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FOREWORD

The present book is meant as a basic text for a one-year course in algebra,
at the graduate level.

A perspective on algebra

As I see it, the graduate course in algebra must primarily prepare students
to handle the algebra which they will meet in all of mathematics: topology,
partial differential equations, differential geometry, algebraic geometry, analysis,
and representation theory, not to speak of algebra itself and algebraic number
theory with all its ramifications. Hence 1 have inserted throughout references to
papers and books which have appeared during the last decades, to indicate some
of the directions in which the algebraic foundations provided by this book are
used; I have accompanied these references with some motivating comments, to
explain how the topics of the present book fit into the mathematics that is to
come subsequently in various fields; and I have also mentioned some unsolved
problems of mathematics in algebra and number theory. The abc conjecture is
perhaps the most spectacular of these.

Often when such comments and examples occur out of the logical order,
especially with examples from other branches of mathematics, of necessity some
terms may not be defined, or may be defined only later in the book. I have tried
to help the reader not only by making cross-references within the book, but also
by referring to other books or papers which I mention explicitly.

I have also added a number of exercises. On the whole, I have tried to make
the exercises complement the examples, and to give them aesthetic appeal. I
have tried to use the exercises also to drive readers toward variations and appli-
cations of the main text, as well as toward working out special cases, and as
openings toward applications beyond this book.

Organization
Unfortunately, a book must be projected in a totally ordered way on the page
axis, but that’s not the way mathematics “is”, so readers have to make choices

how to reset certain topics in parallel for themselves, rather than in succession.

v
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I have inserted cross-references to help them do this, but different people will
make different choices at different times depending on different circumstances.
The book splits naturally into several parts. The first part introduces the basic
notions of algebra. After these basic notions, the book splits in two major
directions: the direction of algebraic equations including the Galois theory in
Part II; and the direction of linear and multilinear algebra in Parts III and IV.
There is some sporadic feedback between them, but their unification takes place
at the next level of mathematics, which is suggested, for instance, in §15 of
Chapter VI. Indeed, the study of algebraic extensions of the rationals can be
carried out from two points of view which are complementary and interrelated:
representing the Galois group of the algebraic closure in groups of matrices (the
linear approach), and giving an explicit determination of the irrationalities gen-
erating algebraic extensions (the equations approach). At the moment, repre-
sentations in GL, are at the center of attention from various quarters, and readers
will see GL, appear several times throughout the book. For instance, I have
found it appropriate to add a section describing all irreducible characters of
GL,(F) when F is a finite field. Ultimately, GL, will appear as the simplest but
typical case of groups of Lie types, occurring both in a differential context and
over finite fields or more general arithmetic rings for arithmetic applications.

After almost a decade since the second edition, I find that the basic topics
of algebra have become stable, with one exception. I have added two sections
on elimination theory, complementing the existing section on the resultant.
Algebraic geometry having progressed in many ways, it is now sometimes return-
ing to older and harder problems, such as searching for the effective construction
of polynomials vanishing on certain algebraic sets, and the older elimination
procedures of last century serve as an introduction to those problems.

Except for this addition, the main topics of the book are unchanged from the
second edition, but I have tried to improve the book in several ways.

First, some topics have been reordered. I was informed by readers and review-
ers of the tension existing between having a textbook usable for relatively inex-
perienced students, and a reference book where results could easily be found in
a systematic arrangement. I have tried to reduce this tension by moving all the
homological algebra to a fourth part, and by integrating the commutative algebra
with the chapter on algebraic sets and elimination theory, thus giving an intro-
duction to different points of view leading toward algebraic geometry.

The book as a text and a reference

In teaching the course, one might wish to push into the study of algebraic
equations through Part II, or one may choose to go first into the linear algebra
of Parts III and IV. One semester could be devoted to each, for instance. The
chapters have been so written as to allow maximal flexibility in this respect, and
I have frequently committed the crime of 1&ése-Bourbaki by repeating short argu-
ments or definitions to make certain sections or chapters logically independent
of each other.
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Granting the material which under no circumstances can be omitted from a
basic course, there exist several options for leading the course in various direc-
tions. It is impossible to treat all of them with the same degree of thoroughness.
The precise point at which one is willing to stop in any given direction will
depend on time, place, and mood. However, any book with the aims of the
present one must include a choice of topics, pushing ahead in deeper waters,
while stopping short of full involvement.

There can be no universal agreement on these matters, not even between the
author and himself. Thus the concrete decisions as to what to include and what
not to include are finally taken on grounds of general coherence and aesthetic
balance. Anyone teaching the course will want to impress their own personality
on the material, and may push certain topics with more vigor than I have, at the
expense of others. Nothing in the present book is meant to inhibit this.

Unfortunately, the goal to present a fairly comprehensive perspective on
algebra required a substantial increase in size from the first to the second edition,
and a moderate increase in this third edition. These increases require some
decisions as to what to omit in a given course.

Many shortcuts can be taken in the presentation of the topics, which
admits many variations. For instance, one can proceed into field theory and
Galois theory immediately after giving the basic definitions for groups, rings,
fields, polynomials in one variable, and vector spaces. Since the Galois theory
gives very quickly an impression of depth, this is very satisfactory in many
respects. ’

It is appropriate here to recall my original indebtedness to Artin, who first
taught me algebra. The treatment of the basics of Galois theory is much
influenced by the presentation in his own monograph.

Audience and background

As I already stated in the forewords of previous editions, the present book
is meant for the graduate level, and I expect most of those coming to it to have
had suitable exposure to some algebra in an undergraduate course, or to have
appropriate mathematical maturity. I expect students taking a graduate course
to have had some exposure to vector spaces, linear maps, matrices, and they
will no doubt have seen polynomials at the very least in calculus courses.

My books Undergraduate Algebra and Linear Algebra provide more than
enough background for a graduate course. Such elementary texts bring out in
parallel the two basic aspects of algebra, and are organized differently from the
present book, where both aspects are deepened. Of course, some aspects of the
linear algebra in Part III of the present book are more “elementary” than some
aspects of Part II, which deals with Galois theory and the theory of polynomial
equations in several variables. Because Part II has gone deeper into the study
of algebraic equations, of necessity the parallel linear algebra occurs only later
in the total ordering of the book. Readers should view both parts as running
simultaneously.
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Unfortunately, the amount of algebra which one should ideally absorb during
this first year in order to have a proper background (irrespective of the subject
in which one eventually specializes) exceeds the amount which can be covered
physically by a lecturer during a one-year course. Hence more material must be
included than can actually be handled in class. I find it essential to bring this
material to the attention of graduate students.

I hope that the various additions and changes make the book easier to use as
a text. By these additions, I have tried to expand the general mathematical
perspective of the reader, insofar as algebra relates to other parts of mathematics.
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Logical Prerequisites

We assume that the reader is familiar with sets, and with the symbols N, U,
D, C, e. If A, B are sets, we use the symbol A C B to mean that A is contained
in B but may be equal to B. Similarly for A D B.

If f: A — B is a mapping of one set into another, we write

x— f(x)

to denote the effect of f on an element x of A. We distinguish between the
arrows — and —. We denote by f(A) the set of all elements f(x), with x € A.

Let f: A — B be a mapping (also called a map). We say that f is injective
if x # y implies f(x) # f(y). We say f is surjective if given b € B there exists
a € A such that f(a) = b. We say that f is bijective if it is both surjective and
injective. ‘

A subset A of a set B is said to be proper if A # B.

Let f: A > B be a map, and A’ a subset of A. The restriction of f to A’ is
a map of A’ into B denoted by f|A’.

If f:A— Band g: B — C are maps, then we have a composite map g o f
such that (g o f)(x) = g(f(x)) for all x € A.

Letf: A — B be a map, and B’ a subset of B. By f ~!(B’) we mean the subset
of A consisting of all x € A such that f(x) € B'. We call it the inverse image of
B'. We call f(A) the image of f.

A diagram

A—L B
\ /
c
is said to be commutative if g o f = h. Similarly, a diagram

A——B
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is said to be commutative if go f =y o 9. We deal sometimes with more
complicated diagrams, consisting of arrows between various objects. Such
diagrams are called commutative if, whenever it is possible to go from one
object to another by means of two sequences of arrows, say

A, h > A, f2 I L A,

and

then
facre i = Gm-1° 70 915

in other words, the composite maps are equal. Most of our diagrams are
composed of triangles or squares as above, and to verify that a diagram con-
sisting of triangles or squares is commutative, it suffices to verify that each
triangle and square in it is commutative.

We assume that the reader is acquainted with the integers and rational
numbers, denoted respectively by Z and Q. For many of our examples, we also
assume that the reader knows the real and complex numbers, denoted. by R
and C.

Let 4 and I be two sets. By a family of elements of A, indexed by I, one
means a map f:I - A. Thus for each i e I we are given an element f (i) € A.
Although a family does not differ from a map, we think of it as determining a
collection of objects from A, and write it often as

{f(i)}iel

or
{ai}icr>

writing g; instead of f(i). We call I the indexing set.

We assume that the reader knows what an equivalence relation is. Let A
be a set with an equivalence relation, let E be an equivalence class of elements
of A. We sometimes try to define a map of the equivalence classes into some
set B. To define such a map f on the class E, we sometimes first give its value
on an element x € E (called a representative of E), and then show that it is
independent of the choice of representative x € E. In that case we say that f
is well defined.

We have products of sets, say finite products A x B,or A, x --- x A,,and
products of families of sets.

We shall use Zorn’s lemma, which we describe in Appendix 2.

We let #(S) denote the number of elements of a set S, also called the
cardinality of S. The notation is usually employed when S is finite. We also
write #(S5) = card(S).
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Part One

THE BASIC
OBJECTS OF
ALGEBRA

This part introduces the basic notions of algebra, and the main difficulty
for the beginner is to absorb a reasonable vocabulary in a short time. None
of the concepts is difficult, but there is an accumulation of new concepts which
may sometimes seem heavy.

To understand the next parts of the book, the reader needs to know
essentially only the basic definitions of this first part. Of course, a theorem
may be used later for some specific and isolated applications, but on the
whole, we have avoided making long logical chains of interdependence.






CHAPTER I

Groups

§1. MONOIDS

Let S be a set. A mapping
SxS§S->S8

is sometimes called a law of composition (of S into itself). If x, y are elements of
S, the image of the pair (x, y) under this mapping is also called their product
under the law of composition, and will be denoted by xy. (Sometimes, we also
write x - y, and in many cases it is also convenient to use an additive notation,
and thus to write x + y. In that case, we call this element the sum of x and y.
It is customary to use the notation x + y only when the relation x + y =
y + x holds.)

Let S be a set with a law of composition. If x, y, z are elements of S, then we
may form their product in two ways: (xy)z and x(yz). If (xy)z = x(yz) for all
X, ¥, z in S then we say that the law of composition is associative.

An element e of S such that ex = x = xe for all xe S is called a unit
element. (When the law of composition is written additively, the unit element
is denoted by 0, and is called a zero element.) A unit element is unique, for if
e’ is another unit element, we have

by assumption. In most cases, the unit element is written simply 1 (instead of ¢).
For most of this chapter, however, we shall write e so as to avoid confusion in
proving the most basic properties.

A monoid is a set G, with a law of composition which is associative, and
having a unit element (so that in particular, G is not empty).
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Let G be a monoid, and x,, ..., x, elements of G (where n is an integer > 1).
We define their product inductively:

n
nxv =Xyt Xg = (xl"'xn—l)xn‘
v=1

We then have the following rule:

m n m+n

nx”- nxm+v = l—[-xv’
u=1 v=1 v=1
which essentially asserts that we can insert parentheses in any manner in our
product without changing its value. The proof is easy by induction, and we shall
leave it as an exercise.

One also writes

m+n n
[]x, insteadof [] xp.,
m+1 v=1

and we define

—o

x, = e.

v=1

As a matter of convention, we agree also that the empty product is equal
to the unit element.

It would be possible to define more general laws of composition, i.e. maps
S; x §, = S5 using arbitrary sets. One can then express associativity and
commutativity in any setting for which they make sense. For instance, for
commutativity we need a law of composition

[ SxS8S->T

where the two sets of departure are the same. Commutativity then means
f(x,y) =f(, x), or xy = yx if we omit the mapping f from the notation. For
associativity, we leave it to the reader to formulate the most general combination
of sets under which it will work. We shall meet special cases later, for instance
arising from maps

SxS—->S and SxT->T.

Then a product (xy)z makes sense with xe S, ye S, and ze T. The product
x(yz) also makes sense for such elements x, y, z and thus it makes sense to say
that our law of composition is associative, namely to say that for all x, y, z as
above we have (xy)z = x(yz).

If the law of composition of G is commutative, we also say that G is com-
mutative (or abelian).
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Let G be a commutative monoid, and x,, ..., x, elements of G. Let  be a
bijection of the set of integers (1, ..., n) onto itself. Then

n
[Txvw = T1x-
v=1 v=1

We prove this by induction, it being obvious for n = 1. We assume it for
n — 1. Let k be an integer such that y(k) = n. Then
n k—1 n—k
I;I Xy = U Xyw) * Xy * Illxwm

k-1 n—k
= [Ixm- U Xyik+v) " Xy(k)+
1

Define a map ¢ of (1, ..., n — 1) into itself by the rule
(V) = Y() if v<k,
o(v) =yY(v+ 1) if vk
Then

n k—1 -k
U Xy = |1 xmfll Xok=1+v) " Xn
1 »

n—-1

= ﬂ Xov) * Xns
1

which, by induction, is equal to x, - - - x,, as desired.

Let G be a commutative monoid, let I be a set, and let f:I - G be a
mapping such that f(i) = e for almost all i € I. (Here and thereafter, almost
all will mean all but a finite number.) Let I, be the subset of I consisting of
those i such that f(i) # e. By

[T/

iel
we shall mean the product

[1/0
ielg
taken in any order (the value does not depend on the order, according to the
preceding remark). It is understood that the empty product is equal to e.
When G is written additively, then instead of a product sign, we write the
sum sign Z.
There are a number of formal rules for dealing with products which it would
be tedious to list completely. We give one example. Let I, J be two sets, and
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f:1 x J > G a mapping into a commutative monoid which takes the value e
for almost all pairs (i, j). Then

1111 f(i,j)] =1 [ﬂ f(i,j)].
iel | jeJ jeJ Liel
We leave the proof as an exercise.

As a matter of notation, we sometimes write [] f(i), omitting the signs
ie I, if the reference to the indexing set is clear.

Let x be an element of a monoid G. For every integer n = 0 we define x"
to be

n

[1x

1
so that in particular we have x° = e, x! = x, x> = xx,.... We obviously have
x"*m™ = x"x™ and (x")" = x". Furthermore, from our preceding rules of
associativity and commutativity, if x, y are elements of G such that xy = yx,
then (xy)" = x"y". We leave the formal proof as an exercise.

If S, S’ are two subsets of a monoid G, then we define SS’ to be the subset
consisting of all elements xy, with x € § and y € §". Inductively, we can define
the product of a finite number of subsets, and we have associativity. For in-
stance, if S, §’, S” are subsets of G, then (§S5')S” = S(S'S”). Observe that GG = G
(because G has a unit element). If x € G, then we define xS to be {x}S, where
{x} is the set consisting of the single element x. Thus xS consists of all elements
xy, with y e S.

By a submonoid of G, we shall mean a subset H of G containing the unit
element e, and such that, if x, y € H then xy € H (we say that H is closed under
the law of composition). It is then clear that H is itself a monoid, under the law
of composition induced by that of G.

If x is an element of a monoid G, then the subset of powers x"(n =0, 1,...)
is a submonoid of G.

The set of integers = 0 under addition is a monoid.

Later we shall define rings. If R is a commutative ring, we shall deal with
multiplicative subsets S, that is subsets containing the unit element, and such
that if x, y € S then xy € S. Such subsets are monoids.

A routine example. Let N be the natural numbers, i.e. the integers = 0.
Then N is an additive monoid. In some applications, it is useful to deal with a
multiplicative version. See the definition of polynomials in Chapter II, §3, where
a higher-dimensional version is also used for polynomials in several variables.

An interesting example. We assume that the reader is familiar with the
terminology of elementary topology. Let M be the set of homeomorphism
classes of compact (connected) surfaces. We shall define an addition in M.
Let S, S’ be compact surfaces. Let D be a small disc in S, and D’ a small disc in
S'. Let C, C’ be the circles which form the boundaries of D and D’ respectively.
Let Dy, Dy be the interiors of D and D’ respectively, and glue S—Dg to S'— Dy by
identifying C with C'. It can be shown that the resulting surface is independent,
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up to homeomorphism, of the various choices made in the preceding construc-
tion. If g, ¢’ denote the homeomorphism classes of S and S’ respectively, we
define o + ¢’ to be the class of the surface obtained by the preceding gluing
process. It can be shown that this addition defines a monoid structure on M,
whose unit element is the class of the ordinary 2-sphere. Furthermore, if 7
denotes the class of the torus, and = denotes the class of the projective plane,
then every element ¢ of M has a unique expression of the form

o =nt +mn

where nis an integer 2 0andm =0, 1,0or 2. Wehave3n =1+ m

(The reasons for inserting the preceding example are twofold: First to
relieve the essential dullness of the section. Second to show the reader that
monoids exist in nature. Needless to say, the example will not be used in any
way throughout the rest of the book.) .

Still other examples. At the end of Chapter II1, §4, we shall remark that
isomorphism classes of modules over a ring form a monoid under the direct sum.
In Chapter XV, §1, we shall consider a monoid consisting of equivalence classes
of quadratic forms.

§2. GROUPS

A group G is a monoid, such that for every element x € G there exists an
element y € G such that xy = yx = e. Such an element y is called an inverse for
x. Such an inverse is unique, because if y’ is also an inverse for x, then

y=Yye=yxy) = (yx)y=ey=y.
We denote this inverse by x~! (or by —x when the law of composition is
written additively).

For any positive integer n, we let x " = (x~!)". Then the usual rules for
exponentiation hold for all integers, not only for integers = 0 (as we pointed out
for monoids in §1). The trivial proofs are left to the reader.

In the definitions of unit elements and inverses, we could also define left
units and left inverses (in the obvious way). One can easily prove that these
are also units and inverses respectively under suitable conditions. Namely:

Let G be a set with an associative law of composition, let e be a left unit for

that law, and assume that every element has a left inverse. Then e is a unit,

and each left inverse is also an inverse. In particular, G is a group.

To prove this, let a€ G and let b € G be such that ba = e. Then

bab = eb = b.
Multiplying on the left by a left inverse for b yields
ab = e,

or in other words, b is also a right inverse for a. One sees also that a is a left



8 GROUPS 1, §2

inverse for b. Furthermore,
ae = aba = ea = a,
whence e is a right unit.

Example. Let G be agroup and S a nonempty set. The set of maps M(S, G)
is itself a group; namely for two maps f, g of S into G we define fg to be the
map such that

(f9)(x) = f(x)g(x),
and we define f ~! to be the map such that f ~!(x) = f(x)~'. It is then trivial
to verify that M(S, G) is a group. If G is commutative, so is M(S, G), and when

the law of composition in G is written additively, so is the law of composition
in M(S, G), so that we would write f + g instead of fg, and —f instead of f ~ 1.

Example. Let S be a non-empty set. Let G be the set of bijective mappings
of S onto itself. Then G is a group, the law of composition being ordinary com-
position of mappings. The unit element of G is the identity map of S, and the
other group properties are trivially verified. The elements of G are called
permutations of S. We also denote G by Perm(S). For more information on
Perm(S) when S is finite, see §5 below.

Example. Let us assume here the basic notions of linear algebra. Let k be
a field and V a vector space over k. Let GL(V) denote the set of invertible k-
linear maps of V onto itself. Then GL(V) is a group under composition of
mappings. Similarly, let k be a field and let GL(n, k) be the set of invertible
n X n matrices with components in k. Then GL(n, k) is a group under the
multiplication of matrices. For n = 2, this group is not commutative.

Example. The group of automorphisms. We recommend that the reader
now refer immediately to §11, where the notion of a category is defined, and
where several examples are given. For any object A in a category, its auto-
morphisms form a group denoted by Aut(A). Permutations of a set and the linear
automorphisms of a vector space are merely examples of this more general
structure.

Example. The set of rational numbers forms a group under addition. The
set of non-zero rational numbers forms a group under multiplication. Similar
statements hold for the real and complex numbers.

Example. Cyclicgroups. The integers Z form an additive group. A group
is defined to be cyclic if there exists an element a € G such that every element
of G (written multiplicatively) is of the form a” for some integer n. If G is written
additively, then every element of a cyclic group is of the form na. One calls a
a cyclic generator. Thus Z is an additive cyclic group with generator 1, and
also with generator —1. There are no other generators. Given a positive integer
n, the n-th roots of unity in the complex numbers form a cyclic group of order
n. In terms of the usual notation, €2™/" is a generator for this group. So is e2™/n
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with r € Z and r prime to n. A generator for this group is called a primitive
n-th root of unity.

Example. The direct product. Let G,, G, be groups. Let G; X G, be
the direct product as sets, so G, X G, is the set of all pairs (x;, x,) with
x; € G;. We define the product componentwise by

(x1, X)(¥1, ¥2) = (X1, X¥2).

Then G; X G, is a group, whose unit element is (e, e;) (Where e; is the unit
element of G;). Similarly, for n groups we define G, X -+ X G, to be the set
of n-tuples with x; € G; (i = 1, ... , n), and componentwise multiplication.
Even more generally, let / be a set, and for each i € I, let G; be a group. Let
G =11 G; be the set-theoretic product of the sets G;. Then G is the set of all
families (x;);c; with x; € G;. We can define a group structure on G by compo-
nentwise multiplication, namely, if (x;);c; and (y;);c; are two elements of G, we
define their product to be (x;y;);c;. We define the inverse of (x;);c; to be (x; 1);.;-
It is then obvious that G is a group called the direct product of the family.

Let G be a group. A subgroup H of G is a subset of G containing the unit
element, and such that H is closed under the law of composition and inverse
(i.e. it is a submonoid, such that if x € H then x~ ' e H). A subgroup is called
trivial if it consists of the unit element alone. The intersection of an arbitrary
non-empty family of subgroups is a subgroup (trivial verification).

Let G be a group and S a subset of G. We shall say that S generates G,
or that S is a set of generators for G, if every element of G can be expressed as a
product of elements of S or inverses of elements of S, i.e. as a product x, - - - x,
where each x; or x; ! is in §. It is clear that the set of all such products is a
subgroup of G (the empty product is the unit element), and is the smallest sub-
group of G containing S. Thus S generates G if and only if the smallest subgroup
of G containing S is G itself. If G is generated by S, then we write G = (S). By
definition, a cyclic group is a group which has one generator. Given elements

X1, ..., X, € G, these elements generate a subgroup {(x,, ... , x,), namely the
set of all elements of G of the form
xﬁl e xir’ with kl,..., k,E Z.

A single element x € G generates a cyclic subgroup.

Example. There are two non-abelian groups of order 8. One is the group

of symmetries of the square, generated by two elements o, 7 such that
o*=12=¢ and 707! = 0°.

The other is the quaternion group, generated by two elements, i, j such that
if we put k = ij and m = i?, then

f=jt=k=e 2=p2=K=m ij=mj.

After you know enough facts about groups, you can easily do Exercise 35.
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Let G, G’ be monoids. A monoid-homomorphism (or simply homemorphism)
of G into G’ is a mapping f: G — G’ such that f(xy) = f(x)f(y) for all x, y € G,
and mapping the unit element of G into that of G'. If G, G’ are groups, a group-
homomorphism of G into G’ is simply a monoid-homomorphism.

We sometimes say: “Let f:G — G’ be a group-homomorphism” to mean:
“Let G, G’ be groups, and let f be a homomorphism from G into G'.”

Let f: G — G’ be a group-homomorphism. Then

ST =f)7"
because if e, €’ are the unit elements of G, G’ respectively, then
¢ =f(e)=f(xx"1=f)f(x7).
Furthermore, if G, G’ are groups and f: G — G’ is a map such that
Sxy) =f()f(»)

for all x, y in G, then f(e) = ¢ because f(ee) = f(e) and also = f(e)f(e).
Multiplying by the inverse of f(e) shows that f(e) = €.

Let G, G’ be monoids. A homomorphism f:G — G’ is called an isomorphism
if there exists a homomorphism g:G’ — G such that fog and g o f are the
identity mappings (in G’ and G respectively). It is trivially verified that f is
an isomorphism if and only if f is bijective. The existence of an isomorphism
between two groups G and G’ is sometimes denoted by G = G'. If G = G,
we say that isomorphism is an automorphism. A homomorphism of G into
itself is also called an endomorphism.

Example. Let G be a monoid and x an element of G. Let N denote the
(additive) monoid of integers = 0. Then the map f: N — G such that f(n) = x"
is a homomorphism. If G is a group, we can extend fto a homomorphism of Z
into G (x" is defined for all n € Z, as pointed out previously). The trivial proofs
are left to the reader.

Let n be a fixed integer and let G be a commutative group. Then one verifies
easily that the map

X+ x"

from G into itself is a homomorphism. So is the map x+ x~ 1.

X+ x" is called the n-th power map.

The map

Example. Let ] = {i}be an indexing set, and let {G;} be a family of groups.
Let G = [] G, be their direct product. Let

pi: G— G;
be the projection on the i-th factor. Then p; is a homomorphism.

Let G be a group, S a set of generators for G, and G’ another group. Let
f:S > G' be a map. If there exists a homomorphism f of G into G’ whose
restriction to S is f, then there is only one.
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In other words, f has at most one extension to a homomorphism of G
into G'. This is obvious, but will be used many times in the sequel.

Let f:G — G' and g: G’ — G” be two group-homomorphisms. Then the
composite map g of'is a group-homomorphism. Iff, g are isomorphisms then
so is g of. Furthermore f~!:G’ — G is also an isomorphism. In particular,
the set of all automorphisms of G is itself a group, denoted by Aut(G).

Let f:G — G’ be a group-homomorphism. Let e, ¢’ be the respective unit
elements of G, G’. We define the kernel of f to be the subset of G consisting
of all x such that f(x) = ¢’. From the definitions, it follows at once that the
kernel H of fis a subgroup of G. (Let us prove for instance that H is closed
under the inverse mapping. Let x € H. Then

f&THfx) =f(e)=¢.
Since f(x) = ¢/, we have f(x~!) = ¢, whence x~' e H. We leave the other
verifications to the reader.)

Let f:G — G’ be a group-homomorphism again. Let H' be the image of f.
Then H' is a subgroup of G', because it contains ¢’, and if f(x), f(y) € H', then
f(xy) = f(x)f(y) lies also in H'. Furthermore, f(x~!) = f(x)~! is in H’, and
hence H' is a subgroup of G'.

The kernel and image of f are sometimes denoted by Ker fand Im f.

A homomorphism f:G — G’ which establishes an isomorphism between
G and its image in G’ will also be called an embedding.

A homomorphism whose kernel is trivial is injective.

To prove this, suppose that the kernel of f'is trivial, and let f(x) = f(y) for
some x, y € G. Multiplying by f(y~!) we obtain

Sey™ ) =f)fy™H =¢.

Hence xy~ ! lies in the kernel, hence xy~! = e, and x = y. If in particular f'is
also surjective, then f is an isomorphism. Thus a surjective homomorphism
whose kernel is trivial must be an isomorphism. We note that an injective
homomorphism is an embedding.

An injective homomorphism is often denoted by a special arrow, such as

f:G = G'.
There is a useful criterion for a group to be a direct product of subgroups:
Proposition 2.1. Let G be a group and let H, K be two subgroups such that

H N K = e, HK = G, and such that xy = yx for all xe H and ye K. Then
the map

HxK->G
such that (x, y)— xy is an isomorphism.

Proof. It is obviously a homomorphism, which is surjective since HK = G.
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If (x, y) is in its kernel, then x = y~! whence x lies in both H and K, and x = e,
so that y = e also, and our map is an isomorphism.

We observe that Proposition 2.1 generalizes by induction to a finite number
of subgroups H,, ..., H, whose elements commute with each other, such that

H,---H,=G,
and such that
H, nH;---H)=e.
In that case, G is isomorphic to the direct product
H, x---x H,.

Let G be a group and H a subgroup. A left coset of H in G is a subset of
G of type aH, for some element a of G. An element of aH is called a coset
representative of aH. The map x — ax induces a bijection of H onto aH.
Hence any two left cosets have the same cardinality.

Observe that if a, b are elements of G and aH, bH are cosets having one
element in common, then they are equal. Indeed, let ax = by with x, ye H.
Then a = byx~'. But yx 'eH. Hence aH = b(yx~')H = bH, because for
any ze H we have zH = H.

We conclude that G is the disjoint union of the left cosets of H. A similar
remark applies to right cosets (i.e. subsets of G of type Ha). The number of left
cosets of H in G is denoted by (G : H), and is called the (left) index of H in G.
The index of the trivial subgroup is called the order of G and is written (G : 1).
From the above conclusion, we get:

Proposition 2.2. Let G be a group and H a subgroup. Then
(G:H)H:1)=(G:1),
in the sense that if two of these indices are finite, so is the third and equality
holds as stated. If (G : 1) is finite, the order of H divides the order of G.
More generally, let H, K be subgroups of G and let H > K. Let {x;} be a
set of (left) coset representatives of K in H and let {y;} be a set of coset repre-
sentatives of H in G. Then we contend that {y;x;} is a set of coset representa-
tives of K in G.
Proof. Note that
H=|J)xK (disjoint),

G=\J)yH (disjoint).
j

Hence
G = U YVjiXi K.
i
We must show that this union is disjoint, i.e. that the y;x; represent distinct
cosets. Suppose
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ijiK =ypx K

for a pair of indices (j, i) and (j, i’). Multiplying by H on the right, and noting
that x;, x; are in H, we get

ylH = yj'H,

whence y; = y;. From this it follows that x;K = x; K and therefore that
X; = Xx;, as was to be shown.

The formula of Proposition 2.2 may therefore be generalized by writing
(G:K)=(G:H)H:K),

with the understanding that if two of the three indices appearing in this formula
are finite, then so is the third and the formula holds.

The above results are concerned systematically with left cosets. For the right
cosets, see Exercise 10.

Example. A group of prime order is cyclic. Indeed, let G have order p and
let a € G, a # e. Let H be the subgroup generated by a. Then #(H) divides p
and is # 1, so #(H) = p and so H = G, which is therefore cyclic.

Example. LetJ, = {1, ..., n}. Let S, be the group of permutations of
J,. We define a transposition to be a permutation 7 such that there exist
two elements r ¥ s in J, for which 7(r) = s, 7(s) = r, and 7(k) = k for all
k # r, s. Note that the transpositions generate S,,. Indeed, say o is a permutation,
o(n) = k # n. Let 7 be the transposition interchanging k, n. Then 7o leaves n
fixed, and by induction, we can write 7o as a product of transpositions in
Perm(J,_;), thus proving that transpositions generate S,,.

Next we note that #(S,,) = n!. Indeed, let H be the subgroup of S, consisting
of those elements which leave n fixed. Then H may be identified with S,,_,. If
o;(i=1,...,n)isan element of S, such that g;(n) = i, then it is immediately
verified that oy, ... , 0, are coset representatives of H. Hence by induction

S,:1)=n(H:1) = nl.

Observe that for o; we could have taken the transposition 7;, which interchanges
i and n (except for i = n, where we could take o, to be the identity).

§3. NORMAL SUBGROUPS

We have already observed that the kernel of a group-homomorphism is a
subgroup. We now wish to characterize such subgroups.

Let f:G — G’ be a group-homomorphism, and let H be its kernel. If x is an
element of G, then xH = Hx, because both are equal to f ~(f(x)). We can
also rewrite this relation as xHx ™! = H.
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Conversely, let G be a group, and let H be a subgroup. Assume that for all
elements x of G we have xH < Hx (or equivalently, xHx™ ! = H). If we
write x~! instead of x, we get H = xHx™ ', whence xHx™! = H. Thus our
condition is equivalent to the condition xHx ™! = Hfor all x € G. A subgroup
H satisfying this condition will be called normal. We shall now see that a normal
subgroup is the kernel of a homomorphism.

Let G’ be the set of cosets of H. (By assumption, a left coset is equal to a right
coset, so we need not distinguish between them.) If xH and yH are cosets, then
their product (xH)(yH) is also a coset, because

xHyH = xyHH = xyH.

By means of this product, we have therefore defined a law of composition on G’
which is associative. It is clear that the coset H itself is a unit element for this
law of composition, and that x ™ 'H is an inverse for the coset xH. Hence G’ is a
group.

Let f:G — G’ be the mapping such that f(x) is the coset xH. Then f is
clearly a homomorphism, and (the subgroup) H is contained in its kernel. If
f(x) = H, then xH = H. Since H contains the unit element, it follows that
x € H. Thus H is equal to the kernel, and we have obtained our desired homo-
morphism.

The group of cosets of a normal subgroup H is denoted by G/H (which we
read G modulo H, or G mod H). The map f of G onto G/H constructed above
is called the canonical map, and G/H is called the factor group of G by H.

Remarks

1. Let {H};., be a family of normal subgroups of G. Then the subgroup
H=0H,

iel
is a normal subgroup. Indeed, if y € H, and x € G, then xyx~ ! lies in each H;,
whence in H.

2. Let S be a subset of G and let N = N be the set of all elements x € G
such that xSx™! = S. Then N is obviously a subgroup of G, called the
normalizer of S. If S consists of one element a, then N is also called the
centralizer of a. More generally, let Zg be the set of all elements x € G such that
xyx~! = yforall ye S. Then Zg is called the centralizer of S. The centralizer
of G itself is called the center of G. It is the subgroup of G consisting of all
elements of G commuting with all other elements, and is obviously a normal
subgroup of G.

Examples. We shall give more examples of normal subgroups later when
we have more theorems to prove the normality. Here we give only two examples.

First, from linear algebra, note that the determinant is a homomorphism from
the multiplicative group of square matrices into the multiplicative group of a
field. The kernel is called the special linear group, and is normal.
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Second, let G be the set of all maps T,,: R — R such that
T, p(x) = ax + b, witha # 0 and b arbitrary. Then G is a group under composition
of mappings. Let A be the multiplicative group of maps of the form T, , (iso-
morphic to R*, the non-zero elements of R), and let N be the group of translations
T, , with b € R. Then the reader will verify at once that T, ;, > a is a homo-
morphism of G onto the multiplicative group, whose kernel is the group of
translations, which is therefore normal. Furthermore, we have G = AN = NA,
and N N A = {id}. In the terminology of Exercise 12, G is the semidirect
product of A and N.

Let H be a subgroup of G. Then H is obviously a normal subgroup of its
normalizer Ny. We leave the following statements as exercises:

If K is any subgroup of G containing H and such that H is normal in K, then
K < Ny.

If K is a subgroup of Ny, then KH is a group and H is normal in KH.
The normalizer of H is the largest subgroup of G in which H is normal.

Let G be a group and H a normal subgroup. Let x, y e G. We shall write
=y (mod H)

if x and y lie in the same coset of H, or equivalently if xy ! (or y~ 'x) lie in H.
We read this relation “x and y are congruent modulo H.”
When G is an additive group, then

x =0 (mod H)
means that x lies in H, and
x =y (mod H)

means that x — y (or y — x) lies in H. This notation of congruence is used
mostly for additive groups.
Let
GL64a
be a sequence of homomorphisms. We shall say that this sequence is exact if
Im f = Ker g. For example, if H is a normal subgroup of G then the sequence
H G5 G/H

is exact (where j = inclusion and ¢ = canonical map). A sequence of homo-
morphisms having more than one term, like

G363 Gy~ 3G,
is called exact if it is exact at each joint, ie. if
Im f; = Ker f;,,
foreachi=1,...,n — 2. For example to say that
0-65656" -0
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is exact means that f'is injective, that Im f = Ker g, and that g is surjective. If
H = Ker g then this sequence is essentially the same as the exact sequence
0-H-G—- G/H-O.

More precisely, there exists a commutative diagram

0 ¢GI f“([ 9 *G” 4\0
0 - H > G > G/H > 0

in which the vertical maps are isomorphisms, and the rows are exact.

Next we describe some homomorphisms, all of which are called canonical.

(i) Let G, G’ be groups and f:G — G’ a homomorphism whose kernel
is H. Let ¢:G — G/H be the canonical map. Then there exists a unique
homomorphism f, : G/H — G’ such that f = f, - ¢, and f, is injective.

To define f,, let xH be a coset of H. Since f(xy) = f(x) for all ye H, we
define f,(xH) to be f(x). This value is independent of the choice of coset
representative x, and it is then trivially verified that f, is a homomorphism, is
injective, and is the unique homomorphism satisfying our requirements. We
shall say that f,_is induced by f.

Our homomorphism f, induces an isomorphism

A:G/H - Imf

of G/H onto the image of f, and thus fcan be factored into the following succes-
sion of homomorphisms:

G5GHS5ImfLG.
Here, j is the inclusion of Im fin G'.

(ii) Let G be a group and H a subgroup. Let N be the intersection of all
normal subgroups containing H. Then N is normal, and hence is the smallest
normal subgroup of G containing H. Letf: G — G’ be a homomorphism whose
kernel contains H. Then the kernel of f contains N, and there exists a unique
homomorphism f, : G/N — G, said to be induced by f, making the following
diagram commutative:

G6—L ¢

[ S

G/N
As before, ¢ is the canonical map.
We can define f, as in (1) by the rule

Sx(xN) = f(x).

This is well defined, and is trivially verified to satisfy all our requirements.
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(iii) Let G be group and H D K two normal subgroups of G. Then KX is normal
in H, and we can define a map of G/K onto G/H by associating with each coset
xK the coset xH. It is immediately verified that this map is a homomorphism,
and that its kernel consists of all cosets xK such that x € H. Thus we have a
canonical isomorphism

(G/K)/(H/K) ~ G/H.

One could also describe this isomorphism using (i) and (ii). We leave it to the
reader to show that we have a commutative diagram

0 s H e > G/H >0
l can jcan lid
0 > HIK > G/K » G/H >0

where the rows are exact.

(iv) Let G be a group and let H, K be two subgroups. Assume that H
is contained in the normalizer of K. Then H n K is obviously a normal
subgroup of H, and equally obviously HK = KH is a subgroup of G. There
is a surjective homomorphism

H - HK/K

associating with each x € H the coset xK of K in the group HK. The reader
will verify at once that the kernel of this homomorphism is exactly H n K.
Thus we have a canonical isomorphism

H/(H ~ K) ~ HK/K.

(v) Let f: G — G’ be a group homomorphism, let H' be a normal sub-
group of G, and let H = f ~!(H").

G——C

|

fTH) ——
Thenf ~!(H’)isnormalin G. [Proof:If x e G,thenf(xHx ') = f(x) f(H) f(x)"!
is contained in H’, so xHx™! = H.] We then obtain a homomorphism
G- G - G/H

composing f with the canonical map of G’ onto G'/H’, and the kernel of this
composite is H. Hence we get an injective homomorphism

f:G/H > G'/H'
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again called canonical, giving rise to the commutative diagram

0 » H > G > G/H >0
0 »H' > G’ > G'/H’ > 0.

If f is surjective, then fis an isomorphism.
We shall now describe some applications of our homomorphism statements.
Let G be a group. A sequence of subgroups

G=Gy>2G; oG, >--->2G,

is called a tower of subgroups. The tower is said to be normal if each G, , is
normal in G; (i = 0,...,m — 1). It is said to be abelian (resp. cyclic) if it is
normal and if each factor group G;/G;, , is abelian (resp. cyclic).

Let f: G » G’ be a homomorphism and let

G=Gy,>G > 5G,

be a normal tower in G'. Let G; = f ~}(G}). Thenthe G;(i =0,...,m)forma
normal tower. If the G; form an abelian tower (resp. cyclic tower) then the G;
form an abelian tower (resp. cyclic tower), because we have an injective homo-
morphism

Gi/Gis1 = GGy

for each i, and because a subgroup of an abelian group (resp. a cyclic group) is
abelian (resp. cyclic).
A refinement of a tower

G=G6Gy>2G;>---2G,

is a tower which can be obtained by inserting a finite number of subgroups in
the given tower. A group is said to be solvable if it has an abelian tower, whose
last element is the trivial subgroup (i.e. G,, = {e} in the above notation).

Proposition 3.1. Let G be a finite group. An abelian tower of G admits a
cyclic refinement. Let G be a finite solvable group. Then G admits a cyclic
tower, whose last element is {e}.

Proof. The second assertion is an immediate consequence of the first, and
it clearly suffices to prove that if G is finite, abelian, then G admits a cyclic tower.
We use induction on the order of G. Let x be an element of G. We may assume
that x # e. Let X be the cyclic group generated by x. Let G' = G/X. By
induction, we can find a cyclic tower in G', and its inverse image is a cyclic tower
in G whose last element is X. If we refine this tower by inserting {e} at the end,
we obtain the desired cyclic tower.

Example. In Theorem 6.4 it will be proved that a group whose order is a
prime power is solvable.
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Example. One of the major results of group theory is the Feit-Thompson
theorem that all finite groups of odd order are solvable. Cf. [Go 68].

Example. Solvable groups will occur in field theory as the Galois groups
of solvable extensions. See Chapter VI, Theorem 7.2.

Example. We assume the reader knows the basic notions of linear algebra.
Let k be a field. Let G = GL(n, k) be the group of invertible n X n matrices in
k. Let T = T(n, k) be the upper triangular group; that is, the subgroup of matrices
which are 0 below the diagonal. Let D be the diagonal group of diagonal matrices
with non-zero components on the diagonal. Let N be the additive group of matrices
which are 0 on and below the diagonal, and let U = I + N, where [ is the unit
n X n matrix. Then U is a subgroup of G. (Note that N consists of nilpotent
matrices, i.e. matrices A such that A™ = 0 for some positive integer m. Then
U—-—A'=I1+A+A2+ ...+ A" 1js computed using the geometric series.)
Given a matrix A € T, let diag(A) be the diagonal matrix which has the same
diagonal components as A. Then the reader will verify that we get a surjective
homomorphism T— D givenby A > diag(A).

The kernel of this homomorphism is precisely U. More generally, observe that
for r = 2, the set N"~! consists of all matrices of the form

(0 0 e 0 @, e ar,
0 0 -+ 0 0 ay,+ *** ay,
M=

[0 O R P SR Y an_,+1’,‘

O O crrrrrrereannaan 0

o 0 o 0 |

Let U, = I + N". Then U, = Uand U, D U,, ;. Furthermore, U, is normal
in U,, and the factor group is isomorphic to the additive group (!) k" ", under the
the mapping which sends I + M to the n — r-tuple (ay,4y, ..., @,—,,) €K™ .
This n — r-tuple could be called the r-th upper diagonal. Thus we obtain an
abelian tower

TDU=UIDU23...DU,,={I}.

Theorem 3.2. Let G be a group and H a normal subgroup. Then G is solvable
if and only if H and G/H are solvable.

Proof. We prove that G solvable implies that H is solvable. Let
G =Gy D G;D...DG, = {e} be a tower of groups with G;,, normal in G;
and such that G;/G,,, is abelian. Let H; = H N G;. Then H;,, is normal in H,,
and we have an embedding H;/H;,., — G;/G,.,, whence H;/H,,, is abelian,
whence proving that H is solvable. We leave the proofs of the other statements
to the reader.
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Let G be a group. A commutator in G is a group element of the form xyx~'y™!
with x, y € G. Let G° be the subgroup of G generated by the commutators. We
call G° the commutator subgroup of G. As an exercise, prove that G is normal
in G, and that every homomorphism f: G — G’ into a commutative group G’
contains G in its kernel, and consequently factors through the factor commutator
group G/G¢. Observe that G/G° itself is commutative. Indeed, if X denotes the
image of x in G/G¢, then by definition we have xyx 'y~! = &, so X
and y commute. In light of the definition of solvability, it is clear that the
commutator group is at the heart of solvability and non-solvability problems.
A group G is said to be simple if it is non-trivial, and has no normal subgroups

other than {e} and G itself.

Examples. An abelian group is simple if and only if it is cyclic of prime
order. Indeed, suppose A abelian and non-trivial. Leta € A, a # e. If a generates
an infinite cyclic group, then a? generates a proper subgroup and so A is not
simple. If a has finite period, and A is simple, then A = (a). Let n be the period
and suppose n not prime. Write n = rs with r, s > 1. Then a" # e and a”
generates a proper subgroup, contradicting the simplicity of A, so a has prime
period and A is cyclic of order p.

Examples. Using commutators, we shall give examples of simple groups
in Theorem 5.5 (the alternating group), and in Theorem 9.2 of Chapter XIII
(PSL,(F), a group of matrices to be defined in that chapter). Since a non-cyclic
simple group is not solvable, we get thereby examples of non-solvable groups.

A major program of finite group theory is the classification of all finite
simple groups. Essentially most of them (if not all) have natural representa-
tions as subgroups of linear maps of suitable vector spaces over suitable fields,
in a suitably natural way. See [Go 82], [Go 86], [Sol 01] for surveys. Gaps in
purported proofs have been found. As of 2001, these are still incomplete.

Next we are concerned with towers of subgroups such that the factor groups
G;/G;4, are simple. The next lemma is for use in the proof of the Jordan-Hélder

and Schreier theorems.
Lemma 3.3. (Butterfly Lemma.) (Zassenhaus) Let U, V be subgroups
of a group. Let u, v be normal subgroups of U and V, respectively. Then
u(Unv) isnormalin uw(U n V),
wunVy isnormalin (Un V),
and the factor groups are isomorphic, i.e.
w(U n V)u(U nv) = (U n V)vf(un Vv

Proof. The combination of groups and factor groups becomes clear if
one visualizes the following diagram of subgroups (which gives its name to the
lemma):
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unvy UNvo

In this diagram, we are given U, u, V, v. All the other points in the diagram
correspond to certain groups which can be determined as follows. The inter-
section of two line segments going downwards represents the intersection of
groups. Two lines going upwards meet in a point which represents the product
of two subgroups (i.e. the smallest subgroup containing both of them).

We consider the two parallelograms representing the wings of the butterfly,
and we shall give isomorphisms of the factor groups as follows:

wUnyv _ unv _wnvw
wWUNv) @NWVWUND @NVw:

In fact, the vertical side common to both parallelograms has U n V as its
top end point, and (u N V)(U N v) as its bottom end point. We have an iso-
morphism

UnWV)(unV)Unv)=uUnV)uUn o).

This is obtained from the isomorphism theorem
H/(Hn N)~ HN/N

by setting H = U N Vand N = w(U N v). This gives us the isomorphism on
the left. By symmetry we obtain the corresponding isomorphism on the right,
which proves the Butterfly lemma.

Let G be a group, and let
G=G,2G,>->G, = {e},
G=H,oH,>--->H = {e}

be normal towers of subgroups, ending with the trivial group. We shall say
that these towers are equivalent if r = s and if there exists a permutation of the
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indicesi = 1,...,r — 1, written i i’, such that
Gi/Giyy = Hy/H; 1.

In other words, the sequences of factor groups in our two towers are the same,
up to isomorphisms, and a permutation of the indices.

Theorem 3.4. (Schreier) LetG be a group. Two normal towers of subgroups
ending with the trivial group have equivalent refinements.

Proof. Let the two towers be as above. Foreachi=1,...,r — 1 and
j=1,...,s wedefine
Gij = Giv\(Hj 0 G)).
Then G;; = G;, ,, and we have a refinement of the first tower:
G=6G6;;2G;;,2:--2G;,.;2G,
=G21265;;,2 26,4226, - > el
Similarly, we define
Hji = Hj+ (G Hj)a
forj=1,...,s—1andi=1,...,r. This yields a refinement of the second

tower. By the butterfly lemma, fori=1,...,r—landj=1,...,5s— 1 we
have isomorphisms

Gij/Gi js1 = Hji/Hj,i+ 1
We view each one of our refined towers as having (r — 1)(s — 1) + 1 elements,
namely G;;(i=1,...,r — 1;j=1,...,s — 1) and {e} in the first case, H;; and
{e} in the second case. The preceding isomorphism for each pair of indices
(i, j) shows that our refined towers are equivalent, as was to be proved.

A group G is said to be simple if it is non-trivial, and has no normal sub-
groups other than {e} and G itself.

Theorem 3.5. (Jordan-Holder) Let G be a group, and let
G=GIDGZD--~DG,={6}

be a normal tower such that each group G;/G;, , is simple, and G; # G, ,
fori=1,...,r — 1. Then any other normal tower of G having the same prop-
erties is equivalent to this one.

Proof. Given any refinement {G;;} as before for our tower, we observe
that for each i, there exists precisely one index j such that G;/G;, , = G;j/G; ;.
Thus the sequence of non-trivial factors for the original tower, or the refined
tower, is the same. This proves our theorem.
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§4. CYCLIC GROUPS

The integers Z form an additive group. We shall determine its subgroups.
Let H be a subgroup of Z. If H is not trivial, let a be the smallest positive integer
in H. We contend that H consists of all elements na, with n € Z. To prove this,
let ye H. There exist integers n, r with 0 < r < a such that

y=mna+r.

Since H is a subgroup and r = y — na, we have r € H, whence r = 0, and our
assertion follows.

Let G be a group. We shall say that G is cyclic if there exists an element
a of G such that every element x of G can be written in the form a" for some
neZ (in other words, if the map f:Z — G such that f(n) = a" is surjective).
Such an element a of G is then called a generator of G.

Let G be a group and a e G. The subset of all elements a" (ne€ Z) is
obviously a subgroup of G, which is cyclic. If m is an integer such that a™ = e
and m > 0 then we shall call m an exponent of a. We shall say that m > 0 is
an exponent of G if x™ = eforall x e G.

Let Gbeagroupand ae G. Let f:Z — G be the homomorphism such that
f(n) = a" and let H be the kernel of f. Two cases arise:

1. Thekernel is trivial. Then fis an isomorphism of Z onto the cyclic subgroup
of G generated by a, and this subgroup is infinite cyclic. If a generates G, then
G is cyclic. We also say that a has infinite period.

2. The kernel is not trivial. Let d be the smallest positive integer in the
kernel. Then d is called the period of a. If m is an integer such that ™ = e then
m = ds for some integer s. We observe that the elements e, a, ..., a?7! are
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distinct. Indeed, if " = a* withO0 =r,s =d — 1,andsay r = s, then a®* " =
e. Since 0 = s — r < d we must have s — r = 0. The cyclic subgroup generated
by a has order d. Hence by Proposition 2.2:

Proposition 4.1. Let G be a finite group of order n > 1. Let a be an element
of G, a # e. Then the period of a divides n. If the order of G is a prime number
D, then G is cyclic and the period of any generator is equal to p.

Furthermore:

Proposition 4.2. Let G be a cyclic group. Then every subgroup of G is cyclic.
If f is a homomorphism of G, then the image of f is cyclic.

Proof. If G is infinite cyclic, it is isomorphic to Z, and we determined above
all subgroups of Z, finding that they are all cyclic. If f: G — G’ is a homo-
morphism, and a is a generator of G, then f(a) is obviously a generator of f(G),
which is therefore cyclic, so the image of f is cyclic. Next let H be a subgroup
of G. We want to show H cyclic. Let a be a generator of G. Then we have a
surjective homomorphism f: Z — G such that f(n) = a”. The inverse image
f~Y(H) is a subgroup of Z, and therefore equal to mZ for some positive integer
m. Since f is surjective, we also have a surjective homomorphism mZ — H.
Since mZ is cyclic (generated additively by m), it follows that H is cyclic, thus
proving the proposition.

We observe that two cyclic groups of the same order m are isomorphic.
Indeed, if G is cyclic of order m with generator a, then we have a surjective
homomorphism f: Z — G such that f(n) = a”, and if kZ is the kernel,
with k positive, then we have an isomorphism Z/kZ = G, so k = m.
Ifu: Gy = Z/mZ and v: G, — Z/mZ are isomorphisms of two cyclic groups
with Z/mZ, then v™! e u: G; = G, is an isomorphism.

Proposition 4.3.

(i) Aninfinite cyclic group has exactly two generators (if a is a generator, then
a~ ' is the only other generator).

(ii) Let G be a finite cyclic group of order n, and let x be a generator. The set
of generators of G consists of those powers x* of x such that v is relatively
prime to n.

(iii) Let G be a cyclic group, and let a, b be two generators. Then there exists
an automorphism of G mapping a onto b. Conversely, any automorphism
of G maps a on some generator of G.

(iv) Let G be a cyclic group of order n. Let d be a positive integer dividing n.
Then there exists a unique subgroup of G of order d.

(v) Let Gy, G, be cyclic of orders m, n respectively. If m, n are relatively
prime then G, X G, is cyclic.
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(vi) Let G be a finite abelian group. If G is not cyclic, then there exists a prime
p and a subgroup of G isomorphic to C X C, where C is cyclic of order
p.

Proof. We leave the first three statements to the reader, and prove the others.

(iv) Let d|n. Let m = n/d. Let f: Z — G be a surjective homomorphism.
Then f(mZ) is a subgroup of G, and from the isomorphism Z/mZ =~ G/f(mZ)
we conclude that f(mZ) hasindex m in G, whence f(mZ) has order d. Conversely,
let H be a subgroup of order d. Then f~!(H) = mZ for some positive integer
m, so H = f(mZ), Z/mZ =~ G/H, so n = md, m = n/d and H is uniquely
determined.

(v) Let A = (a) and B = (b) be cyclic groups of orders m, n, relatively prime.
Consider the homomorphism Z — A X B such that k — (a¥, b*). An element
in its kernel must be divisible both by m and n, hence by their product since m,
n are relatively prime. Conversely, it is clear that mnZ is contained in the kernel,
so the kernel is mnZ. The image of Z — A X B is surjective by the Chinese
remainder theorem. This proves (v). (A reader who does not know the Chinese
remainder theorem can see a proof in the more general context of Chapter II,
Theorem 2.2.)

(vi) This characterization of cyclic groups is an immediate consequence of
the structure theorem which will be proved in §8, because if G is not cyclic,
then by Theorem 8.1 and (v) we are reduced to the case when G is a p-group,
and by Theorem 8.2 there are at least two factors in the direct product (or sum)
decomposition, and each contains a cyclic subgroup of order p, whence G contains
their direct product (or sum). Statement (vi) is, of course, easier to prove than
the full structure theorem, and it is a good exercise for the reader to formulate
the simpler arguments which yield (vi) directly.

Note. For the group of automorphisms of a cyclic group, see the end of
Chapter II, §2.

§5. OPERATIONS OF A GROUP ON A SET

Let G be a group and let S be a set. An operation or an action of G on §
is a homomorphism

a . G = Perm(S)

of G into the group of permutations of S. We then call § a G-set. We denote
the permutation associated with an element x € G by m,. Thus the homomorphism
is denoted by x > m,. Given s € §, the image of s under the permutation , is
m,(s). From such an operation we obtain a mapping

GX§—>S,
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which to each pair (x, s) with x € G and s € § associates the element m,(s). We
often abbreviate the notation and write simply xs instead of m.(s). With the
simpler notation, we have the two properties:

Forall x,y € G and s € S, we have x(ys) = (xy)s.
If e is the unit element of G, then es = s for all s € S.

Conversely, if we are given a mapping G X § — §, denoted by (x, s5) > xs,
satisfying these two properties, then for each x € G the map s > xs is permutation
of S, which we then denote by m,(s). Then x — m, is a homomorphism of G
into Perm(S). So an operation of G on § could also be defined as a mapping
G X § — § satisfying the above two properties. The most important examples
of representations of G as a group of permutations are the following.

1. Conjugation. For each x e G, let ¢,: G — G be the map such that
cx(y) = xyx~!. Then it is immediately verified that the association x — ¢, is a
homomorphism G — Aut(G), and so this map gives an operation of G on itself,
called conjugation. The kernel of the homomorphism x — ¢, is a normal sub-
group of G, which consists of all x € G such that xyx~! = y for all y € G, i.e. all
x € G which commute with every element of G. This kernel is called the center
of G. Automorphisms of G of the form ¢, are called inner.

To avoid confusion about the operation on the left, we don’t write xy for
¢x(y). Sometimes, one writes

¢ (y) =x"px =%,
i.e. one uses an exponential notation, so that we have the rules
y(xz) — (yx)z and ye =y

for all x, y, z € G. Similarly, *y = xyx~! and ?(*y) = #y.

We note that G also operates by conjugation on the set of subsets of G.
Indeed, let S be the set of subsets of G, and let A € S be a subset of G. Then
xAx~! is also a subset of G which may be denoted by c,(4), and one verifies
trivially that the map

(x, A) > xAx~!

of G x § — S is an operation of G on S. We note in addition that if 4 is a sub-
group of G then xAx™! is also a subgroup, so that G operates on the set of
subgroups by conjugation.

If A, B are two subsets of G, we say that they are conjugate if there exists
x € G such that B = xAx™!.

2. Translation. For each x € G we define the translation T,: G — G by
T.(y) = xy. Then the map
(x, y) = xy = T(y)

defines an operation of G on itself. Warning: T, is not a group-homomorphism!
Only a permutation of G.
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Similarly, G operates by translation on the set of subsets, for if 4 is a
subset of G, then x4 = T,(A) is also a subset. If H is a subgroup of G, then
T,(H) = xH is in general not a subgroup but a coset of H, and hence we see
that G operates by translation on the set of cosets of H. We denote the set of
left cosets of H by G/H. Thus even though H need not be normal, G/H is a
G-set. It has become customary to denote the set of right cosets by H\G.

