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Preface

The great mathematician G.H. Hardy told us that “Beauty is the first test:
there is no permanent place in the world for ugly mathematics” (see [24,
p. 85]). It is clear why Hardy loved complex analysis: it is a very beautiful
part of classical mathematics. The theory of Hilbert spaces and of operators on
them is almost as classical and is perhaps as beautiful as complex analysis. The
study of the Hardy–Hilbert space (a Hilbert space whose elements are analytic
functions), and of operators on that space, combines these two subjects. The
interplay produces a number of extraordinarily elegant results.

For example, very elementary concepts from Hilbert space provide simple
proofs of the Poisson integral (Theorem 1.1.21 below) and Cauchy integral
(Theorem 1.1.19) formulas. The fundamental theorem about zeros of func-
tions in the Hardy–Hilbert space (Corollary 2.4.10) is the central ingredient
of a beautiful proof that every continuous function on [0, 1] can be uniformly
approximated by polynomials with prime exponents (Corollary 2.5.3). The
Hardy–Hilbert space context is necessary to understand the structure of the
invariant subspaces of the unilateral shift (Theorem 2.2.12). Conversely, prop-
erties of the unilateral shift operator are useful in obtaining results on fac-
torizations of analytic functions (e.g., Theorem 2.3.4) and on other aspects of
analytic functions (e.g., Theorem 2.3.3).

The study of Toeplitz operators on the Hardy–Hilbert space is the most
natural way of deriving many of the properties of classical Toeplitz matri-
ces (e.g., Theorem 3.3.18), and the study of Hankel operators is the best
approach to many results about Hankel matrices (e.g., Theorem 4.3.1). Com-
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position operators are an interesting way of looking at the classical concept of
subordination of analytic functions (Corollary 5.1.8). And so on; you’ll have
to read this entire book (and all the references, and all the references in the
references!) to see all the examples that could be listed.

Most of the material discussed in this text was developed by mathemati-
cians whose prime interest was pursuing mathematical beauty. It has turned
out, however, as is often the case with pure mathematics, that there are nu-
merous applications of these results, particularly to problems in engineering.
Although we do not treat such applications, references are included in the
bibliography.

The Hardy–Hilbert space is the set of all analytic functions whose power
series have square-summable coefficients (Definition 1.1.1). This Hilbert space
of functions analytic on the disk is customarily denoted by H2. There are
Hp spaces (called Hardy spaces, in honor of G.H. Hardy) for each p ≥ 1
(and even for p ∈ (0, 1)). The only Hp space that is a Hilbert space is H2,
the most-studied of the Hardy spaces. We suggest that it should be called
the Hardy–Hilbert space. There are also other spaces of analytic functions,
including the Bergman and Dirichlet spaces. There has been much study of
all of these spaces and of various operators on them.

Our goal is to provide an elementary introduction that will be readable by
everyone who has understood first courses in complex analysis and in func-
tional analysis. We feel that the best way to do this is to restrict attention to
H2 and the operators on it, since that is the easiest setting in which to in-
troduce the essentials of the subject. We have tried to make the exposition as
clear, as self-contained, and as instructive as possible, and to make the proofs
sufficiently beautiful that they will have a permanent place in mathematics.
A reader who masters the material we present will have acquired a firm foun-
dation for the study of all spaces of analytic functions and all operators on
such spaces.

This book arose out of lecture notes from graduate courses that were given
at the University of Toronto. It should prove suitable as a textbook for courses
offered to beginning graduate students, or even to well-prepared advanced
undergraduates. We also hope that it will be useful for independent study by
students and by mathematicians who wish to learn a new field. Moreover, the
exposition should be accessible to students and researchers in those aspects
of engineering that rely on this material.
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It is our view that a course based on this text would appropriately con-
tribute to the general knowledge of any graduate student in mathematics,
whatever field the student might ultimately pursue. In addition, a thorough
understanding of this material will provide the necessary background for those
who wish to pursue research on related topics. There are a number of excellent
books, listed in the references, containing much more extensive treatments of
some of the topics covered. There are also references to selected papers of
interest. A brief guide to further study is given in the last chapter of this
book.

The mathematics presented in this book has its origins in complex analysis,
the foundations of which were laid by Cauchy almost 200 years ago. The study
of the Hardy–Hilbert space began in the early part of the twentieth century.
Hankel operators were first studied toward the end of the nineteenth century,
the study of Toeplitz operators was begun early in the twentieth century,
and composition operators per se were first investigated in the middle of the
twentieth century. There is much current research on properties of Toeplitz,
Hankel, composition, and related operators. Thus the material contained in
this book was developed by many mathematicians over many decades, and
still continues to be the subject of research.

Some references to the development of this subject are given in the “Notes
and Remarks” sections at the end of each chapter. We are greatly indebted to
the mathematicians cited in these sections and in the references at the end of
the book. Moreover, it should be recognized that many other mathematicians
have contributed ideas that have become so intrinsic to the subject that their
history is difficult to trace.

Our approach to this material has been strongly influenced by the books
of Ronald Douglas [16], Peter Duren [17], Paul Halmos [27], and Kenneth
Hoffman [32], and by Donald Sarason’s lecture notes [49]. The main reason
that we have written this book is to provide a gentler introduction to this
subject than appears to be available elsewhere.

We are grateful to a number of colleagues for useful comments on prelim-
inary drafts of this book; our special thanks to Sheldon Axler, Paul Bartha,
Jaime Cruz-Sampedro, Abie Feintuch, Olivia Gutú, Federico Menéndez-Conde,
Eric Nordgren, Steve Power, Heydar Radjavi, Don Sarason, and Nina Zor-
boska. Moreover, we would like to express our appreciation to Eric Nordgren
for pointing out several quite subtle errors in previous drafts. We also thank
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Sheldon Axler, Kenneth Ribet, and Mark Spencer for their friendly and en-
couraging editorial support, and Joel Chan for his TEXnical assistance.

It is very rare that a mathematics book is completely free of errors. We
would be grateful if readers who notice mistakes or have constructive criticism
would notify us by writing to one of the e-mail addresses given below. We
anticipate posting a list of errata on the website

http://www.math.toronto.edu/rosent

Rubén A. Mart́ınez-Avendaño
Centro de Investigación en Matemáticas

Universidad Autónoma del Estado de Hidalgo
Pachuca, Mexico

rubenma@uaeh.edu.mx

Peter Rosenthal
Department of Mathematics

University of Toronto
Toronto, Canada

rosent@math.toronto.edu

August 2006
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Chapter 1

Introduction

In this chapter, we introduce the main definitions and establish some fun-
damental properties of the Hardy–Hilbert space that we use throughout this
book. We also describe various results from functional analysis that are re-
quired, including some properties of the spectrum and of invariant subspaces.

1.1 The Hardy–Hilbert Space

The most familiar Hilbert space is called �2 and consists of the collection of
square-summable sequences of complex numbers. That is,

�2 =

{
{an}∞n=0 :

∞∑
n=0

|an|2 < ∞
}

.

Addition of vectors and multiplication of vectors by complex numbers is per-
formed componentwise. The norm of the vector {an}∞n=0 is

‖{an}∞n=0‖ =

( ∞∑
n=0

|an|2
)1/2

and the inner product of the vectors {an}∞n=0 and {bn}∞n=0 is

({an}∞n=0, {bn}∞n=0) =
∞∑

n=0

anbn.

The space �2 is separable, and all infinite-dimensional separable complex
Hilbert spaces are isomorphic to each other ([12, p. 20], [28, pp. 30–31], [55,
p. 90]). Nonetheless, it is often useful to consider particular Hilbert spaces
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that have additional structure. The space on which we will concentrate, the
Hardy–Hilbert space, is a separable Hilbert space whose elements are analytic
functions.

Definition 1.1.1. The Hardy–Hilbert space, to be denoted H2, consists of all
analytic functions having power series representations with square-summable
complex coefficients. That is,

H2 =

{
f : f(z) =

∞∑
n=0

anzn and
∞∑

n=0

|an|2 < ∞
}

.

The inner product on H2 is defined by

(f, g) =
∞∑

n=0

an bn

for

f(z) =
∞∑

n=0

anzn and g(z) =
∞∑

n=0

bnzn.

The norm of the vector f(z) =
∑∞

n=0 anzn is

‖f‖ =

( ∞∑
n=0

|an|2
)1/2

.

The mapping {an}∞n=0 �−→∑∞
n=0 anzn is clearly an isomorphism from �2

onto H2. Thus, in particular, H2 is a Hilbert space.

Theorem 1.1.2. Every function in H2 is analytic on the open unit disk.

Proof. Let f(z) =
∑∞

n=0 anzn and |z0| < 1; it must be shown that
∑∞

n=0 anzn
0

converges. Since |z0| < 1, the geometric series
∑∞

n=0 |z0|n converges. There
exists a K such that |an| ≤ K for all n (since {an} is in �2). Thus∑∞

n=0 |anzn
0 | ≤ K

∑∞
n=0 |z0|n; hence

∑∞
n=0 anzn

0 converges absolutely. �	

Notation 1.1.3. The open unit disk in the complex plane, {z ∈ C : |z| < 1},
will be denoted by D, and the unit circle, {z ∈ C : |z| = 1}, will be denoted
by S1.

The space H2 obviously contains all polynomials and many other analytic
functions.

Example 1.1.4. For each point eiθ0 ∈ S1, there is a function in H2 that is
not analytic at eiθ0 .
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Proof. Define fθ0 by

fθ0(z) =
∞∑

n=1

e−inθ0

n
zn for z ∈ D.

Since
{

e−inθ0

n

}
∈ �2, fθ0 ∈ H2. As z approaches eiθ0 from within D, |fθ0(z)|

approaches infinity. Hence there is no way of defining fθ0 so that it is analytic
at eiθ0 . �	

This example can be strengthened: there are functions in H2 that are not
analytic at any point in S1 (see Example 2.4.15 below).

It is easy to find examples of functions analytic on D that are not in H2.

Example 1.1.5. The function f(z) = 1
1−z is analytic on D but is not in H2.

Proof. Since 1
1−z =

∑∞
n=0 zn, the coefficients of f are not square-summable.

�	
Bounded linear functionals (i.e., continuous linear mappings from a linear

space into the space of complex numbers) are very important in the study of
linear operators. The “point evaluations” are particularly useful linear func-
tionals on H2.

Theorem 1.1.6. For every z0 ∈ D, the mapping f �−→ f(z0) is a bounded
linear functional on H2.

Proof. Fix z0 ∈ D. Note that the Cauchy–Schwarz inequality yields

|f(z0)| =

∣∣∣∣∣
∞∑

n=0

anzn
0

∣∣∣∣∣
≤
( ∞∑

n=0

|an|2
)1/2( ∞∑

n=0

|z0|2n

)1/2

=

( ∞∑
n=0

|z0|2n

)1/2

‖f‖.

It is obvious that evaluation at z0 is a linear mapping of H2 into C. Thus the
mapping is a bounded linear functional of norm at most

(∑∞
n=0 |z0|2n

)1/2. �	
The Riesz representation theorem states that every linear functional on

a Hilbert space can be represented by an inner product with a vector in the
space ([12, p. 13], [28, pp. 31–32], [55, p. 142]). This representation can be
explicitly stated for point evaluations on H2.
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Definition 1.1.7. For z0 ∈ D, the function kz0 defined by

kz0(z) =
∞∑

n=0

z0
nzn =

1
1 − z0 z

is called the reproducing kernel for z0 in H2.

It is obvious that kz0 ∈ H2. Point evaluations are representable as inner
products with reproducing kernels.

Theorem 1.1.8. For z0 ∈ D and f ∈ H2, f(z0) = (f, kz0) and ‖kz0‖ =(
1 − |z0|2

)−1/2.

Proof. Writing kz0 as
∑∞

n=0 z0
nzn yields

(f, kz0) =
∞∑

n=0

anzn
0 = f(z0),

and

‖kz0‖2 =
∞∑

n=0

|z0|2n.

Since
∞∑

n=0

|z0|2n =
1

1 − |z0|2 , it follows that ‖kz0‖ =
1

(1 − |z0|2)1/2
. �	

Our first application of reproducing kernels is in establishing the following
relationship between convergence in H2 and convergence as analytic func-
tions.

Theorem 1.1.9. If {fn} → f in H2, then {fn} → f uniformly on compact
subsets of D.

Proof. For a fixed z0 ∈ D, we have

|fn(z0) − f(z0)| = |(fn − f, kz0)| ≤ ‖fn − f‖ ‖kz0‖.

If K is a compact subset of D, then there exists an M such that ‖kz0‖ ≤ M

for all z0 ∈ K (M can be taken to be the supremum of 1√
1−|z0|2

for z0 ∈ K).

Hence
|fn(z0) − f(z0)| ≤ M‖fn − f‖ for all z0 ∈ K,

which clearly implies the theorem. �	
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Thus convergence in the Hilbert space norm implies convergence in the
standard topology on the space of all analytic functions on D.

The Hardy–Hilbert space can also be viewed as a subspace of another
well-known Hilbert space.

We denote by L2 = L2(S1) the Hilbert space of square-integrable functions
on S1 with respect to Lebesgue measure, normalized so that the measure of
the entire circle is 1. The inner product is given by

(f, g) =
1
2π

∫ 2π

0

f(eiθ) g(eiθ) dθ,

where dθ denotes the ordinary (not normalized) Lebesgue measure on [0, 2π].
Therefore the norm of the function f in L2 is given by

‖f‖ =
(

1
2π

∫ 2π

0

|f(eiθ)|2 dθ

)1/2

.

We use the same symbols to denote the norms and inner products of all the
Hilbert spaces we consider. It should be clear from the context which norm
or inner product is being used.

As is customary, we often abuse the language and view L2 as a space of
functions rather than as a space of equivalence classes of functions. We then
say that two L2 functions are equal when we mean they are equal almost
everywhere with respect to normalized Lebesgue measure. We will sometimes
omit the words “almost everywhere” (or “a.e.”) unless we wish to stress that
equality holds only in that sense.

For each integer n, let en(eiθ) = einθ, regarded as a function on S1. It
is well known that the set {en : n ∈ Z} forms an orthonormal basis for L2

([2, p. 24], [12, p. 21], [42, p. 48], [47, pp. 89–92]). We define the space H̃2 as
the following subspace of L2:

H̃2 = {f̃ ∈ L2 : (f̃ , en) = 0 for n < 0}.

That is, f̃ ∈ H̃2 if its Fourier series is of the form

f̃(eiθ) =
∞∑

n=0

aneinθ with
∞∑

n=0

|an|2 < ∞.

It is clear that H̃2 is a closed subspace of L2. Also, there is a natural iden-
tification between H̃2 and H2. Namely, we identify the function f̃ ∈ H̃2 hav-
ing Fourier series

∑∞
n=0 aneinθ with the analytic function f(z) =

∑∞
n=0 anzn.
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This identification is clearly an isomorphism between H2 and H̃2. Of course,
this identification, although natural, does not describe (at least in an obvious
way) the relationship between f ∈ H2 and f̃ ∈ H̃2 as functions. We proceed
to investigate this.

Let f̃ ∈ H̃2 have Fourier series
∑∞

n=0 aneinθ and f ∈ H2 have power
series f(z) =

∑∞
n=0 anzn. For 0 < r < 1, let fr be defined by

fr(eiθ) = f(reiθ) =
∞∑

n=0

anrneinθ.

Clearly, fr ∈ H̃2 for every such r.

Theorem 1.1.10. Let f̃ and fr be defined as above. Then

lim
r→1−

‖f̃ − fr‖ = 0 in H̃2.

Proof. Let ε > 0 be given. Since
∑∞

n=0 |an|2 < ∞, we can choose a natural
number n0 such that

∞∑
n=n0

|an|2 <
ε

2
.

Now choose s between 0 and 1 such that for every r ∈ (s, 1) we have

n0−1∑
n=0

|an|2(1 − rn)2 <
ε

2
.

Then, since

‖f̃ − fr‖2 =

∥∥∥∥∥
∞∑

n=0

(an − anrn)einθ

∥∥∥∥∥
2

=
∞∑

n=0

|an|2(1 − rn)2,

it follows that

‖f̃ − fr‖2 =
n0−1∑
n=0

|an|2(1 − rn)2 +
∞∑

n=n0

|an|2(1 − rn)2

<
ε

2
+

∞∑
n=n0

|an|2

<
ε

2
+

ε

2
= ε.

�	
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An important consequence is the following.

Corollary 1.1.11. For each f in H2, there exists an increasing sequence {rn}
of positive numbers converging to 1 such that

lim
n→∞ f

(
rneiθ
)

= f̃
(
eiθ
)

for almost all θ.

Proof. It is well known that convergence in L2 implies that a subsequence
converges pointwise almost everywhere [47, p. 68], so this follows from the
previous theorem. �	

We prove a stronger result at the end of this section: lim
r→1−

f(reiθ) = f̃(eiθ)

for almost all θ (that is, not just for a subsequence {rn} → 1).
There is an alternative definition of the Hardy–Hilbert space.

Theorem 1.1.12. Let f be analytic on D. Then f ∈ H2 if and only if

sup
0<r<1

1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣2 dθ < ∞.

Moreover, for f ∈ H2,

‖f‖2 = sup
0<r<1

1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣2 dθ.

Proof. Let f be an analytic function on D with power series

f(z) =
∞∑

n=0

anzn.

Then, for 0 < r < 1,

|f(reiθ)|2 =
∞∑

n=0

∞∑
m=0

anamrn+mei(n−m)θ.

Since
1
2π

∫ 2π

0

ei(n−m)θdθ = δn,m,

integrating the expression above for |f(reiθ)|2 and dividing by 2π results in

1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣2 dθ =

∞∑
n=0

|an|2r2n.
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If f ∈ H2, then
∑∞

n=0 |an|2r2n ≤ ‖f‖2 for every r in [0, 1). Thus

sup
0<r<1

1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣2 dθ ≤ ‖f‖2 < ∞.

Conversely, assume that the above supremum is finite. As shown above,

1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣2 dθ =

∞∑
n=0

|an|2r2n.

If f /∈ H2, the right-hand side can be made arbitrarily large by taking r close
to 1. This would contradict the assumption that the supremum of the left side
of the equation is finite.

Note that the above also shows that, for f ∈ H2,

‖f‖2 = sup
0<r<1

1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣2 dθ.

�	

Corollary 1.1.13. For any function f analytic on the disk, the function

M(r) =
1
2π

∫ 2π

0

|f(reiθ)|2 dθ

is increasing. Therefore lim
r→1−

M(r) = sup
0<r<1

M(r), and hence the function f

is in H2 if and only if lim
r→1−

M(r) < ∞, in which case lim
r→1−

M(r) = ‖f‖2.

Proof. This follows immediately from the formula

1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣2 dθ =

∞∑
n=0

|an|2r2n

established in the course of the proof of the preceding theorem. �	

The next example will be useful in computing eigenvectors of hyperbolic
composition operators (see Theorem 5.4.10 in Chapter 5).

Example 1.1.14. For s ∈ (0, 1
2 ), the function

1
(1 − z)s

is in H2. (Recall that (1 − z)s = exp(s log(1 − z)), where log denotes the
principal branch of the logarithm.)
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Proof. Fix any s in (0, 1
2 ) and let

f(z) =
1

(1 − z)s
.

For each r, let

M(r) =
1
2π

∫ 2π

0

|f(reiθ)|2dθ.

By Theorem 1.1.12, it suffices to show that there exists an M such that
M(r) ≤ M for all r ∈ (0, 1).

Fix an r. An easy computation gives

|1 − reiθ|2 = 1 + r2 − 2r cos θ,

so ∣∣∣∣ 1
(1 − reiθ)s

∣∣∣∣2 =
1

(1 + r2 − 2r cos θ)s
.

To estimate M(r), first note that the periodicity of cosine implies that

1
2π

∫ 2π

0

dθ

(1 + r2 − 2r cos θ)s
=

1
π

∫ π

0

dθ

(1 + r2 − 2r cos θ)s

=
1
π

∫ π
2

0

dθ

(1 + r2 − 2r cos θ)s
+

1
π

∫ π

π
2

dθ

(1 + r2 − 2r cos θ)s
.

We separately estimate each of these integrals. To estimate the first inte-
gral, begin by noting that 1 + r2 − 2r cos θ = (r − cos θ)2 + sin2 θ, which is
greater than or equal to sin2 θ. Hence

1
π

∫ π
2

0

dθ

(1 + r2 − 2r cos θ)s
≤ 1

π

∫ π
2

0

dθ

sin2s θ
.

To see that this latter integral converges, write

1
π

∫ π
2

0

dθ

sin2s θ
=

1
π

∫ π
4

0

dθ

sin2s θ
+

1
π

∫ π
2

π
4

dθ

sin2s θ
.

It suffices to show that
1
π

∫ π
4

0

dθ

sin2s θ
converges.

It is easily verified that θ ≤ tan θ for θ ∈ [0, π
2 ). Hence sin θ ≥ θ cos θ, so,

for θ ∈ [0, π
4 ), sin θ ≥ 1√

2
θ. Therefore

1
π

∫ π
4

0

dθ

sin2s θ
≤ 2s

π

∫ π
4

0

dθ

θ2s
.
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As is well known and easily verified,∫ π
4

0

dθ

θ2s

converges when 2s < 1, and thus when s < 1
2 .

We must now estimate

1
π

∫ π

π
2

dθ

(1 + r2 − 2r cos θ)s
.

Since cos θ ≤ 0 for θ ∈ [π
2 , π],

1 + r2 − 2r cos θ ≥ 1 + r2

for such θ. Therefore

1
π

∫ π

π
2

dθ

(1 + r2 − 2r cos θ)s
≤ 1

π

∫ π

π
2

dθ

(1 + r2)s
≤ 1

2(1 + r2)s
≤ 1

2
.

Thus, for every r ∈ [0, 1),

M(r) ≤ 1
π

∫ π
2

π
4

dθ

sin2s θ
+

2s

π

∫ π
4

0

dθ

θ2s
+

1
2
.

Since this bound on M(r) is independent of r, it follows from Theorem 1.1.12
that f is in H2. �	

Another space of analytic functions arises in the study of operators on H2.

Definition 1.1.15. The space H∞ consists of all the functions that are ana-
lytic and bounded on the open unit disk. The vector operations are the usual
pointwise addition of functions and multiplication by complex scalars. The
norm of a function f in H∞ is defined by ‖f‖∞ = sup {|f(z)| : z ∈ D}.

Since convergence in the norm on H∞ implies uniform convergence on the
disk, it is easily seen that H∞ is a Banach space.

Corollary 1.1.16. Every function in H∞ is in H2.

Proof. This follows immediately from the characterization of H2 given in
Theorem 1.1.12. �	

We shall see that multiplication by a function in H∞ induces a bounded
linear operator on H2. Such operators, called analytic Toeplitz operators, play
an important role in the sequel (see Chapter 3).
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Theorem 1.1.17. If f ∈ H∞ and f is not a constant, then |f(z)| < ‖f‖∞
for all z ∈ D.

Proof. This is an immediate consequence of the maximum modulus theorem
([9, pp. 79, 128], [47, p. 212]). �	

The following interesting collection of functions in H∞ will be used, in
combination with the functions of Example 1.1.14, in describing eigenvectors
of hyperbolic composition operators (see Theorem 5.4.10 in Chapter 5).

Example 1.1.18. For each real number t, the function(
1 + z

1 − z

)it

is in H∞. (Recall that wit = exp(it log w), where log is the principal branch
of the logarithm.)

Proof. Note that, for every z ∈ D, the number

w =
1 + z

1 − z

is in the open right half-plane. For each such w,

wit = exp(it log w) = exp(it(log r + iθ)),

where w = reiθ and θ is in (−π
2 , π

2 ). It follows that |wit| = exp(−tθ), which is

at most exp
(

|t|π
2

)
. Hence∣∣∣∣∣

(
1 + z

1 − z

)it
∣∣∣∣∣ ≤ exp

( |t|π
2

)
for all z ∈ D. �	

Reproducing kernels can be used to give a proof of a special case of the
Cauchy integral formula.

Theorem 1.1.19 (Cauchy Integral Formula). If f is analytic on an open
set containing D and z0 ∈ D, then

f(z0) =
1

2πi

∫
S1

f(z)
z − z0

dz.
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Proof. Since f is analytic on D, Corollary 1.1.11 implies that f̃(eiθ) = f(eiθ)
for all θ. Note that kz0 is continuous on D, and therefore

k̃z0(e
iθ) =

1
1 − z0eiθ

.

For z0 ∈ D,

f(z0) = (f, kz0) =
(
f̃ , k̃z0

)
=

1
2π

∫ 2π

0

f̃(eiθ)k̃z0(eiθ) dθ

=
1
2π

∫ 2π

0

f̃(eiθ)
1

1 − z0 e−iθ
dθ

=
1

2πi

∫ 2π

0

f̃(eiθ)
eiθ − z0

ieiθ dθ.

Letting z = eiθ, this expression becomes

1
2πi

∫
S1

f̃(z)
z − z0

dz.

Thus

f(z0) =
1

2πi

∫
S1

f̃(z)
z − z0

dz.

Since f(z) = f̃(z) when |z| = 1, we have

f(z0) =
1

2πi

∫
S1

f(z)
z − z0

dz.

�	

A similar approach can be taken to the Poisson integral formula.

Definition 1.1.20. For 0 ≤ r < 1 and ψ ∈ [0, 2π], the Poisson kernel is
defined by

Pr(ψ) =
1 − r2

1 − 2r cos ψ + r2
.

Observe that Pr(ψ) > 0 for all r ∈ [0, 1) and all ψ, since

1 − r2 > 0 and 1 − 2r cos ψ + r2 ≥ (1 − r)2 > 0.

Theorem 1.1.21 (Poisson Integral Formula). If f is in H2 and reit is
in D, then

f(reit) =
1
2π

∫ 2π

0

f̃(eiθ)Pr(θ − t) dθ.
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Proof. Let z0 ∈ D. Since

k̃z0(e
iθ) =

1
1 − z0eiθ

,

we have

f(z0) = (f, kz0) =
(
f̃ , k̃z0

)
=

1
2π

∫ 2π

0

f̃(eiθ)
1 − z0e−iθ

dθ.

But
1

1 − z0e−iθ
= 1 + z0e

−iθ + z2
0e−2iθ + z3

0e−3iθ + · · · ,

so the function
1

1 − z0e−iθ
− 1

has all its Fourier coefficients corresponding to negative indices equal to 0. It
is therefore orthogonal to f̃ , so

1
2π

∫ 2π

0

f̃(eiθ)
(

1
1 − z0e−iθ

− 1
)

dθ = 0.

Adding this integral to the one displayed above for f(z0) yields

f(z0) =
1
2π

∫ 2π

0

f̃(eiθ)
(

1
1 − z0e−iθ

+
1

1 − z0eiθ
− 1
)

dθ.

If z0 = reit, a very straightforward calculation shows that

1
1 − z0e−iθ

+
1

1 − z0eiθ
− 1 =

1 − r2

1 − 2r cos(θ − t) + r2
.

But

Pr(θ − t) =
1 − r2

1 − 2r cos(θ − t) + r2
,

so

f(reit) =
1
2π

∫ 2π

0

f̃(eiθ)Pr(θ − t) dθ.

�	

The following fact will be needed in subsequent applications of the above
theorem.

Corollary 1.1.22. For r ∈ [0, 1) and t any real number,

1
2π

∫ 2π

0

Pr(θ − t) dθ = 1.
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Proof. This is an immediate application of Theorem 1.1.21 to the case where
f is the constant function 1. �	
Definition 1.1.23. The measurable function φ on S1 is essentially bounded
if there exists some M0 such that the measure of

{eiθ : |φ(eiθ)| > M0}

is 0. The space L∞ is the collection of all (equivalence classes modulo sets
of measure zero of) essentially bounded measurable functions. The essential
norm of the function φ ∈ L∞, denoted ‖φ‖∞, is defined by

‖φ‖∞ = inf
{
M : the measure of {eiθ : |φ(eiθ)| > M} is 0

}
.

Observe that, for φ ∈ L∞, the inequality |φ(eiθ)| ≤ ‖φ‖∞ holds for almost
all θ.

Corollary 1.1.24. Let f ∈ H2 and suppose that |f̃(eiθ)| ≤ K a.e. Then
|f(z)| ≤ K for all z ∈ D. In particular, a function in H2 whose boundary
function is in L∞ must be in H∞.

Proof. Recall that Pr(θ) > 0 for all θ and 0 ≤ r < 1. For reit ∈ D, applying
the Poisson integral formula (Theorem 1.1.21) to f yields

|f(reit)| =
∣∣∣∣ 1
2π

∫ 2π

0

f̃(eiθ)Pr(θ − t) dθ

∣∣∣∣
≤ 1

2π

∫ 2π

0

|f̃(eiθ)|Pr(θ − t) dθ

≤ K
1
2π

∫ 2π

0

Pr(θ − t) dθ

= K,

by the previous corollary. Therefore |f(z)| ≤ K for all z ∈ D, as desired. �	
To further clarify the relation between f and f̃ requires a theorem known

as Fatou’s theorem, which we prove below.
First, recall the following definition.

Definition 1.1.25. Let α be a complex-valued function of a real variable.
The symmetric derivative of α at t is defined to be

lim
h→0

α(t + h) − α(t − h)
2h

,

if the limit exists.
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Clearly, if α is differentiable at t the symmetric derivative will exist and
will equal α′(t), since

α(t + h) − α(t)
h

+
α(t − h) − α(t)

−h
= 2

α(t + h) − α(t − h)
2h

.

The converse is not true in general (see Exercise 1.9).
We require a generalization of the Riemann integral known as the Riemann–

Stieltjes integral, defined as follows. Let α be a complex-valued function
having bounded variation on the interval [a, b]. (This is equivalent to the
real and imaginary parts of α having bounded variation, and a real-valued
function has bounded variation if and only if it is the difference of two
nondecreasing functions on the interval.) For f any continuous function on
[a, b], the Riemann–Stieltjes integral of f with respect to α, denoted by∫ b

a
f(t) dα(t), is defined to be the limit of Riemann–Stieltjes sums of the form∑n−1
i=0 f(ti)(α(xi+1) − α(xi)), where each ti is in [xi, xi+1], as the mesh of

the partition {x0, x1, x2, . . . , xn} goes to 0. The proof of the existence of the
Riemann–Stieltjes integral of a continuous function with respect to a nonde-
creasing function α is essentially the same as the proof of the existence of
the ordinary Riemann integral, and the extension to general α of bounded
variation follows by linearity. (See Apostol [3] for an excellent discussion of
Riemann–Stieltjes integrals.)

The basic relationship between a function in H2 and its boundary values
will be obtained as a consequence of the following theorem.

Theorem 1.1.26 (Fatou’s Theorem). Let α be a complex-valued function
of bounded variation on [0, 2π] and let u be the function defined on the open
unit disk by

u(reit) =
1
2π

∫ 2π

0

Pr(θ − t) dα(θ).

If the symmetric derivative of α exists at t0 ∈ (0, 2π), then

lim
r→1−

u(reit0)

exists and equals the symmetric derivative of α at t0.

Proof. We need to extend α to the entire real line. Define α on the interval
(k2π, (k+1)2π] for each postive integer k, and on the interval [k2π, (k+1)2π)
for each negative integer k, as

α(θ) = α(θ − k2π) + k(α(2π) − α(0)).
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With this extension of α it can be readily verified that, for each integer k,
interval [a, b], and continuous function f of period 2π,∫ b

a

f(θ) dα(θ) =
∫ b+k2π

a+k2π

f(θ) dα(θ).

To proceed with the proof, let L be the symmetric derivative of α at t0

and let ε > 0. We shall show that there exists s ∈ (0, 1) such that

|u(reit0) − L| < ε for all r ∈ [s, 1).

Since the symmetric derivative of α exists at t0, we can choose δ > 0 (but
also keep δ < π) such that∣∣∣∣α(t0 + h) − α(t0 − h)

2h
− L

∣∣∣∣ < ε

8
if 0 < |h| < δ.

Recall that
1
2π

∫ 2π

0

Pr(θ − t) dθ = 1.

Thus

u(reit0) − L =
1
2π

∫ 2π

0

Pr(θ − t0) (dα(θ) − L dθ).

Using the property of the extended function α and the fact that Pr is a
periodic function with period 2π, the last expression becomes, after a change
of variables,

u(reit0) − L =
1
2π

∫ 2π

0

Pr(ψ) (dα(ψ + t0) − L dψ).

We will separate this integral into several parts. Using the positive number
δ obtained above and the triangle inequality, we get

∣∣u(reit0) − L
∣∣ ≤ ∣∣∣∣∣ 1

2π

∫ δ

0

Pr(ψ) (dα(ψ + t0) − L dψ)

+
1
2π

∫ 2π

2π−δ

Pr(ψ) (dα(ψ + t0) − L dψ)
∣∣∣∣

+

∣∣∣∣∣ 1
2π

∫ 2π−δ

δ

Pr(ψ) (dα(ψ + t0) − L dψ)

∣∣∣∣∣ .
We first prove that the last term can be made small by taking r sufficiently

close to 1. For all ψ ∈ [δ, 2π − δ], it is clear that
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1 − 2r cos ψ + r2 ≥ 1 − 2r cos δ + r2.

Since
lim

r→1−
(1 − 2r cos δ + r2) = 2 − 2 cos δ > 0,

there exists a positive real number η and a number s1 ∈ (0, 1) such that

1 − 2r cos ψ + r2 ≥ 1 − 2r cos δ + r2 ≥ η > 0

for all ψ ∈ [δ, 2π − δ] and r ∈ [s1, 1). Hence

Pr(ψ) ≤ 1
η
(1 − r2) for ψ ∈ [δ, 2π − δ] and r ∈ [s1, 1).

Therefore,∣∣∣∣∣ 1
2π

∫ 2π−δ

δ

Pr(ψ) (dα(ψ + t0) − L dψ)

∣∣∣∣∣ ≤ 1 − r2

2πη

∫ 2π−δ

δ

|dα(ψ + t0) − L dψ| .

Since (1 − r2) goes to 0 as r → 1−, we can choose s2 ∈ [s1, 1) such that

1 − r2

2πη

∫ 2π−δ

δ

|dα(ψ + t0) − L dψ| <
ε

2

for all r ∈ [s2, 1). Hence∣∣∣∣∣ 1
2π

∫ 2π−δ

δ

Pr(ψ) (dα(ψ + t0) − L dψ)

∣∣∣∣∣ < ε

2
for all r ∈ [s2, 1).

By periodicity, we obtain

1
2π

∫ δ

0

Pr(ψ) (dα(ψ + t0) − L dψ) +
1
2π

∫ 2π

2π−δ

Pr(ψ) (dα(ψ + t0) − L dψ)

=
1
2π

∫ δ

−δ

Pr(ψ) (dα(ψ + t0) − L dψ).

Integration by parts of this last integral results in

1
2π

∫ δ

−δ

Pr(ψ) (dα(ψ + t0) − L dψ)

=
1
2π

(Pr(δ)(α(δ + t0) − Lδ) − Pr(−δ)(α(−δ + t0) + Lδ))

− 1
2π

∫ δ

−δ

(α(ψ + t0) − Lψ)
dPr

dψ
dψ.
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Observe that, since Pr(δ) = Pr(−δ) and, as shown above, Pr(δ) ≤ 1−r2

η ,
we have∣∣∣∣ 1

2π
(Pr(δ)(α(δ + t0) − Lδ) − Pr(−δ)(α(−δ + t0) + Lδ))

∣∣∣∣
≤ 1 − r2

2πη
|α(δ + t0) − Lδ − α(−δ + t0) − Lδ)| .

Since (1 − r2) approaches 0 as r approaches 1 from below, we can choose
s ∈ [s2, 1) such that

1 − r2

2πη
|α(δ + t0) − Lδ − α(−δ + t0) − Lδ)| <

ε

4

for all r ∈ [s, 1). Hence∣∣∣∣ 1
2π

(Pr(δ)(α(δ + t0) − Lδ) − Pr(−δ)(α(−δ + t0) + Lδ))
∣∣∣∣ < ε

4
for all r ∈ [s, 1).

Define the function Dr(ψ) by

Dr(ψ) =
dPr

dψ
= − (1 − r2)(2r sin ψ)

(1 − 2r cos ψ + r2)2
.

Clearly Dr(ψ) < 0 for all r ∈ [0, 1) and all ψ ∈ [0, δ] (recall that δ < π). Since
Dr(ψ) = −Dr(−ψ), the change of variables ψ = −ω yields

1
2π

∫ 0

−δ

(α(ψ + t0) − Lψ) Dr(ψ) dψ

=
1
2π

∫ 0

δ

(α(−ω + t0) + Lω) (−Dr(ω))(−dω)

= − 1
2π

∫ δ

0

(α(t0 − ω) + Lω) Dr(ω)dω.

We now compute

1
2π

∫ δ

−δ

(α(ψ + t0) − Lψ) Dr(ψ) dψ

=
1
2π

∫ 0

−δ

(α(ψ + t0) − Lψ) Dr(ψ) dψ +
1
2π

∫ δ

0

(α(ψ + t0) − Lψ) Dr(ψ) dψ

=
1
2π

∫ δ

0

(α(t0 + ψ) − α(t0 − ψ) − 2Lψ) Dr(ψ) dψ

=
1
2π

∫ δ

0

(
α(t0 + ψ) − α(t0 − ψ)

2ψ
− L

)
2ψDr(ψ) dψ.
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Hence∣∣∣∣∣ 1
2π

∫ δ

−δ

(α(ψ + t0) − Lψ)
dPr

dψ
dψ

∣∣∣∣∣
≤ 1

2π

∫ δ

0

∣∣∣∣α(t0 + ψ) − α(t0 − ψ)
2ψ

− L

∣∣∣∣ (−2ψDr(ψ)) dψ

≤
(ε

8

) 1
2π

∫ δ

0

(−2ψDr(ψ)) dψ.

An integration by parts gives∫ δ

0

ψDr(ψ) dψ = δPr(δ) −
∫ δ

0

Pr(ψ) dψ,

and hence∣∣∣∣∣ 1
2π

∫ δ

−δ

(α(ψ + t0) − Lψ)
d

dψ
Pr(ψ) dψ

∣∣∣∣∣ ≤ (ε

8

) 1
2π

∫ δ

0

(−2ψDr(ψ)) dψ

=
(ε

8

) −2
2π

(
δPr(δ) −

∫ δ

0

Pr(ψ) dψ

)

≤
(ε

8

) 1
2π

2
∫ δ

0

Pr(ψ) dψ

≤
(ε

8

) 1
2π

2(2π)

=
ε

4
.

Thus, for r ∈ [s, 1), we have

∣∣u(reit0) − L
∣∣ ≤ ∣∣∣∣∣ 1

2π

∫ δ

−δ

Pr(ψ) (dα(ψ + t0) − L dψ)

∣∣∣∣∣
+

∣∣∣∣∣ 1
2π

∫ 2π−δ

δ

Pr(ψ) (dα(ψ + t0) − L dψ)

∣∣∣∣∣
≤
∣∣∣∣∣ 1
2π

∫ 2π−δ

δ

Pr(ψ) (dα(ψ + t0) − L dψ)

∣∣∣∣∣
+
∣∣∣∣ 1
2π

(Pr(δ)(α(δ + t0) − Lδ) − Pr(−δ)(α(−δ + t0) + Lδ))
∣∣∣∣

+

∣∣∣∣∣ 1
2π

∫ δ

−δ

(α(ψ + t0) − Lψ)
dPr

dψ
dψ

∣∣∣∣∣
<

ε

2
+

ε

4
+

ε

4
= ε.
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Therefore, if r ∈ [s, 1), we have |u(reit0) − L| < ε. �	

We state the following special case of Fatou’s theorem for future reference.

Corollary 1.1.27. Let φ be a function in L1(S1, dθ). Define u by

u(reit) =
1
2π

∫ 2π

0

Pr(θ − t)φ(eiθ) dθ.

Then
lim

r→1−
u(reit)

exists for almost all t and equals φ(eit) a.e.

Proof. Define α by

α(θ) =
∫ θ

0

φ(eix) dx.

Then α has bounded variation (it is, in fact, absolutely continuous) and
α′(θ) = φ(eiθ) a.e. Thus Fatou’s theorem (Theorem 1.1.26) gives the result.

�	

The following corollary is an important application of Fatou’s theorem. It
is often convenient to identify H2 with H̃2; in some contexts, we will refer to
f and its boundary function f̃ interchangeably. The next corollary provides
further justification for this identification.

Corollary 1.1.28. If f ∈ H2, then lim
r→1−

f(reiθ) = f̃(eiθ) for almost all θ.

Proof. Recall that if f ∈ H2, then

f(reiθ) =
1
2π

∫ 2π

0

Pr(θ − t)f̃(eiθ) dθ

(by the Poisson integral formula; see Theorem 1.1.21). Thus the previous
corollary yields lim

r→1−
f(reiθ) = f̃(eiθ) a.e. �	

Corollary 1.1.29. If f ∈ H∞, then f̃ ∈ L∞.

Proof. It follows from the above corollary (Corollary 1.1.28) that the essential
supremum of f̃ is at most ‖f‖∞. �	

Definition 1.1.30. The space H̃∞ is defined to be H̃2
⋂

L∞.

The notation H̃∞ is justified since, by Corollaries 1.1.24 and 1.1.29, f is
in H∞ if and only f̃ is in H̃∞.
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1.2 Some Facts from Functional Analysis

In this section we introduce some basic facts from functional analysis that
we will use throughout this book. We require the fundamental properties of
bounded linear operators on Hilbert spaces. When we use the term “bounded
linear operator”, we mean a bounded linear operator taking a Hilbert space
into itself (although many of the definitions and theorems below apply to
bounded linear operators on arbitrary Banach spaces). When talking about
operators on an arbitrary Hilbert space, we use H to denote the Hilbert space.

The spectrum of an operator is one of the fundamental concepts in operator
theory.

Definition 1.2.1. If A is a bounded linear operator on a Hilbert space H,
the spectrum of A, denoted by σ(A), is the set of all complex numbers λ such
that A − λ is not invertible. (The notation A − λ is shorthand for A − λI,
where I is the identity operator on H.)

Definition 1.2.2. Let A be a bounded linear operator. The spectral radius of
A, denoted by r(A), is

r(A) = sup {|λ| : λ ∈ σ(A)} .

As we note below, the spectrum is nonempty and bounded, and thus the
spectral radius is well-defined. Various parts of the spectrum are important.

Definition 1.2.3. The complex number λ is an eigenvalue of the bounded
operator A if Af = λf for some nonzero f ; the vector f is then said to be an
eigenvector of A. The set of all eigenvalues of A is called the point spectrum of
A and is denoted by Π0(A). The approximate point spectrum is the set Π(A)
of complex numbers λ such that there exists a sequence {fn} of unit vectors
satisfying {‖(A − λ)fn‖} → 0 as n → ∞.

The following properties of spectra are very elementary and very well
known.

Theorem 1.2.4. Let A be a bounded linear operator.

(i) If ‖1 − A‖ < 1, then A is invertible.

(ii) The spectrum of A is a nonempty compact subset of C.
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(iii) If A is an invertible operator, then

σ(A−1) =
{

1
λ

: λ ∈ σ(A)
}

.

(iv) If A∗ denotes the Hilbert space adjoint of A, then

σ(A∗) =
{
λ : λ ∈ σ(A)

}
.

(v) The spectral radius formula holds:

r(A) = lim
n→∞ ‖An‖1/n.

In particular, r(A) ≤ ‖A‖.

(vi) If A is an operator on a finite-dimensional space, then σ(A) = Π0(A) (for
operators on infinite-dimensional spaces, Π0(A) may be the empty set).

(vii) The number λ is in Π(A) if and only if A − λ is not bounded below; i.e.,
there is no constant c > 0 such that ‖(A − λ)f‖ ≥ c‖f‖ for all f ∈ H.
Moreover, A−λ is bounded below if and only if A−λ is injective and the
range of A−λ is closed. In particular, Π0(A) ⊂ Π(A) and Π(A) ⊂ σ(A).

Proof. Proofs of the above assertions can be found in most introductory func-
tional analysis textbooks. In particular, see [12, pp. 195–198], [42, pp. 188–
194], [48, pp. 252–255], and [55, Chapter V]. �	

The following part of the spectrum is not quite as widely studied as those
mentioned above.

Definition 1.2.5. The compression spectrum, denoted by Γ (A), is the set of
complex numbers λ such that A − λ does not have dense range.

Theorem 1.2.6. For every bounded linear operator A, σ(A) = Π(A)∪Γ (A).

Proof. Clearly both Π(A) and Γ (A) are contained in σ(A). If λ is not in
Π(A), it follows that A − λ is bounded below, and hence that A − λ is one-
to-one and has closed range. If, in addition, λ is not in Γ (A), then A− λ has
dense range. But if A−λ has closed range and dense range, then A−λ maps
onto H. Since A−λ is also injective, this implies that A−λ is invertible; i.e.,
λ is not in σ(A). �	

Theorem 1.2.7. For every bounded linear operator A, the boundary of σ(A)
is contained in Π(A). In particular, Π(A) is nonempty.
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Proof. Let λ be in the boundary of σ(A) and assume that λ 
∈ Π(A). Choose
a sequence {λn} → λ such that λn 
∈ σ(A) for every natural number n.

We claim that there exists a constant k > 0 and a positive integer M such
that

‖(A − λn)f‖ ≥ k‖f‖ for all f ∈ H whenever n ≥ M.

If this were false, then for every ε > 0 and every natural M there would exist
an n ≥ M and an fn of norm 1 such that

‖(A − λn)fn‖ <
ε

2
.

Given any ε > 0, choose a natural number M such that |λn − λ| < ε
2 for all

n ≥ M . With this ε and M , choose n and fn as above. Then

‖(A − λ)fn‖ ≤ ‖(A − λn)fn‖ + ‖(λn − λ)fn‖ < ε.

