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Preface

This book is intended for mathematicians. Its origins lie in a course of
lectures given by an algebraist to a class which had just completed a sub-
stantial course on abstract algebra. Consequently, our treatment of the sub-
ject is algebraic. Although we assume a reasonable level of sophistication
in algebra, the textrequires little more than the basic notions of group, ring,
module, etc. A more detailed knowledge of algebra is required for some of
the exercises. We also assume a familiarity with the main ideas of set theory,
including cardinal numbers and Zorn’s Lemma.

In this book, we carry out a mathematical study of the logic used in
mathematics. We do this by constructing a mathematical model of logic and
applying mathematics to analyse the properties of the model. We therefore
regard all our existing knowledge of mathematics as being applicable to the
analysis of the model, and in particular we accept set theory as part of the
meta-language. We are not attempting to construct a foundation on which
all mathematics is to be based—rather, any conclusions to be drawn about
the foundations of mathematics come only by analogy with the model, and
are to be regarded in much the same way as the conclusions drawn from
any scientific theory.

The construction of our model is greatly simplified by our using univer-
sal algebra in a way which enables us to dispense with the usual discussion
of essentially notational questions about well-formed formulae. All questions
and constructions relating to the set of well-formed formulae are handled by
our Theorems 2.2 and 4.3 of Chapter 1. Our use of universal algebra also
provides us with a convenient method for discussing free variables (and
avoiding reference to bound variables), and it also permits a simple neat
statement of the Substitution Theorem (Theorems 4.11 of Chapter II and
4.3 of Chapter IV).

Chapter I develops the necessary amount of universal algebra. Chapters
IT and III respectively construct and analyse a model of the Propositional
Calculus, introducing in simple form many of the ideas needed for the more
complex First-Order Predicate Calculus, which is studied in Chapter IV. In
Chapter V, we consider first-order mathematical theories, i.e., theories built
on the First-Order Predicate Calculus, thus building models of parts of math-
ematics. As set theory is usually regarded as the basis on which the rest of
mathematics is constructed, we devote Chapter VI to a study of first-order
Zermelo-Fraenkel Set Theory. Chapter VII, on Ultraproducts, discusses a
technique for constructing new models of a theory from a given collection
of models. Chapter VIII, which is an introduction to Non-Standard Analysis,
is included as an example of mathematical logic assisting in the study of
another branch of mathematics. Decision processes are investigated in Chap-
ter IX, and we prove there the non-existence of decision processes for a num-
ber of problems. In Chapter X, we discuss two decision problems from other
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vi Preface

branches of mathematics and indicate how the results of Chapter IX may
be applied.

This book is intended to make mathematical logic available to mathema-
ticians working in other branches of mathematics. We have included what
we consider to be the essential basic theory, some useful techniques, and some
indications of ways in which the theory might be of use in other branches
of mathematics.

We have included a number of exercises. Some of these fill in minor gaps
in our exposition of the section in which they appear. Others indicate aspects
of the subject which have been ignored in the text. Some are to help in under-
standing the text by applying ideas and methods to special cases. Occasion-
ally, an exercise asks for the construction of a FORTRAN program. In such
cases, the solution should be based on integer arithmetic, and not depend
on any special logical properties of FORTRAN or of any other programming
language.

The layout of the text is as follows. Each chapter is divided into numbered
sections, and definitions, theorems, exercises, etc. are numbered consecu-
tively within each section. For example, the number 2.4 refers to the fourth
item in the second section of the current chapter. A reference to an item in
some other chapter always includes the chapter number in addition to item
and section numbers.

We thank the many mathematical colleagues, particularly Paul Halmos
and Peter Hilton, who encouraged and advised us in this project. We are
especially indebted to Gordon Monro for suggesting many improvements
and for providing many exercises. We thank Mrs. Blakestone and Miss
Kicinski for the excellent typescript they produced.

Donald W. Barnes, John M. Mack
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An Algebraic Introduction to
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Chapter 1

Universal Algebra

§1 Introduction

The reader will be familiar with the presentation and study of various
algebraic systems (for example, groups, rings, modules) as axiomatic systems
consisting of sets with certain operations satisfying certain conditions. The
reader will also be aware that ideas and theorems, useful for the study of
one type of system, can frequently be adapted to other related systems by
making the obvious necessary modifications.

In this book we shall study and use a number of systems whose types
are related, but which are possibly unfamiliar to the reader. Hence there is
obvious advantage in beginning with the study of a single axiomatic theory
which includes as special cases all the systems we shall use. This theory is
known as universal algebra, and it deals with systems having arbitrary sets
of operations. We shall want to avoid, as far as possible, axioms asserting
the existence of elements with special properties (for example, the identity
element in group theory), preferring the axioms satisfied by operations to
take the form of equations, and we shall be able to achieve this by giving
a sufficiently broad definition of “operation”. We first recall some elementary
facts.

An n-ary relation p on the sets A,,..., 4, is specified by giving those
ordered n-tuples (ay, . . . , a,) of elements a; € A; which are in the relation p.
Thus such a relation is specified by giving those elements (ay, . . . , a,) of the
product set 4; x - -+ x A, which are in p, and hence an n-ary relation on
Ay, ..., A, is simply a subset of A; x - -+ x A,. For binary relations, the
notation “a;pa,” is commonly used to express “(a;, a,) is in the relation p”,
but we shall usually write this as either “(a;, a,) € p” or “p(a;, a,)”, because
each of these notations extends naturally to n-ary relations for any n.

A function f: 4 — B is a binary relation on A and B such that, for each
a € A, there is exactly one b € B for which (a, b) € f. It is usual to write this
as f(a) = b. A function f(x, y) “of two variables” x € 4,y € B, with valuesin C,
is simply a function f:4 x B - C.Foreachae Aandbe B,(a,b)e A x B
and f((a, b)) € C. It is of course usual to omit one set of brackets. There are
advantages in retaining the variables x, y in the function notation. Later in
this chapter, we will discuss what is meant by variables and give a definition
which will justify their use.

Preliminary Definition of Operation. An n-ary operation on the set A is
a function t: A" — A. The number n is called the arity of t.

1



2 I Universal Algebra

Examples

1.1. Multiplication in a group is a binary operation. The *-product of
two elements a, b is written a*b or simply ab instead of the more systematic
*(a, b).

1.2. Inagroup G, we can define a unary operation i:G — G by putting
i(a) = a L

1.3. A O-ary operation on a set A4 is a function from the set A° (Whose
only element is the empty set &) to the set 4, and hence can be regarded as
a distinguished element of 4. Such an operation arises naturally in group

theory, where the 0-ary operation e gives the identity element of the group G.

One often considers several different groups in group theory. If G, H
are groups, each has its multiplication operation: *¢:G x G - G and
*y:H x H — H, but one rarely uses distinctive notations for the two multi-
plications. In practice, the same notation * is used for both, and in fact
multiplication is regarded as an operation defined for all groups. The defini-
tion of operation given above is clearly not adequate for this usage of the
word.

Here is another example demonstrating that our preliminary definition
of operation does not match common usage. A ring R is usually defined
as a set R with two binary operations +, x satisfying certain axioms. A
commonly occurring example of a ring is the zero ring where R = {0}. In
this case, there is only one function R x R — R, and so +, X are the same
function, even though + and x are still considered distinct operations.

We now give a series of definitions which will overcome the objections
raised above.

Definition 1.4. A type J is a set T together with a function ar: T — N,
from T into the non-negative integers. We shall write 4 = (T, ar), or, more
simply, abuse notation and denote the type by T. It is also convenient to
denote by T, the set {t € Tlar(t) = n}.

Definition 1.5. Analgebra A of type T, or a T-algebra, is a set A together
with, for each t € T, a function t4:4*® — A. The elements ¢ € T, are called
n-ary T-algebra operations.

Observe that each ¢, is an operation on the set A4 in the sense of our pre-
liminary definition of operation. As is usual, we shall write simply #(ay, . . ., a,)
for the element t4(ay, . . . , a,), and we shall denote the algebra by the same
symbol A as is used to denote its set of elements.

Examples

1.6. Rings may be considered as algebras of type T = ({0, —, +, -}, ar),
where ar(0) = 0,ar(—) = 1,ar(+) = 2,ar(-) = 2. We do not claim that such
T-algebras are necessarily rings, we simply assert that each ring is an example
of a T-algebra for the T given above.



§1 Introduction 3

1.7. If R is a given ring, then a module over R may be regarded as a
particular example of a T-algebra of type T = ({0, —, +} U R, ar), where
ar(0) = 0, ar(—) = 1, ar(+) = 2, and ar(4) = 1 for each A e R. The first
three operations specify the group structure of the module, while the re-
maining operations correspond to the action of the ring elements.

1.8. Let S be a given ring. Rings R which contain S as subring may
be considered as T-algebras, where T = ({0, —, +, -} U S, ar), ar(0) = 0,
ar(—) = 1, ar(+) = 2, ar(*) = 2, and ar(s) = 0 for each s € S. The effect of
the S-operations is to distinguish certain elements of R.

Definition 1.9. T-algebras A, Bare equal ifand onlyif A = Bandt, = tp
forallte T.

Exercise 1.10. Give an example of unequal T-algebras on the same set
A

Definition 1.11. If A is a T-algebra, a subset B of A4 is called a T-
subalgebra of A if it forms a T-algebra with operations the restrictions to
B of those on A, i.e., if for all nand for allt € T, and by, . . ., b, € B, we have
tu(by,...,b,)eB.

Any intersection of subalgebras is a subalgebra, and so, given any subset
X of A, there is a unique smallest subalgebra containing X—namely, the
subalgebra N{U|U subalgebra of A4, U 2 X}. We call this the subalgebra
generated by X and denote it by {X)r, or if there is no risk of confusion,

by (X).

Exercises

1.12. A is a T-algebra. Show that & is a subalgebra if and only if
To = . Show that for all T, every T-algebra has a unique smallest sub-
algebra.

‘Many familiar algebraic systems may be regarded as T-algebras for more
than one choice of T. However, the subsets which form T-subalgebras may
well depend on the choice of T.

1.13. Groups may be regarded as special cases of T-algebras where T =
({*}, ar) with ar(x) = 2, or of T"-algebras, where T’ = ({e, i, %}, ar), ar(e) = 0,
ar(i) = 1,ar(») = 2. Show that every T'-subalgebra of a group is a subgroup,
but that not every non-empty T-subalgebra need be a group. Show that if
G is a finite group, then every non-empty T-subalgebra of G is itself a group.

Definition 1.14. Let A, B be T-algebras. A homomorphism of A into B is
afunction p:4 — Bsuchthat,forallte Tand alla,,...,a,€ A(n = ar(t)),
we have

(P(tA(ala ey an)) = tB(‘P(‘h), L) (p(an) )

This condition is often expressed as “¢ preserves all the operations of T”.



4 I Universal Algebra

Clearly, the composition of two homomorphisms is a homomorphism.
Further, if :4 — B is a homomorphism and is invertible, then the inverse
function ¢~ !:B — A is also a homomorphism. In this case we call ¢ an
isomorphism and say that A and B are isomorphic.

§2 Free Algebras

Definition 2.1. Let X be any set, let F be a T-algebra and let 6:X — F
be a function. We say that F (more strictly (F, ¢)) is a free T-algebra on the
set X of free generators if, for every T-algebra A and function 7:X — A,
there exists a unique homomorphism ¢:F — A such that ¢o = 1:

X

Observe that if (F, o) is free, then ¢ is injective. For it is easily seen that
there exists a T-algebra with more than one element, and hence if x;, x, are
distinct elements of X, then for some A and 7 we have 7(x;) # t(x,), which
implies o(x;) # a(x,).

The next theorem asserts the existence of a free T-algebra on a set X, and
the proof is constructive. Informally, one could describe the free T-algebra
on X as the collection of all formal expressions that can be formed from X
and T by using only finitely many elements of X and T in any one expres-
sion. But to say precisely what is meant by a formal expression in the
elements of X using the operations of T is tantamount to constructing the
free algebra.

Theorem 2.2. For any set X and any type T, there exists a free T-algebra
on X. This free T-algebra on X is unique up to isomorphism.

Proof. (a) Uniqueness. We show first that if (F, o) is free on X, and if
¢:F — F is a homomorphism such that ¢o = o, then ¢ = 1, the identity
map on F. To show this, we take A = F and © = ¢ in the defining condition.
Then 1;:F — F has the required property for ¢, and hence by its uniqueness
is the only such map.



§2 Free Algebras 5

Now let (F, o) and (F’, ¢’) be free on X.

X —>F

7/ 4
/y
/7

FI

Since (F, o) is free, there exists a homomorphism ¢:F — F’ such that
@o = d'. Since (F', ¢') is free, there exists a homomorphism ¢":F’ —» F such
that ¢'c’ = . Hence ¢’po = ¢'c’ = o, and by the result above, ¢'¢p = 1.
Similarly, ¢’ = 1. Thus ¢, ¢’ are mutually inverse isomorphisms, and so
uniqueness is proved.

(b) Existence. An algebra F will be constructed as a union of sets F,
(n e N), which are defined inductively as follows.

(i) F, is the disjoint union of X and T,.
(ii) Assume F, is defined for 0 < r < n. Then define

1

k
F, = {(t,al,. ..,ak)lte T, al'(t) = k, a,-(—:F,,., Z ri=n-— 1}
(iii) Put F = |J F,.
neN

The set F is now given. To make it into a T-algebra, we must specify the
action of the operations t € T.

(ivyIf te Ty and a,,...,aq € F, put tay,...,a) =t ay,...,a4). In
particular, if t € Ty, then tg is the element ¢ of F,.

This makes F into a T-algebra. To complete the construction, we must
give the mapo:X — F.

(v) For each x € X, put (x) = x € F,,.

Finally, we have to prove that F is free on X, i.e., we must show that if 4
is any T-algebra and 7:X — A any map of X into A, then there exists a
unique homomorphism ¢:F — A4 such that ¢ = 1. We do this by con-
structing inductively the restriction ¢, of ¢ to F, and by showing that ¢,
is completely determined by 7 and the ¢, for k < n.

We have Fy = Ty U X. The homomorphism condition requires @q(tr) =
t4 for t € Ty, while for x € X we require ga(x) = 17(x), and so we must have
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@o(x) = 1(x). Thus @o:Fo — A is defined, and is uniquely determined by the
conditions to be satisfied by ¢.

Suppose that ¢, is defined and uniquely determined for k < n. An
element of F, (n > 0) is of the form (¢, a, . .., a;), where t € T}, a; € F,, and

k
Y. ri=n — 1. Thus ¢,(a) is already uniquely defined for i = 1,..., k.
i=1

Furthermore, since (¢, ay,...,a) = t(a,, ..., a), and since the homomor-
phism property of ¢ requires that

q’(ts Agy-eey ak) = t((p(al), ceey (p(ak)),
we must define

q’n(t’ Ays .-y ak) = t((Pn(al), ) (prk(ak) )'

This determines ¢, uniquely, and as each element of F belongs to exactly
one subset F,, on putting ¢(a) = ¢,(2) for e € F, (n = 0), we see that ¢ is a
homomorphism from F to A satisfying go(x) = @o(x) = 1(x) for all xe X
as required, and that ¢ is the only such homomorphism. []

The above inductive construction of the free T-algebra F fits in with its
informal description—each F, is a collection of “T-expressions”, increasing
in complexity with n. The notion of a T-expression is useful for an arbitrary
T-algebra, so we shall formalise it, making use of free T-algebras to do so.

Let A be any T-algebra, and let F be the free T-algebra on the set X, =
{x1,...,,}. For any (not necessarily distinct) elements a,...,a, € 4,
there exists a unique homomorphism ¢:F — Awitho(x;) =a;(i=1,...,n).
If we F, then ¢(w) is an element of A which is uniquely determined by
ai, ..., a, Hence we may define a function w,: 4" — A by putting w,(ay, ...,
a,) = @(w). We omit the subscript 4 and write simply w(a;, . . ., a,). If in
particular we take A = F and a; = x; (i = 1,..., n), then ¢ is the identity
and w(x;,..., X, = w.

Definition 2.3. A T-word in the variables x,, ..., x, is an element of
the free T-algebra on the set X,, = {x,, ..., x,} of free generators.

Definition 2.4. A word in the elements ay, . . ., a, of a T-algebra A is an
element w(ay, ..., a,) € A, where w is a T-word in the variables x4, ..., X,.

We have used and even implicitly defined the term “variable” in the above
definitions. In normal usage, a variable is “defined” as a symbol for which
any element of the appropriate kind may be substituted. We give a formal
definition of variable, confirming that our variables have this usual property.

Definition 2.5. A T-algebra variable is an element of the free generating
set of a free T-algebra.

Among the words in the variables x;, . .., x,are the words x; (i = 1,...,n),
having the property that x;(a;, ..., a,) = a;. Thus variables may also be
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regarded as coordinate functions. The concept of a coordinate function
certainly provides the most convenient definition of variable for use in
analysis. For example, when we speak of a function f(x, y) as a function of
two real variables x, y, we have a function f, defined on some subset of
R x R, together with coordinate projections x(a, b) = a, y(a, b) = b(a, b€ R),
and f(x, y) is in fact the composite function f(a, b) = f(x(a, b), /(a, b)).

Exercises

2.6. T consists of one unary operation, and F is the free T-algebra on a
one-clement set X. How many elements are there in F,? How many elements
are there in F?

2.7. If Tisempty and X is any set,show that X isthe free T-algebra on X.

2.8. T consists of a single binary operation, and F is the free T-algebra
on a one-clement set X. How many elements are there in F?

2.9. If T consists of one 0-ary operation and one 2-ary operation, and
if X = (&, then the free T-algebra F on X is countable.

2.10. T is finite or countable, and contains at least one 0-ary operation
and at least one operation ¢ with ar(tf) > 0. X is finite or countable. Prove
that F is countable.

§3 Varieties of Algebras

Let F be the free T-algebra on the countable set X = {x;, X5,...} of
variables. Although each element of F is a word in some finite subset X, =
{x1, ..., xn}, we shall consider sets of words for which there may be no bound
to the number of variables in the words.

Definition 3.1. An identical relation on T-algebras is a pair (u, v) of
elements of F.

There is an n for which u, v are in the free algebra on X,, and we say
that (u, v) is an n-variable identical relation for any such n.

Definition 3.2. The T-algebra A satisfies the n-variable identical relation
(u, v), or (u, v) is a law of 4, if u(a,,...,a,) = vay,...,a,)forallay,...,a,€ A

Equivalently, (u, v) is a law of A4 if p(u) = ¢(v) for every homomorphism
@:F - A.

Definition 3.3. Let L be a set of identical relations on T-algebras. The
class V of all T-algebras which satisfy all the identical relations in L is called
the variety of T-algebras defined by L. The laws of the variety are all the
identical relations satisfied by every algebra of V.

Note that the set of laws of the variety includes L, but may be larger.
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Examples

3.4. T consists of a single binary operation *, and L has the one element
(1 *(x2%x3), (x1#x2)*x3). If A satisfies this identical relation, then ax(b%c) =
(axb)*c for all a, b, ¢ € A. Thus the operation on A is associative and 4 is a
semigroup. The variety defined by L in thiis case is the class of all semigroups.

3.5. T consists of 0-ary, 1-ary and 2-ary operations e, i, * respectively.
L has the three elements

(0cy *(x2%x3), (x1%x2)%X3),
(e*xy, x,),

(i(x1)*x4, e).

The first law ensures that * is an associative operation in every algebra
of the variety defined by L. The second shows that the distinguished element
e is always a left identity, while the third guarantees that i(a) is a left inverse
of the element a. Hence the algebras of the variety are groups.

Exercises

3.6. Show that the class of all abelian groups is a variety.

3.7. Ris aring with 1. Show that the class of unital left R-modules is a
variety.

3.8. Sisacommutative ring with 1. Show that the class of commutative
rings R with 1z = 15 and which contain S as a subring is a variety.

3.9. Is the class of finite groups a variety ?

§4 Relatively Free Algebras
Let V be the variety of T-algebras defined by the set L of laws.

Definition 4.1. A T-algebra R in the variety V is the (relatively) free
algebra of V on the set X of (relatively) free generators (where a function
a:X — R is given, usually as an inclusion) if, for every algebra 4 in ¥ and
every function 7:X — A, there exists a unique homomorphism ¢@:R — 4
such that o = 1.

This definition differs from the earlier definition of a free algebra only in
that we consider here only algebras in V.

Definition 4.2. An algebra is relatively free if it is a free algebra of some
variety.

Theorem 4.3. For any type T, and any set L of laws, let V be the variety of
T-algebras defined by L. For any set X, there exists a free T-algebra of V on X.
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Proof: Let (F, p) be the free T-algebra on X. A congruence relation
on F is defined by putting u ~ v (Where u, v € F) if o(u) = ¢(v) for every
homomorphism ¢ of F into an algebra in V. Clearly ~ is an equivalence
relation on F. If now te Ty and u; ~ v; (i = 1, ..., k), then for every such
homomorphism ¢, ¢(y;) = ¢(v;), and so

o(tuy,. .., uk)) = p(uy), .. ., o)) = p(v1), - - -» o)) = o(t(vy5 - - -, s ),

verifying that ¢ is a congruence relation.

We define R to be the set of congruence classes of elements of F with
respect to this congruence relation. Denoting the congruence class con-
taining u by 7, we define the action of t € T; on R by putting K@, ..., %) =
t(uy, . . . , ). This definition is independent of the choice of representatives
ui, ..., u of the classes %y, . . . , %, and makes R a T-algebra. Also, the map
u — 7 is clearly a homomorphism n:F — R. Finally, we define 0:X — R
by o(x) = p(x).

We now prove that (R, o) is relatively free on X. Let A be any algebra in
V, and let 7: X — A be any function from X into A. Because (F, p) is free,
there exists a unique homomorphism ¥:F — A such that yp = 7.

X >F
\//
R /
/
‘ :fp VAl
A
¥
A\/

For % e R, we define ¢(#) = Y(u). This is independent of the choice of
representative u of the element %, since if # = 7, then Y(u) = Y(v). The map
¢@:R — Aisclearly a homomorphism,and oo = onp = yp = 7.Ifo':R - A
is another homomorphism such that ¢’c = 1, then ¢'np = 7 and therefore
¢'n = . Consequently for each element 7 € R we have

0'(@) = o'n(w) = Y(u) = @),

and hence ¢’ = ¢.

When considering only the algebras of a given variety V, we may redefine
variables and words accordingly. Thus we define a V-variable as an element
of the free generating set of a free algebra of V,and a V-word in the V-variables
X1, ..., X, as an element of the free algebra of ¥V on the free generators

{X15 -+ 5 Xn}-
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Examples

44. T consists of a single binary operation which we shall write as
juxtaposition. Let ¥V be the variety of associative T-algebras. Then all
products in the free T-algebra obtained by any bracketing of x;,..., x,,
taken in that order, are congruent under the congruence relation used in our
construction of the relatively free algebra, and correspond to the one word
X1X3 * * * X, of V. We observe that in this example, all elements of the abso-
lutely free algebra F, which map to a given element x, x, - - - x, of the relatively
free algebra, come from the same layer F,_, of F.

4.5. T consists of a 0-ary, a 1-ary and a 2-ary operation. V is the variety
of abelian groups, defined by the laws given in Example 3.5 together with the
law (xX,, X2X;). In this case, the relatively free algebra on {x, ..., X,} is
the set of all x'x%? - - - xj» ( or equivalently the set of all n-tuples (ry, ..., ry))
with r; € Z. Here the layer property of Example 4.4 does not hold, because,
for example, we have the identity ee Fo, x; ! € F,, xi '*x; € F, and yet
e =X I*x,.

Exercises

4.6. K is a field. Show that vector spaces over K form a variety V of
algebras, and that every vector space over K is a free algebra of V.

4.7. Risacommutative ring with 1 and V is the variety of commutative
rings S which contain R as a subring and in which 1z is a multiplicative
identity of S. Show that the free algebra of V on the set X of variables is the
polynomial ring over R in the elements of X.



Chapter 11

Propositional Calculus

§1 Introduction

Mathematical logic is the study of logic as a mathematical theory.
Following the usual procedure of applied mathematics, we construct a
mathematical model of the system to be studied, and then conduct what is
essentially a pure mathematical investigation of the properties of our model.
Since this book is intended for mathematicians, the system we propose to
study is not general logic but the logic used in mathematics. By this restriction,
we achieve considerable simplification, because we do not have to worry
about precise meanings of words—in mathematics, words have precisely de-
fined meanings. Furthermore, we are free of reasoning based on things such as
emotive argument, which must be accounted for in any theory of general
logic. Finally, the nature of the real world need not concern us, since the world
we shall study is the purely conceptual one of pure mathematics.

In any formal study of logic, the language and system of reasoning needed
to carry out the investigation is called the meta-language or meta-logic.
As we are constructing a mathematical model of logic, our meta-language
is mathematics, and so all our existing knowledge of mathematics is available
for possible application to our model. We shall make specific use of informal
set theory (including cardinal numbers and Zorn’s lemma) and of the uni-
versal algebra developed in Chapter 1.

For the purpose of our study, it suffices to describe mathematics as con-
sisting of assertions that if certain statements are true then so are certain
other statements, and of arguments justifying these assertions. Hence a
model of mathematical reasoning must include a set of objects which we call
statements or propositions, some concept of truth, and some concept of a
proof. Once a model is constructed, the main subject of investigation is the
relationship between truth and proof. We shall begin by constructing a model
of the simpler parts of mathematical reasoning. This model is called the
Propositional Calculus. Later, we shall construct a more refined model
(known as the First-Order Predicate Calculus), copying more complicated
parts of the reasoning used in mathematics.

§2 Algebras of Propositions

The Propositional Calculus considers ways in which simple statements
may be combined to form more complex statements, and studies how the
truth or falsity of complex statements is related to that of their component

11
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statements. Some of the ways in which statements are combined in mathe-
matics are as follows. We often use “and” to combine statements, and we
write p A g for the statement “p and ¢”, which is regarded as true if and only
if both the statements p, q are true. We frequently assert that (at least) one of
two possibilities is true, and we write p v g for the statement “p or ¢, which
we consider to be true if at least one of p, g is true and false if both p and ¢
are false. We often assert that some statement is false, and we write ~p
(read “not p”) for the statement “p is false”, which is regarded as true if and
only if p is false. Another common way of linking two statements is through
an assertion “if p is true, then so is ¢”. For this we write “p = ¢” (read “p
implies ¢”), which, in mathematical usage, is true unless q is false and p is true.

We want our simple model to imitate the above constructions, so we
want our set of propositions to be an algebra with respect to the four opera-
tions given above. This could be done by taking the free algebra with these
operations, but we know that in ordinary usage, the four operations are not
independent. Thus a simpler system is suggested, in which we choose some
basic operations which will enable us to define all the above operations. This
may be done in many ways, some of which are explored in exercises at the
end of Chapter III, where they may be studied more thoroughly. We choose
a way which is perhaps not the natural one, but which has advantages in
that it simplifies the development of the theory. Our choice rests on the fact
that in mathematics, a result is often proved by showing that the denial of
the result leads to a contradiction. We introduce into our notation a symbol
for a contradiction by specifying that our algebra will have a distinguished
element (i.e., a 0-ary operation) F, which we will think of as a contradiction
or falsehood.

Definition 2.1. Let T = {F, =}, where F is a O-ary operation and =
is a binary operation. Any T-algebra is called a proposition algebra.

Definition 2.2. The proposition algebra P(X) of the propositional calculus
on the set X of propositional variables is the free T-algebra on X.

Example 2.3. The algebra Z, of integers mod 2 can be made into a
proposition algebra by defining Fz, =0 and m=n =1+ m(1 + n).
We shall make frequent use of this example.

In any proposition algebra, we introduce the further operations ~, v,
A, <> by defining
~p=p= F
pvqg=(~p)=q
prag= ~(~pv~qg
p=q=(=9 (g =p)
We point out that the above are not statements in our proposition
algebras, because the symbol = is not an operation in our proposition
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algebras. The first equation says that ~ p is a notation for the element p = F
of our algebra. We shall often omit brackets, as we did above in writing

~p v ~qfor(~p)v (~q)

Exercises

2.4. Show that our definitions of ~, v, A, <> conform to normal usage.
2.5. Express ~, v, A in Z, in terms of multiplication and addition.
2.6. Is Z, a free proposition algebra?

§3 Truth in the Propositional Calculus

Having determined the form of our algebra of propositions, we must now
find a meaning for the concept of truth applied to our propositions. We are
guided here by the observation that in ordinary mathematical usage, the
truth or falsity of the compound statement p = q is determined completely
once the truth or falsity of each of p, g is specified. Every simple statement
is given a value—true or false—and the truth or falsity of any compound
statement depends on and is determined by the truth values of its components.
This leads us to consider valuations on P(X), i.e., functions which assign to
each element p € P(X) one of two possible values, which for convenience are
denoted by 0, 1. We are then considering functions v: P(X) — Z,, interpreting
v(p) = 1 as meaning “p is true”, and v(p) = 0 as “p is false”. In order that a
valuation act properly on compound propositions, the functions v must be
proposition algebra homomorphisms.

Definition 3.1. A valuation of P(X) is a proposition algebra homomor-
phism v: P(X) —» Z,. We say that p € P(X) is true with respect tovifv(p) = 1,
and that p is false with respect to v if v(p) = 0.

Since X is a set of free generators of P(X), the values v(x) for x € X may
be assigned arbitrarily. These values, once assigned, determine the homomor-
phism v uniquely and so determine v(p) for all p € P(X).

In ordinary usage, the interesting and important notion relating the truth
values of statements is that of consequence—a statement q is a consequence
of statements p, . . ., p, if g is true of every mathematical system in which
D1, - - - , Dy are all true. This idea is incorporated in our model by considering
valuations which assign the value 1 to all of py, . . ., pp.

Definition 3.2. Let A < P(X) and g € P(X). We say that g is a conse-
quence of the set A of assumptions, or that A semantically implies q,if v(q) = 1
for every valuation v such that v(p) = 1 for all pe A. We shall write this
A g, and we shall denote by Con(A) the set {p € P(X)|A F p} of all con-
sequences of A.
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Definition 3.3. Let p e P(X). We say that p is valid, or is a tautology, if
v(p) = 1 for every valuation v of P(X).

Thus p is a tautology if & = p. We shall write this simply as & p. Note
that A = p is not a proposition (i.e., not an element of P(X)), but simply a
statement in the meta-language about our model.

Examples

34. {q} Ep=>q.Forifvis any valuation with v(g) = 1, then

up=>q) =vp)=v(g) =v(p)=>1=1+up)l +1)=1
3.5. E p= p. Forif vis any valuation, then

p=p) =v(p)=vp) =1+ v(p)(1 + v(p)) = 1,

since x(1 + x) = O for all x € Z,.

Exercises

3.6. Show that {F} F p for all p € P(X).

3.7. Showthat{p,p = q} F gand{p, ~q = ~p} E gforall p,q € P(X).

38. Showthatp=(3=p),(p=(=r)=((p=q) = (p=>r))and
~ ~p = p are tautologies, for all p, q, r € P(X).

Lemma 3.9. Con is a closure operation on P(X), that is, it has the
properties

(i) A = Con(4),

(ll) IfAl c A,, then COD(A]_) o= Con(Az),

(iii) Con(Con(4)) = Con(A).

Proof :

(i) Trivial.

(ii) Suppose g € Con(A4,). Let v be any valuation such that u(4,) =
{1}. Then «(4,) = {1} and so u(g) = 1 since q € Con(4,). Hence
q € Con(A4,).

(iii) Suppose g € Con(Con(4)), and let v be a valuation such that 1(4) =
{1}. For all p € Con(4), we have vo(p) = 1 by the definition of Con(4).
Thus v(Con(4)) = {1} and so v(g) = 1. Thus g € Con(4). []

§4 Proof in the Propositional Calculus

A mathematical system is usually specified by certain statements called
assumptions, which describe certain characteristic features of the system. A
proof of some other property of the system consists of a succession of state-
ments, ending in a statement of the desired property, in which each statement
has been obtained from those before it in some acceptable manner. Apart
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from the particular assumptions of the system, which are considered accept-
able at any step in a proof, we distinguish two methods which permit the
addition of a statement to a given acceptable string of statements. There is a
specific collection of statements which are considered acceptable additions in
any mathematical proof—they can be regarded as underlying assumptions
common to every mathematical system—and which we formalise as certain
specified propositions which may be introduced at any stage into any proof.
Such propositions are called the axioms of our model. The other permissible
method consists of rules which specify, in terms of those statements already
set down, particular statements which may be adduced. Rules of this kind,
when formalised, are called the rules of inference of our model.

For the propositional calculus on the set X, we take as axioms all elements
of the subset o = &, U o, U o5 of P(X),

where o/; = {p = (g = p)|p, g € P(X)},

Ar={p=>@=r)=>((p=>9=(p=1)pgrePX)}
and
A3 = {~~p=ppe P(X)}.

As our one rule of inference, we take the rule known as modus ponens:
from p and p = ¢, deduce g. We may now give a formal definition of a proof.

Definition 4.1. Let ge P(X) and let A = P(X). In the propositional
calculus on the set X, a proof of q from the assumptions A is a finite sequence
P1, P2, - - -, Py Of elements p; € P(X) such that p, = q and for each i, either
pie o U Aor for some j, k < i, we have p, = (p; = p)).

Definition 4.2. Let g€ P(X)and let A = P(X). We say that q is a deduc-
tion from A, or q is provable from A, or that A syntactically implies q, if there
exists a proof of g from A. We shall write this 4 |- ¢, and we shall denote by
Ded(A) the set of all deductions from A.

Definition 4.3. Let p € P(X). We say that p is a theorem of the proposi-
tional calculus on X if there exists a proof of p from &.

Thus p is a theorem if & |- p, which we write simply as |- p.

Lemma 4.4. (i) If q € Ded(A), then q € Ded(A’) for some finite subset A’
of A.
(ii) Ded is a closure operation on P(X).

Proof: (i) Thisholds because a proof of g from A, being a finite sequence
of elements of P(X), can contain only finitely many members of A.

