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Preface

This book grew out of a one-semester course given by the second author in
2001 and a subsequent two-semester course in 2004-2005, both at the Univer-
sity of Missouri-Columbia. The text is intended for a graduate student who
has already had a basic introduction to functional analysis; the aim is to give
a reasonably brief and self-contained introduction to classical Banach space
theory.

Banach space theory has advanced dramatically in the last 50 years and
we believe that the techniques that have been developed are very powerful and
should be widely disseminated amongst analysts in general and not restricted
to a small group of specialists. Therefore we hope that this book will also
prove of interest to an audience who may not wish to pursue research in this
area but still would like to understand what is known about the structure of
the classical spaces.

Classical Banach space theory developed as an attempt to answer very
natural questions on the structure of Banach spaces; many of these questions
date back to the work of Banach and his school in Lvov. It enjoyed, perhaps,
its golden period between 1950 and 1980, culminating in the definitive books
by Lindenstrauss and Tzafriri [138] and [139], in 1977 and 1979 respectively.
The subject is still very much alive but the reader will see that much of the
basic groundwork was done in this period.

We will be interested specifically in questions of the following type: given
two Banach spaces X and Y, when can we say that they are linearly isomor-
phic, or that X is linearly isomorphic to a subspace of Y7 Such questions
date back to Banach’s book in 1932 [8] where they are treated as problems
of linear dimension. We want to study these questions particularly for the
classical Banach spaces, that is, the spaces co, £, (1 < p < 00), spaces C(K)
of continuous functions, and the Lebesgue spaces L,, for 1 <p < oo.

At the same time, our aim is to introduce the student to the fundamental
techniques available to a Banach space theorist. As an example, we spend
much of the early chapters discussing the use of Schauder bases and basic
sequences in the theory. The simple idea of extracting basic sequences in order
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to understand subspace structure has become second-nature in the subject,
and so the importance of this notion is too easily overlooked.

It should be pointed out that this book is intended as a text for graduate
students, not as a reference work, and we have selected material with an
eye to what we feel can be appreciated relatively easily in a quite leisurely
two-semester course. Two of the most spectacular discoveries in this area
during the last 50 years are Enflo’s solution of the basis problem [54] and
the Gowers-Maurey solution of the unconditional basic sequence problem
[71]. The reader will find discussion of these results but no presentation. Our
feeling, based on experience, is that detouring from the development of the
theory to present lengthy and complicated counterexamples tends to break up
the flow of the course. We prefer therefore to present only relatively simple and
easily appreciated counterexamples such as the James space and Tsirelson’s
space. We also decided, to avoid disruption, that some counterexamples of
intermediate difficulty should be presented only in the last optional chapter
and not in the main body of the text.

Let us describe the contents of the book in more detail. Chapters 1-3 are
intended to introduce the reader to the methods of bases and basic sequences
and to study the structure of the sequence spaces ¢, for 1 < p < oo and co.
We then turn to the structure of the classical function spaces. Chapters 4
and 5 concentrate on C(K)-spaces and Lj(u)-spaces; much of the material
in these chapters is very classical indeed. However, we do include Miljutin’s
theorem that all C(K)-spaces for K uncountable compact metric are linearly
isomorphic in Chapter 4; this section (Section 4.4) and the following one (Sec-
tion 4.5) on C(K)-spaces for K countable can be skipped if the reader is more
interested in the L,-spaces, as they are not used again. Chapters 6 and 7
deal with the basic theory of L,-spaces. In Chapter 6 we introduce the no-
tions of type and cotype. In Chapter 7 we present the fundamental ideas of
Maurey-Nikishin factorization theory. This leads into the Grothendieck the-
ory of absolutely summing operators in Chapter 8. Chapter 9 is devoted to
problems associated with the existence of certain types of bases. In Chapter 10
we introduce Ramsey theory and prove Rosenthal’s /1-theorem; we also cover
Tsirelson space, which shows that not every Banach space contains a copy of
¢, for some p, 1 < p < o0, or cg. Chapters 11 and 12 introduce the reader
to local theory from two different directions. In Chapter 11 we use Ram-
sey theory and infinite-dimensional methods to prove Krivine’s theorem and
Dvoretzky’s theorem, while in Chapter 12 we use computational methods and
the concentration of measure phenomenon to prove again Dvoretzky’s theo-
rem. Finally Chapter 13 covers, as already noted, some important examples
which we removed from the main body of the text.

The reader will find all the prerequisites we assume (without proofs) in
the Appendices. In order to make the text flow rather more easily we decided
to make a default assumption that all Banach spaces are real. That is, unless
otherwise stated, we treat only real scalars. In practice, almost all the results
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in the book are equally valid for real or complex scalars, but we leave to the
reader the extension to the complex case when needed.

There are several books which cover some of the same material from some-
what different viewpoints. Perhaps the closest relatives are the books by Di-
estel [39] and Wojtaszczyk [221], both of which share some common themes.
Two very recent books, namely, Carothers [23] and Li and Queffélec [126],
also cover some similar topics. We feel that the student will find it instructive
to compare the treatments in these books. Some other texts which are highly
relevant are [10], [78], [149], and [56]. If, as we hope, the reader is inspired to
learn more about some of the topics, a good place to start is the Handbook of
the Geometry of Banach Spaces, edited by Johnson and Lindenstrauss [90,92]
which is a collection of articles on the development of the theory; this has the
advantage of being (almost) up to date at the turn of the century. Included is
an article by the editors [91] which gives a condensed summary of the basic
theory.

The first author gratefully acknowledges Gobierno de Navarra for funding,
and wants to express his deep gratitude to Sheila Johnson for all her patience
and unconditional support for the duration of this project. The second author
acknowledges support from the National Science Foundation and wishes to
thank his wife Jennifer for her tolerance while he was working on this project.

Columbia, Missouri, Fernando Albiac
November 2005 Nigel Kalton
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1

Bases and Basic Sequences

In this chapter we are going to introduce the fundamental notion of a Schauder
basis of a Banach space and the corresponding notion of a basic sequence. One
of the key ideas in the isomorphic theory of Banach spaces is to use the prop-
erties of bases and basic sequences as a tool to understanding the differences
and similarities between spaces. The systematic use of basic sequence argu-
ments also turns out to simplify some classical theorems and we illustrate this
with the Eberlein-Smulian theorem on weakly compact subsets of a Banach
space.

Before proceeding let us remind the reader that our convention will be that
all Banach spaces are real, unless otherwise stated. In fact there is very little
change in the theory in switching to complex scalars, but to avoid keeping
track of minor notational changes it is convenient to restrict ourselves to the
real case. Occasionally, we will give proofs in the complex case when it appears
to be useful to do so. In other cases the reader is invited to convince himself
that he can obtain the same result in the complex case.

1.1 Schauder bases

The basic idea of functional analysis is to combine the techniques of linear
algebra with topological considerations of convergence. It is therefore very
natural to look for a concept to extend the notion of a basis of a finite dimen-
sional vector space.

In the context of Hilbert spaces orthonormal bases have proved a very use-
ful tool in many areas of analysis. We recall that if (e, )22, is an orthonormal
basis of a Hilbert space H, then for every x € H there is a unique sequence
of scalars (a,)22, given by a, = (z, e,) such that

[e%S)
T = E Anp€n -
n=1
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The usefulness of orthonormal bases stems partly from the fact that they
are relatively easy to find; indeed, every separable Hilbert space has an or-
thonormal basis. Procedures such as the Gram-Schmidt process allow very
easy constructions of new orthonormal bases.

There are several possible extensions of the basis concept to Banach spaces,
but the following definition is the most useful.

Definition 1.1.1. A sequence of elements (e,,)22 ; in an infinite-dimensional
Banach space X is said to be a basis of X if for each z € X there is a unique
sequence of scalars (a,)52; such that

0
xr = E Ap €.
n=1

This means that we require that the sequence (21]:;1 anen)—1 converges to
z in the norm topology of X.

It is clear from the definition that a basis consists of linearly indepen-
dent, and in particular nonzero, vectors. If X has a basis (e,)52 then its
closed linear span, [e,], coincides with X and therefore X is separable (the
rational finite linear combinations of (e,,) will be dense in X). Let us stress
that the order of the basis is important; if we permute the elements of the
basis then the new sequence can very easily fail to be a basis. We will discuss
this phenomenon in much greater detail later, in Chapter 3.

The reader should not confuse the notion of basis in an infinite-dimensional
Banach space with the purely algebraic concept of Hamel basis or vector space
basis. A Hamel basis (e;)icz for X is a collection of linearly independent
vectors in X such that each z in X is uniquely representable as a finite linear
combination of e;. From the Baire Category theorem it is easy to deduce that
if (e;)iez is a Hamel basis for an infinite-dimensional Banach space X then
(e;)ier must be uncountable. Henceforth, whenever we refer to a basis for an
infinite-dimensional Banach space X it will be in the sense of Definition 1.1.1.

We also note that if (e,,)32; is a basis of a Banach space X, the maps z —
a, are linear functionals on X. Let us write, for the time being, e (z) = a,,.
However, it is by no means immediate that the linear functionals (e7*)22, are
actually continuous. Let us make the following definition:

Definition 1.1.2. Let (e,)22; be a sequence in a Banach space X. Suppose

there is a sequence (€)% ; in X* such that

i) e;(e;) = 1if j =k, and e} (e;) = 0 otherwise, for any k and j in N,
k\Ej k\Ej
(it) = 7 | el (x)e, for each x € X.

n=1"-n

Then (e,,)52, is called a Schauder basis for X and the functionals (e)22 ; are

called the biorthogonal functionals associated with (e,)2 ;.



1.1 Schauder bases 3

If (e,)22 is a Schauder basis for X and z = ) 2 ei(z)e, € X, the

support of x is the subset of integers n such that e} (x) # 0. We denote it by
supp (z). If [supp (x)| < oo we say that z is finitely supported.

The name Schauder in the previous definition is in honor of J. Schauder,
who first introduced the concept of a basis in 1927 [203]. In practice, never-
theless, every basis of a Banach space is a Schauder basis, and the concepts
are not distinct (the distinction is important, however, in more general locally
convex spaces).

The proof of the equivalence between the concepts of basis and Schauder
basis is an early application of the Closed Graph theorem ([8], p. 111). Al-
though this result is a very nice use of some of the basic principles of functional
analysis, it has to be conceded that it is essentially useless in the sense that
in all practical situations we are only able to prove that (e,,)22 is a basis by
showing the formally stronger conclusion that it is already a Schauder basis.
Thus the reader can safely skip the next theorem.

Theorem 1.1.3. Let X be a (separable) Banach space. A sequence (e,)52 4
in X is a Schauder basis for X if and only if (e,)52, is a basis for X.

Proof. Let us assume that (e,)52, is a basis for X and introduce the partial
sum projections (Sy, )22, associated to (e,)52 ;defined by Sy = 0 and for n > 1,

Sa(@) = ef (w)ex.
k=1

Of course, we do not yet know that these operators are bounded! Let us
consider a new norm on X defined by the formula

||l = sup [|Spz].-
n>1
Since lim,,_. || — Spz| = 0 for each x € X, it follows that ||| - ||| > || - ||. We
will show that (X, ||| - ]||) is complete.
Suppose that (z,)52; is a Cauchy sequence in (X, |[|-]]]). (zr)5; is indeed

convergent to some x € X for the original norm. Our goal is to prove that
limy, o0 |||z, — ||| = 0.

Notice that for each fixed k the sequence (Skx,)22 is convergent in the
original norm to some y; € X, and note also that (Skx,)52 is contained in
the finite-dimensional subspace [eq,...,ex]|. Certainly, the functionals e? are
continuous on any finite-dimensional subspace; hence if 1 < j < k we have

nh—>Holo ef(mn) = e;#(yk) = qj.
Next we argue that 2;11 aje; = x for the original norm.

Given € > 0, pick an integer n so that if m > n then |||z, — z,||| < 3¢,
and take ko so that k > ko implies ||z, — Spzy| < %e. Then for k > ko we
have
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lyg — x| < lim ||Skzp — Sexu|l + |52z — zn| + lim ||zpm — x4 < e
m—oo m—o0

Thus limg_ e ||y — | = 0 and, by the uniqueness of the expansion of z with
respect to the basis, Six = .
Now,

|l|zn — x||| = sup || Sgxs — Skz| < limsupsup |Spxs — Skzmll,
k>1 m—oo k1l

g0 lim, o |||z, — ||| =0 and (X, ||| - |||} is complete.

By the Closed Graph theorem (or the Open Mapping thecrem), the iden-
tity map ¢ : (X, - [} — (X,]]] - |||} is bounded, i.e., there exists K so that
[|z]|] < K||z| for # € X. This implies that

| Snz| < K=, re X, nell

In particular,
e (@)len]| = |[Snz — Snrz] < 2K 2],

hence e# £ X* and Hef“ < 2K ||len|| L.
O
Let (e,)3> | be a basis for a Banach space X. The preceding theorem tells
us that (e,)5 ; is actually a Schauder basis, hence we use {&})2° ; for the
biorthogonal functionals.

As above, we consider the partial sum operators 5, : X — X, given by
S, =0and, forn>1,

S ( i e (m)ek) = Zn: ep(z)ek.
k=1

k=1

Sy, Is a continuous linear operator since each €} is continuous. That the op-
erators (5,)22 | are uniformly bounded was already proved in Theorem 1.1.3,
but we note it for further reference:

Proposition 1.1.4. Let (e,)22 1 be a Schauder basis for a Banach space X
and (Sy)32 1 the natural projections associated with it. Then

sup |5, < co.
n

Proof. For a Schauder basis the operators (5,)2° ; are bounded a priori. Since
Sn(z) — z for every € X we have sup,, |Sn(z)| < oo for each z € X . Then
the Uniform Boundedness principle vields that sup,, [|S] < oc.

O

Definition 1.1.5. If (e,,)22 ; is a basis for a Banach space X then the number
K = sup,, ||S] is called the basis constant. In the optimal case that K =1
the basis (e,)2% ; is said to be monotone.
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Remark 1.1.6. We can always renorm a Banach space X with a basils in such
a way that the given basis is monotone. Just put

[z|[] = sup [|Sna].
n>l

Then ||z] < |||z]|| < K|z|, so the new norm is equivalent to the old cne and
it is quickly verified that |||S.]|| =1 for n € IN.

The next result establishes a method for constructing a basis for a Banach
space X, provided we have a family of projections enjoying the properties of
the partial sum operators.

Proposition 1.1.7. Suppose S, : X — X, n € N, is a sequence of bounded
linear projections on a Banach space X such that

{i) dim S, {X) =n for each n;
(i) SnSm = SmSn = Smin{m,n}, for any integers m and n; and
(i) Sp(z) — z for every z € X,

i X chosen inductively so that

Then any nonzero sequence of vectors (e 1
> 2 is a basis for X with partial

k)
e1 € S1(X), end er € Sp(X) N S‘,;_ll((]) if

sum projections {5,)° ;.

i
ke

Proof. Let 0 #£ e € §1(X) and define e} : X — R by ef(x)e; = 51(z). Next
we pick 0 # ey € S3(X) N S7H(0) and define the functional €} : X — R by
el(r)jes = S2(z) — S1(z). This gives us by induction the procedure to extract
the basis and its biorthogonal functionals: for each integer n, we pick 0 #£ e, €

8,(X)NS 1 (0) and define €}, : X — R by e}, (2)en = Sn(z) — Sn_1(x). Then

en(@)] = [ Salz) — Sa-a(@)]| en| ™ < 2 sup [ S| el ™ [,

hence ef, € X*. It is immediate to check that ef(e;) = dx; for any two integers
k7.

On the other hand, if we let Sp{z) =0 for all z, we can write

Tl

Sul) =D (Sk(@) = Sia(2)) = > ek(z)er,
k=1

k=1

which, by (¢¢7) in the hypothesis, converges to = for every € X. Therefore,
the sequence (e,)2* ; is a basis and (5,)2% ; its natural projections.
O
In the next definition we relax the assumption that a basis must span the
entire space.

Definition 1.1.8. A sequence (ex)7° ; in a Banach space X is called a basic
sequence if it is a basis for [ex], the closed linear span of (ex)72 ;.
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As the reader will quickly realize, basic sequences are of fundamental im-
portance in the theory of Banach spaces and will be exploited throughout
this volume. To recognize a sequence of elements in a Banach space as a basic
gequence we use the following test, also known as Grunblum’s criterion [T7]:

Proposition 1.1.9. A sequence (ex)i2, of nonzero elements of a Banach
space X 15 basic if and only if there is a positive constant K such that

m b3
] <]
k=1 k=1

for any sequence of scalars (ag) and any integers m, n such that m < n.

‘ (1.1)

Proof. Assume ()72, is basic, and let Sy : [ex] — [ex], N =1,2,..., beits
partial sum prejections. Then, if m < rn we have

| Eakek

o (1.1) holds with K = sup,,, || S|
For the converse, let £ be the linear span of {ex)5°; and sy, : ' — [ex]7e,
be the finite-rank operator defined by

= (o) <p 1] v

n min (im,7)
m( Za.jej) = Z apek, m,n & M.
k=1 k=1
By density each s, extends to Sy, : [ex] — [ex]ie, with |Sn]| = [|sm| < K.

Notice that for each z € E we have
SuSm(z) = Sn&a(z) = Smin(m,n) (x), me,m € N, (1.2)

50, by density, (1.2) holds for all z € [e,].

Spr — rforallz € [e,] since the set {z € [ey] : Sm(x) — x}is closed (see
D.14 in the Appendix) and contains £, which is dense in [e;;]. Proposition 1.1.7
vields that (ex) is a basis for [ex] with partial sum projections (9n,).

O

1.2 Examples: Fourier series

Some of the classical Banach spaces come with a naturally given basis. For
example, in the spaces £, for 1 < p < oo and ¢y there is a cancnical basis
given by the sequence e, = (0,...,0,1,0,...), where the only nonzerc entry
is in the nth coordinate. We leave the verification of these simple facts to the
reader. In this section we will discuss an example from Fourler analysis and
algo Schauder’s original construction of a basis in C[0, 1].
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Let T be the unit circle {z € C: |z| = 1}. We denote a typical element of T
by €’ and then we can identify the space Cc(T) of continuous complex-valued
functions on T with the space of continuous 27-periodic functions on R. Let
us note that in the context of Fourier series it is more natural to consider
complex function spaces than real spaces.

For every n € Z let e,, € Cc(T) be the function such that e, (6) = e™?. The
question we wish to tackle is whether the sequence (eg, €1,€_1,€2,€_2,...) (in
this particular order) is a basis of Cc(T). In fact, we shall see that it is not.
This is a classical result in Fourier analysis (a good reference is Katznelson
[108]) which is equivalent to the statement that there is a continuous function
f whose Fourier series does not converge uniformly. The stronger statement
that there is a continuous function whose Fourier series does not converge at
some point is due to Du Bois-Reymond and a nice treatment can be found in
Korner [117]; we shall prove this below.

That [ep]nez = Cc(T) follows directly from the Stone-Weierstrass theorem,
but we shall also prove this directly.

The Fourier coefficients of f € Cc(T) are defined by the formula

f(n) = _ﬂ f(t)e_i”t;l—;, neZ.

The linear functionals
e Ce(T) = C, frei(f)=Ffn)

are biorthogonal to the sequence (e, )nez.-
The Fourier series of f is the formal series

Z f(n)eine‘

For each integer n let T, : Cc(T) — Cc(T) be the operator

T.() =3 fk)er,

k=—n

which gives us the nth partial sum of the Fourier series of f. Then

n

0+m ) dt
_ ik(60—t)
0= 3 [ foees

n

g ik At
_ _ ikt =
=/ f(—1) g e o

k=—n
T sin(n + 3)t dt
= 0 —t)————22
# ) sin & 2

-7

2
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The function
sin(n + $)t
sin &

Dy (t) =

is known as the Dirichlet kernel.
Let us also consider the operators

1
AnZE(TO‘F"“"Tn—l)v n=23....

Then

n—1
1 sin(k —|— )t dt
AufO) = | f —1) Z T

27
—0
1 (" sin(28)\ ” dt
== 6—t E
n _Wf( )< sin & > o
The function )
1 /sin(Z)
Fo(t) =~ ( —2 )
n \ sing

is called the Fejer kernel. Note that

g dt g dt
/ Dn(t)%:/ Fu(t)5 - =1.

Nevertheless, a crucial difference is that Fj, is a positive function whereas D,
is not.

Let us now show that if f € Cc(T) then ||A,f — f|| — 0. Since f is
uniformly continuous, given € > 0 we can find 0 < § < 7 so that |6 — ¢'| < ¢
implies |f(6) — f(0")| < e. Then for any # we have

Anf(0) - £(0) = / FuO(0— )~ FO)L,
Hence , ) )
l4uf — £ < I / ” g e [ RO
NOW / Fn(t)ﬁ < lsin—2(6/2)
s<|t|<m 2r T n
and so

limsup || Anf — f|| <e.

This shows that [e,]nez = Cc(T).
Since the biorthogonal functionals are given by the Fourier coefficients, it
follows that if (eg,e1,e_1,...) is a basis then the partial sum operators (Sy,)
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satisfy Son41 = 1, for all n. To show that it is not a basis it therefore suffices
to show that the sequence of operators (1;,)52; is not uniformly bounded.
Let ¢ € Cc(T)* be given by

Then
e(Tnf)= | Dn(t)f(-1)

hence

i ™ dt
I T2l = / D) 2L

- 2

Thus, since |sinz| < |z| for all real z,

g dt
T > D, (t)|—
70> [ 1Du0)15
1 [™|sin(n+ 1)t
:_/ ( t2) dt
7 Jo sin £
>2/("+1/2)7r sint dt
B sin b | 20+ 1

Y%

2 (n+1/2)7 | o2 ¢
2 / | sint| it
™ Jo t

By Fatou’s lemma
2 [ ]si
liminf ||T,,|| > —/ Mdm = 0.
n—00 ™ Jo X

Let us remark that we have actually proved that sup,, ||T7¢|| = co; there-
fore by the Uniform Boundedness principle there must exist f € Cc(T) such
that (7}, f(0))s2 is unbounded. Notice also that this is not an explicit exam-
ple; see [117] for such an example.

If we prefer to deal with the space of continuous real-valued functions
C(T), exactly the same calculations show that the trigonometric system
{1, cos8,sin b, cos 20,sin 26, . .. } fails to be a basis. Indeed, the operators (T,)
are unbounded on the space C(T) and correspond to the partial sum operators
(S2n11) as before.

However, C(T) and Cc(T) do have a basis. This can easily be shown in
a very similar way to Schauder’s original construction of a basis in C[0, 1],
which we now describe. Let (g,)5; be a sequence which is dense in [0, 1]
and such that ¢1 = 0 and g2 = 1. We construct inductively a sequence of
operators (S, )52, defined on C[0,1], by S1f(t) = f(q1) for 0 < ¢ < 1 and
subsequently S, f is the piecewise linear function defined by S, f(qr) = f(qr)
for 1 < k < n and linear on all the intervals of [0, 1]\{q1, . .., gn }. It is then easy
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to see that ||S,|| = 1 for all n and that the assumptions of Proposition 1.1.7
are verified. In this way we obtain a monotone basis for C[0,1]. The basis
elements are given by e1(t) = 1 for all ¢ and then e, is defined recursively by
en(an) =1, en(gr) =0 for 1 <k <n—1 and e, is linear on each interval in
[07 1] \{QIa" ’Qn}

To modify this for the case of the circle we identify C(T) [respectively,
Cc(T)] with the functions in C[0, 27] [respectively, Cc[0, 27]] such that f(0) =
f(2m). Let ¢1 = 0 and suppose (¢,)22 4 is dense in [0,27). Then S, f forn > 1
is defined by Sy, f(qx) = f(gx) for 1 <k <n and S, f(27) = f(q1) and to be
affine on each interval in [0,27) \ {¢1,...,qn}-

In both cases this procedure constructs a monotone basis. To summarize
we have:

Theorem 1.2.1. The spaces C[0,1], Cc(T) both have a monotone basis. The
exponential system (1,e",e=% . ..) fails to be a basis of Cc(T).

1.3 Equivalence of bases and basic sequences

If we select a basis in a finite-dimensional vector space then we are, in effect,
selecting a system of coordinates. Bases in infinite-dimensional Banach spaces
play the same role. Thus, if we have a basis (e,)52; of X then we can specify
x € X by its coordinates (e} (z))52,. Of course, it is not true that every
scalar sequence (a,)>2; defines an element of X. Thus X is coordinatized
by a certain sequence space, i.e., a linear subspace of the vector space of all

sequences. This leads us naturally to the following definition.

Definition 1.3.1. Two bases (or basic sequences) (z,,)22; and (¥, )52 in the
respective Banach spaces X and Y are equivalent, and we write (z,)52; ~
(Y )52, if whenever we take a sequence of scalars (a,)52,, then Y~ | an®y

converges if and only if > | a,y, converges.

Hence if the bases (x,)52; and (y,, )22, are equivalent then the correspond-
ing sequence spaces associated to X by (2,)52; and to Y by (y,)52 coincide.
It is an easy consequence of the Closed Graph theorem that if (z,,)52; and
(yn)S2, are equivalent then the spaces X and Y must be isomorphic. More
precisely, we have:

Theorem 1.3.2. Two bases (or basic sequences) (x,)5%; and (yn)5>, are
equivalent if and only if there is an isomorphism T : [x,] — [yn] such that
Tx, = yn for each n .

Proof. Let X = [x,] and Y = [y,,]. It is obvious that (z,)22; and (y,)52; are
equivalent if there is an isomorphism 7" from X onto Y such that Tz, = y,
for each n.

Suppose conversely that (x,)52; and (y,)52; are equivalent. Let us de-
fine T : X - Y by T(3_07 | an®n) = > no | Gnyn. T is one-to-one and onto.



1.3 Equivalence of bases and basic sequences 11

To prove that 1' is continuous we use the Closed Graph theorem. Suppose
(uj)324 is a sequence such that u; — win X and T'u; — v in V. Let us write
wj = oo s xn(u)r, and w = >0zt (u)z,. It follows from the continu-
ity of the biorthogonal functionals associated respectively with (z,)2°; and
(Un)mey that z}(u;) — z}(u) and ¥ (Tuy) = =5 (u;) — y;(v) for all n. By
the uniqueness of limit, =} {u) = u, () for all n. Therefore Tw = v and so T
is continuous.

O

Corollary 1.3.38. Let ()22, and (y,)2>, be two bases for the Banach spaces
X and Y respectively. Then (2,)50 1 ~ (yn)o2 if and only if there exists a
constant C' = 0 such that for all finitely nonzero sequences of scalars (a:)32

we have
o0 o0 o0
C_lH Zaiyi < H Zaiﬂfi < CH Zaiyi
=1 =1 =1

If @ =11in (1.3) then the basic sequences (z,)52 ; and (¥, )52, are said
to be isometrically equivalent.

Equivalence of basic sequences (and in particular of bases) will become a
powerful technique for studying the isomorphic structure of Banach spaces.

Let us now introduce a special type of basic sequence:

: (1.3)

Definition 1.3.4. Let (e,)22; be a basis for a Banach space X. Suppose
that (pn)o2; is a strictly increasing sequence of integers with pp = 0 and that
(@)% { are scalars. Then a sequence of nonzero vectors ()2 ; in X of the

form
Pr

Up — E 2511
F=pn—1+1

is called a block basic sequence of (e,)32 ;.

Lemma 1.3.5. Suppose (€,)15° | is a basis for the Banach space X with basis
constant K. Let (ug)§2, be a block basic sequence of {e,)22 1. Then (ug)i®,
15 a basic sequence with basis constant less than or equal to K.

Pr

J=pr—1+1
of (,)2 ;. Then, for any scalars (by) and integers m,n with m < n we have

Proaof. Suppose that up = ajej, k € IN, is a block basic sequence

m m P
H ZbkukH = b Z aje; ‘
k=1 k=1 J=pr1+1

i Pr
= E E bk&j@j
k=1j=pr_1+1
P

- E Ci€s

i=1

, where ¢ = ajbp i pe 1 +1 <7 <y
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P

S KH chej
=1
T

- KH ZbkukH.
k=1

That is, (uy) satisfies Grunblum’s condition (Proposition 1.1.9), therefore (wu)
ig a basic sequence with basis constant at most K.
O

Definition 1.3.6. A basic sequence (z,)2% ; in X is complemented if [z,] is
a complemented subspace of X.

Remark 1.3.7. Suppose (z,)22; is a complemented basic sequence in a Ba-
nach space X. Let ¥ = [z,] and P: X — Y be a projection. If (z)3° , c ¥
are the biorthogonal functionals asscciated to (z,)52, using the Hahn-
Banach theorem we can obtain a biorthogonal sequence (£})32 ; < X* such
that each £ is an extension of z¥ to X with preservation of norm. But since
we have a projection, P, we can also extend each z; to the whole of X by

putting u} = 7 o P. Then for z € X, we will have

Z ul (x)e, = P(z).

Conversely, if we can make a sequence (u})$° 1 © X* such that u! (z,) = dpm
and the series > | u} (z)x, converges for all z € X, then the subspace [z,,]
is complemented by the projection X — [z,], z — anl wt (z)zy.

Definition 1.3.8. Let X and Y be Banach spaces. We say that two sequences
(zn)s2, © X and (yn)22, C Y are congruent with respect to {X,Y) if there is
an invertible operator T': X — ¥ such that T(z,) = y,, for all n € N. When
(zy) and (y,) satisfy this condition in the particular case that X =Y we will
simply say that they are congruent.

Let us suppose that the sequences ()22, in X and {y,)3%, in Y are
congruent with respect to {X,Y). The operator ' of X onto ¥ that exists
by the previous definition preserves any isomorphic property of (z,)52 . For
example if (z,,)32, is a basis of X then (y,,)22 , is a basis of V; if K is the basis
constant of (2,)22 ; then the basis constant of (3,,)52 ; is at most K| T'|||| 71

The following stability result dates back to 1940 [118]. It says, roughly
gpeaking, that if (£,)22 ; is a basic sequence in a Banach space X and ()32 4
is another sequence in X so that ||z, —y,| — 0 fast enough then (v,)5% ; and
(24)22, are congruent.
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Theorem 1.3.9 (Principle of small perturbations). Let ()3, be a

basic sequence in o Banach space X with basis constant K. If ()52, is a
sequence in X such that

llzn = yall
2K =#8<1,
Z |

then (x,)5° , and (y, )22, are congruent. In particular:

() If (24)52 is a basis, so 15 (yn)oo, (m which case the basis constant of

(42)22 1 is at most K(1+ ) {1 —0)"1),
(1) (Y )22 15 a basic sequence (with basis constant at most K (14+-6)(1—-8)~1),
(i) If [z, is complemented then [y,] is complemented.

Proof. For every n > 2 and any x € [x,] we have

7 n—1
n (T Ty = Ezﬁ(z)azk - Emﬁ(az)azk,
k=1 k=1

where (z¥)  [z,]* are the biorthogonal functionals of (x,,). Then | #% (z)z, || <
2K ||z and so |z} |||z || < 2K. Forn = 1it is clear that ||z} |||z1] < K. These

inequalities still hold if we replace ¥ by its Hahn-Banach extension to X, &
For each z € X put

Ale) =2+ b5 (@) (e — ).

A iz a bounded operator from X to X with A(z,) = ¥, and with norm
Al <1+ E 25 1 — 2]

e —
<”2KZ ol

=1+8

Moreover,
o0
A= <> ey — 7l = 0< 1,

which implies that A is invertible and ||A—1| < (1 — )L,
O
As an application we obtain the following result known as the Bessaga-
Pelemypiski Selection Principle. It was first formulated in [12]. The technique

used in its proof has come to be called the “gliding hump” (or “sliding hump”)
argument; the reader will see this type of argument in other contexts.
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Proposition 1.3.10 (The Bessaga-Pelczyniski Selection Principle). Let
(en)52 1 be a basis for a Banach space X with basis constant K and dual func-
tionals ()52 . Suppose ()52, is a sequence in X such that

(1) inf,, ||z,] > 0, but
(i) limy, o ) (2) = 0 for all k € N.

Then (x,)52, contains a subsequence (Tn, )72 ; which is congruent to some
block basic sequence (yi)7>, of (en)or,. Furthermore, for every e > 0 it is
possible to choose (ny)32 so that (xy, )52, has basis constant at most K + .
In particular the same result holds if (x,)22, converges to 0 weakly but not
in the norm topology.

Proof. Let a = inf, ||z,]| > 0 and let K be the basis constant of (e,)22 ;.
Suppose 0 < v < §.
Pick n; =1, rog = 0. There exists r; € N such that

rvo
||xn1 - Sﬁxnl” < ﬁ

Here, as usual, S, denotes the mth-partial sum operator with respect to the

basis (e5,)22,. We know that lim,_.c ||Sr, 2| = 0, therefore there is na > nq
such that )
Vo
[Sr @n, || < SK
Pick ro > 71 such that
Vo
”xnz - Ssznzu < ﬁ
Again, since lim, o ||Sr,Zn|| = 0, there exists n3 > na so that
Vo
||S7”2xn3|| < ﬁ

In this way, we get a sequence (zn,)32; C X and a sequence of integers
(Tk)iozo with rg = 0, such that

Vka I/ka

||S7'k—1xnk|| < ﬁ? ||xnk - STkwnk” < ﬁ
For each k € N, let yr = Sy, Zn, — Sro_1Tn,- (Yr) is a block basic sequence
of the basis (e,). Hence, by Lemma 1.3.5, (yx) is a basic sequence with basis
constant less than K.
Notice that for each k
vka
”yk - xnk” < 7’

hence,
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Vo
el > @ = 22 > (1= vy

Then

QKZH% Zul o0 ) 121/ =2(l—v) 2 <

7y

O] G0

By Theorem 1.3.9, (x,.) is a basic sequence equivalent to (yg). Since i can
be made arbitrarily small, we can arrange the basis constant for (z,,) to be
as close to K as we wish. Moreover, if {yy) is complemented in X so is (z,,).

O

1.4 Bases and basic sequences: discussion

The abstract concept of a Banach space grew very naturally from work in the
early part of the twentieth century by Fredholm, Hilbert, F. Riesz, and others
on concrete function spaces such as C[0,1] and L, for 1 < p < co. The original
motivation of these authors was to study linear differential and integral equa-
tions by using the methods of linear algebra with analysis. By the end of the
First World War the definition of a Banach space was almost demanding to be
made and it is therefore not surprising that it was independently discovered
by Norbert Wiener and Stefan Banach around the same time. The axioms
for a Banach space were introduced in Banach’s thesis (1920}, published in
FPundamenia Mathematicae in 1922 in French.