But this would imply that λ ∈ Π(A), which would be a contradiction, so the
claim is proved.

To contradict the assumption λ /∈ Π(A), we now show that λ 
∈ Γ (A)
(since λ ∈ σ(A) = Π(A)∪Γ (A), this is a contradiction). Choose any vector g

different from 0. We must show that g is in the closure of the range of (A−λ).
Given ε > 0, we can choose N sufficiently large (in fact, larger than M) such
that if n ≥ N then

|λn − λ| <
k

‖g‖ ε.

Since λn 
∈ σ(A), there exists fn ∈ H with (A−λn)fn = g. The claim then
implies that ‖g‖ ≥ k‖fn‖ for all n ≥ N . Then

‖(A − λ)fn − g‖ = ‖ ((A − λn)fn − g) + (λn − λ)fn‖
= |λn − λ| ‖fn‖
≤ 1

k
‖g‖ |λn − λ|

< ε.

Hence g is in the closure of the range of (A − λ). Thus λ /∈ Γ (A). �	
The numerical range of an operator is not as important as the spectrum,

but it is very useful in several contexts.

Definition 1.2.8. The numerical range of A, denoted by W (A), is the fol-
lowing subset of the complex plane:

{(Af, f) : f ∈ H, ‖f‖ = 1} .



24 1 Introduction

The most fundamental property of the numerical range is the following.

Theorem 1.2.9 (Toeplitz–Hausdorff Theorem). The numerical range
of a bounded linear operator is a convex subset of the complex plane.

Proof. There are several well-known elementary proofs of this theorem (cf. [27,
p. 113], [80]). �	

Example 1.2.10. If A is a finite diagonal matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎝
d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0

..
.

..
.

..
.

... ..
.

0 0 · · · · · · dn

⎞⎟⎟⎟⎟⎟⎟⎠ ,

then W (A) is the convex hull of {d1, d2, . . . , dn}.

Proof. If f = (f1, f2, f3, . . . , fn), then (Af, f) =
∑n

i=1 di|fi|2. �	

Thus, in the case of finite diagonal matrices, the numerical range is the
convex hull of the spectrum of A.

Theorem 1.2.11. For every operator A, σ(A) ⊂ W (A) (i.e., the closure of
the numerical range).

Proof. As was mentioned above, σ(A) = Π(A)∪Γ (A) (by Theorem 1.2.6). We
first prove that Π(A) ⊂ W (A). Let λ ∈ Π(A). Then there exists a sequence
{fn} in H such that ‖fn‖ = 1 for all n and {‖(A − λ)fn‖} → 0 as n → ∞.
But then

|(Afn, fn) − λ| = | (Afn, fn) − λ(fn, fn) | = | ((A − λ)fn, fn) | ≤ ‖(A−λ)fn‖.

This implies that, as n → ∞, {(Afn, fn)} → λ; i.e., λ ∈ W (A). Therefore
Π(A) ⊂ W (A).

Now we prove that Γ (A) ⊂ W (A). Let λ ∈ Γ (A). Since A − λ does not
have dense range, it follows that there exists a nonzero vector g ∈ H with
‖g‖ = 1 such that g is orthogonal to (A − λ)f for all f ∈ H. That is, for all
f ∈ H, ((A − λ)f, g) = 0. In particular, taking f to be g yields

0 = ((A − λ)g, g) = (Ag, g) − λ(g, g) = (Ag, g) − λ.

Thus (Ag, g) = λ; i.e., λ ∈ W (A). This concludes the proof. �	
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The following is a generalization of Example 1.2.10.

Theorem 1.2.12. If A is normal, then W (A) (the closure of the numerical
range of A) is the convex hull of σ(A).

Proof. By one form of the spectral theorem ([12, p. 272], [41, p. 13], [42,
p. 246]), we may assume that A is multiplication by an L∞(X, dµ) function
φ acting on a space L2(X, dµ) for some measurable subset X of the complex
plane and some measure dµ on it.

We know that σ(A) ⊂ W (A) by the previous theorem. By the Toeplitz–
Hausdorff theorem (Theorem 1.2.9), it follows that the convex hull of σ(A) is
also contained in W (A).

To prove the opposite inclusion, it suffices to prove that every closed half-
plane in C that contains σ(A) also contains W (A). By rotation and trans-
lation, assume that σ(A) is contained in the right-hand plane Re z ≥ 0. We
need only show that W (A) is contained in this half-plane.

But if A = Mφ is multiplication by φ, then σ(A) = σ(Mφ) is the essen-
tial range of the function φ (this fact is discussed in the special context of
Lebesgue-measurable functions on S1 in Theorem 3.1.6 below; the proof in
the general situation is exactly the same as in that special case). It follows
that Reφ ≥ 0 almost everywhere. Therefore

(Af, f) = (Mφf, f) =
∫

X

φ |f |2dµ.

Thus Re (Af, f) ≥ 0. �	

We will be considering invariant subspaces of various operators.

Definition 1.2.13. By a subspace of a Hilbert space, we mean a subset of
the space that is closed in the topological sense in addition to being closed
under the vector space operations. By a linear manifold we mean a subset
that is closed under the vector operations but is not necessarily closed in the
topology.

We will often have occasion to consider the smallest subspace containing
a given collection of vectors.

Definition 1.2.14. If S is any nonempty subset of a Hilbert space, then the
span of S, often denoted by∨

{f : f ∈ S} or
∨

S,
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is the intersection of all subspaces containing S. It is obvious that
∨S is

always a subspace.

Definition 1.2.15. If A is an operator and M is a subspace, we say that M
is an invariant subspace of A if AM ⊂ M. That is, M is invariant under A if
f ∈ M implies Af ∈ M.

The trivial subspaces, {0} and H, are invariant under every operator. One
of the most famous unsolved problems in analysis (the invariant subspace
problem) is the question whether every bounded linear operator on an infinite-
dimensional Hilbert space has a nontrivial invariant subspace.

Notation 1.2.16. If M is an invariant subspace of the operator A, then A
∣∣
M

is the restriction of the operator A to M.

Definition 1.2.17. Given a vector f and a bounded linear operator A, the
invariant subspace generated by f is the subspace

∞∨
n=0

{Anf}.

We say that an invariant subspace M of A is cyclic if there is a vector g such
that M =

∨∞
n=0{Ang}. If

∞∨
n=0

{Ang} = H,

we say that g is a cyclic vector for A.

Clearly, the invariant subspace problem can be rephrased: does every
bounded linear operator on Hilbert space have a noncyclic vector other than
zero?

It turns out that the collection of subspaces invariant under an operator
(or any family of operators) is a lattice.

Definition 1.2.18. A lattice is a partially ordered set in which every pair of
elements has a least upper bound and a greatest lower bound. A lattice is
complete if every nonempty subset of the lattice has a least upper bound and
a greatest lower bound.

It is easily seen that the collection of all subspaces invariant under a given
bounded linear operator is a complete lattice under inclusion, where the least
upper bound of a subcollection is its span and the greatest lower bound of a
subcollection is its intersection.



1.2 Some Facts from Functional Analysis 27

Notation 1.2.19. For A a bounded linear operator, we use the notation LatA

to denote the lattice of all invariant subspaces of A.

Theorem 1.2.20. Let A be a bounded linear operator. Then M ∈ Lat A if
and only if M⊥ ∈ Lat A∗.

Proof. This follows immediately from the fact that, for f ∈ M and g ∈ M⊥,
(Af, g) = (f, A∗g). �	

Recall that, if M is a subspace of H, every vector f ∈ H can be written
uniquely in the form f = m + n, where m ∈ M and n ∈ M⊥.

Notation 1.2.21. If M and N are subspaces of a Hilbert space, the notation
M⊕N is used to denote {m + n : m ∈ M and n ∈ N} when every vector
in M is orthogonal to every vector in N . The expression M � N denotes
M∩N⊥.

Definition 1.2.22. If M is a subspace then the projection onto M is the
operator defined by Pf = g, where f = g + h with g ∈ M and h ∈ M⊥.

It is easy to see that every projection is a bounded self-adjoint operator
of norm at most one. Also, since PH = M, PH is always a subspace.

Theorem 1.2.23. If M ∈ Lat A and P is the projection onto M, then AP =
PAP . Conversely, if P is a projection and AP = PAP , then PH ∈ Lat A.

Proof. Let M ∈ Lat A and P be the projection onto M. If f ∈ H then
Pf ∈ M and therefore APf is contained in AM. Since AM ⊂ M it follows
that P (APf) = APf .

Conversely, let P be a projection and assume that AP = PAP . If f ∈ PH,
then Pf = f and therefore APf = PAPf simplifies to Af = PAf . Thus
Af ∈ PH and PH ∈ Lat A. �	

Recall that a decomposition of a Hilbert space H in the form M ⊕ M⊥

leads to a block matrix representation of operators on H. If P is the projection
of H onto M and A1 is the restriction of PA to M, A2 is the restriction of
PA to M⊥, A3 is the restriction of (I − P )A to M, and A4 is the restriction
of (I − P )A to M⊥, then A can be represented as

A =

(
A1 A2

A3 A4

)
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with respect to the decomposition M⊕M⊥. That is, if f = g+h with g ∈ M
and h ∈ M⊥, we have

Af =

(
A1 A2

A3 A4

)(
g

h

)
=

(
A1g + A2h

A3g + A4h

)
= (A1g + A2h) + (A3g + A4h).

If the subspace M is invariant under A, then Theorem 1.2.23 implies
that A3 = 0. Thus each nontrivial invariant subspace of A yields an upper
triangular representation of A.

Definition 1.2.24. The subspace M reduces the operator A if both M and
M⊥ are invariant under A.

Theorem 1.2.25. Let P be the projection onto the subspace M. Then M is
a reducing subspace for A if and only if PA = AP . Also, M reduces A if and
only if M is invariant under both A and A∗.

Proof. If M is a reducing subspace, then M and M⊥ are invariant under A.
If P is the projection onto M, it is easily seen that I − P is the projection
onto M⊥. The previous theorem then implies A(I − P ) = (I − P )A(I − P ).
Expanding the latter equation gives A−AP = A− PA−AP + PAP , which
simplifies to PAP = PA. Since M ∈ Lat A we also have that AP = PAP

and thus PA = AP .
Conversely, assume AP = PA. Let f ∈ M; to prove M is invariant we

need to show that Af ∈ M. By hypothesis, PAf = APf and, since Pf = f ,
it follows that PAf = Af , which is equivalent to Af ∈ M. Thus M ∈ Lat A.
We also have that (I−P )A = A(I−P ) and thus an analogous argument shows
that if f ∈ M⊥, then Af ∈ M⊥. Hence M⊥ ∈ Lat A and A is reducing.

For the second part of the theorem notice that, since P is self-adjoint,
PA = AP if and only if PA∗ = A∗P . This means that M is reducing for A

if and only if M is reducing for A∗. In particular, M is invariant for both A

and A∗.
For the converse of the second part, observe that PAP = AP and PA∗P =

A∗P . If we take the adjoint of the latter equation it follows that AP = PA

and thus M is reducing, by the first part of the theorem. �	

It is easily seen that the subspace M reduces A if and only if the decom-
position of A with respect to M⊕M⊥ has the form

A =

(
A1 0
0 A4

)
,
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where A1 is an operator on M and A4 is an operator on M⊥. This matrix
representation shows why the word “reducing” is used.

Definition 1.2.26. The rank of the operator A is the dimension of its range.

Finite-rank operators (i.e., those operators whose rank is a natural num-
ber) share many properties with operators on finite-dimensional spaces and
thus are particularly tractable. Operators whose rank is 1 are often very useful.

Notation 1.2.27. Given vectors f and g ∈ H, we define the operator f ⊗ g

mapping H into itself by (f ⊗ g)h = (h, g)f .

Note that if neither f nor g is zero, the operator f ⊗ g has rank 1 since its
range consists of multiples of f . Clearly, f ⊗ g = 0 if and only if either f = 0
or g = 0.

Theorem 1.2.28. (i) If A is an operator of rank 1, then there exist f and g

in H with A = f ⊗ g.

(ii) ‖f ⊗ g‖ = ‖f‖ ‖g‖.

(iii) For bounded operators A and B, A(f ⊗ g)B = (Af) ⊗ (B∗g).

(iv) Two nonzero rank-one operators f1 ⊗ g1 and f2 ⊗ g2 are equal if and only
if there exists a complex number c other than 0 such that f1 = cf2 and
g2 = cg1.

Proof of (i): Let f be any nonzero vector in the range of A. Since the
range of A is one-dimensional, there is a bounded linear functional λ such
that Ah = λ(h)f for all vectors h. By the Riesz representation theorem
([12, p. 13], [28, pp. 31–32], [55, p. 142]), there is a g in H such that
λ(h) = (h, g) for all h in H. Therefore Ah = (h, g)f = (f ⊗ g)h for all
h. �	

Proof of (ii): Let h ∈ H. Then

‖(f ⊗ g)h‖ = ‖(h, g)f‖ ≤ ‖h‖ ‖g‖ ‖f‖.
Taking the supremum over all h with ‖h‖ = 1 gives ‖f ⊗ g‖ ≤ ‖f‖ ‖g‖.
To establish the reverse inequality, observe that, for g 
= 0,∥∥∥∥(f ⊗ g)

g

‖g‖
∥∥∥∥ =
∥∥∥∥( g

‖g‖ , g

)
f

∥∥∥∥ = ‖g‖ ‖f‖.

Thus ‖f ⊗ g‖ ≥ ‖f‖ ‖g‖. �	
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Proof of (iii): Let A and B be bounded operators. If h ∈ H, then

(A(f ⊗ g)B) (h) = (A(f ⊗ g)) (Bh) = A((Bh, g)f)

= (Bh, g)Af = (h, B∗g)Af

= ((Af) ⊗ (B∗g)) (h).

�	

Proof of (iv): Assume the equality of the rank-one operators. Since f1⊗g1

and f2⊗g2 are both nonzero, none of the four vectors involved are 0. Note
that

(f1 ⊗ g1)
g1

‖g1‖2
= f1 and (f2 ⊗ g2)

g1

‖g1‖2
=

(g1, g2)
‖g1‖2

f2,

and thus f1 = cf2, where c = (g1,g2)
‖g1‖2 . Since f1 = cf2, we have (cf2)⊗ g1 =

f2 ⊗ g2. Thus, for all h ∈ H,

(h, g1)cf2 = (h, g2)f2.

This implies that (h, cg1) = (h, g2) for all h, so cg1 = g2.
For the converse, note that, for every h ∈ H,

(f1 ⊗ g1)(h) = ((cf2) ⊗ g1)(h) = (h, g1)cf2

= (h, cg1)f2 = (f2 ⊗ (cg1))(h)

= (f2 ⊗ g2)(h).

Therefore the rank-one operators are equal. �	
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1.3 Exercises

1.1. Show that H∞ is a Banach space under the ‖ · ‖∞ norm.

1.2. Find a function in H2 whose square is not in H2.

1.3. Prove that the only real-valued functions in H̃2 are the constants.

1.4. Show that the only functions in H̃2 whose conjugates are also in H̃2 are
the constants.

1.5. Prove that
(

1
1−z

)1/2 is not in H2.

1.6. Show that a function f analytic on D is in H2 if there is a harmonic
function u on D such that |f(z)|2 ≤ u(z) for all z ∈ D. (Such a function u is
said to be a harmonic majorant of the function |f(z)|2.) The converse of this
fact is stated below in Exercise 2.12.

1.7. Define H̃1 to be the set of all functions in L1(S1) whose Fourier coeffi-
cients corresponding to negative indices are zero. Prove that the product of
two functions in H̃2 is in H̃1.

1.8. Let u be a real-valued function in L2. Show that there exists a real-valued
function v in L2 such that u + iv is in H̃2.

1.9. Let f be an even function of a real variable defined in a neighborhood of
0. Show that f has symmetric derivative 0 at 0. Note that this implies that
there exist functions that are not even left or right continuous at a point but
nonetheless have symmetric derivatives at that point.

1.10. Let A be a bounded linear operator and p be a polynomial. Prove that
σ(p(A)) = {p(z) : z ∈ σ(A)}.

1.11. Suppose that a bounded linear operator A has an upper triangular
matrix with respect to an orthonormal basis {en}∞n=0. Show that every element
(Aen, en) of the diagonal is an eigenvalue of A.

1.12. Let A be a bounded linear operator and λ be a complex number with
|λ| = ‖A‖. Prove that λ is in the numerical range of A if and only if λ is an
eigenvalue of A.

1.13. Show that the restriction of a normal operator to an invariant subspace
is normal if and only if the subspace is reducing.
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1.14. Assume that there is a bounded operator A with the following property:
there exist subspaces N and M invariant under A such that N ⊂ M, the
dimension of M � N is greater than 1, and the only subspaces L invariant
under A that satisfy N ⊂ L ⊂ M are L = N and L = M. Show that this
assumption implies the existence of an operator B on a Hilbert space whose
only invariant subspaces are {0} and the entire space.

1.15. Show that the operator A has a nontrivial invariant subspace if and
only if the operator equation XAX = AX has a solution other than zero and
the identity.

1.16. Show that every operator of finite rank can be written in the form

n∑
k=1

fk ⊗ gk

for vectors {f1, f2, . . . , fn, g1, g2, . . . , gn}.

1.17. For a bounded operator A on H2, define its Berezin symbol as the
function Ã on D given by

Ã(z) = (Ak̂z, k̂z),

where k̂z = kz

‖kz‖ is the normalized reproducing kernel. Show that

lim
|z|→1−

Ã(z) = 0

for every compact operator A.

1.18. Suppose that {An} is a sequence of bounded operators such that {Anf}
converges for every vector f . Prove that {‖An‖} is bounded.

1.19. Prove that {‖AnC‖} converges to 0 whenever C is a compact operator
and {An} is a sequence of bounded operators such that {Anf} converges to
0 for all vectors f . (Hint: This can be established by first proving it in the
case that C has finite rank, then uniformly approximating any given compact
operator by a sequence of finite-rank operators and using the previous exercise
to obtain the result as stated.)

1.20. The Bergman space is the collection of all functions f analytic on the
disk such that |f(z)|2 is integrable with respect to normalized Lebesgue area
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measure on the disk (i.e., the measure of D is 1). The inner product of the
functions f and g is defined by

(f, g) =
1
π

∫
D

f(x + iy)g(x + iy) dx dy.

(i) Show that the Bergman space is a Hilbert space (i.e., prove the complete-
ness of the inner product space defined above).

(ii) Show that the collection of functions {√n + 1 zn}∞n=0 forms an orthonor-
mal basis for the Bergman space.

(iii) Let Mz be the operator defined by (Mzf)(z) = zf(z). Show that Mz is a
bounded linear operator mapping the Bergman space into itself and find
the matrix of Mz with respect to the orthonormal basis {√n + 1zn}∞n=0.

1.21. The Dirichlet space is the collection of all functions f analytic on the
disk such that |f ′(z)|2 is integrable with respect to normalized Lebesgue area
measure on the disk. The inner product of the functions f and g is defined by

(f, g) = f(0)g(0) +
1
π

∫
D

f ′(x + iy)g′(x + iy) dx dy.

(i) Show that the Dirichlet space is a Hilbert space (i.e., prove the complete-
ness of the inner product space defined above).

(ii) Find an orthonormal basis for the Dirichlet space consisting of monomials
in z.

(iii) Let Mz be the operator defined by (Mzf)(z) = zf(z). Show that Mz

is a bounded linear operator mapping the Dirichlet space into itself and
find the matrix of Mz with respect to the orthonormal basis found in the
answer to (ii).
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1.4 Notes and Remarks

For each real number p ≥ 1, the space Hp is defined to consist of the set of
all functions f analytic on D such that

sup
0<r<1

1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣p dθ < ∞.

The Hp norm of f is defined to be(
sup

0<r<1

1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣p dθ

)1/p

.

Note that Theorem 1.1.12 above shows that, in the case p = 2, this definition
is equivalent to the one we have used.

The “H” in Hp is in honor of G.H. Hardy, a contributor to the funda-
mentals of the subject. Duren [17] suggests that the historical starting point
of the theory of Hp spaces is Hardy’s paper [98].

All the Hp spaces are Banach spaces; H2 is the only one that is a Hilbert
space. Many of the results in this chapter hold for all Hp spaces; however,
the proofs are often easier in the case of H2 than in the general case. Good
introductions to Hp spaces include the books by Duren [17], Hoffman [32],
Koosis [33], and Chapter 17 of Rudin [47].

Exercises 1.20 and 1.21 give the definitions of the Bergman and Dirich-
let spaces. These spaces, and also Hardy, Bergman, and Dirichlet spaces of
functions of several variables, have been extensively studied; see, for example,
Cowen and MacCluer [14], Duren and Schuster [18], Hedenmalm, Koremblum
and Zhu [31], Rudin [45], and Zhu [57].

Example 1.1.14 is due to Nordgren [121]. The proof presented in the text is
Jaime Cruz-Sampedro’s simplification of our previous simplification of Nord-
gren’s proof.

Fatou’s theorem (Theorem 1.1.26) on the boundary values of analytic func-
tions is one of the earliest theorems in this subject [92].

Many of the basic properties of Hilbert space were discovered by Hilbert
[105]; the theory has been extensively developed by many mathematicians.
Good introductions to the theory of operators on Hilbert space include
Akhiezer and Glazman [2], Conway [12,13], Halmos [27], Reed and Simon [42],
and Rudin [48].

The question of the existence of nontrivial invariant subspaces for bounded
linear operators, the invariant subspace problem, goes back at least to John
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von Neumann. It has been shown, by Enflo [89] and Read [142, 143], that
there are operators on Banach spaces without nontrivial invariant subspaces.
However, it is still unknown whether every bounded linear operator on an
infinite-dimensional Hilbert space has a nontrivial invariant subspace. There
are a number of affirmative results under various hypothesis; see [41].

Exercise 1.6 gives an alternative approach to the definition of H2 that can
be used to define analogous spaces consisting of functions analytic on other
domains; see Duren [17, Chapter 10]. Exercise 1.15 is a lemma in the approach
by Aronszajn and Smith [60] to establishing the existence of nontrivial invari-
ant subspaces for compact operators. Exercise 1.18 is a special case of the
principle of uniform boundedness; see Conway [12, p. 95] or Rudin [48, p. 43].
A solution to Exercise 1.12 can be found in [27, Solution 212].



Chapter 2

The Unilateral Shift and Factorization of

Functions

We introduce the unilateral shift, one of the most interesting operators. The
study of the invariant subspaces of this operator leads naturally to a factor-
ization of functions in H2.

2.1 The Shift Operators

Definition 2.1.1. On �2, we define the unilateral shift operator U by

U(a0, a1, a2, a3, . . . ) = (0, a0, a1, a2, a3, . . . )

for (a0, a1, a2, a3, . . .) ∈ �2.

Theorem 2.1.2. (i) The unilateral shift is an isometry (i.e., ‖Uf‖ = ‖f‖
for all f ∈ �2).

(ii) The adjoint, U∗, of the unilateral shift has the following form:

U∗(a0, a1, a2, a3, . . . ) = (a1, a2, a3, . . . )

for (a0, a1, a2, a3, . . . ) ∈ �2. (The operator U∗ is the backward unilateral
shift.)

Proof. To prove (i), we must show that ‖(a0, a1, a2, . . . )‖ = ‖(0, a0, a1, a2, . . . )‖.
But this is trivial since

∑∞
k=0 |ak|2 = |0|2 +

∑∞
k=1 |ak−1|2.

To prove (ii), let A be the operator defined by A(a0, a1, a2, a3, . . . ) =
(a1, a2, a3, a4, . . . ). Let x = (a0, a1, a2, . . . ) and y = (b0, b1, b2, . . . ) be any two
vectors. Notice that
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(Ux, y) =
(
(0, a0, a1, a2, . . . ), (b0, b1, b2, b3, . . . )

)
=

∞∑
k=1

ak−1bk

and

(x, Ay) =
(
(a0, a1, a2, a3 . . . ), (b1, b2, b3, b4, . . . )

)
=

∞∑
k=0

akbk+1.

Since these sums are equal, it follows that A = U∗. �	

There are also bilateral shifts, defined on two-sided sequences.

Definition 2.1.3. The space �2(Z) is defined as the space of all two-sided
square-summable sequences; that is,

�2(Z) =

{
(. . . , a−2, a−1, a0, a1, a2, . . . ) :

∞∑
n=−∞

|an|2 < ∞
}

.

Note that the zeroth coordinate of the sequence is written in boldface; this is
necessary in order to distinguish a sequence from a shift of itself.

Definition 2.1.4. The bilateral shift is the operator W on �2(Z) defined by

W (. . . , a−2, a−1, a0, a1, a2, . . . ) = (. . . , a−3, a−2, a−1, a0, a1, . . . ),

where the boldface indicates the zeroth position.

Theorem 2.1.5. (i) The bilateral shift is a unitary operator.

(ii) The adjoint of the bilateral shift, called the backward bilateral shift, is
given by

W ∗(. . . , a−2, a−1, a0, a1, a2, . . . ) = (. . . , a−1, a0, a1, a2, a3, . . . ).

Proof. It is clear that ‖Wx‖ = ‖x‖ for all x ∈ �2(Z), and thus W is an
isometry. Define the bounded linear operator A by

A(. . . , a−2, a−1, a0, a1, a2, . . . ) = (. . . , a−1, a0, a1, a2, a3, . . . ).

Obviously, AW = WA = I, and thus W is an invertible isometry; i.e., W is a
unitary operator.

We need to show that (Wx, y) = (x, Ay) for all x and y ∈ �2(Z). Let
x = (. . . , a−2, a−1, a0, a1, a2, . . . ) and y = (. . . , b−2, b−1, b0, b1, b2, . . . ). Notice
that
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(Wx, y) =
∞∑

n=−∞
an−1bn

and

(x, Ay) =
∞∑

n=−∞
anbn+1.

These sums are equal to each other. Therefore A = W ∗. �	

It will be useful to identify the spectra of the unilateral and bilateral shifts
and their adjoints. We first describe the point spectrum of the backward shift.

Theorem 2.1.6. Let U be the unilateral shift on �2 and let U∗ be its adjoint.
Then Π0(U∗) = D. Furthermore, for λ in D, (U∗ − λ)f = 0 for a vector f in
�2 if and only if there exists a constant c such that f = c(1, λ, λ2, λ3, . . . ).

Proof. Observe first that, since ‖U∗‖ = ‖U‖ = 1, the spectral radius formula
(Theorem 1.2.4) implies that Π0(U∗) ⊂ σ(U∗) ⊂ D.

If |λ| < 1, then the vector f = (1, λ, λ2, λ3, . . . ) is in �2. Thus

U∗(1, λ, λ2, λ3, . . . ) = (λ, λ2, λ3, λ4, . . . ) = λ (1, λ, λ2, λ3, . . . )

and therefore λ is an eigenvalue for U∗. Hence D ⊂ Π0(U∗).
Let eiθ ∈ S1. We shall show that eiθ 
∈ Π0(U∗). Let f = (f0, f1, f2, f3, . . . )

be a vector in �2 and suppose that U∗f = eiθf . This implies

(f1, f2, f3, . . . ) = (eiθf0, e
iθf1, e

iθf2, . . . )

and therefore that fn+1 = eiθfn for all nonnegative integers n. Solving this
equation recursively, we obtain fn = einθf0. Since f ∈ �2, we must have
{einθf0} → 0, but this can happen only if f0 = 0. Therefore f = 0 and hence
eiθ cannot be an eigenvalue. This shows that Π0(U∗) = D.

To finish the proof we must establish the characterization of the eigenvec-
tors. Let λ be in D and suppose that U∗f = λf for some nonzero vector f . If
f = (f0, f1, f2, f3, . . . ), we have

(f1, f2, f3, f4, . . . ) = U∗f = λf = λ(f0, f1, f2, f3, . . . ).

Thus fn+1 = λfn for all nonnegative integers n. Solving recursively shows
that fn = λnf0. But this implies that

f = f0(1, λ, λ2, λ3, . . . ),

as desired. �	
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Theorem 2.1.7. If U is the unilateral shift on �2, U∗ is its adjoint, W is the
bilateral shift on �2(Z), and W ∗ is its adjoint, then

(i) σ(U) = D, Π(U) = S1 and Π0(U) = ∅;

(ii) σ(U∗) = Π(U∗) = D and Π0(U∗) = D;

(iii) σ(W ) = Π(W ) = S1 and Π0(W ) = ∅;

(iv) σ(W ∗) = Π(W ∗) = S1 and Π0(W ∗) = ∅.

Proof. We shall prove the results for U∗ first. Observe that, as seen above
(Theorem 2.1.6), σ(U∗) ⊂ D and Π0(U∗) = D. Hence

D = Π0(U∗) ⊂ Π(U∗) ⊂ σ(U∗) ⊂ D.

Since σ(U∗) is closed and S1 ⊂ Π(U∗) (by Theorem 1.2.7), we must have
D = Π(U∗) = σ(U∗) = D.

Since σ(U∗) = D, we have σ(U) = D as well. Now, let λ ∈ D. We will show
that λ is not an eigenvalue of U . Let f = (f0, f1, f2, f3, . . . ) ∈ �2 and suppose
that Uf = λf . Then

(0, f0, f1, f2, . . . ) = (λf0, λf1, λf2, . . . ).

If λ = 0, this would imply that the left-hand side of the expression above
is zero, and thus f = 0. If λ 
= 0, then we can solve the above equation
recursively to obtain fn = (1/λ)nf0 for all n. If we equate the first terms of
Uf and λf we obtain 0 = λf0 from which we conclude that f0 = 0. Thus
fn = 0 for all n and hence λ cannot be an eigenvalue. Therefore Π0(U) = ∅.

It remains to be shown that Π(U) = S1. That will be a consequence of
some properties of the spectrum of W .

Since ‖W‖ = 1, the spectral radius formula (Theorem 1.2.4) implies
σ(W ) ⊂ D. On the other hand, since W is invertible and W−1 = W ∗, we
have

σ(W ∗) =
{

1
λ

: λ ∈ σ(W )
}

⊂
{

1
λ

: 0 < |λ| ≤ 1
}

= {λ : |λ| ≥ 1} .

Since σ(W ∗) ⊂ D as well, it follows that σ(W ∗) ⊂ S1 and hence that σ(W ) ⊂
S1.

We claim that Π(U) ⊂ Π(W ). To see this, let λ ∈ Π(U) and let {fn}
be a sequence of unit vectors in �2 such that {‖(U − λ)fn‖} approaches 0
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as n approaches ∞. Every vector fn in �2 corresponds to the vector gn in
�2(Z) whose coordinates in positions 0, 1, 2, . . . are the same as those of fn

and whose coordinates in positions with negative indices are all 0. Clearly,
‖(U − λ)fn‖ = ‖(W − λ)gn‖ and ‖gn‖ = ‖fn‖ = 1 for every n. Thus λ is in
Π(W ).

The fact that the boundary of σ(U) is contained in Π(U) (Theorem 1.2.7)
gives

S1 ⊂ Π(U) ⊂ Π(W ) ⊂ σ(W ) ⊂ S1.

Therefore σ(W ) = Π(W ) = S1 and also Π(U) = S1. Since σ(W ) = S1, we
have σ(W ∗) = S1.

Clearly Π(W ∗) ⊂ S1. Let eiθ ∈ S1. We will show that eiθ ∈ Π(W ∗). Since
Π(W ) = S1 and e−iθ ∈ S1 as well, it follows that there exists a sequence of
vectors {fn} of norm 1 in �2(Z) such that {‖(W − e−iθ)fn‖} goes to 0. It is
easy to see that, for any vector f ∈ �2(Z),

‖(W − e−iθ)f‖ = ‖(W ∗ − eiθ)f‖.

Hence {‖(W ∗ − eiθ)fn‖} goes to 0 as n → ∞, and eiθ ∈ Π(W ∗). Therefore
Π(W ∗) = S1.

Lastly, take eiθ ∈ S1. Let

x = (. . . , a−2, a−1, a0, a1, a2, . . . ).

If Wx = eiθx, it follows that an−1 = eiθan for all integers n. A straightforward
induction argument shows that for all integers n we have an = e−inθa0. Since
x ∈ �2(Z), we must have {e−inθa0} → 0 as n → ±∞. Hence a0 = 0 and thus
x is the zero vector. Since Π0(W ) must be contained in S1, it follows that
Π0(W ) = ∅. That Π0(W ∗) = ∅ is proved similarly. �	

It is virtually impossible to describe the invariant subspaces of the shift
operators in terms of their representations on spaces of sequences. However,
complete descriptions of their invariant subspace lattices can be given when
they are viewed as operators on H2 and L2. This discovery by Arne Beur-
ling [64] in 1949 led to the modern interest in H2.

Definition 2.1.8. Define the operator Mz (“multiplication by z”) on H2 by

(Mzf)(z) = zf(z).
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Clearly, if f(z) =
∑∞

n=0 anzn, then

(Mzf)(z) =
∞∑

n=0

anzn+1.

Therefore Mz acts like the unilateral shift.

Theorem 2.1.9. The operator Mz on H2 is unitarily equivalent to the uni-
lateral shift.

Proof. If V is the unitary operator mapping �2 onto H2 given by

V (a0, a1, a2, . . . ) =
∞∑

n=0

anzn,

it is trivial to verify that V U = MzV . �	
Thus Mz is a representation of the unilateral shift as an operator on H2; we

often refer to Mz as U when no confusion is possible. Notice that Mzek = ek+1

for k = 0, 1, 2, . . . , where ek(z) = zk.
The bilateral shift has an analogous representation on L2.

Definition 2.1.10. The operators Meiθ and Me−iθ are defined on L2 by

(Meiθf)(eiθ) = eiθf(eiθ) and (Me−iθf)(eiθ) = e−iθf(eiθ).

Theorem 2.1.11. The operator Meiθ on L2 is unitarily equivalent to the bi-
lateral shift W on �2(Z), and the operator Me−iθ is unitarily equivalent to
W ∗

Proof. If V is the unitary operator mapping �2(Z) onto L2 given by

V (. . . , a−2, a−1, a0, a1, a2, . . . ) =
∞∑

n=−∞
aneinθ,

it is easily verified that V W = MeiθV . Taking adjoints shows that V ∗Me−iθ =
W ∗V ∗ and the theorem follows (since V ∗ is also unitary). �	

The following is trivial to verify but important to notice.

Theorem 2.1.12. The operator Meiθ leaves the subspace H̃2 of L2 invariant
and the restriction of Meiθ to H̃2 is the unilateral shift on H̃2. On �2(Z),
the operator W leaves the subspace �2, consisting of those sequences whose
coordinates in negative positions are 0, invariant, and the restriction of W to
�2 is the unilateral shift on �2.

Proof. This is immediate. �	
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2.2 Invariant and Reducing Subspaces

There are some obvious invariant subspaces of the unilateral shift. Thinking
of U as an operator on �2, it is clear that, for each natural number n, the
subspace consisting of those sequences whose first n coordinates are zero is
invariant under U . The corresponding invariant subspace for Mz in H2 is the
subspace of H2 consisting of the functions whose first n derivatives (including
the 0th derivative) vanish at the origin.

The unilateral shift has many invariant subspaces that are very difficult to
describe in �2. We shall see that all the invariant subspaces of the unilateral
shift can be explicitly described as subspaces of H2.

One family of such subspaces is the following. For each z0 ∈ D let

Mz0 =
{
f ∈ H2 : f(z0) = 0

}
.

Since f(z0) = 0 implies z0f(z0) = 0, it is clear that Mz0 ∈ Lat U . This can
also be obtained as a consequence of the fact that the kernel functions kz0 are
eigenvectors for U∗, which implies that {kz0}⊥ ∈ Lat U (by Theorem 1.2.20),
and

Mz0 = {kz0}⊥.

It is easy to determine the reducing subspaces of the unilateral shift.

Theorem 2.2.1. The only reducing subspaces of the unilateral shift are {0}
and the entire space.

Proof. This is easily proven using any representation of U . Suppose M is a
subspace of �2 that reduces U and is different from {0}. We must show that
M = �2.

Since M 
= {0}, it follows that there exists a nonzero vector

(a0, a1, a2, a3, . . . ) ∈ M.

Since M is reducing, it is invariant under both U and U∗. Choose k0 such
that ak0 
= 0. Then U∗k0(a0, a1, a2, a3, . . . ) has its first coordinate different
from zero and is in M. By relabeling, we can assume that a0 
= 0. Then

UU∗(a0, a1, a2, a3, . . . ) = (0, a1, a2, a3, . . . ),

and thus (0, a1, a2, a3, . . . ) ∈ M. It follows that

(a0, a1, a2, a3, . . . ) − (0, a1, a2, a3, . . . ) = (a0, 0, 0, 0, . . . ) ∈ M,
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since M is a subspace. Dividing by a0, we see that (1, 0, 0, 0, . . . ) is in M;
that is, e0 ∈ M. Since en = Une0 for every n, it follows that M contains
every basis vector en, so M = �2. �	

The bilateral shift, on the other hand, has many reducing subspaces. To
characterize the reducing subspaces of the bilateral shift, it is useful (in light
of Theorem 1.2.25) to begin by determining the operators that commute with
the bilateral shift.

Definition 2.2.2. The commutant of a bounded linear operator A is the set
of all bounded linear operators that commute with A.

Definition 2.2.3. Let φ be a function in L∞. The operator of multiplication
by φ, denoted by Mφ, is defined by Mφf = φf for every f ∈ L2.

Theorem 2.2.4. If φ is a function in L∞, then ‖Mφ‖ = ‖φ‖∞.

Proof. Let f ∈ L2 with ‖f‖ = 1. Since |φ(eiθ)| ≤ ‖φ‖∞ a.e., it follows that

‖Mφf‖2 =
1
2π

∫ 2π

0

|φ(eiθ)f(eiθ)|2 dθ ≤ ‖φ‖2
∞

1
2π

∫ 2π

0

|f(eiθ)|2 dθ.

This implies that ‖Mφ‖ ≤ ‖φ‖∞.
We now establish the opposite inequality. Let λ0 = ‖φ‖∞. If λ0 = 0 there

is nothing to prove, so assume λ0 
= 0. For all natural numbers n, the set

En =
{

eiθ : |φ(eiθ)| > λ0 − 1
n

}
has positive measure. If χn is the characteristic function of this set and m

is normalized Lebesgue measure on S1, we have, when n is sufficiently large
that λ0 − 1/n > 0,

‖Mφχn‖2 =
1
2π

∫
En

|φ(eiθ)|2 dθ

≥ 1
2π

∫
En

(
λ0 − 1

n

)2

dθ

=
(

λ0 − 1
n

)2

m(En).

Also, ‖χn‖2 = m(En). It follows that if fn = χn/‖χn‖, then

‖Mφfn‖ ≥ λ0 − 1
n
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for n sufficiently large, and hence

‖Mφ‖ ≥ λ0 − 1
n

for n sufficiently large. Thus ‖Mφ‖ ≥ λ0 = ‖φ‖∞. �	

Theorem 2.2.5. The commutant of W (regarded as an operator on L2) is

{Mφ : φ ∈ L∞}.

Proof. Recall that W = Meiθ . If φ ∈ L∞, then clearly Mφ commutes with
Meiθ and thus {Mφ : φ ∈ L∞} is contained in the commutant.

Conversely, assume that A is in the commutant of W . Define φ = Ae0.
Clearly φ ∈ L2. We must show that φ ∈ L∞ and that A = Mφ. Since A

commutes with Wn for every natural number n, it follows that

Aeinθ = AWne0 = WnAe0 = einθAe0 = φeinθ

for n = 0, 1, 2, . . . . Since W is invertible, it follows that AW−1 = W−1A,
and thus that Aeinθ = φeinθ for all integers n. By linearity, it follows that
Ap = φ p for all trigonometric polynomials p.

If f is any function in L2, then there exists a sequence of trigonometric
polynomials {pn} such that {pn} → f in L2 as n → ∞. Since A is continuous,
it follows that {Apn} → Af , and thus that {φpn} → Af on L2.

Now, since {pn} → f in L2, there exists a subsequence, say {pni}, such that
{pni

} → f almost everywhere on S1. Thus {φpni
} → φf almost everywhere.

But {φpni
} → Af on L2. Therefore Af = φf almost everywhere. That is,

A = Mφ.
It remains to be shown that φ ∈ L∞. Fix a natural number n and let En =

{eiθ : |φ(eiθ)| > n}. We must show that m(En) = 0 for n sufficiently large,
where m is normalized Lebesgue measure on S1. Let χn be the characteristic
function of En (which clearly is in L2). Then

‖Aχn‖2 = ‖φχn‖2 =
1
2π

∫
En

|φ(eiθ)|2 dθ ≥ n2m(En).

Also,

‖χn‖2 =
1
2π

∫
En

dθ = m(En).

Thus ‖Aχn‖2 ≥ n2‖χn‖2. Therefore if n > ‖A‖, then ‖χn‖ = 0, so m(En) = 0.
That is, φ ∈ L∞. �	
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We can now explicitly describe the reducing subspaces of the bilateral
shift.

Corollary 2.2.6. The reducing subspaces of the bilateral shift on L2 are the
subspaces

ME = {f ∈ H2 : f(eiθ) = 0 a.e. on E}
for measurable subsets E ⊂ S1.

Proof. Fix any measurable subset E of S1 and let

ME = {f ∈ H2 : f(eiθ) = 0 a.e. on E}.

If f(eiθ0) = 0, then eiθ0f(eiθ0) = 0, so ME is invariant under W . Similarly,
if f(eiθ0) = 0, then e−iθ0f(eiθ0) = 0, so ME is invariant under W ∗. By
Theorem 1.2.25, ME is reducing.

If M is a reducing subspace of W and P is the projection onto M, then
WP = PW , by Theorem 1.2.25. By the previous theorem, P = Mφ for some
φ ∈ L∞. Since P is a projection, P 2 = P and thus M2

φ = Mφ. This implies
that φ2 = φ almost everywhere.

But this implies that φ = χF , the characteristic function of the measurable
set F = {eiθ ∈ S1 : φ(eiθ) = 1}. Thus M = {f ∈ L2 : f χF = f}. Let E be
the complement of F ; then M = {f ∈ L2 : f(eiθ) = 0 a.e. on E} = ME . �	

A description of the nonreducing invariant subspaces of the bilateral shift
can be given.

Theorem 2.2.7. The subspaces of L2 that are invariant but not reducing for
the bilateral shift are of the form M = φH̃2, where φ is a function in L∞

such that |φ(eiθ)| = 1 a.e.

Proof. First note that φ ∈ L∞ and |φ(eiθ)| = 1 a.e. implies that the operator
Mφ is an isometry, since, for any f ∈ L2,

‖φf‖2 =
1
2π

∫ 2π

0

∣∣φ (eiθ
)
f(eiθ)

∣∣2 dθ =
1
2π

∫ 2π

0

∣∣f(eiθ)
∣∣2 dθ = ‖f‖2.

Since Mφ is an isometry, MφH̃2 = φH̃2 is a closed subspace. Since WH̃2

is contained in H̃2 and Mφ commutes with W , it follows that WφH̃2 ⊂ φH̃2.
Hence every subspace of the form φH̃2 is invariant under W .

It is easily shown that no such subspace reduces W . Given any φ as above,
φ ∈ φH̃2. But W ∗φ = e−iθφ 
∈ φH̃2, since e−iθ 
∈ H̃2.
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Conversely, let M be any subspace of L2 that is invariant under W but is
not reducing. The idea of the proof that M has the desired form stems from
the following:

If M were equal to φH̃2, with |φ(eiθ)| = 1 a.e. and f ∈ H̃2, then

(φeiθf, φ) =
1
2π

∫ 2π

0

φ(eiθ)φ(eiθ)eiθf(eiθ) dθ =
1
2π

∫ 2π

0

eiθf(eiθ) dθ = 0,

since the zeroth Fourier coefficient of eiθf is zero. Thus φ is orthogonal to
eiθφH̃2; i.e., φ ⊥ WM. Thus if φ satisfies the conclusion of the theorem,
φ ∈ M�WM. This motivates the choice of φ below.

If WM = M, then M = W−1(M) = W ∗(M). Thus the assumption that
M is not reducing implies that WM is a proper subspace of M.

Choose φ to be any function in M � WM such that ‖φ‖ = 1. We show
that |φ(eiθ)| = 1 a.e. and that M = φH̃2.

First of all, since φ ⊥ WM, it follows that φ ⊥ Wnφ for all n ≥ 1. This
implies that

1
2π

∫ 2π

0

φ(eiθ)φ(eiθ)e−inθ dθ = 0 for n = 1, 2, 3, . . . ,

which can be written as

1
2π

∫ 2π

0

|φ(eiθ)|2e−inθ dθ = 0 for n = 1, 2, 3, . . . .

Taking conjugates, we get

1
2π

∫ 2π

0

|φ(eiθ)|2e−inθ dθ = 0 for n = ±1,±2,±3, . . . .

Thus |φ(eiθ)| is constant. Since ‖φ‖ = 1, it follows that |φ(eiθ)| = 1 a.e. Note
that this proves, in particular, that φ ∈ L∞.

We now show that M = φH̃2. First note that |φ(eiθ)| = 1 a.e. implies
that Mφ is a unitary operator, since its inverse is M1/φ. Thus Mφ sends
the orthonormal set {einθ}∞n=−∞ to the orthonormal set {φeinθ}∞n=−∞. In
particular, it sends the orthonormal basis {einθ}n≥0 of H̃2 to the orthonormal
basis {φeinθ}n≥0 of φH̃2, and the orthonormal basis {einθ}n<0 of (H̃2)⊥ to
the orthonormal basis {φeinθ}n<0 of (φH̃2)⊥.

