

)
ap(EN ),

so the result follows in general. ��

In the special case N = 1, since by Proposition 2.5.20 we know the cubic
character of 2, hence of 4, we obtain the following:

Corollary 8.5.4. When p = 3 or p ≡ 2 (mod 3) we have ap(E1) = 0, and
when p ≡ 1 (mod 3) we have

ap(E1) =


b− 2a if b is even,
a + b if a and b are odd,
a− 2b if a is even and b is odd,

where p = a2 − ab + b2 with 3 | b and a ≡ −1 mod 3.

Proof. See Exercise 19. ��
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Remark. As in the case j = 1728 it follows from the proposition that, as-
suming BSD, it is very easy to make large tables of L(En, 1), since once again
using Cornacchia’s algorithm it is immediate to compute the decompositions
p = a2 − ab + b2 with 3 | b and a ≡ −1 (mod 3). Thanks to Proposition 7.2.3
and the remarks following it, this enables us for instance to compute tables
of integers c that are sums of two rational cubes, by computing L(E−432c2 , 1)
or L(E16c2 , 1) (which are equal since the two curves are isogenous).

Computation of ap(E): the General CM Case
From now on we assume that j �= 0 and j �= 1728. The set of Q-isomorphism
classes of elliptic curves E such that j(E) = j is thus parametrized by a fun-
damental discriminant u (or equivalently, by the group Q∗/Q∗2). By Propo-
sition 7.3.16 we know that if we can compute ap(E) for a single curve in this
set, then it is immediate to compute ap(E′) for all curves E′ having the same
j-invariant: let y2 = x3 + a′x + b′ be a reduced equation for E′. If p = 2 or 3
it is trivial to compute ap(E′) directly, and if E′ has bad reduction at p then
by Lemma 7.1.3 we have ap(E′) =

(−c6(E
′)

p

)
=
(

6b′

p

)
since c6(E′) = −864b′.

For all other p we compute u = ab′/(ba′) since ba′ �= 0, so that E′ = Eu,
and we use the formula ap(Eu) =

(
u
p

)
ap(E). In fact, since b′ = u3b we have(

b′

p

)
=
(

u
p

)(
b
p

)
, so that we have more simply, without even computing u,

ap(E′) =
(

bb′

p

)
ap(E) .

We now come specifically to the CM case. Let E be an elliptic curve de-
fined over Q, and assume that E has CM. It follows that End(E) is isomorphic
to an imaginary quadratic order of class number 1, hence either to one of the
9 maximal orders of discriminant D = −3, −4, −7, −8, −11, −19, −43, −67,
or −163, or to one of the 4 nonmaximal orders of discriminant −12, −16,
−27, or −28. Furthermore, since CM is a property of elliptic curves over C, a
curve E has CM if and only if its j-invariant is equal to one of the 13 values
of the elliptic modular function j(τ) for τ = ((−δ +

√
D)/2). Thanks to the

above discussion, to be able to compute efficiently ap(E) for all elliptic curves
E with CM and defined over Q, it is sufficient to be able to do this for 13
specific curves, one per discriminant. We have already done so for D = −3
and D = −4, so we will assume that D � −7.

Note first the following easy result, which we do not prove.

Proposition 8.5.5. Let E be an elliptic curve defined over Q and having
CM by the imaginary quadratic order OD of discriminant D, and let p be a
prime of good reduction and not dividing D. If

(
D
p

)
= −1 we have ap(E) = 0,

while if
(

D
p

)
= 1 we have ap(E) = π + π, where π ∈ OD is such that ππ = p.

We can write π = (a+b
√

D)/2 with a ≡ bD (mod 2), so we have ap(E) =
a, where a2 + |D|b2 = 4p. An important algorithmic fact is that, given D and
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p, by using a variant of Euclid’s algorithm called Cornacchia’s algorithm that
we have already mentioned (see Exercise 41 of Chapter 2 and Algorithms 1.5.2
and 1.5.3 of [Coh0]), it is easy to compute a pair (a, b). The main problem
is that it is not quite unique. More precisely, if π is a solution to ππ = p,
then since OD is a principal ideal domain it is immediate to see that all
other solutions are given by π′ = uπ or π′ = uπ for some unit u ∈ OD.
Since π and π give the same a, the only problem is the unit u. Since we
have assumed that D � −7 we have u = ±1, so that a is determined up to
sign, and this is the difficult problem. One solution, which was used for some
time, is to note that since |E(Fp)| = p + 1 − ap(E), and if P ∈ E(Fp), we
have (p + 1 − ap(E)) · P = O. Choosing a random point P , we can expect
that (p + 1− a) · P = O for only one of the two possible values of a. This is
evidently not very elegant, although quite fast, but still seems like a waste of
time since after all we only want to determine a among two possibilities.

There is, however, a much nicer solution. A first result is the following.

Proposition 8.5.6. Assume that D � −7 is a fundamental discriminant
such that OD has class number 1, in other words D = −7, −8, −11, −19,
−43, −67, or −163, and let j = j(τ) with τ = (−δ +

√
D)/2 as above, which

by the fundamental theorem of CM belongs to Z.

(1) The integer j is always the cube of an integer, and we will denote by j3
the unique cube root of j in Z.

(2) Set s8 = −1 for D = −8 and s8 = 1 otherwise. The integer s8(j−1728)D
is always the square of an integer, and we will denote by j2 its positive
square root.

Proof. Assuming the fundamental theorem of CM, which tells us that
j ∈ Z, the proof is a simple verification: we compute numerically the seven
values of j to sufficient accuracy (this can be done very simply), round to the
nearest integer, and check. ��

Of course, this is not the “reason” for this proposition. A much more
general result due to Gross–Zagier says among other things that j(τ1)−j(τ2)
is always very highly factorable. A number such as j(τ) with τ imaginary
quadratic is called a singular modulus.

For the sake of completeness, for D ranging in order through the seven
given values we have j3 = −15, 20, −32, −96, −960, −5280, −640320, and
j2 = 189, 224, 616, 4104, 195048, 3140424, 6541681608.

Definition 8.5.7. Let D � −7 be one of the 11 discriminants of an imagi-
nary quadratic order of class number 1, and let j = j(τ) be the corresponding
j-invariant. We define the basic CM elliptic curve with invariant j as follows:

(1) If D is one of the seven fundamental discriminants, we set c4 = s8j3D
and c6 = s7j2D, where s7 = −1 if D = −7 and s7 = 1 otherwise.
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(2) If D is one of the four nonfundamental discriminants, in other words
if D = −12, −16, −27, or −28, we set (c4, c6) = (720,−19008),
(528, 12096), (1440,−54648), or (1785, 75411) respectively.

The basic CM elliptic curve Ej is the elliptic curve with invariants c4 and
c6, in other words with reduced Weierstrass equation y2 = x3 − 27c4x− 54c6

(see Section 7.1.2).

Remark. It is immediate to check that we indeed have j(Ej) = j. Further-
more, it is also easy to see that the seemingly random values of c4 and c6 given
for the four nonfundamental discriminants are in fact also closely related to
j1/3D and to (D(j − 1728))1/2D respectively.

The point of the above construction is not to construct elliptic curves
Ej such that j(E) = j, which is immediate, but that a remarkable property
of these curves is that their coefficients ap(Ej) can easily be computed as
follows.

Theorem 8.5.8. Let D � −7 be one of the 11 discriminants considered
above, let E = Ej be the corresponding basic CM curve, and let D0 be the
discriminant of the quadratic field Q(

√
D), in other words the unique funda-

mental discriminant such that D = D0f
2 for some f ∈ Z. For any prime

number p �= 2 such that
(

D
p

)
= 1 we have the following results:

(1) If D �= −8 and D �= −16 we have(
D0

ap(E)

)
= −s7 ,

where s7 = 1 if D0 �= −7 and s7 = −1 if D0 = −7.
(2) If D = −8 we have ap(E) ≡ 2 (mod 8) when p ≡ 1 or 11 modulo 16, and

ap(E) ≡ −2 (mod 8) when p ≡ 3 or 9 modulo 16.
(3) If D = −16 we have

ap(E) ≡ 2
(
−8
p

)
(mod 8) .

Since D < 0, the properties of the Legendre–Kronecker symbol tell us that(
D

−ap (E)

)
= −

(
D

ap (E)

)
, so in all cases this theorem allows us to distinguish

between ap(E) and its opposite, which was the goal of the construction of
the basic CM elliptic curve.

8.5.3 Numerical Computation of L(r)(E, 1)

In this section we will explain how to compute numerically the derivatives of
L(E, s). Once again we emphasize that using a suitable error analysis it is
always easy to prove that a given real number (here L(r)(E, 1)) is not equal
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to 0 (of course when it is not), while it is impossible to prove that it is equal
to 0. The only thing we can do is have a reasonable certainty if the value we
obtain is less in absolute value than 10−20, say.

We refer to [Dok] for a detailed analysis and implementation of the general
problem of computing special values of L-functions and their derivatives,
using a slightly different approach from that given here.

By Wiles et al., we know that L(E, s) satisfies a functional equation of
standard form. It is not sufficiently well known that this automatically implies
that there exists an exponentially convergent series for computing L(E, s) and
its derivatives numerically. The result is as follows (see for instance [Coh1]
Section 10.3 for a proof). Recall first the following definition:

Definition 8.5.9. The incomplete gamma function is defined for �(x) > 0
and all s ∈ C by

Γ(s, x) = xs

∫ ∞

1

e−xtts
dt

t
,

so that in particular if x ∈ R>0

Γ(s, x) =
∫ ∞

x

tse−t dt

t
.

Proposition 8.5.10. Write L(E, s) =
∑

n�1 an(E)n−s, and let N and ε(E)
be as above. Then for all t0 such that �(t0) > 0 we have

L(E, s) = F (E, s, t0) + ε(E)
(
2π/

√
N
)2s−2

F (E, 2− s, 1/t0) ,

where

F (E, s, t0) =
∑
n�1

an(E)
ns

Γ
(
s,

2πn

t0
√

N

)
.

If ε(E) = −1 we clearly have L(E, 1) = 0. If ε(E) = 1 we obtain the
following:

Corollary 8.5.11. Assume that ε(E) = 1. Then

L(E, 1) = 2
∑
n�1

an(E)
n

e−2πn/
√

N .

Proof. We simply choose t0 = 1 in the proposition, and note that

Γ(1, x) =
∫ ∞

x

e−t dt = e−x .

��

We see that we obtain an exceedingly simple and fast formula for L(E, 1).
Note however that it is useful only when N is not too large, say N < 1015. If
N is much larger, it is difficult to estimate L(E, 1) by this method.
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Remark. Most number-theory-oriented packages such as Pari/GP and magma
provide built-in functions for computing the conductor N and the sign of the
functional equation ε(E), which are necessary in using the above formulas.
However, if these are not available we can easily compute them indirectly us-
ing the free parameter t0 occurring in the formula for L(E, s). Since the result
must be independent of t0, it is not difficult to compute N and ε(E), aided
by the fact that the prime divisors of N are the same as those of disc(E). In
practice it is reasonably easy to compute N using Tate’s algorithm, and so
the only quantity that we really need to compute if we do not have a suitable
CAS available is ε(E), and this requires only two distinct values of t0.

We now need to compute derivatives. For this we set the following defini-
tion.

Definition 8.5.12. We define by induction the functions Γr(s, x) by

Γ−1(s, x) = e−xxs and Γr(s, x) =
∫ ∞

x

Γr−1(s, t)
t

dt for r � 0 .

For instance, Γ0(s, x) = Γ(s, x), the incomplete gamma function; hence
for example Γ0(1, x) = e−x and

Γ1(1, x) =
∫ ∞

x

e−t

t
dt = E1(x) ,

the exponential integral.
The functions Γr should not be confused with the higher gamma functions

of Barnes.

Proposition 8.5.13. Set

ω = log
(

2π

t0
√

N

)
.

We have the formula

L(r)(E, s)
r!

=
∑
n�1

an(E)
ns

Γr

(
s,

2πn

t0
√

N

)
+ (−1)rε(E)

( 2π√
N

)2s−2∑
n�1

an(E)
n2−s

Γr

(
2− s,

2πnt0√
N

)
+

r∑
k=1

(−1)k−1 L(r−k)(E, s)
(r − k)!

ωk

k!
.

Proof. It immediately follows from the first formula of Proposition 8.5.15
below that
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d

ds
Γr(s, x) = Γr(s, x) log(x) + (r + 1)Γr+1(s, x) .

Using Proposition 8.5.10, the above proposition easily follows by induction
on r. ��

Generalizing Corollary 8.5.11, we have the following.

Corollary 8.5.14. Assume that ε(E) = (−1)r and in addition that L(k)(E, 1) =
0 when 0 � k � r − 1, k ≡ r (mod 2). Then

L(r)(E, 1)
r!

= 2
∑
n�1

an(E)
n

Γr

(
1,

2πn√
N

)
.

In particular, if ε(E) = −1 then

L′(E, 1) = 2
∑
n�1

an(E)
n

E1

(
2πn√

N

)
,

where as above,

E1(x) =
∫ ∞

x

e−t

t
dt

is the exponential integral function.

Proof. Since ε(E) = (−1)r, the functional equation implies that L(k)(E, 1) =
0 for all k �≡ r (mod 2). Thus the hypotheses of the corollary and the above
proposition applied with t0 = 1 give the first formula, and the second follows
from Γ1(1, x) = E1(x). ��

There remains the problem of numerically computing the functions Γr(1, x)
for positive x. This is done in two completely different ways depending on
whether x is small or large, and we will treat these cases separately.

8.5.4 Computation of Γr(1, x) for Small x

We begin with the following essential integral representation, useful whether
x is small or large.

Proposition 8.5.15. For r � 0 we have

Γr(s, x) = xs

∫ ∞

1

log(t)r

r!
e−xtts

dt

t
=
∫ ∞

x

log(t/x)r

r!
e−tts

dt

t
.

Proof. We prove this by induction on r, calling gr(x) the first integral on
the right-hand side. It is clear that it is true for r = 0. It is also clear that
gr(x) tends exponentially fast to 0 as x tends to infinity, so by definition of
Γr(s, x) we must show that g′r(x) = −gr−1(x)/x. We have
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g′r(x) = sxs−1

∫ ∞

1

log(t)r

r!
e−xtts

dt

t
− xs

∫ ∞

1

log(t)r

r!
e−xtts+1 dt

t
.

Now integration by parts shows that∫ ∞

1

log(t)r

r!
e−xtts+1 dt

t
=

1
x

∫ ∞

1

e−xtts
(

log(t)(r−1)

(r − 1)!
+ s

log(t)r

r!

)
dt

t
,

so that

g′r(x) = −xs−1

∫ ∞

1

e−xtts
log(t)(r−1)

(r − 1)!
dt

t
= −gr−1(x)

x

as claimed. ��

Recall that ζ(s) =
∑

n�1 n−s for �(s) > 1 (we will study this function in
much more detail in later chapters) and that Euler’s constant γ is defined by

γ = lim
N→∞

(
N∑

n=1

1
n
− log(N)

)
= lim

s→1+

(
ζ(s)− 1

s− 1

)
.

Proposition 8.5.16. Set

Gr(x) =
∑
n�1

(−1)n−1 xn

nr n!
,

and define constants ak by the formal equality

exp

∑
k�1

ζ(k)
k

xk

 =
∑
k�0

akxk ,

where by convention we set ζ(1) = γ. Then

(−1)rΓr(1, x) =
r∑

k=0

ak
log(x)r−k

(r − k)!
−Gr(x) .

Proof. When r = 0 we have Γ0(1, x) = e−x and G0(x) = 1 − e−x; hence
the formula is true in that case, so we may assume that r � 1. Integrating
by parts we have

Γr(1, x) =
∫ ∞

x

log(t/x)r

r!
e−t dt =

∫ ∞

x

log(t/x)r−1

(r − 1)!
e−t dt

t

=
∫ ∞

1

log(t/x)r−1

(r − 1)!
e−t dt

t
+
∫ 1

0

log(t/x)r−1

(r − 1)!
(e−t − 1)

dt

t

+
∫ 1

x

log(t/x)r−1

(r − 1)!
dt

t
−
∫ x

0

log(t/x)r−1

(r − 1)!
(e−t − 1)

dt

t
.
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First, let Ir(x) be the sum of the first two integrals from 1 to ∞ and from 0
to 1. Expanding by the binomial theorem, it is clear that

Ir(x) =
r−1∑
k=0

(−1)r−1−kCk
log(x)r−1−k

(r − 1− k)!
,

where

Ck =
∫ ∞

1

log(t)k

k!
e−t dt

t
+
∫ 1

0

log(t)k

k!
(e−t − 1)

dt

t
.

Thus ∑
k�0

Cksk =
∫ ∞

1

e−tts
dt

t
+
∫ 1

0

(e−t − 1)ts
dt

t
,

which is clearly valid for �(s) > −1. Thus, for �(s) > 0 we have∑
k�0

Cksk = −1
s

+
∫ ∞

0

e−tts
dt

t
= Γ(s)− 1

s
,

and by analytic continuation this last equality is also valid for �(s) > −1. It
follows that

1 +
∑
k�0

Cksk+1 = Γ(s + 1) = exp

∑
k�1

(−1)k ζ(k)
k

sk

 =
∑
k�0

(−1)kaksk

by the well-known power series expansion of log(Γ(s + 1)) (see Proposition
9.6.15 for a proof). It follows that Ck = (−1)k+1ak+1 for k � 0, so that

Ir(x) = (−1)r
r∑

k=1

ak
log(x)r−k

(r − k)!
,

giving the first term in the formula, apart from the k = 0 summand.
Furthermore, we have∫ 1

x

log(t/x)r−1

(r − 1)!
dt

t
=

log(t/x)r

r!

∣∣∣∣1
x

= (−1)r log(x)r

r!
,

giving the k = 0 summand since a0 = 1.
Finally,∫ x

0

log(t/x)r−1

(r − 1)!
(e−t−1)

dt

t
=
∫ 1

0

log(t)r−1

(r − 1)!
(e−tx−1)

dt

t
=
∑
n�1

(−1)n xn

n!
Jn,r−1 ,

where

Jn,k =
∫ 1

0

tn
log(t)k

k!
dt

t
=
∫ ∞

0

e−nt (−t)k

k!
dt =

(−1)k

nk+1
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by definition of the gamma function, so thatn∫ x

0

log(t/x)r−1

(r − 1)!
(e−t − 1)

dt

t
= (−1)r

∑
n�1

(−1)n−1 xn

nr n!
= (−1)rGr(x) ,

proving the proposition. ��

Example. We have a0 = 1, a1 = γ, a2 = (γ2 + ζ(2))/2, a3 = (γ3 + 3γζ(2) +
2ζ(3))/6.

The above proposition reduces the computation of Γr(1, x) to that of
Gr(x). When x is small (say x < 10) this is perfectly fine. When x is
larger there are two closely related pitfalls that plague the computation,
coming from numerical cancellation. First, since Gr(x) is an alternating se-
ries, when x is large we will lose a great deal of accuracy in the computation.
By comparison with the series for exp(−x), it can be shown that to obtain
D decimal digits of relative accuracy we need to perform the computations
to D + 2x/ log(10) decimal digits in all the intermediate computations. This
becomes prohibitive for x large. The second closely related pitfall is that since
Γr(1, x) is exponentially small, the additional polynomial in log(x) that must
be subtracted from Gr(x) will be of comparable size, so we will have an ex-
pression of the form a− b with a and b possibly very accurate real numbers,
but almost equal, the nightmare of the numerical analyst. Note that no näıve
rearrangement of the alternating series can help with this.

The following proposition shows that we can at least dispense with the
problem of alternating series, although it does not remove the second pitfall
(cancellation with the logarithmic terms), which can be avoided only by the
use of methods specific to the case in which x is large, which we shall study
in the next section.

Proposition 8.5.17. Recall that

Gr(x) =
∑
n�1

(−1)n−1 xn

nr n!
.

Set Hk(n) =
∑

1�j�n 1/jk, and define arithmetic functions Ak(n) by a formal
expansion similar to that giving the constants ak:

exp

∑
k�1

Hk(n)
k

xk

 =
∑
k�0

Ak(n)xk .

Then
Gr(x) = e−x

∑
n�1

xn

n!
Ar(n) .
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Proof. We prove the proposition by induction on r, the case r = 0 being
clear since

G0(x) = 1− e−x = e−x
∑
n�1

xn

n!
.

