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Preface

Elementary number theory is concerned with the arithmetic properties of
the ring of integers, Z, and its field of fractions, the rational numbers, Q.
Early on in the development of the subject it was noticed that Z has many
properties in common with A = F[T], the ring of polynomials over a finite
field. Both rings are principal ideal domains, both have the property that
the residue class ring of any non-zero ideal is finite, both rings have infinitely
many prime elements, and both rings have finitely many units. Thus, one
is led to suspect that many results which hold for Z have analogues of
the ring A. This is indeed the case. The first four chapters of this book
are devoted to illustrating this by presenting, for example, analogues of
the little theorems of Fermat and Euler, Wilson's theorem, quadratic (and
higher) reciprocity, the prime number theorem, and Dirichlet’s theorem on
primes in an arithmetic progression. All these results have been known for
a long time, but it is hard to locate any exposition of them outside of the
original papers.

Algebraic number theory arises from elementary number theory by con-
sidering finite algebraic extensions K of @, which are called algebraic num-
ber flelds, and investigating properties of the ring of algebraic integers
O C K, defined as the integral closure of Z in K. Similarly, we can con-
sider & = F(T), the quotient field of A and finite algebraic extensions L of
k. Fields of this type are called algebraic function fields. More precisely, an
algebraic function felds with a finite constant field is called a global func-
tion field. A global function field is the true analogue of algebraic number
field and much of this book will be concerned with investigating proper-
ties of global function fields. In Chapters 5 and 6, we will discuss function
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fields over arbitrary constant fields and review (sometimes in detail) the
basic theory up to and including the fundamental theorem of Riemann-
Roch and its corallaries. This will serve as the basis for many of the later
developments.

It is important to point out that the theory of algebraic function fields
is but another guise for the theory of algebraic curves. The point of view
of this book will be very arithmetic. At every turn the emphasis will be
on the analogy of algebaic function fields with algebraic number fields.
Curves will be mentioned only in passing. However, the algebraic-geometric
point of view is very powerful and we will freely borrow theorems about
algebraic curves (and their Jacobian varieties) which, up to now, have no
purely arithmetic proof, In some cases we will not give the proof, but will
be content to state the result accurately and to draw from it the needed
arithmetic consequences. ,

This book is aimed primarily at graduate students who have had a good
introductory course in abstract algebra covering, in addition to Galois the-
ory, commutative algebra as presented, for example, in the classic text of
Ativah and MacDonald. In the interest of presenting some advanced re-
sults in a relatively elementary text, we do not aspire to prove everything.
However, we do prove most of the results that we present and hope to in-
spire the reader to search out the proofs of those important results whose
proof we omit. In addition to graduate students, we hope that this material
will be of interest to many others who know some algebraic number the-
ory and/or algebraic geometry and are curious about what number theory
in function field is all about. Although the presentation is not primarily
directed toward people with an interest in algebraic coding theory, much
of what is discussed can serve as useful background for those wishing to
pursue the arithmetic side of this topic.

Now for a brief tour through the later chapters of the book.

Chapter 7 covers the background leading up to the statement and proof
of the Riemann-Hurwitz theorem. As an application we discuss and prove
the analogue of the ABC conjecture in the function field context. This
important result has many consequences and we present a few applications
to diophantine problems over function fields.

Chapter 8 gives the theory of constant field extensions, mostly under the
assumption that the constant field is perfect. This is basic material which
will be put to use repeatedly in later chapters.

Chapter 9 is primarily devoted to the theory of finite Galois extensions
and the theory of Artin and Hecke L-functions. Two versions of the very
important Tchebatorov density theorem are presented: one using Dirichlet
density and the other using natural density. Toward the end of the chapter
there is a sketch of global class field theory which enables one, in the abelian
case, to identify Artin L-series with Hecke L-series.

Chapter 10 is devoted fo the proof of a theorem of Bilharz (a studentof
Hasse) which is the function field version of Artin’s [amous conjecture on
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primitive roots. This material, interesting in itself, illustrates the use of
many of the results developed in the preceding chapters.

Chapter 11 discusses the behavior of the class group under constant field
extensions. It is this circle of ideas which led Iwasawa to develop “Iwasawa,
theory,” one of the most powerful tools of modern number theory.

Chapters 12 and 13 provide an introduction to the theory of Drinfeld
modules. Chapter 12 presents the theory of the Carlitz module, which was
developed by L. Carlitz in the 1930s. Drinfeld’s papers, published in the
1970s, contain a vast generalization of Carlitz's work. Drinfeld’s work was
directed toward a proof of the Langlands' conjectures in function fields.
Another consequence of the theory, worked out separately by Drinfeld and
Hayes, is an explicit class field theory for global function fields. These chap-
ters present the basic definitions and concepts, as well as the beginnings of
the general theory.