Since φ ∈ M and φeinθ = Wnφ for n ≥ 0, it follows that φH̃2 ⊂ M.
To prove the opposite containment, suppose f ∈ M. To show that f is in

φH̃2 it suffices to establish that f is orthogonal to (φH̃2)⊥.
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For n < 0,

(φeinθ, f) =
1
2π

∫ 2π

0

φ(eiθ)einθf(eiθ) dθ

=
1
2π

∫ 2π

0

φ(eiθ)e−inθf(eiθ) dθ.

Note that, since n is negative, W−nf ∈ WM. But W−nf = e−inθf , so
e−inθf ∈ WM. Since φ ⊥ WM, it follows that

1
2π

∫ 2π

0

φ(eiθ)e−inθf(eiθ) dθ = 0.

Hence f ⊥
(
φH̃2
)⊥

. Or, equivalently, f ∈ φH̃2. �	

The question arises of the extent to which the invariant subspaces of the
bilateral shift uniquely determine the corresponding function φ.

Theorem 2.2.8. If |φ1(eiθ)| = |φ2(eiθ)| = 1, a.e., then φ1H̃
2 = φ2H̃

2 if and
only if there is a constant c of modulus 1 such that φ1 = cφ2.

Proof. Clearly φ1H̃
2 = cφ1H̃

2 when |c| = 1. Conversely, suppose that
φ1H̃

2 = φ2H̃
2 with |φ1(eiθ)| = |φ2(eiθ)| = 1, a.e. Then there exist func-

tions f1 and f2 in H̃2 such that

φ1 = φ2f2 and φ2 = φ1f1.

Since |φ1(eiθ)| = 1 = |φ2(eiθ)| a.e., it follows that

φ1φ2 = f2 and φ2φ1 = f1;

i.e., f1 = f2. But since f1 and f2 are in H̃2, f1 = f2 implies that f1 has Fourier
coefficients equal to 0 for all positive and for all negative indices. Since the only
nonzero coefficient is in the zeroth place, f1 and f2 are constants, obviously
having moduli equal to 1. �	

Since the unilateral shift is a restriction of the bilateral shift to an invari-
ant subspace, invariant subspaces of the unilateral shift are determined by
Theorem 2.2.7: they are the invariant subspaces of the bilateral shift that are
contained in H̃2. In this case, the functions generating the invariant subspaces
are certain analytic functions whose structure is important.

Definition 2.2.9. A function φ ∈ H∞ satisfying |φ̃(eiθ)| = 1 a.e. is an inner
function.
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Theorem 2.2.10. If φ is a nonconstant inner function, then |φ(z)| < 1 for
all z ∈ D.

Proof. This follows immediately from Corollary 1.1.24 and Theorem 1.1.17.
�	

The definition of inner functions requires that the functions be in H∞.
It is often useful to know that this follows if a function is in H2 and has
boundary values of modulus 1 a.e.

Theorem 2.2.11. Let φ ∈ H2. If |φ̃(eiθ)| = 1 a.e., then φ is an inner func-
tion.

Proof. It only needs to be shown that φ ∈ H∞; this follows from Corollary
1.1.24. �	
Corollary 2.2.12 (Beurling’s Theorem). Every invariant subspace of the
unilateral shift other than {0} has the form φH2, where φ is an inner function.

Proof. The unilateral shift is the restriction of multiplication by eiθ to H̃2, so
if M is an invariant subspace of the unilateral shift, it is an invariant subspace
of the bilateral shift contained in H̃2. Thus, by Theorem 2.2.7, M = φH̃2

for some measurable function satisfying |φ(eiθ)| = 1 a.e. (Note that {0} is the
only reducing subspace of the bilateral shift that is contained in H̃2.) Since
1 ∈ H̃2, φ ∈ H̃2.

Translating this situation back to H2 on the disk gives M = φH2 with φ

inner, by Theorem 2.2.11. �	
Corollary 2.2.13. Every invariant subspace of the unilateral shift is cyclic.
(See Definition 1.2.17.)

Proof. If M is an invariant subspace of the unilateral shift, it has the form
φH2 by Beurling’s theorem (Corollary 2.2.12). For each n, Unφ = znφ, so∨∞

n=0{Unφ} contains all functions of the form φ(z)p(z), where p is a polyno-
mial. Since the polynomials are dense in H2 (as the finite sequences are dense
in �2), it follows that

∨∞
n=0{Unφ} = φH2. �	

2.3 Inner and Outer Functions

We shall see that every function in H2, other than the constant function 0,
can be written as a product of an inner function and a cyclic vector for the
unilateral shift. Such cyclic vectors will be shown to have a special form.
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Definition 2.3.1. The function F ∈ H2 is an outer function if F is a cyclic
vector for the unilateral shift. That is, F is an outer function if

∞∨
k=0

{
UkF
}

= H2.

Theorem 2.3.2. If F is an outer function, then F has no zeros in D.

Proof. If F (z0) = 0, then (UnF )(z0) = zn
0 F (z0) = 0 for all n. Since the limit

of a sequence of functions in H2 that all vanish at z0 must also vanish at z0

(Theorem 1.1.9),
∞∨

k=0

{
UkF
}

cannot be all of H2. Hence there is no z0 ∈ D with F (z0) = 0. �	

Recall that a function analytic on D is identically zero if it vanishes on a
set that has a limit point in D. The next theorem is an analogous result for
boundary values of functions in H2.

Theorem 2.3.3 (The F. and M. Riesz Theorem). If f ∈ H2 and the
set {

eiθ : f̃(eiθ) = 0
}

has positive measure, then f is identically 0 on D.

Proof. Let E =
{

eiθ : f̃(eiθ) = 0
}

and let

M =
∞∨

k=0

{
Ukf̃
}

=
∞∨

k=0

{
eikθf̃

}
.

Then every function g̃ ∈ M vanishes on E, since all functions eikθf̃ do. If f̃ is
not identically zero, it follows from Beurling’s theorem (Theorem 2.2.12) that
M = φ̃H̃2 for some inner function φ. In particular, this implies that φ̃ ∈ M,
so φ̃ vanishes on E. But |φ̃(eiθ)| = 1 a.e. This contradicts the hypothesis that
E has positive measure, thus f̃ , and hence f , must be identically zero. �	

Another beautiful result that follows from Beurling’s theorem is the fol-
lowing factorization of functions in H2.

Theorem 2.3.4. If f is a function in H2 that is not identically zero, then
f = φF , where φ is an inner function and F is an outer function. This
factorization is unique up to constant factors.
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Proof. Let f ∈ H2 and consider
∨∞

n=0{Unf}. If this span is H2, then f is
outer by definition, and we can take φ to be the constant function 1 and F = f

to obtain the desired conclusion.
If
∨∞

n=0{Unf} 
= H2, then, by Beurling’s theorem (Corollary 2.2.12), there
must exist a nonconstant inner function φ with

∨∞
n=0{Unf} = φH2. Since f

is in
∨∞

n=0{Unf} = φH2, there exists a function F in H2 with f = φF . We
shall show that F is outer.

The invariant subspace
∨∞

n=0{UnF} equals ψH2 for some inner function
ψ. Then, since f = φF , it follows that Unf = Un(φF ) = φ UnF for ev-
ery positive integer n, from which we can conclude, by taking linear spans,
that φH2 = φψH2. Theorem 2.2.8 now implies that φ and φψ are con-
stant multiples of each other. Hence ψ must be a constant function. Therefore∨∞

n=0{UnF} = H2, so F is an outer function.
Note that if f = φF with φ inner and F outer, then

∨∞
n=0{Unf} = φH2.

Thus uniqueness of the factorization follows from the corresponding assertion
in Theorem 2.2.8. �	

Definition 2.3.5. For f ∈ H2, if f = φF with φ inner and F outer, we call
φ the inner part of f and F the outer part of f .

Theorem 2.3.6. The zeros of an H2 function are precisely the zeros of its
inner part.

Proof. This follows immediately from Theorem 2.3.2 and Theorem 2.3.4. �	

To understand the structure of LatU as a lattice requires being able to
determine when φ1H

2 is contained in φ2H
2 for inner functions φ1 and φ2.

This will be accomplished by analysis of a factorization of inner functions.

2.4 Blaschke Products

Some of the invariant subspaces of the unilateral shift are those consisting of
the functions vanishing at certain subsets of D. The simplest such subspaces
are those of the form, for z0 ∈ D,

Mz0 = {f ∈ H2 : f(z0) = 0}.

The subspace Mz0 is an invariant subspace for U . Therefore Beurling’s the-
orem (Corollary 2.2.12) implies that there is an inner function ψ such that
Mz0 = ψH2.
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Theorem 2.4.1. For each z0 ∈ D, the function

ψ(z) =
z0 − z

1 − z0z

is an inner function and Mz0 = {f ∈ H2 : f(z0) = 0} = ψH2.

Proof. The function ψ is clearly in H∞. Moreover, it is continuous on the
closure of D. Therefore, to show that ψ is inner, it suffices to show that
|ψ(z)| = 1 when |z| = 1. For this, note that |z| = 1 implies zz = 1, so that∣∣∣∣ z0 − z

1 − z0z

∣∣∣∣ = ∣∣∣∣ z0 − z

z(z − z0)

∣∣∣∣ = 1
|z|
∣∣∣∣z0 − z

z − z0

∣∣∣∣ = 1.

To show that Mz0 = ψH2, first note that ψ(z0)f(z0) = 0 for all f ∈ H2,
so ψH2 ⊂ Mz0 . For the other inclusion, note that f(z0) = 0 implies that
f(z) = ψ(z)g(z) for some function g analytic in D.

Let

ε = inf
{
|ψ(z)| : z ∈ D, |z| ≥ 1 + |z0|

2

}
.

Clearly ε > 0. Thus

1
2π

∫ 2π

0

|f(reiθ)|2 dθ ≥ ε2 1
2π

∫ 2π

0

|g(reiθ)|2 dθ

for r ≥ 1+|z0|
2 . Therefore

sup
0<r<1

1
2π

∫ 2π

0

|g(reiθ)|2 dθ ≤ 1
ε2

sup
0<r<1

1
2π

∫ 2π

0

|f(reiθ)|2 dθ.

It follows from Theorem 1.1.12 that g ∈ H2. Hence f = ψg is in ψH2. �	

A similar result holds for subspaces of H2 vanishing on any finite subset
of D.

Theorem 2.4.2. If z1, z2, . . . , zn ∈ D,

M =
{
f ∈ H2 : f(z1) = f(z2) = · · · = f(zn) = 0

}
,

and

ψ(z) =
n∏

k=1

zk − z

1 − zkz
,

then ψ is an inner function and M = ψH2.
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Proof. It is obvious that a product of a finite number of inner functions is
inner. Thus Theorem 2.4.1 above implies that ψ is inner.

It is clear that ψH2 is contained in M. The proof of the opposite inclusion
is very similar to the proof of the case of a single factor established in Theorem
2.4.1 above. That is, if f(z1) = f(z2) = · · · = f(zn) = 0, then f = ψg for some
function g analytic on D. It follows as in the previous proof (take r greater
than the maximum of 1+|zj |

2 ) that g is in H2, so f ∈ ψH2. �	

It is important to be able to factor out the zeros of inner functions. If an
inner function has only a finite number of zeros in D, such a factorization
is implicit in the preceding theorem, as we now show. (We will subsequently
consider the case in which an inner function has an infinite number of zeros.)
It is customary to distinguish any possible zero at 0.

Corollary 2.4.3. Suppose that the inner function φ has a zero of multiplicity
s at 0 and also vanishes at the nonzero points z1, z2, . . . , zn ∈ D (allowing
repetition according to multiplicity). Let

ψ(z) = zs
n∏

k=1

zk − z

1 − zkz
.

Then ψ(z) is an inner function and φ can be written as a product φ(z) =
ψ(z)S(z), where S is an inner function.

Proof. Since ψ is a product of inner functions, ψ is inner. The function φ is in
the subspace M of the preceding Theorem 2.4.2, so that theorem implies that
φ = ψS, where S is in H2. Moreover, φ̃ = ψ̃S̃, so |S̃(eiθ)| = 1 a.e. Therefore
S is an inner function. �	

Recall that the Weierstrass factorization theorem asserts that, given any
sequence {zj} with {|zj |} → ∞ and any sequence of natural numbers {nj},
there exists an entire function whose zeros are precisely the zj ’s with multi-
plicity nj . It is well known that similar techniques establish that, given any
sequence {zj} ⊂ D with {|zj |} → 1 as j → ∞ and any sequence of natural
numbers {nj}, there is a function f analytic on D whose zeros are precisely the
zj ’s with multiplicity nj ([9, p. 169–170], [47, p. 302–303]). For some sequences
{zj} there is no such function in H2; it will be important to determine the
sequences that can arise as zeros of functions in H2. By Theorem 2.3.6, this
reduces to determining the zeros of the inner functions.
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There are many sequences {zj} with {|zj |} → 1 that cannot be the set of
zeros of a function in H2. To see this, we begin with a fact about products of
zeros of inner functions.

Theorem 2.4.4. If φ is an inner function and φ(0) 
= 0, and if {zj} is a
sequence in D such that φ(zj) = 0 for all j, then |φ(0)| <

∏n
j=1 |zj | for all n.

Proof. For each natural number n, let

Bn(z) =
n∏

j=1

zj − z

1 − zjz
.

As shown in Corollary 2.4.3, each Bn is an inner function and, for each n, there
is an inner function Sn such that φ = BnSn. By Theorem 2.2.10, |Sn(z)| < 1
for all z ∈ D. Thus |φ(z)| < |Bn(z)| for z ∈ D. In particular,

|φ(0)| < |Bn(0)| =
n∏

j=1

|zj |.

�	

Example 2.4.5. If zk = k
k+1 for natural numbers k, there is no function f

in H2 whose set of zeros is exactly {zk}.

Proof. Suppose that f was such a function and let φ be its inner part. In
particular, φ(0) 
= 0. By the previous theorem,

|φ(0)| <
n∏

j=k

|zk|

for every natural number n. But

n∏
k=1

|zk| =
1

n + 1
.

Choosing n large enough so that 1
n+1 < |φ(0)| gives a contradiction. �	

To describe the zeros of functions in H2 requires some facts about infinite
products. We begin with the definition of convergence.

Definition 2.4.6. Given a sequence {wk}∞k=1 of nonzero complex numbers,
we say that

∏∞
k=1 wk converges to P and write
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∞∏
k=1

wk = P

if {∏n
k=1 wk} → P as n → ∞ and P is different from 0.

If a finite number of the wk’s are zero, we say that the product converges
to 0 if there is an N such that wk 
= 0 for k ≥ N and

∞∏
k=N

wk

converges as defined above.

The restrictions that P be different from 0 and that an infinite product not
necessarily be convergent simply because one of its factors is zero are needed
in order to insure that convergence of infinite products has properties that we
require below.

Corollary 2.4.7. If {zk}∞k=1 are nonzero zeros of a function f in H2 that is
not identically zero, then

∞∏
k=1

|zk| converges.

Proof. If pn =
∏n

k=1 |zk|, then {pn} is a decreasing sequence (since |zk| < 1
for all k) and hence converges to some P ≥ 0. It must be shown that P > 0.

If f has a zero of multiplicity m at 0 write f(z) = zmg(z). Clearly g ∈ H2.
Let φ be the inner part of g; the zeros of φ are {zk}∞k=1. By Theorem 2.4.4,
{pn} is bounded below by |φ(0)|. Therefore P > 0 and

∏∞
k=1 |zk| converges.

�	

Theorem 2.4.8. If 0 < rk < 1 for all k, then
∏∞

k=1 rk converges if and only
if
∑∞

k=0(1 − rk) converges.

Proof. Assume
∏∞

k=1 rk converges. Since {∏n
k=1 rk} converges as n → ∞ to

a number different from 0, it follows that{∏n
k=1 rk∏n−1
k=1 rk

}
= {rn}

converges to 1 as n → ∞. Similarly, if
∑∞

k=0(1− rk) converges, then {1− rn}
converges to 0, and thus {rn} converges to 1 as n → ∞. We may, therefore,
assume that {rk} → 1.
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The product
∏∞

k=1 rk converges if and only if there exists r > 0 such that

lim
n→∞

n∏
k=1

rk = r.

By continuity of log on (0, 1], this occurs if and only if

lim
n→∞ log

n∏
k=1

rk = log r,

or, equivalently,

lim
n→∞

n∑
k=1

log rk = log r.

This is the same as convergence of
∑∞

k=1 log rk. Since

lim
x→1−

− log x

1 − x
= 1,

the limit comparison test shows that the above series converges if and only if

∞∑
k=1

(1 − rk)

converges. �	

When a series converges, its “tail” goes to 0. Similarly, when an infinite
product converges, its “tail” goes to 1.

Theorem 2.4.9. Let 0 < rk < 1 for all k. If
∏∞

k=1 rk converges, then{
n∏

k=m+1

rk

}

converges to 1 as n and m approach infinity.

Proof. Observe that the above sequence is just∏n
k=1 rk∏m
k=1 rk

and hence, when m and n approach infinity, the sequence approaches 1. �	

Corollary 2.4.10. If {zk}∞k=1 are zeros of a function f ∈ H2 and f is not
identically zero, then

∞∑
k=1

(1 − |zk|) < ∞.
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Proof. It follows from Corollary 2.4.7 and Theorem 2.4.8 that the subseries
obtained by including only the nonzero zeros converges. If the multiplicity of
the zero at 0 is m, adding in the terms corresponding to the zeros at 0 adds
m to the sum of the subseries. �	

Thus if a function in H2 (that is not identically zero) has an infinite
number of zeros, the zeros must approach the boundary of D fairly rapidly.
We shall see that the converse also holds; there is an inner function φ with
zeros at {zk}∞k=0 whenever

∑∞
j=1(1 − |zj |) converges.

Definition 2.4.11. Let {zk}∞k=1 be a sequence of nonzero complex numbers
in D and assume that

∑∞
k=1(1 − |zk|) < ∞. Let s be a nonnegative integer.

Then the Blaschke product with zeros {zk} and a zero of multiplicity s at 0 is
defined by

B(z) = zs
∞∏

k=1

zk

|zk|
zk − z

1 − zkz
.

Note that s could be zero and there could be only a finite number of (or even
no) zk’s.

It should be noted that the {zk} in the definition of a Blaschke product
need not be distinct. Coincidence of some of the {zk} is necessary to allow for
zeros of multiplicity greater than 1.

We need to show that every Blaschke product converges and has the pre-
scribed zeros. This will be done below; in the course of the proof it will become
apparent why the factors zk

|zk| are required.
We first establish a beautiful classical theorem that will be used in deter-

mining the zeros of Blaschke products.

Theorem 2.4.12 (Hurwitz’s Theorem). Let {gn} be a sequence of func-
tions that are analytic and have no zeros on a domain V . If {gn} → g uni-
formly on compact subsets of V , then either g has no zero in V or g is iden-
tically 0 on V .

Proof. Suppose that g is not identically 0 on V . We will show that assuming
that g has a zero in V leads to a contradiction. Suppose, then, that g(z0) = 0
for some z0 ∈ V . Choose r > 0 such that z0 is the only zero of g in the disk
{z : |z − z0| ≤ r } ⊂ V .

Let δ = min{ |g(z)| : |z−z0| = r }. Then δ > 0. Since {gn} converges to g

uniformly on the compact set {z : |z − z0| = r}, it follows that |gn(z)| > δ/2
for z ∈ {z : |z − z0| = r } when n is sufficiently large.
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Also, 1/gn is analytic in {z : |z − z0| ≤ r}, since gn(z) 
= 0 for all z in
{z : |z − z0| ≤ r}. By the above,∣∣∣∣ 1

gn(z)

∣∣∣∣ < 2
δ

for z ∈ {z : |z − z0| = r}.

It then follows from the maximum modulus principle ([9, pp. 79, 128], [47,
p. 212]) that ∣∣∣∣ 1

gn(z)

∣∣∣∣ < 2
δ

for z ∈ {z : |z − z0| ≤ r},
or, equivalently,

|gn(z)| >
δ

2
for z ∈ {z : |z − z0| ≤ r}.

But this is a contradiction, since {gn(z0)} → g(z0) = 0. �	
Theorem 2.4.13. Every Blaschke product

B(z) = zs
∞∏

k=1

zk

|zk|
zk − z

1 − zkz
,

where s is a nonnegative integer and {zk} is a sequence of nonzero numbers
in D satisfying

∑∞
k=0(1 − |zk|) < ∞, converges for every z ∈ D. Moreover,

B is an inner function whose nonzero zeros are precisely the {zk}, counting
multiplicity, and a zero of multiplicity s at 0.

Proof. We begin with consideration of only the nonzero zeros. For each natural
number n, define the following partial product:

Bn(z) =
n∏

k=1

zk

|zk|
zk − z

1 − zkz
.

We must show that {Bn} is a Cauchy sequence in H2. Each Bn is a multiple
by a constant of modulus one of the corresponding function that was shown
to be inner in Theorem 2.4.2, so each Bn is an inner function. Let n > m.
Then

‖Bn − Bm‖2 =
1
2π

∫ 2π

0

|B̃n(eiθ) − B̃m(eiθ)|2 dθ

=
1
2π

∫ 2π

0

(
B̃n(eiθ) − B̃m(eiθ)

) (
B̃n(eiθ) − B̃m(eiθ)

)
dθ

=
1
2π

∫ 2π

0

(
|B̃n(eiθ)|2 + |B̃m(eiθ)|2 − 2 Re

(
B̃n(eiθ)B̃m(eiθ)

))
dθ

=
1
2π

∫ 2π

0

(
2 − 2 Re

(
B̃n(eiθ)

B̃m(eiθ)

))
dθ,
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since |B̃n(eiθ)| = |B̃m(eiθ)| = 1 a.e. Since n > m, Bn

Bm
is a finite Blaschke

product and hence is, in particular, in H2. Thus

Bn(0)
Bm(0)

=
1
2π

∫ 2π

0

B̃n(eiθ)

B̃m(eiθ)
dθ

by the Poisson integral formula (Theorem 1.1.21). Therefore

‖Bn − Bm‖2 = 2 − 2 Re
Bn(0)
Bm(0)

= 2 − 2 Re
n∏

k=m+1

zk

|zk|
zk − 0
1 − zk0

= 2 − 2 Re
n∏

k=m+1

|zk|2
|zk|

= 2 − 2
n∏

k=m+1

|zk|.

By Theorem 2.4.8, the infinite product
∏∞

k=1 |zk| converges, and thus by The-
orem 2.4.9,

{∏n
k=m+1 |zk|

}→ 1 as n and m approach infinity.
Therefore

‖Bn − Bm‖2 → 0 as n, m → ∞.

Thus {Bn} is a Cauchy sequence in H2 and therefore it converges in H2 to
some function B0 ∈ H2.

Convergence in H2 implies uniform convergence on compact subsets of
D (Theorem 1.1.9), so {Bn} → B0 uniformly on compact subsets of D. In
particular, the Blaschke product converges at every point z ∈ D. This implies
that B0(zk) = 0 for all k. To show that

B0(z) =
∞∏

k=1

zk

|zk|
zk − z

1 − zkz

as an infinite product, the definition requires that B0 have no other zeros than
the zeros of the factors (i.e., the zk’s). Observe that

B0(0) =
∞∏

k=1

|zk| 
= 0

by Corollary 2.4.7, and therefore B0 is not identically zero.
Suppose that B0(z) had a zero z0 different from all the zk’s. Since B0 is

not identically zero there is a closed disk D0 containing z0 that is contained
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in D and does not contain any of the given zeros. Then B0(z0) = 0 and B0

has no other zeros in D0. Since D0 is compact, {Bn} converges uniformly to
B0 on D0. This contradicts Hurwitz’s theorem (Theorem 2.4.12). Thus B0

converges as an infinite product.
It is easily seen that B0 is an inner function, as follows. The convergence

of the sequence {Bn} to B0 in H2 implies that {B̃n} → B̃0 in H̃2, which then
implies that there exists a subsequence {B̃nj

} that converges to B̃0 a.e. (since
every sequence converging in L2 has a subsequence that converges almost
everywhere; see, for example, [47, p. 68]). Since Bn is inner, |B̃n(eiθ)| = 1
a.e., so it follows that |B̃0(eiθ)| = 1 a.e. Now, B(z) = zsB0(z), so B is also
an inner function. Since the zeros of B are the zeros of B0 together with 0, it
follows that B(z) has no other zeros than the given ones.

We also want to know that the multiplicity of each zero of B is the same
as the number of factors in which it occurs. Clearly, each zero of B has at
least that multiplicity. To show that no zero of B0 has greater multiplicity
than the number of factors in which it occurs, proceed as follows. Fix any ẑ

that occurs as a zero of B0. Then B0 can be written as

B0(z) =

(∏
zk=ẑ

zk

|zk|
zk − z

1 − zkz

) ⎛⎝∏
zk 	=ẑ

zk

|zk|
zk − z

1 − zkz

⎞⎠ .

Using Hurwitz’ theorem as above,
∏

zk 	=ẑ

zk

|zk|
zk − z

1 − zkz
does not vanish at ẑ.

Therefore, the multiplicity of ẑ as a zero of B0 is precisely the number of
factors with zk = ẑ.

The multiplicity of the zero of B at 0 is s since B0(0) 
= 0. �	

Corollary 2.4.3 can now be extended to inner functions that have an infinite
number of zeros.

Corollary 2.4.14. Suppose that the inner function φ has a zero of multiplicity
s at 0 and has nonzero zeros at the points z1, z2, z3, . . . in D (repeated according
to multiplicity). Let

B(z) = zs
∞∏

k=1

zk

|zk|
zk − z

1 − zkz

be the Blaschke product formed from those zeros. Then φ can be written as a
product φ = BS, where S is an inner function that has no zeros in D.

Proof. For each positive integer n, let
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Bn(z) =
n∏

k=1

zk

|zk|
zk − z

1 − zkz

and

B0(z) =
∞∏

k=1

zk

|zk|
zk − z

1 − zkz
.

As shown in Theorem 2.4.13, {Bn} converges to B0 uniformly on compact
subsets of D, so {zsBn} converges to B uniformly on compact subsets of D.
Then, for each n, the function φ

zsBn
is an inner function, since zsBn is the

product of a constant of modulus one and the function ψ of Corollary 2.4.3.
Therefore, for each z ∈ D, ∣∣∣∣ φ(z)

zsBn(z)

∣∣∣∣ < 1.

Let S(z) = φ(z)
B(z) . The function S is analytic on D since, by the previous

theorem, the zeros of B are zeros of φ with the same multiplicity. Since{
φ(z)

zsBn(z)

}
converges to S(z)

for every z ∈ D except possibly at the zeros of B, it follows that |S(z)| ≤ 1
except possibly on a countable subset of D. Since an analytic function that
has modulus larger than 1 at any point in D has modulus larger than 1
at an uncountable number of points, this implies that |S(z)| ≤ 1 for ev-
ery z ∈ D. Thus, in particular, S ∈ H2. Moreover, φ = BS implies that
|φ̃(eiθ)| = |B̃(eiθ)| |S̃(eiθ)| and, since φ and B are inner functions, it follows
that S is an inner function.

Any zero of S would obviously be a zero of φ so, since B has all the zeros
of φ with the same multiplicity as φ does, S has no zeros in D. �	
Example 2.4.15. There is a Blaschke product that is not analytic at any
point of S1.

Proof. Let {cn} be any sequence dense in S1 and, for each n, let

zn =
(

1 − 1
n2

)
cn.

Then 1 − |zn| = 1
n2 , so the {zn} are the zeros of a Blaschke product B.

Moreover, every point of S1 is a limit point of {zn}. If B was analytic at
a point on S1, B would have to vanish at that point and hence be identically
zero in a neighborhood of it, which is clearly not the case. �	
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2.5 The Müntz–Szász Theorem

There is an application of the result that the zeros of an H∞ function ap-
proach the boundary fairly rapidly (Corollary 2.4.10) that is not required in
the sequel but that is so beautiful that we cannot resist including it here.

Recall Weierstrass’s famous theorem that every function continuous on
[0, 1] can be uniformly approximated by polynomials [46, p. 159]. In functional-
analytic terms, Weierstrass’s theorem states that the collection of polynomials
is dense in the Banach space C[0, 1] of complex-valued functions continuous on
[0, 1] (with the norm of a function defined by ‖f‖ = sup {|f(x)| : x ∈ [0, 1]}).
The following question is very natural: for what subsets S of the set of natural
numbers is the linear span of {xn : n ∈ S} ∪ {1} dense in C[0, 1]? (Note that
the constant functions must be included, for otherwise every element of the
linear span would vanish at zero.)

A remarkable theorem established by Müntz and Szász answers a more
general question: it allows nonintegral powers as well.

Theorem 2.5.1 (The Müntz–Szász Theorem). If {pn} is a sequence of
distinct positive numbers that is bounded away from zero, and if

∑∞
n=1

1
pn

diverges, then the linear span of the collection {xpn}∪ {1} is dense in C[0, 1].

Proof. Recall that the Riesz representation theorem for linear functionals on
spaces of continuous functions [47, pp. 129–130] implies that for every bounded
linear functional φ on C[0, 1] there exists a finite regular complex Borel mea-
sure µ on [0, 1] such that

φ(f) =
∫ 1

0

f dµ for all f ∈ C[0, 1].

By the Hahn–Banach theorem, if the given span was not dense in C[0, 1] there
would exist a bounded linear functional φ such that φ(1) = φ(xpn) = 0 for all
n but φ is not the functional 0. For every bounded linear functional that is
not identically 0 but satisfies φ(1) = 0, there exists an n such that φ(xn) 
= 0
(for if φ(1) = φ(xn) = 0 for every natural number n, then φ(p(x)) = 0 for
every polynomial p, and Weierstrass’s theorem implies that φ is identically 0).

Therefore, the theorem will be established if it is shown that whenever µ

is a finite regular complex Borel measure on [0, 1] such that∫ 1

0

xpn dµ(x) = 0 for all natural numbers n,
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it follows that∫ 1

0

xm dµ(x) = 0 for all natural numbers m.

Suppose, then, that µ is a finite regular complex Borel measure satisfying∫ 1

0

xpn dµ(x) = 0 for all natural numbers n.

Since 0pn = 0,∫
(0,1]

xpn dµ(x) = 0 for all natural numbers n.

Note that if z is a complex number such that Re z > 0, then |xz| = |ez log x| ≤ 1
for x ∈ (0, 1]. Thus ∫

(0,1]

xzdµ(x)

exists for every z with Re z > 0. We define the function g on the right half-
plane {z : Re z > 0} by

g(z) =
∫

(0,1]

xz dµ(x).

Differentiating under the integral sign shows that g is analytic on the right
half-plane. Note that g(pn) = 0 for all natural numbers n, and the theorem
will be established if we show that g(m) = 0 for every natural number m

(observe that
∫
(0,1]

xm dµ(x) =
∫ 1

0
xm dµ(x) whether or not µ has an atom at

0). We will show, in fact, that g is identically 0 on {z : Re z > 0} .
Recall that the function z �→ 1+z

1−z is a conformal mapping of D onto {z :
Re z > 0}. Define the function f by

f(z) = g

(
1 + z

1 − z

)
.

Then f is analytic on D. As shown above, |xz| ≤ 1 for Re z > 0. Therefore
|g(z)| ≤ |µ|((0, 1]) when Re z > 0, where |µ| is the total variation of the
measure µ. Thus |f(z)| ≤ |µ|((0, 1]) for z ∈ D, so f is in H∞. Since g(pn) = 0
it follows that f(zn) = 0 if 1+zn

1−zn
= pn. This is equivalent to zn = pn−1

pn+1 .
Note that

1 − |zn| = 1 −
∣∣∣∣pn − 1
pn + 1

∣∣∣∣ .
We distinguish two cases. If an infinite number of the pn’s are less than or
equal to 1, then, since {pn} is bounded away from zero, {pn} has a limit
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point in {z : Re z > 0}. In this case g is an analytic function vanishing on a
set that has a limit point within its domain and therefore is identically zero,
which finishes the proof.

In the other case, there exists N such that pn > 1 for n > N . For such n,

1 − |zn| = 1 −
∣∣∣∣pn − 1
pn + 1

∣∣∣∣ = 1 − pn − 1
pn + 1

=
2

pn + 1
.

Now the fact that
∑∞

n=N+1
1

pn
diverges implies that

∑∞
n=N+1

2
pn+1 diverges,

as can be seen by the comparison test. Hence
∑∞

n=N+1(1− |zn|) diverges and
therefore

∑∞
n=1(1 − |zn|) diverges. Since f ∈ H∞ and f(zn) = 0 for all n, it

follows from Corollary 2.4.10 that f(z) = 0 for all z ∈ D. Therefore g(z) = 0
on {z : Re z > 0}, finishing the proof. �	

There is a converse to this theorem, also due to Müntz and Szasz, that
holds for increasing sequences: If {pn} is an increasing sequence of positive
numbers such that

∑∞
n=1

1
pn

converges, then the closure in C[0, 1] of the linear
span of {xpn} ∪ {1} does not contain xα unless α = 0 or α = pn for some n.
For a proof, see [47, p. 313].

One application of the Müntz–Szász theorem is to prime powers. We re-
quire a classical result of Euler’s.

Theorem 2.5.2 (Euler’s Theorem). If pj denotes the jth prime number,
then the series

∑∞
j=1

1
pj

diverges.

Proof. If the series converged, there would exist an M such that

∞∑
j=M

1
pj

<
1
2
.

Assume there exists such an M ; we will show that this leads to a contradiction.
Note that the series

∞∑
k=0

⎛⎝ ∞∑
j=M

1
pj

⎞⎠k

would then be a convergent geometric series.
For each j < M , the series

∞∑
k=0

1
pk

j

is also a convergent geometric series.
Multiplying these series together gives
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( ∞∑
k=0

1
2k

)( ∞∑
k=0

1
3k

)( ∞∑
k=0

1
5k

)
· · ·
( ∞∑

k=0

1
pk

M−1

)⎛⎜⎝ ∞∑
k=0

⎛⎝ ∞∑
j=M

1
pj

⎞⎠k
⎞⎟⎠ .

We will obtain a contradiction by showing that multiplying out the above
expression yields a series whose terms contain all the terms of the harmonic
series.

To see this we begin as follows. Suppose that the set

{pn1 , pn2 , . . . , pns}
is any collection of prime numbers with pni

≥ pM for all i, and suppose that

{α1, α2, . . . , αs}
are natural numbers. Then

1
pα1

n1p
α2
n2 . . . pαs

ns

is a term that occurs in the expansion of⎛⎝ ∞∑
j=M

1
pj

⎞⎠α1+α2+···+αs

.

If n is a natural number greater than 1, it can be written in the form

n = pβ1
m1

pβ2
m2

· · · pβt
mt

pα1
n1

pα2
n2

· · · pαs
ns

,

where each pmi < pM and each pni ≥ pM . Then 1
n occurs as a term in the

product of

1

pβ1
m1

1

pβ2
m2

· · · 1

pβt
mt

⎛⎝ ∞∑
j=M

1
pj

⎞⎠α1+α2+···+αs

.

Thus the expansion of( ∞∑
k=0

1
2k

)( ∞∑
k=0

1
3k

)( ∞∑
k=0

1
5k

)
· · ·
( ∞∑

k=0

1
pk

M−1

)⎛⎜⎝ ∞∑
k=0

⎛⎝ ∞∑
j=M

1
pj

⎞⎠k
⎞⎟⎠

contains 1
n for every natural number n. This contradicts the divergence of the

harmonic series. �	
Corollary 2.5.3. Every continuous function on [0, 1] is a uniform limit of
polynomials whose exponents are prime numbers.

Proof. Euler’s theorem (Theorem 2.5.2) and the Müntz–Szasz theorem (The-
orem 2.5.1) immediately imply the corollary. �	
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2.6 Singular Inner Functions

As we have just seen, every inner function is the product of a Blaschke product
and an inner function that has no zeros on D.

Definition 2.6.1. A nonconstant inner function that has no zero in D is called
a singular inner function.

The word “singular” is used because of the representation of such functions
by singular measures, as will be described below (Theorem 2.6.5).

We begin with an example.

Example 2.6.2. If

f(z) = exp
(

z + 1
z − 1

)
,

then f is a singular inner function.

Proof. Recall that |ew| = |eRe w+iIm w| = |eRe w| = eRe w for every complex
number w. Hence

|f(z)| = exp
(

Re
(

z + 1
z − 1

))
.

A calculation shows that

Re
(

z + 1
z − 1

)
=

|z|2 − 1
|z − 1|2 .

Since this is negative for z ∈ D, it follows that |f(z)| < 1 for all z ∈ D. Thus
f ∈ H∞. Moreover, |z| = 1 and z 
= 1 implies Re z+1

z−1 = 0, and therefore
|f̃(eiθ)| = 1 for all θ 
= 0. Since ew is never zero for any complex number w,
it follows that f is an inner function with no zeros in D. �	

Surprisingly, this simple example suggests the general form of singular
inner functions. Slight variants of this example include the functions

g(z) = exp
(

α0
z + eiθ0

z − eiθ0

)
for fixed positive numbers α0 and fixed real numbers θ0; the same proof as
that given above shows that every such g is a singular inner function. Since
the product of any finite number of singular inner functions is obviously a
singular inner function, any function S of the form

S(z) = exp
(

α1
z + eiθ1

z − eiθ1
+ α2

z + eiθ2

z − eiθ2
+ · · · + αn

z + eiθn

z − eiθn

)
,
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with the αj any positive numbers and the θj any real numbers, is also a
singular inner function.

We will show (Theorem 2.6.5) that every singular inner function is a kind
of “continuous infinite product” of functions of this type. A classical repre-
sentation theorem will be required.

Theorem 2.6.3 (The Herglotz Representation Theorem). Suppose h

is analytic on D and Re h(z) > 0 for all z ∈ D. Then there exists a finite
positive regular Borel measure µ on [0, 2π] such that

h(z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ) + i Im h(0)

for z ∈ D.

Proof. For each s ∈ (0, 1), define hs by hs(z) = h(sz) for z ∈ D. Clearly hs ∈
H∞, and thus hs ∈ H2. For each s, the Poisson integral formula (Theorem
1.1.21) yields

hs(reit) =
1
2π

∫ 2π

0

h̃s(eiθ)Pr(θ − t) dθ

for reit ∈ D. Thus, since Pr(θ − t) is real-valued,

Re
(
hs(reit)

)
=

1
2π

∫ 2π

0

Re (h̃s(eiθ))Pr(θ − t) dθ.

Note that

Re
(

eiθ + reit

eiθ − reit

)
= Re

(
ei(θ−t) + r

ei(θ−t) − r

)
=

1
2

(
ei(θ−t) + r

ei(θ−t) − r
+

e−i(θ−t) + r

e−i(θ−t) − r

)
=

1 − r2

1 − r(ei(θ−t) + e−i(θ−t)) + r2

=
1 − r2

1 − 2r cos(θ − t) + r2
= Pr(θ − t).

If we define a function F by

F (z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
Re (h̃s(eiθ)) dθ for z ∈ D,

then Re (F (z)) = Re (hs(z)) for all z ∈ D. (Note that the integrand is contin-
uous, so the integral is defined even in the Riemann sense.) The function



68 2 The Unilateral Shift and Factorization of Functions

F (z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
Re (h̃s(eiθ)) dθ

is analytic in D, as can be seen by simply differentiating under the integral.
Recall that it follows from the Cauchy–Riemann equations that two ana-

lytic functions with the same real part differ by at most an imaginary con-
stant [6, p. 63]. Therefore

hs(z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
Re (h̃s(eiθ)) dθ + i Im h(0),

since Im F (0) = 0 and hs(0) = h(0).
To complete the proof, we must pass from hs to h itself. Choose a sequence

{sn} of positive numbers increasing to 1. For each n, define the positive mea-
sure µsn on S1 by

µsn
(E) =

1
2π

∫
E

Re h̃sn
(eiθ) dθ

for each Lebesgue-measurable subset E of S1. The measure µ of the conclusion
of the theorem will be obtained as a limit point of {µsn}. The easiest way to
do this is by regarding measures on S1 as linear functionals on the space of
continuous functions on S1 and using some basic results from the theory of
Banach spaces.

Let C(S1) denote the Banach space of continuous functions on S1 equipped
with the supremum norm. The Riesz representation theorem for bounded
linear functionals on such spaces of continuous functions implies that the dual
space of C(S1) is the space of all finite regular complex measures on S1 with
the total variation norm ([12, p. 383], [20, p. 216], [44, p.357], [47, p. 130]).
Alaoglu’s theorem states that closed balls in a dual space of a Banach space
are weak* compact ([12, p. 130], [20, p. 162], [48, p. 68]).

To apply Alaoglu’s theorem, it must be shown that {µsn
} is bounded in

norm. Since Re h̃sn(eiθ) ≥ 0 for all θ, each µsn is a nonnegative measure on
S1. Thus the total variation norm of µsn is simply µsn(S1). But

µsn(S1) =
1
2π

∫
S1

Re h̃sn(eiθ) dθ =
1
2π

∫ 2π

0

Re h̃sn(eiθ) dθ.

It follows from the Cauchy integral formula (Theorem 1.1.19) that

hsn
(0) =

1
2π

∫ 2π

0

h̃sn
(eiθ) dθ.

Thus
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Re hsn
(0) =

1
2π

∫ 2π

0

Re h̃sn
(eiθ) dθ = µsn

(S1).

But hsn
(0) = h(0) for all n, so the total variation norm of µsn

equals Re h(0)
for all n.

Thus the collection {µsn} is a bounded subset of the dual space of C(S1).
It is well known that the weak* topology on a closed ball in the dual of a
separable Banach space is metrizable ([19, p. 426], [48, p. 70]). Combining
this fact with Alaoglu’s theorem implies that every bounded sequence in the
dual of a separable Banach space has a subsequence that converges in the
weak* topology. In particular, then, a subsequence {µsnj

} converges to some
measure µ in the weak* topology. It is easily seen that µ is a nonnegative
measure since of all the µsn ’s are.

Convergence in the weak* topology means that, for every continuous func-
tion G on S1, {∫ 2π

0

G(eiθ) dµsnj
(θ)
}

approaches ∫ 2π

0

G(eiθ) dµ(θ)

as {nj} → ∞. Applying this to the particular function

G(eiθ) =
eiθ + z

eiθ − z
,

for z any fixed element of D, and recalling that dµsn(eiθ) = 1
2π Re h̃sn(eiθ) dθ,

shows that {
1
2π

∫ 2π

0

eiθ + z

eiθ − z
Re h̃snj

(eiθ) dθ + iIm h(0)
}

converges to
1
2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ) dθ + iIm h(0)

as {nj} → ∞. But

hsnj
(z) =

1
2π

∫ 2π

0

eiθ + z

eiθ − z
Re h̃snj

(eiθ) dθ + iIm h(0)

for every z ∈ D. Hence, for z ∈ D,{
hsnj

(z)
}

converges to
1
2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ) dθ + iIm h(0)
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as {nj} → ∞. Since hsnj
(z) = h(snj

z) and {snj
} → 1, it follows that hsnj

(z)
also converges to h(z) for every z ∈ D, so

h(z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ) + iIm h(0).

�	

The reason that singular inner functions are called “singular” is because
the measures that arise in their representation are singular with respect to
Lebesgue measure.

Definition 2.6.4. The complex measure µ defined on all Lebesgue-measurable
subsets of S1 is singular with respect to Lebesgue measure m on S1 if
there exist disjoint Lebesgue-measurable subsets F and G of S1 such that
µ(E) = µ(E ∩ F ) and m(E) = m(E ∩ G) for all measurable subsets E, and
|µ|(G) = 0 and |m|(F ) = 0. (Recall that |µ| is the total variation of µ; of
course, since m is a nonnegative measure, m = |m|.)

Theorem 2.6.5. The singular inner functions (i.e., inner functions that have
no zeros on D) have the form

S(z) = K exp
(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)

)
for µ a finite positive regular Borel measure on [0, 2π], singular with respect
to Lebesgue measure, and K a constant of modulus 1.

Proof. We first show that every function S of the given form is a singular
inner function. Let S have the above form. Clearly (differentiate under the
integral sign) S is analytic on D. We must show that S is inner and has no
zeros in D.

Let z = reit be a point in D. Then

|S(reit)| =
∣∣∣∣exp
(
− 1

2π

∫ 2π

0

eiθ + reit

eiθ − reit
dµ(θ)

)∣∣∣∣
= exp Re

(
− 1

2π

∫ 2π

0

eiθ + reit

eiθ − reit
dµ(θ)

)
= exp

(
− 1

2π

∫ 2π

0

Re
(

eiθ + reit

eiθ − reit

)
dµ(θ)

)
= exp

(
− 1

2π

∫ 2π

0

Pr(θ − t) dµ(θ)
)

.
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Since Pr(θ − t) > 0 and µ is a positive measure,

− 1
2π

∫ 2π

0

Pr(θ − t) dµ(θ) < 0.

Therefore |S(reit)| < 1 for all reit ∈ D.
Since µ is a positive regular Borel measure on S1, µ is defined by a mono-

tone function α [20, p. 99]. Recall that monotone functions are differentiable
almost everywhere. The fact that µ is singular with respect to Lebesgue mea-
sure implies that α′(t) = 0 a.e. with respect to Lebesgue measure [20, p. 100].
By Fatou’s theorem (Theorem 1.1.26),

lim
r→1−

1
2π

∫ 2π

0

Pr(θ − t) dµ(θ) = α′(t) = 0 a.e.

and therefore

lim
r→1−

|S(reit)| = lim
r→1−

exp
(
− 1

2π

∫ 2π

0

Pr(θ − t) dµ(θ)
)

= 1 a.e.

Thus S is an inner function. Since S is an exponential, S does not have any
zeros, and it follows that S is a singular inner function.