The initial results of functional analysis are the underlying principles (Uni-
form Boundedness, Closed Graph and Open Mapping theorems and the Hahn-
Banach theorem) which crystallized the common theme in so many arguments
in analysis of the early twentieth century. However, after this, it was Banach
and the school {Steinhaus, Mazur, Orlicz, Schauder, Ulam, etc.) in Lvov (then
in Poland but now in the Ukraine) that developed the program of studying
the isomorphic theory of Banach spaces. This school flourished until the time
of the Second World War. In 1939, under the terms of the Nazi-Soviet pact,
shortly after Germany invaded Poland, the Soviet Union occupied eastern
Poland, including Lvov. After the Soviet invasion Banach was able to continue
working, but the German invasion of 1941 effectively and tragically ended the
work of his group. Banach himself suflered great hardship during the German
occupation and died shortly after the end of the war, in 1945.

Given two classical Banach spaces X and Y one can ask questions such as
whether X is isomorphic to Y, or whether X is isomorphic to a [complemented]
subspace of Y. For these sort of questions, bases and basic sequences are an
invaluable tool.

In 1932 Banach formulated in his book ([8], p. 111} the following:

The basis problem: Does every separable Banach space have a basis?
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This problem motivated a great deal of research over the next forty years.
Undoubtedly, the Lvov school knew much more about this problem than was
ever published but, unfortunately, their research came to an untimely end with
the German invasion of the Soviet Union in 1941. In particular, Mazur in the
Scottish Book (an informal collection of problems kept in Lvov) formulated
a very closely related problem which has come to be known as the Approxi-
mation Problem. Both problems were eventually solved by Per Enflo in 1973
[54], when he gave an example of a separable Banach space failing to have
the Approximation Property and hence also failing to have a basis. This solu-
tion is beyond the scope of this book (see [138]), but we can at least present
two facts that were known to Banach: Theorem 1.4.3 and Theorem 1.4.4. To
that end, let us first record the following lemma, which will be required many
times.

Lemma 1.4.1. Let X be a Banach space.

(i) If X is separable then the closed unit ball of X*, Bx~, is (compact and)
metrizable for the weak™ topology.

(i) Suppose X* contains a separating (or total) sequence (x})52, for X; that
is, ¥ (x) = 0 for all n € N implies that x = 0. Then any weakly compact
subset of X is metrizable for the weak topology.

The conditions of (ii) hold when X is separable.

Proof. The proofs of both (i) and (i7) rely on the following simple observation.
If K is a compact set for some topology 7, and 7/ is any Hausdorff topology
on K which is weaker than 7, then 7 and 7 coincide. Indeed, suppose A is
a T-closed subset of K. Then A is T7-compact and so its continuous image in
(K, 7’) under the mapping idx : (K,7) — (K,7’) is also compact, i.e., A is
7/-compact. Since 7’ is Hausdorff, A is 7/-closed.

For (i), let us take (x,)5° ; dense in the unit ball By of X. We define the
topology p induced on X* by convergence on each x,. Precisely, a base of
neighborhoods for p at a point 2§ € X* is given by sets of the form

Ve(@gsar, ..., an) = {a* € X* ¢ |z*(x,) — xf(2n)| <€, n=1,...,N},

where € > 0 and N € N. This topology is metrizable, and a metric inducing p
may be defined by

o0

Z "min(l, 2 (zn) — y*(za)]),  2F,y" € X

p is Hausdorff and weaker than the weak™ topology, so it coincides with the
weak™® topology on the weak® compact set Bx«.

To prove (i) we choose for p the topology on X induced by convergence
in each 7. The details are very similar; the point separation property is
equivalent to p being Hausdorff.
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Finally, if X is separable let {z;,)2° ; be a sequence of nonzero vectors which
ig dense in X. For each n, using the Hahn-Banach theorem pick z} € X* so
that z} (zy,) = ||zx| and ||#%]| = 1. Suppose zk(z) =0 for all n. Then if € > 0
there exists m € N so that |2 — 2. || < e. Thus ||zx|| = 2}, (zm) < € and s0
|lz|| < 2. Since € > 0 iz arbitrary we have z = 0.

O

Remark 1.4.2. (a) Note that if X = &, then the conditions of (i7) in the
lemma hold (use the coordinate functionals) but X is not separable. Thus,
every weakly compact subset of ., 1s metrizable.

(b) Let us chserve as well that if X is separable then not only is the sequence
(2}1)22 , in (i) separating for X but it is also norming in X. That is, the norm
of any € X 1s completely determined by this numerable set of functionals:

|z = sup |z (=), rec X
T

The next theorem is in [8], p. 185. The proof uses the Cantor set and some
of its topological properties.
By the Cantor set', A, we mean the topological space {0, 1}, the count-

able product of the two-point space {0, 1}, endowed with the product topoel-

Ong.

Among the features of the Cantor set we single out the following:
o A embeds homeomorphically as o closed subspace of [0,1].
The map
SE

3?’1

n=1

A —]0,1], (tn) —

does the job.

o [0,1] is the continuous image of A.
Indeed, the function ¢ : A — [0,1] defined by @({(t.)32,) = > o7, t./2" is
continuous and surjective {(but not one-to-one).

o A is homeomorphic to the coundable product of Cantor sets, AN,

This follows from the fact that if (A4, 73)scw is a countable family of topological
spaces each of which is homeomorphic to the countable product of two-point
spaces, {0, 1}, then the topological product space [Licx As is homeomorphic
to {0, 1}

! On the other hand, the Cantor middle third set, C, consists of all those real
numbers z in [0, 1] so that when we write « in ternary form z = 3777, a;/3°, then

none of the numbers ai,as,... equals 1 (i.e., either a; = 0 or a; = 2). Actually,
the ternary correspondence from C onto A, 57, a:/3" — (a1/2,a2/2,...) is a
homeomorphism.

2 Sometimes, for convenience, we will equivalently realize the Cantor set as A =

{-1,1}"
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e [0,1]N is the continuous image of A.

Since A is homeomorphic to AN, a point in A can be assumed to be of the
form (z1,x2,...), where z; € A for each i. If ¢ : A — [0,1] is a continuous
surjection, then 1 : A — [0, 1] defined by ¥(z1, 22, ...) = (¢(x1), p(x2),...)
is continuous and surjective as well.

Theorem 1.4.3 (The Banach-Mazur Theorem). If X is a separable Ba-
nach space then X embeds isometrically into C[0,1] (and hence embeds iso-
metrically in a space with a monotone basis).

Proof. The proof will be a direct consequence of the following two Facts:

Fact 1. If X is a separable Banach space, then there exists a compact, Haus-
dorff, metrizable space K such that X embeds isometrically into C(K).

Indeed, take K = Bx+ with the relative weak* topology. If X is separable
then Bx- is compact and metrizable as we saw in Lemma 1.4.1. The isometric
embedding of X into C(Bx-) is easily checked to be achieved by the mapping
x — fp where fy(2*) = 2*(z) for all 2* € Bx-~.

Fact 2. If K is a compact metrizable space then C(K) embeds isometrically
into C[0,1].
We split the proof of this statement into some steps:

o If K is a compact metrizable space, then K embeds homeomorphically into
[0, 1]N. Being compact and metrizable, K contains a countable dense set,
(8n)221. Let p be a metric on K inducing its topology. Without loss of gen-
erality we can assume that 0 < p < 1. Now we define 6 : K — [0, I]N by
B(x) = (p(, 5n))1-

6 is continuous since the mapping = — p(z, s,,) is continuous for each n. ¢
is injective because if z and y are two different points in K then there exists
some s, such that p(z, sp) < p(y, sp) (or the other way round) and, therefore,
6(z) and 6(y) will differ in the nth-coordinate.

Since K is compact and [0,1]N is Hausdorff, it follows that § maps K
homeomorphically into its image.

o If E is a closed subset of [0,1], then C(E) embeds isometrically into C[0,1].
To show this, we need only define a norm-one extension operator A : C(E) —
C[0,1], i.e., a norm-one linear map so that Af|r = f for all f € C(E). Notice
that [0,1] \ E is a countable disjoint union of relatively open intervals; thus,
we may extend f to be affine on each such interval interior to [0, 1] and to be
constant on any such interval containing an endpoint of [0, 1]. This procedure
clearly gives a linear extension operator.

We are ready now to complete the proof of Fact 2 and, therefore, of the
theorem. Let ¥ : A — [0,1]Y be a continuous surjection and let us consider
K as a closed subset of [0,1]N. It follows that if £ = % !(K), then E is
homeomorphic to a (closed) subset of [0,1]. Then C(E) embeds isometrically
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into C[0,1]. Finally, f — f ¢t embeds C(K) isometrically into C(£) and,
therefore, C(K) embeds isometrically into C[0, 1].

O

Theorem 1.4.4 was also known to Banach’s school in their approach to
tackle the basis problem and it is mentioned without proof by Banach in [8],
p. 238. Several proofs have been given ever since; for example a proof due to
Mazur is presented on p.4 of [138] and we shall revisit this thecrem in the

next section (Corollary 1.5.3). The proof we include here is due to Bessaga
and Pelezymski [12].

Theorem 1.4.4. Every separable, infinite-dimensional Barach space con-
tains a basic sequence (t.e., a closed infinite-dimensional subspace with a ba-
s18). Furthermore if € > 0 we may find a basic sequence with basis constant at
most 1+ €.

Proof. By the Banach-Mazur theorem (Theorem 1.4.3) we can consider the
case when the separable Banach space X is a closed subspace of C[0,1]. Let
(€)% | be a monotone basis for C[0, 1] with bicrthogonal functionals (e} ;.
Since X is infinite-dimensional we may pick a sequence ()22, in X with
[ fol =1 and €5(fn) = 0 for 1 < k < n. By Proposition 1.3.10 we can find a
subsequence (f,, )72, which is basic with constant at most 1+ e.

O

1.5 Constructing basic sequences

The study of the isomorphic theory of Banach spaces went into retreat after
the Second World War and was revived with the emergence of a new Polish
school iIn Warsaw around 1958. There were some profound advances in Banach
gpace theory between 1941 and 1958 (for example, the work of James and
Grothendieck) but it seems that only after 1958 was there a concerted attack
on problems of isomorphic structure. The prime mover in this direction was
Pelczyniski. Pelczyniski, together with his collaborators, developed the theory
of bases and basic sequences into a subtle and effective tool in Banach space
theory. One nice aspect of the new theory was that basic sequences could
be used to establish some classical results. In this section we are going to
look deeper into the problem of constructing basic sequences and then show
in the next section how this theory gives a nice and quite brief proof of the
Eberlein-Smulian theorem on weakly compact sets.

We will now present a refinement of the Mazur method for constructing
basic sequences. We work in the dual X* of a Banach space for purely technical
reasons; ultimately we will apply Lemma 1.5.1 and Thecrem 1.5.2 to X**.

—weak®

Lemma 1.5.1. Suppose that 5 is a subsel of X* such that 0 € 5 bt

0¢ ?HIH. Let E be a finite-dimensional subspace of X*. Then givern € > 0
there exists x* € § such that
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le" +Az*[| = (1 —€) [e"]]
for all e* ¢ E and A c R.

Proaf. Let us notice that such a set 5 exists because the weak* topelogy and
the norm topology of an infinite-dimensional Banach space do not colncide.
0 égll'\\ implies o < ||z*| for all z* € §, for some 0 < a < co.

Given ¢ > 0 put

_ o
E=—".
2(1 4+ @)
Let Ug = {&" € E : ||e*| = 1}. Since E is finite-dimensional Ug is
norm-compact. Take of,vd,...,yk € Ug such that whenever e* € Ug then

le* —wil| <€ forsomek =1,....,N;foreachk =1,...,N pick z € Bx =0
that yf(zx) > 1—%

Since 0 < ?Weak* each neighborhood of 0 in the weak* topology of X*
containg at least one point of § distinct from 0. In particular there is z* € §
such that |z*(zy)| < € for each & =1,..., V.

Ife* € Ug and |A| > % we have

le* +Az*|| = [Aa—12= 1.
If [A| < 2 we pick yf such that [|e* — y}| <€ Then

i +A2™|| = yilze) + Az™(28)
> (1 —%) + Az™(2x)
>(1—¢ —|Ae

> (1- 1+ 2)e)

and, therefore,
e + Azl = | et = will = llyi + Aa |

21—(1+2>e—e
[0}

=1—e
O
Theorem 1.5.2. Suppose that S is a subset of X* such that 0 € S bt
0¢ ?”"‘, Then for any € > 0, 5 contains a basic sequence with basis constant

less than 1+ €.

Proof. Fix a decreasing sequence of positive numbers {e,)52 ; such that

3% €y < 00 and so that [[77 (1 —e,) > (1 +e)7 L.

=1 =1
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Pick =i € 5 and consider the l-dimensional space F; = [z}]. By
Lemma 1.5.1 there is 23 € § such that

le" + Azg]l = (1 —er) [le”]]

for all e* € B and A e R,
Now let B be the 2-dimensional space generated by «3, x4, Fo = [z}, zd].
Lemma 1.5.1 yields z} € & such that

" + Az|| = (1 —e2) |[€”
for all e* € F; and A € R.

Repeating this process we produce a sequence (z})2° ; in S such that for
each n € N and any scalars (az),

n+1

H ZakrkH > (1 —en) ‘ ZakmkH

Therefore given any integers m, n with m < n we have

1
| Y awai| < | Zam
k=1

(1—¢5)

i=1

Applying the Grunblum condition (Proposition 1.1.9) we conclude that (x}*)2° |
ig a basic sequence with bagis constant at most 1 + €.
O

Corollary 1.5.3. Every infinite-dimensionad Banach space conlains, for € >
0, a basic sequence with basis constant less than 1 | .

Proof. Let X be an infinite-dimensional Banach space. Consider § = dBx =
{z € X ||z| =1}. We claim that 0 belongs to the weak closure of &, therefore
it belongs to the weak™ closure of 5 as a subspace of X**.

If our claim fails then there exist some ¢ > 0 and linear functionals
z3,...,2% in X* such that the weak neighborhood of 0

V={zeX:|zj(@)| <e fork=1,...,n}

satisfies ¥V N & = @. This is impossible because the intersection of the null
subspaces of the #3’s Is a noentrivial subspace of X contained in V' with points
in 5.

Now Theorem 1.5.2 yields the existence of a basic sequence (z,,) in S with
basis constant as close to 1 as we wish.

O

The following proposition Is often stated as a special case of Theorem 1.5.2.

It may also be deduced equally easily using Theorem 1.4.4.
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Proposition 1.5.4. If {z,)3°, is a weakly null sequence in an infinide-
dimensional Banach space X such that infy, |z.| > 0 then, for ¢ > 0,
(x)2 | contains a basic subsequence with basis constant less than 1+ ¢.

Proof. Congider § = {z,, : n € N}. Since (2,)32 is weakly convergent, the
get S Is norm bounded. Furthermore 0 € gweak hence, by Theorem 1.5.2, §
contains a basic sequence with basis constant at most 1+¢. To finish the proof
we just have to prune this basic sequence by extracting terms in increasing
order and we obtain a basic subsequence of (2,,)32 ;.
O
The next technical lemma will be required for our main result on basic
sequences.

Lemma 1.5.5. Let (2,)2°; be a basic sequence in X. Suppose that there ex-
ists a linear functional 2* € X* such that z*(xy) =1 for alln € N. If u & [14]

then the sequence (x, + w)2° | is basic.

Proof. Since u € [z,], without loss of generality we can assume z*(u) = 0.

Let T': X — X be the operator given by T'(z) = z*(z)u. Then Ix + T is

invertible with inverse Tx — 1. Since (Ix + 1) (z,) = zn + v, the sequences
()22, and (z, + )52, are congruent, hence (z, + )52, is basic.

O

We are now ready to give a criterion for a subsel of a Banach space to

contain a basic sequence. This criterion is due to Kadets and Pelezytiski (1965)

991,

Theorem 1.5.6. Let 5 be a bounded subset of a Banach space X such that
0¢g ?”IH_ Then the following are equivalent:

(1) S fails to contain a basic sequence,

(i) FUR s weakly compact and fails to contain 0.

Proof. (i1} = (¢). Suppose (,)5°, < 5 Is a basic sequence. Since 57K i
weakly compact, (z,,)2° ; has a weak cluster point, z, in gweak. By Mazur’s
theorem, z belongs to [z,], so we can write z = > . | x¥ (z)ay.

By the continuity of the coefficient functionals (z})2° 4, it follows that for
each n, z}(z) iz a cluster point of the scalar sequence (z} (zn))32_;, which
converges to 0. Therefore, z* (z) = 0 for all n and, as a consequence, z = 0.
This contradicts the hypothesis, so § contains no basic sequences.

For the forward implication, (i) = (), assume S contains no basic se-
quences. We can apply Theorem 1.5.2 to 5 conzidered asg a subset of X** with
the weak® topology and we conclude that 0 cannot be a weak closure point
of 5. It remains to show that S is relatively weakly compact. To achieve this
we simply need to show that any weak* cluster point of 5 in X** is already
contalned In X. Let us suppose z** 1s a weak® cluster point of 5 and that

¢ X**\ X, Consider the get § —z** = {s —z** : 5 € §} in X**. By
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Thecrem 1.5.2 there exists (z,)2° 1 in 9 such that the sequence (z, —z**)2°

iz basic. We can suppose that z** & [z, — 2** : n > 1] because it is certainly
true that ** ¢ [z,, —z** : n > N] for some choice of N. By the Hahn-Banach
theorem there exists z*** ¢ X*** so that z*** ¢ X1 and z***(z**) = 1.
This implies that z***(z, — z**) =1 for all n € N. Now Lemma 1.5.5 applies
and we deduce that (x,)2° , is also basic, contrary to our assumption on S.
O

1.6 The Eberlein-Smulian Theorem

Let M be a topological space and A be a subset of M. Let us recall that A is
said to be sequentially compact [respectively, relatively sequentially compaci] it
every sequence in A has a subsequence convergent to a point in A [respectively,
to a point in M] and that 4 is countably compact [respectively, relatively
courtably compact] if every sequence in 4 has a cluster point in 4 [respectively,
in M.

Countable compactness 1s implied by both compactness and sequential
compactness. If M is a metrizable topological space these three concepts cer-
tainly coincide but if M is instead a general topological space these equiva-
lences are no longer valid. The easiest counterexample 1s obtained by consid-
ering Be- , the unit ball in £ with the weak® topology. Bex is, of course,
weak® compact but falls to be weak® sequentially compact: the sequence of
functionals {e},) given by e%(£) = £(n) has no weak* convergent subsequence.

In this section we will prove the Eberlein-Smulian theorem, which asserts
that in a Banach space the weak topology behaves like a metrizable topology in
this respect although it need not be metrizable even on compact sets (except in
the case of separable Banach space, see Lemma 1.4.1). That weak compactness
implies weak sequentially compaciness was discovered by Smulian in 1940
[207]; the more difficult converse direction is due to Eberlein (1947) [51]. This
result is rather hard and the original proof did not use the concept of a basic
sequence, as the result predates the development of basic sequence techniques.
The proof via basic sequences is due to Pelczyriski [172]. Basic sequences seem
to provide a conceptual simplification of the idea of the proof.

The lemmas we will need are the following:

Lemma 1.6.1. If (z,)2° , is a basic sequence in a Banach space and = is a
weak cluster poird of (1,2 ¢ then z = 0.

Proof. Since z is in the weak closure of the convex set {x,, : n € N} (the linear
span of the sequence (z,)), Mazur’s theorem yields that = belongs to the
norm-closed linear span, [z,], of (z,). Hence z = 3707 |} (2)z,, where (z})
are the biorthogonal functionals of (z,). Now, for each n, z¥(z) is a cluster
point of (z} (zm))oo_1 and is, therefore, forced to be zero. Thus z = 0.

O
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Lemma 1.6.2. Let A be a relatively weakly countably compact subset of a
Banach space X. Suppose that x ¢ X s the only weak cluster point of the
sequence (2,)5° 1 C A, Then (z,)5° 1 converges weakly to .

Proof. Assume that (z,,) does not converge weakly to z. Then for some z*
X* the sequence (z*(2,,))22 fails to converge to z*(z), hence we may pick
a subsequence (z,,)7>; of (z,) such that infy |2*(z) — z*(z,,)| > 0. But
this prevents x from being a weak cluster point of (z,,), contradicting the
hypothesis.

O

Theorem 1.6.3 (The Eberlein-Smulian Theorem). Let A be a subset of
a Banach space X. The following are equivalent:

i) A is frelatively] weakly compact,
(i} A is [relotively] weakly sequentially compact,
(1it) A is frelatively] weakly countably compact.

Proof. Since (i) and (i2) both imply (i2¢) we need only show that (i7:) implies
both (#) and (7). We will prove the relativized versions; minor modifications
can be made to prove the nonrelativized versions. Note that each of the state-
ments of the theorem Implies that A is bounded.

Let us first do the case (ii7) implies (7¢). Suppose (2,)52 ; is any sequence
in A. Then, by hypothesis, there is a weak cluster point x of (z,)%%,. I[f z is
a point in the norm-closure of the set {z,}32 , then there is a subsequence
which converges in norm and we are done. If not, using Theorem 1.5.6, we can
extract a subsequence (y,,)5° 4 of (z,) so that (y, — )2 is a basic sequence.
But (y,)32; has a weak cluster point, v, hence y — x iz a weak cluster point
of the basic sequence {y, — )% ;. By Lemma 1.6.1 we have y = z. Thus = is
the only weak cluster point of (1,12 ;. Then ()% converges weakly to x
by Lemma 1.6.2.

Let us turn to the case (#é¢) implies (7). Suppose A fails to be relatively
weakly compact. Since the weak* closure W of A in X** is necessarily weak*
compact by Banach-Alaoglu’s theorem, we conclude that this set cannot be
contained in X. Thus there exists z** € W\ X. Pick z* € X* so that " (z*) >
1. Then consider the set Ag = {x € A: z*(z) > 1}. The set A iz not relatively
weakly compact since z** is in its weak* closure. Theorem 1.5.6 gives us a
basic sequence (2,)52 ¢ contained in Ag. Appealing to countable compactness,
(2,)52 | has a weak cluster peoint, =, which by Lemma 1.6.1 must be z = 0.
This is a contradiction since, by construction, z*(x}) > 1.

O

Combining Thecrem 1.6.3 with Proposition G.2 we obtain:

Corollary 1.6.4. A Banach space X is reflexive if and only if every bounded
sequence has a weakly convergent subsequerice.
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The Eberlein-Smulian theorem was probably the deepest result of earlier
(pre-1950) Banach space theory. Not surprisingly it inspired more examination
and it is far from the end of the story. In [74] the Eberlein-Smulian theorem is
extended to bounded subsets of C(K) (K a compact Hausdorff space) with the
weak topology replaced by the topology of pointwise convergence. This does
not follow from basic sequence techniques because it is no longer true that a
cluster point of a basic sequence for pointwise convergence is necessarily zero.
Later, Bourgain, Fremlin, and Talagrand [16] proved similar results for subsets
of the Baire class one functions on a compact metric space. A function is of
Baire class one if it is a pointwise limit of a sequence of continuous functions.

Problems

1.1. Mazur’s Weak Basis Theorem.

A sequence (e,)5% is called a weak basis of a Banach space X if for each x € X
there is a unique sequence of scalars (a,,)32; such that z = > | a,z,, in the
weak topology. Show that every weak basis is a basis. [Hint: Try to imitate
Theorem 1.1.3.]

1.2. Krein-Milman-Rutman Theorem.
Let X be a Banach space with a basis and D be a dense subset of X. Show
that D contains a basis for X.

1.3. Let (e,) be a normalized basis for a Banach space X and suppose there
exists x* € X* with 2*(e,) = 1 for all n. Show that the sequence (e, —
en—1)52, is also a basis for X (we let eg = 0 in this definition).

1.4. The Bounded Approximation Property.
A separable Banach space X has the bounded approzimation property (BAP)
if there is a sequence (T3,) of finite-rank operators so that

lim ||z — Tyz| =0, xeX. (1.4)
n—oo

(a) Show (1.4) implies sup,, |1, || < co and, hence, (BAP) implies the approx-
imation property.

(b) Show that every complemented subspace of a space with a basis has
(BAP).

1.5. Let X be a Banach space and A : X — X a finite-rank operator. Show
that for € > 0 there is a finite sequence of rank-one operators (B,,)Y_; so that
A=B1—|—'-'—|—BN and

n
sup ” Z Bk” <||A| + e
1<n<N i
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1.6. Show that if X has (BAP) then there is a sequence of rank-one operators
(Bn)S2, so that x = Y"°° | B, for each x € X. [Hint: Apply Problem 1.5 to

A=Tiand A=T, —Tp_1 forn=2,3,...]

1.7. If X has (BAP) let (B,,)52; be the sequence of rank-one operators given
in Problem 1.6. Let Bpx = x} (z)x, where z, € X* and z,, € X. Define Y to
be the space of all sequences £ = (£(n))32, so that > -2 &(n)z, converges
under the norm

el = sup | 3 etk |
k=1

(a) Show that (Y, ||-|ly) is a Banach space and that the canonical basis vectors
()22, form a basis of Y.

(b) Show further that X is isomorphic to a complemented subspace of Y.

Thus X has (BAP) if and only if it is isomorphic to a complemented sub-
space of a space with a basis. This is due independently to Johnson, Rosenthal,
and Zippin [94] and Pelczyiiski [175]. In 1987 Szarek [212] gave an example
to show that not every space with (BAP) has a basis; this is very difficult!
We refer to [24] for a full discussion of the problems associated with the
bounded approximation property. See also Chapter 13 for the construction of
Pelczynski’s universal basis space U.

1.8. Suppose X is a separable Banach space with the property that there is
a sequence of finite-rank operators (7),) such that lim, . (T,x,2*) = (z,z*)
for all x € X, z* € X*. Show that X has the (BAP).
1.9. Suppose that X is a Banach space and that (7},)52; is a sequence of
finite-rank operators such that lim, ... (Tiz*, ™) = (x*, 2**) for every z* €
X*, e X*.
(a) Show that (7,,)5°, is a weakly Cauchy sequence in the space K(X) of
compact operators on X and that (1,)52; converges weak™ to an element x €
K(X)** where ||x|| = 1. [Hint: Consider Bx+ and Bxs» with their respective
weak™® topologies. Embed K(X) into C(Bx+ X Bx++) via the embedding T" —
fr where fp(z*,a**) = (T*x*, 2**).]
(b) Using Goldstine’s theorem deduce the existence of a sequence of finite-
rank operators (S,)52 so that lim,_,« ||Sp|| =1 and lim, .« [|Spz — 2| =0
for x € X. [Hint: Choose each S, as a convex combination of {T},, Ty, 41, - }.]
Thus if X is reflexive and has (BAP) we can choose the operators T, to
have ||T5,]| < 1; thus X has the metric approzimation property (MAP).

1.10. Consider T with the normalized measure %.

(a) Show that the exponentials (e, e1,e_1,...) (see Section 1.2) do not form a
basis of the complex space L1 (T). [Hint: Prove that the partial sum operators
Snf =3 r__, f(k)ey are not uniformly bounded.]
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(b) Show that if 1 < p < 00, (eg, e1,e—1,...) form a basis of L,(T). (You may
assume that the Riesz projection is bounded on L,(T), i.e., there is a bounded
linear operator R : L, — L, such that Re;, =0 when k£ <0 and Rej, = e}, for
k > 0. This is equivalent to the boundedness of the Hilbert transform; see for
example Theorem 1.8, p. 68, of [108].)



2

The Classical Sequence Spaces

We now turn to the classical sequence spaces £, for 1 < p < oo and co.
The techniques developed in the previous chapter will prove very useful in
this context. These Banach spaces are, in a sense, the simplest of all Banach
spaces and their structure has been well understood for many years. However,
if p # 2, there can still be surprises and there remain intriguing open questions.

To avoid some complicated notation we will write a typical element of ¢, or
co as & = (£(n))5%;. Let us note at once that the spaces ¢, and ¢q are equipped
with a canonical monotone Schauder basis (e,,)32; given by e, (k) =1ifk=n
and 0 otherwise. It is useful, and now fairly standard, to use cgg to denote the
subspace of all sequences of scalars & = (§(n))22; such that {(n) = 0 except
for finitely many n.

One feature of the canonical basis of the {,-spaces and cg that is useful
to know is that (e,)%2is equivalent to the basis (ane,)52; whenever 0 <
inf,, |a,| < sup,, |a,| < co. This property is equivalent to the unconditionality
of the basis, but we will not formally introduce this concept until the next
chapter.

2.1 The isomorphic structure of the £,-spaces and c,

We first ask ourselves a very simple question: are the ¢,-spaces distinct (i.e.,

mutually nonisomorphic) Banach spaces? This question may seem absurd be-

cause they look different, but recall that L2[0,1] and ¢5 are actually the same

space in two different disguises. We can observe, for instance, that cg and ¢4

are nonreflexive while the spaces ¢, for 1 < p < oo are reflexive; further the

dual of ¢g (i.e., £1) is separable but the dual of ¢; (i.e., {5 ) is nonseparable.
To help answer our question we need the following lemma:

Lemma 2.1.1. Let (uy)52 be a normalized block basic sequence in co or in
ly for some 1 < p < oo . Then (uy)32, is isometrically equivalent to the
canonical basis of the space and [uy] is the range of a contractive projection.
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Proof. Let us treat the case when (uy) is a block basic sequence in ¢, for
1 < p < o and leave the modifications for the ¢y case to the reader. Let us
suppose that

Tk

ug = Z aje;, k€N,

J=Tr-1+1
where 0 = rg < r; < ro < ... are positive integers and (a]) © , are scalars
such that
Tk
lugl? = > laP=1, kel
J=rik—1+1
Then, given any m € N and any scalars by, ..., b, we have
S =[5> 5 e
k=1j=rr—1+1
Tk 1/p
—(LmP Y loP)
k=1 J=ri—1+1

N (72": |bk|p>1/p
k=1

This establishes isometric equivalence.

We shall construct a contractive projection onto [u,|5° ;. Here we suppose
1 < p < oo and leave both cases ¢y and ¢ to the reader. For each k we select
scalars (b;)7%,, ., so that

Tk

> Ile=1

Jj=rr—1+1
and
T
Z bjaj =1.
j=reg_1+1
Put
Ty
Uy = Z bje;.
J=rik—1+1
Clearly, (u})52; is biorthogonal to (u,)5%; and ||uf|| = |Juy|| = 1. Our aim

is to see that the operator

:ZUZ(g)uka gegpa

k=1

defines a norm-one projection from ¢, onto [u]. We will show that || P&|| < |||
when £ € cgp and then observe that P extends by density to a contractive
projection.
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For each £ € ¢y,

Tr

wel=| 3 bg-g@\
J=re_1+1
<2 mY Y kG
J=re_1+1 j=re_1+1
(Y ko)
J=re_1+1

Then, using the isometric equivalence of {u, )22, and (e,)52,, we have

1P@I- (Y ki)’
k=1

<(XM Y kGr)”
h=1j=rz_1+1
= |1l
O

Remark 2.1.2. Notice that if (u,) is not normalized but satisfies instead an
inequality
O0<a< |lua|| <b<oo, nel

for some constants a, & {in which case {u,,) is said to be seminormalized), then
we can apply the previous lemma to (w,/[|u,|) and we obtain that ()32,
iz equivalent to (2,)32 ; (but not isometrically) and [u,] is complemented by
a contractive projection.

Although the preceding lemma was quite simple it already leads to a pow-
erful conclusion:

Proposition 2.1.8. Let (z,)52 be a normalized sequence in £y, for 1 < p <
oo [respectively, cof such that for each § € N we have limy, oo 2,(3) = 0 (for
example suppose (2,150 1 is weakly null). Then there is a subsequence (., )52,
whick 4s a basic sequence equivalent lo the canonical basis of £, and such thal
[Z, |52 1 35 complemented in £, [respectively, .

Proof. Proposition 1.3.10 (using the “gliding hump” technique) yields a sub-
sequence (zn,)io, and a block basic sequence (ugx)32, of (e,)5%; such that
(2r,)30, is basic, equivalent to (ug)i®, and such that [z, ]2, is comple-
mented whenever [ug]72 | is. By Lemma 2.1.1 we are done.
O
Now let us prove a classical result from the 1930s (Pitt [189]).
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Theorem 2.1.4 (Pitt’s Theorem). Suppose 1 < p < r < co. If X is
a closed subspace of £, and T + X — 0, is a bounded operator then T is
compact.

Proof. £, 1s reflexive, hence X is reflexive and so Bx is weakly compact.
Therefore in order to prove that 7' is compact it suffices to show that T|p,, i
weal-to-norm continuous. Since the weak topology of X restricted to Bx is
metrizable (Lemma 1.4.1 (i) it suffices to see that whenever (z,)52, < Bx
is weakly convergent to some x in By then (1'{(z,,))2* ; converges in norm to
Tax.

We need only show that if (z,)22, iz a weakly null sequence in X then
limy, oo | T2y || = 0. If this fails, we may suppose the existence of a weakly null
gequence (x,)52 ; with ||z, || = 1 such that |T'z,| = é = 0for all n. By passing
to a subsequence we may suppose that (x,)22; is a basic sequence equiva-
lent to the canonical £.-basis (Proposition 2.1.3). But then, since (1'z,)2°
ig also weakly null, by passing to a further subsequence we may suppose that
(T'zy /|| Tz )25 1, and hence (I'z,,122 ;, is basic and equivalent to the canon-
ical £p-basis. Since T' is bounded we have effectively shown that the identity
map ¢ : & — & is bounded, which is absurd. Or, alternatively, there exist
constants (7 and Cs such that the following inequalities hold simultaneously
for all n:

T T
i 1
H E:ﬂkH < (imn* and H ZTJ‘""“H > CUanwr,
=1 E—1 P

which contradicts the boundedness of T. Thus the theorem is proved.
O

Remark 2.1.5. (a) Essentially the same proof works with g replacing £,
although <y 1s nonreflexive, Lemma 1.4.1 can still be used to show that Bx
iz at least weakly metrizable, and the weak-to-norm continuity of 7T'|p, is
enough to show that the image is relatively norm-compact.

(b) We would like to single out the following crucial ingredient in the
proof of Pitt’s theorem. Suppose T : &, — £, is a bounded operator with
1< p<r < oo Then whenever (x,,) 15 a weakly null sequence in €. we have
[Tz, — 0. In particular |[Te,|, — 0. The same is true for any operator
Ty — &

Corollary 2.1.6. The spaces of the set {co} U{lp: 1< p < oo} are mutually
nonisomorphic. In fact, if X is an infinite-dimensional subspace of one of the
spaces {eptU{Z, 1 1 < p < co}, then it is not isomorphic to o subspace of any
other.

This suggests the following definition:

Definition 2.1.7. Two infinite-dimensional Banach spaces X, Y are zaid to
be totally incomparable if they have no infinite-dimensional subspaces In com-
mon (up to isomorphism).
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What can be sald for bounded operators T': £, — £, for p < 77 First,
notice that in this case Pitt’s theorem is not true. Take, for example, the
natural inclusion ¢ : £, — £, ¢ is a norm-one operator which is not compact
since the image of the canonical basis of £, is a sequence contained in ¢(B;)
with no convergent subsequences.

