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Preface for the Second Edition

It is only after long use that an author realizes the flaws and the gaps in his or her
book. Having taught from a significant part of it, having gathered more than three
hundred exercises on a public website http://www.umpa.ens-lyon.fr/
serre/DPF/exobis.pdf, and having learned a lot within eight years of read-
ing after the first edition was published, I arrived at the conclusion that a second
edition ofMatrices: Theory and Applications should be significantly different from
the first one.

First of all, I felt ashamed of the very light presentation of the backgrounds in
linear algebra and elementary matrix theory in Chapter 1. In French, I should say
ce n’était ni fait, ni à faire (neither done, nor to be done). I thus began by rewriting
this part completely, taking this opportunity to split pure linear algebra from the
introduction to matrices. I hope that the reader is satisfied with the new Chapters 1
and 2 below.

When teaching, it was easy to recognize the lack of logical structure here and
there. For the sake of a more elegant presentation, I therefore moved several state-
ments from one chapter to another. It even happened that entire sections was dis-
placed, such as those about singular value decomposition, the Leverrier algorithm,
the Schur complement, or the square root of positive Hermitian matrices.

Next, I realized that some important material was missing in the first edition.
This has led me to increase the size of this book by about forty percent. The newly
added topics are

• Dunford decomposition
• Calculus with rank-one perturbations
• Improvement by Preparata and Sarwate of Leverrier’s algorithm for calculating

the characteristic polynomial
• Tensor calculus
• Polynomial identity of Amitsur and Levitzki
• Regularity of simple eigenvalues for complex matrices
• Functional calculus and the Dunford–Taylor formula
• Stable and unstable subspaces

xi



xii Preface for the Second Edition

• Numerical range
• Weyl inequalities
• Concavity of (detH)1/n over HPDn
• von Neumann inequality
• Convergence of the Jacobi method with random choice (perhaps a new result).

With so many additions, the chapter on real and complex matrices extended beyond
a reasonable size. This in turn led me to split it, by dedicating a specific chapter to
the study of Hermitian matrices. Because tensor calculus, together with polynomial
identities, also forms a new chapter, the number of chapters has increased from ten
to thirteen.

The reader might wonder why I included the new fourth chapter, because it is
essentially not used in the sequel. Several reasons led me to this choice. First of
all, tensor and exterior calculus are fundamental in spectral analysis, in differential
geometry, in theoretical physics and many other domains. Next, I think that the
theorem of Amitsur and Levitzki is one of the most beautiful in matrix theory, which
remained mysterious until a quite direct proof using exterior algebra was found,
allowing it to be presented in a graduate textbook. The presence of this result
is consistent with my philosophy that every chapter, beyond the introductory ones,
should contain at least one advanced statement. My last motivation was to include
more algebraic issues, because it is a permanent tendancy of matrix analysis to be
too analytic.

Following this point of view, I should have loved to include a proof of A. Horn’s
conjecture, after W. Fulton, A. Klyachko, A. Knutson and T. Tao: the statement,
which has an analytic flavor inasmuch as it consists in inequalities between eigen-
values of Hermitian matrices, is undoubtedly a great achievement of algebraists,
involving, as it does, representation theory and Schubert calculus. However, the ma-
terial to be included would have been far too advanced. This theory is still too fresh
and will not be part of textbooks before it has been digested, and this will take
perhaps a few decades. Thus I decided to be content with discussing the Weyl and
Lidskiı̆ inequalities, which are the lower steps in Horn’s list.

Even though this new version had expanded a lot, I thought long and hard about
including a fundamental and beautiful (to my opinion) issue, namely Loewner’s
theory of operator monotone functions. I eventually abandoned this idea because
the topic would have needed too much space, thus upsetting the balance between
elementary and advanced material.

Finally, I have included many new exercises, many of them offering a way to go
further into the theory and practice. The website mentioned above remains available,
and is expected to grow over time, but the references in it will remain unchanged,
in order that it may be usable by the owners of the first edition, until I feel that it
absolutely needs to be refreshed.

Lyon, France Denis Serre
November 2009



Preface for the First Edition

The study of matrices occupies a singular place within mathematics. It is still an
area of active research, and it is used by every mathematician and by many scientists
working in various specialities. Several examples illustrate its versatility:

• Scientific computing libraries began growing around matrix calculus. As a matter
of fact, the discretization of partial differential operators is an endless source of
linear finite-dimensional problems.

• At a discrete level, the maximum principle is related to nonnegative matrices.
• Control theory and stabilization of systems with finitely many degrees of freedom

involve spectral analysis of matrices.
• The discrete Fourier transform, including the fast Fourier transform, makes use

of Toeplitz matrices.
• Statistics is widely based on correlation matrices.
• The generalized inverse is involved in least-squares approximation.
• Symmetric matrices are inertia, deformation, or viscous tensors in continuum

mechanics.
• Markov processes involve stochastic or bistochastic matrices.
• Graphs can be described in a useful way by square matrices.
• Quantum chemistry is intimately related to matrix groups and their representa-

tions.
• The case of quantum mechanics is especially interesting. Observables are Her-

mitian operators; their eigenvalues are energy levels. In the early years, quantum
mechanics was called “mechanics of matrices,” and it has now given rise to the
development of the theory of large random matrices. See [25] for a thorough
account of this fashionable topic.

This text was conceived during the years 1998–2001, on the occasion of a course
that I taught at the École Normale Supérieure de Lyon. As such, every result is
accompanied by a detailed proof. During this course I tried to investigate all the
principal mathematical aspects of matrices: algebraic, geometric, and analytic.

In some sense, this is not a specialized book. For instance, it is not as detailed
as [19] concerning numerics, or as [40] on eigenvalue problems, or as [21] about

xiii



xiv Preface for the First Edition

Weyl-type inequalities. But it covers, at a slightly higher than basic level, all these
aspects, and is therefore well suited for a graduate program. Students attracted by
more advanced material will find one or two deeper results in each chapter except
the first one, given with full proofs. They will also find further information in about
the half of the 170 exercises. The solutions for exercises are available on the author’s
site http://www.umpa.ens-lyon.fr/ ˜serre/exercises.pdf.

This book is organized into ten chapters. The first three contain the basics of
matrix theory and should be known by almost every graduate student in any mathe-
matical field. The other parts can be read more or less independently of each other.
However, exercises in a given chapter sometimes refer to the material introduced in
another one.

This text was first published in French by Masson (Paris) in 2000, under the title
Les Matrices: théorie et pratique. I have taken the opportunity during the transla-
tion process to correct typos and errors, to index a list of symbols, to rewrite some
unclear paragraphs, and to add a modest amount of material and exercises. In par-
ticular, I added three sections, concerning alternate matrices, singular value decom-
position, and the Moore–Penrose generalized inverse. Therefore, this edition differs
from the French one by about ten percent of the contents.

Acknowledgments

Many thanks to the Ecole Normale Supérieure de Lyon and to my colleagues who
have had to put up with my talking to them so often about matrices. Special thanks
to Sylvie Benzoni for her constant interest and useful comments.

Lyon, France Denis Serre
December 2001



Chapter 1

Elementary Linear and Multilinear Algebra

This chapter is the only one where results are given either without proof, or with
sketchy proofs. A beginner should have a close look at a textbook dedicated to
linear algebra, not only reading statements and proofs, but also solving exercises in
order to become familiar with all the relevant notions.

1.1 Vectors and Scalars

Scalars are elements of some field k (or K), or sometimes of a ring R. The most
common fields are the field of rational numbers Q, the field of real numbers R, and
the field of complex numbers C. There are also finite fields, such as Fp := Z/pZ

(p a prime number). Other interesting fields are k(X) (rational fractions), that of
formal Laurent series, or the p-adic field Qp. Linear algebra also makes use of the
ring of integers Z or of those of polynomials in one or in several variables k[X ] and
k[X1, . . . ,Xr]. One encounters a lot of other rings in number theory and algebraic
geometry, for instance, the Gaussian integers Z[i].

Inasmuch this book is about matrices, we show that square matrices form a non-
commutative ring; this ring can be used as a set of scalars, when we write a large
matrix blockwise. This is one of the few instances where the ring of scalars is not
Abelian. Another one occurs in Section 4.4.

The digits 0 and 1 have the usual meaning in a field K, with 0+x = 1 ·x = x. The
subring Z · 1, composed of all sums (possibly empty) of the form ±(1 + · · ·+ 1) is
isomorphic to either Z or a finite field Fp. In the latter case, p is a prime number,
which we call the characteristic of K and denote charc(K). In the former case, we
set charc(K) = 0.

One says that a nonzero polynomial P ∈ K[X ] splits over K if it can be written as
a product of the form

a
r

∏
i=1

(X −ai)ni , a,ai ∈ K, r ∈ N, ni ∈ N∗.

1D. Serre, Matrices, Graduate Texts in Mathematics 216,
DOI 10.1007/978-1-4419-7683-3_1, © Springer Science+Business Media, LLC 2010



2 1 Elementary Linear and Multilinear Algebra

We may assume that the ais are pairwise distinct. Such a factorization is then unique,
up to the order of the factors. A field K in which every nonconstant polynomial
P ∈ K[X ] admits a root, or equivalently in which every polynomial P ∈ K[X ] splits,
is algebraically closed. If the field K ′ contains the field K and if every polynomial
P ∈ K[X ] splits in K′, then the set K of roots in K′ of polynomials in K[X ] is an
algebraically closed field containing K, and it is the smallest such field, unique up
to isomorphism. One calls K the algebraic closure of K. Every field K admits an
algebraic closure, unique up to isomorphism. The fundamental theorem of algebra
asserts that R = C. The algebraic closure of Q, for instance, is the set of algebraic
numbers; it is the set of complex roots of all polynomials P ∈ Z[X ].

1.1.1 Vector Spaces

Let K be a field and (E,+) be a commutative group. Because E and K are dis-
tinct sets, the symbol + has two meanings, depending on whether it is used for the
addition in E or in K. This does not cause any confusion. Let moreover

(a,x) �→ ax,

K×E → E,

be a map such that

(a+b)x = ax+bx, a(x+ y) = ax+ay, a(bx) = (ab)x, 1x = x

for every x,y ∈ E and a,b ∈ K. We say that E is a vector space over K (or a K-
vector space). The elements of E are called vectors. In a vector space one always
has 0x = 0 (more precisely, 0Kx = 0E ).

When P,Q⊂K and F,G⊂E, one denotes by PQ (respectively, P+Q,F +G,PF)
the set of products pq as (p,q) ranges over P×Q (respectively, p+q, f +g, p f as
p,q, f ,g range over P,Q,F,G). A subgroup (F,+) of (E,+), which is stable under
multiplication by scalars (i.e., such that KF ⊂ F), is again a K-vector space. One
says that it is a linear subspace of E, or just a subspace. Observe that F , as a sub-
group, is nonempty, because it contains 0E . The intersection of any family of linear
subspaces is a linear subspace. The sum F + G of two linear subspaces is again a
linear subspace. The trivial formula (F +G)+H = F +(G+H) allows us to define
unambiguously F +G+H and, by induction, the sum of any finite family of subsets
of E. When these subsets are linear subspaces, their sum is also a linear subspace.

Let I be a set. One denotes by KI the set of maps a = (ai)i∈I : I → K where only
finitely many of the ais are nonzero. This set is naturally endowed with a K-vector
space structure, with the addition and product laws

(a+b)i := ai +bi, (λa)i := λai.



1.1 Vectors and Scalars 3

Let E be a vector space and let i �→ fi be a map from I to E. A linear combination
of ( fi)i∈I is a sum

∑
i∈I

ai fi,

where the ais are scalars, only finitely many of them being nonzero (in other words,
(ai)i∈I ∈KI). This sum involves only finitely many nonzero terms, thus makes sense.
It is a vector of E. The family ( fi)i∈I is free, or linearly independent, if every linear
combination but the trivial one (when all coefficients are zero) is nonzero. It is a
generating family if every vector of E is a linear combination of its elements. In
other words, ( fi)i∈I is free (respectively, generating) if the map

KI → E,

(ai)i∈I �→ ∑
i∈I

ai fi,

is injective (respectively, onto). Finally, one says that ( fi)i∈I is a basis of E if it is
both free and generating. In that case, the above map is bijective, and it is actually
an isomorphism between vector spaces.

If G ⊂ E, one often identifies G and the associated family (g)g∈G . The set G
of linear combinations of elements of G is a linear subspace E, called the linear
subspace spanned by G . It is the smallest linear subspace E containing G , equal
to the intersection of all linear subspaces containing G . The subset G is generating
when G = E.

1.1.1.1 Dimension of a Vector Space

Let us mention an abstract result.

Theorem 1.1 Every K-vector space admits at least one basis. Every free family is
contained in a basis. Every generating family contains a basis. All the bases of E
have the same cardinality (which is called the dimension of E).

For general vector spaces, this statement is a consequence of the axiom of choice.
As such, it is overwhelmingly (but not universally) accepted by mathematicians.
Because we are interested throughout this book in finite-dimensional spaces, for
which the existence of bases follows from elementary considerations, we prefer to
start with the following.

Definition 1.1 The dimension of a vector space E, denoted by dimE, is the upper
bound of the cardinality of free families in E. It may be infinite. If E = {0}, the
dimension is zero.

If dimE < +∞, we say that E is finite-dimensional.

When E is finite-dimensional, every free family of cardinal dimE is contained in a
free family that is maximal for the inclusion (obvious); the maximality implies that
the latter family is generating, hence is a basis. Next, given a generating family β in
E, one may consider free families contained in β . Again, a maximal one is a basis.
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Thus β contains a basis. The fact that two bases have the same cardinality is less
easy, but still elementary.

The dimension is monotone with respect to inclusion: if F ⊂ E, then dimF ≤
dimE. The equality case is useful.

Proposition 1.1 Let E be a finite-dimensional vector space, and F be a linear sub-
space of E.

If dimF = dimE, then F = E.

Proposition 1.2 If F,G are two linear subspaces of E, the following formula holds,

dimF +dimG = dimF ∩G+dim(F +G).

Corollary 1.1 In particular,

dimF ∩G ≥ dimF +dimG−dimE.

If F ∩G = {0}, one writes F ⊕G instead of F +G, and one says that the sum of F
and G is direct. Proposition 1.2 gives

dimF ⊕G = dimF +dimG.

Let E and F be vector spaces over K. One builds the abstract direct sum of E and
F as follows, and one denotes it again E ⊕F . Its vectors are those of the Cartesian
product E ×F , whereas the sum and the multiplication by a scalar are defined by

(e, f )+(e′, f ′) = (e+ e′, f + f ′), λ (e, f ) = (λe,λ f ).

The spaces E and F can be identified with the subspaces E ×{0F} and {0E}×F of
E ⊕F , respectively.

Given a set I, the family (ei)i∈I , defined by

(ei) j =
{

0, j �= i,
1, j = i,

is a basis of KI , called the canonical basis. The dimension of KI is therefore equal
to the cardinality of I.

1.1.1.2 Extension of the Scalars

Let L be a field and K a subfield of L. If F is an L-vector space, then F is also a
K-vector space. As a matter of fact, L is itself a K-vector space, and one has

dimK F = dimL F ·dimK L.

The most common example (the only one that we consider) is K = R, L = C, for
which we have
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dimR F = 2dimC F.

Conversely, if G is an R-vector space, one builds its complexification G⊗R C (read
G tensor C) as follows:

G⊗R C = G×G,

with the induced structure of the additive group. An element (x,y) of G⊗R C is also
denoted x+ iy. One defines multiplication by a complex number by

(λ = a+ ib,z = x+ iy) �→ λ z := (ax−by,ay+bx).

One verifies easily that G⊗R C is a C-vector space, with

dimC G⊗R C = dimR G.

Furthermore, G may be identified with an R-linear subspace of G⊗R C by

x �→ (x,0).

Under this identification, one has G⊗R C = G⊕ iG. In a more general setting, one
may consider two fields K and L with K ⊂ L, instead of R and C. The extension
of scalars from K to L yields the space G⊗K L, a tensor product. We construct the
tensor product of arbitrary vector spaces in Section 4.1.

1.2 Linear Maps

Let E,F be two finite-dimensional K-vector spaces. A map u : E → F is linear (one
also speaks of a homomorphism) if u(x + y) = u(x) + u(y) and u(ax) = au(x) for
every x,y ∈ E and a ∈ K. One then has u(0E) = 0F . The preimage u−1(0F ), denoted
by keru, is thekernel of u. It is a linear subspace of E. The range u(E) is also a linear
subspace of F , whose dimension is called the rank of u, and denoted by rku. It is
often denoted R(u). Taking a basis (u(xi))i∈I of u(E), together with a basis (y j) j∈J
of keru, the xs and the ys form a basis of E, hence comes the following.

Theorem 1.2 If u : E → F is linear, then

dimE = dimkeru+ rku.

The set of homomorphisms from E to F is naturally a K-vector space, with op-
erations

(u+ v)(x) = u(x)+ v(x), (λu)(x) = λu(x).

It is denoted L (E;F). Its dimension equals the product of dimE and dimF .
If u ∈L (E;F) and v ∈L (F ;G) are given, the composition v◦u is well defined

and is linear: v◦u ∈L (E;G).
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1.2.1 Eigenvalues, Eigenvectors

If F = E, one denotes End(E) := L (E;E); its elements are the endomorphisms of
E. Therefore End(E) is an algebra, that is a ring under the laws (+,◦), a K-vector
space, with the additional property that λ (u◦ v) = (λu)◦ v.

For an endomorphism, Theorem 1.2 reads n = dimkeru+ rku. A subspace of E
of dimension n equals E itself, therefore we infer the equivalence

u is bijective ⇐⇒ u is injective ⇐⇒ u is surjective.

Replacing u by λ idE −u, we thus have

λ idE −u is bijective ⇐⇒ λ idE −u is injective ⇐⇒ λ idE −u is surjective.

In other words, we face the alternative

• Either there exists x ∈ E \ {0} such that u(x) = λx. Such a vector is called an
eigenvector and λ is called an eigenvalue,

• Or, for every b ∈ E, the following equation admits a unique solution y ∈ E,

u(y)−λy = b.

The set of eigenvalues of u is denoted Sp(u). We show later on that it is a finite set.
Notice that an eigenvector is always a nonzero vector.

1.2.2 Linear Forms and Duality

When the target space is the field of scalars, a linear map (i.e., u : E → K) is called
a linear form. The set of linear forms is the dual space of E, denoted by E ′:

E ′ = L (E;K).

The dimension of E equals that of E ′. If B = {v1, . . . ,vn} is a basis of E, then the
dual basis of E ′ is {�1, . . . , �n} defined by

�i(v j) :=
{

1, if j = i,
0, if j �= i.

The �is are the coordinate maps over in E in the basis B, inasmuch as we have

x =
n

∑
i=1

�i(x)vi, ∀x ∈ E.

In other words, the identity map idE decomposes as

idE =
n

∑
i=1

vi�i.
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In the above equality, the �is play the role of functions, and the vis can be viewed
as coefficients. The image of x under idE is a vector (here, itself), therefore these
coefficients are vectors. The same comment applies below.

Every linear map u : E →F decomposes as a finite sum w1m1 + · · ·+wrmr, where
the w js are vectors of F and the mis are linear forms on E. In other words,

u(x) =
r

∑
i=1

mi(x)wi, ∀x ∈ E,

(
equivalently u =

r

∑
i=1

wimi

)
.

This decomposition is highly non unique. The minimal number r in such a sum
equals the rank of u. In terms of the tensor product introduced in Section 4.1, we
identify L (E;F) with F ⊗E ′ and this decomposition reads

u =
r

∑
i=1

wi ⊗mi.

1.2.2.1 Bidual

The bidual of E is the dual space of E ′. A vector space E can be identified canoni-
cally with a subspace of its bi-dual: given x ∈ E, one defines a linear form over E ′
by

�
δx�→ �(x).

The map δ : x �→ δx is linear and one-to-one from E to (E ′)′. These spaces have the
same dimension and thus δ is an isomorphism. Because it is canonically defined,
we identify E with its bi-dual.

1.2.2.2 Polarity

Given a subset S of E, the set of linear forms vanishing identically over S is the
polar set of S, denoted by S0. The following properties are obvious:

• A polar set is a linear subspace of E ′.
• If S ⊂ T , then T 0 ⊂ S0.
• S0 = (Span(S))0.

Proposition 1.3 If F is a subspace of E, then

dimF +dimF0 = dimE.

Proof. Let {v1, . . . ,vr} be a basis of F , which we extend as a basis B of E. Let
{�1, . . . , �n} be the dual basis of E ′. Then F0 equals Span(�r+1, . . . , �n} has dimen-
sion n− r. ��
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Corollary 1.2 A subspace F of E equals its bipolar (F0)0. Rigorously speaking,
(F0)0 = δ (F).

The bipolar of a subset S ⊂ E equals Span(S).

Proof. Obviously, (F0)0 ⊂ F . In addition, their dimensions are equal to n−dimF0

because of Proposition 1.3. Therefore they coincide.
If S ⊂ E, we know that S0 = (Span(S))0. Therefore

(S0)0 =
(
(Span(S))0)0

= Span(S).

��

1.2.2.3 Adjoint Linear Map

Let u ∈ L (E;F) be given. If � is a linear form over F , then � ◦ u is a linear form
over E, thus an element of E ′. The map � �→ �◦u is linear and is denoted by u∗. It is
an element of L (F ′;E ′), called the adjoint of u. One has

u∗(�) = �◦u.

Because E and F have finite dimensions, then (u∗)∗, an element of L (E ′′;F ′′),
is an element of L (E;F), after the identification of E and F with their bi-duals
(E ′)′ = E. We prove below that it coincides with u, or more accurately, that the
following diagram is commutative.

E u−−−−→ F

δE

⏐⏐� ⏐⏐�δF

E ′′ u∗∗−−−−→ F ′′

We list below the main facts about adjunction.

Proposition 1.4 We recall that E is a finite-dimensional vector space. Then

• (u∗)∗ = u.
• (keru)0 = R(u∗) and R(u)0 = keru∗.
• u is injective if and only if u∗ is surjective.
• u is surjective if and only if u∗ is injective.
• For every u : E → F and v : F → G, one has

(v◦u)∗ = u∗ ◦ v∗.

Proof. Let x ∈ E and L ∈ F ′ be given. Then

(u∗∗ ◦δE(x))(L) = (δx ◦u∗)(L) = δx(u∗(L)) = δx(L◦u)
= (L◦u)(x) = L(u(x)) = δu(x)(L).
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We therefore have

(u∗∗ ◦δE)(x) = δu(x) = δF (u(x)) = δF ◦u(x),

whence u∗∗ ◦δE = δF ◦u.
If x ∈ keru and � ∈ F ′, then u∗(�)(x) = � ◦ u(x) = �(0) = 0, whence R(u∗) ⊂

(keru)0. Conversely, let m ∈ (keru)0 be given, that is, a linear form on E, vanishing
over keru. When y is in R(u), m is constant over u−1(y). We thus define a map

R(u) → K

y �→ m(x),

where x is any element in u−1(y). We extend this map as a linear form � over F .
It satisfies m = � ◦ u = u∗(�), hence the converse inclusion (keru)0 ⊂ R(u∗). We
deduce immediately that u is injective if and only if u∗ is surjective.

Again, if x ∈ u and � ∈ keru∗, then �(u(x)) = u∗(�)(x) = 0(x) = 0 shows that
keru∗ ⊂ R(u)0. Conversely, let � ∈ F ′ vanish over R(u). Then u∗(�) = u ◦ � ≡ 0,
hence the equality R(u)0 = keru∗. It follows immediately that u is surjective if and
only if u∗ is injective.

Finally, if � ∈ G′, then

(v◦u)∗(�) = �◦ (v◦u) = (�◦ v)◦u = v∗(�)◦u = u∗(v∗(�)) = (u∗ ◦ v∗)(�).

��

1.3 Bilinear Maps

Let E,F , and G be three K-vector spaces. A map b : E ×F → G is bilinear if the
partial maps x �→ b(x,y) and y �→ b(x,y) are linear from E (respectively, from F)
into G. The set of bilinear maps from E ×F into G is a vector space, denoted by
Bil(E ×F ;G).

If the target space is K itself, then one speaks of a bilinear form. The set of
bilinear forms over E ×F is a vector space, denoted by Bil(E ×F). Its dimension
equals the product of dimE and dimF . If F = E, we simply write Bil(E).

1.3.1 Bilinear Forms When F = E

Let b ∈ Bil(E) be given. We say that b is symmetric if

b(x,y) = b(y,x), ∀x,y ∈ E.

Likewise, we say that b is skew-symmetric if
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b(x,y) =−b(y,x), ∀x,y ∈ E.

Finally, we say that b is alternating if it satisfies

b(x,x) = 0, ∀x ∈ E.

An alternating form is skew-symmetric, because

b(x,y)+b(y,x) = b(x+ y,x+ y)−b(x,x)−b(y,y).

If the characteristic of K is different from 2, the converse is true, because the
definition contains the identity 2b(x,x) = 0. Notice that in characteristic 2, skew-
symmetry is equivalent to symmetry. To summarize, there are basically two dis-
tinct classes, those of symmetric forms and of alternating forms. The third class
of skew-symmetric forms equals either the latter if charc(K) �= 2 or the former if
charc(K) = 2.

1.3.2 Degeneracy versus Nondegeneracy

We assume that E has finite dimension. Let b∈Bil(E) be given. We may define two
linear maps b0,b1 : E → E ′ by the formulæ

b0(x)(y) = b1(y)(x) := b(x,y), ∀x,y ∈ E.

Recalling that (E ′)′ is identified with E through y(�) := �(y), the following calcula-
tion shows that b1 is the adjoint of b0, and conversely:

b∗0(y)(x) = (y◦b0)(x) = y(b0(x)) = b0(x)(y) = b(x,y) = b1(y)(x),

whence b∗0(y) = b1(y) for all y ∈ E.
Because dimE ′ = dimE, and thanks to Proposition 1.4, we thus have an equiva-

lence among the injectivity, surjectivity, and bijectivity of b0 and b1. We say that b
is nondegenerate if b0, or equivalently b1, is one-to-one. It is degenerate otherwise.
Degeneracy means that there exists a nonzero vector x̄ ∈ E such that b(x̄, ·)≡ 0.

When b is symmetric (respectively, skew-symmetric), the maps b0 and b1 are
identical (respectively, opposite), thus their kernels coincide. It is then called the
kernel of b. A (skew-)symmetric bilinear form is nondegenerate if and only if kerb =
{0}.
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1.3.3 Bilinear Spaces

Let a nondegenerate bilinear form b be given on a space E, either symmetric or
skew-symmetric. We say that (E,b) is a bilinear space. If u ∈ End(E) is given, we
may define an adjoint u∗, still an element of End(E), by the formula

b(u(x),y) = b(x,u∗(y)), ∀x,y ∈ E.

An accurate expression of u∗(y) is (b1)−1(b1(y) ◦ u). The following properties are
obvious

(λu+ v)∗ = λu∗+ v∗, (v◦u)∗ = u∗ ◦ v∗, (u∗)∗ = u.

Mind that this adjoint depends on the bilinear structure; another bilinear form yields
another adjoint.

We also say that u ∈ End(E) is an isometry if

b(u(x),u(y)) = b(x,y), ∀x,y ∈ E.

This is equivalent to saying that u∗ ◦ u = idE . In particular, an isometry is one-to-
one. One easily checks that the set of isometries is a group for the composition of
linear maps.

1.3.4 Quadratic Forms

A quadratic form over E is a function q : E → K given by a formula

q(x) = b(x,x), ∀x ∈ E,

where b is a symmetric bilinear form over E.
When the characteristic of K is different from 2, there is a one-to-one corre-

spondence between quadratic forms and symmetric bilinear forms, because of the
reciprocal formula

b(x,y) =
1
2
(q(x+ y)−q(x)−q(y)),

or as well
b(x,y) =

1
4
(q(x+ y)−q(x− y)).

We then say that b is the polar form of q.
The kernel of q is by definition that of b, and q is nondegenerate when b is so.

We warn the beginner that the kernel of q is usually different from the set

Γ (q) := {x ∈ E |q(x) = 0}.
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The latter is a cone, that is a set invariant under the multiplication by scalars, whereas
the former is a vector space. For this reason, Γ (q) is called the isotropic cone of q.
The kernel is obviously contained in Γ (q) and we have the stronger property that

Γ (q)+kerq = Γ (q).

When q is nondegenerate and charc(K) �= 2, u ∈ End(E) is a b-isometry if and
only if q ◦ u = q (use the correspondence q ↔ b above). We also say that u is a
q-isometry.

1.3.5 Euclidean Spaces

When K = R is the field of real numbers, the range of a quadratic form may be either
R or R+. The latter situation is especially interesting. We say that q (or b as well) is
positive semidefinite if q ≥ 0 over E. We say that q is positive definite if moreover
q(x) = 0 implies x = 0; that is, q(y) > 0 for every nonzero vector. Then the polar
form b is called a scalar product. A positive-definite form is always nondegenerate,
but the converse statement is false.

Definition 1.2 A pair (E,q) where E is a real vector space and q is a positive
definite quadratic form on E is called a Euclidean space.

Proposition 1.5 A scalar product satisfies the Cauchy–Schwarz1 inequality

b(x,y)2 ≤ q(x)q(y), ∀x,y ∈ E.

The equality holds true if and only if x and y are colinear.

Proof. The polynomial

t �→ q(tx+ y) = q(x)t2 +2b(x,y)t +q(y)

takes nonnegative values for t ∈ R. Hence its discriminant 4(b(x,y)2 − q(x)q(y))
is nonpositive. When the latter vanishes, the polynomial has a real root t0, which
implies that t0x+ y = 0. ��

The Cauchy–Schwarz inequality implies immediately

q(x+ y)≤
(√

q(x)+
√

q(y)
)2

,

which means that the square root ‖ · ‖ := q1/2 satisfies the triangle inequality

‖x+ y‖ ≤ ‖x‖+‖y‖.
1 In Cauchy–Schwarz, the name Schwarz (1843–1921) is spelled without a t.
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Because ‖ · ‖ is positively homogeneous, it is thus a norm over E: every Euclidean
space is a normed space. The converse is obviously false.

The space Rn is endowed with a canonical scalar product

〈x,y〉 := x1y1 + · · ·+ xnyn.

The corresponding norm is

‖x‖ =
(
x2

1 + · · ·+ x2
n
)1/2

.

It is denoted ‖ · ‖2 in Chapter 7.

1.3.6 Hermitian Spaces

When the scalar field is that of complex numbers C, the complex conjugation yields
an additional structure.

Definition 1.3 Let E be a complex space, and φ : E ×E → C be a scalar-valued
map. We say that φ is a sesquilinear form if it satisfies the following

Linearity: For every x ∈ E, y �→ φ(x,y) is linear,
Anti-linearity: For every y ∈ E, x → φ(x,y) is antilinear, meaning

φ(λx+ x′,y) = λ̄ φ(x,y)+φ(x′,y).

Given a sesquilinear form φ , the formula ψ(x,y) := φ(y,x) defines another
sesquilinear form, in general different from φ . The equality case is especially in-
teresting:

Definition 1.4 An Hermitian form is a sesquilinear form satisfying in addition

φ(y,x) = φ(x,y), ∀x,y ∈ E.

For an Hermitian form, the function q(x) := φ(x,x) is real-valued and satisfies

q(λx) = |λ |2q(x).

The form φ can be retrieved from q via the formula

φ(x,y) =
1
4
(q(x+ y)−q(x− y)− iq(x+ iy)+ iq(x− iy)). (1.1)

Definition 1.5 An Hermitian form is said to be positive definite if q(x) > 0 for every
x �= 0.

There are also semipositive-definite Hermitian forms, satisfying q(x) ≥ 0 for every
x ∈ E. A semipositive-definite form satisfies the Cauchy–Schwarz inequality
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|φ(x,y)|2 ≤ q(x)q(y), ∀x,y ∈ E.

In the positive-definite case, the equality holds if and only if x and y are colinear.

Definition 1.6 An Hermitian space is a pair (E,φ) where E is a complex space and
φ is a positive-definite Hermitian form.

As in the Euclidean case, an Hermitian form is called a scalar product. An Hermi-
tian space is a normed space, where the norm is given by

‖x‖ :=
√

q(x).

The space Cn is endowed with a canonical scalar product

〈x,y〉 := x̄1y1 + · · ·+ x̄nyn.

The corresponding norm is

‖x‖ =
(|x1|2 + · · ·+ |xn|2

)1/2
.



Chapter 2

What Are Matrices

2.1 Introduction

In real life, a matrix is a rectangular array with prescribed numbers n of rows and
m of columns (n×m matrix). To make this array as clear as possible, one encloses
it between delimiters; we choose parentheses in this book. The position at the in-
tersection of the ith row and jth column is labeled by the pair (i, j). If the name of
the matrix is M (respectively, A, X , etc.), the entry at the (i, j)th position is usually
denoted mi j (respectively, ai j, xi j). An entry can be anything provided it gives the
reader information. Here is a the real-life example.

M =

⎛
⎝ 11 27 83

blue green yellow
undefined Republican Democrat

⎞
⎠ .

Perhaps this matrix gives the age, the preferred color, and the political tendency of
three people. In the present book, however, we restrict to matrices whose entries are
mathematical objects. In practice, they are elements of a ring A. In most cases, this
ring is Abelian; if it is a field, then it is denoted k or K, unless it is one of the classical
number fields Q,R,C,Fp. When writing a matrix blockwise, it becomes a smaller
matrix whose elements are themselves matrices, and thus belong to some spaces
that are not even rings; having possibly different sizes, these submatrices may even
belong to distinct sets.

In some circumstances (extraction of matrices or minors, e.g.) the rows and the
columns can be numbered in a different way, using nonconsecutive numbers i and j.
In general one needs only two finite sets I and J, one for indexing the rows and the
other for indexing the columns. For instance, the following extraction from a 4×5
matrix M corresponds to the choice I = (1,3), J = (2,5,3).

MJ
I =

(
m12 m15 m13
m32 m35 m33

)
.

15D. Serre, Matrices, Graduate Texts in Mathematics 216,
DOI 10.1007/978-1-4419-7683-3_2, © Springer Science+Business Media, LLC 2010
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Notice that the indices need not be taken in increasing order.

2.1.1 Addition of Matrices

The set of matrices of size n×m with entries in A is denoted by Mn×m(A). It is an
additive group, where M + M′ denotes the matrix M′′ whose entries are given by
m′′

i j = mi j +m′
i j.

2.1.2 Multiplication by a Scalar

One defines the multiplication by a scalar a ∈ A: M′ := aM by m′
i j = ami j. One

has the formulæ a(bM) = (ab)M, a(M + M′) = (aM) + (aM′), and (a + b)M =
(aM) + (bM). Likewise we define M′′ = Ma by m′′

i j := mi ja and we have similar
properties, together with (aM)b = a(Mb).

With these operations, Mn×m(A) is a left and right A-module. If A is Abelian,
then aM = Ma. When the set of scalars is a field K, Mn×m(K) is a K-vector space.
The zero matrix is denoted by 0, or 0nm when one needs to avoid ambiguity:

0n×m =

⎛
⎜⎝

0 · · · 0
...

...
0 · · · 0

⎞
⎟⎠ .

When m = n, one writes simply Mn(K) instead of Mn×n(K), and 0n instead of 0nn.
The matrices of sizes n×n are called square matrices of size n. When A has a unit
1, one writes In for the identity matrix, a square matrix of order n defined by

mi j = δ j
i =

{
0, if i �= j,
1, if i = j.

In other words,

In =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 1

⎞
⎟⎟⎟⎟⎠ .
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2.1.3 Special Matrices

The identity matrix is a special case of a permutation matrix, which is a square
matrix having exactly one nonzero entry in each row and each column, that entry
being a 1. In other words, a permutation matrix M reads

mi j = δ σ( j)
i

for some permutation σ ∈ Sn.
A square matrix for which i < j implies mi j = 0 is called a lower-triangular ma-

trix. It is upper-triangular if i > j implies mi j = 0. It is strictly upper- (respectively,
lower)-triangular if i ≥ j (respectively, i ≤ j) implies mi j = 0. It is diagonal if mi j
vanishes for every pair (i, j) such that i �= j. When d1, . . . ,dn ∈ A are given, one
denotes by diag(d1, . . . ,dn) the diagonal matrix M whose diagonal term mii equals
di for every index i. See below typical triangular and diagonal matrices.

L =

⎛
⎜⎜⎜⎜⎝
∗ 0 · · · 0

∗ . . . . . .
...

...
. . . . . . 0

∗ · · · ∗ ∗

⎞
⎟⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎜⎝
∗ ∗ · · · ∗
0

. . . . . .
...

...
. . . . . . ∗

0 · · · 0 ∗

⎞
⎟⎟⎟⎟⎠ , D =

⎛
⎜⎜⎜⎜⎝
∗ 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 ∗

⎞
⎟⎟⎟⎟⎠ .

When m = 1, a matrix M of size n× 1 is called a column vector. One identifies
it with the vector of An whose ith coordinate in the canonical basis is mi1. This
identification is an isomorphism between Mn×1(A) and An. Likewise, the matrices
of size 1×m are called row vectors.

A matrix M ∈ Mn×m(A) may be viewed as the ordered list of its columns M( j)

(1 ≤ j ≤ m). When the set of scalars is a field, the dimension of the linear subspace
spanned by the M( j)s in Kn is called the rank of M and denoted by rk M.

Here are examples of row and column matrices, and of an n×m matrix written
rowwise and columnwise:

R =
(∗ · · · ∗) , C =

⎛
⎜⎝
∗
...
∗

⎞
⎟⎠ , M =

⎛
⎜⎜⎜⎜⎜⎝

R1
−−

...
−−
Rm

⎞
⎟⎟⎟⎟⎟⎠=

(
C1 | · · · | Cm

)
.

2.1.4 Transposition

Definition 2.1 The transpose matrix of M ∈Mn×m(A) is the matrix MT ∈Mm×n(A)
defined as

mT
i j := m ji, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Mind that the numbers of rows and columns are exchanged.

For instance, the transpose of a column is a row, and conversely.
The following formulæ are obvious.

(aM +N)T = aMT +NT ,
(
MT )T = M.

When M is a square matrix, M and MT have the same size and we can compare
them. We thus say that M ∈ Mn(A) is symmetric if MT = M, and skew-symmetric
if MT = −M (notice that these two notions coincide when K has characteristic 2).
We denote by Symn(K) the subset of symmetric matrices in Mn(K). It is a linear
subspace of Mn(K).

2.1.5 Writing a Matrix Blockwise

The size n×m of a matrix can be quite large, and its entries may have nice patterns
such as repetitions or lots of zeroes. It often helps to partition a matrix into blocks,
in order to better understand its overall structure. For this purpose, we may write a
matrix blockwise. The standard way to do so is to choose partitions of n and m:

n = n1 + · · ·+nr, m = m1 + · · ·+ms,

with 0 ≤ np,mq. For each 1 ≤ p ≤ r and 1 ≤ q ≤ s, let us form the submatrix Mpq ∈
Mnp×mq(A) whose entries are

mpq,i j := mνp−1+i,μq−1+ j, νp−1 := n1 + · · ·+np−1, μq−1 := m1 + · · ·+mq−1.

As usual, ν0 = μ0 = 0. Then M is nothing but an r× s matrix whose (p,q)-entry is
Mpq. Mind that these entries belong to distinct rings, inasmuch as the numbers np
(respectively, mq) need not be equal. Here is an example with r = s = 2, where we
have indicated the partitions

M =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 | 4
−− −− −− −− −−
5 6 7 8 | 9

10 11 12 13 | 14
15 16 17 18 | 19

⎞
⎟⎟⎟⎟⎠ .

In this example, M11 is a row, M22 a column, and M12 is just a 1×1 matrix, that is,
a scalar!

Multiplication of a matrix by a scalar can be done blockwise: we have (aM)pq =
aMpq. The same remark holds true for the addition of two n×m matrices M and N,
provided we choose the same partitions for each: (M +N)pq = Mpq +Npq.
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2.1.6 Writing Blockwise Square Matrices

When n = m, it is often useful to choose the same partition for columns and rows:
r = s and mp = np for every 1 ≤ p ≤ r. We say that M is blockwise upper- (re-
spectively, lower)-triangular if p > q (respectively, p < q) implies Mpq = 0np×nq .
We also speak of block-triangular matrices. A block-triangular matrix need not be
triangular; after all, it is not necessarily a square matrix. Likewise, M is blockwise
diagonal if p �= q implies Mpq = 0np×nq . Again, a blockwise diagonal (or block-
diagonal) matrix need not be diagonal. If np ×np matrices Mpp are given, we form
the block-diagonal matrix diag(M11, . . . ,Mrr).

2.2 Matrices as Linear Maps

2.2.1 Matrix of a Linear Map

Let K be a field and E, F be finite-dimensional vector spaces over K. Let us choose
a basis BE = {e1, . . . ,em} of E and a basis BF = {f1, . . . , fn} of F . Thus dimE = m
and dimF = n.

A linear map u ∈L (E;F) can be described by its action over BE : let mi j be the
coordinate of u(e j) in the basis BF ; that is,

u(e j) =
n

∑
i=1

mi jf
i.

The numbers mi j are the entries of an n×m matrix which we call M. By linearity,
one finds the image of a general vector x ∈ E:

u

(
m

∑
j=1

x je
j

)
=

n

∑
i=1

(
m

∑
j=1

mi jx j

)
fi. (2.1)

Conversely, given a matrix M ∈ Mn×m(K), the formula (2.1) defines a linear map
u. We therefore have a one-to-one correspondance u ↔ M between L (E;F) and
Mn×m(K). We say that M is the matrix of u in the bases BE and BF . We warn
the reader that this bijection is by no means canonical, because it depends upon the
choice of the bases. We sometimes employ the notation Mu for the matrix associated
with u, and uM for the linear map associated with M, but this is dangerous because
the bases are not indicated explicitly; this notation is recommended only when it is
clear for both the writer and the reader what the bases of the underlying spaces are.

The addition of matrices is nothing but the addition of the linear maps, and the
same can be said for multiplication by a scalar:

Mu +Mv = Mu+v, uM +uM′ = uM+M′ , Mλu = λMu, uλM = λuM.
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The bijection above is thus an isomorphism between the vector spaces L (E;F) and
Mn×m(K).

The jth column of M is the represention of uM(e j) in the basis BF . The space
spanned by the M( j)s is thus in one-to-one correspondence with the space spanned
by the uM(e j)s, which is nothing but the range of uM . Thus the rank of M equals
that of uM .

2.2.1.1 Transposition versus Duality

Let u ∈ L (E;F) be given and let us choose bases BE and BF . We recall that the
dual basis of BE is a basis of the dual space E ′. Likewise, the dual basis of BF is a
basis of the dual space F ′.

Proposition 2.1 Let M be the matrix associated with u in the bases BE and BF .
Then the matrix of the adjoint u∗ in the dual bases is MT .

Proof. Let v j be the elements of BE , wk those of BF , and α j, β k those of the dual
bases. We have α j(vi) = δ j

i and β �(wk) = δ k
� .

Let M′ be the matrix of u∗. We have

u∗(β �)(v j) = β �(u(v j)) = β �

(
∑

i
mi jwi

)
= m� j.

Therefore
u∗(β �) = ∑

j
m� jα j,

showing that m′
j� = m� j. ��

2.2.2 Multiplication of Matrices

Let E, F , and G be three vector spaces over K, of respective dimensions p,m,n.
Let BE , BF , and BG be respective bases. Using the isomorphism above, we can
define a product of matrices by using the composition of maps. If M ∈ Mn×m(K)
and M′ ∈ Mm×p(K), then we have two linear maps

uM ∈L (F ;G), uM′ ∈L (E;F).

We define MM′ as the matrix of uM ◦uM′ .
At first glance, this definition depends heavily on the choice of three bases. But

the following calculation shows that it does not at all. Denote M′′ the product MM′.
Then
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n

∑
i=1

m′′
ikgi = uM ◦uM′(ek) = uM

(
n

∑
j=1

m′
jkf j

)

=
n

∑
j=1

m′
jkuM(f j) =

n

∑
j=1

m′
jk

(
n

∑
i=1

mi jg
i

)

=
n

∑
i=1

(
n

∑
j=1

mi jm′
jk

)
gi.

Finally, the matrix M′′ = MM′ is given by the formula

m′′
i j =

m

∑
k=1

mikm′
k j, 1 ≤ i ≤ n, 1 ≤ j ≤ p, (2.2)

which is clearly independent of the chosen bases.
We point out that a product of matrices MM′ makes sense as long as the number

of columns of M equals the number of rows of M′, and only in this situation. If MN
makes sense, then NT MT does too, and we have the obvious formula

(MN)T = NT MT ,

where we warn the reader that the positions of M and N are flipped under transposi-
tion.

Thanks to the associativity of the composition, the product is associative:

(MP)Q = M(PQ),

whenever the sizes agree. Likewise, the product is distributive with respect to the
addition, and associates with the scalar multiplication:

M(P+Q) = MP+MQ, (P+Q)M = PM +QM, (aM)M′ = a(MM′).

The following formula extends that for linear maps (see Exercise 2)

rk(MM′)≤ min{rk M, rk M′}.

In particular, we have the following.

Proposition 2.2 The rank of a submatrix of M is not larger than that of M.

Proof. Just remark that the submatrix M′ formed by retaining only the rows of in-
dices i1 < · · · < ir and the columns of indices j1 < · · · < jr is given by a formula
M′ = PMQ where P is the matrix of projection from Kn over the space spanned
by fi1 , . . . , fir , and Q is the embedding matrix from the space spanned by e j1 , . . . ,e jr

over Km. Then
rk(M′) = rk(PMQ)≤ rk(MQ)≤ rk(M).

��
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2.2.2.1 Matrices with Entries in a Ring

When the scalar set is a ring A, the formula (2.2) still makes sense and lets us define
a product MN when M ∈ Mn×m(A) and N ∈ Mm×p(A). Associativity is straightfor-
ward. In particular Mn(A) is itself a ring, although a noncommutative one, even if A
is Abelian.

2.2.2.2 The Case of Square Matrices

Square matrices of a given size can be multiplied together, which makes Mn(K)
an algebra. We cannot emphasize enough that the multiplication of matrices is not
commutative: in general, MM′ differs from M′M. This is reminiscent of the lack
of commutativity of the composition of endomorphisms. It is an endless source of
interesting questions regarding matrices. For instance,(

0 1
0 0

)(
0 0
1 0

)
=
(

1 0
0 0

)
�=
(

0 0
0 1

)
=
(

0 0
1 0

)(
0 1
0 0

)
.

We say that two matrices M,N ∈ Mn(K) commute to each other if MN = NM. To
quantify the lack of commutativity, we define the commutator of square matrices
M,N by

[M,N] := MN−NM.

Section 4.4 discusses the amount of noncommutativity in Mn(K).
In Mn(K), the unit matrix In is a neutral element for the multiplication:

InM = MIn = M.

We thus have the standard notion of inverse: a matrix M ∈ Mn(K) is invertible if
there exists N ∈Mn(K) such that NM = MN = In. We say that N is the inverse of M
and we denote it M−1. We could as well define right-inverse and left-inverse, but we
show (Proposition 3.5) that the three notions coincide. We say that M is invertible
or nonsingular. A characterization of invertible matrices is given in Chapter 3. As
in every algebra, the product of nonsingular matrices is nonsingular, and we have

(MN)−1 = N−1M−1,
(
M−1)−1

= M.

The subset of nonsingular matrices of size n is a multiplicative group, which is
denoted by GLn(K).

Powers of a square matrix M are defined inductively by M2 = MM, M3 = MM2 =
M2M (from associativity), ..., Mk+1 = MkM. We complete this notation by M1 = M
and M0 = In, so that M jMk = M j+k for all j,k ∈N. The powers of a square matrix M
commute pairwise. In particular, the set K[M] formed by polynomials in M, which
consists of matrices of the form
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a0In +a1M + · · ·+arMr, a0, . . . ,ar ∈ K, r ∈ N,

is a commutative algebra.
If M is nonsingular, we define M−k :=

(
Mk)−1 =

(
M−1)k, which yields M jMk =

M j+k for all j,k ∈ Z.
If Mk = 0n for some integer k ∈ N, we say that M is nilpotent. We say that M is

idempotent if In−M is nilpotent.
A matrix M ∈ Mn(K) is orthogonal if MT M = MMT = In. It is equivalent to

saying that M is nonsingular and M−1 is the transpose of M. The set of orthogonal
matrices is a multiplicative group in Mn(K), called the orthogonal and denoted
On(K).

2.2.2.3 Multiplication of a Vector and a Matrix

Another interesting case is that of multiplication with a column vector. If M ∈
Mn×m(K) and X ∈ Km, the product MX makes sense because X can be viewed
as an m×1 matrix. The result is an n×1 matrix, that is, a vector Y in Kn, given by

yi =
m

∑
j=1

mi jx j.

In the terminology of Section 2.2.1, M induces a linear map uM ∈L (Km;Kn), which
refers to the choice of the canonical bases; this correspondence is thus canonical
somehow. When n = m, Mn(K) operates over Kn and is canonically isomorphic to
End(Kn).

The above action of a given matrix is the straightforward translation of that of its
associated linear map: if x and y are the vectors associated with the columns X and
Y , then y = uM(x). This leads us to extend several notions already encountered for
linear maps, such as the kernel and the range:

kerM = {X ∈ Km |MX = 0}, R(M) = {MX |X ∈ Km}.

The rank is the dimension of R(M) and is denoted by rkM. Theorem 1.2 becomes
the following.

Proposition 2.3 Let K be a field. If M ∈ Mn×m(K), then

m = dimkerM + rkM.

2.2.2.4 Scalar Product as a Matrix Product

When � is a row vector and y a column vector with the same number of entries,
then �y is a 1× 1 matrix, that is, a scalar. This can be interpreted simply in terms
of linear algebra: y is the matrix of an element of Kn (which we still denote y) in
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the canonical basis, and � is the matrix of a linear form f over Kn, in the dual basis.
Then �y is nothing but f (y). We notice that � = 0 if and only if �y = 0 for every y.
Likewise, y = 0 if and only if �y = 0 for every �.

When x and y are both in Kn, then xT is a row vector. We can form their product
xT y, which is the canonical scalar product over Kn:

xT y = x1y1 + · · ·+ xnyn.

We notice that x = 0 if and only if xT y = 0 for every y. Thus the scalar product
is a nondegenerate bilinear form over Kn. When xT y = 0, we say that x and y are
orthogonal (to each other) and we denote x⊥y. If x⊥x, we say that x is isotropic.
We warn the reader that for many fields K, there are nonzero isotropic vectors, even
though there is not if K = R. For instance, if K = C the vector

x =
(

1
i

)

is isotropic.
If x ∈ Kn, the map y �→ �x(y) := xT y is a linear form over Kn. In addition, the

map x �→ �x is one-to-one. Because (Kn)′ has the same dimension n, this map is an
isomorphism. We thus identify Kn with its dual space in a natural way.

Two subsets A and B of Kn are orthogonal if every vector of A is orthogonal to
every vector of B. The orthogonal of a subset A is the set of all vectors in Kn that
are orthogonal to A; it is denoted A⊥. Because of the linearity of the scalar product
with respect to each argument, the orthogonal A⊥ is a subspace of Kn. For the same
reason, we have

(Span(A))⊥ = A⊥. (2.3)

Obviously, A ⊂ B implies B⊥ ⊂ A⊥.
When identifiying Kn with its dual, the orthogonal of S identifies to the polar set

S0. We therefore rephrase the results obtained in Paragraph 1.2.2:

Proposition 2.4 If E is a subspace of Kn, then

dimE⊥ +dimE = n.

Proposition 2.5 Given a subset A of Kn, its biorthogonal is the subspace spanned
by A: (

A⊥
)⊥

= Span(A).

2.2.2.5 Range, Kernel, and Duality

Let M ∈ Mn×m(K) and x ∈ kerMT . Then xT M = (MT x)T = 0. If y ∈ Km, there
follows xT My = 0. In other words, x is orthogonal to the range of M.

Conversely, let x be orthogonal to R(M). Then (MT x)T y = xT (My) = 0 for ev-
ery y ∈ Km. This tells us that MT x = 0, and proves that the orthogonal of R(M)
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is kerMT . Applying Proposition 2.5, we find also that the orthogonal of kerMT is
R(M). Exchanging the roles of M and MT leads to the following.

Proposition 2.6 The orthogonal of R(M) is kerMT and that of kerM is R(MT ).

The following consequence is sometimes called the Fredholm principle.

Corollary 2.1 Let M ∈ Mn×m(K) and b ∈ Kn. In order that the linear equation
Mx = b be solvable, it is necessary and sufficient that zT b = 0 for every z∈ ker(MT ).

Assembling Propositions 2.3, 2.4, and 2.6, we obtain the following identities for
a matrix M ∈ Mn×m(K):

m = dimkerM + rkM, n = dimkerMT + rkMT ,

n = dimkerMT + rkM, m = dimkerM + rkMT .

Besides some redundancy, this list has an interesting consequence:

Proposition 2.7 For every M ∈ Mn×m(K), there holds

rkMT = rkM.

The kernels, however, do not have the same dimension if m �= n. Only for square
matrices, we deduce the following.

Proposition 2.8 If M ∈ Mn(K) is a square matrix, then

dimkerMT = dimkerM.

Corollary 2.2 If M ∈ Mn(K), then

(M : Kn → Kn is bijective)⇐⇒ kerM = {0}⇐⇒ rkM = n.

In particular, there is a well-defined notion of inverse in Mn(K): a left-inverse ex-
ists if and only if a right-inverse exists, and then they are equal to each other. In
particular, this inverse is unique.

Going back to n×m matrices, we say that M is a rank-one matrix if rkM = 1.
A rank-one matrix decomposes as xyT where x ∈ Kn spans R(M) and y ∈ Km spans
R(MT ) (remark that MT is rank-one too, because of Proposition 2.7).

2.2.3 Change of Basis

Let E be a K-vector space, in which one chooses a basis β = {e1, . . . ,en}. Choosing
another n-tuple β ′ = {e′1, . . . ,e

′
n} in E amounts to prescribing the coordinates of

each e′i in the basis β :

e′i =
n

∑
j=1

p jie j.
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It is thus equivalent to selecting a matrix P ∈ Mn(K). Whether β ′ is a basis of E
depends on whether P is nonsingular: If P is nonsingular and Q := P−1, then a
straightforward calculation yields

e j =
n

∑
i=1

q jie′i,

which shows that β ′ is generating, thus a basis, because of cardinality. Conversely,
if β ′ is a basis, then the coordinates of each ei in β ′ provide a matrix Q which is
nothing but the inverse of P.

Proposition 2.9 The matrix P above is nonsingular if and only if β ′ is another basis
of E.

Definition 2.2 The matrix P above is the matrix of the change of basis from β to β ′.

The matrix Mu of a linear map u∈L (E;F) depends upon the choice of the bases
of E and F . Therefore it must be modified when they are changed. The following
formula describes this modification. Let β , β ′ be two bases of E, and γ , γ ′ two
bases of F . Let M be the matrix of u associated with the bases (β ,γ), and M′ be that
associated with (β ′,γ ′). Finally, let P be the matrix of the change of basis β �→ β ′
and Q that of γ �→ γ ′. We have P ∈ GLm(K) and Q ∈ GLn(K).

With obvious notations, we have

f ′k =
n

∑
i=1

qik fi, e′j =
m

∑
�=1

p� je�.

We have

u(e′j) =
n

∑
k=1

m′
k j f ′k =

n

∑
i,k=1

m′
k jqik fi.

On the other hand, we have

u(e′j) = u

(
m

∑
�=1

p� je�

)
=

m

∑
�=1

p� j

m

∑
i=1

mi� fi.

Comparing the two formulæ, we obtain

m

∑
�=1

mi�p� j =
n

∑
k=1

qikm′
k j, ∀1 ≤ i ≤ n, 1 ≤ j ≤ m.

This exactly means the formula

MP = QM′. (2.4)

Definition 2.3 Two matrices M,M′ ∈ Mn×m(K) are equivalent if there exist two
matrices P ∈ GLm(K) and Q ∈ GLn(K) such that equality (2.4) holds true.

Thus equivalent matrices represent the same linear map in different bases.
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2.2.3.1 The Situation for Square Matrices

When F = E and thus m = n, it is natural to represent u ∈ End(E) by using only
one basis, that is, choosing β ′ = β with the notations above. In a change of basis,
we have likewise γ ′ = γ , which means that Q = P. We now have

MP = PM′,

or equivalently
M′ = P−1MP. (2.5)

Definition 2.4 Two matrices M,M′ ∈ Mn(K) are similar if there exists a matrix
P ∈ GLn(K) such that equality (2.5) holds true.

Thus similar matrices represent the same endomorphism in different bases.
The equivalence and the similarity of matrices both are equivalence relations.

They are studied in detail in Chapter 9.

2.2.4 Multiplying Blockwise

Let M ∈ Mn×m(K) and M′ ∈ Mm′×p(K) be given. We assume that partitions

n = n1 + · · ·+nr, m = m1 + · · ·+ms,

m′ = m′
1 + · · ·+m′

s, p = p1 + · · ·+ pt

have been chosen, so that M and M′ can be written blockwise with blocks Mαβ and
M′

βγ with α = 1, . . . ,r, β = 1, . . . ,s, γ = 1, . . . , t. We can make the product MM′,
which is an n× p matrix, provided that m′ = m. On the other hand, we wish to use
the block form to calculate this product more concisely. Let us write blockwise MM′
by using the partitions

n = n1 + · · ·+nr, p = p1 + · · ·+ pt .

We expect that the blocks (MM′)αγ obey a simple formula, say

(MM′)αβ =
s

∑
β=1

Mαβ M′
βγ . (2.6)

The block products Mαβ M′
βγ make sense provided m′

β = mβ for every β = 1, . . . ,s
(which in turn necessitates m′ = m). Once this requirement is fulfilled, it is easy to
see that formula (2.6) is correct. We leave its verification to the reader as an exercise.

In conclusion, multiplication of matrices written blockwise follows the same rule
as when the matrices are given entrywise. The multiplication is done in two stages:
one level using block multiplication, the other one using multiplication in K. Ac-
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tually, we may have as many levels as wished, by writing blocks blockwise (using
subblocks), and so on. This recursive strategy is employed in Section 11.1.

2.3 Matrices and Bilinear Forms

Let E, F be two K-vector spaces. One chooses two respective bases β = {e1, . . . ,en}
and γ = { f1, . . . , fm}. If B : E ×F → K is a bilinear form, then

B(x,y) = ∑
i, j

B(ei, f j)xiy j,

where the xis are the coordinates of x in β and the y js are those of y in γ . Let us
define a matrix M ∈Mn×m(K) by mi j = B(ei, f j). Then B can be recovered from the
formula

B(x,y) := xT My = ∑
i, j

mi jxiy j. (2.7)

Conversely, if M ∈ Mn×m(K) is given, one can construct a bilinear form on E ×F
by applying (2.7). We say that M is the matrix of the bilinear form B, or that B
is the bilinear form associated with M. We warn the reader that once again, the
correspondence B ↔ M depends upon the choice of the bases.

This correspondence is a (noncanonical) isomorphism between Bil(E,F) and
Mn×m(K). We point out that, opposite to the isomorphism with L (E;F), n is now
the dimension of E and m that of F .

If M is associated with B, its transpose MT is associated with the bilinear form
BT defined on F ×E by

BT (y,x) := B(x,y).

When F = E, it makes sense to assume that γ = β . Then M is symmetric if and
only if B is symmetric: B(x,y) = B(y,x). Likewise, one says that M is alternate if B
itself is an alternate form. This is equivalent to saying that

mi j +m ji = 0, mii = 0, ∀1 ≤ i, j ≤ n.

An alternate matrix is skew-symmetric, and the converse is true if charc(K) �= 2.
If charc(K) = 2, an alternate matrix is a skew-symmetric matrix whose diagonal
vanishes.

2.3.1 Change of Bases

As for matrices associated with linear maps, we need a description of the effect of a
change of bases for the matrix associated with a bilinear form.
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Denoting again by P,Q the matrices of the changes of basis β �→ β ′ and γ �→ γ ′,
and by M,M′ the matrices of B in the bases (β ,γ) or (β ′,γ ′), respectively, one has

m′
i j = B(e′i, f ′j) = ∑

k,l
pkiql jB(ek, f�) = ∑

k,l
pkiql jmkl .

Therefore,
M′ = PT MQ.

The case F = E

When F = E and γ = β , γ ′ = β ′, the change of basis has the effect of replacing M
by M′ = PT MP. We say that M and M′ are congruent. If M is symmetric, then M′ is
too. This was expected, inasmuch as one expresses the symmetry of the underlying
bilinear form B.

If the characteristic of K is distinct from 2, there is an isomorphism between
Symn(K) and the set of quadratic forms on Kn. This isomorphism is given by the
formula

Q(ei + e j)−Q(ei)−Q(e j) = 2mi j.

In particular, Q(ei) = mii.

Exercises

1. Let G be an R-vector space. Verify that its complexification G⊗R C is a C-
vector space and that dimC G⊗R C = dimR G.

2. Let M ∈ Mn×m(K) and M′ ∈ Mm×p(K) be given. Show that

rk(MM′)≤ min{rk M, rk M′}.

First show that rk(MM′) ≤ rk M, and then apply this result to the transpose
matrix.

3. Let K be a field and let A,B,C be matrices with entries in K, of respective sizes
n×m, m× p, and p×q.

a. Show that rkA+ rkB≤m+ rkAB. It is sufficient to consider the case where
B is onto, by considering the restriction of A to the range of B.

b. Show that rkAB + rkBC ≤ rkB + rkABC. One may use the vector spaces
Kp/kerB and R(B), and construct three homomorphisms u,v,w, with v be-
ing onto.

4. a. Let n,n′,m,m′ ∈ N∗ and let K be a field. If B ∈ Mn×m(K) and C ∈
Mn′×m′(K), one defines a matrix B⊗C ∈ Mnn′×mm′(K), the tensor prod-
uct, whose block form is



30 2 What Are Matrices

B⊗C =

⎛
⎜⎝

b11C · · · b1mC
...

...
bn1C · · · bnmC

⎞
⎟⎠ .

Show that (B,C) �→ B⊗C is a bilinear map and prove that its range spans
Mnn′×mm′(K). Is this map onto?

b. If p, p′ ∈ N∗ and D ∈ Mm×p(K), E ∈ Mm′×p′(K), then compute (B ⊗
C)(D⊗E).

c. Show that for every bilinear form φ : Mn×m(K)×Mn′×m′(K) → K, there
exists one and only one linear form L : Mnn′×mm′(K) → K such that L(B⊗
C) = φ(B,C).



Chapter 3

Square Matrices

The essential ingredient for the study of square matrices is the determinant. For
reasons given in Section 3.5, as well as in Chapter 9, it is useful to consider matrices
with entries in a ring. This allows us to consider matrices with entries in Z (rational
integers) as well as in K[X ] (polynomials with coefficients in K). We assume that the
ring of scalars A is a commutative (meaning that the multiplication is commutative)
integral domain (meaning that it does not have divisors of zero: ab = 0 implies either
a = 0 or b = 0), with a unit denoted by 1, that is, an element satisfying 1x = x1 = x
for every x ∈ A.

An element a of A is invertible if there exists b∈ A such that ab = 1. The element
b is unique (because A is an integral domain), and is called the inverse of a, with
the notation b = a−1. The set of invertible elements of A is a multiplicative group,
denoted by A∗. One has

(ab)−1 = b−1a−1 = a−1b−1.

3.1 Determinant

We recall that Sn, the symmetric group, denotes the group of permutations over the
set {1, . . . ,n}. We denote by ε(σ) = ±1 the signature of a permutation σ , equal to
+1 if σ is the product of an even number of transpositions, and −1 otherwise. Two
explicit formulæ are

ε(σ) = ∏
i< j

σ( j)−σ(i)
j− i

,

or
ε(σ) = (−1)#{(i, j) |1≤i< j≤n and σ( j)<σ(i)}. (3.1)

Recall that ε(σσ ′) = ε(σ)ε(σ ′).

Definition 3.1 Let M ∈ Mn(A) be a square matrix. Its determinant is defined as

31D. Serre, Matrices, Graduate Texts in Mathematics 216,
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detM := ∑
σ∈Sn

ε(σ)m1σ(1) · · ·mnσ(n),

where the sum ranges over all the permutations of the integers 1, . . . ,n.

In the sequel, we use the notation

πσ (M) := m1σ(1) · · ·mnσ(n),

so that we may write
detM = ∑

σ∈Sn

ε(σ)πσ (M).

When M is given entrywise, we sometimes write its determinant by replacing the
parentheses by vertical bars:

detM =:

∣∣∣∣∣∣∣
m11 . . . m1n

...
. . .

...
mn1 . . . mnn

∣∣∣∣∣∣∣ .
Here are the formulæ for the determinant of 2×2 and 3×3 matrices:∣∣∣∣m11 m12

m21 m22

∣∣∣∣= m11m22−m12m21,

∣∣∣∣∣∣
m11 m12 m13
m21 m22 m23
m31 m32 m33

∣∣∣∣∣∣ = m11m22m33 −m11m23m32 −m13m22m31

−m12m21m33 +m12m23m31 +m21m13m32.

3.1.1 Elementary Properties

3.1.1.1 Determinant of a Triangular Matrix

If M is upper-triangular, then a nonvanishing product πσ (M) must satisfy i ≤ σ(i)
for every i = 1, . . . ,n. This implies

1+ · · ·+n ≤ σ(1)+ · · ·+σ(n) = 1+ · · ·+n,

where the latter equality comes from the fact that σ is a bijection. Therefore each
inequality i≤ σ(i) turns out to be an equality, which means that σ is the identity. Fi-
nally, detM reduces to πid(M). An analogous argument works for a lower-triangular
matrix.

Proposition 3.1 If M ∈ Mn(A) is triangular, then
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detM = m11 · · ·mnn. (3.2)

In particular, det In = 1 and det0n = 0. We leave to the reader the slightly more
involved, but still easy, proof that the determinant of a block-triangular matrix is
equal to the product of the determinants of the diagonal blocks Mj j. An alternate
proof of this fact follows from the Schur complement formula (3.6).

3.1.1.2 The Determinant of the Transpose Matrix

The map σ �→ ρ := σ−1 is an involution of Sn. Rearranging the monomials, we have

πσ (MT ) = πσ−1(M).

Because ε(σ−1) = ε(σ), we infer

detMT = ∑
σ∈Sn

ε(σ)πσ (MT ) = ∑
σ∈Sn

ε(σ−1)πσ−1(M) = ∑
ρ∈Sn

ε(ρ)πρ(M),

hence the identity
detMT = detM. (3.3)

3.1.1.3 Multilinearity

Viewing M =
(

M(1), . . . ,M(n)
)

as a row matrix with entries in An, one may view
the determinant as a function of the n columns of M:

detM = Δ
(

M(1), . . . ,M(n)
)

.

This expression can be used to define the determinant of n vectors M(1), . . . ,M(n)

taken in An: just form the matrix M from these vectors, and then take its determinant.
The function Δ is a multilinear form: each partial map M( j) �→Δ

(
M(1), . . . ,M(n)

)
is a linear form, because this is true for each monomial πσ (M). In addition, Δ is an
alternate form:

Proposition 3.2 If two columns of M are equal, then detM = 0.

Proof. Let us assume that the kth and the �th columns are equal, with k < �. The
symmetric group Sn is the disjoint union of the alternate group An, made of even
permutations (those with ε(σ) = +1) and of τAn, where τ is the transposition (k, �).
We thus have

detM = ∑
σ∈An

πσ (M)− ∑
σ∈An

πτσ (M).

There remains to observe that
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πσ (M) = πτσ (M),

this because of miσ(i) = miτ(σ(i)) for every i = 1, . . . ,n. ��
More generally, let us assume that the columns of M are linearly dependent; that

is,
a1M(1) + · · ·+anM(n) = 0,

where at least one of a1, . . . ,an does not vanish. Then using linearity, plus Proposi-
tion 3.2, we have

0 = Δ(. . . ,M( j−1),0,M( j+1), . . .)

= Δ(. . . ,M( j−1),a1M(1) + · · ·+anM(n),M( j+1), . . .)

=
n

∑
k=1

akΔ(. . . ,M( j−1),M(k),M( j+1), . . .)

= ajΔ(. . . ,M( j−1),M( j),M( j+1), . . .) = a j detM.

Taking an index j such that a j �= 0, and using that A is an integral domain, we obtain
the following.

Corollary 3.1 If the columns of M are linearly dependent, then detM = 0.

3.1.1.4 The Determinant as a Polynomial

Let {xi j |1 ≤ i, j ≤ n} be indeterminates. The polynomial ring A[x11, . . . ,xnn] is an
integral domain with a unit, in which we may apply the previous results. Let us
define the matrix X = (xi j)1≤i, j≤n, which belongs to Mn(A[x11, . . . ,xnn]). Its deter-
minant is a polynomial, which we denote DetA. We observe that DetA does not really
depend on the ring A, in the sense that it is the image of DetZ through the canonical
ring homomorphism Z → A. For this reason, we simply write Det.

Given M ∈ Mn(A), the determinant of M is obtained by substituting the entries
mi j to the indeterminates xi j in Det. The determinant is thus a polynomial function.

3.2 Minors

For a matrix M ∈ Mn×m(A), not necessarily a square one, and for p ≥ 1 an integer
with p ≤m,n, one may extract a p× p matrix M′ ∈Mp(A) by retaining only p rows
and p columns of M. The determinant of such a matrix M′ is called a minor of order
p. Once the choice of the row indices i1 < · · ·< ip and column indices j1 < · · ·< jp
has been made, one denotes by

M
(

i1 i2 · · · ip
j1 j2 · · · jp

)
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the corresponding minor. A principal minor is a minor with equal row and column
indices, that is, of the form

M
(

i1 i2 · · · ip
i1 i2 · · · ip

)
.

In particular, the leading principal minor of order p is

M
(

1 2 · · · p
1 2 · · · p

)
.

3.2.1 Cofactors

Given i ∈ {1, . . . ,n}, we adopt the notation î := (. . . , i− 1, i + 1, . . .), which is the
(n−1)-uplet obtained from (1, . . . ,n) by removing i. If M ∈ Mn(A) and i, j are two
indices, we define the cofactor

m̂i j := (−1)i+ jM
(

ı̂
ĵ

)
.

The matrix M̂ of entries m̂i j is the matrix of cofactors. Especially important is its
transpose

adjM := M̂T ,

called the adjugate matrix of M.
Viewing the determinant as a polynomial in the entries of M, we can differentiate

it with respect to any one. We have

Lemma 1. For every 1 ≤ i, j ≤ n,

∂ Det
∂mi j

(M) = m̂i j.