Chapter 14 presents preliminary material on S-units, S-class groups, and
the corresponding L-functions. This leads up to the statement and proof of
a special case of the Brumer-Stark conjecture in the function field context.
This is the content of Chapter 15. The Brumer-Stark conjecture in function
fields is now known in full generality. There are two proofs — one due to
Tate and Deligne, another due to Hayes. It is the author’s hope that anyone
who has read Chapters 14 and 15 will be inspired to go on to master one
or both of the proofs of the general result.

Chapter 16 presents function field analogues of the famous class number
formulas of Kummer for cyclotomic number felds together with variations
on this theme. Once again, most of this material has been generalized
considerably and the material in this chapter, which has its own interest,
can also serve as the background for further study.

Finally, in Chapter 17 we discuss average value theorems in global fields.
The material presented here generalizes work of Carlitz over the ring A =
F[T]. A novel feature is a function field analogue of the Wiener-Tkehara
Tauberian theorem. The beginning of the chapter discusses average values
of elementary number-theoretic functions. The last part of the chapter deals
with average values for class numbers of hyperelliptic function fields.

In the effort to keep this book reasonably short, many topics which could
have been included were left out. For example, chapters had been contem-
plated on automorphisms and the inverse Galois problem, the number of
rational points with applications o algebraic coding theory, and the theory
of character sums. Thought had been given to a more extensive discussion
of Drinfeld modules and the subject of explicit class field theory in global
fields. Also omitted is any discussion of the fascinating subject of transcen-
dental numbers in the function fleld context (for an excellent survey see J.
Yu [1]). Clearly, number theory in function fields is a vast subject. It is of
interest for its own sake and because it has so often served as a stimulous to
research in algebraic number theory and arithmetic geometry. We hope this
book will arouse in the reader a desire to learn more and explore further.
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1

Polynomials over Finite Fields

In all that follows F will denote a fAnite field with ¢ elements. The modei for
such a field is Z/pZ, where p is a prime number. This field has p elements.
In general the number of elements in a finite field is a power of a prime,
g = pf. Of course, p is the characteristic of F.

Let A = F{T], the polynomial ring over F. A has many properties in
common with the ring of integers Z. Both are principal ideal domains, both
have a finite unit group, and both have the property that every residue class
ring modulo a non-zero ideal has fnitely many elements. We will verify all
this shortly. The result is that many of the mumnber theoretic questions we
ask about Z have their analogues for A. We will explore these in some
detail.

Every element in A has the form f(T) = apT™ + T 1 + -+ + &y
If ap # 0 we say that f has degree n, notationally deg(f) = n. In this
case we set sgn(f) = ap and call this element of F™ the sign of f. Note
the [ollowing very important properties of these functions. If f and g are
non-zero polynomials we have

deg(fg) = deg(f) +deg(g) and sgn(fg) = sgn(f)sgn(g).

deg(f + g) < max(deg(f), deg(g)).

In the second line, equality holds if deg(f) # deg(g).

If sgn(f) = 1 we say that f is a monic polynomial. Monic polynomials
play the role of positive integers. It is sometimes useful to define the sign of
the zero polynomial to be ) and its degree to be —oo. The above properties
of degree then remain true without restriction.
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Proposition 1.1, Let f,g € A with g # 0. Then there exist elements
g, 7 € A such that [ = qg + 7 and r is either 0 or deg(r} < deg(g}.
Moreover, g and v are uniquely determined by these conditions.

Proof. Let n = deg(f), m = deglg), « = sgn(f), f = segn(g). We give
the proof by induction on n = deg(f). f n < m, set ¢ =0 and r = f. If
n > m, we note that f; = f — @@ 1T"~™g has smaller degree than f. By
induction, there exist g1,71 € A such that f; = g,g+r1 with r; being either
0 or with degree less than deg(g). In this case, set ¢ = af~1T™ "™ + ¢, and
r =71 and we are done.

If f =qg+r =q'g++', then g divides r —r' and by degree considerations
we see 7 = 7', In this case, qg = ¢’y s0 ¢ = ¢ and the uniqueness is
established.

This proposition shows that A is a Buclidean domain and thus a principal
ideal domain and a unique factorization domain. It also allows a quick proof
of the finiteness of the residue class rings.

Proposition 1.2. Suppose g € A and g £ 0. Then A/gA i3 a finite ring
with q9%5(9) elements.

Proof. Let m = deg(g). By Proposition 1.1 one easily verifies that {r €
A | deg(r) < m } is a complete set of representatives for A/gA. Such
elements look like

r=agT™ '+ oy T 24+t a,_; with o; € F.