Definition 2.1.8. A bounded operator T' from a Banach space X into a Ba-
nach space Y is strictly singular if there is no infinite-dimensional subspace
E < X such that 1|z is an isomorphism onto its range.

Theorem 2.1.9. If p < r, every T : £, — £, is strictly singular.

Proof. This is immediate from Corollary 2.1.6.

2.2 Complemented subspaces of £, (1 < p < o) and ¢

The results of this section are due to Petezyniski (1960) [169]; they demonstrate
the power of basic sequence techniques.

Proposition 2.2.1. Every infinite-dimensional closed subspace Y of £, (1 <
p < 00) [respectively, cy] contains a closed subspace Z such that Z is isomor-
phic to €y, [respectively, cp] and complemented in €, [respectively, co].

Proof. Since YV is infinite-dimensional, for every n there is y, € Y, |Jyn] = 1,
such that ef(y,) = 0 for 1 < k& < n. If not, for some N € N the projec-
tion Sn (> e anen) = Zle apen restricted to Y would be injective (since
0+# y Y would imply Sy(y) # 0) and so Sy|y would be an isomor-
phism onto its image, which is impossible because ¥ is infinite-dimensional.
By Proposition 2.1.3 the sequence {y,,)27 ; has a subsequence (y,,, )5% ; which
is basic, equivalent to the canonical basis of the space and such that the
subspace Z = [y,,] is complemented.
O
Since ¢p and #1 are nonreflexive and every closed subspace of a reflexive
space is reflexive, using Proposition 2.2.1 we obtain:

Proposition 2.2.2. Let Y be an infinite-dimensional closed subspace of either
co or £1. Then'Y is not reflexive,

Suppose now that ¥ is itself complemented in £, (1 < p < oo) [respectively,
cg). Proposition 2.2.1 certainly tells us that ¥ contains a complemented copy
of £, [respectively, cg]. Can we say more? Remarkably, Pelezynski discovered
a trick which enables us, by rather “soft” arguments, to do quite a bit better.
This trick is nowadays known as the Pelezyriski decomposition technique and
has proved very useful in different contexts.
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The situation is: we have two Banach spaces X and Y so that Y is isomor-
phic to a complemented subspace of X and X is isomorphic to a complemented
subspace of Y. We would like to deduce that X and Y are isomorphic. This
is known (by analogy with a similar result for cardinals) as the Schroeder-
Bernstein problem for Banach spaces. The next theorem gives two criteria
where the Schroeder-Bernstein problem has a positive solution. To this end
we need to introduce the spaces £,(X) for 1 <p < oo and co(X), where X is
a given Banach space.

For 1 < p < oo, the space {,(X) = (X & X @ ...), called the infinite
direct sum of X in the sense of {,, consists of all sequences z = (z(n))22,
with values in X so that (||z(n)|)52; € ¢p, with the norm

]l = =) Dezillp-

Similarly, the infinite direct sum of X in the sense of cy, co(X) =
(X @ X ®...), is the space of X-valued sequences x = (x(n))32, so that
lim,, .o ||z(n)|| = 0 under the norm

Izl = max_[la(w)].

Notice that £,(¢,) can be identified with £,(N x N) and hence is isometric
to £,. Analogously, co(co) is isometric to co.

Theorem 2.2.3 (The Pelczyiiski decomposition technique [169]). Let
X and Y be Banach spaces so that X is isomorphic to a complemented sub-
space of Y and Y is isomorphic to a complemented subspace of X. Suppose
further that either:

(a) X ~X?=X®X andY =~ Y2, or

(b) X m co(X) or X ~ (,(X) for some 1 < p < 0.

Then X is isomorphic to Y.

Proof. Let usput X Y ® F and X =Y @ F. If (a) holds then we have
XYY E~Y DX,

and by a symmetrical argument ¥ ~ X &Y. Hence Y ~ X.
If X satisfies (b) in particular we have X ~ X? so as in part (a) we obtain
Y ~ X @Y. On the other hand,

(X)) = (Y @ E) = £,(Y) ® 6p(E).
Hence if X ~ {,(X),
X~YaelY)slh(E)~Ya® (X)) rY & X.

The proof is analogous if X ~ ¢o(X).



2.2 Complemented subspaces of £, (1 < p < oo} and e 35

O
We are ready to prove a beautiful theorem due to Pelezyniski (1960) [169]
which had a profound influence on the development of Banach space theory.

Theorem 2.2.4. Suppose Y is a complemented infinite-dimensional subspace
of £, where 1 < p < o0 [respectively, cyf. Then'Y is isomorphic to £, [respec-
tively, cof.

Proaf. Proposition 2.2.1 gives an infinite-dimensional subspace Z of ¥ such
that Z is isomorphic to £, [respectively, ¢p] and Z is complemented in £, [re-
spectively, ¢p]. Obviously Z is also complemented in Y, therefore £, [respec-
tively, o] is (isomorphic to) a complemented subspace in Y. Since £,(£,) = ¢,
[respectively, cg(cg) = o], (b} of Theorem 2.2.3 applies and we are done.
O
At this point let us discuss where this theorem leads. First, the alert reader
may ask whether it is true that every subspace of £, is actually complemented.
Certainly this is true when p = 2! This is a special case of:

The complemented subspace problem. If X is a Banach space such
that every closed subspace is complemented, is X isomorphic to a Hilbert
space?

This problem was settled positively by Lindenstrauss and Tzafriri in 1971
[135]. We will later discuss its general sclution but, at the moment, let us point
out that it is not so easy to demonstrate the answer even for the £,-spaces
when p # 2. In this chapter we will show that £; has an uncomplemented
subspace.

Anocther way to approach the complemented subspace problem is to
demonstrate that £, has a subspace which is not isomorphic to the whole
space. Here we meet another question dating back to Banach:

The homogeneous space problem. Let X be a Banach space which
15 isomorphic to every one of its infinite-dimensional cosed subspaces. Is X
isomorphic to a Hilbert space?

This problem was finally sclved, again positively, by Komorowskl and
Tomczak-Jasgermann [115] in 1996 {using an important ingredient by Gowers
70).

Oddly encugh, the £p-spaces for p # 2 are not as regular as one would
expect. In fact, for every p # 2, £, contains a subspace without a basis. For
p > 2 thiz was proved by Davie in 1973 [34]; for general p it was obtained
by Szankowski [211] a few years later. However, the construction of such sub-
spaces is far from easy and will not be covered in this book. Notice that this
provides an example of a separable Banach space without a basis.

One natural idea that comes out of Theorem 2.2.4 is the notion that the
4,-spaces and ¢y are the building blocks from which Banach spaces are con-
structed; by analogy they might play the role of primes in number theory.
This thinking is behind the following definition:
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Definition 2.2.5. A Banach space X is called prime if every complemented
infinite-dimensional subspace of X is isomorphic to X.

Thus the £,-spaces and ¢y are prime. Are there other primes? One may
immediately ask about £, and, indeed, this is a (nonseparable) prime space
ag was shown by Lindenstrauss in 1967 [129]; we will show this later. The
quest for other prime spaces has proved difficult, some candidates have been
found but in general it Is very hard to prove that a particular space is prime.
Eventually another prime space was found by Gowers and Maurey [72] but the
construction is very involved and the space is far from being “natural.” In fact
the Gowers-Maurey prime space has the property that the only complemented
subspaces of infinite dimension are of finite codimension. One can say that this
space 1s prime only because it has very few complemented subspaces at all!

2.3 The space £

The space €1 has a special role in Banach space theory. In this section we
develop some of its elementary properties. We start by proving a universal
property of #; with respect to separable spaces due to Banach and Mazur [9]
from 1933.

Theorem 2.3.1. If X is a separable Banach space then there exists a contin-
uous operator () : £1 — X from &1 onto X.

Proaof. Tt suffices to show that X admits of a continuous operator @ : £ — X
such that Q{€ e f1: |g|l1< 1} ={ze X : |z < 1}

Let (£,)22 1 be a dense sequence in By and define Q : 4 — X by Q(¢) =
Yoo L €(r)zy,. Notice that Q) is well defined: for every & = (£(r)) € &1 the
series z;’o:l £(n)x,, is absolutely convergent in X. ) is clearly linear and has

norm one since

1@ = X stea] < 166 = 6 .-

()(By,) is a dense subset of Bx, hence given € Bx and 0 < e < 1 there
exists & € By, such that |z — T& || < e Next we find & € By, such that
H%(a: — Q&) — Q&L < e If we lat & = e£) we obtain

|z — Q&1+ &) < €.

Tterating we find a sequence (£,) in By, satisfying ||€,]1 < €~ ! and |z —
Qe+ + &) <€ Let £ =507 &, Then [[£]l; < (1 —¢) ! and Q¢ = =
Since 0 < € < 1 is arbitrary, by scaling we deduce that Q{£ € ¢y : |£]1 <
1}={ze X:|z| <1}

O
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Corollary 2.3.2. If X s a separable Banach space then X is isometrically
isomorphic te a quotient of {4.

Proaf. Let ) : 1 — X be the quotient map in the proof of Theorem 2.3.1.
Then it follows that #; /ker () is isometrically isomorphic to X.
O

Corollary 2.8.3. #1 has an uncomplemented closed subspace.

Proof. Take X a separable Banach space which is not isomorphic to £;.
Theorem 2.3.1 yields an operator (@ from #; onto X whose kernel is a
closed subspace of £1. If ker () were complemented in £; then we would have
£, = ker Q & M for some closed subspace M of £1 and therefore

X =1 /ker Q = M.

But this can only occur if X is isomorphic to #; by Theorem 2.2.4.
O

Deefinition 2.3.4. A Banach space X has the Schur property (or X iz a Schur
space) if weak and norm sequential convergence coincide in X, i.e., a sequence
()22, in X converges to 0 weakly if and only if (£,)32; converges to 0 in
norm.

Example 2.3.5. Neither of the spaces £, for 1 < p < o0 nor g have the
Schur property since the canonical basis is weakly null but cannot converge
to 0 in norm.

The next result was discovered in an equivalent form by Schur in 1920

[208].
Theorem 2.3.6. £, has the Schur property.

Proof. Suppose (x,) is a weakly null sequence in 1 that does not converge
to 0 in norm. Using Proposition 2.1.3, (x,,) contains a subsequence which is
basic and equivalent to the canonical basis; this gives a contradiction because
the canonical basis of £ is clearly not. weakly null.

O

Theorem 2.3.7. Let X be a Banach space with the Schur property. Then a
subset W of X is weakly compact if and only ¢f W is norm compact.

Proof. Suppose W is weakly compact and consider a sequence (z,)32; in
W. By the Eberlein-Smulian theorem W is weakly sequentially compact, so
(2,)5% ; has a subsequence (z,,,)i% ; that converges weakly to some z ¢ W.
Since X has the Schur property, (z.,)i%, converges to z in norm as well.
Therefore W is compact for the norm topology.

O
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Corollary 2.8.8. If X is a reflexive Banach space with the Schur property
then X is fintte-dimensional.

Proof. If a reflexive Banach space X has the Schur property then its unit ball
is norm-compact by Theorem 2.3.7 and so X is finite-dimensional.
O

Definition 2.3.9. A sequence (z,,)2° ; in a Banach space X is weakly Cauchy
if im,, oo 2*(x,) exists for every z* in X'*.

Any weakly Cauchy sequence (r,)2%, in a Banach space X iz norm-
bounded by the Uniform Boundedness principle. If X is reflexive, by Corol-
lary 1.6.4, ()22, will have a weak cluster point, z, and so (z,)22, will
converge weakly to z. If X is nonreflexive, however, there may be sequences

which are weakly Cauchy but not weakly convergent.

Definition 2.3.10. A Banach space X is said to be weakly sequentially com-
plete (wsc) if every weakly Cauchy sequence in X converges weakly.

Example 2.3.11. In the space ¢y consider the sequence x,, = €1 + -+ + ey,
where (e,,) is the unit vector basis. {(2,)22; is obviously weakly Cauchy but
it does not converge weakly in cy. (x,,)5% | converges weak* in the bidual, £,

to the element (1,1,...,1,...). Thus ¢ is not weakly sequentially complete.

Proposition 2.3.12. Any Banach space with the Schur property (in particu-
lar ¢1) is weakly sequentially complete.

Proof. Suppose (2,,)52 ,1s weakly Cauchy. Then for any two strictly increasing
gequences of integers (nz)52 1, (m2r)ie, the sequence (T, —xx, )72 is weakly
null and 80 limg oo |Tm;, — Zn, || = 0. Thus, being norm-Cauchy, (z,)5° ,is
norm-convergent and hence weak-convergent.

O

2.4 Convergence of series

Definition 2.4.1. Let (z,,)2% | be a sequence in a Banach space X. A (formal)
series >~ , T, in X is said to be unconditionally convergent if > | Tr(n)
converges for every permutation 7 of M.

We will see in Chapter 8 that except in finite-dimensional spaces, uncon-
ditional convergence is weaker than absolute convergence, l.e., convergence of

2 e -

Lemma 2.4.2. Given a sertes Z;’ozl x, tn a Barach space X, the following
are equivalent:

(a) Y07 | x4, is unconditionally convergent;
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(b} The series zzozl Tp, conwerges for every increasing sequence of integers
(rr)isqs -

(¢) The series 3 .| €nxy converges for every choice of signs (€,);

{d} For every ¢ > O there exists an n so that if F is any finite subset of

{n+1,n+2,...} then
H ZIjH <e.
JEF

Proof. We will establish only (a) = (d) and leave the other easier implications
to the reader. Suppose that (d) fails. Then there exists € > 0 so that for every
n we can find a finite subset F, of {n 4 1,...} with

PR

FEF,

We will build a permutation 7 of ¥ so that Zzozl T(ny diverges.

Take ny = 1 and let A} = F,, . Next pick n; = max 4; and let By =
{n1+1,...,n2} % A1. Now repeat the process taking Ads = Fj,, n3 = max Ag
and Ba = {na+1,...,n3}\ As. Iterating we generate a sequence ()7 ; and
a partition {rg + 1,... 251} = Ax U B, Define 7 30 that # permutes the
elements of {ny +1,...,n5.1} in such a way that A; precedes By. Then the
series 27?;1 Tr(n) is divergent because the Cauchy condition fails.

[l

Definition 2.4.3. A (formal) series > > | z, in a Banach space X iz weakly
unconditionally Cauchy (WUC) or weakly unconditionally convergent if for
every z* € X* Y 7 | |z*(z,,)] < oo.

Proposition 2.4.4. Suppose the series z;’o:l T, converges unconditionally to
some r in a Banach space X. Then

(i) S0 Trny = for every permutation .
(6) > ca Tn converges unconditionally for every infinite subset A of N.
(i3i) >0 Ty i WUC.

Proof. Parts (¢) and (i7) are immediate. For (i), given z* € X* the scalar
series > 7 | x* (T r(ny) converges for every permutation 7. It is a classical the-
orem of Riemann that for scalar sequences the series > .~ | a,, converges un-
conditionally if and only if it converges absolutely, i.e., ¥ . | |an| < co. Thus
we have > 7 | 2% (z,)] < 0.
O
Let us notice that the name “weakly unconditionally convergent” series
can be misleading because such serles need not be weakly convergent; we will
therefore use the term weakly unconditionally Cauchy or more usually its

abbreviation (WUC).
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Example 2.4.5. The series > . | ey, in ¢y, where (e,)2%, is the canonical
basis of the space, is WUC but fails to converge weakly (and so it cannot
converge unconditionally}. In fact, this is in a certain sense the only coun-
terexample as we shall see.

In Proposition 2.4.7 we shall prove that WUC series are in a very natural
correspondence with bounded operators on 3. Let us first see a lemma.

Lemma 2.4.6. Let 27?;1 Tn be a formal series in a Banach space X. Then
the following are equivalent:

(i) 507z 18 WUC.
(i) There exists C > O such that for all ({(n)) € coo we have

5o
n=1
(iii) There exists C' >0 such that

| 2 cnee

nEF

< Cmax [£(n)].

<

for any findte subset F' of N and all ¢, = £1.

Proof. (i) = (if). Put
= { N étm)rac X &= (6(n) € coos E]ow < 1}.

The WUC property implies that § is weakly bounded, therefore it is norm-
bounded by the Uniform Boundedness principle.

Obviously, (i¢) implies (é4). For (¢48) = (i), given z* € X* let ¢, =
ggn x*(z,). Then for each integer N we have

N N
Z |z* (zs)| = |2* ( Zenrn)

n=1
and therefore the series > 77 | |2*(2,,)| converges.

< Cll=7|

O

Proposition 2.4.7. Let 37 |z, be a series tn a Banach space X. Then
z;’o:l Ty 18 WUC if and only if there is a bounded operator T': co — X with
Te, = z,.

Proof. It >z, is WUC then the operator T : cpp — X defined by
T¢ =507 &(n)x, is bounded for the cg-norm by Lemma 2.4.6. By density
T extends to a bounded operator T': ¢y — X.
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For the converse, let T': ¢ — X be a bounded operator with T'e, = z,
for all n. For each z* € X* we have

Dolet@a)l =2 et (Ten)| = > |T" (@) (ea)l,

which is finite since >0 | e, is WUC.
O

Proposition 2.4.8. Let > " 7, be @ WUC series in a Banach space X.
Then z;’o:l T, converges unconditionally in X if and only if the operator
T :cy — X such that Te, = x,, is compact.

Proof. Suppose Z;’ozl T, 18 unconditionally convergent. We will show that
limy oo |70 — TS| = 0, where (5,)22 ; are the partial sum projections as-
sociated to the canonical basis (e,) of cy. Thus, being a uniform limit of
finite-rank operators, T' will be compact.

Given ¢ > 0 we use Lemma 2.4.2 to find n = n(e) so that if F is a finite
subset of {n+1,n+2,...} then || 3, p ;| < €/2. For every 2 € X* with

[lz*[] <1 we have
Z z7(z;) < %’
{FEF 2 (2,)20}

et )] < e
jcF
Hence if £ € o with [[€]lec < 1 it follows that |2*(T —T'5R)E| < ¢ for m > n
and all z* € X*. By density we conclude that |1 —T1'5,,|| <e.
Assume, conversely, that 1" is compact. Let us consider

therefore

T et =loe — X C XM

The restriction of I** to B, is weak*-to-norm continuous because on a
norm compact set the weak® topology agrees with the norm topology. Since
Yo €r(n) converges weak™ in o, for every permutation , Yo Ty also
converges unconditionally in X.
|
Note that the above argument also implies the following stability prop-
erty of unconditionally convergent series with respect to the multiplication by
bounded sequences. The proof is left as an exercise.

Proposition 2.4.9. A series 27?;1 Tn in a Banach space X is uncondition-
ally conwvergent if and only if > | toT, converges (unconditionally) for all

(tn) € loo.

The next theorem and its consequences are essentially due to Bessaga
and Pelczynski in their 1958 paper [12] and represent some of the earliest
applications of the basic sequence methods.
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Theorem 2.4.10. Suppose T' : cg — X i5 a bounded operator. Then the
following conditions on T are equivalent:

(i) T is compact,
(7} 1 is weakly compact,
(7t) T is strictly singular.

Proof. (i) = (if) is obvious. For (i7) = (#4), let us suppose that 7T fails to be
strictly singular. Then there exists an infinite-dimensional subspace ¥ of ¢
such that 7'y is an isomorphism onto its range. If 1" is weakly compact this
forces ¥ to be reflexive, contradicting Proposition 2.2.2.

We now consider (4¢) = (7). Assume that I fails to be compact. Then, by
Proposition 2.4.8, 3> | Te,, does not converge unconditionally so, by Lemma,
2.4.2) there exists ¢ > 0 and a sequence of digjoint finite subsets of inte-
gers (F,)52 so that || >, p Texl| > € for every n. Let xn = >0 p Tex.
(zn)aey is weakly null in X since >, - e is weakly null in . Using Propo-
gition 1.3.10 we can, by passing to a subsequence of (z,,)2 ;, assume it is basic
in X with basis constant K, say. Then for £ = (£(n))32 | € oo,

| .

On the other hand,

(S e S el < 17 me 2o
n=1 kol

ma 600)| < 26| 3 gt
n=1

Thus (2,)32, iz equivalent to the canonical basis of ¢y and therefore to
(Y per, er)azq. We conclude that 7' cannot be strictly singular.
O
From now on, whenever we say that a Banach space X contains a copy
of a Banach space Y we mean that X contains a closed subspace E which is
igomorphic to Y. Using Theorem 2.4.10 we obtain a very nice characterization
of spaces that contain a copy of ¢g.

Theorem 2.4.11. In order that every WUC series in a Banach space X be
unconditionally convergent it is necessary and sufficient that X contains ne

copy of cg.

Proaf. Suppose that X contains no copy of ¢y and that Ziozl T, is a WUC
series in X. By Proposition 2.4.7 there exists a bounded operator T': ¢y — X
such that T'e, = x,, for all n. T' must be sirictly singular since every infinite-
dimensional subspace of ¢y contains a copy of ¢g (Proposition 2.2.1) g0 T is
compact by Theorem 2.4.10. Hence the series z;’o:l T, converges uncondition-
ally by Proposition 2.4.8. The converse follows trivially from Example 2.4.5.

O
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Remark 2.4.12. This theorem of Bessaga and Pelczynsld is a prototype for
exclusion theorems which say that if we can exclude a certain subspace from
a Banach space then it will have a particular property. It had considerable
influence in suggesting that such theorems might be true. In Chapter 10 we will
see a similar and much more difficult result for Banach spaces not containing
41 (due to Rosenthal [197]) which when combined with the Bessaga-Pelczyriski
theorem gives a very elegant pair of bookends in Banach space theory. It is
also worth noting that the hypothesis that a Banach space falls to contain ¢
becomes ubiquitous in the theory precisely because of Theorem 2.4.11.

We have seen that a series >~ | ,, in a Banach space X converges uncon-
ditionally in norm if and only if each subseries zzil Z,, does. In particular
every subseries of an unconditionally convergent series is weakly convergent.
The Orlicz-Pettis theorem establishes that the converse is true as well. First
we see an auxiliary result.

Lemma 2.4.13. Let mq be the set of all sequences of scalars assuming only
findgtely many different values. Then my is dense in £..

Proof. Let a = (a,)52, be a sequence of scalars with |a|lec < 1. Foranye >0
pick N & N such that % < €. Then the sequence b= (b,,)22 ; € myp given by

b, = (sgn an)% if

satisfies |[a — bloe < 7 <.
O

Theorem 2.4.14 (The Orlicz-Pettis Theorem). Suppose > . | =, is a
series in o Banach space X for which every subseries > 5. | Ty, converges
weakly, Then z;’o:l T, converges unconditionally in norm.

Proof. The hypothesis easily yields that >0 |z, is a WUC series so, by
Proposition 2.4.7, there exists a bounded operator T': ¢y — X with Te,, = z,,
for all . We will show that T is actually compact.

Let us look at T™** : £, — X**. For every A C N let us denote by x4 =
(xa(k))52, the element of £, such that x4(k) =1if k € A and 0 otherwize.
By hypothesis > 4 ¢, converges weakly in X and it follows that 7% (x4)
X. The linear span of all such x4 consists of the space of scalar sequences
taking only finitely many different values, mq, which by Lemma 2.4.13 is
dense in £.,. Hence T** maps £., into X. This means that T' is a weakly
compact operator. Now Theorem 2.4.10 implies that T is a compact operator
and Proposition 2.4.8 completes the proof.

O

Now, as a corollary, we can give a reciprocal of Propoesition 2.4.4 {#).

Corollary 2.4.15. If a Banach space X is weakly sequentially complete then
every WU series in X is unconditionally convergent.
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Proof. 1f 37 | o is WUC then Y 7 | 2*(zy) is absolutely convergent for
every z* € X*, which is equivalent to saying that > 5., *(z,,) converges for
each subseries 3, | #,,, and each 2* & X*. Hence > ;- | &y, is weakly Cauchy
and therefore weakly convergent by hypothesis. We deduce that Ziozl Ty
converges unconditionally in norm by the Orlicz-Pettis theorem.
O
The Orlicz-Pettis theorem predates basic sequence techniques. Tt was first
proved by Orlicz in 1929 [162] and referenced in Banach’s book [§]. He at-
tributes the result to Orlicz in the special caze when X is weakly sequentially
complete so that every WUC series has the property of the theorem. However,
it seems that Orlicz did know the more general statement. Independently, Pet-
tis published a proof in 1938 [178]. Pettis was interested in such a result as
a by-product of the study of vector measures. If ¥ is a o-algebra of sets and
i 2 — X i a map such that for every #* € X* the get function z* o pt is
a (countably additive) measure then the Orlicz-Pettis theorem implies that j
is countably additive in the norm topology. Thus weakly countably additive
set functions are norm countably additive.
This iz an attractive theorem and as a result it has heen proved, reproved,
and generalized many times since then. It s not clear that there is much left
to say on this subject! We will suggest some generalizations in the Problems.

2.5 Complementability of ¢,

Let us discuss the following extension problem. Suppose that X and ¥V are
Banach spaces and that ¥ is a subspace of X. Let T': ¥ — ¥ be a bounded
operator. Can we extend 7' to a bounded operator 7' : X — Y7 If we consider
the special case when ¥ = E and T is the identity map on F, we are asking
simply if & Is the range of a projection on X, l.e., if F' is complemented in X.

The Hahn-Banach theorem asserts that if ¥ has dimension one then such
an extension is possible with preservation of norm. However, in general such
an extension s not possible and we have discussed the fact that there are
noncomplemented subspaces in almost all Banach spaces. For instance we have
seen that #; must have an uncomplemented subspace, but the construction of
this subspace as the kernel of a certain quotient map means that it is rather
difficult to see exactly what it 1s. In this section we will study a very natural
example. Let us formalize the notion of an injective Banach space.

Definition 2.5.1. A Banach space Y s called injective if whenever X is a
Banach space, F is a closed subspace of X, and T': £ — Y is a bounded
operator then there is a bounded linear operator 7' : X — Y which is an
extension of T. V is called isometrically injective if T' can be additionally

chosen to have |T] = ||T).

We will defer our discussion of Injective spaces to later and restrict our-
selves to one almost trivial obhservation:
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Proposition 2.5.2. The space £, 13 an isometrically injective space. Hence,
if a Banach space X has a subspace IV isomorphic to £, then E 15 necessariy
complemented in X.

Proaf. Suppose EF is a subspace of X and T : ' — £, is bounded. Then Te =
(ef (&), for some sequence ()52 1 in E*; clearly ||| = sup,, ||e}|. By the
Hahn-Banach theorem we choose extensions zf € X* with ||z}| = |&&| for
each n. By letting Tz = (z}(x))22 ; we are done.
O
cg is a subspace of Z,, (its bidual) and it is easy to see that ¢y will be
injective if and only if it is complemented in #.,. Must a Banach space be
complemented in its bidual? Certainly this is true for any space which is
the dual of another space since for any Banach space X the space X~ is
always complemented in its bidual, X™**. To see this consider the natural
embedding 7 : X — X**. Then 5* : X*** — X* is a norm-one operator.
Denote by J the canonical injection of X* into X***. We claim that 7*J is
the identity Ix+ on X*. Indeed, suppose z* € X* and that r € X. Then
{x,7*J(xz*)) = {jz,Jz*) = {z,2*). Thus j* is a norm-one projection of X***
onto X*. If X is isomorphic (but not necessarily isometric) to a dual space
we leave for the reader the details to check that X will still be complemented
in its bidual. So we may also ask if ¢y is isomorphic to a dual space.

As we will see next, ¢y is not complemented in £,.,. This was proved essen-
tially by Phillips [180] in 1940 although first formally observed by Sobczyk
[208] the following year. Phillips in fact proved the result for the subspace e of
convergent sequences. The proof we give is due to Whitley [220] and requires
a simple lemma:

Lemma 2.5.3. Fvery countably infinite set S has an uncourdable family of
infinite subsets {A;}ier such that any twoe members of the family have finite
intersection.

Proof. The proof is very simple but rather difficult to spot! Without loss of
generality we can identify S with the set of the rational numbers (). For each
irrational number 8, take a sequence of rational numbers (g,)52 ; converging
to #. Then the sets of the form Ag = {{9,)2° ; : g — 9} verily the lemma.
|
If A is any subset of N we denote by £..(A) the subspace of £, given by

Loo(8) = {€ = (E(R)R € loo : E(F) = OF k£ A},

Theorem 2.5.4. Let T : £, — £ be a bounded operator such that TE =0
for all £ € ¢y, Then there is an infinite subset A of M so that T¢ = 0 for every

£l (A).

Proof. We use the family (4;);e7 of infinite subsets of N given by Lemma 2.5.3.
Suppose that for every such set we can find &; € 2. {A;) with T¢; # 0. We can
agsume by normalization that ||&;]|ec = 1 for every ¢ € 7. There must exist
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n € Mso that theset 7, = {t € 7. £(n) # 0} is uncountable. Similarly, there
exists k € N so that the set 7, = {i: |&(n)| = k~'} is also uncountable.
For each ¢ € 1, ; choose oy with |ay| = 1 and o (n) = |&(n)].

Let F be a finite subset of 7, . Consider y = >, p @& Since the inter-
section of the supports of any two distinct £; is finite we can write y = u 1+ v
where ||¢||co < 1 and v has finite support. Thus

ITylloo = [Tefoe < I,

and go
en(Ty) = |&(m)| < |T).
icF
It follows that if |F| = m we have mk~! < ||T, ie., m < k||T|. Since this
holds for every finite subset of 7,, ; we have shown that 7,, ; is in fact finite,

which is a contradiction.
O

Theorem 2.5.5 (Phillips-Sobczyk, 1940-1). There is no bounded projec-

tion from lo, onto cp.

Proof. If P is such a projection we can apply Theorem 2.5.4 to T' =1 — P,
with T the identity operator on £.,, and then it is clear that P£ = £ for all
£ € s, (A) for some infinite set A, which gives a contradiction.

O

Corollary 2.5.6. ¢y is not isomorphic to a dual space.

Proaf. If ¢y were isomorphic to a dual space then, by the comments that follow
the proof of Proposition 2.5.2, ¢y should be complemented in ¢f*, which would
lead to contradiction with Theorem 2.5.5.

O

Several comments are in order here. Theorem 2.5.4 proves more than is
needed for Phillips-Sobeczyk’s theorem. It shows that there is no bounded,
one-to-one operator from the quotient space /o /cp into £5g; in other words
the points of £../cyp cannot be separated by countably many bounded linear
functionals. (Of course, if E iz a complemented subspace of a Banach space
X, then X/E must be isomorphic to a subspace of X which is complementary
to F.)

Now we are also in position to note that ¢y is not an injective space.
Actually there are no separable injective spaces, but we will see this later,
when we discuss the structure of £, in more detail. For the moment let us
notice the dual statement of Theorem 2.3.1.

Theorem 2.5.7. If X is a separable Banach space then X embeds isometri-
cally into fos.
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Proof. Let (x,)5° ; be a dense sequence in X. For each integer n pick z! &
X* go that ||z} = 1 and z}{(2,) = |zx|. The sequence (z:)22, < X~ is
norming in X. Therefore the operator 7' : X — £, defined for each = in X
by T(x) = (z} (x))22, provides the desired embedding.
O
Thus X separable can only be injective if it Is Isomorphic to a comple-
mented subspace of £.,. Therefore classifying the complemented subspaces of
4+ becomes important; we will see in Chapter 5 the (already mentioned) the-
orem of Lindenstrauss [129] that £, is a prime space and this will answer our
question.
In the meantime we turn to Sobezyk’s main result in his 1941 paper, which
gives some partial answers to these questions. The proof we present here is

due to Veech [219].

Theorem 2.5.8 (Sobczyk, 1941). Let X be a separable Banach space. If
I is a closed subspace of X and T': B — ¢ is a bounded operator then there
extsts an operator T.X — ¢y such that T|E =T and HTH < 2|7

Proof. Without loss of generality we can assume that |7 = 1. Tt is immediate
to realize that the operator ' must be of the form

Tz = (fal@)ii, z€E

for some (f}) < E*. Moreover ||f}]| < 1 for all n and {f}) converges to 0
in the weak* topology of E*. By the Hahn-Banach theorem, for each n € N
there exists ¥ € X*, |l@k| <1, such that ¢! |g = f7.

X separable implies that (Bx«,w*) is metrizable (Lemma 1.4.1). Let p be
the metric on Bx+ that induces the weak® topology on Bx+. We claim that
limg, oo o(¢h, Bx~ N EL) = 0. If this is not the case, there would be some
¢ > 0 and a subsequence (¢},,) of (¢f) such that p{e;, , Bx+ N EY) > ¢ for

every k. Let (¢, ) be a subsequence of (¢, ) such that ¢}, 2 ot Then
7 3
w* € F+ N By« since for each e € K we have

o (e) = li:}r_rl(,pf:lkJ (e) = lijr_n f;:% (e) =0

Hence
P, ") > ¢ forall 4. (2.1)
On the other hand
i p(o%, \Bxe NE) = ply’, Bxe 1 E*) = 0 22)
F—oo 3

since the function p({ - , Bx+ N E1) is weak* continuous on Bxs. Clearly we
cannot have (2.1) and (2.2) at the same time, so our claim holds.

Recall that EL iz weak® closed, hence Bx. N EL is weak® compact. There-
fore for each n we can pick v € Bx+ N EL such that
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plehsvh) = pleh, Bxs N ET).
= ! — v} and define the operator T on X by T(g:) = (z} (). Notice

that T(z) € ¢ because z = 0. Moreover, for each x ¢ X we have

Let z

*
Tl

I () = sup ey, (z)] = sup(leor, () —vp(2)]) < sup(ler ][+ llvn ) 2] < 2 =],

so || < 2.
O

Corollary 2.5.9. If F' is a closed subspace of a separable Banach space X
and E is isomorphic to ¢y, then there is a projection P from X onto E.

Proof. Suppose that T : E — ¢ is an isomorphism and let T': X — ¢ be
the extension of 7' given by the preceding theorem. Then P = 777 iz a
projection from X cnto E. (Note that since |T|| < 2|T||, if E is isometric to
cg then ||P| <2.)

O

Remark 2.5.10. It follows that if a separable Banach space X confains a
copy of ¢y then X is not injective.

We finish this chapter by observing that in light of Theorem 2.5.8 it is
natural to define a Banach space Y to be separably injective if whenever X
is a separable Banach space, F' is a closed subspace of X and T : ' — Y is
a bounded operator then 7' can be extended to an operator T : X — V. Tt
was for a long time conjectured that ¢y Is the only separable and separably
injective space. This was solved by Zippin in 1977 [225], who showed that,
indeed, ¢ is, up to isomorphism, the only separable space which iz separably
injective.

We also note that the constant 2 in Theorem 2.5.8 is the hest possible (see
Problem 2.7}.

