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Preface

This book grew out of a set of notes for a series of lectures I orginally gave at
the Center for Communications Research and then at Princeton University. The
motivation was to try to understand the basic facts about algebraic curves without
the modern prerequisite machinery of algebraic geometry. Of course, one might
well ask if this is a good thing to do. There is no clear answer to this question. In
short, we are trading off easier access to the facts against a loss of generality and
an impaired understanding of some findamental ideas. Whether or not this is a
useful tradeoff is something you will have to decide for yourself.

One of my objectives was to make the exposition as self-contained as possible.
Given the choice between a reference and a proof, I usually chose the latter. Al-
though I worked out many of these arguments myself, I think I can confidently
predict that few, if any, of them are novel. I also made an effort to cover some
topics that seem to have been somewhat neglected in the expository literature.
Among these are Tate’s theory of residues, higher derivatives and Weierstrass
points in characteristic p, and inseparable residue field extensions. For the treat-
ment of Weierstrass points, as well as a key argument in the proof of the Riemamm
Hypothesis for finite fields, I followed the fundamental paper by Stéhr—Voloch
[19]. In addition to this important source, I often relied on the excellent book by
Stichtenoth [17].

It is a pleasure to acknowledge the excellent mathematical environment pro-
vided by the Center for Communications Research in which this book was written.
In particular, I would like to thank my colleagues Toni Bluher, Brad Brock, Ev-
erett Howe, Bruce Jordan, Allan Keeton, David Lieberman, Victor Miller, David
Zelinsky, and Mike Zieve for lots of encouragement, many helpful discussions,
and many useful pointers to the literature.
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Introduction

What Is a Projective Curve?

Classically, a projective curve is just the set of all solutions to an irreducible
homogeneous polynomial equation f(X;,X;,X,) = 0 in three variables over the
complex numbers, modulo the equivalence relation given by scalar multiplication.
It is very safe to say, however, that this answer is deceptively simple, and in fact
lies at the tip of an enormous mathematical iceberg.

The size of the iceberg is due to the fact that the subject lies at the intersection
of three major fields of mathematics: algebra, analysis, and geometry. The origins
of the theory of curves lie in the nineteenth century work on complex function
theory by Riemann, Abel, and Jacobi. Indeed, in some sense the theory of pro-
jective curves over the complex numbers is equivalent to the theory of compact
Riemann surfaces, and one could learn a fair amount about Riemann surfaces by
specializing results in this book, which are by and large valid over an arbitrary
ground field £, to the case £ = C. To do so, however, would be a big mistake
for two reasons. First, some of our results, which are obtained with considerable
difficulty over a general field, are much more transparent and intuitive in the com-
plex case. Second, the topological structure of complex curves and their beautiful
relationship to complex function theory are very important parts of the subject
that do not seem to generalize to arbitrary ground fields. The complex case in fact
deserves a book all to itself, and indeed there are many such, e.g. [15].

The generalization to arbitrary gound fields is a twentieth century development,
pioneered by the German school of Hasse, Schmidt, and Deuring in the 1920s and
1930s. A significant impetus for this work was provided by the development of



xii Introduction

algebraic number theory in the early part of the century, for it turns out that there
is a very close analogy between algebraic function fields and algebraic number
fields.

The results of the German school set the stage for the development of algebraic
geometry over arbitrary fields, but were in large part limited to the special case
of curves. Even in that case, there were serious difficulties. For example, Hasse
was able to prove the Riemann hypothesis only for elliptic curves. The proof for
curves of higher genus came from Weil and motivated his breakthrough work on
abstract varieties. This in turn led to the “great leap forward” by the French school
of Serre, Grothendiek, Deligne, and others to the theory of schemes in the 1950s
and 1960s.

The flowering of algebraic geometry in the second half of the century has, to a
large extent, subsumed the theory of algebraic curves. This development has been
something of a two-edged sword, however. On the one hand, many of the results
on curves can be seen as special cases of more general facts about schemes. This
provides the usual benefits of a unified and in some cases a simplified treatment,
together with some further insight into what is going on. In addition, there are
some important facts about curves that, at least with the present state of knowl-
edge, can only be understood with the more powerful tools of algebraic geometry.
For example, there are important properties of the Jacobian of a curve that arise
from its structure as an algebraic group.

On the other hand, the full-blown treatment requires the student to first master
the considerable machinery of sheaves, schemes, and cohomology, with the result
that the subject becomes less accessible to the nonspecialist. Indeed, the older
algebraic development of Hasse et al. has seen something of a revival in recent
years, due in part to the emergence of some applications in other fields of math-
ematics such as cryptology and coding theory. This approach, which is the one
followed in this book, treats the function field of the curve as the basic object of
study.

In fact, one can go a long way by restricting attention entirely to the fumc-
tion field (see, e.g., [17]), because the theory of function fields turns out to be
equivalent to the theory of nonsingular projective curves. However, this is rather
restrictive because many important examples of projective curves have singular-
ities. A feature of this book is that we go beyond the nonsingular case and study
projective curves in general, in effect viewing them as images of nonsingular
curves.

What Is an Algebraic Function?

For our purposes, an algebraic function field X is a field that has transcendence de-
gree one over some base field £, and is also finitely generated over 4. Equivalently,
K is a finite extension of k(x) for some transcendental element x € K. Examples of
such fields abound. They can be constructed via elementary field theory by sim-
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ply adjoining to k(x) roots of irreducible polynomials with coefficients in k(x). In
addition, however, we will always assume that £ is the full field of constants of X,
that is, that every element of X that is algebraic over k is already in £.

‘When £ is algebraically closed, there is another more geometric way to con-
struct such fields, which is more closely related to the subject of this book. Let
P? be the set of lines through the origin in complex 3-space, and let ¥ C P? be a
projective curve as described above. That is, V' is the set of zeros of a complex, ir-
reducible, homogenous polynomial f(X;,X; ,X,) modulo scalar equivalence. We
observe that a quotient of two homogeneous polynomials of the same degree de-
fines a complex-valued function at all points of P? where the denominator does
not vanish. If the denominator does not vanish identically on V, it turns out that
restricting this fumction to ¥ defines a complex-valued function at all but a fi-
nite number of points of V. The set of all such functions defines a subfield C(V),
which is called the function field of V.

Of course, there is nothing magical about the complex numbers in this discus-
sion — any algebraically closed field £ will do just as well. In fact, every finitely
generated extension K of an algebraically closed field & of transcendence degree
one arises in this way as the function field of a projective nonsingular curve V
defined over £ which, with suitable definitions, is unique up to isomorphism. This
explains why we call such fields “function fields”, at least in the case when £ is
algebraically closed.

What Is in This Book?

Here is a brief outline of the book, with only sketchy definitions and of course no
proofs.

It turns out that for almost all points P of an algebraic curve ¥V, the order of
vanishing of a function at P defines a discrete k-valuation vp on the function field
K of V. The valuation ring &, defined by v, has a unique maximal ideal I,
which, because v is discrete, is a principal ideal. A generator for [, is called a
local parameter at P. It is convenient to identify /, with P. Indeed, for the first
three chapters of the book, we forget all about the curve ¥ and its points and focus
attention instead on the set Py of k-valuation ideals of K, which we call the set of
prime divisors of K. A basic fact about function fields is that all k-valuations are
discrete.

A divisor on the function field X is an element of the free abelian group Div(K)
generated by the prime divisors. There is a map deg : Div(K) — Z defined by
deg(P) = |Op/P: k| for every prime divisor P. For x € K, it is fundamental that
the divisor

[ =3 vp()P
P

has degree zero, and of course that the sum is finite. In other words, every function
has the same (finite) number of poles and zeros, counting multiplicities. Divisors
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of the form [x] for some x € K are called principal divisors and form a subgroup
of Div(K).

A basic problem in the subject is to construct a function with a given set of
poles and zeros. Towards this end, we denote by < the obvious partial order on
Div(K), and we define for any divisor D,

L(D):={xeK|[x]>-D}.

So for example if S is a set of distinct prime divisors and D is its sum, L(D) is the
set of all functions whose poles lie in the set .S and are simple.

It is elementary that L(D) is a k-subspace of dimension at most deg(D) + 1.
The fundamental theorem of Riemann asserts the existence of an integer g such
that for all divisors D of sufficiently large degree, we have

) dimg (L(D)) = deg(D) — g+ 1.

The integer gz is the genus of K. In the complex case, this number has a
topological interpretation as the number of holes in the corresponding Riemamm
surface. A refinement of Riemann’s theorem due to Roch identifies the error term
in (x) for divisors of small degree and shows that the formula holds for all divisors
of degree at least 2g —1.

Our proof of the Riemamn—Roch theorem is due to Weil [23], and involves
the expansion of a function in a formal Laurent series at each prime divisor. In
the complex case, these series have a positive radius of convergence and can be
integrated. In the general case, there is no notion of convergence or integration.
It is an amazing fact, nevertheless, that a satisfactory theory of differential forms
exists in general. Although they are not functions, differential forms have poles
and zeros and therefore divisors, which are called canonical divisors. Not only
that, they have residues that sum to zero, just as in the complex case. Our treatment
of the residue theorem follows Tate [20].

There are also higher derivatives, called Hasse derivatives, which present some
technical difficulties in positive characteristic due to potential division by zero.
This topic seems to have been somewhat neglected in the literature on function
fields. Our approach is based on Hensel’s lemma. Using the Hasse derivatives, we
prove the analogue of Taylor’s theorem for formal power series expansion of a
function in powers of a local parameter. This material is essential later on when
we study Weierstrass points of projective maps.

Thus far, the only assumption required on the ground field % is that it be the
full field of constants of K. If & is perfect (e.g. of characteristic zero, finite, or
algebraically closed), this assumption suffices for the remainder of the book. For
imperfect ground fields, however, technical difficulties can arise at this point, and
we must strengthen our assumptions to ensure that k¥’ @, K remains a field for
every finite extension & /k. Then the space Q of differential forms on X has the
structure of a (one-dimensional!) K-vector space, which means that all canonical
divisors are congruent modulo principal divisors, and thus have the same degree
(which turns out to be 2g —2).
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Given a finite, separable extension X’ of X, there is a natural map
K @gQy — Qp,

which is actually an isomorphism. This allows us to compare the divisor of
a differential form on K with the divisor of its image in X', and leads to the
Riemamn-Hurwitz formula for the genus:

KK
28 —2= ﬁ@gK —2)+deg D

Here, the divisor 7, K is the different, an important invariant of the extension,
and ¥ is the relative algebraic closure of k in K. The different, a familiar object
in algebraic number fields, plays a similar key role in fimction fields. The formula
has many applications, e.g., in the Ayperelliptic case, where we have K = k(x) and
K :K|=2.

At this point, further technical difficulties can arise for general ground fields of
finite characteristic, and to ensure, for example, that @K/ K > 0, we must make
the additional technical assumption that all prime divisors are nonsingular. For-
tunately, it turns out that this condition is always satisfied in some finite (purely
inseparable!) scalar extension of X.

‘When £ is not algebraically closed, the question of whether K has any prime
divisors of degree one (which we call points) is interesting. There is a beautiful
answer for £ finite of order ¢, first proved for genus one by Hasse and in general
by Weil. Let ax(n) denote the number of nonnegative divisors of K of degree 7,
and put

Z(t) = iaK(n)t”A

Note that (1) is the number of points of K. Following Stér—Voloch [19] and
Bombieri [2], we prove that

1 =
Zg(t) = A=n{i—qg) g(l —af),

where || = ,/g. This leads directly to the so-called “Weil bound” for the number
of points of X:

lag(1) —q—1| <227

Turning our attention now to projective curves, we assume that the ground field
k is algebraically closed, and we define a closed subset of projective space to be
the set of all zeros of a (finite) set of homogeneous polynomials. A projective va-
riety is an irreducible closed set (i.e., not the union of two proper closed subsets),
and a projective curve is a projective variety whose field of rational functions has
transcendence degree one.



xvi Introduction

Given a projective curve V' C P", we obtain its function field K by restricting
rational functions on P* to V. To recover ¥ from K, let X, ..., X, be the coordi-
nates of P* with notation chosen so that X, does not vanish on ¥. Then the rational
functions ¢, := X,/X;, (i =1,...,n) are defined on V. Given a point P of K, we
let ep = —min,{vp(¢,)} and put

O (P) 1= (7 9o(P) : 174 (P) o1 £76u(P)) € P,
where ¢ is a local parameter at P. It is not hard to see that the image of ¢ is V.
In fact, any finite dimensional &-subspace L C K defines a map ¢; to projective
space in this way whose image is a projective curve.

The map ¢ is always surjective. But when is it injective? This question leads
us to the notion of singularities. Let ¢(P) =« € P*, and let &, be the subring of
K consisting of all fractions f/g where f and g are homogeneous polynomials of
the same degree and g(a) # 0. We say that ¢ is nonsingular at P if 6, = &p. This
is equivalent to the familiar condition that the matrix of partial derivatives of the
coordinate functions be of maximal rank.

An everywhere nonsingular projective map is called a projective embedding. It
turns out that ¢L(D) is an embedding for any divisor D of degree at least 2g+ 1.
Another interesting case is the canonical map ¢L(D) where D is a canonical divisor.
The canonical map is an embedding unless X is hyperelliptic.

The study of singularities is particularly relevant for plane curves. We prove
that a nonsingular plane curve of degree o has genus (d —1)(d —2)/2, so there
are many function fields for which every map to P? is singular, e.g. any function
field of genus 2. In fact, for a plane curve of degree 4 and genus g, we obtain the
formula

_d-1@-2) 1
R R L
where for each singularity 0, 8§(Q) is a positive integer determined by the local

behavior of V" at 0.

All of the facts discussed above, and many more besides, are proved in this
book. We have tried hard to make the treatment as self-contained as possible. To
this end, we have also included an appendix on elementary field theory.

Finally, there is a website for the book located at Atfp://www functionfields.org.
There you will find the latest errata, a discussion forum, and perhaps answers to
some selected exercises.



1
Background

This chapter contains some preliminary definitions and results needed in the se-
quel. Many of these results are quite elementary and well known, but in the
self-contained spirit of the book, we have provided proofs rather than references.
In this book the word “ring” means “commutative ring with identity,” unless
otherwise explicitly stated.

1.1 Valuations

Let X be a field. We say that an integral domain & C X is a valuation ring of K if
& # K and for every x € K, either x or x~! lies in &. In particular, X is the field
of fractions of &. Thus, we call an integral domain & a valuation ring if it is a
valuation ring of its field of fractions.

Given a valuation ring & of K, let V = K* /> where for any ring R, R* de-
notes the group of units of R. The valuation afforded by & is the natural map
v K* — V. Although it seems natural to write ¥ multiplicatively, we will fol-
low convention and write it additively. We call V' the group of values of &. By
convention, we extend v to all of K by defining v(0) = o~.

For elements af*,b&* of V, define a6* < b&* ifa~'he £, and put v <
for all v € V. Then it is easy to check that the relation < is well defined, converts
V to a totally ordered group, and that

(1.1.1) v(a+b) > min{v(a),v(b)}
forall a,b € K*.
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Let P:={x € €| v(x) > 0}. Then P is the set of nonunits of &. From (1.1.1),
it follows that P is an ideal, and hence the unique maximal ideal of &. If v(a) >
v(b), then ab~! € P, whence v(1+ ab~!) =0 and therefore v(a+b) = v(b). To
summarize:

Lemma 1.1.2. If & is a valuation ring with valuation v, then ¢ has a unique
maximal ideal P = {x € 0 | v(x) > 0} and (1.1.1) is an equality unless, perhaps,
v(a) = v(b). |

Given a valuation ring & of a field K, the natural map K — K* /£ defines a
valuation. Conversely, given a nontrivial homomorphism v from K* into a totally
ordered additive group G satisifying v(a+ b) > min{v(a),v(b)}, we put &, :=
{x € K* | v(x) > 0} U{0}. Then it is easy to check that &, is a valuation ring
of K and that v induces an order-preserving isomorphism from K> /&> onto its
image. Normally, we will identify these two groups. Note, however, that some
care needs to be taken here. If, for example, we replace v by nv : K* — G for any
positive integer 7, we get the same valuation of K.

We let P, := {x € K| v(x) > 0} be the maximal ideal of &, and F, := &, /P,
be the residue field of v. If K contains a subfield £, we say that v is a k-valuation
of K if v(x) =0 for all x € k™. In this case, F,, is an extension of k. Indeed, in the
case of interest to us, this extension turns out to be finite. However, there is some
subtlety here because the residue fields do not come equipped with any particular
fixed embedding into some algebraic closure of k, except in the (important) special
case F, = k.

Our first main result on valuations is the extension theorem, but first we need a
few preliminaries.

Lemma 1.1.3. Lef R be a subring of a ving S and let x € S. Then the following
conditions are equivalent:

1. x satisfies a monic polynomial with coefficients in R,
2. R[x] is a finitely generated R-module,
3. x lies in a subring that is a finitely generated R-submodule.

Progf. The implications (1) = (2) = (3) are clear. To prove (3) = (1), let
{x1,...,%,} be a set of R-module generators for a subring S, containing x, then
there are elements a;; € R such that

n
XX, = Zal.jxj forl1<i<n.
Jj=1

Multiplying the matrix (51'/"‘ —a; j) by its transposed matrix of cofactors, we obtain
J)x; =0 forall j,

where f(X) is the monic polynomial det(8,X —a,,) and §;; is the Kronecker
symbol. We conclude that f(x)S, = 0, and since 1 € Sy, that f(x) =0. O
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Givenrings R C S and x € S, we say that x is infegral over R if any of the above
conditions is satisfied. We say that § is integral over R if every element of §'is
integral over R. If R[x] and R[y] are finitely generated R-modules with generators
{x;} and {y ;} respectively, it is easy to see that R[x,y] is generated by {x,y;}. Then
using (1.1.3) it is straightforward that the sum and product of integral elements
is again integral, so the set R of all elements of § integral over R is a subring.
Furthermore, if x € S satisfies

n—1
X"+ z ax' =0
i=0

witha; € R, then x is integral over Ro = R[ay,...,a,_ ], whichis a finitely gener-
ated R module by induction on 7. If {b;, ..., by} is a set of R-module generators
for Ry, then {bx/ | 1 <i<m, 0 < j<n} generates Ry[x] as an R-module, and we
have proved

Corollary 1.1.4. The set of all elements of S integral over R forms a subring R,
and any element of S integral over R is already in R. |

The ring R is called the integral closure of R in S. If R = R, we say that R is
integrally closed in S. If § is otherwise unspecified, we take it to be the field of
fractions of R.

Recall that a ring R is called a local ring if it has an ideal 3/ such that every
element of R\ M is a unit. Then 3 is evidently the unique maximal ideal of R,
and conversely, a ring with a unique maximal ideal is local. If R is any integral
domain with a prime ideal P, the localization Rp of R at P is the (local) subring
of the field of fractions consisting of all x/y withy & P.

Lemma 1.1.5 (Nakayama’s Lemma). Lef R be a local ring with maximal ideal
P and let M be a nonzero finitely generated R-module. Then PM C M.

Proof. Let M = Rm; + - -+ Rmy, where 7 is minimal, and put M, := Rm, + -+
Rmy. Then M|, is a proper submodule. If M = PM, we can write

n
m = Z a;m;
=1

with @, € P, but 1 — g, is a unit since R is a local ring, and we obtain the
contradiction

1
my = (1 —al)’l Zaimi e M,
i=2
O
Theorem 1.1.6 (Valuation Extension Theorem). Lef R be a subring of a field K

and let P be a nonzero prime ideal of R. Then there exists a valuation ving & of K
with maximal ideal M such that RC 6 CK and MNR=P.
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Proof. Consider the set of pairs (R',”) where R’ is a subring of K and
P is a prime ideal of R'. We say that (R",P") extends (R',F') and write
(R",P"Y> (R,P)if R O R and P"NR = P. This relation is a partial order.
By Zorn’s lemma, there is a maximal extension (&,3) of (R, P).

We first observe that M #£ 0, so & # K. Furthermore, after verifying that M =
MOy, N & we have (0,,M0,;) > (6,M). By our maximal choice of (7,M)
we conclude that & is a local ring with maximal ideal M. Now let x € K. If M
generates a proper ideal M; of &[x~Y], then (8[x~1],M;) > (&, M) because M
is a maximal ideal of &, and the maximality of (&,M) implies that x~! € &.
Otherwise, there exists an integer 7 and elements a; € M such that

n
() 1= z al.x*’:
i=0

Since & is a local ring, 1 —a, is a unit. Dividing (x) by (1 —a,)x ", we find that
x is integral over &. In particular, &[x] is a finitely generated &-module. Now the
maximality of (£,M) and (1.1.5) imply that x € &. O

Corollary 1.1.7. Suppose that k C K are fields and x € K. If'x is transcendental
over k, there exists a k-valuation v of K with v(x) > 0. If x is algebraic over k,
v(x) = 0 for all k-valuations v.

Proof. If x is transcendental over &, apply (1.1.6) with & := kfx] and P:= (x) to
obtain a k-valuation v with v(x) > 0. Conversely, if

n ;
z ax'=0
=0

witha, € kand @, # 0, and if v is a k-valuation, then we have

viax™) =nv(x)=v(Y ax’).
i<n
If v(x) were nonzero, the right-hand side would be a sum of terms each of differ-
ent value, and we would have nv (x) = iv(x) for some 7 by repeated application of
(1.1.2), which is impossible. Hence, v(x) = 0 as required. O

Corollary 1.1.8. Let R be a subring of a field K. Then the intersection of all
valuation rings of K containing R is the integral closure of R in K.

Progf. If x € K satisfies a monic polynomial of degree n over R and v is a
valuation of X that is nonnegative on R, then there are ; € R such that

n—1
av(x) =v(x")=v (;)rixi> > Orélij?niv(x),

from which it follows that v(x) > 0. This shows that the integral closure is
contained in the intersection.
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To obtain equality, suppose that x € R[x~!]. Then there are 7; € R such that

1
x=Yrx,
i=0

and multiplying through by x* we see that x is integral over R. If, therefore, x is
not integral over R, there is a maximal ideal P of R[x~1] containing x ! and then
by (1.1.6) there is a valuation of K that is positive at x~! and hence negative at
X. O

Lemma 1.1.9. Let & be a valuation ving. Then finitely generated torsion-free
O-modules are free. In particulay, finitely generated ideals ave principal.

Progf. Let P be a torsion-free J-module with generating set {m,,...,m,}. Sup-
posing there to be a relation ¥, am; = 0 where not all a; are zero, we may
choose notation so that v(a,) = min{v(a,) | @, # 0}. Put b, := a,/a, € 6. Then
iy = — Y, bym;, which implies that P is generated by {m,,...,m,_,}. The result
follows by an obvious induction argument. |

‘We now specialize to the case of a valuation whose group of values is infinite
cyclic. Such a valuation v is called a discrefe valuation and its valuation ring
O, is called a discrete valuation ring. We usually identify the value group of a
discrete valuation with the integers. Any element of &, of value 1 is called a
local parameter at v (or sometimes a local parameter at £,,). Equivalently, a local
parameter is just a generator for 7,,.

Lemma 1.1.10. Let t be an element of a subring € of a field K. Then € is a
discrete valuation ring of K with local parameter t if and only if every element
x € K can be written x = ut’ for some unit u € 0.

Proof. If every element of X is of the form ui’, put &, := {ut' € K |i >0} C 0.1t
is obvious that &, is both a valuation ring of K and a maximal subring of X, and
that K* /&5 is infinite cyclic. We conclude that & = & is a discrete valuation
ring of K with local parameter ¢.

Conversely, if & is a discrete valuation ring of X with local parameter ¢ afford-
ing the valuation v, letx € K and let i := v(x). Then v(x~!#/) = 0, sox 1l = u is
a unit. O

The following corollary is immediate.

Corollary 1.1.11. Let & be a discrete valuation ring of K. Then 0 is a maximal
subring of K, and if t is a local parameter, every ideal of U is generated by a
power of t. |

Thenext result is a special case of the fundamental structure theorem for finitely
generated modules over a principal ideal domain, but since this case is somewhat
simpler than the general case, we outline a proof here.
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Theorem 1.1.12 (Smith Normal Form). Let & be a discrete valuation ring with
local parameter t and let A be a matvix with entries in ©. Then there exist matrices
U, V with entries in € and unit determinant, and nonnegative integers

ey <ey<-.-<eyp,
such that UAV has (i,7)-entry equal fo % for 1 <i <y and all other entries zero.

Proof. If A = 0, there is nothing to prove. Otherwise, multiplying by permuta-
tion matrices as necessary, we may assume that e; := v(ay;) < v(a;;) for all i, j.
Multiplying row 1 by a unit, we may assume that a;; = 1.

Next, using elementary row and column operations as necessary, we can as-
sume that a; ; = a,; = 0 for i, j > 2. Now apply induction to the submatrix of 4
obtained by deleting the first row and column, and the result follows. |

Corollary 1.1.13. Let & be a discrete valuation ving with local parameter t, let
M be a free O-module of finite rank, and let N C M be a nonzero submodule. Then
N is free, and there exists a basis {x,,...,xa} for M, a positive integer r < n, and
nonnegative integers e, < e, < .- < e, such that {t°1x, ,12x,,...,19x} is a basis
forN.

Proof. We first argue by induction on the rank of M that N is finitely generated.
If M has rank one, this follows from (1.1.11). If M has rank n > 1, let M, be a free
submodule of rank 7 — 1. Then N N M, and N/ (N NM,) are finitely generated by
induction, whence & is finitely generated.

Next, choose any basis for M, and any finite set of generators for N. Let 4
be the matrix whose columns are the generators for N expressed with respect
to the chosen basis for M. Apply (1.1.12). The matrix U defines a new basis
{%;,.-.,%,} for M, and the matrix ¥ defines a new set of generators for N, namely
{te1x;,£%x,,... 1°x, }. It is evident that there are no nontrivial £-linear relations
among the #%x,, and thus they are a basis for V. |

Here is the standard example of a discrete valuation. Let R be a unique fac-
torization domain, and let p € R be a prime element. For x € R, write x = p°x,
where pfx, and put v,(x) = e. Extend v, to the field of fractions by v, (x/y) =
Vp(x) —vp(»). It is immediate that &, is just the localring R, . We call v, the p-
adic valuation of R. In particular, it turns out that for the field of rational functions
in one variable, essentially all valuations are p-adic.

Theorem 1.1.14. Let v be a valuation of K := k(X). Then either v = vy for some
irreducible polynomial p € KX], or v(f(X)/g(X)) = deg(g) — deg(f), where |
and g are any polynomials.

Proof. If v(X) > 0, then k[X] C &, and P,Nk{X] is a prime ideal (p) for some
irreducible polynomial p. This implies that the localization kLX) @ lies in £,,. But
by the above discussion, k[X] @ is a discrete valuation ring of £(X). By (1.1.10),
k[X] (p) I8 @ maximal subring of k(X), so v = v,. Note that v,(X~) = 0 unless
(p) = (X). Thus, if v(X) < 0, we replace X by X, repeat the above argument,
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and conclude that &, = k[X*l](X,l). In particular, v(X) = —1, whence v(f) =
—deg(f) for any polynomial 1 € k[X] by (1.1.2). O

Given such a nice result for £(X), we might wonder what can be said about
k(X,Y). Unfortunately, once we enter the world of higher dimensions, the
landscape turns very bleak indeed. See Exercise (1.1).

‘We now turn to our second main result on valuations, the weak approximation
theorem. In order to understand this terminology, several remarks are in order.
Given a discrete valuation v on a field X, choose any convenient real number
b > 1 and define |x|, := b=® for all x € K. Then it is straightforward to verify
that |x], defines a norm on K, with the strong triangle inequality:

[x+yly < max(x]y,[y|).

Hence the statement v(x —y) > 0 may be thought of as saying that x and y are
very close to each other. We will pursue this idea more fully in the next section.

Lemma 1.1.15. Let {v,,...,v,} be a set of distinct discrete valuations of a field
K, and let m be a positive integer. Then there exists e € K such that vi(e—1) > m
and vi(e) > m fori> 1.

Proof. We first find an element x € K such that v; (x) > 0 and v,(x) <0 fori> 1.
Namely, if n =2, we choose x; € &, \ﬁ for i =1,2. This is possible since &,
is a maximal subring of K by (1.1. 10) Thenx =X, /X, has the required propemes
For n > 2, we may assume by induction that x" has been chosen with v, (x) > 0
and vl-(x/) <0 for 1 <i<n If v(x') <0, we put x :=x". Otherwise, choose y
with v; (y) > 0 and v,(y) < 0, then we can find a suitably large positive integer
7 such that v,()/") # v,(x’) for any i. Now (1.1.2) implies that x :=x’+" has the
required properties.

Finally, we observe that v; (x™) > m, v; (14+x") =0, and v,(1+x™) = v,(x") <
—m. It follows that the conclusions of the lemma are satisfied with

1

€= 14 xmt+1”

Theorem 1.1.16 (Weak Approximation Theorem). Suppose that v,,..., v, are
distinct discrete valuations of afield K, m,. .. ,my areintegers, andx,,...,xu € K.
Then there exists x € K such that v,(x —x;) = m, for 1 <i<n.

Progf. Choose elements a; € K such that v,(g;) = m; for all i, and let m; :=
max, m,. Now choose an integer M such that

M+m1n{v( DRACHISS S

By (1.1.15) there are elements ¢, € X such that v,(e, — ;) > M for 1 <i,j <n,

where 51'/' is the Kronecker delta. Puty:=3 ; € Then for all i we have

vily—x) =, (2,(@/'* 5ij)xj> > MJFH?HVI'(X/') 2 .
7
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Put z := ¥,e,a; Then as above we have v,(z —a,;) > mg, and hence v;(z) =
v,(z—a,+ a;) = m, for all i. The result now follows with x := y+z.

Our first application of (1.1.16) is to determine the structure of the intersection
of a finite number of discrete valuation rings of K. So for any finite set ¥ of
discrete valuations of a field X, and any function m : ¥ — Z, define

K(7sm)y={xeK|v(x)>m(v) forallv e ¥}.

Corollary 1.1.17. Suppose that K is a field, ¥V is a finite set of discrete val-
uations of K, and that every valuation ring of K containing 0, 1= K(¥;0) is
discrete. Then O, is a principal ideal domain and I C O, is a nonzero ideal if
and only if I = K(¥';m) for some nonnegative function m uniquely determined
by I. Moreover, 0., /[K(¥;m) has an O, -composition series consisting of exactly
m(v) composition factors isomorphic to F,, (as ©.,-modules) for each v € ¥.

Progf. From the definitions it is obvious that &, is a ring, that K(¥';m) is an
0.-module for all m, and that K(¥;m) C K(¥;m') for m —m’ nomegative. In
particular, K(';m) is an ideal of &, for m nonnegative.

Conversely, let 0 # I C &, be an ideal, and for each v € ¥ put

m(v) 1= r)rclei}qv(x)A

By (1.1.16) there exists x,, € K with v(x,;) = m(v) forallv € ¥. Then x € 0.,
and x;,;'7 is an ideal of O, that is not contained in P, for any v € ¥ If, by way
of contradiction, x,;'7 ¢ Oy, then (1.1.6) yields a valuation ring &,, containing
O, with ;' I C P,,. Thus, v/ ¢ ¥, but by hypothesis v/ is discrete. Now (1.1.16)
yields an element y € &, with v/ (y) <0, a contradiction. We conclude that =
Oy, i, I = O xy is principal. IFK (#;m) = K(¥;m'), then from x,, € K(¥;m')
and x,, € K(¥';m) we obtain

m(v) = () > 1l (v) = v(x,) > m(v)

for all v € ¥, whence m = m'.
In particular, the &, -module K (¥;m)/K(¥;m+ 8,) is irreducible, where for
v € ¥ we define

1 forv=1v
8, (V)= ’
(V) {0 otherwise.

Let f be a local parameter at v. Then the map
@) =r"Mx1p,
defines an additive map 1 : K(¥;m) — F, withker n = K(¥;m + 8,,). This map
gives F, an &, action, because as we next argue, 7 is surjective.
Narmely, for y € &, (1.1.16) yields an element x € K with v/(x) > m(v') for
v e ¥, v #vand v(x—"")y) > m(v)+ 1. This implies that x € K (¥ ;m) and
n(x) =y mod P, so 1 is surjective and induces an &, -module isomorphism
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K(¥;m)/K(¥;m+8,) ~ F,. Now an obvious induction argument shows that
0., /K(¥;m) has a composition series consisting of exactly m(v) composition
factors isomorphic to F, for each v € 7.

Corollary 1.1.18. With the above notation, we have
K(¥;m)+ K ym') = K(¥ n¥;min{m,m'})
for m and m' nonnegative.

Proof. 1t is obvious that K (¥ ;m)+K(¥'ym’) C K(¥ N¥";min{m,m'}). Con-
versely, lety € K(¥ N’ ;min{m,m'}). Write y = ye+y(1 — e), where e is chosen
using (1.1.16) such that

vie) > m(v) —v(y) forve ¥\ ¥/,

v(e) > m(v) for ve ¥ N¥" and m(v) > m'(v),
v(l—e) >m'(v) for ve ¥ Ny and m(v) <m'(v),
v(l—e) > (v)—v(y) forve 7'\ 7.

We claim that ye € K(¥;m), i.e. that v(y) + v(e) > m(v) for all v € ¥. This is
clear for v ¢ ¥ and for v € ¥ N¥’ with m(v) > m' (v), because v(y) > 0 in this
case. For v € ¥ N’ with m(v) < m'(v) we have v(y) > m(v) and v(1 —e) >
m'(v) > 0, s0 v(e) > 0 as well, and thus all conditions are satisfied. Similarly, it
follows that y(1 —e) € K(¥";m'). |

Our final results on valuations concern the behavior of a discrete valuation un-
der a finite degree field extension. Suppose that v is a discrete valuation of K and
K’ is a finite extension of K. Then (1.1.6) shows that there exists a valuation ring
&' of K’ containing &, whose maximal ideal contains P,. If v’ is the associated
valuation of K’, we say that V' divides v and write v'|v. We are tempted to write
V/|x = v, but some care must be taken with this statement, particularly since it
turns out that v’ is also discrete, and we are in the habit of identifying the value
group of a discrete valuation with Z. If we do this for both v and v/, then what in
fact happens is that /| = ev for some positive integer e.

Theorem 1.1.19. Suppose that v is a discrete valuation of a field K, K' is a finite
extension of K, and V' is a valuation of K' dividing v. Then V' is discrete, and
there is a positive integer e <|K' : K| such that V| = ev.

Proof. Let n = |K’: K| and let V" (resp. V) be the canonical group of values of
v (resp. V). That is, V = K* /&, and V' is defined similarly. For the remainder
of this argument we will not identify either group with Z. Then since &), NK* =
0, we see that V' is canonically isomorphic to a subroup of V7, and v/[ = v.

We argue that ¥ has index at most # in V7, for if not, there are values
Vo, V5. -V} CV7, no two of which differ by an element of V. Choose elements
x}; € K’ such that v/ (x}) = v/} for 0 < i < &, then there is a dependence relation
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with a; € K. Carefully clearing denominators, we may assume that the @, are in
&, and at least one, say &, is nonzero. Note that by our choice of v}, we have

V/(”i{i) - V/(”jx}) =v(a;) +vi— V(”j) - V} #0
for all £ # j for which g, and a; are nonzero. But now (1.1.2) implies that

V(agxp) = V' (Y ap) = V'(ap)
>0

for that index j > 0 for which v/(a jx;) is minimal. This contradiction shows that
Vv <n

Let e:= |V’ : V] and let a be a positive generator for V. There are at most
e elements of V7 in the interval [0,4] since no two of them can be congruent
modulo V. In particular, 7’ has a smallest positive element; call it b. Let v € V.
Then e € V, and we get v < eV < m'eb for some positive integer /. Let m
be the least positive integer for which mb > v/. Then v/ > (m — 1)b, and hence
0> mb—v > b. By our choice of b we conclude that v/ = mb and thus that V" is
cyclic as required. |

We call the integer e = e(V'|v) of (1.1.19) the ramification index of v’ over v.
We will often write e(P'|P) for e(v'|v), where P (resp. P') is the valuation ideal
of v (resp. v'). When e > 1 we say that P is ramified in K.

Lemma 1.1.20. Let & be a discrete valuation ving with field of fractions K,
maximal ideal P, and residue field F. Let M be a torsion-free O-module with
dimg K® 5 M = n. Then dimy; M/ PM < n with equality if and only if M is finitely
generated.

Proof. If M is finitely generated, it is free by (1.1.9) and therefore free of rank #,
whence dimy M/PM = n as well.
Suppose that x;,X,,...,xn € M. If we have a nontrivial dependence relation

m
Zaixl. =0
i=1

with @, € K, we can carefully clear denominators, obtaining a relation with @, € &
but not all a; € P. It follows that if the x; are linearly independent modulo PM,
they are linearly independent over K, and therefore dim M/PM < n.

Assume now that dimzM/PM = n. Then lifting a basis of M/PM to M, we
obtain by the previous paragraph a linearly independent set of cardinality n, which
therefore generates a free submodule M, C M of rank #, with M+ PM = M. Let
m e M and put N := M, + Om. Then N is torsion-free and thus also free (see
(1.1.9)). Since it contains a free submodule of rank #, and any free submodule of
M can have rank at most #, N also has rank #. Now (1.1.13) yields a basis x;,..., %4
for N and nonnegative integers i; <i, < ... <i, suchthat t1x,,...,t"x, is a basis
for M, where  is a local parameter for P. However, since (M, + PM)/PM ~
Mo/ (M, N PM) has rank , all the , must be zero, and hence N = M. Since m was
arbitrary, we have M, = M as required. |
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Lemma 1.1.21. Let |K' : K| = n, let O, be a discrete valuation ving of K, and let
R be any subring of K’ containing the integral closure of O, in K'. Then the map

K®, R—K

sending x ®y fo xy is an isomorphism of K-vector spaces. In particular, if V'|v,
then the residue field F, is an extension of the residue field F, of v of degree at
most n.

Proof. We first argue that the map x ® y — xy is an embedding. Let  be a local
parameter for v. Then any element of the kernel can be writtenx = ¥ 1% ®x,,
where notation can be chosen so that e, = max,e,. Then ¥, %x, = 0, and we
have

fox=Y 0% ey=1® (z;erqxl) =0,

i

i

and therefore x = 0. To show that the map is surjective, let y € K’. Then
n :
ay'=0
i=0

for a; € K. Since X is the field of fractions of &, we can clear denominators and
assume &, € &,,. Multiplying through by @' we see that a,y is integral over &,
and therefore z := @,y € R. Since y = z/a, we have K’ = KR as required.

In particular, we have dim K B, O,, = n, and we obtain from (1.1.20) the
inequalities

dimg(8,,/P,) < dimg(6,,/P6,) <n O

The degree of the residue field extension is called the residue degree of v/ over
v, denoted f(v'|v), or sometimes f(P'|P). We can now prove a basic result on
finite extensions.

Theorem 1.1.22. Let K’ be a finite extension of K and let € be a discrete val-
uation ring of K with maximal ideal P and residue field F. Let {0,,...,0,} be
distinet valuation vings of K' containing €, and let R be their intersection. Let P,
be the maximal ideal of O, and put e,:= e(P|P) and f,:= f(P|P) for each i. Then
1. R contains a local parameter t, for 0, bR =t,R, and 6,= R+ P, for
eachi=1,...r
2. dimgR/PR=7Y]_e,f; < |K': K| with equality if and only if R is a finitely
generated O-module.

In particular, there ave only finitely many distinct valuation rings of K' containing
0.

Proof. Let v, be the valuation afforded by &, for all #, and let ¥ = {v;,...,vs}.
Note that R = K(#;0) and that any valuation ring of K’ containing R also contains
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¢ and is therefore discrete by (1.1.19). Thus, (1.1.17) applies. By (1.1.17) R is
a PID and the maximal ideals of R are just the ideals K(¥;68) = bLNR for 1 <
i <r, where 51'("/') = 51'/" Moreover, each such maximal ideal is generated by
an element £, that must be a local parameter at F,. Let x € &,. Then there is an
clement ¥ € K’ with v;(x—x") > 1. Moreavet, v,(x') > 0 for j #i by (1.1.16);
hence &, = R+ P, proving (1).

Let t be a local parameter for P. Then v,(f) = e, for all i. Since PR = Rt =
K(¥;e) for some uniquely determined function e: ¥ — Z by (1.1.17), we must
have e(v;) := e, for alli. Now we see that R/ PR has exactly e, composition factors
isomorphic to #, whence

dim(R/PR) = ieiflu
i=1

Since dimg K @5 R = 7 by (1.1.21), (2) follows from (1.1.20). 0

If we take the complete set of extensions of & to K’ above, the ring R is the
integral closure of & in K’ by (1.1.8). We see that the question of whether or not

;e,f; = nis equivalent to another important issue: When is the integral closure of
& in K’ afinitely generated #-module? In (2.1.17) we will show that for function
fields of curves, both conditions are always satisified.

The next result gives a very useful sufficient condition for all extensions of a
discrete valuation v to be unramified.

Theorem 1.1.23. Suppose that € is a discrete valuation ving of K with maximal
ideal P and residue field F. Let {(0,,P,) | 1 <i<r} be the set of distinct exten-
sions of (0, P) to some finite extension K' of K of degree n, and let F,:= &,/P, If
we can write K' = K(y) for some element y € K' whose monic minimum polyno-
mial g(X) has coefficients in € and has distinct roots mod P, then e(P|P) =1 for
all i. Moreover, Oy) is the integral closure of € in K', and g(X) factors over F
as a product of r distinct irreducibles

4(x) z_]jgm mod ,

where notation can be chosen so that F; ~ F[X]/(g,(X)). In particular, degg, =
J(&IP).

Progf. Since g(X) has distinct roots mod P, there is certainly a factorization

30 = Hg @)

into distinet irreducibles over F [X], where g(X) is the reduction of g(X) mod P
and g; € F[X]. The map X — y defines an epimorphism ¢ : #[X] — &[y] whose
kernel contains the principal ideal (g(X)). Since g(X) is monic, #[X]/(g(X)) is
free on the basis {1,X,... Pda }. On the other hand, ¢ is the restriction of a map
K[X] — K’ whose kernel is generated by g(X), and therefore ker(¢)/(g(X)) isa
torsion £-module. This implies that ker(¢) = (g(X)), and thus,
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) oY)/ POY) =F[] ~ [/(g(X))N@F 1/(g,(X)),

where j:= (y+P)/P.
To get the last isomorphism, note that the polynomials {g/g, | 1 <i <#'} are
relatively prime, so there exist polynomials %, € F[X] with

f/ -
Zhig =
-1 &

Pute; := h,g/g; Then it is easy to check that e;e; = §;; mod g(X), so the ¢; give
the requlred decomposition of F[X]/(g(X)).

Since y is integral over &, #[y] C R:=,&, by (1.1.8). Now using (1.1.22) and
(*) we have

I 7
(xx)  n=deg() =Y f] = dimg Op)/POY] < dimzR/PR=Y e;f,<n,
i=1 =1

where e, := e(P|P), and f, := f(P|P). We conclude that all of the above in-
equalities are equalities. In particular, R is a finitely generated &-module by
(1.1.20), and R = &[y] + PR. Now Nakayama’s lemma (1.1.5) applied to the
finitely generated &-module R/ &y] yields R = OJy].

Moreover, we have

»
R/PR = OP)/POY ~ D FX]/2,(0),
=1

and it follows that R/PR has exactly # distinct maximal ideals. Thus, (1.1.19)
yields 7/ =, and after a suitable renumbering, that F, ~ F[X] /g,(X) for eachi. In
particular, f; = f7, and (x) implies that e, =1 for each i. |

Whenever K’ is a separable extension of K, we can find a primitive element
y for which K’ = K(y) by (A.0.17). If y is not integral over Jp, (1.1.21) shows
that we can replace it by a X-multiple that is integral. Then the monic minimum
polynomial of y will have coefficients in &p. The problem is that it may not have
distinct roots mod P. As we will see later, however, in the case of interest there
are only finitely many P for which this happens. Thus, (1.1.23) can be thought of
as the generic case.

In the opposite direction, we say that a discrete valuation v of X is fofally
ramified in K’ if e(v'|v) = |K’ : K| for some v/, which is then unique by (1.1.22).

Theorem 1.1.24. Suppose that |K' : K| = n and that v is a discrete valuation of K
with e(V'|v) = n for some discrete valuation v’ of K'. Let s be a local parameter
at v. Then K' = K(s), s is integral over 6, and 0, = 0,,s].
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Proqf. For any n-tuple {a,,...,a, ,} of elements of K, let / be the set of indices i
for which @, # 0. Then for alli € / we have V/(a,) =0 mod 7 and thus v/ (a,s) =i
mod 7. In particular, the integers {V'(a;s’) | i € I} are distinet, whence

n—1
(%) v (Z{) al.s’> = rlr_lei}qv/(ais’),

provided that 7 # 0. Tt follows that § := {1,s,...,5" '} is linearly independent
over K, and is therefore a K-basis for K. Let x € O, and write x = ¥, al.si with
a; € K. Then (x) implies that v'(g;) > 0 for all i. We conclude that &, = &,[s],
and that s is integral over &,,. |

‘We finally observe that the ramification index and residue degree are both
multiplicative:

Lemma 1.1.25. Suppose K, C K; C K, are three fields with |K, : K| < o, and v,
is a discrete valuation of K; (0 < i < 2) with v,|v,|v,. Then

e(ylvy) = e(vy|vy)e(v11vy), and

Tl vo) = F(valvi)f (v vo).-
Proof. The first statement is immediate from the definition of e and the fact that

restriction of functions is transitive. The second statement follows from the natural
inclusion of residue fields F, € F; C F, and (A.0.2). |

At this point, an example may be in order. Let X := Q(x) be the field of rational
fimetions in x over the rational numbers @, and let K’ := K (), where y* = p(x) :=
x*+x— 1. Note that p(x) is irreducible over Q because it does not have a rational
root. Moreover, |[K” : K| = 2, and every element of K’ can be uniquely written
a(x) + b(x)y where a,b are rational functions of x. For # = a+ by, define 7 :=
a—by, and N(u) := uil = a* —b*y? ¢ K. Then

1
1 _
() U= m(ﬂ—by)
In the following discussion, v will denote a valuation of X with valuation ring &,
maximal ideal P, and residue field F, while v’ will be an extension of v to K’ with
corresponding notation &, P/, F'. We will look at the three cases v = v, and
Veou

Vet

Vi= Wy
Then & := Q[x] ) is the ring of local integers at x, #.e. the rational functions
with no pole at x = 0. In this case, we claim that V' is unique, and is given
by
v/ (a+by) :=min{v(a),v(d)}.
To see this, first note that 2v/(y) = v (3?) = v/(x* +x—1) > 0, s0y € &'.
Moreover, 2 = —1 mod P, which shows that F’ contains the field Q(i).
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By (1.1.22) we conclude that £ =2,e =1, and V' is unique. Moreover, every
element of X’ can be uniquely written in the form v := x!(a(x) 4 b(x)y),
where a(x) and b(x) are local integers, at least one of which is not divisible
by x. Put # := a(x) +b(x)y. Then « € &' and N(u)(0) = a(0)? + b(0)? is
nonzero at x = 0, whence () shows that # is a unit in &".

Vi=V!
Changing variables by replacing x by xfl, y by yfl, and v.. by V,) and
then dropping the subscripts, we look instead at the equation

3

14x2—x3

at x = 0. We first notice that 2v/(y) = 3v/(x) because v/ (1+x> —x%) = 0.
This implies that 2/ (3x~!) = v/(x) > 0, from which it follows that yx~! is
a local integer and that e > 1. By (1.1.22), we conclude thate =2, f = 1,
and v’ is unique. Since e = 2 and 2v'(yx~!) = v/(x), we see that yx ! is
a local parameter at P’. So in order to describe &', we need to know how
to write every element of K’ as the product of a local unit and a power of
yx~1. In contrast to the previous case, this is not entirely obvious, and we
will defer the discussion for the moment.

V=

V=V_;:
This time, we have 2 =1 mod P/, so y = £1. There are two extensions
of v here, and the choice of sign will distinguish them. More precisely,
we have 32 —1 = x> +x—2 = (x — 1)(x2 +x 4 2). This means that the
subring &[x,y] C K has proper ideals (x —1,y—1) and (x—1,y+1) |, so the
valuation extension theorem produces a valuation v/ with v/(y —1) > 0 and
an algebraically conjugate valuation v with v/ (y+1) > 0. Now (1.1.22)
saysthate= f =1,s0 V/(x—1) =1 and x — 1 is a local parameter. Again,
as in the previous case, it is not obvious how to write every element of K’
as the product of a local unit and a power of x — 1.

In the last two cases above, the question remains of how to actually compute
the valuation v/, or at least how to tell whether an element a(x) + b(x)y is a local
integer. We will discuss the case v = v,_,, since the other case is essentially
similar. Of course, if @(x) and b(x) are both local integers, so is #. The problem is
that # and b can have poles that are canceled by the zero ofy, or just by subtraction.
For example, the element

- y—1 - x24x+42
Tx—1 y+1
is a local integer with the value 2 at (1,1).

The most systematic approach to this problem is to expand elements of X’ as
formal Laurent series in the local parameter x — 1. We can do this using undeter-

1We are skipping some details here that will be covered in chapter 4.
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mined coefficients as follows. Let y := ¥, &,(x —1). Then y = ¢, mod (x—1), so
there are two choices for @, +1 or —1. Taking a, = +1, we get
¥ —1=2a,x— 1)+ Qay+a))(r— 1)’ + Qay + 2,2 (x— 1)* +
= @—1)(*+x42)
= D= D 3(— 1) +4)
=4(x—1)+30x—1)2+@x-1)%.
From this, we obtain equations
2a; =4,
2a,+a} =3,
2a3+2aya, =1,
2a4+2a1a3+a% =0,

which can be successively solved for the coefficients ;. Thus,
1 3
y=1+42(x—1) 7§(x7 12+ 5(x—1)3+

Now to expand # = a(x) + b(x)y we just expand the rational functions a(x) and
b(x) in powers of x — 1, multiply »(x) by y and combine terms. If all negative
powers cancel and the constant terms do not, # is a local unit.