Suppose, conversely, that S is a nonconstant inner function with no zeros
in D. We must show that there is a singular measure µ such that S has the
above form. Since S has no zero in D, we can write S(z) = exp(g(z)) for a
function g analytic on D. Since S is an inner function, |S(z)| < 1 for z ∈ D

(Theorem 2.2.10). But |S(z)| = exp Re g(z), so Re g(z) < 0 for z ∈ D. Thus
the Herglotz representation theorem (Theorem 2.6.3) applied to the function
(−g) shows that there is a finite positive regular Borel measure µ on [0, 2π]
such that

g(z) = − 1
2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ) + iIm g(0).

It follows that

S(z) = K exp
(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)

)
,

where K = exp(iIm g(0)).
It remains to be shown that µ is singular with respect to Lebesgue measure.

If α is the monotone function inducing µ, Fatou’s theorem (Theorem 1.1.26)
gives

lim
r→1−

∣∣S(reit)
∣∣ = exp

(
lim

r→1−
− 1

2π

∫ 2π

0

Pr(θ − t) dµ(θ)
)

= exp(−α′(t)) a.e.
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Since |S̃(eiθ)| = 1 a.e., it follows that α′(t) = 0 a.e. Thus the measure µ in-
duced by α is singular with respect to Lebesgue measure. (A measure induced
by a function α is singular with respect to Lebesgue measure if and only if
α′(t) = 0 a.e.; see, for example, [20, p. 100].) �	

Corollary 2.6.6. If φ is an inner function, then φ can be written as φ = BS,
where B is the Blaschke product formed from the zeros of φ and S is a singular
inner function given by an integral as in Theorem 2.6.5.

Proof. Given an inner function φ, let B be the Blaschke product formed from
the zeros of φ. By Theorem 2.4.14, φ/B is an inner function with no zeros
in D. Thus φ/B = S is a singular inner function and therefore has the form
given in Theorem 2.6.5. �	

The above analysis of Blaschke products and singular inner functions al-
lows us to completely understand the lattice structure of LatU . That is, it
allows us to precisely describe the invariant subspaces of the unilateral shift
that are contained in a given invariant subspace.

Theorem 2.6.7. Let φ1 and φ2 be inner functions. Then φ1H
2 ⊂ φ2H

2 if
and only φ1/φ2 is an inner function. This is equivalent to every zero of φ2

occurring as a zero of φ1 with at least the same multiplicity and, for µ1 the
singular measure corresponding to φ1 and µ2 the singular measure correspond-
ing to φ2, the inequality µ2(E) ≤ µ1(E) holding for every Borel subset E of
[0, 2π].

Proof. First suppose that φ1 = B1S1 and φ2 = B2S2 and the zeros of B2 occur
as zeros of B1 with at least the same multiplicity and that µ1(E) ≤ µ2(E) for
every Borel set E, where µ1 is the singular measure associated with S1 and
µ2 is the singular measure associated with S2. Clearly B1/B2 is a Blaschke
product B3.

If

S1(z) = K1 exp
(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ1(θ)

)
and

S2(z) = K2 exp
(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ2(θ)

)
,

then
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S1

S2
=

K1

K2
exp
{(

− 1
2π

∫ 2π

0

eiθ + z

eiθ − z
dµ1(θ)

)
−
(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ2(θ)

)}
=

K1

K2
exp
(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
d(µ1 − µ2)(θ)

)
.

Define the measure µ3 on S1 by µ3(E) = µ1(E) − µ2(E) for every Borel
set E. Since µ2(E) ≤ µ1(E) for all Borel sets E, µ3 is a nonnegative measure.
Moreover, µ3 is singular with respect to Lebesgue measure since each one of
µ1 and µ2 is. Hence

S3(z) =
K1

K2
exp
(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ3(θ)

)
is a singular inner function.

Since B1/B2 = B3 and S1/S2 = S3, it follows that

φ1 = B1S1 = B2B3S2S3 = φ2B3S3,

and hence φ1/φ2 is an inner function. The inner function B3S3 is, in particular,
in H2, so φ1 ∈ φ2H

2. It follows that φ1H
2 ⊂ φ2H

2.
For the converse, let φ1 and φ2 be inner and suppose that φ1H

2 ⊂ φ2H
2.

Since 1 ∈ H2, it follows that φ1 ∈ φ2H
2 and therefore there exists a function

φ3 ∈ H2 such that φ1 = φ2φ3. Taking the boundary values of these H2

functions we get |φ̃3(eiθ)| = 1 a.e. An application of Theorem 2.2.11 shows
that φ3 is an inner function; i.e., φ1/φ2 is inner. Write each inner function φj

as a product of the Blaschke product formed by its zeros and a singular inner
function given as in the corollary above; i.e., φj = BjSj . Thus we have

B1S1 = B2B3S2S3.

It is clear that we must have B1 = B2B3 and S1 = S2S3 since B2B3 is a
Blaschke product and S2S3 has no zeros.

Since B2 is a factor of B1, every zero of B2 is also a zero of B1 with at
least the same multiplicity. Let µi be the measure given by Theorem 2.6.5 for
each singular inner function Si. We then have

K1 exp
(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ1(θ)

)
= K2 exp

(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ2(θ)

)
K3 exp

(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ3(θ)

)
= K2K3 exp

(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
d(µ2 + µ3)(θ)

)



74 2 The Unilateral Shift and Factorization of Functions

for some constants Ki of modulus 1. Evaluating the above expression at 0 and
comparing the polar representation of the resulting complex numbers shows
that K1 must equal K2K3. Recall that exp(f(z)) = exp(g(z)) for functions f

and g analytic on a domain implies that there is a real number c such that
f(z) = g(z) + ic for all z in the domain. Thus there is a real number c such
that

1
2π

∫ 2π

0

eiθ + z

eiθ − z
dµ1(θ) =

1
2π

∫ 2π

0

eiθ + z

eiθ − z
d(µ2 + µ3)(θ) + ic

for all z ∈ D. Taking z = 0 and recalling that the measures are real-valued
shows that c = 0. Hence

1
2π

∫ 2π

0

eiθ + z

eiθ − z
dµ1(θ) =

1
2π

∫ 2π

0

eiθ + z

eiθ − z
d(µ2 + µ3)(θ).

Note that

eiθ + z

eiθ − z
=

1 + ze−iθ

1 − ze−iθ

= (1 + ze−iθ)(1 + ze−iθ + z2e−2iθ + z3e−3iθ + · · · )

= 1 + 2
∞∑

n=1

zne−niθ.

Thus∫ 2π

0

(
1 + 2

∞∑
n=1

zne−niθ

)
dµ1(θ) =

∫ 2π

0

(
1 + 2

∞∑
n=1

zne−niθ

)
d(µ2 + µ3)(θ).

Therefore∫ 2π

0

dµ1(θ) + 2
∞∑

n=1

zn

∫ 2π

0

e−niθ dµ1(θ)

=
∫ 2π

0

d(µ2 + µ3)(θ) + 2
∞∑

n=1

zn

∫ 2π

0

e−niθ d(µ2 + µ3)(θ).

Each of the power series displayed above converges for z ∈ D. The power series
representation of a function analytic in D is unique, so∫ 2π

0

e−niθ dµ1(θ) =
∫ 2π

0

e−niθ d(µ2 + µ3)(θ)

for each positive integer n. Since each of the µj is a nonnegative measure,
taking complex conjugates yields
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∫ 2π

0

eniθ dµ1(θ) =
∫ 2π

0

eniθ d(µ2 + µ3)(θ)

for every integer n other than zero. Moreover, considering the constant terms
of the above series yields∫ 2π

0

dµ1(θ) =
∫ 2π

0

d(µ2 + µ3)(θ).

Therefore, for all n,∫ 2π

0

eniθ dµ1(θ) =
∫ 2π

0

eniθ d(µ2 + µ3)(θ).

Since linear combinations of {einθ} (i.e., trigonometric polynomials) are uni-
formly dense in the space of continuous functions on S1, it follows that
µ1 = µ2 + µ3. Thus, since the µj ’s are positive measures, µ2(E) ≤ µ1(E)
for all Borel sets E. �	

It is sometimes useful to know which invariant subspaces of the unilateral
shift have finite codimension (i.e., have the property that there is a finite set
such that the span of the subspace and that set is all of H2).

Theorem 2.6.8. If φ is an inner function, then φH2 has finite codimension
if and only if φ is a constant multiple of a Blaschke product with a finite
number of factors.

Proof. It is easy to see that the result holds for a Blaschke product with only
one factor. If that factor is z, this follows from the obvious fact that zH2

and the constant function 1 span H2. In the case of any other single Blaschke
factor, there is a similar situation. For if f0 is any function in H2 that does
not vanish at z0, the span of f0 and(

z0

|z0|
z0 − z

1 − zoz

)
H2

is H2.
The case of an arbitrary finite Blaschke product with an arbitrary finite

number of factors follows from a trivial induction. For suppose that it is known
that the codimension of BnH2 is m whenever Bm is a Blaschke product with
m factors (repeated according to the multiplicity of the zero). Let Bm+1 be a
Blaschke product with m + 1 factors, so that Bm+1 = φmBm, where φm is a
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single Blaschke factor and Bm is a product of m Blaschke factors. By the in-
ductive hypothesis, there exists a linearly independent subset {f1, f2, . . . , fm}
of H2 such that the span of BmH2 and {f1, f2, . . . , fm} is H2. It follows that

φm

(
BmH2 ∨ {f1, f2, . . . , fm}) = φmH2,

or
φmBmH2 ∨ {φmf1, φmf2, . . . , φmfm} = φmH2.

Choose fm+1 such that its span with φmH2 is H2. Then

φmBmH2 ∨ {φmf1, φmf2, . . . , φmfm, fm+1} = H2.

It is easily seen that {φmf1, φmf2, . . . , φmfm, fm+1} is linearly independent.
We must prove the converse. That is, suppose that φ is an inner function

such that φH2 has finite codimension. It must be shown that φ is a finite
Blaschke product.

By the factorization theorem for inner functions, it suffices to show that
φ has no singular inner factor and that its Blaschke factor is a finite product.
Suppose φ had a nonconstant singular part and let φ = BS where B is a
Blaschke product and S is a singular inner function. Let µ be the singular
measure determining S; the fact that S is nonconstant means that µ is not
identically 0. We define, for each α ∈ (0, 1), a measure µα by µα(E) = αµ(E)
for each Borel subset E of [0, 2π], and let Sα be the corresponding singular
inner function. If φα = BSα for each α, the preceding theorem (Theorem 2.6.7)
implies that the subspaces {φαH2} form an infinite chain of distinct subspaces
all of which contain φH2. Hence φH2 would have infinite codimension. Thus
the singular part of φ is constant.

All that remains to be shown is that the codimension of BH2 is infinite
whenever B is a Blaschke product with an infinite number of factors. If B

is a Blaschke product with an infinite number of factors, an infinite chain of
subspaces containing BH2 can be obtained by inductively defining Bn as the
Blaschke product obtained from Bn−1 by omitting one of its factors (where
B1 equals B). Then {BnH2} is such a chain of subspaces (by Theorem 2.6.7).

�	

The ordinary definitions of greatest common divisor and least common
multiple apply to arbitrary collections of inner functions.

Definition 2.6.9. The inner function φ2 divides the inner function φ1 if there
exists an inner function φ3 such that φ1 = φ2φ3. The inner function φg is the



2.6 Singular Inner Functions 77

greatest common divisor of the collection {φα} of inner functions if φg divides
φα for every α and φ divides φg whenever φ is an inner function that divides all
the φα. The inner function φm is the least common multiple of the collection
{φα} of inner functions if φα divides φm for every α and φm divides φ whenever
φ is an inner function such that φα divides φ for all α.

Theorem 2.6.10. Every collection of inner functions has a greatest common
divisor. Every finite collection of inner functions has a least common multiple.

Proof. Let {φα} be a collection of inner functions. Define

M =
∨{

f : f ∈ φαH2 for some α
}

.

It is easily seen that M is invariant under U . Thus M = φgH
2 for some inner

function φg. Since φαH2 ⊂ φgH
2 for every α, it follows that φg divides φα for

all α, by Theorem 2.6.7. Therefore φg is a common divisor of the φα. Suppose
φ is an inner function such that φ divides φα for all α. Then φαH2 ⊂ φH2

for all α. But then∨{
f : f ∈ φαH2 for some α

} ⊂ φH2,

and thus φgH
2 ⊂ φH2. This implies that φ divides φg. Therefore φg is the

greatest common divisor. (Notice that φg could be the constant function 1.)
To prove the second assertion, let {φ1, φ2, . . . , φn} be a finite collection of

inner functions. Let

M =
n⋂

j=1

φjH
2.

Clearly (φ1φ2 · · ·φn) ∈ M, so M is not {0}. Therefore M = φlH
2 for some

inner function φl. Since φlH
2 ⊂ φjH

2, it follows that every φj divides φl.
Moreover, if ψ is an inner function that is divisible by every φj , then ψH2 ⊂
φjH

2 for each j, so ψH2 ⊂ M = φlH
2. Thus φl divides ψ. Therefore φl is

the least common multiple. �	

Corollary 2.6.11. If M is an invariant subspace, other than {0}, of the uni-
lateral shift, then M = φH2, where φ is the greatest common divisor of all
the inner parts of all the functions in M.

Proof. Since M is an invariant subspace for the unilateral shift, Beurling’s
theorem (Theorem 2.2.12) guarantees that there exists an inner function φ

such that M = φH2. We will show that φ is the greatest common divisor of
all the inner parts of all the functions in H2.
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Let f ∈ M = φH2. Then there exists a function g ∈ H2 such that f = φg.
Factor the functions f and g into their inner and outer parts: f = fIfO and
g = gIgO. We then have fIfO = φgIgO, and, by Theorem 2.3.4, there must
exist a constant c of modulus 1 such that fI = cφgI . Hence φ divides the inner
part of f .

Let ψ be an inner function such that ψ divides the inner parts of all
functions in M. Since φ is inner and is in φH2 = M, it follows that ψ divides
φ. Therefore φ is the greatest common divisor of all the inner parts of all the
functions in H2. �	

It is of interest to determine what abstract lattices can arise in the form
Lat A for bounded linear operators on a separable Hilbert space.

Definition 2.6.12. The abstract lattice L is attainable if there exists a
bounded linear operator A on an infinite-dimensional separable complex
Hilbert space such that LatA is order-isomorphic to L.

Surprisingly little is known about which lattices are obtainable. The invari-
ant subspace problem, the question whether there is an A whose only invariant
subspaces are {0} and H, can be rephrased as: is the totally ordered lattice
with two elements attainable?

For U the unilateral shift, LatU is a very complicated and rich lattice, as
Theorem 2.6.7 indicates. Some of its sublattices will be of the form LatA for
suitable operators A.

Recall that given two subspaces M and N of a Hilbert space H, the
subspace N �M is defined to be N ∩M⊥.

The next theorem shows that an “interval” of an attainable lattice is an
attainable lattice.

Theorem 2.6.13. Let A be a bounded operator on an infinite-dimensional
separable Hilbert space. Suppose that M and N are in Lat A and M ⊂ N . If
N �M is infinite-dimensional, then the lattice

{L : L ∈ Lat A and M ⊂ L ⊂ N}

is attainable.

Proof. Let P be the projection onto the subspace N�M. Define the bounded
linear operator B on N �M as B = PA

∣∣
N
M. We will show that LatB is

order-isomorphic to the lattice of the theorem.
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Let K ∈ Lat B. We show that M⊕K is in the lattice of the theorem. First
of all, since K ⊂ N�M, it is clear that M ⊂ M⊕K ⊂ N . Let m+k ∈ M⊕K.
Then

A(m + k) = Am + (I − P )Ak + PAk.

Since m ∈ M and M ∈ Lat A, it follows that Am ∈ M. Since k ∈ K ⊂ N
and N ∈ Lat A, we have that Ak ∈ N . Thus, since I − P is the projection
onto N⊥ ⊕M, it follows that (I − P )Ak ∈ M. Lastly, PAk = Bk and since
k ∈ K and K ∈ Lat B we must have that Bk ∈ K. Thus

A(m + k) = (Am + (I − P )Ak) + Bk ∈ M⊕K.

Hence M⊕K is a member of the lattice of the theorem.
Now suppose that L is a member of the given lattice. Define K = L�M.

Clearly K ⊂ N �M. We will prove that K ∈ Lat B. Let k ∈ K. Since K ⊂ L
and L ∈ Lat A, we have Ak ∈ L. Write Ak as Ak = f + g with f ∈ L �M
and g ∈ M. Then PAk = f since P is the projection onto N � M and
L �M ⊂ N �M. Thus Bk = PAk = f ∈ L �M = K, so K ∈ Lat B. Since
M ⊂ L, K = L �M is equivalent to L = M⊕K.

Thus K ∈ Lat B if and only if L = M⊕K is in the lattice in the statement
of the theorem, which establishes the isomorphism. �	

The invariant subspace lattice of the unilateral shift has interesting “in-
tervals”, including the ordinary closed unit interval.

Example 2.6.14. Let

φ(z) = exp
(

z + 1
z − 1

)
and let M =

(
φH2
)⊥. Then Lat

(
U∗ ∣∣

M
)

is order-isomorphic to the closed
unit interval [0, 1] with its standard ordering.

Proof. The function φ is inner singular. The measure µ defined by µ(A) = 2π

for any Borel set A containing 0 and µ(B) = 0 for Borel sets B that do not
contain zero is the measure provided by Theorem 2.6.5.

It follows from Beurling’s theorem (Theorem 2.2.12) that φH2 ∈ Lat U .
By Theorem 1.2.20, M ∈ Lat U∗.

Let N ∈ Lat
(
U∗ ∣∣

M
)
. This is equivalent to M⊥ ⊂ N⊥ and N⊥ ∈ Lat U .

But this means that N⊥ = φaH2 for some inner function φa such that φa

divides φ. Since φ is singular, Theorem 2.6.7 implies that φa is also singular,
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and the singular measure µa corresponding to φa must be less than or equal
to µ. This is the same as saying that

φa(z) = exp
(

a
z + 1
z − 1

)
for some a ∈ [0, 1]. Thus Lat

(
U∗ ∣∣

M
) ∼= [0, 1] as lattices. �	

2.7 Outer Functions

The structure of the outer functions can be explicitly described. First we need
to establish the following technical lemma.

Lemma 2.7.1. If f ∈ H2 and f is not identically 0, then log |f̃(eiθ)| is in
L1(S1, dθ).

Proof. First of all, write the function log as the difference of its positive and
negative parts; that is, log x = log+ x − log− x.

Let B be the Blaschke product formed from the zeros of f . Then f = Bg

for some g ∈ H2 that never vanishes. Since |f̃(eiθ)| = |g̃(eiθ)| a.e., it suffices
to show that

log |g̃(eiθ)| ∈ L1(S1, dθ).

Since g never vanishes in D, we can write g(z) = eh(z) for some function h

analytic in D. Then
|g(z)| = exp(Re h(z)).

Dividing by a constant if necessary, we may assume that |g(0)| = 1, or, equiv-
alently, that Reh(0) = 0.

Fix r ∈ (0, 1). Then

1
2π

∫ 2π

0

log |g(reiθ)| dθ =
1
2π

∫ 2π

0

Re h(reiθ) dθ = Re h(0) = 0,

since 1
2π

∫ 2π

0
h(reiθ) dθ = h(0) by Cauchy’s integral formula (Theorem 1.1.19)

applied to the function hr(z) = h(rz), which is analytic on a neighborhood of
D.

This implies that

1
2π

∫ 2π

0

log+ |g(reiθ)| dθ =
1
2π

∫ 2π

0

log− |g(reiθ)| dθ,

and thus that
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1
2π

∫ 2π

0

∣∣log |g(reiθ)|∣∣ dθ = 2
1
2π

∫ 2π

0

log+ |g(reiθ)| dθ

=
1
2π

∫ 2π

0

log+ |g(reiθ)|2 dθ.

Since log+ x ≤ x for all x > 0 and g ∈ H2, we then have

1
2π

∫ 2π

0

∣∣log |g(reiθ)|∣∣ dθ ≤ 1
2π

∫ 2π

0

|g(reiθ)|2 dθ ≤ ‖g‖2.

Also, we can choose an increasing sequence {rn} of positive numbers with
{rn} → 1 such that {g(rneiθ)} → g(eiθ) a.e. (by Corollary 1.1.11). From the
above, for each n,

1
2π

∫ 2π

0

∣∣log |g(rneiθ)|∣∣ dθ ≤ ‖g‖2.

A straightforward application of Fatou’s lemma on convergence of Lebesgue
integrals [47, p. 23] implies that

1
2π

∫ 2π

0

∣∣log |g̃(eiθ)|∣∣ dθ ≤ ‖g‖2,

which is the desired result. �	
Notice that this gives another proof of the F. and M. Riesz theorem (proven

in Theorem 2.3.3 above).

Corollary 2.7.2 (The F. and M. Riesz Theorem). If f ∈ H2 and the
set {

eiθ : f̃(eiθ) = 0
}

has positive measure, then f is identically 0 on D.

Proof. If the set {eiθ : f̃(eiθ) = 0} has positive measure, the function
log |f̃(eiθ)| is not integrable on [0, 2π]. Thus the previous lemma implies that
f is identically 0. �	

We require a number of well-known inequalities.

Theorem 2.7.3. (i) For x > 0, log x ≤ x − 1.

(ii) Let µ be a measure on a space X with µ(X) = 1 and let g be a positive
measurable function. Then∫

X

log g dµ ≤ log
∫

X

g dµ.
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(iii) Let µ be a measure on a space X with µ(X) = 1 and let g be a positive
measurable function. Then

exp
(∫

X

log g dµ

)
≤
∫

X

g dµ.

(iv) If log+ and log− denote the positive and negative parts of the log function
(such that log x = log+ x − log− x), then

| log+ x − log+ y| ≤ |x − y|

for x, y > 0.

Proof of (i): If g(x) = x − 1 − log x, then g(1) = 0 and g′(x) = 1 − 1
x

for all x > 0. Thus g is decreasing on (0, 1) and increasing on (1,∞), so
g(x) ≥ g(1) for all x > 0. �

Proof of (ii): Put
x =

g∫
X

g dµ

in the previous inequality and integrate over X. �

Proof of (iii): This follows immediately by exponentiating the previous in-
equality. �

Proof of (iv): The proof of this inequality is divided into several cases.
Case (a): If x > 1 and y > 1, then log+ x = log x and log+ y = log y.
Assume without loss of generality that y < x. Applying the mean
value theorem yields

| log x − log y|
|x − y| =

1
c
,

for some c ∈ (y, x). Since c > 1, 1
c < 1, which proves the inequality in

this case.

Case (b): If x ≤ 1 and y ≤ 1, then log+ x = log+ y = 0, so the inequal-
ity is trivial.

Case (c): If x > 1 and y ≤ 1, then we need to show that log x ≤ x− y.
But the inequality of part (i) of this theorem yields log x ≤ x − 1.
Since y ≤ 1, it follows that log x ≤ x − y. �
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We can now return to the investigation of outer functions. We begin by
showing that functions of a certain form are outer functions; we subsequently
show that every outer function has a representation in that form. We must
first establish that functions of the given form are in H2.

Theorem 2.7.4. If f is in H2 and f is not identically 0 on D, define

F (z) = exp
(

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log |f̃(eiθ)| dθ

)
.

Then F is in H2.

Proof. For each fixed z ∈ D, ∣∣∣∣eiθ + z

eiθ − z

∣∣∣∣
is a bounded function of eiθ ∈ S1. Since log |f̃(eiθ)| is in L1(S1, dθ) by Theo-
rem 2.7.1, it follows that F (z) is defined for every z ∈ D. Clearly, F is analytic
on D.

Letting z = reit and recalling that the Poisson kernel is the real part of

eiθ + reit

eiθ − reit

yields

|F (reit)| = exp
(

1
2π

∫ 2π

0

Pr(θ − t) log |f̃(eiθ)| dθ

)
.

Therefore

|F (reit)|2 = exp
(

1
2π

∫ 2π

0

Pr(θ − t) log |f̃(eiθ)|2 dθ

)
.

Applying inequality (iii) of Theorem 2.7.3 to this last integral gives

|F (reit)|2 ≤ 1
2π

∫ 2π

0

Pr(θ − t)|f̃(eiθ)|2 dθ.

Now integrate with respect to t from 0 to 2π and divide by 2π, getting

1
2π

∫ 2π

0

|F (reit)|2 dt ≤ 1
(2π)2

∫ 2π

0

∫ 2π

0

Pr(θ − t)|f̃(eiθ)|2 dθ dt.

Interchanging the order of integration, which is justified by Fubini’s theorem
[47, p. 164] since Pr(θ − t) and |f̃(eiθ)|2 are nonnegative, we get
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1
2π

∫ 2π

0

|F (reit)|2 dt ≤ 1
2π

∫ 2π

0

(
1
2π

∫ 2π

0

Pr(θ − t)dt

)
|f̃(eiθ)|2 dθ

=
1
2π

∫ 2π

0

|f̃(eiθ)|2 dθ = ‖f‖2,

since
1
2π

∫ 2π

0

Pr(θ − t)dt = 1 by Corollary 1.1.22.

Taking the supremum over r gives

sup
0<r<1

1
2π

∫ 2π

0

∣∣F (reiθ)
∣∣2 dθ ≤ ‖f‖2 < ∞,

which implies that F is in H2 (by Theorem 1.1.12). �	

Corollary 2.7.5. If f is in H2, f is not identically 0, and F is defined by

F (z) = exp
(

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log |f̃(eiθ)| dθ

)
,

then |F̃ (eiθ)| = |f̃(eiθ)| a.e.

Proof. Since F is in H2,

|F̃ (eiθ)| = lim
r→1−

|F (reiθ)| = exp
(

lim
r→1−

1
2π

∫ 2π

0

Pr(θ − t) log |f̃(eiθ)| dθ

)
.

By the corollary to Fatou’s theorem (Corollary 1.1.27),

exp
(

lim
r→1−

1
2π

∫ 2π

0

Pr(θ − t) log |f̃(eiθ)| dθ

)
= exp

(
log |f̃(eiθ)|

)
a.e.

Since exp
(
log |f̃(eiθ)|

)
= |f̃(eiθ)|, it follows that |F (eiθ)| = |f̃(eiθ)| a.e. �	

To prove that F is outer, we need the following theorem, which is also very
interesting in its own right.

Theorem 2.7.6 (Maximality Property for Outer Functions). Let f be
a function in H2 that is not identically 0. Define the function F by

F (z) = exp
(

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log |f̃(eiθ)| dθ

)
for z ∈ D. If G is any function in H2 satisfying |G̃(eiθ)| = |F̃ (eiθ)|, then
|G(z)| ≤ |F (z)| for z in D.
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Proof. As usual, by factoring out the Blaschke product we may assume that
G(z) 
= 0 for all z ∈ D and that, therefore, there exists an analytic function h

in D with G(z) = exp h(z). Since |G(z)| = exp(Re h(z)), we have log |G(z)| =
Re h(z).

Let z = reit. Since |G̃(eiθ)| = |F̃ (eiθ)| = |f̃(eiθ)| a.e. by Corollary 2.7.5
and

log |F (reit)| =
1
2π

∫ 2π

0

Pr(θ − t) log |f̃(eiθ)| dθ,

the theorem will be established if it is shown that

log |G(reit)| ≤ 1
2π

∫ 2π

0

Pr(θ − t) log |G̃(eiθ)| dθ

for reit ∈ D.
As we have in a number of previous proofs, we define the function hs for

each s ∈ (0, 1) by hs(z) = h(sz). Each hs is in H∞, so we can write

hs(reit) =
1
2π

∫ 2π

0

Pr(θ − t)h(seiθ) dθ

by the Poisson integral formula (Theorem 1.1.21) (since h̃s(eiθ) = h(seiθ) for
all θ).

By taking real parts and recalling that log |G(z)| = Re h(z), we obtain

log |G(sreit)| =
1
2π

∫ 2π

0

Pr(θ − t) log |G(seiθ)| dθ.

All we need to do now is take limits as s approaches 1 from below. Clearly,
lim

s→1−
G(sreit) = G(reit) for all reit ∈ D. Therefore

lim
s→1−

log |G(sreit)| = log |G(reit)|

for all reit ∈ D. Also

1
2π

∫ 2π

0

Pr(θ − t) log |G(seiθ)| dθ =
1
2π

∫ 2π

0

Pr(θ − t) log+ |G(seiθ)| dθ

− 1
2π

∫ 2π

0

Pr(θ − t) log− |G(seiθ)| dθ.

We consider the two integrals separately. First of all,
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∣∣∣∣ 1
2π

∫ 2π

0

Pr(θ − t) log+ |G(seiθ)| dθ − 1
2π

∫ 2π

0

Pr(θ − t) log+ |G̃(eiθ)| dθ

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ 2π

0

Pr(θ − t)
(
log+ |G(seiθ)| − log+ |G̃(eiθ)|

)
dθ

∣∣∣∣
≤ 1

2π

∫ 2π

0

Pr(θ − t)
∣∣∣log+ |G(seiθ)| − log+ |G̃(eiθ)|

∣∣∣ dθ

≤ 1
2π

∫ 2π

0

Pr(θ − t)
∣∣∣|G(seiθ)| − |G̃(eiθ)|

∣∣∣ dθ (by part (iv) of Theorem 2.7.3)

≤ 1
2π

∫ 2π

0

Pr(θ − t)
∣∣∣G(seiθ) − G̃(eiθ)

∣∣∣ dθ

≤
(

1
2π

∫ 2π

0

Pr(θ − t)2 dθ

)1/2(
1
2π

∫ 2π

0

∣∣∣G(seiθ) − G̃(eiθ)
∣∣∣2 dθ

)1/2

by the Cauchy–Schwarz inequality. Let

M =
(

1
2π

∫ 2π

0

Pr(θ − t)2 dθ

)1/2

.

It then follows that∣∣∣∣ 1
2π

∫ 2π

0

Pr(θ − t) log+ |G(seiθ)| dθ − 1
2π

∫ 2π

0

Pr(θ − t) log+ |G̃(eiθ)| dθ

∣∣∣∣
≤ M

(
1
2π

∫ 2π

0

∣∣∣G(seiθ) − G̃(eiθ)
∣∣∣2 dθ

)1/2

for all s ∈ (0, 1).
Therefore, since G(seiθ) converges to G̃(eiθ) in H̃2 as s → 1−,

lim
s→1−

1
2π

∫ 2π

0

Pr(θ − t) log+ |G(seiθ)| dθ =
1
2π

∫ 2π

0

Pr(θ − t) log+ |G̃(eiθ)| dθ.

We now consider

1
2π

∫ 2π

0

Pr(θ − t) log− |G̃(eiθ)| dθ.

Note that

lim inf
s→1−

log− |G(seiθ)| = lim
s→1−

log− |G(seiθ)| = log− |G̃(eiθ)| a.e.

It follows that
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1
2π

∫ 2π

0

Pr(θ − t) log− |G̃(eiθ)| dθ

=
1
2π

∫ 2π

0

Pr(θ − t) lim inf
s→1−

log− |G(seiθ)| dθ

≤ lim inf
s→1−

1
2π

∫ 2π

0

Pr(θ − t) log− |G(seiθ)| dθ

by Fatou’s lemma on convergence of integrals [47, p. 23].
Now write

lim inf
s→1−

1
2π

∫ 2π

0

Pr(θ − t) log− |G(seiθ)| dθ

= lim inf
s→1−

1
2π

∫ 2π

0

Pr(θ − t)
(
log+ |G(seiθ)| − log |G(seiθ)|) dθ

= lim inf
s→1−

(
1
2π

∫ 2π

0

Pr(θ − t) log+ |G(seiθ)| dθ

− 1
2π

∫ 2π

0

Pr(θ − t) log |G(seiθ)| dθ

)
= lim inf

s→1−

(
1
2π

∫ 2π

0

Pr(θ − t) log+ |G(seiθ)| dθ − log |G(rseit)|
)

= lim
s→1−

(
1
2π

∫ 2π

0

Pr(θ − t) log+ |G(seiθ)| dθ − log |G(rseit)|
)

=
1
2π

∫ 2π

0

Pr(θ − t) log+ |G̃(eiθ)| dθ − log |G(reit)|,

since, as was established above,

log |G(sreit)| =
1
2π

∫ 2π

0

Pr(θ − t) log |G(seiθ)| dθ.

Combining the last two calculations results in

log |G(reit)| ≤ 1
2π

∫ 2π

0

Pr(θ − t) log+ |G̃(eiθ)| dθ

− 1
2π

∫ 2π

0

Pr(θ − t) log− |G̃(eiθ)| dθ

and therefore

log |G(reit)| ≤ 1
2π

∫ 2π

0

Pr(θ − t) log |G(eiθ)| dθ,

as desired. �	
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Now we can finally prove that functions of the above form are outer.

Theorem 2.7.7. If f is in H2 and F is defined by

F (z) = exp
(

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log |f(eiθ)| dθ

)
,

then F is outer.

Proof. It was shown above (Theorem 2.7.4) that F is in H2. Thus F = φG

for φ an inner function and G an outer function (Theorem 2.3.4). It suffices
to show that φ is a constant function. Since |φ̃(eiθ)| = 1 a.e., it follows that
|F̃ (eiθ)| = |G̃(eiθ)| a.e.

If φ was not a constant function, we would have |φ(z)| < 1 for all z ∈ D

(by Theorem 2.2.10). Thus |F (z)| = |φ(z)| |G(z)| < |G(z)| for all z ∈ D. This
contradicts the maximality property of F established in the above theorem
(Theorem 2.7.6). �	

There is a complete, explicit, classification of outer functions.

Corollary 2.7.8. The function G in H2 is outer if and only if there exists a
constant K of modulus 1 such that

G(z) = K exp
(

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log |G̃(eiθ)| dθ

)
for all z ∈ D.

Proof. Since a nonzero constant times an outer function is outer, the previous
theorem establishes that every function of the given form is outer.

Conversely, suppose G is any outer function and define

F (z) = exp
(

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log |G̃(eiθ)| dθ

)
.

By Corollary 2.7.5, it follows that |F̃ (eiθ)| = |G̃(eiθ)| a.e. Therefore Theorem
2.7.6 gives |G(z)| ≤ |F (z)| for all z ∈ D. Define the function φ by

φ(z) =
G(z)
F (z)

for all z ∈ D. This function is clearly analytic in D and, since |G(z)| ≤ |F (z)|,
we get |φ(z)| ≤ 1 for all z ∈ D. Hence φ is in H∞. Note that

|φ̃(eiθ)| = lim
r→1−

|φ(reiθ)| = lim
r→1−

|G(reiθ)|
|F (reiθ)| = 1 a.e.

Thus φ is inner. Since G = φF and both G and F are outer, φ must be some
constant K (by Theorem 2.3.4). �	
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Our knowledge of inner and outer functions produces a precise description
of all the functions in H2.

Corollary 2.7.9. Let f be a function in H2 that is not identically 0, and
let B denote the Blaschke product formed from its zeros. Then there exists a
constant K of modulus 1 and a singular measure µ on S1 such that f(z) has
the form

KB(z) exp
(
− 1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)

)
exp
(

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log |f̃(eiθ)| dθ

)
for all z ∈ D.

Proof. This follows immediately from Theorem 2.3.4, Corollary 2.4.14, Theo-
rem 2.6.5, and Corollary 2.7.8. �	

There is another nice characterization of outer functions.

Theorem 2.7.10. The function F in H2 is outer if and only if

log |F (0)| =
1
2π

∫ 2π

0

log |F̃ (eiθ)| dθ.

Proof. If F ∈ H2 is outer, then

F (z) = K exp
(

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log |F̃ (eiθ)| dθ

)
for some K (Corollary 2.7.8).

Then,

F (0) = K exp
(

1
2π

∫ 2π

0

log |F̃ (eiθ)| dθ

)
,

so

log |F (0)| =
1
2π

∫ 2π

0

log |F̃ (eiθ)| dθ.

To prove the converse, suppose that F is an H2 function satisfying

log |F (0)| =
1
2π

∫ 2π

0

log |F̃ (eiθ)| dθ.

The function F can be factored in the form F = φG with φ an inner function
and G an outer function (Theorem 2.3.4). Since G is outer, the first part of
this proof shows that

log |G(0)| =
1
2π

∫ 2π

0

log |G̃(eiθ)| dθ.
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However, since φ is inner, |F̃ (eiθ)| = |G̃(eiθ)| a.e. Therefore

log |G(0)| =
1
2π

∫ 2π

0

log |F̃ (eiθ)| dθ.

By hypothesis, the last expression equals log |F (0)|. Therefore |F (0)| =
|G(0)|, which means that |φ(0)| = 1. But since φ is an inner function, the
maximum modulus theorem ([9, pp. 79, 128], [47, p. 212]) implies that φ is
a constant of modulus 1, so F is a nonzero multiple of G and is therefore
outer. �	
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2.8 Exercises

2.1. Let ME = {f ∈ L2 : f(eiθ) = 0, a.e. on E} for a measurable set E

whose (normalized) Lebesgue measure is neither 0 nor 1. Verify that ME is
a nontrivial (closed) subspace of L2.

2.2. If U is the unilateral shift and A is an operator such that LatU ⊂ Lat A,
show that AU = UA. (Hint: Consider adjoints.)

2.3. Prove that the numerical range of the unilateral shift is the open unit
disk. (Hint: One approach uses Exercise 1.12 in Chapter 1.)

2.4. Suppose that φ is in H̃∞.

(i) Show that Mφ is an isometry on H̃2 (i.e., ‖Mφf‖ = ‖f‖ for all f ∈ H̃2)
if and only if φ is an inner function.

(ii) Show that {1, φ, φ2, φ3, . . . } is an orthonormal basis for H̃2 if and only if
there is a λ of modulus 1 such that φ(z) = λz.

2.5. Show that the linear span of {1} ∪ {xrn} is uniformly dense in C[0, 1] in
each of the following cases:

(i) rn = 7n (this case can be done without using the Müntz–Szasz theorem).

(ii) rn =
√

pn + 1, where pn is the nth prime number.

(iii) rn = log2(n + 1).

2.6. Show that f is an outer function if both f and 1/f are in H2.

2.7. Prove that 1 + φ is an outer function whenever φ is a function in H∞

with ‖φ‖∞ < 1.

2.8. Suppose f is in H2 and Re f(z) > 0 for all z ∈ D. Prove that f is an
outer function.

2.9. Find the inner-outer factorization of z − λ in each of the following cases:

(i) |λ| < 1.

(ii) |λ| = 1.

(iii) |λ| > 1.
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2.10. Prove that polynomials do not have nonconstant singular inner factors.

2.11. Prove that every function f in H2 can be written in the form f = f1 + f2,
where neither f1 nor f2 has a zero in D and ‖f1‖ ≤ ‖f‖ and ‖f2‖ ≤ ‖f‖.

2.12. Show that f in H2 implies that |f(z)|2 has a harmonic majorant (i.e.,
that there exists a function u harmonic on D such that |f(z)|2 ≤ u(z) for all
z ∈ D). Note that the converse of this is Exercise 1.6.

2.13. Let φ be a function in L2 such that log |φ| is in L1. Define

F (z) = exp
(

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log |φ(eiθ)| dθ

)
.

Show that F is an outer function such that |F̃ (eiθ) = |φ(eiθ)|. (Hint: See the
proofs of Theorem 2.7.4, Corollary 2.7.5, and Theorem 2.7.7.)

2.14. Assume that φ and 1/φ are both in L∞. Show that there exists an outer
function g in H∞ such |g̃(eiθ)| = |φ(eiθ)| a.e. Show also that 1/g is in H∞.

2.15. (i) Show that the set of inner functions is a closed subset of H2.

(ii) Show that the set consisting of all singular inner functions and all constant
inner functions is a closed subset of H2.

2.16. Let S be a singular inner function such that

lim
r→1−

1
2π

∫ 2π

0

log |S(reiθ)| dθ = 0.

Prove that S is the constant function 1.

2.17. Let φ be an inner function satisfying

lim
r→1−

1
2π

∫ 2π

0

log |φ(reiθ)| dθ = 0.

Show that φ is a Blaschke product.

2.18. If φ is an inner function and α is in D, show that the function

α − φ

1 − αφ

is inner.
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2.19. (Frostman’s Theorem) Let φ be an inner function. Show that, for almost
all α in D (with respect to area measure on D), the function

α − φ

1 − αφ

is a Blaschke product. (Hint: The three preceding exercises can be useful in
establishing this result.)

2.20. Suppose that M1 and M2 are invariant subspaces of the unilateral shift
U such that M1 ⊂ M2 and dim(M2 �M1) > 1. Show that there exists M
invariant under U satisfying M1 � M � M2.
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2.9 Notes and Remarks

The early studies of functions in H2 were primarily concerned with geomet-
ric properties of individual analytic functions; the books of Privalov [39] and
Goluzin [23] provide expositions from that point of view. The interest in H2

as a Hilbert space was largely stimulated by Beurling’s 1949 paper [64] in
which he characterized the invariant subspaces of the unilateral shift (Theo-
rem 2.2.12). Beurling’s paper stimulated functional analysts to study various
properties of H2 as a linear space and to investigate operators on H2.

The F. and M. Riesz theorem (Theorem 2.3.3) was first established by the
Riesz brothers in 1916 [145]; this paper also contains several deeper results.
The definition of Blaschke products and the proof of their convergence is
due to Blaschke [65]. The factorization into inner and outer factors (Theorem
2.3.4) was discovered by F. Riesz [144], although the terminology “inner” and
“outer” is due to Beurling [64].

The Müntz–Szász theorem (Theorem 2.5.1) is due to Müntz [119] and
Szász [161]. A number of variants and generalizations have been obtained;
see [91] and the references it contains.

The proof we have presented of Euler’s classical theorem [90] that the
series of prime reciprocals diverges is a variant of proofs due to Bellman [63]
and Clarkson [71] (also see [4, p. 18]). An entirely different proof can be found
in [26, p. 17].

Herglotz’s theorem (Theorem 2.6.3) was established in [106]. The rep-
resentation theorem for singular inner functions (Theorem 2.6.5) is due to
Smirnov [159], as is the representation of outer functions (Corollary 2.7.8)
and the resulting complete factorization of functions in H2 (Corollary 2.7.9).

The study of attainable lattices (Definition 2.6.12) was initiated in [146].
Additional examples of attainable lattices can be found in [15] and [41].

Example 2.6.14 was pointed out by Sarason [148], who used it to give an al-
ternative proof of the result of Dixmier [84] that the invariant subspace lattice
of the “indefinite integral” operator (usually called the “Volterra operator”)
is isomorphic to the interval [0, 1]. Exercise 2.4(ii) is from [32, p. 119, ex. 3],
while Exercises 2.7 and 2.11 are from [35, pp. 27, 38].

Frostman’s theorem is slightly sharper than what we have stated in Exer-
cise 2.19; he proved [93] that, for φ an inner function, the set of α such that
α−φ
1−αφ is not a Blaschke product has logarithmic capacity zero (for a proof
of this see Garnett [22, p. 79]). A different proof of the almost everywhere
version of Frostman’s theorem is in [35, p. 45].



Chapter 3

Toeplitz Operators

The most-studied and best-known operators on the Hardy–Hilbert space are
the Toeplitz operators. The forward and backward unilateral shifts are simple
examples of Toeplitz operators; more generally, the Toeplitz operators are
those operators whose matrices with respect to the standard basis of H2 have
constant diagonals. We discuss many interesting results about spectra and
other aspects of Toeplitz operators.

3.1 Toeplitz Matrices

Every bounded linear operator on a Hilbert space has a matrix representation
with respect to each orthonormal basis of the space.

Definition 3.1.1. If A is a bounded linear operator on a Hilbert space H and
{en}n∈I is an orthonormal basis for H, then the matrix of A with respect to
the given basis is the matrix whose entry in position (m, n) for m, n ∈ I is
(Aen, em).

It is easily seen that, just as in the familiar case of operators on finite-
dimensional spaces, the effect of the operator A on

∑
n∈I cnen can be obtained

by multiplying the column vector (cn)n∈I on the left by the matrix of A (see,
for example, [27, p. 23]).

We shall see that Toeplitz operators have matrices that are easily obtained
from matrices of multiplication operators, so we begin with the study of the
matrices of multiplication operators on L2 of the circle with respect to the
standard basis {einθ}∞n=−∞ for L2. Recall that Mφ denotes the operator on
L2 consisting of multiplication by the L∞ function φ (Definition 2.2.3).
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Theorem 3.1.2. Let φ be a function in L∞ with Fourier series

∞∑
n=−∞

φneinθ.

Then the matrix of Mφ with respect to the orthonormal basis {einθ}∞n=−∞ of
L2 is ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

... ... ...

... φ0 φ−1 φ−2

... φ1 φ0 φ−1 φ−2

φ2 φ1 φ0 φ−1 φ−2

φ2 φ1 φ0 φ−1 ...

φ2 φ1 φ0 ...

... ... ...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where boldface represents the (0, 0) position.

Proof. We compute, for each pair of integers (m, n),

(Mφen, em) =
1
2π

∫ 2π

0

φ(eiθ)einθeimθ dθ =
1
2π

∫ 2π

0

φ(eiθ)e−i(m−n)θ dθ.

Therefore, for each integer k, the entry of the matrix for Mφ in position (m, n)
is φk whenever m − n = k. This gives the result. �	

Thus the matrices representing multiplication operators with respect to
the standard basis for L2 are doubly infinite matrices whose diagonals are
constant. Each such matrix is an example of a Toeplitz matrix.

