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Preface

The aim of this book is to give an understandable introduction to the the-
ory of complex manifolds. With very few exceptions we give complete proofs.
Many examples and figures along with quite a few exercises are included.
Our intent is to familiarize the reader with the most important branches and
methods in complex analysis of several variables and to do this as simply as
possible. Therefore, the abstract concepts involved with sheaves, coherence,
and higher-dimensional cohomology are avoided. Only elementary methods
such as power series, holomorphic vector bundles, and one-dimensional co-
cycles are used. Nevertheless, deep results can be proved, for example the
Remmert-Stein theorem for analytic sets, finiteness theorems for spaces of
cross sections in holomorphic vector bundles, and the solution of the Levi
problem.

The first chapter deals with holomorphic functions defined in open sub-
sets of the space @". Many of the well-known properties of holomorphic
functions of one variable, such as the Cauchy integral formula or the maxi-
mum principle, can be applied directly to obtain corresponding properties of
holomorphic functions of several variables. Furthermore, certain properties of
differentiable functions of several variables, such as the implicit and inverse
function theorems, extend easily to holomorphic functions.

In Chapter II the following phenomenon is considered: For n > 2, there
are pairs of open subsets H C P C C” such that every function holomorphic
in H extends to a holomorphic function in P. Special emphasis is put on
domains G c C™ for which there is no such extension to a bigger domain.
They are called domains of holomorphy and have a number of interesting
convexity properties. These are described using plurisubharmonic functions.
If G is not a domain of holomorphy, one asks for a maximal set E to which all
holomorphic functions in G extend. Such an "envelope of holomorphy" exists
in the category of Riemann domains, i.e., unbranched domains over C™.

The common zero locus of a system of holomorphic functions is called
an analytic set. In Chapter III we use Weierstrass's division theorem for
power series to investigate the local and global structure of analytic sets.
Two of the main results are the decomposition of analytic sets into irreducible
components and the extension theorem of Remmert and Stein. This is the
only place in the book where singularities play an essential role.

Chapter IV establishes the theory of complex manifolds and holomorphic
fiber bundles. Numerous examples are given, in particular branched and un-
branched coverings of C™, quotient manifolds such as tori and Hopf manifolds,
projective spaces and Grassmannians, algebraic manifolds, modifications, and
toric varieties. We do not present the abstract theory of complex spaces, but
do provide an elementary introduction to complex algebraic geometry. For
example, we prove the theorem of Chow and we cover the theory of divi-
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sors and hyperplane sections as well as the process of blowing up points and
submanifolds.

The present book grew out of the old book of the authors with the ti-
tle Several Complex Variables, Graduate Texts in Mathematics 38, Springer
Heidelberg, 1976. Some of the results in Chapters I, I, III, and V of the old
book can be found in the first four chapters of the new one. However, these
chapters have been substantially rewritten. Sections on pseudoconvexity and
on the structure of analytic sets; the entire theory of bundles, divisors, and
meromorphic functions; and a number of examples of complex manifolds have
been added.

Our exposition of Stein theory in Chapter V is completely new. Using only
power series, some geometry, and the solution of Cousin problems, we prove
finiteness and vanishing theorems for certain one-dimensional cohomology
groups. Neither sheaf theory nor & methods are required. As an application
Levi’s problem is solved. In particular, we show that every pseudoconvex
domain in C” is a domain of holomorphy.

Through Chapter V we develop everything in full detail. In the last two
chapters we deviate a bit from this principle. Toward the end, a number of
the results are only sketched. We do carefully define differential forms, higher-
dimensional Dolbeault and de Rham cohomology, and Kahler metrics. Using
results of the previous sections we show that every compact complex mani-
fold with a positive line bundle has a natural projective algebraic structure. A
consequence is the algebraicity of Hodge manifolds, from which the classical
period relations are derived. We give a short introduction to elliptic opera-
tors, Serre duality, and Hodge and Kodaira decomposition of the Dolbeault
cohomology. In such a way we present much of the material from complex
differential geometry. This is thought as a preparation for studying the work
of Kobayashi and the papers of Ohsawa on pseudoconvex manifolds.

In the last chapter real methods and recent developments in complex an-
alysis that use the techniques of real analysis are considered. Kahler theory is
carried over to strongly pseudoconvex subdomains of complex manifolds. We
give an introduction to Sobolev space theory, report on results obtained by
J.J. Kohn, Diederich, Forngess, Catlin, and Fefferman (E—Neumann, subellip-
tic estimates), and sketch an application of harmonic forms to pseudoconvex
domains containing nontrivial compact analytic subsets. The Kobayashi met-
ric and the Bergman metric are introduced, and theorems on the boundary
behavior of biholomorphic maps are added.

Prerequisites for reading this book are only a basic knowledge of calculus,
analytic geometry, and the theory of functions of one complex variable, as
well as a few elements from algebra and general topology. Some knowledge
about Riemann surfaces would be useful, but is not really necessary. The
book is written as an introduction and should be of interest to the specialist
and the nonspecialist alike.

Preface vii

We are indebted to many colleagues for valuable suggestions, in particular
to K. Diederich, who gave us his view of the state of the art in &-Newmann
theory. Special thanks go to A. Huckleberry, who read the manuscript with
great care and corrected many inaccuracies. He made numerous helpful sug-
gestions concerning the mathematical content as well as our use of the English
language. Finally, we are very grateful to the staff of Springer-Verlag for their
help during the preparation of our manuscript.

Wuppertal, Gottingen, Germany Klaus Fritzsche
Summer 2001 Hans Grauert
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Chapter I

Holomorphic Functions

1. Complex Geometry

Real and Complex Structures. Let V be an n-dimensional com-
plex vector space. Then V can also be regarded as a 2n-dimensional real

vector space, and multiplication by i = +/—1 gives a real endomorphism
J:V = V with 2 = —idy. If {a1,...,an} is a complex basis of V, then
{a1,...,an,i01,...,ia} is a real basis of V.

On the other hand, given a 2n-dimensional real vector space V, every real
endomorphism J : V — V with J2 = —idy induces a complex structure on V
by

(atib)-v:=a-v+b.J(v).

We denote this complex vector space also by V, or by (V,J), if we want to
emphasize the complex structure.

If a complex structure J is given on V, then —J is also a complex structure.
It is called the conjugate complex structure, and the space (V,-J) is sometimes
denoted by V.. A vector v € V ig also a vector in V.Ifzisa complex number,
then the product:z-v, formed ir..V, g ves the same vector as the product z-v
in V.

Our most important example is the complex n-space
C" :={z :=(21,..-s%2n) :z,€Coori=1,...,n}

with the standard basis

We can interpret C™ as the real 2n-space

RQn ={(X,y) :("El" - 3Tns Y1, - !yn) S TiYd € R fore =1a' --!n}lﬂ

together with the complex structure J : R?® — R?", given by
J(.Tl,...’:['n’yl,...,yn) = (_y17"‘?_yn7$17' ..7:1771)-

These considerations lead naturally to the idea of “complexification.”

1 A row vector is described by a bold symbol, for instance v, whereas the corre-
sponding column vector is written as a transposed vector: v,



2 I. Holomorphic Functions

Definition. Let E be an n-dimensional real vector space. The com-
plexification of E is the real vector space E. := E® E, together with the
complex structure J : E. — E,, given by

J(v,w) == (—w,v).
Furthermore, conjugation C in E, is defined by

Clv, w) :=(v, —w).

Since Cod = —JoC, it is clear that C defines a complex isomorphism between
E, and E..

The complexification of R™ is the complex n-space C" identified with R?" in
the way shown above. In this case the conjugation C is given by

C:(z,...,20) — (Z1,. .., Zn)

and will also be denoted by z — Z.

If V =FE, is the complexification of a real vector space E, then the subspace
Re(V) :={(v,0) :v€E}CV

is called the real part of V. Since it is isomorphic to E in a natural way, we
can write V= E® iE. I V is an arbitrary complex vector space, then V is
the complexification of some real vector space as well, but this real part is
not uniquely defined. It is given by the real span of any complex basis of V.

Example

Let E be an n-dimensional real vector space and E* := Homg(F,R) the
real dual space of linear forms on E. Then the complexification (E*). can be
identified with the space Homg(E, C) of complex-valued linear forms on E.

In the case £ =R", a linear form A € E* is always given by
Aivisv-al,

with some fixed vector a € R". An element of the complexification (E*). is
then given by v = v-z! with z =a+ib € (R*). =C".

Now let T be an n-dimensional complex vector space and F(T) :=Homg (7T, C)
the space of complex-valued real linear forms on T. It contains the subspaces
T' := Home (T, C) of complex linear forms and T’ :=Home (T, C) of complex
antilinear forms 2.

2 A real linear map A : 7 — C is called complex antilinear it M¢ .v) =€ . A(v) for
c € C. Therefore, T/ can be viewed as the set of complex antilinear forms on 7.

1. Complex Geometry 3
Let {a1, ...,0n} be a complex basis of 7', and b; :=ia;, fori = 1,...,n.
Let {1, ..,an,01, ..., 0n} be the basis of 7* = Homg (7, R) that is dual to
{a1, ..., an,b1,- ..,bn}. Then we obtain elements

M ==a, +ifi € F(T), i=1,...n.

Claim. Theforms X\; are complex-linear.

PROOF:  Consider an element z = z1a1++ .-+2zna, € Twith z; = z;+iy; € C.
Then

A(z) = Ak<i$iai+zn:yibi)
i1 i=1

n n
= Zaji)\k(ai) + Zyi)\k(bi}
i=1 i=1

= zr+ivk = 2.

Now the claim follows. n

It is obvious that the X; are__linearly indeper\gent. Therefore, (A, ..., \n} is
a basis of T/, and {)\1,. /\n} is a basis of T'.

Since it is also obvious that 7'NT " = {0}, we see that every element A € F(T)
has a unique representation

A= zn:ci)\i + id@-, with ¢;,d; € C.

i=1 i=1

Briefly, .
A=XN+X withXN eT and \" €T’
Here )\ is real;ie., A € Homg(T,R) if and only if A" =\

Hermitian Forms and Inner Products

Definition. Let T be an n-dimensional complex vector space. A Her-
mitian form on T is a function H : T x T -> C with the following
properties:

1. v — H(v,w)is C-lincar for every w € T.

2. Hw,v) =H(v,w)forv,we T.

It follows at once that w — H(v,w) is C-antilinear for every v € T, and
H(v,v) is real for every v € 7. If H(v,v) > 0 for every v # 0, H is called an
inner product or scalar product.
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There is a natural decomposition
H(v,w)=S(w, w)+iA(v,w),
with real-valued functions S and A. Since
S(w,v) +iA(w,v) = H(w,v) = H(v, w) =S, w)— iA(v, w) ,
it follows that S is symmetric and A antisymmetric.

Example

If £ is a field, the set of all matrices with p rows and g columns whose elements
lie in k will be denoted by Mp 4(k) and the set of square matrices of order n
by M, (k). Here we are interested only in the cases k =R and & =C.

A Hermitian form on C" is given by

H:(z,w)—zHW,

. . .. Tt
where H € M, (C) is a Hermitian matrix, i.e., H =H.

The associated symmetric and antisymmetric real bilinear forms S and A are
given by

S(z,w) =Re (zHW') = i(zHWt +wHZ")
and

! Hw' - wHz?).

A(z,w)=Im (zHW') = E(

If H is an inner product, then S is called the associated Euclidean inner
product.

The identity matrix E,, yields the standard Hermitian scalar product
n
<z‘w> =z w'= Zzﬁu’y.
v=1

Its symmetric part (z|w), := Re((z|w)) is the standard Euclidean scalar
product. In fact, if we write z =x +iy and w =u +iv, with x,y,u,v € R?,
then

(Z ' W)Qn

1. Complex Geometry 5

If the standard Euclidean scalar product on R™ is denoted by ( | )n, we
obtain the equation

(z]w)znz (x|u)n+(ylv)n.

Balls and Polydisks

Definition. The Euclidean norm of a vector z € C" is given by

lall = \/(z|2) —/(z]2),,

the Euclidean distance between two vectors z,w by

dist(z, w) = ||z — w||.

An equivalent norm is the sup-norm or modulus of a vector:
|z] := max |z,
v=1,...,n

This norm is not derived from an inner product, but it defines the same topo-
logy on C™ as the Euclidean norm. This topology coincides with the usual
topology on R?”. We assume that the reader is familiar with it and mention
only that it has the Hausdorff property.

Definition. B, (zp) :={z € C™ : dist(z,2zy) <r} is called the (open)
ball of radius r with center zg.

A ball in C™ is also a ball in R?", and its topological boundary

\

8B'r‘(ZO) = {Z c Cn . diSt(Z,ZO) =r}

is a (2n — 1)-dimensional sphere.

Definition. Letr =(rq,...,r,) € R™ allr, >0,20 = (2”,...,2) €
C™. Then
P"(zo,r) :=={z€C" :|z, - 27| <r, forv=1,...,n}

is called the (open)polydisk (orpolycylinder) with polyradius r and center
zg. f r € Ry and r := (7,...,7), we write P?*(zo) instead of P"(zg,r).
Then PP (zg) = {z€ C" : |z —z| < 7).

If D denotes the open unit disk in C, then P* :=P?(0) =D x --- x D is
N e

n times

called the unit polydisk around O.
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We are not interested in the topological boundary of a polydisk. The following
part of the boundary is much more important:

Definition. The distinguished boundary:of the polydisk P™(zo,r) is
the set

T"(zo,r) ={z€C" : ]z, — 20| =r, forv =1,..,n}.

The distinguished boundary of a polydisk is the Cartesian product of # circles.
It is well known that such a set is diffeomorphic to an n-dimensional forus.
In the case n = 1 a polydisk reduces to a simple disk and its distinguished
boundary is equal to its topological boundary.

Connectedness. Both the Euclidean balls and the polydisks form a base
of the topology of C™. By a region we mean an ordinary open set in C*. A
region G is connected if each two points of G can be joined by a continuous
path in G. A connected region is called a domain.

If a real hyperplane in R® meets a domain, then it cuts the domain into
two or more disjoint open pieces. For complex hyperplanes in the complex
number space (which have real codimension 2) this is not the case:

1.1 Proposition. Let G C C" be a domain and
E .=z = (21,. .y Z) eC": 2z =0
Then G’ :=G — E is again a domain.

PROOF: Of course, E is a closed set, without interior points, and G’ = G- E
is open. Write points of C" in the form z = (z1,2z*), with z* € C"~'. Given
two points v = (vy,v*) and w = (w1, w*) in G’, it must be shown that v
and w can be joined in G’ by a continuous path. We do this in two steps.

Step 1: Let G = P"(zg,¢) be a small polydisk. Then G’ is the product of
a punctured disk and a polydisk in n — 1 variables. Define z := (w1, v™).
Clearly, z € G’, and we can join v; and w; within the punctured disk, and
v* and w* within the polydisk. Therefore, v and w can be joined within G’.

Step 2: Now let G be an arbitrary domain. There is a path ¢ :I — G joining
v and w . Since ¢(I) is compact, it can be covered by finitely many polydisks
Ui, ...,U suchthat Uy CGfor A =1,...,1

it is easy to show that there is a 6 > 0 such that for all #/,¢’ € I with
[t/ =t <6, p(t') and p(¢") lie in the same polydisk U. Then let a =tp <
t1 < ... <ty = b be a partition of I with [t; —t,_1| <6 for j =1,...,N.
Let z; := ¢(t;) and A(j) € (1,...,1} be chosen such that Uy contains z;
and z;_; (it can happen that A(j1) = A(j2) for j1 # j2). By construction z;j—1
lies in Uy(;y N Uxgi—1y, and thus Uxy NUx-1) — E is always a nonempty
open set.

1. Complex Geometry 7

We join v = zg € Uy and some point Z; € Uyy N Ux) — E by a path
1 interior to Uy1y — E. By (1)this is possible. Next we join Z; and a point
Z3 € Uy2) NUxsy — E by a path g, interior to Ux2) — E, and so on. Finally,
@nN joinszy_1 and w = zn within Uy vy —E. The composition of ¢y, ... ;0N
connects v and w in G'. -

Reinhardt Domains
Definition. The point set
YV i={r=(r,....tn) ER" : 1, >0forv=1,...,n}

will be called absolute space, the map 7 :C" — ¥ with 7(2y,. .., 2,) :=
(l21], - ..,l2n|) the natural projection.

The map 7 is continuous and surjective. For any r € ¥, the preimage
77!(r) is the torus T™(0,r). For z € C", we set P, := P*(0,7(z)) and
T, :=T"(0,7(2z)) =7"'(7(z)) (see Figure 1.1).

Definition. A domain G C C" is called a Reinhardt domain if for

every z € G the torus T, is also contained in G.

,Z2, T2(07 (7‘1,7‘2))

/

T2

P2(07 (Tlv TQ))

T1

|21
Figure 1.1. A polydisk in absolute space

Reinhardt domains G are characterized by their images in absolute space:
7717(G) = G. Therefore, they can be visualized as domains in #. For exam-
ple, both balls and polydisks around the origin are Reinhardt domains.
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Example

Let zg € C?, with 2| > 1forv = 1,...,n. Then 7(e'® .2¢) = 7(z0), but
le'? .zo — zo| = |€!% — 1] .|zo| > |€!? — 1|, and for suitable § this expression
may be greater than e. So P"(zg,€) is not a Reinhardt domain.

Definition. Let G C C” be a Reinhardt domain.

1. G is called proper if 0 € G.
2. G is called complete if Yz € GN(C*)" : P, C G (see Figure 1.2).

Later on we shall see that for any proper Reinhardt domain G there is a
smallest complete Reinhardt domain G containing G.

|22 (a)

Figure 1.2. (a) Complete and (b) noncomplete Reinhardt domain

Exercises

1. Show that there is an open set B C C? that is not connected but whose
image 7(B) is a domain in absolute space.

2. Which of the following domains is Reinhardt, proper Reinhardt, complete
Reinhardt?

(a) G1 :={z € C? ;1> |z > [z2]},

(b) G2 :={z € C? : || < land |22| < 1- |z},

(¢) G3 is a domain in C* with the property
z€ G — ¢et.zeGforteR.

3. Let G ¢ €™ be an arbitrary set. Show that G is a Reinhardt domain
<= 3¢ C ¥ open and connected such that G =7"1(G).

4. A domain G < C” is called conwex, if for each pair of points z,w € G the
line segment from z to w is also contained in G. Show that an arbitrary
domain G is convex if and only if for every z € 0G there is an affine
linear function A :C™ — R with A(z) =0 and Alg <O.

2. Power Series 9

2. Power Series

Polynomials. In order to simplify notation, we introduce multi-indices.

For v = (v1,...,vn) € Z" and z € C™ define

n
v :=Z v, and 2" = ..t
=1
The notation v > 0 (respectively v > 0) means that v; > 0 for each i
(respectively v > 0 and v; > 0 for at least one 7).

A function of the form

z+>p(z) = Z a,z”, with a, € C for [v| < m,

lv|<m

is called a polynomial (of degree less than or equal to m). If there is a v
with |v] = m and a, # 0, then p(z) is said to have degree m. For the
zero polynomial no degree is defined. An expression of the form a,z” with
a, # 0is called a monomial of degree m := |v|. A polynomial p(z) is called
homogeneous of degree m if it consists only of monomials of degree m.

2.1 Proposition. A polynomial p(z) # 0 of degree m is homogeneous if
and only if

p(Az) =A™ -p(z), foralleC.

PROOF: Let p(z) = a,z” be a monomial of degree m. Then
p(Az) =a,(Az)” = A" .a,z" =" p(z).
The same is true for finite sums of monomials.

On the other hand, let p(z) = qul < @vz” be an arbitrary polynomial with
p(Az) = A™ .p(z). Gathering monomials of degree i, we obtain a polyno-
mial p;(z) =3, _; a,2” with p;(Az) = X* . pi(z). Then for fixed z the two
polynomials

N
Arrp(Az) =) pi(z) A' and A A p(z)
1=0
are equal. This is possible only if the coefficients are equal, i.e., pm(z) = p(z)
and p;(z) =0 for ¢ # m. So p = p,,, is homogencous. -

Convergence. If for every v € N} a complex number ¢, is given, one
can consider the series 3, ., ¢, and discuss the matter of convergence. The
trouble is that there is no canonical order on NZ.
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Definition. The series >, q ¢, is called convergent if there is a bi-

jective map ¢ :N — NZ such that Y ieqlep@y| < oo. Then the complex
number Y .o, Cuq) is called the limit of the series.

It is clear that this notion of convergence is independent of the chosen map
o, and that it means absolute convergence.

2.2 Proposition. 2.,5q¢, is convergent if and only if

{ Z|C”| : T C NG ﬁm’te}

vel
is a bounded set.
The proof is trivial.
2.3 Proposition. If the series > usoCv converges to the complex number
c, then for eache > 0 there exists a finite set Io C Ny such that:

1. Z]c,,] < g, for any finite set K ¢ N§ with K Nl = .
veK

Zc, - c, < E, for any finite set I with Iy ¢ I CNp
vel

2.

PROOF: We choose a bijective map ¢ :N — NZ. Then 3,04 Cp(iy = ¢, and
the series is absolutely convergent. For a given £ > 0 there exists an 49 € N
such that 3252, Jepm) <€ and | 12y o) —¢f <é.

Setting Iy := ¢({1,2,...,i0}), it follows that 3_,cx|cv| <€ for any finite set
K with KNIy =9, and |ZV6[O Cy — c. <E.

Then for any finite set I with Ip C I C Ng,

S -l(Ze-) T o

ngcy—c|+ Z ley| < 2e.
vely

vel-Ip vel—1Ip
|
Example
Let ¢1,...,¢n be real numbers with 0 < ¢; < 1fori =1,..,n, and g =
(g1,-..,¢n)- Then for any v € N§, ¥ =g¢;* ...¢4~ is a positive real number.

If I C Nj is a finite set, then there is a number N such that I C
{0,1,...,N}", and therefore

2. Power Series 11

Since the partial sums are bounded, the series is convergent. It is absolutely
convergent in any order, and the limit is

n

a1+

v>0 i=1 1—g¢

We call this series the generalized geometric series.

Now let M C C" be an arbitrary subset, and {f, : v € Ny} a family of
complex-valued functions on M. We denote by || f,||as the supremum of |£,|
on M.

Definition.  The series Y., f, is called normally convergent on M
if the series of positive real numbers 3 .|l fo||ar is convergent.

2.4 Proposition. Let the series Y . f, be normally convergent on M.
Then it is convergent for any z € M, and for any bijective map ¢ :N — NI
the series 3 ;21 foqy is uniformly convergent on M.

PrOOF: If the series is normally convergent, then Y~ 4| /. (z)| is convergent
foranyz € M. Butthen}_, ., f,(z) is also convergent, and there is a complex

number f(z) such that Y77, f,(:)(z) converges to f(z), for every bijective
map ¢ :N — Nj.

If an ¢ >0 is given, there is an ig such that 3777, || f,;)lla < €. Then

[ _ik Jo@y(2)

Therefore.

< ZHﬁ;(i)HM <eg form>k>iandz € M.
i=k

=| S fo@] <o or k2o

t=k-+1

( Zf«p(i) (z) — f(z)

This proves the uniform convergence.

Power Series. Let {a, : v € Nj} be a family of complex numbers, and
zg € C™ a point. Then the expression

Z ay(z —2p)”
v>0

is called a (formal) power series about zg. It is a series of polynomials. If
this series converges normally on a set M to a complex function f, then as a
uniform limit of continuous functions f is continuous on M.
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2.5 Abel's lemma. Let P' ¢C P ¢ C" be polydisks around the origin.If
the power series Zyzo a,z” converges at some point of the distinguished
boundary of P, then it converges normally on P’.

PROOF: Let w € OpP be a point where >, @, W" is convergent. Then
there is a constant ¢ such that |a,w”| < c forall v € Ng.

We choose real numbers ¢; with 0 < ¢; < 1such that |z] < ¢|w;| for any
z={(21,...,2n) € PP andi =1,...,n. It follows that

layz”] < q" .c, forq =(q1,-..,qn), 2 € P/, and v € Ng.

Then ||a,2"|pr < q" .c as well, and from the convergence of the generalized
geometric series it follows that D, ¢,z is normally convergent on P'. =

Definition. We say that a power series »_,~, (% — Zo0)” converges
compactly in a domain G if it converges normally on every compact subset
K cG.

2.6 Corollary. Let P C C" he apolydisk around the origin and w be apoint
of the distinguished boundary of P. If the power series >0 @uZ” converges
at w, then it converges compactly on P.

PrROOF: Let K C P be a compact set. Then there is a ¢ with 0 < ¢ < 1

such that K C ¢g- P CC P. Therefore, the series is normally convergent on
K. u

Let S(z) =2 ,-0 2" be a formal power series about the origin, and

B :={7€C" : S(z) convergent}.

2.7 Proposition. The interior BO is a complete Reinhardt domain, and
S(z) converges compactly in B°.

PROOF: Let w be a point of B°. There is a polydisk P*(w,&) C B° and
a point v € P*(w,e) N (C*)™ such that w € Py(0). Then Tw C B”, and if
w € (C*)", then also Pw(0) C B".

To see that B° is a complete Reinhardt domain, it remains to show that it
is connected. But this is very simple. Every point of B° can be connected to
a point in B° N (C*)”, and then within a suitable polydisk to the origin.

3 The notation U CC V means that U lies relatively compact in V;i.e., U is a
compact set which is contained in V.
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From these considerations it followsthat B° is the union of relatively compact
polydisks around the origin. Therefore, S(z) converges compactly on B". g

The set B° is called the domain of convergence of S(z).

2.8 Proposition. Ler G be the domain of convergence of the power series
S(z) = Zu20 a,z". Then

e 51 vy —1 v,

S ()= Y ay vyt
v>0
;>0

also converges compactly on G.

PROOF: Let w be any point of (C*)*NG, and |a,w"| < ¢ for every v € Np.
If0<g< land z =g .w, then

v
lay - vz Z;J ezt = as”] < é"/j g,

Now,

oo oo
v>0 v1=0 v;=1 v, =0

v; >0

is convergent. Therefore, S, (z)is convergent, and it follows that S, is nor-
mally convergent on F,(0). Since every compact set K C G can be covered
by finitely many polydisks of this kind, S, is compactly convergent on P. m

Definition. Let B ¢ C" be an open set. A function f : B — C is called
holomorphic if for every zg € B there is a neighborhood U =U(zy) C B
and a power series S(z) =Y, ., a.(z — 2o)” that converges on U to

f(2).

The set of holomorphic functions on B is denoted by O(B).

It is immediately clear that every holomorphic function is continuous.

Exercises

1. Let f, g be two nonzero polynomials. Prove that

deg(f - g) —deg(f) + deg(g).

2. Let f = f1--.fr be a homogeneous nonzero polynomial. Show that f; is
homogeneous, fori = 1,...,k.
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3. Find the domain of convergence for the following power series:

f(z,w) = Z 2wk, g(z,w) = Z(zw)k, h{z,w) = Z iz”w“

~n

4. Determine the limit and the domain of convergence of the series

Fzw) = 2 ((22)" + 32 )

v>0 pn>0

5. A polyradius r = (r1,...,1) € ¥ is called a radius of convergence for
the power series f(z) =3, 002" if f(z2) is convergent in P =P"(0,1),
but not convergent in any polydisk P =P™(0,r’) with P CC P'.

Prove the following generalization of the root test:

r is a radius of convergence for f(z) if and only if limo '{/|a,|r” = 1.

3. Complex Differentiable Functions
The Complex Gradient

Definition. Let B C C™ be an open set, Zo € B a point. A function
f : B — C is called complex differentiable at zo if there exists a map
A :B — C” such that the following hold:

1. A is continuous at zo.

2. f(z) =f(z0) + (z — 20) .A(z)" for z € B.

Complex differentiability is a local property: For f to be complex differen-
tiable at z; it is sufficientthat there is a small neighborhood U =U(z¢) C B
such that the restriction f|y is complex differentiable at zo.

3.1 Proposition. 1Iff is complex differentiable at zo, then the value of the
function A at zo is uniquely determined.

Proor: Assume that there are two maps A and As satisfying the condi-
tions of the definition. Then

(z — 20) (A1(z) = Ax(z))" =0 forevery z € B.

In particular, there is an € > 0 such that the equation holds for z =zo +ze,,
witht € C, |t| <e,and i = 1,...,n. ¥ Ay = (AP, ..., AL), then
‘. (Aél)(z) —Af’(z)) —0, for |t| <e, 2 =zotte,andi=1,...,n.

Because the A are continuous at zo, it follows that A1(zo) = Ag(zo). ™
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Definition. Let f : B — C be complex differentiable at zg. If there
exists a representation

f(z) = f(20) +(z — 20) . A7),
with A continuous at zg, then the uniquely determined numbers

B (20) = f2.(20) =y . Az0)"

v

are called the partial derivatives off at zg. The vector

Vf(ZO) = (f21 (Zo), . ,fzn (ZO)) :A(Zo)

is called the complex gradient of f at z,.

Remarks

1. If f is complex differentiable at zg, then f is continuous there as well.

2. A function f is called complex differentiable in an open set B if it is
complex differentiable at each point of B. Then the partial derivatives of
f define functions f,, on B. If each of these partial derivatives is again
complex differentiableat zg, then f is called twice complex differentiable
at zg, and one obtains second derivatives

o*f
M(ZO) = fz,,zu (ZO)-

By induction, partial derivatives of arbitrary order may be defined.
3. Sums, products, and quotients (with nonvanishing denominators) of com-
plex differentiable functions are again complex differentiable.

Weakly Holomorphic Functions. Let B ¢ C™ be an open set,
zy € B a point, and f a complex-valued function on B. For w # O let
pw :C — C" be defined by

‘pw(C) = Zp +(w.

Then fopw () is defined for sufficiently small ¢. Iff is complex differentiable
at zo, then we have a representation f(z) = f(zo) +(z — 20) . A(z)*, with A
continuous at zg. It follows that

Flow(Q)) = F(ow(0)) =Cw - Apw(C))

and f o ¢y, is complex differentiableat ¢ =0, with

(F 2 w) (0) = W+ M) = Jim 2 [£(pw(C) ~ i (O))]
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This is the complex directional derivative of f at zg in the direction w. We
denote it by Dw f(z¢). In particular, f, (zo) = Do, f(zo) forv=1,...,n.

An arbitrary function f is called partially diflerentiable at zq if all partial
derivatives De,, f(z¢) exist forv = 1,...,n.

A function f is called weakly holomorphic on B i it is continuous and partially
differentiable on B. Then for z = (z1,...,2,) € B and v = 1,...,n the
functions

Crr flzry- . ,20-1,Cy2041, - L 20)

are holomorphic functions of one variable.

Iff is complex differentiable on B, then f is also weakly holomorphic on B.
Later on we shall see that weakly holomorphic functions are always complex
differentiable, in contrast to the behavior of real differentiable functions.

Holomorphic Functions

3.2 Proposition. Let P ¢ C" be a polydisk around the origin, and S(z) =
Zuzo a,z” a power series that converges compactly on P to a function f.
Then f is complex differentiable at O, with

f21(0) —a10,...0,- .., [2.(0) =aq,..01-

PrROOF: We choose a small polydisk P. CC P around the origin such that
S(z) is normally convergent on P. But then the series obtained by any
rearrangement of the terms is also normally convergent, and it converges to
the same limit. We write

f2) = > a2

v>0
= 000..,0+72 . Z ayzll’l—lzgz e b
v >0
V2, oln 20
+ 22 - I GRSl P S ayzy
_ = S 1=0
11/1137—0:5:;8 o l/ngo !
= f(O+z . M(2)+ ...+ 2 An(z)
Since the series A;(z), - . . ,A,(2) converge normally on P: to continuous func-
tions, f is complex differentiable at O, with f,,(0) = A,(0). u

3.3 Corollary. If B ¢ C" is an open set, and [ : B — C a holomorphic
function, then f is complex diflerentiable on B.

4. The Cauchy Integral 17

PROOF: Let zg € B be an arbitrary point. There is a power series S(w)
converging compactly near O to a holomorphic function g such that

f(zZo +w) =g(w) =g(0) twi . A(W)+- ..+ wn . Ap(W),

with continuous functions Ay, ..., A,. It follows that f is complex differen-
tiable at Zg. n
Exercises

1. Show that there is a function f :C™ — C that is complex differentiable

at every point z = (z1, ...,2,) with z, = 0, but is nowhere holomorphic.
2. Prove the following chain rule: If G ¢ C” is a domain, f : G — C a
complex differentiable function, and ¢ = (1, ...,¢,) : A — G a map

with holomorphic components ¢;, then f o : A — C is a holomorphic
function, with (f 0 )'(¢) =V f(¢(Q)) - ()"

4. The Cauchy Integral

The Integral Formula. Let r = (r,...,r,) be an element of R,
P =P*(0,r), T =T"(0,r),and f a continuous function on 7. Then

kr(z, () = f(€) _ F(C,e i Cn)

(€=2)0D (G = 21) - (Gn = 2n)

defines a continuous function ky : P x T — C.

() oo

T
= (‘zl‘) /) Oy e

[¢1]=r1 [Cnl=rn

Definition.

Cs(z)

is called the Cauchy integral off over T.

Obviously, Cy is a continuous function on P.

4.1 Theorem (Cauchy integral formula). Let P, T be as above, and

U =U(P) be an open neighborhood of the closure of P. Iff is weakly holo-
morphic on U, then Cyir(z) = f(z) for any z € P.

ProoOF: ¥ P =D (0)x...xD,, (0),wemay assume that U =U; x-..xU,,
with open neighborhoods U; = U; (Dn- (0)) fori=1,..,n.
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Since f is weakly holomorphic, we can fixz‘ = (21, ... ,2n-1) € U1 X+ .-XUp-1
and apply the Cauchy integral formula in one variable to ¢, — f(z’,(n)- For
z, € Dy._(0) it follows that

1 (@, 6)
Py — dé,.
f#sm) =55 G =2, Lo
lCn‘Z"'n
Similarly, for the penultimate variable z,—1 and 2"/ = (21, ...,2,-2) € Uy X

.. x U,_o we obtain

f(Z”, Zn—1, Zn) = _1_ / &C’z__l’_zl) an—l

27i Cn—1— 2n-1
[¢no1]l=Tn—1

z” Cn laCn) dé. d
= (27’“) / / Cn 1 Zn— 1)(C —Zn) C” Cn_l’

[n-1l=rn— 1 lznl=ra

and after n steps, f(z) = Cyir(2), forz € P. "

4.2 Theorem (power series expansion). Let P = P*(0,r) C C* ke

a polydisk and T its distinguished boundary. Iff : T — C is a continuous
function, then there is a power series »_,>q 2" that converges to Cy(2) in

all of P.

The coefficients a, of this series are given by

. :<L)n FGGn) e e
e 27i

ot
1

ProoF: Setting 1 :=(1,...,1)e N3, for z € P and ¢ E T it follows that
1 1 1

€2t (G—a) o (Cn—2m) Cl...cn.(l_ﬁ) (1_2_”)

C Cn
LR s

v1=0 v, =0

Fr=(r,... ,Tn), then for fixed z € P and arbitrary ¢ € T we have

:_|JI<1 for j=1,.
py

| = q
G l ’ 5
Since T is compact and f continuous on T there is a constant M with
1f(O)] < M on T. Then 3,50 (£(€)/¢" )Z” is dominated on T by the
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convergent series (M/r')Y", ., q”,where q = (g1, - -.,4»), and therefore it
is normally convergent as a series of functions on 7 with limit f(¢)/(¢ —2)*.
We can interchange summation and integration:

o= () f dhpsc- T

v>0

(AN [
A <%> r g1 4

The series converges for each z E P. .

with

4.3 Osgood’s theorem. Letr B C C™ be an open set. Thefollowing state-
ments about a functionf :B — C are equivalent:

1. [ is holomorphic.
2. [ is complex differentiable.
3. f is weakly holomorphic.

PROOF: We already know that a holomorphic function f is complex differ-
entiable, and it is trivial that then f is weakly holomorphic.

On the other hand, let f : B — C be weakly holomorphic, and zq € B
an arbitrary point. There is a small polydisk P around zg that is relatively
compact in B. If T is its distinguished boundary, then f|p = Cyr, and the
Cauchy integral is the limit of a power series. So f is holomorphic. n

In addition, if f is weakly holomorphic on B, zg € B a point, and P CC B
a polydisk around zg, then there is a power series S(z) =3 o, 0u(2 — 2g)”
that converges to f on all of P. -

Holomorphy of the Derivatives

4.4 Weierstrass’s convergence theorem. Let G CC" be a domain, and
(fx) a sequence of holomorphic functions on G that converges uniformly to a
function f. Thenf is holomorphic.

PROOF: The limit function is continuous. Let zg € G be a point, P CC G
a polydisk around z,, and 7 its distinguished boundary. Then
flp = lim filp = Am Cp, iz

Since 7 is compact, we can interchange integral and limit. Thus, for any fixed
zc P,
Jm Cpr(z) = Chim_ fjr(2) = Cpjr(2).
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Since f is continuous on 7', the Cauchy integral Cyr has a power series
expansion in P. Therefore, f is holomorphic at zg. n

4.5 Proposition. Ler S(z) = Zuzo a,z” be a power series and G its do-
main of convergence. Then the limitfunction f of S(z) is holomorphic on G,
and the formal derivative

vi—1
5;(z) = Z ay - vz z;’ ceezim
v>0
v, >0
converges 10 f, . In particular, all partial derzvatzves of f are likewise holo-
morphzc.

PrROOF: Since S(z) converges compactly on G, f is locally the uniform limit
of a sequence of polynomials. Then it follows from Weierstrass’ theorem that
f is holomorphic. But also S;,(z) converges compactly on G, and its limit
function g must be holomorphic on G.

Now let zg be an arbitrary point of G. Since G is a complete Reinhardt
domain, there is a polydisk P around the origin with zg € P cC G. We
define

f*(Z) = / gj(zla' ..azj—laCVZj—‘,-la- ,Zn)dc—f’f(Zl, .‘507' 7277,)
0

For the path of integration we take the connecting segment between 0 and
z; in the z;-plane. Then f* is defined on P.

Let S(z) =3 .2, pi(z) be the expansion into a series of homogeneous polyno-
mials. Then S, (z) = S (pi)2; (2), and this series converges uniformly on
the compact path of integration we used above. Therefore, we can interchange
summation and integration, and consequently,

f*(z) — Z(/ j(pi)zj(zl,...,c,...,zn)dc+pj(zl,...,0,...,zn)>
i=0 0
= Zpi(z) = f(z),
=0
for z € P. Hence [, (20) = f3,(20) = g;(20). .

4.6 Corollary. Let G ¢ C* be a domain and f : B — C a holomorphic
function. Then f is infinitely complex differentiable in G.

Let v = (vq, ...,v,) be a multi-index. Then we use the following abbrevia-
tions:
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1. v =yt
2. If f is sufficiently often complex differentiable at zg, then

3|v|f (20).

Difm0) = g oam

4.7 Identity theorem (for power series).

Let f(z) =3 ~oa.,2” and g(z) =) -, b.2" be two convergent power series
in a neighborhood U =U(0) C C". If there is a neighorhood V(0) C U with
flv =glv, thena, =b, for all v.

Proor: We know that f and g are holomorphic. Then D¥ f (0) = D" g(0)
for all v, and successive differentiation gives
DYf (0)=v!.a, and D¥g(0)=u!.b.

4.8 Corollary. Let G ¢ C™ be a domain, zo € G a point, and f :B — C
a holomorphic function. If f(z) =3, 0u(2 — 20)” is the (uniquely deter-
mined) power series expansion near zo € G, then

1
a =~ D" f(zg), for each v € Ny

4.9 Corollary (Cauchy’sinequalities). Let G C C* be a domain, [ :
G — C holomorphic, zg € G a point, and P = P"(zg,r) CC G a polydisk
with distinguished boundary T. Then

v!
|D¥ f(20)| < — - suplf]
v

ProOF: Let f(z) =3 _,a.(z —2z0)” be the power series expansion of f
at zg. Then DY f(zp) =vla, and

v (o) [

(2m)™ Jp et
_ ! / |F(230 + et 29 + rpeitn))

(2m)n r’
[0,2x]™

and therefore

IA

dty - -dt,

IA

v!
— .su .
2 - suplf
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The Identity Theorem.Let G € C™ be always a domain. The con-
nectedness of G will be decisive in the following.

4.10 Identity theorem (for holomorphic functions).

Let f1, fo be two holomorphic functions on G. If there is a nonempty open
subset U ¢ G with filu = f2lu, then f1 = fa.

PrOOF: We consider f := fi — f2 and the set
N ={ze€ G :D"f(z) =0 for all v}

Then N # @, since U C N. Let zo € G be an arbitrary point, and

f2) =Y D" £(20) (2~ 20)”

v>0

the power series expansion of f in a neighborhood V =V (zy) C G. If zg
belongs to N, then fly = 0, and also V C N. This shows that N is open.
Because all derivatives D" f are continuous, N is closed. Since G is a domain,
we get N =G and f; = fo. ]

Remark. In contrast to the theory of one complex variable, it is not suf-
ficient that f; and fo coincide on a set M that has a cluster point in G.
Consider for example, G = C? and M = {(21,22) : 22 = 0}. The holomor-
phic functions f1(21, z2) :=22(21 — 22) and f2(z1, z2) :=22(21 + 22) are equal
on M, but f1(0,1) = —1 and f2(0,1) = 1.

4.11 Theorem (maximum principle).

Let f : G — C be a holomorphic function. If there is a point zg € G such
that |f| has a local maximum at zo, then f is constant.

PROOF: We consider the map pw : C — C" with pw({) = zo +¢w, for
an arbitrary w # 0. Then f o ¢ is a holomorphic function of one complex
variable, defined near ¢ = 0. Now, since |f o ¢w| has a local maximum at
the origin, this function must be constant in a neighborhood of the origin.
But the direction w was chosen arbitrarily, so f also has to be constant in a

neighborhood of 0 € C™. The identity theorem implies that f is constant on
G. ]

Exercises

1. Prove Liouville’s theorem: Every bounded holomorphic function on C»
is constant.

2. Prove that if f € O(C™) and |f(z)| < C-||z¥|| for some C' >0 and some
v € N, then f is a polynomial of degree at most |v|.
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3. Let G ¢ C™ be a domain and f € O(G) not constant. Prove that then
f(U)C C is open for any open subset U C G.

4. Let G C € be a domain. A set F of holomorphic functions on G is called
locally bounded, if for every z € G there is a neighborhood U(z) C G such
that {||fllu : f € F} is bounded. Prove the following:

(a) (Lemma of Ascoli) f A C G is a dense subset and (f,,) is a locally
bounded sequence of holomorphic functions in G which converges
pointwise on A, then (f,,) is compactly convergent on G.

(b) (Theorem of Montel) Every locally bounded sequence of holomorphic
functions in G has a compactly convergent subsequence.

Hint: More or less, you can use the well-known proof from the 1-

dimensional theory.

5. The Hartogs Figure

Expansion in Reinhardt Domains.Let ), 7/ be real numbers with
0<r <7 for 1< v < n. We define

P = {zeC" :|z|<r, forallv},
Q0 = {zeC" 1, <|z|<r, forall v}

Clearly, P and Q are Reinhardt domains. Let f be a holomorphic function in
Q. Then for all r € 7(Q), the Cauchy integral Cr, is a holomorphic function
in P and therefore a fortiori in P (see Figure 1.3).

|22

"
T2

T2

Figure 1.3. Expansion in the polydisk

5.1 Proposition. The function fr : P — C given by f(z) =Cyr,(2) is
independent of r.

PROOF: We have
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ro= ([ [ o

27 ¢ — 2 Cn — 2n '

[C1l=r1 {ni=rn

In each variable {, the integrand f(¢)/ (¢, — %) is holomorphic on the annulus
{¢, 7!, < |G| <)} From the Cauchy integral formula for one variable it

follows that
_£(Q)- g, — / Q) g4,
ICul=ry Cv — 2u ¢ | =72 G — 2z
if v/ <r, <r} <ry. Thisyields the proposition. ]

5.2 Proposition. Let G ¢ C" be a proper Reinhardt domain, f holomor-
phic on G. Then for every z € Gn(C*)" the Cauchy integral Cyr, coincides
with f in a neighborhood of the origin.

Proor: GN (C*)” is a Reinhardt domain. Therefore, Gy =7(G N (C*)™)
is a domain in the absolute space.

Let B :={r € Go : Cpjt, coincides with f in the vicinity of 0 }. Then B #
&, because there is a small r € Gg such that P,(0) C G.

B is open: If ry € B, we can find sets P, Q as we did at the beginning of this
section such that ry € Q C Gg. Then forr € Q, fr = Cyr, is a holomorphic
function on P, and independent of r. But fy, coincides with f near the origin.
Therefore, Q C B.

Also, Gg — B is open. The proof goes as above. Since Gy is connected, that
implies that B = Gy. a

5.3 Corollary. Let G be a proper Reinhardt domain, f holomorphic in G.
Then there is a power series S(z) which converges in G to f.

PROOF: Let zg € G be arbitrarily chosen. Then there is a point w € GN
(C*)* with zg € Py. The holomorphic function ¢ := Cyjr,, has a power
series expansion g(z) =Y o @v2" in Py. Since g coincides with f in a small
neighborhood of the origin, the coefficients a, are those of the Taylor series
of f about 0. Since zg was arbitrary, it follows that the series converges in
all of G. By the identity theorem its limit is equal to f. n

Definition. If Gis a proper Reinhardt domain, then

6:= |J P

zeGN(C*)™

is called the complete hull of G.
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Remarks

1. Every complete Reinhardt domain is proper, but the opposite is in general
false. For n = 1, Reinhardt domains are open disks around 0, and there
is no difference between proper and complete domains.

2. The complete hull Gofa proper Reinhardt domain G is again a domain
containing G. And it is Reinhardt: For z_ € G there is some z;, with
ze R ¢ 6. But then also T, C P,, € G. The same argument shows
that G is complete.

3. Let G; be another complete Reinhardt domain with G C G4. For z €
G N (C*)™, z also lies in G, and by the completeness of G it follows
that B C G;. So G c G, and we see that G is the smallest complete
Reinhardt domain containing G.

An immediate consequence is the following:

5.4 Theorem. Let G be a proper Reinhardt domain and f be holomorphic
in G. Then there is exactly one holomorphic function f in G yih ﬂG —_f.

Hartogs Figures.In the case n = 1the situation above cannot appear.

For n > 2 we can choose sets G and G in C™ such that G # 6. This reflects an
essential difference between the theories of one and several complex variables.

Now let n > 2, P" the unit polydisk, ¢, . ..,q, real numbers with 0 < ¢, < 1
forv=1,..,n,and

H=H(q) :={z €P" :|z1| >q or |z, <qu forp=2,...,n}.

Then (P?, H) is called a Euclidean Hartogs figure (see Figure 1.4). His a
proper Reinhardt domain and P" its complete hull.

(a) 23]
|22
9% 93
H
.—9
S |21]

Figure 1.4. (a) 2-dimensional, and (b) 3-dimensional Hartogs figure
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5.5 Hartogs’ theorem. Let (P, H) be a Euclidean Hartogs figure. Then
any holomorphic function f on H has a holomorphic extension [ on P”.

The theorem follows immediately from our considerations above.

Exercises

1. For 0 < ¢ < 1let G1,G2 € C? be defined by

G, = {(z»w) :g<|zl < land|w| <1},
Gy = {(zw) :|z] < land |w| <g}.

(a) Prove that every holomorphic function f on GG; has a unique repre-
sentation
fie,w) = 9 an(w)z", with a, € O(D).

n=-—oc

(b) Prove that every holomorphic function g on G has a unique repre-
sentation

g(z, w)= i bn(w)z", with b, € O(Dg(0))-

n=0

(¢) Use (a)and (b) to prove that every holomorphic function f on G1UG2
has a unique holomorphic extension to the unit polydisk.
2. Let G ¢ C" be an arbitrary Reinhardt domain, f € O(G). Show that
there exists a uniquely determined “Laurent series” Y, czn 02" converg-
ing compactly in G to f.

6. The Cauchy-Riemann Equations

Real Differentiable Functions. Recall the following from real an-
alysis:

Let B € C™ be an open set and zg a point of B. A function f : B — R is called
differentiable (in the real sense) if there is a real linear form L :C™ — R and
a real-valued function r with:

L f(2) = f(20) + L(z - 2z0) +7(2 - z0).

The real linear form ) f(zg) :=L is called the (rotal) derivative of f at Zo.
It can be given in the form
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L:utivesu.Vef(zo) +v .Vyf(z)?,

with Vi f(20) = (fz,(20), - .., fz.(20)) and Vy f(20) = (fy, (20), .- ., fy.(Z0))-
We call (Vxf(z0), Vy f(zo)) the real gradient of f at zg.

If f =g+ih : B — C is a complex-valued function, then f is called differen-
tiable (in the real sense), if g and h are differentiable. The (real) derivative
of f at zg is defined to be the complex-valued real lincar form

Df(zo) :=Dg(zo) +iDh(zo).

6.1 Proposition. A function f : B — C is (real) differentiable at zy if and
only if there are maps A°,A” : B — C™ such that:

1. A* and A” are continuous at zq.
2. f(z) = f(zo) Tz —zo) .A'(2)* +(Z —Z) .A"(2z)¢ for z € B.

The values A'(zo) and A'(zy) are uniquely determined.

ProOOF: (1)Let f be differentiable at zy. Then there is a complex linear
form A’ and a complex antilinear form A” such that

Df(zo) = A’ +A”.

The decomposition is uniquely determined, and there are vectors A’(zg) and
A”(zp) such that

A(w) =w .A'(zg)" and A"(w)=wW-A"(z)".

Now we define

N = N+ g - ),

It is easy to see that
(a)A’ and A" are continuous at zg,
(b¥(z) = f(z0) + (z —29) - A'(2) ¢ +(Z —Z0) .A"(2) ¢
(2) Now let the decomposition be given, and define
Lw) = w-A(zg)'+W- A(z)?,
r(w) = W.(A(z) - A=)’ + W (A"(z) - A"(20))".
Since

|Tf(VT’7l)l < | A (z) - A'(zo))| TIIA"(z) — A" (20)]],

it follows that f is differentiable at zg with derivative L.

MO

£ 1 4D Ade
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Wirtinger’s Calculus

Definition. Let f : B — C be real differentiable at zg. If we have a
representation

f(2) =f(20) + (2 —20) . A (2)" +(Z - %) . A"(2)",

with A’ and A” continuous at zg, then the uniquely determined numbers
_Uazf_ (ZO) = fz,/ (ZO) =€y, A/(Zo) ¢

and
g_J: 7o) = f=, (2z0) =€y . A"(zp)"

are called the Wirtinger derivatives of f at zo.

The complex linear (respectively antilinear) forms (9f)z, : C* — C and
(3f)z, :C™ — C are defined by

(0f )ao (W) : Z [z, (Zo)w and (3f 20 ( Z fz. (20)Wy,

and the differential of f at zo by (df)zy =(9f)z +(0f)z,

Obviously, D f(zo) = (df),,.

If we introduce the holomorphic (respectively antiholomorphic) gradient
V= (fareo fa) and V= (frhe fa)

then (8f)z, (W) =w .V f(20)" and (9f)z(W) =W - Vf(z0)".

6.2 Proposition. Let f be a (complex-valued) function that is real differ-

entiable at zy. Then

(fe, (o) —ify,(20)),
(fe, (Z0) +ify, (20)).

fzu(zO) =
fz,(20) =

DO e N

ProoOF: Let be L := Df(zy). Then
fo. (Z0) = L(ey) = (8f)as(€0) + (8f)ao(ev) = f, (20) + fz,(20)

and

fu. (o) = L(ie,,) = (af)zo(ie'/) + (gf)zo(ier/) = i(fz,,(z()) - fEu(ZO)'
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Putting things together we obtain

fo, (7o) — ify, (20) = 2fz,(20) and [, (20) + ify,(20) = 2fz, (20)-

Remark. Use these formulas with care! The derivatives f,, and f,, in
general are complex-valued. So the equations do not give the decomposition
of f,, and fz, into real and imaginary parts, respectively!

The Cauchy-Riemann Equations

6.3 Theorem. Let f :B — C be a continuously real differentiablefunction.
Then f is holomorphic if and only if fz,(2) =0 on B, forv=1,...,n

Proor: (a)If f is holomorphic, then f is complex differentiable at every
point zg € B. Comparing the two decompositions

f(2) = f(z0) + (z —20) . A(z)'

and
f(z) = f(z0) + 2 —20) . A(2)" +(2 - %) - A"(2)"

we see that A'(zo) = A(zo) and A”(zg) = 0. The latter equation means that
fa.(zo)=0forv=1,...,n

(b) If fz,(z)= 0, then f is holomorphic in each variable and is consequently
holomorphic. n

Remark. Now the following is clear: If f is holomorphic near zo, then

(0f)sy =0 and D f(2zo)(W) = (df)zo (W) = (8 )ze(W) = me

The equation (8f), = 0 is the shortest version of the Cauchy-Riemann dif-
ferential equations. In greater detail, these are the equations

fz,(2)=0,forv=1,..,n

Finally, if f = g + ih, then we can write the Cauchy—Riemann equations in
their classical form:

9z, =hy, and hy, =—g,,, forv=1,...,n.
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Exercises

1. Derive the Cauchy—Riemann equations in their classical form.
2. Let f : G — C be real differentiable. Prove the formulas

(Fo) =z ad  foz, =fz. forv,p=1._ n

3. Let G C C” be a domain and fi,. .., fk :G — C holomorphic functions.
Show that if Z;“:l f;f; is constant, then all f; are constant.

e =l o |
0z;

Hint: If 4 is holomorphic, then 9707 =

7. Holomorphic Maps
The Jacobian.Let B ¢ C™ be an open set. A map
f={f1,-..,fm) :B—>C™
is called holomorphic (respectively real differentiable) if all components f;

are holomorphic (respectively real differentiable).

7.1 Proposition. The map f : B — C™ is holomorphic if and only if
for any zg € B there exists a map A : B — My, n(C) with the following
properties:

1. A is continuous at zo.
2. f(z) =1(zo) +(z —2z0) .A(2)?, forz € B.

The value A(zg) is uniquely defined.

ProoF: The map f is holomorphic if there are decompositions
fu(z) = fu(zo) + (z — ZU) : Au(z)ta

with A, continuous at zg, for g = 1,...,m.

Then A is given by A(z)? = (A(z)¢,...,An(2)"). We leave the further
details to the reader. -

Definition. Iff : B — C™ is holomorphic, then Je(Zo) = A(Zo) is
called the complex Jacobian (matrix) of £ at zo. The associated linear
map f'(zg) :C™ — C™ is called the (complex) derivative off at zo. It is
given by

f/(Zo)(W) =W. Jf(Zo) t.
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Explicitly, we have

(M@)o (f1).(2)
Ji(z) = :
(fm)z (@) -0 (fm)z.(2)
This matrix is also defined for differentiable maps.

Definition. If f =g+ ih : B = C™ is a differentiablemap, then the
real Jacobian matrix Jg ¢(2p) € Mo, 00 (R) is the real matrix associated
to the real linear map

(Dg(zo), Dh(zg)) : C™ = R*™ — R?™,

The real Jacobian of f =g+ ih is given by

9z (G)zn | (90)y 0 (91)yn

| e e | ) (o)
Sl 7% ST (% W (7% WP (T o
(hdas ++ (hden | (dys - (o)

The EX-lincar map Df(z) : C* — C" is defined by Df(z) :=Dg(z) +i Dh(z).
Setting (9f), := ((8f1)s: - .. ,(0fm)a) and (0f)z := ((Of1)as - .. ,(0fm)a), we
obtain

Df(z) = (af), +(0f),.

7.2 Theorem. A differentiablemap { =g +ih : B — C™ is holomorphic
if and only if Df(z) is C-linear for every z € B.

If £ is holomorphic and n =m, then det(Jg ¢(z)) = |det J¢(2)]?.

Proor: The map f is holomorphic if and only if (5f )z = 0 for every z. Then
Df(z) = (8f),, which is complex linear. In this case we have the Cauchy-
Riemann equations

(9#)% = (hy)y, and (hu)wu = -(gﬂ)zu7

and therefore
(fu)z = (fu)e. = Gu)e, +i(hu)a,, forp =1,...omandv = 1,...,7.

A

B
Ifn=m,thenJR7f=(C D)Witth—CandA:D,andez

A+ iC.
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By elementary transformations,

A —c\ _ A+iC —-C+i4A
det(c A ) = det( C A >
A+iC 0
= det( C A—iC>
= |det(A +i0)|%.

It follows that holomorphic maps are orientation preserving!

Chain Rules.Let B € C™ be an open set, f : B — C™ a differentiable
map, and g a complex-valued differentiable function that is defined on the
image of f. Then g of : B — C is differentiable, and the following holds:

7.3 Proposition (complex chain rule).

@B = 3 (w0 (fue + D (em, 00 - (7).,
=1 p=1
(gof)z, = 3 (gu,of) (fu)z + D (9w, o) (F)s,

One can use the well-known proof for the chain rule in real analysis, consid-
ering z,, and %z, as independent variables.

7.4 Corollary. Iff and g are holomorphic, then

(g0f)z,(z) = 0 (ie., gof is holomorphic),

(9of)s(2) = > gu, @) (fu)=(2).

The second equation can be abbreviated as

V(gof)(z) =Vy(f(z)  Ji(2)

Tangent Vectors. In this paragraph we use the term differentiable for
infinitely differentiable.

Definition. A tangent vector at a point z € C" is a pair t = (z,w),
where the direction w of t is an arbitrary vector of C™. If the base point
7 is fixed, we simply write w instead of t or (z,w).

The set T, of all tangent vectors at z is called the tangent space (of C"')
at z.
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The notation "tangent vector” is motivated by the following:

Let B ¢ C™ be an open set and I C R an interval containing 0 as an interior
point. If @ = (v, ..., ) :I — B is a differentiable path, then o'(0) is the
direction of the tangent to the curve a at the point o(0). Therefore,

8(0) :=(a(0), a/(0))

is called the tangent vector of o at z — «(0). Each tangent vector (z,w) € T,
can be written in the form &(0), e.g., a(t) =2z +tw.

The tangent space 71, carries in a natural way the structure of a complex
vector space:

(Z, wl) + (Z, W2) = (Z,Wl +w2)a
A (z,w) = (z,A-w), forAeC.

Every tangent vector t = (z,w) operates linearly on the algebra &(B) of
differentiable functions on B by

t{f] = Df(z)(w).
This is the directional derivative, also denoted by Dy, f(z). If t = &(0), for
some differentiable path a, then t[f] =( f o @)’ (0), due to the chain rule.

The operator ¢ : £(B) — R satisfies the product rule:

tf - gl = t[f]-9(z) + f(z) - t]g].

In general, a linear operator satisfying the product rule is called a derivation.
In Chapter IV we will show that the tangent space is isomorphic to the vector
space of derivations.

The Inverse Mapping.Let By, B, C C" be open sets, and f : By — By
a holomorphic map.

Definition. The map f is called bikolomorphic (or an invertible holo-
morphic map ) iff is bijective and £~! holomorphic.

7.5 Inverse mapping theorem. (Consider a point zg € By and its image
wo =f(zg). Then the following are equivalent:

1. There are open neighborhoods U = U(zg) C By and V =V (wy) C By
such that £ :U — V is biholomorphic.
2. det Jg(zo) # 0.
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Proor: ¥ fly : U — V is biholomorphic, then (flz)™* o f = idy and
1 = det(En) - det(J(ﬂU)Al(Wg) _Jf(ZQ)) = det(J(ﬂU)A (wo)) _det(Jf(Zo)),
and therefore det(Jg(2o)) # 0.

It det(J¢(zo)) # 0, then also det(Jr ¢(20) = |det Je(zo)|? # 0. It follows from
real analysis that there are open neighborhoods U =U(zy) C By and V =
V(wo) C By such that f|y :U — V is bijective and g := (fly)™' : V > U
a continuously differentiable map (in the real sense). Then f o g =idy is a
holomorphic map, and if we write f =15 .. f,) and & = (91,- ..,9»), then

n

0=(fror)m, =2 ((f)eno8) (9w, forv,u=1,. ,n
X=1

In the language of matrices this means that
Vgl
0=Jg: :
Vn
Since J; is invertible, it follows that Vgx = 0 for each A. Therefore, the map
g is holomorphic. "

7.6 Implicit function theorem. Let B C C" x C™ be an open set, f =

(fi,-.-sfm) : B = C™ a holomorphic mapping, and (2o, Wo) € B a point
with £(zq, wo) =0 and

ofy p=1...,m
det(azy(zo,wo) v=n+1l...,n4+m #0

Then there is an open neighborhood U = U’ x U” C B and a holomorphic
map g U — U" such that

{(z,w) e U xU" :f(z,w) =0} ={(z,g(z)) :z€U'}.

PrROOF: We write J¢(zo, wo) = (J'|J"), with J' € M o(C) and J' €
M,(C), and define F : B — C" x C™ by F(z,w) :=(z,f(z, w)). Then

E, 0
det Jv(2zo, Wo) =det< S ) # 0.

Therefore, there are open neighborhoods U = U(zp,Wo) C B and V =
V(zp,0) C C™™ such that Fly : U — V is biholomorphic. Obviously,
F~!(u,v) = (u,h(u,v)). We may assume that U = U’ x U" ¢ C* x C™
and V = U’ x W, with some open neighborhood W = W (0) ¢ C™. Defining
g U — U" by g(z) :=h(z,0), it follows that
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f(z,w) =0 <= F(z,w)=(z,0)
= (z,w) =F7(z,0)
< w =h(z0)=g(z).

This completes the proof. n

Remark. We can exchange the coordinates in the theorem. If rk J¢(zg, wg) =

m, then there are coordinates z;, ,...,z;, such that £71(0) is the graph of a
map g =g(%,,. ..,%,) near (zj, wo).
Exercises

1. Let G = P" C C? be the unit polydisk and f = (f1,f2) : G = G a

holomorphic map with £(0) = 0.

(a) Showthat iff(z) =z+Y, -, Pn(z) with pairs p,(z) = (p§")(z),pg")(z))
of homogeneous polynomials of degree n, then f(z) = z. Hint: Use
Cauchy’s inequalities and consider the iterated maps f* =fo...of
(k times).

(b) Show that if f is biholomorphic, then f;, f» are linear.

2. Let G4,G» C C™ be two domains. A continuous map f : G; — G2 is
called proper if for every compact subset K C Gy the preimage f~!(K)

is a compact subset of G.

(a) Show that every biholomorphic map is proper. Give an example of a
proper holomorphic map that is not biholomorphic.

(b) Let G; and G5 be bounded. Show that a continuousmap f : G, — Gy
is proper if and only if for every sequence (z;) in G tending to Gy,
the sequence (f(zx)) tends to 9Gs.

(©) Let G',G" C C be bounded domains and f : G' x G — G5 a
proper holomorphic map onto a bounded domain G5 C C2. Show
that z — £, (z, w) cannot vanish identically on G’. Let z9 € 8G’ be an
arbitrary point and (z;) a sequencein G’ tending to zp. Show that the
sequence of holomorphic maps ¢i : G"” — G2 with @i (w) =f(2x, w)
has a subsequence converging compactly on G” to a holomorphic
map o :G"” — C? with po(G") C 0G,. Show that there must exist
at least one point zo € 8G’ such that the corresponding map g is
not constant.

3. Use the results of the last exercise to prove that there is no proper map-
ping from the unit polydisk to the unit ball in C2.

4. Let G; € C™ and G € C™ be domains and f : Gy — G5 abiholomorphic
map. Show that m =n.

5. Let G ¢ C™ be adomain and D :&(G) — R a derivation, i.e., an R-linear
map satisfying the product rule at zp € G. Show that D[f] depends only

on f|y, U an arbitrary small neighborhood of z.
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6. Let G ¢ C" be a domain, f = (f1,...,fm) : G — C™ a holomorphic
mapping, and M :={(z,w) € Gx C™ : w =1(2z)}. Prove the following:

Ifg : G x C™ — C is a holomorphic function with g{ps = 0, then for
every point (zo,wo) € M there is a neighborhood U and an m-tuple
(a1,...,8 of holomorphic functions in U such that

g(z,w) = Za”(z,w) (wy — fu(z)) for (z,w) € U.

8. Analytic Sets

Analytic Subsets. Let B ¢ C™ be an arbitrary region. If U C B is

an open subset, and Y1’ ..., f, are holomorphic functions on U, then their
common zero set is denoted by
N(fi,- -1 fq) =12 €U : fi(z) = ... = fqo(z) =0}

Definition. A subset A C B is called analytic if for every point zo € B
there exists an open neighborhood U = U(zg) C B and holomorphic
functions J1- ...y fgonU suchthat UNA =N(f1,...,fq)

If zg is a point of B — A, then we can choose an open neighborhood U = U(zo)
and holomorphic functions 1> ..., f, on U such that

Zer/Z:U_N(flw"afq)CUC B.

Since the zero set N(f1,...,fq) is closed in U, it follows that B — A is open
and A closed in B. Therefore, an analytic set in B could have been defined as
a closed subset A C B such that for any zg € A there exists a neighborhood
U and functions /15 oy Jqa€OWU) with AnU =N(f1,...,fq)-

Example

In general, analytic sets cannot be given by global equations. We consider
the domain G :=G; U G2 with

9 1
G, = {z2=(21,2) €C® 1]z < 5 and |20} < 1},
1
G2 = {Z:: (21’22) € (C2 : lZ]_I < ].and 2 < |z2| < 1}

For the analytic set we take A :={(z1,22) € G2 : z1 =22} (see Figure 1.5).

The sets 1, G2 give an open covering of G with AnNG; =0 and ANGz =
{(#1,22) 21 — 22 =0}. S0 A is an analytic subset of G.
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[21]

Figure 1.5. A not globally defined analytic set

Iff is a holomorphic function in G that vanishes on A, then f can be analyt-
ically continued to the unit polydisk P2, since (P2, G) is a Euclidean Hartogs
figure (up to the order of the coordinates). Let fbe the continuation. Since
9(z) = f(z,z) vanishes for 3 < |z| < 1,it also vanishes for 0 < [z < 1.
This means that f vanishes on A = {(z,, z2) € G : z1 = 2z2}. Any zero set
of finitely many holomorphic functions in G that vanish on A must contain
A. So A itself cannot be given by global holomorphic functions. In the next
chapter we define special domains in C™ each of which possesses a holomor-
phic function that cannot be analytically extended to a larger domain. Those
domains are called domains of holomorphy. On such domains the global rep-
resentation of analytic sets is possible. The proof of this fact is not contained
in this book, because it requires sheaf theory. One has to show that the
sheaf of germs of holomorphic functions that vanish on A is “coherent” (cf.
[GrRe84], Section 4.2). Then every stalk of this sheaf is generated by global
sections (Cartan’stheorem A, cf. Chapter V in this book, and [GrRe79], Sec-
tion IV.5). From that it can be proved that A is the zero set of finitely many
global holomorphic functions.

Definition. A subset M of a domain G is called nowhere dense in G
if the closure of M in G has no interior points.

Since an analytic set A C G is always closed in G, it is nowhere dense if in
every neighborhood of every point z € G there are points outside of A.

8.1 Proposition. Assume that A is an analytic set in a domain G C C".
If A has an interior point, then A = G. If A is nowhere dense in G, then
G — A is connected.

PROOF: To start with we assume that G = B is a ball and that there are
holomorphic functions f1,...,f; on B with A = N(f1,...,f,).
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n Bis an interior point of A, we consider an arbitrary complex line L
1 . . . .
thrzci)ugh »,. By the identity theorem the functions f; all vanish on LN B and

th(,/,refore in D.

If A is nowhere dense in B and L an arbitrary complex line, then either
LN B C A or A has only isolated points on LN B. So any two points of L NB
outside of A can be connected in LN (B - 4).

Now let (& be an arbitrary domain. If zg E G is an interior point of A, and
wg € G an arbitrary point, then we can join these points by a continuous
path « : [0,1] — G. The compact image of this path can be covered by finitely
many balls B C G such that BN A is the zero set of holomorphic functions
on B. Successively it follows that every ball is contained in A. So A =G.

If A is nowhere dense in G, then we consider zo,wo € G — A and use the
same continuous path. It is clear from above that any point z in the first ball
B that is not an element of A can be joined in B — A to z¢. Applying this
successively we obtain a curve between zg and wy in B — A. u

If n = 1,then a nowhere dense analytic set consists only of isolated points.

Bounded Holomorphic Functions. Assume that G ¢ C™ is a do-
main and A C G a proper analytic subset.

8.2 Riemann extension theorem. If f is a holomorphic function in

G — A that is bounded in a neighborhood of every point of A, then f can be
holomorphically extended to G.

ProoF: Since A # G, A is nowhere dense in G. Let zo € A be an arbitrary
point. Then there is a complex line L through zo that in a neighborhood of
zq intersects A only in zg.