This example serves as a direct introduction to our next topic.

1.2 Completions

Given a ring R and an ideal 7 of R, we define the completion of R at I, denoted Rl,
to be the inverse limit lim,R/I*. Formally, R 1 is the subring of the direct product

&/
n=1

consisting of those tuples (r1 +1,ry +[2 ) such that Tup1 =7n mod I, with
p01ntw1se operations. The canonical projection maps of the direct product restrict

to Ry, giving maps 7, : R; — R/I" such that all of the diagrams

R/ ——R/I*

commute, where the horizontal map is the natural map.
The projections 7, satisfy the following universal property:
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Lemma 1.2.1. Given any ving S and maps ¢n 1 S — R/I" such that all diagrams

S
fo o
R/ —= R/1

commute, there is a unique map ¢ : S — RI making all diagrams

(1.22) s\
R,

— R/
commautte. |

b ~
‘We sometimes write ¢ = lim, ¢,. In particular, there is a naturalmap ¢ : R — R;
whose kernel is easily seen to be N,/™. We say that R is complete at I when ¢ is
an isomorphism.

Lemma 1.2.3. 4 ring R is complete at the ideal I if and only if the following two
conditions are satisfied:

1 NpoI* =0, and

2. Given any sequence vy € R with rp =7, mod " for all n, there exists
€ Rwithr =v, modI" for all n.

In particular, if I' = 0 for some n, then R is complete at I.

Proof. As already noted, 1) is equivalent to the injectivity of the natural map
R—R ; and one verifies easily that 2) is equivalent to its surjectivity. If I* = 0 for
some 7, the sequences satisfying 2) are eventually constant and we cantake r =7y,
for any sufficiently large n. |

‘We will call a sequence r, satisfying 2) above a sfrong Cauchy sequence, and
anelement » with» =, mod /" for all # a limit. In the presence of 1) such a limit
is unique, and we write » = lim, ;. Both conditions can therefore be reformulated
as saying that every strong Cauchy sequence has a unique limit. More generally,
given any sequence x; € R, the statement lim,x; = x means that for any integer
n > 0, x —x; is eventually in /*. In effect, we have introduced a topology on
the ring R. Without belaboring this point, we note that it is immediate that the
operations of addition and multiplication are continuous.

The rlng RI comes equipped with canonical projection maps 7, : R1 — R/ If
we let [ be the set of sequences {x,} in R, for which x, € I for all 5, we see that
" is just the set of tuples the direct product whose first # components are zero,
and thus ker, = . Tt follows that the completion of R 7 at I satisifies the same
universal property as R 7 does, so they are isomorphic. Finally, it is obvious that
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ifr=(+1,....,ra+I"...) € Rl, then » = limy, ¢ (r,), where ¢ : R — R[ is the
canonical map. Summarizing all of this, we have

Lemma 1.2.4. With the above notation, RI is complete at I " =kerm,, and the
image of R under the canonical map is dense. If xn, yn € RI with x 1= limy x, and
y 1= limy, yp, then xy =limy, Xpy, and x+y = limy X, + ya. O

_ If we let R be the integers with / a prime ideal (p), we get the p-adic integers
Zp. Of more direct interest is the case R = k[X], ] = (X); which yields the ring of
formal power series k[[X]]. We will discuss this case further below.

Lemma 1.2.5. Suppose that S is a subring of R, I is an ideal of R, and J is an
ideal of S contained in I. Then there is a natural map ¢ : S; — R] making all
diagrams

5 g,
Ty Ty
Sjm s R

commutative, where @y, is induced by inclusion. If R =S, then ¢ is surjective. If;
Jfor almost all integers n > O, there exists an integer m depending on n such that
SNI™ CJ*, then ¢ is injective.

Proof. Since J* C I" for any #, there are natural maps
LY 97

that commute with R/ — R/I", s0 ¢ := limy (¢ © %) is defined, making the
above diagrams commutative. From the definitions, we see that ¢ is surjective
when R = S, and that ker ¢ consists of those sequences x = (x, +J") € S‘, with
X, € kerg, = SNJ" for all n. Choose such a sequence x and an integer n, and
assume that there is an integer m, which we may take greater than #, with SN/ C
J*. Since x, € SN CJ* and xp, = x, mod J*, we have x,, € J* and thus x =0
as required. |

‘We note for future reference that the notion of completeness for rings general-
izes easily to modules. Suppose / is an ideal of R and M is an R-module. A strong
Cauchy sequence in M is a sequence {x,} of elements of 3 such that x, = Xpp1
mod "M for all n. We say that M is complete at I if every strong Cauchy sequence
in 3 has a unique limit.

‘We turn now to the proof of Hensel’s Lemma, which is the main result we need
from the study of complete rings. We begin with a special case.

Lemma 1.2.6. If R is complete at I and u € R is invertible modulo I, then u is
invertible.

Progf. By hypothesis there is an element y € Rwitha =1—uy e I. Put s, 1=
1+a+a*+. ... +d". Then {sn} is a strong Cauchy sequence, which therefore
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converges to some element s € R. Since (1 —a)s, = 1 —a*!, we obtain (1 —a)s =
1 and thus %~ = ys.

‘We have proved that if the polynomial X —1 has aroot mod 7, then it has a root.
Our main motivation for considering completions is to generalize this statement
to a large class of polynomials.

Lemma 1.2.7 (Newton’s Algorithm). Lef R be aring with anideal I and suppose
that for some polynomial f € RX) there exists a € R such that f(a) =0 mod/
and f'(a) is invertible, where f(X) denotes the formal derivative. Put

Sa)
b:=a— R
“Tr@
Thena=b modI and f(b) =0 mod 2.

Progf. We have b= a mod[ because f(a) € I. For any element € R and any
n > 0 we have the identity

X'=(X—ata)' = Z <’l‘> X —a)d™ ="+ nd (X —a)+ ha () (X — )2,

=0
for some 7, (X) € R[X], whence
(12.8) J&X) = f@+ 7 (@& —a)+hX)(X —a)®
for some (X) € RX]. With X = b we have
FB)=h(B)b—a) eI’
]

Newton’s algorithm is quite effective computationally, because it converges
very quickly. Using it, we obtain

Corollary 1.2.9 (Hensel’s Lemma). Let R be complete at an ideal I and let
J(X) € R[X]. Suppose, for some u € R, that f(u) =0 mod [ and that [ (u) is
invertible modulo 1. Then there exists a unique element v € R satisfying v=u
mod/ and f(v) =0.

Proof. By (1.2.6) every element of R congruent to () mod/ is invertible. Put
u; =u and apply (1.2.7) to obtain an element #, = #; mod/ with f(u,) =0
mod I2. Then f'(u,) = f'(u;), and therefore f'(i,) is invertible by the above
remark.

This means that Newton’s algorithm can be applied repeatedly to yield a strong
Cauchy sequence # = uy,4,,... of elements of R such that f(u,) € e CI* for
n=1,2,.... By (1.2.3) the sequence has a limit v € R. By continuity of addition
and multiplication, we get f(v) = limy, f{(u,) = 0.

Some care is needed to prove uniqueness, because we are not assuming that
R is an integral domain. Using (1.2.8) we have f(X) = g(X)(X —v) for some
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polynomial g(X) € R{X]. Then /' (X) = & (X)(X —v) +g(X). If v/ is any root of
f congruent to # modulo 7, then

Sy =f ) =) —v)+2(/) =g(/) modl,

whence g(V') is a unit in R. But we have 0 = f(v') = g(v)(v—/), sov = as
required. |

We now apply these ideas to a discrete valuation ring ¢ with maximal ideal P.
Since M, P" = 0, the natural map & — ﬁp is an embedding. We usually identify
Op with its canonical image in 4 '»- An important point is that v, extends naturally
to a discrete valuation on ﬁp.

Theorem 1.2.10. Let & be a discrete valuation ving with maximal ideal P and
local parameter t. Then ﬁp is also a discrete valuation ring with local parameter
t, and the natural projection 7, : ﬁp — O /P induces an isomorphism of vesidue
fields ﬁp/ﬁ ~ 6/P, where P is the completion of P in ﬁp.

Proof. We have P = kerz by (1.2.4), so 7; induces an isomorphism ﬁP/P o~
Op/P. Now (1.2.6) implies that every element of ﬁp \ Pis a unit.

Since P = Opt we have P= ﬁpt and because ﬁp is complete at P by (1.2.4),
it follows that no nonzero element of 2 is divisible by arbitrarily hlgh powers of
t. Thus, every element x € P can written x = ut’ for some % & ﬁP\P Since every
such # is a unit, & 'p i an integral domain and thus is a is a discrete valuation ring
with local parameter £. |

If K is the field of fractions of &, we denote by 121, the field of fractions of ﬁp.
‘We say that v is a complete discrete valuation of 121,. If the natural map K — 121,
is an isomorphism, we say that K is complete at P. The embedding O — ﬁp
obviously extends to an embedding K — Kp.

Theorem 1.2.11. Suppose that Op is a discrete valuation ring of a field K, that K’
is a finite extension of K, and that €,y is an extension of Op fo K' Lete:=e(Q|P)
and f:= f(Q|P). Then there is a natural embedding Kp — If’Q, and if we identify
Ky with ifs image in If’Q, then e(Q|P) = e, f(O|P) = f, and ﬁQ is a free Gp-
mf)dule of rank ef generated by elements of ﬁQ. In particular, I@Q = K’]ep and
K" : Kp| =ef.

Proof. From (1.2.5) we obtain a natural embedding ﬁp — ﬁQ that extends to
1€P — If’Q. Choose local parameters ¢ at P and s at 0. By (1.2.10), sand ¢ are IOSal
parameters at Q and P, respectively, and since ¢ = s°« for some unit & ﬁ C ﬁ

we have e(Q|P) = e. Using (1.2.5) and the natural isomorphisms of res1due ﬁelds
Q/Q Fg and ﬁP/P Fp provided by (1.2.10), we get (Q|P) = 1.

il partlcular, PﬁQ = ¢° and d]mFP(ﬁQ/PﬁQ) = ef. Choose an Fp-basis
Uy, ..oy for ﬁg/ﬁﬁg. The #,; can be chosen to lie in ﬁQ because ﬁQ = ﬁQ+Qe
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for any e by (1.2.2). Moreover, the u, are linearly independent over ﬁp, because
given any nontrivial dependence relation we could divide by a power of ¢ if
necessary so that not all coefficients were divisible by ¢ and obtain a nontrivial
dependence relation modulo £.

Let M be the free ﬁp—module generated by the u,. It is clear that none of the #;
lie in PM, which means that P*M = Zl.p”ul.. If {mn} is a strong Cauchy sequence
in M, we can write

ef
M =3 @ity
=

with a;, € ﬁp, and it is clear that the sequence {a,,} is a strong Cauchy sequence
in ﬁp for each i. Let @, = lim, a,, for each i. Then
ef
hmmn = Zalul
i=1
Since ﬁ,,P”M C NpQ" = 0, the limit is unique, and therefore M is complete.

‘We have ﬁQ = M+Pﬁ , and we claim that in fact, ﬁQ =M2letxe ﬁ
Then x = my+ X, for some my € M and Xy € Pﬁ . Inductively, assume that we
have found elements m, € M and x, € ﬁ”*lﬁg with M,y = hiy modﬁ”é’g and
X = My +x,. Write

Xn =24,
J

\giih a; e prtl andy; e ﬁQ. Theny; = m';+y/; for some m; € M and y/; € Pé’Q.
ul

P !
My .7m,,+2ajmj and  xp,, 72
J

Then the inductive step is easily verified, and we have constructed a strong Cauchy
sequence {rm, } in M, which therefore converges to some limit m € M. But now we
havex —m e ﬁnP”ﬁ =0, and therefore ﬁ =Misafree ﬁp—module ofrank ef
with a basis contalned in ﬁQ. Extending scalars to 1€P, we obtain \K’Q : pr\ =ef
and X'y =K'Kp, as claimed.

‘We now specialize the discussion to the case of a complete discrete 4-valuation
ring for some ground field 4, such that the residue field is a finite extension of the
ground field.

Lemma 1.2.12. Suppose that the k-algebra O is a complete discrete k-valuation
ring with residue class map 1 : 0 — F. Assume further that F is a finite extension
of k Let F*P/k be the maximal separable subextension of k. Then there is a
unique k-algebra map u : F5P — O with oy = 1pep.

2This would follow from Nakayama’s lemma if we already knew that éQ was finitely generated.
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Progf. Let F %P = k(u), where # is a oot of the separable irreducible polynormial
J(X) € k[X] and deg(f) = n. Since f(X) is separable, we have f' (i) # 0, so
Hensel’s Lemma (1.2.9) yields a unique root v of f in & with n1(v) = u. Now,
given any element w € £ P, there are uniquely determined elements @, € k such
that

n—1 .
w= z au'.
=0

We define pu(w) :=3, al.vi € ¢, and we easily check that u splits the residue
map. Because v is the unique root of f in & with residue #, it follows that g is
unique. |

Recall that the ring of formal power series R[[X]] over some coefficient ring
R is just the set of all sequences {a,,a;, ...} of elements of R with elementwise
addition, and with multiplication defined by {2,}{b,} = {¢,}, where

G = z ab ;-
i+j=k
Note that the sum is finite. We usually write the sequences as power series in some
indeterminate:
T =Y ax',
i=0
but since the series is never evaluated at anonzero element of R, the usual question
of convergence does not arise. Nevertheless, the series is in fact a limit of its partial
sums in a sense that we will make precise below.

Note that the formal derivative is a well-defined derivation, just as in the poly-
nomial ring. Moreover, if R is an integral domain with field of fractions #, then
R[[X]] is an integral domain whose field of fractions is the field of formal Laurent
series with coefficients in F of the form

F@ =3 ax.

i=—n
The field of formal Laurent series over F is denoted F ((X)).

Lemma 1.2.13. Let F be a field. Then F|[X]] is a complete discrete valuation
ring with local parameter X and residue field F.

Proof. Define v(¥;a,X") =nif a, =0 fori < n and a, # 0. It is trivial to verify
that v is a discrete valuation, so F[[X]] is a valuation ring with maximal ideal M
consisting of those power series with zero constant term. Let

= T ax
i=0
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be a sequence of power series with fnJrl = fp mod M". Then amy = any for all
m > 1, 80 {fa} converges to

= ZaﬁX’l |
=0

Note that the sequence of partial sums of a formal power series in F[[X]] is a
strong Cauchy sequence that converges to the infinite sum. More generally, in any
complete ring we use the notation

X= z Xn
n=0
to indicate that the sequence of partial sums comnverges to x.

Theorem 1.2.14. Suppose that the k-algebra 0 is a complete discrete k-valuation
ring with residue class map 1 : € — F. Assume further that F is a finite sepa-
rable extension of k. Given any local parameter ¢, there is a unique isometric
isomorphism i : F[[X]] ~ & such that i(X) =t.

Proof. Letn: & — F be the residue class map, and let ¢t : F — & be the unique
splitting given by (1.2.12). Define i : F[[X]] — € via

i (z;r) =Y.

This map is clearly well-defined and injective, and is uniquely determined by
4 and ¢. To show that it is surjective, put F’ := im(u). Then & = F’ + P, and
F'NP =0. Thus, for any x € & there exists a unique element a, € F’ withx =g,
mod P. Choose a local parameter f € P. Then there exists a unique ; € & such
that x = @+ r,f. An easy induction now shows that for any integer 7 there exist
uniquely determined elements a,,... ,a, € F' and a uniquely determined element
Ty € O such that

n
x= Zaiturrn“t”“‘
i=0
Putx, := ¥ @t Then lim,x, = x. It follows thatx = ¥7 o 4, € im(f). O
Corollary 1.2.15. For every power series
5= apt" € Ht]]
n=1

with a; # 0, there is a unique automorphism ¢s of k[[t]] that is the identity on k
and maps t fos.

Progf. This is immediate from (1.2.14) because s is a local parameter. |
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1.3 Differential Forms

Let Rbe aring and M an R-module. A derivation of Rinto M isamap § : R — M
such that

S(x+y)=8()+8(),
8(y) =x8(y)+8(x)y

for all x,y € R. A standard example with R = M = k[X] for some coefficient ring
k (which is frequently a field) is the formal derivative:

(Zaixi)/: Ziaixi*y
i i

Notice that if we compose a derivation & : R — M with a homomorphism of
R-modules ¢ : M — N, we get another derivation ¢ o 8. This suggests that there
might be a universal derivation, from which all others can be obtained by compo-
sition in this way. In fact, we will make a slightly more general construction, as
follows.

Let K be a k-algebra over some commutative ring £. By a k-derivation we mean
a derivation 8 that vanishes on 4-1. By the product rule, this is equivalent to the
condition that § is &-linear. There is no loss of generality here, because we can
take k = Z if we wish.

Observe that K ®, K is a K-module via x(y®z) = xy®z, and let D be the
K-submodule generated by all elements of the form x®yz —xy®z —xz®y. We
define the K-module

(1.3.1) QK/k =K®,K/D.
The relations D force the map dK/k K — QK/k given by
dK/k(x) =1®x+D

to be a k-derivation. We write dx := 1®x+ D. Then x®y+ D = xdy. The map
dy Ik is in fact the universal 4-derivation, namely we have

Theorem 1.3.2. Let K be a k-algebra over a commutative ring k, M an K-module,
and 8 : K — M a k-derivation. Then there exists a unique homomorphism ¢ :
QK/k — M with 8§ = ¢OdK/k'

Proof. Let ¢/ (x,y) = x8(y). Then ¢’ is k-bilinear so it factors uniquely through
K ®, K by the universal property of tensor products. From the product rule,
¢’ (D) = 0 and the rest is obvious. |

The elements of Q. Ji; Are called differential forms, or sometimes Kdhler differ-
entials. Using (1.3.2), we can now naturally identify &-Derivations 8 : K — K (a
common case) with elements of the dual Homy (€2 /k,K). The standard case for
us will be that K is a k-algebra over some ground field % that we are thinking of
as “constants” and all derivations will be A-derivations. When there is no danger
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of confusion, we may conserve notation by dropping the subscript and writing
d:=dy Ik Sometimes, however, we may need to retain the subscript X and write
dy i =dy e
Note that the set {dx | x € K} generates Q as an K-module, but is not in
general equal to all of €. Differential forms that happen to be of the form dx for
some x € K are called exact. The exact differentials form a k-subspace of €.
The following functorial properties of the differential map are useful.

Lemma 1.3.3. Suppose ¢ : K — K’ is a k-algebra map. Then there exists a unique
map do making the diagram

K$K/

dKl ldK/
dg

Qp —— QK/
commute. Moreover, given another k-algebra map ¢’ : K’ — K" we have

(9’ o) = (d9') 0 (d9).
Progf. The composition dy, o ¢ : K — £, is certainly a derivation, so there is
a unique map d¢ : g — £, making the above diagram commute. It is easy to
check that

PR

g
d¢’)o(d:
Q (d¢/)o(dg) Q

is commutative, so uniqueness yields d(¢’ o ¢) = (d¢’) o (d9), as required. [

Suppose now that K C K are k-algebras, M is a K;-module, and & is a &
derivation of K into M. We ask whether & is the restriction of a k-derivation
of K, into M. This question can be converted into a problem of extending
homomorphisms instead of derivations by means of the following construction.

Put 4:= K, ®M (vector space direct sum). Then the product (x; + m;)(x, +
MMy) 1= XXy + X My + X, converts A4 to a k-algebra such that the projection 7 :
A — K, is a homomorphism. It is straightforward to verify that the map D: K — 4
given by D(x) =x+ 8(x) is a k-algebra homomorphism, and that 8 extends to a
derivation &, : K; — M if and only if D extends to a homomorphism D, (x) =
x+ 8, (x) of K into 4.

Note that 4 is actually a graded k-algebra; that is, there is a direct sum
decomposition

4=34,

=0
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with 4,4, C 4, ;. Bvery such algebra has an ideal

M:=p4,
>0

and we say that 4 is complete if it is complete with respect to M (see Section
1.2). In the above case, we have 4; =0 fori > 1, so M? =0 and 4 is complete by
(1.2.3).

Givenamap D : K — 4, let DU denote the composition with projection onto
A;. Using Hensel’s lemma, we can further reduce the extension problem to the
problem of extending DO whenK C K, is a finite separable extension of fields.

Theorem 1.3.4. Suppose that k C K C K, are fields, K, /K is finite and separable,
A is complete graded k-algebra, and D : K — A is a k-algebra homomorphism.
Given any extension Dgo) of. DO o K,, there exisis a unique extension D, of D fo
K, such that the diagram

KHQKI

Dl/ D, ngg)
A

4" 4,
is commutative.

Proof. By (A.0.17) we have K; = K (u) for some element # with separable min-
imum polynomial f(X) € K[X]. Put v := Dgo)(u) € Ay Then v is a root of
fi= Dgo) () = DO(f) € 4,[X]. Furthermore, f;(v) is invertible in 4, because
f'(u) is invertible in K. Now consider the polynomial D(f) € 4[X]. We have
D(f) =/, modM where M is the maximal graded ideal of 4. It follows that v is
aroot of D(f) modulo M and that D(f)’(v) is invertible modulo . By Hensel’s
Lemma, there is a unique root v; of D(f) in 4 congruent to v modulo M. To
each such root there corresponds a unique extension D; of D to K, defined by
D, (u) =v,. O

Applying the theorem to the k-algebra K M as described above, we obtain

Corollary 1.3.5. Let K, /K be a finite extension of fields. Then K, /K is separable
if and only if every derivation of K into a K, -module M extends uniquely fo K.

Proof. One implication is immediate from the theorem. Conversely, if K; /K is
inseparable, there is a subfield K C E C K; where K, /E is purely inseparable of
degree p = char(K) (see (A.0.9)). Thus, we have K| ~ E[X]/(X? — a). Since the
formal derivative on E[X] vanishes at X? — g, it induces a nonzero derivation on
K, that vanishes on E and therefore on K. O

‘We want to apply (1.3.5) to the special case that X is a finite, separable exten-
sion of k(x) for some x € K transcendental over a subfield £. In this situation, we
say that x is a separating variable for K / k. In particular, we have trdeg(K /k) = 1.
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Corollary 1.3.6. Suppose that k C K are fields and x is a separating variable for
K/k Then dimKQK/k =1and dK/k(x) #0.

Proogf. IfK = k(x), the formal derivative is a nonzero derivation, so dx # 0. From
the sum, product, and quotient rules, every derivation on k(x) is determined by
its value at x, so the universal property of dx implies that dx is a k(x)-basis for
Q

(x)/E
In general, (1.3.5) implies that the natural map Qk(x) — L isnonzero, and that
the image of dx in 2 is a basis. |

Note that if x € K is a separating variable, then for every y € K we have

dy
dx
for some well-defined function dy/dx € K because dimy Qp = 1.

There are further consequences to be obtained from (1.3.4). Suppose R is a
k-algebra and we put 4 := R[[f]], the k-algebra of formal power series with coef-
ficients in R. Since A4 is a complete graded k-algebra, the theorem tells us that a
homomorphism D : K — 4 can be extended to X;, provided that the projection
D© : K — R can be extended. What is this saying?

The map D is determined by the family of k-linear maps {D® : K — R|n =
0,1,...} defined by

dy = —dx

DEx) = i)D(”)(x)t”

for x € K. The condition that D is a homomorphism is equivalent to the following
condition for each nonnegative integer 7:

n
(1.3.7) DM (x) =3 DO (1) D0 (y)
=0
for all x,y € K. In particular, for n = 0 (1.3.7) says that DO sa homomorphism,
and, for #n = 1, that if we convert R to a K-module via
x.7:=DO (x)r

for x € K and r € R, then DW is a derivation of K with coefficients in R. For this
reason, we call the map D a generalized derivation of K with coefficients in R.

Corollary 1.3.8. Suppose that K, /K is a finite separable extension of fields over
k, and that D is a generalized derivation of K with coefficients in some k-algebra
R. For every extension DO ofD(O) fo K|, there exists a unique extension D, of D
X 1
to K.
1

Even though D is a map to R[[f]], we abuse notation by writing D : K — R
because we are thinking of D as a family of maps D™ :K R
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The standard application of (1.3.8) is to the formal derivatives on £[X]. Define,
for nonnegative integers m, 1,

D (xm) = (mxm= ifm>n,
o otherwise,

and extend linearly to 4[.X]. These maps are readily verified to define a generalized
derivation D : k[X] — k[X] which we will call the Hasse derivative with respect to
X on k[X]. Note that DW is just the standard formal derivative. In characteristic
zero, we have
i
m_ 1
nt dXx?

but in finite characteristic the Hasse derivative is more interesting. We first extend
the Hasse derivative to k(X) via

Lemma 1.3.9. Suppose that R is an integral domain and D : R — A is a homo-
morphism for some complete graded algebra A. [fA(O) is a field and DO is an
embedding, then D extends uniguely fo the field of fractions of R.

Proof. Since 49 s a field, every element of 4 with a nonzero component in
degree zero is invertible by (1.2.6). Since we are assuming that DO (r) £ 0 forall
nonzero » € R, D extends uniquely to the field of fractions. |

In particular, the Hasse derivative extends uniquely to a generalized derivation
of k(X) into k(X). For example, from the product rule, we have, for n > 1,

n
0=Dp™(1)=D™xxY =3 pOx)Dt—H (x~ 1y =x D" (x 14 DIV (x Y,
=0

whence a simple induction yields D (X—1) = (—1)»X—"~1, By a slightly more
elaborate induction, we obtain

(1.3.10) PO Yy = (—1y” <”+;’1>X*"*f

for all positive integers #,i. Finally, using (1.3.8), we have

Theorem 1.3.11. Suppose that x € K is a separating variable for K [k and that K’
is any field containing K. Then the Hasse derivative on k|x] extends uniquely to a
generalized derivation Dy : K — K. In particular, Dy has coefficients in K. |

‘We continue to call the extended map D)(C”) the 7't Hasse derivative with respect
to x. However, (1.3.6) yields amap &, : K — K given by

dy = 3(y)dx,

which is easily seen to be a derivation. Since &(x) = 1 = D{!) (x), it follows that 8,
and D)(Cl) are both extensions of the formal derivative on k(x). From the uniqueness
of such an extension given by (1.3.5) we obtain
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Lemma 1.3.12. Letx € K be a separating variable. Then for any y € K we have
dy
D@y = =,
V)= O

The higher Hasse derivatives are closely related to ordinary higher derivatives.
Indeed, if we let D! denote the iterated derivative ¢ /dx" = D{) o DV o... o DV,
then a simple induction on 7 shows that

L) . .
2209 =3 (1) oot
i=
If we now let 4 := K[[f]]/(t#) where p := char(K), then 4 is a complete graded
k-algebra by (1.2.3), and the map

. L BT
Dx(y) = ZO DO

is a k-algebra homomorphism K — 4. However, Dy also induces a £-algebra map
K — 4. 1f my: A — K is the projection onto the degree zero component, then
7y 0 Dy = My 0 Dy = 1. Since both maps have the same restriction to k[x], (1.3.9)
and (1.3.4) imply

Lemma 1.3.13. If char(K) = 0 or if n < char(K) and x € K is a separating
variable, then

1

D;(cn) = aDﬁv
where D} is the n-fold iterated first Hasse derivative. |

In addition to the product rule, the Hasse derivatives also satisfy the chain rule.
If we compose Dy : K — K|[f]] with an automorphism ¢ of K[[¢]] that is the identity
on K[[f]],, the result is another generalized derivation. Suppose that y € K is also
a separating variable. Then D)(Cl) (¥) # 0 by (1.3.6), whenee (1.2.15) provides an
automorphism ¢ of K[[f]] that is the identity on K[[t]], and that satisfies

o) = S 00
i=1

Then (¢! oDy)(y) =y+1 =Dy (y). Thus, ¢! o Dy and D, agree on k[y], so they
are equal by (1.3.11), and we have Dy = ¢ o Dy, Explicit formulas for D)(C”) in terms
of D)(}') can be extracted from this, but they are rather messy. Fortunately, we only
need one coefficient explictly for a later application.

Lemma 1.3.14. Suppose that k C K are flelds and x,y € K are separating vari-
ables for K/k Then there are functions dl"“7dn—1 € K that are polynomial
expressions in D)(C") ) for 1 <i <wn, such that for any f € K we have

n—1
DY) = (@y/dx)' DY () + 3, dDP().
i=1
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Progf. Let ¢ be the automorphism of K[[t]] described above, and put
si=o(0) = Y DY)
i=1
Then for any f € K we have
D) = S0P,
i

In particular, D)(C”) (f) is the coefficient of * in the right-hand side. Let d, be the
coefficient of £ in s’ for 1 < 7 < n. Then d,, = (DD (y))* = (dy/dx)". O

Corollary 1.3.15. With the notation of the lemma, suppose that char(K) = p and
that f € K?. Then

D) = (DL 0)PDP().
Proof. By (1.3.13) we have DY (f) =0 for 0 <i < p. O

1.4 Residues

In this section, we discuss Tate’s elegant theory of abstract residues, closely
following [20]. For a variation based on topological ideas, see the appendix of
[13].

Let ¥ be a (not necessarily finite-dimensional) vector space over a field k. Re-
call that a k-linear map y : ¥ — ¥ has finite rank if y(V) is finite-dimensional. We
can generalize this notion by calling y finitepotent if y* (V') is finite-dimensional
for some positive integer 7. Equivalently, there is a finite-dimensional y-invariant
subspace W C V" such that y is nilpotent on V' /W. We call such a subspace a core
subspace for y. Denote by try, (v) the trace of y|y;.

Lemma 1.4.1. Supposey:V —V is k-linear and W, U are core subspaces. Then
i1y () = tr, 7).

Proof. We may assume, without loss of generality, that V' = W 4+ U is finite-
dimensional. Then tr, (y) = tr,, /W(y) oy (v) =ty (v) and similarly, tr, (v) =
try (). O

We can therefore unambiguously define tr;, (y) for any finitepotent map y. The
following result is easy.

Lemma 1.4.2. Let y: V — V be finitepotent, and suppose that W C V is
y-invariant. Then'y is finitepotent on W and V /W and

try(y) = trW(y)thrV/W(y)A |

Lemma 1.4.3. Ify and x are any two k-linear maps on'V and yx is finitepotent,
then xy is also finitepotent and tr (yx) = tr, (xy).
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Proof. IfW = (yx)*(V) is finite-dimensional, then
U= ()™ (V) =x0 ()" oy(V) S x(),

so U is also finite-dimensional. Moreover, by choosing # large enough, we may
agsumme that yx(W) = W and xy(U) = U. This implies that y: U — W and x: W —
U are both isomorphisms, from which it follows that tr;;(xy) = try, (yx). O

Call a k-subspace E of End, (V) finitepotent if there exists an integer # such
that for every word w of length  in the elements of E, w(¥) is finite-dimensional.

Lemma 1.4.4. [{ E is a finitepotent subspace of End, (V), thentr : E — k is k-
linear.

Progf. Take y,x € E and for any nonnegative integer z, put
Vai= 2 w(P),
w

where the sum is taken over all words w of length 7 in x and y. If w, is any initial
segment of w, then w(¥) C w,(¥), and in particular, ¥, C ¥, _,. This implies that
Vy is invariant under y and x. For sufficiently large #, it follows that V; is a core

subspace for both x and y, and linearity of tr;, follows from linearity of tr;, .~ [

‘We note that some hypothesis such as the above is necessary in order to get
additivity of the trace. See Exercise 1.15 for an interesting counterexample due to
G. Bergman. It is clear, however, that any product of linear maps in which at least
one factor has finite rank remains of finite rank. In particular, we have

Lemma 1.4.5. [f E is a finitepotent subspace and x has finite rank, then (E,x) is
finitepotent. |

Next, suppose that W, W’ are subspaces of V. We say that W is nearly contained
in W’ and write W < W' if dim(W /W NW') < o=, and define W ~ W' if W < W’
and W' < W. Then y is finitepotent if y*(¥) < 0 for some 7.

Note that if & is a discrete A-valuation ring of X whose residue field is a finite
extension of k, then x& < & for allx € K.

The following properties are straightforward consequences of the isomorphism
theorems:

Lemma 1.4.6. I[f W < W' and y € End,(V), then y(W) < y(W'). If also W' <
W, then W < W". In particular, ~ is an equivalence relation. Morveover, if W; <
Wi (1=1,2), then Wy -+ Wy < W]+ W}, 0
Now for W,W' C V define
Ey (W, W)= {y € Endy (V) | y(W) 2 W'}

Lemma 1.4.7. E,(W,W') is a k-subspace of End, (V). If y € E, (W, W'), W' < U,
and x € E;(U,U"), then xy € E,(W,U"). Moreover, if we put E, := E;,(V,W¥),
E, = Ey(W,0), and E := E,(W,W), then E, and E, are two-sided ideals of E,
E:=E +E, and Ey:=E, NE, is finifepotent.
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Progf. Lety,x € E,(W,W') and & € k. Then (oy+x)(W) Cy(W) +x(W) < W'
by (14.6). Moreover, if y € E,(W,W'), W < U, and x € E;,(U,U’), theny(W) <
W', soxy(W) < x(W') < x(U) < U’ by (1.4.6). In particular, E; and E, are two-
sided ideals of E, and E3 C E,(¥,0) is finitepotent. Finally, let 7 : ¥ — W be an
arbitrary projection map, and lety € E. Then ny € E; and (1 — )y € E,, whence
E=E +E,

Define the near-stabilizer of a chain V="V, 2V, 2 ... 2V, = 0 to be the set

(VEr (V2 Visr)-

i<n
Corollary 1.4.8. The near-stabilizer of a chain is a finitepotent subspace of
End, (V). O

Lety: ¥V — V be any k-linear map. We say that W C V' is nearly y-invariant
if y(W) < W. Consider now a k-algebra X and a K-module V" with a k-subspace
W that is nearly y-invariant for all y € K. We will call such a subspace a near
submodule. An element y € K induces a k-linear transformation in £ := E, (W, W)
that, by abuse of notation, we will continue to call y. Define £,,E,, and E, as
above. Write y =y, +y, with y, € E. If x € K is another element and we also
write x = x; +x, with x, € E,, then the commutator is [y,x] := yx —xy, which is of
course zero since X is commutative. Expanding the commutator, we have

() 0=y, %] + [y, %] + 2,0 ]+ [, %)

Note that y,x, and x,y; are both in E; NE, = E since the E, are ideals, so [y ,x,] €
E,. Similarly, [y,,x;] € E,, so (x) implies that [y, ,x;] = —[y,,%,] mod E,. How-
ever, [y, x;] € E; (i =1,2), so we conclude that [y,,x] € E; (i = 1,2), and in
particular, tr([y;,x;]) is defined.

However, y,x, € Ey, so that tr(y,x,) is defined, and therefore try,([y;,x,]) =
0 by (1.4.3). Similarly, tr, ([y,,x;]) = 0. Since [y,x;] — [y;,%;] = [y —y1,%] =
[¥5,%;], it follows that try([y,x,]) = tr;([y;,%]) is independent of the choice of
decomposition y = y; +¥,, and similarly for x. If 7 : ¥ — W is a projection, we
may take y; = 7y. Note that if ¥ is actually invariant under y and x, then [my,x]
actually stabilizes the chain ¥ 2 W 2 0 and is therefore nilpotent.

Finally, note that since [@y,7x] nearly stabilizes ¥ 2 W 2 0, the finite-
dimensional subspace [y, 7x] (W) is a core subspace for [my, 7x]. Summarizing
this argument, we have obtained the following remarkable facts:

Lemma 1.4.9. [f W CV is nearly invariant under commuting maps y,x, and
7TV — W is any projection, then [y, wx] nearly stabilizes the chain V 2 W 20,
and try; |7y, x| is independent of m. If W is actually invariant under y and x, then
try [my, wx] = 0. Moreover, if Wy, := 1y, x| (W), then W, is finite-dimensional and

try [y, mx] =ty [y, 2x]. O
Thus, we have unambiguously defined a finction K x K — &:

WXy 1= tymy, mx] = try[my, 3] = tyfx, wy),
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which is easily seen to be an alternating 4-bilinear form. We call this form the
residue form afforded by the pair (V7).

Lemma 1.4.10. [f'V is a K-submodule of V', then (9,X),, 5 = (0, %)y, for all
VXK W CVand W' ~W, then W' is a near K-submodule and (y,x) z =
WXy Jorall y,x € K.

Proof. Since core subspaces for all finitepotent maps under consideration lie in
W, enlarging V" has no effect, and the first statement is immediate. The second
easily reduces to the case that W' C W, since W and W’ both have finite index
mW+W.If & :¥V — W is a projection, we can write 7 = &’ + 7"/, where
7V — W and #” is a projection onto a finite-dimensional complement to #” in
W. Then #'”'yx has finite rank, so tr([z"y,x]) = 0 by (1.4.3) and the result follows
from (1.4.4) and (1.4.5). O

Theorem 1.4.11. [f W, and W, are near K-submodules of V, then so are W, +W,
and W, NW,, and

@vx>V,W1+WZ - <y7x>V,W1 - <yvx>V,Wz + <YvX>V,W1sz =0
Jorally,x e K.

Proqf. Letye K. Theny(W,) < W, so certainly y(W;) < W, +W, fori =1,2. Thus
YW +W,) Cy(Wy) +y(W,) < W, + W, by (1.4.6), and it follows that W, + W, is
anear submodule.

Let n,: V — V /W, be the quotient map (i = 1,2) and let U := y(W; NW,).
Then 1,(U) is finite-dimensional for i = 1,2. Hence 1; @ n,(U) is also finite
dimensional, and thus W, MW, is also a near submodule.

It remains to prove that the alternating sum is zero. Put W, := W, NW, and
choose subspaces Wy, W3, W, such that W, = Wy @ W/ (i=1,2) and V =W, &
(W, +W,). Then we have a direct sum decomposition

V=W, W &W, W,
and a corresponding decomposition of the identity into four mutually orthogonal
projection maps

1y =Ty + 7| + %+ 7.

Put 7, := 7, + 7 for i = 1,2 and let y,x € K. Dropping the subscript V" for now,
we have

XYy =tr[my,x], (i=0,1,2), and
() WX, = bl + Ty — Foy, .-
‘We want to expand the commutators in (*) and use additivity of the trace. Before
doing so, however, we need to verify that all commutators lie in some finitepotent
subspace of End, (V).

To this end, let ' be the near-stabilizer of the chain V' 2 W, +W, D W, NW, 2 0,
which is finitepotent by (1.4.8). We argue that [my,x] € E for i = 0,1,2. This is
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obvious for i = 0. For i = 1,2 we clearly have
[my,x] € EWV,W)NE(W,0) C E(V,W, +W,) NE(W,,0).
The problem is to show that [my,x] (W, +W,) < W, which immediately reduces
to
[y X (Ws_y) 2 Wy

However, this follows by observing that 7,7, , = 7, and the fact that W,_, is a
near submodule.

Now we can expand (*) and conclude that the alternating sum is zero, as
required. |

‘We next need to provide a connection between the residue form and the module
of differential forms. This is given by:

Theorem 1.4.12. Let K be a k-algebra, V a K-module, and W C V a near sub-
module. Then there is a k-linear function Res}y : Qe i k that vanishes on exact
differential forms such that

Resfy (ydx) = 0. %)y Jordlyxek.

Moreover, Resly, (X" dx) vanishes for all n > 0, and if x is invertible, it vanishes for
alln# —1.Ifx(W) CW, put Wy : W N\y~2 (). Then
*) try [29,) =ty (729,)
for any projection w: V — W. Finally, if x is invertible and W is invariant under
x andy, then
(14.13) Resfy (o™ dx) =t (7).
Proof. Lety,x,w € K and decompose each of them using E, (W, W) = E, + E, as
above. Then we have the following identities:
[ xm] =yixwy —x w1y,
Dxswil =y 9 —wivx,
Drwpx ] =ypwpx —xyw).
All three commutators lie in the same finitepotent subspace E,, so the trace is
linear. Subtracting the second and third equations from the first and taking the
trace, we get
sxw) — (2, W) — (w,x) = tr(wyp Xy +X 9 Wy =X Wiy; —Ywixy)
=ty [y, w] = [y, wilxy)
=0
by (1.4.3). (Note that [y,,w,] € E, and x; € E;.) Now the definition onK/k (1.3.1)
implies that the residue form factors uniquely through €, Ik via a k-linear map

Res)y QK/k — k, as advertised.
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To compute Res(x"dx), write x = x; 4x, with x; € E; as before, and note that
for # > 0 we have x"* = x’f + X5, for some Xy, € E2 because the E; are ideals.

Hence, Res}, (x"dx) = tr;, ([x},x,]) = 0. In particular, Res}, (dx) = 0 for any exact
differential. If x is invertible and # < —2, we have
Res(x"dx) =Res(— ()™ )d(x"") =0.

Suppose that x(W) C W and that 7w : ¥ — W is a projection. After verifying that
[y, x] maps V" into W and is zero on W, we have ().

Finally, if x is invertible, and W is invariant under x and y, we apply (*) with
yx~! inplace ofy. Here, x(W) C W, and expanding the commutator, we conclude
that

Res(yxldx) = W ey (m—xmx V.
Since 7 —xzx~! is the identity on W /x (W), (1.4.13) follows. O

In our application of the above results, we will always have x(W) C ¥, so (x)
in principle gives a finite calculation for the residue form. Most of the time, we
can actually use (1.4.13).

Our final results relate to extensions of the algebra K. The main theorem is

Theorem 1.4.14. Let K be a k-algebra, V a K-module, and W C V a near sub-
module. Suppose that K C K, where K' is a commutative k-algebra that has a
K-basis {x,,...,xp}. Put

1
V=K@V and W :=Y x,@W.
=1

=

Then W' is a near K’ -submodule of V' whose ~-equivalence class is independent
of the choice of K-basis for K, and for y € K' and x € K we have

Res%,// (ydx) = Resl, (trK//K(y)dx)A
Proof. If we put

n n
W= Ziajxj®W: Zixj®ajW,
Jj= Jj=

forany @; € K (1 < j < n), we have W < W by (1.4.6). From this it follows easily
that W is a near K’-submodule whose ~ equivalence class is well-defined.
Now choose a projection 7 : ¥ — W. Since

n n
Vi=@Px,eV and W =@PxeW,
i=1 =1

we canlet 77;:= 1® 7 : x;® ¥V — W and define the projection i = Vi Ww.
Letw=7Y,x,®w,; € W' Since x € K, we have

W= 2xi®xwi and 7wxw= 2x® TXW;.
i i
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Fory € K, there exist ¥y, € K with
X = zyijx 5
J
whence

yw :Zyl.jxj®wl. = ij@)Zyl-jW,u
Lj J i

It follows that

[Ty (x;@w) = X x, @ [mx,y,)w,
7
In particular, put U, :=¥,[mx,y,,] (%) and
U:= @xj@ U;.
J

Then [7'x,y](W') C U, so U is a core subspace for ['x,y] by (1.4.9), and we
conclude that

UV/[RJXJ/] = trUZI ® [”ﬂ%j]
LJ

= ;tr%l @y,

= trV[ﬂx,trK//K(y)]A

Since the residue form is antisymmetric, the result follows. |

Some care needs to be taken when extending X, because all our results have
assumed a fixed ground field & Suppose, however, that ¥ is a finite extension of
k, and in (1.4.14) we have K’ = ¥ ®, K. Then V' and W' are actually K -spaces,
and we are often interested in computing traces with respect to ¥ rather than k. If
x is any finitepotent operator on the k-vector space V, it remains finitepotent on
V' := K @, V, and just as in the finite-dimensional case, its ¥ -trace on V" is the
same as its k-trace on V. Thus, we have

Lemma 1.4.15. Suppose that W is a near submodule of the K-module V and that
K is a finite extension of k. Put K' := K @, K with K and K identified with their
natural images in K'. Then W' := K @, W is a near K -submodule of V' := ¥ @, V,
and for x,y € K we have

<yvx>/V/,W/ = <y7x>V,W7
where the residue form (x,) is computed by taking K -traces. |

Tt may happen that X already contains a copy of ¥, and that W is ¥ -invariant.
Here, the k-trace on ¥ and the ¥-trace on ¥ are related via the field trace trk//k.
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Lemma 1.4.16. Suppose that K contains a finite extension ¥ of k, and that the
near K-submodule W of V is K -invariant. Then

WXy = trk//k(o/vx%/,W)v
where the residue form (x,y)’ is computed by taking K -traces.

Progf. Since V is a K-module, it is a ¥'-vector space, and we are assuming that
W is K -invariant. Since the residue form is independent of the choice of projec-
tion map 7, we can compute (y,x)y using a &'-linear projection #. Since y and x
commute with ¥, the map [7y,x] is & -linear. Now if U is any finite-dimensional
K -vector space and f: U — U is K -linear, then by restriction f is also k-linear
and we have tr,(f) = trk//k(trk/ (f))- The formula follows. O

1.5 Exercises

Exercise 1.1. Let G be any totally ordered group, and let gy,gy be any two
elements of G. Define amap v : A[X,¥]* — G via
V(Zainin) = min (igy + jgy)-
7 @70
(1) Show that v is multiplicative and satisfies the ultrametric inequality (1.1.1).

Conclude that v extends to a valuation on k(X,Y) via v(f/g) = v(f) —
v(g)-

(ii) Take gy =gy = 1 € Z. Show that v is discrete. What is F,,?

(ili) Totally order Z@® Z lexicographically, and put gy = (1,0) and gy = (0,1).
Show that P, = (¥) and F,, = k, but Q := (XY~ | i > 0) is a prime ideal
that is not finitely generated.

(iv) Take gy =1, gy = V2 € R. Show that F, = k and that P, is the unique
prime ideal of &, but that P, is not finitely generated.

Exercise 1.2. Define 7 € k((f)) via

="
i=0
Prove that the map f(x,y) — f(¢,7) defines an embedding k(x,y) — k((¢)). Thus,
there is a discrete valuation on k(x,y) with residue field k. Show that this valuation
is not obtained by the construction of Exercise 1.1. [Hint: 7 and ¢ are alge-
braically independent because 7 can be very well approximated by a polynomial
of arbitrarily high degree.]

Exercise 1.3. Let ¥ be a finite set of discrete valuations of a field K. Show that
the field of fractions of K(¥#70) is K.
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Exercise 1.4. Let K = Q(x,y) where x = 32(1 —x? +x3). This is the example of
the text after a change of variable. Let v be the valuation on Q(x) at x = 0. Show
that v is ramified in X and that y is a local parameter at the unique divisor v’ of
v. Expand x in powers of y through 3°.

Exercise 1.5. Show that if v, is the valuation of X afforded by &, and if, for all
x € K, we define

Iy = b0

for any fixed real number b > 1, then K becomes a normed field and kp is just its
metric space completion.

Exercise 1.6. Suppose that &, is a discrete valuation ring of K. Show that
Kp =K+ 0y,

Exercise 1.7. Suppose R is complete at  and R/ is a ring direct sum R// = §; &
§,. Show that R is a ring direct sum R = R; ® R, with R,/(R,N]) =S, (i=1,2).
[Hint: This result is sometimes referred to as “lifting idempotents.”]

Exercise 1.8. Suppose that & is a complete discrete valuation ring with maximal
ideal P and field of fractions K, and that K’ is a finite extension of K.

(i) Let R be the integral closure of & in K’. Generalize the argument of (1.2.11)
to show that R is a complete free &-module of finite rank.

(i1) Use Exercise 1.7 and (1.1.16) to deduce that there is a unique extension
(6',P)of (0,P) toK'.

(iif) Conclude that X’ is complete at 7, and that |K : K| = e(P'|P) f(P'|P).
Exercise 1.9. Let R :=k[[f]] and let R, := R/(t") for all n > 0. Define

Qg =1
Prove the following:

(i) There is a natural derivation 4 : R — QR that is universal with respect to
continuous 4-derivations of R into complete R-modules.

(ii) sz is a free R-module of rank 1 with basis df.

Exercise 1.10. Let K be a k-algebra, and let / be the kernel of the map K @, K — K
induced by multiplication. Show that the map d : K — I/I? defined by

dx) =x®1-1@x modF*
is a derivation and that the induced map €, T I/1? is an isomorphism.

Exercise 1.11. Let X be a k-algebra and let X be an indeterminate. Show that
QKm/k = QK/k @ KdX. If f is a polynomial in 7 variables over £, obtain the
formula

1
2
df = zlf)f;dxp
i= i
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Exercise 1.12. Prove formula (1.3.10).

Exercise 1.13. Let X be a field of characteristic p > 0 and let g be a power of p.
Let x € K be a separating variable. For any y € K, prove that

o0 -

Exercise 1.14. Prove that a linear operator is finitepotent if and only if it is the
sum of a nilpotent operator and an operator of finite rank.

DEO)? ifi=0 modg,
0 otherwise.

Exercise 1.15. (G.M. Bergman) In this exercise we will construct two trace zero
operators whose sum has trace one.

Let /¥ be a k-vector space with a countable basis = {e,e;,... }. Let R(e,) = ¢, |
and L(e;) = e, ;, L(ey) =0 be the right and left shift operators, respectively.

(i) Show that LR =7 and RL =] — 7, where 7 is the natural projection onto ;.
(i) Let V' =W & W & W and define linear operators

0 R—I 0 0 0 0
P:i=10 0 R-I|, Qi=|I [ I
0 0 0 L - -I

on V. Show that P> = 03 = 0.
(i) Verify the following:

I 0 R 0 R-I O||I 0 R I+ I 0O
07 0 1 1 R||0 I 0= 1 I 0.
o o0 I||-L I —-I|00 I —L -1 0

(iv) Show that the right-hand side of the above is the sum of a nilpotent matrix
and a rank 1 projection. Conclude that P+ Q is finitepotent of trace one.
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Function Fields

In this chapter we make the basic assumption that X is a finitely generated ex-
tension of £ of transcendence degree one. If x € K is any transcendental element,
then K/ k(x) will be a finitely generated algebraic extension, i.¢., a finite extension.
Furthermore, we assume that £ is algebraically closed in X, that is, that every el-
ement of K algebraic over £ already lies in £. In this situation, we say that K is a
Junction field over k, or sometimes that K /& is a function field.