Define, by induction on k, A0(n) = 1 for n � 0, and for k � 1,

Ak(n) =
n∑

j=1

Ak−1(j)
j

(we will see below that this is the same definition as in the proposition).
Assume the proposition true for r − 1, in other words that

Gr−1(x) = e−x
∑
n�1

xn

n!
Ar−1(n) .

By our induction hypothesis we have

Gr(x) =
∫ x

0

∑
n�1

(−1)n−1 tn−1

nr−1 n!
dt

=
∫ x

0

Gr−1(t)
t

dt =
∑
k�1

Ar−1(k)
k!

∫ x

0

e−ttk−1 dt .

Now by induction we have∫ x

0

e−ttk−1 = (k − 1)!

(
1− e−x

k−1∑
n=0

xn

n!

)
= (k − 1)!e−x

∑
n�k

xn

n!
,

so that

Gr(x) = e−x
∑
k�1

Ar−1(k)
k

∑
n�k

xn

n!
= e−x

∑
n�1

xn

n!

∑
1�k�n

Ar−1(k)
k

,

proving the result by induction on r.
It remains to see that the Ak(n) defined above are given as in the propo-

sition. Set f(x, n) =
∑

k�0 Ak(n)xk. Then by definition

(
1− x

n

)
f(x, n) =

∑
r�0

(
Ar(n)− Ar−1(n)

n

)
xr = f(x, n− 1) ,

and since f(x, 0) = 1 we obtain

f(x, n) =
∏

1�j�n

1/(1− x/j) ,
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so the result follows by taking logarithms and expanding formally. ��

Note that all the series and integral manipulations are justified by absolute
convergence, all the series having infinite radius of convergence. For the same
reason, this enables us to compute Gr(x) even for large x without loss of
accuracy. However, we still need xn/n! to be small, hence n at least of the
order of x (plus a small amount to account for the desired accuracy), and
also we must keep in mind the cancellation phenomenon with the logarithmic
terms in the formula of Proposition 8.5.16. In practice we do not advise to
use the above formulas for x larger than 50, say, and even for x > 10.

Examples. We have A0(n) = 1, A1(n) = H1(n), A2(n) = (H1(n)2 +
H2(n))/2, etc., the formulas being formally identical to those for the co-
efficients ak (note that ζ(k) = limn→∞ Hk(n) for k � 2).

Corollary 8.5.18. With the notation of Proposition 8.5.16 and the above
proposition we have

(−1)rΓr(1, x) =
r∑

k=0

ak
log(x)r−k

(r − k)!
− e−x

∑
n�1

xn

n!
Ar(n) .

8.5.5 Computation of Γr(1, x) for Large x

For large x we can use the following proposition.

Proposition 8.5.19. Define arithmetic functions Ck(n) by the formal ex-
pansion

exp

(∑
k�1

(−1)k−1 Hk(n)
k

xk

)
=
∑
k�0

Ck(n)xk .

Then for r � 1 we have

Γr(1, x) = e−x
∑
n�0

(−1)n+r+1n!Cr−1(n)
xn+1

,

where the divergent series is to be interpreted as meaning that exΓr(1, x) is
always between two successive partial sums of the series.

Proof. Set

Er(x) =
∫ ∞

x

e−t

tr
dt .

Integrating by parts gives Er(x) = e−x/xr − rEr+1(x). It follows that

Er(x) =
e−x

(r − 1)!

m−1∑
n=0

(−1)n(n + r − 1)!
xn+r

+ (−1)m (m + r − 1)!
(r − 1)!

Em+r(x) .
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Since Em+r(x) > 0 for all x, with the interpretation of the divergent series
given in the proposition we can write

Er(x) =
e−x

(r − 1)!

∑
n�0

(−1)n(n + r − 1)!
xn+r

.

Thus since Γ1(1, x) = E1(x) the proposition is proved for r = 1.
Define C0(n) = 1 for n � 0 and by induction on k � 1,

Ck(n) =
n∑

j=1

Ck−1(j − 1)
j

(once again we will see below that these are the same as those defined in the
proposition). Let r � 2 and assume by induction that for k � r − 1 we have

Γk(1, x) = e−x
m−1∑
n=0

(−1)n+k−1n!Ck−1(n)
xn+1

+ (−1)m+k−1Im,k(x)

with Im,k(x) > 0 for all x. We now use the induction formula

Γr(1, x) =
∫ ∞

x

Γr−1(1, t)
t

dt

the expression obtained for Er(x) applied to a suitable m, and denoting by
the generic letter P a nonnegative quantity, we obtain

Γr(1, x) =
m−1∑
n=0

(−1)n+rn!Cr−2(n)En+2(x) + (−1)m+r

∫ ∞

x

Im,r(t)
t

dt

=
m−1∑
n=0

(−1)n+rn!Cr−2(n)
(n + 1)!

(
e−x

m−n−1∑
k=0

(−1)k(k + n + 1)!
xk+n+2

+ (−1)m−nP

)
+ (−1)m+rP

= e−x
m−1∑
N=0

(−1)N+r(N + 1)!
xN+2

∑
n+k=N

Cr−2(n)
n + 1

+ (−1)m+rP

= e−x
m∑

n=1

(−1)n+r+1n!
xn+1

∑
1�k�n

Cr−2(k − 1)
k

+ (−1)m+rP ,

proving the formula of the proposition.
As before, it remains to see that the Ck(n) defined above are given as in

the proposition. Set g(x, n) =
∑

k�0 Ck(n)xk. Then by definition(
1 +

x

n

)
g(x, n− 1) =

∑
r�0

(
Cr(n− 1) +

Cr−1(n− 1)
n

)
xr = g(x, n) ,
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and since g(x, 0) = 1 we obtain

g(x, n) =
∏

1�j�n

(1 + x/j) ,

so the result follows once again by taking logarithms and expanding formally.
��

Examples. We have C1(n) = 1, C2(n) = H1(n), C3(n) = (H1(n)2 −
H2(n))/2, etc., the formulas being formally the same as for Ak(n), chang-
ing Hk(n) into −Hk(n) for even values of k.

Remarks. (1) To compute Γr(1, x), say to approximately 18 decimal digits,
which is almost always sufficient for practical uses, we thus suggest the
following method. If x � 50, we use directly the power series expansion
given by Corollary 8.5.18, remembering to take into account the cancella-
tion that occurs between the logarithmic terms and the power series. Note
that 50 is not just any number but chosen such that exp(−50) < 10−20.
If x > 50 we use the asymptotic expansion given by Proposition 8.5.19.
This gives good results. If it is really necessary to compute to more than
18 decimal digits, simply increase 50 to a larger value.

(2) Note that in Corollary 8.5.14 we need the values of Γr(1, x) to a given
absolute accuracy. Since it tends to zero exponentially fast as x → ∞,
when x is large it is not necessary to compute it to a large relative
accuracy. We leave the details to the reader.

(3) In the special case r = 1 we can do better. It can be shown that the
asymptotic expansion can be expanded into the following continued frac-
tion, which should of course be used instead (see Exercise 21):

Γ1(1, x) = E1(x) =
e−x

x + 1−
12

x + 3−
22

x + 5−
32

x + 7− . . .

This continued fraction converges for all x > 0, and rapidly for large x,
see Exercise 22.

(4) A continued fraction corresponds to linear recurrent sequences of order 2.
It can be shown that there exist similar recurrent sequences but of order
r + 1 for Γr(1, x), also leading to faster methods to compute them, but
this is beyond the scope of this book (and not really essential in practice).

8.5.6 The Famous Curve y2 + y = x3 − 7x + 6

The above curve (written in minimal form) is famous because it was used to
give an explicit solution to an old problem of Gauss on lower bounds for class
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numbers of imaginary quadratic fields. It is the curve with smallest conductor
of rank 3 over Q. Let us prove that it has rank 3. After completing the square
and changing x into x/4 we obtain the equation y2 = x3 − 112x + 400. This
curve has no torsion, so we will compute its rank using the method explained
in Section 8.3.4. We let θ be a root of P (x) = x3 − 112x + 400 = 0 and
K = Q(θ). The discriminant of the polynomial P (x) is equal to 28 ·5077 with
5077 prime, so the only primes of K to consider are those above 2 (because
of the condition p2 | disc(P ), which follows from Corollary 8.3.7). In fact, 2
ramifies completely as 2ZK = p3, so T is reduced to the single prime ideal
p, which of course automatically divides 3θ2 + a. To find UT (K) we should
use Proposition 7.4.7 of [Coh1], but here we are lucky since we find that p

is a principal ideal generated by ε1 = −θ/2 + 4. We compute that the class
number of K is equal to 2, that a generator of the square of a generator of the
class group of K is equal to ε2 = θ2/2 + 4θ − 25, and that the fundamental
and torsion units are ε3 = θ2/4 + 2θ − 13, ε4 = θ2 − 12θ + 33, and ε5 = −1.
It follows that ST (K) is generated over F2 by the classes modulo squares
of the five elements that we have just listed. The respective norms of these
elements being 2, −25, −1, 1, and −1 it follows that the kernel ST (K, 1) of
the norm map modulo squares is generated by −ε2, −ε3, and ε4. We could
now proceed with the algorithm, and for each of these generators compute
the quadratic forms qi(c0, c1, c2), find a particular solution to q2 = 0, then
the general solution, and replace in q1 = 1 to obtain the quartic, one for each
generator. We then have to search for a point on these three quartics. This
can be done. However, we will cheat to avoid such tedious computations.
Since the dimension of ST (K, 1) is equal to 3 we know that the rank r(E) of
our curve is less than or equal to 3. On the other hand, on the initial equation
y2 + y = x3− 7x + 6 we readily discover the points P1 = (2, 0), P2 = (−1, 3),
and P3 = (4, 6). To show that they are independent we use Theorem 8.1.17.
Using for instance the algorithms of [Coh0] we compute that the determinant
of the height pairing matrix of the Pi is equal to 0.41714355875838397 . . . ,
hence is definitely different from 0, so that the points are independent. It
follows that r(E) � 3, and since we have shown that r(E) � 3 it follows that
r(E) = 3 as claimed. We have not shown that the Pi are generators, only
that they generate a subgroup of E(Q) of finite index, but this is indeed true.

We now use the method of the preceding sections to compute L(E, s) and
its derivatives. A computation shows that the sign of the functional equation
is −1. It follows that L(r)(E, 1) = 0 for all even r � 1, and in particular
L(E, 1) = L′′(E, 1) = 0. On the other hand, we compute numerically that
L′(E, 1) is almost equal to 0 (equal within the limits of accuracy of our com-
putation). Note that however precisely we perform our computation we will
never be able to prove that L′(E, 1) = 0. Here we must apply an important
theorem of Gross–Zagier (Theorem 8.6.9 below), which implies in particular
that if L′(E, 1) �= 0 then the curve has rank 1. Since we know that it has three
independent points this is not possible, proving that L′(E, 1) = 0. Finally,
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using the formulas given above we compute that

L′′′(E, 1)
3!

= 1.73184990011930068979 . . . .

On the other hand, the quantity ω1(E) that enters in the BSD conjecture is
easily computed to be 2.07584399154346652494 . . .. Since there is no torsion,
the Tamagawa numbers cp(E) for finite p can be shown to be equal to 1, and
c∞(E) = 2, so we deduce the equality

|X(E)|R(E) = 0.41714355875838397 . . . .

This is exactly the determinant of the height pairing matrix that we have
found above by completely different methods. Thus the BSD conjecture tells
us both that the points Pi given form a basis of E(Q) (this is easy to show
directly) and that X(E) is the trivial group, which at present nobody knows
how to prove, even on this specific curve.

8.6 The Heegner Point Method

I would like to thank C. Delaunay for writing a large part of this section.

8.6.1 Introduction and the Modular Parametrization

The Heegner point method is applicable if and only if the elliptic curve E
has analytic rank exactly equal to 1. We therefore assume that we know this
for a fact by having computed that ε(E) = −1 and that L′(E, 1) �= 0, which
can be done rigorously as already explained. We then know that E(Q) has
a point of infinite order on it, and the purpose of the method is to find it
explicitly, and even to find a generator of the torsion-free part of E(Q).

Remarks. (1) If we have done a 2-descent showing that the rank is equal
to 1, it is not necessary to use this method since a nontorsion point can
easily be computed explicitly from the 2-descent method.

(2) Once a point of infinite order has been found, finding a generator is
straightforward; see Exercise 24. It follows that we only want to find a
point of infinite order.

Recall that the BSD conjecture involves quantities that we know how to
compute, and others that we do not know directly. More precisely, given an
elliptic curve E defined over Q, we can algorithmically compute its conductor
N , which enters in the functional equation and which is divisible exactly
by the primes where E has bad reduction, and we can compute the (finite
number of) Euler factors corresponding to these bad primes, and the so-called
Tamagawa numbers cp for p | N . All these steps are done simultaneously using
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variants of an algorithm due to Tate. In addition, we can compute the real
period ω1(E) as an elliptic integral using the arithmetic–geometric mean,
and the torsion subgroup Et(Q) using one of the methods explained above.
Next, for any given p � N we can compute ap = p + 1 − |E(Fp)| hence the
corresponding Euler factor, and so as many terms as we want of the Dirichlet
series for the global L-function L(E, s). Finally, using the method of Section
8.5.3, we can compute L(r)(E, 1) to any desired accuracy, and in particular
use Corollaries 8.5.11 and 8.5.14.

In addition, we can also compute the volume Vol(E) of E, in other words
the volume (or determinant) of the lattice Λ such that E(C) = C/Λ. Although
this is not necessary for the BSD formula, it will be needed in the Gross–
Zagier formula below.

All the algorithms (and many more) for doing these computations are
explained in great detail in [Cre2]; see also [Coh0].

The quantities that we do not know how to compute at first are the reg-
ulator R(E), which is known only once a generating set for the Mordell–Weil
group has been computed, and the Tate–Shafarevich group order |X(E)|, of
which we know little apart from the fact that, if finite, it will be the square
of an integer. Note that since our goal is to find a point of infinite order on
E(Q), we can assume any conjecture for doing so.

The Heegner point method, which we consider in this section is based on
a number of facts that are outside the scope of this book, but which lead to
an algorithm that is sufficiently simple and important to be explained here.
Thus several of the terms used below will not be defined, and we ask the
reader to be patient until we come to the actual description of the algorithm.
Note however that the theory that we sketch in a few lines is very beautiful
and described in many papers and textbooks; see for example [Cre1], [Dar],
and [Zag].

First, if L(E, s) =
∑

n�1 ann−s then the Taniyama–Shimura–Weil conjec-
ture asserts that fE(τ) =

∑
n�1 anqn (as usual with q = e2iπτ and τ ∈ H, the

upper half-plane) is a modular form of weight 2 on Γ0(N). Thanks to Wiles
and successors this conjecture is now a theorem, but as already explained,
for the work that we are doing we may assume any conjecture that we like.

Since fE(τ)dτ is a holomorphic differential the integral

φ̃(τ) = 2iπ
∫ τ

i∞
fE(z)dz

(where i∞ is the point at infinity in the upper half-plane) is independent of
the chosen path hence defines a map from H to C. Explicitly, for τ ∈ H we
clearly have

φ̃(τ) =
∑
n�1

an

n
qn ,

where as usual q = e2iπτ . The modularity property of fE is equivalent to the
fact that φ̃ induces an analytic map φ from X0(N) to C/Λ, where X0(N) =
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(H ∪ P1(Q))/Γ0(N) is the modular curve associated with Γ0(N), and Λ is
the lattice formed by the periods of fE , corresponding to the values of φ̃
for τ = γ(∞) and γ ∈ Γ0(N) (which cannot be directly computed from the
infinite series but only from the integral definition).

The lattice Λ is very often a sublattice of the lattice ΛE associated with
the minimal model of the elliptic curve E, hence in this case φ̃ induces an
analytic map φ from X0(N) to C/ΛE . To come back to points (x, y) ∈ E(C)
we use the classical isomorphism from C/ΛE to E(C) given by the Weierstrass
℘ function and its derivative.

However, in principle it might happen that Λ is not a sublattice of ΛE ,
due to the fact that the so-called “Manin constant” of E may not be equal
to 1 (even assuming Manin’s conjecture saying that this should be the case
for the strong Weil curve in the isogeny class of f). In practice it does not
happen, but if it did it would be easy to deal with.

Putting everything together, we see that for any τ ∈ H (and even τ ∈
H ∪ P1(Q), but we do not need this extra generality) we can associate a
point ϕ(τ) ∈ E(C), where ϕ = ℘ ◦ φ. The map ϕ from X0(N) to E is called
the modular parametrization of E, and Wiles’s theorem states that such a
parametrization exists (and is usually unique up to sign, unless the curve has
complex multiplication).

8.6.2 Heegner Points and Complex Multiplication

We begin by defining Heegner points.

Definition 8.6.1. (1) Let τ ∈ H. We say that τ is a complex multiplication
point (or simply a CM point) if it is a root of a quadratic equation Aτ2 +
Bτ + C = 0 with A, B, C integral and B2 − 4AC < 0.

(2) If in addition we choose A, B, C such that gcd(A,B,C) = 1 and A > 0
(which makes them unique), then (A,B,C) = Ax2 +Bxy +Cy2 is called
the (positive definite binary) quadratic form associated with τ , and its
discriminant ∆(τ) = B2 − 4AC is called the discriminant of τ .

(3) For a given integer N � 1, we will say that τ is a Heegner point of level
N if ∆(Nτ) = ∆(τ).

The above definition of a Heegner point is due to B. Birch. The following
proposition shows that this notion depends only on the class of τ in X0(N).

Proposition 8.6.2. If γ ∈ SL2(Z) (in particular if γ ∈ Γ0(N)) then ∆(γ(τ)) =
∆(τ), and if γ ∈ Γ0(N) and τ is a Heegner point of level N , so is γ(τ).

Proof. This comes from the fundamental group equality

Γ0(N) = Γ ∩
(

N 0
0 1

)−1

Γ
(

N 0
0 1

)
with Γ = SL2(Z), and is left to the reader. ��
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Proposition 8.6.3. Let τ ∈ H be a quadratic irrationality and let (A,B,C)
be the quadratic form with discriminant D associated with τ . Then τ is a
Heegner point of level N if and only if N | A and one of the following equiv-
alent conditions is satisfied:

(1) gcd(A/N,B,CN) = 1.
(2) gcd(N,B,AC/N) = 1.
(3) There exists F ∈ Z such that B2 − 4NF = D with gcd(N,B,F ) = 1.

Proof. We have τ = (−B+
√

D)/(2A), hence Nτ = (−NB+N
√

D)/(2A).
For this to have the same discriminant, it must be of the form (−B′ +√

D)/(2A′); hence by identification of imaginary parts we have A = NA′,
and hence B′ = B, so that N | A. It follows that Nτ is a root of
(A/N)(Nτ)2 + B(Nτ) + CN = 0, and since this equation has discriminant
D = B2 − 4AC, this must be the smallest equation satisfied by Nτ , so τ is
a Heegner point of level N if and only if N | A and gcd(A/N,B,CN) = 1.
The equivalence with the other two properties is a straightforward exercise
left to the reader. ��

Corollary 8.6.4. If τ is a Heegner point of level N and discriminant D,
then so is W (τ) = −1/(Nτ).

Proof. Indeed, if (A,B,C) is the quadratic form associated with τ then
clearly (CN,−B,A/N) is the quadratic form associated with −1/(Nτ), so
the result follows from the proposition. Equivalently, since ∆(−1/τ) = ∆(τ)
it is immediate to check from the definition that ∆(NW (τ)) = ∆(W (τ)). ��

The operator W is called the Fricke involution.
From now on we assume that D is a fundamental discriminant, in other

words the discriminant of the quadratic field K = Q(
√

D). Recall that the
class group Cl(K) of K is in one-to-one correspondence with classes of pos-
itive definite primitive quadratic forms (A,B,C) of discriminant D modulo
the action of SL2(Z). More precisely, to the class of such a form (A,B,C) we
associate the class of the ideal Z + (−B +

√
D)/(2A)Z.

Proposition 8.6.5. Let τ be a Heegner point of discriminant D and level
N . If D is a fundamental discriminant the condition gcd(N,B,F ) = 1 of the
above proposition is automatically satisfied and for all p | gcd(D,N) we have
p‖N , in other words vp(N) = 1.

Proof. Let p be a prime dividing gcd(N,B,F ). Since B2 − 4NF = D we
deduce that p2 | D, which implies that p = 2 and D/4 ≡ 2 or 3 modulo 4
since D is fundamental. But then (B/2)2 = (D/4) + NF ≡ (D/4) ≡ 2 or 3
modulo 4 since 2 | N and 2 | F , which is absurd, proving the first statement.
Now let p | gcd(D,N) and assume that p2 | N . Since B2 − 4NF = D we
deduce that p | B, hence p2 | D hence p = 2. But once again since 4 | N this
gives (B/2)2 ≡ (D/4) + NF ≡ 2 or 3 modulo 4, which is absurd. ��
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We have the following.