Problems

2.1. Let T': X — Y be an operator between the Banach spaces X, Y.

(a) Show that if T is strictly singular then in every infinite-dimensional sub-
space F of X there is a normalized basic sequence (z,) with | Tz, || < 27|z,
for all n.

(b) Deduce that 7" is strictly singular if and only if every infinite-dimensional
closed subspace E contains a further infinite-dimensional closed subspace ¥
so that the restriction of T' to ' Is compact.

2.2. Show that the sum of two strictly singular operators is strictly singular.
Show also that if T}, : X — Y are strictly singular and |1, — 7| — 0 then T’
is strictly singular.
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2.3. Show that the set of all strictly singular operators on a Banach space
X forms a closed two-sided ideal in the algebra £(X) of all bounded linear
operators from X to X.

2.4. Show that if 1 < p < oo and 1" : ¢, — ¢, is not compact then there is
a complemented subspace E of £, so that 7" is an isomorphism of E onto a
complemented subspace T'(E). Deduce that the Banach algebra £(¢,,) contains
exactly one proper closed two-sided ideal (the ideal of compact operators).
Note that every strictly singular operator is compact in these spaces.

2.5. Show that £(¢, & ¢,) for p # r contains at least two nontrivial closed
two-sided ideals.

2.6. Suppose X is a Banach space whose dual is separable. Suppose that > 2
is a series in X* which has the property that every subseries )}, converges
weak*. Show that >z, converges in norm. [Hint: Every z** € X** is the
limit of a weak* converging sequence from X.]

2.7. Let ¢ be the subspace of ¢, of converging sequences. Show that for any
bounded projection P of ¢ onto ¢y we have || P|| > 2. This proves that 2 is the
best possible constant in Sobczyk’s theorem (Theorem 2.5.8).

2.8. In this exercise we will focus on the special properties of /; as a target
space for operators and show its projectivity.

(a) Suppose T : X — #; is an operator from a Banach space X onto ¢;. Show
that then X contains a complemented subspace isomorphic to ¢1.

(b) Prove that if Y is a separable infinite-dimensional Banach space with the
property that whenever 7' : X — Y is a bounded surjective operator then Y
is isomorphic to a complemented subspace of X, then Y is isomorphic to ¢;.

2.9. Let X be a Banach space.

(a) Show that for any z** € X** and any finite-dimensional subspace E of
X* there exists € X such that

2] < (L + €)™,

and
x*(x) = 2™ (z7), x* e E.

(b) Use part (a) to deduce the following result of Bessaga and Pelczyniski ([12]):
If X* contains a subspace isomorphic to ¢y then X contains a complemented
subspace isomorphic to ¢1, and hence X* contains a subspace isomorphic to
lo- In particular, no separable dual space can contain an isomorphic copy of
¢o. [This may also be used in Problem 2.6.]
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2.10. For an arbitrary set I' we define ¢ (I") as the space of functions £ : I' — R
such that for each € > 0 the set {y: |£()| > €} is finite. When normed by
I€]] = maxyer [£(7)], the space ¢o(T") becomes a Banach space.

(a) Show that co(I')* can be identified with ¢;(T") the space of functions 7 :
I' = R such that 1 € co(I') and [[n[| = >, cp [n(v)] < o0

(b) Show that ¢1(I")* = £ (T).

(¢) Show, using the methods of Lemma 2.5.3 and Theorem 2.5.4, that ¢y(R)
is isomorphic to a subspace of ¢, /cp.

2.11. Let I" be an infinite set and let PI" denote its power set PI' = {A: A C
r}.

(a) Show that ¢;(PT") is isometric to a subspace of {(I"). [Hint: For each
v €T define ¢, € {(PT) by ¢y =1 when v € A and —1 when v ¢ A/]

(b) Show that if ¢1(I") is a quotient of a subspace of X then ¢;(I") embeds into
X (compare with Problem 2.8).

(c¢) Deduce that if ¢1(I") embeds into X then ¢;(PI') embeds into X*.
(d) Deduce that ¢;* contains an isometric copy of ¢1(PR).
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Special Types of Bases

We are next going to look a bit more carefully at special classes of bases. In
particular we will consider the notion of an unconditional basis already hinted
at in the previous chapter. Much of this chapter is based on classical work of
James in the early 1950s.

3.1 Unconditional bases

Definition 3.1.1. A basis (e,)22; of a Banach space X is called uncondi-

tional if for each « € X the series Y7, ek (x)e, converges unconditionally.

Obviously, (e,)s2; is an unconditional basis of X if and only if (ex(n))n2;

is a basis of X for all permutations 7 : N — N.

Example 3.1.2. The standard unit vector basis is an unconditional basis of
co and ¢, for 1 < p < co. An example of a basis which is conditional (i.e., not
unconditional) is the summing basis of cq, (frn)52, defined as

fn=e1+---+e,, nelN.

To see that (f,,) is a basis for ¢g we prove that for each £ = (§(n))52; € ¢o
we have & = Y 07| fr(§)fn, where fi = e} — e}, are the biorthogonal
functionals of (f,,). Given N € N,

N
SO = (en(©) — €1 (&) fn
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N

—fn-1) &N+ 1)fN

=1
N
Z E(N +1)fw.
Therefore,

N
WA N
n=1

=| i §men +EV + Df

< H Z Enen

N+1

N DIl Y0

and ()22, is a basis.

Now we will identify the set, S, of coefficients (., )52 such that the series
ZZO=1 o, frn, converges. In fact we have that (a,,) € S if and only if there exists
€ = (&(n)) € co so that oy, = &(n) — &(n + 1) for all n. Then, clearly, unless
the series Y7 | v, converges absolutely, the convergence of > 2 | a, f,, in ¢o
is not equivalent to the convergence of > ° | €, f,, for any choice of signs
(en)52 ;. Hence (f,) cannot be unconditional.

Proposition 3.1.3. A basis (e,)%2, of a Banach space X is unconditional
if and only if there is a constant K > 1 such that for all N € N, whenever
a1,...,an, bi,...,by are scalars satisfying |a,| < |by| forn=1,..., N, then
the following inequality holds:

N N
H Zanen SKHanen .
n=1 n=1

Proof. Assume (e,)52; is unconditional. If Y >° | aye, is convergent then
Yoo | tnane;, converges for all (t,) € o by Proposition 2.4.9. By the Banach-
Steinhaus theorem, the linear map

(3.1)

o0 o0
Tty - X — X, Zanen — Ztnanen

is continuous. Now the Uniform Boundedness principle yields K so that equa-
tion (3.1) holds.

Conversely, let us take a convergent series fozl aneyn in X. We are going to
prove that the subseries Z,;“;l Gn, €n, is convergent for any increasing sequence
of integers (ny)7° ;. By Lemma 2.4.2, given € > 0 there is N = N(¢) € N such
that if mo > mq > N then

<L
K

ma
| > anen

n=mi+1
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By hypothesis, f N <ngp <+ < ngy we have

i=k+1

k+£
< KH ajej < ¢,

and 80 Y po | Gn,€n, 18 Cauchy.
O

Diefinition 3.1.4. Let (ey,) be an unconditional basis of a Banach space X.
The wunconditional basis constant, K, of (e,) is the least constant K so that

equation (3.1) holds. We then say that (e,) is K -unconditional whenever
K> K,.

Remark 3.1.5. Suppose (e,,)22 ; is an unconditional basis for a Banach space
X. For each sequence of scalars (o) with |a,| =1, let T(, y : X — X be the
isomorphism defined by T(an)(z 1 On€n) = En 1 Cnlney. Then

K, = sup{HT(an)H : (o) scalars, |an| =1 for all n}

If (e, )2° ; is an unconditional basis of X and A is any subset of the integers
then there is a linear projection Py from X onto [ey : k € A] defined for each
T = ek(@er by

Pa(z) = Z ep(z)ek.
kcA
P, is bounded by the same argument used in the proof of Proposition 3.1.3.
{Pa : A < N} are the natural projections assoclated to the unconditional
basis (en) and the number

K =sup | Pa
A

(which is finite by the Uniform Boundedness principle) is called the suppres-
sion constant of the basis. Let us observe that in general we have

1<K, <K, <2K..

In the older literature the term abseluie basis is often used in place of
unconditional basis, bul this usage has largely disappeared. Unconditional
bases seem to have first appearad in work of Karlin in 1948 [107]. In particular
Karlin proved that C[0, 1] fails to have an unconditional basis. We will prove
this later in this chapter.

3.2 Boundedly-complete and shrinking bases

Suppose ()2, is a basis for a Banach space X with biorthogonal functionals
(er)>2 , < X*. One of our goals in this section is to establish necessary and
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sufficient conditions for (e!)° 4 to be a basis for X*. This is not always the
case. For example, the coordinate functionals of the standard basis of #1 cannot
be a basis for #§ since #§ I8 not separable. We will first prove that, at least,
(eX)22 | is a basic sequence in X*.

Proposition 3.2.1. Suppose that (e})32, is the sequence of biorthogonal
Junctionals associated to o basis ()52 of o Banach space X. Then ()32,

is a basic sequence in X* with basis constant no bigger than that of (e,) 4.

Proof. Given (e})2° ,, consider the subspace H of X* given by
H= {5': e X* Sz — 27| - o}, (3.2)

where (5%)%_; 1s the sequence of adjoint operators of the partial sum pro-
jections associated to {(e,)32 ;:

N
Sy X' o X*, S3(at) =Y ot (el
k=1
Clearly ()22, is a basis for H, hence (€)% ; is basic. Notice that
sup [|Sy ez ar < sup Skl xe . xv = sup [[Snl,
N N N
which gives the latter statement in the proposition.
O

Definition 3.2.2. Suppose that X is a normed space and that ¥ is a subspace
of X*. Let us consider a new norm on X defined by

lzlly = sup {[y* (2)] : v € V. [ly"| = 1}
If there is a constant ¢ < 1 such that for all x € X we have
ollzll < =]y < =],
then Y is sald to be a c-nrorming subspace for X in X*.

The next result shows that if (e,)$° ; is a basis for a Banach space X with
basis constant K then the subspace [e},] = H of X* is reasonably big, in the
sense that it is 1/ K-norming for X.

Lemma 3.2.3. Let (e,)2° ; be a basis for a Banach space X with basis con-
stant K and biorthogonal functionals (€2)%° . Then H = [e}] s a K 1-

rorming subspace for X in X*. Thus the norm on X defined by
lellg =sup {|A(z)] : ke H, k] <1},

satisfies
[Eal
7 < el < el (3.3)

for allz e X
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Proof. Let ¢ € X. Since H < X*, it follows immediately that [z|y <
gup{|z*(z)| : z* € X* |z*| < 1} = |z||. For the other inequality, pick
z* € Sx+ so that #*(z) = ||z||. Then for each N,

[(Spa™)z| _ |(Sja*)z]
< - <sup{|h(x)|:hc H k| <1} =|z|:.

Now we let N tend to infinity and use that if | Syz — z|| — Othen |S}z*(z)| =
[z (Snz)| — ||z
O

Remark 3.2.4. The previous result can be interpreted as saying that X em-
beds izomorphically in H* via the map z — j(z)|m, where j iz the natural
embedding of X in its second dual X**. In the case that the basis (e,)5° , is
monotone, equation (3.3) implies that X embeds isometrically in H*.

Definition 3.2.5. A basis (e,)% ; of a Banach space X is shrinking if the
gequence of its biorthogonal functionals (€5)52 ; iz a basis for X*, i.e,if [e}] =

X*

Proposition 3.2.6. A basis (€,)2° ; of a Banach space X is shrinking if and
ordy if whenever 2 € X*,

j\}i_r}noo HI*|[en]n>N || =0, (3.4)

where
[ e | = 2up {2 ()] 5 3 € el |-

Proof. Suppose that (e})52; is a basis for X*. Every * € X can be decom-
posed as (z* — Shiz*) + Shz* for each N. Then the claim follows because

12 e )osar | < [ (2 = SN2 M entoswr || + |82 ey || < 27 = Sia”]
M——

this term is O

and we know that limy o0 ||2* — Siz™|| = 0.

For the converse, assume that (3.4) holds. Let K be the basis constant of
(er)$° 1 and z* be an element in X*. Since for any z € X, (Ix — Sy)(z) isin
the subspace [en]n>n, we have

|(z* — Shx") (@) = 2" (Ix — Sn){(z)|
= ||I*‘[€n]n21\’+1|| [1x — Snll [l
< (K-i- 1) Ha:

*|[€n]n2N+1 || H'TH -
Hence ||z* —S{z™| < (K+1) Hs':"hen]nzN+1 | and so limp oo |2" —Sk2™|| = 0.
Thus X* = [¢}] and we are done.

O
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Proposition 3.2.7. A basis (€,)2° ; of a Banach space X is shrinking if and

only if every bounded block basic sequence of (e,)52 s weakly null.

Proof. Assume (e,)2% 1 is not shrinking. Then H # X*, hence there is * In
X*\[et], |z*| =1, such that the series >°°7 | z* (e, )e}, converges to z* in the
weak™ topology of X* but it does not converge In the norm topology of X*.
Using the Cauchy condition we can find two sequences of positive integers
(pn), (gn) and & > 0 such that ;1 < g1 < p2 < g2 < p3 < g3 < ... and
| 552  x*(en)el|| > 4 for all k € N. Thus for each k there exists 7z € X,

n=pr

|2z =1, for which >>%  z*(e,)el (xx) > 4. Put

n=pr

Gk

yp = Z er(zr)en, k=1,2,...

n=pr

(yx)32, is a block basis of (,)5% | which is not weakly null since z*(yz) > &
for all k.
The converse implication follows readily from Proposition 3.2.6.
O

Definition 3.2.8. Let X be a Banach space. A basis (e,)52, for X is

boundedly-complete if whenever (a,,)52 ; is a sequence of scalars such that

N
sup H E Op€n
N n=1

. o0
then the series >~ | ane, converges.

< 00,

Example 8.2.9. (a) The canonical basis of £, for 1 < p < oo is both shrinking
and boundedly-complete. In #; the cancnical basis is obviously boundedly-
complete, but #; cannot have a shrinking basis because its dual, £, 1s not
separable.

(b) As for ¢, its natural basis is shrinking but not boundedly complete:
the series > - | e, is not convergent in cq despite the fact that

N
sup H E en
N n=1

:supH(l,l,A 1,0 O,M)H — 1.
o0 N —_—— o)
N

On the other hand, the summing basis of ¢y, ()52, is not shrinking because
the linear functional 5 satishes e5(f,,) = 1 for all n, so equation (3.4) cannot
hold. ()22 is not boundedly-complete either:

=1,

o

N
w2
n=1

but the series >0 (—1)" f,, is not convergent.
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Theorem 3.2.10. Let (e,)2° 1 be a basis for a Banach space X with biorthog-

onal furctionals (€)% . The following are equivalent:

(i) (ex)S2 1 is a boundedly-complete basis for X
(7} (€X)2° | is a shrinking basis for H,
(iit) The conondecal map 7: X — H* defined by 7(z)(k) = h(x), for allz € X

and h € H, is an isomorphism.

Proof. (i) = (#7) Using Remark 3.2.4 we need only show that j is onto. For
each h* € H* there exists #** € X** go that z**|g = A*. Let us consider the
formal series > | x**(e})ey, in X. For each N € N,

N

" T
g " (elle, = ST,
n=1

where 5% is the double adjoint of Sn. Hence

|3t

(€,)2° ;1 boundedly-complete implies that > - | #** (e} )e,, converges to some
z € X. Now j(z) = h* since for each k € N we have

j(z)(er) = ex(z) = 2" (&) = B (er).

(##i) = (#) Assume that 7 : X — H* is an isomorphism onto. Then
(j(ex))22 { is a basis for H* and it is also the sequence of coordinate functionals
for {e;)22 . That means ()22 iz a shrinking basis for H.

= 8=l < sup Syl = & ="

n)n:l n)n:

(¢2) = () Let (a,) be a sequence of scalars for which

N
sup H E Ty,
N n=1

< 00. (3.5)

For each N the norm ofj(zN aner) as a linear functional on H is equivalent

to the norm of zle anen, in X. Therefore, by (3.5), (an anilen)) o, iz a
bounded sequence in X**, The Banach- Alaoglu theorem yields the existence
of a weak* cluster point, k¥ € X**, of that sequence. In particular we have
h*(e!) = ay, for each n. Using the hypothesis we can write

o

Zh* n)](en = Z en)

where the series converges in the norm topoelogy of H*. Since 4 is an isomor-
phism, the series zzozl aneyn converges in the norm topology of X.
O
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Corollary 3.2.11. ¢y has no boundedly-complete basis,

Proof. Tt follows from Theorem 3.2.10, taking into account that e iz not
isomorphic to a dual space (Corollary 2.5.6).
O

Theorem 3.2.12. Let (e,)2° 1 be a basis for a Banach space X with biorthog-
onal functionals (€)% . The following are equivalent:

{1) (€)% | is a shrinking basis for X,
(i) (eX)>2 | is a boundedly-complete basis for H,
(iit) H = X*.

Proof. (i) = (4¢) Suppose that (2,)5° 4 is a sequence of scalars such that the
sequence (Zle anen)3—1 18 bounded in X* and let z* € X* be a weak*
cluster point of this sequence. Since limNHm(Z:f:1 anel)(ex) = ag, it follows
that z*(ex) = ax for each k. Thus the series >~ | anel converges to z*.
(#) = (¢) Suppose now that {e})>° ; is boundedly-complete. For any z* in
X* we know that the series > . | 2" (e, )e), converges in the weak" topology of
X* to z*. In particular, the sequences (Zf 1 2 (en)el )R, is norm-bounded in
X*. Hence, by the bounded—completeness of (€)% 1, theseries 37 | a*(ey)el,
must converge to z* in norm, so (e})52 , iz a basis for X~

() < (i) is obvious.

O
Now we come to the main result of the section, which is due to James [80].

Theorem 3.2.13 (James, 1951). Let X be a Banach space. If X has a basis
(en)o2  then X is reflezive if and only if (e,)S2 is both boundedly-complete
and shrinking.

Proof. Assume that X is reflexive and that (e,)$L; Is a basis for X. Then
X* = H. If not, using the Hahn-Banach theorem, one could find 0 #£ z** €
X** such that «**(h) = 0 for all A € H. By reflexivity there is 0 #£ z =
EOO n(m)eﬂ € X such that @ = z**. In particular we would have 0 =

“(ek) = e {z) for all n, which would imply = 0. Thus (e,)2° ; is shrinking.
Notlce that (e,)2° ; is a basis for X** and is also the sequence of biorthogonal
functionals associated to (e)2° ;. That implies that (€)%, is a shrinking
basis of X* = H, hence hy Theorem 3.2.10, (en) ? 1 i3 boundedly-complete.

Conversely, (en) ° , shrinking implies # = X*, and since (e,)2; is
boundedly-complete as well, the cancnical map 7 : X — H* in Theorem 3.2.10
(2#¢) is now the canonical embedding of X onto X**.

O

This theorem gives a criterion for reflexivity which is enormously useful,
particularly in the construction of examples. Notice that the facts that the
canonical basis of £; fails to be shrinking and that the canonical basis of ¢
fails to be boundedly-complete are explained now in the nonreflexivity of these
spaces.
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During the 1960s it was very fashionable to study the structure of Banach
spaces by understanding the properties of their bases. Of course, this view-
point was somewhat undermined when Enflo showed that not every separable
Banach space has a basis [54]. One of the high points of this theory was the
theorem of Zippin [224] that a Banach space with a basis is reflexive if and
only if every basis is boundedly complete or if and only if every basis is shrink-
ing. Thus, any nonreflexive Banach space which has a basis must have at least
one non-boundedly-complete basis and at least one nonshrinking basis.

3.3 Nonreflexive spaces with unconditional bases

Now let us consider the boundedly-complete and shrinking unconditional
bases. Again we follow the classic paper of James [80].

Theorem 3.3.1. Let X be a Banach space with unconditional basis (un)32 .
The following are equivalent:

(i) (up)S%y fails to be shrinking,
(ii) X contains a complemented subspace isomorphic to (1,
(i) There exists a complemented block basic sequence (yn)22, with respect to
(uy )22 which is equivalent to the canonical basis of {1,
(iv) X contains a subspace isomorphic to {;.

Proof. The implications (iit) = (i7) = (iv) are obvious.

(iv) = (i) is also immediate because if X contains ¢; then X* cannot be
separable and so (u,)22; is not shrinking.

(i) = (2i1) If (up)S2; is not shrinking, by Proposition 3.2.7 we can find a
bounded block basic sequence ()72, of (u,)5%;, 6 > 0, and 2* € X* with

[l=*|| = 1, such that z*(yx) > 0 for all k. Then for any scalars (ax) € coo we

have
[ee] o0
H Z akka > ‘ Z x*(yk)ak’-
k=1 k=1

By picking €; = sgn ay, for each k we obtain

o0 o0 oo
| evans]| = X0 woan] = 03 sl
k=1 k=1 k=1

Being a block basis of (u,)5% 4, (yx)72, is an unconditional basic sequence
with unconditional basis constant < K. Therefore,

o0 o0
H Zakyk” > 6K Jagl.
k=1 k=1

On the other hand, since (yx) is bounded, the triangle law yields an upper
{1-estimate for || Y, axyk|| and hence (yx) is equivalent to the standard
{1-basis. It remains to define a linear projection from X onto [yx].
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For each k& put

1 qr
v = ¥ (ug)u) .
i x*(yk)ﬂ; (un )ty

Clearly, the sequence (y}) is orthogonal to (yx) and ||y || < 6=1K. For every
N € N let us consider the projection from X onto [ykhgng defined as

N
Pn(z) = Z Ui ()Y
k=1

(FPxn) is a bounded sequence: given any z € X if we pick e = sgn v (z) we
have

N
1P (@) < K [wi(e)]
k=1
N
= KZEkyE(I)
kY Z

k=1n=ps

K (Y3 (@)

k:l'ﬁp

5«"" (e g ()

<K2max‘ ‘H
< K% 1H$H-

Since limpy o Py (z) exists for each z, by the Banach-Steinhaus theorem, the
operator

FP:X —>w, z— Pl Zyk ()

ig bounded by K26~ and is obviously the desired projection.
O

Theorem 3.3.2. Let X be o Banach space with unconditional basis (u,)22 .
The following are equivalent;

(1) (uy)22 | fails to be boundedly-complete,
(i} X contains a complemented subspace tsomorphic to oq,
(1it) There exists a complemented block basic sequence (y,)5° | with respect to
(un )22 | equivalent to the canonical basis of cq,
(iv) X contains o subspace isomorphic to og.
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Proof. Note that (i) and (iv) are equivalent since g is separably injective
(Sobezyk’s theorem, Theorem 2.5.8).

(2) = (@28) I (uy)2® 1 is not boundedly-complete there exists a sequence
of scalars (a,) such that supy || Eﬁ;l Aty || < oo but the series >0 | anuy,
does not converge in X.

Given any z* € X*, pick €, = sgn z*(u,,). By the unconditionality of the
basis there exists K so that

N N N
S laalla (un)| = D entna” (un) < K 2] | 3 anien
n=1 n=1 n=1

So the series of scalars > .- | [2*(anu,)| converges for all z* € X*. That
is, Y07 anu, is a WUC series in X that is not unconditionally conver-
gent. Proposition 2.4.7 vields a bounded operator T' : ¢g — X such that
T(en) = anuy, for all n, where (e,) denotes the standard unit vector ba-
sis of ¢y. Furthermore, by Proposition 2.4.8, T' cannot be compact. Using
Theorem 2.4.10 we can extract a block basic sequence () with respect to
the cancnical basis of ¢5 such that T'[,,; is an isomorphism onto its range.
Then 4, = Tz defines a block basic sequence in X with respect to the basis
(1,,)22 1 such that [yg] is isomorphic to gy, Corollary 2.5.9 implies that [yy] is
complemented in X.

(#22) = (it) 1s obvious.

(#) = (¢) Suppose that (i7) holds and that (2,)32 ; is boundedly-complete.
Then, by Theorem 3.2.10, X is a dual space and so there is a bounded projec-
tion of X** onto X (see the discussion after Proposition 2.5.2). Hence there is
a projection of X** onto a subspace E of X isomorphic to ¢y. However, if ¥
is a subspace of X then £** embeds as a subspace of X** (it can be identified
with E1+ which is also the weak* closure of F). Hence there is a projection
of £** onto E. This contradicts Theorem 2.5.5.

O

The following theorem is again due to James [80] except that the last
statement was proved earlier, using different techniques, by Karlin [107].

Theorem 3.3.3. Suppose that X is a Banach space with an unconditional
basis. If X is not reflexive then either oy s complemented in X, or £, is
complemented in X (or both). In either case X** is nonseparable.

Proaf. The first statement of the theorem follows immediately from Theo-
rem 3.2.13, Theorem 3.3.1, and Theorem 3.3.2. Now, for the latter statement,
if og were complemented in X then X** would contain a (complemented) copy
foo. If £1 were complemented in X then X* would be nonseparable since it
would contain a {complemented) copy of Z,,. In either case, X** is nonsepa-
rable.

O
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3.4 The James space J

Continuing with the classic paper of James [80] we come to his construction
of one of the most important examples in Banach space theory. This space,
nowadays known as the James space, is, in fact, quite a natural space con-
sisting of sequences of bounded 2-variation. The James space will provide an
example of a Banach space with a basis but with no unconditional basis; it
also answered several other open questions at the time. For example, it was
not known if a Banach space X was necessarily reflexive if its bidual was
separable. The James space J is separable and has codimension one in J**,
and so gives a counterexample. Later, James [81] went further and modified
the definition of the norm to make J isometric to J**, thus showing that
a Banach space can be isometrically isomorphic to its bidual yet fail to be
reflexive!

Let us define J to be the space of all sequences £ = (£(n))32, of real
numbers with finite square variation; that is, £ € J if and only if there is a
constant M so that for every choice of integers (pj);-lzo with 1 < pg < p1 <

- < pnp we have
n

> (€py) — Elpj—1))? < M2

Jj=1

It is easy to verify that if &€ € 7 then lim,_. £(n) ex1sts We then define
J as the subspace of J of all € so that lim,_ &(n

) =
Definition 3.4.1. The James space J is the (real) Banach space of all se-
quences £ = (£(n))5%, € J such that lim, .., &(n) = 0, endowed with the
norm

el = 75 { (t6tpw) —el0)? + et - Epi))?)” 2} ,

where the supremum is taken over all n € N, and all choices of integers (p;)}_,
with 1 <py <p1 < -+ < py.

The definition of the norm in the James space is not quite natural; clearly,
the norm is equivalent to the alternative norm given by the formula

I€llo = sup {(Z(&(m) - £<pk_1>>2)”2} ,

k=1
where, again, the supremum is taken over all sequences of integers (pj)?zo
with 1 <py < p1 < --- < pp. In fact,

%Hﬁ”o <|élly < V3l <.

Notice that |e,||7 = 1 for all n, but |[e,|lo = v/2 for n > 2.
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We also note that || - | 7 can be canonically extended to J by

Ielly = — sup { (t6tpw) —et0)" + et - Eoen))?)” 2} ,

but this defines only a seminorm on J vanishing on all constant sequences.

Proposition 3.4.2. The sequence (e,)52 of standard unit vectors is a mono-
tone basis for J in both norms || - ||z and || - ||o-

Proof. We will leave for the reader the verification that (e,)52 ; is a monotone
basic sequence in both norms. To prove it is a basis we need only consider the
norm || - [|o.

Suppose £ € J. For each N let

Given € > 0, pick 1 < pg < p; < -+ < py,, for which

> (Eps) = &ps-1))” > 1I€l5 —

j=1

In order to estimate the norm of £ when N > p, it is enough to consider
positive integers ¢o < ¢1 < g2 < -+ < @m, where N < go. Then for the
partition 1 <pg <p; <---<pp < qo < @2 < --- < gy We have

€5 = " (Eps) — &(pi—1))* + (€(a0) — )+ (6lgy) — &lg5-1))?
j=1 j=1
> (&) —&py-1)° + Y _(&lgy) — €lg5-1))*.
j=1 j=1
Hence .
' &(g;) —€(g5—1))* <€

Thus, |[En]lo < € for N > p,,.

Proposition 3.4.3. Let (n;)72, be a normalized block basic sequence with
respect to (e,)32, in (T, |- |lo). Then, for any sequence of scalars (\g)}_, the
following estimate holds:

[, =5 (3500)"
k=1 k=1
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Proof. For each k let

Gk

=y mlie

F=qr—1+1

where 0 =g < g1 < ..., and put

E=D M.
k=1

Suppogse 1 < pg < p1 < -+ < P Fix i < n. Let 4; be the set of k so that
gio1 <Pr_1 <pr g f R Ay

E(or) — Elor—1) = Xi(ns(or) — ma(pr_1)).

Hence

N Elm) — Eloe 1)) < A2

ke A,
If A= U;4; we thus have

3

Do) —Em) <Y N

kEA i=1

Let B be the set of 1 < k < m with & ¢ A. For each such & there exist
i=1t(k),j = j(k) so that g; 1 <pr 1 <g; and g; 1 < pp < g;. Then,
(Eor) — Elor_1))® = \ymy(oe) — Aams (1))
< 2(N2n; (o) + Aimi (o 1)?)
< 2(NZ A7)

Thus,

s

(€l —mo)? < D N +2> 22,2 a2,
=1

k=1 kER keB

Since the i(k)’s and similarly the j(k)’s are distinct for & € B, it follows that

k(3 il

E(f(pk) — & 1))’ <5 Z)‘?,

k=1 =1

and this completes the proof.
O

Proposition 3.4.4. The sequence (e,)n is a shrinking basis for 7 {for both
norms | - |7 and || - o).
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Proof. We will prove that every bounded block basic sequence of (e,,) is weakly
null and then we will appeal to Proposition 3.2.7. Let ()5 ; be a normalized
block basic sequence in (7, || - |jo). Using Proposition 3.4.3, the operator S :
9 — [m) C J defined for each A = (Ay) € 42 by

S = Aeme
=1

is bounded. The norm-continuity of S implies that § is weak-to-weak con-
tinuous. Since the sequence of the unit vector basis of #5 is weakly null, it
follows that their images, the block basic sequence (7:)72,, must converge to

0 weakly as well.
O

Remark 3.4.5. Notice that the standard unit vector basis of J Is not
boundedly-complete since

N
[ > en
n=1

for all N, but the series > .~ | e, does not converge in 7.

L=l L0 ) =1

Since (e,)S° ; Is shrinking we can identily each z** € J** with the se-
quence £(n) = z**(e}). Under this identification J** becomes the space of
sequences £ such that

[€llg+s = sup [I€Q),. ... £(m), 0, )7 < 0.

Note that we now specialize to the use of the norm || |7 on J. That | - || 7
is the bidual norm on J** follows easily from the fact that the basis (e,)2° 4
is monotone. It is clear from the definition that J** coincides with j, Le.,
the space of sequences of bounded square variation.

We have already noticed that the canonical extension of || |7 to J = J**
iz only a seminorm. In fact the relationship between || - || 7+~ and || - |7 i

[[€ll 7 = max([[€]l.7. 1€]]1)-

where

1€l = % sup {(f(Pn)Q 4 E(py)® + é(i(m) B f(pk_ﬂ)g) 1/2} ’

and, as usual, the supremum is taken over all n € N, and all choices of integers
(Pj)?:o withl < pg<p < < pp.

Theorem 3.4.6. 7 is a subspace of codimension 1 in J** and J** is iso-
metric to J.
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Proof. Clearly, 7 ={£ € J** : limy_c £(n) = 0} has codimension one in its
bidual. To prove the fact that it iz isometric to its bidual we observe that

€l 7ee = 10, £(1),£2), .. )lry £ T

Let
L) = lm &), £c .

We define
S(8) = (—L(£).£(1) — L(£), £(2) — L(§),...).

S maps J** onto J and is one-to-one. Since | - |7 is a seminorm on [J**
vanishing on constants,

[S@lr = 110,£01), - )7 = €]l

Thus § is an isometry.

Corollary 3.4.7. 7 does not have an unconditional basis.

Proof. Tt follows immediately from the separability of 7**, Theorem 3.3.3,
and Theorem 3.4.6.
O

After the appearance of James’s example the term guasi-reflezive was often
used for Banach spaces X so that X**/X is finite-dimensional.

The ideas of the James construction have been repeatedly revisited to pro-
duce more sophisticated examples of similar type. For example, Lindenstrauss
[130] showed that for any separable Banach space X there is a Banach space Z
with a shrinking basis such that Z**/Z is isomorphic to X (see Section 13.1).

3.5 A litmus test for unconditional bases

We now want to go a little further and show that 7 cannot even be isomorphic
to a subspace of a Banach space with an unconditional basis. We therefore
need to identify a property of subspaces of spaces with unconditicnal bases
which we can test. For this we use Pelezyriski’s property (u) introduced in

1958 [168).

Definition 3.5.1. A Banach space X has property {u) if whenever (z,,)5% | is
a weakly Cauchy sequence in X, there is a WUC series Zzozl ug in X so that

T
Ty — Zuk — 0 weakly.
k=1

Proposition 3.5.2. If o Banach space X has property (u) then every closed
subspace Y of X has property {u).
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Proof. Let (y;) be a weakly Cauchy sequence in a closed subspace ¥ of X.

Since X has property (u), there is a WUC series > ;7 u; in X so that the

sequence (y; — Ele u;) converges to 0 weakly. By Mazur’s theorem there is a
. . &

sequence of convex combinations of members of (y, — >, u;) that converges

to 0 in norm. Using the Cauchy condition we find integers (p), 0 = po <

P < p2 < ..., and convex combinations (Eﬁipk,1+1 My — zgzl ui))%
such that
Pr 7
H Z Al — Zuz) ‘ <275 for all k.
J=pr—1+1 i=1

Put zp = 0, and for each integer k£ > 1 let

Pr
k= Z )\jyj cY.

j=pr_1t+1
Then for any z* € X*, ||z*| = 1, we have
2% (2 — 2p_q)| < 27F 421k
D J Pr—1 7
O Y e Y Y )
J=pr—1+1  i=pr_a+1 J=pr—2+1 i=pr_a+1
Thus,
Pr
|2 (en — )| <3-27F 42 N |2t (uy)),
J=pr—2+1

which implies

o 3 o0
Z |z* (o — 26_1)| < 5 + 42 |&* (uy)] < oo,
k=1

i=1

Therefore, > o (zx —2x_1) 12 a WUC geries in Y. Now one easily checks that
the sequence

(yn - Z(Zk - Zkfl)ﬁo:l = (Un — #n)nct
k=1

converges weakly to 0.
O

Proposition 3.5.3 (Pelczyrniski [168]). If a Banach space X has an un-
conditional basis then X has property (u).