The above two representations of G as a group of permutations will be used
frequently in the sequel. In particular, the representation by conjugation will be
used throughout the next section, in the proof of the Sylow theorems.

3. Example from linear algebra. We assume the reader knows basic
notions of linear algebra. Let k be a field and let V be a vector space over k. Let
G = GL(V) be the group of linear automorphisms of V. For A € G and
v € V, the map (A, v) = Av defines an operation of G on V. Of course, G is
a subgroup of the group of permutations Perm(V). Similarly, let V = k" be the
vector space of (vertical) n-tuples of elements of k, and let G be the group of
invertible n X n matrices with components in k. Then G operates on k" by
(A, X)—> AX for A € G and X € k".

Let S, S’ be two G-sets, and f : S = S’ a map. We say that f is a morphism
of G-sets, or a G-map, if

f(xs) = xf(s)

for all x e G and s € S. (We shall soon define categories, and see that G-sets form
a category.)

We now return to the general situation, and consider a group operating on
aset S. LetseS. The set of elements x € G such that xs = s is obviously a sub-
group of G, called the isotropy group of s in G, and denoted by G,.

When G operates on itself by conjugation, then the isotropy group of an
element is none other than the normalizer of this element. Similarly, when G
operates on the set of subgroups by conjugation, the isotropy group of a sub-
group is again its normalizer.

Let G operate on a set S. Let s, s’ be elements of S, and y an element of G
such that ys = 5. Then

Gy = yG,y™!

Indeed, one sees at once that yG,y~! leaves s’ fixed. Conversely, if
x's' = s' then x'ys = ys, so y"!'x'y € G, and x' € yG,y~!. Thus the isotropy
groups of s and s’ are conjugate.

Let K be the kernel of the representation G — Perm(S). Then directly from
the definitions, we obtain that

K= Q G, = intersection of all isotropy groups.
SE
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An action or operation of G is said to be faithful if K = {e}; that is, the kernel
of G — Perm(S) is trivial. A fixed point of G is an element s € S such that
xs = s for all x € G or in other words, G = G;,.

Let G operate on aset S. Let s € S. The subset of S consisting of all elements
xs (with x € G) is denoted by Gs, and is called the orbit of s under G. If x and y
are in the same coset of the subgroup H = G, then xs = ys, and conversely
(obvious). In this manner, we get a mapping

f:G/H-S

given by f(xH) = xs, and it is clear that this map is a morphism of G-sets. In
fact, one sees at once that it induces a bijection of G/H onto the orbit Gs.
Consequently:

Proposition S.1.  If G is a group operating on a set S, and s € S, then the order
of the orbit Gs is equal to the index (G : G).

In particular, when G operates by conjugation on the set of subgroups, and
H is a subgroup, then:

Proposition 5.2. The number of conjugate subgroups to H is equal to the
index of the normalizer of H.

Example. Let G bea group and H a subgroup of index 2. Then H is normal
in G.

Proof. Note that H is contained in its normalizer Ny, so the index of Ny
in Gis 1 or2. Ifitis 1, then we are done. Suppose it is 2. Let G operate by con-
jugation on the set of subgroups. The orbit of H has 2 elements, and G operates
on this orbit. In this way we get a homomorphism of G into the group of
permutations of 2 elements. Since there is one conjugate of H unequal to H,
then the kernel of our homomorphism is normal, of index 2, hence equal to H,
which is normal, a contradiction which concludes the proof.

For a generalization and other examples, see Lemma 6.7.
In general, an operation of G on S is said to be transitive if there is only
one orbit.

Examples. The symmetric group S, operates transitively on {1, 2, ..., n}.
In Proposition 2.1 of Chapter VII, we shall see a non-trivial example of transitive
action of a Galois group operating on the primes lying above a given prime in
the ground ring. In topology, suppose we have a universal covering space
p: X' = X, where X is connected. Given x € X, the fundamental group m(X)
operates transitively on the inverse image p~!(x).
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Example. Let  be the upper half-plane; that is, the set of complex numbers
z = x + iy such that y > 0. Let G = SL,(R) (2 X 2 matrices with determinant
1). For

az + b

a b
a—(c d)eG,weletaz—m.

Readers will verify by brute force that this defines an operation of G on . The
isotropy group of i is the group of matrices

( cos 0 sin 0) with 0 real.
—sin 8 cos 6

This group is usually denoted by K. The group G operates transitively. You can
verify all these statements as easy exercises.

Let G operate on a set S. Then two orbits of G are either disjoint or are
equal. Indeed, if Gs; and Gs, are two orbits with an element s in common,
then s = xs, for some x € G, and hence Gs = Gxs,; = Gs,. Similarly, Gs = Gs,.
Hence S is the disjoint union of the distinct orbits, and we can write

S=)Gs  (disjoint), also denoted S = L1 Gs,
iel ie

where I is some indexing set, and the s; are elements of distinct orbits. If S is
finite, this gives a decomposition of the order of S as a sum of orders of orbits,
which we call the orbit decomposition formula, namely

card(S) = Y (G: G,).

iel

Let x, y be elements of a group (or monoid) G. They are said to commute
if xy = yx. If G is a group, the set of all elements x € G which commute with all
elements of G is a subgroup of G which we called the center of G. Let G act on
itself by conjugation. Then x is in the center if and only if the orbit of x is x
itself, and thus has one element. In general, the order of the orbit of x is equal
to the index of the normalizer of x. Thus when G is a finite group, the above
formula reads

G:1)= Y (G:G,)

xeC

where C is a set of representatives for the distinct conjugacy classes, and the
sum is taken over all x e C. This formula is also called the class formula.
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The class formula and the orbit decomposition formula will be used systematically
in the next section on Sylow groups, which may be viewed as providing examples
for these formulas.

Readers interested in Sylow groups may jump immediately to the next section.
The rest of this section deals with special properties of the symmetric group,
which may serve as examples of the general notions we have developed.

The symmetric group. Let S, be the group of permutations of a set
with n elements. This set may be taken to be the set of integers
J, ={1,2,..., n}. Given any o € S,, and any integer i, 1 =i = n, we may
form the orbit of i under the cyclic group generated by o. Such an orbit is called
a cycle for o, and may be written

liviy - - i,  so a(iy) =is...,0(,)) =i, o) =i,

Then {1, ..., n} may be decomposed into a disjoint union of orbits for the cyclic
group generated by o, and therefore into disjoint cycles. Thus the effect of o
on {1,..., n} is represented by a product of disjoint cycles.

Example. The cycle [132] represents the permutation o such that
a(l) =3, 6(3)=2, and o(2) =1

We have 6%(1) = 2, 63(1) = 1. Thus {1, 3,2} is the orbit of 1 under the cyclic
group generated by o.

Example. In Exercise 38, one will see how to generate S, by special types
of generators. Perhaps the most important part of that exercise is that if n is
prime, o is an n-cycle and 7 is a transposition, then o, 7 generate S,. As an
application in Galois theory, if one tries to prove that a Galois group is all
of S, (as a group of permutations of the roots), it suffices to prove that the
Galois group contains an n-cycle and a transposition. See Example 6 of
Chapter VI, §2.

We want to associate a sign *1 to each permutation. We do this in the
standard way. Let f be a function of n variables, say f: Z" — Z, so we can
evaluate f(x,..., x,). Let o be a permutation of J,. We define the function

m(o)f by
W(U)f(x], ey x,,) = f(x,,.(]), ey xa(,,)).
Then for o, 7 € S, we have w(o1) = w(d)m(7). Indeed, we use the definition
applied to the function g = m(7)f to get
77.(0-)77.('7.)f(xl9 L) xn) = (W(T)f)(xa(l)’ LR xa'(n))
=f(xa-1-(l), ceey xm.(,,))
= m(onf(xXy, ..., X,).
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Since the identity in S, operates as the identity on functions, it follows that we
have obtained an operation of S, on the set of functions. We shall write more
simply of instead of m(o)f. It is immediately verified that for two functions f,
g we have

o(f+ 9 =of+og and o(fg) = (af)(og).

If ¢ is constant, then o(cf) = co(f).

Proposition 5.3. There exists a unique homomorphism ¢: S,, — {*1} such
that for every transposition T we have (1) = —1.

Proof. Let A be the function
AGxy, - %) =11 — x),
i<j

the product being taken for all pairs of integers i, j satisfying 1 =i < j = n.
Let 7 be a transposition, interchanging the two integers r and s. Say r < 5. We
wish to determine

TAXy, ..., x,) = E (Xr(jy = Xz(i))-

For one factor involving j = s, i = r, we see that 7 changes the factor
(x; — x,) to —(x, — x,). All other factors can be considered in pairs as follows:

x — x)x, — x,) ifk>s,
s — ) —x,) ifr<k<s,
(x, — x)x, — x) ifk<r.
Each one of these pairs remains unchanged when we apply 7. Hence we see that
TA = —A.
Let €(o) be the sign 1 or —1 such that A = &(0)A for a permutation o.

Since m(o71) = w(o)™(7), it follows at once that ¢ is a homomorphism, and the
proposition is proved.

In particular, if o = 7, --- 7, is a product of transpositions, then
g(0) = (—1)™. As a matter of terminology, we call o even if () = 1, and odd
if e(0) = —1. The even permutations constitute the kernel of &, which is called

the alternating group A,.

Theorem 5.4. Ifn = 5 then S, is not solvable.

Proof. We shall first prove that if H, N are two subgroups of S, such that
N C H and N is normal in H, if H contains every 3-cycle, and if H/N is abelian,
then N contains every 3-cycle. To see this, leti, j, k, r, s be five distinct integers
in J,, and let o = [ijk] and 7 = [krs]. Then a direct computation gives their
commutator
oro~ 77! = [rki].
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Since the choice of i, j, k, r, s was arbitrary, we see that the cycles [rki] all lie
in N for all choices of distinct r, k, i, thereby proving what we wanted.
Now suppose that we have a tower of subgroups

S,,=HODH13H23"'DH,"={€}

such that H, is normal in H,_, forv = 1, ..., m, and H,/H,_, is abelian. Since
S, contains every 3-cycle, we conclude that H, contains every 3-cycle. By
induction, we conclude that H,, = {e} contains every 3-cycle, which is impossible,
thus proving the theorem.

Remark concerning the sign £(o). A priori, we defined the sign for a
given n, so we should write £,(0). However, suppose n < m. Then the restriction
of ¢, to S, (viewed as a permutation of J, leaving the elements of J,, not in J,
fixed) gives a homomorphism satisfying the conditions of Proposition 5.3, so
this restriction is equal to ¢,. Thus A, N S, = A,,.

Next we prove some properties of the alternating group.

(a) A, is generated by the 3-cycles. Proof: Consider the product of two trans-
positions [if][rs]. If they have an element in common, the product is either the
identity or a 3-cycle. If they have no element in common, then

[G1lrs] = Lijrlljrs],

so the product of two transpositions is also a product of 3-cycles. Since an even
permutation is a product of an even number of transpositions, we are done.

(b) If n = 5, all 3-cycles are conjugate in A,,. Proof: If v is a permutation,
then for a cycle [i; ... i,,] we have

Wiy oo igly™ = (i) - Al

Given 3-cycles [ijk] and [i’j'k’] there is a permutation vy such that y(i) = i’,
¥(j) = j', and y(k) = k'. Thus two 3-cycles are conjugate in S, by some element
v. If v is even, we are done. Otherwise, by assumption n = 5 there exist r, s
not equal to any one of the three elements i, j, k. Then [rs] commutes with [ijk],
and we replace y by vy[rs] to prove (b).

Theorem 5.5. If n = 5 then the alternating group A, is simple.

Proof. Let N be a non-trivial normal subgroup of A,. We prove that N
contains some 3-cycle, whence the theorem follows by (b). Let c€ N, o # id,
be an element which has the maximal number of fixed points; that is, integers
i such that o(i) = i. It will suffice to prove that o is a 3-cycle or the identity.
Decompose J,, into disjoint orbits of (o).Then some orbits have more than one
element. Suppose all orbits have 2 elements (except for the fixed points). Since
o is even, there are at least two such orbits. On their union, o is represented as
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a product of two transpositions [ij][rs]. Let k # i, j, r, s. Let 7 = [rsk]. Let
o' = 101" !0 1. Then o is a product of a conjugate of o and o', s0 o’ € N.
But o’ leaves i, j fixed, and any element ¢t € J,, t # i, j, r, s, k left fixed by o
is also fixed by o', so o' has more fixed points than o, contradicting our

hypothesis.
So we are reduced to the case when at least one orbit of (o) has =3 elements,
say i, j, k,....If ois not the 3-cycle [ijk], then o must move at least two other

elements of J,,, otherwise o is an odd permutation [ijkr] for some r € J,,, which
is impossible. Then let o move r, s other than i, j, k, and let 7 = [krs]. Let ¢’
be the commutator as before. Then ¢’ € N and ¢'(i) = i, and all fixed points
of o are also fixed points of ¢’ whence o' has more fixed points than o, a
contradiction which proves the theorem.

Example. For n = 4, the group A, is not simple. As an exercise, show
that A4 contains a unique subgroup of order 4, which is not cyclic, and which
is normal. This subgroup is also normal in S4. Write down explicitly its elements
as products of transpositions.

§6. SYLOW SUBGROUPS

Let p be a prime number. By a p-group, we mean a finite group whose
order is a power of p (i.e. p" for some integer n = 0). Let G be a finite group
and H a subgroup. We call H a p-subgroup of G if H is a p-group. We call H
a p-Sylow subgroup if the order of H is p" and if p" is the highest power of p
dividing the order of G. We shall prove below that such subgroups always
exist. For this we need a lemma.

Lemma 6.1. Let G be a finite abelian group of order m, let p be a prime
number dividing m. Then G has a subgroup of order p.

Proof. We first prove by induction that if G has exponent n then the
order of G divides some power of n. Let be G, b # 1, and let H be the cyclic
subgroup generated by b. Then the order of H divides n since b" = 1, and n
is an exponent for G/H. Hence the order of G/H divides a power of n by
induction, and consequently so does the order of G because

(G:1) = (G: HYH: 1).

Let G have order divisible by p. By what we have just seen, there exists an
element x in G whose period is divisible by p. Let this period be ps for some
integer s. Then x* # 1 and obviously x* has period p, and generates a subgroup
of order p, as was to be shown.
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Theorem 6.2. Let G be a finite group and p a prime number dividing the
order of G. Then there exists a p-Sylow subgroup of G.

Proof. By induction on the order of G. If the order of G is prime, our
assertion is obvious. We now assume given a finite group G, and assume the
theorem proved for all groups of order smaller than that of G. If there exists a
proper subgroup H of G whose index is prime to p, then a p-Sylow subgroup of
H will also be one of G, and our assertion follows by induction. We may therefore
assume that every proper subgroup has an index divisible by p. We now let G
act on itself by conjugation. From the class formula we obtain

(G:1)=(Z:1)+ Y (G:G,).

Here, Z is the center of G, and the term (Z : 1) corresponds to the orbits having
one element, namely the elements of Z. The sum on the right is taken over the
other orbits, and each index (G : G,) is then > 1, hence divisible by p. Since p
divides the order of G, it follows that p divides the order of Z, hence in particular
that G has a non-trivial center.

Let a be an element of order p in Z, and let H be the cyclic group generated
by a. Since H is contained in Z, it is normal. Let f:G — G/H be the canonical
map. Let p" be the highest power of p dividing (G:1). Then p"~! divides the
order of G/H. Let K’ be a p-Sylow subgroup of G/H (by induction) and let
K = f"YK’). Then K o H and f maps K onto K’. Hence we have an iso-
morphism K/H ~ K'. Hence K has order p"~!p = p", as desired.

For the rest of the theorems, we systematically use the notion of a fixed point.
Let G be a group operating on a set S. Recall that a fixed point s of G in S is
an element s of § such that xs = s for all x € G.

Lemma 6.3. Let H be a p-group acting on a finite set S. Then:
(@) The number of fixed points of H is = #(S) mod p.

(b) If H has exactly one fixed point, then #(S) = 1 mod p.

(¢) If p | #(S), then the number of fixed points of H is = 0 mod p.

Proof. We repeatedly use the orbit formula
#(S) = 2 H : H,).

For each fixed point s; we have H;, = H. For s; not fixed, the index
(H : Hy) is divisible by p, so (a) follows at once. Parts (b) and (c) are special
cases of (a), thus proving the lemma.

Remark. In Lemma 6.3(c), if H has one fixed point, then H has at least p
fixed points.

Theorem 6.4. Let G be a finite group.
() IfH is a p-subgroup of G, then H is contained in some p-Sylow subgroup.
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(i) All p-Sylow subgroups are conjugate.
(iii) The number of p-Sylow subgroups of G is =1 mod p.

Proof. Let P be a p-Sylow subgroup of G. Suppose first that H is contained
in the normalizer of P. We prove that H C P. Indeed, HP is then a subgroup
of the normalizer, and P is normal in HP. But

(HP:P)=H:HNP),

so if HP # P, then HP has order a power of p, and the order is larger than #(P),
contradicting the hypothesis that P is a Sylow group. Hence HP = P and
HCP.

Next, let S be the set of all conjugates of P in G. Then G operates on S by
conjugation. Since the normalizer of P contains P, and has therefore index prime
to p, it follows that #(S) is not divisible by p. Now let H be any p-subgroup.
Then H also acts on § by conjugation. By Lemma 6.3(a), we know that H cannot
have O fixed points. Let Q be a fixed point. By definition this means that H is
contained in the normalizer of @, and hence by the first part of the proof, that
H C @, which proves the first part of the theorem. The second part follows
immediately by taking H to be a p-Sylow group, so #(H) = #(Q), whence
H = Q. In particular, when H is a p-Sylow group, we see that H has only one
fixed point, so that (iii) follows from Lemma 6.3(b). This proves the theorem.

Theorem 6.5. Let G be a finite p-group. Then G is solvable. If its order is

> 1, then G has a non-trivial center.

Proof. The first assertion follows from the second, since if G has center
Z, and we have an abelian tower for G/Z by induction, we can lift this abelian
tower to G to show that G is solvable. To prove the second assertion, we use
the class equation

(G:1) = card(Z) + Y (G:G)),
the sum being taken over certain x for which (G:G,) # 1. Then p divides

(G : 1) and also divides every term in the sum, so that p divides the order of the
center, as was to be shown.

Corollary 6.6. Let G be a p-group which is not of order 1. Then there
exists a sequence of subgroups

{e} =Gy= G, cG,c--- =G, =G
such that G; is normal in G and G, ,/G; is cyclic of order p.

Proof. Since G has a non-trivial center, there exists an element a # e in
the center of G, and such that q has order p. Let H be the cyclic group generated
by a. By induction, if G # H, we can find a sequence of subgroups as stated
above in the factor group G/H. Taking the inverse image of this tower in G
gives us the desired sequence in G.
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We now give some examples to show how to put some of the group theory
together.

Lemma 6.7. Let G be a finite group and let p be the smallest prime dividing
the order of G. Let H be a subgroup of index p. Then H is normal.

Proof. Let N(H) = N be the normalizer of H. Then N = Gor N = H. If
N = G we are done. Suppose N = H. Then the orbit of H under conjugation
has p = (G : H) elements, and the representation of G on this orbit gives a
homomorphism of G into the symmetric group on p elements, whose order is
p!. Let K be the kernel. Then K is the intersection of the isotropy groups, and
the isotropy group of H is H by assumption, so K C H. If K # H, then from

(G:K)=(G:H)H:K)=pH:K),

and the fact that only the first power of p divides p!, we conclude that some
prime dividing (p — 1)! also divides (H : K), which contradicts the assumption
that p is the smallest prime dividing the order of G, and proves the lemma.

Proposition 6.8. Ler p, q be distinct primes and let G be a group of order
pq. Then G is solvable.

Proof. Sayp < q. Let Q be a Sylow subgroup of order g. Then Q has index
p, so by the lemma, Q is normal and the factor group has order p. But a group
of prime order is cyclic, whence the proposition follows.

Example. Let G be a group of order 35. We claim that G is cyclic.

Proof. Let H; be the Sylow subgroup of order 7. Then H; is normal by
Lemma 6.7. Let Hs be a 5-Sylow subgroup, which is of order 5. Then H;
operates by conjugation on H,, so we get a homomorphism Hs — Aut(H;). But
Aut(H,) is cyclic of order 6, so Hs — Aut(H-) is trivial, so every element of
Hs commutes with elements of H;. Let Hs = (x) and H; = (y). Then x, y commute
with each other and with themselves, so G is abelian, and so G is cyclic by
Proposition 4.3(v).

Example. The techniques which have been developed are sufficient to treat
many cases of the above types. For instance every group of order < 60 is solvable,
as you will prove in Exercise 27.

§7. DIRECT SUMS AND FREE ABELIAN GROUPS

Let {A;};c; be a family of abelian groups. We define their direct sum

A=Pa

iel

to be the subset of the direct product I1 A; consisting of all families (x;);c; with
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x; € A; such that x; = 0 for all but a finite number of indices i. Then it is clear
that A is a subgroup of the product. For each index j € I, we map

by letting A(x) be the element whose j-th component is x, and having all other
components equal to 0. Then 4; is an injective homomorphism.

Proposition 7.1. Let {f;: A; — B} be a family of homomorphisms into an
abelian group B. Let A = @ A;. There exists a unique homomorphism

f:A—>B .
such that fo A; = f; for all j.
Proof. We can define a map f: A — B by the rule
f((xdien) = Z Si(xo):
iel

The sum on the right is actually finite since all but a finite number of terms are 0.
It is immediately verified that our map f is a homomorphism. Furthermore,
we clearly have foA(x) = fj(x) for each j and each xe A;. Thus f has the
desired commutativity property. It is also clear that the map f is uniquely
determined, as was to be shown.

The property expressed in Proposition 7.1 is called the universal property
of the direct sum. Cf. §11.

Example. Let A be an abelian group, and let {A,};.; be a family of sub-
groups. Then we get a homomorphism

DA~ A suchthat (x) > X x;.

iel
Theorem 8.1 will provide an important specific application.

Let A be an abelian group and B, C subgroups. If B + C = A and
B N C = {0} then the map

BxC—- A

given by (x, y)—= x + y is an isomorphism (as we already noted in the non-
commutative case). Instead of writing A = B x C we shall write

A=B®C

and say that A is the direct sum of B and C. We use a similar notation for the
direct sum of a finite number of subgroups B, ..., B, such that

Bl+“‘+B"=A
and

Bi+lﬁ(B1+"‘+Bi)=O.
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In that case we write
A=B,®---®B,.

Let A be an abelian group. Let {e;} (i € I') be a family of elements of A. We
say that this family is a basis for A if the family is not empty, and if every
element of A has a unique expression as a linear combination

X = 2x,~e,~

with x; € Z and almost all x; = 0. Thus the sum is actually a finite sum. An
abelian group is said to be free if it has a basis. If that is the case, it is immediate
that if we let Z; = Z for all i, then A is isomorphic to the direct sum
A=@Pz.
iel

Next let S be a set. We shall define the free abelian group generated by S as
follows. Let Z(S) be the set of all maps ¢ : § — Z such that ¢(x) = 0 for almost
all x € S. Then Z(S) is an abelian group (addition being the usual addition of
maps). If k is an integer and x is an element of S, we denote by k - x the map
¢ such that ¢(x) = k and ¢(y) = 0if y # x. Then it is obvious that every element
¢ of Z(S) can be written in the form

q):kl.xl.i......i..kn.x"

for some integers k; and elements x;€ S (i = 1, ..., n), all the x; being distinct.
Furthermore, ¢ admits a unique such expression, because if we have

o= Ykox=Yk,-x
xeS xeS

then
0=3 (ke — K)-x,

xe€S

whence k) = k, for all xe S.

We map S into Z{S) by the map fs = f such that f(x) =1-x. It is
then clear that f is injective, and that f(S) generates Z{S). If g:S—> Bis a
mapping of S into some abelian group B, then we can define a map

9y 2{S) > B
such that

g*( DL X) = 3 keg(x).

xeS xeS

This map is a homomorphism (trivial) and we have g, ° f = g (also trivial). It
is the only homomorphism which has this property, for any such homomorphism
gy must be such that g, (1 + x) = g(x).
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It is customary to identify S in Z{S), and we sometimes omit the dot when
we write k, x or a sum Y_ k,x.

IfA:S — S’ is a mapping of sets, there is a unique homomorphism A making the
Jollowing diagram commutative:

s —I s 7¢5y

S’ —'—f;——* Z<S'>

In fact, 4 is none other than (fy o ), , with the notation of the preceding para-
graph. The proof of this statement is left as a trivial exercise.

We shall denote Z(S) also by F,(S), and call F,(S) the free abelian group
generated by S. We call elements of § its free generators.

As an exercise, show that every abelian group 4 is a factor group of a free
abelian group F. If A4 is finitely generated, show that one can select F to be
finitely generated also.

If the set S above consists of n elements, then we say that the free abelian
group F(S) is the free abelian group on n generators. If S is the set of n
letters x,,...,x,, we say that F,,(S) is the free abelian group with free
generators X, ..., X,.

An abelian group is free if and only if it is isomorphic to a free abelian group
Fp(S) for some set S. Let A be an abelian group, and let S be a basis for A.
Then it is clear that A is isomorphic to the free abelian group F,,(S).

As a matter of notation, if A is an abelian group and T a subset of elements
of A, we denote by (T) the subgroup generated by the elements of T, i.e., the
smallest subgroup of A containing T.

Example. The Grothendieck group. Let M be a commutative monoid,
written additively. There exists a commutative group K(M) and a monoid-
homomorphism

y: M - K(M)
having the following universal property. If f: M — A is a homomorphism into
an abelian group A, then there exists a unique homomorphism f,: K(M) — A
making the following diagram commutative:

M—", KM)
N,/
A

Proof. Let F, (M) be the free abelian group generated by M. We denote
the generator of F, (M) corresponding to an element xe M by [x]. Let B be
the subgroup generated by all elements of type

[x+y]-[x]- D]
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where x, ye M. We let K(M) = F,(M)/B, and let
y: M - K(M)

be the map obtained by composing the injection of M into F, (M) given by
x — [x], and the canonical map

F.((M) > F,,(M)/B.

It is then clear that y is a homomorphism, and satisfies the desired universal
property.
The universal group K(M) is called the Grothendieck group.

We shall say that the cancellation law holds in M if, whenever x, y, ze M,
and x + z = y + z, we have x = y.

We then have an important criterion when the universal map y above is
injective:

If the cancellation law holds in M, then the canonical map y of M into its

Grothendieck group is injective.

Proof. This is essentially the same proof as when one constructs the nega-
tive integers from the natural numbers. We consider pairs (x, y) with x,ye M
and say that (x, y) is equivalent to (x', y')if y + x' = x + y’. We define addition
of pairs componentwise. Then the equivalence classes of pairs form a group,
whose 0 element is the class of (0, 0) [or the class of (x, x) for any x e M]. The
negative of an element (x, y) is (y, x). We have a homomorphism

x - class of (0, x)

which is injective, as one sees immediately by applying the cancellation law.
Thus we have constructed a homomorphism of M into a group, which is
injective. It follows that the universal homomorphism must also be injective.

Examples. See the example of projective modules in Chapter III, §4. For
a relatively fancy context, see: K. KATO, Logarithmic structures of Fontaine-
Ilusie, Algebraic Geometry, Analysis and Number Theory, Proc. JAMI Confer-
ence, J. Igusa (Ed.), Johns Hopkins Press (1989) pp. 195-224.

Given an abelian group 4 and a subgroup B, it is sometimes desirable to
find a subgroup C such that 4 = B ® C. The next lemma gives us a condition
under which this is true.

Lemma7.2. Let A5 A' bea surjective homomorphism of abelian groups,
and assume that A' is free. Let B be the kernel of f. Then there exists a
subgroup C of A such that the restriction of f to C induces an isomorphism
of C with A’, and such that A = B ® C.

Proof. Let {x}};.; be a basis of A’, and for each i e I, let x; be an element of
A such that f(x;) = x;. Let C be the subgroup of 4 generated by all elements
x;, iel. If we have a relation
Z nix,' = 0

iel



I, §7 DIRECT SUMS AND FREE ABELIAN GROUPS 41

with integers n;, almost all of which are equal to 0, then applying f yields
0= Z n f(x) = Z”ix:',
iel iel
whence all n; = 0. Hence our family {x;};.; is a basis of C. Similarly, one sees
that if ze C and f(z) = 0 then z =0. Hence BN C = 0. Let xe A. Since
Sf(x) € A’ there exist integers n;, i € I, such that

S =Y nix;.

iel

Applying f to x — Y n;x;, we find that this element lies in the kernel of f,
say iel
x— Yy mx;=beB.
iel
From this we see that x € B + C, and hence finally that 4 = B @ C is a direct
sum, as contended.

Theorem 7.3. Let A be a free abelian group, and let B be a subgroup. Then
B is also a free abelian group, and the cardinality of a basis of B is < the
cardinality of a basis for A. Any two bases of B have the same cardinality.

Proof. We shall give the proof only when A is finitely generated, say by a
basis {xy,..., x,} (n = 1), and give the proof by induction on n. We have an
expression of A4 as direct sum:

A=Zx, ® - - @ Zx,.
Let f: A — Zx, be the projection, i.e. the homomorphism such that
Sflmyxy + -+ + myx,) = myx,

whenever m;e Z. Let B, be the kernel of f|B. Then B, is contained in the free
subgroup {x,, ..., x,»>. By induction, B, is free and has a basis with < n — 1
elements. By the lemma, there exists a subgroup C, isomorphic to a subgroup
of Zx, (namely the image of /| B) such that

B=B1®Cl.

Since f(B) is either 0 or infinite cyclic, i.e. free on one generator, this proves
that B is free.

(When 4 is not finitely generated, one can use a similar transfinite argument.
See Appendix 2, §2, the example after Zorn’s Lemma.)

We also observe that our proof shows that there exists at least one basis
of B whose cardinality is < n. We shall therefore be finished when we prove
the last statement, that any two bases of B have the same cardinality. Let S
be one basis, with a finite number of elements m. Let T be another basis, and
suppose that T has at least r elements. It will suffice to prove that r < m (one
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can then use symmetry). Let p be a prime number. Then B/pB is a direct
sum of cyclic groups of order p, with m terms in the sum. Hence its order
is p™. Using the basis T instead of S, we conclude that B/pB contains an r-fold
product of cyclic groups of order p, whence p” < p™, and r < m, as was to
be shown. (Note that we did not assume a priori that T was finite.)

The number of elements in a basis of a free abelian group A will be called
the rank of A.

§8. FINITELY GENERATED ABELIAN GROUPS

The groups referred to in the title of this section occur so frequently that it is
worth while to state a theorem which describes their structure completely.
Throughout this section we write our abelian groups additively.

Let 4 be an abelian group. An element a € A is said to be a torsion element
if it has finite period. The subset of all torsion elements of A4 is a subgroup of 4
called the torsion subgroup of A. (If a has period m and b has period n then,
writing the group law additively, we see that a + b has a period dividing mn.)

The torsion subgroup of A is denoted by A,,,, or simply 4,. An abelian
group is called a torsion group if 4 = A,,,, that is all elements of 4 are of finite
order.

A finitely generated torsion abelian group is obviously finite. We shall begin
by studying torsion abelian groups. If A is an abelian group and p a prime number,
we denote by A(p) the subgroup of all elements x € A whose period is a power
of p. Then A(p) is a torsion group, and is a p-group if it is finite.

Theorem 8.1 Let A be a torsion abelian group. Then A is the direct sum of
its subgroups A(p) for all primes p such that A(p) # O.

Proof. There is a homomorphism
P Ap)— A
p

which to each element (x,) in the direct sum associates the element Exp in A.
We prove that this homomorphism is both surjective and injective. Suppose x
is in the kernel, so Exp = 0. Let g be a prime. Then
X, = Z (—xp,).
e g

Let m be the least common multiple of the periods of elements x, on the right-
hand side, with x, # 0 and p # q. Then mx, = 0. But also ¢"x, = 0 for some
positive integer r. If d is the greatest common divisor of m, ¢ then dx, = 0,
butd = 1, so Xg = 0. Hence the kernel is trivial, and the homomorphism is
injective.
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As for the surjectivity, for each positive integer m, denote by A,, the kernel
of multiplication by m, i.e. the subgroup of x € A such that mx = 0. We prove:

If m = rs with r, s positive relative prime integers, then A,, = A, + A;.

Indeed, there exist integers u, v such that ur + vs = 1. Then x = urx + vsx,
and urx € A; while vsx € A,, and our assertion is proved. Repeating this process
inductively, we conclude:

ifm = [1p® then A,, = >, Ay
plm plm

Hence the map @ A(p) — A is surjective, and the theorem is proved.

Example. Let A = Q/Z. Then Q/Z is a torsion abelian group, isomorphic
to the direct sum of its subgroups (Q/Z)(p). Each (Q/Z)(p) consists of those
elements which can be represented by a rational number a/p* with a € Z and k
some positive integer, i.e. a rational number having only a p-power in the
denominator. See also Chapter IV, Theorem 5.1.

In what follows we shall deal with finite abelian groups, so only a finite
number of primes (dividing the order of the group) will come into play. In this
case, the direct sum is “the same as” the direct product.

Our next task is to describe the structure of finite abelian p-groups. Let
ry,...,rs beintegers = 1. A finite p-group A4 is said to be of type (p",...,p")
if A is isomorphic to the product of cyclic groups of orders p” (i = 1, ..., s).
We shall need the following remark.

Remark. Let A be a finite abelian p-group. Let b be an element of
A, b # 0. Let k be an integer = 0 such that p*b # 0, and let p™ be the period
of pkb. Then b has period p**™. [Proof. We certainly have p**™b = 0, and if
p"b = 0 then first n = k, and second n = k +m, otherwise the period of p*b
would be smaller than p™.]

Theorem 8.2. Every finite abelian p-group is isomorphic to a product of

cyclic p-groups. If it is of type (p", ..., p") with
Nz ==,
then the sequence of integers (ry, . . ., ry) is uniquely determined.

Proof. We shall prove the existence of the desired product by induction.
Let a, € A be an element of maximal period. We may assume without loss of
generality that A is not cyclic. Let A, be the cyclic subgroup generated by a,,
say of period p"'. We need a lemma.

Lemma 8.3. Let b be an element of A/A,, of period p". Then there exists a
representative a of b in A which also has period p".
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Proof. Let b be any representative of b in A. Then p'b lies in A, say
p’b = na, with some integer n = 0. We note that the period of b is < the period
of b. If n = 0 we are done. Otherwise write n = p*u where u is prime to p.
Then pa, is also a generator of A;, and hence has period p"1. We may assume
k = r,. Then p*ua, has period p"1~%. By our previous remarks, the element b

has period rrri—k

p
whence by hypothesis,r + r; — k < r, and r < k. This proves that there exists
an element c € A, such that p’b = p’c. Leta = b — c. Thenais a representative
for b in A and p'a = 0. Since period (a) £ p” we conclude that a has period
equal to p".

We return to the main proof. By induction, the factor group A/A, has a
product expression

A/Al =/Zz X o0 X Zs

into cyclic subgroups of orders p2, ..., p™* respectively, and we may assume
ry2---2r,. Let a; be a generator for A; (i=2,...,5) and let q; be a

representative in A of the same period as a;. Let A4; be the cyclic subgroup
generated by a;. We contend that A is the direct sum of A}, ..., A,.
Given x € A4, let X denote its residue class in 4/4,. There exist integers
m; =0 =2,...,s)such that
X =mya, + -+ + mga.
Hence x — mya, — -+ — mya, lies in A, and there exists an integer m, > 0
such that
X =mya, + mya, + -+ + mya,.
Hence A, + --- + A, = A.
Conversely, suppose that m,, ..., m, are integers = 0 such that
0=ma, + - + mga,.
Since ag; has period p™ (i = 1,...,s), we may suppose that m; < p". Putting
a bar on this equation yields
0= mya, + --- + mga;.

Since A/A, is a direct product of 4,, ..., A; we conclude that each m; = 0 for
i=2...,s. Butthen m; = 0 also, and hence allm; =0(i=1,...,s). From
this it follows at once that

(A +-+A4)n A =0

for each i = 1, and hence that A is the direct product of 4,, ..., A, as desired.
We prove uniqueness, by induction. Suppose that A is written in two ways
as a direct sum of cyclic groups, say of type

(™, ...,p™) and (p™,...,p™)
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withr, 2---2r;=21and m; 2--- 2 m, 2 1. Then pA is also a p-group,
of order strictly less than the order of A, and is of type
(P .., peY) and (p™mTY, ..., p™Th,

it being understood that if some exponent r; or m; is equal to 1, then the factor
corresponding to

p'i -1 or pMj -1
in pA is simply the trivial group 0. By induction, the subsequence of
ri—1,...,rg—1)

consisting of those integers = 1 is uniquely determined, and is the same as
the corresponding subsequence of

(ml - 1,...,mk_ 1).
In other words, we have r; — 1 = m; — 1 for all those integers i such that

ri—1orm;— 121 Hence r; = m; for all these integers i, and the two se-
quences

(", ...,p") and (p™,...,p™)

can differ only in their last components which can be equal to p. These cor-
respond to factors of type (p, ..., p) occurring say v times in the first sequences
and u times in the second sequence. Thus for some integer n, A is of type

y,....,p"p,...,p) and (p,...,p™p,...,D).
v times utimes
Thus the order of A4 is equal to
pr1+‘ +r,.pv = p
whence v = 4, and our theorem is proved.

rit+- +rn

P,

A group G is said to be torsion free, or without torsion, if whenever an
element x of G has finite period, then x is the unit element.

Theorem 8.4. Let A be a finitely generated torsion-free abelian group. Then
A is free.

Proof. Assume A # 0. Let S be a finite set of generators, and let x,, ..., x,
be a maximal subset of S having the property that whenever v,, ..., v, are
integers such that

lel + -+ anu = 09

then v; = O for all j. (Note that n > 1 since A # 0). Let B be the subgroup
generated by x;, ..., x,. Then B is free. Given ye A there exist integers
my, ..., m,, mnot all zero such that

my + myx; + -+ + m,x, = 0,
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by the assumption of maximality on x,, ..., x,. Furthermore, m # 0; other-
wise all m; = 0. Hence my lies in B. This is true for every one of a finite set of
generators y of A, whence there exists an integer m # 0 such that mA c B.

The map
X H— mx

of A into itself is a homomorphism, having trivial kernel since 4 is torsion free.
Hence it is an isomorphism of 4 onto a subgroup of B. By Theorem7.3 of the
preceding section, we conclude that mA is free, whence A is free.

Theorem 8.5. Let A be a finitely generated abelian group, and let A, be
the subgroup consisting of all elements of A having finite period. Then A, is
finite, and A/A,,, is free. There exists a free subgroup B of A such that A is the
direct sum of A,,; and B.

Proof. Werecall that a finitely generated torsion abelian group is obviously
finite. Let A be finitely generated by n elements, and let F be the free abelian
group on n generators. By the universal property, there exists a surjective
homomorphism

F5%4
of F onto A. The subgroup ¢~ !(A,,) of F is finitely generated by Theorem 7.3.
Hence A, itself is finitely generated, hence finite.

Next, we prove that A/A,,, has no torsion. Let X be an element of A/A,,,
such that mx = 0 for some integer m # 0. Then for any representative of x of
X in A, we have mx € A, whence gmx = 0 for some integer ¢ ¥ 0. Then
X € Agop, 50 X = 0, and A/A,, is torsion free. By Theorem 8.4, A/A,, is free.
We now use the lemma of Theorem 7.3 to conclude the proof.

The rank of A/A,,, is also called the rank of A.

For other contexts concerning Theorem 8.5, see the structure theorem for
modules over principal rings in Chapter III, §7, and Exercises 5, 6, and 7 of
Chapter III.

§9. THE DUAL GROUP

Let A be an abelian group of exponent m = 1. This means that for each
element x € A we have mx = 0. Let Z,, be a cyclic group of order m. We denote
by A*, or Hom(A, Z,,) the group of homomorphisms of A into Z,,, and call it
the dual of A.

Letf: A — B be a homomorphism of abelian groups, and assume both have
exponent m. Then f induces a homomorphism

SN BN — AN
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Namely, for each ¢ € BN we define fA(¢) = o f. It is trivially verified that f*
is a homomorphism. The properties

id* =id and (fo g)" = g" o f"
are trivially verified.
Theorem 9.1. If A is a finite abelian group, expressed as a product

A = B X C, then A" is isomorphic to B" X C" (under the mapping described
below). A finite abelian group is isomorphic to its own dual.

Proof. Consider the two projections

B xC
VR
B C
of B x C on its two components. We get homomorphisms

B x O
N\
BA ch

and we contend that these homomorphisms induce an isomorphism of BA X C*
onto (B X C)N.

In fact, let ¢, ¥, be in Hom(B, Z,) and Hom(C, Z,,) respectively. Then
(Y, ¥,) € B X C*, and we have a corresponding element of (B X C)” by
defining

(Y1, Y2)(x, y) = ¢ (x) + (),
for (x, y) € B X C. In this way we get a homomorphism
BN X CN - (B X CO).
Conversely, let ¢ € (B X C). Then
P(x,y) = ¥(x,0) + ¢(0, y).

The function ¢; on B such that ¢;(x) = ¢(x,0) is in B*, and similarly the
function ¢, on C such that ¢, (y) = (0, y) is in C*. Thus we get a homomorphism

(B X C)» - BN x C*,

which is obviously inverse to the one we defined previously. Hence we obtain
an isomorphism, thereby proving the first assertion in our theorem.

We can write any finite abelian group as a product of cyclic groups. Thus
to prove the second assertion, it will suffice to deal with a cyclic group.

Let A be cyclic, generated by one element x of period n. Then n|m, and Z,,
has precisely one subgroup of order n, Z,, which is cyclic (Proposition 4.3(iv)).
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If ¢ : A— Z,, is a homomorphism, and x is a generator for A, then the period
of x is an exponent for ¥(x), so that ¥(x), and hence ¥(A), is contained in Z,.
Let y be a generator for Z,. We have an isomorphism

V,:A-> Z,

such that y,(x) = y. For each integer k with 0 < k < n we have the homo-
morphism ky, such that

(kY )(x) = k¥ (x) = ¥y(kx).

In this way we get a cyclic subgroup of A” consisting of the n elements ki,
(0 = k < n). Conversely, any element ¢ of A” is uniquely determined by its
effect on the generator x, and must map x on one of the n elements
kx (0 = k < n) of Z,. Hence ¢ is equal to one of the maps ki,. These maps
constitute the full group A*, which is therefore cyclic of order n, generated by
¢,. This proves our theorem.

In considering the dual group, we take various cyclic groups Z,,. There are
many applications where such groups occur, for instance the group of m-th roots
of unity in the complex numbers, the subgroup of order m of Q/Z, etc.

Let A, A’ be two abelian groups. A bilinear map of A x A4’ into an abelian
group C is a map

Ax A->C
denoted by
(x, x) = {x, x>

having the following property. For each xe A the function x'+— {x, x")
is a homomorphism, and similarly for each x’ € A’ the function x+ {x, x') is a
homomorphism.

As a special case of a bilinear map, we have the one given by

A x Hom(4,C) - C

which to each pair (x, f) with x € 4 and fe Hom(A4, C) associates the element
f(x)in C.

A bilinear map is also called a pairing.

An element x € A is said to be orthogonal (or perpendicular) to a subset S’
of A"if {x, x"> = Ofor all x' € §'. It is clear that the set of x € A orthogonal to S’
is a subgroup of A. We make similar definitions for elements of A’, orthogonal
to subsets of A4.

The kernel of our bilinear map on the left is the subgroup of A which is
orthogonal to all of 4. We define its kernel on the right similarly.

Given a bilinear map 4 x A’ — C, let B, B’ be the respective kernels of our
bilinear map on the left and right. An element x’ of A’ gives rise to an element of
Hom(A4, C) given by x+ (x, x’), which we shall denote by y.. Since ¥,
vanishes on B we see that . is in fact a homomorphism of A/B into C.
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Furthermore, ¥, = ¥, if x', y’ are elements of A’ such that
x' =y (mod B).
Hence v is in fact a homomorphism
0 - A'/B' - Hom(A4/B, C),
which is injective since we defined B’ to be the group orthogonal to A.
Similarly, we get an injective homomorphism
0 - A/B—» Hom(A'/B', C).

Assume that C is cyclic of order m. Then for any x’ € A’ we have

m‘//x' = ‘me' =0,
whence 4'/B’ has exponent m. Similarly, 4/B has exponent m.
Theorem 9.2. Let A X A’ — C be a bilinear map of two abelian groups into
a cyclic group C of order m. Let B, B’ be its respective kernels on the left and

right. Assume that A' /B’ is finite. Then A/B is finite, and A'/B' is isomorphic
to the dual group of A/B (under our map V).

Proof. The injection of 4/B into Hom(A'/B’, C) shows that 4/B is finite.
Furthermore, we get the inequalities

ord A/B = ord(A'/B")" = ord A’ /B’

and
ord A’/B’ = ord(A/B)" = ord A/B.

From this it follows that our map ¢ is bijective, hence an isomorphism.

Corollary 9.3. Let A be a finite abelian group, B a subgroup, A" the dual
group, and B the set of ¢ € A" such that ¢(B) = 0. Then we have a natural
isomorphism of A" /BL with B

Proof. This is a special case of Theorem 9.2.

§10. INVERSE LIMIT AND COMPLETION

Consider a sequence of groups {G,}(n = 0, 1, 2,...), and suppose given
for all n = 1 homomorphisms
fn: Gn - Gn—l'

Suppose first that these homomorphisms are surjective. We form infinite
sequences

x = (X, X1, X3, ...) such that x,_; = f,(x,).
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By the assumption of surjectivity, given x,, € G, we can always lift x, to G,,+,
via f,,, so such infinite sequences exist, projecting to any given xo. We can
define multiplication of such sequences componentwise, and it is then imme-
diately verified that the set of sequences is a group, called the inverse limit
of the family {(G,, f,)}. We denote the inverse limit by lim (G,,, f,), or simply
lim G, if the reference to f,, is clear.

Example. Let A be an additive abelian group. Let p be a prime number.
Let p4: A — A denote multiplication by p. We say that A is p-divisible if p, is
surjective. We may then form the inverse limit by taking A, = A for all n, and
fn = pa for all n. The inverse limit is denoted by V,(A). We let T,(A) be the
subset of V,(A) consisting of those infinite sequences as above such that
xo = 0. Let A[p"] be the kernel of pj. Then

T,(A) = lim A[p"*'].

The group T,(A) is called the Tate group associated with the p-divisible group
A. It arose in fairly sophisticated contexts of algebraic geometry due to Deuring
and Weil, in the theory of elliptic curves and abelian varieties developed in the
1940s, which are far afield from this book. Interested readers can consult books
on those subjects.

The most common p-divisible groups are obtained as follows. First, let A be
the subgroup of Q/Z consisting of those rational numbers (mod Z) which can
be expressed in the form a/p* with some positive integer k, and a € Z. Then A
is p-divisible.

Second, let i[ p”] be the group of p"-th roots of unity in the complex numbers.
Let p[p™] be the union of all p[p"] for all n. Then p[p™] is p-divisible, and
isomorphic to the group A of the preceding paragraph. Thus

T,(p) = lim p[p"].

These groups are quite important in number theory and algebraic geometry. We
shall make further comments about them in Chapter III, §10, in a broader context.

Example. Suppose given a group G. Let {H,} be a sequence of normal
subgroups such that H, D H, ., for all n. Let

f.,:G/H,— G/H,_,

be the canonical homomorphisms. Then we may form the inverse limit lim G/H,,.
Observe that G has a natural homomorphism

g:G— lim G/H,,

which sends an element x to the sequence (..., x,,...), where x, = image of
x in G/H,,.

Example. Let G, = Z/p"*'Z for each n = 0. Let
fo: Z/p"t'Z — Z/p"L

be the canonical homomorphism. Then f, is surjective, and the limit is called
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the group of p-adic integers, denoted by Z,. We return to this in Chapter IlI,
§10, where we shall see that Zp is also a ring.

After these examples, we want to consider the more general situation when
one deals not with a sequence but with a more general type of family of groups,
which may not be commutative. We therefore define inverse limits of groups in
general.

Let I be a set of indices. Suppose given a relation of partial ordering in I,
namely for some pairs (i, j) we have a relation i < j satisfying the conditions:
Foralli,j kinI,wehavei < i;ifi<jandj< ktheni S k;ifi <jandj<i
then i = j. We say that [ is directed if given i, j e I, there exists k such that
i = k and j = k. Assume that / is directed. By an (inversely) directed family
of groups, we mean a family {G,},.; and for each pair i = j a homomorphism

fh G —G;
such that, whenever k = i = j we have
fiefi=f and fi=id.

LetG = HG,- be the product of the family. Let I" be the subset of G consisting
of all elements (x;) with x; € G; such that for all i and j = i we have

fix) = x;.

Then I' contains the unit element, and is immediately verified to be a subgroup
of G. We call I the inverse limit of the family, and write

T = lim G,.

Example. Let G be a group. Let F be the family of normal subgroups of
finite index. If H, K are normal of finite index, then so is H N K, so & is a
directed family. We may then form the inverse limit lim G/H with H € F. There
is a variation on this theme. Instead of &, let p be a prime number, and let F,
be the family of normal subgroups of finite index equal to a power of p. Then
the inverse limit with respect to subgroups H € &, can also be taken. (Verify
that if H, K are normal of finite p-power index, so is their intersection.)

A group which is an inverse limit of finite groups is called profinite.

Example from applications. Such inverse limits arise in Galois theory.
Let k be a field and let A be an infinite Galois extension. For example, k = Q
and A is an algebraic closure of Q. Let G be the Galois group; that is, the group
of automorphisms of A over k. Then G is the inverse limit of the factor groups
G/H, where H ranges over the Galois groups of A over K, with K ranging over
all finite extensions of k contained in A. See the Shafarevich conjecture in the
chapter on Galois theory, Conjecture 14.2 of Chapter VI.

Similarly, consider a compact Riemann surface X of genus = 2. Let
p: X' — X be the universal covering space. Let C(X) = F and C(X') = F' be

the function fields. Then there is an embedding =, (X) — Gal(F'/F). It is
shown in complex analysis that 7;(X) is a free group with one commutator
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relation. The full Galois group of F'/F is the inverse limit with respect to the
subgroups of finite index, as in the above general situation.

Completion of a group

Suppose now that we are given a group G, and first, for simplicity, suppose
given a sequence of normal subgroups {H,} with H, D H,,, for all n, and such
that these subgroups have finite index. A sequence {x,} in G will be called a
Cauchy sequence if given H, there exists N such that for all m, n = N we have
X,Xm! € H,. We say that {x,} is a null sequence if given r there exists N such
that for all n = N we have x, € H,. As an exercise, prove that the Cauchy
sequences form a group under termwise product, and that the null sequences
form a normal subgroup. The factor group is called the completion of G (with
respect to the sequence of normal subgroups).

Observe that there is a natural homomorphism of G into its completion;
namely, an element x € G maps to the sequence (x, x, x,...) modulo null
sequences. The kernel of this homomorphism is the intersection NH,, so if this
intersection is the unit element of G, then the map of G into its completion is
an embedding.

Theorem 10.1. The completion and the inverse limit lim G/H, are isomorphic
under natural mappings.

Proof. We give the maps. Let x = {x,} be a Cauchy sequence. Given r,
for all n sufficiently large, by the definition of Cauchy sequence, the class of x,,
mod H, is independent of n. Let this class be x(r). Then the sequence
(x(1), x(2), . ..) defines an element of the inverse limit. Conversely, given an
element (X, X,, . . .) in the inverse limit, with x,, € G/H,, let x,, be a representa-
tive in G. Then the sequence {x,} is Cauchy. We leave to the reader to verify
that the Cauchy sequence {x,} is well-defined modulo null sequences, and that
the maps we have defined are inverse isomorphisms between the completion and
the direct limit.

We used sequences and denumerability to make the analogy with the con-
struction of the real numbers clearer. In general, given the family F, one considers
families {xy}y g of elements x; € G. Then the condition for a Cauchy family
reads: given Hy € & there exists H; € F such that if K, K’ are contained in H,,
then xxxx! € Hy. In practice, one can work with sequences, because groups that
arise naturally are such that the set of subgroups of finite index is denumerable.
This occurs when the group G is countably generated.

More generally, a family {H;} of normal subgroups of finite index is called
cofinal if given H € & there exists i such that H; C H. Suppose that there exists
such a family which is denumerable; thatis, i = 1, 2, . . . ranges over the positive
integers. Then it is an exercise to show that there is an isomorphism

lim G/H; ~ lim G/H,
i He§F
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or equivalently, that the completion of G with respect to the sequence {H;} is
“the same” as the completion with respect to the full family F . We leave this
verification to the reader.

The process of completion is frequent in mathematics. For instance, we shall
mention completions of rings in Chapter III, §10; and in Chapter XII we shall
deal with completions of fields.

§11. CATEGORIES AND FUNCTORS

Before proceeding further, it will now be convenient to introduce some new
terminology. We have met already several kinds of objects: sets, monoids,
groups. We shall meet many more, and for each such kind of objects we define
special kinds of maps between them (e.g. homomorphisms). Some formal
behavior will be common to all of these, namely the existence of identity maps
of an object onto itself, and the associativity of maps when such maps occur in
succession. We introduce the notion of category to give a general setting for all
of these.

A category @ consists of a collection of objects Ob(@); and for two objects
A, Be Ob(Q®) a set Mor(A4, B) called the set of morphisms of 4 into B; and for
three objects 4, B, C e Ob(®) a law of composition (i.e. a map)

Mor(B, C) x Mor(A4, B) » Mor(4, C)
satisfying the following axioms:

CAT 1. Two sets Mor(A4, B) and Mor(A’, B’) are disjoint unless 4 = A’
and B = B, in which case they are equal.

CAT 2. For each object A of @ there is a morphism id, € Mor(A4, A)
which acts as left and right identity for the elements of Mor(A4, B) and
Mor(B, A) respectively, for all objects B e Ob(Q).

CAT 3. The law of composition is associative (when defined), i.e. given
fe Mor(A, B), g e Mor(B, C) and h € Mor(C, D) then

(hog)of=ho(g-f),

for all objects A4, B, C, D of Q.

Here we write the composition of an element g in Mor(B, C) and an element
fin Mor(A4, B) as g o f, to suggest composition of mappings. In practice, in this
book we shall see that most of our morphisms are actually mappings, or closely
related to mappings.

The collection of all morphisms in a category @ will be denoted by Ar(Q®)
(“arrows of @”). We shall sometimes use the symbols “fe Ar(@)” to mean
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that f is a morphism of @, i.e. an element of some set Mor(A4, B) for some
A, Be Ob(Q).

By abuse of language, we sometimes refer to the collection of objects as the
category itself, if it is clear what the morphisms are meant to be.

An element fe Mor(A4, B) is also written f: 4 — B or

AL B

A morphism f is called an isomorphism if there exists a morphism g: B — A
such that g o fand fo g are the identities in Mor(A4, 4) and Mor(B, B) respec-
tively. If A = B, then we also say that the isomorphism is an automorphism.

A morphism of an object A4 into itself is called an endomorphism. The set of
endomorphisms of 4 is denoted by End(4). It follows at once from our axioms
that End(A) is a monoid.

Let A be an object of a category @. We denote by Aut(A4) the set of auto-
morphisms of 4. This set is in fact a group, because all of our definitions are
so adjusted so as to see immediately that the group axioms are satisfied (associa-
tivity, unit element, and existence of inverse). Thus we now begin to see some
feedback between abstract categories and more concrete ones.

Examples. Let § be the category whose objects are sets, and whose
morphisms are maps between sets. We say simply that § is the category of sets.
The three axioms CAT 1, 2, 3 are trivially satisfied.

Let Grp be the category of groups, i.e. the category whose objects are groups
and whose morphisms are group-homomorphisms. Here again the three axioms
are trivially satisfied. Similarly, we have a category of monoids, denoted by
Mon.

Later, when we define rings and modules, it will be clear that rings form a
category, and so do modules over a ring.

It is important to emphasize here that there are categories for which the set
of morphisms is not an abelian group. Some of the most important examples
are:

The category @°, whose objects are open sets in R” and whose morphisms
are continuous maps.

The category C* with the same objects, but whose morphisms are the C~
maps.

The category Hol, whose objects are open sets in C”, and whose morphisms
are holomorphic maps. In each case the axioms of a category are verified, because
for instance for Hol, the composite of holomorphic maps is holomorphic, and
similarly for the other types of maps. Thus a C%isomorphism is a continuous
map f : U— V which has a continuous inverse g: V— U. Note that a map may
be a CC-isomorphism but not a C*-isomorphism. For instance, x > x3 is a C-
automorphism of R, but its inverse is not differentiable.