Proof. Let N be the matrix obtained from M by removing the ith row and the jth
column. The partial derivative of πσ is zero, unless σ(i) = j. In the latter case, we
may write

πσ (M) = mi jπρ(N)

where ρ ∈ Sn−1 is defined by the formula

ρ(k) =

⎧⎪⎪⎨
⎪⎪⎩

σ(k) if k < i and σ(k) < j,
σ(k)−1 if k < i and σ(k) > j,
σ(k +1) if k ≥ i and σ(k +1) < j,
σ(k +1)−1 if k ≥ i and σ(k +1) > j.

On the one hand, we have
∂πσ

∂mi j
(M) = πρ(N).
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And we also have
ε(σ) = (−1)i+ jε(ρ).

We conclude that

∂ Det
∂mi j

(M) = (−1)i+ j ∑
ρ∈Sn−1

ε(ρ)πρ(N),

which is the announced formula. ��

3.2.1.1 A Fundamental Application

Let us choose an index 1 ≤ j ≤ n and a matrix M ∈ Mn(A). Given a vector X ∈ An,
we differentiate the determinant at M, with respect to the jth column in the direction
X . Because Δ is a linear function of each column, this gives

Δ(. . . ,M( j−1),X ,M( j+1), . . .) =
n

∑
i=1

xim̂i j. (3.4)

Applying (3.4) to X = M( j), we obtain

detM =
n

∑
i=1

mi jm̂i j.

Choosing X = M(k) with k �= j instead, and recalling Proposition 3.2, we find

0 =
n

∑
i=1

mikm̂i j.

Assembling both these equalities, we have proved (adjM)M = (detM)In.
Let us apply this identity to MT instead. Remarking that adj(MT ) = (adjM)T ,

and recalling (3.3), we have

(adjM)T MT = (detM)In.

Transposing the latter identity, there remains M(adjM) = (detM)In. We summarize
our results.

Proposition 3.3 If M ∈ Mn(A), one has

M(adjM) = (adjM)M = detM · In. (3.5)

Proposition 3.3 contains the well-known and important expansion formula for the
determinant with respect to either a row or a column. The expansion with respect to
the ith row is written

detM = mi1m̂i1 + · · ·+minm̂in,
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and the expansion with respect to the ith column is

detM = m1im̂1i + · · ·+mnim̂ni.

3.2.2 The Cauchy–Binet Formula

In the sequel, we also use the following result.

Proposition 3.4 Let B ∈ Mn×m(A), C ∈ Mm×l(A), and an integer p ≤ n, l be given.
Let 1≤ i1 < · · ·< ip ≤ n and 1≤ k1 < · · ·< kp ≤ l be indices. Then the correspond-
ing minor in the product BC is given by the formula

(BC)
(

i1 i2 · · · ip
k1 k2 · · · kp

)
= ∑

1≤ j1< j2<···< jp≤m
B
(

i1 i2 · · · ip
j1 j2 · · · jp

)
·C
(

j1 j2 · · · jp
k1 k2 · · · kp

)
.

Corollary 3.2 Let b,c ∈ A. If b divides every minor of order p of B and if c divides
every minor of order p of C, then bc divides every minor of order p of BC.

The particular case l = m = n = p is fundamental.

Theorem 3.1 If B,C ∈ Mn(A), then det(BC) = detB ·detC.

In other words, the determinant is a multiplicative homomorphism from Mn(A)
to A.

Proof. The corollaries are trivial. We only prove the Cauchy–Binet formula. The
calculation of the ith row (respectively, the jth column) of BC involves only the ith
row of B (respectively, the jth column of C), thus one may assume that p = n = l.
The minor to be evaluated is then detBC. If m < n, there is nothing to prove, because
the rank of BC is less than or equal to m, thus detBC is zero by Corollary 3.1, and
on the other hand the left-hand side sum in the formula is empty.

There remains the case m ≥ n. Let us write the determinant of a matrix P as that
of its columns Pj and let us use the multilinearity of the determinant:

detBC = det

(
n

∑
j1=1

c j11B j1 ,(BC)2, . . . ,(BC)n

)

=
n

∑
j1=1

c j11 det

(
Bj1 ,

n

∑
j2=1

c j22B j2 ,(BC)3, . . . ,(BC)n

)

= · · · = ∑
1≤ j1,..., jn≤n

c j11 · · ·c jnn det(Bj1 , . . . ,B jn).

In the sum the determinant is zero as soon as f �→ j f is not injective, because then
there are two identical columns. When j is injective, this determinant is a minor of
B, up to the sign. This sign is that of the permutation that puts j1, . . . , jp in increasing
order. Grouping in the sum the terms corresponding to the same minor, we obtain
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detBC = ∑
1≤k1<···<kn≤m,

∑
σ∈Sn

ε(σ)ck1σ(1) · · ·cknσ(n)B
(

1 2 · · · n
k1 k2 · · · kn

)
,

which is the required formula. ��

3.2.3 Irreducibility of the Determinant

Theorem 3.2 The polynomial Det is irreducible in A[x11, . . . ,xnn].

Proof. We proceed by induction on the size n. If n = 1, there is nothing to prove.
Thus let us assume that n ≥ 2. We denote by D the ring of polynomials in the xi j
with (i, j) �= (1,1), so that A[x11, . . . ,xnn] = D[x11]. Expanding with respect to the
first row, we see that Det = x11P + Q, with P,Q ∈ D. Because Det is of degree one
as a polynomial in x11, any factorization must be of the form (x11R + S)T , with
R,S,T ∈ D. In particular, RT = P.

By induction, and inasmuch as P is the polynomial Det of (n− 1)× (n− 1)
matrices, it is irreducible in E, the ring of polynomials in the xi js with i, j > 1.
Therefore, it is also irreducible in D, because D is the polynomial ring

E[x12, . . . ,x1n,x21, . . . ,xn1].

Therefore, we may assume that either R or T equals 1.
If the factorization is nontrivial, then R = 1 and T = P. It follows that P divides

Det. An expansion with respect to various rows shows similarly that every minor
of size n− 1, considered as an element of A[x11, . . . ,xnn], divides Det. However,
each such minor is irreducible, and they are pairwise distinct, because they do not
depend on the same set of xi js. We conclude that the product of all minors of size
n− 1 divides Det. In particular, the degree n of Det is greater than or equal to the
degree n2(n−1) of this product, an obvious contradiction. ��

3.3 Invertibility

Let us recall Mn(A) is not an integral domain. Thus the notion of invertible elements
of Mn(A) needs an auxiliary result, presented below.

Proposition 3.5 Given M ∈ Mn(A), the following assertions are equivalent.

1. There exists N ∈ Mn(A) such that MN = In.
2. There exists N ′ ∈ Mn(A) such that N ′M = In.
3. detM is invertible.

If M satisfies one of these equivalent conditions, then the matrices N,N ′ are unique
and one has N = N ′.
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Definition 3.2 One then says that M is invertible, or that M is nonsingular. One
calls the matrix N = N′ the inverse of M. It is denoted by M−1. If M is not invertible,
one says that M is singular.

Proof. Let us show that (1) is equivalent to (3). If MN = In, then detM · detN =
1; hence detM ∈ A∗. Conversely, if detM is invertible, (detM)−1M̂T is an inverse
of M by (3.5). Analogously, (2) is equivalent to (3). The three assertions are thus
equivalent.

If MN = N′M = In, one has N = (N′M)N = N′(MN) = N′. This equality between
the left and right inverses shows that these are unique. ��

The set of the invertible elements of Mn(A) is denoted by GLn(A) (for “general
linear group”). It is a multiplicative group.

Proposition 3.6 Let M,N be nonsingular n×n matrices. Then we have

(MN)−1 = N−1M−1, (Mk)−1 = (M−1)k, (MT )−1 = (M−1)T .

Proof. We calculate

(N−1M−1)(MN) = N−1(M−1M)N = N−1InN = N−1N = In,

whence the first identity. The second one is standard. Finally

(M−1)T MT = (MM−1)T = IT
n = In

gives the last one. ��
The matrix (MT )−1 is also written M−T . If k ∈N, one writes M−k = (Mk)−1 and

one has M jMk = M j+k for every j,k ∈ Z.
The set of the matrices of determinant one is a normal subgroup of GLn(A),

because it is the kernel of the homomorphism M �→ detM. It is called the special
linear group and is denoted by SLn(A).

Recall that the orthogonal matrices are invertible, and they satisfy the relation
M−1 = MT . In particular, orthogonality is equivalent to MMT = In. The set of or-
thogonal matrices with entries in a field K is obviously a multiplicative group, and
is denoted by On(K). It is called the orthogonal group. The determinant of an or-
thogonal matrix equals ±1, because

1 = detM ·detMT = (detM)2.

The set SOn(K) of orthogonal matrices with determinant equal to 1 is obviously a
normal subgroup of the orthogonal group. It is called the special orthogonal group,
the intersection of On(K) with SLn(K).

Proposition 3.7 A triangular matrix is invertible if and only if its diagonal entries
are invertible; its inverse is then triangular of the same type, upper or lower.
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Proof. Let us write the proof for upper-triangular matrices. Because of Propositions
3.1 and 3.5, invertibility of the matrix amounts to that of its diagonal entries.

We thus assume that each mii is nonzero. Let T be the inverse of M and denote
its columns by T (1), . . . ,T (n). Because of MT (1) = e1, we have

mnntn1 = 0,

mn−1,n−1tn−1,1 +mn−1,ntn1 = 0,

...
m22t21 + · · ·+m2ntn1 = 0.

This gives inductively tn1 = 0, . . . , t21 = 0.
We next write that MT (2) is colinear to e1 and e2, obtaining tn2 = · · · = t32 = 0.

By induction on the columns, we obtain ti j = 0 whenever i > j. ��
The proposition below is an immediate application of theorem 3.1.

Proposition 3.8 If M,M′ ∈Mn(A) are similar (i.e., M′ = P−1MP with P∈GLn(A)),
then

detM′ = detM.

3.3.1 Inverting Blockwise

The determinant of a 2×2 matrix

M =
(

a b
c d

)

equals ad−bc. We might wonder whether something similar happens when a matrix
of size n×n is given blockwise:

M =
(

A B
C D

)
.

For instance, can we say that detM equals det(AD−BC)? The answer is obviously
No, because the expressions AD and BC might not make sense. Even when they do,
the matrices AD and BC might not be square. The only case where the answer needs
a little investigation is when the four blocks have the same size n/2×n/2 (and thus
n is even). Even in the latter situation, we might hesitate between AD versus DA, and
BC versus CB. This makes four candidates, from det(AD−BC) to det(DA−CB).
Actually none of them equals the determinant of M in general. The correct answer
is given by the following proposition.

Proposition 3.9 (Schur complement formula.) Let M ∈ Mn(K) read blockwise
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M =
(

A B
C D

)
,

where the diagonal blocks are square and A is invertible. Then

detM = detAdet(D−CA−1B). (3.6)

Definition 3.3 The matrix D−CA−1B is called the Schur complement of A in M.

We emphasize that in (3.6), we do not need the blocks to be of equal size. In par-
ticular, B and C need not be square, although they have to be of transpose sizes. The
Schur complement formula turns out to be an effective tool in practical calculations.

Proof. We use a trick that is developed in Chapter 11. Because A is invertible, M
factorizes as a product LU of block-triangular matrices, with

L =
(

I 0
CA−1 I

)
, U =

(
A B
0 D−CA−1B

)
.

Then detM = detLdetU furnishes the expected formula. ��
Inverting L and U , we see that as soon as M ∈ GLn(k) and A ∈ GLp(k) (even if

p �= n/2), then

M−1 =U−1L−1 =
(

A−1 ∗
0 (D−CA−1B)−1

)(
I 0

−CA−1 I

)
=
( · ·
· (D−CA−1B)−1

)
.

More generally, we have the following corollary.

Corollary 3.3 Let M ∈ GLn(k), with n = 2m, read blockwise

M =
(

A B
C D

)
, A,B,C,D ∈ GLm(k).

Then

M−1 =
(

(A−BD−1C)−1 (C−DB−1A)−1

(B−AC−1D)−1 (D−CA−1B)−1

)
.

Proof. We can verify the formula by multiplying by M. The only point to show is
that the inverses are meaningful; that is, A−BD−1C, . . . are invertible. Because of
the symmetry of the formulæ, it is enough to check it for a single term, namely
D−CA−1B. However, det(D−CA−1B) = detM/detA is well defined and nonzero
by assumption. ��

3.3.2 Cramer’s Formulæ

When a matrix M ∈ Mn(A) is invertible, the linear system
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Mx = b, (3.7)

where b ∈ An is a datum and x ∈ An the unknown, admits a unique solution, given
by x = M−1b. The identity

x =
1

detM
(adjM)b

gives an expression of the solution, which we want to make more explicit. This is
the role of Cramer’s formulae:

Proposition 3.10 If M is invertible, the coordinates of the solution of equation (3.7)
are given by

xi =
detM(i;b)

detM
, (3.8)

where M(i;b) is the matrix formed by replacing in M the ith column by the vector b.

Proof. Let us denote by Xi(b) the expression in the right-hand side of (3.8), and
X(b) the vector whose coordinates are Xi(b) for i = 1, . . . ,n. The map b �→ X(b) is
linear, and thus corresponds to a matrix N ∈ Mn(A).

When b := M( j) is the jth column of M, the determinant of M(i;M( j)) vanishes
for every i �= j because this matrix has two identical columns. Because M( j;M( j)) =
M, we deduce Xi(M( j)) = δ j

i , that is X(M( j)) = e j.
Because Me j = M( j), we infer that N coincides with M−1 over the set of columns

of M. The matrix being invertible, its columns span An : every vector b is a linear
combination of M(1), . . . ,M(n). Just write

b = ∑
j

b je
j = ∑

j
b jM−1M( j) = ∑

i
βiM(i), βi := ∑

j
(M−1)i jb j.

Therefore N = M−1, which means that X(b) = M−1b for every b ∈ An. ��

3.4 Eigenvalues and Eigenvectors

We repeat the analysis made for an endomorphism. If M ∈ Mn(K), then n =
dimkerM + rkM. Therefore M is bijective over Kn if and only if it is either in-
jective or surjective. Applying this to λ In −M where λ ∈ K, we therefore have the
alternative

• Either there exists a nonzero vector X ∈ Kn such that Mx = λX . One then says
that λ is an eigenvalue of M in K, and that X is an eigenvector associated with
λ .

• Or, for every b ∈ Kn, the following equation admits a unique solution Y ∈ Kn,

MY −λY = b.
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The set of the eigenvalues of M in K is called the spectrum of M and is denoted by
SpK(M).

The matrix λ In−M acts bijectively over Kn if and only if it is nonsingular, there-
fore we find that the eigenvalues are the solutions of the polynomial equation

det(λ In −M) = 0. (3.9)

A matrix in Mn(K) may have no eigenvalues in K, as the following example
demonstrates, with K = R: (

0 1
−1 0

)
.

To understand in detail the structure of a square matrix M ∈ Mn(K), one is thus
led to consider M as a matrix with entries in the algebraic closure K. One then
writes Sp(M) instead of SpK(M), and one has SpK(M) = K ∩Sp(M), because the
eigenvalues are characterized by (3.9), and this equality has the same meaning in K
as in K when λ ∈ K.

3.5 The Characteristic Polynomial

Given M ∈ Mn(K), the equation (3.9) for the eigenvalues suggests defining a poly-
nomial

PM(X) := det(XIn −M).

Let us observe in passing that if X is an indeterminate, then XIn −M ∈ Mn(K(X)).
Its determinant PM is thus well-defined, because K(X) is a commutative integral
domain with a unit element. One calls PM the characteristic polynomial of M. Sub-
stituting 0 for X , one sees that the constant term in PM is simply (−1)n detM. The
term corresponding to the permutation σ = id in the computation of the determinant
is of degree n (it is ∏i(X −mii)) and the products corresponding to the other per-
mutations are of degree less than or equal to n−2, therefore one sees that PM is of
degree n, with

PM(X) = Xn −
(

n

∑
i=1

mii

)
Xn−1 + · · ·+(−1)n detM. (3.10)

The coefficient
n

∑
i=1

mii

is called the trace of M and is denoted by TrM. One has the trivial formula that if
N ∈ Mn×m(K) and P ∈ Mm×n(K), then

Tr(NP) = Tr(PN).
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For square matrices, this identity also becomes

Tr[N,P] = 0.

Because PM possesses n roots in K, counting multiplicities, a square matrix al-
ways has at least one eigenvalue that, however, does not necessarily belong to K.
The multiplicity of λ as a root of PM is called the algebraic multiplicity of the eigen-
value λ . The geometric multiplicity of λ is the dimension of ker(λ In −M) in Kn.
The sum of the algebraic multiplicities of the eigenvalues of M (considered in K) is
degPM = n, the size of the matrix. An eigenvalue of algebraic multiplicity one (i.e.,
a simple root of PM) is called a simple eigenvalue. An eigenvalue is geometrically
simple if its geometric multiplicity equals one.

The characteristic polynomial is a similarity invariant, in the following sense.

Proposition 3.11 If M and M′ are similar, then PM = PM′ . In particular, detM =
detM′ and TrM = TrM′.

The proof is immediate. One deduces that the eigenvalues and their algebraic
multiplicities are similarity invariants. This is also true for the geometric multiplici-
ties, by a direct comparison of the kernel of λ In−M and of λ In −M′. Furthermore,
the expression (3.10) provides the following result.

Proposition 3.12 The product of the eigenvalues of M (considered in K), counted
with their algebraic multiplicities, is detM. Their sum is TrM.

The characteristic polynomials of M and MT are equal. Thus, M and MT have
the same eigenvalues. We show a much deeper result in Chapter 9, namely that M
and MT are similar.

3.5.1 Eigenvalues of the Transpose Matrix

We recall (Proposition 2.8) that dimkerMT = dimkerM. Applying this statement to
M−λ In, we find that λ is an eigenvalue of M if and only if it is an eigenvalue of
MT , and that the geometric multiplicities coincide. In addition, because of (3.3), we
have PMT = PM and the algebraic multiplicities coincide too. Finally we have the
following.

Proposition 3.13 A square matrix and its transpose have the same eigenvalues,
with the same geometric multiplicities, and the same algebraic multiplicities.

3.5.2 The Theorem of Cayley–Hamilton

Theorem 3.3 (Cayley–Hamilton) Let M ∈ Mn(K). Let
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PM(X) = Xn +a1Xn−1 + · · ·+an

be its characteristic polynomial. Then the matrix

Mn +a1Mn−1 + · · ·+anIn

equals 0n.

One also writes PM(M) = 0. Although this formula looks trivial (the equality
det(MIn−M) = 0 is obvious) at first glance, it is not. Actually, it must be understood
in the following way. Let us consider the expression XIn−M as a matrix with entries
in K[X ]. When one substitutes a matrix N for the indeterminate X in XIn −M, one
obtains a matrix of Mn(A), where A is the subring of Mn(K) spanned by In and N
(denoted above by K(N)). The ring A is commutative (but is not an integral domain
in general), because it is the set of the q(N) for q ∈ K[X ]. Therefore,

PM(N) =

⎛
⎜⎜⎜⎜⎝

N−m11In
. . . −mi jIn

. . .
N−mnnIn

⎞
⎟⎟⎟⎟⎠ .

The Cayley–Hamilton theorem expresses that the determinant (which is an element
of Mn(K), rather than a scalar) of this matrix is zero.

Proof. Let R ∈ Mn(K(X)) be the matrix XIn −M, and let S be the adjugate of R.
Each si j is a polynomial of degree less than or equal to n−1, because the products
arising in the calculation of the cofactors involve n−1 linear or constant terms. Thus
we may write

S = S0Xn−1 + · · ·+Sn−1,

where S j ∈ Mn(K). Let us now write RS = (detR)In = PM(X)In:

(XIn −M)(S0Xn−1 + · · ·+Sn−1) = (Xn +a1Xn−1 + · · ·+an)In.

Identifying the powers of X , we obtain

S0 = In,

S1 −MS0 = a1In,

...
S j −MS j−1 = a jIn,

...
Sn−1 −MSn−2 = an−1In,

−MSn−1 = anIn.
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Let us multiply these lines by the powers of M, beginning with Mn and ending with
M0 = In. Summing all these equalities, we obtain the expected formula. ��

For example, every 2×2 matrix satisfies the identity

M2− (Tr M)M +(detM)I2 = 0.

3.5.3 The Minimal Polynomial

For a square matrix M ∈Mn(K), let us denote by JM the set of polynomials Q∈K[X ]
such that Q(M) = 0. It is clearly an ideal of K[X ]. Because K[X ] is Euclidean, hence
principal (see Sections 9.1.1 and 9.1.2 for these notions), there exists a polynomial
πM such that JM = K[X ]πM is the set of polynomials divisible by πM : if Q(M) = 0
and Q ∈ K[X ] then πM|Q. Theorem 3.3 shows that the ideal JM does not reduce to
{0}, because it contains the characteristic polynomial. Hence, πM �= 0 and one may
choose it monic. This choice determines πM in a unique way, and one calls it the
minimal polynomial of M. It divides the characteristic polynomial PM .

In Section 9.3.2, we show that if L is a field containing K, then the minimal
polynomials of M in K[X ] and L[X ] are the same. Therefore the minimal polynomial
is independent of the choice of a field containing the entries of M.

Two similar matrices obviously have the same minimal polynomial, inasmuch as

Q(P−1MP) = P−1Q(M)P.

If λ is an eigenvalue of M, associated with an eigenvector X , and if q ∈ K[X ],
then q(λ )X = q(M)X . Applied to the minimal polynomial, this equality shows that
the minimal polynomial is divisible by X −λ . Hence, if PM splits over K̄ in the form

r

∏
j=1

(X −λ j)n j ,

the λ j all being distinct, then the minimal polynomial can be written as

r

∏
j=1

(X −λ j)m j ,

for some 1 ≤ mj ≤ n j. In particular, if every eigenvalue of M is simple, the minimal
polynomial and the characteristic polynomial are equal.

An eigenvalue is called semisimple if it is a simple root of the minimal polyno-
mial.
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3.5.4 Semisimplicity

Let μ be the geometric multiplicity of an eigenvalue λ of M. Let us choose a basis
γ of ker(λ In −M), and then a basis of β of Kn that completes γ . Using the change-
of-basis matrix from the canonical basis to β , one sees that M is similar to a matrix
M′ = P−1MP of the form (

λ Iμ R
0n−μ,μ S

)
,

where S ∈Mn−μ(K). Because of the block-triangular form, we have PM′(X) = (X −
λ )μ PS(X). Because PM′ = PM by similarity, we thus have the following.

Proposition 3.14 The geometric multiplicity of an eigenvalue is less than or equal
to its algebraic multiplicity.

Definition 3.4 We say that an eigenvalue of M ∈ Mn(K) is semisimple if its alge-
braic and geometric multiplicities coincide.

For instance, a simple eigenvalue is semisimple. With the calculation above, λ is
semisimple if and only if it is not an eigenvalue of the block S; that is, S−λ In−μ is
nonsingular.

Theorem 3.4 An eigenvalue λ ∈ K of M is semisimple if and only if

Kn = R(M−λ In)⊕ker(M−λ In).

Proof. We may assume that M is in block-triangular form as above. We decompose
the vectors blockwise accordingly:

x =
(

x+
x−

)
.

The eigenspace associated with λ is that spanned by e1, . . . ,eμ . Therefore x ∈
ker(M−λ In) if and only if x− = 0.

If λ is semisimple, then S−λ In−μ is nonsingular. Let x ∈ R(M−λ In)∩ker(M−
λ In−) be given. There exists a y such that x = (M−λ In)y. We get (S−λ In−μ)y− =
x− = 0, which implies y− = 0. Therefore y ∈ ker(M−λ In); that is, x = 0.

If instead λ is not semisimple, we may choose a nonzero vector y− in the kernel
of S−λ In−μ . Choosing y+ = 0 and defining x := (M−λ In)y, we have x− = 0; that
is, x ∈ ker(M−λ In). However y is not itself in the eigenspace, and therefore x is a
nonzero element of R(M−λ In)∩ker(M−λ In). ��

We now investigate in greater detail the case of a geometrically simple eigenvalue
λ . According to Proposition 3.13, λ is also a geometrically simple eigenvalue of
MT . Let X be a generator of ker(M − λ In) and Y a generator of ker(MT − λ In).
Thanks to Corollary 2.1, the equation (M − λ In)x = X is solvable if and only if
Y T X = 0. This solvability amounts to saying that R(M − λ In)∩ ker(M − λ In) is
nontrivial. With theorem 3.4, this gives the following proposition.
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Proposition 3.15 Let λ ∈ K be a geometrically simple eigenvalue of M ∈ Mn(K).
Let X and Y be eigenvectors of M and MT , respectively, associated with λ .

Then λ is a semisimple (thus simple) eigenvalue if and only if Y T X �= 0.

When λ is simple, we may normalize X or Y above in such a way that Y T X = 1.

3.6 Diagonalization

If λ ∈ K is an eigenvalue of M, the linear subspace EK(λ ) = ker(M−λ In) in Kn is
nontrivial and is called the eigenspace associated with λ . It is formed of eigenvec-
tors associated with λ and of the zero vector.

The following statement uses the notion of tensor product, here in the restricted
situation of extension of scalars, presented in Chapter 4.

Proposition 3.16 Let λ ∈ K be given. If L is a field containing K with [L : K] <
∞ (an “extension” of K of finite degree), then EL(λ ) = EK(λ )⊗K L and thus
dimK EK(λ ) = dimL EL(λ ).

Proof. Let a1, . . . ,a� be a basis of L over K. If z∈ EK(λ )⊗K L, then z = a1x1 + · · ·+
a�x� where x1, . . . ,x� belong to EK(λ ). Then Mz = a1Mx1 + · · ·+ a�Mx� = λ z and
thus z ∈ EL(λ ).

Conversely, if z ∈ EL(λ ), let us write z = a1x1 + · · ·+a�x� with x j ∈ Kn. Then

0 = (M−λ )z = a1(M−λ )x1 + · · ·+a�(M−λ )x�.

The coefficient of a j must vanish, which means x j ∈ EK(λ ). This gives us z ∈
EK(λ )⊗K L. ��

If λ1, . . . ,λr are distinct eigenvalues, the corresponding eigenspaces are in direct
sum. That is,

(x1 ∈ EK(λ1), . . . ,xr ∈ EK(λr),x1 + · · ·+ xr = 0) =⇒ (x1 = · · ·= xr = 0).

As a matter of fact, if there existed a relation x1 + · · ·+ xs = 0 where x1, . . . ,xs did
not vanish simultaneously, one could choose such a relation of minimal length r.
One then would have r ≥ 2. Multiplying this relation by M−λrIn, one would obtain

(λ1−λr)x1 + · · ·+(λr−1 −λr)xr−1 = 0,

which is a nontrivial relation of length r− 1 for the vectors (λ j −λr)x j ∈ EK(λ j).
This contradicts the minimality of r.

If all the eigenvalues of M are in K (we say that the characteristic polynomial
PM splits in K), the sum of the dimensions of the eigenspaces equals the sum of
geometric multiplicities. If in addition the algebraic and geometric multiplicities
coincide for each eigenvalue of M, this sum is n and the subspace
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⊕s
j=1E(λ j)

has dimension n. It is thus equal to Kn:

Kn = E(λ1)⊕·· ·⊕E(λr).

Thus one may choose a basis of Kn formed of eigenvectors. If P is the change-of-
basis matrix from the canonical basis to the new one, then M′ = P−1MP is diagonal,
and its diagonal entries are the eigenvalues, repeated with their multiplicities. One
says that M is diagonalizable in K. A particular case is that in which the eigenvalues
of M are in K and are simple.

Proposition 3.17 Let M ∈ Mn(K) be given, such that PM splits in K and has simple
roots. Then M is diagonalizable in Mn(K).

Conversely, if M is similar in Mn(K) to a diagonal matrix D = P−1MP, then P
is a change-of-basis matrix from the canonical basis to an eigenbasis (i.e., a basis
composed of eigenvectors) of M, hence the following.

Proposition 3.18 A square matrix M is diagonalizable in Mn(K) if and only if Kn

admits a basis of eigenvectors of M, or in other words:

• PM splits in K.
• The algebraic and geometric multiplicities of each eigenvalue coincide.

Two obstacles could prevent M from being diagonalizable in K. The first one
is that an eigenvalue of M does not belong to K. One can always overcome this
difficulty by extending our field of scalars to K or simply to a suitable finite exten-
sion L over K. Thus many matrices are not diagonalizable over K, but are so over
an extension L. The second cause is more serious: even if an eigenvalue λ is in
K, its geometric multiplicity can be strictly less than its algebraic multiplicity, and
this remains true if we replace K by an extension. For instance, a triangular matrix
whose diagonal vanishes has only one eigenvalue, zero, of algebraic multiplicity n.
Such a matrix is nilpotent. However, it is diagonalizable only if it is 0n, because if
M = PDP−1 and D is diagonal, then D = 0n and this implies M = 0n. For instance,(

0 1
0 0

)

is not diagonalizable.

3.7 Trigonalization

Definition 3.5 A square matrix is trigonalizable in Mn(K) if it is similar to a trian-
gular matrix.
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Because the characteristic polynomial is invariant under conjugation and that of
a triangular matrix T is the product of linear factors X − t j j, a necessary condition
for trigonalizability of M is that PM split over K. This turns out to be sufficient.

Theorem 3.5 A square matrix M is trigonalizable over Mn(K) if and only if its
characteristic polynomial splits over K.

Proof. We proceed by induction over n. The sufficiency is obvious for n = 1.
Let us assume that n ≥ 2 and that PM splits. Thus M has an eigenvalue λ . Let

x be a corresponding eigenvector. We form a basis B, whose first element is x.
Let P be the matrix of the change of basis from the canonical one to B. Then
MPe1 = Mx = λx = λPe1, or equivalently P−1MPe1 = λe1. This means that

P−1MP =
(

λ · · ·
0 M′

)

is block-triangular.
Because of the triangular form, one has PM = (X −λ )PM′ . Thus PM′ splits over

K too. By induction hypothesis, M′ is similar to an upper-triangular matrix T ′:
Q−1M′Q = T ′. Let us form Q0 := diag(1,Q), which is nonsingular. Finally, define
R := PQ0. Then

R−1MR =
(

λ · · ·
0 T ′

)
is triangular. ��
Corollary 3.4 Every square matrix M ∈ Mn(K) is trigonalizable over a suitable
extension of K.

We now give a more accurate reduction of matrices under the same assumption
as above. We begin with an application of the Cayley–Hamilton theorem.

Proposition 3.19 Let M ∈ Mn(K) and let PM be its characteristic polynomial. If
PM = QR with coprime factors Q,R ∈ K[X ], then Kn = E ⊕F, where E,F are the
ranges of Q(M) and R(M), respectively. Moreover, one has E = kerR(M), F =
kerQ(M).

More generally, if PM = R1 · · ·Rs, where the Rs are coprime, one has Kn = E1 ⊕
·· ·⊕Es with E j = kerR j(M). The subspace E j is also the range of(

PM

R j

)
(M).

Proof. It is sufficient to prove the first assertion and then to work by induction over
the number of factors s.

From Bézout’s theorem, there exist T,S ∈ K[X ] such that RT + QS = 1. Hence,
every x ∈ Kn can be written as a sum y + z with y = Q(M)(S(M)x) ∈ E and z =
R(M)(T (M)x) ∈ F . Hence Kn = E +F and

n ≤ dimE +dimF. (3.11)
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For every y ∈ E, the Cayley–Hamilton theorem says that R(M)y = 0. This means
that E ⊂ kerR(M). Likewise, F ⊂ kerQ(M). We deduce

dimE ≤ dimkerR(M), dimF ≤ dimkerQ(M). (3.12)

If x ∈ kerQ(M)∩kerR(M), one has

x = T (M)(R(M)x)+S(M)(Q(M)x) = T (M)0+S(M)0 = 0,

whence kerQ(M)∩kerR(M) = {0}. This tells us that

dim(kerQ(M)+kerR(M)) = dimkerQ(M)+dimkerR(M). (3.13)

Assembling (3.11-3.13), we obtain n ≤ dim(kerQ(M)+ kerR(M)); that is, n =
dim(kerQ(M)+kerR(M)). We infer that the equalities hold in (3.11) and (3.12):

n = dimE +dimF, dimE = dimkerR(M), dimF = dimkerQ(M).

We conclude that

Kn = E ⊕F, E = kerR(M), dimF = kerQ(M).

��
Let us now assume that PM splits over K:

PM(X) = ∏
λ∈Sp(M)

(X −λ )nλ .

Proposition 3.19 tells us that Kn = ⊕λ Eλ , where Eλ = ker(M − λ I)nλ is called a
generalized eigenspace. Choosing a basis in each Eλ , we obtain a new basis B of
Kn. If P is the matrix of the linear transformation from the canonical basis to B, the
matrix PMP−1 is block-diagonal, because each Eλ is stable under the action of M:

PMP−1 = diag(. . . ,Mλ , . . .).

The matrix Mλ is that of the restriction of M to Eλ . Because Eλ = ker(M−λ I)nλ ,
one has (Mλ −λ I)nλ = 0, so that λ is the unique eigenvalue of Mλ . Let us define
Nλ = Mλ −λ Inλ , which is nilpotent. Let us also write

D′ = diag(. . . ,λ Inλ , . . .),
N′ = diag(. . . ,Nλ , . . .),

and then D = P−1D′P, N = P−1N′P. The matrices D′,N′ are, respectively, diagonal
and nilpotent. Moreover, they commute to each other: D′N′ = N′D′. One deduces
the existence part in the following result.
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Proposition 3.20 Let us assume that the characteristic polynomial of M ∈ Mn(K)
splits over K. Then M decomposes as a sum M = D+N, where D is diagonalizable,
N is nilpotent, DN = ND, and Sp(D) = Sp(M).

In addition, D and N are unique, and are polynomials in M. The formula M =
D+N is the Dunford decomposition of M.

Proof. There remains to prove the uniqueness and polynomiality.

Polynomiality. It is sufficient to prove that D′ and N′ are polynomials in D′ +N′.
This is done if we find one polynomial R, such that λ Inλ = R(λ Inλ +Nλ ) for every
λ , because then we have D = R(M) and N = (X −R)(M). Such a polynomial
needs only to satisfy the following properties. For each eigenvalue λ , R(λ ) = λ ,
and the multiplicity of λ as a root of R−λ is nλ . This is an interpolation problem
which does have a solution.

Uniqueness. Let D + N be the Dunford decomposition of M constructed above.
Up to conjugation, we may assume that D is already diagonal, of the form

D = diag(a1In1 , . . . ,arInr)

where the a js are pairwise distinct.
If D′+N ′ is another Dunford decomposition, then D+N = D′ +N′. In addition,
D′ (respectively, N, N′) commutes with M, thus with every polynomial in M, in
particular with D. Writing D′ blockwise, we obtain (ak −a j)D′

jk = 0, whence D′
is block-diagonal:

D = diag(D′
1, . . . ,D

′
r).

Likewise, N ′ and N are block-diagonal, and the identity D′ +N ′ = M reduces to
the list a jIn j +Nj = D j +N′

j.
We are led to prove that if aIm + N = D′ + N′ where D′ is diagonal and N,N′
are nilpotent, these matrices commuting pairwise, then D′ = aIm and N′ = N.
Replacing D′ −aIm by D′, we may assume that a = 0. Let λ be an eigenvalue of
D′: D′x = λx. Then (D′+N′ −λ )x = N ′x. Because of commutation, this implies
(D′+N′ −λ )kx = N′kx. Because N′ is nilpotent, this yields (λ −D′ −N ′)mx = 0,
thus det(λ −D′ −N′)m = 0, meaning that λ is an eigenvalue of D′ + N′. But
D′ + N′ = N is nilpotent, therefore λ = 0. Finally D′, being diagonalizable with
the only eigenvalue 0, equals 0m. At last, N′ = N−D′ = N.
��

3.8 Rank-One Perturbations

In a rank-one matrix M ∈ Mn×m(K), the columns are colinear to a given vector
x ∈ Kn. Writing that M( j) = y jx, we obtain M = xyT , where y ∈ Km. Conversely,
every matrix of the form xyT with x,y �= 0 has rank one.

We now focus on the case of a square matrix. The spectrum of a rank-one matrix
xyT is easily described. First of all, its kernel y⊥ has dimension n−1. Because y⊥ =
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kerM, the geometric multiplicity of the eigenvalue 0 is n− 1. Thus the spectrum
consists in (0, . . . ,0,μ). We identify μ by computing the trace of xyT , recalling that
the trace equals the sum of the eigenvalues:

x1y1 + · · ·+ xnyn = 0+ · · ·+0+ μ.

Finally μ = x · y, using the canonical scalar product in Kn.

Lemma 2. Given vectors x,y ∈ Kn, the spectrum of xyT is (0, . . . ,0,x · y).
Notice that 0 might have algebraic multiplicity n, if x · y = 0.

We apply this lemma to the calculation of det(In +xyT ). The spectrum of In +xyT

is just shifted from that of xyT and equals (1, . . . ,1,1 + x · yT ). The determinant is
the product of the eigenvalues, therefore we have

det(In + xyT ) = 1+ x · y. (3.14)

We now derive

Proposition 3.21 Given a matrix M ∈ Mn(K) and vectors x,y ∈ Kn, we have

det(M + xyT ) = detM + xT M̂y, (3.15)

where M̂ is the cofactor matrix.
If in addition M and M + xyT are nonsingular, then we have the Sherman–

Morrison formula

(M + xyT )−1 = M−1 − 1
1+ yT M−1x

M−1xyT M−1. (3.16)

We notice that the function

t �→ det(M + txyT )

is affine over K. We say that the determinant is rank-one affine. As a consequence,
every minor is rank-one affine. The following alternative holds true on a line � whose
direction is a rank-one matrix: either every element of � is a singular matrix, or
at most one is singular. In the case where none is singular, M is nonsingular and
xT M̂y = 0, with the notations of the proposition above.

Proof. Let us begin with the case where M is nonsingular. Then M + xyT = M(In +
M−1xyT ) gives

det(M + xyT ) = (detM)det(In +M−1xyT ) = (1+ yT M−1x)detM,

thanks to (3.14). We obtain (3.15) by using the formula (detM)M−1 = M̂T .
To extend this formula, we begin by remarking that there exists a polynomial

Π ∈ Z[X1, . . . ,Xn2+2n] such that

Π(M,x,y)≡ det(M + xyT )−detM− xT M̂y.
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We have seen that Π(M,x,y) = 0 whenever M is nonsingular and for every x and y.
Let us focus on complex data: Π vanishes on a dense subset of Mn(C)×Cn ×Cn,
namely GLn(C)×Cn ×Cn. Being continuous, it vanishes everywhere. This means
that, as a polynomial, Π = 0. Thus formula (3.15) is valid for every M,x,y and every
field1 K.

To prove (3.16), we multiply the right-hand side at the left by M+xyT . We obtain
the expression In +βxyT M−1 where we check immediately that β = 0. ��

3.9 Alternate Matrices and the Pfaffian

The very simple structure of alternate bilinear forms is described in the following
statement.

Proposition 3.22 Let B be an alternate bilinear form on a vector space E, of di-
mension n. Then there exists a basis {x1,y1, . . . ,xk,yk,z1, . . . ,zn−2k} such that the
matrix of B in this basis is block-diagonal, equal to diag(J, . . . ,J,0, . . . ,0), with k
blocks J defined by

J =
(

0 1
−1 0

)
.

Proof. We proceed by induction on the dimension n. If B = 0, there is nothing to
prove. If B is nonzero, there exist two vectors x1,y1 such that B(x1,y1) �= 0. Multi-
plying one of them by B(x1,y1)−1, one may assume that B(x1,y1) = 1. Because B
is alternate, {x1,y1} is free. Let N be the plane spanned by x1,y1. The set of vec-
tors x satisfying B(x,v) = 0 (or equivalently B(v,x) = 0, inasmuch as B must be
skew-symmetric) for every v in N is denoted by N⊥. The formulæ

B(ax1 +by1,x1) =−b, B(ax1 +by1,y1) = a

show that N∩N⊥ = {0}. In addition, every vector x ∈ E can be written as x = y+n,
where n ∈ N and y ∈ N⊥ are given by

n = B(x,y1)x1 −B(x,x1)y1, y := x−n.

Therefore, E = N⊕N⊥. We now consider the restriction of B to the subspace N⊥ and
apply the induction hypothesis. There exists a basis {x2,y2, . . . ,xk,yk,z1, . . . ,zn−2k}
such that the matrix of the restriction of B in this basis is block-diagonal, equal
to diag(J, . . . ,J,0, . . . ,0), with k − 1 blocks J, which means that B(x j,y j) = 1 =
−B(y j,x j) and B(u,v) = 0 for every other choice of u,v in the basis. Obviously, this
property extends to the form B itself and the basis {x1,y1, . . . ,xk,yk,z1, . . . ,zn−2k}.
��

We now choose an alternate matrix M ∈Mn(K) and apply Proposition 3.22 to the
form defined by M. In view of Section 1.3, we have the following.

1 This argument is known as the extension of polynomial identities.
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Corollary 3.5 Given an alternate matrix M ∈ Mn(K), there exists a matrix Q ∈
GLn(K) such that

M = QT diag(J, . . . ,J,0, . . . ,0)Q. (3.17)

Obviously, the rank of M, being the same as that of the block-diagonal matrix,
equals twice the number of J blocks. Finally, because detJ = 1, we have detM =
ε(detQ)2, where ε = 0 if there is a zero diagonal block in the decomposition, and
ε = 1 otherwise. Thus we have proved the following result.

Proposition 3.23 The rank of an alternate matrix M is even. The number of J blocks
in the identity (3.17) is the half of that rank. In particular, it does not depend on the
decomposition. Finally, the determinant of an alternate matrix is a square in K.

A very important application of Proposition 3.23 concerns the Pfaffian, whose
crude definition is a polynomial whose square is the determinant of the general al-
ternate matrix. First of all, because the rank of an alternate matrix is even, detM = 0
whenever n is odd. Therefore, we restrict our attention from now on to the even-
dimensional case n = 2m. Let us consider the field F = Q(xi j) of rational func-
tions with rational coefficients, in n(n−1)/2 indeterminates xi j, i < j. We apply the
proposition to the alternate matrix X whose (i, i)-entry is 0 and (i, j)-entry (respec-
tively, ( j, i)-entry) is xi j (respectively, −xi j): its determinant, a polynomial in Z[xi j],
is the square of some irreducible rational function f /g, where f and g belong to
Z[xi j]. From g2 detX = f 2, we see that g divides f in Z[xi j]. But because f and g are
coprime, one finds that g is invertible; in other words g =±1. Thus

detX = f 2. (3.18)

Now let k be a field and let M ∈ Mn(k) be alternate. There exists a unique homo-
morphism from Z[xi j] into k sending xi j to mi j. From equation (3.18) we obtain

detM = ( f (m12, . . . ,mn−1,n))2. (3.19)

In particular, if k = Q and M = diag(J, . . . ,J), one has f (M)2 = 1. Up to multi-
plication by ±1, which leaves unchanged the identity (3.18), we may assume that
f (M) = 1 for this special case. This determination of the polynomial f is called the
Pfaffian and is denoted by Pf. It may be viewed as a polynomial function on the
vector space of alternate matrices with entries in a given field k. Equation (3.19)
now reads

detM = (Pf(M))2. (3.20)

Given an alternate matrix M ∈ Mn(k) and a matrix Q ∈ Mn(k), we consider the
Pfaffian of the alternate matrix QT MQ. We first treat the case of the field of fractions
Q(xi j,yi j) in the n2 +n(n−1)/2 indeterminates xi j (1≤ i < j ≤ n) and yi j (1≤ i, j ≤
n). Let Y be the matrix whose (i, j)-entry is yi j. Then, with X as above,

(Pf(Y T XY ))2 = detY T XY = (detY )2 detX = (Pf(X)detY )2.

Because Z[xi j,yi j] is an integral domain, we have the polynomial identity



56 3 Square Matrices

Pf
(
Y T XY

)
= ε Pf(X)detY, ε =±1.

As above, one infers that Pf(QT MQ) = ±Pf(M)detQ for every field k, matrix Q ∈
Mn(k), and alternate matrix M ∈ Mn(k). Inspection of the particular case Q = In
yields ε = 1. We summarize these results now.

Theorem 3.6 Let n = 2m be an even integer. There exists a unique polynomial Pf
in the indeterminates xi j (1 ≤ i < j ≤ n) with rational integer coefficients such that:

• For every field k and every alternate matrix M ∈Mn(k), one has detM = Pf(M)2.
• If M = diag(J, . . . ,J), then Pf(M) = 1.

Moreover, if Q ∈ Mn(k) is given, then

Pf
(
QT MQ

)
= Pf(M)detQ. (3.21)

We warn the reader that if m > 1, there does not exist a matrix Z ∈ Q[xi j] such
that X = ZT diag(J, . . . ,J)Z. The factorization of the polynomial detX does not cor-
respond to a similar factorization of X itself. In other words, the decomposition
X = QT diag(J, . . . ,J)Q in Mn(Q(xi j)) cannot be written within Mn(Q[xi j]).

The Pfaffian is computed easily for small values of n. For instance, Pf(X) = x12
if n = 2, and Pf(X) = x12x34 − x13x24 + x14x23 if n = 4.

3.10 Calculating the Characteristic Polynomial

The algorithm of Leverrier is a method for computing the characteristic polynomial
of a square matrix. It applies to matrices with entries in any field of characteristic
0. It is not used for the approximation of eigenvalues in the complex or real setting,
because the practical calculation of the roots of P∈C[X ] is best done by ... calculat-
ing accurately the eigenvalues of the so-called companion matrix! However, it has
historical and combinatorial interests. The latter has been reinforced recently, after
an improvement found by Preparata and Sarwate [31].

3.10.1 The Algorithm of Leverrier

Let K be a field of characteristic 0 and M ∈ Mn(K) be given. Let us denote by
λ1, . . . ,λn the eigenvalues of M, counted with multiplicity. We define two lists of n
numbers.

Elementary symmetric polynomials



3.10 Calculating the Characteristic Polynomial 57

σ1 := λ1 + · · ·+λn = TrM,

σ2 := ∑
j<k

λ jλk,

...
σr := ∑

j1<···< jr

λ j1 · · ·λ jr ,

...
σn := ∏

j
λ j = detM.

Newton sums
sm := ∑

j
λ m

j , 1 ≤ m ≤ n.

Because of PM(X) = ∏ j(X − λ j), the numbers (−1) jσ j are the coefficients of
the characteristic polynomial of M:

PM(X) = Xn −σ1Xn−1 +σ2Xn−2 −·· ·+(−1)nσn.

The sm are the traces of the powers Mm. One can obtain them by computing
M2, . . . ,Mn. Each of these matrices is obtained in O(n3) elementary operations.2

In all, the computation of s1, . . . ,sn is done O(n4) operations when n is large.
The passage from Newton sums to elementary symmetric polynomials is done

through Newton’s formulæ. If Σ j = (−1) jσ j and Σ0 := 1, we have

mΣm +
m

∑
k=1

skΣm−k = 0, 1 ≤ m ≤ n.

One uses these formulæ in increasing order, beginning with Σ1 = −s1. When
Σ1, . . . ,Σm−1 are known, one computes

Σm =− 1
m

(s1Σm−1 + · · ·+ smΣ0). (3.22)

This computation, which needs only O(n2) operations, has a negligible cost, com-
pared to the O(n4) above.

In conclusion, the algorithm reads as follows.

• Compute M2, . . . ,Mn,
• Compute the traces of M,M2, . . . ,Mn, whence s1, . . . ,sn,
• Derive the σ1, . . . ,σn,
• Form PM .

2 An elementary operation is a sum or a product in K.
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Besides the high cost (in n4) of this method, its instability is unfortunate when
k = R or k = C: when n is large, sk has to be computed for large values of k. But
then sk is dominated by the powers λ k of a few eigenvalues only, those of largest
modulus. Thus a lot of information, corresponding to the smaller eigenvalues, is lost
in the roundoff. This is even worse because of the large number of operations, which
multiplies the roundoff errors.

This is the reason why, on the analytical side, the Leverrier’s algorithm is rarely
used.

When the field is of nonzero characteristic p, Leverrier method may be employed
only if n < p. Because sp = σ p

1 , the computation of the sms for m≥ p does not bring
any new information about the σ js.

3.10.1.1 A Characterization of Nilpotent Matrices

Newton’s formulæ have the following interesting consequence.

Proposition 3.24 If K is of characteristic 0 and A ∈ Mn(K), then A is nilpotent;
that is, An = 0n if and only if

Tr(Ak) = 0, ∀1 ≤ k ≤ n.

Remark

The proposition is still valid if we replace K by an Abelian ring in which mx = 0
implies x = 0 whenever m is a positive integer.

Proof. If A is nilpotent, its only eigenvalue is 0, as well as for Ak, whence Tr(Ak) =
0. Conversely, if all these traces vanish, then s1 = · · · = sn = 0 and (3.22) yields
Σ1 = · · ·Σn = 0, whence PA = Xn. We conclude with the Cayley–Hamilton theorem.
��

3.10.2 The Improvement by Preparata and Sarwate

The cost O(n4) can be reduced significantly, to O(n3.5), thanks to the following
trick. In order to compute the traces of M, . . . ,Mn, we do not really need to calculate
all the powers M2, . . . ,Mn. Let us start with the observation that if A,B ∈Mn(K) are
given, the trace of the product

Tr(AB) =
n

∑
i, j=1

ai jb ji

needs only 2n2 −1 operations.
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Let r be the least integer larger than or equal to
√

n. Assuming that we have
computed M2, . . . ,Mr, we then also compute powers of Mr: M2r, . . . ,M(r−1)r. Doing
so, we have performed only 2r−3 matrix products.

Given an integer k between 1 and n, we make the Euclidean division of k by r:
k = ar+b with 0≤ b≤ r−1. Writing that Mk = MarMb, we see that the calculation
of Tr(Mk) needs only 2n2−1 operations.

Let us evaluate the complexity of the algorithm with this improvement:

• The calculation of M2, . . . ,Mr needs O(rn3) operations.
• The calculation of M2r, . . . ,M(r−1)r needs O(rn3) operations.
• The calculation of TrM, . . . ,TrMn needs O(n3) operations (which is significantly

more than the O(n2) in the original method).
• The calculation of σ2, . . . ,σn needs O(n2) operations.

Inasmuch as r ≈√
n, this amounts to an O(n3.5) operations.

3.11 Irreducible Matrices

Let us consider the most classical problems in matrix theory:

• Solve a linear system
Ax = b, (b given). (3.23)

• Find the eigenvalues of A.

When a matrix is block-triangular,

A =
(

B C
0p,n−p D

)
, (3.24)

these problems become easier. As a matter of fact, the spectrum of A is the union of
those of B and D, adding the algebraic multiplicities, because PA(X) = PB(X)PD(X).
As far as system (3.23) is concerned, it decouples when decomposing the data b and
the unknown x blockwise:

b =
(

b−
b+

)
, x =

(
x−
x+

)
,

because it is enough to solve the smaller system Dx+ = b+ first, and then solve the
other one Bx− = b−−Cx+.

More generally, it may happen that A is blockwise-triangular up to a relabeling of
the components of the vectors, that is, after a conjugation by a permutation matrix.
We say then that A is reducible. Reducibility means that there exists a nontrivial
partition {1, . . . ,n} = I ∪ J such that (i, j) ∈ I × J implies ai j = 0. It is irreducible
otherwise. We show in Exercise 12 a characterization of irreducible matrices in
terms of graphs.

The inverse of the permutation matrix
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P :=
(

0p×q Ip
Iq 0q×p

)

is

P−1 =
(

0q×p Iq
Ip 0p×q

)
.

It follows that a lower block-triangular matrix is permutationally similar to an upper
block-triangular one: (

A 0p×q
B C

)
= P

(
C B

0p×q A

)
P−1.

In particular, we infer the next proposition

Proposition 3.25 The notion of reducibility is invariant under transposition: MT is
reducible if and only if M is reducible.

3.11.1 Hessenberg Irreducible Matrices

The notions of (ir-)reducibility are of practical interest because reducibility is usu-
ally easy to catch by human eyes. A useful consequence of irreducibility concerns
Hessenberg matrices, defined as the square matrices M such that i ≥ j + 2 implies
mi j = 0.

Proposition 3.26 Let M ∈ Mn(K) be an irreducible Hessenberg matrix. Then the
eigenvalues of M are geometrically simple.

Proof. The hypothesis implies that all entries m j+1, j are nonzero. If λ is an eigen-
value, let us consider the matrix N ∈ Mn−1(K̄), obtained from M−λ In by deleting
the first row and the last column. It is a triangular matrix, whose diagonal terms are
nonzero. It is thus invertible, which implies (Proposition 2.2) rk(M−λ In) = n−1.
Hence ker(M−λ In) is of dimension one. ��

Exercises

1. Verify that the product of two triangular matrices of the same type (upper or
lower) is triangular, of the same type.

2. Prove in full detail that the determinant of a triangular matrix (respectively, a
block-triangular one) equals the product of its diagonal terms (respectively, the
product of the determinants of its diagonal blocks).

3. Find matrices M,N ∈ M2(K) such that MN = 02 and NM �= 02. Such an exam-
ple shows that MN and NM are not necessarily similar, although they would be
if either M or N was invertible.
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4. Characterize the square matrices that are simultaneously orthogonal and trian-
gular.

5. One calls any square matrix M satisfying M2 = M a projection matrix, or pro-
jector.

a. Let P ∈ Mn(K) be a projector, and let E = kerP, F = ker(In −P). Show
that Kn = E ⊕F .

b. Let P,Q be two projectors. Prove the identity

(P−Q)2 +(In −P−Q)2 = In.

6. If A,B,C,D ∈ Mm(K) and if AC = CA, show that the determinant of

M =
(

A B
C D

)

equals det(AD−CB). Begin with the case where A is invertible, by computing
the product (

Im 0m
−C A

)
M.

Then apply this intermediate result to the matrix A− zIn, with z ∈ K̄ a suitable
scalar.

7. Let A ∈ Mn(K) be given. One says that a list (a1σ(1), . . . ,anσ(n)) is a diagonal
of A if σ is a permutation (in that case, the diagonal given by the identity is the
main diagonal). Show the equivalence of the following properties.

• Every diagonal of A contains a zero element.
• There exists a null matrix extracted from A of size k× l with k + l > n.

8. Compute the number of elements in the group GL2(Z/2Z). Show that it is
not commutative. Show that it is isomorphic to the symmetric group Sm, for a
suitable integer m.

9. If (a0, . . . ,an−1) ∈Cn is given, the circulant matrix circ(a0, . . . ,an−1) ∈ Mn(C)
is

circ(a0, . . . ,an−1) :=

⎛
⎜⎜⎜⎜⎝

a0 a1 . . . an−1

an−1 a0
. . .

...
...

. . . . . . a1
a1 . . . an−1 a0

⎞
⎟⎟⎟⎟⎠ .

We denote by Cn the set of circulant matrices. The matrix circ(0,1,0, . . . ,0) is
denoted by π .

a. Show that Cn is a subalgebra of Mn(C), equal to C[π]. Deduce that it is
isomorphic to the quotient ring C[X ]/(Xn−1).

b. Let C be a circulant matrix. Show that C∗, as well as P(C), is circulant for
every polynomial P. If C is nonsingular, show that C−1 is circulant.

c. Show that the elements of Cn are diagonalizable in a common eigenbasis.



62 3 Square Matrices

d. Replace C by any field K. If K contains a primitive nth root ω of unity (that
is, ωn = 1, and ωm = 1 implies m ∈ nZ), show that the elements of Cn are
diagonalizable.
Note: A thorough presentation of circulant matrices and applications is
given in Davis’s book [12].

e. One assumes that the charc(K)|n. Show that Cn contains matrices that are
not diagonalizable.

10. Show that the Pfaffian is linear with respect to any row or column of an alternate
matrix. Deduce that the Pfaffian is an irreducible polynomial in Z[xi j].

11. (Schur’s lemma).
Let k be an algebraically closed field and S a subset of Mn(k). Assume that the
only linear subspaces of kn that are stable under every element of S are {0} and
kn itself. Let A ∈ Mn(k) be a matrix that commutes with every element of S.
Show that A is of the form cIn.

12. a. Show that A ∈ Mn(K) is irreducible if and only if for every pair ( j,k) with
1 ≤ j,k ≤ n, there exists a finite sequence of indices j = l1, . . . , lr = k such
that alp,lp+1 �= 0.

b. Show that a tridiagonal matrix A ∈ Mn(K), for which none of the a j, j+1s
and aj+1, js vanish, is irreducible.

13. Let A ∈ Mn(k) (k = R or C) be given, with minimal polynomial π . If x ∈ kn,
the set

Ix := {p ∈ k[X ] | p(A)x = 0}
is an ideal of k[X ], which is therefore principal.

a. Show that Ix �= (0) and that its monic generator, denoted by px, divides π .
b. One writes r j instead of px when x = e j. Show that π is the least common

multiple of r1, . . . ,rn.
c. If p ∈ k[X ], show that the set

Vp := {x ∈ kn | px ∈ (p)}

(the vectors x such that p divides px) is open.
d. Let x ∈ kn be an element for which px is of maximal degree. Show that

px = π . Note: In fact, the existence of an element x such that px equals the
minimal polynomial holds true for every field k.

14. Let k be a field and A ∈ Mn×m(k), B ∈ Mm×n(k) be given.

a. Let us define

M =
(

XIn A
B XIm

)
.

Show that Xm detM = Xn det(X2Im −BA) (find a lower-triangular matrix
M′ such that M′M is upper-triangular).

b. Find an analogous relation between det(X2In−AB) and detM. Deduce that
XnPBA(X) = XmPAB(X).
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c. What do you deduce about the eigenvalues of A and of B ?

15. Let k be a field and θ : Mn(k) → k a linear form satisfying θ(AB) = θ(BA) for
every A,B ∈ Mn(k).

a. Show that there exists α ∈ k such that for all X ,Y ∈ kn, one has θ(XY T ) =
α ∑ j x jy j.

b. Deduce that θ = α Tr.

16. Let An be the ring K[X1, . . . ,Xn] of polynomials in n variables. Consider the
matrix M ∈ Mn(An) defined by

M =

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 1
X1 · · · Xn
X2

1 · · · X2
n

...
...

Xn−1
1 · · · Xn−1

n

⎞
⎟⎟⎟⎟⎟⎠ .

Let us denote by Δ(X1, . . . ,Xn) the determinant of M.

a. Show that for every i �= j, the polynomial Xj −Xi divides Δ .
b. Deduce that

Δ = a∏
i< j

(Xj −Xi),

where a ∈ K.
c. Determine the value of a by considering the monomial

n

∏
j=1

X j−1
j .

d. Redo this analysis for the matrix⎛
⎜⎝

X p1
1 · · · X p1

n
...

...
X pn

1 · · · X pn
n

⎞
⎟⎠ ,

where p1, . . . , pn are nonnegative integers.

17. Deduce from the previous exercise that the determinant of the Vandermonde
matrix ⎛

⎜⎜⎜⎜⎜⎝

1 · · · 1
a1 · · · an
a2

1 · · · a2
n

...
...

an−1
1 · · · an−1

n

⎞
⎟⎟⎟⎟⎟⎠ , a1, . . . ,an ∈ K,

vanishes if and only if at least two of the a js coincide.
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18. Multiplying a Vandermonde matrix by its transpose, show that

det

⎛
⎜⎜⎜⎜⎝

n s1 · · · sn−1

s1 s2 . . . ...
... . . . ...

sn−1 · · · · · · s2n−2

⎞
⎟⎟⎟⎟⎠= ∏

i< j
(aj −ai)2,

where sq := aq
1 + · · ·+aq

n.
19. The discriminant of a matrix A ∈ Mn(k) is the number

d(A) := ∏
i< j

(λ j −λi)2,

where λ1, . . . ,λn are the eigenvalues of A, counted with multiplicity.

a. Verify that the polynomial

Δ(X1, . . . ,Xn) := ∏
i< j

(Xj −Xi)2

is symmetric. Therefore, there exists a unique polynomial Q ∈Z[Y1, . . . ,Yn]
such that

Δ = Q(σ1, . . . ,σn),

where the σ js are the elementary symmetric polynomials

σ1 = X1 + · · ·+Xn, . . . ,σn = X1 · · ·Xn.

b. Deduce that there exists a polynomial D ∈ Z[xi j] in the indeterminates xi j,
1 ≤ i, j ≤ n, such that for every k and every square matrix A,

d(A) = D(a11,a12, . . . ,ann).

c. Consider the restriction DS of the discriminant to symmetric matrices,
where x ji is replaced by xi j whenever i < j. Prove that DS takes only non-
negative values on Rn(n+1)/2. Show, however, that DS is not the square of a
polynomial if n ≥ 2 (consider first the case n = 2).

20. (Formanek [14].) This exercise is reminiscent of theorem 4.4.
Let k be a field of characteristic 0.

a. Show that for every A,B,C ∈ M2(k),[
[A,B]2,C

]
= 0.

Hint: use the Cayley–Hamilton theorem.
b. Show that for every M,N ∈ M2(k),
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MN +NM−Tr(M)N−Tr(N)M +(Tr(M)Tr(N)−Tr(MN))I2 = 0.

Hint: One may begin with the case M = N and recognize a classical theo-
rem, then “bilinearize” the formula.

c. If π ∈ Sr (Sr is the symmetric group over {1, . . . ,r}), one defines a map
Tπ : M2(k)r → k in the following way. One decomposes π as a product of
disjoint cycles, including the cycles of order one, which are the fixed points
of π:

π = (a1, . . . ,ak1)(b1, . . . ,bk2) · · · .
One then sets

Tπ(N1, . . . ,Nr) = Tr(Na1 · · ·Nak1
)Tr(Nb1 · · ·Nbk2

) · · ·

(note that the right-hand side depends neither on the order of the cycles in
the product nor on the choice of the first index inside each cycle, because
of the formula Tr(AB) = Tr(BA)). Show that for every N1,N2,N3 ∈ M2(k),
one has

∑
π∈S3

ε(π)Tπ(N1,N2,N3) = 0.

d. Generalize this result to Mn(k): for every N1, . . . ,Nn+1 ∈ Mn(k), one has

∑
π∈Sn+1

ε(π)Tπ(N1, . . . ,Nn+1) = 0.

21. Let k be a field and let A ∈ Mn(k) be given. For every set J ⊂ {1, . . . ,n}, denote
by AJ the matrix extracted from A by keeping only the indices i, j ∈ J. Hence,
AJ ∈ Mp(k) for p = card J. Let λ be a scalar.

a. Assume that for every J whose cardinality is greater than or equal to n− p,
λ is an eigenvalue of AJ . Show that λ is an eigenvalue of A, of algebraic
multiplicity greater than or equal to p + 1 (express the derivatives of the
characteristic polynomial).

b. Conversely, let q be the geometric multiplicity of λ as an eigenvalue of A.
Show that if card J > n−q, then λ is an eigenvalue of AJ .

22. Let A∈Mn(k) and l ∈N be given. Show that there exists a polynomial q� ∈ k[X ],
of degree at most n−1, such that A� = q�(A). If A is invertible, show that there
exists r� ∈ k[X ], of degree at most n−1, such that A−l = r�(A).

23. Let k be a field and A,B ∈ Mn(k). Assume that Sp A∩Sp B = /0.

a. Show, using the Cayley–Hamilton theorem, that the linear map M �→ AM−
MB is one-to-one over Mn(k). Hint: The spectrum of PA(B) is the image of
that of B under PA. This is proved in Proposition 5.7 in the complex case,
but is valid for every field k.

b. Deduce that given C ∈ Mn(k), the Sylvester equation
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AX −XB = C

admits a unique solution X ∈ Mn(k).

24. Let k be a field and (Mjk)1≤ j,k≤n a set of matrices of Mn(k), at least one of
which is nonzero, such that Mi jMkl = δ k

j Mil for all 1 ≤ i, j,k, l ≤ n.

a. Show that none of the matrices Mjk vanishes.
b. Verify that each Mii is a projector. Denote its range by Ei.
c. Show that E1, . . . ,En are in direct sum. Deduce that each Ej is a line.
d. Show that there exist generators e j of each Ej such that Mjke� = δ �

k e j .
e. Deduce that every algebra automorphism of Mn(k) is interior: For every

σ ∈ Aut(Mn(k)), there exists P ∈ GLn(k) such that σ(M) = P−1MP for
every M ∈ Mn(k).

25. Set n = 2m.

a. Show the following formula for the Pfaffian, as an element of Z[xi j;1≤ i <
j ≤ n],

Pf(X) = ∑(−1)σ xi1i2 · · ·xi2m−1i2m .

Hereabove, the sum runs over all the possible ways the set {1, . . . ,n} can
be partitioned in pairs,

{1, . . . ,n} = {i1, i2}∪ · · ·∪{i2m−1i2m}.

To avoid redundancy in the list of partitions, one normalized by

i2k−1 < i2k, 1 ≤ k ≤ m,

and i1 < i3 < · · · < i2m−1 (in particular, i1 = 1 and i2m = 2m). At last, σ is
the signature of the permutation (i1, i2, · · · , i2m−1, i2m).
Compute the number of monomials in the Pfaffian.

b. Deduce an “expansion formula with respect to the ith row” for the Pfaffian:
if i is given, then

Pf(X) = ∑
j(�=i)

α(i, j)(−1)i+ j+1xi j Pf(Xi j),

where Xi j ∈ Mn−2(k) denotes the alternate matrix obtained from X by re-
moving the ith and the jth rows and columns, and α(i, j) is +1 if i < j and
is −1 if j < i.

26. Let k be a field and n an even integer. If x,y ∈ kn, denote by x∧ y the alternate
matrix xyT − yxT . Show the formula

Pf(A+ x∧ y) = (1+ yT A−1x)PfA

for every nonsingular alternate n×n matrix A.
Hint: Use proposition 3.21.
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27. Check the easy formula valid whenever the inverses concern nonsingular n×n
matrices:

(In +A−1)−1 +(In +A)−1 = In.

Deduce Hua’s identity

(B+BA−1B)−1 +(A+B)−1 = B−1.

Hint: Transport the algebra structure of Mn(k) by the linear map M �→ BM.
This procedure is called isotopy; remark that the multiplicative identity in the
new structure is B. Then apply the easy formula.

28. Prove the determinantal identity (Cauchy’s double alternant)∥∥∥∥ 1
ai +b j

∥∥∥∥
1≤i, j≤n

=
∏i< j(aj −ai)∏k<l(bk −b�)

∏i,k(ai +bk)
.

Hint: One may assume that a1, . . . ,an,b1, . . . ,bn are indeterminate, and then
work in the field Q(a1, . . . ,an,b1, . . . ,bn). This determinant is a homogeneous
rational function whose denominator is quite trivial. Some specializations make
it vanishing; this gives accurate information about the numerator. There remains
to find a scalar factor. That can be done by induction on n, with an expansion
with respect to the last row and column.

29. Prove Schur’s Pfaffian identity

Pf
((

aj −ai

ai +a j

))
1≤i, j≤2n

= ∏
i< j

a j −ai

a j +ai
.

See the previous exercise for a hint.
30. We denote

X :=
(

1 1
0 1

)
, Y :=

(
1 0
1 1

)
.

a. Let M ∈ SL2(N) be given. If M �= I2, show that the columns of N are or-
dered: (m11−m12)(m21−m22)≥ 0.

b. Under the same assumption, deduce that there exists a matrix M′ ∈ SL2(N)
such that either M = M′X or M = M′Y . Check that TrM′ ≤ TrM. Under
which circumstances do we have TrM′ < TrM ?

c. Let M ∈ SL2(N) be given. Arguing by induction, show that there exists
a word w0 in two letters, and a triangular matrix T ∈ SL2(N), such that
M = Tw0(X ,Y ) ∈ SL2(N).

d. Conclude that for every M ∈ SL2(N), there exists a word w in two letters,
such that M = w(X ,Y ).

Comment. One can show that every element of SL2(Z), whose trace is larger
than 2, is conjugated in SL2(Z) to a word in X and Y . This word is not unique
in general, because if M ∼ w2(X ,Y )w1(X ,Y ), then M ∼ w1(X ,Y )w2(X ,Y ) too.
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31. Let A∈Mn(k), B∈Mm(k), and M ∈Mn×m(k) be such that AM = MB. It is well-
known that if n = m and M is nonsingular, then the characteristic polynomials
of A and B are equal: PA = PB. If rkM = r, prove that the degree of gcd{PA,PB}
is larger than or equal to r. Hint: Reduce to the case where M is quasidiagonal,
that is, mi j = 0 whenever i �= j.

32. Let k be a field. Given two vectors X ,Y in k3, we define the vector product as
usual:

X ×Y :=

⎛
⎝ x2y3 − x3y2

x3y1 − x1y3
x1y2 − x2y1

⎞
⎠ .

Prove the following identity in M3(k):

X(Y ×Z)T +Y (Z×X)T +Z(X ×Y )T = det(X ,Y,Z) I3, ∀X ,Y,Z ∈ k3.

33. Among the class of Hessenberg matrices, we distinguish the unit ones, which
have 1s below the diagonal:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∗ · · · · · · ∗
1

. . .
...

0
. . .

...
. . . . . . . . .

...
0 · · · 0 1 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

a. Let M ∈ Mn(k) be a unit Hessenberg matrix. We denote by Mk the sub-
matrix obtained by retaining the first k rows and columns. For instance,
Mn = M. We set Pk the characteristic polynomial of Mk.
Show that

Pn(X) = (X −mnn)Pn−1 −mn−1,nPn−2 −·· ·−m1n.

b. Let Q1, . . . ,Qn ∈ k[X ] be monic polynomials, with degQk = k. Show that
there exists one and only one unit Hessenberg matrix M such that, for every
k = 1, . . . ,n, the characteristic polynomial of Mk equals Qk. Hint: Argue by
induction over n.



Chapter 4

Tensor and Exterior Products

4.1 Tensor Product of Vector Spaces

4.1.1 Construction of the Tensor Product

Let E and F be K-vector spaces whose dimensions are finite. We construct their
tensor product E ⊗K F as follows.

We start with their Cartesian product. We warn the reader that we do not equip
E×F with the usual addition. Thus we do not think of it as a vector space. The first
step is to consider the set G of formal linear combinations of elements of E ×F

r

∑
j=1

λ j(x j,y j),

where r is an arbitrary natural integer, λ j are scalars, and (x j,y j) ∈ E ×F .
The set G has a natural structure of K-vector space, where E ×F is a basis. The

zero element is the empty sum (r = 0). We warn the reader that (x+ x′,y)− (x,y)−
(x′,y) and λ (x,y)− (λx,y) cannot be simplified, and (0E ,0F ) is not equal to 0G.
Actually, G is infinite-dimensional whenever K is infinite!

