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Preface

The next several pages describe the goals and the main topics of this book.

Questions in discrete geometry typically involve finite sets of points, lines,
circles, planes, or other simple geometric objects. For example, one can ask,
what is the largest number of regions into which 7 lines can partition the
plane, or what is the minimum possible number of distinct distances occur-
ring among n points in the plane? (The former question is easy, the latter
one is hard.) More complicated objects are investigated, too, such as convex
polytopes or finite families of convex sets. The emphasis is on “combinato-
rial” properties: Which of the given objects intersect, or how many points
are needed to intersect all of them, and so on.

Many questions in discrete geometry are very natural and worth studying
for their own sake. Some of them, such as the structure of 3-dimensional
convex polytopes, go back to the antiquity, and many of them are motivated
by other areas of mathematics. To a working mathematician or computer
scientist, contemporary discrete geometry offers results and techniques of
great diversity, a useful enhancement of the “bag of tricks” for attacking
problems in her or his field. My experience in this respect comes mainly
from combinatorics and the design of efficient algorithms, where, as time
progresses, more and more of the first-rate results are proved by methods
drawn from seemingly distant areas of mathematics and where geometric
methods are among the most prominent.

The development of computational geometry and of geometric methods in
combinatorial optimization in the last 20-30 years has stimulated research in
discrete geometry a great deal and contributed new problems and motivation.
Parts of discrete geometry are indispensable as a foundation for any serious
study of these fields. I personally became involved in discrete geometry while
working on geometric algorithms, and the present book gradually grew out of
lecture notes initially focused on computational geometry. (In the meantime,
several books on computational geometry have appeared, and so I decided to
concentrate on the nonalgorithmic part.)

In order to explain the path chosen in this book for exploring its subject,
let me compare discrete geometry to an Alpine mountain range. Mountains
can be explored by bus tours, by walking, by serious climbing, by playing
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in the local casino, and in many other ways. The book should provide safe
trails to a few peaks and lookout points (key results from various subfields
of discrete geometry). To some of them, convenient paths have been marked
in the literature, but for others, where only climbers’ routes exist in research
papers, I tried to add some handrails, steps, and ropes at the critical places,
in the form of intuitive explanations, pictures, and concrete and elementary
proofs.! However, I do not know how to build cable cars in this landscape:
Reaching the higher peaks, the results traditionally considered difficult, still
needs substantial effort. I wish everyone a clear view of the beautiful ideas in
the area, and I hope that the trails of this book will help some readers climb
yet unconquered summits by their own research. (Here the shortcomings of
the Alpine analogy become clear: The range of discrete geometry is infinite
and no doubt, many discoveries lie ahead, while the Alps are a small spot on
the all too finite Earth.)

This book is primarily an introductory textbook. It does not require any
special background besides the usual undergraduate mathematics (linear al-
gebra, calculus, and a little of combinatorics, graph theory, and probability).
It should be accessible to early graduate students, although mastering the
more advanced proofs probably needs some mathematical maturity. The first
and main part of each section is intended for teaching in class. I have actually
taught most of the material, mainly in an advanced course in Prague whose
contents varied over the years, and a large part has also been presented by
students, based on my writing, in lectures at special seminars (Spring Schools
of Combinatorics). A short summary at the end of the book can be useful for
reviewing the covered material.

The book can also serve as a collection of surveys in several narrower
subfields of discrete geometry, where, as far as I know, no adequate recent
treatment is available. The sections are accompanied by remarks and biblio-
graphic notes. For well-established material, such as convex polytopes, these
parts usually refer to the original sources, point to modern treatments and
surveys, and present a sample of key results in the area. For the less well cov-
ered topics, I have aimed at surveying most of the important recent results.
For some of them, proof outlines are provided, which should convey the main
ideas and make it easy to fill in the details from the original source.

Topics. The material in the book can be divided into several groups:

e Foundations (Sections 1.1-1.3, 2.1, 5.1-5.4, 5.7, 6.1). Here truly basic
things are covered, suitable for any introductory course: linear and affine
subspaces, fundamentals of convex sets, Minkowski’s theorem on lattice
points in convex bodies, duality, and the first steps in convex polytopes,
Voronoi diagrams, and hyperplane arrangements. The remaining sections
of Chapters 1, 2, and 5 go a little further in these topics.

! T also wanted to invent fitting names for the important theorems, in order to
make them easier to remember. Only few of these names are in standard usage.
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o Combinatorial complezity of geometric configurations (Chapters 4, 6, 7,
and 11). The problems studied here include line-point incidences, com-
plexity of arrangements and lower envelopes, Davenport—Schinzel se-
quences, and the k-set problem. Powerful methods, mainly probabilistic,
developed in this area are explained step by step on concrete nontriv-
ial examples. Many of the questions were motivated by the analysis of
algorithms in computational geometry.

o Intersection patterns and transversals of convez sets. Chapters 8-10 con-
tain, among others, a proof of the celebrated (p, ¢)-theorem of Alon and
Kleitman, including all the tools used in it. This theorem gives a suffi-
cient condition guaranteeing that all sets in a given family of convex sets
can be intersected by a bounded (small) number of points. Such results
can be seen as far-reaching generalizations of the well-known Helly’s the-
orem. Some of the finest pieces of the weaponry of contemporary discrete
and computational geometry, such as the theory of the VC-dimension or
the regularity lemma, appear in these chapters.

o Geometric Ramsey theory (Chapters 3 and 9). Ramsey-type theorems
guarantee the existence of a certain “regular” subconfiguration in every
sufficiently large configuration; in our case we deal with geometric ob-
jects. One of the historically first results here is the theorem of Erdés
and Szekeres on convex independent subsets in every sufficiently large
point set.

e Polyhedral combinatorics and high-dimensional convexity (Chapters 12—
14). Two famous results are proved as a sample of polyhedral combina-
torics, one in graph theory (the weak perfect graph conjecture) and one in
theoretical computer science (on sorting with partial information). Then
the behavior of convex bodies in high dimensions is explored; the high-
lights include a theorem on the volume of an N-vertex convex polytope
in the unit ball (related to algorithmic hardness of volume approxima-
tion), measure concentration on the sphere, and Dvoretzky’s theorem on
almost-spherical sections of convex bodies.

e Representing finite metric spaces by coordinates (Chapter 15). Given an
n-point metric space, we would like to visualize it or at least make it com-
putationally more tractable by placing the points in a Euclidean space,
in such a way that the Euclidean distances approximate the given dis-
tances in the finite metric space. We investigate the necessary error of
such approximation. Such results are of great interest in several areas;
for example, recently they have been used in approximation algorithms
in combinatorial optimization (multicommodity flows, VLSI layout, and
others).

These topics surely do not cover all of discrete geometry, which is a rather
vague term anyway. The selection is (necessarily) subjective, and naturally
I preferred areas that I knew better and/or had been working in. (Unfortu-
nately, I have had no access to supernatural opinions on proofs as a more
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reliable guide.) Many interesting topics are neglected completely, such as the
wide area of packing and covering, where very accessible treatments exist,
or the celebrated negative solution by Kahn and Kalai of the Borsuk conjec-
ture, which I consider sufficiently popularized by now. Many more chapters
analogous to the fifteen of this book could be added, and each of the fifteen
chapters could be expanded into a thick volume. But the extent of the book,
as well as the time for its writing, are limited.

Exercises. The sections are complemented by exercises. The little framed
numbers indicate their difficulty: is routine, [5] may need quite a bright
idea. Some of the exercises used to be a part of homework assignments in my
courses and the classification is based on some experience, but for others it
is just an unreliable subjective guess. Some of the exercises, especially those
conveying important results, are accompanied by hints given at the end of
the book.

Additional results that did not fit into the main text are often included as
exercises, which saves much space. However, this greatly enlarges the danger
of making false claims, so the reader who wants to use such information may
want to check it carefully.