In mathematics one studies manifolds in any one of the above categories.
The determination of the group of automorphisms in each category is one of the
basic problems of the area of mathematics concerned with that category. In
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complex analysis, one determines early the group of holomorphic automorphisms
of the unit disc as the group of all maps

s> o0 £ Z
1 —cz

with @ real and c € C, |c| < 1.

Next we consider the notion of operation in categories. First, observe that
if G is a group, then the G-sets form a category, whose morphisms are the maps
f:8— S such that f(xs) = xf(s) forx € G and s € S.

More generally, we can now define the notion of an operation of a group G
on an object in any category. Indeed, let @ be a category and A € Ob(QR).
By an operation of G on A we shall mean a homomorphism of G into the group
Aut(A). In practice, an object A is a set with elements, and an automorphism
in Aut(A) operates on A4 as a set, i.e. induces a permutation of 4. Thus, if we
have a homomorphism

p: G — Aut(A),

then for each x € G we have an automorphism p(x) of A which is a permutation
of A.

An operation of a group G on an object A is also called a representation of
G on A, and one then says that G is represented as a group of automorphisms
of A.

Examples. One meets representations in many contexts. In this book, we
shall encounter representations of a group on finite-dimensional vector spaces,
with the theory pushed to some depth in Chapter XVIII. We shall also deal with
representations of a group on modules over a ring. In topology and differential
geometry, one represents groups as acting on various topological spaces, for
instance spheres. Thus if X is a differential manifold, or a topological manifold,
and G is a group, one considers all possible homomorphims of G into Aut(X),
where Aut refers to whatever category is being dealt with. Thus G may be
represented in the group of C%-automorphims, or C*-automorphisms, or analytic
automorphisms. Such topological theories are not independent of the algebraic
theories, because by functoriality, an action of G on the manifold induces an
action on various algebraic functors (homology, K-functor, whatever), so that
topological or differential problems are to some extent analyzable by the functorial
action on the associated groups, vector spaces, or modules.

Let A, B be objects of a category @. Let Iso(A, B) be the set of isomorphisms
of 'A with B. Then the group Aut(B) operates on Iso(A, B) by composition;
namely, if u € Iso(A, B) and v € Aut(B), then (v, u) > v ° u gives the operation.
If uy is one element of Iso(A, B), then the orbit of u; is all of Iso(A, B), so
v > v ° ug is a bijection Aut(B) — Iso(A, B). The inverse mapping is given by
u V> uy uy'. This trivial formalism is very basic, and is applied constantly to
each one of the classical categories mentioned above. Of course, we also have
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a similar bijection on the other side, but the group Aut(A) operates on the right
of Iso(A, B) by composition. Furthermore, if u: A — B is an isomorphism, then
Aut(A) and Aut(B) are isomorphic under conjugation, namely

w > uwu~! is an isomorphism Aut(A) — Aut(B).

Two such isomorphisms differ by an inner automorphism. One may visualize
this system via the following commutative diagram.

A—~—> B

A——8B

Let p: G — Aut(A) and p': G — Aut(A’) be representations of a group G
on two objects A and A’ in the same category. A morphism of p into p’ is a
morphism h: A — A’ such that the following diagram is commutative for all
x € G:

_i_; !

S
>

plx) p'(x)

—
—

S
>

B —
h

It is then clear that representations of a group G in the objects of a category @
themselves form a category. An isomorphism of representations is then an
isomorphism 4 : A — A’ making the above diagram commutative. An isomor-
phism of representations is often called an equivalence, but I don’t like to tamper
with the general system of categorical terminology. Note that if 4 is an isomor-
phism of representations, then instead of the above commutative diagram, we
let [h] be conjugation by A, and we may use the equivalent diagram

o g
T~

Aut(A")

Aut(A)

Consider next the case where @ is the category of abelian groups, which we
may denote by Ab. Let A be an abelian group and G a group. Given an operation
of G on the abelian group A, i.e. a homomorphism

p:G— Aut(A),

let us denote by x - a the element p,(a). Then we see that for all x, y € G, a,
b € A, we have:
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x-(y-a)=(xy)-a, x-(a+b)y=x-a+ x-b,
e-a=a, x-0=0.

We observe that when a group G operates on itself by conjugation, then not
only does G operate on itself as a set but also operates on itself as an object in the
category of groups, i.e. the permutations induced by the operation are actually
group-automorphisms.

Similarly, we shall introduce later other categories (rings, modules, fields)
and we have given a general definition of what it means for a group to operate
on an object in any one of these categories.

Let @ be a category. We may take as objects of a new category C the
morphisms of @ If f:A — B and f': A’ > B’ are two morphisms in @ (and
thus objects of €), then we define a morphism f— f’ (in C) to be a pair of
morphisms (¢, ¥) in @ making the following diagram commutative:

A—L B

AI_—,_)B/

In that way, it is clear that C is a category. Strictly speaking, as with maps of
sets, we should index (¢, §) by f and f’ (otherwise CAT 1 is not necessarily
satisfied), but such indexing is omitted in practice.

There are many variations on this example. For instance, we could restrict
our attention to morphisms in @ which have a fixed object of departure, or those
which have a fixed object of arrival.

Thus let 4 be an object of @, and let @, be the category whose objects are
morphisms

fiX-4A4
in @, having 4 as object of arrival. A morphism in @, from f: X —» A4 to
g:Y > Aissimply a morphism

h:X-Y
in @ such that the diagram is commutative:

X—toy

N,/

Universal objects

Let @ be a category. An object P of € is called universally attracting if there
exists a unique morphism of each object of € into P, and is called universally
repelling if for every object of C there exists a unique morphism of P into this
object.
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When the context makes our meaning clear, we shall call objects P as above
universal. Since a universal object P admits the identity morphism into itself,
it is clear that if P, P’ are two universal objects in C, then there exists a unique
isomorphism between them.

Examples. Note that the trivial group consisting only of one element is
universal (repelling and attracting) in the category of groups. Similarly, in
Chapter II on rings, you will see that the integers Z are universal in the category
of rings (universally repelling).

Next let S be a set. Let € be the category whose objects are maps f: S — A
of S into abelian groups, and whose morphisms are the obvious ones: If
f:S—> Aand f':S — A’ are two maps into abelian groups, then a morphism
of f into f’ is a (group) homomorphism g: A — A’ such that the usual dia-
gram is commutative, namely g o f = f'. Then the free abelian group generated
by § is universal in this category. This is a reformulation of the properties we
have proved about this group.

Let M be a commutative monoid and let y: M — K(M) be the canonical
homomorphism of M into its Grothendieck group. Then v is universal in the
category of homomorphisms of M into abelian groups.

Throughout this book in numerous situtaions, we define universal objects.
Aside from products and coproducts which come immediately after these exam-
ples, we have direct and inverse limits; the tensor product in Chapter XVI, §1;
the alternating product in Chapter XIX, §1; Clifford algebras in Chapter XIX,
§4; ad lib.

We now turn to the notion of product in an arbitrary category.

Products and coproducts

Let @ be a category and let A, B be objects of @. By a product of A, Bin @
one means a triple (P, f, g) consisting of an object P in @ and two morphisms

P
7N
A B
satisfying the following condition: Given two morphisms

¢:C—>A and y:C-B

in @, there exists a unique morphism h:C — P which makes the following

diagram commutative: c
I

AN

4 ™p

In other words, ¢ = fohand Y = goh.
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More generally, given a family of objects {4;};.; in @, a product for this
family consists of (P, {f;};c;), where P is an object in @ and {f;};.; is a

family of morphisms
ﬁ : P g Ai’

satisfying the following condition: Given a family of morphisms
gi: C - Ai,
there exists a unique morphism h: C — P such that f;o h = g, for all i.

Example. Let @ be the category of sets, and let {A;},; be a family of sets.
Let A = in be their cartesian product, and let p;: A — A; be the projection
e

on the i-th factor. Then (A, {p;}) clearly satisfies the requirements of a product
in the category of sets.

As a matter of notation, we shall usually write A x B for the product of two
objects in a category, and [] A; for the product of an arbitrary family in a
iel
category, following the same notation as in the category of sets.
Example. Let {G;};.; be a family of groups, and let G = I1 G; be their direct
product. Let p;: G — G; be the projection homomorphism. Then these constitute
a product of the family in the category of -groups.

Indeed, if {g;:G' = G}, is a family of homomorphisms, there is a unique
homomorphismg: G’ - [] G; which makes the required diagram commutative.
It is the homomorphism such that g(x"); = g/(x’) for x’€ G’ and each ie I.

Let A, B be objects of a category @. We note that the product of A, B is
universal in the category whose objects consist of pairs of morphisms
f:C—> Aand g: C — B in @, and whose morphisms are described as follows.
Let f' : C' — A and ¢g': C' — B be another pair. Then a morphism from the
first pair to the second is a morphism h: C — C’ in @, making the following

diagram commutative:
C

) lh g

A B
The situation is similar for the product of a family {A;};c,-

We shall also meet the dual notion: Let {4,};.,; be a family of objects in a
category @. By their coproduct one means a pair (S, {f;};c;) consisting of an
object S and a family of morphisms

{fi:4;—> S},

satisfying the following property. Given a family of morphisms {g;: 4; - C},
there exists a unique morphism h: S — C such that hof; = g, for all i.
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In the product and coproduct, the morphism h will be said to be the
morphism induced by the family {g;}.

Examples. Let S be the category of sets. Then coproducts exist. For
instance, let S, S’ be sets. Let T be a set having the same cardinality as §’ and
disjoint from S. Let f;:S — S be the identity, and f,:S" — T be a bijection.
Let U be the union of S and T. Then (U, f}, f>) is a coproduct for S, §’, viewing
f1,f> as maps into U.

Let 8, be the category of pointed sets. Its objects consist of pairs (S, x)
where S is a set and x is an element of S. A morphism of (S, x) into (', x") in this
category is a map g:S — S’ such that g(x) = x". Then the coproduct of (S, x)
and (S', x') exists in this category, and can be constructed as follows. Let T be
a set whose cardinality is the same as that of S’, and such that T N § = {x}.
Let U = S UT, and let

fl :(S’ X) - (Ua X)
be the map which induces the identity on S. Let

f2:(8,x) > (U, x)
be a map sending x’ to x and inducing a bijection of §' — {x'} on T — {x}.
Then the triple (U, x), fi, f>) is a coproduct for (S, x) and (S’, x') in the category
of pointed sets.

Similar constructions can be made for the coproduct of arbitrary families

of sets or pointed sets. The category of pointed sets is especially important in
homotopy theory.

Coproducts are universal objects. Indeed, let @ be a category, and let {A;}
be a family of objects in @. We now define €. We let objects of Cbe the families
of morphisms {f;: A; — B}, and given two such families,

{fiiA;> B} and {f;:A;— B},

we define a morphism from the first into the second to be a morphism ¢ : B —» B’
in @ such that ¢ o f; = fiforalli. Then a coproduct of {4,} is simply a universal
object in C.

The coproduct of {4;} will be denoted by

11 4.

iel
The coproduct of two objects A, B will also be denoted by A II B.

By the general uniqueness statement, we see that it is uniquely determined, up
to a unique isomorphism.

Example. Let R be the category of commutative rings. Given two such
rings A, B one may form the tensor product, and there are natural ring-homo-
morphisms A — A ® B and B — A ® B such that

ara®landbr— 1@ bforac Aand b € B.

Then the tensor product is a coproduct in the category of commutative rings.
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Fiber products and coproducts
Pull-backs and push-outs

Let C be a category. Let Z be an object of C. Then we have a new category,
that of objects over Z, denoted by €,. The objects of €, are morphisms:

f:X->Zine

A morphism from fto g: Y — Z in €, is merely a morphism h: X - Yin @
which makes the following diagram commutative.

X—t—y

N/

A product in €, is called the fiber product of f and g in € and is denoted
by X x Y, together with its natural morphisms on X, Y over Z, which are
sometimes not denoted by anything, but which we denote by p,, p,.

X x<

14} D2
X/ Y

\}\T/(

Fibered products and coproducts exist in the category of abelian groups

The fibered product of two homomorphisms f: X — Z and g: Y — Z is the
subgroup of X X Y consisting of all pairs (x, y) such that

fx) = g(y).

The coproduct of two homomorphisms f:Z — X and g:Z - Y is the
factor group (X @ Y)/W where W is the subgroup of X @ Y consisting of all
elements (f(z), —g(z)) with ze Z.

We leave the simple verification to the reader (see Exercises 50-56).

In the fiber product diagram, one also calls p, the pull-back of g by f, and
p> the pull-back of f by g. The fiber product satisfies the following universal

mapping property:

Given any object T in @ and morphisms making the following diagram

./\
\/
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there exists a unique morphism T — X X , Y making the following diagram

commutative:
X x,Y

X e— r— Y
Dually, we have the notion of coproduct in the category of morphisms f: Z — X
with a fixed object Z as the object of departure of the morphisms. This category
could be denoted by C%. We reverse the arrows in the preceding discussion.
Given two objects f and g: Z — Y in this category, we have the notion of their
coproduct. Itis denoted by X 11, Y, with morphisms q,, g, as in the following

commutative diagram:
Y

™A

zZ

X Y

satisfying the dual universal property of the fiber product. We call it the fibered
coproduct. We call g, the push-out of g by f, and g, the push-out of f by g.

Example. Let S be the category of sets. Given two maps f, g as above,
their product is the set of all pairs (x, y) € X X Y such that f(x) = g(y).

Functors

Let @, ® be categories. A covariant functor F of @ into ® is a rule which
to each object 4 in @ associates an object F(A4) in ®, and to each morphism
f:A — B associates a morphism F(f): F(A) - F(B) such that:

FUN 1. Forall 4 in @ we have F(id ;) = idp4).
FUN 2. Iff:4 - Bandg:B — C are two morphisms of @ then

F(gof) = F(g)~ F(f).

Example. If to each group G we associate its set (stripped of the group
structure) we obtain a functor from the category of groups into the category of
sets, provided that we associate with each group-homomorphism itself, viewed
only as a set-theoretic map. Such a functor is called a stripping functor or
forgetful functor.

We observe that a functor transforms isomorphisms into isomorphisms,
because fo g = id implies F(f) - F(g) = id also.

We can define the notion of a contravariant functor from @ into ® by using
essentially the same definition, but reversing all arrows F( f), i.e. to each morph-
ism f: A — B the contravariant functor associates a morphism
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F(f):F(B) > F(4)
(going in the opposite direction), such that, if
f:A->B and g¢g:B-C
are morphisms in @, then

Fgof) = F(f)- F(g).

Sometimes a functor is denoted by writing f, instead of F(f) in the case
of a covariant functor, and by writing f* in the case of a contravariant
functor.

Example. The association S +— F,(S) is a covariant functor from the
category of sets to the category of abelian groups.

Example. The association which to each group associates its completion
with respect to the family of subgroups of finite index is a functor from the
category of groups to the category of groups.

Example. Let p be a prime number. Let € be the category of p-divisible
abelian groups. The association A > T,(A) is a covariant functor of € into
abelian groups (actually Z,-modules).

Example. Exercise 49 will show you an example of the group of auto-
morphisms of a forgetful functor.

Example. Let Man be the category of compact manifolds. Then the homol-
ogy is a covariant functor from Man into graded abelian groups. The cohomology
is a contravariant functor into the category of graded algebras (over the ring of
coefficients). The product is the cup product. If the cohomology is taken with
coefficients in a field of characteristic O (for simplicity), then the cohomology
commutes with products. Since cohomology is contravariant, this means that the
cohomology of a product is the coproduct of the cohomology of the factors. It
turns out that the coproduct is the tensor product, with the graded product, which
also gives an example of the use of tensor products. See M. GREENBERG and
J. HARPER, Algebraic Topology (Benjamin-Addison-Wesley), 1981, Chapter 29.

Example. Let @ be the category of pointed topological spaces (satisfying
some mild conditions), i.e. pairs (X, xy) consisting of a space X and a point x;.
In topology one defines the connected sum of such spaces (X, xp) and (Y, yo),
glueing X, Y together at the selected point. This connected sum is a coproduct
in the category of such pairs, where the morphisms are the continuous maps
f: X — Y such that f(xy) = yo. Let o, denote the fundamental group. Then
(X, xg9) = (X, xp) is a covariant functor from € into the category of groups,
commuting with coproducts. (The existence of coproducts in the category of
groups will be proved in §12.)
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Example. Suppose we have a morphism f: X — Y in a category C. By a
section of f, one means a morphism g: ¥ — X such that g o f = id. Suppose
there exists a covariant functor H from this category to groups such that
H(Y) = {e} and H(X) # {e}. Then there is no section of f. This is immediate
from the formula H(g o f) = id, and H(f) = trivial homomorphism. In topology
one uses the homology functor to show, for instance, that the unit circle X is
not a retract of the closed unit disc with respect to the inclusion mapping f.
(Topologists use the word “retract” instead of “section”.)

Example. Let @ be a category and A a fixed object in @. Then we obtain a
covariant functor

M,:@-8
by letting M ,(X) = Mor(A4, X) for any object X of @. If ¢: X — X' is a mor-
phism, we let

M (o) : Mor(4, X) — Mor(4, X")
be the map given by the rule
g eog

for any g € Mor(4, X),

ASx5Xx.

The axioms FUN 1 and FUN 2 are trivially verified.
Similarly, for each object B of @, we have a contravariant functor

M2:.Q@ -8
such that M3(Y) = Mor(Y, B). If y: Y’ - Y is a morphism, then
M3() : Mor(Y, B) - Mor(Y’, B)
is the map given by the rule
Sfey
for any fe Mor(Y, B),
vy4y4B
The preceding two functors are called the representation functors.
Example. Let @ be the category of abelian groups. Fix an abelian group

A. The association X — Hom(A, X) is a covariant functor from @ into itself.
The association X — Hom(X, A) is a contravariant functor of @ into itself.

Example. We assume you know about the tensor product. Let A be a
commutative ring. Let M be an A-module. The association X > M ® X is a
covariant functor from the category of A-modules into itself.

Observe that products and coproducts were defined in a way compatible with
the representation functor into the category of sets. Indeed, given a product P



1, §11 CATEGORIES AND FUNCTORS 65

of two objects A and B, then for every object X the set Mor(X, P) is a product
of the sets Mor(X, A) and Mor(X, B) in the category of sets. This is merely a
reformulation of the defining property of products in arbitrary categories. The
system really works.

Let @, ® be two categories. The functors of @ into ® (say covariant, and
in one variable) can be viewed as the objects of a category, whose morphisms
are defined as follows. Let L, M be two such functors. A morphism H: L - M
(also called a natural transformation) is a rule which to each object X of @
associates a morphism

Hy: L(X) - M(X)

such that for any morphism f: X — Y the following diagram is commutative:

LX) —2% M(X)

L(f) M(f)
L(Y) —— M(Y)

We can therefore speak of isomorphisms of functors. A functor is representable
if it is isomorphic to a representation functor as above.

As Grothendieck pointed out, one can use the representation functor to
transport the notions of certain structures on sets to arbitrary categories. For
instance, let @ be a category and G an object of @. We say that G is a group
object in @ if for each object X of @ we are given a group structure on the set
Mor(X, G) in such a way that the association

X — Mor(X, G)

is functorial (i.e. is a functor from @ into the category of groups). One some-
times denotes the set Mor(X, G) by G(X), and thinks of it as the set of points of
G in X. To justify this terminology, the reader is referred to Chapter IX, §2.

Example. Let Var be the category of projective non-singular varieties over
the complex numbers. To each object X in Var one can associate various groups,
e.g. Pic(X) (the group of divisor classes for rational equivalence), which is a
contravariant functor into the category of abelian groups. Let Picy(X) be the
subgroup of classes algebraically equivalent to 0. Then Picg is representable.

In the fifties and sixties Grothendieck was the one who emphasized the
importance of the representation functors, and the possibility of transposing to
any category notions from more standard categories by means of the representation
functors. He himself proved that a number of important functors in algebraic
geometry are representable.
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§12. FREE GROUPS

We now turn to the coproduct in the category of groups. First a remark. Let
G = HG; be a direct product of groups.

We observe that each G; admits an injective homomorphism into the
product, on the j-th component, namely the map 4;:G; —» [1G; such that

for x in G;, the i-th component of 4;(x) is the unit element of G; if i # j, and
is equal to x itself if i = j. This embedding will be called the canonical one.
But we still don’t have a coproduct of the family, because the factors commute
with each other. To get a coproduct one has to work somewhat harder.

Let G be a group and S a subset of G. We recall that G is generated by S
if every element of G can be written as a finite product of elements of S and their
inverses (the empty product being always taken as the unit element of G).
Elements of S are then called generators. If there exists a finite set of generators
for G we call G finitely generated. If S is a set and ¢:S — G is a map, we say
that ¢ generates G if its image generates G.

Let S be a set, and f: S — F a map into a group. Let g:S — G be another
map. Iff(S) (or as we also say, f) generates F, then it is obvious that there exists
at most one homomorphism ¥ of F into G which makes the following diagram

commutative:
S _r F
G

We now consider the category € whose objects are the maps of S into
groups. If 1S —» G and f': S — G’ are two objects in this category, we define
a morphism from fto f’ to be a homomorphism ¢ : G — G’ such that g o f = f,
i.e. the diagram is commutative:

Gl
By a free group determined by S, we shall mean a universal element in this
category.

Proposition 12.1. Let S be a set. Then there exists a free group (F, f)
determined by S. Furthermore, f is injective, and F is generated by the image

of f.
Proof. (I owe this proof to J. Tits.) We begin with a lemma.
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Lemma 12.2. There exists a set I and a family of groups {G,};.; such that,
if g: S — G is amap of S into a group G, and g generates G, then G is
isomorphic to some G;.

Proof. This is a simple exercise in cardinalities, which we carry out. If S
is finite, then G is finite or denumerable. If S is infinite, then the cardinality of G
is < the cardinality of S because G consists of finite products of elements of g(S).
Let T be a set which is infinite denumerable if S is finite, and has the same cardin-
ality as S if S is infinite. For each non-empty subset H of T, let I'; be the set of
group structures on H. For each y e I'y, let H, be the set H, together with the
group structure y. Then the family {H,} for y e I'y and H ranging over subsets
of T is the desired family.

We return to the proof of the proposition. For each i e I we let M, be the
set of mappings of S into G;. For each map ¢ e M;, we let G; , be the set-
theoretic product of G; and the set with one element {¢}, so that G, , is the
“same” group as G; indexed by ¢. We let

FO = n l—[ Giv‘/’
iel peM;
be the Cartesian product of the groups G; ,. We define a map
fo:S—=F,
by sending S on the factor G; , by means of ¢ itself. We contend that given a

map g: § — G of § into a group G, there exists a homomorphism ¢, : Fg — G
making the usual diagram commutative:

Fy
&
S/ v,
X‘
G

That is, ‘l'* o fy = g. To prove this, we may assume that g generates G, simply
by restricting our attention to the subgroup of G generated by the image of g.
By the lemma, there exists an isomorphism A: G — G; for some i, and Aog
is an element  of M;. We let m; , be the projection on the (i, ¥) factor, and we
let , =1 'om,. Then the map ¥, makes the following diagram com-
mutative.

S—fo—.)Fo

I}

G—7Giy

We let F be the subgroup of F generated by the image of f;, and we let f
simply be equal to f;,, viewed as a map of S into F. We let g, be the restriction
of Y, to F. In this way, we see at once that the map g, is the unique one making
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our diagram commutative, and thus that (F,f) is the required free group.
Furthermore, it is clear that f'is injective.

For each set S we select one free group determined by S, and denote it
by (F(S),fs) or briefly by F(S). It is generated by the image of fs. One may
view S as contained in F(S), and the elements of S are called free generators
of A(S). If g:S — G is a map, we denote by g,,: F(S) » G the homomorphism
realizing the universality of our free group F(S).

If A:S — S’ is a map of one set into another, we let F(4): F(S) = F(S') be
the map (fs o 4),.

s —L F(s)

N

S —'—f;——) F(S')

Then we may regard F as a functor from the category of sets to the category of
groups (the functorial properties are trivially verified, and will be left to the
reader).

If A is surjective, then F(2) is also surjective.

We again leave the proof to the reader.

If two sets S, S’ have the same cardinality, then they are isomorphic in the
category of sets (an isomorphism being in this case a bijection!), and hence
F(S) is isomorphic to F(S’). If S has n elements, we call F(S) the free group
on n generators.

Let G be a group, and let S be the same set as G (i.e. G viewed as a set, without
group structure). We have the identity map g: S — G, and hence a surjective
homomorphism

9. F(S) -G

which will be called canonical. Thus every group is a factor group of a free
group.

One can also construct groups by what is called generators and relations. Let
S be a set, and F(S) the free group. We assume that f:S — F(S) is an in-
clusion. Let R be a set of elements of F(S). Each element of R can be written
as a finite product

n
[1x,
v=1

where each x, is an element of S or an inverse of an element of S. Let N be the
smallest normal subgroup of F(S) containing R, i.e. the intersection of all normal
subgroups of F(S) containing R. Then F(S)/N will be called the group deter-
mined by the generators S and the relations R.
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Example. One shows easily that the group determined by one generator
a, and the relation {a?}, has order 2.

The canonical homomorphism ¢: F(S) — F(S)/N satisfies the universal map-
ping property for homomorphisms ¢ of F(S) into groups G such that (x) = e
for all x € R. In view of this, one sometimes calls the group F(S)/N the group
determined by the generators S, and the relations x = e (for all x € R). For
instance, the group in the preceding example would be called the group determined
by the generator a, and the relation a? = e.

Let G be a group generated by a finite number of elements, and satisfying
the relation x2 = e for all x € G. What does G look like? It is easy to show that
G is commutative. Then one can view G as a vector space over Z/2Z, so G is
determined by its cardinality, up to isomorphism.

In Exercises 34 and 35, you will prove that there exist certain groups satisfying
certain relations and with a given order, so that the group presented with these
generators and relations can be completely determined. A priori, it is not even
clear if a group given by generators and relations is finite. Even if it is finite,
one does not know its order a priori. To show that a group of certain order
exists, one has to use various means, a common means being to represent the
group as a group of automorphisms of some object, for instance the symmetries
of a geometric object. This will be the method suggested for the groupsin Exercises
34 and 35, mentioned above.

Example. Let G be a group. For x, y € G define [x, y] = xyx~'y~! (the
commutator) and *y = xyx~! (the conjugate). Then one has the cocycle relation
[x, yz1 = [x, yI’Ix, z].

Furthermore, suppose x, y, z € G and
x, 1=y, [y,z21 =2, [z, x] =x

Then x = y = z = e. It is an exercise to prove these assertions, but one sees
that certain relations imply that a group generated by x, y, z subject to those
relations is necessarily trivial.

Next we give a somewhat more sophisticated example. We assume that the
reader knows the basic terminology of fields and matrices as in Chapter XIII,
but applied only to 2 X 2 matrices. Thus SL,(F) denotes the group of 2 X 2
matrices with components in a field F and determinant equal to 1.

Example. SL,(F). Let F be a field. Forb € Fanda € F, a ¥ 0, we let

(1 b _(a O _ 0 1
u(b)—(o 1), s(a)——(o a")’ andw—(_l 0).
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Then it is immediately verified that:
SL 0. s(a) = wu(a” Ywu(a)wu(a™").
SL 1. u is an additive homomorphism.
SL 2. s is a multiplicative homomorphism.
SL 3. w? = s(—1).
SL 4. s(a)u(b)s(a™!) = u(ba?).

Now, conversely, suppose that G is an arbitrary group with generators u(b)
(b € F) and w, such that if we define s(a) for a # 0 by SL 0, then the relations
SL 1 through SL 4 are satisfied. Then SL 3 and SL 4 show that s(—1) is in the
center, and w* = e. In addition, one verifies that:

SL 5. ws(a) = s(a”YHYw.
Furthermore, one has the theorem:

Let G be the free group with generators u(b), w and relations SL 1 through
SL 4, defining s(a) as in SL 0. Then the natural homomorphism

G — SLy(F)
is an isomorphism.

Proofs of all the above statements will be found in my SL,(R), Springer Verlag,
reprint of Addison-Wesley, 1975, Chapter XI, §2. It takes about a page to carry
out the proof.

If F = Q,, is the field of p-adic numbers, then Ihara [Ih 66] proved that every
discrete torsion free subgroup of SL,(Q)) is free. Serre put this theorem in the
context of a general theory concerning groups acting on trees [Se 80].

[Th 66] Y. IHARA, On discrete subgroups of the two by two projective linear group over
p-adic fields, J. Math. Soc. Japan 18 (1966) pp. 219-235

[Se 80] J.-P. SERRE, Trees, Springer Verlag 1980

Further examples. For further examples of free group constructions, see
Exercises 54 and 56. For examples of free groups occurring (possibly conjec-
turally) in Galois theory, see Chapter VI, §2, Example 9, and the end of
Chapter VI, §14.

Proposition 12.3. Coproducts exist in the category of groups.

Proof. Let {G;};., be a family of groups. We let € be the category whose
objects are families of group-homomorphisms

{9::Gi > G}t



1, §12 FREE GROUPS 71

and whose morphisms are the obvious ones. We must find a universal element
in this category. For each index i, we let S; be the same set as G, if G, is infinite,
and we let S; be denumerable if G, is finite. We let S be a set having the same
cardinality as the set-theoretic disjoint union of the sets S; (i.e. their coproduct
in the category of sets). We let I" be the set of group structures on S, and for
each y e I', we let @, be the set of all families of homomorphisms

o ={p;:G;—>S,}.

Each pair (S,, ¢), where ¢ € @,, is then a group, using ¢ merely as an index.
We let

F0= n n(s'y’(p),

yel pe®,

and for each i, we define a homomorphism f;: G, —» F, by prescribing the
component of f; on each factor (S,, @) to be the same as that of ¢;.

Let now g = {g;: G; = G} be a family of homomorphisms. Replacing G
if necessary by the subgroup generated by the images of the g;, we see that
card(G) < card(S), because each element of G is a finite product of elements
in these images. Embedding G as a factor in a product G X §,, for some vy, we
may assume that card(G) = card(S). There exists a homomorphism g,: Fy - G
such that

ge° fi = 4

for alli. Indeed, we may assume without loss of generality that G = S, for some
y and that g = y for some y e ®,. We let g, be the projection of F, on the
factor (S,, ¥).

Let F be the subgroup of F, generated by the union of the images of
the maps f; for all i. The restriction of g, to F is the unique homomorphism
satisfying f;og, = g; for all i, and we have thus constructed our universal
object.

Example. Let G, be a cyclic group of order 2 and let G5 be a cyclic group
of order 3. What is the coproduct? The answer is neat. It can be shown that
G, 11 G; is the group generated by two elements S, T with relations §% = 1,
(ST)*® = 1. The groups G, and G5 are embedded in G, L1 G5 by sending G, on
the cyclic group generated by S and sending G; on the cyclic group generated

by ST. This is done by representing the group as follows. Let

G = SLy(Z)/ 1.
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As we have seen in an example of §5, the group G operates on the upper half-
plane 9. Let S, T be the maps given by

S(z) = —1/z and T(z) =z + 1.

Thus § and T are represented by the matrices

0 -1 11
S (l 0) and T (0 l)’

and satisfy the relations $2 = 1, (ST)? = 1. Readers will find a proof of several
properties of S, Tin Serre’s Course in Arithmetic (Springer Verlag, 1973, Chapter
VII, §1), including the fact that S, T generate G. It is an exercise from there to

show that G is the coproduct of G, and G3 as asserted.
Observe that these procedures go directly from the universal definition and
construction in the proofs of Proposition 12.1 and Proposition 12.3 to the more

explicit representation of the free group or the coproduct as the case may be.
One relies on the following proposition.

Proposition 12.4. Let G be a group and {G;}ic; a family of subgroups.
Assume:

(a) The family generates G.

®) If

x=x" *

Lt X, withx € G, x; # eand i, # i,y forall v,

then x * e.

Then the natural homomorphism of the coproduct of the family into G sending
G; on itself by the identity mapping is an isomorphism. In other words, simply
put, G is the coproduct of the family of subgroups.

Proof. The homomorphism from the coproduct into G is surjective by the
assumption that the family generates G. Suppose an element is in the kernel.
Then such an element has a representation

XX

i ’ in
as in (b), mapping to the identity in G, so all x;, = e and the element itself is
equal to e, whence the homomorphism from the coproduct into G is injective,

thereby proving the proposition.

Exercises 54 and 56 mentioned above give one illustration of the way Prop-
osition 12.4 can be used. We now show another way, which we carry out for
two subgroups. I am indebted to Eilenberg for the neat arrangement of the proof
of the next proposition.
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Proposition 12.5. Ler A, B be two groups whose set-theoretic intersection is
{1}. There exists a group A ° B containing A, B as subgroups, such that
A N B = {1}, and having the following property. Every element + 1 of A° B
has a unique expression as a product

a; - a, (nz1,ag; # 1alli)

with a;€ A or a; € B, and such that if a;€ A then a;, , € B and if a;€ B then
a;,+y €A.

Proof. Let A - B be the set of sequences
a=(a,...,a, (n=z0)

such that either n = 0, and the sequence is empty or n = 1, and then elements
in the sequence belong to A4 or B, are # 1, and two consecutive elements of the
sequence do not belong both to 4 or both to B. If b = (by, ..., b,,), we define
the product ab to be the sequence

(ay,...,a,,by,..., b,)
if a,eA,b,eB or a,eB,b,eA,

(ala'“’anbl"'-,bm)
f a, b;ed or a,b,eB, and a,b, # 1,

(ay,...,a,_1)by,..., b,) by induction,
if a,,b,eA or a,b,eB and a,b, =1.

The case when n = 0 or m = 0 is included in the first case, and the empty
sequence is the unit element of A - B. Clearly,

(@y,-...,a)a,*,...,a;") = unit element,

so only associativity need be proved. Let ¢ = (cy,...,c,).

First consider the case m = 0, i.e. b is empty. Then clearly (ab)c = a(bc)
and similarly if n = 0 or r = 0. Next consider the case m = 1. Let b = (x)
with xe€ A, x # 1. We then verify in each possible case that (ab)c = a(bc).
These cases are as follows:

@y,...,a,%,Cy...,C) if a,eB and c,€B,
@,y ayX,Cpy-sC) if a,eA,a,x+# 1,c,€B,
@y .y Ay XCpyevns Cy) if a,eB,c,eAd,xc,#1,

(@y,...,a,-,)cCy,...,C) if a,=x"! and c,€B,
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@y, ...,a.)cy,...0¢) if a,eB and ¢, =x71!,

@y, ..., 84 1,8,XCy,Cq,...,Cp) if a,,c €A a,xc; # 1,
(ay,....a,-1)cz,...,¢,) if a,,c,eA and a,xc, =L

If m > 1, then we proceed by induction. Write b = b’b” with b’ and b”
shorter. Then
(ab)c = (a(b'b"))c = ((ab")b")c = (ab')(b"c),

a(bc) = a((b'b")c) = a(b'(b"c)) = (ab')(b'c)

as was to be shown.
We have obvious injections of A and B into A - B, and identifying 4, B
with their images in A o B we obtain a proof of our proposition.

We can prove the similar result for several factors. In particular, we get the
following corollary for the free group.

Corollary 12.6. Let F(S) be the free group on a set S, and let x,, . . . , x, be
distinct elements of S. Let v|, ..., v, be integers ¥ 0 and let iy, ..., i, be
integers,

1<i,,...,i,<n

such that i; # i;,  forj=1,...,r — 1. Then
Xiteeoxir # L
Proof. Let G, ..., G, be the cyclic groups generated by x,, ..., x,. Let

G=G,o---2G,. Let
F(S)» G

be the homomorphism sending each x; on x;, and all other elements of S on the
unit element of G. Our assertion follows at once.

Corollary 12.7. Let S be a set with n elements x,, . .., x,, n = 1. Let G,,
-+ G, be the infinite cyclic groups generated by these elements. Then the map

F(S)> G, G,
sending each x; on itself is an isomorphism.
Proof. 1t is obviously surjective and injective.

Corollary 12.8. Let Gy, ... , G, be groups with G; N G; = {1} if i # j.
The homomorphism

Gl UG, Gyo-G,

of their coproduct into G o---oG, induced by the natural inclusion
G; = Gy o---G,is an isomorphism.

Proof.  Again, it is obviously injective and surjective.
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EXERCISES

1. Show that every group of order < 5 is abelian.

. Show that there are two non-isomorphic groups of order 4, namely the cyclic one,

and the product of two cyclic groups of order 2.

. Let G be a group. A commutator in G is an element of the form aba~'b~! with a,

b € G. Let G° be the subgroup generated by the commutators. Then G¢ is called the
commutator subgroup. Show that G¢ is normal. Show that any homomorphism of
G into an abelian group factors through G/G°.

. Let H, K be subgroups of a finite group G with K C Nj. Show that
_ #H#K)
#(HK) = FHNK)

. Goursat’sLemma. Let G, G’ begroups,and let H be a subgroup of G x G’such that the

two projections p, : H — G and p,: H — G’ are surjective. Let N be the kernel of p,
and N’ be the kernel of p,. One can identify N as a normal subgroup of G, and N’ as a
normal subgroup of G. Show that the image of H in G/N x G'/N' is the graph of an
isomorphism

G/N = G'/N".

. Prove that the group of inner automorphisms of a group G is normal in Aut(G).

7. Let G be a group such that Aut(G) is cyclic. Prove that G is abelian.

8. Let G be a group and let H, H’' be subgroups. By a double coset of H, H' one means

10.

a subset of G of the form HxH'.
(a) Show that G is a disjoint union of double cosets.
(b) Let {c} be a family of representatives for the double cosets. For each
a € G denote by [a]H' the conjugate aH'a™! of H'. For each ¢ we have a
decomposition into ordinary cosets

H=Ux@ nicn),

where {x.} is a family of elements of H, depending on c. Show that the
elements {x.} form a family of left coset representatives for H' in G, that

is,
¢s=UU x.cH',

X. X
and the union is disjoint. (Double cosets will not emerge further until Chapter
XVIIL.)

. (a) Let G be a group and H a subgroup of finite index. Show that there exists a

normal subgroup N of G contained in H and also of finite index. [Hint: If
(G : H) = n, find a homomorphism of G into S, whose kernel is contained in
H.]

(b) Let G be a group and let H,, H, be subgroups of finite index. Prove that
H; N H, has finite index.

Let G be a group and let H be a subgroup of finite index. Prove that there is only a
finite number of right cosets of H, and that the number of right cosets is equal to the
number of left cosets.
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11. Let G be a group, and A a normal abelian subgroup. Show that G/A operates on A
by conjugation, and in this manner get a homomorphism of G/A into Aut(A).

Semidirect product

12. Let G be a group and let H, N be subgroups with N normal. Let vy, be conjugation
by an element x € G.
(a) Show that x > v, induces a homomorphism f: H +— Aut(N).
(b) If H N N = {e}, show that the map H X N — HN given by (x, y) > xy is
a bijection, and that this map is an isomorphism if and only if f is trivial,
i.e. f(x) = idy for all x € H.
We define G to be the semidirect product of H and N if G = NH and H N N = {e}.
(c) Conversely, let N, H be groups, and let : H — Aut(N) be a given homo-
morphism. Construct a semidirect product as follows. Let G be the set of
pairs (x, h) with x € N and h € H. Define the composition law

O1s B, By) = (%972, hyhy).

Show that this is a group law, and yields a semidirect product of N and H,
identifying N with the set of elements (x, 1) and H with the set of elements
(1, h).
13. (a) Let H, N be normal subgroups of a finite group G. Assume that the orders of H,
N are relatively prime. Prove that xy = yx for all x € H and y € N, and that
H X N = HN.
(b) LetH,, ..., H, be normal subgroups of G such that the order of H; is relatively
prime to the order of H; for i # j. Prove that

H X ...XH =H - -H,.
Example. If the Sylow subgroups of a finite group are normal, then G is the
direct product of its Sylow subgroups.

14. Let G be a finite group and let N be a normal subgroup such that N and G/N have
relatively prime orders.
(a) Let H be a subgroup of G having the same order as G/N. Prove that
G = HN.
(b) Let g be an automorphism of G. Prove that g(N) = N.

Some operations

15. Let G be a finite group operating on a finite set S with #(S) = 2. Assume that there
is only one orbit. Prove that there exists an element x € G which has no fixed point,
i.e.xs # sforalls € S.

16. Let H be a proper subgroup of a finite group G. Show that G is not the union of all
the conjugates of H. (But see Exercise 23 of Chapter XIII.)

17. Let X, Y be finite sets and let C be a subset of X X Y. For x € X let ¢(x) = number
of elements y € Y such that (x, y) € C. Verify that

#C) = 2 oW
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Remark. A subset C as in the above exercise is often called a correspondence, and
¢(x) is the number of elements in Y which correspond to a given element x € X.

18. Let S, T be finite sets. Show that #Map(S, T) = (#T)*©),

19. Let G be a finite group operating on a finite set S.
(a) For each s € S show that

1
2760~ !

(b) For each x € G define f(x) = number of elements s € S such that xs = s.
Prove that the number of orbits of G in § is equal to

1 ,
76 20

Throughout, p is a prime number.

20. Let P be a p-group. Let A be a normal subgroup of order p. Prove that A is contained
in the center of P.

21. Let G be a finite group and H a subgroup. Let Py be a p-Sylow subgroup of H. Prove
that there exists a p-Sylow subgroup P of G such that P, = P N H.

22. Let H be a normal subgroup of a finite group G and assume that #(H) = p. Prove
that H is contained in every p-Sylow subgroup of G.

23. Let P, P’ be p-Sylow subgroups of a finite group G.
(a) If P' C N(P) (normalizer of P), then P’ = P.
(b) If N(P') = N(P), then P’ = P,
(c) We have N(N(P)) = N(P).

Explicit determination of groups

24. Let p be a prime number. Show that a group of order p? is abelian, and that there are
only two such groups up to isomorphism.

25. Let G be a group of order p*, where p 1s prime, and G is not abelian. Let Z be 1ts center.
Let C be a cyclic group of order p.
(a) Showthat Z ~ Cand G/Z ~ C x C.
(b) Every subgroup of G of order p? contans Z and is normal.
(c) Suppose x” =1 for all xe G. Show that G contains a normal subgroup
H=x=CxC.

26. (a) Let G be a group of order pg, where p, ¢ are primes and p < g. Assume that
q ¥ 1 mod p. Prove that G is cyclic.
(b) Show that every group of order 15 is cyclic.

27. Show that every group of order < 60 is solvable.

28. Let p, g be distinct primes. Prove that a group of order p?g is solvable, and that one
of its Sylow subgroups is normal.

29. Let p, g be odd primes. Prove that a group of order 2pq is solvable.
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30. (a) Prove that one of the Sylow subgroups of a group of order 40 is normal.

31.

32.

33.

34.

35.

36.

37.

38.

(b) Prove that one of the Sylow subgroups of a group of order 12 is normal.

Determine all groups of order = 10 up to isomorphism. In particular, show that a
non-abelian group of order 6 is isomorphic to S5.

Let S, be the permutation group on n elements. Determine the p-Sylow subgroups of
S3,8,,Ssforp=2and p = 3.
Let o be a permutation of a finite set I having n elements. Define e(o) to be (—1)™

where
= n — number of orbits of o.

IfI,,..., I, are the orbits of ¢, then m is also equal to the sum
m =Y [card(],) — 1].
v=1

If 7 is a transposition, show that e(or) = —e(0) be considering the two cases when

i, j lie in the same orbit of o, or lie in different orbits. In the first case, or has one

more orbit and in the second case one less orbit than o. In particular, the sign of a

transposition is —1. Prove that e(o) = €(0) is the sign of the permutation.

(a) Let n be an even positive integer. Show that there exists a group of order 2n,
generated by two elements o, 7 such that 0" = ¢ = 72, and o7 = 70"~ '. (Draw
a picture of a regular n-gon, number the vertices, and use the picture as an
inspiration to get o, 7.) This group is called the dihedral group.

(b) Let n be an odd positive integer. Let Dy, be the group generated by the matrices

b o) =)
1 0 0 !
where { is a primitive n-th root of unity. Show that D,, has order 4n, and give

the commutation relations between the above generators.

Show that there are exactly two non-isomorphic non-abelian groups of order 8. (One
of them is given by generators o, © with the relations

ot =1, =1, 101 = 6>,

The other is the quaternion group.)

Let 0 = [123 -+ - n] in §,,. Show that the conjugacy class of o has (n — 1)! elements.

Show that the centralizer of o is the cyclic group generated by o.

(a) Let ¢ = [§; **- i,] be a cycle. Let y € S,. Show that yoy™! is the cycle
[y(Gy) - Gl

(b) Suppose that a permutation ¢ in S, can be written as a product of r disjoint
cycles, and let d,, ..., d, be the number of elements in each cycle, in increasing
order. Let t be another permutation which can be written as a product of

disjoint cycles, whose cardinalities are dj,...,d, in increasing order. Prove
that ¢ is conjugate to tin S, if and only if r = sand d; =d;foralli=1,...,r.
(a) Show that S, is generated by the transpositions [12], [13],..., [In].

(b) Show that S, is generated by the transpositions [12], [23], [34],...,[n — 1, n].
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(c) Show that S, is generated by the cycles [12] and [123 ... n].
(d) Assume that n is prime. Let o = [123 ... n] and let 7 = [rs] be any transposition.
Show that o, 7 generate S,,.

Let G be a finite group operating on a set S. Then G operates in a natural way on
the Cartesian product S for each positive integer n. We define the operation on §

to be n-transitive if given n distinct elements (s, ..., s,) and n distinct elements

(1, ..., sy) of S, there exists o € G such that os; = s; foralli = 1,..., n.
39. Show that the action of the alternating group A, on {1, ..., n} is (n — 2)-transitive.
40. Let A, be the alternating group of even permutations of {1,...,n}. Forj=1,...,n

let H; be the subgroup of A, fixing j, so H; ~ A,_,, and (A, : H)) = nforn = 3.
Let n = 3 and let H be a subgroup of index n in A,,.
(a) Show that the action of A, on cosets of H by left translation gives an iso-
morphism A, with the alternating group of permutations of A,/H.
(b) Show that there exists an automorphism of A, mapping H, on H, and that
such an automorphism is induced by an inner automorphism of S,, if and only
if H = H; for some i.
41. Let H be a simple group of order 60.
(a) Show that the action of H by conjugation on the set of its Sylow subgroups
gives an imbedding H < Aq.
(b) Using the preceding exercise, show that H = As.
(c) Show that Ag has an automorphism which is not induced by an inner auto-
morphism of Sg.

Abelian groups

42. Viewing Z, Q as additive groups, show that Q/Z 1s a torsion group, which has one and
only one subgroup of order n for each integer n = 1, and that this subgroup is cyclic.

43. Let H be a subgroup of a finite abelian group G. Show that G has a subgroup that is
isomorphic to G/H.

44. Let f:A — A’ be a homomorphism of abelian groups. Let B be a subgroup of A.
Denote by A/ and A4 the image and kernel of f in A respectively, and similarly for B/
and B;. Show that (4: B) = (4/: B’)(4,: B)), in the sense that if two of these three
indices are finite, so is the third, and the stated equality holds.

45. Let G be a finite cyclic group of order n, generated by an element 6. Assume that G
operates on an abelian group A4, and letf,g: A — A be the endomorphisms of A given by

f(x)=0x—x and g(x)=x+o0ox+ -+ 0" 'x

Define the Herbrand quotient by the expression q(A) = (A, : A%)/(A,: A?), provided
both indices are finite. Assume now that B is a subgroup of 4 such that GB < B.
(a) Define in a natural way an operation of G on A/B.
(b) Prove that
4(A4) = q(B)a(A/B)

in the sense that if two of these quotients are finite, so is the third, and the stated
equality holds.
(c) If A is finite, show that g(A4) = 1.
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(This exercise is a special case of the general theory of Euler characteristics discussed

in Chapter XX, Theorem 3.1. After reading this, the present exercise becomes trivial.
Why?)

Primitive groups

46.

47.

48.

49.

Let G operateon a set S. Let S = | J S; be a partition of S into disjoint subsets. We say
that the partition is stable under G if G maps each S; onto S; for some j, and hence G
induces a permutation of the sets of the partition among themselves. There are two
partitions of S which are obviously stable: the partition consisting of S itself, and the
partition consisting of the subsets with one element. Assume that G operates transitively,
and that S has more than one element. Prove that the following two conditions are
equivalent:

PRIM 1. The only partitions of § which are stable are the two partitions mentioned
above.

PRIM 2. If H is the isotropy group of an element of S, then H is a maximal subgroup
of G.

These two conditions define what is known as a primitive group, or more accurately, a
primitive operation of G on S.

Instead of saying that the operation of a group G is 2-transitive, one also says that it is
doubly transitive.

Let a finite group G operate transitively and faithfully on a set S with at least 2
elements and let H be the isotropy group of some element s of S. (All the other
isotropy groups are conjugates of H.) Prove the following:
(a) G is doubly transitive if and only if H acts transitively on the complement
of sin S.
(b) G is doubly transitive if and only if G = HTH, where T is a subgroup of G
of order 2 not contained in H.
(c) If G is doubly transitive, and (G : H) = n, then

#(G) = d(n — 1)n,

where d is the order of the subgroup fixing two elements. Furthermore, H
is a maximal subgroup of G, i.e. G is primitive.

Let G be a group acting transitively on a set S with at least 2 elements. For each
x € G let f(x) = number of elements of S fixed by x. Prove:

@ 2 f() = #(G).
(b) G is doubly transitive if and only if
2 fW? = 2 #(G).

A group as an automorphism group. Let G be a group and let Set(G) be the category
of G-sets (i.e. sets with a G-operation). Let F': Set(G) — Set be the forgetful functor,
which to each G-set assigns the set itself. Show that Aut(F) is naturally isomorphic
to G.
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Fiber products and coproducts
Pull-backs and push-outs

50.

51.

52.

53.

54.

55.

(a) Show that fiber products exist in the category of abelian groups. In fact, if X, Y
are abelian groups with homomorphisms f: X —» Z and g:Y — Z show that
X x 7Y is the set of all pairs (x, y) with xe X and ye Y such that f(x) = g(y).
The maps p,, p, are the projections on the first and second factor respectively.

(b) Show that the pull-back of a surjective homomorphism is surjective.

(a) Show that fiber products exist in the category of sets.

(b) In any category C, consider the category €, of objects over Z. Let h: T—Z
be a fixed object in this category. Let F be the functor such that

F(X) = Mory(T, X),

where X is an object over Z, and Mor, denotes morphisms over Z. Show that
F transforms fiber products over Z into fiber products in the category of sets.
(Actually, once you have understood the definitions, this is tautological.)

(a) Show that push-outs (i.e. fiber coproducts) exist in the category of abelian groups.
In this case the fiber coproduct of two homomorphisms f, g as above is denoted
by X @, Y. Show that it is the factor group

X@:Y=Xe W,
where W is the subgroup consisting of all elements (f(z), —g(z)) with ze Z.
(b) Show that the push-out of an injective homomorphism is injective.
Remark. After you have read about modules over rings, you should note that the
above two exercises apply to modules as well as to abelian groups.
Let H, G, G’ be groups, and let
ffH->G, g:H-G

be two homomorphisms. Define the notion of coproduct of these two homomor-
phisms over H, and show that it exists.

(Tits). Let G be a group and let {G;};., be a family of subgroups generating G.
Suppose G operates on a set S. For each i € /, suppose given a subset S; of S, and
let s be a point of S — U ;. Assume that for each g € G, — {e}, we have
1
gS; C S;forallj # i, and g(s) €S, for all i.

Prove that G is the coproduct of the family {G;};;. (Hint: Suppose a product
g1 " 9 = id on S. Apply this product to s, and use Proposition 12.4.)

Let M € GL,(C) (2 X 2 complex matrices with non-zero determinant). We let

az + b
cz+d

b
M= (a d)’ and for z € C we let M(z) =
c

If z = —d/c (c # 0) then we put M(z) = . Then you can verify (and you should
have seen something like this in a course in complex analysis) that GL,(C) thus
operates on C U {}. Let A, A’ be the eigenvalues of M viewed as a linear map on
C2. Let W, W' be the corresponding eigenvectors,

W = (w;, w,) and W' = ‘(w], w3).
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56.

57.

By a fixed point of M on C we mean a complex number z such that M(z) = z. Assume

that M has two distinct fixed points + ©.

(a) Show that there cannot be more than two fixed points and that these fixed
points are w = w,/w, and w’ = w}/wj. In fact one may take

W= 4w, 1), W =(w', 1).
(b) Assume that |A| < |A’|. Given z # w, show that

’Eim Mz) = w'.

[Hint: Let S = (W, W') and consider S™!M*S(z) = a*z where a = A/A’.]

(Tits) Let M,,..., M, € GL,(C) be a finite number of matrices. Let A;, A; be the
eigenvalues of M;. Assume that each M; has two distinct complex fixed points, and
that |A;| < |A{|. Also assume that the fixed points for M, ..., M, are all distinct
from each other. Prove that there exists a positive integer k such that M%, ..., M*
are the free generators of a free subgroup of GL,(C). [Hint: Let w;, w; be the fixed
points of M;. Let U; be a small disc centered at w; and U; a small disc centered at
wi. Let §; = U; U U;. Let s be a complex number which does not lie in any §;. Let
G; = (M¥). Show that the conditions of Exercise 54 are satisfied for k sufficiently
large.].

X J

Let G be a group acting on a set X. Let Y be a subset of X. Let Gy be the subset of
G consisting of those elements g such that g¥ N Y is not empty. Let Gy be the
subgroup of G generated by Gy. Then GyY and (G — Gy)Y are disjoint. [Hinr:
Suppose that there exist g, € Gy and g, € G but g, & Gy, and elements y,, y,, € ¥
such that g,y, = g,y,. Then g5 'g,y, = y,, 50 g5 '9; € Gy whence g, € Gy, contrary
to assumption.]

Application. Suppose that X = GY, but that X cannot be expressed as a disjoint
union as above unless one of the two sets is empty. Then we conclude that G — G,
is empty, and therefore Gy generates G.

Example 1. Suppose X is a connected topological space, Y is open, and G acts
continuously. Then all translates of ¥ are open, so G is generated by G,.

Example 2. Suppose G is a discrete group acting continuously and discretely
on X. Again suppose X connected and Y closed. Then any union of translates of ¥
by elements of G is closed, so again G — Gy is empty, and G, generates G.



CHAPTER II

Rings

§1. RINGS AND HOMOMORPHISMS

A ring A is a set, together with two laws of composition called multiplica-
tion and addition respectively, and written as a product and as a sum respec-
tively, satisfying the following conditions:

RI 1. With respect to addition, A is a commutative group.
RI 2. The multiplication is associative, and has a unit element.
RI 3. Forall x, y, z€e A we have

x+y)z=xz+yz and z(x + y) = zx + zy.
(This is called distributivity.)

As usual, we denote the unit element for addition by 0, and the unit
element for multiplication by 1. We do not assume that 1 0. We observe
that Ox =0 for all xe A. Proof: We have Ox + x=(0+ )x = 1x = x.
Hence Ox = 0. In particular, if 1 = 0, then A consists of 0 alone.

For any x, y € A we have (—x)y = —(xy). Proof: We have

xy + (=x)y = (x +(=x)y =0y =0,

so (—x)y is the additive inverse of xy.

Other standard laws relating addition and multiplication are easily proved,
for instance (—x)(—y) = xy. We leave these as exercises.

Let A be a ring, and let U be the set of elements of A which have both a
right and left inverse. Then U is a multiplicative group. Indeed, if a has a

83
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right inverse b, so that ab =1, and a left inverse ¢, so that ca =1, then
cab = b, whence ¢ = b, and we see that ¢ (or b) is a two-sided inverse, and
that ¢ itself has a two-sided inverse, namely a. Therefore U satisfies all the
axioms of a multiplicative group, and is called the group of units of 4. It is
sometimes denoted by A*, and is also called the group of invertible elements
of A. A ring A such that 1 # 0, and such that every non-zero element is
invertible is called a division ring.

Note. The elements of a ring which are left invertible do not necessarily
form a group.

Example. (The Shift Operator). Let E be the set of all sequences
a=(ay,a,as,...)

of integers. One can define addition componentwise. Let R be the set of all
mappings f: E — E of E into itself such that f(a + b) = f(a) + f(b). The law
of composition is defined to be composition of mappings. Then R is a ring.
(Proof?) Let

T(al, az, a3, ...) = (O, al, az, a3, ..-).

Verify that T is left invertible but not right invertible.

A ring A is said to be commutative if xy = yx for all x, ye A. A commu-
tative division ring is called a field. We observe that by definition, a field
contains at least two elements, namely O and 1.

A subset B of a ring A is called a subring if it is an additive subgroup, if
it contains the multiplicative unit, and if x, y € B implies xy € B. If that is
the case, then B itself is a ring, the laws of operation in B being the same as
the laws of operation in A.

For example, the center of a ring A is the subset of A consisting of all
elements a € A such that ax = xa for all xe A. One sees immediately that
the center of A is a subring.