After a linear change of coordinates we may assume that zo = 0 and that
L =Ce; is the z;-axis. We can find a polydisk

P={z=(2,2)eCxC""! :|n]<n,lZ|<r} ccG

such that AN {z : |z;] =ry, |2’| < T} is empty. For any ¢/ € C"! with
¢/l <r,theset D ={z :|z|<r; and 2z’ = ¢’}is a 1-dimensional disc such
that D N A contains only isolated points, since otherwise D C A (see Figure
1.6). By the classical Riemann extension theorem in one variable f can be
extended to a function f(zl,z’ ) that is holomorphic in z;. By the classical
Cauchy integral formula we have

J?(zl,z’) ! / Md(, for |21| < r; and |2'[ <7
1<

:57; |=r1 ¢— 21

The integrand on the right side is holomorphic on P. Consequently, the left
side is differentiable (in the real sense), and since integration and differenti-
ation by z; can be exchanged, f is holomorphic on P. If we carry this out
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71 |21]
Figure 1.6. Riemann extension theorem

at every point zy € A, by the identity theorem we obtain the desired global

extension of f to G.
a

Regular Points.Let G ¢ C" be a domain, andz € G a point. If 4, ..., f,
are holomorphic functions in a neighborhood of z, then we define

rkz(fla Ty fq) =rk J(fl;---!fq)(z)'

Definition. An analytic set A C G is called regular of codimension
q at z € A fif there is a neighborhood U = U(z) C G and holomorphic
functions f1,...,f; on U such that:

LANU =N(f1,..., fy).

2. tka(fy,. ., fa) =4
The number n — g is called the dimension of A at z.

The set A is called singular at z if it is not regular at that point. The

set of regular points of A is denoted by Reg(A) or A, the set of singular
points by Sing(A).

It is clear that A is open in A, and therefore Sing(A) C A closed.

8.3 Theorem (local parametrization of regular points). LetA C G
be analytic, zo € A a point. A is regular of codimension q atf zg if and only

if there are open neighborhoods U =U(zp) C G and W =W (0) C C" and a
biholomorphic map F :U — W such that F(zy) =0 and

F(UﬂA):{w:(wl,...,wn)eW P Wpogi1 = = w, = 0},

PROOF: Let A be regular at zp. There is an open neighborhood U = U(z)

such that ANU = N(f1,...,fq) and 1k, (f1,. ..,fq) = q. By renumbering
the coordinates we can achieve that
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ittty (20) = (I [J"),

with J’ € My n—q(C), J” € My(C), and det J” # 0. Then define F :U — C"
by

F(Zl,. ..,Zn) = (Zl—zim, ...,zn—q—zizolwfl(zlw ..,zn), ..~,fq(z17~~ ,zn))

Consequently, the Jacobian has the form
E,_ 0
JF(ZO) = ( 3/ e J" ) s

and therefore det Jg # 0. Shrinking U if necessary, we have our biholomorphic
map F :U — W, with F(z0) =0 and

w =F(z) for somez € UNA < wp—g41 =...=wp =0.

The other direction of the proof is trivial. "

Up to this point it is not clear whether or not there exist regular points. In
Chapter III we will show that the set of singular points of an analytic set
A is a nowhere dense analytic subset of A. At the moment we want only to
demonstrate that the zero set of a single holomorphic function contains at
least one regular point (and then, of course, a nonempty open set of regular
points).

8.4Proposition. Let G CC" be a domain, and | a nonconstant holomor-
phic function on G. Then the analytic set N(F ) contains a regular point.

PROOF: The case n = 1is trivial. Therefore, we assume n > 1.

If every point of A :=N(f) is singular, then Vf(z) = 0 on A. Since f is not
constant, it is impossible that there is a point z such that DY f(z) = 0 for
every multi-index v. Therefore, we can find a point zo € A, an integer ng, a
multi-index vo, and some A € {1,...,n} such that

L. [vo| =no and (D™ f)., (20) # 0,
2. D¥f(z) =0 for every z € A and every v with |v| < no.

The set M == {z € G : D" f(z) = 0} is analytic in G and regular of
codimension 1 at z;. We may assume that zo =0 and M = {z = (21,2') €
G : z; =0}, making G sufficiently small.

We have A C M, and we want to show equality near zq. It is clear that the
function ¢ — f(¢,0’) has exactly one zero at ¢ = 0, and it follows easily
from Rouché’s theorem that for 7z’ sufficiently close to 0’ the functions ¢ —
f(¢,7") also have exactly one zero. This means that there is a neighborhood
V =V(0) CU suchthat VNA =VNM. In particular, zo is a regular poinﬁ
of A.
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Definition. A k-dimensional complex submanifold of a domain G C
C” is an analytic set A C G such that A is regular of codimension n — &
at every point.

If A C G is a k-dimensional complex submanifold, then for every point z € A
there is an open neighborhood U = U(z) C G, an open set W € C*, and a
holomorphic map ¢ : W — U such that:

1.tk Ju(w) =k forw e W.
2. (W) —UNA.
3. ¢ : W— UNA is a topological map.?

The proof follows immediately from the local parametrization theorem. The
map ¢ is called a local parametrization.

Injective Holomorphic Mappings. Let G C C"* be a domain, and
f =(f1,...,fs) :G— C™ a holomorphic map.

8.5 Theorem. Iffis injective, then det Jp(z) # 0 everywhere.

PROOF: We use induction on z. The case n = 11is well known. We consider
the case n > 1and define & :=det J;.

Assume that N(h) # @. Then there exists an open subset U C G such that
M :=U N N(h} is a nonempty (n — 1)-dimensional complex submanifold of
U.

We claim that Je[ps = 0. To prove this, we assume that there is a point
zg € M with Je(zg) # 0. Without loss of generality, we may assume that

Ofn
%(Zo) # 0.

Let F :G — C™ be defined by F(z’, z,,) :=(2, fn(2', 2»)). Then det Jr(zo) #

0, and there are connected open neighborhoods U of zg and V. of =F(zs)
such that IS :§ = Vis %(}ho%morf)%lc. There 1s a hol%morp ic r‘r?,z?p v

C™~1! such that

f OF_I(w/,wn) = G(w’,wn),wn),
and we define

g=(9, ..,gn-1): W:={weC! :(w, w) e V} —»Crt
by g(w') :=£(w', w).

1A map ¢ : X — Y between topological spaces is called topological or a homeo-

morphism if it is continuous and bijective and the inverse mapping p~! : ¥ — X
is also continuous.
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Since g is injective, we can apply the induction hypothesis and conclude that
det Jg(w() # 0. Now

Jf(ZO)'JF*I(WO) = ( J?(WO) ) = ( Jgﬁ)v/vé’) %1% ) .

€n

Therefore, h(zo) = det Jr(zo)-det Jg(Wg) # 0 as well. This is a contradiction.

We have demonstrated that Jp(z) = 0 for every z € M. Since f is holomor-
phic, also Df(z) = 0 on M, and using a local parametrization of M we obtain
that f];, is locally constant. But this is impossible, since f is injective. The
set N(h) must be empty. n

8.6 Corollary. G < C" is a domain, and f : G — B an injective

holomorphic mapping, then also £(G) is a domain, and £ : G — f(G) is
biholomnorphic.

PROOF: Let wg :=f(20) be a point of G' :=f(G). Then det J¢(zo) # 0,
and there are open neighborhoods U = U(zg) € G and V = V(wp) C @”
such that £ :U — V is biholomorphic. It follows that wg is an interior point
of G’ and that f~! is holomorphic at wg. u

Exercises

1. Prove the following properties:
(a) Finite intersections and unions of analytic sets are analytic.
(b) Iff :G; — G» is a holomorphic map between domains and A C G»
an analytic set, then f~1(A) C G, is analytic as well.
(¢) If A; ¢ G and Az C G2 are analytic sets, then 4y x Az is an analytic
subset of G; x Gs.
2. Let U C @ be an open neighborhood of the origin and A C U be
an analytic subset containing the origin. For 1< k < n—-1land I =
{i1,.. »ik} C (1,...,n}let p; :6" — CF be defined by

pI(zl7' . .7zn) = (zily- .. ,z’ik)'

Prove: If A is regular of codimension n — & at the origin, then there exists
an I and open neighborhoods V = V(0) c U, W = W(0) C C* such
that p; : ANV — W is bijective.

3. Show that A :={(w,z,22) € C® : w? = 2,2} is an analytic set that is
regular of codimension 1 outside the origin and singular at 0.

4. Let A, A2 be two analytic sets in a neighborhood of the origin in 61"
such that 0 € A := A; N Asz. Suppose that U N Ay # U N A2 for every
neighborhood U of 0. Show that A is singular at O.

Chapter 11

Domains of Holomorphy

1. The Continuity Theorem

General Hartogs Figures. The subject of this chapter is the contin-
uation of holomorphic functions. We consider domains in C?, for n > 2. A
typical example is the Euclidean Hartogs figure (P, H), where P™ = P"(0, 1)
is the unit polydisk, and

H={zeP" :|z| >q or|z|<gq forv=2,..n}

Here q,. .., qn are real numbers with 0 < g, < 1for v = 1,...,n. Every
holomorphic function f on H has a holomorphic extension f on P".

RS Mippid g9 .= dor)-antle 7 - g (R) CEnbfi 1 MBFo Gl

general Hartogs figure.

We use the symbolic picture that appears as Figure I1.1

meamt
1 g ]
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Figure II.1. General Hartogs figure

1.1 Continuity theorem. Let G C G be domain, (13, ﬁ) a general Har-

togs figure withH € G, f a holomorphic function on G. If GNP is connected,
then f can be continued uniquely to GU P.
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13R00F: Let g : P — C™ be an injective holomorphic mapping such that

= g(P™) and H := g(H). The function %z = fo g is holomorphic in
H Therefore there exists-exactly one holomorphic function h on P" with
th — h. Since g : P" — P is biholomorphic, the function fy := hog™! is
defined on P and it is a holomorphic extension of f|z. We define

= z) forzé€ G,
iy - 1@ .

fo(z) forze?2;
Since GN P is connected and f = fo on H, it follows from_the identity
theorem that f is a well-defined holomorphic function on GU P. This is the
desired extension of f . [

Example

Let n > 2 and P’ CC P be polydiscs around the origin in C™. Then every
holomorphic function f on P— P’ can be extended uniquely to a holomorphic
function on P.

For a proof we may assume that P = P" is the unit polydisk, and P’ =
P*(0,r), withr = (r1,...,rp) and 0 < r, < 1forv = 1,...,n. It is clear
that G :=P — P’ is a domain.

Given a point zp = (2{”,...,2) € G with [2’| > r,,, we choose real num-

bers q1,...,q, as follows: For v = 1,...,n — 1,let ¢, be arbitrary numbers,
with r, < ¢, < 1. To obtain a suitable g,,, we define an automorphism 7" of
the unit disk D by

(=20

ZC -1

This automorphism maps z{’ onto 0 and a small disk D c {( € C : r, <
IC] <1} around 2’ onto a disk K ¢ D with 0€ K. Notice that 0 need not
be the center of K. We choose ¢, > 0 such that Dy (0) C K.

T(¢) =

If we define H := {z € P" : |z1] > ¢q10r |2 <gq, forv =2,...,n}, then
(P", H) is a Euclidean Hartogs figure. The mapping g : P* — P™ defined by

g(z1,. .. ,20) = (21, .., 201, T (20))
is biholomorphic, and (ﬁ, H ) = (P",g(H)) is a general Hartogs figure, with

H c{zeP™ :|z1| >rior |z >m} CG.

Since PN'G = G is connected, the continuity theorem may be applied. The
preceding example is a special case of the so-called Kugelsatz which we shall
prove in Chapter VI.
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i q1 | 21] q1 Izl|

Figure 11.2. A Hartogs figure for concentric polydiscs

Removable Singularities. Let G C C” be a domain. f A ¢ G is an
analytic set and f a holomorphic function on G — A that is locally bounded
along A, then by Riemann's extension theorem f has a holomorphic extension
to G. If n > 2 and A is a complex linear subspace of codimension greater
than or equal to 2, then every function holomorphic on G — A has such an
extension.

1.2 Theorem. Let P" =P™(0, 1) be the unit polydisk inC", n> 2,k > 2,
and
E:=11@7 =(21,...,20) €C" : zp_py1 =" =2z, = 0}.

Then every holomorphic function f on P* — E can be holomorphically ex-
tended to P™.

PrRoOF: Set P’ :={z' = (21,...,2n—k) : |2’| <1}, and for 0 < r < 1
define P! :={2" =(2p—ks1,..-,2n) : 2| <r}.

Let P” :=P{ and fix an ¢ with 0 <e¢ < 1. Then P"NE C P’ x P/, and for
w € P’ the function fy(z") := f(w,z") is holomorphic on P” — P”. From

the example above we know that fy, has a holomorphlc extension fu to P,
Now define f :P" — C by f(w z') = fw( ). On P" - E, fis equal to f
and is therefore holomorphic.

For w € P’ take a small open neighborhood U =U(w) cC P'.Then K :=

U x OP! is compact. By the maximum principle we conclude that

|f(z'7z“)| = |fz,(z“) | <\ farllopr < || fllx < oo, for (2',2") € U x P! — E.

From Riemann's extension theorem it followsthat fis holomorphic on P". m
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1.8 Corollary. Forn > 2, every isolated singularity of a holomorphic func-
tion of z1, ..., 2n 1S removable.

Riemann’s extension theorem is false if we drop the condition “f bounded
along the analytic set.” For example, let G C C" be a domain, g : G—>Ca
holomorphic function, and let f : G—N(g) — C be defined by f(z) := 1/9(z).
Then £ is holomorphic on G — N(g) but cannot be extended to any point of
N(g).

Things look quite different if there is a little hole in the hypersurface:

1.4 Proposition. Letn >2, Go C C*™! a domain, g : Go — C a contin-
uous function, and T := {z = (2',2n) € Go x C : 2, = g(2')} the graph of
g in G := Gy x C. In addition, let zo be a point of I and U =U(zo) CG a
small neighborhood.

If f is a holomorphic function on (G-T)UU, then f has a unique holomorphic
extension to G.

PrOOF: The uniqueness of the extension follows from the identity theorem.
For the proof of existence (which is only a local problem) we may assume
that Go = {z/ € C"~! : |2’| < 1} and that there is a ¢ with 0 < ¢ <1 such
that |g(z')| < ¢ for z’ € Gy. It also may be assumed that U is connected.
Then it is clear that G’ := (G —T)uUU C P" = P*(0, 1) is connected.

Since g : z’ — (2, g(z')) is continuous, U’ := g~ (U) is an open neighborhood
of zy with (U’ x D)NT C U and therefore U’ x D c@G. Forv=1,...,n—1
let T, be the automorphism of D defined by

_ (0}
T, (C) = C 2

CZO¢-1

Then h : P* — P™ with h{(21,...,2n) := (T1(22), .., Tn-1(2n), 21) is holo-
morphic, h(0) = (z),0), and h({z € P* : 21| > ¢}) C {w € P : lwn| > ¢}

|z'|

Figure I1.3. Extending a holomorphic function across a hypersurface
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We define ¢; := ¢, and for v = 2,...,n choose g, such that
h(D x D,,(0) x --- x Dg, (0)) c U" x D.

Then (P",H) with H := {z € P : 21| > qror |z| < ¢ forv =2,...,n}
is a Euclidean Hartogs figure, and (P, H) = (P™,h(H)) is a general Hartogs
figure, with H C G’ (see Figure IL3). Since PN G = G is connected, the
proposition follows from the continuity theorem. n

The Continuity Principle. Sometimes we wish to use a family of
analytic disks instead of a Hartogs figure.

Definition. A family of analytic disks is given by a continuous map
¢ : Dx[0,1] —» C" such that ¢:(¢) := ¢((,t) is holomorphic in D,
for every t € [0,1]. The set Sy := ¢;(D) is called an analytic disk, and
bSy := (D) its boundary.

Observe that in general bS; is not the topological boundary of S;.

Definition. A domain G C C" is said to satisfy the continuity prin-
ciple if for any family {S¢, t € [0,1]} of analytic disks in C" with
Uo<i<1 0S5t € G and Sy C G, it follows that [ Jy,; S: C G.

Example

Let P™ be the unit polydisk and {S;, ¢ € [0,1]} a family of analytic disks
in C" with U0§t§1 bS; C P™ and Sy C P™. Because Sy and the union of all
boundaries bS; are compact sets, there is an £ > 0 such that

U #S:cPr0,1-¢) and S, cP™(0,1-¢).
0<t<1

We assume that Jy,<, S: is not contained in P", and define

to:=inf{t €[0,1] : S, ¢ P"}.
It is (_:lear that £ > 0, S;; ¢ P*, and Sy C P” for 0 < t < to. Then S,
contains a point zg = (_zi‘”, ..., 2) € OP™ If the family of analytic disks is
given by the map ¢ : D x [0,1] — C", and w, denotes the uth coordinate
function, then f, ;({) := wy, o p((,t) is continuous on D and holomorphic in

D. Choosing p such that |2{| = 1, there is a (o € D with £, 4 (o) = z{ and
| futo(Co)| = 1. But by the maximum principle we have

| fu,t(Co)| < Saug)|fu,t| <1l-—¢g, fort<tg.

Since t — f,, +({o) is continuous, a contradiction is reached, and therefore P™
satisfies the continuity principle.
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Hartogs Convexity.
Definition. _A domain G C C"is called Hartogs convex if the following
holds: If (P H) is a general Hartogs figure with H C G, then PcCG.
An immediate consequence of the definition is the following:

The biholomorphic image of a Hartogs conver domain is again Hartogs
convez.

1.5 Theorem. Let G C C™ be a domain that satisfies the continuity prin-
ciple. Then G is Hartogs convez.

Proor: Let (P H) be a general Hartogs figure with H C G. We assume
that it is the biholomorphic image (g(P™), g(H)) of a Euclidean Hartogs figure
(P™, H) with

H={z: |z1] >q or |2, < gy for p=2,...,n}.

In order to define analytic disks we choose some r with ¢1 < 7 < 1 and
introduce the affine analytic disks

Dy = {z = (21,2") € P* = P' x P" : |21 <r and z’ =w}

Since Dy, C P for every w € P”, we can define ¢y, : D x [0,1] — C” by
setting pw((,t) := g(r¢,tw). Then a family {S¢(w) : 0 < < 1} of analytic

disks in P is given by
Se(w) = pw(D x {t}) = g(Diw)-

It follows that bS;(w) C G for every w € P” and every ¢ € [0,1], and in
addition, So(w) = g(Do) C G- The situation is illustrated in Figure I1.4.

"

Si(w) bSi{(w)

|21

Figure I1.4. Analytic disks in a Hartogs figure
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Since G satisfies the continuity principle, we obtain that g(Dw) = S1(w) is
contained in G. This is valid for every w € P”. Therefore, P C G, and G is
Hartogs convex. ]

1.6 Corollary. The unit polydisk P™ is Hartogs convez.

Domains of Holomorphy

Definition. Let G C C" be a domain, f holomorphic in G, and zg €
OG a point. The function f is called completely singular at zy if for
every connected neighborhood U = U(zp) C C™ and every connected
component C of UNG there is no holomorphic function g on U for which
gle = fle-

Example

Let G:=C—{z € R : z <0} and let f be a branch of the logarithm on
G. Then f is completely singular at z = 0 but not at any point z € R with
z < 0.

Definition. A domain G C C" is called a weak domain of holomorphy
if for every point z € G there is a function f € O(G) that is completely
singular at z.

The domain G is called a domain of holomorphy if there is a function
f € O(G) that is completely singular at every point z € 0G.

Examples

1. Since C™ has no boundary point, it trivially satisfies the requirements of
a domain of holomorphy.

2. Tt is easy to see that every domain G C C is a weak domain of holomor-
phy: If 2 is a point in G, then f(z) := 1/(z — %) is holomorphic in G
and completely singular at zg.

For G = D we can show even more! The function f(z) := Y o0,z is
holomorphic in the unit disk and becomes completely singular at any
boundary point. Therefore, D is a domain of holomorphy. At the end of
this chapter we will see that every domain in C is a domain of holomorphy.
3. If f : D — C is a holomorphic function that becomes completely singular
at every boundary point, then the same is true for f P*=Dx---xD —
C, defined by F(z1,...,2n) := f(z1)+-- -+ f(2n)- In fact, if zg is a bound-
ary point of P?, then there:\exists an i such that the ith component 2 is
a boundary point of D. If f could be extended holomorphically across zo,
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then f;(¢) := f(zi‘)), ceyCy o, 29) would also have a holomorphic ex-
tension. But then f could not be completely singular at 2;”. Therefore,
the unit polydisk is a domain of holomorphy.

4, 1f (P", H) is a Euclidean Hartogs figure, then H is not a domain of holo-
morphy.

1.7 Proposition. Let G C C" ke a domain. If for every point zg € OG
there is an open neighborhood U = U(zo) C C™ and a holomorphic function
f :GUU — C with f(z0) =0 and f(z) # 0 for z € G, then G is a weak
domain of holomorphy.

ProoOF: We show that 1/f is completely singular at zo. For this assume that
there is a connected open neighborhood V =V(zg), a connected component
C ¢ VNG, and a_holomorphic function F on V with Fl¢ = (1/f) 10
The set V' =V — N(f) is still connected and contains C. By the identity
theorem the functions ¥ and 1/f must coincide in V'. Then F is clearly not
holomorphic at zg. This is a contradiction. u

1.8 Corollary. Every convex domain in C™ is a weak domain of holomor-
phy.

PrOOF: If zg € 3G, then because of the convexity there is a real linear
form A on C™ with A(z) < A(zg) for z € G. We can write A in the form

MNz) =Y wz Y @i, witha:=(21,.. a,) #0.
v=1 u=I

So A = Reh(z), where h(z) :=2.> . _; a,z, is holomorphic on C™.

Since the function f(z) :=h(z) —h(zo) is holomorphic on C", f(zg) =0, and
f(z) # 0 on G, the proposition may be applied. u

We will show that every weak domain of holomorphy is Hartogs convex. As
a tool we need the following simple geometric lemma, which will be useful in
other situations as well.

1.9 Lemma (on boundary components). Let G ¢ C" be a domain,
U cC" an open set withUNG#@ and (C" —U)NG# @.

Then GNOC NOU # & for any connected component C of UN G.

PrROOF: We choose points z; € C cU NG and z2 € (C" — U )N G. There
is a continuous path v : [0,1] — G with y(0) = z; and ¥(1) = z2. Let
to ==sup{t € [0,1] : v(t) € C}and 2o :=(to)- Clearly, zo € 0C N G,
but zg & C. Since C is a connected component of U N G, zg cannot lie in

U n G and therefore even not in U. Since v(t) € U for ¢ < tg, it follows that
Zgy € ouU. | ]
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1.10 Theorem. Let G C C" be a weak domain of holomorphy. Then G is
Hartogs convex.

PrROOF: Assume that G is not Hartogs convex. Then there is a general
Hartogs figure (P,H ) with H € G but P NG # P. We choose an arbitrary
zo in H and set C :=Cpng(zo).! Since H lies in P N G and is connected, it
follows that H C C. Furthermore, C & P.

Since PN G # @ and (C" — G) NP # @, by the lemma there is a point
z1 € 0CNHG N P (see Figure 11.5).

Figure 11.5. G is not Hartogs convex

Let f be an arbitrary holomorphic function in G. Then f|¢ is also holomor-
phic, and by the continuity theorem it has a holomorphic extension F on P.
Since P is an open connected neighborhood of z;, we obtain that f is not
completely singular at z;. This completes the proof by contradiction. m

It follows, for example, that every convex domain is Hartogs convex. As a
consequence, we see that every ball is Hartogs convex.

1.11 Theorem. Every domain o holomorphy is Hartogs convex.
The proof is trivial.

For the converse of this theorem one has to construct on any Hartogs convex
domain a global holomorphic function that becomes completely singular at
every boundary point, something that is rather difficult. It was done in 1910
by E.E. Levi in very special cases. The general case is called Levi’s problem.

In 1942 K. Oka gave a proof for n = 2. At the beginning of the 19508 Oka,
Bremermann, and Norguet solved Levi’s problem for arbitrary n. It was gen-

! We denote by Car(z) the connected component of M containing z.
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eralized for complex manifolds (H. Grauert, 1958) and complex spaces (R.
Narasimhan, 1962). Finally, in 1965 L. Hormander published a proof that
used Hilbert space methods and partial differential equations.

Exercises

1. Prove the following statements:

(a) Finite intersections of Hartogs convex domains are Hartogs convex.
(b) If G; € G2 C G3 C --- is an ascending chain of Hartogs convex
domains, then the union of all G; is also Hartogs convex.

2. Let G C" be adomain,0 < r <R,and a € Gapoint. Let U =U(a) C
G be an open neighborhood and define @ :=(w € C™ :r <|w| <R).
Prove that every holomorphic function on (Gx Q) U (U x P” (0, R ) )has
a unique holomorphic extension to G x P™(0, R ).

3. Let 0 <r < R be given. Use Hartogs figures to prove that every holo-
morphic function on Bg(0) — B,(0) has a unique holomorphic extension
to the whole ball Br(0).

4. For ¢ > 0, consider the domain

Ge =={(z,w) € PX(0,1) : 2] < [w]® +¢}.

Prove that G is Hartogs convex if and only if € =0.

5.Let G ¢ C" be a domain and f : G — Dg(0) ¢ C a function, T' =
{(z,w) € G x Dr(0) : w = f(=z)} its graph. Sow that if there is a
holomorphic function F in G x Dg(0) that is completely singular at every
point of I', then f is continuous. (With more effort one can show that f
is holomorphic.)

6. Show that the “Hartogstriangle” {(z,w) € C? : |w| <|z| <1} is a weak
domain of holomorphy.

2. Plurisubharrnonic Functions

Subharmonic Functions. Recall some facts from complex analysis of
one variable. A twice differentiable real-valued function 4 on a domain G C C
is called harmonic if h,z(z) = 0 on G. The real part of a holomorphic function
is always harmonic, and on an open disk every harmonic function is the real
part of some holomorphic function.

If D =D,(a) C C is an open disk and 8 : R — R a continuous periodic
function with period 27, then there is a continuous function A : D — R that
is harmonic on D such that h(re't) = 3(t) for every ¢ (Dirichlet’s principle).

An upper semicontinuous function ¢ : G — R U {—oo} is said to satisfy the
weak mean value property if the following holds:

For every a € G there is an r > 0 with D, (¢) CC G and
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1 2m .
@la) < —/ olatoe)dt for0<p<r
2T 0

Remarks

1. If ¢ :G— RU {—m} is an upper semicontinuous function, then the sets
U, :={z € G : ¢(z) < v} are open, and therefore ¢ is bounded from
above on every compact subset K C G. It follows that the integral in the
definition always exists.

2. Harmonic functions satisfy the weak mean value property (even the
stronger mean value property with “=" instead of “<”).

3. If f : G — C is a nowhere identically vanishing holomorphic function,
then log| f| satisfies the weak mean value property. In fact, the function
¢ = log|f| is harmonic on G — N(f),because it can be written locally
as Re(log f), with a suitable branch of the logarithm. And at any point
20 € N(f) we have ¢(zp) = ~00, so the inequality of the weak mean
value property is satisfied.

2.1 Proposition. Let ¢ : G — R satisfy the weak mean value property. If
@ has a global maximum in G, then ¢ is constant.

PrOOF: Let a € G be any point with ¢ := ¢(a) > ¢(z) for z € G. We
choose an r > 0 such that

1 [ .
D,(a) cC G and ¢(a) < %/ o(a+oet)dr for0 <o <
0

Assume that there is a b € D,.(a) with @(b) < p(a). We write b = a + ge'to
and get

1 27 ) 1 27

< = it — =
pla) < o /O pla+oe)dt < o /0 p(a) dt = p(a).
This is a contradiction, so ¢ must be constant on D, (a). Now we define the
set M :={z € G : p(z) = c}. Obviously, A is closed in G and not empty,
and we just showed that M is open. So M =G, and ¢ is constant, -

Definition. Let G ¢ C be a domain. A function s : G —+ RU {—o0}
is called subharmonic if the following hold:
1. s is upper semicontinuous on G.
2. IfD cc Gisadisk, & : D — R continuous, h|p harmonic, and & > s
on 8D, then A > s on D.

2.2 Proposition. Lets, : G — RU{—co} ke a monotonically decreasing
sequence of subharmonic functions. Thens :=1im,_,, s, is subharmonic.



54 II. Domains of Holomorphy

PrOOF: The limit s =lim,—o0 8, =inf{s,} is upper semicontinuous. Let
D cc Gbe adisk, 2 : D — R continuous and harmonic on D, with s < A
on dD. For fixed € we consider the compact sets

K, :={z2 € D :5,(2) > h(z) +¢}.

Then K,.; C K, and (.2, K, = @. Therefore, there is a vy € N with
K, = @ for v > vg. This means that for v > vy, s, < h+¢€ on 8D, and
therefore the same is true on D. Since the s, are decreasing, s <A=+£ on D.
This holds for every £ > 0, and consequently s < A on D. n

2.3 Proposition. Let (sa)aca be a family of subharmonic functions on
G. If s := sup sy ist upper semicontinuous and finite everywhere, then s is
subharmonic.

PrROOF: If s < hon 8D, where D cC G and & : D — R is continuous
and harmonic on D, then s, < h on 0D for every a € A. Since the s, are

subharmonic, it follows that s, < Aon D for every a € A. But then s < A&
on D as well. n

Examples

1. Clearly, every harmonic function is subharmonic.

2. Let s : G — R be a continuous subharmonic function such that —s is also
subharmonic. Then s is harmonic. To show this, we look at an arbitrary
point a € G and choose anr > 0 such that D :=D,(a) CC G. Then there
is a continuous function # : D — R with hlsp = s|sp that is harmonic
on D (Dirichlet’s principle). It follows that s < # on D. But because —h
is also harmonic, we have —s < —h on D as well. Together this gives
s=honD.

3. Let f : G — C be a holomorphic function. Then s := log|f| is subhar-
monic. In fact, if f(2) = 0 on G, then we have s(z) = —oo, and there is
nothing to prove. Otherwise, s is harmonic on G — N(f), and we have
only to look at an isolated zero ¢ off. We choose D =D,(a) CC G and
a function A that is continuous on D and harmonic on D, with s < A
on 0D. We know that s, and therefore also s — A, has the weak mean
value property on D, and it is certainly not constant. So it must take its
maximum on the boundary 8D. This means that s < & on D.

4. Let G ¢ C be an arbitrary domain. The boundary distance éa : G —
R4 U {+oo} is defined by

5a(z) :=sup{r € R : D.(2) C G}.
Claim: s := —logd¢ is subharmonic on G.

ProOF: If G = C, then s(z) = —oo and there is nothing to prove.
If G # C, then s is real-valued and continuous. For w € G we define
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s :G — R by setting s,,(2) = —log|z —w|. Then s(z) =sup{sw(z) :
w € 8G}. By Proposition 2.3 the claim follows. n

The Maximum Principle

2.4 Theorem. Lets : G — RU{—oo} be a subharmonic function on a
domain G C C. If s takes its maximum on G, then it must be constant.

PrROOF: Assume that ¢ := s(a) > s(z) for every z € G. As in the case of
functions that have the weak mean value property it suffices to show that s
is constant in a neighborhood of a. If this is not the case, there is a small disk
D =D,(a) CC G and b € D with s(a) > s(b). Since s is upper semicontin-
uous, there is a continuous function 4 on 8D with s < A < ¢ and h(b) < c.
Solving Dirichlet’s problem we can construct a harmonic continuation of A
on D. Now

1 .
h(a) = —/ h(a +re')dt < c = s(a).
27T 0
This is a contradiction n

For later use we give the following criterion for a function to be subharmonic:

2.5 Theorem. Let G CC be a domain and s : G — RU {—co} an upper
semicontinuous function. Suppose that for every disk D cC G and every
function f € O(D) with s < Re(f) on 0D it follows that s < Re(f) on D.
Then s is subharmonic.

PROOF: Let D =D,(a) cC G, h : D — R continuous and harmonic on D,
and s < h on 0D. For simplicity we assume a = 0.

For v € N, a harmonic function &, on D, :=D,/,—1))-(0) D D is given by

hy (2) :=h<<1 - %)z)

Then (h, ) converges on D uniformly, increasing monotonically to %. Further-
more, for every v there is a holomorphic function f, on D, with Re(f,) = A,.

Let £ > 0 be given. Then there is a v such that |h — h,| <£on D forv > 1.

Therefore, s < h, +& =Re(f, +¢) on 8D for v > vg. By definition it follows
that s < A, + £ on D. Since (4,) is increasing, it follows that s < & +& and
therefore s < h on D. -

Differentiable Subharmonic Functions

2.6 Lemma. Lets :G— R be a’6? function such that s,z >0 on G. Then
s is subharmonic.
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ProoF: Let D = D,(a) Cc G and let a continuous function 4 : D — R be
given such that % is harmonic on D and s < & on 0D. We define ¢ =5 — h.

Assume that ¢ takes its maximum at some interior point zg of D. Then we
look at the Taylor expansion of ¢ at 2z¢ in a small neighborhood about zp:

©(z0 +2) = ¢(20) +2Re Q(2) + v.z(20)2Z + R(2),

where Q(z) = p.(20)z + %gazz(zo)z2 is holomorphic and R(z)/|z|> — 0 for

z — 0. The function ¥(z) :=2ReQ(z) is harmonic, with ¥(0) = 0. Since
it cannot assume a maximum Or a minimum, it must have zeros arbitrarily
close to but not equal to 0. On the other hand, ¥(z0 +2) — ¢(20) < 0 and
¢.z(20)2Z > 0 outside z = 0. This is a contradiction. Thus ¢ must assume
its maximum on the boundary of D, and s < # on D. m

2.7 Theorem. Lets :G— R be a €? function. Then s is subharmonic if
and only if sz > 0 on G.

PrOOF: (a) Let s,z(z) > O for every z € G. Then we define s, on G by
setting s, := s + (1/v)2Z. Obviously, (s,)sz = Sz + (1/v) > 0. Then s,
is subharmonic by the above lemma. Since (s,) converges, monotonically
decreasing, to s, it follows that s is subharmonic.

(b) Let s be subharmonic on G. We assume that s,z(a) <0 for some g € G.
Then there is a connected open neighborhood U = U{a) C G such that
$zz <0 on U. By the lemma it follows that —s is subharmonic on U. Then
s must be harmonic on U. So s.z(a) =0, contrary to assumption. m

Plurisubharmonic Functions. We return to the study of domains in
arbitrary dimensions. Let G C C™ be a domain and (a,w) a tangent vector
at a € G. We use the holomorphic mapping aaw : C — C" defined by

oaw(() = a+(w.

Definition. Let G ¢ C” be a domain. An upper semicontinuous func-
tion p : G — R U {~o0} is called plurisubharmonic on G if for every
tangent vector (a,w) in G the function

Paw(() == Poaaw(() =pla+(w)
is subharmonic on the connected component G(a, w) of the set a;}" (G) c

C containing 0.

Remarks

1. Plurisubharmonicity is a local property.
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. If f € O(G), then log| f| is plurisubharmonic.

. If p1,p2 are plurisubharmonic, then so is p; + po.

If p is plurisubharmonic and ¢ > 0, then ¢ .p is plurisubharmonic.

. If (p,) is a monotonically decreasing sequence of plurisubharmonic func-
tions, then p := lim,_, ., p, is also plurisubharmonic.

. Let (pa)aca be a family of plurisubharmonic functions. If p := sup(p,,)
is upper semicontinuous and finite, then it is also plurisubharmonic.

7. I a plurisubharmonic function p takes its maximum at a point of the

domain G, then p is constant on G.

)

The Levi Form

Definition. Let U C C™ be an open set, f € €%(U;R), and a € U.
The quadratic form*  Lev(f) : T, — R with

Lev(f)(a,w) := Z foz, (AW, T,
vyt
is called the Levi form of f at a.

Obviously, Lev(f) is linear in f.
Examples

1. In the case n = 1we have Lev(s)(a, w) = s,z(a)ww. So s is subharmonic
if and only if Lev(s)(a,w) > 0 for every a € G and w € C.

2. Let f(z) :=||z||> =)_;_, ziZi. Then Lev(f)(a, w) = ||w||? for every a.

3. If f € ¥%(U;R) and ¢ : R — R is twice continuously differentiable, then

Lev(go f)(a,w) = ¢"(f(a)) - [(8f)a(w)[* +0'(f(a)) - Lev(f)(a, ).
4. f F :U — V C C™ is a holomorphic map and g € €%(V;R), then
Lev(g o F)(a,w) =Lev(g)(F(a), F'(a)(w))
5. For f € €2(U;R) the Taylor expansion at a € U gives
f(z) = f(a) +2Re(Qs(z — a))+ Lev(f)(a,z — a) + R(z - a),

where Qs (W) =3 | fo, (@)w, T4 3, u fouz, (@)w,w, is a holomorphic
quadratic polynomal, and '

lim 202 = @)

za ||z — alf?

=0.

¥ H : T x T — Cis a Hermitian form on a complex vextor space, then the

associated quadratic form Q : V — R is given by Q(v) :=H (v, v).
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2.8 Theorem. A function f € €*(U;R) is plurisubharmonic i and only if
Lev(f)(a,w) > Ofor every ac U and every w € T,

ProoF: Let (a,w) be atangent vector in G and Q :=aa w. Then foa(0) =
f(a) and
(foa)z(0) =Lev(foa)(0, 1) =Lev(f)(a, w).

Now, f is plurisubharmonic if and only if f o a is subharmonic near 0 for any
a = aaw. Equivalently, (foa)z(0) > 0 for any such . But this is true if
and only if Lev(f)(a, w) > 0 for any tangent vector (a,w) in G. u

2.9 Corollary. Let G; € C" and Gy ¢ C™ be domains, F : G1 — Go
a holomorphic map, and g € €*(G1;R) plurisubharmonic. Then g o F is
plurisubharmonic on G1.

Proor: This is trivial, because of the formula in Example 4 above. n

Exhaustion Functions. For every domain G C C the function — log dg
is subharmonic. In higher dimensions it is in general not true that this func-
tion is plurisubharmonic for every domain G.

Definition. Let G C C™ be a domain. A nonconstant continuous func-
tion f : G — R is called an exhaustion function for G if for ¢ < supg(f)

all sublevel sets
Ge(f) :=1z€ G : f(z) <c)

are relatively compact in G.

Example

For G =C", the function f(z) :=||z||? is an exhaustion function. For G # C",
we define the boundary distance 6 by

dc(z) = dist(z,C" - G).

Then —d¢ is a bounded, and —logdg an unbounded, exhaustion function.
We only have to show that dg is continuous:

For every point z € G there is a point r(z) € C™ — G such that
6g(z) =dist(z,r(z)) < dist(z, w) for every w € C" — G.

Then for two arbitrary points u, v € G we have
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Sa(u) = lu-r@)] < [u-r@)] <l vl +c(v),

and in the same way dg(v) < [u—v| +da(u).
Therefore, [6g(u) —da(v)| < ffu - v||.

Definition. A function f € ¥2(G;R) is called strictly plurisubhar-
monic if Lev(f)(a,w) >0 fora€ G, w € T,, and w # 0.

For a proof of the following result we refer to [Ra86], Chapter II, Proposition
4.14.

2.10 Smoothing lemma. Let G CC" be a domain, f :G = R a continu-
ous plurisubharmonic exhaustion function, K C G compact, and £ > 0. Then
there exists a € exhaustion functiong : G — R such that:

1. g>f onG.
2. g is strictly plurisubharmonic.
3. |9(z) — f(z)| <EonK.

Exercises

1. Let G C C be a domain. Prove the following statements:

(a) If f : G — C is a holomorphic function, then || is subharmonic for
a>0.

(b) If % is subharmonic on G, then «? is subharmonic forp € N.

(c) Let u £ —oo be subharmonic on G. Then {z € G : u(z) = —oo}
does not contain any open subset.

2. Let G € C be a domain, s # —oo a subharmonic function on G, P :=
{z € G : s(z) =—o0}. Show that if u is a continuous function on G and
subharmonic on G — A, then « is subharmonic on G.

3. Let U ¢ C™ be open, f :U — C* a holomorphic map, and A € Mi(R) a
positive seniidefinite matrix. Show that ¢(z) =f(z) . A - f(z)* is pluri-
subharmonic.

4. Let G ={(z,w) € C? : |w| <|z| <1} be the Hartogs triangle. Prove that
there does not exist any bounded plurisubharmonic exhaustion function
on G.

5. Are the following functions plurisubharmonic (respectively strictly pluri-

subharmonic)?
pi(z) := log(l+ ||z||?), forzec C",
p2(z) — —log(1l—||z]|?), for ||z]| <1,
p3(z) = HzHQe“ Re(zn), for z € C™.

6. Consider a domain G C C™ and a function f € €2(G). Prove that f is
strictly plurisubharmonic if and only if for every open set U CC G there
is an € > 0 such that f(z) —¢[|z||? is plurisubharmonic on U.
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3. Pseudoconvexity

Pseudoconvexity

Definition. A domain G C C" is called pseudoconvex if there is a
strictly plurisubharmonic ¥*° exhaustion function on G.

Remarks

1. By the smoothing lemma the following is clear: f —logdg is plurisub-
harmonic, then G is pseudoconvex.
2. Pseudoconvexity is invariant under biholomorphic transformations.

3.1 Theorem. If G C C™ is a pseudoconvex domain, then G satisfies the
continuity principle.

PrOOF: Letp :G — R be a strictly plurisubharmonic exhaustion function.
Suppose that there exists a family {S; : 0 < t < 1} of analytic disks given
by a continuous mapping ¢ :D x [0,1] — C" such that So C G and bS; C G
for every t € [0,1], but not all S; are contained in G.

The functions p o ¢ : D — G are subharmonic for every t with S; C G. It
follows by the maximum principle that p|S; < maxys, p for all those t.

We define to :=inf{t € [0,1] : S; ¢ G}. Then ¢ > 0, S, C G, and Sto
meets G in at least one point zo. We can find an increasing sequence (t,)
converging to ty and a sequence of points z, € S;, converging to zp. So
p(z,) — ¢y :=supg(p), but there is a ¢ < ¢p such that plss, < ¢ for every
t € [0,1]. This is a contradiction. =

3.2 Corollary. If G is pseudoconvex, then G is Hartogs convex.

The Boundary Distance

3.3 Theorem. I G C C" is a Hartogs convex domain, then —logdg is
plurisubharmonic on G.

Proor: Forz € G and u € C* with |ju|| = 1 we define
6g.u(z) :=sup{t >0 : z+7u e G for |7| < t}.

Then 6g(z) = inf{dgu(z) : |Ju]j = 1}, and it is sufficient to show that
—logdc v is plurisubharmonic for fixed u.

(a) Unfortunately, 6w does not need to be continuous, but it is lower semi-
continuous:
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Let zg € G be an arbitrary point and ¢ < dg u{2o)- Then the compact set
K =iz =z¢o +7u : [7] < ¢} is contained in G, and there is a 6 > 0 such
that {z :dist(K,z) <} CG.

For z € B;s(zo) and || < ¢ we have
I(z + ru) — (20 +7u)|| =]z —2ol| <S, and therefore é¢ v (z) > c.

(b) The function —log s, is upper semicontinuous, and we have to show
that

5(¢) :== —log d¢x u(Zo + ¢b)
is subharmonic for fixed u,zg, b. First consider the case that u and b are
linearly dependent: b = Xu, A # 0.

Let G be the connected component of 0 in {¢ € C : zg +¢b € G}. Then

dc.ulzo +Cb) sup{t >0 :zo +¢b+TU € G for |7| < ¢}
sup{t >0 : (+7/X € Gy for || <t}

= | .sup{r>0 :(+0o€Gpfor|o| <)

= |)‘l : 5G0 (C)a

and this function is in fact subharmonic.

(c) Now assume that u and b are linearly independent. Since these vectors
are fixed, we can restrict ourselves to the following special situation:

n=2 2z,=0, b=e;, and u=e,.

Then s(¢) = —logsup{t >0 : (¢,7) € G for |7| < t}. We use holomorphic
functions to show that s is subharmonic. Let R > r > 0 be real numbers such
that (¢,0) € G for [¢| < R, and let f :Dg(0) — C be a holomorphic function
such that s <% :=Re f on 0D, (0). We have to show that s < # on D,.(0).

We have the following equivalences:
s(¢) < h(¢) < sup{t >0 :(¢,7) € G for |r] <t} >e ™)
= (¢e-ef9)eGforceD.
(d) Define a holomorphic map F by
F(z1,2) = (Tzl,ZQG_f("'Zl)).

Then F is well defined on a neighborhood of the unit polydisk P2 =P2(0, 1).
It must be shown that F(P?) ¢ G. We already know the following:

1. F(21,23) € Gfor [21] =1 and |22| < 1,because s(¢) < h(t) on 9D,(0).
2. F(21,0) € G for |z1] < 1,because (¢,0) € G for ¢l < .
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These facts will be used to construct an appropriate Hartogs figure. First,
note that

T 0
Jr(21,22) = ( . e—fra) ) , 50 det Jp(z1,22) #0.

By the inverse function theorem it follows that F is biholomorphic.

For 0 < 6 < 1we define hs :C? — C? by hs(21, 22) = (21,482) and apply hy
to the compact set

C:={(21,22) € C? : (|| < 1, 22 =0) or (Jea| =1, |22) I 1)} CPZ.

Consequently,
Cs :=hs(C) ={(21,22) € C* : (|za] < 1,22 =0) or (Jz1| = 1, 22| < &)}

Then F(C5) C G, as we saw above, and therefore C5 C F~1(G).
For 0 <& <min(é4, 1 - S) we define a neighborhood U, of Cs by U, :=
{(z1,22) € C* : (Jea] < 1+e, |22) <€) or (1 —€ < |za| < 1+e, |2 <b+e)}.
If we choose € small enough, then U, C F‘I(G).
Finally, we define H. :=hy ' (U, N P2) N P? (see Figure 11.6).Then
He = {(21,22) € P? : (2,,62) € U. N P?}

= {(zl,zz) €C? i (Jaa] < 1, 2] < %) or (1 — < || < 1, 22| < 1)}

|22 |22

e/é Cs

|21 21

Figure 11.6. Constructionof the Hartogs figure

Since (P%,H,) is a Euclidean Hartogs figure, (Fo hs(P?),F o hs(H:)) is a
general Hartogs figure with Fohs(H.) C F(U.NP?) C G. Since G is Hartogs
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pseudoconvex, it follows that F o hs(P?) C G. This is valid for every 6 < 1.
But P2 =Jgcs<1 hs(P?). Therefore, F(P?) ¢ G, which was to be shown. =

3.4 Theorem. Thefollowing properties of a domain G C C™ are equivalent:

G satisfies the continuity principle.
G is Hartogs pseudoconvez.
—logdqa is plurisubharmonic on G.
G is pseudoconvex.

e~

PROOF:

(1) = (2)is Theorem 1.5,

(2) = (3)is Theorem 3.3,

(3) = (4) follows from the smoothing lemma,

(4) = (1) was proved in Theorem 3.1. ]

Properties of Pseudoconvex Domains

3.5 Theorem. If Gy1,Gy CC"” are pseudoconvex domains, then Gy NGz is
pseudoconvex.

PrOOF: The statement is trivial if one uses Hartogs pseudoconvexity. =

3.6 Theorem. Let Gy C Gy C...C C" be an ascending chain of pseudo-
convex domains. Then G :=U§°=1 G, is again pseudoconvex.

PrOOF: This follows immediately from the continuity principle.

3.7Theorem. A domain G C C" is pseudoconvex if and only if there is an
open covering (U,).cr of G such that U, NG is pseudoconvex for every ¢ € I.

PROOF:

“

=>" is trivial. The other direction will be proved in two steps. At first, we
assume that G is bounded.

For any point zg € G there is an open set U, such that zo € U, and GNU,
is pseudoconvex. If we choose a neighborhood W = W(zp) C U, so small
that dist(z, 0U,) > dist(z, zo) for every z € W NG, then é¢(z) = dgnu, (z) on
WNG. This shows that there is an open neighborhood U = U(9G) such that
—logdg is plurisubharmonic on U NG (we use the fact that HG is compact).
Now. G —U cC G. We define
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c:=sup{—logég(z) : z€¢ G-U},

and
p(z) := max(—logda(z), Izl + ¢+ 1).

Then p is a plurisubharmonic exhaustion function, and by the smoothing
lemma, G is pseudoconvex.

If G is unbounded, we write it as an ascending union of the domains
G, = B,{(0) N G. Each G, is bounded and satisfies the hypothesis, so is
pseudoconvex. Then G is also a pseudoconvex domain. u

Exercises

1. Suppose that G; ¢ C* and Ga2 ¢ C™ are domains.
(a) Show that if G; and G are pseudoconvex, then G1 x G2 is a pseu-
doconvex domain in C"*™
(b) Show that if there is a proper holomorphic map f : G1 — G2 and G2
is pseudoconvex, then G is also pseudoconvex.
2. Let G ¢ C™ be a domain and g : G — R a lower semicontinuous positive
function. Prove that

G :={(z,w) e Gx C :|w| <o(z)}

is pseudoconvex if and only if —1logp is plurisubharmonic.
3. A domain G C C" is pseudoconvex if and only if for every compact set
K C G the set

IA{pl = {z € G :p(z) < supp for all plurisubharmonic functions p on G}
K

is relatively compact in G.

4. Levi Convex Boundaries

Boundary Functions

Definition. Let G ¢ C" be a domain. The boundary of G is called
smooth at zg € OG if there is an open neighborhood U = U(zg) C C*
and a function g € ¥°°(U;R) such that:

1.UNG =z €U : g(z) <0

2. (do)z #0forzeU.
The function p is called a local defining function (or boundary function).

Remark. Without loss of generality we may assume that gy, # 0. Then
by the implicit function theorem there are neighborhoods
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-1
U’ of (zg,23) = (217, ...,2521,2) e C*"' xR, U” of y© €R,

and a € functiony :U’ — U” such that {(z/,zn,yn) € U xU" : o(z', x5 +

itn) =0} ={(2, 2n,1(@, 20)) : (Z,20) € U').

Making the neighborhood U :={(z’,z, +V) :(z'.z,) € U’ and y, € U"}

small enough and correcting the sign if necessary, one can achieve that
UNG ={(Z,zn tiyn) €U :yn <z, 2,)}.

In particular, UNOG = {z € U : p(z) = 0) is a (2n — 1)-dimensional
differentiable submanifold of U.

4.1 Lemma. Let OG be smooth at zg, and let o1, 09 be two local defining
functions onU =U(zg). Then there is a €= function h onU such that:

1. h>00nU.
2.00=h-00 0onU.
3. (do1)z =h(z) .(dos), forz e UNOG.

PrRoOF: Define h :=p;/02 on U — 8G. After a change of coordinates, we
have zo = 0 and g, = y,,. Then g¢(t) :=g1(2’, z, + it)is a smooth function
that vanishes at ¢ = 0. Therefore,

01(Z',2n) = glya) — 9(0)

Yn 1
/ g'(s)ds = yn-/ g (tyn) dt
(4} (4}

Q2(z,7$n + |yn) . h(z,a Zn)7

I

il

where
! do1
Wz 2y + iyn) = / — (2, + ityy) dt
o Oyn
is smooth.
For z € G we have (dg1), = h(z) .(dgs),. Therefore, h(z) # 0, and even
greater than 0, since h(z) > 0 by continuity. -

4.2 Theorem. Let GCC C™ be a bounded domain with smooth boundary.
Then OG is a differentiable submanifold, and there exists a global defining
function.

PROOF:  We can find open sets V; CCU; ¢ C™, i = 1,...,N, such that:

1. {V1,...,Vn} is an open covering of 5G.
2. For each i there exists a local defining function g; for G on U;.
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3. For each i there is a smooth function ¢, : U, — R with ¢;fy, = 1,
@ilcr—u, =0, and @; > 0 in general.

Define ¢ =3, ¢; (so@ > 0 on 0G) and ¥; = ¢;/p. Then 3, ¢; = lon
O0G. The system of the functions 1; is called a partation of unity on 0G.

The function ¢ = Zf{:l ¥;0; 18 now a global defining function for G. We
leave it to the reader to check the details. |

The Levi Condition. For the remainder of this section let G ¢cc C*
be a bounded domain with smooth boundary, and ¢ : U = U{0G) — R a
global defining function. Then at any zg € OG the real tangent space of the
boundary

T2 (0G) :={v € Tz, : (d0)z,(Vv) = 0}

is a (2n — 1)-dimensional real subspace of T, . The space
H, (0G) :=T,,(0G) NiT5,(0G) = {v € Ty : (00)z,(v) =0}

is called the complex (or holomorphic) tangent space of the boundary at zo.
It is a (2n — 2)-dimensional real subspace of 1,, with a natural complex
structure, so an (n — 1)-dimensional complex subspace®.
Definition. The domain G is said to satisfy the Levi condition (respec-
tively the strict Levi condition) at zg € G if Lev(p) is positive semidef-
inite (respectively positive definite) on H,,(dG). The domain G is called
Levi convex (respectively strictly Levi convex) if G satisfies the Levi con-
dition (respectively the strict Levi condition) at every point z € 0G.

Remark. The Levi conditions do not depend on the choice of the boundary
function, and they are invariant under biholomorphic transformations.

If o1 =h .p2, with 2 > 0, then for z € 0G,
Lev(01)(z, w) = h(2) Lev(0z)(z W) +2Re{(0h)2(w) (802)a(W)}-

So on H,(OG) the Levi forms of g1 and pg differ only by a positive constant,

Affine Convexity. Recall some facts from real analysis:

A set M C R™ is convex if for every two points x,y € M, the closed line
segment from X to y is contained in M. In that case, for each point Xg €
R™ — M there is a real hyperplane H C R™ with xo € H and M N H = O.
This property was already used in Section 1.

8 [1,(8G) is often denoted by 74 °(8G).
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If a€ R, U = U(a) is an open neighborhood and ¢ :U — R is at least €2,
then the quadratic form

Hess(p)(a,w) == Z Pa,z, ()W wy
Vi

is known as the Hessian of ¢ at a.

4.3 Proposition. Let G CC R™ be a domain with smooth boundary, and
o a global defining function with (dg)x # 0 forx € 0G. Then G is convex if
and only if Hess(p) is positive semidefinite on every tangent space Ty (0G).

ProOOF: Let G be convex, and xp € G an arbitrary point. Then T :=
Tk, (0G) is areal hyperplane with TNG =@. For w € T and a(t) :=x¢+tw
we have

(0o @)’ (0) = Hess(0)(xg, W).
Since o(x¢) = 0 and p o a(t) > 0, it follows that ¢ o ¢ has a minimum at
t =0. Then (g oa)”(0) > 0, and Hess(p) is positive semidefinite on 7.

Now let the criterion be fulfilled, assume that 0 € G, and define o, by
0:(x) 1= o(x) + o 1x|™.

For small £ and large N the set G, := {x : g.(x) < 0} is a domain. We have
G, CGo CcGfore <g and |J,.,G. = G. Therefore, it is sufficient to
show that G, is convex.

The Hessian of g, is positive definite on 7y (0G) for every X € OG. Thus this
also holds in a neighborhood U of 8G. If ¢ is small enough, then G, C U.
We consider

S ={(x,5)e€G. xG, :txt (1-¢t)ye G, for0<t<1).

Then S is an open subset of the connected set G, x G,. Suppose that S isnot a
closed subset. Then there exist points xp, yo € G, and aty € (0, 1) with toxe+
(1—tg)yo € OG.. So the function 7+ g, o a(t), with a(t) :=txg + (1-t)yo,
has amaximum at 0. Then (g.oa)”(tg) < 0 and Hess(g.)(a(to),x0—¥0) < 0.
This is a contradiction. [ ]

A domain G = {p < 0) is called strictly convex at xo € G if Hess(p) is
positive definite at xg. This property is independent of ¢ and invariant under
affine transformations.

Now we return to Levi convexity.

4.4 Lemma. LetU CC" be open and ¢ € €*(U;R). Then

Lev(¢) (2, w) = 7 (Hess(y) (2, w) + Hess(¢) (2, iw))
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ProOOF: This is a simple calculation! [

4.5 Theorem. Let GCC C™ be a domain with smooth boundary. Then the
following statements are equivalent:

1. G is strictly Levi convex.

2. There is an open neighborhood U = U(OG) and a strictly plurisubhar-
monic function o € €°(U;R) such that UNG ={z € U : p(z) <0)
and (dg)z # 0 forz e U.

3. For every 7 € OG there is an open neighborhood W = W(z) ¢ C",
an open set V.C C", and a biholomorphic map F : W — V such that

F(WNG) is convex and even strictly convex at every point of F(WNOG).

PROOF:

(1) = (2) : We choose a global defining function g for G, and an open
neighborhood U = U(OG) such that ¢ is defined on U with (dg), # 0 for
7z € U. Let A >0 be a real constant, and g4 :=e?® — 1. Then g4 is also a
global defining function, and

Lev(oa)(z, w) = Ae?e™ [Lev(o)(z, w) 4 A|(80)z(w)[*] .
The set K :=8G x S?*~! is compact, and
Ky :={(z,w) € K : Lev(p)(z,w) < 0}

is a closed subset. Since Lev(p) is positive definite on H,(0G), we have
(00)z(w) # 0 for (z,w) € Kp. Therefore,

M = mI}nLev(g)(z,w) > —o0,
C = n}l{ionl(ag)z(w)iz > 0.

We choose A so large that A- C+ M > 0. Then
Lev(oa)(z w) = A- [Lev(0)(2, w) + Al(80)a(w)[*] > A+ (M + AC) >0
for (z,w) € Kp, and
Lev(oa)(z,w) > A - |(80)a(W)I* > 0
for (z,w) € K — K.

So Lev(pa)(z,w) > 0 for every z € G and every w € C* — {0}. By conti-
nuity, g4 is strictly plurisubharmonic in a neighborhood of 0G.

(2) = (3):We consider a point zp € 0G and make some simple coordinate
transformations:
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By the translation z — w = 7z — zg we replace zg by the origin, and a
permutation of coordinates ensures that g, (0)# 0.

The linear transformation
WU = (le O)wi +... 4 0w, (O)wn, w2, ... :wn)
gives u; =w .V(0)*, and therefore

o(u) = 2Re(u-V(oow)(0)") + termsofdegree > 2
2Re (u.Jw(0)!.Vp(0)*) + terms of degree > 2
2Re (w .Vp(0)*) + terms of degree > 2
2Re(uq) + terms of degree > 2.

Finally, we write o{u) =2Re(y; +Q(u)) +Lev(g)(0,u)+ ..., where Q is a
quadratic holomorphic polynomial, and make the biholomorphic transforma-
tion

u—y = (ul + Q(u)?u2’ ca :Un)-

It follows that
o(v) =2Re(v1) +Lev(0)(0,v) + terms of order > 3.

By the uniqueness of the Taylor expansion

o(v) = Do(0)(v) + %Hess(g)(o7 v) + terms of order > 3,

and therefore Hess(0)(0,v) = 2 .Lev(p)(0,v) > 0 for v # O (in the new
coordinates). Everything works in a neighborhood that may be chosen to be
convex.

(3) = (1) : This follows from Lemma 4.4:

Hess(g) >0 on T,(0G) = Lev({p) >0 on H,(JG).
The latter property is invariant under biholomorphic transformations. -
A Theorem of Levi.Let G CC C" be a domain with smooth boundary.
If G is strictly Levi convex, then it is easy to see that G is pseudoconvex.

We wish to demonstrate that even the weaker Levi convexity is equivalent
to pseudoconvexity. For that purpose we extend the boundary distance to a

function on C".
d¢(z) for z € G,
da(z) = 0 for z € 0G,

—bcn_g(z) forzgG.
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4.6 Lemma. —dg is a smooth defining function for G
PROOF:  We use real coordinates x = (z1,. ..,zn5) with N = 2n. It is clear

that G = {x : —dg(x) <0}.

Let xg € G be an arbitrary point and ¢ : U(Xp) — R a local defining
function. We may assume that o, (Xo) # 0. Then by the implicit function
theorem there is a product neighborhood U’ x U” of %o in U and a smooth
function 4 :U’' — R such that

(o) €U x U+ o(x, ) =0} = (" h(x) : x° € U}
It follows that O = Vy o(x’, A(x')) + 0gn (X', 1(X')) . VA(X').

At the point (x/,h(x")) € OG the gradient Vo(x’', h(x')) is normal to 8G
and directed outward from G. Every point y in a small neighborhood of the
boundary has a unique representation y =X +t . Vo(x), where t = —dg(y)
and x is the point where the perpendicular from y to G meets the boundary.
Therefore, we define the smooth map F :U’ x R — RY by

y=Fx\t) =&, ")) +t.Vo(x', h{x)).
Then there are smooth functions A and b such that

/ E . +tA(X/) Vx’ I,h ANNA
)= ( Gy AR ),

and therefore

— 7 /7 i Nt
det Jo p(x',0) = det( By —0uy (X, A(X)) - VA(X) )

Vh(x') 0z (X', A(X))
, EN_1 —Vh(x)?
Oz (X, h(x)) .det ( hY 1+ ||Vh(x’)||2
Oon (X, (X)) + [VR(E)]?) # 0.
It follows that there exists an € > 0 such that F maps U’ x (—¢,¢) diffeo-
morphically onto a neighborhood W = W (xo), and U’ x {0} onto 6G N W.
Moreover, since dg(x +t - Vo(x)) = —t for |t| < & and € small enough, it

follows that d = (— t)o F~! is a smooth function near 8G. If p’ is defined
by p'(x', 1) :=(x’,0), then the projection

p=p oF ! :x+t Vo(x)— x, for x € 8G,

is a smooth map, and d¢ is given by dg(y) =0 .|y — p(y)ll, where ¢ = 1
fory € G and o = —1 elsewhere.

For y # 6G we have

4. Levi Convex Boundaries 71

o

N
> (wr — o)) Ok — (Pr)n (¥))

ad ) = i &
= m Ny = (y) = (v = P3) [Py (%)) w] -
and therefore
Vda(y) = HT—UMT)H Iy = p(y) - Dp()(y — p(Y))]-

Since o(p(y)) = 0, it follows that Dp(y)(Ve(p(y))) = 0. But ¥y —p(y) is a
multiple of Vo(p(y)). Together this gives

y-p@) _, Velpy)
y —p)ll [Velp(y)Il

If y tends to G, we obtain that Vdg(y) # O. =

Vdg(y) =0

E.E. Levi showed that every domain of holomorphy with smooth boundary is
Levi convex, and locally the boundary of a strictly Levi convex domain G is
the “natural boundary” for some holomorphic function in G. Here we prove
the following result, which is sometimes called “Levi’s theorem”.

4.7 Theorem. A domain G with smooth boundary is pseudoconvex if and
only if it is Levi convex.

PROOF:

(1)Let G be pseudoconvex. The function —d¢ is a smooth boundary function
for G, and —logdg = —logég is plurisubharmonic on G, because of the
pseudoconvexity. We calculate

Lev(— log d)(z, w) = —— - Lev(—dg)(2, W) + ——5 - [(8(dc)) (w)[?

N
dG (Z) dG (Z)

This is nonnegative in G. If z € G, w € T,, and (0(dg))z(w) =0, it follows
that Lev(—dg)(z,w) > 0. This remains true for z — 0G, so —dg satisfies
the Levi condition.

(2) Let G be Levi convex, and suppose that G is not pseudoconvex. Then in
any neighborhood U of the boundary there exists a point zyg where the Levi
form of —logéde has a negative eigenvalue. This means that there is a vector
wp such that

©:z(0) =Lev(logdg)(zo, wo) > 0, for ¢(() :=logde(zo + (wp).

Consider the Taylor expansion

©(C)

£(0) +2Re( (0)C + 52cc(0)C) +2 (O)ICI? +
= ¢(0) +Re(AC+BC) +A1C2+...,
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with complex constants A, B and a real constant A > 0.
We choose a point po € 0G with 6¢(2zo) = ||Po — Zol|, and an arbitrary € > 0.
Then an analytic disk ¢ : D.(0) — C™ can be defined by
¥(¢) =20 +(wo +exp(AC + B¢*)(po — zo).
We have ¢(0) = po, and we wish to show that ¥(¢) € G, for 0 < I¢l <€ and
E sufficiently small.
Since (¢) > ©(0) + Re(A¢ + B¢?) +(2/2)[¢}? near ¢ =0, it follows that
6c(zo+Cwo) = exp(v(())

> exp(p(0)) - |exp (AC + B¢ )] 'GXP(gICF)

> §g(20) - | exp (AC + BC?) |

= Jlexp (AC + BE?) Po - 20)
for ¢ small and # 0. This means that we can choose the £ in such a way

that 4(¢) € G, for 0 < [¢| <e. The analytic disc is tangent to G from the
interior of G.

Now f(¢) =dg{(¥(()) is a smooth function with a local minimum at ¢ = 0.
Therefore (8da)p, (¥'(0)) = (8f)o(1) =0, and

)
F(€) =Re (f¢c(0)¢?) + fZl¢I* +terms of order > 3.
Since Re (fcc(0)e) + fz > 0 for every , it follows that
Lev(da)(po, ¢'(0)) = fz(0) > 0.

This is a contradiction to the Levi condition at pg, because —d¢ is a defining
function for G. u

Exercises

1. Prove Lemma 4.4.

2. Assume that G CC C? has a smooth boundary that is Levi convex outside
a point a that is not isolated in dG. Show that G is pseudoconvex.

3. Assume that G C C? is an arbitrary domain and that S C G is a smooth
real surface with the following property: In every point of S the tangent
to S is not a complex line. Prove that for every compact set K C G there
are arbitrarily small pseudoconvex neighborhoods of SN K.

4. Assume that G cC C? is a domain with smooth boundary. Then G
is strictly Levi convex at a point zg € JG if and only if the following
condition is satisfied:

There is a neighborhood U = U(zo), a holomorphic function ¢ :D — U
with ¢(0) = z¢ and ¢'(0) # 0, and a local defining function ¢ on U such
that (oo ©)(¢) >0 on D - {0} and (20 ¢).z(0) >0.
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5. Let G ¢ €™ be a domain with smooth boundary. If G satisfies the strict
Levi condition at zg € AG, then prove that the following hold:
(a) There is no analytic disk ¢ : D — C™ with

. da(e(¢))
PO =20 and IR0 - el =0
(b) There are a neighborhood U = U(zp) and a holomorphic function f
inU with GN{zeU : f(z) =0} ={z0}.
6. A bounded domain G C C” is called strongly pseudoconvex if there are
a neighborhood U = U{0G) and a strictly plurisubharmonic function
0 € €%(U) such that GNU =7z U : p(z) <0}. Notice that a strongly
pseudoconvex domain does not necessarily have a smooth boundary!

Prove the following results about a strongly pseudoconvex bounded do-

main G:

(a) G is pseudoconvex.

(b) If G has a smooth boundary, then G is strictly Levi convex.

(c) For every z € OG there is a neighborhood U = U(z) such that U NG
is a weak domain of holomorphy.

7. Let G € C™ be a pseudoconvex domain. Then prove that there is a family

of domains G, C G such that the following hold:

(a) G, cC G4, for every v.

(b) Uz, Gy —G.

(¢) For every v there is a strictly plurisubharmonic function f, &
%> (Gy4+1) such that G, is a connected component of the set

{2€ Gy fu(z) <0}

5. Holomorphic Convexity

Affine ConvexityWe will investigate relationships between pseudocon-
vexity and affine convexity. Let us begin with some observations about convex
domains in RY.

Let .& be the set of affine linear functions f :RY — R with

f(x)=axy +...tanzy +b, ay,...,an,bER.

If M is a convex set and xg a point not contained in A/, then there exists
a function f € .Z with f(xp) = 0 and f|ps < 0. For any ¢ € R, the set
{x € RM : f(x) <c¢} is a convex half-space.

Definition. TLet A ¢ RN be an arbitrary subset. Then the set

H(M) := {x €eRY : f(x) <supf, forall f e 2}
M
is called the affine convex hull of M.
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5.1 Proposition. Let M, My, My ¢ RN be arbitrary subsets. Then

M c H(M).

H(M) is closed and convex.

H(H(M)) = H(M).

If My ¢ My, then H(M;) C H(My).

. If M is closed and convex, then H(M) =M.
. Af M is bounded, then H(M) is also bounded.

B

PrOOF: (1)is trivial.

(2) If xo ¢ H(M), then there is an f € & with f(xo) > sup,, f. By conti-
nuity, f(x) >sup, f in a neighborhood of xg. Therefore, H(M) is closed.

If xp,yo are two points in H(M), then they are contained in every convex
half-space E = {x : f(x) <sup,;f/, and also the closed line segment from
Xg L0 yo is contained in each of these half-spaces. This shows that H(M) is
CONvex.

(3)We have to show that H(H(M)) ¢ H(M). If x € H(H(M)) is an arbi-
trary point and f an element of .#, then f(x) < supgyar) T < supy, f, by
the definition of H{M).

(4) is trivial.

(5)Let M be closed and convex. If xg ¢ M, then there is a point yo € M
such that dist(xg, M) = dist(xg, yo) (because M is closed). Let zg be a point
in the open line segment from xg to yo. Then zg ¢ M, and there is a function
f e & with f(zg) = 0 and flar < 0. Since ¢t — f{txg + (1 —t)yo) is a
monotone function, it follows that f(x¢) >0 and therefore xq ¢ H{(M).

(6) If M is bounded, there is an R > 0 such that M is contained in the closed
convex set Br(0). Thus H(M) C Bgr(0). L]

Remark. H(M) is the smallest closed convex set that contains M.

5.2 Theorem. A domain G C R¥ is convex if and only if K CC G implies
that H(K) cc G.

ProOF: Let G be a convex domain, and M CC G a subset. Then H(M) is
closed and contained in the bounded set H(AM ). Therefore, H (M) is compact,
and it remains to show that H(M) C G. If there is a point xg € H(M) - G,
then there is a function f € & with f(x¢) = 0 and f|g < 0. 1t follows that
supsr f <0, and f(xo) >sup,, f. This is a contradiction to xo € H(M).
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On the other hand, let the criterion be fulfilled. If xo, yo are two points of G,
then K := {xp,yo} is a relatively compact subset of G. It follows that H(K)
is contained in G. Since H(K) is closed and convex, the closed line segment
from Xg to Yo is also contained in G. Therefore G is convex. |

Holomorphic Convexity. Now we replace affine linear functions by
holomorphic functions.

