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Preface

The great mathematician G.H. Hardy told us that “Beauty is the first test:
there is no permanent place in the world for ugly mathematics” (see [24,
p. 85]). It is clear why Hardy loved complex analysis: it is a very beautiful
part of classical mathematics. The theory of Hilbert spaces and of operators on
them is almost as classical and is perhaps as beautiful as complex analysis. The
study of the Hardy—Hilbert space (a Hilbert space whose elements are analytic
functions), and of operators on that space, combines these two subjects. The
interplay produces a number of extraordinarily elegant results.

For example, very elementary concepts from Hilbert space provide simple
proofs of the Poisson integral (Theorem 1.1.21 below) and Cauchy integral
(Theorem 1.1.19) formulas. The fundamental theorem about zeros of func-
tions in the Hardy-Hilbert space (Corollary 2.4.10) is the central ingredient
of a beautiful proof that every continuous function on [0, 1] can be uniformly
approximated by polynomials with prime exponents (Corollary 2.5.3). The
Hardy—Hilbert space context is necessary to understand the structure of the
invariant subspaces of the unilateral shift (Theorem 2.2.12). Conversely, prop-
erties of the unilateral shift operator are useful in obtaining results on fac-
torizations of analytic functions (e.g., Theorem 2.3.4) and on other aspects of
analytic functions (e.g., Theorem 2.3.3).

The study of Toeplitz operators on the Hardy—Hilbert space is the most
natural way of deriving many of the properties of classical Toeplitz matri-
ces (e.g., Theorem 3.3.18), and the study of Hankel operators is the best

approach to many results about Hankel matrices (e.g., Theorem 4.3.1). Com-
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position operators are an interesting way of looking at the classical concept of
subordination of analytic functions (Corollary 5.1.8). And so on; you'll have
to read this entire book (and all the references, and all the references in the
references!) to see all the examples that could be listed.

Most of the material discussed in this text was developed by mathemati-
cians whose prime interest was pursuing mathematical beauty. It has turned
out, however, as is often the case with pure mathematics, that there are nu-
merous applications of these results, particularly to problems in engineering.
Although we do not treat such applications, references are included in the
bibliography.

The Hardy—Hilbert space is the set of all analytic functions whose power
series have square-summable coefficients (Definition 1.1.1). This Hilbert space
of functions analytic on the disk is customarily denoted by H?. There are
H? spaces (called Hardy spaces, in honor of G.H. Hardy) for each p > 1
(and even for p € (0,1)). The only HP space that is a Hilbert space is H?,
the most-studied of the Hardy spaces. We suggest that it should be called
the Hardy—Hilbert space. There are also other spaces of analytic functions,
including the Bergman and Dirichlet spaces. There has been much study of
all of these spaces and of various operators on them.

Our goal is to provide an elementary introduction that will be readable by
everyone who has understood first courses in complex analysis and in func-
tional analysis. We feel that the best way to do this is to restrict attention to
H? and the operators on it, since that is the easiest setting in which to in-
troduce the essentials of the subject. We have tried to make the exposition as
clear, as self-contained, and as instructive as possible, and to make the proofs
sufficiently beautiful that they will have a permanent place in mathematics.
A reader who masters the material we present will have acquired a firm foun-
dation for the study of all spaces of analytic functions and all operators on
such spaces.

This book arose out of lecture notes from graduate courses that were given
at the University of Toronto. It should prove suitable as a textbook for courses
offered to beginning graduate students, or even to well-prepared advanced
undergraduates. We also hope that it will be useful for independent study by
students and by mathematicians who wish to learn a new field. Moreover, the
exposition should be accessible to students and researchers in those aspects

of engineering that rely on this material.
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It is our view that a course based on this text would appropriately con-
tribute to the general knowledge of any graduate student in mathematics,
whatever field the student might ultimately pursue. In addition, a thorough
understanding of this material will provide the necessary background for those
who wish to pursue research on related topics. There are a number of excellent
books, listed in the references, containing much more extensive treatments of
some of the topics covered. There are also references to selected papers of
interest. A brief guide to further study is given in the last chapter of this
book.

The mathematics presented in this book has its origins in complex analysis,
the foundations of which were laid by Cauchy almost 200 years ago. The study
of the Hardy—Hilbert space began in the early part of the twentieth century.
Hankel operators were first studied toward the end of the nineteenth century,
the study of Toeplitz operators was begun early in the twentieth century,
and composition operators per se were first investigated in the middle of the
twentieth century. There is much current research on properties of Toeplitz,
Hankel, composition, and related operators. Thus the material contained in
this book was developed by many mathematicians over many decades, and
still continues to be the subject of research.

Some references to the development of this subject are given in the “Notes
and Remarks” sections at the end of each chapter. We are greatly indebted to
the mathematicians cited in these sections and in the references at the end of
the book. Moreover, it should be recognized that many other mathematicians
have contributed ideas that have become so intrinsic to the subject that their
history is difficult to trace.

Our approach to this material has been strongly influenced by the books
of Ronald Douglas [16], Peter Duren [17], Paul Halmos [27], and Kenneth
Hoffman [32], and by Donald Sarason’s lecture notes [49]. The main reason
that we have written this book is to provide a gentler introduction to this
subject than appears to be available elsewhere.

We are grateful to a number of colleagues for useful comments on prelim-
inary drafts of this book; our special thanks to Sheldon Axler, Paul Bartha,
Jaime Cruz-Sampedro, Abie Feintuch, Olivia Gutt, Federico Menéndez-Conde,
Eric Nordgren, Steve Power, Heydar Radjavi, Don Sarason, and Nina Zor-
boska. Moreover, we would like to express our appreciation to Eric Nordgren

for pointing out several quite subtle errors in previous drafts. We also thank
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Sheldon Axler, Kenneth Ribet, and Mark Spencer for their friendly and en-
couraging editorial support, and Joel Chan for his TEXnical assistance.

It is very rare that a mathematics book is completely free of errors. We
would be grateful if readers who notice mistakes or have constructive criticism
would notify us by writing to one of the e-mail addresses given below. We

anticipate posting a list of errata on the website

http://www.math.toronto.edu/rosent

Rubén A. Martinez-Avendano

Centro de Investigacién en Matematicas
Universidad Auténoma del Estado de Hidalgo
Pachuca, Mexico

rubenma@uaeh.edu.mx

Peter Rosenthal
Department of Mathematics
University of Toronto
Toronto, Canada

rosent@math.toronto.edu

August 2006
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Chapter 1

Introduction

In this chapter, we introduce the main definitions and establish some fun-
damental properties of the Hardy—Hilbert space that we use throughout this
book. We also describe various results from functional analysis that are re-

quired, including some properties of the spectrum and of invariant subspaces.

1.1 The Hardy—Hilbert Space

The most familiar Hilbert space is called ¢? and consists of the collection of

square-summable sequences of complex numbers. That is,

2= {{an}f_o : Z lan|? < oo}
n=0

Addition of vectors and multiplication of vectors by complex numbers is per-

formed componentwise. The norm of the vector {a,}52 is

00 1/2
[{an}nZoll = (Z |an|2>
n=0

and the inner product of the vectors {a, }>2, and {b,}>2 is
({antno, {bn}nzo) = Z an b
n=0

The space ¢? is separable, and all infinite-dimensional separable complex
Hilbert spaces are isomorphic to each other ([12, p. 20], [28, pp. 30-31], [55,

p. 90]). Nonetheless, it is often useful to consider particular Hilbert spaces
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that have additional structure. The space on which we will concentrate, the
Hardy—Hilbert space, is a separable Hilbert space whose elements are analytic

functions.

Definition 1.1.1. The Hardy-Hilbert space, to be denoted H?, consists of all
analytic functions having power series representations with square-summable

complex coefficients. That is,

H? = {f 2 f(z) = ianz" and i lan|? < oo}.
n=0 n=0

The inner product on H? is defined by
(f,9) = an by
n=0

for

flz) = ianz” and g(z) = i bp2".
n=0

n=0

The norm of the vector f(z) = > " an2z™ is

. 1/2
IfIl = (Z |anl2> :
n=0

The mapping {a, 22y — > neanz" is clearly an isomorphism from ¢2
onto H?2. Thus, in particular, H? is a Hilbert space.

Theorem 1.1.2. Every function in H? is analytic on the open unit disk.

Proof. Let f(z) =Y .~ ,anz™ and |zg| < 1; it must be shown that >~ a2
converges. Since |zo| < 1, the geometric series Y |zo|™ converges. There
exists a K such that |a,| < K for all n (since {a,} is in ¢2). Thus
Yoo o lanzl] < K300 o |20|™; hence >0 a, 28 converges absolutely. O

Notation 1.1.3. The open unit disk in the complex plane, {z € C : |z| < 1},
will be denoted by D, and the unit circle, {z € C : |z| = 1}, will be denoted
by S1.

The space H? obviously contains all polynomials and many other analytic
functions.

Example 1.1.4. For each point ¢'% € S, there is a function in H? that is

not analytic at €'% .
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Proof. Define fp, by

Sl 77;7’7,0(]

foo(z) = Z c 2" for z € D.

n

n=1

—infg

Since {e —~ } € (2, fo, € H?. As z approaches €' from within D, |fs, (2)|
approaches infinity. Hence there is no way of defining fy, so that it is analytic
at et O

This example can be strengthened: there are functions in H? that are not
analytic at any point in S* (see Example 2.4.15 below).

It is easy to find examples of functions analytic on D that are not in H?.
Example 1.1.5. The function f(z) = 1= is analytic on D but is not in H?.

11—z

Proof. Since i = > 42", the coefficients of f are not square-summable.
O

Bounded linear functionals (i.e., continuous linear mappings from a linear
space into the space of complex numbers) are very important in the study of
linear operators. The “point evaluations” are particularly useful linear func-
tionals on H?2.

Theorem 1.1.6. For every zy € D, the mapping f — f(z0) is a bounded

linear functional on H?.

Proof. Fix zg € D. Note that the Cauchy—Schwarz inequality yields

oo
E an2y
n=0

~ 1/2 /oo 1/2
(z w) (z |zo|2”>
n=0 n=0
o 1/2
= (Z |202"> £l

n=0

| f(20)]

IN

It is obvious that evaluation at 2y is a linear mapping of H? into C. Thus the

mapping is a bounded linear functional of norm at most (3"~ |20[*") 2 g

The Riesz representation theorem states that every linear functional on
a Hilbert space can be represented by an inner product with a vector in the
space ([12, p. 13|, [28, pp. 31-32], [55, p. 142]). This representation can be
explicitly stated for point evaluations on H?2.
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Definition 1.1.7. For zy € D, the function k., defined by

= 1
_ > n,n _
z) = Z Zo" 2 [E—
n=0
is called the reproducing kernel for zo in H?2.

It is obvious that k,, € H?. Point evaluations are representable as inner

products with reproducing kernels.

Theorem 1.1.8. For zg € D and f € H?, f(20) = (f,ks) and ||k | =
—1/2
(1 — |Zo|2) .

Proof. Writing k., as Y.~ Z"2" yields

(f k=) E anzy = f(20),

and o
ezoll* =D 2ol
n=0
2n !
Since Z |ZO‘ = ——— it follows that ||kzo|| - 179 g

l o>’ (1 |202)"?

Our first application of reproducing kernels is in establishing the following
relationship between convergence in H? and convergence as analytic func-
tions.

Theorem 1.1.9. If {f,} — f in H?, then {f,} — f uniformly on compact
subsets of D.

Proof. For a fixed zy € D, we have

[fn(z0) = f(20)| = |(fr = fr Kzo)| < [ fn = FI TRz |l

If K is a compact subset of D, then there exists an M such that ||k.,|| < M

——L— for z5 € K).

for all zp € K (M can be taken to be the supremum of ey
%

Hence
| fn(z0) — f(20)| < M| fr — fll for all zg € K,

which clearly implies the theorem. O
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Thus convergence in the Hilbert space norm implies convergence in the
standard topology on the space of all analytic functions on D.

The Hardy—Hilbert space can also be viewed as a subspace of another
well-known Hilbert space.

We denote by L? = L?(S*) the Hilbert space of square-integrable functions
on S! with respect to Lebesgue measure, normalized so that the measure of

the entire circle is 1. The inner product is given by

o)== [ £(c®) g av,

_271— 0

where df denotes the ordinary (not normalized) Lebesgue measure on [0, 27].

Therefore the norm of the function f in L? is given by

i71= (5 [ 15 a0)

We use the same symbols to denote the norms and inner products of all the

1/2

Hilbert spaces we consider. It should be clear from the context which norm
or inner product is being used.

As is customary, we often abuse the language and view L? as a space of
functions rather than as a space of equivalence classes of functions. We then
say that two L? functions are equal when we mean they are equal almost
everywhere with respect to normalized Lebesgue measure. We will sometimes
omit the words “almost everywhere” (or “a.e.”) unless we wish to stress that
equality holds only in that sense.

For each integer n, let e,(e?) = ¢™¥ regarded as a function on S'. It
is well known that the set {e,, : n € Z} forms an orthonormal basis for L?
([2, p. 24], [12, p. 21], [42, p. 48], [47, pp. 89-92]). We define the space H? as

the following subspace of L?:
ﬁQZ{fGLZI(]?,en)ZOforn<O}.

That is, fe H? if its Fourier series is of the form
- o0 o0
f(e?) = z ane™  with Z |an|? < oo.
n=0 n=0

Tt is clear that H? is a closed subspace of L2. Also, there is a natural iden-
tification between H? and H?. Namely, we identify the function f € H? hav-

ing Fourier series > >, a,e™? with the analytic function f(z) = > oo a,2".
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This identification is clearly an isomorphism between H?2 and H?2. Of course,
this identification, although natural, does not describe (at least in an obvious
way) the relationship between f € H? and fe H? as functions. We proceed
to investigate this.

Let f € H? have Fourier series > ane™ and f € H? have power
series f(z) = > .07 janz". For 0 <r <1, let f, be defined by

fr(eiG) Za r"e m0

Clearly, f, € H? for every such r.

Theorem 1.1.10. Let f and f, be defined as above. Then
lm ||f — f| =0 in H?
r—1-

Proof. Let € > 0 be given. Since > - |a,|? < oo, we can choose a natural

number ngy such that
o0

3 anf? < %

n=no

Now choose s between 0 and 1 such that for every r € (s,1) we have

no— 1 e
Z lan*(1 — 7" <3
Then, since
Hf_fTH2: Z(an_anrn)eme = Z|an|2(1—rn)2,
n=0 n=0
it follows that
- ’n(]fl
||f_fr||2:Z|an| 1—7’ +Z|an| 1—’/“)
n=0 n=ng
E o
< 5 + Z |an|2
n=ng
e ¢
2 2
=E£.
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An important consequence is the following.

Corollary 1.1.11. For each f in H?, there exists an increasing sequence {r, }
of positive numbers converging to 1 such that

lim f (rnew) = f(ew)

n—oo

for almost all 6.

Proof. It is well known that convergence in L? implies that a subsequence
converges pointwise almost everywhere [47, p. 68], so this follows from the
previous theorem. a
We prove a stronger result at the end of this section: lim f(re®) = f(eie)
r—1-
for almost all # (that is, not just for a subsequence {r,} — 1).

There is an alternative definition of the Hardy—Hilbert space.

Theorem 1.1.12. Let f be analytic on D. Then f € H? if and only if

1 2m

sup ‘f(?“eie)IQ df < oo.

o<r<1 2T Jg

Moreover, for f € H?,
2

112 = sup — [ |fe®)[ do.

0<r<1 2T 0

Proof. Let f be an analytic function on D with power series

f(z) = Z anz".
n=0

Then, for 0 <7 < 1,

|f(7,,€i9)|2 _ i i anﬂrvkkmei(nfm)e.

n=0m=0

Since
1

27
- ei(n—m)ede _ 671 -
27 0 ’

integrating the expression above for |f(re?)|? and dividing by 27 results in
1 2m

T 2 S n
3r ) 10N a0 = o
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If f € H?, then > . |a,|?r*™ < | f||* for every r in [0,1). Thus

1 27 i 9
swp o [ e o < 1 < oo
0<r<1 &7 Jo

Conversely, assume that the above supremum is finite. As shown above,

1 2m . 9 o0
2, |f(rew)| do = nz:% lan|2r2™.
If f ¢ H?, the right-hand side can be made arbitrarily large by taking r close
to 1. This would contradict the assumption that the supremum of the left side
of the equation is finite.
Note that the above also shows that, for f € H?,

27
2 NE
= sup — re dé.
T ]
O
Corollary 1.1.13. For any function f analytic on the disk, the function
1 27 0\ 12
M(r) = — v do
)= [ 1fe")
is increasing. Therefore lim M (r) = sup M(r), and hence the function f
r—1- 0<r<1
is in H? if and only if lim M(r) < oo, in which case lim M(r) = || f||*.
r—1- r—1-
Proof. This follows immediately from the formula
1 |f(re'®)|? db = i\a |2p2n
2 0 0
established in the course of the proof of the preceding theorem. O

The next example will be useful in computing eigenvectors of hyperbolic

composition operators (see Theorem 5.4.10 in Chapter 5).

Example 1.1.14. For s € (0, %), the function

b
(1—2)®

is in H?. (Recall that (1 — 2)* = exp(slog(1l — 2)), where log denotes the
principal branch of the logarithm.)
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Proof. Fix any s in (0, %) and let

1
f(Z):m-

For each r, let
1

2
NP
= — de.
5 [ e
By Theorem 1.1.12, it suffices to show that there exists an M such that
M(r) < M for all r € (0,1).

Fix an r. An easy computation gives

M(r)

|1 —7re?)? =14 1% — 2rcosb,

S0 )
_ 1
(1472 —2rcosf)s’

1
(1 —reif)s

To estimate M (r), first note that the periodicity of cosine implies that

1/27r df _l/” df
o Jo (14712 —2rcosf)s w )y (1+72—2rcosf)s

1 /5 de n 1 /” de
1o (1472—2rcosf)s T z (1+72—2rcosf)s
We separately estimate each of these integrals. To estimate the first inte-
gral, begin by noting that 1 + r2 — 2rcosf = (r — cosf)? + sin? , which is

greater than or equal to sin® 6. Hence

1/’2’ df - 1/g df
7)o (1+72—2rcosf)s — m )y sin®*6

To see that this latter integral converges, write

™

1 (2 do 1 (% do 1 [% df
It suffices to show that B
1[5 do
2,
converges.