(ii) The first two requirements for a closure operation are obviously met
by Ded. Suppose now that g € Ded(Ded(4)). Then there exists a proof
P1, ..., pn Of g from Ded(A). In this proof, certain (perhaps none) of the p;,
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say p;,, - - . , p;, are in Ded(4). Let p;,, 1, i), 2, - - - » P1,, », b€ a proof of p;, from
A. Replace each of the p;; in p, ..., p, by its proof p;,, 4,...,pi,,,, The
resulting sequence is a proof of g from 4. []

-

Examples

4.5. }p = p. For any p € P(X), the following sequence p,, ..., ps is a
proof of p = p:

p1 =p=((p=p) =) (1)
p2=(@=((e=p)=p)=(p=(r=p)=(p=D) ()
ps=(@=@=p)=@=Dp), (P2 = p1=p3)
pa=p=(p=p) (1)
pPs = p=p. (p3 = psa = ps)

The proofis the sequence p;, . . . , ps- These have been written on succes-
sive lines for ease of reading. We have placed notes alongside each step to
explain why it can be included at that stage of the proof, but these notes
are not part of the proof.

4.6. {q}F p=q.Aproofofthisisq= (p =q),q,p=q.

4.7. }F = q.For any q € P(X), the following is a proof:

pr=(~ ~q=>q) = (F=(~ ~q=9), (1)
p2=~ ~q4=4q, (o3)
ps=F=(~ ~q=9), (p1 = p2 = p3)
Pa=(F=>(~~q=>q)=>(F=>~ ~q)=(F=g), (2)
ps = (F = ~ ~q)=(F=g), (P4 = p3 = ps)
ps=F=>(~q=>F)=F=~ ~q, (1)
pr=F=gq. (ps = ps = p7)

48. | ~p=(p=q). A proof of this is the sequence p;,...,p; of
Example 4.7, followed by

ps = (F=¢q)=(p=(F=gq)), (s44)
ps =p=(F=y9), (ps = p7=>po)
Pio=(p=(F=q)=(p=F)=(p=9q)), (£2)
pu=@P=F)={@P=q9 = ~p=(p=9q) (P10 = Po = p11)

The length of the proof needed for such a trivial result as ~p = (p = q)
may well alarm a reader familiar with mathematical theorems and proofs.
Ordinary mathematical proofs are very much abbreviated. For example,
(allegedly) obvious steps are usually omitted, and previously established
results are quoted without proof. Such devices are not available to us, because
of the very restrictive nature of our definition of proof in the propositional
calculus. We could reduce the lengths of many proofs if we extended our
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definition to include further rules of inference or abbreviative rules, but by
doing so, we would complicate our study of the relationship between truth
and proof, which is the principal object of the theory. We remark that in
order to show that ~p = (p = q) is a theorem of the propositional calculus,
it suffices to argue as follows: we have -F = g, and the sequence p1, . .., p;;
is a proof of ~p = (p = q) from the assumption {F = g}. Thus

~p = (p = q) € Ded({F = q}) = Ded(Ded(&)) = Ded(&),

hence - ~p = (p=¢q).

This is a mathematical proof of the existence of a proof in the proposi-
tional calculus. It is not a proof in the propositional calculus. We shall
find other ways of demonstrating the existence of proofs without actually
constructing them formally.

Exercises

4.9. Show that Ded(A) is the smallest subset D of P(X) such that
D 2 o U A and such that if p, p = g € D, then also g € D.

4.10. Construct a proof in the propositional calculus of p = r from the
assumptions {p = ¢, g = r}.

We close this chapter with a useful algebraic result.

Theorem 4.11. (The Substitution Theorem). Let X, Y be any two sets,
and let @: P(X) — P(Y) be a homomorphism of the (free) proposition algebra
on X into the ( free) proposition algebra on Y. Let w = w(x,, .. ., X,) be any
element of P(X) and let A be any subset of P(X). Put a; = ¢(x;).

(@) If A |- w, then (A) - W(ay, . .., a,).

(b) If A= w, then p(A)EwWa,,...,a,).

Proof: (a) Suppose p;,..., p, is a proof of w from A. If p; € A, then
trivially o(p;) € ¢(A). Since ¢ is a homomorphism, it follows that if p; is an
axiom of the propositional calculus on X, then ¢(p;) is an axiom of the
propositional calculus on Y. For the same reason, if p, = (p; = p;), then
o(pe) = o(p; = p;) = o(p;) = @(p:). Thus (p,),. . ., ¢(p,) is a proof in the
propositional calculus on Y of ¢(w) from ¢(A4). Since p(w) = w(ay, . .., a,),
the result is proved.

(b) Suppose 4 = w. Let v:P(Y) » Z, be a valuation of P(Y) such that
@(A4)) = {1}. Then the composite map ve:P(X) — Z, is a valuation of
P(X), and vp(A4) = {1}. Since A = w, we have vp(w) = 1, ie. v(p(w)) = 1.
Thus ¢(4) E o(w). []



Chapter 111
Properties of the Propositional Calculus

§1 Introduction

The properties of the Propositional Calculus that are of interest are those
that arise in studying the relation between truth and proof. These properties
are important features in the study of any formal system of reasoning, and
we begin with some general definitions.

Definition 1.1. A logic % is a system consisting of a set P of elements
(called propositions), a set ¥~ of functions (called valuations) from P into
some value set W, and, for each subset A of P, a set of finite sequences of
elements of P (called proofs from the assumptions A4).

For example, the logic called the Propositional Calculus on the set X,
and henceforth denoted by Prop(X), consists of the set P = P(X) (the free
proposition algebra on X), the set ¥~ of all homomorphisms of P(X) into Z,,
and, for each subset 4 of P(X), the set of proofs as defined in §4 of Chapter II.

The concepts of semantic implication and syntactic implication in &
are defined in terms of valuation and proof respectively, in some manner
analogous to that used for the propositional calculus, and the notations
A p, A | p will again be used to denote respectively “p is a consequence
of A”, “p is a deduction from A”. p is a tautology of £ if G E panditisa
theorem of % if J |- p. The logic . for which these assertions are made will
always be clear from the context.

Definition 1.2. A logic % is sound if A |- p implies 4 E p.
Definition 1.3. A logic .Z is consistent if F is not a theorem.

Definition 1.4. A logic & is adequate if A = p implies A4 - p.

Choosing A = &, we see that a sound logic has the desirable property
that theorems are always true, and an adequate logic has the equally desirable
property that valid propositions can be proved. While soundness and ade-
quacy each express a connection between truth and proof, consistency is an
expression of a purely syntactic property that any logic might be expected
to have, namely that one cannot deduce contradictions.

Since the theorems and tautologies of a logic are each of significance,
the following decidability properties are also important.

18
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Definition 1.5. A logic % is decidable for validity if there exists an
algorithm which determines for every proposition p, in a finite number of
steps, whether or not p is valid.

Definition 1.6. A logic % is decidable for provability if there exists an
algorithm which determines for every proposition p, in a finite number of
steps, whether or not p is a theorem.

§2 Soundness and Adequacy of Prop(X)

Theorem 2.1. (The Soundness Theorem) Let A = P(X), pe P(X). If
A} p,then A E p.

Proof: Suppose there exists a proof py, ..., p, of p from A. We have
to show p is a consequence of A.

Let v: P(X) —» Z, be a valuation for which ®(4) = {1}. We shall use
induction over the length n of the proof of p from A4 to show that v(p) = 1.
Suppose that n = 1. Then p e A U &, and since every axiom is a tautology
(Exercise 3.8 of Chapter II), we have (p) = 1.

Suppose now n > 1, and that v(q) = 1 for every g provable from A
by a proof of length < n. Then »(p;) = v(p;) = - -* = v(p,—,) = 1. Either
pn€ AU o and v(p,) = 1, as required, or for some i, j < n, we have p; =
pj = pa. In the latter case, o(p;) = v(p; = ps) = 1, and the homomorphism
property of v requires v(p,) = 1. []

Corollary 2.2. (The Consistency Theorem) F is not a theorem of Prop(X).

Proof : If |-F, then EF by the Soundness Theorem. Since axioms are
tautologies, v(F) = 1 for every valuation v, contradicting the definition of
valuation. This implies that there are no valuations. But P(X) is free and
every map of X into Z, can be extended to a valuation. []

Exercise 2.3. Show that Con(A) is closed with respect to modus ponens
(ie., if p, p = q € Con(A), then g € Con(A4)). Use Exercise 4.9 of Chapter II to
prove that Con(4) =2 Ded(4). This is another way of stating the Soundness
Theorem.

The proof of adequacy for Prop(X) is more difficult, and we first prove a
preparatory result of independent interest.

Theorem 2.4. (The Deduction Theorem) Let A = P(X), and let p,
qe€P(X). Then A} p=q if and only if AU {p} | q.

Proof: (a) Suppose A | p=>gq.Letpy,...,p,beaproofofp, = p=gq
from A. Then p,, ..., ps, P, q is a proof of g from 4 U {p}.

(b) Suppose A U {p} I g. Then we have a proof p,,..., p, of q from
A U {p}. We shall use induction over the length n of the proof.
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If n=1, then ges/ UA U {p}. If ge L U A, then g, g= (p = g),
p=>q is a proof of p = q from A. If ¢ = p, then |- p = p (Example 3.4 of
Chapter II),andso A} p & q.

Suppose now n > 1. By induction, A p=p;fori=1,2,...,n— 1,
and we may suppose g ¢ & U A U {p}. For some i, j < n, we have p; =
pj=q.Thus A+ p=p; A} p=(p; = q), and there exXists a proof gy, . . ., g,
qx+1 from A with

qx = P = Dj
G+1 = p = (pj=q).
We put
qk+2 = (P=>(Pj=¢1)) =>((P= p)=(p 94)), ()
G+3 = (p=>p)=(p=q), (Ge+2 = Gev1 = Gi+3)
G+a =P =>4 (Gx+3 = G = Gi+a)

Thengqy, ..., gx+4i8 a proofof p = g from A. []

The Deduction Theorem is useful in establishing a result of the form
A | p =q, because it is usually much easier to show A U {p} |- q. Even if a
proof in Prop(X) of p => g from A is required, the method used in proving
the Deduction Theorem can be applied to convert a proof of g from 4 U {p}
into a proof of p = ¢ from A.

Example 2.5. Weshow {p = ¢,q = r} |- p = r.First weshow {p,p = g,
q=r} I r, and a proof of this is p, p = g, g, g = r, r. It follows from the
Deduction Theorem that {p = g,g=>r} Fp=r.

We now convert the proof of r from {p, p = g, g = r} into a proof of
p = r from {p = g, q = r}. We shall write the steps of the original proof
in a column on the left. Alongside each, we then write a comment on the
nature of the step, and then the corresponding steps of the new proof.

P Proposition to p=((p=p) =Dp)
bedeleted from | (p=((p=p)=p))=>(p=(@=p)=({@=D),
the assumptions | (p=(p=p))=(p=psp=(p=>p.p=p.

p=gq | Retained p=q(=>9=>p@P=(p=9)p=>0p=9.
assumption
q Modus ponens r=p@=9)=(p=p=((p=9)
(p=p=@=9,p=>q
g=r | Retained g=rg=>n=>@=@=n)p=>@=>7).
assumption
r Modus ponens p=>@=>n=>(p=9=>@=r)

P=9=>@=np=>r
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Of course, the proof we have constructed can be abbreviated, because
the first 11 steps serve only to prove the retained assumption p = q.

Exercises

2.6. Show that p = r e Ded{p = g, p = (¢ = r)}. Hence show that if
p = q,p = (q = r) € Ded(4), then p = r € Ded(A4), and so prove the Deduc-
tion Theorem without giving an explicit construction for a proof in Prop(X).
2.7. Show that - p = ~ ~p and construct a proof of p= ~ ~pin
Prop(X). (Hint: show {p, ~p} I F and use the Deduction Theorem twice.)
2.8. Show that the following are theorems of Prop(X),

@p=pvg (b)g=pvag,
) (pva=(qvp) (@ pag=p,
) prg=gq, f) (prq)=(qnDp).

Definition 2.9. Let A = P(X). We say that A is consistent if F ¢ Ded(A4).
A is called a maximal consistent subset if A is consistent and if every subset
T = P(X) which properly contains A is inconsistent.

Lemma 2.10. The subset A = P(X) is maximal consistent if and only if
(i) F¢ A, and

(ii) A = Ded(A), and

(iii) for all p € P(X), either pe A or ~p € A.

Proof: (a) Let A be maximal consistent. Since A4 is consistent, F ¢
Ded(A4) and therefore F ¢ A. Since Ded(Ded(4)) = Ded(A4), Ded(A) is con-
sistent. As A = Ded(4), A = Ded(A4) by the maximal consistency of A.
Finally, suppose p ¢ A. Then F € Ded(4 u {p}), ie. AU {p} F F. By the
Deduction Theorem, A |- p = F, i.e., ~p € Ded(A).

(b) Suppose A has the properties (i), (ii), (iii). Then F ¢ Ded(A). If T prop-
erly contains A, then there exists p € T such that p ¢ A. By (iii), ~pe 4,
hence p, ~pe T, and p, ~p, F is a proof of F from T. Thus 4 is maximal
consistent. []

Lemma 2.11. Let A be a consistent subset of P(X). Then A is contained
in a maximal consistent subset.

Proof: LetZ = {T = P(X)|T 2 A, F ¢ Ded(T)}.Since A€ Z, % # (.
Suppose {T;} is a totally ordered family of members of =, and put T = |J, T
Clearly T < P(X), T = A. If F is provable from T, F is provable from a
finite subset of T, and this subset is contained in some T,, contrary to T, € X.
Hence F ¢ Ded(T), and X is an inductively ordered set. By Zorn’s Lemma,
X has a maximal member say M. This M is the required maximal consistent
subset. []

The next result is the key to the Adequacy Theorem.

Theorem 2.12. (The Satisfiability Theorem) Let A be a consistent subset
of P(X). Then there exists a valuation v:P(X) — Z,, such that W(A) = {t}.
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Proof: Let M be a maximal consistent subset containing 4. For
pe P(X),put v(p) = 1l if pe M and v(p) = 0 if p ¢ M. We now prove v is a
valuation.

Certainly »(F) = 0, because F ¢ M. It remains to show v(p = q) =
v(p) = v(q). If g € M, then p = q € M because {q} - p =g, and v(p = q) =
1 =up)=1uv(q). If p¢ M, then p=>ge M because {~p} | p=g, and
ip=q)=1=0v(p)=1v(q). If peM and gq¢ M, then p=q¢ M, and
up=>q) =0 =v(p)=v(g). [

Theorem 2.13. (The Adequacy Theorem) Let A = P(X), p e P(X). If
A = p in Prop(X), then A |- p in Prop(X).

Proof: Suppose A = p, so that »(4) = {1} implies v(p) = 1 for every
valuation v. If 4 U {~p} is consistent, it follows from the Satisfiability
Theorem that there is a valuation v such that 4 U { ~p}) = {1}, which is
not possible. Hence F € Ded(4 U {~p}),i.e., A U {~p} |- F. By the Deduc-
tion Theorem, A - ~p = F. Since -~ ~p=p, we have A |-p. []

Exercise 2.14. Show that if 4 = p, then Ay E p for some finite subset
Ag of A. (This result is known as the Compactness Theorem.)

§3 Truth Functions and Decidability for Prop(X)

Each valuation v of P(X) determines a natural equivalence relation r,
on P(X) given by pr,q if v(p) = 1(q), and which is in fact a congruence relation
on P(X). That is, each r, satisfies the condition that if pr,p, and gr.q;, then
(p = 9)rp1 = q1). The intersection of the relations r, for all valuations v
of P(X) is therefore a congruence relation on P(X), which we call semantic
equivalence and denote byl=. Since p = q if and only if v(p) = v(g) for every
valuation v of P(X), we see that p=|q if and only if {p} = q and {q} Ep.

Definition 3.1. The set of congruence classes of P(X) with respect to =]
is an {F, =}—algebra called the Lindenbaum algebra on X and denoted

by L(X).

Let X, = {xi, ..., xn}. Clearly L(X,) is a homomorphic image of P(X,).
If w=wxy,...,x,)e P(X,) is any word in xy,..., X,, then its image in
L(X,) is the congruence class w = w(x;, . . ., X,) say, of all words congruent
to w under the relation |=. Our aim is to show that #w can be regarded as a
function w:Z% — Z,.

For any Ww(x;, ..., x,) € L(X,), choose a representative w(x, ..., X,) € P(X,).
If(zy, ..., z,) € ZY%, then there is a unique valuation v: P(X,) — Z, such that
v(x;) = z; for i = 1,..., n. We define w(zy, ..., z,) = v(W(xy, ..., X,)), ob-
serving that this definition is independent of the choice of representative w
of W, because if wy is another representative, then w=w, and v(w) = v(wy).
In this way we associate with each element w of L(X,) a function Z%} — Z,,
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but, before we identify w with this function, we must show that if w and w,
have the same associated function, then w = wj.

Suppose that w and w; have the same associated function, so that
W(zy, ..., 2) = Wy(2y,...,z)forall(zy, ..., z,) € Z5. Let w, w; be represen-
tatives of w, w, respectively. Then w(zy, ..., z,) = v(w), where v is the valua-
tion for which v(x;) = z; (i = 1,..., n), and we have v(w) = v(w,). The last
equation holds for every valuation v, hence w=w, and w = w,. We may
therefore identify the elements of L(X,) with their associated functions.

Definition 3.2. A function f:Z% — Z, is called a truth function.

Theorem 3.3. L(X,) is the set of all truth functions f:Z5 — Z,.

Proof: Theconstant functions0, 1€ L(X,)since0 = Fand1 = (F= F).
Thus the result holds for n = 0.

If £, g are truth functions Z5 — Z,, we define the truth function f = g
by (f=g)z1,--.,20) = f(zy,...52n) = g(24, ..., 2,). For convenience of
notation, we denote the ith coordinate function by u;. We have u; = X; € L(X,).

We now suppose n > 0, and shall use induction over n to complete the
proof. Let f = f(uy, ..., u,) be a truth function of n variables. Put

gy, ... Us—y) = Sy, ..y tpy, 0), h(uy, . . ., Un-1) = flug, ..., Up—1,1).
Then g, he L(X,-,) € L(X,). The function k:Z% — Z,, defined by

k(ul’ ceey un) = (~“n = g(ub ey un—l)) A (uu = h(“b ey “n—l))
is in L(X,), and

k(ug, ..., un-1,0) = (1 =guy, ..., us—1)) A (0= h(uy, ..., u,_1))
=gy, ..., Up-1) A1
= g(uls .o 9un—l)

= f(uls ceesUp—1, O)

Similarly, one obtains k(uy, ..., u,—1,1) = f(uy,...,Up—y,1). Thus k = f
and fe L(X,). [

We now apply truth functions to settle the question of decidability for
Prop(X).

Lemma 34. Let w = w(xy,..., X,) € P(X). Then & w if and only if its
associated truth function w:Z% — Z, is the constant 1.

Proof: Supposew = 1.Letv: P(X) — Z, be any valuation of P(X). Put
a; = v(x;). Then the restriction of v to P(X,) is a valuation of P(X,), and
v(w) = w(ay,...,a,) = 1. Thus v(w) = 1 for every valuation v of P(X),
ie, Ew.

Suppose conversely that w is valid. Let (ay, . . ., a,) € Z%. There exists a
valuation v of P(X) with v(x;) = a;,. (We may assign arbitrarily values for
elementsof X — {x,, ..., x,}.) Then therestriction of v to P(X,)is a valuation
of P(X,), and Way, ..., a,) = v(w) = L. Thusw = 1. []
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Theorem 3.5. Prop(X) is decidable for validity.

Proof: We give an algorithm for deciding if w € P(X) is valid. The ele-
ment w is a word w(x;, . . ., x,) in some finite set x, .. ., x, of variables. Let
w = w(uy,. .., u,) be the associated truth function. For each (a;,...,a,) € Z%,
we calculate w(ay, . . . , a,). By Lemma 3.4, w is valid if and only if all these
values are 1. []

Corollary 3.6. Prop(X) is decidable for provability.
Proof. An element p € P(X) is a theorem if and only if it is valid. []

Exercises

3.7. Show that every truth function Z% — Z, can be expressed in terms
of the coordinate functions and the one operation |defined by w,|w, =
~(W‘1 A V_Vz).

3.8. A truth function f(uy, ..., u,) is said to be in disjunctive normal
formifitis expressed in one of theforms f = 0,f = l,orf = vy vo, v - - vy
for 0 < k < 27, where each v; = uy; Auy; A AUy, and w; = u, Or ~u,
for some r.

Show that every truth function is expressible in disjunctive normal form,
and specify a procedure for associating with each truth function Z% —» Z, a
unique disjunctive normal form.

3.9. (a) Let pe P(X). Find a p’ € P(X), expressible in a form involving
no operations other than ~, A and v, such that = p < p'.

(b) Let p, g € P(X). Find truth functions for ~(p v g) <= (~p A ~q) and
~(prg)<=(~pv ~q.

{c) p and p’ are related as in (a). Let p* be the statement obtained from
p’ by replacing each v by A, each A by v, and each x € X by ~ x. Prove that
F ~p<p*.

3.10. A truth function f(u, .. ., u,) is said to be in conjunctive normal
formifit expressed in oneof theforms f = 0,f = l,orf =v; A v, A" - A 1y
for 0 < k < 2", where each v; = uy; v uz; v -+ vty and w; = u, or ~u,
for some r. Use Exercises 3.8 and 3.9 to specify a procedure for associating
with each truth function Z% — Z, a unique conjunctive normal form.

3.11. Let p, p’ and g, 4’ be related as in Exercise 3.9(a). Let p?, ¢¢ be the
statements obtained from p’, ¢’ by replacing each v by A and each A by v.
Show that = p if and only if = ~ p®. Deduce that if |- p = ¢, then |- ¢ = p°.
(This result expresses a duality principle for Prop(X).)

3.12. Write a FORTRAN program to decide if w(x,, x,, x3) € P(X3)
is valid. -

3.13. Show that Prop(X)is decidable for {p,..., p.} E=q, where py, ...,
Pns 4 € P(X).

3.14. Construct a propositional calculus Prop,(X) with P,(X) the
free {=, ~}-algebra. Show that there is a {=>, ~}-homomorphism ¢:
Py(X) » P(X) which is the identity on X. Is ¢ a monomorphism? Is ¢ an
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epimorphism? Does there exist a {=>, ~ }-homomorphism y: P(X) - P(X)
which is the identity on X ? (Hint: Consider the images of F and of F = F
= ~F))

Show that there exists a {=>, F }-homomorphism 6: P(X) — P,(X) which
is the identity on X, taking as element F of P{(X) the element ~(x; = x;).
Show that w € P(X) is valid if and only if ¢(w) is valid. Show that p € P(X)
is valid if and only if 6(p) is valid. Establish the Consistency, Adequacy and
Decidability theorems for Prop,(X).

3.15. Using the method of 3.14 investigate the following propositional
calculi:

(@) Prop,(X) with Py(X) free of type {~, v},

(b) Prop2(X), with P5(X) relatively free of type { ~, v}, with the identical
relationpv g = q v p,

(c) Props(X) with P3(X) free of type {|} (see 3.7),

(d) Props(X) with P3(X) relatively free of type {|}, with the identical
relation plg = q|p.



Chapter IV
Predicate Calculus

§1 Algebras of Predicates

The initial step in our development of the Propositional Calculus was
the construction of proposition algebras, which formalise the way in which
a given collection of “primitive” statements is enlarged by combining state-
ments. The Propositional Calculus does not analyse the original primitive
statements. Qur aim now is to construct a more complicated model of
mathematical reasoning, which incorporates more of the ordinary features
of this reasoning.

Mathematics is usually about something, that is, there is usually some
set % of objects under discussion and investigation. A typical statement in
such a discussion would be “u has the property p”, where u e % and p is
some property relevant to elements of %. A convenient notation for this
statement is p(u). Such a statement depends on the element u, and may be
thought of as a function of u. The phrase “has the property p” is known as a
predicate, and p (as used in the notation p(u) ) is known as a predicate symbol.
More generally, if r is an n-ary relation on %, the statement “(uy, . . ., 4,) is
in therelation r” is denoted by r(uy, . . . , u,), and r is called an n-ary predicate.
A 0-ary predicate is a statement which does not depend on any elements of
%, and so corresponds to an unanalysed statement.

If p, q are properties, then p(u) A g(u) is true for just those elements u
with both properties. Denoting by P the subset of # consisting of those
elements with property p, and by Q the subset of % of elements with property
q, we see that P n Q is the subset of those elements u for which p(u) A q(u)
is true. Similarly, P U Q is the subset of elements u for which p(u) v g(u) is
true, while the set of elements u satisfying ~ p(u) is the complement of P
in%.

Another common form of statement in mathematical discussion is “For
all ue %, p(u)”. If % were a finite set, say = {uy, ..., up}, then this could
be expressed as p(u;) A p(uz) A - - A p(u,), but it is not possible to do this
if % is an infinite set. We thus introduce the notation (Vu)p(u) for the above
statement. (Vu) is called the universal quantifier. Note that the u in (Vu) is
only a dummy—(Vu)p(u) is in no way dependent on u, and is the same
statement about % as (Vv)p(v). We do not need additional notations to deal
with a limited use of “for all” as in statements such as “For all u such that
p(u), we have g(u)”. This can be expressed as (Vu)(p(u) = q(u)).

Statements of the form “There exists u € % with the property p” are also
common in mathematics. We write this statement as (Ju)p(u). The existential

26
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quantifier (Ju) is, however, related to the universal quantifier (Vu), as follows.
When we say “There does not exist u with property p”, we are in fact asserting
(Vu)(~p(u)). Thus (Ju)p(u) has the same meaning! as ~((Vu)(~p(u)), and
we have no need to include the existential quantifier in the construction of
our model. We shall define (Ju) to mean ~(Vu)~.

We now set up an appropriate analogue of a proposition algebra. Prop-
osition algebras are built upon underlying sets of propositional variables.
We begin here with an infinite set  whose elements will be called individual
variables, and with a set 2 (whose elements will be called relation or predicate
symbols) together with an arity function ar:# — N. The individual variables
may be thought of as names to be given to mathematical objects, and the
relation symbols as names to be given to relations between these objects.
The set of generators we shall use to construct our set P of propositions must
clearly contain each element r(x;, .. ., x,) for each re #Z and (x4, ..., x,) e V",
where n = ar(r). It is also clear that P must be an {F, =}—algebra, and
that for each x € ¥, we shall need a function (Vx):P — P.

Let P(V, #) be the free algebra on the set {(r, x4, . . ., x,,)|r ER, x;€V,
n = ar(r)} of free generators, of type {F, =, (V¥x)|x € V}, where F is a 0-ary
operation, = binary, and each (Vx) unary. We call P = P(V, #) the full
first order algebra on (V, #). We use the more usual notation r(xy, . .., X,)
for the generator (r, x;, . . . , X,), and we put &, = {r € Rlar(r) = n}.

We could use this algebra P as our algebra of propositions, but it is
more convenient to use a certain factor algebra. If w e P, then w is a word
in the free generators of P, each of which has the form r(xy,...,x,). If
Xi,...,Xn are the distinct individual variables occurring in w, then we can
think of w as a function w(xy, ..., x,) of these variables. Now we regard
(Vx)w(xy, ..., X,) as being essentially the same as (Vy)w(y, X2, . . . , Xm)s
provided only that y ¢ {x,, ..., x»,}. The reason for this has been pointed
out before, and is that the x; in (Vx)w(xy, ..., X,) is a dummy, used as
an aid in describing the construction of the statement. It serves the same
purpose as the variable t does in the definition of the gamma function as
I(x) =[5 e 't"" 1t

We shall construct a factor algebra of P, in which these elements,
considered above as being essentially the same, will be identified. Further
identifications are possible. The question of which identifications are made
is purely one of convenience. The congruence relation on P which we use
needs some care in its construction, and we begin by defining two functions

on P.

Definition 1.1. Let w € P. The set of variables involved in w, denoted by
V(w), is defined by

V(w) = n {U|U = V,we P(U, R)}.

! This is very different to the concepts of existence used in other contexts such as “Do flying
saucers exist?” or “Does God exist?” or “Do electrons exist?”.
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Exercise 1.2. Show that

(i) V(F) = 2.
(i) If re R, ar(r) = n, and x,,...,x, €V, then V(r(x,...,X,)) =
{xl, ey x”i.

(lll) If Wi, W3 € P, thel‘l V(Wl = Wz) = V(Wl) v V(Wz).
(iv) If xe Vand w € P, then V((Vx)w) = {x} U V(w).
Show further that (i)—(iv) may be taken as the definition of the function V(w).

Definition 1.3. Let w € P. The depth of quantification of w, denoted by
d(w), is defined by ~

(i) d(F) = 0,d(r(xy,. .., x,)) = O for every free generator of P.

(i) d(wy = w,) = max(d(w,), d(w5)).

(i) d((Wx)w) = 1 + dw) (xe V).

Our desired congruence relation on P may now be defined.

Definition 1.4. Let w,, w, € P. We define w; ~ w, if
(@) d(wy) = d(wy) = 0and w; = w,,or
(b) d(wy) = d(w;) >0,w; = a;=by,w; = a,=b,,a; ~ a;andb; ~ b,,or
(©) wy; = (Vx)a, w, = (Vy)b and either

(i) x =yanda ~ b,or

(ii) there exists ¢ = c(x) such that ¢(x) ~ a, c(y) ~ b and y ¢ V(c).

We remark that in part (c) (ii), the notation ¢ = c¢(x) indicates the way
the element concerned is a function of x, and ignores its possible dependence
on other variables. We use it so we can represent the effect of substituting
y for x throughout. It is therefore unnecessary for us to impose the condition
x ¢ V(c(y))- The notation does not imply V(c(x)) = {x}, hence we must
impose the condition y ¢ V(c(x)). Thus the condition (c) (ii) is symmetric,
and = is trivially reflexive. The proof that it is transitive is left as an exercise.

Exercise 1.5.

(i) Given that z¢ V(w;) U V(w,), show by induction over d(w,) that
the element ¢ = ¢(x) in (c) (ii) can always be chosen such that z ¢ V(c).

(i) If u(x) ~ v(x) and y ¢ V(u(x)) U V(v(x)), show by induction over
d(u(x)) that u(y) ~ u(y).

(iii) Prove that = is transitive.

Since the relation = is an equivalence which is clearly compatible with
the operations of the algebra, it is a congruence relation on P(V, #).

Definition 1.6. The (reduced) first-order algebra P(V, ®) on (V, &) is
the factor algebra of P(V, &) by the congruence relation ~ .

The elements of P = P(V, &) are the congruence classes. If w e P and
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[w] is the congruence class of w, then

(VoLw] = [(WVx)w],

and

[wi] = [w2] = [w1 = w;],

Definition 1.7. Let w e P. We define the set var(w) of (free) variables
of w by putting var(w) = var(#), where # € P is some representative of the
congruence class w, and where var(#) is defined inductively by

(i) var(F) = &,
(i) var(r(xy,..., %)) = {X1,..., xp} forre #,xy,...,x, €V,
(iii) var(w, = W,) = var(w,) U var(w,),

(iv) var((Vx)w) = var(®) — {x}.

Definition 1.8. Let A < P. Put
var(4) = ] var(p).

peA

Exercises

1.9. Show that if w; ~ W,, then var(#;) = var(#,), and conclude that
var(w) is defined for w € P.

1.10. Show that for any w € P, there is a representative W of w such
that no variable x € V appears in w more than once in a quantifier (Vx),
and no x € var(w) appears at all in a quantifier (i.., W has no repeated dummy
variables, and no free variables also appear as dummies).

We assume henceforth that any w € P is represented by a # € P having
the form described in Exercise 1.10. We shall also usually abuse notation
and not distinguish between p € P and [p] € P.

§2 Interpretations

We want to think of the elements of V as names of objects, and the ele-
ments of & as relations among those objects. If we take a non-empty set U,
and a function ¢: ¥V — U, then we can think of x € V as a name for the element
¢(x) € U. Of course, not every element u € U need have a name, while some
elements u may well have more than one name. Next we take a function y,
from £ into the set of all relations on U, such that if r € &,, then () is an
n-ary relation. It will be convenient to write simply @x for ¢(x), and yr for
Y(r). As for valuations, these again should be functions v:P — Z, which
will correspond to our intuitive notion of truth. Since our interpretation of
the element r(x;,..., x,) € P in terms of U, ¢, Y must obviously be the
statement that (¢x;, . . ., @Xx,) € Yr, we shall require of v that
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(@) ifre #,and x,,...,x,€ V,then o(r(x,. .., x,) = Llif(¢pxy,...,0x,) €
yr, and is 0 otherwise, while we still require that

(b) vis a homomorphism of {F, =}-algebras.

It remains for us to define truth for a proposition of the form (Vx)p(x)
in terms of our understanding of it for p(x), and so we use an induction over
the depth of quantification. Let P(V, &) be the set of all elements p of
P(V, #) with d(p) < k. If we take some new variable t, then intuitively, we
consider (Vx)p(x) (=(V1)p(t)) to be true if p(f) is true no matter how we
choose to interpret ¢. This leads to a further requirement for v, namely:

(cx) Suppose p = (Vx)q(x) has depth k. Put V' = V U {t} where t¢ V. If
for every extension ¢': V' — U of ¢ and for every vi_,:P,_{(V', R) > Z,,
such that (¢’, Y, v, _ ,) satisfy (a), (b) and (¢;) for all i < k, we have vi_,(q(t)) =
1, then v(p) = 1, otherwise v(p) = 0.

Exercise 2.1. Given U, ¢, ¥, prove that there is one and only one
function v: P — Z, satisfying (a), (b) and (c;) for all i.

Briefly, the above exposition of the components of an interpretation of
P(V, &) can be expressed as follows.

Definition 2.2. An interpretation of P = P(V, &) in the domain U is a
quadruple (U, ¢, ¥, v) satisfying the conditions (a), (b) and (c,) for all k.

As before, we write AEpif A = P, pe P and v(p) = 1 for every inter-
pretation of P for which ®(4) = {1}. We denote by Con(4) the set of all p
such that A = p. We write =p for & & p, and any p for which = p, is called
valid or a tautology.

Exercises

23. Let w(uy,...,u,) be any tautology of Prop({us,...,u,}). Let
Pis- - - » Dn € P(V, #). Prove that = w(py, . . ., Py).

24. A< P(V,#) and p(x)€ A for all x € V. Does it follow that
A E(V¥x)p(x)?

§3 Proof in Pred(V, #)

To complete the construction of the logic called the First-Order Predicate
Calculus on (V, #), and henceforth denoted by Pred(V, #), we have to
define a proof in Pred(V, &).