Definition. Let G C C™ be a domain and K ¢ G a subset. The set

K = K¢

{z €G :|f(2)] < suplfl, forall f € O(G)}

is called the holomorphically convex hull of K in G.

5.3 Proposition. Let G C C"* be a domain, and K,K,, Ky subsets of G.
Then

1. K CK.

2. K is closed in G.

3. K=K.

4.1 fK1 C Ko, then K1 CKg.

5. If K is bounded, then K is also bounded.

)

PROOF: (1)is trivial.

(2) Let zg be a point of G — K. Then there exists a holomorphic function
f on G with |f(zg)| > supy|f|. By continuity, this inequality holds on an
entire neighborhood U =U(zy) C G. So G — K is open.

(3) supz|f| Bupklfl.
(4) is trivial.

(5 If K is bounded, it is contained in a closed polydisk Pn(0,r). The coordi-
nate functions z, are holomorphic in G. For z € K we have |2o| < supglz| W
r. Hence K is also bounded. m

Definition. A domain G C C™ is called holomorphically convex if
K CC G implies that K ¢C G.
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Example
In C every domain is holomorphically convex:

Let K CcC G be an arbitrary subset. Then K is bounded, and it remains
to show that the closure of K is contained in G. If there is a point zp €
K — G, then zo lies in 0K N 8G. We consider the holomorphic function
f(2) == 1/(z — z) in G. If (2,) is a sequence in K converging to zp, then
[f(z)| < supg|f] < supgl]f| < oco. This is a contradiction. For n > 2, we
will show that there are domains that are not holomorphically convex. But
we have the following result.

54 Proposition. If G ¢ C" is an affine convex domain, then it is holo-
morphically convex.

ProOOF: Let K be relatively compact in G. Then H(K) CC G. If 2o is a
point of G — H(K), then there exists an affine linear function A € £ with
Xzg) >supg A. Replacing A by A — A(0) we may assume that A is a homo-
geneous linear function of the form

)\(Z) = 2RG(OL121 + -+ anzn)~

Then f(z) :=exp(2 .(a121 + ...+ anzy)) is holomorphic in G, and |f(z)| =

exp(A(z)). Therefore, | f(zo)| > supy|f], and zo € G — k .This proves K CC
G. .

In general, holomorphic convexity is a much weaker property than affine
convexity.

The Cartan-Thullen Theorem.Let G ¢ C* be a domain, and
E > 0 a small real number. We define

G, =11z €G: ég(z) > e}

Here are some properties of the set G,:

1. If z € G, then there is an £ > 0 such that dg(z) > €.
Therefore, G =+, G

2. f 1 < €9, then G, D Ge,-

3. G, is a closed subset of C". In fact, if zo € C* — G,, then dc(2zg) < ¢
or zg € G. In the latter case, the ball B.(zo) is contained in C" — G.. If
zo € G — G and § :=065(2g), then B._5(z0) CC"” - G,. SoC" -G, is
open.

5.5 Lemma. Let GC C" be a domain, K ¢ G a compact subset, and [ a
holomorphic function in G. K C G,, thenfor any 8 with 0 < 6 < E there
exists a constant C > 0 such that the following inequality holds:
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ol
Sup|Daf(z)| il -C.

PrROOF: For 0 < § <¢, G :={z € G : dist(K,z) < 4} is open and
relatively compact in G, and for any z € K the closed polydisk P"(z 9) is
contained in G’ C G. If T is the distinguished boundary of the polydisk and
|f| < C on G, then the Cauchy inequalities yield

D) < S suplf] < o€

5.6 Theorem (Cartan-Thullen). [f G is a weak domain of holomorphy,
then G is holomorphically convex.

PrOOF: Let K CC G. We want to show that K cC G. Let £ :=
dist(K,C" - G) > dist(K,C" — G) > 0. Clearly, K lies in G,.

We assert that the holomorphically convex hull K lies even in G,. Suppose
this is not so. Then there is a zg € K — G,. Now let f be any holomorphic
function in G. In a neighborhood U =U(zy) C G, f has a Taylor expansion

f(z) =Za,,(z —2g)", with a, = 3D" f(zp).
v>0 vt
The function z ~ a,(z) = 5D"f(z) is holomorphic in G. Therefore,
la,(zo)] < supgla,(z)|. By the lemma, for any 6 with 0 < § < £ there
exists a C' > 0 such that supy|a, (z)| < C/6¥!, and then

la,(z — 20)"| < C - ('Zl—;—zﬁ Jen = 2N

On any polydisk P"(zy,6) the Taylor series is dominated by a geometric
series. Therefore, it converges on P = P™(zg, £) to a holomorphic function f
We have f = f near zg, and then on the connected component Q of zg in
P N G. Since P meets G and C* — G, it follows from Lemma 1..9 that there
is a point z; € P NJOQ NIG. Then f cannot be completely singular at z;.
This is a contradiction, because f is an arbitrary holomorphic function in G,

and G is a weak domain of holomorphy. -

Exercises

1. Let G; € G2 € €™ be domains. Assume that for every f € O(G;) there
is a sequence of functions f, € O(Gz) converging compactly on Gy to f.
Show that for every compact set K C (G, it followsthat KG2 NGy = K(;l
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2. Let F : Gy — G2 be a proper holomorphic map between domains in C?,
respectively C™. Show that if G2 is holomorphically convex, then so is
G1~

3. Let G C C” be a domain and S C G be a closed analytic disk with
boundary bS. Show that S C (bS)s.

4. Define the domain G C C2? by.G :=P?(0, 1)—- P2(0,1/2). Construct the
holomorphically convex hull K¢ for K :={(z1,22) :21 = 0and |%] =
3/4}. Is Ke a relatively compact subset of G ?

5. Let F be a family of functions in the domain G. For a compact subset
K < G we define

Ry = {ze G : |f(2)] < sup|f] foraufef}.
K

The domain G is called convex with respect to F, provided that Kr is

relatively compact in G whenever K is. Prove:

(a) Every bounded domain is convex with respect to the family €°(G)
of all continuous functions.

(b) The unit ball B = B1({0) is convex with respect to the family of
holomorphic functions 25 zL with v, = 1,...,n and k,l € Ng.

6. Singular Functions

Normal Exhaustions.Let G ¢ C" be a domain. If G is holomorphically
convex, we want to construct a holomorphic function in G that is completely
singular at every boundary point. For that we use "normal exhaustions."

Definition. A normal exhaustion of G is a sequence (K, ) of compact
subsets of G such that:

1. K, cc(K,41)°, for every v.

2. U, K =G.

6.1 Theorem. Any domain G in C" admits a normal exhaustion. -G is
holomorphically convex, then there is a normal exhaustion (K,,) with K, =
K, for everyv.

PrOOF: In the general case, K, :=P™(0,v)N Gl/,, gives a normal exhaus-
tion. If G is holomorphically convex, K, cc G for every v. We construct a
new exhaustion by induction.

Let Kf := K;. Suppose that compact sets K7, ...,K; 1 have been con-
structed, with I?]* =Ky forj =1...,v - 1,and Kj CC (K]-*+1)°. Then
there exists a A(v) € N such that K;_; € (Kxu))°. Let K := K-
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*

It is clear that (K)) is a normal exhaustion with K: =K. -

Unbounded Holomorphic Functions. Again let G ¢ C* be a
domain.

6.2 Theorem. Let (K,) be a normal exhaustion of G with K, = K,
(i) a strictly monotonic increasing sequence of natural numbers, and (z,,)
a sequence of points with 2, € Kx(,y41 — Kx(-

Then there exists a holomorphic function f in G such that |f(z,)| is un-
bounded.

PrROOF: The function f is constructed as the limit function of an infinite
series f = Zzo:l fu- By induction we define holomorphic functions f, in G
such that:

1. ,f“’KA(u) < 27H for w=> 1.

p—1
2. |fu(z ) > p+ 14 Zlfj(zuﬂ for u > 2.
j=1
Let f1 :=0. Now for 4 > 2 suppose that fi, ...,f,—1 have been constructed.

Since 2z, € Kjuy+1 — K, and IA(,\(H) = K\(y), there exists a function g
holomorphic in G such that |g(z,)| > ¢ :=sup Ky gl. By multiplication by
a suitable constant we can make

l9(z.)| > 1> q.

It we set f, :=g" with a sufficiently large k, then f, has the properties (1)
and (2).

We assert that 3 u f. converges compactly in G. To prove this, first note
that for K C G an arbitrary compact subset, there is a uy € N such that
K C Kj(,,)- By construction supy|f,| < 27# for u > po. Since the geo-
metric series ) © 27# dominates ) f, in K, the series of the f,, is normally
convergent on K. This shows that f= ZH fu 18 holomorphic in G. Moreover,

fEI = 1) = Y 1fu(z,)]

vEu
> p+1-" |zl
v>u
> p+1-— Z 27V (since z, € Ky for v > p)
v>u
> {since Z 27 =1).
v>1

It follows that | f(z,)| — oo for u — co.
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The following is an important consequence:

6.3 Theorem. A domain G is holomorphically convex if and only if for
any infinite set D that is discrete in GG there exists a function f holomorphic
in G such that |f| is unbounded on D.

Proor: (1)Let G be holomorphically convex, D C G infinite and discrete.
Moreover, let (K,) be a normal exhaustion of G with K, =K,. Then K,nD
is finite (or empty) for every v € N. We construct a sequence of points z,, ¢ D
by induction.

Let z; € D — Ky be arbitrary, and A(1) € N minimal with the property that
zy lies in K(1y41. Now suppose the points zi,...,z,-1 and the numbers
A1), ... sA(p — D) have been constructed such that

z, € Khpy41 — K@y, forv =1,..,p - 1.

Then we choose z, € D — Ky(,-1)+1 and A(¢) minimal with the property
that z,, lies in Ky(,,y41. By the theorem above there is a holomorphic function
fin G such that | f(z,)| — oo for 4 — oco. Therefore, | f| is unbounded on D.

{2) Now suppose that the criterion is satisfied, and K CC G. Then K cG,
and we have to show that K is compact. Let (z,) be any sequence of points
in K. Then

sup{|f ()] : v € N} < sup|f| < oo, for every f € o(G)

Therefore, {z, : v € N} cannot be discrete in G. Thus the sequence (z)

has a cluster point zg in G. Since K is closed, zo belongs to K. So G is
holomorphically convex. [

Sequences. For a domain G ¢ C* we wish to construct a sequence that
accumulates at every point of its boundary.

6.4 Theorem. Let (K,) be a normal exhaustion of G. Then there exists
a strictly monotonic increasing sequence A(u) of natural numbers and a se-
quence (z,,) of points in G such that:

1.z, € Kx(uy+1 — K, for every p.

2. Ifzo is a boundary point of G and U =U(zg) an open connected neigh-
borhood, then every connected component of U N G contains infinitely
many points of the sequence (z,).

PrROOF: This is a purely topological result, since we make no assumption
about G. The proof is carried out in several steps.
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(1)Let B = {B, : v € N} be the countable system of balls with rational
center and rational radius meeting 9G. Every intersection B, NG has at most
countably many connected components. Thus we obtain a countable family

C ={C, : Jv € N such that C, is a connected component of B, € B}.

(2) By induction, the sequences A\(y) and (z,) are constructed. Let z; be
arbitrary in C7 — K;. Then there is a unique number A(1) such that z, €

Kxmy+1 — Knqy-

Now suppose z1, ..., 2,1 have been constructed such that
Z; € Cj n(K,\(j)H —K,\(j)), forj =1,...,u—1.

We choose z,, € C,, — Kxu—1y41 and A(g) as usual. That is possible, since
there is a point w € B, (,) N 0C, N OG if C, is a connected component of
By NG. Then €™ — K(,,_1)41 is an open neighborhood of w and contains
points of C.,

(3) Now we show that property (2) of the theorem is satisfied. Let zg be a
point of G, U =U(zg) an open connected neighborhood, and Q a connected
component of U N G. We assume that only finitely many z, lie in Q,say
Z1,...yZm. Then

U*:=U —{z1,...,Z2n} and Q=0 -{z1,...,2n}

are open connected sets that contain no z,. Obviously, Q* is a connected
component of G NU*.

There is a point wg in U* N dQ* N G, and a ball B, C U* with wgy € B..

Then B, NG ¢ U* N G. Moreover, B, N G must contain a point w; € Q%*.
The connected component C* of wy in B, NG is a subset of the connected
component of wy in U* N G. But C* is an element C,,, of C. By construction
it contains the point z,,. That is a contradiction. Infinitely many members
of the sequence belong to Q. -

6.5 Theorem. If G is holomorphically convex, then it is a domain o holo-
morphy.

PrOOF: Let (K,) be a normal exhaustion of G with IA{,, =K, and choose
sequences A{u) € N and (z,) in G such that z, € Ky,)41 — Ki,)- We may
assume that for every point z; € dG, every open connected neighborhood
U =U(zp), and every connected component Q of U N G there are infinitely
many z,in Q.

Now let f be holomorphic in G and unbounded on D :={z, : u € N}. Itis

clear that f is completely singular at every point z, € 9G. .
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Remark. Tt is not necessary that a completely singular holomorphic func-
tion i1s unbounded. In 1978, D. Catlin showed in his dissertation that if
G cC C™ is a holomorphically convex domain with smooth boundary, then
there exists a function holomorphic in G and smooth in a neighborhood of G
that is completely singular at every point of the boundary of G.

Exercises

1. A domain G CC C™ is holomorphically convex if and only if for every
z € OG there is a neighborhood U(z) such that U N G is a domain of
holomorphy.

2. Let G; € C" and G € C™ be domains of holomorphy. Iff : G; — C™ is
a holomorphic mapping, then f~'(G2) N Gy is a domain of holomorphy.

3. Find a bounded holomorphic function on the unit disk D that is singular
at every boundary point.

7. Examples and Applications

Domains of Holomorphy

7.1 Proposition. Every domain in the complex plane C is a domain of
holomorphy.

PrROOF: We have already shown that every domain in C is holomorphically
convex. Therefore, such a domain is also a domain of holomorphy. |

7.2 Theorem. Thefollowing statements about domains G € C™ are equiv-
alent:

1. G is a weak domain of holomorphy.

2. G is holomorphically convex.

3. For every infinite discrete subset D C G there exists a holomorphic func-
tion f in G such that |f) is unbounded on D.

4. G is a domain of holomorphy.

The equivalences have all been proved in the preceding paragraphs. Fur-
thermore, we know that every domain of holomorphy is pseudoconvex. Still
missing here is the proof of the Levi problem: Every pseudoconvex domain
is holomorphically convex. We say more about this in Chapter V.

Every affine convex open subset of C™ is a domain of holomorphy. The n-fold
Cartesian product of plane domains is a further example.

7.3 Proposition. If Gy,...,G, C C are arbitrary domains, then G :
G1 x -+ x Gy, is a domain o holomorphy.
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ProOOF: Let D ={z, = (2}, ...,2#) : p € N} be an infinite discrete subset
of G. Then there is an i such that (z!') has no cluster point in G, and there
is a holomorphic function f in G; with lim,_,o| f(2!) | = c0. The function 7
in G, defined by f(zl,. .vs2zpn) = f(z), is holomorphic in G and unbounded
on D. [

Remark. The same proof shows that every Cartesian product of domains
of holomorphy is again a domain of holomorphy.

Complete Reinhardt Domains. Let G € C* be a complete Rein-
hardt domain (see Section 1.1). We will give criteria for G to be a domain of
holomorphy. For that purpose we define a map log from the absolute value
space ¥ to R™ by

log(ry,...,ra) = (logry,...,logry,).

Definition. A Reinhardt domain G is called logarithmically convex if
log 7(G N (C*)”) is an affine convex domain in R™.

Remark. Forz =(z1,...,2,) € G we have log7(z) = (log|z1], . - - ,Jog|z,]).
If z € (C*)™, then |z;| > 0 for each #, and log 7(z) is in fact an element of R™.

7.4 Proposition. The domain o convergence of a power series S(z) =
2 uso a2’ is logarithmically convex.

Proor: Let G be the domain of convergence of S(z), and M :=log7(G N
(C*)™) C R™. We consider two points x,y € M and points z,w € GN (C*)"
with log 7(z) =X and log 7(w) =y. If A > 1is small enough, Az and Xw still
belong to G N (C*)™. Since S(z) is convergent in Az, Xw, there is a constant
C >0 such that

lap| A 27 < C and  |ay] AL |w¥| < C, for every v € Nj

Thus
lay| AY1 |27t |w|' "t < C, for every v and 0 < £ < 1.

It follows from Abel’s lemma that S(z) is convergent in a neighborhood of
ze == (|21 Jwi|' 7zl lwa T TY).

This means that z; € G and tx+ (1-t)y =log7(z:) € M, for 0 < ¢ < 1.
Therefore, M is convex. -
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7.5 Proposition. Let G be a complete Reinhardt domain. If G is logarith-
mically convex, then it is holomorphically convex.

PROOF: Let K be a relatively compact subset of G. Since G is a complete
Reinhardt domain and K a compact subset of G, there are points zy, ...,z €
G N(C*)™ such that

X
K c(G = U P*"(0,q;) ¢ G, where q; :=7(z;).
i=1

We consider the set 4 = {m(z) =2z : v € NZ} of monomials, which is a
subset of O(G). For z € P*(0,q;) and m € A we have

Im(z)| = [2"] < qf = |m(qs)l-
Let Z := {21, ...,2;}. Then for z € K it follows that

|m(z)| < sup|m| < sup|m| < sup|m|, for every m € A.
K el z

Suppose that K is not relatively compact in G. Then K has a cluster point
zp in G, and it follows that |m(zo)| < sup|m|, for every m € A.

Let h(z) := log(z), for z € (C*)™. Since G is logarithmically convex, the
domain Gy := k(G N(C*)*) C R” is affine convex. For the time being we
assume that zg € (C*)™. Then xq = h(zp) € Gy, and there is a real linear
function A(x) =a;z1 + ...+ a,z, such that A(x) < A(Xg) for x € Go.

Let x =log7(z) be a point of Gy, and u € R"® with u; <z; forj =1,...,n.
Then e% < %1 = |Zj|, and therefore (since G is a complete Reinhardt do-
main) w = (e“,...,e") € GN(@*)" and u € Gy. In particular,

A(x) —na; =A(x —ne;) <A(xp), for every n € N.
Therefore, a; > 0 forj = 1,...,n.

Now we choose rational numbers r; >a; and define X(x) =TTyt TR,
If we choose the 7, sufficiently close to aj, the inequality A(qi) < A(xo)
holds for i = 1,...,k, and it still holds after multiplying by the common
denominator of the r;. Therefore, we may assume that the r; are natural
numbers, and we can define a special monomial mg by mg(z) :=21" ...20".

Then - ~
|mo(z:)] =eN®) < A0 —mg(z0)], fori=1,...,k.

So |mg(2zo)| > supy|mg|, and this is a contradiction.

I zo ¢ (C*)", then after a permutation of the coordinates we may assume

that 2 ... 2/” # 0 and 2,3, = ... = 22 = 0. We can project on the space
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C! and work with monomials in the variables zi, ..., 2. Then the proof goes
through as above. ]

Now we get the following result:

7.6 Theorem. Let G C C™ be a complete Reinhardt domain. Then the
following statements are equivalent:

1. G is the domain o convergence o a power series.
2. G is logarithmically convex.

3. G is holomorphically convex.

4. G is a domain o holomorphy.

PROOF: We have only to show that if G is a complete Reinhardt domain
and a domain of holomorphy, then it is the domain of convergence of a power
series. By hypothesis, there is a function F that is holomorphic in G and
completely singular at every boundary point. In Section 1.5 we proved that
for every holomorphic function in a proper Reinhardt domain there is a power
series S(z) that converges in G to f. By the identity theorem it does not
converge on any domain strictly larger than G. ]

Analytic Polyhedra.Let G ¢ C" be a domain

Definition. LetU C G, V4,...,Vk C C open subsets, and fi,. .., fx
holomorphic functions in G. The set

P:=¢zcU : fi(z) eV, fori =1,..,k}

is called an analytic polyhedron in G if P CCU.

If, in addition, Vi = ... =V, =D, then one speaks of a special analytic
polyhedron in G.

Remark. An analytic polyhedron P need not be connected. The set U
in the definition ensures that each union of connected components of P is
also an analytic polyhedron if it has a positive distance from every other
connected component of P.

7.7 Theorem. Every connected analytic polyhedron P in G is a domain of
holomorphy.

PROOF: We have only to show that P is a weak domain of holomorphy.
If zo € OP, then there is an i such that f;(zp) € dV;. Therefore, f(z) =
(fi(z) — fi(2z0))~" is holomorphic in P and completely singular at zg. (]
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Example

Let g < 1be a positive real number, and
P :={z =(21,2) €EC? : |71] < 1,]22] < 1and |21 - 22| < q}.

Then P (see Figure 11.7)is clearly an analytic polyhedron, but neither affine

| 21]

Figure 11.7. An analytic polyhedron

convex nor a Cartesian product of domains. So the analytic polyhedra enrich
our stock of examples of domains of holomorphy.

We will show that every domain of holomorphy is "almost” an analytic poly-
hedron.

7.8 Theorem. I G C C” is a domain of holomorphy, then there exists
a sequence (P,) of special analytic polyhedra in G with P, CC P,41 and
Ur=: P =G.

PrROOF: Let (K,) be a normal exhaustion of G with K, =K, Ifze€
0K, 1 is an arbitrary point, then z does not lic in K, C (K,41)°, and
therefore not in K. ». Hence there exists a function f holomorphic in G for
which ¢ :=supg, |f| < |f(z)|- By multiplication by a suitable constant we
obtain ¢ < 1< |f(z)|, and then there is an entire neighborhood U = U(z)
such that |f| > 1on U.

Since the boundary 9K, 1 is compact, we can find finitely many open neigh-
borhoods U, ; of z,,; € 0K, 41,j = 1,...,k,, and corresponding functions
fv,; holomorphic in G such that |f,;| > 1on U, ;, and 0K,41 C U?;l U,;-
We define

P, :={z € (K,11)° :|f(@)] < 1forj =1,..,k}.

Clearly, K, C P, € (K,41)°. Furthermore, M :=K, 11 — (U1 U...UU,,)
is a compact set with P, C M C (K,+1)°. Consequently, P, CC K,41. Thus
P, is a special analytic polyhedron in G. It followstrivially that the sequence
(P,) exhausts the domain G. L]
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In the theory of Stein manifolds one proves the converse of this theorem.

Exercises

1. If R is a domain in the real number space R", then
Tr = R+iR" :={z € C" : (Re(z1), ...,Re(zn)) €ER}

is called the tube domain associated with R. Prove that the following

properties are equivalent:

(a) R is convex.

(b) T is (affine) convex.

(¢) Tgr is holomorphically convex.

(d) T'r is pseudoconvex.

Hint: To show (d) = (a) choose Xg, yo € R. Then the function () :=

—Iné7, (x0 +¢(yo—=Xo)) is subharmonicin D. Since dr, (x +iy) = dr(x),

one concludes that # = —Indg(xo Tt(yo — Xo)) assumes its maximum

att=0o0rt=1. R

2. Let G € C™ be a domain. A domain G C C" is called the envelope of

holomorphy of G if every holomorphic function f in G has a holomorphic

extension to G. Prove:

(a) If R C R™ is a domain and H(R) its affine convex hull, then G =
H(R) +iR" is the envelope of holomorphy of the tube domain G =
R+ iR™ R

(b) f G ¢ C” is a Reinhardt domain and G the smallest logarithmi-
cally convex complete Reinhardt domain containing G, then G is the
envelope of holomorphy of G. Hint: Use the convex hull of log 7(G).

3. Construct the envelope of holomorphy of the domain

Gy =P?*(0,(1,9)) UP(0,(g,1)).

4. A domain G C C” is called a Runge domain if for every holomorphic
function f in G there is a sequence (p,,) of polynomials converging com-
pactly in G to f.

Prove that the Cartesian product of n simply connected subdomains of
C is a Runge domain in C™.

5. A domain G C C" is called polynomially convex if it is convex with
respect to the family of all polynomials (cf. Exercise 5.5). Prove that
every polynomially convex domain is a holomorphically convex Runge
domain.

8. Riemann Domains over C"

Riemann Domains. It turns out that for general domains in C™ the
envelope of holomorphy (cf. Exercise 7.2) cannot exist in C*. Therefore, we
have to consider domains covering C™.
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Definition. A (Rzemann) domain over C™ is a pair (G,w) with the
following properties:

1. G is a connected Hausdorff space.*

2. w :G — C" is a local homeomorphism (that is, for each point x € G
and its "base point” z :=m(x) € C™" there exist open neighborhoods
U=U(z) cCX and V =V(z) C C* suchthat 7 : U — Visa
homeomorphism).

Remarks

1. Let (G,n) be a Riemann domain. Then G is pathwise connected, and
the map 7 :G — C" is continuous and open. The latter means that the
images of open sets are again open.

2. I (G,, =) are domains over C” forv = 1,..,1, and x, € G, are points
over the same base point zg, then there are open neighborhoods U, =
U,(z,) C G, and a connected open neighborhood V =V (zg) C C" such
that 7, |y, :U, — V is a homeomorphism for v = 1,...,L

Examples

1. I G is a domain in C”, then (G,id¢) is a Riemann domain.
2. The Riemann surface of 1/z (without the branch point) is the set

G :={(z,w) EC* x C :w?®=z}.

If G is provided with the topology induced from C* x C, then it is a
Hausdorff space. The mapping ¢ : C* — G defined by ¢ — (¢2,¢) is
continuous and bijective. Therefore, G is connected. The mapping ¢ is
called a uniformization of G.

Now let w : G — C be defined by 7(z, w) :=z. Clearly, 7 is continuous. If
(20,wp) € G is an arbitrary point, then zp # 0, and we can find a simply
connected neighborhood V(zg) C @*. Then there exists a holomorphic
function f in V with f2(2) =z and f(zp) = wo. We denote f(z) by /2.
The image W := (V) is open, and the set 7' (V) can be written as the
union of two disjoint open sets

Ur :={(2,2f(2)) :2€ V}=(Vx(EW))NG.

Let f(z) :=(z, f(2)). Then 7 :V = G is continuous, and.x o J?(Z) =z
The open set U :=U, is a neighborhood of (20, wo), with f(V) =U and
7(z,w) = (2, w)on U; that is, 7]y : U — V is topological. Hence

(G,n) is a Riemann domain over C.
4A general topological space X is said to be connecred if it is not the union of
two disjoint nonempty open sets. A space X is called pathwise connected if each

two points of X can be joined by a continuous path in X . For open sets in C"
these two notions are equivalent.
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The space G can be visualized in the following manner: We cover C with
two additional copies of C, cut both these “sheets” along the positive
real axis, and paste them crosswise to one another (this is not possible
in R? without self intersection, but in higher dimensions, it is). This is
illustrated in Figure 11.8.

Figure 11.8. The Riemann surface of /2

8.1 Proposition (onthe uniqueness oflifting). Let (G,x) be a domain
over C* and Y a connected topological space. Let yo € Y be a point and

1,82 Y — G continuous mappings with ¢ (yo) = ¢2(yo) and m oy =
7701/)2. Thenwl =1ﬁ2.

PROOF: Let M ={y € Y : ¢1(y) = ¢=2(y)}. By assumption, yo € M,
so M # &. Since G is a Hausdorff space, it follows immediately that M is
closed. Now let y € Y be chosen arbitrarily, and set x =4 (y) =2 (y) and
z := w(x). There are open neighborhoods U = U(z) C Gand V =V (z) C
C™ such that = : U — V is topological, and there is an open neigborhood
W =W (y) with ¢»(W) C U for A =1,2. Then

dilw = (wlu) o moynlw = (xfy) L oo Yalw = valw,

and therefore W C M. Hence M is open, and since Y is connected, it follows
that M =Y.

Definition. Let zg € C" be fixed. A (Riemann) domain over C* with
distinguished point is a triple G = (G, 7, zo) for which:

1. (G,7) is a domain over C".

2. xo is a point of G with w(2g) :=20.
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Definition. Let G; = (G, ;,z;) be domains over C* with distin-

guished point. We say that G is contained in Gy (denoted by G1 < Gz )

if there is a continuous map ¢ : G1 — G2 with the following properties:
1. m 0 =m (called “y preserves fibers”).

2. p(x1) = T2-

8.2 Proposition. If Gi < Gz, then the fiber preserving map ¢ : G1 — G2
with o(x1) = T2 1s uniquely determined.

This follows immediately from the uniqueness of lifting.

8.3 Proposition. The relation “<” is a weak ordering; that is:

1. g <G.
2. Gy < Gy and Go < G5 = G1 < Us.

The proof is trivial.

Definition. Two domains G1, Go over C* with fundamental point are
called isomorphic or equivalent (symbolically G = G2) if G1 < Ga and
Gy < G1.

8.4 Proposition. Two domains G; = (Gj, 7;,%5), § = 1,2, are isomorphic
if and only if there exists a topological® fiber preserving map ¢ : G1 = G2
with p(z1) = T2.

PROOF: If we have fiber preserving mappings ¢1 : G1 — G2 and ¢z : Gy —
G1, with @1 (z1) = z2 and p2(z2) = 71, it follows easily from the uniqueness
of fiber preserving maps that ¢z 0 1 = idg, and @10 @2 = idg,. The other
direction of the proof is trivial. L]

Definition. A domain G = (G, 7, zo) with m(zo) = Zo is called schlicht
if it is isomorphic to a domain Gy = (Go,idg,,Z0) With Go C C™.

8.5 Proposition. Let G; = (Gj,idg,, x;), j = 1,2, be two schlicht domains
with G1,Go C C*. Then Gy < Go if and only if G1 C Ga.

Example

5 Recall that a “topological map” is a homeomorphism!
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Let Gy = {(z,w) € C? : w2 = zand z # 0} and m (2,w) := z. Then
G1 = (G1,71,(1,1)) is the Riemann surface of /z, with distinguished point
(1,1). The domain G, is contained in the schlicht domain G = (C,idc, 1), by
w(z,w) := z. But the two domains are not isomorphic.

Union of Riemann Domains. We begin with the definition of the
union of two Riemann domains. Let G; = (G;,7;,75), § = 1,2, be two Rie-
mann domains over C" with distinguished point, and zg := m (z1) = m2(z2).
We want to glue G1,Gs in such a way that z; and z; will also be glued.

To get a rough idea of the construction, assume that we already have a
Riemann domain G = (G, w, o) that is in some sense the union of G; and
Go. Then there should exist continuous fiber preserving maps ¢; : G1 — G
with (,01(.171) = Ty, and w2 Gz — G with 902(:132) = Zp. If o [0, 1] — G1
and /3 : [0,1] — G2 are two continuous paths with a(0) = z1, 3(0) = z2 and
moa = myof, then v1 := @1 o and 7y, := gz 0 3 are continuous paths in G
with moy; = movyy and ¥ (0) = ¥2(0) = xo. Due to the uniqueness of lifting,
it follows that v; = 72. This means that «(t) and §(t) have to be glued for
every ¢ € [0,1]. Unfortunately, this is an ambiguous rule. For example, we
could say that = € G; and y € G have to be glued if m (z) = m2(y). Then
the desired property is fulfilled, but it may be that there are no paths o from
1 to z and B from z3 to y with m oa =m0 F.

Therefore, we proceed in the following way: Start with the disjoint union
G'1 U Ga, and take the “finest” equivalence relation ~ on this set with the
following property:

1. Tl ~ T
2. If there are continuous paths a : [0,1] = G1 and 3 : [0,1] — G with
a(0) = x1, B(0) = 2, and 7 0 o = my 0 §, then (1) ~ G(1).

One can equip G := (G U G3)/ ~ with the structure of a Riemann domain.
This will now be carried out in a more general context.

Let X be an arbitrary set. An equivalence relation on X is given by a partition
Z ={X, : v € N} of X into subsets with:

L. UVENXVzX'
2. X, NX, =0 forv+#p.

The sets X,, are the equivalence classes.

Now let a family (%)).cr of equivalence relations on X be given with &, =
{X;, :v.€ N} fori €l Weset N:=]],; N, and
X, = ﬂ X, , forv:=(v).er €N.

vel



Then 2 = {X, : v € N} is again an equivalence relation (simple exercise),
and it is finer than any Z,. This means that for every ¢ € I and every V € N,
there is a v, € N, with X, C X} .
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We apply this to the disjoint union X = UAEL Gy, for a given family (Gx)rer
of Riemann domains G = (G, mx, ) over C” with distinguished point. An
equivalence relation on X is said to have property (P) if the following hold:

1. z)~ z,, for X\, 0 € L.
2. If o : [0,1] = G and 3 : [0,1] = G, are continuous paths with «(0) ~
B(0) and w o o = m, o 3, then a(l) ~ B(1).

We consider the family of all equivalence relations on X with property (P).
It is not empty, as seen above in the case of two domains. Therefore we can
construct an equivalence relation (as above) that is finer than any equivalence
relation with property (P). We denote it by ~p . It is clear that my(x) = 7o (y)
if z € Gx, y € Gy, and x ~p y. The relation ~ p also has property (P), and
the elements of an equivalence class X, all lie over the same point z = z(X, ).
We define G := X/~p and T(X,) = z(X,). The equivalence class of all x,
will be denoted by Z.

8.6 Lemma. Lety € Gy and x € G, be given with mo(x) = maly) = 2. If
we choose open neighborhoods U = U(y) C G, V = V(z) C G,, and an open
connected neighborhood W = W (z) such that my : U — W and m : V-Ww
are topological mappings, then for ¢ = (moly) Lomy: U=V the following
hold:

1. oly) ==.
2. If x ~py, then p(y') ~py for everyy €U.

PROOF: The first statement is trivial. Now let o : [0,1] — W be a con-
tinuous path with «(0) = z and a(1) = mx(y’) for some y € U. Then
B = (maly) "' o and v := @ o § are continuous paths in U and V with
B0) =y ~p = p(y) =7(0) and my o f=mpopof=m07. Therefore,
y = B(1) ~p (1) = #¥)- .

8.7 Theorem. There is a topology on G such that
G = (é,%, ':E)

is a Riemann domain over C" with distinguished point T, and all maps px :
G)\ — G with
@a(z) = equivalence class of x

are continuous and fiber preserving.
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PROOF: (1) Sets of the form @,(M) for M open in G together with G
constitute a base of a topology for G. To see this it remains to show that the
intersection of two such sets is again of this form.

Let M C Gy and N C G, be open subsets. Then
PA(M) N (V) = 0o (N Ny (9a(M)))-

But cp;l(cpA(M)) is open in G,. In fact, let x € go;l(gDA(M)) be given, and
y € M be chosen such that px(y) = @,(x) (and therefore y ~p z). Let z :=
7a(y) = m,(z). Then there exist open neighborhoods U = U(y) and V = V(z)
and an open connected neighborhood W = W(z) such that ) : U — W and
7, 1 V — W are topological mappings. Let ¢ := (molv)tomy: U = V. By
the lemma, ¢(y) = z and @(y') ~p ¢’ for every y' € U.

So V' := o(MNU) is a neighborhood of z in G, and since @, (¢(y')) = ¢A(¥')
for every y' € U, it follows that V' C ¢, (pa(M)).

Consequently, every @) is a continuous map.

(2) Remark: Since every y € G is an equivalence class (), we have

M= U oa(py H(M)) for any subset M C G.
AEL

(3) :~C~¥ — C" is continuous: Let V C C™ be an arbitrary open set, and
M = 7 Y(V). Then (M) = 73 (V) is open in G, and therefore M =
User (@3 1(M)) is open in G.

(4) C~¥~15 a Hausdorff space: Let y1,y2 € G with y1 # y2, and z; = 7(y1),
zg = T(Ya2).

There are two cases. If z; # z,, then there are open neighborhoods Vi(z)
and Va(zg) with Vi NV, = @. Then 7~ 1(V1) and 7 1(Va) are disjoint open
neighborhoods of y; and y. If 23 = 23, then we choose elements z; € G,
Ty € G, with gx(x1) = y1 and p,(T2) = y2, and since z1 and z, are not
equivalent, the above lemma implies that there are disjoint neigborhoods of
y1 and yo.

(5) G is connected: Let y = p,(z) be an arbitrary point of G. Then there is
a continuous path « : [0,1] — G, that connects the distinguished point xx
to x. Then ¢y o & connects Z to y.

(6) 7 is locally topological: Let y = px(z) be a point of G, and z = 7(y) =
7x(z). Then there exist open neighborhoods U = U(x) C Gy and W =
W(z) C C™ such that my : U — W is a topological mapping. U= ex(U)
%s an open neighborhood of y, with #(J) = my(U) = W. In addition, |y is
injective, since T o @) = m\ and |y is injective.
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{7) Clearly, the maps @) : Gy — G are fiber preserving, and it was already
shown that they are continuous. u
Now G has the following properties:

1. Gx < G, for every X € L. _

2. If g* is a domain over C™ with G) < G* for every A, then G < G*

PrROOF: (of the second statement)

If G* is given, then there exist fiber preserving mappings @3 :Ga — G*. We
introduce a new equivalence relation ~ on the disjoint union X of the G by

e Nz = z€G) 7 €G,and ¢i(z) =ph(z').

It follows from the uniqueness of lifting that ~ has the property (P).Now we
define a map ¢ :G — G* by

p(pa(x)) = ¢i(2)-

Since ~p is the finest equivalence relation with property (P),p is well defined.
Also it is clear that ¢ is continuous and fiber preserving. u

Therefore § is the smallest Riemann domain over C" that contains all do-
mains G.

Definition. The domain G constructed as above is called the union of
the domains Gy, and we write G ={J, <7, Gx-

Special cases:

1. From G; < G and Gy < G it follows that G U G2 < G.
From G; < G, it follows that G, U Go = Go.
gug=g.

G1UG, =G UG

G1U (G2 UGs) = (G1 UGa) UGs.

G

Example
Let G1 = (G1,m,x1) be the Riemann surface of /z with distinguished point
z1 =(1,1) and G3 = (Gy,id, z2) the schlicht domain
1
Gg:{ze(c :§<|z| <?2)

with distinguished point zp = 1.
Then Gy UGy = (G, 7, %), where G = (G1 U Gg)/ ~p.

Lety € 771_1(G2) C G;. Then we can connect y to the point 1 by a path
a in 77 1(Gy), and 71 (y) to x2 by the path m o @ in G2. But 1 ~p T2, 50
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y ~p mi(y) as well. This shows that over each point of G2 there is exactly
one equivalence class.

Now let z € C — {0} be arbitrary. The line through z and 0 in C contains a
segment « :[0,1] — @' that connects z to a point 2* € Ga. There are two
paths g,y in G1 with m o a1 = 71 oz = a. Since a1(1) ~p az(1), it
follows that a4 (0) ~p a2(0).

Then it follows that G1 UGy = (C - {0},id, 1).

Exercises

1. For t = (¢y,...,tn) € ¥ define @ : C* — C" by
D21, ..y 2m) == (eitlzl,. ..,eit”zn).

A Riemann domain § = (G, 7, x0) is called a Reinhardt domain over

C™ if w(xzp) = O and for every t € ¥ — (C*)™ there is an isomorphism

wt :G — G with 7o py = ®¢ ow. Prove:

(a) ¥ G C C™ is a proper Reinhardt domain, then G = (G,id,0) is a
Reinhardt domain over C”.

(b) Let G, Gy C C? be defined by

1 1
G = P*0,1) - {(z,w) lz] =2 and |jw| < 5},
1
Gy = {(z,w) c PZ(O,I) D w| < 5}

Gluing G, and G, along {(z,w) : 1 <|z| < land Jw| < 4} one
obtains a Riemann domain over C? that is a Reinhardt domain over

C?, but not schlicht. Show that this domain can be obtained as the
union of Gy = (Gl,id, (2, %)) and Gz = (Gz,id, (3, %))

2. Let J ={0,1,2,3,...} C Ny be a finite or infinite sequence of natural
numbers and P, = P"(z;,r;), 1 € J, a sequence of polydisks in C".
Assume that for every pair (,7) € J x J an "incidence number” &;; €
{0, 1} is given such that the following hold:

(a) €i5 =E&ji and Ey = 1.

(b) &4 =0ifPiﬁPj =.

(¢) For every i >0 in J there is a j <i with &;; = 1.
(d) f ENF; NP, # @ and €5 = 1,then g =¢€jk.

Points z € P; and w € P; are called equivalent (z ~ w) if z = w and

€;; = 1.Prove that G :=|J P;/ ~ carries in a natural way the structure
of a Riemann domain over C™.

Let m : G — C™ be the canonical projection and suppose that there is a
point zg € ();cs Pi. Is there a point o € G such that (G,w,xg) can be
written as the union of the Riemann domains (F;,id,zg)?
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9. The Envelope of Holomorphy

Holomorphy on Riemann Domains

Definition. Let (G,w) be a domain over C". A function f : G — C
is called holomorphic at a point x € G if there are open neighborhoods
U=U(x) ¢ Gand V = V(r(z)) ¢ C" such that 7|y : U — V is
topological and f o (x|y)™" : V — C is holomorphic. The function f is
called holomorphic on G if f is holomorphic at every point x € G.

Remark. A holomorphic function is always continuous. For schlicht do-
mains in @"' the new notion of holomorphy agrees with the old one.

Definition. Let G; = (Gj,7;,%;),j =1,2, be domains over C" with
distinguished point, and G1 < Gz by virtue of a continuous mapping
v :G1 — Ga. For every function f on G2 we define flg, =fc .

9.1 Proposition. Iff : Gy — C is holomorphic and G1 < Ga, then fla, is
holomorphic on G1.

PRroOF: Trivial, since  is a local homeomorphism with 73 0 ¢ = m1. u

Definition.

1. Let (G,r) be a domain over C” and = € G a point. If f is a holo-
morphic function defined near x, then the pair (f, ) is called a local
holomorphic function at x.

2. Let (Gy,m1), (G2,72) be domains over C"*, and =1 € G1, 72 € G2
points with m(z1) = m2(x2) =:z. Two local holomorphic functions
(f1,71), (f2,22) are called equivalent if there exist open neighbor-
hoods U;(z1) € G1, Ua(x2) € G2, V(2), and topological maPpings
m Uy = V,mp Uy = Vwith fio(m|u,)™" = fao (m2lwe)”

3. The equivalence class of a local holomorphic function ( f, x ) is denoted
by fz-

Remark. If (f1)z; = (f2)z,, then clearly, fi(x1) = f2(z2). In particular,
if Gy = Ga, m = mg, and 17 = xg, then it follows that fi and f2 coincide in
an open neighborhood of z; = z2.
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9.2 Proposition. Let (G1,m), (G2, 72) be domains over C", a :[0,1] —
G\ continuous paths withm oq; = maoas. Additionally, let f) be holomorphic
on Gy, for X =1,2. If (f1)os(0) = (f2)as(0), then also (fl)a1(1) - (f2)a2(1).

PrOOF: Let M :={t€c [0,1] : (fi)ar(t) = (f2)as)}- Then M # @, since
0 € M. 1t is easy to see that M is open and closed in [0, 1], because of the
identity theorem for holomorphic functions. So M =10, 1]. (]

9.3 Proposition. Let G; =(G;,7;,%;),j =1,2, be domains over C* with
distinguished point, and Gy < Go. Then for every holomorphic function f on
Gy there is at most one holomorphic function F on Gy with F|g, = f, i.e.,
a possible holomorphic extension off is uniquely determined.

PROOF: Let F1, F3 be holomorphic extensions of f to G,. We choose neigh-
borhoods Uy (z) C G such that the given fiber-preservingmap ¢ : G + Gy
maps U topologically onto Us. We have Fj o |y, = fly,, forj =1,2, and
therefore F1|y, = Faly,. It follows that (F1),, = (F3)s,. Since each point of
G2 can be joined (o z2, the equality Fy = F3 follows. n

Envelopes of Holomorphy

Definition. LetG = (G,r, zp) be a domain over C” with distinguished
point and % a nonempty set of holomorphic functions on G.

Let (Ga)xer be the system of all domains over C* with the following
properties:
1. G < Gy forevery A € L.
2. For every f € % and every A € L there is a holomorphic function
F)\ on G)\ with F)\IG =T.
Then Hz(G) =, Gx is called the 9-hull of G.

If % =O(G) is the set of all holomorphic functions on G, then H(G) :=
Ho(e)(G) is called the envelope of holomorphy of G. If # = {f} for
some holomorphic function f on G, then H(G) :=Hs,(G) is called the
domain o existence of the function 7.

9.4 Theorem. LetG =(Gm, zg) be a domain over C*, F a nonempty set
d holomorphic functions on G, and Hz(G) = (G, 7,%o) the 9-hull. Then
the following hold:

1. 6 < Hgz(G).
2. For each function f € F there exists exactly one holomorphic function
F onG with Flg =f.
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3. If Gy = (G1,m1,21) is a domain over C™ such thatG < Gy and every func-
tion f € F can be holomorphically extended to G1, then G1 < Hz(G).

PROOF: Hg#(G) is the union of all Riemann domains Gy = (Gx, 75, z)) O
which each function f € # can be extended. We have fiber-preserving maps
wr :G— Gy and &y :Gy — G.

Let ~p be the finest equivalence relation on X :=|J,c; G» with property

(P). Then G is the set of equivalence classes in X relative to ~p. We define
a new equivalence relation ~ on X by

x~g e= zEGT G, m(z)=my,('), and for each f € F

and its holomorphic extensions F1, F; on G, respectively G,,

we have (F)\)y = (Fp)z'.

Then ~ has property (P):

(i)For any XA we can find open neighborhoods U = U(zo), V = V(zx), and
W =W (r(z0)) such that all mappings in the following commutative dia-

gram are homeomorphisms:
L2

N
w

Then for f € % and its holomorphic extension F on G we have that
Fro(mly)™t = Fyopyo(nly)™ = fo(ry)™" is independent of A.
Therefore, all distinguished points x are equivalent.

(iiJfa :[0,1] = G and 3 :[0,1] = G, are continuous paths with o/(0) =~ 5(0)
and m) 0oa =7, 0 3, then (F)\)a() = (F,)p(0)- It follows that (F)\)aa) =
(Fg)p(1y as well, and therefore c(1) = B(1).

Since G < Gy and G\ < Hz(G), it follows that G < Hx(G). Furthermore, the
fiber preserving map @ := Py o @ does not depend on A.

Now let a function f € F be given. We construct a holomorphic extension
F on G as follows:

Ifye G is an arbitrary point, then there is a A € L and a point ¥x € Gx
such that y = @x(y»), and we define

F(y) := Fx(y»)-

I y = 3,(y,) as well, then y, ~p y,, and therefore yx == y, as well. It follows
that Fy(y») = F,(y,), and F is well defined.

8 For the definition of property (P) see page 92.
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We have F 0P = F 03y 0o, = Fy opx = f on G. This shows that F is
an extension of f, and from the equation F o @, = F it follows that F is
holomorphic (since @ is locally topological).

The maximality of Hz(G) follows by construction. =

The 9-hull H#(G) is therefore the largest domain into which all functions
f € & can te holomorphically extended.

9.5 Identity theorem. Let G; = (Gj,75,z;),j = 1,2, be domains over
C", and G = (G,7,T) the union of G1 and G2. Let f; :G; — C be holomor-
phic functions and G = (G, x) a domain with G < G; forj = 1,2 such that

file = f2|lg. Then there is a holomorphic function f on G with ]7|G]_ = fj,
forj=1,2.

PROOF: Let f := filg = folg, and F :={f}. Since G1 < Hz(G) and
G2 < Hgz(G), it follows that G; U G2 < Hz(G).

Let f be a holomorphic extension off to G (where Hz(G) = (@, 7,z)), and
f = flé Then

o~ o~

(fle)e = fle = (flg)le = fle = f.

Therefore, f[G] is a holomorphic extension off to G;. Due to the uniqueness
of holomorphic extension, f|g, = f; forj =1,2. ]

Pseudoconvexity. Let P" ¢ C™ be the unit polydisk, (P*, H) a Eu-
clidean Hartogs figure, and ® : P* — C™ an injective holomorphic map-
ping. Then (®(P™), ®(H)) is a generalized Hartogs figure. P = (P", @, 0) and
H = (H,®,0) are Riemann domains with % < P. We regard the pair (P)
as a generalized Hartogs figure.

9.6 Proposition. Let (G,w) be a domain over C*, (P,H) a generalized
Hartogs figure, and o € G a point for which H < G :=(G,m, xg).

Then every holomorphic function f on G can be extended holomorphically to
GUP.

The proposition follows immediately from the identity theorem.

Definition. A domain (G, ) over C” is called Hartogs convex if the
fact that (PX) is a generalized Hartogs figure and zo € G a point with
H <G :=(G,m, xo) implies GUP = G.

A domain G = (G, w, zo) over C" is called a domain of holomorphy if there
exists a holomorphic function f on G such that its domain of existence
is equal to G.
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Remark. If G C C” is a schlicht domain, then the new definition agrees
with the old one.

9.7 Theorem.

1. If G = (Gm,xo) is a domain over C" and ¥ a nonempty set of holo-
morphic functions on G, then Hg(G) is Hartogs convex.
2. Every domain of holomorphy is Hartogs convex.

PROOF: Let (P, H) be a generalized Hartogs figure with H < Hz(G). Then
every function f € .# has a holomorphic continuation to H#(G) UP .There-
fore, H#(G) U P + H#(G). On the other hand, we also have Hz(G) <
Hz(G) UP so Hz(G) uP = Hz(9). .

A Riemann domain (G, ) is called holomorphically convex if for every infinite
discrete subset D C G there exists a holomorphic function f on G that is
unbounded on D.

9.8 Theorem (Oka, 1953). If a Riemann domain (G ) is Hartogs pseu-
doconuex, it is holomorphically convex (and therefore a domain of holomor-

phy).

This is the solution of Levi’s problem for Riemann domains over C". We
cannot give the proof here.

It seems possible to construct the holomorphic hull by adjoining Hartogs
figures (cf. H. Langmaak, [La60]). It is conceivable that such a construction
may be realized with the help of a computer, but until now (spring 2002) no
successful attempt is known. We assume that parallel computer methods are
necessary.

Boundary Points. In the literature other notions of pseudoconvexity
are used. We want to give a rough idea of these methods.

Definition. Let X be a topological space. A filter (basis) on X is a
nonempty set R of subsets of X with the following properties:
l.o¢gR.
2. The intersection of two elements of R contains again an element of
the set R.

Example

1. If zo is a point of X, then every fundamental system of neighborhoods
of ¢ in X 1s a filter, called a neighborhood filter of xo-

9. The Envelope of Holomorphy 101

2. Let (zn) be a sequence of points of X . If we define Sy = {z, : n >
N}, then R :={Sy : N € N} is the so-called elementary filter of the
sequence (xy). A filter is therefore the generalization of a sequence.

Definition. A point zg € X is called a cluster point of the filter R if
xp € A, for every A € R. The point zg is called a limit of the filter R if
every element of a fundamental system of neighborhoods of zg contains
an element of R.

For sequences the new notions agree with the old ones.

If f:X — Y is a continuous map, then the image of any filter on X is a
filter on Y, the so-called direct image.

Definition. Let (G,7) be a Riemann domain over C"*. An accessible
boundary point of (G, )is a filter R on G with the following properties:
1. R has no cluster point in G.
2. The direct image 7(R) has a limit zy € C™.
3. For every connected open neighborhood V' = V(z,) C C" there is
exactly one connected component of 7~1(V) that belongs to R.
4. For every element U € R there is a neighborhood V = V(zy) such
that U is a connected component of 7= (V).

Remark. For a Hausdorff space X the following hold:

1. A filter in X has at most one limit.
2. If a filter in X has the Iimit zq, then zg is the only cluster point of this
filter.

(for a proof see Bourbaki, [Bou66], §8.1)
Therefore, the limit zg in the definition above is uniquely determined.

There is an equivalent description of accessible boundary points that avoids
the filter concept. For this consider sequences (z,) of points of G with the
following properties:

1. (x,) has nu cluster point in G.

2. The sequence of the images 7(x, ) has a limit zy € C".

3. For every connected open neighborhood V = V(z,) C C” there is an
no € N such that for n,m > ng the points x, and x,, can be joined by a
continuous path « : [0,1] — G with 7 0o ([0,1]) C V.

Two such sequences (z.), (y,) are called equivalent if

1. lim, o 77(-171/) = limuﬁ)oo W(yy) =Zy.

2. For every connected open neighborhood V = V(zg) there is an ng such
that for n, m > no the points x, and y,, can be joined by a continuous
path a :[0,1] — G with noa([0,1]) C V.
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An accessible boundary point is an equivalence class of such sequences.

Let 8G be the set of all accessible boundary points of G. Even if G is schlicht,
this set may be different from the topological boundary dG. There may be
points in G that are not accessible, and it may be happen that an accessible
boundary point is the limit of two inequivalent sequences.

We define G :=GUIG. If 79 = [Tn] is an accessible boundary point, we define
a neighborhood of rg in & as follows: Take a connected open set U ¢ G
such that almost all z, lic in U and w(U) is contained in a neighborhood
of zg := lim, ,o 7(Z,). Then add all boundary points r = [y,] such that
almost all y,, lie in U and lim,, o 7(y») is a cluster point of 7 (U). With this
neighborhood definition G becomes a Hausdorff space, and © : G — C™ with

() if x € G,
#7(z) =) lm 7w(z,) ifx =[z,] € 0G,
- 00

is a continuous mapping. -

Definition. A boundary point r € 8G is called removable if there is
a connected open neighborhood U = U(r) ¢ G such that (U, %) is a
schlicht Riemann domain over C* and §G NU is locally contained in a
proper analytic subset of U.

A subset M C G is called thin if for every ro € M there is an open
neighborhood U = U(rg) C G and a nowhere identically vanishing holo-
morphic function f on U N G such that for every » € M N U there exists
a sequence (z,) in U NG converging to r such that lim,, . f(z,) = 0.

Example

Let G C C™ be a (schlicht) domain and A C G a nowhere dense analytic
subset. Then every point of A is a removable boundary point of G’ :=G —A.

The points of the boundary of the hyperball B,(0) C C” are all not removable.

Let B be a ball in the affine hyperplane H = {(zo, ...,2,) € C"*' 129 =1},
and G ¢ C*+! — {0} the cone over B. Then every boundary point of G is
not removable, since locally the boundary has real dimension 2n+ 1.The set
M :={0} is thin in the boundary, as is seen by choosing f(20, ...,2n) = 20.

Analytic Disks. Let (G,r) be a Riemann domain over C™. If ¢ :D — G
is a continuous mapping, %oy : D — C" holomorphic, and (# o)’ ({) # 0 for
¢ €D, then S :=¢(D) is called an analytic disk in G. The set bS :=¢(dD)
is called its boundary.
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Let I := [0,1] be the unit interval. A family (S;):cs of analytic disks (D)
in G is called continuous if the mapping (z,¢) — @:(z) is continuous. It is
called distinguished if S; C Gfor0< ¢t < land bS; C Gfor0 << 1.

Definition. The domain G is called pseudoconvex if for every distin-
guished continuous family (S;):cr of analytic disks in G it follows that
S1 CG.

The domain G is called pseudoconvex at r € 8G if there is a neighborhood
U =U(r) ¢ G and an ¢ > 0 such that for every distinguished continuous
family (S;):er of analytic disks in G with 7(S;) C B.(%(r)) it follows
that S;NU CGfortel.

As in C™ one can show that a Riemann domain is pseudoconvex if and only
if it is Hartogs pseudoconvex.

9.9 Theorem (Oka). A Riemann domain (G,x) is pseudoconvex if and
only if it is pseudoconvex at every point r € 8G.

9.10 Corollary. I (G,x) is @ domain of holomorphy, then G is pseudo-
convex at every accessible boundary point.

The converse theorem is Oka’s solution of Levi's problem.
Finally, we mention the following result:

9.11 Theorem. Let (G,x) be a Riemann domain over C*, and M C 8G
a thin set of nonremovable boundary points. I G is pseudoconvex at every
point o 8G — M, then G is pseudoconvex.

PROOF:  See [GrRe56], §3, Satz 4. n

Exercises

1. Prove that a Reinhardt domain G over C™ must be schlicht if it is a
domain of holomorphy.

2. Prove that if (G,w) is a Reinhardt domain, then for every f € O(G)
there is a power series S(z) at the origin such that f(z) = S(x(z)) for
x € G.

3. Prove that the envelope of holomorphy of a Reinhardt domain is again a
Reinhardt domain.

4. Prove that the Riemann surface of the function f(z) = log(z) has just
one boundary point over 0 € C.

5. Find a schlicht Riemann domain in C? whose envelope of holomorphy is
not schlicht.

6. Construct a Riemann domain ¢ = (G, m, xo) over C? such that for all
x,y € m~1(w(zo)) and every f € O(G) the equality f(z) = f(y) holds.
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7. Let (G,) be a Riemann domain and (G, 7) its envelope of holomorphy.
Ii f is a holomorphic function on G and F its holomorphic extension to
G, then f(G) = F(G)-

8. Consider

1
6 == {(zw) s 5 <l < Lhul <1}

et,w): 2 <r<1,¢t>0and|w

Determine the envelope of holomorphy of G.

9. Let G C C" be a domain and p : G — R a plurisubharmonic function.
It zy is an accessible boundary point of B :={z € G : p(z) <c¢} CC G,
then B is pseudoconvex at zg, in the sense of the last paragraph.

R

Chapter III

Analytic Sets

1. The Algebra of Power Series

The Banach Algebra By. In this chapter we shall deal more exten-
sively with power series in C”. Our objective is to find a division algorithm
for power series that will facilitate our investigation of analytic sets.

We denote by C[z] the ring of formal power series Y, a,z” about the
origin. Let R% be the set of n-tuples of positive real numbers.

Definition. Lett =(t,...,t,) € RT and f =3 .qa,2" € C[z]. We
define the “number” || f||¢ by -

£l = Zuzolal,h:” if this series converges,
b o0 otherwise.

Let Be == {f € Clz] : [|flls < oc}.

Remark. One can introduce a weak ordering on R% if one defines
(1, stn) < (8, .. t0) == t; <t fori=1,...,n

For fixed f, the function t ~ || f||¢ is monotone: If t < t* then |[f|l¢ < ||f

t*-

Definition. A set B is called a complex Banach algebra if the following
conditions are satisfied:
1. There are operations

+:BxB—-B, -:CxB—->B and o:BxB—B

such that
(a) (B,+, ) is a complex vector space,
(b) ( B,+,0) is a commutative ring with 1,
) c{fog)=(c.flog=Ffo(c.g)forall f g€ B and ceC.
2. To every f € B a real number | f|| > 0 is assigned that has the
properties of a norm:
(@) lle- fIl =lel S|, for c€ C and f € B,
) If +gll NWfI +llgll; for f,g € B,
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() Ifll =0 <= f_0.

3. fogl <A Ngll, for £,9 € B.

4. B is complete; i.e., every sequence in B that is Cauchy with respect
to the norm has a limit in B.

1.1 Theorem. B¢ ={f €C[z] : ||fllt <o} is a complex Banach algebra
for any t € RY}.

PROOF: Clearly, C[z] is a commutative C-algebra with 1. Straightforward
calculations show that ||. . .||+ satisfies the properties (2a), (2b), (2c) and (3).1t
followsthat By is closed under the algebraic operations, and all that remains
to be shown is completeness.

Let (f1) be a Cauchy sequence in By with fx =)_,5¢a,"z”. Then for every
¢ >0 there is an n =n(e) & N such that for all A, u > n,

SJa - alt” =|lfx — fulle <e

v>0
Since t* = t7* ...t% # 0, it follows that
E
| —al | < v for every v € N§.

For fixed v, (al”) is therefore a Cauchy sequence in C which converges to a
complex number a,.
Let f :=)_,50a2". This is an element of C[z].
Given S > 0, it follows that there exists an n =n(J) such that

Zl al — al} lt” < §6 for \>nandp €N

v>0

Let I ¢ Nj be an arbitrary finite set. For any A > n there exists a pp = () €
N such that 3, la™ —a,|t¥ <§/2, and then

Z| ald - a, lt” <§, forA>n.
vel

In particular, ||fy — flle < 6. Thus fx — f (and then also f) belongs to B,
and (f) convergesto f . u

Expansion with Respect to z;. For the following we require some
additional notation:

IfveNj, teR;, and z € C*, write
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V:(Vlvyl)a t:(tlvtl)’ and z:(zl,z’).
An element f =3" -, a,z” € C[z] can be written in the form

F=Y_frz, with fa(z) =D apuniz}”.
A=0

v/ >0

The series f, are formal power series in the variables 23, ...,z,. We call this
representation of f the expansion off with respect to z;. Now the following
assertions hold:

1. f € By <= fr€ By forall A, and » | filles} < oc.
X=0
2. 0125 . flle =t5 .l flle , for s € No.

PROOF:

(1) Since we are dealing with absolute convergence, it is clear that

I£lle = ZHf)\Ht’ti\'
A=0

(2) We have 2§ . f =330, frz2 4. The right side is the unique expansion of
z; . f with respect to z;. Now the formula can be easily derived. -

Convergent Series in Banach Algebras. Let B be a complex
Banach algebra and (f,) a sequence of elements of B. The series Y 5., fi
converges to an element f € B if the sequence F, :=Z§:1 fx converges to
f with respect to the given norm.

1.2 Proposition. Every f € B with ||1 — f|| < 1is a unit in B with

o0

1
=) A= and If ) € s
;J 1—|j1 =Sl
PrROOF: Let £ :=[{1 — f||. Then 0 < ¢ < 1,and the convergent geometric

series Y 5. o ¢* dominates the series Y3, (1 — f)*. As usual, it follows that
this series converges to an element g € B. We have

Iz

P a-pr = a-a-m.2 0=
X=0

X=0
- Zn:(l_f)A _g:l(l—f)A
A=0 X=l
= 1-(1-f)nt!

As n tends to infinity we obtain f .g = Tand flgl < 33oe* —1/(1 —¢). m
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Convergent Power Series. A formal power series f = Y_,>¢a,2z" is
called convergent if it is convergent in some polydisk P around the origin. In
that case there exists a point t € P NR7%, and since f converges absolutely
at t, it follows that f € B¢. On the other hand, if f € B, then by Abel’s
lemma f converges in P =P™(0,t).

1.3 Theorem.

1. H, == {f € Clz] : 3t € R} with |flle < oo} is the set of convergent
power series.

2. H, is a C-algebra.

3. There is no zero divisor in H; If f .g =0 inH, thenf =0 org=0.

We have already proved the first part, and then the second part follows easily.
The last part is trivial, since C[z] contains no zero divisors.

Remark. If f is convergent and f(0) = 0, then for every € > 0 there is
at € R} with ||fll¢ <e. In fact, since f(0) = 0, we have a representation
f=zfit -4z n T | fllt < oo, then also || fille < oo fori=1,..,n, and

e =3 bl e < max(ta, o ot) - Sl
=1 i=1

This expression becomes arbitrarily small as t — 0.

When we go from By to H,, we lose the norm and the Banach algebra
structure, but we gain new algebraic properties:

1. fe Hyisaunit < f(0) # 0.

PROOF: One direction is trivial. For the other one suppose that f(0) # 0.

Then g :=J . f(0)~' — 1is an element of H, with g(0) = 0. So there

exists a t with Jlglle < 1,and f . £(0)! is a unit in Be. Thus f is a unit

in H,. n
2. The set m :={f € H, : f(0) =0} of all nonunits in H, is an ideal:

(a) fi,foeEm = fl-f-fg € m.

(b) femand h€ H, == h- fem.

An ideal a in a ring R is called maximal if for every ideal b with aC b C R
it follows that a =b or b = R.

One can show that in any commutative ring with 17# 0 there exists a maximal
ideal. If a C R is maximal, then R/a is a field.

1.4 Theorem. The set m of nonunits is the unique maximal ideal in H,
and H,/m = C.

Proor: X a C H, isaproperideal, then it cannot contain a unit. Therefore,
it is contained in m. The homomorphism ¢ : H, — C given by f ' f (0) is
surjective and has m as kernel. -
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Distinguished Directions. An element f € H, is called zl-regular of
order k if there exists a power series fy(z1) in one variable such that:

1. f(21,0,...,0) =28 . fo(z1).
2. £o(0) # 0.

If f is z;-regular of some order, f is called z; -regular.

Let f(z) =Y 5., frzt be the expansion of f with respect to z;. Then f is
z1-regular of order & if and only if fo(0') = ... = fi_1(0’) =0and £,(0") # 0.
f is zl-regular if and only if f(z(,0,...,0)# 0.

We often need the following properties:

1. fis a unit in H,, <= f is 21-regular of order 0.
2. If fy is zl-regular of order k), for A = 1,2, then f; . fo is z{-regular of
order ky + ko.

There are elements f # O of H,, that f(0)= 0 which are not z;-regular, even
after exchanging the coordinates.

Definition.  Let ¢ = (cg,...,c,) be an element of C*~!, The linear
map o, :C"* - C™ with
Oc(21,- -, 2n) 1= (21,22 + C221, . .., Zn + Cn21)
is called a shear.
The set 3 of all shears is a subgroup of the group of linecar automorphisms
of C", with g =idgn.
We can write 0.(z) :=z +2; .(0,c¢).In particular, we have o.(e;) = (1,¢).

1.5 Theorem. Let f € H,, be a nonzero element. Then there exists a shear
o such that f oo is zy-regular.

PrROOF: Assume that f converges in the polydisk P. If we had f(z1,2") =0
for every point (z1,z') € P with z; # 0, then by continuity we would have
f = 0, which can be excluded. Therefore, there exists a point a = (a1, a’) € P
with a; # 0 and f(a) # 0. We define ¢ :=(a;)"! .a’and o :=0.. Now,

foo(a1,0") = f(a1 .0c(e1)) = f(ar .(1,c)) = f(a) #0.
So foo(z;,0') # 0, and foo is 21-regular.

[
Remark. I f,...,fi are nonzero elements in H,, then f :=f,-..fi #0
converges on a polydisc P, and there exists a point a € P with f (a)# 0 and
a1 # 0. As in the proof above we obtain a shear ¢ such that fio0,...,ficc

are zl-regular.
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Exercises
1.Let f(z) = >_,>0 2" be a formal power series.

(a) Prove the "Cauchy estimates": f € By = la,| < ||fll¢/t” for
almost every V.

(b) Prove that if there is a constant C' with |a.[s” < C, then f € By for
t<s.

(¢) Let fn(z) =3_,50av,nz" be asequence of power series with || fr]ls <
C. If every sequence (a,,) converges in C to a number a, then
show that (f,) is a Cauchy sequence in By converging to f(z) =
Y >0 @z’ for every £ <s.

2. The Krull topology on H,, is defined as follows: A sequence (f) converges
in H, to f if for every k € N there is an ng with f — f, € m* forn > ng.
What are the open setsin H,? Is H, with the Krull topology a Hausdorff
space?

3. Let B be a complex Banach algebra with 1. Show that for every f € B
the series exp(f) =Y ooy f*/n! is convergent, and that exp(f) is a unit
in B.

4. If f is a formal power series and f =35, Px its expansion into homo-
geneous polynomials, then the order of f is defined to be the number

ord(f) :=min{s € Ng : ps # 0).

Now let (fn) be a sequence of formal power series such that for every
k € N there is an ng with ord(f,) > k for n > ng. Show that 3 oo | f, is
a formal power series. Use this technique also for the following:

Ifg1,. ..,9m areelements of H, with ord(g;) > 1,then

S auwt = Y au(gi(a),- - gm(2)"

n>0 p>0

defines a homomorphism ¢ : H,, — H, of complex algebras.

2. The Preparation Theorem

Division with Remainder in Bg. Let a fixed element t € R be
chosen. When no confusion is possible we write B in place of B, B’ in place
of By, and || f|| in place of || f||¢. The ring of polynomials in z; with coefficients
in B’ is denoted by B'[z].

2.1 Weierstrass Formula in By. Let f and § = Y seo A be two
elements of B. Assume that there exists an s € No and a real number € with
0 <k < 1such that g, is aunit in B' and |25 — g-g; 1|l <e-t5.
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Then there exists exactly one q € B and one r € B'[z1] with deg(r) < s such
that

f =Q'g+'f‘,

with

Jas gl < 670l

and
Il < A1

Proor: Let us first try to explain the idea of the proof. If # € B, then there
is a unique decomposition & = gy - 2§ +ry, where r, € B'[z] and deg(ry,) < s.
If g is given, we define an operator T =T, : B — B by

T(hy ==g-g;" .qn +r.

It T were an isomorphism, then f =T(T~'f) =g- (971 -gp-1) +rp-1, Would
be the desired decomposition. One knows from Banach space theory tﬁat Tis
an isomorphism if idg — T is "small” in some sense. Since ||(idg — T)(h)|| =
llzi — 995 . llgn]l, one can, in fact, conclude from the hypothesis of the
theorem that idg — 7' is "small.” Now T~! = Z‘;‘;O(idB - T)A_ Since (idg —
T)°f = fand (idg—T)'f = (2;—gg; ')qs, we obtain the following algorithm:
Inductively we define sequences fy, gx, 7» beginning with fy =f =25gy +rg.
If fx = z{g, +r» has been constructed for some X > 0, then we define

oy = (2 —ggs_l)(b\,

and obtain ¢x41 and ry4; by the unique decomposition

yr=2io + g1, ragy € Bz with deg(rys1) < s.