Definition 3.1.3. A finite matrix, or a doubly infinite matrix (i.e., a matrix
with entries in positions (m, n) for m and n integers), or a singly infinite ma-
trix (i.e., a matrix with entries in positions (m, n) for m and n nonnegative
integers) is called a Toeplitz matrix if its entries are constant along each di-
agonal. That is, the matrix (am,n) is Toeplitz if am1,n1 = am2,n2 whenever
m1 − n1 = m2 − n2.

We shall see that doubly infinite Toeplitz matrices are simpler than singly
infinite ones. Theorem 3.1.2 shows that the matrices of multiplication opera-
tors on L2 are doubly infinite Toeplitz matrices; the converse also holds.
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Theorem 3.1.4. A bounded linear operator on L2 is multiplication by an L∞

function if and only if its matrix with respect to the standard basis in L2 is a
Toeplitz matrix.

Proof. It was shown in Theorem 3.1.2 that every multiplication on L2 has
a Toeplitz matrix. To establish the converse, assume that A has a Toeplitz
matrix.

To show that A = Mφ for some φ ∈ L∞, it suffices, by Theorem 2.2.5, to
show that AW = WA. This is equivalent to showing that, for all integers m

and n, (AWen, em) = (WAen, em). Observe that

(AWen, em) = (Aen+1, em) = (Aen, em−1),

by the assumption that the matrix of A has constant diagonals. Then

(Aen, em−1) = (Aen, W ∗em) = (WAen, em).

Therefore (AWen, em) = (WAen, em). �	

The spectra and approximate point spectra of Toeplitz matrices on L2 are
now easy to calculate. We need the following definition.

Definition 3.1.5. For φ ∈ L∞, the essential range of φ is defined to be

ess ran φ =
{
λ : m

{
eiθ : |φ(eiθ) − λ| < ε

}
> 0, for all ε > 0

}
,

where m is the (normalized) Lebesgue measure.

Note that the essential norm of an L∞ function φ (Definition 1.1.23) is
equal to

sup{|λ| : λ ∈ ess ran φ}.

Theorem 3.1.6. If φ ∈ L∞, then σ(Mφ) = Π(Mφ) = ess ran φ.

Proof. We prove this in two steps. We first show that ess ran φ ⊂ Π(Mφ),
and then show that σ(Mφ) ⊂ ess ran φ. These two assertions together imply
the theorem.

Let λ ∈ ess ran φ. For each natural number n, define

En =
{

eiθ : |φ(eiθ) − λ| <
1
n

}
and let χn be the characteristic function of En. Notice that m(En) > 0. Then
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‖(Mφ − λ)χn‖2 =
1
2π

∫ 2π

0

|(φ(eiθ) − λ)χn(eiθ)|2 dθ

=
1
2π

∫
En

|(φ(eiθ) − λ)|2 dθ

≤ 1
n2

m(En).

Also,

‖χn‖2 =
1
2π

∫ 2π

0

|χn(eiθ)|2 dθ = m(En) 
= 0.

Thus, if we define fn = χn/‖χn‖, then {fn} is a sequence of unit vectors such
that

‖(Mφ − λ)fn‖ ≤ 1
n

.

Therefore λ ∈ Π(Mφ).
Now suppose λ /∈ ess ran φ. Then there exists ε > 0 such that

m{eiθ : |φ(eiθ) − λ| < ε} = 0.

This means that the function 1/(φ− λ) is defined almost everywhere, and, in
fact, 1/|φ− λ| ≤ 1/ε a.e. Thus 1/(φ− λ) ∈ L∞. But then the operator M 1

φ−λ

is bounded and is clearly the inverse of Mφ − λ. Thus λ /∈ σ(Mφ). �	

3.2 Basic Properties of Toeplitz Operators

The Toeplitz operators are the “compressions” of the multiplication operators
to the subspace H̃2, defined as follows.

Definition 3.2.1. For each φ in L∞, the Toeplitz operator with symbol φ is
the operator Tφ defined by

Tφf = Pφf

for each f in H̃2, where P is the orthogonal projection of L2 onto H̃2.

Theorem 3.2.2. The matrix of the Toeplitz operator with symbol φ with re-
spect to the basis {einθ}∞n=0 of H̃2 is

Tφ =

⎛⎜⎜⎜⎜⎜⎜⎝
φ0 φ−1 φ−2 φ−3

φ1 φ0 φ−1 φ−2 ...

φ2 φ1 φ0 φ−1 ...

φ3 φ2 φ1 φ0 ...

... ... ... ...

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where φk is the kth Fourier coefficient of φ.
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Proof. This can easily be computed in the same way as the corresponding
result for multiplication operators (Theorem 3.1.2). Alternatively, since P is
the projection onto H̃2 and Tφ is defined on H̃2, the matrix of Tφ is the lower
right corner of the matrix of Mφ. That is, the lower right corner of

Mφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

... ... ...

... φ0 φ−1 φ−2

... φ1 φ0 φ−1 φ−2

φ2 φ1 φ0 φ−1 φ−2

φ2 φ1 φ0 φ−1 ...

φ2 φ1 φ0 ...

... ... ...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

so

Tφ =

⎛⎜⎜⎜⎜⎜⎜⎝
φ0 φ−1 φ−2 φ−3

φ1 φ0 φ−1 φ−2 ...

φ2 φ1 φ0 φ−1 ...

φ3 φ2 φ1 φ0 ...

... ... ... ...

⎞⎟⎟⎟⎟⎟⎟⎠ .

�	
Thus Toeplitz operators have singly infinite Toeplitz matrices. We will

show that every singly infinite Toeplitz matrix that represents a bounded
operator is the matrix of a Toeplitz operator (Theorem 3.2.6).

The most tractable Toeplitz operators are the analytic ones.

Definition 3.2.3. The Toeplitz operator Tφ is an analytic Toeplitz operator
if φ is in H̃∞.

Note that if φ is in H̃∞, then Tφf = Pφf = φf for all f ∈ H̃2. It is easily
seen that the standard matrix representations of analytic Toeplitz operators
are lower triangular matrices.

Theorem 3.2.4. If Tφ is an analytic Toeplitz operator, then the matrix of Tφ

with respect to the basis {einθ}∞n=0 is

Tφ =

⎛⎜⎜⎜⎜⎜⎜⎝
φ0 0 0 0 0
φ1 φ0 0 0 0 ...

φ2 φ1 φ0 0 0 ...

φ3 φ2 φ1 φ0 0 ...

... ... ... ... ...

⎞⎟⎟⎟⎟⎟⎟⎠ ,



100 3 Toeplitz Operators

where φ(eiθ) =
∑∞

k=0 φkeinθ.

Proof. The Fourier coefficients of φ with negative indices are 0 since φ is in
H̃2, so this follows immediately from Theorem 3.2.2. �	

The following theorem is analogous to Theorem 2.2.5.

Theorem 3.2.5. The commutant of the unilateral shift acting on H̃2 is{
Tφ : φ ∈ H̃∞

}
.

Proof. First, every analytic Toeplitz operator commutes with the shift. This
follows from the fact that the shift is Meiθ and, for every f ∈ H̃2,

TφMeiθf = φeiθf = eiθφf = MeiθTφf.

The proof of the converse is very similar to the corresponding proof of
Theorem 2.2.5. Suppose that AU = UA. Let φ = Ae0. Then φ ∈ H̃2 and,
since AU = UA, we have, for each positive integer n,

Aen = AUne0 = UnAe0 = Unφ = einθφ.

Thus, by linearity, Ap = φp for every polynomial p ∈ H̃2. For an arbitrary
f ∈ H̃2, choose a sequence of polynomials {pn} such that {pn} → f in H̃2.
Then, by continuity and the fact that Apn = φpn, it follows that {φpn} → Af .
Also, there exists a subsequence {pnj

} converging almost everywhere to f

(since every sequence converging in L2 has a subsequence converging almost
everywhere [47, p. 68]). Therefore, {φpnj

} → φf a.e. Thus Af = φf a.e.
It remains to be shown that φ is essentially bounded. If A = 0 the result

is trivial, so we may assume that ‖A‖ 
= 0. Define the measurable function ψ

by ψ = φ/‖A‖. Note that ψ is in H̃2. Then

ψf =
φf

‖A‖ =
Af

‖A‖

for every f in H̃2. It follows that ‖ψf‖ ≤ ‖f‖ for all f in H̃2. Taking f to
be the constant function 1 and a trivial induction yield ‖ψn‖ ≤ 1 for every
natural number n. Suppose that there is a positive ε such that the set E

defined by
E =
{
eiθ : |ψ(eiθ)| ≥ 1 + ε

}
has positive measure. Then
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‖ψn‖ =
1
2π

∫ 2π

0

|ψ(eiθ)|n dθ

≥ 1
2π

∫
E

|ψ(eiθ)|n dθ

≥ 1
2π

∫
E

(1 + ε)n dθ

= (1 + ε)nm(E).

Hence ‖ψn‖ ≤ 1 for all n implies that |ψ(eiθ)| ≤ 1 a.e. Therefore ψ, and also
φ, are in L∞. �	

By the correspondence between H̃2 and H2, we can regard analytic
Toeplitz operators as operating on H2. Each function φ ∈ H̃∞ corresponds
to a function φ analytic on D. Then lim

r→1−
φ(reiθ) = φ(eiθ) a.e. Regarding Tφ

as an operator on H2, it follows that

(Tφf)(z) = φ(z)f(z) for f ∈ H2 and z ∈ D.

That is, the analytic Toeplitz operator Tφ is simply multiplication by the
analytic function φ on H2.

We now show that all bounded Toeplitz matrices with respect to the stan-
dard basis of H̃2 are the matrices of Toeplitz operators.

Theorem 3.2.6. The Toeplitz operators on H̃2 are the operators whose ma-
trices with respect to the basis {einθ}∞n=0 of H̃2 are Toeplitz matrices.

Proof. The fact that every Toeplitz operator has a Toeplitz matrix has already
been established (Theorem 3.2.2).

To prove the converse, let A be a bounded operator on H̃2 whose matrix
with respect to the standard basis is a Toeplitz matrix. Let P denote the
orthogonal projection from L2 onto H̃2. It is clear that AP is a bounded
operator on L2.

For each natural number n, define the operator An on L2 by

An = W ∗nAPWn.

We will show that {An} converges (in a certain sense) to a multiplication op-
erator, and that A is the Toeplitz operator whose symbol is the corresponding
L∞ function.

Clearly, ‖An‖ ≤ ‖A‖, since ‖W‖ = ‖W ∗‖ = ‖P‖ = 1 (in fact, one can
easily see that ‖An‖ = ‖A‖).
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For each pair (s, t) of integers, we have

(Anes, et) = (W ∗nAPWnes, et) = (APes+n, et+n).

But for n sufficiently large (in fact, for n ≥ −s), this expression equals
(Aes+n, et+n) which, by hypothesis, is constant with respect to n for n ≥ −s.
By linearity, it then follows that, for each pair (p, q) of trigonometric polyno-
mials, (Anp, q) is constant for sufficiently large n. Define the bilinear form Ψ

on trigonometric polynomials by

Ψ(p, q) = lim
n→∞(Anp, q).

Since |Ψ(p, q)| ≤ ‖A‖ ‖p‖ ‖q‖ for all p and q, Ψ(p, q) is a bounded bilinear form
on the subset of L2 consisting of trigonometric polynomials. Thus Ψ extends
to a bounded bilinear form on L2 and there is a bounded linear operator A0

on L2 such that Ψ(f, g) = (A0f, g) for all f and g in L2. It follows that

lim
n→∞(Anf, g) = (A0f, g)

for all f and g in L2.
To finish the proof, it will be shown that A0 is a multiplication operator

and that the restriction of PA0 to H̃2 is A.
Observe that (W ∗AnWf, g) = (An+1f, g), and also

(W ∗AnWf, g) = (AnWf, Wg).

Taking limits as n approaches infinity yields

(A0f, g) = (A0Wf, Wg) = (W ∗A0Wf, g).

Therefore A0 = W ∗A0W , or WA0 = A0W . Since A0 commutes with W , it
follows from Theorem 2.2.5 that A0 = Mφ for some φ ∈ L∞.

We show that A is Tφ. Note first that, for s and t nonnegative integers,

(PMφes, et) = (PA0es, et) = (A0es, et) = lim
n→∞(Anes, et).

Since, as shown above, (Anes, et) = (Aes+n, et+n) for n sufficiently large, and
since (Aes+n, et+n) = (Aes, et) because A is a Toeplitz matrix, it follows that

(PMφes, et) = (Aes, et).

Hence A is the restriction of PMφ to H̃2, which is Tφ. �	
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The unilateral shift U is the Toeplitz operator Teiθ . An easy consequence
of the above theorem is a useful alternative characterization of Toeplitz oper-
ators.

Corollary 3.2.7. The operator T is a Toeplitz operator if and only if U∗TU =
T , where U is the unilateral shift.

Proof. Note that, for nonnegative integers n and m,

(U∗TUen, em) = (TUen, Uem) = (Ten+1, em+1).

Thus if T is a Toeplitz operator, (U∗TUen, em) = (Ten, em) (since T has
a Toeplitz matrix by Theorem 3.2.6), so U∗TU = T .

Conversely, if U∗TU = T , then a trivial induction yields

(Ten+k, em+k) = (Ten, em)

for all natural numbers k, so T has a Toeplitz matrix and therefore is a Toeplitz
operator by Theorem 3.2.6. �	

The following is a trivial but important fact.

Theorem 3.2.8. The mapping φ �→ Tφ is an injective, bounded, linear,
adjoint-preserving (i.e., T ∗

φ = Tφ) mapping from L∞ onto the space of Toeplitz
operators regarded as a subspace of the algebra of bounded linear operators on
H̃2.

Proof. The map is obviously linear, and

‖Tφ‖ = ‖PMφ‖ ≤ ‖Mφ‖ = ‖φ‖∞,

so the mapping is bounded. If Tφ and Tψ are equal, then comparing their
matrices shows that φ and ψ have the same Fourier coefficients. Therefore the
mapping is injective.

To show that the mapping is adjoint-preserving, simply compute as follows:
for f and g ∈ H̃2,

(T ∗
φf, g) = (f, Tφg) = (f, PMφg) = (f, φg)

=
1
2π

∫ 2π

0

f(eiθ)φ(eiθ)g(eiθ) dθ

=
1
2π

∫ 2π

0

φ(eiθ)f(eiθ)g(eiθ) dθ

= (φf, g) = (PMφf, g)

= (Tφf, g).
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�	

It will be shown below (Corollary 3.3.2) that the above mapping is an
isometry; i.e., ‖Tφ‖ = ‖φ‖∞.

Although the sum of two Toeplitz operators is obviously a Toeplitz opera-
tor (as follows immediately from the definition of Toeplitz operators or, equally
easily, from the characterization of Toeplitz matrices), the corresponding re-
sult rarely holds for products. One case in which it does hold is when φ is
in H̃∞. In that case, Tφ is simply the restriction of Mφ to H̃2, so TψTφ is
obviously equal to Tψφ for all ψ ∈ L∞.

The following lemma will be useful in several contexts.

Lemma 3.2.9. If Tψ and Tφ are Toeplitz operators and U is the unilateral
shift, then

U∗TψTφU − TψTφ = P (e−iθψ) ⊗ P (e−iθφ) (see Notation 1.2.27),

where P is the orthogonal projection of L2 onto H̃2.

Proof. Note that I = UU∗+e0⊗e0, where e0⊗e0 is the orthogonal projection
from H̃2 onto the constants. Therefore

U∗TψTφU = U∗Tψ(UU∗ + e0 ⊗ e0)TφU

= U∗TψUU∗TφU + U∗Tψ (e0 ⊗ e0) TφU

= TψTφ + U∗Tψe0 ⊗ e0TφU (by Corollary 3.2.7).

But U∗Tψ(e0 ⊗ e0)TφU = (U∗Tψe0) ⊗ (U∗Tφe0), by Theorem 1.2.28.
Notice that

U∗Tψe0 = (TψU)∗e0 =
(
Teiθψ

)∗
e0 = Te−iθψe0 = P (e−iθψ).

A similar computation applied to U∗Tφe0 yields the result. �	

Definition 3.2.10. The Toeplitz operator Tφ is said to be coanalytic if T ∗
φ is

analytic (which is equivalent to saying that φ ∈ H̃2).

Theorem 3.2.11. For ψ and φ in L∞, TψTφ is a Toeplitz operator if and only
if either Tψ is coanalytic or Tφ is analytic. In both of those cases, TψTφ = Tψφ.

Proof. That TψTφ = Tψφ when Tφ is analytic is trivial, as remarked above. If
Tψ is coanalytic, then
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(TψTφ)∗ = T ∗
φT ∗

ψ = TφTψ = Tφ ψ (since Tψ is analytic).

Therefore
TψTφ =

(
Tφ ψ

)∗
= Tψφ.

For the other direction, suppose that TψTφ is a Toeplitz operator. By
Lemma 3.2.9,

U∗TψTφU − TψTφ = P (e−iθψ) ⊗ P (e−iθφ).

The assumption that TψTφ is Toeplitz implies that

U∗TψTφU = TψTφ

(by Corollary 3.2.7), and therefore

P (e−iθψ) ⊗ P (e−iθφ) = 0.

Thus at least one of P (e−iθψ) or P (e−iθφ) is 0. If P (e−iθψ) = 0, then e−iθψ

is orthogonal to H̃2, so the Fourier coefficients of ψ corresponding to positive
indices are all 0 and Tψ is coanalytic. If P (e−iθφ) = 0, then the Fourier
coefficients of φ corresponding to positive indices are all 0, from which it
follows that Tφ is analytic. �	

Corollary 3.2.12. The product of two Toeplitz operators is 0 if and only if
one of the factors is 0.

Proof. Assume that TψTφ = 0. Since 0 is a Toeplitz operator, the previous
theorem implies that either Tψ is coanalytic or Tφ is analytic, and that TψTφ =
Tψφ = 0. Hence ψφ = 0.

If Tφ is analytic and not 0, then the measure of {eiθ : φ(eiθ) = 0} is 0
by the F. and M. Riesz theorem (Theorem 2.3.3), so ψ = 0 a.e. and therefore
Tψ = 0.

Similarly, if Tψ is analytic and not 0, then the measure of {eiθ : ψ(eiθ) =
0} is 0 by the F. and M. Riesz theorem (Theorem 2.3.3), so φ = 0 a.e. and
therefore Tφ = 0. �	

Similar techniques can be used to answer the question of when two Toeplitz
operators commute. Notice that if both Tφ and Tψ are analytic Toeplitz oper-
ators, then TφTψ = Tφψ = Tψφ = TψTφ, by the previous theorem. The same
situation obtains if both Tφ and Tψ are coanalytic. There is only one other
case.
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Theorem 3.2.13. Let φ and ψ in L∞. Then TφTψ = TψTφ if and only if at
least one of the following holds:

(i) both Tφ and Tψ are analytic;

(ii) both Tφ and Tψ are coanalytic;

(iii) there exist complex numbers a and b, not both zero, such that aφ + bψ is
a constant.

Proof. It is clear that each of the three conditions implies commutativity.
For the converse, assume that TφTψ = TψTφ. By Lemma 3.2.9, we have

U∗TφTψU − TφTψ = P (e−iθφ) ⊗ P (e−iθψ)

and
U∗TψTφU − TψTφ = P (e−iθψ) ⊗ P (e−iθφ).

Hence
P (e−iθφ) ⊗ P (e−iθψ) = P (e−iθψ) ⊗ P (e−iθφ).

There are two cases that we need to consider: either at least one of the vectors
in the above equation is 0, or none of them are 0.

Assume first that one of the vectors is 0. We have four subcases. If
P (e−iθφ) = 0, then, by Theorem 1.2.28, either P (e−iθψ) or P (e−iθφ) is 0.
If P (e−iθφ) = P (e−iθψ) = 0, then the Fourier coefficients of φ and ψ corre-
sponding to positive indices are all 0, and hence Tφ and Tψ are both coanalytic
Toeplitz operators and condition (ii) holds. If P (e−iθφ) = P (e−iθφ) = 0, then
φ must be a constant function and condition (iii) holds with a = 1 and b = 0.

If P (e−iθψ) = 0, then, by Theorem 1.2.28, either P (e−iθψ) or P (e−iθφ)
is 0. If P (e−iθψ) = P (e−iθψ) = 0, then ψ must be a constant function and
condition (iii) holds with a = 0 and b = 1. If P (e−iθψ) = P (e−iθφ) = 0, then
the Fourier coefficients of ψ and φ corresponding to negative indices are all 0,
and hence Tψ and Tφ are both analytic Toeplitz operators and condition (i)
holds. The other two subcases are very similar.

Assume that none of P (e−iθφ), P (e−iθψ), P (e−iθψ), and P (e−iθφ) is 0.
Since

P (e−iθφ) ⊗ P (e−iθψ) = P (e−iθψ) ⊗ P (e−iθφ),

Theorem 1.2.28 implies that there exists a nonzero constant b such that

P (e−iθφ) = b P (e−iθψ) and P (e−iθφ) = b P (e−iθψ).
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This implies that P (e−iθ(φ − bψ)) = 0 and P (e−iθ(φ − b ψ)) = 0, and hence
that the function φ − bψ is constant. Thus condition (iii) holds. �	

Corollary 3.2.14. If two Toeplitz operators commute with each other and
neither is a linear combination of the identity and the other operator, then
their product is a Toeplitz operator.

Proof. It follows from the previous theorem that either the first operator is
analytic or the second operator is coanalytic. Theorem 3.2.11 finishes the
proof. �	

The above theorem also yields a characterization of normal Toeplitz oper-
ators. First observe the following.

Theorem 3.2.15. A Toeplitz operator is self-adjoint if and only if its symbol
is real-valued almost everywhere.

Proof. This follows immediately from the fact that Tφ = T ∗
φ if and only if

φ = φ. �	

Corollary 3.2.16. The Toeplitz operator Tφ is normal if and only if there
exist complex numbers c and d and a real-valued function ψ in L∞ such that
φ = cψ+d a.e. That is, the only normal Toeplitz operators are affine functions
of self-adjoint Toeplitz operators.

Proof. Since T ∗
ψ = Tψ, it is clear that every operator of the given form is

normal.
The converse follows easily from Theorem 3.2.13. To prove it, suppose that

Tφ commutes with T ∗
φ = Tφ. At least one of the three cases of Theorem 3.2.13

holds. If either of the first two cases holds, the function φ is a constant and
the result is immediate. In the third case, aφ + bφ = k for some constant k.
Taking conjugates and adding the two equations yields

2Re ((a + b)φ) = k + k.

Let the imaginary part of the function (a+ b)φ be the real-valued function ψ.
Then

(a + b)φ =
k + k

2
+ iψ.

If a + b 
= 0, this clearly gives the result. On the other hand, if a = −b, then
aφ− aφ = k, so the imaginary part of φ is a constant function. It follows that
φ has the given form with ψ = Re φ. �	
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The two general classes of linear operators on Hilbert space that are best
understood are the class of normal operators and the class of compact opera-
tors. The previous theorem shows that the class of normal Toeplitz operators
is quite restricted. There are substantially fewer compact Toeplitz operators.

Theorem 3.2.17. The only compact Toeplitz operator is 0.

Proof. Let Tφ be a compact Toeplitz operator. Recall that compact operators
map weakly convergent sequences to norm-convergent sequences [12, p. 173].
Therefore we have

{(Tφes+n, et+n)} → 0 as n → ∞,

since {es+n} converges weakly to zero as n → ∞. However, since Tφ is
Toeplitz, (Tφes+n, et+n) = φs−t, where φk is the kth Fourier coefficient of
φ. Hence φs−t = 0 for all nonnegative integers s and t; i.e., φk = 0 for all
integers k, which implies that φ = 0 a.e. Thus Tφ = 0. �	

In fact, Toeplitz operators cannot even get close to compact operators (see
Corollary 3.3.4 below).

3.3 Spectral Structure

The study of the spectra of Toeplitz operators turns out to be extremely in-
teresting. Of course, the spectrum of Tφ, like every other property of Tφ, is
determined by the symbol φ. There is, however, no known way of expressing
the spectrum of Tφ in terms of the symbol for general φ. The special cases
that are understood include some very beautiful theorems such as, for exam-
ple, a complete description of the spectrum in the case that φ is continuous
(Theorem 3.3.18).

There is a useful general result that the approximate point spectrum of
Tφ always includes the essential range of φ.

Theorem 3.3.1 (The Spectral Inclusion Theorem). For all φ in L∞,
the spectrum of Mφ is contained in the spectrum of Tφ. More precisely,

ess ran φ = Π(Mφ) = σ(Mφ) ⊂ Π(Tφ) ⊂ σ(Tφ).

Proof. It has already been shown (Theorem 3.1.6) that ess ran φ = Π(Mφ) =
σ(Mφ).
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Assume λ ∈ Π(Mφ). Then there exists a sequence {fn} of functions in L2

with ‖fn‖ = 1 such that

{‖(Mφ − λ)fn‖} → 0 as n → ∞.

By removing a “tail” of small norm and renormalizing, for each n there is
a gn of norm 1 that has only a finite number of nonzero Fourier coefficients
corresponding to negative indices and satisfies ‖fn − gn‖ ≤ 1

n . It follows
immediately that

{‖(Mφ − λ)gn‖} → 0 as n → ∞.

Since the bilateral shift, W , shifts the Fourier coefficients of L2 functions
to the right, for each n there exists a positive integer Mn such that WMngn

is in H̃2. Since W is unitary and commutes with Mφ, we have

‖(Mφ − λ)WMngn‖ = ‖WMn(Mφ − λ)gn‖ = ‖(Mφ − λ)gn‖.

Also, ‖WMngn‖ = ‖gn‖ = 1, because W is unitary.
For each n, define hn = WMngn. Then each hn is in H2, ‖hn‖ = 1, and

{‖(Mφ − λ)hn‖} → 0.

But
‖(Tφ − λ)hn‖ = ‖P (Mφ − λ)hn‖ ≤ ‖(Mφ − λ)hn‖.

Therefore {‖(Tφ − λ)hn‖} → 0, so λ ∈ Π(Tφ). �	

The following corollary is very useful.

Corollary 3.3.2. For φ in L∞, ‖φ‖∞ = ‖Mφ‖ = ‖Tφ‖ = r(Tφ) (where r(Tφ)
is the spectral radius; see Definition 1.2.2).

Proof. We have already shown that ‖φ‖∞ = ‖Mφ‖ (see Theorem 2.2.4).
It is an easy consequence of the spectral radius formula that the spectral

radius of a normal operator is equal to its norm (see, for example, [41, p. 11]
or [55, p. 351]). Thus ‖Mφ‖ = r(Mφ). By the spectral inclusion theorem
(Theorem 3.3.1), r(Mφ) ≤ r(Tφ). The spectral radius of every operator is at
most its norm (Theorem 1.2.4), so r(Tφ) ≤ ‖Tφ‖. Thus

‖Mφ‖ = r(Mφ) ≤ r(Tφ) ≤ ‖Tφ‖.

But, since Tφ = PMφ

∣∣
fH2 , we have ‖Tφ‖ ≤ ‖P‖ ‖Mφ‖ = ‖Mφ‖. Therefore

the above inequalities must be equalities. �	
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Recall that an operator is said to be quasinilpotent if its spectrum is {0}.

Corollary 3.3.3. The only quasinilpotent Toeplitz operator is the operator 0.

Proof. If r(Tφ) = 0, the previous corollary gives ‖φ‖∞ = 0, which implies that
φ = 0 a.e.; i.e., Tφ = 0. �	

The operator 0 gets as close to a Toeplitz operator as any compact operator
can.

Corollary 3.3.4. If φ is in L∞ and K is compact, then ‖Tφ − K‖ ≥ ‖Tφ‖.

Proof. Since ‖Te−inθ‖ = 1 for each natural number n,

‖Tφ − K‖ ≥ ‖Te−inθ (Tφ − K)‖
= ‖Te−inθφ − Te−inθK‖ (by Theorem 3.2.11)

≥ ‖Te−inθφ‖ − ‖Te−inθK‖.

Note that ‖Te−inθφ‖ = ‖e−inθφ‖∞ = ‖φ‖∞ = ‖Tφ‖ (by the previous corol-
lary) for every n. Also, Te−inθ is simply U∗n, where U is the unilateral shift.
Therefore

{Te−inθf} → 0 for each f ∈ H̃2.

Since K is compact, it follows that

{Te−inθK} → 0.

(The sequence obtained by multiplying a sequence of operators that goes
pointwise to 0 and a compact operator goes to 0 in norm; see Exercise 1.19
in Chapter 1.) �	

A Toeplitz operator may have another “best compact approximant” in
addition to 0.

Example 3.3.5. There is a rank-one operator K such that ‖S∗−K‖ = ‖S∗‖,
where S∗ is the backward unilateral shift.

Proof. Let K = e0 ⊗ e1. Clearly, ‖S∗ − K‖ = 1 = ‖S∗‖. �	

As we saw in Chapter 1 (Theorem 1.2.12), the numerical range of a normal
operator is the convex hull of its spectrum. Since Mφ is a normal operator, and
since, by the spectral inclusion theorem (Theorem 3.3.1), we have σ(Mφ) ⊂
σ(Tφ), the following theorem provides a more precise location of the spectrum.
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Theorem 3.3.6. For φ in L∞, the following sets are identical:

(i) the closed convex hull of σ(Tφ);

(ii) the closed convex hull of σ(Mφ);

(iii) the closure of the numerical range of Tφ;

(iv) the closure of the numerical range of Mφ;

(v) the closed convex hull of the essential range of φ.

Proof. The closure of the numerical range of Mφ is the convex hull of its
spectrum, since Mφ is normal (Theorem 1.2.12). By the spectral inclusion
theorem (Theorem 3.3.1), the closed convex hull of σ(Mφ) is contained in the
closed convex hull of σ(Tφ), and the latter is contained in the closure of the
numerical range of Tφ (Theorem 1.2.11). It is apparent that the numerical
range of Tφ is contained in the numerical range of Mφ, since (Tφf, f) for
f ∈ H̃2 is equal to (Mφf, f).

It follows that the containments established above are actually equalities,
which proves parts (i)–(iv) of the theorem. Part (v) follows from Theorem
3.1.6. �	

The following easy corollary is quite useful.

Corollary 3.3.7. For every φ in L∞, ess ran φ is contained in σ(Tφ) and
σ(Tφ) is contained in the closed convex hull of ess ran φ. In particular, if
ess ran φ is convex, then σ(Tφ) = ess ran φ.

Proof. This is an immediate consequence of the previous theorem together
with the spectral inclusion theorem (Theorem 3.3.1). �	

The spectra of Toeplitz operators can also be computed in some cases in
which ess ran φ is not convex. In particular, σ(Tφ) is easily described when Tφ

is an analytic Toeplitz operator.

Theorem 3.3.8. If φ ∈ H∞, then σ(Tφ) is the closure of φ(D).

Proof. For the proof of this theorem, it is convenient to regard Tφ as acting
on H2 rather than on H̃2. To establish one inclusion, suppose that λ = φ(z0)
for some z0 ∈ D. Then

((Tφ − λ)f) (z0) = (φ(z0) − λ)f(z0) = 0
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for every f ∈ H2. This implies that the operator Tφ − λ is not surjective: all
functions in its range have a zero at z0. Therefore Tφ−λ cannot be invertible.
This shows that

φ(D) ⊂ σ(Tφ),

and thus that
φ(D) ⊂ σ(Tφ).

Conversely, assume λ is not in the closure of φ(D). Define δ = dist
(
λ, φ(D)

)
;

then δ > 0. Since |φ(z) − λ| ≥ δ for all z ∈ D, 1/(φ(z) − λ) is analytic and
bounded by 1/δ on D. It is therefore obvious that

(Tφ − λ)−1 = T 1
φ−λ

,

so λ 
∈ σ(Tφ). �	

A corresponding result holds for coanalytic Toeplitz operators.

Corollary 3.3.9. If Tφ is a coanalytic Toeplitz operator, and if φ is the func-
tion in H∞ whose boundary function is the complex conjugate of φ a.e., then
σ(Tφ) is the closure of the set of complex conjugates of φ(D).

Proof. Recall that the adjoint of a Toeplitz operator is the Toeplitz operator
whose symbol is the complex conjugate of the given one (Theorem 3.2.8).
Since the complex conjugate of φ is in H̃2, the result follows from the previous
theorem and the fact that the spectrum of the adjoint of an operator consists
of the complex conjugates of the elements of the spectrum of the operator
(Theorem 1.2.4). �	

The following easily proven theorem has several useful consequences.

Theorem 3.3.10 (The Coburn Alternative). If φ is a function in L∞

other than 0, then at least one of Tφ and T ∗
φ is injective.

Proof. Suppose that Tφf = 0 for some f 
= 0. Suppose also that

T ∗
φg = P (φg) = 0.

It must be shown that g = 0.
We are given P (φf) = 0, where P is the projection of L2 onto H̃2. Then

the functions φf and φg are both in (H̃2)⊥. It follows that the only Fourier
coefficients of φ f and φg that might be different from 0 are those in positions
{1, 2, 3, . . .}. Since f and g are in H̃2, this implies that the functions φ fg



3.3 Spectral Structure 113

and φgf in L1(S1) (recall that the product of two functions in an L2 space
is in L1; see [47, p. 66]) have Fourier coefficients different from 0 at most in
positions {1, 2, 3, . . .}. But

φgf = φ fg,

so φgf and its conjugate each have nonzero Fourier coefficients at most in
positions {1, 2, 3, . . .}. Therefore φgf is the constant function 0.

Since f 
= 0, the F. and M. Riesz theorem (Theorem 2.3.3) implies that
the set on which f vanishes has measure 0. Therefore φg equals 0 almost
everywhere. Since φ is not 0 there is a set of positive measure on which g

vanishes. Hence g vanishes on a set of positive measure, and it is therefore 0
by the F. and M. Riesz theorem (Theorem 2.3.3). �	

In the following sense, Toeplitz operators other than 0 always have some
properties of invertibility.

Corollary 3.3.11. A Toeplitz operator, other than 0, has dense range if it is
not injective.

Proof. If Tφ is not injective, it follows from the Coburn alternative (Theorem
3.3.10) that T ∗

φ is injective. If the range of Tφ were not dense, there would
exist a g different from 0 such that (Tφf, g) = 0 for all f ∈ H̃2. But (Tφf, g) =
(f, T ∗

φg), so, in particular, (T ∗
φg, T ∗

φg) = 0 and T ∗
φg = 0. This would contradict

the injectivity of T ∗
φ . �	

Corollary 3.3.12. For φ a nonconstant function in L∞,

Π0(Tφ)
⋂

Π0(T ∗
φ ) = ∅,

where Π0(T ∗
φ ) denotes the set of complex conjugates of the eigenvalues of T ∗

φ .

Proof. Suppose that λ ∈ Π0(Tφ). Then there is a function f other than zero
such that (Tφ − λ)f = (Tφ−λ) f = 0. Suppose that (T ∗

φ − λ)g = 0; it must be
shown that g equals 0. Clearly T ∗

φ − λ = T ∗
φ−λ. Thus the Coburn alternative

(Theorem 3.3.10) implies that g is 0. �	

Corollary 3.3.13. If φ is a real-valued nonconstant function in L∞, then
Π0(Tφ) = ∅.

Proof. In this case, Tφ is self-adjoint, so its spectrum is real. Thus if there
was a λ in Π0(Tφ), λ = λ would be in Π0(T ∗

φ ), contradicting the previous
corollary. �	
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We next determine the spectra of self-adjoint Toeplitz operators. Recall
that Tφ is self-adjoint if and only if φ is real-valued a.e. (Theorem 3.2.15). We
require a definition.

Definition 3.3.14. For φ a real-valued function in L∞, the essential infimum
of φ, denoted by ess inf φ, is the greatest lower bound of the essential range of
φ, and the essential supremum of φ, denoted by ess sup φ, is the least upper
bound of the essential range of φ.

Theorem 3.3.15. If Tφ is self-adjoint, then σ(Tφ) is the interval

{t : ess inf φ ≤ t ≤ ess sup φ}.

Proof. It is clear that the above interval is the closed convex hull of the es-
sential range of φ, so it contains σ(Tφ) by Theorem 1.2.11.

For the opposite inclusion, first notice that, since ess ran φ ⊂ σ(Tφ) by
the spectral inclusion theorem (Theorem 3.3.1), and since ess ran φ con-
tains ess inf φ and ess sup φ (because ess ran φ is closed), both ess inf φ and
ess sup φ are in σ(Tφ).

Take λ in the open interval (ess inf φ, ess sup φ); we will show that Tφ − λ

is not invertible. In fact, we will show that Tφ −λ is not surjective by showing
that there is no f ∈ H̃2 satisfying (Tφ − λ)f = 1.

Suppose there was such an f . Then

P ((φ − λ)f) = 1,

or, equivalently,
P ((φ − λ)f − 1) = 0.

That is, (φ − λ)f − 1 is in L2 � H̃2. But then

(φ − λ)f − 1 ∈ H̃2.

Since φ = φ and λ ∈ R, we have

(φ − λ)f − 1 ∈ H̃2,

and thus
(φ − λ)f ∈ H̃2.

Since f ∈ H̃2 implies that fen is in L2 �H2 for n = −1,−2, . . ., we then
have
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0 = ((φ − λ)f, fen) =
1
2π

∫ 2π

0

((
φ(eiθ) − λ

)
f(eiθ)

)(
f(eiθ)einθ

)
dθ.

This can be simplified to yield

0 =
1
2π

∫ 2π

0

(
φ(eiθ) − λ

) ∣∣f(eiθ)
∣∣2 e−inθ dθ for n = −1,−2, . . . .

Taking complex conjugates, we get

0 =
1
2π

∫ 2π

0

(
φ(eiθ) − λ

) ∣∣f(eiθ)
∣∣2 einθ dθ for n = −1,−2, . . . .

Thus

0 =
1
2π

∫ 2π

0

(
φ(eiθ) − λ

) ∣∣f(eiθ)
∣∣2 einθ dθ for n = ±1,±2, . . . .

It follows that the function (φ−λ)|f |2 must be a (real) constant c, since all its
Fourier coefficients, except possibly the zeroth, are 0. Note that (φ−λ)f 
= 0,
since P ((φ − λ)f) = 1. Therefore c cannot be 0 (f 
= 0 a.e. by the F. and
M. Riesz theorem, Theorem 2.3.3).

Thus (φ−λ)|f |2 is a nonzero constant. But this is impossible. Indeed, since
λ ∈ (ess inf φ, ess sup φ), we have φ(eiθ) − λ > 0 for eiθ in a set of positive
measure and also φ(eiθ) − λ < 0 on a set of positive measure. Therefore
(φ−λ)|f |2 takes both positive and negative values on (different) sets of positive
measure. But that cannot occur, since (φ−λ)|f |2 is a nonzero constant. This
contradiction establishes the theorem. �	

We next proceed to establish an elegant description of the spectrum of
the Toeplitz operator Tφ in the case that φ is a continuous function on S1.
The description requires the concept of the index (or winding number) of a
function.

Definition 3.3.16. Let γ be a continuous complex-valued function on S1

(i.e., γ is a closed curve), and let a be a point that is not in the range of γ.
The index of the point a with respect to γ (also called the winding number of
γ about a) is defined as

Inda γ =
1

2πi

∫
γ

1
z − a

dz.
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Recall the standard result from complex analysis that the index measures
the number of times that the curve winds around the point a, positively in
the counterclockwise direction and negatively in the clockwise direction ([9,
p. 81], [47, p. 204]).

We need the following fundamental lemma concerning the relationship
between the index of the product of two curves and the indices of the factors.

Lemma 3.3.17. Let β and γ be continuous functions on S1 neither of which
assumes the value 0. Then

Ind0 (βγ) = Ind0 β + Ind0 γ.

Proof. See [9, p. 81]. �	
The spectrum of a Toeplitz operator with continuous symbol is character-

ized as follows.

Theorem 3.3.18. Let φ be a continuous function on S1. Then

σ(Tφ) = ran φ ∪ {a ∈ C : a /∈ ran φ and Inda φ 
= 0} ,

where ran φ is the range of φ.

Proof. Note that ess ran φ = ran φ for continuous functions φ. Thus it follows
from the spectral inclusion theorem (Theorem 3.3.1) that ran φ ⊂ σ(Tφ).

Thus we only need to show that, for a not in ran φ, Tφ − a is invertible if
and only if Inda φ = 0.

Since a /∈ ran φ if and only if 0 /∈ ran (φ − a), Tφ − a = Tφ−a, and
Inda φ = Ind0 (φ− a), we may assume that a = 0. We make that assumption;
i.e., we assume that φ(eiθ) 
= 0 for all θ. In this case we must show that Tφ is
invertible if and only if Ind0 φ = 0.

Since φ is continuous, there exists a δ > 0 such that |φ(eiθ)| > δ for all θ.
Choose a trigonometric polynomial p such that |p(eiθ) − φ(eiθ)| < δ/3 for all
θ (it is a very well-known elementary fact that the trigonometric polynomials
are uniformly dense in the space of continuous functions of the circle; see [47,
p. 91]). It is easy to see that |p(eiθ)| > 2δ/3 for all θ. Therefore we may define
a continuous function ψ by ψ = (φ − p)/p, so that

φ = p(1 + ψ).

It is obvious that |ψ(eiθ)| ≤ 1
2 . Thus ran (1 + ψ) is contained in the disk

{z : |z−1| ≤ 1
2}. Hence the curve parametrized by 1+ψ cannot wind around

0, so Ind0 (1 + ψ) = 0. By the above lemma,
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Ind0 φ = Ind0 p + Ind0 (1 + ψ) = Ind0 p.

It therefore suffices to show that Tφ is invertible if and only if Ind0 p = 0.
Choose n sufficiently large that einθp(eiθ) has no nonzero Fourier coeffi-

cients with negative indices; that is, such that einθp(eiθ) is a polynomial in
eiθ. Let q be defined by q(eiθ) = einθp(eiθ). We consider the polynomial q(z)
as a function on the complex plane. Notice that q(z) has no zeros on S1, since
|p(eiθ)| > 2δ/3 for all θ. Let the zeros of q(z) other than 0 inside the circle
S1 (repeated according to multiplicity) be the numbers z1, z2, . . . , zk, and let
w1, w2, . . . , wl be the zeros of q(z) (repeated according to multiplicity) outside
the circle S1. Then,

q(z) = czm
k∏

j=1

(z − zj)
l∏

j=1

(z − wj),

where c is a constant other than 0 and m is a nonnegative integer.
On S1, z−1 = z. Thus we can rewrite the polynomial as a function on S1

in the form

q(eiθ) = einθp(eiθ) = ceimθeikθ
k∏

j=1

(1 − zje
−iθ)

l∏
j=1

(eiθ − wj).

Dividing by einθ, we get

p(eiθ) = cei(m−n+k)θ
k∏

j=1

(1 − zje
−iθ)

l∏
j=1

(eiθ − wj).

Thus

Ind0 p = Ind0 (ei(m−n+k)θ) +
k∑

j=1

Ind0 (1 − zje
−iθ) +

l∑
j=1

Ind0 (eiθ − wj),

by repeated application of Lemma 3.3.17. Note that Ind0 (eiθ − wj) = 0 for
each j, since wj is outside S1. Also,

Ind0 (1−zje
−iθ) = Ind0 (e−iθ(eiθ−zj)) = Ind0 e−iθ+Ind0 (eiθ−zj) = −1+1 = 0,

since Ind0 (eiθ − zj) = 1 because zj is inside S1.
Therefore, Ind0 p = Ind0 (ei(m−n+k)θ) = m−n+k. Thus it suffices to show

that Tφ is invertible if and only if m − n + k = 0.
We first consider the case m−n+ k ≥ 0. Since φ = p(1+ψ), we can write
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φ(eiθ) = c

⎛⎝ k∏
j=1

(1 − zje
−iθ)

⎞⎠ (1 + ψ(eiθ))

⎛⎝ l∏
j=1

(eiθ − wj)

⎞⎠ ei(m−n+k)θ.

Since each of T1−zje−iθ is coanalytic, each of Teiθ−wj
is analytic, and Tei(m−n+k)θ

is analytic, we can factor Tφ as

Tφ = c

⎛⎝ k∏
j=1

T1−zje−iθ

⎞⎠T1+ψ

⎛⎝ l∏
j=1

Teiθ−wj

⎞⎠Tei(m−n+k)θ ,

by Theorem 3.2.11.
Note that T1+ψ is invertible (by Theorem 1.2.4), since

‖1 − T1+ψ‖ = ‖Tψ‖ ≤ ‖ψ‖∞ ≤ 1
2

< 1.

Also, each Teiθ−wj
is invertible by Theorem 3.3.8, and each T1−zje−iθ is in-

vertible by Corollary 3.3.9. Thus, in the case m − n + k ≥ 0, Tφ is invertible
if and only if Tei(m−n+k)θ is invertible. But it follows from Theorem 3.3.8 that
Tei(m−n+k)θ is invertible if and only if m − n + k = 0.

We are left with the case m − n + k < 0; we must show that Tφ is not
invertible in this case. The factorization of Tφ can be written

Tφ = cTe−i(m−n+k)θ

⎛⎝ k∏
j=1

T1−zje−iθ

⎞⎠T1+ψ

⎛⎝ l∏
j=1

Teiθ−wj

⎞⎠ ,

since Te−i(m−n+k)θ is coanalytic in this case. As in the previous case, it follows
that Tφ is invertible if and only if Te−i(m−n+k)θ is invertible. However, Corollary
3.3.9 implies that Te−i(m−n+k)θ is not invertible. This completes the proof. �	
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3.4 Exercises

3.1. Show that UU∗ = I − e0 ⊗ e0.

3.2. Prove that T1−wz is invertible when |w| < 1.

3.3. Let the operators An = W ∗nAPWn on L2 be defined as in the proof of
Theorem 3.2.6. Prove that ‖An‖ = ‖A‖ for every n.