Sources and further reading. A great inspiration for this book project
and the source of much material was the book Combinatorial Geometry of
Pach and Agarwal [PA95]. Too late did I become aware of the lecture notes by
Ball [Bal97] on modern convex geometry; had I known these earlier I would
probably have hesitated to write Chapters 13 and 14 on high-dimensional
convexity, as I would not dare to compete with this masterpiece of mathe-
matical exposition. Ziegler’s book [Zie94] can be recommended for studying
convex polytopes. Many other sources are mentioned in the notes in each
chapter. For looking up information in discrete geometry, a good starting
point can be one of the several handbooks pertaining to the area: Handbook
of Conver Geometry (GW93], Handbook of Discrete and Computational Ge-
ometry [GO97], Handbook of Computational Geometry [SU00], and (to some
extent) Handbook of Combinatorics [GGL95], with numerous valuable sur-
veys. Many of the important new results in the field keep appearing in the
journal Discrete and Computational Geometry.

Acknowledgments. For invaluable advice and/or very helpful comments on
preliminary versions of this book I would like to thank Micha Sharir, Giinter
M. Ziegler, Yuri Rabinovich, Pankaj K. Agarwal, Pavel Valtr, Martin Klazar,
Nati Linial, Giinter Rote, Jdnos Pach, Keith Ball, Uli Wagner, Imre Barany,
Eli Goodman, Gyorgy Elekes, Johannes Blomer, Eva Matouskovéa, Gil Kalai,
Joram Lindenstrauss, Emo Welzl, Komei Fukuda, Rephael Wenger, Piotr In-
dyk, Sariel Har-Peled, Vojtéch Rodl, Géza Téth, Kéroly Boroczky Jr., Rados
Radoici¢, Helena Nyklova, Vojtéch Franéek, Jakub Simek, Avner Magen, Gre-
gor Baudis, and Andreas Marwinski (I apologize if I forgot someone; my notes
are not perfect, not to speak of my memory). Their remarks and suggestions
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allowed me to improve the manuscript considerably and to eliminate many of
the embarrassing mistakes. I thank David Kramer for a careful copy-editing
and finding many more mistakes (as well as offering me a glimpse into the
exotic realm of English punctuation). I also wish to thank everyone who par-
ticipated in creating the friendly and supportive environments in which I
have been working on the book.

Errors. If you find errors in the book, especially serious ones, I would
appreciate it if you would let me know (email: matousek@kam.mff.cuni.cz).
I plan to post a list of errors at http://www.ms.mff.cuni.cz/ matousek.

Prague, July 2001 Jiri Matousek






Contents

Preface

Notation and Terminology

1

Convexity

1.1 Linear and Affine Subspaces, General Position .............
1.2 Convex Sets, Convex Combinations, Separation ............
1.3 Radon’s Lemma and Helly’s Theorem .....................
1.4 Centerpoint and Ham Sandwich ........... .. ... .. ... ...

Lattices and Minkowski’s Theorem

2.1 Minkowski’s Theorem . ........... ...t iiinenennn..
2.2 General Lattices ............ it
2.3 An Application in Number Theory........................

Convex Independent Subsets

3.1 The Erdds-Szekeres Theorem ............................
3.2 Horton SetsS. . ... e

Incidence Problems

4.1 Formulation .......... ... .. . i
4.2 Lower Bounds: Incidences and Unit Distances ..............
4.3 Point-Line Incidences via Crossing Numbers ...............
4.4 Distinct Distances via Crossing Numbers ..................
4.5 Point-Line Incidences via Cuttings .......................
4.6 A Weaker Cutting Lemma . ........... ... .. . ... ....

4.7 The Cutting Lemma: A Tight Bound .....................

Convex Polytopes

5.1 Geometric Duality . ......... ... .
5.2 H-Polytopes and V-Polytopes............... ... ... ... ...
5.3 Faces of a Convex Polytope . ......... .. ... .. . ...
5.4 Many Faces: The Cyclic Polytopes........................
5.5 The Upper Bound Theorem .............. .. .. ... ... ...



xii Contents
5.6 The Gale Transform ............ ... ... ... ... ... ..... 107
5.7 Voronoi Diagrams ........... .. ... i 115
6 Number of Faces in Arrangements 125
6.1 Arrangements of Hyperplanes ............................ 126
6.2 Arrangements of Other Geometric Objects................. 130
6.3 Number of Vertices of Level at Most k& .................... 140
6.4 The Zone Theorem ......... ... ... ... i, 146
6.5 The Cutting Lemma Revisited ........................... 152
7 Lower Envelopes 165
7.1 Segments and Davenport—Schinzel Sequences............... 165
7.2 Segments: Superlinear Complexity of the Lower Envelope. ... 169
7.3 More on Davenport—Schinzel Sequences ................... 173
7.4 Towards the Tight Upper Bound for Segments ............. 178
7.5 Up to Higher Dimension: Triangles in Space ............... 182
76 CurvesinthePlane........... ... . ... . ... . ... .. 186
7.7 Algebraic Surface Patches ............................... 189
8 Intersection Patterns of Convex Sets 195
8.1 The Fractional Helly Theorem ........................... 195
8.2 The Colorful Carathéodory Theorem...................... 198
8.3 Tverberg’s Theorem .......... ...t 200
9 Geometric Selection Theorems 207
9.1 A Point in Many Simplices: The First Selection Lemma .. ... 207
9.2 The Second Selection Lemma, ............................ 210
9.3 Order Types and the Same-Type Lemma .................. 215
9.4 A Hypergraph Regularity Lemma ........................ 223
9.5 A Positive-Fraction Selection Lemma ..................... 228
10 Transversals and Epsilon Nets 231
10.1 General Preliminaries: Transversals and Matchings ......... 231
10.2 Epsilon Nets and VC-Dimension. ......................... 237
10.3 Bounding the VC-Dimension and Applications ............. 243
10.4 Weak Epsilon Nets for Convex Sets ....................... 251
10.5 The Hadwiger-Debrunner (p,q)-Problem .................. 255
10.6 A (p,q)-Theorem for Hyperplane Transversals.............. 259
11 Attempts to Count k-Sets 265
11.1 Definitions and First Estimates. .......................... 265
11.2 Sets with Many Halving Edges ........................... 273
11.3 The Lovész Lemma and Upper Bounds in All Dimensions ... 277
11.4 A Better Upper Bound in the Plane ...................... 283



Contents

xiii

12

13

14

15

Two Applications of High-Dimensional Polytopes

12.1 The Weak Perfect Graph Conjecture ....................
12.2 The Brunn—-Minkowski Inequality .......................
12.3 Sorting Partially Ordered Sets .........................

Volumes in High Dimension

13.1 Volumes, Paradoxes of High Dimension, and Nets.........
13.2 Hardness of Volume Approximation.....................
13.3 Constructing Polytopes of Large Volume ................
13.4 Approximating Convex Bodies by Ellipsoids .............

Measure Concentration and Almost Spherical Sections

14.1 Measure Concentration on the Sphere ...................
14.2 Isoperimetric Inequalities and More on Concentration . . ...
14.3 Concentration of Lipschitz Functions....................
14.4 Almost Spherical Sections: The First Steps ..............
14.5 Many Faces of Symmetric Polytopes ....................
14.6 Dvoretzky’s Theorem ........... ... .. ..o,

Embedding Finite Metric Spaces into Normed Spaces

15.1 Introduction: Approximate Embeddings .................
15.2 The Johnson-Lindenstrauss Flattening Lemma ...........
15.3 Lower Bounds By Counting.................ooooiiio...
15.4 A Lower Bound for the Hamming Cube .................
15.5 A Tight Lower Bound via Expanders....................
15.6 Upper Bounds for £o.-Embeddings . .....................
15.7 Upper Bounds for Euclidean Embeddings................

What Was It About? An Informal Summary

Hints to Selected Exercises

Bibliography

Index

289
290
296
302

311
311
315
322
324

329
330
333
337
341
347
348

355
355
358
362
369
373
385
389

401

409

417

459






Notation and Terminology

This section summarizes rather standard things, and it is mainly for reference.
More special notions are introduced gradually throughout the book. In order
to facilitate independent reading of various parts, some of the definitions are
even repeated several times.

If X is a set, | X| denotes the number of elements (cardinality) of X. If X
is a multiset, in which some elements may be repeated, then | X| counts each
element with its multiplicity.

The very slowly growing function log* z is defined by log*z = 0 for z < 1
and log* x = 1 + log*(log, x) for z > 1.