It is easily verified that § < tan6 for € [0, 7). Hence sin® > 6 cos 6, so,
for 6 € [0, %), sin6 > % . Therefore

1 /Z do 28 /3 do
_ - < = —.
m™Jo sin2s6‘ - 7m Jo 625
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As is well known and easily verified,

e
0 @

converges when 2s < 1, and thus when s < %

We must now estimate

l/’r de
7 )z (1472 —2rcosf)s’
2
Since cos# < 0 for 6 € [T, 7],
1472 —2rcos >1+r?

for such 6. Therefore

1 /Tr de < 1 /7T de < 1 < 1
7 )z (14+7r2—=2rcosf)* — m [= (1+72)s = 2(1+7r2)s — 2°
2 2

Thus, for every r € [0,1),

1 (2 df 25 [T d) 1
M(r) < = = 4 Z — 4.
(7”') — 7_(_/1 Siane + T /O 925 + 2

Since this bound on M (r) is independent of r, it follows from Theorem 1.1.12
that f is in H?Z. 0

Another space of analytic functions arises in the study of operators on HZ2.

Definition 1.1.15. The space H° consists of all the functions that are ana-
lytic and bounded on the open unit disk. The vector operations are the usual
pointwise addition of functions and multiplication by complex scalars. The
norm of a function f in H is defined by ||f|lcc = sup{|f(2)| : z € D}.

Since convergence in the norm on H° implies uniform convergence on the

disk, it is easily seen that H° is a Banach space.
Corollary 1.1.16. Every function in H> is in H?.

Proof. This follows immediately from the characterization of H? given in
Theorem 1.1.12. ad

We shall see that multiplication by a function in H* induces a bounded
linear operator on H?2. Such operators, called analytic Toeplitz operators, play

an important role in the sequel (see Chapter 3).
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Theorem 1.1.17. If f € H*> and f is not a constant, then |f(2)] < ||fllc
for all z € D.

Proof. This is an immediate consequence of the maximum modulus theorem
([9, pp- 79, 128], [47, p. 212]). O

The following interesting collection of functions in H*° will be used, in
combination with the functions of Example 1.1.14, in describing eigenvectors

of hyperbolic composition operators (see Theorem 5.4.10 in Chapter 5).

Example 1.1.18. For each real number t, the function

142\
1—=2

is in H*. (Recall that w® = exp(itlogw), where log is the principal branch
of the logarithm.)

Proof. Note that, for every z € D, the number

_1+z
T 1—z

w
is in the open right half-plane. For each such w,
w" = exp(itlogw) = exp(it(logr + ih)),

where w = re? and 60 is in (=%, %). It follows that |w’| = exp(—t#), which is

at most exp (%) Hence

1 1t
‘(+> o
1—2

for all z € D. O

Reproducing kernels can be used to give a proof of a special case of the

Cauchy integral formula.

Theorem 1.1.19 (Cauchy Integral Formula). If f is analytic on an open
set containing D and zy € D, then
1 z
o) =— [ L g

C 270 Je1 2 — 20
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Proof. Since f is analytic on D, Corollary 1.1.11 implies that f(e??) = f(e?)
for all §. Note that k., is continuous on D, and therefore
~ 1
0 (e ) 1 _ Z—Oel()
For zg € D,

Feo) = (k) = (FRL) = 5= [ " R en) ds

T or
1 27 . 0 1
= — P)———— df
21 Jo (e )1 —zg e~
1 27 77 _if )
- — J;(e ) et ap.
2 Jy e — 2

Letting z = €, this expression becomes

1 f(z) dz.

2w Jo1 2 — 20

Thus

f(z0) = i /(z)

2w Jo1 2 — 20

Since f(z) = f(z) when |z| = 1, we have

L (2) dz.

dz.

f(Zo =

)_2m' St 2 — 20

A similar approach can be taken to the Poisson integral formula.

Definition 1.1.20. For 0 < r < 1 and ¢ € [0,2n], the Poisson kernel is
defined by

_ 1—1r2

1—2rcost 412’

PT‘("/))

Observe that P.(¢) > 0 for all r € [0,1) and all 4, since
1-72>0 and 1-—2rcosy+7r°>>(1-7r)*>0.

Theorem 1.1.21 (Poisson Integral Formula). If f is in H? and re' is

i D, then
27
Frety = 2 [ Fe®)poo — 1) db.

:27T 0
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Proof. Let zy € D. Since

Fale) = T
we have
e DL S (G0
f(Zo):(fakzo):<f7k‘zo)=%/o m
But 1 ‘ . _
Toaew = L a0e e e
so the function )
1—zpe=#

has all its Fourier coefficients corresponding to negative indices equal to 0. It

is therefore orthogonal to f, SO

R F(e?) (1 _ 1) o = 0.

27 J, 1 — zge—

Adding this integral to the one displayed above for f(zy) yields

f@)—l/%ﬂw> Lo L) w
O o o 1— zpe— ¥ = 1 —zget? ’

If zy = re®, a very straightforward calculation shows that

N SR 1—r2
1 —20e7 1 —7zpe? 1 —2rcos(f —t) + 12’
But )
1—r
P.(0—t) = ,
( ) 1—2rcos(@ —t)+1r?
SO
) 1 27 -
fre)y = — f(e®)P.(6 —t) db.
27T 0

O

The following fact will be needed in subsequent applications of the above

theorem.

Corollary 1.1.22. Forr € [0,1) and t any real number,

1 2m

L po—t)do=1.
2 0
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Proof. This is an immediate application of Theorem 1.1.21 to the case where

f is the constant function 1. O

Definition 1.1.23. The measurable function ¢ on S* is essentially bounded

if there exists some My such that the measure of
{e" ()| > Mo}

is 0. The space L is the collection of all (equivalence classes modulo sets
of measure zero of) essentially bounded measurable functions. The essential
norm of the function ¢ € L, denoted ||¢| 0, is defined by

|4]|oc = inf {M : the measure of {e : [¢(e’)| > M} is 0}.

Observe that, for ¢ € L>, the inequality |¢(e?)| < ||¢||oo holds for almost
all 6.

Corollary 1.1.24. Let f € H? and suppose that |f(e?)] < K a.e. Then
|f(2)] < K for all z € D. In particular, a function in H? whose boundary
Sfunction is in L™ must be in H>.

Proof. Recall that P.(6) > 0 for all § and 0 < r < 1. For re* € D, applying
the Poisson integral formula (Theorem 1.1.21) to f yields

2m
ey = |5z [ T po -t a
1 o i6
<5 [ Ienipo -0 a
1 27
<Ko 0 P.(0—t) do
=K,

by the previous corollary. Therefore |f(z)| < K for all z € D, as desired. O

To further clarify the relation between f and frequires a theorem known
as Fatou’s theorem, which we prove below.

First, recall the following definition.
Definition 1.1.25. Let o be a complex-valued function of a real variable.
The symmetric derivative of a at t is defined to be

lim alt+h) —at — h))
h—0 2h

if the limit exists.
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Clearly, if « is differentiable at ¢t the symmetric derivative will exist and

will equal o/(t), since

alt+h) —aft) n a(t —h) —aft) _ 2a(t +h)—alt— h).
h —h 2h
The converse is not true in general (see Exercise 1.9).

We require a generalization of the Riemann integral known as the Riemann—
Stieltjes integral, defined as follows. Let « be a complex-valued function
having bounded variation on the interval [a,b]. (This is equivalent to the
real and imaginary parts of a having bounded variation, and a real-valued
function has bounded variation if and only if it is the difference of two
nondecreasing functions on the interval.) For f any continuous function on
[a,b], the Riemann-Stieltjes integral of f with respect to «, denoted by
f; f(t) da(t), is defined to be the limit of Riemann—Stieltjes sums of the form
Z?;OI F@&)(a(ziz1) — a(z;)), where each t; is in [z;,2,11], as the mesh of
the partition {xo,x1, Z2,...,2,} goes to 0. The proof of the existence of the
Riemann—Stieltjes integral of a continuous function with respect to a nonde-
creasing function « is essentially the same as the proof of the existence of
the ordinary Riemann integral, and the extension to general o of bounded
variation follows by linearity. (See Apostol [3] for an excellent discussion of
Riemann—Stieltjes integrals.)

The basic relationship between a function in H? and its boundary values
will be obtained as a consequence of the following theorem.

Theorem 1.1.26 (Fatou’s Theorem). Let o be a complez-valued function
of bounded variation on [0,27] and let u be the function defined on the open

unit disk by
) 1 2m
ure) = 5 [P0~ 1) da(o)
0

s

If the symmetric derivative of « exists at to € (0,27), then

lim u(re'™)

r—1-

exists and equals the symmetric derivative of a at tg.

Proof. We need to extend « to the entire real line. Define o on the interval
(k2m, (k+1)27] for each postive integer k, and on the interval [k27, (k+1)27)
for each negative integer k, as

a(0) = a0 — k27) + k(a(27) — a(0)).
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With this extension of « it can be readily verified that, for each integer k,

interval [a, b], and continuous function f of period 2,
b b+k2m
[ r@rdate)= [ r@)daco).
a a+k2m
To proceed with the proof, let L be the symmetric derivative of « at #g
and let € > 0. We shall show that there exists s € (0,1) such that

lu(re™®) — L| < e for all r € [s,1).

Since the symmetric derivative of o exists at ¢y, we can choose § > 0 (but
also keep § < ) such that

O&(to + h) - O{(to — h)
2h

—L’<§ if 0 < |h| < 4.

Recall that
1 27

— [ Po- = 1.
3 |, 6= 8

Thus
1 27

u(re’®) — L= — P.(0 —tg) (da(8) — L dO).
2m Jo

Using the property of the extended function « and the fact that P, is a
periodic function with period 27, the last expression becomes, after a change
of variables,

1 27

u(re’®) — L P.(¢) (da(y +to) — L dip).

:% .

We will separate this integral into several parts. Using the positive number
¢ obtained above and the triangle inequality, we get

lu(re) — L| <

)
3 | Pw) (datw+t0) = L av)

2m
b [P0 (et ) - o)
T Joxr—6
27 —§
5 P et -1 dw>‘ .

We first prove that the last term can be made small by taking r sufficiently
close to 1. For all ¢ € [§, 2w — 4], it is clear that
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1—2rcosy) +r2>1—2rcosd + r2.

Since
lim (1 —2rcosd + %) =2 —2cosd > 0,
r—1-—
there exists a positive real number 7 and a number s; € (0,1) such that

1—2rcosyy+r2>1—2rcosd+7r>>n>0

for all ¢ € [0,27 — ¢] and r € [s1,1). Hence

P.(¢y) < %(1—7‘2) for ¢ € [0,2m — 6] and r € [s1,1).
Therefore,
1 2w —90 1— 7"2 2m—4
o /5 Po(0) (dali +t0) = L dv)| < /5 da(e) + to) — L dy|.

Since (1 —r?) goes to 0 as r — 17, we can choose s3 € [s1,1) such that

1—1r2
21

2m—0 c
| a0 - pav <
5
for all r € [s2,1). Hence

1

— <
2

for all r € [so, 1).

| ™

2w —0
/5 (@) (dot +to) — L dip)

By periodicity, we obtain

1 5 1 27
L[ pw (da(¢+to)*Ld¢)+*/2 () (da( + to) — L dip)

2T 0 2T =0
— 1 °
o 2 _5

P (¢) (da(y +to) — L dv)).

Integration by parts of this last integral results in

8
% - Po(¢) (da(y + to) — L dy)
:% (Pr(0)(a(d +to) = L&) = Pr(=0)(e(=0 + to) + L))
I dp,

-5 [ et — 10

dip.
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2

Observe that, since P.(§) = P.(—J) and, as shown above, P.(d) < 1_177" ,

we have

1

5= (P(9)(a(0 + to) — L&) = P(=8)(a( =8 + to) + L))
< 2;;2 (8 + to) — L6 — a(—6 + to) — L5)|.

Since (1 — r?) approaches 0 as r approaches 1 from below, we can choose
s € [$2,1) such that
1— 2

T €
— L6 — al— L z
5 lae(6 + to) 0 — a(—0 + to) 9| <

for all r € [s,1). Hence

% (Pu(O)(@(3 + to) — L8) = Po(=5)(a(=0 + o) + L8))| < = for all r € [s, 1),

Define the function D, (v) by

_dP, (1 —r?)(2rsiny)

dy (1—2rcostp +1r2)2’

Dy(¥)

Clearly D, () < 0 for all r € [0,1) and all ¥ € [0, ] (recall that § < ). Since
D, () = =D, (=), the change of variables ¢y = —w yields

0
3 | (@ t0) — Lv) i) dis
0
_ % (@(—w + to) + Lw) (= Dy (w))(—dw)
é
5
_ _Qi (alto — w) + Lw) Dy (w)dw.
T Jo

We now compute

é
3 | (@t +t0) = 1) D,(w) dv
1 0 1 &
oz [ (@t t0) = L) D) b+ o [ (alv -+ t0) ~ L) D) dv
™ J_§ ™ Jo
4
~37 | (@lto+0) = atto = 0) ~2L0) D, 0) av

_1/6 (a(to+¢)—@(to—¢) s
0

u = )200,0) dv.
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Hence

1

8
o | () -1 Sra
alto+v) —alto—v)

1 /5
<

< () 5 [ C2me)

An integration by parts gives

L] (—20D, () dv

5
/wD ) dib = 6P,(6) - /OPr(w)dm
and hence

1 §
3 | (0l +t0) = L) 5o Puw) dv

<

Thus, for r € [s,1), we have

ulre™) =L < 57

5
! / P, (1) (da<w+to>—de)‘
-

1

2w —§
T ﬁ/s P,(¢) (da(y +t9) — L d¢)|

2m—0
o / () (do(t + to) — L d¢>|

<

19

’ (P (8)(a(6 + to) — L&) — Po(—0) (o5 + to) + L6))

+

0
;/6<(w+to> L) 4

<+Es
41

d)

=E.
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Therefore, if € [s,1), we have |u(re'o) — L| < e. O
We state the following special case of Fatou’s theorem for future reference.

Corollary 1.1.27. Let ¢ be a function in L'(S*,df). Define u by

2m
u(re') = %/0 P.(0 —t)p(e?) db.

Then

lim wu(re’)

r—1-

exists for almost all t and equals ¢(e™) a.e.
Proof. Define a by
0
a(f) :/ o(e') da.
0

Then « has bounded variation (it is, in fact, absolutely continuous) and
o' (0) = ¢(e") a.e. Thus Fatou’s theorem (Theorem 1.1.26) gives the result.
O

The following corollary is an important application of Fatou’s theorem. It
is often convenient to identify H? with H?; in some contexts, we will refer to
f and its boundary function f interchangeably. The next corollary provides

further justification for this identification.

Corollary 1.1.28. If f € H?, then 111{17 f(re®) = f(e") for almost all .

Proof. Recall that if f € H?, then

1
o

27
ret? (0 — ~ei9
f(re®) / Po(0— 1)) do

(by the Poisson integral formula; see Theorem 1.1.21). Thus the previous
corollary yields lim f(re'®) = f(e') a.e. O
r—1-

Corollary 1.1.29. If f € H*>, then fe L>.

Proof. Tt follows from the above corollary (Corollary 1.1.28) that the essential
supremum of f is at most || f]]co- O

Definition 1.1.30. The space H™ is defined to be H? N L.

The notation H™ is justified since, by Corollaries 1.1.24 and 1.1.29, f is
in H° if and only f is in H°.
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1.2 Some Facts from Functional Analysis

In this section we introduce some basic facts from functional analysis that
we will use throughout this book. We require the fundamental properties of
bounded linear operators on Hilbert spaces. When we use the term “bounded
linear operator”, we mean a bounded linear operator taking a Hilbert space
into itself (although many of the definitions and theorems below apply to
bounded linear operators on arbitrary Banach spaces). When talking about
operators on an arbitrary Hilbert space, we use ‘H to denote the Hilbert space.

The spectrum of an operator is one of the fundamental concepts in operator

theory.

Definition 1.2.1. If A is a bounded linear operator on a Hilbert space H,
the spectrum of A, denoted by o(A), is the set of all complex numbers A such
that A — A is not invertible. (The notation A — A is shorthand for A — AT,
where I is the identity operator on H.)

Definition 1.2.2. Let A be a bounded linear operator. The spectral radius of
A, denoted by r(A), is

r(A) =sup{|A\| : A€ o(4)}.

As we note below, the spectrum is nonempty and bounded, and thus the

spectral radius is well-defined. Various parts of the spectrum are important.

Definition 1.2.3. The complex number )\ is an eigenvalue of the bounded
operator A if Af = \f for some nonzero f; the vector f is then said to be an
eigenvector of A. The set of all eigenvalues of A is called the point spectrum of
A and is denoted by IIy(A). The approzimate point spectrum is the set IT(A)
of complex numbers A such that there exists a sequence {f,} of unit vectors

satisfying {||[(A — \) fn]|} — 0 as n — oc.

The following properties of spectra are very elementary and very well

known.

Theorem 1.2.4. Let A be a bounded linear operator.

(i) If |1 — A|| < 1, then A is invertible.

(ii) The spectrum of A is a nonempty compact subset of C.
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(iii) If A is an invertible operator, then

o(A™h) = {i TAE U(A)}.
(iv) If A* denotes the Hilbert space adjoint of A, then
o(A*)={X: Xeo(A)}.
(v) The spectral radius formula holds:

r(A) = lim [|A™|Y/™.

n—oo

In particular, r(A) < ||A].

(vi) If A is an operator on a finite-dimensional space, then o(A) = Iy(A) (for

operators on infinite-dimensional spaces, IIo(A) may be the empty set).

(vii) The number X is in II(A) if and only if A — X is not bounded below; i.e.,
there is no constant ¢ > 0 such that ||[(A — X)f|| > c||f| for all f € H.
Moreover, A — X is bounded below if and only if A— X is injective and the
range of A— X is closed. In particular, IIo(A) C II(A) and II(A) C o(A).

Proof. Proofs of the above assertions can be found in most introductory func-
tional analysis textbooks. In particular, see [12, pp. 195-198], [42, pp. 188
194], [48, pp. 252-255], and [55, Chapter V]. O

The following part of the spectrum is not quite as widely studied as those

mentioned above.

Definition 1.2.5. The compression spectrum, denoted by I'(A), is the set of

complex numbers A such that A — A does not have dense range.
Theorem 1.2.6. For every bounded linear operator A, o(A) = II(A)UT'(A).