Just as we proved general associativity from the associativity for three
factors, one can prove general distributivity. If x, y,, ..., y, are elements of a
ring A, then by induction one sees that

X+ Y =Xy A Xy

Ifx;(i=1,...,n) and y; (j = 1,..., m) are elements of A, then it is also easily
proved that

(5)(3n)=5 5

j=1
Furthermore, distributivity holds for subtraction, e.g.
xX(yy — y2) = Xy; — Xys.

We leave all the proofs to the reader.
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Examples. Let S be a set and A a ring. Let Map(S, A) be the set of map-
pings of S into A. Then Map(S, A) is a ring if for f, g € Map(S, A) we define

(X)) = fx)g(x) and  (f +9)(x) = f(x) + g(x)

for all x € §. The multiplicative unit is the constant map whose value is the
multiplicative unit of A. The additive unit is the constant map whose value
is the additive unit of A, namely 0. The verification that Map(S, A4) is a ring
under the above laws of composition is trivial and left to the reader.

Let M be an additive abelian group, and let 4 be the set End(M) of
group-homomorphisms of M into itself. We define addition in A to be the
addition of mappings, and we define multiplication to be composition of
mappings. Then it is trivially verified that A is a ring. Its unit element is of
course the identity mapping. In general, 4 is not commutative.

Readers have no doubt met polynomials over a field previously. These pro-
vide a basic example of a ring, and will be defined officially for this book in §3.

Let K be a field. The set of n x n matrices with components in K is a
ring. Its units consist of those matrices which are invertible, or equivalently
have a non-zero determinant.

Let S be a set and R the set of real-valued functions on S. Then R is a
commutative ring. Its units consist of those functions which are nowhere 0.
This is a special case of the ring Map(S, A) considered above.

The convolution product. We shall now give examples of rings whose
product is given by what is called convolution. Let G be a group and let K
be a field. Denote by K[G] the set of all formal linear combinations
a =) a,x with x e G and a, € K, such that all but a finite number of a, are
equal to 0. (See §3, and also Chapter III, §4.) If B =) b,x € K[G], then one
can define the product

=3 Y abxy=Y <Z axb,,)z.
xeG yeG zeG \xy=z
With this product, the group ring K[G] is a ring, which will be studied
extensively in Chapter XVIII when G is a finite group. Note that K[G] is
commutative if and only if G is commutative. The second sum on the right
above defines what is called a convolution product. If f, g are two functions
on a group G, we define their convolution f x g by
(f*9)@) = ¥ f(x)g(y)
xy=z
Of course this must make sense. If G is infinite, one may restrict this
definition to functions which are 0 except at a finite number of elements.
Exercise 12 will give an example (actually on a monoid) when another type
of restriction allows for a finite sum on the right.

Example from analysis. In analysis one considers a situation as follows.
Let L' = L'(R) be the space of functions which are absolutely integrable.
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Given functions f, g € L!, one defines their convolution product f * g by

(f*g9)(x) = L S(x = y)g(y) dy.

Then this product satisfies all the axioms of a ring, except that there is no
unit element. In the case of the group ring or the convolution of Exercise 12,
there is a unit element. (What is it?) Note that the convolution product in
the case of L'(R) is commutative, basically because R is a commutative
additive group. More generally, let G be a locally compact group with a
Haar measure u. Then the convolution product is defined by the similar
formula

(f*9)(x) = L Sy ™)g(y) du(y).

After these examples, we return to the general theory of rings.

A left ideal a in a ring A is a subset of A which is a subgroup of the
additive group of A, such that Aa = a (and hence Aa = a since A contains
1). To define a right ideal, we require a4 = a, and a two-sided ideal is a
subset which is both a left and a right ideal. A two-sided ideal is called
simply an ideal in this section. Note that (0) and A itself are ideals.

If Ais a ring and a € A4, then Aa is a left ideal, called principal. We say
that a is a generator of a (over A). Similarly, AaA is a principal two-sided
ideal if we define AaA to be the set of all sums Y x;ay; with x;, y,e 4. Cf.
below the definition of the product of ideals. More generally, let a,, ..., a,
be elements of A. We denote by (a,, ..., a,) the set of elements of A which
can be written in the form

xyay + 0 + x,a, with Xx; € 4.

Then this set of elements is immediately verified to be a left ideal, and
ay, ..., a, are called generators of the left ideal.
If {a;};., is a family of ideals, then their intersection
N a
iel
is also an ideal. Similarly for left ideals. Readers will easily verify that if
a=(a,,...,a,), then a is the intersection of all left ideals containing the
elements ay, ..., a,.
A ring A is said to be commutative if xy = yx for all x, ye A. In that
case, every left or right ideal is two-sided.
A commutative ring such that every ideal is principal and such that 1 # 0
is called a principal ring.

Examples. The integers Z form a ring, which is commutative. Let a be
an ideal #Z and #0. If nea, then —nea. Let d be the smallest integer
> 0 lying in a. If n € a then there exist integers g, r with 0 < r < d such that

n=dq+r.
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Since a is an ideal, it follows that r lies in a, hence r = 0. Hence a consists of
all multiples gd of d, with q € Z, and Z is a principal ring.

A similar example is the ring of polynomials in one variable over a field,
as will be proved in Chapter IV, also using the Euclidean algorithm.

Let R be the ring of algebraic integers in a number field K. (For
definitions, see Chapter VII.) Then R is not necessarily principal, but let p
be a prime ideal, and let R, be the ring of all elements a/b with a, b € R and
b ¢ p. Then in algebraic number theory, it is shown that R, is principal, with
one prime ideal m, consisting of all elements a/b as above but with ae p.
See Exercises 15, 16, and 17.

An example from analysis. Let A be the set of entire functions on the
complex plane. Then A is a commutative ring, and every finitely generated
ideal is principal. Given a discrete set of complex numbers {z;} and integers
m; 2 0, there exists an entire function f having zeros at z; of multiplicity m;
and no other zeros. Every principal ideal is of the form Af for some such f.
The group of units A* in 4 consists of the functions which have no zeros. It
is a nice exercise in analysis to prove the above statements (using the
Weierstrass factorization theorem).

We now return to general notions. Let a, b be ideals of 4. We define ab
to be the set of all sums
X101 + 0+ XnYn

with x; € a and y; € b. Then one verifies immediately that ab is an ideal, and
that the set of ideals forms a multiplicative monoid, the unit element being
the ring itself. This unit element is called the unit ideal, and is often written (1).
If a, b are left ideals, we define their product ab as above. It is also a left ideal,
and if a, b, ¢ are left ideals, then we again have associativity: (ab)c = a(bc).

If a, b are left ideals of A4, then a + b (the sum being taken as additive
subgroup of A) is obviously a left ideal. Similarly for right and two-sided
ideals. Thus ideals also form a monoid under addition. We also have
distributivity: If a,, ..., a,, b are ideals of A, then clearly

b(a; + - +a,) = ba; + - + ba,,

and similarly on the other side. (However, the set of ideals does not form a
ring!)

Let a be a left ideal. Define aA to be the set of all sums a,x, + - + a,x,
with g; € a and x; € A. Then a4 is an ideal (two-sided).

Suppose that A is commutative. Let a, b be ideals. Then trivially

abcanb,

but equality does not necessarily hold. However, as an exercise, prove that if
a+b=Athenab=anbhb.

As should be known to the reader, the integers Z satisfy another property
besides every ideal being principal, namely unique factorization into primes.
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We shall discuss the general phenomenon in §4. Be it noted here only that if
a ring A has the property of unique factorization into prime elements, and p
is a prime element, then the ideal (p) is prime, and the ring R, (defined as
above) is principal. See Exercise 6. Thus principal rings may be obtained in
a natural way from rings which are not principal.

As Dedekind found out, some form of unique factorization can be re-
covered in some cases, replacing unique factorization into prime elements by
unique factorization of (non-zero) ideals into prime ideals.

Example. There are cases when the non-zero ideals give rise to a group.
Let o be a subring of a field K such that every element of K is a quotient of
elements of o; that is, of the form a/b with a, b € 0 and b # 0. By a fractional
ideal a we mean a non-zero additive subgroup of K such that oa < a (and
therefore oa = a since o contains the unit element); and such that there exists
an element ceo, ¢ # 0, such that ca = 0. We might say that a fractional
ideal has bounded denominator. A Dedekind ring is a ring o as above such
that the fractional ideals form a group under multiplication. As proved in
books on algebraic number theory, the ring of algebraic integers in a number
field is a Dedekind ring. Do Exercise 14 to get the property of unique
factorization into prime ideals. See Exercise 7 of Chapter VII for a sketch of
this proof.

If ae K, a#0, then oa is a fractional ideal, and such ideals are called
principal. The principal fractional ideals form a subgroup. The factor group
is called the ideal class group, or Picard group of o, and is denoted by Pic(o).
See Exercises 13—19 for some elementary facts about Dedekind rings. It is
a basic problem to determine Pic(o) for various Dedekind rings arising in
algebraic number theory and function theory. See my book Algebraic Num-
ber Theory for the beginnings of the theory in number fields. In the case of
function theory, one is led to questions in algebraic geometry, notably the
study of groups of divisor classes on algebraic varieties and all that this
entails. The property that the fractional ideals form a group is essentially
associated with the ring having “dimension 1” (which we do not define
here). In general one is led into the study of modules under various equiva-
lence relations; see for instance the comments at the end of Chapter III, §4.

We return to the general theory of rings.

By a ring-homomorphism one means a mapping f: A — B where A, B are
rings, and such that f is a monoid-homomorphism for the multiplicative
structures on A4 and B, and also a monoid-homomorphism for the additive
structure. In other words, f must satisfy:

fla+a)=fla+ fla), flaa)= fla)f(a),
/=1, () =0,

for all a, a’ € A. Its kernel is defined to be the kernel of f viewed as additive
homomorphism.
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The kernel of a ring-homomorphism f: A— B is an ideal of A, as one
verifies at once.

Conversely, let a be an ideal of the ring 4. We can construct the factor
ring A/a as follows. Viewing A and a as additive groups, let A/a be the
factor group. We define a multiplicative law of composition on A/a: If
x + a and y + a are two cosets of a, we define (x + a)(y + a) to be the coset
(xy + a). This coset is well defined, for if x,, y, are in the same coset as x, y
respectively, then one verifies at once that x,y, is in the same coset as xy.
Our multiplicative law of composition is then obviously associative, has a
unit element, namely the coset 1 + a, and the distributive law is satisfied
since it is satisfied for coset representatives. We have therefore defined a ring
structure on A/a, and the canonical map

f:A—- Ala
is then clearly a ring-homomorphism.

If g:A— A’ is a ring-homomorphism whose kernel contains a, then there
exists a unique ring-homomorphism g,: Ala - A’ making the following dia-
gram commutative:

A—

A /-

Indeed, viewing f, g as group~homomorphisms (for the additive struc-
tures), there is a unique group-homomorphism g, making our diagram
commutative. We contend that g, is in fact a ring-homomorphism. We
could leave the trivial proof to the reader, but we carry it out in full. If
x € A, then g(x) = g, f(x). Hence for x, y € 4,

9x(fC)S () = g, (f(xy)) = g(xy) = g(x)g(y)

=g, f(x)g, f(y)

Given £, n € A/a, there exist x, y € A such that ¢ = f(x) and n = f(y). Since
f(1) =1, we get g, f(1) = g(1) = 1, and hence the two conditions that g, be a
multiplicative monoid-homomorphism are satisfied, as was to be shown.

The statement we have just proved is equivalent to saying that the
canonical map f: A — A/a is universal in the category of homomorphisms
whose kernel contains a.

Let A be a ring, and denote its unit element by e for the moment. The
map

AL A

such that A(n) = ne is a ring-homomorphism (obvious), and its kernel is an
ideal (n), generated by an integer n = 0. We have a canonical injective homo-
morphism Z/nZ — A, which is a (ring) isomorphism between Z/nZ and a
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subring of A. If nZ is a prime ideal, then n = 0 or n = p for some prime number
p. In the first case, A contains as a subring a ring which is isomorphic to Z, and
which is often identified with Z. In that case, we say that A has characteristic
0. If on the other hand n = p, then we say that A has characteristic p, and A
contains (an isomorphic image of) Z/pZ as a subring. We abbreviate Z/pZ by
F,.

? If K is a field, then K has characteristic 0 or p > 0. In the first case, K
contains as a subfield an isomorphic image of the rational numbers, and in
the second case, it contains an isomorphic image of F,. In either case, this
subfield will be called the prime field (contained in K). Since this prime field
is the smallest subfield of K containing 1 and has no automorphism except
the identity, it is customary to identify it with Q or F, as the case may be.
By the prime ring (in K) we shall mean either the integers Z if K has
characteristic 0, or F, if K has characteristic p.

Let A be a subring of a ring B. Let S be a subset of B commuting with
A; in other words we have as = sa for all ae A and se S. We denote by
A[S] the set of all elements

Y ay. st s

the sum ranging over a finite number of n-tuples (i, ..., i,) of integers =0,
and q;..; €A, s,...,5,€S. If B=A[S], we say that § is a set of
generators (or more precisely, ring generators) for B over A, or that B is
generated by S over A. If S is finite, we say that B is finitely generated
as a ring over A. One might say that A[S] consists of all not-necessarily-
commutative polynomials in elements of S with coefficients in 4. Note that
elements of S may not commute with each other.

Example. The ring of matrices over a field is finitely generated over that
field, but matrices don’t necessarily commute.

As with groups, we observe that a homomorphism is uniquely determined
by its effect on generators. In other words, let f: 4 — A be a ring-
homomorphism, and let B = A[S] as above. Then there exists at most one
extension of f to a ring-homomorphism of B having prescribed values on S.

Let 4 be a ring, a an ideal, and S a subset of 4. We write

§=0 (moda)

if Sca. Ifx, yeA, we write
x=y (moda)

if x — y e a. If a is principal, equal to (a), then we also write
x=y (mod a).

If f:A— A/a is the canonical homomorphism, then x =y (mod a) means
that f(x) = f(y). The congruence notation is sometimes convenient when we
want to avoid writing explicitly the canonical map f.
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The factor ring A/a is also called a residue class ring. Cosets of a in A
are called residue classes modulo a, and if x € A4, then the coset x + a is
called the residue class of x modulo a.

We have defined the notion of an isomorphism in any category, and so a
ring-isomorphism is a ring-homomorphism which has a two-sided inverse.
As usual we have the criterion:

A ring-homomorphism f: A — B which is bijective is an isomorphism.

Indeed, there exists a set-theoretic inverse g: B — A, and it is trivial to verify
that g is a ring-homomorphism.

Instead of saying “ring-homomorphism” we sometimes say simply
“homomorphism” if the reference to rings is clear. We note that rings form
a category (the morphisms being the homomorphisms).

Let f: A— B be a ring-homomorphism. Then the image f(A) of [ is a
subring of B. Proof obvious.

It is clear that an injective ring-homomorphism f: A — B establishes a
ring-isomorphism between A and its image. Such a homomorphism will be
called an embedding (of rings).

Let f: A— A’ be a ring-homomorphism, and let a' be an ideal of A’
Then f7(a’) is an ideal a in A4, and we have an induced injective homo-
morphism

Ala— A'ld'.

The trivial proof is left to the reader.

Proposition 1.1. Products exist in the category of rings.

In fact, let {4;};., be a family of rings, and let A =[] 4; be their product
as additive abelian groups. We define a multiplication in A4 in the obvious
way: If (x;);c; and (y;);e; are two elements of 4, we define their product to
be (x;y;)ies, 1.6. we define multiplication componentwise, just as we did for
addition. The multiplicative unit is simply the element of the product whose
i-th component is the unit element of A4;. It is then clear that we obtain a
ring structure on A, and that the projection on the i-th factor is a ring-
homomorphism. Furthermore, A together with these projections clearly
satisfies the required universal property.

Note that the usual inclusion of A; on the i-th factor is not a ring-
homomorphism because it does not map the unit element e; of 4; on the unit
element of A. Indeed, it maps e¢; on the element of A having e; as i-th
component, and 0 (= 0;) as all other components.

Let 4 be a ring. Elements x, y of A are said to be zero divisors if x # 0,
y#0, and xy =0. Most of the rings without zero divisors which we con-
sider will be commutative. In view of this, we define a ring A to be entire if
1#£0, if A is commutative, and if there are no zero divisors in the ring.
(Entire rings are also called integral domains. However, linguistically, I feel
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the need for an adjective. “Integral” would do, except that in English,
“integral” has been used for “integral over a ring” as in Chapter VII, §1. In
French, as in English, two words exist with similar roots: “integral” and
“entire”. The French have used both words. Why not do the same in
English? There is a slight psychological impediment, in that it would have
been better if the use of “integral” and “entire” were reversed to fit the
long-standing French use. I don’t know what to do about this.)

Examples. The ring of integers Z is without zero divisors, and is there-
fore entire. If S is a set with more than 2 elements, and A4 is a ring with
1 3 0, then the ring of mappings Map(S, 4) has zero divisors. (Proof?)

Let m be a positive integer # 1. The ring Z/mZ has zero divisors if and
only if m is not a prime number. (Proof left as an exercise.) The ring of
n X n matrices over a field has zero divisors if n = 2. (Proof?)

The next criterion is used very frequently.

Let A be an entire ring, and let a, b be non-zero elements of A. Then a, b
generate the same ideal if and only if there exists a unit u of A such that
b = au.

Proof. If such a unit exists we have Ab = Aua = Aa. Conversely,
assume Aa = Ab. Then we can write a = bc and b = ad with some elements
¢, d e A. Hence a = adc, whence a(l — dc) = 0, and therefore dc = 1. Hence
c is a unit.

§2. COMMUTATIVE RINGS

Throughout this section, we let A denote a commutative ring.

A prime ideal in A4 is an ideal p # 4 such that A/p is entire. Equiva-
lently, we could say that it is an ideal p # A such that, whenever x, ye A
and xy € p, then x € p or y € p. A prime ideal is often called simply a prime.

Let m be an ideal. We say that m is a maximal ideal if m # 4 and if
there is no ideal a # A4 containing m and # m.

Every maximal ideal is prime.

Proof. Let m be maximal and let x, y € A be such that xy e m. Suppose
x ¢ m. Then m + Ax is an ideal properly containing m, hence equal to A.
Hence we can write

=u+ax

with u € m and a € A. Multiplying by y we find
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y = yu + axy,
whence y € m and m is therefore prime.
Let a be an ideal # A. Then a is contained in some maximal ideal m.

Proof. The set of ideals containing a and # A is inductively ordered by
ascending inclusion. Indeed, if {b;} is a totally ordered set of such ideals,
then 1 ¢b; for any i, and hence 1 does not lie in the ideal b = ) b;, which
dominates all b;. If m is a maximal element in our set, then m # A4 and m is
a maximal ideal, as desired.

The ideal {0} is a prime ideal of A if and only if A is entire.

(Proof obvious.)

We defined a field K to be a commutative ring such that 1 # 0, and such
that the multiplicative monoid of non-zero elements of K is a group (i.e. such
that whenever x € K and x # 0 then there exists an inverse for x). We note that
the only ideals of a field K are K and the zero ideal.

If m is a maximal ideal of A, then A/m is a field.

Proof. If x € A, we denote by X its residue class mod m. Since m # A4
we note that A/m has a unit element # 0. Any non-zero element of A/m can
be written as X for some x € A, x ¢ m. To find its inverse, note that m + Ax
is an ideal of 4 # m and hence equal to A. Hence we can write

l=u+yx

with u e m and y € A. This means that yX = 1 (i.e. = 1) and hence that X has
an inverse, as desired.
Conversely, we leave it as an exercise to the reader to prove that:

If m is an ideal of A such that A/m is a field, then m is maximal.

Let f: A — A’ be a homomorphism of commutative rings. Let p’ be a prime
ideal of A', and let p = f~'(p’). Then p is prime.

To prove this, let x, ye 4, and xyep. Suppose x ¢ p. Then f(x)¢p'.
But f(x)f(y) = f(xy) € p. Hence f(y) € p’, as desired.

As an exercise, prove that if f is surjective, and if m’ is maximal in A4’
then f~'(m’) is maximal in A.

Example. Let Z be the ring of integers. Since an ideal is also an additive
subgroup of Z, every ideal # {0} is principal, of the form nZ for some integer
n > 0 (uniquely determined by the ideal). Let p be a prime ideal # {0},
p = nZ. Then n must be a prime number, as follows essentially directly from
the definition of a prime ideal. Conversely, if p is a prime number, then pZ is
a prime ideal (trivial exercise). Furthermore, pZ is a maximal ideal. Indeed,
suppose pZ contained in some ideal nZ. Then p = nm for some integer m, whence
n = p or n = 1, thereby proving pZ maximal.
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If n is an integer, the factor ring Z/nZ is called the ring of integers
modulo n. We also denote

Z/nZ = Z(n).

If n is a prime number p, then the ring of integers modulo p is in fact a field,
denoted by F,. In particular, the multiplicative group of F, is called the
group of non-zero integers modulo p. From the elementary properties of
groups, we get a standard fact of elementary number theory: If x is an
integer # 0 (mod p), then x?~! =1 (mod p). (For simplicity, it is customary
to write mod p instead of mod pZ, and similarly to write mod n instead of
mod nZ for any integer n.) Similarly, given an integer n > 1, the units in the
ring Z/nZ consist of those residue classes mod nZ which are represented by
integers m # 0 and prime to n. The order of the group of units in Z/nZ is
called by definition ¢(n) (where ¢ is known as the Euler phi-function).
Consequently, if x is an integer prime to n, then x*™ = 1 (mod n).

Theorem 2.1. (Chinese Remainder Theorem). Let ay, ..., a, be ideals of
A such that a; + a;= A for all i #j. Given elements x,, ..., x, € A, there
exists x € A such that x = x; (mod a;) for all i.

Proof. 1If n =2, we have an expression
1 = al + (12

for some elements q; € a;, and we let x = x,a, + x,4,.
For each i = 2 we can find elements g, € a, and b, € q; such that

a; + b,' = 1, i % 2.
The product ] (a; + b;) is equal to 1, and lies in
i=2

n
a; + [ as
=2
ie ina, +a, - a,. Hence

al + ﬁ ai= A.
i=2

By the theorem for n = 2, we can find an element y, € A such that

y1=1 (moda,),
y; =0 (mod I1 a,.>.
i=2
We find similarly elements y,, ..., y, such that

y;i=1 (mod q)) and ;=0 (mod a;) for i #j.

Then x = x,y, + - + x,y, satisfies our requirements.



I, §2 COMMUTATIVE RINGS 95

In the same vein as above, we observe that if a,, ..., a, are ideals of a
ring A such that

ay+ 0 +a, =4,
and if v, ..., v, are positive integers, then
ai' + - +an = A
The proof is trivial, and is left as an exercise.
Corollary 2.2. Let a,, ..., a, be ideals of A. Assume that a;+ a; = A for
i#]j. Let
S =TT Afag = (4fay) % -+ x (4/a,

be the map of A into the product induced by the canonical map of A onto

Ala; for each factor. Then the kernel of f is ﬂ a;, and f is surjective,
thus giving an isomorphism i

A/N) o, B[] A/,

Proof. That the kernel of f is what we said it is, is obvious. The
surjectivity follows from the theorem.

The theorem and its corollary are frequently applied to the ring of
integers Z and to distinct prime ideals (p,), ..., (p,). These satisfy the
hypothesis of the theorem since they are maximal. Similarly, one could take
integers my, ..., m, which are relatively prime in pairs, and apply the theorem
to the principal ideals (m,) = m,Z, ..., (m,) = m,Z. This is the ultraclassical
case of the Chinese remainder theorem.

In particular, let m be an integer > 1, and let

m=[]pf
12

be a factorization of m into primes, with exponents r; = 1. Then we have a
ring-isomorphism:
Z/mZ ~ H Z/pi'Z.

If A is a ring, we denote as usual by A* the multiplicative group of invertible
elements of 4. We leave the following assertions as exercises:

The preceding ring-isomorphism of Z/mZ onto the product induces a group-
isomorphism

(Z/mZ)* ~ ] (Z/pZ)*.
In view of our isomorphism, we have

o(m) = H o(p).
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If p is a prime number and r an integer = 1, then

e(p=(p—-p "

One proves this last formula by induction. If r = 1, then Z/pZ is a field, and
the multiplicative group of that field has order p — 1. Let r be =1, and
consider the canonical ring-homomorphism

Z/pr+l y AN Z/p’Z,

arising from the inclusion of ideals (p"*') = (p"). We get an induced group-
homomorphism

Zp Tt - 2P DN,

which is surjective because any integer a which represents an element of
Z/p"Z and is prime to p will represent an element of (Z/p"*'Z)*. Let a be an
integer representing an element of (Z/p"*!Z)*, such that A(a) = 1. Then

a=1 (modp'Z),
and hence we can write
a=1+xp" (modp*Z)

for some x € Z. Letting x =0, 1, ..., p — 1 gives rise to p distinct elements of
(Z/p"*'Z)*, all of which are in the kernel of 4. Furthermore, the element x
above can be selected to be one of these p integers because every integer is
congruent to one of these p integers modulo (p). Hence the kernel of A has
order p, and our formula is proved.

Note that the kernel of A is isomorphic to Z/pZ. (Proof?)

Application: The ring of endomorphisms of a cyclic group. One of the
first examples of a ring is the ring of endomorphisms of an abelian group. In
the case of a cyclic group, we have the following complete determination.

Theorem 2.3. Let A be a cyclic group of order n. For each k € Z let
fii A — A be the endomorphism x > kx (writing A additively). Then k > f;
induces a ring isomorphism Z/nZ = End(A), and a group isomorphism
(Z/nZ)* = Aut(A).

Proof. Recall that the additive group structure on End(A4) is simply
addition of mappings, and the multiplication is composition of mappings.
The fact that ki f, is a ring-homomorphism is then a restatement of the
formulas

la=a, (k+ k'ya=ka + Ka, and (kk')a = k(K'a)
for k, K € Z and ae A. If a is a generator of A, then ka = 0 if and only if

k=0modn, so Z/nZ is embedded in End(4). On the other hand, let
f:A— A be an endomorphism. Again for a generator a, we have f(a) = ka
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for some k, whence f = f, since every xe A is of the form ma for some
me Z, and

f(x) = f(ma) = mf(a) = mka = kma = kx.

This proves the isomorphism Z/nZ ~ End(A). Furthermore, if k € (Z/nZ)*
then there exists k' such that kk’ = 1 mod n, so f; has the inverse f;. and f, is
an automorphism. Conversely, given any automorphism f with inverse g, we
know from the first part of the proof that f = f,, g = g, for some k, k', and
f o g = id means that kk’ = 1 mod n, so k, k' € (Z/nZ)*. This proves the
isomorphism (Z/nZ)* = Aut(A).

Note that if A is written as a multiplicative group C, then the map f, is
given by x+— x*. For instance, let p, be the group of n-th roots of unity in C.
Then all automorphisms of p, are given by

(> Lk with ke (Z/nZ)*.

§3. POLYNOMIALS AND GROUP RINGS

Although all readers will have met polynomial functions, this section lays
the ground work for polynomials in general. One needs polynomials over
arbitrary rings in many contexts. For one thing, there are polynomials over
a finite field which cannot be identified with polynomial functions in that
field. One needs polynomials with integer coefficients, and one needs to
reduce these polynomials mod p for primes p. One needs polynomials over
arbitrary commutative rings, both in algebraic geometry and in analysis, for
instance the ring of polynomial differential operators. We also have seen the
example of a ring B = A[S] generated by a set of elements over a ring A.
We now give a systematic account of the basic definitions of polynomials
over a commutative ring A.

We want to give a meaning to an expression such as

Go+ a X + - +a,X",

where a;€ A and X is a “variable”. There are several devices for doing so,
and we pick one of them. (I picked another in my Undergraduate Algebra.)
Consider an infinite cyclic group generated by an element X. We let S be the
subset consisting of powers X” with r > 0. Then S is a monoid. We define
the set of polynomials A[X] to be the set of functions S — A which are equal
to 0 except for a finite number of elements of S. For each element ae A we
denote by aX" the function which has the value a on X" and the value O for
all other elements of S. Then it is immediate that a polynomial can be
written uniquely as a finite sum
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ao X%+ +a,X"
for some integer ne N and a;€ A. Such a polynomial is denoted by f(X).

The elements a; € A are called the coefficients of f. We define the product
according to the convolution rule. Thus, given polynomials

JSX)= i a X' and g(X)= ;b,xf

i=0
we define the product to be
m+n
fX)g(X) =} ( ) aibi>Xk'
k=0 \i+j=k

It is immediately verified that this product is associative and distributive.
We shall give the details of associativity in the more general context of a
monoid ring below. Observe that there is a unit element, namely 1X°.
There is also an embedding

A— A[X] givenby ar—aX°

One usually does not distinguish a from its image in A[X], and one writes a
instead of aX°. Note that for c € A we have then ¢f(x) = } ca, X"
Observe that by our definition, we have an equality of polynomials
Z a,-X i = Z b,X i

if and only if a; = b; for all i.
Let A be a subring of a commutative ring B. Let xe B. If fe A[X] is a
polynomial, we may then define the associated polynomial function

fB: B b 4 B
by letting
fex)=f(x)=a, +a;x+ -+ a,x"

Given an element b e B, directly from the definition of multiplication of
polynomials, we find:

The association

evy: f f(b)
is a ring homomorphism of A[X] into B.

This homomorphism is called the evaluation homomorphism, and is also said
to be obtained by substituting b for X in the polynomial. (Cf. Proposition
3.1 below.)

Let x € B. We now see that the subring A[x] of B generated by x over 4
is the ring of all polynomial values f(x), for f € A[X]. If the evaluation map
S f(x) gives an isomorphism of A[X] with A[x], then we say that x is
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transcendental over A, or that x is a variable over A. In particular, X is a
variable over A.

Example. Let o = ./2. Then the set of all real numbers of the form
a + ba, with a, be Z, is a subring of the real numbers, generated by ﬁ
Note that « is not transcendental over Z, because the polynomial X2 — 2 lies
in the kernel of the evaluation map fi— f (ﬁ). On the other hand, it can be
shown that e = 2.718... and = are transcendental over Q. See Appendix 1.

Example. Let p be a prime number and let K = Z/pZ. Then K is a
field. Let f(X) = X? — X € K[X]. Then f is not the zero polynomial. But
Jx is the zero function. Indeed, fx(0)=0. If xe K, x # 0, then since the
multiplicative group of K has order p — 1, it follows that x?~! = 1, whence
x?=x, so f(x)=0. Thus a non-zero polynomial gives rise to the zero
function on K.

There is another homomorphism of the polynomial ring having to do
with the coefficients. Let

p:A—>B

be a homomorphism of commutative rings. Then there is an associated
homomorphism of the polynomial rings A[X] — B[X], such that

fX) =Y aX'=Y o@)X' = (¢ )(X).

The verification that this mapping is a homomorphism is immediate, and
further details will be given below in Proposition 3.2, in a more general
context. We call f— ¢f the reduction map.

Examples. In some applications the map ¢ may be an isomorphism.
For instance, if f(X) has complex coefficients, then its complex conju-
gate f(X)=YaX' is obtained by applying complex conjugation to its
coefficients.

Let p be a prime ideal of A. Let ¢: 4 > A’ be the canonical homo-
morphism of 4 onto A/p. If f(X) is a polynomial in A[X], then ¢f will
sometimes be called the reduction of f modulo p.

For example, taking A = Z and p = (p) where p is a prime number, we
can speak of the polynomial 3X* — X + 2 as a polynomial mod 5, viewing
the coefficients 3, —1, 2 as integers mod 5, i.e. elements of Z/5Z.

We may now combine the evaluation map and the reduction map to
generalize the evaluation map.

Let ¢: A — B be a homomorphism of commutative rings.
Let x € B. There is a unique homomorphism extending ¢

A[X]-B such that XX,

and for this homomorphism, Y a, X'+ ¢(a;)x".
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The homomorphism of the above statement may be viewed as the composite

A[X] — B[X]—

evx

where the first map applies ¢ to the coefficients of a polynomial, and the
second map is the evaluation at x previously discussed.

Example. In Chapter IX, §2 and §3, we shall discuss such a situation in
several variables, when (¢f)(x) = 0, in which case x is called a zero of the
polynomial f.

When writing a polynomial f(X) = Z a; X', if a, # 0 then we define n

to be the degree of f. Thus the degree of S is the smallest integer n such
that a, =0 for r >n. If f=0 (ie. f is the zero polynomial), then by con-
vention we define the degree of f to be —oo. We agree to the convention
that

— + —00 = —oo0, -0 +n= —00, —o < n,

for all ne Z, and no other operation with —oo is defined. A polynomial of
degree 1 is also called a linear polynomial. If f # 0 and deg f = n, then we
call a, the leading coefficient of f. We call a, its constant term.

Let

g(X)=by+ -+ b, X"
be a polynomial in A[X], of degree m, and assume g # 0. Then
f(X)g(X) = apby + -+ + a,b,, X™*".
Therefore:

If we assume that at least one of the leading coefficients a, or b, is not a
divisor of 0 in A, then

deg(fg) = deg f + degyg

and the leading coefficient of fg is a,b,,. This holds in particular when a, or
b, is a unit in A, or when A is entire. Consequently, when A is entire,
A[X] is also entire.

If f or g = 0, then we still have

deg(fg) = deg f + degg

if we agree that —oco + m = —oo for any integer m.
One verifies trivially that for any polynomial f, g € A[X] we have

deg(f + g) < max(deg f, deg g),

again agreeing that —oo < m for every integer m.
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Polynomials in several variables

We now go to polynomials in several variables. Let 4 be a subring of
a commutative ring B. Let x,,...,x,€B. For each n-tuple of integers
(Vi ..., v,) = (V) € N", we use vector notation, letting (x) = (x,, ..., x,), and
Vn

M, (x) = xy" -+ x,"

The set of such elements forms a monoid under multiplication. Let
A[x] = A[xy, ..., x,] be the subring of B generated by x,,..., x, over A.
Then every element of A[x] can be written as a finite sum

Y a,M,(x)  with ag, € A.

Using the construction of polynomials in one variable repeatedly, we may

form the ring
ALX,, ..., X, ] = A[X,][X,] - [X,],

selecting X, to be a variable over A[X,,..., X,_;]. Then every element f of
A[X,,..., X,] = A[X] has a unique expression as a finite sum

d, . .
f= z;)j;.(X,,...,X,,_l)X,{ with  fe A[X,,..., X, ]
I~

Therefore by induction we can write f uniquely as a sum

d,
1= 5 (5 apnxreexi)x

vp=0 \vy,..., Vn-1
=Y ayMy(X) = Y aX{" - X,
with elements q,) € A, which are called the coefficients of f. The products
Mi(X) = X{* - Xy
will be called primitive monomials. Elements of A[X] are called polynomials
(in n variables). We call a,, its coefficients.

Just as in the one-variable case, we have an evaluation map. Given (x) =
(xy,-...,x,) and f as above, we define

flx) = Z awyM,(x) = Z amxy' X"
Then the evaluation map
eV A[X] - B such that fr—f(x)

is a ring-homomorphism. It may be viewed as the composite of the suc-
cessive evaluation maps in one variable X;—x; for i=mn,..., 1, because
A[X] < B[X].

Just as for one variable, if f(X)e A[X] is a polynomial in n variables,
then we obtain a function
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fg:B"—> B by x)— f(x).
We say that f(x) is obtained by substituting (x) for (X) in f, or by specializing
(X) to (x). As for one variable, if K is a finite field, and f € K[X] one may
have f # 0 but fy = 0. Cf. Chapter IV, Theorem 1.4 and its corollaries.
Next let ¢: A - B be a homomorphism of commutative rings. Then we
have the reduction map (generalized in Proposition 3.2 below)

fX)= z a(v)M(v)(X)HZ o(a,)M,(X) = (of )(X).

We can also compose the evaluation and reduction. An element (x) € B" is
called a zero of f if (¢f)(x) = 0. Such zeros will be studied in Chapter IX.

Go back to A as a subring of B. Elements x,,...,x,€ B are called
algebraically independent over A if the evaluation map

S x)

is injective. Equivalently, we could say that if f € A[X] is a polynomial and
f(x) = 0, then f = 0; in other words, there are no non-trivial polynomial
relations among x|, ..., x, over A.

Example. It is not known if e and 7 are algebraically independent over
the rationals. It is not even known if e + 7 is rational.

We now come to the notion of degree for several variables. By the degree
of a primitive monomial

M(v)(X) = X:l Xnv"
we shall mean the integer |v| = v, + - + v, (which is = 0).
A polynomial
aX{'-- X, (aeA)
will be called a monomial (not necessarily primitive).
If f(X) is a polynomial in A[X] written as
(X ) Z a(v)X . nna
then either f = 0, in which case we say that its degree is —oo, or f # 0, and
then we define the degree of f to be the maximum of the degrees of the

monomials M,,,(X) such that a,, # 0. (Such monomials are said to occur in
the polynomial.) We note that the degree of f is O if and only if

fX)=aoX} - X

for some aq € A4, ay # 0. We also write this polynomial simply f(X) = a,, i.e.
writing 1 instead of

X,

in other words, we identify the polynomial with the constant a,.
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Note that a polynomial f(X,,..., X,) in n variables can be viewed as a
polynomial in X, with coefficients in A[X,,..., X,_;] (if n = 2). Indeed, we
can write

dn
f(X) = j;o .’}(Xl, R4 Xn-l)Xr{9

where f; is an element of A[X,,..., X,_;]. By the degree of fin X, we shall
mean its degree when viewed as a polynomial in X, with coefficients in
A[X,,..., X,_;]. One sees easily that if this degree is d, then d is the largest
integer occurring as an exponent of X, in a monomial

v Vp
A XJt e X,

with a, # 0. Similarly, we define the degree of f in each variable X;
i=1,...,n).

The degree of f in each variable is of course usually different from its
degree (which is sometimes called the total degree if there is need to prevent
ambiguity). For instance,

X3X, + X}
has total degree 4, and has degree 3 in X, and 2 in X,.
As a matter of notation, we shall often abbreviate “degree” by “deg.”

For each integer d = 0, given a polynomial f, let f@ be the sum of all
monomials occurring in f and having degree d. Then

f — ;f(d).

Suppose f # 0. We say that f is homogeneous of degree d if f = f@; thus f
can be written in the form

fX)=Y a,X{" - X,;» with v, +-+v,=d if a,#0.

We shall leave it as an exercise to prove that a non-zero polynomial f in n
variables over A is homogeneous of degree d if and only if, for every set of
n + 1 algebraically independent elements u, t,, ..., t, over A we have

Sfluty,...,ut,) =u’f(t,,...,t,)

We note that if f, g are homogeneous of degree d, e respectively, and
fg # 0, then fg is homogeneous of degree d + e. If d =e and f + g # 0, then
f + g is homogeneous of degree d.

Remark. In view of the isomorphism
A[X,, ..., X, ]~ A[ty,...,t,]

between the polynomial ring in n variables and a ring generated over A by n
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algebraically independent elements, we can apply all the terminology we have
defined for polynomials, to elements of A[t,,...,t,]. Thus we can speak of
the degree of an element in A[t], and the rules for the degree of a product or
sum hold. In fact, we shall also call elements of A[t] polynomials in (¢).
Algebraically independent elements will also be called variables (or indepen-
dent variables), and any distinction which we make between A[X] and A[t]
is more psychological than mathematical.

Suppose next that A4 is entire. By what we know of polynomials in one
variable and induction, it follows that A[X,, ..., X,] is entire. In particular,
suppose f has degree d and g has degree e. Write

f=f9 + terms of lower degree,
g = g'© + terms of lower degree.

Then fg = f@g® + terms of lower degree, and if fg # 0 then f@Wg© #0.
Thus we find:

deg(fg) = deg f + deg g,
deg(f + g) < max(deg f, deg g).

We are now finished with the basic terminology of polynomials. We end
this section by indicating how the construction of polynomials is actually a
special case of another construction which is used in other contexts. Inter-
ested readers can skip immediately to Chapter IV, giving further important
properties of polynomials. See also Exercise 33 of Chapter XIII for har-
monic polynomials.

The group ring or monoid ring

Let A be a commutative ring. Let G be a monoid, written multiplica-
tively.

Let A[G] be the set of all maps a: G - A such that a(x) = 0 for almost
all xe G. We define addition in A[G] to be the ordinary addition of
mappings into an abelian (additive) group. If o, g€ A[G], we define their
product aff by the rule

@B)(2) = Y. a(x)B(y)-

y=

The sum is taken over all pairs (x, y) with x, y € G such that xy = z. This
sum is actually finite, because there is only a finite number of pairs of
elements (x, y) € G x G such that a(x)B(y) # 0. We also see that (xf)(t) =0
for almost all ¢, and thus belongs to our set A[G].

The axioms for a ring are trivially verified. We shall carry out the proof
of associativity as an example. Let «, 8, y € A[G]. Then



I, §3 POLYNOMIALS AND GROUP RINGS 105

(@B ()= Y, @B)x)()

y=z

Py [Z=x a(u)ﬂ(v)] (¥

I

> [Z a(u)ﬂ(v)v(y)]

Xy=z [ uv=x

= X ) a(u) B(0)y(y),

(u,0,y
uvy=z

this last sum being taken over all triples (u v, y) whose product is z. This
last sum is now symmetric, and if we had computed (a(B7))(z), we would
have found this sum also. This proves associativity.

The unit element of A[G] is the function 6 such that d(¢) =1 and
6(x) =0 for all xe G, x #e. It is trivial to verify that o = da = ad for all
ae A[G].

We shall now adopt a notation which will make the structure of A[G]
clearer. Let ae A and x € G. We denote by a-x (and sometimes also by ax)
the function whose value at x is @, and whose value at y is O if y # x. Then
an element « € A[G] can be written as a sum

a= ) ax) x
xeG
Indeed, if {a,},.; is a set of elements of A almost all of which are 0, and we
set
B= Z a,:'x,
xeG

then for any y € G we have f(y) = a, (directly from the definitions). This also
shows that a given element « admits a unique expression as a sum Y. a, " x.
With our present notation, multiplication can be written

and addition can be written
Y oarx+ Y bex=Y (a,+b)x

xeG xe€G xeG
which looks the way we want it to look. Note that the unit element of A[G]
is simply 1-e.

We shall now see that we can embed both A and G in a natural way in
A[G].

Let ¢y: G > A[G] be the map given by ¢y(x) = 1-x. It is immediately
verified that ¢, is a multiplicative monoid-homomorphism, and is in fact
injective, i.e. an embedding.

Let f,: A > A[G] be the map given by

Sol@=a-e
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It is immediately verified that f, is a ring-homomorphism, and is also an
embedding. Thus we view A as a subring of A[G]. One calls A[G] the
monoid ring or monoid algebra of G over A, or the group algebra if G is a
group.

Examples. When G is a finite group and 4 = k is a field, then the group
ring k[G] will be studied in Chapter XVIIIL.

Polynomial rings are special cases of the above construction. In n vari-
ables, consider a multiplicative free abelian group of rank n. Let X, ..., X,
be generators. Let G be the multiplicative subset consisting of elements
X/ -+ X,» with v; 20 for all i. Then G is a monoid, and the reader can
verify at once that A[G] is just A[X,,..., X,].

As a matter of notation we usually omit the dot in writing an element of
the ring A[G], so we write simply Y. a,x for such an element.

More generally, let I = {i} be an infinite family of indices, and let S be
the free abelian group with free generators X;, written multiplicatively. Then we
can form the polynomial ring A[X] by taking the monoid to consist of products

M(v)(X) = I]I Xivi,

where of course all but a finite number of exponents v; are equal to 0. If 4 is
a subring of the commutative ring B, and S is a subset of B, then we shall
also use the following notation. Let v: S — N be a mapping which is O except
for a finite number of elements of S. We write
M(v)(S) = l‘[s x V)

Thus we get polynomials in infinitely many variables. One interesting exam-
ple of the use of such polynomials will occur in Artin’s proof of the existence
of the algebraic closure of a field, cf. Chapter V, Theorem 2.5.

We now consider the evaluation and reduction homomorphisms in the
present context of monoids.

Proposition 3.1. Let ¢: G— G be a homomorphism of monoids. Then
there exists a unique homomorphism h: A[G] — A[G'] such that h(x)=
¢(x) for all x € G and h(a) = a for all a € A.

Proof. Infact, let « = ) a,x € A[G]. Define
h(x) = Y a,0(x).

Then h is immediately verified to be a homomorphism of abelian groups, and
h(x) = @(x). Let =Y b,y. Then

) =3 (5, o) ot

z \xy=z

We get h(af) = h()h(f) immediately from the hypothesis that @(xy) =
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@(x)o(y). If e is the unit element of G, then by definition ¢(e) =¢’, so
Proposition 3.1 follows.

Proposition 3.2. Let G be a monoid and let f: A — B be a homomorphism
of commutative rings. Then there is a unique homomorphism

h: A[G] — B[G]

(3, 000) - 3 s

Proof. Since every element of A[G] has a unique expression as a sum
Y a,x, the formula giving h gives a well-defined map from A[G] into B[G].
This map is obviously a homomorphism of abelian groups. As for multipli-

such that

cation, let
«=Yax and =) by
Then
h(aﬁ) - zeZG f<xz=:z axby) z
=Y > fla)f(b)z
zeG xy=z
= fl@)f(B).

We have trivially h(1) =1, so h is a ring-homomorphism, as was to be
shown.

Observe that viewing A as a subring of A[G], the restriction of h to A is
the homomorphism f itself. In other words, if e is the unit element of G,
then

h(ae) = f(a)e.

§4. LOCALIZATION
We continue to let A be a commutative ring.

By a multiplicative subset of A we shall mean a submonoid of A (viewed
as a multiplicative monoid according to RI 2). In other words, it is a subset
S containing 1, and such that, if x, y € S, then xy € S.

We shall now construct the quotient ring of 4 by S, also known as the
ring of fractions of 4 by S.

We consider pairs (a, s) with ae 4 and s € S. We define a relation

(a,s) ~ (a',s)

between such pairs, by the condition that there exists an element s, € S such
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that
sy(s'a—sa’)=0.

It is then trivially verified that this is an equivalence relation, and the
equivalence class containing a pair (a,s) is denoted by a/s. The set of
equivalence classes is denoted by S™1 4.

Note that if 0 € S, then S™' A4 has precisely one element, namely 0/1.

We define a multiplication in S™' 4 by the rule

(a/s)(a’/s’) = aa'[ss’.

It is trivially verified that this is well defined. This multiplication has a unit
element, namely 1/1, and is clearly associative.
We define an addition in S7'A4 by the rule

« | Q

a s'a+ sa
o ’ *

SS

It is trivially verified that this is well defined. As an example, we give the
proof in detail. Let a,/s, = a/s, and let a}/s; = a’/s’. We must show that

(siay + s,ay)/s 51 = (s'a + sa’)/ss’.
There exist s,, s; € S such that
s,(sa, — s,a) =0,
s3(s'a; —sja’) = 0.
We multiply the first equation by s;s’s; and the second by s,ss,. We then
add, and obtain
S,85[s'si(sa; — sya) + ssy(s'ay — s1a’)] = 0.

By definition, this amounts to what we want to show, namely that there
exists an element of S (e.g. s,5;) which when multiplied with

ss'(sya, + syay) — sysy(s'a + sa’)
yields 0.
We observe that given ae 4 and s, s’ € § we have
a/s = s'a/s's.

Thus this aspect of the elementary properties of fractions still remains true in
our present general context.
Finally, it is also trivially verified that our two laws of composition on
S7!'A define a ring structure.
We let
ps: A—>S7t4

be the map such that ¢g(a) = a/l. Then one sees at once that ¢g is a
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ring-homomorphism. Furthermore, every element of ¢g(S) is invertible in
S71A4 (the inverse of s/1 is 1/s).
Let C be the category whose objects are ring-homomorphisms
fiA->B

such that for every s € S, the element f(s) is invertible in B. If f: 4 - B and
f':A—> B are two objects of C, a morphism g of f into f’ is a homo-
morphism

g:B—> B’

making the diagram commutative:

A—L B

A/

We contend that ¢ is a universal object in this category C.

Proof. Suppose that a/s = a’/s’, or in other words that the pairs (a, s)
and (a’, s’) are equivalent. There exists s, € S such that

si(s'\a—sa’)=0.
Let f: A — B be an object of €. Then
S f(@) — f(9)f(@)] =0.
Multiplying by f(s,)~*, and then by f(s')! and f(s)™!, we obtain
f@f)™ = fla)f(s)".
Consequently, we can define a map
h:S"'A-B
such that h(a/s) = f(a)f(s)™!, for all a/se S™'A. 1t is trivially verified that h
is a homomorphism, and makes the usual diagram commutative. It is also

trivially verified that such a map h is unique, and hence that ¢g is the
required universal object.

Let A be an entire ring, and let S be a multiplicative subset which does not
contain 0. Then
9s:A-S7A
is injective.
Indeed, by definition, if a/l = 0 then there exists s € S such that sa =0,

and hence a = 0.
The most important cases of a multiplicative set S are the following:

1. Let A be a commutative ring, and let S be the set of invertible
elements of A (i.e. the set of units). Then S is obviously multiplicative, and is
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denoted frequently by A*. If A is a field, then A* is the multiplicative group
of non-zero elements of 4. In that case, S™'4 is simply A itself.

2. Let A be an entire ring, and let S be the set of non-zero elements of A.
Then S is a multiplicative set, and S™'A4 is then a field, called the quotient
field or the field of fractions, of 4. It is then customary to identify 4 as a
subset of S™'A, and we can write

a/s =s'a
forae Aand seSs.

We have seen in §3 that when A is an entire ring, then A[X,,..., X,] is
also entire. If K is the quotient field of A, the quotient field of A[X,, ..., X,]
is denoted by K(X,,..., X,). An element of K(X,, ..., X,) is called a rational
function. A rational function can be written as a quotient f(X)/g(X) where
f, g are polynomials. If (b,,...,b,) is in K™, and a rational function admits
an expression as a quotient f/g such that g(b) # 0, then we say that the
rational function is defined at (b). From general localization properties, we
see that when this is the case, we can substitute (b) in the rational function to
get a value f(b)/g(b).

3. A ring A is called a local ring if it is commutative and has a unique
maximal ideal. If 4 is a local ring and m is its maximal ideal, and x € A4,
x ¢ m, then x is a unit (otherwise x generates a proper ideal, not contained in m,
which is impossible). Let 4 be a ring and p a prime ideal. Let S be the com-
plement of p in 4. Then S is a multiplicative subset of 4, and S~'4 is denoted
by A,. It is a local ring (cf. Exercise 3) and is called the local ring of A at p. Cf.
the examples of principal rings, and Exercises 15, 16.

Let S be a multiplicative subset of A. Denote by J(A) the set of ideals of
A. Then we can define a map

Ys: J(4) > J(S7'4);

namely we let Y5(a) = S™'a be the subset of S™'A4 consisting of all fractions
af/s with aea and seS. The reader will easily verify that S™'a is an
S7'A-ideal, and that g is a homomorphism for both the additive and
multiplicative monoid structures on the set of ideals J(4). Furthermore, s
also preserves intersections and inclusions; in other words, for ideals a, b of
A we have:

S a+b)=S"ta+ S, S71(ab) = (S7*a)(S7'D),
S anb)=S"anS'b.

As an example, we prove this last relation. Let xeanb. Then x/s is in
S7'a and also in S7!b, so the inclusion is trivial. Conversely, suppose we
have an element of S™'A4 which can be written as a/s = b/s’ with ae a, b e b,
and s, s’ € S. Then there exists s; € S such that

sy8'a = s;sb,
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and this element lies in both a and b. Hence
afs = s,s'a/s,s's

lies in S™!(a N b), as was to be shown.

§5. PRINCIPAL AND FACTORIAL RINGS

Let A be an entire ring. An element a # 0 is called irreducible if it is not a
unit, and if whenever one can write a = bc with be A and ce A then b or ¢
is a unit.

Let a# 0 be an element of A and assume that the principal ideal (a) is
prime. Then a is irreducible. Indeed, if we write a = bc, then b or c lies in
(a), say b. Then we can write b = ad with some d € A, and hence a = acd.
Since A is entire, it follows that ¢d = 1, in other words, that c is a unit.

The converse of the preceding assertion is not always true. We shall
discuss under which conditions it is true. An element a€ A, a # 0, is said to
have a unique factorization into irreducible elements if there exists a unit u
and there exist irreducible elements p; (i = 1,...,r) in 4 such that

r
a=ul] ps
i=1

and if given two factorizations into irreducible elements,

r

S

a=unpi=ull_[qja
i=1 Jj=1

we have r = s, and after a permutation of the indices i, we have p; = u;q; for

some unit y;in A,i=1,...,r.

We note that if p is irreducible and u is a unit, then up is also irreducible,
so we must allow multiplication by units in a factorization. In the ring
of integers Z, the ordering allows us to select a representative irreducible
element (a prime number) out of two possible ones differing by a unit,
namely +p, by selecting the positive one. This is, of course, impossible in
more general rings.

Taking r =0 above, we adopt the convention that a unit of A has a
factorization into irreducible elements.

A ring is called factorial (or a unique factorization ring) if it is entire and if
every element # 0 has a unique factorization into irreducible elements. We
shall prove below that a principal entire ring is factorial.

Let A be an entire ring and a, b € 4, ab # 0. We say that a divides b and
write a|b if there exists ¢ € 4 such that ac = b. We say thatde 4,d # 0, is a
greatest common divisor (g.c.d.) of a and b if dl|a, d|b, and if any element e
of A, e ¥ 0, which divides both a and b also divides d.
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Proposition 5.1. Let A be a principal entire ring and a, be A, a, b # 0.
Let (a, b) = (¢). Then c is a greatest common divisor of a and b.

Proof. Since b lies in the ideal (c), we can write b = xc for some x € A,
so that c|b. Similarly, c|la. Let d divide both a and b, and write a = dy,
b = dz with y, z € A. Since c lies in (a, b) we can write

c=wa+th

with some w, t € A. Then ¢ = wdy + t dz = d(wy + tz), whence d|c, and our
proposition is proved.

Theorem 5.2. Let A be a principal entire ring. Then A is factorial.

Proof. We first prove that every non-zero element of A has a factoriza-
tion into irreducible elements. Let S be the set of principal ideals # 0 whose
generators do not have a factorization into irreducible elements, and suppose
S is not empty. Let (a,) be in S. Consider an ascending chain

(an)g(az) % %(an)g“'

of ideals in S. We contend that such a chain cannot be infinite. Indeed, the
union of such a chain is an ideal of 4, which is principal, say equal to (a).
The generator a must already lie in some element of the chain, say (a,), and
then we see that (a,) < (a) < (a,), whence the chain stops at (a,). Hence S is
inductively ordered, and has a maximal element (a). Therefore any ideal of A
containing (a) and # (a) has a generator admitting a factorization.

We note that a, cannot be irreducible (otherwise it has a factorization),
and hence we can write a = bc with neither b nor ¢ equal to a unit. But then
(b) # (a) and (c¢) # (a) and hence both b, ¢ admit factorizations into irreducible
elements. The product of these factorizations is a factorization for a, contra-
dicting the assumption that § is not empty.

To prove uniqueness, we first remark that if p is an irreducible element of
A and a, b € A, p|ab, then p|a or p|b. Proof: If p}a, then the g.cd. of p, a
is 1 and hence we can write

=xp+ya

with some x, y€ A. Then b = bxp + yab, and since p|ab we conclude that

p|b.
Suppose that a has two factorizations

a=p - p=4y g

into irreducible elements. Since p, divides the product farthest to the right,
p,; divides one of the factors, which we may assume to be g, after renum-
bering these factors. Then there exists a unit u, such that q, = u,p,. We
can now cancel p, from both factorizations and get
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Pz pr=u1q; " s
The argument is completed by induction.

We could call two elements a, b € A equivalent if there exists a unit u
such that a =bu. Let us select one irreducible element p out of each
equivalence class belonging to such an irreducible element, and let us denote
by P the set of such representatives. Let ae A, a # 0. Then there exists a
unit ¥ and integers v(p) = 0, equal to O for almost all p € P such that

a=u [] p®.

peP
Furthermore, the unit u and the integers v(p) are uniquely determined by a.
We call v(p) the order of a at p, also written ord, a.

If A is a factorial ring, then an irreducible element p generates a prime
ideal (p). Thus in a factorial ring, an irreducible element will also be called a
prime element, or simply a prime.

We observe that one can define the notion of least common multiple
(l.e.m.) of a finite number of non-zero elements of A4 in the usual manner: If

a;,...,a,€A

are such elements, we define a l.c.m. for these elements to be any c € A such
that for all primes p of A we have

ord, ¢ = max ord, a;.
1]

This element c is well defined up to a unit.
If a, b € A are non-zero elements, we say that a, b are relaively prime if
the g.c.d. of @ and b is a unit.

Example. The ring of integers Z is factorial. Its group of units consists
of 1 and —1. It is natural to take as representative prime element the
positive prime element (what is called a prime number) p from the two
possible choices p and —p. Similarly, we shall show later that the ring of
polynomials in one variable over a field is factorial, and one selects represen-
tatives for the prime elements to be the irreducible polynomials with leading
coefficient 1.