For a real number z, |x| denotes the largest integer less than or equal
to x, and [z] means the smallest integer greater than or equal to z. The
boldface letters R and Z stand for the real numbers and for the integers,
respectively, while R¢ denotes the d-dimensional Euclidean space. For a point
T = (z1,%2,...,24) € RY, ||lz|| = \/2? + 22 + - - - + 22 is the Euclidean norm
of z, and for z,y € R, (,y) = x1y1 + T2y +- - - +Tqyq is the scalar product.
Points of R? are usually considered as column vectors.

The symbol B(z,r) denotes the closed ball of radius r centered at z in
some metric space (usually in R¢ with the Euclidean distance), i.e., the set
of all points with distance at most r from z. We write B™ for the unit ball
B(0,1) in R™. The symbol OA denotes the boundary of a set A C R4, that
is, the set of points at zero distance from both A and its complement.

For a measurable set A C R%, vol(A) is the d-dimensional Lebesgue mea-
sure of A (in most cases the usual volume).

Let f and g be real functions (of one or several variables). The notation
f = O(g) means that there exists a number C such that |f| < C|g| for all
values of the variables. Normally, C should be an absolute constant, but if
f and g depend on some parameter(s) that we explicitly declare to be fixed
(such as the space dimension d), then C may depend on these parameters
as well. The notation f = Q(g) is equivalent to g = O(f), f(n) = o(g(n))
to lim, o0 (f(n)/g(n)) = 0, and f = O(g) means that both f = O(g) and
f=29(g)

For a random variable X, the symbol E[X] denotes the expectation of X,
and Prob[A] stands for the probability of an event A.
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Graphs are considered simple and undirected in this book unless stated
otherwise, so a graph G is a pair (V, E), where V is a set (the verter set) and
E C (Y) is the edge set. Here (}) denotes the set of all k-element subsets
of V. For a multigraph, the edges form a multiset, so two vertices can be
connected by several edges. For a given (multi)graph G, we write V(G) for

the vertex set and F(G) for the edge set. A complete graph has all possible
edges; that is, it is of the form (V, (‘2/)) A complete graph on n vertices is

denoted by K,,. A graph G is bipartite if the vertex set can be partitioned
into two subsets V; and V3, the (color) classes, in such a way that each edge
connects a vertex of V; to a vertex of V2. A graph G’ = (V', F’) is a subgraph
of a graph G = (V,E) if V! C V and E’ C E. We also say that G contains
a copy of H if there is a subgraph G’ of G isomorphic to H, where G’ and
H are isomorphic if there is a bijective map ¢: V(G') — V(H) such that
{u,v} € E(@) if and only if {p(u),p(v)} € E(H) for all u,v € V(G’). The
degree of a vertex v in a graph G is the number of edges of G containing v.
An r-regular graph has all degrees equal to r. Paths and cycles are graphs as
in the following picture,

LS A OO

paths cycles

and a path or cycle in G is a subgraph isomorphic to a path or cycle, respec-
tively. A graph G is connected if every two vertices can be connected by a
path in G.

We recall that a set X C R? is compact if and only if it is closed and
bounded, and that a continuous function f: X — R defined on a compact X
attains its minimum (there exists £o € X with f(zo) < f(z) for all z € X).

The Cauchy-Schwarz inequality is perhaps best remembered in the form
(z,y) < |lz|| - lly|| for all z,y € R™.

A real function f defined on an interval A C R (or, more generally, on a
convex set A C R?) is convez if f(tz + (1—t)y) < tf(z) + (1-t)f(y) for all
z,y € A and t € [0, 1]. Geometrically, the graph of f on [z, y] lies below the
segment connecting the points (z, f(z)) and (y, f(y)). If the second derivative
satisfies f”(z) > 0 for all z in an (open) interval A C R, then f is convex
on A. Jensen’s inequality is a straightforward generalization of the definition
of convexity: f(t121 +tama + - - -+ tnTn) < t1f(21) +taf(22) + - + o f(2n)
for all choices of nonnegative ¢; summing to 1 and all z3,...,z, € A. Or in
integral form, if p is a probability measure on A and f is convex on A, we have
f(fyzdpu(z)) < [, f(z)du(z). In the language of probability theory, if X
is a real random variable and f:R — R is convex, then f(E[X]) < E[f(X)];
for example, (E[X])? < E[X?].
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Convexity

We begin with a review of basic geometric notions such as hyperplanes and
affine subspaces in R¢, and we spend some time by discussing the notion
of general position. Then we consider fundamental properties of convex sets
in R%, such as a theorem about the separation of disjoint convex sets by a
hyperplane and Helly’s theorem.

1.1 Linear and Affine Subspaces, General Position

Linear subspaces. Let R? denote the d-dimensional Euclidean space. The
points are d-tuples of real numbers, z = (1, %2, ..., Zq).

The space R? is a vector space, and so we may speak of linear subspaces,
linear dependence of points, linear span of a set, and so on. A linear subspace
of R? is a subset closed under addition of vectors and under multiplication
by real numbers. What is the geometric meaning? For instance, the linear
subspaces of R? are the origin itself, all lines passing through the origin,
and the whole of R?. In R3, we have the origin, all lines and planes passing
through the origin, and R3.

Affine notions. An arbitrary line in R?, say, is not a linear subspace unless
it passes through 0. General lines are what are called affine subspaces. An
affine subspace of R® has the form = + L, where z € R? is some vector and L
is a linear subspace of R?. Having defined affine subspaces, the other “affine”
notions can be constructed by imitating the “linear” notions.

What is the affine hull of a set X C R%? It is the intersection of all affine
subspaces of R containing X. As is well known, the linear span of a set X
can be described as the set of all linear combinations of points of X. What
is an affine combination of points ai,as,...,a, € R? that would play an
analogous role? To see this, we translate the whole set by —a,, so that a,
becomes the origin, we make a linear combination, and we translate back by
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+a,. This yields an expression of the form (;(a; — an) + B2(az —ap) + -+ +
Bn(an—an)+an = fr1a1+Pra2+- -+ Ppn-16n-1+(1—L1—B2— - —Pn-1)an,
where (i, ..., 0, are arbitrary real numbers. Thus, an affine combination of
points ai,...,a, € R? is an expression of the form

aiay + -+ apan, where aq,...,a, € Rand ay + -+ a, = 1.

Then indeed, it is not hard to check that the affine hull of X is the set of all
affine combinations of points of X.

The affine dependence of points a1, ...,a, means that one of them can
be written as an affine combination of the others. This is the same as the
existence of real numbers oy, as,...a,, at least one of them nonzero, such
that both

aia; +agas + - +ana, =0and ay +as + -+ a, =0.

(Note the difference: In an affine combination, the o; sum to 1, while in an
affine dependence, they sum to 0.)

Affine dependence of a1, ...,a, is equivalent to linear dependence of the
n—1 vectors a; —ay,,a2 —an, - .., 0,1 — a,. Therefore, the maximum possible
number of affinely independent points in R is d+1.

Another way of expressing affine dependence uses “lifting” one dimension
higher. Let b; = (a;, 1) be the vector in R4*! obtained by appending a new
coordinate equal to 1 to a;; then aq, ..., a, are affinely dependent if and only
if b1, ..., b, are linearly dependent. This correspondence of affine notions in
R¢ with linear notions in R4*! is quite general. For example, if we identify
R? with the plane 23 = 1 in R? as in the picture,

then we obtain a bijective correspondence of the k-dimensional linear sub-
spaces of R? that do not lie in the plane x3 = 0 with (k—1)-dimensional affine
subspaces of R?. The drawing shows a 2-dimensional linear subspace of R3
and the corresponding line in the plane z3 = 1. (The same works for affine
subspaces of R? and linear subspaces of R%t! not contained in the subspace
Td+1 = 0)

This correspondence also leads directly to extending the affine planec R?
into the projective plane: To the points of R? corresponding to nonhorizontal
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lines through 0 in R3 we add points “at infinity,” that correspond to hori-
zontal lines through 0 in R3. But in this book we remain in the affine space
most of the time, and we do not use the projective notions.

Let aj,ay,...,a441 be points in R%, and let A be the d x d matrix with
a; — ag+1 as the ith column, ¢ = 1,2,...,d. Then ay,...,aq4+1 are affinely
independent if and only if A has d linearly independent columns, and this is
equivalent to det(A) # 0. We have a useful criterion of affine independence
using a determinant.