Definition 3.1. The set of axioms of Pred(V, #) is the set & =
U U A5, Where
A1 ={p=(q=Dplp.qe PV, RB)},
A, ={p=>@=n)=(p=>q9=@=0)|p.g,re P(V,R)},
J13 = {~ ~p=p|peP(V’g)}a
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Ay = {(VX)p=q) = (p=((VX)9)|p, g € P(V, R), x ¢ var(p)},
s = {(Vx)p(x) = p(y)|p(x) e P(V, R), y e V}.

We remind the reader that these axioms are stated in terms of elements of
the reduced predicate algebra. In o 5, for example, the substitution of y for
x in p(x) implies that we have chosen a representative of [(Vx)p(x)] in which
(Vy) does not appear.

In addition to Modus Ponens, we shall use one further rule of inference,
which will enable us to formalise the following commonly occurring argu-
ment: we have proved p(x), but x was any element, and therefore (Wx)p(x).
The rule of inference called Generalisation allows us to deduce (Vx)p(x)
from p(x) provided x is general. The restriction on the use of Generalisation
needs to be stated carefully.

Definition 3.2 Let A = P, pe P. A proof of length n of p from A is a
sequence py,...,p, of n elements of P such that p, = p, the sequence
P1s- - -5 Pu—1 is a proof of length n — 1 of p,_; from 4, and

(@) ppe L U A, or

(b) pi = p; = p,forsome i,j < n, or

(©) p» = (W¥x)W(x) and some subsequence py,, ..., px, Of P1,... Pu—1 is
a proof (of length < n) of w(x) from a subset A, of 4 such that x ¢ var(4,).

This is an inductive definition of a proof in Pred(V, #). As for Prop(X),
we require a proof to be a proof of finite length. The restriction x ¢ var(4,)
in (c) means that no special assumptions about x are used in proving w(x),
and is the formal analogue of the restriction on the use of Generalisation in
our informal logic.

As before, we write A |- p if there exists a proof of p from A. We denote by
Ded(A) the set of all p such that 4 + p. We write +p for & | p, and any p for
which |p is called a theorem of Pred(V, ).

Example 3.3. We show {~(3x)(~p)} I (V¥x)p for any element pe P.
(Recall that (Ix) is an abbreviation for ~(V¥x)~.) The following is a proof.

p1 = ~ ~(V¥x)(~ ~p) = (V¥x)(~ ~p), (3)
P2 = ~ ~(V¥x)(~ ~p), (assumption)
ps = (V¥x)(~ ~p), (p1 = p2 = p3)
Ps = (Vx)(~ ~P(x)) = ~ ~p(y), («5)

Note that by («/s), the y in p, may be chosen to be any variable. To permit
a subsequent use of Generalisation, y must not be in var(~ (Ix)(~p(x))). A
possible choice for y is the variable x itself.

ps = ~ ~p(y) (P4 = p3 => ps)
ps = ~ ~p(y) = p(y), (3)
p7 = p(y), (P = ps = p7)

ps = (Vy)p(y) (Generalisation, y ¢ var(~@3x)(~p(x)) )
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Exercises

3.4. Show that every axiom of Pred(V, £) is valid.
3.5. Construct a proof in Pred(V, #) of (Vx)(Vy)p(x, y) from

{(VY(Vx)p(x, )}

§4 Properties of Pred(V, #)

We have now constructed the logic Pred(V, #). Its algebra of proposi-
tions is the reduced first order algebra P(V, &), its valuations are the valua-
tions associated with the interpretations of P(V, #) defined in §2, and its
proofs are as defined in §3.

We can immediately inquire if there is a substitution theorem for this
logic, corresponding to Theorem 4.11 of the Propositional Calculus. There,
substitution was defined in terms of a homomorphism ¢:P; — P, of one
algebra of propositions into another. If P,, P, are first order algebras, then
as the concept of a homomorphism from P, to P, requires these algebras to
have the same set of operations, it follows that they must have the same set
of individual variables. Even in this case, a homomorphism would be too
restrictive for our purposes, for we would naturally want to be able to inter-
change two variables x, y, so mapping elements p(x) of the algebra to
o(p(x)) = p(y), but unfortunately such a map is not a homomorphism. For
if p(x) € P is such that x € var(p(x)), y ¢ var(p(x)), then

o((Vx)p(x)) = (Vy)p(y) = (VYx)p(x),
(Vx)o(p(x)) = (Vx)p(y).

Since y e var((Vx)p(y)) but y ¢ var((Vy)p(y)), these elements are distinct
and ¢ is not a homomorphism.

Definition 4.1. Let P, = P(V;, #Y) and P, = P(V,, #%). A semi-
homomorphism (a, f):(Py, V1) - (P2, V5) is a pair of maps a:P, — P,,
B: Vi — V, such that

(@) B(7) is infinite,

(b) ais an {F, =}-homomorphism, and

(©) «(Vx)p) = (Vx')x(p), where x' = B(x).

Lemma 4.2. Let (o, f):(Py, V;) = (P,, V) be a semi-homomorphism. Let
p € P, and suppose x € V; — var(p). Then B(x) ¢ var(e(p)).

Proof: We observe first that if x # y, then (Vx)p = (Vy)p if and only
if neither x nor y is in var(p).

Since B(V;) is infinite, there is an element y’ € B(V;) such that y' # B(x)
and y’ ¢ B(var(p)). Choosing y € V; so that f(y) = y', it follows that (Vx)p =
(Vy)p. If x' = B(x), then we have

(Vx)a(p) = o (Vx)p = a((Vy)p) = (Vy')alp),
and it follows again that x' ¢ var(a(p)). []
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Theorem 4.3. (The Substitution Theorem). Let (a, B):(P,, V;) = (P,, V2)
be a semi-homomorphism. Let A = P, pe P;.

(a) If A+ p, then o(A) + «(p).
(b) If A E p, then o(A) E a(p).

Proof: (a) Let py, ..., p, be aproof of p from 4. We use induction over
n to show that a(p,), . . ., o(p,) is a proof of «(p) from a(A4).

If a = ((Wx)(p = q)) = (p = (Vx)g) is an axiom of type A, then by
Lemma 4.2, the condition x ¢ var(p) is preserved by the semi-homomorphism
(o, B), and so a(a) is again an axiom. In all other cases, it is clear that the
image of an axiom is an axiom. Thusif p € &/ U A4, then a(p) € #® U a(A),
where /@ is the set of axioms of Pred(V,, #"). Hence our desired result
holds for n = 1.

Forn > 1, we may suppose by induction that «(p,), . . . , &(p,— ) is a proof
ofo(p,—1) from a(A). If p; = p;=> p,forsomei,j < n,then a(p;) = a(p;) = o(p,),
and the result holds. It remains only to consider the case that p, = (V¥x)q,
where some subsequence gy, . .., g of py, . . . , p,— 1 is a proof of g from some
subset 49 = A with x ¢ var(4,). By induction, a(g,), . . . , ®(gy) is a proof of
a(q) from a(A,). For each w € Ao, x ¢ var(w), and by Lemma 4.2, x" ¢ var(e(w) ),
where x' = B(x). Thus x ¢ var(e(4o)), and a(p), . . ., A(pa—1), (VX)g) is a
proof. Since (Vx')a(q) = a((Vx)qg) = ap), the result is completely proved.

Part (b) is an easy consequence of (a) once we have proved the Adequacy
Theorem, so we omit a proof. We leave as an exercise a direct proof of (b). []

Exercises

(The following exercises lead to a direct proof of part (b) of the Substitu-
tion Theorem. Throughout, P; = P(V,, #?) and (a, B):(P;, V;) = (P,, V,)isa
semi-homomorphism.)

4.4. Show that (Wx)p(x) = (Vx)q(x) if and only if p(x) = g(x).

45. Weput V¥ = V¥, U {y} and P¥ = P(V¥, #”), where y is some new
variable (y ¢ V; u V). Show that for each p(y) € P¥ — P,, there is a unique
q(y) € P% such that a((Vx)p(x)) = (Vx')g(x’) for some x € V;, x ¢ var(p(y))
and x’ = B(x). Hence show that there is a unique semi-homomorphism
(a*, B*):(P%, V) — (P%, V3), extending («, f), such that f*(y) = y. Generalise
to the addition of n new variables y,, ..., y,

4.6. Let (U, ¢, ¢, v) be an interpretation of P,. For each r € ), we
define an n-ary relation y,r on U as follows. Take new variables y;, .. ., yp,
put V¥ = V; U {y1, ..., yu}, and construct the extension (a*, §*) of (a, ) as
in 4.5. Given (uy, ..., u,) € U", the mapping of y; to u; defines a unique
extension of (U, ¢, ¥, v) to P%, and so assigns a value v*(q) to each g € P%.
We define (uy, . . . , u,) € Y7 if and only if v*(e*(H{y1,. .., ya)) = 1.

Show that (U, @8, ¥, va) is an interpretation of P;. Hence prove part (b)
of the Substitution Theorem.

Theorem 4.7. (The Soundness Theorem). Let A = P(V, &), p e P(V, R).
If A\ p,then A E p.



34 IV Predicate Calculus

Proof: Let py,...,p, be a proof of p from A. Let (U, ¢, ¥, v) be an
interpretation of P(V, %) such that u(4) = {1}. We haveto show thatv(p) = 1,
and we shall use induction on n to prove it. If n = 1, pe &/ U A4 and then
v(p) = 1. Suppose by induction that n > 1 and the result holds for proofs of
length less than n. If p; = p; = p, for some i, j < n, then v(p;) = v(p;) = 1,
and it follows that v(p) = 1.

Suppose finally that p, = (Vx)g(x) and that g,(x), .. ., g«(x) is a proof
of g(x) from the subset A4, of A with x ¢ var(4,). We must use condition (c,)
in the definition of interpretation, where r is the depth of p,. Thus we take
anew variable t,weput V' = V U {t},and we consider extensions ¢": V' —» U
of ¢ and maps v,_,:P,—(V’, #) —» Z,, as given in condition (c,). We have
to prove that in every case, vj-1(qi(f)) = 1. But each v,_, extends uniquely
to a valuation v': P(V’, &) — Z, such that (U, ¢’, Y, v) is an interpretation of
P(V', #). By the Substitution Theorem (Theorem 4.3 (a)), g1(¢), . . ., qi(t) is a
proof of g(t) from Ao, and so by induction (since k < n), v'(qi(t)) = 1. Thus
((Wx)g(x)) = 1 and the theorem is proved. []

Corollary 4.8. (The Consistency Theorem). F is not a theorem of
Pred(V, %).

Proof: Let U be any non-empty set, ¢: ¥V — U any function, and y any
function on & such that if r € £,, then Y(r) is an n-ary relation on U. Then
there exists v: P(V, #) - Z, such that (U, ¢, Y, v) is an interpretation. For
every interpretation, and in particular for the one constructed above, v(F) =
0. The existence of one interpretation for which v(F) = 0 shows that F is
not valid. The Soundness Theorem now shows that F is not a theorem. []

Theorem 4.9. (The Deduction Theorem). Let A < P = P(V, &) and let
p,qeP.Then At p=qifandonlyif AU {p} |- q.

Proof: If A} p = g, then it follows, as in the case of the Propositional
Calculus, that 4 U {p} - g. Suppose 4 U {p} I g. We shall again use induc-
tion over the length of the proof. The argument used for the case of the
Propositional Calculus again applies except in the case where g is obtained by
Generalisation. So we suppose g = (Vx)n{x) and A, |- n(x), where 4, =
A U {p} and x ¢ var(4,).

(i) p¢ Ao. Then Ay = A and we have a proof of q from A,. Follow this
proof with the steps g = (p = g), p = q to obtain a proof of p = q from A.

(ii) p € Ao. We have a proof of r(x) from A4, and so by induction on the
proof length, we have A4, |- p = r(x), where A; = Ao, — {p}. By Generalisa-
tion, a proof of p = r(x) from 4, may be followed with (Vx)(p = r(x)). As
p € Ap and x ¢ var(Ay), it follows that x ¢ var(p). We continue the proof with

(Wx)(p = rx)) = (p = (Vx)r(x)) (#4)
and

p = (Vx)n(x),
completing the proof and establishing the theorem. []
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Example 4.10. As we did before, we use the techniques of the proof of
the Deduction Theorem to convert the proof ~p, (Vx) (~p), ~(Vx)(~p), F
of F from {(3x)p, ~p} (x ¢ var(p)), into a proof of ~ ~p from {(Ix)p}, so
proving p from {(3Ix)p}.

Given
proof Comment Corresponding Steps of Constructed Proof
~p Assumption| ~p = ((~p = ~p)= ~p),

to be (~p=((~p=~p)= ~p))=((~p=>(~p= ~p)) = (~p= ~p)),
eliminated [(~p=(~p= ~p))=>(~p= ~p), ~p=>(~p=> ~p), ~p=> ~p.

(Vx)(~p) |General- |[(Vx)(~p= ~p),((Vx)(~p=>~p))=(~p=(Vx)(~p)),
isation ~p=(Vx)(~p).

~(Vx)(~p)|Retained | ~(Vx)(~p), (~(Vx)(~p)) = (~p = ~(¥x)(~p)),
assumption | ~ p = (~(Vx)(~p)).

F Modus (~p=((Vx)(~p)=F))=((~p=(Vx)(~p))=(~p=F)),
ponens (~p=(Vx)(~p))=(~p=F), ~ ~p.

Extension |~ ~p=>p,p.
to prove p

Exercises

4.11. Convert the proof (Wx)p(x), ((Wx)p(x)) = p(x), p(x), (Vx)(p(x) =
q(x)), (Wx)(p(x) = q(x)) = (p(x) = q(x) ), p(x) = g(x), g(x), (W x)q(x) of (V¥ x)q(x)
from {(VWx)(p(x) = g(x)), (Wx)p(x)} into a proof of (Wx)p(x) = (¥x)q(x) from
{(Vx)(p(x) = g(x))}.

4.12. Prove {(Wx)(p(x) = q(x)} I @x)p(x) = (Ix)q(x).

We now prove some lemmas which we shall need in establishing the
Satisfiability Theorem. As for Prop(X), a subset A is consistent if F ¢ Ded(4).

Lemma 4.13. Let A be a consistent subset of P(V, &). Suppose (Ix)p(x) € A,
and t ¢ Var(A). Then F ¢ Ded(4 U {p(1)}).

Proof: Suppose F € Ded(A4 U {p()}). Then by the Deduction Theorem,
~ p(t) € Ded(A). Since t ¢ Var(4), we may apply Generalisation and obtain
(Vx)(~ p(x)) e Ded(A4). But (Ix)p(x) = ~(Vx)(~p(x))€ 4,and so F € Ded(4),
contrary to assumption. []

Lemma 4.14. Let A be a consistent subset of P(V, R). Then there exist
V* 2 Vand A* 2 A, where A* = P(V*, ), such that
(i) F ¢ Ded(A4*), and
(ii) for all p e P(V*, R), either p e A* or ~p e A*, and
(iil) if @x)p(x) € A*, then for somete V*, p(t)e A *.
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Proof: Put Vo, =V, Ay = A, Py = P(V, #). We construct inductively
V, P, = P(V;, &), A; and A, for i > 0. Taking a new variable ¢ for each
p € A; of the form p = (Ix)q(x), we put

Vier = ViU {t9|p € 4;, p = Fx)q(x) for some g(x)},
Aivy = AV {Q(t(pi))h’ € A;, p = @x)q(x), g(x) € P;}.

Suppose that F ¢ Ded(4;). If F € Ded(4; ), then F € Ded(4; U {g,(t2)),
-+, g(t?}) for some finite set {g;(z3), . . . , ¢,(t3)}, which is impossible by
Lemma 4.13. Thus F ¢ Ded(4;+,), and by Lemma 2.11 of Chapter II, there
exists A;4; 2 A}+, such that A;, , satisfies (i) and (ii). For each i > 0, choose?
such an 4;. Put V* =), ;, 4* =} 4:

Since any finite subset of A* is contained in some 4,, it follows that V*
and A* satisfy (i), (ii) and (iii). []

Theorem 4.15. (The Satisfiability Theorem). Let A be a consistent subset
of P(V, ). Then there exists an interpretation (U, ¢, Y, v) of P(V, &) such that
v(4) = {1}.

Proof: If V* 2 Vand P(V*, #) 2 A* 2 A, then any interpretation of
P(V*, ®) for which v(4*) = {1} clearly restricts to an interpretation of
P(V, #) with v(4) < {1}. We may therefore suppose, without any loss of
generality, that V, A satisfy the conditions (i), (ii) and (iii) of Lemma 4.14.
To construct our interpretation, we take U = V, and ¢:V — U the identity
map. For each r € #,, we put yr = {(x;,...,%,) € V"|r(x1, ...y X)e A}. For
each p e P(V, &), we put u(p) = 1 if p e A and v(p) = 0 otherwise. It is easily
checked that (U, ¢, ¥, v) satisfies the conditions (a), (b) of the definition of an
interpretation, and we are left with showing that the condition (c,) is satisfied
for all k.

Let ¢t be some new variable, and let p = (V¥x)q(x) have depth k + 1.
Suppose first that p € A. Let ¢’ be any extension of ¢ to V' = V U {t}, and
let vy:Pi(V', &) » Z, be as required for condition (c;+4). Put y = ¢'(¢).
Since, by induction, v satisfies (c;) for i < k, it follows that for all w(x) € P,
v'(w(®)) = v(w(y)). Now (Vx)g(x) € A4, therefore g(y) e Ded(4) = A, since 4
is a maximal consistent subset, and this holds for all y € V. Thus v’ (q(2)) =
(g(y)) = 1 and condition (c;+,) is satisfied in this case.

Suppose that p = (Vx)q(x) ¢ A. As { ~(3x)(~q(x))} I (Wx)q(x),it follows
that ~(3x)(~gq(x)) ¢ A. Hence (Ix)(~g(x)) e A, and so for some ye V,
~¢(y) € A. Consider the extension ¢’ of ¢ to V' with ¢’ () = y, and the
corresponding v;: P(V', #) - Z,. Then v'(q(t)) = v(q(y)) = 0. As »(p) = 0,
we see again that condition (¢, + ) is satisfied. []

Theorem 4.16. (The Adequacy Theorem). Let A = P(V, &), p € P(V, ).
If AE p,then A} p.

2 The proof of Lemma 2.11 involved an application of Zorn’s Lemma. We also use the
(countable) axiom of choice here to select the 4,.
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Proof: If F ¢ Ded(4 U {~p}), then by the Satisfiability Theorem, there
exists an interpretation (U, ¢, ¥, v) of P(V, #) such that v(4 U {~p}) = {1},
which contradicts the hypothesis 4 = p. Therefore 4 U {~p} - F. Hence,
by the Deduction Theorem, A |- ~ ~ p, and the result follows. []

Corollary 4.17. (The Compactness Theorem). If A = p, then Ay E p for
some finite subset A, of A.

The Soundness Theorem and the Adequacy Theorem together show that
if A = P(V,#) and p e P(V, &), then A = p if and only if 4 |- p. This result
is usually called Godel’s (or the Godel-Henkin) Completeness Theorem.
It was first proved by Gédel in 1930. The method of proof we have used,
depending on the Satisfiability Theorem, is due to Henkin.

We have now established for Pred(V, #) all the properties previously
established for Prop(X), with the exception of decidability. We have good
reason for not attempting to prove Pred(V, %) is decidable. If # contains at
least one relation symbol of arity greater than 1, then Pred(V, &) is un-
decidable. The precise meaning of this statement, and its proof (which is due
to Church and Kalmar), are given in Chapter IX.

Exercise 4.18. An element p e P(V, %) is said to be expressed in prenex
normal form when it is expressed in the form p = @0, - - - Q,q, where Q;
is either (Vx;) or (3x;), x4, ..., x, are distinct, and q is a quantifier-free
element of P(V, #). Give an algorithm which constructs from any p € P(V, %),
an element p’ in prenex normal form such that |- (p = p') A (p’ = p).



Chapter V
First-Order Mathematics

§1 Predicate Calculus with Identity

In this chapter, we shall reconstruct some parts of ordinary mathematics
within the logical system constructed in Chapter IV. A piece of mathematics
constructed within the first-order predicate calculus will be called a first-
order theory. By comparing a first-order theory with the informal theory on
which it is modelled, we may gain insight into the influence of our logical
system on our mathematics.

One feature common to all mathematical theories is the concept of
equality or identity. A statement of the form a = b always means that a and
b denote the same mathematical object. A consequence of a = b is that, in
any statement involving a, we may replace any of the occurrences of a by b
without altering the truth or falsity of the statement. We therefore begin by
investigating how to formalise in Pred(V, #) the concept of identity. We
clearly require a binary relation symbol # € #,. As the axioms of identity,
we take the set I < P(V, &) consisting of (Wx).#(x, x) and the elements
(Vx1)' e (Vxn)(VY)(J(xp .V)=(r(x1, LARE ] xn)ar(xls cees Xj—1, Y Xj+1se.- ,x,,) ))9
forallre #,,alln,and allj < n.

Exercises

1.1. Provel |- #(x, y) = H(y, x).

1.2. Provel |- J(x, y) = (H(y, z) = SF(x, 2)).

1.3. Let w(x, z) be any element of P, possibly involving other variables
besides x, z. Show that I |- #(x, y) = (w(x, X) = w(y, x)). (Hint: use induc-
tion over the number of steps in the construction of w(x, y) from V and %.)

1.4. Let (U, ¢, Y, v) be an interpretation of P(V, &) such that .# is
the identity relation on U. Let U’ be any set containing U, andlet z: U’ —» U
be any function such that n(u) = uforallue U. Let ¢': ¥V — U’ be the com-
position of ¢ with the inclusion map U — U’. For each r € #,, define the
n-ary relation y'r on U’ by (u},...,uw,)ey'r if and only if (n(uy),...,
n(uy)) € Yr. Show that this defines an interpretation (U’, ¢, §/', v') of P(V, R),
and that for p e P(V, &), we have v'(p) = v(p). Show that '.# is an equi-
valence relation on U’, but that, no matter what the interpretation (U, ¢,
¥, v), U’ and = can be constructed such that i'.# is not the relation of identity
in U’

According to Exercise 1.4, no matter what subset I' 2 I of P(V, &) we
choose as our axioms of identity, we cannot thereby force y.# to be the
relation of identity in every interpretation of P(V, %) such that o(I') = {1},

38
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unless of course we have F € Ded(I') and so exclude the existence of such
interpretations. We overcome this by constructing a modified form of the
first-order predicate calculus, in which the only interpretations allowed will
be those for which y.# is the identity relation.

Definition 1.5. Suppose # € #,. A proper interpretation of P(V, R) is
an interpretation (U, ¢, ¥, v) such that y.# is the relation of identity on U.

Definition 1.6. Pred,(V, #) is the logic with algebra of propositions
P(V, # U {£}), valuations those arising from proper interpretations, and
with proof of p from A in Pred(V, #) defined as a proof of p from I U 4
in Pred(V, # U {£}).

We shall always assume . € #, and so have P(V, #) as the algebra of
propositions. We write 4 |- ,p and p € Ded,(4) to indicate that p is provable
from A4 in Predy(V, &), i.e., that A U I |- p or equivalently p e Ded(4 U I).
We say that p is a proper consequence of A, written A = ,p or p e Cony(A),
if o(p) =1 for every proper interpretation of P(V, #) with v(4) = {1}.
Because of the restriction on the interpretations considered, 4 &= ,p would
appear to be weaker than 4 U I = p. We shall see shortly that they are in
fact equivalent.

Theorem 1.7. (The Satisfiability Theorem) Suppose F ¢ Ded,(A). Then
there exists a proper interpretation of P(V, &) with w(4) = {1}.

Proof: Since F ¢ Ded(A U I), there exists an interpretation (U, ¢, ¥, v)
of P = P(V, &) such that v(4 U I) = {1}. The relation y.# is an equivalence
relation on U. For ue U, denote by % the equivalence class {u'e U|(u, w)ey s},
and let U be the set of all these equivalence classes. Define 3:V — U by
®(x) = o(x) for all xe V. For each re #,, yr has the property that
if (w;, ;) € Y4, then (uy, . .., u,) € Yyr if and only if (u}, ..., u,) € Yr. Hence
we can define a relation §r on U by putting (@, . . ., %,) € Yr if and only if
(uy, . ..,u,) € yr. This defines a function y from £ into the relations on
U, and it is easily checked that (U, ¢, ¥, v) is a proper interpretation of
P(V, #). The valuation v is unchanged, consequently we have a proper
interpretation with u(4) = {1}. []

Corollary 1.8.

(i) Cony(4) = Con(4 U I)

(ii) If A E4 p, then A | p.

The soundness and consistency of Pred,(V, #) both follow immediately
from the corresponding properties of Pred(V, ).

§2 First-Order Mathematical Theories

A branch of mathematics is defined by listing the properties and relation-
ships to be studied and by listing the assumptions (usually known as the
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axioms of the branch of mathematics) made about them. For example, in
plane projective geometry, the only properties considered are those of being
called a point or line (the actual nature of the objects is irrelevant, only the
way they are divided into the two classes matters) and we are concerned with
the one relationship of a point lying on a line. (It is taken for granted that
we also use the relationship of identity.) The axioms of plane projective
geometry are that through any two distinct points there is one and only one
line, that any two distinct lines have one and only one common point, and the
non-triviality axiom that there exist four points such that no three of them
are collinear.

We shall define a mathematical theory in terms of lists of relations and
axioms. It is convenient also to include a list of any special objects named in
the axioms.

Definition 2.1. A first-order mathematical theory is a triple I =
(2, A, C) where F e R, A = P(V, ) for some V o> Csuchthat V — C is
infinite, and var(4) = C. The set A is called the set of (mathematical) axioms
of 7, the set C is called the set of (individual) constants of J, while the
language' of 7 is the subset L(7) = {p e P(V, R)|var(p) =C} of P(V, R).
A theorem of J is an element p € #(J) such that 4 | ,p.

We point out that the set V is not specified in J, and that any suitable
set ¥ may be taken. The set #(J) is independent of the choice of V. Later,
we shall occasionally need a standardised set V of variables, such that
V — C is countably infinite. We select as standard variable set the set V, =
C u {x;|i €N}, where the x; are disjoint from C.

Definition 2.2. The algebra of J is the set P(7) = P(V,, #), where V,
is the standard variable set. An element p e P(J), such that var(p) =
{x1,..., %} U C, is called an n-variable formula of .

The following notations will be used in discussing first-order theories 7.
If U< P(V,#) and pe P(V, ®), then we write U |-4p for AU Ut ,p,
J  plor |-4p) for At ,p, and U E 4p, T = ,plor E 4p), for AU U + ,p
and A = ,p respectively.

Examples

2.3. (First-order plane projective geometry) We take two unary predi-
cate symbols p, £, interpreting p(x) as “x is a point™, and £(x) as “x is a line”.
We take a binary predicate symbol €, and interpret e(x, y) as “x lies on y”.
These express the basic concepts of plane projective geometry, so we take
2 = {p,4, €, #}. Our axiom set is the set 4 = {a;, ..., as}, where

ar = (Vx)((p(x) v £(x)) A ~ (p(x) A £(x))),

! The reader is warned that most authors use this term for P(V, %).
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a; = (Vx)((Jy) elx, y) = p(x)),

az = (Vx)((Iy) &(y, x) = £(x)),

as = (Vx)(Vy)(p(x) A p(y) A ~F(x, y) = F2)(E(x, 2) A &(y, 2)
A (VO(Ex, 1) A (), 1) = H(z, 1)),

as = (Vx)(Vy)(E(x) A L(y) A ~F(x, y) = F2)(Ez, %) A (2, )
n (VO %) A €t y) = H(z, 1)),

as = (Fxy)@x2)(Fx3)(Fxa)(P(x1) A P(x2) A P(x3) A P(X4) A ~I(xy, X3) A
~I(Xy, X3) A ~I(Xg, Xg) A ~I(Xg, X3) A ~F (X2, X4) A ~F(X3, Xy)
A ~e(xy, Xz, X3) A ~ (X1, X35 Xa) A ~ (X, X3, Xa) A ~C(X2, X3, X4))

where in the non-triviality axiom ag, c(x;, x,, x3) denotes (3z)(e(x,, 2)
A €(X3, 2) A €(x3, z)). The axiom a, says that each object is either a point or
a line, but not both. Axioms a, and a, say that € is a relation between a point
and a line, while axioms a, and as are the usual incidence axioms. For this
theory, the set C = J.

There is a very useful notation which abbreviates axioms such as a, and
as. We write (3!x)w(x) for @x)(w(x) A (Wy)W(y) = F(x, y))), where w(x) is
any element of P(V, #). (3!x)w(x) may be read “There exists a unique x such
that w(x)”. In this notation, we have

ay = (Vx)(V)(p(x) A p(y) A ~I(x, y) = A2)(Elx, 2) A &y, 2)))-

2.4. (Elementary group theory) We take # = {4, m}, where m is a
ternary relation symbol. We interpret m(x, y, z) as “xy = z”. For axioms,
we take 4 = {ay, ..., a,}, where

a; = (Vx)(Vy)3!2)m(x, y, 2),

a, = (Vx)(Vy)V2)(Va)(Vb)(Vc)(Vd)(m(x, y, a) A m(a, z, b)
A m(y, z, ¢) A m(x, c, d) = F(b, d)),

a; = (Vx)m(e, x, x),

as = (Vx)3ym(y, x, ).

Axiom a, asserts that m defines a function, a, is the associative law, a;
asserts that e is a left identity and a, asserts the existence of left inverses. We
have C = {e}. We could reformulate the theory without individual constants
by replacing a; and a, by (3e)(as A ay).

This theory is too restrictive for the study of group theory. Within it, we
can prove results such as that e is a right identity or that the identity is unique.
But we have no way of expressing properties of subsets, so we cannot discuss
subgroups. Nor can we discuss relationships between groups. We called this
theory elementary group theory because it is restricted to the relationships
between elements of a group (as distinct from the relationships between sub-
sets of a group). We shall use the word “elementary” with this meaning in
relation to other theories.
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Exercises

2.5. Show that (VWx)m(x, e, x), (Ve)N(Vx)m(e, x, x) = SF(e, ¢)),
(Vx)(Vy)m(y, x, e) = m(x, y, e)) are theorems of the elementary group
theory of Example 2.4.

2.6. Show that the formal analogue of the statement “There exist four
distinct lines, no three of which are concurrent” is a theorem of the first-
order plane projective geometry of Example 2.3.

27. T = (@, A,C) is a first-order theory and (e, B):(P(V, %), V) —
(P(V, R), V) is a semi-homomorphism such that «(4) = Deds(A4). If 7 | p,
prove that 7 |- a(p).

2.8. 7 is the first-order plane projective geometry of Example 2.3. The
dual w of an element w € P(V, &) is the element obtained from w by inter-
changing p and ¢ and replacing €(x, y) by €(y, x) (all x, y € V) throughout
Show that if « is the map a(w) = W, and if f is the identity map, then (o, )
is a semi-homomorphism (in fact an automorphism) of P(V, ), satisfying
the condition of Exercise 2.7. Hence prove that the dual of a theorem of 7
is a theorem of 7.

The examples given above show how particular mathematical systems
may be used to construct first-order theories. We regard the concept of a
first-order theory as fundamental to our study of the relationship between
reasoning and mathematics, and our direction is set firmly by the next defini-
tion. We denote by rel(M) the set of all relations on a set M.

Definition 2.9. A model of the first-order theory J = (£, A4, C) is a set
M together with functions v:C — M, y:# — rel(M), such that for some
set V of variables (V o C, V — C infinite), there exists a proper interpreta-
tion (M, @, ¥, v) of P(V, ) for which ¢|c = v and »(4) = {1}.

We think of a model (M, v, ) of the theory J as the essential part of a
proper interpretation of J for which the axioms of J are true (i.e., for which
v(4) < {1}). Although the valuation v of P(V, &) is determined by ¢ and ,
the restriction v| s, is completely determined by v and y, and is independent
of the choice of V and the interpretation. Hence there is a well-determined
valuation v of #(J") corresponding to each model (M, v, ) of 7, and we
say that p e #(J) is true for the model (M, v, y) of F if v(p) = 1. We shall
refer to the model (M, v, ¥) of 7 as the model M of 7, whenever this abuse
of notation does not lead to confusion.

Example 2.10. Let G be a group with multiplication written as juxta-
position and with identity element 1. We put v(e) = 1, and we put ym =
{(x,y,2) € G*|xy = z}. yF will of course be the identity relation. Then
G = (G, v, §) is a model of the elementary group theory of Example 2.4. A
model of the elementary group theory is essentially a group.

Given a model (M, v, ¥) of the theory 7, some relations on the set M are
derived naturally from 7, in the following manner. Let p(x;, . . ., x,) be an
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n-variable formula of J. For any m,, ..., m, € M, there is an interpretation
(M, @, Y, v) of P(T) such that ¢|c = vand ¢(x;) = m;fori = 1,. .., n. These
conditions on ¢ determine »(p), and if »(p) = 1, we say that (my,...,m,)
satisfies p(xy, ..., X,), or (by abuse of language) that plmy, ..., m,) is true
in M. Hence p(x,, . . ., x,) defines an n-ary relation on M, which (by abuse of
notation) we denote by ¥/(p):

Y(p) = {(m,,...,m)e M"p(m,,...,m,)is true in M}.
This leads to the following definition.

Definition 2.11.  The n-ary relation p on the model M of 7 is said to be
definable in 7 if p = y(p) for some n-variable formula p of 7. The function
f:M" — M is called a definable function if there is an (n + 1)-variable formula
p of 7 such that

(i) foralla,,...,a,,beM,f(a,,...,a,) = bifandonlyif p(a,,...,a,b)

is true, and

(ll) ‘9- l_ (Vxl) e (Vxn)(a'y)p(xls cees Xpy y)

Example 2.12. Conjugacy is a definable relation in elementary group
theory. It is defined by the formula

plxy, x3) = (33‘3)(33‘4)(3"75)(”"(-"3, X5 €) A M(X3, X1, Xs) A M(X5, X4, X3)).
Inverse is a definable function, defined by the formula

q(xl’ xz) = m(xz, X1, e)'

§3 Properties of First-Order Theories

Definition 3.1. The first-order theory J is called consistent if F is not
a theorem of 7.

The Soundness and Satisfiability Theorems for Pred,(V, #) immediately
give the following result.

Theorem 3.2. The theory J is consistent if and only if there exists a
model of 7.

Definition 3.3. The theory J is called complete if, for every p e £(7),
either 7 FporJ  ~p.