Since the o; vary independently through F there are ¢™ such polynomials
and the result follows.

Definition. Let g € A. If g # 0, set ig| = ¢¢&(&), If g = 0, set |g] = 0.

lg| is a measure of the size of g. Note that if n is an ordinary integer, then
its usual absolute value, |n|, is the number of elements in Z/nZ. Similarly,
|g| is the number of elements in A/gA. It is immediate that |fg| = |f] |g]
and |f + g| < max(|f|, |g]) with equality holding if | f| # |g|.

It is a simple matter to determine the group of units in A, A*. If g
is a unit, then there is an f such that fy = 1. Thus, 0 = deg(l) =
deg(f) + deg(g) and so deg(f) = deg(g) = 0. The only units are the non-
zero constants and each such constant is a unit.

Proposition 1.3, The group of units in A is F*. In particulor, it is a finite
eyclic group with g — 1 elements.

Proof. The only thing left to prove is the cyclicity of F*. This follows from
the very general fact that a finite subgroup of the multiplicative group of
a field is cyclic.

In what follows we will see that the number g — 1 often occurs where the
number 2 occurs in ordinary number theory. This stems from the fact that
the order of Z* is 2.
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By definition, a non-constant polynomial f € A is irreducible if it cannot
be written as a product of two polynomials, each of positive degree. Since
every ideal in A is principal, we see that.a polynomial is irreducible if and
only if it is prime (for the definitions of divisibility, prime, irreducible, etc.,
see Ireland and Rosen [1]). These words will be used interchangeably. Every
non-zero polynomial can be written uniquely as a non-zero constant times
a monic polynomial. Thus, every ideal in A has a unique monic generator.
This should be compared with the statement that evey non-zero ideal in Z
has a unique positive geherator. Finally, the unique factorization property
in 4 can be sharpened to the following statement. Every f € 4, f # 0, can
be written uniquely in the form

f=aPApPg.. PR

where o € F* , each P; is a monic irreducible, P; £ P; for 1 # j, and each
e; 1s a non-negative integer.

The letter P will often be used for a monic irreducible polynomial in A.
We use P instead of p since the latter letter is reserved for the characteristic
of F. This is a bit awkward, but it is compensated for by being less likely
to lead to confusion.

The next order of business will be to investigate the structure of the
rings A/fA and the unit groups (A/fA)*. A valuable tool is the Chinese
Remainder Theorem.

Proposition 1.4. Let my,mg, ..., m; be elements of A which are pairwise
relotively prime. Let m = myma...m; and ¢; be the natural homomor-
phism from A/mA to A/m;A. Then, the map ¢ : A/mA — A/m A&
AfmaA® - - D A/myA given by

(:‘6(0‘) = (qsl(a)a (ﬁz(&.), veey Qst(a))

is a ring isomorphism.
Proof. This is a standard result which holds in any principal ideal domain
(properly formulated it holds in much greater generality). :
Corollary. The same map ¢ restricted to the units of A, A*, gives rise to
a group isomorphism,

(A/mAY ~ (A/m1A)" x (A/maAY* x - x (A/m A)*.
Proof. This is a standard exercise. See Ireland and Rosen [1], Proposition
34.1.

Now, let / € A be non-zero and not a unit and suppose that f =
aP P2 P is its prime decomposition. From the above considerations
we have

(A/FAY = (A/PIPA)" X (AP A)" x - x (AfFAY
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This isomorphism reduces our task to that of determining the structure
of the groups (A/P®A)* where P is an irreducible polynomial and e is a
positive integer. When e = 1 the situation is very similar to that is Z.

Proposition 1.5. Let P € A be an irreducible polynomial. Then, (A/PA)*
is a eyclic group with |P| -1 elements.

Proof. Since A is a principal ideal domain, PA is a maximal ideal and so
A/PA is a field. A finite subgroup of the multiplicative group of a field is
cyelic. Thus (A/PA)* is cyclic. That the order of this group is |P| -1 is
immediate.

We now consider the situation when e > 1. Here we encounter something
which is quite different in A from the situation in Z. If p is an odd prime
number in Z then it is a standard result that (Z/p*Z)* is cyclic for all
positive integers e. If p = 2 and e > 3 then (Z/2%Z)* is the direct product
of a cyclic group of order 2 and a eyclic group of order 2°~2. The situation
is very different in A.

Proposition 1.6. Let P € A be an irreducible polynomial end e a positive
integer. The order of (A/P®A)* 4s |P|*~'(|P| — 1). Let (A/P2A)Y) be the
kernel of the natural map from (A/P®A)* to (A/PA)Y*. It is a p-group of
order |P|*~1. As e tends to infinily, the minimal number of generators of
(A/ P2 AYY tends to infinity.