2.1 Divisors and Adeles

By a prime divisor of K we shall mean the maximal ideal P of some k-valuation
ring of K. We denote the corresponding valuation! by vp and the residue field by
Fp. By (1.1.14) and (1.1.19), all k-valuations of X are discrete. This is a critical
fact upon which the entire subsequent development depends. We let P be the set
of all prime divisors of K.

Let x € K and suppose that v,(x) > 0 for some prime divisor P. Then we say
that “x is finite at P* and define x(P) € Fj to be the residue x+P mod P. Thus x
vanishes at P iff v(x) > 0, in which case we say that “x has a zero of order vp(x)
at P.” If x is not finite at P, then we say that “x has a pole of order —v(x) at P.”

Lemma 2.1.1. Lef P be a prime divisor of K and suppose that x € K vanishes
at P. Then vy divides the x-adic valuation vy of k(x). In particular, Fp is a finite
extension of k of degree f(vp| v(x)).

Some authors use the notation ord,, here.
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Proof. Since vp(x) > 0, it follows immediately from (1.1.14) that v | v. Since
the residue field of v, is just k, the result follows.

We write deg(P) :=|Fp : k| for the degree of P. Note that the residue degree of
Vp over Vy is independent of x, and if & is algebraically closed, all prime divisors
have degree one. Some care needs to be taken when evaluating a function x at a
prime P of degree greater than one. The reason is that there is no natural embed-
ding of F} into any given algebraic closure of the ground field. So, for example,
the question of whether x(P) = x(Q) is not really well-defined in general unless
P and Q have degree one.

We will refer to prime divisors of degree one as “points” because in the
algebraically closed case they correspond to points of the unique nonsingular pro-
jective curve whose function field is K. We will study this case in detail in Chapter
4. When £ is not algebraically closed, the question of whether K has any points is
interesting.

Lemma 2.1.2. If P, is a prime divisor of K of degree f; and x € K> with vp (x) =¢,
for1<i<s, then

(2.1.3) ieifig K : k(x)].
i=1

In particular, x has only finitely many zeros and poles.

Proof. If x € k, both sides of the inequality are zero. For x ¢ £, this is a straight-
forward application of (1.1.22), viewing K as a finite extension of k(x). Namely,
put v, := v and let v, be the valuation of k(x) whose valuation ring is [x] .. @

Then the ramification index of V; OVer V., is precisely the order of the zero of x
at P, and the degree of P, is precisely the residue degree of v; over Vi |

One of the important results in this section is to show that the above inequality
is actually an equality when all zeros and poles of x are included, but first we need
some machinery.

A divisor on X is an element of the free abelian group generated by the prime
divisors, that is, it is a formal finite integral linear combination of prime divisors.
We denote this group by Div(K). We define the degree of a divisor D := ¥ pdpP
to be deg(D) := ¥ pdpdeg(P) and we define v,(D) := dj, for any valuation vy,
Thus, vp(D) = 0 for almost all P.

For an element x € K*, the principal divisor of x is the divisor [x] := Y, vp(x)P.
Note that the sum is finite by (2.1.2). It is often comnvenient to distinguish the
positive and negative terms in this sum. So we define the zero divisor (resp. pole
divisor) of any divisor D :=¥ ,dpP to be D := zdp>0 dpP (resp. D..:=Dy—D).

An important property of divisors is that a function in X is uniquely determined
by its principal divisor, up to a constant multiple.

Lemma 2.1.4. Any nonconstant element of K has at least one zero and one pole.
Hence, any two elements of K with the same divisor differ by a constant multiple.
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Proof. Since any nonconstant function in X is transcendental over £, (1.1.7) yields
prime divisors 2,Q with vp(x) > 0 and vQ(x’l) > 0, s0 x has a zero at P and a
pole at Q. Since [xy] = [x] + [y], we see that [x] = [y] implies that xy—! € k. O

Since v(xy) = v(x)+ v(y), the principal divisors form a subgroup of the group
of divisors. The quotient group is called the divisor class group. We say that two
divisors are linearly equivalent and write D ~ D' if D— D’ = [x] for some principal
divisor [x].

The divisors are partially ordered by setting D < IV, provided that v(D) <
v(DY) for all valuations v. A divisor D with D > 0 is called nomnegative, or
sometimes effective. We can now make the following findamental

Definition. Let X be a function field and D a divisor on X. Then
Lg(D) = {xe K* | [ > ~D}U{0}.

We will write L(D) for Lg(D) when there is no danger of confusion. The
following properties of L(D) are straightforward:
Lemma 2.1.5. Let D be a divisor on K. Then

1. L(D) is a k-linear subspace of K.

2. IfD| ~ D,, then L(D,) = L(D,).

3. L(D) #0 iff there is a nonnegative divisor D' ~ D.
Proof. 1. This follows from the ultrametric inequality (1.1.1).

2. Suppose D, = D, + [¥], then multiplication by x is an isomorphism from

L(D;) to L(D,).
3. [x] > —Diff[x]+D > 0. O

An important fact, which we shall prove shortly, is that L(D) is finite-
dimensional. Note that if Dy = ¥papP and D.. = ¥ bpP, then the condition
x € L(D) is equivalent to the following two conditions:

1. x can have a pole at a prime P only if @ > 0, and the order of that pole can
be at most ap,

2. x has a zero of order at least b, at P for all P.

Note that £ C L(D) iff D > 0.

It may be instructive to illustrate the preceding ideas in the case K = k(X)
before proceeding. Let P':= Py, Pui= (1/X), and let Py := P\ {P.}. The set
PP, is in one-to-one correspondence with the set of monic irreducible polynomials
P(X) € k[X]. Recall that & is just the localization of k[X] at the prime ideal
generated by P(X). It is easy to verify that in this case Fj, ~ A{X]/(P(X)) and
therefore the degree of the prime divisor P is just the degree of the polynomial
PX).
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Let f(X) :=TT—; B,(X)% € k(X). Then v..(f) = —degf = —Y,¢;deg P, and
the principal divisor of fis

1= Zeipi* (ZeidegPl.)Pw

So we see that deg[f] = 0, and also that conversely, every divisor of degree zero
is principal. The first property generalizes to all function fields, while the second
turns out to be characteristic of k(X). What is the subspace L(nP..)? It consists
of all rational functions having a pole only at infinity, of order at most #. This
is just the set of polynomials of degree at most 7 (see Exercise 2.2). We sce that
dimZ(nP..) = degnP. + 1. By Exercise 2.1, this statement remains true for £(X)
when 7nP.., is replaced by any nomnegative divisor. The generalization of this state-
ment to an arbitrary function field is Riemann’s theorem: “1” must be replaced
by some other integer depending only on X, and then the equality holds for all
divisors of sufficiently large degree.

For P e Py, let OP denote the completion of the local integers & at P (see
Section 1.2). We denote the field of fractions of ﬁp by IQP. By (1.2.10) the residue
fields of & and ﬁp are canonically isomorphic. We denote them by F5.

‘We next define the adele ring of K, Ay, to be the subring of the direct product
HPQ]PKKP consisting of all tuples { o, | P € Py} such that vp(ap) > 0 for almost
all P. Addition and multiplication in A are defined component-wise.

‘We identify K with its natural image in the direct product, and extend valuations
Vp to Ay by defining vp(o) := vp(0tp). This allows us to define, for any divisor

Ag(D):={o € 4y | v(x) > —v(D) forall v}.

Again, the ultrametric inequality (1.1.1) shows that 4 (D) is a k-linear subspace
of Ag. Moreover, 43 (D) NK = L(D).

Lemma 2.1.6. Suppose D, < D, are divisors on K. Then Ay (D) C A (D,), and
dim(dy(D,)/4x(D;)) = deg(D,) —deg(D;).

Proof. Tt is immediate from the definitions that 4 (D;) € 4,(D,). By induction
on deg(D,) — deg(D, ), we may assume that D, = D, + P for some prime divisor
P, and prove that dim(dg (D,) /4 (D;)) = deg P.

Let ¢ be a local parameter at P and let F}, be the residue field. Put e := v;(D,),
and consider the k-linear mapping ¢ : Ag (D,) — Fp given by ¢ (o) :=t°op+ P. It
is immediate that ker(¢) = 4 (D, ). Onthe other hand, for any element x+ P € Fp,
there is an adele o with o, = xt ™ and o, = 0 for P/ £ P, whence ¢ (o) = x4 P.
Thus, ¢ induces a k-isomorphism Az (D,)/Ag(D;) = Fp. O

Given two divisors D; and D, we let D; UD, (resp. D; N D,) denote their
least upper bound (resp. greatest lower bound) with respect to the partial or-
der <. In other words, v(D; UD,) :=max{v(D,),v(D,)} and v(D, ND,) :=
min{v(D,),v(D,)} for all valuations v.
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Lemma 2.1.7. Given any two divisors D, D, we have
1 Ag(DyNDy) = dg(Dy) N 4g (Dy),
2. Ag(DyUDy) = A (D) + Ay (Dy).
Progf. 1. This is immediate from the definitions: o« € Ag(D; N D,) iff
—v(e) < v(D;ND,) = min{v(D,),v(D,)} for all v iff & € 4x(D;)N
Ag (Dy)-

2. By (2.1.6) we have Ag (D)) + Ay (D,) € Ax(D; UD,). From the definitions
we obtain

degD; —deg(D, ND,) =deg(D,; UD,) —degD,.
Now using (2.1.6) again, a dimension count yields
dim(dy (Dy) +A4g(Dy)) /A (Dy) = dimdy (D) /A (Dy ND,)
=degD; —degD, ND,
=degD, UD, —degD,
=dimdg (D, UD,)/Ax(D,). O

The quotient space Ay /K is a k-vector space, which is called the adele class
group. Given an adele o or a subspace ¥V C Ay, we denote by @ or V7 its image in
the adele class group.

Lemma 2.1.8. Suppose D, < D, are divisors on K. Then there is a natural short
exact sequence

(2.1.9) 0= L(D,)/L(D;) — Ax(D,)/Ag(D;) — Ax(D,) /Ax(D;) — 0.
Progf. This is an exercise in using the isomorphism theorems?. Let

¢ : A (Dy) — A (Dy)
be the natural map, with kernel L(D,). Then ¢~ (4 (D;)) = L(D,) + Ax(D)).
So the kernel of the map Ay (D,)/Ax(D;) — Ax(D,)/Ax(D;) induced by ¢ is

(L(Dy) +4g(D1))/Ag(Dy) = L(Dy)/ (L (D) NAg(D)) = L(D,)/L(Dy). D

Corollary 2.1.10. L(D) is finite dimensional, for any divisor D. If D, < D, are
divisors, then

(2.1.11) dimZ(D,)/L(D;) < degD, —degD;.
In particular, if D is any nonnegative divisor, then
(2.1.12) dimL(D) < degD+1.

2Ttis also immediate from the “nine-lemma” of homological algebra.
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Progf. Inequality (2.1.11) is immediate from (2.1.6) and (2.1.9). Setting D, = D
and D; = 0, we have dimL(D) —dimL(0) < degL(D). But L(0) = k by (2.1 4),
whence L(D) has finite dimension at most equal to degD+ 1.

These inequalities are quite important. We next investigate the extent to which
(2.1.12) fails to be an equality. To this end, we define 8(D) = degD + 1 —
dimZ (D) for any divisor D. The following important property is immediate from
the short exact sequence:

Corollary 2.1.13. Let D| < D, be divisors on K. Then
8(D,) —8(Dy) =dim(dy (D,)/4x(D)))-
In particular, 8(D,) < 8(D,). O
The main point of this section is to prove that 8 (D) is a constant for all divisors
D of sufficiently large degree. In particular, this will show that L(D) # 0 for all
such D. As a first step in that argument, we show that 8([x™]..) is bounded as a
function of m for all x € K. This result has several important consequences, among

them the fact that principal divisors have degree zero. This result is sometimes
called the product formula for function fields.

Theorem 2.1.14. Letx € K. Then degx] = 0, and there is an integer B depending
on x such that 8 (x"..) < B for all m > 0. Furthermore, if [x], = X}_, e,P, then

F i
r
(2.1.15) deg[x].. = deglx], = Y, e,deg P, = [K : k(x)|.
i=1

Proqf. Let {u,...,u,} be a basis for K/k(x), and let D be a nonnegative divisor
such that [, > —D for all ;. Thus u; € L(D) for all j. For any positive integer 1,
the functions ul.xf (1 <i<n, 0<j<m)are linearly independent over & and lie
in L([x™]..+ D). By (2.1.12) we have
(%) man < dimL([x"].. + D) < mdeg|x].. + deg(D)+ 1
for all m. It follows that deglx].. > n = |K : k(x)| for all nonconstant x € K. Since
k(x) = k(x~1), we also have deg[x], > |K : k(x)|. Now (2.1.3) implies that
deglx]y = deg[x].. = |K': k(x)],
whence (2.1.15). In particular, it follows that deg[x] = 0. Finally, since deg[x™].. =
mn, we can use (2.1.11) and () to obtain
(")) = 14 mn—dimL([x"]..) < 1+ dimL([x"].. + D) — dimZ ([x"]..)
< 1+ deg([x"].. + D) — deg[x™].. = 1 +degD. |

The fact that principal divisors have degree zero is fundamental. Note that this
is immediate for the rational function field k(X) by (1.1.14). There are some
important corollaries, the first of which is straightforward.
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Corollary 2.1.16.
1. IfD~ D, then degD = deg D’ and (D) = 8(D').
2. L(D) =0 for all divisors D with deg D < 0.
Proof.
1. If D' = D+ [x] for some principal divisor [x], then deg I = deg D+ deg[x] =
deg D, and dimL(D) = dimL(D') by (2.1.5).

2. If0 #x € L(D), then D+ [x] > 0 and in particular, deg D = deg(D+ [x]) >
0. O

More importantly, we can now show that the inequality of (1.1.22) is an
equality.
Corollary 2.1.17. Let K /k be a function field and let K’ be a finite extension of K.
Suppose that P is a prime divisor of K, and let Q,,...,Q, be the set of all distinct
primes of K’ dividing P. Then
14

Y e(QIP)f(Q)P) = K :K|.

i=1
Progf. Choose 0 #x € P, let {P=P,,P,,..., P} be the set of all prime divisors
of (x) in K and let e, := e(P)| (x)). The P, are the zeros of x in Py.

Let B;(1 < j <r;) be all the prime divisors of 7, inK’,sor, =rand 0,=h;
for 1 < j<r.Pute;:=e(F,|P,) forall{,j. Then the B, are the zeros of x in P,.
By (1.1.25) applied to the tower k(x) C K C K, we have e(F,|(x)) = ¢e;.

Let F; (resp. F;;) be the residue field at F; (resp. ). Then degP, = |F; : k|.
However, an important point to keep in mind is that K’ may contain additional
elements algebraic over k. Let £ be the set of all such elements. Then K’ is a
function field over &, and deg B; = |F; : ¥'|. By (1.1.22) we have

nii=YeylFy  F| <|K':K|
7

for all i. We are trying to prove that the inequality is an equality for = 1. Using
(2.1.14) we get

K k)| = S e Fy ki, and
7
[K" k()| = K 2 KK K ()| = [ kY ey e, Fyy o K
i
— eyely i EF i H = S neFy K <K KUK G,
7 7

It follows that 7, = [K’ : K| for all i. O

As a further consequence, we obtain
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Corollary 2.1.18. Let P be a prime of K. Then the integral closure of O in K' is
a finitely generated O p-module.

Progf. This is immediate from (1.1.8), (2.1.17) and (1.1.22). |
‘We can now prove a preliminary version of the Riemann—Roch theorem.

Theorem 2.1.19 (Riemann). There exist positive integers N and g depending
only on K such that 8(D) < g for all divisors D, with equality holding for all
divisors of degree at least N.

Progf. Fix a nonconstant function x € K. We first argue that for any divisor D,
there is an equivalent divisor D’ and a positive integer m such that D’ < [x"]...
Namely, since D, > 0 we have [x"].. — D, < [x"].. for all positive integers .
Then (2.1.11) implies that

dimL([x"™].) —dimL([x"].. —Dy) < deg [x"].. — deg([x"]. — D) = degD,,.
Since &([x™]..) is bounded as a function of m, it follows that dim L([x"].. — D) >

0 for sufficiently large m. For such an m, choose a nonzero element y of L([x™].. —
D). Then

) > Dy~ " > D — 5",
whence I :=D —[y] < D, — [y] < [x"].. as claimed.

Now using (2.1.16) and (2.1.13) we have
3(D)=38(D) < 8(x").)

for a suitably large positive integer m. This shows that 8(D) is bounded, for all
divisors D.

Let g:=1ub{8(D) | D any divisor }, and choose a divisor D with §(D') =
g Put N:=degD' +g+1, and let D be any divisor of degree at least N. Then
deg(D—D') > g, but (D —D') < g. This implies that L(D — ') # 0. Taking
x € L(D—D') we have [x] > D' — D whence

8> 8(0)=3(D+x) > 8(0) =g O

The integer g = gy above is called the genus of the function field K. Perhaps
the main point of Riemann’s theorem is that it guarantees a nonconstant function
in L(D) for any divisor D of suitably large degree. In fact for degree at least g+ 1
we have dimZ(D) > degD —g+1 > 2. So for example, if P is a prime divisor
there is a function x € L((g+ 1)P) with exactly one pole, namely at P, and that
pole has multiplicity at most g+ 1.

2.2 Weil Differentials

Here we refine Riemann’s theorem by looking more closely at divisors D for
which (D) < g. Such divisors are called special.
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Theorem 2.2.1. IfK has genus g, then
dimdy/ (4 (D) +K) = g—6(D)
for any divisor D of K.

Progf. Let D be a nonspecial divisor and let « be an adele. There is certainly
a divisor D; > D such that & € 4g(D;). From (2.1.13) we see that D, is also
nonspecial and that 4z (D) + K = 4, (D,)+K. Thus,

o € Ag(Dy) C Ag(Dy) +K = A (D) +K,

which shows that 4y (D) + K = 4y for D nonspecial. But given any divisor D
we can choose D; > D of sufficiently large degree so that D; is nonspecial.
Then Ay (D;) +K = 4y and dim(4(D;) +K)/(dg(D) + K) = 8(D,) — 6(D)
by (2.1.13). O

We call g — 8(D) the index of speciality of D.

Further mileage may be obtained by looking at the dual of 4. We define a Weil
differential on K to be a k-linear functional on A that vanishes on 4y (D) + X for
some divisor D. The use of the word “differential” will be justified later. Denote
by Wy the space of Weil differentials, and let W (D) be the subspace of those
differentials which vanish at 4 (D) + K. Note that if D; < D,, then Wy (D;) 2
W (D,). Moreover, by (2.2.1) we have

(2.22) dimW, (D) = g— (D).

In particular, (2.1.19) implies that (D) = O for all D of sufficiently large degree.
Then if we fix a nonzero w € Wy, we can choose a divisor D of maximal degree
such that w € Wy (D).

Lemma 2.2.3. Let w be a nonzero Weil differential. Then there is a unique divisor
D of maximum degree such that w € Wy (D). Moreover, for any divisor E we have
we Wy (E)iff E<D.

Progf. This is an easy consequence of (2.1.7): If w vanishes on A (D) and
A (D,), then it vanishes on Ay (D;) + Ag(D,) = A (D, UD,).

We define the divisor of a Weil differential w to be the unique divisor given
by (2.2.3), and denote it by [w]. We define vp(w) := vp([w]). Let P € Py with
local parameter £, and identify 161, with the set of all adeles « with oy = 0 for
Q # P. We observe that if e is an integer and D is any divisor with vp(D) > e,
then r° &5 C 4, (D). Then directly from the definitions we have

Lemma 2.2.4. For any prime divisor P and any integer e, we have vp(w) > e if
and only if w vanishes on t—°0p. In particular, w restricts to a nonzero k-linear
Junctional on Kp. |

As we will see, the restriction of w to 121, turns out to be the local residue map.
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Any divisor of the form [w] for some Weil differential w is called a canonical
divisor. The interesting fact is that all canonical divisors are linearly equivalent. To
prove this, we first observe that there is an action of K on Wy, given by xw (o) :=
wixa) forx e K, w e Wy, and & € Ag.

Lemma 2.2.5. L(D)W(C) C Wi (C — D) for any divisors C,D. Moreover, we
have

(2.2.6) xw] = [x] +[w]

Joranyx € K and w € Wy.

Proof. Ttis immediate from the definitions that 4 (C) A4 (D) € Ax(C+D) for any
divisors C,D. Thus, for x € L (D) we have x4 (C) C Ax(C+ D). This implies

that Wy, (C) C W (C — D).
In particular, since x € L(—[x]), we have [xw] > [x] + [w] for any x € K and

w € Wy. Substituting x~1w for w in this inequality yields
D) > b+ bt w] > ] — [+ ] = [,
whence

btw] =Wl - [,

and (2.2.6) follows. O
For w € Wy and P € Py, we define

vp(w) = vp([¥])-

Then the following properties are immediate:

Vp(rw) = vp(x) + vp(w),

@27 V0 W) < vp(0) + Vo (0,

for all x € K and w,w' € Wy.

Theorem 2.2.8. Let K be afunction field. Then dimy (W) = 1. Any two canonical
divisors are linearly equivalent.

Proof. The second statement is immediate from the first and (2.2.6). Choose any
two nonzero Weil differentials wy,w,. For i = 1,2 suppose that w, € Wi (D,).
Then the map x — xw, defines for any divisor D an embedding ¢, : L(D) —
Wy (D, — D) by (2.2.5). Now let D be a divisor of large degree, and ‘consider the
pair of embeddings ¢, , : L(D+D,) — Wy (—D). Note that L(—D) = 0, so we
have

dimWy(—D) = g— 8(—D) = g—deg(—D) —1 = g+degD —1.
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For each embedded subspace, however, we have
dimL(D+D,) =degD+degD,—g+1 fori=1,2,

so the codimension of these subspaces in Wy (—D) is 2¢ —2 — deg D,, which is
independent of deg D. Hence the two subspaces intersect for D of suitably large
degree. This means that there exist elements x; € K with x; w; = x,w,, as required.

O

We are at last ready to prove the main theorem of this chapter.

Theorem 2.2.9 (Riemann-Roch). Lef K be a function field of genus g and let C
be a canonical divisor on K. Then for any divisor D, Ly (C — D) ~ W (D), and
we have

dimLg (D) =degD+1—g+dimLy(C—D).

Proogf. A restatement of the formula is dimZ(C — D) =g —8(D), so by 22.2)
the formula follows from the k-isomorphism L(C — D) =~ Wy (D).

By (2.2.8) we can take C = [w] for any nonzero Weil differential w. Then w €
Wi (C), so the map x — xw embeds L(C — D) into Wy(D) by (2.2.5). To show
that this map is onto, let w € Wi (D). Then [w'] > D by definition, and w' = xw
for some x € K by (2.2.8). Then (2.2.6) yields [x] = [w/] — [w] > D —C, whence
x € L(C—D), and we have L(C — D) =~ Wy (D), as required. O

The Riemann—Roch theorem has many important consequences, which we will
be exploring in subsequent sections. For now, we list a few of the more obvious
ones.

Corollary 2.2.10. Let K be a function field of genus g and let C be a divisor on
K. Then C is a canonical divisor if and only if dmL(C) = g and degC =2g 2.
In particular, all divisors of degee at least 2g — | are nonspecial.

Progf. Suppose C is canonical and put D = 0 in (2.2.9). This yields dimC = g.
Now put D = C and obtain degC = 2g —2. Conversely, assume dimL(C) =g
and degC =2g— 2. Then 8(C) = g — 1, so dimdg /4, (C) = 1 by (2.2.1). This
means that there exists a nonzero Weil differential w € W (C). Then C < [w], but
deg C = deg|w], and therefore C = [w].

Finally, if deg D > 2g — 1, then deg(C — D) < O and hence L(C —D) = 0,s0 D
is nonspecial by (2.2.9). |

Corollary 2.2.11. The following conditions are equivalent for a function field K :
1. K has genus 0 and has a prime divisor P of degree one.
2. K has an element x with deg[x].. = 1.
3. K =k(x) for somex € K.

Progf. 1 = 2: By (2.2.10) canonical divisors have degree —2, so the Riemann—
Roch theorem gives dimL(P) = 2. Let x be a nonconstant function in L(P).
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Then x has exactly one pole of order at most 1 at P. But x must have a pole,
so we have [x].. = P.

2 = 3: Wehave deg[x].. =1 = [K : k(x)| by (2.1.14).

3 = 1: Clearly, k(x) has the point (x). We have previously observed that, for
K = k(x), L(nP.) is the space of polynomials of degree at most 7, and
therefore dimL(nP..) =n+1 = deg(nP..)+ 1 for all #. Thus (2.2.9) implies
that g = 0. |

Recall from (2.1.16) that the degree map is well-defined on divisor classes.
The degree zero subgroup of the divisor class group is called the Jacobian of K,
denoted J(K). If K has a point (prime divisor of degree one) £, then there is an
obvious map w(P) = P — P, from the points of X to J(K), where P denotes the
image of P in the divisor class group.

Corollary 2.2.12. If g(K) > 0, then v is injective.

Proof. The condition P— P' = [x] implies that [x]., = P, s0 gz = 0 by (2.2.11).
m|

The Riemann-Roch theorem yields the following improvement of the weak
approximation theorem:

Theorem 2.2.13 (Strong Approximation Theorem). Suppose that
S:={Pu,P,..., Py} C Py,

{1, %} CK, and {my,...,mp} C L Put v;:= vy for all i. Then there exists
x € K such that v/(x —x;) = m,; (1 < i <n) and vp(x) > 0 for all primes P ¢ S.

Proof. Consider the divisor D := NP.. — Y7, (m,+ 1)P, where N > 0, and the
adele

{xi ifP=P, 1<i<n,
op = )

0 otherwise.

For N sufficiently large, D is nonspecial, so Ay = Ax(D)+ K by (22.1). In
particular, there is an element y € K with y — a € A (D). This means that
v,(y —x;) > m;+1 for all , and v,(y) > 0 for P & S.

Next, choose z, € K with v,(z,) = m, for all i. Then repeating the above argu-
ment, there is an element z € K with v,(z —z;) > m, for all i, and v,(z) > 0 for
P ¢ S. Then v,(z) = v,(z —z,+z,) = m, for all i. The element x := y+ z satisfies
the conditions of the theorem. O
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2.3 Elliptic Functions

The Riemann-Roch theorem has some very interesting consequences in the case
that the genus of X is one. By (2.2.10), 0 is a canonical divisor, so the theorem
now reads

dimZL(D) =degD +dimL(—D).

For positive divisors D, this becomes dimZ (D) = degD. In addition to g = 1,
suppose that X has a point B). Then dimL(rF,y) = # for all # > 0. Clearly, L(F)) =
k. Letx € LQ2F))\L(F,) and let y € L(3F)) \ L(2P,). Then [x].. = 2F; and [y].. =
3P,. By (2.1.14) we have |K : k(x)| = 2 and |K : k(y)| = 3. This implies that
K =k(x,y) and that y satisifies a quadratic polynomial over k(x). In fact, the set
{1,x,9,%%,x%,x9,9*} C L(6F,) must be linearly dependent, because dimL(65,) =
6. Moreover, the coefficient of 32 in this dependence relation must be nonzero, or
else we would have K = k(x), and the coefficient of x* must be nonzero, or else
|K : k(y)| < 2. Thus, we have proved

Theorem 2.3.1. Let K be a function field of genus one with at least one point Py,
Then there is a basis {1,x,y} for L(3F,) such that K = k(x,y) and

232) P+ @y e =0,
where f(X) € k[X] is linear and g(X) € K X| is a cubic. O

Later, in (4.5.16), we will see, conversely, that any function field generated
by elements x and y satisfying a cubic polynomial has genus at most one with
equality if and only if a certain nonsingularity condition is satisfied.

Further simplifications can be made in the form of f and g, depending on
whether or not char(k) = 2, but we will not pursue this here.> A more interesting
line of investigation starts from the observation that if D is any divisor of degree
one, then there exists a nonzero x € L(D), so D+ [x] is nonnegative of degree one,
i.e., a point. In other words, all divisors of degree one are linearly equivalent to
points. Now let D be an arbitrary divisor of degree zero. Then D+ F, ~ P for
some point P. Thus, we see that the map y(P) = 15—130 of (2.2.12) is surjective,
and therefore induces a bijective correspondence between the points of X and the
Jacobian of K. We can then define a unique group operation & on the points of K
making y an isomorphism. The zero element for this operation is just the point
F,. Note that the functions x and y are defined at all nonzero points P.

Recall that for any P € Py and any f € &p, the image of f under the residue
map & — Fp is denoted f(P). In particular, if P is a nonzero point, then f(P) €
k, and the pair of functions (x,y) define a map ¢ (P) := (x(P),y(P)) from the
nonzero points of K to points of the affine plane &* over k whose coordinates
satisfy (2.3.2). The image of the map ¢ is called an elliptic curve. We will develop

3See Exercises 2.8 and 3.10
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some machinery for studying such maps in Chapter 4, but we can illustrate some
of the important geometric ideas here without any machinery.

Suppose P, P, and P; are three nonzero points of K with P, & P, @ Py = 0. What
this really means is that P, + P, + P, — 3P, = [z] for some principal divisor [z]. Then
z has a unique pole at P, of order 3, and it vanishes at P;, P, and P;. But {1,x,y}
is a k-basis for L(3F,), so there exist constants ,b,c such that z = a+ bx+cy.
Thus,

a+bx(P)+cy(P)=0 fori=1,2,3,

and we see that ¢ (P) lies onthe line g+ bx+cy = 0 fori = 1,2, 3. In other words,
any three nonzero points of X that sum to zero under & have colinear images in
K.

Next, suppose a function of the form z = a+ bx+cy € K vanishes at two distinct
nonzero points 7, , F. In the affine plane we are drawing a line through two points
on the curve. If ¢ # 0, then z € L(3P,) \ L(2P,), so we must have [z] = —3P,+
P, + P, + P, for some uniquely determined third point 7, (not necessarily distinct
from P, or F,). Thus z vanishes at a uniquely determined third point, and the three
points sum to zero in the Jacobian. In the affine plane, we see that a nonvertical
line through any two distinct points of the curve meets the curve at a unique third
point.

If ¢ = 0, then b # 0 and x(P,) = x(P,) = —a/b. Furthermore, z € L(2F)), so
we must have [z] = —2P0 +P1 +Pz and we see that the two points sum to zero
in the Jacobian. Conversely, if two points sum to zero in the Jacobian, we get a
function z € L(2F,) vanishing at those points. In the affine plane, this means that
the vertical line drawn through any point on the curve meets the curve at a unique
second point, namely its additive inverse under the group law.

Finally, if z = a+bx+cy and v,(z) > 1 for some point P € Py, we say that the
line £: @+ bx+ cy = 0 is tangeni* to the curve at the point ¢ (P). If £ is vertical,
i.e., z € L(2R), we get 2P = 0. If £ is not vertical, ie., z € L(3R)) \ L(2Py), it
meets the curve at a third point Q = —2P.

Thus, we have the following geometric description of the group law:

Theorem 2.3.3. Let K be a function field of genus one with at least one point Py,
Then the map ¢ of (2.2.12) is bijective. Moveover, if we choose a basis {1,x,y}
Jor L(3B,) as in (2.3.1) and embed the nonzero points of K into k* via the map
P (x(P),y(P)), then three points of K sum to zero in the Jacobian if and only if
their images are collinear in the (x,y)-plane, and two points of K sum to zero in
the Jacobian if and only if their x-coordinates are equal. |

4We discuss tangents in detail in Chapter 4.
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2.4  Geometric Function Fields

At this point in our exposition we want to apply the theory of derivatives and dif-
ferential forms developed in Section 1.3. To do so, however, we need an additional
hypothesis in order to deal with some difficulties that may arise when the ground
field is not perfect. See Exercise 2.10 for an example.

Definition. We say that a function field K/ k is geometric if K @, K is a field for
every finite extension & of k.

Equivalently, we could say that if a field K" contains K and a finite extension &’
of k, then &’ and K are linearly disjoint over & Thus, (A.0.11) immediately gives

Lemma 2.4.1. IfK/kis a geometric function field and K, is an intermediate field
transcendental over k, then K,/ k is also a geometric function field. |

One way (in fact, as we will prove, the only way) to construct a geometric
function field is to let f(X,Y) € k[X,Y] be an irreducible polynomial that re-
mains irreducible in '[X,Y] for any finite extension &’ of k. Such a polynomial
is called absolutely irreducible. Since f is irreducible, it generates a prime ideal
of k[X,7], and the quotient ring [X, ¥]/(f) is therefore an integral domain. If we
put x :=X+ (f) and y := ¥ + (f), we see that the field of fractions K := k(x,y)
of k[X,Y]/(f) is a finite extension of k(x). Moreover, for any finite extension
K of k, K @, K = K (x,), where we identify x,y with 1 ®x,1 ®y respectively.
Since x and y satisfy the itreducible polynomial f(X,Y) over ¥, it follows that
¥x,y] = K[X,Y]/(f) is an integral domain, and thus &' (x,y) is a field. To see that
K /k is a geometric function field, it only remains to show that & is algebraically
closed in X, but this follows from

Lemma 2.4.2. Let k C K be fields such that ¥ @, K is a field for every finite
extension k' of k. Then k is algebraically closed in K.

Proof. If k is not algebraically closed in K, there is a finite simple extension &' =
k(u) for some u € K \ k. Since k' is a direct summand of K as a k-vector space,
K ©,K contains the finite dimensional subalgebra 4 := k' ®, ¥/, and it suffices to
show that 4 is not an integral domain. This is a basic fact, the point being that if
it were an integral domain, finite-dimensionality would force every subring of the
form k[v] to be a field for all v € K*, which would imply that 4 itself is a field.
However, there is a nontrivial homomorphism of 4 onto & mapping #® 1 —1®u
to zero. O

Corollary 2.4.3. Let k be a field and let f(X,Y) € k[X,Y] be absolutely irre-
ducible. Then the field of fractions of kIX,Y]/(f) is a geometric function field
over k. O

Corollary 2.4.4. Let K/k be a geometric function field and let k' be a finite
extension of K. Then K @, K is a geometric function field over k.
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Progf. For any finite extension k" of ¥ we have
K e (K oK)= (K oK), K =K @, K
by associativity of the tensor product, and the result follows from (2.4.2). |

The converse of (2.4.2) is in general false, as shown by Exercise 2.10, but it is
true if the ground field is perfect.

Lemma 2.4.5. Let K be a function field over a perfect ground field k. Then K is
geomelric.

Progf. Let K be a finite extension of k. Then k'/k is separable, so k' = k(u) for
some u € k' by (A.0.17). Moreover,  satisfies an irreducible separable polyno-
mial /'(X) € k[X] of degree n = |k : k|. We claim that f remains irreducible over
K. Namely, any factor f; has roots that are are algebraic over £, but since the
coefficients are symmetric functions of the roots, the coefficients of fj are also
algebraic over £ Since K/k is a function field, we see that £ (X) € [X] and thus
that f, = f.

Now identify £ and K with their canonical images in K’ := ¥ ® K. Since u
satisfies an irreducible polynomial of degree n over K, K[u] is a field and |K[] :
K| =n=dimg K'. We conclude that K" = K () is a field, as required.

Recall that the construction of Hasse derivatives given in section 1.3 requires
the existence of separating variables. This is automatic in characteristic zero, but
in positive characteristic a basic fact about geometric function fields is that they
contain separating variables. In fact, we next prove that all x € K that are not
separating variables lie in a unique subfield of index p generated by k and the
image of the p™ power map. We denote this subfield by kK?

Theorem 2.4.6. Let K/k be a geometric function field of characteristic p > 0.
Then |K : kK?| = p, and the following statements arve equivalent for an element
xek:

1. x € kKP.

2. dK/}KY =0.
3. x is not a separating variable for K /k.

Proof. Tt is obvious that any k-derivation of K vanishes on kK7, so 1) implies 2).
From 2) we deduce 3) by (1.3.6).

To show that 3) implies 1), choose x € K\ k such that K /k(x) is inseparable.
Then (A.0.9) yields a subfield £ C K containing k(x) with K /E purely inseparable
of degree p. Then kK? C E, and K = E(y) for some y € K with a:=y € E. If
a € kEP, we can write

14
a=3 ab?,

=1
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where «; € k and b, € E for all i. Let ¥ be the finite extension of k obtained by
adjoining the p™ roots of o,..., 0, and put K’ = ¥ ®, K. By (2.4.4) K’ /K is a
geometric function field. Let §;, € &' with Bf = «;, and define

r
¥ =3 BobckE.
i=1

Then y'? = a. Since the polynomial X? — & has at most one root in any field of
characteristic p, we gety =3’ € K'E and then K’ = KK = K'E(y) C ¥'E. However,
K'E and K are linearly disjoint over E by (A.0.11), a contradiction that shows that
ad kEP.

Since E is a geometric function field by (2.4.1), we may assume, by induc-
tion on |K : k(x)|, that E/k(a) is separable, and we conclude from (1.3.5) that
every nonzero derivation of E is nonzero at . However, since @ = y#, we have
dK/k(a) = 0, and therefore @y, vanishes on E. Since kerdK/k is a subfield and
E is a maximal subfield, either E = ker dK/k or QK/k = 0. The 1atter case is im-
possible because the formal derivative on £[X] vanishes on X? — a and therefore
defines a nonzero derivation 8 on E[X]/(X? —a) ~ K given by

=1 p-1 .
6(2 aiyl> = z iainlv
=0 i=1

for a; € E. It follows that £ = ker(dK/k) is unique, and therefore contains all
elements x € K for which K/k(x) is inseparable. Since E also contains kK7, it
only remains to show that |K : kK?| < p.

Let x € K\ E. Then K /k(x) is separable, so we can choose y € K with K =
k(x,y) by (A.0.17), and we have K? = kP (xP 7). Consider the tower

KKP = k(xP,yP) € k(x,p7) K.

Since K/k(x) is separable and K/ kK? is purely inseparable, we conclude that K =
k(x,yP) = kKP(x). Since x is a root of X? —xP over kK?, we have |K : kK?| < p,
as required. |

From (1.3.6) we immediately get
Corollary 2.4.7. Let K/k be a geometric function field. Then dimy Q = 1. [0

Corollary 2.4.8. K/kis a geometric function field if and only if K = k(x,y) where
x and y satisfy an absolutely irreducible polynomial f(X,Y) € kX, Y], in which
case k[x,y] = KX, Y1/(f).

Progf. We already have one implication from (2.4.3). Conversely, suppose that
K/k is geometric, and choose a separating variable x by (2.4.6). Then K = k(x,y)
for some y € K by (A.0.17), where y satisfies an irreducible polynomial of de-
gree n:= |K : k(x)| with coefficients in k(x). Carefully clearing denominators, we
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obtain a polynomial f'(X,Y) € kX,Y] with f(x,y) = 0 such that if we write
1
f&1) =3 ax)r
i=0

with a,(X) # 0, then the polynomials «,(X) € k[X] are relatively prime. We claim
that f(X,¥) is absolutely irreducible. Namely, let &’ be a finite extension of £ and
put K" := k' ®, K, with &' and K identified with their natural images in K’. Then
K’ =K (x,y) is a field by hypothesis and &’ and K are linearly disjoint over k. By
(A.0.11) K/ (x) and X are linearly disjoint over k(x) and |K": ¥/ (x)| = |K : k(x)| = n.
In particular, y cannot satisfy a polynomial of degree less than n over £ (x). If
(X, Y) = g(X,Y)h(X,Y) over K'[X,Y], then one of the factors, say g, must be
a polynomial in X alone, but then g(X) | ,(X) for all i and therefore g(X) is a
constant since the «,(X) are relatively prime.

It remains to show that the kernel of the obvious map kX, Y] — klx,y] is (f),
or in other words, that x and y satisfy no further relations. Let X’ be the field of
fractions of the integral domain k[X,Y]/(f) = k[x',y], where x' = X + (f) and
¥ =Y+ (f). There is amap ¢ : k[¥',3/] — kx,y] mapping (x',’) to (x,) because
J(x,y) =0, and ¢ restricts to the obvious isomorphism ¢, : k[x'] — k[x]. But ¢,
has a unique extension to £(x’) and then to an isomorphism ¢¢ : K’ — K mapping
¥ to y by elementary field theory. Since ¢ and ¢ agree on x” and ¥/, they agree
on kfx',y]. O

A serious problem that arises for nonperfect ground fields is that there may be
a prime divisor P € P, for which the residue field /7, is an inseparable extension
of k. In such a case, for example, we can’t use (1.2.14) to expand elements of
121, as Laurent series in powers of a local parameter. We will call a prime divisor
P of K/k a separable prime divisor if Fp/k is separable, and we denote the set
of separable prime divisors by PP We will call an arbitrary divisor separable
if each of its prime divisors is separable. For any prime divisor P, we denote by
FP the maximal separable subextension of Fp/%.

The following result allows us to at least construct infinitely many separable
primes.

Theorem 2.4.9. Let K' /K be a finite separable extension of function fields with
P e Py, and put P:= P' NK. Then for almost all P, e(P'|P) = 1 and Fp, /Fp is
separable.

Proof. By (A.0.17), K’ = K(u) for some element # € K. Let f(X) := X"+
@, X"! + ...+ a, be the minimum polynomial of « over K. Then f(X) has dis-
tinct roots # = #;,#,, . . ., #n i sOMe extension field of K. Let A= Hl.<j (o0, — uj).
Then A? is a symmetric function of the u; and is therefore a polynomial in the ;.
In particular, A2 € K.

Now for almost all prime divisors P of K, we have v,(A?) = vp(a;) = 0 for all
i. For any such prime P, (1.1.23) applies, because f'(X) has coefficients in &p and
distinct roots modulo £, and the theorem follows. m|
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We apply (2.4.9) to the extension K /k(x), using (2.4.6) to choose a separating
element x € K. We see that for almost all separable irreducible polynormials f(x) €
k[x], every prime divisor P of f in K is separable because F},/F separable, where
F :=k[x]/(f(x)) is a separable extension of k. Recall that in order to get any
inseparable extensions at all, £ must be infinite, since finite fields are perfect. In
particular, therefore, all prime divisors of x — a are separabile, for almost all a € &,
and we have

Corollary 2.4.10. A geometric function field has infinitely many separable prime
divisors. O

Although the problem of inseparable residue field extensions is a serious one,
the problem of inseparable extensions of the function field itself is essentially
confined to the corresponding problem for the ground field, in the following sense.

Lemma 2.4.11. Let K/k be a geometric function field of characteristic p > 0.
Then kK? is the unique subfield of K containing k for which K /K, is purely insep-
arable of degree p. If K,/ k, is any geometric subfield of K of finite index, then the
natural map QKo r Qp Ik is zero if Ky C kK? and is an embedding otherwise.

Proqf. If K/K,, is purely inseparable of degree p, then K? C K, and since
|K: kK?| = p by (2.4.6), the first assertion follows. For any geometric K C X,
the natural map is either zero or an embedding, because dimK0 QKo =1by(2.4.7).
But it is nonzero if and only if Ky Z kK? by (2.4.6). |

We say that a finite extension K’ /K of geometric function fields is weakly sepa-
rableif K ¢ K'K'P, or equivalently, if the natural map € — . 1s an embedding.
The main point about this definition is that every weakly separable extension is
obtained by first making a (possibly inseparable) constant field extension followed
by a separable extension.

Lemma 2.4.12. Let K'/K be a weakly separable finite extension of K/k. Then
K' /KK is separable.

Proof. We may assume that char (K) =: p > 0. Since £ is the full field of constants
of K', it is also the full field of constants of £'K, so replacing K by ¥'K, we may
as well assume that & = k. But if K'/K is inseparable, there is a subfield K,
containing K with K’ /K, purely inseparable of degree p, contrary to (2.4.11). [

2.5 Residues and Duality

In this section we study the structure of the module of differential forms on a
function field K. Put € := QK/k and d := dK/k. We will apply Tate’s theory
of residues from Section 1.4, obtaining a number of results. We first prove the
“residue theorem” that the sum of the local residues of any differential form is
zero. Then we use Tate’s residue form to obtain a canonical isomorphism between
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the module of differential forms €2 and the module of Weil differentials Wy for
geometric function fields. Indeed, for the remainder of the book, most of the facts
about differential forms that we obtain require this extra assumption, but recall
that it is automatically satisfied for perfect ground fields by (2.4.5).

The first step is to define the local residue map. We recall the notation and
terminology of section 1.4. The main point, which is almost trivial, is that for any
PePy, Opisa nearlep-submodule. Name}y, for anyx € 121, we havex@.’PAQ tiiﬁp
for some i > 0. Since muiltiplication by # induces an isomorphism ¢~ &p/ 0 =~
Op/t Op, we see that

dim, x&p/ 6 < dimy, G/t 6p = 1dimy, Gp/t Op < oo.
We therefore have the local residue map Resp(udv) := (1, v}, , defined for all
"P¥ P
u,v € Kp, although we are most interested in its restriction to K. See (2.5.3) below.

Lemma 2.5.1. Ifu,ve ﬁp, then Resp(udv) = 0. In particular, if o is an adele
and v € K, then Res(0,dv) = 0 for almost all P € Py

Progf. The first statement is immediate from (1.4.9) because ﬁp is invariant under
# and v. The second follows because « and v have only finitely many poles. [
Theorem 2.5.2 (Tate). Let K/k be a function field, let S C Py, and let & € Q.
Define
Og:=NpegOp.

Then O is a near K-submodule of K, and

Y Resp(w) =Resk ().

Ppes g
Progf. Note that the sum is finite by (2.5.1). We will apply the Tate residue theory
to the K-submodule 4 of the adele ring 4 defined by

Ag:={aed|op=0 for P& S}
Put Ay(D) := AN A(D) for any divisor D, and write Resy, := Res';/s for W a
near K-submodule of 4. Let 7: 4 — A4 be the natural projection map and put
K := n(K). Note that 7 is a map of K-modules and restricts to isomorphisms
Tlg K ~ K, and ”‘ﬁs 1 O~ KN Ag(0).
We first observe that 4(0) is a near K-submodule of 4. Namely, if x € K and

o € Ag(0), then v, (xer) > vp(x) for all P € S, whence x4,(0) C 4 ([x]..), and
therefore

dimy (x4 (0) +4(0))/45(0) < deg[x]..
by (2.1.6). Since 7| is an isomorphism, we have

K _ .k _
Resﬁs = ResKinAs(o) = ResKSMS(O) s

because we can enlarge K to Ag by (1.4.10).
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Now we can apply (1.4.11) to obtain
ResKS+AS(O) = ResKS + ResAS(O) — ResﬁSA

However, K is K-invariant and K+ 4g(0) = (K + 4 (0)) and therefore has
finite codimension by (2.2.1). Using (1.4.9) and (1.4.10) we conclude that

(%) ResAS(O) = ResIéSA

For future reference, we record the special case of () in which § = {P} for
some prime P € Py

(2.5.3) Res,, = Res’;; =Resk |
P

where we are henceforth using the embedding X, p— Atoidentify x € K p with the
adele that is zero at all primes except P and equals x at P.

Now choose @ € L and write ® = ydx for some x,y € K. Let F,,... Fj be all
the primes P € S where either x or y has a pole and T be the set of all other primes
in §. Then we can write

(x%) As(o) :AT(O)@OA@
i=1

Note that x4, (0) + y4;(0) € A5 (0) because neither x nor y has any poles in S.
Then Resp(@) = 0 for all Pe T by (2.5.1), and ResAT(O)(a)) = 0by (1.4.9). Now
(*) together with repeated application of (1.4.11) to (x*) yields

n
Res; (#) =Res ) (0) = D Resp(@) = ¥ Resp(w). M
= pes

Corollary 2.5.4 (Residue Theorem). Let K/k be a function field and let & € Q.
Then
Y Resp(w) =0.
j =

Progf. 1If we take S = Py in the theorem, we get & = k ~ 0, and the resuilt follows
by (1.4.10). 0

Even in the case K = k(x), the residue theorem is nontrivial, as Exercise 2.12
shows.

For the remainder of this chapter we impose the extra hypothesis that X /k is
a geometric function field. With the residue theorem proved, we are now in a
position to justify the term “Weil differential.” Let @ € € and o € Ay. Using
(2.5.1), it is clear that the function ®* : 4, — k given by

(2.5.5) o*(a):= Y Resp(op)
PePy
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is well-defined. We claim that o* is in fact a Weil differential. To see this,
write @ = udv for some #,v € K. If P € Py and #,v, « are all finite at P, then
Resp (o) = 0by (1.4.9). In fact, if we put D := [4].. +[v].. and take o € 4 (—D)
it is clear that Resp(ctw) = O for all P. Thus, @* vanishes on 4 (—D). Since it
also vanishes on K by (2.5.4), it is a Weil differential.

It is easy to see from the definitions that the duality map * : Qg — Wy is K-
linear. Choose a prime P € P, with local parameter £, and for every element x €
Op, let ar(x) be the adele for which op = ~1x and 0y =0 for O # P.Then (1.4.13)
yields

(2.5.6) dt*(ou(x)) = Resp(t " \xdt) = s 1p0)-

To show that the duality map is nonzero, we take P € P3P using (2.4.10). Then
trg, # 0 by (A.0.8), so we can find x € & with dt*(tx(xli) # 0 by (2.5.6). Now
we have a nonzero K-linear map between two one-dimensional K-vector spaces
(see (2.4.7) and (2.2.8)) which is therefore an isomorphism. Moreover, we have
dar* # 0, whence df # 0, and f is a separating variable by (2.4.6). Identify Kp with
its natural image in the adele ring. Since d¢* vanishes on ﬁp by (1.4.9) and does
not vanish on 1~ &, by (2.5.6), we have vp(df*) =0 by (2.2.4).

Finally, if P is inseparable, then (2.5.6) shows that d* vanishes on ¢! ﬁp,
whence vp(dt*) > 1. Summarizing, we have proved

Theorem 2.5.7. Let K be a geometric function field. The map @ — ©* is a K-
linear isomorphism Qe — Wy Moreover, if P € Py and t is a local parameter at
P, then vp(dt*) = 0 if and only if P is separable, in which case t is a separating
variable. O

We see that for P € PP, all local paramters at P have nonzero differentials.
‘What about inseparable primes? It is trivial to construct counterexamples; If K :=
k(x) and p(x) is an irreducible inseparable polynormnial, then p is a local parameter
at k[x] (» @d dp=0.