Proof. Clearly both IT(A) and I'(A) are contained in o(A4). If A is not in
II(A), it follows that A — A is bounded below, and hence that A — X is one-
to-one and has closed range. If, in addition, A is not in I'(A), then A — X has
dense range. But if A — X has closed range and dense range, then A — A maps
onto H. Since A — ) is also injective, this implies that A — A is invertible; i.e.,
A is not in o(A). O

Theorem 1.2.7. For every bounded linear operator A, the boundary of o(A)
is contained in II(A). In particular, I1(A) is nonempty.
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Proof. Let A be in the boundary of o(A) and assume that A € IT(A). Choose
a sequence {\,} — X\ such that A\, € o(A) for every natural number n.
We claim that there exists a constant £ > 0 and a positive integer M such
that
(A= X) fll > kIl f]] for all f € H whenever n > M.

If this were false, then for every € > 0 and every natural M there would exist

ann > M and an f, of norm 1 such that
€

Given any ¢ > 0, choose a natural number M such that |\, — A| < § for all
n > M. With this € and M, choose n and f, as above. Then

(A =X fall <A = Xa) full + 1 (An = M) full < e

But this would imply that A € II(A), which would be a contradiction, so the
claim is proved.

To contradict the assumption A ¢ IT(A), we now show that \ ¢ I'(A)
(since A € 0(A) = II(A)UI'(A), this is a contradiction). Choose any vector g
different from 0. We must show that g is in the closure of the range of (A—\).
Given € > 0, we can choose N sufficiently large (in fact, larger than M) such

that if n > N then
k
A — A < —e.
llgll

Since A, & o(A), there exists f, € H with (A—\,)f, = g. The claim then
implies that ||g|| > k|| f»| for all n > N. Then

(A=XN)fr =gl =1 (A=) fr —g) + (An = A) fu]

= [An = ALl £l
< gl P = A
=7 gil [An
<eE.
Hence g is in the closure of the range of (A — X). Thus A ¢ I'(A4). O

The numerical range of an operator is not as important as the spectrum,

but it is very useful in several contexts.

Definition 1.2.8. The numerical range of A, denoted by W (A), is the fol-

lowing subset of the complex plane:

{(Af,f) - feHr, |IfII=1}.
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The most fundamental property of the numerical range is the following.

Theorem 1.2.9 (Toeplitz—Hausdorff Theorem). The numerical range

of a bounded linear operator is a convex subset of the complex plane.

Proof. There are several well-known elementary proofs of this theorem (cf. [27,
p. 113], [80]). O

Example 1.2.10. If A is a finite diagonal matriz

d 00 -0
0dy O --- 0
A=|00ds --- 0

then W (A) is the convexr hull of {d1,da,...,d,}.

P’I’OOf. Iff = (fl7f2a.f3a' "afﬂ)? then (Afvf) = Z?:l dl‘f2|2 g

Thus, in the case of finite diagonal matrices, the numerical range is the
convex hull of the spectrum of A.

Theorem 1.2.11. For every operator A, o(A) C W(A) (i.e., the closure of
the numerical range).

Proof. As was mentioned above, o(A) = IT(A)UI'(A) (by Theorem 1.2.6). We
first prove that IT(A) C W(A). Let A € II(A). Then there exists a sequence
{fn} in H such that ||f,| = 1 for all n and {||(A —N)f.||} — 0 asn — oo.
But then

|(Afmfn) - /\| = | (Afn;fn) - /\(fnvfn) | = ‘ ((A_ /\)fnafn) | < H(A_)‘)fnn

This implies that, as n — oo, {(Afn, fn)} — A; ie., A € W(A). Therefore
I(A) Cc W(A).

Now we prove that I'(A) C W(A). Let A € I'(A). Since A — X does not
have dense range, it follows that there exists a nonzero vector g € H with
llgll = 1 such that g is orthogonal to (A — A)f for all f € H. That is, for all

feH, (A—=XN)f,g) =0. In particular, taking f to be g yields

0=((A-XNg,9) = (Ag,9) — \g,9) = (Ag,9) — A\

Thus (Ag,g) = A; i.e., A € W(A). This concludes the proof. O
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The following is a generalization of Example 1.2.10.

Theorem 1.2.12. If A is normal, then W (A) (the closure of the numerical
range of A) is the convex hull of o(A).

Proof. By one form of the spectral theorem ([12, p. 272], [41, p. 13], [42
p. 246]), we may assume that A is multiplication by an L*(X,du) function
¢ acting on a space L?(X,du) for some measurable subset X of the complex
plane and some measure dy on it.

We know that o(A) € W(A) by the previous theorem. By the Toeplitz—
Hausdorff theorem (Theorem 1.2.9), it follows that the convex hull of o(A) is
also contained in W (A).

To prove the opposite inclusion, it suffices to prove that every closed half-

plane in C that contains o(A) also contains W (A). By rotation and trans-
lation, assume that o(A) is contained in the right-hand plane Rez > 0. We
need only show that W(A) is contained in this half-plane.

But if A = My is multiplication by ¢, then o(A) = o(My) is the essen-
tial range of the function ¢ (this fact is discussed in the special context of
Lebesgue-measurable functions on S' in Theorem 3.1.6 below; the proof in
the general situation is exactly the same as in that special case). It follows

that Re ¢ > 0 almost everywhere. Therefore

(AL.5) = Mot 1) = [ o 1fPdn
Thus Re (Af, f) > 0. O
We will be considering invariant subspaces of various operators.

Definition 1.2.13. By a subspace of a Hilbert space, we mean a subset of
the space that is closed in the topological sense in addition to being closed
under the vector space operations. By a linear manifold we mean a subset
that is closed under the vector operations but is not necessarily closed in the

topology.

We will often have occasion to consider the smallest subspace containing

a given collection of vectors.

Definition 1.2.14. If S is any nonempty subset of a Hilbert space, then the
span of S, often denoted by

Vif:fesy o \/S,



26 1 Introduction

is the intersection of all subspaces containing S. It is obvious that \/ S is

always a subspace.

Definition 1.2.15. If A is an operator and M is a subspace, we say that M
is an invariant subspace of A if AM C M. That is, M is invariant under A if
f € M implies Af € M.

The trivial subspaces, {0} and H, are invariant under every operator. One
of the most famous unsolved problems in analysis (the invariant subspace
problem) is the question whether every bounded linear operator on an infinite-

dimensional Hilbert space has a nontrivial invariant subspace.

Notation 1.2.16. If M is an invariant subspace of the operator A, then A |M
is the restriction of the operator A to M.

Definition 1.2.17. Given a vector f and a bounded linear operator A, the
invariant subspace generated by f is the subspace

oo

\ {ansy.

n=0
We say that an invariant subspace M of A is cyclic if there is a vector g such
that M =/~ {A"g}. If

oo

\/{4"g} = H,

n=0

we say that ¢ is a cyclic vector for A.

Clearly, the invariant subspace problem can be rephrased: does every
bounded linear operator on Hilbert space have a noncyclic vector other than
zero?

It turns out that the collection of subspaces invariant under an operator

(or any family of operators) is a lattice.

Definition 1.2.18. A [attice is a partially ordered set in which every pair of
elements has a least upper bound and a greatest lower bound. A lattice is
complete if every nonempty subset of the lattice has a least upper bound and

a greatest lower bound.

It is easily seen that the collection of all subspaces invariant under a given
bounded linear operator is a complete lattice under inclusion, where the least
upper bound of a subcollection is its span and the greatest lower bound of a

subcollection is its intersection.
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Notation 1.2.19. For A a bounded linear operator, we use the notation Lat A

to denote the lattice of all invariant subspaces of A.

Theorem 1.2.20. Let A be a bounded linear operator. Then M € Lat A if
and only if M+ € Lat A*.

Proof. This follows immediately from the fact that, for f € M and g € M+,
(Af.g) = (f, A%g). 0

Recall that, if M is a subspace of H, every vector f € H can be written
uniquely in the form f = m + n, where m € M and n € M+,

Notation 1.2.21. If M and N are subspaces of a Hilbert space, the notation
M @ N is used to denote {m +n : m € M and n € N'} when every vector
in M is orthogonal to every vector in A/. The expression M & N denotes
MNONE.

Definition 1.2.22. If M is a subspace then the projection onto M is the
operator defined by Pf = g, where f = g + h with g € M and h € M*.

It is easy to see that every projection is a bounded self-adjoint operator

of norm at most one. Also, since PH = M, PH is always a subspace.

Theorem 1.2.23. If M € Lat A and P is the projection onto M, then AP =
PAP. Conversely, if P is a projection and AP = PAP, then PH € Lat A.

Proof. Let M € Lat A and P be the projection onto M. If f € H then
Pf € M and therefore AP is contained in AM. Since AM C M it follows
that P(APf) = APf.

Conversely, let P be a projection and assume that AP = PAP.If f € PH,
then Pf = f and therefore APf = PAPf simplifies to Af = PAf. Thus
Af € PH and PH € Lat A. O

Recall that a decomposition of a Hilbert space H in the form M @ M=+
leads to a block matrix representation of operators on H. If P is the projection
of H onto M and A; is the restriction of PA to M, Ay is the restriction of
PA to M*, Az is the restriction of (I — P)A to M, and Ay is the restriction
of (I — P)A to M, then A can be represented as

A= Al AQ
Az Ay
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with respect to the decomposition M @ M. That is, if f = g+h with g € M
and h € M+, we have

A1 Ao g A19+A2h
Af = = = (A1g+ Ash) + (Asg + Ash).
f ( , 4) (h) ( Jg+ Ash (Arg 2h) + (Asg 4h)

If the subspace M is invariant under A, then Theorem 1.2.23 implies
that A3 = 0. Thus each nontrivial invariant subspace of A yields an upper

triangular representation of A.

Definition 1.2.24. The subspace M reduces the operator A if both M and

M-~ are invariant under A.

Theorem 1.2.25. Let P be the projection onto the subspace M. Then M is
a reducing subspace for A if and only if PA = AP. Also, M reduces A if and
only if M is invariant under both A and A*.

Proof. If M is a reducing subspace, then M and M= are invariant under A.
If P is the projection onto M, it is easily seen that I — P is the projection
onto M. The previous theorem then implies A(I — P) = (I — P)A(I — P).
Expanding the latter equation gives A — AP = A— PA— AP + PAP, which
simplifies to PAP = PA. Since M € Lat A we also have that AP = PAP
and thus PA = AP.

Conversely, assume AP = PA. Let f € M; to prove M is invariant we
need to show that Af € M. By hypothesis, PAf = APf and, since Pf = f,
it follows that PAf = Af, which is equivalent to Af € M. Thus M € Lat A.
We also have that (I —P)A = A(I—P) and thus an analogous argument shows
that if f € ML, then Af € M*. Hence M+ € Lat A and A is reducing.

For the second part of the theorem notice that, since P is self-adjoint,
PA = AP if and only if PA* = A*P. This means that M is reducing for A
if and only if M is reducing for A*. In particular, M is invariant for both A
and A*.

For the converse of the second part, observe that PAP = AP and PA*P =
A*P. If we take the adjoint of the latter equation it follows that AP = PA
and thus M is reducing, by the first part of the theorem. O

It is easily seen that the subspace M reduces A if and only if the decom-
position of A with respect to M @ M- has the form

e A 0 ’
0 Ay
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where A; is an operator on M and A4 is an operator on M=. This matrix

representation shows why the word “reducing” is used.
Definition 1.2.26. The rank of the operator A is the dimension of its range.

Finite-rank operators (i.e., those operators whose rank is a natural num-
ber) share many properties with operators on finite-dimensional spaces and
thus are particularly tractable. Operators whose rank is 1 are often very useful.

Notation 1.2.27. Given vectors f and g € H, we define the operator f ® g
mapping H into itself by (f @ g)h = (h,g)f.

Note that if neither f nor g is zero, the operator f ® g has rank 1 since its
range consists of multiples of f. Clearly, f ® g = 0 if and only if either f =0
or g =0.

Theorem 1.2.28. (i) If A is an operator of rank 1, then there exist f and g
in H with A= f®g.

(@) If @ gll = £ llgll-
(iii) For bounded operators A and B, A(f ® g)B = (Af) ® (B*g).

(iv) Two nonzero rank-one operators f1 ® g1 and fa ® go are equal if and only
if there exists a complex number ¢ other than 0 such that fi = cfs and
g2 = C41.

Proof of (i): Let f be any nonzero vector in the range of A. Since the
range of A is one-dimensional, there is a bounded linear functional A such
that Ah = A(h)f for all vectors h. By the Riesz representation theorem
([12, p. 13], [28, pp. 31-32], [55, p. 142]), there is a g in H such that
A(h) = (h,g) for all h in H. Therefore Ah = (h,g)f = (f ® g)h for all
h. O

Proof of (ii): Let h € H. Then

I(f @ g)hll = lI(h, g) fIl < 1B lglFI1fI

Taking the supremum over all h with ||| = 1 gives ||f @ g|| < |[fI1lg]l-
To establish the reverse inequality, observe that, for g £ 0,

e o] = (o) ] = st

Thus || ® gl > |I]| 9] H
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Proof of (ii): Let A and B be bounded operators. If h € H, then

(A(f®g)B) (h) = (A(f ® g)) (Bh) = A((Bh,g)f)
= (Bha g)Af = (hvB*g)Af
= ((Af) @ (B"g)) (h).
O

Proof of (iw): Assume the equality of the rank-one operators. Since f1 ® g1
and fo ® g2 are both nonzero, none of the four vectors involved are 0. Note

that
91 g1 (91,92)
f2,

(i®g)—5=f1 and (f2® go) =
912 lgrll? llgall?

and thus f; = cfs, where ¢ = (”gél"ﬁé)_ Since fi = cfa, we have (cfp) @ g1 =

f2 ® go. Thus, for all h € H,

(h,g1)cfa = (h, g2) fa.

This implies that (h,2g1) = (h, g2) for all h, so ¢g1 = ga.
For the converse, note that, for every h € H,
(f1®g1)(h) = ((cf2) ® g1)(h) = (h, g1)cf>
= (h,eg1) fa = (f2 @ (cg1))(h)
= (f2 ® g2)(h).

Therefore the rank-one operators are equal. a
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1.3 Exercises

1.1. Show that H* is a Banach space under the || - || norm.
1.2. Find a function in H? whose square is not in H?2.
1.3. Prove that the only real-valued functions in H? are the constants.

1.4. Show that the only functions in H?2 whose conjugates are also in H? are

the constants.

1.5. Prove that ( L )1/2 is not in HZ2.

11—z

1.6. Show that a function f analytic on D is in H? if there is a harmonic
function v on D such that |f(2)|? < u(z) for all z € D. (Such a function u is
2.

said to be a harmonic majorant of the function |f(z)|?.) The converse of this

fact is stated below in Exercise 2.12.

1.7. Define H' to be the set of all functions in L'(S') whose Fourier coeffi-
cients corresponding to negative indices are zero. Prove that the product of
two functions in H? is in H'.

1.8. Let u be a real-valued function in L2. Show that there exists a real-valued

function v in L? such that u + iv is in H2.

1.9. Let f be an even function of a real variable defined in a neighborhood of
0. Show that f has symmetric derivative 0 at 0. Note that this implies that
there exist functions that are not even left or right continuous at a point but

nonetheless have symmetric derivatives at that point.

1.10. Let A be a bounded linear operator and p be a polynomial. Prove that
o(p(A)) ={p(z) : z € o(A)}.

1.11. Suppose that a bounded linear operator A has an upper triangular
matrix with respect to an orthonormal basis {e,, }22,. Show that every element

(Aen, e,) of the diagonal is an eigenvalue of A.

1.12. Let A be a bounded linear operator and A be a complex number with
[A| = ||4||. Prove that A is in the numerical range of A if and only if A is an

eigenvalue of A.

1.13. Show that the restriction of a normal operator to an invariant subspace
is normal if and only if the subspace is reducing.
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1.14. Assume that there is a bounded operator A with the following property:
there exist subspaces A/ and M invariant under A such that N C M, the
dimension of M © N is greater than 1, and the only subspaces £ invariant
under A that satisfy NN C £L € M are L = N and £ = M. Show that this
assumption implies the existence of an operator B on a Hilbert space whose

only invariant subspaces are {0} and the entire space.

1.15. Show that the operator A has a nontrivial invariant subspace if and
only if the operator equation X AX = AX has a solution other than zero and
the identity.

1.16. Show that every operator of finite rank can be written in the form

n
ka @ gk
k=1

for vectors {f1, fa,.. ., fn, 91,92, -+ gn}-

1.17. For a bounded operator A on H?, define its Berezin symbol as the

function A on D given by

where l;z = IIZiH is the normalized reproducing kernel. Show that
‘ ‘lim A(z)=0
z|—1—

for every compact operator A.

1.18. Suppose that {A,} is a sequence of bounded operators such that {4, f}
converges for every vector f. Prove that {||A4,|} is bounded.

1.19. Prove that {||4,C||} converges to 0 whenever C is a compact operator
and {A,} is a sequence of bounded operators such that {A,, f} converges to
0 for all vectors f. (Hint: This can be established by first proving it in the
case that C has finite rank, then uniformly approximating any given compact
operator by a sequence of finite-rank operators and using the previous exercise
to obtain the result as stated.)

1.20. The Bergman space is the collection of all functions f analytic on the

disk such that |f(2)|? is integrable with respect to normalized Lebesgue area
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measure on the disk (i.e., the measure of I is 1). The inner product of the
functions f and g is defined by

(19) = % [ flo+ in)ale+ ) dady

(i) Show that the Bergman space is a Hilbert space (i.e., prove the complete-
ness of the inner product space defined above).

(it) Show that the collection of functions {v/n + 12"}52 , forms an orthonor-
mal basis for the Bergman space.

(iii) Let M, be the operator defined by (M, f)(z) = zf(z). Show that M, is a
bounded linear operator mapping the Bergman space into itself and find
the matrix of M, with respect to the orthonormal basis {v/n + 12" }2%.

1.21. The Dirichlet space is the collection of all functions f analytic on the
disk such that |f/(z2)|? is integrable with respect to normalized Lebesgue area
measure on the disk. The inner product of the functions f and g is defined by

| [
(.9) = 1O+~ [ Fla+iygTa s ) dady.
(i) Show that the Dirichlet space is a Hilbert space (i.e., prove the complete-
ness of the inner product space defined above).

(i) Find an orthonormal basis for the Dirichlet space consisting of monomials

in z.