If we define ¢ :=)"3_9; 'gx and r :=3"5° . ry, then

fofo = Zf)\—Zf)\+1
A=0 pyn

— D (K= Fa)
X=0

= 2(99;1%4—7‘)\) =g-qg+r
X0
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When using this algorithm we do not need the abstract transformation T
and the Banach theory of such transformations. However, it is necessary to
prove the convergence of all of the series that were used.

For this let & :=—(2§ — gg;'!). Then ||h|l <€ .t{ and gg; ! = 2§ + A.

From fy = zgx +7x it follows that |7zl WAl and Jlgall WT° )£l
Furthermore, from fx+1 = —h - ¢x it follows that

Il WA faall <e- 1A

Thus | fa]] < & - [ and 3°320 fx converges.

Since .
lgs tanll < eMT8llgs Ml NAI and sl < M

the series g =Y 5095 'gx and 7 =35 ;7 also converge.

The estimates for [[gs¢|l and || f]| follow readily:

oo o 1
lgsall < Yllaall < 6°0F0- Do = 60l
A=0 A=0

> ?
A};}Ilmll < £l - TS

It still remains to show uniqueness. Assuming that there are two expressions
of the form

IA
N

il

f=mg+ri =qg+re,
it follows that

0—(q1 —q2) .9 +(r1 —72) = @1 — @2)gs2] + (@1 — @2)gsh + (11 —12)

and
(gr —@2)gszill B {l(@1 — g2)gs27 4 (r1 — 72|
= ||(q1 —q2)gsh”
< e-t5 e — g2)gsll
= - a1 —g2)9s7 |-
Since 0 <e < 1,(q1 — ¢2)gs2f = 0. Therefore, g1 = g2 and r1 =ro. u

2.2 Corollary. If the assumptions of the theorem are satisfied and if in
addition f € B'[z1], g € B’[z1], and deg(g) = s, then ¢ € B’{z1] with ¢ =0
or deg(q) =deg(f) —s.

Proor: Letd :=deg(f). For d < s we have the decomposition f =0-g+ f.
Hence we have to consider only the case d > s.
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We assume that deg(f,) < d for g =0,...,A. Then deg(¢g)) < d — s, and
therefore

deg(fas1) =deg(fr —rx —g9; 'qx) Whax(d,s — 1,5+ (d-5))=d.

Hence deg(fx) < d and deg(g,) < d—sforall A. It follows that deg(g) < d—s,
and from f =g .¢q +r we can conclude that deg(g) =d — s. -

The Weierstrass Condition. We use the notation from above.

Definition. Let s € Ng. An element g =Y 5., grz? € B satisfies the
: L nent g 2=0 9271
Weierstrass condition (or W-condition) at position s if
1. g, is a unit in B'.
— 1
2. 0125 — g9t < 3ti

Let R be an integral domain.' A polynomial f(u) = feu® + fo_jus~ ' +...+
fiu + fo € Rlu] is called monic or normalized if f, = 1. A polynomial
f € B’|z] is normalized if and only if it is 2;-regular of some order k < s.

2.3 Weierstrass preparation theorem in B;. Mg € B satisfies the W-
condition at position s, then there exists exactly one normalized polynomial
w € B'[21] of degree s and one unit ¢ € B such that g =¢ . w.

PrRoOF: We apply the Weierstrass formula to f = z{. There are uniquely
determined elements ¢ € B and r € B'[z] with 2§ =¢-g+r and deg(r) <s
(we choose an € < £ such that ||2{ — gg;!|| < et$).

But then 2§ — gg; ' = (¢ — g; )g +r is a decomposition in the sense of the
Weierstrass formula. Therefore, we have the estimate

12

—s _ 1
lgsq =11 < #7712 — 9957l - 7— <1

—£ 1—¢

That means that g,q and hence g is a unit in B.Let e :=¢~ ' and w :=2{ —r.
Then w is a normalized polynomial of degree s, and e .w =g~ (2§ —7) =g.

If there are two decompositions g =eq (25 — ) = ea(2 —rz), then
2z —e7t g+ =€e; 1.8+

From the uniqueness condition in the Weierstrass formula it follows that
ep =ep and ry =1y, [ ]

2.4 Corollary. Jf g is a polynomial in z;, then e is also a polynomial in
21,

! An integral domain is a commutative nonzero ring in which the product of two

nonzero elements is nonzero.
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PRrROOF: We use the decomposition z{ — gg; ! = (¢ — g;')g +r. From the
Weierstrass formula it follows that

£

1
-1
Il <2t =995 7= <ti- 77 <h-
Since w, = 1,1t is also true that
25 —wwitll =2} —wll =Irll <ti.

Therefore, ¢ = ¢ .w +0 is a decomposition in the sense of the Weierstrass
formula, and the proposition follows from Corollary 2.2. .

The Weierstrass preparation theorem serves as a “preparation for the exami-
nation of the zeros of a holomorphic function.” If the function is represented
by a convergent power series g, and there exists a decomposition g = e-w with
a unit ¢ and a “pseudopolynomial” w(z,2’) =25 + Ay (z)25 '+ -+ As(2'),
then g and w have the same zeros. However, the examination of w is simpler
than that of g.

Weierstrass Polynomials.Now we turn to the proof of the Weierstrass
formula and the preparation theorem for convergent power series.

The ring H,, is an integral domain with 1.If f € H, and f(z) =Y 50 fr(z) 2
with f) =0 for A > s, then f is an element of the polynomial ring H,,—1[z1].
If fs # 0, then deg(f) =s. If f is normalized and f,(0") =0 for A < s, then
f is z1-regular exactly of order s, and f(z1,0') ==7.

Definition. A normalized polynomial w € H,,_1[2] with deg(w) =s
and w(z1,0') = 2} is called a Weierstrass polynomial.

We have seen that a normalized polynomial w € Hp_1[21] with deg{w) =s is
a Weierstrass polynomial if and only if it is z;-regular of order s. It follows
easily that the product of two Weierstrass polynomials is again a Weierstrass
polynomial.

If g =e.w is the product of a unit and a Weierstrass polynomial of degree s,
then we also have that g is z;-regular of order s, since the unit ¢ is z1-regular
of order 0. We now show that conversely, every z;-regular convergent power
series is the product of a unit and a Weierstrass polynomial.

2.5 Theorem. Let g€ H, be z-regular of order s. Thenfor everye >0
and evey tg € R} there exists at < to such that g lies in Bi, gs is a unit
in By, and ||z — gg3 s < € .t5.

PROOF: Letg =>_52,gaz} be the expansion of ¢ with respect to z1. Then
gr(0") =0 for A =0,1,...,s — 1and gs(0') # 0.

Since g is convergent, there exists a t; < to with ||gllt, < co. Then gx € By
for all A, and in particular,
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f(z,) o gs(Ol)_lgs(z/) -1€ Bt/l

Now, f(0’) = 0. Thus there exists a t2 < t; such that || f]l¢ < 1forallt < ta.
Therefore, g5 is a unit in By, and g an element of By.

Let h :=2{ —gg;!. Then h € By for all t < t2, and we have an expansion

h=3%,ha2p with b, =0, hy = —gag;! for A # s, and hy(0") = 0 for
A=0,1,...,s—1.

If ¢, > 0 is sufficiently small, then

| 5 e
A=s+1

forall t = (¢1,t’) < to. And since hy(0’) =0 for A =0,...,s — 1,for every
small ¢; there exists a suitable t” such that

[t
A=0

Consequently, [|h]le < E .85 n

0
g
< ts+1 . ” h Z)\—s—l ” <52
¢ =1 Z A%l t 175
A=s+1

s—1 c
| =Sl <85S
t 2

A=0

Remark. In a similar manner one can show that if ¢, ...,gy € C[z] are
convergent power series and each g; is z;-regular of order s;, then for every
¢ >0 there is an arbitrary small t € R% for which

9i € By, (gi)s. is a unit in By and ||2]* — gi(g:)5,"|| < e -t

Weierstrass Preparation Theorem

2.6 Theorem (Weierstrass division formula). Let g€ H, be z-reqular
of order s. Then for every f € H, there are uniquely determined elements
g€ Hy, and r € H,_1[z1] with deg(r) <s such that

f=q-9+r
Iff and g are polynomials in zy with deg(g) = s, then q is also a polynomial.

PROOF: There exists a t € R and an € with 0 <¢ < 1such that f and g
lie in B, g is a unit in By, and ||z§ — gg; !¢ < £ .#5. It then follows from
the division formula in B, that there exist ¢ and r with f =q .g +7.

Let two decompositions of f be given:

f=aq-g+ri=¢ g+ra.
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We can find a t € R} such that f,q1,¢2,71, 7 lic in By and g satisfies the
W-condition in By. From the Weierstrass formula in By it followsthat ¢ = g2
and T =T | ]

2.7 Theorem (Weierstrass preparation theorem). Letge H, be z; -
regular of order s. Then there exists a uniquely determined unit e € H,, and
a Weierstrass polynomial w € H,_1[z1] of degree s such that

g=e- w.
If g is a polynomial in z,, then e is also a polynomial in 1.

PROOF: There exists at € R} such that g satisfies the W-condition in B.
The existence of the decomposition g = ¢ .w with a unit ¢ and a normalized
polynomial w of degree s therefore follows directly from the preparation the-
orem in Byg. Since g is z1-regular of order s, the same is true for w. So w is a
Weierstrass polynomial.

Now, w has the form w = 2§ —r, where r € H,,_1[2] and deg(r) < s. Thus, if
there exist two representations g = e (25 —r1) =ea(2] —r2), it follows that
2§ =ey'-g+r1 =e; ' .g +ro. The Weierstrass formula implies that e; = ey,
r; =1y and therefore wy; = ws. =

Exercises

1. Write a computer program to do the following: Given two polynomials
f(w, x,y) (of degree n in w and degree m in x and y) and g(w, z,y) with
g(w, 0,0) = w?, the program uses the Weierstrass algorithm to determine
y and » (up to order m in x and y) such that f =y .g+7r.

2. Let f :P"1 x D— C be a holomorphic function and 0 <7 < 1be a real
number such that ¢ — f(z, () has no zero for z2 € P! and r < |¢| < 1.
Then prove that there is a number k such that for every z’ € P!
the function ¢ — f(z',() has exactly k& zeros (with multiplicity) in D.
Use this statement to give an alternative proof for the uniqueness in the
Weierstrass preparation theorem.

3. Show that the implicit function theorem for a holomorphic function f :
C™ x @:— @ with f(0) =0 and £, (0) # 0 follows from the Weierstrass
preparation theorem.

3. Prime Factorization

Unique Factorization. Let I be an arbitrary integral domain with
1.Then I* := T - {0} is a commutative monoid with respect to the ring
multiplication, and the set 1™ of units of 7 is an abelian group.
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Let a, b be elements of I*. We say that a divides b (symbolically a|b) if there
exists ¢ € I*with b = a .c. We can also allow the case » = 0. Then every
element of 7* divides 0, and a unit divides every element of I.

Definition.  Consider an element a € I* — I'*.
1. a is called irreducible (or indecomposable) if from a = a; .ay (With
ai,ag € I'*)it follows that a1 € I’ orag € I,
2. ais called prime if a|ajag implies that a|a; or a|as.

Irreducible and prime elements can be defined in an arbitrary commutative
monoid. In 7* every prime element is irreducible, and in some rings (for
example, in Z or in R[X]) it is also the case that every irreducible element is
prime. In Z[v/=5] one can find irreducible elements that are not prime.

Definition. [ is called a unique factorization domain (UFD) if every
element a € /* can be written as a product of finitely many primes.

One can show that the decomposition into primes is uniquely determined up
to order and multiplication by units. In a UFD every irreducible element is
prime and any two elements have a greatest common divisor (ged).

Every principal ideal domain? is a UFD, and in this case the greatest common
divisor of two elements a and b can be written as a linear combination of a
and b. For example, Z and K[X] (with an arbitrary field K ) are principal
ideal domains. So in particular, C[X] is a UFD.

Gauss’s Lemma. Let I be an integral domain. Two pairs (a,b), (c,d) €
I x I'* are called equivalent if ad = bc. The equivalence class of a pair (a,b)
is called a fraction and is denoted by a/b. The set of all fractions has the
structure of a field and is denoted by Q(I). We call it the quotient field of I.

The set of polynomials f(u) =ag+aju+- .-+a,u™ in v with coefficientsa; € 1
constitutes the polynomial ring 7[u]. The set I°[u] of monic polynomials in
Iu] is a commutative monoid. Therefore, we can speak of factorization and
irreducibility in 7°[].

3.1 Gauss’s lemma). Let I be a unique factorization domain and Q =
QU). If wi,wy are elements of Q°u] with wiws € I°[u], then wy € I for
A=12

PROOF:  For A =1,2, wx =axg taxju+--- +ays, _qusai~1 T with
ax,,, € Q. Therefore, there exist elements dy € I such that dy .wy € I[u]. We
can choose d) in such a way that the coefficients of d, .w, have no common

divisor (such polynomials are called primitive).

2 A principal ideal domain is an integral domain in which every ideal is generated
by a single element.
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We define d :=did> and assume that there is a prime element p with p | d.
Then p doesn’t divide all coefficients dyay,, of dy .w,. Let py be minimal
such that p { dxay,u, - Then

(diwr)(dows) = ...+ u"**#2(day , a2, + something divisible by p )+ ... .

Since I is a UFD, p doesn’t divide (dyay ,, )(d2az ,,). So the coefficient of
ut1T#2 ig not divisible by p. But since wywy has coefficients in I, every divi-
sor of d must divide every coefficient of d .wywy = (dyw;)(dowe). This is a
contradiction!?

When d has no prime divisor, it must be a unit. But then d; and d; are also
units, and wy =d; ' (dxwy) belongs to 1°[u]. .

3.2 Corollary. Let/ be a unique factorization domain.

1. If a € I°[u] is prime in Q[u], then it is also prime in I°[u].

2. If a € I°[uy] is reducible in Q[u], then it is reducible in I°u].

3. Bvery element of I°[u] is a product of finitely many prime elements.
4.If a € I°[u] is irreducible, it is also prime.

PROOF: 1.Let a€ I°[u] be a prime element in Q[u]. If adivides a product
a’a’” in I°[u}, then it does so in Q[u]. Therefore, it divides one of the factors
in Q[u]. Assume that there is an element b € Q[u] with @ = ab. By Gauss’s
lemma b € I°[u]. This shows that a is prime in I°[u].

2. Let a € I°[u] be a product of nonunits aj,az € Qu]. If ¢; € Q is the
highest coefficient of a;, then ¢y = 1,¢; 'a; € Q°u] and a = (c]1ay)(c3 tay).
By Gauss ¢; 'a; € I°[u], and these elements cannot be units there. So a is
reducible in 7°[u].

3. Every element a € I°[4] is a finite product @ =a ...a; of prime elements
of @[u]. One can choose the a; monic, as in (2). Using Gauss’s lemma several
times one shows that the a; belong to I°[u]. By (1)they are also prime in
I%Tul.

4, Let a € I°[u] be irreducible. Since it is a product of prime elements, it
must be prime itself. [

Remark. In the proof we didn’t use that 7 is a unique factorization do-
main. We needed only the fact that Q[u] is a UFD (since Q is a field) and
the statement of Gauss’s lemma: If a;,a; € Q°[u] and aiay € I°[u], then
a; € I°[u] fori=1,2.

% The original version of Gauss’s lemma states that the product of primitive poly-
nomials is again primitive. The reader may convince himself that this fact can
be derived from our proof.

NG
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Factorization in H,,. Now the above results will be applied to the case
I =H,

Definition. Let f € H,, f = > 0P be the expansion of f as a
series of homogeneous polynomials. One defines the order of f by the
number

ord(f) :=min{A € Ng : px #0} and ord(0) :=o0.

(See also Exercise 1.4 in this chapter)

Then the following hold:

1. ord(f) > 0 for every f € H,.
2. ord(f) =0 <= f is a unit.

3. ord(f1 . f2) =ord(f1) +ord(f2).
3.3 Theorem. H, is a unique factorization domain.

PROOF: We proceed by induction on .

For n =0, H, = C is a field, and every nonzero element is a unit. In this
case there is nothing to show.

Now suppose that the theorem has been proved forn — 1.Let f € H, be a
nonunit, f # 0.Iff is decomposable and f = fi- f5 is a proper decomposition,
then ord(f) = ord(f1) +ord(f2), and the orders of the factors are strictly
smaller than the order of f. Therefore, f can be decomposed into a finite
number of irreducible factors.

It remains to show that an irreducible f is prime. Assume that f| f1 fo, with
fa € (Hp)* for A =1,2. There exists a shear o such that fi oo, fo o0 and
f oo are z;-regular. If we can show that f oo divides one of the f) oo, then
the same is true for f and fx. Therefore, we may assume that fi, f2, and f
are z,-regular.

By the preparation theorem there are units e1, ez, € and Weierstrass polyno-
mials w1, wo, w such that f; = ey w1, fi = e2-ws, and f = e-w. Then w divides
wiwe. If wywe =q .w with ¢ € H,, then the division formula says that  is
uniquely determined and a polynomial in z;. So w divides wiws in HS_{[2].
Since w is irreducible in H,, it must also be irreducible in HS_,[21]. By the
induction hypothesis H,,; is a UFD, and therefore w is prime in HS_,[z]. Tt
follows that w|w; or w|wsz in HY_;[z1] and consequently in H,,. This means
that f|f1 or f|f2 in Hy. L]

Hensel’s Lemma. Let w € H,[u] be a monic polynomial of degree s.
There is a polydisk P around O € C™ where all the coefficientsof w converge to
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holomorphic functions. Therefore, we can look at w as a parametrized family
of polynomials in one variable u. By the fundamental theorem of algebra
w(0,u) splits into linear factors, and the same is true for every w(z, u) with
z € P. We now show that such splittings are coherently induced by some
splitting of w in HO[u], at least in a neighborhood of O.

3.4 Hensel's lemma. Let w(0,u) = [T5_,(u — €2)** be the decomposition
into linearfactors (withc, # c, forv # p and s1+- ..+ s, =s). Then there

are uniquely determined polynomials wy,. ..,w; € HO[u] with the following
properties:

1. deg(wy) =sx, for A=1,...,1

2. wa(0,u) = (u —en)®.

Proor: We proceed by induction on the number /. The case ! = 1is trivial.
We assume that the theorem has been proved for ! — 1.

First consider the case w(0,0) = 0. Without loss of generality we can assume
that ¢; = 0. Then w(0,u) = u** . h(u), where & is a polynomial over C with
deg(h) =s —s; and h(0) # 0. So w is u-regular of order s;, and there exists
a unit ¢ € H2[u] and a Weierstrass polynomial w; with w = e .wy. Since
w1(0,u) =u®, it follows that

l
e(0,u) = h(u) = [ (u—cx)®

A=2

By induction there are elements ws,. ..,w; € HY[u] with deg(wy) = s,
wx(0,u) = (u —cx)® and € = wyp---w;. Then w = wywy---w; is the de-
sired decomposition.

If w(0,0) # 0, then we replace w by w'(z,u) :=w(z,u +c;) and obtain a
decomposition w’ =w] ...w;] as above. Define

wa(z, 1) :=w\(z,u —c1).

This gives a decomposition w = wy ...w; in the sense of the theorem. The
uniqueness statement also follows by induction. [

The Noetherian Property. Let R be a commutative ring with 1.
An R-module is an abelian group M (additively written) together with a
composition R x M — M that satisfies the following rules:

1.7(z1 +22) =rz1 +rzs forr €R and z1, 22 € M.
2. (r *r)z =rz+rexforr,re € Randz € M.
3. Tl(T‘QSC) = (T‘1T2)$ for r1,72 €ER andz e M.
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4. 1-z=xforz e M.

These are the same rules as those for vector spaces (and the elements of
a module are sometimes also called vectors). However, it may happen that
rz =0even if r £ 0 and z # 0. Therefore, in general, an R-module has no
basis. So-called free modules have bases by definition. An example is the free
module RQ:=R x ...x R (gtimes), with a basis of unit vectors. An example
of a nonfree module is the Z-module M :=Z/6Z, where 2-3 =2-3 =0.

If M is an R-module, then a submodule of M is a subset N C M with the
following properties:

l.z,ye N = z+y€&€N.
2.7mr€¢Randze N = rz € N.

A submodule of an R-module is itself an R-module.
Example

The ring R is also an R-module. The composition is the ordinary ring mul-
tiplication. In this case the submodules of R are exactly the ideals in R. An
R-module M is called finite if there is a finite set {z1,...,z,} C M such
that every x € M is a linear combination of the z; with coefficientsin R. The
free module R? is obviously finite. But Z/6Z is also finite, being generated
by the class 1.

Definition. An R-module M is called noetherian if every submodule
N ¢ M is finite.

A ring R is called noetherian if it is a noetherian R-module. This means
that every ideal in R is finitely generated (in the sense of a module).

3.5 Proposition. Let R be a noetherian ring. Then any ascending chain
of ideals
IychcBc---CR

becomes stationary, i.e., there is a kg such that Iy = Iy, fork > ko.

PrROOF: The set J :=Jp—, Ix is obviously an ideal. Since R is noetherian,

J is generated by finitely many elements f1,. ..,fx. Each f, lies in an ideal
It,. If kg = max(kq,...,kn), then all f, are elements of Iy,. So Iy = Iy, for
k Z k(). |

3.6 Theorem. IR is a noetherian ring, then R? is a noetherian R-module.

PROOF: We proceed by induction on g.
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The case ¢ = 1is trivial. Assume that ¢ > 2 and the theorem has been proved
forg — 1.Let M C R? be an R-submodule. Then

I :={reR :3r' € R"! with (r,r') e M)
is an ideal in R and as such is finitely generated by elements r1,...,r;. For
every ry there is an element ry € R7™! such that ry :=(rx,r}) lies in M.

The set M’ := M N ({0} x R¥7!) can be identified with an R-submodule
of R?~!, and by the induction assumption it is finite. Let ry = (0,r}), A =
I+1,...,p, be generators of M'.

An arbitrary element x € M can be written in the form x = (z1,x’) with
z1 € I. Then z; =ZJ)\=1 axrx, ax € R, and

I I
X — Za)\m = (O,X/ — Za)\l‘/)\) e M.
X=1 X=
That is, there are elements a;+1,. ..,ap, € R such that
1 P
X_Za)\m = Z a)ry.
X=l A=1+1
Hence {r1, ... ,Tp} is a system of generators for M. u

3.7 Riickert basis theorem. The ring H, of convergent power series is
noetherian.

ProOF: We proceed by induction on n. For n = 0, H, = C, and the
statement is trivial. We now assume that z# > 1 and that the theorem has
been proved for n — 1.Let I C H, be a nonzero ideal and g # 0 an element
of 1. Without loss of generality we can further assume that g is 21-regular of
order s.

Let ® =@, : H, —» (H,—1)° be the Weierstrass homomorphism, which is
defined in the following manner: For every f € H,, there are uniquely defined
elements ¢ € H, and r =rg +riz1 +-- +r, 12571 € Hn_1[z1] such that
f=qg-g+r Let ®(f) :=(ro,- .. rs—1)

Now, ® is an H,_;-module homomorphism. By the induction hypothesis
H,,—1 isnoetherian, and so (H,—1)® is a noetherian H,_1-module. Since A{{) =
@ (Ijs an H,_;-submodule, it is finitely generated. Let ry = (r§", ..., 7521),

A=1,...,1, be generators of M.

If f € Iis arbitrary, then f = g-g+r withr =rg 421+ +7,_12{ !, and
there are elements a1, - ..,a; € Hp_1 such that (ro,71,-..,7s—1) = ®4(f) =
Zl)\zl axry. Hence we obtain the representation

R T TR
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1
Fmaeg Yan () +rfm )
A=1

The set {g,7®,...,r®} with r® =l +rMz + -4+ 2571 is a system
of generators of I. =
Exercises

1. Prove that O(C) is not a UFD.

2. Let M be a finite H,-module, and m C H,, the maximal ideal. If M =
m .M, then M =0.

3. Let f :P"! x D — C be a holomorphic function such that for every
z € P"~! there is a unique solution z, = ¢(z') € D of the equation
f(z’,z,) = 0. Use function theory of one variable to show that ¢ is
continuous, and use Hensel’s lemma to show that ¢ is holomorphic.

4. Let f € H, be 21-regular, f = ¢ -w with a unit ¢ and a Weierstrass
polynomial w € H,_1[21]. Prove that f is irreducible in H,, if and only
if w is irreducible in H,_q[2;].

5. Show that f(z,w) :=2? —w?(1 —w) is irreducible in the polynomial ring
C[z, w] and reducible in H,,.

6. Let f € H, be given with f,, (0)# 0 forsome i. Prove that f is irreducible
in H,

4. Branched Coverings

Germs. Let B ¢ C" be an open set and z; € B a fixed point. A local
holomorphic function at zg is a pair (U, f) consisting of an arbitrary neigh-
borhood U = U(zg) € B and a holomorphic function f on U. Two such
functions f :U — C and g : V — C are called equivalent if there is a neigh-
borhood W = W(zo) cU NV such that f|IWW = g|W. The equivalence class
of a local holomorphic function (U, f) at zg is called a germ (of holomorphic
functions) and is denoted by f,,. The value f(zy) as well as all derivatives of
f at zg (and therefore the Taylor series of f at zg) are uniquely determined
by the germ. On the other hand, if a convergent power series at zg is given,
then this series converges in an open neighborhood of zy to a holomorphic
function f, and the germ off determines the given power series. So the set
O,, of all germs of holomorphic functions at zy can be identified with the @-
algebra of all convergent power series of the form Y - (z—zg)”. This algebra
is isomorphic to the algebra H,, and has the same algebraic properties.

Let fz, # O be any element of O,, with f(zg) = 0. Then there are a neigh-
borhood U(zg) C B, a neighborhood W(0) C @;  a holomorphic function
e on U, and holomorphic functionsay, ...,a, on W such that after a suitable
change of coordinates the following hold:
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1. e(z) £0 foreveryz € U.
2. f(z) =e(z) .w(z — 20) for w(wy, W) =wi + a1 (W)z; 1 + ... +as(w).

Pseudopolynomials. A pseudopolynomial of degree s over a domain
G ¢ C” is a holomorphic function w in G x C that is given by an expression

w(u,z) =u® +hi(2)u*" + ..+ hs(2),

with hy,...,hy € O, where O = O(G) denotes the ring of holomorphic
functions on G. The set of pseudopolynomials of any degree over G will be
written as O°u].

We begin with several remarks on the algebraic structure.

4.1 Proposition. If G 18 a domarn, i.e., a connected open set, then the
ring O = O(G) 1s an integral domarn.

Proor: We need to show only that O has no zero divisors. Assume that
fi, f2 are two holomorphic functions on G with both f; # 0. Since G is a
domain, their zero sets are both nowhere dense in G, and there is a point
z € G with fi(z) . f2(2z) # 0. So f1 . fa Z 0. =

It also follows that O°[u] is free of zero divisors. We denote by Q the quo-
tient field of ©. Then the group Q[u]* of units in the integral domain Q[u]
consists of the nonzero polynomials of degree 0. If O* C O is the multiplica-
tive subgroup of not identically vanishing holomorphic functions on G, then
Qu]* n O =0~

4.2 Proposition. Ifwi,ws € Q°u] are pseudopolynomials with wy .wp €
O°u], then wy,wy € O%u].

PROOF: Ifw =u®+(fi/g1)u*"' + ...+ (fs/gs) is an arbitrary element of
Q°[u], then for all z € G the germs g; , are not 0.

For a moment we omit the i. If the quotient of f, and g, is holomorphic, i.e.,
fz = h .g, with h, € O,, then A, is uniquely determined and there is a ball
B around z in G such that h, comes from a holomorphic function h on B
and the equation f = h .g is valid in B. If we take another point z’ € B,
the germ of 4 at this point is the quotient of the germs of f and g at this
point. So z +— h,(z) defines a global holomorphic function z on G. We write

h=f/g.

Thus, if w, =u° + ((f1)2/(90)2)u* "L + -+ ((fs)2/(9s)2) lies in OLu] for
every z € G, then w € O°[u)].

Now we apply Gauss's lemma in the unique factorization domain O, = H,.
Let w := wy -wa. Then (w1)z . (w2)z =w, € OYu] for every z € G. Conse-
quently, the coefficients of (w;), are holomorphic, and by the remarks above
this means that w, € O°[u]. m
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The following is an immediate consequence of the above two propositions:

4.3 Theorem. Let G € C™ be a domain. Then O°[u] is afactorial monoid;
t.e., every element is a product o finitely many primes.

Euclidean Domains

Definition. An integral domain [/ is called a Euclidean domain if there
is a function N : I* — Ny with the following property (division with
remainder): For all a,b € I,b # 0, there exist ¢, € [ with
l.a=q-b+r,
2. r=0o0r N(r) < N(b).
The function N is called the rorm of the Euclidean domain.

Examples

1. Z is a Euclidean domain with N(a) :=|al.
2. If k is a field, then k[z] is a Euclidean domain, by N(f) :=deg(f).

Every Euclidean domain [ is a principal ideal domain and thus factorial. If
a, b are elements of I, then the set of all linear combinations

r-at+s-b#£0, rsel,

has an element d with N(d) minimal. The element d generates the ideal
a={ra+sb :rsel}andis a greatest common divisor of ¢ and b. It is
determined up to multiplication by a unit.

Now assume again that Gis a domain inC", O = O(G), and Q = Q(O). Then
Q[u] is a Buclidean domain. I w;,ws are pseudopolynomials in O°u], there
is a linear combination in w =rywy + rawe # 0 in Q[u] with minimal degree.
It can be multiplied by the product of the denominators of the coefficientsin
r1 and rg. Then 71,72, and w are in Ofu], and w is a greatest common divisor
of wy, w2

The Algebraic Derivative. Let O and Q be as above. If w € O°[u]
has positive degree, then it has a unique prime decomposition w =w; - . .wj.
The degree of each w; is positive. We say that w is (a pseudopolynomial)
without multiple factors it all the w, are distinct.

The (algebraic) derivative of a pseudopolynomial is defined as follows. If
w=>,_oau’, then D(w) :=%°_.v-a, .u¥~1. Thus

D(w1 +wa2) = D(wi)+ D(ws),
D(w1 _LUQ) = D(u)l) w2 4+ wq .D(wz)
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4.4 Theorem. An element w € O°u] is without multiple factors if and
only if a greatest common divisor of w and D(w) is a function h € O*.

PrROOF: If w has the irreducible w; as a multiple factor, then D(w) is also
divisible by w;. This is also true in Qfu]. So a greatest common divisor is
certainly not a function 2 € O*.

Assume now that w =[], w; has no multiple factor. Then

D(w) = ZW1"'D(u}i)"'u}14

If the degree of the greatest common divisor v of w and D(w) is positive, then
~ is a product of certain w, So at least one w, divides both w and D(w). Then
w; divides wy ...D(w;) ...w; and hence D(w;). This is not possible, because
D(w;) has lower degree. So the degree of the greatest common divisor is 0,
and therefore it is a function 2 € O*. u

Symmetric Polynomials.

Definition. A polynomial p € Z[u1, ...,us) is called symmetric if for
all i, j we have p(u1,. .., Uiy .. Ujy .o yUs) =P(UL, - oy Ujy oo ny Uiy oL, Ug)e
There are the elementary symmetric polynomials oy, .. . ,a, defined as follows:
o1(U1,. .., Us) = UL+ -+ U,
UQ(U1,...,US) = U1(U2+-..+Us)+u2(U3+...+Us)+"'+Us—1us,
Us(ul,.._,us) = Up---Ug-

The following result is proved, e.g., in the book [vdW66]

4.5 Theorem. [fp€ Zlui,...,us] is symmetric, then there is exactly one
polynomial Q(yi,. ..,¥s) € Zlyi, . .., Ys| such thatp =Q(o1,...,a,).

The Discriminant. Consider the special symmetric polynomial
py(ul,...,Uus) = H(ul — u;)?
i<j

(square of the Vandermonde determinant). Since it is symmetric, there is
a uniquely determined polynomial Qv (y1,...,y,) with integral coefficients
such that

py (U, ..., us) = Qv(o1(ur, ..., us),...,05(U1,. .., Us)).

4. Branched Coverings 127

Definition. Ifw = u® +h;(2)u*"! +- ..+ hy(2z) is a pseudopolynomial
in O%u], then A, = Qv (—hy, h2,. ..,(—1)%h,) is called the discriminant
of w. It is a holomorphic functionin G, and we denote its zero set by D,

It is well known from the theory of polynomials that
(_1)th(z) = Ui(w17 A ,W,),

where wy,. ..,w, are the zeros of the polynomial v — w(u,z). So A, (z) =0
it and only if there is a pair ¢ # j with w; =wj;.

Assume now that w is without multiple factors. Then there is a linear combi-
nation of w and D(w) that is a function 4 € O*. We restrict to a point z € G
with h(z) # 0. Then the greatest common divisor of w(u,z) and D(w)(u, z)
is 1. This means that w(u, z) has no multiple factors; i.e., the zeros of w(u, z)
are all distinct. So A, (z) # 0, and D, is nowhere dense.

Example

Let G ¢ C" be a domain, a,b holomorphic functions in G, and w(u,z) =
u? —a(z) .« +b(z). In this case

pv(uy, ug) = H(Uz‘ —u)? = (u1 —u2)? = (w1 +u2)® —4-uy - uz.
i<i

So Qv (y1,y2) = y3 —4-y2, and

Ay (z) = Qv (a(z),b(z)) = a(z)? — 4b(z).

If ze Gand A, (z) # 0, there are two different solutions of w(u,z) =0.

Hypersurfaces. We use the theory of pseudopolynomials to study ana-
lytic hypersurfaces. Such analytic sets are locally the zero set of one holomor-
phic function. Assume that f is a holomorphic function in a connected neigh-
borhood of the origin in C**1! that is not identically 0. Without loss of gener-
ality we may assume that A = N(f) contains the origin. Then a generic com-
plex line £ through O meets A in a neighborhood of O only at the origin. After
a linear coordinate transformation, £ = {(uz) : z =0} is the first coordinate
axis. By the Weierstrass preparation theorem f(o 0y = €(0,0) - w(0,0) in the ring
Hp 1, where e(g,0) is a unit in H, 1, and w(g,0) € Hn[u] a Weierstrass poly-
nomial. We can represent the germs locally by holomorphic functions. Thus
there is a domain G C C” containing 0, and adisk D = {u € C : |u| <7}
such that in U := D x G there are a holomorphic function e that does not
vanish in U and a pseudopolynomial w over G with f —¢.win U. We may
assume that A N (0D x G) = @. Therefore, the zero set of f in U is that of
w.
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We can decompose w into prime factors. Using the fact that any power of a
prime factor vanishes at the same points as the prime factor does, we may
assume that w is without multiple factors. Then the discriminant A, is not
identically zero in G. We set D, ={z€ G : A, (z) =0}.

4.6 Theorem (on branched coverings). Ifzy € G — D, there are a
neighorhood W =W (zo) C G — D, and holornorphic functions fi,...,fs in
W with fi(z) # f;(z) fori# j and z € W such that

wv,z)=(uv - fi(z))..(v - fs(2)) inCx W.

There are fewer than s points over any point zo € D, (see Figure II1.1).

Figure 111.1. A branched covering over G

A point z € G above which there are fewer than s points is called a branch
point. All points of the discriminant set D, are branch points. Over all other
points our set A is locally the union of disjoint graphs of holomorphic func-
tions, and is therefore regular.

PRrROOF: For zg € G — D, the polynomial w(u,20) has s distinct roots.
We write w(u,20) = (u —¢1) -+ (u — ¢), where the ¢; all are distinet. If
w(u,z)=u® +hy(z)u*~! + ...+ hs(2), then the germ

wao =" F (h)ao® ! + -+ (he)zo

is a polynomial over O,, = H,. By Hensel’s lemma it has a decomposition
W, =Wi g - Wsz With the following properties:
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1. wWyzo(u,2Z0) =u —c¢; fori =1, ...,s.
2. deg(w;z) = 1.

We have wj 5, =u —r;, with r;, € H. There are a connected neighborhood
W(zo) C G — D, and holomorphic functions fi, ...,fs in W such that the
power series r; converge to f;. Since the germs of w and (u — f1) ...(u — f5)
coincide at zg, it follows from the identity theorem that

wWlexw = (u = f1) .. .(u = fs),

and since W ¢ G—D, it also followsthat fs(z) # f;(z)fori# jandz € W.
| |

Examples

1. Let G =C and w = 22 — 25. Then the discriminant is given by A, (22) =
422, and D, = {0} C C. If 23 € @*, there is a neighborhood W ¢ C - D,
where /zz is well defined. There we have w = (21 — /Z2) . (21 + /Z2).
This gives a surface above C that is a connected unbranched 2-sheeted
covering over C—{0}. The point 0is a branch point. This is the (branched)
Riemann surface of v/z. The unbranched part was already discussed in
Section 11.8.

2. A completely different situation is obtained if we take w = 22 — 22 =
(21 —22) - (21 + 22). The discriminant is 422 in this case, and the discrim-
inant set D, is again the origin in C. The set A consists of two distinct
sheets, which intersect above 0, and both are projected biholomorphically
onto C. The set A — {0 /}.i.e., A without the branch point, is no longer
connected.

3. In higher dimensions the situation is even more complicated. Let us con-
sider the analytic set A = N(f), where f(z,...,2,) = 2+ +. .+ 28
with s; > 2 for4 = 1,...,n. This is a very simple holomorphic function.
The derivatives are f, =s; .z% 1 and their joint zero set consists only

K

of 0 € €™, So all other points of A are regular.

Every line £ through the origin lies completely in A, or f has a zero of
order s with s > min(s;,...,s,) on £ at the origin. Therefore, there is
no line that intersects A in O transversally. From this one can conclude
that O is in fact a singular point of A (see, for example, Exercise 8.2 in
Chapter I).

Now we look on f :C"™ — C as a fibration with general fiber
Ay ={zeC" 127" +.-- + 227 =t}

Then A = Ap has an isolated singularity, while all other sets A; are
regular everywhere. We call the family (A;)ec a deformation of A.
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The Unbranched Part. We assume that G C C" is a domain and
w(u,z) a pseudopolynomial over G of degree s. We set G' = G — D,

A={(u,2) € Cx G : w(u,z) =0},

and A’ = A|G’ the part of A over G'. Then A’ is an unbranched covering of
&'. Tt is an n-dimensional submanifold of C x G’, and we have the canonical
projection 7 : A — G.If (up, o) € A’ is a point, there is a small neighborhood
B = B(uo,zo) C A’ that is mapped by holomorphically and topologically
onto a ball around zo in G’. We also call B a ball. The holomorphic map
(w|g)~"': m(B) — C"*! is a local parametrization of A’. A complex function
f in B is called holomorphic if f o (x| p)~! is holomorphic. In particular, the
components of 7 itself are holomorphic functions on B.

For holomorphic functions in B we have the same properties as for holomor-
phic functions in a domain of C". For example, the identity theorem remains
valid, and we obtain the following results:

4.7 Proposition. Assume that A, is a connected component of A’ and that
M is an analytic subset of Ay. Then M = Ay, or M is nowhere dense in Ar.

4.8 Proposition. If f is a holomorphic function on A', and Ay a connected
component of A', then either f vanishes identically on Ay or its zero set is
nowhere dense in Aj.

4.9 Proposition. Let A1 again be a connected component of A’'. Assume
that M is a nowhere dense analytic set in A; and that f is a holomorphic
function in Ay — M that is bounded along M. Then [ has a unique holomor-
phic extension to Aj.

Decompositions. We consider the interaction between the decomposi-
tion of a pseudopolynomial into irreducible factors and the decomposition of
its zero set into “irreducible” components.

4.10 Proposition. Let G C C" be a domain and w(u,z) a pseudopolyno-
mial over G without multiple factors. Then w is irreducible if and only if the
intersection of its zero set A with C x (G — E) is connected for every nowhere
dense analytic subset E C G which contains the discriminant set D .

PROOF: Since locally over G/ = G — D,, the set A’ = A|G’ looks like a
domain in C", a nowhere dense analytic set does not disconnect A’, locally

b

and globally. Therefore, we may assume that E' = D,,.

If w is not irreducible, every factor w; defines an analytic set A; over G — D,,.
The intersection of different A; is empty. So A|(G — D.,) is not connected.
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If, on the other hand, A|G' has the connected components A;, ¢ = 1,...,s,
with s > 0, then for any point z € G—D,, thereisa ball B C G—D,, around z
such that A;|B splits into graphs of holomorphic functions f; : j=1,...,s;.
In each case we form the pseudopolynomial w; = (u — f1) -+ (u — f,,). The
zero set of this w; is exactly A;|B, and it determines w; and vice versa. So
over the intersection of two different balls the pseudopolynomials must be
the same, and thus we obtain global holomorphic functions w; in G — D,,. If
z € D, then there is a neighborhood W of z such that A;|(W — D,) C AW
is a bounded set. So the coefficients of w; are bounded over this neighborhood
and extend holomorphically to G. We also denote this extension by w;, and
for reasons of continuity it follows that w = wy - - - ws. n

If the w; are the irreducible factors of w, we call their zero sets A; the irre-
ducible components of A. The sets A} = A;|G’ are the connected components

of A|G".

4.11 Proposition. Assume that w*,w are pseudopolynomials without mul-
tiple factors over a domain G and that A* = {w* =0} C A = {w =0}. Then

*

w* is a factor of w.

Proor: Let D denote the union of the discriminants of w* and w. It is
a nowhere dense analytic set in G. Over G — D we decompose the two
unbranched coverings into connected components. There we have A* =
AU UA; and A = A, U-- U A, with s* < 5. This yields pseudopolyno-
mials over G — D that extend to pseudopolynomials wy,...,w, over G, with

w* =wi -+ wg and w = w; - -wg. This implies the result. n

The following result is proved analogously.

4.12 Proposition. Assume that w is free of multiple factors and that A =
{w = 0} is the disjoint union of two nonempty sets M', M" that are closed in
C x G. Then there are pseudopolynomials ', w" over G with M’ = {w' = 0},
M'"={w" =0}, and v - " = w.

Proor: The construction is first carried out outside D,. We set G’ =
G — D, and use the fact that every nonempty open subset of A’ = A|G’
must be a union of connected components of A’. If w = w;---w; is the
decomposition into irreducible factors, then we may assume that there is an
s* with 0 < s* < s such that for W = w1+ - we and W’ = wWer i1 -+ w5 We
have M'|G" = {(u,z) € C x G’ : W'(u,z) = 0} and M"|G’" = {(v,2) €
Cx G :w'(u,z) =0}

It is now essential that in a continuous family f(u,z) of holomorphic functions
of one variable u the zeros depend continuously on the family parameter z
(“continuity of roots”). We omit the proof here. If we apply this fact (and
the equations A = M’ UM". w = w’ - w"), we get that the sets M'|G’ and
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M"|G' are not empty (i.e., 0 < s* < 5) and that their closures in C x G are
M, respectively M". m

Projections. In the next section we will investigate zero sets of several
holomorphic functions. Here we begin with the simplest case, the common
zero set N of a pseudopolynomial w over G C C" and an additional holomor-
phic function f in a neighborhood of A = {(u,2) € Cx G : w(u,z) = 0}.
Our method involves the projection of NV to G.

4.13 Proposition. Assume that f = f(u,z) is a continuous function on A
that is holomorphic outside of C x D, and does not vanish tdentically in a
neighborhood of any point of A. Then the projection of N={f=w=0}to
G is an analytic set N' = {f = 0}, where f is a holomorphic function in G
that does not vanish identically.

Proor: Ifz e G — D,, we have a ball B C G — D, around it such that
over B our w has the form w(u,2z) = (u — fi(z)) - - (u — fs(2)). The function
f does not vanish identically on any graph u = f;. Consequently,

f(2) = f(fi(2),2)- - f([s(2),2)

does not vanish identically. In the usual way we obtain the holomorphic
function f in the entire set G — D,,. It is bounded along D,,. So it extends
to a holomorphic function in G. [

Now consider the following situation: Assume that G is a domain in C" and
that w is a pseudopolynomial over G without multiple factors. Let f be a
holomorphic function in a neighborhood of A = {w(u,z) = 0} C C x G that
does not vanish identically on any open subset of A and define

N :={(u,2) €Cx G : w(u,z) = f(u,2z) =0}
Denote by N’ the projection of N to G.

We want to give a definition for “unbranched points” of N. The difficulty is
that there may exist such unbranched points of N lying in the set of branch
points of w.

4.14 Proposition. For any point zo € N’ there is an arbitrarily small
linear coordinate change in z1, ..., zn such that thereafter the line parallel to
the z1-axis through zo intersects N' in zg as an 1solated point.

In such coordinates there is a neighborhood U(zo) C G, a domain G’ in
the space C"~1 of the variables z’ = (z2,...,2n), and a pseudopolynomial
W'(z1,2') over G such that {(z1,2') €C x G : W'(z1,2') =0} =N'NU.

PROOF: A “small” linear change of the coordinates 21, ..., 2, means here
that the transformation is very near to the identity. Since f does not vanish
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identically, after a small generic coordinate transformation the line parallel
to the zj-axis through zo intersects N’ in zo as an isolated point. And then
it is also clear that U, G’, and w’ with the desired properties exist. n

Let us now assume that we have chosen a point zg € N’ and suitable coordi-
nates as above, and that U, G’, and ' have also been chosen.

Definition. In the given situation, a point (u,z) € NN (C x U) is
called an unbranched point of N if z € N’ — C x D, and there is a
neighborhood V = V(z) C N’ — C x D, with a holomorphic function g
on V such that N N (C x V) is the graph {u = g(w) : w € V}. (Figure
II1.2 shows the situation.)

o examples of unbranched points AN
C x le

Figure III.2. Branched and unbranched points of NV

4.15 Theorem. In the given situation, in every neighborhood of an arbi-
trary point (u1,21) of NN (C x U) there are unbranched points of N.

PI?OOF: We may assume that z; € N/ — (C x D,). Then we take a small
neighborhood W = E x Uy of (u1,21) such that the following hold:

1. Uy CU — (C x D).
2. (u1,21) is the only point of A above z; in W.
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3. The set A N W is defined by a pseudopolynomial w* over U;.

Setting N{ C N’ N Ui to be the image set of WM N under the canonical
projection 7 : W — U, take U; so small that N = N' nU;.

We restrict w* to N{ and replace possible multiple factors by one factor at a
time. So we obtain a new pseudopolynomial w; without multiple factors over
N7 such that

NNW = {(u,z) € E x N} :wi(u,2z) =0}, E a suitable disk.

Arbitrarily near to (u1,21) we can find points (uz2,2z2) € N N W lying over

- D,,,. All of these points are unbranched points of NV, since we can find
neighborhoods Wy (uz,2z2) C W and Uz(z2) € Ui with the same properties as
W and U;. Now choose Us so small that it contains no point of D,, and that

wi [N’ NU, decomposes into linear factors. Then every sheet of AI(N ‘'nU2)
with the property that it contains points of N is a graph over N' N Us. L]

Exercises

1. Prove that every symmetric polynomial inuy,...,us can be written as a
polynomial in the power sums Sy =u¥ +. +u

2. Calculate the discriminant of a cubic polynomlal.

3. Let D :=D,(0) ¢ C and f be a holomorphic function in an open neigh-
borhood of D without zeros in D. ¥ f has in D the zeros ci,. ..,cs
(some of them may be equal), then

_1_. Cmf dC Z m

2mi Jop f

4, Let f : Dx PP — C be a holomorphic function in the variables
U, 21, ..y2n- Assume that f is u-regular of order s and that for every
z € P’ the function u + f(u,z) has exactly s zeros ui(z), ..., us(z)
(with multiplicity) in D. Show that the coefficients of the “pseudopoly-
nomial” w(u, z) :=[[;_, (v - u;(z)) are holomorphic.

5. Prove the ‘‘continuity of roots”: Let f(u,z) be u-regular at the origin,
Show that there is an r > 0 such that if g(z) is a function defined in a
neighborhood of O with |g(z)| < and f(g(z), z) = 0,then g is continuous
at 0.

6. A complex function f on an analytic set A in a domain G C C" is called
holomorphic if it is locally the restriction of a holomorphic function in
the ambient space.

(a) Let A :={(w,z) € C? : w? — 23} be the Neil parabola. There is
a bijective holomorphic parametrization of A given by w = t> and
z =1t2. Describe the holomorphic functions on A as functions of the
parameter f. Is there a meromorphic function on A that has a pole
at oo with main part ¢™ ?
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(b) Show that the analytic set A = {(w, z1,22) € C® : w? = z122} is
not regular at the origin, Consider the holomorphic map (¢1,t2) —
(t1t2,t2,13). It is a “two-to-one” map. Describe the local holomorphic
functions on A in ¢y, to.

7. Prove that there is a topological holomorphic map from @* onto A :=

{ (wz) € C? :w? =2122}.

8. Prove that there is no topological holomorphic map from @* onto the

“clliptic surface” A = { (wz) € C? 1 w? = (2% - 1)(2% - 4)}.

9. Define the pseudopolynomial w € O(C?)[u] by w(u, 21,22) =u® —u .z
and determine the discriminant set and the irreducible components of

A = {w= 0}. Let f on A be defined by f(u,z1,22) =22 .(uv — 1).

Consider N := {f = w =0} C C3 and determine the projection N’ C C2

and the set of unbranched points of N.

5. Irreducible Components

Embedded-Analytic Sets. We wish to study general analytic sets.
Since it is easier to work with pseudopolynomials than with arbitrary holo-
morphic functions, we introduce the notion of “embedded-analytic sets.”
These are subsets of the common zero set of finitely many pseudopolyno-
mials, and they are not a priori analytic by definition. But later on, it will
turn out that they are indeed analytic.

Assume that G € C"¢ = {7/ = (2441,...,2,)} is a domain and that
w;i(z;27),0 = 1,...,d, are pseudopolynomials over G without multiple fac-
tors. The zero sets of the single w; intersect transversally? in C* x G. We
denote by D C G the union of the d discriminant sets belonging to the w;.
We call it the union discriminant set. We put

A :={(~1,...,24,2") 1 wi(2;2) =0,fori =1,..,dand 2’ € G}.

Over any ball B C G — D the set A\|B consists of finitely many disjoint
holomorphic graphs. Every graph is contained in a connected component Z
of A|(G D). We call the closure of Z in A an irreducible embedded- analytic

component of A.

Definition. If A is defined as above, any union of finitely many ir-
reducible embedded-analytic components of A is called an embedded-
analytic set of dimension n — d.

* Two submanifolds M, N C C™ intersect transversally at a point z € M N N if

the entire space is spanned by vectors that are tangent to M or N at z. In our
case the common zero set of the pseudopolynomials w; contains enough vectors
to span C™. Therefore, we say that these zero sets intersect transversally.
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By definition any embedded-analytic set A can be decomposed into finitely
many irreducible components.

The surrounding set ADA is not uniquely determined. Sometimes we can
make A smaller by throwing away those irreducible factors of w; that do not
vanish identically on A. Then the w; are uniquely determined by A.

5.1 Proposition. Assume that A is an embedded-analytic set in A c CixG
and that f is a holomorphic function in a neighborhood of A that does not
vanish identically on any open subset of A. If N =z € A : f(z} =0},
then for any point zg € N there is an arbitrarily small linear change of the
coordinates z' such that the affine space parallel to the (21, ..,2441)- “axis”
through zo intersects N in an isolated point. If 21 € N is any point near
zo, then there are unbranched points of N arbitrarily near z,. At all of these
points N is a submanifold of dimension n —d — 1.

ProOOF: We proceed as in the proof for the last theorem of the previous
section. The procedure to find unbranched points will be denoted by (¥).

First we construct the projection f of f, which is holomorphic in G. For this
observe that if D is the union discriminant set of the polynomials ws, ... ,wd
and z’ € G — D, we always have the same number of points z1,...,2s in A
over z’. We set f(z’) = f(z1) ... f(zs) and obtain f, which is holomorphic on
G — D. Since it is bounded along D, we can extend it holomorphically to G.
Therefore, the projection set is N’ = {£(z’) =0}.

Assume now that zj € N'. Then, after an arbitrarily small linear coordinate
change in the variables z’, the line L parallel to the zg411-axis through zg
intersects N’ in an isolated point. Then by Weierstrass’s theorem we can
find a neighborhood U =U(z;) € G, a domain G’, and a pseudopolynomial
W' (zd+1,2”) over G’ without multiple factors such that U NN’ is equal to the
set {z =(24+1,27) € C x G : W' (2a4+1,2") =0}, with 2”7 = (2442, ..,2n)-

Since the space C? x L intersects N at zg in an isolated point, it remains to
prove the existence of unbranched points. We apply () to N N (C% x U) and
prove in the same way as before that for points z; € N N (C% x U) there are
unbranched points of N arbitrarily near to z;. Of course, at these points N
is a submanifold of dimension n —d — 1. =

For the following we use the same notation and hypotheses as above.

5.2 Theorem. Let N' C G be the projection of N. For every point 2y =
(Z0,2h) € N C C% x G, after a suitable linear change of the coordinates z'
there is a neighorhood U = U(zy) C G, a domain G’ in the space of the
variables z4y2,- .. ,2n, and a pseudopolynomial ' over G' without multiple
factors such that:

I. N nu= {w =0}.

okl
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2. N 0 (C% x U) is an embedded-analytic set of dimension n —d — 1.

PrROOF: We use the notation and results from the proof above. Thus the
first statement is clear. We set wyi, :=W. Restricting the w; to C¢ x (N'NU)
and projecting them down to C¢ x G’, we get pseudopolynomials w;(z;;z”)
over G’. Then N N ((Cd x U) is in the joint zero set of w1, ...,wq+1. Let
A be the union of those irreducible components of this set that contain the
unbranched points of N. Since N is the closure of unbranched points, it
follows that N N (C4*! x G) c A. By the mapping theorem that we prove
in the next paragraph, every irreducible component of A is in N. So we have

the desired equality. |

Images of Embedded—-Analytic Sets.Assume that G =C¢x G’ C
C™ is a domain and A C G an irreducible embedded-analytic set over G.

5.3 Mapping theorem. Let Gy =C% x Gy ¢ C™ ke a domain, A, C G
an embedded-analytic set over G, F a holomorphic mapping from a neigh-
borhood of A € G into Gy such that W{lf} C A, for some nonempty open
subset U C A. ThenF(A) C

PrROOF: We denote by D C G the union of the discriminant sets of the
wi(z;,2') that define the surrounding set A for A. It is sufficient to prove
that F (AN (C% x (G’ = D)))C A;. Since we can connect two points of
AN (C¢x (G’ - D) )by a chain of arbitrarily small balls, it is enough to give
the proof for such a ball. So we may replace A by a ball in C*~¢ and may
assume that F is defined in a neighborhood of B.

Let A; be an embedded-analytic set in

A = {B1(wr, W) = - = By, (wa,, W) = 0}
Then @; o F|yy = 0, and by the identity theorem &; oF|g = 0. So INgl] C M

For an arbitrary point v € G} we choose a small transformation of the
coordinates in C% such that 4; is also embedded in a set 21\}’ ={wy =...=
wy, =0}. The transformation can be made arbitrarily small, and we can do
it so that
A NAYN(CH x {v}) =4, N (C4 x {v}).

Then A; is given by the infinite set of holomorphic equations w; =0, w; =0,
v € G}. If F maps a nonempty open part of B into A;, then by the identity
theorem @; o F =w} o Wi = 0, and consequently B}l C A;. This completes
the proof. -
Remark. Assume that A is an analytic set in a domain G C C” and that
z, is a point of A. If zg is a regular point of dimension n — d, then there is a
neighborhood U = U(zo) C G such that 2 N U is an embedded-analytic sel.
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In fact, there is a neighborhood U with holomorphic functions fi, ..., f4 such
that N(f1,...,f4¢) = A NU and the rank of the Jacobian is d everywhere.
We may assume that

i=1,...,d
Then the transformation F(z1, ...,2n) = (f1(2), ..., fa(2), za41,. .., 2n) maps
a neighborhood of zg biholomorphically onto a neighborhood of the image
point. If the inverse is given by

z = F_I(W) = (gl(w)7 .- '7gd(w)7wd+la ce ’wn)v
then A is given by the equations

21 = ¢1(0,...,0,2z441,---,2n),

zg = gd(0,...,0,2441,.--,2n).

So A NU is an embedded-analytic set.

Local Decomposition. We use embedded-analytic sets to show that an
arbitrary intersection of analytic sets iS again an analytic set.

First we consider the following situation. Let G C C™ be a domain and zg € G
a point. Assume that at zp a set of local analytic functions f is given such
that

1. For every £ € Sthere is a connected open neighborhood U(zg) ¢ G
with £ € O(U) and f # 0.
2. f(Zo) =0.

We want to construct a “maximal” analytic set S* in a neighborhood
U*(zo) C G such that for each zero set IV of finitely many elements f € &
there is a neighborhood V =V (zg) ¢ G with S* NV ¢ N N V.Then S* is
uniquely determined near zp and can be considered as the common zero set of
the functions £ € < It may be nontrivial even if the domains of definition of
the functions f tend to the point zg. For example, if .% is the set of the func-
tions fn(z) :=27/(1—nz), defined on U, :={z € C" : Re(z1) <1/n}, then
S* is the analytic set {z; = 0} in an arbitrary neighborhood of O, whereas
the intersection of the U, does not contain any neighborhood of the origin.

We employ the results from the beginning of this section several times and
carry out an induction on the codimension of the embedded-analytic sets
obtained from the functions f € .%.
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(A) We begin with one arbitrarily chosen function f € .. The equation f =0
gives an analytic set® S of codimension 1. We decompose S into irreducible
components S; in a neighborhood U(zg) (given by pseudopolynomials in C x
G’), and we choose the neighborhood U so small that the S; stay irreducible
in the whole neighborhood.

(B) Next we try to obtain codimension 2. If every function f € . vanishes
identically near zg on S;, we leave S; unchanged (and have it as a codimension
1component for our §*). Otherwise, there is an f’ € .% that does not vanish
identically in any small neighborhood of zy on S;. We apply Theorem 5.2:
After an arbitarily small linear change of the coordinates z’ the set §;n {f'=
0} is a finite union of irreducible embedded-analytic sets S;; of codimension
two, which stay irreducible if we pass to some smaller neighborhood of zy. The

S;; are embedded in the zero set of two pseudopolynomials wij (21523, +++,3)
and wij (29; 23, - .+ y2n).

(C) Now codimension 3 follows. For this we need consider only the S .
Leave S;; unchanged if every f vanishes on S;; (and get codimension 2
components for §*). Otherwise, find an f” € % not vanishing identically
on S,;, and (after an arbitrarily small coordinate change of the variables
z” = (z3,...,z)) the set S;; N{f” = 0} is the union of a finite set of
irreducible embedded-analytic sets S; i, given in the zero set of three pseu-

dopolynomials wf\jk(z,\; 24y .- 32n), A=1,2,3.

(D) Continuing, it is possible to obtain components of codimension 1, 2,

., n — 1,and finally one reaches dimension 0. If there is a 1-dimensional
component S = S;, ; , such that not every £ € % vanishes on S, we
have to replace S by the one-point set {zo}. Then the procedure stops. Only
finitely many steps were necessary.

We obtained a finite system .% of local holomorphic functions f, £ f”, ...
and a finite system A of irreducible embedded-analytic sets S;, Sij, Sijky - -
and may assume that they all are defined in one neighborhood U(zg) C G,
that every S € A of dimension d is embedded in a set C"~¢ x G/, and that
the union discriminant sets Dg C G C C% belong to the embedding of S.
The necessary linear coordinate change in z° can be made at the beginning
of the procedure, i.e., once for all steps of the procedure.

If § € Ais an irreducible embedded-analytic set that has an open part in the
union of the other sets of A, then it also has an open part in an irreducible
S e A, 5" £ §. Tt follows by the mapping theorem that it is completely
contained in S’. Then we simply throw it away and denote the new system
again by A. After finitely many steps we have that the intersection of every

5 An exact definition of dimension and codimension of analytic sets will be given

later. Here we use embedded-analytic sets, for which the dimension has already
been defined. An analytic hypersurface is obviously embedded-analytic.
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S with the union of the rest of A is nowhere dense in S. Moreover, the points
of S over Ds are nowhere dense in S.

We denote by S* = [Jgea S the union of all remaining components. Then
S* is given by the finitely many holomorphic functions f € .#,. Therefore,
it is an analytic set. If . C % is an arbitrary finite subset, then in a small
neighborhood of zo every f € .% vanishes at every z € S*.50 S* C N ().
Obviously, S* is uniquely determined by this property.

Finally, we want to show that the decomposition into irreducible embedded-
analytic sets is unique. For that we use the notion of regularity for points of
embedded-analytic sets just as in the analytic case. Clearly, the intersection
of two different S, € A contains no regular point. So the points of every
S € A are regular if they are not in such an intersection and not over D 4.

We denote the set of regular points of S* by S* andset S — SNS* for SE A.

Then for S € A the sets S are the connected components of S*. Since the
set S* is uniquely determined in a neighborhood of zg, this is also true for

its connected components. And since the closure of S is .S, the irreducible
embedded-analytic components § are also uniquely determined near Zo.

5.4 Theorem. The intersection of (even infinitely many) analytic sets is
an analytic set and is locally afinite union of components that are irreducible
embedded-analytic sets. This decomposition is locally uniquely determined.

PROOF: Let {A, : 1 €1} be afamily of analytic sets in a domain G C C”,
and zo € A :=(),c;A, an arbitrary point. We consider the system & of all
local holomorphic functions f such that:

1. f is defined in an open neighborhood U of zg (depending on f).
2. f # 0 near zo.
3. There is an ¢ € I such that f vanishes near zo on A, .

As above, zg is contained in an analytic set S* that is the union of irreducible
embedded-analytic sets S and that is given by a finite subsystem %, C ..

If z is a point of A that is sufficiently near zg, then every f € % is defined at
z and vanishes on some A, and consequently at z. This shows that A C S* in
a neighborhood of zg. On the other hand, let z be a point in the intersection
of S* with a small neighborhood of zg. Any analytic set A, is given by finitely
many holomorphic functions f1 ..., + that belong to the system .. Then
by construction every f} vanishes on every embedded-analytic component §
of S*.in particular at z. Therefore, S* C A, for all «. Thus S* is contained
in the intersection A of the A,, and we have the equality A = S* near 2zo.
Since S* is an analytic set that has a unique decomposition into irreducible
embedded-analytic sets, this completes the proof. 8

g e v
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Analyticity. Now we are able to prove the following result, which we
announced at the beginning of the section:

5.5 Proposition. Every embedded-analytic set A in a domain C*x G C C*
is an analytic set.

PRrROOF: As in the last part of the proof of the mapping theorem, it follows
that the embedded-analytic set A is given as the joint zero set of infinitely
many holomorphic functions. Theorem 5.4 shows that A is an analytic set. m

Consequently, every analytic set has locally a unique decomposition into ir-
reducible analytic components.

The Zariski Topology.We prove that the sysiem of all analytic sets
has the properties of the system of closed sets of a topology.

5.6 Theorem. The system A of all analytic sets in a domain G ¢ C™ has
the following properties:

1. G and the empty set belong to A.

2. If Ar, ..., A € A, then also A =Jj_, A; € A.

3. IfI is an index set and {A, : 1 € I} a collection o analytic sets in G,
then A =(,c; A, is also an analytic set in G.

PROOF:
(1) G is defined by the zero function, and & by the constant function 1.

(2) Let z € A = A, U---U A;. Then in a neighborhood U(z) there are
holomorphic functions f;; :i =1,...,1 j = 1,..,d,, such that for all { we
have

UNA;i =N(fir,. .., fia)
It followsthat U N A =N(f1y]’1 "'flyjl g =1,. ..,di).

3) This is Theorem 5.4. s

So the analytic sets are the closed sets of a topology in G. We call this
topology the (analytic) Zariski topology of G. It plays an important rule in
complex algebraic geometry.

Global Decompositions. Assume that G C C™ is a domain and A C G

an analytic subset. We call A irreducible if the set of regular points A C A is
connected. It followsthat A has the same dimension d at all regular points.
This number d is called the dimension of A and is denoted by dim(A). Every
irreducible embedded-analytic set is also an irreducible analytic set.

5.7 Theorem. Every analytic set A has a unique decomposition into count-
ably many irreducible analytic subsets A,. The covering &/ = {A; i =
1,2,3,. ..} is locally finite.
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PrROOF: We decompose A into connected components. Let A’ be such a
component. It has dimension d in all of its points.

We consider a point zg € A that lies in A’. In a neighborhood U = U(zo) C
G we have a decomposgition of A into finitely many irreducible embedded-
analytic components Ay, ...,A,. By Af we denote the set of points of A;
that are not over the union discriminant set. Some d-dimensional Af meet
A’. Their union A* is contained in A” and dense in A’NU. Hence, the closure
of A* in U is equal to A’ N U. But A* is an analytic set.

From this it follows that A’ is an analytic set, that only finitely many A
intersect U, and that the union of all A’ is A (as it is locally). Since the
topology of G is countable, it follows that the set of the A’ is countable. ™

5.8 Corollary. If A is irreducible and A = A1 U Az, where A1,A2 are
arbitrary analytic sets, then A = Ay or A = As.

Sometimes this condition is used as the definition of irreducibility.

5.9 Proposition. Let A,B C G be irreducible analytic sets. If there is an
open set U C G such that AnU # @ and AnU ¢ BNU, then A C B.

Proor: This is an immediate consequence of the mapping theorem. n
Another corollary is the following:

5.10 Identity theorem (for analytic sets). Let A,B C G be irreducible
analytic sets. If there is a point zo € AN B and an open neighborhood U =
U(zo) ¢ G withAnU =BnU, then A = B.

5.11 Proposition. Let A, B C G be analytic subsets with A C B. If A is
irreducible, then A is contained in some irreducible component of B.

PROOF: Let B = |J ., Bx be the unique decomposition into irreducible
components. We can choose an open set U C G and a finite set {A1,...,\} C
A such that UN A # @ is irreducible and UNB = (UN By, )U---U(UNBy,).
ThenUNnA=UNAnB =(UnAnB,\ U...U(UnA n B,,). Thus there
is an index j such that UN A =UNAN"% 50 UNA CcUn B,,. It follows
that A is contained in B, . "

Now we can generalize the notion of the dimension to arbitrary analytic sets.

Definition. If A C G is an analytic set with irreducible components
A;, then dim(A4) :=sup; dim(4;) is called the (complez) dimension of A.
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In general, the dimension of an analytic set can be co. But if Gy CC Gisarel-
atively compact subdomain, then only finitely many irreducible components
intersect G;. So the dimension of A N G is finite.

An analytic set is called pure-dimensional of dimension d if all its irreducible
components have the same dimension d.

Exercises

1. Let A be an analytic set near the origin in C". Assume that every ir-
reducible component of A has dimension > 1. Show that there exists
a neighborhood U = U(0) such that AN U is the union of irreducible
one-dimensional analytic sets containing O.

2. Consider A :={(z1,22) € C? : 25 =z} +2?}. Show that A is irreducible,
but A has a nontrivial decomposition into irreducible components in a
small neighborhood of the origin.

3. Let A, A C C™ be analytic sets. Prove that A7 —As is analytic.

4. Let {A; : i€ N} be alocally finite family of irreducible analytic sets in

a domain G C C™. Suppose that A; ¢ A; for i # 7 and prove that the
A; are the irreducible components of their union.

6. Regular and Singular Points

Compact Analytic Sets. Our goal is to prove the following simple
proposition.

6.1 Proposition. IfG C C"™ is a domain and A C G an irreducible compact
analytic set, then A consists of a single point.

We first prove a lemma.

6.2 Lemma. Tff is a holomorphic function in a neighborhood of A, then
fla is constant.

ProoF: We assume that the dimension of A is n — d. Since A is compact,
there is a point z € A where |f]| takes its maximum. After a linear coordinate
change there is a neighborhood U = U(zg) € G and a domain G’ C rn—a
such that AN U is an embedded-analytic set over G°. Denote by D C G° the
union discriminant set. Over every z” € G’ — D our A NU has s points. The
point zg lies over some z; € G’ and we may assume that it is the only point
of ANU over zj.

It remains to construct the elementary symmetric functions associated with
flany over G — D. For this, if z,,...,z, are mapped onto z”, we define
fi(z") := 0i(f(21), ...,f(2s)). These functions are holomorphic on G — D
and bounded along D. So they extend to holomorphic functions in G¢. The
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absolute value of every extension takes on its maximum at zj. By the max-
imum principle each such is constant in G°. Since the values of f can be
reconstructed from the values of the f;, it follows that f is constant over G,

in particular in some open subset of A. Since A is connected, it follows that

f is constant on A and then by continuity also on A. "

PROOF of the proposition: All coordinate functions z; must be constant on
A. So A is a single point. "

A consequence is that every compact analytic subset A C G consists of only
finitely many points.

Embedding of Analytic Sets.Assume that A C G is an analytic set
in a domain G C C", that O € A, and that the plane P = {zg41 =~ =
2z, =0} intersects A in an isolated point.

6.3 Theorem. In a neighborhood U(0) the set A is an analytic subset o
an embedded-analytic set of dimension n —d that is defined over a domain G’
in the space o variables Z = (2441, ..,2n). If the set o (n—d)-dimensional
regular points is dense in A, then A is itself an embedded-analytic set.

Remark. No coordinate transformation is necessary for this statement!