Proposition 8.6.6. There is a one-to-one correspondence between on the
one hand classes modulo Γ0(N) of Heegner points of discriminant D and
level N , and on the other hand, pairs (β, [a]) where β ∈ Z/2NZ is such that
b2 ≡ D (mod 4N) for any lift b of β to Z, and [a] ∈ Cl(K) is an ideal
class. The correspondence is as follows: if (β, [a]) is as above, there exists
a primitive quadratic form (A,B,C) whose class is equal to [a] and such
that N | A and B ≡ β (mod 2N), and the corresponding Heegner point
is τ = (−B +

√
D)/(2A). Conversely, if (A,B,C) is the quadratic form

associated with a Heegner point τ we take β = B mod 2N and a = Z + τZ.

Proof. This consists in a series of easy verifications, which are essentially
identical to those made in checking that the ideal class group of K is isomor-
phic to the group of classes of positive definite primitive quadratic forms of
discriminant D, and the details are left to the reader. Note that if b is defined
modulo 2N then b2 is indeed defined modulo 4N . ��

Thanks to this proposition, it is often more natural to consider a (class
of) Heegner point as a pair (β, [a]) rather than as a complex number.

We need one last ingredient from algebraic number theory. Let K be a
number field (in our case K = Q(

√
D) will be an imaginary quadratic field).

There exists a finite extension H of K, called the Hilbert class field, which
has many remarkable properties. The most important one for us is that it is
an Abelian extension of K whose Galois group is canonically isomorphic to
the class group Cl(K) through a completely explicit map Art from Cl(K) to
Gal(H/K). In other words, any element of Gal(H/K) has the form Art([a])
for a unique ideal class [a]. The action of an element σ ∈ Gal(H/K) on h ∈ H
will be written hσ.

The theorem that makes the whole method work is the main theorem
of complex multiplication, which we will not prove. The results are due to
Deuring and Shimura, but in the present context I refer to the paper of
Gross [Gro].

Theorem 8.6.7. Let τ = (β, [a]) be a Heegner point of level N and discrim-
inant D, let K = Q(

√
D), and denote by H the Hilbert class field of K. Then

ϕ(τ) ∈ E(H), and we have the following properties:

(1) For any [b] ∈ Cl(K) then

ϕ((β, [a]))Art([b]) = ϕ((β, [ab−1])) .

(2)
ϕ(W (β, [a])) = ϕ((−β, [an−1])) ,

where n = NZ+
B +

√
D

2
Z and B is any integer whose class modulo 2N

is equal to β.
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(3) If denotes complex conjugation then

ϕ((β, [a])) = ϕ((−β, [a−1])) .

Thus we see that using the analytic function ϕ, we can obtain a point with
coordinates in H, hence with algebraic coordinates. This is the “miracle”
of complex multiplication, which generalizes the fact that the exponential
function evaluated at rational multiples of 2iπ gives algebraic numbers.

The first formula gives all the conjugates over K of ϕ(τ), and is called
Shimura’s reciprocity law. In particular, we can compute the trace P of ϕ(τ)
as a point in E(H) as

P =
∑

σ∈Gal(H/K)

ϕ((β, [a]))σ =
∑

[b]∈Cl(K)

ϕ((β, [ab−1])) =
∑

[b]∈Cl(K)

ϕ((β, [b])) ,

the sum being computed with the group law of E. By Galois theory we will
have P ∈ E(K), so we have considerably reduced the field of definition of the
algebraic point found on E. Finally, we have the following easy result:

Lemma 8.6.8. If ε = −1, then in fact P ∈ E(Q).

Proof. Indeed, it is easy to see that ε = −1 is equivalent to saying that
ϕ ◦W = ϕ, so that

ϕ((β, [b])) = ϕ(W (β, [b])) = ϕ((−β, [bn−1])) = ϕ((β, [b−1n])) ,

hence
P =

∑
[b]∈Cl(K)

ϕ((β, [b−1n])) =
∑

[b]∈Cl(K)

ϕ((β, [b])) = P ,

so by Galois theory once again we deduce that P ∈ E(Q). ��

We thus see that the Heegner point method does give us a point in E(Q)
(which of course may be a torsion point). It immediately follows from the
Gross–Zagier Theorem 8.6.9 and the work of Kolyvagin that if the rank (an-
alytic or algebraic) is strictly greater than 1, this point will always be a
torsion point, so the method is useless. Furthermore, a similar proof to that
of the above lemma shows that if ε = 1 then P + P is a torsion point, so
once again the method is useless. Hence, as claimed from the beginning, the
Heegner point method is applicable only in the rank-1 case. Without any
exaggeration it can be said that this is the only reason for which nothing is
known on the BSD conjecture when the rank is strictly greater than 1.

8.6.3 The Use of the Theorem of Gross–Zagier

Although it would already be possible to use the method as explained above,
an important additional result due to Gross–Zagier usually simplifies the
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computations. Recall from Definition 7.3.15 that the quadratic twist of an
elliptic curve E given by a Weierstrass equation y2 = x3 + ax2 + bx + c
by a fundamental discriminant D is the curve ED with equation y2D =
x3 + ax2 + bx + c. If desired this can be put in ordinary Weierstrass form,
and extended to curves in generalized Weierstrass form. The important (and
easy) point is that the L-function of ED can easily be obtained from that
of E: in our case, since D is a fundamental discriminant that is a square
modulo 4N , Proposition 8.6.5 tells us that if p | gcd(D,N) then p2 � N . This
implies that the conductor ND of ED is equal to ND2/ gcd(D,N) and that
if L(E, s) =

∑
n�1 ann−s, then

L(ED, s) =
∑
n�1

(
D

n

)
an

ns
.

Furthermore, it is not difficult to show that the sign of the functional equation
for L(ED, s) is equal to

(
D
−N

)
times that of L(E, s). In particular, in our

context that of E is equal to −1,
(

D
N

)
= 1, and D < 0, so the sign of the

functional equation for L(ED, s) is equal to +1. Finally, recall that we have
defined a canonical height function ĥ on E(Q); see Theorem 8.1.17.

Theorem 8.6.9 (Gross–Zagier). If gcd(D, 2N) = 1 and D �= −3 the point
P computed above satisfies

ĥ(P ) =

√
|D|

4Vol(E)
L′(E, 1)L(ED, 1)

(for D = −3 the right-hand side should be multiplied by 9, see below).

Since L(ED, 1) can easily be computed using the exponentially convergent
series given above, this allows us to check whether ĥ(P ) is close to 0, hence
whether we will obtain a torsion point. But it is especially interesting to
combine it with the BSD formula: indeed, in the rank-1 case we have R(E) =
ĥ(G), where G is a generator of the Mordell–Weil group of E. Since P ∈ E(Q)
it has the form �G + Q for some torsion point Q, hence ĥ(P ) = �2ĥ(G). The
combination of the two formulas thus reads

�2

|X(E)| = ω1(E)
c(E)

√
|D|

4Vol(E)|Et(Q)|2 L(ED, 1) ,

where c(E) is the product of the Tamagawa numbers cp(E) including c∞.
Although |X(E)| is unknown, it is usually small and very often equal

to 1 (and in our case is known to be finite hence equal to the square of an
integer), so this very often gives the value of �.

It is useful to be able to generalize this formula to the case gcd(D, 2N) > 1
and also to D = −3 and D = −4. This leads us to formulate the following
reasonable conjecture.
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Conjecture 8.6.10. Let E be an elliptic curve of analytic rank 1 (in other
words ε(E) = −1 and L′(E, 1) �= 0), and let D be a negative fundamental
discriminant that is a square modulo 4N . Assume that L(ED, 1) �= 0 and that
for any p | gcd(D,N) we have ap = −1. Then

�2

|X(E)| = ω1(E)
c(E)

√
|D|(w(D)/2)2

4Vol(E)|Et(Q)|2 2ω(gcd(D,N))L(ED, 1) ,

where w(D) is the number of roots of unity in Q(
√

D) (w(−3) = 6, w(−4) =
4, and w(D) = 2 for D < −4), and as usual ω(gcd(D,N)) is the number of
distinct prime factors of gcd(D,N).

The condition ap = −1 for p | gcd(D,N) is necessary to obtain a non-
torsion Heegner point, and for the validity of the formula. Furthermore, the
conditions on D in the conjecture imply that ε(ED) = 1, so L(ED, 1) can also
be computed by the exponentially convergent series given above. The truth
of this conjecture is of course mainly supported by the work of Gross–Zagier,
but the additional terms are due to work of Y. Hayashi (see [Gro], [Hay]). In
addition, it has also been verified in numerous cases. As already mentioned,
to compute a rational point we can always assume any reasonable conjecture.

8.6.4 Practical Use of the Heegner Point Method

The most lengthy computations will be the evaluations of φ((−B+
√

D)/(2A))
for the |Cl(K)| classes of quadratic forms (A,B,C). Two remarks must be
made.

Remarks. (1) Since the convergence of the series for φ(τ) is essentially that
of a geometric series with ratio exp(−2π�(τ)) = exp(−2π

√
|D|/(2A)),

and since N | A, it will be particularly slow when N is large. The method
will thus be inapplicable for large conductors, say N > 108.

(2) Thanks to the relation ϕ((β, [a])) = ϕ((β, [a−1n])), which we have used
above, we need to compute only approximately half of the necessary val-
ues of φ: indeed, if [a] corresponds to the class of the form (A,B,C), then
[a−1n] corresponds to the class of the form (CN,B,A/N), so the value of
φ on (CN,B,A/N) is simply the conjugate of φ((A,B,C)) modulo the
lattice Λ.

We give the method as an algorithm, and then apply it to a reasonably
large example.

Algorithm 8.6.11 (Heegner Point Method) Let E be an elliptic curve
defined over Q with conductor N , and assume that E has analytic rank 1, in
other words that ε(E) = −1 and L′(E, 1) �= 0. We assume that E is given by
a minimal Weierstrass equation y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 with
integer coefficients. This algorithm outputs a nontorsion rational point in E(Q).
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We assume computed the standard values associated with E, and in particular
we denote by ω1(E) and ω2(E) standard Z-generators of the period lattice Λ of
E with ω1(E) ∈ R>0, and by Vol(E) the area of the fundamental parallelogram.

1. [Compute necessary accuracy] Compute the product |X(E)|R(E) thanks to
the BSD formula

|X(E)|R(E) =
|Et(Q)|2L′(E, 1)

c(E)ω1(E)
,

where L′(E, 1) is computed thanks to Corollary 8.5.14. Compute the height
difference bound HB given by Theorem 8.1.18, in other words compute HB =
h(j(E))/12 + µ(E) + 1.946, where µ(E) is given by the above-mentioned
theorem, and finally set d = 2(|X(E)|R(E) + HB). All computations will
now be done with a default accuracy of dd = 
d/ log(10)�+10 decimal digits,
and in particular recompute all the floating-point quantities such as ωi(E) and
Vol(E) to that accuracy.

2. [Loop on fundamental discriminants] For each successive negative fundamental
discriminant D = −3, −4, etc., execute the rest of the algorithm until a
nontorsion point of E(Q) is found. Check that D is a square modulo 4N , that
ap = −1 for each p | gcd(D,N), and by computing

L(ED, 1) = 2
∑
n�1

an

n

(
D

n

)
exp

(
−2πn√

ND2/ gcd(D,N)

)

check that L(ED, 1) is numerically not equal to 0. If any of these conditions
is not satisfied, choose the next fundamental discriminant. Otherwise fix β ∈
Z/(2N)Z such that D ≡ β2 (mod 4N) and compute m > 0 such that

m2 = ω1(E)
c(E)

√
|D|(w(D)/2)2

4Vol(E)|Et(Q)|2 2ω(gcd(D,N))L(ED, 1) .

This m should be very close to an integer, or at least to a rational number
with small denominator.

3. [Find List of Forms] Using Subalgorithm 8.6.12 below, compute a list L of
|Cl(K)| representatives (A,B,C) of classes of positive definite quadratic
forms of discriminant D, where A must be chosen divisible by N and minimal,
and B ≡ β (mod 2N) (this is always possible). Whenever possible pair ele-
ments (A,B,C) and (A′, B′, C ′) of this list such that (A′, B′, C ′) is equivalent
to (CN,B,A/N) by computing the unique canonical reduced form equivalent
to each.

4. [Main Computation] Compute the complex number

z =
∑

(A,B,C)∈L
φ

(
−B +

√
D

2A

)
∈ C ,
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using the formula φ(τ) =
∑

n�1(an/n)qn (with q = e2iπτ ) given above

and the fact that φ((−B′ +
√

D)/(2A′)) = φ((−B +
√

D)/(2A)), where
(A′, B′, C ′) is paired with (A,B,C) as in Step 3. The number z should be
computed to at least dd decimal digits of accuracy. This means that the
number of terms to be taken in the series for φ((−B +

√
D)/(2A)) should be

a little more than Ad/(π
√
|D|).

5. [Find Rational Point] Let e be the exponent of the group Et(Q), let � =
gcd(e,m∞) = gcd(e,m3), and m′ = m�. For each pair (u, v) ∈ [0,m′ −
1]2, set zu,v = (�z + uω1(E) + vω2(E))/m′. Compute x = ℘(zu,v), where
(℘, ℘′) is the isomorphism from C/Λ to E(C). For each (u, v) such that the
corresponding point (x, y) ∈ E(C) has real coordinates (in fact, we can know
in advance which of these m or 2m points are real; see the remarks below),
test whether x is close to a rational number with a square denominator f2. If
the computation has been performed with sufficient accuracy, at least one of
these points x must be a rational number. Otherwise, we must slightly increase
the accuracy used in the computations. Once x is found corresponding to a
nontorsion point, compute y using the equation of the curve (which must
be a rational number whose denominator is equal to f3) and terminate the
algorithm.

To compute the list of forms necessary in Step 3, we could use a sophis-
ticated method. However, since the time spent on doing this is completely
negligible compared to the time spent in the main computation of Step 4,
the following näıve algorithm is sufficient.

Subalgorithm 8.6.12 (Compute list of forms) Given a fundamental negative
discriminant D and β such that β2 ≡ D (mod 4N), this subalgorithm computes
a list L of forms as in Step 3 above.

1. [Initialize] Using any method (since D is small), compute the number h(D)
of classes of forms of discriminant D, set L ← ∅, Lr ← ∅, and let b be such
that b ≡ β (mod 2N).

2. [Fill lists] Set R ← (b2 −D)/(4N), and for all positive divisors d of R do as
follows: set f ← (dN, b,R/d) and let fr be the unique reduced quadratic form
(A,B,C) equivalent to f (in other words |B| � A � C and B � 0 if either
|B| = A or A = C). If fr /∈ Lr, set Lr ← Lr ∪ {fr}, using Subalgorithm
8.6.13 below, find a form f ′ = (A′, B′, C ′) equivalent to f still with N | A′

and B′ ≡ β (mod 2N), but with A′ minimal, and set L ← L ∪ {f ′}.
3. [Finished?] If |L| < h(D) set b ← b + 2N and go to Step 2; otherwise,

terminate the subalgorithm.

In Step 2 the reduction from f to fr is done using a standard algorithm
such as Algorithm 5.4.2 of [Coh0]. The reduction of f to f ′ is done as follows.

Subalgorithm 8.6.13 (Compute minimal A) Given a positive definite form
f = (A,B,C) of discriminant D < 0 with N | A, this algorithm finds a form
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f ′ = (A′, B′, C ′) equivalent to f with N | A′ and B′ ≡ B (mod 2N) with A′

minimal.

1. [Initialize] Set u ← −B/(2A/N), v2 ← |D|/(2A/N)2. By any reasonable
method (see below) find some (c0, d0) with gcd(c0N, d0) = 1 and such that
(c0u + d0)2 + c2

0v2 = m0 is as small as possible by the chosen method. Note
that we can always set c0 ← 0, d0 ← 1, and m0 ← 1. Set L ←

√
m0/v2. If

L � 1, output (A,B,C) and terminate the algorithm; otherwise, set c← 0.

2. [Loop on c] Set c ← c + 1, and if c � L go to Step 3. Otherwise, set d ←
�−cu�∗ (the nearest integer to −cu prime to cN) and set r ← (cu+d)2+c2v2.
If r < m0, set m0 ← r, c0 ← c, d0 ← d, and L←

√
m0/v2. Go to Step 2.

3. [Find form] If m0 = 1, output (A,B,C). Otherwise, using the extended
Euclidean algorithm, compute a0 and b0 such that a0d0 − b0Nc0 = 1, let
f ′ = (A′, B′, C ′) be the form f(a0x + b0y,Nc0x + d0y) and output f ′. Ter-
minate the subalgorithm.

Proof. If we write τ = (−B +
√

D)/(2A) = x + iy, then x = �(τ) =
−B/(2A) and y = �(τ) =

√
|D|/(2A). It follows that finding a minimal A′ is

equivalent to finding the corresponding τ ′ with the largest imaginary part. It
is immediately checked that the relations N | A′ and B′ ≡ B (mod 2N) are
preserved by γ =

(
a b
c d

)
∈ SL2(Z) (for all forms f) if and only if γ ∈ Γ0(N),

so we write Nc instead of c. Finally, it is clear that

�(γ(τ)) =
�(τ)

|Ncτ + d|2 ,

so we must make |Ncτ + d|2 minimal, where

|Ncτ + d|2 = (Ncx + d)2 + N2c2y2 = (cu + d)2 + c2v2

using the notation of the algorithm. This quantity can trivially be made equal
to m0 by choosing (c, d) = (c0, d0) of Step 1. Hence if we want it to be strictly
less than m0 we must have c <

√
m0/v2 = L, and c being fixed, the optimal

value of d is the one making |cu + d| minimal, in other words the nearest
integer to −cu coprime to cN , since we must apply the extended Euclidean
algorithm in Step 3. ��

To find a good (c0, d0) in Step 1 of the above subalgorithm, we can, for
example, either use a continued fraction approximation to −Nx ≈ d0/c0, or
use Gaussian reduction of the quadratic form (c, d) �→ (cu + d)2 + c2v2 in
order to find small vectors. Having a small m0 in Step 1 is important for the
efficiency of Step 3.

Remarks. (1) As already mentioned, the above two subalgorithms are not
at all optimal. However, since the time spent in computing the necessary
forms is negligible compared to the time spent in computing the values
of φ, it does not matter at all. What is essential is that we choose a
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representative (A′, B′, C ′) with a minimal A′; otherwise, the computation
of φ will be much longer.

(2) Since by Proposition 7.3.1 we have x = n/f2 and y = n′/f3, the detection
of y as a rational number is much more costly than that of x, so it is
preferable to compute x first, then y. This proposition also explains the
choice of the accuracy d made in Step 1 of the main algorithm.

(3) The default accuracy d should depend not only on E, but also very
slightly on the chosen discriminant D. If the choice of D is reasonable
(say |D| < 106), the added constant 10 more than compensates for this
dependence.

(4) We could directly compute (℘(z), ℘′(z)), which will be a nontorsion point
of E(Q), and identify its coordinates as rational numbers. However, in
general we need very high accuracy for doing this computation, so this
can be done only on small examples (see below). The use of the integer
m in the above algorithm considerably reduces the necessary accuracy.

(5) If P denotes the point of E(Q) corresponding to z ∈ C/Λ, we have P =
mG+T , where G is a nontorsion point and T ∈ Et(Q). If the order of T is
prime to m we can also write P = mG + mT ′ for a suitable T ′ ∈ Et(Q),
so the point G + T ′ will correspond to z/m + ω for some ω ∈ Λ/m.
Unfortunately, the order of T may not be prime to m. Nevertheless, we
have �P = m′G + �T and the order of �T is prime to m′, so that we
can apply the previous case with �z instead of z. Note that Mazur’s
Theorem 8.1.16 implies that gcd(e,m∞) = gcd(e,m3), where we recall
that gcd(e,m∞) = limn→∞ gcd(e,mn).

(6) A point z = λ1ω1(E) + λ2ω2(E) will correspond to a real point if and
only if λ2 ∈ Z if ∆ < 0, or λ2 ∈ 1

2Z if ∆ > 0. It is therefore easy to find
for which (u, v) ∈ [0,m′ − 1]2 the point zu,v corresponds to a real point.