Examples. It will be proved in Chapter IV that if R is a factorial ring,
then the polynomial ring R[X,, ..., X, ] in n variables is factorial. In partic-
ular, if k is a field, then the polynomial ring k[ X, ..., X,] is factorial. Note
that k[X,] is a principal ring, but for n = 2, the ring k[X,,..., X,] is not
principal.

In Exercise 5 you will prove that the localization of a factorial ring is
factorial.

In Chapter IV, §9 we shall prove that the power series ring
k[[X,,..., X,]] is factorial. This result is a special case of the more general
statement that a regular local ring is factorial, but we do not define regular
local rings in this book. You can look them up in books on commutative
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algebra. I recommend:
H. MATSUMURA, Commutative Algebra, second edition, Benjamin-Cummings, New
York, 1980
H. MATSUMURA, Commutative Rings, Cambridge University Press, Cambridge,
UK, 1986
Examples from algebraic and complex geometry. Roughly speaking, reg-
ular local rings arise in the following context of algebraic or complex geom-
etry. Consider the ring of regular functions in the neighborhood of some
point on a complex or algebraic manifold. This ring is regular. A typical
example is the ring of convergent power series in a neighborhood of 0 in C".
In Chapter IV, we shall prove some results on power series which give some
algebraic background for those analytic theories, and which are used in
proving the factoriality of rings of power series, convergent or not.
Conversely to the above examples, singularities in geometric theories may
give rise to examples of non-factoriality. We give examples using notions
which are sufficiently basic so that readers should have encountered them in
more elementary courses.

Examples of non-factorial rings. Let k be a field, and let x be a variable
over k. Let R = k[x2, x®]. Then R is not factorial (proof?). The ring R may
be viewed as the ring of regular functions on the curve y* = x3, which has a
singularity at the origin, as you can see by drawing its real graph.

Let R be the set of all numbers of the form a + b/ —35, where a, be Z.
Then the only units of R are +1, and the elements 3, 2 + . /—5,2 — /-5
are irreducible elements, giving rise to a non-unique factorization

32=2+/-52 /-5

(Do Exercise 10.) Here the non-factoriality is not due to singularities but
due to a non-trivial ideal class group of R, which is a Dedekind ring. For a
definition see the exercises of Chapter III, or go straight to my book
Algebraic Number Theory, for instance.

As Trotter once pointed out (Math. Monthly, April 1988), the relation

sin? x = (1 + cos x)(1 — cos x)

may be viewed as a non-unique factorization in the ring of trigonometric
polynomials R[sin x, cos x], generated over R by the functions sin x and
cos x. This ring is a subring of the ring of all functions, or of all differenti-
able functions. See Exercise 11.

EXERCISES

We let A denote a commutative ring.

1. Suppose that 1 #0 in A. Let S be a multiplicative subset of A not containing 0.
Let p be a maximal element in the set of ideals of A whose intersection with S is
empty. Show that p is prime.
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2.

10.

11.

Let f: A — A’ be a surjective homomorphism of rings, and assume that A is local,
A’ #0. Show that A’ is local.

. Let p be a prime ideal of A. Show that 4, has a unique maximal ideal, consisting

of all elements a/s with ae p and s ¢ p.

. Let 4 be a principal ring and S a multiplicative subset with 0 ¢ S. Show that S~'4 is

principal.

. Let A4 be a factorial ring and S a multiplicative subset with 0 ¢ S. Show that S~'4 is

factorial, and that the prime elements of S™!4 are those primes p of 4 such that
(p) N S is empty.

. Let 4 be a factorial ring and p a prime element. Show that the local ring A, is

principal.

.Let A be a principal ring and a,,...,a, non-zero elements of A. Let

(a@y,...,a,) =(d). Show that d is a greatest common divisor for the g
i=1,...,n).

. Let p be a prime number, and let A be the ring Z/p"Z (r = integer = 1). Let G be

the group of units in A, i.e. the group of integers prime to p, modulo p". Show
that G is cyclic, except in the case when

p=29 r.%39

in which case it is of type (2,2"72). [Hint: In the general case, show that G is
the product of a cyclic group generated by 1 + p, and a cyclic group of order
p— 1. In the exceptional case, show that G is the product of the group {+1}
with the cyclic group generated by the residue class of 5 mod 2".]

. Let i be the complex number ./ —1. Show that the ring Z[i] is principal, and

hence factorial. What are the units?

Let D be an integer =1, and let R be the set of all element a + b,/ —D with

a,beZ.

(a) Show that R is a ring.

(b) Using the fact that complex conjugation is an automorphism of C, show
that complex conjugation induces an automorphism of R.

(c) Show that if D = 2 then the only units in R are +1.

(d) Show that 3,2 +./—5,2 — /-5 are irreducible elements in Z[,/—5].

Let R be the ring of trigonometric polynomials as defined in the text. Show that
R consists of all functions f on R which have an expression of the form

fx)=ay + i (a,, cos mx + b,, sin mx),
m=1

where ay, a,, b,, are real numbers. Define the trigonometric degree deg,(f) to be
the maximum of the integers r, s such that a,, b, # 0. Prove that

deg, (fg) = deg,(f) + deg,.(g).

Deduce from this that R has no divisors of 0, and also deduce that the functions
sin x and 1 — cos x are irreducible elements in that ring.
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12. Let P be the set of positive integers and R the set of functions defined on P with

values in a commutative ring K. Define the sum in R to be the ordinary addition
of functions, and define the convolution product by the formula
(f*9)m) = 3 f(x)g()
xXy=m

where the sum is taken over all pairs (x, y) of positive integers such that xy = m.

(a) Show that R is a commutative ring, whose unit element is the function é such
that 6(1) =1 and 6(x) = 0 if x # 1.

(b) A function f is said to be multiplicative if f(mn) = f(m)f(n) whenever m, n are
relatively prime. If f, g are multiplicative, show that f =g is multiplicative.

(c) Let u be the Mdbius function such that u(1) = 1, u(p, - p,) =(—1)if py, ..., p,
are distinct primes, and p(m) =0 if m is divisible by p? for some prime p.
Show that u* ¢, =6, where ¢, denotes the constant function having value
1. [Hint: Show first that u is multiplicative, and then prove the assertion
for prime powers.] The MGsbius inversion formula of elementary number
theory is then nothing else but the relation ux ¢, * f = f.

Dedekind rings

Prove the following statements about a Dedekind ring o. To simplify terminology,
by an ideal we shall mean non-zero ideal unless otherwise specified. We let K
denote the quotient field of o.

13.

14.

15.

16.

17.

18.

19.

Every ideal is finitely generated. [Hint: Given an ideal q, let b be the fractional
ideal such that ab=o0. Write 1 =Y g;b; with g;ea and beb. Show that
a= (al, ceny a,,).]

Every ideal has a factorization as a product of prime ideals, uniquely determined
up to permutation.

Suppose o has only one prime ideal p. Let tep and t¢ p2 Then p=(t) is
principal.

Let o be any Dedekind ring. Let p be a prime ideal. Let o, be the local ring at
p. Then o, is Dedekind and has only one prime ideal.

As for the integers, we say that a|b (a divides b) if ihere exists an ideal ¢ such that

b = ac. Prove:

(a) alb if and only if b c a.

(b) Let a, b be ideals. Then a + b is their greatest common divisor. In particular,
a, b are relatively prime if and only if a + b = 0.

Every prime ideal p is maximal. (Remember, p # 0 by convention.) In particular,
if py, ..., p, are distinct primes, then the Chinese remainder theorem applies to
their powers p7, ..., pi~. Use this to prove:

Let a, b be ideals. Show that there exists an element ¢ € K (the quotient field of
o) such that ca is an ideal relatively prime to b. In particular, every ideal class in
Pic(o) contains representative ideals prime to a given ideal.

For a continuation, see Exercise 7 of Chapter VIIL



CHAPTER I"

Modules

Although this chapter is logically self-contained and prepares for future topics,
in practice readers will have had some acquaintance with vector spaces over a
field. We generalize this notion here to modules over rings. It is a standard fact
(to be reproved) that a vector space has a basis, but for modules this is not always
the case. Sometimes they do; most often they do not. We shall look into cases
where they do.

For examples of modules and their relations to those which have a basis, the
reader should look at the comments made at the end of §4.

§1. BASIC DEFINITIONS

Let 4 be a ring. A left module over A, or a left 4-module M is an abelian
group, usually written additively, together with an operation of A on M (viewing
A as a multiplicative monoid by RI 2), such that, for alla,be 4 and x, ye M
we have

(@+ b)x =ax + bx and a(x + y) = ax + ay.

We leave it as an exercise to prove that a(—x) = —(ax) and that Ox = 0. By
definition of an operation, we have 1x = x.

In a similar way, one defines a right 4-module. We shall deal only with left
A-modules, unless otherwise specified, and hence call these simply 4-modules,
or even modules if the reference is clear.

117
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Let M be an A-module. By a submodule N of M we mean an additive sub-
group such that AN <= N. Then N is a module (with the operation induced by
that of 4 on M).

Examples

We note that A is a module over itself.

Any commutative group is a Z-module.

An additive group consisting of 0 alone is a module over any ring.
Any left ideal of A is a module over A.

Let J be a two-sided ideal of A. Then the factor ring A/J is actually a module
over A. If a € A and a + J is a coset of J in A, then one defines the operation
to be a(x + J) = ax + J. The reader can verify at once that this defines a module
structure on A/J. More general, if M is a module and N a submodule, we shall
define the factor module below. Thus if L is a left ideal of A, then A/L is also
a module. For more examples in this vein, see §4.

A module over a field is called a vector space. Even starting with vector
spaces, one is led to consider modules over rings. Indeed, let V be a vector space
over the field K. The reader no doubt already knows about linear maps (which
will be recalled below systematically). Let R be the ring of all linear maps of V
into itself. Then V is a module over R. Similarly, if V = K” denotes the vector
space of (vertical) n-tuples of elements of K, and R is the ring of n X n matrices
with components in K, then V is a module over R. For more comments along
these lines, see the examples at the end of §2.

Let S be a non-empty set and M an A-module. Then the set of maps
Map(S, M) is an A-module. We have already noted previously that it is a com-
mutative group, and for f € Map(S, M), a € A we define af to be the map
such that (af)(s) = af(s). The axioms for a module are then trivially verified.

For further examples, see the end of this section.

For the rest of this section, we deal with a fixed ring A, and hence may omit
the prefix A-.

Let A be an entire ring and let M be an A-module. We define the torsion
submodule M, to be the subset of elements x € M such that there exists
a€ A, a+ Osuchthatax = 0. It is immediately verified that M, is a submodule.
Its structure in an important case will be determined in §7.

Let a be a left ideal, and M a module. We define aM to be the set of all
elements

axy + 0+ ax,

with g; € a and x; € M. It is obviously a submodule of M. If a, b are left ideals,
then we have associativity, namely

a(bM) = (ab)M.
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We also have some obvious distributivities, like (a + B)M = aM + bM. If
N, N’ are submodules of M, then a(N + N') = aN + aN'.

Let M be an A-module, and N a submodule. We shall define a module
structure on the factor group M/N (for the additive group structure). Let
x + N be a coset of Nin M, and let ae 4. We define a(x + N) to be the
coset ax + N. It is trivial to verify that this is well defined (i.e. if y is in the
same coset as x, then ay is in the same coset as ax), and that this is an opera-
tion of A on M/N satisfying the required condition, making M/N into a
module, called the factor module of M by N.

By a module-homomorphism one means a map

fiM M

of one module into another (over the same ring 4), which is an additive group-
homomorphism, and such that

f(ax) = af (x)

for all ae A and x e M. It is then clear that the collection of A-modules is a
category, whose morphisms are the module-homomorphisms usually also
called homomorphisms for simplicity, if no confusion is possible. If we wish
to refer to the ring 4, we also say that f is an A-homomorphism, or also that
it is an A-linear map.

If M is a module, then the identity map is a homomorphism. For any
module M’, the map {: M — M’ such that {(x) = O for all xe M is a homo-
morphism, called zero.

In the next section, we shall discuss the homomorphisms of a module into
itself, and as a result we shall give further examples of modules which arise in
practice. Here we continue to tabulate the translation of basic properties of groups
to modules.

Let M be a module and N a submodule. We have the canonical additive
group-homomorphism

f:M > M/N

and one verifies trivially that it is a module-homomorphism.
Equally trivially, one verifies that f is universal in the category of homo-
morphisms of M whose kernel contains N.

If f*M — M' is a module-homomorphism, then its kernel and image are
submodules of M and M’ respectively (trivial verification).

Letf: M — M’ be a homomorphism. By the cokernel of f we mean the factor
module M'/Im f = M'/f(M). One may also mean the canonical homomorphism
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M' — M'/f(M) rather than the module itself. The context should make clear
which is meant. Thus the cokernel is a factor module of M'.

Canonical homomorphisms discussed in Chapter 1, §3 apply to modules
mutatis mutandis. For the convenience of the reader, we summarise these
homomorphisms:

Let N, N’ be two submodules of a module M. Then N + N’ is also a sub-
module, and we have an isomorphism

N/(Nn N')=~ (N + N')/N".
IfM > M' > M" are modules, then
M/M"))(M'/M") =~ M/M'.
If f:M — M’ is a module-homomorphism, and N’ is a submodule of M', then
f XN is a submodule of M and we have a canonical injective homomorphism
f:M[f~Y(N) > M'/N".
If fis surjective, then f is a module-isomorphism.

The proofs are obtained by verifying that all homomorphisms which ap-
peared when dealing with abelian groups are now A-homomorphisms of
modules. We leave the verification to the reader.

As with groups, we observe that a module-homomorphism which is bijective
is a module-isomorphism. Here again, the proof is the same as for groups,
adding only the observation that the inverse map, which we know is a group-
isomorphism, actually is a module-isomorphism. Again, we leave the verifica-
tion to the reader.

As with abelian groups, we define a sequence of module-homomorphisms

M5 MEM
to be exact if Im f = Ker g. We have an exact sequence associated with a
submodule N of a module M, namely
0->N->M-M/N-Q,

the map of N into M being the inclusion, and the subsequent map being the
canonical map. The notion of exactness is due to Eilenberg-Steenrod.
If a homomorphism u: N - M is such that

0-N5>M
is exact, then we also say that u is a monomorphism or an embedding. Dually,
if

N5SM-0

is exact, we say that u is an epimorphism.
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Algebras

There are some things in mathematics which satisfy all the axioms of a ring
except for the existence of a unit element. We gave the example of L'(R) in
Chapter II, §1. There are also some things which do not satisfy associativity,
but satisfy distributivity. For instance let R be a ring, and for x, y € R define
the bracket product

[x, y] = xy — yx.

Then this bracket product is not associative in most cases when R is not com-
mutative, but it satisfies the distributive law.

Examples. A typical example is the ring of differential operators with C*
coefficients, operating on the ring of C” functions on an open set in R”". The
bracket product

[Dy, D;] = Dy° D, — Dy ° D,

of two differential operators is again a differential operator. In the theory of Lie
groups, the tangent space at the origin also has such a bracket product.

Such considerations lead us to define a more general notion than a ring. Let
A be a commutative ring. Let E, F be modules. By a bilinear map

g:EXE—>F

we mean a map such that given x € E, the map y > g(x, y) is A-linear, and
given y € E, the map x — ¢g(x, y) is A-linear. By an A-algebra we mean a
module together with a bilinear map g: E X E — E. We view such a map as a
law of composition on E. But in this book, unless otherwise specified, we shall
assume that our algebras are associative and have a unit element.

Aside from the examples already mentioned, we note that the group ring
A[G] (or monoid ring when G is a monoid) is an A-algebra, also called the group
(or monoid) algebra. Actually the group algebra can be viewed as a special
case of the following situation.

Let f: A — B be a ring-homomorphism such that f(A) is contained in the
center of B, i.e., f(a) commutes with every element of B for every a € A. Then
we may view B as an A-module, defining the operation of A on B by the map

(a, b) = f(a)b

for all @ € A and b € B. The axioms for a module are trivially satisfied, and the
multiplicative law of composition B X B— B is clearly bilinear (i.e., A-bilinear).
In this book, unless otherwise specified, by an algebra over A, we shall always
mean a ring-homomorphism as above. We say that the algebra is finitely gen-
erated if B is finitely generated as a ring over f(A).

Several examples of modules over a polynomial algebra or a group algebra
will be given in the next section, where we also establish the language of
representations.
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§2. THE GROUP OF HOMOMORPHISMS

Let A be a ring, and let X, X’ be A-modules. We denote by Hom (X', X)
the set of A-homomorphisms of X’ into X. Then Hom (X", X) is an abelian
group, the law of addition being that of addition for mappings into an abelian
group.

If A is commutative then we can make Hom (X', X) into an A-module, by
defining af for a € 4 and fe Hom 4(X’, X) to be the map such that

(af Nx) = af (x).

The verification that the axioms for an A-module are satisfied istrivial. However,
if A is not commutative, then we view Hom ,(X’, X) simply as an abelian group:

We also view Hom as a functor. It is actually a functor of two variables,
contravariant in the first and covariant in the second. Indeed, let Y be an
A-module, and let

x4Lx
be an A-homomorphism. Then we get an induced homomorphism
Hom(f, Y): Hom (X, Y) » Hom,(X", Y)
(reversing the arrow!) given by
gegef.
This is illustrated by the following sequence of maps:
xLxsy.

The fact that Hom,(f, Y) is a homomorphism is simply a rephrasing of the
property (g, + g,)of = gy of + g, of, which is trivially verified. If f=id,
then composition with facts as an identity mapping on g, ie.goid = g.

If we have a sequence of A-homomorphisms

XI — X - XII,
then we get an induced sequence

Hom (X', Y) « Hom (X, Y) « Hom (X", Y).

Proposition 2.1. A sequence
XA5X5X 50
is exact if and only if the sequence
Hom (X', Y) « Hom (X, Y) « Hom (X", Y) < 0

is exact for all Y.
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Proof. This is an important fact, whose proof is easy. For instance,
suppose the first sequence is exact. If g: X" — Y is an A-homomorphism, its
image in Hom (X, Y) is obtained by composing g with the surjective map of
X on X”. If this composition is 0, it follows that g = 0 because X — X" is
surjective. As another example, consider a homomorphism g: X — Y such
that the composition

xAx5y

is 0. Then g vanishes on the image of . Hence we can factor g through the
factor module,

X/Im A

[\

X ——Y

Since X — X" is surjective, we have an isomorphism
X/ImAe X",
Hence we can factor g through X", thereby showing that the kernel of
Hom, (X', Y) « Hom (X, Y)
is contained in the image of
Hom,(X, Y) « Hom (X", Y).

The other conditions needed to verify exactness are left to the reader. So is the
converse.

We have a similar situation with respect to the second variable, but then
the functor is covariant. Thus if X is fixed, and we have a sequence of A-
homomorphisms

Y/ - Y - YI/’
then we get an induced sequence

Hom (X, Y’) » Hom (X, Y) - Hom (X, Y").

Proposition 2.2. A sequence
0-Y >Y->Y"
is exact if and only if
0 - Hom (X, Y') » Hom (X, Y) - Hom (X, Y")

is exact for all X.
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The verification will be left to the reader. It follows at once from the defini-
tions.
We note that to say that

0-Y->Y

is exact means that Y’ is embedded in Y, i.e. is isomorphic to a submodule of
Y. A homomorphism into Y’ can be viewed as a homomorphism into Y if we
have Y’ c Y. This corresponds to the injection

0 - Hom (X, Y') > Hom (X, Y).

Let Mod(4) and Mod(B) be the categories of modules over rings 4 and B,
and let F: Mod(A4) —» Mod(B) be a functor. One says that F is exact if F
transforms exact sequences into exact sequences. We see that the Hom
functor in either variable need not be exact if the other variable is kept fixed.
In a later section, we define conditions under which exactness is preserved.

Endomorphisms. Let M be an A-module. From the relations
@1+ 9o f=g1°f+g2°f
and its analogue on the right, namely
golfi+f)=g°fi+9gefa,

and the fact that there is an identity for composition, namely id,,;, we conclude
that Hom (M, M) is a ring, the multiplication being defined as composition
of mappings. If n is an integer =1, we can write f" to mean the iteration
of f with itself n times, and define f° to be id. According to the general
definition of endomorphisms in a category, we also write End,(M) instead of
Hom,(M, M), and we call End,(M) the ring of endomorphisms.

Since an A-module M is an abelian group, we see that Homz(M, M) (= set
of group-homomorphisms of M into itself) is a ring, and that we could have
defined an operation of 4 on M to be a ring-homomorphism 4 — HomzM, M).

Let A be commutative. Then M is a module over End,(M). If R is a subring
of End,(M) then M is a fortiori a module over R. More generally, let R be a
ring and let p: R — End,(M) be a ring homomorphism. Then p is called a
representation of R on M. This occurs especially if A = K is a field. The linear
algebra of representations of a ring will be discussed in Part III, in several
contexts, mostly finite-dimensional. Infinite-dimensional examples occur in anal-
ysis, but then the representation theory mixes algebra with analysis, and thus
goes beyond the level of this course.

Example. Let K be a field and let V be a vector space over K. Let
D: V — V be an endomorphism (K-linear map). For every polynomial
P(X) € K[X], P(X) = 2. a,X' with a; € K, we can define
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PD) = D aDi: V>V
as an endomorphism of V. The association P(X) + P(D) gives a representation
p: K[X] — Endg(V),

which makes V into a K[X]-module. It will be shown in Chapter IV that K[X]
is a principal ring. In §7 we shall give a general structure theorem for modules
over principal rings, which will be applied to the above example in the context
of linear algebra for finite-dimensional vector spaces in Chapter XIV, §3. Readers
acquainted with basic linear algebra from an undergraduate course may wish to
read Chapter XIV already at this point.

Examples for infinite-dimensional vector spaces occur in analysis. For
instance, let V be the vector space of complex-valued C* functions on R. Let
D = d/dt be the derivative (if ¢ is the variable). Then D: V — V is a linear map,
and C[X] has the representation p: C[X] — End(V) given by P — P(D). A
similar situation exists in several variables, when we let V be the vector space
of C* functions in n variables on an open set of R”. Then we let D; = 8/d¢; be
the partial derivative with respect to the i-th variable (i = 1, ..., n). We obtain
a representation

p: C[X,,..., X,] = Endc(V)

such that p(X;) = D;.

Example. Let H be a Hilbert space and let A be a bounded hermitian oper-
ator on A. Then one considers the homomorphism R[X] — R[A] C End(H),
from the polynomial ring into the algebra of endomorphisms of H, and one
extends this homomorphism to the algebra of continuous functions on the spec-
trum of A. Cf. my Real and Functional Analysis, Springer Verlag, 1993.

Representations form a category as follows. We define a morphism of a
representation p: R — End,(M) into a representation p': R — End,(M'), or in
other words a homomorphism of one representation of R to another, to be
an A-module homomorphism h: M — M’ such that the following diagram is
commutative for every a € R:

M—h’M'

p(a)l lp'(a)

M—— M

In the case when 4 is an isomorphism, then we may replace the above diagram
by the commutative diagram
End, (M)
p
R j[hl

RS End,(M")
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where the symbol [h] denotes conjugation by &, i.e. for f € End,(M ) we have
(Wf=hefeh™ '

Representations: from a monoid to the monoid algebra. Let G be a
monoid. By a representation of G on an A-module M, we mean a homomor-
phism p: G — End,(M) of G into the multiplicative monoid of End,(M). Then
we may extend p to a homomorphism of the monoid algebra

A[G] — End, (M),
by letting

It is immediately verified that this extension of pto A[G] is aring homomorphism,
coinciding with the given p on elements of G.

Examples: modules over a group ring. The next examples will follow a
certain pattern associated with groups of automorphisms. Quite generally, sup-
pose we have some category of objects, and to each object K there is associated
an abelian group F(K), functorially with respect to isomorphisms. This means
that if o: K — K’ is an isomorphism, then there is an associated isomorphism
F(0): F(K') = F(K') such that F(id) = id and F(o7) = F(o) ° F(7). Then the
group of automorphisms Aut(K) of an object operates on F(K); that is, we have
a natural homomorphism

Aut(K) — Aut(F(K)) given by o +— F(0).

Let G = Aut(K). Then F(K) (written additively) can be made into a module
over the group ring Z[G] as above. Given an element a = 2, a,0 € Z[G], with
a, € Z, and an element x € F(K), we define

ax = X a,F(o)x.
The conditions defining a module are trivially satisfied. We list several concrete
cases from mathematics at large, so there are no holds barred on the terminology.

Let K be a number field (i.e. a finite extension of the rational numbers). Let
G be its group of automorphisms. Associated with K we have the following
objects:

the ring of algebraic integers og;

the group of units o};

the group of ideal classes C(K);

the group of roots of unity pw(K).

Then G operates on each of those objects, and one problem is to determine the
structure of these objects as Z[G]-modules. Already for cyclotomic fields this
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determination gives rise to substantial theories and to a number of unsolved
problems.

Suppose that K is a Galois extension of k with Galois group G (see Chapter
VI). Then we may view KX itself as a module over the group ring k[G]. In Chapter
VI, §13 we shall prove that K is isomorphic to k[G] as module over k[G] itself.

In topology, one considers a space X, and a finite covering X. Then Aut(X/X,)
operates on the homology of X, so this homology is a module over the group
ring.

With more structure, suppose that X is a projective non-singular variety, say
over the complex numbers. Then to X we can associate:

the group of divisor classes (Picard group) Pic(X);

in a given dimension, the group of cycle classes or Chow group CHP(X);
the ordinary homology of X;

the sheaf cohomology in general.

If X is defined over a field K finitely generated over the rationals, we can
associate a fancier cohomology defined algebraically by Grothendieck, and func-
torial with respect to the operation of Galois groups.

Then again all these objects can be viewed as modules over the group ring
of automorphism groups, and major problems of mathematics consist in deter-
mining their structure. I direct the reader here to two surveys, which contain
extensive bibliographies.

[CCFT 91] P. Cassou-NoGUEs, T. CHINBURG, A. FROHLICH, M. J. TAYLOR,
L-functions and Galois modules, in L-functions and Arithmetic J. Coates
and M. J. Taylor (eds.), Proceedings of the Durham Symposium July 1989,
London Math, Soc. Lecture Note Series 153, Cambridge University Press
(1991), pp. 75-139

[La 82] S. LANG, Units and class groups in number theory and algebraic geometry,
Bull. AMS Vol. 6 No. 3 (1982), pp. 253-316

§3. DIRECT PRODUCTS AND
SUMS OF MODULES

Let A be a ring. Let {M,};.; be a family of modules. We defined their direct
product as abelian groups in Chapter I, §9. Given an element (x;);; of the direct
product, and a € A, we define a(x;) = (ax;). In other words, we multiply by an
element a componentwise. Then the direct product 1 |M; is an A-module. The
reader will verify at once that it is also a direct product in the category of
A-modules.
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Similarly, let
M = @ M"
iel
be their direct sum as abelian groups. We define on M a structure of A-module:
If (x;);c; is an element of M, i.e. a family of elements x; € M; such that x; = 0
for almost all i, and if a € A, then we define

a(x)ier = (@X)icr»

that is we define multiplication by a componentwise. It is trivially verified that
this is an operation of A on M which makes M into an A-module. If one refers
back to the proof given for the existence of direct sums in the category of abelian
groups, one sees immediately that this proof now extends in the same way to
show that M is a direct sum of the family {M;};.; as A-modules. (For instance,
the map

lj:Mj—')M

such that A{(x) has j-th component equal to x and i-th component equal to 0
for i # j is now seen to be an A-homomorphism.)

This direct sum is a coproduct in the category of A-modules. Indeed,
the reader can verify at once that given a family of A-homomorphisms
{fit M; — N}, the map f defined as in the proof for abelian groups is also an A-
isomorphism and has the required properties. See Proposition 7.1 of Chapter 1.

When 1 is a finite set, there is a useful criterion for a module to be a direct
product.

Proposition 3.1. Let M be an A-module and n an integer = 1. For each

i=1,...,nlet 9;: M - M be an A-homomorphism such that
Z‘pl__—ld and (pi°(Pj=0 l_fl#]
i=1

Then ¢} = @, for alli. Let M; = ¢(M), and let ¢ : M — [| M, be such that
o(x) = (@(x), - - ., Pu(x)).
Then ¢ is an A-isomorphism of M onto the direct product [ | M;.
Proof. For each j, we have
@;=@;oid = @0 ) ¢, = ¢;°9; = ¢},
i=1

thereby proving the first assertion. It is clear that ¢ is an A-homomorphism.
Let x be in its kernel. Since

x = i) = ¥ o)
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we conclude that x = 0, so ¢ is injective. Given elements y; e M; for each

i=1,...,nlet x=y, +---+y,. We obviously have ¢y;) =0 if i #j.
Hence

‘P;(x) = yj
for each’j = 1,..., n. This proves that ¢ is surjective, and concludes the proof

of our proposition.

We observe that when I is a finite set, the direct sum and the direct product
are equal.

Just as with abelian groups, we use the symbol @ to denote direct sum.

Let M be a module over a ring A4 and let S be a subset of M. By a linear
combination of elements of S (with coefficients in 4) one means a sum

Y a.x

xeS

where {a,} is a set of elements of A, almost all of which are equal to 0. These
elements a, are called the coefficients of the linear combination. Let N be
the set of all linear combinations of elements of S. Then N is a submodule of
M, for if

Yax and ) b.x

xeS x€eS

are two linear combinations, then their sum is equal to

Y (a, + box,

xeS

and if c € A, then

c( Zaxx) _ Y caux,

xeS xeS

and these elements are again linear combinations of elements of S. We shall call
N the submodule generated by S, and we call S a set of generators for N. We
sometimes write N = A{S). If S consists of one element x, the module generated
by x is also written Ax, or simply (x), and sometimes we say that (x) is a principal
module.

A module M is said to be finitely generated, or of finite type, or finite over
A, if it has a finite number of generators.

A subset S of a module M is said to be linearly independent (over A4) if when-
ever we have a linear combination

Y a.x

x€eS
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which is equal to 0, then a, = 0 for all xe S. If S is linearly independent and if
two linear combinations

Yax and ) b.x

are equal, then a, = b, for all xe S. Indeed, subtracting one from the other
yields Y’ (a, — b,)x = 0, whence a, — b, = 0 for all x. If S is linearly indepen-
dent we shall also say that its elements are linearly independent. Similarly, a
SJamily {x;};., of elements of M is said to be linearly independent if whenever we
have a linear combination
Z a;x; = 0,
iel
then a; = O for all i. A subset S (resp. a family {x;}) is called linearly dependent
if it is not linearly independent, i.e. if there exists a relation
Yax=0 rep. Y ax;=0
xeS iel
with not all a, (resp. a;) = 0. Warning. Let x be a single element of M which
is linearly independent. Then the family {x;};,-, ., such that x; = x for all i
is linearly dependent if n > 1, but the set consisting of x itself is linearly inde-
pendent.
Let M be an A-module, and let {M,},., be a family of submodules. Since
we have inclusion-homomorphisms

11,' : Mi - M
we have an induced homomorphism

which is such that for any family of elements (x;);;, all but a finite number of
which are 0, we have

l*((xi)) = Z Xi.

iel

If A, is an isomorphism, then we say that the family {M;},.; is a direct sum
decomposition of M. This is obviously equivalent to saying that every element
of M has a unique expression as a sum

2 x;

with x; € M;, and almost all x; = 0. By abuse of notation, we also write

M=@M,

in this case.
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If the family {M,} is such that every element of M has some expression as a
sum ) x; (not necessarily unique), then we write M = Y. M;. In any case, if
{M;} is an arbitrary family of submodules, the image of the homomorphism 4,
above is a submodule of M, which will be denoted by )’ M.

If M is a module and N, N’ are two submodules such that N + N' = M
and N n N’ = 0, then we have a module-isomorphism

MxN®N,

just as with abelian groups, and similarly with a finite number of submodules.
We note, of course, that our discussion of abelian groups is a special case
of our discussion of modules, simply by viewing abelian groups as modules
over Z. However, it seems usually desirable (albeit inefficient) to develop first
some statements for abelian groups, and then point out that they are valid
(obviously) for modules in general.
Let M, M’, N be modules. Then we have an isomorphism of abelian groups

Hom (M @ M’, N) & Hom (M, N) x Hom,(M’, N),

and similarly

Hom, (N, M x M')& Hom (N, M) x Hom (N, M’").

The first one is obtained as follows. Iff:M @ M’ — N is a homomorphism,
then finduces a homomorphism f; : M —» N and a homomorphism f, : M’ - N
by composing f with the injections of M and M’ into their direct sum re-
spectively:

M>M@{0lcMdM SN,
MS{0leMcMeM SN.
We leave it to the reader to verify that the association

S U f)

gives an isomorphism as in the first box. The isomorphism in the second box
is obtained in a similar way. Given homomorphisms

fl:N"*M
and

fz:N-’M’



132 MODULES 1, §3

we have a homomorphism f: N - M x M’ defined by
S(x) = (fi(x), f2(x)).
It is trivial to verify that the association

(fl’fZ) Hf

gives an isomorphism as in the second box.

Of course, the direct sum and direct product of two modules are isomorphic,
but we distinguished them in the notation for the sake of functoriality, and to
fit the infinite case, see Exercise 22.

Proposition 3.2. Let 0 > M’ LM5 M >0 be an exact sequence of
modules. The following conditions are equivalent:

1. There exists a homomorphism ¢ : M" — M such that g - ¢ = id.
2. There exists a homomorphism y : M — M’ such that y - f = id.

If these conditions are satisfied, then we have isomorphisms:
M = Im f® Ker ¢, M = Ker g @ Im o,
MxM@M.
Proof. Let us write the homomorphisms on the right:
M2 M 0.
Let xe M. Then

x = ¢(g(x))

is in the kernel of g, and hence M = Kerg + Im ¢.
This sum is direct, for if

xX=y+z

with yeKerg and zelm ¢, z = ¢(w) with we M”, and applying g yields
g(x) = w. Thus w is uniquely determined by x, and therefore z is uniquely
determined by x. Hence so is y, thereby proving the sum is direct.

The arguments concerning the other side of the sequence are similar and
will be left as exercises, as well as the equivalence between our conditions. When
these conditions are satisfied, the exact sequence of Proposition 3.2 is said to
split. One also says that s splits f and ¢ splits g.
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Abelian categories

Much in the theory of modules over a ring is arrow-theoretic. In fact, one
needs only the notion of kernel and cokernel (factor modules). One can axi-
omatize the special notion of a category in which many of the arguments are
valid, especially the arguments used in this chapter. Thus we give this axi-
omatization now, although for concreteness, at the beginning of the chapter,
we continue to use the language of modules. Readers should strike their own
balance when they want to slide into the more general framework.

Consider first a category @ such that Mor(E, F) is an abelian group for
each pair of objects E, F of @, satisfying the following two conditions:

AB 1. The law of composition of morphisms is bilinear, and there exists
a zero object 0, i.e. such that Mor(0, E) and Mor(E, 0) have precisely
one element for each object E.

AB 2. Finite products and finite coproducts exist in the category.

Then we say that @ is an additive category.
Given a morphism E L F in @, we define a kernel of S to be a morphism
E’ — E such that for all objects X in the category, the following sequence is
exact:
0 - Mor(X, E') - Mor(X, E) » Mor(X, F).

We define a cokernel for f'to be a morpﬁism F — F” such that for all objects X
in the category, the following sequence is exact:

0 — Mor(F", X) = Mor(F, X) = Mor(E, X).

It is immediately verified that kernels and cokernels are universal in a suitable
category, and hence uniquely determined up to a unique isomorphism if they
exist.

AB 3. Kernels and cokernels exist.

AB4. If f: E - F is a morphism whose kernel is 0, then f is the kernel
of its cokernel. If /. E — F is a morphism whose cokernel is 0,
then f is the cokernel of its kernel. A morphism whose kernel
and cokernel are 0 is an isomorphism.

A category @ satisfying the above four axioms is'called an abelian category.
In an abelian caegory, the group of morphisms is usually denoted by Hom,
so for two objects E, F we write

Mor(E, F) = Hom(E, F).
The morphisms are usually called homomorphisms. Given an exact sequence

0-M->M,
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we say that M’ is a subobject of M, or that the homomorphism of M’ into M is a
monomorphism. Dually, in an exact sequence

M->M' -0,

we say that M” is a quotient object of M, or that the homomorphism of M to
M" is an epimorphism, instead of saying that it is surjective as in the category of
modules. Although it is convenient to think of modules and abelian groups to
construct proofs, usually such proofs will involve only arrow-theoretic argu-
ments, and will therefore apply to any abelian category. However, all the abelian
categories we shall meet in this book will have elements, and the kernels and
cokernels will be defined in a natural fashion, close to those for modules, so
readers may restrict their attention to these concrete cases.

Examples of abelian categories. Of course, modules over a ring form an
abelian category, the most common one. Finitely generated modules over a
Noetherian ring form an abelian category, to be studied in Chapter X.

Let k be a field. We consider pairs (V, A) consisting of a finite-dimensional
vector space V over k, and an endomorphism A: V — V. By a homomorphism
(morphism) of such pairs f: (V, A) = (W, B) we mean a k-homomorphism
f: V— W such that the following diagram is commutative:

/

V——u

It is routinely verified that such pairs and the above defined morphisms form an
abelian category. Its elements will be studied in Chapter XIV.

Let k be a field and let G be a group. Let Mod,(G) be the category of finite-
dimensional vector spaces V over k, with an operation of G on V, i.e. a homo-
morphism G — Aut,(V). A homomorphism (morphism) in that category is a k-
homomorphism f: V — W such that f(ax) = af(x) forallx e Vanda € G. It
is immediate that Mod,(G) is an abelian category. This category will be studied
especially in Chapter X VIII.

In Chapter XX, §1 we shall consider the category of complexes of modules
over a ring. This category of complexes is an abelian category.

In topology and differential geometry, the category of vector bundles over
a topological space is an abelian category.

Sheaves of abelian groups over a topological space form an abelian category,
which will be defined in Chapter XX, §6.
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§4. FREE MODULES

Let M be a module over aring A and let S be a subset of M. We shall say that
S is abasis of M if S is not empty, if S generates M, and if S is linearly independent.
If S is a basis of M, then in particular M # {0} if A # {0} and every element of
M has a unique expression as a linear combination of elements of S. Similarly,
let {x;};.; be a non-empty family of elements of M. We say that it is a basis of
M if it is linearly independent and generates M.

If A is a ring, then as a module over itself, 4 admits a basis, consisting of the
unit element 1.

Let I be a non-empty set, and for each i€, let 4; = A, viewed as an A-

module. Let
F‘ = @ Ai'

iel

Then F admits a basis, which consists of the elements e; of F whose i-th com-
ponent is the unit element of 4;, and having all other components equal to O.

By afree module we shall mean a module which admits a basis, or the zero
module.

Theoremd.1. Let A be a ring and M a module over A. Let I be a non-empty
set, and let {x;};c; be a basis of M. Let N be an A-module, and let {y;};c,
be a family of elements of N. Then there exists a unique homomorphism
S:M — N such that f(x;) = y; for alli.

Proof. Let x be an element of M. There exists a unique family {a;};.; of
elements of A such that

x =) ax;.
iel

We define
fx) = Z a;yi.

It is then clear that fis a homomorphism satisfying our requirements, and
that it is the unique such, because we must have

f(x) = z a; f(x;).

Corollary 4.2. Let the notation be as in the theorem, and assume that {y;};.,
is a basis of N. Then the homomorphism f is an isomorphism, i.e. a module-
isomorphism.

Proof. By symmetry, there exists a unique homomorphism

g:N-M
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such that g(y;) = x; for all i, and fo g and g o f are the respective identity map-
pings.
Corollary 4.3. Two modules having bases whose cardinalities are equal are
isomorphic.
Proof. Clear.
We shall leave the proofs of the following statements as exercises.

Let M be a free module over A, with basis {x;};;, so that

M= P Ax;.

iel

Let a be a two sided ideal of A. Then aM is a submodule of M. Each ax; is a
submodule of Ax;. We have an isomorphism (of A-modules)

M/aM ~ P Ax;/ax;.

iel

Furthermore, each Ax;/ax; is isomorphic to A/a, as A-module.

Suppose in addition that A is commutative. Then A/a is a ring. Furthermore
M/aM is a free module over A/a, and each Ax;/ax; is free over Aja. If X;is the
image of x; under the canonical homomorphism

Ax; = Ax;fax;,
then the single element X; is a basis of Ax;/ax; over A/a.

All of these statements should be easily verified by the reader. Now let A be
an arbitrary commutative ring. A module M is called principal if there exists
an element x € M such that M = Ax. The map

a — ax (for a € A)

is an A-module homomorphism of A onto M, whose kernel is a left ideal a, and
inducing an isomorphism of A-modules

Ala=M.

Let M be a finitely generated module, with generators {v,,..., v,}. Let F
be a free module with basis {e,..., e,}. Then there is a unique surjective
homomorphism f: F — M such that f(e;) = v;. The kernel of fis a submodule
M,. Under certain conditions, M, is finitely generated (¢f. Chapter X, §1 on
Noetherian rings), and the process can be continued. The systematic study of
this process will be carried out in the chapters on resolutions of modules and
homology.
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Of course, even if M is not finitely generated, one can carry out a similar
construction, by using an arbitrary indexing set. Indeed, let{v;} (i € I) be a family
of generators. For each i, let F; be free with basis consisting of a single element
e;, so F; = A. Let F be the direct sum of the modules F; (i € I), as in Proposi-
tion 3.1. Then we obtain a surjective homomorphism f: F — M such that
f(e;) = v;. Thus every module is a factor module of a free module.

Just as we did for abelian groups in Chapter 1, §7, we can also define the
free module over a ring A generated by a non-empty set S. We let A(S) be the
set of functions ¢ : § — A such that ¢(x) = O for almostall x € S. If a € A and
x € §, we denote by ax the map ¢ such that ¢(x) = a and ¢(y) = 0 for y ¥ x.
Then as for abelian groups, given ¢ € A(S) there exist elements a; € A and
x; € § such that

e =ax; + - +a,x,.

It is immediately verified that the family of functions {8,} (x € §) such that
8(x) = 1 and 8,(y) = 0 for y # x form a basis for A(S). In other words, the ex-
pression of @ as D a;x; above is unique. This construction can be applied
when § is a group or a monoid G, and gives rise to the group algebra as in
Chapter 11, §5.

Projective modules

There exists another important type of module closely related to free modules,
which we now discuss.

Let A be a ring and P a module. The following properties are equivalent,
and define what it means for P to be a projective module.

P1. Given a homomorphism f: P - M” and surjective homomorphism
g:M > M", there exists a homomorphism h: P — M making the
following diagram commutative.

.

M "M" AO

9

P2. Every exact sequence 0 > M' - M” —» P — 0 splits.

P 3. There exists a module M such that P @ M is free, or in words, P is a
direct summand of a free module.

P4. The functor M — Hom ,(P, M) is exact.

We prove the equivalence of the four conditions.
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Assume P 1. Given the exact sequence of P 2, we consider the map f = id

in the diagram
/ lid

M'—— P——0

Then h gives the desired splitting of the sequence.

Assume P 2. Then represent P as a quotient of a free module (cf. Exercise 1)
F - P >0, and apply P 2 to this sequence to get the desired splitting, which
represents F as a direct sum of P and some module.

Assume P3. Since Hom,(X @ Y, M) = Hom (X, M) @ Hom (Y, M),
and since M — Hom (F, M) is an exact functor if F is free, it follows that
Hom ,(P, M) is exact when P is a direct summand of a free module, which proves
P4

Assume P 4. The proof of P 1 will be left as an exercise.

Examples. It will be proved in the next section that a vector space over a
field is always free, i.e. has a basis. Under certain circumstances, it is a theorem
that projective modules are free. In §7 we shall prove that a finitely generated
projective module over a principal ring is free. In Chapter X, Theorem 4.4 we
shall prove that such a module over a local ring is free; in Chapter XVI, Theo-
rem 3.8 we shall prove that a finite flat module over a local ring is free; and in
Chapter XXI, Theorem 3.7, we shall prove the Quillen-Suslin theorem that
if A = k[X,, ..., X,] is the polynomial ring over a field k, then every finite pro-
jective module over A is free.

Projective modules give rise to the Grothendieck group. Let A be a ring.
Isomorphism classes of finite projective modules form a monoid. Indeed, if P
is finite projective, let [P] denote its isomorphism class. We define

(Pl +[Q] = [P ® QI

This sum is independent of the choice of representatives P, Q in their class. The
conditions defining a monoid are immediately verified. The corresponding Groth-
endieck group is denoted by K(A).

We can impose a further equivalence relation that P is equivalent to P’ if
there exist finite free modules F and F' such that P € F is isomorphic to
P' @ F'. Under this equivalence relation we obtain another group denoted by
Ko(A). If A is a Dedekind ring (Chapter II, §1 and Exercises 13—19) it can be
shown that this group is isomorphic in a natural way with the group of ideal
classes Pic(A) (defined in Chapter II, §1). See Exercises 11, 12, 13. It is also a



1, §5 VECTOR SPACES 139

problem to determine Ky(A) for as many rings as possible, as explicitly as pos-
sible. Algebraic number theory is concerned with K(A) when A is the ring of
algebraic integers of a number field. The Quillen-Suslin theorem shows if A is
the polynomial ring as above, then Ky(A) is trivial.

Of course one can carry out a similar construction with all finite modules.
Let [M] denote the isomorphism class of a finite module M. We define the sum
to be the direct sum. Then the isomorphism classes of modules over the ring
form a monoid, and we can associate to this monoid its Grothendieck group.
This construction is applied especially when the ring is commutative. There are
many variations on this theme. See for instance the book by Bass, Algebraic
K-theory, Benjamin, 1968.

There is a variation of the definition of Grothendieck group as follows. Let
F be the free abelian group generated by isomorphism classes of finite modules
over a ring R, or of modules of bounded cardinality so that we deal with sets.
In this free abelian group we let I' be the subgroup generated by all elements

M] = [M'] = [M"]

for which there exists an exact sequence 0 — M' — M — M" — 0. The factor
group F/T is called the Grothendieck group K(R). We shall meet this group
again in §8, and in Chapter XX, §3. Note that we may form a similar Grothendieck
group with any family of modules such that M is in the family if and only if M’
and M" are in the family. Taking for the family finite projective modules, one
sees easily that the two possible definitions of the Grothendieck group coincide
in that case.

§56. VECTOR SPACES
A module over a field is called a vector space.

TheoremS.1. Let V be a vector space over a field K, and assume that
V # {0}. Let I be a set of generators of V over K and let S be a subset of T’
which is linearly independent. Then there exists a basis & of V such that
Sc®cT.

Proof. Let T be the set whose elements are subsets T of I" which contain S
and are linearly independent. Then ¥ is not empty (it contains S), and we
contend that T is inductively ordered. Indeed, if {T;} is a totally ordered subset
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of T (by ascending inclusion), then ( ) T; is again linearly independent and con-
tains S. By Zorn’s lemma, let ® be a maximal element of ¥. Then ® is linearly
independent. Let W be the subspace of V generated by 8. If W # V, there
exists some element x eI such that x¢ W. Then ® u {x} is linearly inde-
pendent, for given a linear combination

Y ayy + bx =0, a,, bek,

ye®

we must have b = 0, otherwise we get

x=—Yb layeW.

ye®

By construction, we now see that a, = O for all y e ®, thereby proving that
® v {x} is linearly independent, and contradicting the maximality of ®. It
follows that W = V, and furthermore that ® is not empty since V # {0}. This
proves our theorem.

If V is a vector space # {0}, then in particular, we see that every set of
linearly independent elements of V' can be extended to a basis, and that a basis
may be selected from a given set of generators.

Theorem 5.2. Let V be a vector space over a field K. Then two bases of V
over K have the same cardinality.

Proof. Let us first assume that there exists a basis of V with a finite
number of elements, say {v,,...,v,}, m = 1. We shall prove that any other
basis must also have m elements. For this it will suffice to prove: If w,,..., w,
are elements of V which are linearly independent over K, then n < m (for
we can then use symmetry). We proceed by induction. There exist elements
Cy, ..., Cyof K such that

1 Wy = CyUy + o0 + Cply,

and some c;, say c,, is not equal to 0. Then v, lies in the space generated
by wy, v,, ..., 0, over K, and this space must therefore be equal to V itself.
Furthermore, wy, v,, ..., v, are linearly independent, for suppose b,,..., b,
are elements of K such that

blwl + b2v2 + M +bmvm=0.

If b, # 0, divide by b, and express w, as a linear combination of v,, ..., v,,.
Subtracting from (1) would yield a relation of linear dependence among the
v;, which is impossible. Hence b, = 0, and again we must have all b, = 0
because the v; are linearly independent.
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Suppose inductively that after a suitable renumbering of the v;, we have
found w,, ..., w, (r < n) such that

Wi oo s W Upigs ooy U}
is a basis of V. We express w, ., as a linear combination
(2) wr+l=ch1+"'+crwr+cr+1vr+l+"'+cmvm

with ¢; € K. The coefficients of the v; in this relation cannot all be 0; otherwise
there would be a linear dependence among the w;. Say c,,, # 0. Using an
argument similar to that used above, we can replace v, , by w,, , and still have
a basis of V. This means that we can repeat the procedure until r = n, and
therefore that n < m, thereby proving our theorem.

We shall leave the general case of an infinite basis as an exercise to the
reader. [Hint: Use the fact that a finite number of elements in one basis is
contained in the space generated by a finite number of elements in another basis.]

If a vector space V admits one basis with a finite number of elements, say m,
then we shall say that V is finite dimensional and that m is its dimension. In
view of Theorem 5.2, we see that m is the number of elements in any basis
of V. If V = {0}, then we define its dimension to be 0, and say that V is
0-dimensional. We abbreviate “dimension” by “dim” or “dimg” if the
reference to K is needed for clarity.

When dealing with vector spaces over a field, we use the words subspace
and factor space instead of submodule and factor module.

Theorem 5.3. Let V be a vector space over a field K, and let W be a subspace.
Then

dimg V = dimg W + dimg V/W.
If -V — U is a homomorphism of vector spaces over K, then
dim V = dim Ker f + dim Im f.
Proof. The first statement is a special case of the second, taking for f the
canonical map. Let {u;};.; be a basis of Im f, and let {w;};., be a basis of

Ker f. Let {v;};.; be a family of elements of V' such that f(v;) = u; for each
iel. We contend that

{v;, Wj}l’el.je.l

is a basis for V. This will obviously prove our assertion.
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Let x be an element of V. Then there exist elements {a;};.; of K almost
all of which are 0 such that

() =} au

iel
Hence f(x — Y a;v;) = f(x) — Y, a; f(v;) = 0. Thus
x =Y av;

is in the kernel of f, and there exist elements {b;} ;. ; of K almost all of which are
0 such that

X — Zaivi = Zblwl

From this we see that x = ) a;v; + Y, b;w;, and that {v;,,w;} generates V.
It remains to be shown that the family {v;, w;} is linearly independent. Suppose
that there exist elements c;, d; such that

0 = Zcivi + Zdjwl
Applying fyields
0= Z ¢ f(v) = Z Cil;,

whence all ¢; = 0. From this we conclude at once that alld; = 0, and hence that
our family {v;, w;} is a basis for V over K, as was to be shown.

Corollary 5.4. Let V be a vector space and W a subspace. Then
dim W £ dim V.

If V is finite dimensional and dim W = dim V then W = V.
Proof. Clear.

§6. THE DUAL SPACE AND DUAL MODULE

Let E be a free module over a commutative ring A. We view A as a free
module of rank 1 over itself. By the dual module EV of E we shall mean the
module Hom(E, A). Its elements will be called functionals. Thus a functional
on E is an A-linear map f: E — A. If x € E and f € EV, we sometimes denote
f(x) by {x, f). Keeping x fixed, we see that the symbol (x, f) as a function of
f€ EV is A-linear in its second argument, and hence that x induces a linear map
on EVY, which is 0 if and only if x = 0. Hence we get an injection E — EVV
which is not always a surjection.
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Let {x;};c; be a basis of E. For each i € I let f; be the unique functional such
that f(x;) = §;; (in other words, 1 if i = j and 0 if i # j). Such a linear map
exists by general properties of bases (Theorem 4.1).

Theorem 6.1. Ler E be a finite free module over the commutative ring A,
of finite dimension n. Then E" is also free, and dim EV = n. If {x,, ..., x,}
is a basis for E, and f; is the functional such that f,(x;) = §;, then {fir - fu}
is a basis for EV.

Proof. Letfe EVandleta;, = f(x;) i = 1,..., n). We have

flexy + -+ cpxy) = o f(x) + - + 0, f(x,).

Hence f = a,f; + -+ - + a,f,, and we see that the f; generate EV. Furthermore,
they are linearly independent, for if

bify + -+ b,f, =0
with b; € K, then evaluating the left-hand side on x; yields
bifi(x;) = 0,
whence b; = 0 for all i. This proves our theorem.

Given a basis {x;} ({ = 1,..., n) as in the theorem, we call the basis {f;}
the dual basis. In terms of these bases, we can express an element A of E with
coordinates (a,, . . ., a,), and an element B of E ¥ with coordinates (b, . . ., b,),
such that

A=apx + -+ oapx, B =bfi+ -+ by
Then in terms of these coordinates, we see that
(A, B) =ab; + - +anbn=A B
is the usual dot product of n-tuples.
Corollary 6.2. When E is free finite dimensional, then the map E — EVV

which to each x € V associates the functional f > (x, ) on E" is an isomorphism
of E onto EVV.

Proof. Note that since {f, ..., f,} is a basis for EV, it follows from the
definitions that {x,, ..., x,} is the dual basis in E, so E = EVV.
Theorem 6.3. Let U, V, W be finite free modules over the commutative ring
A, and let
0->WaSVSU—0
be an exact sequence of A-homomorphisms. Then the induced sequence

0 — Hom,(U, A) = Homy,(V, A) = Homy(W, A) — 0
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ie.
0->UV> Vo> W—>0

is also exact.

Proof. This is a consequence of P2, because a free module is projective.

We now consider properties which have specifically to do with vector spaces,
because we are going to take factor spaces. So we assume that we deal with
vector spaces over a field K.

Let V, V' be two vector spaces, and suppose given a mapping

VxV ->K

denoted by
(x, XY~ {x, x>

for x e V and x’ € V'. We call the mapping bilinear if for each x € V' the function
X"+ {x, x"> is linear, and similarly for each x’ e V' the function x — {x, x') is
linear. An element x € V is said to be orthogonal (or perpendicular) to a subset
S of V'if {(x,x'> =0 for all x'€S’. We make a similar definition in the
opposite direction. It is clear that the set of x € V orthogonal to S’ is a sub-
space of V.

We define the kernel of the bilinear map on the left to be the subspace of V
which is orthogonal to V’, and similarly for the kernel on the right.

Given a bilinear map as above,

VxV ->K,

let W’ be its kernel on the right and let W be its kernel on the left. Let x’ be
an element of V'. Then x’ gives rise to a functional on V, by the rule x — (x, x'),
and this functional obviously depends only on the coset of x’ modulo W’; in
other words, if x| = x, (mod W’), then the functionals x— {(x, x> and
x> {x, x5 ) are equal. Hence we get a homomorphism

V-V
whose kernel is precisely W' by definition, whence an injective homomorphism
00— V/W - VY.

Since all the functionals arising from elements of V' vanish on W, we can view
them as functionals on V/W, i.e. as elements of (V/W)". So we actually get an
injective homomorphism

0— V/W — (V/W) .
One could give a name to the homomorphism

g:V -y
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such that
{x, X = {x, g(x')>

forallx e V and x" € V'. However, it will usually be possible to describe it by an
arrow and call it the induced map, or the natural map. Giving a name to it
would tend to make the terminology heavier than necessary.

Theorem 6.4. Let V X V' — K be a bilinear map, let W, W' be its kernels
on the left and right respectively, and assume that V' /W' is finite dimensional.
Then the induced homomorphism V' /W' — (V/W) is an isomorphism.

Proof. By symmetry, we have an induced homomorphism
V/W— (V//W")Y
which is injective. Since
dim(V’/W') = dim V'/W’
it follows that V/W is finite dimensional. From the above injective homomor-
phism and the other, namely
0— V//W — (V/W)',
we get the inequalities

dim V/W £ dim V'/W’

and
dim V//W’' < dim V/W,

whence an equality of dimensions. Hence our homomorphisms are surjective
and inverse to each other, thereby proving the theorem.

Remark 1. Theorem 6.4 is the analogue for vector spaces of the duality
Theorem 9.2 of Chapter I.

Remark 2. Let A be a commutative ring and let E be an A-module. Then
we may form two types of dual:

E" = Hom(E, Q/Z), viewing E as an abelian group;
EV = Homy(E, A), viewing E as an A-module.

Both are called dual, and they usually are applied in different contexts. For
instance, EV will be considered in Chapter XIII, while E* will be considered in
the theory of injective modules, Chapter XX, §4. For an example of dual module
EV see Exercise 11. If by any chance the two duals arise together and there is
need to distinguish between them, then we may call E* the Pontrjagin dual.
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Indeed, in the theory of topological groups G, the group of continuous homo-
morphisms of G into R/Z is the classical Pontrjagin dual, and is classically
denoted by G*, so I find the preservation of that terminology appropriate.