ProOF: By definition, A is the zero set N(f1,...,fn) of finitely many
holomorphic functions in a neighborhood of 0. Since An P = {0} is isolated,
there is an 7 such that f; does not vanish identically in any neighborhood
of 0 on the z;-axis. Consequently, f; is z;-regular, and we can apply the
Weierstrass preparation theorem, which implies that A is locally contained

in the zero set of a pseudopolynomial w(z1; 22, ... ,%n)-
Now we proceed by induction on d. In the case d = 1there is nothing to prove.
If d > 1we consider the projection m :C* = C"* with z > 2z’ =(22,. .., 2n).
To f2,. .., fn there are associated as usual holomorphic functions f,,-..,f
of z’ such that

rT{w=fo=...=fy=0}) =A:={z : f2(2)=...=f (7)) =0)

in some neighborhood of 0.

The intersection of P’ = {2’ : 2441 = ... = z, =0} with A contains 0 as an
isolated point. So we have for A the same situation, but with one dimension
fewer. By the induction hypothesis it follows that there are pseudopolynomi-
als wa, ...,wq such that A locally is contained in the set {w2(22;2") = ... =
wq(zq; 27) = 0}. By exchanging 21 with z2, we obtain a pseudopolynomial
wi(z1;2”) such that A is contained in {w1 =wz = ...=wq = 0}.
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If the regular points of dimension 72 —d are dense in A, we can take the union
A* of those irreducible components of the embedded analytic set that contain
such a regular point. Then A * and A are identical. This completes the proof.
u

Remark. This result is also known as the ‘‘embeddingtheorem of Remmert
and Stein.”

Again we consider a domain G C C”, an analytic set A C G, and a domain
G' ¢ C* 4 suchthat 7(G) C G (wheren :z +— 2’ = (2441, --125)). Suppose
that there exists a domain G* C G such that for every z’ € G’ there exists a
neighborhood U = U(z') CC G’ with (C? x U)NnG* cc (C* x U)N G and
(C¢ x U)N A ¢ G*. Then the following holds.

6.4 Proposition. If the set o regular (n — d)-dimensional points of A is
dense in A, then A is an embedded-analytic set over G'.

PrOOEF: We take an arbitrary point zj € G’. It follows from the hypotheses
that the set (C? x {z{}) NA is compact and analytic. Therefore, it consists
of finitely many points. Each of these points has a neighborhood such that
the restriction of the set A to this neighborhood is an embedded-analytic set
over a neighborhood of z,. By multiplying the pseudopolynomials by the same
distinguished variable belonging to our various points we obtain d uniquely
determined pseudopolynomials over a neighborhood U’(zj) C G’ such that
A N(C? x U’) is just their joint zero set. But these pseudopolynomials glue

together to form global pseudopolynomials over G’. -

Regular Points of an Analytic Set. Assume again that G C C™ is
a domain, and A C G an analytic set.

6.5 Theorem. For any zg € A there is a fixed neighborhood U(zy) € G
with finitely many holomorphic functions fi,...,fn whose joint zero set is
ANU such thatfor all d at every regular point z € AnU of dimensionn —d
the rank of their Jacobian at 7. is equal to d.

It is remarkable that this statement is also true for a singular point zg of A.

PrOOE: After applying a linear coordinate transformation in C* we can
find a neighborhood U = U(z;) C G such that A NU is a finite union of
irreducible embedded-analytic components. To give these in the canonical
form a further coordinate transformation is not necessary. We denote by
A’ the union of all (72— d)-dimensional irreducible components of A N U
and choose pseudopolynomials ws, .. .,wg of minimal degree such that A’ is
contained in the common zero set of the w;.

Let D € A’ be the set of points that lie over the union discriminant set
D ,/. Tts dimension is equal to n —d — 1. Now we carry out the proof in
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several steps and construct sets Dy, Dgp. .., Qn_d+1 =@ with D;41 C D;
and dim(D;) = n—d—i. We begin with Dy :=D. The Jacobian of wy, . .. ,wy
has rank d in A’ — D; (implicit function theorem).

Next we decompose D1 into irreducible components Cy and choose, if possi-
ble, in each C' a point z), where A’ is regular. We can make U so small that
only finitely many C occur in U. Then we apply another linear transforma-
tion in C™ that is near the identity such that in a small neighborhood of any
z) the set A’ can be written as an (#— d)-dimensional holomorphic graph

{Z L2y = f,\’i(zdﬂ,. ..,Zn) for i = 1,. ,d}

Finally, we apply a linear transformation that is very near the identity to
the variables zy,. ..,z such that for every A and every point z in A’ above

(z3\+1, ...,2}) the first d coordinates of z are distinct.

Now we use Proposition 6.4. In the new coordinates (and in a slightly
smaller neighborhood, which we again denote by U) the set A‘ is again an
embedded-analylic set contained in the common zero set of pseudopolynomi-
als w1, . ..,wq. We choose w; with minimal degree. We can assume that the
components of Dy are still irreducible in U, and that the points z) are still
in U. In a neighborhood of z, we have a decomposition

@i(2i; 2aq1s- .. 2n) = (2 — foai(Zdgts- . 2n)) w3 (20, L5 2n),

with wy ;(zx) # 0. So the Jacobian determinant of &y, ...,wq with respect
to the variables 1’ ...,%4 does not vanish at any zx. We denote the zero
set of this Jacobian in Dy N U by Dy. It-has dimension n — d — 2, and
Wiy ... ,wd, W1,. .. ,wq have rank d on A* — D,

Now apply the same procedure to 52 and obtain an ( n— d — 3)-dimensional
133 and continue in this way until reaching D,_44+1 = @.

By putting all of the pseudopolynomials together, in a small neighborhood
U of zp we get holomorphic functions fi,...,fq, fa+1,-..,fn (with N =
(n—d+ 1).d) whose rank is d in every regular point of A’ N U. Since the
pseudopolynomials always were chosen with minimal degree, it follows that
A =N(f1,...,f~n) near zo.

Now set AT =AU — A’. Tt is the union of the remaining irreducible com-
ponents of ANU. We may assume that U is so small that A™ is the common
zero set of finitely many holomorphic functions g, . ..,9s in U. Multiplying
the f; by the g, yields finitely many holomorphic functions in U that de-
scribe the set A 1 U. No point of A’ N AT is a regular point of A. For every
7 € A — AT there is a g; that does not vanish there. So the rank of the
Jacobian of the f; .g; is equal to d at every nonsingular point of A* — A™.
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The same procedure can be used for every d and the corresponding A’, and
consequently, in finitely many steps we obtain a neighborhood of z; and
holomorphic functions in this neighborhood with the desired properties. m

The Singular Locus. From the preceding theorem we conclude the
following:

6.6 Theorem. The set Sing(A) of singular points o an analytic set A is
again an analytic set.

Proor: The intersection of two irreducible components of A belongs to
Sing(A). The union S of all these intersections is an analytic set.

Assume that zg is a point of an irreducible component A’ of A and dim(A4’) =
n — d. Then there is a neighborhood U = U(zp) ¢ G with holomorphic
functions fi,...,fnx vanishing exactly on A’ N U such that their Jacobian
has rank d in each of the regular points. Let S* be the analytic set of all
points of A’ N U where all d x d minors of the Jacobian vanish. Clearly, S* is
contained in Sing(A’) N U. On the other hand, at any point of Sing(A4’) N U
the Jacobian of fi,...,fx cannot have rank d. So Sing(A")NU = S§*, and
Sing(A’) is analytic in G.

The union of § and the sets Sing(A’) for all irreducible components A’ is the

set Sing(A). It is analytic, since the union is locally finite. -

The set Sing(A) is called the singular locus of A.

Extending Analytic Sets.Let G € C™ be a domain.

6.7 Lemma. Letzo =(2\",...,2{”) ¢ C™ be an arbitrary point and E =
{z 12 =2 fori = 1,..,d} an affine plane of codimension d containing
zo. If A C G is an irreducible analytic set of positive dimension that is not a
subset of E, then there is an open dense subset C C C% such that

felz1, oo y2n) =1 (5 - 20) + ot ea(za —z4)

does not vanish identically on A for every ¢ =(c1, ...,cq) € C. In particular,

forany hyperplane Hy C C" containing E there is a hyperplane H arbitrarily
close to Hy and also containing E such that dim(A;) < dim(A) — 1for every
irreducible component A, of ANH.

PrROOF: We define ¢ :C% — O(C™) by p(c) := f.. This is a C-linear map,
and V := {c € C? : fo|4 = 0} is a linear subspace. Suppose that V = C¢,
Then (2 — 2{”)|a = 0 for i = 1,...,d, and therefore A C E. This is a
contradiction, and consequently, V must be a proper subspace of C¢. For any
¢ in the open dense subset C :=C¢ -V, f. does not vanish identically on A.

Thus H. :={7 : fc(z) =0} is a hyperplane containing E. .
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Our main tool for extending analytic sets is the following.

6.8 Proposition. IfE ={z € C* : 2y = -+ = 2zqg =0} is an (n-d)-
dimensional plane and A an analytic set in G — E, whose irreducible compo-
nents all have dimensionn —d+1 with0 <1< d, then the closure A of A in
G is an analytic set in G.

Proor: The proposition is of a local nature. We may assume that A is
irreducible and 0 € ENG. It is enough to construct a continuation of A into
a neighborhood of O.

Let ¢ =(0,...,0,¢441,-..,¢) be an arbitrary point of £ N G. We consider
the following family of (d — 1)-dimensional planes through ¢ For

=1,...,n—d+1

A= {ay =1,...,d—1

Mp_q11.4-1(C)

we have the linear map La :C%! — C" 4+ and define

P(c,A):= ¢ +{(w',La(w")) : w' € C4 !}

So P(c, A) consists of vectors w = (w1, . .., Wyg—1, Wd—141, - .., Wn) with
d—1
Wd—14i = E a;; - Wj fori=1,...,]
1 d—1
Wd—1+44 = cd4l+i+§ Gij « W, fOI'Z:l'l‘]’.__,n_d—}—l,
=1

Then every P(c, A Jmeets E é;(actly inc=1(0,...,0,c441,. -.,cn). If O is the

zero matrix, then P(c) := P(c, O) is the plane C4~!x{(0,...,0,cay1,- . .,cn)}

In the next chapter we will introduce Grassmannian manifolds and a topology
on the set of linear subspaces (with fixed dimension) of a given vector space.
In our case it follows that a neighborhood of ¢ + Fo is given by the set of all
planes P = ¢+ P with P& (0x C*~4t!) — C”. This shows that every (d—1)-
dimensional plane through ¢ that is near P(ec, O)is of the form P(c, A ).

We choose real numbers 0 <71 <72 and r >0 so small that the ‘“shell”
S={z=(z,2") e C&'x Cr ¥ .r <[] <rzand |2"| <7}

is a relatively compact open subset of G. Only finitely many irreducible com-
ponents A, of A enter S. We can find a hyperplane H, containing E that
intersects the A, not at all or in codimension 1.Let A,, be the finitely many
irreducible components of /; N A, that enter §. We can find another hyper-
plane H> containing F that intersects all A,, at most in codimension 2. We
continue this procedure running through the irreducible components of the
A,, M H,. After finitely many steps we have n — d +/ hyperplanes such that
their intersection P is a plane P(c,A ) that meets A N .S in at most finitely

RN
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many points. By the above lemma we can choose this plane arbitrarily near
P() =P(C)

Now apply a linear coordinate transformation very near to the identity that
leaves E invariant and maps our plane P(c,A) onto Fy and replace the
transformed shell S by a new shell S’ (in the new coordinates) that is a little
bit smaller such that S’ is contained in the old (transformed) §. This can be
done so that 8S" NPy NA =2.

Earlier we proved that A is an embedded-analytic set in a neighborhood of
the points of the intersection A N Py NS over a domain G’ in the space of
variables zg-iq1,. - -2n. So there is a small closed ball B ¢ C*~%t! around
the origin such that (C*~! x B) 195’ N A remains empty, every irreducible
component of (C¥~! x BY N8’ N A enters Py 1 S’, and every plane through
a point of B and parallel to P, intersects A N S’ in at most finitely many
points.

Zd+1ly-..52n

Figure 111.3. Intersecting A with By and P,

Now, the set By = {z' € C?! . || < r,} x B is a neighborhood of
the origin in C™, and each of our parallel planes through points of B — E
meets A N By in a compact analytic set and therefore in at most finitely
many points (cf. Figure 111.3). At all of these points the set A is locally
an embedded-analytic set over B. By multiplying the pseudopolynomials by
the same distinguished variable that we obtained for the different intersection
points over the same base point in B— £, we have that An (C¢~!x (B—E)) is



150 III. Analytic Sets

an embedded-analytic set over B — E. The coefficients of the corresponding
pseudopolynomials over B — E are bounded along E. Hence, they can be

analytically extended to B. This means that AN (By — E) has a unique
analytic continuation to Bp. -

The proposition just proved is also true if A C G—FE is an analytic set, whose
irreducible components all have dimension greater than n — d, since we can
write A as a finite union of pure-dimensional analytic sets. As a consequence
we have the following theorem.

6.9 Theorem of Remmert-Stein. Assume that G C C" is a domain,
K C G an (n-d)-dimensional analytic subset, and A an analytic subset of
G - K all components of which have dimension >n —d. Then the closure A
of A in G is an analytic set in G.

Proor: 1If zg ¢ K is a regular point, then K can be transformed in a
neighborhood of z, to a plane E. So A is analytic in a neighborhood of zo
and therefore in all regular points of K. We can replace K by the set K1 of
singular points of K, which is analytic again and has lower dimension. By
the same argument we show that A is analytic at all regular points of K;.
Continuing in this way we prove that A is analytic in G. u

This theorem first was proved by R. Remmert and K. Stein; see [ReSt53].

The Local Dimension. We show how our results are linked with the
classical dimension theory of analytic sets.

Let G ¢ C™ be a domain, A C G an analytic set, and zp € A a point. There
is an open neighborhood U = U(z) C G such that U N A is a finite union
of irreducible analytic components Aj, ... ,Al . If we choose U small enough,
then the A, are uniquely determined.

Definition. In the given situation the uniquely determined number
dimg,, (A) = | max ldim(AA)
is called the (local) dimension of A at Zo.
The set A has dimension O at zp € A if and only if there is an open neigh-

borhood U =U(zp) C G such that UM A = {zg}.

6.10 Proposition. Let k :=dim,,(A) be positive. Then k is the smallest
number with the property that there are holomorphic functions 1 ..., fr in
a small neighborhood U of zg such that zg is isolated in ANN{f1,..., fx)

Proor: If dim,,{A) =k, then there must be at least one k-dimensional
irreducible component A’ of A at zp.
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If f is any holomorphic function near zg, then either f|a- = 0 (and therefore
An N(f) still k-dimensional) or A' M N(f) is (k — 1)-dimensional. So at least
k functions are required.

On the other hand, by Lemma 6.7 we can find a holomorphic function f;
near zg that does not vanish identically on any irreducible component A' of
dimension & at zg. It follows that A' N N(f1) has dimension &k — 1 for all
such components A". We can repeat this process, and after k steps we reach
dimension zero, so that zg is isolated in AN N(fy,. .., fk) -

Definition. If A has dimension k at zo, then any system {f1,. .., fy} of
holomorphic functions with ANN(f1, ..., fx) = {zo} is called aparameter
system for A in zg.

6.11 Ritt's lemma. Let B C A be closed analytic sets in a domain G C
C™. Then B is nowhere dense in A if and only if dim,(B) < dim,(A) for
everyz € B.

Proor: Let the criterion be fulfilled, and zg be an arbitrary point of B.
Then there exists an open neighborhood U of zy in G and a parameter system
{fi,...,fx} on U for B at zq. Since dim,, (A) > k, it is not possible that z is
isolated in ANN(fi, ..., fx). This means that (A—B)NN(fy,...,fi)"W # @
for every neighborhood W =W (z;). So B is nowhere dense in A.

On the other hand, let B be nowhere dense in A, and zy a point of B. In a
small neighborhood U of zy we have unique decompositions into irreducible
components:

BNU =BU...UB,, and A=A4,U--.UA4,.

Every component B; is contained in a component Aj;, and for any open
neighborhood W =W (zo) we have (4, — B;) 1 W # @, because otherwise,
there would exist points z € Wn B; where B is dense in A. So dim(B;) <
dim(A;;)) for all 7. It follows that dimg,(B) < dim,,(A). n

Let G € C™ be a domain, A C G an analytic set, and zg € A a point. If
dimg,(A) = k, then the number »n — k is called the codimension of A at zg.

6.12 Second Riemann extension theorem. Suppose that n > 2 and
that the analytic set A C G has everywhere at least codimension 2. Then any
holomorphic function f on G — A has a holomorphic extension to G.

PRrROOF: We may assume that A is irreducible of codimension d > 2. If zg
is a regular point of 4, then there is a neighborhood U of zg such that UN A
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is biholomorphically equivalent to an open subset of a linear subspace E of
codimension d. By the theorem on removable singularities (see Section I1.1)
f can be holomorphically extended to zo.

We repeat this procedure. Beginning with the set Sing(A), which has codi-
mension d + 1,after finitely many steps only a set of isolated points remains.
Since f can also be extended to these points, we obtain the desired result. m

Exercises

1. Let Ay, Ay C C™ be analytic sets. Show that dim(A; N Az) > dim(A;) +
dlm(Az) —n.

2. Assume that G ¢ C™ is a domain and f a nonconstant holomorphic
function on G. Prove that there is an at most countably infinite set
Z CCsuch that A, := {z € G : f(z) =c¢]Jis regular force C — Z.

3. Let G c €™ be a domain and A C G an analytic set. Prove that for any
k > 0 the closure of the set Ax = {z € A : dim,(A4) = k) is either
empty or is a pure k-dimensional analytic subset of G.

4. Let G ¢ C" be a domain and fi,...,f,m holomorphic functions on G.
Denote by N the common zero set N(f1,...,fm). Show that if the rank
of the Jacobian of fi,...,fn at some point zg € N is equal to r, then
there is a neigborhood U =U(zg) C G and a closed submanifold M ¢ U
of dimension less than or equal ton —r such that UN A CM.

5. Let A be an analytic set in a domain G C C™. For every point z € A
the set Ip,(A) = {(f)zy € Ou, : fla =0} is an ideal in O,,. Show that
there are a neighborhood U of zo and holomorphic functions f1, ..., fi
on U such that:

(@) ANU = N(f1,...,fr)-
(b) I, (A) is generated by the germs (f1)zgs .. -+ (fk)zo-
Show that the vector space

Too (A) = {w eC" Zwl,fzu(zo) = 0 for every f € I, (A)}

v=1
has dimension n—rkg, (f1, ..., fx). It is called the Zariski tangential space
of A at zg.

6. Let A be defined as in Exercise 5, and suppose that zg is a regular point
of A. Show that T,(A4) is the set of tangent vectors &(0) (see Section
1.7}, where o : T — C™ is differentiable, o(I} C A, and «(0) = zo.

7. Let A be an analytic set in a domain G C¢ C", and let zp € A be an
arbitrary point. The embedding dimension of A at zp is the smallest
integer e such that there is an open neighborhood U = U(zg) and a
closed submanifold M ¢ U of dimension e with ANU C M. It is denoted
by embdim,, (4). Prove that z — embdim,(A) is upper semicontinuous
on A, and that embdimg, (4) — dimc (7%, (A)).

4. Consider the analytic set A = {w =exp(1/2)} ¢ {(w,2) € C? . z #£ 0}.
Determine the closure of A in C2.

Chapter IV

Complex Manifolds

1. The Complex Structure

Complex Coordinates.Let X be a Hausdorff space, i.e., a topological
space satisfying the Hausdorff separation axiom. Sometimes such a space is
also called a separated space or a 22-space. Hausdorff spaces are the most
common in topology (for example, every metric space is a HausdorfT space),
but non-HausdorfTf spaces do arise, in particular in algebraic geometry. The
space C™ with the Zariski topology is not Hausdorff.

We think that a space X is too big if there exists a discrete subset with the
cardinality of the continuum. Therefore, we demand that the topology of X
have a countable base. In this case X is said to satisfy the second axiom
of countability. Obviously, C™ has a countable basis. A metric space has a
countable basis if and only if it contains a countable dense subset.

A Hausdorff space X is called locally compact if every point x € X has a
compact neighborhood. If X is compact, then it is also locally compact. If
X is locally compact, but not compact, then X can be made compact by
adjoining just one point (Alexandrov's one-point compactification). Every
Hausdorff space that is locally homeomorphic to an open subset of C™ is
locally compact. So, for example, every Riemann domain over C" is locally
compact.

Definition. An open covering ¥ ={V, : v € N } of a Hausdorff space
X is called a refinement of the covering % ={U, : te I} of X if there
isamap 7 : N — I (the refinement map ) with

V., C Uy forevery v € N.
The refinement map is not uniquely determined, but we can fix it once and
for all.

A covering ¥ = {V, :v € N} is called locally finite if each x € X has a
neighborhood U/ = U(z) such that U meets only finitely many V.

Definition. A Hausdorffspace X is called paracompact if every open
covering % of X has a locally finite open refinement W.

Every compact space is paracompact. Furthermore, every locally compact
space with countable basis is paracompact.
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For the moment we only assume that X is a Hausdorff space.

Definition. An n-dimensional complex coordinate system (U,p) in X
consists of an open set U C X and a topological map ¢ from U onto an
open set B ¢ C".

Ifp € X is a point, then every coordinate system (U, ) in X withp € U
is ealled a coordinate system at p. The entries z; in z = ¢(p) are called the
complex coordinates of p (with respect to (U, ¢)).

If f is a complex function in U, we can consider it as a function of the complex
coordinates 21, - ..,%n, DY

(21, .., 20) > Fo@ (21, ..., 2n)-

Two (n-dimensional) complex coordinate systems (U,») and (V,%) in X are
called (holomorphically) compatible if either U N V =@ or the map

potp L :yp(UNV) = pUNYV)

is biholomorphic (see Figure IV.1).

Figure I'V.1. Change of coordinates

The sets By, :=¢(U NV )and B, :=¢(U N V )are open subsets of C™. If z;
(respectively w;) are the complex coordinates with respect to ¥ (respectively
), then compatibility of the coordinate systems means that the functions
z = z;(w1,...,w,) and w; =w;(z1,...,2n) are holomorphic.
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A covering of X with pairwise compatible n-dimensional complex coordinate
systems is called an n-dimensional complex atlas on X . Two such atlases A,
and A are called equivalent if any two coordinate systems (U,p) € A; and
(V,y¢) € A are compatible. An equivalence class of (n-dimensional) complex
atlases on X is called an n-dimensional complex structure on X. It contains
a maximal atlas that is the union of all atlases in the equivalence class.

Definition.  An n-dimensional complex manifold is a Hausdorff space
X with countable basis, equipped with an n-dimensional complex struc-
ture.

Every complex manifold is locally compact and paracompact.
Examples

1. The complex n-space C™ is an n-dimensional complex manifold. The
complex structure is given by the coordinate system (C”,id).

2. If X is an arbitrary n-dimensional complex manifold, then any nonempty
open subset B C X is again an n-dimensional complex manifold. For
p € B there is a coordinate system (U,p) in X atp. Then (UN B, ¢luns)
is a coordinate system in B at p. All of these coordinate systems are
compatible.

3. Let G C C" be a domain and X C G a k-dimensional complex sub-
manifold. Of course, X is a Hausdorff space (in the relative topol-
ogy) with countable basis. For zg € X there are open neighborhoods
W = W(zp) € G and B = B(0) C C™ and a biholomorphic map
F : W — B such that

FWnNX)={(wy, - Wp) € B : Wgpy1 =+ = wy =0}

Let pr' : C* — CF be the projection (wy,. .., wy) = (w1,...,wg). We
define U :==WnNX and ¢ = pr oF : U — CF. Then (U,p) is a k-
dimensional complex coordinate system in X at zg.

If (V) is another coordinate system, with ¢ =pr' o E, then

<p01ﬁ_1(u)1,. .wg) =pr oFo F_l(wl,. < wg,0,...,0)

is holomorphic. So we get a complex structure on X .

4. Finally, let (G,r) be a Riemann domain (over C™).Then G is a connected
Hausdorff space, and for every p € G there is an open neighborhood
U = U(p) such that B :=n(U) is open and ¢ :=7|y : U — B is
topological. Then (U, ¢) is a complex coordinate system. If ¢y = 7|y is
another coordinate system, then for x € U N V we have o(z) =¢(z) =
w(z) =:z and

w09 (2) = p(z) — 2.
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Therefore, the coordinate systems are compatible. We get a complex
structure on G. One can prove that G has a countable basis (cf. [Gr53],
§2]). So every Riemann domain over C" is an n-dimensional complex
manifold.

Holomorphic Functions.Let X be an n-dimensional complex mani-
fold.

Definition. A complex function f on an open subset B C X is called
holomorphic if for each p € B there is a coordinate system (U,p) at p
such that f o™ ! : (U N B)— C is holomorphic.

If z1,...,2, are the complex coordinates with respect to ( U,p), then
(1, ..,m) = foo™ (21, 0 2n)

is a holomorphic function in the ordinary sense. If z, = z,{w1, ..., wn )}, where
wy, ...,w, are the complex coordinates with respect to a coordinate system
(V, ), then

fow_l(wl’

is also holomorphic. So the definition of holomorphy is independent of the
coordinate system. We denote the set of holomorphic functions on B by O(B).
It is a @-algebrawith unit element.

’w") :fos‘oél(zl(wh ---7wn)7' --~Zn(w17~ .->wn))

Example

Let G C C” be a domain and X C G a k-dimensional complex submanifold.
We consider a complex coordinate system (U,p) in X , where U is the inter-
section of X with an open set W C G and ¢ =pr' o F, with a biholomorphic
mapF : W B CC" suchthat F(U) = {wée B :wgs1 =...=w, =0}
If f is a holomorphic function on G, then

flx o M wy,. ..,wg) = foF~ Ywy,. .. ,wg,0,...,0)

is holomorphic. Therefore, f|y is a holomorphic function on the complex
manifold X .

1.1 Identity theorem. Let X be connected. If f,g are two holomorphic
functions on X that coincide in a nonempty open subset U C X, then f = g.

PROOF: Let W ={z € X : f(z) =g(z)}. Then W° # &, since U C W.

Assume that there exists a boundary point zo of W"”in X and let (U,¢) be a
coordinate system at zp with (zg) = 0. Then all derivatives of f o ¢ 1 and
go ! must coincide at O. It follows that the power series of these functions
around the origin are equal. But then f = g in a whole neighborhood of zg.
and this is a contradiction.
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If there were a point x € M :=X — W" that was not an interior point of M,
then x would be a boundary point of W". This shows that M must be open.
Since X is connected, M has to be empty. [

1.2 Maximum principle. Let X be connected, f € O(X), and zo € X a
point such that |f| has a local maximum at xo. Then f is constant.

Proor: The functions f and g := f(zo) are both holomorphic on X . If
(U, ¢) is a coordinate system at zo and B := p(U), then fo := fop ™! is
holomorphic on B, and | fo| has a local maximum at zo := (o). Thus there
is an open neighborhood B’ = B’(z() C B such that f, is constant on B’ and
f is constant on U’ := ¢ Y (B’). So fluv = g|v, and by the identity theorem
f =g;ie., fis constant. [

1.3 Corollary. If X is compact and connected, then every holomorphic
function on X is constant.

PRrOOF: The continuous function |f| takes its maximum at some point of
X . Now the corollary follows from the maximum principle. (]

1.4 Corollary. There is no compact complex submanifold of positive di-
mension in C™.

PrOOF:; Let X CC" be a compact connected submanifold. Then the stan-

dard coordinate functions z,|x must be constant, for v = 1,..,n. This
means that X is a single point. If X is not connected, it is a finite set of
points. [

Remark. Another proof is given in Section 111.6.

Riemann Surfaces. An (abstract) Riemann surface is by definition a
1-dimensional connected complex manifold.

Example

The complex plane C and every domain in C are Riemann surfaces. Recall
the Riemann surface of v/z,

X ={(w,2) e C?* : w? =z, z #£0}.

Since X is a Riemann domain over C, it is a 1-dimensional connected complex
manifold. From the projection 7 := pry|x : X — C we get complex coordinate
systems (U, p) with ¢ = 7| and sufficiently small U.
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The function f : X — C with f(w,z) := w is a global holomorphic function

Example

The Riemann sphere C = C U {0} is a compact connected Hausdorff space.
We have two coordinate systems (C, @) and (C — {0}, v) with ¢(z) =2 and
Y(2) =1/z. On @ =C N (C - {0}) we have ¢ oy~ '(2) = 1/z, and this is
holomorphic. So C is a compact Riemann surface. Every global holomorphic
function on C is constant, but there are nontrivial meromorphic functions,
for example f(z) =z (with one pole at o). Here a meromorphic function on
X is a function f that is holomorphic outside a discrete subset P C X and
satisfies

}il,lg,lf(x)l —oo foreverype P.

The points of P are called the poles of f

Holomorphic Mappings.Let F : X — Y be a continuous map be-
tween complex manifolds.

Definition. The map F defined above is called holomorphic if for any
p € X there is a coordinate system (U, ¢) in X at p and a coordinate
system (V,v) in Y at F(p) with F(U) C V such that

YoF op™! 1p(U) = ¥(V)

is a holomorphic map.

1.5 Proposition. The map F : X — Y is holomorphic if and only if for
any open subset V.C Y and any f € O(V) it follows that foF € O(F~1(U)).

The proof is an easy exercise.

The category of complex manifolds consists of a class of objects, the complex
manifolds, and a class of sets such that to any pair ( X,Y )of objects there is
assigned a set O(X, Y ) (which may be empty), the set of holomorphic maps
between X and Y. In a general category this set would be called the set of
morphisms from X to Y.

For (G.F) € O(Y,Z) x O(X, Y )we always have the composition Go F €
O(X, Z) such that the following axioms hold:

1. If Ho G and Go F are defined, then (Ho G)oF =H o (GoF).
2. For any manifold X we have the identity map idx € O(X, X) such that
idy oF =F and F oidx = F, if the compositions are defined.

1. The Complex Structure 159

Another example for a category is given by the topological spaces and contin-
uous mappings. If we replace in our definitions above the field C by R and the
word “holornorphic” by “differentiable”, we get the category of differentiable
manifolds and differentiable mappings. From every n-dimensional complex
manifold we obtain a 2n-dimensional differentiable manifold by “forgetting
the complex structure.”

A holomorphic function f : X — C is obviously a holomorphic mapping.
More generally, in the case of a Riemann surface a meromorphic function f
on X may be viewed as a holomorphic mapping f : X — C.

Definition. A biholomorphic map F' : X — Y is a topological map
such that F and F~! are holomorphic. If there exists a biholomorphic
map between X and Y, then the manifolds are called isomorphic or
biholomorphically equivalent, and we write X 2 Y.

Remark. I X is a complex manifold and (U, ¢) a complex coordinate
system with ¢(U) =B € C", then ¢ :U — B is a biholomorphic map.

Cartesian Products. Assume that X;,...,X, are complex manifolds
of dimension ny, ...,n. Then the set X =X; x ...x X,, carries a natural
topology generated by the sets U = U; x --- x Uy, U; C X; open for i =
1,...,m. One sees immediately that X is a Hausdorff space with countable
basis.

Given complex coordinate systems (U;, ¢;) in X;, for i = 1,...,m, one defines
a coordinate system (U, ¢) for X by

e@r,..,3)  =(p1(@1), .+ som(Ty)) € CH =CMHHmm,

It is clear that two such coordinate systems are compatible. So we obtain an
n-dimensional complex atlas and a complex structure on X . The projections
p; : X — X, are holomorphic maps for i =1,...,m.

A simple example is C* =C x ... x C.
n ti‘r'nes

The Cartesian product of two complex manifolds X, X, satisfies the follow-
ing universal property:

Given any complex manifold Y and any two holomorphic maps F : Y — X,
and G: Y — Xo, there exists exactly one holomorphic map H 'Y — X, x X,
withF =pyoH and G =pao H.

Although trivial in our case (we set H := (F,(G)), this property becomes
important in more general categories.



160 1V. Complex Manifolds

Analytic Subsets.Let X be an n-dimensional complex manifold.

Definition. A subset A C X is called analytic if for each point p € X
there are a (connected) open neighborhood U = U(p) and finitely many
holomorphic functions fi,. ..,fm on U such that

UnA={qeU s filg)=0fori=1,... m}.

We call A an analytic hypersurface if we can always take m = 1.

From the definition it follows that A is a closed subset of X. Locally, an
analytic set in X is the same as an analytic set in an open set B C C". So
most properties of analytic sets in C* can be transferred.

1.6 Proposition. If X is connected and A C X analytic, then either A =
X or A is nowhere dense and X — A is connected.

PrROOF: Assume that A #£ X .If A is somewhere dense in X , then A contains
interior points (because it is closed in X ). Since X is connected, the interior
of A has a boundary point p € X — A (same argument as in the proof of
the identity theorem). We take a connected neighborhood U = U(p) such
that ANU ={q e U : filg) = — fm(g) = 0}. Then U contains an
open subset V (consisting of interior points of A ) where fi,...,fm vanish
identically. By the identity theorem they vanish on the whole set U, and p
cannot be a boundary point of the interior of A. This is a contradiction, and
it follows that A is nowhere dense.

If X — A is not connected, it can be decomposed into two nonempty open
subsets Uy, Ua. The function f : X - A— Cwith f(z) = 0onU; and f(z) = 1
on Uz is holomorphic and bounded. By Riemann’s extension theorem (which
can be applied locally) there exists a holomorphic function f on X that
coincides with f outside A. Since fcan take only the values 0 and 1,it is
locally constant. But on the connected manifold X every locally constant
function is constant. This is a contradiction. =

Let f1,...,fm be holomorphic functions that are defined on an open subset
UcCX.Letp € U be a point and (V,¥) a complex coordinate system in X
atp. The mapping f = (f1,...,fm) :U — C™ is holomorphic, and we define

Coqp L 1=1,...,
Je(pi ) == (6_@‘17;0_)@@)) j :11’,...,7; )

This is something like a Jacobian matrix of f at p, but it depends on the
coordinate system . Since

1. The Complex Structure 161

Lol o h)o oy’
Mot Dy = Ahree 222t Ny
_ 5 a(fgjvs:‘ )Mp))a(wk Oai,o L ><w<p>>,
k=1 ?
we have

Je(p;00) = Je (05 9) - Jpoy—1 (¥(p))-
This shows that

thkp(f1,- .., fm) =1k Ty gy (039)
is independent of the chosen coordinate system.

Definition. An analytic set A C X 1is called regular (of codimension
d) at a point p € A if there are an open neighborhood U = U(p) C X
and holomorphic functions fi,. ..,fqy on U such that:
1.ANU={qeU : fi(g)=...= falq) = 0}.
2. rkp(fl, “ s ,fd) =d.
The number n — d is called the dimension of A atp.

If A is regular at every point, A is called a complex submanifold of X

1.7 Proposition. An analytic set A is regular of codimension d atp € A
if and only if there is a complex coordinate system (U,¢) in X at p with
e(U)y=BCC" and p(UNA)=w €B : Wp_gy1=...= w, =0}.

If A is a complex submanifold of X, then A itself is a complex manifold.
PrROOF: Let (U,¢) be an arbitrary coordinate system at p and W := ¢ (U).

Then A = PY(ANU) is an analytic subset of W that is regular of codimension
d at zg :=v¢(p), and there exists a biholomorphic map f from W onto an open

neighborhood B = B(0) C C" with f(zp) = 0 and f(4) = {w : wp_441 =
..—_w, =0} Wetake ¢ :=f o).

If A C X is a submanifold, then A inherits a natural complex structure from
X . This can be demonstrated in the same way as in the case X =C". n

Example

Let F : X — Y be a holomorphic map from an n-dimensional manifold into
an m-dimensional manifold. Then

Gr={(z,y)€X xY :y=F())

is called the graph of F.
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Let pg € X be a point and ¢o := F(po) € Y. We choose coordinate systems
(Usg)inX atpo and (V) in Y at qo, with F(U) C V.Then (U x V¢ x ¢) is
a coordinate system in X x Y at (po,qo) € Gr. Writing Y oF = (f1,...,fm)
we get

GrN (U x V)={(ex¥) N z,w) : fiop (&) —w; =0fori=1,...,m}.

So G is locally defined by the functions gi(p, q) := fi(p) —w; o (q), for i =
1,...,m. Since rk(pmqo)(gl y+--,gm) =m, we see that G'r is an n-dimensional
submanifold.

The diagonal Ax C X x X is a special case, which is given as the graph of
the identity:
Ax ={(z,7) e X xX :z=x"}.

Example

Let A = {(w,z1,22) € C* : w? = z122}. The projection p : (w, 21, 22)
(21, 22) realizes A as a branched covering over C? that is the zero set of
the pseudopolynomial w(w; 21, 2z2) =w? — 2122. Outside the discriminant set
D, ={(z1,22) : 2129 =0} it always has two regular leaves over C2. So A is
everywhere 2-dimensional and regular outside D,,. It is even regular outside
the origin, since Vw{w, 21, 22) vanishes only at (0,0,0). One can show that 0
is, in fact, a singular point; e.g., by using Exercise 8.2 in Chapter L.

The map ¢ : C2 — A with (t1,t2) :=(t1t2,t2,t2) is surjective. We call it a
uniformization. The Jacobian

ta  t
Jo(ti,t2) = \ 2t 0
0 2t

vanishes exactly at (0,0). The image point (0,0,0) = ¢(0,0) is then called a
nonuniformizable point.

Analogously to the situation in C™ one proves that the set Sing(A4) of singular
points of an analytic set A is a nowhere dense analytic subset. The set A is
called irreducible if A — Sing(A) is connected. To every analytic set A C X
there is a uniquely determined locally finite system of irreducible analytic
sets (Ax)aea such that A is the union of all these irreducible components Ax.

Differentiable Functions.Let X be an n-dimensional complex man-
ifold, B < X an open set. A function f : B + C is called differentiable
(respectively smooth), if for every complex coordinate system (Uyp) with
UNB # @ the function f o ¢~? is differentiable (respectively infinitely dif-
ferentiable) on (U N B ). We denote the R-algebra of real-valued smooth
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functions on B by &(B) and the C-algebra of complex-valued smooth g
tions by &(B, C).

1.8 Proposition. [n every complex manifold X there is a sequence of com-
pact subsets (K,) with K,, C (Kn41)° and (Jow, Kn =X .

Proor: Since X is locally compact with countable basis, we can find a
countable basis (B, ),en of the topology of X such that each B, is compact.
We take K; := B;. Ifn; is the minimal number such that K; € B1U---UB,,,
then k; > 2, and we take Ky = B; U ...U B, , and so on. -

We call (Kp)nen @ compact exhaustion of X

1.9 Proposition. Ler an open covering % ={U, : 1 €1} of X be given,
and two real numbers r,v" with 0 < v’ <r. Then there is a locally finite open
refinement ¥ ={V, : AN€ L)} of % such that the following hold:

1. For each A € L there exists a complex coordinate system (Vx, ) in X
with pA(Va) = B,(0).
2. The open sets @5 ' (B,(0)) also cover X .

Proor: We use a compact exhaustion (K,) and define M; := K; and
M, =K, - (K,_1)° for n > 2. Then (M,) is a covering of X by compact
sets.

We consider a fixed M = M,,. For each x € M there is an index 1 =«(z) € |
and an open neighborhood V =V (z) C U, N ((Kn41)” — Kn—2). We can make
V so small that there is a complex coordinate system ¢ : V — B,(0) with
¢(z) =0, and we define V' := ¢~1(B,,(0)). The set M is covered by finitely
many neighborhoods V,, 4,...,V; ., like our V'. Then

YV ={Vo: neN i=1,..,m,}

is the desired covering. 8

Definition. A (smooth) partition of unity on X is a family (¢,),es of
smooth real-valued functions such that:

1. ¢, =2 0 everywhere.

2. The system of the sets supp(e,) is locally finite.

3. ZLGI P = L.

1.10 Theorem. For any open cowering % ={U, : 1 € I} of X there is a
partition o unity (p,) with supp(y,) C U..
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PROOF: We have a locally finite refinement ¥ = {Vx : A € L} of % and

complex coordinates vy : V) — B,.(0) as in Proposition 1.9.If I, :C™ — R is
a smooth function with 0 < ¢(z) < 1, ¥(z) & 1 on B,(0) and ¥(z) = 0 on

C™ — B, (0),we define a smooth function ¥» on X by ¥ =¥ opx on Vx and
¥a(z) = 0 otherwise.

Let 7 : L — I be a refinement map (with Vy € Ur(y))- Then # = {W,

v € 1) with W, :=yc,-1(,y Va is an open refinement of % with W, C U..
In addition it is locally finite, because for - € X there is a neighborhood
P = P(z) such that PNV, # A only for A € Lo, Ly C L finite. But then
PNW,# & only for v =7(X), A € Ly.

We define 5, = Z/\ETAI(L) . The sum is finite at every point. So @, is

smooth and has its support in W,. Every € X lies in a set ¢ (B (0)),
where 1 is positive. Therefore, ¢ =3, @, is well defined and everywhere
positive. Now we can define the partition of unity by v, :=&./¢. u

1.11 Corollary. Let U C X be an open set and V CC U an open subset.
Then there exists a function [ € &(X) with fly =0 and fl(x—vy = 1.

PrOOF: The system {U, X —V} is an open covering of X . Let {1, @2} be a
partition of unity for this covering. Then supp(¢1) C U, supp(ps) C X -V,
and p1 + 92 = 1. We take f :=s. .

Tangent Vectors. Let X be an n-dimensional manifold and a € X an
arbitrary point.

Definition. A derivation on X at a is an R-linear map v : £(X) = R
such that

o[f - gl = v[f] - gla) + fa) - v[g] for f.g € EX)

If ¢ is constant, then v[c] = 0 for every derivation v.
1.12 Proposition. Iff € &(X) and flu =0 for some open neighborhood
U =U(a) C X,thenv[f] =0for every derivation v at a.

PRrROOF: We choose a function g € &(X) such that glv = 0 for some open
neighborhood V = V(a) CC U and g|(x-v) = 1.Then g . f = f, and from
the derivation rule it follows that

o[f] =vlg . fl =vlg] . f(a) +g(a) .0[f] =O.
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1.13Corollary. Iff.g are twofunctions of &(X) with fluy =gl|u for some
open neighborhood U =U(a) C X, then v[f] =v[g] for every derivation v at
the point a.

It follows from the corollary that we can restrict derivations to locally defined
functions and work with coordinates. If ¢ = (21,...,2,) : U — C" is a
coordinate system at ¢ and z, =z, + iy, then we define partial derivatives
at a by

(81)(1 [f1:= (f o™ eilp(a)) and (5‘31-)& (£ = (f o™y (p(a)),

for i = 1,...,n. The partial derivatives depend on the chosen coordinate
system, but once we have made our choice, every derivation v at @ has a
unique representation’

a d “ d
v Zai (0%),1 +;bi (a_ili)a’

i=1

with a; =v[z;] and b; =vly;] fori = 1,...,n.

In C™ the space of derivations is isomorphic in a natural way to the space of
tangent vectors. But what is a tangent vector on a complex manifold X ? We
start with a differentiable path o : I — X, where I C R is an interval with
0 € I, and a(0) = a. Let (U, ¢) be a coordinate system in X at a. Then we
can write ¢ o o = (v, . ...a,) and get the tangent vector

(#0a)'(0) = (21(0), ..., (0)).

Unfortunately, this vector depends on the coordinate system. But a tangent
vector at a should somehow be completely determined by a pair (p,c ), where
¢ is a coordinate system at @ and ¢ = (¢, ...,c,) € C™ an arbitrary vector.

In this sense the tangent vector to a is given by the pair (¢, (¢ o @)/(0)). If
we take another coordinate system ), then

(1/1 © Oé)/(()) = (90 © O‘),(O) .JdJow*l (‘P(a))t

Therefore, we call two pairs (¢, c) and (¢, c’) equivalent if the Jacobian of
Yot at ¢(a) transforms ¢ into ¢, i.e., if

¢ =c" . Jpoy-(P(a))'.

An equivalence class is called a tangent vector at a. The set T,(X) of all
tangent vectors at a is called the tangent space. 1t carries the structure of a

complex vector space, which can be defined on representatives:

! For the proof use the fact that every smooth function f on a domain G ¢
C™ has near zo € G a unique representation f(z) = >""_, g.(z)(z, — 20) +

Sy hu(2) (g — 92) With 9, (0) = fr, (20) and hu(20) = f,, (z0).
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(p,e1) +(p,c2) = (v, c1+ca),
A(p,c) = (p,A-c).

The Complex Structure on the Space of Derivations.If
f =g+ ih is a complex-valued smooth function on the open set B C X and
v a derivation at a € B, then we define

olf) i=vlg] + ivlh]

1.14 Proposition. For every c € C™ and every coordinate system ¢ at a
there is a unique derivation v at a such that

v[f] :=c.V(f oe ") (p(a))! for every holomorphic function f
The derivation v depends only on the equivalence class of (¢, ¢).

Proor: If a coordinate system ¢ = (21,...,2,) with 2z, =z, +iy, and a
vector ¢ = a + ib are given, then v can be defined by

. d $ 9
v = :1a,, (8mu>a+§bu (8%)& .

v

If f is a holomorphic function, then f,, =if;, and f,, = f. . Consequently,
lf] = (aw +i8,)(f o o™ e, (9(a)) =c- V(f o™ )(p(a))".
v=1

The uniqueness follows from the equations v[z,] + iv[y,] =v[z.] =c,.
If the pair (¢, ¢) is equivalent to (v, ¢’),then
¢ V(foyu™w@)t = € Jpop-1(¥(a)"-V(for p(a)’
= ¢ V(o Hpla)"
Therefore, v is determined by the equivalence class of (¢, c). [

The assignment (i, ¢ ) v induces a real vector space isomorphism between
the tangent space T, (X) and the space of derivations at a. It followsthat the
tangent space has complex dimension n. The pair (¢, e,) is mapped onto the
derivation (8/8z, )4, and (v, ie,) onto (0/0y,)q.

1.15 Proposition. A complex structure on the space o derivations at a is
given by

JW)fl =i.v[f] for every holomorphic function | .
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PRrROOF: Obviously, J is R-linear, and J o J(v) = —v. -

If v corresponds to the tangent vector given by (¢, ¢),then J(v) corresponds
to (i, ic). One must distinguish carefully between the real number J(v)[f]
and the complex number i .v[f] if f is a real-valued smooth function.

The differential operators (0/9z,), and (0/0%, ), are not real-valued deriva-
tions, and therefore they do not correspond to tangent vectors. But they are
nevertheless useful. If v is a derivation, then

n

doalfoe e, + D b(fop™,
v=1

u=I
I

doa (foe ™) +(fop™))

v(f]

v=1
D b (fop™ e = (fop ™))
v=1
= Dalfor M+ alfor Vs,
u=l1 v=1

ifc, :==a, +i, forv=1,...,n.

Therefore, every (real-valued) derivation can be written in the form

- 0 —~_ (0
=o)L (),

v=1

The Induced Mapping.Let F : X — Y be a holomorphic map be-
tween complex manifolds. Let z € X be an arbitrary point, y :=F(z) € Y.

Definition.  The rangential map F. = (F.); : To(X) — Ty(Y) is
defined by

(Fuv)lg) :=v[go F], for derivations v and functions g € &(Y).

The map F, is linear, acting on tangent vectors as follows:

Fy: (‘P: C) — ("/h C- onFocp—l ((p(m)) t):
if ¢ is a coordinate system at x, and % is a coordinate system at .

Now we have an assignment between the category of complex manifolds (with
a distinguished point) and the category of vector spaces. To any manifold
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X and any point ¢ € X there is associated the tangent space T,(X). To
any holomorphic map F : X — Y with F(a) = b there is associated the
homomorphism F, : To(X) — T,(Y). This assignment has the following
properties:

(idx). = idr,x),
(GoF), = G.oF, (fG:Y — Z is another holomorphic map).

Such an assignment is called a covariant functor. If it interchanged the order
of the maps, it would be called a contravariant functor.

Remark. For historical reasons the elements of the tangent space are called
contravariant vectors and the elements of its dual space covariant vectors.
But the tangent functor behaves covariantly on the tangent vectors and con-
travariantly on the covariant tangent vectors in T, (X ). One should keep this
in mind.

Immersions and Submersions. We are particularly interested in
the case where the (local) Jacobian of a holomorphic map F : X — Y has
maximal rank. If n = dim(X) and m = dim(Y’), then the rank is bounded
by min(n, m).Only two cases are possible:

Definition. The holomorphic map F is called an immersion at x if
tk(F,) =n < m, and F is called a submersion at z if tk(F.) =m > n.
In the first case (F.)s is injective; in the second case it is surjective.

We call F an immersion (respectively submersion) if it is an immersion (re-
spectively submersion) at every point = g X.

Remark. I F:X — Y is an injective immersion, then for every z € X
there are neighborhoods U(z) € X and V(F(z)) C Y such that F(U) is a
submanifold of V. In addition, if X is compact, then F(X) is a submanifold
of Y. We omit the proof here.

1.16 Theorem. Let zp € X be a point, yg :=F(xo). The following condi-
tions are equivalent:

1. F is a submersion at xg.

2. There are neighborhoods U = U(xzg) C X and V = V(yo) C Y with
F(U) Cc V, a manifold Z, and a holomorphic map G :U — Z such that
x — (F(z), G(x)) defines a biholomorphic map from U to an open subset
o VxZ.

3. There is an open neigborhood V.=V (Yo) C Y and a holomorphic map
s :V = X with s{yo) =29 and F o5 =idy. (Then s is called a local
section for F.)

R s
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PrOOF: (1) = (2) : We can restrict ourselves to a local situation and
assume that U = U(0) C C™ and V =V (0) C C™ are open neighborhoods,
and F :U — V a holomorphic map with #(0) =0 and rk(Jz(0)) = m.

We write Jp(0) = (J1(0), J4(0)), with Jx(0) € My, m(C) and JA(0) €
M, n—m(C). Choosing suitable coordinates we may assume that det J4,(0) #
0. We define a new holomorphic map F :U — V x C"=™ ¢ C» by

F(z',2") = (F(z,2"),2"), forz' e C™, 2" e C ™,
Then

/ 1"
Jz(0) = ( JFSO) éF(_O) ) , and therefore det Jz(0) # 0.

By the inverse function theorem there are neighborhoods U (0) ¢ U and
W (0) ¢ C" such that F : U — W is biholomorphic.

We observe that Z :=C™™ is a complex manifold, and G =pr, U — Z
with (z’,2") — z” is a holomorphic map such that (F,G) = F is biholomor-
phic near 0.

(2)= (3):I U, V,Z, and G are given such that F(U) C V and (F,G) :
U — W C V x Z is biholomorphic, then s : V — X can be defined by

s(y) = (F,G) ™' (y, G(x0))-

Then (F,G)(s(yo)) = (yo,G(z0)) = (F,G)(xo), and therefore s(yg) = xp.
Furthermore, (FG)o s(y) = (F.g) o (FG) '(y,G(x0)) = (y.G(z0)). Thus
Fos(y) =v.

(3) = (1):If s is a local section for F, with s(yo) =z, then F,o0s.(v) =v
for every v € Ty, (Y'). Thus it follows immediately that F, is surjective. =

1.17 Corollary. If F : X - Y is a submersion, then for eachy € Y the
fiber F~Y(y) is empty or an (n— m)-dimensional submanifold of X. In the
latter case T,.(F~(y)) = Ker((Fy),) for all x € F~1(y).

PROOF: We consider a point zg € X. Let M :=F~!(yp) be the fiber over
Yo := F(z9). Then we can find neighborhoods U = U(zy) C X,V = V(yg) C
Y, a manifold Z, and a holomorphic map G : U — Z such that (F,G) :U —
W ¢ Vx Z is biholomorphic. It followsthat MNU = (F,G) 1 ({yo} x Z)NU
is a manifold of dimension n — m.

Since F|M is constant, we have F,|T;,(M) = 0. This means that 7, (M) C
Ker(F.). Since these spaces have the same dimension, they must be equal. g
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Gluing. Assume that X is a set that is the union of a countable collection
(X,),en of subsets such that the following hold:

1. For every v € N there is a bijection ¢, : X, — M,, where M, is an
n-dimensional complex manifold.
2. PFor every pair (vu) € N x N the subset ¢, (X, NX,) is openin M,, and
the map
puoprpu(X,NX,) = @, (XN X

is biholomorphic.

3. For every pair of points ¢« € X, and b € X, with a # b there are
open neighborhoods U(wy(a)) C M, and V (i, (b)) C M, with ¢, (U)N
e, (V)=o0-

1.18 Proposition. Under the above conditions there is a unique complex
structure on X such that the X, are open in X and the ¢, : X, — M, are
biholomorphic.

PROOF: We give only a sketch of the proof and leave the details as an
exercise for the reader.

A subset U C X is called open if ¢, (UNX,) is open in M,, for every v. Then
the collection of open sets has the properties of a topology on X . In addition,
for every open set W C M, the set ¢, (W) is open in X . Consequently,
the maps ¢, : X, — M, are homeomorphisms. From the last hypothesis it
follows that the topology on X is Hausdorff, and since the collection of the
X, is countable, it has a countable basis.

If U C M, is open and ¢ : U — C™ a coordinate system, then ¢ :=v¢ o, :
¢ (U) — C" is a coordinate system for X . One checks easily that two

such coordinate systems are biholomorphically compatible. So we obtain a
complex structure on X . (]

One says that X is obtained by gluing the manifolds M,. Another way
to describe this process is the following. Let there be given a collection of
complex manifolds M., open subsets M,,, C M,, and biholomorphic maps
Vv My — M, (including ¢,, = ida, ). Consider pairs (z,v) with
x € M,. Then (z, v is called equivalent to (y,u) if

zeM,,, yeM, andz _¢,.(y)

The set X of equivalence classes is the result of the gluing process. Of course,
one has to add a condition that ensures the Hausdorff property.

Exercises

1.Let M be a compact connected complex manifold with dim(M) > 2 and
N C M a closed submanifold of codimension greater or equal to 2. Show
that every holomorphic function f : M — N — C is constant.
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2. Let X be a Riemann surface.
(a) If f is a meromorphic function on X, and P the set of poles, show

that (
oy .8 flx) forxeX - P,
f(z) '_{oo forxe P

defines a holomorphic map f: X »C.
(b) Prove that every holomorphic map f :X — C that is not identically
oo defines a meromorphic function on X .
3. Let f : X — Y be a nonconstant holomorphic map between Riemann
surfaces, g € X, and yo 1= f(zg) € Y. Prove that there is a £k > 1such
that there are complex coordinates ¢ : U(zg) — C and ¢ : V(yy) — C

with:
(a) p(z0) =0, ¢(yo) =0.
(b) fU)CV.

© o fopt(z)=2"

4. The general linear group GL,(C) is an open subset of the vector space
M, (C). Prove that the special linear group SL,(C) := {A € M,(C)
det(A) = 1} is a submanifold of GL,(C). Calculate the tangent space
Te(SL,.(C)) C Tg(GL,(C)) = M,(C), where E = E,, is the identity
matrix.

5. Let f :X — Y be a holomorphic map and Z C Y a closed submanifold.
Show that if

Im((f)z) + Ty (Z) =Tpy(Y)
for every x € f~1(Z), then f~1(Z) is a submanifold of X .
6. The holomorphic maps f :X — Z and g : Y — Z are called transversal
if for every (xy) € X x Y with f(z) = g(y) =:z the following holds:

Im((f+)z) +Im((g+)z) =T2(2).
Prove that the fiber product

XxzY :={(z,y) e X xY : f(z) = f(¥)}

is a complex submanifold of X x Y.
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Lie Groups and Transformation Groups. Assume that G is a
set that has the structure of a group and at the same time that of an n-
dimensional complex manifold. The inverse of ¢ € G will be denoted by ¢—1,
the identity element by e, and the composition of two elements g;, g, € G by

g192.

Definition. We call G a complex Lze group if the following two prop-
erties hold:
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1. The mapping g — g~ (from G to G) is holomorphic.
2. The mapping (g1, g2) — g1g2 (from G x G to G) is holomorphic.

There are many examples of complex Lie groups. The simplest one is the
space C™, where the composition is vector addition. Another example is the
group C* with respect to ordinary multiplication of complex numbers.

The most important example is the general linear group
GL,(C) := {A € M,(C) : det A #0}.

2
Its complex structure is obtained by considering it as an open subset of C™ .
The multiplication of matrices is bilinear, and the determinants appearing in
the calculation of the inverse of a matrix A are polynomials in the coefficients
of A.

Every matrix A € GL,(C) defines a linear and therefore holomorphic map
®p :C"—> C" by

Ba(z) =z A"
Then ®a8(z) =z (AB)! =z (B'A") = z .BY)- A" = 4 (Pg(z)). ¥ E,
is the identity matrix, then ®g, = id. Furthermore, if A is any matrix with
®5 =id, then A must be the identity matrix, since ®a(e;) —e; . A is the
transpose of the ith column of A.

We want to generalize this situation. Let X be a complex manifold and G a
complex Lie group.

Definition. We say that G acts analytically on X (or is a complex
Lie transformation group on X ) if there is a holomorphic mapping ® :
G x X — X with

®(9192,7) — ®(91,®(g2,x)) for 91,92 € G,z € X.
The holomorphic map x — ®(g,z) is denoted by ®,. We say that G acts
effectively or faithfully on X if ®; =idx implies that g =e.

Often we write gz instead of ®(g,z) or ®4(z). A point z € X with gz ==
is called a fixed point of g. We say that G acts freely if only the identity
element ¢ € G has fixed points in X . The general linear group GL,(C) acts
analytically and faithfully on C"  but not freely.

Let {w1,...,wa,} be any basis of C™ over R. Then

I':=2Zw; +...+ZW2n

is a subgroup of the (additive) group C™ generated by wi,. .., Wan. The group
I' acts on C™ by ®(w, z) :=z + w. This is an example of a free action.
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Fiber Bundles. Let X and F be complex manifolds and G a complex
Lie group acting analytically and faithfully on F.

Definition. A topological (respectively holomorphic)fiber bundle over
X with structure group G and typical fiber F is given by a topological
space (respectively a complex manifold) P and a continuous (respectively
holomorphic) map 7 : P — X, together with

1. an open covering% ={U, :1e€l}of X,

2. for any ¢ € I a topological (respectively biholomorphic) map

¢, :m N U)—= U x F

with pr, o, =,
3. for any pair of indices (1, k) € I x I a continuous (respectively holo-
morphic) map g, : U, N U, — G with

00 @5 (2, p) = (@, 9 (2)P)
forxelU,, =UnNU, andp € F.

The maps p, are called local trivializations and the maps g, a system of
transition functions.

Since G is acting faithfully, we get the following compatibility condition:
Gicrr =G on U,.x:=UnNnU;,NUs.

Then g,, = e and [ =gL—K,1

Now let a system of transition functions (g,,) be given such that the com-
patibility condition is satisfied. Using the gluing techniques mentioned at the
end of Section 1, a suitable bundle space P, a projection 7 : P — X, and
local trivializations can be constructed as follows:

Identifying (z,p) and (z, g.-(z)p), we can glue together the Cartesian prod-
ucts U, x F and U, x F over U,,. Due to the compatibility condition this
works in a unique way over U,,.,. The obvious projection from P to X is
continuous. Therefore, P is a fiber bundle over X with structure group G
and typical fiber F. If the transition functions g,, are holomorphic, then P
carries the structure of a complex manifold, and the projection and the local
trivializations are holomorphic. So P becomes an analytic fiber bundle in
that case.

Example

Let X be an n-dimensional complex manifold. There is an open covering
% = {U, :1e 1} together with complex coordinate systems

p, :U — B, cC"
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We take € as typical fiber and @* as structure group, acting on C by multi-
plication. Then we can define transition functions ¢.x : U,x -+ C* by

Gue (37) = det Jgpbocpgl (@K(m))_l'

The compatibility conditions are satisfied because of the chain rule and the
determinant product theorem. So by the gluing procedure described above
we get a holomorphic fiber bundle over X that is called the canonical bundle
and is denoted by Kx.

Equivalence.Let 7p : P —+ X and 71 : Q = X be two topological or
holomorphic fiber bundles over the same manifold X , with the same fiber F
and the same structure group G. We assume that there is an open covering
U ={U, : 1 €I} of X such that there are trivializations ¢, : 75 (U,) —
U x Fand+, 7y (U,) = U, x F.

Definition. A fiber bundle isomorphism between P and Q is a topo-
logical (respectively biholomorphic) map & : P — Q with mgo h =7p
such that for any ¢ € I there is a continuous (respectively holomorphic)
map h, :U, — G with

Y0 hog N (x,p) — (z,h(T)p).

The bundles are called equivalent in this case.

We give a description of bundle equivalence in the context of transition func-
tions. Let (g,,.) be the system of transition functions for P with respect to
%, and (g)).) the corresponding system for Q. Then we have

(z, ho(2)g,(2)p) = Wohow (z,g,.(z)p)
= Yoho 90;1(37’1))
— Yooy Nz, he(2)p)
= (@ g (x)hs(z)p).

Since G is acting faithfully, it follows that
(C) hyg.,. —g'he over U,.

Two systems of transition functions (g;.) and (gjs.) with respect to the
same covering are called topologically (respectively analytically) equivalent
or cohomologous if there are continuous (respectively holomorphic) maps
h, :U, — G satisfying condition (C).

Equivalent fiber bundles have equivalent systems of transition functions. On
the other hand, it is easy (o see that fiber bundles constructed from equiv-
alent systems of transition functions are themselves equivalent. Now we will
demonstrate that the latter remains valid in passing (o finer coverings.
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Let us assume that there are given systems of transition functions ¢’ = (g/,.)
and ¢g” = (g/\.) with respect to a covering % = {U, : « € I}. We call them
equivalent as well if there is a refinement ¥ = {V, : v € N} of  (with
refinement map 7 : N — I') and a collection of maps &, :V,, — G such that

h,,g;(,,)f(u) = g;—/(y)q—(u)hu on Vi CUryr(n), forall v,p € N.

To show that the systems are equivalent in the old sense, we define %L U, —
G by

T -1
h, = g:fr(u)hu (gz‘r(u)) on U, NV,.

In fact, 71, is well defined, since on U, N V,, we have

_ -1
he = 970y P (970 )
and therefore g/ . h, (ng(V))_l

\ o) = 9y P (ng(u))_l. Then on U, NV, we
ge

thZr: = g;;-(u\h#(-lgll,‘r(u)) 9w
or(whudr(uyn

= gikggT(u)hu(géf(p))_1

= b
The bundles are equivalent!

If two bundles are given with respect to two different coverings, then they are
called equivalent if they are equivalent with respect (0 a common refinement,
for example, the intersection of the coverings. Then everything works as above.

Complex Vector Bundles. et X be an n-dimensional complex
manifold.

Definition. A complex topological (respectively holomorphic) vector
bundle of rank r over X is a topological (respectively holomorphic) fiber
bundle V over X with C” as typical fiber and GL,.(C) as structure group.
In the case r = 1 we are speaking of a complex line bundle.

If 7 : V— X isthe bundle projection, then we denote by V, the fiber 7=1(z).
It has the structure of an r-dimensional complex vector space. A trivialization
®: Y (U) - U x C" is also called a vector bundle chart. For any x € U the
induced map ®, :V, — C" is a vector space isomorphism.

Definition. Let V be a holomorphic vector bundle over X. If U C X
is an open subset, then a continuous (differentiable, holomorphic) cross
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section (or simply section) in V over U is a continuous (differentiable,
holomorphic) map s :U — V with 7 o5 =idy.

We denote by I'(U, V) (or O(U, V) the vector space of holomorphic cross
sections in V over U, by & (U, V) the space of differentiable sections, and
by €°(U, V) the space of continuous sections.

The vector bundle V is called globally generated if the canonical map
I'(X,V) — V, with s — s(z) is surjective for every = € X .

Let (U, ®,).e1 be a collection of vector bundle charts ®, : 7 *(U,) — U, x C"
for V, and g, :U,x — GL.(C) the system of transition functions, given by

e, O(I);l(mvz) =($,Z'gm($)t) for (HT,Z) eU, xC".
If s is a holomorphic section in V, then
®, 05|y, (z) = (z,5.(x))

defines a system of holomorphic maps s, : U, — C", and we obtain the
compatibility condition

s5.(T) = 5r(T) -gm(m)t on Ui
On the other hand, any such system (s,) defines a global section s.
Example

We can define vector bundles by giving a system of transition functions. The
construction of the bundle space is carried out with the same gluing technique
as for general fiber bundles.

If X is an arbitrary n-dimensional complex manifold, and (U,, ¢,),cr a com-
plex atlas for X , then

gur(2) = J¢LD¢;1(90K(m)) € GL,(C)

defines a system of transition functions with respect to % = {U,, . € I}.
The corresponding vector bundle T(X) is called the tangent bundle of X .
It results from gluing (z,c) € U, x C™ with (z,¢c - g.x(2)*) € U, x C*, for
x € U,,. Therefore, we can identify the fiber (T(X)), with the tangent space
T.(X). The local trivializations ®, :T(X )|y, — U, x C™ are given as follows:

For a € U, the trivialization ®, maps a tangent vector v € T,(X), represented
by (4., c),onto the pair (a,c) € U, x C". If we denote the equivalence class
of (p,,c) at a by [p,, c|, we obtain

B, 0 571 (a,¢) = B,([on, €]) = @l Gun(@)]) — (@, € gun(a)?).

A holomorphic section in T(X) is also called a holomorphic vector field.
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Definition. Let V, W be two holomorphic vector bundles over X. A
vector bundle homomorphism between V and W is a fiber preserving
holomorphic map n : V — W such that for any x € X a linear map
Ny Ve = Wy is induced.

The map 7 is called a vector bundle isomorphism if 7 is bijective and
n,n~! both are vector bundle homomorphisms.

A holomorphic vector bundle V of rank = over X is called trivial if it is
isomorphic to the bundle X x C”. This is equivalent to the existence of a
frame {&1,...,&} of holomorphic sections &; € I'(X, V) such that for every
z € X the elements & (), ...,&-(z) € V, are linearly independent. In this
case V is globally generated. But there are also nontrivial bundles that are
globally generated.

2.1 Proposition. A holomorphic map n : V — W is a vector bun-
dle homomorphism if and only if for each pair of vector bundle charts
S Vg2 UxC and ¥ : Wy — U x C® there is a holomorphic map
h:U— M. (C) with

U lono®(z,z) =c2.z .h(z)h).
We omit the elementary proof.

Standard Constructions. Let X be an n-dimensional complex man-
ifold. We can think of a vector bundle over X as a parametrized family of
vector spaces. Therefore, numerous constructions from linear algebra carry
over to the theory of vector bundles.

1. The direct sum: If V, W are two vector bundles over X , then the direct
sum, or Whitney sum, V@& W =V x x W carries a vector bundle structure
that is defined as follows:

Let Z ={U, : . € I} be an open covering of X such that there are vector
bundle charts ®, :V|y, - U, x C" and ¥, :W|y, — U, x CF. Then a vector
bundle chart

(Vo Ww)

v, ={(v,w)€ Vx W : my(v) =mw(w) € U} = U, x C"**
can be defined by
(v,w) = (v (v);pry © .(v), pry o ¥y(w)) -

If g.., respectively A, are transition functions for V, respectively W, then

the matrices
| 9w 0
G, = ( 0 h. )
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are transition functions for V& W. The fiber of the Whitney sum is given by
(VeW), =V x W,.

2. The dual bundle: Let 7 : V — X be a holomorphic vector bundle of
rank r with trivializations ®, : 7=1(U,) — U, x C" and transition functions
g.«. Gluing the sets U, x C" together by means of the transition functions
g, = g} leads to the dual bundle n' : V' — X. Denote the associated
trivializations over U, by ¥,.

We will show that for every z € X there is a natural isomorphism
(V')z = (Va)' =Homg(Vz, C).
Given elements z € Uv, v € V,, and X € (V’)z, we define
Aw) = (2.)2(v) (T)=(N) €C,

using the vector space isomorphisms (®,)z : Vz — C™ and (¥,), : (V'), —
Cr.

For x € U, N U, we obtain

(®r)e(v) - (Tr)a(N)*
(®)z 0 (P Jpto (@.)z(v) - [(¥e)z © (\IJL);l ° (\IJL)I()‘)]t
= (2.):(v)- gm(m)t (T)z(A) - gun(@ )]t
= (®)2(v)  grel@) " - gun ()" (T0)2(N)
(@) (v ( Daz(A)-

This shows that the definition of A(v) is independent of the trivializations.

3. Tensor powers of a line bundle: Let 7 : F -+ X be a line bundle with
transition functions ¢, :U,. — @*.

Definition. For k € N, the tensor power F* is the line bundle defined
by the transition functions g¥..

We give an interpretation of F* using the dual bundle 7’ : F/ — X. As-
sume that there is an open subset U C X and a holomorphic function
f @) U) = C. Iy, : (F)lu, = U, x C are trivializations (with
Y, oY@, 2) = (7,2 gus(x)71)), then we have a power series expansion

four Nz, 2) =) av(z)z
v=0

on ¢, {F'|u,~nv) with holomorphic functions @.,, on UNU,. Over U, NU,NU
the following holds:
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0

Fouit(m,z) =f o7 (2,2 9u(2)7!) =D (@, (@) gun(z) ™) 2",

v=0

and therefore a,,, =a, . .g;,. This means that a, = (a”) 1S a cross section
in F* over U. So every holomorphic function f on F” that is homogeneous of
degree k on the fibers is a section in F*. In particular, F¥ can be identified
with the space Ly (F,,C) of k-linear functions f :F. x ...x F. = C.