(i1i) Let M, be the operator defined by (M. f)(z) = zf(z). Show that M,
is a bounded linear operator mapping the Dirichlet space into itself and
find the matrix of M, with respect to the orthonormal basis found in the

answer to (7).
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1.4 Notes and Remarks

For each real number p > 1, the space HP is defined to consist of the set of
all functions f analytic on D such that

1 27

i0y|P
sup — re df < oo.
o<r<1 2T Jq ’f< )’

The H? norm of f is defined to be

1 2w o 1p 1/p
(w5 [ s an)
Note that Theorem 1.1.12 above shows that, in the case p = 2, this definition
is equivalent to the one we have used.

The “H” in H? is in honor of G.H. Hardy, a contributor to the funda-
mentals of the subject. Duren [17] suggests that the historical starting point
of the theory of HP spaces is Hardy’s paper [98].

All the HP spaces are Banach spaces; H? is the only one that is a Hilbert
space. Many of the results in this chapter hold for all H? spaces; however,
the proofs are often easier in the case of H? than in the general case. Good
introductions to HP? spaces include the books by Duren [17], Hoffman [32],
Koosis [33], and Chapter 17 of Rudin [47].

Exercises 1.20 and 1.21 give the definitions of the Bergman and Dirich-
let spaces. These spaces, and also Hardy, Bergman, and Dirichlet spaces of
functions of several variables, have been extensively studied; see, for example,
Cowen and MacCluer [14], Duren and Schuster [18], Hedenmalm, Koremblum
and Zhu [31], Rudin [45], and Zhu [57].

Example 1.1.14 is due to Nordgren [121]. The proof presented in the text is
Jaime Cruz-Sampedro’s simplification of our previous simplification of Nord-
gren’s proof.

Fatou’s theorem (Theorem 1.1.26) on the boundary values of analytic func-
tions is one of the earliest theorems in this subject [92].

Many of the basic properties of Hilbert space were discovered by Hilbert
[105]; the theory has been extensively developed by many mathematicians.
Good introductions to the theory of operators on Hilbert space include
Akhiezer and Glazman [2], Conway [12,13], Halmos [27], Reed and Simon [42],
and Rudin [48].

The question of the existence of nontrivial invariant subspaces for bounded

linear operators, the invariant subspace problem, goes back at least to John
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von Neumann. It has been shown, by Enflo [89] and Read [142, 143], that
there are operators on Banach spaces without nontrivial invariant subspaces.
However, it is still unknown whether every bounded linear operator on an
infinite-dimensional Hilbert space has a nontrivial invariant subspace. There
are a number of affirmative results under various hypothesis; see [41].

Exercise 1.6 gives an alternative approach to the definition of H? that can
be used to define analogous spaces consisting of functions analytic on other
domains; see Duren [17, Chapter 10]. Exercise 1.15 is a lemma in the approach
by Aronszajn and Smith [60] to establishing the existence of nontrivial invari-
ant subspaces for compact operators. Exercise 1.18 is a special case of the
principle of uniform boundedness; see Conway [12, p. 95] or Rudin [48, p. 43].
A solution to Exercise 1.12 can be found in [27, Solution 212].



Chapter 2

The Unilateral Shift and Factorization of

Functions

We introduce the unilateral shift, one of the most interesting operators. The
study of the invariant subspaces of this operator leads naturally to a factor-

ization of functions in H?2.

2.1 The Shift Operators

Definition 2.1.1. On ¢2, we define the unilateral shift operator U by
U(a05a1;a2aa37 .. ) = (07a07a17a27a37 .. )
for (ag, a1, az,as,...) € 2.

Theorem 2.1.2. (i) The unilateral shift is an isometry (i.e., |Uf]] = | fll
for all f € ¢?).

(i) The adjoint, U*, of the unilateral shift has the following form:
U*(ao,al,ag,ag, N ) = (al,ag,ag, . )

for (ag,ai,az,as,...) € £2. (The operator U* is the backward unilateral
shift. )

Proof. To prove (i), we must show that ||(ag, a1, az,...)|| = |(0,a0,a1,a2,...)|.
But this is trivial since > o lax]? = |0 + > pey Jar—1|*

To prove (ii), let A be the operator defined by A(ag,a1,as2,as,...) =
(a1,a2,a3,a4,...). Let x = (ag,a1,as,...) and y = (bg, b1, ba,...) be any two

vectors. Notice that
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(Uz,y) = ((0,a0,a1,az,...), (b, b1, bz, b3,...)) = Zak_@
k=1
and
(z, Ay) = ((ao,a1,a2,a3...), (b1, b2, b3,bs,...)) = Zakbk+1-
k=0

Since these sums are equal, it follows that A = U*. a

There are also bilateral shifts, defined on two-sided sequences.

Definition 2.1.3. The space ¢*(Z) is defined as the space of all two-sided

square-summable sequences; that is,

A(7) = {(...,a%a17a0,a1,a2,...) : Z lan|? < oo}.

n=—oo

Note that the zeroth coordinate of the sequence is written in boldface; this is

necessary in order to distinguish a sequence from a shift of itself.
Definition 2.1.4. The bilateral shift is the operator W on ¢?(Z) defined by

W(...,a—2,a_1,a0,a1,a2,...)=(...,a_3,a_2,@_1,00,a1,...),
where the boldface indicates the zeroth position.

Theorem 2.1.5. (i) The bilateral shift is a unitary operator.

(ii) The adjoint of the bilateral shift, called the backward bilateral shift, is
given by

W*(...,a_g,a_l,ao,al,aQ,...) = (...,a_l,ao,al,ag,ag,...).

Proof. Tt is clear that |[Wz| = ||z| for all x € ¢*>(Z), and thus W is an

isometry. Define the bounded linear operator A by
A( c.,0_92,04_1,0Q0,01,02, .. ) = ( ..,Q_1,00,Qa1,02,03, .. )

Obviously, AW = WA = I, and thus W is an invertible isometry; i.e., W is a
unitary operator.

We need to show that (Wx,y) = (x, Ay) for all z and y € (*(Z). Let
x=(...,a_9,a_1,a0,01,0a2,...) and y = (..., b_2,b_1,bg, b1, ba,...). Notice
that
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Wl’,y Z Qp— 1b

and -
(vay) = Z anbn+1o
These sums are equal to each other. Therefore A = W*. a

It will be useful to identify the spectra of the unilateral and bilateral shifts
and their adjoints. We first describe the point spectrum of the backward shift.

Theorem 2.1.6. Let U be the unilateral shift on €2 and let U* be its adjoint.
Then I1y(U*) = D. Furthermore, for A in D, (U* — \)f =0 for a vector f in
02 if and only if there exists a constant ¢ such that f = c(1,\, A2, \3,...).

Proof. Observe first that, since |[U*|| = ||U|| = 1, the spectral radius formula
(Theorem 1.2.4) implies that ITo(U*) C o(U*) C D.
If [\| < 1, then the vector f = (1,\,A2,\3,...) is in £2. Thus

UL ) = (LA ) =4 (LALAZ AL

and therefore A is an eigenvalue for U*. Hence D C IIy(U™).
Let e € S'. We shall show that e’ & ITo(U*). Let f = (fo, f1, f2, f3,-..)
be a vector in 2 and suppose that U* f = e . This implies

(f17f27f37"') = (ei9f076i9f1uei0f27"')

and therefore that f,.; = e f, for all nonnegative integers n. Solving this
equation recursively, we obtain f, = e fy. Since f € (2, we must have
{ei" f3} — 0, but this can happen only if fo = 0. Therefore f = 0 and hence
'’ cannot be an eigenvalue. This shows that ITo(U*) = D.

To finish the proof we must establish the characterization of the eigenvec-
tors. Let A be in D and suppose that U*f = Af for some nonzero vector f. If

f = (fo, f1, f2, f3,-..), we have
(f17f27f3af47~-'):U*f:Af:)‘(fmflvf?af?n"')'

Thus fp+1 = Af, for all nonnegative integers n. Solving recursively shows
that f,, = A" fy. But this implies that

f = f0(17>‘7>\27>‘3a cee )a

as desired. O
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Theorem 2.1.7. If U is the unilateral shift on (2, U* is its adjoint, W is the
bilateral shift on (*(Z), and W* is its adjoint, then

(i) o(U) =D, I(U) = S* and IIo(U) = @;
(ii) o(U*) = I(U*) =D and IIo(U*) = D;
(iii) o(W) = II(W) = S and IIy(W) = @;
(iv) o (W*) = II(W*) = S* and ITo(W*) = @.

Proof. We shall prove the results for U* first. Observe that, as seen above
(Theorem 2.1.6), o(U*) C D and II5(U*) = D. Hence

D = II,(U*) c I(U*) C o(U*) C D.
Since o(U*) is closed and S' C II(U*) (by Theorem 1.2.7), we must have
D=IMU*)=0o(U*) =D.
Since o(U*) = D, we have o(U) = D as well. Now, let A € D. We will show
that X is not an eigenvalue of U. Let f = (fo, f1, f2, f3,...) € £? and suppose
that Uf = Af. Then

0, fo, f1, f2,---) = A fo, Af1, Afa, .. ).

If A = 0, this would imply that the left-hand side of the expression above
is zero, and thus f = 0. If A # 0, then we can solve the above equation
recursively to obtain f,, = (1/\)™fy for all n. If we equate the first terms of
Uf and A\f we obtain 0 = Afy from which we conclude that fo = 0. Thus
fn =0 for all n and hence A cannot be an eigenvalue. Therefore ITy(U) = &.

It remains to be shown that IT(U) = S*. That will be a consequence of
some properties of the spectrum of W.

Since ||W]| = 1, the spectral radius formula (Theorem 1.2.4) implies
(W) C D. On the other hand, since W is invertible and W1 = W*, we
have

1 1
U(W*):{)\ :)\EU(W)}C{A : 0<|)\|§1}:{)\ S Al > 1}
Since o(W*) C D as well, it follows that o(W*) C S* and hence that o(W) C
St

We claim that IT(U) C II(W). To see this, let A € II(U) and let {f,}
be a sequence of unit vectors in ¢ such that {||[(U — \)f,||} approaches 0
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as n approaches co. Every vector f, in £2 corresponds to the vector g, in
(?(Z) whose coordinates in positions 0,1,2,... are the same as those of f,
and whose coordinates in positions with negative indices are all 0. Clearly,
WU = N full = [|(W = XN)gnll and ||gn|| = ||fn]] = 1 for every n. Thus A is in
mw).

The fact that the boundary of o(U) is contained in I7(U) (Theorem 1.2.7)
gives

StcnU)cHIw)coW)csS

Therefore o(W) = II(W) = S and also II(U) = S*. Since (W) = S*, we
have o(W*) = S*.

Clearly IT(W*) C St. Let € € S1. We will show that e? € IT(W*). Since
(W) = S* and e~ € S! as well, it follows that there exists a sequence of
vectors {f,} of norm 1 in ¢?(Z) such that {||(W —e~®)f,||} goes to 0. It is
easy to see that, for any vector f € ¢%(Z),

(W — e )l = |(W* =) f].

Hence {|[(W* — €¥)f,||} goes to 0 as n — oo, and ¥ € IT(W*). Therefore
(w+) =St
Lastly, take e’ € S*. Let

Tr = (...,a_g,a_l,ag,al,ag,...).

If Wa = ez, it follows that a,,_; = e?a,, for all integers n. A straightforward
induction argument shows that for all integers n we have a,, = e=""?aq. Since
x € (%(Z), we must have {e""%qy} — 0 as n — Foo. Hence ag = 0 and thus
x is the zero vector. Since ITo(W) must be contained in S!, it follows that

IIy(W) = @. That IIo(W*) = @ is proved similarly. O

It is virtually impossible to describe the invariant subspaces of the shift
operators in terms of their representations on spaces of sequences. However,
complete descriptions of their invariant subspace lattices can be given when
they are viewed as operators on H? and L2. This discovery by Arne Beur-
ling [64] in 1949 led to the modern interest in H?2.

Definition 2.1.8. Define the operator M, (“multiplication by z”) on H? by

(M- f)(2) = 2f(2).
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Clearly, if f(z) = D07 jan2", then

(M.f)(z) =) anz"""
n=0

Therefore M, acts like the unilateral shift.

Theorem 2.1.9. The operator M, on H? is unitarily equivalent to the uni-
lateral shift.

Proof. If V is the unitary operator mapping ¢ onto H? given by

oo

n

Vap,a1,as,...) = E anz",
n=0

it is trivial to verify that VU = M, V. a

Thus M., is a representation of the unilateral shift as an operator on H?; we

often refer to M, as U when no confusion is possible. Notice that M,ey = ex41
k

for k=0,1,2,..., where ex(z) = 2".
The bilateral shift has an analogous representation on L2.
Definition 2.1.10. The operators Mo and M,—:s are defined on L? by
(Mo )(e) = ?F(e)  and (M, f)(e?) = e~ f(e™).

Theorem 2.1.11. The operator M, e on L? is unitarily equivalent to the bi-
lateral shift W on (*(Z), and the operator M, is unitarily equivalent to
W*

Proof. If V is the unitary operator mapping ¢?(Z) onto L? given by

S
E inf
V(...70,,2,&,1,(10,&1,042,...): an€

it is easily verified that VW = M_: V. Taking adjoints shows that V*M, - =
W*V* and the theorem follows (since V* is also unitary). O

The following is trivial to verify but important to notice.

Theorem 2.1.12. The operator M, .o leaves the subspace H? of L? invariant
and the restriction of M, to H? is the unilateral shift on H2. On 2(7),
the operator W leaves the subspace (2, consisting of those sequences whose
coordinates in negative positions are 0, invariant, and the restriction of W to

02 is the unilateral shift on (2.

Proof. This is immediate. a
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2.2 Invariant and Reducing Subspaces

There are some obvious invariant subspaces of the unilateral shift. Thinking
of U as an operator on £2, it is clear that, for each natural number n, the
subspace consisting of those sequences whose first n coordinates are zero is
invariant under U. The corresponding invariant subspace for M, in H? is the
subspace of H? consisting of the functions whose first n derivatives (including
the Oth derivative) vanish at the origin.

The unilateral shift has many invariant subspaces that are very difficult to
describe in £2. We shall see that all the invariant subspaces of the unilateral
shift can be explicitly described as subspaces of H?2.

One family of such subspaces is the following. For each zo € D let

M., ={feH? : f(z)=0}.

Since f(z9) = 0 implies zof(z0) = 0, it is clear that M., € LatU. This can
also be obtained as a consequence of the fact that the kernel functions k,, are
eigenvectors for U*, which implies that {k,,}* € Lat U (by Theorem 1.2.20),

and

Mz = {kZO}L'
It is easy to determine the reducing subspaces of the unilateral shift.

Theorem 2.2.1. The only reducing subspaces of the unilateral shift are {0}

and the entire space.

Proof. This is easily proven using any representation of U. Suppose M is a
subspace of £ that reduces U and is different from {0}. We must show that
M =12,

Since M # {0}, it follows that there exists a nonzero vector
(CLQ, ai,a2,0as, ... ) e M.

Since M is reducing, it is invariant under both U and U*. Choose k¢ such
that ag, # 0. Then U**°(ag, a1, as,as,...) has its first coordinate different

from zero and is in M. By relabeling, we can assume that ag # 0. Then
UU*(aO,al,ag,ag, .. ) = (O,al,ag,ag, . ),
and thus (0, a1, a9, as,...) € M. It follows that

(ao,al,ag,ag,...)7(0,0,1,0,2,0,3,...) = (ao,(),0,0,...) EM,
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since M is a subspace. Dividing by ag, we see that (1,0,0,0,...) is in M;
that is, eg € M. Since e, = U"eq for every n, it follows that M contains

every basis vector e, so M = (2. O

The bilateral shift, on the other hand, has many reducing subspaces. To
characterize the reducing subspaces of the bilateral shift, it is useful (in light
of Theorem 1.2.25) to begin by determining the operators that commute with
the bilateral shift.

Definition 2.2.2. The commutant of a bounded linear operator A is the set

of all bounded linear operators that commute with A.

Definition 2.2.3. Let ¢ be a function in L*°. The operator of multiplication
by ¢, denoted by My, is defined by My f = ¢f for every f € L?.

Theorem 2.2.4. If ¢ is a function in L>, then | My|| = ||¢] co-

Proof. Let f € L? with | f|| = 1. Since |¢(e")| < ||¢]|oo a-e., it follows that
2 1 o i0 0\ |2 2 1 o i0\|2
M = v v < — v .
o1 = 5 [ om0 < ol 5 [ 1)y

This implies that || M| < ||¢]lco-
We now establish the opposite inequality. Let Ay = ||@|co. If Ag = O there

is nothing to prove, so assume Ag # 0. For all natural numbers n, the set

By ={e + o) > 2o - 1}

has positive measure. If x,, is the characteristic function of this set and m
is normalized Lebesgue measure on S', we have, when n is sufficiently large
that A\g — 1/n > 0,

1

M n2:7 0 2d0
Moo= o [ Jote)

1 2
— <)\0 — 1) db
2 En. n

o) i

Also, ||xnl|? = m(E,). It follows that if f,, = xn/||xx||, then

Y

1
n > X ——
1Mo full = 20— -
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for n sufficiently large, and hence
1Ml 2 %0 -
ol = A0 n
for n sufficiently large. Thus || My| > Ao = ||¢]|c- O

Theorem 2.2.5. The commutant of W (regarded as an operator on L?) is
{M¢ NS LOO}

Proof. Recall that W = M_ie. If ¢ € L, then clearly My commutes with
M_io and thus {My : ¢ € L} is contained in the commutant.

Conversely, assume that A is in the commutant of W. Define ¢ = Aey.
Clearly ¢ € L% We must show that ¢ € L* and that A = M,. Since A

commutes with W™ for every natural number n, it follows that
Ae™? = AW"ey = W Aeg = e Aey = pe'™?

for n = 0,1,2,.... Since W is invertible, it follows that AW ! = W14,
and thus that Ae’? = ¢e™? for all integers n. By linearity, it follows that
Ap = ¢ p for all trigonometric polynomials p.

If f is any function in L2, then there exists a sequence of trigonometric
polynomials {p, } such that {p,} — f in L? as n — oo. Since 4 is continuous,
it follows that {Ap,} — Af, and thus that {¢p,} — Af on L2

Now, since {p,} — f in L?, there exists a subsequence, say {p,, }, such that
{pn,} — f almost everywhere on S*. Thus {¢p,,} — ¢f almost everywhere.
But {¢p,,} — Af on L2 Therefore Af = ¢f almost everywhere. That is,
A= M,.