Elementary group theory is not complete, for consider p = (Vx).#(x, e) €
ZL(T). If p were a theorem of the theory, it would be true for every model.
But p is true for the group G if and only if the order of G is 1. As there are
groups of order greater than 1, p cannot be a theorem. As there are groups of
order 1, ~ p cannot be a theorem.

Theorem 3.4. The first-order theory I is complete if and only if every
p € L(T) which is true in one model of 7 is true in every model of 7 .
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Proof: The result is trivial if 7 is inconsistent, so we suppose J~ con-
sistent. Suppose that 4 is complete, and that p € () is true in the model
M. Since ~ pis false for M, it is not a theorem of 7, and, since J is complete,
it follows that | p. Therefore p is true in every model of 7.

Suppose conversely that for all p € #(J), p true in one model imples p
true in every model. Take some model M of 7, and let p € £(7). If p is true
in M, then p is true in every model, i.e., 7  p, and hence by the Adequacy
Theorem J | p. If p is false in M, then ~p is true in M and so J | ~p.
Thus J is complete. []

Examples of complete theories are easily produced, as we now show.

Theorem 3.5. Let = (&, A, C) be a consistent theory. Then there
exists A' < L(T), with A’ 2 A and such that (R, A', C) is consistent and
complete.

Proof : Since 7 is consistent, it hasa model M say. Put 4’ = {pe L(7)|p
true in M}. Then A’ has the required properties. []

Definition 3.6. Let (M, vy, ¥;) and (M,, v,, ¥/5) be models of the the-
ory . We say that M, is isomorphic to M, if there exists a bijective map
o:M; - M, such that av; = v, and (my,...,m,) e yyr if and only if
((my), . . ., my)) € Yor for all re R, all my,..., mye My, and all neN.

Definition 3.7. The theory J is called categorical if all models of I~
are isomorphic.

Examples

3.8. Two models G;, G, of elementary group theory are isomorphic
as models if and only if they are isomorphic in the group theoretic sense.
Since there exist groups G,, G, which are not isomorphic, elementary group
theory is not categorical.

39. We form trivial group theory by adding the further axiom
(Vx)#(x, e) to elementary group theory. A model of trivial group theory is a
group of order 1. Any two such groups are isomorphic, thus trivial group
theory is categorical.

Observe that if M, M, are isomorphic models of the theory  and if
p € L(J)is true for My, then it is true for M,. The definition of categoricity,
together with Theorem 3.4, immediately yields the next theorem.

Theorem 3.10. If the theory J is categorical, then J is complete.
We now generalise the concept of categoricity. We shall denote the
cardinal of any set X by |X|.

Definition 3.11. The cardinal of a model M = (M, v, ) is the cardinal
|M]| of the set M, and will be denoted by |M|.

Note that isomorphic models have the same cardinal.
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Definition 3.12. Let x be a cardinal number. The theory J is called
x-categorical or categorical in cardinal y if all models of 4 which have
cardinal y are isomorphic.

Example 3.13. Elementary group theory is categorical in cardinal 1.
It is not categorical in cardinal 4, because there are two distinct isomorphism
classes of groups of order 4.

Provided that  is a finite cardinal, there is in the language #(J) of any
theory J an element which specifies x as the cardinal of a model of 7.
For if we denote by al(n) the proposition

(3‘11) e (aan)(~j(al, a2) A ~"6(als a3) At A ~j(a1’ an)
A~Faz, a3) A A ~F(ay—1, an)),

then any model of 7 in which al(n) is true has at least n elements. Any model
in which al(n) A ~al(n + 1) is true has exactly n elements.

Theorem 3.14. Suppose the theory J has models of arbitrarily large
finite cardinal. Then I has an infinite model.

Proof: Let 7 = (X, A, C), and put ' = (&, A, C) where A’ =
A U {al(n)|ne N*}. We show that I is consistent. If A’ |-, F,then A U N |, F
for some finite subset N of {al(n)|ne N*}. Let n, = max {nfal(n) € N}. By
hypothesis, there exists a model M of 7~ with [M| > no. This M is a model of
(#, AU N, C), which contradicts the hypothesis A U N |, F. Hence I
is consistent, and so it has a model. Any model M of 7 must satisfy [M| > n
for all ne N*, hence |[M| is infinite. []

Exercises

3.15. R s aring with 1. Construct an elementary theory (i.e., one con-
cerned with elements and not with subsets or maps) Modg, of unital (left)
R-modules, such that the models of the theory are precisely all unital R-
modules. (Hint: take each r € R as a binary relation symbol, interpreting
rimy, m;) as rm; = my.)

3.16. Construct an elementary theory of fields with constants 0, 1. In
the language £ (&) of this theory %, construct a proposition char(n), which
asserts that the characteristic divides n (n € N*). Hence construct a theory
Z , of fields of characteristic 0 such that #(F ;) = (&) and the set 4, of ax-
ioms of &, includes the set A of axioms of #. Show that for each theorem p
of #, there is a number n, € N such that pis true for all fields of characteristic
greater than n,. Show that no set 4, of axioms, such that #(#) 2 4, 2 4
and A, contains only finitely many elements of #(#) — A, can axiomatise
fields of characteristic 0.

Definition 3.17. The cardinal |7 | of the theory 7 = (&, A, C)is |2 U A|.
T is called finite if # U A is finite. J is called finitely axiomatised if A is
finite.
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Since each element of C is a variable of some axiom, and since each
axiom involves only finitely many variables, we have either that C and A
are both finite, or that |C| < |4|. If # U A is infinite, then | £(T)| = |2 U 4],
while £(7) is countable if # U A is finite. We remark that a relation symbol
not occurring in any axiom would be of little interest, as it could be inter-
preted as any relation and so could occur in a theorem of  only in an
essentially trivial way. It would not be a serious restriction to require every
relation symbol to appear in some axiom, in which case we would have either
# and A finite or |#| < |A| = |# U A|. When 4 is finite, the actual value of
|A| is of no real interest, because an axiom set A = {a;, ..., a,} can always
be replaced by A’ = {a, A - - A a,} without making any essential change
in the theory.

The following theorem is the main result of the present chapter, and is in
fact the fundamental theorem of model theory.

Theorem 3.18. (Ldwenheim-Skolem Theorem). Let J be a first-order
theory of cardinal x, and let N be any infinite cardinal such that X > y. Suppose
T has an infinite model. Then J has a model of cardinal N.

Proof: Suppose I = (&, A, C). Choose some set V, o C such that
[Vo — C| = N. Then |P(V,, %) = N. Put

o=1UAU{~Fx))|x,ye Vo — C,x # y}.

This gives a theory 7' = (&, Ay, V) which we prove consistent. If 7 'is in-
consistent, then F is provable from A4 and some finite subset of { ~#(x, y)|
x,y € Vo — C,x # y}, which contradicts the hypothesis that 7 has an infinite
model. Therefore ' is consistent.

We follow the method used to prove the Satisfiability Theorem (cf Lemma
4.14 of Chapter IV), and construct inductively sets ¥,, 4, and 4,. We put

Visr = Vo U {t0]a(x) € P(V,, R), @x)q(x) € 4.},
Anir = A, U {gtQ)|a(x) € P(V,, R), BX)q(x) € 4,},

and take for 4,,,; a maximal consistent subset of P(V,.,, #) containing
A,y Weput V* = |J, ¥, 4* = |, 4,, P* = P(V*, %) = |, P(V;, ).

Since A, = Ay is a maximal consistent subset of P(V,, %), and since
|P(Vo, #)| = N, we have |Ao| = NX. Then, from |P(V,, #)| = |4, = N, it
follows that |V, | = N, and so that |P(V,.,, #)| = |4,+,| = N. By induc-
tion, |[P(V,, #)| = N for all n, and therefore |P*| = N.

As in the proof of the Satisfiability Theorem, we construct an interpre-
tation (P*, ¢, ¥, v) for which ®(4*) = {1}. In this interpretation, y.# is an
equivalence relation, and by replacing elements of P* by their equivalence
classes, we obtain a proper interpretation (P*/y.#, @, ¥, v). Restricting @ to
ZL(T") gives a model M of . Since |[P*| = N, |M| = |P*/y#| < N. But the
construction of Ay ensures that any model of ' has cardinal at least .
Therefore M| = N. Restricting to #(J) converts M into a model of 7. [J



§3 Properties of Theories 47

Corollary 3.19. If the first-order theory I has an infinite model, then I
is not categorical. (Proof obvious.)

Corollary 3.20. Suppose the theory I has cardinal y, and has only infinite
models. Suppose also that J is categorical in some infinite cardinal ¥ > y.
Then T is complete.

Proof:. Let pe £(7), and suppose that neither p nor ~ p is a theorem
of 7 = (&, A, C). Since ~p is not a theorem, J has a model (infinite) in
which p is true, and so the theory 7' = (%, A U {p}, C) has an infinite
model. Since |7| < N, ' has a model M’ of cardinal N. Similarly 7" =
(2, A U {~p}, C) has a model M" of cardinal X. But M’ and M" are each
models of J of cardinal N, and hence are isomorphic, contrary to p being
true in M’ and false in M". []

Exercises

3.21. A dense linearly ordered set is a non-empty set with a binary
relation < such that

(a) for all x, y, exactly one of x < y, x = y, y < x holds,

(b) ifx < yand y < z, then x < z,

(c) if x < y, then there exists z such that x < z < y,

(d) for each x, there exist y, zsuch that y < x < z.

Using a binary relation symbol ¢, with £(x, y) to be thought of as x < y,
and also ., construct a finite theory 2 whose models are precisely the dense
linearly ordered sets. Show that every model of 2 is infinite. Prove that 9 is
categorical in cardinal ¥,. (Hint: given two countable models of 2, enumer-
ate each domain, and then define inductively a mapping, preserving <. Show
that this map is onto by proving that there can be no first element in any
omitted subset of the range space.) Deduce that 2 is a complete theory.

3.22. Thetheory J = (&, A, C) has a finite model of cardinal y. Show
that there exists p e #(J) such that the models of 7’ = (R, A U {p}, C)
are precisely those models of 7~ which have cardinal y.

3.23. The theory J = (&, A, C) has a model of infinite cardinal y.
Show that there is no subset T of (7 )suchthat 7' = (#, AU T,C)isa
consistent theory, all of whose models have cardinal .

3.24. K is a field. Construct an elementary theory ¥ ¢ of vector spaces
over K, and, by adding extra axioms, an elementary theory ¥ % of infinite
vector spaces over K. Show that ¥ is categorical in any infinite cardinal
greater than |K|. Hence show that ¥'% is complete. Show that ¥7 is not
complete.

3.25. 7 = (&, A, C) is a complete theory, which has a finite model
M = (M, ¢, ) of cardinal n.

(i) Prove that every model of J has cardinal n.

Let M’ = (M, ¢’, ') be another model of 7, and let a:M — M’ be
bijective. We say a preserves constants if ag(c) = ¢'(c) for all c € C. We say
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that a preserves the relation r e %, if, for all (m,, ..., m)e M’, we have
(my, ..., m)e yrif and only if (am,, . .. , am,) € Y'r. We say that a preserves
the subset & of £ if it preserves every r€ <.

(ii) Show that a bijective map a:M — M’ is an isomorphism of models
if and only if it preserves constants and preserves %.

Leta,, ..., a, be the elements of M, so numbered that o(C) = {ay, ..., &},
and let c,, ..., ¢, € C be such that ¢(c;) = a;.

(iii) Show that a bijective map o preserves constants if and only if a(a;) =
oc)fori=1,...,k

Forr € #, and (is, . . . , i) € Z}, we put

n ) = X, ..o %) if(ay, ..., @) € yr,
T W= oy, %) i@y . -, ) € U,

and X1y oy Xp) = ‘ /\ i)q(il,...,it).
UTEEERLL?
Write dist(x,...,x,) for ~5#(x;, x3) A ~F(xy, X3) A" A ~F(x1, X,)
ATt A ~J(xu—1’ xu)-
(iv) Show that

ka+ 1) o (gxn)(diSt(cl’ ceesClo X5 e e ey xn) A
r*(cl’ ooy Oy X150+ 05 xn))

is a theorem of J, and hence show that there exists a: M — M’ which is
bijective, preserves constants and preserves r. Extend this argument to show
for any finite subset & of &, that there is a bijective map a:M — M’ pre-
serving constants and &.

(v) Using the fact that there are only finitely many bijective maps
o:M — M, and observing that if some given a preserving constants is not
an isomorphism, then there is some r € £ not preserved by o, prove that
M and M’ are isomorphic. Hence prove that  is categorical.

§4 Reduction of Quantifiers

In any study of the decidability properties of a theory J = (4, 4, C),
one expects those elements g € P(J") which involve no quantifiers to pose
the least difficulty. If g € P(J) is quantifier-free, it is a propositional com-
bination of primitive propositions n(vy, . . ., v,) (r € &, v € V), whose truth
or falsity for any given interpretation of P is easily determined. Truth func-
tions then decide the truth or falsity of g. There are theories  having the
property that, for any p € P(J), a quantifier-free element g € P(J) can be
found such that 7 |- p <> q and var(q) = var(p). Such a process of quantifier
elimination could be useful in investigating the completeness or decidability
of . In practice, it is rarely possible to eliminate quantifiers completely,
and one must be content with a quantifier-reduction procedure. The resulting
element g is then a propositional combination of relatively simple proposi-
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tions which possibly involve quantifiers. We shall call these “simple” elements
of P(J") primary propositions.

Definition 4.1. Let I1 = P(J). We say that J admits Il-reduction of
quantifiers if there is a process which assigns to each p € P(J') an element
q € P(7) such that

(i) g is a propositional combination of elements of IT

(ii) var(g) < var(p),
and

(iiil) 7 p<q.

The utility of such a reduction procedure for any investigation depends
on the relative simplicity of the elements of II compared to the elements
of P(J). Every theory admits the useless reduction given by I1 = P(J) and
q = p. We give a more helpful example.

Example 4.2. Let & = ({#}, &, &) be the theory of equality, with
V = Vp = {x,JneN}. We write #(x, y) as x = y, and ~F(x, y) as x # ).
As the set of primary propositions, we take

I = {al(n)|neN} U {x; = xji,j € N}.

We introduce an abbreviation which we shall use in describing the
reduction process. For 1 < r < s, put

S r

dist,(xy,...,Xxs) = \/ ( /\ (%o # xaj) A /\ (V (xau = xa,)))s
a 1<j<r i=r+1 \j=1

where o ranges over the permutations (&, . . ., o) of (1, . . ., s). Observe that

dist,(xy, . . . , X, is true in an interpretation if and only if the interpretation

of x4, ..., x; gives exactly r distinct elements of the model. Now put

only(xy,...,x) = \/ (dist(xy,...,x) A ~al(r + 1)),
r=1

and observe that this is true for an interpretation if and only if the interpre-
tations of x4, . . . , X, are all the elements of the model. (Thus, only(x;, . . ., x,)
is true if and only if (Vx)((x = x;) v(x = x3) v - v (x = X)) is true.)
It is clear that only(x,, ..., x,) is a propositional combination of elements
of IT.

The following set of instructions constitutes the reduction process:

Step 0. If p is quantifier-free, put ¢ = p and stop. Otherwise, express p
in prenex normal form (see Exercise 4.18 of Chapter IV) 0,0, - - - Q,p;, where
the Q; are quantifiers and p, is quantifier-free (and hence a propositional
combination of elements of the form x; = x;).

Step 1. We have p = Q,0, - Q,p,, where the Q; are quantifiers and
P is a propositional combination of elements of I. If r = 0, put ¢ = p and
stop. If Q, is a universal quantifier (¥x), proceed to Step 2. If Q, is an existen-
tial quantifier (3x), then replace Q, by ~(Vx)~.
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Step 2. We have p = Q(Vx)p,, where Q consists of a (possibly empty)
string of quantifiers and possibly a negation, and p, is a propositional com-
bination of elements of IT. If x ¢ var(p,), replace p by Qp, and begin again
at Step 1. If x € var(p,), express p, in conjunctive normal form (see Exercise
3.10 of Chapter III):

P1 =4y AQy A" NGy,

where a; = dj v dy; v - Vv d,; with each d;; either a primary proposition
or the negation of a primary proposition.

k n;
Step 3. We have p = Q(Vx)p,, with p, = A\ \/ d;;, where each d;; is
j=1i=1
primary or the negation of a primary proposition. Foreachj = 1,2,...,k,
delete a; from p, if there is an i such that d;; = (v = v) for some v € V, unless
this holds for all j, in which case replace (Wx)p, by F = F and begin again
at Step 1.

k ny
Step4. We have p = Q(Vx)p,, with p; = /\ V d;;, where d;; is pri-
j=1i=1
mary or the negation of a primary proposition. For each j = 1,2,...,k,
delete from a; every d;; of the form (v # v) with v € V, unless for some j every

d;; has this form, in which case replace (Vx)p, by F and begin again at Step 1.
k nj
Step 5. We have p = Q(Vx)p, with p, = /\ \/ d;;, where d;; is pri-

j=1i=1
mary or the negation of a primary propositionl, and where no d;; has the
form (v = v) or the form (v # v). Put aj = \/{d,-j|x € var(d;;)}, and aj =
\/{d;;|x ¢ var(d;;)}, so that a; = aj v a]. Since the only elements = of IT for
which x € var(n) are the elements x = v for v € V, it follows that each non-
empty a; has the form

G=xX=0)Vvx=0)V " VX=0) V(X # W)V V(XH#W

for elements vy, ..., v, Wy,..., w, of ¥V — {x}. (Terms x = x or x # x are
excluded by Steps 3, 4.) For each j such that a] is non-empty, then

(a) if t = 0, replace aj by only (vy, . .., vy).
(b) ift = 1 and s = 0, replace a; by F.
(c) ift > Oand (s, t) # (0, 1), replace aj by
(Wy # wy) v(wy # w3) v vi(wg # w) V(v =wy) Ve v(o, = wy)

Finally, delete (Vx). Now return to Step 1.

In the above procedure, each step replaces the given proposition by
one equivalent to it (ie., true for preciscly the same interpretations). In
Step 5, for example, we note that (Vx)(a; A - - - A a;) is equivalent to
(VWx)a, A (Wx)ay A- -+ A (VX)a,, and consider each (Vx)a; separately. At
each return to Step 1, the number of quantifiers in the prefix has been reduced,
so the process must stop.

We illustrate the use of quantifier reduction by proving that £ is decidable.
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Theorem 4.3. The theory & = ({#}, &, &) is decidable.

Proof. Let p e #(8). The reduction process described above gives an
element g, equivalent to p, which is a propositional combination of elements
of II such that var(q) < var(p). Since var(p) = &, q is a propositional
combination of elements of the form p, = al(n + 1) (n = 1). Hence q is a
propositional combination of p,, p, ..., p. for some k. Let f:Z% — Z, be
the corresponding truth function. Then & |- g if and only if f(x,, ..., %) = 1
for all (x,, ..., x,) € Z% such that, forsome n (0 < n < k),x; = x, =+ =
x, =1land x,,; = X,+, = -+ = x;, = 0. This is so because these are the
only possible combinations of truth values for p,, . . ., p, in models of . []

We note that there is no need for a formal definition of decidability of a
first-order theory when one is proving constructively that a particular theory
is decidable—the proof is self-sufficient. Formality is required if one is to
show the nonexistence of a decision process, as we shall do in Chapter IX.
We also remark that the above result, on the decidability of the theory of
equality, is not in conflict with the theorem of Kalmar mentioned in Chapter
IV and proved in Chapter IX. Although the theory of equality involves a
binary predicate symbol, it also includes the axioms of identity.

Exercise 4.4. Show that the theory 2 (Exercise 3.21) of dense linear
order admits IT-reduction of quantifiers with IT = {(x; = x;), (x; < X;)|
i, j e N}. Hence show that 9 is decidable and complete.



Chapter VI
Zermelo-Fraenkel Set Theory

§1 Introduction

All the ordinary mathematical systems are constructed in terms of sets.
If we wish to study the reasoning used in mathematics, our model of mathe-
matics must include some form of set theory, for otherwise our study must
be restrictive. For example, Elementary Group Theory formalises almost
nothing of group theory. The pervasive role of set theory in mathematics
implies that any reasonable model of set theory will in effect contain a
model of all of mathematics (including the mathematics of this book).

The informal way in which properties of sets are used in mathematics
often means that one is aware of some of the more useful axioms of set
theory without necessarily having seen or studied sets as an axiomatic theory.
In those parts of mathematics where a careful account of set theory is
needed, the axiomatisation usually chosen is the one known as Zermelo-
Fraenkel Set Theory. We shall set out the axioms of this theory (which we
denote by ZF) with some brief comments on the significance of the various
axioms. We shall then see how this theory ZF may be formalised within
Pred,(V, #). Finally, we shall consider the significance of some of the results
of Chapter V for our formalised set theory. The reader interested in a more
detailed account of ZF is referred to [4].

§2 The Axioms of ZF

ZF is the study of a single type of object. Objects of this type will be
called sets. We shall admit another type of object, called a property of a set,
but the objects which make up any set will themselves be sets. Since one
customarily forms sets whose members are mathematical or physical objects
of diverse types, the requirement that members of sets must themselves be
sets may theretore seem restrictive. Experience has shown that with some
exceptions (which can be accommodated by an extension of the theory), all
the objects used in mathematics can be constructed as sets, while we can
avoid the need to form sets of physical objects by assigning mathematical
names to the objects and using the set of names.

In ZF, we study a single relationship’ between sets. This relationship is
called membership and will be denoted by €. Thus x € y is read “(the set) x

! We cannot formalise this relationship as a set of pairs, for we are after all just beginning to
define our set theory. Later, when we have constructed ZF, we shall see that the collection of
pairs involved cannot be a set within ZF.
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is a member of (the set) y”, or “x belongs to y”. We also study property
relationships, which are of the form “the set x has the property n”.

In the list of axioms of ZF which follows, some are described as axioms,
others as axiom schemas. The distinction will be explained when we construct
First-Order ZF.

(ZF1) Axiom of Extension. Ifa and b are sets, and if for all sets x we have
x€aifand only if x€ b, thena = b.

Thus two sets are equal if and only if they have the same members. We
shall write a = b if x € a implies x € b.

(ZF2) Axiom Schema of Subsets. For any set a and any property =, there
is a set b such that x € b if and only if x € a and has the property .

By (ZF1), this set is unique. We denote it by {x € a|x has n}. Assuming
that at least one set a exists, we can form the set & = {x € a|x # x}. Then for
all x we have x ¢ &¥. This set &, which is called the empty set, is independent
of the choice of the set a used in its construction. By (ZF1), {x € a;|x # x} =
{x€ay|x # x}. It is clear that for all sets b, & < b.

(ZF2) restricts the way in which a property may be used to form a set,
and thereby, the Russell paradox is avoided. It used to be assumed that, for
any property 7, one could form the set of all objects with that property.
Russell considered the property of not being a member of itself. If b is the
set of all sets which are not members of themselves, then consideration of
whether or not b is a member of itself leads at once to a contradiction. Using
(ZF2), one can only form b = {x € a|x ¢ x} starting from some given set a.
We then find that b € b is impossible, hence b ¢ b and so b ¢ a. The argument
does not lead to a contradiction, but instead proves that for any a, there is
a b such that b ¢ a. Thus there is no set of all sets.

(ZF3) Axiom of Pairing. If a and b are sets, then there exists a set ¢ such
thataecandbec.

Using (ZF2) with this set ¢, we can form the set {x e c|x = a or x = b}.
This is independent of the particular set ¢ having a and b as members, and
we call {x € ¢|x = a or x = b} the unordered pair whose members are a and
b, and denote it by {a, b}. In the special case where a = b, (ZF2) asserts the
existence of a set having a as a member. The unordered pair {a, a} has only
the one member a, and we denote it by {a}. The ordered pair (a, b) is now
defined to be {{a}, {a, b}}.

Exercise 2.1. If (a,b) = (c,d), prove a = ¢ and b = d. Make sure that
your proof allows for the possibility that a = b.

For any two sets a, b, we can form a N b = {x € a|x € b}. For any non-
empty set ¢, we can form nc = {x € b|x € a for all a € c}, where b is some
member of c. Nc is, of course, independent of the choice of b.

Exercise 2.2. Provethatanb = bna = n{a,b}.
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Although the axioms already given allow the formation of intersections,
the formation of unions requires a further axiom.

(ZF4) Axiom of Union. For every set c, there exists a set a such that, if
xebandbec, then x€a.

We can now form uc = {x € a|x € b for some b € c} where a s as in (ZF4).
uc is again independent of the particular a used, so we write simply uc =
{x|x € b for some b e c}. For any sets a and b, we can form a U b = U{a, b}.

Exercise 2.3. Show that the ordered pairs (a, b) for which a€ b do not
form a set. (Assume that there is a set ¢ = {(a, b)|a € b} and show that U(Ue)
is the set of all sets.)

The formation of ordered pairs is permitted by the axioms so far given,
but not the formation of the set of all ordered pairs of members of given
sets. The next axiom remedies this deficiency.

(ZF5) Axiom of the Power Set. For each set a, there exists a set b such
that,if x < a,thenx € b.

Using (ZF2), we obtain the existence of the power set of a: Pow(a) =
{xeb|x = a} = {x|x = a}, which is clearly independent of the choice of b.

(ZF5) allows formation of the cartesian product a x b = {(x, y)|x € a and
y € b}. To show this, we need only produce a set ¢ whose members include
all the required ordered pairs (x, y). But (x, y) = {{x}, {x, y}}, {x} = auU b,
{x, y} € a U b,and so both {x} and {x, y} are members of Pow(a U b). Thus
{{x}, {x, y}} = Pow(a U b), and consequently (x, y) € Pow(Pow(a U b)) for
allxeaand yeb.

With the cartesian product available, we can now define a relation be-
tween two sets a, b as a subset of a x b, and then a function f:a—> b as a
special type of relation. The set of all functions from a to b can be con-
structed as a subset of Pow(Pow(a x b)). For a set ¢, we define the cartesian
product (of the members) of ¢ by [ [c = {f:c » Uc|f(x) e x for all xec}.

Exercises

24. Whatis[]&?
2.5. For any set a, prove that there is no surjective function f:a —
Pow(a). (Consider b = {x € a|x ¢ f(x)}.)

Definition 2.6. The siccessor of the set x is the set x* = x U {x}. The
set a is called a successor set if &g €aand x* eaforall xea.

(ZF6) Axiom of Infinity. There exists a successor set.

This is the first axiom asserting unconditionally that sets exist. In par-
ticular, it asserts the existence of & as this is used in the definition of a
successor set. We can now define the set @ of natural numbers:

o = {x|x € a for every successor set a},
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using (ZF2) and some successor set. We use the usual symbols

O=g,
1=0"=gu{g}={d} = {0},
2=1*=10{1} ={0,1},

3=2*=1{0,1}u{2} = {0,1,2},

and so on. The set w together with the usual operations of addition and
multiplication will be denoted by N.

Exercises

2.7. The set n is called transitive if x € y and y € n imply that x € n.
Show that if n is transitive, then so isn*.

2.8. Ifsis a successor set, show that {n € s|n is transitive} is a successor
set. For all n € , prove that n is transitive.

29. Given that n = {x ew|x < n} and that n € w, show that n* =
{x € w|x = n*}. Hence prove for all n € w that

(@) n = {xealx < n},

(b) n¢n,

(c) forallxen,n & x.

(@ cbmeansa = banda # b.)
2.10. Show that 0,1, 2, ... are all different.

(ZF7) Axiom of Choice. For each set a, there exists a function f:{x €
Pow(a)|x # &} — a, such that for every non-empty subset x of a, f(x) € x.

The function f, called a choice function, selects from each non-empty
subset of a, a member of that subset.

(ZF8) Axiom Schema of Replacement. If & is a property of pairs of sets
such that for all x € a, (x, y) and (x, z) both having © implies that y = z, then
there exists a set b such that y € b if and only if there is an x € a such that
(x, y) has m.

Intuitively, the property n defines a function on some subset of a, and b
is the set of images under this function. But a function f:a — b is a subset of
a x b, and this requires b to be a set. The point of this axiom is that although
we are not given a function in the formal sense, the type of correspondence
it considers does in fact define a function.

(ZF9) Axiom Schema of Restriction. If m is any property of sets and if
there exists a set with m, then there exists a set a with &t such that for all x € a,
x does not have T.

(ZF9) excludes the possibility of an infinite sequence a;, a,, . .. of sets such
that a;+ € g; for all i. To see this, simply take 7 to be the property of being
the first member of some such sequence. By (ZF9), if there exists a set with
this property =, then there exists a set a with = such that no member of a
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has 7. But then a is the first member a, of some such sequence a; 34,3,
and clearly a, € a and has 7. Thus there can be no sets with this property.

Exercises

2.11. Show that (ZF9) implies the Axiom of Regularity: For any set
a # &, thereexistsbheasuchthatb na = &.

2.12. From the Axiom of Regularity, prove that for every set a, a ¢ a.

2.13. Provethatifa = a x a,thena = &.

§3 First-Order ZF

We formalise ZF as a first-order theory, which we shall denote by &.
We take as relation symbols just .#, €, both binary. We shall use no individual
constants in our construction. Where axioms are obvious formalisations of
the corresponding informal axioms, we set them down without comment. For
ease of understanding, we shall write x € y and x = y rather than the formally
correct €(x, y) and #(x, y), and the negations of these statements will be
written x € y and x # y.

(ZF1) (Va)(VYb)(((Vx)(xea<>xeb))=a = b).

In the informal version of (ZF2), we used a property = of sets. The in-
formal statement “x has property n.” becomes for us the predicate n(x), where
7 is an element of P(V, #), the notation n(x) simply describing the depen-
dence of 7 upon x. (The notation n(x) does not imply that var(n(x)) = {x}.)
For given n(x), (ZF2) becomes

(Va)@b)(Vx)(xeb<>(x€ea  n(x))),

but we must clearly restrict this by requiring that b ¢ var(n(x)). Moreover, the
theory & is to be without constants, and var(n(x)) could have members
other than g and x. Thus, if x,, ..., x, are these other variables, we take as
our axiom

(Vx1) - (Vx,)(Va)@)(Vx)(x e b <= (x € a A n(x))).

To simplify the notation, we introduce the convention that if p € P(V, #)
and var(p) = {xy,..., Xn}, then (V¥)p denotes (Vx,) - - - (¥x,)p. The order in
which x,, ..., x, are taken will not matter in any use we make of this nota-
tion. Using this convention, the axiom schema becomes

(ZF2) (V) (Va)@b)(Vx)(x€b<>(x€an n(x))) for all n(x)e P(V, R)
such that b ¢ var(n(x)).

Unlike (ZF1), which was a single element of P(V, ), (ZF2) is an infinite
collection of axioms, one for each n(x) € P(V, &) satisfying b ¢ var(n(x) ). This
is the reason for calling (ZF2) an axiom schema.
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Exercise 3.1. Some later axioms of & will have the form (V)(3a)(Vx)
(p(x) = x € a) for certain elements p(x)€ P(V, #). Show that {(V)3a)(Vx)
(p(x) = x€a)} F AV)@a)Vx)(p(x) < x € a).

We introduce further useful abbreviations. We write a = b for (Vx)(x €
a= xeb),a = {x|p(x)} for (Wx)(x€a < p(x)),a = {ai,..., a,} for (¥x)(x €
a<(x=a; Vv vx=a,))andc = (ab)for c = {{a}, {a, b}}, which itself
is an abbreviation whose meaning has been explained. In particular, a = &
is an abbreviation for (Vx)(x € a). We may now write down relatively con-
cise formal versions of four more axioms.

(ZF3) (Va)Vb)3c)aecAabec).

(ZF4) (V)Fa)(Vx)(((Fb)(xebrbec)) = x€a).

(ZF5) (Va)@b)(Vx)(x = a=x€b).

(ZF6) (3a)((@FD)b =T A bea))r(Vx)(xea=
@Ay =xu {x} A yea))).

Exercises

3.2. Prove & | (Va)(Vb)3c)(c = {a, b}).

3.3. Formalise and prove the formal result that if (a, b) = (c, d), then
a=candb = d.

34. Prove ¥ | ¢ # & = (M)(Vx)(x ed < (Vy)yec = xey))

In (ZF6), y = x U {x} is of course an abbreviation for (Vz)(z€ y <
(z = x v ze x)). We further preserve our informal notations for certain
sets by writing b = Pow(a) for (Vx)(xeb<>x < a) and ¢ = a x b for
(Vx)(xec<@)@)x = (y.2) Ayearzeb).

To make possible a formal version of (ZF7) of reasonable length, we
introduce three more abbreviations. We shall write (3!x)p(x) for(3x)(p(x) A
(Vy)(p(y) < y = x)) (as in Chapter V), f:a — b for

(@)(c =a x b)a(f <))
A(Vx)(xea=@y)(yeb) A @)z = (x,y) A z€ [))),
and y = f(x) for (3z)(z = (x, y) A z € f).

(ZFT) (Va)(Wb)((b = {x|(x = @) A (x # Z)}) = AN)(f:b - a)
(V)(V2)z = f(y) = z€ y))).

(ZF8) For every p(x, y) € P(V, R), (V)(((VX)(VY)(V2)((x € a A pl(x, y) A
p(x, 2)) = y = 2)) = @D)Vy)(ye b < @x)(x € a a p(x, )))).

(ZF9) For every p(x)e P(V, R),

(W)(@x)p(x) = 3a)(p(a) A (VX)(x € a = ~p(x)))).

This completes the formalisation of the axioms of our informal set theory,
and so completes the list of mathematical axioms of our first-order theory &.
By its construction, & is clearly a consistent theory if our informal set
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theory is consistent, because any proof of F in & has an informal equivalent.
Since this book (and also much of mathematics) is written in the context of
the informal set theory of ordinary mathematics, and since all of this is
destroyed if that set theory is inconsistent, we assume the consistency of
informal set theory. With this assumption, & is a consistent theory.

We now observe that the language #(&) is in fact independent of the
choice of the infinite set V of variables used, for if V; is a countable subset of
V, and if p € P(V, ®) has var(p) = &, then p € P(V,, &), and the result fol-
lows on recalling that there are no individual constants in our construction
of . We may therefore suppose that V is countable. Since # = {.#, €}, it
follows that P(V, &) is countable and hence that & is countable. By the
Lowenheim-Skolem Theorem, & has a countable model.