For el,...,e; € F, the tensor product e1 ® ...Q e;, € (F¥), is defined by

(61 QR €k)()\1, . ,)\k) Z=)\1(€1) tee )\k(ek).

The tensor power e® - ..® e of an element ¢ € F, is denoted by e for short.
Finally, we define F~F := (F')k = (Fk)/.

4. The tensor product: Letp : V — X be a vector bundle of rank r with

transition functions G,, :U,, — GL,.(C), and 7 : F — X a line bundle with
transition functions g,,. (with respect to the covering % ={U, : te€l}).

Definition. The tensor product V ® F is the vector bundle of rank r
given by the transition functions

i Gux : Une = GL,(C).

Let ®, :V]y, = U, x C" and ¢, : F'|y, — U, x C be local trivializations. If
[ :F'lv = V|y is a holomorphic map which is linear on the fibers, then over
U, U we have

2, Of 01/;:1((572) =(:E,Z ’ nb(m)))
where 1, :U, MU — C" is a holomorphic map. Over U, nU, N U we calculate
(I)L © f © 111;1(3772) =(I)L © f © w:l(m,z : gm(m)_l) = (3377%(37) t gm(m)_l)v

and on the other hand,

d,0fo w;l(m,z) =P, 0B (z,n.(z) 2) = (m,nn(m) -Ge(z)t- z).

It follows that

n.(z) = Nk () .(gm(m) -Gm(m)) t-

Consequently, 7 = (7,) is a cross section in V ® F, and we obtain for every z
an isomorphism
(V® F), =2 Homg(F.,V,).

For v € V; and e € F} the tensor product v ® e € (V® F), is defined by

(v®e)(N) :=A(e) .v.
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Lifting of Bundles.Let f : X — Y be a holomorphic map between
complex manifolds and p : V — Y a vector bundle of rank 7.

Definition. The lifted bundle, or pullback, f*V over X is defined by
'V =X xy Vi={(z,v) €X x V : f(z) =p(v)}.

The bundle projection p: f*V — X is given by p(z,v) :=z.

The fiber of f*V overz € X is givenby (f*V)z = Vj(s)- Therefore, the lifted
bundle is trivial over the preimage sets f~'(y).

One has the following commutative diagram:

v v
P L op
x Ly

If = {U, : €1} is an open covering of Y such that V is trivial over U,,
then % := {ﬁL = f~YU,) : v€ I} is an open covering of X such that f*V
is trivial over U,.

It®, :V|y, = U, x C" is a trivialization for V,then we can define a trivial-
ization $, : f*Vis +U, x@ by

@L(m,v) = (117, (@L)f(z)(v))

If G, are transition functions for V with @, 0 &' (x, w) = (z,w .G (z)?),
then

3,08 Yz, w) = (2,(®, 0B ) p(y(W)) = (z, W G (f(2))?);
i.e., f*V is given by the transition functions G,, of.

KFeEel(U,V)isa holomorphic section over some open subset U CY,then
¢ can be lifted to a section £ € T'(U, f*V) given by

-~

§(z) = (z,£(f(2))).

Subbundles and Quotients.

Definition. Let 7 : V — X be a vector bundle of rank 7. A subset
W C Vs called a subbundle (of rank p) of V if there is a pdimensional
linear subspace E C C", and for any x € X an open neighborhood U =
U(z) and a trivialization @ : V|;; ~+ U xC" such that 8~ (UXE) = W|y.

One sees immediately that:
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1. W, = W NV, is always a pdimensional linear subspace of V.
2. W is a submanifold of V.
3. W is itself a vector bundle.

Example

Let V be a vector bundle of rank r on X and Y C X a submanifold. If we
denote the natural injection ¥ — X by j, then V|y :=j*Vis a vector bundle
of rank r on Y. We apply this to the tangent bundle T'(X).

Choose an open covering % = (U,),¢r such that there are complex coordinate

systems ¢, = (z{, ...,24) for X in U, with the following properties:
LUNY={z4, =...=24 =0.
2. 21, ...,z; are complex coordinates for Y

A trivialization ®, : j*T(X)|y,~y — (U, N Y )x C™ is given by

(¥, [, €]) = (y, ).

A tangent vector v belongs to T, (Y') C T, (X) if and only if there is a differ-
entiable path o :1 —+ Y with a(0) =z and (p,0®)'(0) = c. This is equivalent
to the statement that ¢ =(cy,. ..,¢4,0,...,0). Therefore

O7HU, x{ceC i gy = =cp =0} =T(Y)
and T(Y’) is a subbundle of j*7T'(X).

U,

IfG, :=(82,/02 | v,up=1,...,n) are the transition functions for T(X),
then
. ’,0)
GLR o Z/ = Gur (z ’
O 9:x(2',0)
where g, = ((0z;/8z;j)|y | v,u = 1,...,d), are the transition functions for
T(Y), and g;,.(2',0) = (824 /925)(z',0) | v,p =d+ 1,...,n).

Let V be a vector bundle of rank r. If W C V is a subbundle, then we define
the quotient bundle V/W by (V/W), := V,/W,. We have to show that
there are trivializations for V/W. If E C C" is a subspace such that there
are trivializations ® :V|y — U x C™ with W|y =® (U x E ), then we can
choose a subspace F € C" with E®F =C" and define @ : (V/W)|y - Ux F
by

®(v mod W ):=prp(®(v)),
where pr, :E® F — F is the canonical projection.

Using trivializations as above one obtains transition functions

YA
G”“(o hm)
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for V such that g, are transition functions for W, and A, are transition
functions for V/W.

Example

The quotient bundle Nx(Y) = j*T(X)/T(Y) is called the normal bundle of
YinX.

Exercises

1. Let G be a complex Lie group that acts analytically on a complex man-
ifold X . Then for every € X the stabilizer G, :={g € G : gx = x}
is a closed Lie subgroup of G, i.e., a subgroup and a (closed) complex
submanifold.

Prove that there is a unique complex structure on G/G, such that the
canonical projection 7 : G = G/G,, is a holomorphic submersion.

2. Let 7 : V = X be a complex vector bundle of rank r. For z € X let %,
be the set of bases of V.. Prove that the disjoint union of the %5,z € X,
carries the structure of a fiber bundle over X with structure group and
typical fiber equal to GL,(C).

3. Let ¢ : V— W be a vector bundle homomorphism over X . Suppose that
rk(pz) is independent of z € X . Prove that

Ker(p) 1= U Ker(pz) and Im(p) := U Im(pz)
zeX zeX

are subbundles of V,respectively W . Show that Im(p) = V/ Ker(p).

4. Let X = C be the Riemann sphere. Determine the transition functions
for T(X) for the canonical bundle Kx and for the normal bundle of {co}
inX.

5. Let f : X — Y be a holomorphic map. Prove that there is a uniquely
determined vector bundle homomorphism f' : T(X) — f*T(Y) with
(f/)z =(f*)z forz € X.

6. Let p : V — X be a holomorphic vector bundle. Show that there are
vector bundle homomorphisms A :p*V — T(V) and k : T(V) — p*T(X)
over V with Im(h) =Ker(k).

3. Cohomology

Cohomology Groups. Let X be an n-dimensional complex manifold
and 7 : V — X a complex vector bundle of rank 7. Assume that there is an
open covering % ={U, :1€l}of X.

We consider sections in V on the sets U, and on intersections U, :=U, NU,,
respectively U,on == U, NU,NU,.
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Definition. A 0-dimensional cochain with values in V (with respect
to %) is a function s that assigns to every ¢ € I a section s, € '(U,, V).
The set of O-dimensional cochains is denoted by C%(%,V ).

A 1-dimensional cochain (with values in V' )is a function £ that assigns to
every pair (1, k) € I'xI asection§,x € I'(U,., V) The set of 1-dimensional
cochains is denoted by €' (%, V).

Finally, a 2-dimensional cochain (with values in V )is a function A that
assigns to every triple (1, x,v) € I x I x I a section A,,, € I'(Uye, V),
and the set of all these 2-dimensional cochains is denoted by C*(%, V).

Assume that a 0-dimensional cochain s is given. One may ask whether the
sections s, € I'(U,, V) can be glued together to a global sections € I'(X, V).
For that it is necessary and sufficient that s, = s, on U,,. This can be
expressed in another way: If we assign to every O-cochain s a 1-cochain 65 by
(08).x =5k — 8., then s defines a global section if and only if 6s = 0.

Definition. The coboundary operators
5:C°%, V)= CHZ,V) and §:CY%,V)— C*%,V)
are defined by
(08)us = sw—s.  (onUk),
(08)ur = &rv — &+ &ux (on Uiew ).

A cochain s € CO(%,V )(respectively ¢ € CY(%,V)) is called a cocycle
if 65 = 0 (respectively 86 = 0). The sets of cocycles are denoted by
Z0% V) (respectively ZH (% ,V)).

Remarks

1. The sets of cochains and the sets of cocycles are all complex vector spaces.

2. We can identify Z°(%, V) with ['(X, V).

3. A l-cochain ¢ is a cocycle if and only if the following compatibility con-
dition holds:

§Ll/ = €LK +£nu on Ul,rcw

4, Sometimes we need cocycles of degree 2. We call an element A ¢
C*(%,V )a cocycle if the following compatibility condition holds:

Anu,u, = ALup, - Auc,u, + Amu on ULKV,u.

The set of all these cocycles is denoted by Z2(%, V).
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A coboundary is an element of the image of the coboundary operator. The sets
of coboundaries are again vector spaces, denoted by B (%, V) =5C%(%, V)
and B*(% ,V) :=6CY(%, V). For completeness we define BY(%, V) :=0.

3.1 Proposition. BY(%,V)C Z*(%,V) for i =0,1,2.
PROOF: The case i =0 is trivial. For £ =ds € BY (%, V) we have
fm + fmz = (Sn - SL) + (31/ - Sn) =8 — 8 = fw-

For A =én € B*(%,V) we have

ALV[.L - Au{p + Amu = (nuu - nLIJ, + 7]1,1/)
- (nnu — My + nm)
+ (nm/ = N + nm)

Moy — Nkp T+ v = Am/u-

Definition. HY%,V) = Z{(%,V)/B' (%, V) is called the ith coho-
mology group of V with respect to %.

We have H%(%,V) =T'(X, V), independently of the covering, and we have

_ {f € Cl(az/,v) : fu/ = §m + fm/}
H\(%,V) = {¢: Js € CU%,V) with £,x = 8k — s}

The canonical map from Z'(%,V) to HY (%, V) will be denoted by g.

We do not want to elaborate on H?, because we need it only in very special
cases.

Refinements. Let ¥ = {V, : n € N} be a refinement of %. Then
there is a refinement map 7 : N — I with V,, C Ur(n). It induces maps
70 :CU %, V) —» C%(¥,V)and r, :CH%,V)— CH¥,V) by

(TOS)n = (Sr(n))an and (Tlf)nm = (gr(n)‘r(m))anm .

Then §(mos) = 71(8s), and if 66 = 0, then also §(m€) = 0. Therefore, 7
induces a map 7* : HY(%,V) — H*(¥,V) by

7 (q(§)) = a(nf).

By the remarks above it is clear that 7 is well defined, and it is a vector
space homomorphism.
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3.2 Proposition. The map 7* is independent of the refinement map T and
is injective.

PrROOF: Let ¢ : N — I be another refinement map and £ a cocycle with
respect to % . We have to show that 71§ — 01€ is a coboundary:

(1€ — alf)nm = f7’(n)~r(m)|V»,ml - fa(n)a(m){Vnm
(Ern)on) T Eomyrim)) = Eom)rim) + Erim)o(m))
= f‘r(n)a(n) iVnm - gT(m)O(m)|Vnm .

We define € C°(¥, V) by
M = fr(n)a(n)|Vn'

Then 1€ — o1& =dn.

Now we consider a cocycle £ with respect to % such that 7§ = ds for some
s € CY¥,V). We want to see that £ itself is a coboundary.

On N nNU, we have
fr(n)‘r(m) = f‘r(n)b + fn(m) = fL‘r(m) - fur(n)'
Since &-(nyr(m)|[Vam = (8m — 8n)|V,.,, it follows that

fLT(m) —8m = fL-r(n) — Sn on Vo, NU,.

Therefore, we can define b, on U, by h,|y,nv, = ur(n) — Sn- This gives an
element h € C°(%,V), and on U, NV, we have

hL - hli = (gbr(n) - Sn) - (gnr(n) - Sn) = £LT(n) +£-r(n)rc = fui'

This means that £ =4&(—h). So 7* is injective. n

We have seen that if ¥ is a refinement of %, then H(%, V) can be identified
with a subspace of H'(#,V). Therefore, we form the union of the spaces
HY (% ,V) over all coverings % and denote this union by H*(X, V). We call
it the absolute, or Cech, cohomology group of X with values in V.

Acyclic Coverings. Let X be a complex manifold andp : V — X a
vector bundle over X .

The covering % is called acyclic, or a Leray covering for V, it HY(U,,V) =0
for every t € I.

If¥ = {V, :n €N }isanother covering, then U, N¥ ={U,NV, :nec N}
is a covering of U,, and since HYX(U, N¥,V) is a subspace of H(U,, V), we
have also HY{(U,n¥,V) = 0.
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3.3 Theorem. KF% ={U, : v €1} is acyclic and ¥V =1{V, : n€ N}
is a refinement, with refinement map v : N — I, thenv* : HY(%,V) —
HY(V,V) is bijective.

PROOF: We start with ann € Z1(#,V) and define n® e ZHU.NY,V) by

N i =Nmm|U.(Vam, for all n,m with U, NV,  # @.

Since % is acyclic, there is an element ¢ € C°(U,N¥, V) with ) =(ég(‘).

Then 1,m +g7(f) = gﬁ,i) on U, NV, and therefore gﬁfq) - gy(ff ) — g% _gn on
ULH m Vnm-

Now we define £ € ZH %, V) by &uklv,.v, = g _ gff), and he C°(¥, V)
by i, ==g7™ (onV, =V n Ur(n))-
Then on V,,, we have
(i€ = Mnm = Ermyr(m) = Mm
— gy _ germ) _ (g _ glr(n))
= %T(n)) _ g%’(M))
= hp —hn.

So n =71& + Sh, and 7* is surjective.

3.4 Corollary. If U is an acyclic covering of X, then
HYX,V)=H"(%,V).

PROOF: We have H (% ,V) ¢ HY(X,V). I a is an element of H'(X,V),
then there is a covering ¥ with a € HY(¥, V). Now we can find a common
refinement # of % and ¥. Then HY (¥, V) Cc H'(#,V) = H(%,V), and
therefore a € H' (%, V). "

Generalizations. The simplest case of a vector bundle over X is the
trivial line bundle Ox :=X x C. Therefore, the associated Cech cohomology
group H'(X, Ox) plays an important role for the function theory on X.

The trivial fiber bundle X x @* is not a vector bundle, but it is not so far from
that. If 7 : P — X is a general analytic fiber bundle, then a section in P over
an open set U C X is a holomorphic map s :U — P with 7 os =idy. If the
typical fiber of P is an abelian complex Lie group, then the set I'(U, P) of all
sections in P over U carries in a natural way the structure of an abelian group.
In the case of the bundle O% :=X x C* we have a canonical isomorphism

NU,0%) 20" (U) :={f € OU) : f(z) # 0 for every z € U}.
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This is a multiplicative abelian group.

If % ={U, : € 1}isan open covering of X, then we can form cochains
£ (1K) = & € OF(U,k). The set C1(%,0%) of all these cochains forms a
(multiplicative) abelian group, and we can define the subgroups Z'(%, O%)
and BY(%,0%) of cocycles and coboundaries: A cochain £ is called a cocycle
if €, = &k€kp on Uy, and £ is called a coboundary if there are functions
s, € O*(U,) such that &, =s,s; ' on U,.

Since all the groups are abelian, we have the quotient group
Hl(%v O;{) = Zl(%v O;()/Bl(%a O;(),

which we call the first cohomology group with values in O% (with respect to
the covering % ). Just as in the case of vector bundles we can pass to finer
coverings and finally form the Cech cohomology group H'(X, O%).

There is a nice interpretation for the elements of H1(X, O%). Every cocycle
with values in O% defines a line bundle over X, and this bundle is independent
of the covering. Two cocycles &’ and £” define equivalent line bundles if and
only if there are functions A, with ¢/, = /" h.h !t ie, if and only if the
cohomology classes of £’ and £ are equal. Therefore, H* (X,0%) is the set of
isomorphy classes of line bundles over X. This group is also called the Picard
group of X and is denoted by Pic(X). The group structure is induced by the
tensor product. The identity element corresponds to the trivial bundle Ox
and the inverse to the dual bundle.

In the same way as above we can form cohomology groups of any fiber bundle
P whose typical fiber is an abelian group. If the fiber of P is a nonabelian
group, things become a little bit more complicated. We can define cocycles
with values in P, but they do not form a group. In the set Z1(%, P) of
cocycles we can introduce an equivalence relation by

¢ ~¢g" 1= 3h, with &, =h; g/ hs.

The set H(% , P ) of all equivalence classes is called the cohomology set with
values in P (with respect to % ). Usually it is not a group, but there is a
distinguished element, represented by the cocycle £ with &, = 1 for all ¢, .
Passing to finer coverings and forming the cohomology set H(X, P ) causes
no problems. The most important nonabelian case is the cohomology set

HY(X, X x GL.(C)),

whose elements correspond to the isomorphy classes of vector bundles of
rank r over X . The distinguished element is represented by the trivial bundle
X xCr.

In the definition of the cohomology groups of fiber bundles P over X with
an abelian group as typical fiber we used only the fact that T'(U, P) is an
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abelian group for every open set U C X, and that we can restrict sections
over U to open subsets V C U. Having this in mind we can define another
sort of cohomology group.

Let K € C be a subgroup with respect to the addition, for example K =7Z, R,
or C. For an open set U C X we define the (abelian) group K (U) by

K{U) :={f :U = K : f is locally constant}.

Then K(U) is an abelian group. £V C U is an open subset and f an element
of K(U), then flv € K(V). If U is connected, then K(U) = K.

We can define groups of cochains CO(% ,K ), C1(32,K ), and C%(% ,K )just
as we did it for vector bundles. If £ is an element of C1(%,K ),then £, €
K(U,.). Cocycles, coboundaries, and cohomology groups are defined in the
usual way. For example, we have

{C G, S K(ULn) and Ciy =C, + cny}

1 —
H (uvK) - {c: EGLEK(UL) with ¢,x =e, _eb} .

The Singular Cohomology.We want to give a short overview of co-
homology groups of topological spaces and their relation to Cech cohomology
as defined above. For proofs see [Gre67].

For q € Ny the set

n
A, = {X = (:Eo, - ,wn) S Rq+l H sz =1,z; > 0}

i=0

is called the g-dimensional standard simplex. The O-dimensional simplex is a
point, A; a line segment, A, a triangle, and so on.

Let X be a topological space. We assume that all spaces here are connected
and locally connected. A singular g-simplex in X is a continuous map ¢ :
A, — X. If X is a complex manifold and if there is an open neighborhood
U = U(Ay) and a smooth map ¢ : U — X with &|a, = o, then o is
called a differentiable g-simplex. A singular g-chain in X is a (formal) linear
combination nyoy + ...+ ngoy of singular g-simplices with n; € Z. The set
S,(X) of all singular g-chains in X is the free abelian group generated by the
singular g-simplices.

For a g-simplex ¢ and i = 0,...,q the (q — 1)-simplex 0; : Ag_1 — X is
defined by

0'7;($0,. ..,$q_1) :=(7($0,- . .,xi—1,07$z‘7~ . ->xq—1)-

It is called the ith face of o.
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The (g—1)-chain 9o := ) 7_(—1)%o; is called the boundary of o. The bound-

ary operator @ induces a homomorphism
0:54(X) = 9-1(X),
and it follows easily that 309 =0.

Definition.  The group Hy(X) = {c€ S,(X) : dc =0}/85,1(X) is
called the qth singular homology group of X .

In general, Hyo(X) is isomorphic to the free abelian group generated by the
connected components of X . Since we assume all spaces to be connected, we
have Hyo(X) = Z. If X is an n-dimensional complex manifold, then H,(X) =0
for q > 2n.

Now for ¢ > 0 we define the group of singular g-cochains to be
SUX) :=Homgz(5,(X),Z).
Then the coboundary operator § : S%(X) — ST1(X) is defined by
dfle] == flOc], for f € SUX) and ¢ € S 1(X).

Obviously, we have 60 6 = 0. We can define cocycles (elements f of S¢(X)
with §f = 0) and coboundaries (elements of the form dg with g € S771(X)).

Definition.  The group HY(X) :={f € S9(X) :6f =0}/6S71(X)
is called the gth singular cohomology group of X.

From above it is clear that H°(X) = Z.

A topological space X is called contractible if there is a point g € X and a
continuous map F : [0,1] xX — X with F(0,z) =z and F(1,z) = z¢. In that
case H1(X) = {0}. The space X is called locally contractible if every point
of X has arbitrarily small contractible neighborhoods. Among the connected
topological spaces there is a big class of spaces (including the so-called CW-
complexes) that are locally contractible and have the following properties:

1. HY(X)= HY(X,Z) forqg =0,1,2,. ...
2. Every open covering of X has a refinement 2 = {U, : . € I} that is
acyclic in the sense that H'(U,,Z) =0 for every ¢ € I.

We call such spaces good topological spaces. For example, every (connected)
complex manifold is a good topological space, and also every irreducible an-
alytic set.

Finitely generated abelian groups are classified as follows:
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If G is a finitely generated abelian group, then there are uniquely deter-
mined numbers 1 € Ng and n,...,ns € N with n; > 2 and n;|niy1 for
i=1,...,8 — 1 such that

G2Z" D (Z/mZ)® - & (Z/nZ).
The number r is called the rank of G, and Z" the free part of G. The sum
of the Z/n;Z is called the torsion part of G.
In many cases cohomology can be computed from homology:

3.5 Theorem. If X is a compact good topological space (for example, a
compact connected complex manifold), then H,(X) is finitely generated for
every q, and for ¢ > 1 there is an isomorphism

HI(X) = (free part of Hy(X)) @ (torsion part of Hy_1(X)).

The rank of H!(X) is called the first Betti number of X, and is denoted by
b1 (X).

Now we give an application of Cech cohomology methods to singular coho-
mology. Let X and Y be good topological spaces.

3.6 Theorem (Kiinneth formula).

HY (X xY,Z) =2 HY(X,Z)® H\(Y,Z).

PROOF: We choose open coverings % = {U, : € I} of X and ¥ = {V;, :
n € N} of Y such that all the U,, V,, and all their pairwise intersections are
connected. We write W,,, := U, x V,, and Wy o := Win " Wi = U X Vi
A cocycle v € ZY (% x ¥, Z) is given by constant maps ¥un,km : Win,km — Z.
We identify any cocycle £ € Z1(%,Z) with a cocycle £eZYU x ¥V,Z) by
Ennm = Eux, and also any n € ZY(¥,Z) with an 7 € ZY(% x ¥,Z). This
induces natural injections

g1 HY (%,Z) - HY (% x ¥,Z) and jy: H'(¥,Z) - H (% x ¥V, L)
with Im(j1) N Im(jz) = {0}, and therefore an injective map
j:HY(%,Z) x H'(¥,Z) - H (% x V, L)

by j(a,b) := ji(a) + j2(b).

Given a cocycle ¢ € ZY (% x ¥, Z), for any ¢ € I we define ¢, € Z' (¥, Z) by
()nm = Yun,um- The cohomology class of ¢, in H'Y(¥,Z) is independent of
the index ¢. We see this as follows.
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(a) If U, # @, then by the cocycle property we have

'l/)Ln,Lm - wnn,nm = ’l/)m,nn + wnn,nm + wnm,Lm - 'l/)rm,nm

= wm.nn - 'l/)Lm,nm-

Setting (¢uw)n = Yin xn we get a O-cochain ¢, € C°(¥,Z) with d¢p,, =
¥ — 1,. So the cohomology classes of ¥, and 1), are equal in this case.

(b) If U, = @, one can find a chain of sets Uy,,...,Us, with Uy, # @,
Usxixng: # 9, and Uy # @ (since X is connected), and from (a) it
again follows that the cohomology classes of ¢, and 1, are equal.

Let 1o be a representative of the common cohomology class of the 1),. The
assignment v — 1) induces a map p: HY(% x ¥,Z) — HY(¥,Z). We will
prove that for every class ¢ € H(% x ¥,Z) there is a class a € HY(%,Z)
with ji(a) = ¢ — ja(p(c)), and consequently j(a,p(c)) = c.

For each ¢ there is an 7, € C%(¥,Z) with vy = ¢, — 8¢ (n,), and we define
ne CO(% X 41/7Z) by Nn = (nL)n'

Then ~ 1= — 3o — 6n € ZY(% x ¥,Z) and
Y =%, — (¥, — by (n.)) — 0% (n.) =0 for every ¢.
Now we construct a o € Z*(%,Z) with g = :
For n € N define ¢, € Z'(%,Z) by
(0n) ik = Ve -

Since Yun,um = 0 for all n, m, and ¢, in the case V,,,,, # & we have

Yem,em = Yenyem + Yim,em + Yem,en = Yin,kn,

and therefore g,, = on. If V,,,, = &, we can argue in the same way as above
in (b}, because Y is connected.

So we have a ¢ € Z}(%,7Z) with g, = ¢ for every n and
O = Yenen = Yenwn T Ven,em = Yen,km (fOI" arbitrary n, m)

Therefore, g = v and ¢y = o+ @\0 + 6n. This shows that j is surjective. [

Exercises

1. Let % = {Uy,Uz2,Us} be the covering of X := {z € C : 1 < |z| < 2}
given by Uy := {z+ iy : y <z}, Uz :== {z+ iy : y < —z}, and
Us = {z +iy : y > 0}. Calculate H'(%,Z).

2. Prove that dimg H'(C? — {0}, 0) = oo, where O denotes the trivial line
bundle over C2. Hint: Use Laurent series.

]
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3. Show that H'(C,0) = 0. . ’

4. Show that = {U; : i=1,...,n} with U; := {z : % #£0} isan acyclic
covering of C™* — {0} for O.

5. Let X be an n-dimensional complex manifold such that H,(X) = Z for
g even, 0 < g < 2n, and H,(X) = 0 otherwise. Calculate the singular

cohomology of X.

4. Meromorphic Functions
and Divisors

The Ring of Germs. Let X be an n-dimensional complex manifold
and z € X a point. Two holomorphic functions f, ¢ defined near = are called
equivalent at z if there exists a neighborhood U = U(zx) with flo = glu- The
equivalence class of f at z is called the germ of f at z. We denote the germ
by f. and the set of all germs by O.

Having fixed a complex coordinate system ¢ : U—-sBC (C’.‘ at z, we may
identify the set O, with the ring Hp of convergent power series by

f» > Taylor series of fo ™" at ().

So @, has the structure of a local (C-algebra.2 An element f, € Og .is a
unit if and only if f(z) # 0. Of course, Oy is also noetherian and a unique
factorization domain.

4.1 Proposition. Let f,g be holomorphic functions near o € X If the
germs fuo, 9uo are relatively prime in Oy, , then there is an open neigborhood
U = U(zo) C X such that [z, 9o are relatively prime in Oy forz € U.

PRrROOF: We can work in C” and assume that zo = 0 and that fo and go
are Weierstrass polynomials in z;. Since fo and go are relatively prime in Hy,
they are also relatively prime in HY_,[z1]. If Q is the quotient ﬁeld.of H, 4,
it follows from Gauss’s lemma that fo and go are relatively prime in Qlz1]-

We can find a linear combination
h=a- fo+b-go,

where a,b € H,_1[21],and h € (Hn—1)* is the greatest common divisor of fo
and go. fU =U' xU" CCx Cn-1 is a sufficiently small 'nelghborho/i)d of
the origin, the power series a,b converge to pseudOpolyn9m1a1§ over U'" and
h to a holomorphic function on U” that does not vanish identically.

2 A commutative C-algebra A with unity is called a local (C-a.lgebm if the set m of
nonunits forms an ideal in A and the composition of canonical homomorphisms
C <> A — A/m is surjective.

i R

-
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Let w = (w1, w') be a point in U. If ¢ is a common factor of fy, and gw,
then it divides hw, which has degree 0 as a polynomial in z1. So ¢y does not
depend on z; and does not vanish identically in z3,..., z,. Therefore, ¢y, is
z1-regular of order 0, and by the preparation theorem it is, up to a unit, a
Weierstrass polynomial of degree 0; i.e., ¢y is already a unit.

This shows that fi and gy are relatively prime. n

Analytic Hypersurfaces. Let X be an n-dimensional complex man-
ifold. We consider analytic hypersurfaces A C X. Then locally A is given
as the zero set of one holomorphic function f. We always assume that f
does not vanish identically and therefore A is nowhere dense in X. If locally
A = {(#z1,...,2r) : 2z = 0}, then every holomorphic function g vanishing
on A is of the form ¢(z1,...,2n) = 2n - (21, ..., 2n). We will generalize this
result to the arbitrary case.

4.2 Proposition. Every hypersurface A C X is a pure-dimensional ana-
lytic set of dimension n — 1.

PrOOF: After choosing appropriate coordinates, we may assume that A is
contained in an open set U C C™ and f is a Weierstrass polynomial w in 2z
without multiple factors such that

A=Nw)={zeU : w(z)=0}.

Since N(w) is a branched covering over some domain G C C"~!, every irre-
ducible component of N(w) has dimension n — 1. ]

4.3 Theorem (Nullstellensatz for hypersurfaces). Let A C X be an
analytic hypersurface and xo an arbitrary point of A.

1. There exists an open neighborhood U = U(zo) C X and a holomorphic
function f on U such that:
(a) UNA={zecU: f(z)=0}.
(b} If h is a holomorphic function on a neighborhood V. = V(zo) C X
with h|a = 0, then there is a neighborhood W = W (zo) CUNV and
_a holomorphic function q on W such that hlw = q- (f|lw)-

2. If f is any holomorphic function defining A in U and h is again a holo-
morphic function on a neighborhood V. = V(zg) vanishing on A, then
there exists a k € N and a holomorphic function § on a neighborhood
W = W(zo) CUNV such that h*lw = §- (flw).

PROOF: Again we work in C" and assume that zo = 0. Let f be an ar-
bitrary defining function for A near the origin. After choosing appropriate
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coordinates we find a unit ¢ and a Weierstrass polynomial @ in 21 such that
f =e .. We choose a neighborhood U =U’ x U” of the origin such that:

1.ANU = {(#1,2") €U : &(z1,2') =0}.
2. There is a prime factorization & =w;" ...w/* on U.

We define w :=w; - ..w;. This is a pseudopolynomial without multiple factors
that also defines A in U.

If 4 is a function vanishing on A, which we may assume to be defined on U,
then by the division formula there is a holomorphic function g near the origin
and a pseudopolynomial r with deg(r) < deg(w) such that near 0,

h=q-w+r.

Since w has no multiple factors, the greatest common divisor of w and dw/8z;
is a not identically vanishing holomorphic function g of z2, ... ,z5, and we can
find pseudopolynomials g1, g2 with

Ow
9=Q1'W+Q2'8Z—1.

We may assume that everything is defined on U. Suppose that there is a
zg € U” such that w(¢,zj) € C[¢] has a multiple zero {o. Then w((o,z() =
Ow/0z1(Co,24) =0, and therefore g(z)) = 0. Hence, if g(z’) # 0, then w((, z")
has exactly s :=deg(w) distinct zeros. Since h|y ) =0, h((,z) has at least
these s distinct zeros. Using this fact and the division formula, it follows that
r(z') =0 for 2’ € U" — N(g). Therefore, by the identity theorem » =0 and
h =q-w. Taking f =w yields the first part of the theorem.

Let k :=max(k1, . ,kl). Then

W=uwh.¢*=0-7q
This proves the second part of the theorem. u

Every local holoniorphic function f that satisfies the conditions of the first
part of the Nullstellensatz will be called a minimal defining function for A.

Now let A be an irreducible analytic hypersurface in X, and h a holomorphic
function on some open subset U € X with Afanyy = 0. For o € UN A there
exists a neighborhood V =V () € U and a minimal defining function f for
A on V. Then

orda 4, (h) :=max{m € N : Iqwith h = f™ .q near zo}.
It follows from the Nullstellensatz that orda g, (%)> 1,and from the unique

factorization into primes that it is finite. Furthermore, it is independent of f,
because if f1, fo are two minimal defining functions, then we have equations
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fi =a1fy and fa = gaf1. 1t follows that fi = ¢ig2f1 and therefore f;(1 —
¢192) =0. So ¢1 and g» must be units.

For every point zo € A there is a neighborhood U = U(xzy) such that
orda z(h) > orda 4, (k) forz € U NA.

4.4 Proposition. If A is irreducible, h holomorphic in a neighborhood of
A, and h|la =0, then the number ord 4 ;(h) is independent ofx € A.

PROOF: Let zp € A be an arbitrary point. In a neighborhood U of z, there
exist a decomposition ANU = A; U ...U A; into irreducible components
and minimal defining functions f, for A,. Since % vanishes on every Aj,
there exist k1, ...,k € N and a holomorphic function ¢ on a neighborhood
V =V(zg) C U such that

h = flkl .. .flkl .‘L and (f/\)l‘o 'fql‘o fOI' /\ =17 ‘. .,l-
Since (f1)zq, - - -5 (f1)z, are irreducible, it follows that (f)z, and g, are rel-

atively prime for A = 1,...,l. But then (f)), and y, remain relatively prime
for z sufficiently close to zp, say in a neighborhood W (zy) C V.

Let n(x) = orda 5 (h). It is necessary to consider two cases:

(a) I A is irreducible at o, then I = 1,and it is clear that n(z) =n(xo) for
reWnA.

Consequently, z — n(z) is a locally constant integer-valued function on the
set A of regular points of A. Since A is globally irreducible, A is connected
and n(z) globally constant on A. Let n* € N be the value of this function.

(b) If 1> 1, then f := f1...f; is a minimal defining function for A at z.
With m :=min(k,,. .., k) we have

h=f. . fft.g=f™ .y,
where ¢ is a holomorphic function near xy. Therefore, n(xzg) > m.

We assume that m = k. In every small neighborhood of z( there are regular
points z € Ay that do not belong to A, for 4 # A. Then n(z) = n* and f) is
a minimal defining function for A at x. Since z = f/’\“* -g, with a holomorphic
function g, and (fx)z 1 G, it follows that n(z) = k.

So m < n(zo) < n(x) =n* =kx =m, and therefore n(xy) = n*.
Now we define

orda(h) = Constant value of orda 4(h) if hla =0,
4 0 otherwise.

One easily sees that

OI'dA(hth) = OI'dA(hl) + OrdA(hg)
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Meromorphic Functions. Let X be an n-dimensional complex mani-
fold. We consider holomorphic functions that are defined outside of an ana-
Iytic hypersurface. In the 1-dimensional case these are holomorphic functions
with isolated singularities.

Definition. Let A C X be an analytic hypersurface. A complex-valued
function m on X — A is called a meromorphic function on X if for any
point x € X there are holomorphic functions g,h on an open neighbor-
hood U =U(z) ¢ X such that N(h) CAnU andm =g/honU - A.

Obviously, m is holomorphic on X — A. In particular, every holomorphic
function f on X is also meromorphic on X .

Different meromorphic functions may be given outside of different analytic
hypersurfaces. If my : X — Ay — C are meromorphic functions on X, then
my £ mg and m, .mg are meromorphic functions on X , given as holomorphic
functions on X — (4; U Az).

If m:X —A — C is a meromorphic function, for p € A we have two
possibilities:

(a) There is a neighborhood U = U(p) C X such that m is bounded on U - A.
Then there is a holomorphic function 7 on U with 7|y -4 =m|y—-a4, and
p is called a removable singularity for m.

(b) For any neighborhood V = V(p) C X and any » € N there is a point
z € V — A with |m(z)| > n. If m = g/h near p, then h must vanish at
p, because otherwise we would be in situation (a). Now there are again
two possibilities:

(i) If g(p) # 0, then lim,_,p|m(z)| = +oc0, and we have a pole at p.

(ii) The other possibility is g(p) = 0. This cannot occur in the case n = 1,
since it may be assumed that the germs g, and h, are relatively
prime, but it is possible for n > 1. The behavior of m is extremely
irregular in that case: We take any ¢ € C. Then g, —c-hp and h, are
relatively prime, and therefore there exists a sequence (z,,) of points
in N(g—ch)— N(h) with lim, _,o ., =p. This means that m(z,) =c
for every v. We call p a point of indeterminacy in this case.

In the case » = 1 a meromorphic function is a function that is holomorphic
except for a discrete set of poles. For n > 1 we have the polar set

P(m) :={p€ X :m is unbounded in any neighborhood of p /.

The polar set consists of poles and points of indeterminacy. We show that
P(m) is an analytic hypersurface.

Let p € X be an arbitrary point and U =U(p) C X a connected neighbor-
hood, where »z is the quotient of ¢ and 4 and N(h) C A. We may assume
that p € A and gy, A, are relatively prime. Then

R R R

it
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mbounded nearp <= 3¢ (holomorphic near p) with g = .k
= hplgp
<= h, is a unit
< h(p) #0.

So P(m)NU ={zx €U : h(z) =0}.

If Z ¢ X is an irreducible hypersurface, then we define ordz(m) as follows: If
m = g/h near z, then ordz ;(m) := ordz .(g) —ordz (k). If we choose g, he
relatively prime, this definition is independent of g and A. Now it follows
exactly as above that ordy ,(m) is constant on Z.

4.5 Identity theorem for meromorphic functions. Let X be connected,
m:X —A = C a meromorphic function, and U C X a nonempty open set
such that m|y_4 =0. Then P(m) =& and m =0.

PROOF: The set X — P(m) is connected, m is holomorphic there, and U —
(AUP(m)) is a nonempty open subset of X — P(m). By the identity theorem
for holomorphic functions it follows that #n =0 on X — P(m). But then m
is globally bounded and P(m) = @. m

The set .#(X) of meromorphic functions on X has the structure of a ring
with the function m =0 as zero element. We set

M(X) = A(X)-{0}
= {m € .#(X) : m vanishes nowhere identically}

If m € #(X)* has a local representation m = g/h, the zero set N(g) is
independent of this representation. Therefore, we can define the global zero
set N(m), which is an analytic hypersurface in X . Outside of P(m)UN(m), m
is holomorphic and without zeros. Therefore, 1/m is also holomorphic there
and has local representations 1/m = h/g. So 1/m is also meromorphic, and
consequently .#(X) is a field. For this it is essential that X is connected!

4.6 Levi's extension theorem. Let A C X be an analytic set that has at
least codimension 2, and let m be a meromorphic function on X —A. Then
there exists a meromorphic function m on X with m|x_a =m.

PRrROOF: Since the statement is true for holomorphic functions, we may
assume that P(m) # . So it is an analytic hypersurface in X — A. By the
theorem of Remmert—Stein, Q :=P{m) is an analytic set in X . By Riemann’s
second extension theorem the holomorphic function 2 on (X — Q) — A has
a holomorphic extension m to X — Q.

Let p € AN Q be a point. We have to show that 7 is locally meromorphic at
p- We choose an open neighborhood U =U(p) € X and a function g € O(U)
such that:
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1. QnU ¢ N(g).
2. N(g) = N1 U ...U Ny, is a decomposition into irreducible components.

Since dim(4) < dim(N;), there are points a, € N; — A and neighborhoods
Vi =Vi(ai) ¢ U- Asuchthat m =p;/q; onV;—Q and N(g;) C QNV; C N(g);
ie, gln@) =0

From the Nullstellensatz it follows that there is a number s; € N and a
holomorphic function r; such that ¢% =r, .q;. Then m = p;rig” > near a,.
This means that there exists an s € N such that ¢g° .7 is holomorphic near
aL

at,- ..,

Thus N :=(U — A)N P(g®m) is empty or an analytic hypersurface that is
contained in N (g)—A. In the latter case it is a union of irreducible components
of N(g) — A, and this is impossible, since every such component contains
a point g, So N must be empty, and ¢°*m is holomorphic in U — A. By
Riemann’s second extension theorem there is a holomorphic extension A of
g*m on U. Then g=*h is meromorphic on U with (g7 *h)[y—a =M. m

Divisors. Let X be a connected complex manifold, m € .#(X)*, and
Z C X an irreducible analytic hypersurface. If Z ¢ P(m}, then ordz(m) is a
negative integer, and if Z C N(m), then ordz(m) € N. In all other cases we
have ordz(m) = 0.

If P(m) =J,c; P. and N(m) =, Nx are the decompositions of the polar
set and the zero set into irreducible components, then the formal sums

(m), ==Y (—ordp (m)).P, and (m) =Y ordy, (m) . Ny

LEI AEL

are called respectively the divisor of poles and the divisor of zeros of m.
Finally, div(m) :=(m)o — (m), is called the divisor of m. From the remarks
above it is clear that

div(m) = Z ordz(m) - Z,
ZCX

where the sum is over all irreducible hypersurfaces Z in X

Definition. Let (Z,),c; be a locally finite system of irreducible ana-
lytic hypersurfaces Z, € X. If for every L € I a number n, € Z is given,
then the formal linear combination

D =Z7h .ZL

vET

is called a divisor on X .

The divisor is called positive or effective if n, > 0 for every 1 € I.

st AR S
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Divisors can be added or multiplied with integer constants in an obvious way.
Therefore, the set Z(X) of all divisors on X has the structure of an abelian

group.
As we just have seen, there is a map div : #Z(X)* — 2(X). Since we have
div(mymsg) = div(m,) +div(msz), div is a group homomorphism.

Sometimes it is useful to generalize the notion of a divisor a little bit. Let
(A,).er be a locally finite system of (arbitrary) analytic hypersurfaces in X,
and (n,),cr a system of integers. Then for every 1. € I we have a decomposition

3
A= J 4,
AEL,

into irreducible components. The system {4 : . € I,\, € L,} is again
locally finite, and we define ) ., n, . A, =) ; SaerL, AL

With this notation it is possible to restrict divisors to open subsets: U C X
isopen and D = ZLGI n, .Z, a divisor on X , then

Dy = Z

L with Z,NU#2

n,-Z,NU.

4.7 Proposition. If A C X is an analytic hypersurface and f a minimal
defining functionfor A in an open set U withU N A # @, then

div(f*) =k-AnU.
The proof is more or less straightforward.
Now let an arbitrary divisor D on X be given. Then for any point p € X there

is an open neighborhood U =U(p) C X, a finite system {Z;, :i=1,..,N/
of irreducible hypersurfaces Z; C U, and a system of numbers n; € Z such

that
N
Dy =) ni-Z.
=1

In addition, there is a neighborhood V = V(p) C U such that there exist
minimal defining holomorphic functions f; for Z; in V. Then

N N
i=1

=1

In this way every divisor is locally the divisor of a meromorphic function.
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Associated Line Bundles. Let X be a connected n-dimensional com-
plex manifold. f Z C X is an analytic hypersurface, then there is an open
covering Z ={U, : 1 € I} of X with the following property:

It U, NZ # o, then there is a minimal defining function f, € O(U,) for Z.
Setting f, := 1if U, N Z =¢, in U,, we get the two relations
fL=gm'fn and fm=gm.fL

with suitable holomorphic functions g,, and gx,. Then

fL (1 —gbngru) —0onU,.

Since f, does not vanish identically, it follows that ¢,xgx. = 1on U,.. This
shows that g,, € O*(U,x) and gx, =g, Furthermore, on U, we have the
compatibility condition

Gk = Gur-

The system of the nowhere vanishing functions ¢,x = f./fx defines a holo-
morphic line bundle on X, which we denote by [Z].It is easy to show that
this definition does not depend on the covering and the functions f,.

4.8 Proposition.

1. There is a section sz €U(X,[Z]with7Z ={z € X :sz(x) =0}.
2. [Z]is trivial over X — Z.

PROOF: The system of holomorphic functions f, defines a global section sz
with {zx € U, : sz(z) =0) ={z €U, : f.(x) =0) =U, NZ. Then it is clear
that [J4 _z is trivial. u

We can generalize the concept of associated line bundles to the case of divi-
sors. If D is a divisor on X, then there is an open covering % ={U, : 1€ 1}
of X, and meromorphic functions m, on U, with D|y, = div(m,). It follows
that the functions

are nowhere vanishing holomorphic functions on U,,.. They define a line bun-
dle, which we denote by [D]JIf D =k . Z, then [D]=[Z]*. If D = D1 + b2,
then [D J=[D;] ® [Dy]. Thus the map

6 : 9(X) — Pic(X), (D) := isomorphy class of [D],

is a homomorphism of groups.

49 Theorem. The sequence o group homomorphisms

M) LS 9(X) -5 Pie(X)

4. Meromorphic Functions and Divisors 201

is exact.
PROOF: (1)Let m # 0 be a meromorphic function. Then [div(m)] is given
by only one transition function m/m = 1.Therefore, § odiv(m) = 1.

(2)Let D be a divisor on X with §(D) = 1.We assume that D|y, =div(m,)
and [D] is represented by g,, =m,/m,. Since [ D fs trivial, there are nowhere
vanishing holomorphic functions 4, with &, .g,., = 1.4k, on U,,. Then

h, . m,=h, -m, onU,.

Therefore, a meromorphic function s on X can be defined by m|y, :=h, -m,.
Obviously, div(m)|y, =div(m,) = D|y,, and therefore div(m) = D. -

Meromorphic Sections.Let X be a connected n-dimensional complex
manifold. Any analytic hypersurface Z C X leads to a line bundle [Z fo-
gether with a global holomorphic section sz that vanishes exactly on Z. The
construction of sz fails in the case of an arbitrary divisor D and its associ-
ated line bundle [D ]Therefore, we introduce the notion of a meromorphic
section.

Definition. Let 7 : L — X be an analytic line bundle and A ¢ X an
analytic hypersurface. A holomorphic section s € I'(X — A, L) is called
a meromorphic section over X in L if for every point x € X there is
an open neighborhood U = U(z) ¢ X, a function 2 € O(U), and a
holomorphic section ¢ € I'(U, L ) such that:

1.h-s=t over U— A

2. N(h) cANVU.

3

If we have a system of trivializations ¢, : 7= '(U,) — U, x C and transition
functions g,., then we have the following description of s.

For z € U, — A we define s,(z) by ¢, 0s(z) = (x, s.(z)). Then s, = g, $x On
U,. — A. If we choose the U, small enough, there are holomorphic functions
h,, t, on U, such that h, .s, =t, over U, — A and N(h,) C ANU,. This
means that s, is a meromorphic function on U,. We could have as well said
that a meromorphic section is a system (s) of meromorphic functions with
S, =9k . Sk-

If Z is an irreducible hypersurface, then ordz(s,) =ordz(s,), and we denote
this number by ordz(s). The sum

div(s) := Z ordz(s) . Z

ZCX irreducible hypersurface

is called the divisor of the meromorphic section s.
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Now we have the solution for our problem: Let D be the divisor on X given
by D|y, = div(m,). Then [D] is described by the transition functions g, =
m,m,_, and the system of the m, defines a global meromorphic section sp
of [D jwith div(sp) =D.

So far our definitions seem to be purely tautological. But for example, they
allow us to determine the space of holomorphic sections of /D fin terms of
meromorphic functions on X. For that we need the following notation: If
D1, Dy are two divisors on X, then Dy > Dy if and only if D; — Dy is a
positive divisor.

4.10 Theorem. Let D =5 ,nz .Z be a divisor on X. Then there is a

natural isomorphism {m € #(X)* :div(m) > - D} = NX,[D]).

PROOF: Let sp be the global meromorphic section of /D jwith div(sp) = D.
Then for any meromorphic function #2 on X also# :=m-sp is a meromorphic
section of [D].

If m is a meromorphic function with div(m) > - D,then
div(t) =div(m) +div(sp) =divim) +D > -D +D =0.
This means that ¢ is a holomorphic section. The map m — m-Sp is obviously
injective.
Let t € I'(X, [D]) be given. i D|y, =div(m,), then

m,
t, = “te-
My

Hence t,m; ' =t,m ! on U,, and there exists a meromorphic function . on
X with m|y, =t,m". Therefore, div(m)|y, = div(t,) — div(m,) > —Dluv,.
So the map is an isomorphism. u

Example

Let X =C be the Riemannian sphere and D =n " °°- Then
I(X,[D]) = {me #(X)" :orde(m) > —n and ordy(m) > 0 otherwise}.

The holomorphic sections in [D] are just the meromorphic functions on X
that have a pole of order at most # at occ.

Exer cises

1. Let x be a point in a complex manifold X and let f;, gz be nonunits in O, .
Prove that f, and g, are relatively prime if and only if dim(N(f,g)) <
n-— 2.
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2. Let G C C™ be a domain, A C G an analytic hypersurface, U C G an
open subset with UN A # &, and f : U — C a minimal defining function
for A. Prove that Sing(A)NU ={z e U : f(z) =0 and Vf(z) =0}.

3. Consider the meromorphic function m(zy, z2) :=22/21 on C2. Show that
the closure X of the graph {(z1,22,w) : 21 # 0 and w = m(zy, z2)} in
C2xC is an analytic hypersurface. Determine a minimal defining function
for X at (0,1, co).

4. Classify the singularities of m(z1, z2) :=sin(z;)/sin(z122).

5. Let L — X be a holomorphic line bundle. Prove that L = [ D Jfor some
divisor D on M if and only if L has a global meromorphic section s # 0.

6. Let X be a compact Riemann surface. Show that for every nonconstant
meromorphic function £ on X the numbers of zeros and poles are equal
(counted with multiplicity).

5. Quotients and Submanifolds

Topological Quotients. Let X be an n-dimensional complex manifold
and ~ an equivalence relation on X . If x,y € X are equivalent, we write
x~yor R(z,y). Forz € X let

X(z):={yeX :y~z}={yeX : R(y,z)}

be the equivalence class of z in X . These classes give a decomposition of X
into pairwise disjoint sets. The set X/R of all equivalence classes is called the
topological quotient of X modulo R.

Let m# : X — X/R be the canonical projection given by 7 :z — X (z). Then
X /R will be endowed with the finest topology such that = is continuous. This
means that U € X/R is open if and only if 7~ 1(U) C X is open. We call this
topology the quotient topology.

A set A C X is called saturated with respect to the relation R if

7 (n(A)) = A.

5.1 Proposition.
1. A saturated <= A = 4 X(2).

2. If U ¢ X/R is open, then ®=1(10) is open and saturated.
3. If WX isopenand saturated, then m(W) C X/R is open.

The proof is trivial.
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5.2 Proposition. Let Z be an arbitrary topological space. A map f:
X/R — Z is continuous if and only if f om :X — Z is continuous.

This statement is also trivial, since (f o 7)">(U) =7~ *(f~1(U)).

Analytic Decompositions. If X is an n-dimensional complex mani-
fold and R an equivalence relation on X, one can ask whether X/R carries
the structure of a complex manifold such that 7 is a holomorphic map. As-
sume that such a structure exists. Then X/R must be a Hausdorff space. If
¢ :U — C* is a complex coordinate system for X/R, then U : =7 *(U)
is an open saturated set in X, and f =9 o : U — C* a holomorphic
map with £~ (f(z)) = 7= !(n(z)) = X(z). So the fibers off are equivalence
classes, and the equivalence classes must be analytic sets. If additionally 7 is
a submersion, then rk,(f) = k for every x € U, and the fibers are (n — k)-
dimensional manifolds. We now show that these conditions are also sufficient
for the existence of a complex structure.

Let X be an n-dimensional complex manifold and 2 = {Z, :: € I} a decom-
position of X into d-dimensional analytic sets. For x € X let ¢(z) € I be the
uniquely determined index with x € Z, (). Then there is an equivalence rela-
tion R on X such that the equivalence class X (2) is exactly the analytic set
Z,(s)- We consider the topological quotient X /R and the canonical projection
7 :X — X/R and assume that the following conditions are fulfilled:

1. X/R is a Hausdorff space.

2. For any zo € X there exists a saturated open neighborhood Uo X (z0)
in X and a holomorphic map f :U — C"~¢ such that
(a) 71 (f(z)) =X (z) forall x € U.
(b) rky(f) =n —dforx € U.

5.3 Theorem. Underthe conditions above, X/R carries a unique siructure
of an (n — d)-dimensional complex manifold such that # : X — X/R is a
holomorphic submersion.

PrROOF: Let g € X be _given. Then there is an open neighborhood U of
X(zo) in X with 7~ (x(U)) = U, and a submersion { : U — C" "¢ whose
fibers are equivalence classes X(z). If zg := f(zg), then there is an open
neighborhood W = W(z¢) ¢ C*~¢ and a holomorphic section s : W — U

(with $(2zo) = z¢ and f o s = idw). For z € W we have f~!(z) = X(s(z)),
and therefore

aHa(sW)) = U X(s@) = | £ (=) = fH(W)

zeW ZEW

This is an open set, so 7(s(W)) ¢ X/R is open as well. We define a complex
coordinate system ¢ :7(s(W)) — C*~% by
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p(r(s(2))) =z.

Then ¢(r(x)) =f(x). This shows that ¢ is well defined and continuous. It is
also bijective, with ¢~!(z) = m(s(z)), and therefore a homeomorphism.

Now let ¢ be another coordinate system given by ¢ (n(¢(z))) :=z, where 7 is
a local section for some suitable submersion g. Then

pov(z) = p(r(t(2)) =£(t(2))

The coordinate transformations are holomorphic. -

Properly Discontinuously Acting Groups.Let G be a complex
Lie group acting analytically on an n-dimensional complex manifold X . Then

R(z,y) ;<= 3g& Gwithy =gx

defines an equivalence relation on X . The equivalence class X (z) ={ye X
Jg € G with y = gx} is called the orbit of x under the group action and is
also denoted by Gx. The topological quotient X/R is called the orbit space
and is also denoted by X/G.

We consider a very special case.

Definition. The group G acts properly discontinuously if for all x,y €
X there are open neighborhoods U =U(z) and V =V (y) such that

{geG:gUNV # 2}

is empty or a finite set.

Here the orbits Gx are discrete subsets of X and are therefore O-dimensional
analytic subsets. If the action is free, we want to show that all conditions are
fulfilled for X /G to be a complex manifold and = : X — X/ a holomorphic
submersion (which means in this case that 7 is an unbranched covering).

5.4 Lemma. Let G act freely and properly discontinuously on X and let
ZTo,yo € X be given.

1. If there is a go € G with yo = gozg, then there are neighborhoods U =
U(xzo) and V = V{(yo) such that gU NV = & for g # go. In the case
Yo =2 and go = e one can choose V =U.

2. If gxo # Yo for every 3 € G, then there are neighborhoods U = U(xg)
and V =V (yo) such that gU NV =& for every g € G.

PROOF: At first we choose neighborhoods U (o) and Vy(yo) such that

M:={geqG:gUynVy # &}
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is finite or empty. There is nothing to prove if M = {go} in the first case
or M =@ in the second case. Therefore we assume that there are elements
g1, ., 9N, N > 1, with M = {go,01,...,9~} in the first case and M =
{g1,...,9n} in the second case. Then we define ) :=gxzo, for A = 1,..,N.
Since G acts freely, yn # yo for A =1,..,N.

We choose neighborhoods Wy = Wi(yx) and V = V(yo) € Vp such that
Wi NV =@, and we choose a neighborhood U = U(xzg) ¢ Uy such that
U cWy, forh=1,...,N. Then gU NV =& for g # go in the first case,
and g € G in the second case. H

5.5 Theorem. Let G act freely and properly dicontinuously on X. Then
X/G has the unique structure of an n-dimensional complex manifold, so that
7 X = X/G is an unbranched holomorphic covering.

PrROOF: Let U C X be an open set. Then 7~ }(n(U)) = U,eq U is an
open set, and therefore 7(U) is also open. For g € X we can choose an open
neigborhood U = U(zo) such that gUNU =@ forg #e. Thenw :U — (V)
is bijective.

(1) We have to show that X/G is a Hausdorff space. Let z1,z2 € X be
given, with w(x1) # w(z2). Then gz1 # x2 for every ¢ € G. There are open
neighborhoods U =U(z;) and V =V (z2) with gU NV # & for every ¢ € G.
Then #(U) and 7 (V') are disjoint open neighborhoods of 7(z1) and 7(z2).

(2) We verify the other conditions. Let zg € X be given and choose a small
open neigborhood U = U(zg) C X such that « :U — x(U) is a homeomor-
phism and such that there exists a complex coordinate system ¢ :U — C™.
Then f : U :=7~}(x(U)) — C™ can be defined by f(gz) = ¢(z), for & € U
and g € G. It is clear from above that f is well defined. The fibers of f are
the G-orbits, and on gU we have f(y) = (g *(y)). This shows that f is
holomorphic, and rk, (f) =n for every y € U.

If U is small enough, then 7~ (7(U)) =, gU, with pairwise disjoint sets
gU that are topologically equivalent to 7(U). So « is an unbranched covering,
]

Complex Tori.Let {w1, ...
group I' :=Zw; + ...

,Wan } be a real basis of C”. Then the discrete
+ Zwsay, acts freely on C™ by translation. The set

Ay =T+w={w+w:wel}

is the orbit of w.

The group I' acts properly discontinuously on C™: Let zo, Wo € C™ be given.
If wg = wp + zo for some wy € T', choose

foe s
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e< - -infillwll : wel —{0}1}.

Then (wt B.(zo)) N B:(Wo) = @, unless w = wp.

IfW() — Zg ¢ F and
£ < 1 .dist(wo, I +2),

2
=@ for every w.

The n-dimensional complex manifold T =17 = C"/T" is called a complex
torus, and I is called the lattice of the torus.

The set P = {z =tjw; +--- +opwa, 1 0 < t; < 1) contains a complete
system of representatives for the equivalence classes. Therefore, T? = n(P)
is a compact space. The map

then (w+ Be(zg)) N Be(wy)

27ity

27titan,
t1w1+-~-+t2nw2n!—>(e ,...,emz)

induces a homeomorphism 7”7 — §* x ... x ST

2n times
5.6 Proposition. HY(S} 7Z) =7.
PROOF: Let U; = {2 1 <t <1} Uy = fe2mit . 3
2wit 5 y < ﬁe}’
and U; :={e 2 <t< 1) Then % = = {Uy,U,,Us} is an acychc 0

covering for S? w1th Ui2z = @. Therefore, every triple ¢ = (a,b,c) € Z3

is a cocycle in Z'(%,Z). Tt is a coboundary if and only if there is a triple

(u,v,w) € Z3 with
a=v-—u,

b=w-—u, and c=w-—wv

This is the case if and only if a + ¢ = b. Since every cocycle has the form

(a,b,¢) = (0,b—a—c,0)+(a,a+c,c)=(p_qg_q,. 5010£+6(0aa+c),

it follows that H(%,Z) is generated by the class of (0, 1,0 -

From the Kunneth formula it follows that H(T™,Z) =~ 720 and therefore
the first Betti number of 7" is equal to 2n. ’

Hopf Manifolds. Let ¢ > 1 be a fixed real number and n > 1. Then
the (multiplicative) group I' := {o* : k € Z} acts freely on C* - {0} by
zZr ok .z

The action is properly discontinuous. To see this, we define the sets

Upr={2€C" :r <|z| < pr}, forr>0.

Then the sets oFU, are pairwise disjoint. If two points z,,z, € C* — {0}
are given, one can find an r > 0 and a £ € Z such that z, ¢ U :=U, and
zy € V :=0"U,. The case k =0 is allowed. Now ¢°U NV =@, unless s = k.
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So H = Hr = (C™ — {0})/I" is an n-dimensional complex manifold, and
the canonical projection © : C* — {0} — H is an unbranched holomorphic
covering. H is called a Hopf manifold.

2 (exp(zmhfrllljl)ﬁ)

induces a diffeomorphism H — S' x $2"~!. Here S$*"~! is the (2n — 1)-
dimensional sphere in R?” =C” with 2n — 1> 3.

5.7 Proposition. For k> 2, H*(S*,Z) = 0.

The map

Proor: We have S* — (x = (Z1,...,2541) : X[l = 1). Then Z =
{Ul,UQ} with

B — (xES*: _s<ap «l
Uy = {XES* : 1<z <o

is an open covering of S* with contractible sets, and

—xeS  _a<rpy <o

is connected. Therefore, CY (% ,Z) = ZX(%,Z) =Z and C°(% ,Z) =Z*. The
coboundary map § :C%(%,Z) — 17) is given by 6(a,b) :=b — a. Then
obviously, BX(% ,Z) =7 and =0. "

It follows that H!(H,Z) — M@ x S2*~',Z) = Z, and b1 (H) = 1.

The Complex Projective Space.In X :=C"*! _ {0} we consider
the equivalence relation

R(z,w) <= 3AcC" with w =)z

The equivalence class L, of z is the set L, = Cz — {0}, the complex line
through z and O without the origin. So we have a decomposition of X into
1-dimensional analytic sets. We can also look at these sets as the orbits of
the canonical action of C* on X by scalar multiplication.

Definition. The topological quotient P* := X/R = (C**! — {0})/C*
is called the n-dimensional complex projective space.
Let n : X =C™*! — {0} — P” be the canonical projection, with 7(z) := L,
and let two points Z = (20, ..,2,), w = W0 w,) be given. We have

33X € C* with w; =MXz; fori =0,...,n
wy

11

» = z—z for all 7, j where the fractions are defined.
7 7
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So w(z) does not determine the entries z;, but the ratios z; : z;. Therefore,

we denote the point x =7(zg, . .., 2,) by (20 : ... 12,) and call 2y, . .., 2, the
homogeneous coordinates of x. If zg, ...,2, are homogeneous coordinates of
%, then so are Az, . ..,\z, for every A E @*.

If W ¢ X is an open set, then 7~ (7(W)) =J,¢c- A+ W is a saturated open
set in X, and therefore 7(W) is open in P”. For example, this is true for

U; ={z=(20,...,2,) @ -{0f ;= #0)CcX, ;_0,.. .,n.

The sets U; := 7(U;) form an open covering of P

We show that P is a Hausdorff space: Let z,w € X be given, with L, #£ L,

Then
* .. Z w* = Y
=] [[wl
are distinct points of §27*+1 = x € R™+2 — C"+! : |x|| = 1}. Therefore,
we can find an € > 0 such that B.(z*) N B.(w*) =@. Then U := (B, (z*))
and V :=m(B.(w*)) are disjoint open neighborhoods of 7 (z), respectively

w(w).

b

Now let a point zg = (z(()‘”, .. .,zg))) € X be given. Then there exists an index
i with 2;” # 0, and zq lies in U;. We define f; U, — C” by

20 Zic1 2 z
fi(Z(),...,Zn)::(——,...,—*-Z ’*1+1,.“,_75\.
Then
—1 =5 wj 2 . .
£ (6(2) = {weli: 22 =2 porjpil
Wy Zi
~ ws
= {WEUZ :w:J-z}
Zi
-1
— 7 (w@y.
If a point u = (ug, ...,u,) € U; is given, we define a holomorphic section
s :C" = UL by s(21,. .., 20) i=(Us21, . -+, U4, Ui, UiZi41, . - -, UiZn). Then
Yo Ui—1 Uiyl u
sl—,..., =L =i+l
(1%7 ’ W ? s :'--:u*:)=(u0,-":un)a
7 2
and
fios(z,...,2,) =(21,...,2).

Therefore, f; is a submersion, and rk,(f;) =n for every z.

Altogether this shows that P™ is an n-dimensional complex manifold gnd
7 : C"*! — {0} — P™ a holomorphic submersion. Since every equivalence

class L, has a representative in the sphere S27+1 P" = n(§27+1) is compact.
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Local coordinates are given by the maps ¢; :U; — C™ with ¢; om =f;. This
means that

wilz0 1.1 2) = PURREETIRtEREE z)
Up={(20 1---120) EP™ 120 #0} = ((1:t1 :...:ty) : (t1,...,tn) €C"}
is biholomorphically equivalent to C*. We call it an affine part of P". If we
remove Uy from P”?, we get the so-called (projective) hyperplane at infinity
Hy = {(z0:-..:2,) €P" 1 20 =0}
= {(0:t1:...:tn) 1 (t1,..0tn) €C" = (0)).

It has the structure of an (n — 1)-dimensional complex projective space. If we
continue this process we get

P = Cru Pl
Pn—l — (Cnfl u PH_Q,
P? = c? u P.

It remains to study P! = {(20 :21) : (20,21) € C? — (0)). But this is the
union of C = ((1:¢) : ¢t € C} and o0 := (0 : 1), with £ = 21/2. In a
neighborhood of oc we have the complex coordinate z0/z1 = 1/t. So we see
that P* =C =C U {00} is the well-known Riemann sphere.

The hyperplane Hj is a regular analytic hypersurface, given by
HOmUi:{(Z():...IZn)EUi : ?:O}.

Therefore, Uy is dense in P'.

It should be remarked that there is no reason to distinguish between Uy and
the other sets U;. Everything above could have been done as well with the
affine part U; and the hyperplane H; :={n(z) € P" : z; =0}.

Meromorphic Functions. On a compact complex manifold every
global holomorphic function is constant. But we know already from the ex-
ample of the Riemann sphere that there may exist nonconstant meromorphic
functions. In this regard we consider the compact manifolds defined above,
beginning with the complex projective space P”.

A nonconstant polynomial p(t) = Zﬁ/\:o a,t¥ is a holomorphic function on
the set Uy = {(1 :t; :...:tn) | t =(t1,-..,t,) € C"}. In fact, it defines a
meromorphic function on P with polar set Hy. We see this as follows:

3 The hat signalizes that the ith term is to be left out.
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The functions ¢, = z,/29, 4 > 1, are holomorphic coordinates on Uy, and
wy = 2x/z, A # ¢ likewise on U;. Therefore, on U; — Hy =U; N Uy we have

w(’)“-p(tl,...,tn) = (i—o)vzau(%)“(%

k
k—|v
_ a,w | |wfl~-w;;";
lv|=0
i - k k—
Le., p = g/h on U; — Ho, where g(w) := Y| _a,w; Mwi’l ---wkn and

h(w) := wk are holomorphic functions on U; with
N(h):(W elU; : w():O}:U,IlHO
So there are numerous global meromorphic functions on projective space.

Now let T = C™/T" be an n-dimensional complex torus, and = : C* — T
the canonical covering. If s is a meromorphic function on 7, then morx is a
meromorphic function on C?, which is periodic with respect to the generators
w1, . ..,wapy Of the lattice 12, In the case n = 1 such meromorphic functions
always exist; they are the I?-elliptic functions. We shall later see that for
n > 2 the existence of I?7-periodic functions depends on the lattice 12, In fact
there are complex tori with no nonconstant meromorphic functions.

Finally, consider the Hopf manifold H = (C"—{0})/T' withT = {¢* : k € Z}
and n > 1. Let m be a meromorphic function on H. Since the canonical
projection 7 : C™ — (0) — H is a covering, m :=mo 1 is meromorphic on
C™ — (0). Since n > 1,it follows from Levi’s extension theorem that m can
be extended to a meromorphic function on C”. On any line L through the
origin in C™, m must have isolated poles or be identically oo. But since m
comes from I, poles on L must have a cluster point at the origin, which
is impossible unless m is constant on L. The same argument works for any
other value of 6.A meromorphic function on C* — (0) that is constant on
every line through the origin comes from a meromorphic function on the
projective space P*~1. This means that if 2 : H — P"~! is the canonical
map, then a bijection .# (P*~!) — .#(H) is defined by m > mo h. On the
n-dimensional Hopf manifold there are not "more" meromorphic functions
than on (n — 1)-dimensional projective space.

Grassmannian Manifolds. The set of 1-dimensional complex subvec-
tor spaces of C™t! can be identified with the n-dimensional projective space,
and we have given it a complex structure. Now we do the same for the set
G Of k-dimensional subspaces of C". The idea is the following: If 15, ¢ C*
is a fixed element of G n, then we choose an (n — k)-dimensional subspace
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Wy € C™ such that Vo @ Wy = C”. We are looking for a topology on Gk,
such that the set of all k-dimensional subspaces V with V@ Wy =C” is a
neighborhood of Vo in G -

But how to get complex coordinates? In the case Gi1n.+1 =P" we consider, for
example, Vo = Ceq with ey =(1,0,...,0) and Wy ={(20,...,2n) : 20 =0).

Then Vo @ Wy = C*1, and a vector 7z = (%o, ... 2n) # 0 generates a 1-
dimensional space V with V& W, = C"+! if and only if zg # 0. Multiplication
by a nonzero complex scalar does not change the space V. Therefore, V is
uniquely determined by

2t z=25" (20,2) = (125" .2) withz = (21,...,2,).
The map { : V — zo_l .z € C™ gives the familiar local coordinates.

When we try to transfer this procedure to higher k, we use another viewpoint.
Every V with V @ Wy = C"*! has the form Graph(pv) of a linear map
pv :C— C” given by £(V) =y (1) I V5 C C” is a k-dimensional subspace
and V; & Wy = C™, then every other k-dimensional subspace V ¢ C™ with
V & Wy = C" has the form Graph(py) for ¢y € Homg(Vo, Wo). Fixing
bases of Vp and Wy, the matrix of ¢y with respect to these bases gives local
coordinates in My, ,,_(C) =2 C*(—Fk),

Now we will do this job in detail. An ordered k-tuple of linearly independent
vectors a1, ...,a; € C” can be combined in a matrix

a air ... Qin

a 4 &kn

IrH
——

with tk(A) = k. The set
St(k,n) = {A € Mg (C) :rk(A) =k}

is called the complex Stiefel manifold of type (k,n). Since its complement in
My (C) = C** is an analytic set given by the vanishing of all (k x k) minors
of A, St(k,n) is an open set in My ,(C) and therefore a complex manifold.
The group GLi(C) acts on St(k, n) by multiplication from the left, and every
orbit of this group action represents exactly one k-dimensional subspace of
C™. The topological quotient

Gi,n = St(k,n)/ GL(C)

is called the complex Grassmannzan of type (k,n).