Proof. Let (u;)2% ; be a K-unconditional basis of X with biorthogonal func-
tionals (u})52 . If (z,,) is a weakly Cauchy sequence in X then for each &
the scalar sequence (u}(z,))52 , converges, say, to az. Hence the sequence
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(Ek 1 teuf (2 )ug )52 | converges weakly to Zk 1 twaguy for each NV and any
gcalars (tz). Therefore,

H ZekakukH < K sup |24 ||
k=1 i

for all N and any sequence of signs (ez). Being weakly Cauchy, (z,) is norm-
bounded thus zzozl apug 18 a WUC series. Put

T
— E QL.
k=1

(yn) is weakly Cauchy. Also, limy, oo u (yn) =0 for all s € N. We claim that
(y,) converges weakly to 0. If not, there is * € X* so that lim,,_, ., #* (v,,) = 1.
Using the Bessaga-Pelczynski selection principle (Proposition 1.3.10) we can
extract a subsequence (i, ) of (%.) and find a block basic sequence (z;) of
(un) such that (z;) is equivalent to (v, ) and [lyn, — z;]| — 0. We deduce that
z*(z;) — 1 since
|27 () — 1] < & (25 —wn, )|+ [ (g, ) =1 < 2™ llz5 — v, | + ]2 () — 1]
| N S—

this tends to 0 this tends to 0

Without loss of generality we can assume that |2*(z;)| > 1/2 for all j. Given
(a;) € coo, by letting ¢; = sgn a;2%(2;) we have

S ‘Z% (29)]
i=1
o0
Efj%zj ‘
Jj=1
< 12 K] D o |
F=1

Hence

o0 1 (e ol
H Z%Zj > WZMH-
7j=1 =1

On the other hand we obtain an upper #1-estimate for || Z;’il a;2;| using the
boundedness of the sequence (z;) and the triangle law. We conclude that (z;)
is equivalent to the standard £;-basis. This is a contradiction because (z;) is
weakly Cauchy whereas the canonical basis of #; is not. Therefore our claim
holds and this finishes the proof.

O
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Proposition 3.5.4. (i) J does not have property (u) and so cannot be em-
bedded in any Banach space with an unconditional basis.

i) (Karlin [107]) C[0,1] does not have an unconditional basis, and cannot
be embedded in a space with unconditional basis,

Proof. (i) Assume that J has property (u). Since the sequence defined for
each n by s,, = 22:1 e 18 weakly Cauchy in 7, there exists a WUC serles In
T, > 50 uk, so that the sequence (377 ex — > 1, uz)S2 converges weakly
to 0. One easily notices that the series Ezil u;, cannot be unconditionally
convergent in f because that would force the sequence (s,,) to converge weakly
to the same limit, when (s,,) is not weakly convergent in 7 (it does converge
weakly, though, to (1,1,1,...,1,...) € j) Therefore using Theorem 2.4.11,
cy embeds in 7, which implies that £., embeds in 7**, contradicting the
separability of 7.

That 7 does not embed Into any space with unconditional basis follows
immediately from Proposition 3.5.2 and Proposition 3.5.3.

(#7) This follows from (i) because J embeds isometrically into C[0,1] by
the Banach-Mazur theorem (Theorem 1.4.3).

O

Thus we have seen that having an unconditional basis is very special and
one cannot rely on the existence of such bases in most spaces. It ig, however,
true that most of the spaces which are useful in harmonic analysis or partial
differential equations such as the spaces L, for 1 < p < oo do have uncondi-
tional bases (which we will see in Chapter 6). We will see also that I fails to
have an unconditional basis. [t is perhaps reasonable to argue that the reason
the spaces L, for 1 < p < oo seem to be more useful for applications in these
areas 1s precisely because they admit unconditional bases!

From the point of view of abstract Banach space theory, in this context it
was natural to ask:

The unconditional basic sequence problem. Does every Banach space
cortain at least an unconditional basic sequence?

This problem was regarded as perhaps the single most. important prob-
lem in the area after the solution of the approximation problem by Enflo in
1973. Eventually a counterexample was found by Gowers and Maurey in 1993
[T1]. The construction iz extremely involved but has led to a variety of other
applications, some of which we have already met (see e.g. [115], [70], and [72]).

Problems

3.1. Let () be a K, -unconditional basis in a Banach space X.

(a) Show that if (y,) is a block basic sequence of (1) then () is an uncon-
ditional basic sequence in X with unconditional constant < K.

(b) Show that the sequence of biorthogonal functionals (u}) of (w,) is an
unconditional basic sequence in X* with unconditional constant < K,,.
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3.2. Let (uy,) be an unconditional basis for a Banach space X with suppression
constant K. Prove that for all N, whenever aq,...,apn, b1,...,by are scalars
so that |an| < |by] for all 1 <n < N and a,b, > 0 we have

N N
n=1 n=1

That is, the suppression constant can replace the unconditional constant in
equation (3.1) when the sign of the coefficients in the linear combinations of
the basis coincide.

< K

3.3. Show that the sequence (ey)52; of standard unit vectors is a monotone
basic sequence for J in both norms || - ||7 and || - ||o (see Proposition 3.4.2).

3.4. Orlicz sequence spaces.

An Orlicz function is a continuous convex function F : [0,00) — [0, 00) with
F(0) = 0 and F(z) > 0 for x > 0. Let us assume that for suitable 1 <
q < oo we have that F(z)/xz9 is a decreasing function (caution: this is a mild
additional assumption; see [138] for the full picture). The corresponding Orlicz
sequence space L is the space of (real) sequences (£(n))52; such that

Y F(Em)) < oo

(a) Prove that ¢ is a linear space which becomes a Banach space under the
norm

I€]ler = int{A>0: > FA'Em)]) < 1)
n=1

(b) Show that the canonical basis (e,)52 4 is an unconditional basis for (.
(¢) Show the canonical bases of £r and ¢ are equivalent if and only if there
is a constant C' so that

F(z)/C < G(z) < CF(x), 0<z<1L

3.5. (Continuation of the previous problem)
(a) By considering the behavior of block basic sequences, show that £z con-
tains no subspace isomorphic to cg.

(b) Now assume additionally that there exists 1 < p < oo so that F(z)/2P is
an increasing function. Show that (r is reflexive.

3.6. Let X be a subspace of a space with unconditional basis. Show that if X
contains no copy of ¢y or ¢; then X is reflexive.

3.7. Let X be a Banach space with property (u) and separable dual. Suppose
Y is a Banach space containing no copy of cg. Show that every bounded
operator T': X — Y is weakly compact.
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3.8. Let X be a Banach space.

(a) Show that if X contains a non-boundedly-complete basic sequence then X
contains a basic sequence (z,,)32; with inf, ||z,|| > 0 and sup,, || Y1, = <
0.

(b) (Continuation of (a)) Show that y,, = > "I, x; is also a basic sequence.

(c¢) Show that if X contains a nonshrinking basic sequence then X contains a
basic sequence (x,,)%2 ¢ such that sup, ||z,] < oo but for some z* € X* we
have z*(x,) = 1 for all n.

(d) (Continuation of (c)) Show that if y; = z1 and y, =, — 2,1 for n > 2
then (y,)52; is also a basic sequence. [We remind the reader of Problem 1.3.]

3.9. Let X be a Banach space. Show that the following conditions are equiv-
alent:

(i) Every basic sequence in X is shrinking;
(ii) Every basic sequence in X is boundedly complete;
(iii) X is reflexive.

This result is due to Singer [206]; later Zippin [224] improved the result
to replace basic sequence by basis when X is known to have a basis (see
Problem 9.7).

3.10. Let (e,,)22; be the canonical basis of the James space J. Show that the
sequence defined by f, = e;+-- -+ ey is a boundedly-complete basis and that
the regular norm on J is equivalent to the norm given by

ol n Pi 2 1/2
X astifl| = (50 32 a)) "¢
j=1 j=1 i=pj_1+1

where the supremum is taken over all n and all integers (p;)}_o with 0 = py <
pr < <pn
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Banach Spaces of Continuous Functions

We are now going to shift our attention from sequence spaces to spaces of
functions, and we start in this chapter by considering spaces of type C(K).
If K is a compact Hausdorff space, C(K) will denote the space of all real-
valued, continuous functions on K. C(K) is a Banach space with the norm
[flloo = maxsex | f(s)]-

It can be argued that the space C[0, 1] was the first Banach space studied
in Fredholm’s 1903 paper [61]. Indeed, prior to the development of Lebesgue
measure, the spaces of continuous functions were the only readily available
Banach spaces!

We will begin by establishing some well-known classical facts. We include
an optional section on characterization of real C(kK)-spaces. Then we turn to
the classification of isometrically injective spaces. Continuing in the spirit of
considering the isomorphic theory of Banach spaces, we will also be inter-
ested in classifying C(K)-spaces at least for K metrizable. This will give us
the opportunity to use some of the techniques we have already developed in
Chapters 2 and 3.

The highlight of the chapter is a celebrated result of Miljutin from 1966
which states that if K and L are uncountable compact metric spaces then
C(K) and C(L) are isomorphic as Banach spaces. This is a very elegant appli-
cation of some of the ideas developed in the previous chapters. However, we
will not use this result later, so the more impatient reader can safely skip it.

4.1 Basic properties

Most of the material in this section is classical. For convenience we will always
consider spaces of real-valued functions, although the extension of the main
results to complex-valued functions is not difficult.

Let us start by recalling some of the basic facts about spaces of continuous
functions. The first is the classical Riesz Representation theorem.
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Theorem 4.1.1 (Riesz Representation Theorem). If K is a compact
Housdorff topological space, then C(K)* is isometrically isomorphic to the
space M(K) of all finite reqular signed Borel measures on K with the norm
llitl] = || (K)). The duality is givern by

i) :fod,u.

If, in addition, K is metrizable then every Borel measure s regular and so
M(K) cotncides with the space of all finite Borel measures.

Theorem 4.1.2 (The Stone-Weierstrass Theorem). Suppose that K is
a compact Hausdor[f topological space.

{a) {Real case) Let A be a subalgebra of C(K) {i.e., A is a linear subspace of
C(K) and sums, products, and scolar multiples of functions from A are in A)

containing constants. If A separates the points of K (i.e., for every sy, ss € K
with s1 # s9 there is some f € A such that f(s1) # f(s2)), then A = C(K).

(b} (Complex case) Let A be a subalgebra of Co(K) contatning constarts. If
A is self-adjoint (i.e., f € A implies f € A) then A = Cc(K).

Theorem 4.1.8. If K is compact Housdorff then the space C(K) is separable
if and only if K is metrizable.

Proof. There is a natural embedding s — J,; (the point mass at s) of K into
M(K). This is a homeomorphism for the the weak* topology of M(K). By
Lemma 1.4.1 () this shows that K is metrizable if C(K) is separable. For
the converse, let us begin by observing that if K Is a metrizable compact
Hausdorff space then, in particular, it is separable. Let d be a metric inducing
the topology and let (s,)2°; be a dense countable subset of K. For n =
1,2,..., let d,, : & — R be the {continuous) function defined for each s € K
by dn(s) = d(s, s,). The algebra A generated in C(K) by the countable set
D =11,dy,ds,...} (here 1 denotes the constantly one function) is dense in
C(K) by the Stone- Weierstrags theorem. The set of all polynomials of several
variables in the functions from D with rational coeflicients is a countable dense
set in A, hence it is dense in C(K), so C(K) is separable.
|
Let us recall that a separation of a topological space X is a pair U, V of
disjoint open subsets of X whose union is X. Then, the space X is sald to
be connected if there does not exist a separation of X, i.e., if and only if the
only subsets of X that are both open and closed in X (or clopen) are the
empty set and X itself. On the other hand, a space is totally disconnected if
its only connected subsets are one-point sets. This Is equivalent to saying that
each point in X has a base of neighborhoods consisting of sets which are both
open and closed in X. The Cantor set A = {0, 1} is an example of a totally
disconnected compact metric space. We will need the following elementary
fact:
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Proposition 4.1.4. If K is a totally disconnected compact Hausdorff space,
then the collection of simple continuous functions (i.e., function f of the form
f= 2?21 ajxu, where Uy,. .., Uy are disjoint clopen sets) is dense in C(K).

Proaf. This is an easy deduction from the Stone-Weierstrass theorem as the
simple functions form a subalgebra of C{K).

O

We conclude this section with another basic theorem from the classical

theory, the Banach-Stone theorem, whose proof i1s proposed as an exercise

(see Problem 4.2).

Theorem 4.1.5 (Banach-Stone). Suppose K and L are two compact Hous-
dorff spaces such that C(K) and C(L) are isometrically isomorphic Banach
spaces. Then K and L are homeomorphic.

The Banach-Stone theorem appears for K, I metrizable in Banach’s 1932
book [8]. In full generality it was proved by M. H. Stone in 1937. In fact, general
topology was in its infancy in that period, and Banach was constrained by the
imperfect state of development of nonmetrizable topology; thus, for example,
Alaoglu’s theorem on the weak® compactness of the dual unit ball was not
obtained till 1941 because it required Tychonoff’s theorem.

One needs to know that certain spaces such as 2., and L4, (0, 1) are C(K)-
spaces in disguise. The standard derivation of such facts requires considering
the complex versions of these spaces as commutative C*-algebras (or B*-
algebras) and invoking the standard representation of such algebras as C(K)-
gpaces via the Gelfand transform ([32], pp. 242fF). Readers familiar with this
approach can skip the next section, which is presented to remain within the
category of real spaces.

4.2 A characterization of real C(K)-spaces

The approach in this section allows us to avoid some relatively sophisticated
ideas in Banach algebra theory and gives a direct proof that £, and L..[0,1]
are indeed C(K )-spaces.

Definition 4.2.1. Suppose .4 is a commutative real Banach algebra with
identity e such that ||le| = 1. The state space of A is the set

S={pc A" : [lo| =¢le) =1}
An element of & Is called a state.

Remark 4.2.2. The set of states § of a commutative real Banach algebra .4
with identity Is nonempty by the Hahn-Banach theorem, and & is obvicusly
weak* compact.
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Ay will denote the closure of the set of squares in A, that is,
Ay ={a?:0 e A}

The following lemma states two properties of A, which are trivially veri-
fied, and therefore we omit its proof.

Lemma 4.2.3.

(i) Ifz,ye AL thenoye AL,
(i) If e € Ay and A >0 then Az € A .

Proposition 4.2.4.

(i) If v € A is such thot ||z|| <1 thene4z € A,.

(i) A=Ay —Aq.

Proof. (1) Let o € A such that ||z|| < 1. By writing (1 4+ ¢)*/? in its binomial
series > o7 | 4™ (where, in fact, ¢, = (17/12)), valid for scalars ¢ with |¢] < 1, we
see that the series Ziozl cnt™ is absolutely convergent, therefore convergent

to some i € A. By expanding out (14¢)%/2(14-#)1/2 for a real variable ¢ when
|t| < 1 it is clear that

1 ifk=0,1
Z CmCn = .
ek 0 ifk>2.

We deduce that 4% = e 4+ z. Since Ay is closed we obtain that e + z € A, if
] < 1.
(72) follows immediately (using Lemma 4.2.3) since if ||z|| < 1 we can write

r=1(e+az) 1)
O

We aim to show that a real Banach algebra A with identity is a C(K)-space
if 1t satisfies one additional condition, that is:

Theorem 4.2.5 ([1]). Let A be o commutative real Banach algebra with an
identity e such that |e|| = 1. Then A is isometrically isomorphic to the algebra
C(K) for some compact Housdorff space K if and only if

o2 — 82| < |la® + 82|, a,b< A (4.1)

In our way to the proof of Theorem 4.2.5 we will need two preparatory
Lemmas which rely on the following simple deductions from the hypothesis.
Equation (4.1) gives

le =yl < e +ul, =uecA (4.2)
So, if z,y € Ay we also have

Il < 3 {le =yl + e+ ul) < |2+ vl (4.3)
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Lemma 4.2.6. Suppose A satisfies the condition (4.1). Then @{z) > 0 when-
ever p € § and x € A;.

Proof. Take z £ A} with ||z|| = 1. By Proposition 4.2.4, e — z € A, and, by
(4.3),
le ==zl < [|{e — =) + || = 1.

Hence for ¢ € & we have

L= l¢ll 2 ple —a) =1 —¢(z),

and thus @{z) > 0.
O

Lemma 4.2.7. Suppose A satisfies (4.1). Let K be the set of all multiplicative
states of A, i.e.,

K ={pc 8:¢ly) = elz)ply) fordl z,yc A}

Then K is a compact Hausdorff space in the weak® topology of A* which
contains the set 3.8 of extreme points of S8 (and in particular is nonempty).

Proaof. Tt is trivial to show that K is a closed subset of the closed unit ball
of A* and so is compact for the weak* topology. Suppose ¢ € 4.8. Since
A=A, — A, it suffices to show that (zy) = ¢(z)ely) whenever z € A,
and y € 4.

Let z € A4 such that ||z]| € 1 and y € A with |y| < 1. By Proposi-
tion 4.2.4, e+ y € A, . Therefore, by Lemma 4.2.6

ez(ety)) 20,
which implies
o ()] < ¢lz).
Similarly, e — 2 € A, by Proposition 4.2.4 and so

[plle —2)y)[ < 1—e(z).

If ¢(z) = 0 or @(z) = 1, using the previous inequalities it is immediate

that o(xy) = @(z)e(y).
If 0 < ¢(z) < 1, we can define states on A by %1(y) = ¢(z) Le(zry) and

aly) = (1 — () Y¢({e — x)y) and then write
@ = @(@)hr + (1 — o))t

By the fact that ¢ iz an extreme point of & we must have 3 = ¢ and,
therefore,
olzy) = plx)ely), wedyved
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Proof of Theorem 4.2.5. Suppose A satisfies the condition (4.1). Let J: A —
C(K) be the natural map, given by

Jr{p) = ¢(z).

Clearly, J is an algebra homomorphism, J(e) = 1 and ||.J|| = 1. In order to
prove that J Is an isometry we need the following:

Claim. Suppose x € A is such that || Jz|cxy < 1. Then for any e > 0
there exists 1. > 0 so that

lle — (1 +eje —t.x| < 1.

If the Claim fails, there is « € A with ||/ ¢(x) < 1 so that for some € > 0
we have
le —t(1+e)e—tz| > 1, t > 0.

By the Hahn-Banach theorem (separating the set {e — ¢(1 +¢€)e —tx: ¢ > 0}
from the open unit ball) we can find a linear functional ¢ with ||¢| =1 and

wle—t{l+e)e—tx) > 1, t>0.

In particular ¢ € § and @((1+¢e)e+x) < 0. Hence |©(z)| > 1+¢. But now by
the Krein-Milman theorem and Lemma 4.2.7, we deduce that ||Ja|[cxy > 1,
a contradiction.
Thug, combining the Claim with Propesition 4.2.4 (), we have that
[Jzllery < 1implies (1+e)e+xe Ay foralle >0, s0e+ae Ay,
Applying the same reasoning to —z we have e — x € A, . Hence, by (4.2),
we obtain

Izl = 3l(e+2) — (e — )l < 3lle+2) + (e — )| = 1.

Thus J Is an Isometry.
Finally .J is onto C(K) by the Stone-Weierstrass theorem.
O

Remark 4.2.8. We only needed the full hypothesis (4.1) at the very last step.
Prior to that we only use the weaker hypothesis

Ja®] < lla® + 2%,  a,be A (4.4)

The condition (4.4) implies (4.3), which was used in Lemmas 4.2.6 and 4.2.7.
However, this hypothesis only allows one to deduce that |[Jx|e) > 4|«
and so .4 is only 2-isomorphic to C(K'). That this is best possible is clear from
the norm on C(K) given by

AN = 1+ leqey + 1 -lleq
where fi = max(f,0) and f_ = max{—f£,0). Under this norm C(K) is a

commutative real Banach algebra satisfying equation (4.4) but not equation

(4.1).
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Let us observe that if we consider A = (o (with the multiplication of
two sequences defined coordinate-wise), Theorem 4.2.5 yields that A = C(K)
(isometrically) for some compact Hausdorff space K. This set K is usually
denoted by SN. We also note that if (Q, 3, u) is any o-finite measure space
then L (2, ) is again a C(K)-space. In each case the isomorphism preserves
order (i.e., nonnegative functions are mapped to nonnegative functions) since
squares are mapped to squares.

4.3 Isometrically injective spaces

We now turn to the problem of classifying isometrically injective spaces, orig-
inally introduced in Chapter 2 (Section 2.5). There we saw that ¢, which
we identify with C(SN), is isometrically injective but that ¢y is not an (iso-
morphically) injective space (although it is separably injective). Let us recall
that AN is the Stone-Cech compactification of N endowed with the discrete
topology, i.e., SN is the unique compact Hausdorff space containing N as a
dense subspace so that every bounded continuous function on N extends to a
continuous function on SN.

The complete classification of isometrically injective spaces was achieved
in the early 1950s by the combined efforts of Nachbin [155], Goodner [68], and
Kelley [109]. The basic approach developed by Nachbin and Goodner was to
abstract the essential ingredient of the Hahn-Banach theorem, which is the
order-completeness (i.e., the least upper bound axiom) of the real numbers.

Definition 4.3.1. We say that the space C(K) is order-complete if whenever
A, B are nonempty subsets of C(K) with f < g for all f € A and g € B, then
there exists h € C(K) such that f < h < g whenever f € A and g € B.

Remark 4.3.2. (a) If C(K) is order-complete then any subset A of C(K)
which has an upper bound has also a least upper bound, which we denote
sup A. Indeed, let B be the set of all upper bounds of A and apply the preced-
ing definition. The (uniquely determined) function h must be the least upper
bound. It is important to stress that h is a continuous function and may not
coincide with the pointwise supremum A(s) = sup s 4 f(s), which need not be
a continuous function. Similar statements may be made about greatest lower
bounds (i.e., infima).

(b) The previous definition can easily be extended to any space with a suit-
able order structure such as £, or L. It is clear that £, is order-complete for
its natural order and therefore C(AN) is also order-complete. To compute the
supremum of A in {4, one does indeed take the pointwise supremum, but the
corresponding supremum in C(GN) is not necessarily a pointwise supremum.

We will say that a map V' : F' — C(K), where F is a linear subspace of a
Banach space X, is sublinear if

(i) V(ax) = aV(z) for all @« > 0 and z € F, and
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(i) Vig4+y) < V() 4+ Viy) orall z,y £ F.

A sublinear map V : X — C(K) iz ménimal provided there is no sublinear

map U : X — C(K) such that U(z) < V(z) forallz € X and U £ V.

Lemma 4.3.3. Let X be a Banach space and F' a linear subspace of X. Sup-
pose V : X — C{K) and W : F — C(K) are sublinear maps such that
W)+ Vi—y) 2 0 forall y € F. If C(K) is order-complete then the map
VAW : X — C(K) given by

VAW (@) —inf{V(e—y)+ W) : ye F),
is well defined and sublinear.
Proof. For each fixed x € X we have
V-9 +Wy 2 Vi) - Vi) + W) 2 Vi)

for all y € F. That is, —V(—x) is a lower bound of the set {V(zr — y) +
Wi(y): y € F}. Thus, by the order-completeness of C(K), we can define a
map V AW : F — C(K) by

VAaW(z)=inl{Vie—v)+ Wy : ve '}

It is a straightforward verification to check that V' A W is sublinear.
O

Lemma 4.3.4. Let V : X — C(K) be o sublinear map. If C(K) is order-
complete then there is o minimal sublinear map W X — C(K) with W(z) <
Viz) forallz e X.

Proof. Put
8= {U:X —C(K) : Uissublinear and U (z) < V(z)for allz € X }.

& is nonempty (V' € &) and partially ordered. Let ¥ = {U;);cr be a chain
(i.e., a totally ordered subset) in &. Note that for each ¢ € I we have 0 =
Ui(z + (—x)) < Ui(z) + Us(—=x) for all z € X, hence

Uilz) z —Ui(—z) > —V(—=z).

Thus, for each z € X, the set {{/;(z) : ¢ £ I} < C(K) hag a lower bound. By
the order-completeness of C{K), the map

Ug(z) = inf Us (x)

is well defined on X and sublinear. To see this, since ¥ is a totally ordered
set, given ¢ # j € I, without loss of generality we can assume that U; < U,
Then, for any xz,y € X we have
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Up(z+y) < Uiz +y) < Uj(z) + Us(y),

therefore Uy (2 +y) — U;(z) < Uw(y), which yields Ugp(z+y)— Uy (y) < Uz (2).
Moreover, Ug (z) < V{z) for all z € X. That is, Uy € & is a lower bound for
the chain (/;)ic7. Using Zorn’s lemma we deduce the existence of a minimal
element W in S.

O

Lemma 4.3.5. Suppose that C(K) is order-complete and let V : X — C(K)
be a sublinear map. If V is minimal then V is linear.

Proof. Given an element z € X, let us call F its linear span, ' = {z}.
Then, W(Az) = —AV(—z) defines a linear map from F to C(K). Clearly,
W(Az) = —V{(—Az) for every real A. Using Lemma 4.3.3 we can define on X
the sublinear map

VAW(z) = ;2% {V(a: —Azr) + W()\a:)}

By the minimality of V, V AW =V on X. Therefore ¥V < W on F, which
implies that V{z) < —V{—z). On the other hand, V{z) > —V(—z) by the
gublinearity of V, so V(—z) = —V(z). Since this holds for all z € X, it is
clear that V ig linear.

O

Theorem 4.3.6 (Goodner, Nachbin, 1949-1950). Let K be o compact
Hausdorff space. Then C(K) is isometrically injective if and only if C(K) is
order-complete,

Proof. Assume, first, that C{K) is order-complete. Let E be a subspace of a
Banach space X and let §: E' — C(K) be a linear operator with || 5| = 1.
That is, for each z € E we have

< (Sa)h) < o] for all b€ K,
which, if we let 1 denote the constant function 1 on K, is equivalent to writing
—[le] -1 < 8(z) < [lof| - 1. (4.5)

Thus, if we consider the sublinear map from X to C(K) given by Vo(zr) =
llz| - 1, equation (4.5) tells us that S(z) > —Vy(—=z) for all x € E and so we
can define on X the sublinear map V = V; A S as in Lemma 4.3.3:

Viz) =inf {Vo(z —y) + S(v) 1y € E}.

By Lemma 4.3.4 there exists 7' : X — C(K), a minimal sublinear map satis-
fying T' < V. Lemma. 4.3.5 yields that T is linear.

On E, we have T(z) < S(z) and T(—z) < §(—z). Therefore, T'|g = S.
Finally, T(z) < ||z| - 1 and T'(—z) < ||z| - 1 for all z € X, which implies that
||| < 1. Thus, we have successfully extended § from F to X.
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Suppose, conversely, that C(K) is isometrically injective. Then there is a
norm-one projection P from £ (K) onte C{K), where {4 (K) denotes the
space of all bounded functions on K. Suppose that A, B are two nonempty
gubsets of C(K) such that f € A and g € B implies f < g. For each s € K,
put a(s) = sup 4 f(5). Obviously, o € £ (K). Let h = P(a). We will prove
that f <h<gforall fe 4 andall g B.

Since P(1) = 1 and P has norm one, it follows that for each b € {0 (K)
with & > 0 we have

IP(1— M) <1for 0<A<2/|b].

We deduce that P is a positive map, that is, Pb > 0 whenever b € £,(K) and
b > 0. Thus, if f € Athen f < a and, therefore, f < h. Analogously, if g € B
we have g > a and g0 g > h. Hence, C(K) is order-complete.
O
The spaces K zo that C(K) is order-complete are characterized by the
property that the closure of any open set remains open; such spaces are called
extremally disconnected. We refer the reader to the Problems for more infor-
maticn.

The natural question arises as to whether only C(K)-spaces can be iso-
metrically injective. Both Nachbin and Goodner showed that an isometrically
injective Banach space X is (isometrically isomorphic to} a C(K )-space pro-
vided the unit ball of X has at least one extreme point. The key here is that
the constant function 1 is always an extreme point on the unit ball in C(K)
and they needed to find an element in the space X to play this role. How-
ever, two years later, in 1952, Kelley completed the argument and proved the
definitive result:

Theorem 4.3.7 (Kelley, 1952). A Banach space X is isometrically injec-
tive if and only if it is isometrically isomorphic to an order-complete C(K)-
space.

Proof. We need only show the forward implication. For that, we are going to
identify X (via an isometric isomorphism) with a suitable C(K )-space which,
by the isometric injectivity of X, will be order-continuous appealing to The-
orem 4.3.6.

The trick is to “find” K as a subset of the dual unit ball Bx.. Consider
the set d,Bx+« of extreme points of By~ with the weak® topology. There is a
maximal open subset, U/, of . Bx+ subject to the property that I/ N{-U7) = 0.
This Is an easy consequence of Zorn’s lemma again, as any chain of such open
sets has an upper bound, namely, their union. Let A be the weak* closure of
U in Bx+. K 1s, of course, compact and Hausdorfl for the weak® topology.

Let us observe that K M 3,Bx+ cannot meet —{/ since 8, Bx« \ (=U/) is
relatively weak* closed in 8, Bx+. Then, K N {-U) = 0.

We claim that 8,Bx+ < (K U (—K)). Indeed, suppose that there exists
r* € d.Bx+ \ (K U (—K)). Then there iz an absolutely convex weak* open
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neighborhood, V', of 0 such that 2* ¢ V and (z* + V)N (KU (—=K)) = 0. Let
Uy =UU ((:1:* +V)n GeBX*) Then U; strictly contains U since x* € Us.
Suppose y* € Uy N (—=Uy). Then either y* ¢ U or —y* ¢ U; thus replacing y*
by —y* if necessary we can assume y* ¢ U. Then y* € z* + V; this implies
that y* ¢ KU(—K) and so y* ¢ —U. Hence y* € —z*—V and so 0 € 22* 42V
or z* € V yielding a contradiction. Thus Uy N (=Uy) = (), which contradicts
the maximality of U.
By the Krein-Milman theorem, Bx+ must be the weak* closed convex hull
of KU (—K) and, in particular, if x € X we have
x| = sup |z*(z)| = max |z*(x)|.
Joll = sup [o"(@)] = mag o (o)
Thus, the map J that assigns to each z € X the function & € C(K) given by
Z(z*) = o*(x), * € K, is an isometry. We can therefore use the isometric
injectivity of X (extending the map J~!: J(X) — X) to define an operator
T :C(K) — X such that T(&) = z for all z € X with ||T'|| = 1.
Let us consider the adjoint map 7% : X* — M(K). If u* € U, then
T*u* = p € M(K) with ||u|]| < 1. Let V be any weak* open neighborhood of
u* relative to K and put Ko = K \ V. We can define v* € X* by

v*(x) :/ x*(x) dp(z™), z e X,
%
and w* € X* by
w*(x) = / x*(x) du(z™), r e X.
Ko
Then [[v*|| < [u[(V) and [Jw*[| < |p|(Ko). But,
| w@du= @17 w) = ),
hence v*+w* = u*. Since ||u*|| = 1 > ||u||, we must have |u|(V)+|u|(Ko) = 1.
Thus, ||v*|| + ||w*|]] = 1 and so the fact that u* is an extreme point implies

that v* = ||Jv*||u* and w* = |Jw*||u*.
Suppose |u|(Ko) = ||w*|| = @ > 0. Then,

u*(z) = ot /K () du(z™), r e X,

and, in particular,

* < * X.
w*(2)] < max [o"(z)], =z €

This implies that u* is in the weak* closed convex hull, C, of KqU(—Kj). But
u* must be an extreme point in C' also, so by Milman’s theorem it must belong
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to the weak® closed set Ko U (—Kjy). Since u* ¢ Ky we have that v* € (—K)),
ie, —u* ¢ Kg. Thus, Ky meets —U, so K meets —I7, which is a contradiction
to our previcus remarks.

Hence |p|{(Kg) = |lw*|| = 0 and so |[p(V)| = 1 for every weak* open
neighborhood V' of uw*. By the regularity of p we must have that p = +4d,+
(dy+ 1s the point mass at w*). Thus g = éy+ for w* € Ul Since T 1z weak®
continuous we infer that T* (z*) = d;« for all z* € K. We are done because if
J e C(K), then

(Tf,l‘*> = f(l‘*),

go J is onto C(K). This shows that X is a C(K)-space.
O
At this point we have only one example where C(K') is order-complete,
namely, {oc (although, of course, £o(7) for any index set 7 will also work).
There are, however, less trivial examples as the next proposition shows.

Proposition 4.3.8.

i) If C(K) is {isometrically isomorphic to) a dual space, then C(K) is iso-
metrically injective.
(i) If (), %, 1) is any o-findte measure spoce, then Loo (O, %, jt) is isometrically
jective.
(i) For any compact Housdorff space K the space C(K)** is isometrically
jective.

Proof. For (i) we will first show that P = {f € C(K): f > 0}, the positive
cone of C(K'), is closed for the weak* topology of C(K') (regarded now as a dual
Banach space by hypothesis). By the Banach-THeudonné theorem it suffices
to show that P M ABex) is weak® closed for each A > 0. But P M ABery =
{f: If =32 1] < 32} is simply a closed ball, which must be weak" closed.

Let us see that C(K) iz order-complete and then we will invoke Theo-
rem 4.3.6 to deduce that C(K) is izometrically injective. Suppose A, B are
nonempty subsets of C(K) such that f € 4,9 € B imply f < g. For each
feAand gc B, put

Crg = {he CE): f<h<agh

Every Cf 4 is a (nonempty) bounded and weak® closed set. If f1,..., f, € A
and g1,...,9n € B then N ', 4, is nonempty because it contains for
example max(fy,..., f.). Hence, by weak* compactness, the intersection
NyreageprCy g is nonempty. If we pick % in the intersection we are done.

(12) follows directly from (¢} since Lo () = Ly (p)*.

(72) Here we observe that M(K) is actually a vast £1-sum of L1 (u)-spaces.
Precisely, using Zorn’s lemma one can produce a maximal collection (i4:);e7
of probability measures on K with the property that any two members of the
collection are mutually singular.
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v e M(K), for each ¢ € T we define f; € L1{K, ;) to be the Radon-
Nikodym derivative dv/dp;. Thus, dv = fidu; + v, where v is singular with
respect to p;. Then it is easy to show (we leave the details to the reader) that
for any finite set & C 7 we have

il < vl

ich

Hence,
> illzsgey < vl
i€l

Notice that the last statement implies that only countably many terms in the

sum are nonzero. Put
vo = fudps,
il

where the series converges in M({K). It is clear that the measure v — 1 is
gingular with respect to every p; and, as a consequence, it must vanish on K.
It follows that the map v — (f;)ie7 defines an isometric isomorphism between
M(K) and the £1-sum of the spaces Ly (u;) for i € 1.

This yields that C(K)** can be identified with the £,-sum of the spaces
Lo (). Using (i) we deduce that C(K)** is isometrically injective.

O

Remark 4.3.9. We should note here that there are order-complete C(K)-
spaces which are not isometric to dual spaces. The first example was given in
1951 (in a slightly different context} by Dixmier [43] and we refer to Prob-
lem 4.8 and Problem 4.9 for details.