(7) Even after dividing by m′ as in zu,v above, the point that we will obtain
may be a large multiple of the Mordell–Weil generator; more precisely, it
will be equal to

√
|X(E)|G+T for some torsion point T . Thus, this will

occur when X(E) is nontrivial. In this case we can either increase the
accuracy of the computations, or choose small multiples of m instead of
m itself.

(8) The number of coefficients an that must be used in the series for φ can well
exceed the capacity of a computer. In this case they must be computed
inductively; see [Buh-Gro] for one way of doing this.

(9) As noted above, it may happen that the so-called Manin constant of the
curve is not equal to 1. In that case we must on the contrary multiply
the values zu,v by a small constant, which technically is the degree of the
isogeny between E and the strong Weil curve in its isogeny class.

(10) Although the main algorithm suggests choosing discriminants D in in-
creasing absolute value, it is clear that the best choice is to choose D for
which the smallest value of

√
|D|/A in Step 4 is as large as possible. The

smallest |D| is not always the best for this.



596 8. Diophantine Aspects of Elliptic Curves

8.6.5 Improvements to the Basic Algorithm, in Brief

Any algorithm is subject to improvement. However, in the case of the Heegner
point algorithm, the possible gains both in time and space are so large that
even though the present book is not primarily oriented toward algorithms, it
is essential to present, at least briefly and without proof, some of the major
improvements.
Atkin–Lehner Operators
We have seen that the set of Heegner points of discriminant D and level N
is invariant under the action of Γ0(N), and that it is also invariant under
the Fricke involution W defined by W (τ) = −1/(Nτ), or in matrix form,
W =

(
0 −1
N 0

)
. Atkin and Lehner remarked that when N is not a prime power,

there exist more general operators WQ, one for each positive primitive divisor
Q of N , in other words such that gcd(Q,N/Q) = 1, which have very similar
properties: up to the action of Γ0(N) they are involutions, and they also
preserve the set of Heegner points of discriminant D and level N . The great
advantage of having these extra operators is that we can hope to decrease
the values of A in the forms (A,B,C) that we have to choose, so as to
increase the imaginary parts of the points τ ∈ H, making the computation of
φ faster; see Exercises 27 and 28. However, these operators WQ do not always
preserve B mod 2N , so we have to choose Q suitably so that B mod 2N is
preserved. Thus, we must slightly adapt Subalgorithm 8.6.13 and note that
ϕ◦WQ = εQϕ+TQ, where TQ ∈ Et(Q) and εQ = ±1 can easily be computed.
Note also that we do not need to compute TQ.

The Cremona–Silverman Trick
This is probably the most important improvement to the basic algorithm,
since it can be applied in complete generality, while the Atkin–Lehner op-
erators can be applied only when the conductor has several distinct prime
factors, and the CM method can be applied only to complex multiplication
curves and/or to quadratic twists.

We first remark that the x-coordinate of an element of E(Q) is of the
form n/d2 for some coprime integers n and d. This is a very special form
for rational numbers. Nonetheless, in the basic algorithm this is not used
at all, and the rational number is recognized via continued fractions as any
other rational number with a similar but nonsquare denominator. This seems
like a waste, because intuitively one would like to make the computations to
approximately one half of the accuracy so as to recognize d, which would
both increase considerably the speed (by a factor of 4 approximately) and
also decrease the number of necessary coefficients in the sum. Unfortunately,
as far as the author is aware, there is no LLL-like recognition algorithm
specific to rational numbers of the form n/d2.

The very clever idea of Cremona, based on a paper of Silverman, is to use
as much as possible all available information on the point P = (x, y) ∈ E(Q)
computed by the Heegner point method.
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– First of all, thanks to the Heegner point computation, we know a real
approximation to x.

– Second, thanks to the Gross–Zagier theorem, we know the canonical height
ĥ(P ) of P .

– For every prime p | N and for p = ∞ it is possible to define a local height
ĥp(P ), which will be a rational multiple of log(p), and if x = n/d2 as
before, we have

2 log(d) = ĥ(P )− ĥ∞(P )−
∑
p|N

p2|disc(E)
p�d

ĥp(P )

(as we shall see, the fact that the right-hand side depends on d should not
worry us). The main points are now the following.

– First of all, the height at infinity ĥ∞(P ) can easily be computed knowing
only a real approximation to x (see for instance [Coh0], Algorithm 7.5.7;
note that this algorithm also needs a real approximation to y, which is
easily obtained from the equation of the curve).

– Second, the number of possibilities for ĥp(P ) is finite and can easily be
given explicitly. Since we do not know in advance whether p � d, it is
sufficient to include systematically 0 in the list of possible ĥp(P ) that will
be given below.

Thus, by looping through all possibilities for ĥp(P ), we find a finite num-
ber of possibilities for d, and n is recovered thanks to n = �d2x�. In practice,
this allows us to work as we wanted, with an accuracy slightly more than half
of the accuracy used in the basic algorithm.

The list of possible values for ĥp(P ) depends on the Kodaira type K of
the elliptic curve, which is easily computed thanks to Tate’s algorithm. It is
of the form V log(p), where V is a list of rational numbers given as follows
(see [Cre-Pri-Sik] for proofs and more details):

(1) If K = Im, let n = vp(disc(E)), then V = {j2/(n− j), 0 � j � �m/2	}.
(2) If K = I∗m, then V = {0,−1,−1−m/4}.
(3) If K = II, K = II∗, or K = I∗0 , then V = {0}.
(4) If K = III, then V = {0,−1/2}, and if K = III∗, then V = {0,−3/2}.
(5) If K = IV , then V = {0,−2/3}, and if K = IV ∗, then V = {0,−4/3}.

The Case of CM Curves
An important special type of curves for which the Heegner point method can
be considerably speeded up is the case of curves with complex multiplication,
such as for instance the congruent number curves y2 = x3−n2x (see Proposi-
tion 6.12.1 and the complete example n = 157 given below). Since our curves
are defined over Q, the ring of endomorphisms of E must be an imaginary
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quadratic order of class number 1. By the work of Heegner and Stark, the
only possibilities are for the nine maximal orders of respective discriminants
−3, −4, −7, −8, −11, −19, −43, −67, and −163, together with the four
nonmaximal orders of respective discriminants −12, −16, −27, and −28.

A large part of the computation time in the Heegner point method is
taken by the computation of the ap(E) = p + 1− |E(Fp)|. In the case of CM
curves, the computation of ap(E) can be considerably speeded up thanks to
the use of Cornacchia’s algorithm. We refer to the detailed explanation and
algorithms given in Section 8.5.2.

For other practical improvements on this method, we refer to ongoing
work of Delaunay, Watkins, and Cremona.

8.6.6 A Complete Example

We consider the following problem. By Tunnell’s theorem or by the BSD
conjecture, we know that 157 is a congruent number; in other words, there
exists a rational nontorsion point on the elliptic curve y2 = x3 − 1572x. We
want to compute such a point (from which it is easy to compute explicitly
a Pythagorean triangle with area 157). We give explicitly the GP commands
so that the reader can reproduce the computations himself (we use the basic
algorithm, and none of the improvements mentioned afterward). We should
first choose a sufficiently large stack (200 MB is sufficient). We begin with the
command e = ellinit([0, 0, 0, -157^2, 0]), which computes a num-
ber of needed constants. In particular, the period lattice is generated by om1
= e.omega[1] and om2 = e.omega[2], and since the discriminant is positive
the real period is om = 2*om1. The command et = elltors(e) shows that
|Et(Q)| = 4, which we knew already in the congruent number problem, vole
= e.area gives the volume, ered = ellglobalred(e) gives the conductor
N = ered[1], the Tamagawa product c = ered[3], and the fact that the
equation for E is in fact a minimal model. We now compute the necessary
accuracy: we find that |X(E)|R(E) ≈ 54.6 and HB ≈ 10.6; hence d ≈ 130.4,
so we will perform our computations with a default accuracy of 67 decimal
digits.

Since we performed the ellinit command with the default accuracy of
28, we must now change the default accuracy with the command \p 67, and
then recompute ellinit and the values of the corresponding floating point-
numbers given above.

We now search for suitable fundamental discriminants. We find that up to
D = −40, only D = −31 and D = −39 are squares modulo 4N . The quantity
m2 = m2(D) of the algorithm can be computed by defining the function
m2(D) = v = ellan(e, 1000000); q = exp(-2*Pi/sqrt(N*D^2)); \
q1 = 1.; s = 0.; for (n = 1, 1000000, q1 *= q; \
s += v[n]/n*kronecker(D,n)*q1); \

sqrt(-D)*c*om/(4*vole*et[1]^2)*2*s.
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In the above, 1000000 is overkill, but we are lazy since the computation is
very fast. We find that m2(-31) is very close to 0, so −31 is not suitable, but
m2(-39) is very close to 16, so we choose D = −39 and m = 4. We easily
find that b = 1275547 satisfies b2 ≡ D (mod 4N), so we write D = -39 and
b = 1275547.

There are four classes of quadratic forms of discriminant−39, and with the
notation of the algorithm, it is easy to see that we have z = 2�(φ(x1)+φ(x2))
with xj = (−b+

√
−39)/(2jN). The largest value of A in the quadratic forms

(A,B,C) is thus A = 2N . It follows that to compute z we will need more
than Ad/(π

√
|D|) terms, giving here approximately 10.5 million. We thus

write v=ellan(e,10500000). This requires only 84 seconds on a 3 Ghz PC.
Being lazy, we then write the function
ph(tau) = s = 0.; q = exp(2*I*Pi*tau); q1 = 1.; \

for (n = 1, 10500000, q1 *= q; s += v[n]/n*q1); s
(we do not need 10.5 million terms for the computation of φ(x1), but we
are not optimizing here), and we compute z (in 78 seconds) thanks to the
commands
z1 = ph((-b + I*sqrt(39))/(2*N)); \

z2 = ph((-b + I*sqrt(39))/(4*N)); z = 2*real(z1 + z2);
and we obtain

z = −5.63911127500831766007696166307316036323562406574706 . . . .

We write z += 27*om1 to make it as small as possible. Among the possible
points to be studied in the algorithm, we see that 2z + 2ω1 already does the
trick. Since the nontrivial torsion points are ω1/2, ω2/2, and (ω1 + ω2)/2,
it follows that 2z + 6ω1, 2z + 2ω1 + 4ω2, and 2z + 6ω1 + 4ω2 would also
work. Thus we compute ℘((2z + 2ω1)/8) thanks to the command x1 =
ellwp(e, (2*z + 2*om1)/8). To have x as a rational number we write rx
= contfrac(real(x1)) (the imaginary part of x1 is zero to the accuracy of
our computations). This gives a continued fraction for the approximation x,
which has a large partial quotient toward the end, precisely after index 39.
We thus write
mx = contfracpnqn(vector(39, i, rx[i])); x = mx[1,1]/mx[2,1].

We check that the denominator of x is a perfect square, which is a good
sign. To obtain the value of y, we can be lazy and use the built-in function
y=ellordinate(e,x)[1], or else we write x = nx/f2, we compute n3

x −
1572nxf4, and we check that it is the square of some integer ny, so that
y = ny/f3. In any case, we finally find the rational point(

95732359354501581258364453

277487787329244632169121
,
834062764128948944072857085701103222940

146172545791721526568155259438196081

)
.

Remarks. (1) Using all the improvements to the basic method mentioned
in Section 8.6.5, and in particular the fact that E is a CM curve, the
computation time of the above example can be reduced from a couple of
minutes to 7 seconds.
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(2) See Exercises 32 and 33 for other examples of the use of Heegner points.

8.7 Computation of Integral Points

For this section I have closely followed the presentation of Chapter XIII of
[Sma].

8.7.1 Introduction

Let E be an elliptic curve defined over Q, but which we now assume to be
given by a generalized Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 ,

where the ai are all integral. We want to compute the complete set E(Z) of
integral points on E, which by Siegel’s theorem we know to be finite. Note
that although E(Q) does not depend on the chosen model (i.e., equation or
system of equations) for E, on the other hand, E(Z) does depend on the
model.

We first describe the general strategy, and give details afterward. We
assume that using one of the above methods we have completely computed
the Mordell–Weil group E(Q) (and not only the rank), in other words that we
know the torsion subgroup Et(Q) of E(Q) and an r-element basis (Pi)1�i�r

of the torsion-free part of E(Q), where r is the rank of E. Thus any element
P of E(Q), and in particular any element of E(Z), can be written in the form

P = T +
∑

1�j�r

pjPj

for some T ∈ Et(Q) and some pi ∈ Z.
A deep theorem generalizing the theorems of A. Baker on linear forms

in logarithms to linear forms in elliptic logarithms implies that when P ∈
E(Z), the |pj | are bounded by a (usually very large) constant. When we say
very large, we mean something like e1000 for instance (see examples below).
However, the sheer existence of this bound is sufficient to continue. Applying
a now classical method used by several authors and systematized by Tzanakis
and de Weger, using lattice reduction algorithms such as the LLL algorithm
we can drastically reduce the upper bound on the |pj | (see Section 2.3.5).
Thus typically after two passes of the LLL algorithm we often obtain bounds
such as |pj | � 30. It then becomes possible to do a systematic search on the
possible pj , and we thus obtain the set E(Z) of integral points.

The search for integral points on an elliptic curve is an important Dio-
phantine problem, and although it requires techniques of a different kind from
those that we have studied up to now, its importance justifies a detailed study
of the necessary tools. By nature the present section is more algorithmic than
most of the rest of this book.
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8.7.2 An Upper Bound for the Elliptic Logarithm on E(Z)

Let E be an elliptic curve defined over Q by a generalized (affine) Weierstrass
equation y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, where we assume ai ∈ Z.
We assume (and this is of course the essential and difficult assumption) that
we have explicitly computed the Mordell–Weil group E(Q), in other words
the finite group Et(Q) and independent points Pi for 1 � i � r such that

E(Q) = Et(Q)⊕
⊕

1�i�r

ZPi .

Consider the height pairing matrix Q = (〈Pi, Pj〉)1�i,j�r, which we have al-
ready introduced, where as usual 〈Pi, Pj〉 is the bilinear form associated with
the canonical height function ĥ. Since by definition the Pi are independent
this matrix is nonsingular, and it is the matrix of a positive definite quadratic
form on E(Q)/Et(Q), so all its eigenvalues λi are strictly positive. In partic-
ular, R(E) = det(Q) =

∏
i λi > 0 is the regulator of E, and is independent

of the choice of the Pi.
Now let P = (x(P ), y(P )) ∈ E(Z) be an (unknown) integral point. We

can write in a unique way P = T +
∑

1�i�r piPi for some T ∈ Et(Q) and
pi ∈ Z, and we set H = maxi(|pi|). Our main goal is to find inequalities for
1/|x(P )| involving H and the elliptic logarithm ψ(P ) (see Sections 7.3.1 and
7.3.2). Since Egg is compact, it is usually very easy to find all integral points
on it, so we will always assume that P ∈ E0 (although it would be a simple
matter to generalize to the whole of E(Q)). We may also evidently assume
that x(P ) �= 0.

Lemma 8.7.1. Keep the above notation, let c2 = min1�i�r λi be the small-
est eigenvalue of Q, and set c1 = exp(µ(E) + 2.14), where µ(E) is defined
in Theorem 8.1.18. If P = (x(P ), y(P )) ∈ E(Z) is any integral point with
x(P ) �= 0 and H = maxi(|pi|) as above then

1
|x(P )| � c1e

−c2H2
.

Proof. Since x(P ) ∈ Z \ {0} we have h(P ) = max(log(|x(P )|), 0) =
log(|x(P )|), so by Theorem 8.1.18, log(|x(P )|) � ĥ(P ) − log(c1), with c1

defined as above. Let X = (p1, . . . , pr)t be the column vector of the pi. Since
ĥ is a positive definite quadratic form on E(Q)/Et(Q) with matrix Q, we
have ĥ(P ) = XtQX. A standard undergraduate exercise (see Exercise 34)
shows that

ĥ(P ) � c2X
tX � c2

∑
1�i�r

p2
i � c2H

2 ,

proving the lemma. ��
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We now want a link between x(P ) and the elliptic logarithm ψ(P ). After
the standard transformations explained in the preceding chapter we can put
our curve in the form Y 2 = f(X) with f(X) = 4X3 − g2X − g3, where
g2 = c4/12 and g3 = c6/216, and where we recall that X = x+b2/12. Denote
as usual by e1, e2, and e3 the complex roots of f(X) = 0.

The following lemma relates ψ(P ) to x(P ) for any real point P ∈ E0, not
necessarily integral.

Lemma 8.7.2. Let P = (x(P ), y(P )) ∈ E0 be a real point, and assume that
|x(P ) + b2/12| � 2max(|e1|, |e2|, |e3|). If we choose the (essentially) unique
determination of ψ(P ) such that |ψ(P )| � ω1/2 we have

ψ(P )2 � c3

|x(P )| , where c3 =
ω2

1 |b2|
48

+ 8 .

Proof. Write P = (X(P ), Y (P )). Since P ∈ E0 we have X(P ) � e3.
Since X(P ) = x(P ) + b2/12 this implies that X(P ) > 0, since otherwise
e3 � X(P ) � 0, so |X(P )| � |e3|, contrary to our assumption. Now as
mentioned in Section 7.3.2, for P ∈ E0 and the chosen determination we
have the explicit formula

ψ(P ) = sign(Y (P ))
∫ X(P )

∞

dt√
f(t)

.

By assumption if t � X(P ) we have t � 2|ei| for 1 � i � 3, so

|t− ei| � t− |ei| =
t− 2|ei|

2
+

t

2
� t

2
.

It follows that |f(t)| = 4
∏

1�i�3 |t− ei| � t3/2, so

|ψ(P )| =
∣∣∣∣∣
∫ X(P )

∞

dt√
f(t)

∣∣∣∣∣ � 21/2

∫ ∞

X(P )

dt

t3/2
� 23/2√

X(P )
,

or equivalently, X(P ) � 8/ψ(P )2. We thus have

|x(P )| =
∣∣∣∣X(P )− b2

12

∣∣∣∣ � X(P ) +
|b2|
12

� 8
ψ(P )2

+
|b2|
12

� 8 + ψ(P )2|b2|/12
ψ(P )2

� 8 + ω2
1 |b2|/48

ψ(P )2

since |ψ(P )| � ω1/2, proving the lemma. ��

From now on, when P ∈ E0 we will always assume that we choose the
above principal determination of ψ(P ), i.e., such that |ψ(P )| � ω1/2.
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Corollary 8.7.3. Let ci be the constants defined in the above two lemmas
and set c5 =

√
c1c3. If P = (x(P ), y(P )) is an integral point in E0 with

x(P ) �= 0 and if |x(P ) + b2/12| � 2max(|e1|, |e2|, |e3|) then

|ψ(P )| � c5e
−c2H2/2 .

Proof. Clear by combining the two lemmas. ��

8.7.3 Lower Bounds for Linear Forms in Elliptic Logarithms

Now is the time to introduce high technology. This should be taken as an
easy-to-use black box, but the reader should be aware that the mathematics
and computations leading to lower bounds for linear forms in logarithms
(elliptic or not), initiated by A. Baker, are one of the major advances in
number theory in the second half of the twentieth century.

The following theorem is due to S. David, and we give only the special
case of Q. For the general case, as well as the corresponding statements for
linear forms in complex or p-adic logarithms, I refer to [Sma].

First, we need some notation. Let E be an elliptic curve defined over Q,
and as above let Y 2 = 4X3 − g2X − g3 be the equation of E obtained after
the standard changes of variable. Recall that if P = (x0 : · · · : xn) ∈ Pn(Q)
we have defined h(P ) = max0�i�n log(|yi|), where P = (y0 : · · · : yn) is
one of the two representations with yi ∈ Z for all i and gcd(y0, . . . , yn) =
1, so in particular if u = n/d ∈ Q∗ with gcd(n, d) = 1, we have h(u) =
max(log(|n|), log(|d|)). We define the height h(E) of the elliptic curve by the
formula

h(E) = max(1, h(1, g2, g3), h(j(E)))

and we set c7 = 3π/(ω2
1�(ω1/ω2)). If P ∈ E(Q) we define a modified height

function hm(P ) by the formula

hm(P ) = max(ĥ(P ), h(E), c7|ψ(P )|2) .

Theorem 8.7.4 (David). Let P1, . . . , Pn be points in E(Q), and set

c8 = max(eh(E), max
1�i�n

hm(Pi)) and c9 =
e√
c7

min
1�i�n

√
hm(Pi)
|ψ(Pi)|

.