If, for example, Wo = (w = (W1,-..,Ws) : W1 = *+ = wy =0}, then a
matrix A € St(k,n )represents a basis of a k-dimensional space V with V&
Wo = C" if and only if A = (Ag|A) with Ag € GLk(C) and A € My n—x(C).
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In this case V has the form Graph(py) for a linear map ¢y : CF — C*%,
Of course, V is uniquely represented by the matrix Aal A= (E,CIA(;1 A,
and Ag' - A is the matrix of ¢y with respect to the standard bases.

Now we consider the set of multi-indices
Im = {1=(ir,...,56) eNF 1 1<i; <...<i, <n}.

For any A € St(k,n) there exists an I = (iy,. ..,ix) € % , such that

G143y 0 B4y
A= € GLk((C).
Akiy -0+ Oy

Then~there is a permutation matrix P; € GL,(C) such that A .P; =
(ArlAg).

For fixed I we define
Vi :={A € St(k,n) : detAs #0}.

We remark that (G.A); =G . Ay and (ETX), =G .;\1 for G € GL,(C).
Therefore, V7 is invariant under the action of GLg(C).

5.8 Lemma. Let 7, :5t(k,n) — G, be the canonical projection. Then

ﬂkj—,i(ﬂ'k,n(‘/])) =V for every Ie fk’n.

PROOF: Let A € 7, L (m.n(V1)) be given. Then there is an A* € V7 with
Tpm(A) = Tk (A*). This means that there is a matrix G € GL,(C) with
A = G .A*,Since Vr is invariant under the action of GL(C), A lies in V7.

The converse inclusion is trivial. .

So VI is a saturated open subset of St(k,n), and Uy :=my »(V7) is open in
G,n- We leave it to the reader to show that Gy ,, is a Hausdorff space.

If E; C C” is generated by e;,,...,e;,, and F; ¢ C" by the remaining
e;, then E; © F; = C", and every k-dimensional subspace V € C” with
V ® F; =C" is represented by a matrix A € V7. The uniquely determined
matrix A7 . A; € Mg,k (C) describes the linear map ¢y : E; — Fy.
Therefore, we define the holomorphic map f; : V; — M;. ,_,(C) = Ckr=0)
by

f](A) :=1&;1 .K].

It is clear that f; is holomorphic, and since

f1(G-A)=(G.A;)"!.(G.A)) = f1(A),
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f; respects the fibers of k. It remains to show that f; has maximal rank.
For that we construct sections:

Let A € V; be given. Then we define s : My n-#(C) — V7 by
s(B) := A .(E¢|B)- P

This is a holomorphic map with s(f;(A)) = (AI{KI) P —A and
f; 0 s(B) = f1(A1 . (E¢|B) _p;l) —A7!.(A;.B)=B.

So f; is a submersion and Gy, a complex manifold of dimension k(n — k).
Complex coordinates are given by ¢r :Ur = My »—1(C) with

or(mha(A)) = A7 A

—1
Let Sy, ={A € St(k,n) : A-A" =E;} be the set of orthonormal systems
of k vectors in C*. Then Sk, is a compact set, and Tkn : Sk,n = Gin is
surjective. So G is compact.

Submanifolds and Normal Bundles. Let X be an n-dimensional
complex manifold. A holomorphic map f : Y — X is called an embedding
if there is a submanifold Z ¢ X such that f induces a biholomorphic map
from Y onto Z. Every embedding is an immersion, but in general not every
(injective) immersion is an embedding. The following proposition has been
already mentioned in Section 1.

5.9 Proposition. Let f : Y — X be a holomorphic map between com-

plex manifolds. If Y is compact and f an injective immersion, then f is an
embedding.

Proor: Every immersion defines a local embedding. To see this, we may
consider a holomorphic map f from a neighborhood V =V(0) ¢ C™ into a
neighborhood U =U(0) ¢ C™ x C* ™ with £f(0) = (0,0) and rk J¢(0) = m.
We write f = (fi, f2) and assume that already rk Jr, (0) = m. Then for the
map F : V xC*"™™ — C" with

F(z,w) = (fi(z),f2(z) + W)

we have det Jrp(0,0) = det Jg, (0) # 0. So there exist neighborhoods V* —
V*(0) c Vand W =W (0,0) C U suchthat F :V* x V* — W is biholomor-
phic. Since F(z,0) = f(z), the image f(V*) =F(V* x {0}) is a submanifold
of W,

We have proved that for every point zg € Y there are neighborhoods
V = V(zo) ¢ Y and W = W(f(20)) C X such that f(V) is a closed
submanifold of W. We have to show that there is a small open neighborhood
U =U(f(z9)) C W such that f(Y)NnU = f(V)nU. Suppose that there is
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a sequence z, € ¥ - V with f(z,) = f(xo). Since Y is compact, we can
assume that (zn) converges to an element z* € Y — V .Since f is injective,

f(x*) # f(x0). But f(x,) must converge to f(z*). This is impossible. [

If Y is a regular hypersurface in a complex manifold X, then there are two
line bundles associated to Y ,namely the normal bundle Ny (Y"), which is
defined on Y, and the bundle /Y jon X. We will show that these bundles
coincide on Y.

Choose an open covering % = (U,),e; of Y in X such that there are complex
coordinates 21, ...,z for X in U, with the following properties:

1. YNU, ={z €U, : z,(z) =0}.
2. 2,...,2,_, are complex coordinates for Y.

We have already seen in Section 2 that the normal bundle Nx (Y) is given
with respect to U, N Y by the transition functions

(25 2n1,0) = B2l (20,5 251, 0).
n

On the other hand, the line bundle /Y fs defined by the transition functions

fue =25 2. But 2 (25, .. ,25) = fue(2F, ..., 25) - 25 implies
oz
8272 (zf7"'azzv1’0) :fm(z’f,n-,zz_l,()).
n

This yields the so-called first adjunction formula.

5.10 First adjunction formula.

[Y]ly = Nx(Y) for every regular hypersurface Y C X .

The normal bundle Nx(Y') is naturally related to the canonical bundles Kx
and Ky. If g, respectively G, are the transition functions for T'(Y), re-

spectively T'(X), then 7
G,.o0f= 9ux S
=% 0 ).

Therefore, detG,, oj =detg.. .h,,, and detg,;! = (detG_l oj ).h,,, which
is equivalent to the second adjunction formula:

5.11 Second adjunction formula.

Ky =j*Kx ® Nx(Y) for every regular hypersurface Y c X.

This formula can be generalized to higher codimensions; see, for example,
[GriHaT78].
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Projective Algebraic Manifolds. If = : C**! — {0} — P is the
canonical projection and x € P”, we define

{(x) :=n"Hz)Uu(0).
This is a complex line through the origin in C**!, and we have ¢(r(z)) =Cz

for z € C"* _ {0}.

A set X C C™! is called a conical set or a cone if it is the union of a family
of complex lines through the origin. This means that

z€X — Xz X for xeC.

I X is an arbitrary subset of P”, then

X_Uf X)u (0)

reX

is a conical set.

5.12 Lemma. Let X C C™*! be a conical set, f a holomorphic function
near the origin, and f =3 .o oD, its expansion into homogeneous polynomi-
als. If there is an € > 0 such that f|BE(o)m? = 0, then pulg = 0 for every
v.

Proor: Let z # 0 be an arbitrary point of B.(0) Il X. Then

A f(Az) = Zpu

o~

vanishes identically for |A] < I. So p.(z) = 0 for every v, and since X is
conical, p,| ¢ = 0 for every v. u

Now let £1, ... ,Fy be homogeneous polynomials in the variables “0: ..z,
Then the analytic set

={zeC*"*" 1 Fi(z)=...= Fy(z) =0}

is a cone. I we set X’ ==X — {0),then the image X :=7(X’) ¢ P" is the
set

X={(z0:...:20) : Fi(20,.-y%n) ="'=Fk(30a~-7zn)20}'
In U, = {(20 :--.:2) :2z # 0}, we can define holomorphic functions fi.
by 2
0 Zn
fiv(zo: . i 20) = Fu(;‘,,‘z_)
Then X NU; = {z € U; : fii(z) = ... = fix(z) =0}, and consequently X

is an analytic set.
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Definition. An analytic set X C P™ that is the zero set of finitely
many homogeneous polynomials is called a (projective) algebraic set. The
subsets X NU, are called (affine) algebraic.

A complex manifold X is called projective algebraic if there is an N € N
and a holomorphic embedding j : X — P such that j(X) is a regular
algebraic set.

5.13 Theorem of Chow. Every analytic set X in projective space is the

zero set of finitely many homogeneous polynomials Fi, ..., Fy such that if
x € X is a regular point of codimension d, thenrk,(Fy, ...,F,) =d for every
z € ().

PROOF: If X C P" is a nonempty analytic set, then X’ = 71 (X) is also
analytic. Since dim, (X’) > I for all z € Cn+1—{0}, by the extension theorem
of Remmert—Stein its closure X = X' U {0} is analytic in C™+1.

By Theorem 6.5 in Chapter III we can find an open neighborhood U =
U(0) ¢ C™**! and finitely many holomorphic functions fi,. .., f,, on U with
N(f1,. ..y Jm) = UnX and rk,(f1,..-,fm) = d at any regular point z of
dimension n+1—d in UNX. Now we expand f; into homogeneous polynomials
p;iv- Then p; | ¢ = 0 for all #,v.

Let Iy, ¢ Qg & H,yi be the ideal that is generated by all p; ,, v < &,
i=1,...,m. Since
I cI, c...cOg

is an ascending chain of ideals in a noetherian ring, it must become station-
ary. Thus there are homogeneous polynomials F1, ..., Fy such that every p; .,
is a finite linear combination of the F,. But then every f; is also a linear
combination of the F,:
E1
fi= Z ai,oFo
o=1

It is clear that N(fi,...,fm) = N(F1,...,F) near the origin. But since X
is a cone, even X = N(Fy,...,F,). Setting

=1,...

we have

o) (@) = A(z) J(p,.. r)(2) for z € X near O.

Therefore, d =1k, (f1,...,fm) <1k, (F1,...,Fs). If X is regular of codimen-
sion d at z, then X is also regular of codimension d at every z € (),
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because 7 is a submersion. It follows that rk,(Fi, ...,Fs) cannot be greater
than d at these points. Since the rank is constant along 7=~ *(z), it must be
equal to d at every z € 7~ *(z). m

Examples

1. Let L € C**! be a complex linear subspace of codimension ¢. Then there
are linear forms 1, ..., on C**! such that

L={zeC" :0(z) =...=p,(z) =0}.
Since the linear forms are homogeneous polynomials of degree 1,

P(L) :={(z0:...:3) €P" 1 ¢,(20,-..,2n) =0forp=1,...,¢q)

is a regular algebraic set. We call P(L) a (projective) linear subspace. It
is isomorphic to P* 9.

2. We now show that the Grassmannian manifolds are projective iﬂgebraic.
Let 0 < k& < n be given, and N := (Z) — 1. We identify A C™ with
CN+1 and define the Plucker embedding pl : Gy, — PV as follows: I a
subspace V ¢ C" has the basis {a1, ...,a;}, then

pl(V) = 7r(a1 A... Aak).

It is clear that this is a well-defined injective map. To see that it is a
holomorphic immersion, we choose another descripton. As above, when
we introduced the Grassmannian, we use the set of multi-indices

I =4I =(i1,...,0) : 1< iy < <ip <n}

To any I € ., there corresponds a permutation matrix P; € GL,(C)

such that for A € St(k,n) we get A .P1 = (A1|;&1). We define p :
St(k,n) — CN*! _ {0} by

B(A) i= (detAs|T€ Fi,n).

Then (G . A) =det G .p(A), so p induces a map p :Gr — PV such
that the following diagram commutes:

P
St(k,n) ——> Cr+1 _{0}

is
Tk,n P
Gpn —> P

For I = (i1, ...,ix) set €7 :=e;; A ...Ae;. Then
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ajAN---ANag = Z detA1~€1,
1€k n

and therefore p =pl.

Let o7 : Uy — My,,—x(C) be a complex coordinate system for Gg n.
Then o7 (B) =7k ((Ex|B) - P; 1) and

pop; (B) =mop((Ex/B)-Pr') = n(det((ExB)-P;"), : JE Iin).
Obviously, p is a holomorphic map.

Every matrix B € My, ,_x(C) can be written in the form
B =(b},,,...,b)

with b, € C¥ forp =k +1,...,n. We have det((Ex/B) .PI‘I)I = 1,and
ifJ =@-{i,})U{u} forsomerv e {1,...,k}andp e {k+1,.. n},
then

(Be|B)-P7') - Py —(ef,...,ef_,b}

t t
H,ey+1,...,ek)7

and therefore det((E,|B) .PI_I)J = b,,. S0 p o7 (B) contains the
components 1, b, for all v, and some other components. It follows
that pl is an immersion. Since Gy, 1S compact, pl is an embedding.

Projective Hypersurfaces. The simplest example of an analytic hy-
persurface in P* is the hyperplane Hy = {zy =0}.

IfS E M,,1(C) is asymmetric matrix, then gs(z) :=2z-S-z? is a homogeneous
polynomial of degree 2. The hypersurface
Qs ={(20:...:2) :¢s(z0,...,2,) =0}

is also called a hyperquadric. It follows easily from the classification of sym-
metric matrices that Qg = Q1 (biholomorphic) if and only if rk(S) =rk(T).
In particular, every quadric of rank n + 1is biholomorphically equivalent to
the standard hyperquadric @n_1 ={(20 ... :3) :23+--.+22 =0} Since

Qro1NUp =((1:ty: ... ty) - t%+...+ti:—1}’

(Qrn—1 has no singularity in Uy. The same works in every U;, 80 Q,_; i$ &
projective algebraic manifold.

Now consider the Grassmannian Ga4 — P®. Since dim(Go4) =4, it is a
hypersurface. From multilinear algebra one knows that a 2-vector w € A2C*

is decomposable (i.e., of the formw =aAb) if and only if wA w =0. So

Go4 = {T(w) : wiawsgy — Wi1zwag + wiawoz = 0}
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is a hyperquadric that is isomorphic to Q4. This means that there is a 1to 1
correspondence between the set of projective lines in P2 (which is the same as
the set G2 4 of planes in C*) and the set of points of a 4-dimensional quadric.

5.14 Theorem. Every analytic hypersurface Z C P" as the zero set of a
single homogeneous polynomial.

PrOOF: If Z ¢ P" is an analytic hypersurface, then Z =7"*(Z)U (0)C
C"t! is also an analytic hypersurface. Therefore, there exists an open neigh-
borhood U =U(0) C C**!, a point z € UN Z ,and a holomorphic function
f :U — C with Vf(z) # 0 and ZnU ¢ N(f). Making U smaller if necessary,
we can find a holomorphic function g dividing f such that U N Z =N (9).
Without loss of generality we may assume that U =U’ x U” ¢ C x C" and

g(z1,2) =2f far_1(2)F "+ . +ao(z)
is a Weierstrass polynomial.

If @, is the homogeneous part of a, of degree v, then

1

pr(21,2') = 2f + qro11(2)2f 7 4+ qo ()

is the homogeneous part of g of degree k. Since 7 is conical, it follows that
pk‘z = Vv

Now there is a dense open subset V C U” such that {1 € U’ : g(t,z’) =0}
consists of exactly k points, for every z7 € V. Since N(g)NU ¢ N(px) NU
and deg(px) =k, we have ¢ =pr over V and then everywhere in U, by the
identity theorem. So Z = N (py). =

We can choose a polynomial p with minimal degree such that
Z ={(20 :...:20) €P" :p(z0,...,20) =0}

Then by the degree of Z we understand the number deg(p). For example,
deg(H) = 1for any hyperplane, and deg(&) =2 for any hyperquadric.
Now, let Z C P” be an arbitrary hypersurface of degree &, defined by some
homogeneous polynomial p of degree k. Then

ZNU;={(20:...:20) €U; : zi_k (20, oy 2n) =0},

and the line bundle [Zik given by the transition functions gi; = (2;/2)".
In particular, for every hyperplane H we have the same line bundle [H] with
transition functions z;/2;.

Definition. ¥ H C P” is a hyperplane, then the line bundle O(1) :=
[H] is called the hyperplane bundle.

The kth tensor power of the hyperplane bundle is denoted by O(k).
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If Zc P" is a hypersurface of degree k, then [Z+ O(k).

A homogeneous polynomial F of degree k£ induces a global section sgp €
I'(P™, O(k)) by
(sp)i(20 2+ 2n) =27 "F(20,.-.,2n) for 2 # 0.
In fact, (sp); is a holomorphic function on U;, with
2k
(SF)i = (Sp)j - (i) on UU
24
Obviously,
{zeP”: sp(x)=0}={(z0:...:2,) : F(z0,.-.,2,) = 0}.

On the other hand, let s be an arbitrary global holomorphic section of O(k).
Then s can be represented by holomorphic functions s; :U; — C with

2§ Si(20 0. izp) =zf-si(z0 ... 12,)  on U;nUj,

and we obtain a holomorphic function £ : C**+! — (0)— C with

f(z) =zf - si(n(z)) onm}(Uy).
There is a holomorphic continuation F of f on C**+! with F(\z) =A"" F(z).
This means that F is a homogencous polynomial of degree k, with sp = s.
Consequently, we have the following result.

5.15Proposition. Fork € N the vector space I'(P™, O(k)) is isomorphic to
the space of homogeneous polynomials of degree k in the variables zy, . .., z,.
Analytic hypersurfaces in P™ are exactly the zero sets of global holomorphic
sections o O(k).

For any zo € C"*! — (0) and any k € N there is a homogeneous polynomial
F of degree k with F'(zo) # 0. Therefore O(k) is generated by global sections.

The bundle O(1) can be described in purely geometric terms. For this we
note that if

poi=0:...:0: e IP’"+1,
then a projection 7y :P*+! — {pg} — P is given by
7T()(Z() L. 1Zn Zzn+1) ::(zo Tl Zn)

We obtain local trivializations ¢; 175 ' (U;) — U; x C by

wi(20 1. . 12 Znyr) = ((zo T izZn), zn+1) ,
2
with ;" ((20 : ... :zn),IC) = (20 :...:2n :cz). Obviously this gives the
transition functions z;2; . If F is a linear form on C™*1 then the section sp
isgivenat z =n(z) =(20 :...:2,) by

sp(x) =¢; (2,27 F(z) = (20 : ... :2n : F(2)).




222 Iv. Complex Manifolds

The Euler Sequence. Here we discuss the tangent bundle of the pro-
jective space in more detail. Let = : C**' — {0} — P" be the canoni-

cal projection. Then for any point z € C*** — {0} we have a linear map
@z 1CPHE Tr(z)(P") defined by

paw)lf] = | (Forn(a+tw)).

The vector w can be interpreted as tangent vector &(0) =, o((d/dt)o) with
a(t) ==z +tw. It follows that

Tez(W)[f] = (7 0 )y 0(d/dt)olf] = (d/dt)olf o o] — p,(W)[f].

Since 7 is a submersion and ¢, (z) = 0, the linear map = is surjective with
Ker((pz) =Cz.

If we use the local coordinatest, :=2./2 inU; ={(20 121 :...
then for any z with 2; # O it follows that
ZiW, — wiz,,) 0

©z(W) =Z;( z? 51;

Thus a trivialization v; :T(P™)|u, — U; x C” is given by
1 ~
Piloa(w)) = (7(2), Z (@0, i .s00))

24

with @, =w, — (w;z; 1)z, for v # .

Let ©(1)®+1) be the direct sum of 7 + 1 copies of the hyperplane bundle.
Recall that every linear form F on C**! defines a global section sz of O(1) by
(sp)i = z[lF. Then two vector bundle homomorphisms j : Opr =P x C —
O(1)®+) and q :O(1)®" Y — T(P") can be defined by

j(z,e) == (Sz(2),. .5 82, (T))
and
q(sFo(ﬂ-(z))v . ,SF, (ﬂ-(z))) = SDZ(FO(Z)v . ,Fn(z))7
where Fy, ...,F, are linear forms on C*+!.

Using the canonical trivializations, j and ¢ can be given over U; by
) - -1
Gzt izn)y 0= ((20 1ei20)s € (2027 L 202l )

and
q:((z0 1 ...t 2n), (Wos- .., wn)) — (202 ... Zn), (a0,-- ., a4, ..., a,)),
with a, = w, — (w;z]*)z,. This shows that both of these homomorphisms

have constant rank. Since there is always an index i such that Sz, (z) # 0, j
is injective. Since (1) is globally generated, ¢ is well defined and surjective.

S
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Definition. A sequence 0 — V' 5 V3 V" — 0 of vector bundles is
called exact if the following hold:

1. j and g have constant rank.

2. j is injective and q is surjective.

3. Im(j) =Ker(q).

5.16 Theorem. We have an exact sequence of vector bundles
0 — Opn L5 O(1)®+D) L, 7Py — 0.

The sequence is called the Euler sequence.

PROOF: It is clear that go j(n(z),c) =p,(c-z) =0. If, on the other hand,
x = m(z) and q(sp,(x),...,sF,(2)) = 0, then (Fy(z),...,F,(z)) must be
a multiple of z. So there exists a ¢ € C such that (sg,(z),...,sF,(z)) =

€ (820(T), - .. ,82,(2))- .

Rational Functions. We consider some connections with complex alge-
braic geometry.

A meromorphic function m on P™ is called rational if m =0, or if there are
homogeneous polynomials F and G of the same degree such that F # 0 and

_ F(z0,-..,2)
G0y, 20)

m(zg:...: 2)

5.17 Theorem. Every meromorphac functson on P @& rational.

Proor: If m e .#(P™), then its divisor has a finite representation
le(m) = Zni . Zi 5
K

with n, € Z and irreducible hypersurfaces Z; C P". By the theorem of Chow
every Z; is the zero set of a homogeneous polynomial F; of degree d, > 1.
Then F :=][], F;* is a rational function on C"*+! that is homogeneous of
degree d =3, n;d; € Z.

Since div(m o w) =div(F) on C*+! — {0 },the function f :=(mor).F~1 is
holomorphic there WithO}\lt zeros. It has a holomorphic extension fto Cnt+l

o~

with f(0) # 0, because f cannot have isolated zeros.

For ¢ € C*, the equation f(c-z)=c"? . f(z) is valid on an open subset of
Cn*+1, and then (by the identity theorem) everywhere on C*+!, Thus d < 0
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and ¢=¢ = 1.From f(c .Z) = f(z)it follows that f(z)is a constant wy, and
mom(z) =wo . F(z) a rational function. u

A rational function on a submanifold X C P™ is the restriction m|x of a
rational function »mz on P". We have already seen that every polynomial p
on Uy =2 C™ can be extended to a rational function »2 on P". Therefore, on
every algebraic manifold there is a large number of rational functions.

If A CP" is a projective algebraic set, then A; :=ANU; is called an affine
algebraic set. A complex manifold is called an affine algebraic manifold if it is
biholomorphically equivalent to an affine algebraic set. A regular function on
an affine algebraic manifold j :X < Uj is a holomorphic function f : X — C
such that there exists a polynomial p on U; =2 C™ with f =p oj. It can be
shown that a rational function on an affine algebraic manifold is always a
quotient of regular functions.

In algebraic geometry there is a more general definition for regular functions,
which coincides with our notation in the case of affine algebraic manifolds.
On projective algebraic manifolds all regular functions are constant, whereas
there are many rational functions. In the affine case the field of rational
functions is exactly the quotient field of the ring of regular functions.

If Z C P™ is a hypersurface of degree k, then X :=P" — Z is an affine
algebraic manifold. We can see this as follows:
Let I be the set of multi-indices v = (v, .. .,v,) with v+ . .+v, = k. Then

#(1) = ("}*) is the number of monomials z* = z;° ...zn", v € I. We set
N :=#(1I) - 1and define the Veronese map vin :P* — PN by

Ven(20 0 -..12n) == (2" |V ET).

One can show that vk, is an embedding, and so its image is Vi,n = vg o (P")
an algebraic submanifold of PV. If p is a homogeneous polynomial of degree
k with zero set Z, then there are complex numbers a,, v € I, such that
P =2 ,erawz”. It follows that

Ve n(Z) = Vien N {(wl,)yej : Zal,wl, =O}

vel

is the intersection of Vi, with a hyperplane H C PV. Therefore, P* — Z =
Vi (P? — Z) = Vi, N (PN — H ) is affine algebraic.

Exercises

1. Show that M = {(z0 :21 122 :23) €EP3 : 23 +---+25 =0} is a
projective manifold. Consider the group G :={g™ : 0 < m < 4}, where
g :P? — P3 is defined by
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g(z0 121 129 123) :=(pz0 : 0221 : @329 :Q423), Q@ =#€2ri/5

Prove that X :=M/G is a complex manifold (called a Godeaux surface).

. Let F :C3 — C3 be defined by

F(t,21,22) := (t,az; ttz,a22), a€R 0<|al <1,

Set G ={F™ :m € Z} and prove that X :=(Cx(C2—{0}))/G is a com-
pact complex manifold. Consider the holomorphic map 7 : X — C that
is induced by the projection onto the first component. Then X, :=n"1(¢)
is a 2-dimensional complex manifold. Show that X; is biholomorphically
equivalent to X7 for every ¢ # 0, but that there is no biholomorphic map
between X, and X;. Show that X is a Hopf manifold.

. For wy,...,wa, € C™ define = (wf,...,wf,) € My, 2,(C) and prove

that
w1, - .. ,woy lincarly independent <= det (%) #0.
Let Tq be the torus defined by the lattice T := Zw; + ...+ Zws,. Prove

that Tq is biholomorphically equivalent to T if and only if there are
matrices G € GL,(C) and M € GL2,(Z) suchthat @' =G . Q- M.

. The Segre map o, :P' x P* — P?"+1 ig defined by

on((®o 121), (Yo 1o+ 1Y) =(ToYo :--. 1ZoYn T1Y0 P--. 1T1Yn) -

Show that £, := 0,,(P! x P") is a complex manifold and o, an injective
holomorphic immersion.

. Show that for n > 2, two irreducible hypersurfaces in P™ always have a

nonempty intersection.

. Decompose

A={(20:21:29) : 20 +3222% +225 +42225 + 52528 +325 = 0}

into irreducible components.

. Let d >0 and n > 0. Prove the following theorem of Bertini. If H, 1(d)

is the vector space of homogeneous polynomials of degree d in z, ..., 2,
then there is a dense open subset U C H,,1(d) such that

N(F) ={(20 :... :12,) €P" : F(20,...,2,) =0)

is a projective manifold for every F' € U.

. Use the notation from the introduction to Grassmannian manifolds. For

1€ i set Vi={A €St(k,n) : det A; # 0) and U; =7y, (V1) C
Gik,n- Then

915 (M n(A)) = A7 LA on V; NV,
give the transition functions of a vector bundle Uy on Gy ,. Show that
there are n independent global holomorphic sections in Uy.
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9. Show that H(P",0) =0 for n > 1and H'(P',0(k)) =0 for k > 0.
Prove that there is an exact sequence of vector spaces

HY(P*, Ok — 1)) HY(P",0(k)) » H'(P"!,0(k))

for n > 2 and k& > 1. Conclude that H*(P*,O(k)) =0 for n > 1 and
k>0.

10. Let X be a compact complex manifold and 7 : V — X a holomorphic
vector bundle of rank r > 2. Show that there is a holomorphic fiber
bundle P — X with typical fiber P'~! and a line bundle L — P such
that P, =P(V,) and L|p, = Op,(1).

11. Prove that for every automorphism f of P™ (i.e., every biholomorphic
map f :P™ — P") there is an A € GL,,1(C) with f(n(z)) =n(z- A?).
This is formulated as Aut(P") =PGL,;1(C) = GL,+1(C)/C*.

12. Let I' = Zw; + Zws be a lattice in C and p the Weierstrass function
for this lattice. Show that the map z — (1 : p(2) : ©'(2)) induces an
embedding ¢ of the torus 7 = C/T into P?. Determine the equation of
the image ¢(T) in P?2. Determine transition functions for ¢*O(1).

6. Branched Riemann Domains

Branched Analytic Coverings.Letf : X — Y be a continuous map
between Hausdorff spaces. Then the image of compact sets is compact, and
the preimage of closed sets is closed.

Definition. The map f is called closed if the image of closed subsets
of X is closed in Y. It is called proper if the preimage of compact subsets
of Y is compact.

6.1 Proposition.

1.Iff:X =Y isclosed and A C X a closed subset, thenf|a :A — Y is
closed.

2. Iff isclosed, y apoint off(X),and U an open neighborhood of the fiber
FY(y), then there is an open neighborhood W = W (y) C Y such that
f71(W) cU.

3. Let X and Y be additionally locally compact.

(a) If every point'y € Y has a neighborhood W such that f~* (W) is
compact, thenf is proper.

(b) Iff isproper, thenf is closed.

(¢c) Iff is closed and every fiber f~1(y) compact, then f is proper.

ProoF: (1) is trivial.
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(2) Let f be closed and U be an open neighborhood of some nonempty fiber
f7Y(y). Then W :=Y — f(X —U) is an open subset of Y. If y were not
in W, then there would be a point z € f~!(y) — U. This is impossible, and
therefore W is an open neighborhood of y with f~}(W) ¢ U.

(3a) Let Y be locally compact and K C Y compact. It follows from the
criterion that there are finitely many sets Wy, ..,W,, such that f~1(K) is
contained in the compact set f~1(Wy) U--- U f~Y(W,,). Since f~1(K) is
closed, it must itself be compact.

(3b) Let f be proper and A C X be a closed set. For every y € f(A) there is a
sequence of points z,, € A with lim, f(z,) =y. The set N == {y}U{f(z,) :
v € N} is compact (using the local compactness of Y ),and consequently
f7Y(N) is compact. Thus there is a subsequence (z,,) converging to some
point z € f~1(N) NA. It follows that y = f(z) € f(A).

(3c) Let f be closed and assume that every fiber is compact. For y € ¥
choose a compact neighborhood U of f~!(y). This is possible, since X is
locally compact. By (2)there exists an open neighborhood W of y in Y with
f Y W) C U. Then f~Y(W) C U as well. As a closed subset of a compact
set it is itself compact, and from (3a) it follows that f is proper. =

Definition. A continuous map / : X — Y between locally compact
Hausdorff spaces is called finite if it is closed and if each fiber has only
finitely many elements.

Obviously, every finite map is proper. Conversely, if a proper map has only
discrete fibers, then it must be finite.

Definition. A holomorphic map 7 : X — Y between n-dimensional
complex manifolds is called a branched (analytzc) covering if the following
hold:
1. The map = is open, finite, and surjective.
2. There is a closed subset D C Y with the following properties:
(a) For every y € Y there is an open neighborhood U =U(y) C Y
and a nowhere dense analytic subset A C U with D NU C A.
(b) 7 :X —7 (D) = Y — D is locally biholomorphic.
The set D is called the critical locus. A point x € X is called a branch
poznt if 7 is not locally biholomorphic at . The set B of branch points is
called the branch locus. The covering is called unbranched it B is empty.

The branch locus B is nowhere dense in X .

Now we consider a domain G C C" and d pseudopolynomials w;{w;, z) over
G and define
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A:={(w,z)eCxG :wjwi,z) =0fori=1,..,d}
Let m : A — G be the restriction of the projection pry :C?% x G — G.

6.2 Proposition. The map 7 is surjective, finite, and open.

Proor: (1) The surjectivity follows from the fact that, for fixed z € G,
each w;(w;, z) has at least one zero.

(2)Let M C A be a closed subset and zg a point of w(M). Then there
is a sequence (w,,z,) in M with z, — zp. Since the coefficients of the w;
are bounded near zy, the components of the zeros w, are also bounded.
Consequently, there is a subsequence (w,,,) of (w,) that converges in C? to
some wy. It is clear that (wy, 2o) lies in M. Thus z belongs to 7(M), and 7
is closed.

Since 7 has finite fibers, it is a finite (and in particular a proper) map.

(3) It remains to show that 7 is open. Let (wg, 2Zg) € A be an arbitrary point.
If V(wg) € C?% and W(zg) C G are open neighborhoods, we have to find an
open neighborhood W'(zg) C #(AN(Vx W) ).

By Hensel’s lemma there are pseudopolynomials w} and w}* such that

*

w; =w! W and w}(w;,20) = (w; —w”)™ with m, > 1.

Define
A={(w,z) e VW :uwi(ur,2z) =" =wj(wg,z) =0}

ThenA Cc AN (Vx W) ,and (m|a)"1(zo) ={(Wo,20)}. Since 7|4 is a closed
map, there is a neighborhood W'(zg) C W such that A N (C? x W’) =
(7| a) Y (W) c AN (V x W). Since also 7|4 : A — W is surjective, it follows
that

W =m(AN(C* x W) cr(AN(V x W)).
Thus 7 is open. u

Remark. IfX C A isan irreducible component that is everywhere regular
of dimension n, then the same proof shows that 7|x is.also surjective, finite,
and open. If D C G is the union discriminant set for A, then 7 : X =+ Gis a
branched analytic covering with critical locus D.

Branched Domains. A continuous map f : X — Y between Hausdorff
spaces is called discrete at * € X if the fiber f~1(f(x)) is a discrete subset
of X. The map f is called discrete if it is discrete at every point = € X.

A holomorphic map f : X — Y between complex manifolds is discrete at
xo if and only if there is an open neighborhood U = U(xo) CC X with
[ (o) & f(OU).
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Now let M be an n-dimensional complex manifold.

Definition. A branched domain over M is a pair (X, ) with the fol-
lowing properties:

1. X is an n-dimensional connected complex manifold.

2. 7 :X — M is a discrete open holomorphic mapping.

Let m : X — M be a branched domain and xzy € X an arbitrary point.
We can choose a coordinate neighborhood B of 7(zy) in M such that B is
biholomorphically equivalent to a ball in C* and n(zy) = 0. Since 7 is discrete
and open, there is a connected open neighborhood U = U(zg) CC X such
that m(U) C B is open and 7~1(0) N U ={z,}. We assume that 7(U) = B.

Define j :U — U x B by j(z) := (z,7(z)). Then j is a holomorphic embed-
ding, and
A :=jU)=A{(z,2) €U x B : z =n(z)}

is a regular analytic set in U x B. We have a factorization 7 =7 o j, with
T = pryla. Let wq,...,w, be complex coordinates near zo in U. It follows
from the results of Section 111.6that over a small neighborhood of O in B there
are pseudopolynomials w;(w;, z) such that A is an irreducible component of
the embedded analytic set

A\={(W,Z) twi(w;,z) =0fori=1,...,n}.

If D C B is the union of the discriminant sets of the w;, then A (and therefore
also A ) is unbranched over the complement of D. Therefore, if 7 : X — M is
a branched domain, then for every z € X there is a neighborhood U(z) € X
and a neighborhood W (f(z)) C M with #(U) =W such that 7|y : U - W
is a branched analytic covering.

IfM =C" or M = P" then a branched domain over M is also called a
branched Riemann domain.

Definition. Two branched domains (X1,7m1) (over M ) and (X5, 72)
(over N ) are called equivalent if there are holomorphic maps ¢ : M — N
and ¢ : X; — X5 such that the following diagram commutes:

X, 5 X,
LU Lo
M %2 N

Torsion Points. As an example we consider a polydisk P = P~(0,r) C
C™, a positive integer b, and the set

Xo :={(z,w) € PxC :w’ -2z =0},
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together with the projection 7o :(z,w) — z. Then Xj is a regular analytic
hypersurface in P x C and consequently an n-dimensional complex manifold,
which is the Cartesian product of a polydisk P’ € C*~! and a neighborhood
of the origin in the Riemann surface of w = {/z. It is unbranched outside
{z 12, =0).

Definition. Let (X,7) be a branched domain over some manifold M.
A point zg € X is called a rorsion point (or winding point) of order b if
there is an open neighborhood U = U(zp) C X such that 7 : U — #w(U)
is equivalent to 7wy : Xo — P. In this case we say that 7|y is a winding
covering.

We consider the local case, i.e., a branched analytic covering 7 : X — Q over
some polydisk Q C C™ around the origin, and we assume that it is branched
of order b over O and unbranched outside {z € Q : 23 = 0). Then X’ :=
X—n71({z; =0}) is still connected, and the covering 7 : X — Q is equivalent
to mg : Xo — P. For a proof see [GrRe58], §2.5, Hilfssatz 2. One shows that the
two coverings outside the branching locus have the same fundamental group.
Therefore, they must be equivalent there. Using the theorem of Remmert—
Stein it follows that X and X, are equivalent.

The following is now immediate.

6.3 Proposition. Let (X, 7) be a branched analytic covering over M, with
branching locus D. If zo € X is apoint such that zo = w(xq) is a regular point
of D, then there are neigborhoods W = W(xg) ¢ X and U =U(zp) C M
such that m : W — U is a winding covering.

The proof follows simply from the fact that one can find coordinates such
that locally the situation above is at hand, and then X is locally equivalent
to Xp.

Concrete Riemann Surfaces. A concrete Riemann surface is a
branched Riemann domain 7 : X — C or m : X — P! It is an abstract
connected Riemann surface, and in the latter case it may be compact. The
infinitely sheeted Riemann surface of w = logz is not a concrete Riemann
surface in our sense.

Here is a method for constructing concrete Riemann surfaces. Let X be a
Hausdorff space, M =C or M =P!, and 7 : X — M a continuous mapping
such that for every zg € X there is an open neighborhood U = U(zg) C X,
a domain V C C (in the case M = C), respectively a domain V in an affine
part = C of M (in the case M =P1) and a topological map ¥ : V — U with
the following properties:

1. 7 ot : V — C is holomorphic.
2. (m o) does not vanish identically.

S
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The map ¢ is called a local uniformization.

Obviously, (U,4~1) is a complex coordinate system. We have to show that
two such systems (Uy, 47 1) and (Uz, ¢ ') are holomorphically compatible.
We consider only the case M =C. The map

Y= 7 ody sy H(Ur NU2) — 47 YU N Uy)

is a homeomorphism. We denote the set ¢ ' (U1NUy) by V3. Then D, = {t ¢
Vi i (mot)/(t) =0} is discrete in V5*, and therefore Dy :=¢~Y(Dy) C Vi
is also discrete. Let to be a point of V¥ — Dy. Then

(m o 1) (¥(to)) # 0.

Therefore, there are open neighborhoods U = U(¢(ty)) € Vi* and W =
W(zo) C C (forzg = m(2(to))) such that oy :U — W is biholomorphic.
Then 7|y, @y :9¥1(U) — W is a homeomorphism, and

¥ =11t o (7|, @y) P omoy = (nar) o (moqhy), on V =y~ ().

Since V is an open neighborhood of fo, we see that 1 is holomorphic on
V5 —D2. As a continuous map it is bounded at the points of D5, and therefore
it must be holomorphic everywhere in V.

From the above it follows that X is a Riemann surface, and obviously 7 is a
holomorphic map. We still want to see that it is a finite branched covering.
If zg € X, then there is an open neighborhood U = U(zy) C X and a local
uniformization ¥ : V — U. We define ® :U — V x 7(U) C C? by

B(z) =¥~ (z), 7(2)).

Then ®(U) ={(z,w) € Vx=(U) : woy(z) = w}. Restricting the projection
(z, W) = w, we obtain a branched coveringp : ®(U) — n(U) that is equiva-
lent to 7y :U — w(U). Let be f :=m o1 and zg =¥~ 1(zo). If f'(z0) # 0,
then p is unbranched. If £" has an isolated zero of order k at zg, then

f(2) = (w0) +(z — 20)" - h(2),

where £ is a holomorphic function with h(zg) # 0. It is clear that then p is
branched of order k, equivalent to the Riemann surface of {/z.

Hyperelliptic Riemann Surfaces.For g > 2 choose 2¢g + 2 different
points 21,22, ...,22¢+1, 22g+2 in Xo :=P!. We assume that they are all real,
in natural order, and not equal to oo.

Now we take two copies X1, X2 of P! regarded as lying above X, and cut
them along the lines £; between zu,+1 and 29,42, { =0,...,g. We define
X5 ={te X :Im(t) < 0)

and X :={re X, : Im(t) >0}
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Figure IV.2. The hyperelliptic surface

and glue X5 to X along the cuts ¢;, and similarly X; to X

We obtain a topological (Hausdorff) space X that lies as a branched cover-
ing of order 2 over P! (see Figure IV.2). It is branched only at the points
21, .- 122442, and at each of these points it looks exactly like the Riemann
surface of /z over the origin. Therefore, it is clear that X , together with the
canonical projection 7 : X — P', is a concrete Riemann surface. It is called
a hyperelliptic surface.*

A curve going in X[ from 22,11 to 29,42 and then in X, back to 2241
defines a cycle C} in X, i = 0,...,9. Similarly a curve in X; which goes
from 22,42 to 22;43 and then in X, back to 22,42 gives a cycle C) in X,
i =0,...,9 — 1. Finally we define C] by going in X1 from 2242 through
0o to z; and then in X, back to 29442. So H1(X,Z) is generated by the
2g+2 cycles Cy, . ..,Cy, Cf, ... ,CJ. But C' :=C +- .. +Cy is the boundary
of Xy, and C” :=C{ + ...+ CJ is the boundary of X;" U X; . Therefore,
Hi(X,Z) = Zy(X,2)/B1(X,Z) = 2% (and Ho(X,Z) = Z, because X is
connected). It follows that H'(X,Z) = Z*Y. The number

rk(HY(X, Z))

N}
Il
Q
—_
<
p—
I
Dl
<o
—
=
p—
I
N

is called the genus of X . Recalling that P! is the Riemann sphere, we replace
Xs by the complex conjugate Xo and glue X; and X4 inserting tubes into
the cuts ¢;. Thus we realize X as a sphere with g handles.

Now we give a more analytical description of the hyperelliptic surface. Define

2g+42
X' = {(s,t)e C? 1 s? = H (t —zi)},
i=0
4 In the case g = 1 we would get an elliptic surface that is isomorphic to a 1-

dimensional complex torus.
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and 7' : X' — C by n(s,t) = t. This is a branched covering with branching
locus D ={z1,...,22g12}. For F(t) :=Hfig2(t—zi), the function s = +/ F'(t)
is well defined on X'".Over {t€ C : |t| > R}, X’ consists of two disjoint
punctured disks. Therefore, we can complete X’ to a compact Riemann sur-
face X by filling the points at infinity, i.e., the punctures. The map =’ can
be extended continuously to a map m : X — PL. It follows by the Riemann
extension theorem that 7 is holomorphic, and X is a branched covering of
order 2 over P! with branching locus D.

Remark. The Riemann surface X is not the completion of X’ in P2,
The projective analytic set X/, which has {s? = F(¢)} as affine part, has a
singularity at infinity.

The functions ¢ and s = \/F(#) extend to meromorphic functions f and g on
X that have poles of order 1,respectively g + 1,0ver oc.

We now calculate H!(X, ©). For this the following is an essential tool.

6.4 Serre's duality theorem. IfX is a compact Riemann surface and 'V
an analytic vector bundle over X , then H*(X,V )and H(X,Kx ®@ V') are
finite-dimensional vector spaces of equal dimension.

PrROOF: See [Nar92], page 47. n

In the case V = Ox = X x C we have H1(X,0) = H%(X, Kx). So we need
some remarks about the canonical bundle Ky .

1.Let U = (U,).cr be an open covering of X such that there are complex
coordinates ¢, : U, — C. We denote the complex coordinate on U, by ¢,.
Then the line bundle Kx is given by the transition functions

dt,

dt,’

A holomorphic 1-form on X is a global section w € I'(X,T(X)") =
H(X,Kx). We can write w|y, = w,dt,. Then w,dt, = wedt, on U,
and therefore w, =g, .w.

2. On P! we have two systems of complex coordinates, namely, tg :=2; /20
on Uy = {(20 :21) : 20 # 0} and ¢; := 20/2; on Uy. We denote to by ¢
and —¢; by s. Then on Uy; we have s = —1/t. Using s and ¢ as complex
coordinates, the canonical bundle on P! is defined by

_@_i( 1>~l_ Z0 2

R TR TR _t_Q_(Z) '

This is also the transition function of the bundle [D] associated to the
divisor D = - 2.0¢0. Therefore,

HO(P!, Km) = H(P',[D])
= {me M(P")* :ordy(m) > 2 and ord,(m) > 0 otherwise}.

G =
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But such a function m is holomorphic and vanishes at oo, and conse-
quently is identically 0. Thus H°(P*, Kp1) =0.

3. Let X be a compact Riemann surface, and wi,ws € H°(X,Kx) two
holomorphic 1-forms. In local coordinates wy|y, = wMdt,, for A =1,2.
Then fly, :=w® /w defines a global meromorphic function f on X
such that ws = f .w1.

Now we return to the hyperelliptic surface X . A holomorphic map j : X — X
is defined by (s,t )— (—s,1).Clearly, j permutes the two leaves, and j2 =id.
This map is called the hyperelliptic involution, and it induces a linear map
§* tHYX,Kx) - H°(X,Kx) with (j*)> =id. We get a decomposition of
H°(X, Kx) into the eigenspaces associated with the eigenvalues £1. But if
j*w = w,then w = m*(), where ¢ is a holomorphic 1-form on P!. Since
HO(P', Kp) = 0, it follows that w = 0. Thus j*w = —w for every w €
HY(X,Kx).

The equation s> = F(t) implies that 25 ds = F/(t)dt. If s(t) =0, then ¢ =z
for some k. But F'(zx) =[[;2x(2k — 2i) # 0. Therefore,

dt 2ds
ST OFI(Y)

W ‘=

is a holomorphic 1-form on X'. Near oo we have s(t) =~ t9*! and therefore

wo ~ (1/t)971d(1/t). This shows that wp is a holomorphic 1-formon X that
has a zero of order g — 1 over co. The same argument shows that the 1-forms
w, :=t¥ .(dt/s) are holomorphic on X, forv =1,...,9 — 1.

Now let w be an arbitrary element of H°(X, Kx). Then there is a meromor-
phic function f on X with w = f-wy. Since wy has no zero over P! — {0}, f is
holomorphic there. And since j*w = —w and j*wy = —wo, we have j*f =f.
This means that f = 4 o x for some meromorphic function 2 on P! that is
holomorphic outside co. Consequently, /4 is a polynomial, say of degree d. It
has d zeros in C and a pole of order d at oo. It follows that f also has a pole

of order d at every point above co. Since w = f .wp is holomorphic, d < g — 1.

Therefore, w is a lincar combination of the 1-forms
dt dt -1t

s IR

S S S

It follows that dime¢ H(X, Kx) =g.

6.5 Proposition. If X is a hyperelliptic Riemann surface, then the genus
g —g(X) is equal 10 dim H (X, Kx).

We will later see that the same result is true for arbitrary compact Riemann
surfaces.
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Exercises

1.Let # : X — M be a branched analytic covering with critical locus
D C M. Show that if there is a point yg € D such that D has codimension
2 at yo, then there is no branch point in 7~ (yo).

2.Letw : X - M, and ' : X' — M, be branched analytic coverings
and D, respectively D', the critical locus. Prove that if X — 7~ 1(D) is
equivalent to X' — (n/)~}(D’), then X is equivalent to X .

3. Consider the holomorphic map F : C2 — C? defined by

(w,21,22) = F(t1,t2) = (t1 - 2,13, 83) .

It is the uniformization of a 2-dimensional analytic set A C C3. Show
that A — {0} is a branched domain over C? — {0}. What are the torsion
points? Describe A as the zero set of a pseudopolynomial w(w,z). Is A
also a branched domain in our sense?

4, Let F be a homogeneous polynomial of degree k£ and

X = {(zoz el Zn i Zpgy) EPPTL 2k — F(zo,.-.,20) =0} .

Assume that D == {(z :... :2,) € P* : F(z0,...,2,) = 0} is regular
of codimension 1 and prove that the canonical projection 7= : X — P
is a branched Riemann domain. Determine the torsion points and their
orders.

5. Define ¢ :P* — P" by ¢(29 : 21) := (2§ : zg-121 : ... : 2}) and prove

that the image C := ¢(P') is a regular complex curve in P". Define
X = {(p’H) €C x Gn,n+1 tPE H},

where an element H € G, 5,41 18 identified with a projective hyperplane
in P". Show that the projection # = pr, : X — G, 41 is an n-sheeted
branched covering.

6. Let X C P™ be a d-dimensional connected complex submanifold. Prove
that there is an (n— d — 1)-dimensional complex projective plane E C P™
not intersecting X, a d-dimensional complex projective plane F C P™
with £ NF =@, and a canonical projection 7 : P* — E — F such that
#n|x :X — F is a branched domain.

7. Modifications and Toric Closures

Proper Modifications. Assume that X is an n-dimensional connected
complex manifold and A C X a compact submanifold. Is it possible to cut
out A and replace it by another submanifold A’ such that X' = (X —A JUA’
is again a complex manifold? In general, the answer is no, but sometimes such
complex surgery is possible. Then we call the new manifold X' a modification
of X,
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Definition. Let f :X — Y be a proper surjective holomorphic map
between two n-dimensional connected complex manifolds. The map f is
called a (proper) modification of Y into X if there are nowhere dense
analytic subsets £ C X and S C Y such that the following hold:

1. f(E) cCcS.

2. f maps X — E biholomorphically onto Y — S.

3. Every fiber f~1(y), y € S, consists of more than one point.
The set S is called the center of the modification and E = f~1(S) the
exceptional set.

Assume that we have a proper modification f : X — Y with center S and
define

o~

X ={(y,z)eYx X :y=f(x)} and @ :=prlg:X Y

Then X is an n-dimensional connected closed submanifold of YXX . IfK CY
is compact, then w‘l(K)\ = (Kx X)NX is a closed subset of K x f~1(K) and
therefore compact; 7 : X —7~1(S) = Y — S is biholomorphic, with inverse
y > (y, f7'(y)); and for yo € S we have 7™ (yo) = {(%0,2) : f(z) = yo} =
F~Y(yo)- This is a set with more than one element.

Therefore, we can generalize the notion of a proper modification in the fol-
lowing way.

Let X and Y be two connected complex manifolds. A generalized (proper)
modification of Y in X with center S is given by an irreducible analytic subset
X of the Cartesian product Y x X and a nowhere dense analytic subset S C'Y
such that

1. m :=prylg X > Yis proper.

2. 7=1(S) is nowhere dense in X.

3. X —n1(S) is a complex manifold.

4. 7 maps X — 7~1(S) biholomorphically onto ¥ — S.

5. X has more than one point over each point of S.
The center S is sometimes also called the set of indeterminacy.

If X is a manifold, then 7 : X — X is an ordinary modification of X into X
with center S.

7.1 Proposition. 7~Y(S) has codimension 1 in X.
PRrRoOOF: We consider only the case where Xis regular. A proof of the general
case can be found in [GrRe55].

Assume that zo € 7~*(5) is isolated in the fiber of 7 over Yo :=7(zo). Then
there is a neighborhood U of z¢ in ¥ x X such that U N X is a branched
covering over Y. Since yo lies in S, there must be at least one additional
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point z; € X in the fiber over yo. But then in any small neighborhood
of yo there are points y € Y — § with several points in 7~ !(y). This is a
contradiction. Therefore, dim,, 7~ *(m(zg)) > 0. This is possible if and only
if tkyo (7) <n :=dim(Y"), and this shows that 7=*(S) in local coordinates is
given as the zero set of det J,. Therefore, it has codimension 1. n

Blowing Up. Let U =U(0) be a small convex neighborhood around the
origin in C™*!. We want to replace the origin in U by an n-dimensional
complex projective space. If 7 :C*+! — {0} — P™ is the canonical projection,
then every line Cv through the origin determines an element z = w(v) in the
projective space, and x determines the line ¢(z) = n~1(x) U (0) such that
Cv ={(n(v)). Now we insert P™ in such a way that we reach the point z by
approaching the origin along ¢(x).

We define
X :={(w,z) €U xP" :w € {(x)}

This is a so-called incidence set (another example is considered in Exercise
6.5). We first show that it is an (n + 1)-dimensional complex manifold. In
fact. we have

(w,m(z))€X <<= z#0,and 3Xxe€Cwithw =Xz

3¢ with z; £ 0 and w; = Wi - 25 for j # i
25

— z# 0and z;w; — w;z; =0 for all i, 5.

N

So X is an analytic subset of U x P*, with
XN x Up) =2{(w,t) eU xC" : w; =wptj forj =1,...,n}.

In U x U; (for i > 0) there is a similar representation. It follows that X is
a submanifold of codimension # in the (2n + 1)-dimensional manifold U x
P". The map ¢ := pr;|x : X — U is holomorphic, mapping X — ¢='(0)
biholomorphically onto U — {0} by g : (w,z) — w and ¢~ :w — (w,m(W)).
Obviously, ¢ is a proper map.

The preimage ¢~1(0) is the exceptional set {(0,z) : 0 € £(z)} ={0} x P".
So g : X — U is a proper modification. It is called Hopf’s o-process or the
blowup of U at the origin.

If w # 0 is a point of U and (\,) a sequence of nonzero complex numbers
converging to 0, then ¢~ (A W) = (A, w, m(w)) converges to (0,7 (w)). This
is the desired property.

The Tautological Bundle. We consider the case U = C™*1, ie., the
manifold
F :={(w,z) € C"*! x P" : w € {(x)}
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and the second projection
p :=pry|p : F — P".

Then p~?! (x)=£(x) is always the complex line determined by z. The manifold
F looks like a line bundle over the projective space. In fact, we have local
trivializations o; : p~'(Us;) — U; x C defined by ¢;(w,z) := (z,w;). Clearly,
; 18 holomorphic. In fact, it is biholomorphic with inverse map

@%@@@»(ﬁmm@)

So over Uiy,

~

P4 O(Pj_l(ﬂ-(z%C) = (plkz -Z,?T(Z)) = kﬂ'(Z),C‘ Z)
Hence F has the transition functions g;; = 2z;/2;, and consequently, it is
the dual bundle of the hyperplane bundle O(1). It is denoted by O(—1) and
is called the fautologzcal bundle, because the fiber over x € P is the line
¢(x), which is more or less the same as xz. Sometimes F is also called the
Hopf bundle, because it lies in C**1 x P™ and the projection onto the first
component is Hopf's a-process (see Figure 1V.3).

Let j : F — P" x C™™ be defined by j(w,z) :=(z,w),and J; :U; x C —
U, x C™+1 by

Ji(m(2),¢) == (ﬂ(z), < .z).

2
Then we have the following commutative diagram:
Fly, £ Ui xC
Jd 4J;
U, x Cr*tt  ~ [, xCrt+l
This shows that F is a subbundle of the trivial vector bunc : P™ x C™1. In

particular, it follows that I'(P", O(—1)) =0; i.e., there is no global holomor-
phic section in the tautological bundle.

There is an interesting geometrical connection between F and F'. Consider
the point zg := (0 :...:0: 1)€ P"*! and the hyperplane

Hy :={n(z) € Pl oz =0}

Then the hyperplane bundle F' — O(1) is given by the projection 7y :
Pr+1 — {20} — Ho = P", with

T3 (20 tevni2n 12p41) 1=(20 1... 120 :0).
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7 1(0) = P"

v

Figure IV.3. Hopf’s a-process

Here Hy is the zero section of O(1). Removing the zero section gives a man-
ifold isomorphic to @+ - /0}, and the fibers of the hyperplane bundle
correspond to the lines through the origin. Blowing up the point z; gives
us an additional point to each fiber and so a projective bundle F’ over P*
with fiber P!. But looking in the other direction, F7 — Hy is nothing but the
tautological bundle O(—1) over the exceptional set of the blowing up.

Quadratic Transformations. We consider the case n = 1. Let M
be a 2-dimensional connected complex manifold and p € M a point. Let
U = U(p) C M be a small neigborhood with complex coordinates z, w such
that (2(p),w(p)) =(0,0). Let X CU x P! be the blowup of U at the origin.
Then

Qp(M) :=(M-U)UX = (M- {p])up

is again a 2-dimensional complex manifold, with a nonsingular compact an-
alytic subset N =P! and a proper holomorphic map qp 1 Qp(M) + M such
that ¢;'(p) = N and g, : @p(M) — N — M — {p} is biholomorphic. We call
Q,(M) the quadratic transformationof M atp.

Let F : M3 — M5, be a biholomorphic map between 2-dimensional complex
manifolds and F(p1) =p2- Let ¢1 : Qp, (M1) — My and g2 : Qp, (M2) — M>
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be the quadratic transformations. Then there exists a biholomorphic map
F :Qp (Mi) — Qp,(Mz) such that g» o F = F o ¢;. This follows directly
from the construction, and it shows that the quadratic transformation is a
canonical process.

In [Ho55] Hopf proved that every proper modification with a single point as
center is a finite sequence of quadratic transformations.®

We consider the quadratic transformation ¢ : Qo(U) — U, where
U={(z,w)€C? :|z| <r1 and |w| <r2}. t

Then Qo(U) ={(z, w/¢ 7)) € U x P! : 2n —w( =0) =Uy U Uy, with

Il

{(n,z) € C? : |2n| < r2 and |2| < 11},
{(Cw) €€ : | < ry and Ju] < 72}

Uy
Uy

1%

and 1
w=2n and ngonUoﬂUl

Thus ¢ is given by
(m,2) = (z,2n)  and ((,w) = (w, w).

Consider, for example, the curve C :={(z,w) € U : w? =23}, which has a
singularity at the origin. Then

q;l(C—{O})ﬂUo = {(n,2) ey :zyé()andz—n2:()},
q_l(C_{O})ﬂUl = {(¢,w)e U, cw #0and 1—w§3:0}_

In Uy — Uy we have ¢ = 0. So ¢~ }(C — {0}) lies completely in Uy, and its
closure in Qo(U) is the singularity-free curve C' :={(n,z) : 2 =n?}. We
call it the strict transform of C. The map ¢ : C' — C is called a resolution
of the singularities of C. One can show that for any curve in a 2-dimensional
manifold the resolution of the singularities is obtained by successive quadratic
transformations. A proof can be found, for example, in [Lau71].

If a 2-dimensional manifold M contains a compact submanifold ¥ = P!, one
can ask whether Y is the exceptional set of a blowup process (then one says
that Y can be “blown down” to a point). Here we give a necessary condition.

We determine the transition functions for the normal bundle of the fiber
Fy := ¢~ 1(0) in Qo(U). The divisor Fy is the zero set of the functions fo :
Uy — C with fo(n,2) ==z and f1 : U3 = C with f1({,w) := w. Therefore,
the associated line bundle [EFp] on Qq is given by the transition function

5 In algebraic geometry this was already known at the beginning of the twentieth
century, for example by the italiens G. Castelnuovo and F. Enriques.
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go1(z,w,(C:n)) = i = E on Uy NUj.

But ¢, 7 are the homogeneous coordinates on Fy 2 PL. So Ng, (Fo) = [Fol|r,
is described by the same transition function as the tautological bundle O(—1).
It follows that a submanifold ¥ = P! in a complex surface M can be excep-
tional only if Ny (Y) = O(~1).

We give a topological interpretation of this criterion. We set

sg =1lonly and s :=z—1 on Uy,
20
which defines a meromorphic section s in O(—1) that has no zero and
only one pole at oo = (0 : 1).We can use this section to calculate the self-
intersection number Y . Y. Since more knowledge about topology is needed
for the complete calculation, we can give only a sketch.

The self-intersection number of a compact submanifold ¥ C M can be de-
scribed as follows. Take a copy Y’ of ¥ (which need be only a topological or
piecewise differentiable submanifold of M ) such that it intersects Y transver-
sally. Then the intersection ¥ N Y’ is a zero-dimensional submanifold, i.e., a
finite set. Now count the number of these intersection points respecting orien-
tation. The result is the self-intersection number. Furthermore, one can show
that if Z C Np(Y) is the zero section, then ¥ .Y =Z - Z, and the number
Z - Z can be calculated by intersecting Z with some not identically vanishing
(continuous) section Z’. We obtain such a Z’ in the following way. Let s be
the meromorphic section in N = N, (Y') mentioned above. Choosing appro-
priate coordinates near oo, we can there write N = {(z,w) € C? :|z| < 1)
and s(z) = (2,1/z) (since s has a pole of order one). For 0 <& < 1and
|2| =& we have s(z) = (z,Z/¢%). Then we define 5 by

s(z)  for |z| > ¢,
5(2) = (z, %) for |z] < e.
€

So 5 is a piecewise differentiable section, homologous and transversal to the
zero section with one zero of order 1. Since Z gives an orientation opposite to
that defined by z, we have the self-intersection ¥ .Y = —1.

If ¥ = P! is exceptional, then Y .Y = —1. Tt is a deeper result that the
converse of this statement is also true (cf. [Gr62]).

Monoidal Transformations. We consider a domain G C C™ and
holomorphic functions fo,. .., fx on G such that A :=N(fy,...,fx) € G
is a singularity-free analytic subset of codimension k + 1. Then we define
f:=(fo, -+ k) :G — C*+1 and
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X = {(w,z)€GxPF:f(w)el(x)}
= {(w,7(2z)) €GxP* : zifj(w) —2; fi(w) =0for i, j=0,...,k}.

The map p :=pr;|x : X — G is holomorphic and proper. For wg € G—A we
have p~1(wo) = {wo}xP*, whereas p : X —p~*(A) — G- A is biholomorphic
with p=1 1w o> (W, (fo(W) © ... : fi(w)).

The set X is called the monoidal transformation of G with center A, The
exceptional set E(f) :=p~1(A) is the Cartesian product A x P*. In the case
k=n - 1land f; =z for i =0,. ..,k this is the a-process.

One can show that the monoidal transformation is also a canonical process.
Therefore, it can be generalized to an n-dimensional connected complex man-
ifold M and a submanifold A C M of codimension k + 1. Then the monoidal
transformation of M with cenler—A is an n-dimensional manifold M with a
hypersurface E C M such that M — E =2 M — A. The exceptional set E is
a fiber bundle over A with fiber P*. The fiber over x € A is the projective
space P(N,), where N = Nps(A) is the normal bundle of A in X . The divisor
E determines a line bundle L :=[F] on M with L|pn,) = Op(n,)(—1). We
leave the details to the reader (see also Exercise 5.10).

Meromorphic Maps. Let X be an n-dimensional complex manifold
and f a meromorphic function on X with polar set P and § C P its set of
indeterminacy points. Then f is holomorphic on X — P, and we can extend
it to a holomorphic map f : X —S — P! by setting f(z) :=oco forz € P —S.
The set

Gr:={(zy) € X-S)x P! :y= f(z)}

is called the graph of f.Let Gy ¢ X x P! be the closure of the graph in
X x P

7.2 Proposition. The graph Ef is an irreducible analytic subset of X x P!
and defines a proper modification of X inP' with S as set of indeterminacy.

PROOF: Let zop € P be an arbitrary point. Then there is a neighborhood
U =U(zo) € X and holomorphic functions g, 4 : U — C such that f(z) =
g(x)/h(zx) for x € U —P. We can assume that g, and A, are relatively prime
forz € U. Then PNU =z €U :h(z) =0} and SNU ={x€U :g(z) =
h(z) = 0}. Hence P is a hypersurface and S has codimension 2 in X. Then
dim(S x P') <n and Gy C (X x P') — (S x P') is an n-dimensional analytic
set. By the theorem of Remmert and Stein its closure Gy in X x P! is also
analytic. In fact, we have

G (U xPY) ={(z, (20 :21)) €U x P : 299(x) — z1h(z) =0}.

The map = :=pr, :éf — X is obviously a proper holomorphic map, with
a~Yz) = {z} x P! for = € S and
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7T_1(.Z‘) _J (=0 :f@) forxr € X — P,

(z,(0: 1)) forx € P - 8.
Som :Gy —m'(S) - X — S is biholomorphic, and G defines a proper
modification of X in P! with indeterminacy set S. As usual, X is assumed
to be connected. Then Reg(Gy) is also connected, and G irreducible. "

Now we consider the notion of a meromorphic map. To develop the correct
point of view, we start with a very special case. Let

O™ :=P' x...x P!
S —
m times
be the so-called Osgood space. If fi,...,fn are meromorphic functions on
X without points of indeterminacy, then they define a holomorphic map
f =(f1,...,fm): X — Q™ I f; has a set S; as set of indeterminacy, we

define § :=51U-..US,,. Then f is a holomorphic map from X —§ into Q™.
Again we have its graph:

G ={(Z;y1,- -, ym) E(X = S)x O™ :y; = fi(z) for i =1,...,m}.
For xy € § we define
Te(2zo) :=={y e O™ : 32, € X - § with x, = zp and f(z,) = y}.
Then 7¢(zg) is a nonempty compact subset of Q™. Setting 7¢(z) :={f(z)}
forz € X — S, we get amap 7¢ from X into the power set P(QO™).% We define
Ge ={(z,y) €X xO™ :y € me(x)}.

One sees easily that Gy is the topological closure of GrinX x O™, We cannot
apply the Remmert-Stein theorem to show that G¢ is an analytic set, but
locally it is an irreducible component of the analytic set A with

An(Ux0™) = {(z;(z) :21),..,(28" :21")) €U x O™ :

z3g1(z) — zihi(2) = = 20" gm(x) = 27 hm(2) = 0/,
where f; =¢;/h; on U — Pi, for i = 1,...,m. We could carry out the simple
proof here, but we refer to [Re57], Satz 33,

Definition. A meromorphic map between complex manifolds X and
Y is given by a nowhere dense analytic subset S C X, a holomorphic
map f : X — 8§ — Y, and an irreducible analytic set X C X x Y such
that

fopr; =pr; on XN ((X —S)xY)
and 7 :=pry|g : X — X is proper and surjective. The set S is called the
set of indeterminacy of f. We also write f : X — Y.

8 As usual, the power sef P(M) of a set M is the set of all subsets of M.
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We define 74 : X —+ P(Y) by 7¢(x) :=pry(m~'(z)). Then 74(z) is always a
nonempty compact set, and

X ={(zy)eXxY :yers(z)}

For x € X — S we have 77'(z) = {(z, f(z))}, and for z € S we have
7 1(x) =X N({z} x Y).This is a compact analytic set. If S is minimal, then
7 : X — X is a proper modification with center S.

So alternatively we could have defined a meromorphic map between X and
Y to be amap 7 : X ~+ P(Y) such that:

1. X ={(z,y) € X x Y : y € 7(z)} is an irreducible analytic subset of
XxY. N
2. 7 :=pr;|g : X — X is a proper modification.

This definition is due to Remmert.

A meromorphic map is called surjective if pr, ()? ) =Y.If f is a surjective
meromorphic map between X and Y and g a meromorphic map between Y
and Z, then it is possible to define the composition g o f as a meromorphic
map between X and Z (cf. [Ku60]). But it is not a composition of maps in
the set-theoretic sense!

Any meromorphic function f on X defines a meromorphic map between X
and P!, any m-tuple (f1, ..., fm) of meromorphic functions a meromorphic
map between X and Q™.

7.3 Proposition. Let f : X —+ Y te a proper modification of Y with center
S. Then f~! : Y — X is a surjective meromorphic map with S as set of
indeterminacy.

PRrROOF: We use the analytic set
Y ={(yz)eYxX :y=fa)} ={w,2) e Yx X :z € [y}

Then f=! : Y — S —+ X is holomorphic with f=! o pr,(y, z) =f"1(i/) =2 =
pro(y, z) for (y,2) €e Y N ((Y-S)x X). Obviously, 7 :=pr,lyp : Y = Y is
a proper holomorphic map. It is surjective, since f is surjective. Finally, we

-~

have pry(Y) = X. So f~! defines a surjective meromorphic map. m

Toric Closures. Let X be an n-dimensional complex manifold. A clo-
sure of X is an n-dimensional compact complex manifold M such that X is
biholomorphically equivalent to an open subset of M. We are interested in
closures of X =C".

In the case n = 1 the situation is simple. Assume that we have a compact
Riemann surface M that is a closure of X = C. Then we define f : M —{0} —
C by
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) 1/z forz€ C - {0},
f(2) '={ 0 otherwise.

The function f is continuous and is holomorphic at every point z with f(z) #
0. By the theorem of Radé-Behnke—Stein—Cartan (cf. [Hei56]) f is everywhere
holomorphic. But then the zero set N(f) is discrete. We can consider f as
a meromorphic function on M with exactly one pole of order one at z = 0.
So f can have only one zero (cf. [Fo81], Section 1.4, Proposition 4.24 and
corollary), and M must be the Riemann sphere P*, the well-known one-point
compactification of C.

In higher dimensions one can find several closures of C™. In [Bie33] an injective
holomorphic map 38 : C? — C? is constructed whose functional determinant
equals 1everywhere and whose image U = 3(C?) has the property that there
exist interior points in C? — U. We can regard U as an open subset of P2.
Then P2 is a closure of C2 22 [/, but this closure contains interior points in
its boundary. We want to avoid such "pathological” situations, even if they
may be interesting for those working in dynamical systems.

Definition. A closure of C" is a triple (X,U, ®) where:

1. X is an n-dimensional connected compact complex manifold.

2. U c X is an open subset with U = X.

3. & :C™ —~+ U is a biholomorphic map.
The closure (X,U, ®) is called regular if for any polynomial p the holo-
morphic function p o ® ! extends to a meromorphic function on X .