Affine subspaces of R¢ of certain dimensions have special names. A (d-1)-
dimensional affine subspace of R is called a hyperplane (while the word plane
usually means a 2-dimensional subspace of R? for any d). One-dimensional
subspaces are lines, and a k-dimensional affine subspace is often called a k-
flat.

A hyperplane is usually specified by a single linear equation of the form
171+ aoxs + - - - +aqgrg = b. We usually write the left-hand side as the scalar
product (a, z). So a hyperplane can be expressed as the set {x € R%: (a,z) =
b} where a € R?\ {0} and b € R. A (closed) half-space in R? is a set
of the form {x € R%: (a,z) > b} for some a € R?\ {0}; the hyperplane
{z € R% (a,z) = b} is its boundary.

General k-flats can be given either as intersections of hyperplanes or as
affine images of R* (parametric expression). In the first case, an intersection
of k hyperplanes can also be viewed as a solution to a system Az = b of linear
equations, where z € R¢ is regarded as a column vector, A is a k x d matrix,
and b € R*. (As a rule, in formulas involving matrices, we interpret points
of R? as column vectors.)

An affine mapping f: RF — R has the form f:y + By+c for some d x k
matrix B and some ¢ € RY, so it is a composition of a linear map with a
translation. The image of f is a k’-flat for some k' < min(k, d). This k¥’ equals
the rank of the matrix B.

General position. “We assume that the points (lines, hyperplanes,. .. ) are
in general position.” This magical phrase appears in many proofs. Intuitively,
general position means that no “unlikely coincidences” happen in the consid-
ered configuration. For example, if 3 points are chosen in the plane without
any special intention, “randomly,” they are unlikely to lie on a common line.
For a planar point set in general position, we always require that no three
of its points be collinear. For points in R? in general position, we assume
similarly that no unnecessary affine dependencies exist: No k < d+1 points
lie in a common (k—2)-flat. For lines in the plane in general position, we
postulate that no 3 lines have a common point and no 2 are parallel.

The precise meaning of general position is not fully standard: It may
depend on the particular context, and to the usual conditions mentioned
above we sometimes add others where convenient. For example, for a planar
point set in general position we can also suppose that no two points have the
same z-coordinate.
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What conditions are suitable for including into a “general position” as-
sumption? In other words, what can be considered as an unlikely coincidence?
For example, let X be an n-point set in the plane, and let the coordinates of
the ith point be (z;,y;). Then the vector v(X) = (z1,%2,. .-, Tn, Y1, Y2, - - Yn)
can be regarded as a point of R?". For a configuration X in which z; = zo,
i.e., the first and second points have the same z-coordinate, the point v(X)
lies on the hyperplane {z; = z2} in R?". The configurations X where some
two points share the z-coordinate thus correspond to the union of (}) hy-
perplanes in R?". Since a hyperplane in R?*" has (2n-dimensional) measure
zero, almost all points of R2" correspond to planar configurations X with all
the points having distinct z-coordinates. In particular, if X is any n-point
planar configuration and € > 0 is any given real number, then there is a con-
figuration X', obtained from X by moving each point by distance at most ¢,
such that all points of X’ have distinct z-coordinates. Not only that: Almost
all small movements (perturbations) of X result in X’ with this property.

This is the key property of general position: Configurations in general
position lie arbitrarily close to any given configuration (and they abound
in any small neighborhood of any given configuration). Here is a fairly gen-
eral type of condition with this property. Suppose that a configuration X
is specified by a vector t = (t1,t2,...,tn) of m real numbers (coordinates).
The objects of X can be points in R¢, in which case m = dn and the t;
are the coordinates of the points, but they can also be circles in the plane,
with m = 3n and the ¢; expressing the center and the radius of each circle,
and so on. The general position condition we can put on the configuration
X is p(t) = p(t1,ta,...,tm) # 0, where p is some nonzero polynomial in m
variables. Here we use the following well-known fact (a consequence of Sard’s
theorem; see, e.g., Bredon [Bre93], Appendix C): For any nonzero m-variate
polynomial p(t1,...,tm), the zero set {t € R™: p(t) = 0} has measure 0 in
R™.

Therefore, almost all configurations X satisfy p(t) # 0. So any condition
that can be expressed as p(t) # 0 for a certain polynomial p in m real
variables, or, more generally, as p;(t) # 0 or pa(t) # 0 or ..., for finitely or
countably many polynomials p;, ps, ..., can be included in a general position
assumption.

For example, let X be an n-point set in R?, and let us consider the con-
dition “no d+1 points of X lie in a common hyperplane.” In other words, no
d+1 points should be affinely dependent. As we know, the affine dependence
of d+1 points means that a suitable d x d determinant equals 0. This deter-
minant is a polynomial (of degree d) in the coordinates of these d+1 points.
Introducing one polynomial for every (d+1)-tuple of the points, we obtain
( dil) polynomials such that at least one of them is 0 for any configuration X
with d+1 points in a common hyperplane. Other usual conditions for general
position can be expressed similarly.
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In many proofs, assuming general position simplifies matters consider-
ably. But what do we do with configurations Xy that are not in general
position? We have to argue, somehow, that if the statement being proved is
valid for configurations X arbitrarily close to our Xy, then it must be valid
for X itself, too. Such proofs, usually called perturbation arguments, are of-
ten rather simple, and almost always somewhat boring. But sometimes they
can be tricky, and one should not underestimate them, no matter how tempt-
ing this may be. A nontrivial example will be demonstrated in Section 5.5
(Lemma 5.5.4).

Exercises

1. Verify that the affine hull of a set X C R? equals the set of all affine
combinations of points of X. [2]

2. Let A be a 2 x 3 matrix and let b € R?. Interpret the solution of the
system Ax = b geometrically (in most cases, as an intersection of two
planes) and discuss the possible cases in algebraic and geometric terms.
Bl

3. (a) What are the possible intersections of two (2-dimensional) planes
in R*? What is the “typical” case (general position)? What about two
hyperplanes in R*?

(b) Objects in R* can sometimes be “visualized” as objects in R® moving
in time (so time is interpreted as the fourth coordinate). Try to visualize
the intersection of two planes in R* discussed (a) in this way.

1.2 Convex Sets, Convex Combinations, Separation

Intuitively, a set is convex if its surface has no “dips”:

,~_not allowed in a convex set

1.2.1 Definition (Convex set). A set C C R? is convex if for every two
points z,y € C the whole segment xy is also contained in C. In other words,
for every t € [0,1], the point tx + (1 — t)y belongs to C.

The intersection of an arbitrary family of convex sets is obviously convex.
So we can define the convez hull of a set X C R%, denoted by conv(X), as the
intersection of all convex sets in R¢ containing X. Here is a planar example
with a finite X:

X . .0 .o conv(X) "
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An alternative description of the convex hull can be given using convex
combinations.

1.2.2 Claim. A point x belongs to conv(X) if and only if there exist points
Z1,%2,... Ty € X and nonnegative real numbers ty,ts,...,t, with Z;’zl t; =
1 such that z = Y-, t;z;.

The expression E?zl t;x; as in the claim is called a convex combination
of the points 1, Za, ..., Zn. (Compare this with the definitions of linear and
affine combinations.)

Sketch of proof. Each convex combination of points of X must lie in
conv(X): For n = 2 this is by definition, and for larger n by induction.
Conversely, the set of all convex combinations obviously contains X, and it
is convex. O

In R4, it is sufficient to consider convex combinations involving at most
d+1 points:

1.2.3 Theorem (Carathéodory’s theorem). Let X C R® Then each
point of conv(X) is a convex combination of at most d+1 points of X.

For example, in the plane, conv(X) is the union of all triangles with
vertices at points of X. The proof of the theorem is left as an exercise to the
subsequent section.

A basic result about convex sets is the separability of disjoint convex sets
by a hyperplane.

1.2.4 Theorem (Separation theorem). Let C,D C R® be convex sets
with C N D = 0. Then there exists a hyperplane h such that C lies in one
of the closed half-spaces determined by h, and D lies in the opposite closed
half-space. In other words, there exist a unit vector a € R and a number
b € R such that for all x € C we have {(a,z) > b, and for all x € D we have
(a,z) <b.