3.4. Show that Mφ and Tφ have no eigenvalues in common if φ is a function
other than zero in L∞.

3.5. Let Tφ be an analytic Toeplitz operator. Show that every reproducing
kernel function (Definition 1.1.7) is an eigenvector for T ∗

φ .

3.6. Let φ be a real-valued function in L∞. Prove that if the constant function
1 is in the range of Tφ, then 0 is not an interior point of the spectrum of Tφ.
(Hint: See the proof of Theorem 3.3.15.)

3.7. Show that a Toeplitz operator is an isometry if and only if its symbol is
an inner function. (See Exercise 2.4(i) in Chapter 2.)

3.8. Prove that the only unitary Toeplitz operators are the unimodular mul-
tiples of the identity.

3.9. Write out the details of “the other two subcases” in the proof of
Theorem 3.2.13.

3.10. Prove that, for each φ in L∞, TφU − UTφ has rank at most one.

3.11. Prove that Tφψ − TφTψ is a compact operator if at least one of φ and
ψ is the sum of a function in H̃∞ and a function continuous on S1. (Hint: In
the continuous case, this can be established by approximating the continuous
function by trigonometric polynomials and using the previous exercise. It can
then be shown that adding a function in H̃2 does not change Tφψ − TφTψ).

3.12. Prove that if a nonzero Toeplitz operator T is not injective, then there
is a function g in the range of T such that g(0) 
= 0. (Hint: Use Exercise 3.10.)

3.13. Show that if a nonzero Toeplitz operator is not injective, then the con-
stant function 1 is in its range. (Hint: Use the previous exercise.)

3.14. Prove that if a nonzero Toeplitz operator is not injective, then its range
includes all polynomials. (Hint: Use the previous exercise.)
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3.15. Let A be a bounded operator and φ be in H∞. Prove that A commutes
with Tφ if and only if, for every λ in D, the function A∗kλ is orthogonal to
(φ − φ(λ))H2. (Recall that kλ is the reproducing kernel for λ.)

3.16. Prove that a nonzero analytic Toeplitz operator does not have finite-
dimensional invariant subspaces.

3.17. Prove that if K is compact and commutes with an analytic Toeplitz
operator, then K is quasinilpotent.

3.18. Assume that φ and 1/φ are in L∞. Prove that Tφ is invertible if and only
if Tφ/|φ| is invertible. (Hint: Using Exercise 2.14, construct an invertible outer
function g such that |g̃(eiθ)| = |φ(eiθ)|1/2 a.e. Show that the result follows
from the equation Tφ = T ∗

f Tφ/|φ|Tf .)
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3.5 Notes and Remarks

The study of Toeplitz operators originates with Otto Toeplitz [162]. The ex-
position that we have presented of the relationship between the matrices and
symbols of Laurent and Toeplitz matrices is due to Brown and Halmos [67].
The paper [67] was stimulated by the work of Hartman and Wintner [100].
Brown and Halmos [67] also contains Corollary 3.2.7, Theorem 3.2.8, Theorem
3.2.11, Corollary 3.2.12, Theorem 3.2.13, and Theorem 3.3.6.

The spectral inclusion theorem (Theorem 3.3.1) was discovered by Hart-
man and Wintner [100]. Theorem 3.3.10, the Coburn alternative, appears
in [75]. Hartman and Wintner [101] were the first to determine the spectra of
self-adjoint Toeplitz operators (Theorem 3.3.15). The beautiful theorem char-
acterizing the spectra of Toeplitz operators with continuous symbols (The-
orem 3.3.18) is the combined work of several mathematicians: Krĕın [109],
Calderón, Spitzer, and Widom [68], Widom [169], and Devinatz [83]. An ex-
tension of this result to functions that are the sum of a continuous function and
a function in H̃∞ can be found in [16, Theorem 7.36]. The spectra of Toeplitz
operators with piecewise continuous symbols are investigated in Widom [169],
Devinatz [83], and Gohberg and Krupnik [94].

Widom [170], answering a question of Paul Halmos, proved that the spec-
trum of every Toeplitz operator is connected. A somewhat simplified exposi-
tion of the proof is given by Douglas [16]. (Douglas actually proves the stronger
result that the essential spectra of Toeplitz operators are always connected.
Douglas’s proof has subsequently been simplified by Searcóid [156].)

Exercise 3.4 is taken from [16], while Exercises 3.10, 3.12, 3.13, and 3.14
are extracted from Vukotić [168]. Cowen [76] contains Exercises 3.15, 3.16,
and 3.17.

Another approach to Exercise 3.11 is suggested in Exercise 4.5 in Chapter
4 below. A necessary and sufficient condition that the “semicommutator”
Tφψ − TφTψ be compact (for general φ and ψ in L∞) has been obtained by
Axler, Chang, and Sarason [61], and Volberg [167].



Chapter 4

Hankel Operators

We introduce another interesting class of operators, the Hankel operators.
Their matrices are obtained from the matrices of multiplication operators by
taking a different corner from the one yielding Toeplitz matrices. We discuss
some of the main properties of Hankel operators and their relationship to
Toeplitz operators. We establish a number of results concerning boundedness,
compactness, and spectral structure of Hankel operators.

4.1 Bounded Hankel Operators

Recall that the matrix of the multiplication operator Mφ, where φ ∈ L∞, is
a Toeplitz matrix. That is,

Mφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

... ... ... ... ...

... φ0 φ−1 φ−2 φ−3 ...

... φ1 φ0 φ−1 φ−2 φ−3 ...

... φ2 φ1 φ0 φ−1 φ−2 φ−3 ...

... φ3 φ2 φ1 φ0 φ−1 φ−2 ...

... φ3 φ2 φ1 φ0 φ−1 ...

... φ3 φ2 φ1 φ0 ...

... ... ... ... ...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where φk is the kth Fourier coefficient of φ.
The matrices of Toeplitz operators are those that arise as lower-right cor-

ners of such matrices. We now consider upper-right corners. Each such corner
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is a matrix representing an operator from H̃2 into L2�H̃2. In order to get an
operator mapping H̃2 into itself, we need to apply the so-called flip operator.

Definition 4.1.1. The flip operator is the operator J mapping L2 into L2

defined by (Jf)(eiθ) = f(e−iθ).

It is clear that J is a unitary operator and that J is also self-adjoint. The
matrix of JMφ has the following form:

JMφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . .

. . . φ6 φ5 φ4 φ3 . . . . . .

. . . φ5 φ4 φ3 φ2 φ1 . . . . . .

. . . φ4 φ3 φ2 φ1 φ0 φ−1 . . .

. . . φ3 φ2 φ1 φ0 φ−1 φ−2 . . .

. . . . . . φ1 φ0 φ−1 φ−2 φ−3 . . .

. . . . . . φ−1 φ−2 φ−3 φ−4 . . .

. . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This follows from the computation

(JMφen, em) = (Mφeinθ, e−imθ) =
1
2π

∫ 2π

0

φ(eiθ)e−i(m+n)θ dθ = φ−(m+n).

The above matrix for JMφ is constant along its skew-diagonals. Matrices
of this form are known as Hankel matrices.

Definition 4.1.2. A finite matrix, or a doubly infinite matrix (i.e., a matrix
with entries in positions (m, n) for m and n integers), or a singly infinite
matrix (i.e., a matrix with entries in positions (m, n) for m and n nonnegative
integers) is called a Hankel matrix if its entries are constant along each skew-
diagonal. That is, the matrix (am,n) is Hankel if am1,n1 = am2,n2 whenever
m1 + n1 = m2 + n2.

Thus the matrix of JMφ with respect to the standard basis of L2 is a
doubly infinite Hankel matrix. It is clear that a bounded operator on L2

whose matrix with respect to the standard basis is a Hankel matrix is of the
form JMφ for some φ in L∞. To see this, simply multiply the given Hankel
matrix on the left by the matrix of J with respect to the standard basis. The
resulting matrix is a doubly infinite Toeplitz matrix, and it is therefore the
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matrix of an operator Mφ with respect to the standard basis. Since J2 = I it
follows that the original operator is JMφ.

The study of singly infinite Hankel matrices is much more complicated than
that of doubly infinite ones. Note that the lower-right corner of the matrix
representation of JMφ displayed above is a singly infinite Hankel matrix. That
corner is the matrix of the restriction of PJMφ to H̃2 with respect to the
standard basis of H̃2.

Definition 4.1.3. A Hankel operator is an operator that is the restriction to
H̃2 of an operator of the form PJMφ, where P is the projection of L2 onto
H̃2, J is the flip operator, and φ is a function in L∞. This operator is denoted
by Hφ. Its matrix with respect to the standard basis of H̃2 is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ0 φ−1 φ−2 φ−3 φ−4 · · ·
φ−1 φ−2 φ−3 φ−4 . . .

φ−2 φ−3 φ−4 . . .

φ−3 φ−4 . . .

φ−4 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where φ(eiθ) =
∑∞

k=−∞ φkeikθ.

Note that every Hankel operator is bounded since it is the restriction of
the product of three bounded operators.

As opposed to the situation with respect to Toeplitz operators, there is no
unique symbol corresponding to a given Hankel operator.

Theorem 4.1.4. The Hankel operators Hφ and Hψ are equal if and only if
φ − ψ is in eiθH̃2.

Proof. Since the matrix of a Hankel operator depends only on the Fourier co-
efficients in nonpositive positions (Definition 4.1.3), two L∞ functions induce
the same Hankel operator if and only if their Fourier coefficients agree for
nonpositive indices. This is equivalent to the difference between the functions
being in eiθH̃2. �	

Definition 4.1.5. If f is a function in L2, then the coanalytic part of f is the
function
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−∞∑
n=0

(f, einθ)einθ.

Thus two different functions with equal coanalytic parts induce the same
Hankel operator, so we cannot talk about the symbol of a Hankel operator.

Definition 4.1.6. The L∞ function φ is a symbol of the Hankel operator H

if H is the restriction of PJMφ to H̃2.

Theorem 4.1.7. The operator A has a Hankel matrix with respect to the
standard basis of H̃2 if and only if it satisfies the equation U∗A = AU , where
U is the unilateral shift.

Proof. First note that

(U∗Aen, em) = (Aen, Uem) = (Aen, em+1).

Also,
(AUen, em) = (Aen+1, em).

Therefore,
(U∗Aen, em) = (AUen, em)

for all m and n if and only if

(Aen, em+1) = (Aen+1, em)

for all m and n. Thus U∗A = AU if and only if A has a Hankel matrix. �	

Corollary 4.1.8. If A has a Hankel matrix with respect to the standard basis
of H̃2, and U is the unilateral shift, then U∗AU has a Hankel matrix.

Proof. This is easily seen by noticing the effect on the matrix of A of multi-
plying on the left by U∗ and on the right by U . Alternatively,

U∗(U∗AU) = U∗(U∗A)U

= U∗(AU)U (by Theorem 4.1.7)

= (U∗AU)U.

It follows from Theorem 4.1.7 that U∗AU is Hankel. �	

It is not too easy to show that a bounded operator that has a Hankel
matrix is a Hankel operator. To prove it requires several preliminary results.
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Theorem 4.1.9 (Douglas’s Theorem). Let H, K, and L be Hilbert spaces
and suppose that E : H −→ K and F : H −→ L are bounded operators. If
E∗E ≤ F ∗F , then there exists an operator R : L −→ K with ‖R‖ ≤ 1 such
that E = RF .

Proof. First of all, observe that the hypothesis E∗E ≤ F ∗F is equivalent to
‖Ex‖ ≤ ‖Fx‖ for all x ∈ H, since (E∗Ex, x) = ‖Ex‖2 and (F ∗Fx, x) =
‖Fx‖2.

We first define R on the range of F . Given Fx, set RFx = Ex. It needs
to be shown that R is well-defined. If Fx1 = Fx2, then F (x1 −x2) = 0. Since
‖E(x1−x2)‖ ≤ ‖F (x1−x2)‖, we have E(x1−x2) = 0 and hence Ex1 = Ex2.
Thus RFx1 = RFx2.

That R is linear is obvious. We must show that R is bounded. In fact,
‖R‖ ≤ 1, since y = Fx yields

‖Ry‖ = ‖RFx‖ = ‖Ex‖ ≤ ‖Fx‖ = ‖y‖.

Thus R is bounded, and we can extend it to the closure of the range of F

by continuity. Define R to be zero on the orthogonal complement of the range
of F . It is then clear that ‖R‖ ≤ 1 and that RFx = Ex for all x ∈ H. �	

Lemma 4.1.10. Let H and K be Hilbert spaces and let B : H −→ K be a
bounded operator with ‖B‖ ≤ 1. Then (I − B∗B)1/2B∗ = B∗(I − BB∗)1/2.

Proof. First of all, since ‖B‖ = ‖B∗‖ ≤ 1, it follows that I − B∗B ≥ 0 and
I −BB∗ ≥ 0. Thus (I −B∗B)1/2 and (I −BB∗)1/2 exist, since every positive
operator has a unique positive square root (see, for example, [12, p. 240], [48,
p. 331]).

From the trivial equality (I − B∗B)B∗ = B∗(I − BB∗), it follows by
induction that (I −B∗B)nB∗ = B∗(I −BB∗)n for every nonnegative integer
n. By linearity, for every polynomial p(x) we then have

p(I − B∗B) B∗ = B∗ p(I − BB∗).

By the Weierstrass approximation theorem [46, p. 159], there exists a sequence
of polynomials {pn} such that {pn(x)} converges uniformly on [0, 1] to

√
x. It

follows that {pn(I − B∗B)} converges in norm to (I − B∗B)1/2 and {pn(I −
BB∗)} converges in norm to (I − BB∗)1/2 (see, for example, [12, p.201], [42,
pp. 222, 225]). Since

pn(I − B∗B) B∗ = B∗ pn(I − BB∗)
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for all nonnegative integers n, taking limits gives

(I − B∗B)1/2B = B∗(I − BB∗)1/2,

as desired. �	

Theorem 4.1.11 (The Julia–Halmos Theorem). Let H and K be Hilbert
spaces and let A : H −→ K be a bounded operator with ‖A‖ ≤ 1. If U is the
operator mapping K ⊕H into H⊕K defined by the matrix

U =

(
−A∗ (I − A∗A)1/2

(I − AA∗)1/2 A

)
,

then U is a unitary operator.

Proof. Applying Lemma 4.1.10 (with B = A∗ and with B = A) gives

(I −AA∗)1/2A = A(I −A∗A)1/2 and (I −A∗A)1/2A∗ = A∗(I −AA∗)1/2.

Multiplying matrices shows that the product, in both orders, of(
−A (I − AA∗)1/2

(I − A∗A)1/2 A∗

)

and (
−A∗ (I − A∗A)1/2

(I − AA∗)1/2 A

)
is the identity. Hence U is unitary. �	

Theorem 4.1.12 (Parrott’s Theorem). Let H1, H2, K1, and K2 be Hilbert
spaces and A : H2 −→ K2, B : H1 −→ K2, and C : H2 −→ K1 be bounded
operators. Then there exists a bounded operator X : H1 −→ K1 such that the
operator (

X C

B A

)
mapping H1 ⊕H2 into K1 ⊕K2 has norm equal to the maximum of

∥∥∥(B A
)∥∥∥ and

∥∥∥∥∥
(

C

A

)∥∥∥∥∥ .
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Proof. For each operator X, let MX denote the operator(
X C

B A

)
.

We begin by proving that ‖MX‖ is at least as big as

∥∥∥(B A
)∥∥∥ and

∥∥∥∥∥
(

C

A

)∥∥∥∥∥ .

The first of these statements follows by noting that(
B A
)

= PMX ,

where P is the orthogonal projection from K1 ⊕K2 onto K2. Since ‖P‖ = 1,∥∥∥(B A
)∥∥∥ = ‖PMX‖ ≤ ‖P‖ ‖MX‖ = ‖MX‖.

Similarly, the operator (
C

A

)
is the restriction of MX to H2, and thus clearly has norm at most that of MX .

Conversely, first note that we can take X = 0 in the case∥∥∥(B A
)∥∥∥ =

∥∥∥∥∥
(

C

A

)∥∥∥∥∥ = 0.

In the other cases, dividing A, B, and C all by the maximum of∥∥∥(B A
)∥∥∥ and

∥∥∥∥∥
(

C

A

)∥∥∥∥∥
allows us to assume that that maximum is 1.

Thus we may, and do, suppose that∥∥∥(B A
)∥∥∥ ≤ 1 and

∥∥∥∥∥
(

C

A

)∥∥∥∥∥ ≤ 1

and at least one of these inequalities is an equality.
Note that (

B∗

A∗

)
=
(
B A
)∗

and
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(
C

A

)
=
(
C∗ A∗

)∗
.

Recall (as is very easily verified) that I − T ∗T ≥ 0 when the operator T has
norm at most 1. Hence,

I −
(
B A
)(B∗

A∗

)
≥ 0 and I −

(
C∗ A∗

)(C

A

)
≥ 0,

or, equivalently,

I − BB∗ − AA∗ ≥ 0 and I − C∗C − A∗A ≥ 0.

Observe that the above expressions are equivalent to

BB∗ ≤ I − AA∗ and C∗C ≤ I − A∗A.

Since, by the above inequalities, I −AA∗ and I −A∗A are positive operators,
they each have unique positive square roots (e.g., [12, p. 240], [48, p. 331]).
Thus

BB∗ ≤ (I −AA∗)1/2(I −AA∗)1/2 and C∗C ≤ (I −A∗A)1/2(I −A∗A)1/2.

Douglas’s theorem (Theorem 4.1.9) implies that there exist operators T and
R of norm at most 1 such that

B∗ = T (I − AA∗)1/2 and C = R(I − A∗A)1/2.

Straightforward matrix multiplication yields(
R 0
0 I

)(
−A∗ (I − A∗A)1/2

(I − AA∗)1/2 A

)(
T ∗ 0
0 I

)
=

(
−RA∗T ∗ C

B A

)
.

Note that ∥∥∥∥∥
(

B

A

)∥∥∥∥∥ ≤ 1

implies ‖A‖ ≤ 1; hence the Julia–Halmos theorem (Theorem 4.1.11) gives, in
particular, ∥∥∥∥∥

(
−A∗ (I − A∗A)1/2

(I − AA∗)1/2 A

)∥∥∥∥∥ = 1.

Since T and R have norm less than or equal to 1, it follows that∥∥∥∥∥
(

R 0
0 I

)∥∥∥∥∥ ≤ 1 and

∥∥∥∥∥
(

T ∗ 0
0 I

)∥∥∥∥∥ ≤ 1.
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Thus the above equation gives∥∥∥∥∥
(
−RA∗T ∗ C

B A

)∥∥∥∥∥ ≤ 1.

Therefore taking X = −RA∗T ∗ gives the result. �	

We can now show that a bounded operator that has a Hankel matrix is a
Hankel operator.

Theorem 4.1.13 (Nehari’s Theorem). A Hankel matrix corresponds to a
bounded operator H on H̃2 if and only if there exists a function φ in L∞ such
that H = Hφ = PJMφ

∣∣
fH2 . Moreover, φ can be chosen such that ‖Hφ‖ =

‖φ‖∞.

Proof. We already showed (see the comment before Definition 4.1.3) that the
matrix with respect to the standard basis of the restriction of PJMφ to H̃2

is a Hankel matrix.
Conversely, suppose that H is a bounded operator whose matrix with

respect to the standard basis of H̃2 is the Hankel matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a−1 a−2 a−3 a−4 · · ·
a−1 a−2 a−3 a−4 . . .

a−2 a−3 a−4 . . .

a−3 a−4 . . .

a−4 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We must find a function φ in L∞ whose Fourier coefficients with nonpositive
indices are the {a−k}; that is, a function φ ∈ L∞ such that

1
2π

∫ 2π

0

φ(eiθ)eikθ dθ = a−k for k = 0, 1, 2, . . . .

It is clear that there are many such functions φ in L2. We must use the
fact that the above matrix represents a bounded operator to establish that
there is such a φ in L∞.

We proceed as follows. We will inductively construct coefficients a1, a2, a3, . . .

such that the doubly infinite Hankel matrix
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . .

. . . a6 a5 a4 a3 . . . . . .

. . . a5 a4 a3 a2 a1 . . . . . .

. . . a4 a3 a2 a1 a0 a−1 . . .

. . . a3 a2 a1 a0 a−1 a−2 . . .

. . . . . . a1 a0 a−1 a−2 a−3 . . .

. . . . . . a−1 a−2 a−3 a−4 . . .

. . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is bounded and has the same norm as H.

Consider the matrix

Mx =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x a0 a−1 a−2 a−3 · · ·
a0 a−1 a−2 a−3 . . .

a−1 a−2 a−3 . . .

a−2 a−3 . . .

a−3 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and think of it as the 2 × 2 operator matrix

Mx =

(
x C

B A

)
.

Apply Parrott’s theorem (Theorem 4.1.12) to see that there exists a complex
number a1 such that the norm of⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a0 a−1 a−2 a−3 · · ·
a0 a−1 a−2 a−3 . . .

a−1 a−2 a−3 . . .

a−2 a−3 . . .

a−3 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is equal to the norm of H.
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For the second step in the induction, we must show that there is an a2

such that the norm of the matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2 a1 a0 a−1 a−2 a−3 · · ·
a1 a0 a−1 a−2 a−3 . . .

a0 a−1 a−2 a−3 . . .

a−1 a−2 a−3 . . .

a−2 a−3 . . .

a−3 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is equal to the norm of H. This also follows from Parrott’s theorem (Theorem
4.1.12), with the operators

(
B A
)

and

(
C

A

)

both equal to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a0 a−1 a−2 a−3 · · ·
a0 a−1 a−2 a−3 . . .

a−1 a−2 a−3 . . .

a−2 a−3 . . .

a−3 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Inductively, suppose we have found complex numbers a1, a2, a3, . . . , ak

such that, for each s = 1, 2, . . . , k, the matrix
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

as as−1 · · · · · · a1 a0 a−1 a−2 · · ·
as−1 a1 a0 a−1 a−2 . . .

..
.

a1 a0 a−1 a−2 . . .

..
.

a1 a0 a−1 a−2 . . .

a1 a0 a−1 a−2 . . .

a0 a−1 a−2 . . .

a−1 a−2 . . .

a−2 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
has norm equal to ‖H‖. Using Parrott’s theorem as above, we can find ak+1

such that ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak+1 ak · · · · · · a1 a0 a−1 a−2 · · ·
ak a1 a0 a−1 a−2 . . .

..
.

a1 a0 a−1 a−2 . . .

..
.

a1 a0 a−1 a−2 . . .

a1 a0 a−1 a−2 . . .

a0 a−1 a−2 . . .

a−1 a−2 . . .

a−2 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
has norm equal to ‖H‖.

Consider the doubly infinite Hankel matrix Γ given by

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . .

. . . a6 a5 a4 a3 . . . . . .

. . . a5 a4 a3 a2 a1 . . . . . .

. . . a4 a3 a2 a1 a0 a−1 . . .

. . . a3 a2 a1 a0 a−1 a−2 . . .

. . . . . . a1 a0 a−1 a−2 a−3 . . .

. . . . . . a−1 a−2 a−3 a−4 . . .

. . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Note that, for each natural number n, the section of Γ defined by

Γn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an an−1 · · · · · · a1 a0 a−1 a−2 · · ·
an−1 a1 a0 a−1 a−2 . . .

..
.

a1 a0 a−1 a−2 . . .

..
.

a1 a0 a−1 a−2 . . .

a1 a0 a−1 a−2 . . .

a0 a−1 a−2 . . .

a−1 a−2 . . .

a−2 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
has norm equal to ‖H‖.

Now, Γ is the matrix of an operator with respect to a basis {ej}∞j=−∞,
where

∨{ej : j ≥ 0} = H̃2. For each negative integer N , let PN denote the
projection onto the span of

∨{ej : j ≥ N}. For every vector x, it is clear that
‖Γx‖ is the supremum of ‖PNΓPNx‖. Therefore, ‖Γx‖ ≤ ‖H‖ ‖x‖ for every
x, so ‖Γ‖ ≤ ‖H‖. On the other hand, for vectors x in H̃2, ‖Γx‖ ≥ ‖Hx‖, so
‖Γ‖ ≥ ‖H‖.

Therefore Γ is the matrix of a bounded operator whose norm is ‖H‖.
Let J denote the flip operator (see Definition 4.1.1). Then the matrix of

JΓ is given by

JΓ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . .

. . . a0 a−1 a−2 a−3 . . . . . .

. . . a1 a0 a−1 a−2 a−3 . . . . . .

. . . a2 a1 a0 a−1 a−2 a−3 . . .

. . . a3 a2 a1 a0 a−1 a−2 . . .

. . . . . . a3 a2 a1 a0 a−1 . . .

. . . . . . a3 a2 a1 a0 . . .

. . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus JΓ is a doubly infinite Toeplitz matrix of a bounded operator, and,
by Theorem 3.1.4, there exists a function φ ∈ L∞ such that JΓ = Mφ and
‖Mφ‖ = ‖φ‖∞. Since J2 = I, Γ = JMφ, and, since J is unitary, ‖Γ‖ =
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‖Mφ‖ = ‖φ‖∞. Restricting to H̃2 and multiplying on the left by P gives

H = PJMφ

∣∣
fH2 .

Clearly, ‖H‖ = ‖Γ‖ = ‖φ‖∞. �	

4.2 Hankel Operators of Finite Rank

There are many Hankel operators of finite rank. For example, if the function
φ in L∞ has only a finite number of nonzero Fourier coefficients in positions
of negative index, then clearly Hφ has finite rank. In fact, in those cases, the
standard matrix representation of Hφ has only a finite number of entries other
than zero.

There are also finite-rank Hankel operators whose standard matrices con-
tain an infinite number of entries other than zero. As will be shown, the Hankel
operators of rank 1 arise from the kernel functions for H2.

We will find it useful to have notation for the function obtained from a
given function by interchanging its analytic and coanalytic parts.

Notation 4.2.1. For each function f in L2, the function f̆ is defined by

f̆(eiθ) = f(e−iθ).

Obviously, ‖f‖ = ‖f̆‖ and, if f is in L∞, ‖f‖∞ = ‖f̆‖∞.

Note that Jf = f̆ , where J is the flip operator (Definition 4.1.1).

Theorem 4.2.2. For a fixed element w of D, let kw be defined by

kw(z) =
1

1 − wz

(see Definition 1.1.7). Then the rank-one operator kw ⊗ kw (see Notation
1.2.27) is the Hankel operator Hk̆w

. Its matrix with respect to the standard
basis of H̃2 is ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 w w2 w3 · · ·
w w2 w3 . . .

w2 w3 . . .

w3 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Conversely, if H is a Hankel operator whose rank is 1, then there exists a w

in D and a constant c such that H = c(kw ⊗ kw).

Proof. To see that kw ⊗ kw has the stated matrix representation, fix any
nonnegative integer n and compute

(kw ⊗ kw) en = (en, kw) kw = wn (e0 + we1 + w2e2 + w3e3 + · · · ).

Hence the matrix of kw ⊗ kw is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 w w2 w3 · · ·
w w2 w3 . . .

w2 w3 . . .

w3 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Clearly, the above matrix is the matrix of the Hankel operator having
symbol k̆w.

To establish the converse, that every Hankel operator of rank 1 is a multiple
of an operator of the given form, proceed as follows. Let f ⊗ g be an arbitrary
rank-one operator in H̃2. Suppose that f ⊗ g is Hankel. Then

U∗(f ⊗ g) = (f ⊗ g)U (by Theorem 4.1.7)

so
(U∗f) ⊗ g = f ⊗ (U∗g) (by Theorem 1.2.28).

Since the equality of rank-one operators implies that their defining vectors
are multiples of each other (Theorem 1.2.28), it follows that there exists a
constant w such that U∗f = wf and U∗g = wg. Thus w is an eigenvalue of
the backward unilateral shift, so |w| < 1 (Theorem 2.1.6). The eigenvectors of
U∗ corresponding to the eigenvalue w are all multiples of kw (Theorem 2.1.6),
so there are constants c1 and c2 such that f = c1kw and g = c2kw. Thus
f ⊗ g = c1c2(kw ⊗ kw). �	

It is clear that linear combinations of Hankel operators are Hankel opera-
tors, so

Hk̆w1
+ Hk̆w2
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is a Hankel operator of rank 2 whenever w1 and w2 are distinct points of D.
It is interesting to note that there are Hankel operators of rank 2 that cannot
be written as the sum of Hankel operators of rank one (see Exercise 4.11).

Note that the function k̆w is defined on S1 by

k̆w(eiθ) = kw(e−iθ)

=
1

1 − we−iθ

= 1 + we−iθ + w2e−2iθ + w3e−3iθ + · · ·

=
∞∑

n=0

( w

eiθ

)n

.

If |z| > |w|, the series
∑∞

n=0

(
w
z

)n converges to

1
1 − w

z

=
z

z − w
.

Thus k̆w has the meromorphic extension

k̆w(z) =
z

z − w

to the plane.
We shall show that a Hankel operator has finite rank if and only if it has

a symbol that has an extension to a rational function on C.
More generally, we establish the following necessary and sufficient condi-

tion that the columns of a Hankel matrix (whether or not it is the matrix of
a bounded operator) span a finite dimensional space.

Theorem 4.2.3 (Kronecker’s Theorem). Let

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 · · ·
a1 a2 a3 . . .

a2 a3 . . .

a3 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
be any singly infinite Hankel matrix. If the columns of H are linearly dependent
(in the space of all sequences), then

a0 + a1/z + a2/z2 + a3/z3 + · · ·
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is a rational function. In the other direction, if

a0 + a1/z + a2/z2 + a3/z3 + · · ·

is a rational function, then the columns of H span a finite-dimensional sub-
space of the space of all sequences.

Proof. Suppose that the columns of H are linearly dependent. Then there is
a natural number s and complex numbers c0, c1, c2, . . . , cs, not all zero, such
that

c0

⎛⎜⎜⎜⎜⎜⎜⎝
a0

a1

a2

a3

..
.

⎞⎟⎟⎟⎟⎟⎟⎠+ c1

⎛⎜⎜⎜⎜⎜⎜⎝
a1

a2

a3

a4

..
.

⎞⎟⎟⎟⎟⎟⎟⎠+ c2

⎛⎜⎜⎜⎜⎜⎜⎝
a2

a3

a4

a5

..
.

⎞⎟⎟⎟⎟⎟⎟⎠+ · · · + cs

⎛⎜⎜⎜⎜⎜⎜⎝
as

as+1

as+2

as+3

..
.

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0
0

..
.

⎞⎟⎟⎟⎟⎟⎟⎠ .

This means that
s∑

j=0

cjal+j = 0,

for all nonnegative integers l.
Let p denote the polynomial p(z) = c0 + c1z + c2z

2 + · · · + csz
s and let f

denote the function f(z) = a0 +a1/z +a2/z2 +a3/z3 + · · · . To show that f is
a rational function, it suffices to show that pf is a polynomial. We compute

p(z)f(z) =
s∑

j=0

cjz
j

∞∑
k=0

akz−k =
s∑

j=0

∞∑
k=0

cjakzj−k.

Define the polynomial q by

q(z) =
s∑

j=0

j∑
k=0

cjakzj−k;

i.e., q is the sum of the terms for which j − k ≥ 0 in the double sum. Note
that

s∑
j=0

∞∑
k=j+1

cjakzj−k =
∞∑

l=1

s∑
j=0

cjaj+lz
−l,

as can be seen by letting l = k− j and interchanging the order of summation.
However, as shown above, the assumed linear dependence implies that

s∑
j=0

cjaj+l = 0
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for every l. Therefore, p(z)f(z) = q(z), so f(z) = q(z)/p(z) is a rational
function, as desired.

The proof of the other direction of the theorem is similar to the above.
Assume that

f(z) =
∞∑

k=0

akz−k

is a rational function. Then there exist polynomials p and q such that f(z) =
q(z)/p(z). Note that the degree of q is at most the degree of p, since f(z) has
no polynomial part.

Suppose that

p(z) = c0 + c1z + c2z
2 + · · · + csz

s.

Then

p(z)f(z) =
s∑

j=0

cjz
j

∞∑
k=0

akz−k =
s∑

j=0

∞∑
k=0

cjakzj−k = q(z).

Thus
s∑

j=0

∞∑
k=0

cjakzj−k

is a polynomial of degree at most s. Making the change of variables l = k− j,
s∑

j=0

∞∑
k=0

cjakzj−k =
s∑

j=0

∞∑
l=−j

cjaj+lz
−l

=
s∑

j=0

0∑
l=−j

cjaj+lz
−l +

s∑
j=0

∞∑
l=1

cjaj+lz
−l.

Since this is a polynomial, it follows that

s∑
j=0

∞∑
l=1

cjaj+lz
−l =

∞∑
l=1

⎛⎝ s∑
j=0

cjaj+l

⎞⎠ z−l = 0.

Hence
s∑

j=0

cjaj+l = 0

for every natural number l.
The above collection of equations for natural numbers l implies that every

family of s + 1 consecutive columns of H that does not include the first
column is linearly dependent. Hence every column is in the span of the first
s + 2 columns of H, so the span of all the columns of H has dimension at
most s + 2. �	
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In the case that the Hankel matrix represents a bounded operator, the
above theorem can be slightly restated; the other formulation is also frequently
referred to as “Kronecker’s theorem”. Note that a rational function with no
poles on the unit circle is continuous on the circle, and is therefore in L∞.

Recall that a Hankel operator depends only on the coanalytic part of its
symbol (Definition 4.1.5).

Corollary 4.2.4 (Kronecker’s Theorem). For φ ∈ L∞, the Hankel oper-
ator Hφ has finite rank if and only if the function

f(z) =
∞∑

k=0

φ−k

zk

is a rational function all of whose poles are in D.

Proof. Suppose Hφ has finite rank. Then f is a rational function, by the
version of Kronecker’s theorem we have already established (Theorem 4.2.3).
It must be shown that f has no poles outside D.

If f had a pole outside D, say λ, consider the rational function g defined
as g(z) = f(1/z). If we consider the function Hφ(e0) as a function in H2, it
is easy to see that Hφ(e0) = g. But this cannot occur because g cannot be in
H2. Indeed, if |λ| > 1, then the function g has a pole at 1/λ ∈ D and hence
cannot be analytic. If |λ| = 1 then g cannot be in H2 since rational functions
with poles on S1 cannot be in H2 (see Exercise 4.7). Therefore f must have
all its poles in D.

Conversely, assume that f is a rational function with all its poles in D.
Then f is continuous on S1 and hence it is in L∞. By the previous version of
Kronecker’s theorem (Theorem 4.2.3), Hφ has finite rank. But clearly Hf =
Hφ. �	

A slightly different formulation of Kronecker’s theorem in the case of
bounded operators is the following.

Corollary 4.2.5 (Kronecker’s Theorem). Let R be the set of rational
functions with poles inside D. Then H is a bounded Hankel operator of finite
rank if and only if H = Hψ for some ψ ∈ eiθH̃∞ + R.

Proof. The previous form of Kronecker’s theorem (Corollary 4.2.4) immedi-
ately implies this form since Hankel operators are the same if and only if their
symbols have identical coanalytic parts (Theorem 4.1.4). �	



142 4 Hankel Operators

The Hankel operators whose matrices with respect to the standard basis
for H̃2 have only a finite number of entries different from 0 can be described
very explicitly. Note that Hφ has this property whenever φ = e−inθψ̃ for any
ψ ∈ H2. It is also obvious that if Hφ has this property, then einθφ is in H̃2

for some nonnegative integer n. The following sharpening of this statement is
less obvious.

Theorem 4.2.6. If a Hankel operator has a matrix with respect to the stan-
dard basis for H̃2 that has only a finite number of entries different from 0,
and if c is the norm of the operator, then there exists a finite Blaschke product
B and a nonnegative integer n such that ce−inθB̃ is a symbol for the Hankel
operator.

Proof. The theorem is trivial if the operator is 0; in all other cases, divide the
operator by its norm to reduce to the case in which the norm is 1.

By Nehari’s theorem (Theorem 4.1.13), the Hankel operator has a symbol
ψ in L∞ such that ‖Hψ‖ = ‖ψ‖∞ = 1. We shall show that the function ψ has
the desired form.

Since the coanalytic part of ψ has finitely many nonzero coefficients, Kro-
necker’s theorem (Corollary 4.2.4) implies that Hψ is an operator of finite
rank. Since every finite-rank operator achieves its norm, there is a unit vector
g in H̃2 such that

‖Hψg‖ = ‖Hψ‖.
We then have

1 = ‖Hψ‖ = ‖Hψg‖ = ‖PJMψg‖ = ‖Pψ̆ğ‖ ≤ ‖ψ̆ğ‖ ≤ ‖ψ̆‖∞ ‖ğ‖ = 1,

and thus the inequalities above become equalities. In particular, we have

‖Pψ̆ğ‖ = ‖ψ̆ğ‖ and ‖ψ̆ğ‖ = 1.

Since ‖Pψ̆ğ‖ = ‖ψ̆ğ‖, the function ψ̆ğ is in H̃2 and hence the function ψg is
in (eiθH̃2)⊥.

Since the matrix of Hψ has only a finite number of entries different from
0, there is a nonnegative integer n such that einθψ is in H̃∞. It follows that
the function einθψg is in H̃2 and hence ψg is in e−inθH̃2. But the only way
that ψg can be in both of (eiθH̃2)⊥ and e−inθH̃2 is if ψg is a polynomial in
e−iθ of degree at most n. Therefore einθψg is a polynomial p in eiθ of degree
at most n.
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Recall that ‖ψ̆ğ‖ = 1. Since ‖ğ‖ = 1 and |ψ̆(eiθ)| ≤ 1 a.e., we must have
|ψ̆(eiθ)| = 1 a.e. Hence |einθψ(eiθ)| = 1 a.e. as well. Since einθψ is in H̃2,
it then follows that einθψ is an inner function. But since einθψg = p is a
polynomial, this implies that the inner function einθψ divides the inner factor
of p (Theorem 2.6.7).

Since a polynomial is analytic on the entire plane and has only a finite
number of zeros, the inner part of a polynomial must be a finite Blaschke
product. Therefore einθψ is a finite Blaschke product, which proves the theo-
rem. �	

Note that the L∞-norm of the symbol obtained in the previous theorem
is the norm of the Hankel operator, since |e−inθ| equals 1 for all θ.

We need the following observation.

Corollary 4.2.7. If the matrix of a Hankel operator with respect to the stan-
dard basis for H̃2 has only a finite number of entries different from 0, then
there exists a function ψ, continuous on S1, that is a symbol of the Hankel
operator and satisfies ‖Hψ‖ = ‖ψ‖∞.

Proof. Since any finite Blaschke product is continuous on S1, the result follows
from the previous theorem. �	

4.3 Compact Hankel Operators

The natural question of when a Hankel operator is compact arises. The answer
is given by the classical theorem of Hartman.

Theorem 4.3.1 (Hartman’s Theorem). A Hankel operator H is compact
if and only if there exists a continuous function φ such that H = Hφ. Every
compact Hankel operator is a uniform limit of Hankel operators of finite rank.

Proof. First assume that φ is continuous on S1. The fact that Hφ is compact
follows very easily from the Weierstrass approximation theorem [47, p. 91]. To
see this, simply choose a sequence {pn} that converges uniformly to φ on S1.
By Kronecker’s theorem (Corollary 4.2.4), the Hankel operator with symbol
pn has finite rank. But then

‖Hpn − Hφ‖ = ‖Hpn−φ‖ ≤ ‖pn − φ‖∞.

Hence {Hpn} converges to Hφ in norm as n approaches ∞. Therefore Hφ is a
norm limit of finite-rank Hankel operators and is thus compact.
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In the other direction, assume that Hφ is compact. We will show that there
is a continuous function ψ such that Hψ = Hφ.

Since Hφ is compact and {U∗n} converges to 0 pointwise, it follows that
{U∗nHφ} converges to 0 in norm (see Exercise 1.19 in Chapter 1). The equa-
tions U∗Hφ = HφU = Heiθφ yield U∗nHφ = Heinθφ. Thus {‖Heinθφ‖} con-
verges to 0. Nehari’s theorem (Theorem 4.1.13) implies that, for each natural
number n, there is an hn in eiθH̃∞ such that

‖Heinθφ‖ = ‖einθφ + hn‖∞.

Thus {‖einθφ + hn‖∞} converges to 0. But

‖einθφ + hn‖∞ = ‖einθ(φ + e−inθhn)‖∞ = ‖φ + e−inθhn‖∞.

Hence {‖φ + e−inθhn‖∞} converges to 0.
Observe that the coanalytic part of each function e−inθhn has only a finite

number of Fourier coefficients different from 0. Therefore the Hankel operator
He−inθhn

has a matrix with only a finite number of entries different from 0.
Since

‖Hφ − H−e−inθhn
‖ = ‖Hφ+e−inθhn

‖ ≤ ‖φ + e−inθhn‖∞,

the compact operator Hφ is the norm limit of the finite-rank Hankel operators
H−e−inθhn

. Let α0 be the function 0 and, for each natural number n, let αn

denote the coanalytic part of −e−inθhn.
Since {Hαn

} converges to Hφ, we can assume, by choosing a subsequence
if necessary, that

‖Hαn+1 − Hαn
‖ ≤ 1

2n
.

Since the matrix of Hαn+1−αn
has only a finite number of entries different

from 0, Corollary 4.2.7 implies that we can find a function gn continuous on
S1 such that Hgn

= Hαn+1−αn
and

‖gn‖∞ = ‖Hαn+1−αn
‖ = ‖Hαn+1 − Hαn

‖.

Since ‖gn‖∞ ≤ 1
2n for all n, the Weierstrass M -test shows that the function

ψ defined by

ψ(eiθ) =
∞∑

k=0

gk(eiθ)

is continuous on S1. We need only show that Hφ = Hψ, which is equivalent
to establishing that the coanalytic parts of φ and ψ are equal.
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Note that gk and αk+1 − αk have the same Fourier coefficients for all
nonpositive indices. Thus, for each nonpositive integer s,

(ψ, eisθ) =
∞∑

k=0

(gk, eisθ)

=
∞∑

k=0

(
(αk+1, e

isθ) − (αk, eisθ)
)

= lim
n→∞(αn+1, e

isθ)

= lim
n→∞(αn, eisθ).

Recall that αn is the coanalytic part of −e−inθhn. Since {−e−inθhn} con-
verges to φ in L∞, it follows immediately that

lim
n→∞(αn, eisθ) = (φ, eisθ)

for each nonpositive integer s. Thus the coanalytic parts of ψ and φ coincide,
so Hψ = Hφ. �	
Notation 4.3.2. We denote the set of all continuous complex-valued func-
tions in S1 by C. The set H̃∞ + C is the collection of all sums of a function
in H̃∞ and an element of C.

Hartman’s theorem can be restated as follows.

Corollary 4.3.3 (Hartman’s Theorem). The Hankel operator Hφ is com-
pact if and only if φ is in H̃∞ + C.

Proof. If Hφ is compact, the previous version of Hartman’s theorem (Theorem
4.3.1) implies that there is a continuous function ψ such that Hφ = Hψ. Then
φ and ψ have the same coanalytic parts, so φ − ψ is a function in H̃∞. Thus
φ is in H̃∞ + C.

Conversely, if φ = f + ψ with f in H̃∞ and ψ continuous, then φ has the
same coanalytic part as the continuous function obtained from ψ by adding
the constant term of f . Therefore Hφ is compact by the earlier version of
Hartman’s theorem (Theorem 4.3.1). �	

4.4 Self-Adjointness and Normality of Hankel Operators

Recall that f̆ is defined by f̆(eiθ) = f(e−iθ) (Notation 4.2.1). We now require
some additional related functions.
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Notation 4.4.1. For each function f in L2, we define:

(i) the function f by
f(eiθ) = f(eiθ), and

(ii) the function f∗ as the function f̆ ; i.e.,

f∗(eiθ) = f(e−iθ).

It should be noted that f ∈ H̃2 if and only if f∗ ∈ H̃2. In fact,

if f(eiθ) =
∞∑

n=−∞
aneinθ, then f∗(eiθ) =

∞∑
n=−∞

aneinθ.

Also
‖f‖ = ‖f̆‖ = ‖f‖ = ‖f∗‖.

For f ∈ L∞,
‖f‖∞ = ‖f̆‖∞ = ‖f‖∞ = ‖f∗‖∞.

There is a special relationship between Hankel operators and their adjoints.

Theorem 4.4.2. If H is a Hankel operator, then H∗f∗ = (Hf)∗ for every
f ∈ H̃2. In particular, ‖H∗f∗‖ = ‖Hf‖ for every f in H̃2.

Proof. Recall that the matrix of A∗ with respect to a given orthonormal basis
can be obtained from that of A by taking the “conjugate transpose”. Since
the transpose of a Hankel matrix H is itself, the matrix of H∗ is obtained
from that of H by simply conjugating each of its entries. That H∗f∗ = (Hf)∗

follows immediately from this fact. �	

It is easy to describe the adjoint of a Hankel operator. If the Hankel oper-
ator H has matrix ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 · · ·
a1 a2 a3 . . .

a2 a3 . . .

a3 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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then the matrix of H∗, the conjugate transpose of the matrix of H, is simply⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 · · ·
a1 a2 a3 . . .

a2 a3 . . .

a3 . . .

. . .

..
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Theorem 4.4.3. For every φ in L∞, H∗
φ = Hφ∗ . Moreover, if Hφ is self-

adjoint, then there exists a ψ in L∞ such that ψ = ψ∗ a.e. and Hφ = Hψ.

Proof. The fact that H∗
φ = Hφ∗ follows from the matrix representation of

Hφ as indicated above. Alternatively, it is also a consequence of the following
computation. For any f and g in H2,

(H∗
φf, g) = (f, Hφg) = (f, PJMφg) = (f, JMφg) = (MφJf, g).