For pi ∈ Z we set H = max(|pi|), and L =
∑

1�i�n piψ(Pi). Then if H �
exp(c8) and L �= 0 we have

log(L) > −c10(log(H) + log(c9))(log(log(H)) + h(E) + log(c9))n+1 ,

where

c10 = 2 · 108+7n(2/e)2n2
(n + 1)4n2+10n log(c9)−2n−1

∏
1�i�n

hm(Pi) .
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Remark. Recall that ψ(P ) is defined only modulo Λ. This theorem is valid
for any determination of ψ(P ). In particular, we have ψ(O) ≡ 0 (mod Λ),
so by choosing one of the Pi equal to O we can include any integral linear
combination of ω1 and ω2 among the ψ(Pi).

We now explain how to use this theorem combined with Corollary 8.7.3
to find integral points. As already mentioned, the fundamental assumption
is that we have computed exactly the Mordell–Weil group as

E(Q) = Et(Q)⊕
⊕

1�i�r

ZPi ,

and we recall from Section 7.3.2 that we have a disjoint union E(R) = Egg ∪
E0, where E0 is the connected component of the identity, and the possibly
empty set Egg is compact. I claim that we can assume that at most one of
the Pi is in Egg: indeed, if Pi ∈ Egg and Pj ∈ Egg with i �= j, then in
the Mordell–Weil basis we may replace {Pi, Pj} by {Pi + Pj , Pj}, and since
Pi + Pj ∈ E0 by Section 7.3.2, we have one point fewer in Egg, proving my
claim. We may thus assume that Pi ∈ E0 for 2 � i � r.

We write our integral point P as P = T +
∑

1�i�r piPi for some unknown
T ∈ Et(Q) and pi ∈ Z. We may clearly assume that P ∈ E0, that P /∈ Et(Q)
(so that the pi are not all equal to 0), and that x(P ) �= 0, since all the points
that we exclude in this way are easy to find. Since we want to restrict to E0 we
set Qi = Pi for 2 � i � r, and Q1 = 2P1 if P1 ∈ Egg and Q1 = P1 if P1 ∈ E0,
so that Qi ∈ E0 for all i. We can thus write P = T +U +

∑
1�i�r qiQi, where

qi = pi if i � 2 or if i = 1 and P1 ∈ E0, and q1 = �p1/2	 if P1 ∈ E0, and
U = P1 if P1 ∈ Egg and p1 is odd, U = O otherwise. Since P and the Qi are
in E0 we also have T + U ∈ E0, so that T + U belongs to a finite set having
at most 2|Et(Q)| elements. We will write Qr+1 = T + U (we can of course
avoid this extra point if we know in advance that it will be equal to O, for
instance if P1 ∈ E0 and Et(Q) = {O}).

By definition the elliptic logarithm is additive modulo Λ, and since on E0

we have chosen the principal determination it is clear that if P =
∑

1�i�n Ri

then ψ(P ) = mω1 +
∑

1�i�n ψ(Ri), where |m| � �n/2	. In particular,

ψ(P ) = mω1 + ψ(Qr+1) +
∑

1�i�r

qiψ(Qi)

with |m| � (1 +
∑

1�i�r |qi|)/2, and even |m| �
∑

1�i�r |qi|/2 if Qr+1 = O.
This is a linear form in elliptic logarithms, so we can combine Corollary 8.7.3
with David’s theorem. If we set L = ψ(P ) and

Hq = max(1,max(|qi|)) � max(|pi|) = H ,

Corollary 8.7.3 tells us that when |x(P ) + b2/12| � 2max(|e1|, |e2|, |e3|) we
have
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− log(|L|) � c2H
2/2− log(c5) � c2H

2
q /2− log(c5) ,

and David’s theorem (applied to the Qi and to n = r + 2 or to n = r + 1 if
Qr+1 = O) implies that

− log(|L|) < c10(log(Hr) + log(c9))(log(log(Hr)) + h(E) + log(c9))n+1 ,

where Hr = rHq + 1, or Hr = rHq when Qr+1 = O . Since the upper bound
grows logarithmically in Hq and the lower bound grows like H2

q , it is clear
that these bounds are contradictory for Hq sufficiently large.

Since all the constants are explicit we can thus compute some bound
B such that Hq > B leads to a contradiction, so that we know that Hq =
max(|qi|) � B. This bound will usually be extremely large, but now we apply
the techniques explained in Section 2.3.5 (in particular Corollary 2.3.17 and
Proposition 2.3.20) to the inequality |L| � c5 exp(−c2H

2
q /2), possibly two or

three times, to reduce the bound to something manageable, which we then
enumerate by brute force.

8.7.4 A Complete Example

Since the above description contains a large amount of notation and may
be hard to understand at first, it may be useful to give in detail a complete
example. We will again consider the curve y2 + y = x3 − 7x + 6 studied in
detail in Section 8.5.6. We have seen that it has no torsion, and that it has
rank 3, where generators can be taken to be P1 = (2, 0), P2 = (−1, 3), and
P3 = (4, 6). The reduced Weierstrass equation of this curve is obtained by
setting Y = 2y+1 and X = x, so that Y 2 = 4X3−28X+25. We thus compute
that b2 = 0, g2 = 28, g3 = −25, disc(E) = 5077, j(E) = 37933056/5077,
hence h(E) = 17.45, µ(E) = 3.90855, c1 = 423.5, λ1 = 0.3228, λ2 = 0.4925,
λ3 = 2.623, hence c2 = 0.3228, c3 = 8, c5 = 58.21, e1 = −3.0124, e2 =
1.0658, e3 = 1.9466. Thus if P = p1P1 + p2P2 + p3P3 ∈ E0 is an integral
point such that |x(P )| � 7 we have the fundamental inequality |ψ(P )| �
58.21 exp(−0.1614H2), where H = max(pi). Now among the Pi only P2 is
in Egg, so we set Q1 = P1, Q3 = P3, and Q2 = 2P2 = (114/49,−720/343).
Since there is no torsion we have P = q1Q1 + q2Q2 + q3Q3 + U with q1 = p1,
q2 = �p2/2	, q3 = p3, and U = O or P2, but since we are only looking for
P ∈ E0, we have in fact U = O, q2 = p2/2, and Q4 = O.

We are now ready to apply David’s theorem to the form L = mω1 +
q1ψ(Q1)+q2ψ(Q2)+q3ψ(Q3) (hence n = 4), where m � (|q1|+|q2|+|q3|)/2 �
(3/2)max(|qi|). We obtain c7 = 1.5599, hm(Qi) = h(E), hence c8 = 47.4376,
c9 = 5.8503, and finally c10 = 2.97 · 10107. Thus we have the inequalities

− log(|ψ(P )|) � 0.1614H2
q − 4.064 and

− log(|ψ(P )|) � 2.97 · 10107(log(1.5Hq) + 1.7665)(log(log(1.5Hq)) + 19.218)5 ,

the second one being valid only for 1.5Hq > exp(c8) = 4.01 · 1020. We imme-
diately find that these equations are incompatible for Hq > 1060, so that we
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have a first basic upper bound Hq � 1060. Note that it is completely unneces-
sary to take sharp bounds anywhere in this computation, since the next step,
i.e., the use of the LLL algorithm, will drastically reduce the bound anyway.
Since we are no longer going to use David’s theorem, we can also forget the
lower bound (3/2)Hq > 4.01 · 1020 necessary for the validity of his theorem.

After having used the above high technology, we can now use the magic
of the LLL algorithm, more precisely Corollary 2.3.17 and Proposition 2.3.20
applied to the inequality

|mω1 + q1ψ(Q1) + q2ψ(Q2) + q3ψ(Q3)| � 58.21 exp(−0.1614H2
q ) ,

where we now know that Hq = max(|qi|) � 1060 and m � 1.5 · 1060. We first
choose C > (1060)4, say C = 10250, and form the 4× 4 matrix

1 0 0 0
0 1 0 0
0 0 1 0

�Cψ(Q1)� �Cψ(Q2)� �Cψ(Q3)� �Cω1�

 .

An application of the (integral) LLL algorithm shows that the first vector
of an LLL-reduced basis of the lattice generated by the columns of B is an
explicit vector whose entries have approximately 60 decimal digits. We easily
compute that for i = 1, 2, 3, 4 we have ‖b1‖2/‖b∗

i ‖2 = 1, 0.718, 0.426, 0.338
respectively, so that with the notation of Corollary 2.3.17 we have c1 = 1,
hence

d(L, 0)2 � ‖b1‖2/c1 � 2.5 · 10120 .

With the notation of Proposition 2.3.20 we have Q = 3 · 10120 and T =
(1 + 4.5 · 1060)/2, so d(L, 0)2 � T 2 + Q. Since the points Qi are independent,
we deduce from Proposition 2.3.20 that

|q1ψ(Q1) + q2ψ(Q2) + q3ψ(Q3) + mω1| � 1.5 · 10−184 .

Combining this with the inequality

|q1ψ(Q1) + q2ψ(Q2) + q3ψ(Q3) + mω1| � 58.21e−0.1614H2
q

gives Hq � 51, which is much more manageable than our initial bound of
1060.

Although 51 is now a reasonable number, it is worthwhile to iterate the
whole LLL process using the new inequality Hq � 51. This time we must be
a little careful with the choice of C so as to be able to obtain an improvement
using Proposition 2.3.20. We choose C = 109, and after a similar computation
to that performed above we find the new bound Hq � 11. By using still
another LLL process with C = 107, we could still reduce this to Hq � 10,
but there is not much point in doing so.
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We now perform a direct systematic search: on Egg we find the in-
tegral points (−3, 0), (−3,−1), (−2, 3), (−2,−4), (−1, 3), (−1,−4), (0, 2),
(0,−3), (1, 0), (1,−1), (2, 0), (2,−1). The points on E0 with x(P ) � 6 are
(3, 3), (3,−4), (4, 6), and (4. − 7). All the others are on E0 with x(P ) � 7,
hence of the form q1Q1 + q2Q2 + q3Q3 with |qi| � 11, and we may assume
q1 � 0 if we take care to compute also the opposites of the points that
we find. Thus after searching through 12 · 232 = 6348 points we find (in
seconds) the additional integral points (where we of course also include the
opposites of the points found) (8, 21), (8,−22), (11, 35), (11,−36), (14, 51),
(14,−52), (21, 95), (21,−96), (37, 224), (37,−225), (52, 374), (52,−375),
(93, 896), (93,−897), (342, 6324), (342,−6325), (406, 8180), (406,−8181),
(816, 23309), and (816,−23310), all corresponding to coefficients qi with
Hq = max(|qi|) � 3. We have thus found a total of 36 integral points, and we
have proved (this was of course the main difficulty) that there are no others.

It should be remarked that 36 is a very large number of integral points for
an elliptic curve, but it is a completely general and only partly understood
phenomenon: if we choose an elliptic curve having the smallest or one of the
smallest conductors for a given rank, it will have a large number of integral
points. Indeed, it is known that our curve is the curve of rank 3 with the
smallest conductor (see Exercise 35 for rank 2).

8.8 Exercises for Chapter 8

1. Prove Corollary 8.1.9.

2. Let R be a commutative ring, let f ∈ R[X] be a monic polynomial, let A =
R[X]/(f(X)R[X]), and let α be the class of X modulo f(X), so that f(α) = 0.
Finally, set g(Y ) = (f(Y ) − f(α))/(Y − α) = f(Y )/(Y − α) ∈ A[Y ].

(a) Prove that

disc(g) = g(α)2 disc(f) = f ′(α)2 disc(f) .

(b) Deduce the existence of polynomials U and V in R[X] such that U(X)f(X) +
V (X)(f ′(X))2 = disc(f), thus explaining the identity used in the proof of
Theorem 8.1.10 (I thank H. W. Lenstra for this proof).

3. Generalizing Theorem 8.1.10, let E be an elliptic curve given by y2+a1xy+a3y =
x3 + a2x

2 + a4x + a6 with ai ∈ Z, and let T = (x, y) be a torsion point of order
not dividing 2. Show the following:

(a) (x, y) ∈ Z2 and (2y + a1x + a3)
2 | 4 disc(E).

(b) If a1 ∈ 2Z then (2y + a1x + a3)
2 | disc(E).

(c) If a1 ∈ 2Z and a3 ∈ 2Z then (y + (a1/2)x + (a3/2))2 | disc(E)/16.

4. Using Sections 7.3.6 and 7.3.7, generalize the Nagell–Lutz Theorem 8.1.10 to a
general number field.

5. Prove Corollary 8.1.15 (2).

6. Let E be the elliptic curve y2 = x3 − 2x and P = (−1, 1) ∈ E(Q), consid-
ered in the text to illustrate the fact that the näıve height h behaves approxi-
mately quadratically. Prove that the sign of x(kP ) is equal to (−1)k and that
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exp(h(kP )) ≡ 1 (mod 168) if k �≡ 2 (mod 4) and exp(h(kP )) ≡ 9 (mod 168) if
k ≡ 2 (mod 4).

7. Using reductions to standard Weierstrass form, compute a Weierstrass equation
for the hyperelliptic quartic curve y2 = 226x4 − 1 using the known rational
point (x, y) = (1, 15), and show that the rank of this elliptic curve is equal to 3.

8. (Bremner–Tzanakis.) This exercise is a sequel to Exercise 46 of Chapter 6, whose
notation we keep.

(a) By setting x = −P/Q2 show that for n = 7, the coprime pairs (P, Q) of the
above-mentioned exercise are in one-to-one correspondence with rational points
on the elliptic curve E whose equation is y2 = x3 + 6x2 + 5x + 1.

(b) By using the methods of this chapter, show that this curve has no torsion, and
that it has rank 1 generated by the point (−1, 1).

(c) Give the first seven coprime pairs (P, Q) coming from the preceding question.

In their papers [Bre-Tza1], [Bre-Tza2], and [Bre-Tza3], the authors study the
general case in detail.

9. Let E be the elliptic curve Y 2 = X3 − 34992.

(a) Using mwrank or descent, show that E has rank 1 and no torsion, a generator
being P = (36, 108), which corresponds to the point (x, y) = (1, 2) under the
birational transformation of Proposition 7.2.3.

(b) Using the group law and that proposition, solve Fermat’s challenge (which he
knew how to solve) of finding strictly positive coprime integers x, y, and z such
that x3 + y3 = 9z3 other than (1, 2, 1) and (2, 1, 1) (the smallest answer has 12
decimal digits).

(c) Perform the same computation, but now using Exercise 10 (b) of Chapter 7.

10. Find all x ∈ Q such that x2 + 4 is the square of a rational number and

2 + 2x − 4x

x2 + 4
+ 2

x2 + x + 2√
x2 + 4

is also the square of a rational number (reduce to finding all rational points on
an elliptic curve).

11. (J.-F. Mestre.) Let r1, r2, r3, and r4 be distinct rational numbers and let t ∈ Q
be a parameter. Consider the 12th-degree polynomial

P (X) =
∏

1�i,j�4, i �=j

(X − (ri + trj)) .

(a) By considering the Laurent series expansion of Q1/3 show that for any monic
polynomial Q of degree 12 there exists a unique polynomial g ∈ Q[X] such
that deg(Q(X)−g3(X)) � 7, and show that in our special case we have in fact
deg(P (X) − g3(X)) � 6.

(b) Show that there exists q(X) ∈ Q[X] and r(X) ∈ Q[X] such that P (X) =
g3(X) + q(X)g(X) + r(X) with deg(q) � 2 and deg(r) � 3.

(c) Deduce from this that the equation Y 3+q(X)Y +r(X) = 0 is the equation of a
cubic with rational coefficients, and that the 12 points (ri + trj , g(ri + trj))i �=j

give 12 (not necessarily distinct) rational points on this cubic.
(d) Give explicit values of the ri and t for which the cubic is nonsingular and the

above 12 points are distinct, and in fact linearly independent for the group law
on the cubic.
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(e) Using the algorithm described in Section 7.2.4, find a Weierstrass equation
corresponding to the cubic, and give explicitly an elliptic curve defined over Q
whose rank is greater than or equal to 11 as well as 11 independent points on
the elliptic curve (note that we have to “lose” a point in order to obtain an
elliptic curve).

Remarks.

(i) To answer the last two questions of this exercise, the reader is strongly advised
to use a package such as mwrank.

(ii) The largest known rank for an elliptic curve defined over Q is 28; see [Elk2].

12. (R. Schoof.) Define a Cassels–Sansone number (abbreviated to CS number) as
an integer a of the form x/y + y/z + z/x for some nonzero integers x, y, and z.
Let Ca be the curve with projective equation x2z + y2x + z2y = axyz.

(a) Prove that Ca is an elliptic curve if and only if a �= 3, and give a rational
parametrization of the curve C3. From now on assume that a �= 3.

(b) Let Ea be the elliptic curve with affine equation y2 + axy + y = x3. Show that
Ea and Ca are isogenous over Q, and give explicitly the isogenies and their
degrees.

(c) The point T = (0, 0) is trivially a point of order 3 on Ea . Prove that the torsion
subgroup of Ea is strictly larger than 〈T 〉 if and only if a = −1 and a = 5, and
give the torsion subgroup in these cases, as well as the corresponding points
on the curve Ca .

(d) Prove that a is a CS number if and only if a = −1, 3, 5, or if the rank of the
elliptic curve Ea is greater than or equal to 1.

(e) Using Tate’s algorithm, it can be shown that the sign of the functional equation
of L(Ea , s) is equal to (−1)d−1 if 3 � a or if a ≡ 12 (mod 27), and is equal to

(−1)d otherwise, where d is the number of prime divisors of a3 − 27 that are
congruent to 1 modulo 3. Using BSD, deduce a sufficient condition for a to be
a CS number.

(f) By computing numerically L(Ea , 1) when the sign of the functional equation
is equal to 1, make a small table of CS numbers.

(g) Using the Heegner point method, compute explicitly integers x, y, and z such
that x/y + y/z + z/x = −32.

(h) Show that if a is a CS number the Diophantine equation x3+y3+z3 = axyz has
a nontrivial solution, but that the converse is false. Does this remark simplify
the Heegner point computation of the preceding question?

13. Using a software package such as mwrank or descent methods, show that the
parabolic-type super-Fermat equations x2 + y4 = 2z4 and x4 + 8y4 = z2 have
an infinity of integral solutions with x, y, and z pairwise coprime (see Section
6.5). Find all such solutions with min(|x|, |y|, |z|) � 10100.

14. Consider the hyperelliptic quartic equation y2 = (x − 1)x(x + 1)(x + 2).

(a) Using Proposition 7.2.1, find a generalized (not necessarily minimal) Weier-
strass equation for this elliptic curve.

(b) Compute its torsion subgroup and its rank, using 2-descent.
(c) Deduce the following result due to Euler: the product of four integers in arith-

metic progression can never be a nonzero square; in other words, the only
solutions in Z to the Diophantine equation n(n+d)(n+2d)(n+3d) = m2 have
m = 0.
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15. In this chapter, in Chapter 14, and at other places we needed to explicitly
compute the Mordell–Weil group of a number of elliptic curves. Although we can
use Cremona’s mwrank package, it is instructive to do some of the calculations by
hand. Perform explicitly the necessary computations as follows. For each given
curve E, first transform it into the canonical 2-descent form y2 = x3 + ax2 + bx
(when it has rational 2-torsion, which will usually be the case), and compute

α(E(Q)) and α̂(Ê(Q)) by looking at the real, 2-adic, or 3-adic solubility of the
necessary quartics.

(a) y2 = (x− 1)(x2 − 14x + 1): show that |α(E(Q))| = 2 and |α̂(Ê(Q))| = 2, hence
r(E) = 0.

(b) y2 = (x + 1)(x2 + 14x + 1): show that |α(E(Q))| = 4 and |α̂(Ê(Q))| = 2, so
that r(E) = 1, and give explicit generators.

(c) y2 = (x − 1)(x2 − 4): show that |α(E(Q))| = 4 and |α̂(Ê(Q))| = 1, so that
r(E) = 0.

(d) y2 = x3 − 8: show that one can reduce to the equation studied in (a), hence
that r(E) = 0.

(e) y2 = x(x2 − 9): show that |α(E(Q))| = 4 and |α̂(Ê(Q))| = 1, so that r(E) = 0.
(f) y2 = 9x4 +18x2 +1: show that this curve is isomorphic to y2 = x(x2−9) hence

that r(E) = 0.
(g) y2 = 12x4 +1: setting y = 1+xY and using the algorithm described in Section

7.2.4 and Proposition 8.2.15 show that r(E) = 0.