Instead of R/Z one may take other natural groups isomorphic to R/Z. The
most common such group is the group of complex numbers of absolute value 1,
which we denote by S!. The isomorphism with R/Z is given by the map

X > e2m’x.
Remark 3. A bilinear map V X V— K for which V' = Vis called a bilinear
form. We say that the form is non-singular if the corresponding maps
V>V and V- (V)

are isomorphisms. Bilinear maps and bilinear forms will be studied at greater
length in Chapter XV. See also Exercise 33 of Chapter XIII for a nice example.

§7. MODULES OVER PRINCIPAL RINGS

Throughout this section, we assume that R is a principal entire ring. All modules
are over R, and homomorphisms are R-homomorphisms, unless otherwise specified.

The theorems will generalize those proved in Chapter I for abelian groups.
We shall also point out how the proofs of Chapter I can be adjusted with sub-
stitutions of terminology so as to yield proofs in the present case.

Let F be a free module over R, with a basis {x;};.;. Then the cardinality of
I is uniquely determined, and is called the dimension of F. We recall that this
is proved, say by taking a prime element p in R, and observing that F/pF is a
vector space over the field R/pR, whose dimension is precisely the cardinality
of 1. We may therefore speak of the dimension of a free module over R.

Theorem 7.1. Let F be a free module, and M a submodule. Then M is free,
and its dimension is less than or equal to the dimension of F.

Proof. For simplicity, we give the proof when F has a finite basis {x;},
i=1,...,n Let M, be the intersection of M with (x,, ..., x,), the module
generated by x,, ..., x,. Then M, = M n (x,) is a submodule of (x,), and is
therefore of type (a,x,) with some a, € R. Hence M, is either 0 or free, of di-
mension 1. Assume inductively that M, is free of dimension < r. Let a be
the set consisting of all elements a € R such that there exists an element x e M
which can be written

x=bx; + -+ b,x, + ax,,,
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with b;e R. Then a is obviously an ideal, and is principal, generated say by an
elementa,,,. Ifa,,, = 0,then M,,, = M, and we are done with the inductive
step. If a,.; # 0, let we M, , be such that the coefficient of w with respect
to X,,, I8 a,+,. If xe M, then the coefficient of x with respect to x, . is
divisible by a,,;, and hence there exists c € R such that x — cw lies in M,.
Hence

Mr+l = Mr + (W)

On the other hand, it is clear that M, N (w)is 0, and hence that this sum is direct,
thereby proving our theorem. (For the infinite case, see Appendix 2, §2.)

Corollary 7.2. Let E be a finitely generated module and E' a submodule.
Then E' is finitely generated.

Proof. We can represent E as a factor module of a free module F with a
finite number of generators: If v, ..., v, are generators of E, we take a free
module F with basis {x,, ..., x,} and map x; on v;. The inverse image of E' in F
is a submodule, which is free, and finitely generated, by the theorem. Hence
E' is finitely generated. The assertion also follows using simple properties of
Noetherian rings and modules.

If one wants to translate the proofs of Chapter I, then one makes the
following definitions. A free 1-dimensional module over R is called infinite
cyclic. An infinite cyclic module is isomorphic to R, viewed as module over
itself. Thus every non-zero submodule of an infinite cyclic module is infinite
cyclic. The proof given in Chapter I for the analogue of Theorem 7.1 applies
without further change.

Let E be a module. We say that E is a torsion module if given x € E, there
exists a € R, a # 0, such that ax = 0. The generalization of finite abelian group
is finitely generated torsion module. An element x of E'is called a torsion element
if there exists a€ R, a # 0, such that ax = 0.

Let E be a module. We denote by E,,, the submodule consisting of all torsion
elements of E, and call it the torsion submodule of E. If E,, = 0, we say that
E is torsion free.

Theorem 7.3. Let E be finitely generated. Then E[E,,, is free. There exists
a free submodule F of E such that E is a direct sum

E=E,©®F.
The dimension of such a submodule F is uniquely determined.

Proof. We first prove that E/E,, is torsion free. If x € E, let x denote its
residue class mod E,,,. Let b € R, b # 0 be such that bx = 0. Then bx € E,,,
and hence there exists ¢ € R, ¢ # 0, such that cbx = 0. Hence x € E,;, and
X = 0, thereby proving that E/E,,, is torsion free. It is also finitely generated.
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Assume now that M is a torsion free module which is finitely generated. Let
{vy,..., v,} be a maximal set of elements of M among a given finite set of
generators {y;, ..., y,,} such that {v,,..., v,} is linearly independent. If y is
one of the generators, there exist elements a, by, ..., b, € R not all 0, such that

ay + byv, +--- + b,v, = 0.

Then a # 0 (otherwise we contradict the linear independence of vy, ..., v,).
Hence ay lies in (vy,...,v,). Thus for each j=1,..., m we can find a;€eR,
a; # 0,such that q;y; lies in (v,, ..., v,). Leta = a, - - - a,, be the product. Then
aM is contained in (vy, ..., v,), and a # 0. The map

X ax

is an injective homomorphism, whose image is contained in a free module.
This image is isomorphic to M, and we conclude from Theorem 7.1 that M is
free, as desired.

To get the submodule F we need a lemma.

Lemma 7.4. Let E, E' be modules, and assume that E' is free. Letf:E — E'
be a surjective homomorphism. Then there exists a free submodule F of E such
that the restriction of f to F induces an isomorphism of F with E', and such that
E=F@®Kerf

Proof. Let {xi};.; beabasis of E'. For eachi, let x; be an element of E such
that f(x;) = x;. Let F be the submodule of E generated by all the elements x;,
iel. Then one sees at once that the family of elements {x;};.; is linearly inde-
pendent, and therefore that F is free. Given x € E, there exist elements g; € R
such that

f(x) = Z a;x;.

Then x — ) a;x; lies in the kernel of f, and therefore E = Ker f + F. It is clear
that Ker f n F = 0, and hence that the sum is direct, thereby proving the lemma.

We apply the lemma to the homomorphism E — E/E,,, in Theorem 7.3 to
get our decomposition E = E, . @ F. The dimension of F is uniquely determined,
because F is isomorphic to E/E,,, for any decomposition of E into a direct sum
as stated in the theorem.

The dimension of the free module F in Theorem 7.3 is called the rank of E.

In order to get the structure theorem for finitely generated modules over R,
one can proceed exactly as for abelian groups. We shall describe the dictionary
which allows us to transport the proofs essentially without change.

Let E be a module over R. Let x € E. The map a+ ax is a homomorphism
of R onto the submodule generated by x, and the kernel is an ideal, which is
principal, generated by an element me R. We say that m is a period of x. We
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note that m is determined up to multiplication by a unit (if m # 0). An element
ceR,c # 0,is said to be an exponent for E (resp. for x) if cE = 0 (resp. cx = 0).

Let p be a prime element. We denote by E(p) the submodule of E consisting
of all elements x having an exponent which is a power p" (r = 1). A p-submodule
of E is a submodule contained in E(p).

We select once and for all a system of representatives for the prime elements
of R (modulo units). For instance, if R is a polynomial ring in one variable over
a field, we take as representatives the irreducible polynomials with leading
coeflicient 1.

Letme R,m # 0. Wedenote by E,, the kernel of the map x — mx. It consists
of all elements of E having exponent m.

A module E is said to be cyclic if it is isomorphic to R/(a) for some element
a € R. Without loss of generality if a # 0, one may assume that a is a product of
primes in our system of representatives, and then we could say that a is the order
of the module.

Letr,,...,r;beintegers = 1. A p-module E is said to be of type

", ...,p")

if it is isomorphic to the product of cyclic modules R/(p™) (i=1,...,s). Ifp
is fixed, then one could say that the module is of type (ry, . .., r,) (relative to p).

All the proofs of Chapter I, §8 now go over without change. Whenever we
argue on the size of a positive integer m, we have a similar argument on the
number of prime factors appearing in its prime factorization. If we deal with a
prime power p”, we can view the order as being determined by r. The reader
can now check that the proofs of Chapter I, §8 are applicable.

However, we shall develop the theory once again without assuming any
knowledge of Chapter I, §8. Thus our treatment is self-contained.

Theorem 7.5. Let E be a finitely generated torsion module # 0. Then E is
the direct sum

E = @D E(p),
14
taken over all primes p such that E(p) # 0. Each E(p) can be written as a direct
sum
E(p) = R(p") @ --- ® RAp™)
with1 £ v, £--- £ v,. The sequence v, ..., v, is uniquely determined.

Proof. Letabean exponentfor E,and suppose thata = bc with(b, ¢) = (1).
Let x, y € R be such that

1 =xb+ yc
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We contend that E = E, @ E.. Our first assertion then follows by induction,
expressing a as a product of prime powers. Let ve E. Then

v = xbv + ycv.

Then xbv € E_ because cxbv = xav = 0. Similarly, ycv € E,. FinallyE,nE, =0,
as one sees immediately. Hence E is the direct sum of E, and E..

We must now prove that E(p) is a direct sum as stated. If y;, ..., y, are
elements of a module, we shall say that they are independent if whenever we have
a relation

@Yy + e+ Q=0

with a; € R, then we must have a;y; = 0 for all i. (Observe that independent
does not mean linearly independent.) We see at once that y,, ..., y, are inde-
pendent if and only if the module (y,, ..., y,,) has the direct sum decomposition

(yl”ym)=(yl)@@(ym)

in terms of the cyclic modules (y,),i = 1,...,m.
We now have an analogue of Lemma 7.4 for modules having a prime power
exponent.

Lemma 7.6. Let E be a torsion module of exponent p" (r = 1) for some prime
element p. Let x, € E be an element of period p. Let E = E/(x,). Let
V15 - -5 Jm be independent elements of E. Then for each i there exists a repre-
sentative y; € E of y;, such that the period of y; is the same as the period of J;.
The elements x,, yy, ..., y, are independent.

Proof. Let y € E have period p" for somen > 1. Let y be a representative of
yin E. Then p"y € (x,), and hence

p'y = p'ex,, ceR,pkec,

for some s < r. If s = r, we see that y has the same period as y. If s < r, then
p’cx, has period p"™*, and hence y has period p"*"~5. We must have

n+r—s=sr,
because p” is an exponent for E. Thus we obtain n < s, and we see that
y — p*"exy

is a representative for y, whose period is p".

Let y; be a representative for y; having the same period. We prove that
X1, Y1,-- -, Ymare independent. Suppose that q, a,,.. ., a, € R are elements such
that

ax, +a;y; + -+ a,y, = 0.
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Then _ _
a1yy + -+ apym = 0.

By hypothesis, we must have a;j; = 0 for each i. If p"i is the period of y;, then
p" divides a;. We then conclude that a;y; = 0 for each i, and hence finally
that ax, = 0, thereby proving the desired independence.

To get the direct sum decomposition of E(p), we first note that E(p) is
finitely generated. We may assume without loss of generality that E = E(p).
Let x, be an element of E whose period p" is such that r, is maximal. Let
E = E/(x,). We contend that dim E,, as vector space over R/pR is strictly less
than dim E,. Indeed, if y,, ..., y,, are linearly independent elements of E,
over R/pR, then Lemma 7.6 implies that dim E, = m + 1 because we can always
find an element of (x,) having period p, independent of y,, ..., y,,. Hence
dim E, < dim E,. We can prove the direct sum decomposition by induction.
If E # 0, there exist elements X,, ..., X, having periods p"?, ..., p" respectively,
such that r, = -+ - = r,. By Lemma 7.6, there exist representatives x,, ..., X,
in E such that x; has period p” and x,, ..., x, are independent. Since p" is such
that r, is maximal, we have r, = r,, and our decomposition is achieved.

The uniqueness will be a consequence of a more general uniqueness theorem,
which we state next.

Theorem7.7. Let E be a finitely generated torsion module, E 3 0. Then
E is isomorphic to a direct sum of non-zero factors

where qy, .. ., q, are non-zero elements of R, and q,|q,|- - - |q,. The sequence
of ideals (q,), - . ., (q,) is uniquely determined by the above conditions.

Proof. Using Theorem 7.5, decompose E into a direct sum of p-submodules,
say E(p,) ® --- ® E(p,), and then decompose each E(p,) into a direct sum of
cyclic submodules of periods pj¥. We visualize these symbolically as described
by the following diagram:

E(py): ryy Sryp S
E(py): ryy Srypp -
E(p): ry Srp =-

A horizontal row describes the type of the module with respect to the prime at
the left. The exponents r;; are arranged in increasing order for each fixed
i=1,...,1 Weletgq,...,q, correspond to the columns of the matrix of
exponents, in other words

— pflipr21 r
q, = py'p?' Pt

— nl12pr22 ri2
q, = pY'*’p?*--- pi?,
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The direct sum of the cyclic modules represented by the first column is then
isomorphic to R/(q,), because, as with abelian groups, the direct sum of cyclic
modules whose periods are relatively prime is also cyclic. We have a similar
remark for each column, and we observe that our proof actually orders the q;
by increasing divisibility, as was to be shown.

Now for uniqueness. Let p be any prime, and suppose that E = R/(pb) for
some be R, b # 0. Then E,, is the submodule bR/(pb), as follows at once from
unique factorization in R. But the kernel of the composite map

R — bR — bR/(pb)
is precisely (p). Thus we have an isomorphism
R/(p) = bR/(pb).

Let now E be expressed as in the theorem, as a direct sum of r terms. An
element

U=Ul@"'®vr’ vieR/(qi)

isin E, if and only if pv; = Ofor alli. Hence E, is the direct sum of the kernel of
multiplication by p in each term. But E, is a vector space over R/(p), and its
dimension is therefore equal to the number of terms R/(g;) such that p divides gq;.

Suppose that p is a prime dividing q,, and hence g; foreachi = 1,...,r. Let
E have a direct sum decomposition into d terms satisfying the conditions of the
theorem, say

E = R/Aq}) & - & R/(q))-
Then p must divide at least r of the elements g, whence r < s. By symmetry,
r = s, and p divides g; for all j.
Consider the module pE. By a preceding remark, if we write q; = pb;, then

PE = R/(b;) ® --- @ R/(b)),

and b,|---|b,. Some of the b; may be units, but those which are not units
determine their principal ideal uniquely, by induction. Hence if

(by) =+ =(b) =1
but (b;, ;) # (1), then the sequence of ideals

(bj-*'l)’ e (br)
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is uniquely determined. This proves our uniqueness statement, and concludes
the proof of Theorem 7.7.

The ideals (q,), . . ., (g,) are called the invariants of E.

For one of the main applications of Theorem 7.7 to linear algebra, see Chapter
XV, §2.

The next theorem is included for completeness. It is called the elementary
divisors theorem.

Theorem 7.8. Let F be a free module over R, and let M be a finitely generated
submodule + 0. Then there exists a basis ® of F, elements e,, . . ., e, in this
basis, and non-zero elements a,, . . ., a,, € R such that:

(i) The elements ae,, . . ., a,,e,, form a basis of M over R.
(ii) We have a;la;, fori=1,...,m — 1.

The sequence of ideals (a,), . . ., (a,,) is uniquely determined by the preceding
conditions.

Proof. Write a finite set of generators for M as linear combination of a finite
number of elements in a basis for F. These elements generate a free submodule
of finite rank, and thus it suffices to prove the theorem when F has finite rank,
which we now assume. We let n = rank(F).

The uniqueness is a corollary of Theorem 7.7. Suppose we have a basis as
in the theorem. Say 4, ..., a, are units, and so can be taken to be = 1, and
agy; = q; with q,q;| ... | g, non-units. Observe that F/M = F is a finitely
generated module over R, having the direct sum expression

F/M = F =~ @ (R/q;R)e; ® free module of rank n — (r + s)
=

where a bar denotes the class of an element of F mod M. Thus the direct sum
overj = 1,..., ris the torsion submodule of F, whence the elements ¢, .. .,
g, are uniquely determined by Theorem 7.7. We have r + s = m, so the rank
of F/M is n — m, which determines m uniquely. Then s = m — r is uniquely
determined as the number of units among a,, . . ., a,,. This proves the uniqueness
part of the theorem. Next we prove existence.

Let A be a functional on F, in other words, an element of Homg(F, R). We
let J, = A(M). Then J, is an ideal of R. Select A, such that A,(M) is maximal
in the set of ideals {/,}, that is to say, there is no properly larger ideal in the
set {J,}.

Let A,(M) = (a,;). Then a, # 0, because there exists a non-zero element of
M, and expressing this element in terms of some basis for F over R, with some
non-zero coordinate, we take the projection on this coordinate to get a func-
tional whose value on M is not 0. Let x, € M be such that 4,(x;) = a;. For
any functional g we must have g(x,) € (a;) [immediate from the maximality of
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Ay(M)]. Writing x, in terms of any basis of F, we see that its coefficients must
all be divisible by a,. (If some coefficient is not divisible by a,, project on this
coefficient to get an impossible functional.) Therefore we can write x; = a,e,
with some element e, € F.

Next we prove that F is a direct sum

F = Re, @ Ker 4,.

Since 4,(e,) = 1, it is clear that Re; N Ker 4, = 0. Furthermore, given x e F
we note that x — A,(x)e, is in the kernel of 1,. Hence F is the sum of the in-
dicated submodules, and therefore the direct sum.

We note that Ker A, is free, being a submodule of a free module (Theorem
7.1). We let

Fy=Keri;, and M, =M N Ker 4,.
We see at once that M = Rx; © M,.

Thus M, is a submodule of F, and its dimension is one less than the dimension
of M. From the maximality condition on 4,(M), it follows at once that for any
functional A on F,, the image A(M) will be contained in 4,(M) (because otherwise,
a suitable linear combination of functionals would yield an ideal larger than
(a,)). We can therefore complete the existence proof by induction.

In Theorem 7.8, we call the ideals (a,), . . ., (a,,) the invariants of M in F.
For another characterization of these invariants, see Chapter XIII, Proposition
4.20.

Example. First, see examples of situations similar to those of Theorem 7.8
in Exercises 5, 7, and 8, and for Dedekind rings in Exercise 13.

Example. Another way to obtain a module M as in Theorem 7.8 is as
a module of relations. Let W be a finitely generated module over R, with genera-
tors wy,..., w, By a relation among {w;,..., w,} we mean an element
(a;, ..., a,) € R" such that Zaiwi = 0. The set of such relations is a sub-
module of R”, to which Theorem 7.8 may be applied.

It is also possible to formulate a proof of Theorem 7.8 by considering M as
a submodule of R”, and applying the method of row and column operations to
get a desired basis. In this context, we make some further comments which may
serve to illustrate Theorem 7.8. We assume that the reader is acquainted with
matrices over a ring. By row operations we mean: interchanging two rows;
adding a multiple of one row to another; multiplying a row by a unit in the ring.
We define column operations similarly. These row and column operations
correspond to multiplication with the so-called elementary matrices in the ring.

Theorem 7.9. Assume that the elementary matrices in R generate GL,(R).
Let (x;;) be a non-zero matrix with components in R. Then with a finite
number of row and column operations, it is possible to bring the matrix to
the form
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al 0 - . . P 0
0 a 0
0 a,, 0
0 -0 0
0 . v . . o 0
witha, - - - a, # 0and a, |ay| - - - | ap.

We leave the proof for the reader. Either Theorem 7.9 can be viewed as
equivalent to Theorem 7.8, or a direct proof may be given. In any case, Theorem
7.9 can be used in the following context. Consider a system of linear equations

C11 X% + -0+ CinXn =0

cpXy + 0+ cppx, = 0.

with coefficients in R. Let F be the submodule of R” generated by the vectors
X = (xq, ..., x,) which are solutions of this system. By Theorem 7.1, we know
that F is free of dimension = n. Theorem 7.9 can be viewed as providing a
normalized basis for F in line with Theorem 7.8.

Further example. As pointed out by Paul Cohen, the row and column
method can be applied to modules over a power series ring o[[X]], where o is
a complete discrete valuation ring. Cf. Theorem 3.1 of Chapter 5 in my Cyclo-
tomic Fields I and 11 (Springer Verlag, 1990). For instance, one could pick o it-
self to be a power series ring k[[T]] in one variable over a field k, but in the
theory of cyclotomic fields in the above reference, o is taken to be the ring of
p-adic integers. On the other hand, George Bergman has drawn my attention to
P. M. Cohn’s ‘‘On the structure of GL, of a ring,”” IHES Publ. Math. No. 30
(1966), giving examples of principal rings where one cannot use row and column
operations in Theorem 7.9.

§8. EULER-POINCARE MAPS

The present section may be viewed as providing an example and application
of the Jordan-Hoélder theorem for modules. But as pointed out in the examples
and references below, it also provides an introduction for further theories.

Again let A be a ring. We continue to consider A-modules. Let I' be an
abelian group, written additively. Let ¢ be a rule which to certain modules
associates an element of I, subject to the following condition:
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If0 > M - M — M"” — 0 is exact, then o(M) is defined if and only if p(M’)
and o(M") are defined, and in that case, we have

P(M) = o(M") + ¢(M").
Furthermore ¢(0) is defined and equal to 0.

Such a rule ¢ will be called an Euler-Poincaré mapping on the category of
A-modules. If M’ is isomorphic to M, then from the exact sequence

0O-M-M->0-0

we conclude that p(M’) is defined if ¢(M) is defined, and that ¢(M') = ¢(M).
Thus if (M) is defined for a module M, ¢ is defined on every submodule and
factor module of M. In particular, if we have an exact sequence of modules

MI — M — MII

and if p(M’) and @(M") are defined, then so is ¢(M), as one sees at once by
considering the kernel and image of our two maps, and using the definition.

Examples. We could let 4 = Z, and let ¢ be defined for all finite abelian
groups, and be equal to the order of the group. The value of ¢ is in the multi-
plicative group of positive rational numbers.

As another example, we consider the category of vector spaces over a field k.
We let ¢ be defined for finite dimensional spaces, and be equal to the dimension.
The values of ¢ are then in the additive group of integers.

In Chapter XV we shall see that the characteristic polynomial may be con-
sidered as an Euler-Poincaré map.

Observe that the natural map of a finite module into its image in the Groth-
endieck group defined at the end of §4 is a universal Euler-Poincaré mapping.
We shall develop a more extensive theory of this mapping in Chapter XX, §3.

If M is a module (over a ring A), then a sequence of submodules
M=M,oM,>---o2M, =0

is also called a finite filtration, and we call r the length of the filtration. A module
M is said to be simple if it does not contain any submodule other than 0 and M
itself, and if M # 0. A filtration is said to be simple if each M;/M,, , is simple.
The Jordan-Holder theorem asserts that two simple filtrations of a module are
equivalent.

A module M is said to be of finite length if it is 0 or if it admits a simple
(finite) filtration. By the Jordan-Holder theorem, the length of such a simple
filtration is the uniquely determined, and is called the length of the module. In
the language of Euler characteristics, the Jordan-Holder theorem can be re-
formulated as follows:
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Theorem 8.1. Let ¢ be a rule which to each simple module associates an
element of a commutative group T, and such that if M ~ M’ then

o(M) = o(M’).

Then ¢ has a unique extension to an Euler-Poincaré mapping defined on all
modules of finite length.

Proof. Given a simple filtration
M=M1 DMzD"‘DMr:O
we define
r—1
(M) = z o(M;/M; ).
i=1
The Jordan-Holder theorem shows immediately that this is well-defined, and
that this extension of ¢ is an Euler-Poincaré map.
In particular, we see that the length function is the Euler-Poincaré map
taking its values in the additive group of integers, and having the value 1 for any
simple module.

§9. THE SNAKE LEMMA

This section gives a very general lemma, which will be used many times,
so we extract it here. The reader may skip it until it is encountered, but already
we give some exercises which show how it is applied: the five lemma in Exercise
15 and also Exercise 26. Other substantial applications in this book will occur
in Chapter XVI, §3 in connection with the tensor product, and in Chapter XX
in connection with complexes, resolutions, and derived functors.

We begin with routine comments. Consider a commutative diagram of homo-
morphisms of modules.

M’__f__,M

]

N——

d

Then f induces a homomorphism
Ker d’ — Ker d.
Indeed, suppose d'x’ = 0. Then df(x") = 0 because df(x') = hd'(x") = 0.
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Similarly, A induces a homomorphism
Coker d’ — Coker d

in a natural way as follows. Let y' € N’ represent an element of N'/d'M'. Then
hy' mod dM does not depend on the choice of y’ representing the given element,
because if y" = y' + d'x’, then

hy" = hy' + hd'x’ = hy' + dfx’ = hy' mod dM.
Thus we get a map
hye: N'/d'M' = Coker d' — N/dM = Coker d,

which is immediately verified to be a homomorphism.

In practice, given a commutative diagram as above, one sometimes writes f
instead of h, so one writes f for the horizontal maps both above and below the
diagram. This simplifies the notation, and is not so incorrect: we may view
M’, N' as the two components of a direct sum, and similarly for M, N. Then f
is merely a homomorphism defined on the direct sum M’ @ N’ into M © N.

The snake lemma concerns a commutative and exact diagram called a snake
diagram:

M/ S R M g9 > MII N 0
d'l 4J d"l
0 N ——N——N"

Let 2’ € Ker d”. We can construct elements of N’ as follows. Since g is
surjective, there exists an element z € M such that gz = z”. We now move
vertically down by d, and take dz. The commutativity d'g = gd shows that
gdz = 0 whence dz is in the kernel of g in N. By exactness, there exists an
element z' € N’ such that fz' = dz. In brief, we write

Z=f"lodog 'z

Of course, 2’ is not well defined because of the choices made when taking inverse
images. However, the snake lemma will state exactly what goes on.

Lemma 9.1. (Snake Lemma). Given a snake diagram as above, the map
6:Ker d” — Coker d’'
given by 6z" = f Y odo g~ 'z" is well defined, and we have an exact sequence
Ker d' - Ker d — Ker d” > Coker d’ - Coker d — Coker d"

where the maps besides 0 are the natural ones.
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Proof. It is a routine verification that the class of z’ mod Imd’ is in-
dependent of the choices made when taking inverse images, whence defining
the map J. The proof of the exactness of the sequence is then routine, and
consists in chasing around diagrams. It should be carried out in full detail
by the reader who wishes to acquire a feeling for this type of triviality. As an
example, we shall prove that

Ker 6 C Im g,

where g, is the induced map on kernels. Suppose the image of z” is 0 in Coker
d'. By definition, there exists u' € M’ such that 7’ = d'u’. Then

dz = f7' = fd'v' = dfu’

by commutativity. Hence
d(z — fu') =0,

and z — fu'is in the kernel of d. But g(z — fu') = gz = z". This means that z” is
in the image of g,, as desired. All the remaining cases of exactness will be left
to the reader.

The original snake diagram may be completed by writing in the kernels
and cokernels as follows (whence the name of the lemma):

Kerd —— Kerd —— Kerd”

l 2 L
Coker d — Coker d — Coker d”

§10. DIRECT AND INVERSE LIMITS

We return to limits, which we considered for groups in Chapter I. We now
consider limits in other categories (rings, modules), and we point out that limits
satisfy a universal property, in line with Chapter I, §11.

Let I = {i} be a directed system of indices, defined in Chapter I, §10. Let
@ be a category, and {A;} a family of objects in @. For each pair i, j such that
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= j assume given a morphism
fj': Ai - AJ
such that, whenever i < j < k, we have
flefi=fi and fi=1id

Such a family will be called a directed family of morphisms. A direct limit
for the family {f%} is a universal object in the following category €. Ob(C)
consists of pairs (4, (f%)) where A € Ob(@) and (f) is a family of morphisms
fi:A; > A, iel, such that for all i £ j the following diagram is commutative:

AL 4,
(Universal of course means universally repelling.)
Thus if (4, (f*)) is the direct limit, and if (B, (g')) is any object in the above
category, then there exists a unique morphism ¢: 4 - B which makes the
following diagram commutative:

A —L 4
AW
4
B

For simplicity, one usually writes

A= lmAi’
i
omitting the f from the notation.

Theorem 10.1. Direct limits exist in the category of abelian groups, or more
generally in the category of modules over a ring.

Proof. Let {M;} be a directed system of modules over a ring. Let M be
their direct sum. Let N be the submodule generated by all elements

x;=(..,0,x0,...,=fi(x),0,...)
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where, for a given pair of indices (i, j) with j > i, x;; has component x in M;,
Six)in M, and component 0 elsewhere. Then we leave to the reader the veri-
fication that the factor module M/N is a direct limit, where the maps of M; into
M/N are the natural ones arising from the composite homomorphism

M;-> M - M/N.

Example. Let X be a topological space, and let x € X. The open neigh-
borhoods of x form a directed system, by inclusion. Indeed, given two open
neighborhoods U and V, then U N V is also an open neighborhood contained in
both U and V. In sheaf theory, one assigns to each U an abelian group A(U) and
for each pair U D V a homomorphism hY:A(U)—> A(V)suchthatif UD VDO W
then hY, o hY) = hY,. Then the family of such homomorphisms is a directed family.
The direct limit

lim A(U)
U

is called the stalk at the point x. We shall give the formal definition of a sheaf
of abelian groups in Chapter XX, §6. For further reading, I recommend at least
tworeferences. First, the self-contained short version of Chapter Il in Hartshorne’s
Algebraic Geometry, Springer Verlag, 1977. (Do all the exercises of that section,
concerning sheaves.) The section is only five pages long. Second, I recommend
the treatment in Gunning’s Introduction to Holomorphic Functions of Several
Variables, Wadsworth and Brooks/Cole, 1990.

We now reverse the arrows to define inverse limits. We are again given a
directed set I and a family of objects A;. If j = i we are now given a morphism

f{ . AJ - Ai
satisfying the relations
fiefi=fi and fi=id,

if j = iand i = k. As in the direct case, we can define a category of objects
(4, f) with f;: A - A, such that for all i, j the following diagram is com-

mutative:

A——»A

A universal object in this category is called an inverse limit of the system (4;, /%).
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As before, we often say that

—=2

1

is the inverse limit, omitting the f* from the notation.

Theorem 10.2. Inverse limits exist in the category of groups, in the category
of modules over a ring, and also in the category of rings.

Proof. Let {G;} be a directed family of groups, for instance, and let I' be
their inverse limit as defined in Chapter I, §10. Let p;: I' — G, be the projection
(defined as the restriction from the projection of the direct product, since I' is
a subgroup of [] G;). It is routine to verify that these data give an inverse limit
in the category of groups. The same construction also applies to the category of
rings and modules.

Example. Letpbeaprime number. Forn= m we have acanonical surjective
ring homomorphism

fn: Z/p"L — L/p"L.

The projective limit is called the ring of p-adic integers, and is denoted by Z,.
For a consideration of this ring as a complete discrete valuation ring, see Exercise
17 and Chapter XII.

Let k be a field. The power series ring k[[T]] in one variable may be viewed
as the projective Jimit of the factor polynomial rings k[(T]/(T"), where for
n Z m we have the canonical ring homomorphism

T K[T]/(T") — [T/ (T™).

A similar remark applies to power series in several variables.
More generally, let R be a commutative ring and let J be a proper ideal. If
n = m we have the canonical ring homomorphism

fn:R/J"— R/I™.

Let R, = lim R/J" be the projective limit. Then R has a natural homomorphism
into R;. If R is a Noetherian local ring, then by Krull’s theorem (Theorem 5.6
of Chapter X), one knows that NJ” = {0}, and so the natural homorphism of R
in its completion is an embedding. This construction is applied especially when
J is the maximal ideal. It gives an algebraic version of the notion of holomorphic
functions for the following reason.

Let R be a commutative ring and J a proper ideal. Define a J-Cauchy se-
quence {x,} to be a sequence of elements of R satisfying the following condition.
Given a positive integer k there exists N such that for all n, m = N we have
X, — X, € JK. Define a null sequence to be a sequence for which given k there
exists N such that for all n = N we have x, € J*. Define addition and multipli-
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cation of sequences termwise. Then the Cauchy sequences form a ring €, the
null sequences form an ideal N, and the factor ring @/N is called the J-adic
completion of R. Prove these statements as an exercise, and also prove that there
is a natural isomorphism

C/N = lim R/J".

Thus the inverse limit lim R/J" is also called the J-adic completion. See Chapter
XII for the completion in the context of absolute values on fields.

Examples. In certain situations one wants to determine whether there exist
solutions of a system of a polynomial equationf(X,, . . . , X,,) = 0 with coefficients
in a power series ring k[T], say in one variable. One method is to consider the
ring mod (TV), in which case this equation amounts to a finite number of equations
in the coefficients. A solution of f(X) = 0 is then viewed as an inverse limit of
truncated solutions. For an early example of this method see [La 52], and for
an extension to several variables [Ar 68].

[La 52] S. LANG, On quasi algebraic closure, Ann of Math. 55 (1952), pp. 373-390

[Ar 68] M. ARTIN, On the solutions of analytic equations, Invent. Math. § (1968), pp.
277-291

See also Chapter XII, §7.

In Iwasawa theory, one considers a sequence of Galois cyclic extensions K|,
over a number field k of degree p” with p prime, and with K, C K,,,,. Let G,
be the Galois group of K, over k. Then one takes the inverse limit of the group
rings (Z/p"Z)[G,], following Iwasawa and Serre. Cf. my Cyclotomic Fields,
Chapter 5. In such towers of fields, one can also consider the projective limits
of the modules mentioned as examples at the end of §1. Specifically, consider
the group of p”-th roots of unity p,», and let K, = Q(p,n+1), with Ko = Q(m,).
We let

Tp("’) = .llm Wyn
under the homomorphisms p,n+1 — p,» given by { > . Then T,(p) becomes
a module for the projective limits of the group rings. Similarly, one can consider
inverse limits for each one of the modules given in the examples at the end of

§1. (See Exercise 18.) The determination of the structure of these inverse limits
leads to fundamental problems in number theory and algebraic geometry.

After such examples from real life after basic algebra, we return to some
general considerations about inverse limits.

Let (4;, f) = (4,) and (B;, ¢g!) = (B;) be two inverse systems of abelian
groups indexed by the same indexing set. A homomorphism (4;) — (B;) is the
obvious thing, namely a family of homomorphisms

hi:Ai_)Bi
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for each i which commute with the maps of the inverse systems:

Aj——hj—>Bj

|k

A.'—T’Bi

A sequence
0-(4)—->(B)—->(C)—-0

is said to be exact if the corresponding sequence of groups is exact for each i.
Let (A,) be an inverse system of sets, indexed for simplicity by the positive
integers, with connecting maps

Up n: Ay —=> A, for mz=n

We say that this system satisfies the Mittag-Leffler condition ML if for each n,
the decreasing sequence u,, ,(A4,) (m = n) stabilizes, i.e. is constant for m
sufficiently large. This condition is satisfied when u,, , is surjective for all m,
n.

We note that trivially, the inverse limit functor is left exact, in the sense that
given an exact sequence

0—(4,) = (B)) = (C) -0
then
0- lim A4, - lim B, - lim C,
is exact.

Proposition 10.3. Assume that (A,) satisfies ML. Given an exact sequence
0 (4) = (B) > (C) =0
of inverse systems, then

0 - limA, — li

—=4tn 7 222

is exact.

Proof. The only point is to prove the surjectivity on the right. Let (c,) be
an element of the inverse limit. Then each inverse image g~ !(c,) is a coset of
A,, so in bijection with 4,. These inverse images form an inverse system, and
the ML condition on (A4,) implies ML on (g~ !(c,)). Let S, be the stable subset

Su= () tm.nlg ™ "(cm))-

mn
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Then the connecting maps in the inverse system (S,) are surjective, and so there
is an element (b,) in the inverse limit. It is immediate that g maps this element
on the given (c,), thereby concluding the proof of the Proposition.

Proposition 10.4. Ler (C,) be an inverse system of abelian groups satisfying
ML, and let (u,, ,) be the system of connecting maps. Then we have an exact
sequence

0- lim C, - [[C,~—>T] C.—O.

Proof. For each positive integer N we have an exact sequence with a finite
product

0- lim C, -—»l_[C nC - 0.

1<nEN n= n=

The map u is the natural one, whose effect on a vector is
©,...,0,¢,,0,...,00—(0,.. Upm m—1Cm> 0, ..., 0).

One sees immediately that the sequence is exact. The infinite products are in-
verse limits taken over N. The hypothesis implies at once that ML is satisfied
for the inverse limit on the left, and we can therefore apply Proposition 10.3 to
conclude the proof.

EXERCISES

1. Let V be a vector space over a field K, and let U, W be subspaces. Show that
dim U + dim W = dim(U + W) + dim(U n W).

2. Generalize the dimension statement of Theorem 5.2 to free modules over a commutative
ring. [Hint: Recall how an analogous statement was proved for free abelian groups,
and use a maximal ideal instead of a prime number.]

3. Let R be an entire ring containing a field k as a subring. Suppose that R is a finite
dimensional vector space over k under the ring multiplication. Show that R is a field.

4. Direct sums.

(a) Prove in detail that the conditions given in Proposition 3.2 for a sequence to
split are equivalent. Show that a sequence 0 — M’ LmMSm o splits if
and only if there exists a submodule N of M such that M is equal to the direct
sum Im f D N, and that if this is the case, then N is isomorphic to M". Complete
all the details of the proof of Proposition 3.2.
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(b) Let E and E(i = 1,..., m) be modules over a ring. Let ¢;: E; — E and
Y;: E — E; be homomorphisms having the following properties:

Vioo; = id, '//i°‘/’j=0 ifi#j,

Z‘Pi°'/’i=id~
i=1

Show that the map x — (Y, x,. .., ¥,,X) is an isomorphism of E onto the direct product
of the E; (i = 1, ..., m), and that the map

Xpseees X)) @1Xy + -+ + QX

is an isomorphism of this direct product onto E.

Conversely, if E is equal to a direct product (or direct sum) of submodules
E; (i =1, ..., m), if we let ¢; be the inclusion of E; in E, and ; the projection of
E on E;, then these maps satisfy the above-mentioned properties.

5. Let A be an additive subgroup of Euclidean space R”, and assume that in every bounded
region of space, there is only a finite number of elements of A. Show that A is a free
abelian group on < n generators. [Hint: Induction on the maximal number of
linearly independent elements of 4 over R. Let vy, ..., v, be a maximal set of such
elements, and let A, be the subgroup of A contained in the R-space generated by
Uy,..., Uy Byinduction, one may assume that any element of A4, is a linear integral
combination of v,,...,v,-;. Let S be the subset of elements ve A of the form
v=a,v, +--- + a,v,, with real coefficients g; satisfying

0<a<1 ifi=1...,.m—-1

A

0<a,=1

If v}, is an element of S with the smallest a,, # 0, show that {v,,..., v,,_, U} is a basis
of A over Z.]

Note. The above exercise is applied in algebraic number theory to show that the
group of units in the ring of integers of a number field modulo torsion is isomorphic
to a lattice in a Euclidean space. See Exercise 4 of Chapter VII.

6. (Artin-Tate). Let G be a finite group operating on a finite set S. For w € §, denote
1 - w by [w], so that we have the direct sum

Z(s) = wgs Z[wl].

Define an action of G on Z(S) by defining o[w] = [ow] (for w € S), and extending
o to Z(S) by linearity. Let M be a subgroup of Z(S) of rank #[S]. Show that M has
a Z-basis {y,},.., such that oy, = y,,, for all w € S. (Cf. my Algebraic Number
Theory, Chapter I1X, §4, Theorem 1.)

7. Let M be a finitely generated abelian group. By a seminorm on M we mean a real-
valued function v > |v| satisfying the following properties:
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|v] = 0 for all v € M;
|nv| = |n| |v| forn € Z;
v+ w| = |v| + |w| forall v, we M.
By the kernel of the seminorm we mean the subset of elements v such that [v| = 0.
(a) Let M, be the kernel. Show that M, is a subgroup. If M, = {0}, then the
seminorm is called a norm.

(b) Assume that M has rank r. Let v, ..., v, € M be linearly independent over
Z mod M,. Prove that there exists a basis {w,, ..., w,} of M/M, such that

i
lwil = 2 |v].
Jj=1

[Hint: An explicit version of the proof of Theorem 7.8 gives the result.

Without loss of generality, we can asume M, = {0}. Let M; = (v,,..., v,).
Let d be the exponent of M/M,. Then dM has a finite index in M,. Let n; ;
be the smallest positive integer such that there exist integers n; ;, ..., n; j_;
satisfying

n; vy + -+ + n; v; = dw; for some w; € M.
Without loss of generality we may assume 0 = n; , =d — 1. Then the elements
wy, ..., w, form the desired basis.]

8. Consider the multiplicative group Q* of non-zero rational numbers. For a non-zero
rational number x = a/b with a, b € Z and (a, b) = 1, define the height

h(x) = log max(|a], |b]).

(a) Show that h defines a seminorm on Q*, whose kernel consists of =1 (the
torsion group).

(b) Let M, be a finitely generated subgroup of Q*, generated by rational numbers
Xy, ..., X, Let M be the subgroup of Q* consisting of those elements x such
that x* € M, for some positive integer s. Show that M is finitely generated,
and using Exercise 7, find a bound for the seminorm of a set of generators
of M in terms of the seminorms of x,, ..., x,,.

Note. The above two exercises are applied in questions of diophantine
approximation. See my Diophantine approximation on toruses, Am. J. Math.
86 (1964), pp. 521-533, and the discussion and references 1 give in Ency-
clopedia of Mathematical Sciences, Number Theory IlI, Springer Verlag, 1991,
pp. 240-243.

Localization

9. (a) Let A be a commutative ring and let M be an A-module. Let S be a multiplicative
subset of A. Define S™! M in a manner analogous to the one we used to define
S~!A, and show that $™'M is an $™!'A-module.
(b) If0 > M - M — M” — 0 is an exact sequence, show that the sequence
0— S 'M' - S™'M — S7'M"” — 0 is exact.
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10.

(a) If p is a prime ideal, and S = A — p is the complement of p in the ring A, then
S7'M is denoted by M,. Show that the natural map

M—>HM,,

of a module M into the direct product of all localizations M, where p ranges over
all maximal ideals, is injective.

(b) Show that a sequence 0 > M’ — M — M” — 0 is exact if and only if the sequence
0— M, —> M, —> M",— 0 is exact for all primes p.

(c) Let A be an entire ring and let M be a torsion-free module. For each prime p of
A show that the natural map M — M, is injective. In particular A — A, is injective,

P
but you can see that directly from the imbedding of A in its quotient field K.

Projective modules over Dedekind rings

For the next exercise we assume you have done the exercises on Dedekind rings in

the preceding chapter. We shall see that for such rings, some parts of their module theory
can be reduced to the case of principal rings by localization. We let o be a Dedekind ring
and X its quotient field.

11.

12.

13.

Let M be a finitely generated torsion-free module over o. Prove that M is projective.
[Hint: Given a prime ideal p, the localized module M, is finitely generated torsion-
free over o, which is principal. Then M, is projective, so if F is finite free over o,
and f: F — M is a surjective homomorphism, then f,,: F, — M, has a splitting
gp: M, — F,, such that f o g, = idyy,. There exists ¢, € o such that ¢, & p and
¢ 9p(M) C F. The family {c,} generates the unit ideal o (why?), so there is a finite
number of elements ¢, and elements x; € o such that 2, x;c, = 1. Let

g= Exicp,gp,'
Then show that g: M — F gives a homomorphism such that fo g = id,,.]

(a) Leta,b be ideals. Show that there is an isomorphism of o-modules
a®bS o®ab

[Hint: First do this when a, b are relatively prime. Consider the homomorphism
a@® b — a+b, and use Exercise 10. Reduce the general case to the relatively
prime case by using Exercise 19 of Chapter II.]

(b) Leta, b be fractional ideals, and let f: a — b be an isomorphism (of o-modules,
of course). Then f has an extension to a K-linear map fy: K — K. Let ¢ = fi(1).
Show that b = ca and that f is given by the mapping m,: x — cx (multiplication

by c).

(c) Let a be a fractional ideal. For each b € a™! the map m,: a — o is an element
of the dual aV. Show that a~! = aV = Hom(a, o) under this map, and so
aVV =aq.

(a) Let M be a projective finite module over the Dedekind ring o. Show that there
exist free modules F and F’ such that F D M D F’, and F, F’' have the same
rank, which is called the rank of M.

(b) Prove that there exists a basis {e,, ..., e,} of F and ideals ay, ..., a, such that
M =ae + -+ +a,e,, orin other words, M = @ a,.
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(c) Prove that M = 0"~ ! @ a for some ideal a, and that the association M > a
induces an isomorphism of Ky(o) with the group of ideal classes Pic(o). (The

group Ky (o) is the group of equivalence classes of projective modules defined at
the end of §4.)

A few snakes

14. Consider a commutative diagram of R-modules and homomorphisms such that each
row is exact:

M > M > M"” » 0
0 > N’ > N > N”

Prove:
(a) Iff, h are monomorphisms then g is a monomorphism.
(b) If £, h are surjective, then g 1s surjective.
(c) Assume in addition that 0 - M’ — M is exact and that N - N” — 0 is exact.
Prove that if any two of f; g, h are 1somorphisms, then so 1s the third. [Hint:
Use the snake lemma.]

15. The five lemma. Consider a commutative diagram of R-modules and homomorph-
isms such that each row is exact:

M, > M, » M, > M, > M
N, > N, > N, > N, — N

Prove:
(a) Iff, is surjective and f;, f, are monomorphisms, then f; 1s a monomorphism.
(b) If f5 is a monomorphism and f;, f, are surjective, then f; is surjective. [Hint:
Use the snake lemma.]

Inverse limits

16. Prove that the inverse limit of a system of simple groups in which the homomorphisms
are surjective is either the trivial group, or a simple group.

17. (a) Let n range over the positive integers and let p be a prime number. Show that
the abelian groups A, = Z/p"Z form a projective system under the canonical
homomorphism if n = m. Let Z, be its inverse limit. Show that Z, maps sur-
jectively on each Z/p"Z; that Z, has no divisors of 0, and has a unique maximal
ideal generated by p. Show that Z, is factorial, with only one prime, namely p
itself.
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18.

(b) Next consider all ideals of Z as forming a directed system, by divisibility. Prove
that
lim Z/(a) = I1 z,
(@ 4
where the limit is taken over all ideals (a), and the product is taken over all
primes p.
(a) Let {A,} be an inversely directed sequence of commutative rings, and let {M,,}

be an inversely directed sequence of modules, M, being a module over A, such
that the following diagram is commutative:

An+l X Mn+l i Mn+l

Voo !

A, XM, —M,

n

The vertical maps are the homomorphisms of the directed sequence, and the
horizontal maps give the operation of the ring on the module. Show that lim M,
is a module over lim A,.

(b) Let M be a p-divisible group. Show that 7,(A) is a module over Z,,.

(c) Let M, N be p-divisible groups. Show that 7,(M ®N) = T,(M) (%) T,(N), as
modules over Z,,.

Direct limits

19.

20.

21.

Let (4;, /%) be a directed family of modules. Let a, € A, for some k, and suppose that
the image of g, in the direct limit A4 is 0. Show that there exists some index j = k such
that f%(a,) = 0. In other words, whether some element in some group 4; vanishes
in the direct limit can already be seen within the original data. One way to see this
is to use the construction of Theorem 10.1.

Let I, J be two directed sets, and give the product I x J the obvious ordering that
,j) 2@, j)ifi £i and j £j. Let A;; be a family of abelian groups, with homo-
morphisms indexed by I x J, and forming a directed family. Show that the direct
limits
lim lim4;; and limlimA4;;
i J J i

exist and are isomorphic in a natural way. State and prove the same result for inverse
limits.

Let (M}, f%), (M,, ') be directed systems of modules over a ring. By a homomorphism
(M) = (M)

one means a family of homomorphisms u;: M; - M, for each i which commute with
the f, g;. Suppose we are given an exact sequence

0 (M) 5 (M) > (M}) -0
of directed systems, meaning that for each i, the sequence

0->M ->M,->M -0
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22.

23.

24.

25.

26.

is exact. Show that the direct limit preserves exactness, that is

0 — m M; —» hm M; > hm M} - 0

18 exact.

(a) Let {M,} be a famuly of modules over a ring. For any module N show that
Hom(®P M;, N) = [ Hom(M,, N)

(b) Show that
Hom(N, [[ M) = [] Hom(N, M)).

Let {M;} be a directed family of modules over a ring. For any module N show that

Itm Hom(N, M;) = Hom(N, lim M,)

Show that any module is a direct limit of finitely generated submodules.

A module M is called finitely presented if there is an exact sequence
Fi->F,->M-0

where F, F, arefree with finite bases. Theimage of F, in F, is said to be the submodule

of relations, among the free basis elements of F,,.

Show that any module is a direct limit of finitely presented modules (not necessarily
submodules). In other words, given M, there exists a directed system {M,, f}} with M,
finitely presented for all i such that

M =~ lim M;.

[Hint: Any finitely generated submodule is such a direct limit, since an infinitely
generated module of relations can be viewed as a limit of finitely generated modules of
relations. Make this precise to get a proof.]

Let E be a module over a ring. Let {M,} be a directed family of modules. If E is finitely
generated, show that the natural homomorphism

liﬂ HOm(E, Ml) e HOm(E, !m! Ml)

is injective. If E is finitely presented, show that this homomorphism is an isomorphism.
Hint: First prove the statements when E is free with finite basis. Then, say E is
finitely presented by an exact sequence F; — F, — E — 0. Consider the diagram:

0 —— lim Hom(E, M;) — lim Hom(F,, M;) — lim Hom(F,, M)

0 ——— Hom(E, lim M;) —— Hom(F,, lim M;) ——— Hom(F, lim M)
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Graded Algebras

Let 4 be an algebra over a field k. By a filtration of 4 we mean a sequence of k-
vector spaces 4; (i =0, 1,...) such that

AoCA]CA2C~- and UA,'=A,

and A;A; < A;y; for all i, j = 0. In particular, 4 is an 4g-algebra. We then call 4 a fil-
tered algebra. Let R be an algebra. We say that R is graded if R is a direct sum
R = @ R of subspaces such that R;R; = Ry, for all i, j = 0.

27. Let A4 be a filtered algebra. Define R; for i 20 by R, = A;/A;_,. By definition,
A_y = {0}. Let R =P R, and R; = gr,(A4). Define a natural product on R making
R into a graded algebra, denoted by gr(4), and called the associated graded algebra.

28. Let A4, B be filtered algebras, 4 = U A;and B = U B;. Let L: A — Bbe an (A, By)-
linear map preserving the filtration, that is L(4;) = B; for all i, and L(ca) =
L(c)L(a) for c € Ag and a € 4; for all i.

(a) Show that L induces an (A4g, By)-linear map

gri(L): gri(4) — gr,(B)  forall i.

(b) Suppose that gr;(L) is an isomorphism for all i. Show that L is an (A4, By)-
isomorphism.

29. Suppose k has characteristic 0. Let n be the set of all strictly upper triangular ma-
trices of a given size n x n over k.

(a) For a given matrix X en, let Di(X),...,D,(X) be its diagonals, so D; =
D, (X) is the main diagonal, and is 0 by the definition of n. Let n; be the
subset of n consisting of those matrices whose diagonals D;,...,D,_; are 0.
Thus ng = {0}, n; consists of all matrices whose components are 0 except
possibly for x,,; n, consists of all matrices whose components are 0 except
possibly those in the last two diagonals; and so forth. Show that each n; is
an algebra, and its elements are nilpotent (in fact the (i + 1)-th power of its
elements is 0).

(b) Let U be the set of elements I + X with X e n. Show that U is a multi-
plicative group.

(c) Let exp be the exponential series defined as usual. Show that exp defines a
polynomial function on n (all but a finite number of terms are 0 when eval-
uated on a nilpotent matrix), and establishes a bijection

exp: n— U.

Show that the inverse is given by the standard log series.



CHAPTER IV

Polynomials

This chapter provides a continuation of Chapter II, §3. We prove stan-
dard properties of polynomials. Most readers will be acquainted with some
of these properties, especially at the beginning for polynomials in one vari-
able. However, one of our purposes is to show that some of these properties
also hold over a commutative ring when properly formulated. The Gauss
lemma and the reduction criterion for irreducibility will show the importance
of working over rings. Chapter IX will give examples of the importance of
working over the integers Z themselves to get universal relations. It happens
that certain statements of algebra are universally true. To prove them, one
proves them first for elements of a polynomial ring over Z, and then one
obtains the statement in arbitrary fields (or commutative rings as the case
may be) by specialization. The Cayley—Hamilton theorem of Chapter XV,
for instance, can be proved in that way.

The last section on power series shows that the basic properties of
polynomial rings can be formulated so as to hold for power series rings. I
conclude this section with several examples showing the importance of power
series in various parts of mathematics.

§1. BASIC PROPERTIES FOR POLYNOMIALS
IN ONE VARIABLE

We start with the Euclidean algorithm.

Theorem 1.1. Let A be a commutative ring, let f, ge A[X] be poly-
nomials in one variable, of degrees =0, and assume that the leading

173
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coefficient of g is a unit in A. Then there exist unique polynomials
q, r € A[X] such that

f=g99+r
and degr < deg g.

Proof. Write
S(X) = a, X"+ + aq,
g(X)= bdXd + e +b0,

where n = deg f, d = deg g so that a,, b, # 0 and b, is a unit in 4. We use
induction on n.

Ifn=0,and deg g > deg f, we let ¢ =0, r = f. If deg g = deg f = 0, then
we let r = 0 and q = a,b;".

Assume the theorem proved for polynomials of degree < n (with n > 0).
We may assume deg g < deg f (otherwise, take g = 0 and r = f). Then

fX) = a,b' X" g(X) + f1(X),
where f;(X) has degree < n. By induction, we can find q,, r such that
f(X) = a,b' X" %g(X) + 4,(X)g(X) + r(X)
and degr < deg g. Then we let
q(X) = a,b ' X" + q,(X)

to conclude the proof of existence for g, r.
As for uniqueness, suppose that

f=a19+r=q9+n
with deg r; < deg g and deg r, < degg. Subtracting yields
(@ —q)g=r,—ry.
Since the leading coefficient of g is assumed to be a unit, we have

deg(q, — q,)g = deg(q, — q,) + deg g.

Since deg(r, — ry) < degg, this relation can hold only if q, — g, =0, ie.
q, = q,, and hence finally r;, = r, as was to be shown.

Theorem 1.2. Let k be a field. Then the polynomial ring in one variable
k[X1] is principal.
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Proof. Let a be an ideal of k[X], and assume a #0. Let g be an
element of a of smallest degree > 0. Let f be any element of a such that
f # 0. By the Euclidean algorithm we can find g, r € k[X] such that

f=ag+r

and degr <degg. But r = f — gg, whence r is in a. Since g had minimal
degree = 0 it follows that r = 0, hence that a consists of all polynomials qg
(with g € k[X]). This proves our theorem. By Theorem 5.2 of Chapter II we
get:

Corollary 1.3. The ring k[ X] is factorial.

If k is a field then every non-zero element of k is a unit in k, and one sees
immediately that the units of k[X] are simply the units of k. (No polyno-
mial of degree =1 can be a unit because of the addition formula for the
degree of a product.)

A polynomial f(X) e k[X] is called irreducible if it has degree > 1, and if
one cannot write f(X) as a product

J(X) = g(X)h(X)

with g, h € k[X], and both g, h ¢ k. Elements of k are usually called constant
polynomials, so we can also say that in such a factorization, one of g or 7 must
be constant. A polynomial is called monic if it has leading coefficient 1.

Let A be a commutative ring and f(X) a polynomial in A[X]. Let A be
a subring of B. An element be B is called a root or a zero of f in B if
f(b) = 0. Similarly, if (X) is an n-tuple of variables, an n-tuple (b) is called a
zero of f if f(b) = 0.

Theorem 1.4. Let k be a field and f a polynomial in one variable X in
k[X], of degree n = 0. Then f has at most n roots in k, and if a is a root
of f in k, then X — a divides f(X).

Proof. Suppose f(a) = 0. Find g, r such that
J(X) = q(X)(X — a) + r(X)
and degr < 1. Then
0 = f(a) = r(a).

Since r = 0 or r is a non-zero constant, we must have r = 0, whence X —a
divides f(X). If a4, ..., a,, are distinct roots of f in k, then inductively we see
that the product

X —-a) (X —a,)
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divides f(X), whence m < n, thereby proving the theorem. The next corollaries
give applications of Theorem 1.4 to polynomial functions.

Corollary 1.5. Let k be a field and T an infinite subset of k. Let
f(X) € k[X] be a polynomial in one variable. If f(a) =0 for all ae T, then
f =0, ie. finduces the zero function.

Corollary 1.6. Let k be a field, and let S,, ..., S, be infinite subsets of k.
Let f(X,,..., X,) be a polynomial in n variables over k. If f(a;,...,a,) =0
foralla;e S;(i=1,...,n), then f =0.