7.4 Proposition. If (X, U,®) is a regular closure of C", then Xoc :=X— U
is an analytic hypersurface in X .

PROOF: Let f; be the meromorphic extension of z; 0 ®~ 1, fori =1,...,n.
The polar set S; of f; is a hypersurface in X. We set P :=FP; U ... UPF, and
claim that P =X - U.

One inclusion being trivial, we consider a point xo € X — U. There is a
sequence of points z,, € U with lim,, o0 x, = zo. If we write z =% 1(z,) as
7 =(2",...,2%"), there must be an index k with |zy”| — co. So |fe(x.)] =
oo for v —+ oo. This means that xqg € P, C P. [

Example

The manifold X =P" is a closure of C*. As open subset U with U =X we
can take the set U :=Up ={(z0 :... :24) | 20 # 0}. Then &, :C* —+ U with
g (ty,- --»tn) :=(1:ty :...:t,) is biholomorphic. We have seen in Section
5 that any polynomial on U extends to a meromorphic function f on P* with
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polar set Hy ={(zp :... :2n)| 20 =0}. So (IP*, Uy, ®p) is a regular closure of
C", with Xoo — Ho.

Another example is the Osgood space @", which contains C™ via
@:(t1,- .o tn) = ((Lit), ooy (1 tR)).
Also, (O™, C", (a) is a regular closure, but here
X% ={mixP'x...xPHu.-.UP x...x P! x {m})

is an analytic hypersurface with singularitics. The complex Lie group G, =
@ x ...x C* (n times) acts in a natural way on C™ and is contained in C"
as an open orbit of this action.

Definition. A complex manifold X is called a toric variety or torus
embedding if G,, acts holomorphically on X and there is an open dense
subset U C X biholomorphically equivalent to G, by g — gx for each

xeU.

Remark. In algebraic geometry the group G, is called a forus. This is the
reason for the notion "toric variety." A "variety” is an irreducible algebraic
subset of C™ or P™. It may have singularities. Here we do not allow singular-
ities, but we allow arbitrary manifolds that do not have to be algebraic.

More information about toric varieties can be found in [Oda88], [Fu93], and
[Ew96].

We wish to restrict the closures of C™ as much as possible. If the axes of C*
can be extended to the closure, then the action of G,, should also extend to
the closure.

Definition. A closure ( X,U, (a) of C" is called a foric closure if the
action of G, on C" extends to an action on X such that ®(g-z) = g-®(z)
for g € G, and z € C".

Examples

1. The projective space P™ is a toric variety with
g (20 1 .. 12n) == (20 1921 ... :9%n)

and G,, = (C*)" C C™ = Uy C P™. Since the embedding C" = Uy — P"
is “equivariant,” P™ is a toric closure of C™.

2. A further simple example is the Osgood space Q™. Here the toric action
is given by

g-((2h :21), .. (20 :2D)) =((20 :921),...,(20 :g92T)).
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3. Let A; C Nj be the set of multi-indices v with |v| < d and define
@y :Gn, = PV by By(z) == (z" :v € ad). Then Xy :=34(G,) CPV is
the image of P™ under the Veronese map vg.,, with

Vdn(20 121 1evn 12) = <zg_|"|z” ‘v E Ad> )
Obviously, Xy is a toric closure of C"

7.5 Proposition. Let (X,U, (a) be a regular closure of(C" and f :Z =X a
proper modification with center S C X, Then(Z, f~1(U), f~' o (a) is again
a regular closure.

PROOF: It is clear that (Z, f~1(U), f~' o (a) is a closure. Now let p be a
polynomial. Then the holomorphic function p o ! : U — C has a mero-
morphic extension p on X. But then p o f is a meromorphic extension of

po(fo®) ™t =(po® ol .

Now let ( X,U, (a) be an arbitrary regular toric closure of C*. The meromor-
phic extensions f; of z;0® ™! define a meromorphic mapping £ = (f1,...,fn) :
X — O™ and therefore a generalized modification X of X in O". We know
that X is an irreducible component of the analytic set

A={(x;21,...,5) €X xO" :2fi(z) - 2, f3(x) =0fori =1,...,n},

where we write z; € P! in the form z = (2§ : 2i) and f; in the form
fi = (f5: 1)

The two projections 7 = pr,|¢ X = X and ¢ = prylg : X - O
are proper holomorphic maps. It may be that X has _singularities over the
1ndeterm1nacy set S of f. Nevertheless, we consider X as a closure of (C"
We take U = 7~ (U) as dense open set, and the biholomorphic map @
7L o : C" — U. This is possible, since f|; = ®~! is holomorphic and
therefore S C X - U.

The preimage 7~ 1(X —U) = X _ U is a nowhere dense analytic subset, and
the meromorphic map fom :X — Q" coincides on U with the holomorphic
map q. By the identity theorem it follows that f o 7 = ¢ is holomorphic
everywhere on X. Since (f om)lg =P Lom = &1, every polynomial extends
to a meromorphic function (without points of indeterminacy) on X. So the
new closure X is regular. Since qlg = &' maps U biholomorphically onto
C", the map ¢ : X 50"isa proper modification of Q™ (in a generalized
sense, since X may have singularities).

Let us now consider the g-fibers. If z, € O™ is given, the fiber ¢7!(z) is
contained in the set




248  1V. Complex Manifolds

F:=(fly) Y(zo) U{z € X —U : 3z, € C" with ®(z,) = z, z, — zo}-

For zy € C" we obtain ¢ '(20) = {®(z0)}, whereas for 2o € O™ — C" the
fiber is a compact subset of the hypersurface X — U.

It is easy to check that X is even a toric closure. One uses the fact that X
and O™ both are toric and that f|y is G,-equivariant.

Example

Let X = P™ be projective space and carry out the above construction. The
functions f; : P™ — P! are given by

fi (z0:21:...:2) = (20 1)

These are meromorphic functions with polar set Hy and indeterminacy set
Hy N H;. In the inhomogeneous coordinates wy, . .., ,w;,. .., W, With wg =
z1/z; the function f; is equal to w;/wp for ¢ # j (respectively to 1/wy for
i=j).

Now X is given by

o~

X ={(w;21,...,2,) €P* x O" : ziw; — 2wy =0 fori =1,...,n}

This is built from P" by a finite sequence of quadratic transformations, and
therefore regular. The space X is a regular toric closure of C™ in the original
sense.

There are many toric closures, but P* and O™ are the most important ones.
More information about this topic is given in [BrMo78] and [PSSS].

Exercises

1. Calculate the strict transform of X = {(z,w) : w? = 2%(z + 1)} when
blowing up C? at the origin.

2. Show that Kpr» =2 O(—n — 1)and Ky = O(d - n — 1)for every regular
hypersurface ¥ C P™ of degree d.

3. Let £1 be the projective bundle associated to the vector bundle V =
Opt @ Op1(1) (cf. Exercise 5.10). Show that the bundle space of £y is
biholomorphically equivalent to the blowup Q,(P?) with p = (1:0:0).

4. Consider the meromorphic function f(z,w) := w/z on C? and show that
its graph Gy C C2 x P! is equal to the blowup of C? at the origin.

5. Let X be a complex manifold and L a holomorphic line bundle over X.
Show that any set of linearly independent global sections $p,. ..,sy €
['(X, L) defines a meromorphic map ® : X — PV by

®(x) :=(so(x) :...:sn(x)).

What is the exact meaning of this definition?
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6. Let X be a compact connected complex manifold. A set of meromorphic
functions f1,...,fm € #(X) is called analytically dependent if £f(Gg) #
O™, where f = (f1, ..., fm) is the second projection Gy C X xO™ — Q™.
Let P be the union of the polar sets of the f; and show that the following
properties are equivalent:

(a) f1,.-.,fm are analytically dependent.

(b) The Jacobian off : X — P — C™ has rank less than m.

(¢) There is a nonempty open subset U C X — P, a domain G C C™
with f({U) C G, and a holomorphic function g on G such that
9(f1(@), ... fm(@) =0.

The functions fi, ..., . are called algebraically dependent if there is a

polynomial p # 0 such that p(f1(x), ...,fm(x)) = 0on X —P. Prove that

every set of analytically dependent functions is also algebraically depen-
dent. (Hint: The map G¢ — Q™ is proper. Use without proof Remmert’s
proper mapping theorem, which says that the image of an analytic set
under a proper holomorphic mapping is also an analytic set. Then use
Chow's theorem.)

7. Let @ :Gy — P3 be defined by ®(2q,22) := (1:21 :22 :z122). Show that

X =®(Gy) C P3 is a closed submanifold that coincides with the image
of the Segre map o1,1 : P! x P — P3 with o1,1((20 : 21), (wp 1 w1)) =
(zowo : z1wo :zow) :z1wy). Prove that X is a toric closure of C2.




Chapter V

Stein Theory

1. Stein Manifolds

Introduction

Definition. A complex manifold X is called holomorphically spread-
able if for any point zg € X there are holomorphic functions fi,...,fn~
on X such that xzg is isolated in the set

N(fi,...,fv) ={z € X : fi(z) = .= fn(z) =0}.

It is clear that the holomorphic map f :=(fi,...,fn) : X — CV is discrete
at zo. In [Grbb] it is shown that if » = dim(X), then there is a discrete
holomorphic map = : X — C”. Thus (X,7) is a branched domain over C™.
Furthermore, it follows that the topology of X has a countable base. Note
that if X is holomorphically separable, i.e., for any x,y € X with x # y
there exists a holomorphic function f on X with f(z) # f(y), then it is
holomorphically spreadable.

If X is holomorphically spreadable, A C X a compact analytic set, and
g € A, then there are holomorphic functions fq,. .., fy on X (which then
must be constant on A ) such that zg is isolated in N(fi,...,fn). So z¢ must
be an isolated point of A, and it follows that every compact analytic subset
of X is finite!

Definition. A complex manifold X is called holomorphically convex
if for any compact set K C X the holomorphically convex hull

K —({xe X :|f(z)| < sup|f] for every f € (’)(X)}
X
is likewise a compact subset of X .

Every compact complex manifold is holomorphically convex. A complex man-
ifold with a countable base is holomorphically convex if and only if for any
infinite discrete subset D C X there exists a holomorphic function f on X
such that supp|f| =oo. The proof is the same as in C",

Definition. A Stein manifold is a connected complex manifold that is
holomorphically spreadable and holomorphically convex.
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A Stein manifold of dimension n» > 0 cannot be compact. In the converse
direction, Behnke and Stein proved in 1948 that every noncompact Riemann
surface is a Stein manifold (see [BeSt48]). For n > 2, a domain G ¢ C*
is Stein if and only if it is holomorphically convex. By the Cartan—Thullen
theorem this is the case exactly if G is a domain of holomorphy. This remains
true for (unbranched) Riemann domains over C", since Cartan—Thullen is
also valid for such domains. Hence for » > 2 there are many noncompact
domains in C™ and over C™ that are not Stein.

1.1 Proposition. Let f : X — Y be a finite holomorphic map between
complex manifolds. If Y is a Stein manifold, then X is also Stein.

In particular, every closed submanifold of a Stein manifold is Stein.

PROOF: 1t is necessary to show only that X is holomorphically convex. For
this let K C X be a compact set and note that f(K) is also compact. We
consider an arbitrary point £ € K. For g € OY) we have g0 f e 0X)
and |go f(z)| < supglgo fl, so f(z) € f(K) and z € f~}(f(K)). Since Y
is holomorphically convex and f proper, f~( f/(?( ) is compact as well. As a
closed set in a compact set, K is compact.

Since C™ is Stein, every closed submanifold of C™ is also Stein. u

Example

Every affine-algebraic manifold is isomorphic to a closed submanifold of C™.
Therefore, it is a Stein manifold. On the other hand, we shall see later on
that there exists an algebraic surface that is Stein, but not affine-algebraic.

1.2 Proposition. If X is a Stein manifold and f € O(X), then X — N(f)
is Stein.

PROOF: If X is a Stein manifold, then it is immediate that X — N(f) is
holomorphically spreadable. Let D be an infinite discrete set in X — N(f).
If it is discrete in X, nothing remains to be proved. If it has a cluster point
xo € N(f), then g :=1/f is holomorphic on X — N(f) and unbounded on
D. n

Fundamental Theorems. The following important theorems cannot
be proved completely within the constraints of this book. One needs deeper
tools, including sheaf theory.

1.3 Theorem A. Letw : V— X be an analytic vector bundle over a Stein
manifold X. Then for any xo € X there are global holomorphic sections
S1,...,8ny € I'(X, V )with the following property:

<oy

B g
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If U =U(xo) CX is an open neighborhood and s € (U, V) ,then there exists
an open neighborhood V =V (zo) ¢ U and holomorphic functions f1, ..., fn
on 'V such that

sfly=fi-si+--+ fn-sn.

1.4 Theorem B. Letw :V — X be an analytic vector bundle over a Stein
manifold X . Then HY(X,V )=0.

Moreover, if A ¢ X is an analytic set, % an open covering of X and £ €
ZY %,V )such that&ulu,,na =0, then we canfind a cochainn € C°(%, V')
with n,|y,na =0 and on =¢.

The first part of this theorem will be proved at the end of this chapter.
1.5 Oka’s principle. Let X be a Stein manifold.

1. Every topological fiber bundle over X has an analytic structure.
2. If two analytic fiber bundles over X are topologically equivalent, they are
also analytically equivalent.

Cousin-I Distributions. A Mittag-Leffler distribution on C consists of
a discrete set {z, : v € N} in C together with principal parts k, of Laurent
series at each z,. A solution of this distribution is a meromorphic function
on C with the given principal parts and no other pole. We can express the
situation in the language of Cech cohomology. Define Uy :=C —{z, :v € N}
and hg :=0, and let U, be an open neighborhood of z, that contains no z,
with g # v. Then h, |y, is meromorphic, and A, — A, is holomorphic on U,.,.
A solution is a meromorphic function f such that f — A, is holomorphic on
Uu .

Definition. Let X be a complex manifold. A Cousin-1 distribution
on X consists of an open covering % = {U, : 1 € I} together with
meromorphic functions f, on U, such that f, — f. is holomorphic on U,.

A solution of the Cousin-I distribution is a meromorphic function f on
X such that f — f, is holomorphic on U,.

If a Cousin-I distribution is given, then a cocycle § € Z1 (%, O) is defined by
§uw == (f — f)lu..- If the distribution has a solution f, then 7, :=(f, — f)|v,
defines a cochain 7 € C°(%,0) with . — 7, = &,x. In other words, dn = £.
Conversely, if there exists an 1 with én = §, then f|y, = f, — 5, defines a
meromorphic function f on X with f, — f =7, on U,. This means that f is
a solution.

The following result is a consequence of Theorem B for the trivial bundle
Ox =X xC.
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1.6 Proposition. Or a Stein manifold every Cousin-1 distribution has a
solution.

In particular, on an open Riemann surface every Mittag-Leffler distribution
has a solution.

Remark. The condition “Stein” is not necessary. If X is a complex mani-
fold with H'(X,0) =0 (for example X =P"), then every Cousin-I distribu-
tion has a solution. And even if H!(X,O) # 0, then the cohomology class of
a given distribution may be zero. This implies that this special distribution
has a solution.

Cousin-11 Distributions. Recall the Weierstrass theorem: Let {z, :
v € N} be a discrete set in C, and (7, ) a sequence of positive integers. Then
there exists a holomorphic function f on C that has zeros exactly at the z,,
and these are of orders n,. The distribution (z,, n,)yen is a divisor D on C
with D > 0 and div(f) = D.

A divisor D on a complex manifold X is called a principal divisor if there
is a meromorphic function m on X with div(m) = D. If D > 0, then m is
holomorphic. So we are interested in conditions on X such that every divisor
is principal. From the exact sequence .#(X)* v, 2(X) N Pic(X) it fol-
lows that Ker(d) = 2(X) is a necessary and sufficient condition. This is, for
example, the case if every analytic line bundle on X is trivial. Due to Oka’s
principle, if X is Stein, it is sufficient that every topological line bundle be
trivial. One can prove that the topological line bundles on X are classified
by elements of H?(X,Z). Here we will show directly that the vanishing of
H?%(X,Z) is sufficient for the solvability of the generalized Weierstrass prob-
lem.

Definition. Let X be a complex manifold. A Cousin-11 distribution
on X consists of an open covering % = {U, : ¢ € I} together with
meromorphic functions f, # 0 on U, such that on U, there are nowhere
vanishing holomorphic functions g,,. with f, =g, . f«-

A solution of the Cousin-I1 distribution is a meromorphic function f
on X such that f|y, = k! . f, with a nowhere vanishing holomorphic
function A, on U,.

A Cousin-I1distribution is therefore a meromorphic section in an analytic line
bundle L that is defined by the transition functions g,.. If L is trivial, then
there are nowhere vanishing holomorphic functions £, on U, with g, =h,h !,
and fly, :=h;! . f, defines a solution.

The Cousin-I1 distribution uniquely determines the cocycle v = (g.x) €
ZY(%,0*). I f is a solution with f|y, =h; ' . f., then
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G = I =h,hJY, so~ = 6h.
The following shows that the converse also holds.

1.7 Proposition. Let v € Z'(%,O*) be the cocycle of a Cousin-11distri-
bution. The distribution is solvable if and only if v € BY(%,O*).

If HY(X,0*) =0, every Cousin-II distribution on X has a solution.

Unfortunately, Theorem B cannot be applied to H!(X, O*). So even for Stein
manifolds we need an additional topological condition.

Chern Class and Exponential Sequence.Let X be an arbitrary
n-dimensional connected complex manifold. We choose an open covering % =
{U, : 1€ I} of X such that the U, and all intersections U, are simply
connected and construct an exact sequence of abelian groups:

H\%,7) L H\(%,0) % H\(%,0%) 5 B*(%,Z)

1. If € = (&) € ZY(%,Z), then also & € Z1 (%, O). Tf € is an integer-valued
coboundary, then it is also a holomorphic one. Thus j is well defined.
2. Let f = (f.x) € Z'(Z,O) be given. Then we define

e([f]) == [eXp(QTrifm)]'

Obviously, e is well defined, and e o j([¢]) = [1]. On the other hand,
it e([f]) = [1], then there are nowhere vanishing holomorphic functions
h, with exp(27if,x) = h,h . Since the U, are simply connected, there
are holomorphic functions g, with exp(g,) = h,. Then exp(g, — gx) =
exp(2mif..), and it follows that there are integers &, with

i 1
fix =559 = =g, F &un-

This means that [f] = 7([£]).

3. Here we define ¢ : HY(%,0*) — H*(%,Z). Let h = (h,.) € ZY(U,0)
be given. Since the U,, are simply connected, there are holomorphic
functions g, on U, with exp(2rig,.) = h.c. They are determined only
up to some 27i€,,. with &, € Z, but

nUHQ = (gHQ - gUQ + guﬂ)|Uuug
uniquely defines a cohomology class (] € H2(%,Z), since
eXP(QWinuup) = huph;nlhuu =1

and
(€ue = &vo + &ty = (68)upe-



256 V. Stein Theory

Let ¢([h]) :=[n].
If [h]=e([f]), then there are nowhere vanishing holomorphic functions
h, with

hoo =h, .exp(2mifuc) . hot —exp(2mi(fic +9. - 9x)),

where the g, are suitable holomorphic functions on U,. We have coe([f])} =
(7] with Mvpe = (fue — fre T fou)lu,., =0, since f is a cocycle.

Now let [hpbe given with ¢([h]) =0. Then there is an element & = (§,x) €
CY %, Z) with

Guo — Gvo +9Gvp = fug —&uo +§vu on  Uypue,

where exp(2migu) = huc- SO fux 1= Gux — &x i a cocycle with values in
O, and exp(27if,) = h,.. This means that e([f]) = [k].

If the covering % is fine enough, everything is independent of the covering.
By construction it is acyclic with respect to Z.

Definition. Let & = (hy) € ZY(%,0%) be a cocycle defining an
analytic line bundle L € Pic(X) = HY(X,0*). Then c(h) :=c([h]) =
o(Ly € H*(%,Z) = H*(X,Z) is called the Chern class of h (or of L).

Let us return to the Cousin-I1 distributions.

1.8 Proposition. Let X be a Stein manifold. Then a Cousin-11 distribution
on X is solvable if and only if its Chern class vanishes.

If H*(X,Z) =0, every Cousin-11 distribution is solvable.

PrROOF: If X is Stein, then H'(X,0) =0 and ¢ : H'(X,0*) — H?*(X,Z)
is injective. Let A be a Cousin-I1 distribution on X . Then # is solvable if and
only if [A] =0, and that is the case if and only if ¢(h) = 0.

If in addition H%(X,Z) =0, then also H(X,0*) = (1). "

Remarks As in the case of Cousin-I distributions, here it is sufficient that
H'(X,0) = 0, and X need not be Stein. On the other hand, there are
examples of simply connected Stein manifolds where Cousin-I1is not solvable.
The condition H2(X,Z) =0 is essential, and for the solvability of any special
distribution the vanishing of the Chern class is necessary.

In the Stein case, using higher cohomology groups one can show that ¢ :
H'(X,0*) = H*(X,Z) is even bijective.

For a noncompact Riemann surface X it is always the case that H2(X,Z) = 0.
Therefore, in this case the Weierstrass problem is always solvable.
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Extension from Submanifolds.Let X be a complex manifold and
A C X ananalytic set. A continuous function f : A — C is called holomorphic
on A if for every € A there is an open neighborhood U =U(z) C X and
a holomorphic function f on U such that flyna = f |luna- One sees easily
that this notion is well defined, but the local continuation fis not uniquely
determined.

1.9 Theorem. Let X be a Stein manifold, A ¢ X an analytic set, and
f_ 1A — C a holomorphic function. Then there exists a holomorphic function
fonX withfla=1£.

ProOOF: In the differentiable category such a theorem would be proved with
the help of a partition of unity. Here in complex analytic geometry we use
cohomology. It is a typical application of Theorem B.

We can find an open covering % = (U,).er of X and holomorphic func-
tions fL on U, with ﬁ|UmA = flu,na. Then &, = ﬁ — J defines a cocy-
cle £ € ZH%,0), with £.lu,.na = 0. By Theorem B there is a cochain
ne€ C%%,0) with n,|y,na =0 and §n =¢. Then

fL —.fK =Tx -7, 0N ULK»

and ﬂUL :=ﬁ +1, defines a global holomorphic function fon X . Obviously,
fla=f. "

Unbranched Domains of Holomorphy.Let X be an unbranched
domain of holomorphy over C*. Obviously, X is holomorphically spreadable,
and since Cartan—Thullen holds for such domains, X is holomorphically con-
vex. It follows directly that X is a Stein manifold, and all theorems on Stein
manifolds are applicable in this case.

We consider now an unbranched domain of holomorphy p : X — P". We will
show that it is also a Stein manifold.

Let 7 :C™*! — (0) — P" be the canonical projection. Then we obtain a new
manifold N
X ={(z,z) € X x (C""! = (0)) : p(z) =n(z)}

together with two canonical projections 7 : X — X and p : X — Cr+1 — {0}.

Since (p,m) : X x (C**! _{0}) — P" x P" is a submersion, the fiber product
X = (p,m) " (Apn) is in fact an (n + 1)-dimensional complex manifold, and
we have the following commutative diagram:

X L croqo)
Tl I
X — pn
P
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For a point Py :=(zg,2¢) of X there exist open neighborhoods U = U (o) C
X and V = V(n(z0)) € P™ such that p : U — V is biholomorphic. Then
7~ 1(V) is a neighborhood of zg, 7~1(U) = (U x (C"*! - {0})) N X a
neighborhood of Py, and p : 7 *(U) — 7~ }(V) a biholomorphic map with
iz = ((plo) Y (n(2)),2). Sop: X — M := C™! — {0} is an unbranched
Riemann domain. It is fibered over X by 7 with fibers isomorphic to @*.

By hypothesis X is a domain of holomorphy. Therefore, it is pseudoconvex.
Now we use notation and results from Section 11.8. ¥ X has only removable
boundary points, then X has locally the form U —~ A, with an openset U C C*
and an analytic hypersurface A. But then X also has such a form and is
pseudoconvex. If X has at least one nonremovable boundary point, then X
(which is something like a cone over X ) has only non-removable boundary
pomts over 0 € C™*1, The set of these boundary points over O is thin in
dX. Outside the origin X is pseudoconvex, since it locally looks like X x C.
By a theorem of Grauert/Remmert (see Section 11.8) it follows that X is
pseudoconvex everywhere. From Oka’s theorem we know that then X is a
Stein manifold.

To show that X is also Stein, we have first to show that X is holomorphically
convex. I not, we would have an infinite sequence D = {z; : i € N} in
X without a cluster point such that every holomorphic function f on X
is bounded on D. We have that D =7~ 1(D) is an analytic subset in X,
and f|z-1(g,) =1 defines a holomorphic function f-on D. Since X is Stein,

there exists a holomorphic function f on X with f|5
7~ 1(x) 22 C* we have a Laurent expansion

= f. On every fiber

>0
o~

fla1@ = Z ay(z)2”.

V=00

Since 7 is a submersion, we can define a holomorphic function g on X by
g(x) :=ao(z). Then g(z;) =i, and this is a contradiction.

In the same way we can show that for z,y € X with x # y there exists a
holomorphic function f on X with f(z) # f(y). Thus X is holomorphically
separable and therefore Stein.

The Embedding Theorem. By a theorem of Whitney every differen-
tiable manifold can be embedded into a space RY of sufficiently high dimen-
sion. In general, this is false for complex manifolds, since, e.g., in CV there
are no positive-dimensional compact complex submanifolds. However, Stein
manifolds can be embedded.

1.10 Theorem. IfX 1§n+ n-dimensional Stein manifold, then there exists
an embedding 7 : X — ¢
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The proof is due to Remmert (see his Habilitationsschrift and [Re56]),
Narasimhan ([Nar60]), and Bishop ([Bi61]).

O. Forster ([Fo70]) proved the following theorem:

1.11 Theorem. Any 2-dimensional Stein manifold can be embedded into
C*, but there is a 2-dimensional Stein manifold that cannot be embedded into
(CB

In general, for n > 2 every n-dimensional Stein manifold can be embed-
ded into C?*, and forn > 6 even into C2*~(n=2)/31 For arbitrary n there
always exists a proper immersion into C**~1. But there are examples of n-
dimensional Stein manifolds X that cannot be embedded into CN (and not
immersed into CN=1) for N :=n + [2].

At the end of his paper Forster conjectured that every n-dimensional Stein
manifold can be embedded into CV*+! and immersed into C.

In 1992 J. Schurmann showed that Forster’s conjecture is true for n > 2 (see
[Schue92],[Schue97]). In 1970/71 Stehlk had given an embedding of the unit
disk A into C? (see [St72]), and in 1973 Laufer an embedding of certain annuli
into C2. At the moment it is an open problem whether every noncompact
Riemann surface can be embedded into C2. There has been quite a bit of
progress on this by the work of J. Globevnik and B. Stensgnes (see [G1Ste95]),
but no final result.

The Serre Problem. Above it was proved that if f :X — Y is a finite
holomorphic mapping and ¥ a Stein manifold, then X is also Stein.

In 1953 Serre posed the following problem: Is the total space of a holomorphic
fiber bundle with Stein base ¥ and Stein fiber F' a Stein manifold? ([Se53]).

It is casy to show that the answer is positive in the case of an analytic vector
bundle.

Between 1974 and 1980 it was proved that the answer is positive in the
case of 1-dimensionalfibers (Siu, Sibony, Hirschowitz and Mok). In 1976 Siu
generalized this to the case where the fiber is a bounded domain G C C™ with
H'(G,C) = 0, and in 1977 Diederich and Fornzess showed that the Serre
conjecture is true if the fiber is a bounded domain in C* with €2 smooth
boundary.

In 1977 Skoda ([Sko77]) gave the first counterexample, a fiber bundle with
C? as fiber and an open (not simply connected) set in C as base. Demailly
improved the example; he used the complex plane or a disk as base. Finally,
in 1985 G. Coeuré and J.J. Loeb presented a counterexample with C* as
base and a bounded pseudoconvex Reinhardt domain in C? as fiber. Over
the years a number of positive examples have been found, for example by
Matsushima/Morimoto, G. Fischer, Ancona, Siu, and Stehlk. Examples where
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the fiber is a so-called Banach-Stein space play an important role, but we
cannot go into the details here.

Exercises

1. Show that the Cartesian product X x Y of two Stein manifolds is Stein.

2. Use Theorems A and B to prove that the total space of a vector bundle
over a Stein manifold is Stein.

3. Give an example of a Cousin-I distribution on C? — {0} that has no
solution.

4. LetU; == {z € C* : z; #0) and % = {U1,U2,Us}. Show that every
Cousin-I distribution with respect to % has a solution.

5. Let X be a complex manifold, 7 : L. — X a holomorphic line bundle, and
Z C L the zero section. Prove that if . — Z is Stein, then X is a Stein
manifold as well.

2. The Levi Form

Covariant Tangent Vectors.Let X be an n-dimensional complex
manifold and z € X a point. The elements of the tangent space T,(X)
(abbreviated by T )are the (contravariant) tangent vectors at x.If z1, ... ,2n
are local coordinates at x, then every tangent vector can be written in the

form
0 _ 9
vzzvug;u +Z”ua—gu

Of course, T has a natural structure of an n-dimensional complex vector
space.

Now we consider the space F = F(T') of complex-valued real linear forms on
T . For example, if f is a local (real- or complex-valued) smooth function at
z, then its differential (df); € F is defined by (df)z(v) :=v[f]. It is uniquely
determined by the germ of f at z. In local coordinates we get

(d)e(w) =D v fe (@) + DB f2,(2).

It follows that

(df)2(v) = (df)=(v).
In particular, we have the elements dz,,dz, € F defined by
dz,(v) :==v[z,] and dZ.(v) :=v[Z.]
Then dz, =dz, + idy, and dz, Z&Z =dz, —idy,, forv =1,..,n.

The space F is the complexification of the 2n-dimensional real vector space
T* = Homg(T,R). Therefore, F = T* @ i T* is a 2n-dimensional complex
vector space, with basis

s :‘wﬁiﬂmﬁa
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{le’ B :dznadzl> .. adzn}

We call the elements of F' complex covariant tangent vectors or complex -
forms at x.

We have (df)z = X, fo, (2) dz + 55, f, (2) d2,.

In general, a complex covariant r-tensor at x is an R-multilinear mapping
p:Tx---xT—>C.
— ——
r-times

The tensor product ¢ ® ¢ of an r-tensor and an s-tensor is the (r +s)-tensor
given by

(‘P & ¢)(v17 t .

The set of r-tensors carries the structure of a complex vector space, and the
assignment (p,%) — ¢ ® ¢ is C-bilinear. For example, (dz, ® dz,)(v,w) =
Uy Wy

yUry Urg1, - L. ,Ur-l—s) = @(7)17 S ,vr) .¢(vr+la Ca ,Ur-+—s)-

Hermitian Forms. Let X be an n-dimensional complex manifold. The
notion of a plurisubharmonic function in a domain G C C" was already
defined in Chapter II. Of course, a plurisubharmonic function on a com-
plex manifold is a real-valued function that is (¢°>°) differentiable and pluri-
subharmonic with respect to all local coordinates belonging to the complex
structure of X . The notion of plurisubharmonicity is invariant with respect
to holomorphic coordinate transformations. So in order to prove plurisub-
harmonicity at some point of X it is enough to prove it with resepct to an
arbitrary coordinate system. However, here we wish to express the notion of
plurisubharmonicity in invariant terms. We do this by Hermitian forms.

Definition. A Hermitian form at zy € X is a Hermitian form
H:T, xT,, - C.

The form H is called positive semidefinite if H{v,v) > 0 for all v, and it
is called positive definite if H (v, v) >0 for v # 0.

A Hermitian form has a unique representation

H: Z hijdzi®d2j,

2,7=1

where H := (hij | 1, =1,. ..,n) is a Hermitian matrix; i.e., it satisfies the

equation H = H . In the following we suppress the symbol & and write
H = Zi,j h”dz,,dz]
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With respect to the local coordinates we can associate to any tangent vector
v =3,0,0/0z+3,7:0/0%; the corresponding vector v = (V15 ... ,v,) € C*
and write

n
H(’U, w) = Z hij’l)iwj =v-H '\_?V—f'.
i,j=1

Coordinate Transformations. Assume that F : G — B is a holo-
morphic map of domains in C™ given by equations

wy = fe(21,- .0 ,2m), fork=1,....n
If g is a differentiable function in B, by the complex chain rule it follows that

(g o F)zi = Z(gwk © F) : (.fk)zi and (g © F)Ez = Z(gﬁk © F) . (fk?)zi

k k

The transformation of a (contravariant) tangent vector (i.e., a derivation) &
is given by F,(€)[g] =&[g o F]. This means that

n

RO = Y el + > i
k=1

_ g(gsim:h) ;(Zﬁ o) )

or, 1f£ NE =(£17~ --’gn)a then

ot~ (Y6 (e D6 (a)e) =€ 6.

Now, a covariant tangent vector ¢ at w € B will be transported in the
opposite direction:

F (&) == ¢(F.&).
In particular, F*(df)w(§) = (df )w(F.&) = (F.Ef] =&[f o F] =d(f o F)5(§)

for w = F(z). This gives us the formula
F*((df )r(z)) = d(f o F)a.
Therefore we also write p o F :=F*¢p for arbitrary covariant vectors .

I H is a Hermitian form at w =F(z) € B, then we can define a Hermitian
form F*¥H at z by

F*H(&,n) = HF.E Fun).
If ] = Jg is the Jacobian of F at z and H = 3y ; hx; dwy, diy, then
=t =
FHE D =(€-I3Y) . H.(n-TH) =¢.3t.H-I) 7.
So F*H is given by the Hermitian matrix J ¢ .H - J.

i g

2. The Levi Form 263

Plurisubharmonic Functions. Assume that p is a real-valued (¢°°)
differentiable function in a domain B C C™ and w € B a point. We consider
at w the Hermitian form

H Z 8wk8wl dwk dwl,

given by the Hermitian matrix

H(p, w) ::( 0w ] k,l:l,...,n).

8wk8’wl

IfF :G — B is a biholomorphic transformation with F(z) =w, then a direct
calculation shows that
H(poF,z) = Jr(z)" - H(p,w) - Jr(2z).

Therefore, F* H,, will be described by the Hermitian matrix H(po F,z), 1ie.,
F*H, = Hpor

Now let X be an n-dimensional complex manifold, p a real-valued smooth
function on X, and z € X an arbitrary point. Assume that ¢ :U — B C C"
is a local coordinate system at x. Then a tangent vector £ at x is uniquely
determined by a pair (p,£), & € C™.

We define the Hermitian form H, T, (X Xk T,( X )— C by

P(£ 77) po«p‘1<£ 77)

If 1 is another coordinate system at x and & ~ (¢, E), then

€=& Jooum (¥(@)" = (pov ). (€)
and
Hpozp—l (ga 7~7) H(po«p*l)o(g;ozp—l)(Ev 7~7)
= Hpop1((p o™ )uE, (o 7))
Hpo«p_l (Ev 77)

We see that the definition of H,, is independent of the local coordinates.

Definition. Assume that p is a real-valued smooth function on the
complex manifold X. Then Lev(p)(z, &) p(€, &) is called the Levi
form of p at x. It is the quadratic form on T, (X) associated with H,,,
and it does not depend on local coordinates.

The function p is called plurisubharmonic on a subset M C X if the Levi
form of p is positive semidefinite at any point x € M. If the Levi form is
positive definite at every point, we say that p is strictly plurisubharmonic.
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Example

Assume th_at fio ,fm are holomorphic functions on X. We show that p :=
Sovey fr - fy, is plurisubharmonic in X. In fact, we have

HP = sz1 v_z—j dZ'L dEJ
1.3

> (Z(mzi Ty deadz;)

k=1 4] /

S ((Sotnas) o (L T3

m
k=1 i=1 j=1

I

That means that

Lev(p)(, ) = Hpl€:6) = Y_ | S (f)=(2)&

k=1 A

2
>0

The Maximum Principle. A nonconstant plurisubharmonic function
does not take on a maximum.

2.1 Theorem. Assume that A C X is a compact connected analytic set
and that p is a plurisubharmonic function on X . Thenp|a is constant.

PROOF: We may assume that A is irreducible. If there is a point zg € A
where p|4 takes its maximum value e, we shall prove:

(*) Thefunctionp is identically equal to ¢ in a small neighborhood o xq.

If we know (), then we consider the set K of all points ¢ € A with p(z) =c.
The open kernel K° is not empty. If K° # A, there is a boundary point z;
of K in A. The function p also takes its maximum at z1. Soby (*) it follows
again that p(z) = ¢ in a neighborhood of z1, which is a contradiction.

So we have only to prove (x). We may assume that A is an analytic subset
of C™ and zy = O. If the codimension of A is equal to d, then there is an
(n — d)-dimensional domain G’ ¢ C*~¢ with 0’ € G’ and pseudopolynomials
wi(21;2”), .- - ywd(zq; 2”) over G’ such that A is an embedded-analytic subset
of the joint zero set of the w; in a neighborhood of 0, and 0O is the only point
of A over 0.

‘e take a ball B C G’ around O° and restrict everything to an arbitrary
complex line £ C B through O’. The restriction A|¢ is denoted by A’ Let 2
be a linear coordinate on £ with origin ¢ such that the embedding of £ in B

SR O
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is given by z = (21,...,2,_q) = (@12, .., an—q2). The restriction w;|, may
contain multiple factors. We throw away such superfluous factors, so we can
assume that every w;|, is free of multiple factors.

Let us first assume that the union of the discriminant sets of the pseudopoly-
nomials over £ consists only of the point 0’ and that A’ is irreducible and has
s sheets over £. Then A’ is the Riemann surface of {/z. We write A’ in the
form

A= ((tiarz,. .. an_gz) : 2 =1}

By F(t) :=(tut°, ...,a,_qt*) we have a local parametrization of A’. Then
(poF)(t) = H(p o F,t) is given again by J* . H(p,F(t)) .J, where J =
(181, ...,a,—4)" denotes the Jacobian of the holomorphic map F. The proof
is the same as in the case of a biholomorphic map F. So (po F),;z > 0, and
p o F is a subharmonic function of #. We get p” :=p|ar =con A’.

The same is true if A" is not irreducible but has 0’ as the joint discriminant
set, since O is the only point of A’ over 0’.

Now assume that the union of the discriminant sets is general. Every point in
A’ can be connected with 0. We introduce the subset K of all points x € A’
with p'(z) =c. If K° # A, there is a boundary point z; of K in A”. We
know that A’ is an embedded-analytic set. Then there is a neighborhood
U(xz1) € A’ that is embedded-analytic over a disk B’(z;) C ¢ around a point
21 € B such that over z; the only point of U is z; and the union discriminant
set consists of z; only. Then we get p’|y; = ¢ (by the same argument as above),
which is a contradiction to the property *‘boundary point.” Sop’ = ¢ follows.

This holds for all £, and therefore p = ¢ over the whole ball B ,which is in a
full open neighborhood of zg in A. So we have (x). n

Exercises

1. Assume that p is a real-valued smooth function on the complex manifold
X.If £ ~ & is a tangent vector and ¢ a complex coordinate system at
zg € X, then define

n

OP)2o(€) =D (o), (¢(x0)) - & -

v=1

Show that (3p)ao @ Twe — C is a complex-valued real linear form that
does not depend on the local coordinates. Prove the following formulas:

(a)

Lev(p-q)(x,§) = p(z)-Lev(q)(z,€) + q(z) - Lev(p)(x, &)
+2Re ((9p)2(&) - (00)2(9)) -
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(b)
Lev(h op)(z,£) = h"(p(z)) .|(8p)=(E)1> + K (p(x)) - Lev(p)(x, £).

2. Let G CC X be a relatively compact domain with smooth boundary.
Show that there is an open neighborhood U of G in X and a real-
valued smooth function ¢ on U such that GNU ={x€ U : ¢(z) <0}
and (8y)s # 0 for x € 9G. Show that

H,(0G) ={€ € To(X) : (0¢)x(£) =0}

is a well-defined subspace of 7,,(X) that does not depend on the boundary
function .

Show that if for every x € G there is a local boundary function ¥ such
that Lev(v) is positive definite on H;(0G), then ¢ can be chosen as a
strictly plurisubharmonic function.

3. Let G CC X be a relatively compact domain with smooth boundary,
and o :U(0G) — R a global boundary function. If Lev(yp) has for every
z € G at least one negative eigenvalue on H,(9G), G is called pseudo-
concave.

Show that if X is connected and there is a nonempty pseudoconcave
domain in X , then every global holomorphic function on X is constant.

3. Pseudoconvexity

Pseudoconvex Complex Manifolds.If X is an arbitrary complex

manifold, then there exists a sequence of compact subsets K; € X with the
following properties:

1. The set K;_; is always contained in the open kernel (K;)° of K.
o0

2. | JKi =X.
i=1

If X is holomorphically convex, then the K; can be chosen in such a way that
the holomorphically convex hull

Ki= {w € X : |f(z)| <sup|f] forall fe O(X)}
K;

always equals K;. (One uses the same proof as for domains in C".)

Therefore, for every point x € X — K, there is a holomorphic function f in
X such that |f(z)| > 1land |f] < 1lon K,. By passing over to a multiple and
a power of f, we can make |f| arbitrarily small on K, and arbitrarily big in
a fixed neighborhood of x.

Since K; o — (Ki1+1)° is compact, there are ﬁnltely many holomorphic func-
tions £, ..., £™ in X such that for p; =3 v, |f”|% the following hold:
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1. supg, pi < 27"
2.ps>i0n Kipo — (K yq)°.

Of course, p, is a nonnegative plurisubharmonic function in X .

The sum Zfil p; converges compactly on X to a nonnegative function p,
with {x € X :p(z) <c}cc X forevery ¢ > 0.

If f is a holomorphic function on a domain G C C™, and G’ CC G a subdo-
main, then we have the Cauchy estimate

| D" f(2) sup]f] forz € @

V!
<5 b (z)
Using this estimate in the intersection of a local coordinate system for X with
(K;)°, one shows that all derivatives of 3, p; converge compactly in X to
the corresponding derivatives of p. Sop is ¥°° and again a plurisubharmonic
function. One can even show that p is real-analytic (see [DoGr60]).

Definition. A complex manifold X is called pseudoconvex if there
exists a nonnegative smooth plurisubharmonic exhaustion function p on
X (ie., a € functionp with {z € X :p(z) <r} cc X forallr >0
such that the Levi form of p is everywhere positive semidefinite).

If we can find for p a strictly plurisubharmonic function in X, then X
is called stricly pseudoconvex or 1-complete!. If p is strictly plurisubhar-
monic only outside a compact set K C X, then X is called I-convex or
strongly pseudoconvex (at infinity).

In the literature a pseudoconvex manifold is often called weakly I-
complete.

Above it was shown that

every holomorphically convex complex manifold is pseudoconvex.

We shall prove later on that every 1-complete complex manifold is holomor-
phically convex, and even Stein (solution of the Levi problem). Also, strongly
pseudoconvex manifolds are holomorphically convex. But in general this is
not true for weakly 1-complete (i.e., pseudoconvex) manifolds.

Examples. Strict pseudoconvexity (l-completeness) is one of the most
important notions in the analysis of complex manifolds. Many constructions
can be carried out only in the strict pseudoconvex case. Let us consider some
examples.

Example 1: The theory was inaugurated by the following result:

1 An n-dimensional complex manifold X is called g-complete if it has an exhaustion
function p such that at every point of X the Levi form of p has at leastn —g + 1
positive eigenvalues.
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An unbranched domain G over C™ is strictly pseudoconvex if and only if
it is a domain of holomorphy.

For proofs see [Oka53], [Br54], [No54].

Example 2: Every unbranched Hartogs convex domain over C" is strictly
pseudoconvex. See [Ri68], where a smoothing procedure for strictly pseudo-
convex functions is introduced.

Example 3: The proofs of the following statements are elementary.

Every compact complex manifold is pseudoconvex. The Cartesian product of
finitely many (strictly) pseudoconvex complex manifolds is (strictly) pseudo-
convex. Any submanifold of a (strictly) pseudoconvex complex manifold is
(strictly) pseudovonvex.

Example 4: Assume that G ¢ C™ is a domain of holomorphy and that
A ¢ G is an analytic hypersurface. Then G — A is Hartogs convex (and
therefore strictly pseudoconvex). For the proof we just take a Hartogs figure

H={t:e <|t;] < 1,)t;] < Lfori>2}U {t:|t1] < 1,|t;] <& for i > 2}

in the unit polydisk P = {t:|t;| < 1fori= 1,...,n} and a biholomorphic
mapping F: H — G - A. The mapping F extends to a holomorphic mapping
P" — G.IfA =F~!(A) c P"isnot empty, then it is an analytic hypersurface
in P" — H. Some lines L(t') = {t = (¢;,t") : t; € C} will intersect it in a
compact subset of P — H; for other t' the intersection is empty (see Figure
V.1).

Figure V.1. Hartogs convexity of G — A

There is a limit t}) with ¢ < |[t5] < 1 such that the intersection of L(ty)
with 4 is not empty but in arbitrarily small neighborhoods of t; there are
points t/ for which the intersection is empty. If t € AN L(ty), then there is
a neighborhood U where A is given by a holomorphic equation f = 0. The
function ¢; — f(t1,t{) has isolated zeros in U N L(ty), and by the theorem

- ‘@M—v‘wma{m
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of Rouché ¢; — f(t;1,1") also has to vanish at some points of U N L(t') for t’
near to ty. This is a contradiction.

Thus F(P") C G — A, and the domain G — A is Hartogs pseudoconvex.

Example 5: Let A C P™ be an analytic hypersurface. We know that there
is a homogeneous polynomial w such that

Let w be homogeneous of order s. Then

P20 ... 1 2,) = log Z lw(zo, - - ,zn)IQ}

is a well-defined smooth exhaustion function for the affine algebraic manifold
P* — A. We calculate the Levi form in local coordinates t, = z,/zp, v =
1,...,n using the properties of the logarithm. Since the Levi form of f + f
vanishes for any holomorphic function f, it follows that

Lev(p)(to,€) = s .Lev(log(l +[t*)(to,€)

= s ___1___ 2 _1_
(oo 1) + e Ie?)

S

= Taeeee Ul + ol - € = Ito, %),

and this expression is positive for £ #£ 0. So p is strictly plurisubharmonic
everywhere, and X =P" — A is 1-complete. In this case we can show directly
that X is holomorphically convex:

Every function

. . Z‘SO ceagSn . "

flzo .02 -:;(20,._.,,7125’ with Zsi =s,
a=0

is holomorphic in X ,and the maximum of the absolute values of all these

functions tends to infinity as (2 : ... : z,) approaches A. So K cc X for

any subset K CC X. Consequently, X is holomorphically convex, and it is

even Stein, as one can see from the following theorem.

3.1 Theorem. Let X be a holomorphically convex connected complex man-
ifold that contains no compact analytic subset of positive dimension. ThenX
is a Stein manifold.

PrOOF: Let zg € X be an arbitrary point. Then the set

A ={x€X : f(x) = f(xg) for every f € O(X)}
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is a closed an}alltiC subset of X . Clearly, it is contained in the holomorphicallx
convex hull {zo} = {x€ X :|f(z)] <|f(xo)| for all f € O(X)}. Since {zo}
has to be compact, A is likewise compact. This is possible only if A consists
of isolated points. Then there exists an open neighborhood U = U(x¢) and

holomorphic functions /1, ...,fny in U such that
{zo}=AnU =xeU: fi(z) =...=fn(z) =0}.
So X is holomorphically spreadable and therefore Stein. =

3.2 Proposition. A I-complete complex manifold cannot contain compact
analytic subsets of positive dimension.

ProoF: Let p be a strictly plurisubharmonic exhaustion function in the
manifold X. Then p is plurisubharmonic, and by the maximum principle it
must be constant on any compact connected analytic subset A C X . If A has
positive dimension, then there is a point x € A and an open neighborhood
U =U(z) ¢ X such that A NU is a submanifold of U of positive dimen-

sion. The function p|any is strictly plurisubharmonic and constant. That is
impossible. L]

3.3 Corollary. Let X be a I-complete manifold that is holomorphically
convex. ThenX is a Stein manifold.

At the end of this chapter we will see that the condition "holomorphically
convex" is not necessary.

3.4 Corollary. Let A C P"* ke an analytic hypersurface. ThenP™ — A is a
Stein manifold. Every analytic subset B C P™ of positive dimension meets A
in at least one point.

Example 6: There is a famous theorem by H. Cartan:

A domain G C C? is a domain of holomorphy if and only if the first
Cousinproblem is always solvable.

The solvability is also true for higher-dimensional domains of holomorphy,
but there is a greater class of domains with this property. Take, e.g., the
domain G C P" C C™ (with n > 3) that is the union of the three open sets

Uy = {ze€P™ :|n]l>¢g,
Uy = {(z€P" :|za| > gy,
Us = (z€P" :|(,...oon)| <e}.
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|22]

1]

Figure V.2. Cousin-I in a domain which is not Hartogs convex

The domain G = U; UU, UUs is not Hartogs pseudoconvex (see Figure V.2).
But all three covering elements U; are domains of holomorphy. Therefore,
we have H'(U;,0) = 0 for i = 1,2,3, as will be proved in Section V.5. So
U —{Uy,Us, U3)is an acyclic covering for O, and every Cousin-I distribution
in G can be given by a cocycle f € HY (%, O ) np to a coboundary. Such an
f consists of holomorphic functions f;; in Us;; with fi5 + fag + f31 = 0 on
Uigs. This implies that the Laurent series of fio (around the origin) in Ujg3
contains no powers 2%z with i < 0,5 < 0. By the identity theorem this is true
on the whole set U. Therefore, we can subtract a coboundary §{g;, g2, 0}
from our cocycle such that thereafter fio = 0.

Then the new fa3, fi3 coincide on Uyaz. Together they give a holomorphic
function h in (U; U Uy) N Us that extends holomorphically to Us. Then the
new cocycle f is equal to the coboundary 6(0, 0, /), and hence the old cocycle
also cobounds (i.e., is a coboundary). Consequently the Cousin-I problem is
solvable.

Example 7: Assume that X is an n-dimensional complex manifold and that
zo € X is a point. We can blow up X in xo. Then we obtain an n-dimensional
complex manifold X, an (7 — 1)-dimensional complex submanifold A C X
that is isomorphic to P7=1, and a proper holomorphic map = :X - X that
maps A to zo and X — Abiholomorphically onto X —{xq}. We have a strictly
pseudoconvex neighborhood U around zy. We can lift the strictly plurisub-
harmonic exhaustion functionp on U by = to n~1(U). This is a strongly
pseudoconvex neighborhood of A that is not, however, strictly pseudocon-
VeX.

Example 8: For a similar example consider the analytic set

3

A:={z2€C® 212, — 22,1 =0forj=2,... n}.

Outside of the origin A is regular of dimension n + 1.For example, if z; # 0,
then z,,; = z; .2n4s/2 for j = 1,...,n. So A is there parameterized by
21,.--12n and z;.;. It follows that dim(A) =n + 1.
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We have a meromorphic map from C?” to the Osgood space O™ given by
W; = 2;/Zn+yi, t = 1,..,n. Its graph is the set

)A{={(z,w) eC™M x O™ :wizngi —2z =0fori=1,...,n}

We denote by X the closure of the part of X that lies over A — {0}. Let
7 : X — A be the restriction of the canonical projection from A x O
to A. Then m maps a 1-dimensional projective space onto O and the rest
biholomorphically onto A — {0}.

The space X is an (n + 1)-dimensional complex manifold, locally given by
the equations

Zi = WiZpy fori=1,..,n,
Wi = Wi forz'=2,...,n.
The set E(s) = {(21,..-,2n) € A : 21/2n41 = - — 2,/22n, = S} is an

n-dimensional plane for every s € P, and A is the union of all these planes.
Since E(s1) N E(sg) = {0} for s; # sg, A is singular at the origin. It follows
that X is a vector bundle of rank n over 7~ 1(0) = P'.

Now we use the function p(z) = 3, 2% on C*™. Tt induces a strictly plurisub-
harmonic function on the complex manifold A —{0}. The (n+ 1)-dimensional
complex manifold X is strongly pseudoconvex by p om, but not 1-complete,
since it contains the compact analytic subset 71(0).

Example 9: Consider the covariant tangent bundle 7" of P™. If £ is a global
holomorphic vector field on P™, then a plurisubharmonic function p¢ on 7" is
defined by

Pe(wz) = we (&) - wa (€e)-
We consider local coordinates in a set U; C P™, for example t, :=z,/2o for
v =1,...,n inthe case i =0. Then every w over U, can be written uniquely

in the form w =3~ w,dt,. So t1s o yta,wi, . .. ,w, are local coordinates in
T over Us. If € =% £,0/0z,, then

pe(t,w) = (Z wi6s) (Z_wE)

We have the following n + n? holomorphic vector fields over U; that extend
to P™:

7] 0

= _ — —q(0,. z ,0),

o1, q(0,. .., 2o ,...,O)andtuaty q(0,. .., [T )
uth place uth place

where g : O(1)®- - - O(1) = TP™ is the canonical bundle epimorphism in the
Euler sequence. Plurisubharmonic functions p;,, respectively p},,, are defined
in local coordinates by w, Wy, respectively wy@y -t,,t,,. By adding them all we
obtain the plurisubharmonic function
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pi= (Zwm) : (1 + Zt“iﬂ).
v=1 p=1

Finally, if we add the p; constructed for the various U;, ¢ = 0,...,n, we
obtain a function p. If Z denotes the zero section in 77, then p vanishes on
Z and is strictly plurisubharmonic and positive outside of Z. It tends to oo
for ||w|| — oo. So the complex manifold 7" is strongly pseudovonvex, but not
1-complete.

Example 10: This example is probably due to J.P. Serre.

Assume that E is an elliptic curve (i.e., a compact Riemann surface of genus
1).Then E is a 1-dimensional torus, given by a lattice of periods (1, §), where
the imaginary part of § is positive. We may write the elements of E as real
linear combinations z = s . 1+¢ . €, with s, € [0,1]. The first cohomology
group H(E, O) is equal to C (this will follow from results of the next chapter,
but it is also a very classical result in the theory of Riemann surfaces).

We have a covering % of E consisting of the two elements

U = {z=54+1:0<s<1/2, 0<t<1},
Uy = {z=s+1t£:1/2<s<1, 0<t<1}.

Denote by C C E the circle {z = 1+t .£ : 0 < ¢ < 1) and define there
the function f = 1 (and O on the other component of Uy N U;). Then f
is a cocycle in Z'(%,0). It yields a nonvanishing cohomology class, since
otherwise we would obtain a nonconstant bounded holomorphic function on
C. We construct a fiber bundle A above E with fibers A, = C by gluing
above C the point (z,w) € Uz x C with (z,w — 1)€ U; x C. We denote this
point in the bundle by [z,w] .

Now, A is topologically trivial (since we can find a continuous function g on
Us that coincides with f on C such that §{0, g} = f) but it is not analytically
trivial, because it defines a nontrivial cohomology class. It follows from the
construction that the notions of real lines, planes, and convexity are well
defined in A.

Let A be the bundle with typical fiber IE] that is obtained from A by adding
the point at infinity to each fiber. Then A is compact and has the infinite cross
section D = D, over E. Weput X :=A —A _D. Then X does not contain
any compact analytic set of dimension 1.Otherwise, there would be a number
b such that the analytic set meets every fiber in exactly b points. We could
pass over to their barycenters and would obtain an ordinary holomorphic
cross section in A. This would imply the triviality of A.

We consider the real 3-dimensional surface

S=8={lz,wjcA :z=s+1t, w=s+rexp(2mi .6) and 0 <9 < 1}.
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Here r > 0 is a very big number. The surface S bounds a tube G, which
converges to A as r tends to oo.

We look at the holomorphic tangent H in any point of S.We can consider H
as a real plane in A, By subtracting s in the fiber above s + 1§ we pass over
from A to E x C. The hypersurface S is transformed diffeomorphically into
a convex cylinder over E and H into a contacting plane that does not enter
the interior of the cylinder. So H does not enter the interior of the tube G.
If H were contained in S, then the transformed H would lie in the boundary
of the cylinder and therefore be compact. So H itself would be a compact
analytic set. We saw that such a set does not exist. So there remains only
the possibility that H contacts S of first order; i.e., the intersection H N S is
a real line. We can choose a complex coordinate { =z + iy in H such that
our real line is exactly the z-axis.

If p is a smooth defining function for S, then ¢ behaves on H like the function
y2. It follows that (o|#).z > 0. This means that the Levi form of ¢ is always
positive definite on the holomorphic tangent . Now we can construct a
strictly plurisubharmonic function g in U — D (where U is a neighborhood
of D in A\) whose level sets are the manifolds S, such that g converges to oo
when approaching D.2 It follows that X is strongly pseudoconvex.

Later on we shall prove that a strongly pseudoconvex manifold is holomorphi-
cally convex, and since X contains no positive-dimensional compact analytic
subset, it is a Stein manifold. So there are many hglomorphic functions in X .
Assume that there is a meromorphic function on A that has poles of order m
on D only. Then the coefficient of the highest polar part off is a holomorphic
cross section 17 in the mth tensor power of the normal bundle of D. Because
this normal bundle is topologically trivial, n cannot have zeros on D. So f
tends to infinity approaching D, and no analytic set {f = const} meets D.
This is a contradiction, since A is not analytically trivial. Every holomorphic
function on X must have essential singularities on D.

Analytic Tangents.Let G be a domain in C* with n > 2 and p a strictly
plurisubharmonic function in G. Denote by X the set {z € G : p(z) < 0.
Let B CC G be an open subset and w € X N B an arbitrary point.

The expansion of p in w is given by
p(z) = p(w) + 2Re Q(w, 2 — ) + Lev(p) (w, z — w) + R(W,z — W),
where 1
Q(w,h) =h .Vp(w)' + 2.h- Hess(p)(w) .h?,
massume that p is globally defined and @ = r on Sr. Then we choose an

unbounded strictly monotonic smooth function z : R — R such that A”/h’ is
very large. The function g := ko g will do the job.
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with the complex Hessian Hess(p)(w) = (pzizj (w)‘ i,fj=1,... ,n), and

- R(w,h)
I TR

The map h — Q(w, h) is a holomorphic polynomial of degree 2, for every w .

The assignment w — Q(w, h) is smooth.

Let G’ cC G be an open neighborhood of B. We can find constants ¢,k > 0
such that

Lev(p)(w,z —w)+ R(w,z — w) > k|lz — w2 —c||z — W]z

for z€ G’ and arbitrary w.

We say that a real number € > 0 is sufficiently small with respect to B if
every ball U(w) with center w € X N B and radius € belongs to G’, and

klz — wll* —cllz —w|® > 0
is valid on these U(w).

Assuming that this is the case, for w € X N B we define the analytic set
Aw) = zeU(w) : Q(w,z —w) =0}

in U(w). On A(w) we have p(z) > 0. Therefore, A(w) — {w}is outside of
X .Since w belongs to the boundary of X, this implies that A = A(w) has
codimension 1.We call A an analytic tangent (or, in German, a Stitzfldche)
for X at w.

3.5 Proposition. Let G,p,X,B,G" be as above. There exists a differen-
tiable family A(w) of analytic tangents to X at the points w € BNOX with
Aw)NX = {w}.

Here "differentiable” means that the defining quadratic polynomials for A(w)
depend smoothly on w .

Exercises

1. Let X be a complex manifold and ¥ C X a closed complex submanifold.
Construct a nonnegative smooth function f : X — R with the following
properties:

(a) Lev(f)(z,€) >0 forevery z € X, £ € T,(X).
(b) For every x € Y there is a linear subspace P, C T,(X) such that
P, +T,(Y) =T,(X) and Lev(f)(z,£) >0 for£ € P, £ #£ 0.

2. Let X be a 1-complete complex manifold and f1,...,f, € O(X). Show
that X — N(f1,...,fq) is g-complete.

3. Let G cc C™ be a strictly convex domain with smooth boundary. Con-
struct the differentiable family A(w) of analytic tangents to 8G.
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4, Let ¢ be a strictly plurisubharmonic smooth function defined in a neigh-
borhood U = U(0) € @" with ¢(0) = @, and ¥ an arbitrary smooth
function in U. Prove that there are r > 0 and € > 0 sufficiently small
such that ¢ +¢ .4 is strictly plurisubharmonic in B,.(0) and

{z€B.(0) : (¢ +¢-¥)(z) <0}

is a Stein manifold.

4. Cuboids

Distinguished Cuboids. If Q is a closed subset in C", then in this
section we say that something is defined on Q if it is defined in a small
neighborhood of Q. Two objects are called equal on Q if they coincide in a
small neighborhood of Q. So actually we consider "germs" along Q.

Definition. A cuboid is a closed domain
Q={(21,-..,z,) =(z1 +iZng1,- ... Tn Tize,) € C" 1 q, <z < by},

where a; <b; are real numbers for i = 1,...,2n.

If there are partitions
a; =af <aj <...<al" =b;, fori=1,..,2n,
then we denote by A the system of sequences
al» i=1,...,2n, Jj=0,...,mi
A closed covering Z4 of Q is defined by the system of cuboids
Qv on =4z 10?7 < <al, fori =1,..,2n}.
For any open covering of Q there is a closed cuboid covering which is finer.

In the following it will be not enough to have a covering of Q. Additionally,
we need a system of complex submanifolds

Q:XODX]DDX’LAIDX’LDDXS’ SSn,

where X; has dimension n — i, such that there is a holomorphic function f;
in X; i vanishing everywhere on X; to first order (and maybe also vanishing
at points of X; 1 — Xi).

Definition. A distinguished cuboid is a cuboid that is equipped with a
system {(X;, f;) : i = 1,...,s}. The number n — s is called the manifold
dimension of the distinguished cuboid.
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Vanishing of Cohomology. As described above, everything on a
closed cuboid is assumed to be defined on an open neighborhood of the
cuboid. Therefore, we can consider cocycles and coboundaries with respect
to closed cuboid coverings.

4.1 Proposition. Assume that Q is a cuboid and %4 a closed cuboid cov-
ering of Q. Then every cocycle £ € ZY (%, O) cobounds.

PROOF: First we consider a very simple system A. We just take the case
where m; =2 and all other m; = 1.Then

Up={Qo=Q11,.1, i=Q21,.1}

has the minimal possible number of elements. The cocycle £ is given by one
holomorphic function &y; on Qo N Q; = {z € Q :2; —al}. Let € be a small
positive number. Then in the z;-plane we can choose two continuous paths
oy from a} +i(ad ; —¢) to a] +i(apn,, T£) (for j =0 on the left side and
for j = 1on the right side of the line 1 = ai, see Figure V.3) and define
N = {no,n} by the Cauchy integral

1 W, 29, 2
ni(21,. .-, zn) ::—,/ Md
2mi a

w— 21

Then we get on =E&.

P z1-plane

Figure V.3. Cohomology of a cuboid

The next step is an induction on the number m = ", m;. We just han-
dled the case m = 2n +1. Now we assume that »z > 2n + 1and that the
proposition already has been proved for any number smaller than m2. We put
ig :=max{s :1<1i < 2n and m; > 2} and define
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@i={seQim, sl ) Q= {2e Qa2 a0,

By the induction hypothesis, we have £|o = §(n') and £|o» = é(n"") with
cuboid coverings %’ for Q" and Z" for Q”. Hence, £ —§{n’,n"} is a cocycle
with respect to the covering % that is given by a holomorphic function g on
the surface 1

QNQ ={z€Q: m,=ab""}
As above, by integration we obtain holomorphic functions 79 on Q’ and 7
on Q” with g =m — no. So we have a cochain 0 = {n’ +10,7" +m} on Q

with 6o = § (since the functions 7; are already cocycles). This completes the
induction. u

Vanishing on the Embedded Manifolds. We consider a distin-
guished cuboid Q in C™ with manifold dimension # — s, and for i =0,...,s
we prove the following:

4.2 Proposition. Every cocycle of ZY(%a 1 X;,0) cobounds, and every
holomorphic function on X,;41 can be extended to a holomorphic function on
X;.

PROOF: We carry out an induction on /. In the case / = 0 the proposition
has been proved already. The induction hypothesis now states that it holds

for some i, 0 < i < s — 1,and we prove the extension property for { + 1.

Assume that g is the holomorphic function on X,;,;. Define g(z) = 0 on
the other connected components of N(f; 1) C X;. If the covering %4 is
sufficiently small, we can extend this g to a cochain n € C°(%4 0 X;,0).
The coboundary §(n) vanishes on N(f;+1). Therefore, there is a cochain a €
CH%aN X;,0) with 6(n) =« - fiyq. It is clear that a is a cocycle, and by
the induction hypothesis there is a v € C%(%a N X;, O) with a =§(v). Since
6(n — fix1.y) =0, we get § =1 — fiz1 .y as a holomorphic extension of g.

Now we prove that any £ € Z1 (%4 N X;,1,0) cobounds. As in the proof of
the preceeding theorem we have to show this only in the case where m; =2
and m; = 1for i > 1. S0 § is simply a holomorphic function g on (Q1,1,...1 N
Q2,1,...,1)NX;41. We have to find holomorphic functions f' on Q11,...1NXit1
and f" on Q2,1,...1 N X;4q with f" — f' = g. For that we first extend g to
(@1,1,...1NQ21,..1)NX;, construct f7, f for X; (induction hypothesis), and
then restrict them to X, ;. That completes the proof. u

Cuboids in a Complex Manifold. We assume that X is an n-
dimensional complex manifold and p a smooth real-valued function on X
with p(z) — 2 when £ — 8X.3 We assume further that p is strictly plurisub-

3 This means that for every € > 0 there is a compact subset K C X such that
p(x)>2—-¢cfor€X —K.
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harmonic on {p(z) = 1) and define ¥ := {x € X :p(x) < 1).Then Y is a
relatively compact strongly pseudoconvex open subset of X .

For an n-tuple z = (21, ...,2,) we use the norm
2| :— sup max(|Re(z;)], [Tm(z]).

For an open neighborhood G € X of Y we want to apply the results from
the end of V.3. (It does not matter that there are no global coordinates on
G.) We consider a relatively compact open neighborhood B = B(dY) cC G
and choose a G’ with B ¢C G’ cc G.

For any point xg € 9Y there is a compact cuboid U* with center x; in
a coordinate neighborhood S around zg. If a real number £ > 0 is given,
we can choose every U* so small that U* ¢ U(w) cC S for every point
w € U*,where U(w) is the ball with center w and radius £ (with respect
to the local coordinates). Then for every w € U* 1 Y we have the analytic
tangent A(w) given by a quadratic polynomial fy, in U(w). It follows that
A(wW)NU*NY =w,and the function p|U* N (A(w) — z) is positive. This is
illustrated by Figure V 4.

For an open subset Y/ CC Y we have the following proposition.

4.3 Proposition. There is a distinguished cuboid Q* =U* x Q C CN with
the following property:

For s = N —n the submanifold X, is projected biholomorphically onto a
compact set U' CU* withY'nU* cU’' CY.

Figure V.4. Projection of the distinguished cuboid

PrOOF:  We may work in C™ and assume that x is the origin. We use the
differentiable family of analytic tangents A(w) = N(f) with w € Y nU™.
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Take a positive number r so big that we always have |1/fw(2z)| < r for
w € 9Y NU* and z € Y' N U*. In a small neighborhood of w we have
[1/fw(z)| > r. Therefore, by compactness there are finitely many of these
fw> say fi,...,fs, with max;|1/f;(z)| >r for all z € Y N U*.For a fixed i
we denote by @’ the cuboid {z’ = (2p11,- ..,2n44) :|Z'| <7} and by Q) the
cuboid {z" = (zntit1s- - s 2nys) |27 <7} We put Q* =U* x Q) x QJ.

The submanifolds X; C @* are obtained in the following way: Consider the
graph of the i-tuple (1/f1,...,1/f;) in U* x @), take the union of those
connected components that contain points over Y, and multiply this union by
Q!. The manifold X, has dimension N — /. In X;_; we have the holomorphic
function z,; - fi(z) — 1,which vanishes on X; to order 1.

Finally, the projection U’ of X, contains no point of Y. Hence, it is contained
in Y. Since U*NY" is contained in U’, the proposition is proved. n

4.4 Corollary. In the above notation, H*(U',O) = 0.

Enlarging U’. We use the same notation as before and construct a set
U' C U*NY that is bigger than U’ where the vanishing theorem still holds.

For that purpose we take an open set Y instead of Y' with Y’ cc 8’ cc Y
and U’ ¢ Y'. We need a bigger ¥ > r such that we still have |1/fw(2)| <7 on
&’for w € Y NU*. But now max;|1/f;(z)| > 7 no longer is true on Y NU*.
So we add some functions to the old ones, fs11,. .., f5, such that we get the
old situation again.

We get the @; and the @7, fora = 1,...,3. But we write Q! instead of Q}, @}
for QY, and X, for X;. Then we have Qr =U*xQixQ/ ¢C CN with N <N.
The projection of X5 is a compact set U’ ¢ ¥ NU* with Y'nu* ¢ U So
again we have the vanishing of the cohomology.

The following statement is proved in the next paragraph.

(¥) Every holomorphzc functzon on U’ can be approxzmated arbitrarily
well by holomorphic functzons on U’.

Suppose all cochains are given with respect to a covering U of U =2 Xz If
¢ € ZY%,0) is a cocycle over U’, we have £ = 6(n) over U’ and § = 5@)
over U’, with cochains n and 7} with respect to the coverin