16. Consider the elliptic curve defined by the affine equation y2 = f(x) with f(x) =
x3 + 3x − 11, let θ be a root of f , and set K = Q(θ). With the notation of
Corollary 8.3.7, show that I(θ) = 5 and q | f ′(θ) for one of the two prime
ideals q of K above 5, but that the Tamagawa number c5 = 3 is odd so that,
as mentioned in the text, the condition cq odd does not follow from the others.

17. Continue the study of 3-descent by first proving an analogue of Proposition
8.2.4 (3) and (4). You will need in particular to work with prime ideals of Kd .
Prove also an analogue of Proposition 8.2.8.

18. Let E be an elliptic curve defined over a field K of characteristic 0. It is clear
(and we have used this fact in 2-descent) that if E has a rational point of order
2 its equation can be taken of the form y2 = x3 + ax2 + bx (here and afterward
the parameters a and b are implicitly assumed to be in K).

(a) Using Proposition 8.4.2, show that if E has a rational point of order 3 its
equation can be taken of the form

y2 + by = x3 + a2x2 + abx .

(b) By writing 2(0, 0) = −2(0, 0), show that if E has a rational point of order 4 its
equation can be taken of the form

y2 + 2aby = x3 + (a + b2)x2 + 2ab2x .

(c) By writing 3(0, 0) = −2(0, 0), show that if E has a rational point of order 5 its
equation can be taken of the form

y2 + (2a − b)b2y = x3 + (a2 + 2ab − b2)x2 + (2a − b)ab2x .

(Hint: transform the polynomial relation between a2, a3, and a4 obtained from
3(0, 0) = −2(0, 0) by setting a4 = ta3, dividing by a6

3, setting z = a2 − t2,
solving in t, and simplifying the resulting equation.)
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(d) Using practically the same method as for order 5, show that if E has a rational
point of order 6 its equation can be taken of the form

y2 − 2a(a − b)(2a − b)y = x3 − (2a2 − 6ab + 3b2)x2 − 2ab(a − b)(2a − b)x .

Note that since these equations are not unique, your results may be a little
different.

19. Using Legendre symbols or otherwise, prove that if E1 is the elliptic curve with
affine equation y2 = x3 + 1 we have ap(E1) ≡ 0 (mod 2). Using Propositions
2.5.20 and 8.5.3, deduce Corollary 8.5.4.

20. The aim of this exercise is to study the decomposition of 22 as a sum of two
rational cubes.

(a) Let x, y, z be pairwise coprime integers such that x3 + y3 = 22z3 (since 22 is
cubefree, it is clear that we can reduce to this case). Show that 66 | x + y and
that x and y are odd.

(b) Using this and making a systematic search with |y| � x, show that 22 is the
sum of two rational cubes by giving explicitly x, y, and z.

(c) Thanks to Proposition 7.2.3, we can also study the rational points on the
elliptic curve E whose Weierstrass equation is y2 = x3 − 432 · 222 or, more
simply, y2 = x3 − 27 · 112 by changing (x, y) to (4x, 8y). Using Proposition
8.5.10 and the remark that follows, show that ε(E) = −1, hence that under
the BSD conjecture the rank of E is odd, hence greater than or equal to 1, so
that 22 is indeed a sum of two rational cubes.

(d) Show that L′(E, 1) �= 0, hence that the analytic rank of E is equal to 1. By
the proved results of Gross–Zagier et al., this shows that the rank of E is equal
to 1.

(e) By performing a general 2-descent, find explicitly a rational point on E, and
hence a decomposition of 22 as a sum of two rational cubes.

(f) Do the same, but now using the Heegner point method, since we know that E
has rank 1.

21. Set

f(x) = xexE1(x) = xex

∫ ∞

x

e−t

t
dt .

(a) Show that if we set y0(t) = f(1/t) then y0 is a solution of the differential
equation t2y′ + (1 + t)y − 1 = 0.

(b) Prove that y0 is a C∞ function around t = 0, and that it has the (nonconver-
gent) series expansion y0(t) =

∑
n�0(−1)nn!tn .

(c) Consider the Riccati differential equation t2y′ +(1+at)y + bty2 − c = 0, where
a, b, and c are parameters. Prove that there is a unique solution of this equation
that is C∞ around t = 0 and that its value at t = 0 is equal to c.

(d) Let yn be the C∞ function that is a solution of t2y′+(1+ant)y+bnty2−cn = 0.
Prove that if we set yn = cn/(1 + tyn+1) then yn+1 is the C∞ function that
is a solution of t2y′ + (1 + an+1t)y + bn+1ty

2 − cn+1 = 0 with an+1 = 1 − an ,
bn+1 = 1, and cn+1 = an + bncn .

(e) By proving the convergence of the continued fraction, deduce that

E1(x) =
e−x

x +
1

1 +
1

x +
2

1 +
2

x +
.. .
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(f) By contracting this fraction, deduce finally that

E1(x) = Γ1(1, x) =
e−x

x + 1 −
12

x + 3 −
22

x + 5 −
32

x + 7 −
. . .

22. (Continuation of the preceding exercise.)

(a) Denote by pn/qn the nth convergent of the continued fraction for E1(x) ob-
tained at the end of the preceding exercises (so that p0 = 0, p1 = e−x , q0 = 1,
q1 = x + 1). Show by induction that

qn =

n∑
j=0

(
n

j

)2

(n − j)!xj .

(b) Show that the largest summand in this sum is obtained for j0 equal to one of
the two integers closest to

j0 = −1 − x/2 +
√

nx + x + x2/4 ,

and using Stirling’s formula show that as n → ∞ this summand is asymptotic
to

n!e2
√

nxe−x/2

2π
√

nx
.

(c) By setting j = j0 + λn1/4 and approximating the sum by an integral, show
that as n → ∞ we have

qn ∼ n!e2
√

nxe−x/2

2
√

π(nx)1/4
and pn ∼ n!e2

√
nxex/2E1(x)

2
√

π(nx)1/4
.

(d) Deduce that

E1(x) − pn

qn
∼ 2πe−4

√
nx .

23. Prove completely similar results to those of Exercises 21 and 22 for the incom-
plete gamma function Γ(s, x) =

∫∞
x

e−tts−1 dt. In particular, show that

Γ(s, x) =
xse−x

x + 1 − s − 1(1 − s)

x + 3 − s − 2(2 − s)

x + 5 − s −
. . .

and that if pn/qn is the nth convergent of this continued fraction, then as n → ∞
we have

Γ(s, x) − pn

qn
∼ 2π

Γ(1 − s)
e−4

√
nx

(when s ∈ Z�1 this means that the left-hand side is equal to 0, due to the fact
that the continued fraction terminates).
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24. Assume that E is an elliptic curve defined over Q of rank 1 and that one knows a
point of infinite order in E(Q). Explain how to find a generator for the torsion-
free part of E(Q).

25. Prove Proposition 8.6.2.

26. Prove Proposition 8.6.6.

27. (Atkin–Lehner.) Let N � 1 be an integer, and let Q be a (positive) divisor of
N such that gcd(Q, N/Q) = 1.

(a) Prove that there exist x, y, z, and w in Z such that if we set

WQ =

(
Qx y
Nz Qw

)
,

then det(WQ) = Q. Such a matrix WQ will be called an Atkin–Lehner matrix
for the divisor Q of N .

(b) Prove that WQ is unique up to left multiplication by an element of Γ0(N), in
other words that if γ ∈ Γ0(N) then γWQ is again an Atkin–Lehner matrix
for Q, and conversely that if WQ and W ′

Q are two such matrices there exists
γ ∈ Γ0(N) such that W ′

Q = γWQ .

(c) Prove that W 2
Q = Qγ for some γ ∈ Γ0(N), hence that the action of WQ via

linear fractional transformations is an involution on Γ0(N)-invariant functions.

28. (Continuation of the previous exercise.) Let τ be a Heegner point of level N ,
and let (A, B, C) = 0 be the corresponding primitive positive definite quadratic
form, hence by Proposition 8.6.3 such that N | A and gcd(A/N, B, CN) = 1

(or gcd(N, B, AC/N) = 1). Let WQ =
(

Qx y
N z Qw

)
be an Atkin–Lehner matrix

corresponding to some Q | N such that gcd(Q, N/Q) = 1. We set τ1 = (Qxτ +
y)/(Nzτ + Qw), which we write as τ1 = WQ(τ), and let (A1, B1, C1) be the
corresponding primitive quadratic form.

(a) Compute explicitly A1, B1, and C1 in terms of A, B, and C (and of course of
the matrix WQ), and conversely compute explicitly A, B, and C in terms of
A1, B1, and C1. (Hint: this second computation is immediate from the first.)

(b) It is immediately seen from the formulas that N | A1, so the first condition for
a Heegner point of level N is satisfied. Using gcd(A/N, B.CN) = 1, prove that
if p is a prime such that p | N/Q then p � gcd(A1/N, B1, C1N).

(c) Using now gcd(N, B, AC/N) = 1, prove that if p is a prime such that p | Q
then again p � gcd(A1/N, B1, C1N), so that τ1 = WQ(τ) is a Heegner point of
level N .

29. Compute all the integral points on the elliptic curves y2 = x3 + t for t = −26,
−29, −38, −39, −53, −59, −61, −83, −89, and t = 17, which are needed for
Theorem 6.7.13 and Exercise 40 of Chapter 6. For instance, first show that a
basis of the Mordell–Weil group is given by (P, Q) = ((5, 6), (153/4, 1891/8))
for t = −89, (P, Q) = ((4, 5), (10, 31)) for t = −39, and (P, Q) = ((−2, 3), (4, 9))
for t = 17, and proceed similarly for the other values of t.

30.

(a) Let P be the point found in the example of Section 8.6.6. Compute P + T for
the four 2-torsion points of E.

(b) Note that the numerators of the x-coordinates of these four points are of the
form ±157au2 for some sign ± and a = 0 or 1, and in particular one of these
four points has an x-coordinate that is a square in Q. Explain and generalize
this phenomenon.
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31. Compute a rational point on the elliptic curve y2 = x3 − 1572x considered in
Section 8.6.6, but now using the 2-descent method. (Hint: cheat and start from
the point found in the text to see on which quartics to look, and at what height.)

32. Using the Heegner point method, compute rational numbers u and v such that
u3 + v3 = 697. For this, first show that the minimal Weierstrass model of the
corresponding elliptic curve is y2+y = x3−3279211. You will have to perform all
the subsequent computations with reasonably small accuracy (66 to 75 decimal
digits), but you will need several hundred million coefficients of the L-series, so
these will have to be computed on the fly. The smallest denominators for u and
v have 50 decimal digits.

33. (Bremner–Cassels [Bre-Cas].) Using the Heegner point method, find a nontorsion
rational point on the elliptic curve y2 = x(x2 + 877) (again, this is a large
computation).

34. Let Q be the matrix of a positive definite quadratic form, and let λ be its smallest
eigenvalue. By diagonalizing Q on an orthonormal basis of eigenvectors, show
that XtQX � λXtX.

35. Prove that there are exactly 20 integral points on the elliptic curve with equation
y2 + y = x3 + x2 − 2x (this is the curve of rank 2 having smallest conductor,
equal to 389).
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itif , J. Théor. Nombres Bordeaux 18 (2006), 299–313.

[Abr-Ste] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions,
Dover publications (1972).

[AGP] R. Alford, A. Granville, and C. Pomerance, There are infinitely many
Carmichael numbers, Ann. of Math. 139 (1994), 703–722.

[Ami] Y. Amice, Les nombres p-adiques, SUP/Le Mathématicien 14,
Presses Universitaires de France (1975).

[Ang] W. Anglin, The square pyramid puzzle, American Math. Monthly 97
(1990), 120–124.

[Ax] J. Ax, Zeroes of polynomials over finite fields, Amer. J. Math. 86
(1964), 255–261.

[Bac] G. Bachman, Introduction to p-adic Numbers and Valuation theory ,
Academic paperbacks, Acad. Press (1964).

[Bak1] A. Baker, Linear forms in the logarithms of algebraic numbers,
Mathematika 13 (1966), 204–216.

[Bak2] A. Baker, Transcendental Number Theory , Cambridge University
Press, 1975.

[Bak-Dav] A. Baker and H. Davenport, The equations 3x2−2 = y2 and 8x2−7 =
y2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.

[Bak-Wus] A. Baker and G. Wüstholz, Logarithmic forms and group varieties,
J. reine angew. Math. 442 (1993), 19–62.

[BDD] R. Balasubramanian, J.-M. Deshouillers, and F. Dress, Problème de
Waring pour les bicarrés 1 : schéma de la solution, 2 : résultats
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angew. Math. 27, (1844), 192.

[Cha] C. Chabauty, Sur les points rationnels des variétés algébriques dont
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deux logarithmes et déterminants d’interpolation, J. Number Theory
55 (1995), 255–265.

[Leb] V. Lebesgue, Sur l’impossibilité en nombres entiers de l’équation
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Index of Notation

Symbols

‖ ‖ an absolute value on a field, or a norm, 183
| | usually a p-adic absolute value, 183
1 the constant arithmetic function 1, 152

A

]a, b[ open interval with endpoints a and b, ix, ix
(a, b)p local Hilbert symbol at p �∞, 295
[a, b[, ]a, b] half-open intervals with endpoints a and b, ix, ix
a ∗ b arithmetic convolution of a and b, 152
AGM arithmetic–geometric mean, 486
Ap(t) set linked to y2 = xp + t, 411
Arg(z) principal determination of the argument of z, 169

B

B(a, b) beta function, 93(
α
k

)
generalized binomial coefficient, ix, ix

Bk(χ) χ-Bernoulli number, 43
Bk,p p-adic Bernoulli numbers, 308
Bk(x), Bk Bernoulli polynomial, number, 3

C


x� ceiling of x, ix, ix
c� Fourier coefficient of a newform, 498
X(E) Tate–Shafarevich group of E, 479, 522, 555
χ(n) often a Dirichlet character at n, 156
χD(n) Kronecker–Legendre symbol

(
D
n

)
, 317

χ− χ−(n) = χ(−n), 43
Cl(K) class group of K, 131

Page numbers in Roman type refer to the current volume, while italicized
page numbers refer to the complementary volume.
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ClT (K) T -class group of K, 550
Cn cyclic group of order n, 114
Cp the completion of the algebraic closure of Qp, 260
cp(E) Tamagawa number, 522
〈g〉 cyclic group generated by g, 145

D

d(n) number of divisors of n, 157
δ(n) Kronecker’s δ function, 156
δk,1 1 if k = 1, 0 otherwise, 4
〈x〉 x/ωv(x), diamond of x, 229
disc(E) discriminant of elliptic curve E, 466
d(L/K) relative discriminant of L/K, 130
d(Λ,y) distance from y to the nearest vector of Λ distinct

from y, 58
d | n d is a positive divisor of n, ix, ix, 152
d‖n d | n and gcd(d, n/d) = 1, ix, ix, 155
Dπ,f (X) Dwork power series generalized to pf , 256
Dπ(X) Dwork power series, 255
D(P/p) decomposition group of P/p, 134

E

E0 noncompact component of E(R), 485
E1(x) exponential integral, 574
e1, e2, e3 roots of 4X3 − g2X − g3 = 0, 484
Egg the egg, compact component of E(R), 485
e(P/p) ramification index of P/p, 132
ε((a1, . . . , an)) ε-invariant of a quadratic form, 300
ε(E) sign of the functional equation, root number, 521
Ep(X) Artin–Hasse exponential, 217
E ∼p f E arises modulo p from f , 498
η(τ) Dedekind’s eta function, 215
expp(x) p-adic exponential, 211

F

E, F general finite fields, sometimes their algebraic clo-
sure, x, x

f(χ), f conductor of Dirichlet character χ, 25
F(f), f̂ Fourier transform of f , 104, 107
�x	 floor of x, ix, ix
Fn usually the Fibonacci sequence, 421
f(P/p) residual degree of P/p, 132
{x} x− �x	, fractional part of x, ix, ix



Index of Notation 627

G

G usually a group, also Catalan’s constant, 127
g sometimes the genus of a curve, 90, 441
g sometimes the number of prime ideals above p, 134
G0 group of points reducing to a nonsingular point, 507
G1 group of points reducing to O, 508
g2(Λ) g2-invariant of lattice Λ, 483
g3(Λ) g3-invariant of lattice Λ, 483
γ usually Euler’s constant, 33
Γp(s) p-adic gamma function at s, 368
Γr(s, x) higher incomplete gamma function, 574
γ(s) π−s/2Γ(s/2), 172
Γ(s, x) incomplete gamma function, 573
Γ(x) gamma function at x, 78
γp(χ), γp p-adic Euler constants, 308
gcd(a, b), GCD greatest common dnivisor, viii, viii
gcd(a, b∞) limit of gcd(a, bn), ix, ix
GN group of points of level � N , 508
G(τ, s) nonholomorphic Eisenstein series, 211

H

H⊥ orthogonal of H in V , 286
h(D) class number of quadratic order of discriminant D,

318
h(E) height of the elliptic curve E, 603
Hk

∑
1�j�k 1/j, harmonic sum, 110

h(K), h class number of K, 131
Hn

∑
1�k�n 1/k, 85

Hn harmonic sum
∑

1�j�n 1/j, 128
HNF Hermite normal form, 16, 340
h(P ) näıve height of a point P ∈ E(Q), 530
ĥ(P ) canonical height of P ∈ E(Q), 530
hp class number of Q(ζp), 432
hpk class number of Q(ζpk ), 148
h−

pk minus class number of pkth cyclotomic field, 149
h+

pk class number of maximal totally real subfield, 148
H(p, t), H(t) conditions for y2 = xp + t, 411

I

�(s) imaginary part of s, ix, ix
I(P/p) inertia group of P/p, 134
Is(m), Is Stickelberger ideal, 160
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J(χ1, χ2) Jacobi sum associated with two characters, 82
j(E) j-invariant of elliptic curve E, 467
Jk(χ1, . . . , χk) Jacobi sum, 79

K

K usually a number field, x, x
K a general p-adic field, x, x, 235
Kn(F ) higher K-groups, 244
Kp completion of K at the prime ideal p, x, x, 195
K(T, 2) same as ST (K), 551

L

L usually a number field, x, x
Λ(χ, s) completed L-function for χ, 172
Λ(E, s) completed L-function of an elliptic curve, 521
Λ(n) von Mangoldt’s function, 159
λ(N) Carmichael’s function of N , 93
L(a, s) Dirichlet series associated with a, 151
L a general p-adic field, x, x
L(χ, s) L-series of character χ, 162
lcm(a, b), LCM least common multiple, viii, viii
L(ED, s) L-function of elliptic curve E twisted by D, 590(

a
p

)
,
(

m
n

)
,
(

a
b

)
Legendre, Jacobi, or Kronecker symbol, 33(

a
b

)
m

mth power reciprocity symbol, 166
L(f) Laplace transform of f , 108
LF (E) space of F -linear maps from E to E, 118
LogΓp(x) Diamond’s log gamma function for x ∈ Zp, 330
LogΓp(χ, x) Morita’s log gamma function for x ∈ Zp, 337
LogΓ(s) complex log gamma function at s, 81
LH fixed field of L by H, 104
Li2 dilogarithm function, 278, 404
Lik polylogarithm function, 278
Li(x) logarithm integral, 257
[L : K] the degree of L over K, or the index of K in L, 107
Ln usually the Lucas sequence, 421
logp(x) p-adic logarithm, 211
Lp(χ, s) p-adic L-function of character χ, 301

M
M(f) Mellin transform of f , 107
µ(n) Möbius function of n, 153
µn group of roots of unity of order n, 18
µn = µn(K) subgroup of nth roots of unity in K, 112
µp group of (Np− 1)st roots of unity in Kp, 228

J
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N

�x� nearest integer to x, ix, ix
Np the absolute norm of a prime ideal p, 191[
n
x

]
1 · 2 · · ·n/(x(x + 1) · · · (x + n)), 281

O

O identity element of an elliptic curve, 473
Ω(n) number of prime divisors of n with multiplicity, 156
ω Teichmüller character, 391
ω(n) number of distinct prime divisors of n, 156
ωP(x) (q − 1)st root of 1 congruent to x mod P, 152
ωv(a) extension of Teichmüller character to Q∗

p, 281
ω(x) Teichmüller character of x, 227, 228
〈x〉 x/ω(x) ∈ U1, 229
ordP order of the point P , 443