It remains to be shown that ¢ € L*°. Fix a natural number n and let E,, =
{e? : |¢(e?)| > n}. We must show that m(FE,) = 0 for n sufficiently large,
where m is normalized Lebesgue measure on S*. Let x,, be the characteristic

function of E, (which clearly is in L?). Then

1

Al = loxal? = o= [ 16t db = n*m(E,).

E”L
Also,
1
2
W2 == [ do=m(En).
ol = 52 [ do=m(z)

Thus ||Axn|/? > n2||xal|?. Therefore if n > ||A||, then ||x,| = 0, so m(E,,) = 0.
That is, ¢ € L.



46 2 The Unilateral Shift and Factorization of Functions

We can now explicitly describe the reducing subspaces of the bilateral
shift.

Corollary 2.2.6. The reducing subspaces of the bilateral shift on L? are the
subspaces
Mg ={feH?: f(e") =0 a.e. on B}

for measurable subsets E C S'.
Proof. Fix any measurable subset £ of S! and let
Mp={feH?: f("%) =0 a.e. on E}.

If f(e'%) = 0, then e f(e0) = 0, so M is invariant under W. Similarly,
if f(e') = 0, then e f(e'%) = 0, so Mg is invariant under W*. By
Theorem 1.2.25, Mg is reducing.

If M is a reducing subspace of W and P is the projection onto M, then
WP = PW, by Theorem 1.2.25. By the previous theorem, P = M, for some
¢ € L™. Since P is a projection, P? = P and thus Mdz, = My. This implies
that ¢? = ¢ almost everywhere.

But this implies that ¢ = xr, the characteristic function of the measurable
set F'={e? €Sl :¢?)=1}. Thus M={f € L?: fxr=f} Let E be
the complement of F; then M = {f € L? : f(¢?) =0 ae.on B} = Mg. O

A description of the nonreducing invariant subspaces of the bilateral shift

can be given.

Theorem 2.2.7. The subspaces of L? that are invariant but not reducing for
the bilateral shift are of the form M = ¢H?, where ¢ is a function in L>
such that |¢(e??)] =1 a.e.

Proof. First note that ¢ € L™ and |¢(e??)| = 1 a.e. implies that the operator
My is an isometry, since, for any f € L?

9 1 o i0 i0 2d9—i o i0 2d9— 2
o2 =5 [l ) s ao = 5 [ 1)) av = 512

2w
Since My is an isometry, M¢ﬁ2 = qbﬁz is a closed subspace. Since W H?
is contained in H? and My commutes with W, it follows that quf-ﬁ C qﬁﬁz.
Hence every subspace of the form qbﬁ 2 is invariant under W.
It is easily shown that no such subspace reduces W. Given any ¢ as above,
¢ € ¢H?. But W*¢ = e"9¢ ¢ pH?, since e~ ¢ H2.
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Conversely, let M be any subspace of L? that is invariant under W but is
not reducing. The idea of the proof that M has the desired form stems from
the following:

If M were equal to $H?, with |#(e?)] =1 a.e. and f € H?, then

00 1,0) = o [ T (o = L [ e an <o,
2m Jo 2m Jy

since the zeroth Fourier coefficient of € f is zero. Thus ¢ is orthogonal to
eiegbﬁz; ie, @ L WM. Thus if ¢ satisfies the conclusion of the theorem,
¢ € M S WM. This motivates the choice of ¢ below.

If WM = M, then M = W~1(M) = W*(M). Thus the assumption that
M is not reducing implies that WM is a proper subspace of M.

Choose ¢ to be any function in M & WM such that ||¢|| = 1. We show
that |¢(e?)| = 1 a.e. and that M = ¢H?2.

First of all, since ¢ 1. WM, it follows that ¢ L W"¢ for all n > 1. This
implies that

1

27 )
— o(e®)p(ei®)e ™ dh =0 forn=1,2,3,...,
2T 0

which can be written as

1 27

or [, 1OEDFe A0 =0 forn=123,....

Taking conjugates, we get

1 2 . .
lp(e))?e ™0 dh =0 forn=+1,+2,+3,....

2m Jo
Thus |¢(e'?)] is constant. Since ||@|| = 1, it follows that |¢(e??)| = 1 a.e. Note
that this proves, in particular, that ¢ € L°°.

We now show that M = ¢H?2. First note that |¢(ei?)| = 1 a.e. implies
that Mg is a unitary operator, since its inverse is M; 4. Thus My sends
the orthonormal set {e?}>2 _ to the orthonormal set {¢e™?}oo
particular, it sends the orthonormal basis {em‘g}nzo of H? to the orthonormal
basis {¢e™?},,>0 of ¢H?, and the orthonormal basis {ein?}, o of (H?)* to
the orthonormal basis {¢e™},,<q of (¢H?)*.

Since ¢ € M and ¢e™® = W"¢ for n > 0, it follows that ¢ﬁ2 Cc M.

To prove the opposite containment, suppose f € M. To show that f is in
¢ﬁ2 it suffices to establish that f is orthogonal to ((bﬁQ)J‘.

In

—00*
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For n < 0,
) 1 27 o
(0™, f) == | &)™ f(e®) db
27T 0
1 27

i0) =i F (i)
o ), Oe)e “f(e?)db.

Note that, since n is negative, W™"f € WM. But W™ "f = e ™ f so
e f ¢ WM. Since ¢ L WM, it follows that

1 2Tr ; T A a7 N~
oy p(e?)e—inb f(eif) dh = 0.
0
N1 —
Hence f L (¢H2) . Or, equivalently, f € ¢H?>. 0

The question arises of the extent to which the invariant subspaces of the

bilateral shift uniquely determine the corresponding function ¢.

Theorem 2.2.8. If |¢1(e)| = |¢2(e?)| = 1, a.e., then ¢1H? = ¢ H? if and

only if there is a constant ¢ of modulus 1 such that ¢1 = cos.

Proof. Clearly ¢1ﬁ2 = cgblﬁz when |¢|] = 1. Conversely, suppose that
&1 H? = ¢oH? with |¢1(e?)] = |¢2(e??)| = 1, a.e. Then there exist func-
tions f; and fo in H? such that

¢1=dafa and P2 = P1f1.

Since |¢1(e?)| = 1 = |p2(e??)| a.e., it follows that

P12 =fo  and  Pa1 = fi;

i.e., fi = fo. But since f; and f, are in ﬁQ, f1 = fo implies that f; has Fourier
coeflicients equal to 0 for all positive and for all negative indices. Since the only
nonzero coefficient is in the zeroth place, f; and fy; are constants, obviously

having moduli equal to 1. a

Since the unilateral shift is a restriction of the bilateral shift to an invari-
ant subspace, invariant subspaces of the unilateral shift are determined by
Theorem 2.2.7: they are the invariant subspaces of the bilateral shift that are
contained in H?. In this case, the functions generating the invariant subspaces

are certain analytic functions whose structure is important.

Definition 2.2.9. A function ¢ € H* satisfying |<E(ei‘9)| =1 a.e. is an inner

function.
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Theorem 2.2.10. If ¢ is a nonconstant inner function, then |¢(z)] < 1 for
all z € D.

Proof. This follows immediately from Corollary 1.1.24 and Theorem 1.1.17.
O

The definition of inner functions requires that the functions be in H°.
It is often useful to know that this follows if a function is in H? and has

boundary values of modulus 1 a.e.

Theorem 2.2.11. Let ¢ € H?. If \g(ewﬂ =1 a.e., then ¢ is an inner func-
tion.

Proof. Tt only needs to be shown that ¢ € H*®°; this follows from Corollary
1.1.24. O

Corollary 2.2.12 (Beurling’s Theorem). Every invariant subspace of the
unilateral shift other than {0} has the form ¢ H?, where ¢ is an inner function.

Proof. The unilateral shift is the restriction of multiplication by €%’ to H 250
if M is an invariant subspace of the unilateral shift, it is an invariant subspace
of the bilateral shift contained in H?2. Thus, by Theorem 2.2.7, M = ¢H?>
for some measurable function satisfying |¢(e*?)| = 1 a.e. (Note that {0} is the
only reducing subspace of the bilateral shift that is contained in H 2)) Since
1€ H? ¢ € H.

Translating this situation back to H? on the disk gives M = ¢H? with ¢
inner, by Theorem 2.2.11. ad

Corollary 2.2.13. Every invariant subspace of the unilateral shift is cyclic.
(See Definition 1.2.17.)

Proof. If M is an invariant subspace of the unilateral shift, it has the form
¢H? by Beurling’s theorem (Corollary 2.2.12). For each n, U"¢ = 2"¢, so
Vo o{U™} contains all functions of the form ¢(z)p(z), where p is a polyno-
mial. Since the polynomials are dense in H? (as the finite sequences are dense
in ¢2), it follows that \/,— {U"¢} = o H>. O

2.3 Inner and Outer Functions

We shall see that every function in H?2, other than the constant function 0,
can be written as a product of an inner function and a cyclic vector for the

unilateral shift. Such cyclic vectors will be shown to have a special form.
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Definition 2.3.1. The function F € H? is an outer function if F is a cyclic
vector for the unilateral shift. That is, F' is an outer function if

\/ {U*F} = H*.
k=0
Theorem 2.3.2. If I is an outer function, then F' has no zeros in D.

Proof. If F(z9) =0, then (U"F)(z9) = 2§ F(20) = 0 for all n. Since the limit
of a sequence of functions in H? that all vanish at z, must also vanish at zy
(Theorem 1.1.9),

o0

\V {vhr)

k=0
cannot be all of H?. Hence there is no zg € D with F(z) = 0. O

Recall that a function analytic on D is identically zero if it vanishes on a
set that has a limit point in ID. The next theorem is an analogous result for

boundary values of functions in H?2.

Theorem 2.3.3 (The F. and M. Riesz Theorem). If f € H? and the

set
{eiO . f(ew) _ 0}
has positive measure, then f is identically 0 on D.

Proof. Let E = {ew . f(ei?) = 0} and let

M= S?O{U’ff} _ So{ewf}_

Then every function g € M vanishes on F, since all functions eikefdo. If fis
not identically zero, it follows from Beurling’s theorem (Theorem 2.2.12) that
M= aﬁ 2 for some inner function ¢. In particular, this implies that 5 eM,
so ¢ vanishes on E. But |¢(e?)| = 1 a.e. This contradicts the hypothesis that

F has positive measure, thus ]7, and hence f, must be identically zero. a

Another beautiful result that follows from Beurling’s theorem is the fol-

lowing factorization of functions in H?.

Theorem 2.3.4. If f is a function in H? that is not identically zero, then
f = oF, where ¢ is an inner function and F is an outer function. This

factorization is unique up to constant factors.
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Proof. Let f € H? and consider \/;- ,{U™ f}. If this span is H?, then f is
outer by definition, and we can take ¢ to be the constant function 1 and F' = f
to obtain the desired conclusion.

If\/ 2 ,{U™f} # H?, then, by Beurling’s theorem (Corollary 2.2.12), there
must exist a nonconstant inner function ¢ with \/, - {U"f} = ¢H?. Since f
isin \/o_ {U"f} = ¢H?, there exists a function F in H? with f = ¢F. We
shall show that F' is outer.

The invariant subspace \/,—,{U"F} equals ¥»H? for some inner function
Y. Then, since f = ¢F, it follows that U™ f = U™(¢F) = ¢ U"F for ev-
ery positive integer n, from which we can conclude, by taking linear spans,
that ¢H? = ¢pH?. Theorem 2.2.8 now implies that ¢ and ¢ are con-
stant multiples of each other. Hence 1) must be a constant function. Therefore
Vo o{U"F} = H?, so F is an outer function.

Note that if f = ¢F with ¢ inner and F outer, then \/,- {U"f} = ¢ H>.
Thus uniqueness of the factorization follows from the corresponding assertion
in Theorem 2.2.8. O

Definition 2.3.5. For f € H?, if f = ¢F with ¢ inner and F outer, we call
¢ the inner part of f and F the outer part of f.

Theorem 2.3.6. The zeros of an H? function are precisely the zeros of its

mner part.
Proof. This follows immediately from Theorem 2.3.2 and Theorem 2.3.4. O

To understand the structure of Lat U as a lattice requires being able to
determine when ¢ H? is contained in ¢oH? for inner functions ¢; and ¢,.

This will be accomplished by analysis of a factorization of inner functions.

2.4 Blaschke Products

Some of the invariant subspaces of the unilateral shift are those consisting of
the functions vanishing at certain subsets of ID. The simplest such subspaces

are those of the form, for zg € D,
M., ={f € H? : f(z) = 0}.

The subspace M, is an invariant subspace for U. Therefore Beurling’s the-
orem (Corollary 2.2.12) implies that there is an inner function ¢ such that

M., = VH?.
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Theorem 2.4.1. For each zg € D, the function

zZ0 — 2

P(z) =

B 1—252
is an inner function and M., = {f € H? : f(z0) =0} = v H?.

Proof. The function 1 is clearly in H°°. Moreover, it is continuous on the
closure of . Therefore, to show that ¢ is inner, it suffices to show that
|(2)| = 1 when |z| = 1. For this, note that |z| = 1 implies 2Z = 1, so that

1

|2l

zZo — % zZo — % zZ0 — 2

1 -2z 2(zZ — Zo) zZ—70

To show that M, = 1 H?, first note that ¥(20)f(20) = 0 for all f € H?,
so wH? C M,,. For the other inclusion, note that f(zy) = 0 implies that
f(2) = 9¥(2)g(z) for some function g analytic in D.

Let

1
5=inf{|1/}(z)| czeD, z > +2|Z0}

Clearly € > 0. Thus

1 2

. 1 [%" ,
AYA > 2 i0\(2
3 | etz o [ lgetEas

for r > % Therefore

o NP 1 1o NP
sup — gre™)|*dd < — sup — f(re')| db.
i e =y lg(re”)] SR |[f(re™)]

It follows from Theorem 1.1.12 that ¢ € H?. Hence f = g is in ¥ H?. a

A similar result holds for subspaces of H? vanishing on any finite subset
of D.

Theorem 2.4.2. If z1,29,...,2, € D,
M={feH?: f(z1)=f(z) == f(z) =0},

and
n

v =1l

k=1

then 1 is an inner function and M = v H?.
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Proof. Tt is obvious that a product of a finite number of inner functions is
inner. Thus Theorem 2.4.1 above implies that v is inner.
It is clear that ) H? is contained in M. The proof of the opposite inclusion

is very similar to the proof of the case of a single factor established in Theorem

2.4.1 above. That is, if f(z1) = f(22) = -+ = f(2n) = 0, then f = g for some
function g analytic on D. It follows as in the previous proof (take r greater
than the maximum of %) that g is in H?, so f € H?>. O

It is important to be able to factor out the zeros of inner functions. If an
inner function has only a finite number of zeros in D, such a factorization
is implicit in the preceding theorem, as we now show. (We will subsequently
consider the case in which an inner function has an infinite number of zeros.)

It is customary to distinguish any possible zero at 0.

Corollary 2.4.3. Suppose that the inner function ¢ has a zero of multiplicity
s at 0 and also vanishes at the nonzero points zi1,zo,...,2z, € D (allowing

repetition according to multiplicity). Let

R — %

w(2) =2"]] =
k=1

Then ¥(z) is an inner function and ¢ can be written as a product ¢(z) =

¥(2)S(z), where S is an inner function.

Proof. Since v is a product of inner functions, v is inner. The function ¢ is in
the subspace M of the preceding Theorem 2.4.2, so that theorem implies that
¢ = 1S, where S is in H?2. Moreover, ¢ = S, so |§(ew)| = 1 a.e. Therefore

S is an inner function. m|

Recall that the Weierstrass factorization theorem asserts that, given any
sequence {z;} with {|z;|} — oo and any sequence of natural numbers {n;},
there exists an entire function whose zeros are precisely the z;’s with multi-
plicity n;. It is well known that similar techniques establish that, given any
sequence {z;} C D with {|z;|/} — 1 as j — oo and any sequence of natural
numbers {n, }, there is a function f analytic on D whose zeros are precisely the
z;’s with multiplicity n; ([9, p. 169-170], [47, p. 302-303]). For some sequences
{2;} there is no such function in H?; it will be important to determine the
sequences that can arise as zeros of functions in H?2. By Theorem 2.3.6, this

reduces to determining the zeros of the inner functions.



54 2 The Unilateral Shift and Factorization of Functions

There are many sequences {z;} with {|z;|} — 1 that cannot be the set of
zeros of a function in H?2. To see this, we begin with a fact about products of

zeros of inner functions.

Theorem 2.4.4. If ¢ is an inner function and ¢(0) # 0, and if {z;} is a
sequence in D) such that ¢(z;) = 0 for all j, then |¢(0)] < [;_; |z;| for all n.

Proof. For each natural number n, let

- . Zj—Z
Bul2) = H 1-7%z2
=1 !

As shown in Corollary 2.4.3, each B, is an inner function and, for each n, there
is an inner function S, such that ¢ = B,S,. By Theorem 2.2.10, |5, ()| < 1
for all z € D. Thus |¢(z)| < |Bn(2)| for z € D. In particular,

n

16(0)] < [Ba(0)] = ] ] Il

Jj=1

O

Example 2.4.5. If z;, = kLH for natural numbers k, there is no function f

in H? whose set of zeros is exactly {zy}.

Proof. Suppose that f was such a function and let ¢ be its inner part. In

particular, ¢(0) # 0. By the previous theorem,
RO | IEY
j=Fk
for every natural number n. But
- 1
kl;[l 2l = n+1

1
n+1

Choosing n large enough so that < |#(0)| gives a contradiction. O

To describe the zeros of functions in H? requires some facts about infinite

products. We begin with the definition of convergence.

Definition 2.4.6. Given a sequence {wy}32,; of nonzero complex numbers,

we say that [];— | wy converges to P and write
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ﬁwk =P
k=1

if {[Tr_, wx} — P as n — oo and P is different from 0.
If a finite number of the wy’s are zero, we say that the product converges
to 0 if there is an IV such that wy # 0 for £ > N and

(oo}
11 w
k=N
converges as defined above.

The restrictions that P be different from 0 and that an infinite product not
necessarily be convergent simply because one of its factors is zero are needed
in order to insure that convergence of infinite products has properties that we

require below.