If C and D are closed and at least one of them is bounded, they can be
separated strictly; in such a way that CNh=DNh=0.

In particular, a closed convex set can be strictly separated from a point.
This implies that the convex hull of a closed set X equals the intersection of
all closed half-spaces containing X .

Sketch of proof. First assume that C and D are compact (i.e., closed and
bounded). Then the Cartesian product C' x D is a compact space, too, and
the distance function (z,y) — ||z — y|| attains its minimum on C' x D. That
is, there exist points p € C and q € D such that the distance of C' and D
equals the distance of p and gq.

The desired separating hyperplane h can be taken as the one perpendic-
ular to the segment pq and passing through its midpoint:
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It is easy to check that h indeed avoids both C' and D.

If D is compact and C closed, we can intersect C' with a large ball and
get a compact set C’. If the ball is sufficiently large, then C and C’ have the
same distance to D. So the distance of C and D is attained at some p € C’
and g € D, and we can use the previous argument.

For arbitrary disjoint convex sets C' and D, we choose a sequence C; C
C; C C3 C --- of compact convex subsets of C' with | J;-, C,, = C. For
example, assuming that 0 € C, we can let C,, be the intersection of the
closure of (1— %)C with the ball of radius n centered at 0. A similar sequence
Dy C Dy C -+ is chosen for D, and we let h,, = {x € R% (an,x) = b,} be a
hyperplane separating C,, from D,,, where a,, is a unit vector and b,, € R. The
sequence (b,)s2; is bounded, and by compactness, the sequence of (d+1)-
component vectors (a,b,) € R%*! has a cluster point (a,b). One can verify,
by contradiction, that the hyperplane h = {x € R%: (a,z) = b} separates C
and D (nonstrictly). O

The importance of the separation theorem is documented by its presence
in several branches of mathematics in various disguises. Its home territory is
probably functional analysis, where it is formulated and proved for infinite-
dimensional spaces; essentially it is the so-called Hahn—Banach theorem. The
usual functional-analytic proof is different from the one we gave, and in a
way it is more elegant and conceptual. The proof sketched above uses more
special properties of R%, but it is quite short and intuitive in the case of
compact C and D.

Connection to linear programming. A basic result in the theory of
linear programming is the Farkas lemma. It is a special case of the duality of
linear programming (discussed in Section 10.1) as well as the key step in its
proof.

1.2.5 Lemma (Farkas lemma, one of many versions). For every d x n
real matrix A, exactly one of the following cases occurs:

(i) The system of linear equations Ax = 0 has a nontrivial nonnegative
solution z € R™ (all components of x are nonnegative and at least one
of them is strictly positive).
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(ii) There exists a y € R® such that yT A is a vector with all entries strictly
negative. Thus, if we multiply the jth equation in the system Ax = 0 by
y; and add these equations together, we obtain an equation that obviously
has no nontrivial nonnegative solution, since all the coefficients on the
left-hand sides are strictly negative, while the right-hand side is 0.

Proof. Let us see why this is yet another version of the separation theorem.
Let V C R be the set of n points given by the column vectors of the
matrix A. We distinguish two cases: Either 0 € conv(V') or 0 & conv(V).

In the former case, we know that 0 is a convex combination of the points
of V, and the coefficients of this convex combination determine a nontrivial
nonnegative solution to Az = 0.

In the latter case, there exists a hyperplane strictly separating V' from 0,
i.e., a unit vector y € R? such that (y,v) < (y,0) = 0 for each v € V. This is
just the y from the second alternative in the Farkas lemma. a

Bibliography and remarks. Most of the material in this chapter is
quite old and can be found in many surveys and textbooks. Providing
historical accounts of such well-covered areas is not among the goals
of this book, and so we mention only a few references for the specific
results discussed in the text and add some remarks concerning related
results.

The concept of convexity and the rudiments of convex geometry
have been around since antiquity. The initial chapter of the Handbook
of Convex Geometry [GWI3] succinctly describes the history, and the
handbook can be recommended as the basic source on questions re-
lated to convexity, although knowledge has progressed significantly
since its publication.

For an introduction to functional analysis, including the Hahn-
Banach theorem, see Rudin [Rud91], for example. The Farkas lemma
originated in [Far94] (nineteenth century!). More on the history of the
duality of linear programming can be found, e.g., in Schrijver’s book
[Sch86].

As for the origins, generalizations, and applications of Carathéo-
dory’s theorem, as well as of Radon’s lemma and Helly’s theorem dis-
cussed in the subsequent sections, a recommendable survey is Eckhoff
[Eck93], and an older well-known source is Danzer, Griinbaum, and
Klee [DGKB63].

Carathéodory’s theorem comes from the paper [Car07], concerning
power series and harmonic analysis. A somewhat similar theorem, due
to Steinitz [Stel6], asserts that if z lies in the interior of conv(X)
for an X C RY, then it also lies in the interior of conv(Y") for some
Y C X with |Y| < 2d. Bonnice and Klee [BK63] proved a common
generalization of both these theorems: Any k-interior point of X is
a k-interior point of Y for some Y C X with at most max(2k,d+1)
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points, where z is called a k-interior point of X if it lies in the relative
interior of the convex hull of some k+1 affinely independent points
of X.

Exercises

[S]

Give a detailed proof of Claim 1.2.2.

. Write down a detailed proof of the separation theorem. [2]
. Find an example of two disjoint closed convex sets in the plane that are

not strictly separable. [1]

Let f:R% — RF be an affine map.

(a) Prove that if C C R% is convex, then f(C) is convex as well. Is the
preimage of a convex set always convex?

(b) For X C R? arbitrary, prove that conv(f(X)) = conv(f(X)).

Let X C R Prove that diam(conv(X)) = diam(X), where the diameter
diam(Y) of a set Y is sup{||z — y||: z,y € Y'}.

A set C C R%is a convex cone if it is convex and for each = € C, the ray
04 is fully contained in C.

(a) Analogously to the convex and affine hulls, define the appropriate
“conic hull” and the corresponding notion of “combination” (analogous
to the convex and affine combinations).

(b) Let C be a convex cone in R¢ and b ¢ C a point. Prove that there
exists a vector a with (a,z) > 0 for all z € C and {(a,b) < 0.
(Variations on the Farkas lemma) Let A be a d x n matrix and let b € R9.
(a) Prove that the system Az = b has a nonnegative solution x € R™ if
and only if every y € R? satisfying y” A > 0 also satisfies y7b > 0.
(b) Prove that the system of inequalities Az < b has a nonnegative
solution z if and only if every nonnegative y € R with yTA > 0 also
satisfies yTb > 0.

. (a) Let C C R? be a compact convex set with a nonempty interior, and
p

let p € C be an interior point. Show that there exists a line £ passing
through p such that the segment £N C is at least as long as any segment
parallel to £ and contained in C. [4]

(b) Show that (a) may fail for C' compact but not convex.

1.3 Radon’s Lemma and Helly’s Theorem

Carathéodory’s theorem from the previous section, together with Radon’s
lemma and Helly’s theorem presented here, are three basic properties of con-
vexity in R? involving the dimension. We begin with Radon’s lemma.

1.3.1 Theorem (Radon’s lemma). Let A be a set of d+2 points in R
Then there exist two disjoint subsets A;, As C A such that

conv(A;) Nconv(As) # 0.
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A point z € conv(A;)Nconv(A;), where A; and Aj are as in the theorem,
is called a Radon point of A, and the pair (A1, Az) is called a Radon partition
of A (it is easily seen that we can require A; U Ay = A).

Here are two possible cases in the plane:

b S

o
Proof. Let A ={a1,az,...,a4+2}- These d+2 points are necessarily affinely
dependent. That is, there exist real numbers aq, ..., a4+2, not all of them 0,

such that Y72 o; = 0 and Y42 a0, = 0.

Set P = {i: ; > 0} and N = {i: oy < 0}. Both P and N are nonempty.
We claim that P and N determine the desired subsets. Let us put A; =
{a;: i € P} and Ay = {a;: i € N}. We are going to exhibit a point z that is
contained in the convex hulls of both these sets.