We now consider the subspace G0 generated by all elements of the form (x +
x′,y)−(x,y)−(x′,y), (x,y+y′)−(x,y)−(x,y′), λ (x,y)−(λx,y) or λ (x,y)−(x,λy).
The quotient space G/G0 is what we call the tensor product of E and F (in this
order) and denote by E ⊗K F . When there is no ambiguity about the scalars, we
simply write E ⊗F .

By construction, E ⊗K F is a vector space. The class of an elementary pair (x,y)
is denoted x⊗ y. The elements of G0 can be viewed as the simplification rules in
E ⊗K F :

(λx+ x′)⊗ y = λ (x⊗ y)+ x′ ⊗ y, x⊗ (λy+ y′) = λ (x⊗ y)+ x⊗ y′.

In particular, we have x⊗0F = 0E ⊗ y = 0 for every x and y.
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Theorem 4.1 Let E,F,H be K-vector spaces. Then Bil(E ×F ;H) is isomorphic to
L (E ⊗F ;H) through the formula

b(x,y) = u(x⊗ y).

Proof. If u∈L (E⊗F ;H) is given, then b(x,y) := u(x⊗y) clearly defines a bilinear
map.

Conversely, let b ∈ Bil(E ×F ;H) be given. Then β : G �→ H, defined by

β

(
r

∑
j=1

λ j(x j,y j)

)
:=

r

∑
j=1

λ jb(x j,y j),

is linear. Because of the bilinearity, β vanishes identically over G0, thus passes to
the quotient as a linear map u. ��
Corollary 4.1 Let x∈ E and y∈ F be given vectors. If x �= 0 and y �= 0, then x⊗y �=
0.

Proof. There exist linear forms � ∈ E ′ and m ∈ F ′ such that �(x) = m(y) = 1. Then
the map

(w,z) �→ b(w,z) := �(w)m(z)

is bilinear over E ×F and is such that b(x,y) = 1. Theorem 4.1 provides a linear
form u over E ⊗F such that u(x⊗ y) = 1. Thus x⊗ y �= 0. ��

We say that an element x⊗ y is rank one if x �= 0 and y �= 0. More generally, the
rank of an element of E⊗K F is the minimal length r among all of its representations
of the form

x1 ⊗ y1 + · · ·+ xr ⊗ yr.

Given a basis BE of E and a basis BF of F , one may form a basis of E ⊗K F
by taking all the products ei ⊗ f j where ei ∈ BE and f j ∈ BF . This is obviously a
generating family. To see that it is free, let us consider an identity

∑
i, j

λi je
i ⊗ f j = 0.

Let �p and mq be the elements of the dual bases such that �p(ei) = δ i
p and mq(f j) =

δ j
q . The bilinear map b(x,y) := �p(x)mq(y) extends as a linear map u over E ⊗F ,

according to Theorem 4.1. We have

0 = u

(
∑
i, j

λi je
i ⊗ f j

)
= ∑

i, j
λi j�p(ei)mq(f j) = λpq.

The dimension of E ⊗K F is thus equal to the product of dimE and dimF :

dimE ⊗K F = dimE ·dimF. (4.1)
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This contrasts with the formula

dimE ×F = dimE +dimF.

4.1.2 Linearity versus Bilinearity

4.1.2.1 The Dual of a Tensor Product

If � ∈ E ′ and m ∈ F ′ are linear forms, then the pair (m, �) defines a bilinear form
over E ×F , by

(x,y) �→ �(x) ·m(y).

By Theorem 4.1, there corresponds a linear form T(m,�) over E ⊗F . We notice that
the map (m, �) �→ T(m,�) is bilinear too. Invoking the theorem again, we infer a linear
map

T : F ′ ⊗E ′ → (E ⊗F)′,

defined by
[T (m⊗ �)](x⊗ y) = �(x) ·m(y).

We verify easily that T is an isomorphism, a canonical one.

4.1.2.2 L (E;F) as a Tensor Product

Given a linear map f : E �→ F , we may construct a bilinear form over E ×F ′ by

(x,m) �→ m( f (x)).

By Theorem 4.1, it extends as a linear form over E ⊗F ′, satisfying

x⊗m �→ m( f (x)).

By the previous paragraph, f can be identified as an element of (E ⊗ F ′)′ =
(F ′′)⊗E ′ = F ⊗E ′. This provides a homomorphism from L (E;F) into F ⊗E ′.
This morphism is obviously one-to-one: if m( f (x)) ≡ 0 for every m and x, then
f (x) = 0 for every x; that is, f = 0. It is also onto: an element

r

∑
j=1

v j ⊗mj

is the image of the linear map

x �→ f (x) := ∑
j

m j(x)v j.
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Therefore L (E;F) identifies canonically with F ⊗E ′.

4.1.3 Iterating the Tensor Product

Given three vector spaces E,F , and G over K, with bases (ei)1≤i≤m, (f j)1≤ j≤n,
(gk)1≤k≤p, the spaces (E ⊗F)⊗G and E ⊗ (F ⊗G) are isomorphic through (ei ⊗
f j)⊗ gk ←→ ei ⊗ (f j ⊗ gk). We thus identify both spaces, and denote them simply
by E ⊗F ⊗G.

This rule allows us to define the tensor product of an arbitrary finite number of
vector spaces E1, . . . ,Er, denoted as E1 ⊗·· ·⊗Er. The following generalization of
Theorem 4.1 is immediate.

Theorem 4.2 Let E1, . . . ,Er,F be K-vector spaces. Then the vector space of r-
linear maps from E1×·· ·×Er into F is isomorphic to L (E1⊗·· ·⊗Er;F) through
the formula

ψ(x1, . . . ,xr) = u(x1⊗·· ·⊗ xr).

4.2 Exterior Calculus

4.2.1 Tensors of Degree Two

We assume temporarily that the characteristic of the field K is not 2, even though
in general we do not need this hypothesis. Let E be a finite-dimensional K-vector
space, with basis {e1, . . . ,en}. The linear map over G

∑
i

λi(xi,yi) �→∑
i

λi(yi,xi)

sends G0 into G0. It thus passes to the quotient, defining a linear map σ : x⊗ y �→
y⊗ x. Because σ is an involution, the group Z/2Z ∼ {1,σ} operates over E ⊗E by

1 · (x⊗ y) = (x⊗ y), σ · (x⊗ y) = (y⊗ x).

Sym2(E) := {w ∈ E ⊗E |σ(w) = w}
the set of symmetric tensors, and

Λ 2(E) := {w ∈ E ⊗E |σ(w) =−w}

the set of skew-symmetric tensors. These are subspaces, with obviously Sym2(E)∩
Λ 2(E) = {0}. If w ∈ E ⊗E, we have

1
2
(w+σ(w)) ∈ Sym2(E),

1
2
(w−σ(w)) ∈Λ 2(E),
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and their sum equals w. We deduce

E ⊗E = Sym2(E)⊕Λ 2(E).

Thus we can view as well Λ 2(E) as the quotient of E ⊗E by the subspace spanned
by the tensors of the form x⊗ x (which is nothing but Sym2(E)).

Proposition 4.1 A basis of Sym2(E) is provided by the tensors

e jek :=
1
2
(e j ⊗ ek + ek ⊗ e j), 1 ≤ j ≤ k ≤ n,

and a basis of Λ 2(E) is provided by the tensors

e j ∧ ek :=
1
2
(e j ⊗ ek − ek ⊗ e j), 1 ≤ j < k ≤ n.

Proof. Clearly, the elements e jek span a subspace S of Sym2(E), whereas the ele-
ments e j ∧ ek span a subspace A of Λ 2(E). We thus have S∩A = {0}. Also, these
elements together span E ⊗E because

e j ⊗ ek = e jek + e j ∧ ek,

and e j ⊗ ek form a basis of E ⊗E. Therefore E ⊗E = S⊕A, which implies S =
Sym2(E) and A = Λ 2(E). Because the family made of elements e jek and e j ∧ ek

has cardinal n2 and is generating, it is a basis of E ⊗E. Therefore the elements e jek

form a basis of Sym2(E) and the elements e j ∧ ek form a basis of Λ 2(E). ��
As a by-product, we have

dimSym2(E) =
n(n+1)

2
, dimΛ 2(E) =

n(n−1)
2

.

We point out that
e jek = eke j, e j ∧ ek =−ek ∧ e j.

4.2.2 Exterior Products

Let k ≥ 1 be an integer. We denote T k(E) = E ⊗ ·· · ⊗E the tensor product of k
copies of E. We also write T k(E) = V⊗k. When k = 1, T 1(E) is nothing but E. By
convention, we set T 0(E) = K.

We extend the definition of Λ2(E) to other integers k ≥ 0 as follows. We first
consider the subspace Lk of T k(E) spanned by the elementary products x1⊗·· ·⊗xk

in which at least two vectors xi and x j are equal. Notice that L0 = {0} and L1 = {0}.
Then we define the quotient space

Λ k(E) := T k(E)/Lk.
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In particular, Λ 0(E) = K and Λ 1(E) = E. The class of w1 ⊗ ·· · ⊗wk is denoted
w1∧·· ·∧wk. The operation ∧ is called the exterior product of tensors. It is extended
by multilinearity.

By definition, and because

x⊗ y+ y⊗ x = (x+ y)⊗ (x+ y)− x⊗ x− y⊗ y ∈ Lk,

the exchange of two consecutive factors ws and ws+1 just flips the sign:

· · ·∧ws+1∧ws∧·· ·=−(· · ·∧ws∧ws+1∧·· ·).

By induction, we infer the next lemma.

Lemma 3.

wσ(1)∧·· ·∧wσ(k) = ε(σ)w1∧·· ·∧wk, ∀σ ∈ Sk.

Theorem 4.3 If dimE = n, then

dimΛ k(E) =
(

n
k

)
.

A basis of Λ k(E) is given by the set of tensors ei1 ∧·· ·∧ eik with i1 < · · ·< ik.
In particular, Λ k(E) = {0} if k > n.

Proof. Because T k(E) is spanned by the vectors of the form ei1 ⊗·· ·⊗eik , Λ k(E) is
spanned by elements of the form ei1 ∧·· ·∧ eik . However, this vector vanishes if two
indices ir are equal, by construction. Thus Λ k(E) is spanned by those for which the
indices i1, . . . , ik are pairwise distinct. And because of Lemma 3, those that satisfy
i1 < · · ·< ik form a generating family. In particular, Λ k(E) = {0} if k > n.

There remains to prove that this generating family is free. It suffices to treat the
case k ≤ n.

Case k = n. We may assume that E = Kn. With w = (w1, . . . ,wn) ∈V n, we asso-
ciate the matrix W whose jth column is w j for each j. The map w �→ detW is
n-linear and thus corresponds to a linear form D over T n(E), according to Theo-
rem 4.2. Obviously, D vanishes over Ln, and thus defines a linear form Δ over the
quotient Λ n(E). This form is nontrivial, because Δ(e1, . . . ,en) = det In = 1 �= 0.
This shows that dimΛ n(E) ≥ 1. This space is spanned by at most one element
e1 ∧·· ·∧ en, therefore we deduce dimΛ n(E) = 1, and e1∧·· ·∧ en �= 0 too.

Case k < n. Let us assume that

∑
J

μJe j1 ∧·· ·∧ e jk = 0, (4.2)

where the sum runs over increasing lists J = ( j1 < · · ·< jk) and the μJ are scalars.
Let us choose an increasing list I of length k. We denote by Ic the complement
of I in {1, . . . ,n}, arranged in increasing order. To be specific,
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I = (i1, . . . , ik), Ic = (ik+1, . . . , in).

We define a linear map S : T k(E)→ T n(E) by

S(e j1 ⊗·· ·⊗ e jn) := e j1 ⊗·· ·⊗ e jn ⊗ eik+1 ⊗·· ·⊗ ein .

Obviously, we have S(Lk) ⊂ Ln and thus S passes to the quotient. This yields a
linear map s : Λ k(E)→Λ n(E) satisfying

s(e j1 ∧·· ·∧ e jn) := e j1 ∧·· ·∧ e jn ∧ eik+1 ∧·· ·∧ ein .

Applying s to (4.2), and remembering that e j1 ∧·· ·∧e jn ∧eik+1 ∧·· ·∧ein vanishes
if an index occurs twice, we obtain

μIe
1∧·· ·∧ en = 0.

Because e1 ∧ ·· · ∧ en �= 0 (from the case k = n above), we deduce μI = 0. This
proves that our generating set is free.
��

4.2.3 The Tensor and Exterior Algebras

The spaces T k(E) may be summed up so as to form the tensor algebra of E, denoted
T (E):

T (E) = K⊕E ⊕T 2(E)⊕·· ·⊕T k(E)⊕·· · .
We recall that an element of T (E) is a sequence (x0,x1, . . . ,xk, . . .) whose kth ele-
ment is in T k(E) and only finitely many of them are nonzero. It is thus a finite sum
x0 ⊕·· ·⊕ xk + · · · .

The word algebra is justified by the following bilinear operation, defined from
T k(E)×T �(E) into T k+�(E) and then extended to T (E) by linearity. It makes T (E)
a graded algebra. We need only to define a product over elements of the bases:

(ei1 ⊗·· ·⊗ eik) · (e j1 ⊗·· ·⊗ e j�) = ei1 ⊗·· ·⊗ eik ⊗ e j1 ⊗·· ·⊗ e j� .

When k = 0, we simply have

λ · (e j1 ⊗·· ·⊗ e j�) = (λe j1)⊗ e j2 ⊗·· ·⊗ e j� .

Because of the identities above, it is natural to denote this product with the same
tensor symbol ⊗. We thus have

(ei1 ⊗·· ·⊗ eik)⊗ (e j1 ⊗·· ·⊗ e j�) = ei1 ⊗·· ·⊗ eik ⊗ e j1 ⊗·· ·⊗ e j� .

If E �= {0}, the vector space T (E) is infinite dimensional. As an algebra, it is asso-
ciative, inasmuch as associativity holds true for elements of the canonical basis.
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The bilinear map B : (x,y) �→ x⊗y, from T k(E)×T �(E) into T k+�(E), obviously
satisfies

B(Lk ×T �(E))⊂ Lk+� , B(T k(E)×L�)⊂ Lk+�.

It therefore corresponds to a bilinear map b : Λ k(E)×Λ �(E)→Λ k+�(E) verifying

b(x1∧·· ·∧ xk,xk+1 ∧·· ·∧ xk+�) = x1∧·· ·∧ xk+�.

This operation is called the exterior product. From its definition, it is natural to
denote it again with the same wedge symbol ∧. We thus have

(x1 ∧·· ·∧ xk)∧ (xk+1 ∧·· ·∧ xk+�) = x1 ∧·· ·∧ xk+�.

Again, the exterior product allows us to define the graded algebra

Λ(E) = K⊕E ⊕Λ 2(E)⊕·· ·⊕Λn(E).

We point out that because of Theorem 4.3, this sum involves only n + 1 terms.
Again, the exterior algebra Λ(E) is associative. Its dimension equals 2n, thanks to
the identity

n

∑
k=0

(
n
k

)
= 2n.

4.2.3.1 Rules

Let x,y ∈ E be given. Because x⊗ y+ y⊗ x = (x+ y)⊗ (x+ y)− x⊗ x− y⊗ y ∈ L2,
we have

y∧ x =−x∧ y, ∀x,y ∈ E. (4.3)

When dealing with the exterior product of higher order, the situation is slightly
different. For instance, if x,y,z belong to E, then (4.3) together with associativity
give

x∧ (y∧ z) = (x∧ y)∧ z =−(y∧ x)∧ z =−y∧ (x∧ z) = y∧ (z∧ x) = (y∧ z)∧ x.

By linearity, we deduce that if x ∈ E and w ∈ Λ2(E), then x∧w = w∧ x. More
generally, we prove the following by induction over k and �.

Proposition 4.2 If w ∈Λ k(E) and z ∈Λ �(E), then

z∧w = (−1)k�w∧ z.

4.2.3.2 A Commutative Subalgebra

The sum
Λeven(E) = K⊕Λ 2(E)⊕Λ 4(E)⊕·· ·
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is obviously a subalgebra of Λ(E), of dimension 2n−1 because of

∑
0≤k≤n/2

(
n
2k

)
= 2n−1.

Because of Proposition 4.2, it is actually commutative.

Corollary 4.2 If w,z ∈Λeven(E), then w∧ z = z∧w ∈Λeven(E).

4.3 Tensorization of Linear Maps

4.3.1 Tensor Product of Linear Maps

Let E0,E1,F0,F1 be vector spaces over K. If u j ∈L (E j;Fj), Theorem 4.1 allows us
to define a linear map u0⊗u1 ∈L (E0 ⊗E1;F0⊗F1), satisfying

(u0⊗u1)(x⊗ y) = u0(x)⊗u1(y).

A similar construction is available with an arbitrary number of linear maps uj : Ej →
Fj.

Let us choose bases {e01, . . . ,e0m} of E0, {e11, . . . ,e1q} of E1, {f01, . . . , f0n} of
F0, {f11, . . . , f1p} of F1. Let A and B be the respective matrices of u0 and u1 in these
bases. Then

(u0 ⊗u1)(e0i ⊗ e1 j) =

(
∑
k

akif
0k

)
⊗
(

∑
�

b� jf
1�

)

= ∑
k,�

akib� jf
0k ⊗ f1�.

This shows that the ((k, l),(i, j))-entry of the matrix of u0⊗u1 in the tensor bases is
the product akib� j. If we arrange the bases (e0i ⊗ e1 j)i, j and (f0k ⊗ f1�)k,� in lexico-
graphic order, then this matrix reads blockwise⎛

⎜⎜⎜⎜⎝
a11B a12B . . . a1mB

a21B
. . .

...
...

an1B . . . anmB

⎞
⎟⎟⎟⎟⎠ .

This matrix is called the tensor product of A and B, denoted A⊗B.
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4.3.2 Exterior Power of an Endomorphism

If u∈End(E), then u⊗u⊗·· ·⊗u =: u⊗k has the property that u(Lk)⊂ Lk. Therefore
there exists a unique linear map Λ k(u) such that

u(x1 ∧·· ·∧ xk) = u(x1)∧·· ·∧u(xk).

Proposition 4.3 If A is the matrix of u ∈ End(E) in a basis {e1, . . . ,en}, then the
entries of the matrix A(k) of Λ k(u) in the basis of vectors e j1 ∧·· ·∧ e jn are the k× k
minors of A.

Proof. This is essentially the same line as in the proof of the Cauchy–Binet formula
(Proposition 3.4). ��
Corollary 4.3 If dimE = n and u ∈ End(E), then Λ n(u) is multiplication by detu.

4.4 A Polynomial Identity in Mn(K)

We already know a polynomial identity in Mn(K), namely the Cayley–Hamilton
theorem: PA(A) = 0n. However, it is a bit complicated because the matrix is involved
both as the argument of the polynomial and in its coefficients. We prove here a
remarkable result, where a multilinear application vanishes identically when the
arguments are arbitrary n× n matrices. To begin with, we introduce some special
polynomials in noncommutative indeterminates.

4.4.1 The Standard Noncommutative Polynomial

Noncommutative polynomials in indeterminates X1, . . . ,X� are linear combinations
of words written in the alphabet {X1, . . . ,X�}. The important rule is that in a word,
you are not allowed to permute two distinct letters: XiXj �= XjXi if j �= i, contrary to
what occurs in ordinary polynomials.

The standard polynomial S� in noncommutative indeterminates X1, . . . ,X� is de-
fined by

S�(X1, . . . ,X�) := ∑ε(σ)Xσ(1) · · ·Xσ(�).

Hereabove, the sum runs over the permutations of {1, . . . , �}, and ε(σ) denotes the
signature of σ . For instance, S2(X ,Y ) = XY −Y X = [X ,Y ]. The standard polyno-
mial is thus a tool for measuring the defect of commutativity in a ring or an algebra:
a ring R is Abelian if S2 vanishes identically over R×R.

The following formula is obvious.

Lemma 4. Let A1, . . . ,Ar ∈ Mn(K) be given. We form the matrix A ∈ Mn(Λ(Kr))∼
Mn(K)⊗K Λ(Kr) by
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A = A1e1 + · · ·+Arer.

We emphasize that A has entries in a noncommutative ring.
Then we have

A� = ∑
i1<···<i�

S�(Ai1 , . . . ,Ai�)ei1 ∧·· ·∧ ei� .

In particular, we have

Ar = Sr(A1, . . . ,Ar)e1 ∧·· ·∧ er. (4.4)

The other important formula generalizes the well-known identity Tr[A,B] = 0.
To begin with, we easily have

S�(Xσ(1), . . . ,Xσ(�)) = ε(σ)S�(X1, . . . ,X�), ∀σ ∈ S�.

Applying this to a cycle, we deduce

S�(X2, . . . ,X�,X1) = (−1)�−1S�(X1, . . . ,X�).

Because Tr(A2 · · ·A�A1) = Tr(A1 · · ·A�), we infer the following.

Lemma 5. If � is even and A1, . . . ,A� ∈ Mn(R) (R a commutative ring), then

TrS�(A1, . . . ,A�) = 0.

Proof. If � is even, we have

TrS�(A1, . . . ,A�) =−TrS�(A2, . . . ,A�,A1) =−TrS�(A1, . . . ,A�),

the first equality because this is true even before taking the trace, and the last equality
because of Tr(AB) = Tr(BA). If 2x = 0 implies x = 0 in R, we deduce

TrS�(A1, . . . ,A�) = 0.

For instance, this is true if R = C. Because TrS�(· · ·) belongs to Z[Y1, . . . ,Y�n2 ], it
must vanish as a polynomial. Thus the identity is valid in every commutative ring
R. ��

4.4.2 The Theorem of Amitsur and Levitzki

A beautiful as well as surprising fact is that Mn(K) does have some amount of com-
mutativity, although it seems at first glance to be a paradigm for noncommutative
algebras.
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Theorem 4.4 (A. Amitsur and J. Levitzki) The standard polynomial in 2n non-
commutative indeterminates vanishes over Mn(K): for every A1, . . . ,A2n ∈ Mn(K),
we have

S2n(A1, . . . ,A2n) = 0n. (4.5)

Comments

• This result is accurate in the sense that Sk does not vanish identically over n×n
matrices. For instance, Sk does not vanish over the (2n− 1)-uplet of matrices
en ⊗ e1, en−1⊗ e1, . . . , e1 ⊗ e1, e1 ⊗ e2, . . . , e1⊗ en.

• Actually, it is known that S2n ≡ 0n is the only polynomial identity of degree less
than or equal to 2n over Mn(C).

• Theorem 4.4 has long remained mysterious, with a complicated proof, until Ros-
set published a simple proof in 1976. This is the presentation that we give below.

• We notice that inasmuch as S2n may be viewed as a list of n2 elements of
Z[Y1, . . . ,Y2n3 ], the identity (4.5) must be valid for matrices whose entries are
independent commuting indeterminates mα

i j with 1 ≤ α ≤ 2n and 1 ≤ i, j ≤ n.

The theorem is thus a list of n2 identities in Z

[
mα

i j |1 ≤ α ≤ 2n, 1 ≤ i, j ≤ n
]
.

Proof. (Taken from Rosset [32].)
We thus assume that K = C. As above, we form the matrix A ∈ Mn(Λ(C2n)) by

A = A1e1 + · · ·A2ne2n.

Because of (4.4), what we have to prove is that A2n = 0n.
The matrix A has the flaw of having noncommutative entries. However, Corollary

4.2 tells us that the entries of A2 belong to the abelian ring Λeven(C2n). We thus may
apply Proposition 3.24 (recall that it is valid for matrices with entries in an Abelian
ring R in which mx = 0 implies x = 0 whenever m is a positive integer): in order to
prove that A2n = (A2)n = 0n, it is sufficient to prove the identities

Tr(A2k) = 0, 1 ≤ k ≤ n.

The latter follow immediately from Lemmas 4 and 5. ��

Exercises

1. Show that the rank of an element of E ⊗F is bounded by min{dimE,dimF}.
2. Let u ∈ End(E) be a diagonalizable map, with eigenvalues λ1, . . . ,λn, counting

multiplicities. Show that u⊗k and Λ k(u) are diagonalizable and identify their
eigenvalues.

3. Let u∈End(E) be given. Show that the following formula defines an endomor-
phism over T k(E), which we denote u⊕k,
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x1 ⊗·· ·⊗ xk �→ (u(x1)⊗·· ·⊗ xk)+(x1 ⊗u(x2)⊗·· ·⊗ xk)
+ · · ·+(x1 ⊗·· ·⊗u(xk)).

a. If u is diagonalizable, show that u⊕k is so and compute its eigenvalues.
b. Show that u⊕k passes to the quotient, yielding an endomorphism over

Λ k(E), which we denote u∧k :

x1 ∧·· ·∧ xk �→ (u(x1)∧·· ·∧ xk)+(x1∧u(x2)∧·· ·∧ xk)
+ · · ·+(x1∧·· ·∧u(xk)).

c. Again, show that u∧k is diagonalizable if u is so, and compute its eigenval-
ues.

4. Complete the proof of Proposition 4.3.
5. Prove that S2n−1, when applied to the matrices Ei j for either i = 1 or j = 1 (this

makes a list of 2n−1 matrices), where

(Ei j)k� = δ k
i δ �

j , 1 ≤ i, j,k, �≤ n,

gives a nonzero matrix.
6. If A ∈ Mn(k) is alternate, we define A ∈ Mn(Λ(kn)) by

A := ∑
i< j

ai je
i ∧ e j.

We assume that n = 2m. Prove that

Am = Pf(A)e1 ∧·· ·∧ en.

Hint: Use the expansion formula established in Exercise 25 of Chapter 3.





Chapter 5

Matrices with Real or Complex Entries

A matrix M ∈Mn×m(K) is an element of a vector space of finite dimension n2. When
K = R or K = C, this space has a natural topology, that of Knm. Therefore we may
manipulate such notions as open and closed sets, and continuous and differentiable
functions.

5.1 Special Matrices

5.1.1 Hermitian Adjoint

When considering matrices with complex entries, a useful operation is complex
conjugation z �→ z̄. One denotes by M̄ the matrix obtained from M by conjugating
the entries. We then define the Hermitian adjoint matrix of M by

M∗ := (M̄)T = MT .

One has m∗
i j = m ji and detM∗ = detM. The map M �→ M∗ is an antiisomorphism,

which means that it is antilinear (meaning that (λM)∗ = λ̄M∗) and bijective. In
addition, we have the product formula

(MN)∗ = N∗M∗.

If M is nonsingular, this implies (M∗)−1 = (M−1)∗; this matrix is sometimes de-
noted M−∗.

The interpretation of the Hermitian adjoint is that if we endow Cn with the canon-
ical scalar product

〈x,y〉= x̄1y1 + · · ·+ x̄nyn,

and with the canonical basis, then M∗ is the matrix of the adjoint (uM)∗; that is,

〈Mx,y〉= 〈x,M∗y〉, ∀x,y ∈ Cn.

83D. Serre, Matrices, Graduate Texts in Mathematics 216,
DOI 10.1007/978-1-4419-7683-3_5, © Springer Science+Business Media, LLC 2010
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5.1.2 Normal Matrices

Definition 5.1 A matrix M ∈ Mn(C) is normal if M and M∗ commute: M∗M =
MM∗.

If M has real entries, this amounts to having MMT = MT M.

Because a square matrix M always commutes with M, −M, or M−1 (assuming
that the latter exists), we can define sub-classes of normal matrices. The following
statement serves also as a definition of such classes.

Proposition 5.1 The following matrices M ∈ Mn(C) are normal.

• Hermitian matrices, meaning that M∗ = M
• Skew-Hermitian matrices, meaning that M∗ =−M
• Unitary matrices, meaning that M∗ = M−1

The Hermitian, skew-Hermitian, and unitary matrices are thus normal. One verifies
easily that H is Hermitian (respectively, skew-Hermitian) if and only if x∗Hx is real
(respectively, pure imaginary) for every x ∈ Cn.

For real-valued matrices, we have instead

Definition 5.2 A square matrix M ∈ Mn(R) is

• Symmetric if MT = M
• Skew-symmetric if MT =−M
• Orthogonal if MT = M−1

We denote by Hn the set of Hermitian matrices in Mn(C). It is an R-linear sub-
space of Mn(C), but not a C-linear subspace, becausee iM is skew-Hermitian when
M is Hermitian. If M ∈Mn×m(C), the matrices M+M∗, i(M∗−M), MM∗, and M∗M
are Hermitian. One sometimes calls 1

2 (M + M∗) the real part of M and denotes it
ℜM. Likewise, 1

2i (M−M∗) is the imaginary part of M and is denoted ℑM. Both are
Hermitian and we have

M = ℜM + iℑM.

This terminology anticipates Chapter 10.
A matrix M is unitary if uM is an isometry, that is 〈Mx,My〉 ≡ 〈x,y〉. This is

equivalent to saying that ‖Mx‖ ≡ ‖x‖. The set of unitary matrices in Mn(C) forms a
multiplicative group, denoted by Un. Unitary matrices satisfy |detM| = 1, because
detM∗M = |detM|2 for every matrix M and M∗M = In when M is unitary. The set of
unitary matrices whose determinant equals 1, denoted by SUn is obviously a normal
subgroup of Un.

A matrix with real entries is orthogonal (respectively, symmetric, skew-sym-
metric) if and only if it is unitary, Hermitian, or skew-Hermitian.

5.1.3 Matrices and Sesquilinear Forms

Given a matrix M ∈ Mn(C), the map
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(x,y) �→ 〈x,y〉M := ∑
j,k

m jkx jyk = x∗My,

defined on Cn ×Cn, is a sesquilinear form. When M = In, this is nothing but the
scalar product. It is Hermitian if and only if M is Hermitian. It follows that M �→
〈·, ·〉M is an isomorphism between Hn and the set of Hermitian forms over Cn. We
say that a Hermitian matrix H is degenerate (respectively, nondegenerate) if the
form 〈·, ·〉H is so. Nondegeneracy amounts to saying that x �→ Hx is one-to-one. In
other words, we have the following.

Proposition 5.2 A Hermitian matrix H is degenerate (respectively, nondegenerate)
if and only if detH = 0 (respectively, �= 0).

We say that the Hermitian matrix H is positive-definite if 〈·, ·〉H is so. Then
√〈·, ·〉H

is a norm over Cn. If −H is positive-definite, we say that H is negative-definite.
We denote by HPDn the set of positive-definite Hermitian matrices. If H and K are
positive-definite, and if λ is a positive real number, then λH +K is positive-definite.
Therefore HPDn is a convex cone in Hn. This cone turns out to be open. The Hermi-
tian matrices H for which 〈·, ·〉H is a positive-semidefinite Hermitian form over Cn

are called positive-semidefinite Hermitian matrices. They also form a convex cone
H+

n . If H ∈ H+
n and ε is a positive real number, then H + εIn is positive-definite.

Because H + εIn tends to H as ε → 0+, we see that the closure of HPDn is H+
n .

One defines similarly, among the real symmetric matrices, the positive-definite,
respectively, positive-semidefinite, ones. Again, the positive-definite real symmetric
matrices form an open cone in Symn(R), denoted by SPDn, whose closure Sym+

n is
made of positive-semidefinite ones.

The cone HPDn defines an order over Hn: we write K > H when K−H ∈HPDn,
and more generally K ≥ H if K−H is positive-semidefinite. The fact that

(K ≥ H ≥ K) =⇒ (K = H)

follows from the next lemma.

Lemma 6. Let H be Hermitian. If x∗Hx = 0 for every x ∈ Cn, then H = 0n.

Proof. Using (1.1), we have y∗Hx = 0 for every x,y ∈ Cn. Therefore Hx = 0 for
every x, which means H = 0n. ��

We likewise define an ordering on real-valued symmetric matrices, referring to
the ordering on real-valued quadratic forms.1

If U is unitary, the matrix U∗MU is similar to M, and we say that they are uni-
tary similar. If M is normal, Hermitian, skew-Hermitian, or unitary, and if U is
unitary, then U∗MU is still normal, Hermitian, skew-Hermitian, or unitary. When

1 We warn the reader that another order, a completely different one, although still denoted by the
same symbol ≥ , is defined in Chapter 8. The latter concerns general n×m real-valued matri-
ces, whereas the present one deals only with symmetric matrices. In practice, the context is never
ambiguous.



86 5 Matrices with Real or Complex Entries

O ∈ On(R) and M ∈ Mn(R), we again say that OT MO and M are orthogonally
similar.

We notice that Lemma 6 implies the following stronger result.

Proposition 5.3 Let M ∈ Mn(C) be given. If x∗Mx = 0 for every x ∈ Cn, then M =
0n.

Proof. We decompose M = H + iK into its real and imaginary parts. Recall that
H,K are Hermitian. Then

x∗Mx = x∗Hx+ ix∗Kx

is the decomposition of a complex number into real and imaginary parts. From the
assumption, we therefore have x∗Hx = 0 and x∗Kx = 0 for every x. Then Lemma 6
tells us that H = K = 0n. ��

5.2 Eigenvalues of Real- and Complex-Valued Matrices

Let us recall that C is algebraically closed. Therefore the characteristic polynomial
of a complex-valued square matrix has roots if n ≥ 1. Therefore every endomor-
phism of a nontrivial C-vector space possesses eigenvalues. A real-valued square
matrix may have no eigenvalues in R, but it has at least one in C. If n is odd,
M ∈ Mn(R) has at least one real eigenvalue, because PM is real of odd degree.

5.2.1 Unitary Trigonalization

If K = C, one sharpens Theorem 3.5.

Theorem 5.1 (Schur) If M ∈ Mn(C), there exists a unitary matrix U such that
U∗MU is upper-triangular.

One also says that every matrix with complex entries is unitarily trigonalizable.

Proof. We proceed by induction over the size n of the matrices. The statement is
trivial if n = 1. Let us assume that it is true in Mn−1(C), with n≥ 2. Let M ∈Mn(C)
be a matrix. Because C is algebraically closed, M has at least one eigenvalue λ . Let
X be an eigenvector associated with λ . By dividing X by ‖X‖, we can assume that
X is a unit vector. One can then find a unitary basis {X1,X2, . . . ,Xn} of Cn whose
first element is X . Let us consider the matrix V := (X1 = X |X2| · · · |Xn), which is
unitary, and let us form the matrix M′ := V ∗MV . Because

V M′e1 = MV e1 = MX = λX = λV e1,

one obtains M′e1 = λe1. In other words, M′ has the block-triangular form:
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M′ =
(

λ · · ·
0n−1 N

)
,

where N ∈ Mn−1(C). Applying the induction hypothesis, there exists W ∈ Un−1
such that W ∗NW is upper-triangular. Let us denote by Ŵ the (block-diagonal) matrix
diag(1,W ) ∈ Un. Then Ŵ ∗M′Ŵ is upper-triangular. Hence, U = VŴ satisfies the
conditions of the theorem. ��

A useful consequence of Theorem 5.1 is the following.

Corollary 5.1 The set of diagonalizable matrices is a dense subset in Mn(C).

Remark

The set of real matrices diagonalizable within Mn(R) is not dense in Mn(R). For
instance, the matrix (

0 1
−1 0

)
,

whose eigenvalues ±i are nonreal, is interior to the set of nondiagonalizable matri-
ces; this is a consequence of Theorem 5.2 of continuity of the spectrum. The set of
real matrices diagonalizable within Mn(C) is dense in Mn(R), but the proof is more
involved.

Proof. The triangular matrices with pairwise distinct diagonal entries are diagonal-
izable, because of Proposition 3.17, and form a dense subset of the triangular ma-
trices. Conjugation preserves diagonalizability and is a continuous operation. Thus
the closure of the diagonalizable matrices contains the matrices conjugated to a tri-
angular matrix, that is, all of Mn(C). ��

5.2.2 The Spectrum of Special Matrices

Proposition 5.4 The eigenvalues of Hermitian matrices, as well as those of real
symmetric matrices, are real.

Proof. Let M ∈ Mn(C) be an Hermitian matrix and let λ be one of its eigenvalues.
Let us choose an eigenvector X : MX = λX . Taking the Hermitian adjoint, we obtain
X∗M = λ̄X∗. Hence,

λX∗X = X∗(MX) = (X∗M)X = λ̄X∗X ,

or
(λ − λ̄ )X∗X = 0.

However, X∗X = ∑ j |x j|2 > 0. Therefore, we are left with λ̄ −λ = 0. Hence λ is
real. ��
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We leave it to the reader to show, as an exercise, that the eigenvalues of skew-
Hermitian matrices are purely imaginary.

Proposition 5.5 The eigenvalues of the unitary matrices, as well as those of real
orthogonal matrices, are complex numbers of modulus one.

Proof. As before, if X is an eigenvector associated with λ , one has

|λ |2‖X‖2 = (λX)∗(λX) = (MX)∗MX = X∗M∗MX = X∗X = ‖X‖2,

and therefore |λ |2 = 1. ��

5.2.3 Continuity of Eigenvalues

We study the continuity of the spectrum as a function of the matrix. The spectrum is
an n-uplet (λ1, . . . ,λn) of complex numbers. Mind that each eigenvalue is repeated
according to its algebraic multiplicity. At first glance, Sp(M) seems to be a well-
defined element of Cn, but this is incorrect because there is no way to define a natural
ordering between the eigenvalues; thus another n-uplet (λσ(1), . . . ,λσ(n)) describes
the same spectrum for every permutation σ . For this reason, the spectrum of M must
be viewed as an element of the quotient space An := Cn/R, where aRb is true if
and only if there exists a permutation σ such that b j = aσ( j) for all j. There is a
natural topology on An, given by the distance

d(ȧ, ḃ) := min
σ∈Sn

max
1≤ j≤n

|b j −aσ( j)|.

The metric space (An,d) is complete.
The way to study the continuity of

M �→ Sp(M)
Mn(C) → An

is to split this map into

M �→ PM �→ Sp(M) = root(PM),
Mn(C) → Unitn → An,

where Unitn is the affine space of monic polynomials of degree n, and the map root
associates with every element of Unitn its set of roots, counted with multiplicities.
The first arrow is continuous, because every coefficient of PM is a combination of
minors, thus is polynomial in the entries of M. There remains to study the continuity
of root. For the sake of completeness, we prove the following.

Lemma 7. The map root : Unitn → An is continuous.



5.2 Eigenvalues of Real- and Complex-Valued Matrices 89

Proof. Let P ∈ Unitn be given. Let a1, . . . ,ar be the distinct roots of P, m j their
multiplicities, and ρ the minimum distance between them. We denote by D j the
open disk with center a j and radius ρ/2, and Cj its boundary. The union of the Cjs
is a compact set on which P does not vanish. The number

η := inf

{
|P(z)| ; z ∈

⋃
j

Cj

}

is thus strictly positive.
The affine space Unitn is equipped with the distance d(Q,R) := ‖Q−R‖ deriving

from one of the (all equivalent) norms of Cn−1[X ]. For instance, we can take

‖q‖ := sup

{
|q(z)| ; z ∈

⋃
j

Cj

}
, q ∈ Cn−1[X ].

If d(P,Q) < η , then we have

|P(z)−Q(z)|< |P(z)|, ∀z ∈Cj, ∀ j = 1, . . . ,r.

Rouché’s theorem asserts that if two holomorphic functions f and g on a disk D,
continuous over D, satisfy | f (z)− g(z)| < | f (z)| on the boundary of D, then they
have the same number of zeroes in D, counting with multiplicities. In our case, we
deduce that Q has exactly m j roots in Dj. This sums up to m1 + · · ·+ mr = n roots
in the (disjoint) union of the D js. Because its degree is n, Q has no other roots.
Therefore d(root(P), root(Q)) < ρ .

This proves the continuity of Q �→ root(Q) at P. ��
As a corollary, we have the following fundamental theorem.

Theorem 5.2 The map Sp : Mn(C)→ An is continuous.

One often invokes this theorem by saying that the eigenvalues of a matrix are
continuous functions of its entries.

5.2.4 Regularity of Simple Eigenvalues

The continuity result in Theorem 5.2 cannot be improved without further assump-
tions. For instance, the eigenvalues of(

0 1
s 0

)

are ±√s, and thus are not differentiable functions, at least at the origin. It turns
out that the obstacle to the regularity of eigenvalues is the crossing of two or more
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eigenvalues. But simple eigenvalues are analytic (thus C ∞) functions of the entries
of the matrix.

Theorem 5.3 Let λ0 be an algebraically simple eigenvalue of a matrix M0 ∈
Mn(C). Then there exists an open neighbourhood M of M0 in Mn(C), and two
analytic functions

M �→Λ(M), M �→ X(M)

over M , such that

• Λ(M) is an eigenvalue of M.
• X(M) is an eigenvector, associated with Λ(M).
• Λ(M0) = λ0.

Remarks

• From Theorem 5.2, if M is close to M0, there is exactly one eigenvalue of M
close to λ0. Theorem 5.3 is a statement about this eigenvalue.

• The theorem is valid as well in Mn(R), with the same proof.

Proof. Let X0 be an eigenvector of M0 associated with λ0. We know that λ0 is also
a simple eigenvalue of MT

0 . Thanks to Proposition 3.15, an eigenvector Y0 of MT
0

(associated with λ0) satisfies Y T
0 X0 �= 0. We normalize Y0 in such a way that Y T

0 X0 =
1.

Let us define a polynomial function F over Mn(C)×C×Cn, with values in
C×Cn, by

F(M,λ ,x) := (Y T
0 x−1,Mx−λx).

We have F(M0,λ0,X0) = (0,0).
The differential of F with respect to (λ ,x), at the base point (M0,λ0,X0), is the

linear map

(μ,y) δ�→ (Y T
0 y,(M0 −λ0)y−μX0).

Let us show that δ is one-to-one. Let (μ,y) be such that δ (μ,y) = (0,0). Then
μ = μY T

0 X0 = Y T
0 (M0 −λ0)y = 0T y = 0. After that, there remains (M0 −λ0)y = 0.

Inasmuch as λ0 is simple, this means that y is colinear to X0; now the fact that
Y T

0 y = 0 yields y = 0.
Because δ is a one-to-one endomorphism of C×Cn, it is an isomorphism. We

may then apply the implicit function theorem to F : there exist neighborhoods M ,
V , and W and analytic functions (Λ ,X) : M → V such that(

(M,λ ,x) ∈W
F(M,λ ,x) = (0,0)

)
⇐⇒

(
M ∈M

(λ ,x) = (Λ(M),X(M))

)
.

Notice that F = 0 implies that (λ ,x) is an eigenpair of M. Therefore the theorem
is proved. ��
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5.3 Spectral Decomposition of Normal Matrices

We recall that a matrix M is normal if M∗ commutes with M. For real matrices,
this amounts to saying that MT commutes with M. Because it is equivalent for an
Hermitian matrix H to be zero or to satisfy x∗Hx = 0 for every vector x, we see that
M is normal if and only if ‖Mx‖2 = ‖M∗x‖2 for every vector, where ‖x‖2 denotes
the standard Hermitian (Euclidean) norm (take H = MM∗ −M∗M).

Theorem 5.4 In Mn(C), a matrix is normal if and only if it is unitarily diagonaliz-
able:

(M∗M = MM∗)⇐⇒ (∃U ∈ Un; M = U−1 diag(d1, . . . ,dn)U).

This theorem contains the following properties.

Corollary 5.2 Unitary, Hermitian, and skew-Hermitian matrices are unitarily di-
agonalizable.

Observe that among normal matrices one distinguishes each of the above families
by the nature of their eigenvalues. Those of unitary matrices have modulus one, and
those of Hermitian matrices are real. Finally, those of skew-Hermitian matrices are
purely imaginary.

Proof. A diagonal matrix is obviously normal. If U is unitary, a matrix M is normal
if and only if U∗MU is normal: we deduce that unitarily diagonalizable matrices are
normal.

We now prove the converse. We proceed by induction on the size n of the matrix
M. If n = 0, there is nothing to prove. Otherwise, if n ≥ 1, there exists an eigenpair
(λ ,x):

Mx = λx, ‖x‖2 = 1.

Because M is normal, M−λ In is, too. From the above, we see that ‖(M∗− λ̄ )x‖2 =
‖(M−λ )x‖2 = 0, and hence M∗x = λ̄x. Let V be a unitary matrix such that V e1 = x.
Then the matrix M1 := V ∗MV is normal and satisfies M1e1 = λe1. Hence it satis-
fies M∗

1 e1 = λ̄e1. This amounts to saying that M1 is block-diagonal, of the form
M1 = diag(λ ,M′). Obviously, M′ inherits the normality of M1. From the induction
hypothesis, M′, and therefore M1 and M, are unitarily diagonalizable. ��

One observes that the same matrix U diagonalizes M∗, because M = U−1DU
implies M∗ = U∗D∗U−1∗ = U−1D∗U , because U is unitary.

Let us consider the case of a positive-semidefinite Hermitian matrix H. If HX =
λX , then 0≤ X∗HX = λ‖X‖2. The eigenvalues are thus nonnegative. Let λ1, . . . ,λp
be the nonzero eigenvalues of H. Then H is unitarily similar to

D := diag(λ1, . . . ,λp,0, . . . ,0).

From this, we conclude that rkH = p. Let U ∈ Un be such that H = UDU∗. Defin-
ing the vectors Xα =

√
λαUα , where the Uα are the columns of U , we obtain the

following statement.
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Proposition 5.6 Let H ∈ Mn(C) be a positive-semidefinite Hermitian matrix. Let p
be its rank. Then H has p real, positive eigenvalues, and the eigenvalue λ = 0 has
multiplicity n− p. There exist p column vectors Xα , pairwise orthogonal, such that

H = X1X∗
1 + · · ·+XpX∗

p .

Finally, H is positive-definite if and only if p = n (in which case, λ = 0 is not an
eigenvalue).

5.4 Normal and Symmetric Real-Valued Matrices

The situation is a bit more involved if M, a normal matrix, has real entries. Of
course, one can consider M as a matrix with complex entries and diagonalize it on
a unitary basis, but if M has a nonreal eigenvalue, we quit the field of real numbers
when doing so. We prefer to allow orthonormal bases consisting of only real vectors.
Some of the eigenvalues might be nonreal, thus one cannot in general diagonalize
M. The statement is thus the following.

Theorem 5.5 Let M ∈ Mn(R) be a normal matrix. There exists an orthogonal ma-
trix O such that OMO−1 is block-diagonal, the diagonal blocks being 1× 1 (those
corresponding to the real eigenvalues of M) or 2× 2, the latter being matrices of
direct similitude:2 (

a b
−b a

)
(b �= 0).

Likewise, OMT O−1 is block-diagonal, the diagonal blocks being eigenvalues or ma-
trices of direct similitude.

Proof. One again proceeds by induction on n. When n ≥ 1, the proof is the same as
in the previous section whenever M has at least one real eigenvalue.

If this is not the case, then n is even. Let us first consider the case n = 2. Then

M =
(

a b
c d

)
.

This matrix is normal, therefore we have b2 = c2 and (a−d)(b− c) = 0. However,
b �= c, because otherwise M would be symmetric, and hence would have two real
eigenvalues. Hence b =−c and a = d.

Now let us consider the general case, with n ≥ 4. We know that M has an eigen-
pair (λ ,z), where λ is not real. If the real and imaginary parts of z were colinear,
M would have a real eigenvector, hence a real eigenvalue, a contradiction. In other
words, the real and imaginary parts of z span a plane P in Rn. As before, Mz = λ z im-
plies MT z = λ̄ z. Hence we have MP⊂ P and MT P⊂ P. Now let V be an orthogonal

2 A similitude is an endomorphism of a Euclidean space that preserves angles. It splits as aR, where
R is orthogonal and a is a scalar. It is direct if its determinant is positive.
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matrix that maps the plane P0 := Re1 ⊕Re2 onto P. Then the matrix M1 := V T MV
is normal and satisfies

M1P0 ⊂ P0, MT
1 P0 ⊂ P0.

This means that M1 is block-diagonal. Of course, each diagonal block (of sizes 2×2
and (n−2)×(n−2)) inherits the normality of M1. Applying the induction hypothe-
sis, we know that these blocks are unitarily similar to a block-diagonal matrix whose
diagonal blocks are direct similitudes. Hence M1 and M are unitarily similar to such
a matrix. ��
Corollary 5.3 Real symmetric matrices are diagonalizable over R, through orthog-
onal conjugation. In other words, given M ∈ Symn(R), there exists an O ∈ On(R)
such that OMO−1 is diagonal.

In fact, because the eigenvalues of M are real, OMO−1 has only 1× 1 blocks. We
say that real symmetric matrices are orthogonally diagonalizable.

The interpretation of this statement in terms of quadratic forms is the following.
For every quadratic form Q on Rn, there exists an orthonormal basis {e1, . . . ,en} in
which this form can be written with at most n squares:3

Q(x) =
n

∑
i=1

aix2
i .

Replacing the basis vector e j by |a j|1/2e j, one sees that there also exists an orthog-
onal basis in which the quadratic form can be written

Q(x) =
r

∑
i=1

x2
i −

s

∑
j=1

x2
j+r,

with r + s ≤ n. This quadratic form is nondegenerate if and only if r + s = n. The
pair (r,s) is unique and called the signature or the Sylvester index of the quadratic
form. In such a basis, the matrix associated with Q is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . . 0

1
−1

. . .
−1

0

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3 In solid mechanics, when Q is the matrix of inertia, the vectors of this basis are along the inertia
axes, and the aj , which then are positive, are the momenta of inertia.
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5.5 Functional Calculus

Given a square matrix A ∈ Mn(C) and a function f : U → C, we should like to
define a matrix f (A), in such a way that the maps A �→ f (A) and f �→ f (A) have
nice properties.

The case of polynomials is easy. If

P(X) = a0Xm +a1Xm−1 + · · ·+am−1X +am

has complex coefficients, then we define

P(A) = a0Am +a1Am−1 + · · ·+am−1A+amIn.

Remark that this definition does not need the scalar field to be that of complex
numbers.

An important consequence of the Cayley–Hamilton theorem is that if two poly-
nomials P and Q are such that the characteristic polynomial PA divides Q − P,
then Q(A) = P(A). This shows that what really matters is the behavior of P and
of a few derivatives at the eigenvalues of A. By few derivatives, we mean that if
� is the algebraic multiplicity of an eigenvalue λ , then one only needs to know
P(λ ), . . . ,P(�−1)(λ ). Actually, � can be chosen as the multiplicity of the root λ in
the minimal polynomial of A. For instance, if N ∈ Mn(k) is a nilpotent matrix, then
the Taylor formula yields

P(N) = P(0)In +P′(0)N + · · ·+ 1
(n−1)!

P(n−1)(0)Nn−1. (5.1)

This suggests the following treatment when f is a holomorphic function. Natu-
rally, we ask that its domain U contain SpA. We interpolate f at order n at every
point of SpA, by a polynomial P:

P(r)(λ ) = f (r)(λ ), ∀λ ∈ SpA, ∀0 ≤ r ≤ n−1.

We then define
f (A) := P(A). (5.2)

In order that this definition be meaningful, we verify that it does not depend upon
the choice of the interpolation polynomial. This turns out to be true, because if Q is
another interpolation polynomial as above, then Q−P is divisible by

∏
λ∈SpA

(X −λ )n,

thus by PA, and therefore Q(A) = P(A).

Proposition 5.7 The functional calculus with holomorphic functions enjoys the fol-
lowing properties. Below, the domains of functions are such that the expressions
make sense.
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• If f and g match at order n over SpA, then f (A) = g(A).
• Conjugation: If M is nonsingular, then f (M−1AM) = M−1 f (A)M.
• Linearity: (a f +g)(A) = a f (A)+g(A).
• Algebra homomorphism: ( f g)(A) = f (A)g(A).
• Spectral mapping: Sp f (A) = f (SpA).
• Composition: ( f ◦g)(A) = f (g(A)).

Proof. The first property follows directly from the definition, and the linearity is
obvious. The conjugation formula is already true for polynomials.

The product formula is true for polynomials. Now, if f and g are interpolated by P
and Q, respectively, at order n at every point of SpA, then f g is likewise interpolated
by PQ. This proves the product formula for holomorphic functions.

We now prove the spectral mapping formula. For this, let (λ ,x) be an eigenpair:
Ax = λx. Let P be an interpolation polynomial of f as above. Then

f (A)x = P(A)x = a0Amx+ · · ·+amx = (a0λ m + · · ·+am)x = P(λ )x = f (λ )x.

Therefore f (λ ) ∈ Sp f (A), which tells us f (SpA)⊂ Sp f (A).
Conversely, let R be a polynomial vanishing at order n over f (SpA). We have

R( f (A)) = (R ◦ f )(A) = 0n, because R ◦ f is flat at order n over SpA. Replacing A
by f (A) and f by R above, we have R(Sp f (A)) ⊂ Sp0n = {0}. We have proved
that if R vanishes at order n over f (SpA), then it vanishes at Sp f (A). Therefore
Sp f (A)⊂ f (SpA).

There remains to treat composition. Because of the spectral mapping formula,
our assumption is that the domain of f contains g(SpA). If f and g are interpolated
at order n by P and Q at g(SpA) and SpA respectively, then f ◦g is interpolated at
SpA at order n by P◦Q. The formula is true for polynomials, thus it is true for f ◦g
too. ��

Remark

As long as we are interested in polynomial functions only, Proposition 5.7 is valid
in Mn(k) for an arbitrary field.

5.5.1 The Dunford–Taylor Formula

An alternate definition can be given in terms of a Cauchy integral: the so-called
Dunford–Taylor integral.

Proposition 5.8 Let f be holomorphic over a domain U containing the spectrum
of A ∈ Mn(C). Let Γ be a positively oriented contour around SpA, contained in U .

Then we have
f (A) =

1
2iπ

∫
Γ

f (z)(zIn−A)−1dz.
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Proof. Because of the conjugation property, and thanks to Proposition 3.20, it is
enough to verify the formula when A = λ In +N where N is nilpotent. By translation,
it suffices to treat the nilpotent case.

So we assume that A is nilpotent. Therefore Γ is a disjoint union of Jordan curves.
It is oriented in the trigonometric sense with index one around the origin. Because
of nilpotence, we have

(zIn−A)−1 = z−1In + z−2A+ · · ·+ z−nAn−1.

Thanks to the Cauchy formula

1
2iπ

∫
Γ

f (z)z−m−1 dz =
1

m!
f (m)(0),

we obtain

1
2iπ

∫
Γ

f (z)(zIn −A)−1dz = f (0)In + f ′(0)A+ · · ·+ 1
(n−1)!

f (n−1)(0)A(n−1).

Now let P be a polynomial matching f at order n at the origin. We have

1
2iπ

∫
Γ

f (z)(zIn−A)−1dz = P(0)In +P′(0)A+ · · ·+ 1
(n−1)!

P(n−1)(0)A(n−1)

= P(A) = f (A),

where we have used Formula (5.1), and the definition of f (A). ��
Definition 5.3 The factor (zIn −A)−1 appearing in the Dunford–Taylor formula is
the resolvent of A at z. It is denoted R(z;A). The domain of z �→ R(z;A), which is the
complement of SpA, is the resolvent set.

5.5.2 Invariant Subspaces

An important situation occurs when f is an indicator function; that is, f (z) takes its
values in {0,1}. Because f is assumed to be holomorphic, hence continuous, the
closures of the subdomains

U0 := {z | f (z) = 0}, U1 := {z | f (z) = 1}

are disjoint sets. Because of the multiplicative property, we see that f (A)2 =
( f 2)(A) = f (A). This tells us that f (A) is a projector. If E and F denote its ker-
nel and range, we have Cn = E ⊕F .

Again, the multiplicative property tells us that f (A) commutes with A. This im-
plies that both E and F are invariant subspaces for A:

A(E)⊂ E, A(F)⊂ F.
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Using Proposition 3.20 and applying Proposition 5.8 blockwise, we see that pass-
ing from A to f (A) amounts to keeping the diagonal blocks λ jIn j +Nj of the Dunford
decomposition for which f (λ j) = 1, while dropping those for which f (λ j) = 0.

In particular, when U1 contains precisely one eigenvalue λ (which may have
some multiplicity), f (A) is called an eigenprojector, because it is the projection onto
the characteristic subspace E(λ ) := ker(A−λ In)n, parallel to the other characteristic
subspaces.

5.5.2.1 Stable and Unstable Subspaces

The following notions are useful in the linear theory of differential equations, espe-
cially when studying asymptotic behavior as time goes to infinity.

Definition 5.4 Let A ∈ Mn(C) be given. Its stable invariant subspace is the sum of
the subspaces E(λ ) over the eigenvalues of negative real part. The unstable sub-
space is the sum over the eigenvalues of positive real part. At last, the central sub-
space is the sum over the pure imaginary eigenvalues.

These spaces are denoted, respectively, S(A), U(A), and C(A).

By invariance of E(λ ), the stable, unstable, and central subspaces are each invari-
ant under A. From the above analysis, there are three corresponding eigenprojectors
πs, πu, and πc, given by the Dunford–Taylor formulæ. For instance, πs is obtained by
choosing fs ≡ 1 over ℜz <−ε and fs ≡ 0 over ℜz > ε , for a small enough positive
ε . In other words,

πs =
1

2iπ

∫
Γs

(zIn −A)−1dz

for some large enough circle Γs contained in ℜz < 0.
Because fs + fu + fc ≡ 1 around the spectrum of A, we have

πs +πu +πc = fs(A)+ fu(A)+ fc(A) = 1(A) = In.

In addition, the properties fs fu ≡ 0, fs fc ≡ 0, and fc fu ≡ 0 around the spectrum
yield

πsπu = πuπc = πcπs = 0n.

The identities above give, as expected,

Cn = S(A)⊕U(A)⊕C(A).

We leave the following characterization to the reader.

Proposition 5.9 The stable (respectively, unstable) subspace of A is the set of vec-
tors x ∈ Cn such that the solution of the Cauchy problem

dy
dt

= Ay, y(0) = x

tends to zero exponentially fast as time goes to +∞ (respectively, to −∞).
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5.5.2.2 Contractive/Expansive Invariant Subspaces

In the linear theory of discrete dynamical systems, that is, of iterated sequences

xm+1 = φ(xm),

what matters is the position of the eigenvalues with respect to the unit circle. We
thus define the contractive subspace as the sum of E(λ )s over the eigenvalues of
modulus less than 1. The sum over |λ |> 1 is called the expansive subspace. At last,
the sum over |λ | = 1 is the neutral subspace. Again, Cn is the direct sum of these
three invariant subspaces.

The link with the stable/unstable subspaces can be described in terms of the expo-
nential of matrices, a notion developed in Chapter 10. The contractive (respectively,
expansive, neutral) subspace of expA coincides with S(A) (respectively, with U(A),
C(A)).

5.6 Numerical Range

In this paragraph, we denote ‖x‖2 the Hermitian norm in Cn. If A ∈ Mn(C) and x is
a vector, the expression rA(x) = x∗Ax is a complex number.

Definition 5.5 The numerical range of A is the subset of the complex plane

H (A) = {rA(x) |‖x‖2 = 1}.

The numerical range is obviously compact. It is unitarily invariant:

H (U∗AU) = H (A), ∀U ∈ Un,

because x �→Ux is a bijection between unitary vectors. It is thus enough to evaluate
the numerical range over upper-triangular matrices, thanks to Theorem 5.1.

5.6.1 The Numerical Range of a 2×2 Matrix

Let us begin with the case n = 2. As mentioned above, it is enough to consider trian-
gular matrices. By adding μIn, we shift the numerical range by a complex number
μ . Doing so, we may reduce our analysis to the case where TrA = 0. Next, multi-
plying A by z has the effect of applying similitude to the numerical range, whose
magnitude is |z| and angle is Arg(z). Doing so, we reduce our analysis to either

A = 02, or A = 2J2 :=
(

0 2
0 0

)
, or A = Ba :=

(
1 2a
0 −1

)
,
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for some a∈C. At last, conjugating by diag(1,eiβ ) for some real β , we may assume
that a is real, nonnegative.

Clearly, H (02) = {0}. The case of 2J2 is quite simple:

H (2J2) = {2yz | |y|2 + |z|2 = 1}.

This is a rotationally invariant set, containing the segment [0,1] and contained in the
unit disk, by Cauchy–Schwarz. Thus it equals the unit disk.

Let us examine the third case in details.

H (Ba) = {|y|2 −|z|2 +2aȳz | |y|2 + |z|2 = 1}.

At fixed moduli |y| and |z|, the number rBa(x) runs over a circle whose center is
|y|2 −|z|2 and radius is 2a|yz|. Therefore H (Ba) is the union of the circles C(r;ρ)
where the center r is real, and (r,ρ) is constrained by

a2r2 +ρ2 = a2.

Let E ∈ C ∼ R2 be the filled ellipse with foci ±1 and passing through z =√
1+a2. It is defined by the inequality

(ℜz)2

1+a2 +
(ℑz)2

a2 ≤ 1.

If z = r +ρeiθ ∈C(r;ρ), we have

(ℜz)2

1+a2 +
(ℑz)2

a2 =
r2

1+a2 +
ρ2

a2 +
2rρ

1+a2 cosθ − ρ2

a2(1+a2)
cos2 θ .

Considering this expression as a quadratic polynomial in cosθ , its maximum is
reached when the argument equals4 ra2/ρ and then it takes the value r2 + ρ2/a2.
The latter being less than or equal to one, we deduce that z belongs to E . Therefore
H (A)⊂ E .

Conversely, let z belong to E . The polynomial r �→ g(r) := (ℑz)2 +(ℜz− r)2 +
a2(r2−1) is convex and reaches its minimum at r0 = (ℜz)/(1+a2), which belongs
to [−1,1]. We have

g(r0) = (ℑz)2 +
a2

1+a2 (ℜz)2−a2,

which is nonpositive by assumption. Because g(±1) ≥ 0, we deduce the existence
of an r ∈ [−1,1] such that g(r) = 0. This precisely means that z∈C(r;ρ). Therefore
E ⊂H (A).

Finally, H (A) is a filled ellipse whose foci are ±1. Its great axis is
√

1+a2

and the small one is a. Its area is therefore πa
√

1+a2, which turns out to equal

4 The value ra2/ρ is not necesssarily within [−1,1], but we don’t mind. When ra2/ρ > 1, the
circle is contained in the interior of E , whereas if ra2/ρ ≤ 1, it is interiorly tangent to E .
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|det[B∗
a,Ba]|1/2, because we have

[B∗
a,Ba] =

(−4a2 −4a
4a 4a2

)
.

We notice that the same formula holds true for the other cases A = 02 or A = 2J2.
Going backward to a general 2× 2 matrix through similitude and conjugation,

and pointing out that affine transformations preserve the class of ellipse, while mul-
tiplying the area by the Jacobian determinant, we have established the following.

Lemma 8. The numerical range of a 2× 2 matrix is a filled ellipse whose foci are
its eigenvalues. Its area equals

π
4
|det[A∗,A]|1/2 .

5.6.2 The General Case

Let us turn towards matrices of sizes n ≥ 3 (the case n = 1 being trivial). If z,z′
belong to the numerical range, we have z = rA(x) and z′ = rA(x′) for suitable unit
vectors. Applying Lemma 8 to the restriction of rA to the plane spanned by x and
x′, we see that there is a filled ellipse, containing z and z′, and contained in H (A).
Therefore the segment [z,z′] is contained in the numerical range and H (A) is con-
vex.

If x is a unitary eigenvector, then rA(x) = x∗(λx) = λ . Finally we have the fol-
lowing.

Theorem 5.6 (Toeplitz–Hausdorff) The numerical range of a matrix A ∈ Mn(C)
is a compact convex domain. It contains the eigenvalues of A.

5.6.2.1 The Case of Normal Matrices

If A is normal, we deduce from Theorem 5.4 that its numerical range equals that
of the diagonal matrix D with the same eigenvalues a1, . . . ,an. Denoting θ j = |x j|2
when x ∈ Cn, we see that

H (A) = {θ1a1 + · · ·+θnan |θ1, . . . ,θn ≥ 0 and θ1 + · · ·+θn = 1}.

This is precisely the convex envelope of a1, . . . ,an.

Proposition 5.10 The numerical range of a normal matrix is the convex hull of its
eigenvalues.
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5.6.3 The Numerical Radius

Definition 5.6 The numerical radius of A ∈ Mn(C) is the nonnegative real number

w(A) := sup{|z| ; z ∈H (A)} = sup
x �=0

|x∗Ax|
‖x‖ = sup

‖x‖=1
|x∗Ax|.

As a supremum of seminorms A �→ |x∗Ax|, it is a seminorm. Because of Proposi-
tion 5.3, w(A) = 0 implies A = 0n. The numerical radius is thus a norm. We warn the
reader that it is not a matrix norm (this notion is developed in Chapter 7) inasmuch
as w(AB) is not always less than or equal to w(A)w(B). For instance

w(JT
2 J2) = 1, and w(JT

2 ) = w(J2) =
1
2
.

However, the numerical radius satisfies the inequality w(Ak)≤ w(A)k for every pos-
itive integer k (see Exercise 8). A norm with this property is called superstable.

Because Mn(C) is finite dimensional, the numerical radius is equivalent as a
norm to any other norm, for instance to matrix norms. However, norm equivalence
involves constant factors, which may depend dramatically on the dimension n. It is
thus remarkable that the equivalence with the standard operator norm is uniform in
n:

Proposition 5.11 For every A ∈ Mn(C), we have

w(A)≤ ‖A‖2 ≤ 2w(A).

Proof. Cauchy–Schwarz gives

|x∗Ax| ≤ ‖x‖2‖Ax‖2 ≤ ‖A‖2‖x‖2
2,

which yields w(A)≤ ‖A‖2.
On the other hand, let us majorize |y∗Ax| in terms of w(A). We have

4y∗Ax = (x+y)∗A(x+y)−(x−y)∗A(x−y)+i(x+iy)∗A(x+iy)−i(x−iy)∗A(x−iy).

The triangle inequality and the definition of w(A) then give

4|y∗Ax| ≤ (‖x+ y‖2
2 +‖x− y‖2

2 +‖x+ iy‖2
2 +‖x− iy‖2

2
)

w(A)

= 4(‖x‖2
2 +‖y‖2

2)w(A).

If x and y are unit vectors, this means |y∗Ax| ≤ 2w(A). If x is a unit vector, we now
write

‖Ax‖2 = sup{|y∗Ax| ; ‖y‖2 = 1} ≤ 2w(A).

Taking the supremum over x, we conclude that ‖A‖2 ≤ w(A). ��



102 5 Matrices with Real or Complex Entries

Specific examples show that each one of the inequalities in Proposition 5.11 can
be an equality.

5.7 The Gershgorin Domain

In this section, we use the norm ‖ · ‖∞ over Cn, defined by

‖x‖∞ := max
i
|xi|.

Let A ∈ Mn(C), λ be an eigenvalue and x an associated eigenvector. Let i be an
index such that |xi|= ‖x‖∞. Then xi �= 0 and the majorization

|aii −λ |=
∣∣∣∣∣∑j �=i

ai j
x j

xi

∣∣∣∣∣≤ ∑
j �=i

|ai j|

gives the following.5

Proposition 5.12 (Gershgorin) The spectrum of A is included in the Gershgorin
domain G (A), defined as the union of the Gershgorin disks

Di(A) := D(aii;ri), ri := ∑
j �=i

|ai j|.

Replacing A by its transpose, which has the same spectrum, we have likewise

Sp(A)⊂G (AT ) =
n⋃

j=1

D′
j(A), D′

j(A) := D j(AT ) = D(a j j;r′j), r′j := ∑
i�= j

|ai j|.

One may improve this result by considering the connected components of G (A).
Let G be one of them. It is the union of the Dks that meet G. Let p be the number of
such disks. One has G = ∪i∈IDi(A) where I has cardinality p.

Theorem 5.7 There are exactly p eigenvalues of A in G, counted with their multi-
plicities.

Proof. For r ∈ [0,1], we define a matrix A(r) by the formula

ai j(r) :=
{

aii, j = i,
rai j, j �= i.

5 This result can also be deduced from Proposition 7.5: let us decompose A = D+C, where D is the
diagonal part of A. If λ �= aii for every i, then λ In−A = (λ In−D)(In−B) with B = (λ In−D)−1C.
Hence, if λ is an eigenvalue, then either λ is an aii, or ‖B‖∞ ≥ 1.
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It is clear that the Gershgorin domain Gr of A(r) is included in G (A). We observe
that A(1) = A, and that r �→ A(r) is continuous. Let us denote by m(r) the number
of eigenvalues (counted with multiplicity) of A(r) that belong to G.

Because G and G (A) \G are compact, one can find a Jordan curve, oriented in
the trigonometric sense, that separates G from G (A) \G. Let Γ be such a curve.
Inasmuch as Gr is included in G (A), the residue formula expresses m(r) in terms of
the characteristic polynomial Pr of A(r):

m(r) =
1

2iπ

∫
Γ

P′
r(z)

Pr(z)
dz.

Because Pr does not vanish on Γ and r �→ Pr,P′
r are continuous, r �→ m(r) is contin-

uous. Because m(r) is an integer and [0,1] is connected, m(r) remains constant. In
particular, m(0) = m(1).

Finally, m(0) is the number of entries aj j (eigenvalues of A(0)) that belong to G.
But a j j is in G if and only if D j(A)⊂ G. Hence m(0) = p, which implies m(1) = p,
the desired result. ��

An improvement of Gershgorin’s theorem concerns irreducible matrices.

Proposition 5.13 Let A be an irreducible matrix. If an eigenvalue of A does not
belong to the interior of any Gershgorin disk, then it belongs to every circle S(aii;ri).

Proof. Let λ be such an eigenvalue and x an associated eigenvector. By assumption,
one has |λ −aii| ≥ ∑ j �=i |ai j| for every i. Let I be the set of indices for which |xi| =
‖x‖∞ and let J be its complement. If i ∈ I, then

‖x‖∞ ∑
j �=i

|ai j| ≤ |λ −aii|‖x‖∞ =

∣∣∣∣∣∑j �=i
ai jx j

∣∣∣∣∣≤ ∑
j �=i

|ai j| |x j|.

It follows that ∑ j �=i(‖x‖∞ − |x j|)|ai j| ≤ 0, where all the terms in the sum are non-
negative. Each term is thus zero, so that ai j = 0 for j ∈ J. Because A is irreducible,
J is empty. One has thus |x j|= ‖x‖∞ for every j, and the previous inequalities show
that λ belongs to every circle. ��

5.7.1 An Application

Definition 5.7 A square matrix A ∈ Mn(C) is said to be

1. Diagonally dominant if

|aii| ≥ ∑
j �=i

|ai j|, 1 ≤ i ≤ n

2. Strongly diagonally dominant if it is diagonally dominant and in addition at least
one of these n inequalities is strict
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3. Strictly diagonally dominant if the inequality above is strict for every index i

Corollary 5.4 Let A be a square matrix. If A is strictly diagonally dominant, or if A
is irreducible and strongly diagonally dominant, then A is invertible.