A theorem of ordinary set theory asserts the existence of uncountable sets,
and this theorem (with its proof) can be formalised in the theory &. Hence
there exists a countable model of a theory which has as a theorem the exis-
tence of uncountable sets! The paradox is resolved when we realise that it
arises by using the word “set” in two ways. Let us distinguish words used in
their ordinary sense from the same words used in the sense of the model by
using the adjectives real or model respectively. “< has a countable model”
then becomes “< has a real countable model”, i.e., there is a real function
from the real set of natural numbers onto the underlying set of the model.
For this model, every model set is at most real countable. But a model set is
model countable only if there is a model function from the model set of
natural numbers onto it, and the real function which counts it need not be
a model function.

§4 The Peano Axioms

We have seen how the natural numbers may be constructed in terms of
set theory. We now give an axiomisation of the natural numbers, and study
the relationship between this axiomatic system and Zermelo-Fraenkel set
theory.

Since addition and multiplication can be defined in terms of the successor
function?, it is sufficient to axiomatise this function. We denote the successor
of x by s(x). The Peano axioms for the natural number system N are:

P,: 0is a natural number.

P,: If x is a natural number, then s(x) is a uniquely determined natural
number (i.e., s is a function s: N - N).

P3: If x, y are natural numbers and if s(x) = s(y), then x = y.

P,: For each natural number x, s(x) # O.

Ps: If mis any property such that O has m, and such that if x has n then s(x)
has m, then every natural number has 7.

2 However, addition and multiplication are not definable within the theory 2 we are about
to construct. To be able to formalise their definitions, we have to add to £ relation symbols for
addition and multiplication. See Exercises 4.2-4.10.
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It is a well-known theorem that these axioms determine the system N to
isomorphism, i.e., if sets 4, A’, with functions s, s’ respectively, each satisfy
the axioms, then there exists a bijective function f: 4 — A4’ such that f(0) = 0’
and f(s(a)) = s'(f(a)) for all a € A. An informal proof of this runs as follows.
We define f(0) = 0/, and, if f(a) = a/, define f(s(a)) = s'(a’). Taking n(a) to
be the property that f(a) is uniquely defined by this rule, Ps then gives the
result that f is a function from A to A’. Similarly, we obtain a function
g:A’ - A. Taking now n(a) to be g(f(a)) = a, Ps gives the result that gf is
the identity. Similarly fg is the identity, and so fis the required isomorphism.

The Peano axioms are easily formalised as a first-order theory 2. We
take one unary relation symbol 6, with §(x) to mean x = 0, and one binary
relation symbol s, with s(x, y) to mean x is the successor of y. The axioms
then become

Pl: (3!x)9(x).

P;: (Wx)3!y)s(y, x)-

P3: (Wx)(Vy)(V2)((s(z, x) A s(z, y)) = x = y).

Py (Vx)(Vy)s(x, y) = ~0(x)).

Ps: (V)((@x)(0(x) A n(x)) A (VYNV2)((2) A S(y, 2) = 7(y))) = (Vy)n(y)),
for all n(x) € P(V, &) such that y, z & var(n(x)).

2 is clearly a countable theory, and has N as a model. By the Léwenheim-
Skolem Theorem, £ is not categorical. This result appears to contradict the
theorem that the Peano axioms determine N to isomorphism. But in for-
malising Ps, we have restricted the application of the axiom to those prop-
erties © which are expressible in terms of s and 0, and the properties & used
in the uniqueness proof are certainly not of this form. This argument is how-
ever only part of the whole story.

Within £, we cannot hope to formalise a proof of the uniqueness theorem.
We cannot even state the theorem in #(%). We need set theory for this, so
let us reformulate the Peano axioms within our formal set theory &, as a set
of assumptions on a triple (N, s, 0) of sets. We shall take (N, s, 0) to be the
subset of the first-order algebra of & consisting of the elements

P]_: Oe N,
P,: s:N > N,
P3: (Vx)(V))(V2)((z = s(x) Az = s(y)) = x = y),
Py (Vx) ~ (0 = s(x)),
and all elements of the form
Ps: (V)((m(0) A (WX)(VY)((y = s(x) A m(x)) = n(y))) = (V2)n(2)),
where y, z ¢ var(n(x)).
We write (N, s, 0) ~ (N, &/, 0') as an abbreviation for
ANSf:N > N)A (VI)V)V)((z = f(X) A z = f()) = x =)
A(Vx)(x € N' = @)x = f(3)) A (VVNVV((y = s(x)
rz=fx)nt=f(y)=1t=s))
It can be shown that Z(N, s, 0) U Z(N’, s', 0') I 4(N, s, 0) ~ (N, s, 0).
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Hence within &, the Peano axioms as now formulated in fact determine
N to isomorphism. The axioms of &, together with the assumptions Z(N, s, 0),
still do not determine N to isomorphism in the sense of our metalogic. There
are non-isomorphic models of &, and the systems of natural numbers within
these models may well be non-isomorphic. Our theorem asserts that models
of the natural numbers within a given model of & are isomorphic. Our
informal proof worked because we were working within an assumed set
theory.

Exercises

4.1. Rephrase our very informal proof of the uniqueness of the natural
numbers more carefully in terms of informal axiomatic set theory. (This may
be found in [12].) Note that the function f to be constructed is a subset of
N x N’ and must be constructed in a way permitted by the axioms. (The
inductive construction of f needs justification.) Set out the steps of the argu-
ment in sufficient detail for it to become clear that it can be formalised to give
a proof that Z(N, s, 0) U P(N', s, 0) | 4(N, s, 0) ~ (N, s, 0).

4.2. Addition is usually defined in terms of the successor function by

(i) x + 0 = x, and
(ii) x + s(y) = s(x + y).

Assuming the informal Peano axioms, show that (i) and (ii) define a func-
tion +:N x N — N, and that

@ 0+ x = x,

(b) s(x) + y = s(x + y),

©x+y=y+x

@DEx++z=x+(y+2),

() x + y = x + zimplies y = z.

Give a similar definition of multiplication in terms of addition and the
successor function, and establish its basic properties.

In the following exercises, x; = n(where n €eN) is used as an abbreviation
for

3yo)@y1) -+ - @yn-1)O(yo) A S(y1, Yo) A - "+ A S(Xs Yn—1)
ifn > 0, and means 0(x;) if n = 0. The expression x; = x; + nmeans x; = X;
ifn = 0, s(x;, x;) if n = 1, and
@y)@y2) - @Yn- (Y15 X;) A S(¥25 1) A= A S(Xi5 Yuy))
ifn> 1.
4.3. 2* is the theory formed from 2 by replacing the induction axiom

scheme P by

P35, 0:(Vx)(((Vy) ~ s(x, y)) = 6(x)),

Pt . :(Vx)(x # x + n) (n > 0).
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M; =N U (Z x I), where I is some index set. For m e M, 6(m) is interpreted
as true if and only if m = 0 e N, and s(m,, m,) is true if and only if either
myeNand m; =m, + 1,0or my = (z,i), where ze Z and ie I, and m; =
(z + 1,i). Show that M, is a model of #*, and that every model of 2* is
isomorphic to M, for some 1.

4.4. Prove that every theorem of 2* is a theorem of 2. Hence show that
every model of £ is isomorphic to M, for some I.

4.5. Show that 2* admits [T-reduction of quantifiers, where

= {x;=x; +nx; = nli,j,neNj.

Hence prove that 2* is decidable and complete.
4.6. Let n(xg, Xy, ..., X,) € P(P) = P(P*),and let ay, ..., a,e M. Put

X = {me M|n(m, ay, ..., a,)is true in M}.

Using the IT-reduction of quantifiers, show that X is either finite or has
finite complement in M;. Hence prove that M, satisfies the induction axiom
scheme P, and so is a model of 2.

4.7. From the completeness of #* and the fact that every theorem of
P* is a theorem of 2, deduce that every theorem of £ is a theorem of 2#*.
Hence prove that every M; is a model of 2.

4.8. (Proof that M, is a model of £ not using reduction of quantifiers.)
Show that 2 and #* are a-categorical for every uncountable cardinal o,
and so are complete. As in 4.7, deduce that every M, is a model of 2.

4.9. The theory & consists of 2 together with a ternary relation symbol
a and the additional axioms

(Vx)(VY)G'Z)a(x, Y, Z),
(VX)(Vy)(6(y) = a(x, y, X)),
(VX)(VY(V2(VE)(Vu)(s(z, y) A al(x, y,t) A a(x, z, u) = s(u, 1)).

Show that there is no relation on Mo, which, taken as ya, makes M, a model
of «7. Hence show that addition is not definable in 2.

4.10. Show that not every model of 2 is embeddable in a model of
S(ZF set theory).

4.11. Taking x < y as an abbreviation for (3z)a(x, y, z), show that the
axioms of a total order are theorems of o¢.



Chapter VII
Ultraproducts

§1 Ultraproducts

In many branches of mathematics, where one is studying a system of some
particular type, it is of interest to find out ways of forming new systems of the
given type from known examples. One useful method that can often be
applied is based on the cartesian product construction. In this section we
investigate this construction in the case where the underlying system is a
first-order theory 7 = (&, 4, C), and (M, v;, ;) for i € I is a family of models
of 7. We therefore investigate the possibility of making M = [ M; into a
model of 7, independently of the particular nature of 7.

An element of ]-[,.E, M;isafunctiona:I - |J;; M; such that a(i) € M. We
shall when convenient denote a(i) by a;, and call it the i-component of a. There
is now an obvious way to proceed. We define v: C — M by putting v(c); = v;(c),
and we define yr, for r € #,, by putting (a'V, ..., a™) e yrif @, ..., a™) e y;r
foralliel.

This construction gives a model M of  in some cases. For example,
since a cartesian product of groups is a group, the method works for the case
of elementary group theory. However, the method does not work in the case
of elementary field theory, because a cartesian product of fields is a commuta-
tive ring with 1 having non-zero noninvertible elements. (This is easily seen,
because all operations are defined componentwise, and hence ae M has an
inverse if and only if each g, is invertible. Take an a in which some but not all
a; are invertible.) Hence the above construction must be modified if it is to
work for all theories . We shall have to define : £ — rel(M) in such a way
that for every p(x,..., x,) € P(V, &), the relation yp given by p on M
corresponds to the relations ;p given on the M; in precisely the way that
the yr for r € # correspond to the y;r.

We simplify notation and work only with one variable formulae p(x). (The
n-variable case is covered by regarding x as an n-tuple (x,, . . ., x,,).) We shall
modify the definition of y by taking a € M to be in yp(x) if a; € Y;p(x) for all
i in some “suitable” subset of I, where we have yet to decide which subsets
of I are to be considered suitable. Since the definition is to apply to all p € P,
it applies to #(x, y). This means that if any subset other than I itself is allowed,
y.# will not be the identity relation on [ Ji; M;, but merely an equivalence
relation. Therefore we must reduce modulo y.# in order to obtain a model
of 7 —the equivalence classes will be the elements of the model.

We now investigate the conditions a family of “suitable” subsets of I
must satisfy. Denote such a family by #. Let p(x), q(x) € P, a € [ [ies M, and
let A = {i € I|g; satisfies p(x)}, B = {i € I|q; satisfies g(x)}. Since a formula

62
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should hold for some i if it is to hold at all, we have

() Zg¢F.
If A € &, then a satisfies p(x) and so must satisfy p(x) v g(x), whatever g(x)
may be. Thus forany B< I, Au Be # if Ae #. Hence

(ii) Every subset of I which contains a set of & belongs to #.
If Ae # and Be &, then a satisfies p(x) and g(x) and so must satisfy p(x) A g(x).
Thus A N B e % if A, B € #. Generalising to finite subfamilies of &, we have

(iii) Every finite intersection of sets of # belongs to #.
Finally, since a must satisfy exactly one of p(x) or ~ p(x), we have

(iv) For each A < I, exactly one of A and I — A4 belongs to &.

Definition 1.1. A set & of subsets of I satisfying the conditions (i), (ii)
and (iii) above is called a filter on I. A filter which satisfies (iv) is called an
ultrafilter.

The filters on 1, being subsets of Pow(!), are partially ordered by inclusion.
The ultrafilters are the maximal elements of the set of filters.

Examples

1.2. IflI # &, {I}isafilteron I.

1.3. Ifkisafixed element of I, F = {J < I|k € J} is an ultrafilter on I.
(Ultrafilters constructed in this way are called principal ultrafilters.)

1.4. If I is infinite, the complements of the finite subsets of I form a
filter. (When I = N, this filter is called the Fréchet filter.)

Exercise 1.5. # is an ultrafilter on I and J € #. Prove that #; =
{4 N J|A € #} is an ultrafilter on J, and that for 4 = I, A € & if and only
if AnJe &, (&, is called the restriction of # to J.)

Leta, b € [ [;c; M; and let # be an ultrafilter on I. We writea = b mod #
if {i e Ila; = b;} € #, and denote the congruence class containing a by a#.
The set of all congruence classes is denoted by [ [i.; M;/#. For each r € %,
we define the relation yr on [ [ic; M;/F by aF e yrif {ie I|g; e yir} € #.
(Here, a is an n-tuple if r € #,.) This definition is clearly independent of the
choice of representative of the congruence class. To complete the construc-
tion, we define v(c) for c € C to be the congruence class of the function
I - |Jies M; whose i-component is v;(c).

Theorem 1.6. [[..; M,/# is a model of T = (R, A, C). An element aF
of [lier Mi/#F satisfies p(x) € P (where a, x may be n-tuples) if and only if
{i € I|a; satisfies p(x)} € &.

Proof: [ Mi/# is clearly a model of 7' = (%, &, C). To show that
it is almodel of 7, we have to show that v(p) = 1 for all p € A. Since for
ped/{iel |pis true in M;} = I € &, this will be an immediate consequence
of the second assertion of the theorem. We shall prove this latter assertion
by induction over the length of p.
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If p = r(x), where r € &, then the result holds by the definition of yr. If
P = q; = ¢, then v(p) = 0 if and only if we have v(q;) = 1 and v(g,) = 0.
By induction, this holds precisely when J, = {i€ I|v(q,) = 1} and J, =
{i € I|v(g;) = O} are both in #. Put J; = J; nJ,. If J;€ #,then J, € F
and J, € # by condition (ii), while J, € # and J, € & imply J; € F by
condition (iii). Thus v(p) = 0 if and only if J; = {ie I|v(p) = 0} € #. By
condition (iv), o(p) = 1 if and only if I — J; = {ieI|vn(p) = 1} e #.

If p(x) = (Vy)q(x, y), then aF satisfies p(x) if and only if for every
bF €[ lict Mi/F, (aF, bF) satisfies q(x, y). By induction, the latter holds if
and only if for all b#, {ie I|(a;, b;) satisfies q(x, y)} € #. Let J = {ieI|g;
satisfies p(x)}. Suppose J € #. Then for all i € J and all b#, we have (a;, b;)
satisfies g(x, y) since g; satisfies (Vy)q(x, y). Thus aF satisfies p(x). Suppose
J ¢ #. Then for each ie K = I — J, there exists an element b; € M; such
that (a;, b;) does not satisfy g(x, y). Thus there exists b € [ [ie; M; such that,
for all i e K, (a;, b;) does not satisfy g(x, y). Since K € &, (aF, b#) does not
satisfy g(x, y) and a# does not satisfy p(x). []

Definition 1.7. The model [ [ M;/# of  is called the ultraproduct of
the models M; with respect to the ultrafilter &.

Exercises

1.8. Let p; be the ith prime and let F; be a field of characteristic p;.
Let & be an ultrafilter on the set I of positive integers, such that no member
of & is a singleton. Prove that [ [;; F;/# is a field of characteristic zero.

1.9. & is an ultrafilter on I, M; (i € I) are models of the theory 4, and
Je Z.Prove

l_[Mi/y = HMj/yJ,
iel jeJ

where & is the restriction of &# to J.

§2 Non-Principal Ultrafilters

Principal ultrafilters on I, as constructed in Exercise 1.3, are of no use
for the construction of new models, because an ultraproduct with respect to
a principal ultrafilter is always isomorphic to one of the factors.

Exercises
21. Ifkeland # = {J < I|ke J}, prove that
HM;/,Q" o~ Mk‘

el
2.2. % is an ultrafilter on I and A € & is a finite subset of I. Prove
that & is principal.
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We now investigate conditions on a set S of subsets of I for the existence
of an ultrafilter # 2 S. By an appropriate choice of S, we shall be able to
ensure that every such ultrafilter is non-principal.

Definition 2.3. The set S of subsets of I is said to have the finite inter-
section property if every finite subset of S has non-empty intersection.

Lemma 2.4. Let S be a set of I. There exists a filter on I containing S
if and only if S has the finite intersection property.

Proof: The necessity of the condition is immediate, so we prove its
sufficiency. Suppose S has the finite intersection property, and put

T={UcI|U=Jn - nJ,forsomenandsomeJ,,...,J, €8}

Let
# = {F c I|F 2 U for some U € T}.

We prove that #, which clearly contains S, is a filter. By the finite intersection
property of S, & ¢ T and so &J ¢ . Also, condition (ii) for a filter is clearly

satisfied by #. Finally, if F,, ..., F,e #,thenfori=1,...,n,F, 2 [] J;
=1
for some m; and Jy,, . .., J;n, € S. Hence.

n m,

if]l F20 0

i=1j=1
and so belongs to #. Thus condition (iii) is satisfied and & is a filter. []

Lemma 2.5. Let & be a filter on I. Then there exists an ultrafilter
F*Xo2Fonl

Proof: The set of filters containing & is an inductive set. By Zorn’s
Lemma, it has a maximal member #*. []

Exercises

2.6. Leto = |I|and suppose o> B> No. Put S = {J c I||I — Jj <B}.
Prove that S is a filter and that if & is an ultrafilter containing S, then no
member of # has cardinal less than .

2.7. An ultrafilter # on I is called uniform if |[J| = |I| for all J € #.
If # is a non-principal ultrafilter, show that there exists J € & such that
& ; is uniform.

2.8. Let I be a countable set, and & an untrafilteron I. If 6.1 — I is
a permutation, show that ¢ is also an ultrafilter on I. The collection
{oF |0 a permutation of I} may be called the orbit of #. Show that if #
is non-principal, its orbit contains exactly 2™ distinct ultrafilters.

2.9. A family o/ of infinite subsets of an infinite set X is called almost
disjoint (AD) if distinct members of &/ have finite intersection. &/ is called
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maximal almost disjoint (MAD) if it is maximal among the AD families.
Prove or disprove each of the following:

(a) Given any MAD family ., there is a non-principal ultrafilter #
such that o/ and & are disjoint.

(b) Given any non-principal ultrafilter # there is a MAD family o
such that o/ and & are disjoint.

§3 The Existence of an Algebraic Closure

We can now apply the theory of ultraproducts to prove a theorem of
considerable importance in algebra.

Theorem 3.1. Let F be afield. Then there exists an algebraic closure of F.

Proof: Let 7 be elementary field theory augmented by the addition of
the elements of F to the set of constants, and of all the relations a, + a, = as,
b,b, = b; holding in F to the set of axioms. The models of J are the ex-
tension fields of F. Put R = F[x], the ring of polynomials over F. For each
reR, let F, be a splitting field of r. Put

J, = {s e R|r splits over F,}.

Since ryry 1€ J,, N J, N nJ,, the set # = {J,|re R} has the
finite intersection property. By Lemmas 2.4 and 2.5, there exists an ultrafilter
& on R containing ¢. Put F* = [,z F,/#. Then F* is a model of 7 and
so is an extension field of #.

Let r = x" + rix" ! 4+ -+ + r, be a monic polynomial over F. We
prove that r splits over F*. We put

p=Q@ay) -@Qa)((ay + -+ an= —r)r(a1a; + aya3 + - +
Gn-1Gy = 1)) A A (@10 - Gy = (—1)"r,)).

Then p is true for precisely those models of  over which r splits. But
{seR|pis true in F,} = J, e #. By Théorem 1.6, p is true in F* and so
r splits over F*,

The proof of Theorem 3.1 is completed by the following purely algebraic
lemma.

Lemma 3.2. Let F* be an extension of the field F such that every monic
polynomial over F splits over F*. Let F be the set of all elements of F* which
are algebraic over F. Then F is an algebraic closure of F.

Proof: Let f(x) be a monic polynomial over F. Then f(x) = (x — a;)" "
(x — a,) for some a,,...,aq, in the splitting field of f(x) considered as a
polynomial over F*. But the a;, being algebraic over F, are algebraic over
F. Let m;(x) be the minimum polynomial of g; over F. Since m;(x) splits over
F*_its roots lie in F* and, being algebraic over F, are therefore in F. Thus
ai,...,a,€F and f(x) splits over F. Hence F is algebraically closed. []
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Exercises

3.3. If F is not algebraically closed, prove that the ultrafilter used in the
proof of Theorem 3.1 is not principal.

3.4. In the notation of the proof of Theorem 3.1, show that if F is finite,
then {se R|F, = F,} ¢ #.

3.5. If Fisnotalgebraically closed, prove that F* (constructed as above)
is not algebraic over F. (If F is infinite, show that elements a, € F, can be
chosen such that g, and a, have the same minimum polynomial only for » = s.
If F is finite, show that the elements a, € F, can be chosen such that a, and a,
have the same minimum polynomial only for those r, s for which F, = F,.)

3.6. F is a field. For all i € I, take F; = F and form the ultraproduct
K = []. Fi/# with respect to the ultrafilter #. Prove that K is a pure tran-
scendental extension of F.

§4 Non-trivial Ultrapowers

An ultraproduct [ ], M;/# in which M; = M for all ie I is called an
ultrapower of M and denoted by M!/#. There is a natural embedding 6: M —
M!/ZF of M in M'/# given by O(m) = f,.%, wheref,:I - M is the constant
function f,,(i) = mfor all i € I. By identifying m with 6(m), we may regard M
as a subset of M’/%. (Alternatively, we may replace the theory J by the
theory ' formed from Z by replacing C by C U M. By Theorem 1.6,
M!/# is a model of 7. Since each element m € M is a constant of 7, this
also givesamap v:M — M!/%)

Exercise 4.1. Prove that the maps 6, v:M — M!/# coincide.

We shall always make this identification of M with (M), and we omit
specific mention of the map 6. The ultrapower M’/ is regarded as trivial if
M!/F = M, so we shall look for conditions which ensure non-triviality.

Exercise 4.2. If M is finite, prove that M'/# = M.

Definition 4.3. Let o be a cardinal. The ultrafilter & on I is called a-
complete if, for every subset ¥ < # of cardinal a, we have N% € &#. Other-
wise, # is called a-incomplete. (It is usual in this context to denote [N| by w.)

Lemma 4.4. Let a be an infinite cardinal and let # be an a-incomplete
ultrafilter on 1. Then there exists a partition of I into o disjoint subsets, none
of whichisin &.

Proof: The cardinal « is an ordinal, « = {B|p ordinal, § < a}. Since #
is a-incomplete, there exists ¥ = # such that |%| = « and N% ¢ #. We
index the members of ¢ with the ordinals less than a, so that ¥ = {Gﬂlﬂ < a}.
For each ordinal 8 < o, put X; = n{G,|y < B} (interpreting this for § = 0
to mean X, = I), and put Y3 = X5 — X, for f < a. For f = a, put
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Y, = X,. Then {Y;|B < «} is a partition of I into « disjoint subsets. Since
Y, = n%, we have Y, ¢ #. Suppose Y; € & for some f < a. Then X; —
Xpi1€F. Since also Gge #, we have (X; — X5,1) N Gge F. But
Xy —Xp41)NGy=BeZF. []

Lemma 4.5. Let & be an a-complete ultrafilter on I. Then for every par-
tition of I into a set 4 of « disjoint subsets, some member of 9 is in .

Exercise 4.6. Prove Lemma 4.5.

Theorem 4.7. Let & be an ultrafilter on I and let « = |M|. Then M =
M/ if and only if F is a-complete.

Proof: Suppose # is a-complete. An element of M!/F is f # for some
f:1 - M. For each me M, put J,, = {i € I|f(i) = m}. Then {J,|me M} is
a partition of I into « disjoint subsets. By Lemma 4.6, J,, € # for some me M.
This implies f# = m.

Suppose now that & is a-incomplete. Then o must be infinite, and so,
by Lemma 4.4, there is a partition of I into « disjoint subsets, none of which
is in #. We may index these subsets with the elements of M. Let {J,,|m € M}
be such a partition of I, and let f(i) be the unique m € M such that i € J,,,.
This defines a function f:I — M such that f# ¢ M. []

Exercise 4.8. # is a non-principal ultrafilter on I, and f is the smallest
cardinal for which & is p-incomplete. [M| = a > . Prove that |M*/#| > «.

It can be proved (cf [1], p. 112, Theorem 1.11) that if |I| is less than the
first strongly inaccessible cardinal, then every non-principal ultrafilter on I
is w-incomplete. This means that if # is non-principal, then M!/# # M
except when [ is very large or when M is finite.

Exercise 4.9. Let a be an infinite cardinal and let A be a set of cardinal a.
Put M = 4 U Pow(4), and # = {4, €, ¢, s} where e, s are unary and 4, €
are binary. Interpreting e(x) as x is an element of A4, s(x) as x is a subset of 4,
and €(x, y) as x is a member of y (for x in 4, y in Pow(A4)), form the theory
T = (R, A, C) with # as above, C = M and 4 = {pe L(J)|p true in M}.
For any model N of 7, put B = {ne Nle(n) is true} and D = {ne N|s(n)
is true}. Show that each d e D is determined by the set {b € B|e(b, d) is true}
and hence identify D with a subset of Pow(B). In the special case where & is
an a-complete ultrafilter on a set I of cardinal 2* and N = M!/#, prove
that B = A and N = M. Hence prove that an a-complete ultrafilter on a set
of cardinal 2* is principal.

§5 Ultrapowers of Number Systems

We have seen that the theory of N (i.e., the theory I = (&, A, C) where
R={S +,%,<},C=Nand 4 ={peL(T)|p true in N} cannot be
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categorical, and the same is true for the theories of the other standard systems
Z,Q, R and C. We use ultrapowers to produce models of these theories
which are not isomorphic to their standard models. We take the set N as
index set I. Let & be a non-principal ultrafilter on I. Since & contains no
finite sets, every subset of I with finite complement is in & (i.e., & is an exten-
sion of the Fréchet filter on I). Trivially, # is w-incomplete. By Theorem
4.7,if M is any of N, Z, Q, R or C, then M!/# # M.

An element of N/ is just a sequence of natural numbers. When we form
N!/#, we are, among other things, identifying sequences which are the same
from some point onwards. Consider the element u# of N'/# given by the
function u: N — N defined by u(i) = i. This element u# is infinite, in the
sense that u# > n for all n e N. To see this, let k,: N - N be the constant
function k(i) = n for all ie N. Then n = k,& and {i e Nlu(i) > k,(i)} =
{ieN|i > n} € #. Hence by Theorem 1.6, u# > k,%. Similarly, we can
show that Q'/# has infinitesimal elements. For if v: N — Q is defined by
o(i) = 1fifori > 0,v(0) = 1, then koF < vF < k,F for all r € Q such that
r > 0. We clearly have natural inclusions N//# c Z!/# < Q'/.? c
Rl/7 < Cl/7.

Exercise 5.1. Let N be a model of the theory of N which properly con-
tains N. Show that N has infinite elements. Show also that if Q is a model of
the theory of Q which properly contains Q, then Q has non-zero infinitesimal
elements.

Let  be the theory of N. Form the theory ' by adding a new constant
u and the new axioms u > n for all n € N. This theory 7' is consistent, indeed
N!/#,with u interpreted as u#, is a model of 7. As I’ is a countable theory,
the Lowenheim-Skolem Theorem (Theorem 3.18 of Chapter V) shows that it
has a countable model. The model N’/ is uncountable, and it is natural to
try to modify the ultrapower construction so as to obtain a countable model.
We shall take a subset S of the set N’ of all functions from I into N and
reduce this set S modulo an ultrafilter &.

Let 7 = (&, A, C) be any theory, {M;|i € I'} a family of models of 7,
and # an ultrafilter on I. If § is any non-empty subset of [ [,.; M;, which
includes all the functions k,:I — [].; M; defined by k(i) = v{(c) for ce C,
i€ I, then S/& is a model of (%, &, C).

Definition 5.2. S/ is called a subultraproduct of {M;|i € I} with respect
to the ultrafilter &.

A subultraproduct S/# of models M; of 7 = (%, A, C) is a model of
(2, &, C), but unless further conditions are imposed on S or on A4, it need
not be a model of 7. If we examine the proof of Theorem 1.6, we see that it
applies unaltered, except for the section which shows that aF satisfies
p(x) = (Vy)q(x, y) only if the set J = {ie I|q; satisfies p(x)} is in #. For
each iel — J, there exists an element b; € M; such that (a;, b;) does not



satisfy g(x, y), but we can no longer conclude from this that there exists a
function b € S such that for all ie I — J, (a;, b;) does not satisfy g(x, y). If
S is chosen so that these functions always exist, then the assertions of Theorem
1.6 will continue to hold for S/#. The next theorem shows how to achieve
this. The reader is asked to recall Definition 2.11 of Chapter V.

Theorem 5.3. Let J be the theory of N. Let S be the set of all functions
s: N — N which are definable in 7. Let &F be an ultrafilter on N. Then the
subultraproduct S/ is a countable model of I . If & is not principal, then
S/F # N.

Proof: To show that S/# is a model of 7, it remains for us to show that
if ae S and J = {i eN|aq; satisfies (Vy)q(x, y)} ¢ &, then there exists be S
such that, for all ie N — J, we have that (a;, b;) does not satisfy g(x, y).
We put
b; = 0 if g; satisfies (Vy)q(x, y),

b; = the least n for which (a;, n) does not satisfy g(x, y)
if a; does not satisfy (Vy)q(x, ).

Since a is a definable function, so is b, and the assertion follows. Since P is
countable, so is S and hence so is S/#. The function u: N— N given by
u(i) = i is clearly definable, as are the constant functions k,. If # is non-
principal, then {i e N|u(i) = k,(i)} = {n} ¢ # andso S/F # N. []

§6 Direct Limits

There is a connection between the idea of a subultraproduct, introduced
in §5, and the idea of a direct limit, which arises in a number of algebraic
contexts, and which we now explain. A directed set is a partially ordered
set (I, <)such that forany i,je I, thereisa ke I suchthati < kandj < k.
A direct family” in a category € is a set {4;|i € I} of objects 4; of € indexed
by a directed set I, together with a morphism f}: 4; — A; for each pair i < j
in I, such that

() fi=1,foralliel,
(i) fifi= fiforalli<j< kinl

Definition 6.1. A direct limit in ¢, or more precisely a limit of the direct
family {A,, fili,jeI} in %, is an object L of 6 together with morphisms
¢': A; - L such that

(i) ¢f} = ¢'foralli < jinI, and

(ii) for any object M of ¢ and family of morphisms y': 4; - M satisfying

Y'fi = ¢ for all i < jin I, there exists a unique morphism 6:L— M
such that ¢’ = ¢/ for all i e I.

! More neatly but less intuitively defined as follows: regard the directed set as a category
with objects the elements of I and morphisms from i to j the pairs (i, j) with i < j. A direct family
in € is then a functor from this category into €.
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Let 7 = (#, A, C) be a theory. We associate with J the category
Mod(Z), whose objects are the models of 7~ and whose morphisms are the
maps f:M — M’ between models (M, v, ) and (M’, v/, §'), such that f¥(c) =
v'(c) for all c e C, and such that (f(m,),..., f(m,)) e y'r for all re #, and
(my,...,m;) € yr. As an aid to the study of Mod(J"), we use the theory
T, = (®, F,C) and its associated category Mod(J ;). Every object of
Mod(J) is an object of Mod(Z ), and the morphisms in Mod(J") between
any two of its objects are precisely the morphisms between them in Mod(Z ).

Exercise 6.2. R is a ring and J is the elementary theory of R-modules.
Show that the category of R-modules is precisely the category Mod(J").

Lemma 6.3. For any theory 7, direct limits exist in Mod(Z 4 ).

Proof: Let {M,, fili,jel,i < j} be a direct family in Mod(7 4). We
construct a limit as a subultraproduct. Put F; = {j e I|j > i}, and let # be
any ultrafilter containing all the F;. (Actually, we do not need & to be an
ultrafilter—any filter containing the F; will do.) Put

S = {s:] > |JMi|s;e M;forallieI;for some F € #, fis, = s;
el

for all i, j e F with i < j}.
Then put L = S/# and define ¢': M; — L by ¢'(m) = s, where s is given
by s; = fim for all j e F;, and s; is chosen arbitrarily for j ¢ F;. The element
s# of L is clearly independent of the choice of s; for j ¢ F;. L, being a sub-
ultraproduct of models M; of 7, is a model of 7 . The ¢' are clearly mor-
phisms of Mod(7 ) satisfying (i) of Definition 6.1.

Now let N be a model of 7, and let y':M; - N be morphisms in
Mod(7 ) such that yifi = ¢ for all i < jin I. Let se S satisfy fis; = s;
for all i, j e F such that i < j, where F is a member of &#. If i € F and if
m = s;€ M;, then s# = ¢'(m). The condition on the map §:L — N to be
constructed requires that 8(s#) = y(m). Hence 0, if it exists, is unique. We
define 6 by putting 8(s#) = Y(s;) for some i € F, and we must show that
this definition is independent of the choice of i.

Suppose that j € F. Then there exists k € I such that i < k and j < k.
Since F N Fye #,F n F, # & , and so there exists an r € F N F,. We have
s, = fis; = fis;, and so

Y's; = Y'fisi = Y's, = ‘/’jsj'
Thus 6 is well-defined. Clearly, 8 is a morphism satisfying the requirements
of condition (ii) of the definition. []

We are interested in direct limits in Mod(Z ). The next lemma reduces
this problem to an investigation of the subultraproduct constructed above.

Lemma 6.4. The direct family {M,, fili,jel,i <j} has a limit in
Mod(7) if and only if the subultraproduct S/ constructed above is a model
of 7.
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Proof: 1If S/ is a model of , then it is clearly a limit in Mod(Z") of
the given family. If L is a limit in Mod(J") of the family, then L is also a
limit in Mod(J ), and so is isomorphic to S/#. Thus S/ is a model
of 7. [J

We now investigate conditions on J for S/# to be a model of 7.

Definition 6.5. An element p € P(V, &) is called universal if it has the

form (Vy1) - (Vya(xy, - - - 5 X,y Y15 - - - » ¥s), Where GX15 e e s Xy Vis oo vs .Vs)
contains no quantifiers.

The argument used in proving Theorem 1.6 shows that the element s&
will satisfy p(x) = (Vy)q(x, y), where g(x, y) contains no quantifiers, if
{i € I|s; satisfies p(x)} € &#. (This includes the case where x, y are n-tuples.)
Thus every axiom of 4 which is universal is satisfied in S/#.