It is easily seen that MφJ = JMφ∗ . Therefore

(H∗
φf, g) = (JMφ∗f, g) = (PJMφ∗f, g) = (Hφ∗f, g).

In particular, H∗
φ = Hφ if and only if φ and φ∗ have the same coanalytic

parts. This is, of course, equivalent to the entries in the standard matrix for
Hφ being real, which is obviously equivalent to the self-adjointness of Hφ.

It remains to be shown that Hφ self-adjoint implies that there exists a ψ in
L∞ such that Hφ = Hψ and ψ = ψ∗. Since φ and φ∗ have the same coanalytic
parts, there is an h in eiθH̃2 such that φ − φ∗ = h.

Note that h∗ = −h and h ∈ L∞. Define ψ in L∞ by ψ = φ − 1
2h. Then

ψ − ψ∗ =
(

φ − 1
2
h

)
−
(

φ∗ − 1
2
h∗
)

= φ − φ∗ − h = 0,

and thus ψ = ψ∗. Clearly, Hψ = Hφ. �	

We have seen that it is fairly rare that the product of two Toeplitz oper-
ators is a Toeplitz operator. It is even rarer that the product of two Hankel
operators is Hankel; in fact, that occurs only if both Hankel operators are mul-
tiples of the same rank-one Hankel operator. The following lemma is useful in
other contexts as well as for establishing this.
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Lemma 4.4.4. If Hφ and Hψ are Hankel operators and U is the unilateral
shift, then

HφHψ − U∗HφHψU = (Pφ̆) ⊗ (Pψ),

where P is the projection of L2 onto H̃2.

Proof. Note that

HφHψ − U∗HφHψU = HφHψ − HφUU∗Hψ (by Theorem 4.1.7)

= Hφ(I − UU∗)Hψ.

Recall that I −UU∗ is the projection of H̃2 onto the constant functions; i.e.,
I − U∗U = e0 ⊗ e0. Therefore

HφHψ − U∗HφHψU = Hφ(e0 ⊗ e0)Hψ

= (Hφe0) ⊗ (Hψ∗e0)

= (PJφ) ⊗ (PJψ∗)

= (Pφ̆) ⊗ (Pψ).

�	

Theorem 4.4.5. The product of two nonzero Hankel operators is a Hankel
operator if and only if both of the operators are constant multiples of the same
Hankel operator of rank 1.

Proof. We have seen that every Hankel operator of rank 1 has the form kw⊗kw

for some w in D, where kw is the kernel function given by kw(z) = 1
1−wz

(Theorem 4.2.2). Thus, to prove the first implication of the theorem, it suffices
to show that the square of such an operator is a multiple of itself. Let f be in
H̃2. Then

(kw ⊗ kw) (kw ⊗ kw)f = (kw ⊗ kw) (f, kw)kw

= (f, kw) (kw ⊗ kw)kw

= (f, kw) (kw, kw)kw

= (kw, kw) (f, kw)kw

= (kw, kw) (kw ⊗ kw)f.

For the converse, assume that Hφ, Hψ, and HφHψ are all Hankel operators.
Then U∗HφHψU is also a Hankel operator (Theorem 4.1.8). By the above
lemma (Lemma 4.4.4),
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HφHψ − U∗HφHψU = (Pφ̆) ⊗ (Pψ).

Since the difference of two Hankel operators is Hankel, it follows that the
operator (Pφ̆) ⊗ (Pψ) is Hankel.

If (Pφ̆) ⊗ (Pψ) was zero, we would have either Pφ̆ = 0 or Pψ = 0.
It would then follow that Hφ or Hψ is zero, which they are not. Thus the
operator (Pφ̆) ⊗ (Pψ) is a Hankel operator of rank 1.

By Theorem 4.2.2, then, we have

(Pφ̆) ⊗ (Pψ) = ckw ⊗ kw

for some w ∈ D and a nonzero constant c. Therefore there exist constants a

and b such that
Pφ̆ = a kw and Pψ = b kw,

by Theorem 1.2.28. Note that P (ψ) = bkw implies that P (ψ
∗
) = bk∗

w. How-
ever, ψ

∗
= ψ̆ and k∗

w = kw. Therefore we have

Pφ̆ = a kw and Pψ̆ = b kw.

Hence the coanalytic parts of φ and ψ are both multiples of k̆w. Thus, by
Theorem 4.2.2, both of Hφ and Hψ are multiples of the rank-one operator
kw ⊗ kw. �	

Corollary 4.4.6. The product of two Hankel operators is a Toeplitz operator
only if at least one of the Hankel operators is 0.

Proof. By Lemma 4.4.4,

HφHψ − U∗HφHψU = (Pφ̆) ⊗ (Pψ).

If HφHψ is a Toeplitz operator, then U∗HφHψU = HφHψ (by Corollary
3.2.7), so

(Pφ̆) ⊗ (Pψ) = 0.

Therefore at least one of (Pφ̆) and (Pψ) is 0. As in the previous theorem, it
follows that either Hφ or Hψ is 0. �	

Corollary 4.4.7. The product of two Hankel operators is 0 if and only if one
of them is 0.

Proof. If the product of two Hankel operators is the Toeplitz operator 0, the
previous corollary implies that at least one of the Hankel operators is zero. �	
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The question arises of when two Hankel operators commute with each
other. It turns out that this happens only if one is a multiple of the other.

Theorem 4.4.8. Let φ and ψ be in L∞ and suppose that Hψ 
= 0. If Hφ and
Hψ commute, then there exists a complex number c such that Hφ = cHψ.

Proof. When Hφ 
= 0, by Lemma 4.4.4,

HφHψ − U∗HφHψU = (Pφ̆) ⊗ (Pψ),

and
HψHφ − U∗HψHφU = (Pψ̆) ⊗ (Pφ).

Therefore HψHφ = HφHψ implies that

(Pφ̆) ⊗ (Pψ) = (Pψ̆) ⊗ (Pφ).

In the case that Hφ 
= 0, all the vectors defining this rank-one operator are
different from 0. It follows that there exists a complex number c different from
0 such that

Pφ̆ = cP (ψ̆).

Therefore Hφ = cHψ. �	

There are very few normal Hankel operators.

Corollary 4.4.9. Every normal Hankel operator is a multiple of a self-adjoint
Hankel operator.

Proof. Let H be a normal Hankel operator; i.e., HH∗ = H∗H. If H = 0, the
result is trivial. In the other case, by the previous theorem, there is a constant
c such that H = cH∗. Since ‖H‖ = ‖H∗‖, we have |c| = 1.

Let c = eiθ; it follows that

(e−iθ/2H)∗ = (e−iθ/2H),

so e−iθ/2H is self-adjoint and the result follows. �	

There is a generalization of normality that is sometimes studied.

Definition 4.4.10. The bounded operator A is hyponormal if ‖Af‖ ≥ ‖A∗f‖
for every vector f ∈ H.

There are also very few hyponormal Hankel operators.
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Theorem 4.4.11. Every hyponormal Hankel operator is normal.

Proof. By Theorem 4.4.2, it follows that ‖H∗f∗‖ = ‖Hf‖ for every f ∈ H̃2,
where f∗ is the vector whose coefficients are the conjugates of those of f

(Notation 4.4.1). Applying this to f∗ yields ‖H∗f‖ = ‖Hf∗‖.
If H is hyponormal, then ‖Hf‖ ≥ ‖H∗f‖ for every f . Therefore, ‖Hf∗‖ ≥

‖H∗f∗‖. By the above equations, this yields ‖H∗f‖ ≥ ‖Hf‖. But ‖Hf‖ ≥
‖H∗f‖, since H is hyponormal. Hence ‖H∗f‖ = ‖Hf‖ for all f , and H is
normal. �	

4.5 Relations Between Hankel and Toeplitz Operators

There are some interesting relations between the Hankel and Toeplitz opera-
tors with symbols φ, ψ, and φψ. One consequence of these formulas is a precise
determination of when a Hankel and a Toeplitz operator commute with each
other.

Theorem 4.5.1. Let φ and ψ be in L∞. Then

Heiθφ̆Heiθψ = Tφψ − TφTψ.

Proof. The flip operator, J , and the projection onto H̃2, P , satisfy the fol-
lowing equation:

JPJ = Meiθ (I − P )Me−iθ .

(This can easily be verified by applying each side to the basis vectors {einθ}.)
Thus

Heiθφ̆Heiθψ = (PJMeiθφ̆) (PJMeiθψ)

= P (Me−iθφJ) (PJMeiθψ) since JMeiθφ̆ = Me−iθφJ

= PMφMe−iθ (JPJ) MeiθMψ

= PMφMe−iθ (Meiθ (I − P )Me−iθ ) MeiθMψ

= PMφ(I − P )Mψ

= (PMφMψ) − (PMφ) (PMψ)

= Tφψ − TφTψ.

�	

It is easy to rephrase the above theorem to express the product of any two
Hankel operators in terms of Toeplitz operators.
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Corollary 4.5.2. If φ and ψ are in L∞, then

HφHψ = Tφ̆ψ − Teiθφ̆Te−iθψ.

Proof. By the previous theorem,

HeiθᾰHeiθβ = Tαβ − TαTβ

for α and β in L∞. Let α = eiθφ̆ and β = e−iθψ. Making this substitution in
the equation above gives the result. �	

One consequence of this corollary is another proof of the following (cf. Corol-
lary 4.4.6).

Corollary 4.5.3. If the product of two Hankel operators is Toeplitz, then at
least one of the Hankel operators is 0.

Proof. If HφHψ is a Toeplitz operator, then since the sum of two Toeplitz
operators is Toeplitz, it follows from the previous corollary that Teiθφ̆Te−iθψ

is a Toeplitz operator. Thus either e−iθψ is analytic or eiθφ̆ is coanalytic
(Theorem 3.2.11), so Hψ = 0 or Hφ = 0. �	

It should also be noted that Theorem 4.5.1 shows that the following facts,
which we previously obtained independently, are equivalent to each other:

• If the product of two Hankel operators is zero, then one of them is zero
(Corollary 4.4.7).

• If Tφψ = TφTψ, then either φ is coanalytic or ψ is analytic (Theorem
3.2.11).

Another important equation relating Hankel and Toeplitz operators is the
following.

Theorem 4.5.4. Let φ and ψ be in L∞. Then

Tφ̆Heiθψ + HeiθφTψ = Heiθφψ.

Proof. This follows from a computation similar to that in the proof of Theo-
rem 4.5.1. Using JMφJ = Mφ̆ and JPJ = Meiθ (I − P )Me−iθ , we get
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Tφ̆Heiθψ = (PMφ̆) (PJMeiθψ)

= P (JMφJ) (PJMeiθMψ)

= PJMφ (JPJ) MeiθMψ

= PJMφ (Meiθ (I − P )Me−iθ ) MeiθMψ

= PJMeiθφ(I − P )Mψ

= (PJMeiθφMψ) − (PJMeiθφ) (PMψ)

= Heiθφψ − HeiθφTψ.

�	

Under certain circumstances, the product of a Hankel operator and a
Toeplitz operator is a Hankel operator.

Corollary 4.5.5. (i) If ψ is in H̃∞, then HφTψ = Hφψ.

(ii) If ψ is in H̃∞, then Tψ̆Hφ = Hψφ.

Proof. Recall from the previous theorem that, for α and β in L∞,

TᾰHeiθβ + HeiθαTβ = Heiθαβ .

Taking α = e−iθφ and β = ψ gives (i), since Heiθβ = 0. Taking α = ψ and
β = e−iθφ we obtain (ii), since Heiθα = 0. �	

We have seen that Toeplitz operators rarely commute with each other
(Theorem 3.2.13) and that Hankel operators rarely commute with each other
(Theorem 4.4.8). We now consider the question of determining when a Hankel
operator commutes with a Toeplitz operator. This is also quite rare.

Theorem 4.5.6. Suppose neither of the Toeplitz operator Tφ and the Hankel
operator H is a multiple of the identity. Then HTφ = TφH if and only if H

is a multiple of Heiθφ and both of the functions φ + φ̆ and φφ̆ are constant
functions.

Proof. First suppose that φ + φ̆ = c and φφ̆ = d for complex numbers c and
d. Theorem 4.5.4 states that

TφHeiθφ + Heiθφ̆Tφ = Heiθφφ̆.

Since φφ̆ = d, it follows that
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TφHeiθφ + Heiθφ̆Tφ = Heiθφφ̆ = Hdeiθ .

Since deiθ is in eiθH̃2, it follows that Hdeiθ = 0, and thus that

TφHeiθφ + Heiθφ̆Tφ = 0.

Also, since φ + φ̆ = c, we have Heiθφ̆ = Hceiθ−eiθφ, and therefore

TφHeiθφ + HceiθTφ − HeiθφTφ = 0.

Since ceiθ is in eiθH̃2, Hceiθ = 0. Therefore

TφHeiθφ = HeiθφTφ.

It follows that if H is a multiple of Heiθφ, then H commutes with Tφ.
To prove the converse, suppose that HTφ = TφH. Multiplying TφH on the

right by U , using the fact that U∗H = HU , noticing that He0 = PJMe0 =
PJ = e0 ⊗ e0, and using Theorem 4.5.1, we get

TφHU = TφU∗H

= TφTe−iθH

=
(
Tφe−iθ − Heiθφ̆Heiθe−iθ

)
H

=
(
Te−iθTφ − Heiθφ̆He0

)
H

= U∗TφH − Heiθφ̆(e0 ⊗ e0)H

= U∗TφH −
(
Heiθφ̆e0

)
⊗ (H∗e0).

Performing similar computations beginning with HTφ yields

HTφU = HTφTeiθ

= HTeiθφ

= H
(
TeiθTφ + Heiθe−iθHeiθφ

)
= H
(
UTφ + He0Heiθφ

)
= HUTφ + H(e0 ⊗ e0)Heiθφ

= U∗HTφ + (He0) ⊗
(
Heiθφ∗e0

)
.

Since HTφ = TφH, it follows that

−
(
Heiθφ̆e0

)
⊗ (H∗e0) = (He0) ⊗

(
Heiθφ∗e0

)
.
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Since H is not zero, neither He0 nor H∗e0 is zero.
If either one of Heiθφ̆e0 and Heiθφ∗e0 were 0, then the other would also be

0. It would then follow that φ̆ and φ∗ are both in H̃2, which happens only
if φ is a constant. The assumption that Tφ is not a multiple of the identity
implies that φ is not a constant function. It follows that each of the four
vectors occurring in the equation

−
(
Heiθφ̆e0

)
⊗ (H∗e0) = (He0) ⊗

(
Heiθφ∗e0

)
is different from 0.

Thus Theorem 1.2.28 implies that there is a complex number c 
= 0 such
that

−cHeiθφ̆ e0 = He0 and H∗e0 = cHeiθφ∗ e0.

Therefore H = −cHeiθφ̆ and H∗ = cHeiθφ∗ . Taking the adjoint of both sides
of the latter equation gives H = cHeiθφ, which proves the first conclusion of
the theorem.

It follows from the above that

cHeiθφ = −cHeiθφ̆.

Therefore
Heiθφ + Heiθφ̆ = 0.

But
Heiθφ + Heiθφ̆ = Heiθ(φ+φ̆),

which implies that φ + φ̆ is in H̃2. Let ψ = φ + φ̆. Then ψ = ψ̆ and ψ is in
H̃2, which implies that ψ is a constant, which proves the second conclusion
of the theorem.

We must show that φφ̆ is a constant. Notice that the fact that φ + φ̆

is constant implies that Tφ̆ is a translate of Tφ, so it follows that H also
commutes with Tφ̆. Applying Theorem 4.5.1 gives

H2
eiθφ = Tφ̆φ − Tφ̆Tφ.

Since H is a multiple of Heiθφ, it commutes with the left-hand side of the above
equation. Since it also commutes with Tφ and Tφ̆, it follows that H commutes
with Tφ̆φ. By the above proof, φ̆φ + (φ̆φ)̆ is constant. But (φφ̆)̆ = φφ̆, so φφ̆

is constant. �	
This theorem suggests the question of determining the functions φ in L∞

such that both φ + φ̆ and φφ̆ are constants.
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Theorem 4.5.7. For E a measurable subset of S1, let E∗ denote the set of
complex conjugates of elements of E, and let Ec denote the complement of
E in S1. For φ ∈ L2, φ + φ̆ and φφ̆ are both constant functions if and only
if there are complex numbers a and b such that φ(eiθ) = aχE(eiθ) + b, where
χE is the characteristic function of a measurable set of S1 such that m(E∗ \
Ec) + m(Ec \ E∗) = 0.

Proof. If φ(eiθ) = aχE(eiθ) + b as in the statement of the theorem, then
φ̆(z) = aχE∗(eiθ) + b and

φ(eiθ) + φ̆(eiθ) = a(χE(eiθ) + χE∗(eiθ)) + 2b

= a(χE∪E∗(eiθ) − χE∩E∗(eiθ)) + 2b

= a(χS1(eiθ) − χ∅(eiθ)) + 2b

= a(1 + 0) + 2b

= a + 2b,

because E∗ and Ec coincide except possibly on a set of measure 0. Similarly,

φ(eiθ)φ̆(eiθ) = (aχE(eiθ) + b)(aχE∗(eiθ) + b)

= a2χE(eiθ)χE∗(eiθ) + ab(χE(eiθ) + χE∗(eiθ)) + b2

= a2χE∩E∗(eiθ) + ab + b2

= a20 + ab + b2,

so both functions are constant.
Conversely, suppose that φ + φ̆ and φφ̆ are constant. We first establish a

special case. Suppose that φ + φ̆ = 1 and φφ̆ = 0. Then

φ = φ(φ + φ̆) = φ2 + φφ̆ = φ2,

which implies that φ = χE for some measurable subset E ⊂ S1. Since

0 = φ(eiθ)φ̆(eiθ) = χE(eiθ)χE∗(eiθ) = χE∩E∗(eiθ),

it follows that m(E ∩ E∗) = 0. Analogously,

1 = φ(eiθ) + φ̆(eiθ) = χE(eiθ) + χE∗(eiθ)

= χE∪E∗(eiθ) − χE∩E∗(eiθ) = χE∪E∗(eiθ),

so m(E ∪ E∗) = 1. Thus m(E∗ \ Ec) + m(Ec \ E∗) = 0 and the conclusion
follows with a = 1 and b = 0.
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To deal with the general situation, suppose φ + φ̆ = c and φφ̆ = d. Let b

be a solution of the equation x2 − cx + d = 0 and let a = c − 2b.
If a 
= 0, then define ψ(eiθ) = φ(eiθ)−b

a . Then

ψ(eiθ) + ψ̆(eiθ) =
φ(eiθ) − b

a
+

φ̆(eiθ) − b

a
=

c − 2b

a
=

a

a
= 1

and

ψ(eiθ)ψ̆(eiθ) =
(

φ(eiθ) − b

a

)(
φ̆(eiθ) − b

a

)
=

d − bc + b2

a2
=

0
a2

= 0.

Therefore, by the previous case, ψ = χE , where E is as described above. Thus
φ(eiθ) = aψ(eiθ) + b = aχE(eiθ) + b.

If a = 0, then let ψ(eiθ) = φ(eiθ) − b. Then

ψ(eiθ) + ψ̆(eiθ) = (φ(eiθ) − b) + (φ̆(eiθ) − b) = c − 2b = 0

and
ψ(eiθ)ψ̆(eiθ) = (φ(eiθ) − b)(φ̆(eiθ) − b) = d − bc + b2 = 0.

Thus ψ̆ = −ψ and −ψ2 = 0, which implies that ψ = 0; i.e., φ(z) = b, as
desired. �	
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4.6 Exercises

4.1. Show that ‖f‖ = ‖f̆‖ = ‖f‖ = ‖f∗‖ for every f in L2.

4.2. Prove that, for f in L∞, each of the functions f̆ , f , and f∗ is in L∞ and

‖f‖∞ = ‖f̆‖∞ = ‖f‖∞ = ‖f∗‖∞.

4.3. Show that the flip operator J on L2 is unitary and self-adjoint.

4.4. For φ in L∞, prove that the norm of Hφ is the distance from φ to zH̃∞

(i.e., show that ‖Hφ‖ = inf{‖φ − zf‖∞ : f ∈ H̃∞}).

4.5. Prove that Tφψ − TφTψ is a compact operator if at least one of φ and ψ

is in H̃∞ + C. (Hint: Use Theorem 4.5.1.)

4.6. Prove that H̃∞ +C is a closed subset of L∞. (Hint: Hartman’s theorem
can be used.)

4.7. Show that H2 does not contain any rational functions with poles on S1.
(Hint: It suffices to consider rational functions all of whose poles are on S1.)
Note that this establishes that rational functions that are in H2 are also in
H∞.

4.8. Prove that JPJ = W (I − P )W ∗, where J is the flip operator, W is the
bilateral shift, and P is the projection of L2 onto H̃2.

4.9. Let J be the flip operator on L2. Show that MψJ = JMψ̆ for all ψ in
L∞.

4.10. Show that the operator kw ⊗ kw is Hankel by verifying that

U∗ (kw ⊗ kw) = (kw ⊗ kw) U.

(Compare with Theorem 4.2.2.)

4.11. Show that, for each λ in D, the operator

H =
z

(1 − λz)2
⊗ 1

1 − λz
+

1
1 − λz

⊗ z

(1 − λz)2

is a Hankel operator of rank 2. Prove that H cannot be written as the sum of
two Hankel operators of rank 1.
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4.12. Let φ(z) = z. Prove that the rank-two Hankel operator Hφ cannot be
written as a finite sum of rank-one Hankel operators.

4.13. Prove that no Hankel operator is invertible. (Hint: An easy proof follows
from U∗H = HU .)

4.14. Prove that a Hankel operator is injective if and only if it has dense
range.

4.15. Prove that no Hankel operator is bounded below.

4.16. Show that the kernel of every Hankel operator H is invariant under the
unilateral shift U .

4.17. Use the preceding problem to show that every Hankel operator that has
a nontrivial kernel has the form Hzφh, where φ is an inner function and h is
in H∞.

4.18. Suppose that the Hankel operator H is not injective. Prove that there
exists an inner function φ such that the kernel of H is φH̃2 and the closure
of the range of H is (φ∗H̃2)⊥.

4.19. An operator T is said to be a partial isometry if ‖Tf‖ = ‖f‖ for all f

in (Ker T )⊥. Let φ be an inner function. Prove that the Hankel operator Hzφ

is a partial isometry.

4.20. (Kronecker’s Theorem) Prove that the bounded Hankel operator H has
finite rank if and only if there is a finite Blaschke product B and a function
h in H̃∞ such that H = HzBh.

4.21. The Hankel matrix

H =
(

1
n + m + 1

)∞

n,m=0

is called the Hilbert matrix. Prove that H is the matrix of the bounded Hankel
operator with symbol defined by φ(eiθ) = i(θ − π)eiθ, for θ ∈ [0, 2π].

4.22. Prove Hilbert’s inequality: if {an} and {bn} are two sequences in �2, then∣∣∣∣∣
∞∑

n=0

∞∑
m=0

anbm

n + m + 1

∣∣∣∣∣ ≤ π

( ∞∑
n=0

|an|2
)1/2 ( ∞∑

m=0

|bm|2
)1/2

.

(Hint: Use the previous problem.)
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4.23. For λ ∈ D, let kλ be the reproducing kernel for λ defined by kλ(z) =
(1 − λz)−1. Find an explicit expression for a symbol φ such that Hφ = Hk̆λ

and ‖Hφ‖ = ‖φ‖∞.

4.24. An operator T is said to be a Hilbert–Schmidt operator if, for some or-
thonormal basis {en}, the sum

∑∞
n=0 ‖Ten‖2 is finite. Suppose H is a bounded

Hankel operator. Prove that H is Hilbert–Schmidt if and only if∫
D

|φ′(z)|2 dx dy < ∞,

where φ is the function in H2 defined by φ̃ = H1.
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4.7 Notes and Remarks

Hankel matrices and operators are named after the nineteenth century mathe-
matician Hermann Hankel, whose doctoral dissertation [97] included the study
of determinants of finite Hankel matrices.

The first result concerning infinite Hankel matrices is Kronecker’s theorem
(Theorem 4.2.3); it was established in [110]. The alternative version of Kro-
necker’s theorem presented in Exercise 4.20 is taken from Power [40]. Exercise
4.12 comes from Partington [36].

The earliest theorem concerning boundedness of a Hankel operator is
Hilbert’s inequality (Exercise 4.22 above), which is equivalent to the bounded-
ness of the so-called Hilbert matrix (Exercise 4.21). Properties of the Hilbert
matrix are elegantly discussed in Choi [70]. See [25] for another proof of
Hilbert’s inequality.

Nehari’s theorem (Theorem 4.1.13) was originally proven in 1957 (see
[120]). The proof we have given is modeled on that of [35], which also contains a
third proof of the theorem based on a deep result concerning the factorization
of H1 functions. The key lemma in the proof that we have presented is Par-
rott’s theorem (Theorem 4.1.12) [125]; results related to Parrott’s theorem can
be found in Davis [81], Davis–Kahan–Weinberger [82], and Adamjan–Arov–
Krĕın [58].

Douglas’s theorem (Theorem 4.1.9), which is used in the proof of Parrott’s
theorem, appeared in [85]. The proof of Parrott’s theorem also depends on
the Julia–Halmos theorem (Theorem 4.1.11): the fact that every operator
A such that ‖A‖ ≤ 1 can be so “dilated” to an isometry was proven by
Julia [107], after which Halmos [95] improved the theorem to its present form.
The theorem was substantially strengthened by Sz.-Nagy [160], who showed
that, whenever ‖A‖ ≤ 1, there exists a unitary operator U on a larger space
such that the compression of Un is An for every natural number n. Sz.-Nagy’s
theorem is the foundation of the theory of unitary dilations; see Sz.-Nagy–
Foias [54].

Hartman’s theorem (Theorem 4.3.1), determining when a Hankel operator
is compact, was obtained in [99]. Our exposition is based on Hartman’s. There
are alternative proofs. In particular, if the result of Exercise 4.6 is obtained
independently (as was done by Sarason [149]), Hartman’s theorem is an easy
consequence. Bonsall and Power [66] found a different proof of Hartman’s
theorem.
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Theorem 4.4.5, Corollary 4.4.7, Theorem 4.4.8, Theorem 4.4.9, and The-
orem 4.4.11 were pointed out by Power [141]. Exercise 4.19 is also due to
Power [40]. Theorems 4.5.1 and 4.5.4 are folklore. One can also prove those
theorems by regarding Hankel operators as operators from H̃2 into L2 � H̃2

and considering them as compressions of matrices of multiplication operators
on L2 (see, for example, [62]).

Theorems 4.5.6 and 4.5.7 were observed in [113]. The proof of Theorem
4.5.6 presented is a simplification of the one in [113], incorporating some ideas
of D. Zheng and L. Robert-González (personal communications).

There are many other results in the theory of Hankel operators. Spec-
tral properties of Hankel operators are much harder to obtain than those of
Toeplitz and composition operators. A few easy results are included in the
exercises above (Exercises 4.14 is a result that can be found in [40]). Some
interesting theorems concerning spectra were found by Power ([136], [137],
[138], [139], [140]); Power’s book [40] includes a full treatment of these results
as well as much additional material.

Although it is not easy to prove, it has been shown by Mart́ınez-Avendaño
and Treil [116] that every compact subset of the plane that contains zero is
the spectrum of a Hankel operator. An outline of a different approach to part
of the proof of this result is described in [35].

The problem of completely classifying self-adjoint Hankel operators up to
unitary equivalence has been solved by Megretskĭı, Peller, and Treil in [118]. In
fact, Treil ([163], [164], [165]) and Treil and Vasyunin [166] completely classify
all the moduli of Hankel operators (i.e., operators of the form (H∗H)1/2 for
H a Hankel operator).

A natural question is the determination of when a Hankel operator is in
a Schatten p-class; Peller [126] completely answered this question. A fuller
discussion can be found in Peller’s book [38], which also contains numerous
other interesting results about Hankel operators.

Applications of Hankel operators to problems in engineering are discussed
in Francis [21], Helton–Merino [30], and Partington [36].



Chapter 5

Composition Operators

We introduce the class of composition operators, which are operators induced
by analytic functions mapping the unit disk into itself. We discuss some of the
main properties of such operators, including some aspects of their spectra.

While in the previous chapters we usually thought of H2 functions in
terms of their boundary values (i.e., as functions in H̃2, as a subset of L2),
in the present chapter we primarily consider them as analytic functions on D.

5.1 Fundamental Properties of Composition Operators

Definition 5.1.1. For each analytic function φ mapping the open unit disk
into itself, we define the composition operator Cφ by

(Cφf)(z) = f(φ(z))

for all f ∈ H2.

There are several points to make regarding this definition. Even though
clearly f ◦ φ is analytic on D, it is not at all obvious that f ◦ φ is an element
of H2 for every f ∈ H2. It is trivially verified that Cφ is a linear operator.
Indeed, clearly

(Cφ(af + bg))(z) = (af + bg)(φ(z))

= af(φ(z)) + bg(φ(z))

= a(Cφf)(z) + b(Cφg)(z)

= (aCφf + bCφg)(z)

for a, b ∈ C and f, g ∈ H2, and thus Cφ(af + bg) = aCφf + bCφg.
The product of two composition operators is a composition operator.
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Theorem 5.1.2. If Cφ and Cψ are composition operators then CφCψ = Cψ◦φ.

Proof. Note that

(CφCψf) (z) = (Cφ(f ◦ ψ)) (z) = (f ◦ ψ ◦ φ)(z) = (Cψ◦φf)(z),

and thus
CφCψ = Cψ◦φ.

�	

Example 5.1.3. Let φ(z) = z2. If f is in H2, then Cφf is in H2 and, in
fact, ‖Cφf‖ = ‖f‖. Therefore Cφ is an isometry mapping H2 into itself.

Proof. If f has power series f(z) =
∑∞

n=0 anzn, then Cφf has power series
(Cφf)(z) =

∑∞
n=0 anz2n. Thus Cφf ∈ H2 and all the above assertions are

immediate. �	

The previous example is very easy. However, it is not so easy to prove that
Cφ maps H2 into itself if, for example, φ(z) = 1+z

2 . Writing the power series
decomposition is not very helpful in this case and in the case of most functions
φ. Fortunately, we can use properties of harmonic functions to obtain a proof
that every Cφ is a bounded linear operator mapping H2 into itself. First we
need a lemma.

Lemma 5.1.4. If f ∈ H2, then, for reit ∈ D, we have

|f(reit)|2 ≤ 1
2π

∫ 2π

0

Pr(θ − t)|f(eiθ)|2 dθ.

Proof. Recall that, by the Poisson integral formula (Theorem 1.1.21), we have

f(reit) =
1
2π

∫ 2π

0

Pr(θ − t)f(eiθ) dθ.

If we define the measure dµ by dµ(θ) = 1
2π Pr(θ−t) dθ, then the above formula

can be written as

f(reit) =
∫ 2π

0

f(eiθ) dµ(θ).

Notice that f(eiθ) ∈ L2(S1, dµ), since for fixed r < 1, Pr(θ − t) is bounded
above. Applying the Cauchy–Schwarz inequality to the product of the func-
tions f(eiθ) ∈ L2(S1, dµ) and 1 ∈ L2(S1, dµ), we obtain
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|f(reit)| =
∣∣∣∣∫ 2π

0

f(eiθ) dµ(θ)
∣∣∣∣

≤
(∫ 2π

0

|f(eiθ)|2 dµ(θ)
)1/2(∫ 2π

0

|1|2 dµ(θ)
)1/2

=
(∫ 2π

0

|f(eiθ)|2 dµ(θ)
)1/2

since 1
2π

∫ 2π

0
Pr(θ − t) dθ = 1. Squaring both sides of the above inequality

yields

|f(reit)|2 ≤ 1
2π

∫ 2π

0

Pr(θ − t)|f(eiθ)|2 dθ.

�	

We can now prove that Cφ is a well-defined bounded operator on H2.

Theorem 5.1.5. Let φ : D −→ D be analytic. Then the composition operator
Cφ is well-defined and bounded on H2. Moreover,

‖Cφ‖ ≤
√

1 + |φ(0)|
1 − |φ(0)| .

Proof. Define the real-valued function u on D by

u(reit) =
1
2π

∫ 2π

0

Pr(θ − t)|f(eiθ)|2 dθ.

This is a harmonic function on D, and, by the previous lemma,

|f(z)|2 ≤ u(z),

for all z ∈ D. Since the range of φ is in D, by the inequality above,

|f(φ(w))|2 ≤ u(φ(w))

for every w ∈ D. Writing w = reit and integrating from 0 to 2π, we obtain

1
2π

∫ 2π

0

|f(φ(reit))|2 dt ≤ 1
2π

∫ 2π

0

u(φ(reit)) dt.

Since u is harmonic and φ is analytic, it follows that u ◦ φ is also harmonic.
Hence

u(φ(0)) =
1
2π

∫ 2π

0

u(φ(reit)) dt

by the mean value property of harmonic functions.



166 5 Composition Operators

Therefore
1
2π

∫ 2π

0

|f(φ(reit))|2 dt ≤ u(φ(0)).

By Theorem 1.1.12, this implies that f ◦ φ ∈ H2; i.e., Cφ is well–defined.
To see that Cφ is bounded, observe that the last inequality implies (by

Theorem 1.1.12) that
‖Cφf‖2 ≤ u(φ(0)).

Notice also that

Pr(θ − t) =
1 − r2

1 − 2r cos(θ − t) + r2
≤ 1 − r2

(1 − r)2
=

1 + r

1 − r
.

Since

u(reit) =
1
2π

∫ 2π

0

Pr(θ − t)|f(eiθ)|2 dθ,

it follows that

u(reit) ≤
(

1 + r

1 − r

)
1
2π

∫ 2π

0

|f(eiθ)|2 dθ =
(

1 + r

1 − r

)
‖f‖2,

in other words,

u(z) ≤
(

1 + |z|
1 − |z|

)
‖f‖2

for every z ∈ D.
In particular,

u(φ(0)) ≤
(

1 + |φ(0)|
1 − |φ(0)|

)
‖f‖2.

Hence

‖Cφf‖2 ≤
(

1 + |φ(0)|
1 − |φ(0)|

)
‖f‖2.

Therefore Cφ is bounded and

‖Cφ‖ ≤
√

1 + |φ(0)|
1 − |φ(0)| .

�	

The following observation will be useful. For any φ : D −→ D analytic,
Cφe0 = e0. Thus ‖Cφ‖ ≥ 1 for every composition operator. This yields the
following corollary.

Corollary 5.1.6. If Cφ is a composition operator such that φ(0) = 0 then
‖Cφ‖ = 1.
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Proof. By the previous theorem and φ(0) = 0, we have ‖Cφ‖ ≤ 1. By the
above observation, ‖Cφ‖ ≥ 1. �	

Composition operators are related to a classical concept in complex anal-
ysis called “subordination”.

Definition 5.1.7. For functions f and g analytic on D, f is subordinate to
g if there exists an analytic function φ : D −→ D with φ(0) = 0 such that
f = g ◦ φ.

The previous corollary is a well-known classical theorem.

Corollary 5.1.8 (Littlewood’s Subordination Theorem). If f in H2

is subordinate to g in H2, then ‖f‖ ≤ ‖g‖.

Proof. Apply the previous corollary to f = Cφg. �	

Reproducing kernels give a lot of information about composition operators.
Recall that (see Definition 1.1.7), for λ ∈ D, the function kλ defined by

kλ(z) =
1

1 − λz

has the property that (f, kλ) = f(λ) for every f in H2.

Lemma 5.1.9. If Cφ is a composition operator and kλ is a reproducing kernel
function, then C∗

φkλ = kφ(λ).

Proof. For each f in H2,

(f, C∗
φkλ) = (Cφf, kλ) = (f ◦ φ, kλ) = f(φ(λ)).

But also
(f, kφ(λ)) = f(φ(λ)),

and therefore
(f, C∗kλ) = (f, kφ(λ))

for all f ∈ H2. This implies that C∗
φkλ = kφ(λ). �	

Theorem 5.1.10. For every composition operator Cφ,

1√
1 − |φ(0)|2 ≤ ‖Cφ‖ ≤ 2√

1 − |φ(0)|2 .
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Proof. Using the previous lemma with λ = 0 yields

C∗
φk0 = kφ(0).

Recall (Theorem 1.1.8) that

‖kλ‖2 =
1

1 − |λ|2 ,

and therefore ‖k0‖ = 1 and ‖kφ(0)‖ = 1√
1−|φ(0)|2 . Since

‖kφ(0)‖ = ‖C∗
φk0‖ ≤ ‖C∗

φ‖ ‖k0‖,

it follows that
1√

1 − |φ(0)|2 ≤ ‖C∗
φ‖ = ‖Cφ‖.

To prove the other inequality, we begin with the result from Theorem 5.1.5:

‖Cφ‖ ≤
√

1 + |φ(0)|
1 − |φ(0)| .

Observe that, for 0 ≤ r < 1, we have the inequality√
1 + r

1 − r
=

√
(1 + r)2

1 − r2
=

1 + r√
1 − r2

≤ 2√
1 − r2

.

It follows that

‖Cφ‖ ≤
√

1 + |φ(0)|
1 − |φ(0)| ≤

2√
1 − |φ(0)|2 .

�	
We showed (Corollary 5.1.6) that ‖Cφ‖ = 1 if φ(0) = 0. The converse is

also true.

Corollary 5.1.11. The norm of the composition operator Cφ is 1 if and only
if φ(0) = 0.

Proof. As indicated, we have already established (Corollary 5.1.6) that ‖Cφ‖ =
1 if φ(0) = 0. Conversely, if ‖Cφ‖ = 1, then the inequality

1√
1 − |φ(0)|2 ≤ ‖Cφ‖

implies
1√

1 − |φ(0)|2 ≤ 1,

so φ(0) = 0. �	
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Composition operators are characterized as those operators whose adjoints
map the set of reproducing kernels into itself.

Theorem 5.1.12. An operator A on H2 is a composition operator if and
only if A∗ maps the set of reproducing kernels into itself.

Proof. We showed above that A∗kλ = kφ(λ) when A = Cφ. Conversely, sup-
pose that for each λ ∈ D, A∗kλ = kλ′ for some λ′ ∈ D. Define φ : D −→ D by
φ(λ) = λ′.

Notice that, for f ∈ H2,

(Af, kλ) = (f, A∗kλ) = (f, kφ(λ)) = f(φ(λ)).

If we take f(z) = z, then g = Af is in H2, and is thus analytic. But then,
by the above equation, we have

g(λ) = (g, kλ) = (Af, kλ) = f(φ(λ)) = φ(λ).

Therefore g = φ and φ is analytic, so the composition operator Cφ is well-
defined and bounded.

It follows that A = Cφ, since

(Af)(λ) = (Af, kλ)

= f(φ(λ)) (as shown above)

= (Cφf)(λ),

for all f in H2. �	

There are other interesting characterizations of composition operators. Re-
call that en(z) = zn for nonnegative integers n.

Theorem 5.1.13. An operator A in H2 is a composition operator if and only
if Aen = (Ae1)n for n = 0, 1, 2, . . . .

Proof. If A = Cφ, then Ae1 = Cφe1 = Cφz = φ and Aen = Cφen = Cφzn =
φn, and therefore (Ae1)n = Aen.

Conversely, suppose Aen = (Ae1)n for all nonnegative integers n. Define
φ by φ = Ae1. Since Ae1 is in H2, φ is analytic on D.

To show that A = Cφ, it suffices to prove that |φ(z)| < 1 for all z ∈ D,
since then it would follow that the composition operator Cφ is well-defined
and bounded. Then
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Aen = (Ae1)n = φn = Cφzn = Cφen;

thus by linearity and continuity, it would follow that A = Cφ.
To show that |φ(z)| < 1, note that φn = Aen implies that ‖φn‖ ≤ ‖A‖ for

all nonnegative n. We claim that |φ̃(eiθ)| ≤ 1 for almost all θ. Consider any
δ > 0 and define the set E by E = {eiθ : |φ̃(eiθ)| ≥ 1 + δ}. Then

‖φn‖2 =
1
2π

∫ 2π

0

|φ̃(eiθ)|2n dθ

≥ 1
2π

∫
E

|φ̃(eiθ)|2n dθ

≥
∫

E

(1 + δ)2n dm

= m(E)(1 + δ)2n

where m(E) is the measure of E. If m(E) > 0, this would imply that {‖φn‖} →
∞ as n → ∞ which contradicts the fact that ‖φn‖ ≤ ‖A‖ for all n. Hence
m(E) = 0 and therefore |φ̃(eiθ)| ≤ 1. It follows that |φ(z)| ≤ 1 for all z in D

(Corollary 1.1.24).
We claim that |φ(z)| < 1 for all z in D. If not, then there exists z0 ∈ D

such that |φ(z0)| = 1. By the maximum modulus principle ([9, pp. 79, 128],
[47, p. 212]) this implies that φ is a constant function; say φ(z) = λ, with
λ of modulus 1. Since Aen = (Ae1)n, it follows that Aen = λn. But then
(A∗e0, en) = (e0, Aen) = (e0, λ

n) = λ
n
, so

‖A∗e0‖2 =
∞∑

k=0

|(A∗e0, en)|2 =
∞∑

k=0

|λ|2n = ∞,

since |λ| = 1. This is a contradiction. �	

Corollary 5.1.14. The operator A on H2 is a composition operator if and
only if it is multiplicative in the sense that (Af)(Ag) = A(fg) whenever f , g,
and fg are all in H2.

Proof. It is clear that composition operators have the stated multiplicative
property.

Conversely, if A has the multiplicative property then, in particular, Aen =
(Ae1)n for all n, so the fact that A is a composition operator follows from
Theorem 5.1.13. �	

There are very few normal composition operators.
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Theorem 5.1.15. The composition operator Cφ is normal if and only if there
exists λ ∈ C such that φ(z) = λz and |λ| ≤ 1.

Proof. First note that φ(z) = λz implies that Cφen = λnen for all positive
integers n. Hence Cφ is a diagonal operator with respect to the canonical basis
of H2, and it is obvious that every diagonal operator is normal.

To establish the converse, suppose Cφ is normal. Note that, for every
complex number α, the operator Cφ − α is also normal, so

‖(Cφ − α)f‖ = ‖(Cφ − α)∗f‖

holds for every f ∈ H2. In particular, C∗
φf = αf if and only if Cφf = αf .

Since Cφe0 = e0 for every Cφ, the above implies that C∗
φe0 = e0 when Cφ is

normal. But e0 is the kernel function k0, and, for every composition operator,
C∗

φkλ = kφ(λ) (by Lemma 5.1.9). It follows that kφ(0) = k0, so φ(0) = 0.
Since φ(0) = 0, it follows that the subspace z2H2 is invariant under Cφ.

(Clearly, Cφ(z2g(z)) has a zero of multiplicity at least 2 at 0 whenever φ(0) = 0
and g is in H2.) Thus C∗

φ leaves the subspace
(
z2H2

)⊥ =
∨{e0, e1} invariant

(Theorem 1.2.20). Since
∨{e0} is an invariant subspace of Cφ, it also follows

that zH2 = (
∨{e0})⊥ is an invariant subspace of C∗

φ.
Thus C∗

φ leaves invariant the subspaces zH2 and
∨{e0, e1}. Therefore

zH2 ∩ ∨{e0, e1} =
∨{e1} is also an invariant subspace for C∗

φ. This yields
C∗

φe1 = λe1 for some λ ∈ C. Since Cφ is normal, it follows that Cφe1 = λe1.
Obviously, Cφe1 = φ, so φ(z) = λz.

That |λ| ≤ 1 is obvious since φ(z) ∈ D for all z ∈ D. �	

There are a fair number of compact composition operators.

Theorem 5.1.16. If there exists a positive number s < 1 so that |φ(z)| < s

for every z ∈ D, then Cφ is compact.

Proof. We show that Cφ is compact by exhibiting a sequence of operators of
finite rank that converge in norm to Cφ. Observe that, since |φ(z)| < s for all
z ∈ D, we have, for each natural number k,

‖φk‖ ≤ ‖φk‖∞ ≤ ‖φ‖k
∞ ≤ sk.

For every natural number n define the finite-rank operator Fn by

Fn =
n∑

k=0

φk ⊗ ek.
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If g is in H2, then, since s < 1,

‖(Fn − Cφ)g‖ =

∥∥∥∥∥
n∑

k=0

(g, ek) φk −
∞∑

k=0

(g, ek) φk

∥∥∥∥∥
=

∥∥∥∥∥
∞∑

k=n+1

(g, ek) φk

∥∥∥∥∥
≤

∞∑
k=n+1

|(g, ek)| ∥∥φk
∥∥

≤
∞∑

k=n+1

|(g, ek)| sk

≤
( ∞∑

k=n+1

|(g, ek)|2
)1/2 ( ∞∑

k=n+1

s2k

)1/2

≤ ‖g‖ sn+1

√
1 − s2

,

where we have used the Cauchy–Schwarz inequality. This implies that

‖Fn − Cφ‖ ≤ sn+1

√
1 − s2

and thus that {Fn} → Cφ uniformly. �	
For every analytic φ taking D into D that is not constant, |φ(z)| < 1 for

all z ∈ D by the maximum modulus theorem ([9, pp. 79, 128], [47, p. 212]). If
Cφ is compact, a stronger condition holds.

Theorem 5.1.17. If Cφ is compact, then |φ̃(eiθ)| < 1 a.e.

Proof. The sequence {en} converges weakly to 0. So, {Cφen} converges to 0
in norm if Cφ is compact (e.g., [27, p. 95] or [12, p. 173]).