Proof. By induction. We have just seen the result is true for one
variable. Let n = 2, and write

f(Xla‘--aXn) =Zﬁ'(xl"",xn—l)x'{

as a polynomial in X, with coefficients in k[X,, ..., X,_;]. If there exists
(byseersby_y)ES; X x S,y
such that for some j we have fi(b,,...,b,_;) # 0, then
Sy, .y byy, X,)

is a non-zero polynomial in k[X,] which takes on the value O for the infinite
set of elements S,. This is impossible. Hence f; induces the zero function on
Sy x -+ x §,_; for all j, and by induction we have f; =0 for all j. Hence
f =0, as was to be shown.

Corollary 1.7. Let k be an infinite field and f a polynomial in n variables

over k. If f induces the zero function on k™, then f = 0.

We shall now consider the case of finite fields. Let k be a finite field with
g elements. Let f(X,, ..., X,) be a polynomial in n variables over k. Write

f(Xl,...,Xn)=Za(v)X;l cee X;’”.

If a,, # 0, we recall that the monomial M, (X) occurs in f. Suppose this is
the case, and that in this monomial M,,(X), some variable X; occurs with an
exponent v; = q. We can write

X = Xgte, u = integer = 0.

If we now replace X, by X**! in this monomial, then we obtain a new
polynomial which gives rise to the same function as f. The degree of this
new polynomial is at most equal to the degree of f.
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Performing the above operation a finite number of times, for all the
monomials occurring in f and all the variables X,, ..., X, we obtain some
polynomial f* giving rise to the same function as f, but whose degree in
each variable is < gq.

Corollary 1.8. Let k be a finite field with q elements. Let f be a
polynomial in n variables over k such that the degree of f in each variable
is <q. If f induces the zero function on k™, then f = 0.

Proof. By induction. If n = 1, then the degree of f is < ¢, and hence f
cannot have g roots unless it is 0. The inductive step is carried out just as
we did for the proof of Corollary 1.6 above.

Let f be a polynomial in n variables over the finite field k. A polynomial
g whose degree in each variable is < g will be said to be reduced. We have
shown above that there exists a reduced polynomial f* which gives the same
function as f on k™. Theorem 1.8 now shows that this reduced polynomial is
unique. Indeed, if g,, g, are reduced polynomials giving the same function,
then g, — g, is reduced and gives the zero function. Hence g, — g, = 0 and
91 = g2-

We shall give one more application of Theorem 1.4. Let k be a field. By
a multiplicative subgroup of k we shall mean a subgroup of the group k*
(non-zero elements of k).

Theorem 1.9. Let k be a field and let U be a finite multiplicative sub-
group of k. Then U is cyclic.

Proof. Write U as a product of subgroups U(p) for each prime p, where
U(p) is a p-group. By Proposition 4.3(vi) of Chapter I, it will suffice to prove
that U(p) is cyclic for each p. Let a be an element of U(p) of maximal period
p" for some integer r. Then x” = 1 for every element x € U(p), and hence all
elements of U(p) are roots of the polynomial

X7 -1

The cyclic group generated by a has p” elements. If this cyclic group is not
equal to U(p), then our polynomial has more than p” roots, which is
impossible. Hence a generates U(p), and our theorem is proved.

Corollary 1.10. If k is a finite field, then k* is cyclic.

An element { in a field k such that there exists an integer n = 1 such that
{" =1 is called a root of unity, or more precisely an n-th root of unity. Thus
the set of n-th roots of unity is the set of roots of the polynomial X" — 1.
There are at most n such roots, and they obviously form a group, which is
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cyclic by Theorem 1.9. We shall study roots of unity in greater detail
later. A generator for the group of n-th roots of unity is called a primitive
n-th root of unity. For example, in the complex numbers, e*>™/" is a primi-
tive n-th root of unity, and the n-th roots of unity are of type e***/* with
15vEn

The group of roots of unity is denoted by p. The group of roots of unity
in a field K is denoted by p(K).

A field k is said to be algebraically closed if every polynomial in k[X] of
degree =1 has a root in k. In books on analysis, it is proved that the
complex numbers are algebraically closed. In Chapter V we shall prove that
a field k is always contained in some algebraically closed field. If k is
algebraically closed then the irreducible polynomials in k[X] are the poly-
nomials of degree 1. In such a case, the unique factorization of a polynomial
f of degree = 0 can be written in the form

fX) =c n (X — aym

with ce k, ¢ # 0 and distinct roots ay, ..., a,. We next develop a test when
m; > 1.
Let A be a commutative ring. We define a map

D: A[X] - A[X]
of the polynomial ring into itself. If f(X) = a,X" + - + a, with a; € 4, we
define the derivative

Df(X) =f’(X) — Z Vava_l = naan—l + P + al'
v=1

One verifies easily that if f, g are polynomials in A[X], then

S+ =S"+9, (oY= 9+15,
and if a € A, then
@) =df"
Let K be a field and f a non-zero polynomial in K[X]. Let a be a root
of fin K. We can write
J(X) = (X — a"g(X)
with some polynomial g(X) relatively prime to X — a (and hence such that

g(a) # 0). We call m the multiplicity of a in f, and say that a is a multiple
root if m > 1.
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Proposition 1.11. Let K, f be as above. The element a of K is a multiple
root of f if and only if it is a root and f'(a) = 0.

Proof. Factoring f as above, we get
SX)=(X - a"g'(X) + m(X — a"'g(X).
If m > 1, then obviously f’(a) = 0. Conversely, if m =1 then
J'(X)=(X — a)g'(X) + 9(X),
whence f'(a) = g(a) # 0. Hence if f'(a) = 0 we must have m > 1, as desired.

Proposition 1.12. Let fe K[X]. If K has characteristic 0, and f has
degree =1, then f' #0. Let K have characteristic p >0 and f have
degree 2 1. Then f' =0 if and only if, in the expression for f(X) given
by

%) = zax

p divides each integer v such that a, # 0.

Proof. 1If K has characteristic 0, then the derivative of a monomial a,X"
such that v=1 and a, #0 is not zero since it is va,X'™!. If K has
characteristic p > 0, then the derivative of such a monomial is 0 if and only if
p|v, as contended.

Let K have characteristic p > 0, and let f be written as above, and be
such that f’(X) = 0. Then one can write

fX)= ; b, XP*

with b, € K.
Since the binomial coefficients (i) are divisible by pfor 1| Sv<p—1 we

see that if K has characteristic p, then for a, b € K we have
(@ + b)P = a®? + b*.
Since obviously (ab)? = aPb®, the map
x> xP

is a homomorphism of K into itself, which has trivial kernel, hence is
injective. Iterating, we conclude that for each integer r = 1, the map x+ x?"
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is an endomorphism of K, called the Frobenius endomorphism. Inductively, if
Cy, ..., C, are elements of K, then

(cr+ e =cf+ - +ch.

Applying these remarks to polynomials, we see that for any element a € K
we have

X —a =X7 —a”.
If c € K and the polynomial
XV —¢
has one root a in K, then a”” = ¢ and
XV —c=(X—-ay.

Hence our polynomial has precisely one root, of multiplicity p". For in-
stance, (X — 1) = X7 — 1.

§2. POLYNOMIALS OVER A FACTORIAL RING

Let A be a factorial ring, and K its quotient field. Let ae K, a # 0. We
can write a as a quotient of elements in A, having no prime factor in
common. If p is a prime element of A4, then we can write

a=p'b,

where be K, r is an integer, and p does not divide the numerator or
denominator of b. Using the unique factorization in A4, we see at once that r
is uniquely determined by a, and we call r the order of a at p (and write
r = ord, a). If a =0, we define its order at p to be co.

If a, a’ € K and aa’ # 0, then

ord,(aa’) = ord,a + ord, a'.

This is obvious.
Let f(X) e K[X] be a polynomial in one variable, written

fX)=ay+a, X+ +a,X"
If f = 0, we define ord, f to be co. If f # 0, we define ord, f to be
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ord, f = min ord, a;,

the minimum being taken over all those i such that a; # 0.
If r = ord, f, we call up” a p-content for f, if u is any unit of 4. We define
the content of f to be the product.

l"[ pord,f,

the product being taken over all p such that ord, f # 0, or any multiple of
this product by a unit of A. Thus the content is well defined up to
multiplication by a unit of 4. We abbreviate content by cont.

If be K, b #0, then cont(bf) = b cont(f). This is clear. Hence we can
write

J(X) = ¢ f1(X)

where ¢ = cont(f), and f;(X) has content 1. In particular, all coefficients of
f1 lie in A, and their g.c.d. is 1. We define a polynomial with content 1 to be
a primitive polynomial.

Theorem 2.1. (Gauss Lemma). Let A be a factorial ring, and let K be
its quotient field. Let f, g € K[ X] be polynomials in one variable. Then

cont(fg) = cont(f) cont(g).

Proof. Writing f=cf; and g = dg, where ¢ = cont(f) and d = cont(g),
we see that it suffices to prove: If f, g have content 1, then fg also has
content 1, and for this, it suffices to prove that for each prime p, ord,(fg) = 0.
Let

fX)y=a,X"+ "+ ay, a, #0,

9(X)=b,X™ + - + by, b, #0,

be polynomials of content 1. Let p be a prime of A. It will suffice to prove
that p does not divide all coefficients of fg. Let r be the largest integer such
that 0<r <n, q,#0, and p does not divide a,. Similarly, let b, be the
coefficient of g farthest to the left, b, # 0, such that p does not divide b,.
Consider the coefficient of X™** in f(X)g(X). This coefficient is equal to

c=ab;+ a4 b+
+ @yboyy +

and p/}a,b,, However, p divides every other non-zero term in this sum since
in each term there will be some coefficient a; to the left of a, or some
coefficient b; to the left of b,. Hence p does not divide c, and our lemma is
proved.
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We shall now give another proof for the key step in the above argument,
namely the statement:

If f, g € A[X] are primitive (i.e. have content 1) then fg is primitive.

Proof. We have to prove that a given prime p does not divide all the
coefficients of fg. Consider reduction mod p, namely the canonical homo-
morphism A — A/(p) = A. Denote the image of a polynomial by a bar, so
frf and g+ g under the reduction homomorphism. Then

fa=1g.
By hypothesis, f # 0 and g # 0. Since 4 is entire, it follows that fg # 0, as
was to be shown.

Corollary 2.2. Let f(X)e A[X] have a factorization f(X) = g(X)h(X) in
K[X]. If ¢, = cont(g), c, = cont(h), and g = c,g,, h = cyhy, then

fX)= cychgl(X)hl(X)9

and c,c,, is an element of A. In particular, if f, g € A[X] have content 1,
then h € A[X] also.

Proof. The only thing to be proved is c,c, € A. But
cont(f) = c,c; cont(g; hy) = c,Cps

whence our assertion follows.

Theorem 2.3. Let A be a factorial ring. Then the polynomial ring A[X]
in one variable is factorial. Its prime elements are the primes of A and poly-
nomials in A[X] which are irreducible in K[X] and have content 1.

Proof. Let fe A[X], f#0. Using the unique factorization in K[X]
and the preceding corollary, we can find a factorization

J(X) = c pi(X) -+ p(X)

where c € A, and p,, ..., p, are polynomials in A[X] which are irreducible in
K[X]. Extracting their contents, we may assume without loss of generality
that the content of p; is 1 for each i. Then ¢ = cont(f) by the Gauss lemma.
This gives us the existence of the factorization. It follows that each p;(X) is
irreducible in A[X]. If we have another such factorization, say

then from the unique factorization in K[X] we conclude that r = s, and after
a permutation of the factors we have

Di = aiq;
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with elements ag; € K. Since both p;, g; are assumed to have content 1, it
follows that a; in fact lies in A and is a unit. This proves our theorem.

Corollary 2.4. Let A be a factorial ring. Then the ring of polynomials in
n variables A[X,, ..., X,] is factorial. Its units are precisely the units of
A, and its prime elements are either primes of A or polynomials which are
irreducible in K[ X] and have content 1.

Proof. Induction.

In view of Theorem 2.3, when we deal with polynomials over a factorial
ring and having content 1, it is not necessary to specify whether such
polynomials are irreducible over A or over the quotient field K. The two
notions are equivalent.

Remark 1. The polynomial ring K[X,,..., X,] over a field K is not
principal when n = 2. For instance, the ideal generated by X, ..., X, is not
principal (trivial proof).

Remark 2. It is usually not too easy to decide when a given polynomial
(say in one variable) is irreducible. For instance, the polynomial X* + 4 is
reducible over the rational numbers, because

X*44=(X2-2X +2)(X* +2X + 2).

Later in this book we shall give a precise criterion when a polynomial
X" — ais irreducible. Other criteria are given in the next section.

§3. CRITERIA FOR IRREDUCIBILITY

The first criterion is:

Theorem 3.1. (Eisenstein’s Criterion). Let A be a factorial ring. Let K
be its quotient field. Let f(X) = a,X" + - + ay be a polynomial of degree
n=1in A[X]. Let p be a prime of A, and assume:

a,#0 (modp), a;=0 (modp) forall i<n,
ap #0 (mod p?).
Then f(X) is irreducible in K[ X].
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Proof. Extracting a g.c.d. for the coefficients of f, we may assume
without loss of generality that the content of f is 1. If there exists a
factorization into factors of degree =1 in K[X], then by the corollary of
Gauss’ lemma there exists a factorization in A[X], say f(X) = g(X)h(X),

9(X) = by X+ + by,

h(X)=c,X™+ -+ co,
with d, m > 1 and b,c,, # 0. Since byc, = a, is divisible by p but not p?, it
follows that one of by, ¢, is not divisible by p, say by,. Then p|co. Since

cmbs = a, is not divisible by p, it follows that p does not divide c,,. Let c, be
the coefficient of h furthest to the right such that ¢, #% 0 (mod p). Then

a, = bocr + blcr—l + -
Since p | byc, but p divides every other term in this sum, we conclude that

pla,, a contradiction which proves our theorem.

Example. Let a be a non-zero square-free integer # +1. Then for any
integer n = 1, the polynomial X" — a is irreducible over Q. The polynomials
3X°% — 15 and 2X!° — 21 are irreducible over Q.

There are some cases in which a polynomial does not satisfy Eisenstein’s

criterion, but a simple transform of it does.

Example. Let p be a prime number. Then the polynomial
fX)=XxrP"1+-+1
is irreducible over Q.

Proof. It will suffice to prove that the polynomial f(X + 1) is irreducible
over Q. We note that the binomial coefficients

p p!
=——, 1svsp-—-1,
<v> vi(p —v)! =v=P

are divisible by p (because the numerator is divisible by p and the denomina-
tor is not, and the coefficient is an integer). We have

(X+1P—1_ XP4+pXP'+--+pX
xX+1)—-1" X

fX+1)=
from which one sees that f(X + 1) satisfies Eisenstein’s criterion.

Example. Let E be a field and ¢ an element of some field containing E such
that ¢ is transcendental over E. Let K be the quotient field of E[r].
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For any integer n = 1 the polynomial X" — ¢ is irreducible in K[X]. This
comes from the fact that the ring 4 = E[t] is factorial and that t is a prime
in it.

Theorem 3.2. (Reduction Criterion). Let A, B be entire rings, and let
¢:A—B

be a homomorphism. Let K, L be the quotient fields of A and B respec-
tively. Let fe A[X] be such that @of #0 and deg of =deg f. If of is
irreducible in L[ X], then f does not have a factorization f(X)= g(X)h(X)
with

g, he A[X] and degg, degh = 1.

Proof. Suppose f has such a factorization. Then ¢f = (¢g)(¢h). Since
deg ¢g < degg and deg ¢h < deg h, our hypothesis implies that we must
have equality in these degree relations. Hence from the irreducibility in
L[ X] we conclude that g or h is an element of A4, as desired.

In the preceding criterion, suppose that A4 is a local ring, i.. a ring having
a unique maximal ideal p, and that p is the kernel of ¢. Then from the
irreducibility of ¢f in L[X] we conclude the irreducibility of f in A[X].
Indeed, any element of 4 which does not lie in p must be a unit in 4, so our
last conclusion in the proof can be strengthened to the statement that g or h
is a unit in A.

One can also apply the criterion when A is factorial, and in that case
deduce the irreducibility of f in K[X].

Example. Let p be a prime number. It will be shown later that
XP — X — 1 is irreducible over the field Z/pZ. Hence X? — X — 1 is irreduc-
ible over Q. Similarly,

X5 —5Xx*—6X —1
is irreducible over Q.

There is also a routine elementary school test whether a polynomial has a
root or not.

Proposition 3.3. (Integral Root Test). Let A be a factorial ring and K
its quotient field. Let

fX)=a,X"+ - +aye A[X].

Let o€ K be a root of f, with o = b/d expressed with b, de A and b, d
relatively prime. Then bla, and d|a,. In particular, if the leading coefficient
a, is 1, then a root o must lie in A and divides a.
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We leave the proof to the reader, who should be used to this one from way
back. As an irreducibility test, the test is useful especially for a polynomial of
degree 2 or 3, when reducibility is equivalent with the existence of a root in
the given field.

§4. HILBERT'S THEOREM

This section proves a basic theorem of Hilbert concerning the ideals of a
polynomial ring. We define a commutative ring A to be Noetherian if every
ideal is finitely generated.

Theorem 4.1. Let A be a commutative Noetherian ring. Then the polyno-
mial ring A[X] is also Noetherian.

Proof. Let U be an ideal of A[X]. Let a; consist of 0 and the set of elements
a € A appearing as leading coefficient in some polynomial

a+a; X + - +aX'

lying in . Then it is clear that q; is an ideal. (If g, b are in a;, then a + b is
in a; as one sees by taking the sum and difference of the corresponding
polynomials. If x e A4, then xaeaq; as one sees by multiplying the corre-
sponding polynomial by x.) Furthermore we have

G &y S ay <,

in other words, our sequence of ideals {a;} is increasing. Indeed, to see this
multiply the above polynomial by X to see that a € a,,,.
By criterion (2) of Chapter X, §1, the sequence of ideals {a;} stops, say at

a,:
Qg C A & < =04y ="
Let
oy, .--, Ao, De generators for a,
a,y, ..., 4,, be generators for a,.

Foreachi=0,...,randj=1,..., n let f; be a polynomial in 2, of degree
i, with leading coefficient a;;. We contend that the polynomials fij are a set
of generators for .

Let f be a polynomial of degree d in A. We shall prove that f is in the
ideal generated by the fj;, by induction on d. Say d = 0. If d > r, then we
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note that the leading coefficients of

X s oo X
generate a,. Hence there exist elements cy,...,c, €4 such that the
polynomial

f- CIXd_':ﬁl - = cn,Xd_' rn,

has degree <d, and this polynomial also lies in 2. If d < r, we can subtract
a linear combination

S—cifay—— Cn,,fdn,,

to get a polynomial of degree < d, also lying in A. We note that the
polynomial we have subtracted from f lies in the ideal generated by the f;;.
By induction, we can subtract a polynomial g in the ideal generated by the
fij such that f — g = 0, thereby proving our theorem.

We note that if ¢: A - B is a surjective homomorphism of commutative
rings and A is Noetherian, so is B. Indeed, let b be an ideal of B, so ¢~ !(b)

is an ideal of A. Then there is a finite number of generators (ay, . . ., a,) for
¢~(b), and it follows since ¢ is surjective that b = ¢(p~!(b)) is generated by
o(a,), ..., o(a,), as desired. As an application, we obtain:

Corollary 4.2. Let A be a Noetherian commutative ring, and let B =
Alxy, ..., x,] be a commutative ring finitely generated over A. Then B is
Noetherian.

Proof. Use Theorem 4.1 and the preceding remark, representing B as a
factor ring of a polynomial ring.

Ideals in polynomial rings will be studied more deeply in Chapter IX.
The theory of Noetherian rings and modules will be developed in Chapter X.

§6. PARTIAL FRACTIONS

In this section, we analyze the quotient field of a principal ring, using the
factoriality of the ring.

Theorem S5.1. Let A be a principal entire ring, and let P be a set of
representatives for its irreducible elements. Let K be the quotient field of
A, and let « € K. For each p e P there exists an element o,€ A and an
integer j(p) 2 0, such that j(p) =0 for almost all p€ P, o, and p’® are
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relatively prime, and
o
— 14
&= pgp p@”

If we have another such expression

then j(p) = i(p) for all p, and a, = B, mod p’® for all p.

Proof. We first prove existence, in a special case. Let a, b be rela-
tively prime non-zero elements of 4. Then there exists x, y € A such that
xa + yb = 1. Hence

1 x +

ab b
Hence any fraction c/ab with ¢ € A can be decomposed into a sum of two
fractions (namely cx/b and cy/a) whose denominators divide b and a respec-
tively. By induction, it now follows that any a € K has an expression as
stated in the theorem, except possibly for the fact that p may divide o,.
Canceling the greatest common divisor yields an expression satisfying all the
desired conditions.

As for uniqueness, suppose that o has two expressions as stated in the
theorem. Let g be a fixed prime in P. Then

y
-

Y by B %

@@ g0 = & pie T piw)
If j(q) = i(g) = O, our conditions concerning g are satisfied. Suppose one of
Jj(q) or i(q) > O, say j(q), and say j(g) = i(g). Let d be a least common multiple
for all powers p/® and p“® such that p # q. Multiply the above equation by
dq’®. We get

d(aq — qj(q)-i(q)ﬁq) = qj(q)lg

for some fe A. Furthermore, q does not divide d. If i(q) < j(q) then g
divides o, which is impossible. Hence i(g) =j(g). We now see that ¢/@
divides a, — f,, thereby proving the theorem.

We apply Theorem 5.1 to the polynomial ring k[X] over a field k. We
let P be the set of irreducible polynomials, normalized so as to have leading
coefficient equal to 1. Then P is a set of representatives for all the irreduc-
ible elements of k[X]. In the expression given for a in Theorem 5.1, we can
now divide a, by p/®, ie. use the Euclidean algorithm, if deg «, > deg p’®.
We denote the quotient field of k[X] by k(X), and call its elements rational
functions.
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Theorem 5.2. Let A = k[ X] be the polynomial ring in one variable over a
field k. Let P be the set of irreducible polynomials in k[X] with leading
coefficient 1. Then any element f of k(X) has a unique expression

X
-3, % +9(x),

where f,, g are polynomials, f, =0 if j(p) =0, f, is relatively prime to p if
Jj(p) > 0, and deg f, < deg p’® if j(p) > 0.

Proof. The existence follows at once from our previous remarks. The
uniqueness follows from the fact that if we have two expressions, with
elements f, and ¢, respectively, and polynomials g, h, then p*® divides
Jo — @, whence f, — @, =0, and therefore f, = @,, g = h.

One can further decompose the term f,/p’P by expanding f, according to
powers of p. One can in fact do something more general.

Theorem 5.3. Let k be a field and k[X] the polynomial ring in one
variable. Let f, g € k[X], and assume degg = 1. Then there exist unique
polynomials

Jos f15 -5 Ja€ k[X]
such that deg f; < deg g and such that

f=fo+fig+ -+ fug"

Proof. We first prove existence. If deg g > deg f, then we take f, = f
and f; =0 for i > 0. Suppose degg < deg f. We can find polynomials g, r
with deg r < deg g such that

f=aq9+r,

and since degg = 1 we have deg q < deg f. Inductively, there exist polyno-
mials hg, hy, ..., h, such that

q = hO +hlg + +hsgsa
and hence
f=r+hog+-+hg,

thereby proving existence.
As for uniqueness, let

f=lo+fig+ +/g" =00+ @19+ "+ oug”

be two expressions satisfying the conditions of the theorem. Adding terms
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equal to O to either side, we may assume that m = d. Subtracting, we get

0=(fo— @)+ +(fa— @a)9”

Hence g divides f, — ¢, and since deg(f, — ¢o) < deg g we see that fo = ¢,.
Inductively, take the smallest integer i such that f; # ¢; (if such i exists).
Dividing the above expression by g* we find that g divides f; — ¢; and hence
that such i cannot exist. This proves uniqueness.

We shall call the expression for f in terms of g in Theorem 5.3 the g-adic
expansion of f. If g(X) = X, then the g-adic expansion is the usual expres-
sion of f as a polynomial.

Remark. In some sense, Theorem 5.2 redoes what was done in Theorem

8.1 of Chapter I for Q/Z; that is, express explicitly an element of K/4 as a
direct sum of its p-components.

§6. SYMMETRIC POLYNOMIALS

Let A be a commutative ring and let ¢,,...,t, be algebraically indepen-
dent elements over 4. Let X be a variable over A[t,,...,t,]. We form the
polynomial

FX)=(X—1t,) (X —t,)
=X"—5; X" 4+ (=1,
where each s; = s;(t,, ..., t,) is a polynomial in ¢, ..., t,. Then for instance
s;=t;+-+t, and s, =1t i,

The polynomials s, ..., s, are called the elementary symmetric polynomials
of ty, ..., ¢t

We leave it as an easy exercise to verify that s; is homogeneous of degree i
int,...,t,

Let 0 be a permutation of the integers (1,...,n). Given a polynomial
f(t) € Al1] = Alty, ..., t,], we define of to be

(Tf(tl, S tn) =f(t0'(l)’ ey to-(n)).

If o, T are two permutations, then o 7f = o(7f) and hence the symmetric group
G on n letters operates on the polynomial ring A[f]. A polynomial is called
symmetric if of = f for all ¢ € G. It is clear that the set of symmetric
polynomials is a subring of A[t], which contains the constant polynomials
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(ie. A itself) and also contains the elementary symmetric polynomials s,, ..., s,.
We shall see below that A[s,, ..., s,] is the ring of symmetric polynomials.
Let X,, ..., X, be variables. We define the weight of a monomial

Xl"l X’:'n

to be v, +2vy+--+nv,, We define the weight of a polynomial
g9(X4, ..., X,) to be the maximum of the weights of the monomials occurring
in g.

Theorem 6.1. Let f(t)e A[ty,...,t,] be symmetric of degree d. Then
there exists a polynomial g(X,, ..., X,) of weight < d such that

f(t) = g(sh LR ] Sn)'

Proof. By induction on n. The theorem is obvious if n= 1, because
Sl = tl‘

Assume the theorem proved for polynomials in n — 1 variables.

If we substitute ¢, = 0 in the expression for F(X), we find

X —t) (X =ty )X =X"— ()0 X"+ 4+ (= 1)" (5,1 )0 X,

where (s;), is the expression obtained by substituting ¢, =0 in 5;. We see
that (sy)o, ---» (S,—1)o are precisely the elementary symmetric polynomials in
iy oens byoye

We now carry out induction on d. If d =0, our assertion is trivial.
Assume d > 0, and assume our assertion proved for polynomials of degree
<d. Let f(ty,...,t,) have degree d. There exists a polynomial
g:(Xy, ..., X,_,) of weight < d such that

Sty es tam1, 0) = g1((51)0s - - > (Su=1)o)-
We note that g,(s;, ..., s,_;) has degree <dint,, ..., t,. The polynomial
Si@ys oo t)) = fty, s t0) — 94(S15 -5 Spmp)
has degree < d (in t,, ..., t,) and is symmetric. We have
Silty, s t,1,0)=0.

Hence f, is divisible by t,, i.e. contains ¢, as a factor. Since f; is symmetric,
it contains t, --- t, as a factor. Hence

Si=5s.02(ty, .05 L)

for some polynomial f,, which must be symmetric, and whose degree is
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<d — n <d. By induction, there exists a polynomial g, in n variables and
weight < d — n such that

f2(t1’ LEER tn) = 92(81, ceey S").
We obtain

f(t) = gl(sl’ e Sn—l) + anZ(sl’ [RRE} S,,),
and each term on the right has weight < d. This proves our theorem.

We shall now prove that the elementary symmetric polynomials sy, ..., s,
are algebraically independent over A.

If they are not, take a polynomial f(X,,..., X,) e A[X] of least degree
and not equal to 0 such that

f(sq5...58,)=0.
Write f as a polynomial in X, with coefficients in A[X,,..., X,_;],
Xy X)) = foXpy ooy X))+ + fu Xy oo X)) X
Then f, # 0. Otherwise, we can write

J(X) = X,¥(X)

with some polynomial i, and hence s,¥(sy, ..., s,) = 0. From this it follows
that (s, ..., s,) = 0, and y has degree smaller than the degree of f.
We substitute s; for X; in the above relation, and get

0 =f0(sl, "'9sn—1) + +fd(sh e sn—l)s:'

This is a relation in A[t,,...,t,], and we substitute O for t, in this relation.
Then all terms become 0 except the first one, which gives

0= fo((sl)m et (sn—l)o)a

using the same notation as in the proof of Theorem 6.1. This is a non-trivial
relation between the elementary symmetric polynomials in t,,...,¢t,_;, a
contradiction.

Example. (The Discriminant). Let f(X)=(X —t¢t,) -~ (X —t,). Con-
sider the product

o) = H (t:—t;)

i<j
For any permutation ¢ of (1, ..., n) we see at once that

o°(t) = +6(t).
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Hence 6(t)? is symmetric, and we call it the discriminant:

Dy = D(sy,...,s,) =[] (t; — 1;)*

i<j
We thus view the discriminant as a polynomial in the elementary symmetric

functions. For a continuation of the general theory, see §8. We shall now
consider special cases.

Quadratic case. You should verify that for a quadratic polynomial
f(X)= X%+ bX + c, one has

D = b? — 4c.
Cubic case. Consider f(X) = X3 + aX + b. We wish to prove that
D = —4a® — 27b2.

Observe first that D is homogeneous of degree 6 in t,, t,. Furthermore, a is
homogeneous of degree 2 and b is homogeneous of degree 3. By Theorem
6.1 we know that there exists some polynomial g(X,, X;) of weight 6 such
that D =g(a, b). The only monomials X%X5 of weight 6, i.e. such that
2m + 3n = 6 with integers m, n =0, are those for which m=3, n=0, or
m=0and n = 2. Hence

9(X,, X3) = vX3 + wX?
where v, w are integers which must now be determined.

Observe that the integers v, w are universal, in the sense that for any
special polynomial with special values of a, b its discriminant will be given
by g(a, b) = va® + wb?.

Consider the polynomial

fiX)=XX-DX+1)=X3-X.

Then a= —1, b=0, and D= —va® = —v. But also D =4 by using the
definition of the discriminant of the product of the differences of the roots,
squared. Hence we get v = —4. Next consider the polynomial

fH(X)=X3—1.

Then a=0, b= —1, and D = 2b> =w. But the three roots of f, are the
cube roots of unity, namely

e Vi et BtV
’ 2 b .

2
Using the definition of the discriminant we find the value D = —27. Hence
we get w= —27. This concludes the proof of the formula for the dis-

criminant of the cubic when there is no X? term.
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In general, consider a cubic polynomial
JX) =X =5 X2+ 5,X — 53 =(X — 1;)(X — t)(X — 13).

We find the value of the discriminant by reducing this case to the simpler
case when there is no X2 term. We make a translation, and let

Y=X—%Sl SO X=Y+%SI=Y+%(tl+t2+t3).
Then f(X) becomes
JX)=*Y)=Y>+aY +b=(Y —u)(Y — u)(Y — u3),

where a = u u, + uyuy + uyu; and b= —u,u,u;, while uy +u, +u; =0.
We have
ui=ti_%sl fOl' i= 1, 2, 3,

and w; — u; =t; — t; for all i # j, so the discriminant is unchanged, and you
can easily get the formula in general. Do Exercise 12(b).

§7. MASON-STOTHERS THEOREM AND THE
abc CONJECTURE

In the early 80s a new trend of thought about polynomials started with the
discovery of an entirely new relation. Let f(¢) be a polynomial in one variable
over the complex numbers if you wish (an algebraically closed field of charac-
teristic 0 would do). We define

no(f) = number of distinct roots of f.

Thus ny(f) counts the zeros of f by giving each of them multiplicity 1, and
no(f) can be small even though deg f is large.

Theorem 7.1 (Mason-Stothers, [Mas 84], [Sto 81]). Let a(?), b(2), c(t) be

relatively prime polynomials such that a + b = c. Then

max deg{a, b, ¢} < ng(abc) — 1.
Proof. (Mason) Dividing by ¢, and letting f = a/c, g = b/c we have
f+g9=1,

where f, g are rational functions. Differentiating we get f’ + g’ = 0, which
we rewrite as

S .9

A
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so that

Let
at)y=c, [Tt —a)™  bO=c [[C—=B) c®=c3[]@—n)~

Then by calculus algebraicized in Exercise 11(c), we get

m T

o SIf zt—“i Zt—)’k

a g'l9 no_ me
Zt—ﬁj Zt_yk

A common denominator for f'/f and g'/g is given by the product

No=JlG—o) T —=B)TIt -7

whose degree is ny(abc). Observe that N,f'/f and N,g'/g are both polyno-
mials of degrees at most ny(abc) — 1. From the relation

b_ Nof'lf
a Nog'/g’

and the fact that a, b are assumed relatively prime, we deduce the inequality
in the theorem.

As an application, let us prove Fermat’s theorem for polynomials. Thus
let x(t), y(t), z(t) be relatively prime polynomials such that one of them has
degree = 1, and such that

x(@)" + y()" = z(t)"
We want to prove that n < 2. By the Mason-Stothers theorem, we get
ndeg x = deg x(t)" < deg x(t) + deg y(¢) + deg z(t) — 1,
and similarly replacing x by y and z on the left-hand side. Adding, we find
n(deg x + deg y + deg z) < 3(deg x + deg y + deg z) — 3.
This yields a contradiction if n = 3.
As another application in the same vein, one has:
Davenport’s theorem. Let f, g be non-constant polynomials such that
f3—g*+#0. Then
deg(f> —g*) 2 3degf— 1.
See Exercise 13.
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One of the most fruitful analogies in mathematics is that between the
integers Z and the ring of polynomials F[t] over a field F. Evolving from
the insights of Mason [Ma 84], Frey [Fr 87], Szpiro, and others, Masser and
Oesterle formulated the abc conjecture for integers as follows. Let m be a
non-zero integer. Define the radical of m to be

NO(m) = l_[ D,

plm

i.e. the product of all the primes dividing m, taken with multiplicity 1.

The abc conjecture. Given ¢ > 0, there exists a positive number C(¢) having
the following property. For any non-zero relative prime integers a, b, ¢
such that a + b = ¢, we have

max(|al, |bl, |c|) £ C(e)No(abc)' ™.

Observe that the inequality says that many prime factors of a, b, ¢ occur to
the first power, and that if “small” primes occur to high powers, then they
have to be compensated by “large” primes occurring to the first power. For
instance, one might consider the equation

2"+ 1=m.

For m large, the abc conjecture would state that m has to be divisible by
large primes to the first power. This phenomenon can be seen in the tables
of [BLSTW 83].

Stewart—Tijdeman [ST 86] have shown that it is necessary to have the ¢ in
the formulation of the conjecture. Subsequent examples were communicated to
me by Wojtek Jastrzebowski and Dan Spielman as follows.

We have to give examples such that for all C > 0 there exist natural
numbers a, b, c relatively prime such that a + b = ¢ and |a| > CNy(abc). But
trivially,

273" —1).
We consider the relations a, + b, = ¢, given by
37"~ 1=c,

It is clear that these relations provide the desired examples. Other examples
can be constructed similarly, since the role of 3 and 2 can be played by other
integers. Replace 2 by some prime, and 3 by an integer = 1 mod p.

The abc conjecture implies what we shall call the

Asymptotic Fermat Theorem. For all n sufficiently large, the equation
x’l + yn = zn

has no solution in relatively prime integers # 0.
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The proof follows exactly the same pattern as for polynomials, except
that we write things down multiplicatively, and there is a 1 + ¢ floating
around. The extent to which the abc conjecture will be proved with an
explicit constant C(¢) (or say C(1) to fix ideas) yields the corresponding
explicit determination of the bound for n in the application. We now go into
other applications.

Hall’s conjecture [Ha 71]. If u, v are relatively prime non-zero integers
such that u®> — v? # 0, then

[ud — v?] > |u|?e

The symbol » means that the left-hand side is = the right-hand side times a
constant depending only on & Again the proof is immediate from the abc
conjecture. Actually, the hypothesis that u, v are relatively prime is not
necessary; the general case can be reduced to the relatively prime case by
extracting common factors, and Hall stated his conjecture in this more
general way. However, he also stated it without the epsilon in the exponent,
and that does not work, as was realized later. As in the polynomial case,
Hall’s conjecture describes how small |[u® — v?| can be, and the answer is not
too small, as described by the right-hand side.

The Hall conjecture can also be interpreted as giving a bound for integral
relatively prime solutions of

v2 =u® + b with integral b.
Then we find

|u| < |b|**e.

More generally, in line with conjectured inequalities from Lang—Waldschmidt
[La 78], let us fix non-zero integers A, B and let u, v, k, m, n be variable,
with u, v relatively prime and mv > m + n. Put

Au™ + Bv" = k.
By the abc conjecture, one derives easily that

) lu] « No(kym=m "™ and o] « Ny(kym=tmem* ),
From this one gets
[K| < No(kym o+
The Hall conjecture is a special case after we replace N,(k) with |k|, because
Ny (k) = |kI.
Next take m =3 and n =2, but take A =4 and B = —27. In this case
we write

D = 4u® — 27v?
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and we get
V) |u| « No(D)*** and |v] « No(D)3*.

These inequalities are supposed to hold at first for u, v relatively prime.
Suppose we allow u, v to have some bounded common factor, say d. Write

u=u'd and v=10d
with u’, v’ relatively prime. Then
D = 4d3u’3 — 27d*".

Now we can apply inequality (1) with A = 4d*® and B = —27d?, and we find
the same inequalities (2), with the constant implicit in the sign « depending
also on d, or on some fixed bound for such a common factor. Under these
circumstances, we call inequalities (2) the generalized Szpiro conjecture.

The original Szpiro conjecture was stated in a more sophisticated situa-
tion, cf. [La 90] for an exposition, and Szpiro’s inequality was stated in the
form

|D| « N(D)°*,

where N(D) is a more subtle invariant, but for our purposes, it is sufficient
and much easier to use the radical Ny(D).

The point of D is that it occurs as a discriminant. The trend of thoughts
in the direction we are discussing was started by Frey [Fr 87], who asso-
ciated with each solution of a + b = ¢ the polynomial

x(x — a)(x + b),

which we call the Frey polynomial. (Actually Frey associated the curve
defined by the equation y? = x(x — a)(x + b), for much deeper reasons, but
only the polynomial on the right-hand side will be needed here.) The
discriminant of the polynomial is the product of the differences of the roots
squared, and so

D = (abc).

We make a translation

{=x+

to get rid of the x2-term, so that our polynomial can be rewritten

& - 728 — V3»

where y,, y; are homogeneous in a, b of appropriate weight. The dis-
criminant does not change because the roots of the polynomial in ¢ are
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translations of the roots of the polynomial in x. Then
D = 4y} — 2793,

The translation with (b — a)/3 introduces a small denominator. One may
avoid this denominator by using the polynomial x(x — 3a)(x — 3b), so that
72, 73 then come out to be integers, and one can apply the generalized Szpiro
conjecture to the discriminant, which then has an extra factor D = 3%(abc)?.

It is immediately seen that the generalized Szpiro conjecture implies
asymptotic Fermat. Conversely:

Generalized Szpiro implies the abc conjecture.

Indeed, the correspondence (a, b) < (y,, y3) is invertible, and has the “right”
weight. A simple algebraic manipulation shows that the generalized Szpiro
estimates on y,, y; imply the desired estimates on |a|, |b|. (Do Exercise 14.)
From the equivalence between abc and generalized Szpiro, one can use the
examples given earlier to show that the epsilon is needed in the Szpiro
conjecture.

Finally, note that the polynomial case of the Mason-Stothers theorem and
the case of integers are not independent, or specifically the Davenport theorem
and Hall’s conjecture are related. Examples in the polynomial case parametrize
cases with integers when we substitute integers for the variables. Such examples
are given in [BCHS 65], one of them (due to Birch) being

fO=t*+4*+102+6 and  g(t) =¢° + 617 + 21¢° + 353 + G,

whence
deg(f(2)> — g(t)*) = deg f + 1.

This example shows that Davenport’s inequality is best possible, because the
degree attains the lowest possible value permissible under the theorem.
Substituting large integral values of ¢t = 2 mod 4 gives examples of similarly
low values for x> — y2. For other connections of all these matters, cf. [La 90].
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§8. THE RESULTANT

In this section, we assume that the reader is familiar with determinants.
The theory of determinants will be covered later. The section can be viewed
as giving further examples of symmetric functions.

Let A be a commutative ring and let v,,...,v,, wg,...,w, be alge-
braically independent over 4. We form two polynomials:

f;,(X)': vOX'l + +vm
gu(X) = woX™ + - + W,

We define the resultant of (v, w), or of f,, g,,, to be the determinant

-
Voly *** U,
Voly *** U,
m«<
L Voly Uy
=
WoW, Wi
WoW W,
n-< o1 m
L WoW; Wi

The blank spaces are supposed to be filled with zeros.
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If we substitute elements (a) = (ay, ..., a,) and (b) = (by, ..., b,) in A for
(v) and (w) respectively in the coefficients of f, and g,, then we obtain
polynomials f, and g, with coefficients in 4, and we define their resultant to
be the determinant obtained by substituting (a) for (v) and (b) for (w) in the
determinant. We shall write the resultant of f,, g,, in the form

Res(f,, g.,) or R(v, w).

The resultant Res(f, g,) is then obtained by substitution of (a), (b) for (v), (W)
respectively.

We observe that R(v, w) is a polynomial with integer coefficients, i.e. we
may take A = Z. If z is a variable, then

R(zv, w) = z"™R(v, w) and R(v, zw) = z"R(v, w)

as one sees immediately by factoring out z from the first m rows (resp. the
last n rows) in the determinant. Thus R is homogeneous of degree m in its
first set of variables, and homogeneous of degree n in its second set of
variables. Furthermore, R(v, w) contains the monomial

VG Wm
with coefficient 1, when expressed as a sum of monomials.

If we substitute 0 for v, and w, in the resultant, we obtain 0, because the
first column of the determinant vanishes.
Let us work over the integers Z. We consider the linear equations

Xm_lf;,(X) — voxn+m—l + len+m—2 4+ 4+ vnxm—l

X2 (X) = v X" 4 + v, X™2
fo(X) = v X" + - + v,

Xn—lgw(X) = woxn+m—l + w, Xn+m—2 + 0+ men 1

Xn—zgw(X) — WOXn+m—2 + + men—Z
g.(X) = woX™ + + w,

Let C be the column vector on the left-hand side, and let
Cos s Crtn
be the column vectors of coefficients. Our equations can be written
C=X""1Co+ +1'Cpip
By Cramer’s rule, applied to the last coefficient which is = 1,

R(v, w) = det(C, ..., Cyprp) = det(Co, -, Crrsnoys C).
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From this we see that there exist polynomials ¢, ,, and , , in Z[v, w][X]
such that

‘P,v,wfv + ‘!’v,wgw = R(v,w) = Res(fy, f)-

Note that R(v, w) € Z[v, w] but that the polynomials on the left-hand side
involve the variable X.

If A: Z[v, w] > A is a homomorphism into a commutative ring A and we
let A(v) = (@), A(w) = (b), then

(pa.bfa + d’a,bgb = R(a’ b) = Res(fw ﬁ;)

Thus from the universal relation of the resultant over Z we obtain a similar
relation for every pair of polynomials, in any commutative ring A.

Proposition 8.1. Let K be a subfield of a field L, and let f,, g, be
polynomials in K[ X] having a common root & in L. Then R(a, b) = 0.

Proof. If f,(&) = g,(&) = 0, then we substitute & for X in the expression
obtained for R(a, b) and find R(a, b) = 0.

Next, we shall investigate the relationship between the resultant and the
roots of our polynomials f, g,,. We need a lemma.

Lemma 82. Let h(X,,..., X,) be a polynomial in n variables over the
integers Z. If h has the value 0 when we substitute X, for X, and leave
the other X, fixed (i # 2), then h(X,,..., X,) is divisible by X, — X, in
7[X,,...,X,].

Proof. Exercise for the reader.

Let vg, ty, ..., t,, Wg, Uy, ..., U, be algebraically independent over Z and
form the polynomials

fo=volX = t1) =+ (X = 1) =00 X" 4+ 41,
9w =Wo(X —uy) - (X —u,) = woX™ + - + W,
Thus we let
vi=(—Ds(t) and  w; = (—1Pwys;(u).
We leave to the reader the easy verification that
Vs Uty vevs Upy Wy, Wiy onvs Wy,

are algebraically independent over Z.

Proposition 8.3. Notation being as above, we have

Res(fos g) = ogwg [1 1 (& — ).

n
i=1 j=1
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Proof. Let S be the expression on the right-hand side of the equality in
the statement of the proposition.

Since R(v, w) is homogeneous of degree m in its first variables, and
homogeneous of degree n in its second variables, it follows that

R = vgwgh(t, u)

where h(t, u) € Z[t,u]. By Proposition 8.1, the resultant vanishes when we
substitute ¢; for u; i=1,...,n and j = 1,..., m), whence by the lemma, view-
ing R as an element of Z[v,, wo, t, u] it follows that R is divisible by t; — u;
for each pair (i,j). Hence S divides R in Z[v,, wy, t, u], because t; — u; is
obviously a prime in that ring, and different pairs (i, j) give rise to different
primes.

From the product expression for S, namely

0 s=ogwg [11] - w),

we obtain

whence

@ s = of [T a0
Similarly,

3 5 = (= 1w [T flw).

From (2) we see that S is homogeneous and of degree n in (w), and from (3)
we see that S is homogeneous and of degree m in (v). Since R has exactly the
same homogeneity properties, and is divisible by S, it follows that R = ¢S for
some integer c¢. Since both R and S have a monomial vgw;,, occurring in
them with coefficient 1, it follows that ¢ = 1, and our proposition is proved.

We also note that the three expressions found for S above now give us a
factorization of R. We also get a converse for Proposition 8.1.

Corollary 84. Let f,, g, be polynomials with coefficients in a field K, such
that agb, # 0, and such that f,, g, split in factors of degree 1 in K[X].
Then Res( f,, g,) = 0 if and only if f, and g, have a root in common.

Proof. Assume that the resultant is 0. If
Ja=ao(X — o) (X — o),
gp = bo(X — By) -+ (X — B

is the factorization of f,, g,, then we have a homomorphism
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Z[vy, t, wy, u] > K
such that vy ag, wo— by, t;> o, and u;— B; for all i, j. Then

0 = Res(f;, g5) = ab} [T TT (s — ),

whence f,, f, have a root in common. The converse has already been
proved.

We deduce one more relation for the resultant in a special case. Let f, be
as above,

So(X) =0 X"+ + v, =0o(X — 1) "+ (X — 1)
From (2) we know that if f, is the derivative of f,, then

Y Res(f,, f,) = vg ! U J').

Using the product rule for differentiation, we find:
, P
LX) =T ooX — 1)) (X = 1) (X —1,),

£t = volts — t2) -+ (G — B) -+~ (6 — 1),

where a roof over a term means that this term is to be omitted.

We define the discriminant of f, to be

D(f,) = D(v) = (= 1y 232 [T (t; — t,).
i#j

Proposition 8.5. Let f, be as above and have algebraically independent

coefficients over Z. Then

&) Res(f,, £;) = 03" [ (& — ;) = (= 120, D(£,).

i#j

Proof. One substitutes the expression obtained for f,(¢;) into the prod-

uct (4). The result follows at once.

When we substitute 1 for vy, we find that the discriminant as we defined
it in the preceding section coincides with the present definition. In particular,
we find an explicit formula for the discriminant. The formulas in the special
case of polynomials of degree 2 and 3 will be given as exercises.

Note that the discriminant can also be written as the product

D(f,)=v3" 2 [] (&; — ;)
i<j
Serre once pointed out to me that the sign (—1)"™"1? was missing in the
first edition of this book, and that this sign error is quite common in the
literature, occurring as it does in van der Waerden, Samuel, and Hilbert (but
not in his collected works, corrected by Olga Taussky); on the other hand
the sign is correctly given in Weber’s Algebra, Vol. I, 50.

For a continuation of this section, see Chapter IX, §3 and §4.
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§9. POWER SERIES

Let X be a letter, and let G be the monoid of functions from the set {X }
to the natural numbers. If v e N, we denote by X" the function whose value
at X is v. Then G is a multiplicative monoid, already encountered when we
discussed polynomials. Its elements are X°, X', X2, ..., X°,

Let A be a commutative ring, and ]et A[[X]] be the set of functions
from G into A, without any restriction. Then an element of A[[X]] may be
viewed as assigning to each monomial X" a coefficient a, € A. We denote
this element by

The summation symbol is not a sum, of course, but we shall write the above
expression also in the form

ao X’ +a; X' +

and we call it a formal power series with coefficients in A, in one variable.
We call a,, a,, ... its coefficients.
Given two elements of A[[X]], say

aXv and ZbX"

Tl[\/js

we define their product to be

where
C,' = Z a‘, b” .

v+u=i

Just as with polynomials, one defines their sum to be
> (a, +b)X"
v=0

Then we see that the power series form a ring, the proof being the same as
for polynomials.

One can also construct the power series ring in several variables
A[[X,,..., X,]1] in which every element can be expressed in the form

(Xv;alev' e X = Z a(v)M(v)(Xl9 D, 6

with unrestricted coefficients a,, in bijection with the n-tuples of integers
(v4s--.,v,) such that v; =0 for all i. It is then easy to show that there is an
isomorphism between A[[X,,..., X,]] and the repeated power series ring
A[[X,1] --- [[X,1]. We leave this as an exercise for the reader.
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The next theorem will give an analogue of the Euclidean algorithm for
power series. However, instead of dealing with power series over a field, it is
important to have somewhat more general coefficients for certain applica-
tions, so we have to introduce a little more terminology.

Let A be a ring and I an ideal. We assume that

fjl I ={o}.

We can view the powers I" as defining neighborhoods of 0 in 4, and we can
transpose the usual definition of Cauchy sequence in analysis to this situation,
namely: we define a sequence {a,} in A to be Cauchy if given some power I"
there exists an integer N such that for all m, n = N we have

a, —a,el’.

Thus I corresponds to the given € of analysis. Then we have the usual
notion of convergence of a sequence to an element of A. One says that 4 is
complete in the I-adic topology if every Cauchy sequence converges.

Perhaps the most important example of this situation is when A is a local
ring and I = m is its maximal ideal. By a complete local ring, one always
means a local ring which is complete in the m-adic topology.

Let k be a field. Then the power series ring

R =k[[xl,9Xn]]

in n variables is such a complete local ring. Indeed, let m be the ideal
generated by the variables X, ..., X,. Then R/m is naturally isomorphic to
the field k itself, so m is a maximal ideal. Furthermore, any power series of
the form

J&X) = co = f1(X)

with ¢y e k, ¢o # 0 and f;(X) e m is invertible. To prove this, one may first
assume without loss of generality that ¢, = 1. Then

(1= A& =1+ AX) + [, + f1(X)* + -+

gives the inverse. Thus we see that m is the unique maximal ideal and R is
local. It is immediately verified that R is complete in the sense we have just
defined. The same argument shows that if k is not a field but c, is invertible
in k, then again f(X) is invertible.

Again let A be a ring. We may view the power series ring in n variables
(n > 1) as the ring of power series in one variable X, over the ring of power
series in n — 1 variables, that is we have a natural identification

A[[Xl’ AR Xn]] = A[[Xl’ R Xn—l]] [[Xn]]

If A=k is a field, the ring k[[X,,..., X,_;]] is then a complete local
ring. More generally, if o is a complete local ring, then the power series ring
o[[X]] is a complete local ring, whose maximal ideal is (m, X) where m is
the maximal ideal of o. Indeed, if a power series ) a,X” has unit constant
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term a, € o*, then the power series is a unit in o[ [X]], because first, without
loss of generality, we may assume that a, = 1, and then we may invert 1 + h
with h € (m, X) by the geometric series 1 — h + h?> — h® +

In a number of problems, it is useful to reduce certain questions about
power series in several variables over a field to questions about power series
in one variable over the more complicated ring as above. We shall now
apply this decomposition to the Euclidean algorithm for power series.

Theorem 9.1. Let o be a complete local ring with maximal ideal m. Let
f(X)= Z aX'

be a power series in o[ [X]] (one variable), such that not all a; lie in m.
Say a, ..., a,_, € m, and a, € o* is a unit. Given g € o[ [X]] we can solve
the equation

g=4qaf +r
uniquely with g€ o[ [X]], re o[X], and degr < n — 1.
Proof (Manin). Let a and t be the projections on the beginning and
tail end of the series, given by

n—1
oz:Zb,.Xi._.i;) bX'=by+b X+ +b_, X" 1,

Y, X' Y b X T =b, + by X + by X2 4

Note that t(hX") = h for any heo[[X]]; and h is a polynomial of degree
< n if and only if 7(h) =

The existence of g, r is equivalent with the condition that there exists g
such that

©(g) = t(qf).
Hence our problem is equivalent with solving
1(g) = t(qa(f)) + (gz(N)X") = 2(g(f)) + gr(f).
Note that t(f) is invertible. Put Z = gqt(f). Then the above equation is

equivalent with
_ a(f) _ LU ))
‘t(g)—‘t(Z——(f)>+Z-—<I+‘t _‘t(f) Z.

Note that

L.
En)

because a(f)/1(f) e mo[ [X]]. We can therefore invert to find Z, namely

o[[Xx1] -»mo[[X]],
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B a(f)\"
Z= <’ e t(f)) o)

which proves both existence and uniqueness and concludes the proof.

Theorem 9.2. (Weierstrass Preparation). The power series f in the pre-
vious theorem can be written uniquely in the form

fX)=X"+b,_; X"+ + by)u,
where b, e m, and u is a unit in o[ [X]].
Proof. Write uniquely
X"=qf +r,
by the Euclidean algorithm. Then q is invertible, because
q=cot+c X+,

f___ +a"X"+...’
so that
1 =cpa, (modm),

and therefore ¢, is a unit in 0. We obtain q¢f = X" — r, and
f= q_l(Xn - I‘),

with r = 0 (mod m). This proves the existence. Uniqueness is immediate.

The integer n in Theorems 9.1 and 9.2 is called the Weierstrass degree of f,
and is denoted by degy, f. We see that a power series not all of whose coeffi-
cients lie in m can be expressed as a product of a polynomial having the given
Weierstrass degree, times a unit in the power series ring. Furthermore, all
the coefficients of the polynomial except the leading one lie in the maximal
ideal. Such a polynomial is called distinguished, or a Weierstrass polynomial.

Remark. I rather like the use of the Euclidean algorithm in the proof of
the Weierstrass Preparation theorem. However, one can also give a direct
proof exhibiting explicitly the recursion relations which solve for the coeffi-
cients of u, as follows. Write u =) ¢;X’. Then we have to solve the

equations
bOCO = ao,

bocl + b1C0 = a,,

boCp—y + + by_yco =a,y,
bOCn + 4+ CO = am

boCpsy + "+ €y = yuys
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In fact, the system of equations has a unique solution mod m" for each
positive integer r, after selecting c, to be a unit, say ¢, = 1. Indeed, from
the first n equations (from 0 to n — 1) we see that b, ..., b,_, are uniquely
determined to be 0 mod m. Then c,,C,yy,... are uniquely determined
mod m by the subsequent equations. Now inductively, suppose we have
shown that the coefficients b;, ¢; are uniquely determined mod m". Then one
sees immediately that from the conditions ay, ..., a,_; = 0 mod m the first n
equations define b, uniquely mod m"*! because all b;=0 mod m. Then
the subsequent equations define ¢;mod m™' uniquely from the values of
b, mod m"™*! and ¢; mod m". The unique system of solutions mod m" for each
r then defines a solution in the projective limit, which is the complete local
ring.

We now have all the tools to deal with unique factorization in one important
case.

Theorem 9.3. Let k be a field. Then k[[X,, . .., X,]] is factorial.

Proof. Letf(x) =f(X,,...,X,)€k[[X]]be # 0. After making a sufficiently
general linear change of variables (when k is infinite)

X; = 2 C,'ij with cij € k,
we may assume without loss of generality that f(0,..., 0, x,,) # 0. (When k is
finite, one has to make a non-linear change, cf. Theorem 2.1 of Chapter VIII.)
Indeed, if we write f(X) = f4X) + higher terms, where f,(X) is a homogeneous

polynomial of degree d = 0, then changing the variables as above preserves the
degree of each homogeneous component of f, and since k is assumed infinite,

the coefficients c;; can be taken so that in fact each power YC(@i=1,...,n
occurs with non-zero coefficient.
We now proceed by induction on n. Let R, = k[[X,, ..., X,]] be the power

series in n variables, and assume by induction that R,,_ is factorial. By Theorem
9.2, write f = gu where u is a unit and g is a Weierstrass polynomial in R,,_[X,,].
By Theorem 2.3, R,_,[X,] is factorial, and so we can write g as a product of
irreducible elements g,, ..., g, € R,_[X,], sof = g, - - * g,u, where the factors
g; are uniquely determined up to multiplication by units. This proves the existence
of a factorization. As to uniqueness, suppose f is expressed as a product of
irreducible elements in R, f = f; - - - f;. Then f,(0, ..., 0, x,) # O for each
g=1,...,s,50 we can write f, = hu, where u, is a unit and h, is a Weierstrass
polynomial, necessarily irreducible in R,_,[X,]. Then f = gu= H h, l—[ Uy
with g and all h, Weierstrass polynomials. By Theorem 9.2, we must have
g= H hg, and since R,_[X,] is factorial, it follows that the polynomials h,
are the same as the polynomials g;, up to units. This proves uniqueness.