Definition 6.6. A theory J is called algebraic if every axiom of J is
either universal or has the form

(vxl) e (er)(a)’l) Tt (3Y3)P(x1, ceesXps Yisenns Vs Clseees Cp)s

where c; € C and p is constructed from primitive elements of P(V, %) by
using v, A only. The category Mod(J) is called algebraic if F is algebraic.

The reason for the name is that if the relation symbol re &,,, is to
correspond to an n-ary operation of an algebra, then we require the axioms
(vxl)"'(vxn)(g)))r(xb- <5 X, .V) and (Vxl). “(Vxn)(v)’)(vz)(r(xls' o5 Xps .V) A
F(X1,..., X, 2) = y = z). Note that the second of these axioms is universal,
and the first is admissible for an algebraic theory.

Theorem 6.7. Let I be an algebraic theory. Then direct limits exist in
Mod(S).

Proof: Let g = (V¥Yx)@y)p(x, y, ¢) be an axiom of F, where p(x, y, c) is
constructed from primitive elements of P(V, &) using only v, A. (x, y, c may
denote n-tuples.) Let a# € S/# and let o; = v;(c). We have, for some F € &,
fia; = a; for all i, je F with i < j. Take an ie F, and put F'=Fn F,.
Since q is satisfied in M;, there exists m; € M; such that (a;, m;, g;) satisfies
p(x, y, ¢). For j € F/, put m; = fim;. Since a; = fla; and o; = fig;, it follows
from the nature of p and the fact that £ is a morphism that (a;, m;, ;) satisfies
p(x, y, ¢). Choose m; arbitrarily for j¢ F'. Then me S and (a¥, m¥%, 6 %)
satisfies p(x, y, c). Hence g is satisfied in S/#. []

Corollary 6.8. Direct limits exist in any variety of universal algebras.

Exercises

6.9. Show that direct limits exist in the category whose objects are
fields and whose morphisms are ring homomorphisms, but that not even
finite direct sums exist in this category. Show that the algebraic closure of a
field is obtainable as a direct limit.
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6.10. Show that the conditions we have imposed on the existential
axioms cannot be weakened either by (a) allowing the negation of a primitive
relation, or (b) allowing an existential quantifier to precede a universal quan-
tifier. (Take the direct family, indexed by N, of the sets {0,1,...,n} and
inclusion maps, (a) with property p(x) truein {0, 1,...,n} for0,1,...,n — 1,
(b) with relation < and axiom @Ax)(Vy)y < x).)

6.11. Show that compact topological spaces and continuous maps do
not form an algebraic category.



Chapter VIII
Non-Standard Models

§1 Elementary Standard Systems

Much of mathematics is concerned with the study of “standard” mathe-
matical systems such as the natural numbers, the rationals, the real numbers
and the complex numbers, each of which is regarded as a unique system.
When we attempt to study one of these systems by axiomatising it within
the first-order predicate calculus, we find that our axiomatisation cannot
be categorical, and that there exist models of our axiomatic theory not iso-
morphic to the system we wish to study. Such models have been constructed
as ultrapowers in Chapter VII. In this chapter, we investigate ways of ex-
ploiting such models in the study of a standard system. We begin by con-
sidering elementary systems, i.e., systems in which relations between elements,
but not properties of subsets, can be studied.

Definition 1.1. An elementary standard system S is a set S together with
a subset & of the set of relations on S such that .# € £.

2 is the set of relations on S considered to be of interest. It is usual to
denote the underlying set S of S by the same symbol S, and we shall do so.

Example 1.2. The elementary real number system R consists of the set
R of real numbers together with the set # = {#, +, x, <} of relations on
R. Here, + is the ternary relation (a, b, c) € + if and only ifa + b = ¢, and
x is defined similarly.

Let S = (S, #) be an elementary standard system. We takeaset V o> S,
such that ¥V — S is countably infinite, and form the first-order algebra
P(S) = P(V, &). In this algebra, we think of elements of S and # as names
for themselves®.

Definition 1.3. The language of S is the subset £(S) = {pe P(V, R)|
var(p) < S} of P(V, &).

Interpreting each element of S and 2 as itself assigns a truth value v(p)

to each p € Z(S).

Definition 1.4. The theory of S is the theory J(S) = (£, A, S) where
A= {peL©O)up) = 1}.

1 If we wish to distinguish between the objects and their names, we take for each element
a€ S and p € & elements d', p’, and use these in the construction of P.

14
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7 (8) is a complete theory with S as a model. The theorems of this theory
are its axioms, and consist of all elements of .#(S) which are true in S or in
any other model of 7(S). If the axiom set 4 were fully known, then 7(S)
could give us no new information about S. However, our knowledge of S is
usually incomplete, and any method which extends our knowledge of 4 in
fact extends our knowledge of S. If we can choose a model *S of 7(S) such
that the truth or falsity of certain statements p € #(S) is more easily deter-
mined (by argument in the meta-language) for *S than for S, then we have
amethod of utilising 77(S) to discover properties of S. Our aim is to construct
some useful models *S.

Exercise 1.5. It is assumed above that the theory with relation symbols
2 and axioms A4 has S as its set of constants. Prove this.

Definition 1.6. Let *S be any model of 7(S). We say that *S is a standard
model of F(S) if *S is isomorphic to S, and otherwise *S is called a non-
standard model of T (8S).

Let *S = (*S, ¢, Y¥) be any model of 7(S). Then ¢: S — *S embeds S in
*8, since if a, b are distinct elements of S, then (a # b) € A and so is true in
*S, ie., p(a) # @(b). Similarly, for any n-ary relation p € £, the restriction to
¢(S) of the relation y(p) is precisely the relation on ¢(S) which corresponds
under ¢ to the relation p on S. We shall therefore always identify S with its
image under ¢ in *S, and so regard the model *S as containing the standard
model S.

§2 Reduction of the Order

First-order logic does not permit us to study properties of relations, or
to discuss statements such as “For all n-ary relations, . . .”. This restriction
excludes from consideration most of the material in a subject such as real
analysis, where functions of various types occupy a dominant place. The
general consideration of properties of relations requires a higher-order logic.
Fortunately, there is a trick which enables us to bring within the scope of our
first-order predicate calculus all these higher-order concepts for any one
mathematical system. For any set S, let rel(S) denote the set of all relations
on S.

Definition 2.1. Let S be any set. We define the set 0%S), of kth-order
objects on S, by 0°(S) = S, and O**(S) = O%S) U rel(®)S)). Further, we
put 0°(S) = >0 OKS).

For each n, we introduce an (n + 1)-ary relation symbol €". If p is an
n-ary relation on S, and ifa,, . . ., a, € S, we can now formalise the statement
that (a,,...,a,) is in p as €(p, a,. . ., a,), as well as by p(a,, ..., a,). We
have made p into an individual constant of a larger theory, and we may if
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we wish omit p from the set of relation symbols. Among the unary relations
on 8, there is S itself, and those elements of the extended system @*(S) which
belong to S are distinguished as those for which the formal statement (S, a)
is true. The statement that p € ©'(S) is an n-ary relation on S can be for-
malised as

Tn(p) = (axl) e Gxn)(el(s, xl) At A el(Ss xn) A G”(p, xls ceey xn) )s

while the statement that p is an n-ary relation on the subsets S, ..., S, of
S can be formalised as

TP Styeins Sn) = ‘l.’,.(P) A(Vxg) e (Vxn)(e”(p’ Xy ooy Xn)
= el(Sl’ xl) At A el(Sm xn) )'

We can now handle second-order concepts on a standard system S by
forming 7 (0'(S)), where the set of relation symbols includes the symbols
€" and those required for the properties of relations we wish to study. The
statement that all n-ary relations have the property = can then be formalised
as (Vx)(t,(x) = n(x)).

This process may be applied to still higher-order concepts. (k + 1)th-order
objects can be studied in I (0%(S)), which we call the (k + 1)th-order theory
of S. We call 0%(S), together with an appropriate set of relation symbols, a
(k + 1)th-order standard (mathematical) system, and O0®(S) an infinite order
standard system. We point out that 7 (0%S)) (including the case k = ) is
still a first-order theory of an elementary standard system, namely the system
0%(S). Theorems proved about elementary standard systems thus become
applicable to higher-order standard systems.

§3 Enlargements

We recall the definition of a definable n-ary relation p on a standard
system S. We say that p is definable in 77(S) if there is an element p(x,,...,X,) €
P(S), where x;,...,x,€ V — S and var(p(x, ..., Xp)) S {Xg, ..., Xa} U S,
such that

p={@y...,a)eS"pay,...,a,is truein S}.

Any such p(xy, ..., x,) is called a description of p. In our work, it will
not matter which description of a definable relation p we use. We write
p(xy, .- ., X,) for some description of p. In the special case where p is a
definable subset of S, we use (x € p) to denote an arbitrary description of p.

Let S be a standard system, and let p(x, y) define a binary relation in J7(S).
We define the domain of p to be the set D,, where

D, = {a€S|p(a, b) is true in S for some b € S}.

Definition 3.1. A concurrent relation of S is a definable binary relation
p = p(x, y)in I (S)suchthat D, # & and, for every finite subset {a, . . . , a,}
of D,, there is a b € S such that p(a;, b) is true fori = 1,...,n.
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Example 3.2. We consider the (elementary) real number systemR. In R,
< isaconcurrent relation with domain D . = R. For any finite set {x;, ..., X}
of real numbers, y = 1 + max;(x;) satisfies x; < yfori=1,...,n

Now let ¢ be any set of concurrent relations of the standard system S.
For each p € g, we take a new variable c, ¢ Vand form V° = V' u {c,,|p € g},
P° = P(V°, ). We put

A, = {p(x, c,)|p€oand x e D,}.

Definition 3.3. The enlargement of 7 = (X, A, S) with respect to ¢ is
the theory 7° = (#, A U 4,, S U {c,|p € 6}). When ¢ is the set of all con-
current relations of S, we call 7 the full enlargement of J°, and denote it
by *7.

Theorem 3.4. Let I = J(S) and let ¢ be any set of concurrent relations
of S. Then J°° is consistent.

Proof. Suppose 7 |- F. Then A, | 5F for some finite subset 4, of 4,.
Let 4o = {pj(xi5 ¢ )i = 1,...,7r; j=1,...,n}, where x;;€D,. Since
{X1j» . - -» %,,;} is a finite subset of D, , there exists b; € S such that pj(x;;, b;)
is true in S for i = 1,...,r; Mapping c,, to b; for j = 1,..., n makes S
a model of the theory I = (®#, A U Ao, SU {c,|j = 1,..., n}). Hence 7~
is consistent, which contradicts the assumption that A U A + F. Thus °
is consistent. []

Since 77 is consistent, it has a model. Let S° be any model of 7°. As we
have already indicated, S° has the standard model S of J embedded in it.
We call §? a g-enlargement of S. A model *S of *.7 is called a full enlarge-
ment of S.

Suppose that §° = S. Then for each p € g, the constant c, of I is
interpreted as some b, € S which satisfies p(x, b,) for all x € D,. Thus all we
have achieved is the introduction of a new name c, for the element b,. The
new axioms p(x, c,) reduce to axioms of J if we replace c, by b,, and so if
we add to 77 the further axioms c, = b, for all p € o, the resulting theory
is equivalent to J in the sense that the two theories have the same models.
Such an enlargement J7° is of little use in studying J~ and is called a trivial
enlargement.

Exercise 3.5. Use the ultrapower construction studied in §5 of Chapter
VII to give an alternative proof of Theorem 3.4.

One standard system may be contained in another, as in the case of the
integers Z and the reals R. We shall now obtain a useful result on enlarge-
ments of systems related in this way.

Definition 3.6. Let S = (S, &) and S; = (S;, #,) be standard systems.
We say that S is a subsystem of S, and write $ < S;,if # = #, and if S
is a definable subset of S,.
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Examples

3.7. Foranys$, S < 0'(S) < 0*S) < -+ < 0°(S).

3.8. TakeR = (R, {4, +, x, <, i}), where i(x) is interpreted as “x is an
integer”. Then Z = (Z, {4, +, x, <})is a subsystem of R.

39. 0XZ) < O**'(R)for all k > 0.

Let S < S,, and let p(x, y) be a concurrent relation of S. Since S is
definable, the relation p on S can be defined in P(S,) by

p1(x, y) = (x € 8) A (y € S) A p(x, y).

This p, is a concurrent relation on S,, consisting of precisely those pairs of
elements which are in p. In general, if o, 6, are sets of concurrent relations
of S, S, respectively, we say ¢ < o, if, for every p € 6, we have that the
corresponding p, € o,.

Theorem 3.10. Let S < S,, and let o, o, be sets of concurrent relations
of S, S, such that o < 0. Let S}* be an enlargement of S, with respect to o,.
Then S§' contains an enlargement S° of S with respect to o. In particular,
any full enlargement of S, contains a full enlargement of S.

Proof. Put 8° = {a e S{!|p(a) is true in S{'}, where p(x) € P(S,) is such
that S = {ae S,|p(a) is true in S,}. 87 is clearly a model of J(S), and we
must show that for each p € g, there is a b, € $° such that p(a, b,) is true in
S? for all ae D,. Now p, is a concurrent relation of S,, hence there is a
b,, € 7' such that p,(a, b,,) is true in S{* forallae D,,. But D, = D,, and
by the construction of p,, p,(a, b,,) true implies that b, € S°. Thus we can
takeb, = b,. []

§4 Standard Relations

Definition 4.1. Let S° be an enlargement of S. A standard n-ary relation
on S? is a relation

p° = {(as,...,a)e(8°)|play, ..., a,) is true in 87}

for some definable n-ary relation p on S. .
We also define a standard element of S° to be an element of S.

Exercises

4.2. Show that the standard relation p° is independent of the choice of
description of p.

4.3. Show that the one-element subset {a} of S° is standard if and only
if a is standard.

Theorem 4.4. Let *S be a full enlargement of S and let u be a definable
subset of S. Then *u = u if and only if u is finite.
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Proof. Suppose that u = {uy, ..., u,} is finite. Then
u(x) = (x = ug) v(x =u) v v(x =u)
is a description of u, and
*u={ae*S|@a=u)v@=uy) v v(a=u)istruein*S$} = u.

Suppose that u is infinite. Let p be the binary relation on S defined by
p(x,y) = (x€u) A (y€u) a(x # y). Then D, = u and, since u is infinite, for
any uy,...,u, €D, there exists ye€ u distinct from u,,...,u, and thus
satisfying p(u;, y) for all i. Therefore p is a concurrent relation, and so there
is a b, € *S such that p(x, b,) is true for all x € D,. This says that b, € *u
andb, ¢ u. []

Corollary 4.5. Suppose the enlargement 7° of 7 (S) is both full and trivial.
Then S is finite.

Proof. S is a definable subset with description p(x) = ~F. []

Corollary 4.6. Let p be a definable n-ary relation on S. Then *p = p if
and only if p is finite.

Proof. 1If p is finite, we can give a description which lists its members
and it follows that *p = p. If p is infinite, put

u(x) = @xy) - (@xi ) FxXi 1) @A) P15 - v Xim 15 X Xyt 150445 Xn)s

and let u; be the subset of S defined by u;(x). Then for some i, y; is infinite,
and the theorem implies that *u; # u;, ie., that *p # p. []

Theorem 4.7. Let p be a definable relation on S which defines a func-
tion f:D — S on some definable* subset D of S. Then p° defines a function
f?:D° — §° on the subset D° of S°.

Proof. Wehave 7 | (Vx)((x € D) = (3'y)p(x, y)). Interpreting this in
S7 gives the result. []

The same argument applies to show that if f:U — V is a definable
function, where U is a definable subset of $” and V is a definable subset of
S¢, then f is a function from U° to V°.

§5 Internal Relations

Let S be any standard system. For each n, let 2" be the set of all first-
order n-ary relations on S. Then each element of 2¢{, and also the set 2"
itself are all definable in 7(01(S)). If (0*(S))° is an enlargement of O*(S) with
respect to some set ¢ of concurrent binary relations of ©0*(S), then every
element of (#'V) is an n-ary relation on S°.

2 Note that {a € S|(3!y)p(a, y) is true} is a possible choice for D, but it is not always the most
convenient choice.
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Definition 5.1. An internal first-order n-ary relation on S is an element
of (ZM). A relation on S° which is not internal is called external.

Higher-order internal n-ary relations may be defined similarly, by using
the set ZY of n-ary relations on O*~(S).
If p e 1 is in fact a definable relation on S, we have that

'7-(01(8)) F (Vxl) e (Vxn)(e"(pa Xiyeees xn) = P(xl, A );
while each u e (#{")° is the relation
u={@ay...,a)€(@(S))|e"(w, ay, ..., a,) is true in (O*(S))’}.

It follows that the definable relation p, considered as an element of (%{)’,
is the relation p° on S°. Hence every standard relation is internal. The con-
verse is not true, for if S is infinite, then #¢" is infinite, and by Theorem 4.4,
RY) # R

Lemma 5.2. Let u, v be internal n-ary relations on S°. Thenu nv,u U v,
and the complement u™of u are also internal.

Proof. We have that

T(0'(S)) F (VXUVI((x e BO) A (y € A) =
@2)((ze BD) A (Vi)(tez <> (tex) A (tey)))).

It follows that u N ve (RV)” for all u, v € (#")°. Similar proofs apply for
uvvandforu™ []

§6 Non-Standard Analysis

Let R be the set of real numbers, with relation symbols £ = {£, x, +, <}.
We form a full enlargement *(O%R)) for some k > 1. Within this, we have
standard subsets *R > *Q > *Z > *N, which are full enlargements of the
reals, rationals, integers and natural numbers respectively. The relations on
*R defined by x, +, < shall be denoted by the same symbols, instead of
by the correct but more cumbersome * x, etc. The function | |: R > R, de-
fined by |x| = x if x > 0, |x| = —x if x <0, yields the standard function
*R — *R defined in the same way and which we shall denote by the same
symbol ||. We shall call the elements of *R real numbers, distinguishing
those in R by calling them standard real numbers.

Theorem 6.1. *R is a non-archimedean ordered field.

Proof. The axioms of ordered fields are theorems of (R) and so hold
for *R, showing that *R is an ordered field. The relation x < y is a con-
current relation of R with domain R, and consequently there is an element
a € *R such that r < a for all r € R. This implies that for any r € R, and for

n
allneN, Y r < a Hence the ordering on *R is non-archimedean. []
i=1
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The archimedean axiom can indeed be expressed in the language of
O%R) as

(Vx)(Vy)((xeR) A(yeR) A (x > 0) = @n)((neN) A (nx > y))),

where nx > y is an abbreviation for (Vz)(x(n, x, z) = (z > y)). This is a
theorem of 7 (0*(R)) and so holds in *R. It does not assert the archimedean
property for *R, as it asserts that if x, y e *R and if x > 0, then there is
n € *N such that nx > y. For *R to be archimedean, we need to have ne N.

Definition 6.2. An element a € *R is called finite if there exists a stan-
dard real number b such that |a| < b. Otherwise, a is called infinite. A (finite)
element a is called infinitesimal if |a| < b for all standard real numbers b > 0.

0 is infinitesimal, and since 0 < a < b holds ifand only if0 < 1/b < 1/a,
it follows that if a # 0, then a is infinitesimal if and only if 1/a is infinite.

The proof of Theorem 6.1 contains a proof of the existence of infinite real
numbers, and it follows that infinite natural numbers also exist.

Lemma 6.3. There is no smallest infinite natural number. The set of infi-
nite natural rnumbers is an external set.

Proof. 1f n is a natural number and n # 0, then n = m + 1 for some
natural number m, since this result is a theorem of J(N). If n is the smallest
infinite natural number, then m = n — 1 is also infinite, and m < n, giving a
contradiction.

It is a theorem of J(0'(N)) that every non-empty subset of N has a
least member. Hence every non-empty internal subset of *N has a least
member, and the set of infinite natural numbers cannot be internal. []

Lemma 6.4. Suppose n € *N. Then n is finite if and only if n € N.

Proof. If ne N, n is clearly finite. Suppose that n is finite. Then n < b
for some standard real number b, and b < m for some standard natural
number m. Put u = {x eN|x < m}. Then ne*u = {x € *N|x < m}, and
*u = u since u is finite. Thusne N. []

Theorem 6.5. Each of N, R, the set of infinite real numbers, and the set
of infinitesimal real numbers is an external set.

Proof.

(a) By Lemma 6.3, the set of infinite natural numbers is an external set,
and by Lemma 6.4, N is its complement in the internal set *N. Hence N is
external by Lemma 5.2.

(b) If R is internal, then so is N = R n *N, contradicting (a). Similarly,
Z and Q are also external.

(c) Let R, be the set of infinite real numbers. If it is internal, then so is
R, n *N, contradicting Lemma 6.3.

(d) IfR, isthe set of infinitesimal real numbers, then R, is bounded above
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and has no greatest member. It is a theorem of 7 (0'(R)) that if u is a non-
empty subset of R which is bounded above and has no greatest element, then
{x e R|x > y for all y e u} has a least element. If R, is internal, then v =
{x e *R|x > r for all re R,} has a least element. But if x € v, then 3x e v
and 1x < x. Hence v has no least element, and so R, is external. []

Let a, b € *R. We write a = b if a — b is infinitesimal. = is clearly an
equivalence relation on *R.

Exercise 6.6. Show that if r € *R, then there exists g € *Q such that
qg=r.

Definition 6.7. The monad of the finite real number a is the set u(a) =
{re *Rjr = a}.

Theorem 6.8. If a is a finite real number, then u(a) contains exactly one
standard real number. If R, is the set of finite real numbers and R, the set of
infinitesimal real numbers, then R, is a ring, R, is an ideal of Ry and Ry/R, is
isomorphic to R.

Proof. 1Ifr,se p(a) and r, s are standard, then |r — s| is an infinitesimal
standard real number. Thus |r — s| = 0 and r = s. We have to show that
there is a standard real number in p(a). This is so if a is standard, so we suppose
a is not standard. Put L = {xeR|x < a} and U = {xe R|x > a}. Since a
is finite, there exists b € R such that |a| < b,i.e., —b < a < b, showing that
L and U are both non-empty. L is bounded above by b and so has a least
upper bound o say, which is also the greatest lower bound of U. If a € L,
then U = {x eR|x > a}, and « < a < a + r for all standard real numbers
r> 0. Thus |a — | = a — a < r for all standard r > 0, and s0 @ — a is
infinitesimal. Similarly, if « € U, we obtain |a — af = a — a is infinitesimal.
Hence a € u(a).

Trivially, R, is a ring and R, is an ideal of R,,. The map sending a to u(a)
is the natural homomorphism R, — Ro/R,. Mapping p(a) to the standard
real number in y(a) is an isomorphism. []

Finally, as an introduction to the use of enlargements in the study of
analysis, we shall show how a few of the familiar results on limits can be
proved with the aid of infinitesimal and infinite elements in an enlargement.
We begin with the concept of a limit of a sequence. A sequence is a function
5:N - R, and corresponding to any sequence, we have the standard function
*s:*N — *R.

Theorem 6.9. Let r €R and let s:N— R be a sequence. Then
Lim,_,,, s(n) = r if and only if *s(n) € u(r) for all infinite natural numbers n.

Proof. Suppose that Lim,., s(n) = r. Then for every standard real
number & > 0, there exists n, € N such that |s(n) — r| < & for all n > n,.
For this ¢ and ng, (Wn)((neN) A (n > ng) = [s(n) - r| < g) is a theorem of
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T (O'(R)). Therefore (Vn)((n € *N) a(n > ng) = |*s(n) — r| < &) holds in
*@*(R)). If n is an infinite natural number, then |*s(n) — r| < &, and this is
true for all standard real numbers ¢ > 0. Hence *s(n) € u(r) for all infinite
numbers n.

Suppose conversely that *s(n) € u(r) for all infinite natural numbers n.
If ny is an infinite natural number, then for every standard real number ¢ > 0,
we have |*s(n) — r| < eforalln > no. Thus @Ane)((ne € *N) A (Vn)((ne *N) A
(n > ng) = |*s(n) — r| < ¢)), being true in *O*(R), is a theorem of 7 (O*(R)).
Hence there exists n, € N such that |s(n) - r| < egforalln > n, [

By a similar argument, one obtains the following result.

Theorem 6.10. Let U be a subset of R, and suppose U contains a neigh-
bourhood of aeR. Let f:U — R be a function defined on U. If £ e R, then
Lim,_,, f(x) = £ if and only if *f(x) € u(£) for all x # a in y(a).

Corollary 6.11. The function f is continuous at a if and only if *f(x) = *f(a)
for all x = a.

Exercise 6.12. Prove Theorem 6.10.

For areal function f defined on an arbitrary subset U of R, the necessary
and sufficient condition that f be continuous on U is that for each ae U,
if x e *U and x = q, then *f(x) = *f(a). The meaning of this condition is
altered if we write it formally using (Va), as we now show. For then the
statement becomes the following: for alla,x € *U, if x = a then *f(x) = *f(a).
If this new statement holds, then for an infinitesimal positive real number 9,
and for any standard real number ¢ > 0,

(Va)(Vx)((ae*U) A (xe*U) a (|x — a| < &) = |¥(x) — *f(a)| < )
is true in *(@*(R)), and so

@9)((3 > 0) A (Va)(¥x)((@€ U) A (x e U)
Mx — d] < 8) = |f() ~ f@)] < )

holds in @'(R). But this is precisely the condition that the function f be
uniformly continuous on U. We have proved the following theorem.

Theorem 6.13. Let f be a real-valued function defined on the subset U
of R. Then f is uniformly continuous on U if and only iffor all x,y e *U,x =y
implies that *f(x) == *f(y).

It is now a simple matter to prove the following well-known result.

Theorem 6.14. Let U be a closed bounded interval [ p, q]. If the real-
valued function f is continuous on U, then it is uniformly continuous on U.

Proof. Takeany x € *U. x is a finite real number, hence there is a unique
reRsuchthat r=x.Ifr <p,thenx=r+(x—-r<r+(p—r)=p,
since x — r is infinitesimal and p — r is a standard positive real number.
As x = p, we have a contradiction, and so p < r. Similarly,r < g,andre U.
If ye *U and y = x, then y = r and *f(y) = *f(r). In particular, *f(x) = *f(r).
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Consequently *f(x) = *f(r) = *f(y), and we have the condition for uniform
continuity on U. []

Exercise 6.15. Where does the above method of proof fail if U is taken
as the open interval {x:p < x < q}?

Our final application is to the study of sequences of real-valued functions
s,(x) defined on a subset U of R. The usual necessary and sufficient condition
that s,(x) - r(x) on U as n —» oo, when expressed in terms of our non-
standard analysis, is that for each x € U and for all infinite n, *s,(x) = *r(x).
Again, the meaning of the condition is altered if we express it in terms of
(Vx), as the next result indicates.

Theorem 6.16. The sequence of functions s,(x) converges uniformly on U
to r(x) if and only if for all xe*U and for all infinite n, *s,(x) = *r(x).

Exercise 6.17. Prove Theorem 6.16 by suitably modifying the argument
leading to Theorem 6.13.

Theorem 6.18. Suppose the functions s,(x) are continuous on U, and
converge uniformly on U to r(x). Then r(x) is continuous on U.

Proof. Let aeU. If xe*U and x = q, and if n is infinite, then by
Corollary 6.11 and Theorem 6.14,

*r(s) == *s5,(x) == *s,(a) = *r(a);

showing that r is continuous at a. []

Exercises

6.19. Given that f(x) - r and g(x) - s (#0) as x — a, prove that
f(x)/g(x) - r/sas x — a.

6.20. f(x)is defined in a neighbourhood of a. Show that f'(a) = cif and
*f(x) — *fla)

x—a

only if =cforall x =a,x # a.

6.21. Prove that if f(x) is differentiable at x = g, then f(x) is continuous
atx = a.

6.22. R is complete, i.e., every Cauchy sequence in R has a limit in R.
Formalise this and interpret it for *R. Is *R complete?

We refer the reader to [8] for further reading and references on the subject
of non-standard analysis.



Chapter IX
Turing Machines and Gdédel Numbers

§1 Decision Processes

In §3 of Chapter III, we gave a procedure for determining whether or
not an element p of P(X) is a theorem of Prop(X). In §4 of Chapter IV, we
asserted that no such procedure exists for Pred(V, #). Before attempting to
prove this non-existence theorem, we must say more precisely what we mean
by “procedure”. The procedures we shall discuss are called decision processes,
and informally we think of a decision process as a list of instructions which
can be applied in a routine fashion to give one of a finite number of specified
answers. A decision process for Pred(V, #) is then a finite list of instructions
such that for any element p € P(V, #), there corresponds a unique finite se-
quence of instructions from the list. The sequence terminates with an instruc-
tion to announce a decision of some prescribed kind (e.g., “p is a theorem
of Pred(V, #).”). Thus at each step of the process, exactly one instruction of
the list is applicable, producing a result to which exactly one instruction is
applicable, until after a finite (but not necessarily bounded) number of steps,
the process stops and a decision is announced.

The mechanical nature of the process just described suggests that we
could think of it as a computer program, carried out on a suitable computer.
We shall formalise our ideas by considering processes which could be per-
formed by an idealised computer known as a Turing machine.

§2 Turing Machines

A Turing machine is imagined as consisting of two parts—the machine
proper, being a device with a finite set Q = {qo, 4;,--.,qm} Of possible
internal states, and a tape (at least potentially infinite) on which suitably
coded instructions to the machine may be printed, and on which the machine
can print its response. The tape is divided lengthwise into squares which can
be indexed by the integers Z. On each square of the tape is printed one
symbol selected from a fixed finite set © = {s,,sy, . . ., 5}, called the alphabet
of the machine. Since we think in terms of finite lists of instructions, we must
allow squares to be blank, and hence the alphabet & must contain a symbol
corresponding to ‘blank’. This symbol will always be denoted by s,. Only
finitely many squares of the tape have printed on them a symbol other than
so. The tape is fed into the machine so that at any time, the machine is
scanning exactly one square of the tape.

85
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Machine in
internal state g;

L] Tape

S;

T
Scanned square

We assume that the machine must be in internal state g, to commence
operating. The machine operates in discrete steps, its action at any stage
being determined by its internal state g; together with the symbol s; printed
on the square being scanned. The possible actions of the machine are of the
following kinds:

(i) The machine replaces the symbol s; by a symbol s, and changes its
internal state to g,.

(ii) The machine moves the tape so as to scan the square immediately
on the right of the one being scanned, and changes its internal state to g,.

(iii) The machine moves the tape so as to scan the square immediately
on the left of the one being scanned, and changes its internal state to g,.

(iv) The machine stops.

Since the machine must have no choice of action, exactly one of the
above actions will occur at each step.

A Turing machine is specified by giving its set Q of internal states, its
alphabet S, and its response to each pair (g;, s;) consisting of an internal state
and a scanned symbol. Since there are only finitely many pairs (g;, s;), the
machine response is specified by a finite list. A response of the type (i) can
be indicated by quadruples (g;, s;, S, g,). Responses (ii) and (iii) can be in-
dicated by the quadruples (g;, s;, R, 4,) and (q;, s;, L, g,) respectively, where
we have assumed that neither R nor L is in S. Response (iv) can be specified
by having no quadruple beginning with the pair g;, s;. Our requirement that
the machine be deterministic means that the list of responses has at most
one quadruple beginning with each pair g;, s;.

We can now expect the following formal definition of a Turing machine
to make sense.

Definition 2.1. A Turing machine with (finite) alphabet S and (finite) set
Q of internal states is a subset M of Q x & x (S U {L, #}) x Q(L,R¢ S),
such that if (a, b, c,d) and (a, b, ¢’, d')e M, thenc = ¢’ and d = d'.

To discuss the operation of a Turing machine M, we need a convenient
way of describing its state at each stage of a computation. The state of M at
any stage is determined by the contents of the tape, the number of the tape
square being scanned, and the internal state of the machine!. Denote the

! Thus the state of M is a description of the total machine configuration, including the
internal state of M.
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symbol printed on square number n by s; . Since there are always only
finitely many non-blank squares, there exist integers a, b (not unique) such
that j, = Ofor all n < a and alln > b. a and b can always be selected so that
the square currently being scanned, say square number n, lies between square
number a and square number b, so that a < n < b. (We note that only the
ordering of the tape squares is important—it is customary to shift the origin
each time the machine shifts the tape, so that the square being scanned
becomes the origin.) The contents of the tape are completely specified by the
finite string s, s, ‘-5, - -s,, and we shall indicate that the machine is in
internal state g;, scanning square n of a tape with these symbols on it, by
writing the string
SuSiaer " 8 iy, " Sy

Definition 2.2. An instantaneous description of a Turing machine M with
alphabet © and set Q of internal states is a finite string s,,s,, * ** 5,,455,55," " S,
where s,,, 55, € ©and g e Q.

The strings s,, - - s,, and s, - - - 5, are often denoted by single symbols
such as g, 7. An instantaneous descriptiond = s, 5,, ** * 5,,45p,55, * * * S, is then
written simply as d = oqt. Each of ¢, T may be the empty string.

Since we are interested in the state of M, rather than in descriptions of
the state of M, we need to know when two descriptions determine the same
state. The previous discussion shows that the only freedom in the definition
of description is in the choice of a and b. Thus two descriptions d = gqt
and d’' = ¢'q’t’ describe the same state if and only if ¢ = ¢’, ¢’ is obtainable
from ¢ by adding or deleting a number of symbols s, on the left, and 7’ is
obtainable from 7 by adding or deleting a number of symbols s, on the
right. Descriptions related in this way are called equivalent, and the equiva-
lence class containing the description d is denoted by [d] and called the state
described by d. For each state [d], there is a unique description d = ogt
such that the first symbol (if any) of o, and the last symbol (if any) of 7 are
distinct from s,. This description is called the shortest description of [d].

Definition 2.3. The Turing machine M takes the state [d] into the state
[d7], written [d] % [d'], if for some representatives d = aqr and d’ = o'q'7/,
where 7 = s,1,, either

(i) (4, 5 Sz 9 )eEMand ¢’ = 6,1’ = 5,74, 0T
(ii) (¢, s, R,q')e M and ¢’ = o5,, 7 = 74, OT
(i) (¢, $,» L, q') e M and ¢ = a’sy, T = 547 for some sz € S.