Corollary 2.4.7. If {2 }32, are nonzero zeros of a function f in H? that is

not identically zero, then
o0
H |zi|  converges.
k=1

Proof. 1t p, = [1j_, |2x|, then {p,} is a decreasing sequence (since |zx| < 1
for all k) and hence converges to some P > 0. It must be shown that P > 0.
If f has a zero of multiplicity m at 0 write f(z) = 2™g(z). Clearly g € H?.
Let ¢ be the inner part of g; the zeros of ¢ are {2} ,. By Theorem 2.4.4,

{pn} is bounded below by |¢(0)|. Therefore P > 0 and [],;—, |2x| converges.
O

Theorem 2.4.8. If 0 < ri < 1 for all k, then HZ’;l ri converges if and only
if > opeo(1 — 1)) converges.

Proof. Assume [[,-; 7 converges. Since {[[_, rx} converges as n — oo to

a number different from 0, it follows that

{ngr’“} = {ra}
k=1"Tk

converges to 1 as n — oo. Similarly, if -7 /(1 — ) converges, then {1 —7,}
converges to 0, and thus {r,} converges to 1 as n — co. We may, therefore,

assume that {rp} — 1.
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The product HZOZI ri converges if and only if there exists » > 0 such that

lim H TR =T.
n—oo 1

By continuity of log on (0, 1], this occurs if and only if

n
nh_)rr;C log kl:ll ri = logr,

or, equivalently,
n
nanQO Z log 7, = logr.
k=1
This is the same as convergence of >~ logry. Since
—logx

lim =
z—1- 1 —=x

)

the limit comparison test shows that the above series converges if and only if

oo

Z(l — k)

k=1

converges. O

When a series converges, its “tail” goes to 0. Similarly, when an infinite

product converges, its “tail” goes to 1.

Theorem 2.4.9. Let 0 < rj, <1 for all k. If [[,—, rx converges, then

LI

converges to 1 as n and m approach infinity.

Proof. Observe that the above sequence is just

HZ:I "k
H?:l Tk

and hence, when m and n approach infinity, the sequence approaches 1. O

Corollary 2.4.10. If {z,}32, are zeros of a function f € H? and f is not
identically zero, then

(o)

> (1=l <

k=1
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Proof. Tt follows from Corollary 2.4.7 and Theorem 2.4.8 that the subseries
obtained by including only the nonzero zeros converges. If the multiplicity of
the zero at 0 is m, adding in the terms corresponding to the zeros at 0 adds

m to the sum of the subseries. O

Thus if a function in H? (that is not identically zero) has an infinite
number of zeros, the zeros must approach the boundary of D fairly rapidly.
We shall see that the converse also holds; there is an inner function ¢ with

zeros at {2 }32, whenever 3777, (1 — [2;]) converges.

Definition 2.4.11. Let {z}72, be a sequence of nonzero complex numbers
in D and assume that Y ;- (1 — |zx]) < oo. Let s be a nonnegative integer.
Then the Blaschke product with zeros {zi} and a zero of multiplicity s at 0 is
defined by

Note that s could be zero and there could be only a finite number of (or even

no) zg’s.

It should be noted that the {z} in the definition of a Blaschke product
need not be distinct. Coincidence of some of the {z;} is necessary to allow for
zeros of multiplicity greater than 1.

We need to show that every Blaschke product converges and has the pre-
scribed zeros. This will be done below; in the course of the proof it will become
apparent why the factors E—tl are required.

We first establish a beautiful classical theorem that will be used in deter-
mining the zeros of Blaschke products.

Theorem 2.4.12 (Hurwitz’s Theorem). Let {g,} be a sequence of func-
tions that are analytic and have no zeros on a domain V. If {g,} — g uni-
formly on compact subsets of V', then either g has no zero in'V or g is iden-
tically 0 on V.

Proof. Suppose that g is not identically 0 on V. We will show that assuming
that g has a zero in V leads to a contradiction. Suppose, then, that g(zp) = 0
for some zy € V. Choose r > 0 such that zg is the only zero of g in the disk
{z:]z—2|< r}cV.

Let 6 = min{ |g(2)| : |z—20| =r }. Then § > 0. Since {g,} converges to g
uniformly on the compact set {z : |z — zo| = r}, it follows that |g,(z)] > §/2

for z € {# : |z — 29| = r } when n is sufficiently large.
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Also, 1/gy, is analytic in {z : |z — 29| < r}, since gn(z) # 0 for all z in
{z : |z — 20| < r}. By the above,

1
9a(2)
It then follows from the maximum modulus principle ([9, pp. 79, 128], [47,
p. 212]) that

2
<53 for z € {z : |z — 20| = r}.

for z € {z : |z — 20| <1},

[STTN )

gn(2)
or, equivalently,

0
lgn ()| > B for z € {z : |z — 20| <7}
But this is a contradiction, since {g,(z0)} — g(20) = 0. O
Theorem 2.4.13. Every Blaschke product
H 2k Rk — 2
|2kl 1 —zZ52
where s is a nonnegative integer and {zi} is a sequence of nonzero numbers
in D satisfying Y5 o(1 — |2x]) < oo, converges for every z € D. Moreover,

B is an inner function whose nonzero zeros are precisely the {zx}, counting

multiplicity, and a zero of multiplicity s at 0.

Proof. We begin with consideration of only the nonzero zeros. For each natural
number n, define the following partial product:

H Zk Rk —Z
|zk|1—zkz

We must show that {B,,} is a Cauchy sequence in H?. Each B, is a multiple

by a constant of modulus one of the corresponding function that was shown
to be inner in Theorem 2.4.2, so each B, is an inner function. Let n > m.
Then

18, = Bl = 5 /0% Bu(e™) = Bl
= % 02” (E(ele) — B 19)) (B () — B (e“‘))) 20
1 2
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since |Bp(e)| = |Bp(e?)| = 1 ae. Since n > m, Ba s a finite Blaschke

product and hence is, in particular, in H?2. Thus

Bn(0) _ 1 [ By(e)
Bm(0) 27r/o B (e) @

by the Poisson integral formula (Theorem 1.1.21). Therefore

1By — Bull? = 2 — 2 Re 2210

B,,(0)
—2-2Re [] Z—’“f’“loo

k=m-+1 ‘Zk| Rk

T 12k

=2—2Re

k_H |2

=m+1
=2-2 ] Izl

k=m+1

By Theorem 2.4.8, the infinite product [],—, |zx| converges, and thus by The-
orem 2.4.9, {IT_,. .1 |zx|} — 1 as n and m approach infinity.
Therefore

|Bp — B> =0 asn,m — oc.

Thus {B,} is a Cauchy sequence in H? and therefore it converges in H? to
some function By € H?.

Convergence in H? implies uniform convergence on compact subsets of
D (Theorem 1.1.9), so {B,} — By uniformly on compact subsets of D. In
particular, the Blaschke product converges at every point z € D. This implies
that By(z) = 0 for all k. To show that

B() i Zk Rk — %
OZ:”f —
P 2kl 1 —Zpz

as an infinite product, the definition requires that By have no other zeros than
the zeros of the factors (i.e., the z;’s). Observe that

Bo(0) = [T Izl #0
k=1

by Corollary 2.4.7, and therefore By is not identically zero.
Suppose that By(z) had a zero z different from all the zp’s. Since By is
not identically zero there is a closed disk Dy containing zg that is contained
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in D and does not contain any of the given zeros. Then By(zp) = 0 and By
has no other zeros in Dy. Since Dy is compact, { B, } converges uniformly to
By on Dy. This contradicts Hurwitz’s theorem (Theorem 2.4.12). Thus B
converges as an infinite product.

It is easily seen that By is an inner function, as follows. The convergence
of the sequence {B,, } to By in H? implies that {B }— By in H?, which then
implies that there exists a subsequence {B -} that converges to B, a.e. (since
every sequence converging in L? has a subsequence that converges almost
everywhere; see, for example, [47, p. 68]). Since B,, is inner, |an(ei0)| =1
a.e., so it follows that |Evo(ew)\ = 1 a.e. Now, B(z) = 2°By(z), so B is also
an inner function. Since the zeros of B are the zeros of By together with 0, it
follows that B(z) has no other zeros than the given ones.

We also want to know that the multiplicity of each zero of B is the same
as the number of factors in which it occurs. Clearly, each zero of B has at
least that multiplicity. To show that no zero of By has greater multiplicity
than the number of factors in which it occurs, proceed as follows. Fix any 2

that occurs as a zero of By. Then By can be written as

< H 2k Rk — > Zk Rk — 2
2kl 1 —Zgz
| k| k 2 FZ
. . Zg 2k —Z . R
Using Hurwitz’ theorem as above, H —| T does not vanish at 2.
Zk — ZkR

2ZRF#Z
Therefore, the multiplicity of Z as a zero of By is precisely the number of

factors with z, = 2.
The multiplicity of the zero of B at 0 is s since By(0) # 0. O

Corollary 2.4.3 can now be extended to inner functions that have an infinite

number of zeros.

Corollary 2.4.14. Suppose that the inner function ¢ has a zero of multiplicity
s at 0 and has nonzero zeros at the points z1, z2, 23, . .. inD (repeated according

to multiplicity). Let

Tk 2 z
E 2k —
= Zs R —
kljl lzk| 1 — Zx 2
be the Blaschke product formed from those zeros. Then ¢ can be written as a

product ¢ = BS, where S is an inner function that has no zeros in D.

Proof. For each positive integer n, let
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H 2k Rk — 2
|zk| 1—72xz

and

H Zr 2k — %
S 2kl 11— ZKz
As shown in Theorem 2.4.13, {Bn} converges to By uniformly on compact

subsets of D, so {z°B,,} converges to B uniformly on compact subsets of D.

¢
2B,

product of a constant of modulus one and the function ) of Corollary 2.4.3.
Therefore, for each z € D,

Then, for each n, the function is an inner function, since z°B,, is the

¢(2)

_— 1.
25Bp(2) <

Let S(z) = B((z)) The function S is analytic on D since, by the previous
theorem, the zeros of B are zeros of ¢ with the same multiplicity. Since

{%} converges to 5(2)

for every z € D except possibly at the zeros of B, it follows that |S(z)| < 1
except possibly on a countable subset of . Since an analytic function that
has modulus larger than 1 at any point in D has modulus larger than 1
at an uncountable number of points, this implies that |S(z)] < 1 for ev-
ery z € D. Thus, in particular, S € H?. Moreover, ¢ = BS implies that
lp(e?)| = |B(e?)| |S(e")| and, since ¢ and B are inner functions, it follows
that S is an inner function.

Any zero of S would obviously be a zero of ¢ so, since B has all the zeros

of ¢ with the same multiplicity as ¢ does, S has no zeros in D. O

Example 2.4.15. There is a Blaschke product that is not analytic at any
point of ST.

Proof. Let {c,} be any sequence dense in S' and, for each n, let

(e

Then 1 — |z,| = -5, so the {z,} are the zeros of a Blaschke product B.
Moreover, every point of S* is a limit point of {z,}. If B was analytic at
a point on S, B would have to vanish at that point and hence be identically

zero in a neighborhood of it, which is clearly not the case. a
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2.5 The Muntz—Szasz Theorem

There is an application of the result that the zeros of an H° function ap-
proach the boundary fairly rapidly (Corollary 2.4.10) that is not required in
the sequel but that is so beautiful that we cannot resist including it here.

Recall Weierstrass’s famous theorem that every function continuous on
[0, 1] can be uniformly approximated by polynomials [46, p. 159]. In functional-
analytic terms, Weierstrass’s theorem states that the collection of polynomials
is dense in the Banach space C[0, 1] of complex-valued functions continuous on
[0,1] (with the norm of a function defined by ||f|| = sup {|f(z)| : =z € [0,1]}).
The following question is very natural: for what subsets S of the set of natural
numbers is the linear span of {z™ : n € S} U{1} dense in C[0,1]? (Note that
the constant functions must be included, for otherwise every element of the
linear span would vanish at zero.)

A remarkable theorem established by Miintz and Szdsz answers a more

general question: it allows nonintegral powers as well.

Theorem 2.5.1 (The Miintz—Szdsz Theorem). If {p,} is a sequence of

o 1

distinct positive numbers that is bounded away from zero, and if Y~ | o

diverges, then the linear span of the collection {xP»} U {1} is dense in C[0,1].

Proof. Recall that the Riesz representation theorem for linear functionals on
spaces of continuous functions [47, pp. 129-130] implies that for every bounded
linear functional ¢ on C[0, 1] there exists a finite regular complex Borel mea-

sure p on [0, 1] such that

1
o= [ ran foransecl

By the Hahn—Banach theorem, if the given span was not dense in C[0, 1] there
would exist a bounded linear functional ¢ such that ¢(1) = ¢(aP) = 0 for all
n but ¢ is not the functional 0. For every bounded linear functional that is
not identically 0 but satisfies ¢(1) = 0, there exists an n such that ¢(z™) # 0
(for if ¢(1) = ¢(2™) = 0 for every natural number n, then ¢(p(z)) = 0 for
every polynomial p, and Weierstrass’s theorem implies that ¢ is identically 0).

Therefore, the theorem will be established if it is shown that whenever u

is a finite regular complex Borel measure on [0, 1] such that

1
/ aPrdp(x) =0 for all natural numbers n,
0
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it follows that
1
/ 2™ du(x) =0 for all natural numbers m.
0

Suppose, then, that u is a finite regular complex Borel measure satisfying

1
/ 2P du(z) =0 for all natural numbers n.
0
Since 0P» = 0,

/ aPrdu(z) =0 for all natural numbers n.
(0.1]

Note that if z is a complex number such that Re z > 0, then 27| = |e*1°8®| < 1

for z € (0,1]. Thus
| winta)
(0,1]

exists for every z with Rez > 0. We define the function g on the right half-
plane {z : Rez > 0} by

g@)zlgufdmm.

Differentiating under the integral sign shows that g is analytic on the right
half-plane. Note that g(p,) = 0 for all natural numbers n, and the theorem
will be established if we show that g(m) = 0 for every natural number m
(observe that f(o,l] ™ du(z) = fol 2™ du(z) whether or not p has an atom at
0). We will show, in fact, that g is identically 0 on {z : Rez > 0} .

Recall that the function z — 112

Re z > 0}. Define the function f by

=9 (1),

Then f is analytic on D. As shown above, |2%| < 1 for Rez > 0. Therefore
lg(2)| < |p|((0,1]) when Rez > 0, where |u| is the total variation of the
measure p. Thus | f(2)] < |u|((0,1]) for z € D, so f is in H*. Since ¢g(p,) =0
it follows that f(z,) =0 if i‘% = p,,. This is equivalent to z, = Z";}

Note that

is a conformal mapping of D onto {z :

1—|zn|=1-

Pn — 1
pn+ 1]
We distinguish two cases. If an infinite number of the p,,’s are less than or

equal to 1, then, since {p,} is bounded away from zero, {p,} has a limit
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point in {z : Rez > 0}. In this case g is an analytic function vanishing on a
set that has a limit point within its domain and therefore is identically zero,
which finishes the proof.

In the other case, there exists N such that p,, > 1 for n > N. For such n,

1 w1 2
1—|za|=1—|2 1P .
Pn+1 Pn+1 Pn+1

Now the fact that > 7 N+1 7, dlverges implies that >~ N1 g1 diverges,
as can be seen by the comparlson test. Hence )7 (1 |zn|) dlvergeb and
therefore >~ 7 | (1 — |2,|) diverges. Since f € H* and f(z,) = 0 for all n, it
follows from Corollary 2.4.10 that f(z) = 0 for all z € D. Therefore g(z) =0
on {z : Rez > 0}, finishing the proof. O

There is a converse to this theorem, also due to Miintz and Szasz, that
holds for increasing sequenceS' If {p,} is an increasing sequence of positive
numbers such that > | -L converges, then the closure in C[0, 1] of the linear
span of {aP~} U {1} does not contain z* unless a = 0 or a = p,, for some n.
For a proof, see [47, p. 313].

One application of the Miintz—Szasz theorem is to prime powers. We re-

quire a classical result of Euler’s.

Theorem 2.5.2 (Euler’s Theorem). If p; denotes the jth prime number,
then the series Z;’;l 1% diverges.

Proof. If the series converged, there would exist an M such that
> e
j=nr Pi

Assume there exists such an M; we will show that this leads to a contradiction.
Note that the series

M\H

k
oo oo
1

>
k=0 \j=M*J

would then be a convergent geometric series.
For each j < M, the series

is also a convergent geometric series.

Multiplying these series together gives
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£0)EE) G (B(E2

k=0 k=0 k=0 k=0 k=0 \j=M

We will obtain a contradiction by showing that multiplying out the above
expression yields a series whose terms contain all the terms of the harmonic
series.

To see this we begin as follows. Suppose that the set

{PnisPros - P}

is any collection of prime numbers with p,, > p,, for all 4, and suppose that

{0517012, .. .7045}
are natural numbers. Then
1
o« s
DniPns - - - Pnl
is a term that occurs in the expansion of

a1 tag+-tos
o0

Zi

j=n1 Pi
If n is a natural number greater than 1, it can be written in the form
W= DD, D DDz
where each p,,, < p, and each p,, > p,. Then % occurs as a term in the

product of

artoagttas
(e o)

1 1 1 1
i o \ 2
Thus the expansion of

£ENE) G (B

k=0 k=0 k=0 k=0 k=0 \j=M

contains % for every natural number n. This contradicts the divergence of the

harmonic series. O

Corollary 2.5.3. Every continuous function on [0,1] is a uniform limit of

polynomials whose exponents are prime numbers.

Proof. Euler’s theorem (Theorem 2.5.2) and the Miintz—Szasz theorem (The-
orem 2.5.1) immediately imply the corollary. a
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2.6 Singular Inner Functions

As we have just seen, every inner function is the product of a Blaschke product

and an inner function that has no zeros on D.

Definition 2.6.1. A nonconstant inner function that has no zero in D is called

a singular inner function.

The word “singular” is used because of the representation of such functions
by singular measures, as will be described below (Theorem 2.6.5).

We begin with an example.

Example 2.6.2. If

then f is a singular inner function.

Proof. Recall that |e¥| = |eRewtilmw| — |cRew| — cRew for every complex

number w. Hence )
z+
ol =eo (re (251)).

A calculation shows that
z+1 |22 -1
R = .
¢ (z - 1> 2 — 12

Since this is negative for z € D, it follows that |f(z)| < 1 for all z € D. Thus
f € H®>. Moreover, |z| = 1 and z # 1 implies Re Z*} = 0, and therefore

z—

|f(e?®)] = 1 for all § # 0. Since e® is never zero for any complex number w,

it follows that f is an inner function with no zeros in D. O

Surprisingly, this simple example suggests the general form of singular
inner functions. Slight variants of this example include the functions
z + eieo
9(z) = exp (aoz—eieﬂ>
for fixed positive numbers o and fixed real numbers 6y; the same proof as
that given above shows that every such g is a singular inner function. Since

the product of any finite number of singular inner functions is obviously a

singular inner function, any function S of the form

+ "+an

. a . .
2z — et 22— eif 2z — eifn

z+ el z+ el z + eton
S(z)=exp | a1 + . — ],



2.6 Singular Inner Functions 67

with the a; any positive numbers and the 6; any real numbers, is also a
singular inner function.