In fact, either zero does not belong to the Gershgorin domain, or it is not interior
to the disks. In the latter case, A is assumed to be irreducible, and there exists a disk
Dj that does not contain zero.

Exercises

1. Show that the eigenvalues of skew-Hermitian matrices, as well as those of real
skew-symmetric matrices, are pure imaginary.

2. Let P,Q ∈ Mn(R) be given. Assume that P + iQ ∈ GLn(C). Show that there
exist a,b ∈ R such that aP + bQ ∈ GLn(R). Deduce that if M,N ∈ Mn(R) are
similar in Mn(C), then these matrices are similar in Mn(R).

3. Given an invertible matrix

M =
(

a b
c d

)
∈ GL2(R),

define a map hM from S2 := C∪{∞} into itself by

hM(z) :=
az+b
cz+d

.

a. Show that hM is a bijection.
b. Show that h : M �→ hM is a group homomorphism. Compute its kernel.
c. Let H be the upper half-plane, consisting of those z ∈ C with ℑz > 0.

Compute ℑhM(z) in terms of ℑz and deduce that the subgroup

GL+
2 (R) := {M ∈ GL2(R) | detM > 0}

operates on H .
d. Conclude that the group PSL2(R) := SL2(R)/{±I2}, called the modular

group, operates on H .
e. Let M ∈ SL2(R) be given. Determine, in terms of TrM, the number of fixed

points of hM on H .

4. Show that M ∈ Mn(C) is normal if and only if there exists a unitary matrix U
such that M∗ = MU .

5. Let d : Mn(R)→ R+ be a multiplicative function; that is,

d(MN) = d(M)d(N)
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for every M,N ∈ Mn(R). If α ∈R, define δ (α) := d(αIn)1/n. Assume that d is
not constant.

a. Show that d(0n) = 0 and d(In) = 1. Deduce that P ∈ GLn(R) implies
d(P) �= 0 and d(P−1) = 1/d(P). Show, finally, that if M and N are simi-
lar, then d(M) = d(N).

b. Let D ∈ Mn(R) be a diagonal matrix. Find matrices D1, . . . ,Dn−1, similar
to D, such that DD1 · · ·Dn−1 = (detD)In. Deduce that d(D) = δ (detD).

c. Let M ∈ Mn(R) be a diagonalizable matrix. Show that d(M) = δ (detM).
d. Using the fact that MT is similar to M, show that d(M) = δ (detM) for every

M ∈ Mn(R).

6. Let A ∈ Mn(C) be given, and let λ1, . . . ,λn be its eigenvalues. Show, by induc-
tion on n, that A is normal if and only if

∑
i, j
|ai j|2 =

n

∑
1
|λ�|2.

Hint: The left-hand side (whose square root is called Schur’s norm) is invariant
under conjugation by a unitary matrix. It is then enough to restrict attention to
the case of a triangular matrix.

7. (Fiedler and Pták [13]) Given a matrix A ∈ Mn(R), we wish to prove the equiv-
alence of the following properties:

P1 For every vector x �= 0 there exists an index k such that xk(Ax)k > 0.
P2 For every vector x �= 0 there exists a diagonal matrix D with positive di-

agonal elements such that the scalar product (Ax,Dx) is positive.
P3 For every vector x �= 0 there exists a diagonal matrix D with nonnegative

diagonal elements such that the scalar product (Ax,Dx) is positive.
P4 The real eigenvalues of all principal submatrices of A are positive.
P5 All principal minors of A are positive.

a. Prove that Pj implies P(j+1) for every j = 1, . . . ,4.
b. Assume P5. Show that for every diagonal matrix D with nonnegative en-

tries, one has det(A+D) > 0.
c. Then prove that P5 implies P1.

8. (Berger) We show here that the numerical radius satisfies the power inequality.
In what follows, we use the real part of a square matrix

ℜM :=
1
2
(M +M∗).

a. Show that w(A) ≤ 1 is equivalent to the fact that ℜ(In − zA) is positive-
semidefinite for every complex number z in the open unit disc.

b. We now assume that w(A)≤ 1. If |z|< 1, verify that In− zA is nonsingular.
c. If M ∈ GLn(C) has a nonnegative real part, prove that ℜ

(
M−1

)≥ 0n. De-
duce that ℜ(In − zA)−1 ≥ 0n whenever |z|< 1.
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d. Let m ≥ 1 be an integer and ω be a primitive mth root of unity in C. Check
that the formula

1
1−Xm =

1
m

m−1

∑
k=0

1
1−ωkX

can be recast as a polynomial identity.
Deduce that

(In − zmAm)−1 =
1
m

m−1

∑
k=0

(In −ωkzA)−1,

whenever |z|< 1.
e. Deduce from above that

ℜ(In − zmAm)−1 ≥ 0n,

whenever |z| < 1. Going backward, conclude that for every complex num-
ber y in the open unit disc, ℜ(In − yAm)≥ 0n and thus w(Am)≤ 1.

f. Finally, prove the power inequality

w(Mm)≤ w(M)m, ∀M ∈ Mn(C), ∀m ∈ N.

Note: A norm that satisfies the power inequality is called a superstable
norm.

9. Given a complex n×n matrix A, show that there exists a unitary matrix U such
that M := U∗AU has a constant diagonal:

mii =
1
n

TrA, ∀i = 1, ...,n.

Hint: Use the convexity of the numerical range.
In the Hermitian case, compare with Schur’s theorem 6.7.

10. Let B ∈ GLn(C). Verify that the inverse and the Hermitian adjoint of B−1B∗
are similar. Conversely, let A ∈ GLn(C) be a matrix whose inverse and the
Hermitian adjoint are similar: A∗ = PA−1P−1.

a. Show that there exists an invertible Hermitian matrix H such that H =
A∗HA. Hint: Look for an H as a linear combination of P and of P∗.

b. Show that there exists a matrix B∈GLn(C) such that A = B−1B∗. Look for
a B of the form (aIn +bA∗)H.

11. a. Show that |det(In + A)| ≥ 1 for every skew-Hermitian matrix A, and that
equality holds only if A = 0n.

b. Deduce that for every M ∈ Mn(C) such that H := ℜM is positive-definite,

detH ≤ |detM|

by showing that H−1(M−M∗) is similar to a skew-Hermitian matrix. You
may use the square root defined in Chapter 10.
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12. Let A ∈ Mn(C) be a normal matrix. We decompose A = L + D +U in strictly
lower, diagonal, and strictly upper-triangular parts. Let us denote by � j the Eu-
clidean length of the jth column of L, and by uj that of the jth row of U .

a. Show that

k

∑
j=1

u2
j ≤

k

∑
j=1

l2
j +

k

∑
j=1

j−1

∑
m=1

u2
m j, k = 1, . . . ,n−1.

b. Deduce the inequality

‖U‖S ≤
√

n−1‖L‖S,

for the Schur–Frobenius norm

‖M‖S :=

(
n

∑
i, j=1

|mi j|2
)1/2

.

c. Prove also that
‖U‖S ≥ 1√

n−1
‖L‖S.

d. Verify that each of these inequalities is optimal. Hint: Consider a circulant
matrix.

13. For A ∈ Mn(C), define

ε := max
i�= j

|ai j|, δ := min
i�= j

|aii−a j j|.

We assume in this exercise that δ > 0 and ε ≤ δ/4n.

a. Show that each Gershgorin disk D j(A) contains exactly one eigenvalue of
A.

b. Let ρ > 0 be a real number. Verify that Aρ , obtained by multiplying the ith
row of A by ρ and the ith column by 1/ρ , has the same eigenvalues as A.

c. Choose ρ = 2ε/δ . Show that the ith Gershgorin disk of Aρ contains exactly
one eigenvalue. Deduce that the eigenvalues of A are simple and that

d(Sp(A),diag(a11, . . . ,ann))≤ 2nε2

δ
.

14. Let A ∈ Mn(C) be given. We define

Bi j(A) = {z ∈ C | |(z−aii)(z−a j j)| ≤ ri(A)r j(A)}.

These sets are Cassini ovals. Finally, set

B(A) :=
⋃

1≤i< j≤n

Bi j(A).
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a. Show that SpA ⊂B(A).
b. Show that this result is sharper than Proposition 5.12.
c. When n = 2, show that in fact SpA is included in the boundary of B(A).

Note: It is tempting to make a generalization from the present exercise and
Proposition 5.12, and conjecture that the spectrum is contained in the union of
sets defined by inequalities

|(z−aii)(z−a j j)(z−akk)| ≤ ri(A)r j(A)rk(A)

and so on. However, the claim is already false with this third-order version.
15. Let I be an interval of R and t �→ P(t) be a map of class C 1 with values in

Mn(R) such that for each t, P(t) is a projector: P(t)2 = P(t).

a. Show that the rank of P(t) is constant.
b. Show that P(t)P′(t)P(t) = 0n.
c. Let us define Q(t) := [P′(t),P(t)]. Show that P′(t) = [Q(t),P(t)].
d. Let t0 ∈ I be given. Show that the differential equation U ′ = QU pos-

sesses a unique solution in I such that U(t0) = In. Show that P(t) =
U(t)P(t0)U(t)−1.

16. Show that the set of projectors of given rank p is a connected subset in Mn(C).
17. Let E be an invariant subspace of a matrix M ∈ Mn(R).

a. Show that E⊥ is invariant under MT .
b. Prove the following identity between characteristic polynomials:

PM(X) = PM|E(X)PMT |E⊥(X). (5.3)

18. Prove Proposition 5.9.
19. (Converse of Lemma 8.) Let A and B be 2×2 complex matrices, that have the

same spectrum. We assume in addition that

det[A∗,A] = det[B∗,B].

Prove that A and B are unitarily similar. Hint: Prove that they both are unitarily
similar to the same triangular matrix.
Deduce that two matrices in M2(C) are unitarily similar if and only if they have
the same numerical range.

20. Prove the following formula for complex matrices:

logdet(In + zA) =
∞

∑
k=0

(−1)k+1

k
Tr(Ak)zk.

Hint: Use an analogous formula for log(1+az).



Chapter 6

Hermitian Matrices

We recall that ‖ · ‖2 denotes the usual Hermitian norm on Cn:

‖x‖2 :=

(
n

∑
j=1

|x j|2
)2

.

6.1 The Square Root over HPDn

Hermitian matrices do not form an algebra: the product of two Hermitian matrices
is not in Hn. One can even prove that Hn ·Hn = Mn(C). However, we notice the
following important result.

Proposition 6.1 Let H ∈ HPDn and K ∈ Hn be given. Then the product HK (or
KH as well) is diagonalizable with real eigenvalues. The number of positive (re-
spectively, negative) eigenvalues of HK equals that for K.

In terms of Hermitian forms, it means that given a positive-definite form Φ and
another form φ , there exists a basis B which is orthogonal with respect to both
forms.

Proof. Recall that H is unitary diagonalizable with real eigenvalues: there is a U ∈
Un such that H = U∗ diag(μ1, . . . ,μn)U . Because H is positive-definite, we have
μ j > 0. Setting h = U∗ diag(

√μ1, . . . ,
√μn)U , we have h ∈ HPDn and h2 = H.

Because HK = h(hKh)h−1, HK is similar to K′ := hKh = h∗Kh. Because K′ is
Hermitian, it is diagonalizable with real eigenvalues, and so is HK, with the same
eigenvalues. The number of positive eigenvalues is the largest dimension of a sub-
space E on which the Hermitian form x �→ x∗K′x is positive-definite. Equivalently,
hE is a subspace on which the Hermitian form x �→ y∗Ky is positive-definite. Inas-
much as h is nonsingular, this maximal dimension is the same for K′ and K.

The same argument works for the negative eigenvalues. ��
We now have the following theorem.
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Theorem 6.1 Given H ∈ HPDn, there exists one and only one h ∈ HPDn such that
h2 = H. The matrix h is denoted

√
H, and called the square root of H.

Proof. Such a square root was constructed in the proof of Proposition 6.1. There
remains to prove uniqueness. So let h,h′ ∈ HPDn be such that h′2 = h2. Set U :=
h′h−1. We have U∗U = h−1h′2h−1 = h−1h2h−1 = In, meaning that U is unitary. Thus
its eigenvalues belong to the unit circle. However, Proposition 6.1 tells us that U is
diagonalizable with real positive eigenvalues. Therefore λ = 1 is the only eigenvalue
and U is similar, thus equal to, In. This gives h′ = h. ��

The square root map can be extended by continuity to the closure of HPDn,
the cone of positive-semidefinite matrices. This follows from the stronger global
Hölderian property stated in Proposition 6.3.

6.2 Rayleigh Quotients

Let M be an n×n Hermitian matrix, and let λ1 ≤ ·· · ≤ λn be its eigenvalues arranged
in increasing order and counted with multiplicity. We denote by B = {v1, . . . ,vn}
an orthonormal eigenbasis (Mv j = λ jv j). If x ∈ Cn, let y1, . . . ,yn be its coordinates
in the basis B. Then

x∗Mx = ∑
j

λ j|y j|2 ≤ λn ∑
j
|y j|2 = λn‖x‖2

2.

The above inequality is an equality for x = vn, therefore we deduce a formula for
the largest eigenvalue of M:

λn = max
x �=0

x∗Mx
‖x‖2

2
= max

{
x∗Mx |‖x‖2

2 = 1
}

. (6.1)

Likewise, the smallest eigenvalue of an Hermitian matrix is given by

λ1 = min
x �=0

x∗Mx
‖x‖2

2
= min{x∗Mx |‖x‖2

2 = 1}. (6.2)

The expression
x∗Mx
‖x‖2

2

is called a Rayleigh Quotient. For a symmetric matrix with real entries, the formulæ
(6.1,6.2) remain valid when we replace x∗ by xT and take vectors with real coordi-
nates.

We evaluate the other eigenvalues of M ∈ Hn in the following way. For every
linear subspace F of Cn of dimension k, let us define

R(F) = max
x∈F\{0}

x∗Mx
‖x‖2

2
= max

{
x∗Mx |x ∈ F, ‖x‖2

2 = 1
}

.
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Because of Corollary 1.1, the intersection of two subspaces of Cn whose dimensions
sum up to n+1 is nontrivial. Therefore the intersection of F with the linear subspace
spanned by {vk, . . . ,vn} is of dimension greater than or equal to one: there exists a
nonzero vector x ∈ F such that y1 = · · ·= yk−1 = 0. One then has

x∗Mx =
n

∑
j=k

λ j|y j|2 ≥ λk ∑
j
|y j|2 = λk‖x‖2

2.

Hence, R(F) ≥ λk. Furthermore, if G is the space spanned by {v1, . . . ,vk}, one has
R(G) = λk. Thus, we have

λk = min{R(F) | dimF = k}.

Finally, we may state the following theorem.

Theorem 6.2 Let M be an n× n Hermitian matrix and λ1, . . . ,λn its eigenvalues
arranged in increasing order, counted with multiplicity. Then

λk = min
dimF=k

max
x∈F\{0}

x∗Mx
‖x‖2

2
. (6.3)

If M is real symmetric, one has similarly

λk = min
dimF=k

max
x∈F\{0}

xT Mx
‖x‖2

2
,

where F runs over subspaces of Rn.
Equivalently, we have

λk = max
dimF=n−k+1

min
x∈F\{0}

x∗Mx
‖x‖2

2
. (6.4)

These formulæ generalize (6.1) and (6.2).

Proof. There remains to prove (6.4). There are two possible strategies. Either we
start from nothing and argue again about the intersection of subspaces whose di-
mensions sum up to n + 1, or we remark that λk(M) = −λn−k+1(−M), because
M and −M have opposite eigenvalues. Then using max{− f} = −min{ f} and
min{− f} = −max{ f} for every quantity f , we see that (6.4) is a reformulation
of (6.3). ��

An easy application of Theorem 6.2 is the set of Weyl’s inequalities. For this
we denote by λ1(M) ≤ ·· · ≤ λn(M) the eigenvalues of M. We notice that λk(αM)
equals αλk(M) if α ≥ 0, or −αλn−k+1(M) if α ≤ 0. In particular,

λn(αM)−λ1(αM) = |α|(λn(M)−λ1(M)), (6.5)
max{λn(αM),−λ1(αM)} = |α|max{λn(M),−λ1(M)}. (6.6)
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Theorem 6.3 Let A and B be n×n Hermitian matrices. Let 1≤ i, j,k≤ n be indices.

• If i+ j = k +1, we have

λk(A+B)≥ λi(A)+λ j(B).

• If i+ j = k +n, we have

λk(A+B)≤ λi(A)+λ j(B).

Proof. Once again, any inequality can be deduced from the other ones by means of
(A,B)↔ (−A,−B). Thus it is sufficient to treat the case where i+ j = k +n.

From (6.4), we know that there exists an (n− k + 1)-dimensional subspace H
such that

λk(A+B) = min
x∈H\{0}

x∗(A+B)x
‖x‖2

2
.

From (6.3), there also exist i- and j-dimensional subspaces F,G such that

λi(A) = max
x∈F\{0}

x∗Ax
‖x‖2

2
, λ j(B) = max

x∈G\{0}
x∗Bx
‖x‖2

2
.

We now use Corollary 1.1 twice: we have

dimF ∩G∩H ≥ dimF +dimG∩H −n ≥ dimF +dimG+dimH −2n

= i+ j +1−n− k = 1.

We deduce that there exists a unit vector z in F ∩G∩H. From above, it satisfies

λk(A+B)≤ z∗(A+B)z, λi(A)≥ z∗Az, λ j(B)≥ z∗Bz,

whence the conclusion. ��
The cases where i = j = k are especially interesting. They give

λ1(A+B)≥ λ1(A)+λ1(B), λn(A+B)≤ λn(A)+λn(B).

Because each function M �→ λ j(M) is positively homogeneous of degree one, we
infer that λn is convex, while λ1 is concave. Their maximum

[M] := max{λn(M),−λ1(M)}

is convex too. From (6.6), it is thus a subnorm. When [M] ≤ 0, we have λn(M) ≤
λ1(M); that is, SpM = {0} ; because M, Hermitian, is diagonalizable, we deduce
M = 0. Finally, M �→ [M] is a norm over Hn (and over Symn(R) too). An interesting
consequence of some of the Weyl’s inequalities is the following.

Proposition 6.2 The eigenvalues λk over Hn are Lipschitz functions, with Lipschitz
ratio equal to one:
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|λk(M)−λk(N)| ≤ [M−N].

Proof. Taking i = k and either j = 1 or j = n, then A = N and B = M−N, we obtain

λ1(M−N)≤ λk(M)−λk(N)≤ λn(M−N).

��

Comments

• The quantity [M] is nothing but the largest modulus of an eigenvalue of M. It is
a special case of what is called the spectral radius in Chapter 7. We warn the
reader that the spectral radius is not a norm over Mn(C).

• The quantity [M] can also be characterized as the supremum of ‖Mx‖2/‖x‖2,
which is described in Chapter 7 as a matrix norm, or operator norm. The standard
notation is ‖M‖2: Proposition 6.2 reads

|λk(M)−λk(N)| ≤ ‖M−N‖2, ∀M,N ∈ Hn. (6.7)

• The Lipschitz quality of λk over Hn is intermediate between the continuity of the
spectrum (Theorem 5.2) and the analyticity of simple eigenvalues (Theorem 5.3).
It is, however, better than the standard behavior near a nonsemisimple eigenvalue
of a (necessarily nonHermitian) matrix. In the latter case, the singularity always
involves an algebraic branching, which is typically Hölderian of exponent 1/d
where d is the size of the largest Jordan block associated with the eigenvalue
under consideration.

• A remarkable fact happens when we restrict to a C k-curve s �→ H(s) in Hn.
Rellich proved that the eigenvalues of H(s) can be relabeled as μ1(s), . . . ,μn(s)
in such a way that each function μ j is of class C k. Mind the fact that this labeling
does not coincide with the increasing order. For instance, if H(s) = diag{s,−s},
then λ1 = −|s| and λ2 = |s| are not more than Lipschitz, whereas μ1 = −s and
μ2 = s are analytic. This regularity does not hold in general when the curve
is replaced by a surface. For instance, there is no way to label the eigenvalues
±√a2 +b2 of

H(a,b) :=
(

a b
b −a

)
, (a,b ∈ R),

in such a way that they are smooth functions of (a,b). See Theorem 6.8 in [24].
• The description of the set of the 3n-tuplets

(λ1(A), . . . ,λn(A),λ1(B), . . . ,λn(B),λ1(A+B), . . . ,λn(A+B))

as A and B run over Hn is especially delicate. For a complete historical account of
this question, one may read the first section of Fulton’s and Bhatia’s articles [16,
6]. For another partial result, see Exercise 13 of Chapter 8 (Lidskii’s theorem).
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6.3 Further Properties of the Square Root

Proposition 6.3 The square root is Hölderian with exponent 1
2 over HPDn:

‖
√

H −
√

K‖2 ≤
√
‖H −K‖2 , ∀H,K ∈ HPDn.

We point out that the Hölderian property is global over HPDn, and is uniform
with respect to n because it does not involve a constant depending upon n.

Proof. Let A,B ∈ HPDn be given. Let us develop

B2 −A2 = (B−A)2 +(B−A)A+A(B−A). (6.8)

Up to exchanging the roles of A and B, we may assume that λn(B−A)≥ λn(A−B);
that is, λn(B−A) = [B−A] = ‖B−A‖2. Let x be an eigenvector of B−A associated
with λn(B−A). From the above, we infer

x∗(B2−A2)x = λ 2
n ‖x‖2

2 +2λnx∗Ax ≥ λ 2
n ‖x‖2

2.

By Cauchy–Schwarz and the fact that [M] = ‖M‖2 (see the comment above), we
have

‖B−A‖2
2‖x‖2

2 ≤ ‖x‖2‖(B2 −A2)x‖2 ≤ ‖B2−A2‖2‖x‖2
2,

whence
‖B−A‖2

2 ≤ ‖B2 −A2‖2.

We apply this inequality to B =
√

K and A =
√

H. ��
The same expansion yields the monotonicity of the square root map.

Theorem 6.4 The square root is operator monotone over the positive-semidefinite
Hermitian matrices: if 0n ≤ H ≤ K, then

√
H ≤√

K.

More generally, if I is an interval in R, a map f : I → R is operator monotone
if for every H,K ∈ Hn with spectra included in I, the inequality H ≤ K implies
f (H) ≤ f (K). The study of operator monotone functions is the Loewner theory. It
is intimately related to the theory of complex variable.

Proof. Let B and A be Hermitian positive-semidefinite. If B2 ≤ A2, then (6.8) yields

(B−A)2 +(B−A)A+A(B−A)≤ 0n.

Let λ1 be the smallest eigenvalue of A−B, and x an associate eigenvector. We obtain

λ 2
1 ‖x‖2

2 −2λ1x∗Ax = 0,

which shows that λ1 lies between 0 and 2x∗Ax/‖x‖2
2. Because A is nonnegative, this

implies λ1 ≥ 0; that is, A−B ≥ 0n.
Apply this analysis to A =

√
K and B =

√
H. ��
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6.4 Spectrum of Restrictions

In the following result called Cauchy’s interlacing theorem, the block H is a com-
pression of the larger matrix H ′.

Theorem 6.5 Let H ∈ Hn−1, x ∈ Cn−1, and a ∈ R be given. Let λ1 ≤ ·· · ≤ λn−1 be
the eigenvalues of H and μ1 ≤ ·· · ≤ μn those of the Hermitian matrix

H ′ =
(

H x
x∗ a

)
.

One then has μ1 ≤ λ1 ≤ ·· · ≤ μ j ≤ λ j ≤ μ j+1 ≤ ·· · ≤ λn−1 ≤ μn.

Proof. The inequality μ j ≤ λ j follows from (6.3), because the infimum concerns
the same quantity

max
x∈F,x �=0

x∗H ′x
‖x‖2

2
,

but is taken over a smaller set in the case of λ j: that of subspaces of dimension j
contained in Cn−1 ×{0}.

Conversely, let π : x �→ (x1, . . . ,xn−1)T be the projection from Cn onto Cn−1. If
F is a linear subspace of Cn of dimension j +1, its image under π contains a linear
subspace G of dimension j (it is often exactly of dimension j). One obviously has

max
x∈F,x �=0

x∗H ′x
‖x‖2

2
≥ max

x∈G,x �=0

x∗Hx
‖x‖2

2
≥ λ j.

Taking the infimum, we obtain μ j+1 ≥ λ j. ��
Theorem 6.5 is optimal, in the following sense.

Theorem 6.6 Let λ1 ≤ ·· · ≤ λn−1 and μ1 ≤ ·· · ≤ μn be real numbers satisfying
μ1 ≤ λ1 ≤ ·· · ≤ μ j ≤ λ j ≤ μ j+1 ≤ ·· · . Then there exist a vector x ∈ Rn and a ∈ R

such that the real symmetric matrix

H =
(

Λ x
xT a

)
,

where Λ = diag(λ1, . . . ,λn−1), has the eigenvalues μ j.

Proof. Let us compute the characteristic polynomial of H from Schur’s complement
formula1 (see Proposition 3.9):

pn(X) =
(
X −a− xT (XIn−1 −Λ)−1x

)
det(XIn−1 −Λ)

=

(
X −a−∑

j

x2
j

X −λ j

)
∏

j
(X −λ j).

1 One may equally (exercise) compute it by induction on n.
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Let us assume for the moment that all the inequalities μ j ≤ λ j ≤ μ j+1 hold strictly.
In particular, the λ js are distinct. Let us consider the partial fraction decomposition
of the rational function

∏�(X −μ�)
∏ j(X −λ j)

= X −a−∑
j

c j

X −λ j
.

One thus obtains
a = ∑

�

μ�−∑
j

λ j,

a formula that could also have been found by comparing the traces of Λ and of H.
The inequalities λ j−1 < μ j < λ j ensure that each c j is positive, because

c j =− ∏�(λ j −μ�)
∏k �= j(λ j −λk)

.

Let us set x j =√c j. We obtain, as announced,

pn(X) = ∏
�

(X −μ�).

In the general case one may choose sequences μ(m)
� and λ (m)

j that converge to
the μ�s and the λ js as m → +∞ and that satisfy strictly the inequalities in the hy-
pothesis. The first part of the proof (case with strict inequalities) provides matrices
H(m). Because K �→ [K], as defined above, is a norm over Symn(R), the sequence
(H(m))m∈N is bounded. In other words, (a(m),x(m)) remains bounded. Let us extract
a subsequence that converges to a pair (a,x) ∈ R×Rn−1. The matrix H associated
with (a,x) solves our problem, because the eigenvalues depend continuously on the
entries of the matrix. ��
Corollary 6.1 Let H ∈ Hn−1(R) be given, with eigenvalues λ1 ≤ ·· · ≤ λn−1. Let
μ1, . . . ,μn be real numbers satisfying μ1 ≤ λ1 ≤ ·· · ≤ μ j ≤ λ j ≤ μ j+1 ≤ ·· · . Then
there exist a vector x ∈ Cn and a ∈ R such that the Hermitian matrix

H ′ =
(

H x
xT a

)

has the eigenvalues μ j.

The proof consists in diagonalizing H through a unitary matrix U ∈ Un−1, then
applying Theorem 6.6, and conjugating the resulting matrix by diag(U∗,1).
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6.5 Spectrum versus Diagonal

Let us begin with an order relation between finite sequences of real numbers. If
a = (a1, . . . ,an) is a sequence of n real numbers, and if 1 ≤ l ≤ n, we denote by
sk(a) the number

min

{
∑
j∈J

a j | cardJ = k

}
.

This is nothing but the sum of the k smallest elements of a. In particular

sn(a) = a1 + · · ·+an.

One may always restrict attention to the case of nondecreasing sequences a1 ≤ ·· · ≤
an, in which case we have sk(a) = a1 + · · ·+ak.

Definition 6.1 Let a = (a1, . . . ,an) and b = (b1, . . . ,bn) be two sequences of n real
numbers. One says that b majorizes a, and one writes a ≺ b, if

sk(a)≤ sk(b), ∀1 ≤ k ≤ n, sn(a) = sn(b).

The relation a ≺ b for nondecreasing sequences can now be written as

a1 + · · ·+ak ≤ b1 + · · ·+bk, ∀k = 1, . . . ,n−1,

a1 + · · ·+an = b1 + · · ·+bn.

The latter equality plays a crucial role in the analysis below. The relation ≺ is a
partial ordering.

Proposition 6.4 Let x,y ∈ Rn be given. Then x ≺ y if and only if for every real
number t,

n

∑
j=1

|x j − t| ≥
n

∑
j=1

|y j − t|. (6.9)

Proof. We may assume that x and y are nondecreasing. If the inequality (6.9) holds,
we write it first for t outside the interval I containing the x js and the y js. This gives
sn(x) = sn(y). Then we write it for t = xk. Using sn(x) = sn(y), one has

∑
j
|x j − xk| =

k

∑
1

(xk − y j)+
n

∑
k+1

(y j − xk)+2(sk(y)− sk(x))

≤∑
j
|y j − xk|+2(sk(y)− sk(x)),

which with (6.9) gives sk(x)≤ sk(y).
Conversely, let us assume that x≺ y. Let us define φ(t) := ∑ j |x j−t|−∑ j |y j−t|.

This is a piecewise linear function, zero outside I. Its derivative is integer-valued,
piecewise constant; it increases at the points x js and decreases at the points y js only.
If min{φ(t); t ∈R}< 0, this minimum is thus reached at some xk, with φ ′(xk−0)≤
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0 ≤ φ ′(xk + 0), from which one obtains yk−1 ≤ xk ≤ yk+1. There are two cases,
depending on the position of yk with respect to xk. For example, if yk ≤ xk, we
compute

∑
j
|x j − xk|=

n

∑
k+1

(x j − xk)+
k

∑
1

(xk − x j).

From the assumption, it follows that

∑
j
|x j − xk| ≥

n

∑
k+1

(y j − xk)+
k

∑
1

(xk − y j) = ∑
j �=k

|y j − xk|,

which means that φ(xk) ≥ 0, which contradicts the hypothesis. Hence, φ is a non-
negative function. ��

Our first statement expresses an order between the diagonal and the spectrum of
an Hermitian matrix.

Theorem 6.7 (Schur) Let H be an Hermitian matrix with diagonal a and spectrum
λ . Then a " λ .

Proof. Let n be the size of H. We argue by induction on n. We may assume that
an is the largest component of a. Because sn(λ ) = TrA, one has sn(λ ) = sn(a). In
particular, the theorem holds true for n = 1. Let us assume that it holds for order
n− 1. Let A be the matrix obtained from H by deleting the nth row and the nth
column. Let μ = (μ1, . . . ,μn−1) be the spectrum of A. Let us arrange λ and μ in
increasing order. From Theorem 6.5, one has λ1 ≤ μ1 ≤ λ2 ≤ ·· · ≤ μn−1 ≤ λn.
It follows that sk(μ) ≥ sk(λ ) for every k < n. The induction hypothesis tells us
that sk(μ) ≤ sk(a′), where a′ = (a1, . . . ,an−1). Finally, we have sk(a′) = sk(a), and
sk(λ )≤ sk(a) for every k < n, which ends the induction. ��

Here is the converse.

Theorem 6.8 Let a and λ be two sequences of n real numbers such that a" λ . Then
there exists a real symmetric matrix of size n×n whose diagonal is a and spectrum
is λ .

Proof. We proceed by induction on n. The statement is trivial if n = 1. If n ≥ 2, we
use the following lemma, which is proved afterwards.

Lemma 9. Let n ≥ 2 and α , β be two nondecreasing sequences of n real numbers,
satisfying α ≺ β . Then there exists a sequence γ of n−1 real numbers such that

α1 ≤ γ1 ≤ α2 ≤ ·· · ≤ γn−1 ≤ αn

and γ ≺ β ′ = (β1, . . . ,βn−1).

We apply the lemma to the sequences α = λ , β = a. Because γ ≺ a′, the induction
hypothesis tells us that there exists a real symmetric matrix S of size (n−1)×(n−1)
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with diagonal a′ and spectrum γ . From Corollary 6.1, there exist a vector y∈Rn and
a real number b such that the matrix

Σ =
(

S yT

y b

)

has spectrum λ . Inasmuch as sn(a) = sn(λ ) = TrΣ = TrS + b = sn−1(a′)+ b, we
have b = an. Hence, a is the diagonal of Σ . ��

We now prove Lemma 9. Let Δ be the set of sequences δ of n−1 real numbers
satisfying

α1 ≤ δ1 ≤ α2 ≤ ·· · ≤ δn−1 ≤ αn (6.10)

together with
k

∑
j=1

δ j ≤
k

∑
j=1

β j, ∀k ≤ n−2. (6.11)

We must show that there exists δ ∈ Δ such that sn−1(δ ) = sn−1(β ′). Because Δ is
convex and compact (it is closed and bounded in Rn), it is enough to show that

inf
δ∈Δ

sn−1(δ )≤ sn−1(β ′)≤ sup
δ∈Δ

sn−1(δ ). (6.12)

On the one hand, α ′ = (α1, . . . ,αn−1) belongs to Δ and sn−1(α ′) ≤ sn−1(β ′) from
the hypothesis, which proves the first inequality in (6.12).

Let us now choose a δ that achieves the supremum of sn−1 over Δ . Let r be the
largest index less than or equal to n− 2 such that sr(δ ) = sr(β ′), with r = 0 if all
the inequalities are strict. From s j(δ ) < s j(β ′) for r < j < n−1, one has δ j = α j+1,
because otherwise, there would exist ε > 0 such that δ̂ := δ + εe j belong to Δ , and
one would have sn−1(δ̂ ) = sn−1(δ )+ε , contrary to the maximality of δ . Now let us
compute

sn−1(δ )− sn−1(β ′) = sr(β )− sn−1(β )+αr+2 + · · ·+αn

= sr(β )− sn−1(β )+ sn(α)− sr+1(α)
≥ sr(β )− sn−1(β )+ sn(β )− sr+1(β )
= βn−βr+1 ≥ 0.

This proves (6.12) and completes the proof of the lemma.

6.6 The Determinant of Nonnegative Hermitian Matrices

The determinant of nonnegative Hermitian matrices enjoys several nice properties.
We present two of them below.
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6.6.1 Hadamard’s Inequality

Proposition 6.5 Let H ∈ Hn be a positive-semidefinite Hermitian matrix. Then

detH ≤
n

∏
j=1

h j j.

If H ∈ HPDn, the equality holds only if H is diagonal.

Proof. If detH = 0, there is nothing to prove, because the h j j are nonnegative
(these are numbers (e j)∗He j). Otherwise, H is positive-definite and one has h j j > 0.
We restrict our attention to the case with a constant diagonal by letting D :=
diag(h−1/2

11 , . . . ,h−1/2
nn ) and writing (detH)/(∏ j h j j) = detDHD = detH ′, where the

diagonal entries of H ′ equal one. There remains to prove that detH ′ ≤ 1.
The eigenvalues μ1, . . . ,μn of H ′ are strictly positive, of sum TrH ′ = n. Inasmuch

as the logarithm is concave, one has

1
n

logdetH ′ =
1
n ∑

j
log μ j ≤ log

1
n ∑μ j = log1 = 0,

which proves the inequality. The concavity being strict, the equality holds only if
μ1 = · · ·= μn = 1, but then H ′ is similar, thus equal to In. In that case, H is diagonal.
��

Applying Proposition 6.5 to matrices of the form M∗M or MM∗, one obtains the
following result.

Theorem 6.9 For M ∈ Mn(C), one has

|detM| ≤
n

∏
i=1

(
n

∑
j=1

|mi j|2
)1/2

, |detM| ≤
n

∏
j=1

(
n

∑
i=1

|mi j|2
)1/2

.

When M ∈ GLn(C), the first (respectively, the second) inequality is an equality if
and only if the rows (respectively, the columns) of M are pairwise orthogonal.

6.6.2 A Concavity Result

We now turn towards an ubiquitous result due to Gårding, who first proved it in the
context of hyperbolic differential operators. It is meaningful in convex geometry,
combinatorics, and optimization too.

Theorem 6.10 The map
H �→ (detH)1/n

is concave over the cone of positive semidefinite n×n Hermitian matrices.



Exercises 121

Because the logarithm is a concave increasing function, we deduce the following.

Corollary 6.2 The map
H �→ logdetH

is concave over HPDn.

The corollary has the advantage of being independent of the size of the matrices.
However, at fixed size n, it is obviously weaker than the theorem.

Proof. Let H,K ∈HPDn be given. From Proposition 6.1, the eigenvalues μ1, . . . ,μn
of HK are real and positive, even though HK is not Hermitian. We thus have

(detH)1/n(detK)1/n = (detHK)1/n =

(
n

∏
j=1

μ j

)1/n

≤ 1
n

n

∑
j=1

μ j =
1
n

Tr(HK),

(6.13)
where we have applied the arithmetico-geometric inequality to (μ1, . . . ,μn).

When choosing K = H−1, (6.13) becomes an equality. We therefore have

(detH)1/n = min
{

TrHK
n(detK)1/n |K ∈ HPDn

}
.

Because of the homogeneity, this is equivalent to

(detH)1/n = min
{

1
n

TrHK |K ∈ HPDn and detK = 1
}

.

Therefore the function H �→ (detH)1/n appears as the infimum of linear functions

H �→ 1
n

TrHK.

This ensures concavity. ��
We point out that because H �→ (detH)1/n is homogeneous of degree one, it is

linear along rays originating from 0n. However, it is strictly concave along all other
segments.

Exercises

1. For A ∈ Mn(R), symmetric positive-definite, show that

max
i, j≤n

|ai j|= max
i≤n

aii.

2. Let (a1, . . . ,an) and (b1, . . . ,bn) be two sequences of real numbers. Find the
supremum and the infimum of Tr(AB) as A (respectively, B) runs over the Her-
mitian matrices with spectrum equal to (a1, . . . ,an) (respectively, (b1, . . . ,bn)).



122 6 Hermitian Matrices

3. (Kantorovich inequality)

a. Let a1 ≤ ·· · ≤ an be a list of real numbers, with a−1
n = a1 > 0. Define

l(u) :=
n

∑
j=1

a ju j, L(u) :=
n

∑
j=1

u j

a j
.

Let Kn be the simplex of Rn defined by the constraints uj ≥ 0 for every
j = 1, . . . ,n, and ∑ j u j = 1. Show that there exists an element v ∈ Kn that
maximizes l +L and minimizes |L− l| on Kn simultaneously.

b. Deduce that

max
u∈Kn

l(u)L(u) =
(

a1 +an

2

)2

.

c. Let A ∈ HPDn and let a1, an be the smallest and largest eigenvalues of A.
Show that for every x ∈Cn,

(x∗Ax)(x∗A−1x)≤ (a1 +an)2

4a1an
‖x‖4.

4. Let A be an Hermitian matrix of size n×n whose eigenvalues are α1 ≤ ·· · ≤αn.
Let B be an Hermitian positive-semidefinite matrix. Let γ1 ≤ ·· · ≤ γn be the
eigenvalues of A+B. Show that γk ≥ αk.

5. Let M,N be two Hermitian matrices such that N and M − N are positive-
semidefinite. Show that detN ≤ detM.

6. Let A ∈ Mp(C), C ∈ Mq(C) be given with p,q ≥ 1. Assume that

M :=
(

A B
B∗ C

)

is Hermitian positive-definite. Show that detM ≤ (detA)(detC). Use the previ-
ous exercise and Proposition 3.9.

7. For M ∈ HPDn, we denote by Pk(M) the product of all the principal minors of
order k of M. There are (

n
k

)
such minors.
Applying Proposition 6.5 to the matrix M−1, show that Pn(M)n−1 ≤ Pn−1(M),
and then in general that Pk+1(M)k ≤ Pk(M)n−k.

8. Describe every positive-semidefinite matrix M ∈ Symn(R) such that mj j = 1
for every j and possessing the eigenvalue λ = n (first show that M has rank
one).

9. If A,B ∈ Mn×m(C), define the Hadamard product of A and B by

A◦B := (ai jbi j)1≤i≤n,1≤ j≤m.

a. Let A,B be two Hermitian matrices. Verify that A◦B is Hermitian.
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b. Assume that A and B are positive-semidefinite, of respective ranks p and q.
Using Proposition 5.6, show that there exist pq vectors zαβ such that

A◦B = ∑
α,β

zαβ z∗αβ .

Deduce that A◦B is positive-semidefinite.
c. If A and B are positive-definite, show that A◦B also is positive-definite.
d. Construct an example for which p,q < n, but A◦B is positive-definite.

10. In the previous exercise, show that the matrix A ◦B is extracted from A⊗B,
where we choose the same row and column indices. Deduce another proof that
if A and B are positive-semidefinite, then A◦B is also.

11. Recall that the Hadamard product of two matrices A,B ∈ Mp×q(k) is the matrix
A◦B ∈ Mp×q(k) of entries ai jbi j with 1 ≤ i ≤ p and 1 ≤ j ≤ q. If A ∈ Mn(k) is
given blockwise

A =
(

a11 A12
A21 A22

)
,

and if a11 is invertible, then the Schur complement A22 −A21a−1
11 A12 is denoted

A|a11 and we have the formula detA = a11 det(A|a11).

a. Let A,B∈Mn(k) be given blockwise as above, with a11,b11 ∈ k∗ (and there-
fore A22,B22 ∈ Mn−1(k).) Prove that

(A◦B)|a11b11 = A22 ◦ (B|b11)+(A|a11)◦E, E :=
1

b11
B21B12.

b. From now on, A and B are positive-definite Hermitian matrices. Show that

det(A◦B)≥ a11b11 det(A22 ◦ (B|b11)) .

Deduce Oppenheim’s inequality:

det(A◦B)≥
(

n

∏
i=1

aii

)
detB.

Hint: Argue by induction over n.
c. In case of equality, prove that B is diagonal.
d. Verify that Oppenheim’s inequality is valid when A and B are only positive-

semidefinite.
e. Deduce that

det(A◦B)≥ detAdetB.

12. (Pusz and Woronowicz). Let A,B ∈ H+
n two given positive-semidefinite matri-

ces. We show here that among the positive-semidefinite matrices X ∈ H+
n such

that
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H(X) :=
(

A X
X B

)
≥ 02n,

there exists a maximal one. The latter is called the geometric mean of A and
B, and is denoted by A#B. Then we extend properties that were well known for
scalars.

a. We begin with the case where A is positive-definite.
i. Prove that H(X)≥ 02n is equivalent to XA−1X ≤ B.

ii. Deduce that A−1/2XA−1/2 ≤ (A−1/2BA−1/2)1/2. Hint: Use Theorem
6.4.

iii. Deduce that among the matrices X ∈ H+
n such that H(X) ≥ 02n, there

exists a maximal one, denoted by A#B. Write the explicit formula for
A#B.

iv. If both A,B are positive-definite, prove that (A#B)−1 = A−1#B−1.
b. We now consider arbitrary elements A, in H+

n .
i. Let ε > 0 be given. Show that H(X)≥ 02n implies X ≤ (A+ εIn)#B.

ii. Prove that ε �→ (A+ εIn)#B is nondecreasing.
iii. Deduce that A#B := limε→0+(A+εIn)#B exists, and that it is the largest

matrix in H+
n among those satisfying H(X)≥ 02n. In particular,

lim
ε→0+

(A+ εIn)#B = lim
ε→0+

A#(B+ εIn).

The matrix A#B is called the geometric mean of A and B.
c. Prove the following identities. Hint: Don’t use the explicit formula. Use

instead the definition of A#B by means of H(X).
• A#B = B#A.
• If M ∈ GLn(C), then M(A#B)M∗ = (MAM∗)#(MBM∗).

d. Prove the following inequality among harmonic, geometric, and arithmetic
means.

2(A−1 +B−1)≤ A#B ≤ 1
2
(A+B).

Hint: Just check that

H
(
2(A−1 +B−1)

)≤ 02n and H
(

1
2
(A+B)

)
≥ 02n.

In the latter case, use again the fact that s �→ √
s is operator monotone.

e. Prove that the geometric mean is “operator monotone”:

(A1 ≤ A2 and B1 ≤ B2) =⇒ (A1#B1 ≤ A2#B2),

and that it is “operator concave”, in the sense that for every θ ∈ (0,1), there
holds

(θA1 +(1−θ)A2)#(θB1 +(1−θ)B2)≥ θ(A1#B1)+(1−θ)(A2#B2).
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Note that the latter property is accurate, because the geometric mean is
positively homogeneous of order one. Note also that the concavity gives
another proof of the arithmetico-geometric inequality, by taking A1 = B2 =
A, A2 = B1 = B and θ = 1/2.

f. Prove the identity among arithmetic, harmonic, and geometric means.

(
2(A−1 +B−1)−1)#

A+B
2

= A#B.

Hint: Use the fact that M#N is the unique solution in H+
n of the Ricatti

equation XM−1X = N. Use it thrice.

13. Let A,B,C be three Hermitian matrices such that ABC ∈ Hn. Show that if three
of the matrices A,B,C,ABC are positive-definite, then the fourth is positive-
definite too.

14. Let H ∈ Hn be written blockwise

H =
(

A B
B∗ C

)
, A ∈ Hp,

with 0 < p < n. A matrix Z ∈ Mn−p(C) is given, such that ℜZ > 0n, and we
form

M :=
(

0p 0
0 Z

)
.

a. We assume that H is nonsingular. Show that H + iξ Z is nonsingular for
every ξ ∈ R.

b. If in addition A is nonsingular, prove that ξ �→ (H + iξ M)−1 is bounded
over R. Actually, prove that for every x ∈ Cn, ξ �→ (H + iξ M)−1x is
bounded. Hint: for ξ large enough, C + iξ Z is nonsingular and we may
eliminate the last block in x.

15. Let J ∈ M2n(R) be the standard skew-symmetric matrix:

J =
(

0n −In
In 0n

)
.

Let S ∈ Sym2n(R) be given. We assume that dimkerS = 1.

a. Show that 0 is an eigenvalue of JS, geometrically simple, but not alge-
braically.

b. We assume, moreover, that there exists a vector x �= 0 in R2n such that the
quadratic form y �→ yT Sy, restricted to {x,Jx}⊥ is positive-definite. Prove
that the eigenvalues of JS are purely imaginary. Hint: Use Proposition 6.1.

c. In the previous question, S has a zero eigenvalue and may have a negative
one. On the contrary, assume that S has one negative eigenvalue and is
invertible. Show that JS has a pair of real opposite eigenvalues. Hint: What
is the sign of det(JS) ?





Chapter 7

Norms

In this chapter, the field K is always R or C and E denotes Kn. The scalar (if K = R)
or Hermitian (if K = C) product on E is denoted by 〈x,y〉 := ∑ j x̄ jy j.

Definition 7.1 If A∈Mn(K), the spectral radius of A, denoted by ρ(A), is the largest
modulus of the eigenvalues of A:

ρ(A) = max{|λ |;λ ∈ Sp(A)}.

When K = R, this takes into account the complex eigenvalues when computing ρ(A).

7.1 A Brief Review

7.1.1 The �p Norms

The vector space E is endowed with various norms, pairwise equivalent because E
has finite dimension (Proposition 7.3 below). Among these, the most used norms
are the l p norms:

‖x‖p =

(
∑

j
|x j|p

)1/p

, ‖x‖∞ = max
j
|x j|.

Proposition 7.1 For 1 ≤ p ≤ ∞, the map x �→ ‖x‖p is a norm on E. In particular,
one has Minkowski’s inequality

‖x+ y‖p ≤ ‖x‖p +‖y‖p. (7.1)

Furthermore, one has Hölder’s inequality
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|〈x,y〉| ≤ ‖x‖p‖y‖p′ ,
1
p

+
1
p′

= 1. (7.2)

The numbers p, p′ are called conjugate exponents.

Proof. Everything is obvious except perhaps the Hölder and Minkowski inequal-
ities. When p = 1 or p = ∞, these inequalities are trivial. We thus assume that
1 < p < ∞.

Let us begin with (7.2). If x or y is null, it is obvious. Indeed, one can even
assume, by decreasing the value of n, that none of the x j,y js is null. Likewise,
because |〈x,y〉| ≤∑ j |x j||y j|, one can also assume that the x j,y j are real and positive.
Dividing by ‖x‖p and by ‖y‖p′ , one may restrict attention to the case where ‖x‖p =
‖y‖p′ = 1. Hence, x j,y j ∈ (0,1] for every j. Let us define

a j = p logx j, b j = p′ logy j.

Because the exponential function is convex,

ea j/p+b j/p′ ≤ 1
p

ea j +
1
p′

eb j ;

that is,

x jy j ≤ 1
p

xp
j +

1
p′

yp′
j .

Summing over j, we obtain

〈x,y〉 ≤ 1
p
‖x‖p

p +
1
p′
‖y‖p′

p′ =
1
p

+
1
p′

= 1,

which proves (7.2).
We now turn to (7.1). First, we have

‖x+ y‖p
p = ∑

k
|xk + yk|p ≤∑

k
|xk||xk + yk|p−1 +∑

k
|yk||xk + yk|p−1.

Let us apply Hölder’s inequality to each of the two terms of the right-hand side. For
example,

∑
k
|xk||xk + yk|p−1 ≤ ‖x‖p

(
∑
k
|xk + yk|(p−1)p′

)1/p′

,

which amounts to
∑
k
|xk||xk + yk|p−1 ≤ ‖x‖p‖x+ y‖p−1

p .

Finally,
‖x+ y‖p

p ≤ (‖x‖p +‖y‖p)‖x+ y‖p−1
p ,

which gives (7.1). ��
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For p = 2, the norm ‖ · ‖2 is given by an Hermitian form and thus satisfies the
Cauchy–Schwarz inequality:

|〈x,y〉| ≤ ‖x‖2‖y‖2.

This is a particular case of Hölder’s inequality.

Proposition 7.2 For conjugate exponents p, p′, one has

‖x‖p = sup
y�=0

ℜ〈x,y〉
‖y‖p′

= sup
y�=0

|〈x,y〉|
‖y‖p′

.

Proof. The inequality ≥ is a consequence of Hölder’s. The reverse inequality is
obtained by taking y j = x̄ j|x j|p−2 if p < ∞. If p = ∞, choose y j = x̄ j for an index j
such that |x j|= ‖x‖∞. For k �= j, take yk = 0. ��

7.1.2 Equivalent Norms

Definition 7.2 Two norms N and N′ on a (real or complex) vector space are said to
be equivalent if there exist two numbers c,c′ ∈ R such that

N ≤ cN′, N ′ ≤ c′N.

The equivalence between norms is obviously an equivalence relation, as its name
implies. As announced above, we have the following result.

Proposition 7.3 All norms on E = Kn are equivalent. For example,

‖x‖∞ ≤ ‖x‖p ≤ n1/p‖x‖∞.

Proof. It is sufficient to show that every norm is equivalent to ‖ · ‖1.
Let N be a norm on E. If x ∈ E, the triangle inequality gives

N(x)≤∑
i
|xi|N(ei),

where (e1, . . . ,en) is the canonical basis. One thus has N ≤ c‖·‖1 for c := maxi N(ei).
Observe that this first inequality expresses the fact that N is Lipschitz (hence con-
tinuous) on the metric space X = (E,‖ · ‖1).

For the reverse inequality, we reduce ad absurdum. Let us assume that the supre-
mum of ‖x‖1/N(x) is infinite for x �= 0. By homogeneity, there would then exist a
sequence of vectors (xm)m∈N such that ‖xm‖1 = 1 and N(xm) → 0 when m → +∞.
The unit sphere of X is compact, thus one may assume (up to the extraction of a
subsequence) that xm converges to a vector x such that ‖x‖1 = 1. In particular, x �= 0.
Because N is continuous on X , one has also N(x) = limm→+∞ N(xm) = 0 and be-
cause N is a norm, we deduce x = 0, a contradiction. ��
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7.1.3 Duality

Definition 7.3 Given a norm ‖ · ‖ on Kn (K = R or C), its dual norm on Kn is
defined by

‖x‖′ := sup
y�=0

ℜ〈x,y〉
‖y‖ ,

or equivalently

‖x‖′ := sup
y�=0

|〈x,y〉|
‖y‖ .

The fact that ‖ · ‖′ is a norm is obvious. For every x,y ∈ Kn, one has

|〈x,y〉| ≤ ‖x‖ · ‖y‖′. (7.3)

Proposition 7.2 shows that the dual norm of ‖·‖p is ‖·‖q for 1/p+1/q = 1. Because
p �→ q is an involution, this suggests the following property:

Proposition 7.4 The bi-dual (dual of the dual norm) of a norm is this norm itself:(‖ · ‖′)′ = ‖ · ‖.

Proof. From (7.3), one has (‖ · ‖′)′ ≤ ‖ · ‖. The converse is a consequence of the
Hahn–Banach theorem: the unit ball B of ‖ · ‖ is convex and compact. If x is a point
of its boundary (i.e., ‖x‖ = 1), there exists an R-affine (i.e., of the form constant
plus R-linear) function that vanishes at x and is nonpositive on B. Such a function
can be written in the form z �→ ℜ〈z,y〉+ c, where c is a constant, necessarily equal
to −ℜ〈x,y〉. Without loss of generality, one may assume that 〈y,x〉 is real and non-
negative. Hence

‖y‖′ = sup
‖z‖=1

ℜ〈y,z〉= 〈y,x〉.

One deduces (‖x‖′)′ ≥ 〈y,x〉
‖y‖′ = 1 = ‖x‖.

By homogeneity, this is true for every x ∈ Cn. ��

7.1.4 Matrix Norms

Let us recall that Mn(K) can be identified with the set of endomorphisms of E = Kn

by
A �→ (x �→ Ax).

Definition 7.4 If ‖ · ‖ is a norm on E and if A ∈ Mn(K), we define
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‖A‖ := sup
x �=0

‖Ax‖
‖x‖ .

Equivalently,
‖A‖ = sup

‖x‖≤1
‖Ax‖ = max

‖x‖≤1
‖Ax‖.

One verifies easily that A �→ ‖A‖ is a norm on Mn(K). It is called the norm induced
by that of E, or the norm subordinated to that of E. Although we adopted the same
notation ‖ · ‖ for the two norms, that on E and that on Mn(K), these are, of course,
distinct objects. In many places, one finds the notation ||| · ||| for the induced norm.
When one does not wish to mention by which norm on E a given norm on Mn(K)
is induced, one says that A �→ ‖A‖ is a matrix norm. The main properties of matrix
norms are

‖AB‖ ≤ ‖A‖‖B‖, ‖In‖ = 1.

These properties are those of any algebra norm. In particular, one has ‖Ak‖ ≤ ‖A‖k

for every k ∈ N.

Examples

Three l p-matrix norms can be computed in closed form:

‖A‖1 = max
1≤ j≤n

i=n

∑
i=1

|ai j|,

‖A‖∞ = max
1≤i≤n

j=n

∑
j=1

|ai j|,

‖A‖2 = ‖A∗‖2 = ρ(A∗A)1/2.

To prove these formulæ , we begin by proving the inequalities ≥, selecting a suitable
vector x, and writing ‖A‖p ≥‖Ax‖p/‖x‖p. For p = 1 we choose an index j such that
the maximum in the above formula is achieved. Then we let x j = 1, and xk = 0 other-
wise. For p = ∞, we let x j = āi0 j/|ai0 j|, where i0 achieves the maximum in the above
formula. For p = 2 we choose an eigenvector of A∗A associated with an eigenvalue
of maximal modulus. We thus obtain three inequalities. The reverse inequalities are
direct consequences of the definitions. The similarity of the formulæ for ‖A‖1 and
‖A‖∞, as well as the equality ‖A‖2 = ‖A∗‖2 illustrate the general formula

‖A∗‖p′ = ‖A‖p = sup
x �=0

sup
y�=0

ℜ(y∗Ax)
‖x‖p · ‖y‖p′

= sup
x �=0

sup
y�=0

|(y∗Ax)|
‖x‖p · ‖y‖p′

,

where again p and p′ are conjugate exponents.
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We point out that if H is Hermitian, then ‖H‖2 = ρ(H2)1/2 = ρ(H). Therefore
the spectral radius is a norm over Hn, although it is not over Mn(C). We already
mentioned this fact, as a consequence of the Weyl inequalities.

Proposition 7.5 For an induced norm, the condition ‖B‖ < 1 implies that In −B is
invertible, with the inverse given by the sum of the series

∞

∑
k=0

Bk.

Proof. The series ∑k Bk is normally convergent, because ∑k ‖Bk‖ ≤ ∑k ‖B‖k, where
the latter series converges because ‖B‖< 1. Because Mn(K) is complete, the series
∑k Bk converges. Furthermore, (In−B)∑k≤N Bk = In−BN+1, which tends to In. The
sum of the series is thus the inverse of In−B. One has, moreover,

‖(In −B)−1‖ ≤∑
k
‖B‖k =

1
1−‖B‖ .

��
One can also deduce Proposition 7.5 from the following statement.

Proposition 7.6 For every induced norm, one has

ρ(A)≤ ‖A‖.

Proof. The case K = C is easy, because there exists an eigenvector X ∈ E associated
with an eigenvalue of modulus ρ(A):

ρ(A)‖X‖ = ‖λX‖ = ‖AX‖ ≤ ‖A‖‖X‖.

If K = R, one needs a more involved trick.
Let us choose a norm on Cn and let us denote by N the induced norm on Mn(C).

We still denote by N its restriction to Mn(R); it is a norm. This space has finite
dimension, thus any two norms are equivalent: there exists C > 0 such that N(B) ≤
C‖B‖ for every B in Mn(R). Using the result already proved in the complex case,
one has for every m ∈ N that

ρ(A)m = ρ(Am)≤ N(Am)≤C‖Am‖ ≤C‖A‖m.

Taking the mth root and letting m tend to infinity, and noticing that C1/m tends to 1,
one obtains the announced inequality. ��

In general, the equality does not hold. For example, if A is nilpotent although
nonzero, one has ρ(A) = 0 < ‖A‖ for every matrix norm.

Proposition 7.7 Let ‖ · ‖ be a norm on Kn and P ∈ GLn(K). Hence, N(x) := ‖Px‖
defines a norm on Kn. Denoting still by ‖ · ‖ and N the induced norms on Kn, one
has N(A) = ‖PAP−1‖.
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Proof. Using the change of dummy variable y = Px, we have

N(A) = sup
x �=0

‖PAx‖
‖Px‖ = sup

y�=0

‖PAP−1y‖
‖y‖ = ‖PAP−1‖.

��

7.2 Householder’s Theorem

Householder’s theorem is a kind of converse of the inequality ρ(B)≤ ‖B‖.

Theorem 7.1 For every B ∈ Mn(C) and all ε > 0, there exists a norm on Cn such
that for the induced norm,

‖B‖ ≤ ρ(B)+ ε.

In other words, ρ(B) is the infimum of ‖B‖, as ‖ · ‖ ranges over the set of matrix
norms.

Proof. From Theorem 3.5 there exists P ∈ GLn(C) such that T := PBP−1 is upper-
triangular. From Proposition 7.7, one has

inf‖B‖ = inf‖PBP−1‖ = inf‖T‖,

where the infimum is taken over the set of induced norms. Because B and T have
the same spectra, hence the same spectral radius, it is enough to prove the theorem
for upper-triangular matrices.

For such a matrix T , Proposition 7.7 still gives

inf‖T‖ ≤ inf{‖QT Q−1‖2;Q ∈ GLn(C)}.

Let us now take Q(μ) = diag(1,μ,μ2, . . . ,μn−1). The matrix Q(μ)T Q(μ)−1 is
upper-triangular, with the same diagonal as that of T . Indeed, the entry with indices
(i, j) becomes μ i− jti j. Hence,

lim
μ→∞

Q(μ)T Q(μ)−1

is simply the matrix D = diag(t11, . . . , tnn). Because ‖ · ‖2 is continuous (as is every
norm), one deduces

inf‖T‖ ≤ lim
μ→∞

‖Q(μ)T Q(μ)−1‖2 = ‖D‖2 =
√

ρ(D∗D) = max |t j j|= ρ(T ).

��
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Remark

The theorem tells us that ρ(A) = Λ(A), where

Λ(A) := inf‖A‖,

the infimum being taken over the set of matrix norms. The first part of the proof
tells us that ρ and Λ coincide on the set of diagonalizable matrices, which is a dense
subset of Mn(C). But this is insufficient to conclude, since Λ is a priori only upper
semicontinuous, as the infimum of continuous functions. The continuity of Λ is
actually a consequence of the theorem.

An interesting consequence of Householder’s theorem is the following link be-
tween matrix norms and the spectral radius.

Proposition 7.8 If A ∈ Mn(k) (with k = R or C), then

ρ(A) = lim
m→∞

‖Am‖1/m

for every matrix norm.

Proof. Let ‖·‖ be a matrix norm over Mn(k). From Proposition 7.6 and the fact that

Sp(Am) = {λ m |λ ∈ SpA},

we have
ρ(A) = ρ(Am)1/m ≤ ‖Am‖1/m.

Passing to the limit, we have

ρ(A)≤ lim inf
m→+∞

‖Am‖1/m. (7.4)

Conversely, let ε > 0 be given. From Theorem 7.1, there exists a matrix norm N
over Mn(C) such that N(A) < ρ(A)+ ε . By finite-dimensionality, the restriction of
N over Mn(k) (just in case that k = R) is equivalent to ‖ · ‖ : there exists a constant
c such that ‖ · ‖ ≤ cN. If m ≥ 1, we thus have

‖Am‖ ≤ cN(Am)≤ cN(A)m < c(ρ(A)+ ε)m,

whence
‖Am‖1/m ≤ c1/m(ρ(A)+ ε).

Passing to the limit, we have

lim sup
m→+∞

‖Am‖1/m ≤ ρ(A)+ ε.

Letting ε tend to zero, there remains

lim sup
m→+∞

‖Am‖1/m ≤ ρ(A).
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Comparing with (7.4), we see that the sequence ‖Am‖1/m is convergent and its limit
equals ρ(A).

��

Comments

• In the first edition, we proved Proposition 7.8 by applying the Hadamard formula
for the convergence radius of the series ∑ j≥0 znAn.

• A classical lemma in calculus tells us that the limit of ‖Am‖1/m is also its infimum
over m, because the sequence ‖Am‖ is submultiplicative.

7.3 An Interpolation Inequality

Theorem 7.2 (case K = C) Let ‖ · ‖p be the norm on Mn(C) induced by the norm
l p on Cn. The function

1/p �→ log‖A‖p,

[0,1] → R,

is convex. In other words, if 1/r = θ/p+(1−θ)/q with θ ∈ (0,1), then

‖A‖r ≤ ‖A‖θ
p‖A‖1−θ

q .

Remarks

1. The proof uses the fact that K = C. However, the norms induced by the ‖ ·‖ps on
Mn(R) and Mn(C) take the same values on real matrices, even although their def-
initions are different (see Exercise 6). The statement is thus still true in Mn(R).

2. The case (p,q,r) = (1,∞,2) admits a direct proof. See the exercises.
3. The result still holds true in infinite dimension, at the expense of some functional

analysis. One can even take different Lp norms at the source and target spaces.
Here is an example.

Theorem 7.3 (Riesz–Thorin) Let Ω be an open set in RD and ω an open set
in Rd. Let p0, p1,q0,q1 be four numbers in [1,+∞]. Let θ ∈ [0,1] and p,q be
defined by

1
p

=
1−θ

p0
+

θ
p1

,
1
q

=
1−θ

q0
+

θ
q1

.

Consider a linear operator T defined on Lp0 ∩ Lp1(Ω), taking values in Lq0 ∩
Lq1(ω). Assume that T can be extended as a continuous operator from Lp j(Ω)
to Lq j(ω), with norm Mj, j = 1,2 :
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Mj := sup
f �=0

‖T f‖q j

‖ f‖p j

.

Then T can be extended as a continuous operator from Lp(Ω) to Lq(ω), and its
norm is bounded above by

M1−θ
0 Mθ

1 .

4. A fundamental application is the continuity of the Fourier transform from Lp(Rd)
into its dual Lp′(Rd) when 1 ≤ p ≤ 2. We have only to observe that

(p0, p1,q0,q1) = (1,2,+∞,2)

is suitable. It can be proved by inspection that every pair (p,q) such that the
Fourier transform is continuous from Lp(Rd) into Lq(Rd) has the form (p, p′)
with 1 ≤ p ≤ 2.

5. One has analogous results for the Fourier series. Therein lies the origin of the
Riesz–Thorin theorem.

Proof. (Due to Riesz)
Let us fix x and y in Kn. We have to bound

|〈y,Ax〉|=
∣∣∣∣∣∑j,k a jkx jȳk

∣∣∣∣∣ .
Let B be the strip in the complex plane defined by ℜz ∈ [0,1]. Given z ∈ B, define
“conjugate” exponents r(z) and r′(z) by

1
r(z)

=
z
p

+
1− z

q
,

1
r′(z)

=
z
p′

+
1− z

q′
.

Set

Xj(z) := |x j|−1+r/r(z)x j = x j exp
((

r
r(z)

−1
)

log |x j|
)

,

Yj(z) := |y j|−1+r′/r′(z̄)y j.

We then have

‖X(z)‖r(ℜz) = ‖x‖r/r(ℜz)
r , ‖Y (z)‖r′(ℜz) = ‖y‖r′/r′(ℜz)

r′ .

Next, define a holomorphic map in the strip B by f (z) := 〈Y (z),AX(z)〉. It is
bounded, because the numbers Xj(z) and Yk(z) are. For example,

|Xj(z)|= |x j|r/r(ℜz)

lies between |x j|r/p and |x j|r/q.
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Let us set M(θ) = sup{| f (z)|;ℜz = θ}. Hadamard’s three-line lemma (see [33],
Chapter 12, Exercise 8) tells us that, f being bounded and holomorphic in the strip,

θ �→ logM(θ)

is convex on (0,1). However, r(0) = q, r(1) = p, r′(0) = q′, r′(1) = p′, r(θ) = r,
r′(θ) = r′, X(θ) = x, and Y (θ) = y. Hence

|〈y,Ax〉|= | f (θ)| ≤ M(θ)≤ M(1)θ M(0)1−θ .

Now we have

M(1) = sup{| f (z)|;ℜz = 1}
≤ sup{‖AX(z)‖r(1)‖Y (z)‖r(1)′ ;ℜz = 1}

= sup{‖AX(z)‖p‖Y (z)‖p′ ;ℜz = 1}
≤ ‖A‖p sup{‖X(z)‖p‖Y (z)‖p′ ;ℜz = 1}

= ‖A‖p‖x‖r/p
r ‖y‖r′/p′

r′ .

Likewise, M(0)≤ ‖A‖q‖x‖r/q
r ‖y‖r′/q′

r′ . Hence

|〈y,Ax〉| ≤ ‖A‖θ
p‖A‖1−θ

q ‖x‖r(θ/p+(1−θ)/q)
r ‖y‖r′(θ/p′+(1−θ)/q′)

r′

= ‖A‖θ
p‖A‖1−θ

q ‖x‖r‖y‖r′ .

Finally,

‖Ax‖r = sup
y�=0

|〈y,Ax〉|
‖y‖r′

≤ ‖A‖θ
p‖A‖1−θ

q ‖x‖r,

which proves the theorem. ��

7.4 Von Neumann’s Inequality

We say that a matrix M ∈ Mn(C) is a contraction if ‖Mx‖2 ≤ ‖x‖2 for every vector
x, or equivalently ‖M‖2 ≤ 1. Developing in the form x∗M∗Mx ≤ x∗x, this translates
as M∗M ≤ In in the sense of Hermitian matrices. Inasmuch as ‖M∗‖2 = ‖M‖2, the
Hermitian conjugate of a contraction is a contraction. When U and V are unitary
matrices, U∗MV is a contraction if and only if M is a contraction.

The following statement is due to von Neumann.

Theorem 7.4 Let M ∈Mn(C) be a contraction and P∈C[X ] be a polynomial. Then

‖P(M)‖2 ≤ sup{|P(z)| |z ∈ C, |z|= 1}.
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Proof. We begin with the easy case, where M is normal. Then M = U∗DU with
U ∈ Un and D is diagonal (Theorem 5.4). Because U is unitary, D is a con-
traction, meaning that its diagonal entries d j belong to the unit disk. We have
P(M) = U∗P(D)U , whence

‖P(M)‖2 = ‖P(D)‖2 = max
j
|P(d j)| ≤ sup{|P(z)| |z ∈ C, |z|= 1},

using the maximum principle.
We now turn to the general case of a nonnormal contraction. Using the square

root of nonnegative Hermitian matrices, and thanks to M∗M ≤ In and MM∗ ≤ In, we
denote

S =
√

In −M∗M, T :=
√

In−MM∗.

Let us choose a real polynomial Q∈R[X ] with the interpolation property that Q(t) =√
1− t over the spectrum of M∗M (which is a finite set and equals the spectrum of

MM∗). Then S = Q(M∗M) and T = Q(MM∗). Because M(M∗M)r = (MM∗)rM for
every r ∈ N, we infer MS = T M. Likewise, we have SM∗ = M∗T .

Given an integer k≥ 1 and � = 2k+1, we define a matrix Vk ∈M�n(C) blockwise:

Vk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
In

In
S −M∗
M T

In
In

. . .
In

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the dots represent blocks In. The column and row indices range from −k to k.
The central block indexed by (0,0) is M. All the missing (apart from dots) entries
are blocks 0n. In particular, the diagonal blocks are equal to 0n, except for the central
one.

Computing the product V ∗
k Vk, and using SM∗ = M∗T and MS = T M, we find I�n.

In other words, Vk is a unitary matrix. This is a special case of normal contraction,
therefore the first step above thus applies:

‖P(Vk)‖2 ≤ sup{|P(z)| |z ∈ C, |z|= 1}. (7.5)

Let us now observe that in the qth power of Vk, the central block is Mk pro-
vided that q ≤ 2k. This because Vk is block-triangular1 up to the lower-left block In.
Therefore the central block of p(Vk) for a polynomial p with do p ≤ 2k is precisely
p(M).

1 Compare with Exercise 12 of Chapter 5, which states that normal matrices are far from triangular.
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We now choose k ≥ (doP)/2, so that P(M) is a block of P(Vk). We have P(M) =
ΠP(Vk)Π∗ where

Π = (. . . , 0n , In , 0n , . . .).