Exercise 2.4. Prove that there is at most one state [d'] such that
[d] % [d']. When [d'] exists, show that to each d e [d], there corresponds a
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d' e [d’] so that d and d’ are related as in (i), (ii) or (iii) of the definition
(appropriately modified if ¢ or 7 is empty).

Definition 2.5. A state [gqr] is called initial if ¢ = q,. A state [ogs,t,]
is called terminal if there is no quadruple (g, s,, ¢, d) in M.

Exercise 2.6. Show that [d] is terminal if and only if there does not
exist a state [d'] such that [d] = [d'].

Definition 2.7. A computation by the machine M is a finite sequence
[do], [dy], - - - [d,] of states such that [d,] is initial, [d,] is terminal and
[dl'] 5 [di+1]f01'i =0,1,...,p— L

Computations are by definition finite. Given M and [d], there is no
guarantee that M, started in state [d] and allowed to operate, will ever stop
(i.e., will execute a computation).

Definition 2.8. We say that M fails for the input [d,, ] if there is no com-
putation by M beginning with the state [d,].

For each state [d,], there is a unique [d;,,] such that [d;] ¥ [d;4,]
Hence failure of M for the input [d,] means that the sequence of states taken
by M and beginning with [d,] is infinite—i.e., the machine never stops.

Henceforth, the state [d] will be denoted simply by some description d.
The context will make clear the sense in which symbols such as d, d; are
being used.

Exercises

2.9. A stereo-Turing machine M has its tape divided into two parallel
tracks. The symbols on a pair of squares (one above the other) are read simul-
taneously. Show that there is a (mono-)Turing machine M’ which will perform
essentially the same computations as M.

2.10. The operator of the Turing machine M has been asked to record
the output of M (i.e., the symbols printed on the tape) at the end of each
computation by M. Does the operator have any problems? Show that a
machine M’ can be designed so as to perform essentially the same computa-
tions as M, and which in addition will place marker symbols (not in the
alphabet of M) either at the furthest out points of the tape used in each
computation, or alternatively at the nearest points such that the stopping
position of M, and all non-blank symbols, lie between them.

2.11. A dual-Turing machine M with alphabet & has two tapes which
can move independently. Show that there is a Turing machine with alphabet
& x & which will, when given an initial state corresponding to the pair of
initial states of a computation by M, perform a computation whose terminal
state corresponds to the pair of terminal states of M.

2.12. M, and M, are Turing machines with the same alphabet . A
computation by M; and M, consists of a computation by each of M, and
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M, such that, if g g;7 is the output of M, then g,z is the input for M,. Show
that there is a Turing machine M, whose alphabet contains &, such that if
M is started in an initial state of a computation by M, and M, with terminal
state oq;t, then M executes a computation with terminal state ¢, for some
qx,» While M fails if started in any other initial state.

213. M,,..., M, are Turing machines with the same alphabet. An
algorithm requires that at each step, exactly one of M, ..., M, be applied
to the result of the previous step. The Turing machine M, applied to the out-
put of any step, determines which of M,, ..., M, is to be applied for the
next step. Show that there is a single Turing machine which can execute the
algorithm and give the same ultimate output.

2.14. Most digital computers can read and write on magnetic tape. The
tapes are finite, but the operator can replace them if they run out. Show that
such computers can be regarded as Turing machines. In fact, the most sophis-
ticated computers can be regarded as Turing machines. (This is not a mathe-
matical exercise. The reader is asked to review his experience of computers
and to see that the definitions given so far are broad enough to embrace the
computational features of the computers he has used.)

§3 Recursive Functions

Let M be a Turing machine with alphabet S. We show how to use M to
associate with each pair (k, {) of natural numbers a subset U{?) of N* and
a function P :U% ) — N’ For (n,, ..., n,) € N¥, put

cOde(nla et nk) = 3';‘303'1250 U s,ik_lsos';k’

where the notation s” denotes a string of n consecutive symbols s. There may
or may not be a computation by M whose initial state is the state d, =
go code (ny, . . ., m). If there is, let d, = ogz be its (uniquely determined) ter-
minal state. Choose a description 4, of this terminal state which has at least £
occurrences of s, in 7, and determine (a,, . . ., a,) € N by defining a, to be
the number of times s, occurs in t before the first occurrence of s, and
a; (for2 < i < ¢) to be the number of times s, occurs in t between the
(i — 1)th and the ith occurrences of so. Let U‘) be the subset of N* con-
sisting of all (n,, .. ., n,) € N* for which there exists a computation by M with
initial state g, code(n,, . . ., m,), and so for which an element (a, .. ., a,) € N’
is defined. The function P *, with domain U, is.defined by the rule

lpg}'”(nl, ces ) = (Ay,. .., Q)

Definition 3.1. A function P’ defined as above in terms of a Turing
machine M is called a partial recursive function®. The function ¥ is called
a (total) recursive function if Ufy? = N*.

2 These functions are usually called Turing computable functions, with a different definition
being given for recursive functions. The equivalence of the two definitions is a significant result,
but the proof is tedious. The reader is referred to §1 of Chapter X for further information, and
to [10], pp. 120-121, 207-237 for full details.
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Exercises

3.2. f:U - N'is a partial recursive function with domain U = N*,
Show that there is a Turing machine M such that ¥§&*) = f and such that,
for each (ny, . . ., n,) € U, the computation dy, d, . . . , d, by M which begins
with dy = g, code(n,, . .., n,) ends with d, = q code f(n,, ..., n;) for some
internal state q of M.

3.3. Prove that the composition of (partial) recursive functions is
(partial) recursive.

3.4. Thereal number r has decimal expansion t = r - r,r,r3 - -+ . Given
that the function f: N — N defined by f(n) = r, is not recursive, prove that
r is transcendental.

3.5. A subset U of N is called recursively enumerable if it is the range
of a recursive function f: N—N, or else is empty. Show that U < N is
recursively enumerable if and only if it is the domain of a partial recursive
function.

3.6. A subset U of N is called recursive if its characteristic function is
recursive. Prove that U < N is recursive if and only if both U and N — U
are recursively enumerable.

3.7. Write a FORTRAN program for calculating the greatest common
divisor of two integers of unlimited size (possibly beyond the storage capacity
of the machine), assuming the availability of unlimited magnetic tape.

§4 Godel Numbers

We are interested in delimiting the scope of computations performable
by Turing machines, and we are also interested in using Turing machines to
formalise the notion of decidability for a logical or mathematical system. To
do these things, we need some way of listing all the essentially different
Turing machines. From the definition of a Turing machine, it is clear that
if two machines M, M’ differ only in the labels given their internal states and
their alphabets (i.e., if there are bijective maps Q —» Q’, € —» &’ which ex-
tend naturally to a bijection M — M’), then M and M’ perform essentially
the same computations (i.e., the bijection M — M’ extends to a bijection
between the sets of computations of M and M’). We may therefore suppose
that all Turing machines have alphabets chosen from the universal alphabet
S* = {s;]i eN} (with s, corresponding to “blank”), and also that they have
lists of internal states chosen from the universal list Q* = {g;|i e N} (with
qo corresponding to “initial internal state”). Each machine uses a finite sub-
set of Q*, containing g,, and a finite subset of S*, containing s,. Hence
we may think of a Turing machine M as a finite subset of Q* x &* x
(8* U {L, R}) x Q*. Further, any tape written in the alphabet * may be
used on an arbitrary Turing machine, for a machine will stop if it scans
some symbol not in its alphabet.

We now attach to each Turing machine M a number, called the Gidel
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number of M. Denote an element (a, b, ¢, d) € M by the string abcd. The
strings of M have a natural lexicographic order, and by taking all the strings
of M in this order we associate with M a unique finite sequence of strings of
symbols. We shall define the Gédel number G(M) of M by defining in turn
Gaodel nambers for every symbol, for every string of symbols and lastly for
every finite sequence of strings of symbols.

Define a function G:{L, R} U &* U Q* —» N by

G(L) = 1, G(R) = 3, G(s;) = 4i + 5,G(q;) = 4 + 7(,jeN).

If now the symbols a; have Godel numbers G(a;) = n; (i = 1,...,r), then
we define the Godel number of the string a, - - - g, by

G(al...ar)—_—p';l...p:r’

where p, denotes the kth prime (so that p, = 2, p, = 3,...). The empty
string has no Godel number attached to it.

If oy, .., o, are strings of symbols, then we define the Gddel number of
the sequence a4, .. ., g, by

= nG G ... nGl
G(als DR as) - Pl(a')Pz(m Ds (h)'

Finally, the Godel number of the Turing machine M is defined to be the
Gaddel number of the unique finite sequence of strings associated with M in
the way described before.

Exercises

(In many subsequent exercises, the reader is required to construct a
Turing machine. The reader is asked to interpret this as follows: he should
convince himself that the required machine can be constructed (perhaps by
using previously constructed machines or the results of previous exercises),
rather than formally construct the machine as a set of quadruples.)

4.1. Show that, provided each symbol q; is distinguished from the one
element string a;, and each string ¢ is distinguished from the sequence o of
length one, then G as defined above is an injective function whose range is
a proper subset of N.

4.2. Given a non-empty string ¢ not containing the symbol s,, construct
a Turing machine which computes G(o) from the initial state d, = g,0.

43. f:N - N is defined by

f(n) = 0if nis not a Godel number,
f(n) = 1if nis the Godel number of a symbol,
f(n) = 2 if n is the G6del number of a string,
f(n) = 3 if nis the G6del number of a finite sequence of strings.
Show that f is recursive.
4.4. The function f: N— N is defined by
f(n) = 0if n is not the Gédel number of a Turing machine,
f(n) = 1if nis the G6del number of a Turing machine.
Show that f is recursive.
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4.5. Turing machines can be ordered by the size of their Gédel numbers.
Let f(n) be the Godel number of the (n + 1)-th Turing machine. Show that
f:N-Nis recursive.

4.6. Use cardinality considerations to prove that there exists a non-
recursive function f: N— N.

4.7. Show that there is a Turing machine U with the property that, for
each Turing machine M and shortest description d of an initial state, U
started in the state g code(G(M), G(d))

(i) fails if M fails in the state d,

(ii) computes G(d,) if d, is the shortest description of the terminal state
reached by M starting from d.

A machine such as U is called a universal Turing machine.

In order to apply Turing machines to questions of decidability of mathe-
matical theories, we must be able to encode elements of the appropriate
algebras of propositions. We do this by again constructing a universal
alphabet and then defining more G6del numbers. As we can only hope to
code countable theories, we confine our attention to them. For each i e N,
the subset #; of the set # of relations of any countable theory is at most
countable, so we take a universal set #* = {r;|i, j € N} of relation symbols,
where, for each j, r;; € #¥. Likewise, we take a set C* = {cj[i €N} of con-
stants, and a set X* = {x;|j e N} of variables, and put V* = C* U X*. For
operation symbols we take F, = and {(Vx;)|j e N}. We now have a universal
alphabet in which every countable theory can be written. Each element of
the algebra P(V*, #*) of such a theory has a representative which can be
written as a finite string of symbols of this alphabet, for we can replace any
(Wc;) which occurs, and brackets are unnecessary—we write a = b as =>ab,
raj(x1, X3) @s ry;X;1x,, etc. Each string of symbols then has at most one
meaning as an element of B(V*, 2*).

Exercise 4.8. Provethat each string of symbols has at most one meaning
as an element of P(V*, 2*).

Godel numbers are now assigned to our universal alphabet as follows:
G(F) = 2,G(=) = 3, G(r;;) = 571, G(c;) = 11*,
G(x)) = 13*1, G((Vx))) = 17*1,
For a string a,a, - - - a, of symbols, we put G(a,a, - - - a,) = p§@p§@? - - -
6@ with p; denoting the ith prime, as before. For sequences of strings, we

DPn
also use the method given before. Finally, we define the Godel number of

an element p € P(V*, #*) to be the least number which is the Gddel number
of an element w e P(V*, #*) which represents p.

Exercises

4.9. Our definitions of Godel numbers make it possible for an integer to
be a Godel number in the Turing machine sense and also in the propositional
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algebra sense—e.g., 11 = G(q,) = G(co). Modify our definitions of Godel
numbers so that each ne N is a Godel number in at most one way.

4.10. Show that the function f: N x N — N defined by f(m, n) = 1 if
m, n are Godel numbers of elements of P(V*, #*) which represent the same
element of P(V*, #*), f(m, n) = 0 if m, n are Godel numbers of elements of
P(V*, #*) which represent different elements of P(V*, #*), f(m, n) = 2 if
either of m, n is not the Godel number of an element of P(V* #*), is a
recursive function.

§5 Insoluble Problems in Mathematics

We consider various ways in which a mathematical problem can be in-
soluble, and we begin with two well-known examples—the classical problem
of trisecting an angle, and the problem of solving quintic equations. The
trisection problem is insoluble by Euclidean construction, but admits a
simple solution if a quite minor extension of method is permitted (see [14]).
Although there is no formula for the solution of quintic equations by radicals,
there is one in terms of elliptic functions (see [5]). Clearly, insolubility of a
particular problem depends on a precise statement as to what constitutes
a solution.

Each of the above problems is in fact a family of problems. Since a right
angle can be trisected, not every angle is impossible to trisect. There exist
quintic equations whose solutions are expressible in terms of radicals. The
trisection problem asks for a construction which works for every angle, and
the non-existence of such a construction follows from the proof that an
angle of n/3 cannot be trisected. Likewise, the existence of a single quintic
equation that is insoluble by radicals suffices to demonstrate the non-
existence of a general solution by radicals of quintic equations.

Our concern is with the problem of determining for a mathematical
theory J whether or not elements p, € £(Z) are theorems of 7. In the case
of a single element p € £(J), let us consider what would constitute a solu-
tion to our problem. If p actually is a theorem of J, then we must show that
there is a proof of p within 4. A proof of p would clearly suffice, provided
we can check that it really is a proof. An alleged proof involves only finitely
many symbols of our universal alphabet. We can test if a particular step is
obtained from earlier steps by modus ponens, or if it is a logical axiom.
(We can devise a Turing machine for the purpose.) We could also test the
use of Generalisation if we could identify the mathematical axioms of 7.
In short, proof checking can be performed by a Turing machine provided
it can test for mathematical axioms.

Definition 5.1. Let J be a countable theory expressed in the universal
alphabet. We say that J is effectively axiomatised if the characteristic function
of the set of Godel numbers of mathematical axioms of J is recursive.
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This means that if 7 is effectively axiomatised, then there is a Turing
machine which, when given the Godel number of an element q € P(V*, #£¥),
tells us whether or not g is an axiom of 4. From the discussion above, it
follows that for an effectively axiomatised theory 7~ = (£, A, C), thereis a
Turing machine which, when given the Godel numbers of p e #(7) and of
the sequence p,, p,,. . ., p, of elements of P(V, &), tells us if p;, p5, ..., Pu
is a proof of p in . Furthermore, there is a Turing machine which, when
given the G6del number of a theorem p of 7, computes the smallest number
which is the Godel number of a proof of p.

Suppose now that p is not a theorem of 7. If it is the case that ~pis a
theorem of 4, then finding a proof of ~ p will not by itself solve our problem,
because we would also have to show that  is consistent, i.e., that F is not
a theorem of J. However, if p is not a theorem of 7, then the theory
T’ = (R, Au {~p}, C) is consistent, and hence has a model. The con-
struction of a model of ' would clearly show that p is not a theorem of
7. Thus, for any effectively axiomatised theory  and any p, the problem
of deciding whether or not p is a theorem J is soluble: find a proof of p
if p is a theorem, or a model of 4 in which p is false if p is not a theorem.
Of course, we have not given a general procedure for finding the solution—
that is a different problem.

We now consider the case of a family {p,|p € N} of propositions of 7.
The minimal requirement of a solution to the decision problem for the family
is clearly that we should know for each n whether or not p, is a theorem of
. This requirement can be met by simply requiring the solution to be the
determination of the function f: N— {0, 1} such that f(p,) = 1 if and only
if p, is a theorem. For the determination to be satisfactory, the function f
must be capable of calculation in some routine manner, which means that
f must be a recursive function. For this to be so, the family {p,|n € N} must
be able to be systematically computed, i.e., there is a condition on the family
in order that our decision problem be well posed. With these considerations
in mind, we make the following definitions.

Definition 5.2. The family {p,|n € N} is called recursively enumerable if
{G(p,)|n € N} is a recursively enumerable subset of N, and it is recursive if
{G(p,)|n € N} is a recursive subset of N. If G(p,) is a recursive function of n,
the family is called recursively enumerated.

Definition 5.3. Let # = {p,|n € N} be a recursively enumerated family
of propositions of the theory 4. We say the decision problem for & is
recursively soluble if the characteristic function of {n € N|7 |- p,} is recursive.

If 7 is a countable theory (written in the universal alphabet), then the
Godel numbering of elements of #(J) orders .#(J) and so provides a
recursive enumeration of .#(J). The theory J is then called decidable if the
family #(J") has recursively soluble decision problem.

Our decidability criterion is based on the minimum answer we could
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expect—a “yes/no” answer. We do not require the Turing machine which
provides this answer also to prove it by giving either a proof or a counter-
model for each p,. If the present formulation of a solution produces un-
decidable theories, then any more rigorous requirement must be expected
to render even more problems insoluble.

Exercise 5.4. The consistent theory J is effectively axiomatised and
complete. Show that J is decidable. Show further that there is a Turing
machine which, given the G6del number of an element p € £(J), answers
the question of whether or not p is a theorem, and also provides a proof of
its answer.

The notion that a family of objects can have a recursively insoluble
decision problem of some kind can be applied to situations in our informal
mathematics, as the following example shows. Later, we shall find examples
within formal mathematical structures.

Example 5.5. Let M, denote the nth Turing machine. The problem is to
determine for all integers n, r, whether or not there is a computation of M,
beginning with the state go code(r). Le., the problem is to determine whether
or not an arbitrary Turing machine M,, fed with an arbitrary integer r,
stops. We show that this stopping problem is recursively insoluble. Put
fo = ¥i: V. The problem is to determine those (n, r) for which f,(r) exists,
and we show that there is no Turing machine which computes for each n
whether or not f,(n) exists. Suppose the function f: N — N defined by

f(n) =1 if f(n)exists,
f(n) = 0 otherwise,
is recursive. Then the function g: N— N defined by
g(n) = fi(n) + 1 if f(n) exists,
g(n) = 0 otherwise,

is also recursive, since f,(n) can be computed when it exists. We now have a
contradiction, for since {f,Jn € N} contains the set of recursive functions,
g = f, for some integer m, and then

Julm) = g(m) = f(m) + 1.

Hence f is not recursive, and so there is no Turing machine which deter-
mines for all n, whether or not f,(n) exists. In fact, since h(n) = f,(n) is partial
recursive, there is a Turing machine M which computes it, and we have proved
that M has a recursively insoluble stopping problem.

Exercises

5.6. Use h(n) = f,(n) to construct a recursively enumerable set E which
is not recursive.
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5.7. Let A = {neN|f, is recursive}. Prove that A is not recursively
enumerable.

5.8. Let E be a recursively enumerable subset of N. Show that there
exists a Turing machine which, started in the state g,s7, stops with blank
tapeifn € E, and fails to stop if n ¢ E. (Hint: if f: N — N is a recursive function
with f(N) = E, then, for given n, compute in turn f(0), (1), . . . until the first
r (if any) for which f(r) = n is found.)

§6 Insoluble Problems in Arithmetic

In §5 we gave an example of a family of objects in informal mathematics
for which a decision problem is recursively insoluble. We now wish to convert
this example into an example within formal arithmetic. We do this in a way
which will allow us to apply some of our ideas and results to other interesting
systems. For that reason, we shall be concerned with theories which for-
malise some aspects of the theory of N (which is our underlying object of
study) and it is convenient to set down first some notational conventions and
some definitions. Throughout this section, 0, s, a, m respectively denote the
property of being 0, the successor relation, the addition relation and the
multiplication relation. Whenever N is given as a model of a theory 7, it is
understood that any of 6, s, a, m which are relation symbols of J have their
standard interpretations. Axioms which we will use in our constructions are

1) the Peano axioms P,, P,, P;, P,, Ps of the first-order theory £ of
§4 of Chapter VI. (Recall that the scope of the axiom scheme of induction
(Ps) depends on the theory under consideration.)

2) the addition axioms

add, = (Vx)(Vy)3'z)alx, y, z),
add, = (Vx)(Vy)((y) = a(x, y, x)),
add; = (Vx)(Vy)(V2)(Vi)(Vu)(s(z, y) A alx, 2, 1)
A a(x, y, u) = s(t, u)).
3) the multiplication axioms

multl = (VX)(V.V)G!z)m(x, Y, Z),
mult, = (Vx)(Vy)(6(y) = m(x, y, )
mult; = (Vx)(Vy)(Vz)(VE)(Vu)(s(z, y) A m(x, z, 1)

A m(x, y, u) = a(y, x, t)).

4) for theories with N contained in the set of constants, the identification
axioms
en = (Ixo)(3xy) -+ - @xa-1)(Bx0) A 5(x1, Xo) A = A
s(x,,_ 15 Xn— 2) A s(n, Xp— 1) )

We shall deal mainly with the theory 4~ with relation symbols 2Z(A4") =
{=, 0, s, a, m}, constants N, and axioms A(A4") being all those listed above.



§6 Insolubility in A~ 97

We call A" recursive arithmetic. To assist us, we shall also use the theory A",
which differs from .4” only in that the axiom scheme of induction is excluded
from the axioms. Both 4" and A" are effectively axiomatised. As we need to
compare theories, we make the following definitions.

Definition 6.1. Let 7 = (%, A, C)and I’ = (#', A’, C’) be first-order
theories. We say 7' extends 7 ,and write 7' 2 7 ,if # =2 #, A’ 2 A and
C=2C

Definition 6.2. Let ' 2 7, and let M = (M, v, ) be a model of
J . We say that M extends to a model of 7' if there exist v:C' - M and
Y : R — rel(M), extending v, y respectively, such that (M, v, §) is a model
of 7.

Definition 6.3. Let 7 = (£, A, C) 2 4, and have N as model. Let
f:U — N be a function defined on some subset U of N. We say that f is
strongly definable in J if there is an element p(x, y) € P(V, #) such that, for
allm,neN, 7 | p(m, n) if and only if me U and f(m) = n. The definition
is extended in the obvious way for functions of several variables.

The key result we intend to prove is that if 77 © .4, and has N as model,
then every partial recursive function is strongly definable in . The proof is
tedious, although the idea is simple—we build up descriptions of the state of
a given Turing machine as a function of the input and the number of steps
performed.

Definition 6.4. The state function corresponding to the state [sz, -
S5.diS; * * * 5] 18 the function f: N— N given by

f0) = G(q:),
fRi+1)=0Gs,, ) 0<i<k-1,
fQi + 1) = G(so), i = k,
fQ2i+2) =Gls,)0<i< -1,
fQi + 2) = G(so),i = L.

State functions are always strongly definable, as they take the value G(so)
except on a finite set. For a given Turing machine, it is easy to construct a
description of the state function f; produced from an initial state f after one
step of the computation. Continuing, one can produce, for any n, a description
of the state function f, after n steps. The difficulty in this approach is that the
complexity of the description so obtained increases with n, whereas we need
a single description of f( y) as a function of the two variables x, y. Fortunately,
there is a trick which allows us to give bounded definitions of arbitrary
finite sequences.

Lemma 6.5. (The Sequence Number Lemma). There exists a strongly de-
finable function seq: N* x N — N such that, for any n and ay, a,, . . ., a, € N,
there exists b e Nt with the property that seq(b,r) = a, for r =0,...,n.
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Proof. Let T(n) denote the nth triangular number:
Tw)=1+2+-+n=4nn+1).
For each z > 0, there is a unique n such that
T <z<Tn+1)=Th) +n+ 1.

Thus z is uniquely expressible as z = T(n) + y with 0 <y < n + 1. (We
choose this range for y because later we shallneed y # 0.)Putx =n + 2 — y.
Then x, y are uniquely determined functions of z, which we denote by L(z),
R(z) respectively. Put P(x, y) = T(x + y — 2). P, L, R are strongly definable
functions, for we may regard z = P(x, y) as an abbreviation for

x>0A(y>0r2z=0x+y—2)(x+y—1)+ 2y,
x = L(z) as one for
x>0AEZ>0A@(y>0rARz=(x+y—2)(x+y—1)+2y),
and y = R(z) as one for
Y>0)Az>0A@Nx>0ARz=x+y—2)(x+y—1) + 2y)).

The function seq(b, r) is defined to be the remainder on division of L(b)
by 1 + (r + 1)R(b). This is strongly definable, the relation z = seq(x, y) being
given by

(x>0)A(z<1+(y+ DRx))A @)L = (1 + (y + DRK)) + 2).

Finally, given aq,d,,...,a,€N, we have to find be N* such that
seq(b,r) = a, for 0 < r < n. Pick ce Nsuch that ¢ > a,for 0 < r < nand
such that cis divisible by each of 1, 2,...,n.Putm, = 1 + (r + 1)c,r =0,...,n.
m, and m are relatively prime for every pair r, s such that 0 < r < s < n, for
if d is a common divisor of m, and m,, d also divides (s + 1)m, — (r + 1)m; =
s — r. Hence d divides c, and the definition of m, shows now thatd = 1. We
may therefore apply the Chinese Remainder Theorem (see [10], p 135) to
the system of congruences

x=a,modm,(r=0,...,n).

Let e be a positive solution to this system, and put b = P(e, c). Then e = L(b),
¢ = R(b), L(b) = a, mod(1 + (r + 1)R(b)), and a, < c < 1 + (r + 1)R(D),
showing that a, = seq(b,r)forr = 0,...,n.

Exercises

6.6. Given m,n,r € N such that m + n = r, prove that /°, | a(m,n, r).
Hence show that if I 2 A7, and has N as a model, then J |- a(m,n, r)
implies A g |- a(m, n, r) for m, n, r € N. Do the same thing for multiplication.

6.7. For m,n,r e N and 2 A, with N as model, show that
T | seq(m, n) = rif and only if seq(m, n) = r. (This shows that the formula
given above as a definition in J of seq indeed strongly defines seq.)
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The sequence number function defined in Lemma 6.5 enables us to give
definitions in J of various functions describing a computation by a Turing
machine M. We give the definitions and leave the reader to verify them.
If M has a quadruple (q,, 5;, a, b), we define M, 4(x, y, z) € P(V, ) as follows.
We have b = g, for some y, a = s, (for some ') ora = L or a = R.

Put

M, 4(x, y, z) = (seq(x, 0) = G(q.)) A (seq(x, 1) = G(s))
Ay = 0=z = Glg,)) r K(x, y, 2),
where

Kx,y,2) =(y=1=2z=G(sg)) A (y > 1 =z =seq(x,y)) if a=sp,
K(x,y,2z) =[(@k)(y = 2k + 1))=>z =seq(x,y + 2)] A(y = 2=z = seq(x, 1))
A[(@EK)(y =2k +4))=>z=seq(x,y—2)] if a=R,
K(x,y,2)=(y = 1=>z = seq(x,2) A [(3k)(y = 2k + 3)) =z =seq(x,y — 2)]
AL(EKy =2k +2))=>z=seq(x,i+2)] if a=L.

Now put
M(x, Y Z) = \4 Ma.ﬂ(x, Y, Z),

where the disjunction is taken over the finitely many pairs a, g for which
there is a quadruple (g,, sg, a, b) € M. If there are no such quadruples, put
M(x,y,z) =F.

Suppose that f, g are state functions such that [ f] % [g]. For r e N, let
u € N be such that seq(u, i) = f(i)fori =0,...,r + 2. Ifk e N, we claim that
k = g(r) if and only if 7 | M(u, r, k). We can now prove some results.

Lemma 6.8. Let f be an initial state function (i.e., f(0) = G(q,)) and let
g(n, r) be the value at r of the state function after n steps of the computation by
M starting at [ f]. Then g is strongly definable in .

Proof. f is strongly definable, and so we give a definition of g in terms
of the definition of f.
Put

o(x, y,2) = Qu(Vo)(v < y + 2x = seq(seq(u, 0), v) = f(v))
A (seq(seq(u, x), y) = 2) A (WW)(V((1 < w < X)
At < y+ 2x — w))) = M(seq(u, w — 1), t, seq(seq(u, w), t)))]

Then g(n, ¥) = k if and only if 7 |- ¢(n, r, k), whence the result. []

Any initial state function f can be expressed in terms of two integers u, v,
since we can a:ways find u, v such that f(x) = seq(u, x) if x < v, and f(x) =
G(so) if x > v. (If so desired, we can replace u, v by the single integer w =
P(u,v), using u = L(w), v = R(w).) If this definition of f is substituted into
the element ¢ given above, we obtain a 5-variable formula, y(u, v; x, y, z) say,
which describes the behavior of M for any input. We can express the state-
ment that M, started in the state given by (u, v), stops in the state of the
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function whose value at y is z, by

@)W v;x, y,2) A (VXN > x = (VI(~ Yy, 0; %', y,1)))).

Theorem 6.9. Let I 2 A, be a theory with N as model. Then every par-
tial recursive function is strongly definable in 7.

Proof. The formulae given above, together with a description of the
input function in terms of the arguments of ¥4 , can be adapted to give a
definition of W% ). The reader is asked to supply the details. []

We are now able to provide an example of an insoluble decision problem
within the formal theory 4. From Theorem 6.9, it follows that any relation
on N whose characteristic function is recursive is also strongly definable in
any theory  of the type considered above. In particular, there is a formula,
comp(x,, X,, X3) say, defining the relation that the machine of Godel number
x,, applied to the number x,, computes x,. Reference to Example 5.5 shows
that the family {(3x)comp(n, n, x)|n € N} has an insoluble decision problem.

Theorem 6.10. Let I 2 A be a theory which has N as model. Then I
is undecidable. In particular, A" is undecidable.

Proof. A decision process for 7 would provide a decision process for
the family {(Ix)comp(n, n, x)|ne N}. [J

Theorem 6.11. Let 7 2 A be an effectively axiomatised theory with N
as model. Then " is incomplete.

Proof. By Exercise 5.4 and Theorem 6.10. However, it is of interest to
construct an element g € £(J") such that neither g nor ~q is a theorem of
T. Let I = (A, A, C), and write P for P(V,#). Let G:P — N denote the
Godel number function, and let F: G(P) — P denote its inverse (G is injec-
tive). Since proofs in J can be checked by Turing machine, the relation “x,
is the Godel number of a proofin 7 of F(x,)” is recursive. Let proof /(x4, x,)
be a definition of this relation in J, and put

theorem ,(x;) = (Ix,)proof ;(x,, x,).

Then theorem 4(x,) defines in 7 the property “x, is the Godel number of a
theorem of I,

For any element w € P, write w(x,) to denote its (possible) dependence
on x,. If ne€ N, then n e C and so w(n) € P. We consider w(n) as a function
of both n and w, and denote it by sub(n, w). Define ¢(m, n) = G(sub(m, F(n))),
for me N and n € G(P). ¢ is then a partial recursive function, hence there is
an element p(x,, x,, x3) € P defining the relation ¢(x,, x,) = x,.

We now put

m(xy, X3) = @x3)(P(x1, X3, X3) A theorem 4(x3)),

and consider the meaning of n(x,, x,) in certain cases. If w satisfies var(w) =
{x0} U C,then w(m) € £ (7 )forallm e N. Choose suchaw,andletn = G(w).
Then n(m, n) is true in N ifand only if, for some a € N, we have both p(m,n) = a
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and a is the Godel number of a theorem of 7. Since p(m, n) = G(w(m)), we
see that a must be both the G6del number of w(m) and the Godel number
of a theorem. Hence n(m, n) is true in N if and only if | w(m). We now
choose w(xy) = ~m(xg, Xo), so that n = G(~n(xy, X)), and put g = w(n).
Then n(n, n) is true in N if and only if 7 |- q. But ¢ = ~m(n, n), hence 7 |- q
if and only if g is false in N. Since N is a model of 7, J |- q implies q is
true in N. Hence g cannot be a theorem of 4, which from the condition
above implies g is true in N, which then implies that ~ g cannot be a theorem
of . Thus ¢ = ~mn(n, n) has the property required to demonstrate the
incompleteness of J. []

We note that this incompleteness cannot be cured by adding g as an
axiom to form a new theory J' 2 7, because replacing theorem,(x;) by
theorem,.(x3) in our construction provides another element g’ with the
requisite properties. The proof shows that no effective axiomatisation of N
can lead to a complete theory.

The result of Theorem 6.11 is known as Godel’s Incompleteness Theorem.

Exercises

6.12. Show that {n e N|n = G(p) for some p € £(A") true in N} is not
recursively enumerable.

6.13. Show that {n e N|n = G(p) for some p € #(A") such that A" |- p}
is recursively enumerable but not recursive.

§7 Undecidability of the Predicate Calculus

We investigate the decidability of the predicate calculus by taking a
known undecidable theory I = (&, A, C), and trying to show that the theory
(2, &,L) is also undecidable. The method is to suppose the existence of a
decision process for (2, &,) and to construct from it a decision process
for (, A, C). The following simple result will be used.

Lemma 7.1. Let 9, ' be theories, and let ¢:L(T) —» L(T') be a
recursive function such that for all pe L(T), we have I | p if and only
if 7'\ o(p). Suppose T’ is decidable. Then I is decidable.

Proof: Clearly, to determine if p is a theorem, it suffices to calculate
¢(p) and to apply the decision process for 7. []

Lemma 7.2. Let A", be the theory formed from the theory A", by omitting
the constants and the axioms e, which identify the constants. Then A", is
undecidable.

Proof: Put, for each ne N,
en(x) = @xo)(Fxy) - - - (Fxn— 1)(O(x0) A (x5 Xo) A« * A S(X, Xp—y)).
Now for any p € £(A), var(p) = N. Hence there is an element
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p(xy, ..., x,)€ P(V — N, &), such that there exist integers n,, ..., n, for
which p = p(ny, ..., n). We define ¢: L (N ) - L(A) by

‘P(P) = (Vxl) o (er)(enl(xl) At A en,-(xr) = p(xl’ LR ] xr))'

In order to complete the proof by an appeal to the previous lemma, we have
to show that A7 |- p if and only if 4" I ¢(p). Suppose that A", - ¢(p).
Since A#°g 2 A1, /o | @(p). Since e,(n;) is an axiom of A", for all i, it
follows immediately that A" |- p(ny, . . ., n,), i.e., that /"¢ |- p. Now suppose
N o F p. Since A7, | (3!x)e,(x) for each n € N, then for each n € N there is
in any model M of 4", a unique element m, € M such that M = e,(m,). By
mapping n to m, we make M a model of A"y, so p(my,, ..., m,) is true in M.
The uniqueness of the m, now implies that ¢(p) is true in M. Thus ¢(p) is
true in every model of 4"y, and so A"y Fe(p). [

Lemma 7.3. Let V = {x,, Xy,...}, and R = {p}, where p is a 4-ary
relation symbol. Then Pred(V, ) is undecidable.