There is an easy but surprising application of the preceding proposition
to the isomorphic theory [167]:

Theorem 4.3.10. L [0,1] is isomorphic to fx.

Proof. First, observe that £ embeds isometrically into Ly[0,1] via the map
(E)ey — > Elmxa, (1),
n=1

where (4,,)2% , is a partition of [J,1] into sets of positive measure. Since £,
is an injective space, it follows that £, is complemented in L..[0,1].

On the other hand, L[0,1] also embeds isometrically into fog. To see this,
pick (0, )2 ;, a dense sequence in the unit ball of Ly, and map f € L..,[0,1] to
(fol @ f dt)2 ;. Therefore, being an injective space, Ls[0,1] is complemented
in ..

Furthermore, £, /2 £, @ f5e and
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Leo0,1] & Leo[0,1/2] @ Leo[1/2,1] & Loo[0,1] @ Leo[0, 1].

Using Theorem 2.2.3 (a) (the Pelczyriski decomposition technique) we deduce
that Leo[0,1] is isomorphic to fu.
O
We conclude this section by showing that a separable isometrically Injec-
tive space is necessarily finite-dimensional.

Proposition 4.3.11. For any infinite compact Hausdorff space K, C{K) con-
tains a subspace tsometric to cg. If K is metrizable this subspace is comple-
mented.

Proof. Let (U,) be a sequence of nonempty, disjoint, open subsets of K. Such
a sequence can be found by induction: simply pick U7} so that K} = K\ U}
is infinite and then take U5 C Kj such that Ky = K \72 is infinite and
so on. Next, pick a sequence (©,,)2° ; of continuous functions on K so that
0<op <1, maxsex pn(s) =1l and {s € K : on(s) > 0 C Uy, for all n 2 M.
Then for any (a,) € cyy we have

fo's]
H Z angon
n=1

Thus (¢n)arq is a basic sequence isometrically equivalent to the unit vector
basis of cq.

If K iz metrizable, Theorem 4.1.3 implies that C(K) is separable and we can
apply Sobczyk’s theorem (Theorem 2.5.8) to deduce that the space [@,]2° 4
is complemented by a projection of norm at most two.

= max |any]|.
T

O

Proposition 4.3.12. If C{(K) is order-complete and K is metrizable then K
is fintte.

Proof. If K iz infinite, C(K) contains a complemented copy of ¢y by Proposi-
tion 4.3.11. But if, moreover, C(K) is isometrically injective this would make
cp injective, which is false because ¢y is uncomplemented in £, as we saw in
Theorem 2.5.5.

O

Corollary 4.3.13. The only isometrically injective separable Banach spaces
are finite-dimensional and isometric to £ for some n € M.

Proof. If X is an isometrically injective Banach space, by Theorem 4.3.7,
X can be identified with an order-complete C(K )-space for some compact
Hausdorfl K. Since X Is separable, Theorem 4.1.3 yields that K is metrizable

and, by Proposition 4.3.12, K must be finite. Therefore C(K) is (isometrically
|

isomorphic to) el

O

In fact, there are no infinite-dimensional injective separable Banach spaces

(even dropping isometrically) but this is substantially harder and we will see
it in the next chapter.
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4.4 Spaces of continuous functions on uncountable
compact metric spaces

We now turn to the problem of isomorphic classification of C(K )-spaces. The
Banach-Stone theorem {Theorem 4.1.5) asserts that if K and L are non-
homeomeorphic compact Hausdorff spaces then the corresponding spaces of
continuous functions C(K') and C(L) cannot be linearly isometric.

However, it is quite a different question to ask if they can be linearly iso-
morphic. In the 1950s and 1960s a complete classification of the isomorphism
classes of C(K) for K metrizable (i.e., for C{&') separable) was found through
the work of Bessaga, Pelezyriski, and Miljutin. We will describe some of this
work in this section and the next.

Let us note before we start that it is quite possible for C(K) and C(L) to
be linearly isomorphic when K and L are not homeomorphic. We shall need
the following:

Proposition 4.4.1. If K is an infinite compact metric space then C(K) =~
C(KY B R. Hence C(K) is isomorphic to its hyperplanes.

Proof. By Proposition 4.3.11, C(K) ~ E® oy a8 £/ cp & R for some subspace
E. Hence C(K) = C(K) @ R.

The latter statement of the proposition follows from the fact that any
two hyperplanes in a Banach space are Isomorphic to each other and that,
obviously, C(K) is a hyperplane of C(K) @& R.

O

Remark 4.4.2. This proposition really does need metrizability of C(K)! In-
deed, a remarkable and very recent result of Plebanek [190] is that there
exists a compact Hausdorff space K so that C(K) fails to be isomorphic to its
hyperplanes.

Given Proposition 4.4.1, note that if & = [0,1] U {2} then C(K) =
Cl0,1] & R = C[0,1] but K and [0, 1] are not homeomorphic. Similarly C[0, 1]
is isomorphic to its (hyperplane} subspace {f : f(0) = f(1)}, which is triv-
ially isometric to C{T). But it is more difficult to make general statements. In
Banach’s 1932 book [8] he raised the question whether C[0,1] and C[0,1]? are
linearly isomorphic. We will see that they are, but at this stage it is far from
obvious.

To study C(K)-spaces with K infinite and compact metric, we must con-
sider two cases, namely, when K Is countable and when K is uncountable.
K must be separable, of course, but it could actually be already countable.
Indeed, the simplest infinite K is the one-point compactification of N, y[N,
which consists of the terms of a convergent sequence and its limit; e.g., we
can take K = {1, %, %, ... }U{0}. Then C{K) can be identified with the space
¢ of convergent sequences. This Is linearly Isomorphic to ¢y since ¢ & ¢ @& R.
If K is countable then M(K) consists only of purely atomic measures and is
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immediately seen to be isometric to 4. Thus C(K)* is separable. However,

C[0,1]* is nonseparable (as C[0, 1] contains a copy of &1 by the Banach-Mazur
theorem (Theorem 1.4.3}).

In this section we will restrict to the case of uncountable K. The main
result is the remarkable theorem of Miljutin [150], which asserts that for any
uncountable compact metric space K, the space C{K') is isomorphic to C[0, 1].
This result was obtained by Miljutin in his thesis in 1952, but was not pub-
lished until 1966. Miljutin’s mathematical interests changed after his thesis
and he apparently did not regard the result as important enough to merit pub-
lication. In fact, the result was discovered in Miljutin’s thesis by Pelczynski
on a visit to Moscow In the 1960s and it was only at his urging that a paper
finally appeared in 1966.

The key plavers in the proof will be the Cantor set A = {0,1}", the unit
interval [0,1], and the Hilbert cube [0,1]%. We will need the following basic

topological facts:

Proposition 4.4.3.

(i) If K is a compact metric space then K is homeomorphic to a dosed subset
of the Hilbert cube [0,1]%,

(i} If K is an uncounteble compact metric space then A is homeomorphic to
a closed subset of K.

Proof. We have already showed (7) in the proof of Theorem 1.4.3. Just take
(fn)$2; a dense sequence in {f € C(K) : 0 < f < 1} and define the map
o K — [0,1]% by a(s) = (fu(s))5%,. Then ¢ iz continucus and one-to-
one, hence a homeomorphism onto o(K). (We repeatedly use the standard
fact that a one-to-one continuous map from a compact space to a Hausdorff
topological space is a homeomorphism onto its range since closed sets must
be mapped to compact, therefore closed, sets.)

To show part (77) we first note that since K is uncountable, given any € > 0
we can ind two disjoint uncountable closed subsets K, K| each with diameter
at most €. In fact the set E of all s € K with a countable neighborhood is
necessarily countable by an application of Lindeléf’s theorem (every open
covering of a separable metric space has a countable subcover). If we take two
distinct points sg,s; outside £ we can then choose K and K, as suitable
neighborhoods of sq, s1.

Now we proceed by induction: for n € N and ¢t = (#1,...,%,) € {0,1}"
define Ky, 4, .+, to be an uncountable compact subset of K of diameter at
most 27" such that for each » € N the sets Ky, ¢ 0 and Ky ¢ 1 are
disjoint subsets of Ky, ¢.. For each ¢ = (1£)5°, € A define (¢) to be the
unique peoint in M2 K, . It is simple to see that ¢ is one-to-one and
continuous and thus is an embedding.

O

Let us use this proposition. Suppose that K is a compact, metric Hausdorff
space and let £ be a closed subset of K. We can naturally identify C{£) as a
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quotient of C(K') by considering the restriction operator
R:C(K)—C(E), Rf = flEg-

This is a genuine quotient map by the Tietze Extension theorem'. Let us
suppose that we can find a bounded linear operator T : C(E) — C(K) which
selects an element of each coset. Then T is a linear extension operator which
defines an extension of each f € C(E) to a member of C(K); note that RT is
nothing other than the identity map I on C(E). T is an isomorphism of C(E)
onto a subspace of C(K') and the subspace is complemented by the projection
TR. Thus we could conclude that C(E) is isomorphic to a complemented
subspace of C(K). Note that the kernel of the projection is {f € C(K) : f|g =
0} and this must also be a complemented subspace via I — TR.

We have met this problem in two special cases already. In the proof of the
Banach-Mazur theorem we considered the case K = [0,1] and E a closed sub-
set, and defined an extension operator by linear interpolation on the intervals
of K\ E. Now, if we regard ¢, as C(ON), then the subspace ¢y is identified with
{f : famyy = 0} (here N is an open subset of BN since each point is isolated).
This is uncomplemented (Theorem 2.5.5) so no linear extension operator can
exist from OGN\ N.

On the other hand, recall Sobczyk’s theorem (Theorem 2.5.8). If we con-
sider a separable closed subalgebra of ¢, containing ¢y (which corresponds to
a metrizable compactification) then we have no problem with the extension.
This suggests that metrizability of K is important here and leads us to the
following classical theorem which actually implies Sobczyk’s theorem. It was
proved in 1933 by Borsuk [14].

Theorem 4.4.4 (Borsuk). Let K be a compact metric space and suppose
that E is a closed subset of K. Then there is a linear operator T : C(E) —
C(K) such that (Tf)|lg = f, |T|| = 1 and T1 = 1. In particular C(E) is
isometric to a norm-one complemented subspace of C(K).

Let us remark that the projection onto the kernel of 7" has then norm at
most 2, and this explains the constant in Sobczyk’s theorem.

Proof. The key point in the argument is that U = K \ E is metrizable and
hence paracompact, i.e., every open covering of U has a locally finite refine-
ment. Let us consider the covering of U by the sets V,, = {s € U : d(s,u) <
1d(u, E)}. There is a locally finite refinement of (V,)ucr, which implies that
we can find a partition of the unity subordinate to (V,)yeu, that is, a family
of continuous functions (¢;);es on U such that

1. 0<¢; <1,

! The Tietze Extension theorem states that given a normal topological space X
(i.e. , a topological space satisfying the T4 separation axiom), a closed subspace
E of X and a continuous real-valued function on F, there exists a continuous
real-valued function f on X such that f(z) = f(z) for all z € E.
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2. {¢; > 0} is a locally finite covering of U,
3. Zjej di(s)=1foralls e U,
4. For each j € J there exists u; € U so that {¢; > 0} C V.

For each j € J pick v; € F with d(u;, E) = d(u;,v;) (possible by compact-
ness).

If f € C(E) we define

N F(s) ifsel
e {zjemj(s)f(vj) its e U

The theorem will be proved once we have shown that T'f 1s a continuous
function on K, because T' clearly is linear, T1 = 1 and ||T]| = 1. It is also
clear that T'f is continuous on /.

Now suppose t € F. If ¢ > 0 fix 4 > 0 so that d(s,2) < 44 implies that
|f(s) — f(t)] < e. Assume d(s,t) < 6. lf s € B then |Tf(s) —T7(@)| < e I
s € U then

Tf(s) - WZ)}D@ W) = )] < max [£(v7) = £

If ¢;(s) > 0 then
1 1
dis,uy) < §d(uj’ By < §(d(s, u;) + d(s, t)),
80 dis,u;) < d(s,t) < d and d(uy, E) = d(u;,v;) < 2. Thus,
d(t,v;) <d(s,t) +d(s,us) + dluy,vy) < 44

Therefore, | T F(s) — T f(t)] < €, and the proof is completed.
O
If we combine Borsuk’s theorem with Proposition 4.4.3 we see that an ar-
bitrary C(K) with K an uncountable compact metric space (a) is izomorphic
to a complemented subspace of C([0,1]) and (b) contains a complemented
subspace isomorphic to C{A) where A = {0,1}. To complete the proof of
Miljutin’s theorem we need to set up the conditions for the Pelczyriski decom-
position technique (Theorem 2.2.3). The first step is easy:

Proposition 4.4.5. C(A) ~ go(C(A)).

Proof. Since C{A) is isomorphic to its hyperplanes (Proposition 4.4.1), it is
isomorphic to the subspace 7 = {f € C(A) : £(0,0,...) =0}

For each n € Mlet A, = {(s2)i°, € A s, =01if k < n and s, = 1}.
Each A, is homeomorphic to A and is a clopen subset of A.

If we define the map S : Z — Z(C(AR)) by Sf = (f|la,)3®; then it i
clear from continuity at (0,0,...% that § maps into cg(C(A,)) and, in fact,
defines an isometric isomorphism between Z and this space.
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O

At this point we need only one more ingredient, but it is the crux of the

argument. We must show that C([0,1]") can be embedded complementably

into C(A). In order to understand the difficulty we will first lock at the problem
of embedding C[0,1] complementably into C{A).

It is easy to embed C[0,1] into C{A). Indeed, we saw in the proof of the

Banach-Mazur theorem that there is a continuous surjection ¢ : A — [0,1]

defined by
(S'ﬁ n= 1 = Z 2_n

This induces an isometric embedding,
C[0,1] — C{A), f— foe.

Unfortunately the image of this embedding is not complemented in C{A). We
will detour from the proof of Miljutin’s theorem to explain this.

Let B[0,1] be the space of bounded Borel functions on [0, 1] with the usual
supremum norm,

If]l = sup [£{?)].
0<¢<1

Let D be the set of dyadic raticnals in (0,1), i.e., g € D if and only if ¢ = k/2"
where 1 < k < 2" 1. We will consider the subspace E of 5[0, 1] of all functions
f which are right-continuous everywhere, continuous at all points ¢ € D, and

have left-hand limits at each t € D. E consists of exactly those functions
f e B[0,1] such that

- @) =limg gy f(s) forall 0< t < 1,

- f(t—) =lim,_,_ f(s) exists for all 0 < ¢ < 1, and

S F) = ) ELED.
Then F can be identified with C(A). We utilize the fact that ¢ is quite close to
a homeomorphism. In fact ¢ —1(¢) consists of at most two points and is unique
for t ¢ D. Let p: [0,1] — A be the map defined by taking p(¢) = ¢ (¢ for
t & D then extending it to be right-continuous. Thus ¢ o 2 is the identity map
on [0,1] and p is right-continuous. We can define an isometry of C(A) onto &
by Tf(t) = f(p(?)).

For s1,s9,...,8, € {0,1} let

Agp oo ={t=0r)i 1€ Aty =385 forl <k <n}
A

15, 18 a clopen subset of A. Let

b3
Q(slr"-vsn) :90(817-- 8717 9 :Z
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Then for n € N and ¢ of the form k/2" with 0 < k < 2" —1 let I,, ; be the
half open interval [¢,q +27") when ¢+ 27" < 1 and the closed interval [g, 1]
when ¢ + 27" = 1. In this language we have

TXASI ,,,,, Er = XI'IL,q(Sl,uan).

Now, the embedding of C[0, 1] into C(A) using ¢ is isometrically equivalent
to the embedding of C[0,1] into E in the sense that there is an isometry of
C(A) onto E which sends C[0, 1] to C[0,1].

Proposition 4.4.6. There is no bounded projection from E onto C[0, 1].

Proof. We start by identifying the quotient space E/C[0,1]. Define the map
S: E — ls(D) by
1
Sf(a) = 5(f(a) = F(a-)).

If we consider a function in E of the form

2" —1
f = E Ak X1, k> ne Na ag,...,Qn_1 € Ra
k=0

it is clear that ||Sf|| = d(f,C[0,1]) and that S maps this space onto the
subspace of all finitely nonzero functions on D. Thus it follows that S maps
onto ¢g(D) and the quotient may be identified isometrically with co(D).

If C[0,1] is complemented in E then there is a lifting of S, i.e., a bounded
linear map R : co(D) — E so that SR = I (p). Let eq denote a canonical
basis element in ¢y(D) and let f; = Req. We will inductively select (d,,)32
in D, open intervals (J,,)52; in (0,1), and signs (€,)22; so that

n
S enfa () > g, neNteld,
k=1

To start the induction pick dy = 3 and then either |fg, (d1)| or |fa, (d1—)|
is at least one. Hence we may pick a sign €; and an open interval J; (with d;
as an endpoint) so that €1 fg, (t) > 3 for ¢t € Jj.

If dv,...,dn_1, €1,...,€6n—1 and Jq,...,J,_1 have been chosen we pick
dn € Jup_1, and then €, so that either

n

Z ekfdk (dn) >

k=1

n—1

+1

or
n—1

> erfa(dn—) > +1.
k=1

Thus we can find an open interval .J,, with d,, as an endpoint so that
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s

N enfa () zg te

k=1

This completes the induction.
It follows that

Tt
Bl < ||R(ereq, ++ -+ eneq )| < |R|, nel,

which is clearly absurd.
O
The next result, known as Miljutin’s lemma, Is the key step in the ar-
gument. Miljutin was able to show that C[0,1] can be embedded as a com-
plemented subspace of C(A). Indeed, we can construct an alternative contin-
uous surjection # : A — [0,1] so that there iz a norm-one linear operator

R:C(A) — C[0,1] with R(f o 9) = .

Lemma 4.4.7 (Miljutin’s Lemma). There exist a continuous surjection
¢: Ax A—[0,1] and a norm-one operator S : C(A x A) — C[0,1] such that
S(fod)=f forall f =C[0,1].

Proof. We start using a very similar approach as in the previous case. This
time we consider an isometric embedding 7' of C(A x A) into B0, 1]? induced
by the formula

Tf(sat) :f(p(s),p(t)), 0<s,t <1,
where p is the right-continuous left-inverse of the function ¢ that we considered
above. Thus,

TOXACr oy A1 50)) = X aey

remd *dnaley, e

.....

where r1,...,rm,51,...8, € {0,1} T maps C(A x A) isometrically onto a
subspace I of B[0, 1]
Let us define a homeomorphism # of [0,1]2 onto itself by the formula

O(t,u) = (t,u’t + (1 — thu), (t,u) e [0,1)2

Notice that for sach fixed choice of ¢ the map v — u?t+ u(1 —1) is a monotone
increasing homeomorphism of [0, 1] onto itself and that (¢,u) — (&, w2+ u(l—
t)) is a homeomorphism of the square onto itself. Let the (continuous) inverse
map be given by (¢, v) — (¢, (¢, v)), where for each fixed ¢t the map v — o (¢, v)
is an increasing homeomorphism of [0, 1] onto itself.

Let ¢ : A x A — [0,1] be given by &(r, s} = a(p{r), ¢(s)).

Next define a norm-one operator V : B[0,1]2 — B0, 1] via the formula

V f(u) — fo £ o0t w)dt.
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Notice that VI'(fo¢) = fif f e C[0,1]. Indeed, if g € C{A x A) and (¢,u) €
[0,1)2 then T'g{t, u) = g(p(t), p{v)) and hence T fod(t, u) = fod(p(t), plu)) =
Foo(t,u) and thus T'(f o $)(8(t,w)) = fooob(t,u) = f(u) forall 0 < ¢ < 1.

All that remains is to show that VT actually maps C{A x A) into C[0,1].
To this end we need to show that V maps F into C[0, 1] and it iz therefore
more than enough to show that g = V{x[0,a)x[0,5)) = V (X[0,a] x[0,5]) € C[0,1]
forany 0 <a<1land0 <b<1.

Notice that g{u) can be computed as the measure of the set of ¢ so that
0 <t < aand¥?t+ u(l —t) < b The later inequality reduces to ¢ >
(u —b)(u — u?)~ L. The single nonnegative solution of the quadratic equation
w—b = {u—u?)a will be denoted by k(a,b). Note that k(a,b) > b unless
a = 0. We thus have

a if u<éb
glu) = Q—Hg if b<u<hla,b)
0 if h(a,b) <u < 1.

Since g is continuous this completes our proof.

We are now in position to complete Miljutin’s theorem:

Theorem 4.4.8 (Miljutin’s Theorem). Suppose K is an uncountoble com-
pact metric space. Then C{K) is isomorphic to C[0,1].

Proof. The first step is to show that C([0, 1)) is isomorphic to a complemented
subspace of C{A). By Lemma 4.4.7 there is a continuous surjection ¢ : A —
[0,1] so that we can find a norm one operator B : C(A) — C[0, 1] with Rfoe =
[ for f € C[0,1]. Then R(xa) = x[o,1]- For fixed ¢ € [0,1] the linear functional
f — Rf(t) iz given by a probability measure j, so that

Rf(t) = fA fdpe.

The map ¢ : AY — [0, 1" given by
gf;(sl,...,sn,...) = (P(s1),.. ., ¥ (sp),...)

is a continuous surjection. We will define R:C(A™Y = C([0,1]Y) in such a
way that Rf oo = f for f € C([0,1]). Indeed, the subalgebra A of C(AY)
of all f which depend only on a finite number of coordinates is dense by the
Stone-Welerstrass theorem. If f € 4 depends only on s4,.. ., s, we define

R FlEg,. ..t / ff S15-0y 8 dig, (81) .. dpy (8,).

This map is clearly linear into £45[0, 1] and has norm one. It therefore extends
to a norm-one operator R : C(AM) — £,[0,1]. If f € C(AY) is of the form
fi1(s1) ... fa(sn) then
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RE(t) = RA()... RE(D),

so Rf e C[0, 1]. The linear span of such functions is again dense by the Stone-
Weierstrass theorem so B maps into C[o,1].

If f e C([0, 1]N) is of the form f1(t1) ... fr(t,) then it is clear that Rf o =
f. Tt follows that this equation holds for all f < C([0, 1]%).

Thus C([0,1]¥) is isomorphic to a norm-one complemented subspace of
C(AY) or C(A) as A is homeomorphic to AN,

Now, suppose K is an uncountable compact metric space. Then C(K) i
isomorphic to a complemented subspace of C([0, 1)) by combining Proposi-
tion 4.4.3 and Theorem 4.4.4. Hence, by the preceding argument, C{K) is iso-
morphic to a complemented subspace of C{A). On the other hand C(A) is iso-
morphic to a complemented subspace of C{£) again by Proposition 4.4.3 and
Theorem 4.4.4. We alzo have Proposition 4.4.5 which gives cp(C(A)) =~ C(A).
We can apply Theorem 2.2.3 to deduce that C(K) s C{A). Of course, the
same reasoning gives ([0, 1] a2 C(A).

O

4.5 Spaces of continuous functions on countable compact
metric spaces

We will now briefly discuss the case when K is countable. The simplest such
example as we zaw in the previous section is when K = N, the one-point
compactification of the natural numbers M, in which case C(yN) = ¢ = .

In 1960, Bessaga and Pelczyriski [13] gave a complete classification of all
C(K)-spaces when K is countable and compact. To fully describe this classifi-
catlon requires some knowledge of ordinals and ordinal spaces, and we prefer
to simply discuss the case when K has the simplest structure.

If K is any countable compact metric space, the Baire Category theorem
implies that the union of all its isolated points, ¥/, is dense and open in K.
The Cantor- Bendizson derivative of K is the set K’ = K\ U of accumulation
points of K. Analogously, we can define K" = (K’)’ and, in general, for any
natural number r, K = (K =Dy,

K is said to have finite Cantor-Bendixson index if K™ is finite for some
n and, hence, K1) is empty. When this happens, o (K) will denote the first
n for which K™ is finite.

Example 4.5.1. It is easy to make examples of spaces K without finite
Cantor-Bendixson index. Let us note, first, that if ' is any closed subset
of K then B C K’ therefore o(F) < o(K). If K is a countable compact met-
ric space, then K7 = K x vN has the property that (K1) contains a subset
homeomorphic to K, so 6(K3) > ¢(K). In this way we can build a sequence
(Kp)22, with o (K;) — oo. If we let Ko be the one-point compactification of
the disjoint union |_|:il K., then K., does not have finite Cantor-Bendixson
index.



96 4 Banach Spaces of Continuous Functions

If K does not have finite index then its index can be defined as a countable
ordinal. This was used by Bessaga and Pelczynski to give a complete classi-
fication, up to linear isomorphism, of all C(K) for K countable. But we will
not pursue this; instead we will give one result in the direction of classifying
such C(K)-spaces.

Theorem 4.5.2. Let K be a compact metric space. The following conditions
are equivalent:

(i) K is countable and has finite Cantor-Bendizson index;
(ii) C(K) ~ co:
(iii) C(K) embeds in a space with unconditional basis;

(iv) C(K) has property (u).

Let us point out that this theorem greatly extends Karlin’s theorem (see
Proposition 3.5.4 (i¢)) that C[0,1] has no unconditional basis.

Proof. (i) = (ii). Let us suppose, first, that o(K) = 1. Then K’ is a finite
set, say K’ = {s1,...,8,}. Let V1,...,V, be disjoint open neighborhoods of
$1,--.,8n, respectively. Vi, Vo, ..., V,, must also be closed sets since, for each
J, no sequence in V; can converge to a point which does not belong to Vj. If
we denote V11 = K\ (V4 U---UV,), V41 must be a finite set of isolated
points and is also clopen; we therefore can absorb it into, say, V4 without
changing the conditions. Now, K splits into n-clopen sets V7, ..., V,, and each
V; is homeomorphic to yN. Hence C(K) is isometric to the {o-product of n
copies of ¢, thus it is isomorphic to cg.

The proof of this implication is completed by induction. Assume we have
shown that C(K) =~ ¢ if 0(K) < n, n > 2, and suppose that o(K) = n. Then
C(K') = cp. Consider the restriction map f — f|g/. By Theorem 4.4.4, C(K)
is isomorphic to C(K') @ E, where E denotes the kernel of the restriction
f = fle. U = K\ K’ is the set of isolated points of K then E can be
identified with ¢o(U), which is isometric to ¢o. Hence C(K) is isomorphic to
Co.

(44) = (4i7) is trivial, and (i47) = (iv) is a consequence of Proposition 3.5.3.

(iv) = (i) First observe that if C(K) has property (u), then it immediately
follows that K is countable by combining Theorem 4.4.8 with the fact that
the space C[0, 1] fails to have property (u). This means that M(K) contains
only purely atomic measures and that C(K)* = ¢;(K) is separable. Thus
C(K)™* =lx(K).

Suppose h is an arbitrary element in {o(K) with ||h|] < 1. Then, since
Be(ky is weak™ dense in By__ (k) by Goldstine’s theorem, and By__ (k) is weak™
metrizable by Lemma 1.4.1, it follows that we can find a sequence (g,)52; in
C(K) with ||gn|| < 1 which converges weak* to h. (g,)5; is a weakly-Cauchy
sequence in C(K), so by property (u) we can find a WUC series Y o~ | f,, such
that (gn — ZZ:l fk)n converges weakly to zero in C(K). This means that
Z;il fi = h for the weak™ topology. In particular we have that
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D fuls) =h(s), sekK.
k=1

Since > fn, is a WUC series, there is a constant A such that

N ¢g=%1

N oo
sup sup | Y exfil(s) = Ifu)| < M
k=1 k=1

for every s € K.

Put 6(s) — 357, [fels)| and () = 33374 (16(6)] — (o)) — () — Ao,
Both ¢ and 4 are lower semicontinuous functions on K, that is, for everya e R
the sets ¢~1(a, o0) and ¥ ~1(a,c0) are open. We also have ||¢|), |¢| < M and
h=¢ —2b.

Suppose that K fails to have finite Cantor-Bendixson index. Then each of
the sets B, = K1 _ K™ is nonempty for n = 1,2,. .. (here, K© — K).
We pick a particular h € o(K) with |h|| <1 so that

his) = (—1)", s E,.

Since K fails to have finite index, the set K % U2° , E,, is nonempty and we
can define k to be zero on this set. Thus, we can write h = ¢ — ) as above. If
we put

an, = sup @{s), n=12,...
sEF,

then |a,| < M for all n.

Suppose € > 0 and that n > 1. Then, there exists sq € Fa, so that
d(80) = ap —e. Thus by the lower semicontinuity of ¢ there is an open set [f
containing sg so that ¢(s) > a,, —¢ for every s € Up. In particular UynK@—2
is relatively open in K©*=2 and U, N Fy, ; # 0. Hence there exists s, €
Up N Egy_1 so that ¢(s1) > a, —e. Thus ¥(s1) > a, + 1 —e. Next we find an
open set U1 containing s1 so that ¢/(s) > a,, +1 — € for 5 € /1. Reasoning as
above we can find sz € U1 N Fap_o with 9(s2) > an + 1 — €. But this implies
é(s3) > a,+2 - eandsoa, y >a,+2 e Since € > 0 is arbitrary we have:

p < Gy 1 — 2, n=1,2,....

Clearly this contradicts the lower bound of —A{ on the sequence (a,,)2° ;. The
contradiction shows that K has finite Cantor-Bendixson index.
O
If K and I are countable compact metric spaces with different but fi-
nite Cantor-Bendixson indices then K and L are not homeomorphic but the
gpaces C(K) and C(L) are both isomorphic to . Later we will see that, up
to equivalence, there Is only one unconditional basis of ¢y, in the sense that
any normalized unconditional basis is equivalent to the canonical basis.

Remark 4.5.3. Notice that since C{K)* is isometric to 71 for every countable
compact metric space K, the Banach space #1 is isometric to the dual of many
nonisomorphic Banach spaces.
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Problems

4.1. Let K be any compact Hausdorff space. Show that any extreme point of
Be(ky+ is of the form +4, where J; is the probability measure defined on the
Borel sets of K by 65(B) =1 if s € B and 0 otherwise.

4.2. The Banach-Stone Theorem. Suppose K and L are compact Haus-
dorff spaces such that C(K) and C(L) are isometric. Show that K and L are
homeomorphic. [Hint : Argue that if U : C(K) — C(L) is any (onto) isometry,
then U* maps extreme points of the dual ball to extreme points.|

4.3. Ransford’s proof of the Stone-Weierstrass Theorem [193].

(a) If E is a closed subset of K, let ||f||z = sup{|f(¢)| : ¢ € E}. Assume
A # C(K); pick f € C(K) with d(f,A) = inf{||f —a|| : « € K} = 1. Show
by a Zorn’s lemma argument that there is a minimal compact subset £ of K
with dg(f,A) =inf{||f —al|lp:a € A} = 1.

(b) Show that E cannot consist of one point and that there exists h € A with
minge g h(s) = 0 and maxgep h(s) = 1.

(c) Let Eg ={s € E: h(s) <2/3} and E1 = {s € E: h(s) > 1/3}. Show that
there exist ag, a1 € £ so that [|f —aolg, <1 and |f — a1l <1.

(d) Let g, = (1 — (1 — h)™)®>" € A. Show that for large enough n we have
(1 — gn)ao + gnar — f||g < 1. This contradiction proves the theorem.

4.4. De Branges’s proof of the Stone-Weierstrass Theorem [37].

(a) Let u be a regular probability measure on K and let E be the intersection
of all compact sets F' C K with pu(F) = 1. Show that pu(E) = 1. (E is called
the support of p.)

(b) Suppose A # C(K). Let V = Bpyx)NA*+ C C(K)*. Show that A is weak*
compact and convex and deduce that it has an extreme point v with ||v| = 1.

(c) If a € A with 0 < a < 1, show that v, € A+, where

/hdua:/hadu.

Show that ||ve|| = [ ad|v|. Deduce from the fact that v is an extreme point
that a is constant v-a.e. on the support of |v|.

(d) Deduce that the support of |v| is a single point and hence obtain a con-
tradiction.

4.5. A compact Hausdorff space K is called extremally disconnected if the
closure of every open set is again open (and hence clopen!). Prove that if
C(K) is order-complete then K is extremally disconnected. [Hint: If U is
open, apply order-completeness to the set of f € C(K) with f > xu.]
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4.6. (a) If K is extremally disconnected, show that for every bounded lower
semicontinuous function f, the upper semicontinuous regularization

f(s)=inf{g(s): g € C(K),g > f}

is continuous.

(b) Deduce that if K is extremally disconnected then C(K) is order-complete.

4.7. Let K be any topological space.

(a) Show that for every Borel set there is an open set U so that the symmetric
difference BAU has first category. (Of course, this is vacuous unless K is of
second category in itself!)

(b) Deduce that for every real Borel function f on K there is a lower semi-
continuous function g such that {f # g} has first category.

(¢) Show that if K is compact and extremally disconnected then for every
bounded Borel function there is a continuous function g so that {f # g} has
first Baire category.

4.8. Let K be a compact Hausdorff space and consider the space B(K) of
all bounded Borel functions on K. Consider B(K) modulo the equivalence
relation f ~ g if and only if {s € K : f(s) # g(s)} has first category. Define a
norm on the space B~ (K) = B(K)/ ~ by

|| fI| = inf{X: {|f] > A} is of first category}.

Show that B~ (K) is a Banach space which can be identified with a space C(L)
where L is compact Hausdorff. Show further that C(L) is order-complete and
hence L is extremally disconnected.

Note that if K is extremally disconnected then B~ (K) = C(K) (in the
sense that there is a unique continuous function in each equivalence class).

4.9. (Continuation of 4.8.) (a) Now suppose B~ (K) is isometrically a dual
space. Show that if ¢ belongs to the predual then there is a regular Borel
measure u on K so that u(B) = ¢(xp) for every Borel set. Show that pu must
vanish on every set of first category. [Hint: Use the fact that the positive cone
must be closed for the weak* topology.]

(b) Deduce that if K is compact and metrizable and has no isolated points
(e.g., K =10,1]) then B~ (K) cannot be a dual space.

4.10. Let K be metrizable and let E denote the smallest subspace of C(K)**
containing C(K') which is weak™ sequentially closed (i.e., is closed under the
weak* convergence of sequences). Show that E = B(K) where B(K) is con-
sidered as a subspace of C(K)** via the action

(f,u>=/fdu, p € M(K).



100 4 Banach Spaces of Continuous Functions

4.11. The Amir-Cambern Theorem [4], [22].

Let K and L be compact spaces and suppose T : C(K) — C(L) is an isomor-
phism such that ||T']| = 1 and || 77| < ¢ < 2. For the proof of the theorem
that we outline here we shall impose the additional assumption that K and
L are metrizable.