P

Φf(x, y) (f(x)− f(y))/(x− y), 277
φ(n) Euler’s φ function, 141
Π a uniformizer of a prime ideal in an extension, 432
π either a uniformizer of a prime ideal, or 3.14. . . , 432
PID principal ideal domain, 106, 129∏(p)

product over integers prime to p, 302

ψb x �→ ζ
TrFq /Fp (bx)
p , 75

ψp(x) LogΓ′
p(x), Diamond’s p-adic ψ function, 331

ψ(x) logarithmic derivative of Γ(x), 76
℘(z) Weierstrass ℘ function, 482

Q

Qp completion of Q at p, the field of p-adic numbers,
195

R

r1 number of real embeddings of a number field, 107
r2 half the number of nonreal embeddings of a number

field, 107
R(A,B) resultant of polynomials A and B, 143
rad(N) radical of the integer or polynomial N , 483
R(E) regulator of the elliptic curve E, 522, 601
�(s) real part of s, ix, ix
rk(n) number of representations of n as a sum of k squares,

317
rQ(n) number of representations of n by Q, 215
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S

S1(X), S1(Zp) strictly differentiable functions, 277
S2(E) 2-Selmer group of E, 555
S(a, b; p) Kloosterman sum, 100
s\p (s− a0(s))/p, essentially �s/p	, 365
σ(n) sum of divisors of n, 157
σk(n) sum of kth powers of divisors of n, 157, 317
s(N) sometimes the squarefree part of N , 541
sp(n), s(n) sum of the digits of n in base p, 155, 207
ST (K) T -Selmer group of number field K, 551∑(p)

sum over integers prime to p, 302

T

τ often an element of the upper half-plane H, 586
τ(χ), τ(χ, a) Gauss sum for multiplicative character χ, 31
τ(χ,ψ) Gauss sum with additive character ψ, 75
τ(n) Ramanujan τ function, 159
τq(r) Gauss sum associated with a Dwork character, 386
θ(χ, τ) theta function of character χ, 170
t(n) product of factorials of digits of n in base p, 155

U

U0 the group of p-adic units, 226
U1 group of p-adic units congruent to 1 mod p, 228
Ui group of p-adic units congruent to 1 mod pi, 228
U(K) unit group of K, 131
UT (K) T -unit group of K, 550
〈u〉 distance from u to the nearest integer, 58

W

W (χ) root number of modulus 1, 49
WQ Atkin–Lehner operator, 596

Z

Z�0 nonnegative integers, ix, ix
ζ usually a primitive pth root of unity, 432
ζC(T ) zeta function of a curve or variety C, 91
ζK(s) Dedekind zeta function of a number field, 216
ζp(s, x) p-adic Hurwitz zeta function, 283
ζQ(s) Epstein zeta function for the quadratic form Q, 215
ζ(s) Riemann zeta function, 72, 153
ζ(s, z) Hurwitz zeta function, 71, 168, 190
Z>0 strictly positive integers, ix, ix
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ZK , ZL ring of algebraic integers of K, L, x, x, 128
Z�0 negative or zero integers, ix, ix
Z<0 strictly negative integers, ix, ix
ζn a primitive nth root of unity, 17
Zp, Zp the ring of p-adic or p-adic integers, 195
z(p) �e(p/p)/(p− 1)	+ 1, 229
ζπ pth root of 1 congruent to 1 + π mod p2, 256
ζp(s) Kubota–Leopoldt p-adic zeta function, 301
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A

Abel, N., 30, 200, 251, 256
Abouzaid, M., 417
Adams, J., 67, 325
Alford, R., 94
Almkvist, G., 69
Alpern, D., 384
Amice, Y., 276
Apéry, R., 99, 141
Apostol, T., 94
Arnold, V., 121
Artin, E., 70, 115, 167, 217, 219
Atkin, O., 565, 596, 613
Ax, J., 73

B

Baker, A., viii, viii, 2, 411, 414,
424, 424, 517, 519, 600, 603

Balasubramanian, R., 4
Balog, A., 133
Barnes, E., 135
Batut, C., 11, 99
Beck, M., 380
Beilinson, A., 245
Belabas, K., x, x
Belyi, G., 478
Bender, C., 99
Bennett, M., x, x, 339, 416, 423,

490, 523
Bernardi, D., x, x

Bernoulli, J., 3, 264
Bessel, F., 111
Beukers, F., 275, 400, 463
Beurling, A., 137
Bhargava, M., 107, 313
Bilu, Yu., viii, viii, 3, 413, 417, 436,

442, 483, 529, 532
Binet, J., 125
Birch, B., vi, vi, 3, 245, 452, 518,

522, 528, 586
Blichfeldt, H., 63
Bloch, S., 245
Boéchat, J., viii, viii, 442, 529
Borel, A., 244
Borevich, Z., x, x
Bourbaki, N., 21
Brauer, R., 242
Bremner, A., 410, 462, 608, 614
Breuil, C., 2, 242, 498
Brindza, B., 437
Bruin, N., 456, 486, 489
Brumer, A., 501
Buchmann, J., 357
Bugeaud, Y., viii, viii, 411, 424,

518
Bump, D., 262

C

Cantor, D., 447
Cardano, G., 561
Carlitz, L., 326

Page numbers in Roman type refer to the current volume, while italicized
page numbers refer to the complementary volume.
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Carmichael, R., 93
Cassels, I., x, x, 2, 283, 311, 330,

359, 443, 465, 609, 614
Catalan, E., 2, 127, 428, 442
Cauchy, A.-L., 188, 269, 440
Čebotarev, N., 325, 514
Čebyshev, P., 276
Chabauty, C., 452, 489
Chein, E., 445
Chen, I., 490
Chevalley, C., 72
Chowla, S., 223
Clausen, T., 63, 325
Coates, J., 245, 522
Cohen, H., 41, 99, 140, 195, 198
Cohn, J., 410, 424
Coleman, R., 452
Colliot-Thélène, J.-L., 327
Colmez, P., 275, 276, 301, 346
Conrad, B., 2, 242, 259, 498
Conrey, B., 137, 239
Conway, J., 51
Cremona, J., x, x, 476, 488, 498,

523, 555, 557, 596, 598

D

Dénes, P., 506
Darmon, H., 133, 465, 482, 490,

504, 506, 509
Davenport, H., 82, 173, 174, 182,

311, 394, 424, 427, 493
David, S., 517, 603
Dedekind, R., 117, 127, 131, 215,

216
Delaunay, C., x, x, 584, 598
Deligne, P., 4, 11, 92, 160, 240,

335, 496, 498
Delone, B., 386
Dem′yanenko, V., 376, 381, 408,

450
Deshouillers, J.-M., 4
Deuring, M., 497, 588
Diamond, F., 2, 242, 498, 501
Diamond, J., 281, 330

Dirac, P., 22, 178
Dirichlet, P.-G. Lejeune, 1, 138,

237
Dress, F., 4
Dupuy, B., 532
Duquesne, S., viii, viii, x, x, 441,

459
Dwork, B., 217, 240, 255, 375, 388

E

Edwards, J., 463, 480
Eichler, M., 198
Eisenstein, G., 159, 170, 193, 201,

211, 264, 434
Elkies, N., 55, 276, 378, 385, 482,

518, 565
Ellenberg, J., 424, 490
Epstein, P., 210, 215
Erdős, P., 246
Euler, L., 6, 19, 21, 77, 141, 154,

267, 338, 387
Evertse, J., 437

F

Faltings, G., vii, vii, 2, 92, 368,
449, 482, 498, 518, 521

Fel′dman, N., 411
Fermat, P., 55, 314, 338, 415, 424,

427, 482, 503, 517, 518
Ferrero, B., 389
Fibonacci, L., 421
Fisher, T., 369, 557
Flynn, V., 409, 449, 453, 456, 460
Fourier, J., 45, 104, 148, 269
Frey, G., 2, 495, 503
Fricke, R., 587
Friedman, E., 275, 287, 395
Frobenius, G., 69, 180, 498
Fubini, G., 28
Furtwängler, P., 434

G

Galois, E., 101
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Gauss, C.-F., 2, 31, 75, 124, 149,
245, 315, 338, 347, 406

Germain, S., 430
Glaisher, J., 133
Goldbach, C., 455
Goldfeld, D., 139, 523
Grant, D., 452
Granville, A., 94, 268, 482
Gras, G., 321
Green, B., 238
Greenberg, R., 389
Gross, B., 139, 245, 383, 386, 522,

571, 583, 588, 590
Grothendieck, A., 3, 463, 478
Guy, R., 455
Győry, K., 437

H

Hadamard, J., 52, 85, 246, 248
Halberstadt, E., 506, 521
Hall, P., 493
Hanke, J., 313
Hanrot, G., viii, viii, 411, 413, 417,

436
Hardy, G. H., 4
Hasse, H., 6, 82, 91, 98, 173, 174,

182, 217, 305, 318, 326, 394, 494
Hayashi, Y., 591
Hecke, E., 193, 217, 242
Heegner, K., 528, 584, 586
Hellegouarch, Y., 2, 495, 503
Henniart, G., 521
Hensel, K., v, v, 5, 199, 202
Herbrand, J., 245
Herglotz, G., 271
Hermite, C., 54, 70
Hilbert, D., vii, vii, 4, 118, 193
Houriet, J., 312, 330, 331
Hurwitz, A., 71, 168, 198, 264
Huxley, M., 182
Hyyrö, S., 448

I

Ireland, K., x, x, 64

Iwaniec, H., 246, 254
Iwasawa, K., 264, 346

J

Jacobi, C. G., 36
Jacobstahl, E., 381
Jaulent, J.-F., x, x, 144

K

Kaneko, M., 119
Kato, K., 245
Katz, N., 73, 383
Kazandzidis, G., 381
Klein, F., 478, 489
Kloosterman, H., 100
Knapp, A., 494
Ko, Chao, 445, 517
Koblitz, N., 383, 386, 450
Kodaira, K., 597
Kohnen, W., 195
Kolyvagin, V., 245, 522
Korobov, N., 250
Kowalski, E., 246
Kramer, K., 501
Krasner, M., 189, 238, 267, 269,

346
Kraus, A., x, x, 429, 430, 490, 499,

506, 511, 513, 514, 523
Kronecker, L., 36, 128, 140, 145,

146, 167, 213, 229
Kubota, T., 301
Kummer, E., 1, 68, 133, 324, 338,

436

L

Lagrange, J.-L., 4, 315
Landau, E., 314
Langlands, R., 167, 242
Laplace, P.-S., 28, 104, 108
Laurent, M., 414
Laurent, P.-A., 13
Lebesgue, H., 106
Lebesgue, V-A., 418
Lech, C., 283
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Legendre, A.-M., 2, 33, 245, 347
Lehner, J., 596, 613
Lemmermeyer, F., 181
Lenstra, A., 56
Lenstra, H. W., 3, 56, 140, 180, 607
Leopoldt, H., 301
Lerch, M., 223
Lichtenbaum, S., 244
Lind, C., 328
Liouville, J., 264, 413, 483
Lipschitz, R., 277
Littlewood, J., 4
Ljunggren, W., 424
Lovasz, L., 56
Lucas, E., 11, 421, 424
Lutz, E., 524

M

Ma, D.-G., 426
MacLaurin, C., 19, 21
Mahler, K., 221, 283, 375
von Mangoldt, H., 159
Manin, Yu., 358, 450, 457, 494, 586
Marcus, D., 218
Martinet, J., x, x, 51
Mason, R., 491
Masser, D., 482
Matiyasevich, Yu., vii, vii
Mazur, B., 501, 511, 513, 528
McCallum, W., 452
Mellin, R., 104, 107
Merel, L., 490, 504, 506, 509
Mertens, F., 268
Mestre, J.-F., 518, 521, 565, 566,

608
Meurman, A., 69
Meyer, C., 271
Mignotte, M., viii, viii, 283, 411,

414, 420, 424, 518
Mihăilescu, P., viii, viii, 2, 428,

442, 483, 531
Minkowski, H., 63, 305
Mischler, M., viii, viii, 442, 483,

529

Möbius, A., 153
de Moivre, A., 143
Momiyama, H., 119
Montgomery, H., 200
Mordell, L., 2, 92, 159, 368, 384,

449, 452, 455, 482, 498, 517, 518,
538, 554

Mori, M., 37
Morita, Y., 330, 336, 364
Morton, P., 410
Mumford, D., 446
Muzzafar, H., 271

N

Nagell, T., 273, 444, 524
Nakayama, T., 231
Newman, D., 246, 250
Noether, E., 110

O

Oesterlé, J., 482, 499
Olivier, M., 99
Ono, K., 133
Ostrowski, A., 190

P

Padé, H., 141
Pascal, B., 118
Pell, J., 229, 354
Pethő, A., 417
Pfister, A., 329
Picard, É., 445
Pine, E., 380
Plana, G., 30
Poisson, S., 45
Pólya, G., 198
Pomerance, C., 94
Poonen, B., 489

R

Raabe, C., 103
Ramakrishnan, D., 490
Ramanujan, S., 26, 153, 159, 241,

496
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Rhin, G., 99
Ribet, K., viii, viii, 2, 335, 339,

424, 489, 490, 498, 500, 504, 521
Riccati, J., 611
Riemann, B., 106, 153, 159, 245,

442, 465, 473
Rivat, J., 137
Robert, A., 383
Roch, G., 442, 465
Rodriguez-Villegas, F., x, x, 41,

275, 277, 375, 378
Rosen, M., x, x, 64
Roth, K., 432
Rubin, K., 245, 522
Runge, C., 439

S

Saias, E., 94
Sansone, G., 609
Schaefer, E., 489
Schinzel, A., 384, 437
Schlömilch, O., 148
Scholl, T., 245
Schoof, R., viii, viii, 150, 387, 442,

443, 529, 565, 609
Schreier, O., 70, 115
Schwartz, L., 177
Seidel, P., 11
Selberg, A., 137, 223, 243, 246
Selmer, E., 359, 368, 551, 555
Serre, J.-P., x, x, 346, 409, 456,

501, 511
Shafarevich, I., x, x, 306, 479, 498,

522, 555
Shanks, D., 34, 357, 565, 566
Shimura, G., 195, 270, 497, 518,

521, 588, 589
Shorey, T., 414, 423
Siegel, C. L., 139, 193, 194, 218,

239, 437, 517–519
Siksek, S., viii, viii, 328, 332, 339,

424, 490, 495, 518
Silverman, J., 465, 596
Simon, D., x, x, 347, 553

Skinner, C., 490, 523
Skolem, T., 385
Sloane, N., 51
Smart, N., 517, 600, 603
Sondow, J., 140, 260
Soundararajan, K., 200, 239
Stark, H., 95, 193, 245, 273, 528
von Staudt, K., 63, 325
Stein, W., 495
Stickelberger, L., 155, 162, 259,

390, 391
Stieltjes, T., 99, 251
Stirling, J., 34, 82, 125, 222, 268,

282
Stoll, M., 328, 367, 489, 493
Strassmann, R., 266
Swan, R., 259
Swinnerton-Dyer, P., vi, vi, 3, 245,

452, 518, 522, 528

T

Takahashi, H., 37
Tamagawa, T., 508, 522, 554
Taniyama, T., 497, 518, 521
Tao, T., 238
Tarrant, W., 380
Tate, J., x, x, 218, 242, 306, 465,

479, 499, 506, 508, 522, 555, 597
Tauber, A., 253
Taylor, B., 21
Taylor, R., viii, viii, 2, 242, 339,

424, 428, 490, 498
Teichmüller, O., 152, 228
Thaine, F., viii, viii, 3, 163, 553
Thue, A., 414, 424, 437
Tijdeman, R., 2, 414, 429, 437
Tonelli, L., 34
Tunnell, J., 3, 242, 395, 453
Tzanakis, N., 462, 600, 608

V

Vélu, J., 474
de la Vallée Poussin, C.-J., 246
Vandiver, H., 438
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Vatsal, V., 523
Vaughan, R., 200
Vinogradov, A. I., 198
Vinogradov, I. M., 4, 250
Volkenborn, A., 276, 277
Voronoi, G., 66, 182
Voutier, P., 413, 417

W

Waldschmidt, M., 411, 414
Waldspurger, J.-L., 195
Walsh, G., 439
Waring, E., 4, 376, 455
Warning, E., 72
Washington, L., x, x, 150, 301
Watkins, M., 139, 383, 384, 566,

598
Weber, H., 140, 145, 167
Wedderburn, J., 65
de Weger, B., 59, 387, 417, 420,

423, 600
Weierstrass, K., 270, 465, 482, 586

Weil, A., 3, 11, 90, 92, 100, 335,
445, 497, 497, 518, 521

Wendt, E., 430
Wetherell, J., 409, 455, 456, 460
Wieferich, A., 430, 435
Wiles, A., viii, viii, 2, 242, 245,

339, 424, 428, 489, 490, 498, 518,
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Wilson, J., 368, 405
Witt, E., 290, 293
Wolstenholme, J., 97, 383

Y

Yamamoto, Y., 139
Yarbrough, K., 380
Yazdani, S., 523

Z

Zagier, D., 8, 41, 122, 139, 195,
198, 239, 245, 246, 261, 270,
378, 463, 522, 571, 583, 590
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Symbols

290-theorem, 313

A

abc conjecture, 482
Abel–Plana formula, 30
Abelian extension, 167
abelian group
– finite, 14
– finitely generated, 11
abscissa
– of absolute convergence, 160
– of convergence, 162, 259
absolute norm, 109
absolute trace, 109
absolute value, 183
– Archimedean, 184
– equivalent, 184
– extension, 237
– non-Archimedean, 184
– normalization, 191
– trivial, 184
absolutely irreducible, 468
additive character, 74
additive number theory, 4
additive reduction, 472
affine curve, 90
AGM, 483, 486
algebraic geometry, 7
algebraic integer, 126

algebraic number theory, 6
algebraic rank, 522
Almkvist–Meurman theorem, 70,

133, 327
analytic p-adic function, 205
analytic element, 189
analytic number theory, 151
analytic rank, 522
approximate functional equation,

176
approximation of linear forms, 60
Archimedean absolute value, 184
arithmetic
– convolution, 152
– function, 151
arithmetic geometry, 7
arithmetic surface, 7
arithmetic–geometric mean, 483, 486
Artin’s conjecture, 167, 219
Artin–Hasse exponential, 217
Artin–Schreier polynomial, 115
Artin–Schreier subgroup, 70
Artin–Schreier theory, 115
asymptotic expansion, 19
Atkin–Lehner operator, 596
automorphism
– Frobenius, 498

B

baby-step giant-step algorithm, 357,
565

Page numbers in Roman type refer to the current volume, while italicized
page numbers refer to the complementary volume.
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bad reduction, 506
basic CM elliptic curve, 571
basis
– orthogonal, 288
Bernoulli
– χ, 43
– number, 3
– polynomial, 3, 118
Bernoulli–Euler triangle, 121
Bernoulli–Hurwitz number, 264
Bessel functions, 111
beta function, 93
birational transformation, 475
Birch–Swinnerton-Dyer conjecture,

vi, vi, 3, 245, 452, 522
BSD conjecture, vi, vi, 245, 452,

479, 522

C

cannonball problem, 424, 425
canonical coordinates, 506
canonical height, 530
Carmichael number, 93
Carmichael’s function, 93
CAS: computer algebra system, v,

v
Cassels–Sansone number, 609
Catalan’s constant, 127
Catalan’s equation, 2, 428, 442
Cauchy sequence, 192
Cauchy’s formula, 188, 440
Čebotarev density theorem, 325,

514
character
– additive, 74
– conductor of, 25
– Dirichlet, 25
– Dwork, 388
– even, 171
– group, 18
– multiplicative, 74
– odd, 171
– orthogonality, 20, 29
– primitive, 25

– real primitive, 43
– trivial, 18
characteristic of a field, 65
characteristic polynomial of an el-

ement, 109
Chevalley–Warning theorem, 72, 204
χ-Bernoulli number, polynomial, 43
Chowla–Selberg formula, 223
circle method, 4
circle problem, 182
class group, 131, 338
– T , 550
class number, 131
class number formula, 138
Clay foundation, 3
CM point, 586
cocycle condition, 110
compact representation, 357
complementary law, 35
complete field, 192
completely multiplicative function,

154
completion, 194
complex cubic field, 108
complex multiplication, 265, 484,

588
complex multiplication field, 149
conductor
– of a character, 25
– of an elliptic curve, 521
congruent number, 3, 393, 450
conjecture
– Artin, 167
– Birch–Swinnerton-Dyer (BSD),

vi, vi, 3, 245, 452, 522
– Catalan, 2
– congruent number, 3
– Fermat (FLT), 1
– Mordell, 2, 498
– Ramanujan, 496
– Shafarevich, 498
– Taniyama–Shimura–Weil, 2, 497,