‘We can now extend valuations on X to the module of differential forms by
defining

vp(0) = vp(0*) forall Pe Py,

[@] :==Y vp(0)P.
iz

It follows from (2.5.7) that to compute vp(®) for P € PP, we can choose a
local parameter ¢ at P, write @ = xdt for some x € K, and we have v, (®) = v, (x).
It is not yet clear what to do for P inseparable.

The following properties are immediate consequences of the definition and
2.2.7).
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Corollary 2.5.8. Let K be a geometric function field with @ € Qy and P € Py.
Then,

Vp(x®) = vp(x) +vp(0),
vp(+ ) > minfyp(0), vp(o)).
In particular, (@) is a canonical divisor and deg|w] = 2g—2 for all € Qp. [

One consequence of (2.5.7) is that the local residue form cannot vanish. This
provides some information about the structure of the completion & in the
inseparable case.

Corollary 2.5.9. Let K be a geometric function field, let P € Py, and let x € K
be a separating variable. Then Resp(ydx) # 0 for some y € 121,. If F 5P is the
maximal separable subfield of Fy, then F 5P is the maximal finite extension of k
contained in Kp.

Proof. Since vp(dx) is finite, there must be an adele o with Resp(otpdx) # 0,
proving the first statement. For the second, we note that any finite extension of £
contained in KP lies in ﬁp by (1.1.7), and is therefore a subfield of Fp. Let &' /k be
the maximal subextension of F3,/k contained in é 'p. Since £ P lifts to a subfield
of ﬁp by (1.2.12), it suffices to show that &'/k is separable, but this follows from
(1.4.16), (A.0.8), and the nonvanishing of the residue form. m|

The extension of valuations to differential forms provides €2 with some inter-
esting additional structure. Although they are not functions, we can now speak
of the zeros and poles of differential forms. Let (D) be the inverse image of
Wy (D) under the duality isomorphism. Then €2 (0) consists of forms o with
vp(®) > 0 for all P. Such forms are called regular differential forms, or iolomor-
phic in the case k£ = C. We then have the following elegant characterization of the
genus, which is often taken to be the definition:

Corollary 2.5.10. Let K be a geometric function field of genus g, and let Q(0)
denote the space of regular differential forms on K. Then dim, Q. (0) =

Progf. This is immediate from (2.5.7) and (2.2.2). |

More generally, we get an interesting interpretation of the “error term” in the
Riemann—Roch theorem. Namely, for any canonical divisor C and any divisor D
we have

dimL(C —D) = g— 8(D) =dimW (D)
by (2.2.9) and (2.2.1), so we have the following restatement of (2.2.9).

Corollary 2.5.11. Let K be geometric of genus g and let D be a divisor on K.
Then

dimL (D) =degD+1—g+dimQy(D). O
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This formulation has some additional punch. For example, suppose that D is a
nomnegative divisor of degree less than g. Then 8(D) < g, so D is special, and we
have

Corollary 2.5.12. If K is a function field of genus g and D is a nonnegative divisor
on K of degree less than g, then dim, Q. (D) > g—8(D) > 0. O

We turn now to the problem of actually computing Resp(®). We can reduce
this in general to the computation of the trace of a matrix by (1.4.12), but in the
case that P is separable, there is an elegant answer which we now discuss.

We begin by choosing a local parameter ¢ at P e ]P’I?*p and using (1.2.14) to
identify &p, the completion of & at P, with the ring Fp[[t] of formal power
series in f with coefficients in Fp.

Define the “obvious” map D : Op— Opvia

P ( i amt™) = i <m> amt™ ",
m=0 m=n \ 1t

We do not yet know that ﬁ(")(ﬁ ') © Op, but in any case we get a generalized
derivation

D: 6p— G,

where s is an indeterminate, because it is straightforward to verify that the D
satisfy the product rule. (See the discussion immediately preceeding (1.3.8).) Be-
cause it is an embedding and ﬁp is an integral domain, D extends uniquely to a
generalized derivation on the field of fractions & »- Then by restriction we have an
embedding

DK — Kp[[s]]

that is the identity in degree zero and agrees with the Hasse derivative D, on k(f).
Note that D, is defined because ! is a separating variable by (2.5.7). Now (1.3.11)
yields D = D;, and we have proved

Theorem 2.5.13. Suppose that K is geometric and P € szep with local parameter
t. If the power series expansion of x € Op at P is

x= z amt™,
m=0
with am € Fp, then the power series expansion of Dt(”) (x) at Pis

< -
DE”)(X) = z <n>a,,,tm "
m=n
In particular, DE”)(@’P) C Op. O
Using this result and the formula (1.3.10), the Hasse derivatives can be
explicitly computed from the Laurent series for any x € K. Moreover, we have
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Corollary 2.514 (Taylor’s Theorem). Suppose that P € szep with local
parameter t andx € Op. Then

r= 3 D@ (P,
n=0

Progf. This follows from (2.5.13) by observing that the constant term in the
power series expansion of Dt(”) (x) at ¢ is ay, the coefficient of #* in the expansion
of x. O

Now we can explicitly compute the local residue map.

Lemma 2.5.15. Let K/ k be a geometric function field and let P € PP with local
parameter t and residue field F. Let u,v € K. Then

Resp(udv) :trF/k(afl)7

where a_, is the coefficient of 1~ in the Laurent series expansion of u(dv/dr)
with respect fo t.

Proof. Putx :=u(dv/dt), so that udv = xdt, and use (1.2.14) to write

X = i aiti,

i=—n

with @, € F. We need to show that Resp (xdr) = trF/k(afl). Since F C Kp and &5
is F-invariant, we can use (1.4.16) to write

Res(xdt) = trF/k(Res}(xalt))7

where Res} is the F-linear residue form defined by computing traces with respect
to F rather than k. Now put

Then x = x4+ x; +a71t*1, and since x;& C & and {6 C &, (1.4.9) yields
Resp(x,dt) = 0, and from (1.4.12) we get Resp(xodf) = 0, and

Res)p(xdf) = Resp(a_ 7 1dt) = trﬁp/fép (a_)=a_,,

because &/t 6, =F.

2.6 Exercises

Exercise 2.1. Lot K := k(X) and let D be any nonnegative divisor. Prove directly
that dim(Z(D)) = degD+ 1.
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Exercise 2.2. Prove the assertion of the text that
KX] = UpsoLg (nP).

Exercise 2.3. Let X be a function field of genus g. Assume that X has a divisor
of degree g. Show that K has a nonnegative divisor D, of degree g, and that every
element of the Jacobian can be represented in the divisor group as a difference
D — D, where D is also nonnegative of degree g.

Exercise 2.4. Let K/khave genus g. Suppose that §:= {P,,P,,...,P,} is a set of
distinct points of K (prime divisors of degree 1), that £ is another point of X not
in S, and that f1, f5,. .., fim are a basis for Ly (dF,), where n > d >2g—1.

(1) Show thatm =d—g+1.

(ii) Show that the f; define linearly independent k-valued functions on S.

(iii) Let V" be the n-dimensional k-vector space of k-valued functions on S, and
let L C ¥V be the m-dimensional subspace spanned by the f;. Let W := Lt be
the (7 — m)-dimensional subspace of the dual space V"* which annihilates
L. V* has an obvious basis that can be naturally identified with S. Show
that every element of W has at least 4 —2g+ 1 nonzero coordinates with
respect to this basis. This fact is the basis for the construction of Goppa
codes (see[17]). [Hint: Consider the spaces L(dF, — D), where D is a sum
of at most & —2g+ 1 distinet points of S.]

Exercise 2.5. Let K be an elliptic function field, and let P and Q be distinct points
of K.

(i) Find an element x € K with [x].. = P+ Q.
(if) Show that Gal(K/k(x)) = (o) for some automorphism ¢ of K of order two.

(ili) Show that o interchanges P and Q. [Hint: Find y € K with v,(y) = 1 and
Vo) =01

Exercise 2.6. Let & be algebraically closed and suppose that K/ is an elliptic
fimetion field. Choose a point P, € P and let & be the addition rule on Py defined
by embedding P into J(K) using P, as base point.

(i) Show that for every P € P there exists an automorphism o, of K such that
0()(Q) =x(P& Q)
for every x € K and every Q € Py. [Hint: Use (2.3.3).]
(ii) Show that P — o, is a homomorphism of groups.

(iii) Suppose &' is the addition rule corresponding to the base point P, and that
for each P € Py, op is the corresponding automorphism of X. Show that

op= GPoGI’JOA



66 2. Function Fields

Exercise 2.7. Let J C Aut(k(X)) be the subgroup generated by X — 1/X and
X — 1 —X. Show that J is isomorphic to the symmetric group on three letters,
and the fixed subfield of J is k(j), where

xXr—x+1)

IO="mw e

[Hint: See (A.0.13).] If k is algebraically closed, show that the map A — j(A)
defines a surjection of £\ {0, 1} onto £.

Exercise 2.8. Let & be algebraically closed with char (k) # 2, and let K/k be an
elliptic function field.

(i) Show that there exists y,x € K such that K = k(x,y) and (2.3.2) simplifies
toy? =x(x—1)(x—A) for some A € &\ {0,1}. [Hint: Complete the square
and then change variables.]

(if) Show that there exists a uniquely determined point P € P, such that x €
L(2P)andy € L(3P).

(iii) Suppose that there also exists ¥,7 € K and ie kN {0,1} such that K =
k(%,7) and 7 = #(¥ — 1)(¥ — A). Show that there exists 7 € Aut(K) with
T(%) = ax+ b for some a, b € k. [Hint: Exercise 2.5.]

(iv) Show that if # € K and #? is a cubic polynomial in {x], then u = ¢y for
some ¢ € k.

(v) Argue that A= () for some o € J, where J is the group of permutations
of Exercise 2.7. Conclude that the map K — j(2) establishes a well-defined
bijection between isomorphism classes of elliptic function flelds K/k and
elements of .

Exercise 2.9. Let K be a function field of genus 2. Show that K = k(x,y) where
K k(x)| =2 and K : k(y)| =5.

Exercise 2.10. Let k, be a perfect field of characteristic p > 2 and let k := k(s,f)
where s and f are indeterminates. Let K = k(x,y) where y¥ = s+ fxP.

(i) Show that there are k-derivations &8, of K into K such that & (x) =
8,(y) = 1 and 8,(y) = §,(x) = 0. [Hint: X is a purely inseparable extension
of degree p over two different subfields.]

(ii) Show that dimy €2, = 2. Conclude that X has no separating variables.
(iti) Let ¥ := k(s'/? 11/?). Show that ¥ ©, K is not a fieid.

(iv) Show that kis algebraically closed in K. [Hint: Use the basis {1,,...,5*" 1}
for K/k(x).]
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Exercise 2.11. Let f(¢) be arational function of f that is finite at f = 0. Show that

Res, " = 700),
Res,_, 9 —/0)

Exercise 2.12. (E.W. Howe[12]) Suppose that char(k) # 2, and consider the
function

* x+a,
8x) = :
g x—a
where the @, are distinct nonzero elements of . Use Exercise 2.11 to show that
a,+a;
Resr=q, gx)dx = H a/
it @
and
n
Rese—wg(x)dx= -2 a,
i=1
Obtain the identity
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Finite Extensions

In this chapter we consider a pair of function fields X' 2 K with [K : K| < o.
Recall that for a function field K /%, the ground field  is algebraically closed in
K by definition. However, it may happen that there are additional elements in X’
algebraic over k. Denoting the set of all such elements by k', we will often say that
K'/K is a finite extension of K /k. If K is geometric, which we will be assuming
throughout the chapter, then K ~ k' ®, K, and we have
|¥ k| =|¥K:K|< K :K|

Let Q € P, Since the residue field FQ is a finite extension of &’ and therefore
also of k, v cannot vanish on XK. This implies that ﬁQ MK is a valuation ring of
K with prime ideal P:= QN K. In this situation we will say that Q divides P, or
sometimes that Q lies above P.

‘We want to apply the results of the last chapter on differential forms, which
require that K/ k be geometric. Here is the basic fact we need to know:

Lemma 3.0.1. Let K/k be a geometric function field and let K' /K be a finite
extension of K/k Then K' /K is geometric.

Proof. Since K /kis geometric, K’ @, K is a field isomorphic to the subfield KK C
K'.By (2.4.4) KK /¥ is geometric, so we may as well assume that &' = k.

Now let k C ky C k; with k, /k finite, and put K} := k; ®, K’. We need to show
that K| is a field. If the inclusions are proper, then Kj, and k; @, K{ ~ K| are
geometric by induction on |k, : &|.

We are therefore reduced to the case k; = k(ct) for some ¢ € k; with minimum
polynomial f(X) over k. Identifying &, and K’ with their natural images in K7 as
usual, we have K| = K'[a], so it suffices to show that f is irreducible over K'.
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However, all roots of f are algebraic over £, so the coefficients of any factor of
over K’ are elements of K’ algebraic over & and therefore lie in k. Thus, f remains
irreducible over K’, and therefore K7 is a field. O

The hypothesis that X is geometric will be assumed throughout the chapter.

3.1 Norm and Conorm

Recall that if P (resp. P') is a prime of K (resp. K) with P/|P, we denote
the ramification index (resp. the residue degree) of P’ over P by e(P'|P) (resp.
J(P'|P)). Given a finite extension X’ /k" of K/k, we define two homomorphisms:
Ny - Div(K’) — Div(K) and Ngyjx 1 DIVK) — Div(K') called the norm and
conorm, respectively. For each prime Q of K, let P:= QNK, put

NK//K(Q) :f(Q‘P)P,
and extend linearly to Div(K’). For each prime P of K, let
Niyx(P) =3 e(QIP)Q,
ar

and extend linearly to Div(K). We first record an easy consequence of the
multiplicativity of e and f in a chain of extensions (1.1.25):

Lemma 3.1.1. Suppose that K C K’ C K" are function fields. Then

NK//K ONK///K/ = NK”/K’ and

NI*(”/K/ ON}Q//K = I"(”/K‘ O
Recall that the degree of a prime divisor P is the degree of the residue field
Op/P over the constant field k. So we have to be careful when computing degrees

to take into account a possible constant field extension. If x € K C K’ we will use
the notation [x] (resp. [x],) to denote the principal divisor of x in X (resp. K").

Lemma 3.1.2. Let K' /K be a finite extension of K /k, let D' € Div(K'), and let
D e Div(K). Then

degNK//K(D’) = |k : k|degD/,

K
deg Nz (D) = ‘\k’ k“degD

Ny e Wi g (D)) = |K': K|D,  and
Mg =N p(lg) Jorallx K.

Proof. Let P be aprime divisor of K, and let {Q,. .., O, } be the set of all distinct
prime divisors of Pin K. Put e;:= e(Q,|P) and f;:= f(Q,|P) for all i. In addition,
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let F be the residue field &p/P and let F; := ﬁQl/Qi. By linearity we may assume
that D = Pand I = Q,. Then

[Fyk| | FIF <k fidegP
K 1 K| |K 2 k| Kk’
and the first formula follows. Moreover, (2.1.17) yields

deg 0, =|F,: K| =

K K|
degN*(P) = Ze degQ, = Z i de P= | ‘ degP.
Kk % - &
Similarly, we obtain
N(N*(P)) = Z ef;,P=|K":K|P.
5
The 1ast formula is immediate from the definition of the conorm. m|

As an immediate consequence, it follows that the conorm is an injective map
Div(K) — Div(K’). Using this map, we can identify Div(K) with a subgroup
of Div(K"). From the last formula above, this makes sense on principal divisors,
and identifies [x]; with [x];,. For this reason, some authors call the conorm the
“inclusion map.”

‘We turn now to the nontrivial result of this section, namely the induced maps
on Jacobians. It is easy to see that the conorm maps principal divisors to principal
divisors and therefore induces a homomorphism V; I*</ K Jg— JK/ . Less obvious is
the fact that the norm also maps principal divisors to principal divisors, so there is
also an induced homomorphism NK/ K JK/ — Jg. In fact, more is true: The norm
is really an extension of the ordinary field norm of (A.0.2) to the divisor group.

Theorem 3.1.3. Let K’ be a finite extension of K, and let [x] (resp. [x]y,) denote
the principal divisor of x in K (vesp. K'.) Then

K//K([ ]K/) [ K//K(x)]
Jorall x € K', where N, /K(x) is the field norm of (A.0.2).

Progf. Suppose that x = yz. Dropping subscripts, we have N(x) = N(»)N(z) and
N([x]) = N([y]) + N([z]). Therefore, if we can prove the formula for y and z, it
follows for x. We will refer to this property of the formula as “linearity.”

The formula is equivalent to the following statement: Let P be a prime of K and
let x € K’. Then

(3-1.4) VoW g @) = Zf(Q\P)VQ(X)
To prove this, we first suppose that x € K. Put n:= |[K" : K|. ThenNK//K(x) =x",

and (3.1.4) follows from (2.1.17). Next, we reduce to the case that x is inte-
gral over &p. Namely, clearing denominators of the coefficients of the minimum
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polynomial, we have

Zrixi =0
i=1
for some integer m, with r, € &p. Multiplying through by 7L we see that 7,x
is integral over &p. Since (3.1.4) holds for y, it holds for x if and only if it holds
for 7px by linearity.
Let R be the integral closure of &5 in K. Then R is a free &p-module of rank
7 by (2.1.18) and (1.1.9). For x € R, N(x) = detM,, where M, is the matrix of
multiplication by x with respect to any K-basis of K’. Since an &p-basis of Ris a
K-basis of K, we have N(R) C 0.
For each prime Q|P there is, by the weak approximation theorem, an element
to € K’ with Vo (tg) = 84y for all Q'|P. Then £, € R by (1.1.8), £, is a local
parameter at 0, and we have

= o)
x th o

ar
where # € R is a unit. By linearity, it suffices to prove (3.1.4) forx =z or x = to-
However, when x € R*, we have N(x) € £}, and both sides of (3.1.4) are zero.
So we may finally assume that x = fy for some Q|P. In this case, (3.1.4) reduces
to

v (ip)) = f(QIP)-
The columns of M, span the free submodule xR of R. By (1.1.12) and (1.1.13),
there are nonnegative integers e, ,e,,...,ey such that

&
R/xR =) 6,/t% 6,
=1
and therefore vp(detdy) =3, e,. It follows that v,(V (x)) is the length of the finite
Op-module R/xR. But for x =fy, R/igR ~ £,/Q by (1.1.22). So the length of
R/1,R as an p-module is just the dimension of &,/Q over &p/P, which is the
residue degree f(Q|P) as required. O

Given a finite separable extension K’ /K, there is a trace map € — € which
we now define. Let x be a separating variable for K (see (2.4.6)). Then dy, (x) # 0
because the extension is weakly separable. Now every @ € €, can be written
® =ydx for some y € K’, and we define

trK//K(a)) = trK//K(y)dxA

From the K-linearity oftrK//K 1K' — K, we easily deduce that trK//K is K-linear
on £, and is independent of the choice of separating variable x € K. Using the
trace map, we can get a formula relating residues of a differential form on K with
residues of its trace. For simplicity, we will assume that K’ and X have the same
constant field £.



72 3. Finite Extensions

Theorem 3.1.5 (Trace Formula). Let K /k be a geometric function field, let K' [k
be a finite separable extension, let P € Py, and let © € QK/. Then

Resp(trK//K(a))) =y Resy(®).
op

Progf. Let x € K be a separating variable as above, and put ® = ydx for some
y € K. If we take S in Tate’s theorem (2.5.2) to be the set of prime divisors Q of
PinK’, we get
d
Reslés = ZResQA
ar

Since O is the integral closure of & in K’ by (1.1.8), it is a finitely generated
Op-module by (2.1.18). Then (1.1.13) applies, and since &y is torsion-free, we
see that & is in fact free. Because the field of fractions of & is K, it follows that
Oghasrankn = |K': K|. Let {x,,...,%,} be an &p-basis for . Then {x,,...,x,}
is also a K-basis for X', and applying (1.4.14) to the near K-submodule &, C K,
the result follows. O

3.2 Scalar Extensions

We say that K’ /K is a scalar extension of K/k if K’ = K'K. In this situation we
sometimes say that K’ is defined over k. For any extension K’ of K, if ¥’ is the
subfield of K’ algebraic over &, we can put L := k'K and then think of the extension
as consisting of two steps: a scalar extension L 2 K, followed by an extension
K’ D L of flelds with the same constant field. Because we are assuming that X
is geometric, we have K’ ~ k' @, K for any scalar extension K’ of K, and the
following facts are clear:

Lemma 3.2.1. Let K/k be a geometric function field, let K’ be a finite extension
of K, and suppose that K' = KK where k' is a finite extension of k. Then |k :
k| = |K': K|. If, in addition, [k is separable, then K' /K is also separable. If
{x1,...,%} CK is linearly independent over k, it remains linearly independent
over k.

The behavior of a geometric function field K /k under a scalar extension &'/k
differs markedly depending on whether #'/k is separable or not. In the former
case, things work out more or less “as expected,” but in the latter case there can
be some unpleasant surprises, which we shall postpone until Section 3.4. For now,
all we need is

Lemma 3.2.2. Let P € Py and let k' [ k be a finite extension. If either Fp/kor K [k
is purely inseparable, then there is a unique divisor of Pin K' := k' @, K.

Proof. Case 1): k' /k is purely inseparable. Then for some power ¢ = p” the map
x — x7 is an isomorphism of K onto a subfield of X. For x € K’ define

v (x) 1= vp(x?).
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Then v/ is 2 homomorphism of X'* to an infinite cyclic group satisfying the ultra-
metric inequality (1.1.1), so it is a discrete valuation of X that clearly divides vp.
On the other hand, if Q is any divisor of P in K’ and vQ(x) > 0, then vQ(x‘I) >0,
and therefore v(x?) > 0 as well. This implies that &, = &y, and therefore Q is
unique.

Case 2): Fp/k is purely inseparable. Let &, /k be the maximal separable subex-
tension of &//k and put K := k{ ®, K. Let Q be a divisor of Pin Kj. Since Fp, and k;
are linearly disjoint over £ by (A.0.10), it follows that | : Fp| > |k : k|, whence
the inequality is an equality and Q is the unique divisor of P in K} by (2.1.17).
Since &'/ K} is purely inseparable, the result now follows from case 1). |

Theorem 3.2.3. Suppose that K/k is a geometric function field and that ¥ [k is
Sfinite and separable. Put K' := ¥ @, K and let Q € Py, with P:= QNK. Then
K ®, Op is the integral closure of O in K' and e(Q|P) = 1.

Proof. We have k' = k() for some & € K by (A.0.17). Let f(X) be the minimal
polynomial of & over k. Then f(X) is irreducible over K by (3.2.1). Let R be the
integral closure of & in K. Since o € O and all coefficients of f(X) lie in O,
(1.1.23) says that e(Q|P) = 1 and that &p[a] = R. Since Fpla) € K ®@, O, C R,
we have proved that R = &' ® 0. |

Unfortunately, for inseparable scalar extensions there is some tsouris! here, as
shown by Exercise 3.12. This leads us to the following important definition.

Definition. Let K/k be a geometric function field and let &' /k be a finite exten-
sion. Following [18], we say that the prime divisor P € Py is singular with respect
to k' if K @, Op is properly contained in the integral closure of & in k' ®, K, and
nonsingular with respect to & otherwise. We say that P is singular if it is singular
with respect to some finite extension &'/k, and nonsingular otherwise.

Note that if k is perfect, then all prime divisors are nonsingular by (3.2.3). We
will defer the study of singular primes to Section 3.4, where we show that there is
a finite, purely inseparable scalar extension K’/K such that all prime divisors of
K’ are nonsingular.

We say that an extension k' /k is a splitting field for P € Py if degQ = 1 for
every prime divisor Q of Pin k' @, K.

Lemma 3.2.4. Suppose that P € Py is nonsingular with vespect to k. Put
K' =K @K, and let Q € Py, with Q|P. Then Fy = KFp. In particular, if P is
nonsingular then Fy is a splitting field for P.

Proof. Let R be the integral closure of &, in K. Then (1.1.22) yields ﬁQ =R+Q,
from which it follows immediately that Fy = ¥'Fp. In particular, F, = ¥’ when
K 2 Fp. O

! A yiddish expression meaning trouble. Perhaps a more accurate translation would be “heartbum.”
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An important point about geometric function fields is that we can extend scalars
to the algebraic closure % of k, where, for example, the results of Chapter 4 will
apply. Thus, for a geometric function field K, we define K := %@kK. Since k' @, K
is a fleld for every finite extension &'/k, any embedding & — % extends to an
embedding k' ®, K — K. Indeed, K is just the set-theoretic union of the images
of such embeddings. In particular, every element of X lies in some subfield and is
therefore invertible, so K is a field. Thus, X is a (geometric) function field over .
Summarizing these observations, we have

Lemma3.2.5. Let K/k be a geometric function fleld, let k be the algebraic closure
of k, and let K := k@, K. Then K [k is a function field and if ¥ is a finite extension
of k every embedding kK —  extends to an embedding ¥ ©,K — K. |

We next extend valuations from X to K. Since K/K is not of finite degree,
some care must be taken, but because X is a union of finite scalar extensions, the
problem is not serious. Note at the outset that all prime divisors on X are points®
and that if Q € P and P:= QNK € Py then e(Q|P) is still well-defined via
V() = e(Q|P) for f a local parameter at P.

Theorem 3.2.6. Let K/k be a geometric function field and let P be a nonsingular
prime divisor of K. Let K [ k be a finite extension that is a splitting field for P, and
put K' ==k @, K. Then:
1. There aye exactly |[F;% : k| distinct points P' of K’ with P'N\K = P, and for
each such point P' we have e(P'|P) = |Fp : F3P|.
2. Thereis a one-to-one correspondence between points Q of K satisfying QN
K = P and points P’ of K’ dividing P, given by QNK' = P, and e(Q|P) =
e(P|P).
Proof. 1) Let P be a divisor of P in Py, By hypothesis and (3.2.4) we have
K = Fy = KFp and therefore k' 2 Fp. Put k== F*P and consider the tower

KCKy:=keKCK.
Let P,..., 5 be the prime divisors of P in Kj. By (3.2.3) we have e(P|P) = 1.
Since P is nonsingular, (3.2.4) implies that F, = kyFy, = Fp, and thus f(P|P) =1
for all i. Then (2.1.17) yields » = [K{ : K| = | ky 1 k|
Moreover, Fy, [k, is purely inseparable, so it follows from (3.2.2) that for each

i there is a unique prime divisor P/ of P, in K’. Since k' is a splitting field for P,
= and thus f(P}|P,) = |K : Fp| for all i. Now (2.1.17) and (1.1.25) yield

KKyl _ K k|
W Fpl 1K

e(P)|P) = e(P)|P) = — By ).

2In the language of algebraic geometry, what we are calling the points of K would normally be
called the points of the (projective nonsingular) curve C defined by K, and what we are calling the
points of K, i.e., the prime divisors of K of degree one, would be called the k-rational points of C.
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2)By (1.1.6) there is a point Q of K with QMK = P. Since P splits into a sum of
points in K, P := QNK’ must be one of those points. To complete the proof, we
argue that there is exactly one point Q' of K extending each divisor ' of P in K'.
If, by way of contradiction, there were more than one k-valuation of K restricting
to amuiltiple of v, on K, they would differ on some element « € K. If we write

r
U= z QX
i=1
with @; € k and x; € K, then ¥’ := ¥ (c,..., ) is a finite extension of ¥, # €
k' ®,K, and we would have more than one prime divisor P of the point P in
k'@, K. However, since f(P"|P') = |k : k'], (2.1.17) tells us that there is a unique
divisor of 7/ in K”.

A similar argument shows that a local parameter f at Q lies in some finite exten-
sion K" := k" ©, K, where we may assume that £” 2 k. If we put P := QNK”,
then clearly e(Q|P") = 1, and e(P’|P’) = 1 by (2.1.17) as above. We conclude
that e(Q|P) = e(Q|P")e(P"|P')e(P|P) = e(P'|P). O

It is clear from (3.2.6) that for any prime divisor P on X, the conorm map
N%/K(P) is well-defined. If ¥’ C k and K’ := k' ®, K, we say that the point Q of
K is defined over k' if QNK’ is a point, or equivalently if 0 = N%/K/ (P) for some
divisor P (necessarily a point) on X'

More generally, we say that a divisor IV € Div(K) is defined over ¥ if D is in
the image of the conorm map N% 50" We say that k' is a splitting field for a divisor
D ifit is a splitting field for every prime divisor P with vp(D) # 0.

Corollary 3.2.7. Let D be a divisor on K. Then D is defined over some finite
extension k' of k.

Progf. We may assume without loss of generality that D is a point Q. Let P:=
QNK, 1et & be asplitting field for P, and apply (3.2.6). |

3.3 The Different

In this section we introduce an important invariant of a weakly separable finite
extension of geometric function fields K’ /K" over K/k. Recall from (2.4.11) that
there is a natural identification of €, Ik with a K-subspace of €, e So given
@ € Q ;, we have both the divisor (o] € Div(K) as a differential form on K
and the divisor @], € Div(K") as a differential form on K’. The main point of
this section is to study the relationship between these two divisors.

Let x be a separating variable in K, let y € K, let Q € Py, with P:= QN K, and
put e :=e(Q|P). Then it follows from (2.5.8) that the quantity

Vo(vdx) —evp(ydx) = v (dx) —evp(dx)

does not depend on y, and we have
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Lemma 3.3.1. Let K'/K be a weakly separable finite extension of K/k and let
O Q. Let Q € Py, and put P:= QNK. Then the integer

a(@IP) :=vp(@) —e(QIP)vp(w)
is independent of ® and depends only on Q and P. |

K/k

We call d(Q|P) the different exponent of Q over P. From the definitions, we see
that d(Q]| P) is the coefficient of 0 in the divisor [@] —NI’Q//K([(D]K). In particular,
we have d(Q|P) = 0 for almost all P and Q, and we define

Dyy1= 2, d(QIP)Q.

QP

We call Dy, the different of the extension. Thus, by definition we have

/K
(3.3.2) [0] :NI*<//K([“’]K)+@K//K~ |
It is not hard to see how the different behaves in a tower of extensions:

Lemma 3.3.3. Suppose that K/k C K' /K C K" /K" are function fields with K"
weakly separable over K. Then

'@K”/K = @K///K/+NK///K/( //K)

Progf. By (3.3.2) we have
[0y = NI?/K([(D]K) + 9}(//1@
[@] :Nz*c//](/([ x)+2 K4 K
[0 = NI?”/K([(D]K) + @K///K
The result follows by taking the conorm Ny, K of the first equation, applying

(3.1.1), substituting into the second equation, and then equating with the third.
O

Corollary 3.3.4. Suppose that K C K’ C K" is a tower of weakly separable finite
extensions, and Q" € P Put Q' := Q" NK" and Q:= Q" NK. Then

a(Q'|Q) =a(Q"1Q) +e(@"12)a(T|Q).
In particular, if any two of the integers d(Q"|Q),d(Q"|Q),d(Q'|Q) are zero, the
third is also zero. O
If we now take degrees in (3.3.2) and use (3.1.2) we obtain

Theorem 3.3.5 (Riemann-Hurwitz). Let K/k be a geometric function field, and
let K' /K be a finite weakly separable extension of K /k. If gy (vesp. &y) denotes
the genus of K (vesp. K') then

28 —2=

‘(2gK 2)+deg@K//K O
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The Riemann-Hurwitz formula is quite important, but it doesn’t tell us anything
until we know something about the degree of the different, or what is essentially
the the same thing, the different exponent. In the case that O and P are separable,
we can compute d(Q|P) as follows.

Choose local parameters s at Q and ¢ at P. Then t = s°u, where e = ¢(Q|P)
and « is a unit. Since Q and P are separable, s and ¢ are separating variables and
Volds) =0 = vp(dr) by (2.5.7), and we have

d(Q|P) = vyldr) = VQ(esefluds +5%du).

It follows that d(Q|P) = e — 1, provided that char(K) { e. However, when
char(K)|e we have d(Q|P) > e.
Summarizing, we have

Theorem 3.3.6. Let K’ be a finite weakly separable extension of K and let Q be
a separable prime of K' dividing the separable prime P of K. Then d(Q|P) =
e(Q|P) — 1 unless char(K)|e(Q|P), in which case d(Q|P) > e(Q|P). O

When char(K) | e(Q|P) we say that Q|P is wildly ramified; when e(Q|P) > 1
and char (K)  e(Q|P), we say that Q|P is tamely ramified. Certainly all ramifica-
tion is tame in characteristic zero. We will analyze wild ramification further in
(3.5.9).

For readers willing to assume that the ground field is perfect, or even better, of
characteristic zero, (3.3.6) settles the calculation of d(Q|P) and puts some testh
into the Riemann-Hurwitz formula. For those of us determined to push onward,
however, the calculations of (3.3.6) do not work when Q is inseparable, because
vQ(ds) # 0. Instead, our strategy will be to first extend scalars, but this is easier
said than done, essentially because P or Q may be singular. See Section 3.4 for
the gory details.

Even after extending scalars to a splitting field, a question remains as to how to
compute the different exponent, particularly in the wildly ramified case. If local
parameters s and f can be explicitly found, 4(Q|P) can be obtained by expanding
t in powers of s, perhaps by the method of undetermined coefficients, as was
illustrated in Section 1.1. However the following result gives a useful alternative.

Theorem 3.3.7. Let K' be a finite weakly separable extension of K and sup-
pose that Q is a separable prime of K’ dividing the sepavable prime P of K with
J(OIP) = 1. If s is a local parameter at Q such that Vo () = 0 for every prime
divisor Q' £ Q of Pin Py, and f(X) is the (monic) minimum polynomial of s over
K, then K' = K(s) and vy(f'(s)) = d(Q|P).

Progf. Put K, :=K(s) and Q; := QNK;. Then e(Q|Q,) = 1 and @ is the unique
prime divisor of Q; in P, because s is a local unit at every other prime divisor of
P. Since f(Q|Q,) divides f(Q|P) = 1 by (1.1.25), we conclude that K; = K by
(2.1.17).
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By (1.1.8), s is integral over &p, so f(X) is monic of degree n:= [K : K|
with coefficients in &p. Put f(X) = X"+ Y"1 a,X! with @, € &p. Then a, =
Nyt /K(s), whence our hypothesis and (3.1.4) imply that &; is a local parameter at
P. Differentiating f(s) = 0 we obtain

n—1
0=f(s)ds+day+s z dal.si’l,
=1

whence

n—1
Vo (/' (5)ds) = min {vaaO), vy ( b dal.a"’1> }

Since a, is a local parameter at P, P is separable, and the a; are all integral, we
have da,/da, € Op by (2.5.7). This implies that

n—1 n=1
voldag) < vy (z dal.s’*1> <Vg (s Y dal.s’*1> .
=1 =1
Since @ is also separable we have vQ(ds) = 0 and therefore

volF' () = v/ (s)ds) = vp(dag) = a(@|P). 1

We note that whenever f(Q|P) = 1 (e.g., when ks algebraically closed!) a local
parameter can be found satisfying the hypotheses of (3.3.7) by using the weak
approximation theorem (1.1.16). However, in the special case that P is totally
ramified in K7, the hypotheses are automatically satisfied by any local parameter,
and we have

Corollary 3.3.8. Let K' be a finite weakly separable extension of K and let Q
be a separable prime of K' dividing the separable prime P of K. Suppose that
e(Q|P) = |K' : K|, and let s be a local parameter at Q with minimum polynomial
J(X) over K. Then d(Q|P) = v(f'(s)). O

The definition of the different given above is not the standard one, so for the
remainder of this section we develop the classical theory following Hecke [11],
whose treatment closely follows Dedekind’s original one. This material will be
mainly used later, in the study of singularities of plane curves. To simplify the
exposition, we will deal only with separable prime divisors. Indeed, we will often
assume that relevant residue field extensions are trivial. In Section 3.4 we will
show that these assumptions always hold in some finite scalar extension.

If y € K’ has monic characteristic polynomial f(X) with respect to K'/K, the
quantity 8y, (v) := () is called the different of y over K. When K’ = K(y),
which we will usually assume, we will just write & (y) := ) /K(y) The reason
for this terminology is that if we write

n

7@ =T1x-»)

i=1
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withy, =y, then it is immediate that
1
7O =110~
i=2

To understand the role of 8 (y), we recall the Lagrange interpolation formula.
Letyy,...,ya be indeterminates, and consider the polynomials

F ) = Zf H

=1 j#i Yi—
where 0 < k < n. Then F,(X) is a polynomial in X of degree at most #— 1 over

k(v1,....yn) and Fy(y;) =y for 1 <i < n. This implies that F, (X) = X* for 0 <
k< n.Fork=n,put

700 = ﬂ(xfy,-y

Then F,(X) and X" — f(X) both have degree at most #— 1 and agree at each y,,
so they are equal. It follows that

i yre  Jx* for 0 < k< n,
570X —y) X' —fX) fork=n.
Setting X = 0 and dividing by f(0), we obtain
n
Z /L =8n1s
a7r0) ?

where &, ;; is the Kronecker delta. Specializing the y, to the roots of a separable
irreducible polynomial over K and using (A.0.4), we have

Lemma 3.3.9. Ify is separable over K of degree n, then for 0 < k < n we have

" ¥ 1 fk=n—1,
KO/K §.(3) |0 otherwise.

The above result connects the different with the trace. To explore this connec-
tion further, let K’/K be finite and separable, fix a prime P € Py, and for any
subring R C K’ 1et R* denote the dual of R with respect to the trace form:

= {yEK/ ‘ trK//K(yR) < ﬁp}

Then (3.3.9) says that 8x () ' € Gp[y]*, provided that K = K (y). However, more
is true. Denote by Rp the integral closure of & in K'. The ring Rp, was studied in
(1.1.22). By (2.1.18) it is a finitely generated & p-module.

Lemma 3.3.10. Suppose that K' =K (y), wherey is separable over K and integral
over Op for some P € Py. Then Oply|* 8y (v) = Oply]. Furthermore, Rp8; (y) is
the unique largest ideal of Rp contained in Oply).
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Proof. Because y is integral, Gply] C Op[y]* and Op[y|* is an Fp[y]-module. We
therefore get 8, (y) "1 Gply] € Op[y]* by (3.3.9). To obtain the reverse inclusion
let x € Op[y]*. Then we have

n—1

BeOx= Y ay

=0

for some a; € K. If, by way of contradiction, a, ¢ & for some #, choose » maximal
with this property and write

r
5K(y)xj/t—l—r _ zalyHn—l—r +w,
i=0

where w € Op[y]. Then using (3.3.9) we get

r
a =1 (5}{0/)—1 zalyHn—l—r) —tr (5](0/)71"‘) 7xyn—1—r) e ﬁpy
i=0

a contradiction that shows that 8 (y) Gp[y]* C Gply].
Finally, let

Cp(y) := Rpdg (v) € Gply].
Evidently, Cp(y) is an ideal of Rp. Let I € &p[y] be any ideal of Rp. Then

Rpdy ()™ C 18 () ™" € Op[01".

In particutar, tr(Rp8g (y) 1) C &p and therefore 8x(y) 17 C R}, or equivalently,
I C Cp(y) as required. O

In general, whenever R; C R, are rings, there is a unique largest ideal of R,
(possibly the unit ideal) contained in R,, which can be described as the annihilator
of the R;-module R,/R,;. This ideal is called the conductor of R, in R,. Thus,
(3.3.10) says that Cp(y) is the conductor of &p[y] in Rp.

‘We can now obtain another characterization of the different exponent.

Theorem 3.3.11. Suppose that P < PP, K'/K is a finite weakly separable
extension, and that Q € PP divides P with f(Q|P) = 1. Then

;g}?%vQ(X) =—d(Q|P).

Proof. By the weak approximation theorem (1.1.16) there exists s € K’ such that
Vg(s) =1 and vy (s — 1) > O for all prime divisors ' # @ of P. Then s satis-
fies the hypotheses of (3.3.7), from which we obtain v, (8¢ (s)) = @(Q|P). For
any x € R (3.3.10) yields x8y(s) € Cp(s) € Rp and therefore v (x) > —d(Q|P).
Moreover, we get equality for some x if we can find a Q-local unit in Cp(s),
because R} 8 (s) = Cp(s).



3.3. The Different 81

Let NK//K(éK(l —»s)) =: ut*, where f is alocal parameter at P and « is a P-local
unit. Put v := (1 —s)¥ and e:= maxQ‘Pe(Q’\P). Then #v° is a Q-local unit in
Opls]. We will show that in fact ¥ € Cp(s). Let x € Rp. Then we need to show
that xuv? € Gpls].

Wehave Op+ Q = 6, because f(Q|P) = 1. Multiplying by s yields

ﬁPSiJrQH»l:ﬁpsi+QSi:ﬁQSi:Qi7

from which it follows that

ils+ 0" = 5,
for any integer 7 > 0. In particular, there exists x’ € &ps] such that
wi=x—x € Q%
It therefore suffices to show that wuv® € &p[s]. We have
wav?  ww® N(G(1—s))  N(8g(l—s)) w*
Sp(1—5)  &(1—s) ut® S(1—s) £

We claim that the right-hand side lies in Rp. Namely, for any y € Rp, N(y)/y is a
product of conjugates of y, each of which is integral over &p, whence N(y)/y €
Rp. For all divisors Q' # Q of P we have VQ(I —s) > 1, so our choice of e

guarantees that v, (%) > vy (¢F). Since Vg(w) > ek, we conclude that

Wi

———€R
51— P

and therefore

wir® € Rp8p (1 —5) C Cp(1—8) C Op[l —s] = Gpls]. O

From (3.3.11) we can see why R}, is sometimes called the (local) inverse dif-
ferent. We remark that the hypothesis f(Q|P) =1 in(3.3.11) can be weakened to
the requirement that the residue field extension Fy, /Fp be separable. See Exercise
3.5 for details.

Given a prime divisor Q € Py, of P € Py and y € K, let ﬁp[y]Q denote the
localization of &,[y] at the prime ideal QN &p[y]. The main result we need for
applications to plane curves is the following.

Corollary 3.3.12. Suppose P € PP, K' =K(y) for some separable element y €
K’ that is integral over Op, and Q € ]P’I?p divides P with f(Q|P) = 1. Then

v(8x () = d(IP),
and if equality holds, then ﬁp[y]Q =0,
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Proof. Put M := QN Oply]. From (3.3.10) we have Rp8;(v) = Cp(y) and the
inequality is immediate from (3.3.11). Moreover, equality holds precisely when

Cpn) € M.
Let {Q = Qy,...,0r} be the set of all prime divisors of P in XK', and let
¥ i={v},...,v,} be the corresponding set of valuations. Then, in the notation

of (1.1.17), Cp(y) = K'(¥;e) for some nomnegative functione : ¥ — Z.
Suppose now that Cp(y) £ M. Then e(v;) = 0. We certainly have ﬁp[y]Q C O,
Conversely, choose any x € &, then there exists b € K’ with v; (b) = 0 and

vi(b) Ze(v) + v @<i<n),

by the weak approximation theorem (1.1.16) . This implies that b € Cp(y) \ M and
xb € Cp(y). We conelude that x € &p[y] as required. O

3.4 Singular Prime Divisors

In this section, we fill a gap in the previous section relating to the computation
of the different for inseparable primes. Namely, a certain singularity condition
for prime divisors was identified, which, when present, made it difficult to extend
scalars in a natural way. In this section we prove that for any geometric function
field K/k, at most finitely many primes of K are singular and there is a finite,
purely inseparable scalar extension K'/K such that all prime divisors of K’ are
nonsingular. In addition, we show that 2, K < 0, with equality if and only if
K’ =K. This implies that @K///K/ =0 for all scalar extensions K" of K, and that
D /% > 0 for all finite extensions K”/K’. Obviously, this section can be safely
skipped by readers willing to assume that & is perfect.

Recall that ,by definition, P € P is singular with respect to some finite exten-
sion of scalars k'/k if K’ ®, € is a proper &p-submodule of the integral closure
of Opin K’ :=k ®,K. Here are some basic facts about this situation.

Lemma 3.4.1. Let K/k be a geometric function field with P € Py and let ¥ [k
be a finite extension. Let R be the integral closure of Op in K' := K @, K and let
R:=F ®, Op. Then:

1. dim,(R/R) < =, and R contains a nonzero ideal of R.

2. If P is nonsingular with respect to k' and Q € Py, is a divisor of P, then
Fy=KF,

3. For any finite extension k' /K, the following conditions ave equivalent:

(@) P is nonsingular with respect to k",
(b) P is nonsingular with respect to k' and Q is nonsingular with respect
to k" for all prime divisors Q of Pin K'.

Proof. (1) Since both R and R are free p-modules of rank |K @ k| (see (2.1.18)
and (1.1.9)), the &p-module R/R has finite length by (1.1.12) and is therefore
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finite &-dimensional. This implies that the annihilator, C, of R/ Rin R is a nonzero
ideal of R and therefore R contains the nonzero ideal CR of R.

Note that if Q is a divisor of P in K’, then ﬁQ =R+ Q by (1.1.22). This
immediately implies (2).

To prove (3), let {Qy,...,Om} be the set of all prime divisors of P in K’. For
cach , let {Qy,...,Qy; } be the set of all prime divisors of Q; nK":=k"9,K
and put v, := vQ In addition, let &, := ﬁ , let R, be the integral closure of &,

inK”, and let R, := ¥ &, for each i.

Suppose first that some @, is singular with respect to £” for some i, say i = 1.
Since R1 contains a nonzero ideal of Ry, (1.1.17) implies that there are integers
ep5eeny such that if x € K and Vi x) > e, for j=1,....j, thenx € R} Let
yeRr \Rl. By the weak approximation theorem (1.1.16) there exists x € K” such
that ij(x) >0 for k> 1 and all j, and such that vlj(y—x) e forj=1,....j;.
In particular, x —y € R}, and x is integral over &p. We see thatx ¢ K| 2 ¥’ p and
thus P is singular with respect to £”.

Next, choose a k'-basis o) = 1,05, ..., for £”. Then the «; are a K'-basis for
K", and every element x € K” can be uniquely written

n
() =3 e
=
with x; € K'. If we choose a k-basis {$; = 1,5,,...,5,} for ¥, then the f; are a
K-basis for K’ and we can write

xi:Zﬁj®xU
J

Wlthx € K. The products ¢, ﬁ are a k-basis for k", so x € k" ®, Op if and only
ifx,; 6 Op for all 1, j. Thus, 1fP is singular with respect to k', we can take x =
x; €R\ R and conclude that P is singular with respect to &’. This proves that a)
implies b).

Moreover, if x; € R for a1l 4, then x € ¥” ®y Op by associativity of the tensor
product. Thus, if P is singular with respect to £ we can take x € K" integral over
Op with x; & R for at least one , say { = 1. Ifall ; are nonsingular with respect
to &, then since x is certainly integral over ﬁ ,we have x € Ii- for each j. By
uniqueness of the expansion (), this implies that X €N, ﬁQ Thus x; is integral

over 0, and therefore P is singular with respect to &'. |

Corollary 3.4.2. All separable prime divisors are nonsingular.

Progf. Let K /k be finite and let k}/k be the maximal separable subextension of
K[k PutK' =¥ &K and Ky := k{ @, K. Let P PP, and let R (resp. Ry) be the
integral closure of &p in K (resp. Kj). Let 5 be the set of all prime divisors of P
in Kj. We need to show that R = &' ®, 0.
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From (3.2.3) and (3.2.4) we see that Ry = k; ®, Op, and FQ = kF}, for every
prime Q € . In particular, each Q € % is separable, so by (3.4.1) we may assume
that & = kj, or in other words that ' /k is purely inseparable.

Put R:=¥ ®, Op and let Q € Py, be a divisor of P. Since Fp/k is separable
by hypothesis, k" and Fp are linearly disjoint over k by (A.0.10). Now we have
Fy D KFp =K @, Fpandthus f(Q|P) > |k : k| = |K' : K|. By 2.1.17) f(Q|P) =
|K": K] and Q is the unique divisor of P in X'. It follows that F, = ¥ ®, F, and
thus that 0, = R+Q. Since 0= Ris afinitely generated Op-module by (2.1.18),
Nakayama’s lemma (1.1.5) yields R = Op- |

Because there does not seem to be any easy way to compute d(Q|P) in the

inseparable case, we will have to refer back to the definition in what follows. The
following lemma is useful for this purpose.
Lemma 3.4.3. Let k' be afinite extension of k withK' := k' @, K. Let Q € Py, and
put P:= QNK. Suppose that the subfields k' and 161, of]f/Q are linearly disjoint
over their intersection k’Q = m&P. Then for every differential form @ € Ly we
have

Resp(w) =tr,

k/Q/kResQ(a))A

Progf. We first apply (1.2.11) to conclude that If/Q = 151%1,. Thus, our hypothesis
says that there is an isomorphism

() Kok ®k/ Kp.

This puts us in a position to apply (1.4.15) and (1 4.16). For x,y € K, denote by
Res)p(ydx) the residue form defined by the near Kp-submodule o '» With respect to
the ground field &p. Then (1.4.16) yields

Resp(ydx) =1r,, /kRes}(ydx)A
o
By virtue of (x) and (1.4.15), we see that R := k’®k, ﬁp is a near If’Q-module,
Q
and that
Resp(ydx) = Resz (dx).