(a) Show that T™* maps B(K) onto B(L).
(b) For t € K define e, € B(K) by e;(t) = 1 and e;(s) = 0 for s # t. Show
that, for fixed t € K,

1
T** > _
T es(z)| -

for exactly one choice of x € L. [Hint: If this holds for x # y consider T*(ad, +
bd,) where a,b are chosen suitably.]

Show also that, for fixed # € L, |[T**e;(x)| > & for at most one of ¢ € K.
(c) Use (b) to define an injective map ¢ : K — L such that

« 1
(T 5¢(t)7et>| > > te K.

Show that ¢ is continuous and that

ITf = fooll <20 —cHIfl,  feCE).
(d) Deduce that ¢ is onto and K and L are homeomorphic.

The Amir-Cambern theorem is an extension of the Banach-Stone theorem.
Of course, Miljutin’s theorem means that we must have some restriction on
|T—1||; in fact 2 is sharp in the sense that one can find nonhomeomorphic K
and L and T with ||T|| = 1, |77'|| = 2; this is due to Cohen [31].



5

L,(p)-Spaces and C(K)-Spaces

In this chapter we will prove some very classical results concerning weak com-
pactness and weakly compact operators on C(K)-spaces and Lq(u)-spaces,
and exploit them to give further information about complemented subspaces
of such spaces. We have proved forerunners of these results in Chapter 2 for
the corresponding sequence spaces. If T': ¢g — X or T : X — {; is weakly
compact then 7" is in fact compact (Theorem 2.4.10 and Theorem 2.3.7). These
results are essentially consequences of the fact that ¢; is a Schur space.

We can regard cg as being a space of continuous functions (it is isomorphic
to ¢ which is isometrically a space of continuous functions) and ¢; is a very
special example of a space Li(u) where p is counting measure on the natu-
ral numbers. It is therefore natural to consider to what extent we can find
substitutes for more general C(K)-spaces and L (j1)-spaces.

Much of the material in this chapter dates back in some form or other to
some remarkable and very early work of Dunford and Pettis [45] in 1940, later
developed by Grothendieck [75]. However, we will take a modern approach
based on the techniques we have built up in the preceding chapters; this
approach to the study of function spaces may be said to date to the paper of
Kadets and Pelczyriski [98].

5.1 General remarks about L;(u)-spaces

Let (9,3, 1) be a probability measure space, that is, u is a measure on the
o-algebra ¥ of sets of Q of total mass p(Q2) = 1. Although it might appear
restrictive to consider probability spaces, this covers much more general sit-
uations. Indeed, if v is merely assumed to be a o-finite measure on ¥ then
we can always find a v-integrable function ¢ so that ¢ > 0 everywhere and
J¢dv = 1. If we define du = ¢ - dv then p is a probability measure and
L1(2, p) is isometric to L1(2,v) via the isometry U : Li(v) — Li(u) given
by Uf(w) = F(@)(p(w))".
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In most practical examples € is a complete separable metric space K (also
called a Polish space), 3 coincides with the Borel sets B and p is nonatomic. In
this case it is important to note that there is only one such space L1 (K, B, u).
More precisely, if p is a nonatomic probability measure on K then there is a
bijection o : [0,1] — K so that both ¢ and c~! are Borel maps and

WB)=Ao"'B),  BeB(K),

where A denotes Lebesgue measure on [0, 1]. Thus f — foo defines an isometry
between Lq (K, ) and L1 = L1([0,1], A). See e.g. [166] or [200].

Let us first note that, unlike ¢1, Ly is not a Schur space. To see this, take
for example the sequence of functions f,(z) = v2sinnrx, n € N. (f,)52, is
orthonormal in L2[0,1] and by Bessel’s inequality we have

lim 1 fn(@)g(z)dx =0

n—00 0

for all g € L0, 1]. In particular (f,)5°; converges to 0 weakly in L; but not
in norm.

On the other hand, since it is separable and its dual is nonseparable, L is
not reflexive. Therefore the relatively weakly compact sets of L]0, 1] are not
simply the bounded sets.

We start by trying to imitate the techniques which we developed to handle
sequence spaces. First we give an analogue for Lemma 2.1.1:

Lemma 5.1.1. Let (f,)22, be a sequence of norm-one, disjointly supported
functions in Ly (). Then (f,)S2; is a norm-one complemented basic sequence,
isometrically equivalent to the canonical basis of {7.

Proof. For any scalars (a;)7, and any n € N,
n n
H Zaifi = / ‘Zaifi
i=1 toJelig
n
= / (Z |O‘ifi|> dp
2 "=t
n n
= Z |ai|/ |fil dp = Z ||
i=1 @ i=1

Let us consider the operator P : Li(u) — L1 () given by

PO =3 ([ o) 1

dp

where, for each n,
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bty = LG @) >0
" 0 i £, (w) = 0.

(This covers both the case of real and complex scalars.) P is a projection onto
[fn]- Furthermore,

121 =X [ Fhod

= Z/ | £l dp
=1 {lfn‘>0}

:f fdp
uz  {|fel>0}

sfﬂmdu.

5.2 Weakly compact subsets of L;(u)

In this section we will consider the problem of identifying the weakly compact
gubsets of L1(p) when (00,3, 1) is a probability measure space. Qur approach
is through certain subsequence principles. In Chapters 1 and 2 we made heavy
use of so-called ¢gliding hump techniques. For example a sequence in £, which
converges coordinatewlse to zero but not in norm has a subsequence which
is basic and equivalent to the canonical basis of £;. The appropriate general-
ization to Lq{j)-spaces replaces coordinatewize convergence by almost every-
where convergence or convergence in measure.

Lemma 5.2.1. Let ()22, be a bounded sequenice in L1 (1) that converges to
0 in measure. Then there is o subsequence (hy, )52 of (ha )52 4 and a sequence
of disjoint measurable sets (A)72 | such that

Hh'ﬁk - hnkXAk Hl — 0.

Proof. We are going to extract such a subzequence by an inductive procedure
based on a similar technique to the “gliding hump” argument for sequences.

Let us first note that (k)32 has a subsequence which converges to 0
a.e. and so we may assume without loss of generality that limy, . An(w) =0
jt-a.e.

Let h,, = hy and take F; = {w € @ : |hy, (w)| > 3}. The function
hy, s integrable, therefore there exists 41 > 0 such that p(&) < d; implies
fE |y | dp << % Next, pick g > n1 such that pu(|hy,| > 2%) < &1 and consider
B={wsll: |hy,w)| > 2%}
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Similarly there exists d2 > 0 such that p(E) < 82 implies [}, [hn, [ dp < 55
for i = 1,2. Pick ng > ng such that u(|An,| > 5) < d2 and consider F =
{w et |hp, (w)] > 2—13}

Continuing by induction, we produce a subsequence (hy,,) of (h;) and a
sequence of sets (F)7°, such that ||h,, — by, xr, || < 2—1,c for all k.

Now we take the sequence of disjoint subsets of 2, (A4,), given by

A =P\ B A=B\||F, ... 4=F\|]F,

k>1 E>»2 k>3

Clearly, for each &k we have

1 1
ka hnk|dﬂ_fmhm|d#<2fﬂ e | dp < Eﬁ = k-1

izk ixk
le.,
1
thkXch _h’ﬂkXAkHl < k-1
Hence
1 1
thk - h'nkXAk H1 < thk - h"nkXFk H1 + Hh'nkXFk - h'nkXAk Hl < Q_k =+ gk—1°

and 20 Hh?’lk - h?’lkXAk Hl - O
O

Definition 5.2.2. A bounded subset F < Li(p) is called egui-integrable (or
uniformly integrable) if given € > 0 there is § = d(¢) > 0 so that for every set
E C Q with u(E) < ¢ we have sup ez [ [fldu < ¢, e,

lim su f dpe = 0.
w(E)—0 feg E|f| :

Remark 5.2.3. In the previous definition we can omit the word “bounded”
if p¢ 18 nonatomic, since then given any 4 > 0 it is possible to partition £} into
a finite number of sets of measure less than 4.

Example 5.2.4. (¢) Given a nonnegative o € Lq(p), the et

F=A{felaw;|fl <h}

is equi-integrable.

(73) The closed unit ball of La(p) is an equi-integrable subset of Ly(p). In-
deed, for any f € By, and any measurable set £, by the Cauchy-Schwarz
inequality,

Lisns (L) " (Liean)” < emy
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Then,

lim su / dp = 0.
w(E)—0 feg E|f| a

(#i7) The closed unit ball of L;(u) is not equi-integrable as one can easily
check by taking the subset F = {6 x[9,5; 0 <& < 1}.

Lemma 5.2.5. Let F and G be bounded sets of equi-integrable functions in
Li(p). Then the sets FUG and F+G={f+g; f€ F,9€ G} C Li(n) are
(bounded and) equi-integrable.

This is a very elementary deduction from the definition, and we leave the proof
to the reader. Next we give an alternative formulation of equi-integrability.

Lemma 5.2.6. Suppose F is a bounded subset of L1(u). Then the following
are equivalent:

(i) F is equi-integrable;

(i) lim sup |fldp = 0.
M=oo feF J{|f|>M}

Proof. (i) = (i) Since F is bounded, there is a constant A > 0 such that
supser || fll; < A. Given f € F, by Chebyshev’s inequality

u({l1 > ary < W < 2

Therefore, limp; oo p({|f| > M}) = 0. Using the equi-integrability of F, we

conclude that
lim sup/ |f| dw = 0.
M—oo feF J{|f|>M}

(i1) = (i) Given f € F and E € ¥, for any finite M > 0 we have,

/Ifldu=/ Ifldu+/ \Fldp
E En{|fI<M} En{|f|>M}

SMM(E)+/ |fldp
EN{|f|>M}

<MuE)+ [ |l
{lfI>M}

< Mu(E) + sup/ |fldp.
FEF J{|fI>M}

Hence,

SUp/ |f|dM§MM(E)+SUP/ | fldp.
feFJE feF J{|f|>M}
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Given € > 0, let us pick M = M (e) such that supscx f{\f\>M} fldp < §
Then if u(E) < 557 we obtain

sup [ fldu < Moz § =

O

Note that whenever (f,,)3° ; is a sequence bounded ahove by an integrable

function then, in particular, (f,)2° ; is equi-integrable. The next lemma es-

tablishes that, conversely, equi-integrability is a condition that can replace the

existence of a dominating function in the Lebesgue Dominated Convergence
theorem:

Lemma 5.2.7. Suppose (f,)5° | is an equi-integrable sequence in L1 (1) that
conwerges a.e. to some g € L1(p). Then

lim frodp = / gdp.

Proof. For each M > 0 let us consider the truncations

M if f,>M M it g> M
O = W fls M, D=l i g <M
M i f < M M i g<—M

and let us write

‘/f;fnd.u*/(zgd!i‘
< ‘/Q(fn—féM))dM‘vL‘/QféM)de/Qg(M)du‘+‘/Q(gf9(M))dM.

?

e < [l Mg | gl

uniformly in 7z as M — oo by LLemma 5.2.6. Analogously, since g € L1{p)

Moo
‘/(gfg(M))dﬂ‘S/ (IglfM)dMS/ |g| dp "7 0.
a {gl> M} (Ig>M}

And, finally, for each M we have

lim f(M) du = /;2 g(M) du

n—00

Now

by the Bounded Convergence theorem. The combination of these three facts
finishes the proof.
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O

We now come to an important technical lemma which is often referred to as

the Subsequence Splitting Lemnra. This lemma enables us to take an arbitrary

bounded sequence in L1{) and extract a subsequence that can be gplit into

two sequences, the first disjointly supported and the second equi-integrable.

It is due to Kadets and Pelczyniski and provides a very useful bridge between
gequence space methods (gliding hump techniques) and function spaces.

Lemma 5.2.8 (Subsequence Splitting Lemma [98]). Let (f,)52 be a
bounded sequence in L1 (). Then there exists a subsequence (g,)5° 1 of (fn)5%
and a sequence of disjoint measurable sets (A2 | such that if B, =1\ A,
then (gnXxp )2 18 equi-integrable.

Proof. Without loss of generality we can assume | fn|; <1 for all n.
We will first find a subsequence (f»,)%%; and a sequence of measurable
gets (F5)S2, such that if F; = Q\ F; then (f,_xz.)52, is equi-integrable and

limg oo fru.xr, =0 p-ae.
For every choice of & € I, Chebyshev’s inequality gives

for all r.

1
OSM(‘J[H >k) < 7

Then, since (p(]fa| > k))oo is a bounded sequence, by passing to a subse-

quence we can assume that (,u(\fﬂ\ > k)) converges for each k. Let us call

=1
v its limit. Our first goal is to see that the series 3,7 | ay is convergent with

sum no bigger than 1.

For each =,
12 [ Wlde= [ litl> Dt
00k
:Z/};il,u(\fn\ > 1) dt
SWEE)

Therefore the partial sums of 3. ; ax are uniformly bounded:

N N N
D o Z im | fa > k)= lim > p(lfe] > k) <1
k=1 k=1 k=1

Now, for each k we want to speed up the convergence of the sequence (,U,(\fﬂ\ >

k))zczl to ag. Let us extract a subsequence (f;;, 1%, of (f,)22; in such a way
that for all s € M
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(| fr.| > k) < ap +272 if 1<k <25 (5.1)
For each s let us define
Es={weQ: [fn(w) <2°}

and

Notice that

s=1 s=1 s=1

This implies that for almost every w € €2, there is just a finite number of sets
such that w € Fs. Thus (fn,xr, )32, converges to 0 u-a.e.

Next we will prove that (f,.xg,)32; is equi-integrable. For the sake of
simplicity in the notation we will denote hy = f,, . xg., s € N. It suffices to
show that

sup/ |hs| dp == 0.
{lha|>27}

S

Clearly
wu(lhs| > k) =0 if k> 2%,

which implies that for every fixed r € N, if s < r then

/ |hs| dp = 0.
{lhs|>27}

For values of s > r,

[ Ml [ (=2 dut 2l > 2)
{Ihs|>27} {lhs|>27}

By (5.1),
2" u(|hs| > 27) < 2 e + 27725,

On the other hand,

/ (|h3|_2r) dp =
{|hs|>27}

oo

p(lhs| =27 > t) dt

S~

M

k
/ p(lhs| =27 > t) dt
k

—1

o~
Il
-

e

p(lhs) —2" >k —1)

ol
Il
-

e

u(lhs| > 2" + k)

ol
Il
=}
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o0
= Z 'U’Uh3| > k)
k=2r
o
<D e +27%)

k=27

S 2-r + i g,
k=2"

Summing up, if s > r we get

f bl dp <2277 + 2age + > oy = 0.
{|h.|>27} P

This establishes the equi-integrability of (hs)scn.

Note that lims oo(fr, — fs) = 0 p-ae. Thus we can apply Lemma 5.2.1
to the sequence R, = f,. — hs to deduce the existence of a further sub-
sequence (k) )72, and a sequence of disjoint sets (A,)72, in ¥ such that
lime oo [|RG xB, | =0, where B, = Q\ A,. Clearly we may assume that A, C
F,.. Then the set {h] xp, }7, is equi-integrable and so {h, +h} xp }32; is
also equi-integrable. If we write g, = f.__ then the subsequence ()32, gives
us the conclusion since g.xp, = ko, + R, xB,.

O

Now we come to our main result on weak compactness. The maln equiva-
lence, (¢) < (i4), is due to Dunford and Pettis [45].

Theorem 5.2.9, Let F be a bounded set in L1(p). Then the following condi-
tions on F are equivalent:

(1) F is relatively weakly compact;
(i) F is equi-integroble;
(1it) F does not contain a basic sequence equivalent to the canonical basis of
£y;
(iv) F does not contain o complemented basic sequence equivalent to the canon-
tcal basis of 1;
{v) for every sequence (A,)22 , of disjoint measurable sets,

lim sup/ | f] dp = 0.

R0 e F S

Proof. Tt is clear that (i) = (#1) since the unit vector basis of £ containg
no weakly convergent subsequences. Trivially, {(#7) = (iv); (4i) = (v) is also
immediate since if (4,) are disjoint measurable sets then p{4,) — 0 and
s0 limy, o 8Upse fA | /| dir = 0 by equi-integrability. We shall complete the
circle by showing that (7v) = (i1), (v) = (), and (i3) = (4).
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If (i) fails, by Lemma 5.2.6 there exists a sequence (f,,)52; in F and some
0 > 0 such that for each n € N,

[ inldnze (5.2)
{lfnl>n}

We may suppose, using Lemma 5.2.8 and passing to a subsequence, that every
fn can be written as

fn = faxa, + faxs.

where (A,)52 4 is a sequence of disjoint sets in &, B,, = Q\ A,,, and (fnXxB, )5,
is equi-integrable. Then observe that, since u(|f,| > n) — 0, we must have

lim | fnldu = 0.

n—oo BN {|fn|>n}

By deleting finitely many terms in the sequence (f,), we can assume that

i = [ aldn = 30 (5.3)
A, 2

for all n.

By Lemma 5.1.1 the sequence (a,; ! fnxa, )52, is a norm-one complemented
basic sequence in L1 () isometrically equivalent to the canonical ¢1-basis. Let
(hy) in Loo(pt) be the norm-one biorthogonal functionals chosen in the proof
of Lemma 5.1.1; each h,, is supported on A,. Since uA, — 0 and the set
{fxB,}72, is equi-integrable we can pass to yet a further subsequence and
assume that

1
| fm|dp < =2770, m,n € N.
A,NByn 4

Define T': Ly () — ¢1 by

1= </Q fhndﬂ) :0=1

and R : 41 — Li(p) by

Then

TRey, — e, = (a;l/ fkhnd,u>
AnNBj n=1

and we obtain the estimate

a;l/ fkhnd,u‘ <2 nl
A,NByg

Hence
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— 1
-1 —
1T Rex — ex| < o ;152 "<

B | —

which yields |[TR-{|| < %, where I is the identity operator on #. This implies
TR is invertible so there is U7 : #7 — £ such that UTR = I. RUT is a projec-
tion onto range of R, hence R maps #; isomorphically onto a complemented
gubspace of L1{p); this shows that (f,)2° ; is a complemented basic sequence
equivalent to the £;-basis. Thus (iv) is contradicted and so (iv) implies (3¢).

Let us point out that equation (5.3), which we obtained with the only
agsumption that F failed to be equi-integrable, contradicts {v), hence in our
way we also obtained the implication (v) = ().

Finally, let us prove (é) = (¢). We must show that 7 , the weak" closure
of F in the bidual of L;{i), is contained in Lq{p).

For each M € (0,oc), let us consider the sets

Fu = {fxqpemy - feF}

and

FM={f xgpomy - fEF}

It iz obvious that F < Fpr + FM¥ | therefore .le* = Fu ’ —i—fiMw .
Let us notice that if f € Far, we have || fllz € || flleo < M. Then,

Fu C MBLQ(H).

Since Lo(p) is reflexive, its closed unit ball is weakly compact. Therefore
M By, () is weakly compact for each M > 0 and so s is a relatively weakly
compact set in La(p) for each M > 0. Being norm-to-norm continucus, the
inclusion ¢ : La(p) — Ly (u) is wealeto-weak continuous, so «(Fy) = Fiy s
a relatively weakly compact set in L1(u) for each M > 0. This is equivalent
to saying that for each positive M, the weak* closure of Fjs in the bidual of
L1 (i) is a subset of Ly (p), ie.,

o © Li(u) forall M >0,

On the other hand, if f € 7™ then |f||; < (M), where (M) =
;lel}’ﬁ)f f{|f|>M}|f| dp. Hence, FM ¢ e{M)Br,(x)- Using Goldstine’s theorem

we deduce that X
fM [ E(M)BLI(H)**‘

Hence if f ¢ ‘wa* then we can write f = ¢ + ¢, with ¢ € L1(x) and ¢ €
e(M) B,y Therefore, for an arbitrary M > 0, d(f, Ly (1)) < e(M). Since
limps—co €(M) = 0 by Lemma 5.2.6, d(f,L1(p1)) = 0 and f € Ly(u).
O
We conclude this section with a simple deduction from this theorem.



112 5 Li(p)-Spaces and C{K)-Spaces
Theorem 5.2.10. L1{y) is weakly sequentially complete.

Proof. Let ()22, < L1{u) be a weakly Cauchy sequence. Then, no subse-
quence of (f,)22; can be equivalent to the canonical #1-basis, which is not
weakly Cauchy. Hence the set {f,12%  is relatively weakly compact by Theo-
rem 5.2.9 and this implies the sequence must actually be weakly convergent.

O

Corollary 5.2.11. The space op s not isomorphic to a subspace of L (p).

Proof. Since Ly () is weakly sequentially complete, by Corollary 2.4.15 every
WUC series in Lj(p) is unconditionally convergent so, by Theorem 2.4.11,
L1 (jt) does not contain a copy of cq.

O

5.3 Weak compactness in M(K)

Suppose now that K is a compact Hausdorfl space (not necessarily metriz-
able). The space M{K) = C(K)* as a Banach space is a “very large” #;-sum
of spaces L1(p) where 1 is a probability measure on K. This fact has already
been observed in the proof of Proposition 4.3.8 (¢2¢). Using this it is possible to
extend Theorem 5.2.9 to the spaces M(K); however, we need some additional
characterizations of weak compactness in spaces of measures.

Deefinition 5.3.1. A subset A of M(K) is zaid to be wniformly regular if
given any open set I/ < K and ¢ > 0, there is a compact set H < U such that
|| (U H) < e for all p € A.

The next equivalences are due to Grothendieck [75].

Theorem 5.3.2. Let A be a bounded subset of M{K). The following are
equivalent:

i) A is relatively weakly compact;

(i} A is uniformly regular;

(i) for any sequence of disjoint Borel sets (B,)2 | in K and any sequence of
mensures (pn)oeq in A, limy oo |ptn|(Br) = 0;

{iv) for any sequence of disjoint open sets (U,,)22 | in K and any sequence of
measures (pn)oe g i A, imy oo e (Un) =0

(i) for any sequence of disjoint open sets ([/,,122 | in K and any sequence of
mensures (pn)oe g in A, limy oo |itn| () = 0.

Remark 5.3.3. This theorem is true for either real or complex scalars. We
give the proof in the real case. It Is easy to extend this t.o the complex case by
the simple procedure of splitting a complex measure into real and imaginary
parts.
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Proof. (iii) = (iv) This is immediate because an open set is, in particular, a
Borel set and
0 < |pn(Un)| < |pn|(Un) == 0.

(iv) = (iv)" Assume (iv)’ fails. Then there exist a sequence of open sets
(Un)5%, in K and a sequence of regular signed measures on K, (fn)52; such
that (|pn](Un))S2, does not converge to 0.

For each n we can write u, as the difference of its positive and negative
parts: i, = p,;b — p, . Then the total variation of p, is the sum: |pu,| = pF +
i, . Therefore, without loss of generality we will suppose that the sequence
(ur (Up))22, does not converge to 0. By passing to a subsequence we can
assume that there exists § > 0 such that pu}(U,) > & > 0 for all n.

Let us fix n € N. Using the Hahn decomposition theorem, there is a Borel
set B, C U, such that u,(By) = u, (U,) > 6. Now, by the regularity of i,
there is an open set O,, such that B, C O,, C U,, and u,(0O,) > g.

This way, we have a sequence of disjoint open sets (0Oy)52; C K such that
(14 (0n))22; does not converge to 0, contradicting (iv).

(iv)" = (i) Let us assume that A fails to be uniformly regular. Then there
is an open set U C K such that for some ¢ > 0 we have

sup |u|(U\ H) >,
HEA

for all compact sets H C K.

Given Hy = (), pick p; € A so that |u|(U \ Ho) > §. By regularity of the
measure p; there exists a compact set F; C U \ Hp such that |uq|(Fy) > 0.
Using the Ty separation property, we find an open set V; satisfying

F,cV,cVyCU\ Hy.

Now, given the compact set H; = V] there is p5 € A such that |2 (U\ Hy) >
0. By regularity of o there exists a compact set F» C U \ Hp such that
|2|(F) > 6 and the Ty separation property yields an open set V3 such that

F,cVaCVoCU\H.

For the next step in this recurrence argument we would pick Hy = V; UV; and
repeat the previous procedure. This way, by induction we obtain a sequence
of disjoint open sets (V)02 C K and a sequence (pn)p>; C A such that
|t |(Vy) > 6 for all n, contradicting (i).

(#) = (i) In order to prove that A is relatively weakly compact in M(K),
by the Eberlein-Smulian theorem it suffices to show that any sequence (fip) C
A is relatively weakly compact.

Let us consider the (positive) finite measure on the Borel sets of K given

by
=1
p=2 gl
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Every 1, is absolutely continuous with respect to p. By the Radon-Nikodym
theorem, for each n there exists a unique f,, € L1 (K, i) such that dp, = fr dis
and ||pn|| = [i [faldp. This provides an isometric isomorphism from Ly ()
onto the closed subspace of M(K) consisting of the regular signed measures
on K which are absolutely continucus with respect to p. The isometry, in
particular, takes each f,, in L1(K, 1) to pty,. Therefore we need only show that
(fn) is equi-integrable in Ly (K, p).

If {f) is not equi-integrable, using (i¢) we find a sequence (U/,,) of open
gets and some € > 0 such that p(U7,) < 27 and sup,, fUn | Fx| dpt = €. For each
n put V,, = Uk‘>n Uyk. (Vi) is a decreasing sequence of open sets such that
(V) < 27" and

supf | Fi| dpe = e. (5.4)
k Jv,

Now, for each n there exists E,, compact, E,, < V,, for which

€
Sup/ el dp < 5.
k JvaE, 22

Obviously, #((; E.) = 0. The uniform regularity yields an open set W such
that (07, £, € W and sup, S | el dp < 5. By compactness there exists N

guch that ﬂle E, W and so

Jre

n=l

| ful dp < % for each k.

Thus, for each k we have

f | frl dps Sf
Vgt N

n=1

N N
€ €
d dp <o+ opm <e
En\ﬁcl M+n2_1/‘/n\Enfk| I 2+k712k+2 €

which contradicts (5.4).
(1) = (4it) Let (By)2% 4 be an arbitrary sequence of disjoint Borel sets in
K and {11,)2° ; be an arbitrary sequence of measures in .A. Put

=1
p=2 galuml
n=1

Reasoning as we did In the previous implication, for each n there exists a
unique g, € L1(K, it) such that dj, = g, dp. If A is relatively weakly compact
in M(K) the sequence (g,,)5° ; is relatively weakly compact in L1 (K, 1), hence
equi-integrable. Thus, since p(B,) — 0, we have

1l (Ba) = | lgaldn =0,

n
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5.4 The Dunford-Pettis property

Definition 5.4.1. Let X and Y be Banach spaces. A bounded linear operator
T:X — Y is completely continuous or a Dunford-Pettis operator if whenever
W is a weakly compact subset of X then T'(W) is a norm-compact subset of

Y.

Clearly, if an operator is compact then it is Dunford-Pettis. If X is reflexive
then an operator T': X — Y is compact if and only if T' is Dunford-Pettis.

Proposition 5.4.2. Suppose that X andY are Banach spaces. A linear oper-
atorT : X — Y is Dunford-Pettis if and only if T' is weak-to-norm sequeniially
continuous, i.e., whenever (Ty)oe, C X converges to & weakly then (Lzy)oe
converges to T'r in norm.

Proof. Let T': X — Y be Dunford-Pettis and suppose that there is a weakly
null sequence (zr,)$2, < X such that [|[Tz,|| = ¢ > 0 for some positive 4.
Since the subset W = {2, : n € N} U {0} is weakly compact, its image
under I is norm-compact, therefore it contains a subsequence (I'(x,,))52,
that converges in norm to some y € Y. From the fact that T, in particular, is
weak-to-weak continuous, it follows that the sequence (T'(24))52 is weakly
null, so 4 must be 0, which contradicts our assumption.

For the converse implication, suppose T' is weak-to-norm sequentially con-
tinuous. Let W be a weakly compact subset of X and let (3,,)2° ; be asequence
in T'(W). Pick (z,) in X so that y,, = Tz, for all ». By the Eberlein-Smulian
theorem (z,) contains a subsequence (z,;,) that converges weakly to some z
in W. Hence (yn, )7, converges in norm to T'z. We conclude that T'(W) is
norm-compact.

O

The following definition was introduced by Grothendieck [75] as an ab-
gtraction of ideas originally developed by Dunford and Pettis [45].

Definition 5.4.3. A Banach space X is sald to have the Dunford-Peitis prop-
erty (or, in short, X has {DPP)) if every weakly compact operator I' from X
into a Banach space ¥ iz Dunford-Pettis.

For example cp has (DPP) because if ¥ is a Banach space and T': g — ¥V
is a weakly compact operator then T' is compact, hence Dunford-Pettis. £1 has
also {DPP) because #; has the Schur property, which implies, as we saw, that
weakly compact subsets in £; are actually compact.

On the other hand, no infinite-dimensional reflexive Banach space X has
(DPP) since the identity operator [ : X — X iz weakly compact but cannot
be a Dunford-Petiis operator because the closed unit ball of X is not compact.

Theorem 5.4.4. Suppose that X is a Banach space. Then X has (DPP) if
and only if for every sequence (1,)50, in X converging weakly to 0 and ev-
ery sequence (x})22, in X* converging weakly to 0, the sequence of scalars

(2} (1)) conuverges to 0.
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Proof. Let Y be a Banach space and T': X — Y a weakly compact operator.
Let us suppose that 7' is not Dunford-Pettis. Then there is (z,)22; in X such
that 2, = 0 but |Tz,| > § > 0 for all n.

Pick (y})22, < Y* such that ¢}, (Tz,) = ||Tzs|| and ||gf| = 1 for all
n. By Gantmacher’s theorem T% is weakly compact hence T*(By+) is a
relatively weakly compact subset of X*. By the Eberlein-$mulian theorem
the sequence (T*y* )2 | C T*(By+) can be assumed weakly convergent to
gome z* in X~ Then (T*yh — x*)52 | is weakly convergent to 0, which im-
plies (7" — 2")(z,) — 0. But, since z*(z,) — 0, it would follow that
(THy ()22 = (|| T332, must converge to 0, which is absurd.

For the converse, let (x,,) in X be such that z,, % 0 and (z%) in X* be
such that z7 2 0. Consider the operator

T:X —e, Tr=(z}(z)).

The adjoint operator T of T' satisfles T™ep = zj, for all k € N, where (ex)
denotes the cancnical basis of #;. This implies that T* (B, ) is contained in the
convex hull of the weakly null sequence (z7). Therefore T* is weakly compact,
hence by Gantmacher’s theorem so is T'.

As T is weakly compact, T' is also Dunford-Pettis by the hypothesis. Then,
by Proposition 5.4.2, |Tz,| ., — 0. Thus (z}(2.))37 , converges to 0 since,
for all n,

|27 (#)| = max |k (2n)] = [T o
O

We now reach the main result of the chapter. The fact that L ()-spaces
have (DPP) is due to Dunford and Pettis [43] (at least for the case when L4 (12)
is separable) and to Phillips [180]. The case of C(K}-spaces was covered by
Grothendieck in [75].

Theorem 5.4.5 (The Dunford-Pettis Theorem).

(i) If i is o o-finite measure then Li(p) has (DPP).
(i} If K is o compact Haousdorff space then C(K) has (DFPP).

Proof. Let us first prove part (ii). Take any weakly null sequence (f,,)22,
in C(K) and any weakly null sequence (14,,)32; in M(K). Without loss of
generality both sequences can be assumed to lie inside the unit balls of the
respective spaces. Define the (positive) measure

o= sl
— 2 Mn ‘
Clearly each p, is absolutely continuous with respect to ». By the Radon-
Nikodym theorem, for each n there exists a nonnegative, Borel-measurable

function gy, such that du, = g, dr and ||p.|| = fK gndr. This provides an
isometry from L;1{(v) onto the closed subspace of M(K) consisting of the
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regular signed measures on K which are absolutely continucus with respect
to v. This isometry in particular takes each g, in L1(v) to jin. Therefore the
sequence (g, 1% ; is weakly null. Thus the set {g,, ; n € N} is relatively weakly
compact in L1 (), hence equi-integrable.

Now for any M > 0, by the Bounded Convergence theorem, we have that

lim Tngn dr = 0.
eSS ga | <M

Hence

msup { fogn.dr < supf |9y | dv.
lgnl>M

T — 00 n

Note that the right-hand side term tends to zerc as M — oo by Lemma 5.2.6.

Then
lim f fadpu, =0

as required.

() follows from (i¢) since the dual space of Ly(p), Loo(y), can be re-
garded as a C{K )-space for a suitable compact Hausdorff space K. Hence if
(frn)22, is weakly null in £q{() and (g,)2%; is weakly null in L., {y) then
limy e fﬁﬂgﬂ dp = 0 by the preceding argument.

O

Corollary 5.4.6. If K is a compact Hovsdorff space then M{K) has (DPP).

The Dunford-Pettis theorem was a remarkable achievement in the early
history of Banach spaces. The motivation of Dunford and Pettis came from the
study of integral equations and their hope was to develop an understanding
of linear operators T': L,(p) — L,(p) for p > 1. In fact the Dunford-Pettis
theorem immediately gives the following application.

Theorem 5.4.7. Let T' : Ly() — Li(p) or T : C(K) — C(K) be a weakly

compact operator. Then T2 is compact.

Proof. This is immediate. For example, in the first case, T'(By, (u)) is relatively
weakly compact hence T2 (BLl(#)) is relatively norm compact.
|
It is well known that compact operators have very nice spectral properties.
For instance, any nonzero A In the spectrum is an eigenvalue, and the only
possible accumulation point of the spectrum is 0. These properties extend in
a very simple way to an operator whose square Is compact, so the previous
result means that weakly compact operators on L1 (p)-spaces or C(K )-spaces
have similar properties. The Dunford-Pettis theorem was thus an important
step in the development of the theory of linear operators in the first half of
the twentieth century; this theory reached its apex in the publication of a
three-volume treatise by Dunford and Schwartz between 1958 and 1971 ([46],
[47], and [48]). The first of these volumes alone runs to more than 1000 pages!
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The original proof of Dunford and Pettis relied heavily on the theory of
representations for operators on L;. In order to study an operator 7" : Ly (u) —
X one can associate it to a vector measure v : ¥ — X given by v(E) = T'xg.
Thus |[¥(E)| < ||T||u#(E). Dunford and Pettis [45] and Phillips [180] showed
that if 7" is weakly compact one can prove a vector-valued Radon-Nikodym
theorem and thus produce a Bochner integrable function g : Q@ — X so that

mmzémwww»

This permits a representation for the operator 7" in the form

sz/ﬁwvwmmm,

and they established the Dunford-Pettis theorem from this representation.

In particular if X is reflexive, every operator T' : Li(u) — X is weakly
compact, and one has a Radon-Nikodym theorem for vector measures taking
values in X. It was also shown by Dunford and Pettis [45] that this property
is also enjoyed by any separable Banach space which is also a dual space
(separable dual spaces). This was the springboard for the definition of the
Radon-Nikodym Property (RNP) for Banach spaces, which led to a remarkable
theory developed largely between 1965 and 1980. We will not follow up on this
direction in this book. A very nice account of this theory is contained in the
book of Diestel and Uhl from 1977 [42].