Put S =}, p as; we also have S = — 3,y ;. Then we define

e=Y 2. (1.1)
Py

. d+2
Since 3017 aia; = 0= 3, p @i + 3 ;c v Qiai, We also have

=> _;" a;. (1.2)

iEN

The coeflicients of the a; in (1.1) are nonnegative and sum to 1, so z is a
convex combination of points of A;. Similarly, (1.2) expresses x as a convex
combination of points of As. a

Helly’s theorem is one of the most famous results of a combinatorial nature
about convex sets.

1.3.2 Theorem (Helly’s theorem). Let C1,Cs,...,C, be convex sets in
R4, n > d+1. Suppose that the intersection of every d+1 of these sets is
nonempty. Then the intersection of all the C; is nonempty.

The first nontrivial case states that if every 3 among 4 convex sets in
the plane intersect, then there is a point common to all 4 sets. This can be
proved by an elementary geometric argument, perhaps distinguishing a few
cases, and the reader may want to try to find a proof before reading further.

In a contrapositive form, Helly’s theorem guarantees that whenever
C1,Cs,...,C, are convex sets with ﬂ?zl C; = 0, then this is witnessed by
some at most d+1 sets with empty intersection among the C;. In this way,
many proofs are greatly simplified, since in planar problems, say, one can deal
with 3 convex sets instead of an arbitrary number, as is amply illustrated in
the exercises below.
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It is very tempting and quite usual to formulate Helly’s theorem as fol-
lows: “If every d+1 among n convex sets in R? intersect, then all the sets
intersect.” But, strictly speaking, this is false, for a trivial reason: For d > 2,
the assumption as stated here is met by n = 2 disjoint convex sets.

Proof of Helly’s theorem. (Using Radon’s lemma.) For a fixed d, we
proceed by induction on n. The case n = d+1 is clear, so we suppose that
n > d+2 and that the statement of Helly’s theorem holds for smaller n.
Actually, n = d+2 is the crucial case; the result for larger n follows at once
by a simple induction.

Consider sets C1,Cs, ..., C, satisfying the assumptions. If we leave out
any one of these sets, the remaining sets have a nonempty intersection by
the inductive assumption. Let us fix a point a; € ﬂj# C; and consider the
points aj,as,...,aq4+2. By Radon’s lemma, there exist disjoint index sets
I,I, C{1,2,...,d+2} such that

conv({a;: i € I1}) Nconv({a;: i € I}) # 0.

We pick a point z in this intersection. The following picture illustrates the
case d =2 and n = 4:

We claim that z lies in the intersection of all the C;. Consider some ¢ €
{1,2,...,n}; thens ¢ I; or i € I». In the former case, each a; with j € I; lies
in C;, and so z € conv({a;: j € I1}) C C;. For i ¢ I, we similarly conclude
that « € conv({a;: j € Ib}) C C;. Therefore, z € N, Ci. ]

An infinite version of Helly’s theorem. If we have an infinite collection
of convex sets in R? such that any d+1 of them have a common point, the
entire collection still need not have a common point. Two examples in R! are
the families of intervals {(0,1/n): n = 1,2,...} and {[n,00): n = 1,2,...}.
The sets in the first example are not closed, and the second example uses
unbounded sets. For compact (i.e., closed and bounded) sets, the theorem
holds:

1.3.3 Theorem (Infinite version of Helly’s theorem). Let C be an ar-
bitrary infinite family of compact convex sets in R® such that any d+1 of the
sets have a nonempty intersection. Then all the sets of C have a nonempty
intersection.
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Proof. By Helly’s theorem, any finite subfamily of C has a nonempty inter-
section. By a basic property of compactness, if we have an arbitrary family
of compact sets such that each of its finite subfamilies has a nonempty inter-
section, then the entire family has a nonempty intersection. ]

Several nice applications of Helly’s theorem are indicated in the exercises
below, and we will meet a few more later in this book.

Bibliography and remarks. Helly proved Theorem 1.3.2 in 1913
and communicated it to Radon, who published a proof in [Rad21]. This
proof uses Radon’s lemma, although the statement wasn’t explicitly
formulated in Radon’s paper. References to many other proofs and
generalizations can be found in the already mentioned surveys [Eck93]
and [DGK63].

Helly’s theorem inspired a whole industry of Helly-type theorems.
A family B of sets is said to have Helly number h if the following holds:
Whenever a finite subfamily F C B is such that every h or fewer sets
of F have a common point, then (|F # 0. So Helly’s theorem says
that the family of all convex sets in R? has Helly number d+1. More
generally, let P be some property of families of sets that is hereditary,
meaning that if F has property P and F’ C F, then F’ has P as well.
A family B is said to have Helly number h with respect to P if for
every finite F C B, all subfamilies of F of size at most h having P
implies F having P. That is, the absence of P is always witnessed by
some at most h sets, so it is a “local” property.

Exercises

1. Prove Carathéodory’s theorem (you may use Radon’s lemma).

2. Let K C R? be a convex set and let Cy,...,Cp, C R% n > d+1, be
convex sets such that the intersection of every d+1 of them contains a
translated copy of K. Prove that then the intersection of all the sets C;
also contains a translated copy of K. [2]

This result was noted by Vincensini [Vin39] and by Klee [Kle53].

3. Find an example of 4 convex sets in the plane such that the intersection
of each 3 of them contains a segment of length 1, but the intersection of
all 4 contains no segment of length 1. [1]

4. A strip of width w is a part of the plane bounded by two parallel lines at
distance w. The width of a set X C R? is the smallest width of a strip
containing X.

(a) Prove that a compact convex set of width 1 contains a segment of
length 1 of every direction.

(b) Let {C1,C4,...,Cy} be closed convex sets in the plane, n > 3, such
that the intersection of every 3 of them has width at least 1. Prove that
i, C; has width at least 1.
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10.

The result as in (b), for arbitrary dimension d, was proved by Sallee
[Sal75], and a simple argument using Helly’s theorem was noted by Buch-
man and Valentine [BV82].

. Statement: Each set X C R? of diameter at most 1 (i.e., any 2 points

have distance at most 1) is contained in some disc of radius 1/+/3.

(a) Prove the statement for 3-element sets X.

(b) Prove the statement for all finite sets X.

(c) Generalize the statement to R%: determine the smallest r = 7(d) such
that every set of diameter 1 in R? is contained in a ball of radius r (prove
your claim).

The result as in (c) is due to Jung; see [DGK63].

Let C C R? be a compact convex set. Prove that the mirror image of C
can be covered by a suitable translate of C' blown up by the factor of d;
that is, there is an z € R® with —C C z + dC.

(a) Prove that if the intersection of each 4 or fewer among convex sets
Ci,...,Cn C R? contains a ray then (-, C; also contains a ray. [4]

(b) Show that the number 4 in (a) cannot be replaced by 3. [2]

This result, and an analogous one in R? with the Helly number 2d, are
due to Katchalski [Kat78].

For a set X C R? and a point x € X, let us denote by V(z) the set of all
points y € X that can “see” z, i.e., points such that the segment zy is
contained in X. The kernel of X is defined as the set of all points z € X
such that V(z) = X. A set with a nonempty kernel is called star-shaped.
(a) Prove that the kernel of any set is convex. [1]

(b) Prove that if V(z) NV (y) NV (z) # O for every z,y,2 € X and X is
compact, then X is star-shaped. That is, if every 3 paintings in a (planar)
art gallery can be seen at the same time from some location (possibly
different for different triples of paintings), then all paintings can be seen
simultaneously from somewhere. If it helps, assume that X is a polygon.
(c) Construct a nonempty set X C R? such that each of its finite subsets
can be seen from some point of X but X is not star-shaped. [2]

The result in (b), as well as the d-dimensional generalization (with ev-
ery d+1 regions V' (z) intersecting), is called Krasnoselskii’s theorem; see
[Eck93] for references and related results.

In the situation of Radon’s lemma (A is a (d+2)-point set in R%), call
a point x € R? a Radon point of A if it is contained in convex hulls of
two disjoint subsets of A. Prove that if A is in general position (no d+1
points affinely dependent), then its Radon point is unique.

(a) Let X,Y C R? be finite point sets, and suppose that for every subset
S C X UY of at most 4 points, SN X can be separated (strictly) by a
line from S NY. Prove that X and Y are line-separable.

(b) Extend (a) to sets X,Y C R¢, with |S| < d+2.