If x ∈ Cn, let X ∈ C�n denote the vector Π ∗x. We have ‖X‖2 = ‖x‖2. Because Π is
an orthogonal projection, we find

‖P(M)x‖2 = ‖ΠP(Vk)X‖2 ≤ ‖P(Vk)X‖2 ≤ sup{|P(z)| |z ∈ C, |z|= 1}‖X‖2

= sup{|P(z)| |z ∈ C, |z|= 1}‖x‖2,

where we have used (7.5). This is exactly

‖P(M)‖2 ≤ sup{|P(z)| |z ∈ C, |z|= 1}.

��

Exercises

1. Under what conditions on the vectors a, b ∈ Cn does the matrix M defined by
mi j = aib j satisfy ‖M‖p = 1 for every p ∈ [1,∞]?

2. Under what conditions on x, y, and p does the equality in (7.2) or (7.1) hold?
3. Show that

lim
p→+∞

‖x‖p = ‖x‖∞, ∀x ∈ E.

4. A norm on Kn is a strictly convex norm if ‖x‖ = ‖y‖ = 1, x �= y, and 0 < θ < 1
imply ‖θx+(1−θ)y‖< 1.

a. Show that ‖ · ‖p is strictly convex for 1 < p < ∞, but is not so for p = 1,∞.
b. Deduce from Corollary 8.1 that the induced norm ‖·‖p is not strictly convex

on Mn(R).

5. Let N be a norm on Rn.

a. For x ∈ Cn, define

N1(x) := inf

{
∑
�

|α�|N(x�)

}
,

where the infimum is taken over the set of decompositions x = ∑� α�x� with
α� ∈ C and x� ∈ Rn. Show that N1 is a norm on Cn (as a C-vector space)
whose restriction to Rn is N. Note: N1 is called the complexification of N.

b. Same question as above for N2, defined by

N2(x) :=
1

2π

∫ 2π

0
[eiθ x]dθ ,
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where
[x] :=

√
N(ℜx)2 +N(ℑx)2 .

c. Show that N2 ≤ N1.
d. If N(x) = ‖x‖1, show that N1(x) = ‖x‖1. Considering then the vector

x =
(

1
i

)
,

show that N2 �= N1.

6. (Continuation of Exercise 5)
The norms N (on Rn) and N1 (on Cn) lead to induced norms on Mn(R) and
Mn(C), respectively. Show that if M ∈ Mn(R), then N(M) = N1(M). Deduce
that Theorem 7.2 holds true in Mn(R).

7. Let ‖ · ‖ be an algebra norm on Mn(K) (K = R or C), that is, a norm satisfying
‖AB‖ ≤ ‖A‖ · ‖B‖. Show that ρ(A)≤ ‖A‖ for every A ∈ Mn(K).

8. Let B ∈ Mn(C) be given. Assume that there exists an induced norm such that
‖B‖= ρ(B). Let λ be an eigenvalue of maximal modulus and X a corresponding
eigenvector. Show that X does not belong to the range of B−λ In. Deduce that
the Jordan block associated with λ is diagonal (Jordan reduction is presented in
Chapter 9).

9. (Continuation of Exercise 8)
Conversely, show that if the Jordan blocks of B associated with the eigenvalues
of maximal modulus of B are diagonal, then there exists a norm on Cn such
that, using the induced norm, ρ(B) = ‖B‖.

10. Here is another proof of Theorem 7.1. Let K = R or C, A ∈ Mn(K), and let N
be a norm on Kn. If ε > 0, we define for all x ∈ Kn

‖x‖ := ∑
k∈N

(ρ(A)+ ε)−kN(Akx).

a. Show that this series is convergent (use Proposition 7.8).
b. Show that ‖ · ‖ is a norm on Kn.
c. Show that for the induced norm, ‖A‖ ≤ ρ(A)+ ε .

11. A norm ‖ · ‖ on Mn(C) is said to be unitarily invariant if ‖UAV‖ = ‖A‖ for
every A ∈ Mn(C) and all unitary matrices U,V .

a. Find, among the most classical norms, two examples of unitarily invariant
norms.

b. Given a unitarily invariant norm, show that there exists a norm N on Rn

such that
‖A‖ = N(s1(A), . . . ,sn(A)),

where the s j(A)s, the eigenvalues of H in the polar decomposition A = QH
(see Section 11.4 for this notion), are called the singular values of A.
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12. (Bhatia [5]) Suppose we are given a norm ‖·‖ on Mn(C) that is unitarily invari-
ant (see the previous exercise). If A ∈ Mn(C), we denote by D(A) the diagonal
matrix obtained by keeping only the a j j and setting all the other entries to zero.
If σ is a permutation, we denote by Aσ the matrix whose entry of index ( j,k)
equals a jk if k = σ( j), and zero otherwise. For example, Aid = D(A), where id
is the identity permutation. If r is an integer between 1−n and n−1, we denote
by Dr(A) the matrix whose entry of index ( j,k) equals a jk if k− j = r, and zero
otherwise. For example, D0(A) = D(A).

a. Let ω = exp(2iπ/n) and let U be the diagonal matrix whose diagonal en-
tries are the roots of unity 1,ω, . . . ,ωn−1. Show that

D(A) =
1
n

n−1

∑
j=0

U∗ jAU j.

Deduce that ‖D(A)‖ ≤ ‖A‖.
b. Show that ‖Aσ‖≤ ‖A‖ for every σ ∈ Sn. Observe that ‖P‖= ‖In‖ for every

permutation matrix P. Show that ‖M‖ ≤ ‖In‖ for every bistochastic matrix
M (see Section 8.5 for this notion).

c. If θ ∈ R, let us denote by Uθ the diagonal matrix, whose kth diagonal term
equals exp(ikθ). Show that

Dr(A) =
1

2π

∫ 2π

0
eirθUθ AU∗

θ dθ .

d. Deduce that ‖Dr(A)‖ ≤ ‖A‖.
e. Let p be an integer between zero and n−1, and set r = 2p+1. Let us denote

by Tr(A) the matrix whose entry of index ( j,k) equals ajk if |k− j| ≤ p, and
zero otherwise. For example, T3(A) is a tridiagonal matrix. Show that

Tr(A) =
1

2π

∫ 2π

0
dp(θ)Uθ AU∗

θ dθ ,

where

dp(θ) =
p

∑
−p

eikθ

is the Dirichlet kernel.
f. Deduce that ‖Tr(A)‖ ≤ Lp‖A‖, where

Lp =
1

2π

∫ 2π

0
|dp(θ)|dθ

is the Lebesgue constant (Note: Lp = 4π−2 log p+O(1)).
g. Let Δ(A) be the upper-triangular matrix whose entries above the diagonal

coincide with those of A. Using the matrix
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B =
(

0n Δ(A)∗
Δ(A) 0n

)
,

show that ‖Δ(A)‖2 ≤ Ln‖A‖2 (observe that ‖B‖2 = ‖Δ(A)‖2).
h. What inequality do we obtain for Δ0(A), the strictly upper-triangular matrix

whose entries lying strictly above the diagonal coincide with those of A?

13. We endow Cn with the usual Hermitian structure, so that Mn(C) is equipped
with the norm ‖A‖2 = ρ(A∗A)1/2.
Suppose we are given a sequence of matrices (A j) j∈Z in Mn(C) and a summable
sequence γ ∈ l1(Z) of positive real numbers. Assume, finally, that for every pair
( j,k) ∈ Z×Z,

‖A∗
jAk‖2 ≤ γ( j− k)2, ‖A jA∗

k‖2 ≤ γ( j− k)2.

a. Let F be a finite subset of Z. Let BF denote the sum of the Ajs as j runs
over F . Show that

‖(B∗
F BF)2m‖2 ≤ card F ‖γ‖2m

1 , ∀m ∈ N.

b. Deduce that ‖BF‖2 ≤ ‖γ‖1.
c. Show (Cotlar’s lemma) that for every x,y ∈ Cn, the series

yT ∑
j∈Z

A jx

is convergent, and that its sum yT Ax defines a matrix A ∈ Mn(C) that satis-
fies

‖A‖ ≤ ∑
j∈Z

γ( j).

Hint: For a sequence (uj) j∈Z of real numbers, the series ∑ j u j is absolutely
convergent if and only if there exists M < +∞ such that ∑ j∈F |u j| ≤ M for
every finite subset F .

d. Deduce that the series ∑ j A j converges in Mn(C). May one conclude that it
converges normally?

14. Let ‖ · ‖ be an induced norm on Mn(R). We wish to characterize the matrices
B ∈ Mn(R) such that there exist ε0 > 0 and ω > 0 with

(0 < ε < ε0) =⇒ (‖In− εB‖ ≤ 1−ωε).

a. For the norm ‖ · ‖∞, it is equivalent that B be strictly diagonally dominant.
b. What is the characterization for the norm ‖ · ‖1?
c. For the norm ‖ · ‖2, it is equivalent that BT +B is positive-definite.

15. Let B ∈ Mn(C) be given.
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a. Returning to the proof of Theorem 7.1, show that for every ε > 0 there
exists on Cn an Hermitian norm ‖ ·‖ such that for the induced norm ‖B‖ ≤
ρ(B)+ ε .

b. Deduce that ρ(B) < 1 holds if and only if there exists a matrix A ∈ HPDn
such that A−B∗AB ∈ HPDn.

16. Let A ∈ Mn(C) be a diagonalizable matrix: A = Sdiag(d1, . . . ,dn)S−1. Let ‖ · ‖
be an induced norm for which ‖D‖ = max j |d j| holds, where

D := diag(d1, . . . ,dn).

Show that for every E ∈ Mn(C) and for every eigenvalue λ of A + E, there
exists an index j such that

|λ −dj| ≤ ‖S‖ · ‖S−1‖ · ‖E‖.

17. Let A ∈ Mn(K), with K = R or C. Give another proof, using the Cauchy–
Schwarz inequality, of the following particular case of Theorem 7.2:

‖A‖2 ≤ ‖A‖1/2
1 ‖A‖1/2

∞ .

18. Show that if A ∈ Mn(C) is normal, then ρ(A) = ‖A‖2. Deduce that if A and B
are normal, ρ(AB)≤ ρ(A)ρ(B).

19. Let N1 and N2 be two norms on Cn. Denote by N1 and N2 the induced norms
on Mn(C). Let us define

R := max
x �=0

N1(x)
N2(x)

, S := max
x �=0

N2(x)
N1(x)

.

a. Show that

max
A�=0

N1(A)
N2(A)

= RS = max
A�=0

N2(A)
N1(A)

.

b. Deduce that if N1 = N2, then N2/N1 is constant.
c. Show that if N1 ≤N2, then N2/N1 is constant and therefore N2 = N1.

20. (Continuation of Exercise 19)
Let ‖ ·‖ be an algebra norm on Mn(C). If y ∈ Cn is nonzero, we define ‖x‖y :=
‖xy∗‖.

a. Show that ‖ · ‖y is a norm on Cn for every y �= 0.
b. Let Ny be the norm induced by ‖ · ‖y. Show that Ny ≤ ‖ ·‖.
c. We say that ‖ · ‖ is minimal if there exists no other algebra norm less than

or equal to ‖ · ‖. Show that the following assertions are equivalent.
i. ‖ · ‖ is an induced norm on Mn(C).

ii. ‖ · ‖ is a minimal norm on Mn(C).
iii. For all y �= 0, one has ‖ · ‖ = Ny.

21. (Continuation of Exercise 20)



144 7 Norms

Let ‖ · ‖ be an induced norm on Mn(C).

a. Let y,z �= 0 be two vectors in Cn. Show that (with the notation of the previ-
ous exercise) ‖ · ‖y/‖ · ‖z is constant.

b. Prove the equality

‖xy∗‖ · ‖zt∗‖ = ‖xt∗‖ · ‖zy∗‖.

22. Let M ∈ Mn(C) and H ∈ HPDn be given. Show that

‖HMH‖2 ≤ 1
2
‖H2M +MH2‖2.

23. We endow R2 with the Euclidean norm ‖ · ‖2, and M2(R) with the induced
norm, also denoted by ‖ · ‖2. We denote by Σ the unit sphere of M2(R): M ∈ Σ
is equivalent to ‖M‖2 = 1, that is, to ρ(MT M) = 1. Likewise, B denotes the unit
ball of M2(R).
Recall that if C is a convex set and if P ∈C, then P is called an extremal point
if P ∈ [Q,R] and Q,R ∈C imply either Q = P or R = P.

a. Show that the set of extremal points of B is equal to O2(R).
b. Show that M ∈ Σ if and only if there exist two matrices P,Q ∈ O2(R) and

a number a ∈ [0,1] such that

M = P
(

a 0
0 1

)
Q.

c. We denote by R = SO2(R) the set of rotation matrices, and by S that of
matrices of planar symmetry. Recall that O2(R) is the disjoint union of R
and S . Show that Σ is the union of the segments [r,s] as r runs over R and
s runs over S .

d. Show that two such “open” segments (r,s) and (r′,s′) are either disjoint or
equal.

e. Let M,N ∈ Σ . Show that ‖M−N‖2 = 2 (i.e., (M,N) is a diameter of B) if
and only if there exists a segment [r,s] (r∈R and s∈S ) such that M ∈ [r,s]
and N ∈ [−r,−s].

24. (The Banach–Mazur distance)

a. Let N and N′ be two norms on kn (k = R or C). If A ∈ GLn(k), we may
define norms

‖A‖→ := sup
x �=0

N ′(Ax)
N(x)

, ‖A−1‖← := sup
x �=0

N(A−1x)
N ′(x)

.

Show that A �→ ‖A‖→‖A−1‖← achieves its upper bound. We denote by
δ (N,N′) the minimum value. Verify
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0 ≤ logδ (N,N ′′)≤ logδ (N,N ′)+ logδ (N ′,N′′).

When N = ‖ · ‖p, we write �p instead. If in addition N′ = ‖ · ‖q, we write
‖ · ‖p,q for ‖ · ‖→.

b. In the set N of norms on kn, let us consider the following equivalence
relation: N ∼N ′ if and only if there exists an A∈GLn(k) such that N′ = N ◦
A. Show that logδ induces a metric d on the quotient set Norm := N /∼.
This metric is called the Banach–Mazur distance. How many classes of
Hermitian norms are there ?

c. Compute ‖In‖p,q for 1 ≤ p,q ≤ n (there are two cases, depending on the
sign of q− p). Deduce that

δ (�p, �q)≤ nκ , κ :=
∣∣∣∣ 1p − 1

q

∣∣∣∣ .
d. Show that δ (�p, �q) = δ (�p′ , �q′), where p′,q′ are the conjugate exponents.
e. i. When H ∈ Hn is positive-semidefinite, find that the average of x∗Hx,

as x runs over the set defined by |x j|= 1 for all js, is Tr H (the measure
is the product of n copies of the normalized Lebesgue measure on the
unit disk). Deduce that

√
Tr M∗M ≤ ‖M‖∞,2 := sup

x �=0

‖Mx‖2

‖x‖∞

for every M ∈ Mn(k).
ii. Prove also that

‖A‖p,∞ = max
1≤i≤n

‖A(i)‖p′ ,

where A(i) denotes the ith row vector of A.
iii. Deduce that δ (�2, �∞) =

√
n.

iv. Using the triangle inequality for logδ , deduce that

δ (�p, �q) = nκ

whenever p,q≥ 2, and then for every p,q such that (p−2)(q−2)≥ 0.
Note: The exact value of δ (�p, �q) is not known when (p−2)(q−2) <
0.

v. Remark that the “curves” {�p |2 ≤ p ≤ ∞} and {�p |1 ≤ p ≤ 2} are
geodesics, in the sense that the restrictions of the Banach–Mazur dis-
tance to these curves satisfy the triangular equality.

f. When n = 2, prove that δ (�1, �∞) = 1. On the contrary, if n ≥ 3, then prove
δ (�1, �∞) > 1.

g. A theorem proven by John states that the diameter of (Norm,d) is precisely
1
2 logn. Show that this metric space is compact. Note: One may consider the
norm whose unit ball is an m-agon in R2, with m even. Denote its class by
Nm. It seems that d(�1,Nm) = 1

2 log2 when 8|m.
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25. Given three matrices A∈Mp×q(k), B∈Mp×s(k), and C∈Mr×q(k), we consider
the affine set W of matrices W ∈ Mn×m(k) of the form

W =
(

A B
C D

)
,

where D runs over Mr×s(k). Thus n = p+ r and m = q+ s.
Denoting

P =
(

I
0

)
, Q = ( I 0 )

the projection matrices, we are going to prove (Parrott’s lemma) that

min{‖W‖2 |W ∈W } = max{‖QW‖2,‖WP‖2}, (7.6)

where the right-hand side does not depend on D:

WP =
(

A
C

)
, QW = ( A B )

a. Check the inequality

inf{‖W‖2 |W ∈W } ≥ max{‖QW‖2,‖WP‖2}.

b. Denote μ(D) := ‖W‖2. Show that the infimum of μ on W is attained.
c. Show that it is sufficient to prove (7.6) when s = 1.
d. From now on, we assume that s = 1, and we consider a matrix D0 ∈

Mr×1(k) such that μ is minimal at D0. We denote by W0 the associated
matrix. Let us introduce a function D �→ η(D) = μ(D)2. Recall that η is
the largest eigenvalue of W ∗W . We denote f0 its multiplicity when D = D0.

i. If f0 ≥ 2, show that W ∗
0 W0 has an eigenvector v with vm = 0. Deduce

that μ(D0)≤ ‖WP‖2. Conclude in this case.
ii. From now on, we suppose f0 = 1. Show that η(D) is a simple eigen-

value for every D in a small neighbourhood of D0. Show that D �→
η(D) is differentiable at D0, and that its differential is given by

Δ �→ 2
‖y‖2

2
ℜ [(QW0y)∗ΔQy] ,

where y is an associated eigenvector:

W ∗
0 W0y = η(D0)y.

iii. Deduce that either Qy = 0 or QW0y = 0.
iv. In the case where Qy = 0, show that μ(D0)≤ ‖WP‖2 and conclude.
v. In the case where QW0y = 0, prove that μ(D0)≤‖QW‖2 and conclude.
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26. Let k be R or C. Given a bounded subset F of Mn(k), let us denote by Fk the
set of all possible products of k elements in F . Given a matrix norm ‖ · ‖, we
denote ‖Fk‖ the supremum of the norms of elements of Fk.

a. Show that ‖Fk+l‖ ≤ ‖Fk‖ · ‖F�‖.
b. Deduce that the sequence ‖Fk‖1/k converges, and that its limit is the infi-

mum of the sequence.
c. Prove that this limit does not depend on the choice of the matrix norm.

This limit is called the joint spectral radius of the family F , and denoted
ρ(F). This notion is due to Rota and Strang.

d. Let ρ̂(F) denote the infimum of ‖F‖ when ‖ ·‖ runs over all matrix norms.
Show that ρ(F)≤ ρ̂(F).

e. Given a norm N on kn and a number ε > 0, we define for every x ∈ kn

‖x‖ :=
∞

∑
l=0

(ρ(F)+ ε)−l max{N(Bx) |B ∈ F�}.

i. Show that the series converges, and that it defines a norm on kn.
ii. For the matrix norm associated with ‖ · ‖, show that ‖A‖ ≤ ρ(F)+ ε

for every A ∈ F .
iii. Deduce that actually ρ(F) = ρ̂(F). Compare with Householder’s the-

orem.

27. (Rota & Strang.) Let k be R or C. Given a subset F of Mn(k), we consider the
semi-group F generated by F . It is the union of sets Fk defined in the previous
exercise, as k runs over N. We have F0 = {In}, F1 = F , F2 = F ·F ,. . .
If F is bounded, prove that there exists a matrix norm ‖ · ‖ such that ‖A‖ ≤ 1
for every A ∈ F . Hint: In the previous exercise, take a sup instead of a series.

28. Let A ∈ Mn(C) be given. Let σ(A) be the spectrum of A and ρ(A) its com-
plement (the resolvent set). For ε > 0, we define the ε-pseudospectrum of A
as

σε (A) := σ(A)∪
{

z ∈ ρ(A) ; ‖(z−A)−1‖2 ≥ 1
ε

}
.

a. Prove that
σε(A) =

⋃
‖B‖2≤ε

σ(A+B).

b. Prove also that

σε (A)⊂ {z ∈ C ; dist(z;H (A))≤ ε},

where H (A) is the numerical range of A.

Note: the notion of pseudo-spectrum is fundamental in several scientific do-
mains, including dynamical systems, numerical analysis, and quantum mechan-
ics (in semiclassical analysis, one speaks of quasi-modes). The reader interested
in this subject should consult the book by Trefethen and Embree [38].
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29. We recall that the numerical radius of A ∈ Mn(C) is defined by

w(A) := sup{|z| ; z ∈H (A)} = sup{|x∗Ax| ; x ∈ Cn, ‖x‖2 = 1}.

Prove that
w(A)≤ ‖A‖2 ≤ 2w(A).

Hint: Use the polarization principle to prove the second inequality.
30. Let A ∈ Mn(C) be a nilpotent matrix of order two: A2 = 0n.

a. Using standard properties of the norm ‖ · ‖2, verify that ‖M‖2
2 ≤ ‖MM∗ +

M∗M‖2 for every M ∈ Mn(C).
b. When k is a positive integer, compute (AA∗+A∗A)k in closed form. Deduce

that
‖AA∗+A∗A‖2 ≤ 21/k‖A‖2

2.

c. Passing to the limit as k → +∞, prove that

‖A‖2 = ‖AA∗ +A∗A‖1/2
2 . (7.7)



Chapter 8

Nonnegative Matrices

In this chapter matrices have real entries in general. In a few specified cases, entries
might be complex.

8.1 Nonnegative Vectors and Matrices

Definition 8.1 A vector x∈Rn is nonnegative, and we write x≥ 0, if its coordinates
are nonnegative. It is positive, and we write x > 0, if its coordinates are (strictly)
positive. Furthermore, a matrix A ∈ Mn×m(R) (not necessarily square) is nonnega-
tive (respectively, positive) if its entries are nonnegative (respectively, positive); we
again write A ≥ 0 (respectively, A > 0). More generally, we define an order relation
x ≤ y whose meaning is y− x ≥ 0.

Definition 8.2 Given x ∈ Cn, we let |x| denote the nonnegative vector whose co-
ordinates are the numbers |x j|. Likewise, if A ∈ Mn(C), the matrix |A| has entries
|ai j|.

Observe that given a matrix and a vector (or two matrices), the triangle inequality
implies

|Ax| ≤ |A| · |x|.
Proposition 8.1 A matrix is nonnegative if and only if x ≥ 0 implies Ax ≥ 0. It is
positive if and only if x ≥ 0 and x �= 0 imply Ax > 0.

Proof. Let us assume that Ax ≥ 0 (respectively, > 0) for every x ≥ 0 (respectively,
≥ 0 and �= 0). Then the ith column A(i) is nonnegative (respectively, positive), since
it is the image of the ith vector of the canonical basis. Hence A ≥ 0 (respectively,
> 0).

Conversely, A ≥ 0 and x ≥ 0 imply trivially Ax ≥ 0. If A > 0, x ≥ 0, and x �= 0,
there exists an index � such that x� > 0. Then

(Ax)i = ∑
j

ai jx j ≥ ailx� > 0,
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and hence Ax > 0. ��
An important point is the following:

Proposition 8.2 If A ∈ Mn(R) is nonnegative and irreducible, then (I +A)n−1 > 0.

Proof. Let x �= 0 be nonnegative, and define xm = (I + A)mx, which is nonnega-
tive too. Let us denote by Pm the set of indices of the nonzero components of xm:
P0 is nonempty. Because xm+1

i ≥ xm
i , one has Pm ⊂ Pm+1. Let us assume that the

cardinality |Pm| of Pm is strictly less than n. There are thus one or more zero com-
ponents, whose indices form a nonempty subset I, complement of Pm. Because A
is irreducible, there exists some nonzero entry ai j, with i ∈ I and j ∈ Pm. Then
xm+1

i ≥ ai jxm
j > 0, which shows that Pm+1 is not equal to Pm, and thus |Pm+1|> |Pm|.

By induction, we deduce that |Pm| ≥min{m+1,n}. Hence |Pn−1|= n, meaning that
xn−1 > 0. We conclude with Proposition 8.1. ��

8.2 The Perron–Frobenius Theorem: Weak Form

The following result is not very impressive. We prove much more in the next sec-
tion, with elementary calculus. It has, however, its own interest, as an elegant con-
sequence of Brouwer’s fixed point theorem.

Theorem 8.1 Let A ∈ Mn(R) be a nonnegative matrix. Then ρ(A) is an eigenvalue
of A associated with a nonnegative eigenvector.

Proof. Let λ be an eigenvalue of maximal modulus and v an eigenvector, normal-
ized by ‖v‖1 = 1. Then

ρ(A)|v|= |λv|= |Av| ≤ A|v|.

Let us denote by C the subset of Rn (actually a subset of the unit simplex Kn) defined
by the (in)equalities ∑i xi = 1, x ≥ 0, and Ax ≥ ρ(A)x. This is a closed convex set,
nonempty, inasmuch as it contains |v|. Finally, it is bounded, because x ∈C implies
0 ≤ x j ≤ 1 for every j; thus it is compact. Let us distinguish two cases.

1. There exists x ∈ C such that Ax = 0. Then ρ(A)x ≤ 0 furnishes ρ(A) = 0. The
theorem is thus proved in this case.

2. For every x in C, Ax �= 0. Then let us define on C a continuous map f by

f (x) =
1

‖Ax‖1
Ax.

It is clear that f (x)≥ 0 and that ‖ f (x)‖1 = 1. Finally,

A f (x) =
1

‖Ax‖1
AAx ≥ 1

‖Ax‖1
Aρ(A)x = ρ(A) f (x),
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so that f (C)⊂C. Then Brouwer’s theorem (see [3], p. 217) asserts that a contin-
uous function from a compact convex subset of RN into itself has a fixed point.
Thus let y be a fixed point of f . It is a nonnegative eigenvector, associated with
the eigenvalue r = ‖Ay‖1. Because y ∈ C, we have ry = Ay ≥ ρ(A)y and thus
r ≥ ρ(A), which implies r = ρ(A).
��
That proof can be adapted to the case where a real number r and a nonzero vector

y are given satisfying y≥ 0 and Ay≥ ry. Just take for C the set of vectors x such that
∑i xi = 1, x ≥ 0, and Ax ≥ rx. We then conclude that ρ(A)≥ r.

8.3 The Perron–Frobenius Theorem: Strong Form

Theorem 8.2 Let A ∈ Mn(R) be a nonnegative irreducible matrix. Then ρ(A) is a
simple eigenvalue of A, associated with a positive eigenvector. Moreover, ρ(A) > 0.

8.3.1 Remarks

1. Alhough the Perron–Frobenius theorem says that ρ(A) is a simple eigenvalue, it
does not tell us anything about the other eigenvalues of maximal modulus. The
following example shows that such other eigenvalues may exist:(

0 1
1 0

)
.

The existence of several eigenvalues of maximal modulus is studied in Section
8.4.

2. One obtains another proof of the weak form of the Perron–Frobenius theorem by
applying the strong form to A + αJ, where J > 0 and α > 0, letting α tend to
zero and using Theorem 5.2.

3. Without the irreducibility assumption, ρ(A) may be a multiple eigenvalue, and
a nonnegative eigenvector may not be positive. This holds for a matrix of size
n = 2m that reads blockwise

A =
(

B 0m
Im B

)
.

Here, ρ(A) = ρ(B), and every eigenvalue has an even algebraic multiplicity, be-
cause PA = (PB)2.
Let us assume that B is nonnegative and irreducible. Then ρ(B) is a simple eigen-
value of B, associated with the eigenvector r > 0. In addition, BT is irreducible
(Proposition 3.25) and thus has a positive eigenvector � associated with ρ(B).
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Let

X =
(

y
z

)

belong to the kernel of A−ρ(A)In. We have

By = ρ(B)y, y+Bz = ρ(B)z.

The first equality tells us that y = αr for some α ∈ R. Multiplying the second
equality by �T , we obtain �T y = 0; that is, α�T r = 0. Because � > 0 and r > 0,
this gives α = 0; that is, y = 0. Then Bz = ρ(B)z, meaning that z ‖ r. Finally, the
eigenspace is spanned by

X =
(

0m
r

)
,

which is nonnegative, but not positive.
4. As a matter of fact, not only the eigenvector associated with ρ(A) is positive, but

it is the only one to be positive. For let � be the positive eigenvector of AT asso-
ciated with ρ(A). Then every eigenvector x of A associated with an eigenvalue
λ �= ρ(A) satisfies �T x = 0, which prevents x from being positive.

Proof. For r ≥ 0, we denote by Cr the set of vectors of Rn defined by the conditions

x ≥ 0, ‖x‖1 = 1, Ax ≥ rx.

Each Cr is a convex compact set. We saw in the previous section that if λ is an
eigenvalue associated with an eigenvector x of unit norm ‖x‖1 = 1, then |x| ∈C|λ |.
In particular, Cρ(A) is nonempty. Conversely, if Cr is nonempty, then for x ∈Cr,

r = r‖x‖1 ≤ ‖Ax‖1 ≤ ‖A‖1‖x‖1 = ‖A‖1,

and therefore r ≤ ‖A‖1. Furthermore, the map r �→Cr is nonincreasing with respect
to inclusion, and is “left continuous” in the following sense. If r > 0, one has

Cr =
⋂
s<r

Cs.

Let us then define
R = sup{r |Cr �= /0},

so that R ∈ [ρ(A),‖A‖1]. The monotonicity with respect to inclusion shows that
r < R implies Cr �= /0.

If x > 0 and ‖x‖1 = 1, then Ax > 0 because A is nonnegative and irreducible.
Setting r := min j(Ax) j/x j > 0, we have Cr �= /0, whence R ≥ r > 0. The set CR,
being the intersection of a totally ordered family of nonempty compacts sets, is
nonempty.

Let x ∈CR be given. Lemma 10 below shows that x is an eigenvector of A associ-
ated with the eigenvalue R. We observe that this eigenvalue is not less than ρ(A) and
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infer that ρ(A) = R. Hence ρ(A) is an eigenvalue associated with the eigenvector x.
Lemma 11 below ensures that x > 0 and ρ(A) > 0.

The proof of the simplicity of the eigenvalue ρ(A) is given in Section 8.3.3.

8.3.2 A Few Lemmas

Lemma 10. Let r ≥ 0 and x ≥ 0 such that Ax ≥ rx and Ax �= rx. Then there exists
r′ > r such that Cr′ is nonempty.

Proof. Set y := (In + A)n−1x. Because A is irreducible and x ≥ 0 is nonzero, one
has y > 0. Likewise, Ay − ry = (In + A)n−1(Ax − rx) > 0. Let us define r′ :=
min j(Ay) j/y j, which is strictly larger than r. We then have Ay ≥ r′y, so that Cr′
contains the vector y/‖y‖1. ��
Lemma 11. The nonnegative eigenvectors of A are positive. The corresponding
eigenvalue is positive too.

Proof. Given such a vector x with Ax = λx, we observe that λ ∈ R+. Then

x =
1

(1+λ )n−1 (In +A)n−1x,

and the right-hand side is strictly positive, from Proposition 8.2.
Inasmuch as A is irreducible and nonnegative, we infer Ax �= 0. Thus λ �= 0; that

is, λ > 0. ��
Finally, we can state the following result.

Lemma 12. Let M,B ∈ Mn(C) be matrices, with M irreducible and |B| ≤ M. Then
ρ(B)≤ ρ(M).

In the case of equality (ρ(B) = ρ(M)), the following hold.

• |B|= M.
• For every eigenvector x of B associated with an eigenvalue of modulus ρ(M), |x|

is an eigenvector of M associated with ρ(M).

Proof. In order to establish the inequality, we proceed as above. If λ is an eigenvalue
of B, of modulus ρ(B), and if x is a normalized eigenvector, then ρ(B)|x| ≤ |B| · |x| ≤
M|x|, so that Cρ(B) is nonempty. Hence ρ(B)≤ R = ρ(M).

Let us investigate the case of equality. If ρ(B) = ρ(M), then |x| ∈ Cρ(M), and
therefore |x| is an eigenvector: M|x| = ρ(M)|x| = ρ(B)|x| ≤ |B| · |x|. Hence, (M−
|B|)|x| ≤ 0. Because |x|> 0 (from Lemma 11) and M−|B| ≥ 0, this gives |B| = M.
��
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8.3.3 The Eigenvalue ρ(A) Is Simple

Let PA(X) be the characteristic polynomial of A. It is given as the composi-
tion of an n-linear form (the determinant) with polynomial vector-valued func-
tions (the columns of XIn −A). If φ is p-linear and if V1(X), . . . ,Vp(X) are poly-
nomial vector-valued functions, then the derivative of the polynomial P(X) :=
φ(V1(X), . . . ,Vp(X)) is given by

P′(X) = φ(V ′
1,V2, . . . ,Vp)+φ(V1,V ′

2, . . . ,Vp)+ · · ·+φ(V1, . . . ,Vp−1,V ′
p).

One therefore has

P′
A(X) = det(e1,a2, . . . ,an)+det(a1,e

2, . . . ,an)+ · · ·+det(a1, . . . ,an−1,e
n),

where a j is the jth column of XIn −A and {e1, . . . ,en} is the canonical basis of Rn.
Developing the jth determinant with respect to the jth column, one obtains

P′
A(X) =

n

∑
j=1

PA j(X), (8.1)

where Aj ∈Mn−1(R) is obtained from A by deleting the jth row and the jth column.
Let us now denote by B j ∈ Mn(R) the matrix obtained from A by replacing the
entries of the jth row and column by zeroes. This matrix is block-diagonal, the two
diagonal blocks being Aj ∈ Mn−1(R) and 0 ∈ M1(R). Hence, the eigenvalues of
B j are those of A j, together with zero, and therefore ρ(Bj) = ρ(Aj). Furthermore,
|B j| ≤ A, but |B j| �= A because A is irreducible and B j is block-diagonal, hence
reducible. It follows (Lemma 12) that ρ(B j) < ρ(A). Hence PA j does not vanish
over [ρ(A),+∞). Because PA j(t) ≈ tn−1 at infinity, we deduce that PA j(ρ(A)) > 0.
Finally, P′

A(ρ(A)) is positive and ρ(A) is a simple root. ��

8.4 Cyclic Matrices

The following statement completes Theorem 8.2.

Theorem 8.3 Under the assumptions of Theorem 8.2, let p be the cardinality of the
set Spmax(A) of eigenvalues of A of maximal modulus ρ(A).

Then we have Spmax(A) = ρ(A)U p, where U p is the group of pth roots of unity.
Every such eigenvalue is simple. The spectrum of A is invariant under multiplication
by U p. Finally, A is conjugated via a permutation matrix to the following cyclic
form. In this cyclic matrix each element is a block, and the diagonal blocks (which
all vanish) are square with nonzero sizes:
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⎜⎜⎜⎜⎜⎜⎜⎝

0 M1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0
. . . Mp−1

Mp 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Remark

The converse is true. The characteristic polynomial of a cyclic matrix is

X �→ det(X pIm −M1M2 · · ·Mp),

up to a factor Xν (with ν possibly negative). Its spectrum is thus stable under mul-
tiplication by exp(2iπ/p).

Proof. Let us denote by X the unique nonnegative eigenvector of A normalized by
‖X‖1 = 1. If Y is a unitary eigenvector, associated with an eigenvalue μ of maximal
modulus ρ(A), the inequality ρ(A)|Y | = |AY | ≤ A|Y | implies (Lemma 12) |Y | = X .
Hence there is a diagonal matrix D = diag(eiα1 , . . . ,eiαn) such that Y = DX . Let us
define a unimodular complex number eiγ = μ/ρ(A) and set B := e−iγ D−1AD. One
has |B|= A and BX = X . For every j, one therefore has∣∣∣∣∣

n

∑
k=1

b jkxk

∣∣∣∣∣=
n

∑
k=1

|b jk|xk.

Because X > 0, one deduces that B is real-valued and nonnegative. Therefore B = A;
that is, D−1AD = eiγ A. The spectrum of A is thus invariant under multiplication by
eiγ .

Let U = ρ(A)−1 Spmax(A), which is included in S1, the unit circle. The previous
discussion shows that U is stable under multiplication. Because U is finite, it fol-
lows that its elements are roots of unity. The inverse of a dth root of unity is its own
(d−1)th power, therefore U is stable under inversion. Hence it is a finite subgroup
of S1. With p its cardinal, we have U = U p.

Let PA be the characteristic polynomial and let ω = exp(2iπ/p). One may apply
the first part of the proof to μ = ωρ(A). One has thus D−1AD = ωA, and it fol-
lows that PA(X) = ωnPA(X/ω). Therefore, multiplication by ω sends eigenvalues
to eigenvalues of the same multiplicities. In particular, the eigenvalues of maximal
modulus are simple.

Iterating the conjugation, one obtains D−pADp = A. Let us set

Dp = diag(d1, . . . ,dn).

One has thus dj = dk, provided that a jk �= 0. Because A is irreducible, one can link
any two indices j and k by a chain j0 = j, . . . , jr = k such that a js−1, js �= 0 for every
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s. It follows that d j = dk for every j,k. But because one may choose Y1 = X1, that is
α1 = 0, one also has d1 = 1 and hence Dp = In. The α j are thus pth roots of unity.
Applying a conjugation by a permutation matrix we may limit ourselves to the case
where D has the block-diagonal form diag(J0,ωJ1, . . . ,ω p−1Jp−1), where the J� are
identity matrices of respective sizes n0, . . . ,np−1. Decomposing A into blocks Alm of
sizes n�×nm, one obtains ωkA jk = ω j+1A jk directly from the conjugation identity.
Hence A jk = 0, except for the pairs ( j,k) of the form (0,1),(1,2), . . . ,(p− 2, p−
1),(p−1,0). This is the announced cyclic form. ��

8.5 Stochastic Matrices

Definition 8.3 A matrix M ∈ Mn(R) is said to be stochastic if M ≥ 0 and if for
every i = 1, . . . ,n, one has

n

∑
j=1

mi j = 1.

One says that M is bistochastic (or doubly stochastic) if both M and MT are stochas-
tic.

Denoting by e ∈ Rn the vector all of whose coordinates equal one, one sees that
M is stochastic if and only if M ≥ 0 and Me = e. Likewise, M is bistochastic if
M ≥ 0, Me = e, and eT M = eT . If M is stochastic, one has ‖Mx‖∞ ≤ ‖x‖∞ for every
x ∈ Cn, and therefore ρ(M)≤ 1. But because Me = e, one has in fact ρ(M) = 1.

The stochastic matrices play an important role in the study of Markov chains.
A special instance of a bistochastic matrix is a permutation matrix P(σ) (σ ∈ Sn),
whose entries are

pi j = δ j
σ(i).

The following theorem enlightens the role of permutation matrices.

Theorem 8.4 (Birkhoff) A matrix M ∈ Mn(R) is bistochastic if and only if it is a
center of mass (i.e., a barycenter with nonnegative weights) of permutation matri-
ces.

The fact that a center of mass of permutation matrices is a doubly stochastic matrix
is obvious, because the set DSn of doubly stochastic matrices is convex. The interest
of the theorem lies in the statement that if M ∈DSn, there exist permutation matrices
P1, . . . ,Pr and positive real numbers α1, . . . ,αr with α1 + · · ·+αr = 1 such that M =
α1P1 + · · ·+αrPr.

Let us recall that a point x of a convex set C is an extremal point if x ∈ [y,z] ⊂C
implies x = y = z. The permutation matrices are extremal points of Mn([0,1]) ∼
[0,1]n

2
, thus they are extremal points of the smaller convex set DSn.

The Krein–Milman theorem (see [34], Theorem 3.23) says that a convex compact
subset of Rn is the convex hull, that is, the set of centers of mass of its extremal
points. Because DSn is closed and bounded, hence compact, we may apply this
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statement. Theorem 8.4 thus amounts to saying that the extremal points of Δn are
precisely the permutation matrices.

Proof. Let M ∈ DSn be given. If M is not a permutation matrix, there exists an
entry mi1 j1 ∈ (0,1). Inasmuch as M is stochastic, there also exists j2 �= j1 such that
mi1 j2 ∈ (0,1). Because MT is stochastic, there exists i2 �= i1 such that mi2 j2 ∈ (0,1).
By this procedure one constructs a sequence ( j1, i1, j2, i2, . . .) such that mi� j� ∈ (0,1)
and mi�−1 j� ∈ (0,1). The set of indices is finite, therefore it eventually happens that
one of the indices (a row index or a column index) is repeated.

Therefore, one can assume that the sequence ( js, is, . . . , jr, ir, jr+1 = js) has the
above property, and that js, . . . , jr are pairwise distinct, as well as is . . . , ir. Let us
define a matrix B ∈ Mn(R) by bi� j� = 1, bi� j�+1 = −1, bi j = 0 otherwise. By con-
struction, Be = 0 and eT B = 0. If α ∈ R, one therefore has (M ±αB)e = e and
eT (M±αB) = eT . If α > 0 is small enough, M±αB turns out to be nonnegative.
Finally, M +αB and M−αB are bistochastic, and

M =
1
2
(M−αB)+

1
2
(M +αB).

Hence M is not an extremal point of DSn. ��
Here is a nontrivial consequence (Stoer and Witzgall [36]):

Corollary 8.1 Let ‖·‖ be a norm on Rn, invariant under permutation of the coordi-
nates. Then ‖M‖= 1 for every bistochastic matrix (where as usual we have denoted
‖ · ‖ the induced norm on Mn(R)).

Proof. To begin with, ‖P‖ = 1 for every permutation matrix, by assumption. Be-
cause the induced norm is convex (true for every norm), one deduces from Birkhoff’s
theorem that ‖M‖ ≤ 1 for every bistochastic matrix. Furthermore, Me = e implies
‖M‖ ≥ ‖Me‖/‖e‖ = 1. ��

This result applies, for instance, to the norm ‖ ·‖p, providing a nontrivial convex
set on which the map 1/p �→ log‖M‖p is constant (compare with Theorem 7.2).

The bistochastic matrices are intimately related to the relation ≺ (see Section
6.5). In fact, we have the following theorem.

Theorem 8.5 A matrix A is bistochastic if and only if Ax " x for every x ∈ Rn.

Proof. If A is bistochastic, then ‖Ax‖1 ≤‖A‖1‖x‖1 = ‖x‖1, because AT is stochastic.
Because A is stochastic, Ae = e. Applying the inequality to x− te, one therefore has
‖Ax− te‖1 ≤ ‖x− te‖1. Proposition 6.4 then shows that x ≺ Ax.

Conversely, let us assume that x ≺ Ax for every x ∈ Rn. Choosing x as the jth
vector of the canonical basis, e j, the inequality s1(e j) ≤ s1(Ae j) expresses that A is
a nonnegative matrix, and sn(e j) = sn(Ae j) yields

n

∑
i=1

ai j = 1. (8.2)
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One then chooses x = e. The inequality s1(e) ≤ s1(Ae) expresses1 that Ae ≥ e. Fi-
nally, sn(e) = sn(Ae) and Ae ≥ e give Ae = e. Hence, A is bistochastic. ��

This statement is completed by the following.

Theorem 8.6 Let x,y ∈ Rn. Then x ≺ y if and only if there exists a bistochastic
matrix A such that y = Ax.

Proof. From the previous theorem, it is enough to show that if x≺ y, there exists A, a
bistochastic matrix, such that y = Ax. To do so, one applies Theorem 6.8: there exists
an Hermitian matrix H whose diagonal and spectrum are y and x, respectively. Let
us diagonalize H by a unitary conjugation: H = U∗DU , with D = diag(x1, . . . ,xn).
Then y = Ax, where ai j = |ui j|2. Because U is unitary, A is bistochastic.2 ��

Exercises

1. We consider the following three properties for a matrix M ∈ Mn(R).

P1 M is nonnegative.
P2 MT e = e, where e = (1, . . . ,1)T .
P3 ‖M‖1 ≤ 1.

a. Show that P2 and P3 imply P1.
b. Show that P2 and P1 imply P3.
c. Do P1 and P3 imply P2 ?

2. Here is another proof of the simplicity of ρ(A) in the Perron–Frobenius theo-
rem, which does not require Lemma 12. We assume that A is irreducible and
nonnegative, and we denote by x a positive eigenvector associated with the
eigenvalue ρ(A).

a. Let K be the set of nonnegative eigenvectors y associated with ρ(A) such
that ‖y‖1 = 1. Show that K is compact and convex.

b. Show that the geometric multiplicity of ρ(A) equals 1. (Hint: Otherwise,
K would contain a vector with at least one zero component.)

c. Show that the algebraic multiplicity of ρ(A) equals 1. (Hint: Otherwise,
there would be a nonnegative vector y such that Ay−ρ(A)y = x > 0.)

3. Let M ∈ Mn(R) be either strictly diagonally dominant or irreducible and
strongly diagonally dominant. Assume that m j j > 0 for every j = 1, . . . ,n and
mi j ≤ 0 otherwise. Show that M is invertible and that the solution of Mx = b,
when b ≥ 0, satisfies x ≥ 0. Deduce that M−1 ≥ 0.

1 For another vector y, s1(y)≤ s1(Ay) does not imply Ay ≥ y.
2 This kind of bistochastic matrix is called orthostochastic.
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4. Here is another proof of Theorem 8.2, due to Perron himself. We proceed by
induction on the size n of the matrix. The statement is obvious if n = 1. We
therefore assume that it holds for matrices of size n. We give ourselves an ir-
reducible nonnegative matrix A ∈ Mn+1(R), which we decompose blockwise
as

A =
(

a ξ T

η B

)
, a ∈ R, ξ ,η ∈ Rn, B ∈ Mn(R).

a. Applying the induction hypothesis to the matrix B + εJ, where ε > 0 and
J > 0 is a matrix, then letting ε go to zero, shows that ρ(B) is an eigen-
value of B, associated with a nonnegative eigenvector (this avoids the use
of Theorem 8.1).

b. Using the formula

(λ In −B)−1 =
∞

∑
k=1

λ−kBk−1,

valid for λ ∈ (ρ(B),+∞), deduce that the function h(λ ) := λ − a −
ξ T (λ In−B)−1η is strictly increasing on this interval, and that on the same
interval the vector x(λ ) := (λ In−B)−1η is positive.

c. Using the Schur complement formula, prove PA(λ ) = PB(λ )h(λ ).
d. Deduce that the matrix A has one and only one eigenvalue in (ρ(B),+∞),

and that it is a simple one, associated with a positive eigenvector. One de-
notes this eigenvalue by λ0.

e. Applying the previous results to AT , show that there exists � ∈Rn such that
� > 0 and �T (A−λ0In) = 0.

f. Let μ be an eigenvalue of A, associated with an eigenvector X . Show that
(λ0 −|μ|)�T |X | ≥ 0. Conclusion?

5. Let A ∈ Mn(R) be a matrix satisfying ai j ≥ 0 for every pair (i, j) of distinct
indices.

a. Let us define
σ := sup{ℜλ ;λ ∈ Sp A}.

Among the eigenvalues of A whose real parts equal σ , let us denote by μ
the one with the largest imaginary part. Show that for every positive large
enough real number τ , ρ(A+ τIn) = |μ + τ|.

b. Deduce that μ = σ = ρ(A) (apply Theorem 8.1).

6. Let B ∈ Mn(R) be a matrix whose off-diagonal entries are positive and such
that the eigenvalues have strictly negative real parts. Show that there exists a
nonnegative diagonal matrix D such that B′ := D−1BD is strictly diagonally
dominant, namely,

b′ii <−∑
j �=i

b′i j.
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7. a. Let B ∈ Mn(R) be given, with ρ(B) = 1. Assume that the eigenvalues of B
of modulus one are (algebraically) simple. Show that the sequence (Bm)m≥1
is bounded.

b. Let M ∈ Mn(R) be a nonnegative irreducible matrix, with ρ(M) = 1. We
denote by x and yT the left and right eigenvectors for the eigenvalue 1
(Mx = x and yT M = yT ), normalized by yT x = 1. We define L := xyT and
B = M−L.

i. Verify that B− In is invertible. Determine the spectrum and the invari-
ant subspaces of B by means of those of M.

ii. Show that the sequence (Bm)m≥1 is bounded. Express Mm in terms of
Bm.

iii. Deduce that

lim
N→+∞

1
N

N−1

∑
m=0

Mm = L.

iv. Under what additional assumption do we have the stronger conver-
gence

lim
N→+∞

MN = L?

8. Let B ∈ Mn(R) be a nonnegative irreducible matrix and let C ∈ Mn(R) be a
nonzero nonnegative matrix. For t > 0, we define rt := ρ(B+ tC) and we let Xt
denote the nonnegative unitary eigenvector associated with the eigenvalue rt .

a. Show that t �→ rt is strictly increasing.
Define r := limt→+∞ rt . We wish to show that r = +∞. Let X be a clus-
ter point of the sequence Xt . We may assume, up to a permutation of the
indices, that

X =
(

Y
0

)
, Y > 0.

b. Suppose that in fact, r < +∞. Show that BX ≤ rX . Deduce that B′Y = 0,
where B′ is a matrix extracted from B.

c. Deduce that X = Y ; that is, X > 0.
d. Show, finally, that CX = 0. Conclude that r = +∞.
e. Assume, moreover, that ρ(B) < 1. Show that there exists one and only one

t ∈ R such that ρ(B+ tC) = 1.

9. Verify that DSn is stable under multiplication. In particular, if M is bistochastic,
the sequence (Mm)m≥1 is bounded.

10. Let M ∈ Mn(R) be a bistochastic irreducible matrix. Show that

lim
N→+∞

1
N

N−1

∑
m=0

Mm =
1
n

⎛
⎜⎝

1 . . . 1
...

...
1 . . . 1

⎞
⎟⎠=: Jn

(use Exercise 7). Show by an example that the sequence (Mm)m≥1 may or may
not converge.
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11. Show directly that for every p ∈ [1,∞], ‖Jn‖p = 1, where Jn was defined in the
previous exercise.

12. Let P ∈ GLn(R) be given such that P, P−1 ∈ DSn. Show that P is a permutation
matrix.

13. Let A,B ∈ Hn be given and C := A+B.

a. If t ∈ [0,1] consider the matrix S(t) := A + tB, so that S(0) = A and
S(1) = C. Arrange the eigenvalues of S(t) in increasing order λ1(t) ≤
·· · ≤ λn(t). For each value of t there exists an orthonormal eigenba-
sis {X1(t), . . . ,Xn(t)}. We admit the fact that it can be chosen continu-
ously with respect to t, so that t �→ Xj(t) is continuous with a piece-
wise continuous derivative (see [24], Chapter 2, Section 6.) Show that
λ ′

j(t) = (BXj(t),Xj(t)).
b. Let α j,β j,γ j ( j = 1, . . . ,n) be the eigenvalues of A,B,C, respectively. De-

duce from part (a) that

γ j −α j =
∫ 1

0
(BXj(t),Xj(t))dt.

c. Let {Y1, . . . ,Yn} be an orthonormal eigenbasis for B. Define

σ jk :=
∫ 1

0
|(Xj(t),Yk)|2dt.

Show that the matrix Σ := (σ jk)1≤ j,k≤n is bistochastic.
d. Show that γ j −α j = ∑k σ jkβk. Deduce (Lidskiı̆’s theorem) that the vector

(γ1 −α1, . . . ,γn −αn) belongs to the convex hull of the vectors obtained
from the vector (β1, . . . ,βn) by all possible permutations of the coordinates.

14. Let a ∈ Rn be given, a = (a1, . . . ,an).

a. Show that C(a) := {b ∈ Rn |b " a} is a convex compact set. Characterize
its extremal points.

b. Show that Y (a) := {M ∈ Symn(R) | Sp M " a} is a convex compact set.
Characterize its extremal points.

c. Deduce that Y (a) is the closed convex hull (actually the convex hull) of the
set X(a) := {M ∈ Symn(R) | Sp M = a}.

d. Set α = sn(a)/n and a′ := (α, . . . ,α). Show that a′ ∈ C(a), and that b ∈
C(a) =⇒ b ≺ a′.

e. Characterize the set {M ∈ Symn(R) | Sp M ≺ a′}.
15. Use Exercise 14 to prove the theorem of Horn and Schur. The set of diago-

nals (h11, . . . ,hnn) of Hermitian matrices with given spectrum (λ1, . . . ,λn) is
the convex hull of the points (λσ(1), . . . ,λσ(n)) as σ runs over the permutations
of {1, . . . ,n}.

16. (Boyd, Diaconis, Sun and Xiao.) Let P be a symmetric stochastic n×n matrix:
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pi j = p ji ≥ 0, ∑
j

pi j = 1 (i = 1, . . . ,n).

We recall that λ1 = 1 is an eigenvalue of P, which is the largest in modulus
(Perron–Frobenius). We are interested in the second largest modulus μ(P) =
max{λ2,−λn} where λ1 ≥ ·· · ≥ λn is the spectrum of P; μ(P) is the second
singular value of P.

a. Let y ∈ Rn be such that ‖y‖2 = 1 and ∑ j y j = 1. Let z ∈ Rn be such that

(pi j �= 0) =⇒
(

1
2
(zi + z j)≤ yiy j

)
.

Show that λ2 ≥ ∑ j z j. Hint: Use Rayleigh ratio.
b. Likewise, if y is as above and w such that

(pi j �= 0) =⇒
(

1
2
(wi +w j)≥ yiy j

)
,

show that λn ≤ ∑ j w j.
c. Taking

y j =

√
2
n

cos
(2 j−1)π

2n
, z j =

1
n

(
cos

π
n

+
cos (2 j−1)π

n
cos π

n

)
,

deduce that μ(P)≥ cos
π
n

for every symmetric stochastic n×n matrix.

d. Find a symmetric stochastic n×n matrix Q such that μ(Q) = cos
π
n

. Hint:

Exploit the equality case in the analysis, with the y and z given above.
e. Prove that P �→ μ(P) is a convex function over symmetric stochastic n×n

matrices.

17. Prove the equivalence of the following properties for real n×n matrices A:

Strong Perron–Frobenius. The spectral radius is a simple eigenvalue of A,
the only one of this modulus; it is associated with positive left and right
eigenvectors.

Eventually positive matrix. There exists an integer k ≥ 1 such that Ak > 0n.

18. Let A be a cyclic matrix, as in Theorem 8.3. If 1 ≤ j ≤ p, prove that

PA(X) = Xn−pm j det(X pIm j −MjMj+1 · · ·MpM1 · · ·Mj−1),

where mj is the number of rows of Mj (or columns in Mj−1) (Hint: argue by
induction over p, using the Schur complement formula). Deduce a lower bound
of the multiplicity of the eigenvalue λ = 0.



Chapter 9 
Matrices with Entries in a Principal Ideal 
Domain; Jordan Reduction 

9.1 Rings, Principal Ideal Domains 

In this chapter we consider only commutative integral domains A (see Chapter 3). 
Such a ring A can be embedded in its field of fractions, which is the quotient of 
A x (A \ {0}) by the equivalence relation (a,b)&(c,d) &ad = be. The embedding 
is the mapat-> (a, 1). 

In a ring A, the set of invertible elements, denoted by A*, is a multiplicative group. 
If a, b € A are such that b = ua with u € A", we say that a and /; are associated, and 
we write a ~ b, which amounts to saying that aA = bA. If there exists c € A such 
that ac = b, we say that a divides b and write a\b. Then the quotient c is unique 
and is denoted by b/a. Divisibility is an order relation. We say that b is a prime, or 
irreducible, element if the equality b = ac implies that one of the factors is invertible. 

An ideal 1 in a ring A is an additive subgroup of A such that A • / C / : a £ A and 
x € / imply ax G I. For example, if b\ ,...,br G A, the subset 

biA+'-'+brA 

is an ideal, denoted by (&i,...,/?r).We say that this ideal is generated by bi,...,br. 
Ideals of the form (/?), thus generated by a single element, are called principal ide­
als. 

9.1.1 Facts About Principal Ideal Domains 

Definition 9.1 A commutative integral domain A is a principal ideal domain if every 
ideal in A is principal: For every ideal J there exists a G A such that <? = (a). 

A field is a principal ideal domain that has only two ideals, (0) = {()} and (1) = A. 
The set Z of rational integers and the polynomial algebra over a field £, denoted by 
ik[Xj, are also principal ideal domains. 

D. Serre, Matrices, Graduate Texts in Mathematics 216, 163 
DOI 10.1007/978-1-4419-7683-3_9, O Springer Science+Business Media. LLC 2010 
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In a commutative integral domain one says that d is a greatest common divisor 
(gcd) of a and b if d divides a and b, and if every common divisor of a and b divides 
d. In other words, the set of common divisors of a and b, ordered by divisibility, 
admits d as a greatest element. The gcd of a and b, whenever it exists, is unique up 
to multiplication by an invertible element. We say that a and b are coprime if all 
their common divisors are invertible; in that case, gcd(a.b) = 1. 

Proposition 9.1 /// a principal ideal domain, every pair of elements has a greatest 
common divisor. The gcd satisfies the Bezout identity: for every a,b£A, there exist 
u, v € A such that 

gcd(a,b) = ua + vb. 

Such u and v are coprime. 

Proof. Let A be a principal ideal domain. If a,b € A, the ideal y =: (a,b) is prin­
cipal: y = (d). Because a.b € y, d divides a and b. Furthermore, d = ua-\-vb 
because d € <?. If c divides a and /;, then c divides ua + vb; hence divides d, which 
happens to be a gcd of a and b. 

If m divides u and v, then md\ua + vb: hence d = smd. Ifd^O, one has sm = 1, 
which means that m G A*. Thus u and v are coprime. If d = 0, then a = b = 0, and 
one may take u = v= 1, which are coprime. D 

As a generator of the ideal (a, /?), a gcd of a and /; is nonunique. Every element 
associated with it is another gcd. In certain rings one can choose the gcd in a canon­
ical way, such as a positive element in Z, or a monic polynomial in k[X]. 

The gcd is associative: gcd(fl,gcd(/?.c)) = gcd(gcd(n,/>),c). It is therefore pos­
sible to speak of the gcd of an arbitrary finite subset of A. In the above example we 
denote it by gcd(a, b, c). We have a generalized Bezout formula: there exist elements 
u\,...,ur G/4 such that 

gcd(fli,...,ar) =a\U\-\ \-arur. 

Definition 9.2 A ring A is Noetherian if every nondecreasing (for inclusion) se­
quence of ideals is constant beyond some index: /o C /| C • • • C /„, C • • • implies 
that there is an I such that l\ = //+1 = • • •. 

Proposition 9.2 The principal ideal domains are Noetherian. 

Observe that in the case of principal ideal domains the Noetherian property means 
exactly that if a sequence a\,... of elements of A is such that every element is 
divisible by the next one, then there exists an index J such that the aj$ are pairwise 
associated for every j > J. 

This property seems natural because it is shared by all the rings encountered in 
number theory. But the ring of entire holomorphic functions is not Noetherian: just 
lake for a„ the function 

z ~ ( n ( z - ^ ) _ 1 )sin2^z. 
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Proof. Let A be a principal ideal domain and let (/;)y>o be a nondecreasing se­
quence of ideals in A. Let y be their union, which happens to be an ideal. Let a be a 
generator: y = (a). Then a belongs to one of the ideals, say a G 4 . Hence y C 4> 
which implies // = y for j >k. D 

The proof above works with slight changes if we know that every ideal in A is 
spanned by a finite set. For example, the ring of polynomials over a Noetherian ring 
is itself Noetherian: Z[X] and k[X, Y] are Noetherian rings, although not principal. 

The principal ideal domains arc also factorial (a shortcut for unique factorization 
domain): every element of A admits a factorization consisting of prime factors. This 
factorization is unique up to ambiguities, which may be of three types: the order 
of factors, the presence of invcrtible elements, and the replacement of factors by 
associated ones. This property is fundamental to the arithmetic in A. 

9.1.2 Euclidean Domains 

Definition 9.3 A Euclidean domain is a ring A endowed with a map N :A\ {0} K-» N 
such that for every a,b €A with h 7̂  0, there exists a unique pair (q, r) € A x A such 
that a = qb + r with either N{r) < N(b) or r = 0. The map {a.b) •—• (q, r) is the 
Euclidean division. We call q the quotient and r the remainder. 

When b divides a, we have q = b/a and r = 0. 
Classical examples of Euclidean domains arc the ring of the rational integers Z, 

with N(a) = \a\, the ring k[X] of polynomials over a field/:, with N(P) = dcgP, and 
the ring of Gaussian integers Z[\/-T], with N(z) = \z\2. 

Proposition 9.3 Euclidean domains are principal ideal domains. 

Proof Let J be an ideal of a Euclidean domain A. If J = (0), there is nothing to 
show. Otherwise, let us select an element a for which A'(fl) is minimal in y \ {()}. If 
be<^, the remainder r of the Euclidean division of /; by a is an element of y and 
satisfies either r = 0 or N(r) < N(a). The minimality of N(a) implies r = 0; that is. 
a\b. Finally, S= (a). O 

The converse of Proposition 9.3 is not true. For example, the quadratic ring 
Z[\/l4] is a principal ideal domain, although not Euclidean. More information about 
rings of quadratic integers can be found in Cohn's monograph [10]. 

9.1.2.1 Calculation of the GCD in a Euclidean Domain 

Given a.b in a Euclidean domain A, with say /; ^ 0, let us define a sequence (tf/)y>o 
by ao = a,a\ = b and then aj+\ the remainder of the division of aj \ by as. The se­
quence is well defined until some a^\ equals 0, that is, a\\a^\. This must necessar­
ily happen, because otherwise the sequence (N(aj))j>o would decrease endlessly, 
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which contradicts the fact that the range of/V is in N. Because ak 2 = Qk 2<*k 1 +***> 
ak divides a*. 2 too. By backward induction over j , a* divides all the ajB, and in par­
ticular ak\gcd(a.b). Conversely, by forward induction, gcd(a,b) divides all tlie fl/S, 
and in particular a*. Therefore 

ak=gcd(a,b). 

The moral of this analysis is that the Euclidean division is a practical tool for com­
puting the gcd. We say that the calculation of the gcd is effective in a Euclidean 
domain. We can design a software to implement it on a computer. 

9.1.3 Elementary Matrices 

An elementary matrix of order n is a matrix of one of the following forms: 

• The permutation matrices: for a £ S„, the matrix Pa has entries /;,-; = 8L*. 

• The matrices /„ -I- aJgc, for a € A and 1 <i^k< n, with 

(Judim = 8f8?. 

• The diagonal invertible matrices, that is, those whose diagonal entries are inverl-
ible in A. 

We observe that the inverse of an elementary matrix is again elementary. For exam­
ple, (/„ + aJik)(I„ - aJik) = In. 

Theorem 9.1 A square invertible matrix of size n with entries in a Euclidean do­
main A is a product of elementary matrices with entries in A. 

Proof. We prove the theorem for n = 2. The general case is deduced from that 
particular one and from the proof of Theorem 9.2 below, which uses multiplications 
by block-diagonal matrices with 1 x 1 and 2 x 2 diagonal blocks. 

Let 
' a a\ 

M= , 
c d 

be given in GL2(A): we have ad — a\c eA*. If N(a) <N(a\) or A = 0, we multiply 
M on the right by 

'() 
0 

We are now in the case where a ^ 0 and cither N{a\) < N(a) or a\ = 0. Assuming 
the former, we \cta = a\q + aj be the Euclidean division of a by a\. Then 

Ml ' 0 W ' = ^ 2 " ' 
-q 1 ) V • d 
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Next, we have 

with Nfa) < N(# 1) or AT = 0. We thus construct a sequenec of matrices Mk of the 
form 

'ak-i 4t 

with cik-1 7̂  0, each one the product of the previous one by elementary matrices. 
Furthermore, either N(ak) < N(dk-i) or a* = 0. This sequence is thus finite, and 
there is a step for which a* = 0. The matrix Mk, being triangular and invertible, has 
an invertible diagonal D. Then MkD~{ has the form 

1 0 
• 1 

which is an elementary matrix. • 

Theorem 9.1 is false in general for principal ideal domains. Whether GL„(A) 
equals the group spanned by elementary matrices is a difficult question of K-lheory. 

9.2 Invariant Factors of a Matrix 

Theorem 9.2 Let M € Mnxin(A) be a matrix with entries in a principal ideal do­
main. Then there exist two invertible matrices P G GL„(A), Q £ GL„,(A) and a 
quasi-diagonal matrix D € Mnxm(A) (i.e., d\j = Ofor i ^ j) such that: 

• M = PDQ. 
• On the other hand, d\ \dj ,dj\di+\,..., where the dj are the diagonal entries 

ofD. 

Furthermore, ifM = P'r/Q' is another decomposition with these two properties, the 
scalars dj and d'- are associated. Up to invertible elements, they are thus unique. 

In other words, every matrix in M„X/„(A) is equivalent to a quasi-diagonal matrix 
with d\ \di\... 

Definition 9.4 The scalars d\,...,dr(r = min(n, m)) are called the invariant factors 
ofM. 

Proof. Uniqueness: For k<r, let us denote by Dk(N) the gcd of minors of order 
k of the matrix N € Mnxm(A). From Corollary 3.2, we have Dk(M) = Dk(D) = 
Dk{D'). It is immediate that D*(D) =d]---dk (because the minors of order k are 
cither null, or products of k terms dj with distinct subscripts), so that 

d\--dk = ukd\---d'h l<k<r, 
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for some u* € A*. Hence, d\ and d\ are associated. Because A is an integral 
domain, we also have d'k = uk~

]Uk-\dk. In other words, dy and d'k are associated. 
Existence: We have seen above that the djS are determined by the equalities 

d\ •dj = Dj(M). In particular, d\ is the gcd of the entries of M. Hence the 
first step consists in finding a matrix A/', equivalent to M, such that m\, is equal 
to this gcd. Our construction is based upon an auxiliary result. 

Lemma 13. There exists a map T : Mnxm(A) —* M„X,„(A) with the following 
properties. 

• N' :=T(N) is equivalent to N. 

• litis divisibility is either strict (i.e., n'u is not associated with n\\), or n\\ 
divides all the entries n,j. Notice that in this latter case, we have nu = 
Dl(N)=di(N). 

If A is a Euclidean domain, the map T is given by an effective algorithm; T(N) 
is obtained by multiplications ofN at left and/or right by elementary matrices. 

We argue by induction over /-. Using the lemma, we construct a sequence of 
matrices by M^ = M and then M<*+1) = T{M^). By induction, each tf(*) is 
equivalent to M. In particular, Df(M^) = D({M) and d/(M^) = dt(M) for every 
\ <£<r. 

The sequence of upper-left entries is ordered by divisibility: mu
+ \m\\. From 

Proposition 9.2, the elements of the sequence (m\, )P>Q are pairwise associated, 

once /; is large enough. From Lemma 13, we see that for some q, m], divides all 

the mjf' s. 

We have mj, = a;m\, and inf- = bjin^', therefore we set P € GL„(A) and 
(2GGL,„(A) as follows. 

• Pa = 1, pn = -cii if i > 2, pij = 0 otherwise. 
• qjj = 1, q\j = —bj if j > 2, qt} = 0 otherwise. 

The matrix M' := PM^Q is equivalent to M^q\ and hence to M. It has the form 

M' = 

/ m O - () \ 
0 

; M" 

where m divides all the entries of M". Obviously, m = D\ (M') = D\ (M). 
From the induction assumption, there exist nonsingular matrices P" (of size 
n - 1) and Q" (of size m-1) such that P"M"Q" = D" is quasi-diagonal with 
d'i\a^\- • •. Because m divides the entries of M", that is, d\ {M"), we have m\d". 
Forming the nonsingular matrices P := d\ag(\,P")P and Q := <3diag(l,g")' w^ 
infer 
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PM^Q = d\ag{m,D"). 

Therefore M is equivalent to diag(l,D"), which is a quasi-diagonal matrix with 
the required divisibility property of its diagonal elements. 

D 

Proof, (of the lemma). 
We intentionally write this proof in the algorithmic style. Given the matrix N £ 

M„X,„(A), we distinguish four cases. 

1. IF «i i does not divide some n\j, THEN take the smallest such index j . Set d := 
gcd(wn,«iy), which reads d = wi\\ +vn\j. Define w := —nij/d andz := n\\/d 
and a matrix Q e GLm(A) by: 

• 0U = u, qj\ = v, q\j = w, qjj = z. 
• qu = Sj;, otherwise. 

Then M^ := M^p~l^Q is an equivalence, and m\, =d\n\\ = m\p~ , where the 
division is strict. 

2. ELSE «n divides each mj. IF it does not divide nn, THEN take the smallest 
such index i. This case is symmetric to the previous one. Multiplication on the 

right by a suitable Pe GL„(A) furnishes M^\ with mff = gcd(»n,nn)|m^"1) 

being a strict division. 
3. ELSE «n divides each n\j and each tin. IF it does not divide some n,j with 

i,j > 2, THEN take the smallest such pair (ij) in the lexicographic ordering. 
We have nn = an\\. Define a matrix P e GL„(A) by 

• p\) =a+l,pn = \,pu = -\,pn = (). 
• pki = 8f.. otherwise. 

SetN = PN. We haveH\\ =ri\\ andFi\j = (a + l)«-iy —«,-y. Observe that fl\\ does 
not divide n\j. GOTO Step 1. 

4. ELSE n\ \ divides all the entries of the matrix N. In that case, My?) \= M^p~l\ 
D 

9.2.1 Comments 

• In the list of invariant factors of a matrix some djS may equal zero. In that case, 
dj = 0 implies dj+i = • • • = dr = 0. Moreover, some invariant factor may occur 
several times in the list d\... .,dr, up to association. The number of times that a 
factor d or its associates occurs is its multiplicity. 

• If m = n and if the invariant factors of a matrix M are ( 1 , . . . , 1), then D = /„, 
and M = PQ is invertible. Conversely, if M is invertible, then the decomposition 
M = MI„I„ shows that d\ —••• — dll— 1. 

• If 4̂ is afield, then there are only two ideals: A = (1) itself and (0). The list of in­
variant factors of a matrix is thus of the form ( 1 , . . . , 1,0,..., 0). Of course, there 
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may be no 1 s (for the matrix 0,„X/,), or no 0s. There are thus exactly min(/z,m) + 1 
classes of equivalent matrices in M„(A), two matrices being equivalent if and 
only if they have the same rank q. The rank is then the number of Is among the 
invariant factors. The decomposition M = PDQ is then called the rank decompo­
sition. 

Theorem 9.3 Let k be afield and M £ M„x m(k) a matrix. Let q be the rank of 
M, that is, the dimension of the linear subspace ofk" spanned by the columns of 
M. Then there exist two square invertibie matrices P Q such that M = PDQ with 
da =\ifi<q and dl} = 0 in all other cases. 

Theorem 9.3 can be proved more directly, arguing with bases of R(M) and of 
kerM. 