We will show (Theorem 2.6.5) that every singular inner function is a kind
of “continuous infinite product” of functions of this type. A classical repre-
sentation theorem will be required.

Theorem 2.6.3 (The Herglotz Representation Theorem). Suppose h
is analytic on D and Reh(z) > 0 for all z € D. Then there exists a finite
positive regular Borel measure p on [0, 27| such that

1 [P e 4, )
h(z) = %/0 T dp(0) + i Im h(0)

for z € D.

Proof. For each s € (0,1), define hg by hs(z) = h(sz) for z € D. Clearly h, €
H™>, and thus h, € H?. For each s, the Poisson integral formula (Theorem

1.1.21) yields
. 1 [2m

he(re') = — hs(e)P.(6 —t) df

271— 0

for re® € D. Thus, since P,.(0 — t) is real-valued,
, 1 [~
Re (hy(re")) = - / Re (s (¢)) P (6 — 1) do.
0
Note that
e’ + rett et0=1) 4 p
Re <eie _ reit) ki (ei(e—t) - r)

1 (ei(e_t) +r  emi0-t) 4 r)

T 9 \eil0—t) —_p T g—i(0—t) _

_ 1—7r2

T 1— r(ei(é—t) i e—i(G—t)) 42
1—7r?

1—2rcos(@ —t)+r? H(0=)

If we define a function F' by

1 2 ei9+z ~
F(z) = %/0 T Re (hs(e')) do for z € D,

then Re (F'(z)) = Re (hs(z)) for all z € D. (Note that the integrand is contin-
uous, so the integral is defined even in the Riemann sense.) The function
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1 [ e 42 ~
F(z)= — . Re (hs(e™)) do
(0= 50 | S Reline™)
is analytic in D, as can be seen by simply differentiating under the integral.

Recall that it follows from the Cauchy—Riemann equations that two ana-
lytic functions with the same real part differ by at most an imaginary con-
stant [6, p. 63]. Therefore

1 [* e, ~ )
ha(z) = ﬁ/o S Re(a(e")) 6 + i Tm(0),
since Im F'(0) = 0 and h4(0) = h(0).

To complete the proof, we must pass from h, to h itself. Choose a sequence
{sn} of positive numbers increasing to 1. For each n, define the positive mea-

sure s, on S' by

1 .
penB) = 5= [ Reh (@) a0

for each Lebesgue-measurable subset E of S'. The measure p of the conclusion
of the theorem will be obtained as a limit point of {us, }. The easiest way to
do this is by regarding measures on S! as linear functionals on the space of
continuous functions on S! and using some basic results from the theory of
Banach spaces.

Let C(S*) denote the Banach space of continuous functions on S! equipped
with the supremum norm. The Riesz representation theorem for bounded
linear functionals on such spaces of continuous functions implies that the dual
space of C'(S1) is the space of all finite regular complex measures on S* with
the total variation norm ([12, p. 383], [20, p. 216], [44, p.357], [47, p. 130]).
Alaoglu’s theorem states that closed balls in a dual space of a Banach space
are weak™ compact ([12, p. 130], [20, p. 162], [48, p. 68]).

To apply Alaoglu’s theorem, it must be shown that {us, } is bounded in
norm. Since Re E;:(ew) > 0 for all 0, each ps, is a nonnegative measure on
S1. Thus the total variation norm of ys, is simply ps, (S1). But

1

27 .
7/ Rehy, (e) db.
0

1 —
o (S = — hs, () df =
pen(8Y) = 5 [ Reh ()i = 5

It follows from the Cauchy integral formula (Theorem 1.1.19) that

1 2 )
hsn(O)zg /0 hs, (%) df.

Thus
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1 27 .
Rehs, (0) = / Reln, (¢) d0 = s, (5).
0

™

But hs, (0) = h(0) for all n, so the total variation norm of ps, equals Re h(0)
for all n.

Thus the collection {ps, } is a bounded subset of the dual space of C'(S1).
It is well known that the weak* topology on a closed ball in the dual of a
separable Banach space is metrizable ([19, p. 426], [48, p. 70]). Combining
this fact with Alaoglu’s theorem implies that every bounded sequence in the
dual of a separable Banach space has a subsequence that converges in the
weak™® topology. In particular, then, a subsequence {usnj} converges to some
measure p in the weak® topology. It is easily seen that p is a nonnegative
measure since of all the p, ’s are.

Convergence in the weak* topology means that, for every continuous func-
tion G on S,
27 )
{6, o}
0 .

27

approaches
G(e™®) du(0)
0
as {n;} — oco. Applying this to the particular function

19+Z
i0

G(eie)

e’ *Z

for z any fixed element of D, and recalling that dus, (¢’) = 5-Re hs, (€ df,

shows that N
1 [ e |
{ / 2 Re ehy, (e w)dﬂ—l—ilmh(())}
0

21 e — 2

converges to
1 2r 60
¢+  du(6) d6 + i1 h(0)

o1 0 ett _

as {n;} — oco. But

1 [Te?+2 i0 ,
hsnj (Z) = %A 619 e Re h ( )d0 +lImh(0)

for every z € D. Hence, for z € D,

2 40
+ .
{hsnj (z)} converges to o /0 e,a z dp(8) dé + iIm h(0)
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as {n;} — oo. Since hs.., (2) = h(sn,2) and {sp; } — 1, it follows that hs,,, (2)
also converges to h(z) for every z € D, so

1 [?™ e 42 .
he) = 5 /0 o du(0) + it h(0).

O

The reason that singular inner functions are called “singular” is because
the measures that arise in their representation are singular with respect to
Lebesgue measure.

Definition 2.6.4. The complex measure p defined on all Lebesgue-measurable
subsets of S' is singular with respect to Lebesque measure m on St if
there exist disjoint Lebesgue-measurable subsets F' and G of S' such that
w(E) = pw(ENF)and m(E) = m(E N G) for all measurable subsets E, and
|u|(G) = 0 and |m|(F) = 0. (Recall that |u| is the total variation of w; of

course, since m is a nonnegative measure, m = |m|.)

Theorem 2.6.5. The singular inner functions (i.e., inner functions that have

no zeros on D) have the form

S(z) = K exp <217T /0% e+ de(9)>

e — 2

for n a finite positive regular Borel measure on [0,27], singular with respect
to Lebesgue measure, and K a constant of modulus 1.

Proof. We first show that every function S of the given form is a singular
inner function. Let S have the above form. Clearly (differentiate under the
integral sign) S is analytic on ). We must show that S is inner and has no
zeros in .

Let z = re® be a point in D. Then
1 [?7 e 4 peit
exp (‘zﬂ /0 P ——r d“”))‘
1 [?7 e 4 peit
1 [ el 4 et

= exp (—;ﬂ /0% P(6—1t) du(9)> ‘

|S(re)| =
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Since P.(0 —t) > 0 and p is a positive measure,

27
—% [ R0 -1due) <o
Therefore |S(re')| < 1 for all re’ € D.

Since 1 is a positive regular Borel measure on S*, y is defined by a mono-
tone function « [20, p. 99]. Recall that monotone functions are differentiable
almost everywhere. The fact that u is singular with respect to Lebesgue mea-
sure implies that o/ (t) = 0 a.e. with respect to Lebesgue measure [20, p. 100].
By Fatou’s theorem (Theorem 1.1.26),

27

1
lim — PO —t)du(@) =a'(t) =0 a.e.
and therefore

2m
lim |S(re’)| = lim exp <—1/ P.(6 —1) du(@)) =1 ae.
r—1- 21 Jo

r—1-

Thus S is an inner function. Since S is an exponential, .S does not have any
zeros, and it follows that S is a singular inner function.

Suppose, conversely, that S is a nonconstant inner function with no zeros
in D. We must show that there is a singular measure p such that S has the
above form. Since S has no zero in D, we can write S(z) = exp(g(z)) for a
function ¢ analytic on . Since S is an inner function, |S(z)| < 1 for z € D
(Theorem 2.2.10). But |S(z)| = expReg(z), so Reg(z) < 0 for z € D. Thus
the Herglotz representation theorem (Theorem 2.6.3) applied to the function
(—g) shows that there is a finite positive regular Borel measure p on [0, 27]
such that

1 [*™ e 42

9(z) = —5 ., dp(0) + ilm g(0).

1 27 7A9+
S(z) = K exp <—2/0 e,o : du(@)) ,

s e — 2z

It follows that

where K = exp(ilm ¢(0)).
It remains to be shown that p is singular with respect to Lebesgue measure.
If o is the monotone function inducing i, Fatou’s theorem (Theorem 1.1.26)

gives

lim ’S(re“)} = exp ( lim —2i ; NPT(Q — 1) du(@)) =exp(—a'(t)) a.e.

r—1- r—1-— ™
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Since |S(e?)| = 1 a.e., it follows that o/(t) = 0 a.e. Thus the measure p in-
duced by « is singular with respect to Lebesgue measure. (A measure induced
by a function « is singular with respect to Lebesgue measure if and only if
o/(t) = 0 a.e.; see, for example, [20, p. 100].) |

Corollary 2.6.6. If ¢ is an inner function, then ¢ can be written as ¢ = BS,
where B is the Blaschke product formed from the zeros of ¢ and S is a singular
inner function given by an integral as in Theorem 2.6.5.

Proof. Given an inner function ¢, let B be the Blaschke product formed from
the zeros of ¢. By Theorem 2.4.14, ¢/B is an inner function with no zeros
in D. Thus ¢/B = S is a singular inner function and therefore has the form

given in Theorem 2.6.5. a

The above analysis of Blaschke products and singular inner functions al-
lows us to completely understand the lattice structure of Lat U. That is, it
allows us to precisely describe the invariant subspaces of the unilateral shift

that are contained in a given invariant subspace.

Theorem 2.6.7. Let ¢1 and ¢ be inner functions. Then ¢p1H? C ¢poH? if
and only ¢1/pa is an inner function. This is equivalent to every zero of ¢o
occurring as a zero of ¢1 with at least the same multiplicity and, for py the
singular measure corresponding to ¢1 and uo the singular measure correspond-
ing to ¢2, the inequality ps(E) < pi(E) holding for every Borel subset E of
[0, 27].

Proof. First suppose that ¢; = B1.51 and ¢o = B2S5 and the zeros of By occur
as zeros of By with at least the same multiplicity and that p; (E) < ps(E) for
every Borel set E, where pu is the singular measure associated with S; and

o is the singular measure associated with Sy. Clearly By/Bs is a Blaschke

product Bs.
It 21 i6
Si(2) = K1 exp <217T/0 Zi" ji du1(9)>
and o i
Sa(z) = Ko exp (_217T/0 Zmi—z d,ug(é’)) ,

then
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Sl_Kl 1 2 Ze—l—Z 1 2 le—l—Z
sorerl (o @ mo) - (g [ G ae

K 1 [ 619—"—2
Ee P <—27T/0 0 _ d(p —Mz)(e)) :

Define the measure pz on S* by uz(E) = pu1(E) — pua(E) for every Borel

set E. Since pa(E) < py(FE) for all Borel sets E, g is a nonnegative measure.
Moreover, pus is singular with respect to Lebesgue measure since each one of

w1 and po is. Hence

K1 1 2 10+Z
S3(2) = KZep( o /0 T du3(9)>

is a singular inner function.
Since By/Bs = B3 and S1/S2 = Ss, it follows that

@1 = B1S1 = By B35253 = ¢2 8353,

and hence ¢4 /¢2 is an inner function. The inner function B3Ss is, in particular,
in H?, so ¢1 € ¢ H?. Tt follows that ¢1 H? C ¢ H?.

For the converse, let ¢; and ¢ be inner and suppose that ¢, H? C ¢ H?.
Since 1 € H?, it follows that ¢ € ¢oH? and therefore there exists a function
¢3 € H? such that ¢; = ¢o¢3. Taking the boundary values of these H?
functions we get \&s}(eiﬁ’)\ = 1 a.e. An application of Theorem 2.2.11 shows
that ¢3 is an inner function; i.e., ¢1 /¢ is inner. Write each inner function ¢,
as a product of the Blaschke product formed by its zeros and a singular inner

function given as in the corollary above; i.e., ¢; = B;S;. Thus we have
3151 = BQB?,SQSg.

It is clear that we must have B; = B9Bs and S; = S553 since ByBs is a
Blaschke product and S3S3 has no zeros.

Since B, is a factor of By, every zero of B is also a zero of By with at
least the same multiplicity. Let u; be the measure given by Theorem 2.6.5 for

each singular inner function .S;. We then have

1 [* e 42
K =
o [ )
1 T el 4 2 1 [ e 42
= Kyexp (—%/0 - du2(9)> Ksexp (_27r/0 0 du3(9))

1 (2™ el 42
= Ky K3 exp —ﬂ/ e d(pa + p13)(0)
0
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for some constants K; of modulus 1. Evaluating the above expression at 0 and
comparing the polar representation of the resulting complex numbers shows
that K7 must equal K3 K3. Recall that exp(f(z)) = exp(g(z)) for functions f
and ¢ analytic on a domain implies that there is a real number ¢ such that
f(z) = g(2) +ic for all z in the domain. Thus there is a real number ¢ such
that

1 2m if | 1 2 eif 4
— . du, () = — ——d 0 ]
3 | S dmo) 2w/0 O s+ ps)(6) +ic

for all z € D. Taking z = 0 and recalling that the measures are real-valued

shows that ¢ = 0. Hence

1 T e 4 1 el 4
— du (0 —d 0).
o [ e = [ 4 e)0)

Note that

e 4 2 14 ze
el —z 1—ze %
_ (1 +Z€7w)(1 +Z€7i0 + 226721'9 + 236732'0 +. )

—1+222n i,

Thus
[ (1 r23 9) amo)= [ (1 2y 9) Atz + 1s)(6).
n=1 n=1
Therefore
/027r du (6 +2Z / 7 dpy (0)

n=1

27
=/ A + 13) (6 +2Z / 8 (13 + 13)(0).
0

Each of the power series displayed above converges for z € . The power series

representation of a function analytic in D is unique, so

27 27
[emtame) = [ e dtua+ pa)(6)
0 0

for each positive integer n. Since each of the p; is a nonnegative measure,

taking complex conjugates yields
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27 27
| et dm) = [ e d+ )0
0 0

for every integer n other than zero. Moreover, considering the constant terms

of the above series yields

2m

Odm@=éwﬂm+mW)

Therefore, for all n,

21 27
/ wwmwz/ €0 d(juz + 13)(0).
0 0

Since linear combinations of {¢"™’} (i.e., trigonometric polynomials) are uni-
formly dense in the space of continuous functions on S!, it follows that
p1 = p2 + ps. Thus, since the p;’s are positive measures, ps(E) < pq(E)

for all Borel sets E. O

It is sometimes useful to know which invariant subspaces of the unilateral
shift have finite codimension (i.e., have the property that there is a finite set
such that the span of the subspace and that set is all of H?).

Theorem 2.6.8. If ¢ is an inner function, then ¢H? has finite codimension
if and only if ¢ is a constant multiple of a Blaschke product with a finite

number of factors.

Proof. Tt is easy to see that the result holds for a Blaschke product with only
one factor. If that factor is z, this follows from the obvious fact that zH?
and the constant function 1 span H?2. In the case of any other single Blaschke
factor, there is a similar situation. For if fy is any function in H? that does

not vanish at zg, the span of fy and
0 %0 —Z )\ H?
|20 1 — Zoz

is H?.

The case of an arbitrary finite Blaschke product with an arbitrary finite

number of factors follows from a trivial induction. For suppose that it is known
that the codimension of B, H? is m whenever B,, is a Blaschke product with
m factors (repeated according to the multiplicity of the zero). Let B,,+1 be a
Blaschke product with m + 1 factors, so that B,,11 = ¢ B, where ¢y, is a
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single Blaschke factor and B,, is a product of m Blaschke factors. By the in-
ductive hypothesis, there exists a linearly independent subset {f1, fo, ..., fm}
of H? such that the span of B,,, H? and {fi, f2,..., fm} is H?. It follows that

¢m (BmH2 v{flana"'vfm}) = ¢mH2a

or
¢mBmH2 \ {¢mf17 ¢mf27 LR ¢mfm} = ¢mH2~
Choose f,,+1 such that its span with ¢,, H? is H?. Then

Gm B H? NV {Gm f1. dmfos oy bmfims fny1} = H>.

It is easily seen that {@m f1, dmf2y- s Gmfm, fm+1} is linearly independent.

We must prove the converse. That is, suppose that ¢ is an inner function
such that ¢H? has finite codimension. It must be shown that ¢ is a finite
Blaschke product.

By the factorization theorem for inner functions, it suffices to show that
¢ has no singular inner factor and that its Blaschke factor is a finite product.
Suppose ¢ had a nonconstant singular part and let ¢ = BS where B is a
Blaschke product and S is a singular inner function. Let p be the singular
measure determining S; the fact that S is nonconstant means that p is not
identically 0. We define, for each o € (0,1), a measure pq by po(F) = au(E)
for each Borel subset E of [0,27], and let S, be the corresponding singular
inner function. If ¢, = BS,, for each «, the preceding theorem (Theorem 2.6.7)
implies that the subspaces {¢, H?} form an infinite chain of distinct subspaces
all of which contain ¢H?. Hence ¢.H? would have infinite codimension. Thus
the singular part of ¢ is constant.

All that remains to be shown is that the codimension of BH? is infinite
whenever B is a Blaschke product with an infinite number of factors. If B
is a Blaschke product with an infinite number of factors, an infinite chain of
subspaces containing BH? can be obtained by inductively defining B,, as the
Blaschke product obtained from B,,_; by omitting one of its factors (where
B equals B). Then {B,, H?} is such a chain of subspaces (by Theorem 2.6.7).

O

The ordinary definitions of greatest common divisor and least common

multiple apply to arbitrary collections of inner functions.