The result (b) is called Kirchberger’s theorem [Kir03].
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1.4 Centerpoint and Ham Sandwich

We prove an interesting result as an application of Helly’s theorem.

1.4.1 Definition (Centerpoint). Let X be an n-point set in R%. A point
z € R? is called a centerpoint of X if each closed half-space containing x
contains at least 7 points of X.

Let us stress that one set may generally have many centerpoints, and a
centerpoint need not belong to X.

The notion of centerpoint can be viewed as a generalization of the me-
dian of one-dimensional data. Suppose that xy,...,z, € R are results of
measurements of an unknown real parameter z. How do we estimate x from
the x;7 We can use the arithmetic mean, but if one of the measurements is
completely wrong (say, 100 times larger than the others), we may get quite
a bad estimate. A more “robust” estimate is a median, i.e., a point z such
that at least § of the z; lie in the interval (—oo, z] and at least % of them lie
in [z,00). The centerpoint can be regarded as a generalization of the median
for higher-dimensional data.

In the definition of centerpoint we could replace the fraction ﬁ by some
other parameter a € (0,1). For o > ?171?17 such an “a-centerpoint” need not
always exist: Take d+1 points in general position for X. With a = ﬁ as in
the definition above, a centerpoint always exists, as we prove next.

Centerpoints are important, for example, in some algorithms of divide-
and-conquer type, where they help divide the considered problem into smaller
subproblems. Since no really efficient algorithms are known for finding
“exact” centerpoints, the algorithms often use a-centerpoints with a suit-
able & < z37, which are easier to find.

1.4.2 Theorem (Centerpoint theorem). Fach finite point set in R has
at least one centerpoint.

Proof. First we note an equivalent definition of a centerpoint: x is a cen-
terpoint of X if and only if it lies in each open half-space v such that
| X Ny > #‘il n.

We would like to apply Helly’s theorem to conclude that all these open
half-spaces intersect. But we cannot proceed directly, since we have infinitely
many half-spaces and they are open and unbounded. Instead of such an open
half-space -y, we thus consider the compact convex set conv(X N~) C 7.

conv(yN X)
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Letting «y run through all open half-spaces v with | X N~vy| > #‘1 n, we obtain
a family C of compact convex sets. Each of them contains more than E%I"
points of X, and so the intersection of any d+1 of them contains at least
one point of X. The family C consists of finitely many distinct sets (since X
has finitely many distinct subsets), and so [C # @ by Helly’s theorem. Each
point in this intersection is a centerpoint. a

In the definition of a centerpoint we can regard the finite set X as defining
a distribution of mass in R%. The centerpoint theorem asserts that for some
point z, any half-space containing x encloses at least d—}r—l of the total mass.
It is not difficult to show that this remains valid for continuous mass distri-
butions, or even for arbitrary Borel probability measures on R¢ (Exercise 1).

Ham-sandwich theorem and its relatives. Here is another important
result, not much related to convexity but with a flavor resembling the cen-
terpoint theorem.

1.4.3 Theorem (Ham-sandwich theorem). Every d finite sets in R? can
be simultaneously bisected by a hyperplane. A hyperplane h bisects a finite
set A if each of the open half-spaces defined by h contains at most ||A|/2]
points of A.

This theorem is usually proved via continuous mass distributions using
a tool from algebraic topology: the Borsuk-Ulam theorem. Here we omit a
proof.

Note that if A; has an odd number of points, then every h bisecting A;
passes through a point of A;. Thus if A;,..., Ay all have odd sizes and their
union is in general position, then every hyperplane simultaneously bisecting
them is determined by d points, one of each A;. In particular, there are only
finitely many such hyperplanes.

Again, an analogous ham-sandwich theorem holds for arbitrary d Borel
probability measures in R9.

Center transversal theorem. There can be beautiful new things to dis-
cover even in well-studied areas of mathematics. A good example is the fol-
lowing recent result, which “interpolates” between the centerpoint theorem
and the ham-sandwich theorem.

1.4.4 Theorem (Center transversal theorem). Let 1 < k < d and let
Ay, Ay, ..., Ay be finite point sets in RY. Then there exists a (k—1)-flat f
such that for every hyperplane h containing f, both the closed half-spaces
defined by h contain at least z——|A:| points of A;, i =1,2,... k.

The ham-sandwich theorem is obtained for ¥ = d and the centerpoint
theorem for £ = 1. The proof, which we again have to omit, is based on a
result of algebraic topology, too, but it uses a considerably more advanced
machinery than the ham-sandwich theorem. However, the weaker result with

1

. 1 . 3 .
747 instead of 777 is easy to prove; see Exercise 2.
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Bibliography and remarks. The centerpoint theorem was es-
tablished by Rado [Rad47]. According to Steinlein’s survey [Ste85],
the ham-sandwich theorem was conjectured by Steinhaus (who also
invented the popular 3-dimensional interpretation, namely, that the
ham, the cheese, and the bread in any ham sandwich can be simulta-
neously bisected by a single straight motion of the knife) and proved
by Banach. The center transversal theorem was found by Dolnikov
[Dol92] and, independently, by Zivaljevi¢ and Vredica [ZV90).

Significant effort has been devoted to efficient algorithms for find-
ing (approximate) centerpoints and ham-sandwich cuts (i.e., hyper-
planes as in the ham-sandwich theorem). In the plane, a ham-sandwich
cut for two n-point sets can be computed in linear time (Lo, Matousek,
and Steiger [LMS94]). In a higher but fixed dimension, the complexity
of the best exact algorithms is currently slightly better than O(n?~1).
A centerpoint in the plane, too, can be found in linear time (Jadhav
and Mukhopadhyay [JM94]). Both approximate ham-sandwich cuts
(in the ratio 1 : 1+€ for a fixed £ > 0) and approximate centerpoints
((aqlr—l—s)—centerpoints) can be computed in time O(n) for every fixed
dimension d and every fixed € > 0, but the constant depends expo-
nentially on d, and the algorithms are impractical if the dimension is
not quite small. A practically efficient randomized algorithm for com-
puting approximate centerpoints in high dimensions (a-centerpoints
with « =~ 1/d?) was given by Clarkson, Eppstein, Miller, Sturtivant,
and Teng [CEM™96].

Exercises

1. (Centerpoints for general mass distributions)
(a) Let u be a Borel probability measure on R%; that is, u(R%) = 1 and
each open set is measurable. Show that for each open half-space v with
u(vy) > t there exists a compact set C C v with p(C) > t. [z
(b) Prove that each Borel probability measure in R? has a centerpoint
(use (a) and the infinite Helly’s theorem).

2. Prove that for any k finite sets Ay, ..., Ar C R? where 1 < k < d, there
exists a (k—1)-flat such that every hyperplane containing it has at least
3% |A;| points of A; in both of its closed half-spaces for alli = 1,2,.. ., k.
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Lattices and Minkowski’s
Theorem

This chapter is a quick excursion into the geometry of numbers, a field where
number-theoretic results are proved by geometric arguments, often using
properties of convex bodies in R%. We formulate the simple but beautiful
theorem of Minkowski on the existence of a nonzero lattice point in every
symmetric convex body of sufficiently large volume. We derive several con-
sequences, concluding with a geometric proof of the famous theorem of La-
grange claiming that every natural number can be written as the sum of at
most 4 squares.

2.1 Minkowski’s Theorem

In this section we consider the integer lattice Z?, and so a lattice point is a
point in R with integer coordinates. The following theorem can be used in
many interesting situations to establish the existence of lattice points with
certain properties.

2.1.1 Theorem (Minkowski’s theorem). Let C C R be symmetric
(around the origin, i.e., C = —C), convex, bounded, and suppose that
vol(C) > 2%. Then C contains at least one lattice point different from 0.

Proof. We put C' = 1C = {iz: 2 € C}.
Claim: There exists a nonzero integer vector v € Z% \ {0} such that C' N
(C"+v) #0; ie., C' and a translate of C’ by an integer vector intersect.

Proof. By contradiction; suppose the claim is false. Let R be a large
integer number. Consider the family C of translates of C’ by the
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integer vectors in the cube [~ R, R]¢: C = {C'+v: v € [-R, R]*NZ4},
as is indicated in the drawing (C' is painted in gray).

by
g
)

Each such translate is disjoint from C’, and thus every two of these
translates are disjoint as well. They are all contained in the enlarged
cube K = [-R — D, R + D]¢, where D denotes the diameter of C".
Hence

vol(K) = (2R + 2D)? > |C|vol(C") = (2R + 1) vol(C"),

and

d
vol(C') < (1 42D 1) .