• The matrices P or Q involved in the first three steps of the proof of Theorem 
9.2 are 2 x 2 matrices, up to identity blocks. When A is Euclidean, they are thus 
products of elementary matrices. Whence the following theorem. 

Theorem 9.4 If A is Euclidean, one passes from M € Mnxi„(A) to an equivalent 
quasi-diagonal matrix with 

d\\d2,...,di\dj+\,... 

by multiplying at right and left by elementary matrices. 

9.3 Similarity Invariants and Jordan Reduction 

From now on, k denotes a field and A = k[X] the ring of polynomials over k. This 
ring is Euclidean, hence a principal ideal domain. In the sequel, the results are effec­
tive, in the sense that the normal forms that wc define arc obtained by means of an 
algorithm that uses right or left multiplications by elementary matrices of M„(/\), 
the computations being based upon the Euclidean division of polynomials. 

Given a matrix B e M„(k), a square matrix with scalar entries, we consider the 
matrix XI„ -Be M„(A), where X is the indeterminate in A. 

Definition 9.5 If B € M„(£), the invariant factors of M := XI„ - B are called in­
variant polynomials ofB, or similarity invariants ofB. 

This definition is motivated by the following statement. 

Theorem 9.5 Two matrices in M„{k) are similar if and only if they have the same 
list of invariant polynomials (counted with their multiplicities). 

This theorem is a particular case of a more general one: 

Theorem 9.6 Let AQ,A\ ,BQ,B\ be matrices in M„(k), with Ao,A\ € GL„(A:). Then 
the matrices XAQ+BQ and XA\ +B\ are equivalent (in Mn(A)) if and only if there 
exist G.H e GL„(k) such that 
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GA0 = AiH, GBQ = B\H. 

When A0 = A\ = /„, Theorem 9.6 tells us that XI„ - B0 and XI„ - B\ are 
equivalent, namely that they have the same invariant polynomials, if there exists 
P e GL„(*) such that PB0 = B\P. Whence Theorem 9.5. 

Proof. We prove Theorem 9.6. The condition is clearly sufficient. 
Conversely, if XAO+BQ and XA\ +B\ are equivalent, there exist matrices P, Q e 

GL„(A), such that P(XAO+BQ) = (XA\ +B\)Q. Because A\ is invertible, one may 
perform Euclidean division1 of P by XA\ +B\ on the right: 

P={XA]+B])P{+G, 

where G is a matrix whose entries are scalars. We warn the reader that inasmuch as 
M„(k) is not commutative. Euclidean division in MB(jfc)[3T] may be done either on 
the right or on the left, with distinct quotients and distinct remainders. It is always 
required that the coefficient of highest degree (here A\) in the divisor (here XA\ + 
B\) be an invertible matrix. Likewise, we have Q = Q\(XAO + BQ) + H with H € 
M„(k). Let us then write 

(XAl+Bl){Pi-Q])(XAo + Bo) = {XAl+Bl)H-G(XAo + B0). 

The left-hand side of this equality has degree (the degree is defined as the supremum 
of the degrees of the entries of the matrix) 2 + deg(P| - Q\), again because Ao,A \ 
are nonsingular. Meanwhile, the right-hand side has degree less than or equal to one. 
The two sides, being equal, must vanish, and we conclude that 

GAQ=A\H, GBQ = B]H. 

There remains to show that G and H arc invertible. To do so, let us define R € M„(A) 
as the inverse matrix of P (which exists by assumption). We still have 

R = {XAQ + B0)Ri +K, K€ M„(k). 

Combining the equalities stated above, we obtain 

In-GK=(XA1 +Bl)(QRl +P\K). 

Inasmuch as the left-hand side is constant and the right-hand side has degree 1 + 
deg(QR\ +P\K), we must have /„ = GK, so that G is invertible. Likewise. H is 
invertible. • 

We conclude this paragraph with a remarkable statement: 

Theorem 9.7 IfB £ Mn{k), then B and BT are similar. 

Indeed, Xln - B and XI„ - BT arc transposes of each other, and hence have the 
same list of minors, and the same invariant factors. 
1 The fact that A\ is invertible is essential, because the ring M„(/4) is not an integral domain. 
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9.3.1 Example: The Companion Matrix of a Polynomial 

Given a polynomial 
p{X)=Xn+a\X" ' + ••• + «„, 

there exists a matrix B £ M„(k) such that the list of invariant factors of the matrix 
XIa—B is ( 1 , . . . , l ,p) . We may take the companion matrix associated with p to be 

Bn~ 

1 

0 

0-a„ \ 

'•• 0 : 
0 1 -a\ J 

Naturally, any matrix similar to Bp would do as well, because if B = Q~lBpQ, then 
XIn - B is similar, hence equivalent, to XI,, - Bp. In order to show that the invariant 
factors of Bp arc the polynomials ( 1 , . . . , l ,p), we observe that XI„ - Bp possesses 
a minor of order n — 1 that is invertible, namely, the determinant of the submatrix 

f-\ X 0 0 \ 

0 

0 

v o 0 
X 

- 1 > 

obtained by deleting the first row and the last column. We thus have D„-\(X1„ -
Bp) = 1, so that the invariant factors di,...,dn-\ are all equal to 1. Hence dn = 
D„(Xl„ - Bp) = det(A7n - Bp), the characteristic polynomial of Bp% namely p. 

In this example p is also the minimal polynomial of Bp. In fact, if Q is a polyno­
mial of degree less than or equal to n — 1, 

r B - l 

the vector Q(A)el reads 

Q(X) = boX"-l+--- + bn-u 

Z?0e" + --- + V i e ' 

Hence Q(A) — 0and deg<2 <n-\ imply Q = 0. The minimal polynomial is there­
fore of degree at least /?. It is thus equal to the characteristic polynomial. 
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9.3.2 First Canonical Form of a Square Matrix 

Let M e M„(k) be a square matrix and p\....,p„ € k[X] its similarity invariants. 
The sum of their degrees nj (1 < j <n) is n. Let us denote by Af^) e Mnj(k) the 
companion matrix of the polynomial pj. Let us form the matrix A/', block-diagonal, 
whose diagonal blocks are the M^h. The few first polynomials pj are generally 
constant (wc show below that the only case where p\ is not constant corresponds 
to M = al„), and the corresponding blocks are empty, as are their bordering rows 
and columns. The actual number m of diagonal blocks is equal to the number of 
nonconstant similarity invariants. 

The matrix XItlj -M^ is equivalent to the matrix A'(/) = diag( 1,..., 1, pj), there­
fore we have 

XInj-M
{i)=P^N{j)Qu\ 

where pC/>, QU) € GL„.(k[X]). Let us form matrices P,Q € GL,,(k[X]) by 

P = diag(P<1\...,P</,>), j2 = diag(e ( I ) , . . ,G ( n ) ) . 

Wc obtain 
XIn -M' = PNQ, N = diag(N (1\... ,N{n)). 

Here A' is a diagonal matrix, whose diagonal entries are the similarity invariants 
of M, up to the order. In fact, each nonconstant pj appears in the corresponding 
block Ntft. The other diagonal terms arc the constant 1, which occurs n—m times; 
these are the polynomials p\,..., pn-m, as expected. Conjugating by a permutation 
matrix, we obtain that XI,, — M' is equivalent to the matrix diag(/?i,...,/?«). Hence 
XI,, —M' is equivalent to XI„ —M. From Theorem 9.5, M and M' are similar. 

Theorem 9.8 Let k be afield, M G M„(&) a square matrix, and p\,...,pn its sim­
ilarity invariants. Then M is similar to the block-diagonal matrix M' whose jth 
diagonal block is the companion matrix ofpj. 

The matrix M' is called the first canonical form ofM, or the Frobenius canonical 
form ofM. 

Remark 

If L is an extension of k (namely, a field containing k) and M € M„(/c), then M e 
M„(L). Let pi,...,p„ be the similarity invariants of M as a matrix with entries 
in k. Then XI,, -M = Pdiag(pi,....p,,)Q, where PQe GL„(*[*]). Because P,Q, 
their inverses, and the diagonal matrix also belong to M„(L[X]), p\,... ,p„ are the 
similarity invariants of M as a matrix with entries in L. In other words, the similarity 
invariants depend on M but not on the field k. To compute them, it is enough to 
place ourselves in the smallest possible field, namely that spanned by the entries of 
M. The same remark holds true for the first canonical form. As we show in the next 
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Aj+\ := RjQj- We then have 

AJ+l=QjlAjQj, 

which shows that Aj+j is unitarily similar to Aj. Hence, 

Aj = (Qo---QJ-i)-'A(Qo--QJ-i) (10.2) 

is conjugate to A by a unitary transformation. 
Let Pj := Qo- • -Qj-i, which is unitary. Since U„ is compact, the se­

quence (Pj)jeN possesses cluster values. Let P be one of them. Then 
A' := P~lAP = P'AP is a cluster point of (Aj)jepj. Hence, if the se­
quence {Aj)j converges, its limit is unitarily similar to A, hence has the 
same spectrum. 

This argument shows that in general, the sequence (Aj)j does not con­
verge to a diagonal matrix, because then the eigenvectors of A would be 
the columns of P. In other words, A would have an orthonormal eigenba-
sis. Namely, A would be normal. Except in this special case, one expects 
merely that the sequence {A3)j converges to a triangular matrix, an expec­
tation that is compatible with Theorem 3.1.3. But even this hope is too 
optimistic in general. For example, if A is unitary, then Aj = A for every j , 
with Qj = A and Rj = I„; in that case, the convergence is useless, since the 
limit A is not simpler than the data. We shall see later on that the reason 
for this bad behavior is that the eigenvalues of a unitary matrix have the 
same modulus: The QR method does not do a good job of separating the 
eigenvalues of close modulus. 

An important case in which a matrix has at least two eigenvalues of 
the same modulus is that of matrices with real entries. If A G M„(1R), 
then each Qj is real orthogonal, Rj is real, and A, is real. This is seen by 
induction on j . A limit A' will not be triangular if some eigenvalues of A 
are nonreal, that is, if A possesses a pair of complex conjugate eigenvalues. 

Let us sum up what can be expected in a brave new world. If all the 
eigenvalues of A G M„(C) have distinct moduli, the sequence (Aj)j might 
converge to a triangular matrix, or at least its lower triangular part might 
converge to 

/ A , \ 
0 A2 

\ 0 ••• 0 \„ ) 

When A € M„(1R), one makes the following assumption. Let p be the 
number of real eigenvalues and 2q that of nonreal eigenvalues; then there 
are p + q distinct eigenvalue moduli. In that case, (Aj)j might converge to 
a block-triangular form, the diagonal blocks being 2 x 2 or 1 x 1. The limits 
of the diagonal blocks provide trivially the eigenvalues of A. 
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(because pj divides /?„), where the oc(j.k) are nondecreasing with respect to j , inas­
much as pj divides pj+ \. 

Definition 9.6 The elementary divisors of the matrix M € M„(k) are the polyno­
mials q" for which the exponent a(j,k) is nonzero. The multiplicity of an ele­
mentary divisor cfj! is the number of solutions j of the equation oc(j.k) = m. The 
list of elementary divisors is the sequence of these polynomials, repeated with their 
multiplicities. 

Let us begin with the case of the companion matrix N of some polynomial p. 
Its similarity invariants are ( 1 , . . . , 1, p) (see above). Let r\t..., r, be its elementary 
divisors (we observe that each has multiplicity one). We then have p = r\ • • • rt, and 
the r/s arc pairwise coprime. With each /•/ we associate its companion matrix N/, and 
we form a block-diagonal matrix N' := diag(/Vi,...,N,). Hach Ni -Xl\ is equivalent 
to a diagonal matrix 

/ I \ 

V nj 
in M„m(fc[X]), therefore the whole matrix N' -Xl„ is equivalent to 

/ I \ 

O 

Q:= 
1 

n 
0 

\ ></ 

Let us now compute the similarity invariants of N', that is, the invariant factors of 
Q. It is enough to compute the greatest common divisor D„ \ of the minors of size 
n — 1. Taking into account the principal minors of Q, we see that Dn-\ must divide 
every product of the form 

Y[n, \<k<t. 

Because the /vs are pairwise coprime. this implies that D„_i = 1. This means that the 
list of similarity invariants of N' has the form ( 1 , . . . , 1,), where the last polynomial 
must be the characteristic polynomial of /V'. This polynomial is the product of the 
characteristic polynomials of the Afys. These being equal to the r/s, the characteristic 
polynomial of W is p. Finally, /V and N' have the same similarity invariants and are 
therefore similar. 
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Now let M be a general matrix in M„(k). We apply the former reduction to ev­
ery diagonal block Mj of its Frobenius canonical form. Each Mj is similar to a 
block-diagonal matrix whose diagonal blocks are companion matrices correspond­
ing to the elementary divisors of M entering into the factorization of the y'th invariant 
polynomial of M. We have thus proved the following statement. 

Theorem 9.10 Let r\,...,rs be the elementary divisors of M G M„(k). Then M is 
similar to a block-diagonal matrix M' whose diagonal blocks are companion matri­
ces of the /-/.v. 

The matrix M' is called the second canonical form ofM. 

Remark 

The exact computation of the second canonical form of a given matrix is impos­
sible in general, in contrast to the case of the first form. Indeed, if there were an 
algorithmic construction, it would provide an algorithm for factorizing polynomials 
into irreducible factors via the formation of the companion matrix, a task known to 
be impossible if k = R or C. Recall that one of the most important results in Ga­
lois theory, known as Abel's theorem, states the impossibility of solving a general 
polynomial equation of degree at least five with complex coefficients, using only the 
basic operations and the extraction of roots of any order. 

9.3.4 Jordan Form of a Matrix 

If the characteristic polynomial splits over k, which holds for instance when the 
field k is algebraically closed, the elementary divisors have the form (X -a)r for 
a G k and r > 1. In that case, the second canonical form can be greatly simplified by 
replacing the companion matrix of the monomial (X -a)r by its Jordan block 

(a 1 0 ••• 0 \ 

0 "•• '•• '•• 

J(a;r):= -. 0 

\ 0 0 a) 

The characteristic polynomial of J{a;r) (an rxr triangular matrix) is {X -a)r, 
whereas the matrixXlr—J(a\ r) possesses an invenible minor of order r— 1, namely 
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/ - 1 0 ••• 0 \ 

X-a'-. '•• : 

X-a - 1 / 

which we obtain by deleting the first column and the last row. Again, this shows 
that D„_i(X/r — J) = 1, so that the invariant factors d\....,dr-\ are equal to 1. 
Hence dr = D,{XIr - J) = det(X/r - J) = (X - a)r. Its invariant factors are thus 
1,..., 1, (X — a)r, as required, hence the following theorem. 

Theorem 9.11 When an elementary divisor ofM is (X — a)r, one may, in the second 
canonical form ofM, replace its companion matrix by the Jordan block J{a\r). 

Corollary 9.1 If the characteristic polynomial ofM splits over k, then M is similar 
to a block-diagonal matrix whose jth diagonal block is a Jordan block J{ay,rj). 
This form is unique, up to the order of blocks. 

Corollary 9.2 Ifk is algebraically closed (e.g., ifk = C), then evety square matrix 
M is similar to a block-diagonal matrix whose jth diagonal block is a Jordan block 
J(ay,rj). This form is unique, up to the order of blocks. 

Exercises 

1. Show that every principal ideal domain is a unique factorization domain. 
2. Verify that the characteristic polynomial of the companion matrix of a polyno­

mial p is equal to p. 
3. Let k be a field and M e M„(k). Show that M, MT have the same rank and 

that in general, the rank of Ml M is less than or equal to that of M. Show that 
the equality of these ranks always holds if k = R, but that strict inequality is 
possible, for example with k = C. 

4. Compute the elementary divisors of the matrices 

22 23 10 - 9 8 \ 
12 18 16 -38 

-15 - 1 9 - 1 3 58 
6 7 4 - 2 5 / 

/ 0 - 2 1 - 5 6 - 9 6 \ 
18 36 52 - 8 

- 1 2 - 1 7 -16 38 
\ 3 2 - 2 - 2 0 / 

and 
/ 44 89 120 -32 \ 

0 - 1 2 - 3 2 - 5 6 
-14 - 2 0 -16 49 

\ 8 14 16 - 1 6 / 

in M„(C). What arc their Jordan reductions? 
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5. (Lagrange's theorem.) 
Let K be a field and A £ M„(K). Let X, Y € K" be vectors such that XTAY ^ 0. 
We normalize by XT AY = 1 and define 

B:=A-(AY)(XTA). 

Show that in the factorization 

PAQ={oolr)'
 p.26GL»W, 

one can choose Y as the first column of Q and X1 as the first row of P. Deduce 
thatrkfi = r k / i - l . 
More generally, show that if XJ e Mnxm(K) are such that XTAY e GLm(K), 
then the rank of 

B :=A - {AY){XT AY)~\XT A), 

equals rkA -m. 
If A G Sym„(M) and if A is positive-semidefinite, and if X = Y, show that B is 
also positive-semidefinite. 

6. For A e M„(C), consider the linear differential equation in C" 

a. Let P € GL„(C) and let / ^ x{t) be a solution of (9.1). What is the differ­
ential equation satisfied by /1-» Px(t)1 

b. Let (X — a)m be an elementary divisor of A. Show that for every k = 
(),...,m — 1, (9.1) possesses solutions of die form tmQk{t), where Qk is 
a complex-valued polynomial map of degree k. 

7. Consider the following differential equation of order n in C: 

x{"Hl)+alX
{"-l){t) + ---+anx{t)=0. (9.2) 

a. Define p(X) = X" + ci\X" ' -| \-a„ and let M be the companion matrix 
of p. Let 

p(X) = l\(X-ay« 
ad A 

be the factorization of/? into irreducible factors. Compute the Jordan form 
ofM. 

b. Using either the previous exercise or arguing directly, show that the set of 
solutions of (9.2) is spanned by the solutions of the form 

t^ea'R(t), R€C[X], degR<n„. 

8. Consider a linear recursion of order n in a field K 
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Um+„ +aiUm+n-1 H h a„Um = 0, OT € N. (9.3) 

We assume that /? splits over /Y and use the notation of the previous exercise. 
Show that the set of solutions of (9.3) is spanned by the solutions of the form 

(fl"'/?(m)WN, ReK[X], 6egR<na. 

9. Let n > 2 and let M € M„(Z) be the matrix defined by my =i+j—l: 

M = 

( \ 2 ••• 

2 .-" .-" 

2/2-1 J 

a. Show that M has rank 2 (you may look for two vectors x,y 6 Z" such that 
mij=xiKj-yiyj). 

b. Compute the invariant factors of M in M„(Z) (the equivalent diagonal form 
is obtained after five elementary operations). 

10. The ground field is C. 

a. Define 

N = J(0;n), B = 

( ... 0 1 \ 

: . • " . • • ( ) 

0.- ' .•' : 
VI 0 ... / 

1 
Compute NB, BN, and BNB. Show that 5 := —=(I + \B) is unitary, 

b. Deduce that /V is similar to 

c. Deduce that every matrix M e M„(C) is similar to a complex symmetric 
matrix. Compare with the real case. 

11. Let k be a field and A e M„(k), B e M,„(k), C G Mnxm(k) be given matrices. 
If the equation AX -XB = C is solvable, prove that the following (n+m) x 
(n+m) matrices are similar, 

(0 1 0 . . . 0 \ ( ° ' . 0 - i ( A 

1 '• •' I 

o '• '•. o i 
+ 2 

0 . 
1 

•" 0 

V O . . . 0 
• • • 1 

1 0) 
— 1 . 

V o 0 . .oy 
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D.= (A0) T-=(AC 

We now prove the converse, following Flanders and Wiminer. Thus we assume 
that D and T are similar. 

a. We define two homomorphisms 0/ of M„+m(k): 

<tH){K):=DK-KD, fa{K) :=TK - KD. 

Prove that the kernels of (j)\ and 0n are isomorphic, hence of equal dimen­
sions. Hint: This is where we use the assumption. 

b. Let E be the subspace of Mmxin+m\(k), made of matrices (R.S) such that 

BR = RA, BS = SB. 

Verify that if 

* :"(*?)€ t a r*' 0-0orl)« 
then (R,S) € E. This allows us to define the projections ff/(£) := {R-.S), 
from kcr0y to£. 

c. Verify that ker^o = kcr/ii, and therefore R(jUo) and /?(/ii) have equal di­
mensions. 

d. Deduce that fj.\ is onto. 
e. Show that there exists a matrix in ker <j>], of the form 

P X 

x0-/„ 

Conclude. 

12. Let m,n > 1 and A e GL„(k), B e GL,„(k), G,H e Mmxn{k) be given. Let us 
define R :=A-GTBH and S:=B ' - / / A lGT. 

a. Show that the following matrices are equivalent within Mm+n(k), 

B~l H\ //r1 0\ (SO 
GT A J1 \ 0 RJ ' \0/ l 

b. Deduce the equality 
rk/? —rkS = » - w. 

13. Let ^ denote the Euler indicator, 0(m) is the number of integers less than in that 
are prime to w. We recall the formula 

I>(<0 = «• 
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In the sequel, we define the n x n matrices G (for gcd), <J> and D (for divisibility) 
by 

gi;:=gcd(U), *:=diag(«(l),...,*(*)), 4 / : = { j ^ 

a. Prove that DT<PD = G. 
b. Deduce the Smith determinant formula: 

dei((gcd(ij))h<ij<n = <t>(\)<t)(2)---<t>(n). 

c. Compute the invariant factors of G as a matrix of M„(Z), for small values 
of n. Say up to n — 10. 

14. Prove Theorem 9.3 directly. 
15. Theorem 9.2 tells us that Dk(M)2 divides D*-i(Af)D*+i(Af) and therefore di­

vides every product of minors of respective sizes k - 1 and k+ \. This is not 
obvious a priori. We verify this directly for k = 2. 

a. We compute modulo the ideal generated by D2{M)2. Assume that nfm > 4. 
Show that 

U /12 3\ *J42^ 
1 2 3 / - " " - " ^123 

b. Using the result above three times, together with 

M['1 ' 2 / 3 U - M ' ' 2 / 1 ' 3 

j \ n tej v./i n n 
prove that 

W ' 1 2 3/ = ~m^M\ ] 2 3 

c. Conclude. 





Chapter 10

Exponential of a Matrix, Polar Decomposition,

and Classical Groups

Polar decomposition and exponentiation are fundamental tools in the theory of
finite-dimensional Lie groups and Lie algebras. We do not consider these notions
here in their full generality, but restrict attention to their matricial aspects.

10.1 The Polar Decomposition

The polar decomposition of matrices is defined by analogy with that in the complex
plane: if z ∈ C∗, there exists a unique pair (r,q) ∈ (0,+∞)×S1 (S1 denotes the unit
circle, the set of complex numbers of modulus 1) such that z = rq. If z acts on C (or
on C∗) by multiplication, this action can be decomposed as the product of a rotation
of angle θ (where q = exp(iθ)) with a homothety of ratio r > 0. The fact that these
two actions commute is a consequence of the commutativity of the multiplicative
group C∗; this commutation is false for the polar decomposition in GLn(k), k = R

or C, because the general linear group is not commutative.
The factors (0,+∞) and S1 are replaced by HPDn, the open cone of matrices of

Mn(C) that are Hermitian positive-definite, and the unitary group Un. In Mn(R),
we play instead with SPDn, the set of symmetric positive-definite matrices, and the
orthogonal group On. The groups Un and On are compact, because they are closed
and bounded in Mn(K = R,C). The columns of unitary matrices are unit vectors,
so that Un is bounded. On the other hand, Un is defined by an equation U∗U = In,
where the map U �→U∗U is continuous; hence Un is closed. By the same arguments,
On is compact.

Theorem 10.1 For every M ∈ GLn(C), there exists a unique pair

(H,Q) ∈ HPDn×Un

such that M = HQ. If M ∈ GLn(R), then (H,Q) ∈ SPDn ×On.

183D. Serre, Matrices, Graduate Texts in Mathematics 216,
DOI 10.1007/978-1-4419-7683-3_10, © Springer Science+Business Media, LLC 2010
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The map M �→ (H,Q), called the polar decomposition of M, is a homeomorphism
(i.e., a bicontinuous bijection) between GLn(C) and HPDn ×Un (respectively, be-
tween GLn(R) and SPDn×On).

Proof. Existence. Because MM∗ ∈ HPDn, we can set H :=
√

MM∗ (the square
root was defined in Section 6.1). Then Q := H−1M satisfies Q∗Q = M∗H−2M =
M∗(MM∗)−1M = In, hence Q ∈ Un.
In the real case (M ∈ GLn(R)), MM∗ is real symmetric. In fact, H is real sym-
metric. Hence Q is real orthogonal.

Uniqueness. Let M = HQ be a polar decomposition, then MM∗ = HQQ∗H = H2.
Because of the uniqueness of the positive-definite square root, we have H =√

MM∗ and thus Q = H−1M.
Smoothness. The map (H,Q) �→ HQ is polynomial, hence continuous. Con-

versely, it is enough to prove that M �→ (H,Q) is sequentially continuous, because
GLn(C) is a metric space. Let (Mk)k∈N be a convergent sequence in GLn(C),
with limit M. Let us denote by Mk = HkQk and M = HQ their respective po-
lar decompositions. Because Un is compact, the sequence (Qk)k∈N admits a
cluster point R, that is, a limit of some subsequence (Qk�

)l∈N, with k� → +∞.
Then Hk�

= Mk�
Q∗

k�
converges to S := MR∗. The matrix S is Hermitian positive-

semidefinite (because it is the limit of the Hk�
s) and invertible (because it is the

product of M and R∗). It is thus positive-definite. Hence, SR is a polar decompo-
sition of M. The uniqueness part ensures that R = Q and S = H. The sequence
(Qk)k∈N, which is relatively compact and has at most one cluster point (namely
Q), converges to Q. Finally, Hk = MkQ∗

k converges to MQ∗ = H.
��

Remark

There is as well a polar decomposition M = QH with the same properties. We may
speak of left- and right-polar decomposition. We use one or the other depending
on the context. We warn the reader that for a given matrix, the H-factors in both
decompositions do not coincide. For example, in M = HQ, H is the square root of
MM∗, although in M = QH, it is the square root of M∗M. However, the Q-factors
coincide.

10.2 Exponential of a Matrix

The ground field is here k = C. By restriction, we can also treat the case k = R.
Because z �→ expz is holomorphic over C, we may define exp(A) for every matrix
through the functional calculus developed in Section 5.5. However, it is more ef-
ficient to give an explicit definition of expA by using the exponential series. Both
ways are, of course, equivalent.
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For A in Mn(C), the series
∞

∑
k=0

1
k!

Ak

converges normally (which means that the series of norms is convergent), because
for any matrix norm, we have

∞

∑
k=0

∥∥∥∥ 1
k!

Ak
∥∥∥∥≤ ∞

∑
k=0

1
k!
‖A‖k = exp‖A‖.

Because Mn(C) is complete, the series is convergent, and the estimation above
shows that it converges uniformly on every bounded set. Its sum, denoted by expA,
thus defines a continuous map exp : Mn(C)→Mn(C), called the exponential. When
A ∈ Mn(R), we have expA ∈ Mn(R).

Given two matrices A and B in the general position, the binomial formula is not
valid: (A+B)k does not necessarily coincide with

j=k

∑
j=0

(
k
j

)
AjBk− j.

It thus follows that exp(A+B) differs in general from expA · expB. A correct state-
ment is the following.

Proposition 10.1 Let A,B∈Mn(C) be commuting matrices; that is, AB = BA. Then
exp(A+B) = (expA)(expB).

Proof. The proof is exactly the same as for the exponential of complex numbers.
We observe that because the series defining the exponential of a matrix is normally
convergent, we may compute the product (expA)(expB) by multiplying term by
term the series

(expA)(expB) =
∞

∑
j,k=0

1
j!k!

AjBk.

In other words,

(expA)(expB) =
∞

∑
�=0

1
�!

C�,

where
C� := ∑

j+k=�

�!
j!k!

AjBk.

From the assumption AB = BA, we know that the binomial formula holds. Therefore,
C� = (A+B)�, which proves the proposition. ��

Noting that exp0n = In and that A and −A commute, we derive the following
consequence.

Corollary 10.1 For every A∈Mn(C), expA is invertible, and its inverse is exp(−A).
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Given two conjugate matrices B = P−1AP, we have Bk = P−1AkP for each integer
k and thus

exp(P−1AP) = P−1(expA)P. (10.1)

If D = diag(d1, . . . ,dn) is diagonal, we have expD = diag(expd1, . . . ,expdn). Of
course, this formula, or more generally (10.1), can be combined with Jordan reduc-
tion in order to compute the exponential of a given matrix. Let us keep in mind,
however, that Jordan reduction cannot be carried out explicitly.

Let us introduce a real parameter t and define a function g by g(t) = exp tA. From
Proposition 10.1, we see that g satisfies the functional equation

g(s+ t) = g(s)g(t). (10.2)

We have g(0) = In and

g(t)−g(0)
t

−A =
∞

∑
k=2

tk−1

k!
Ak.

Using any matrix norm, we deduce that∥∥∥∥g(t)−g(0)
t

−A
∥∥∥∥≤ e‖tA‖ −1−‖tA‖

|t| ,

from which we obtain

lim
t→0

g(t)−g(0)
t

= A.

We conclude that g has a derivative at t = 0, with g′(0) = A. Using the functional
equation (10.2), we then obtain that g is differentiable everywhere, with

g′(t) = lim
s→0

g(t)g(s)−g(t)
s

= g(t)A.

We observe that we also have

g′(t) = lim
s→0

g(s)g(t)−g(t)
s

= Ag(t).

From either of these differential equations we see that g is actually infinitely differ-
entiable. We retain the formula

d
dt

exp tA = Aexp tA = (exp tA)A. (10.3)

This differential equation is sometimes the most practical way to compute the expo-
nential of a matrix. This is of particular relevance when A has real entries and has at
least one nonreal eigenvalue, if one wishes to avoid the use of complex numbers.

Proposition 10.2 For every A ∈ Mn(C),
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detexpA = expTrA. (10.4)

Proof. We begin with a reduction of A of the form A = P−1T P, where T is upper-
triangular. Because T k is still triangular, with diagonal entries equal to tk

j j, expT is
triangular too, with diagonal entries equal to expt j j. Hence

detexpT = ∏
j

exp t j j = exp∑
j

t j j = expTrT.

This is the expected formula, inasmuch as expA = P−1(expT )P and TrA = TrT .
��

Because (M∗)k = (Mk)∗, we have (expM)∗ = exp(M∗). In particular, the expo-
nential of a skew-Hermitian matrix is unitary, for then

(expM)∗ expM = exp(M∗)expM = exp(−M)expM = In.

Likewise, the exponential of an Hermitian matrix is Hermitian positive-definite,
because

expM =
(

exp
1
2

M
)2

=
(

exp
1
2

M
)∗

exp
1
2

M

and the fact that exp(M/2) is nonsingular. This calculation also shows that if M is
Hermitian, then √

expM = exp
1
2

M.

We have the following more accurate statement.

Proposition 10.3 The map exp : Hn → HPDn is a homeomorphism.

Proof. Injectivity: Let A,B ∈ Hn with expA = expB =: H. Then

exp
1
2

A =
√

H = exp
1
2

B.

By induction, we have

exp2−mA = exp2−mB, m ∈ Z.

Subtracting In, multiplying by 2m, and passing to the limit as m→+∞, we obtain

d
dt

∣∣∣∣
t=0

exp tA =
d
dt

∣∣∣∣
t=0

exp tB;

that is, A = B.
Surjectivity: Let H ∈ HPDn be given. Then H = U∗ diag(d1, . . . ,dn)U , where U

is unitary and dj ∈ (0,+∞). From above, we know that H = expM for

M := U∗ diag(logd1, . . . , logdn)U,
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which is Hermitian.
Continuity: The continuity of exp has already been proved. Let us investigate the

continuity of the reciprocal map. Let (H�)�∈N be a sequence in HPDn that con-
verges to H ∈ HPDn. We denote by M�,M ∈ Hn, the Hermitian matrices whose
exponentials are H� and H. The continuity of the spectral radius gives

lim
�→+∞

ρ(H�) = ρ(H), lim
�→+∞

ρ
(
(H�)−1

)
= ρ

(
H−1) . (10.5)

Because Sp(M�) = logSp(H�), we have

ρ(M�) = logmax
{

ρ(H�),ρ
(
(H�)−1

)}
. (10.6)

Keeping in mind that the restriction to Hn of the induced norm ‖ · ‖2 coincides
with that of the spectral radius ρ , we deduce from (10.5) and (10.6) that the se-
quence (M�)l∈N is bounded. If N is a cluster point of the sequence, the continuity
of the exponential implies expN = H. But the injectivity shown above implies
N = M. The sequence (M�)l∈N, bounded with a unique cluster point, is conver-
gent.
��

10.3 Structure of Classical Groups

Proposition 10.4 Let G be a subgroup of GLn(C). We assume that G is stable un-
der the map M �→ M∗ and that for every M ∈ G∩HPDn, the square root

√
M is

an element of G. Then G is stable under polar decomposition. Furthermore, polar
decomposition is a homeomorphism between G and

(G∩Un)× (G∩HPDn).

This proposition applies in particular to subgroups of GLn(R) that are stable
under transposition and under extraction of square roots in SPDn. One has then

G homeo∼ (G∩On)× (G∩SPDn).

Proof. Let M ∈ G be given and let HQ be its polar decomposition. Because MM∗ ∈
G ·G = G, we have H2 ∈ G, hence H ∈ G by assumption. Finally, we have Q =
H−1M ∈ G−1 ·G = G. An application of Theorem 10.1 finishes the proof. ��

We apply this general result to the classical groups U(p,q), O(p,q) (where n =
p + q) and Spm (where n = 2m). These are, respectively, the unitary group of the
Hermitian form |z1|2 + · · ·+ |zp|2−|zp+1|2−·· ·−|zn|2, the orthogonal group of the
quadratic form x2

1 + · · ·+ x2
p − x2

p+1 −·· ·− x2
n, and the symplectic group. They are

defined by G = {M ∈Mn(k) |M∗JM = J}, with k = C for U(p,q), k = R otherwise.
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The matrix J equals (
Ip 0p×q

0q×p −Iq

)
,

for U(p,q) and O(p,q), and (
0m Im
−Im 0m

)
,

for Spm. In each case, J2 =±In.

Proposition 10.5 Let J be a complex n× n matrix satisfying J2 = ±In. The sub-
group G of Mn(C) defined by the equation M∗JM = J is invariant under polar
decomposition. If M ∈ G, then |detM|= 1.

Proof. Let M ∈G. Then detJ = detM∗ detM detJ; that is, |detM|2 = 1. In particular
M is nonsingular. Then we have

M−∗JM−1 = M−∗(M∗JM)M−1 = J,

thus M−1 ∈ G. If M,N ∈ G, we also have

(MN)∗J(MN) = N∗(M∗JM)N = N∗JN = J

and again MN ∈ G. Thus G is a group.
For stability under adjunction, let us write, for M ∈ G,

M∗JM(JM∗) = J2M∗ =±M∗ = M∗J2.

Simplifying by M∗J on the left, there remains MJM∗ = J; that is, M∗ ∈ G.
Because G is a group, M ∈ G implies Mk ∈ G; that is, (M∗)kJ = JM−k for

every k ∈ N. By linearity, it follows that p(M∗)J = Jp(M−1) holds for every
polynomial p ∈ R[X ]. Let us assume in addition that M ∈ HPDn. We then have
M = U∗ diag(d1, . . . ,dn)U , where U is unitary and the djs are positive real numbers.
Let A be the set formed by the numbers dj and 1/d j. There exists a polynomial p
with real entries such that p(a) =

√
a for every a ∈ A. Then we have p(M) =

√
M

and p(M−1) =
√

M
−1

. Because M∗ = M, we also have p(M)J = Jp(M−1); that is,√
MJ = J

√
M

−1
. Hence

√
M ∈ G. From Proposition 10.4, G is stable under polar

decomposition. ��
This leads us to our main result.

Theorem 10.2 Under the hypotheses of Proposition 10.5, the group G is homeo-
morphic to (G∩Un)×Rd, for a suitable integer d.

Comments

• Of course, if G = O(p,q) or Spm, the subgroup G∩Un can also be written as
G∩On.
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• We call G∩Un a maximal compact subgroup of G, because one can prove that it
is not a proper subgroup of a compact subgroup of G. Another deep result, which
is beyond the scope of this book, is that every maximal compact subgroup of G is
a conjugate of G∩Un. In the sequel, when speaking about the maximal compact
subgroup of G, we always have in mind G∩Un.

• In practice, the maximal compact subgroup is both homeo- and iso-morphic to
some simpler classical group.

10.3.1 Calculation Trick

According to Theorem 10.2, one important step in the study of a classical group G
is the calculation of G∩Un. Both the definitions of G and of Un are quadratic, thus
nonlinear. However, the calculation can be done linearly, in part: If M ∈ G∩Un,
then we have M∗JM = J and M∗ = M−1, whence the linear equation

JM = MJ. (10.7)

The elements of G∩Un are precisely the unitary matrices satisfying (10.7). This
equation gives easy information about the blocks of M. There remains to describe
the unitary matrices that have a rather simple prescribed block form.

Proof. (of Theorem 10.2.)
According to Proposition 10.4, the proof amounts to showing that the factor G∩

HPDn is homeomorphic to some Rd . To do this, we define

G := {N ∈ Mn(k) | exp tN ∈ G, ∀t ∈ R}.

Lemma 14. The set G defined above satisfies

G = {N ∈ Mn(k) |N∗J + JN = 0n}.

Proof. If N∗J + JN = 0n, let us set M(t) = exp tN. Then M(0) = In and, thanks to
(10.3)

d
dt

M(t)∗JM(t) = M∗(t)(N∗J + JN)M(t) = 0n,

so that M(t)∗JM(t)≡ J. We thus have N ∈ G . Conversely, if M(t) := exp tN ∈G for
every t, then the derivative at t = 0 of M∗(t)JM(t) = J gives N∗J + JN = 0n. ��
Lemma 15. The map exp : G ∩Hn → G∩HPDn is a homeomorphism.

Proof. We must show that exp : G ∩Hn →G∩HPDn is onto. Let M ∈G∩HPDn and
let N be the Hermitian matrix such that expN = M. Let p ∈ R[X ] be a polynomial
with real entries such that for every λ ∈ SpM∪SpM−1, we have p(λ ) = logλ . Such
a polynomial exists, because the numbers λ are real and positive.

Let N = U∗DU be a unitary diagonalization of N. We have
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M = expN = U∗(expD)U and M−1 = exp(−N) = U∗ exp(−D)U.

Hence, p(M) = N and p(M−1) = −N. However, M ∈ G implies MJ = JM−1, and
therefore q(M)J = Jq(M−1) for every q ∈ R[X ]. With q = p, we obtain NJ =−JN.
��

These two lemmas complete the proof of the theorem, because G ∩Hn is an R-
vector space. The integer d mentioned in the theorem is its dimension. ��

We warn the reader that neither G nor Hn is a C-vector space. We present exam-
ples in the next section which show that G ∩Hn can be naturally R-isomorphic to
a C-vector space, which is a source of confusion. One therefore must be cautious
when computing d.

The reader eager to learn more about the theory of classical groups is advised to
have a look at the book of Mneimné and Testard [30] or the one by Knapp [26].

10.4 The Groups U(p,q)

Let us begin with the study of the maximal compact subgroup of U(p,q). If M ∈
U(p,q)∩Un, let us write M blockwise:

M =
(

A B
C D

)
,

where A ∈ Mp(C), and so on. As discussed above, we have (10.7); here(
Ip 0
0 −Iq

)(
A B
C D

)
=
(

A B
C D

)(
Ip 0
0 −Iq

)
,

which yields B = 0 and C = 0 : M is block diagonal. Then M is unitary if and only
if A and D are so. This shows that the maximal compact subgroup of U(p,q) is
isomorphic (not only homeomorphic) to Up×Uq.

Next, G ∩Hn is the set of matrices

N =
(

A B
B∗ D

)
,

where A ∈ Hp, D ∈ Hq, which satisfy NJ +JN = 0n; that is, A = 0p, D = 0q. Hence
G ∩Hn is R-isomorphic to Mp×q(C). One therefore has d = 2pq.

Proposition 10.6 The unitary group U(p,q) is homeomorphic to Up ×Uq ×R2pq.
In particular, U(p,q) is connected.

There remains to show connectedness. It is a straightforward consequence of the
following lemma.

Lemma 16. The unitary group Un is connected.
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Inasmuch as GLn(C) is homeomorphic to Un ×HPDn (via polar decomposition),
hence to Un ×Hn via the exponential), it is equivalent to the following statement.

Lemma 17. The linear group GLn(C) is connected.

Proof. Let M ∈ GLn(C) be given. Define A := C\{(1−λ )−1|λ ∈ Sp(M)}, which
is arcwise connected because its complement is finite. The set A contains the origin
and the point z = 1, because 0 �∈ Sp(M). There exists a path γ joining 0 to 1 in A : γ ∈
C ([0,1];A), γ(0) = 0, and γ(1) = 1. Let us define M(t) := γ(t)M +(1− γ(t))In. By
construction, M(t) is invertible for every t, and M(0) = In, M(1) = M. The connected
component of In is thus all of GLn(C). ��

10.5 The Orthogonal Groups O(p,q)

The analysis of the maximal compact subgroup and of G ∩Hn for the group O(p,q)
is identical to that for U(p,q). On the one hand, O(p,q)∩On is isomorphic to Op×
Oq. However, G ∩Hn is isomorphic to Mp×q(R), which is of dimension d = pq.

Proposition 10.7 Let n≥ 1. The group O(p,q) is homeomorphic to Op×Oq×Rpq.
The number of its connected components is two if p or q is zero, four otherwise.

Proof. We must show that On has two connected components. It is the disjoint union
of SOn (matrices of determinant +1) and of O−

n (matrices of determinant −1). Be-
cause O−

n = M ·SOn for any matrix M ∈ O−
n (e.g., a hyperplane symmetry), there

remains to show that the special orthogonal group SOn is connected, in fact arcwise
connected. We use the following property:

Lemma 18. Given M ∈ On, there exists Q ∈ On such that the matrix Q−1MQ has
the form ⎛

⎜⎜⎜⎜⎝
(·) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 (·)

⎞
⎟⎟⎟⎟⎠ , (10.8)

where the diagonal blocks are of size 1×1 or 2×2 and are orthogonal. The 1×1
blocks are (±1), whereas those of size 2×2 are rotation matrices:(

cosθ sinθ
−sinθ cosθ

)
. (10.9)

Let us apply Lemma 18 to M ∈ SOn. The determinant of M, which is the product
of the determinants of the diagonal blocks, equals (−1)m, m being the multiplicity of
the eigenvalue −1. Because detM = 1, m is even, and we can assemble the diagonal
−1s pairwise in order to form matrices of the form (10.9), with θ = π . Finally, there
exists Q ∈ On such that
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M = QT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
cosθ1 sinθ1
−sinθ1 cosθ1

)
0 · · · · · · · · · 0

0
. . . . . .

...
...

. . .
(

cosθr sinθr
−sinθr cosθr

)
. . . 0

...
. . . 1

. . .
...

...
. . . . . . 0

0 · · · · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q.

Let us now define a matrix M(t) by the same formula, in which we replace the
angles θ j by tθ j . We thus obtain a path in SOn, from M(0) = In to M(1) = M. The
connected component of In is thus the whole of SOn. ��

We now prove Lemma 18. As an orthogonal matrix, M is normal. From Theorem
5.5, it decomposes into a matrix of the form (10.8), the 1×1 diagonal blocks being
the real eigenvalues. These eigenvalues are ±1, inasmuch as M is orthogonal. The
diagonal blocks 2× 2 are direct similitude matrices. However, they are isometries,
because Q−1MQ is orthogonal. Hence they are rotation matrices.

10.5.1 Notable Subgroups of O(p,q)

We describe here the four connected components of O(p,q) when p,q ≥ 1.
Let us write M ∈ O(p,q) blockwise

M =
(

A B
C D

)
,

where A ∈ Mp(R), and so on. When writing MT JM = J, we find in particular
AT A = CTC + Ip, as well as DT D = BT B + Iq. From the former identity, AT A is
larger than Ip as a symmetric matrix, hence detA cannot vanish. More precisely,
|detA| ≥ 1. Likewise, the latter shows that detD does not vanish. The continuous
map M �→ (detA,detD) thus sends O(p,q) to ((−∞,−1]∪ [1,+∞))2. The sign map
from (−∞,−1]∪ [1,+∞) to {−,+} is continuous, therefore we define a continuous
function

O(p,q) σ−→ {−,+}2 ∼ (Z/2Z)2 ,

M �→ (sgndetA,sgndetD).

The diagonal matrices whose diagonal entries are ±1 belong to O(p,q). It fol-
lows that σ is onto. Because σ is continuous, the preimage Gα of an element α
of {−,+}2 is the union of some connected components of O(p,q). Let n(α) be the
number of these components. Then n(α)≥ 1 (σ being onto), and ∑α n(α) equals 4,
the number of connected components of O(p,q). There are four terms in this sum,
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therefore we obtain n(α) = 1 for every α . Finally, the connected components of
O(p,q) are the Gα s, where α ∈ {−,+}2.

The left multiplication by an element M of O(p,q) is continuous, bijective,
and its inverse (another multiplication) is continuous. It thus induces a permuta-
tion of the set π0 of connected components of O(p,q). Because σ induces a bi-
jection between π0 and {−,+}2, there exists a permutation qM of {−,+}2 such
that σ(MM′) = qM(σ(M′)). Likewise, the multiplication at the right by M′ is a
homeomorphism, whence another permutation pM′ of {−,+}2 such that σ(MM′) =
pM′(σ(M)). The equality

pM′(σ(M)) = qM(σ(M′))

shows that pM and qM actually depend only on σ(M). In other words, σ(MM′)
depends only on σ(M) and σ(M′). A direct evaluation in the special case of matrices
in O(p,q)∩On(R) leads to the following conclusion.

Proposition 10.8 (p,q ≥ 1) The connected components of G = O(p,q) are the sets
Gα := σ−1(α), defined by α1 detA > 0 and α2 detD > 0, when a matrix M is written
blockwise as above. The map σ : O(p,q)→{−,+}2 is a surjective group homomor-
phism; that is, σ(MM′) = σ(M)σ(M′). In particular:

1. G−1
α = Gα .

2. Gα ·Gα ′ = Gαα ′ .

Remark

The map σ admits a right inverse, namely

α �→ Mα := diag(α1,1, . . . ,1,α2).

The group O(p,q) is therefore the semidirect product of G++ with (Z/2Z)2.
We deduce immediately from the proposition that O(p,q) possesses five open

and closed normal subgroups, the preimages of the five subgroups of (Z/2Z)2:

• O(p,q) itself.
• G++, which we also denote by G0 (see Exercise 15), the connected component

of the unit element In.
• G++∪Gα , for the three other choices of an element α .

One of these groups, namely G++ ∪G−− is equal to the kernel SO(p,q) of the
homomorphism M �→ detM. In fact, this kernel is open and closed, thus is the union
of connected components of O(p,q). However, the sign of detM for M ∈ Gα is that
of α1α2, which can be seen directly from the case of diagonal matrices Mα .
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10.5.2 The Lorentz Group O(1,3)

If p = 1 and q = 3, the group O(1,3) is isomorphic to the orthogonal group of the
Lorentz quadratic form dt2−dx2

1−dx2
2−dx2

3, which defines the space–time distance
in special relativity.1 Each element M of O(1,3) corresponds to the transformation(

t
x

)
�→ M

(
t
x

)
,

which we still denote by M, by abuse of notation. This transformation preserves the
light cone of equation t2 − x2

1 − x2
2 − x2

3 = 0. Because it is a homeomorphism of R4,
it permutes the connected components of the complement C of that cone. There are
three such components (see Figure 10.1):

• The convex set C+ := {(t,x) |‖x‖< t};
• The convex set C− := {(t,x) | t <−‖x‖};
• The “ring” A := {(t,x) | |t|< ‖x‖}.

Clearly, C+ and C− are homeomorphic. For example, they are so via the time
reversal t �→ −t. However, they are not homeomorphic to A , because the latter
is homeomorphic to S2 ×R2 (here, S2 denotes the unit sphere), which is not con-
tractible, whereas a convex set is always contractible. Because M is a homeomor-
phism, one deduces that necessarily, MA = A , and MC+ = C±, MC− = C∓.

The transformations that preserve C+ (we say that they preserve the time ar-
row), and therefore every connected component of C , form the orthochronous
Lorentz group, denoted O+(1,3). Its elements are those that send the vector e0 :=
(1,0,0,0)T to C+; that is, those for which the first component of Me0 is positive.
Because this component is A (here a scalar), this group must be G++ ∪G+−. The
transformations that preserve the time arrow and the orientation form the group
G++ =: SO+(1,3).

10.6 The Symplectic Group Spn

To begin with, we describe the maximal compact subgroup Spn ∩O2n. If

M =
(

A B
C D

)
∈ Spn ∩O2n,

with blocks of size n×n, then M satisfies (10.7); that is,

C =−B, D = A.

Hence
1 We have selected a system of units in which the speed of light equals one.
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Fig. 10.1 The Lorentz cone. The spatial dimension has been reduced from 3 to 2 for the sake of
clarity.

M =
(

A B
−B A

)
.

There remains to write that M is orthogonal, which gives

AT A+BT B = In, AT B = BT A.

This amounts to saying that A+ iB is unitary. One immediately checks that the map
M �→ A+ iB is an isomorphism from Spn ∩O2n onto Un.

Next, if

N =
(

A B
BT D

)
is symmetric and NJ + JN = 02n, we have, in fact,

N =
(

A B
B −A

)
,
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where A and B are symmetric. Hence G ∩Sym2n is isomorphic to Symn ×Symn,
that is, to Rn(n+1).

Proposition 10.9 The symplectic group Spn is homeomorphic to Un×Rn(n+1).

Corollary 10.2 In particular, every symplectic matrix has determinant +1.

Indeed, Proposition 10.9 implies that Spn is connected. Because the determinant
is continuous, with values in {−1,1}, it is constant, equal to +1.

Remark

Corollary 10.2 follows as well, and for every scalar field, from the formula (3.21).

Exercises

1. In the left- and right-polar decompositions of M ∈ GLn(C), the unitary fac-
tors equal respectively (MM∗)−1/2M and M(M∗M)−1/2. Deduce that they are
equal to each other. Hint: More generally, f (MM∗)M = M f (M∗M) for every
polynomial.
Show that M is normal if and only if the Hermitian factor is the same in the left-
and right-polar decompositions.

2. Let M ∈ Mn(k) be given, with k = R or C. Show that there exists a polynomial
P∈ k(X), of degree at most n−1, such that P(M) = expM. However, show that
this polynomial cannot be chosen independently of the matrix.
Compute this polynomial when M is nilpotent.

3. For t ∈R, define Pascal’s matrix P(t) by pi j(t) = 0 if i < j (the matrix is lower-
triangular) and

pi j(t) = ti− j
(

i−1
j−1

)
otherwise. Let us emphasize that for just this once in this book, P is an infinite
matrix, meaning that its indices range over the infinite set N∗. Compute P′(t)
and deduce that there exists a matrix L such that P(t) = exp(tL). Calculate L
explicitly.

4. We use Schur’s norm ‖A‖ = (TrA∗A)1/2.

a. If A ∈ Mn(C), show that there exists Q ∈ Un such that ‖A−Q‖ ≤ ‖A−U‖
for every U ∈ Un. We define S := Q−1A. We therefore have ‖S− In‖ ≤
‖S−U‖ for every U ∈ Un.

b. Let H ∈ Hn be an Hermitian matrix. Show that exp(itH) ∈ Un for every
t ∈ R. Compute the derivative at t = 0 of

t �→ ‖S− exp(itH)‖2
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and deduce that S ∈ Hn.
c. Let D be a diagonal matrix, unitarily similar to S. Show that ‖D− In‖ ≤

‖DU − In‖ for every U ∈ Un. By selecting a suitable U , deduce that S ≥ 0n.
d. If A ∈ GLn(C), show that QS is the polar decomposition of A.
e. Deduce that if H ∈HPDn and if U ∈Un, U �= In, then ‖H− In‖< ‖H−U‖.
f. Finally, show that if H ∈Hn, H ≥ 0n and U ∈Un, then ‖H−In‖≤ ‖H−U‖.

5. Let A ∈ Mn(C) and h ∈ C. Show that In − hA is invertible as soon as |h| <
1/ρ(A). One then denotes its inverse by R(h;A) (the resolvant of A).

a. Let r ∈ (0,1/ρ(A)). Show that there exists a c0 > 0 such that for every
h ∈ C with |h| ≤ r, we have

‖R(h;A)− ehA‖ ≤ c0|h|2.

b. Verify the formula

Cm −Bm = (C−B)Cm−1 + · · ·+B�−1(C−B)Cm−� + · · ·+Bm−1(C−B),

and deduce the bound

‖R(h;A)m − emhA‖ ≤ c0m|h|2ec2m|h|,

when |h| ≤ r and m ∈ N.
c. Show that for every t ∈ C,

lim
m→+∞

R(t/m;A)m = etA.

This is the convergence of the implicit Euler difference scheme for the dif-
ferential equation

dx
dt

= Ax. (10.10)

6. a. Let J(a;r) be a Jordan block of size r, with a ∈ C∗. Let b ∈ C be such that
a = eb. Show that there exists a nilpotent N ∈ Mr(C) such that J(a;r) =
exp(bIr +N).

b. Show that exp : Mn(C) → GLn(C) is onto, but that it is not one-to-one.
Deduce that X �→ X2 is onto GLn(C). Verify that it is not onto Mn(C).

7. a. Show that the matrix

J2 =
(−1 1

0 −1

)

is not the square of any matrix of M2(R).
b. Show, however, that the matrix J4 := diag(J2,J2) is the square of a matrix

of M4(R).
Show also that the matrix

J3 =
(

J2 I2
02 J2

)
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is not the square of a matrix of M4(R).
c. Show that J2 is not the exponential of any matrix of M2(R). Compare with

the previous exercise.
d. Show that J4 is the exponential of a matrix of M4(R), but that J3 is not.

8. Let An(C) be the set of skew-Hermitian matrices of size n. Show that exp :
An(C)→ Un is onto. Hint: If U is unitary, diagonalize it.

9. a. Let θ ∈ R be given. Compute expB, where

B =
(

0 θ
−θ 0

)
.

b. Let An(R) be the set of real skew-symmetric matrices of size n. Show that
exp : An(R) → SOn is onto. Hint: Use the reduction of direct orthogonal
matrices.

10. (J. Duncan.) We denote 〈x,y〉 the usual sesquilinear product in Cn. Let M ∈
GLn(C) be given. Thanks to Exercise 1, the left- and right-polar decomposi-
tions of M write M = UH = KU , with H =

√
M∗M and K =

√
MM∗.

a. Prove that U
√

H =
√

KU .
b. Check that

〈Mx,y〉= 〈
√

H x,U∗√K y〉, ∀x,y ∈ Cn.

Deduce that
|〈Mx,y〉|2 ≤ 〈Hx,x〉〈Ky,y〉.

c. More generally, let a rectangular matrix A ∈ Mn×m(C) be given. Prove the
generalized Cauchy–Schwarz inequality

|〈Ax,y〉|2 ≤ 〈
√

A∗Ax,x〉〈
√

AA∗ y,y〉, ∀x,y ∈ Cn.

Hint: Use the decompositions

Cm = kerA⊕⊥ R(A∗), Cn = kerA∗ ⊕⊥ R(A),

then apply the case above to the restriction of A from R(A∗) to R(A).

11. Let φ : Mn(R) → R be a nonnull map satisfying φ(AB) = φ(A)φ(B) for every
A,B ∈ Mn(R). If α ∈ R, we set δ (α) = |φ(αIn)|1/n. We have seen, in Exercise
5 of Chapter 5, that |φ(M)|= δ (detM) for every M ∈ Mn(R).

a. Show that on the range of M �→ M2 and on that of M �→ expM, φ ≡ δ ◦det.
b. Deduce that φ ≡ δ ◦det on SOn (use Exercise 9) and on SPDn.
c. Show that either φ ≡ δ ◦det or φ ≡ (sgn(det))δ ◦det.

12. Let A be a Banach algebra (K = R or C) with a unit denoted by e. If x ∈ A,
define x0 := e.

a. Given x ∈ A, show that the series
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∑
m∈N

1
m!

xm

converges normally, hence converges in A. Its sum is denoted by expx.
b. If x,y ∈ A, [x,y] = xy−yx is called the “commutator” of x and y. Verify that

[x,y] = 0 implies

exp(x+ y) = (expx)(expy), [x,expy] = 0.

c. Show that the map t �→ exp tx is differentiable on R, with

d
dt

exp tx = xexp tx = (exp tx)x.

d. Let x,y ∈ A be given. Assume all along this part that [x,y] commutes with
x and y.

i. Show that (exp−tx)xy(exp tx) = xy+ t[y,x]x.
ii. Deduce that [exp−tx,y] = t[y,x]exp−tx.

iii. Compute the derivative of t �→ (exp−ty)(exp−tx)exp t(x+y). Finally,
prove the Campbell–Hausdorff formula

exp(x+ y) = (expx)(expy)
(

exp
1
2
[y,x]

)
.

e. In A = M3(R), construct an example that satisfies the above hypothesis
([x,y] commutes with x and y), where [x,y] is nonzero.

13. Show that the map

H �→ f (H) := (iIn +H)(iIn −H)−1

induces a homeomorphism from Hn onto the set of matrices of Un whose spec-
trum does not contain −1. Find an equivalent of f (tH)−exp(−2itH) as t → 0.

14. Let G be a group satisfying the hypotheses of Proposition 10.5.

a. Show that G is a Lie algebra, meaning that it is stable under the bilinear
map (A,B) �→ [A,B] := AB−BA.

b. Show that for t → 0+,

exp(tA)exp(tB)exp(−tA)exp(−tB) = In + t2[A,B]+O(t3).

Deduce another proof of the stability of G by [·, ·].
c. Show that the map M �→ [A,M] is a derivation, meaning that the Jacobi

identity
[A, [B,C]] = [[A,B],C]+ [B, [A,C]]

holds true.
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15. A topological group is a group G endowed with a topology for which the maps
(g,h) �→ gh and g �→ g−1 are continuous. Show that in a topological group, the
connected component of the unit element is a normal subgroup. Show also that
the open subgroups are closed. Illustrate this result with G = O(p,q). Give an
example of a closed subgroup that is not open.

16. One identifies R2n with Cn by the map(
x
y

)
�→ x+ iy.

Therefore, every matrix M ∈ M2n(R) defines an R-linear map M̃ from Cn into
itself.

a. Let

M =
(

A B
C D

)
∈ M2n(R)

be given. Under what condition on the blocks A,B,C,D is the map M̃ C-
linear?

b. Show that M �→ M̃ is an isomorphism from Spn ∩O2n onto Un.

17. Let k be a field and

P =
(

A B
C D

)
be an orthogonal matrix, with A and D square.
Prove that

detD =±detA.

Hint: multiply P by (
AT CT

0 I

)
.

Extend this result to elements P of a group O(p,q).
18. Let A ∈ Mn(C) be given, and U(t) := exp(tA).

a. Show that ‖U(t)‖ ≤ exp(t‖A‖) for t ≥ 0 and any matrix norm. Deduce that
the integral ∫ +∞

0
e−2γtU(t)∗U(t)dt

converges for every γ > ‖A‖.
b. Denote Hγ the value of this integral, when it is defined. Computing the

derivative at h = 0 of h �→U(h)∗HγU(h), by two different methods, deduce
that Hγ is a solution of

A∗X +XA = 2γX − In, X ∈ HPDn. (10.11)
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c. Let γ be larger than the supremum of the real parts of eigenvalues of A.
Show that Equation (10.11) admits a unique solution in HPDn, and that the
above integral converges.

d. In particular, if the spectrum of M has positive real part, and if K ∈ HPDn
is given, then the Lyapunov equation

M∗H +HM = K, H ∈ HPDn

admits a unique solution.
Let x(t) be a solution of the differential equation ẋ + Mx = 0, show that
t �→ x∗Hx decays, and strictly if x �= 0.

19. This exercise shows that a matrix M ∈ GLn(R) is the exponential of a real
matrix if and only if it is the square of another real matrix.

a. Show that, in Mn(R), every exponential is a square.
b. Given a matrix A ∈ Mn(C), we denote A the C-algebra spanned by A, that

is, the set of matrices P(A) as P runs over C[X ].
i. Check that A is commutative, and that the exponential map is a homo-

morphism from (A ,+) to (A ∗,×), where A ∗ denotes the subset of
invertible matrices (a multiplicative group.)

ii. Show that A ∗ is an open and connected subset of A .
iii. Let E denote exp(A ), so that E is a subgroup of A ∗. Show that E is a

neighbourhood of the identity. Hint: Use the implicit function theorem.
iv. Deduce that E is closed in A ∗. Hint: The complement F of E in A

satisfies F = F ·E and thus is open. Conclude that E = A ∗.
v. Finally, show that every matrix B ∈ GLn(C) reads B = exp(P(B)) for

some polynomial P ∈ C[X ].
c. Let B ∈ GLn(R) and P ∈ C[X ] be as above. Show that

B2 = exp(P(B)+ P̄(B)).

Conclusion?

20. (See also [41].)
Let M belong to Spn(R). We recall that MT JM = J, J2 =−I2n, and JT =−J.

a. Show that the characteristic polynomial is reciprocal:

PM(X) = X2nPM

(
1
X

)
.

Deduce a classification of the eigenvalues of M.
b. Define the quadratic form

q(x) := 2xT JMx.

Verify that M is a q-isometry.
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c. Let (e−iθ ,eiθ ) be a pair of simple eigenvalues of M on the unit circle. Let
Π be the corresponding invariant subspace:

Π := ker(M2 −2(cosθ)M + I2n).

i. Show that JΠ⊥ is invariant under M.
ii. Using the formula (5.3), show that e±iθ are not eigenvalues of M|JΠ⊥ .

iii. Deduce that R2n = Π ⊕ JΠ⊥.
d. (Continued.)

i. Show that q does not vanish on Π \ {0}. Hence q defines a Euclidean
structure on Π .

ii. Check that M|Π is direct (its determinant is positive).
iii. Show that M|Π is a rotation with respect to the Euclidean structure

defined by q, whose angle is either θ or −θ .
e. More generally, assume that a plane Π is invariant under a symplectic ma-

trix M, with corresponding eigenvalues e±iθ , and that Π is not Lagrangian:
(x,y) �→ yT Jx is not identically zero on Π . Show that M|Π acts as rotation
of angle ±θ . In particular, if M = J, show that θ = +π/2.

f. Let H be an invariant subspace of M, on which the form q is either positive
or negative-definite. Prove that the spectrum of M|H lies in the unit circle
and that M|H is semisimple (the Jordan form is diagonal).

g. Equivalently, let λ be an eigenvalue of M (say a simple one) with λ �∈ R

and |λ | �= 1. Let H be the invariant subspace associated with the eigen-
values (λ , λ̄ ,1/λ ,1/λ̄ ). Show that the restriction of the form q to H is
neither positive nor negative-definite. Show that the invariant subspace K
associated with the eigenvalues λ and λ̄ is q-isotropic. Thus, if q|H is non-
degenerate, its signature is (2,2).

21. This is a sequel of Exercise 23, Chapter 7. Let Σ denote the unit sphere of
M2(R) for the induced norm ‖ · ‖2. Recall that Σ is the union of the segments
[r,s] where r ∈ R := SO2(R) and s ∈ S , the set of orthogonal symmetries.
Both R and S are circles. Finally, two distinct segments may intersect only at
an extremity.

a. Show that there is a well-defined map ρ : Σ \S →R, such that M belongs
to some segment [ρ(M),s) with s ∈S . For which M is the other extremity
s unique?

b. Show that the map ρ above is continuous, and that ρ coincides with the
identity over R. We say that ρ is a retraction from Σ \S onto R.

c. Let f : D → Σ be a continuous function, where D is the unit disk of the
complex plane, such that f (exp(iθ)) is the rotation of angle θ . Show that
f (D) contains an element of S .
Hint: Otherwise, there would be a retraction of D onto the unit circle,
which is impossible (an equivalent statement to Brouwer fixed point the-
orem).
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Meaning. Likewise, one finds that if a disk D′ is immersed in Σ , with
boundary S , then it contains an element of R. We say that the circles
R and S of Σ are linked.
This result tells us that R and S are linked within Σ .

22. In R1+m we denote the generic point by (t,x)T , with t ∈ R and x ∈ Rm. Let
C + be the cone defined by t > ‖x‖. Recall that those matrices of O(1,m) that
preserve C + form the subgroup O+(1,m). The Hermitian form (t,x) �→ ‖x‖2−
|t|2 is denoted by q.
Let M belong to O+(1,m).

a. Given a point x in the unit closed ball B of Rm, let (t,y)T be the image of
(1,x)T under M. Define f (x) := y/t. Prove that f is a continous map from
B into itself. Deduce that it has a fixed point. Deduce that M has at least
one real positive eigenvalue, associated with an eigenvector in the closure
of C +. Note: If m is odd, one can prove that this eigenvector can be taken
in the light cone t = ‖x‖.

b. If Mv = λv with v ∈ C1+m and q(v)) �= 0, show that |λ |= 1.
c. Let v = (t,x) and w = (s,y) be light vectors (i.e., q(v) = q(w) = 0), linearly

independent. Show that v∗Jw �= 0.
d. Assume that M admits an eigenvalue λ of modulus different from 1, v be-

ing an eigenvector. Show that 1/λ is also an eigenvector. Denote by w a
corresponding eigenvector. Let < v,w >◦ be the orthogonal of v and w with
respect to q. Using the previous question, show that the restriction q1 of q
to < v,w >◦ is positive-definite. Show that < v,w >◦ is invariant under M
and deduce that the remaining eigenvalues have unit modulus. In particular,
λ is real.

e. Show that, for every M ∈ O+(1,m), ρ(M) is an eigenvalue of M.

23. We endow Mn(C) with the induced norm ‖·‖2. Let G be a subgroup of GLn(C)
that is contained in the open ball B(In;r) for some r < 2.

a. Show that for every M ∈ G, there exists an integer p ≥ 1 such that Mp = In.
b. Let A,B ∈ G be such that Tr(AM) = Tr(BM) for every M ∈ G. Prove that

A = B.
c. Deduce that G is a finite group.
d. Conversely, let R be a rotation in the plane (n = 2) of angle θ �∈ πQ. Prove

that the subgroup spanned by R is infinite and is contained in B(I2;2).

24. Let m ∈ N∗ be given. We denote Pm : A �→ Am the mth power in Mn(C). Show
that the differential of Pm at A is given by

dPm(A) ·B =
m−1

∑
j=0

A jBAm−1− j.

Deduce the formula
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Dexp(A) ·B =
∫ 1

0
e(1−t)ABetAdt.

25. Let A ∈ Mn(R) be a matrix satisfying ai j ≥ 0 for every pair (i, j) of distinct
indices.

a. Using the Exercise 3 of Chapter 8, show that

R(h;A) := (In −hA)−1 ≥ 0,

for h > 0 small enough.
b. Deduce that exp(tA)≥ 0 for every t > 0. Hint: Use Exercise 5.
c. Deduce that if x(0) ≥ 0, then the solution of (10.10) is nonnegative for

every nonnegative t.
d. Deduce also that

σ := sup{ℜλ |λ ∈ Sp A}
is an eigenvalue of A.

26. We use the scalar product over Mn(C), given by 〈M,N〉 = Tr(M∗N). We recall
that the corresponding norm is the Schur–Frobenius norm ‖·‖F . If T ∈GLn(C),
we denote T = U |T | the polar decomposition, with |T | :=

√
T ∗T and U ∈ Un.

The Aluthge transform Δ(T ) is defined by

Δ(T ) := |T |1/2U |T |1/2.

a. Check that Δ(T ) is similar to T .
b. If T is normal, show that Δ(T ) = T .
c. Show that ‖Δ(T )‖F ≤ ‖T‖F , with equality if and only if T is normal.
d. We define Δ n by induction, with Δ n(T ) := Δ(Δ n−1(T )).

i. Given T ∈ GLn(C), show that the sequence
(
Δ k(T )

)
k∈N

is bounded.
ii. Show that its limit points are normal matrices with the same character-

istic polynomial as T (Jung, Ko and Pearcy, or Ando).
iii. Deduce that when T has only one eigenvalue μ , then the sequence

converges towards μIn.
e. If T is not diagonalizable, show that these limit points are not similar to T .





Chapter 11

Matrix Factorizations and Their Applications

The techniques described below are often called direct solving methods.
The direct solution (by Cramer’s method, see Section 3.3.2) of a linear system

Mx = b, when M ∈ GLn(k) (b ∈ kn) is computationally expensive, especially if
one wishes to solve the system many times with various values of b. In the next
chapter we study iterative methods for the case k = R or C. Here we concentrate on
a simple idea: to decompose M as a product PQ in such a way that the resolution
of the intermediate systems Py = b and Qx = y is “cheap”. In general, at least one
of the matrices is triangular. For example, if P is lower-triangular (pi j = 0 if i < j),
then its diagonal entries pii are nonzero, and one may solve the system Py = b step
by step:

y1 =
b1

p11
,

...

yi =
bi − pi1y1−·· ·− pi,i−1yi−1

pii
,

...

yn =
bn − pn1y1 −·· ·− pn,n−1yn−1

pnn
.

The computation of yi needs 2i− 1 operations and the final result is obtained in
n2 operations. This is not expensive if one notices that even computing the product
x = M−1b (assuming that M−1 is computed once and for all, an expensive task)
needs 2n2 −n operations in general, and still n2 in the triangular case.

Another example of easily invertible matrices is that of orthogonal matrices: if
Q ∈ On (or Q ∈ Un), then Qx = y is equivalent to x = QT y (or x = Q∗y), which
provides x in O(n2) operations.

207D. Serre, Matrices, Graduate Texts in Mathematics 216,
DOI 10.1007/978-1-4419-7683-3_11, © Springer Science+Business Media, LLC 2010
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11.1 The LU Factorization

Let k be a field.

Definition 11.1 Let M ∈ GLn(k) be given. We say that M admits an LU factor-
ization if there exist in GLn(k) two matrices L (lower-triangular with 1s on the
diagonal) and U (upper-triangular) such that M = LU.

Remarks

• The diagonal entries of U are not equal to 1 in general. The LU factorization is
thus asymmetric with respect to L and U .