However, both R and ﬁQ are free ﬁp-modMes of rank \K’Q 1 Kp| (see (1.2.11)),

S0 ﬁg/ R has finite length by (1.1.12) and is therefore finite-dimensional. Now
(1.4.10) yields

Resp(ydx) = Resy(ydx).
Combining the above, we have proved the lemma. |

We are now ready to proceed with the computation of d(Q|P) for a scalar ex-
tension '/k. We first deal with the case that £’/ is separable (although P and Q
may not be)
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Theorem 3.4.4. Let K/k be a geometric function field and let P € Py. Suppose
that K [k is a finite separable extension and K' := k' @, K. Then d(Q|P) = 0 for
every prime divisor Q of P in Pp,.
Proof. There is a finite separable extension £”/&’ such that & 2 FJ*P, the maxi-
mal separable subextension of Fj,/k. Let Q be a prime divisor of P in X’ and let
Q' be a prime divisor of @ in K" := k" @, K’ = ¥’ ®, K. Suppose we could prove
the theorem for the extension &”/k and also for all primes Q of K’ with respect to
the extension k" /k'. Then we would have d(Q'|Q) = d(¢/|P) = 0 and the result
would follow for the extension &'/k by (3.3.4). It therefore suffices to prove the
theorem under the additional assumption that &' O F, P

‘We next argue that the hypothesis of (3.4.3) holds. Namely, by (3.2.3) and
(3.2.4) it follows that F = ¥'F,, and then (A.0.10) yields f(Q|P) = K : F*P|.
Since e(Q|P) = 1 by (3.2.3), we have

1Ko : Kol = 1(QIP) = | : F5P|
by (1.2.11). On the other hand, FPSeP c 161, by (1.2.12). If we therefore put &}, :=
¥ NKp, wehave |¥: Kl < \K’Q : Kp|. Since I@Q = KKy by (1.2.11), we conclude

that £, = F*P and that #' and K, are linearly disjoint over k- By (3.4.3) we then
have

(%) Resp(w) = trFPsep/kResQ(a))

for all ® € L.

Now let x € K be a separating variable with v,(dx) = v, and let f be a local
parameter at P. Put @ := t~"dx then vp(w) = 0. Because d(Q|P) is independent
of o, it suffices to show that v, (@) =0.

Since K'Fp = Fy and e(Q|P) =1 by (3.2.3) and (3.2.4), we can take inverse

images in ﬁQ (see (1.2.10)) to obtain
Op= k’ﬁPJrPﬁQA

But ﬁQ is a finitely generated ﬁp-module by (1.2.11), so we have ﬁQ = k’ﬁp by
Nakayama’s Lemma (1.1.5). N

Let {1 = 0, @,,..., 00} be a k-basis for &/, and let y = ¥, oy, € ﬁQ, where
¥y € ﬁp. Since Res, is ¥ -linear, we have

Res,(yo) = z oRes, (,0).

We argue that Res, (ya))A =0, for if not, we get ResQ(yl.a)) # 0 for some y, € ﬁp.
Recalling that F7*F C & and that Res is K -linear, it follows from () that for
any nonzero element ¢ € F*P, we have

trFPsep/k(aResQ(yl.a))) :trF;ep/k(ResQ(ayia))) = Res,(ay,0) =0,
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contradicting the nondegeneracy of the trace form (A.0.8). This shows that
V(@) > 0. On the other hand, if Res(f~ lyw) = 0 for all y € 6,,, it would fol-

low from (*) that Resp(f'yw) =0 for ally € ﬁp, contrary to vp(@) = 0. Thus,
V(@) =0 asrequired.

‘We are now ready for the main result of this section.

Theorem 3.4.5. Let K/k be a geometric function field and let P € Py. Suppose
that K' [k is a finite scalar extension of K /k Then d(Q|P) < O for every prime
divisor Q of Pin Py, and equality holds for all Q|P if and only if P is nonsingular
with respect to k.

Proof. We proceed by induction on |k’ : k|. Suppose that k is a proper intermedi-
ate field and put K, := ky ®, K and @ := QN K,,. The induction hypothesis first
yields d(Q|Q,) < 0 and d(Q,|P) < 0, from which (3.3.4) gives us d(Q|P) <0
with equality for all Q|P if and only if d(Q|Q,) = 0 = d(Q,|P) for all Q,|P and
all Q|Q,. The induction hypothesis then tells us that the latter condition is equiv-
alent to the two conditions P nonsingular with respect to &, and (), nonsingular
with respect to &' for all Qg|P. Then (3.4.1) completes the proof.

We are therefore reduced to the special case that there are no proper subfields
between k and . The case that &' /k is separable was proved in (3.4.4), because in
that case, P is nonsingular with respect to & by (3.2.3). We are therefore left with
the case k'/k purely inseparable of degree p = char(k).

Let x € K be a separating variable with v(dx) = v, and letf be a local parameter
at P. Put @ := t7"dx, then vp(®) = 0. Because d(Q|P) is independent of o, it
suffices to show that vQ(a)) < 0, with equality if and only if P is nonsingular with
respect to k.

We again have If/Q = K'Kp by (1.2.11), and \If’Q 1 Kp| = p=e(Q|P)F(Q|P)
because Q is the unique prime divisor of P in X’ by (3.2.2). It is therefore trivial
that & and 161, are linearly disjoint over %, and (3.4.3) gives us in this case

(%) Resp(0) = Resy (o).
Suppose P is nonsingular with respect to &’ and y € OQ. Since ﬁQ =K@, Op,
it follows that é’Q =¥ @, Op, and we can write

-1

y=3 ay,

i=—0

where the «; are a k-basis for & and y, € ﬁp. Then (+) implies that Res,(y,0) =0
for all i, whence ResQ(ya)) = 0 because Res, is K -linear. From the definition we
conclude that

(#%) If P is nonsingular with respect to ¥, then vp(®) > 0.
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The remainder of the argument now depends on whether or not &' is isomorphic
to a subfield of Fp. If not, then Fp & K'Fp C Fyy, and we get f(Q|P) = p and
e(Q|P) = 1. In particular, Fy = k'Fp. This means that Oy =K @, 6p+ 0 =K ®,
Op+ PO, However, 0, is a finitely generated &p-module by (2.1.18), so we get
ﬁQ = K ®, Op by Nakayama’s Lemma (1.1.5), and thus P is nonsingular with
respect to £'. So in this case we need to prove that vQ(a)) =0.

We already have v, (@) > 0. If, by way of contradiction, ResQ(t*Iya)) =0
for all y € ﬁQ, it would follow from (x) that Resp(f~y®) =0 for all y € ﬁp,
contrary to vp(@) = 0. But ¢ is a local parameter at Q since e(Q|P) = 1, and thus
Vo(@) <0, as required.

Finally, therefore, we are reduced to the case that £’ is isomorphic to a subfield
of Fp. Write &' = k() for some f§ € k¥ with 82 = & € k. Then there exists b € 0p
with b = a¢+a for some g € P. Put s := b — §, then s = a. Thus,

p-1 (p—1 .
S—l _ a—lsp—l :a—l 2(71)1< i >bp—1—zﬁzA
i=0 !
Lety € Op. Using () and ¥'-linearity, we obtain

ResQ(s’lya)) :pi:l(—l)’(p:, 1>Resp(a’1bp’1’iya))ﬁﬁ
i=0

‘When this sum vanishes for a particular y, we get a dependence relation on the
B over k, and therefore each term of the sum vanishes. Taking the last term in
particular, we find that when ResQ(s*Iya)) = 0, we have Resp(a lyo) = 0 as
well.

Let vy(s) =n and put e := e(Q|P) and f:= f(Q|P). Then

evp(a) =vp(a) = vp(s?) = pn=efn,

and thus vp(a) = fn.

There exists an element y € /71 &, such that Resp(a~'yo) # 0, because

vp(®) = 0. For this y, we have ResQ(s*Iya)) # 0, and the definition of v, (@)
implies that
V(@) < —vp(sTly) =n—e(fn—1) =n—pn+e.

Since n> 1, p> 2, and e =1 or p, we have n — pn+ e < 1, with equality if
and only if n = 1 and e = p. This shows that VQ(a)) < 0in all cases. From (+#)
we conclude that vQ(a)) = 0 if P is nonsingular with respect to &'. Conversely, if
vQ(a)) = 0, then in particular we must have 7 = 1, which means that s is a local
parameter at 0, and e = p, which means that P is totally ramified. By (1.1.24) we
see that 6, = Opls], and since s € ¥ @ O, we conclude that P is nonsingular
with respect to £ O

Unfortunately, the possibility that d(Q|P) can be negative is a real one, as

shown by Exercise 3.11. When this happens for a scalar extension K'/K, (3.3.5)
shows that g;, < gx. The phenomenon of genus reduction under scalar extension



88 3. Finite Extensions

is well known. See e.g. [21]. The rather nondescriptive term “conservative” has
been used in the literature to describe function fields whose genus is invariant un-
der scalar extension, but it seems more natural and more descriptive to simply call
such fields “nonsingular.”

Thus, we will say that a function field K/k is singular with respect to a finite
extension £'/k if some prime divisor of K is singular with respect to &’. We will
say that X is singular if it is singular with respect to some finite scalar extension,
and nonsingular otherwise.

Corollary 3.4.6. Let K/k be a geometric function field Then K has at most
finitely many singular prime divisors. Moreover, there exists a purely inseparable
Sinite extension k [k such that k' @, K is nonsingular. In particular, every prime
divisor of K has a splitting field that is a finite extension of k.

Progf. Let P € Py and suppose that K’ is a scalar extension of XK. If 4(Q|P) < 0
for some Q € Py, then Q divides 7, e Moreover, d(Q'|P) < 0 for any divisor
Q' of @ in any larger scalar extension by (3.3.4) and (3.4.5). Since & > 0, the
Riemamn-Hurwitz formula (3.3.5) implies that deg 2, K > —2g and thus K has
at most 2gy singular prime divisors.

Furthermore, an obvious induction argument on g shows that there is a finite
extension k'/k such that k' ®, K is nonsingular. Enlarging &' if necessary, we may
assume that &'/ k is normal. Let k, be the fixed field of Gal(k'/k). Then ky/k is
purely inseparable and k/k, is separable. Since all prime divisors of K, := kg ®, K
are nonsingular with respect to k' by (3.2.3), it follows from (3.4.1) that K|, is
nonsingular.

For any P € Py, every prime divisor § of P in k' ®, K is nonsingular and thus
has FQ as a splitting field by (3.2.4). Then any finite extension of k containing FQ
for each such @ is a splitting field for P. |

Armed with (3.4.6), we can at last show that for a weakly separable extension
of a nonsingular function field, the different is nonnegative.

Theorem 3.4.7. Let K /k be a nonsingular geometric function field and suppose
that K' [k is a finite weakly separable extension. Then Drrjx 20 If Q€ Py is

singular, then d(Q|QNK) #£0.

Progf. 1f K’ is a scalar extension of X, then K’ is nonsingular by definition, and
hence @K//K = 0. Thus, if we can prove the theorem when k = ¥, it will follow in

general by (3.3.4), so we may as well assume that ¥ = £.
Let Q € Py, be a divisor of P € P and let & /k be finite. Put K :=k; ®, K’
and K :=k, ®, K. Let Q; € Py, be a divisor of 0, and put P, := @, NK;. From
1
(3.3.4) we have
() d(Q41]Q) +e(,|Q)d(QIP) = d(Q,|P) = d(Q,|Py) +e(Q, |P)d(P|P)-

Since X is nonsingular, (P, |P) = 0.
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Suppose first that &, is a splitting field for 0. Then @, is a point. Moreover, K}
and K; have the same constant field, so P, is also a point and thus (¢, |P) > 0
by (3.3.6). Since 4(Q,]Q) < 0 by (3.4.5), we have

d(Q1|1P) —d(2110) >0

AT

proving the first statement.

Now suppose that d(Q|P) = 0 and let k; be arbitrary. We need to show that
d(Q;1Q) = 0. Since K is a scalar extension of K, it is nonsingular and we
have d(Q,|P) > 0 by the first part of the proof. Since d(P,|P) = 0, (x) yields
d(Q,]Q) > 0 and thus d(Q,|Q) = 0 by (3.4.5). o

Note that k(x) is always nonsingular, so a consequence of (3.4.6) is that all
singular primes of K divide 2, for any separating variable x € K. From (3.3.2)

K/k(x)
we see that [dx] = @K/k(x) —2[x].., and therefore we have

Corollary 3.4.8. If the geometric function field K / k has a separating variable x
such that [dx] and [x).. ave nonsingular, then K is nonsingular. O

3.5 Galois Extensions

For any k-embedding 6 : K — K of K into itself, it is clear that Vgoo is another
discrete k-valuation of X with valuation ring o—! (ﬁQ) and maximal ideal Q7 :=
o~ 1(Q). There is, however, a potential notational problem here. Consider, for
example, the case that & is a finite field of order ¢ and o (x) =x? for x € K. Here
Vo0 = qVy, while Q° = Q for all Q € Pg. This example will be studied in detail
in Chapter 5.

In this section, we assume that K'/k’ is a Galois extension of K/k. Since the
scalar extension kK’K/K is clearly normal, Gal(K’/K) has a normal subgroup
Gal(K'/K'K) which is called the geometric Galois group, while Gal(K'/K) is
sometimes called the arithmetic Galois group. In any case, Gal(K’/K) permutes
the prime divisors of K’ via the action Q — Q° given above.

Suppose that Q is a prime of K’ and P:= QNK. Then 6—1(Q) NK = P, so
Gal(K'/K) in fact permutes the set of prime divisors of any prime of K. Our first
important fact is that this action is transitive.

Theorem 3.5.1. Let O, and Q, be prime divisors of K’ with P:= 0,NK=0,NkK.
Then there exists ¢ € Gal(K' /K) with 0 = Q,.

Proof. By the weak approximation theorem there exists an element x € K’ such
that v, (x) = 1 while v, (x) = 0 for every other prime Q dividing . Then for
every prime divisor Q of P and every o € Gal(K'/K), we have

1 ifQe =0,

0 otherwise.

() volo(x) = {
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Let y :=sequ/x) o(x). Then
o= 3 vy(ol)

c€Gal(K'/K)

for all prime divisors Q of P. Now (x) implies that v, (y) > 0 if and only if 0 =
0, for some ¢ € Gal(K'/K). Buty € @, NK = P, and therefore v, () > 0 for any
prime divisor Q of P. |

For the remainder of this section we will use the following notation and
assumptions:

Hypothesis 3.5.2. X' is a Galois extension of K with G := Gal(K'/K). Q is a
prime of K" with P:= QNK. Fori=0,1,..., we define

e:=e(Q|P),
I=7r@QIP)
Gy={oeG|o@)=x modQ' forallxe 6y},

i

K:={xeK |o(x)=x foralloceG},

i

0,:=0nNK,
Fp (resp. Fp) is the residue field of P (vesp. Q), and FQ/FP is separable.®

Of course, the hypothesis of separability of the residue field extension is au-
tomatic when k is perfect. Note that by (A.0.16) G; = Gal(K'/K;) for i > 0.
Furthermore, observe that G, is just the setwise stabilizer of @ in &, and that
each G, is a normal subgroup of G, because it is the kernel of the induced map
Gy — Aut(ﬁQ/Qi). We call G, (resp. K,) the decomposition group (resp. field) of
@ and Gy (resp. K,) the ineriia group (resp. field). For i > 1, the G, are called the
(higher) ramification groups. It is clear from the definition that G; 2 G, for all
i

Given any o € G, choose some x € &, with o(x) # x and put j = vy(o(x) —
x), then ¢ ¢ G, for k> j. Since G, is a finite group, we see that G, = 1 for
some integer m. We will study the decomposition group by analyzing the “layers™
G,/G,, | separately.

Corollary 3.5.3. Assume (3.5.2), then |G : G| is the number of distinct prime
divisors of P in K'. For any prime divisor Q' of P in K' we have e(Q'|P) = e and
J(Q'|P) = . Moreover, |Gy| = ef. e(Qo|P) = 1= f(Qy|P). e(QQy) =e. and
f(Q‘Qo) =f

Progf. Let {Q,...,0r} be the set of all distinct prime divisors of P in K. As

a consequence of (3.5.1), there is a bijection between cosets G0 of G, in G
and prime divisors Q¢ of P, whence |G : G| = r. Moreover, it is immediate that

3Many authors denote our G, by G,_ ;.
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e(Q,|P) =e, and f(Q,|P) = f for all i. Now (2.1.17) implies that |[K" : K| = efr.
Since |G| = |K' : K|, we have |G| = ef.

From (A.0.16) we know that G, = Gal(K'/K,)). By the previous paragraph ap-
plied to the extension K'/K,, we have e(0]0,)f(0|Q0) = |G| = ef, but since
e = e(Q]|0g)e(Qo|P) and f = f(Q]Q)f(Qo|P) by (1.1.25), we conclude that
e(QolP) = 1=/ (QylP), (@I Q) = ¢, and 1 (2|Qy) = 1 |

As noted above, G s the kernel of the natural map 1 : G — Aut(6,/0Q).
Since G, fixes K elementwise, im(1) lies in Gal(Fp/Fp). The important facts
here are that F,/Fp is a splitting field and that im(n) = Gal(Fy/Fp).

Theorem 3.5.4. Assume (3.5.2), then FQ/FP is Galois, and the natural map
Go/ Gy — Gal(Fy/Fp) is an isomorphism. In particular, |G| = e.

Proof. By (3.5.3) wehave Fy = Fp, soit suffices to prove this result in the special
case that G = Gy and K = K. Now, by (3.5.1) @ is the unique prime divisor of 7 in
K, s0 ﬁQ is the integral closure of & in K’ by (1.1.8). Since FQ/FP is separable,
there is an element « € ﬁQ such that F, = Fp[#], where x — ¥ denotes the residue
class map. Let f(X) be the minimum polynomial of # over K. Then f(X) has
coefficients in &p, since « is integral over &p. Since K'/K is Galois and has a root
inK’, allroots of f(X) lie in K" and are also integral, so f factors into linear factors
over ﬁQ. Furthermore, G is transitive on the roots of f, so 11(G) is transitive on the
roots of £. This implies that 7 is a multiple of the minimum polynomial of & over
Fp, and that F, is the splitting field of f over Fp. Thus, F,/Fp is Galois, and im (1)
p thatfy ! < P o/f'p! \

is transitive on the conjugates of #. But the only automorphism of FQ/FP fixing
4 is the identity, so im(n) = Gal(F,/Fp). In particular, |Go/G,| = |Fy: Fp| = f,
and hence |G| =e. O

Corollary 3.5.5. Assume (3.5.2), and suppose K C E C K’ is an intermediate
field. Put Qp := QNE. Then e(Qx|P) =1 if and only if E C K. In particular,
K'/K, is totally ramified at Q.

Progf. From (A.0.16) we have Gal(K'/E) = Gy C G, where Gy, is the subgroup
of G fixing E elementwise. By definition, Gz NG, is the inertia group of Q over
E. By (1.1.25), e(Qg|P) = 1 iff e(Q|QF) = e, but by (3.5.4), the latter condition
is equivalent to |Gz NG, | =e = |G|, i.e., to Gy 2 G, which is in tun equivalent
to E C K;. For E = K;, we have in particular ¢(Q|0;) = e = |G4| = [K' : K;|, so
K'/K, is totally ramified at Q. O

‘We next turn to a further analysis of the ramification group G, via the filtration
G, 2 G, 2 .. We need first

Lemma 3.5.6. Assume (3.5.2), let 6 € G, and let t be a local parameter at Q.
Then for every infeger j > 1 we have 6 € G, iff o(t) =¢ mod 0.

Proof. Suppose o(f) =¢ mod @/ for some ¢ € G; and some j > 1. We only
need to show that 6 € G g since the converse is trivial.
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Applying (1.1.24) to the extension K'/K, which is totally ramified by (3.5.4),
we find that ¢ is integral over ﬁQ1 and that &, = ﬁQ1 [f]- Let x € F, and write

x =Y, witha, € ﬁQ1 , then

ox)=Yao() =Y at’ mod@/. O

Now fix a local parameter ¢ at Q. For 6 € G| we can write
o(t) = ust,
where #4 is a unit.

Theorem 3.5.7. Assume (3.5.2). The map 6 — uq := & (t)/t defines a homomor-
phism G| — FQ* whose kernel is Go. In particular, G| /G, is cyclic.

Progf. For any ¢’ € G, we have
Uyt =0 (0() =06 (us)0 () = 6" (ug)tt yt = ugut  (mod ).

It follows that u , = #s#,, (mod f), so e have a homomorphism from G, to the
multiplicative group of &,/Q. Since o(¢)/f =1 (mod £) iff 6(f) =¢ (mod 2,
the kernel of this map is G, by (3.5.6). We conclude that G, /G, is isomorphic to
a finite subgroup of the muitiplicative group of a field. In particular, there are at
most 7 solutions of the equation " = 1 in G, /G, for any n, so G, /G, is cyclic by
the fundamental theorem of abelian groups. O

We finally consider the structure of the groups G,/G,,
fixed choice of local parameter { and 6 € G, we have o (f) = +xt' for some
Xg € ﬁQ.

for i > 2. For some

Theorem 3.5.8. Assume (3.5.2). For 6 € G, and i > 2, the map 6 — X :=
(o(t) — 1)~ defines a homomorphism of G, into the additive subgroup of Fy
whase kernel is G, |. In particular, G;/G,, | is trivial for i > 2 if char (k) = 0 and
is an elementary abelian p-group if char(k) = p > 0.

Progf. For any ¢’ € G, we have
f4x 8 =6 (1) + 0 (x6) 0 () =t +x 1"+ (x5 +311) (t +x 1)}
for some y € ﬁQ. Since i > 2, we have
(t+xytH =6 (mod 1Y),
and it follows that
Xpol =x gyt +xt" (mod .
Thus, we have a homomorphism from G, to the additive group of ﬁQ/ Q, as as-

serted. Since x; = 0 (mod ¢) iff 6(f) =¢ (mod 1), the kernel of this map is
Gy1q by (3.5.6). Since there are no finite subgroups of the additive group of a field
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of characteristic zero, G, is trivial in this case. When char(k) = p > 0, additive
subgroups of FQ are abelian of exponent p.

The fact that G, is trivial in characteristic zero suggests that the higher
ramification groups are related to wild ramification, and that is indeed the case.

Theorem 3.5.9. Assume (3.5.2), and let d(Q|P) be the different exponent. Then
a(@lP) = ¥.(I6] - 1.
i=1

In particular, G, = 1 if and only if Q|P is tamely ramified.

Proof. Note that the sum is finite, since G, = 1 for almost all 7. By (3.5.5) we
have e(Q,; |P) = 1 and therefore d(Q,; |P) = 0 by (3.3.6). Now (3.3.3) implies that
a(Q|P) =d(QI0,)-

Let ¢ be a local parameter at Q and let £(X) be the minimum polynomial of ¢
over K. Then f(X) factors into linear factors over K’, and we have

F@ =1l -,

oEG)

@ =Y Tl&-o@),

T 6#T
whence
7o =Tlt-o0).
c#1
Using (3.3.8), we get

d(Q10y) = v/’ () = ;VQ(G(f)*f)
o#l
However, for 6 € G;\ G, y, (3.5.6) yields v (0 (f) —f) =1, so that

d(010,) - jﬁliuG,-\ 16D = 2(\6,-\ —1. O

3.6 Hyperelliptic Functions

As an application of the preceeding results, we consider the case of a fimction
field K/k that is a separable extension of k(x) of degree 2. Such a function field
is called Ayperelliptic, although some authors restrict this term to exclude elliptic
functions. Unless specifically stated otherwise, the results of this section apply to
the elliptic case as well.

Suppose, then that x € K is a separating variable and that |K : k(x)| = 2. If
v € K\ k(x), then y satisifes a quadratic equation »* + f(x)y +g(x) =0 over



94 3. Finite Extensions

k(x). If char(k) # 2, we can eliminate the linear term by completing the square:
Puty :=y+ £(x)/2, then y* + g(x) — f(x)?/4 = 0. Now multiplying ¥/ by an
appropriate square in k(x) and changing notation, we get y* = f(x) where f(x) is
a square-free polynomial. The situation is different in characteristic 2, so we will
consider that case separately below.

Summarizing, we have

Lemma 3.6.1. Suppose that char(k) #£ 2 and |K : k(x)| = 2. Then K = k(x,y)
where y* = f(x) for some square-free polynomial f (). O

We will next compute the different ., in the case char(k) # 2. We
first suppose that o« := a(x) + b(x)y is a constant (i.e. algebraic over k) for
some a,b € k(x). Then TK/k(x)(tx) = 2a(x), so a(x) = a, for some a, € k, and
NK/k(X)(tx) = a3 —b(x)*f(x) = a, for some q; € k. If f(x) is nonconstant, which
we will henceforth assume, it follows that b(x) = 0, and we have shown that £ is
the full field of constants of K.

Since f(x) is square-free, we have f(x) =: [T/_; p,(x) where the p,(x) are dis-
tinet irreducible polynomials. Let P be a prime of K dividing the prime p of
k(x).

Suppose first that p # p, for alli and p # . Then f(x) is a unit in &p. Apply-
ing v, to the equation 32 = f(x), we see that vp(y) = 0. Since char(k) # 2, the
equation has distinct roots modulo p. Thus, the hypotheses of (1.1.23) apply, and
we conclude that e(P|p) = 1 and thus d(P|p) = 0.

Next, suppose that p = p,. Then 2vp(y) = e(P|p)vp(f(x)) = e(P|p). This im-
plies that v (y) = 1 and e(P|p) =2.By (2.1.3), Pis the unique prime of K dividing
p, f(P|p) = 1, and therefore deg P = deg p.

Finally, if p = o, then 2v,(y) = —e(P|) deg f. If f has odd degree, this implies
that vp(y) = —deg f, e(P|oc) =2, Pis unique, f(P|oc) = 1, and deg P = degee = 1.
If f has degree 21, we can replace x by x; 1= ¥ andy by y, ==y/x". Theny% =
/1 (x;) where the reciprocal polynomial f; is not divisible by x;, so the hypotheses
of (1.1.23) hold at x; = 0. It follows that e(P|ec) = 1, and there are two distinct
divisors of e each of degree one, or one divisor of degree two, depending on
whether or not the leading coefficient of f(x) is a square in k or not. We have
proved

Theorem 3.6.2. Suppose that K = k(x,y), char(K) # 2, and

where the p, are distinct irreducible polynomials and v > 1. Then kis the full field
of constanis of K, and for each i there is a unique prime P, of K dividing p; with
e(Plp) =2, f(P|p,) =1, and deg P, = deg p,, and we have
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If deg f is even, we have

K/k Z

and P.:=N¢ ) (oo) has degree 2 and is either prime or the sum of two points.

[fdegf(x) is odd, there is a unique prime P. dividing oo with e(P.|e) = 2,
J(Pa]oo) =1, deg P = 1, and we have

14
D ppiay = Pt Zi B
i=
In particular,
deg if deg f is even,
deg 7, J5(x) = ’ )
deg f+1 ifdegfisodd.
‘We can now apply the Riemann-Hurwitz formula (3.3.5) to obtain
Corollary 3.6.3. Assume the hypotheses of (3.6.2). Then
B %(degf—2) if deg f is even,
K7 | Adegf—1)  ifdegf is odd.
Proof. From (3.3.5) we obtain
2gx —2=—4+deg QK/k(x),
and the result follows from (3.6.2). |

Finally, we obtain a basis for the space of regular differential forms. Continuing
the hypotheses of (3.6.2), we can differentiate the defining equation to obtain

2ydy = f' (x)dx,

whence

() D+ [av] = 17/ ()] + [

From (3.6.2), we know that [y], = ¥, ;. Moreoever, ged(f(x), f'(x)) = 1 since
J(x) has distinct irreducible factors. This implies that /(x) and /" (x) have disjoint
zeros in K, and therefore y and 17 (x) also have disjoint zeros in K. Now (*) implies
that

) o < [ax]o.

The only poles of x in X are at the prime(s) at infinity. When deg f is odd, [x].. =
2P.., where P. has degree 1, while when deg f is even, [x].. = P. has degree 2.
Looking at the respective Laurent series, we conclude that

] — 3P, ifdegfisodd,
T 2n. if deg f is even.
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From (x) we have [dx] > [y], — [dx].., but using (3.6.3) we get
degldx] > deg f —deg|dx].. = 2g; — 2.

Since [dx] is a canonical divisor, we must have equality, which implies that () is
an equality. In particular, v, (dx/y) > 0 for all i.

The only other possible }lyole of dx/y is at infinity, but here we actually have
a zero of order deg f —3 =2g—2 when deg f is odd, or of order degf —4 =
2g¢—2 in the even case. So not only is dx/y regular, in fact x'dx/y is regular for
0 < i < g. Since x is transcendental, these forms are linearly independent over £,
and therefore are k-basis for Qx(0) by (2.5.10). As a consequence, we note that
the ratio of any two regular forms lies in k(x), and if g, > 2 these ratios generate
k(x). We have proved

Theorem 3.6.4. Suppose |K : k(x)| = 2 for some x € K and char(k) # 2. Then
{xldx/y | 0 <i< gy} is a k-basis for Qi (0). Furthermore, if g > 2 then k(x) is
the subfield of K generated by all ratios o' /@ of regular differential forms, and
is thus the unique rational subfield of K of index 2. |

‘We remark that the even-degree case can be completely avoided provided that
p; = ax— bis linear for at least one 7. Then the substitution

1

X =
1 ax—b

will produce an equation y; = f; (x;), where f; is square-free of odd degree.

For the remainder of this section we will assume that k is a perfect field of
characteristic two. Beginming with the equation 32 + f(x)y +g(x) = 0, we can
replace y by y/f(x) and change notation to obtain y? +y = f(x). Note that the
other root of this equation is y 4 1. We see that y is an element of X of trace 1 and
norm f(x). Suppose y; = a(x) + b(x)y is another element of X of trace 1. Since
T 18 k(x)-linear, and is zero on k(x), we get b(x) = 1. Then Ne ey ) =
a(x)? +a(x) + f(x). Conversely, the equation Y2 +¥ = a(x)? + a(x) + f(x) has
roots y+a(x) and y+a(x) + 1 in K. In other words, we have proved

Lemma 3.6.5. Suppose that char(k) =2 and K /k(x) is separable of degree 2. If
k(x) @ denotes the additive subgroup of k(x) consisting of all rational functions of
the form a(x)? 4 a(x), then there is a one-to-one correspondence between cosets
F) + k() in k(x) and separable extensions K /k(x) of degree 2, under which
K corresponds to f(x)+ k(x)® if and only if there exists an element y € K of
trace 1 and norm f(x). In particular, K = k(x,y), where y* +y = f(x) for some
J(x) € k(x). O

We first consider the (uninteresting) case that X is a scalar extension of k(x).
Then there is a constant & € K\ k(x). Since Ty () (@) is a nonzero element of &,
we can divide to get a scalar of trace 1. Using (3.6.5) we get
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Lemma 3.6.6. Suppose that char(k) = 2 and K/k(x) is separable of degree 2.
Then K /k(x) is a scalar extension if and only if f(x) = ¢ (mod k(x)®) for some
constant c € K. O

‘We next compute the different. As before, let P be a prime of K dividing the
prime p of k(x). Note that vp(y) < 0 iff vp(p+ 1) < 0 iff vp(3% +y) < 0 iff
vp(f(x)) < 0. In particular, if v,(f(x)) > O, then y € &p. Moreover, y satisfies
a polynomial with coefficients in &, and distinct roots modulo p, so (1.1.23)
implies that e(P|p) = 1 and hence d(P|p) = 0.

Suppose, then, that f(x) has a pole at p of order 7. Then v, (y) must be negative
and hence vp(y) = vp(y+ 1), and we get

2vp(y) = vp(f(x)) = —e(P|p)n.

Suppose that 7 = 2d — 1 is odd. Then we can conclude that e(P|p) = 2 and
vp(y) = —n. Since |K : k(x)| =2, we have f(P|p) = 1. Furthermore, if we put
s:= py, we have vp(s) = dvp(p) —n = 1, 50 s is a local parameter and

&+ 7% =p™ 07 +y) = P ) = pulx)

for some p-local unit #(x). Since K/k(x) is totally ramified at p, (3.3.8) implies
that d(P|p) =

So far, we have seen that when f(x) is a p-local integer, p is unramified and
hence d(P|p) = 0, while if f(x) has a pole of odd order 24 — 1 at p, p is ramified
and d(P|p) = 2d. Fortunately, it turns out that we don’t have to consider poles of
even order at all, as we Now argue.

‘We first recall the so-called partial fractions algorithm: Given a rational func-
tion whose denonimator is a product /, (x)%, (x) of relatively prime polynomials,
we can find polynomials a; (x),a,(x) with a; (x)A; (x) + a,(x)h, (x) = 1 and write

L )
@) ) )
By repeated applications of the Euclidean algorithm, therefore, we can write any
rational function as a sum

o R W

*p(x)Zd = zm+1pz

where the @, are polynomials, the @; are positive integers, and the p, are distinct
irreducible polynomials. If m = 1, we are happy. If m < n, we need

Lemma 3.6.7. Suppose that k is perfect of characteristic 2, a(x), p(x) € k[x], p(x)
is frreducible, and

_ a)
=y
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Jfor some positive integer e. Then there exist polynomials b(x),c(x),d(x), and
P, (x) with deg p, (x)* < deg p(x) such that

blx) | e d(x) @
fx)=—+ +——- (mod k(x .
= g T T gz T
Proqf. Separating terms of even and odd degree and using that fact that &% = k,
we can write a(x) = a,(x)? +xa, (x)% and p(x) = p, ()2 +xp, (x)? where ; and
p; are polynomials (i = 1,2). Note that deg p? < deg p and hence that p, (x) and
p(x) are relatively prime. Then

.
P P
and
& _ L% ”%P% a _% 4P a (mod k(x)@)
p* p*  p¥pt p*lpt P o PPMRE )
Using partial fractions and collecting terms, the result follows. |

Suppose m < 7 in (*) and there are £ terms in the sum whose square de-
nominator is of highest degree 2e. Applying the lemma to one of these terms
and rewriting the resulting expression in the same form, it is clear that we now
have k£— 1 terms whose denominators have degree 2e. After a finite number of
steps, we have found an element y € X with y? +y = a(x) +b(x)/c(x) such that
a(x),b(x),c(x) are polynomials, every prime divisor of ¢ oceurs to an odd power,
and deg b < degc. Since every polynomial is clearly congruent to a polynomial of
odd degree modulo (x)?, we have proved

Theorem 3.6.8. Let k be perfect of characteristic 2 and suppose that K /k(x) is
separable of degree 2. Then K = k(x,y), wherey? 4y = f(x) and all poles of f(x)
are of odd order. If f (x) has a pole of order 2d,— 1 at p, for 1 < i< n and no other
poles, then for each i there is a unique prime divisor P, in K of p; and if satisfies
e(P|p,) =2 and f(P)|p,) = 1. Moreover, no other primes of k(x) are ramified in
K, and

2

1
/K Z{zdipi‘ o

Indeed, the above discussion yields a constructive algorithm for finding
J(x), and therefore for finding 2. Furthermore, the Riemann-Hurwitz formula
immediately implies

Corollary 3.6.9. With the hypotheses and notation of the theorem,

1
gg=—1+ didegp,. [
i=1

Finally, we would like to find a basis for Q(0), the space of regular differential
forms.
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Theorem 3.6.10. Let k be perfect of characteristic 2, and let K := k(x,y), where
y 4y = f(x) and the pole divisor of f(x) in k(x) is given by

n

F@)]. =3 @d,—1)p,.

i=1

Define
900 := [T 2,
b7
where the product runs over the finite poles of f(x) only, and put
dx
o= m

Then {@,x®, ...,x2 " 0} is a basis for the space of regular differential forms. In
particular, if g > 2, k(x) is the unique rational subfield of K of index 2.

Progf. The zero divisor of ¢ (x) in X is

@)=Y 2d,P,=2-2d.P.,
Bt
where we set d.. = 0 if f(x) has no pole at infinity. Thus, ¢ (x) has a pole of order
deg 7 —2d.. at infinity.
Since dx has no zeros in k(x) and a pole of order 2 at infinity, it follows from
(3.3.2) that

ldx] =4+ 2,

where 4 = —2N*(p..) has degree -4. Thus, dx has a pole at infinity of order 4 —
2d... We conclude that the form
0 dx
0]
is regular and has a zero at infinity of order deg 2 — 4 = 2g; — 2. Moreover, in
the case that there are two points of X at infinity, each point has equal multiplicity
gx — 1. Since the pole divisor of x in K has degree two in all cases, and is a sum
of two simple poles when there are two points at infinity, it follows that x'e is
regular for 0 <1< gg. |

3.7 Exercises

Exercise 3.1. Let K’/K be a finite, separable extension of function fields and let
P e Py. Let M C K be a finitely generated &p-module of rank # = [K” : K|, and

define
M ={xcK |ty

/K(xm) € Op for allm € M}.
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(i) Let {my,...,m,} be an Op-basis for M and define
A= vp(det(trK//K(mimj)))A
Show that A, is independent of the choice of basis for M.

(ii) Suppose that 3/ C M’ C M*, where M’ is also finitely generated. Let
{(M' /M) be the length of M’ /M (see (1.1.13)). Prove that

Ay =4, +20(0 /M),
(ili) Conclude that M* is a finitely generated &p-module and that M* /M has
length at most A;,/2.

Exercise 3.2. Use Exercise 3.1 to give an alternative proof of (2.1.18) in the
separable case.

Exercise 3.3. Let K/k be a function field and suppose that £’ is a finite, separable
extension of k. Let P € Py and put K’ := ¥’ ®, K. Use Exercise 3.1 to show that
the integral closure of & in K’ is just &' 6.

Exercise 3.4. Generalize Exercises 3.1 and 3.3 by replacing &, by the
intersection of a finite number of valuation rings of K.

Exercise 3.5. Let K'/k be a finite separable extension of K/k with Q € Py, and
P:=QnNK, and assume that FQ/FP is separable. The object of this exercise is to
prove that (3.3.11) holds under this weaker hypothesis.

(i) Show that there exists a finite separable extension k; /k such that if we put
K} :=k®,K and K| := kK C K{, we can choose a prime 0 € Py, with
1

0 =0, NK" and f(Q,|0, NK;) = 1.
(i) Put P, := QK. Show that d(Q|P) = (0, |P)-

(iii) Let R',R,, and R} denote the integral closure of &p in K, K, and K], re-
spectively. By replacing ﬁpl by a finite intersection of valuation rings of
K, generalize the argument of (3.3.11) to show that

xg(l]il/?)* Yo, (x) = —d(Q4|P)).

(iv) Use Exercise 3.4 to complete the proof.

Exercise 3.6. Let & be algebraically closed of characteristic p > 0 and let # € k()
such that k(t)/k(u) is a Galois extension whose Galois group G is a p-group.
Prove that G, = G| = G, and that G; = 1.

Exercise 3.7. Let £ be algebraically closed of characteristic zero, and let X be a
finite extension of &((¢)) of degree n.

(i) Use Exercise 1.8 to show that the prime (f) is totally ramified in X'

(if) Prove that every Galois extension of k((¢)) is cyclic.
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(iif) Prove that K = k((t1/")).
Exercise 3.8. Suppose that X'/k' and K/k are function fields, and X' = K(y)
wherey" = x € K for some integer 7 relatively prime to char(k). Such an extension
is called a Kummer extension. Assume that x ¢ K for any divisor d of .
(i) Prove that [K’: K| = n.
(i) Let Q € Py, be a divisor of P € Py. Put dp := ged(vp(x), ). Prove that

n/dp fordp >0,
1 for dp, = 0.

e(Q|P) = {

[Hint: Consider the intermediate field K (39).]

(iii) Prove that

n 1 dp
=1+ e — 145 —“EldegP).
g0 =1 g (gK 1+5 2 <1 n> eg >

PRy

Exercise 3.9. We say that an extension K'/K is unramified if e(Q|0NK) = 1
for every prime Q € P,. Suppose that 7 is relatively prime to char(K) and that
K’ =K(y) for some y € K’ with " =x € K. Prove that K’ /K is unramified if and
only if [x] = nD for some divisor D € Div(K). [Hint: (1.1.23).]
Exercise 3.10. Let X be an elliptic function field over an algebraically closed
field & of characteristic 2. Prove the following:
(i) K = k(x,) where 32 4+y = f(x), and f(x) has either exactly one pole of
order 3 or exactly two simple poles.
(ii) By using substitutions of the formy’ = y+ g(x) and
+b
Jo=
cx+d
for a,b,c,d € k with ad — be # 0, the first case can be reduced to

Fty=x,
and the second case can be reduced to
Poy—vt
X
for some nonzero A € k, uniquely determined by X (compare with Exercise
2.8).

Exercise 3.11. Let k, be a field of characteristic p > 2 and let k = k;(¢) where
{ is transcendental over k. Let K := k(x,y) where ¥? = xP —t. Show that 8 =
(p—1)/2, but that k(t'/?) @, K has genus zero.

Exercise 3.12. Let k, be a field of characteristic p > 0 and let k = k(s,f), where
s and f are transcendental over ky. Let K := k(x,y) where y? = xPHL ppxP 4
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(i) Show that there is a unique prime divisor P € Py dividing the prime (x) of
k[x] and that F =~ k(s'/P).

(i) Let & := k(s/?) and let K" := ¥ ®, K. Show that there is a unique prime 0
of K’ dividing P and that Fj, ~ k(t'/?).

(iii) Show that (y—s'/?)/x is integral over & but does not lie in &' ®, Op.
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Projective Curves

In this chapter we make contact with the classical theory of algebraic curves in
projective space. For simplicity we will assume throughout this chapter that the
ground field £ is algebraically closed. Since we do not have at our disposal the ma-
chinery of algebraic geometry, our treatment here is necessarily somewhat ad hoc.
The preferred approach to this subject is via the theory of schemes and varieties.

4.1 Projective Varieties

Recall that n-dimensional projective space (k) is defined as the set of lines
through the origin in #**!. We denote the line through (ay,a,...,a,) by

(ay:ay : - ap). Bach such line is called a point of P*. The zero set of a ho-
mogeneous polynomial f € k[X;,..., X, +1] is a union of lines through the origin,

and therefore defines a subset V() C P*. The set of common zeros of an arbitrary
set of homogeneous polynomials in P” is called a closed set. It is easy to check
that the closed sets define a topology on P" called the Zariski fopology.

Conversely, an arbitrary polynomial f € kX, ...,X,] can be written uniquely
as a sum of homogeneous polynomials of distinct degrees:

M
J=2 e
d=0
If a:= (ag, ..., a,) € K"+ and f vanishes on the line {4« | A € k}, we have

0=f(Aa) = éldfd(a)



104 4. Projective Curves

for all 2 € k, from which we conclude that f,(a) = 0 for all 4. It follows that the
ideal I(¥) of all polynomials in k[X;,...,X,] which vanish at an arbitrary subset
V C P is a graded ideal, i.e. it is the direct sum

10) = DI,
a=0

of homogeneous subspaces. In dealing with closed subsets of projective space, we
are thus naturally led to the categories of graded k-algebras and modules. Briefly,
recall that a k-vector space V' is graded if we are given a direct sum decomposition

V:@Vdv

dez

although it is frequently the case that ¥V, = 0 for & < 0. The elements of ¥, are
called homogeneous of degree d. A homogeneous map ¢ : V' — W of graded
vector spaces (of degree d) is a map of k-algebras such that for some integer
we have (V) C Wy, forall e € Z. A graded k-algebra is a k-algebra 4 that is a
graded k-vector space such that 4,4, C 4, , foralld,e€ Z.In particular, k C 4.
A map of graded k-algebras is a k-algebra homomorphism that is homogeneous
of degree zero.

If A is a graded k-algebra, a graded A-module M is an A-module that is a graded
k-vector space such that 4,M, C M, foralld,e € Z. In particular, the regular
module is a graded module. A graded submodule N C M is an 4-submodule with
a grading such that the inclusion map is homogeneous of degree zero.

It is easy to check that the kernel and image of a homogeneous map are graded
submodules, and that the quotient of a graded module by a graded submodule
has a natural grading such that the quotient map is homogeneous of degree zero.
In particular, the quotient of a graded 4-algebra by a graded ideal is a graded
k-algebra. It is also straightforward to verify

Lemma 4.1.1. Suppose A is a graded k-algebra, M is a graded A-module, and
N C M is an arbitrary A-submodule. Then N = D ;N NM, if and only if N is
generated by homogeneous elements.

Since the polynomial ring 4 := k[X,. .., Xy] is a graded k-algebra, any graded
k-algebra which is generated by n+ 1 elements of degree one is a graded quotient
of 4.

Returning now to the Zariski topology, we say that a closed set is irreducible
if it cannot be written as a union of proper closed subsets. For example, if the
homogeneous polynomial f is a product /= f} f; of two distinct irreducible poly-
nomials (both necessarily homogeneous), it is clear that V(f) = V(f;) UV(f,).
But is V(f;) proper? For this and other important facts about the zeros of
multivariate polynomials we need

Theorem 4.1.2. If the finitely generated k-algebra K is a field, then |K : k| is
finite.
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Proqgf. LetK = k[x,,x,,...,%,) and put k; == k(x;) C K. Then K = k; [x,,..., %],
and |K : k;| is finite by induction on 7. If x; is algebraic over k, then |k, : k| is
finite and we are done.

Suppose then, by way of contradiction, that x, is transcendental. Then %; is
isomorphic to the field of rational finctions in one variable. For x € K let M(x) =
M k%, (x) be the matrix ofthe k;-linear transformation y — xy with respect to some
basis for K /k,. Then the map x — M (x) defines a k-algebra monomorphism from
K into the ring of m x m matrices over k;, and M(x) = xI for x € k;.

Now, the polynomial ring in one variable has infinitely many irreducibles over
any field, so we can choose an irreducible polynomial p(x;) € k[x;] such that p
does not divide the denominator of any entry of M(x,) for all i. But this implies
that p does not divide the denominator of any entry of M(x) for any x € K, because
the matrices M(x;) generate M(K) as a k-algebra. Hence, p~17 # M(x) for any
x € K, a contradiction that completes the proof. |

Corollary 4.1.3. Suppose that M is a maximal ideal of the polynomial ring
A =k[X,,...,Xn]. Then there exist ay,...,an € k such that M = (X; —a;, X, —
ay,..., Xy —an). A polynomial f lies in M iff f(a,,a,,...,an) = 0. A necessary
and sufficient condition for a set of polynomials fo generate a proper ideal of A is
that they all have a common zero.

Proogf. A/M satisfies the hypotheses of (4.1.2). Since k is algebraically closed, we
conclude that 4/M = k. Let a, be the image of X; in 4/M. Then the natural map
A — A/M = kis just evaluation at the point (a,,...,as). O

Given an ideal J C k[X,,...,Xy], let V(J) C #*1 denote the zero set of J, and
for a subset S C K1 write I(S) for the ideal of all functions that vanish at S. Note
that V(I(S)) is just the closure of S in the Zariski topology. In general, the ideal
I(V(J)) is larger than J. For example, it contains

V7 :={f e 4| f" J for some positive integer r}.
In fact, we have

Corollary 4.1.4 (Hilbert Nullstellensatz). If.J is an ideal of 4:= KX, X,,. .., X,].
then I(V(J)) = /7.

Proof. If f" € J, it is clear that f vanishes at every zero of J. The converse
argument is a well-known but clever trick. We adjoin an additional indetermi-
nate ¥ to 4. Then the ideal J+ (1 — fY) C 4[Y] has no zeros at all; hence
A[Y] =J+ (1 —fY) by (4.1.3). Let A = 4/J and let f := f+J € 4. Then it fol-
lows that 1— fY is invertible in 4[¥]. Thus, there exists an integer r and elements
dy,...,a,_y € 4 such that (1 — fY)(ay+a,¥ + - +a, ¥*~1) = 1. Equating
coefficients of Y’, we find that ¢, = 1, ¢, = f* for 1 <i < » and finally that
fr=0. O

We say that an ideal J C 4 is a radical ideal if /J = J. Note that J is a radical
ideal if and only if 4/J has no nilpotent elements.
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We want to apply the Nullstellensatz to graded ideals and closed subsets of
projective space. Note, however, that while every proper ideal of A[X, X, ,...,Xx]
has a nontrivial zero in &*t!, the unique maximal graded ideal consisting of all
polynomials with zero constant term vanishes only at the origin and therefore has
no proper zeros in P, By a proper graded ideal, therefore, we will mean a nonzero
graded ideal whose radical is not the unique maximal graded ideal. By abuse of
notation, we will write V(J) C I when J is a proper graded ideal. If J is graded
and proper, then, as we have observed above, V(J) is a union of lines and thus
I(V(J)) is also graded and proper. So we have

Corollary 4.1.5. The radical of a proper graded ideal is a proper graded ideal.
O

The main consequence of the Nullstellensatz for our purposes is

Corollary 4.1.6. The mappings I — V() and V — (V) define an inclusion-
reversing bijection between proper graded radical ideals I C k[X,,...,X,] and
closed subsets V. C P*. In particular, a closed set is the union of two proper closed
sets iff the corvesponding radical ideal is the intersection of two properly larger
graded radical ideals.

Progf. Because the two mappings are inclusion-reversing, we have V(I(V(/)))) =
V(J) and I(V(I(S))) = I(S) for any ideal J C k[X,,...,X,] and any subset § € P".
Thus I and V are bijective mappings between all closed subsets of P* and all
ideals of the form I(S). The ideal I(S) is certainly a radical ideal, and by (4.1.4),
if J is any radical ideal then J = +/J = I(V(J)), so the ideals of the form I(S) are
precisely the radical ideals. O

We call a closed set in P" a projective variety if it is irreducible, that is, if it is
not the union of two proper closed subsets.

Lemma 4.1.7. 4 closed setV is avariety iff I(V) is a prime ideal.

Proof. Tt is clear that a prime ideal cannot be the intersection of two properly
larger ideals. Conversely, suppose V := V(I) C P* is irreducible, and 7 := I(V').
Put 4 := k[X,,...,X], choose homogeneous elements x;,x, € A\, and put V; =
V(I,x,). Then ¥} and ¥, are proper closed subsets of the irreducible closed set ¥,
so there must be an element v € ¥\ ¥; U¥,. Then x, (v)x, (v) # 0, so x,x, ¢ 1. We
have shown that in the graded algebra 4/, the product of nonzero homogeneous
elements is nonzero. If y;,y, are any two nonzero elements of 4/7, and x;,x,
are their lowest-degree homogeneous components, then x;x, is the lowest-degree
homogeneous component of y;y, and thus y;y, # 0. O

Suppose the graded £-algebra A4 is an integral domain. We define the homoge-
neous field of fractions of A to be the subset of the full field of fractions consisting
of all fractions x/y where x and y are homogeneous of the same degree. It is casy
to check that this is in fact a subfield of the full field of fractions.