Remark. As was pointed out to me by Dan Anderson, I incorrectly stated
in a previous printing that if £ is a factorial complete local ring, then O[[X]]
is also factorial. This assertion is false, as shown by the example

k(O[IX1, X, X311/XT + X3 + X3)
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due to P. Salmon, Su un problema post da P. Samuel, Atti Acad. Naz. Lincei
Rend. Cl. Sc. Fis. Matem. 40(8) (1966) pp. 801-803. It is true that if O is a
regular local ring in addition to being complete, then O[[X]] is factorial, but this
is a deeper theorem. The simple proof I gave for the power series over a field
is classical. I chose the exposition in [GrH 78].

Theorem 9.4. If A is Noetherian, then A[[X]] is also Noetherian.

Proof. Our argument will be a modification of the argument used in the
proof of Hilbert’s theorem for polynomials. We shall consider elements of
lowest degree instead of elements of highest degree.

Let 9 be an ideal of A[[X]]. We let a; be the set of elements a € A such
that a is the coefficient of X in a power series

aX' + terms of higher degree

lying in A. Then q; is an ideal of A4, and a; = a;,, (the proof of this assertion
being the same as for polynomials). The ascending chain of ideals stops:

OOCGICQZC"'CO,=0,+1=“'

As before, let a; (i=0,...,r and j=1,..., n;) be generators for the ideals
a;, and let f; be power series in A having a; as beginning coefficient.
Given fe U, starting with a term of degree d, say d <r, we can find
elements ¢y, . . ., ¢,,; € A such that

f_ clj;il - cndj;ind

starts with a term of degree =d + 1. Proceeding inductively, we may as-
sume that d > r. We then use a linear combination

S = XSy = = X,

to get a power series starting with a term of degree = d + 1. In this way, if
we start with a power series of degree d > r, then it can be expressed as a
linear combination of f,,, . . . , f,,, by means of the coefficients

GX) = 3 X7 g, (X) = 3 X
and we see that the f;; generate our ideal U, as was to be shown.

Corollary 9.5. If A is a Noetherian commutative ring, or a field, then
A[[X,,..., X,1] is Noetherian.

Examples. Power series in one variable are at the core of the theory of
functions of one complex variable, and similarly for power series in several
variables in the higher-dimensional case. See for instance [Gu 90].

Weierstrass polynomials occur in several contexts. First, they can be used
to reduce questions about power series to questions about polynomials, in
studying analytic sets. See for instance [GrH 78], Chapter 0. In a number-
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theoretic context, such polynomials occur as characteristic polynomials in
the Iwasawa theory of cyclotomic fields. Cf. [La 90], starting with Chapter
5.

Power series can also be used as generating functions. Suppose that to
each positive integer n we associate a number a(n). Then the generating
function is the power series ) a(n)t". In significant cases, it turns out that
this function represents a rational function, and it may be a major result to
prove that this is so.

For instance in Chapter X, §6 we shall consider a Poincaré series,
associated with the length of modules. Similarly, in topology, consider a
topological space X such that its homology groups (say) are finite dimen-
sional over a field k of coefficients. Let h, = dim H,(X, k), where H, is the
n-th homology group. The Poincaré series is defined to be the generating
series

Pty =Y h,em.

Examples arise in the theory of dynamical systems. One considers a
mapping T: X —» X from a space X into itself, and we let N, be the number
of fixed points of the n-th iterate 7" = To T oo T (n times). The generat-
ing function is ) N,t". Because of the number of references I give here, I
list them systematically at the end of the section. See first Artin—Mazur
[ArM 65]; a proof by Manning of a conjecture of Smale [Ma 71]; and
Shub’s book [Sh 87], especially Chapter 10, Corollary 10.42 (Manning’s
theorem).

For an example in algebraic geometry, let V be an algebraic variety
defined over a finite field k. Let K, be the extension of k of degree n (in a
given algebraic closure). Let N, be the number of points of V in K,. One
defines the zeta function Z(t) as the power series such that Z(0) = 1 and

Z)Z@) = 3 Ny
n=1

Then Z(t) is a rational function (F. K. Schmidt when the dimension of Vis 1,
and Dwork in higher dimensions). For a discussion and references to the
literature, see Appendix C of Hartshorne [Ha 77].

Finally we mention the partition function p(n), which is the number of
ways a positive integer can be expressed as a sum of positive integers. The
generating function was determined by Euler to be

1+ Zp(n)t” = ]jl(l -t

See for instance Hardy and Wright [HardW 71], Chapter XIX. The generat-
ing series for the partition function is related to the power series usually
expressed in terms of a variable g, namely
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00

A=gq l_[1 (1-g"**= Zl t(n)q",
which is the generating series for the Ramanujan function t(n). The power
series for A is also the expansion of a function in the theory of modular
functions. For an introduction, see Serre’s book [Se 73], last chapter, and
books on elliptic functions, e.g. mine. We shall mention one application of
the power series for A in the Galois theory chapter.

Generating power series also occur in K-theory, topological and algebraic
geometric, as in Hirzebruch’s formalism for the Riemann—Roch theorem and
its extension by Grothendieck. See Atiyah [At 67], Hirzebruch [Hi 66], and
[FuL 86]. I have extracted some formal elementary aspects having directly
to do with power series in Exercises 21-27, which can be viewed as basic
examples. See also Exercises 31-34 of the next chapter.
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EXERCISES

1.

Let k be a field and f(X) € k[X] a non-zero polynomial. Show that the following
conditions are equivalent:

(a) The ideal (f(X)) is prime.

(b) The ideal (f(X)) is maximal.

(¢) f(X) is irreducible.

. (a) State and prove the analogue of Theorem 5.2 for the rational numbers.

(b) State and prove the analogue of Theorem 5.3 for positive integers.

. Let f be a polynomial in one variable over a field k. Let X, Y be two variables.

Show that in k[ X, Y] we have a “Taylor series” expansion
SX+Y)=fX)+ Zl P(X)Y,

where ¢;(X) is a polynomial in X with coefficients in k. If k has characteristic 0,
show that

Df(X
o) = 21X

. Generalize the preceding exercise to polynomials in several variables (introduce

partial derivatives and show that a finite Taylor expansion exists for a polynomial
in several variables).

. (a) Show that the polynomials X* + 1 and X¢ + X3 + 1 are irreducible over the

rational numbers.

(b) Show that a polynomial of degree 3 over a field is either irreducible or has a
root in the field. Is X3 — 5X2 + 1 irreducible over the rational numbers?

(c) Show that the polynomial in two variables X2 + Y2 — 1 is irreducible over
the rational numbers. Is it irreducible over the complex numbers?

. Prove the integral root test of §3.

. (a) Let k be a finite field with g elements. Let f(X,,..., X,) be a polynomial in

k[X] of degree d and assume f(0,...,0)=0. An element (a,,...,a,) € k™
such that f(a) = 0 is called a zero of f. If n > d, show that f has at least one
other zero in k™. [Hint: Assume the contrary, and compare the degrees of
the reduced polynomial belonging to

1— 1!

and (1 — X7 --- (1 — X77'). The theorem is due to Chevalley.]
(b) Refine the above results by proving that the number N of zeros of f in k™ is
= 0 (mod p), arguing as follows. Let i be an integer = 1. Show that
i_Ja—1=—1 ifq—1divides
xze:h x {0 otherwise.

Denote the preceding function of i by ¥(i). Show that
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N= Y (1-f(x")

xekm™
and for each n-tuple (i, ..., i,) of integers = 0 that
Y oxt T = Y)Y

xekm

Show that both terms in the sum for N above yield 0 mod p. (The above
argument is due to Warning.)

(c) Extend Chevalley’s theorem to r polynomials fi, ..., f, of degrees d,,...,d,
respectively, in n variables. If they have no constant term and n > Zdn show
that they have a non-trivial common zero.

(d) Show that an arbitrary function f:k™ — k can be represented by a poly-
nomial. (As before, k is a finite field.)

8. Let A be a commutative entire ring and X a variable over A. Let a, be A and
assume that g is a unit in A. Show that the map X+>aX + b extends to a
unique automorphism of A[X] inducing the identity on A. What is the inverse
automorphism?

9. Show that every automorphism of A[X] is of the type described in Exercise 8.

10. Let K be a field, and K(X) the quotient field of K[X]. Show that every automorphism
of K(X) which induces the identity on KX is of type

aX+b
— —
cX +d

with a, b, ¢, de K such that (aX + b)/(cX + d) is not an element of K, or
equivalently, ad — bc # 0.

11. Let A be a commutative entire ring and let K be its quotient field. We show here
that some formulas from calculus have a purely algebraic setting. Let D: 4 — A4
be a derivation, that is an additive homomorphism satisfying the rule for the
derivative of a product, namely

D(xy) = xDy + yDx for x, yeA.

(a) Prove that D has a unique extension to a derivation of K into itself, and that
this extension satisfies the rule

Dx — xD
D(x/y) = Z7J

for x, ye A and y # 0. [Define the extension by this formula, prove that it is
independent of the choice of x, y to write the fraction x/y, and show that it
is a derivation having the original value on elements of A4.]

(b) Let L(x) = Dx/x for xe K*. Show that L(xy)= L(x)+ L(y). The homo-
morphism L is called the logarithmic derivative.

(c) Let D be the standard derivative in the polynomial ring k[X] over a field k.
Let R(X) =c[[(X — o)™ with o; € k, ce k, and m; e Z, so R(X) is a rational
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12.

13.

14.
15.

16.

17.

function. Show that
m;

Rm:ZX—W

(a) If f(X) = aX? + bX + c, show that the discriminant of f is b* — 4ac.
(b) If f(X) = aoX?® + a; X% + a, X + a,, show that the discriminant of f is

ala} — 4aya3 — 4alay — 27a%al + 18a4a, a,a,.

(c) Let f(X)=(X —1t,)--- (X —1,). Show that
n
Dy = (=112 [T £'(t).
i=1
Polynomials will be taken over an algebraically closed field of characteristic 0.
(a) Prove
Davenport’s theorem. Let f(t), g(t) be polynomials such that 3 — g? # 0. Then
deg(f* —g*) 2 3 deg f+ 1.
Or put another way, let h = 3 — g2 and assume h # 0. Then
deg f<2degh—2.

To do this, first assume f, g relatively prime and apply Mason’s theorem. In
general, proceed as follows.

(b) Let A, B, f, g be polynomials such that Af, Bg are relatively prime # 0. Let
h = Af3 + Bg>® Then

deg f <degA+degB+2degh—2.

This follows directly from Mason’s theorem. Then starting with f, g not
necessarily relatively prime, start factoring out common factors until no
longer possible, to effect the desired reduction. When I did it, I needed to do
this step three times, so don’t stop until you get it.

(c) Generalize (b) to the case of f™ — g" for arbitrary positive integer exponents
m and n.

Prove that the generalized Szpiro conjecture implies the abc conjecture.

Prove that the abc conjecture implies the following conjecture: There are infinitely
many primes p such that 2P~! % 1 mod p2. [Cf. the reference [Sil 88] and [La 90]
at the end of §7.]

Let w be a complex number, and let ¢ = max(l,|w|). Let F, G be non-zero
polynomials in one variable with complex coefficients, of degrees d and d’ respec-
tively, such that |F|, |G| = 1. Let R be their resultant. Then

IR| < ¢ [IFW)| + IGW)]IFI¥|GI*(d + d')***.
(We denote by |F| the maximum of the absolute values of the coefficients of F.)

Let d be an integer = 3. Prove the existence of an irreducible polynomial of
degree d over Q, having precisely d —2 real roots, and a pair of complex
conjugate roots. Use the following construction. Let b,, ..., b;—, be distinct



216 POLYNOMIALS IV, Ex

integers, and let a be an integer > 0. Let
IX)=X24+a(X —=b) (X —by.))=X+c; 1 X'+ + ¢

Observe that ¢; € Z for all i. Let p be a prime number, and let
p
9a(X) = g(X) + o

so that g, converges to g (ie. the coefficients of g, converge to the coefficients

of g).

(a) Prove that g, has precisely d — 2 real roots for n sufficiently large. (You may
use a bit of calculus, or use whatever method you want.)

(b) Prove that g, is irreducible over Q.

Integral-valued polynomials

18. Let P(X)e Q[X] be a polynomial in one variable with rational coefficients. It
may happen that P(n) e Z for all sufficiently large integers n without necessarily P
having integer coefficients.

(a) Give an example of this.
(b) Assume that P has the above property. Prove that there are integers
Co, €y, -+ Cy SUCh that

P(X)=co<)r(>+cl(ri(l)+"'+c,,

(f):%xu{— ) (X —r+1)

where

is the binomial coefficient function. In particular, P(n) e Z for all n. Thus we
may call P integral valued.

(c) Let f:Z —Z be a function. Assume that there exists an integral valued
polynomial Q such that the difference function Af defined by

@A) =fn) - fn — 1)

is equal to Q(n) for all n sufficiently large. Show that there exists an integral-
valued polynomial P such that f(n) = P(n) for all n sufficiently large.

Exercises on symmetric functions

19. (a) Let X,,..., X, be variables. Show that any homogeneous polynomial in
Z[X,,...,X,] of degree > n(n — 1) lies in the ideal generated by the elemen-
tary symmetric functions s, ..., s,.
(b) With the same notation show that Z[X,,...,X,] is a free Z[s,,...,s,]
module with basis the monomials

b = X;’ X:n
with0<r,<n-—i
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(c) Let X,,...,X, and Y,,..., Y, be two independent sets of variables. Let
§15---»S, be the elementary symmetric functions of X and s,,...,s, the
elementary symmetric functions of Y (using vector vector notation). Show
that Z[X, Y] is free over Z[s, s'] with basis XY@, and the exponents (r), (4)
satisfying inequalities as in (b).

(d) Let I be an ideal in Z[s, s']. Let J be the ideal generated by I in Z[X, Y].
Show that

JnZ[s, s']=1

20. Let 4 be a commutative ring. Let t be a variable. Let
f=Y at' and g@t)=Y bt
i=0 i=o

be polynomials whose constant terms are a, = b, = 1. If

fg@) =1,

show that there exists an integer N (= (m + n)(m + n — 1)) such that any mono-
mial

a; 1... a:n
with Y jr, > N is equal to 0. [Hint: Replace the a’s and b’s by variables. Use
Exercise 19(b) to show that any monomial M(a) of weight > N lies in the ideal I
generated by the elements

k
G = Z a;b,_;

i=0

(letting a, = b, = 1). Note that ¢, is the k-th elementary symmetric function of
the m + n variables (X, Y).]

[Note: For some interesting contexts involving symmetric functions, see
Cartier’s talk at the Bourbaki Seminar, 1982—1983.]

A-rings

The following exercises start a train of thought which will be pursued in Exercise
33 of Chapter V; Exercises 22-24 of Chapter XVIII; and Chapter XX, §3. These
originated to a large extent in Hirzebruch’s Riemann—-Roch theorem and its extension
by Grothendieck who defined A-rings in general.

Let K be a commutative ring. By A-operations we mean a family of mappings

J:K—-K
for each integer i = 0 satisfying the relations for all x € K:
P2x)=1  Al(x)=x,

and for all integers n = 0, and x, y € K,

I +y) =Y FAI7(y).

i=0
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The reader will meet examples of such operations in the chapter on the alternat-
ing and symmetric products, but the formalism of such operations depends only
on the above relations, and so can be developed here in the context of formal
power series. Given a A-operation, in which case we also say that K is a A-ring,
we define the power series

A(x) = .i M)t

Prove the following statements.

21. The map x+> A,(x) is a homomorphism from the additive group of K into the
multiplicative group of power series 1 + tK[[f]] whose constant term is equal to
1. Conversely, any such homomorphism such that 4,(x) =1 + xt + higher terms
gives rise to A-operations.

22. Let s = at + higher terms be a power series in K[[t]] such that a is a unit in K.
Show that there is a power series

t=g(s)=) bs'" with beKkK.

Show that any power series f(t) € K[ [t]] can be written in the form h(s) for some
other power series with coefficients in K.
Given a A-operation on K, define the corresponding Grothendieck power series

7:(x) = A,/“_,)(x) = Ay(x)
where s = t/(1 — t). Then the map
X y,(x)
is a homomorphism as before. We define y(x) by the relation
lx) = Ly ot
Show that y satisfies the following properties.

23. (a) For every integer n = 0 we have
LJ N .
Px +y) = Zo YY)

(b) (1) =1/(1 —2).
© n(=D=1-t

24. Assume that A'u = 0 for i > 1. Show:
@ yu—1)=1+@u— 1

o0

®) (1 )= ¥ (1w
25. Bernoulli numbers. Define the Bernoulli numbers B, as the coefficients in the
power series
t ©

-3 B

e' -1 k=0 F

F)=
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26.

27.

Of course, e' = ) t"/n! is the standard power series with rational coefficients 1/n!.
Prove:

(@) Bp=1,B, =% B, =¢.

(b) F(—t) =t + F(t), and B, = 0 if k is odd #1.

Bernoulli polynomials. Define the Bernoulli polynomials B,(X) by the power
series expansion

tX k

te &, t
B,(X)—.
2 Bl

F(t, X)= o— =

It is clear that B, = B,(0), so the Bernoulli numbers are the constant terms of the
Bernoulli polynomials. Prove:

@ ByX)=1,B,(X) =X -1,B,(X)=X2—-X +%

(b) For each positive integer N,

N-1 X
B,(X)= N*' Y B,,< +").
a=0 N

(©) By(X) = X* —1kX* ! 4 lower terms.
k

t
— — toXt — kKt
d Fe, X+ 1)—Ft, X)=te* =ty X R
(€) B(X +1)—By(X)=kX* ' for k= 1.
Let N be a positive integer and let f be a function on Z/NZ. Form the power
series
te(a+X)l

N-1
Fyt, X) = go f(a)eT_—l'

Following Leopoldt, define the generalized Bernoulli polynomials relative to the
function f by

k

FtX)= Y B, X,
¥=0 k!

In particular, the constant term of B, (X) is defined to be the generalized
Bernoulli number B, , =B, ((0) introduced by Leopoldt in cyclotomic fields.
Prove:

(@) Fy(t, X + k) = e"F,(t, X).

(b) Fi(t, X + N) — Fy(t, X) = (e™ — 1)F,(t, X).

1 N-1
© B X +N)—B, ,(X)]= Z:o f@(a+ Xy

k (k :
(d) B, (X)=Y <i>BuX”"

i=0
=B, ;+kB_, X+ +kB, [ X*' + B, ;X"

Note. The exercises on Bernoulli numbers and polynomials are designed not

only to give examples for the material in the text, but to show how this material
leads into major areas of mathematics: in topology and algebraic geometry centering
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around Riemann-Roch theorems; analytic and algebraic number theory, as in the
theory of the zeta functions and the theory of modular forms, cf. my Introduction
to Modular Forms, Springer-Verlag, New York, 1976, Chapters XIV and XV; my
Cyclotomic Fields, I and II, Springer-Verlag, New York, 1990, Chapter 2, §2; Kubert—
Lang’s Modular Units, Springer-Verlag, New York, 1981; etc.

Further Comments, 1996-2001. I was informed by Umberto Zannier that what has
been called Mason’s theorem was proved three years earlier by Stothers [Sto 81], Theo-
rem 1.1. Zannier himself has published some results on Davenport’s theorem [Za 95],
without knowing of the paper by Stothers, using a method similar to that of Stothers,
and rediscovering some of Stothers’ results, but also going beyond. Indeed, Stothers uses
the “Belyi method” belonging to algebraic geometry, and increasingly appearing as a
fundamental tool. Mason gave a very elementary proof, accessible at the basic level of
algebra. An even shorter and very elegant proof of the Mason-Stothers theorem was
given by Noah Snyder [Sny 00]. I am much indebted to Snyder for showing me that
proof before publication, and I reproduced it in [La 99b]. But I recommend looking at
Snyder’s version.

[La 99b] S. LANG, Math Talks for Undergraduates, Springer Verlag 1999

[Sny 00] N. SNYDER, An alternate proof of Mason’s theorem, Elemente der Math. 55
(2000) pp. 93-94

[Sto 81] W. STOTHERS, Polynomial identities and hauptmoduln, Quart. J. Math. Oxford
(2) 32 (1981) pp. 349-370

[Za 95] U. ZaNNIER, On Davenport’s bound for the degree of /> — g2 and Riemann’s
existence theorem, Acta Arithm. LXXL2 (1995) pp. 107-137



Part Two

ALGEBRAIC
EQUATIONS

This part is concerned with the solutions of algebraic equations, in one
or several variables. This is the recurrent theme in every chapter of this
part, and we lay the foundations for all further studies concerning such
equations.

Given a subring A of a ring B, and a finite number of polynomials
Jis .-y fpin A[X,, ..., X,], we are concerned with the n-tuples

(by,...,b,) e B™
such that
ﬂ(bla ceey bn) = 0

for i=1,...,r. For suitable choices of 4 and B, this includes the general
problem of diophantine analysis when A, B have an “arithmetic” structure.

We shall study various cases. We begin by studying roots of one polyno-
mial in one variable over a field. We prove the existence of an algebraic
closure, and emphasize the role of irreducibility.

Next we study the group of automorphisms of algebraic extensions of a
field, both intrinsically and as a group of permutations of the roots of a
polynomial. We shall mention some major unsolved problems along the
way.

It is also necessary to discuss extensions of a ring, to give the possibil-
ity of analyzing families of extensions. The ground work is laid in Chapter
VIL

In Chapter IX, we come to the zeros of polynomials in several variables,
essentially over algebraically closed fields. But again, it is advantageous to

221



222 ALGEBRAIC EQUATIONS PART TWO

consider polynomials over rings, especially Z, since in projective space, the
conditions that homogeneous polynomials have a non-trivial common zero
can be given universally over Z in terms of their coefficients.

Finally we impose additional structures like those of reality, or metric
structures given by absolute values. Each one of these structures gives rise to
certain theorems describing the structure of the solutions of equations as
above, and especially proving the existence of solutions in important cases.



CHAPTER V

Algebraic Extensions

In this first chapter concerning polynomial equations, we show that given
a polynomial over a field, there always exists some extension of the field
where the polynomial has a root, and we prove the existence of an algebraic
closure. We make a preliminary study of such extensions, including the
automorphisms, and we give algebraic extensions of finite fields as examples.

§1. FINITE AND ALGEBRAIC EXTENSIONS

Let F be a field. If F is a subfield of a field E, then we also say that E is
an extension field of F. We may view E as a vector space over F, and we say
that E is a finite or infinite extension of F according as the dimension of this
vector space is finite or infinite.

Let F be a subfield of a field E. An element « of E is said to be algebraic
over F if there exist elements a,, ..., a, (n = 1) of F, not all equal to 0, such
that

ay+aa+-+a,a"=0.

If « #0, and « is algebraic, then we can always find elements a; as above
such that a, # O (factoring out a suitable power of a).
Let X be a variable over F. We can also say that « is algebraic over F if
the homomorphism
F[X]—>E

223
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which is the identity on F and maps X on o has a non-zero kernel. In that
case the kernel is an ideal which is principal, generated by a single polyno-
mial p(X), which we may assume has leading coefficient 1. We then have an
isomorphism

FIX1/(p(X)) ~ F[a],

and since F[a] is entire, it follows that p(X) is irreducible. Having normal-
ized p(X) so that its leading coefficient is 1, we see that p(X) is uniquely
determined by « and will be called THE irreducible polynomial of o over F.
We sometimes denote it by Irr(a, F, X).

An extension E of F is said to be algebraic if every element of E is
algebraic over F.

Proposition 1.1. Let E be a finite extension of F. Then E is algebraic
over F.

Proof. Leta€E, a #0. The powers of a,

2
1, 0, 0%, ..., ",

cannot be linearly independent over F for all positive integers n, otherwise
the dimension of E over F would be infinite. A linear relation between these
powers shows that « is algebraic over F.

Note that the converse of Proposition 1.1 is not true; there exist infinite
algebraic extensions. We shall see later that the subfield of the complex
numbers consisting of all algebraic numbers over Q is an infinite extension

of Q.

If E is an extension of F, we denote by
[E: F]

the dimension of E as vector space over F. It may be infinite.

Proposition 1.2. Let k be a field and F — E extension fields of k. Then
[E:k] =[E:F][F:k].

If {x;}ic1 is a basis for F over k and {y;};., is a basis for E over F, then
{Xi¥;}.jye1xs is a basis for E over k.

Proof. Let ze E. By hypothesis there exist elements «; € F, almost all
a; = 0, such that
zZ= Z ajyj.
jelJ
For each j e J there exist elements b; € k, almost all of which are equal to 0,
such that
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o = Z b;ix;,
iel
and hence
Z = ; ; bjixiyj°

This shows that {x;y;} is a family of generators for E over k. We must show
that it is linearly independent. Let {c;} be a family of elements of k, almost
all of which are 0, such that

Z Z CijXiy; = 0.
i
Then for each j,
Z c,'jx‘- = 0
i

because the elements y; are linearly independent over F. Finally c; = 0 for
each i because {x;} is a basis of F over k, thereby proving our proposition.

Corollary 1.3. The extension E of k is finite if and only if E is finite over
F and F is finite over k.

As with groups, we define a tower of fields to be a sequence
FICFZC'“CFII
of extension fields. The tower is called finite if and only if each step is finite.
Let k be a field, E an extension field, and « € E. We denote by k(x) the

smallest subfield of E containing both k and «. It consists of all quotients
f(@)/g(x), where f, g are polynomials with coefficients in k and g(x) # 0.

Proposition 1.4. Let a be algebraic over k. Then k(x) = k[o], and k(o) is
finite over k. The degree [k(a): k] is equal to the degree of Irr(a, k, X).

Proof. Let p(X) = Irr(a, k, X). Let f(X)e k[X] be such that f(«) 0.
Then p(X) does not divide f(X), and hence there exist polynomials g(X),
h(X) € k[ X] such that

9(X)p(X) + h(X)f(X) = 1.

From this we get h(x)f(x) =1, and we see that f(a) is invertible in k[a].

Hence k[«] is not only a ring but a field, and must therefore be equal to

k(x). Let d = deg p(X). The powers
La..,o!

are linearly independent over k, for otherwise suppose

ag+ a ot + -+ a0t =0
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with a; ek, not all a; =0. Let g(X)=aq + "+ + a4, X*"'. Then g # 0 and
g(®) = 0. Hence p(X) divides g(X), contradiction. Finally, let f(a)€ k[a],
where f(X)e k[X]. There exist polynomials g(X), r(X)e k[X] such that
degr < d and

f(X) = q(X)p(X) + r(X).

Then f(«) = r(x), and we see that 1, a, ..., a%"! generate k[«] as a vector space
over k. This proves our proposition.

Let E, F be extensions of a field k. If E and F are contained in some field
L then we denote by EF the smallest subfield of L containing both E and
F, and call it the compositum of E and F, in L. If E, F are not given as
embedded in a common field L, then we cannot define the compositum.

Let k be a subfield of E and let a4, ..., a, be elements of E. We denote
by

k(oty,..-50,)

the smallest subfield of E containing k and «,, ..., «,. Its elements consist of
all quotients

Sflag,.osa)
gloty, ..., 0,)

where f, g are polynomials in n variables with coefficients in k, and
gy, ..., a,) #0.

Indeed, the set of such quotients forms a field containing k and ay, ..., a,.
Conversely, any field containing k and

Oy eny Oy
must contain these quotients.

We observe that E is the union of all its subfields k(«,,...,®,) as
(oq, ..., a,) ranges over finite subfamilies of elements of E. We could define

the compositum of an arbitrary subfamily of subfields of a field L as the
smallest subfield containing all fields in the family. We say that E is finitely
generated over k if there is a finite family of elements «,,..., «, of E such
that

E =k(ay, ..., a,)
We see that E is the compositum of all its finitely generated subfields over k.
Proposition 1.5. Let E be a finite extension of k. Then E is finitely
generated.

Proof. Let {a,,...,a,} be a basis of E as vector space over k. Then
certainly
E=kia,..., o)
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If E = k(ay,...,a,) is finitely generated, and F is an extension of k, both
F, E contained in L, then

EF = F(ay, ..., a,),

and EF is finitely generated over F. We often draw the following picture:

Lines slanting up indicate an inclusion relation between fields. We also call
the extension EF of F the translation of E to F, or also the lifting of E to
F.

Let o be algebraic over the field k. Let F be an extension of k, and
assume k(x), F both contained in some field L. Then « is algebraic over F.
Indeed, the irreducible polynomial for « over k has a fortiori coefficients in
F, and gives a linear relation for the powers of a over F.

Suppose that we have a tower of fields:

k = k(ay) = k(ay, a3) =+ < k(otg, ..., &),

each one generated from the preceding field by a single element. Assume that
each o; is algebraic over k, i=1, ..., n. As a special case of our preceding
remark, we note that a;,, is algebraic over k(x,,...,®;). Hence each step of
the tower is algebraic.

Proposition 1.6. Let E = k(«,, ..., ®,) be a finitely generated extension of
a field k, and assume w; algebraic over k for eachi=1, ..., n. Then E is
finite algebraic over k.

Proof. From the above remarks, we know that E can be obtained as the
end of a tower each of whose steps is generated by one algebraic element,
and is therefore finite by Proposition 1.4. We conclude that E is finite over k
by Corollary 1.3, and that it is algebraic by Proposition 1.1.

Let C be a certain class of extension fields F = E. We shall say that C is
distinguished if it satisfies the following conditions:

(1) Let k = F < E be a tower of fields. The extension k = E is in € if and
onlyifkc Fisin@ and F c E is in C.

2 If k< E is in C, if F is any extension of k, and E, F are both
contained in some field, then F < EF is in C.

(3) If k= F and k = E are in C and F, E are subfields of a common field,
then k = FE is in C.
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The diagrams illustrating our properties are as follows:

A TN
E E\/ \/

k
M @ (3)

These lattice diagrams of fields are extremely suggestive in handling exten-
sion fields.

We observe that (3) follows formally from the first two conditions.
Indeed, one views EF over k as a tower with steps k = F < EF.

As a matter of notation, it is convenient to write E/F instead of F c E to
denote an extension. There can be no confusion with factor groups since we
shall never use the notation E/F to denote such a factor group when E is an
extension field of F.

Proposition 1.7. The class of algebraic extensions is distinguished, and so
is the class of finite extensions.

Proof. Consider first the class of finite extensions. We have already
proved condition (1). As for (2), assume that E/k is finite, and let F be any
extension of k. By Proposition 1.5 there exist elements a, ..., a, € E such
that E = k(oy,...,®,). Then EF = F(a,,...,a,), and hence EF/F is finitely
generated by algebraic elements. Using Proposition 1.6 we conclude that
EF/F is finite.

Consider next the class of algebraic extensions, and let

kcFcE

be a tower. Assume that E is algebraic over k. Then a fortiori, F is
algebraic over k and E is algebraic over F. Conversely, assume each step in
the tower to be algebraic. Let « € E. Then « satisfies an equation

a,0" + - +a9=0
with g; € F, not all a; =0. Let F, = k(a,, ..., a,). Then F is finite over k by
Proposition 1.6, and «a is algebraic over F,. From the tower
k< FO = k(am""ao) < Fo(“)

and the fact that each step in this tower is finite, we conclude that F,(«) is
finite over k, whence « is algebraic over k, thereby proving that E is algebraic
over k and proving condition (1) for algebraic extensions. Condition (2) has
already been observed to hold, i.e. an element remains algebraic under lifting,
and hence so does an extension.
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Remark. It is true that finitely generated extensions form a distinguished
class, but one argument needed to prove part of (1) can be carried out only
with more machinery than we have at present. Cf. the chapter on transcen-
dental extensions.

§2. ALGEBRAIC CLOSURE

In this and the next section we shall deal with embeddings of a field into
another. We therefore define some terminology.
Let E be an extension of a field F and let

o.F-L

be an embedding (i.e. an injective homomorphism) of F into L. Then o
induces an isomorphism of F with its image oF, which is sometimes written
F°. An embedding 7 of E in L will be said to be over ¢ if the restriction of t
to F is equal to . We also say that 7 extends ¢. If o is the identity then we
say that 7 is an embedding of E over F.

These definitions could be made in more general categories, since they
depend only on diagrams to make sense:

Y.

Remark. Let f(X)e F[X] be a polynomial, and let « be a root of f in
E. Say f(X)=ao + - + a,X". Then

0=f(a) =ay + aya+ -+ a,a”.

T
_—

t

inc

—_—_

_—

|

If © extends ¢ as above, then we see that ta is a root of f? because
0 =17(f(®) = ag + af(t) + - + aZ ()"

Here we have written a° instead of o(a). This exponential notation is
frequently convenient and will be used again in the sequel. Similarly, we
write F? instead of o(F) or oF.

In our study of embeddings it will also be useful to have a lemma
concerning embeddings of algebraic extensions into themselves. For this we
note that if o: E — L is an embedding over k (i.e. inducing the identity on k),
then o can be viewed as a k-homomorphism of vector spaces, because both
E, L can be viewed as vector spaces over k. Furthermore o is injective.
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Lemma 2.1. Let E be an algebraic extension of k, and let o: E — E be an
embedding of E into itself over k. Then o is an automorphism.

Proof. Since o is injective, it will suffice to prove that ¢ is surjective. Let
o be an element of E, let p(X) be its irreducible polynomial over k, and let E’
be the subfield of E generated by all the roots of p(X) which lie in E. Then
E’ is finitely generated, hence is a finite extension of k. Furthermore, ¢ must
map a root of p(X) on a root of p(X), and hence o maps E’ into itself. We
can view o as a k-homomorphism of vector spaces because ¢ induces the
identity on k. Since o is injective, its image o(E’) is a subspace of E’ having
the same dimension [E’ : k]. Hence o(E’) = E’'. Since a € E’, it follows that
a is in the image of o, and our lemma is proved.

Let E, F be extensions of a field k, contained in some bigger field L. We
can form the ring E[F] generated by the elements of F over E. Then E[F] =
F[E], and EF is the quotient field of this ring. It is clear that the elements of
E[F] can be written in the form

albl + - +a”b”

with a; € E and b; e F. Hence EF is the field of quotients of these elements.

Lemma 2.2. Let E,, E, be extensions of a field k, contained in some
bigger field E, and let o be an embedding of E in some field L. Then

o(E,E;) = o(E,)a(E,).
Proof. We apply o to a quotient of elements of the above type, say

aby+-+ab,\ _ aibl +-+ajb]
aiby + - + a,b,

- s
by + -+ agby

and see that the image is an element of o(E,)o(E,). It is clear that the image
o(E,E,) is o(E,)o(E;).

Let k be a field, f(X) a polynomial of degree =1 in k[X]. We consider
the problem of finding an extension E of k in which f has a root. If p(X) is
an irreducible polynomial in k[X] which divides f(X), then any root of p(X)
will also be a root of f(X), so we may restrict ourselves to irreducible
polynomials.

Let p(X) be irreducible, and consider the canonical homomorphism

o: k[X] - k[X1/(p(X)).

Then ¢ induces a homomorphism on k, whose kernel is 0, because every
nonzero element of k is invertible in k, generates the unit ideal, and 1 does
not lie in the kernel. Let ¢ be the image of X under o, ie. £ = 6(X) is the
residue class of X mod p(X). Then

p°(&) = p°(X°) = (p(X))” = 0.
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Hence £ is a root of p?, and as such is algebraic over k. We have now
found an extension of ok, namely k(&) in which p° has a root.
With a minor set-theoretic argument, we shall have:

Proposition 2.3. Let k be a field and f a polynomial in k[X] of degree
2 1. Then there exists an extension E of k in which f has a root.

Proof. We may assume that f = p is irreducible. We have shown that
there exists a field F and an embedding

c:k—F

such that p? has a root £ in F. Let S be a set whose cardinality is the same
as that of F — ok (= the complement of ok in F) and which is disjoint from
k. Let E=kuS. We can extend o: k — F to a bijection of E on F. We now
define a field structure on E. If x, y € E we define

xy = o~ (a(x)()),
x+y=0"a(x) + a(y)).

Restricted to k, our addition and multiplication coincide with the given
addition and multiplication of our original field k, and it is clear that k is a
subfield of E. We let a =07 !(£). Then it is also clear that p(x) =0, as
desired.

Corollary 2.4. Let k be a field and let f,, ..., f, be polynomials in k[X]
of degrees 2 1. Then there exists an extension E of k in which each f; has
aroot,i=1,...,n

Proof. Let E, be an extension in which f; has a root. We may view f,
as a polynomial over E,. Let E, be an extension of E, in which f, has a
root. Proceeding inductively, our corollary follows at once.

We define a field L to be algebraically closed if every polynomial in L[X]
of degree =1 has a root in L.

Theorem 2.5. Let k be a field. Then there exists an algebraically closed field
containing k as a subfield.

Proof. We first construct an extension E; of k in which every polyno-
mial in k[X] of degree =1 has a root. One can proceed as follows (Artin).
To each polynomial f in k[X] of degree =1 we associate a letter X, and we
let S be the set of all such letters X, (so that S is in bijection with the set of
polynomials in k[X] of degree = 1). We form the polynomial ring k[S], and
contend that the ideal generated by all the polynomials f(X,) in k[S] is not
the unit ideal. If it is, then there is a finite combination of elements in our
ideal which is equal to 1:

glfl(Xf,) + 4+ gnj;l(an) =1
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with g; € k[S]. For simplicity, write X; instead of X,. The polynomials g;
will involve actually only a finite number of variables, say X,, ..., Xy (with
N = n). Our relation then reads

M=

gi(Xla ey XN)fz(X.) =1.

-
Il

1

Let F be a finite extension in which each polynomial fi,..., f, has a root,
say o; is a root of f;in F,fori=1,...,n. Let o; =0 for i > n. Substitute «;
for X; in our relation. We get 0 = 1, contradiction.

Let m be a maximal ideal containing the ideal generated by all polyno-
mials f(X,) in k[S]. Then k[S]/m is a field, and we have a canonical map

o k[S] - k[S]/m.

For any polynomial f € k[ X] of degree =1, the polynomial f° has a root in

k[S]/m, which is an extension of ok. Using the same type of set-theoretic

argument as in Proposition 2.3, we conclude that there exists an extension

E, of k in which every polynomial f € k[X] of degree =1 has a root in E;.
Inductively, we can form a sequence of fields

EicE,cE;c:-cE,

such that every polynomial in E,[X] of degree =1 has a root in E,,,. Let E
be the union of all fields E,, n=1, 2, .... Then E is naturally a field, for if
X, y € E then there exists some n such that x, ye E,, and we can take the
product or sum xy or x + y in E,. This is obviously independent of the
choice of n such that x, ye E,, and defines a field structure on E. Every
polynomial in E[X] has its coefficients in some subfield E,, hence a root in
E,.,, hence a root in E, as desired.

Corollary 2.6. Let k be a field. There exists an extension k* which is
algebraic over k and algebraically closed.

Proof. Let E be an extension of k which is algebraically closed and let
k* be the union of all subextensions of E, which are algebraic over k. Then
k* is algebraic over k. If « € E and « is algebraic over k* then « is algebraic
over k by Proposition 1.7. If f is a polynomial of degree =1 in k*[X], then
f has a root « in E, and « is algebraic over k*. Hence « is in k* and k* is
algebraically closed.

We observe that if L is an algebraically closed field, and fe L[X] has
degree =1, then there exists ce L and «,, ..., &, € L such that

JX)=c(X —oy) - (X — at).
Indeed, f has a root «, in L, so there exists g(X) € L[X] such that
JX) = (X — ay)g(X).

If degg = 1, we can repeat this argument inductively, and express f as a
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product of terms (X —a;) (i=1,...,n) and an element c € L. Note that c is
the leading coefficient of f, i.e.

S(X) =cX" + terms of lower degree.

Hence if the coefficients of f lie in a subfield k of L, then c € k.

Let k be a field and o: k— L an embedding of k into an algebraically
closed field L. We are interested in analyzing the extensions of ¢ to algebraic
extensions E of k. We begin by considering the special case when E is
generated by one element.

Let E = k(a) where « is algebraic over k. Let

p(X) = Irr(a, k, X).

Let B be a root of p? in L. Given an element of k(x) = k[«], we can write it
in the form f(a) with some polynomial f(X)e k[X]. We define an extension
of ¢ by mapping

J@—f°(B).

This is in fact well defined, i.e. independent of the choice of polynomial f(X)
used to express our element in k[a]. Indeed, if g(X) is in k[X] and such that
g(a) = f(a), then (g — f)(a) =0, whence p(X) divides g(X)— f(X). Hence
p°(X) divides g°(X) — f?(X), and thus g°(B) = f?(B). It is now clear that our
map is a homomorphism inducing o on k, and that it is an extension of & to
k(o). Hence we get:

Proposition 2.7. The number of possible extensions of o to k(o) is < the
number of roots of p, and is equal to the number of distinct roots of p.

This is an important fact, which we shall analyze more closely later. For
the moment, we are interested in extensions of o to arbitrary algebraic
extensions of k. We get them by using Zorn’s lemma.

Theorem 2.8. Let k be a field, E an algebraic extension of k, and
og:k— L an embedding of k into an algebraically closed field L. Then
there exists an extension of o to an embedding of E in L. If E is
algebraically closed and L is algebraic over ok, then any such extension of
o is an isomorphism of E onto L.

Proof. Let S be the set of all pairs (F, 1) where F is a subfield of E
containing k, and t is an extension of ¢ to an embedding of F in L. If (F, 1)
and (F',t') are such pairs, we write (F,t) < (F,t') if F< F’ and t'|F=1.
Note that S is not empty [it contains (k, 6)], and is inductively ordered: If
{(F, 1)} is a totally ordered subset, we let F = ( ) F; and define 7 on F to be
equal to 7; on each F. Then (F, 7) is an upper bound for the totally ordered
subset. Using Zorn’s lemma, let (K, 1) be a maximal element in S. Then A is
an extension of g, and we contend that K = E. Otherwise, there exists a« € E,
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o ¢ K. By what we saw above, our embedding A has an extension to K(a),
thereby contradicting the maximality of (K, 4). This proves that there exists
an extension of ¢ to E. We denote this extension again by o.

If E is algebraically closed, and L is algebraic over ok, then oE is
algebraically closed and L is algebraic over oE, hence L = oE.

As a corollary, we have a certain uniqueness for an “algebraic closure” of
a field k.

Corollary 2.9. Let k be a field and let E, E' be algebraic extensions of k.
Assume that E, E' are algebraically closed. Then there exists an iso-
morphism

T.E-F

of E onto E' inducing the identity on k.

Proof. Extend the identity mapping on k to an embedding of E into E'
and apply the theorem.

We see that an algebraically closed and algebraic extension of k is
determined up to an isomorphism. Such an extension will be called an
algebraic closure of k, and we frequently denote it by k® In fact, unless
otherwise specified, we use the symbol k* only to denote algebraic closure.

It is now worth while to recall the general situation of isomorphisms and
automorphisms in general categories.

Let @ be a category, and A, B objects in @ We denote by Iso(4, B) the
set of isomorphisms of 4 on B. Suppose there exists at least one such
isomorphism o: A — B, with inverse 6™ !: B— A. If ¢ is an automorphism of
A, then oo ¢: A —» B is again an isomorphism. If  is an automorphism of
B, then Yy oo: 4 — B is again an isomorphism. Furthermore, the groups
of automorphisms Aut(A4) and Aut(B) are isomorphic, under the mappings

Qp—oo@o oL,
o loyo oy,

1

which are inverse to each other. The isomorphism oo @ oo™ is the one

which makes the following diagram commutative:

A—> B

wl lao‘poa-l

A—G—DB

We have a similar diagram for 67! o y 0 0.

Let 7: A —» B be another isomorphism. Then t7' o ¢ is an automorphism
of A, and 7o ¢! is an automorphism of B. Thus two isomorphisms differ by
an automorphism (of A or B). We see that the group Aut(B) operates on the

1
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set Iso(A4, B) on the left, and Aut(4) operates on the set Iso(4, B) on the
right.

We also see that Aut(A) is determined up to a mapping analogous to a
conjugation. This is quite different from the type of uniqueness given by
universal objects in a category. Such objects have only the identity auto-
morphism, and hence are determined up to a unique isomorphism.

This is not the case with the algebraic closure of a field, which usually
has a large amount of automorphisms. Most of this chapter and the next is
devoted to the study of such automorphisms.

Examples. It will be proved later in this book that the complex numbers
are algebraically closed. Complex conjugation is an automorphism of C.
There are many more automorphisms, but the other automorphisms # id. are
not continuous. We shall discuss other possible automorphisms in the chapter
on transcendental extensions. The subfield of C consisting of all numbers which
are algebraic over Q is an algebraic closure Q2 of Q. It is easy to see that Q?
is denumerable. In fact, prove the following as an exercise:

If k is a field which is not finite, then any algebraic extension of k has the
same cardinality as k.

If k is denumerable, one can first enumerate all polynomials in k, then
enumerate finite extensions by their degree, and finally enumerate the cardi-
nality of an arbitrary algebraic extension. We leave the counting details as
exercises.

In particular, Q* # C. If R is the field of real numbers, then R* = C.

If k is a finite field, then algebraic closure k* of k is denumerable. We
shall in fact describe in great detail the nature of algebraic extensions of
finite fields later in this chapter.

Not all interesting fields are subfields of the complex numbers. For
instance, one wants to investigate the algebraic extensions of a field C(X)
where X is a variable over C. The study of these extensions amounts to the
study of ramified coverings of the sphere (viewed as a Riemann surface), and
in fact one has precise information concerning the nature of such extensions,
because one knows the fundamental group of the sphere from which a finite
number of points has been deleted. We shall mention this example again
later when we discuss Galois groups.

§3. SPLITTING FIELDS AND
NORMAL EXTENSIONS

Let k be a field and let f be a polynomial in k[X] of degree =1. By a
splitting field K of f we shall mean an extension K of k such that f splits
into linear factors in K, i.e.
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JX) =X —oy) - (X — o)

with ;€ K, i=1, ..., n, and such that K = k(a,, ..., a,) is generated by all
the roots of f.

Theorem 3.1. Let K be a splitting field of the polynomial f(X) € k[X]. If
E is another splitting field of f, then there exists an isomorphism o: E - K
inducing the identity on k. If k = K < k® where k* is an algebraic closure
of k, then any embedding of E in k® inducing the identity on k must be an
isomorphism of E onto K.

Proof. Let K be an algebraic closure of K. Then K* is algebraic over
k, hence is an algebraic closure of k. By Theorem 2.8 there exists an
embedding

o: E—>K*
inducing the identity on k. We have a factorization

JX)=c(X = By) - (X = 5,)

with ;€ E, i =1, ..., n. The leading coefficient c lies in k. We obtain
f(X)=f(X)=c(X —aB,y) -~ (X — 0oB,).
We have unique factorization in K*[X]. Since f has a factorization
JX)=c(X —oy) (X —a,)
in K[X], it follows that (¢f,, ..., B,) differs from (o, ..., «,) by a permuta-

tion. From this we conclude that ¢f;e K for i=1, ..., n and hence that
oE < K. But K = k(«y,...,a,) = k(cB,, ..., op,), and hence ¢E = K, because
E = k(ﬁla ey Bn)

This proves our theorem.

We note that a polynomial f(X)ek[X] always has a splitting field,
namely the field generated by its roots in a given algebraic closure k* of k.

Let I be a set of indices and let {f;};,.; be a family of polynomials in
k[X], of degrees =1. By a splitting field for this family we shall mean an
extension K of k such that every f; splits in linear factors in K[X], and K is
generated by all the roots of all the polynomials f;, i€ I. In most applica-
tions we deal with a finite indexing set I, but it is becoming increasingly
important to consider infinite algebraic extensions, and so we shall deal with
them fairly systematically. One should also observe that the proofs we shall
give for various statements would not be simpler if we restricted ourselves to
the finite case.

Let k* be an algebraic closure of k, and let K; be a splitting field of f; in
k*. Then the compositum of the K; is a splitting field for our family,
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since the two conditions defining a splitting field are immediately satisfied.
Furthermore Theorem 3.1 extends at once to the infinite case:

Corollary 3.2. Let K be a splitting field for the family {f;};; and let E
be another splitting field. Any embedding of E into K* inducing the
identity on k gives an isomorphism of E onto K.

Proof. Let the notation be as above. Note that E contains a unique
splitting field E; of f; and K contains a unique splitting field K; of f;. Any
embedding o of E into K* must map E; onto K; by Theorem 3.1, and hence
maps E into K. Since K is the compositum of the fields K;, our map ¢ must
send E onto K and hence induces an isomorphism of E onto K.

Remark. If I is finite, and our polynomials are f, ..., f,, then a split-
ting field for them is a splitting field for the single polynomial f(X)=
S1(X) -+ £,(X) obtained by taking the product. However, even when dealing
with finite extensions only, it is convenient to deal simultaneously with sets
of polynomials rather than a single one.

Theorem 3.3. Let K be an algebraic extension of k, contained in an
algebraic closure k* of k. Then the following conditions are equivalent:

NOR 1. Every embedding of K in k* over k induces an automorphism of K.
NOR 2. K is the splitting field of a family of polynomials in k[ X].

NOR 3. Every irreducible polynomial of k[X] which has a root in K
splits into linear factors in K.

Proof. Assume NOR 1. Let o be an element of K and let p,(X) be its
irreducible polynomial over k. Let f be a root of p, in k* There exists an
isomorphism of k(x) on k(f) over k, mapping o on f. Extend this iso-
morphism to an embedding of K in k* This extension is an automorphism o
of K by hypothesis, hence g = f lies in K. Hence every root of p, lies in K,
and p, splits in linear factors in K[X]. Hence K is the splitting field of the
family {p,},cx as a ranges over all elements of K, and NOR 2 is satisfied.

Conversely, assume NOR 2, and let {f;};., be the family of polynomials
of which K is the splitting field. If « is a root of some f; in K, then for any
embedding ¢ of K in k* over k we know that oo is a root of f;. Since K is
generated by the roots of all the polynomials f;, it follows that ¢ maps K
into itself. We now apply Lemma 2.1 to conclude that ¢ is an automorphism.

Our proof that NOR 1 implies NOR 2 also shows that NOR 3 is
satisfied. Conversely, assume NOR 3. Let ¢ be an embedding of K in k*
over k. Let « € K and let p(X) be its irreducible polynomial over k. If o is
an embedding of K in k* over k then ¢ maps « on a root § of p(X), and by
hypothesis B lies in K. Hence oo lies in K, and ¢ maps K into itself. By
Lemma 2.1, it follows that ¢ is an automorphism.
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An extension K of k satisfying the hypotheses NOR 1, NOR 2, NOR 3
will be said to be normal. It is not true that the class of normal extensions is
distinguished. For instance, it is easily shown that an extension of degree 2
is normal, but the extension Q(C/i) of the rational numbers is not normal
(the complex roots of X* — 2 are not in it), and yet this extension is obtained
by successive extensions of degree 2, namely

E=Q/2)>F>Q,

where
F=Q@, a=.2 and E=F(/a.

Thus a tower of normal extensions is not necessarily normal. However, we
still have some of the properties:

Theorem 3.4. Normal extensions remain normal under lifting. If
K o E >k and K is normal over k, then K is normal over E. If K,, K,
are normal over k and are contained in some field L, then KK, is normal
over k, and so is K, n K,.

Proof. For our first assertion, let K be normal over k, let F be any
extension of k, and assume K, F are contained in some bigger field. Let o be
an embedding of KF over F (in F®). Then ¢ induces the identity on F, hence
on k, and by hypothesis its restriction to K maps K into itself. We get
(KF)’ = K°F° = KF whence KF is normal over F.

Assume that K o E o k and that K is normal over k. Let ¢ be an
embedding of K over E. Then ¢ is also an embedding of K over k, and
our assertion follows by definition.

Finally, if K,, K, are normal over k, then for any embedding ¢ of K, K,
over k we have

o(K,K;) = a(K;)o(K3)
and our assertion again follows from the hypothesis. The assertion concern-
ing the intersection is true because
o(K; N K,) = a(K;) na(K,).
We observe that if K is a finitely generated normal extension of k, say
K =k(oy,..., o),

and p,,...,p, are the respective irreducible polynomials of a;,...,a, over
k then K is already the splitting field of the finite family p,,...,p,. We
shall investigate later when K is the splitting field of a single irreducible
polynomial.
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§4. SEPARABLE EXTENSIONS

Let E be an algebraic extension of a field F and let
o:F->L

be an embedding of F in an algebraically closed field L. We investigate more
closely extensions of ¢ to E. Any such extension of ¢ maps E on a subfield
of L which is algebraic over oF. Hence for our purposes, we shall assume
that L is algebraic over oF, hence is equal to an algebraic closure of oF.

Let S, be the set of extensions of ¢ to an embedding of E in L.

Let L' be another algebraically closed field, and let 7: F—> L' be an
embedding. We assume as before that L' is an algebraic closure of tF.
By Theorem 2.8, there exists an isomorphism A: L —» L' extending the map
700! applied to the field oF. This is illustrated in the following diagram:

Le—— I

0“
—E-Z

TF‘I—F—")O'F

We let S, be the set of embeddings of E in L' extending t.

If o* €8S, is an extension of ¢ to an embedding of E in L, then 10 o* is
an extension of 7 to an embedding of E into L, because for the restriction to
F we have

Aog*=1t100 o0 =1
Thus A induces a mapping from S, into S,. It is clear that the inverse
mapping is induced by 17!, and hence that S,, S, are in bijection under the
mapping
o¥> Ao g*.

In particular, the cardinality of S,, S, is the same. Thus this cardinality
depends only on the extension E/F, and will be denoted by

LE: F],.

We shall call it the separable degree of E over F. It is mostly interesting
when E/F is finite.

Theorem 4.1. Let E o F o k be a tower. Then
[E:k]l,=[E:F],[F:Kk],.

Furthermore, if E is finite over k, then [E : k], is finite and
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[E:k]l, < [E:k].
The separable degree is at most equal to the degree.

Proof. Let 6: k - L be an embedding of k in an algebraically closed field
L. Let {0;};,; be the family of distinct extensions of ¢ to F, and for each i, let
{r;} be the family of distinct extensions of o; to E. By what we saw before,
each o, has precisely [E : F], extensions to embeddings of E in L. The set of
embeddings {z;} contains precisely

[E: F1,[F: K,

elements. Any embedding of E into L over ¢ must be one of the t;, and thus
we see that the first formula holds, i.e. we have multiplicativity in towers.

As to the second, let us assume that E/k is finite. Then we can obtain E
as a tower of extensions, each step being generated by one element:

k < k(oy) < k(oy, 5) < -+ < k(ay, ..., a,) = E.
If we define inductively F,,, = F,(«,,,) then by Proposition 2.7,
[R(av+l) : Fv]s -S_ [R(av+l) . E]‘

Thus our inequality is true in each step of the tower. By multiplicativity, it
follows that the inequality is true for the extension E/k, as was to be shown.

Corollary 4.2. Let E be finite over k, and E > F o k. The equality
[E:k]l,=[E:k]

holds if and only if the corresponding equality holds in each step of the
tower, i.e. for E/F and F/k.

Proof. Clear.

It will be shown later (and it is not difficult to show) that [E: k], divides
the degree [E:k] when E is finite over k. We define [E:k]; to be the
quotient, so that

[E:KL[E: K], = [E:K].

It then follows from the multiplicativity of the separable degree and of the
degree in towers that the symbol [E: k]; is also multiplicative in towers. We
shall deal with it at greater length in §6.

Let E be a finite extension of k. We shall say that E is separable over k if
[E:k],=[E:k].

An element a algebraic over k is said to be separable over k if k(x) is
separable over k. We see that this condition is equivalent to saying that the
irreducible polynomial Irr(e, k, X) has no multiple roots.

A polynomial f(X)e k[X] is called separable if it has no multiple roots.
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If « is a root of a separable polynomial g(X) e k[X] then the irreducible
polynomial of « over k divides g and hence « is separable over k.

We note that if k C F C K and a € K is separable over k, then a is separable
over F. Indeed, if fis a separable polynomial in k[X] such that f(a) = 0, then
[ also has coefficients in F, and thus « is separable over F. (We may say that a
separable element remains separable under lifting.)

Theorem 4.3. Let E be a finite extension of k. Then E is separable over k
if and only if each element of E is separable over k.

Proof. Assume E is separable over k and let « € E. We consider the
tower

k < k(z) < E.

By Corollary 4.2, we must have [k(a):k] = [k(a):k], whence « is separable
over k. Conversely, assume that each element of E is separable over k. We
can write £ = k(a,, ..., «,) where each a; is separable over k. We consider
the tower

k< k(al) < k(alaaZ)c e k(ala-ﬂaan)'

Since each «; is separable over k, each «; is separable over k(«,, ..., o;_;) for
i = 2. Hence by the tower theorem, it follows that E is separable over k.

We observe that our last argument shows: If E is generated by a finite
number of elements, each of which is separable over k, then E is separable
over k.

Let E be an arbitrary algebraic extensi