• The letters L and U recall the shape of the matrices: L for lower and U for upper.
• If there exists an LU factorization (which is unique, as we show below), then

it can be computed by induction on the size of the matrix. The algorithm is
provided in the proof of the next theorem. Indeed, if N(p) denotes the matrix
extracted from N by keeping only the first p rows and columns, we have easily

M(p) = L(p)U (p),

which is nothing but the LU factorization of M(p).

Definition 11.2 The leading principal minors of M are the determinants of the ma-
trices M(p) defined above, for 1 ≤ p ≤ n.

Theorem 11.1 The matrix M ∈ GLn(k) admits an LU factorization if and only if
its leading principal minors are nonzero. When this condition is fulfilled, the LU
factorization is unique.

Proof. Let us begin with uniqueness: if LU = L′U ′, then (L′)−1L = U ′U−1, which
reads L′′ = U ′′, where L′′ and U ′′ are triangular of opposite types, the diagonal en-
tries of L′′ being 1s. We deduce L′′ = U ′′ = In; that is, L′ = L, U ′ = U .

We next prove the necessity. Let us assume that M admits an LU factorization.
Then detM(p) = detL(p) detU (p) = ∏1≤ j≤p u j j, which is nonzero because U is in-
vertible.

Finally, we prove the sufficiency, that is, the existence of an LU factorization. We
proceed by induction on the size of the matrices. It is clear if n = 1. Otherwise, let
us assume that the statement is true up to the order n− 1 and let M ∈ GLn(k) be
given, with nonzero leading principal minors. We look for L and U in the blockwise
form

L =
(

L′ 0
XT 1

)
, U =

(
U ′ Y
0 u

)
,

with L′,U ′ ∈ Mn−1(k), and so on. We likewise obtain the description

M =
(

M′ R
ST m

)
.
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Multiplying blockwise, we obtain the equations

L′U ′ = M′, L′Y = R, (U ′)T X = S, u = m−XTY.

By assumption, the leading principal minors of M′ are nonzero. The induction hy-
pothesis guarantees the existence of the factorization M′ = L′U ′. Then Y and X are
the unique solutions of (triangular) Cramer systems. Finally, u is explicitly given.
��

Let us evaluate the number of operations needed in the computation of L and U .
We pass from a factorization in GLn−1(k) to a factorization in GLn(k) by means
of the computations of X (in (n− 1)(n− 2) operations), Y (in (n− 1)2 operations)
and u (in 2(n−1) operations), for a total of (n−1)(2n−1) operations. Finally, the
computation ex nihilo of an LU factorization costs

P(n) = 3+10+ · · ·+(n−1)(2n−1) =
2
3

n3 +O(n2)

operations.

Proposition 11.1 The LU factorization is computable in 2
3 n3 +O(n2) operations.

One says that the complexity of the LU factorization is 2
3 n3.

Remark

When all leading principal minors but the last (the determinant of M) are nonzero,
the proof above furnishes a factorization M = LU , in which U is not invertible; that
is, unn = 0.

11.1.1 Block Factorization

One can likewise perform a blockwise LU factorization. If n = p1 + · · ·+ pr with
p j ≥ 1, the matrices L and U are block-triangular. The diagonal blocks are square,
of respective sizes p1, . . . , pr. Those of L are of the form Ip j , whereas those of U are
invertible. A necessary and sufficient condition for such a factorization to exist is
that the leading principal minors of M, of orders p1 + · · ·+ p j ( j ≤ r), be nonzero.
As above, we may allow that detM �= 0, with the price that the last diagonal block
of U be singular.

Such a factorization is useful for the resolution of the linear system MX = b if the
diagonal blocks of U are easily inverted, for instance if their sizes are small enough
(say p j ≈

√
n). Another favorable situation is when most of the diagonal blocks are

equal to each other, because then one has to invert only a few blocks.
We have performed this blockwise factorization in Section 3.3.1 when r = 2.

Recall that if
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M =
(

A B
C D

)
, (11.1)

where the diagonal blocks are square and A is invertible, then

M = LU with L =
(

I 0
CA−1 I

)
, U =

(
A B
0 D−CA−1B

)
. (11.2)

From this, we see that if M is nonsingular too, then

M−1 = U−1L−1 =
(

A−1 ·
0 (D−CA−1B)−1

)
·
(

I 0
· I

)
=
( · ·
· (D−CA−1B)−1

)
.

When all the blocks have the same size, a similar analysis yields Banachiewicz’
formula

Corollary 11.1 Let M ∈ GLn(k), with n = 2m, read blockwise

M =
(

A B
C D

)
, A,B,C,D ∈ GLm(k).

Then

M−1 =
(

(A−BD−1C)−1 (C−DB−1A)−1

(B−AC−1D)−1 (D−CA−1B)−1

)
.

Proof. We can verify the formula by multiplying by M. The only point to show
is that the inverses are meaningful: A−BD−1C, . . . are invertible. Because of the
symmetry of the formulæ, it is enough to check it for a single term, namely D−
CA−1B. Schur’s complement formula gives det(D−CA−1B) = detM/detA, which
is nonzero by assumption. ��

11.1.2 Complexity of Matrix Inversion

We can now show that the complexity of inverting a matrix is not higher than that
of matrix multiplication, at equivalent sizes. This fact is due independently to Boltz,
Banachiewicz, and to Strassen We assume here that k = R or C.

Notation 11.1 We denote by Jn the number of operations in k used in the inversion
of a typical n× n matrix, and by Pn the number of operations (in k) used in the
product of two n×n matrices.

Of course, the number Jn must be understood for generic matrices, that is, for
matrices within a dense open subset of Mn(k). More important, Jn,Pn also depend
on the algorithm chosen for inversion or for multiplication. In the sequel we wish to
adapt the inversion algorithm to the one used for multiplication.

Let us examine first of all the matrices whose size n has the form 2k.
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We decompose the matrices M ∈ GLn(k) blockwise as in (11.1), with blocks of
size n/2×n/2. The condition A ∈GLn/2(k) defines a dense open set, because M �→
detA is a nonzero polynomial. Suppose that we are given an inversion algorithm
for generic matrices in GLn/2(k) in jk−1 = J2k−1 operations. Then blockwise LU
factorization and the formula M−1 = U−1L−1, where

L−1 =
(

I 0
−CA−1 I

)
, U =

(
A−1 −A−1B(D−CA−1B)−1

0 (D−CA−1B)−1

)
,

furnish an inversion algorithm for generic matrices in GLn(k). We can then bound jk
by means of jk−1 and the number πk−1 = P2k−1 of operations used in the computation
of the product of two matrices of size 2k−1 ×2k−1. We also denote by σk = 22k the
number of operations involved in the computation of the sum of matrices in M2k(k).

To compute M−1, we first compute A−1, then CA−1, which gives us L−1 in jk−1 +
πk−1 operations. Then we compute (D−CA−1B)−1 (this amounts to σk−1 +πk−1 +
jk−1 operations) and A−1B(D−CA−1B)−1 (at cost 2πk−1), which furnishes U−1.
The computation of U−1L−1 is done with the expense of σk−1 + 2πk−1 operations.
Finally,

jk ≤ 2 jk−1 +2σk−1 +6πk−1.

In other words,
2−k jk −21−k jk−1 ≤ 2k−1 +3 ·21−kπk−1. (11.3)

The complexity of the product in Mn(k) obeys the inequalities

n2 ≤ Pn ≤ n2(2n−1).

The first inequality is due to the number of data (2n2) and the fact that each operation
involves only two of them. The second is given by the naive algorithm that consists
in computing n2 scalar products.

Lemma 19. If Pn ≤ cα nα (with 2 ≤ α ≤ 3), then j� ≤ Cαπ�, where Cα = 1 +
3cα/(2α−1 −1).

Proof. It is enough to sum (11.3) from k = 1 to l and use the inequality 1+q+ · · ·+
ql−1 ≤ q�/(q−1) for q > 1. ��

When n is not a power of 2, we obtain M−1 by computing the inverse of a block-
diagonal matrix diag(M, I), whose size N satisfies n ≤ N = 2� < 2n. We obtain
Jn ≤ j� ≤Cα π�. This is the first part of the following result.

Proposition 11.2 If the complexity Pn of the product in Mn(C) is bounded by cα nα ,
then the complexity Jn of inversion in GLn(C) is bounded by dαnα , where

dα =
(

1+
3cα

2α−1−1

)
2α .

Conversely, if the complexity of inversion in GLn(C) is bounded by δα nα , then
the complexity of the product in Mn(C) is bounded by γα nα , where
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γα = 3α δα .

That can be summarized as follows:

Those who know how to multiply also know how to invert.

Proof. There remains to prove the second part. We notice that if A,B ∈ Mn(C) are
given, then the matrix

M =

⎛
⎝In −A 0n

0n In −B
0n 0n In

⎞
⎠ ∈ M3n(C)

is invertible, with inverse

M−1 =

⎛
⎝In A AB

0n In B
0n 0n In

⎞
⎠ .

Given A and B, we compute M−1, thus AB, in δα(3n)α operations at most (and
certainly much less). ��

11.1.3 Complexity of the Matrix Product

The ideas that follow apply to the product of rectangular matrices, but for the sake
of simplicity, we present only the case of square matrices.

As we have seen above, the complexity Pn of matrix multiplication in Mn(k) is
O(n3). However, better algorithms allow us to improve the exponent 3. The simplest
and oldest one is Strassen’s algorithm, which uses a recursion argument. It is based
upon a way of computing the product of two 2×2 matrices by means of 7 multipli-
cations and 18 additions. Two features of Strassen’s formula are essential. First, the
number of multiplications that it involves is strictly less than that (eight) of the naive
algorithm. The second is that the method is valid when the matrices have entries in
a noncommutative ring, and so it can be employed for two matrices M,N ∈ Mn(k),
considered as elements of M2(A), with A := Mn/2(k). This trick yields

Pn ≤ 7Pn/2 +18
(n

2

)2
.

For n = 2�, we infer

7−�π�−71−�π�−1 ≤ 9
2

(
4
7

)�

,

which, after summation from k = 0 to �, gives

7−�π� ≤ 9
2
× 1

1−4/7
,
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because of 4
7 < 1. Finally,

π� ≤ 21
2

7�.

When n is not a power of two, one chooses � such that n ≤ 2� < 2n and we obtain
the following result.

Proposition 11.3 The complexity of the multiplication of n× n matrices is O(nα),
with α = log7/ log2 = 2.807 . . . More precisely,

Pn ≤ 147
2

nlog7/ log2.

The exponent α can be improved, at the cost of greater complication and a larger
constant cα . The best exponent known in 2009, due to Coppersmith and Winograd
[11], is α = 2.376 . . . It is fifteen years old, whereas Strassen’s is forty years old.
A rather complete analysis can be found in the book by Bürgisser, Clausen, and
Shokrollahi [7].

Here is Strassen’s formula [37]. Let M,N ∈ M2(A), with

M =
(

a b
c d

)
, N =

(
x y
z t

)
.

One first forms the expressions x1 = (a + d)(x + t), x2 = (c + d)x, x3 = a(y− t),
x4 = d(z− x), x5 = (a + b)t, x6 = (c− a)(x + y), x7 = (b− d)(z + t). Each one
involves one multiplication and either one or two addition(s). Then the product is
given by eight more additions:

MN =
(

x1 + x4 − x5 + x7 x3 + x5
x2 + x4 x1 − x2 + x3 + x6

)
.

Remark

The use of a fast method for matrix multiplication does reduce the complexity of
many algorithms. Let us consider for instance the calculation of the characteris-
tic polynomial P(A) in the form improved by Preparata and Sawarte (see Section
3.10.2). If matrix multiplication is done in O(nα) operations, then PA is obtained
in O(nβ ) operations, with β = max{α + 1

2 ,3}. If one has a not too cumbersome
method with some α ≤ 2.5, it is thus useless to try to reduce α .

11.2 Choleski Factorization

In this section k = R, and we consider symmetric positive-definite matrices.
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Theorem 11.2 Let M ∈ SPDn. Then there exists a unique lower-triangular matrix
L ∈ Mn(R), with strictly positive diagonal entries, satisfying M = LLT .

We warn the reader that, because of the symmetry between the lower- and upper-
triangular factors, the diagonal entries of the matrix L are not units in general.

Proof. Uniqueness. If L1 and L2 have the properties stated above, then In = LLT ,
for L = L−1

2 L1, which still has the same form. In other words, L = L−T , where
both sides are triangular matrices, but of opposite types (lower and upper). This
equality shows that L is actually diagonal, with L2 = In. Because its diagonal is
positive, we obtain L = In; that is, L2 = L1.
We give two constructions of L.

First method. The matrix M(p) is positive-definite (test the quadratic form induced
by M on the linear subspace Rp ×{0}). The leading principal minors of M are
thus nonzero and there exists an LU factorization M = L0U0. Let D be the diago-
nal of U0, which is invertible. Then U0 = DU1, where the diagonal entries of U1
equal 1. By transposition, we have M = UT

1 D0LT
0 . From uniqueness of the LU

factorization, we deduce U1 = LT
0 and M = L0DLT

0 . Then L =
√

DL0 satisfies the
conditions of the theorem. Observe that D > 0 because D = PMPT with P = L−1

0 ,
and thus D is positive-definite.

Second method. We proceed by induction over n. The statement is clear if n = 1.
Otherwise, we seek an L of the form

L =
(

L′ 0
XT �

)
,

knowing that

M =
(

M′ R
RT m

)
.

The matrix L′ is obtained by Choleski factorization of M′, which belongs to
SPDn−1. Then X is obtained by solving L′X = R. Finally, � is a square root of
m−‖X‖2. Because 0 < detM = (�detL′)2, we see that m−‖X‖2 > 0; we thus
choose � =

√
m−‖X‖2. This method again shows uniqueness.

��

Remark

Choleski factorization extends to Hermitian positive-definite matrices. In that case,
L has complex entries, but its diagonal entries are still real and positive.

11.3 The QR Factorization

We turn to the situation where one factor is triangular, and the other one is unitary.



11.3 The QR Factorization 215

Proposition 11.4 Let M ∈ GLn(C) be given. Then there exist a unitary matrix Q
and an upper-triangular matrix R; the diagonal entries of the latter real positive,
such that M = QR. This factorization is unique.

We observe that the condition on the numbers r j j is essential for uniqueness. In
fact, if D is diagonal with |d j j| = 1 for every j, then Q′ := QD̄ is unitary, R′ := DR
is upper-triangular, and M = Q′R′, which gives an infinity of factorizations “QU”.
Even in the real case, where Q is orthogonal, there are 2n “QU” factorizations.

Proof. Uniqueness. If (Q1,R1) and (Q2,R2) give two factorizations, then Q = R
with Q := Q−1

2 Q1 and R := R2R−1
1 . Because Q is unitary, that is, Q∗ = Q−1, this

implies R∗ = R−1. Because the inverse of a triangular matrix is a triangular matrix
of the same type, whereas R∗ is of opposite type, this tells us that R is diagonal.
In additional, its diagonal part is strictly positive. Then R2 = R∗R = Q∗Q = In
gives R = In. Finally, R2 = R1 and consequently, Q2 = Q1.

Existence. It follows from that of Choleski factorization. If M ∈ GLn(C), the
matrix M∗M is Hermitian positive-definite, and hence it admits a Choleski fac-
torization R∗R, where R is upper-triangular with real positive diagonal entries.
Defining Q := MR−1, we have

Q∗Q = R−∗M∗MR−1 = R−∗R∗RR−1 = In;

hence Q is unitary. Finally, M = QR by construction.
��

The method used above is unsatisfactory from a practical point of view, because
one can compute Q and R directly, at a lower cost, without computing M∗M or
its Choleski factorization. Moreover, the direct method, which we present now, is
based on a theoretical observation: the QR factorization is nothing but the Gram–
Schmidt orthonormalization procedure in Cn, with respect to the canonical scalar
product 〈·, ·〉. In fact, giving M in GLn(C) amounts to giving a basis {V 1, . . . ,V n} of
Cn, where V 1, . . . ,V n are the column vectors of M. If Y 1, . . . ,Y n denote the column
vectors of Q, then {Y 1, . . . ,Y n} is an orthonormal basis. If M = QR, then

V k =
k

∑
j=1

r jkY j.

Denoting by Ek the linear subspace spanned by Y 1, . . . ,Y k, of dimension k, one sees
that V 1, . . . ,V k are in Ek. Hence {V 1, . . . ,V k} is a basis of Ek. The columns of Q are
therefore obtained by the Gram–Schmidt procedure, applied to the columns of M :
Y k is a unitary vector in Ek, orthogonal to Ek−1, where Ek := Span(V 1, . . . ,V k).

The practical computation of Q and R is done by induction on k. If k = 1, then

r11 = ‖V 1‖, Y 1 =
1

r11
V 1.
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If k > 1, and if Y 1, . . . ,Y k−1 are already known, one looks for Y k and the entries r jk
( j ≤ k). For j < k, we have

r jk = 〈V k,Y j〉.
Then

rkk = ‖Zk‖, Y k =
1

rkk
Zk,

where

Zk := V k −
k−1

∑
j=1

r jkY j.

Let us examine the complexity of the procedure described above. To pass from
the step k− 1 to the step k, one computes k− 1 scalar products, then Zk, its norm,
and finally Y k. This requires (4n− 1)k + 3n operations. Summing from k = 1 to n
yields 2n3 + O(n2) operations. This method is not optimal, as we show in Section
13.3.3.

The interest of this construction lies also in giving a more complete statement
than Proposition 11.4.

Theorem 11.3 Let M ∈ Mn(C) be a matrix of rank p. There exists Q ∈ Un and an
upper-triangular matrix R, with r�� ∈R+ for every � and r jk = 0 for j > p, such that
M = QR.

Remark

The QR factorization of a singular matrix (i.e., a noninvertible one) is not unique.
There exists, in fact, a QR factorization for rectangular matrices in which R is a
“quasi-triangular” matrix.

11.4 Singular Value Decomposition

As we show in Exercise 14 below (see also Exercise 11 of Chapter 7), the eigenval-
ues of the matrix H =

√
M∗M, the Hermitian factor in the polar decomposition of a

nonsingular matrix M ∈ Mn(C), are of some practical importance. They are called
the singular values of M. These are the square roots of the eigenvalues of M∗M,
thus one may even speak of the singular values of an arbitrary matrix, neither an in-
vertible, nor even a square one. Recalling that (see Exercise 14 in Chapter 3) when
M is n×m, M∗M and MM∗ have the same nonzero eigenvalues, counting them with
multiplicities, one may even speak of the singular values of a rectangular matrix, up
to an ambiguity concerning the multiplicity of the eigenvalue 0.

The main result of this section is the following.

Theorem 11.4 Let M ∈ Mn×m(C) be given. There exist two unitary matrices U ∈
Un, V ∈ Um and a quasi-diagonal matrix
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D =

⎛
⎜⎜⎜⎜⎜⎜⎝

s1
. . .

sr
0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with s1, . . . ,sr ∈ (0,+∞) and s1 ≥ ·· · ≥ sr, such that M = UDV . The numbers r
and s1, . . . ,sr are uniquely defined; they are respectively the rank and the nonzero
singular values of M.

If M ∈ Mn×m(R), one may choose U,V to be real orthogonal.

We notice that although D is uniquely defined, the other factors U and V are not
unique. For instance, M = In yields D = In and V = U∗, where U can be an arbitrary
unitary matrix.

Proof. To begin with, let us recall the following facts. We have

Cn = R(M)⊕⊥ kerM∗, kerMM∗ = kerM∗, R(M) = R(MM∗), (11.4)

and on the other hand

Cm = ker(M)⊕⊥ R(M∗), R(M∗) = R(M∗M), kerM = kerM∗M. (11.5)

Inasmuch as MM∗ is positive-semidefinite, we may write its eigenvalues as

s2
1, . . . ,s

2
r ,0, . . . ,

where the s js, the singular values of M, are positive real numbers arranged in de-
creasing order. The spectrum of M∗M has the same form, except for the multiplicity
of 0. The index r is the rank of MM∗, that is, that of M, or as well that of M∗. The
multiplicities of 0 as an eigenvalue of M∗M and MM∗, respectively, differ by n−m,
whereas the multiplicities of other eigenvalues are the same for both matrices. We
set S = diag(s1, . . . ,sr).

Because MM∗ is hermitian, there exists an orthonormal basis {u1, . . . ,un} of Cn

consisting of eigenvectors associated with the s2
js, followed by vectors of kerM∗

(because of (11.4)). Let us form the unitary matrix

U = (u1| . . . |un).

Written blockwise, we have U = (UR,UK), where

MM∗UR = URS2, M∗UK = 0.

Let us define VR := M∗URS−1. From above, we have

V ∗
RVR = S−1U∗

RMM∗URS−1 = Ir.
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This means that the columns v1, . . . ,vr of VR constitute an orthonormal family. Ob-
viously, it is included in R(M∗).

Because dimR(M∗) = r, {v1, . . . ,vr} form an orthonormal basis of this space
and can be extended to an orthonormal basis {v1, . . . ,vm} of Cm, where vr+1, . . . ,vm
belong to kerM (because of (11.5)). Let V =: (VR,VK) be the unitary matrix whose
columns are v1, . . . ,vm.

We compute blockwise the product U∗MV . From MVK = 0 and M∗U∗
K = 0, we

get

U∗MV =
(

U∗
RMVR 0

0 0

)
.

Finally, we obtain

U∗
RMVR = U∗

RMM∗URS−1 = U∗
RURS = S.

��

11.5 The Moore–Penrose Generalized Inverse

The resolution of a general linear system Ax = b, where A may be singular and may
even not be square, is a delicate question, whose treatment is made much simpler
by the use of the Moore–Penrose generalized inverse.

Theorem 11.5 Let A ∈ Mn×m(C) be given. There exists a unique matrix A† ∈
Mm×n(C), called the Moore–Penrose generalized inverse, satisfying the following
four properties.

1. AA†A = A.
2. A†AA† = A†.
3. AA† ∈ Hn.
4. A†A ∈ Hm.

Finally, if A has real entries, then so has A†.

When A∈GLn(C), A† coincides with the standard inverse A−1, because the latter
obviously satisfies the four properties. More generally, if A is onto, then Property 1
shows that AA† = In, (i.e. A† is a right inverse of A). Likewise, if A is one-to-one,
then A†A = Im, (i.e. A† is a left inverse of A).

Proof. We first remark that if X satisfies these four properties, and if U ∈ Un,
V ∈ Um, then V ∗XU∗ is a generalized inverse of UAV . Therefore, existence and
uniqueness need to be proved for only a single representative D of the equivalence
class of A modulo unitary multiplications on the right and the left. From Theorem
11.4, we may choose a quasi-diagonal matrix D, with given s1, . . . ,sr, the nonzero
singular values of A.

Let D† be any generalized inverse of D, which we write blockwise as
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D† =
(

G H
J K

)

with G ∈ Mr(C). From Property 1, we obtain S = SGS, where S := diag(s1, . . . ,sr).
Inasmuch as S is nonsingular, we obtain G = S−1. Next, Property 3 implies SH = 0,
that is, H = 0. Likewise, Property 4 gives JS = 0, that is, J = 0. Finally, Property 2
yields K = JSH = 0. We see, then, that D† must equal (uniqueness)(

S−1 0
0 0

)
.

One easily checks that this matrix solves our problem (existence). ��
Some obvious properties are stated in the following proposition. We warn the

reader that, contrary to what happens for the standard inverse, the generalized in-
verse of AB does not equal B†A† in general.

Proposition 11.5 The following equalities hold for the generalized inverse:

(λA)† =
1
λ

A† (λ �= 0),
(
A†)†

= A,
(
A†)∗ = (A∗)† .

If A ∈ GLn(C), then A† = A−1.

Because (AA†)2 = AA†, the matrix AA† is a projector, which can therefore be de-
scribed in terms of its range and kernel. Because AA† is Hermitian, these subspaces
are orthogonal to each other. Obviously, R(AA†) ⊂ R(A). But because AA†A = A,
the reverse inclusion holds too. Finally, we have

R(AA†) = R(A),

and AA† is the orthogonal projector onto R(A). Likewise, A†A is an orthogonal pro-
jector. Obviously, kerA ⊂ kerA†A, and the identity AA†A = A implies the reverse
inclusion, so that

kerA†A = kerA.

Finally, A†A is the orthogonal projector onto (kerA)⊥.

11.5.1 Solutions of the General Linear System

Given a matrix M ∈ Mn×m(C) and a vector b ∈Cn, let us consider the linear system

Mx = b. (11.6)

In (11.6), the matrix M need not be square, even not of full rank. From Property 1, a
necessary condition for the solvability of (11.6) is MM†b = b. Obviously, this is also
sufficient, because it ensures that x0 := M†b is a solution. Hence, the generalized
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inverse plays one of the roles of the standard inverse, namely to provide one solution
of (11.6) when it is solvable. To catch every solution of that system, it remains to
solve the homogeneous problem My = 0. From the analysis done in the previous
section, kerM is nothing but the range of Im −M†M. Therefore, we may state the
following proposition:

Proposition 11.6 The system (11.6) is solvable if and only if b = MM†b. When it is
solvable, its general solution is x = M†b+(Im−M†M)z, where z ranges Cm. Finally,
the special solution x0 := M†b is the one of least Hermitian norm.

There remains to prove that x0 has the smallest norm among the solutions. That
comes from the Pythagorean theorem and from the fact that R(M†) = R(M†M) =
(kerM)⊥.

Exercises

1. Assume that there exists an algorithm for multiplying two N×N matrices with
entries in a noncommutative ring by means of K multiplications and L additions.
Show that the complexity of the multiplication in Mn(k) is O(nα), with α =
logK/ logN.

2. What is the complexity of Choleski factorization?
3. Let M ∈ SPDn be also tridiagonal. What is the structure of L in the Choleski

factorization? More generally, what is the structure of L when mi j = 0 for |i−
j|> r? (When r % n we say that M is a band matrix.)

4. (Continuation of Exercise 3)
For i ≤ n, denote by φ(i) the smallest index j such that mi j �= 0. In Choleski
factorization, show that li j = 0 for every pair (i, j) such that j < φ(i).

5. In the QR factorization, show that the map M �→ (Q,R) is continuous on
GLn(C).

6. Let H be an n×n Hermitian matrix, that blockwise reads

H =
(

A B∗
B C

)
.

Assume that A ∈ HPDn−k (1 ≤ k ≤ n−1).
Find a matrix T of the form

T =
(

In−k 0
· Ik

)

such that T HT ∗ is block-diagonal. Deduce that if W ∈ Hk, then

H −
(

0 0
0 W

)
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is positive-(semi)definite if and only if S−W is so, where S is the Schur com-
plement of A in H.

7. (Continuation of Exercise 6) Fix the size k. We keep A ∈ HPDn−k constant and
let vary B and C. We denote by S(H) the Schur complement of A. Using the
previous exercise, show that if λ ∈ [0,1]:

a. S(λH +(1−λ )H ′)−λS(H)− (1−λ )S(H ′) is positive-semidefinite.
b. If H −H ′ is positive-semidefinite, then so is S(H)−S(H ′).

In other words, H �→ S is “concave nondecreasing” from the affine subspace
formed of those matrices of Hn with prescribed A ∈ HPDn−k, into the ordered
set Hk.

8. In Proposition 11.4, find an alternative proof of the uniqueness part, by inspec-
tion of the spectrum of the matrix Q := Q−1

2 Q1 = R2R−1
1 .

9. Identify the generalized inverse of row matrices and column matrices.
10. What is the generalized inverse of an orthogonal projector, that is, an Hermitian

matrix P satisfying P2 = P? Deduce that the description of AA† and A†A as
orthogonal projectors does not characterize A† uniquely.

11. Given a matrix B ∈ Mp×q(C) and a vector a ∈ Cp, let us form the matrix A :=
(B,a) ∈ Mp×(q+1)(C).

a. Let us define d := B†a, c := a−Bd, and

b :=
{

c†, if c �= 0,
(1+ |d|2)−1d∗B†, if c = 0.

Prove that

A† =
(

B† −db
b

)
.

b. Deduce an algorithm (Greville’s algorithm) in O(pq2) operations for the
computation of the generalized inverse of a p× q matrix. Hint: To get
started with the algorithm, use Exercise 9.

12. Let A ∈ Mn(C) be given, with eigenvalues λ j and singular values σ j, 1 ≤ j ≤ n
(we include zeroes in this list if A is singular). We choose the decreasing orders:

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|, σ1 ≥ σ2 ≥ ·· · ≥ σn.

Recall that the σ js are the square roots of the eigenvalues of A∗A.
We wish to prove the inequality

k

∏
j=1

|λ j| ≤
k

∏
j=1

σ j, 1 ≤ k ≤ n.

a. Directly prove the case k = 1. Show the equality in the case k = n.
b. Working within the exterior algebra (see Chapter 4), we define an endo-

morphism A∧p over Λ p(Cn) by
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A∧p(x1 ∧·· ·∧ xp) := (Ax1)∧·· ·∧ (Axp), ∀x1, . . . ,xp ∈ Cn.

Prove that the eigenvalues of A∧p are the products of p terms λ j with pair-
wise distinct indices. Deduce the value of the spectral radius.

c. Let {ei1 , . . . ,ein} be the canonical basis of Cn. We endow Λ p(Cn) with the
natural Hermitian norm in which the canonical basis made of ei1 ∧·· ·∧ eip

with i1 < · · · < ip, is orthonormal. We denote by 〈·, ·〉 the scalar product in
Λ p(Cn).

i. If x1, . . . ,xp,y1, . . . ,yp ∈ Cn, prove that

〈x1∧·· ·∧ xp,y1 ∧·· ·∧ yp〉= det(x∗i y j)1≤i, j≤p .

ii. For M ∈ Mn(C), show that the Hermitian adjoint of M∧p is (M∗)∧p.
iii. If U ∈ Un, show that U∧p is unitary.
iv. Deduce that the norm of A∧p equals σ1 · · ·σp.

d. Conclude.

13. Let A,B,C be complex matrices of respective sizes n× r, s×m, and n×m.
Prove that the equation

AXB = C

is solvable if and only if
AA†CB†B = C.

In this case, verify that every solution is of the form

A†CB† +Y −A†AY BB†,

where Y is an arbitrary r× s matrix. We recall that M† is the Moore–Penrose
inverse of M.

14. The deformation of an elastic body is represented at each point by a square
matrix F ∈ GL+

3 (R) (the sign + expresses that detF > 0). More generally,
F ∈ GL+

n (R) in space dimension n. The density of elastic energy is given by a
function F �→W (F) ∈ R+.

a. The principle of frame indifference says that W (QF) =W (F) for every F ∈
GL+

n (R) and every rotation Q. Show that there exists a map w : SPDn →R+

such that W (F) = w(H), where F = QH is the polar decomposition.
b. When the body is isotropic, we also have W (FQ) = W (F), for every F ∈

GL+
n (R) and every rotation Q. Show that there exists a map φ : Rn → R+

such that W (F) = φ(h1, . . . ,hn), where the h j are the entries of the charac-
teristic polynomial of H. In other words, W (F) depends only on the singu-
lar values of F .

15. A matrix A ∈ Mn(R) is called a totally positive matrix when all minors

A
(

i1 i2 · · · ip
j1 j2 · · · jp

)
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with 1 ≤ p ≤ n, 1 ≤ i1 < · · ·< ip ≤ n and 1 ≤ j1 < · · ·< jp ≤ n are positive.

a. Prove that the product of totally positive matrices is totally positive.
b. Prove that a totally positive matrix admits an LU factorization and that

every “nontrivial” minor of L and U is positive. Here, “nontrivial” means

L
(

i1 i2 · · · ip
j1 j2 · · · jp

)

with 1 ≤ p ≤ n, 1 ≤ i1 < · · · < ip ≤ n, 1 ≤ j1 < · · · < jp ≤ l, and is ≥ js
for every s, because every other minor vanishes trivially. For U , read is ≤ js
instead. Note: One says that L and U are triangular totally positive.

c. Show that a Vandermonde matrix (see Exercise 17 of Chapter 3) is totally
positive whenever 0 < a1 < · · ·< an.





Chapter 12

Iterative Methods for Linear Systems

In this chapter the field of scalars is K = R or C.
We have seen in the previous chapter a few direct methods for solving a linear

system Ax = b, when A ∈ Mn(K) is invertible. For example, if A admits an LU
factorization, the successive resolution of Ly = b, Ux = y is called the Gauss method.
When a leading principal minor of A vanishes, a permutation of the columns allows
us to return to the generic case. More generally, the Gauss method with pivoting
consists in permuting the columns at each step of the factorization in such a way as
to limit the magnitude of roundoff errors and that of the conditioning number of the
matrices L, U .

The direct computation of the solution of a Cramer’s linear system Ax = b, by
the Gauss method or by any other direct method, is rather costly, on the order of n3

operations. It also presents several inconveniences. It does not completely exploit
the sparse shape of many matrices A; in numerical analysis it happens frequently that
an n×n matrix has only O(n) nonzero entries, instead of O(n2). These matrices are
often bandshape with bandwidth an O(nα) with α = 1

2 or 2
3 . On the other hand, the

computation of an LU factorization is rather unstable, because the roundoff errors
produced by the computer are amplified at each step of the computation.

For these reasons, one often prefers using an iterative method to compute an
approximate solution xm, instead of an exact solution(which after all is not exact
because of roundoff errors). The iterative methods fully exploit the sparse structure
of A. The number of operations is O(am), where a is the number of nonzero entries
in A. The choice of m depends on the accuracy that one requires a priori. It is,
however, modest because the error ‖xm − x̄‖ from the exact solution x̄ is of order
rm up to a multiplicative constant, where r < 1 whenever the method converges.
Typically, a dozen iterations give a rather good result, and then O(10a) % O(n3).
Another advantage of the iterative methods is that the roundoff errors are damped
by the subsequent iterations, instead of being amplified.

225D. Serre, Matrices, Graduate Texts in Mathematics 216,
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General Principle

We choose a decomposition of A = M−N and rewrite the system, assuming that M
is invertible:

x = M−1(Nx+b).

Then choosing a starting point x0 ∈ Kn, which is either an arbitrary vector or a
rather coarse approximation of the solution, we construct a sequence (xm)m∈N by
induction:

xm+1 = M−1(Nxm +b). (12.1)

In practice, one does not compute M−1 explicitly but one solves the linear systems
Mxm+1 = · · · . It is thus important that this resolution be cheap. This is the case when
M is triangular. In that case, the invertibility of M can be read from its diagonal,
because it occurs precisely when the diagonal entries are nonzero.

12.1 A Convergence Criterion

Definition 12.1 Let us assume that A and M are invertible, A = M−N. We say that
an iterative method is convergent if for every pair (x0,b) ∈ Kn ×Kn, we have

lim
m→+∞

xm = A−1b.

Proposition 12.1 An iterative method is convergent if and only if ρ(M−1N) < 1.

Proof. If the method is convergent, then for b = 0,

lim
m→+∞

(M−1N)mx0 = 0,

for every x0 ∈ Kn. In other words,

lim
m→+∞

(M−1N)m = 0.

From Proposition 7.8, this implies ρ(M−1N) < 1.
Conversely, if ρ(M−1N) < 1, then by Proposition 7.8,

lim
m→+∞

(M−1N)m = 0,

and hence
xm −A−1b = (M−1N)m(x0 −A−1b)→ 0.

��
To be more precise, if ‖ · ‖ is a norm on Kn, then

‖xm −A−1b‖ ≤ ‖(M−1N)m‖‖x0 −A−1b‖.
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From Householder’s theorem (Theorem 7.1), there exists for every ε > 0 a constant
C(ε) < ∞ such that

‖xm −A−1b‖ ≤C(ε)‖x0 − x̄‖(ρ(M−1N)+ ε)m.

In most cases (in fact, when there exists an induced norm satisfying ‖M−1N‖ =
ρ(M−1N)), one can choose ε = 0 in this inequality, thus obtaining

‖xm −A−1b‖ = O(ρ(M−1N)m).

The choice of a vector x0 such that x0 −A−1b is an eigenvector associated with an
eigenvalue of maximal modulus shows that this inequality cannot be improved in
general. For this reason, we call the positive number

τ :=− logρ(M−1N)

the convergence rate of the method. Given two convergent methods, we say that the
first one converges faster than the second one if τ1 > τ2. For example, we say that
it converges twice as fast if τ1 = 2τ2. In fact, with an error of order ρ(M−1N)m =
exp(−mτ), we see that the faster method needs only half as many iterations to reach
the same accuracy.

12.2 Basic Methods

There are three basic iterative methods, of which the first has only an historical
and theoretical interest. Each one uses the decomposition of A into three parts, a
diagonal one D, a lower-triangular −E, and an upper-triangular one −F :

A = D−E −F =

⎛
⎜⎜⎜⎜⎝

d1
. . . −F

−E
. . .

dn

⎞
⎟⎟⎟⎟⎠ .

In all cases, one assumes that D is invertible: the diagonal entries of A are nonzero.

Jacobi method: One chooses M = D thus N = E +F . The iteration matrix is J :=
D−1(E +F). Knowing the vector xm, one computes the components of the vector
xm+1 by the formula

xm+1
i =

1
aii

(
bi −∑

j �=i
ai jxm

j

)
.

Gauss–Seidel method: One chooses M = D−E, and thus N = F . The iteration
matrix is G := (D−E)−1F . As we show below, one never computes G explicitly.
One computes the approximate solutions by a double loop, an outer one over m
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and an inner one over i ∈ {1, . . . ,n}:

xm+1
i =

1
aii

(
bi −

i−1

∑
j=1

ai jxm+1
j −

j=n

∑
j=i+1

ai jxm
j

)
.

The difference between the two methods is that in Gauss–Seidel one always uses
the latest computed values of each coordinate.

Relaxation method: It often happens that the Gauss–Seidel method converges ex-
ceedingly slowly, even if it is more efficient than Jacobi’s method. We wish to
improve the Gauss–Seidel method by looking for a “best” approximated value
of the x j (with j < i) when computing xm+1

i . Instead of being simply xm
j , as in

the Jacobi method, or xm+1
j , as in that of Gauss–Seidel, this best value is an in-

terpolation of both (we show that it is merely an extrapolation). This justifies the
choice of

M =
1
ω

D−E, N =
(

1
ω
−1
)

D+F,

where ω ∈ C is a parameter. This parameter remains, in general, constant
throughout the calculations. The method is called successive relaxation. The ex-
trapolation case ω > 1 bears the name successive overrelaxation (SOR). The
iteration matrix is

Lω := (D−ωE)−1((1−ω)D+ωF).

The Gauss–Seidel method is a particular case of the relaxation method, with
ω = 1: L1 = G. Special attention is given to the choice of ω , in order to mini-
mize ρ(Lω), that is, to maximize the convergence rate. The computation of the
approximate solutions is done through a double loop:

xm+1
i =

ω
aii

(
bi −

i−1

∑
j=1

ai jxm+1
j −

j=n

∑
j=i+1

ai jxm
j +
(

1
ω
−1
)

aiixm
i

)
.

Without additional assumptions relative to the matrix A, the only result concern-
ing the convergence is the following.

Proposition 12.2 We have ρ(Lω)≥ |ω−1|. In particular, if the relaxation method
converges for a matrix A ∈ Mn(C) and a parameter ω ∈ C, then

|ω −1|< 1.

In other words, it is necessary that ω belong to the disk for which (0,2) is a diameter.

Proof. If the method is convergent, we have ρ(Lω) < 1. However,

detLω =
det((1−ω)D+ωF)

det(D−ωE)
=

det((1−ω)D)
detD

= (1−ω)n.

Hence
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ρ(Lω)≥ |detLω |1/n = |1−ω|.
��

12.3 Two Cases of Convergence

In this section and the following one we show that simple and natural hypotheses on
A imply the convergence of the classical methods. We also compare their efficien-
cies.

12.3.1 The Diagonally Dominant Case

We assume here that one of the following two properties is satisfied:

1. A is strictly diagonally dominant.
2. A is irreducible and strongly diagonally dominant.

Proposition 12.3 Under Hypothesis (1) or (2), the Jacobi method converges, as
well as the relaxation method, for every ω ∈ (0,1].

Proof. Jacobi method: The matrix J = D−1(E +F) is clearly irreducible when A
is so. Furthermore,

n

∑
j=1

|Ji j| ≤ 1, i = 1, . . . ,n,

in which all inequalities are strict if (1) holds, and at least one inequality is strict
under the hypothesis (2). Then either Gershgorin’s theorem (Theorem 5.7) or its
improvement, Proposition 5.13 for irreducible matrices, yields ρ(J) < 1.

Relaxation method: We assume that ω ∈ (0,1]. Let λ ∈ C be a nonzero eigen-
value of Lω . It is a root of

det((1−ω −λ )D+λωE +ωF) = 0.

Hence, λ +ω −1 is an eigenvalue of A′ := ωD−1(λE +F). This matrix is irre-
ducible when A is so. Gershgorin’s theorem (Theorem 5.7) shows that

|λ +ω −1| ≤ max

{
ω
|aii|

(
|λ |∑

j<i
|ai j|+ ∑

j>i
|ai j|

)
;1 ≤ i ≤ n

}
. (12.2)

If |λ | ≥ 1, we deduce that

|λ +ω −1| ≤ max

{
ω|λ |
|aii| ∑

j �=i
|ai j| ;1 ≤ i ≤ n

}
.
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In case (1), this yields
|λ +ω −1|< ω|λ |,

so that |λ | ≤ |λ +ω −1|+ |1−ω|< |λ |ω +1−ω; that is, (|λ |−1)(1−ω) < 0,
which is a contradiction. In case (2), Proposition 5.13 says that inequality (12.2)
is strict. One concludes the proof the same way as in case (1).
��

Of course, this result is not fully satisfactory, because ω ≤ 1 is not the hypothesis
that we should like. Recall that in practice, one wants to use overrelaxation (i.e.,
ω > 1), which turns out to be much more efficient than the Gauss–Seidel method
for an appropriate choice of the parameter.

12.3.2 The Case of an Hermitian Positive-Definite Matrix

Let us begin with an intermediate result.

Lemma 20. If A and M∗ + N are Hermitian positive-definite (in a decomposition
A = M−N), then ρ(M−1N) < 1.

Proof. Let us remark first that M∗+N = M∗+M−A is necessarily Hermitian when
A is so.

It is therefore enough to show that ‖M−1Nx‖A < ‖x‖A for every nonzero x ∈ Cn,
where ‖ · ‖A denotes the norm associated with A:

‖x‖A =
√

x∗Ax.

We have M−1Nx = x− y with y = M−1Ax. Hence,

‖M−1Nx‖2
A = ‖x‖2

A − y∗Ax− x∗Ay+ y∗Ay

= ‖x‖2
A − y∗(M∗+N)y.

We conclude by observing that y is not zero; hence y∗(M∗ +N)y > 0. ��
This proof gives a slightly more accurate result than what was claimed: by tak-

ing the supremum of ‖M−1Nx‖A on the unit ball, which is compact, we obtain
‖M−1N‖< 1 for the matrix norm induced by ‖ · ‖A.

The main application of this lemma is the following theorem.

Theorem 12.1 If A is Hermitian positive-definite, then the relaxation method con-
verges if and only if |ω −1|< 1.

Proof. We have seen in Proposition 12.2 that the convergence implies |ω −1| < 1.
Let us see the converse. We have E∗ = F and D∗ = D. Thus

M∗ +N =
(

1
ω

+
1
ω̄
−1
)

D =
1−|ω −1|2

|ω|2 D.
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Because D is positive-definite, M∗+N is positive-definite if and only if |ω−1|< 1.
��

However, Lemma 20 does not apply to the Jacobi method, inasmuch as the hy-
pothesis (A positive-definite) does not imply that M∗ +N = D+E +F be positive-
definite. We show in an exercise that this method diverges for certain matrices
A ∈ HPDn, although it converges when A ∈ HPDn is tridiagonal.

12.4 The Tridiagonal Case

We consider here the important case of tridiagonal matrices A, frequently encoun-
tered in the approximation of partial differential equations by finite differences or
finite elements. The general structure of A is the following,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x x′ 0 · · · 0

x′′
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . y′

0 · · · 0 y′′ y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In other words, the entries ai j are zero as soon as | j− i| ≥ 2.
Notice that in real cases, these matrices are blockwise tridiagonal instead of just

tridiagonal. This means that the Ai js are matrices, the diagonal ones being square
matrices. The decomposition A = D−E −F is done blockwise. The correspond-
ing iterative methods, which are performed blockwise, need the inversion of the
diagonal blocks, whose sizes are much smaller than n. These inversions are usually
done by using a direct method. We do not detail here this extension of the classical
methods. The analysis below can be adapted to this more realistic situation.

The structure of the matrix allows us to write a useful algebraic relation:

Lemma 21. Let μ be a nonzero complex number and C a tridiagonal matrix, of
diagonal C0, of upper-triangular part C+ and lower-triangular part C−. Then

detC = det
(

C0 +
1
μ

C− + μC+

)
.

Proof. It is enough to observe that the matrix C is conjugate to

C0 +
1
μ

C− + μC+,

by the nonsingular matrix
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Qμ =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ
μ2 0

. . .

0
. . .

μn

⎞
⎟⎟⎟⎟⎟⎟⎠

.

��
Let us apply the lemma to the computation of the characteristic polynomial Pω

of Lω . We have

(detD)Pω(λ ) = det((D−ωE)(λ In −Lω))
= det((ω +λ −1)D−ωF −λωE)

= det
(

(ω +λ −1)D−μωF − λω
μ

E
)

,

for every nonzero μ . Let us choose for μ any square root of λ . We then have

(detD)Pω(μ2) = det((ω + μ2−1)D−μω(E +F))
= (detD)det((ω + μ2 −1)In −μωJ),

hence the following lemma.

Lemma 22. If A is tridiagonal and D invertible, then

Pω(μ2) = (μω)nPJ

(
μ2 +ω −1

μω

)
,

where PJ is the characteristic polynomial of the Jacobi matrix J.

Let us begin with the analysis of a simple case, that of the Gauss–Seidel method,
for which G = L1.

Proposition 12.4 If A is tridiagonal and D invertible, then:

1. PG(X2) = XnPJ(X), where PG is the characteristic polynomial of the Gauss–
Seidel matrix G,

2. ρ(G) = ρ(J)2,
3. The Gauss–Seidel method converges if and only if the Jacobi method converges;

in case of convergence, the Gauss–Seidel method converges twice as fast as the
Jacobi method,

4. The spectrum of J is even: SpJ =−SpJ.

Proof. Point 1 comes from Lemma 22. The spectrum of G is thus formed of λ = 0
(which is of multiplicity [(n+1)/2] at least) and of squares of the eigenvalues of J,
which proves Point 2. Point 3 follows immediately. Finally, if μ ∈ SpJ, then PJ(μ) =
0, and also PG(μ2) = 0, so that (−μ)nPJ(−μ) = 0. Finally, either PJ(−μ) = 0, or
μ = 0 =−μ , in which case PJ(−μ) also vanishes. ��
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In fact, the comparison given in Point 3 of the proposition holds under various
assumptions. For example (see Exercises 3 and 8), it holds true when D is positive
and E,F are nonnegative.

We go back to the SOR, with an additional hypothesis: the spectrum of J is real,
and the Jacobi method converges. This property is satisfied, for instance, when A is
Hermitian positive-definite, inasmuch as Theorem 12.1 and Proposition 12.4 ensure
the convergence of the Jacobi method, and on the other hand J is similar to the
Hermitian matrix D−1/2(E +F)D−1/2.

We also select a real ω , that is, ω ∈ (0,2), taking into account Proposition 12.2.
The spectrum of J is thus formed of the eigenvalues

−λr < · · ·<−λ1 ≤ λ1 < · · ·< λr = ρ(J) < 1,

from Proposition 12.4. This notation does not mean that n is even: if n is odd, λ1 = 0.
Apart from the zero eigenvalue, which does not enter into the computation of the
spectral radius, the eigenvalues of Lω are the squares of the roots of

μ2 +ω −1 = μωλa, (12.3)

for 1 ≤ a ≤ r. Indeed, taking −λa instead of λa furnishes the same squares.
Let us denote Δ(λ ) := ω2λ 2 + 4(1−ω) the discriminant of (12.3). If Δ(λa)

is nonpositive, both roots of (12.3) are complex conjugate, hence have modulus
|ω −1|1/2. If instead it is strictly positive, the roots are real and of distinct modulus.
One of them, denoted by μa, satisfies μ2

a > |ω − 1|, the other one satisfying the
opposite inequality.

From Proposition 12.2, ρ(Lω) is thus equal to one of the following.

• |ω −1|, if Δ(λa)≤ 0 for every a, that is, if Δ(ρ(J))≤ 0.
• The maximum of the μ2

a s defined above, otherwise.

The first case corresponds to the choice ω ∈ [ωJ,2), where

ωJ = 2
1−
√

1−ρ(J)2

ρ(J)2 =
2

1+
√

1−ρ(J)2
∈ [1,2).

Then ρ(Lω) = ω −1.
The second case is ω ∈ (0,ωJ). If Δ(λa) > 0, let us denote by Qa(X) the polyno-

mial X2 +ω −1−Xωλa. The sum of its roots being positive, μa is the largest one;
it is thus positive. Moreover, Qa(1) = ω(1−λa) > 0 shows that both roots belong to
the same half-line of R\{1}. Their product has modulus less than or equal to one,
therefore they are less than or equal to one. In particular,

|ω −1|1/2 < μa < 1.

This shows that ρ(Lω) < 1 holds for every ω ∈ (0,2). Under our hypotheses, the
relaxation method is convergent.
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If λa �= ρ(J), we have Qr(μa) = μaω(λa − ρ(J)) < 0. Hence, μa lies between
both roots of Qr, so that μa < μr. Finally, the case Δ(ρ(J))≥ 0 furnishes ρ(Lω) =
μ2

r .
There remains to analyze the dependence of ρ(Lω) upon ω . We have

(2μr −ωρ(J))
dμr

dω
+1−μrρ(J) = 0.

Because 2μr is larger than the sum ωρ(J) of the roots and because μr,ρ(J) ∈ [0,1),
one deduces that ω �→ ρ(Lω) is nonincreasing over (0,ωJ).

We conclude that ρ(Lω) reaches its minimum at ωJ , that minimum being

ωJ −1 =
1−
√

1−ρ(J)2

1+
√

1−ρ(J)2
.

Theorem 12.2 (See Figure 12.1) Suppose that A is tridiagonal, D is invertible, and
that the eigenvalues of J are real and belong to (−1,1). Assume also that ω ∈ R.

Then the relaxation method converges if and only if ω ∈ (0,2). Furthermore, the
convergence rate is optimal for the parameter

ωJ :=
2

1+
√

1−ρ(J)2
∈ [1,2),

where the spectral radius of LωJ is

(ωJ −1 =)
1−
√

1−ρ(J)2

1+
√

1−ρ(J)2
=

(
1−
√

1−ρ(J)2

ρ(J)

)2

.

1

21O
J

Fig. 12.1 ρ(Lω ) in the tridiagonal case.
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Remarks

• We show in Exercise 7 that Theorem 12.2 extends to complex values of ω: un-
der the same assumptions, ρ(Lω) is minimal at ωJ , and the relaxation method
converges if and only if |ω −1|< 1.

• The Gauss–Seidel method is not optimal in general; ωJ = 1 holds only when
ρ(J) = 0, although in practice ρ(J) is close to 1. A typical example is the reso-
lution of an elliptic PDE by the finite element method.
For values of ρ(J) that are not too close to 1, the relaxation method with optimal
parameter ωJ , although improving the convergence rate, is not overwhelmingly
more efficient than Gauss–Seidel. In fact,

ρ(G)/ρ (LωJ ) =
(

1+
√

1−ρ(J)2

)2

lies between 1 (for ρ(J) close to 1) and 4 (for ρ(J) = 0), so that the ratio

logρ(LωJ )/ logρ(G)

remains moderate, as long as ρ(J) keeps away from 1. However, in the realistic
case where ρ(J) is close to 1, we have

logρ(G)/ logρ(LωJ )≈
√

1−ρ(J)
2

,

which is very small. The number of iterations needed for a prescribed accuracy
is multiplied by that ratio when one replaces the Gauss–Seidel method by the
relaxation method with the optimal parameter.

12.5 The Method of the Conjugate Gradient

We present here the conjugate gradient method in the most appropriate framework,
namely that of systems Ax = b where A is real symmetric positive-definite (A ∈
SPDn). As we show below, it is a direct method, in the sense that it furnishes the
solution x̄ after a finite number of iterations (at most n). However, the roundoff errors
pollute the final result, and we would prefer to consider the conjugate gradient as
an iterative method in which the number N of iterations, much less than n, gives
a rather good approximation of x̄. We show that the choice of N is linked to the
condition number of the matrix A.

We denote by 〈·, ·〉 the canonical scalar product on Rn, and by ‖ · ‖A the norm
associated with A :

‖x‖A :=
√
〈Ax,x〉.



236 12 Iterative Methods for Linear Systems

We also use the quadratic form E associated with A : E(x) := 〈Ax,x〉= ‖x‖2
A. It is the

square of a norm of Rn. The character ⊥A indicates the orthogonality with respect
to the scalar product defined by A :

(x⊥Ay)⇐⇒ (〈Ax,y〉= 0).

We point out the importance in this paragraph of distinguishing between the canon-
ical scalar product, and that associated with A. Both are used in the sequel.

When A ∈ SPDn and b ∈ Rn, the function

x �→ J(x) :=
1
2
〈Ax,x〉−〈b,x〉

is strictly convex. By Cauchy–Schwarz, we have

J(x)≥ 1
2
‖x‖2

A −‖x‖A‖b‖A
‖x‖A→+∞−→ +∞.

Let m be the infimum of J. The nonempty set K := {x |J(x) < m+1} is closed and
bounded, thus compact. Hence J reaches its infimum over K, which is its infimum
over Rn. Because of the strict convexity, the infimum is taken at a unique point x̄,
which is the unique vector where the gradient of J vanishes. We denote by r (for
residue) the gradient of J: r(x) = Ax− b. Therefore x̄ is the unique solution of the
linear system Ax = b.

The characterization of x̄ = A−1b as argmin(J) suggests employing a descent
method. This motivates the method of the conjugate gradient.

12.5.1 A Theoretical Analysis

Let x0 ∈Rn be given. We define e0 = x0− x̄, r0 = r(x0) = Ae0. We may assume that
e0 �= 0; otherwise, we should already have got the solution.

For k ≥ 1, let us define the vector space

Hk := {P(A)r0 |P ∈ R[X ], degP ≤ k−1}, H0 = {0}.

It can be obtained inductively, using either Hk+1 = AHk +Hk or Hk+1 = Akr0 +
Hk.

In Hk+1, the subspace Hk is of codimension 0 or 1. In the first case, Hk+1 =
Hk, and it follows that Hk+2 = AHk+1 +Hk+1 = AHk +Hk = Hk+1 = Hk. By
induction, Hk = Hm for every m > k. Let us denote by � the smallest index such
that H� = H�+1. For k < �, Hk is thus of codimension one in Hk+1, whereas if
k ≥ �, then Hk = Hk+1. It follows that dimHk = k if k ≤ �. In particular, �≤ n.

One can always find, by applying Gram–Schmidt orthonormalization, a basis
{p0, . . . , pl−1} of H� that is A-orthogonal (i.e., such that 〈Ap j, pi〉= 0 if i �= j), and
such that {p0, . . . , pk−1} is a basis of Hk when k ≤ l. The vectors p j, which are not
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necessarily unit vectors, are defined, up to a scalar multiple, by

pk ∈Hk+1, pk⊥AHk.

One says that the vectors pj are pairwise conjugate. Of course, conjugation means
A-orthogonality. This explains the name of the method.

The quadratic function J, strictly convex, reaches its infimum on the affine sub-
space x0 +Hk at a unique vector, which we denote by xk (same proof as above). The
notation xk is consistent for k = 0. If x = y + γ pk ∈ x0 +Hk+1 with y ∈ x0 +Hk,
then

J(x) = J(x̄)+
1
2

E(x− x̄)

= J(x̄)+
1
2

E(y− x̄)+
1
2

γ2E(pk)+ γ〈Apk,y− x̄〉

= J(y)+
1
2

γ2E(pk)− γ〈Apk,e0〉,

because 〈Apk,y− x0〉 = 0. Hence, minimizing J over x0 +Hk+1 amounts to min-
imizing J separately with respect to y, and to γ . The first minimization is that
of J(y) over x0 + Hk and yields y = xk, whereas the second one is that of γ �→
1
2 γ2E(pk)− γ〈pk,r0〉 over R. We therefore have

xk+1 − xk ∈ Rpk. (12.4)

By definition of � there exists a nonzero polynomial P of degree � such that
P(A)r0 = 0, that is, AP(A)e0 = 0. Because A is invertible, P(A)e0 = 0. If P(0) van-
ished, then P(X) = XQ(X) with degQ = �− 1. Therefore, Q(A)r0 = 0 : the map
S �→ S(A)r0 would not be one-to-one over the polynomials of degree less than or
equal to �− 1. One should have dimH� < �, a contradiction. Hence P(0) �= 0, and
we may normalize P(0) = 1. Then P(X) = 1−XR(X), where degR = �− 1. Thus
e0 = R(A)r0 ∈H� or, equivalently, x̄∈ x0 +H�. Conversely, if k≤ � and x̄∈ x0 +Hk,
then e0 ∈ Hk; that is, e0 = Q(A)r0, where degQ ≤ k− 1. Then Q1(A)e0 = 0, with
Q1(X) = 1−XQ(X). Therefore, Q1(A)r0 = 0, Q1(0) �= 0, and degQ1 ≤ k. Hence
k≥ �; that is, k = �. Summing up, we have x̄∈ x0 +H� but x̄ �∈ x0 +H�−1. Therefore,
x� = x̄ and xk �= x̄ if k < �.

We now set rk = r(xk) = A(xk − x̄). We have seen that r� = 0 and that rk �= 0 if
k < l. In fact, rk is the gradient of J at xk. The minimality of J at xk over x0 +Hk thus
implies that rk⊥Hk (for the usual scalar product). In other words, we have 〈rk, p j〉=
0 if j < k. However, xk − x̄ ∈ e0 +Hk can also be written as xk − x̄ = Q(A)e0 with
degQ ≤ k, which implies rk = Q(A)r0, so that rk ∈Hk+1. If k < l, one therefore has
Hk+1 = Hk ⊕Rrk.

We now normalize pk (which was not done up to now) by

pk − rk ∈Hk.
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In other words, pk is the A-orthogonal projection of rk = r(xk), parallel to Hk. It is
actually an element of Hk+1, because rk ∈Hk+1. It is also nonzero because rk �∈Hk.
We note that rk is orthogonal to Hk with respect to the usual scalar product, although
pk is orthogonal to Hk with respect to the A-scalar product; this explains why pk
and rk are generally different.

If j ≤ k− 2, we compute 〈A(pk − rk), pj〉 = −〈Ark, p j〉 = −〈rk,Ap j〉 = 0. We
have successively used the conjugation of the pk, the symmetry of A, the fact that
Ap j ∈H j+2, and the orthogonality of rk and Hk. We have therefore pk−rk⊥AHk−1,
so that

pk = rk +δk pk−1 (12.5)

for a suitable number δk.

12.5.1.1 Error Estimate

Lemma 23. Let us denote by λn ≥ ·· · ≥ λ1(> 0) the eigenvalues of A. If k ≤ �, then

E(xk − x̄)≤ E(e0) · min
degQ≤k−1

max
j
|1+λ jQ(λ j)|2.

Proof. Let us compute

E(xk − x̄) = min{E(x− x̄) |x ∈ x0 +Hk}
= min{E(e0 + y) |y ∈Hk}
= min{E((In +AQ(A))e0) | degQ ≤ k−1}
= min{‖(In +AQ(A))A1/2e0‖2

2 | degQ ≤ k−1},

where we have used the equality 〈Aw,w〉= ‖A1/2w‖2
2. Hence

E(xk − x̄) ≤ min{‖In +AQ(A)‖2
2‖A1/2e0‖2

2 | degQ ≤ k−1}
= E(e0)min{ρ(In +AQ(A))2 | degQ ≤ k−1},

because ρ(S) = ‖S‖2 holds true for every real symmetric matrix. ��
From Lemma 23, we deduce an estimate of the error E(xk − x̄) by bounding the

right-hand side by
min

degQ≤k−1
max

t∈[λ1,λn]
|1+ tQ(t)|2.

Classically, this minimum is reached for

1+XQ(X) = ωkTk

(
2X −λ1−λn

λn −λ1

)
,

where Tk is a Chebyshev polynomial:
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Tk(t) =

⎧⎨
⎩

cosk arccos t if |t| ≤ 1,
cosh k arcosh t if t ≥ 1,
(−1)k cosh k arcosh |t| if t ≤−1.

The number ωk is that which furnishes the value 1 at X = 0, namely

ωk =
(−1)k

Tk

(
λn+λ1
λn−λ1

) .

Then
max
[λ1,λn]

|1+ tQ(t)|= |ωk|= 1

cosh k arcosh λn+λ1
λn−λ1

.

Hence E(xk − x̄)≤ |ωk|2E(e0). However, if

θ := arcosh
λn +λ1

λn −λ1
,

then |ωk| = (coshkθ)−1 ≤ 2exp(−kθ), and exp(−θ) is the root, less than one, of
the quadratic polynomial

T 2 −2
λn +λ1

λn−λ1
T +1.

Setting cond(A) := ‖A‖2‖A−1‖2 = λn/λ1 the condition number of A, we obtain

e−θ =
λn +λ1

λn −λ1
−
√(

λn +λ1

λn −λ1

)2

−1 =
√

λn −
√

λ1√
λn +

√
λ1

=

√
cond(A)−1√
cond(A)+1

.

The final result is the following.

Theorem 12.3 If k ≤ l, then

E(xk − x̄)≤ 4E(x0− x̄)

(√
cond(A)−1√
cond(A)+1

)2k

. (12.6)

12.5.2 Implementing the Conjugate Gradient

The main feature of the conjugate gradient is the simplicity of the computation of
the vectors xk. We proceed by induction. To begin with, we have p0 = r0 = Ax0−b,
where x0 is at our disposal.

Let us assume that xk and pk−1 are known. Then rk = Axk − b. If rk = 0, we
already have the solution. Otherwise, the formulæ (12.4) and (12.5) show that in
fact, xk+1 minimizes J over the plane xk +Rrk ⊕Rpk−1. We therefore have xk+1 =
xk +αkrk +βk pk−1, where the entries αk,βk are obtained by solving the linear system
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of two equations

αk〈Ark,rk〉+βk〈Ark, pk−1〉+‖rk‖2 = 0, αk〈Ark, pk−1〉+βk〈Apk−1, pk−1〉= 0

(we have used 〈rk, pk−1〉= 0). Then we have δk = βk/αk. Observe that αk is nonzero,
because otherwise βk would vanish and rk would too.

Summing up, the algorithm reads as follows

• Choose x0. Define p0 = r0 = r(x0) := Ax0 −b.
• FOR k = 0, . . . ,n, DO

– Compute rk := r(xk) = Axk −b. IF rk = 0, THEN x̄ := xk and STOP.
– ELSE, minimize J(xk +αrk +β pk−1), by computing αk,βk as above.
– Define

pk = rk +(βk/αk)pk−1, xk+1 = xk +αk pk.

A priori, this computation furnishes the exact solution x̄ in � iterations. However,
� equals n in general, and the cost of each iteration is O(n2). The conjugate gradi-
ent, viewed as a direct method, is thus rather slow, or at least not faster than other
methods. One often uses this method for sparse matrices, whose maximal number
of nonzero elements m per rows is small compared to n. The complexity of an iter-
ation is then O(mn). However, that is still rather costly as a direct method (O(mn2)
operations in all), because the complexity of iterative methods is also reduced for
sparse matrices.

The advantage of the conjugate gradient is its stability, stated in Theorem 12.3. It
explains why one prefers to consider the conjugate gradient as an iterative method,
in which one makes only a few iterations N % n. Strictly speaking, Theorem 12.3
does not define a convergence rate τ , because one does not have, in general, an
inequality of the form

‖xk+1 − x̄‖ ≤ e−τ‖xk − x̄‖.
In particular, one is not certain that ‖x1− x̄‖ be smaller than ‖x0− x̄‖. However, the
inequality (12.6) is analogous to what we have for a classical iterative method, up to
the factor 4. We therefore say that the conjugate gradient admits a convergence rate
τCG that satisfies

τCG ≤ θ =− log

√
cond(A)−1√
cond(A)+1

. (12.7)

This rate is equivalent to 2cond(A)−1/2 when cond(A) is large. This method can be
considered as an iterative method when nτCG >> 1 because then it is possible to
choose N % n. Obviously, a sufficient condition is cond(A)% n2.

12.5.2.1 Application

Let us consider the Laplace equation in an open bounded set Ω of Rd , with a Dirich-
let boundary condition:
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Δu = f in Ω , u = 0 on ∂Ω .

An approximate resolution by a finite elements method yields a finite-dimensional
linear system Ax = b, where the matrix A is symmetric, reflecting the symmetry of
the variational formulation∫

Ω
(∇u ·∇v+ f v)dx = 0, ∀v ∈ H1

0 (Ω).

If the diameter of the grid is h with 0 < h % 1, and if that grid is regular enough,
the number of degrees of freedom (the size of the matrix) n is of order C/hd , where
C is a constant. The matrix is sparse with m = O(1). Each iteration thus needs O(n)
operations. Finally, the condition number of A is of order c/h2. Hence, a number of
iterations N & 1/h is appropriate. This is worthwhile as soon as d ≥ 2. The method
becomes more useful as d gets larger, inasmuch as the threshold 1/h is independent
of the dimension.

12.5.2.2 Preconditioning

Theorem 12.3 suggests that the performance of the method is improved by precon-
ditioning the matrix A. The idea is to replace the system Ax = b by BT ABy = BT b,
where the inversion of B is easy; for example, B is block-triangular, or block-
diagonal with small blocks, or block-triangular with small bandwidth. If BBT is
close enough to A−1, the condition number of the new matrix BT AB is smaller, and
the number of iterations is reduced. Actually, when the condition number reaches
its infimum K = 1, we have A = In, and the solution x̄ = b is obvious. The simplest
preconditioning consists in choosing B = D−1/2, D the diagonal of A. Its efficiency
is clear in the (trivial) case where A is diagonal, because the matrix of the new sys-
tem is In, and the condition number is lowered to 1. Observe that preconditioning is
also used with SOR, because it allows us to diminish the value of ρ(J), hence also
the convergence rate. We show in Exercise 5 that, if A ∈ SPDn is tridiagonal and if
D = dIn (which corresponds to the preconditioning described above), the conjugate
gradient method is twice as slow as the relaxation method with optimal parameter;
that is,

θ =
1
2

τRL.

This equality is obtained by computing θ and the optimal convergence rate τRL
of the relaxation method in terms of ρ(J). In the real world, in which A might
not be tridiagonal, or be only blockwise tridiagonal, the map ρ(J) �→ θ remains
the same, and τRL deteriorates. Then the conjugate gradient method becomes more
efficient than the relaxation method. Another advantage is that it does not need the
preliminary computation of ρ(J), in contrast to the relaxation method with optimal
parameter.

The reader may find a deeper analysis of the method of the conjugate gradient in
the article of J.-F. Maı̂tre [1].
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Exercises

1. Let A be a tridiagonal matrix with an invertible diagonal and let J be its Jacobi
matrix. Show that J is conjugate to −J. Compare with Proposition 12.4.

2. We fix n ≥ 2. Use Theorem 6.8 to construct a matrix A ∈ SPDn for which the
Jacobi method does not converge. Show in particular that

sup{ρ(J) |A ∈ SPDn, D = In} = n−1.

3. Let A ∈ Mn(R) satisfy aii > 0 for every index i, and ai j ≤ 0 whenever j �= i.
Using (several times) the weak form of the Perron–Frobenius theorem, prove
that either 1 ≤ ρ(J) ≤ ρ(G) or ρ(G) ≤ ρ(J) ≤ 1. In particular, as in point 3
of Proposition 12.4, the Jacobi and Gauss–Seidel methods converge or diverge
simultaneously, and Gauss–Seidel is faster in the former case. Hint: Prove that

(ρ(G)≥ 1) =⇒ (ρ(J)≥ 1) =⇒ (ρ(G)≥ ρ(J))

and
(ρ(G)≤ 1) =⇒ (ρ(J)≥ ρ(G)).

4. Let n ≥ 2 and A ∈ HPDn be given. Assume that A is tridiagonal.

a. Verify that the spectrum of J is real and even.
b. Show that the eigenvalues of J satisfy λ < 1.
c. Deduce that the Jacobi method is convergent.

5. Let A ∈ HPDn, A = D−E −E∗. Use the Hermitian norm ‖ · ‖2.

a. Show that |((E +E∗)v,v)| ≤ ρ(J)‖D1/2v‖2 for every v ∈ Cn. Deduce that

cond(A)≤ 1+ρ(J)
1−ρ(J)

cond(D).

b. Let us define a function by

g(x) :=
√

x−1√
x+1

.

Verify that

g
(

1+ρ(J)
1−ρ(J)

)
=

1−
√

1−ρ(J)2

ρ(J)
.

c. Deduce that if A is tridiagonal and if D = dIn, then the convergence rate
θ of the conjugate gradient is at least the half of that of SOR with optimal
parameter.

6. Here is another proof of Theorem 12.1, when ω is real. Let A ∈ HPDn.

a. Suppose we are given ω ∈ (0,2).



Exercises 243

i. Assume that λ = e2iθ (θ real) is an eigenvalue of Lω . Show that (1−
ω −λ )e−iθ ∈ R.

ii. Deduce that λ = 1; then show that this case is impossible too.
iii. Let m(ω) be the number of eigenvalues of Lω of modulus less than or

equal to one (counted with multiplicities). Show that m is constant on
(0,2).

b. i. Compute

lim
ω→0

1
ω

(Lω − In).

ii. Deduce that m = n, hence that the SOR converges for every ω ∈ (0,2).

7. (Extension of Theorem 12.2 to complex values of ω). We still assume that A is
tridiagonal, that the Jacobi method converges, and that the spectrum of J is real.
We retain the notation of Section 12.4.

a. Given an index a such that λa > 0, verify that Δ(λa) vanishes for two real
values of ω , of which only one, denoted by ωa, belongs to the open disk
D = D(1;1). Show that 1 < ωa < 2.

b. Show that if ω ∈D\ [ωa,2), then the roots of X2 +ω−1−ωλaX have dis-
tinct moduli, with one and only one of them, denoted by μa(ω), of modulus
larger than |ω −1|1/2.

c. Show that ω �→ μa is holomorphic on its domain, and that

lim
|ω−1|→1

|μa(ω)|2 = 1,

lim
ω→γ

|μa(ω)|2 = γ −1 if γ ∈ [ωa,2).

d. Deduce that |μa(ω)| < 1 (use the maximum principle), then that the relax-
ation method converges for every ω ∈ D.

e. Show, finally, that the spectral radius of Lω is minimal for ω = ωr, which
was previously denoted by ωJ .