Suppose now that ¥ C P* is a projective variety. While it doesn’t make sense
to evaluate polynomials at points of P, we can evaluate a quotient f/g of two
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homogeneous polynomials of the same degree at a point of P*. In this way,
we get a k-valued function defined at each point (, : - : @,) of P* at which
g(dy,. .., a,) 7 0. Restricting to ¥, we get a function ¥\ V(g) — k that depends
only on the cosets £ +I(V) and g+ I(V). Speaking somewhat loosely, we will say
that f/g restricts to a rational function on V.

Since I(V) is a prime ideal, the graded k-algebra

V] = kX,,... . X)/1(V)

is an integral domain, and we let k(V) be the homogeneous field of fractions of
k[V]. Each element of k(V') defines arational function on V. For this reason, k(V')
is called the field of rational functions on V.

Lemma 4.1.8. Let V' C P"* be a projective variety. Relabeling the X, if necessary
so that V- V(X,), k(V) is generated as a field over k by the restrictions of the
Junctions X,/ X, toV for 1 <i<n.

Proqf. Abusing notation, we continue to denote by X; /X the restriction of X,/X;
to V. Put K := k(X /X,,. .., Xa/X;). Then clearly K, C k(V). However, if p(X)
is homogeneous of degree d, we have p(X) /X € K, and therefore p(X)/q(X) €
K, for every homogeneous polynomial ¢(X) of degree d that does not vanish at

O

Let k[V], denote the k-subalgebra of k(V) generated by the restrictions of the
functions X; /X, to ¥ for 1 <i < n. The subset ¥ := V'\ V(X)) C V' is called an
affine open subset, and k[V] is the subalgebra of rational functions on ¥ which
are defined at all points of V. It is called the affine coordinate ring of Vy,. IF1(V")
is generated by homogeneous polynomials f; of degree d,, then it is easy to see
that k[V'], is the quotient of the polynomial ring kX, /X;,...,X,/X;] by the ideal
I(V'), of “dehomogenized” polynomials f;/XJ.

We define dim(V) := trdeg(k(V)/k). By (4.1.8), dim(¥) < . What happens
when V' = a is a point? By a linear change of variables, we may assume that
a=(1:0:..:0). Then I{a) = (X;,...,Xn), K[V'] ~ k[X;], and (V) = k. So
points have dimension zero. In fact, we have proved
Lemma 4.1.9. [f a € P* and X is any linear form with X(a) 0, then the residue
map k[Xy, ..., Xn] — Kla] restricts to an isomorphism kX] — kla]. In particular,
points have dimension zero. O

We call V a projective curve if dim(V') = 1, that is, if k(V') is a function field as
previously defined.

Lemma 4.1.10. [f V C P2 is a projective curve, then I(V) = (f) for some
irreducible homogeneous polynomial f.

Progf. Choose f € I(V) homogeneous of minimal degree d. Since it is easy to see
that the product of inhomogeneous polynomials is inhomogeneous, the minimal-
ity of d makes f irreducible. Put x := X; /X; andy := X, /X;. Then k(V) = k(x,y),
and x and y satisfy the inhomogeneous polynomial f;, := f(1,X,Y), which is also
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irreducible. By (2.4.8) we have k[V], = k[x,)] = k[X,¥]/(f,), which implies that
107) = () 0

4.2 MapstoP"

Given an arbitrary function field K /k, we ask if it can be realized as k(V') for some
projective curve ¥ C P*, This turns out to be easy. In fact, we will construct a map
from the points of K to P* whose image is a projective curve ¥V with (V) = K. A
more delicate question that then arises is whether this map is, with an appropriate
definition, an embedding.

To answer the first question, let ¢ := (¢y,¢;,. .., ¢) € K with ¢, # 0, and put
R:=K,,...,0n]. To avoid trivialities, assume that k(¢ /¢y,...,0n/ ) 7 k. Let
K’ C K be the field of fractions of R. Define @ : k[X,X,,...,X,] — R[T] for some
indeterminate T via

QX)) :=¢,T (0<i<n).

Give R[T] the natural grading (in which all elements of R are homogeneous of
degree zero). Then @ is a map of graded k-algebras, so 7 := ker® is a graded
ideal. Indeed, 7 is just the set of all polynomial relations satisfied by the ¢,.

Since R is an integral domain, R[T] is also an integral domain, and therefore so
is §':= im @. It follows that / is prime, and ¥ = V() is a projective variety with
k{V'] isomorphic to the graded k-subalgebra § C R[T] generated by {9,7 | 0<i <
n}. By (4.1.8) @ induces an isomorphism &(V) =~ k(¢ /@y, .., s/ o) C K. Since
we chose the ¢, so that £(V) # k, we have trdeg (k(V')/k) = 1, and therefore V is a
projective curve. We will often abuse notation by identifying k(V) with a subfield
of K. In particular, if k(¢;,...,d,) = K and ¢, = 1, we get k(V') = K.

However, more is true. Let P be a point of K, let f, be a local parameter at
P, and put ep := —min{vp(9,)}. Then 17 ¢, € &p for all i, and 17 ¢; & P for at
least one i. It follows that a;:= t]e)P 0,(P) € k for all i, and a, # O for at least one i.
Abusing notation slightly, we define for every P € Py,

O(P):=(ag:ay: - ap) €P",

and we easily verify that ¢ (P) is independent of the choice of local parameter
tp. Moreover, we claim that if /" and g are homogeneous of the same degree and

g(9(P))) # 0, then

16®) o0
(42.1) aom) ~ ol

Indeed, if f is homogeneous of degree 4, then from the definition of @ we have
Q) = F(66X0, 01Xo,-,00Xo) = X5 7 (90, 0n),
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whence

M:f(%ww%):f(teP%wwteP%)
@(g) &gy 8n) gy, 0n)’

and evaluating both sides at P yields (4.2.1). This establishes a fundamental con-
nection between rational functions defined on projective space and elements of
the fimction field K defined on points of Py..

Taking f € I(V) we conclude from (4.1.6) that im¢ C V. To obtain the reverse
inclusion, let @ € ¥ and define

oui={ G K120 £}

e (8300

Because @ € V, the map 4, — k given by @(f)/D(g) — f(a)/g(a) is well-
defined and has kernel P,. Since the elements of &, \ P, are evidently units, & is
a local subring of X with maximal ideal F,, which is called the local ring at a. By
(1.1.6) there is a prime P of K with &, C & and PN &, = FP,. If P is any prime
of K with 6, C &p and PN Gy = Py, (4.2.1) shows that I(¢(P)) 2 I(a), whence
o (P) = a by (4.1.6). We have proved

Theorem 4.2.2. Let K/k be a function field and let (¢,...,,) € K with ¢, # 0
and ¢,/ ¢, nonconstant for some i. For any point P of K, let t,, be a local parameter
at P and put ep := —min{vp(¢,)}. Then

P(P) = (17 06(P) 179y (P) i -+ 1 17 9u(P)) € P
is well-defined, is independent of the choice of tp, and

Vi={¢(P)| PPy}

is a projective curve with k(V)) = k(¢ /@y, .., 0/ o). Moreover, if a € V and 6,
is the local ring at a, then

9 Wa)={PePy| O COpand 6pN 0y =F,}. O

Thus, every ordered (4 1)-tuple of functions ¢ = (,...,¢,) € K, with at
least one ratio ¢,/ ¢, nonconstant, determines a map ¢ : P, — ¥ from the points
of X onto the points of a projective curve V" C P*. We call ¢ a projective map.
Replacing the {¢;} by {¢/ := y¢,} for any fixed functiony € X simply replaces ep
by ep’ = ep — vp(y) and does not change the definition of ¢ (P) at all. We therefore
put ¢ ~ ¢’ if there is a function y € K with ¢] = y¢, for all i. Note that in this case
D(f)/®(g) is unchanged for f and g homogeneous of degree d, because both
numerator and denominator are multiplied by 3. In particular, the local ring &,
depends only on the equivalence class of ¢.

We say that ¢ is effective if the subspace (¢) := (¢, ..., ¢,) € K contains the
constants. Note that ¢g 19 is effective so that every projective map is equivalent
to an effective one. For this reason, there is usually no reason to consider maps
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that are not effective, so unless explicitly indicated, we will assume that projective
maps are effective. Indeed, we will frequently assume that ¢, = 1.

The simplest example of a projective map is a map to P! of the form ¢ = (1,x)
where x is any nonconstant function. Let J : = im#. It is easy to see that the zeros
of x map to (1:0) and the poles of x map to (0: 1). Since the zeros of any
homogeneous polynomial in two variables form a finite subset of P!, V" is either
all of P! or a single point, so it must be all of P'. In particular, we have proved
that as P ranges over all nonpoles of x, x(P) ranges over all of k.

Since almost all of the integers ep of (4.2.2) are zero, we can define the divisor

[9] := z epP,

PRy

and write
vp(p) i=ep = 7H]}HVP(¢1')7

where ¢ = (¢, ...,0n). If ¢’ = yo, then [¢] = [¢] — [], so equivalence classes of
projective maps define divisor classes.

If ¢, is replaced by ¢/ := o, or ¢ 1= ¢, + a; for some scalar o and some
J #1, it is easy to verify that v (¢") > vp(9). Since the change of variable is in-
vertible, it follows that vp(¢’) = vp(¢) and therefore the divisor [¢] depends only
on the subspace (¢} and not on the particular basis chosen. In particular, if ¢ is
effective, we can choose a basis with ¢, = 1. Hence, effective maps have effective
divisors. In general, if ({,...,¢;) is a different basis for (¢), the resulting map
¢’ is obtained from ¢ by a linear change of variables in projective space.

Finally, if (¢, ¢;,...,¢y) is linearly dependent over , then ¥ lies in some hy-
perplane and we really have a map to P*~!. So we will always assume that the A
are linearly independent over £.

A projective map ¢ : P, — V determines an embedding ¢* : k(V) — K given
by 9*(f/g) = ®(f)/P(g) in the previous notation, where f and g are homoge-
neous polynomials of the same degree. When ¢* is an isomorphism we call ¢ a
birational map. If ¢, : ]P’K — Vand ¢, : ]P’K — ¥V are two birational maps to the
same projective curve v, the fields K and K may be identified via the specific
isomorphism (¢{) ™! 5. If we begin w1th a projective curve ¥ C P*\ V(X,), the
natural map ]P’k(V) — V is the projective map ¢ := (1,X; /X, ...,Xu/X,), which
is clearly birational.

‘We should point out that the term “natural,” although convenient, is somewhat
fictitious here, in that it assumes a fixed choice of variables in P*. A “more natu-
ral,” but perhaps less convenient, approach would be to allow a nonsingular linear
change of variable in P".

An interesting class of birational examples is obtained by letting x € K be a
separating variable. Then K /k(x) is generated by a single element y by (A.0.17),
which means that the map ¢ := (1,x,y) is a birational map to P2. Such a map is
called a plane model. We will study maps to P? in detail in Section 4.5. However,
the following is worth noting here.
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Lemma 4.2.3. Let ¢ : Pp — V C P* be an effective birational map. Then there
exists a separating variable x € (), and for each such x there exists y € (9} such
that (1,x,y) is birational.

Proof. Since K = k({9)), we have (¢) Z KP; hence there is an element x € ()
such that K/ k(x) is separable by (2.4.6). In particular, there are only finitely many
intermediate fields, all of which contain (1,x) and none of which contain (¢ ). By
(A.0.14) applied to {9}/(1,x), there is an element y € (p) that is disjoint from
every intermediate field. O

‘When ¢ is not birational, we obtain the following.
Lemma 4.2.4. Let ¢ : Pr — V be a projective map. If K 2 K' 2 ¢*(k(V)) for
some subfield K' of K, there is a uniquely determined projective map ¢’ : Py —V
such that the diagram

Ne 1t
Py 5By,

Ry

commutes. Moreover, we have
(4.2.5) 9] = Ny ([8']).

Progf. 1f Q € Py and P:= QNK', then f(Q) = f(P) for any function f € K’ by
definition. Since all functions ¢,/ ¢, lie in K’, we conclude that ¢ is constant on
all divisors Q of P. Hence ¢(Q) = ¢’(NK/K/(Q)), where ¢ is the same ordered

set of functions, now taken as elements of K’. Moreover, we have
vo(9) =min{vy(9) [ 0 <i<n} =minfe(Q|P)vp(d;) | 0 <i<n}

= e(QIP)vp(9),
and (4.2.5) follows. O

When ¢ is effective, the divisor [¢] has the following important geometric in-
terpretation. Namely, after a change of basis for {¢), we may assume that ¢ = 1.
Then for any P & Py the first co-ordinate of ¢ (P) is £77 (P), which is zero if and
only if ep > 0. Thus, the divisor [¢] in this case describes the vanishing of the
linear form X, or in other words, the intersection of the hyperplane X; = 0 with
the image of ¢. In particular, we see that there are only finitely many points of
intersection.

For a general effective birational map ¢ = (9, ...,0), we have 1 = ¥, 4,0
for some @, € k. Then the divisor [¢] gives the vanishing of the linear
form £:=Y,a,X,. The zero set of this distinguished linear form is called the
“hyperplane at infinity.” Since we have

pe <Xl> _0W) _oT

¢

“e@ 1 %
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we define X;* = ¢,, and for any homogeneous polynomial g(X;,...,X;) of degree
d, we define

g o <Z%> :g(aj)o,“‘,%)EK‘

Note that g* depends on the choice of hyperplane at infinity, and if we replace ¢
by £, g* is replaced by g*/43.

A point ¢ (P) lies on the hyperplane at infinity precisely when ep > 0, that is,
when some ¢, has a pole at P. We can always replace ¢ by an equivalent effective
map ¢’ with vp([¢']) = 0. When this happens, we say that ¢ is normalized at P.
We will sometimes abuse notation by saying that a point P is “infinite” when ¢ (P)
lies on the hyperplane at infinity, and “finite” when it does not.

Replacing ¢ by an equivalent effective map amounts to choosing a different
hyperplane to lie at infinity. To put the hyperplane ¥,a.X; = 0 at infinity, let
y:=Y,40; € (¢), andreplace ¢ by ¢’ := y~1¢. Inparticular, it follows that every
hyperplane meets ¥ in a finite set. More generally, suppose g(Xp,...,Xy) is ho-
mogeneous of degree d with g (V). Then g* £ 0 and if ¢ (P) € V(g) then either
Xy (9(P)) = 0 or g*(P) = 0. Since g* has only finitely many zeros, we conclude
that |V NV (g)| is finite. This implies that every closed set that does not contain ¥’
meets ¥ in a finite set. Finally, given @ € ¥ we can choose a hyperplane at infinity
containing «. Then ¢ (P) = a implies vp(¢) > 0. We have proved

Lemma 4.2.6. Let ¢ : Py — V be a projective map. Then every closed set that
does not contain V meets V in a finite set. Moreover, ¢~ (a) is finite for every
acV. O

ForaeVand¢: ]P’k(V) — V the natural map, we say that the hyperplane V(X))
meets V' at ¢ with multiplicity
2 vle)
Peg=1(a)

More generally, if g(X;,...,X;) is a homogeneous polynomial of degree & in
7+ 1 variables, we define the infersection divisor of V and the closed set V(g) as

[9]g :=d[9] +[g)-

Note that g need not be irreducible here. Indeed, if g =: Hl.gft where the g;
are irreducible, then V(g) is a union of projective varieties (called hypersurfaces)
V(g;) counted with multiplicity e, and [g*] = ¥, ¢,[g}]. Thus,

(9l = D eil9ls,

It appears that [¢], depends on the choice of a hyperplane at infinity, but in fact
it does not. If £ is any linear form, we can put the hyperplane V(¥) at infinity by
taking ¢’ := £* 1 ¢. Then the new dehomogenization of g is ¢ := £*~g¢* and it is
straightforward to check that [¢']; = [¢],.
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Let ¢ = (X;/X, | 0 <i < n) be the natural map from the points of k(¥) to V.
We define the infersection multiplicity of the closed set V(g) with the curve V at
the point 2 € VNV (g) to be

(V@)= 3, va([#le)

Pey=l(a)

It is not entirely obvious that these multiplicities are nonnegative, a property
which is implied by the terminology. We will prove this below.

We define the degree of a projective map ¢ to be deg e := deg[¢], and the degree
of a projective curve ¥ to be the degree of the natural map. For a plane curve we
will show in (4.5.4) that the degree is what it should be, which is the degree of the
defining irreducible homogeneous polynomial generating I(V) (see (4.1.10)).

Lemma 4.2.7. Given any finite set of points in ", there exists a hyperplane not
containing any of them.

Progf. The vanishing of the linear form ¥, @,X; at a point forces (a, ... ,a,) to lie
in an n-dimensional subspace of £**1. So the lemma follows from (A.0.14). O

Theorem 4.2.8 (Bézout). Let V C P" be a projective curve of degree d with
K :=k(V) and natural map . Suppose that g(X,, ..., Xn) ¢ I(V') is a (possibly
reducible) homogeneous polynomial of degree e. Then there exists a hyperplane
containing no points of VNV(g), and for any such hyperplane V(£) we have
[0]e = [0*(/£°)]y In particular, [§]g > O, and with the definition of intersection
multiplicity given above, the closed set V(g) meets V at de points.

Progf. Since g £1(V) wehave g* #£ 0. By (4.2.6) |V NV (g)| is finite, so the lemma
yields a hyperplane V(£) that does not meet PNV (g). Because [¢], is independent
of'the choice of hyperplane at infinity, we canreplace ¢ by the equivalent effective
map 4*7141) and change notation so that there are no points of ¥ NV (g) at infinity.
Thus, if P € Py and g(¢ (P)) = 0, then g*(P) = 0. However, we need to get the
multiplicities right. Thus, we want to prove that [¢], = [g*],, or what is the same
thing, that e[p] = [g*]..

Since g* = g(1,¢;,...,,) and g is a polynomial, it follows that if P € Py is
a pole of g*, then X, (¢(P)) = 0. Let P be any point of P, with X (¢(P)) = 0.
Choosing notation so that X; (¢(P)) # 0, we have

gXy, ..., X,
g*:¢le¢*< (OXe ”)>
1
By our choice of hyperplane at infinity, g(¢ (P)) # 0. We conclude that vp(g*) =
evp(9;). On the other hand, X, (¢(P)) # 0 implies that

min{v(8)} = vi(6y)-

Therefore, we have v, (g*) = —evp(9) for every point P e P with X (¢ (P)) =
0. This implies that [g*].. = e[¢], and thus [¢], = [¢*],, as required. Since g*
vanishes at a point P € Py if and only if ¢ (P) € ¥ NV (g), the number of points
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of intersection counting multiplicities as defined above is

deg[g"], = deg[g"].. = de. O

In particular, we see that every hyperplane meets ¥ in degl” points, justifying
the definition of deg V. In general, the intersection theory of projective varieties is
a delicate and complicated subject. The interested reader may want to see [8].

Before proceeding, we digress briefly to discuss the connection of the above
ideas with other closely related notions. When ¢ is effective, the set of all divisors
{[¢]; | /€ (¢}} is known in the literature as a “base-point-free linear system.”
These divisors of course determine the subspace (¢) and thus the map ¢ up
to a choice of coordinates in projective space. It is immediate from our defini-
tions that {(¢) C L([9]). If (p} = L([p]), the corresponding linear system is called
a “complete linear system.” We will discuss the corresponding projective maps
below.

Since every curve ¥ C P" arises as the image of a natural map ¢ from the points
of its function field to P, we can think of a projective curve as being naturally
“parametrized” by the points of its function field, via the map ¢. We know that ¢
is surjective, but is it bijective? This would certainly follow if it happened that the
local ring &, were a valuation ring for every @ € V, because then we would have
O, = Op for some P € Py uniquely determined by a. This brings us to the subject
of the next section.

4.3 Projective Embeddings

Let K be a function field and let ¢ : P, — ¥ be a projective map with ¢(P) = a
for some point P € Pr. We say that ¢ is nonsingular at P (or sometimes, at @)
if £, = Op. Some authors use the term smooth here. Note that in particular, ¢
will be one-to-one at such a point P. Moreover, since &, C k(V) and the field of
fractions of & is K, we have

Lemma 4.3.1. Ifthe projective map ¢ : Py — k(V') is nonsingular at any point,
then ¢ is birational. O

We call ¢ an embedding if it is nonsingular at every point. Suppose that ¥ C P*
is a projective curve with fumction field X . We say that V' is nonsingular at a point
a eV ifthe natural map ¢ : P, — V" is nonsingular at @, and that V" is nonsingular
if it is nonsingular at every point. Evidently, ¥ is nonsingular at  if and only if
O, is a discrete valuation ring.

Our major tool for the study of singularities is the following result.

Theorem 4.3.2. Let ¢ : P — V C P* be a birational map and let a € V. Let R,
be the integral closure of G in k(V). Then every ideal I of 6, contains a nonzero
ideal of Ry and Ry/I is a finite-dimensional vector space over k. In particular,
every nonempty set of ideals of O, has a maximal element.
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Progf. By (4.2.6) and (1.1.8), R, is the intersection of finitely many valuation
rings ﬁpl,m, Op,, of k(V), where {P,..., By} = ¢1(a). Let ¥ denote the cor-
responding set of valuations. Referring to (1.1.17), we see that R, = K(¥#7;0), and
that every nonzero ideal of R, has finite codimension in R,. It remains to show
that every nonzero ideal of &, contains a nonzero ideal of R,.

We claim that &6, 2 K(¥";N) for some suitably large integer N, where by abuse
of notation, N(v) = N for all v € ¥, To see this, we first make a careful change
of variable in P*. Since &, depends only on the equivalence class of §, we may
assume that ¢ is effective and that @ does not lie on the hyperplane at infinity.
Since k({p)) =K, K N {9} is a proper subspace of (¢} containing %, and therefore
by (A.0.14) applied to {¢), we can choose coordinate functions 1,x;,...,%, such
that x; is a separating variable for i > 1. Using these coordinate functions, let

a=:(1:a : - :a,). Since k is algebraically closed and x; & K? (see (2.4.6)),
X; —a; is also a separating variable, so replacing x; by x; —a; for 1 <i <7 and
changing notation again, we have g = (1: 0: -+ : 0).

For each 1, let ¥ be the set of all valuations of K that are positive at x,. Then
¥ = N,;¥,. Note that K(¥#};0) is the integral closure in K of ﬁ(x ) the localization
of kfx,] at x,. By (4.2.3) there is an element y, € (¢) C G, with K = k(x,,y,). We
can write

i fl‘j (xz)y,/ =0,
=

where f; € kfx] and f;, # 0. Put ¥, := f,,9;. Then y} is integral over k[x;] and
K = k(x,y,) for all i.

Since we have x; = 9*(X,/X;) € 0, for all i, it follows that (¢) C &,, whence
klx,) € &, for all i. In particular, y; € &, for all i. Moreover, any polynomial in
k[x,] with nonzero constant term is a unit in &, and therefore ﬁ(x) C O, We
conclude that ﬁ(x)[)/i] C &0, whence (3.3.10) shows that &, contains an ideal of
K(¥;;0) for all i. Thus, for a suitably large value of N we have K(¥;N) C &, for
all i by (1.1.17). Now (1.1.18) yields K(¥;N) C &,, and therefore any nonzero
ideal I of &, contains the non-zero ideal IK(¥'; N) of R,. O

‘We can now obtain a key equivalence.

Corollary 4.3.3. Let ¢ : Pp — V C P* be a projective map and let a € V. In order
that ¢ be nonsingular at a it is necessary and sufficient that O, be contained in a
unique valuation ring O of K and contain a local parameter t at P.

Proof. The necessity of the conditions being obvious, we argue that they are suf-
ficient. Since &, is the unique valuation ring of K containing &, it is the integral
closure of &, in K by (1.1.8). By (4.3.2) we have P" C ¢, for some m.

Let £ be a local parameter at P with f € &,. Since k+ P = &p, multiplication
by # yields

le'+Pl'+l :Pi
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for all i > 0. It follows that &/ P" is generated as a k-algebra by f 4+ P*, and we
get Gy /P" = Op/P™. Since 6, 2 P", we have 0 = Op. O

The two conditions of (4.3.3) correspond to two different types of singularities.
If &, is contained in more than one valuation ring, the map fails to be one-to-one
at a. If &, does not contain a local parameter, the tangent line is not well-defined
at . For more on the tangent line, see Section 4.5.

‘We now proceed to our second major equivalence. In order to state this, we
need

Theorem 4.3.4 (Hilbert Basis Theorem). [f every ideal of the commutative ring
R is finitely generated, then the same is true for RIX|. In particular, every ideal of
kXy,... . Xy is finitely generated.

Progf. Let I be an ideal in R[X]. To show that [ is finitely generated, we choose a
sequence of polynomials f; € I of degree d; and leading coefficient ¢, (i =0,1,...)
as follows. Choose f; # 0 of minimal degree. If J,_; := (f,/f15..-»/ie1) G 1,
choose f; € I'\I,_; of minimal degree; otherwise, take f; = f;_,. Note that d; <
d;,, for all i. For some i, there will exist elements 7, ...,7;_; € R such that

i—1
a; = z TN
Jj=0

because the ideal of R generated by the @, (i = 0,1,...) is finitely generated. Then
the polynomial

i—1
I=1= Z X0,
Jj=0

has lower degree than f;, and if f; € I\ I_;, so is f. By our choice of f}, we
conclude that 7 = 7, as required. O

In the classical case over the complex numbers, the implicit function theorem
gives a criterion for the zero set of a finite number of polynomials to be smooth
at a point, namely, that the matrix of partial derivatives have maximal rank at that
point. This notion generalizes to any field & as follows. Let ¥ C P" be a projective
variety. Then I(V) is finitely generated by (4.3.4), and by using (4.1.1) we can in
fact find generators {f;,...,/;} where f; is homogeneous of degree ;. Choosing
notation as usual so that X,() # 0, the rational finctions

_oryox,

yiT TyanT (I1<i<n1<j<n
0

are defined at @, and we have

Theorem 4.3.5. Let V C " be a projective curve with function field K and let
a €V with notation chosen so that X (a) # 0. In order that V be nonsingular at a
it is necessary and sufficient that the matrix f,;(a) have rankn — 1.
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Proof. In order to make calculations, we are going to work in the dehomogenized
affine ring. If /' € k[X;,...,Xy] is homogeneous of degree d, we put f:= J/Xg e
A:=KX,,...,X,], where X, := X,/X,. Then

of;
=%,
7
Let a=:(1:a 1 :a). Since the zero set of the ideal generated by
{e;1=X;—a.X, \ 1 < j<n}isjust a, it follows from (4.1.4) that I(z) is gener-
ated by the e;. Then the dehomogenization of I(a) is I := (&, .., &), a maximal

ideal of 4. Since A/l = k, the A-module 1,/I2 is spanned as a k-vector space by
the &;. For any polynomial g € 4 define

9

8= a)% (1<j<n),

and put 8(g) := (g1(a),...,8x(@)) € K". Since 8(2,) is the M standard basis vec-

tor for &*, we have 8(I;) = k*. From the product rule for partial derivatives we

check that 8(12) = 0, which implies that dim, /,/I% = # and thus that I2 = ker 8.
Letl, = (fl bees ,f,) C Abetheideal of 4 corresponding to V. Using the product

rule again, we see that the subspace 0(1;) is spanned by the columns of the matrix

Ji(a) because fi(a) = 0 for all . It follows that the condition of the theorem is

equivalent to the condition

codim, 8(7;,) = 1.
We have I, O I, + 1, 2 D 2, so a further equivalent condition is
dimy Lo/ (I, +12) = 1.
‘We are now in a position to restrict fnctions to ¥, or in other words, to reduce
modulo ;. The algebra 4/I;, is just the affine coordinate ring k[V], C &(V) de-

fined in the previous section. Put My : = I,/I;; € k[V]. Then we are trying to prove
that

¥ is nonsingular at & if and only if dimM,/M? = 1.

Tracing through the definitions, we see that &, is just the localization of A{V],
at My, 5o it is easy to see that the vector spaces M,/M? and P,/ P2 are isomorphic.
‘We are thus reduced to proving

¥ is nonsingular at « if and only if dim B, /P? = 1.

Since one implication is obvious, we will suppose that dim £,/ P? =1 and argue
that &, is a valuation ring. Choose an element £ € B, \ Paz. Then Py = Oyt +Paz,
and therefore the &;-module N := B,/ Oyt satisfies PN = N. Since dim, N < oo
by (4.3.2), we have P, = 0,f by Nakayama’s Lemma (1.1.5).

For any x € F, we can thus write x = £x; for some x; € . If x; € F, write
Xy = tx,. Continuing in this way we eventually obtain either x,, & B, for some 7, or
we get an infinite properly increasing chain of principal ideals Fyx C Gpx; € -+,
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contrary to (4.3.2). It follows that x = "« for some unit # € &, and therefore
0, is a valuation ring by (1.1.10). Since the field of fractions of &, is k(V'), the
natural map ]P’k(V) — V is nonsingular at a, as required. O

We remark that the only application of (4.3.5) in this book is to the case
n = 2. Here, I(V) is generated by a single irreducible homogeneous polynomial
J(Xy,X1,X,) by (4.1.10). If we put x := X, /X, and y := X, /X, the affine equa-
tion is f(x,y) = f(1,x ,9) = 0. The theorem says that V" is singular at a point
(1:a:b) if and only if fi(a,b) = fy(a,b) = 0. If we denote the partial deriva-
tives of f'(Xy,X;,X,) by fi,/1,/, respectively, this is equivalent to saying that
fi(l,a,b) = f,(1,a,b) = 0. Tt is easy to check that the condition fy(1,4,5) =0
is redundant. For points at infinity, with (say) X; # 0, the conditions amount to
Jo(0,a,b) = £,(0,a,b) = 0. So to find all singularities, we have

Corollary 4.3.6. Let V C P2 with defining polynomial f(Xy,X,,X,). Let f; =
df/0X, fori=0,1,2. ThenV is singular at (a:b:c) € szandonly if f,(a,b,c)
0 for each i.

w O

Corollary 4.3.7. A projective curve has only finitely many singularities.
birational map is nonsingular at almost all points.

Proof. The two statements are evidently equivalent. Let ¢ = (1,9;,...,¢n) : Pp —
V be a birational map. We consider first the special case #n = 2. By (4.1.10) we
have ¥V = V() for some irreducible polynomial f(X;,X;,X,), and by (4.3.6) the
singularities are the closed set V(1) NV (f;, /1, /5)- Since the f; have degree less
than deg(f), they are not divisible by f and therefore do not vanish on V. So the
set of singularities is finite by (4.2.6).

In the general case, we note that by (4.2.3) there exists a birational map (1,x,y)
with {x,y} C (¢). Extending (1,x,y) to a basis for {(¢) and changing notation,
we may assume that ¢’ := (1,0, ,¢,) is birational. Let P € Py and put a := ¢ (P)
and & := ¢/(P). At this point, some care is needed. If ¢ = (1: @, 1 ay: -2 ay)
is a finite point, then & = (1: 4 : a,), and it is clear from the definitions that
0, C 04 C Op. This implies that if ¢’ is nonsingular at P so is ¢. If, however,
some coordinate function has a pole at 2, we might have ¢ = (0:0:0: a5 : - 1 an),
in which case @’ has no obvious relation to a. Fortunately, there are only finitely
many points at infinity, and therefore since ¢’ has only finitely many singularities,
so does . O

As an example, we apply (4.3.5) to the function field X = C(x,y) over the
complex numbers where y> = x> —x. The functions (1,x,y) define a map to P?
whose image is the plane curve V := V(X X7 — X} +X2X;). In this case, the
matrix f;; above is given in homogeneous form by

(X3 +2X, X, —3X2 +X5,2X,X,),

and by (4.3.5), V will be singular only at points & at which two components vanish.
An easy calculation shows that none of these points lie on the curve.
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However, since x = 2/ (x? — 1), the functions {x2,y} also generate K. Using
the functions (1,x2,y) instead of (1,x,y), we obtain the plane curve 7, := V(X3 —
X0X13 +2Xng —XOSXI). Calculating as above, however, we find a singularity at
(1:1:0). What has happened is that each point (1: 4, : @,) on ¥ has been mapped
to the point (1: a3 : a,) on ¥;. In particular, the two distinct points (1: 1: 0) and
(1: —1:0) have been identified, creating what is called a double point on V7. In
the terminology of (4.3.3), &, is not contained in a unique valuation ring of
K.

Another type of singularity is illustrated by the map (1,x,yx), which yields the
plane curve V, := V(Xng2 —X15 +X13X02). Computing partial derivatives as above,
we find that ¥, has a singularity at the origin, but rather than a double point, we
get a so-called cusp. In the terminology of (4.3.3), does not contain a local

(1:1:0)

ﬁ(l:O:O)
parameter!.

To see this, put7: =X, /X, ands := X, /X, Since 52 = > —3, we have 2vp(s) =
3vp(r), where P is the point of K mapping to (1: 0: 0). Since vp(s) and vp(r) are
both positive, each must be at least two. Every element of P, has the form # :=
f(1,7,8)/g(1,7,s) with  and g homogeneous of the same degree and f(1,0,0) =
0 # g(1,0,0). This means that v (x) = vp(f(1,7,8)) > 2.

The preceeding example leads directly to the following result.

Lemma 4.3.8. Let ¢ be an effective projective map with ¢ (P) = a and assume
that ¢ is normalized at P. Then 0, contains a local parameter at P if and only if
() contains a local parameter at P.

Proogf. Make a linear change of basis so that ¢ = (1: 0: -+ : 0). This amounts to
choosing a basis (1, ¢y ,...,9,) for {¢) such that ¢,(P) =0 for i > 1. Now we can

write
Sag-¢" (2.

which shows that (¢) C &, and thus one implication is trivial. Conversely, we
are assuming that there are homogeneous polynomials f and g of degree d with
g(a) # 0 such that vp(f*/g*) = 1. Since g(a) # 0, we obtain v,(g*) = 0 and
vp(f*) = 1. Now, f* is a polynomial in {9, ,..., ¢} that vanishes at P, so we can
write f* =¥, f, where £} is homogeneous of degree i in ¢,,..., . Clearly,
S € (). Since the ¢, vanish at P fori > 1, we have v (f}) > i, and thus we must
have f§ = 0 and vp(ff) = 1. O

Corollary 4.3.9. Let V C P* be a projective curve. Then V is nonsingular at a if
and only if some hyperplane has intersection multiplicity 1 at a.

Progf. Choose notation so that X () # 0 and let ¢ : ]P’k(V) — ¥V be the natural

map. Suppose V' is nonsingular at ¢ and let ¢ (P) = a. Since ¢ is effective and a

!Geometrically, this means that the curve has no tangent line at the origin, as we will show in
Section4.5.
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is not at infinity, there is a function f = ¥, ¢,¢, with vp(f) = 1 by (4.3.8), and
therefore u(V(Y,a,X;)) = 1.

Conversely, if there is a hyperplane with intersection multiplicity 1 at a, then
choosing notation so that X; (@) # 0, there is a linear form f with

> /X)) =1

Pey=1(a)
Since vp(f/Xy) > 0 for every P € ¢~ (a), (4.3.3) completes the proof. O

‘We next consider the problem of trying to actually construct nonsingular pro-
jective maps. In (4.2.3), we constructed birational maps to P2, so we might wonder
whether we can find a nonsingular map to P2, The answer in general is no, as we
will see later in (4.5.17). However, we can prove

Theorem 4.3.10. For any x € K, there exists y € K such that ¢ := (1,x,y) is
birational and {§) contains a local parameter at every point P € Py. Thus, the
only singularities of ¢ are multiple points.

Proof. This is an easy consequence of the weak approximation theorem. Let S be
the (finite) set of all points of K that are either ramified over £(x) or lie over (x~!).
Let x — a be a point of k(x) that is unramified in K and let P, ..., B, be the set of
all points of K lying over it. Choose distinct elements a,...,a, € k. By (1.1.16)
there exists y € K such that vp(y) = 1 for all P €5, and v (y — ;) > 0 for all i.
For P 8,y is a local parameter at P. For P ¢ S we have x(P) = b for some
b € k because P does not lie over x~!, and vp (¥ — b) = 1 because P is unramified.
Finally, since ¢(P,) = (1: a: a;), (4.2.4) implies that ¢ is birational, because it
has distinet values at all the divisors of (x — ). O

If we are willing to go to P3, the strong approximation theorem yields an
embedding.

Theorem 4.3.11. Let ¢ := (1,x,y) be a birational map to P2 with no singularities
at infinity. Then there exists z € K such that (1,x,y,z) is nonsingular.

Proof. Let {P,,..., B} be the set of singularities of ¢. Choose distinct elements
ay,...,as € k, and let P be a nonsingular finite point of ¢. By (2.2.13) there
exists z € K such that v, (z—a,) = 1 for all £, and the only pole of z is at P.. Put

6= (1,x,3,2). By (4.3.3), we need to show that ¢ is one-to-one and contains a
local parameter at every point.

For P& {P,,..., B}, (1,x,y) contains a local parameter at P, and z — g, is a
local parameter at P for all i. Thus, it remains to show that ¢ is one-to-one. By
our construction, ¢ (B.) = (0: 0: 0: 1) is the unique point at which the first three
coordinates vanish because 2. is the unique pole of z, and it is a finite point of ¢.
If P is any other point with ¢ (P) at infinity, then ¢ (P) = (0: a: b: 0) for some
a,b € k. These images are distinct, because ¢ has no singularities at infinity. At
finite points P of ¢ at which ¢ is nonsingular, the first three coordinates of ¢ P
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are distinct, while if ” = F, for any i, the fourth coordinate is «; by construction.
It follows that ¢ is nonsingular. O

‘We remark that every plane map is equivalent to one with no singularities at
infinity because by (4.2.7) we can choose a hyperplane at infinity that avoids the
finitely many singular points.

‘We next turn to a characterization of singularities in terms of subspaces of
(¢). It is immediate from our definitions that (¢} C L([¢]). Given a nonnegative
divisor D, define L,(D) := () NL([¢] — D). Then (¢} = L,(0) and if D; < D,
then L, (D;) 2 Ly (D,). In particular, at each point P € Py we have the important
filtration

(43.12) (9) =Ly(0) DLy(P) DL 2P) D+,

which we call the osculating filtration at P. We will study this filtration in detail
in Section 4.4. For now, we have dimL (nP)/L,((n+1)P) < 1 from (2.1.10).
Moreover, we have equality if and only if there is a function f € (¢) with vp(f) =
71— vp(¢). By definition there is always a function f € (¢) with v, (f) = vp(9),
s0 L (P) is always a hyperplane of ().

Note that the subspace L(p (D) does not depend on any particular choice of ba-
sis, and that if ¢’ = y¢ is an equivalent map, then yLy (D)= Ly (D). In fact, since
Ly (P) is a point of the dual projective space (¢)*, the map P — L, (P) is a pro-
jective map that is easily seen to be equivalent to ¢. This observation can be used
to develop a coordinate-free treatment of projective maps.

Corollary 4.3.13. Suppose that K is a function field, ¢ : Pp — V C P is a pro-
Jective map, and P € Py Then ¢ is nonsingular at P if and only if for every point
Q € Py we have codim Ly (P+ Q) =2.

Proof. Since the statement of the theorem depends only on the equivalence class
of (¢}, we may assume that ¢ is effective and normalized at P. Suppose O # P.
Then ¢ (P) # ¢(Q) if and only if there exists a hyperplane of P* containing ¢ (P)
but not ¢ (@), which is equivalent to L, (P) # L, (Q). Since both L, (P) and L, (Q)
have codimension 1, we have shown that codim L, (P+ Q) = 2 if and only if
0(P) # 0(Q).

By (4.3.8), we see that &, contains a local parameter at P if and only if
Ly (2P) ¢ Ly(P), which is equivalent to codim L,(2P) = 2. The result now
follows from (4.3.3). O

We now specialize to the case () = L(D) for some divisor D, where we write
¢ = ¢p. We implicitly assume that dimZ(D) > 2 in order to get a map to P*
for some # > 1. From the definitions we have vp(¢p) < vp(D) for all P € Py,
whence [¢p] < D. We get equality precisely when there is a function f € L(D)
with vp(f) = —vp(D).

Lemma 4.3.14. Suppose that K has genus g > 0, and D € Div(K) such that either
degD > 2g or D is canonical. Then D = [¢p).
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Proof. The condition we need is that dimZ (D) > dimL(D — P) for all P. This is
immediate from Riemann-Roch when D — P is nonspecial, and in particular when
degD > 2g. If D is canonical, then Riemann-Roch yields

dimZL(D - P) =2g—3 —g+1+dimL(P).

Since g > 0, it follows that imZ(P) = 1, and we have dimL(D - P) =g—1 <
dimZ(D). O

When D is canonical, we call ¢, a canonical map, or just the canonical map
if the choice of a particular representative of the equivalence class of ¢, doesn’t
matter. Note that the canonical map is not defined unless K has genus g > 2.
Theorem 4.3.15. Suppose that K has genus g and D € Div(K). If degD > 2g+1,
then ¢p, is an embedding. If D is canonical, then ¢y is an embedding unless K
contains a rational subfield k(x) with |K : k(x)| < 2.
Progf: Put ¢ := ¢p. We have Ly(P+Q) =L(D—-P - Q) for all RO € Py
by (4.3.14). If deg(D — P~ Q) > 2g— 1, then D — P —  is nonspecial. Thus
codim L, (P+ Q) = 2 by Riemann—Roch, and the result follows from (4.3.13). If
D is canonical, Riemann-Roch yields

dmL(D-P-Q)=2¢—4—g+1+dmL(P+ Q) =g 3+dmL(P+ Q).

Since dimZ(D) = g, (4.3.13) implies that ¢ is an embedding unless dimZ(P+
Q) > 1. But if there is a nonconstant function x € L(P+ (), its pole divisor has
degree at most two, whence |K : k(x)| < 2. O

‘We note that when X contains a rational subfield of index at most 2 the canon-
ical map is not an embedding. Indeed, the canonical map is not defined unless X
has genus g > 2, in which case |K : k(x)| =2, and by (3.6.4) and (3.6.10) we have

Qe (0) = (0, ¢ () 0,.... 4, () @),

where @ is a regular differential form and the ¢,(x) all lie in a (uniquely
determined) rational subfield k(x). This means that

L{[]) = (1,800, , (),

and therefore the image of the canonical map is P!.
‘We obtain from (4.3.15) the nonsingularity of the standard plane model for an
elliptic curve (2.3.1).

Corollary 4.3.16. Suppose g = 1. Then the map ¢ to P? of degree three with
(¢) = L(3P) for any point P is an embedding. O

4.4 Weierstrass Points

Following [19], we now turn to a more detailed analysis of projective maps. Let
K/kbe a function field, let ¢ = (9,...,9s) be a projective map, and let 7: K — K
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be a k-embedding of X into K. Since |K : k(t(x))| is finite for any x € K\ k, so is
|K : T(K)|. We can therefore define deg 7 := |K : T(K)|. Then we have

Lemma 4.4.1. Denote by 7(9) the projective map (T(@y),...,T(¢)) : Px — P™.
Then deg7(¢p) = degTdeg¢.

Proof. Because they lie in 7(K), the coordinate functions (T(d),...,T(n)) de-
fine a map ¢’ : 7(K) — P, Since 7: K — 7(K) is an isomorphism, every point
of 7(K) is of the form 7(P) for some point P of K. In particular, ¢ and ¢’ have
the same image in P, and therefore deg ¢’ = deg¢. The result now follows from
(42.5). O

On first reading, it may be advisable to restrict attention to the important special
case 7 = 1. In later applications we will want to take 7 to be the Frobenius map in
characteristic p composed with an automorphism of X.

For any separating variable s € X, let D, be the Hasse derivative with respect
to s given by (1.3.11), and consider the matrix H = H(9,s,T) = (hl.j) for 0<i<
n, j=-1,0,1,..., where

e =1,
it Ds(j)(‘?’i) for j =0,1,...

Let HY) denote the column of H whose i entry is /1;;. Thus, / =1 is the leading
column, and its {® entry is 7(9;). We are interested in those indices j for which
HU) is not a K-linear combination of lower numbered columns. There are at most
n+1 such indices since H has n-+ 1 rows. Since not all of the ¢, are zero, the first
such index is always —1. Denote the remaining indices by j, j,, ..., /m- Note
that if 7 = 1, then j7; > 0. Conversely, suppose that the first two columns of H are
linearly dependent. Then t(¢) = y¢ for some y € K, and we see thaty = T(¢) /9,
Consider the equivalent map ¢’ := ¢! ¢. Then 7(¢]) = ¢/ for all i, and we have

O<i<n).

Lemma 4.4.2. With the above notation, if ¢ is birational then j, > 0 if and only
ift=1 O

If m < n, define j, = j,_; +1 for m <1< n We will prove that m = 7 (see
(4.4.7)), but in any case, the following property is immediate:

Lemma 4.4.3. With the above notation, if 1 <1 <n and j < j, then HD isa
K-linear combination of H-V HUD ... HU-1), 0O

Define Jy(¢,T) = (ji,. .-, /n). We call the j, the T-orders of the map ¢, or just
the orders of ¢ when 7 = 1, and we write Jy(¢) := J;(9,1). We will show shortly
that these indices depend only on the subspace (¢}, are independent of s, and are
also invariant when ¢ is replaced by y¢ for any y € K. We might expect that the or-
ders of ¢ are just (1,...,7) and indeed, we will prove this when the characteristic
is zero. In positive characteristic, however, the situation is more complicated.
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For any sequence J = j, j,,... of nonnegative integers, let H be the submatrix
of H whose first column is (1) and whose (14 1)st column is HUY and define
(4.4.4) wy(9,7) 1= det H*#%),
We call wy(9) 1= wy(9,1) the Wronskian of ¢ with respect to s.
Lemma 4.4.5. With the above notation, we have the following.
L If¢f:=%;a,0, (0 <i<n), wherea; € kand 4:= (a;)) is nonsingular,
then Jy(¢/, r) Jo(0,7) and wy(¢’, r) det(A)wy (9, 7).
2. For any nonzero function y € K, J(y9,7) = Ji(9,7) and wy(y9,7) =
TN Ws(9,7).
3. For any separating variablet € K, J,(9,7) = J;(9,7) and
wi(8,7) = (ds/a)/ T ws(9, ).

Progf. 1) IfH' := H(¢',s,7), then H' = AH because the Hasse derivatives and
the map 7 are all £-linear.
To prove 2), put H := H(y9,s, 7). From the product rule we have

U —¢(y)HD

J
A9 =30 4 3 DPGHID (> 0).
k=1

O

In particular, the K-subspaces spanned by the first j columns of H and H coincide
for all j, and we have Jy(¢,7) = J;(y¢, 7). Furthermore, the definition of the j,
and () imply that there is an upper triangular matrix U with entries in X and
diagonal entries (7(y),y,y...,y) such that

(+4) B89 — g9y,

proving 2).
The proof of 3) is similar, with the chain rule replacing the product rule. Here
we put  := H(9,¢,7), and (1.3.14) yields functions d, (1 < k < ;) such that

au = <Zj> +deH (> 0).

Again, the K-subspaces spanned by the first j columns of H and H coincide,
proving that Jy(¢, T) = J; (9, 7). Moreover, (+*) holds again, where now U is upper
triangular with 1y = 1 and u,, = (ds/dt)r (1 <1< n), and 3) follows. O

We therefore write J(¢,T) := Jy(,T) for any separating variable s, and we put
J@.T)i=dit A

We can now show that w,(¢,T) # 0 by evaluation at an appropriate point.
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Lemma 4.4.6. Suppose that ¢ = (9,,...,0,) is a projective map, P € Py, t is a
local parameter at P, and the ¢, are defined at P and linearly independent over k.
Then the matrix by, (P) := DI ($)(P) (0<i<n, 0< j) has krankn+1.

Proof. We use (2.5.13) to conclude:

1. Ifall the ¢ are defined at P, so are all the Hasse derivatives, so the statement
of the lemma makes sense.

2. If o,..., 0 € k, then 37 ok,

h;;(P) is the coefficient of #/ in the Laurent
expansion of 3, o,¢, at P.

Since every nonzero function has a nonzero Laurent expansion at 2, it follows that
a dependence relation on the rows of 4, (P) yields the same dependence relation
on the ¢;. O

Corollary 4.4.7. With notation as in (4.4.4), if ws(9,7) = 0, then the ¢, are
linearly dependent over k.

Progf. Choose any P € . Using (4.4.5) to replace ¢ by an equivalent map if
necessary, we may assume that s is a local parameter at 2 and that ¢ is normalized
at P. By definition, wys(9,T) = O precisely when the K-rank of the matrix H =
H(¢,s,7) is less than 7+ 1, in which case there are functions x,...,X,, not all
zero, such that

ixl-DE”(%) =0 (j=0,1,...).
=0

Carefully clearing denominators, we may assume that the x; are defined at P and
are not all zero there. But now evaluating the dependence relation at P, the result
follows from (4.4.6). O

Since our standard assumption is that the ¢, are linearly independent, we always
have wy(¢,7) # 0. In fact, the sequence J(¢,T) is characterized as the mimimal
sequence of indices for which the corresponding determinant does not vanish:

Corollary 4.4.8. Suppose j; < --- < j, is a strictly increasing sequence of

nonnegative integers, s € K is a separating variable, and detD_EjD(d)l.) #0.If
J(0,7) = (Jy5---Jn), then j, < j, for all .