2R+1

The expression on the right-hand side is arbitrarily close to 1 for
sufficiently large R. On the other hand, vol(C’) = 2~%¢vol(C) > 1 is
a fixed number exceeding 1 by a certain amount independent of R,
a contradiction. The claim thus holds. a

Now let us fix a v € Z¢ as in the claim and let us choose a point = €
C'N(C"+v). Then we have z — v € C’, and since C’ is symmetric, we obtain
v—xz € C'. Since C' is convex, the midpoint of the segment z(v — z) lies in
C’ too, and so we have 3z + (v — z) = v € C’. This means that v € C,
which proves Minkowski’s theorem. O

2.1.2 Example (About a regular forest). Let K be a circle of diameter
26 (meters, say) centered at the origin. Trees of diameter 0.16 grow at each
lattice point within K except for the origin, which is where you are standing.
Prove that you cannot see outside this miniforest.
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Proof. Suppose than one could see outside along some line ¢ passing through
the origin. This means that the strip S of width 0.16 with ¢ as the middle
line contains no lattice point in K except for the origin. In other words, the
symmetric convex set C' = KNS contains no lattice points but the origin. But
as is easy to calculate, vol(C) > 4, which contradicts Minkowski’s theorem.
O

2.1.3 Proposition (Approximating an irrational number by a frac-
tion). Let « € (0,1) be a real number and N a natural number. Then there
exists a pair of natural numbers m,n such that n < N and

1
YT ’ SaN

This proposition implies that there are infinitely many pairs m,n such
that |o — 2| < 1/n? (Exercise 4). This is a basic and well-known result
in elementary number theory. It can also be proved using the pigeonhole
principle.

The proposition has an analogue concerning the approximation of several
numbers aj, . . ., o by fractions with a common denominator (see Exercise 5),
and there a proof via Minkowski’s theorem seems to be the simplest.

oo

Proof of Proposition 2.1.3. Consider the set

C={(z,y)eR2: -N-i<z<N+1, |a:v—y|<%}.

Yy =azx
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This is a symmetric convex set of area (2N +1) > 4, and therefore it con-
tains some nonzero integer lattice point (n, m). By symmetry, we may assume
n > 0. The deﬁmtlon of C gives n < N and |an — m| < 5. In other words,
|a o I < nN =

Bibliography and remarks. The name “geometry of numbers”
was coined by Minkowski, who initiated a systematic study of this
field (although related ideas appeared in earlier works). He proved
Theorem 2.1.1, in a more general form mentioned later on, in 1891
(see [Min96)). His first application was a theorem on simultaneously
making linear forms small (Exercise 2.2.4). While geometry of numbers
originated as a tool in number theory, for questions in Diophantine
approximation and quadratic forms, today it also plays a significant
role in several other diverse areas, such as coding theory, cryptography,
the theory of uniform distribution, and numerical integration.

Theorem 2.1.1 is often called Minkowski’s first theorem. What is,
then, Minkowski’s second theorem? We answer this natural question
in the notes to Section 2.2, where we also review a few more of the
basic results in the geometry of numbers and point to some interesting
connections and directions of research.

Most of our exposition in this chapter follows a similar chapter in
Pach and Agarwal [PA95]. Older books on the geometry of numbers
are Cassels [Casb9] and Gruber and Lekkerkerker [GL8T7]. A pleasant
but somewhat aged introduction is Siegel [Sie89]. The Gruber [Gru93|
provides a concise recent overview.

Exercises

1.

2.

Prove: If C C R¢ is convex, symmetric around the origin, bounded, and
such that vol(C) > k29, then C contains at least 2k lattice points. [2]
By the method of the proof of Minkowski’s theorem, show the following
result (Blichtfeld; Van der Corput): If S C R¢ is measurable and vol(S) >
k, then there are points s1, s2,...,5x € S with all s; —s; € Z4,1<4,j<
k.

Show that the boundedness of C in Minkowski’s theorem is not really
necessary.

(a) Verify the claim made after Example 2.1.3, namely, that for any
irrational « there are infinitely many pairs m, n such that |a — m/n| <
1/n2. [

(b) Prove that for & = v/2 there are only finitely many pairs m,n with
la —m/n| < 1/4n2. 2

(c) Show that for any algebraic irrational number a (i.e., a root of a
univariate polynomial with integer coefficients) there exists a constant D
such that |@ — m/n| < 1/nP holds for finitely many pairs (m,n) only.
Conclude that, for example, the number 3 50, 27 is not algebraic. [&]
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5. (a) Let oy, € (0,1) be real numbers. Prove that for a given N € N
there exist mj,m2,n € N, n < N, such that |o; — 4| < ;ﬁ, 1=1,2.
|
(b) Formulate and prove an analogous result for the simultaneous ap-
proximation of d real numbers by rationals with a common denominator.
(This is a result of Dirichlet [Dir42].)

6. Let K C R? be a compact convex set of area o and let  be a point
chosen uniformly at random in [0, 1)2.

(a) Prove that the expected number of points of Z? in the set K + z
equals a.

(b) Show that with probability at least 1 — @, K + z contains no point
of Z2. [

2.2 General Lattices

Let 21, 22, . .., zq be a d-tuple of linearly independent vectors in R%. We define
the lattice with basis {z1, 22, ...,24} as the set of all linear combinations of
the z; with integer coefficients; that is,

A =A(zl,z2,...,zd) = {i1z1 + 1929 + -+ + 1g2q: (il,iz,...,id) € Zd}.

Let us remark that this lattice has in general many different bases. For in-
stance, the sets {(0,1), (1,0)} and {(1,0),(3,1)} are both bases of the “stan-
dard” lattice Z2.

Let us form a d x d matrix Z with the vectors zq,..., 24 as columns. We
define the determinant of the lattice A = A(21, z2,...,24) as det A = | det Z|.
Geometrically, det A is the volume of the parallelepiped {121 + @gze + - +
agzq: a1, ..., a4 € [0,1]}:

(the proof is left to Exercise 1). The number det A is indeed a property of the
lattice A (as a point set), and it does not depend on the choice of the basis
of A (Exercise 2). It is not difficult to show that if Z is the matrix of some
basis of A, then the matrix of every basis of A has the form BU, where U is
an integer matrix with determinant +1.



22 Chapter 2: Lattices and Minkowski’s Theorem

2.2.1 Theorem (Minkowski’s theorem for general lattices). Let A be
a lattice in R%, and let C C R? be a symmetric convex set with vol(C) >
24 det A. Then C contains a point of A different from 0.

Proof. Let {z1,...,24} be a basis of A. We define a linear mapping f: R% —
R? by f(z1,29,...,%4) = T121 +T222 + - -+ T424. Then f is a bijection and
A = f(Z%). For any convex set X, we have vol(f(X)) = det(A) vol(X).
(Sketch of proof: This holds if X is a cube, and a convex set can be ap-
proximated by a disjoint union of sufficiently small cubes with arbitrary
precision.) Let us put C’ = f~!(C). This is a symmetric convex set with
vol(C") = vol(C)/det A > 2%. Minkowski’s theorem provides a nonzero vec-
tor v € C'NZ4, and f(v) is the desired point as in the theorem. O

A seemingly more general definition of a lattice. What if we consider
integer linear combinations of more than d vectors in R%? Some caution is
necessary: If we take d = 1 and the vectors v; = (1), vo = (v/2), then
the integer linear combinations 4,v; + i2v2 are dense in the real line (by
Example 2.1.3), and such a set is not what we would like to call a lattice.

In order to exclude such pathology, we define a discrete subgroup of R4
as a set A C R% such that whenever z,y € A, then also x — y € A, and such
that the distance of any two distinct points of A is at least §, for some fixed
positive real number § > 0.

It can be shown, for instance, that if v1,vs, ..., v, € R are vectors with
rational coordinates, then the set A of all their integer linear combinations
is a discrete subgroup of R (Exercise 3). As the following theorem shows,
any discrete subgroup of R? whose linear span is all of R% is a lattice in the
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