8. Let B be a cyclic matrix of order three. With square diagonal blocks, it reads
blockwise as

B =

⎛
⎝ 0 0 M1

M2 0 0
0 M3 0

⎞
⎠ .

We wish to compare the Jacobi and Gauss–Seidel methods for the matrix
A := I−B. Compute the matrix G. Show that ρ(G) = ρ(J)3. Deduce that both
methods converge or diverge simultaneously and that, in the case of conver-
gence, Gauss–Seidel is three times faster than Jacobi. Show that for AT , the
convergence or the divergence still holds simultaneously, but that Gauss–Seidel
is only one and a half times faster. Generalize to cyclic matrices of any order p.

9. (Preconditionned conjugate gradient method.)
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Let Ax = b be a linear system whose matrix A is symmetric positive-definite
(all entries are real.) Recall that the convergence rate of the conjugate gradient
method is the number

τGC =− log

√
K(A)−1√
K(A)+1

,

that behaves like 2/
√

K(A) when K(A) is large, as it used to be in real life. The
number K(A) := λmax(A)/λmin(A) is the condition number of A.
Preconditioning is a technique that reduces the condition number, hence in-
creases the convergence rate, through a change of variables. Say that a new
unknown is y := BT x, so that the system is equivalent to Ãy = b̃, where

Ã := B−1AB−T , b = Bb̃.

With a given preconditioning, we associate the matrices C := BBT and T := In−
C−1A. Notice that preconditioning with C or α−1C is essentially the same trick
if α > 0, although T = T (α) differs significantly. Thus we merely associate
with C the whole family

{T (α) = In−αC−1A |α > 0}.

a. Show that Ã is similar to C−1A.
b. Consider the decomposition A = M−N with M = α−1C and N = α−1C−

A. This yields an iterative method

C(xk+1 − xk) = b−αAxk,

whose iteration matrix is T (α). Show that there exist values of α for which
the method is convergent. Show that the optimal parameter (the one that
maximizes the convergence rate) is

αopt =
2

λmin(Ã)+λmax(Ã)
,

with the convergence rate

τopt =− log
K(Ã)−1
K(Ã)+1

.

c. When K(Ã) is large, show that

τGCP

τopt
≈
√

K(Ã),

where τGCP stands for the preconditioned conjugate gradient, that is, the
conjugate gradient applied to Ã.
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Conclusion?

10. (Continuation.) We now start from a decomposition A = M −N and wish to
construct a preconditioning.
Assume that M + NT , obviously a symmetric matrix, is positive-definite. We
already know that ‖M−1N‖A < 1, where ‖ ·‖A is the Euclidean norm associated
with A (Lemma 9.3.1.)

a. Define T := (In −M−T A)(In −M−1A). Prove that ‖T‖A < 1. Deduce that
the “symmetric” method

Mxk+1/2 = Nxk +b, MT xk+1 = NT xk+1/2 +b

is convergent (remark that A = MT −NT .)
This method is called symmetric S.O.R., or S.S.O.R. when M is as in the
relaxation method.

b. From the identity T = In −M−T (M + NT )M−1A, we define C = M(M +
NT )−1MT . Express the corresponding preconditioning C(ω) when M and
N come from the S.O.R. method:

M =
1
ω

D−E, ω ∈ (0,2).

This is the S.S.O.R. preconditioning.
c. Show that λmax(C(ω)−1A)≤ 1, with equality when ω = 1.
d. Compute ρ(T ) and K(Ã) when A is tridiagonal with aii = 2, ai,i±1 = −1

and ai j = 0 otherwise. Compare the S.S.O.R. method and the S.S.O.R. pre-
conditioned conjugate gradient method.





Chapter 13

Approximation of Eigenvalues

13.1 General Considerations

The computation of the eigenvalues of a square matrix is a problem of considerable
difficulty. The naive idea, according to which it is enough to compute the character-
istic polynomial and then find its roots, turns out to be hopeless because of Abel’s
theorem, which states that the general equation P(x) = 0, where P is a polynomial
of degree d ≥ 5, is not solvable using algebraic operations and roots of any order.
For this reason, there exists no direct method, even an expensive one, for the com-
putation of Sp(M).

Dropping half of that program, one could compute the characteristic polynomial
exactly, then compute an approximation of its roots. But the cost and the instability
of the computation are prohibitive. Amazingly, the opposite strategy is often used: a
standard algorithm for computing the roots of a polynomial P∈C[X ] of high degree
consists in forming its companion matrix1 Bp and then applying to this matrix the
QR algorithm to compute its eigenvalues with good accuracy.

Hence, all the methods are iterative and use the matrices directly. We need a
notion of convergence, thus we limit ourselves to the cases K = R or C. The general
strategy consists in constructing a sequence of matrices

M(0),M(1), . . . ,M(m), . . . ,

pairwise similar. Each method is conceived in such a way that the sequence con-
verges to a simple form, triangular or diagonal, because then the eigenvalues can
be read on the diagonal. Such a convergence is not always possible. For example,
an algorithm in Mn(R) cannot converge to a triangular form when the matrix under
consideration possesses a pair of nonreal eigenvalues.

1 Fortunately, the companion matrix is a Hessenberg matrix; see below for this notion and its
practical aspects.
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13.1.1 Stability

In the course of the calculations, it is fundamental that the sequence

M(0),M(1), . . . ,M(m), . . .

remain bounded, in order to keep away from overflow, as well as to be allowed to
apply Theorem 5.2. This is not guaranteed a priori, because the set of matrices sim-
ilar to M is unbounded in general. For instance, the following matrices are pairwise
similar for all values of a ∈ K∗: (

0 a
a−1 0

)
.

This boundedness is one important issue among others. When passing from M(k)

to M(k+1), the conjugation by a matrix Q yields to an amplification of the round-
off errors by a factor that can be estimated as the condition number of Q, namely
κ(Q) := ‖Q‖2‖Q−1‖2. We recall that κ(Q) ≥ 1, with equality if and only if Q is
the matrix of a similitude. In order to keep control of the roundoff error, it thus
seems necessary that the product of the numbers κ(Q(k))) remain bounded. Because
this is an infinite product, we need that κ(Q(k)) → 1 as k → +∞. In other words,
the distance from Q(k) to C ·Un must tend to zero. Notice that a scalar factor in Q
is harmless inasmuch as it cancels with the inverse factor in Q−1. For the sake of
simplicity, we thus ask that each iteration be a unitary conjugation: each M(k) is
unitary similar to M, thus remains bounded because Un is compact. When dealing
with matrices in Mn(R), we employ orthogonal conjugation instead.

13.1.2 Expected Convergence

We thus assume that M(k+1) = Q−1
k M(k)Qk for a unitary Qk. Set Pj := Q0 · · ·Q j−1,

which is unitary too. We have M( j) = P−1
j M(0)Pj . Because Un is compact, the

sequence (Pj) j∈N possesses cluster values. Let P be one of them. Then M′ :=
P−1M(0)P = P∗M(0)P is a cluster point of (M( j)) j∈N and is conjugated to M. If
the sequence (M( j)) j converges, its limit is therefore (unitarily) similar to M, and
hence has the same spectrum.

This argument shows that in general, the sequence (M( j)) j does not converge to a
diagonal matrix, because then the eigenvectors of M would be the columns of P. In
other words, M would have an orthonormal eigenbasis: M would be normal. Except
in this special case, one expects merely that the sequence (M( j)) j converges to a
triangular matrix, an expectation that is compatible with Theorem 5.1. But even this
hope is too optimistic in general.
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13.1.3 Initialization

Given M ∈ Mn(C), there are two strategies for the choice of M(0). One can naively
take M(0) = M. But because an iteration on a generic matrix is rather costly, one
often uses a preliminary reduction to a simple form (e.g., the Hessenberg form, in
the QR algorithm), which is preserved throughout the iterations. With a few such
tricks, certain methods can be astonishingly efficient.

13.2 Hessenberg Matrices

We recall the notion of Hessenberg matrices.

Definition 13.1 A square matrix M ∈ Mn(K) is called upper Hessenberg (one
speaks simply of a Hessenberg matrix) if mjk = 0 for every pair ( j,k) such that
j− k ≥ 2.

A Hessenberg matrix thus has the form⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x · · · · · ·
y

. . .

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 z t

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In particular, an upper-triangular matrix is a Hessenberg matrix.

From the point of view of matrix reduction by conjugation, one can attribute two
advantages to the Hessenberg class, compared with the class of triangular matrices.
First of all, if K = R, many matrices are not trigonalizable in R, although all are
trigonalizable in C. Even within complex numbers, the trigonalization cannot be
done in practice, because it would require the computation of the eigenvalues. On the
contrary, we show that every square matrix with real or complex entries is similar to
a Hessenberg matrix over the real or complex numbers, respectively. This is obtained
after a finite number of operations.

13.2.1 Stability of the Hessenberg Form

If M is Hessenberg and T upper-triangular, the products T M and MT are still Hes-
senberg.2 For example, if M admits an LU factorization, then L is Hessenberg, and

2 But the product of two Hessenberg matrices is not Hessenberg in general.
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thus has only two nonzero diagonals, because L = MU−1. Likewise, if M ∈GLn(C)
is Hessenberg, then the factor Q in the factorization M = QR is again Hessenberg,
because Q = MR−1. An elementary compactness and continuity argument shows
that the same fact holds true for every M ∈ Mn(C).

13.2.2 Hessenberg Form versus Irreducibility

We have seen in Proposition 3.26 that a Hessenberg matrix such that the mj+1, js
are nonzero has geometrically simple eigenvalues. The algebraic multiplicity can,
however, be arbitrary, as shown in the following example

M =
(

1 1
−1 −1

)
.

13.2.3 Transforming a Matrix into a Hessenberg One

Theorem 13.1 For every matrix M ∈ Mn(C) there exists a unitary transformation
U such that U−1MU is a Hessenberg matrix. If M ∈ Mn(R), one may take U ∈ On.

Moreover, the matrix U is computable in 4n3/3 + O(n2) multiplications and
4n3/3+O(n2) additions.

Proof. Let X ∈Cm be a unit vector: X∗X = 1. The matrix of the unitary (orthogonal)
symmetry with respect to the hyperplane X⊥ is S = Im − 2XX∗. In fact, SX = X −
2X =−X , and Y ∈ X⊥ (i.e., X∗Y = 0) implies SY = Y .

We construct a sequence M1 = M, . . . ,Mn−1 of unitarily similar matrices. The
matrix Mn−r is of the form (

H B
0r,n−r−1 Z N

)
,

where H ∈ Mn−r(C) is Hessenberg and Z is a vector in Cr. Hence, Mn−1 is Hessen-
berg.

One passes from Mn−r to Mn−r+1, that is, from r to r− 1 as follows. Let e1 be
the first vector of the canonical basis of Cr. If Z is already colinear to e1, one does
nothing besides defining Mn−r+1 = Mn−r. Otherwise, one chooses X ∈ Cr so that
SZ is parallel to e1 (we discuss below the possible choices for X). Then one sets

V =
(

In−r 0n−r,r
0r,n−r S

)
,

which is a unitary matrix, with V ∗ =V−1 =V (such a matrix is called a Householder
matrix). We then have
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V−1Mn−rV =
(

H BS
0n,n−r−1 SZ SNS

)
.

We thus define Mn−r+1 = V−1Mn−rV .
There are two possible choices for S, given by

X± :=
1

‖Z±‖Z‖2q‖2
(Z±‖Z‖2q), q =

z1

|z1|e
1.

It is always advantageous to choose the sign that gives the largest denominator,
namely the positive sign. One thus optimizes the roundoff errors in the case where
Z is almost aligned with e1.

13.2.4 Complexity

Let us consider now the complexity of the (n− r)th step. Only the terms of order
r2 and r(n− r) are meaningful. The computation of X , in O(r) operations, is thus
negligible, like that of X∗ and of 2X . The computation of BS = B−(BX)(2X∗) needs
about 4r(n− r) operations. Then 2NX needs 2r2 operations, as does 2X∗N. We
next compute 4X∗NX , and then form the vector T := 4(X∗NX)X −2NX at the cost
O(r). The product T X∗ takes r2 operations, as 2X(X∗N). Then N +T X∗−X(2X∗N)
needs 2r2 additions. The complete step is thus accomplished in 2r2 + 4rn + O(n)
operations. A sum from r = 1 to n−2 yields a complexity of 8

3 n3 +O(n2), in which
one recognizes 4

3 n3 +O(n2) multiplications, 4
3 n3 +O(n2) additions, and O(n) square

roots. ��

13.2.5 The Hermitian Case

When M is Hermitian, the matrix U−1MU is still Hermitian. Because it is Hessen-
berg, it is tridiagonal, with aj, j+1 = ā j+1, j and aj j ∈ R. The symmetry reduces the
complexity to 2n3/3+O(n2) multiplications. One can then use the Hessenberg form
of M in order to localize its eigenvalues.

Proposition 13.1 If M is tridiagonal Hermitian and if the entries m j+1, j are nonzero
(i.e., if M is irreducible), then the eigenvalues of M are real and simple. Further-
more, if Mj is the (Hermitian, tridiagonal, irreducible) matrix obtained by keeping
only the j last rows and columns of M, the eigenvalues of Mj strictly separate those
of Mj+1.

The separation, not necessarily strict, of the eigenvalues of Mj+1 by those of Mj
has already been proved, in a more general framework, in Theorem 6.5.
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Proof. The geometric simplicity of the eigenvalues has been stated in Proposition
3.26. Because M is Hermitian, it is diagonalizable: geometric multiplicity equals the
algebraic one. Thus the eigenvalues are simple. In addition, an Hermitian matrix has
a real spectrum.

We proceed by induction on j. If j ≥ 1, we decompose the matrix Mj+1 block-
wise: ⎛

⎜⎜⎜⎜⎜⎝

m ā 0 · · · 0
a
0 Mj
...
0

⎞
⎟⎟⎟⎟⎟⎠ ,

where a �= 0 and m ∈ R. Let P� be the characteristic polynomial of M�. We compute
that of Mj+1 by expanding the determinant with respect to the first column:

Pj+1(X) = (X −m)Pj(X)−|a|2Pj−1(X), (13.1)

where P0 ≡ 1 by convention.
The induction hypothesis is as follows. The polynomials Pj and Pj−1 have real

coefficients and have, respectively, j and j−1 real roots μ1, . . . ,μ j and σ1, . . . ,σ j−1,
with

μ1 < σ1 < μ2 < · · ·< σ j−1 < μ j.

In particular, they have no other roots, and their roots are simple. The signs of the
values of Pj−1 at points μ j thus alternate. Because Pj−1 is positive over (σ j−1,+∞),
we have (−1) j−kPj−1(μk) > 0.

This hypothesis clearly holds at step j = 1. If j ≥ 2 and if it holds at step j, then
(13.1) shows that Pj+1 ∈ R[X ]. Furthermore,

(−1) j−kPj+1(μk) =−|a|2(−1) j−kPj−1(μk) < 0.

From the intermediate value theorem, Pj+1 possesses a root λk in (μk−1,μk). Fur-
thermore, Pj+1(μ j) < 0, and Pj+1(x) is positive for x & 1 ; hence there is another
root in (μ j,+∞). Likewise, Pj+1 has a root in (−∞,μ1). Hence, Pj+1 possesses j+1
distinct real roots λk, with

λ1 < μ1 < λ2 < · · ·< μ j < λ j+1.

Because Pj+1 has degree j+1, it has no root other than the λks, and these are simple.
��

The sequence of polynomials Pj is a Sturm sequence, which allows us to compute
the number of roots of Pn in a given interval (a,b). A Sturm sequence is a finite
sequence of real polynomials Q0, . . . ,Qn, with Q0 a nonzero constant such that

• If Q j(x) = 0 and 0 < j < n, then Q j+1(x)Q j−1(x) < 0. In particular, Q j and Q j+1
do not share a common root.
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• Likewise, if Q0(c) = 0 for some c ∈ (a,b), then

Q0(x)Q1(x)
x− c

< 0, ∀x ∈ (c− ε,c+ ε)

for some ε > 0.

If a ∈ R is not a root of Qn, we denote by V (a) the number of sign changes in the
sequence (Q0(a), . . . ,Qn(a)), in which the zeroes play no role and can be ignored.

Proposition 13.2 If Qn(a) �= 0 and Qn(b) �= 0, and if a < b, then the number of
roots of Qn in (a,b) is equal to V (a)−V (b).

Let us remark that it is not necessary to compute the polynomials Pj in order to
apply them to this proposition. Given a ∈ R, it is enough to compute the sequence
of values Pj(a).

Once an interval (a,b) is known to contain an eigenvalue λ and only that one (by
means of Proposition 13.2 or Theorem 5.7), one can compute an approximate value
of λ , either by dichotomy, or by computing the numbers V ((a + b)/2), . . . , or by
the secant or Newton method. In the latter case, one must compute Pn itself. The last
two methods are convergent, provided that we have a good initial approximation at
our disposal, because P′

n(λ ) �= 0.

13.3 The QR Method

The QR method is considered the most efficient one for the approximate computa-
tion of the whole spectrum of a general square matrix M ∈ Mn(C). One employs
it only after having reduced M to Hessenberg form, because this form is preserved
throughout the algorithm, whereas each iteration is much cheaper than it would be
for an arbitrary matrix.

13.3.1 Description of the QR Method

Let A ∈ Mn(K) be given, with K = R or C. We construct a sequence of matrices
(A j) j∈N, with A0 = A. The induction A j �→ Aj+1 consists in performing the QR
factorization of Aj, A j = QjR j , and then defining Aj+1 := R jQ j. We have

A j+1 = Q−1
j A jQ j,

which shows that A j+1 is unitarily similar to A j . Hence,

Aj = (Q0 · · ·Q j−1)−1A(Q0 · · ·Q j−1) (13.2)

is conjugate to A by a unitary transformation.



254 13 Approximation of Eigenvalues

13.3.1.1 Obstructions

• If A is unitary, then A j = A for every j, with Qj = A and R j = In. The conver-
gence occurs but is useless, because the limit A is not simpler than the data. We
show later on that the reason for this bad behavior is that the eigenvalues of a
unitary matrix have the same modulus. The QR method does not do a good job
of separating the eigenvalues of close modulus.

• Another bad situation is when our matrix has at least two eigenvalues of the same
modulus. This happens in particular if A has real entries. In the latter case, then
each Q j is real orthogonal, R j is real, and A j is real. This is seen by induction on
j. A limit A′ is not triangular if some eigenvalues of A are nonreal, namely if A
possesses a pair of complex conjugate eigenvalues.

Let us sum up what can be expected in a brave new world. If all the eigenvalues of
A ∈ Mn(C) have distinct moduli, the sequence (Aj) j might converge to a triangular
matrix, or at least its lower-triangular part might converge to⎛

⎜⎜⎜⎝
λ1
0 λ2
...

. . . . . .
0 · · · 0 λn

⎞
⎟⎟⎟⎠ .

When A ∈ Mn(R), let us make the following assumption. Let p be the number of
real eigenvalues and 2q that of nonreal eigenvalues ; then there are p + q distinct
eigenvalue moduli. In that case, (A j) j might converge to a block-triangular form,
the diagonal blocks being 2×2 or 1×1. The limits of the diagonal blocks trivially
provide the eigenvalues of A.

Herebelow, we treat the complex case with eigenvalues of pairwise distinct mod-
uli. The case with real entries and pairs of complex conjugate eigenvalues has been
treated in [23].

13.3.2 The Case of a Singular Matrix

When A is not invertible, the QR factorization is not unique, raising a difficulty in the
definition of the algorithm. The computation of the determinant would immediately
detect the case of noninvertibility, but would not provide any cure. However, if the
matrix has been first reduced to the Hessenberg form, then a single QR iteration
makes a diagnosis and does provide a cure. Indeed, if A is Hessenberg and singular,
then in A = QR, Q is Hessenberg and R is singular. If a21 = 0, the matrix A is
block-triangular and we may reduce our calculations to the case of a matrix of size
(n−1)×(n−1) by deleting the first row and the first column. Otherwise, there exists
j ≥ 2 such that r j j = 0. The matrix A1 = RQ is then block-triangular, because it is
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Hessenberg and (A1) j, j−1 = r j jq j, j−1 = 0. Again, we may reduce our calculations
to that of the spectra of two matrices of sizes j× j and (n− j)×(n− j), the diagonal
blocks of A1. After finitely many such steps (not larger than the multiplicity of the
null eigenvalue), there remain only Hessenberg invertible matrices to deal with. We
assume therefore from now on that A ∈ GLn(K).

13.3.3 Complexity of an Iteration

An iteration of the QR method requires the factorization A j = QjR j and the compu-
tation of Aj+1 = RjQ j . Each part costs O(n3) operations if it is done on a generic
matrix (using the naive way of multiplying matrices). The reduction to the Hessen-
berg form has a comparable cost, therefore we loose nothing by reducing A to this
form. Actually, we make considerable gains in two aspects. First of all, the cost of
each QR iteration is reduced to O(n2). Secondly, the cluster values of the sequence
(A j) j must have the Hessenberg form too.

Let us first examine the Householder method of QR factorization for a generic
matrix A. In practice, one computes only the factor R and matrices of unitary sym-
metries whose product is Q. One then multiplies these unitary matrices by R on the
left to obtain A′ = RQ.

Let a1 ∈Cn be the first column vector of A. We begin by determining a unit vector
v1 ∈ Cn such that the hyperplane symmetry H1 := In − 2v1v∗1 sends a1 to ‖a1‖2e1.
The matrix H1A has the form

Ã =

⎛
⎜⎜⎜⎜⎝
‖a1‖2 x · · ·

0
...

...
...

0 y · · ·

⎞
⎟⎟⎟⎟⎠ .

We then perform these operations again on the matrix extracted from Ã by deleting
the first rows and columns, and so on. At the kth step, Hk is a matrix of the form(

Ik 0
0 In−k −2vkv∗k

)
,

where vk ∈Cn−k is a unit vector. The computation of vk requires O(n−k) operations.
The product HkA(k), where A(k) is block-triangular, amounts to that of two square
matrices of size n− k, one of them In−k − 2vkv∗k . We thus compute a matrix N −
2vv∗N from v and N, which costs about 4(n− k)2 operations. Summing from k = 1
to k = n−1, we find that the complexity of the computation of R alone is 4n3/3 +
O(n2). As indicated above, we do not compute the factor Q, but compute all the
matrices RHn−1 · · ·Hk. That necessitates 2n3 + O(n) operations. The complexity of
one step of the QR method on a generic matrix is thus 10n3/3+O(n2).
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Let us now analyze the situation when A is a Hessenberg matrix. By induction
on k, we see that vk belongs to the plane spanned by ek and ek+1. Its computation
needs O(1) operations. Then the product of Hk and A(k) can be obtained by simply
recomputing the rows of indices k and k + 1, about 6(n− k) operations. Summing
from k = 1 to n− 1, we find that the complexity of the computation of R alone
is 3n2 + O(n). The computation of the product (RHn−1 · · ·Hk+1)Hk needs about 6k
operations. Finally, the complexity of the QR iteration on a Hessenberg matrix is
6n2 +O(n), in which there are 4n2 +O(n) multiplications.

To sum up, the cost of the preliminary reduction of a matrix to Hessenberg form
is less than or equal to what is saved during the first iteration of the QR method.

13.3.4 Convergence of the QR Method

As explained above, the best convergence statement assumes that the eigenvalues
have distinct moduli.

Let us recall that the sequence Ak is not always convergent. For example, if A
is already triangular, its QR factorization is Q = D, R = D−1A, with d j = a j j/|a j j|.
Hence, A1 = D−1AD is triangular, with the same diagonal as that of A. By induction,
Ak is triangular, with the same diagonal as that of A. We have thus Qk = D for every
k, so that Ak = D−kADk. The entry of index (�,m) is thus multiplied at each step by
a unit number z�m, which is not necessarily equal to one if � < m. Hence, the part
above the diagonal of Ak may not converge.

Summing up, a convergence theorem may concern only the diagonal of Ak and
what lies below it.

Lemma 24. Let A ∈ GLn(K) be given, with K = R or C. Let Ak = QkRk be the
sequence of matrices given by the QR algorithm. Let us define Pk = Q0 · · ·Qk−1 and
Uk = Rk−1 · · ·R0. Then PkUk is the QR factorization of the kth power of A:

Ak = PkUk.

Proof. From (13.2), we have Ak = P−1
k APk; that is, PkAk = APk. Then

Pk+1Uk+1 = PkQkRkUk = PkAkUk = APkUk.

By induction, PkUk = Ak. However, Pk ∈ Un and Uk is triangular, with a positive real
diagonal, as a product of such matrices. ��
Theorem 13.2 Let A∈GLn(C) be given. Assume that the moduli of the eigenvalues
of A are distinct:

|λ1|> |λ2|> · · ·> |λn| (> 0).

In particular, the eigenvalues are simple, and thus A is diagonalizable:

A = Y−1diag(λ1, . . . ,λn)Y.
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Assume also that Y admits an LU factorization. Then the strictly lower-triangular
part of Ak converges to zero, and the diagonal of Ak converges to

D := diag(λ1, . . . ,λn).

Proof. Let Y = LU be the factorization of Y . We also make use of the QR factor-
ization of Y−1 : Y−1 = QR. Because Ak = Y−1DkY , we have PkUk = Y−1DkY =
QRDkLU .

The matrix DkLD−k is lower-triangular with unit numbers on its diagonal. Each
term is multiplied by (λi/λ j)k, therefore its strictly lower-triangular part tends to
zero, because |λi/λ j| < 1 for i > j. Therefore, DkLD−k = In + Ek with Ek → 0n
as k → +∞. Hence, PkUk = QR(In + Ek)DkU = Q(In + REkR−1)RDkU = Q(In +
Fk)RDkU, where Fk → 0n. Let OkTk = In +Fk be the QR factorization of In +Fk. By
continuity, Ok and Tk both tend to In. Then

PkUk = (QOk)(TkRDkU).

The first product is a unitary matrix, whereas the second is a triangular one. Let
|D| be the “modulus” matrix of D (whose entries are the moduli of those of D),
and let D1 be |D|−1D, which is unitary. We also define D2 = diag(u j j/|u j j|) and
U ′ = D−1

2 U . Then D2 is unitary and the diagonal of U ′ is positive real. From the
uniqueness of the QR factorization of an invertible matrix we obtain

Pk = QOkDk
1D2, Uk = (Dk

1D2)−1TkRDk
1D2|D|kU ′,

which yields

Qk = P−1
k Pk+1 = D−1

2 D−k
1 O−1

k Ok+1Dk+1
1 D2,

Rk = Uk+1U−1
k = D−1

2 D−k−1
1 Tk+1RDR−1T−1

k Dk
1D2.

Because D−k
1 and Dk+1

1 are bounded, we deduce that Qk converges, to D1. Likewise,
Rk −R′

k → 0n, where
R′

k = D−1
2 D−k

1 RDR−1Dk−1
1 D2. (13.3)

The fact that the matrix R′
k is upper-triangular shows that the strictly lower-triangular

part of Ak = QkRk tends to zero (observe that the sequence (Rk)k∈N is bounded, be-
cause the set of matrices unitarily conjugate to A is bounded). Likewise, the diagonal
of R′

k is |D|, which shows that the diagonal of Ak converges to D1|D|= D. ��

Remark

Formula (13.3) shows that the sequence Ak does not converge, at least when the
eigenvalues have distinct complex arguments. However, if the eigenvalues have
equal complex arguments, for example, if they are real and positive, then D1 = αIn
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and Rk → T := D−1
2 R|D|R−1D2; hence Ak converges. Note that the limit αT is not

diagonal in this case.

The odd assumption about Y (LU factorization) in Theorem 13.2 is fulfilled in
most practical situations:

Theorem 13.3 Let A ∈ GLn(C) be an irreducible Hessenberg matrix whose eigen-
values are of distinct moduli:

|λ1|> · · ·> |λn| (> 0).

Then the QR method converges; that is, the lower-triangular part of Ak converges
to ⎛

⎜⎜⎜⎝
λ1
0 λ2
...

. . .
. . .

0 · · · 0 λn

⎞
⎟⎟⎟⎠ .

Proof. In the light of Theorem 13.2, it is enough to show that the matrix Y in the
previous proof admits an LU factorization. We have YA = diag(λ1, . . . ,λn)Y . The
rows of Y are thus the left eigenvectors: � jA = λ j� j .

If x ∈ Cn is nonzero, there exists a unique index r such that xr �= 0, and j > r
implies x j = 0. By induction, quoting the Hessenberg form and the irreducibility
of A, we obtain (Amx)r+m �= 0, while j > r + m implies (Amx) j = 0. Hence, the
vectors x,Ax, . . . ,An−rx are linearly independent. A linear subspace, invariant for A
and containing x, is thus of dimension greater than or equal to n− r +1.

Let F be a linear subspace, invariant for A, of dimension p≥ 1. Let r be the small-
est integer such that F contains a nonzero vector x with xr+1 = · · · = xn = 0. The
minimality of r implies that xr �= 0. Hence, we have p ≥ n− r +1. By construction,
the intersection of F and of linear subspace [e1, . . . ,er−1] spanned by e1, . . . ,er−1

reduces to {0}. Thus we also have p +(r− 1) ≤ n. Finally, r = n− p + 1, and we
see that

F ⊕ [e1, . . . ,en−p] = Cn.

Let us choose F = [�1, . . . , �q]⊥, which is invariant for A. Then p = n−q, and we
have

[�1, . . . , �q]⊥⊕ [e1, . . . ,eq] = Cn.

This amounts to saying that det(� je
k)1≤ j,k≤q �= 0. In other words, the leading prin-

cipal minor of order q of Y is nonzero. By Theorem 11.1, Y admits an LU factoriza-
tion. ��

13.3.5 The Case of Hermitian Matrices

The situation is especially favorable for tridiagonal Hermitian matrices. To begin
with, we may assume that A is positive-definite, up to the change of A into A+ μIn
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with μ > −ρ(A). Next, we can write A in block-diagonal form, where the diagonal
blocks are tridiagonal irreducible Hermitian matrices. The QR method then treats
each block separately. We are thus reduced to the case of an Hermitian positive-
definite, tridiagonal, and irreducible matrix. Its eigenvalues are real, strictly positive,
and simple, from Proposition 13.1: we have λ1 > · · · > λn > 0. Theorems 13.2 and
13.3 can then be applied.

Corollary 13.1 If A ∈ HPDn and if A0 is a Hessenberg matrix, unitarily similar to
A (e.g., a matrix obtained by Householder’s method), then the sequence Ak defined
by the QR method converges to a diagonal matrix whose diagonal entries are the
eigenvalues of A.

Indeed, the lower-triangular part converges, hence the whole matrix, because it
is Hermitian.

13.3.6 Implementing the QR Method

The QR method converges faster as λn, or merely λn/λn−1, becomes smaller. We
can obtain this situation by translating Ak �→ Ak−αkIn. The strategies for the choice
of αk are described in [27]. This procedure is called Rayleigh translation. It yields a
significant improvement of the convergence of the QR method. If the eigenvalues of
A are simple, a suitable translation places us into the case of eigenvalues of distinct
moduli. This trick has a nonnegligible cost if A is a real matrix with a pair of complex
conjugate eigenvalues, inasmuch as it requires a translation by a nonreal number α .
As mentioned above, the computations become much more costly in C than they are
in R.

As k increases, the triangular form of Ak shows up first at the last row. As a by-
product, the sequence (Ak)nn converges more rapidly than other sequences (Ak) j j.
When the last row is sufficiently close to (0, . . . ,0,λn), the Rayleigh translation must
be selected in such a way as to bring λn−1, instead of λn, to the origin; and so on.

With a clever choice of Rayleigh translations, the QR method, when it converges,
is of order two for a generic matrix, and is of order three for an Hermitian matrix.

13.4 The Jacobi Method

The Jacobi method gives an approximate value of the whole spectrum of a real
symmetric matrix A ∈ Symn. As in the QR method, one constructs a sequence of
matrices, unitarily similar to A. In particular, the roundoff errors are not amplified.
Each iteration is cheap (O(n) operations), and the convergence may be quadratic or
even faster when the eigenvalues are distinct. It is thus a rather efficient method.
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13.4.1 Conjugating by a Rotation Matrix

Let 1 ≤ p,q ≤ n be two distinct indices and θ ∈ [−π,π) an angle. We denote by
Rp,q(θ) the matrix of rotation of angle θ in the plane spanned by ep and eq. For
example, if p < q, then

R = Rp,q(θ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ip−1
... 0

... 0
· · · cosθ · · · sinθ · · ·
0

... Iq−p−1
... 0

· · · −sinθ · · · cosθ · · ·
0

... 0
... In−q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

If H is a symmetric matrix, we compute K := R−1HR = RT HR, which is also sym-
metric, with the same spectrum. Setting c = cosθ , s = sinθ the following formulæ
hold.

ki j = hi j if i, j �= p,q,
kip = chip− shiq if i �= p,q,
kiq = chiq + ship if i �= p,q,

kpp = c2hpp + s2hqq−2cshpq,

kqq = c2hqq + s2hpp +2cshpq,

kpq = cs(hpp −hqq)+(c2 − s2)hpq.

The cost of the computation of entries ki j for i, j �= p,q is zero; that of kpp,kqq, and
kpq is O(1). The cost of this conjugation is thus 6n + O(1) operations, keeping in
mind the symmetry KT = K.

Let us remark that the conjugation by the rotation of angle θ ±π yields the same
matrix K, up to signs. For this reason, we limit ourselves to angles θ ∈ [−π/2,π/2).

13.4.2 Description of the Method

One constructs a sequence A(0) = A,A(1), . . . of symmetric matrices, each one conju-
gate to the previous one by a rotation as above: A(k+1) = (R(k))T A(k)R(k). At step k,
we choose two distinct indices p and q (in fact, pk,qk) in such a way that a(k)

pq �= 0 (if
it is not possible, A(k) is already a diagonal matrix similar to A). We then choose θ
(in fact θk) in such a way that a(k+1)

pq = 0. From the formulæ above, this is equivalent
to

cs(a(k)
pp −a(k)

qq )+(c2 − s2)a(k)
pq = 0.

This amounts to solving the equation

cot2θ =
a(k)

qq −a(k)
pp

2a(k)
pq

=: σk. (13.4)
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This equation possesses two solutions in [−π/2,π/2), namely θk ∈ [−π/4,π/4)
and θk ± π/2. There are thus two possible rotation matrices, which yield to two
distinct results. Once the angle has been selected, its computation is useless (it would
actually be rather expensive). In fact, t := tanθk solves

2t
1− t2 = tan2θ ;

that is,
t2 +2tσk −1 = 0.

The two angles correspond to the two possible roots of this quadratic equation. We
then obtain

c =
1√

1+ t2
, s = tc.

We show below that the stablest choice is the angle θk ∈ [−π/4,π/4), which corre-
sponds to the unique root t in [−1,1).

The computation of c,s needs only O(1) operations, so that the cost of an iteration
of the Jacobi method is still 6n+O(1). Observe that an entry that has vanished at a
previous iteration becomes in general nonzero after a few more iterations.

13.4.3 The Choice of the Pair (p,q)

We use here the Schur norm ‖M‖ = (TrMT M)1/2, also called the Frobenius norm,
denoted elsewhere by ‖M‖F . We wish to show that A(k) converges to a diagonal
matrix, therefore we decompose A(k) = Dk +Ek, where Dk = diag(a(k)

11 , . . . ,a(k)
nn ). To

begin with, because the sequence is formed of unitarily similar matrices, we have
‖A(k)‖ = ‖A‖.

Lemma 25. We have
‖Ek+1‖2 = ‖Ek‖2−2

(
a(k)

pq

)2
.

Proof. It suffices to redo the calculations of Section 13.4.1, noting that

k2
ip + k2

iq = h2
ip +h2

iq

whenever i �= p,q, whereas k2
pq = 0. ��

We deduce from the lemma that ‖Dk+1‖2 = ‖Dk‖2 +2
(

a(k)
pq

)2
. The convergence

of the Jacobi method then depends on the choice of the pair (p,q) at each step.
Notice that the choice of the same pair at two consecutive iterations is inadvisable,
inasmuch as it yields A(k+1) = A(k).

There are essentially three strategies for chosing the pair (p,q) at a given step.
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Optimal choice. One chooses a pair (p,q) for which the modulus of apq is maxi-
mal among off-diagonal entries of A(k). At first glance, this looks to be the most
efficient choice, but needs a comparison procedure whose cost is about n2 logn.
If a careful storage of the order of moduli at previous steps is made, the com-
parison reduces to about n2 operations, still costly enough, compared to the 6n
operations needed in the conjugation.

Sequential choice. Here the pair is a periodic function of k. Typically, one chooses
first (1,2) then (2,3), . . . , (n−1,n), (1,3), (2,4), . . . , (1,n). Variant: because the
position (2,3) was affected by the operations made around (1,2), it might be bet-
ter to find an order beginning with (1,2), (3,4), . . . , in such a way that an index
p is not present in two consecutive pairs, in order to treat all the entries as fast as
possible.

Random choice. The set of pairs (p,q) with 1 ≤ p < q ≤ n is equipped with
the uniform probability. The pair (p,q) is taken at random at step k, and inde-
pendently of the previous choices. Some variants of the random choice can be
elaborated.

13.4.4 Convergence with the Optimal Choice

Theorem 13.4 With the “optimal choice” of (pk,qk) and with the choice θk ∈
[−π/4,π/4), the Jacobi method converges in the following sense. There exists a
diagonal matrix D such that

‖A(k)−D‖ ≤
√

2‖E0‖
1−ρ

ρk, ρ :=

√
1− 2

n2 −n
.

In particular, the spectrum of A consists of the diagonal terms of D and the limit of
Dk; the Jacobi method is of order one at least.

This kind of convergence is called linear, because it is typical of methods in
which the error obeys a linear inequality εk+1 ≤ ρεk, with ρ < 1. We also say that
the convergence is of order one at least. This is a rather slow convergence that we
already encountered in iterative methods for linear systems (Chapter 12).

Proof. With the optimal choice of (p,q), we have

(n2 −n)
(

a(k)
pq

)2 ≥ ‖Ek‖2.

Hence,

‖Ek+1‖2 ≤
(

1− 2
n2−n

)
‖Ek‖2 = ρ2‖Ek‖2.

It follows that ‖Ek‖ ≤ ρk‖E0‖. In particular, Ek tends to zero as k → +∞.
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It remains to show that Dk converges too. A calculation using the notation of
Section 13.4.1 and the fact that kpq = 0 yields

kpp −hpp =−thpq.

Because |θk| ≤ π/4, we have |t| ≤ 1, so that |a(k+1)
pp − a(k)

pp | ≤ |a(k)
pq |. Likewise,

|a(k+1)
qq − a(k)

qq | ≤ |a(k)
pq |. The other diagonal entries are unchanged, thus we have

‖Dk+1 −Dk‖ ≤ ‖Ek‖.
We therefore have

‖D�−Dk‖ ≤ ‖E0‖(ρ�−1 + · · ·+ρk)≤ ‖E0‖ ρk

1−ρ
, � > k.

The sequence (Dk)k∈N is thus Cauchy, hence convergent. Because Ek tends to zero,
A(k) converges to the same limit D. This matrix is diagonal, with the same spectrum
as A, because this is true for each A(k). Finally, we obtain

‖A(k)−D‖2 = ‖Dk −D‖2 +‖Ek‖2 ≤ 2
(1−ρ)2 ‖Ek‖2.

��

We analyze, in Exercise 10, the (bad) behavior of Dk when we make the opposite
choice π/4 ≤ |θk| ≤ π/2.

13.4.5 Optimal Choice: Super-Linear Convergence

The following statement shows that the Jacobi method compares rather well with
other methods.

Theorem 13.5 The Jacobi method with optimal choice of (p,q) converges super-
linearly when the eigenvalues of A are simple, in the following sense. Let N = n(n−
1)/2 be the number of elements under the diagonal. Then there exists a number
c > 0 such that

‖Ek+N‖ ≤ c‖Ek‖2,

for every k ∈ N.

In the present setting, the order of the Jacobi method can be estimated at least as
ν := 21/N , which is slightly larger than 1. This is typical of a method where the error
obeys an inequality of the form εk+1 < cst ·(εk)ν (mind, however, that the inequality
given in the theorem is not exactly of this form). The convergence is much faster
than a linear one. We expect in practice that the order be even larger than ν . For
instance, Exercise 15 gives the order (1+

√
5)/2 when n = 3. The exact order for a

general n is still unknown.
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Proof. We first remark that if i �= j with {i, j} �= {p�,q�}, then

|a(�+1)
i j −a(�)

i j | ≤ |t�|
√

2‖E�‖, (13.5)

where t� = tanθ�. To see this, observe that 1− c ≤ t and |s| ≤ t whenever |t| ≤ 1.
However, Theorem 13.4 ensures that Dk converges to diag(λ1, . . . ,λn), where the
λ js are the eigenvalues of A. Because these are distinct, there exist K ∈N and δ > 0
such that, if k ≥ K, then

min
i�= j

|a(k)
ii −a(k)

j j | ≥ δ

for k ≥ K. We have therefore

|σk| ≥ δ√
2‖Ek‖

k→+∞−→ +∞.

It follows that tk tends to zero and, more precisely, that

tk ≈− 1
2σk

.

Finally, there exists a constant c1 such that

|tk| ≤ c1‖Ek‖.

Let us then fix k larger than K, and let us denote by J the set of pairs (p�,q�) when
k ≤ �≤ k +N−1. For such an index, we have ‖E�‖ ≤ ρ�−k‖Ek‖ ≤ ‖Ek‖. In partic-
ular, |t�| ≤ c1‖Ek‖.

If (p,q) ∈ J and if � < k + N is the largest index such that (p,q) = (p�,q�), a
repeated application of (13.5) shows that

|a(k+N)
pq | ≤ c1N

√
2‖Ek‖2.

If J is equal to the whole set of pairs (i, j) such that i < j, these inequalities ensure
that ‖Ek+N‖ ≤ c2‖Ek‖2. Otherwise, there exists a pair (p,q) that one sets to zero
twice: (p,q) = (p�,q�) = (pm,qm) with k ≤ � < m < k + N. In that case, the same
argument as above shows that

‖Ek+N‖ ≤ ‖Em‖ ≤
√

2N|a(m)
pq | ≤ 2

√
Nc1(m− �)‖Ek‖2.

��

Remarks

We show in Exercise 13 that when the eigenvalues of A are simple, the distance be-
tween the diagonal and the spectrum of A is O(‖Ek‖2), and not O(‖Ek‖) as expected
from Theorem 5.7.
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13.4.6 Convergence with the Random Choice

Recall that we choose the pair (p,q) independently of those chosen at previous steps,
according to the uniform distribution. The matrix A(k) is therefore a function of A(k)

and of the random variable (pk,qk); as such, it is a random variable.
We are interested in the expectation of the norm of the error ‖Ek+1‖2. To begin

with, we consider the conditional expectation, knowing ‖Ek‖2. We have

e
[‖Ek+1‖2 |‖Ek‖2]=

2
n2 −n ∑

1≤p<q≤n
‖Ek+1(p,q)‖2.

Because of Lemma 25, we obtain

e
[‖Ek+1‖2 |‖Ek‖2] =

2
n2 −n ∑

1≤p<q≤n

(
‖Ek‖2 −|a(k)

pq |2
)

= ‖Ek‖2 − 2
n2−n ∑

1≤p<q≤n
|a(k)

pq |2

=
(

1− 2
n2−n

)
‖Ek‖2 = ρ2‖Ek‖2.

Taking now the expectation with respect to the previous choices, we obtain

e
[‖Ek+1‖2]= ρ2e

[‖Ek‖2] .
By induction, this yields

e
[‖Ek‖2]= ρ2ke

[‖E0‖2] . (13.6)

Let β be a number given in the interval (ρ,1). Let us denote c0 := e
[‖E0‖2

]
.

Then the probability that ‖Ek‖ is larger than β k is less than c0(ρ/β )2k, according to
(13.6). We therefore have

∞

∑
k=0

P

(
‖Ek‖> β k

)
< ∞. (13.7)

Thanks to the theorem of Borel–Cantelli, this implies that for almost every choice
of the sequence (pk,qk)k∈N, the inequality ‖Ek‖≤ β k is true for all but finitely many
indices k ; in other words, ‖Ek‖ ≤ β k is true for large enough k. When this happens,
we may apply the same analysis of the diagonal part Dk as that made in Section
13.4.4. Finally, we have the following theorem.

Theorem 13.6 Consider the Jacobi method with random choice, the pairs (pk,qk)
being independent and chosen according to the uniform distribution.

For every ε > 0, the error ‖Ek‖ decays almost surely as an O
(
(ρ + ε)k

)
, with
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ρ :=

√
1− 2

n2 −n
.

Provided the angle θk is chosen in the interval (−π/4,π/4], the diagonal con-
verges as soon as the error tends to zero, and the diagonal entries of its limit are the
eigenvalues of A.

13.5 The Power Methods

The power methods are designed for the approximation of a single eigenvalue. Con-
sequently, their cost is significantly lower than that of the QR or the Jacobi methods.
The standard power method is used in particular when searching for the optimal pa-
rameter in the SOR method for a tridiagonal matrix, where we have to compute the
spectral radius of the Jacobi iteration matrix (Theorem 12.2).

13.5.1 The Standard Method

Let M ∈ Mn(C) be a matrix. We search for an approximation of its eigenvalue of
maximum modulus, whenever only one such exists. The standard method consists
in choosing a norm on Cn, a unit vector x0 ∈ Cn, and then successively computing
the vectors xk by the formula

xk+1 :=
1

‖Mxk‖Mxk.

The justification of this method is given in the following theorem.

Theorem 13.7 One assumes that SpM contains only one element λ of maximal
modulus (that modulus is thus equal to ρ(M)).

If ρ(M) = 0, the method stops because Mxk = 0 for some k < n.
Otherwise, let Cn = E ⊕F be the decomposition of Cn, where E,F are invariant

linear subspaces under M, with Sp(M|E) = {λ} and λ �∈ Sp(M|F ). Assume that
x0 �∈ F. Then Mxk �= 0 for every k ∈ N and

lim
k→+∞

‖Mxk‖ = ρ(M). (13.8)

In addition,

V := lim
k→+∞

(
λ̄

ρ(M)

)k

xk

is a unit eigenvector of M, associated with the eigenvalue λ . If Vj �= 0, then
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lim
k→+∞

(Mxk) j

xk
j

= λ .

Proof. The case ρ(M) = 0 is obvious because M is then nilpotent.
Assume otherwise that ρ(M) > 0. Let x0 = y0 + z0 be the decomposition of x0

with y0 ∈E and z0 ∈F . By assumption, y0 �= 0. Because M|E is invertible, Mky0 �= 0.
Because Mkx0 = Mky0 + Mkz0, Mky0 ∈ E, and Mkz0 ∈ F , we have Mkx0 �= 0. The
algorithm may be rewritten as3

xk =
1

‖Mkx0‖Mkx0.

We therefore have xk �= 0.
If F �= {0}, then ρ(M|F) < ρ(M) by construction. Hence there exist (from The-

orem 7.1) η < ρ(M) and C > 0 such that ‖(M|F )k‖ ≤ Cηk for every k. Then
‖(M|F)kz0‖ ≤C1ηk. On the other hand, ρ((M|E)−1) = 1/ρ(M), and the same argu-
ment as above ensures that ‖(M|E)−k‖ ≤ 1/C2μk, for some μ ∈ (η ,ρ(M)), so that
‖Mky0‖ ≥C3μk. Hence,

‖Mkz0‖% ‖Mky0‖,
so that

xk ≈ 1
‖Mky0‖Mky0.

We are thus led to the analysis of the case where z0 = 0, namely when M has no
eigenvalue but λ . That is assumed from now on.

Let r be the degree of the minimal polynomial of M. The vector space spanned
by the vectors x0,Mx0, . . . ,Mr−1x0 contains all the xks. Up to the replacement of
Cn by this linear subspace, we may assume that it equals Cn. Then we have r = n.
Furthermore, because ker(M−λ )n−1, a nontrivial linear subspace, is invariant under
M, we see that x0 �∈ ker(M−λ )n−1.

The vector space Cn then admits the basis

{v1 = x0,v2 = (M−λ )x0, . . . ,vn = (M−λ )n−1x0}.

With respect to this basis, M becomes the Jordan matrix

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 . . . . . .

1
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0

. . . 0 1 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

3 One could normalize xk at the end of the computation, but we prefer doing it at each step in order
to avoid overflows, and also to ensure (13.8).
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The matrix λ−kM̃k depends polynomially on k. The coefficient of highest degree, as
k → +∞, is at the intersection of the first column and the last row. It equals(

k
n−1

)
λ 1−n,

which is equivalent to
(k/λ )n−1

(n−1)!
. We deduce that

Mkx0 ∼ kn−1λ k−n+1

(n−1)!
vn.

Hence,

xk ∼
(

λ
|λ |
)k−n+1 vn

‖vn‖ .

Because vn is an eigenvector of M, the claims of the theorem have been proved. ��

The case where the algebraic and geometric multiplicities of λ are equal (i.e.,
M|E = λ IE ), for example, if λ is a simple eigenvalue, is especially favorable. Indeed,
Mky0 = λ ky0, and therefore

xk =
(

λ
|λ |
)k 1

‖y0‖ y0 +O
(‖Mkz0‖

|λ |k
)

.

Theorem 7.1 thus shows that the error

xk −
(

λ
|λ |
)k 1

‖y0‖ y0

tends to zero faster than (
ρ(M|F )+ ε

ρ(M)

)k

,

for every ε > 0. The convergence is thus of order one, and becomes faster as the ra-
tio |λ2|/|λ1| becomes smaller (arranging the eigenvalues by nonincreasing moduli).
However, the convergence is much slower when the Jordan blocks of M relative to
λ are nontrivial. The error then behaves like 1/k in general.

The situation is more delicate when ρ(M) is the modulus of several distinct
eigenvalues. The vector xk, suitably normalized, does not converge in general but
“spins” closer and closer to the sum of the corresponding eigenspaces. The obser-
vation of the asymptotic behavior of xk allows us to identify the eigendirections
associated with the eigenvalues of maximal modulus. The sequence ‖Mxk‖ does
not converge and depends strongly on the choice of the norm. However, log‖Mxk‖
converges in the Cesaro sense, that is, in the mean, to logρ(M) (Exercise 12).
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Remark

The hypothesis on x0 is generic, in the sense that it is satisfied for every choice of
x0 in an open dense subset of Cn. If by chance x0 belongs to F , the power method
theoretically furnishes another eigenvalue, of smaller modulus. In practice, a large
enough number of iterations always leads to the convergence to λ . In fact, the num-
ber λ is rarely exactly representable in a computer. When it is not, the linear sub-
space F does not contain any nonzero representable vector. Thus the vector x0, or
its computer representation, does not belong to F , and Theorem 13.7 applies.

13.5.2 The Inverse Power Method

Let us assume that M is invertible. The standard power method, applied to M−1,
furnishes the eigenvalue of least modulus, whenever it is unique, or at least produces
its modulus in the general case. The inversion of a matrix is a costly operation,
therefore we involve ourselves with that idea only if M has already been inverted,
for example if we had previously had to make an LU or a QR factorization. That
is typically the situation when one begins to implement the QR algorithm for M. It
might look strange to involve a method giving only one eigenvalue in the course of
a method that is expected to compute the whole spectrum.

The inverse power method is thus subtle. Here is how it works. One begins by
implementing the QR method until one gets coarse approximations μ1, . . . ,μn of
the eigenvalues λ1, . . . ,λn. If one persists in the QR method, the proof of Theorem
13.2 shows that the error is at best of order σ k with σ = max j |λ j+1/λ j|. When
n is large, σ is in general close to 1 and this convergence is rather slow. Like-
wise, the method with Rayleigh translations, for which σ is replaced by σ(η) :=
max j |(λ j+1−η)/(λ j−η)|, is not satisfactory. However, if one wishes to compute a
single eigenvalue, say λp, with full accuracy, the power method, applied to M−μpIn,
produces an error on the order of θ k, where θ := |λp − μp|/min j �=p |λ j − μp| is a
small number, since λp−μp is small.

In practice, the inverse power method is used mainly to compute an approxi-
mate eigenvector, associated with an eigenvalue for which one already had a good
approximate value.

Exercises

1. Given a polynomial P ∈ R[X ], use Euclidean division in order to define a se-
quence of nonzero polynomials Pj in the following way. Set P0 = P, P1 = P′.
If Pj is not constant, −Pj+1 is the remainder of the division of Pj−1 by Pj:
Pj−1 = Q jPj −Pj+1, degPj+1 < degPj.
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a. Assume that P has only simple roots. Show that the sequence (Pj) j is well
defined, that it has only finitely many terms, and that it is a Sturm sequence.

b. Use Proposition 13.2 to compute the number of real roots of the real poly-
nomials X2 +aX +b or X3 + pX +q in terms of their discriminants.

2. (Wilkinson [40], Section 5.45.) Let n = 2p− 1 be an odd number and Wn ∈
Mn(R) be the symmetric tridiagonal matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎝

p 1

1
. . . . . .
. . . 1

. . .
. . . . . . 1

1 p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The diagonal entries are thus p, p−1, . . . ,2,1,2, . . . , p−1, p, and the subdiag-
onal entries are equal to 1.

a. Show that the linear subspace

E ′ = {X ∈ Rn |xp+ j = xp− j,1 ≤ j < p}

is invariant under Wn. Likewise, show that the linear subspace

E ′′ = {X ∈ Rn |xp+ j =−xp− j,0 ≤ j < p}

is stable under Wn.
b. Deduce that the spectrum of Wn is the union of the spectra of the matrices

W ′
n =

⎛
⎜⎜⎜⎜⎜⎜⎝

p 1

1
. . . . . .
. . . . . . . . .

1 2 1
2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, W ′′
n =

⎛
⎜⎜⎜⎜⎜⎜⎝

p 1

1
. . . . . .
. . . . . . . . .

1 3 1
1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(we have W ′
n ∈ Mp(R) and W ′′

n ∈ Mp−1(R)).
c. Show that the eigenvalues of W ′′

n strictly separate those of W ′
n.

3. For a1, . . . ,an ∈ R, with ∑ j a j = 1, form the matrix



Exercises 271

M(a) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 a4 an

a2 b2 a3
...

...
...

a3 a3 b3
...

...

a4 · · ·
...

· · · · · · an
an · · · · · · · · · an bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where bj := a1 + · · ·+a j−1 − ( j−2)a j .

a. Compute the eigenvalues and the eigenvectors of M(a).
b. We limit ourselves to n-uplets a that belong to the simplex S defined by

0 ≤ an ≤ ·· · ≤ a1 and ∑ j a j = 1. Show that for a ∈ S, M(a) is bistochastic
and b2 −a2 ≤ ·· · ≤ bn−an ≤ 1.

c. Let μ1, . . . ,μn be an n-uplet of elements in [0,1] with μn = 1. Show that
there exists a unique a in S such that {μ1, . . . ,μn} is equal to the spectrum
of M(a) (counting with multiplicity).

4. Show that the cost of an iteration of the QR method for an Hermitian tridiagonal
matrix is 20n+O(1).

5. Show that the reduction to the Hessenberg form (in this case, tridiagonal form)
of an Hermitian matrix costs 7n3/6+O(n2) operations.

6. (Invariants of the algorithm QR.) For M ∈ Mn(R) and 1 ≤ k ≤ n− 1, let us
denote by (M)k the matrix of size (n−k)×(n−k) obtained by deleting the first
k rows and the last k columns. For example, (I)1 is the Jordan matrix J(0;n−
1). We also denote by K ∈ Mn(R) the matrix defined by k1n = 1 and ki j = 0
otherwise.

a. For an upper-triangular matrix T , explicitly compute KT and T K.
b. Let M ∈ Mn(R). Prove the equality

det(M−λ I−μK) = (−1)nμ det(M−λ I)1 +det(M−λ I).

c. Let A ∈ GLn(R) be given, with factorization A = QR. Prove that

det(A−λ I)1 =
detR
rnn

det(Q−λR−1)1.

d. Let A′ := RQ. Show that

rnn det(A′ −λ I)1 = r11 det(A−λ I)1.

e. Generalize the previous calculation by replacing the index 1 by k. Deduce
that the roots of the polynomial det(A−λ I)k are conserved throughout the
QR algorithm. How many such roots do we have for a general matrix? How
many for a Hessenberg matrix?
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7. (Invariants; continuing.) For M ∈ Mn(R), let us define PM(h;z) := det((1−
h)M +hMT − zIn).

a. Show that PM(h;z) = PM(1− h;z). Deduce that there exists a polynomial
QM such that PM(h;z) = QM(h(1−h);z).

b. Show that QM remains constant throughout the QR algorithm: if Q ∈
On(R), R is upper-triangular, and M = QR, N = RQ, then QM = QN .

c. Deduce that there exist polynomial functions Jrk on Mn(R), defined by

PM(h;z) =
n

∑
r=0

[r/2]

∑
k=0

(h(1−h))kzn−rJrk(M),

that are invariant throughout the QR algorithm. Verify that the Jr0s can be
expressed in terms of invariants that we already know.

d. Compute explicitly J21 when n = 2. Deduce that in the case where Theorem
13.2 applies and detA > 0, the matrix Ak converges.

e. Show that for n ≥ 2,

J21(M) =−1
2

Tr
(
(M−MT )2) .

Deduce that if Ak converges to a diagonal matrix, then A is symmetric.

8. In the Jacobi method, show that if the eigenvalues are simple, then the product
R1 · · ·Rm converges to an orthogonal matrix R such that R∗AR is diagonal.

9. Extend the Jacobi method to Hermitian matrices. Hint: Replace the rotation
matrices (

cosθ sinθ
−sinθ cosθ

)
by unitary matrices (

z1 z2
z3 z4

)
.

10. Let A ∈ Symn(R) be a matrix whose eigenvalues, of course real, are simple.
Apply the Jacobi method, but selecting the angle θk so that π/4 ≤ |θk| ≤ π/2.

a. Show that Ek tends to zero, that the sequence Dk is relatively compact, and
that its cluster values are diagonal matrices whose diagonal terms are the
eigenvalues of A.

b. Show that an iteration has the effect of permuting, asymptotically, a(k)
pp and

a(k)
qq , where (p,q) = (pk,qk). In other words

lim
k→+∞

|a(k+1)
pp −a(k)

qq |= 0,

and vice versa, permuting p and q.
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11. The Bernoulli method computes an approximation of the root of largest mod-
ulus for a polynomial a0Xn + · · ·+ an, when that root is unique. To do so, one
defines a sequence by a linear induction of order n:

zk =− 1
a0

(a1zk−1 + · · ·+anzk−n).

Compare this method with the power method for a suitable matrix.
12. Consider the power method for a matrix M ∈Mn(C) of which several eigenval-

ues are of modulus ρ(M) �= 0. Again, Cn = E ⊕F is the decomposition of Cn

into linear subspaces stable under M, such that ρ(M|F) < ρ(M) and the eigen-
values of M|E are of modulus ρ(M). Finally, x0 = y0 + z0 with y0 ∈ E, z0 ∈ F ,
and y0 �= 0.

a. Express
1
m

m−1

∑
k=0

log‖Mxk‖

in terms of ‖Mmx0‖.
b. Show that if 0 < μ < ρ(M) < η , then there exist constants C,C′ such that

Cμk ≤ ‖Mkx0‖ ≤C′ηk, ∀k ∈ N.

c. Deduce that log‖Mxk‖ converges in the mean to logρ(M).

13. Let M ∈ Mn(C) be given. Assume that the Gershgorin disk D� is disjoint from
the other disks Dm, m �= �. Show that the inverse power method, applied to
M −m��In, provides an approximate computation of the unique eigenvalue of
M that belongs to D�.

14. The ground field is R.

a. Let P and Q be two monic polynomials of respective degrees n and n− 1
(n≥ 2). We assume that P has n real and distinct roots, strictly separated by
the n−1 real and distinct roots of Q. Show that there exist two real numbers
d and c, and a monic polynomial R of degree n−2, such that

P(X) = (X −d)Q(X)− c2R(X).

b. Let P be a monic polynomial of degree n (n ≥ 2). We assume that P has
n real and distinct roots. Build sequences (d j,Pj)1≤ j≤n and (c j)1≤ j≤n−1,
where d j,c j are real numbers and Pj is a monic polynomial of degree j,
with

Pn = P, Pj(X) = (X −d j)Pj−1(X)− c2
j−1Pj−2(X), (2 ≤ j ≤ n).

Deduce that there exists a tridiagonal matrix A, which we can obtain by
algebraic calculations (involving square roots), whose characteristic poly-
nomial is P.
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c. Let P be a monic polynomial. We assume that P has n real roots. Prove that
one can factorize P = Q1 · · ·Qr, where each Qj has simple roots, and the
factorization requires only finitely many operations. Deduce that there is a
finite algorithm, involving no more than square roots calculations, which
provides a tridiagonal symmetric matrix A, whose characteristic polyno-
mial is P (a tridiagonal symmetric companion matrix).

15. We apply the Jacobi method to a real 3× 3 matrix A. Our strategy is one that
we have called “optimal choice”.

a. Let (p1,q1), (p2,q2), . . . , (pk,qk), . . . be the sequence of index pairs that
are chosen at consecutive steps (recall that one vanishes the off-diagonal
entry of largest modulus). Prove that this sequence is cyclic of order three:
it is either the sequence

. . . ,(1,2),(2,3),(3,1),(1,2), . . . ,

or
. . . ,(1,3),(3,2),(2,1),(1,3), . . . .

b. Assume now that A has simple eigenvalues. At each step, one of the three
off-diagonal entries is null, and the two other ones are small, because the
method converges. Say that they are 0,xk,yk with 0 < |xk| ≤ |yk| (if xk van-
ishes then one diagonal entry is an eigenvalue and the method ends one step
further). Show that yk+1 ∼ xk and xk+1 ∼ 2xkyk/δ , where δ is a gap between
two eigenvalues. Deduce that the method is of order ω = (1 +

√
5)/2, the

golden ratio, meaning that the error εk at step k satisfies

εk+1 = O(εkεk−1).

c. Among the class of Hessenberg matrices, we distinguish the unit ones,
which have 1s below the diagonal:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∗ · · · · · · ∗
1

. . .
...

0
. . .

...
. . . . . . . . .

...
0 · · · 0 1 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

i. Let M ∈Mn(k) be a unit Hessenberg matrix. We denote by Mk the sub-
matrix obtained by retaining the first k rows and columns. For instance,
Mn = M and M1 = (m11). We set Pk the characteristic polynomial of Mk.
Show that

Pn(X) = (X −mnn)Pn−1(X)−mn−1,nPn−2(X)−·· ·−m2nP1(X)−m1n.
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ii. Let Q1, . . . ,Qn ∈ k[X ] be monic polynomials, with degQk = k. Show
that there exists one and only one unit Hessenberg matrix M such that,
for every k = 1, . . . ,n, the characteristic polynomial of Mk equals Qk.
Hint: Argue by induction over n.

Note: The roots of the polynomials P1, . . . ,Pn are called the Ritz values of
M.
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ε(σ), 31
expA, 185

F +G, 2
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Fp, 1
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G , 190
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GLn(K), 22
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n , 85
HPDn, 85
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Λ(E), 76
Λ 2(E), 72
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Lω , 228
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M̄, 83
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TrM, 43

Un, 84
U p, 154
U(p,q), 188
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|x|, 149
x ≤ y, 149
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algebra
Lie, 200

Abel
theorem, 176, 247

adjugate, 35
algebra

exterior, 76
tensor, 75

algebraically closed field, 2
alternate

matrix, 28
alternating

form, 10
antilinear, 13

Bézout identity, 164
basis, 3

change of, 26
dual, 6

bidual, 7
bilinear space, 11
blockwise

diagonal, 19
triangular, 19

Campbell–Hausdorff formula, 200
canonical form, 173, 176
Cauchy–Binet formula, 37
Cauchy–Schwarz inequality, 12, 13
Cayley–Hamilton theorem, 44

central subspace, 97
change of basis, 26
characteristic

of a field, 1
polynomial, 43

Choleski factorization, 213
cofactor, 35
commutator, 22
complexity, 209
compression, 115
condition number, 239, 248
congruent matrices, 29
conjugate

exponents, 128
gradient, 235

contraction, 137
contractive subspace, 98
convergence

linear, 262
rate, 227, 240
super-linear, 263

convergent
method, 226

Cotlar lemma, 142
Cramer’s formulae, 42

degenerate
bilinear form, 10
Hermitian matrix, 85
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of n vectors, 33
diagonal

blockwise, 19
matrix, 17
quasi-, 167

diagonalizable, 49
orthogonally, 93

diagonally dominant, 103
strictly, 104
strongly, 103

dimension, 3
direct solving method, 207
domain

Euclidean, 165
principal ideal, 163

dual
basis, 6
space, 6

Dunford decomposition, 52
Dunford–Taylor integral, 95

eigenbasis, 49
eigenprojector, 97
eigenspace, 48

generalized, 51
eigenvalue, 6, 42

multiplicity
algebraic, 44
geometric, 44

semisimple, 46
simple, 44

eigenvector, 6, 42
elementary divisor, 175
endomorphism, 6
equivalent

matrices, 26
norms, 129

Euclidean
division, 165
domain, 165
space, 12

expansive subspace, 98
exponential, 185
exterior

algebra, 76

product, 74, 76
extremal point, 144, 156

Fredholm principle, 25
Frobenius

canonical form, 173
norm, 261

Gauss
integers, 1
method, 225

Gauss–Seidel
method, 227

gcd, 164
Gershgorin

disk, 102, 107
domain, 102

Greville’s algorithm, 221
group

linear, 39
modular, 104
orthochronous Lorentz, 195
orthogonal, 39, 188

special, 39
special linear, 39
special orthogonal, 192
symmetric, 31
symplectic, 188
topological, 201
unitary, 188

Hadamard product, 122
Hermitian

form, 13
space, 14

Hessenberg matrix, 60, 249
Householder

matrix, 250
method, 255
theorem, 133

ideal, 163
principal, 163

idempotent matrix, 23
inequality

Cauchy–Schwarz, 129
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Hölder, 127
Minkowski, 127
Weyl, 111

integral domain, 31
invariant

subspace, 96
invariant factor, 167
inverse

generalized, 218
left, 218
right, 218

inverse matrix, 22
irreducibility, 59
isometry, 11

q-, 12
isotropic

cone, 12
vector, 24

Jacobi
identity, 200
method, 227, 260

Jordan
block, 176
decomposition, 177

kernel, 5
bilinear form, 10
quadratic form, 11

matrices
commuting, 22
product of, 20

matrix, 15
adjugate, 35
band, 220
companion, 172
cyclic, 154
diagonal, 17
diagonalizable, 49
elementary, 166
Hermitian, 84

positive-definite, 85
Hermitian adjoint, 83
Hessenberg, 60, 249
Householder, 250

idempotent, 23
identity, 16
imaginary part, 84
inverse, 22, 39
invertible, 22, 39
Jordan, 176
nilpotent, 23
nonnegative, 149
nonsingular, 22, 39
normal, 84
of a bilinear form, 28
of a linear map, 19
orthogonal, 23, 84
orthostochastic, 158
Pascal’s, 197
permutation, 17, 156
projection, 61
quasi-diagonal, 167
rank-one, 25
real part, 84
singular, 39
skew-Hermitian, 84
skew-symmetric, 18
square, 16
stochastic, 156

bi-, 156
symmetric, 18
totally positive, 222
triangular, 17

strictly, 17
tridiagonal, 231
unitary, 84
Vandermonde, 63

maximal compact subgroup, 190
method

conjugate gradient, 235
Gauss–Seidel, 227
Jacobi, 227, 260
power, 266

inverse, 269
QR, 253
relaxation, 228

minimal polynomial, 46
minor, 34

leading principal, 35



286 General Index

principal, 35, 208
Moore–Penrose inverse, 218

neutral subspace, 98
nilpotent matrix, 23
nondegenerate

bilinear form, 10
Hermitian matrix, 85

nonsingular, 22
norm

l p, 127
algebra, 131
Frobenius, 261
induced, 131
matrix, 131
Schur, 105, 197, 261
subordinated, 131
superstable, 101

norms
equivalent, 129

numerical
radius, 101
range, 98

operator monotone, 114
orthogonal

group, 23, 39, 188
matrix, 23
of a set, 24
sets, 24
vectors, 24

orthogonally
diagonalizable, 93

Perron–Frobenius theorem, 150, 151
Pfaffian, 55
polar

decomposition, 184
form, 11

polynomial
invariant, 170

positive definite
Hermitian form, 13
quadratic form, 12

positive-semidefinite, 85
preconditioning, 241

product
Hadamard, 122
of matrices, 20
scalar, 12

projector, 61, 96

QR
method, 253

QR
factorization, 215

quadratic form, 11

range, 5
rank, 17

decomposition, 170
of a matrix, 23
of a tensor, 70

rank-one
affine, 53
matrix, 25

Rayleigh
ratio, 110
translation, 259

reducibility, 59
relaxation

method, 228
over-, 228

residue, 236
resolvant

of a matrix, 198
resolvent

of a matrix, 96
set, 96

resolvent set, 147
Riesz–Thorin theorem, 135
ring

factorial, 165
Noetherian, 164
principal ideal domain, 163

scalar product, 12, 14, 24
Schur

complement, 41, 115
lemma, 62
norm, 261
theorem, 86
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semisimple eigenvalue, 47
sesquilinear form, 13
signature, 93
similar

matrices, 27
unitarily, 85

similarity invariant, 44, 170
singular value, 140, 216
solving method

direct, 207
iterative, 225

spectral radius, 113, 127
spectrum, 43
square root

Hermitian, 110
stable subspace, 97
standard polynomial, 78
Strassen algorithm, 213
Sturm sequence, 252
subspace, 2

central, 97
contractive, 98
expansive, 98
neutral, 98
stable, 97
unstable, 97

Sylvester equation, 65
Sylvester index, 93
symmetric

bilinear form, 9
group, 31
matrix, 18

symplectic
group, 188

tensor
algebra, 75
product, 69

tensor product
of matrices, 77

trace, 43
triangular

blockwise, 19
trigonalizable matrix, 49
trigonalization

unitary, 86

unitarily similar, 85
unitary

diagonalization, 91
group, 188
trigonalization, 86

unstable subspace, 97

Vandermonde matrix, 63
vector

column, 17
nonnegative, 149
positive, 149
row, 17

vector space, 2

Weyl inequalities, 111
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