Progf. This is now immediate from (4.4.3) because /for every 1, the nonvanishing
of the determinant guarantees that the K-rank of HU1 /1) mustbe I+ 1. O

It is also now clear that there is a very close connection between J(¢) and
J(¢,7) for any 7+ 1. Namely, let s be a separating variable, and put J(¢) =:
(Gis--ordn), H:=H($,s,1), and H := H(¢,s5,7). Assume that ¢ is birational.
Since H/) is nonsingular, there is, by (4.4.2), some smallest index m > 1 such
that

Y e (gD gUO L HUmY,
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It follows that for j > ji,
<g(71)7g(0)““7g(j)> — <H(’1),H(O),M,H@>A
Now using the definitions, we have
Lemma 4.4.9. If J(§) = (jy,...,Jn), T# 1, and ¢ is birational, then there exists
an integer m > 1 such that
J(0,7) = O oo sdpetodmg1se -0 dn). O

More importantly, the nonvanishing of wy (¢, 7) and the transformation rules of
(4.4.5) allow us to define an invariant divisor as follows. Let s be any separating
variable, and put

Ws(9,7) 1= Dws (9, D))+ [2(9)] + 2[0] + j(¢, T)[ds]-
Corollary 4.4.10. The divisor Wy(9, T) is independent of s and depends only on
T and the equivalence class of ¢.
Progf. Let a; € k, y € K, and let f be any separating variable. Put ¢; := ¥, al.j¢j
and let ¢ := (¢),...,¢;). From (4.4.5) we have

w (39, 7) = 1)y w9, 7) = det(a,) Ty wi(9,7)
= det(a,) ()" (ds/dry w9, 7).
Using (4.4.1), we obtain

W', 7) = [wi(v9’, )] + [c(09")] + nlyd'] + (9, 7)[dt]
= [vO)]+nD) + 7o, ) ({ds] — [d1]) + [ws (9, 7)] — [ ()] + [7(9")]
—[y]+ (o] + j(9,7)[df]
= [ws(®, 7))+ [2(9)] +n[d] + (9, 7)[ds]
=W(¢,7). O

We therefore write W(¢,7) := W,(¢,7) for any separating variable s (and
choice of equivalent map ¢), and we put W () := W (p,1). We will call W (9, 1)
the Weierstrass divisor of ¢ with respect to 7, or just the Weierstrass divisor of ¢
whent =1.

The invariance of W (9, ) is quite powerful. Namely, choose P € P, and recall
from section 3.5 that P* is the valuation ideal of the discrete valuation v, o7 of
K. We may assume, by a proper choice of coordinates, that ¢ is effective and
that ¢ (P) and ¢ (P*) are both finite. Thus vp(9) = vp(7(9)) = 0. Let  be a local
parameter at P. Then we have

W(9,7) = (we(¢, D] +[2(9)] +n[] +7(9,7)at],

and therefore v, (W (9,T)) = vp(w(9,7)). By (2.5.13) the Hasse deriviatives of
the coordinate maps ¢, are all defined at P, so that vp(w;(¢,7)) > 0. Moreover,
(4.4.1) yields the following formula for the degree of W (9, 7):
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Theorem 4.4.11. The divisor W (¢, 7) is nonnegative and
degh (9,7) = (deg T+ n)deg ¢+ (2gx —2)j(9,7). O

To illustrate the foregoing with an example, choose any x € K\ kK? and let
¢ := (1,x). Taking any separating variable ¢, the matrix of Hasse derivatives with
respect to £ is

1 0 .
Lc dx/dt .. }
Since dx # 0by (2.4.6), J(9) = (1) and wy () = dx/dt. Since [§] = [x].., we have

W(p) = [dx/dt] +2[x]. + [df] = [dx] +2[x]..

For a more interesting example, let x be a separating variable and let y be a
primitive element for X/ k(x) so that K = k(x,y) and ¢ := (1,x,y) is a plane model.
Now the matrix of Hasse derivatives with respect to x is

1 0 0
X 1 0

y dyjax DDy

Provided that D{?) () does not vanish identically,? we have J(¢) = (1,2), w(¢) =
D) (y), and

() = [DP )] +3[9] + 3[ax].

The points P in the support of W (9, T) are called the Weierstrass points of ¢
with respect to 7, or just the Weierstrass points of ¢ when 7 =1. When 7 =1 and
¢ is the canonical map, they are simply called the Weierstrass points of X, and
we put W (K) := W (¢). Points that are not Weierstrass points are called ordinary
points. Note that for any ¢ and 7, almost all points are ordinary.

Weierstrass points are of geometric interest, particularly in the case 7 = 1,
which we now investigate in more detail. Suppose, then, that ¢ is normalized
at P € Py, that ¢ is a local parameter at P, and that H(P) := H(¢,t,1)(P) is the
matrix with entries in k obtained by evaluating the entries of H(¢,#,1) at P. As be-
fore, let j; < --- < j, be the indices for which the column HUD (P) is not a k-linear
combination of lower-numbered columns, and define J(9) (P) = (fi, ..., /). We
call the j} the orders of ¢ at P. Note that the first two columns of H (P) are equal
because T = 1, and they are nonzero because ¢ is normalized at P, so j; > 0.

LetJ:= (j;,...,/n) be the orders of ¢, and put J' := J(¢)(P). f we had f; < j,
for some /, the columns of H' would satisfy a K-dependence relation. Care-
fully clearing denominators and evaluating at 2, we would obtain a nontrivial
k-dependence relation on the columns of H (P), contrary to the definition of the
Ji- Hence we have j, < jj for all I. Moreover, if ¢ is normalized at P and ¢ is a

2Unfortunately, Dj(cz) () can vanish identically in characteristic p. See Exercise 4.5.
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local parameter at f, it is clear that
wi(9)(P) = detH’ (P),

and it follows that w;(¢) vanishes at P precisely when j, < f; for some /. We have
proved

Lemma 4.4.12. With the above notation, we have j, < j, for all . Moreover, the
following conditions are equivalent:

1 jy=jforall
2 w($)(P) £0.
3 vp7(@)) =0 D

The orders of ¢ at P have an important geometric intrepretation. Namely, if
we row-reduce the matrix H(P) of Hasse derivatives at P and use k-linearity, we
obtain a basis (¢,...,0) for (¢} such that if ¢ is a local parameter at P, we have

DAGHP) =0 ©<j<f)
DI (P) = 1.
By (2.5.14) we have

Theorem 4.4.13. Let ¢ be a projective map normalized at P, let t be a local
parameter at P, and let ji,..., j, be the orders of ¢ at P. Define ji := 0. Then
there exists a basis (8,...,0,) for {¢) such that

o =tir ¥ o (0<I<n),
J=jt1
where o€ k In particular, j is an ovder of ¢ at P if and only if there exists a
Junction f € (¢) with vp(f) = j. O

Recall the notation Ly (D) := (¢) NL([¢] — D) and the filtration (4.3.12) from
the previous section. Applying (4.4.13), we see that the orders of ¢ at P define the
distinct subspaces of this filtration; namely, we have

Ly(iP) = {15, b (0<I<n).

Corollary 4.4.14. If ¢ is nonsingular at P, then the osculating filtration at P is
(0)=Ly(0) 2L, (P) 2L, (2P) 2 ---.

In particular, j| = 1.

Proqf: This follows from (4.3.13), since codim L, (2P) = 2. O

Geometrically, each linear subspace L C P"* of dimension / is the zero set
of some set of # —/ independent linear forms %. If we choose a hyperplane
at infinity defined by some linear form Z.. that does not vanish at P and put
L*:=(p*(0/L.) | L € £), we get a bijection L* « L between (1 —I)-dimensional
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subspaces of (¢} and /-dimensional subspaces of P*. Under this correspondence,
the subspaces of P* corresponding to the L(p (}P) are called osculating planes.
In particular, the hyperplane corresponding to L(p (73 P) is called the osculating
hyperplane at P. See Exercise 4.6

When ¢ is the canonical map, the osculating filtration at P is particularly
interesting, because by (4.3.14), we have (¢) = L([¢p]) 2 L([¢] — jP), whence
Riemann-Roch yields

dimL(jP) = j—g+14dimL,(jP)
for any integer j. Hence
dmL((j+ DP)/L(P) = 1 —dimL,(/P)/L, ((+ 1)P).

Since j is a canonical order at P precisely when L, (jP) 2 Ly ((j+ 1)P), we see
that 7 is a canonical order at P if and only if there is no function in X with a pole
of order exactly j+ 1 at P and no other poles. When L((j+ 1)P) = L(jP) we say
that j+4 1 is a gap number at P. So we have

Corollary 4.4.15. The positive integer j is an order of the canonical map at P if
and only if j+ 1 is a gap number at P. O

The positive gap numbers have interesting properties. Call the integer j a pole
number at P if there exists a function f with a pole of order exactly 7 at P and no
other poles.

Lemma 4.4.16. If n is a gap number, then at least half of the positive integers
less than n are also gap numbers.

Proof. Clearly, if j and £ are pole numbers, then taking the product of the corre-
sponding two fumctions shows that j 4 & is also a pole number. It follows that if
is a gap number and m < 7 is a pole number, then 7 — m must be a gap number.
Thus, there are at least as many gap numbers less than # as pole numbers. O

Corollary 4.4.17. Let j’l,m,j;,f1 be the orders of the canonical map at some
point P € Py. Then j; <21 for all L

Progf. If ny,n,,...,n, are the first [ positive gap numbers, then we have [ >
(n, — 1)/2 by (4.4.16). Note that 7, = 1; otherwise X is rational, and there is no
canonical map. Thus, using (4.4.15), we see that j;_; = 7, — 1, and the inequality
follows. O

Corollary 4.4.18 (Clifford). For n < 2g—2 and P € Py we have dimL(nP) <
1+4a/2.

Progf. By Riemann-Roch, dimZ((2g — 2)P) < g. We may therefore assume,
by descending induction on 7, that the formula holds for n+1 < 2g—2. If
dimL((n+1)P) = dimL(nP) + 1, the result follows. Otherwise, 7+ 1 is a gap
number, and the result follows from (4.4.16). O
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Returning now to the case of general 7, recall from Section 3.5 that for any
P ¢ Py we have defined PF := 77! (P), the set-theoretic inverse image of 7. In
particular, P is fixed by 7 precisely when 7(P) C P. We will call P a strong fixed
point of Tif T(P) C P2.

Suppose that ¢ is birational and 7 # 1. Then 7; = 0 by (4.4.2). At a fixed point
P of 7, however, the first two columns of H(9,s, T) have the same value and thus
vp(ws(9,T)) > O for any s. We therefore have

Lemma 4.4.19. With the above notation, suppose that @ is birational and T # 1.
Then every fixed point of T is a Weierstrass point of ¢ with respect fo T. O

In particular, the number of fixed points of 7 is at most degh (9,7) for any
birational map ¢. However, this bound is rather crude, and can be improved by
lower-bounding the multiplicity of each Weierstrass point P dividing W (¢, 7). To
do this, let I := (i;,...,is) andJ := (j;,..., ja) be nonnegative integer sequences,

and let
IN . [
1)\

denote the 7 x 7 matrix of binomial coefficients, where (/l) =01if j <, and the
binomial coefficients are interpreted as elements of the ground field, i.e., they are
reduced modulo p if char(X) = p.

Define

= diag(th, ..., 1),
and write / <.J if§, < j, for all /.

Theorem 4.4.20. Let K /k be a function field and let T: K — K be a k-embedding.
Let P e Py be a fixed point of T, let § : Py — P* be effective and normalized at
P, and let t € K be alocal parameter at P. Let J := j(9)(P) = (j,...,Ja) be the
orders of ¢ at P and let I := (i; <iy <.+ <iy) be an increasing sequence of
nonnegative integers. Then

vp(detH(9,1,7))) > i(jl —1).
=1

Moreover, if1; > 0 or if P is a sirong fixed point of T, then equality holds if and

only if’
det <‘[l> #£0.

Progf: By (4.4.13) there is a basis ¢] = 34,9, for (¢) suchthat ¢; = 1 and
o =t 4 etly, (0<I<n),
where v, € Op and j, > 0. Then (2.5.13) yields

D (9)) = <?>W"’+vnt’l”'"“ (O<i<n 0<r<m),
r
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where v, € Op. Put H := H(9,1,7), 4 1= (a,), and m := ¥, (j, — ).
If #; > O then the first row of His (1,0,0,...). Expanding the determinant
along the first row yields

(¥)  detH! =det {t’A’l <<ﬁ +tV> ﬂ} = det(4) "1™ det < <‘;> +tV> ,

where ¥ = (v,,), and the theorem follows in this case.

If iy = 0, then the first row of H'is (1,1,0,0,...). Replace the second column
by itself minus the first, and again expand along the first row. The only difference
from the previous case is that in the first column of the minor, ¢/ is replaced by
0] — 7(¢;). If P is a strong fixed point of 7, we have

(9) = ity

for some 7, > j, and some v} € &p, and thus () still holds with V' suitably
redefined.

Finally, if ; = 0 but we don’t know that P is a strong fixed point, then we might
have v (9 — 7(¢})) > j,. In this case, an equation similar to (+) will hold, with
(?) replaced by another integer matrix which may have a few more zeroes in the
first column, but the inequality still follows. O

There are several important corollaries to (4.4.20). Let p := char(k) in all of
these. First, we get a lower bound on the order of the Weierstrass divisor W (¢, 1)
at a fixed point of 7 by taking 7 above to be the order sequence of ¢ with respect
to 7 and applying (4.4.10).

Corollary 4.4.21. If J:= J($,T) = j,...,jn are the T-orders of ¢ and J' :=
J(@)(P) = ji,.-. ]y arve the orders of ¢ at a fixed point P of T, then

V7 (9,2) > é(ﬁ -

Moreover, if T = 1 or if P is a strong fixed point of 7, then equality holds if and

only if’
e (]) #0.

As a further application of (4.4.20), we can show that the t-orders of ¢ are
“generically” either (1,2,...,n) or (0,1,...,7—1).

Lemma 4.4.22. Assume that either char(k) = 0 or char(k) > deg ¢, and let J :=
(Fiseeordn) I1:=(1,2,...,n), then

J S
det<1>:H*§H11*/W
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IfI:=(0,1,2,...,n—1), then

n -1
det<> 1131 T Jy = Jm-

m=1

In particular, if ¢ is birational then

(1,2,...,m) ift=1,
J(o,7) =
.7 {(O,I,M,n— 1) otherwise.

Proof. Expanding the binomial coefficient, we have

7 ]1(]1*1) (y—m+1) ]1 3 VT
m m! m!

where the v, , are integers. Thus, we can write

(9) -y

where D, := diag(j,,/,,...,/n), D, := diag(1/11,1/2!,...,1/n!), and ¥ is an
integer matrix that is evidently equivalent by unimodular column operations to the
Vandermonde matrix ¥ = V (..., jx) whose (I,m)-entry is /7*~!. Since detV =
11,1 J; — Jm, the first formula follows, and the proof of the second is similar.
Now choose any point P € Py, let J(§)(P) = j;, ..., jn, and let ] = (1,2,...,n)
ift=1and (0,1,...,n—1) otherwise. Clearly, we have J($, T) > I by minimality
of I. Since j, is the order of a linear functional on P* at the point ¢ (P) on the
image of ¢, we have j, < deg¢. Thus, the above formulas and (4.4.20) imply that
H! is nonsingular, whence J(¢,7) <, and we therefore have equality. O

We call the projective map ¢ classical when J(¢) = 1,...,n. To construct
a nonclassical map to P2, let ¢ := (1,x,1?), where x is a separating variable,
K = k(x,y), and char(k) = p > 2. Then K/k(x,y?) is both separable and purely
inseparable, so K = k(x,y?). We may choose y ¢ K? so that y is also a sep-
arating variable by (2.4.6). In particular, dy/dx # 0. Moreover, D JHP) =0
for 1 < j < p. Now (1.3.14) implies that D Y3P) =0 for 1 <] < p, and
that D) () = (dy/dx)?. The matrix of Hasse derivatives with respect to x is
therefore

1 0 ... 0
x 1 ... 0
y 0 (dy/dx)?

It follows that the order sequence of ¢ is (0,1,p) and Wi(¢) = (dy/dx)?.
However, this particular ¢ is singular. See Exercise 4.5 for a more interesting
nonsingular example.

Finally, we obtain a powerful bound on the number of strong fixed points of 7
due to Stohr—Voloch [19]. The key lemma is



4.4, Weierstrass Points 133

Lemma 4.4.23. With the above notation, let P be a strong fixed point of 1, let
J(O,T) =t fisJaseesJn, and let J' 2= ji,..., j, be the orders of ¢ at P. Assume
that T(9) is not a K-multiple of . Then j, < j; — ji for 1 <I <n.

Proof. For any mteger sequence 1= zl, ., Iy, define 7~ : i27 g and IT =
0,1,y Put Ji= Jo—Hs-- ,]n 7 Slnce We are assumming that 1 =0, it
sufﬁces to show that J(¢,7)~ <J, or equlvalently, that J(¢, ‘c) <Jt.

Consider the map y := (l,tfz fl,m,tfn fl) : ]P’k(t) — P11, Since J is the or-
der sequence of y at (t), we have J(y) < J. Tt therefore suffices to show that
J(,7)” <J(y) or equivalently that J(¢,7) <J(y)T.

Multiplying by #1 yields the equivalent effective map v := (¢/1,62,... ,t%)
whose order sequence at (f) is J', and by (4.4.5) we have J(y) = J(y'). Hence,
the matrix

J/
H(y 1,1¥) :tﬂ< >r’<">*
(v Jw)*

is nonsingular. In particular, we get

e sy ) 20

Now (4.4.20) implies that H(¢,f,7)”®)" is nonsingular, and thus J(¢,7) <
J(y)T by definition of J(¢, 7). O

Theorem 4.4.24 (Stohr-Voloch). Let K /k be a function field of genus g, let T
K — K be a k-embedding, and let ¢ : Pr — P" be a projective map. Assume that
T(9) is not a K-multiple of ¢. Then the number of strong fixed points of T is at
most

Laea i (9,1) = (1+ €5 deg o 4 222 (..

Proqf. Continuing the notation of the previous lemma, we have shown that j, <
Jj—J; for 1 <1< . We conclude from (4.4.20) that

vp(W (8,0) 2 njy 2 n,

because 7| > 1 by hypothesis. Since every strong fixed point of ¢ divides W (¢, 7)
by (4.4.19), the theorem follows from (4.4.11).

We can specialize the above result to the case ¢ = ¢, the projective map
determined by L(D) for some nonspecial divisor D. In particular, we get

Corollary 4.4.25. Let K /k be a function field of genus g and let T: K — K be a
k-embedding. Then for any integer n > g, the number of strong fixed points of T is

at most
2 -1
| tdegtt <n+ egf) gl(g )
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Proof. We may as well assume that there is at least one strong fixed point, P, or
there is nothing to prove. Let d := n+g > 2¢+ 1. Then dimL(dP) = n+1 by
Riemann-Roch (2.2.9). Let ¢’ = (1,9],...,¢;) be a basis for L(dP) adapted to
the filtration

L0) CL(P) C .- C L(dP).

Note that deg ¢’ = d by (4.3.14), and that ¢’ is non-singular by (4.3.15). In partic-
ular, ¢’ is birational and thus 7(¢) is not a K-multiple of ¢ by (4.4.2). Moreover,
vp(9;,_;) > —d—+i for all i, with equality for i < d —2g by (2.2.9). It follows that
the map ¢ := (¢,)~'¢/ is normalized at P and the orders of ¢ at P are

L,20sd =28 =1, Jyggsensy — .

All we know about the last g — 1 orders 7 is that they are distinet integers in the
closed interval [7, 4], which yields the bound j} < i+g. Using (4.4.23) we have

n(n 1)

(7)< Z(/l - <ele-D+

Substituting this bound into (4.4.24) and simplifying, we see that the number
of strong fixed points of 7 is at most

<1+ de gf) dego+ 22 j(p,1)

IA

<1 + degr> (n+g)+M+ (g-D(n-1))
2g2(g

— 1tdegrt <n+ gT> O

‘We will apply (4.4.25) in Chapter 5 to prove the Riemann hypothesis for curves
over finite fields.

‘We conclude this section with an application to the automorphism group of a
function field, by which we mean the group Gal(K/k) of automorphisms that are
the identity on constants. We first prove

Lemma 4.4.26. Let K be a function field of genus g and let ¢ € Gal(K/k). If ¢
Jixes more than 2g+2 points of Py then o = 1.

Progf. By (4.4.19), o fixes only finitely many points. Let P be a point not fixed
by o. By Riemann-Roch, there is a nonconstant function x € L((g+1)P). Then
o7l (x) e L((g+1)P°), so x —o~}(x) and o(x) — x have pole divisors of degree
at most 2(g + 1). Since any fixed point of ¢ is a zero of 6(x) — x, the result
follows. ]
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For the remainder of this discussion we will assume that either char(k) = 0
or char(k) = p > 2g — 2. Let ¢ be the canonical map and let W := W (). Note
that by (4.4.11) and (4.3.14), deg = (g+ j(9))(2g —2). Then (4.4.22) yields
J(0) = glg—1)/2, whenee

degl = (g—1)g(g+1),

and for any point P we have

—1
mmzzmwfﬁ

The integer v, (W) is called the weight of the Weierstrass point P. From (4.4.17)
we get vp(W) < g(g—1)/2, and it follows that K has at least 2g+ 2 distinct
Weierstrass points. We claim that for g > 1, the subgroup of Gal(K /) that fixes
all the Weierstrass points has order at most 2, and in particular, that Gal(K /&) is a
finite group. If the number of Weierstrass points is greater than 2g+ 2 this follows
from (4.4.26).

If K has exactly 2g+ 2 Weierstrass points, then equality holds in (4.4.26) for all
1 and all Weierstrass points . Choose a Weierstrass point and call it 2... We have
J1(P) =2, whence 2 is not a gap number by (4.4.16). We therefore have a non-
constant function x € L(2P..), so K is hyperelliptic. Since char(k) > 2, (3.6.2) and
the remark following it yield K = k(x,y) with y* = f(x), where f(x) is a square-
free polynomial of degree 2g+ 1. Moreover, if the roots of f are {a,..., [ Ix
the ramified points of K /k(x) are the unique points P, dividing x — g, together with
P..Thus, (x —a,)~' € L(2P) for all i, and it follows that the Weierstrass points
are {Po,Py,..., Py 1 }. Any automorphism o acts on k(x), the unique rational
subfield of K of index 2. If o fixes P.. then ¢ acts on kx|, and it is easy to see
that 6 (x) = ax+ b for some a,b € k. If o also fixes x — g, for all i, thena = b =1
since 2g+ 1 > 2. So in this case, the group of automorphisms that fixes all the
‘Weierstrass points has order 2. We have proved

Theorem 4.4.27. Let K/k be a function field of genus g > 1 where either
char(k) = 0 or char(k) > 2g — 2. Then one of the following holds:

1. K has more than 2g+ 2 Weierstrass points and Gal(K/k) permutes them
Saithfully.

2. K has exactly 2g+ 2 Weierstrass points, and the subgroup of Gal(K/k)
fixing all these points is Gal(K /k(x)) for some x € K with |K : k(x)| =2.

In particular, Gal(K /k) is a finite group. O

For an example of a hyperelliptic curve (in characteristic 2 1) with exactly one
Weierstrass point, see Exercise 4.3.
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4.5 Plane Curves

In this section we apply our results on projective curves to the important special
case of plane curves. One reason for the importance of plane curves is that we can
always write a function field K as k(x,y) by choosing a separating variable x and a
primitive element y for K/k(x). This yields a map ¢ := (1,x,y) to P? with image
V such that K = k(V). Such a curve V' is called a plane model for K. In general,
however, ¥ may have singularities. Indeed, as we will see, there exist curves for
which every plane model is singular. For the remainder of this section we will be
assuming that ¢ is an effective map to P2, which, unless otherwise specified, will
be written ¢ = (1,x,y).

A line L in P? is just the set of zeros of a homogeneous linear form £ : = aXy+
bX, +cX,. Since V(£) is uniquely determined by the triple (a,b,c) up to a nonzero
scalar multiple, we often abuse notation by writing L = («: b: ¢). In this way, the
set of lines form another P? called the dual plane.

Recall that for a homogeneous polynomial g(Xy,X;,X,), the set of all points
of intersection of V(g) with ¥, together with their multiplicities, is given by the
divisor [¢], = [¢] +[¢*], and the intersection multiplicity of ¥ and V(g) at a point
a e P? is given by

(V@)= Y va(#le)
9

(P)=a

By (4.1.10), a plane curve V' is always the zero set of a single irreducible poly-
nomial f. If g is irreducible, then V(g) is another plane curve, and we might ask
whether the intersection multiplicity we have defined is symmetric in / and g
The affirmative answer follows from an important alternative description of the
intersection multiplicity, which we now derive. The starting point is

Lemma 4.5.1. Suppose S C R are k-algebras, R is an integral domain, andx € S.
IfR/S and R/ Rx are finite-dimensional, then dimy(R/Rx) = dim, (S/Sx).

Proof. Consider the inclusion diagram
R
S+Rx
N \ Rx

SNRx
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Multiplication by x induces an isomorphism R/S ~ Rx/Sx. It follows that R/Sx is
finite-dimensional, and thus

dimy (R/ (S+ Rx)) +-dimy, ((S+Rx)/S) = dim, (Rx/ (SN Rx))+dim, ((SN Rx) /Sx).
Moreover, we have

(S+Rx)/S ~ Rx/(SNRx), and (S+Rx)/Rx ~ §/(SNRx)
by the isomorphism theorems. Using these isomorphisms, we obtain
dimy (R/ (S+ Rx)) +dim, ((S+Rx)/Rx) = dim, (S/ (SN Rx))+dim, ((SN Rx) /Sx),
and the result follows. O

Theorem 4.5.2. Let V = V(f) be a plane projective curve with irveducible defin-
ing polynomidl f, let g = g(X,, X, ,X,) be any homogeneous polynomial, and let
a € VNV(g). Choosing notation so that X(a) # 0, let M be the image of I(a)
in the polynomial ring kX, ,X,] after specializing X, = 1, let A := k[X|,X,],; be
the localization at M, and let I be the ideal of A generated by f(1,X,,X,) and
g(1,X,X,). Then

(4.5.3) Ha(V(g)) = dim, 4/1.

In particular, if g is irveducible and {i,(V(f)) is the intersection multiplicity of
V(f) as defined on the curve V(g), then t,(V(g)) = fi,(V(1)).

Proqf. Letting g* := g(1,X,,X,) restricted to ¥ as usual, we have 4/(f) ~ &,
and 4/ (f,g) ~ 0./ Oag*. Let R, be the integral closure of &, in K := k(V). By
(4.3.2) and (1.1.17), we have dim, (R,/ 6,) < o and dim, (R, /Rag") < . We can
therefore apply (4.5.1) to conclude that

dimy (Ga/ O,g") = dimy (Ry/Rag®).

Let ¢ : Pr — V7 be the natural map, and let #” denote the set of valuations of
K corresponding to the points in ¢! (a). Define m(v) = v(g*) for v € #. Then
from (1.1.17) we have R, = K(¥;0), Ryg* = K(¥;m), and

dimy(Ra/Rag™ = 3, m(v) = 3, vp(e") = a(V(e). O
vey Pey1(a)

‘What happens when we specialize the above result to the case that g is a linear
form? In the first place, if we interchange the roles of f and g, we are applying
the theory developed in this section to a line L in the plane. Here, the natural
map (1,x,y) degenerates because there is a dependence relation a+ bx+cy = 0.
Choosing notation so that ¢ £ 0, we have K = k(x,y) = k(x). Since x has just one
pole and it is simple, degL = 1. Now (4.2.8) says that V() meets L in deg(f)
points, and we have proved

Corollary 4.54. IfV = V(f) is a plane curve, then degV = deg f. O
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‘We can make this more explicit by looking closely at a point 2 € ¥ N L. Trans-
late coordinates so that & = (1:0: 0) and let 7 := £(1,x,y) be the dehomogenized
defining polynomial. Then A4 is the ring of rational fumctions in x and y whose
denominators have a nonzero constant term, and / is the ideal generated by 7
and some linear polynomial bx + ¢y. To understand 4 /7, first factor out (bx +cy)
and put 4 := A4/(bx +cy). Then 4 is just the discrete valuation ring of rational
functions in one variable whose denominators have a nonzero constant term, and
(choosing notation so that ¢ = 0), the image of I in A is generated by the poly-
nomial f(x) obtained by substituting y = —bx/c in 7. Write f =: x°f(x), where
Jo(0) # 0. Then

dimg4/I = dim, 4/(f) = e.
We call e the order of vanishing of f at a along L. Then (4.5.2) specializes to

Corollary 4.5.5. Let V = V(f) be a plane curve, let L C P? be a line, and let
a e VNL. Then the intersection multiplicity of L at a equals the order of vanishing
of f at a along L. O

Recall from (4.4.14) that at each point P € Py the osculating filtration at P is
(9) =Ly (0) 2L, (1hP) 2Ly (,P) 20,

where {0, j, j,} are the orders of ¢ at P. This says that all lines through ¢ (P)
have intersection multiplicity j; at P except for the osculating line which has
multiplicity j,. The nonosculating lines at P are called generic at P. We say that
a line is generic at a point a € V' if it is generic at every point P € ¢! (). When
¢ is nonsingular at P, then generic lines have intersection multiplicity 1 and the
osculating line is called the tangent line.

Lemma 4.5.6. Let ¢ = (x,,%,,%,) be any plane map By — V C P2, and suppose
that ¢ is normalized and nonsingular at P. Let ay,a,,a, € k. Then the equation
of the tangent line to V at ¢(P) is ¥,a,X;, = 0 if and only if the following two
conditions hold:

Sax(P) =0,
i
dx;
—L(P)=0
g/ (P =0
where t is a local parameter at P.

Proof. Put £:=Y,a,x,. Then the first condition is equivalent to vz(¢) > 1. When
this occurs, expanding £ in a power series in ¢ and using (2.5.14) we see that the
two conditions together are equivalent to vp(¢) > 2. O

‘We next make the important observation, which is often taken as the definition,
that the partial derivatives of the defining equation give the coordinates of the
tangent line at all nonsingular points.
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Lemma 4.5.7. Let V = V(f) and put f,:= of/oX, for i = 0,1,2. If V is
nonsingular at a, then the tangent line at a is (fy(a) : f1(a) : f,(a)).

Proof. First of all, if f has degree d, then each f; has degree d — 1, so that
(fo(@) : f1(@) : f5(a)) is a well-defined point of the dual plane. Renumbering the
coordinate axes if necessary, we may assume that X, (a) # 0. As usual, we have
x:=X,/X,,y:=X,/X,, and the identity

S (X, X1,%)

=0.
Xy

(4.5.8) Fxy) =
Using the fact that f is homogeneous, we verify the identity
X, = deg(N)F,
i

from which it follows that the linear form

z AQ)

Xi-1(a) X

vanishes at @, and therefore £* := £/X;, vanishes at P. We next check that

T
=G = xa
5.9
(432 7, of S
Y= ay Xdl

This implies that £* = f(a) /X3! (a) + fe(P)x + J,(P)y. Differentiating, we
have d¢* = f(P)dx + f,(P)dy. However, differentiating (4.5.8), we have the
identity
(4.5.10) Fedx+ fydy =0,
which implies that v,(¢¢*) = 0. The result now follows from (4.5.6). O

Because the partial derivatives are all homogeneous of the same degree, the
map y(a) := (fo(a) : f;(a) : f5(a)) is well-defined at any point in the plane at
which at least one partial derivative is nonzero. Moreover, if K = k(V) and ¢ :

Py — V is the natural map, there is a well-defined projective map from Py to the
dual plane given by

(4.5.11) ¢ 1= o(Lnp) fi(1Lxp), (1,59,

whose image ¥ is called the dual curve. This yields a diagram

Pty

<
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that commutes wherever v is defined, namely at all points P € P, at which ¢ is
nonsingular. Note, however, that ¢ is defined at all points P & Py.

Some care needs to be taken here. In characteristic zero one can show that
the map ¢ is birational, and that when ¥ is nonsingular of degree > 2, ¥ has
degree d(d —1) and is in fact singular. In characteristic p, however, the situation
is trickier. See Exercise 4.5.

Changing topics, we turn now to a discussion of the adjoint divisor. Given
a plane curve ¥ = V(f) we let £ := f(1,%,5) be the dehomgenization of the
defining polynomial as usual, and we consider the differential form dx/ ]i,, where
fy:= 37/dy. Since this form depends on a choice of coordinates in projective
space, we first need to understand the nature of the dependence. Let X denote the
column vector (X,,X;,X,)" of coordinates in P2, and let 4 = a,, € GL(3,k) be a
nonsingular change of variable, so that X = AX’. Pulling back to the curve, we
have functions x' := X[ /X{, ¥/ := X3 /X; and z := X /X such that

2 =X/ X} = ago+ X' +ap,

x=X/X = %(”10*”11)‘/*”17)/)7

y=%/X= %(”zo +ayx +ayy).
Let /7 be the defining polynomial of ¥ in the X’ variables, so that /' (X) = f(X),
and let e:= degV = deg f = degf’. Then

W)

5 e
#f=z o

x5

The following result was pointed out by D. Zelinsky in a private communica-
tion:

Lemma 4.5.12. With the above notation, we have

D geray3 X
Jy 7

Progf. Suppose that X’ = 4'X”, where A’ is another change of variable. Since
det(44') = det(4)det(4’) and X, /Xy = (X,/X5)(X/XE), the formula will hold
for the change of variable A4’ provided that it holds for 4 and 4’ separately. It
therefore suffices to consider the following three cases:
Case I: x =axX' +by +c (a#0),y =),z = 1. From the basic equation
J(,y) = flax’ +by +¢,y), we obtain using the chain rule

7 v = afy,

Jry=bh+ 1
Since f7(¥,y") vanishes on ¥, we get

Fredd =—fay.
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Using the above, we compute

dx = adx' +bdy = ”{l(af/)/ —bf" )
Ky

@l
:aﬁ(f)/*bfx)
ax’ .

=},
5
as required. A
Casg 2rx = y’,y = )/,z = 1. This is immediate from the identity dx/fy =
—dy/ fx, since det4 = —1 in this case.

Case 3:x =1/¥,y =3 /¥ ,z =X . Note that det4 = —1 in this case as well. We
have f/(x',y) = x’°£(1/x',y/ /%) and thus f’)/ =¥, Since dx' = —x'%dx, the
result follows. ]

In the language of projective maps, making a linear change of variables in P*
amounts to replacing one effective map with an equivalent effective map. More-
over, if ¢ = (1,x,) and ¢’ = (1,¥',3) with notation as in (4.5.12), then [¢] =
[¢'] + [z] because the function z defines the line at infinity in the X coordinates.
‘We therefore have

Corollary 4.5.13. Let ¢ = (1,x,¥) be an effective plane map of degree e and let
f(x,y) be the minimum polynomial satisfied by x and y. Then the divisor

A)i= (e~ 3)lo] - H
v

depends only on the equivalence class of ¢. O

We call A the adjoint divisor of the map ¢ and we put 8(¢) := degA(¢). Fora
plane curve ¥ with natural map ¢, we write A(V) := A(¢) and (V) := deg A(V).
‘We want to show that A is nonnegative. To see this, it is convenient to make a
good choice of coordinates.

We say that a line L is generic withrespect to the plane curve Vif p,(V'NL) = 1
for all 2 € V"N L. This means that L is not tangent to V" at any point and does not
meet V" at any singular points.

Lemma 4.5.14. Let V be a plane curve. Then there exists a linear change of
coordinates in P2 such that if ¢ = (1,x,y) is the natural map in this coordinate
system then:

1. Thelines V(X)) (i = 0,1,2) are generic.
2. The points (1:0:0), (0:1:0), and (0:0: 1) are noton V.

3. Bothx andy are separating variables.



142 4. Projective Curves

Proof. Choose a point a, ¢ V. The set of all lines through a, (usually called the
pencil at a;) is the set of all points on a line in the dual plane. This line meets
the dual curve at finitely many points, which means that there are only finitely
many tangents to V" through ;. Since there are only finitely many singular points,
almost all lines through a, are generic with respect to V. Choose two distinct
generic lines L; and L, through a,, and choose a point @; # a, in L,\ V. Then
there is a generic line L, # L, through 4, that also misses every point of L, NV
Put a, := LyNL;, and choose coordinates X; so that L, = V(X)) (i = 0,1,2).

We now deal with the separability issue. Assume that char(k) = p > 0, and
recall that # € K is a separating variable if and only if # ¢ K7 (see (2.4.6)). We
have 1 € K2, and since K = k(x,y), we cannot have {(¢) C K2, but it may happen
that dim({¢) NK?) = 2. This means that there is a point b on L such that a
linear form £ vanishes at b if and only if £* € K?. To ensure that b # a;, we can
if necessary replace L, by another generic line on @, such that L, NL, ¢ V. A
similar adjustment is obviously possible in case b = a,.

‘We will refer to coordinates satisfying the above conditions as generic coor-
dinates, and a projective map (1,x,y) with respect to generic coordinates as a
generic map. Note in particular that if (1,x,y) is generic, the defining homoge-
neous polynomial f contains the monomials X;i with nonzero coefficients, which
means that f is monic in both x and y.

We next show that A(¢) is nonnegative and its support is precisely the set of
singularities of ¢. This result is basic to the theory of plane curves.

Theorem 4.5.15. Let ¢ = (1,x,y) be a birational plane map and let f(x,y) be the
minimum polynomial satisfied by x andy. Then vy(A(9)) > 0 for all Q € Py with
equality if and only if ¢ is nonsingular at Q.

Progf. Fixapoint Q € Pr. By virtue of (4.5.12), we may assume that ¢ is generic
and finite at 0. As noted above, this implies that 7 is monic in x and y. In particu-
lar, y is integral over [x] and f is its minimum polynomial over k(x). This means
that 7, = 5k(x) (). Sinee K = k(x,y) by hypothesis, the desired inequality follows
from (3.3.12).

Furthermore, if equality holds, we obtain &p[y] o= ﬁQ. However, if we put
a:= ¢(Q), then klx,y] C &, and P = P, Nk[x], where P, is the unique maximal
ideal of &,. It is therefore clear that Fp[y] € &,, and since P, = QN &,, we have
Oply] 0 € a as well. We conclude that 0, = 0, and thus ¢ is nonsingular at Q.

To complete the proof, assume that ¢ is nonsingular at @, put « := ¢(Q), and
let L, = V(£,) be the unique line on @ and @, := (0: 0: 1). Since ¢ is finite
at Q, wehave @ = (1: & : B) for some &, f € k. Then L, = (—or: 1:0) and
lgi= ZQ/X0 = x — a. Recalling notation from (4.5.8), we see from (4.5.9) that
Jo=f(Lxy) and fy = £,(1,%,3). By (4.5.6), v,(d€h) > 0 if and only if L is
the tangent line at @, which occurs if and only if the the point a, is on the tangent
line at a. Since d¢, = dx, (4.5.7) yields v (dx) > 0 if and only if ,(Q) = 0. Thus,
if v(dx) = 0 we have the required equality.
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What happens if vQ(dx) > 0? By the same argument with a; := (0:1:0)
replacing a,, we obtain vy (dy) > 0 if and only if £(Q) = 0. However, by (4.3.5)
both conditions cannot hold simultaneously, because ¢ is nonsingular at Q. We
conclude that if v (dx) > 0, then vy (dy) = 0 = v5(f5).

From (4.5.10) we get

Vo (dx) + vy ) = voldy)+ VQ(fy)~
Putting these together yields v,,(dx) = v( 7y), as required. O

Corollary 4.5.16. Let V be a plane curve of degree d and genus g. Then
d—1 1
= —=6(V).
g < 5 > 78

In particular, g < (d —1)(d —2) /2 with equality if and only if V is nonsingular.

Proqf. The formula is immediate from the definition of A, because [dx/f;] is
canonical of degree 2g — 2.

It is immediate from the above result and (for example) (3.6.3) that there exist
function fields with no nonsingular plane model. Indeed, we have

Corollary 4.5.17. Let K be a function field of genus g If K has a nonsingular
plane model, then g is a triangular number. O

A function # € K satisfies the adjoint conditions with respect to a plane map
¢ if [u], > A(¢). Such a function will be called an adjoint function. We proceed
next to a study of the adjoint fumctions. The first step is

Lemma 4.5.18. Let V be a plane curve with natural map (1,x,y). Assume that y
is integral over k|x|. Then

kx,y] = "{&ply] | P e Py and vp(x) > 0}

Proqf. Obviously, k[x] € 0, and thus k[x,y] C Op[y] for every P containing x.
Conversely, let K := k(x,y). Then every element « € K is uniquely a k(x)-linear
combination

n—1 .
O =Yy uy.

i=0
Because y is integral over &[x], {1,y,...,y" 1} is an &p-basis for &p[y] for every
prime P with k[x] C &p. Thus, u € Oply] implies u, € & for all i by uniqueness
of (x). Since k[x] = N{&, | x € P}, the result follows. O

For the remainder of this section we let V" be a plane curve with natural map
¢ = (1,x,y), function field K = k(x,y), minimum polynomial f(x,y), and we put
(V) := [dx/f,]. From (3.3.10) and (3.3.11), we see that the local conductor
Cp(y) is given by
Cp() = {ueK|vy () 2 v (AW)) (1 <i<r)},
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where P e ]P’k(x) and Q,..., 0y are the prime divisors of P in K. We therefore
define the conductor of V' as

C):={uecK|vy(u) > vo(A()) for all finite O}

This terminology is justified by Exercise 4.1.
Let R(V) denote the integral closure of k[V] = k[x,y] in K. Then

R() = {6, O finite}

by (1.1.8). It follows that C(V) is an ideal of R(V") consisting of all adjoint func-
tions in R(V), or what is the same thing, the set of all adjoint functions with no
poles in the finite plane. We see that all such functions lie in k[x,y]. In particular,
it follows that L({o(V)]) C kx,y]. By abuse of terminology, we will refer to ele-
ments of kx,y] as “polynormials.” By the degree of an element 4 € k[x,y] we mean
the minimal degree of a polynomial /#(X,Y) € k[X,Y] with &(x,y) = k. For any
nonnegative integer i, let A{V'], denote the set of all polynomials of degree at most
i

Note that L({@(V)]) is the set of all adjoint functions all of whose poles lie at
infinity and have order at most & — 3. This certainly includes all adjoint polyno-
mials of degree at most 4 — 3. Indeed, when ¥ is nonsingular, we have (V) = 0,
and a dimension count shows that

iy, s = (1)) g = dimi (o),

‘What happens in the singular case? The key fact that we need here is that a
polynomial all of whose poles have order at most @ — 3 in fact has degree at most
d — 3. This follows from

Theorem 4.5.19. Let V = V() be a plane curve of degree d in generic coordi-
nates with natural map (1,x,y), and let i € k[x,y]. If all poles of h have order at
most e for some e € I, then h has degree at most e.

Progf. Put K := k(V) and let {a;,...,a;} €V be the d distinct points at infinity.
Since (0:0:1) ¢V, we have g, = (0: 1: o) for distinct o, 0r,,..., 0, € k. Let
0, € Py with ¢(Q;) = a,. Then 1/x is a local parameter at Q, for all i, since x and
v have simple poles at 0,. It follows from the definition of ¢(Q) that if we put
¥y :=y/x, then ¢; = y, (Q,). This implies that the Laurent expansion of y at 0, is

y =03+ 0+ 0y (1/x) +,

where the higher-order coefficients c; are irrelevant. In particular, we conclude
that y — ;x is the unique linear function of x and y that has no pole at Q.
For h(X,Y) € k[{X,Y], we put 2* := h(x,y) € K. If degh = e, we can write

hX,Y) = ihj(X,Y),
=0
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where /1, is homogeneous of degree j and %, # 0. Fix an index i. If Yo, (t) = —e,
then v, (1*) = —e because v, (k) > —j for all j. Thus, if le(h*) > —e, We
conclude that 7, is divisible by ¥ — o, X.

It follows that all poles of / are of order less than e if and only if 4, is divisible
by the 4 distinct linear forms ¥ — X, 1 <i <d. This holds in particular for
7= f(X,Y) and e = d, because f* = 0, whence f;‘ is a sum of polynomials of
degree less than d. We conclude that

d
FiX. 1) = aJJ(¥ - o)
i=1

for some scalar o.

If now, by way of contradiction, % has degree e but all poles of #* are of order
less than e, we get i, = u(X,Y)f, for some homogeneous # of degree e — d, but
then

X, 7) = h(X,Y) —u(X, 1) (X,T)

has degree less than e and i* = * because f* = 0. This violates our definition of
degree and completes the proof. O

Corollary 4.5.20. With the above notation, C(V) C k[V], and
L)) = C) NV, -
In particular, a differential form @ is regular if and only if it is of the form

_poy)
7

[0}

where p(x,y) is an adjoint polynomial of degree at most d — 3.
Proof. From the definitions, we see that
CV)=n{Cp(») | P P and vp(x) > O}

Thus, (4.5.18) implies that C(V) C k[V].

By (4.5.16) and the definitions, L([@(V)]) € C(V). Since o (V) vanishes to
order exactly d — 3 at each point at infinity, every element « € L([@w(V)]) has
poles of order at most 4 — 3, and therefore degree at most 4 — 3 by (4.5.19). O

From (4.5.20) we see that the binomial coefficient in the genus formula (4.5.16)
is no accident. Namely, since there are no polynomial relations on x and y of
degree less than d, dimA[V],_; = (%3'). On the other hand, since the dimension
of L{{o(V)]) is g, we see from the genus formula that 8(V)/2 is the dimension of
the space of linear constraints imposed by the adjoint conditions on the space of
polynomials of degree d — 3. This is a version of the so-called Gorenstein relations
[9]. However, there is more to be said.
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Theorem 4.5.21. Let V be a plane curve with generic coordinates. Then
. . 1
dimy (R(V)/4¥]) = dimy (kV]/C(V)) = 56 (F).
Moreover, k[V] = k[V] ,_5 +C(¥).

Progf. Put L := L((d — 3)[¢]). This is the space of functions that are regular in
the finite plane and have poles of order at most 4 — 3. Thus, L C R(V), and since
we have generic coordinates, L Nk[V] = k[V'],_; by (4.5.19).

Note that deg((d — 3)[9]) = d(d —3) =2¢g -2+ 8(V). If (V') = 0, we have
C(V) = k[V] = R(V'), so we may as well assume that § (V") > 0, and thus (d — 3)[¢]
is nonspecial.

By (4.5.20), we have L([@(V)]) = LNC(V), and therefore, as discussed above,
(4.5.16) yields

3D _ dimy ¥ o/ (7], 5 NC07) = dimy (7], 5+ CO)/CP)
< dimgKY|/C),

O

with equality if and only if £[V'] = k[V],_5 +C(¥).
From the Riemann-Roch theorem and (4.5.16) we have
d—1 sV
dim L =d(d-3)-g+1= < ) > +¥,
8()

= dimg (k[V"],_5) + > 1,

because (d — 3)[¢] is nonspecial. Since LNA[V] = k[V'],_5, we get

sV
vy 2 = /@) = dim L R
< dim R(7)/K[V],
with equality if and only if R(V) = L+ k[V']. In fact, we claim that L+ k[V] is a
proper subspace of R(V). Namely, consider the k-linear functional

uh) = gReSQ, (ho),

where ® := @ (V) has poles {Qy,...,0r}. For i € L, ho is regular at infinity by
(4.5.16) and the definition of Z, and has finite poles only at the poles of @. Thus,
1[; = 0 by the residue theorem (2.5.4).

For 1 € k[V] we have

h
T e 7 € Klx]

Iy
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by (3.3.9), where f (x,») is the dehomogenized defining polynomial of V' as
before. Therefore, another application of the residue theorem gives

h
ResmtrK/k(x) (7;> dx =0,

where o is the unique infinite prime of k(x). Now the trace formula (3.1.5)
together with a final application of the residue theorem yields

uh) = ZResQ(ha)) Resaatry (%) dx =0.
y

Ol

We have shown that ¢ vanishes on L+ k[V], but by the strong approximation
theorem (2.2.13) there is an element /2 € R(V') such that /e has a simple pole at 0;
and is regular at Q, for i > 1, whence (%) # 0. We conclude that L+ k[V'] C R(V),
and therefore (+*) yields

sV
dimy(R0") k7)) = 2.

Comparing with (), we see that to complete the proof, it will suffice to show that
(%) dim (R(1)/C(7)) < 8(7).

For any divisor D, define

ID):={ucRW)|[u,>D}.

If t is a local parameter at Q and v, (D) = ¢, the map n(u) =t °u+ Q defines
a k-linear map 1 : I(D) — &, /Q =k with kernp = I(D + Q). It follows that
dim, I(D+ Q) < dim, /(D) +1 for any divisor D.

Now, if we choose a chain of divisors

0=Dy<D;<...< D =A{l),
where degD; =i, we get a corresponding chaln of ideals
R) =10) 21(D,) 2 - 2 I(Dy(p) = C),
and (x * ) follows. O

4.6 Exercises
Exercise 4.1. Let ¢ = (1,x,y) : P — ¥ be a generic projective map and let
Pe ]P’k(x) be finite.

(i) Let Rp denote the integral closure of &, in K, as in (3.3.10). Show that
Rp is the localization of R(V) at the set of prime divisors of P in K. [Hint:
(22.13).]

(ii) Prove that C(V) is the largest ideal of R(V) contained in k[V].
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Exercise 4.2. Let k be algebraically closed with char(k) # 2 and suppose that
K = k(x,y) where y? = f(x) for some square-free polynomial f(X) of degree d.

(i) If d = 2m is even, show that after a change of variable

Fo1/6-a), F-y/e-a)

for suitable a, we have 32 = f()?), where f is square-free of degree d — 1.
Changing notation, we may assume that d is odd. Replacing x by an additive
translate if necessary, assume in addition that f(0) # 0.

(i) Show that the map ¢ := (1,x,y) is nonsingular in the finite plane and
singular at infinity for 4 > 4.

(iif) Show that the change of variable % := x/y, § = 1/y yields a generic
projective map ¢ = (1,%,¥) with defining equation

g&3) 1= 7" — @/,

and that 413 is singular at exactly one point Q € P, namely where é(Q) =
(1:0:0).

(iv) Show that vp(E) = d -2, vp(§) = d, vp(dP) = d -1, and vylge) =
(- 1)d-2.

(v) Compute 8 (V) and then g using (4.5.16). Compare with (3.6.3).

Exercise 4.3. Let & be algebraically closed of characteristic 2 and let K = k(x,y)
with 32 4y = x8%1 for some positive integer g. Show that K has exactly one
Weierstrass point of weight (g —1)g(g+1).