521
– Waring, 4, 376



General Index 641

– Weil, 3
constant term
– in Euler–MacLaurin, 26
content of a polynomial, 124
contiguity relation, 149
contiguous bases, 288
continued fraction method, 357
convex set, 63
convolution, 104
– arithmetic, 152
coordinates
– canonical, 506
covariant, 478
covolume of a lattice, 51
critical strip, 243
curve, 7
– affine, 90
– elliptic, 2, 452
– hyperelliptic, 442
– projective, 90
cusp, 469
cyclic cubic field, 109
cyclotomic field, 144
cyclotomic polynomial, 201
cyclotomic unit, 142

D

decomposition group, 134
Dedekind domain, 131
Dedekind eta function, 215
Dedekind independence theorem,

117
Dedekind zeta function, v, v, 216
degree
– of an isogeny, 474
degree of a divisor, 444
descent, 387, 391
– infinite, 338, 373
– second, 546
2-descent
– general, 548
– with 2-torsion, 532
3-descent
– with rational 3-torsion, 557

dessin d’enfant, 478
determinant of a lattice, 51
diagonal form, 293
diagonal hypersurface, 177
diamond of x, 229
dilogarithm, 278, 404
dimension, 6
Diophantine m-tuple, 424
Diophantine equation, 1
Dirichlet character, 25
Dirichlet series, 160
– formal, 151
Dirichlet’s class number formula,

138
Dirichlet’s theorem on primes, 27,

237
discrete logarithm, 93
discrete valuation ring, 196
discriminant
– fundamental, 43
– of a quadratic form, 286
– of an elliptic curve, 466
– prime, 48
– relative, 130
distribution formula
– for Γp, 372
– for LogΓp, 331, 340
– for LogΓp(χ), 338
– for ψp , 331
– for ψp(χ), 338
– for ζp, 286, 292
– for ζp(χ), 295
– for Bernoulli polynomials, 5
– for complex gamma, 88
– for fractional part, 171
– for higher gamma, 135
– for Hurwitz zeta, 77
– for sum of digits, 171
division algebra, 65
divisor
– degree, 444
– effective, 444
– group, 444
– on a curve, 444
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– rational, 445
– reduced, 446
– semireduced, 446
– suitable, 363
divisor problem, 182
dot product, 286
double point, 469
doubly exponential numerical in-

tegration, 37
dual group, 18
dual isogeny, 474
duplication formula
– for Γp, 372
– for complex gamma, 88
– for Hurwitz zeta, 77
Dwork character, 388
Dwork power series, 255

E

E arises from f , 498
effective divisor, 444
egg, 485
Egyptian number, 463
Eisenstein
– criterion, 201
– polynomial, 201, 253
Eisenstein series, 264
– holomorphic, 159
– nonholomorphic, 211
Eisenstein’s reciprocity law, 170,

434
elementary divisor theorem, 12, 13
elementary number theory, 151
elliptic curve, 2, 452
– basic CM, 571
– rank, 452
– supersingular, 498
elliptic logarithm, 425, 483, 603
Epstein zeta function, 210, 215
equation
– Catalan, 428
– Diophantine, 1
– Pell–Fermat, 354
– Thue, 414, 437

– Weierstrass, 465
equivalence
– Kummer, 114
equivalent absolute values, 184
equivalent ideals, 131
equivalent norms, 235
equivalent quadratic forms, 291
ERH, 238
eta function
– Dedekind, 215
Euler number, 6, 267
Euler polynomial, 121
Euler product, 154
Euler’s totient function, 141
Euler–MacLaurin summation for-

mula, 19
Eulerian number, 126
Eulerian polynomial, 126
even character, 171
exact hexagon lemma, 244
expansion
– asymptotic, 19
exponent of a group, 93
exponential
– p-adic, 211
– Artin–Hasse, 217
– formal, 504
exponential generating function, 3,

8
exponential integral, 574
extended Riemann hypothesis, 238
extension
– Galois, 103
– Kummer, 179
– maximal unramified, 242
– normal, 103
– of p-adic fields, 235
– of absolute values, 237
– tamely ramified, 240
– totally ramified, 240, 253
– unramified, 240, 249
extraneous zero, 177

F
factor basis, 357
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Fermat prime, 512
Fermat triangle, 482, 514
Fermat’s last theorem, 1, 427
Fibonacci number, 420
Fibonacci sequence, 421
field
– characteristic, 65
– complete, 192
– completion, 194
– complex cubic, 108
– cyclic cubic, 109
– cyclotomic, 144
– finite, 7, 65
– fixed, 104
– global, 7
– imaginary quadratic, 108
– number, 106
– p-adic, 7, 183
– perfect, 101
– place, 190
– prime, 65
– pure cubic, 108
– quadratic, 136
– real quadratic, 108
– regular, 232
– residue, 7, 189
– skew, 65
– totally real cubic, 108
filtration (p-adic), 509
finite abelian group structure, 14
finite field, 7, 65
finitely generated abelian group,

11
first case of FLT, 428
fixed field, 104
FLT, 1, 427, 503
FLT I, 428
FLT II, 435
formal Dirichlet series, 151
formal Euler product, 154
formal exponential, 504
formal group, 503
formal logarithm, 504

Fourier
– coefficient, 45, 496
– inversion formula, 105
– series, 45
– transform, 46, 104, 148
fractional part, 16
Frey curve, 503
Fricke involution, 587
Frobenius automorphism
– elliptic curves, 498
– finite fields, 69
– unramified p-adic extension, 250
Frobenius homomorphism
– elliptic curves, 495
– number fields, 180
function
– L, v, v
– arithmetic, 151
– Bessel, 111
– beta, 93
– Dedekind zeta, v, v
– kernel, 104
– Möbius, 153
– multiplicative, 154
– theta, 169
– zeta, v, v
function tending rapidly to 0, 163
functional equation
– approximate, 176
– of L-function, 172
– of theta function, 171
fundamental discriminant, 43
fundamental parallelogram, 483
fundamental parallelotope, 51
fundamental unit, 132, 338

G

Galois extension, 103
Galois representation, 2
Galois theory, 101
gamma function
– p-adic, 368
– complex, 80
– higher, 192
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– real, 78
Gauss sum, 31, 75
Gauss’s lemma on contents, 124
generating function
– exponential, 3, 8
– ordinary, 3, 8
genus of a curve, 90
geometry
– algebraic, 7
– arithmetic, 7
– projective, 90
global field, 7
global solution, v, v
Goldbach’s conjecture, 455
good reduction, 506, 520
Gram matrix, 51
Gram–Schmidt basis, 52
Gross–Koblitz formula, 151, 386
Gross–Zagier theorem, 590
group
– class, 338
– dual, 18
– formal, 503
– Picard, 445
– Tate–Shafarevich, 306
– unit, 338
group character, 18
group of units of a ring, 20

H

Hadamard product, 85, 248
Hadamard’s inequality, 52
half-system, 39
harmonic sum, 128, 142
Hasse interval, 497
Hasse norm principle, 318
Hasse principle, 6, 326
Hasse–Davenport relation
– lifting, 174, 182
– product, 82, 173, 394
Hasse–Minkowski theorem, 305
Hasse–Weil zeta function, 91, 497
Hecke–Eisenstein series, 193
Heegner point, 586

Heegner point method, 528, 584
height
– canonical, 530
– näıve, 530
height pairing matrix, 531, 601
Hellegouarch–Frey curve, 503
Hensel lifting, v, v
Hensel’s lemma, 199, 202
Herbrand quotient, 245
Hermite normal form, 16, 340
Hermite’s inequality, 54
higher gamma function, 192
Hilbert modular form, 193
Hilbert symbol, 295
Hilbert’s tenth problem, vii, vii
Hilbert’s Theorem 90, 118
holomorphic Eisenstein series, 159
Hurwitz zeta function, 71, 168, 190
hyperbolic plane, 287
hyperbolic quadratic form, 292
hyperelliptic curve, 442, 514
hypergeometric series, 149, 406

I

ideal
– primitive, 363
ideal class group, 131
imaginary quadratic field, 108
incomplete gamma function, 172,

573
inequality
– Pólya–Vinogradov, 198
– triangle, 183
– ultrametric, 188
inertia group, 134
infinite descent, 373, 391
infrastructure, 357
integral quadratic form, 311
invariant differential, 501
inverse binomial symbol, 281
inverse limit, 224
inversion formula
– Möbius, 153
irreducible
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– absolutely, 468
irregular prime, 69, 432
isogenous elliptic curves, 473
isogeny, 473
– degree, 474
– dual, 474
isogeny conjecture, 521
isotropic
– subspace, 287
– vector, 287
Iwasawa logarithm, 264

J

Jacobi sum, 79
Jacobi symbol, 36
Jacobian, 408, 479
Jacobian variety, 445
Jacobstahl–Kazandzidis congruence,

381

K

Kash, v, v, 338
K-automorphism, 102
K-embedding, 102
kernel function, 104
Klein form, 478
Klein quartic curve, 489
Kloosterman sum, 100
Kodaira type, 597
Krasner analytic function, 267, 269,

346
Krasner’s lemma, 238
Kronecker limit formula, 213
Kronecker symbol, 36
Kronecker’s Jugendtraum, 146
Kronecker–Weber theorem, 140, 145,

167
Kummer congruence, 67, 324
Kummer equivalence, 114
Kummer extension, 179
Kummer theory, 436

L

L-function, v, v

– functional equation, 172
Λ-function, 242
Langlands program, 167, 242
Laplace
– inversion formula, 109
– transform, 28, 104, 108
large sieve inequality, 139
lattice, 51
– covolume, 51
– determinant, 51
– fundamental parallelotope, 51
– minimum, 54
Legendre symbol, 33
level of a p-adic point, 508
level-lowering, 490, 498, 500
Lichtenbaum’s conjecture, 244
Lipschitz-continuous, 277
LLL algorithm, 58
LLL-reduced basis, 56
local ring, 189
local solution, v, v
local to global principle, 326
local-to-global principle, v, v
log gamma function
– complex LogΓ, 81
– Diamond’s LogΓp, 330
– Morita’s LogΓp(χ), 337
logarithm
– p-adic, 211
– discrete, 93
– elliptic, 425, 483, 603
– formal, 504
Lucas number, 420
Lucas sequence, 421

M

magma, v, v, 338, 495
Mahler coefficient, 221
Mahler’s theorem, 220
von Mangoldt’s function, 159
Manin constant, 586
Mason’s theorem, 491
matrix
– Gram, 51
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– orthogonal, 51
matrix-integral quadratic form, 311
maximal unramified extension, 242
Mazur’s theorem, 528
Mellin
– inversion formula, 107
– transform, 104, 107
Mersenne prime, 512
Mertens’s theorem, 268
method
– infinite descent, 338, 373, 391
– stationary phase, 117
– steepest descent, 117
minimal model, 506, 519
minimal polynomial, 106
minimum of a lattice, 54
Minkowski’s convex body theorem,

63
minus class number, 149
Möbius
– function, 141, 153, 156
– inversion formula, 153
model
– minimal, 506, 519
modular form, 2, 159, 172
– Hilbert, 193
modular parametrization, 586
modularity theorem, 497
Mordell’s conjecture, 2, 92, 482,

498
Mordell’s theorem, 538, 554
morphism (of quadratic modules),

286
multiplication
– complex, 484
multiplicative character, 74
multiplicative function, 154
multiplicative quadratic form, 329
multiplicative reduction, 472
Mumford’s representation, 446
mwrank, 479

N

Nagell–Lutz theorem, 524

näıve height, 530
Nakayama’s lemma, 231
newform, 496
– rational, 497
Noether’s theorem, 110
non-Archimedean absolute value,

184
nondegenerate
– quadratic form, 287
– quadratic module, 287
nonholomorphic Eisenstein series,

211
nonsingular
– equation, 203
– solution, 73, 203
nonsplit multiplicative reduction,

472
nontrivial zero, 177
norm
– absolute, 109
– equivalent, 235
– relative, 109
norm on a vector space, 235
normal basis theorem, 120, 251
normal extension, 103
normal form
– Hermite, 16, 340
– Smith, 15
normalization of absolute values,

191
number
– Bernoulli, 3
– congruent, 393, 450
– Egyptian, 463
– Euler, 6, 267
– Eulerian, 126
– Fermat, 512
– Fibonacci, 420, 424
– Lucas, 420, 424
– Mersenne, 512
– Stirling, 125, 222, 268
– tangent, 6
number field, 106
number theory
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– additive, 4
– algebraic, 6
– analytic, 151
– elementary, 151

O

obstruction, 306
odd character, 171
order of a point on a curve, 443
orthogonal
– basis, 288
– direct sum, 286
– elements, 286
– of a subset, 286
orthogonal matrix, 51
orthogonality of characters, 20, 29
Ostrowski’s theorem, 190

P

p-adic exponential, 211
p-adic field, v, v, 7, 183
p-adic gamma function, 368
p-adic integer, 196
p-adic logarithm, 211
p-adic number, v, v
p-adic regulator, 458
p-adic root, 202
p-adic unit, 226
pairing (perfect), 112
Pari/GP, v, v, 338, 495
Pascal’s triangle, 118
Pell–Fermat equation, 354
– Kronecker’s solution, 229
perfect field, 101
perfect pairing, 112
Picard group, 445
place of a number field, 190
PNT, 245
point
– rational, 465
point on a curve, 90
Poisson summation formula, 45
Pólya–Vinogradov inequality, 198
polylogarithm, 192, 278

polynomial
– Artin–Schreier, 115
– Bernoulli, 3, 118
– characteristic, 109
– cyclotomic, 201
– Eisenstein, 201, 253
– separable, 101
power basis, 107
pth power-free, 360
preparation theorem, 270
primary algebraic number, 169
prime fundamental discriminant, 48
prime number theorem, 245
prime subfield, 65
primes in arithmetic progression,

237
primitive character, 25
primitive element theorem, 106
primitive ideal, 363
primitive root, 23
principal ideal problem, 338
principle
– local-to-global, v, v
product
– dot, 286
product formula, 191
profinite completion, 70
profinite group, 70
projective curve, 90
projective geometry, 90
projective limit, 224
projective point, 90
pure cubic field, 108
Pythagorean triangle, 3, 451, 482
Pythagorean triple, 352

Q

quadratic field, 108, 136
quadratic form, 286, 305
– integral, 311
– matrix-integral, 311
– multiplicative, 329
– universal, 312
quadratic module, 286
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quadratic reciprocity law, 35
quadratic twist, 489, 499, 589
quotient
– Herbrand, 245

R

Raabe’s formula
– for LogΓp, 335
– for LogΓp(χ), 344
– for ζp, 287
– for ζp(χ), 297
– for complex gamma, 103
radical
– of a polynomial, 491
– of an integer, 483
radical (of a quadratic module),

286
radius of convergence, 206
Ramanujan τ function, 159, 259
Ramanujan sum, 153
Ramanujan’s conjecture, 160, 241,

496
ramification index, 132
rank
– algebraic, 452, 522
– analytic, 522
rational cuboid problem, 456
rational divisor, 445
rational newform, 497
rational point, 465
rational subgroup, 557
real primitive character, 43
real quadratic field, 108
reciprocity law, 35
– Shimura, 589
reduced divisor, 446
reduction
– additive, 472
– bad, 506
– good, 506, 520
– nonsplit multiplicative, 472
– split multiplicative, 472
reflection formula
– for Γp, 371

– for LogΓp, 331
– for LogΓp(χ), 338
– for ψp , 331
– for ψp(χ), 338
– for ζp, 286
– for ζp(χ), 295
– for complex gamma, 89
regular p-adic field, 232
regular prime, 69, 432
regulator
– p-adic, 458
– of a real quadratic field, 138
– of an elliptic curve, 601
relative
– discriminant, 130
– norm, 109
– trace, 109
representation
– Galois, 2
residual degree, 132
residue field, 7, 189
resultant of two polynomials, 143,

180
RH, 162
Ribet’s level-lowering, 500
Riccati differential equation, 611
Riemann hypothesis, 159, 162
– extended, 238
– for curves, 91
Riemann zeta
– function, 153
– series, 153
Riemann–Lebesgue lemma, 106
root
– primitive, 23
root number, 49, 521

S

SEA algorithm, 565
second case of FLT, 435
second descent, 546
Selberg zeta function, 243
Selmer group
– T , 551
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– of an elliptic curve, 555
semireduced divisor, 446
separable polynomial, 101
series
– Eisenstein, 264
Shafarevich conjecture, 498
Shimura’s reciprocity law, 589
Siegel zero, 239
sign of quadratic Gauss sums, 45
signature of a number field, 107
singular modulus, 571
singular series, 4
skew field, 65
Skolem’s equation, 385
Smith normal form, 15
SMK equation, 511
solution
– global, v, v
– local, v, v
Sondow’s formula, 140
special value, 243
special values of L-function, 186
split (totally), 135
split multiplicative reduction, 472
square pyramid problem, 424
squarefree integer, 156
squarefree part, 541
Stark’s conjectures, 193
stationary phase, 117
steepest descent, 117
Stickelberger ideal, 160
Stickelberger’s congruence, 155, 390
Stickelberger’s ideal theorem, 162
Stickelberger’s theorem, 390, 391
Stirling number
– first kind, 222, 268
– second kind, 125
Stirling transform, 282
Stirling’s formula, 34, 82
– complex, 85
Strassmann’s theorem, 266, 387
strictly differentiable, 277
structure
– class group, 131

– unit group, 131
structure of finite abelian groups,

14
Sturm’s algorithm, 107
suitable divisor, 363
sum
– Gauss, 31
– Jacobi, 79
– Ramanujan, 153
summation formula
– Euler–MacLaurin, 19
– generalized Poisson, 178
– Poisson, 45
supersingular elliptic curve, 498,

512
surface, 7
– algebraic, 7
– arithmetic, 7
symbol
– Hilbert, 295
symmetric set, 63
system of fundamental units, 338

T

Tamagawa number, 508, 554
tamely ramified extension, 240
tangent number, 6
tanh-sinh numerical integration, 37
Taniyama–Shimura–Weil conjecture,

2, 497, 521
Tate’s algorithm, 499
Tate–Shafarevich group, 306, 479,

555
Tauberian theorem, 253
T -class group, 550
Teichmüller character, 152, 228
Teichmüller representative, 249
theta function, 169, 170
– functional equation, 171
Thue equation, 414, 424, 437
totally discontinuous, 197
totally ramified extension, 240, 253
totally real cubic field, 108
totally split, 135
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totient function, 141
trace
– absolute, 109
– relative, 109
transform
– Fourier, 104
– Laplace, 104, 108
– Mellin, 104, 107
triangle
– Fermat, 482, 514
– Pythagorean, 3, 451
triangle inequality, 183
triangular number, 331
trigonometric sum, 4
trivial character, 18
trivial zero, 177
T -Selmer group, 551
T -unit group, 550
Tunnell’s theorem, 453
T -virtual square, 551
twin prime conjecture, 455
twisted projective equivalence, 392

U

ultrametric inequality, 188
unimodular matrix, 15
unit, 126
– cyclotomic, 142
– fundamental, 132
– p-adic, 226
unit group, 131, 338
– T , 550
unit group of a ring, 20
unit group structure, 131
unit in ZK , 131
universal quadratic form, 312
unramified extension, 240, 249

V

Vandiver’s conjecture, 438
virtual square

– T , 551
Volkenborn integral, 277

W

Waring’s problem, 4, 376, 455
Wedderburn’s theorem, 65
Weierstrass ℘-function, 482
Weierstrass equation, 465
Weierstrass’s preparation theorem,

270
Weil conjectures, 3, 92, 335
Weil representation, 148
Weil’s bounds, 90, 335
Weil’s conjectures, 178
Wieferich’s criterion, 435
Wiles’s theorem, 521
Wilson prime, 405
Wilson’s theorem, 368
Witt’s theorem, 290, 293
Wolstenholme prime, 383, 407
Wolstenholme’s congruence, 97, 406

Z

zero
– extraneous, 177
– nontrivial, 177
– Siegel, 239
– trivial, 177
zeta function, v, v
– Dedekind, 216
– diagonal hypersurface, 177
– Epstein, 210, 215
– Hasse–Weil, 91, 497
– Hurwitz, 71, 168, 190
– Hurwitz p-adic, 283
– χ-Hurwitz p-adic, 291
– Kubota–Leopoldt p-adic, 301
– of a curve, 91
– Riemann, 153
– Selberg, 243
Zorn’s lemma, 262
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