Definition 2.6.9. The inner function ¢o divides the inner function ¢, if there

exists an inner function ¢3 such that ¢1 = ¢2¢3. The inner function ¢, is the
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greatest common divisor of the collection {¢4} of inner functions if ¢4 divides
¢ for every a and ¢ divides ¢, whenever ¢ is an inner function that divides all
the ¢,. The inner function ¢,, is the least common multiple of the collection
{¢qa} of inner functions if ¢, divides ¢, for every o and ¢,,, divides ¢ whenever

¢ is an inner function such that ¢, divides ¢ for all a.

Theorem 2.6.10. Fvery collection of inner functions has a greatest common

divisor. Fvery finite collection of inner functions has a least common multiple.

Proof. Let {¢4} be a collection of inner functions. Define
M:\/{f . f € g H? for some a}.

It is easily seen that M is invariant under U. Thus M = ¢, H 2 for some inner
function ¢,. Since ¢, H? C ¢, H? for every a, it follows that ¢, divides ¢, for
all ar, by Theorem 2.6.7. Therefore ¢4 is a common divisor of the ¢,. Suppose
¢ is an inner function such that ¢ divides ¢, for all @. Then ¢ H? C ¢H?
for all . But then

\/{f : f € poH? for some a} C pH?,

and thus ¢,H? C ¢H?. This implies that ¢ divides ¢,. Therefore ¢, is the

greatest common divisor. (Notice that ¢4 could be the constant function 1.)

To prove the second assertion, let {¢1, ¢o, ..., d,} be a finite collection of
inner functions. Let "
M == ﬂ ¢jH2.
j=1

Clearly (¢1¢2 -+ ¢n) € M, so M is not {0}. Therefore M = ¢, H? for some
inner function ¢;. Since ¢;H? C ¢;H?, it follows that every ¢; divides ¢;.
Moreover, if 1 is an inner function that is divisible by every ¢;, then Y H? C
¢;H? for each j, so yH? C M = ¢;H?. Thus ¢, divides 1. Therefore ¢; is

the least common multiple. a

Corollary 2.6.11. If M is an invariant subspace, other than {0}, of the uni-
lateral shift, then M = ¢H?, where ¢ is the greatest common divisor of all

the inner parts of all the functions in M.

Proof. Since M is an invariant subspace for the unilateral shift, Beurling’s
theorem (Theorem 2.2.12) guarantees that there exists an inner function ¢
such that M = ¢H?. We will show that ¢ is the greatest common divisor of

all the inner parts of all the functions in H?2.
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Let f € M = ¢H?. Then there exists a function ¢ € H? such that f = ¢g.
Factor the functions f and g into their inner and outer parts: f = frfo and
g = grgo. We then have f;fo = ¢grgo, and, by Theorem 2.3.4, there must
exist a constant ¢ of modulus 1 such that f; = c¢pg;. Hence ¢ divides the inner
part of f.

Let ¢ be an inner function such that 1 divides the inner parts of all
functions in M. Since ¢ is inner and is in pH? = M, it follows that v divides
¢. Therefore ¢ is the greatest common divisor of all the inner parts of all the
functions in H?2. O

It is of interest to determine what abstract lattices can arise in the form

Lat A for bounded linear operators on a separable Hilbert space.

Definition 2.6.12. The abstract lattice £ is attainable if there exists a
bounded linear operator A on an infinite-dimensional separable complex

Hilbert space such that Lat A is order-isomorphic to L.

Surprisingly little is known about which lattices are obtainable. The invari-
ant subspace problem, the question whether there is an A whose only invariant
subspaces are {0} and H, can be rephrased as: is the totally ordered lattice
with two elements attainable?

For U the unilateral shift, Lat U is a very complicated and rich lattice, as
Theorem 2.6.7 indicates. Some of its sublattices will be of the form Lat A for
suitable operators A.

Recall that given two subspaces M and N of a Hilbert space H, the
subspace N'© M is defined to be N'N M+,

The next theorem shows that an “interval” of an attainable lattice is an

attainable lattice.

Theorem 2.6.13. Let A be a bounded operator on an infinite-dimensional
separable Hilbert space. Suppose that M and N are in Lat A and M C N. If
N 6 M is infinite-dimensional, then the lattice

{L:LeLatA and M C L C N}
is attainable.

Proof. Let P be the projection onto the subspace N'© M. Define the bounded
linear operator B on N © M as B = PA |N9M' We will show that Lat B is

order-isomorphic to the lattice of the theorem.
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Let K € Lat B. We show that M @ K is in the lattice of the theorem. First
of all, since K C NOM, it is clear that M ¢ MOK C N. Let m+k € MEK.
Then

Am+k)=Am+ (I — P)Ak + PAk.

Since m € M and M € Lat A, it follows that Am € M. Since k € K C N/
and N € Lat A, we have that Ak € A. Thus, since I — P is the projection
onto Nt @ M, it follows that (I — P)Ak € M. Lastly, PAk = Bk and since
k € K and K € Lat B we must have that Bk € K. Thus

A(m +k) = (Am + (I — P)Ak) + Bk € M & K.

Hence M @ K is a member of the lattice of the theorem.

Now suppose that £ is a member of the given lattice. Define K = £ & M.
Clearly K ¢ N'& M. We will prove that K € Lat B. Let k € K. Since K C £
and £ € Lat A, we have Ak € L. Write Ak as Ak = f+ g with f € LEM
and g € M. Then PAk = f since P is the projection onto NV & M and
LOMCNGSM. Thus Bk = PAk=f € L& M =K, so K € Lat B. Since
McC L, K=L6Mis equivalent to L =M @ K.

Thus K € Lat B if and only if £ = M@K is in the lattice in the statement
of the theorem, which establishes the isomorphism. a

The invariant subspace lattice of the unilateral shift has interesting “in-

tervals”, including the ordinary closed unit interval.

Example 2.6.14. Let

o) e (257)

and let M = (d)HQ)l. Then Lat (U* |M) is order-isomorphic to the closed

unit interval [0, 1] with its standard ordering.

Proof. The function ¢ is inner singular. The measure p defined by u(A) = 27
for any Borel set A containing 0 and p(B) = 0 for Borel sets B that do not
contain zero is the measure provided by Theorem 2.6.5.

It follows from Beurling’s theorem (Theorem 2.2.12) that ¢H? € LatU.
By Theorem 1.2.20, M € Lat U*.

Let N € Lat (U* |M) This is equivalent to M+ C N+ and N+ € Lat U.
But this means that N+ = ¢,H? for some inner function ¢, such that ¢,

divides ¢. Since ¢ is singular, Theorem 2.6.7 implies that ¢, is also singular,
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and the singular measure pu, corresponding to ¢, must be less than or equal

to p. This is the same as saying that

$a(2) = exp (az i 1>

z—1

for some a € [0,1]. Thus Lat (U*

M) 2 [0, 1] as lattices. O

2.7 Outer Functions

The structure of the outer functions can be explicitly described. First we need
to establish the following technical lemma.

Lemma 2.7.1. If f € H? and f is not identically 0, then log|f(e¥)| is in
L'(S',d9).

Proof. First of all, write the function log as the difference of its positive and
negative parts; that is, logz = log™ = — log™ .

Let B be the Blaschke product formed from the zeros of f. Then f = Bg
for some g € H? that never vanishes. Since |f(e?®)] = [g(e?)| a.e., it suffices
to show that

log |g(e™)| € L*(S", ).
Since g never vanishes in I, we can write g(z) = ¢"*) for some function h
analytic in . Then
|9(2)| = exp(Re h(z)).
Dividing by a constant if necessary, we may assume that |g(0)| = 1, or, equiv-
alently, that Re h(0) = 0.
Fix r € (0,1). Then

1

1 27 ) 27 )
. 1 i0 _ i0 _ —
5 /0 og|g(re'”)| db 5 /0 Reh(re")dd = Re h(0) =0,

since - fo% h(re'®) do = h(0) by Cauchy’s integral formula (Theorem 1.1.19)
applied to the function h,.(z) = h(rz), which is analytic on a neighborhood of
D.

This implies that

L[ ot gt a0 = 2 [ on™ lgtre ) a0
o o og |g(re —271_ o og |g(re 5

and thus that
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1 27 ) 1 2m )
7 1 6 -9 — logt i0
27T/0 ’0g lg(re )” do 27r/0 og™ [g(re™)| do

1 2w .
= %/0 log™ |g(re'®)|? db.

Since log™ & < z for all z > 0 and g € H?, we then have

1 2 ) 1 2m .
o [ loslatrel| do < 5= [ lgtre) 2 db < gl
Y8 0 27T 0

Also, we can choose an increasing sequence {r,} of positive numbers with
{r,} — 1 such that {g(r,e??)} — g(e*?) a.e. (by Corollary 1.1.11). From the

above, for each n,

1 o 0 2
g/o |log |g(rye™)I| db < [lg]*.

A straightforward application of Fatou’s lemma on convergence of Lebesgue
integrals [47, p. 23] implies that

L[ ~( 0 2
3 | Dol do < o
which is the desired result. O

Notice that this gives another proof of the F. and M. Riesz theorem (proven
in Theorem 2.3.3 above).

Corollary 2.7.2 (The F. and M. Riesz Theorem). If f € H? and the

set
{eio : f(e“’) _ O}

has positive measure, then f is identically 0 on D.

Proof. If the set {e” : f(e?) = 0} has positive measure, the function
log | f(e")] is not integrable on [0, 27]. Thus the previous lemma implies that
f is identically 0. O

We require a number of well-known inequalities.

Theorem 2.7.3. (i) For z >0, logz <z — 1.

(ii) Let p be a measure on a space X with u(X) = 1 and let g be a positive

measurable function. Then

/loggduélog/ gdp.
X X
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(iii) Let p be a measure on a space X with u(X) = 1 and let g be a positive

measurable function. Then

exp (/ loggdu> S/ gdp.
X X

(iv) If logt andlog™ denote the positive and negative parts of the log function
(such that log x = log™ x —log™ x), then

|log™ x —log™ y| < |z —y|
forz,y > 0.

Proof of (i): If g(z) = x — 1 — logz, then g(1) = 0 and ¢'(z) = 1 -2
for all > 0. Thus g is decreasing on (0,1) and increasing on (1, 00), so

g(x) > g(1) for all > 0. O
Proof of (#): Put
_ g
Jx 9dp
in the previous inequality and integrate over X. ([l

Proof of (#i): This follows immediately by exponentiating the previous in-
equality. (I

Proof of (iv): The proof of this inequality is divided into several cases.
Case (a): If > 1 and y > 1, then log™ 2 = logz and log™ 3 = logy.
Assume without loss of generality that y < z. Applying the mean

value theorem yields

|logz —logy| 1

|z -yl ¢’

for some ¢ € (y, z). Since ¢ > 1, % < 1, which proves the inequality in

this case.

Case (b): If x <1 and y <1, then logt 2 = log® y = 0, so the inequal-

ity is trivial.

Case (¢): If x > 1 and y < 1, then we need to show that logz < z —y.
But the inequality of part (i) of this theorem yields logx < z — 1.
Since y < 1, it follows that logax < x — y. |
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We can now return to the investigation of outer functions. We begin by
showing that functions of a certain form are outer functions; we subsequently
show that every outer function has a representation in that form. We must

first establish that functions of the given form are in H?2.

Theorem 2.7.4. If f is in H? and f is not identically 0 on I, define

27 eiG Py .
F(2) = exp <1/0 + log|f(e’9)|d9).

2w e — 2

Then F is in H2.

Proof. For each fixed z € D, ‘
619 + z

et

—Zz

is a bounded function of ¢ € S'. Since log | f(ei)] is in L'(S*,df) by Theo-
rem 2.7.1, it follows that F'(2) is defined for every z € D. Clearly, F' is analytic
on D.

Letting z = re” and recalling that the Poisson kernel is the real part of

€i9_|_,reit
6i9 _ T@it
yields
) 1 27 ~
Pire =esp (5 [P0 - 01081 a0)
271' 0
Therefore

27 -
FreP = e (5 [P0 - )108 () a9).

Applying inequality (iii) of Theorem 2.7.3 to this last integral gives

2m ~
|F(re')|* < zi/o P (0 =) ()] db.

™

Now integrate with respect to t from 0 to 27 and divide by 27, getting

1 2m

) 1 27 27 -
it\|2 < _ 10\(2 )
[F(re)2 dt < (%)2/0 [ p—oifen R

2 o

Interchanging the order of integration, which is justified by Fubini’s theorem

[47, p. 164] since P.(6 —t) and |f(e*)|? are nonnegative, we get
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1 27 ) 1 27 1 27 .
— |F(ret*) 2 dt < 7/ ( P.(6 — t)dt) If () do
0 0

27 T 27 21 Jo
1 o 102 2
=57 | VT do= 51
since
1 27
o P.(0 —t)dt =1 by Corollary 1.1.22.
T Jo

Taking the supremum over r gives

1 27

sup — |F(rei9){2 do < ||fH2 < 00,
0<r<1 27 Jg

which implies that F is in H? (by Theorem 1.1.12). O

Corollary 2.7.5. If f is in H?, f is not identically 0, and F is defined by

1 [T eif 42 ~
F(z) = exp <2ﬂ/ ‘ log | f(e")] da) ,
0

el — 2
then |F ()| = |f(e")] a.e.

Proof. Since F is in H?,

U _ 1 [27 ~ .
P = Jim 1F(e)| = oxp (i 5o [ R0 - 0)togl e as ).
T— 0

r—1- 47

By the corollary to Fatou’s theorem (Corollary 1.1.27),

LT 70,0 70,0
exp(hm — P.(0 —t)log|f(e )|d9) = exp (log|f(e )\) a.e.

r—1= 27T Jo
; Flei) = | ()] i i) — | f(eif
Since exp (log |f(e )|> = |f(e?)], it follows that |F(e')| = |f(e?)] a.e. O

To prove that F' is outer, we need the following theorem, which is also very
interesting in its own right.

Theorem 2.7.6 (Maximality Property for Outer Functions). Let f be
a function in H? that is not identically 0. Define the function F by

1 [ e 42 ~
F(z) = exp (27r/ . logf(ee)|d9>
0

et — 2

for z € D. If G is any function in H? satisfying |G(e®)| = |F(e!)|, then
|G(2)| < |F(2)| for z in D.
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Proof. As usual, by factoring out the Blaschke product we may assume that
G(z) # 0 for all z € D and that, therefore, there exists an analytic function h
in D with G(z) = exp h(z). Since |G(z)| = exp(Re h(z)), we have log |G(z)| =
Reh(z).

Let z = re't. Since |G(e?)| = |F(e)| = |f(e!)| a.e. by Corollary 2.7.5

and
1

2
log | Fre")| = 5 [ P26~ ) log | ) o,
0

the theorem will be established if it is shown that

2m

) 1 ~ .
log |G (re')| < — P.(0 —t)log |G (e™)| db
27T 0

for re’t € D.
As we have in a number of previous proofs, we define the function hy for
each s € (0,1) by hs(z) = h(sz). Each h, is in H*, so we can write

. 1 [ ,
hs(re') = — P.(0 — t)h(se') db
2 0
by the Poisson integral formula (Theorem 1.1.21) (since hy (') = h(sei?) for
all 6).
By taking real parts and recalling that log|G(z)| = Re h(z), we obtain
) 1 27 )
log |G (sre™)| = 2—/ P.(0 —t)log |G(se')| db.
T Jo
All we need to do now is take limits as s approaches 1 from below. Clearly,
lim G(sre) = G(re') for all re’* € D. Therefore
s—1—

lim log|G(sre™)| = log|G(re™)]
s—1—

for all re’* € D. Also

1 27 ) 1 2m )

. P — )1 0 _ P — 11 + 0

3 | PO og|Glse )] ap 2W/O (0 — 1) log ™t [G(sei?)] b
1 2 .

“an ), P.(0 —t)log™ |G(se')| db.

We consider the two integrals separately. First of all,
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1 27 ) 1 21
— P.(0 —t)log" |G (se™)|df — —
27T 0

P.(6 —t)log" |G(e")] d&‘

27T 0
1 2m " 0 S0
- ﬁ/o P00 — 1) (log |G(se™)] —log™ |Ge )|) d9‘
1 2T i ~ .
<5 | Pr0—t)[log" |G(se)| —log™ \G(e"e)lﬂ do
T Jo
2
< % P60 —1) |G(sew)| . |G(ei0)|‘ dd  (by part (iv) of Theorem 2.7.3)
0
1 2 X ~ .
<o | PO-0)|Glse?) - G(e)| a0
271' 0

1/2 1/2

1 2 1 27
(2o (2

2 0 2 0
by the Cauchy—Schwarz inequality. Let

M= <217r /027r P.(6 —t)? d@)

G(se™®) — é(ei‘))f do)

1/2

It then follows that

1 1 27

27
i P _ 1 + 0 -
- /0 (0 1) log™ |G(s¢)] df — o

P,.(6 —t)log™ |G(e™)] d9’
0

27
21 Jo
for all s € (0,1).

Therefore, since G(se') converges to G(e') in H2 as s — 1~

1/2

G(se™®) — é(ew)\2 d0>

1 27 . 1 27 — X
lim %/0 P.(0 —t)log" |G(se'?)| df = %/0 P.(0 —t)log™ |G ()| db.

‘We now consider

1 2

N — (10
o ), P,(0 —t)log™ |G(e'”)| d6.

Note that
lim}r_lf log™ |G(se')| = lirin_ log™ |G(se)| = log™ |G(e)| ae.

It follows that
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1 2m

— P.(0 —t)log™ |G (e
o |, (0 —t)log™ [G(e™)] db

1 2w

= P.(6 — t)liminf log~ 9| 46
o7 ), (0 — t) liminflog™ |G(se”)|

s—1— ™

1 2m .
<liminf o / Po(6 — t)log™ |G(se™)| do
0

by Fatou’s lemma on convergence of integrals [47, p. 23].

Now write

27
lim infi/ P.(0 —t)log™ |G(se™)| do
0

s—1— a7

1 2m ) )
= liminf o / P.(0—1t) (log+ |G (se™)| — log |G($e’0)|) do
0

s—1— ™
s—1— ™ Jo

1 2m .
 Jiminf ( Po(0— ) log" |G(s¢™)| dO

1 ,
- — P.(0 —t)log |G (se™)| d@)

2 0
1 2m ) )
= lim inf ( P.(0 —t)log™ |G (se™)| df — log |G(rse”)|>
s—1— 2 0
1 27 ) )
= lim ( P.(0 —t)log™" |G (se™)| df — log G(rse”)|)
s—1— 21 0
Lo + | (i 0 it
=5 | B(0—1)log" |G(e)[df —log|G(re™)],
™ Jo

since, as was established abov