Exercise 4.4. Let k; be a subfield of an algebraically closed field k. If /" <
ko[ Xy, X, X;] is homogeneous and irreducible over k, we say that ¥ := V' (f) is
defined over k. Let K := k(V') with natural map ¢ := (1,x,y). Let K, := ky(x,»).
We say that a point (a: b: ¢) € P? is defined over &, if {Aa, b, Ac} C k, for some
nonzero A € k. Show that if a point P € Py is defined over k, (see (3.2.7)) then
¢ (P) is defined over k,. Conversely, if ¢ is nonsingular at P and ¢ (P) is defined
over ky, show that P is defined over k.

Exercise 4.5. Let ¢ be a power of a prime p, let & be algebraically closed of
characteristic p, and let ¥ = V(X(‘)IJrl +X{”1 +Xg“) with natural map ¢. Prove
the following:

(1) ¥ is nonsingular. The dual curve ¥ has the same defining equation as ¥, but
the map ¢ of (4.5.11) is not birational.

(i1) Identify the points of K with their images under ¢. Then

9= ¥ ©:1:0).

pitl=—1
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(ili) As usual, put x:= X, /X, and y := X, /X, then
BMo= > (1:a:0), and

aitl=—1
[dx] = qly]o—2[0]-
(iv) The matrix of Hasse derivatives with respect to x is
1 0 0 ... 0
X 1 0 ... 0
y @/t 0 ... DOE)

[Hint: Apply D)(C") to the defining equation and use Exercise 1.13.]
(v) The order sequence of ¢ is 0,1, 4 and the Wronskian is

i —
W) = D00 =
(vi) There are exactly ¢> — ¢ points in the finite plane that are defined over
GF (g), and they are just the zeros of w:= quz —xyqz.
(vii) Each point at infinity is defined over GF(g?) and is a pole of w of order
g% — q. The zeros of w are all simple. [Hint: Let «:=1/x and v:= y/x.]
(viii) For any point P we have ¢ < j,(P) < g+ 1. Every Weierstrass point of ¢
has weight 1. [Hint: (4.4.21).]
(ix) The Weierstrass divisor is Ry = [w]o+[¢], the sum of all GF (g%)-rational
points of V.
(x) For ¢ = 3, ¢ is the canonical map and V' is nonclassical. The Weierstrass
gap sequence is 1,2, 4.
Exercise 4.6. Let ¢ := (@y,...,0,) be an effective projective map that is normal-
ized at P and let J(¢)(P) = (/... ;). Choose a local parameter f at P and let
hy j(P) be the scalars defined in (4.4.6). Show that the equation of the osculating
hyperplane at P is

X hOO(P) hOjg(P) hO// 0]
X, hoP) hy(P) hlj/ ‘P

det | ) ' =0.
X0 (P Ry (P) hnj/nil(P)

[Hint: Use (4.4.13).]
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Zeta Functions

In this chapter the ground field & will be finite of characteristic p and order g := p”,
and therefore, of course, perfect. We are interested in counting the number of
points of a function field K/k and all its scalar extensions, but for reasons that
will be evident shortly, we consider instead the related quantity

ag(n):=|{D eDiv(K) | D> 0and degD = n}|,

which, as we will show, is finite; and we define
Z(t) = Y, ag (myt".
n=0

Note that (1) is the number of points of K. As we will see below, Zy(f) has
radius of convergence 1/¢ in the complex plane and so defines an analytic func-
tion there, called the zeta function of K, for the following reason. Given any
nonnegative divisor D, define the absolute norm N(D) := q%8P, and put

Lels) = 3 N(D)™
D=0

The function §j bears an obvious resemblance to the classical Riemann zeta
function, and we have

Glo) = ioww ~ 7).
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In fact, the resemblance is more than superficial. We will show that {y (s) has an
Euler product representation

L@ = [T a-v@=)!
PeBy

and satisfies the functional equation
Gx(1—8) = NPk,

where N(C) = ¢%8x~2 is the absolute norm of the canonical class. Unlike the
Riemann zeta function, however, Z () turns out to be a rational function

L)

O =gy

where L (f) is a polynomial of degree 2g;. The main goal of this chapter is to
prove that the roots of L(f) are of absolute value q’l/ 2, which is equivalent to the
statement that the zeroes of {x (s) lie on the line R(s) = 1. This is of course the
analogue of the classical Riemann Hypothesis, and was first proved by Weil [23].
Our proof is due to Stohr—Voloch [19] and Bombieri [2]. As a consequence, we
get a very powerful estimate for the number of points of X.

5.1 The Euler Product

‘We denote by % the unique extension of & of degree » (see (A.0.19)), and for a
function field K/k we write K, for the unique scalar extension %, ®, K of K of
degree  (see Section 3.2).

Let P e Pp. If we choose a subfield k(x) € K with |K : k(x)| = m, then
deg P < m deg(PNMk(x)), so a prime divisor of K of degree at most # divides an
irreducible polynomial of k(x) of degree at most mn. Moreover, at most m distinct
primes P can divide the same irreducible polynomial. Since there are only finitely
many irreducible polynomials of degree at most mn, it follows that there are only
finitely many prime divisors of K of degree at most #. In particular, the infinite
product
(5.1.1) Zi(t) = T (1 -5y~

PePy
makes sense as a formal product of formal power series, and the coefficient of 1
is
ag(n):=|{D €Div(K) | D > 0 and degD = n}|.
Moreover, if 8 is an 7™ root of unity in the complex plane, the infinite product

IT (1 (o)t

PPy

also makes sense as a formal product. Here the coefficient of #* is a finite integral
combination of 7 roots of unity. We will shortly prove that (5.1.1) in fact has
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positive radius of convergence » = g~ in the complex plane. First, however, we
obtain an important relationship between Z (¢) and Z (¢), where X,, is the unique
scalar extension of K of degree 7. We need the following polynomial identity.

Lemma 5.1.2. Let d and n be positive integers. Then
(1 7tnd/(n)d))(ﬂ>d) _ H 1- (Gt)d,
on=1

where (n,d) := ged(n,d) and the product is over all complex n'™ roots of unity.
Proof. The basic identity is

(5.1.3) 1-= [ 1-ex

[
If 6 is a primitive 2™ root of unity, then y := 6 is a primitive /(n,d)™ root of
unity, and we have

11 17(9t)d:<

(nd)
1 7utd> = (1 -/ ead)ymd)
or=1 (nd) —1

/)

Givena prime P of K and a divisor Q of P in K,,, we have e(Q|P) = 1 by (3.2.3).
Let d := deg P. Then F}, is the unique extension of £ of degree d, and by (3.2.3)
it follows that F, = Fpky. Since k, NFp is the unique extension of & of degree
(n,d), we get deg Q = |Fy : ka| = |Fp: k(n)d)\ =d/(n,d) and f(Q|P) = n/(n,d).
Furthermore, if the number of primes Q dividing P is #, then # = ra/(n,d) by
(2.1.17), sor = (n,d). Now using the lemma we get

H (1 tndegQ) ( tnd/nd n.d) H 1_ (Ql‘)dA

[ede/lg =1
This implies that
ZKyL tn) _ H H (1 tndegQ) 1 _ H H (1 7(9t)degP)—1
5.1.4) PePy 0:0P Pely 67=1
=TT zc(81).
0"=1

Equation (5.1.4) is quite powerful, but to use it, we first need to show that Z ()
is a rational function. The Riemann-Roch theorem says that for large n, every
divisor class of degree 7 contains a nonnegative divisor. Since a () is finite, it
follows that there are only finitely many divisor classes of degree n for large .
But the divisor classes of degree n form a coset of the degree-zero subgroup, J(K),
of the divisor class group. We conclude that & := |J(K)| < . The integer A is
called the class number of K. We will drop the subscript when there is no danger
of confusion.

The next issue that arises is that the degree map may not be surjective. We will
prove shortly that it is, but for the time being we let » denote the index of the
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degree map in Z. So the number of divisor classes of degree 7 is zero unless 7 |
in which case it is equal to the class number /.

Finally, we count the number of nonnegative divisors in a divisor class. Since
x € L(D) iff D+ [x] > 0 and since [x] = [aex] for any nonzero scalar a, the
number of nonnegative divisors linearly equivalent to D is just the number of
1-dimensional subspaces of L(D). Namely, we have

(5.1.5) D' eD|D >0} =

'@ _1
q-1"

where D denotes the divisor class of D and /(D) := dimL(D). Since we have

dimL(D) =n—g+1 for n > 2g— 1 by Riemann-Roch, we have proved

Lemma 5.1.6. Let K be a function field over a finite field k of order q. Then the
Jacobian of K has finite order h, and if v denotes the index of the image of the
degree map Div(K) — Z, then for n > 2g — 1 we have

i U
a(n) = {h 71 ir|n, 0

0 otherwise.

It follows that Z (f) is a rational function. Namely,

nr—g+l 1

7= Y amyr+ Y L
nr<2g—2 nr>2g—1 q- 1
7 1
5.1.7) PO+ Y @y h Y
q- 1 nr>2g—1 q- 1 nr>2g—1
L{)

S A=) -y
where F(¢) and L(f) are polynomials.
Theorem 5.1.8. Let K be a function field over a finite field k of order q. Then the
degree map deg : Div(K) — Z is onto.! Thus,
L(t
(5.1.9) Z(0) = %
Jfor some polynomial Ly (t).

Proof. Let r be the index of the image of the degree map as in (5.1.7) above. We
have Zg(81) = Z,(¢) for 8 an ™ root of unity, so (5.1.4) becomes

() Zy (1) = Zg ()
There are infinitely many prime divisors of K, because at least one prime of K

divides each prime of k(x) and there are infinitely many prime divisors of k(x).
This implies that infinitely many coefficients in the power series expansion of

In general, the degree map is not onto. See Exercise 5.3.
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Zy(t) around t = 0 are positive. Since all coefficients are nonnegative, Z(f) di-
verges at t = 1, and therefore Zy (f) has at least one pole in the unit disk. By ()
Zy (t") has a pole of order at least . On the other hand, (5.1.7) shows that all

poles of Zx(¢) are simple, and therefore the poles of Zg (t") are simple as well.
We conclude that » = 1. ]

5.2 The Functional Equation

Now that we know the degree map is onto, the formula for a(n) is simplified, and
Wwe call prove

Theorem 5.2.1. Let K be a function field over a finite field k of order q. Then
Ly (1) = hy. Moreover, the zeta function satisfies the functional equation

1
Ze() = #7427, <—> .
qt
Progf. For g =0wehave 1 =1 and [(D) = degD+ 1 for all D > 0, whence
g 1 g 1
1) = 4
Z(0) = nzf) q— q 1<1—qt 1—t>

B 1
Ty

and the theorem is easily verified in this case. For g > 0 we let D denote the divisor
class of D, and we let . 1= {D| 0 < degD <2g —2}. Then

oo n—g+1 _1
Z=3 g tdegD+ y hqilt”
pes 9 n—tg-1 94—
g &
(5.2.2) D A e S M
qleey -1, 9-1,%
Y gomn M (1Y
q — 1 e g—1\ 1—gt 1-¢

Using L (t) = (1 —1)(1 —qt)Zg (), (5.2.2) yields L (1) = h
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‘We verify the functional equatiown for the sum over the low-degree divisors
using the full strength of the Riemann-Roch theorem:

72 ql(D) (qt)—degD _ 72 qdengngIJrl(C—D) (qt)— degD

Des Des

_ (qt)Z—Zg z qdengnglJrl(C—D) (qt)deg(C—D)
C-Des

_ (qt)Z—Zg z qdegDereg(C—D)ngrl+I(C—D)tdeg(C—D)
C-Des

_ (qt)Z—Zg z qg71+l(D)tdegD
Des

ql th 2g z l] tdegD

bes

where C is a canonical divisor, and we have used the fact that as D ranges over all
nonnegative divisors of degree at most 2g — 2, so does C — D. We therefore have

- h 1) -2 1
z q (qt) degD | <qg(4)q _ 1>
g1\ 1-% "1-%
ql gfz Zg z 1(D) degD | h qt 7‘]17‘%272“’7
ey q—l 1—gt 1-—¢
g 1 T ho(ggrEl 1
lDey g—1\ 1-qgt 1-t¢

= qlfth*ZgZK(t)A O

qt

Making the substitution = ¢, we immediately get
Corollary 5.2.3. If C is the canonical class, then
Lxls) = NP 124 (1—9). O
For the numerator of the zeta function, we have

Corollary 5.2.4. L (t) satisfies the functional equation

Ly (f) = ¢%i%8Ly, <%> .

In particular, deg L (f) = 2g and if L () = Z?ﬁo at’, then

Aypi= ¢ la, foralli

Progf. The functional equation for Ly (f) follows easily from (5.1.9) and the
functional equation for Z (f). From it we get

n n n
St =Y alg) = Y T
=0 =0 =0
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This implies that # = 2g and that @,¢*~/ = Qs for all 1. O

Corollary 5.2.5. There exist algebraic integers {a,. .., tng} such that

2g
L) =TJ(1 - ap)
i=1
and AR gfor1 <i<g

Proof. From (5.1.9) we have Lg(t) = (1 —£)(1 — gt)Zg(t). It follows that L (f)
has integer coefficients and constant term equal to 1. By (5.2.4) the leading coef-
ficient of L (f) is . Thus, the reciprocal polynomial is monic with constant term
g8, so we can write Ly (f) = H?ﬁl (1 — ;) where the «, are algebraic integers and
H?ﬁ 1 0 = g8. Now the functional equation yields

1 2% o

Ly(t) = 1Ly <a> akial! <1 - a)
! o (-4
G (S )F

This means that every a; is equal to some ¢/¢,. The problem is that we might
have i = j, that is, txl.z = ¢. However, since degL(f) is even, the total number of
such «; is even, and since the product of all the ¢ is positive, the number of ¢
equal to —. /g is even, and therefore so is the number equal to +, /7. This implies
that notation can be chosen so that iy s1 =49 for all 1. O

Corollary 5.2.6. Let L (t) =TI (1 —of). Then Ly (1) =TI, (1 — o).

Progf. This is straightforward using (5.1.4) and the identity (5.1.3). O

5.3 The Riemann Hypothesis

We now prove that the zeros of Z, () have absolute value q~1/2. Note that |¢*] =
¢~ %) 50 we are proving that the zeros of i () all lie on the line R(s) = %

Corollary 5.3.1. The Riemann Hypothesis holds for K if and only if it holds for
some scalar extension K.

Proqf: Since the zeros of Zy (f) are just the #™ powers of the zeros of Zg(f) by
(5.2.6), we have || = ¢1/2 if and only if |o?| = /2. O
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We next compute the logarithmic derivative of Zy (f):

Ze) ¥ —q 1
Lrlt) 1= KL = g
x(0) Zy () Z{lfaiﬁrlfﬁrlfqt

oo 2
_ z 1+qn+1 _ al_n+1 i
n=0 i=1

q

(532)

Equating constant terms, we have
2
(5.3.3) () =14+g-Y .
i=1

More generally, define

22
be(n):=1+4" -3 o
=1

From (5.2.6) we have by (n) = ag, (1). Summarizing all of this, we have proved

Theorem 5.3.4. Let K be a function field over afinite field k of order q, and let

2z
Ly (t) = ]1(1 — ).

Then
Zyo 1 1 ZE g c
=t — > —L =% nHe*
Zx(®) [Er— Z{lfait ,Z;) x( D,
2
where by (n) = ag (1) =1+¢" - Y of. O
i1

Define %5 () := Zi(t)/Zx(¢). Then it follows that the Riemann Hypothesis is
equivalent to an apparently weaker inequality:

Corollary 5.3.5. With notation as above, the following statements are equivalent:
1L |og) = g\/? for alli.
2. There exist constants Cy,Cy such that |ag (1) —q"| <Cy+C) q"/2 for almost
all positive integers n.

q
1—gt

3. The radius of convergence of £y (t) — is at least q’l/z.

Progf. 1t is obvious that 1) implies 2). Assuming 2) and using ay, (1) = bg(n),
we get

q Cy C
) - ——|<fO+——+—7
|2 (6) l—qt‘*f() 1=t 1%
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for some polynomial f(f), and 3) follows. From (5.3.4) it is immediate that the
radius of convergence of Z(f) —

i i] ; is min,| 4| 7!, Thus, assuming 3) we

have |o;| < ¢/2 for all i. However, since O, ;1 = qby (5.2.5), we see that 3)
implies 1). O

Our approach to proving the Riemann Hypothesis for K will be to count the
points of K, for all sufficiently large 7 and show that 2) holds above. We re-
fer to points of K, as “k,-rational points.” The key upper bound is provided
by the Stdhr—Voloch theorem (4.4.24). Then a Galois-theoretic argument due to
Bombieri [2] converts the upper bound to a lower bound.

Before proceeding further, we need to discuss the Frobenius map. Let & denote
the algebraic closure of k. Recall that by (3.2.5), K := k®, K is a field, whose full
field of constants is obviously k. By (3.2.6) the points of K, can be identified with
the points of K that are defined over k, for any positive integer .

Let f,: K — K be the g"-power map, where [k| = ¢, and let f = f 1= 1®f, :
K — K. The map fis an isomorphism of K into itself which is called the Frobenius
map. Note that because X is defined over £, § is the identity on scalars. If we extend
scalars to kn, we have K, = K, and the resulting Frobenius map is obviously just
*. We let f act on the points of K as defined in Section 3.5. Recall that if P is a
point of K and x € K, then x(P) denotes the residue class of x mod P.

There is some subtlety involved in the definition of f. Note that there is an
obvious action of Gal(k/k) on K via ¢ — o ® 1, which works over any field . In
particular, the usual Frobenius automorphism of & acts on K this way, but this is
#tot the map f defined above. Also note that f is different from the g™-power map.

Lemma 5.3.6. Letf f = f be the Frobenius map and let Q € Pr. Then of=0ir
and only if Q is defined over k.

Proof. Let x € 0, NK. By definition, we have (0N = 1(x)(Q) = x(Q)?. Tt fol-
lows that if OF = Q, then x(Q) € k for all x € 0o NK. Putting P := QNK, this
means that deg P = 1, and hence @ is defined over & Conversely, suppose that 2
is a point of K. Since f(x) = x? for all x € K, it follows that ™1 (&) = 65, and
thus Pf = P. Since P is a point, (3.2.6) implies that { is the unique point of K
containing P, and therefore Of = Q. O

We next consider a finite extension K’/ k of K/k? Then there is a natural inclu-
sionK C K. Since fg is the identity on scalars and restricts to the g™M-power map
on X', it agrees with f5 on K.

Suppose, in addition, that X'/K is Galois. Then every automorphism o €
Gal(K'/K) extends to an automorphism 1® ¢ of K’ = k®, K’ that is the iden-
tity on K. Since the 1 ® ¢ are all distinet, we have |[K" : K| > |K’ : K|. However,
if {uy,...,us} is a K-basis for K', then {1 ®uy,...,1 @ u,} certainly spans
K'/K, so that |[K’ : K| = |K’ : K|. Thus, the map ¢ + 1 ® ¢ is an isomorphism

2Recall that the notation X' /k means that & is the full field of constants of K'.
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Gal(K'/K) ~ Gal(K"/K). By abuse of notation, we will identify these two groups
in this way. This in fact identifies all the groups Gal(K},/Ky).

Fix a positive integer #. Let Q be a point of K’ dividing the point P of K such
that P is defined over 4. In general, Q may not be defined over &, so an will be
another point dividing P. By (3.5.1) we have 0f' = Q° for some o € Gal(K"/K).
We call o the Frobenius substitution at the point Q. Note that ¢ depends on 7.

We are going to count all the points of K’ lying over some k;-rational point of K,
counting separately those points with a given Frobenius substitution. Therefore,
for function fields X’/k 2 K/k with Frobenius map f and an automorphism ¢ €
G := Gal(K'/K) we define

Py(K'/K,0) := {0 € P | e(Q|QNK) =1 and 07" = 0°}.

Note that if Q € P, (K’ /K, 0) for some o, then QNK is defined over k, by (5.3.6).
Since only finitely many points of K are defined over %y, the sets P, (K’ /K, 0) are
finite, disjoint, and their union is the set of all points 0 PF such that 0 NK is

defined over &, and is unramified in X7.

Put pu(K'/K,0) := |Po(K'/K,0)|. Since k is algebraically closed, the number
of points Q € PF dividing a given P is |K’ : K| by (2.1.17). Moreover, the total
number of points P € P, that are ramified in X’ is finite by (2.4.9), regardless of
the extension of & over which they are defined. It follows that

\ ZGpn(K’/Kﬁ) —|K": Klag, (1) <
o€

for some constant C’, or in other words, we have proved

Lemma 5.3.7. With the above notation, there exists a constant C independent of
n such that

1
lag, (1) - = > &' /K, 0)|<C. O
‘G‘ oG

‘We are now ready for the main part of the proof.
Lemma 5.3.8. With the above notation, suppose that
Kl =g = p” > 4gh (g — 1)

Then pm(K'/K,0) <1 +q’”+2gK/q’”/2for all 6 € G and all positive integers m.
Proof. Fix 6 € G and a positive integer m, and put 7 := f*c~!, where { = fx is
the Frobenius map. Then P,,(K'/K,0) is just the set of fixed points of 7 on P__

= - X
that are unramified over K. Note that T(K’) = (K7)¢", from which it follows that
every fixed point of 7 is in fact a strong fixed point. It is also clear that T(¢) is not
a scalar multiple of ¢ for any nontrivial projective map ¢. Thus, the hypotheses
of (4.4.24) are satisfied. Since deg(7) = ¢™, the result now follows by applying
(4.4.25) with n = p™ = g™/2 | O

With (5.3.8) in hand, it is not difficult to complete the proof of the Riemann
Hypothesis.
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Theorem 5.3.9 (Weil). Let K be a function field over a finite field k of order q, and
let L (t) = H?ﬁl(l —ot) be the numerator of its zeta function. Then |o,| = g2
foralli.

Progf. Choose x € K so that K/k(x) is separable (see (2.4.6)). The extension
K/k(x) may not be normal, but there is a Galois extension K’ /k(x) with K C K’
by (A.0.12). The full field of constants &’ of K’ may be a finite extension of %, but
using (5.3.1) to extend k to k" and change notation if necessary, we may assume
that &’ = k. We may further assume that ¢ is large enough to satisfy the hypotheses
of (5.3.8).

Let G := Gal(K'/k(x)). Then K'/K is Galois with Galois group H := G by
(A.0.16). Let n be an arbitrary positive integer. Applying (5.3.7) to both extensions
yields constants C and C} such that

1 ,
(5:3.10) 5,01 g7 2, 2o /K9, 0) <€,
ceG
and
1 ,
(5.3.11) \”Kn(l)*‘m Y m&/K,0)<Cy.
cEeH

Note that trivially \akn(x)(l)\ = ¢"+ 1. So (5.3.10) says that the average value
of pu(K'/k(x),0) over all o is about ¢". Since each term of this average is less
than ¢* plus a small amount by (5.3.8), it follows that each term is in fact close to
q". More precisely, put d := |K’ : k(x)| = |G| and g := gz. Then for each 7 and
each o, (5.3.10) yields

Pu(K'[k(x),0) +(d — D(q"+1+224"%) > 3 palK'/K(x),7) > d(g"+1-C),
T€CG

whence
(K [k(),0) 2 ¢" — (@~ D)(1 +2¢"%) +-d — dC.
It follows that
(5:3.12) |pa (K /k(x)),0) — g"| <4+ Bq"?,
for constants 4 and B independent of 7.
Note that for ¢ € H, the sets Py (K'/k(x),0) and P, (K' /K, 0) are essentially
the same, differing by at most a finite number of points (independent of #) that are

ramified over &(x) but not over K. But now it follows from (5.3.11) and (5.3.12)
that there exist constants 4’ and & independent of # such that

lag, (1) - ") <4 +B'q"*
for all n > 1, and the theorem follows from (5.3.5). O

The above argument is essentially identical to [2] and also appears in [16]. For
a variant, see [17]. The immediate corollary of (5.3.9) is the following important
estimate for the number of points:
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Corollary 5.3.13 (Weil). Let K/k be afunction field of genus g over a finite field
kof order q. Then |ag (1) —q — 1| <2gq"/%. 0

5.4 Exercises

Exercise 5.1. Compute the zeta fimction of the function field of the elliptic curve
Y24y = x4 1/x over GF(2).
Exercise 5.2. Lot k:= GF (3) be the field with three elements, and let X := k(x,y),

where 32 = 2(x* — x)24-2. Show that K has 1o k-rational points, but the image of
the map {1,x,y} has one k-rational point. Explain.

Exercise 5.3. Let & be the real numbers, and let X := k(x,y), where ¥ =—xt—
(x —1)*. Show that every prime divisor of K has degree 2. Thus, K is a function
field of genus 1 with no divisor of degree 1.

Exercise 5.4. Let k:= GF(g) and let K := k(x,y), where x7t1 43471 — _1 (see
Exercise 4.5). Show that the Weil upper bound (5.3.13) for the number of points
of K over GF (¢?) is sharp.

Exercise 5.5. Let k:= GF(p") and K/k be a function field of genus g with p >
2> 3. Let N be the number of points of X.

(i) Let ¢ : P — P21 be the canonical map, let f be the Frobenius map, and
let j;,..., Jq be the f-orders of ¢. Show that j, = g — 2. [Hint: (4.4.9) and
(4.4.22).]

(ii) Assume that ¢ is classical. Apply the Stéhr—Voloch theorem (4.4.24) to
conclude that

N<2g+g(g—1).
(ili) For what values of ¢ and g is this bound better than the Weil upper bound
(5.3.13)?

Exercise 5.6. Let k:= GF (g), where ¢ = p™, and let n be a positive integer. In
this exercise we obtain a direct proof of the Riemann Hypothesis for the Fermat
curve
Vi=V(XJ+XT+X3)
with function field K = k(x,y), where x* +y" = 1. Let E(n) := ax(1) — g — 1 be
the error term. We will obtain a formula for E () in terms of roots of unity.
(i) Show that g = (n —1)(n — 2)/2. Thus, the Riemann Hypothesis asserts
[E@)] < (n—1)(n—2)\/q.
(ii) Let d := ged(m,n). Show that E(n) = E(d). In particular, E () = 0 when
m and n are relatively prime. For the remainder of the exercise, we assume
n|m.
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(ili) By a character of a finite abelian group G we will mean a homomorphism
X : G — C*. The characters of G take values in the roots of unity and form
a group under pointwise multiplication. We will repeatedly use below the
fact that the 2™ roots of unity sum to zero for any # > 1. By convention, we
extend characters of £ to all of £ via x (0) := 0.
Let ¥* = {x" | x € k*}, and note that 0 ¢ £*. Let x € k™. Show that

> oxlx) =

=1 0 otherwise.

{n ifx ek,

Thus, we have

Hey) e kxk|x+y =1} =20+ 3 ¥ m@nd)

utv=1 yr=1=x%
ko 11 2

(*)
=+ Y Jn.x),
==

Si=y2
where

J %) 1= 2;(%1 )2 (1—x).

(iv) Show that for x # 1 we have J(x,1) = —1.

(v) Let & be a primitive p root of unity and let T be the character of the
additive group kT defined by

T(x) k/k
where ky := GF (p). For any multiplicative character y, define
&) = Y x(x)7().
x€k

Show that
(+4)
8x)e(ny) = Z H @)X =) T() + Z%l (@) 2, (~)
V#O
= VZ, 1Mt M x W) (1 —w)T(v) +z%1 ()25 (—1)
vio *

K(-Dg-1) ifxx,=1

= J
=820 (1, %) + { otherwise.

(vi) Show that g(x) = x(—1)g()) for all . Conclude from (+*) that |g(x)| =
/g for all ¥ # 1, and that [/(%1,%2)| = /g for all ¥y, x, with %3, # 1.
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(vii) Show that V" has 7 points at infinity. Now use (*) to obtain
Em=(@m-1)n-2) ¥ Jl.xn),

0 FLa#l
K27l

and the desired bound follows from ().
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AppendixA
Elementary Field Theory

Many, if not most, of the results in this chapter are standard in an elemen-
tary course on field theory, but we include them here anyway for the sake of
completeness.

Recall that if K C K are fields, then X’ is naturally a K-vector space, and we
say that K'/K is a finite extension when K" : K| : = dim, (K’) is finite. Let K /K
be a finite extension with x € K’, and let My, /K(u) denote the K-linear trans-
formation K’ — K’ defined by x +— ux. Then we define the frace and norm via
trK//K(u) = trMK//K(u) andNK//K(u) = detMK//K(u). It is evident from this def-
inition that try, K is a K-linear map from K’ to K, and that Ny K is a multiplicative

homomorphism from K'* to K*.

Lemma A.0.1. Suppose that K' /K is a finite extension of degree n, V is a K'-
vector space of dimension m, and A:V — V is a K'-linear transformation. Then
V' has dimension mn over K, and

trK(A) = trK//K(trK/ (A))7
detye(4) = Ny (dety, (4)).

Proof. Let {x,...,%,} be a K-basis for K" and let {e|,..., ey} be a K'-basis for
V. It is routine to verify that {xl.ej [1<i<n1<j<m}isaK-basis for V. The
matrix of 4 with respect to this basis has block form M(a,,), where e, =¥, a,e,
for scalars a,, € K’ and M (a) is the matrix of multiplication by a with respect to
the basis {x;,...,%,}.

The trace formula is now immediate. To get the determinant formula, reduce 4
to upper triangular block form by performing unimodular elementary row opera-
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tions over K’, which do not change the determinant over either field. Then reduce
each block separately by unimodular row operations over X, and the determinant
formula follows by inspection. O

Taking ¥ above to be a finite extension K" /K’, we have the following corollary:

Corollary A.0.2. Suppose that K C K' C K" are three fields, and |K" : K| < =
Then

K" :K|=|K":K'||K: K],

trK”/K = trK//KOtrK”/K/’

NK”/K = NK//KONK”/K/‘ ]
Corollary A.0.3. Let |K': K| = n, and let u € K’ with minimum polynomial
JOO == X" 4 Sl a X Pat ko= |K' 0 K ()|, then g (w) = ka,_, and
NK//K(u) =dk
Proof. The point is that the characteristic polynomial of MK@ /K(u) has de-
gree m = |K(u) : K|, has coefficients in K, and is satisfied by u, so it is
equal to f(X). Hence detMK(u)/K(u) = a, and trMK(u)/K(u) =a,_;. It is triv-
fal that tre, g, (u) = ku and N, = u*. Using (A.0.2) we have trK//K(u) =

O

K/ [K(w)
trK(u)/K(ku) = ka,, , and NK//K(u) :NK(u)/K(uk) =af.

The following lemma is often useful for computing the trace.

Lemma A.0.4. Let |K' : K| = n and let u € K'. If the roots of the characteristic
polynomial ofMK//K(u) are = uy,... U, and f(X) is a rational function with
coefficients in K that is defined at each u,, then

@) = 3 7).

Proof. There exists an invertible matrix 4 with entries in some extension field
of K such that U := A’IMK//K(u)A is upper triangular with #;,...,u4, on the
diagonal. Then p(U) = A7 M,, /K(p(u))A is an upper triangular matrix with
p(uy),...,p(us) on the diagonal, for any polynomial p(X) € K[X]. Let f(X) =:
g(X)/h(X) where g(X) and /(X) are relatively prime polynomials. Our assump-
tion s that Ai(s,) # O for all i, whence A(U) is invertible and #(U)~! is also upper
triangular with (u; )., (i) ™" on the diagonal. We conclude that

AflMK//K(f(u))A =g)U)!

is upper triangular with f'(x,),...,f(us) on the diagonal, and the result follows.
O

The trace map turns out to be particularly useful because we can use it to define
a bilinear form: Given a finite extension K’/K, define

(XJ/)K//K = trK//K(Xy)~
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We want to know when this form is nondegenerate. The answer involves the
notion of separability.

Recall that an element # algebraic over K is separable over K if its mini-
mum polynomial over K has distinct roots, and an extension K C K’ of fields
is separable if every element of K’ is separable over K.

Lemma A.0.5. Let K be a field. An irreducible polynomial f(X) € K[X] has
a repeated root iff f(X) = g(XP) for some irveducible polynomial g(X), where
p = char(X).

Proof. Over some extension field we have

760 =TI -,

hence

-S4

If 1 (X) #0, it follows that @, is aroot off'(X) iff it is arepeated root of £(X), and
that g(X) := ged(F(X), (X)) will be nonconstant iff f(X) has a repeated root.
‘We conclude that the only way an irreducible polynomial can have a repeated root
is for /7 (X) to be identically zero. This is easily seen to occur if and only if f(X) =
g(XP) for some (necessarily irreducible) polynomial g, where p = char(K). [

Notice that if every coefficient of a polynomial g(X) € £[X] is a p™ power in £,
then g(X?) = g (X)? for some polynomial g;, and therefore g is not irreducible.
In general, the map x — ¥ is an isomorphism of K into itself. We say that X is
perfect if this map is onto, or if char(X) = 0. Note that finite fields are perfect,
because they are splitting fields of polynomials X?* — X, and algebraically closed
fields are certainly perfect. The following corollary is immediate.

Corollary A.0.6. Suppose that K is perfect. Then every irreducible polynomial
over K has distinct roofs. |

If K’ and L are extensions of K, we say that a map K’ — L of fields is an
embedding of K'/K into L if it restricts to the identity map on K.

Lemma A.0.7. Let K’ be an extension of K and let {0y,...,0,} be distinct em-
beddings of K' /K into some extension of K. If {ay,...,a,} CK with ¥, a,6,(x) =0
Jorallx € K, then a; = 0 for all i.

Proof. Proceeding by way of contradiction, assume that there is a non-trivial de-
pendence relation with notation chosen so that @, = 0 for > m and g, # 0 for
i < m. We may further assume that m is minimal among all possible non-trivial
dependence relations, and we note that m >2. Choose u € K’ with o, () # o, (u).
Then for all x € K’ we have

O:i‘ia L (ux) = Za (1) 0,(x).
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However, we also have

0=0;(u) iaiai(x)

Subtracting these two relations gives a shorter nontrivial dependence relation on
the o, which is impossible. |

Theorem A.0.8. Let K’ be a finite extension of K. Then the following conditions
are equivalent:

1. K is separable over K.
2. K' =K(uy,...,uy), where each u is separable over K.

3. The number of distinct embeddings of K' /K into a fixed algebraic closure
K of K is equal to |K' : K|.

4. The trace form (,) /x Is nondegenerate.
5. The trace Ty K is nonzero.

Progf. 1=2: Trivial.

2 = 3: This is a standard argument, the point being that given a root « of
an irreducible polynomial f(X) in some extension K’ of K, we can extend any
embedding ¢ : K — K’ to a (unique) map K[X] — K sending X to «. The kernel of
this map is the ideal generated by f, so we have extended ¢ to an isomorphism ¢, :
K[X]/(f) — K(u). Let i : K — K’ be the inclusion map. Then for any embedding
¢ : K — K and any root 7 of f in K the map ¢ 0 (i)' : K(#) — K is an extension
of ¢ mapping u to 4. If f is separable, then there are deg /' = |K(u) : K| distinct
embeddings extending the identity map, because f has deg f distinct roots. If v
is a root of some other separable irreducible polynomial over K, then v is also
separable over K (1), so we get |K (u,v) : K ()| distinct extensions of each of the
embeddings of K (). By an obvious induction argument, we have |K’: K| distinct
embeddings of K/K into K.

3=4: Let {u,...,4p} be a K-basis for X', and let {0y,...,04} be the
distinct embeddings of K'/K into K. We claim that the matrix D := (0;(¢,))
is nonsingular. If not, there exist elements a, < K, not all zero, such that the
K-linear transformation ¥, 4,0, vanishes at #; for all j and therefore vanishes
identically on K’, contrary to (A.0.7). We conclude that D is nonsingular, hence
sois DID = trK//K(ul.uj), as required.

4=5: Trivial.

5=-1: IfK’isnot separable over K, then there exists an element # € K'\ K
whose minimum polynomial, f(X), has a repeated root. By (A.0.5), char(K) = p
and f(X) = g(X?) for some irreducible polynomial g(X). Let v =« and E =
K(v). Then » has minimum polynomial X? —v over E. Calculating with respect
to the basis {1,4,42,...,4°~1} and noting that trE(u)/E(l) = p =0, it is easy to
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check that tr,, /5 (') = 0 for all i, whence WyiE = 0. By repeated application
of (A.0.2), try, K factors through g y/m and is therefore zero. |

We say that K’ /K is purely inseparable if char(K) = p > 0 and for every u € K’
we have #¢ € K for some power g of p. In this case, # is a root of X¢ — a for some
a € K, which factors over K (1) as (X — u)7, so « is the only root of its minimum
polynomial.

Corollary A.0.9. Let K’ /K be finite. Then the set of all elements of K' separable
over K form a subfield K}, that is separable over K, and the extension K' /K] is
purely inseparable.

Proof. Since the subfield of K’ generated over K by any finite set of separable
elements is separable over K by (A.0.8), the finiteness of |K’ : K| implies that
there is a maximal separable extension K}/K consisting of all elements of K’
separable over K.

If u € K’ \ K} with minimum polynomial f(X) over K}, then (A.0.5) yields
J(X) = g(XP) for some irreducible polynomial g(X), which evidently is the min-
imum polynomial of v := #. If g is not linear, we may continue in this way,
eventually obtaining f(X) = X7 — a for some power ¢ of p and some element
aeKkj. O
Corollary A.0.10. Suppose that K, and K, are subfields of K’ with K := K; NK,
and K' = K\K,. Assume further that K, /K is finite and separable and K, /K
is finite and purely inseparable. Then the natural map K, @, K, — K' is an
isomorphism.

Proof. The natural map is surjective because K’ = K, K,. To show that it is in-
jective, we proceed by way of contradiction, assuming that there are nonzero
elements x; € K, y, € K, with

n
me- =0,
=1

and that we have chosen such a relation with # minimal. Then the x; and y /; are
separately linearly independent over X, or else 7 would not be minimal. There is a
power g of p:= char(K) Withy;_? € K for all i. This implies that the x‘lI are linearly
dependent over X, since the map x — x4 is a homomorphism.

On the other hand, we have det(x{ ,x‘jl) = det(x;,x;)? # 0, where (u,v) is the
trace form on K, /K. This implies that the x‘lI are linearly independent over K. [

More generally, two subfields K; and K, of a field K whose intersection con-
tains K are said to be linearly disjoint over K if the natural map K; @ K, — K’ is
injective. Let {x,| i€ I} and {y, | j € J} be (possibly infinite) K-bases for X, and
K,, respectively. Then {x;®y, [i € ], j € J} is a K-basis for K} ® K, by standard
properties of the tensor product. It follows that K and K, are linearly disjoint if
and only if {xy, | i € /,j € J} is linearly independent over X, but this occurs if
and only if {x, | € I} is linearly independent over K.
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Suppose that K and K, are linearly disjoint over K and that [ is finite. Then
the image of the natural map R := KK, is an integral domain that is finite-
dimensional over K. Since K, [X] is a principal ideal domain, it follows that K [x]
is a field for all x € R, and therefore R is a field.

Now suppose, in addition, that £ is an intermediate field K € E C K. Let
{u, |1 € L} be a K-basis for E and let {vy, | m € M} be an E-basis for K,. Then
{tym | 1 € L,m € M} is a K-basis for K. It follows that {xz, |ie I,l €L} is
linearly independent, and therefore K E is a field. Moreover, {x,vy, | i € J,m € M}
is linearly independent over E. We have proved

Lemma A.0.11. Suppose that K| and K, are linearly disjoint over K, and |K, : K|
is finite. Then K| @ K, is a field and

K, @x K, 1 K| = |K; K]

If E is an intermediate field K C E C K,, then K| and E are linearly disjoint over
K, and K\ E and K, ave linearly disjoint over E.

We call an extension K /K normal it K' = K (uy, ..., ), where the #; are all the
roots of some polynomial f € K[X]. IfK O K’ is any algebraic closure of K, the u;
are evidently permuted by all embeddings of K’ /K into K, which therefore induce
automorphisms of X’/K. We denote by Gal(K’/K) the group of automorphisms
of K’ fixing K elementwise. If K’/K is both normal and separable, we call it a
Galois extension of K.

Corollary A.0.12. Every finite separable extension is contained in a Galois
extension.

Progf. LetK' = K(uy,...,us), where the #; are separable over K. Adjoin the re-
maining roots, if any, of the minimum polynomial of each #, to X’ and apply
(A.0.8).

Corollary A.0.13. 4 finite extension K'/K is Galois if and only if |K' : K| =
|Gal(K'/K)|.

Proof. Put G := Gal(K'/K). If K'/K is Galois, then there are |K’ : K| distinct
embeddings of K’/K into some algebraic closure of K’ by (A.0.8). As discussed
above, these embeddings stabilize K, and thus we get |G| = |[K": K.

Conversely, (A.0.8) implies that K'/K is separable. Let K’ = K (u, ..., uy) and
define

700:=TT T — o).

i=loeG
The coefficients of f(X) are G-invariant, and therefore 1 € K[X]. Since all roots
of f lie in X’ and generate K’ /K, we conclude that X' /K is normal. O

Lemma A.0.14. Let V be a vector space over an infinite field, and suppose that
Wi,...,Wn are proper subspaces. Then V has a basis which is disjoint from any
of the W, In particular, V is not the union of the W,
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Proof. We proceed by induction on m, the result being vacuously true for m = 0.
Assume, then, that {v,,...,v,} is a basis such that
vi¢ijor1§i§nand1§j<mA
Ifnone of the v, lie in W, we are done. Otherwise, choose notation so that v, € Wy,
if and only if 1 <7 <. Since W, is a proper subspace, we have » < n. Fix i <r,
and consider the set of vectors
{tg :=va+av;| o € k}.
None of the ug lie in Wy, because v, & Wiy, If {ua,uﬁ} C Wj for some j < m and
some o # f3, we get
U — U
yote
a-f
But then v, = uy — v, € Wj, which is not the case. So there is at most one #¢ in

W, for each j, and therefore we can choose o, € k such that «, : = i, 4 W, for any
J» because £ is infinite. The desired basis is then {u;,..., %,V 1,...,Va}- O

ve

Corollary A.0.15. Suppose that K’ is a finite extension of K such that there are
only finitely many intermediate fields between K and K'. Then K’ = K (u) for some
element u € K'.

Progf. Tf K is a finite field, then so is K’. Since there are at most # roots of the
polynomial X* — 1 in X’ for any #, the multiplicative group of nonzero elements
of K’ must be cyclic by the fundamental theorem of abelian groups. Taking « to
be a generator, we have K’ = K (u). If K is infinite, there is an element # € K’ that
does not lie in any proper subfield by (A.0.14), and thus K’ = K («). O

Theorem A.0.16 (Fundamental Theorem of Galois Theory). Let K'/K be a
Galois extension with G := Gal(K'/K). For any intermediate field K CE C K/,
let Gy :={ge G| g(u) =ufor allu e E}. Then K' /E is Galois with Gal(K' /E) =
Gy, and the map E — G, is a one-fo-one inclusion-reversing correspondence be-
tween subfields of K' containing K and subgroups of G. Moreover, E/K is normal
if and only if Gy, is a normal subgroup of G, in which case restriction induces a
natural isomorphism G /Gy ~ Gal(E/K).

Progf. Tf K’ is normal (resp. separable) over K, it is also normal (resp. separable)
over any intermediate field E. Hence K'/E is Galois, and there is an inclusion
Gal(K'/E) C G with Gy = Gal(K'/E). Moreover, the map E — Gy is clearly
inclusion-reversing. Given a subgroup H C G, let Ej; be the subfield of K’ ele-
mentwise fixed by H. Then H C G, Since EGE D E, we get EGE =E by (A.0.13).
Thus, the map E — Gy, is one-to-one.

In particular, there are only finitely many intermediate fields between £}, and
K’ for any subgroup H C G. By (A.0.15), K’ = E(u) for some u € K'. However,
the polynomial

[[& o)

ocH
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has degree |[H| and coeficients in E, whence [K’: Ey| < |H|. Since H C G, We
get H = GEH by (A.0.13). Thus, the map E — Gy, is a one-to-one correspondence,
as asserted.
If E/K is normal, restriction yields a natural map G — Gal(E/K) whose kernel
is G. Since the image of this map has order
|G| _ IK':K]
|Ggl  |K": E|
it induces a natural isomorphism G/Gy ~ Gal(E/K) by (A.0.13).
Conversely, suppose that / is normal in G, and « € E,;. Then for any g € G and
h € H we have hg(u) = gg~ hg(u) = gh, (u) = g(u), where h, := g~'hg. This
means that g(«) € E, and it follows immediately that £ /K is normal. O

~ E K],

Corollary A.0.17. Suppose that K’ is a finite sepavable extension of K. Then
K' = K(u) for someu € K'.

Progf. Since K’ is contained in a Galois extension K" of K by (A.0.12), there
are only finitely many intermediate fields between K’ and K by (A.0.16), and the
result follows from (A.0.15). |

When K'/K is Galois, the trace and norm have particularly nice expressions:

Lemma A.0.18. Let K'/K be a Galois extension with G := Gal(K' /K), and let
ueK'. Then

trK//K(“) = ZGG(“)v
NK//K(u) = r[G()'(u)A

Proof: Let H := Gy, = Gal(K'/K(u)) and let {x,...,x,} be a set of coset
representatives for A in G. Then the set {x; («),...,xn(x)} is the set of dis-
tinct G-conjugates of # and is therefore the set of distinct roots of the minimum
polynomial 7(X) of # over K. Put f(X) = ¥ a,X", and consider the polynomial

16— o) = TTTT X —x06) = [T6X—x 0" = o)™,

e i=16€H i=1
where i = |H| = |K": K(u)|. It follows that
Y o) =ha,_,, ad []o)=d.
ceG ceG
The result now follows from (A.0.3). |

The case that X is a finite field deserves special mention. The point here is
that K must have characteristic p > 0, so it is a finite extension of the prime field
F, of order p. In particular, |K| = p" for some integer #, so the multiplicative
group of X has order p" — 1. It follows that every nonzero element of X satisfies
the polynomial X#"~1 — 1, and hence X is the splitting field of X?" —X over Fp.
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Conversely, the polynomial X# — X is separable for all m. If « and v are roots,
then so are # 4v and #v since we are in characteristic p. Thus, the roots form a field
of order p™, so there is a unique finite field , of order ¢ = p™ for any m > 0. All
of these fields are contained in /7, the algebraic closure of Fp. Indeed, Fpn is just
the subfield of F}, fixed by ¢", where ¢ (x) := x? is the Frobenius automorphism of
Fp. Inparticular, if 7 | m, then F . C F . Conversely, if |Fy : Fg| =7, then qd=q.
Summarizing all of this, we have

Theorem A.0.19. Let p be a prime integer and n any nonnegative integer. There
exists a unique finite field Fy of order q = p", and it is the splitting field of X - X
over the prime field Fy, of order p. We have F, C Fpm iffand only if n| m, in which
case the extension is Galois with cyclic Galois group of order m/n generated by
the '™ power of the Frobenius map: & (x) := x¥". O

‘We turn now from the algebraic case to the transcendental case. Let 4 be a k-
algebra. We say that a,,a,,.. ., a, € 4 are algebraically dependent (over k) if there
exists a nonzero polynomial f* € k[X;,...,X,] such that f(ay,...,ay) = 0, and
algebraically independent otherwise. In particular, an element « is transcendental
over kiff {a} is algebraically independent.

Now suppose that X is an extension field of £. For any subset S C X, let m
be the subfield of X consisting of all elements of X algebraic over k(S). We say
that § satisfies a minimal dependence relation if S is algebraically dependent, but
every proper subset of § is algebraically independent. In this case, if [§] =+ 1,
we have a polynomial f* € k[X;,X,,...,.X,] with f(sq,5,,...,8,) = 0. If m is the
highest power of X; that appears in any monomial of f, we can write

m
f(507517~~~75n) = Zagj(51752w~75n)56 =0,
=

where g; € kX,...,.X)]. Since {s4,8,,...,8} is algebraically independent, the
above identity specializes to a nonzero polynomial over k(s,,...,s,) satisfied by
5. The same argument holds for any s;, so we have proved

Lemma A.0.20. Suppose that S C K satisfies a minimal dependence relation.
Then every element of S'is algebraic over the subfield of K generated by the other
elements of S.

We will say that a subset T C K spans K/kif K = k(T).
Theorem A.0.21.
1. Every minimal spanning subset of K/ k is algebraically independent over k.
2. Every maximal algebraically independent subset of K [ k spans K/ k.

3. If T spans K /k for some finite subset T C K, and § C K is algebraically
independent over k, then |S| < |T|.
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Proof. 1. If B C K is a spanning set that is not independent over £, then there
exists a minimal dependence relation among some (finite) subset & C B. If
be B, then B\ {b} spans K /k by (A.0.20).

2. Suppose B C K is a maximal algebraically independent set over %, and
let x € K. Then B := BU {x} is algebraically dependent. Any minimal k-
dependence relation among the elements of B’ must involve x because B is
algebraically independent. Then x & k(B) by (A.0.20), and thus &(B) = K.

. Choose R C TUSsuch that |R| = |T|, k(R) = K, and |RN S| is maximal with
these properties. We claim that § C R. If not, choose s € 8\ R. Then since
s € k(R), there is some minimal dependence relation 8,7y, tm) =0
for some m < |R|. However, notation can be chosen so that 7, ¢ .S because
S is algebraically independent. Then r; € k(s,7,,...,rm) by (A.0.20). Put
R =R\{r}U{s}. Then|R'| = |R| = |T|, K =R =K, and [R'NS| > |RNS|,
contradicting our choice of R. It follows that § C R and hence |S] < [T/, as
required. |

W

Corollary A.0.22. If K is a finitely generated extension of k, then every maximal
algebraically independent subset over k has the same cardinality. |

‘We call any such subset a franscendence basis and we call its cardinality the
transcendence degree of K over k, denoted by trdeg (K /k).

Corollary A.0.23. Suppose that R is an integral domain whose field of frac-
tions K has finite transcendence degree over some subfield k. Then R contains
a transcendence basis for K over k.

Proqf. Let {x,,x,,...,%,} be a transcendence basis for K over k. For each i there
are elements 7,5, € Rwith x; = ;/s,. Then K is spanmed by {ry,...,7n,5;,...,82}.
By (A.0.21) this set contains a basis. |

Accordingly, we define the transcendence degree of a k-algebra R to be the
transcendence degree of its field of fractions.
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