Proof: Since Pred(V, #) does not involve either the identity relation
symbol or the axioms of identity, we first consider these axioms. The theory
A1 has only finitely many relation symbols, hence the axiom scheme of
substitution of identical elements is finite. Thus 4", has only finitely many
axioms of identity. Denote the conjunction of all of these axioms by a.

The relation symbols of A", will be replaced by p, which intuitively is
regarded as follows: p(x, y, z, t) means xy + z = t. Define a homomorphism
f:P(V, #Y) > P(V, &), where #V = {=, 0, 5, a, m}, by

f0(x)) = p(x, x, x, x),
flx =y) = (V2)(V))(p(z, z, 2, 2) = p(z, 1, x, y)),
f(s(x, ) = (V2)(V1)((p(z, 2 2, 2) A (Vu)p(t, u, z,u)) = p(t, , £, X)),
flalx, y, 2)) = (VO((Vu)(Vo)(p(u, u, u, u) = p(t, v, u, v)) = p(t, x, y, 2)),
flm(x, y, 2)) = (V)(p(t, t, £, £) = p(x, y, t, 2)),

for all x, y, z € V. Then define g: P(V, #Y) — P(V, &) by g(p) = f(a) = f(p).
We show that Lemma 7.1 applies, for then the undecidability of 4"y suffices
to complete the proof.

Suppose A5 | p. A proof of p from a maps under f into a proof of f(p)
from f(a). By the Deduction Theorem, f(a) = f(p) is a theorem. Conversely,
suppose f(z) = f(p) is a theorem. If M is any model of .4",, then interpreting
p(x, y, z, t) as xy + z = t gives an interpretation of P(V, #) in which f(a)
is true. Since f(a) = f(p) is a theorem, we conclude that f(p) is true. By
the way the interpretation of p is defined, p is also true in M. Hence p is a
theorem of A7y. []

Corollary 7.4. (Church’s Theorem) Let #* = {r|i, j € N}, with r;; an
i-ary relation symbol, be the universal relation alphabet. Then Pred(V, #*)
is undecidable.
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Proof: The inclusion P(V, &) — P(V, #*) satisfies the conditions of
Lemma 7.1. []
We end the chapter with the proof of a stronger result due to Kalmar.

Theorem 7.5. Let r be a binary predicate symbol. Then Pred(V, {r}) is
undecidable.

Before giving the formal proof, we note that the result implies that if 2
contains at least one n-ary relation symbol with n > 2, then Pred(V, %)
is undecidable. The theorem will be proved by constructing a function
f:P(V, {p}) » P(V, {r}), where p is a 4-ary relation symbol, such that
f(p) is a theorem if and only if p is a theorem, and in addition such that
if var(p) = &, then var(f(p)) = &. The construction uses the following
idea, which shows how to express a 4-ary relation p on a given set S in
terms of a binary relation r on a related set S’. (For convenience we shall
use p, r also to denote interpretations of the relation symbols p, r.)

Lemma 7.6. Let p be a 4-ary relation on the non-empty set S. Put
§' = {K} U S? U S* For x € S, define A(x) = (x, x) € S'. Let r be the binary
relation on S’ consisting of those pairs (a, b) for which at least one of the
Jollowing holds:

(i) a = (x, y),b = (2, t), wherex, y,z,teSandx = y = zory = z = t,
(i) a =(x,y),b =(x,y,z t)wherex, y, z,t € S,
(iii) a = (x, y, z, t), b= (z, t) where x, y, z, t € §,

(iv) a = K, b = (x, y, z, t) where (x, y, z, t) € p.

Then the elements of A(S), and of p, can be characterised in terms of r.

Proof: An element a € S’ is in A(S) if and only if (a, a) € r. We claim
that a quadruple (x, y, z, t) of elements of § is in p if and only if their images
X, Y, Z, T under A satisfy the condition that there are elements 4, B,C,D € S’
such that all the pairs (X, A4), (4, Y), (Z, B), (B, T), (4, C), (C, B) and (D, C)
are in r, but (E, D) is not in r for any E. To show this, observe that (E, D)
not in r for any E implies that D = K. Then (D, C) is in r if and only if C
is a quadruple in p. (C, B) in r requires B to be the final pair of C. (4, C)
in r shows that A is either K or the initial pair of C, and the former is ex-
cluded if (X, 4) is in r. Hence if the condition is satisfied by X, Y, Z, T, then
C=(xyztandisinp. []

Proof of Theorem 7.5. Put

R(x, y, z, t) = (3a)(3b)(Ic)(3d)(r(x, a) A r(a, y)
Ar(z,b) A r(b, t) A (a, c) A 1(c, b) A 1(d, ¢) A (We) ~ r(e, d))

We define f:P(V, {p}) — P(V, {r}) in terms of a prefix = and a kernel k. If
var(p) # &, we define m, to be the conjunction of the r(x, x) for which
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x € var(p), while if var(p) = &, =, is not defined. The kernel k(p) is defined
inductively by

k(F) = F,

k(p(x, y,z,t)) = R(x,y,z,t)forall x, y,z,te V,
k(p = q) = k(p) = k(q),

k((VYx)p) = (Vx)(r(x, x) = k(p)).

We now put
flp) = n, = k(p) if var(p) # &,
f(p) = k(p) if var(p) = &,

and show f satisfies the conditions of Lemma 7.1. Suppose that var(p) = &
and f(p) is a theorem. The truth or falsity of p in any interpretation depends
only on the choice of the set S and of the 4-ary relation p on S. We construct
S’,and r on §’, as in Lemma 7.6. Since the definition of f effectively limits
consideration to elements of A(S), we find that p is true in § if and only if
f(p) is true in §’. Since f(p) is a theorem, we conclude that p is true in every
interpretation and so is also a theorem.

Conversely, suppose p is a theorem, and let p,,..., p, be a proof of
p. We use induction over n to show that f(p) is a theorem. (We do not
assume var(p) =, as this would upset the induction.) Suppose then that
f(py), - .. ,f(ps-1) are theorems. There are three possibilities for p,: it is an
axiom, it is obtained by modus ponens, or it is obtained by Generalisation.

If p is an axiom, then f(p), although not an axiom, is easily seen to be
provable. Similarly, if p follows from p; and p; by modus ponens, then (by
use of truth functions or the Deduction Theorem) f(p) is deducible from
f(p;) and f(p;). Suppose finally that p = (V¥ x)q is obtained by Generalisation.
Then p,_, = g, and f(q) = m, = k(q) is a theorem (in the other case,
var(q) = & and f(p)is trivially a theorem). Since =, is either 7, or @, A r(x, x),
it follows that m, = (r(x, x) = k(g)) is a theorem, and Generalisation yields
(Vx)(m, = (r(x, x) = k(q)). Since x ¢ var(p), this implies 7, = (Vx)(r(x, x) =
k(g)). But this is f(p), and the proof is complete. []

Exercise 7.7. Suppose £ contains only unary relation symbols. Prove
that Pred(V, #) is decidable. (If pe P(V, #) involves n distinct relation
symbols, show that = p if and only if p is true in every interpretation in a set
of at most 2" elements. This can be done by taking any interpretation M,
putting m;, = m, if v(p(m,)) = v(p(m,)) for all relevant p, and working with
the equivalence classes.)



Chapter X
Hilbert’s Tenth Problem, Word Problems

§1 Hilbert’s Tenth Problem

A recursive function f:N" — N has been defined as one for which there is a
Turing machine, T say, which computes f(x,, ..., x,) for all (x,,..., x,) eN".
Accordingly, in order to show that a particular function g:N" — N is recur-
sive, we must construct a Turing machine which computes g. This is a tiresome
process, even for functions of relatively simple form, and consequently it is
natural to seek an alternative characterisation of recursive functions that will
facilitate their recognition.

We are accustomed to constructing or decomposing complicated func-
tions in terms of simple functions in other branches of mathematics—for
example, use of the chain rule in the differential calculus depends upon the
possibility of expressing a function as a composition of simpler functions.
We therefore ask if it is possible to build up the set of recursive functions by
starting with a set of simple functions and applying certain permissible oper-
ations to them. The fact that this can be done is remarkable, for not only does
it provide an algebraic characterisation of recursive functions, but it also
offers strong support for a belief (known as “Church’s Thesis”) that all formu-
lations of the concept of an “effectively computable” function must be
equivalent (i.e., must produce the same set of functions). For a detailed proof
of the characterisation given in Theorem 1.2 below, we refer the reader to [3].
Other accounts of the subject may be found, for example, in [6], [10] or [13].

As initial functions, we take the set I consisting of

(i) the zero function c: N — N given by ¢(x) = 0,
(ii) the successor function s: N — N given by s(x) = x + 1,

(iii) the projection functions U':N" - N (ne N*,i = 1,...,n) given
by Ui(x1, -« .5 Xp) = X;.

Exercise 1.1. Show that every initial function is a recursive function.

The permitted operations are the following:
(i) composition: given f;:N™ - Nandg:N" >N (m,neN*,j = 1,...,n),
composition yields the function h:N™ — N defined by
h(xls ) xm) = g(fl(xb ceey xm)s LR ’j;l(xl’ ceey xm))’
(ii) primitive recursion: given f:N" — N and g:N"*2 — N (n €N), primi-
tive recursion yields the function A:N"*! — N given by
h(xls---’xmo) = f(xl’---sxn),
h(xl’ s ,X,,,t + 1) = g(tsh(xl, <oy Xy t)’ Xy onn ,X,,) (tGN).
105
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(iii) minimalisation: given f, g:N"*! — N (n € N™) satisfying the condi-
tion that for each (x,,..., x,) € N" there exists at least one y such that
S(X15ennsXm V) = g(X1,-- ., Xy, y), minimalisation yields the function h:N" - N
given by

h(xls RO ] xn) = min}(f(xls L ] xm .V) = g(xb s xm Y))
= the least y € Nsuch that f(x,..., Xy ¥)

= g(X1y.-s Xns V)

Theorem 1.2. The set of recursive functions coincides with the set of func-
tions obtainable from the set I of initial functions by finite interations of the
above operations.

Exercises

1.3. Prove that the functions +(x,y) = x + y, X(x,y) = xy and
c(x) = k (k e N) are recursive, by using Theorem 1.2. Deduce that every
polynomial P:N" — N with coefficients in N is a recursive function.

1.4. (CfLemma 6.5 of Chapter IX.) Define the pairing function p:N?> - N

x+y

by p(x, y) = Y, r + y. Prove that p is bijective, and hence show that the

r=0
functions £, r: N — N given by p({(z), r(z)) = z are well-defined. Show that
p, £ and r are recursive.
Write z = p(x, y), and define the sequence number function §:N? - N
by the rule that S(z, i) is the least remainder on division of x by 1 + (i + 1)y.
Prove that S is recursive.

Hilbert’s tenth problem seeks an algorithm which will determine whether
or not an arbitrary polynomial equation with integral coefficients and in any
number of variables has a solution in integers. In 1970, Matiyasevich provided
the last step in an argument which proves that no such algorithm exists. We
shall outline a method of proof given in full detail in a recent expository
article [2] by Davis, which also contains a brief historical account and
references.

By a polynomial P = P(x,, ..., x,) we shall mean a polynomial with in-
tegral coefficients. By a solution to the diophantine equation P(x,,...,x,) =0
we mean a solution in integers x,, ..., x, Since every x € N is expressible
as a sum of four squares of elements of N, the existence of an algorithm to
test for solutions implies the existence of an algorithm to test for non-negative
solutions, for by testing P(s? + t? + u? + v?,...,s2 + 2 + u? + v) =0
for solutions, we have tested P(x,, ..., x,) = 0 for non-negative solutions.
Therefore we may restrict all variables to the set N, and prove there does not
exist an algorithm to test for solutions in N. We interpret “algorithm” as
meaning “Turing algorithm”, i.e., a procedure that can be carried out by a
suitably designed Turing machine. Since we have information about the set
of Turing computable (i.e., recursive) functions, we shall try to relate this set
to sets defined in terms of solubility criteria for polynomial equations.
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Given a polynomial P(x,, ..., X,), an obvious subset of N" related to it
isits solution set S = {(x, ..., x,)|P(xy,...,%,) = 0}.Fork =1,...,n— 1,
the projection S, of S onto the first k coordinates is given by the set of
(x5 - - -, Xz) such that there exist x4 4, . .., x, for which P(x,,..., x,) = 0.
Thus membership of the set S, is related directly to the existence of a solution
to P. The following definition generalises this relation.

Definition 1.5. (i) S = N" is diophantine if there is a polynomial
P(Xy,...5Xp V1s-++5 Ym) In m + n = n variables such that (x,,...,x,) €S
ifand only if there exist values y, ..., y,, for which P(xy,..., Xy ¥1,..., ¥) = O.

(ii) A relation p on N" is diophantine if the set {(xy, ..., X»)|p(xy, . . . , Xy)
is true} is diophantine. In particular, a function f:N" — N is diophantine
if {(x1, ..., Xm )|y = f(x1,. .., X,)} is diophantine.

For brevity, we shall write the condition that S is diophantine informally
as

X1y ooy X)) €ESIT @Y1, .o vy Ym)(P(X1y ooy Xny Vis- - - Vm) = O).

Example 1.6. The subset S of N, consisting of integers which are not
powers of 2, is diophantine, because

xe Siff Ay, z)(x — y2z + 1) = 0).

Exercises

1.7. Show that the composite elements of N form a diophantine set.

1.8. Prove that the ordering relations {(x, y)|x < y} and {(x, y)|x < y}
are diophantine relations on N2.

1.9. Prove that the divisibility relation {(x, y)|x divides y} is diophantine.

1.10. Show that the functions ¢(x) = 0,s(x) = x + 1,and U}(x,,...,x,) =
x; (i = 1,...,n), are all diophantine.

1.11. P,Q:N" — N are polynomials, with solution sets S, Trespectively.
Show that S A T, S U T are the solution sets of P2 + Q> = 0, PQ = 0
respectively. Deduce that diophantine sets are closed under finite unions
and intersections.

1.12. Show that the functions p, £, r, defined in Exercise 1.4, are dio-
phantine, and then use Exercise 1.11 to show that the sequence number
function S(z, i) is also diophantine.

We have found (Exercise 1.3) that every polynomial function with coef-
ficients in N is recursive. This result extends to diophantine functions.
Lemma 1.13. Every diophantine function f is recursive.
Proof. Write

V= (X155 Xp) T @ty o o5 ) (P(X1s e oo s Xns Yo bay ooy b))
=Q(x1,...,x,,, y,tl,...,tm)),
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where P, Q are polynomials with coefficients in N. Denoting the sequence
number function by S(z, i), then Lemma 6.5 of Chapter IX shows that there
exists, for every choice of y, ¢, . . . , t,,, a value u such that S(u,0) = y,S(u,1) =
ty,...,S(u, m) = t,. Since f is a function, there is exactly one y for which
P = Q, hence

f(xl’ st xn) =y = S(mlnu(P(xh coes X S(us 0)9 DR | S(u’ m))
= QX1 -+ » Xm S, 0), ..., S(u, m))), 0),

which, by Exercise 1.4 and Theorem 1.2, shows that f is recursive. []

The essential difficulties arise in attempting to prove the converse to the
above result. Using Theorem 1.2, it suffices to prove that every initial function
is diophantine, and that the diophantine functions are closed with respect
to the operations of composition, primitive recursion and minimalisation.
Some of this is easy. Exercise 1.10 has dealt with the initial functions, while
if fi,...,f, and g are diophantine, and if h(x,,..., x,) = g(fi(xy,-- -,
Xy« « « s Ju(X15 - - -, X)), then so is h, because

y=Hhxy,...,xm) iff @ty,..., t)(t1 = fi(x1,...,xm)and...and
tn = f;l(xl’- . -9xm)andy = f(tls- . -’tn))’
which, by Exercise 1.11, is sufficient to establish the result. So it remains to
deal with the operations of primitive recursion and minimalisation, neither
of which has yet been shown to be expressible in terms of operations which
trivially preserve the property of being diophantine. Each of these operations
is expressible in terms of the operation of bounded universal quantification,
which is now known to preserve this property. A bounded universal quan-
tifier is one which applies for those values of the quantified variable which
are less than a given bound. We use the notation (V¥y < x)(...) to mean
“for all y e N, either y > x or(...)”. The next theorem is proved in full in [2].

Theorem 1.14. Let P:N™*"*2 _, N be a polynomial. Then

S = {(ys R ITRI ,xn)l(VZ < .V)(G)’ls LN ) YM)

(P(.V, z, xb- .. xm y1" L) YM) = 0))}
is diophantine.

Corollary 1.15. The set of diophantine functions is closed under primitive
recursion and minimalisation.

Proof of the Corollary. Suppose f, g are diophantine, and
h(xgs ..oy Xn 0) = f(X1s. ..y Xn)s
Xy . s Xmt + 1) = g(t, B(Xys . ..y Xy £)y Xy o« o 5 Xp)-

Using the sequence number function to represent the numbers h(x,, .. . , X, 0),
<o h(xy, ..., Xy, 2), we have y = h(xy, ..., X, 2) if and only if
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(3“)((30)(0 = S(u, 0) AV = f(xl, e x,,)) A (Vt < z)(t =zvVv
@W)(w = S, t + 1) Aw = glt, S, 2), X1, . .., Xa))) A y = S(u, 2))

which, by Exercises 1.11 and 1.12, shows that h is diophantine.
Finally, if f, g are diophantine and

h(xh ceey xn) = miny(f(xb sy xns .V) = g(xl’ s xm Y))’

then y = h(xy,..., x,) if and only if

@)z = flxrs- - s Xm YA Z=gX1s ., X Y)A(VELS Y=y V
Qo) = fxt, ..., Xm ) AV = g(xy,..., X ) A (U <V VOV <u)))

showing that h is diophantine. []
We may therefore state the following fundamental result.

Theorem 1.16. A function is recursive if and only if it is diophantine.

In chapter IX, we showed the existence of a subset E of N which is recur-
sively enumerable but not recursive. That is, E is the range of some recursive
function, but the characteristic function of E is not a recursive function.
Theorem 1.16 implies that a subset of N is recursively enumerable if and only
if it is diophantine. Hence E is diophantine, and so there is a polynomial P
such that

xe Eiff@ty,. .., tu)(P(x, ty,...,t,) = 0).

Suppose that there exists a Turing machine M which can test every
polynomial equation for the existence of solutions. M, when applied to the
sequence of polynomials P(0, ¢,, . . ., t,.), P(1, ¢y, ..., t,), . . ., will then com-
pute the characteristic function of E. Thus E has a recursive characteristic
function and hence is a recursive set, which contradicts its definition. There-
fore, no such Turing machine M can exist. This statement is to be considered
as an explicit denial of the existence of any algorithm to test all polynomial
diophantine equations for solutions, which therefore implies that Hilbert’s
tenth problem is insoluble.

Exercises

1.17. Prove that a subset of N is recursively enumerable if and only
if it is diophantine.

1.18. Give an enumeration of the set of polynomials with integral
coefficients and in an arbitrary finite number of variables chosen from
X, ¥1» V2, - - - - Hence obtain a sequence {D,} which contains all diophantine
subsets of N. Define a function g:N? — N by

glx,n) =0 if x¢D,
gix,n) =1 if xeD,

Use Theorem 1.16 to prove that g is not recursive. Obtain an alternative
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proof that Hilbert’s tenth problem is insoluble by showing that the existence
of a “Hilbert algorithm” would imply that g is recursive.

§2 Word Problems

A group G is often specified by giving a set X of generators of G together
with a set R of relations satisfied by these generators. The set R is required to
be such that every relation on the elements of X which holds in G is a con-
sequence of those in R. Here, a relation is an equation wy(a;, ..., a,) =
wy(ay, . . ., a,) which holds in G, where ay, .. ., a, are particular elements of
X and w,, w, are group theoretical words. We can express such an equation
in the form w,(ay, . . ., a,)(Wy(ay, . . . , @,)) "' = 1, so we may always suppose
that each relation is given in the form w(a,,. .., a,) = 1, and identify the
relation with the word w(ay, ..., a,).

Definition 2.1. A group presentation is a set X together with a set R of
group theoretical words on the elements of X. The presentation (X, R) is
called finite if both X and R are finite.

Every group presentation (X, R) does determine a group: take the free
group F on X and the smallest normal subgroup K of F which contains R,
and then the group determined by (X, R) is the factor group F/K. We shall
write G = {X|R) to indicate that G is the group determined by the presen-
tation (X, R). (The group G has of course many different presentations.)
Henceforth, in order to avoid confusion between an element of G and a
particular construction of the element, a word w shall mean an element of the
free group F. The corresponding element of G = F/K will be called the group
element represented by w. Two words w,, w, will be called equivalent, written
W, ~ Ww,, if they represent the same group element.

The properties of the group G = (X|R) may not be apparent from the
presentation. From the information in a given presentation of a group, we
may be able to obtain answers to various questions about the group, and we
are interested in finding procedures for doing this. M. Dehn in 1911 formu-
lated three basic decision problems for a given presentation of a group
G =<KX |R). These three problems are known as the Word Problem, the
Conjugacy Problem and the Isomorphism Problem.

Problem 2.2. (The Word Problem) Find an algorithm which, for each
word w in the elements of X, determines whether or not w represents the identity
element of G.

Problem 2.3. (The Conjugacy Problem) Find an algorithm which, for
any two words w,, w,, determines whether or not w, and w, represent conjugate
elements of G.

Problem 2.4. (The Isomorphism Problem) Find an algorithm which, for
any group presentation (X', R'), determines whether or not {X' ’|R’) is isomorphic
to G.
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These problems have been solved for certain suitably restricted classes
of presentations. (The reader is referred to [9], Section 6.1, for details.) In
general, however, these problems are insoluble, and we shall try to show in
this section how the theory of Turing machines can be used to establish the
insolubility. In order that the underlying ideas will not be obscured by details,
we shall restrict ourselves to a demonstration that there is a finitely-presented
semigroup S whose word problem is insoluble. The interested reader will
find in Chapter 12 of [11] an account of the construction from S of a finitely
presented group G with insoluble word problem. (This construction is purely
algebraic, and makes no further use of the theory of Turing machines.)

Exercises

2.5. A presentation (X, R) is called abelian if, for every x, y € X, we
have x~ 'y~ !xy € R. Show that the word problem for a finite abelian pre-
sentation is soluble. Show also that the isomorphism problem is soluble
for pairs of finite abelian presentations.

2.6. Given that the finitely presented group G = ¢ X|R) is finite, prove
that it has soluble word problem and soluble conjugacy problem.

We now show how to associate a finite semigroup presentation with a
Turing machine M. The idea behind the construction is to regard instanta-
neous descriptions as words, and to introduce relations which will make an
instantaneous description represent the same semigroup element as does the
instantaneous description obtained from the former one by one operation
of the machine.

We shall always work with the shortest description, thereby avoiding
difficulties arising from different descriptions of the same state of M. Thus an
instantaneous description shall neither begin nor end with s,. However, this
introduces some difficulty into the construction of the set of relations, which
we resolve by use of an end symbol e. With the description oq;t, we shall
associate the semigroup word eaq;te. It is also convenient to introduce a new
internal state symbol g, meaning that the machine has stopped.

As we are dealing with semigroups and not groups, a relation necessarily
involves two words, and has the form w, ~ w,. For our purposes, it is
convenient to regard this as an ordered pair of words, and so to treat w, ~ w,
and w, ~ w, as different relations. Each relation then has a first word.

Let M be a Turing machine with alphabet & = {s,, s, .. ., 5,,} and set
of internal states Q = {qq, gy, - - -  gn}- The semigroup presentation associated
with M is the presentation with generator set X = @ U Q U {e, 9.} and
with relation set R consisting of

(a) for each quadruple g;s;5:g, € M, the relation

qiSj ~ 4¢Sks
(b) for each quadruple g;s;Lg, € M with j # 0, the relations
Sk9iSj ~ eSS (all k),
eq;S; ~ €q,;50Sj,
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(bo) for each quadruple g;soLg, € M, the relations

$kdiSo ~ qeSkSo (all k),
€qiSo ~ €, SoSo,

Skgie ~ qrSke (allk # 0)
so‘]ie ~ qe,

eqie ~ eqee,

(c) for each quadruple g;s;Rq, € M with j # 0, the relation
qiSj ~ Side s
(co) for each quadruple g;s4Rq, € M, the relations

SkdiSo ~ SiSoge  (all k),
€qiSo ~ €4y,

Sigie ~ SSoqee  (all k),
eq;e ~ eqe,

(d) for each pair g;s; for which there is no quadruple in M beginning
with q;S s the relation
qisj ~ qoosjs
and, if j = 0, the relation
qgi¢ ~ g€

Let w, = oat be a word and let a ~ b be a relation in the above list.
Substitution of b for a in w, gives the equivalent word w, = gbt. Such a
substitution, where the second member of a relation is substituted for the
first, will be called a forward step. We write w; — w, to denote that w, is
obtainable from w; by a forward step. The reverse substitution is called a
backward step, and we write w, « w, to denote that w, is obtainable from
w, by a backward step. We write w — w' to denote that w' is obtainable
from w by a step which may be either forward or backward. A path from
w to w' is a finite sequence of steps w — w;, — w, — - —w,_; — W
beginning with w and ending with w'. Clearly, two words w, w' are equivalent
if and only if there exists a path from w to w'.

We now concentrate our attention on the words which correspond to an
instantaneous description of the Turing machine.

Definition 2.7. A special word on X is a word of the form eaq;te, where
g, © are words (possibly empty) on &, such that ¢ does not begin with s,
and 7 does not end with s,. The special word eaq;te is called terminal if i = oo.

Any word obtained from a special word by a step is again a special word.
Forward steps on special words correspond to steps in the operation of
the machine M.
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Lemma 2.8. Let w, w' be special words. Suppose w' is terminal. Then w,
W' are equivalent if and only if there is a path from w to W' consisting only
of forward steps.

Proof. Trivially, if such a path exists, then w ~ w’. Suppose thatw ~ w'.
Then there exists a path

W=wyg — W, — - —w, =W

from w to w'. We may suppose the path is chosen so that the number n of
steps is the least possible. (If n = 0, then the path consists only of forward
steps.) If the path has any backward steps, then there is a last such, say
W, «— Wi4,. This cannot be the last step of the path, because there is no
forward step away from a terminal word. Thus k + 1 < nand wy ., = Wi,
is a forward step. But there is at most one forward step away from any
special word, since the machine operation is determined. This implies that
Wis2 = W, and so

— DY LY — 4
= Wo — Wy — - Wi — Wie3 — — Wy =W

is a shorter path from w to w’, contrary to the original choice of path. Hence
the shortest path consists only of forward steps. []

We are now able to produce a Turing machine whose associated semi-
group presentation has insoluble word problem.

Theorem 2.9. Let E be a recursively enumerable but non-recursive subset
of N, and let M be a Turing machine which, when started in the state q,s},
stops with blank tape if n € E, and does not stop if n ¢ E. Then the semigroup
presentation associated with M has insoluble word problem.

Remark. The existence of such a set E and Turing machine M was
established in Exercises 5.6 and 5.8 of Chapter IX.

Proof. By Lemma 2.8, the special word eqqsie is equivalent to eq.e
if and only if there exists a forward path from eq,sie to eq,e. Such a path
exists if and only if M, started in the state .5}, stops with blank tape—i.e.,
if and only if n € E. Since E is non-recursive, the word problem (even for
this restricted set of words) is recursively insoluble. []
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Index of Notations

The following notations are used at points remote from their explanations,
which are given on the pages indicated.

AEp
At p
al(n)
ar(t)
Con(A4)
d(p)
Dp
Ded(4)
dist(xl, ey x,,)
G(p)

S

1
L(T)
N

Ao

0X(S)

P

P(T)

P(X)

PV, ®)
P(V, )
Pow(M)
Pred(V, &)
Pred,(V, &)

Prop(X)
w0

R

R
rel(M)
Sd

*S
T(8)
up)
var(p)

p is a consequence of the assumptions A

p is provable from the assumptions 4

formula expressing “at least n elements”

arity of t

set of consequences of 4

depth of quantification of p

domain of the relation p

set of all deductions from 4

formula expressing “xy, . . ., x, are distinct”
Godel number of p 91,
identity relation symbol

(when unexplained) set of axioms of identity
language of the theory 7

recursive arithmetic

recursive arithmetic without induction axiom
scheme

set of kth order objects on S

Peano arithmetic

algebra of the theory

free proposition algebra on X

full first-order algebra on (V, %)

reduced first-order algebra on (V, %)

power set of M

first-order predicate calculus on (V, %)
first-order predicate calculus with identity, on
v, %)

propositional calculus on X

partial recursive function N* - N’ defined by
Turing machine M

set of relation symbols

subset of n-ary relation symbols

set of all relations of all arities on M
enlargement of S with respect to ¢

full enlargement of S

theory of the system S

truth value of p

set of (free) variables of p
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13
15
45

13
28
76
15
48
92
38
38

96

97
75
59
40
12
27
28
54
30

39
18

89
27
27
42
77
77
74
13
29






Subject Index

Addition, theory of 61
Adequacy 18
Adequacy Theorem 22, 36
Algebra, free 4
full first-order 27
Lindenbaum 22
proposition 12
reduced first-order 28
relatively free 8
universal 2
Algebraic theory 72
Alphabet of Turing machine 85
universal 90
Arity 1
Axiom of Choice 55, 57
of Extension 53, 56
of Infinity 54, 57
of Pairing 53, 57
of Power Set 54, 57
of Regularity 56
of Union 54, 57
Axiom Schema of Replacement 55, 57
of Restriction 55, 57
of Subsets 53, 56
Axioms of Pred(V, #) 30
of Prop(X) 15
of a theory 40

Bounded universal quantifier 108

Cardinal of model 44

of theory 45
Categorical 44, 47

in cardinal y 45, 47
Church’s Theorem 102
Church’s Thesis 105
Compactness Theorem 22, 37
Completeness 43, 44, 47, 51
Computation by Turing machine 88
Concurrent relation 76
Conjugacy Problem 110
Consequence 13, 30

proper 39
Consistency 18

of first-order theory 43
Consistency Theorem 19, 34
Consistent subset 40

maximal 40

Constant 40
Continuity 83
uniform 83

Decidability 19, 94

of Prop(X) 24

of Theory of Equality 51
Deduction 15, 31
Deduction Theorem 19, 34
Definable 43

strongly 97

Dense Linear Order 47
Depth of quantification 28
Description, of relation 76
instantaneous, of Turing machine 87
shortest 87
Diophantine set 107
Domain of relation 76
Dual 42

Effectively axiomatised theory 93
Elementary 41
Elementary Group Theory 41
Elementary Theory of Fields 45
Enlargement of theory 77

of standard object 77

full 77
Extension of model 77

of theory 77

Failure of Turing machine 88
Field, algebraic closure of 66
Fields, Elementary Theory of 45
Filter 63

existence of 65

Fréchet 63
Finite intersection property 65

Generalisation 31

Godel number 91, 92

Godel’s Completeness Theorem 37
see Adequacy Theorem 36

Gaodel’s Incompleteness Theorem 100

Hilbert’s Tenth Problem 105
Homomorphism 13

119



120

Identical relation 7
Identity, axioms of 38
Predicate Calculus with 39
Incompleteness of

recursive arithmetic 100
Infinite real numbers 81
Infinitesimal real numbers 81
Initial state 88
Internal relation 80
Interpretation 30

proper 39
Isomorphism of models 44
of T-algebras 4
Isomorphism Problem 110

Kalmar’s Theorem 103
kth-order objects 75

Language of theory 40
Law of an algebra 7
of a variety 7
Logic 18
Limit, direct 70
existence of 72
of function 83
of sequence 82
Lowenheim-Skolem Theorem 46

Minimalisation 106

Model of first-order theory 42
of Peano arithmetic 61
non-standard 75

standard 75

Modus ponens 15

Monad 82

Natural numbers in ZF 54
Non-standard model 75
Normal form, conjunctive 24
disjunctive 24

prenex 37

Operation 1,2

2 (Peano arithmetic) 59
completeness of 61
models of 61

Pair 53

Pairing function 106

Path 112

Subject Index

Peano axioms 58, 59
Predicate 26
Presentation 110, 111
Primary proposition 49
Primitive recursion 105
Projective geometry 40
Problem, Conjugacy 110
Decision 94
Hilbert’s Tenth 105
Isomorphism 110
Stopping 95

Word 110

Proof 15,31

Proper consequence 39
interpretation 39

Quantifier, bounded universal 108
elimination 48
existential 26
reduction 48
universal 26

Recursive arithmetic 97
function 89, 106
subset 90

Recursively enumerable 90, 94
but non-recursive 95

Recursively soluble 94

Relation, concurrent 76
definable 43
external 80
identical 7
internal 80

Russell Paradox 53

Satisfiability Theorem 21, 36, 39
Semantic implication 13, 30
Semigroup of Turing machine 111
Semi-homomorphism 32, 33
Sequence number function 97
Soundness 18
Soundness Theorem 19, 33
Special word 112
Standard model 75
Standard relation 78
Standard system 74
higher-order 76
language of 74
theory of 74
State of Turing machine 87
initial 88
terminal 88
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State function 97

Step 112

Stopping Problem 95

Strongly definable 97
Substitution Theorem 17, 33
Subsystem of standard system 77
Subultraproduct 69

Successor 54

Syntactic implication 15, 31

T-algebra 2
T-subalgebra 3
Tautology 14, 30
Terminal state 88
word 112
Theorem 15, 31, 40, 100
Theory 40
Transitive set 55
Truth 13,29
function 23
Turing machine 85
universal 92

Type 2

Ultrafilter 63
a-complete 67

existence of 65

principal 63

restriction of 63

uniform 65
Ultrapowers 67

Ultraproducts 64
Undecidability of
recursive arithmetic 100

of Predicate Calculus

101

Uniform convergence 84

Uniform ultrafilter 65

Universal algebra
alphabet 90

1

proposition 72

Turing machine 92

Valid 14, 30
Valuation 13
Variable 6

121

Variables involved in element of P 27

of element of P 29
Variety of T-algebras 7

Word 6
special 112
Word Problem
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