If |φ̃(eiθ)| was not less than 1 a.e., there would exist a subset E of the unit
circle, with positive measure, such that |φ̃(eiθ)| = 1 for eiθ ∈ E. Then, for
each positive integer n,

‖φ̃n‖2 =
1
2π

∫ 2π

0

|φ̃(eiθ)|2n dθ

is greater than or equal to

1
2π

∫
E

|φ̃(eiθ)|2n dθ = m(E).

This contradicts the fact that {Cφen} = {φn} converges to 0 in norm. �	
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It is clear that a necessary and sufficient condition that Cφ be compact
should involve a condition on φ in between those of the previous two theorems.
Such a condition is not at all easy to find. However, Shapiro ([53, Chapter
10] and [157]) did obtain a beautiful characterization of compact composition
operators in terms of the Nevanlinna counting function of φ.

5.2 Invertibility of Composition Operators

Recall that the conformal mappings of D onto itself are the functions of the
form

φ(z) = eiθ λ − z

1 − λz
,

for λ a fixed element of D and θ a fixed real number ([9, p. 132], [47, p. 255]).

Theorem 5.2.1. The composition operator Cφ is invertible if and only if φ

is a conformal mapping of D onto itself. In this case, C−1
φ = Cφ−1 .

Proof. If φ is a conformal map, let φ−1 be the inverse conformal map. Then
Cφ−1Cφ = CφCφ−1 = I by Theorem 5.1.2. Hence C−1

φ = Cφ−1 .
To establish the converse, suppose that Cφ is an invertible composition

operator; let A denote its inverse.
Define ψ to be Ae1. Our goal is to prove that A = Cφ−1 ; we begin by

proving that A is a composition operator. By Theorem 5.1.13, this will follow
if we establish that Aen is (Ae1)n = ψn. For any fixed n, define g = Aen.
Since A is the inverse of Cφ, it follows that

en = CφAen = Cφg = g ◦ φ.

On the other hand,
e1 = CφAe1 = Cφψ = ψ ◦ φ.

Since en
1 = en, we have

(ψ ◦ φ)n = g ◦ φ.

Note that φ cannot be a constant function (since the range of Cφ would then
consist of constant functions, so Cφ would not be onto). By the open mapping
theorem of complex analysis, φ(D) is an open subset of D. This means that
the equation

(ψ(w))n = g(w)
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holds for all w in the open set φ(D), and therefore, by analyticity, it holds for
all w ∈ D. Thus g = ψn; i.e., Aen = (Ae1)n, as desired.

Since A = Cψ is a composition operator and CψCφ = CφCψ = I, we then
have

(φ ◦ ψ)(z) = z and (ψ ◦ φ)(z) = z,

which implies that φ is a conformal map of D into itself. �	

Example 5.2.2. For a fixed λ ∈ D, define the function φλ by

φλ(z) =
λ − z

1 − λz
.

Then (Cφλ
)2 = I (i.e., C−1

φλ
= Cφλ

).

Proof. As indicated above, each such φλ is a conformal mapping of D into
itself. An easy computation shows that φλ(φλ(z)) = z for all z ∈ D, from
which the result follows. �	

Theorem 5.2.3. If the function φ has a fixed point in D, then the operator
Cφ is similar to a composition operator Cψ with the property that ψ(0) = 0.

Proof. Let φ(λ) = λ for some λ ∈ D. Let

φλ(z) =
λ − z

1 − λz
.

Then C−1
φλ

= Cφλ
by Example 5.2.2, so

C−1
φλ

CφCφλ
= Cφλ◦φ◦φλ

(by Theorem 5.1.2)

and (φλ ◦ φ ◦ φλ)(0) = 0. �	

A special case of CφCψ = Cψ◦φ is the assertion that, for each natural
number n, Cn

φ is the composition operator induced by the function obtained
by composing φ with itself n times. It will be useful to have notation for such
functions.

Notation 5.2.4. For any function φ : D −→ D and positive integer n, we
define the function φ[n] : D −→ D recursively by φ[1](z) = φ(z) and φ[n](z) =
(φ ◦ φ[n−1])(z).

Some information about spectra of composition operators is easily obtain-
able in the cases in which the inducing function has a fixed point.
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Theorem 5.2.5. If φ has a fixed point in D, then the spectral radius of Cφ is 1.

Proof. By Theorem 5.2.3, Cφ is similar to a composition operator whose defin-
ing function fixes the point 0. Since similar operators have the same spectra,
and therefore equal spectral radii, we may and do assume that φ(0) = 0.

By the spectral radius formula (Theorem 1.2.4),

r(Cφ) = lim
n→∞ ‖Cn

φ‖1/n.

For every n, Cn
φ = Cφ[n] (cf. Notation 5.2.4). Since φ[n](0) = 0, the norm of

Cφ[n] equals 1 (by Corollary 5.1.11). Hence ‖Cn
φ‖ = 1. Then

r(Cφ) = lim
n→∞ ‖Cn

φ‖1/n = 1.

�	

5.3 Eigenvalues and Eigenvectors

We begin with a result about point spectra of the adjoints of those composition
operators whose inducing functions have fixed points on the disk.

Theorem 5.3.1. If Cφ is a composition operator such that φ(a) = a for some
a ∈ D, then

Π0(C∗
φ) ⊃ {1} ∪

∞⋃
k=1

{(
φ′(a)
)k
}

.

Proof. If φa(z) = a−z
1−az then CφaCφCφa = Cψ, where ψ = φa ◦ φ ◦ φa, by

Theorem 5.1.2. Since similarity preserves point spectra, Cψ has the same
point spectrum as Cφ. Applying the chain rule to ψ = φa ◦ φ ◦ φa yields

ψ′(z) = φ′
a(φ(φa(z))) φ′(φa(z)) φ′

a(z).

In particular,
ψ′(0) = φ′

a(a)φ′(a)φ′
a(0),

which an easy computation shows is equal to φ′(a). Thus it suffices to prove
the theorem in the case a = 0.

Suppose, then, that φ(0) = 0.
Fix a natural number n. For every g ∈ H2, Cφ(zng(z)) = (φ(z))ng(φ(z)),

so φ(0) = 0 implies that Cφ(zng(z)) has a zero of multiplicity at least n at
0. Thus, φ(0) = 0 implies that the subspace znH2 is invariant under Cφ.
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It follows (Theorem 1.2.20) that its orthocomplement,
∨{e0, e1, . . . , en−1}, is

invariant under C∗
φ.

Therefore, for each natural number n, the restriction of C∗
φ to∨{e0, e1, . . . , en−1} has a matrix with respect to the basis {e0, e1, . . . , en−1}

that is upper triangular. As is very well known and easy to verify, the diago-
nal entries of an upper triangular matrix are eigenvalues of the matrix. The
diagonal entries in the present case are {(C∗

φek, ek) : k = 0, 1, . . . , n − 1}.
The case k = 0 gives (C∗

φe0, e0) = (e0, e0) = 1. For k ≥ 1,

(C∗
φek, ek) = (ek, Cφek) = (ek, φk).

Since φ(0) = 0, the power series representation of φ has the form

φ(z) = φ′(0)z +
φ′′(0)

2!
z2 +

φ′′′(0)
3!

z3 + · · · .

Hence the coefficient of the term of degree k of the power series of φk is
(φ′(0))k. Therefore

(C∗
φek, ek) = (ek, φk)

gives
(C∗

φek, ek) = φ′(0)
k
.

Thus the restriction of C∗
φ to
∨{e0, e1, . . . , en−1} has eigenvalues

{1}
⋃{

φ′(0)
k

: k = 1, 2, . . . , n − 1
}

.

An eigenvalue of a restriction of an operator to an invariant subspace is obvi-
ously an eigenvalue of the operator itself (corresponding to the same eigenvec-
tor). Hence the above set is contained in Π0(C∗

φ). Since this is true for every
n, the theorem is established. �	

As the unilateral shift and many other examples indicate, the adjoint of an
operator can have eigenvalues even when the operator itself does not have any.
Thus the above result does not yield any information about any eigenvalues
Cφ may have. (A result limiting the eigenvalues for Cφ is given in Corollary
5.3.4 for those φ that have a fixed point in D.) It does, however, give some
information about σ(Cφ).

Corollary 5.3.2. If Cφ is a composition operator and φ(a) = a for some
a ∈ D, then

σ(Cφ) ⊃ {1} ∪
∞⋃

k=1

{
(φ′(a))k

}
.
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Proof. This follows immediately from the previous theorem and Theorem
1.2.4. �	

Eigenfunctions of the composition operator Cφ are solutions of an equation
of the form

f(φ(z)) = λf(z);

such equations are known as Schröder equations, and were studied for general
analytic functions for many years before the Hardy–Hilbert space was defined.

In particular, in 1884, Königs [108] obtained a great deal of information
about solutions of the Schröder equation. The following very simple result
suffices to determine the point spectrum of many composition operators.

Theorem 5.3.3. If φ is a nonconstant analytic function mapping the disk
into itself and satisfying φ(a) = a for some a ∈ D, and if there exists a
function f analytic on D that is not identically zero and satisfies the Schröder
equation

f(φ(z)) = λf(z)

for some λ, then either λ = 1 or there is a natural number k such that λ =
(φ′(a))k.

Proof. The equations φ(a) = a and f(φ(z)) = λf(z) yield f(a) = λf(a). If
f(a) 
= 0, then clearly λ = 1 and the theorem is established in that case.

Suppose f(a) = 0. Since f is not identically zero, f(z) has a power series
expansion

f(z) = bk(z − a)k + bk+1(z − a)k+1 + · · · ,

with bk 
= 0 for some k ≥ 1.
It follows that

f(φ(z))
f(z)

=
(

φ(z) − a

z − a

)k (
bk + bk+1(φ(z) − a) + bk+2(φ(z) − a)2 + · · ·

bk + bk+1(z − a) + +bk+2(z − a)2 + · · ·
)

.

Since φ(a) = a,

lim
z→a

φ(z) − a

z − a
= φ′(a).

Also,

lim
z→a

(
bk + bk+1(φ(z) − a) + bk+2(φ(z) − a)2 + · · · ) = bk

and
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lim
z→a

(
bk + bk+1(z − a) + +bk+2(z − a)2 + · · · ) = bk.

Therefore

lim
z→a

f(φ(z))
f(z)

= lim
z→a

(
φ(z) − a

z − a

)k (
bk + bk+1(φ(z) − a) + bk+2(φ(z) − a)2 + · · ·

bk + bk+1(z − a) + +bk+2(z − a)2 + · · ·
)

= (φ′(a))k · 1
= (φ′(a))k.

However, f(φ(z))
f(z) is identically λ, so λ = (φ′(a))k. �	

Corollary 5.3.4. If Cφ is a composition operator and φ(a) = a for some
a ∈ D, then

Π0(Cφ) ⊂ {1} ∪
∞⋃

k=1

{
(φ′(a))k

} ⊂ σ(Cφ).

Proof. This corollary is an immediate consequence of Corollary 5.3.2 and The-
orem 5.3.3. �	

The well-known Fredholm alternative ([12, p. 217], [27, p. 96]) is equivalent
to the statement that every point other than 0 in the spectrum of a compact
operator is an eigenvalue.

Corollary 5.3.5. If Cφ is a compact composition operator satisfying φ(a) = a

for some a ∈ D, then

σ(Cφ) = {0} ∪ {1} ∪
∞⋃

k=1

{
(φ′(a))k

}
.

Proof. This follows immediately from the previous corollary and the Fredholm
alternative. �	

5.4 Composition Operators Induced by Disk

Automorphisms

We have seen that the composition operator Cφ is invertible if and only if φ

is a conformal mapping of D onto itself (Theorem 5.2.1).
Recall that every conformal mapping of D onto itself has the form

φ(z) = λ
a − z

1 − az
,
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where a is in D and λ has modulus 1. Such functions are generally called “disk
automorphisms”. In particular, each disk automorphism is a linear fractional
transformation (or Möbius transformation); i.e., a function of the form

φ(z) =
az + b

cz + d

for complex numbers a, b, c, and d.
There are a number of interesting composition operators induced by disk

automorphisms. It is customary to classify disk automorphisms by the nature
of their fixed points, as in Definition 5.4.2 below.

It is clear that each disk automorphism is a continuous mapping of the
closure of D into itself. Thus Brouwer’s fixed-point theorem [12, p. 149] implies
that each disk automorphism fixes at least one point in the closure of D; this
will be shown directly in the proof of the next theorem.

Theorem 5.4.1. Let φ be an automorphism of the unit disk other than the
identity automorphism. Then φ has at most two fixed points in the complex
plane. Either φ has one fixed point inside D and does not fix any point in S1

or φ has all of its fixed points in S1.

Proof. Note that the equation φ(z) = z is either a linear or a quadratic
equation and thus has at most two roots. Hence φ has at most two fixed
points in the complex plane.

Let φ(z) = λ a−z
1−az . If φ(0) = 0, then a = 0 and the only fixed point of φ is

0. If φ(z0) = z0 and z0 
= 0, then

φ

(
1
z0

)
= λ

(
a − 1

z0

1 − a 1
z0

)
= λ

(
1 − az0

a − z0

)
=

⎛⎝ 1

λ
(

a−z0
1−az0

)
⎞⎠ =
(

1
z0

)
=

1
z0

.

Therefore 1
z0

is also a fixed point in this case. Thus if φ has a fixed point other
than 0 inside D, its other fixed point is outside the closure of D. The theorem
follows. �	
Definition 5.4.2. Let φ be an automorphism of D other than the identity
transformation. If φ has a fixed point in D, then φ is said to be elliptic. If φ

does not have a fixed point in D and has only one fixed point in S1, then φ

is said to be parabolic. If φ has two fixed points in S1, then φ is said to be
hyperbolic.

It is very easy to find the spectrum of Cφ in the case that φ is an elliptic
disk automorphism.
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Theorem 5.4.3. If φ is a disk automorphism satisfying φ(a) = a for some
a ∈ D, then the spectrum of Cφ is the closure of

{(φ′(a))n : n = 0, 1, 2, . . . } .

Proof. Recall that if ψ = φa ◦φ◦φa, then ψ(0) = 0 (see the proof of Theorem
5.2.3). Now, ψ is a disk automorphism so it has the form ψ(z) = µ b−z

1−bz
for

some b in D and µ of modulus 1. But ψ(0) = 0, so b = 0; thus ψ(z) = −µz.
Letting λ = −µ we have ψ(z) = λz and |λ| = 1.

As we have already observed (see the proof of Theorem 5.1.15), the oper-
ator Cψ has a diagonal matrix with respect to the standard basis of H2; the
diagonal entries of that matrix are {1, λ, λ2, λ3, . . . }. As is well known and
easy to prove, the spectrum of a diagonal matrix is the closure of the set of
diagonal entries. Thus the spectrum of Cψ is the closure of {1, λ, λ2, λ3, . . . }.
Note that λ = ψ′(0).

Recall that Cφ = CφaCψCφa . Since similar operators have the same spec-
tra, the spectrum of Cφ is the closure of {1, λ, λ2, λ3, . . . }. Since λ = ψ′(0) =
φ′(a), the theorem follows. �	

The case of parabolic disk automorphisms is more interesting and more
difficult than the elliptic case.

We can determine the spectral radius of Cφ by the spectral radius formula
(Theorem 1.2.4) if we can compute the norm of Cn

φ . It turns out to be much
easier to compute φ[n] if we consider the iterates of a corresponding automor-
phism of the upper half-plane. It suffices to do so in the special case that the
fixed point of φ is 1.

Lemma 5.4.4. Let φ be a parabolic disk automorphism satisfying φ(1) = 1.
If Γ (z) = i 1+z

1−z and the function F is defined by F = Γ ◦φ◦Γ−1, then there is
a real number β such that F (z) = z +β for all z in the open upper half-plane.

Proof. Note that the function Γ is a conformal mapping of the open unit disk
onto the open upper half-plane. Moreover, Γ maps S1 bijectively onto R∪{∞}.
Notice that Γ (1) = ∞. Clearly, F is an automorphism of the upper half-plane
and F (∞) = ∞. Since the composition of linear fractional transformations is
also a linear fractional transformation, F is linear a fractional transformation;
thus F must be of the form

F (z) =
az + b

cz + d
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for some complex numbers a, b, c, and d. Since F (∞) = ∞, it follows that
c = 0. Thus we may write F in the form

F (z) = αz + β

for suitable complex numbers α and β. Since φ is an automorphism of D,
it must map S1 bijectively to S1, and therefore F maps the extended real
numbers onto the extended real numbers. Since F (0) = β, it follows that β

must be a real number.
We claim that α is real. For suppose Imα < 0. Then α is in the upper

half-plane and F (α) = |α|2 +β is real, contradicting the fact that F maps the
open upper half-plane onto itself. Similarly, if Imα > 0 then F (1) = α + β,
which is in the open upper half-plane. This would contradict the fact that
F (1) is real. Therefore α is real.

Now, ∞ is the only fixed point that F has in the extended closed upper
half-plane since, if F had another fixed point, it would follow that φ has at
least two fixed points in the closure of D. This implies that α = 1, for if α

was different from 1 then β/(1 − α) would be another fixed point of F in the
closed upper half-plane. Therefore F has the required form. �	

Theorem 5.4.5. If φ is a parabolic disk automorphism, then σ(Cφ) ⊂ S1; in
particular, r(Cφ) = 1.

Proof. We will first determine the spectral radius by the spectral radius for-
mula (Theorem 1.2.4). For this it is necessary to at least estimate the norm of
Cn

φ . To use the preceding lemma, we must reduce the proof to the case that
the fixed point is 1.

Assume that φ(eiθ0) = eiθ0 for some real number θ0. If we define T by
T (z) = eiθ0z, and ψ by ψ = T−1 ◦ φ ◦ T , then ψ is also a parabolic disk
automorphism, and ψ(1) = 1. As in the elliptic case, Cψ is similar to Cφ and
therefore they have the same spectra.

Thus we may and do assume from now on that φ(1) = 1.
By the above lemma (Lemma 5.4.4), the function F = Γ ◦φ ◦Γ−1 has the

form F (z) = z + β for a real number β. Hence

F [n](z) = z + nβ.

Recall that

‖Cn
φ‖ ≤

√
1 + |φ[n](0)|
1 − |φ[n](0)| .
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Since clearly φ[n] = Γ−1 ◦ F [n] ◦ Γ , it follows that

φ[n](0) =
(
Γ−1 ◦ F [n] ◦ Γ

)
(0) = Γ−1(F [n](i)) = Γ−1(i + nβ).

It is easily seen that

Γ−1(w) =
w − i

w + i

for all w in the upper half-plane. Hence

φ[n](0) =
i + nβ − i

i + nβ + i
=

nβ

2i + nβ
.

Therefore

‖Cn
φ‖ ≤

√
|2i + nβ| + |nβ|
|2i + nβ| − |nβ| .

But √
|2i + nβ| + |nβ|
|2i + nβ| − |nβ| =

√
(|2i + nβ| + |nβ|)2
|2i + nβ|2 − |nβ|2 =

|2i + nβ| + |nβ|
2

.

Applying the triangle inequality yields

|2i + nβ| + |nβ|
2

≤ 2 + n|β| + n|β|
2

= 1 + n|β|.

Therefore
‖Cn

φ‖ ≤ 1 + n|β|
for every positive integer n. It follows that

lim
n→∞ ‖Cn

φ‖1/n ≤ lim
n→∞(1 + n|β|)1/n.

But this last limit is easily seen to be 1, so the spectral radius formula (The-
orem 1.2.4) implies that r(Cφ) ≤ 1.

We can establish that r(Cφ) = 1 by applying the above to φ−1; that is,
since the inverse of a disk automorphism is a disk automorphism, φ−1 is a
disk automorphism. Moreover, φ and φ−1 have the same fixed points, so φ−1

is parabolic. Thus, by the above, r(C−1
φ ) ≤ 1.

It follows easily that σ(Cφ) is contained in S1. For suppose that λ ∈ σ(Cφ)
and |λ| < 1. Then 1/λ is in σ(C−1

φ ) by Theorem 1.2.4. Since |1/λ| > 1 this
would contradict r(C−1

φ ) ≤ 1. Hence σ(Cφ) ⊂ S1 and r(Cφ) = 1. �	

The above theorem can be considerably sharpened.
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Theorem 5.4.6. If φ is a parabolic disk automorphism, then

σ(Cφ) = Π0(Cφ) = S1.

Proof. By the previous theorem, it suffices to show that S1 ⊂ Π0(Cφ). As in
the proof of the previous theorem, we can and do assume that φ(1) = 1 and
define Γ and F as in Lemma 5.4.4. In particular, F (z) = z + β for some real
β.

Fix λ in S1. We can represent λ in the form eiθ0 , where θ0 is a real number
with the same sign as β. Define fλ by

fλ(z) = exp
(

i
θ0

β
Γ (z)
)

.

We will show that Cφfλ = λfλ. We must first show that fλ is in H2.
Notice that

fλ(z) = exp
(

i
θ0

β
Γ (z)
)

= exp
(

i
θ0

β
(Re Γ (z) + iIm Γ (z))

)

= exp
(
−θ0

β
Im Γ (z)

)
exp
(

i

(
θ0

β
Re Γ (z)

))
,

and thus

|fλ(z)| = exp
(
−θ0

β
Im Γ (z)

)
.

Recall that Γ maps D onto the upper half-plane, and thus, since β and θ0

have the same sign, it follows that

−θ0

β
Im Γ (z) < 0.

Therefore |fλ(z)| < 1 for all z ∈ D. Thus each such fλ is in H∞ and, in
particular, is in H2.

Now
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(Cφfλ)(z) = exp
(

i
θ0

β
Γ (φ(z))

)
= exp

(
i
θ0

β
F (Γ (z))

)
(since Γ ◦ φ = F ◦ Γ )

= exp
(

i
θ0

β
(Γ (z) + β)

)
(since F (w) = w + β)

= exp
(

i
θ0

β
Γ (z)
)

exp
(

i
θ0

β
β

)
= eiθ0 exp

(
i
θ0

β
Γ (z)
)

= λfλ(z).

This shows that every λ of modulus 1 is an eigenvalue of Cφ and the theorem
is established. �	

The composition operators induced by hyperbolic disk automorphisms are
particularly interesting in several respects. In particular, it has been shown
that the existence of nontrivial invariant subspaces for all restrictions of a
hyperbolic composition operator would imply existence of invariant subspaces
for all operators on Hilbert space; see [124].

We shall see that the study of hyperbolic disk automorphisms reduces
to the study of those with fixed points 1 and −1. We therefore begin by
considering such special hyperbolic disk automorphisms.

Lemma 5.4.7. Let φ be a hyperbolic disk automorphism satisfying φ(1) = 1
and φ(−1) = −1. Then there exists a real number a between −1 and 1 such
that

φ(z) =
z − a

1 − az

for all z ∈ D. Moreover, φ′(1) = 1+a
1−a and φ′(−1) = 1−a

1+a . One of the positive
numbers φ′(1) and φ′(−1) is less than 1 and the other is greater than 1.

Proof. Since φ is a disk automorphism, there exists an a in D and a λ of
modulus 1 such that

φ(z) = λ
a − z

1 − az
.

Now φ(1) = 1 implies that λ(a − 1) = 1 − a and φ(−1) = −1 implies that
λ(a + 1) = −1 − a. It follows that

a − 1
a + 1

=
a − 1
a + 1

.



5.4 Composition Operators Induced by Disk Automorphisms 185

Thus a−1
a+1 is real and therefore a is real.

Now φ(1) = 1 gives λ(a − 1) = 1 − a, so λ = −1. Therefore

φ(z) =
z − a

1 − az

as required.
Differentiating gives

φ′(z) =
1 − a2

(1 − az)2
.

Hence, φ′(1) = 1+a
1−a and φ′(−1) = 1−a

1+a .
Since a ∈ (−1, 1), it is clear that both φ′(1) and φ′(−1) are positive. If

either one of φ′(1) or φ′(−1) is 1, then a = 0 and φ(z) = z for all z ∈ D. In
the alternative, the fact that φ′(1)φ′(−1) = 1 implies that one factor is less
than 1 and the other is greater than 1. �	

As in the parabolic case, the iterates of a hyperbolic composition operator
can be more easily studied by transforming the problem to the upper half-
plane.

Lemma 5.4.8. Let φ be a hyperbolic disk automorphism satisfying φ(1) = 1
and φ(−1) = −1. If Γ (z) = i 1+z

1−z and the function G is defined by G =
Γ ◦ φ ◦ Γ−1, then there is a γ > 0 such that G(z) = γz for all z in the upper
half-plane. Moreover, γ = φ′(−1).

Proof. Note that G is an automorphism of the upper half-plane and that G

maps the extended real line to the extended real line. Also

G(0) = Γ (φ(−1)) = Γ (−1) = 0,

and
G(∞) = Γ (φ(1)) = Γ (1) = ∞.

Since G is a linear fractional transformation, it must have the form

G(z) =
az + b

cz + d
.

Since G(∞) = ∞, we must have c = 0. Thus G has the form

G(z) = γz + δ,

for suitable γ and δ. However, G(0) = 0, so δ = 0. Since G is an automorphism
of the open upper half-plane, γ must be a positive real number.
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We can compute γ as follows. Since G ◦ Γ = Γ ◦ φ, we have

G′(Γ (−1)) Γ ′(−1) = Γ ′(φ(−1)) φ′(−1),

so
γ Γ ′(−1) = Γ ′(−1) φ′(−1).

It is easily seen that Γ ′(−1) is not 0; hence γ = φ′(−1). �	

Lemma 5.4.9. Let a ∈ (−1, 1) and φ(z) =
z − a

1 − az
. Then

r(Cφ) =
√

φ′(1) =

√
1 + a

1 − a

if a ≥ 0 and

r(Cφ) =
√

φ′(−1) =

√
1 − a

1 + a

if a ≤ 0.

Proof. Recall that, by Corollary 5.1.10,

1√
1 − |φ(0)|2 ≤ ‖Cφ‖ ≤ 2√

1 − |φ(0)|2 .

More generally, for every natural number n,(
1√

1 − |φ[n](0)|2

)1/n

≤ ‖Cn
φ‖1/n ≤

(
2√

1 − |φ[n](0)|2

)1/n

.

Since limn→∞ 21/n = 1, it follows that

r(Cφ) = lim
n→∞ ‖Cn

φ‖1/n = lim
n→∞

(
1√

1 − |φ[n](0)|2

)1/n

.

As in Lemma 5.4.8, define G to be Γ ◦φ◦Γ−1. By Lemma 5.4.8, G(z) = γz

for some γ > 0.
Clearly G[n](z) = γnz for every natural number n. Since Γ−1(i) = 0, we

have

φ[n](0) = φ[n](Γ−1(i)) = Γ−1(G[n](i)) = Γ−1(γni) =
γni − i

γni + i
=

γn − 1
γn + 1

.

It follows that

1 − |φ[n](0)|2 = 1 −
∣∣∣∣γn − 1
γn + 1

∣∣∣∣2 =
(γn + 1)2 − (γn − 1)2

(γn + 1)2
=

4γn

(γn + 1)2
.



5.4 Composition Operators Induced by Disk Automorphisms 187

Using the formula for the spectral radius obtained above, we get

r(Cφ) = lim
n→∞

(
1√

1 − |φ[n](0)|2

)1/n

= lim
n→∞

(γn + 1)1/n

21/n√γ

=
1√
γ

lim
n→∞(γn + 1)1/n,

since limn→∞ 21/n = 1.
We need to consider two cases: the case 0 < γ < 1 and the case γ >

1. (Notice that γ = 1 corresponds to the case in which φ is the identity
transformation.)

If 0 < γ < 1, then limn→∞(γn + 1)1/n = 1, and thus

r(Cφ) =
1√
γ

.

If γ > 1, then limn→∞(γn + 1)1/n = γ, and thus

r(Cφ) =
√

γ.

By Lemma 5.4.8, γ = φ′(−1), and by Lemma 5.4.7, φ′(−1) = 1−a
1+a . Hence

γ = 1−a
1+a .

If a ≤ 0, then γ ≥ 1, and therefore

r(Cφ) =

√
1 − a

1 + a
.

If a ≥ 0, then γ ≤ 1, and therefore

r(Cφ) =

√
1 + a

1 − a
.

�	
Theorem 5.4.10. If φ is a hyperbolic disk automorphism, then φ has a unique
fixed point α such that 0 < φ′(α) < 1. The spectrum of Cφ is given by

σ(Cφ) =

{
z :
√

φ′(α) ≤ |z| ≤ 1√
φ′(α)

}
.

Moreover, every point of{
z :
√

φ′(α) < |z| <
1√

φ′(α)

}
is an eigenvalue of Cφ.
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Proof. We begin by reducing to the case that the fixed points are −1 and 1.
Suppose that φ(β) = β and φ(δ) = δ. Let T be a disk automorphism such
that T (1) = β and T (−1) = δ. Define ψ by ψ = T−1 ◦ φ ◦ T . Then ψ is a
hyperbolic disk automorphism satisfying ψ(1) = 1 and ψ(−1) = −1. As in the
case of elliptic automorphisms (see the proof of Theorem 5.4.3), Cψ is similar
to Cφ, so σ(Cψ) = σ(Cφ) and Π0(Cψ) = Π0(Cφ). Moreover, ψ′(1) = φ′(β)
and ψ′(−1) = φ′(δ). By Lemma 5.4.7, one of ψ′(1) and ψ′(−1) is between 0
and 1. Let α equal β or δ so that φ′(α) is between 0 and 1.

Thus it suffices to prove the theorem for hyperbolic disk automorphisms φ

whose fixed points are 1 and −1. Assume, then, that φ(1) = 1, φ(−1) = −1,
and φ′(1) is between 0 and 1.

By Lemma 5.4.9, r(Cφ) =
√

φ′(−1) = 1√
φ′(1)

. Hence

σ(Cφ) ⊂
{

z : |z| ≤ 1√
φ′(1)

}
.

Clearly, φ−1 is also a hyperbolic disk automorphism with fixed points 1
and −1. Moreover,

(
φ−1
)′ (−1) = 1

φ′(−1) , so Lemma 5.4.9 implies

r(Cφ−1) =
1√

(φ−1)′(−1)
=
√

φ′(−1) =
1√
φ′(1)

.

Now, Cφ−1 = C−1
φ (by Theorem 5.2.1) and

σ(C−1
φ ) =

{
1
z

: z ∈ σ(Cφ)
}

(by Theorem 1.2.4).

Therefore, z ∈ σ(Cφ) implies that

1
|z| ≤

1√
φ′(1)

.

It follows that |z| ≥ √φ′(1) for all z in σ(Cφ), so σ(Cφ) is contained in the
specified annulus.

The proof of the theorem will be complete upon showing that every point
in the open annulus {

z :
√

φ′(1) < |z| <
1√
φ′(1)

}

is an eigenvalue of Cφ.
Fix any number s ∈ (− 1

2 , 1
2 ) and any real number t, and let
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f(z) =
(

1 + z

1 − z

)s+it

(where the power is defined in terms of the principal branch of the logarithm).
We will show that each such f is an eigenvector of Cφ and, moreover, that
the corresponding eigenvalues range over all the complex numbers in the open
annulus as s ranges over all real numbers in (− 1

2 , 1
2 ) and t ranges over all real

numbers.
It must first be established that each such function f is in H2. Note that

f(z) =
(

1 + z

1 − z

)s (1 + z

1 − z

)it

.

Since (
1 + z

1 − z

)it

is in H∞ (Example 1.1.18), it suffices to prove that the function

g(z) =
(

1 + z

1 − z

)s

is in H2 for every s in (− 1
2 , 1

2 ).
For s = 0 there is nothing to prove. If s is in (0, 1

2 ), then 1
(1−z)s is in H2

(by Example 1.1.14) and (1 + z)s is clearly in H∞, so g is in H2.
For s in (− 1

2 , 0),

g(z) =
(

1 − z

1 + z

)−s

.

The function (1−z)−s is clearly in H∞. The result of Example 1.1.14 implies

that
(

1
1+z

)−s

is in H2 since h(z) in H2 implies that h(−z) ∈ H2. Therefore

g is in H2 for all s in (− 1
2 , 0).

Thus

f(z) =
(

1 + z

1 − z

)s+it

is in H2 for all s in (− 1
2 , 1

2 ) and all real numbers t.
We must compute Cφf for such f .
Since φ has fixed points 1 and −1, there is a real number a between −1

and 1 such that

φ(z) =
z − a

1 − az
(by Lemma 5.4.7).

Using this form for φ yields
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1 + φ(z)
1 − φ(z)

=
(1 − a) + (1 − a)z
(1 + a) − (1 + a)z

=
1 − a

1 + a

1 + z

1 − z
.

It follows that

(Cφf)(z) = (f ◦ φ)(z) =
(

1 − a

1 + a

1 + z

1 − z

)s+it

=
(

1 − a

1 + a

)s+it

f(z).

Thus each such f is an eigenvector for Cφ and the eigenvalue that corresponds
to such an f is (

1 − a

1 + a

)s+it

.

Note that φ′(1) = 1+a
1−a (by Lemma 5.4.7). All that remains to be shown is

that the function λ defined by

λ(s, t) =
(

1
φ′(1)

)s+it

assumes all values in the open annulus as s ranges over the interval (− 1
2 , 1

2 )
and t ranges over all real numbers. Note that

λ(s, t) =
(

1
φ′(1)

)s ( 1
φ′(1)

)it

.

As t ranges over all real numbers, the function(
1

φ′(1)

)it

ranges over all complex numbers of modulus 1. As s ranges over the interval
(− 1

2 , 1
2 ), the function (

1
φ′(1)

)s

ranges over the open interval(
(φ′(1))1/2,

(
1

φ′(1)

)1/2
)

(recall that φ′(1) < 1). Since the product of each of these eigenvalues with
every complex number of modulus 1 is also an eigenvalue, it follows that every
point in the open annulus is an eigenvalue of Cφ. �	
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5.5 Exercises

5.1. Show that φ(0) = 0 implies that znH2 is invariant under Cφ for every
natural number n.

5.2. Show that Cφ is a Hilbert–Schmidt operator whenever ‖φ‖∞ < 1. (Recall
that the operator A is Hilbert–Schmidt if there is an orthonormal basis {en}
such that

∑∞
n=0 ‖Aen‖2 converges.)

5.3. Show that

lim
|z|→1−

1 − |z|2
1 − |φ(z)|2 = 0

whenever Cφ is compact.

5.4. Let φ(z) = z+1
2 . Show that Cφ is not compact.

5.5. Show that an invertible composition operator maps inner functions to
inner functions.

5.6. Let φ be an analytic function mapping D into itself and satisfying φ(a) =
a for some a ∈ D.

(i) First assume that a = 0. Show that {φ[n]} → a uniformly on compact
subsets of D unless φ is of the form φ(z) = λz for some λ of modulus 1.
(Hint: Use the Schwarz lemma.)

(ii) Assume a 
= 0. Let φa be the linear fractional transformation defined by
φa(z) = a−z

1−az . Show that {φ[n]} → a uniformly on compact subsets of D

unless φ is of the form φ(z) = φa(λφa(z)) for some λ of modulus 1.

5.7. Prove Lemma 5.4.8 by using the fact from Lemma 5.4.7 that φ has the
form

φ(z) =
z − a

1 − az

for some real number a and then directly computing Γ ◦ φ ◦ Γ−1.

5.8. Let φ be a parabolic disk automorphism. Show that {φ[n]} converges
uniformly on compact subsets of D to the fixed point of φ. (Hint: See the
proof of Theorem 5.4.5.)

5.9. Let φ be a hyperbolic disk automorphism. Show that {φ[n]} converges
uniformly on compact subsets of D to one of the fixed points of φ and that
the iterates of φ−1 converge uniformly on compact subsets of D to the other
fixed point. (Hint: See the proofs of Lemma 5.4.8 and Theorem 5.4.10.)
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5.10. Show that Cφ is similar to λCφ whenever φ is a hyperbolic disk auto-
morphism and λ is a complex number of modulus 1.

5.11. If φ is an inner function show that

‖Cφ‖ =

√
1 + |φ(0)|
1 − |φ(0)| .

5.12. Prove that the operator Cφ is an isometry if and only if φ is inner and
φ(0) = 0.

5.13. An operator A is said to be quasinormal if A commutes with A∗A. Show
that φ(0) = 0 if the composition operator Cφ is quasinormal.

5.14. Let φ(z) = az+b
cz+d be any nonconstant linear fractional transformation

mapping D into itself.

(i) Show that φ nonconstant implies that ad − bc 
= 0. Conclude that any
nonconstant such φ can be represented in the given form with ad−bc = 1.

For the rest of this problem, assume that ad − bc = 1.

(ii) Prove that the linear fractional transformation ψ defined by ψ(z) = az−c
−bz+d

maps D into itself.

(iii) Define g and h by g(z) = 1
−bz+d

and h(z) = cz + d. Show that g and h

are in H∞.

(iv) Prove that C∗
φ = TgCψT ∗

h .

5.15. Let Tψ be a nonzero analytic Toeplitz operator and Cφ be a composition
operator. Prove that ψ ◦ φ = ψ if and only if Cφ and Tψ commute.

5.16. The Berezin symbol of an operator on H2 was defined in Exercise 1.17
in Chapter 1.

(i) Compute the Berezin symbol of Cφ in the case φ(z) = zψ(z) for ψ an
analytic function mapping the disk into itself.

(ii) Let R be any open, connected, and simply connected subset of D whose
boundary is a simple closed Jordan curve that does not contain 1 and
whose intersection with S1 contains a nontrivial arc. Note that the Rie-
mann mapping theorem implies that there are conformal mappings from
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D onto R. Let ψ be such a conformal mapping and let φ be defined by
φ(z) = zψ(z). Show that

lim
|z|→1−

C̃φ(z) = 0

but that Cφ is not compact.
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5.6 Notes and Remarks

Composition of functions is one of the most common and fundamental opera-
tions in mathematics. Thus many aspects of composition operators implicitly
date back to the beginnings of complex analysis. More explicitly, in the late
nineteenth century, Schröder [154] and Königs [108] studied the solutions of
the equation that, in particular, defines the eigenvectors of composition oper-
ators (see Theorem 5.3.3). Littlewood’s subordination theorem goes back to
1925 (see [111]). His theorem is much more general than the special case that
we have presented in Corollary 5.1.8; in particular, it applies to functions in
Hp. The upper bound on the norm of composition operators given in Theorem
5.1.5 was first established in Ryff [147], which also contains some interesting
related results.

The idea of studying the general properties of composition operators is due
to Eric Nordgren [121]. In particular, Nordgren [121] determined the spectra of
composition operators induced by disk automorphisms (i.e., Theorems 5.4.3,
5.4.6, and 5.4.10).

Nordgren suggested the study of composition operators to Peter Rosen-
thal, who, in turn, passed on that suggestion to his Ph.D. student Howard
Schwartz. Schwartz’s thesis [155] contained a number of fundamental results,
including theorems on compactness of composition operators (Theorem 5.1.16,
Theorem 5.1.17, and Exercise 5.4), the lower bound on the norm of Cφ given
in Theorem 5.1.10, and results on spectra such as Theorem 5.3.1. Moreover,
Schwartz obtained Theorem 5.1.13, Corollary 5.1.14, and Theorem 5.1.15. Al-
though Schwartz’s thesis was never published, it was widely circulated and
greatly stimulated interest in composition operators.

Exercise 5.3 is an unpublished result of Nordgren’s; Theorem 5.3.5 is due
to Caughran and Schwartz [69]; and Exercise 5.10 is taken from Cowen and
MacCluer [14]. Exercise 5.11 is due to Nordgren [121]. Exercise 5.12 was es-
tablished under the assumption that φ(0) = 0 by Ryff [147]; the general case
is due to Schwartz [155]. Exercise 5.13 is a result of Cload [73], while Ex-
ercise 5.14 was shown by Cowen [77]. Exercise 5.16 is due to Nordgren and
Rosenthal [122].

We have presented only a fragment of what is known about composi-
tion operators; there are many other interesting results. In particular, Joel
Shapiro [157] obtained a necessary and sufficient condition that Cφ be com-
pact in terms of the Nevanlinna counting function of φ. Shapiro’s book [53]
contains an exposition of this and a number of other results. The book by Carl
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Cowen and Barbara MacCluer [14] contains numerous results about spectra of
composition operators as well as many other theorems concerning composition
operators on H2 and on other spaces of analytic functions.



Chapter 6

Further Reading

This book is merely an introduction to a vast subject. There is a great deal
of additional knowledge concerning these topics, and there are a number of
excellent books and expository papers treating much of that material. We
briefly describe some of these expositions in order to make it easier for the
reader to pursue further study.

The space H2 is one of the Hp spaces. The reader interested in learning
more about H2 and in learning about all the Hp spaces might begin by study-
ing Duren [17] or Hoffman [32]. Books containing additional results include
those of Garnett [22], Koosis [33], and Nikolskii [35].

There are other interesting linear spaces of analytic functions. In partic-
ular, there has been a lot of research concerning Bergman spaces and opera-
tors on them: see Duren–Schuster [18] and Hedenmalm–Korenblum–Zhu [31].
These and other spaces of analytic functions are discussed in Zhu [57] and
Cowen–MacCluer [14]. Linear spaces of analytic functions of several variables
have also been studied; see, for example, Rudin [45]. There are analogous linear
spaces whose elements are harmonic functions instead of analytic functions;
see Duren [17], Garnett [22], and, especially, Axler–Bourdon–Ramey [5].

There is an interesting Banach space called BMO, the space of functions of
bounded mean oscillation, that is closely related to the Hardy spaces H1 and
H∞. Certain properties of Hankel operators can be characterized in terms of
functions in BMO. Nice introductions to BMO are contained in Chapter 6 of
Garnett [22] and in Chapter X of Koosis [33]. Theorem 1.2 in [38] characterizes
the boundedness of a Hankel operator in terms of BMO; for other connections
between BMO and Hankel operators, see Nikolskii [35].
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There are many fine books concerning linear operators on Hilbert space.
Two that are particularly readable are Halmos [27] and Conway [13]. For more
information about invariant subspaces, see Radjavi–Rosenthal [41].

The unilateral shift, and unilateral shifts of higher multiplicity (i.e., direct
sums of copies of the unilateral shift), have many interesting properties and
have been much studied. Three of the many books that contain additional
results are Helson [29], Nikolskii [34], and Cima–Ross [8]. Clear treatments
of the related subject of interpolation problems can be found in Rosenblum–
Rovnyak [43] and Agler-McCarthy [1] (also see Nikolskii [35]). The unilateral
shift is a particular example of a “weighted unilateral shift”. A beautiful
discussion of weighted shifts and their relationship to weighted Hardy–Hilbert
spaces is given by Allen Shields in [158].

Don Sarason [153] has written an extremely nice expository paper concern-
ing operators on spaces of analytic functions. Although this paper does not
contain proofs, it provides a remarkably instructive overview of the subject
and contains an excellent bibliography.

Ron Douglas [16] gives a very clear exposition of many results about
Toeplitz operators, including the deep theorem of Widom [170] that the spec-
trum of every Toeplitz operator is connected. (Douglas’s proof of that result
has subsequently been simplified in Searcóid [156].) A number of additional
theorems concerning Toeplitz operators can be found in Nikolskii [35]. Sarason
has written a set of lecture notes [49] that contains a very nice account of much
of the theory of Toeplitz operators. Unfortunately, these lecture notes are not
readily available; they make very valuable reading if they can be obtained.

A reader interested in learning more about Hankel operators could begin
by studying Steve Power’s expository article [141] and text [40], both of which
provide very clear treatments of the subject. This could be followed by reading
the books of Peller [38] and Nikolskii [35].

There are many other interesting theorems about composition operators.
Joel Shapiro has written a very nice book [53] that contains a thorough dis-
cussion of compactness of composition operators, as well as other topics, in-
cluding hypercyclicity. Shapiro’s book is written in a very clear and accessible
manner. The book [14] by Carl Cowen and Barbara MacCluer is an excellent,
encyclopedic, treatment of composition operators. It contains a wide variety
of results about composition operators on a wide variety of spaces of analytic
functions. There are numerous theorems about boundedness and about spec-
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tral properties of composition operators on various spaces. Moreover, [14] has
an extensive bibliography.

Control theory is an important part of engineering. One approach to con-
trol theory is through “H∞ methods”; this approach relies on some of the
material we have discussed, including properties of Hankel operators. A brief
introduction to this subject can be found in Partington [36, Chapter 5]. More
extensive treatments are contained in Francis [21], Helton–Merino [30], and
Sasane [52].

In addition to the expository writing referred to above, there are many re-
search papers on these topics, some of which are mentioned in the “Notes and
Remarks” sections of the previous chapters of this book. Additional references
are listed in the bibliography that follows this chapter. It is suggested that
readers continue their study by perusing those references and, as Halmos [96]
says, “iterating the bibliography operator”.
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Annales Scientifiques de l’École Normale Supérieure Sér. 3, 1 (1884) 3–41 (sup-

plement).
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Pólya, G. 202

Porcelli, Pasquale 203

Power, Stephen ix, 161, 162, 198, 203,

204, 208

Privalov, I. I. 94, 203

Radjavi, Heydar ix, 198, 203

Ramey, Wade 197, 201

Read, C. J. 35, 208

Reed, Michael 34, 203

Ribet, Kenneth x

Riesz, F. 3, 50, 81, 94, 208

Riesz, M. 50, 81, 94, 208

Robert, Leonel 162

Rosenblum, Marvin 198, 203

Rosenthal, Peter 194, 198, 203, 207,

208



Author Index 215

Ross, William 198, 201

Rovnyak, James 198, 203

Royden, H. L. 203

Rudin, Walter 34, 35, 197, 203

Ryff, John 194, 208

Sarason, Donald ix, 94, 121, 198, 203,

204, 206, 208, 209

Sasane, Amol 199, 203
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