One of the surprising aspects of this theory is the connection between the
Radon-Nikodym Property and the Krein-Milman Property (KMP). A Banach
space X has (KMP) if every closed bounded (not necessarily compact!) con-
vex set is the closed convex hull of its extreme points. Obviously reflexive
spaces have (KMP) but, remarkably, any space with (RNP) has (KMP) (Lin-
denstrauss [128]). The converse remains the major open problem in this area;
the best results in this direction are due to Phelps [179] and Schachermayer
[201]. It is probably fair to say that the subject has received relatively little
attention since the 1980s and some really new ideas seem to be necessary to
make further progress.

5.5 Weakly compact operators on C(K)-spaces

Let us refer back again to Theorem 2.4.10. In that theorem it was shown that
for operators T : ¢g — X the properties of being weakly compact, compact,
or strictly singular are equivalent. For general C(K)-spaces we have seen that
weak compactness implies Dunford-Pettis. Next we turn to strict singularity.

Theorem 5.5.1. Let K be a compact Hausdorff space. If T : C(K) — X is
weakly compact then T is strictly singular.
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Proof. Let Y be a subspace of C{K) such that 7|y is an isomorphism onto
its image. Since T' is weakly compact, T'(By) is relatively weakly compact,
which implies that By is weakly compact. But T'{By) is actually compact
by the Dhunford-Pettis theorem, Theorem 5.4.5. It follows that ¥ is finite-
dimensional.

O

Remark 5.5.2. Clearly, Theorem 5.5.1 also holds replacing C(K) by L1 ().

The following result by Pelczynski [171] is a much more precise statement
than Theorem 5.5.1.

Theorem 5.5.3 (Pelczyriski). Suppose K is a compact Hausdorff space
and X s a Banach space. Suppose that T': C{K) — X s a bounded linear
operator. If T' fails to be weakly compact then there is a closed subspace E of
C(K) isomorphic to oy such that T'|g is an isomorphism.

Proof. Suppose that T : C(K) — X fails to be weakly compact. Then, by
Gantmacher’s theorem, its adjoint operator 1% : X* — A1(K) also fails to
be weakly compact, and so the subset T*(Bx+) of M{K) is not relatively
weakly compact. By Theorem 5.3.2, there exists 4 > 0, a digjeint sequence of
open sets ({/,)2° , in K, and a sequence (z})2% ; in Bx. such that if we call
vy, = T*x} then v, (U,) > 4 for all n.

For each n there exists a compact subset F, of [/, such that |v|({/,\ F,) <
%. By Uryschn’s lemma there exists f,, € C(K), 0 < f,, <1, such that f, =0
on K\ U, and f, =1 on Fj,. Then (f,,)32, is isometrically equivalent to the
canonical basis of cg, which implies that [f], the closed linear span of the
basic sequence (f,), is isometrically isomorphic to cp. Let § : gy — C(K) be
the isometric embedding defined by Se, = f, where {e;)32 ; is the canonical
basis of cq.

Consider the operator T'S : ¢ — X. We claim that T'S cannot be com-
pact. Indeed since (e, 2> ; is weakly null, if T'S were compact we would have
limy, oo |T'Ser| = 0. However,

x(T8e,) =2 (Tf,)
= (T"=3)(fn)

- [ tudn,
/dun /(fn—l Ydu,

>80 — | |(Un \ Ey)
)
>
2
Thus T'S is not compact and, by Theorem 2.4.10, it is also not strictly sin-
gular. In fact T'S must be an Isomorphism on a subspace isomorphic to ¢
(Proposition 2.2.1).
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O

Corollary 5.5.4. Let X be a Banach space such thal neo closed subspace of
X is isomorphic to cg. Then any operator T 1 C(K) — X is weokly compact.

Using the above theorem we can now say a little bit more aboul injective
Banach spaces.

Theorem 5.5.5. Suppose X is an injective Banach space and T : X — YV
is a bounded linear operator. If T' fails to be weakly compact then there is
a closed subspace F' of £, such that F is isomorphic to Ly, and T|p is an
isomorphism.

Proof. We start by embedding X isometrically into an £o,(I')-space; this can
be done by taking T' = Bx+ and using the embedding z — #, where £(z*) =
z*(x).

Since X is injective there is a projection P : £, (T") — X. Now the operator
TP lo(I) — Y is not weakly compact; since £, (") can be represented as
a C{K)-space we can find a subspace E of £, (") which is isomorphic to g
and such that 7' P|g is an isomorphism. Let J : ¢p — £ be any isomorphism.
Since X is injective we can find a bounded linear extension S : {,, — X
of the operator PJ : ¢g — X. Note also that TPJ maps ¢y isomorphically
onto a subspace G of Y and thus using the fact that €., is injective we can
find a bounded linear operator R : ¥ — {., which extends the operator
(T'PJy~1: G — gy. Thus we have the following commutative diagram:

Rgm

b —2m X Loy

i} PI_ 5 _T JG R jo
The operator in the second row, namely, RT'PJ, is the identity operator T
on cg and RT'S : £, — £, is an extension. Thus the operator RT'S — I on
£, vanishes on cy. We can now refer back to Theorem 2.5.4 to deduce the
existence of a subset & of N so that BT'S — T vanishes on £, (4). In particular

RT'S is an isomorphism from 4., (&) to its range. This requires that F' = §()
is isomorphic to €4, and 1’| is an isomorphism.

O

5.6 Subspaces of L;(ut)-spaces and C(K)-spaces

Our first result in this section is a direct application of Theorem 5.4.7.

Proposition 5.6.1. Li(u) and C{K) have no infinite-dimensional comple-
mented reflerive subspaces.
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Proposition 5.6.2. If X is a nonreflexive subspace of L1{p) then X contains
a subspace isomorphic to {1 and complemented i Li(p).

Proof. If X is nonreflexive, its closed unit ball Bx is not weakly compact,
therefore Bx is not an equi-integrable set in £1(z). The proposition then
follows from Theorem 5.2.9.
O
Combining Proposition 5.6.1 and Proposition 5.6.2 gives us:

Proposition 5.6.3. If X is an infinite-dimensional complemented subspace
of Lq(j2) then X contains o complemented subspace isomorphic to f1.

The analogous result for C(K )-spaces is just as easy:

Proposition 5.6.4. Let K be a compact melric space. If X is an infinide-
dimensional complemented subspace of C(K) then X contains o complemented
subspace isomorphic to cp.

Proof. Again by Proposition 5.6.1, X 1s nonreflexive and hence any projection
P onto it fails to be weakly compact. By Theorem 5.5.3, X must contain a
subspace isomorphic to ¢, and this subspace must be complemented because
(since K is metrizable) X is separable (by Sobczyk’s theorem, Theorem 2.5.8).
O
Note here that if K Is not metrizable we can oblain a subspace Isomorphic
to cg, bul it need not be complemented. In the case of ., we can use these
techniques to add this space to our list of prime spaces. This result is due
to Lindenstrauss [129] and it completes our list of classical prime spaces.
We remind the reader of Pelczyriski’s result that the sequence spaces £, for
1 < p < oo and ¢ are prime {(Theorem 2.2.4).

Theorem 5.6.5. £, is prime.

Proof. Let X be an infinite-dimensional complemented subspace of £.,. We
have already seen that X cannot be reflexive {(Proposition 5.6.1) and hence
a projection P onto X cannot be weakly compact. In this case we can use
Theorem 5.5.5 to deduce that X contains a copy of £.,. Since £, Is Injective,
X actually contains a complemented copy of £ (Proposition 2.5.2). We are
now ready to use Proposition 2.2.3 (b} in the case p = co and we deduce that
Xl

O

Corollary 5.6.6. There are no infintte-dimensional separable injective Ba-
rnach spaces.

PROOF. Suppose that X is a separable injective space. X embeds isometrically
into £, by Theorem 2.5.7. Since X is injective, it embeds complementably
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into {o,, which is a prime space. That forces X to be isomorphic to {o, a
contradiction because {., is nonseparable.
O

Tt is quite clear that the spaces L and C[0, 1] cannot be prime; the former
contains a complemented subspace isomorphic to ¢; and the latter contains
a complemented subspace isomorphic to ¢g. However, the classification of the
complemented subspaces of these classical function spaces remains a very
intriguing and important open question.

In the case of Ly the following conjecture remains open:

Conjecture 5.6.7. Every infinite-dimensional complemented subspace of Ly
is isomorphic to Ly or {q.

The best result known in this direction is the Lewis-Stegall theorem from 1973
that any complemented subspace of L; which is a dual space is isomorphic
to ¢4 [125]. (More generally, we can replace the dual space assumption by the
Radon-Nikodym property.) Later we will develop techniques which show that
any complemented subspace with an unconditional basis is isomorphic to ¢y
(an earlier result which is due to Lindenstrauss and Pelczyniski [131]).

The corresponding conjecture for C[0, 1] is:

Conjecture 5.6.8. Fvery infinite-dimensional complemented subspace of
C[0,1] is isomorphic to a C(K)-space for some compact metric space K.

Here the best positive result known is due to Rosenthal [195] who proved
that if X is a complemented subspace of C[0, 1] with nonseparable dual then
X =~ C[0,1]. We refer to the survey article of Rosenthal [199] for a fuller
discussion of this problem,

Since both these spaces fail to be prime, it is natural to weaken the notion:

Definition 5.6.9. A Banach space X is primary if whenever X ~ Y & Z then
either X =~ Y or X ~ Z.

The spaces Ly and CJ0, 1] are both primary. In the case of L; this result is
due to Enflo and Starbird [55] (for an alternative approach see [103]). In the
case of C[0, 1] this was proved by Lindenstrauss and Pelczynski in 1971 [132],
but of course it follows from Rosenthal’s result cited above [195], which was
proved slightly later, since one factor must have nonseparable dual.

Problems

5.1. Show that there is a sequence (a,)nez € co(Z) which is not the Fourier
transform of any f € Ly(T).

5.2. Let X be a Banach space that does not contain a copy of ¢;. Show that
every Dunford-Pettis operator 7' : X — Y with Y any Banach space, is
compact.
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5.3. Show that the identity operator Iy, : /1 — {1 is Dunford-Pettis.

5.4. Let X be a Banach space that does not contain a copy of ¢1; show that
every operator T': X — L, is weakly compact.

5.5. Let u be a probability measure. Show that an operator T : Li(u) — X
is Dunford-Pettis if and only if T restricted to Lo(u) is compact.

5.6. In this exercise we work in the complex space Ly(T) (1 < p < 00), where
T is the unit circle with the normalized Haar measure df/2mw. We identify
functions f on T with 27-periodic functions on R. The Fourier coefficients of
fin Li(T) are given by

—inf ﬁ

, e 7.
2 "

iy = [ 1)

-7

For measures u € M(T) we write
) = [ du(o).

(a) Let u be a Borel measure on the unit circle T so that u € M(T). Show
that for 1 < p < oo the map T}, : L,(T,d#/27) — L,(T,df/27) defined by

Lf(s) = £5) = [ s —tautt)  ae,

is a well-defined bounded operator with ||T),|| < |u||. [Note that T, maps
continuous functions and can be extended to L,(x) by continuity.]

(b) Show that T,e, = fi(n)e,, where e,(t) = e™*. Deduce that 7}, is Dunford-
Pettis if and only if lim,,—. f(n) = 0.

(c) Show that T, : Li(T) — Li(T) is weakly compact if and only if p is
absolutely continuous with respect to Lebesgue measure. [Hint: To show that p
is absolutely continuous, consider 7}, f, where f, is a sequence of nonnegative
continuous functions with [ f,,(¢)dt/2r =1 and whose supports shrink to 0.]

5.7.Let T : {o, — X be a weakly compact operator which vanishes on cg.
Show that there exists an infinite subset A of N so that T'|,_(a) = 0. [Hint:
Mimic the argument in Theorem 2.5.4.]

58.If T : loc — X is a weakly compact operator show that, for any € > 0,
there exists an infinite subset A of N so that 1" : (o (A) — X is compact and

1T e )]l < e

5.9. Show that if X is a Banach space containing ¢, and F is a closed sub-
space of X then either E contains ¢, or X/E contains .

5.10. Show that every injective Banach space X contains a copy of £



124 5 Li(u)-Spaces and C(K)-Spaces

5.11. Suppose X is a Banach space with a closed subspace E so that X/FE
is isomorphic to L;. Show that £+ is complemented in X**. [Hint: Use the
injectivity of Lo.]

5.12 (Lindenstrauss [127]). Show that ¢; has a subspace E which is not
complemented in its bidual. [Hint: Use the kernel of a quotient map onto L.
Show that this subspace also has no unconditional basis.



6

The L,-Spaces for 1 < p < oo

In this chapter we will initiate the study of the Banach space structure of
the spaces Lp(u) where 1 < p < co. We will be interested in some natural
questions which ask which Banach spaces can be isomorphic to a subspace of
a space Lp(u). Questions of this type were called problems of linear dimension
by Banach in his book [8].

If 1 < p < oo the Banach space Ly(u) is reflexive while Lq(p) is nonre-
flexive; we will see that this is just an example of a discontinuity in behavior
when p = 1. We will also show certain critical differences between the cases
l<p<2and 2<p<oo.

Before proceeding we note that, just as with L (p)-spaces, any space L, ()
with v a o-finite measure is isometric to a space L,(u) where p is a proba-
bility measure. We also note that if K is a Polish space and p is nonatomic
probability measure defined on the Borel sets of K then L,(K, i) is isometric
to L,[0,1] and the isometry is implemented by a map of the form f +— foo,
where o : K — [0, 1] is a Borel isomorphism that preserves measure. We refer
the reader to the discussion in Section 5.1. For this reason it is natural to
restrict our study to the spaces L,[0,1] in many cases. From now on we will
use the abbreviation L, for the space L,[0,1].

6.1 Conditional expectations and the Haar basis

Let (2,X%, 1) be a probability measure space, and Y%/ a sub-o-algebra of .
Given f € L1(Q, %, 1) we define a (signed) measure, v, on ¥’

I/(E)Z/Efd,u, Ecy.

v is absolutely continuous with respect to p|s/, hence by the Radon-Nikodym
theorem, there is a (unique, up to sets of measure zero) function ¥ €
L1(9,%/, 1) such that
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vy = / ddp, EeX.
E

Then @ is the (unique) function that satisfies

Lfd;.t:/Ed)d,u, Eey.

¥ is called the conditional expectation of f on the o-algebra ¥ and will be
denoted by £(f ] */).

Let us notice that if ¥ consists of countably many disjoint atoms (4,,)2° ,,
the definition of £(f | ¥) is specially simple:

IR0 =) S U fdxa, .

We also observe that if f e L,(p) where 1 < p < oc and g € Ly(Q2, X', 1)
where £ + 1 then
g
[odv= | toan, Eex
E

E(fg X) = gE(f13).

Lemma 6.1.1. Let (Q, %, 1) be o probability measure space and suppose 3/
is o sub-z-algebra of ¥.. Then for every 1 < p < oo, £(+| %) is a norm-one
linear projection from Ly (0, X, i) onto Ly(Q, X, p).

and

Proof. We denote £ = £(.|¥). Tt is immediate to check that £2 = £ for all
l<p<oo.
Fix 1 < p < oo (we leave the case p = oo to the reader). If f & L,(u),

£, = sup{ | £(Padn: g€ L@, lall, < 1)
_ sup{Lg(fg) A g€ Lo, 0), lall, < 1}

—sup{ [ fadusge L@ lal, < 1)

<1,
O
Drefinition 6.1.2. The sequence of functions on [0,1], (hﬂ)ﬂ 1, defined by
hi=1and forn =24 s (where k = 0,1,2,...,and s = 1,2,...,2%),

1 if te [Z52, 8
hﬂ(t) =41 ifte [2217111: 23%)

0 otherwise
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= Xt O Xt o O

is called the Haar system.

Given k = 0,1,2,... and 1 < s < 2%, each interval of the form [32}1, 5%)
is called dyadic. It i1s often useful to label the elements of the Haar system by
their supports; thus we write h; to denote h,, when I is the dyadic interval

support of .

Proposition 6.1.8. The Haar system is a monotone basis in Ly, for 1 < p <
oo,

Proof. Let us consider an increasing sequence of g-algebras, (5,)2% ,, con-
tained in the Borel g-algebra of [0,1] defined as follows: we let By be the
trivial o-algebra, {0,[0,1]}, and forn = 2% + s (k=0,1,2,...,1 < 5 < 2%) we
let B, be the finite subalgebra of the Borel sets of [0,1] whose atoms are the
dyadic intervals of the family

T [5};11,5,%,,—1—) forj=1,...,2s
PN Gy g .
[, 2) orj=s+4+1,...,2

Fix 1 < p < cc. For each n, £, will denote the conditional expectation
operator on the g-algebra B,,. By Lemma 6.1.1, £, is a norm-one projection
from L, onte L,([0,1],B,,A), the space of functions which are constant on
intervals of the family 7. We will denote this space by L,(B,,). Clearly, rank
En = n. Furthermore, £,.6n = Enlyn = Eninfm,n) for any two positive integers
M, .

On the other hand, the set

{fELp : Hgn(f)_f|‘p4>0}

is closed {using the partial converse of the Banach-Steinhaus theorem, see the
Appendix) and contains the set U$2 L, (By), which is dense in L,. Therefore
[€a(f) — fll, = O for all f € L,. By Proposition 1.1.7, L, has a basis whose
natural projections are (£,,)5° ;. This basis is actually the Haar system because
for each n 2 N, £ (hy) = by, for m 2 n and £k, = 0 for m < n. The basis
constant is sup,, |E.] = 1.
O

The Haar system as we have defined it is not normalized in L, for 1 < p <
oc (it is normalized in L..). To normalize in L, one should take A, /||h, ||, =
\In|*1/phﬂ, where I,, denotes the support of the Haar function h,,.

Let us observe that if f € L, (1 < p < c0), then

Euf —Enrf = (Iln| [ ot b

We deduce that the dual functionals assoclated to the Haar system are given

by
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hy = —h,, neN,

and the series expansion of f € L, in terms of the Haar basis is

N (L
f_;('lrn| /f(t)hn(t)dt)hn.

Notice that if p = 2 then (h,,/||hn||2)52; is an orthonormal basis for the
Hilbert space Ly and is thus unconditional.

It is an important fact that, actually, the Haar basis is an unconditional
basis in L, for 1 < p < co. This was first proved by Paley [165] in 1932. Much
more recently, Burkholder [20] established the best constant.

We are going to present another proof of Burkholder from 1988 [21]. We
will only treat the real case here, although, remarkably, the same proof works
for complex scalars with the same constant; however, the calculations needed
for the complex case are a little harder to follow. For our purposes the constant
is not so important, and we simply note that if the Haar basis is unconditional
for real scalars, one readily checks it is also unconditional for complex scalars.
There is one drawback to Burkholder’s argument: it is simply too clever in
the sense that the proof looks very like magic.

We start with some elementary calculus.

Lemma 6.1.4. Suppose p > 2 and % + % = 1. Then for 0 <t <1 we have

- pPqP(1— 1) < PPt — §>. (6.1)

Proof. For 0 <t <1 put

£ =0 =g (1= 0P =g Pt = )
Then
f1t) =ptr 4 pPHgTP (L — )P - pPgt P

and

’

£ =plp— D)2 = pPH (p — 1)g P (L — )P

Observe that f(0) = —pPq~P + p?¢~? < 0 and f(1) = 1 — pg'~P. Since
p > 2 we have (1 — %)P_l > ;7, i.e., pg'=P > 1; thus f(1) < 0.

Next note that f(;) = 0 and

1 . . .
F(Q) =P HP " = =0,

We also have
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£ = =D =) = - a7~ 1) <0,

Assume that there exists some 0 < s < 1 with f(s) > 0. Then there
must exist at least three solutions of f/(#) = 0 in the open interval (0, 1),
including 1/4¢. By Rolle’s theorem this means there are at least two solutions
of ¥ (t) = 0, which is clearly false.

O

In the next lemma we Introduce a mysterious function which will enable
us to prove Burkholder’s theorem. This function appears to be plucked out
of the air although there are sound reasons behind its selection. The use of
such functions to prove sharp inequalities has been developed extensively by
Nazarov, Treil, and Volberg who term them Bellmar functiorns. We refer to
[156] for a discussion of this technique.

Lemma 6.1.5. Suppose p > 2 and define ¢ : R? - R by
ela,y) = (| +y))P~ ((p — D]z] —y]).
(@) If 1/p+1/q =1, the following inequality holds for all (z,y) € R?
(p—DPle]” — |y” = pg'~Po(z, y). (6.2)

(1) @ is twice continuous differentiable and satisfies the condition

2 2 2
T 89‘9—‘89‘92. (5.3)

a2 a2 | Gady

Proof. (i) If we substitute ¢ = |y|{|z| + |y|)~* (for (z,%) # (0,0)) in equation
(6.1) we have

|yI? — 2PaPlal” < pg' P (lyl — (o — Dl (x| + [y~

Thus
PP PlzlP [y 2 g’ Pe(z, y).
Note that pPg=? = (p — 1}%.

(#) The fact that ¢ is twice continuously differentiable iz immediate since
P> 2.

Clearly, it suffices to prove (6.3) in the first quadrant, where z > 0, y = 0.
Let u=1x+yand v = (p—1)xr —y. Then ¢(z,y) = u?1v. Hence

82

S = 120w~ 2p— 1
Fy
while
& p—3 2, p—2
e (p—1)(p— 20" "v+2(p — 1)~
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Hence 52 52
¥ N -3
@‘Fﬁ =2(p—-1{p-2)u" " (utv) =0
On the other hand, since ¢ is linear on any line of slope one {or by routine
calculation) we must also have

3
dxdy

=(p—Dp— " 3(ut+2v)
[

Theorem 6.1.6. Suppose 1 < p < o0 and % +é = 1. Let p* = max(p,q).
The Haar basis (hy)ieq in Ly is unconditional with unconditional constant at
most p* — 1. That is,

S ounl, < 0D Len,

whenever n € N, for any real scalars ay,... 0, and any signs €1,. .., €n.

Proof. Suppose p > 2, in which case p* = p. For each fixed n € N, let
fo=go=0andfor 1 <k <nput

k k
I = Zajhj and g = Zejajhj.
j=1 j=1
We will prove by induction on % that
1
| etutshaends 20, 1<ksn, (6.4)
0

where ¢ is the function defined in Lemma 6.1.5. This is trivial when & = 0. In
order to establish the inductive step, for a given k let us consider the function

F:]0,1] — R defined by

1
F(t) = f (1 1) fir(8) (), (1 = Dar1(s) + tar(s)) ds,

and show that F(1) > 0 assuming that F'(0) > 0
Let ug = (1 =) fr_1 +tfe and v, = (1 —t)gr_1 + tge. Then

1

1
a a
F'(#) :ak/O a—f(ut,vt)hkderekak/D a—g;(ut,vt)hkds.

Observe that £7(0) = 0 since g—(‘;(uo,vo) and g—(‘;(uo,vo) are constant on the
support interval of fi.
Differentiating again gives
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i 52 52 a
- k (a;j(umw () 20 (ut,vt)>

By Lemma 6.1.5 (ii), ' (¢) > 0. Hence F(1) > F(0) > 0 and thus(6.4) holds.
To complete the proof when p > 2 we plug z = f,, and y = g, in (6.2).
Integrating both sides of this inequality and using (6.4) we obtain

fo 0 — VP fa () — [gu(s)Pds > 0.

The case when 1 < p < 2 now follows by duality: with f,,, g, as before
choose g/, € Ly(B,) so that ||g),]s = 1 and

fo 0,(5)ga(5) ds = [lgn -

Then g, = E?Zl bih; for some (b;)%_; and

lgalls = Zu jasb; < uanpHZegb i < @=Dlfals

O
The constant p* — 1 in Burkholder’s theorem is sharp, although we will
not prove this here.

6.2 Averaging in Banach spaces

In discussing unconditional bases and unconditional convergence of series in a.
Banach space X we have frequently met the problem of estimating expressions

of the type
T
i=1

where {z;}7_; are vectors in X. In many situations it is much easier to replace
the maximum by the average over all choices of signs ¢; = £1.

It turns out to be helpful to consider such averages using the Rademacher
functions (r;13°; since the sequence {r;(¢))?_; gives us all possible choices of
gigns (e;)_; when ¢ ranges over [0, 1]. Thus,

n n 1 n
Sean| =2 3 | Lew] = [ | X e
i=1 e,=+1 " i=1 U

For reference let us recall the definition of the Rademacher functions and their
basic properties.

: (g) e 11, 1}”} ,

Average
e, ==+1
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Definition 6.2.1. The Rademacher functions (ry)72; are defined on [0, 1] by
re(t) = sgn (sin 2% 7t).

Alternatively, the sequence ()72 ; can be described as

1
ri(t) = ! Tfte[?m)
-1 if tel3,1)
1 iftef0,Huls,3
ralt) = [1 41) [23 1)
-1 if te [Z’i)U[Z’l)

. 2k _
-1 if te Us 1[3i+11’ glgil)
That is,

et = ooy, k=0,1,2,...

Thus (7)72; is a block-basic sequence with respect to the Haar basis in every
L, for 1 < p < oo. The key properties we need are the following:

o 71i(t) =+£1ae. for all k,
J Ptk () -7k, (B)dEt = 0, whenever ky < ko < -+ < ky,.

The Rademacher functions were first introduced by Rademacher in 1922
[191] with the idea of studying the problem of finding conditions under which
a series of real numbers Y +a,, where the signs were assigned randomly,
would converge almost surely. Rademacher showed that if > |a,|?> < co then
indeed Y +a, converges almost surely. The converse was proved in 1925 by
Khintchine and Kolmogoroff [111].

For our purposes it will be convenient to replace the concrete Rademacher
functions by an abstract model. To that end we will use the language and
methods of probability theory.

Let us recall that a random wvariable is a real-valued measurable function
on some probability space (2, X, P). The expectation (or mean) of a random
variable f is defined by

Ef = /Q F(w) dP(w).

A finite set of random variables {f;}}_; on the same probability space is

independent if
P () (f;€B;) =]]®(f; €By)
j=1 j=1
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for all Borel sets B;. Therefore if (f;)7_; are independent,

E(fifa-- fn) = E(f)E(f2) - - - E(fn).

An arbitrary set of random variables is said to be independent if any finite
subcollection of the set is independent.

Definition 6.2.2. A Rademacher sequence is a sequence of mutually inde-
pendent random variables (€,)5%; defined on some probability space (€, P)
such that P(e, = 1) = P(e,, = —1) = 3 for every n.

The terminology is justified by the fact that the Rademacher functions ()52,
are a Rademacher sequence on [0, 1]. Thus,

[ IS a2 S| = [ 3 s
0 Ti=1 i—1 ol

Historically, the subject of finding estimates for averages over all choices
of signs was initiated in 1923 by the classical Khintchine inequality [110], but
the usefulness of a probabilistic viewpoint in studying the L,-spaces seems to
have been fully appreciated quite late (around 1970).

dP.

Theorem 6.2.3 (Khintchine’s Inequality). There exist constants A,, By,
(1 < p < o) such that for any finite sequence of scalars (a;)?_; and any
n € N we have

n n
A ) < HZam
i=1 i=1

n
< (Y la)? if1<p<a
Pi=

and

n n
(X la?)"? < || Y aur
i=1 =1

We will not prove this here but it will be derived as a consequence of a
more general result below. Theorem 6.2.3 was first given in the stated form by
Littlewood in 1930 [141] but Khintchine’s earlier work (of which Littlewood
was unaware) implied these inequalities as a consequence.

n
C<B(Y w2
i=1

Remark 6.2.4. (a) Khintchine’s inequality says that (r;)$2; is a basic se-
quence equivalent to the ¢>-basis in every L, for 1 < p < co. In L, though,
one readily checks that (r;)$2; is isometrically equivalent to the canonical
{1-basis.

(b) (r;)$2, is an orthonormal sequence in Ly, which yields the identity

n n
1/2
_ 2 /
a;ri|| = |a] )
‘ 2 ‘
=1 =1
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for any choice of scalars {a;). But (r;)$2; is not a complete system in Ls, that
ig, [r;] # Lo (for instance, notice that the function rirs is orthogonal to the
subspace [r;]). However, one can obtain a complete orthonormal system for
Lo using the Rademacher functions by adding to (r,,) the constant function
rg = 1 and the functions of the form ry, 7, ... 7k, forany by < ke <+ < k.
This collection of functions are the Walsh functions.

Thus we can also interpret Khintchine’s inequality as stating that all the
norms {|||l, : 1 < p < oo} are equivalent on the linear span of the Rademacher
functions in Ly, It turns out that in this form the statement can be general-
ized to an arbitrary Banach space. This generalization was first obtained by

Kahane in 1964 [101].

Theorem 6.2.5 (Kahane-Khintchine Inequality). For each 1 < p < oo
there exists a constant C, such that, for every Banach space X and for any
finite sequence (x;)%_ 1 in X, the following inequality holds:

=1 i=1

We will prove the Kahane-Khintchine inequality (and this will imply the
Khintchine inequality by taking X = R or X = C) but first we shall establish
three lemmas on our way to the proof. To avoid repetitions, in all three lemmas
(2,2, P) will be a probability space and X will be a Banach space. Let us
recall that an X -valued random variable on £ 1s a function f : @ — X such
that f~1(B) € ¥ for every Borel set B  X. f is symmetric if P(f € B) =
P(—f € B) for all Borel subsets B of X,

p) /e

7
i=1

Lemma 6.2.6. Let f : &} — X be a symmelric random variable, Then for all
z € X we have
POIf+al 2 [l=])=1/2.

Proof. Let us take any # € X. For every w € {1, using the convexity
of the norm of X, clearly ||f(w)+ x| + ||z — f(w)]| = 2||z||. Then, either
[fw) + 2]l = ||lz] or [z — fw)] = |z]. Hence

TP+l = ll=]) + Pz = £ = [|=])-

Since f is symmetric, z + f and # — f have the same distribution and so the
lemma follows.
O
Let (£:)2°; be a Rademacher sequence on ). Given » € N and vectors
Z1,...,%n in X, we shall consider Ay, : & — X (1 < m < n) defined by

Amlw) = Zei(w)a:i.
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Lemma 6.2.7. For all X > 0,
< .
P(mas Al > A) < 26(A | > A
Proof. Given A >0, for me=1,...,n put

Q) ={we Q: |[An(w)| > A and [[Ajw)]| < Aforall j=1,...,m—1}.

Since {w € @ : max;m<n [An(w)]| > A} = U%ZIQ%\), by the disjointedness of
the sets Q% it follows that

P(mex Al > 3) = 3 POR) (6.5)
Therefore,
P(JAall > A) = > BOGI O (JAa] > X)), (6.6)
m=1

Notice that every Q%\) can be written as the union of sets of the type
{weQ:egi(w)=2d; for 1 <j<m}

for some choices of signs d; = £1. For each of these choices of signs d1,. .., 6
we observe that by Lemma 6.2.6,

(DI e e DO eSS
=1 j=m+1 =1

Summing over the appropriate signs (41, ...,dy) it follows that
1
PG N (Al = |An])) = SPEQE).

Thus

?

PO N (Al > V) 2 PO,

Summing in m and combining (6.5) and (6.6) we finish the proof.

Lemma 6.2.8. For all X > 0,
P([An]l > 22) < 4(P([[ Al > A))".

Proof. We will keep the notation that we introduced in the previous lemma.
Notice that for each 1 < m < n, the random variable || 37  &;z;| is in-
dependent of each of £1,...,&, and hence for all A > 0 the events {w :
| S0, g{w)zs]| > A} and Q%‘) are independent. Observe as well that if some
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w e Q%‘) further satisfies [|An(w)| = 2A, then |Ap(w) — A 1{e)|| = A {for
m = 1, take Ag = 0). Therefore, since P(| 37, gz > A) < 2P(| Al > A)

for each m = 1,...,n by Lemma 6.2.7, we have

PO N (| Aa] > 22) < POQOIP(| S g5z > A)

<2PQG)P([[An]| > A).
Summing in m and using again Lemma 6.2.7 we obtain
P(JAn] > 24) < P{max [ A > )P Aa] > A) < 4(B(JAs] > X))
B O

Proof of Theorem 6.2.5. Fix 1 < p < oo and let {z;}} , be any finite set of
vectors in X. Without loss of generality we will suppose that E|| 37 | gq24] =
1. Then, by Chebyshev’s inequality,

P([Aa] > 8) < (6.7)

0| —

Using Lemma 6.2.8 repeatedly we obtain

P( Al >2-5) < 4(1/8)%,
P([[Ad] > 2 -8) < £2(1/8)",
B([[Ad] > 2°-8) < 47(1/5)",

and so on. Hence, by induction, we deduce that
P([An] > 2" -8) <42 71(1/8)% < 4% (1/8)* = (1/2)*

Therefore,

7
i=1

p:f P{|AnlP > &) di

0

:f ptPTIP( Ay > t) dt
0

:fptp P([|An \|>tdt+2f pt? P (| Anll > t)de
0

2.8
< | pPldi+ 1/2 2”—1f ptPLde
fo Z( e
< 8*’"(1 + (/2 2”?)

n=1

—co.
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a

Suppose that H i1s a Hilbert space. The well-known Parallelogram Law
states that for any two vectors z,v in H we have

lo+ ol + e —ul® _

: ]+ ]

This identity 1s a simple example of the power of averaging over signs and has
an elementary generalization:

Proposition 6.2.9 (Generalized Parallelogram Law). Suppose that H
is a Hilbert space. Then for every finite sequence (x;)7 in H,

i 2 i

2

E|| Y e =3 il
i=1 i=1

Proof. For any vectors (z;)7_; in H we have

Il
[
s
]
&3y
]
ol
e
=
—
(L]
&
o
L)
S’

O

Next we are going to study how the averages (E| 3.0, 52¢]|P)Y/? are situ-
ated with respect to the sums (377 || 2:]|”)/P using the concepts of type and
cotype of a Banach space. These were introduced into Banach space theory
by Hoffmann-Jgrgensen [79] and their basic theory was developed in the early
1970s by Maurey and Pisier [147]; see [146] for historical comments. However,
it should be sald that the origin of these ideas was In two very early papers of
Orlicz in 1933, [163] and [164]. Orlicz essentially introduced the notion of co-
type for the spaces Ly although he did not use the more modern terminelogy.

Drefinition 6.2.10. A Banach space X is zaid to have Rademacker type p (in
short, type p) for some 1 < p < 2 if there is a constant ' such that for every
finite set of vectors {z;}7%; in X,

(8] Y o) < o Y1), (6.5)
i=1 i=1

The smallest, constant for which (6.8) holds is called the type-p constant of X
and is denoted T}, (X).