Proof. The ring A/P*®A has only one maximal ideal A/ A which has
|P|*~! elements. Thus, (A/P¢A)* = A/P*A—PA/P®Ahas |[P|*—|P|*~! =
|P|=~1(|P| — 1) number of elements. Since (A/P*A4)* — (A/PA)* is onto,
and the latter group has |P| — 1 elements the assertion about the size of
(A/P*A)Y follows. It remains to prove the assertion about the minimal
number of generators.

It is instructive to first consider the case ¢ = 2. Every element in
(A/P?A4)V can be represented by a polynomial of the form a = 1 + bP.
Since we are working in characteristic p we have a? = 1 4 WPP?P = 1
(mod P2). So, we have a group of order |P| with exponent p. If ¢ = pf it
follows that (4/P2A)Y) is a direct sum of fdeg({P) number of copies of
Z/pZ. This is a cyclic group only under the very restrictive conditions that
g =p and deg(P) =1.

To deal with the general case, suppose that s is the smallest integer such
that p® > e. Since (1 +dP)" =14 (bPY" = 1 (mod P¢) we have that
raising to the p*-power annihilates G = (A/P¢ A}, Let d be the minimal
number of generators of this group. It follows that there is an onto map
from (Z/p*Z)?* onto G. Thus, p?* > pfdea(Pie=1) and so

gs FdeeP)e—1)
38

Since s is the smallest integer bigger than or equal to log,(e) it is clear that
d— 00 as e — 0o,
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It is possible to do a much closer analysis of the structure of these groups,
but it is not necessary to do so now. The fact that these groups get very
complicated does cause problems in the more advanced parts of the theory.

We have developed more than enough material to enable us to give in-
teresting analogues of the Euler ¢-function and the little theorems of Euler
and Fermat.

To begin with, let f € A4 be a non-zero polynomial. Define &(f) to
be the number of elements in the group (A/fA)*. We can give another
characterization of this number which makes the relation to the Euler ¢-
function even more evident. We have seen that {r € A | deg(r) < deg(f)}
is a set of representatives for A/fA. Such an r represents a unit in A/fA if
and only if it is relatively prime to f. Thus ®(f) is the number of non-zero
polynomials of degree less than deg(f) and relatively prime to f.

Proposition 1.7,

=1f] - P,)
Plf
Proof. Let f = «P{'P;* ... Pf* be the prime decomposition of f. By the
corollary to Propositions 1.4 and by Proposition 1.6, we see that

o(f) =[] &(P) H(IPIE‘ | P,
=1

from which the result follows immediately.

The similarity of the formula in this propasition to the classical formula
for ¢(n) is striking.

Proposition 1.8. If f € A, f #0, and a & A is relatively prime o f, i.e.,
(a, f) =1, then
a® =1 (mod f).

Proof. The group (A/fA)" has ®(f) elements. The coset of 2 modulo f, &,
lies in this group. Thus, @®/) = I and this is equivalent to the congruence
in the proposition.

Corollary. Let P £ A be irreducibie and o € A be o polynomial not divisible
by P. Then,
dfI=1=1 (mod P).

Proof. Since P is irreducible, it is relatively prime to a if and only if it
does not divide a. The corollary follows from the proposition and the fact
that for an irreducible P, ®(P) = |P| — 1 (Proposition 1.5).

It is clear that Proposition 1.8 and its corollary are direct analogues of
Euler’s little theorem and Fermat’s little theorem. They play the same very
important role in this context as they do in elementary number theory. By
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way of illustration we proceed to the analogue of Wilson’s theorem. Recall
that this states that {(p — 1)! = —1 {mod p) where p is a prime number.

Proposition 1.9. Let P € A be irreducible of degree d. Suppose X is an
indeterminate. Then,

xP-t-1= JI (X=f) (mod P).

O<deg{f}<d

Proof. Recall that {f € A | deg(f) < d} is a set of representatives for the
cosets of A/PA, If we throw out f = 0 we get a set of representatives for
(A/PA)*. We find

XPoi= 1 x-h,

0<deg(f)<d

where the bars denote cosets modulo P. This follows from the corollary to
Proposition 1.8 since both sides of the equation are monic polynomials in
X with the same set of roots in the field A/PA. Since there are |P| — 1
roots and the difference of the two sides has degree less than |P| — 1, the
difference of the two sides must be 0. The congruence in the Proposition is
equivalent to this assertion.

Corollary 1. Let d divide |P| — 1. The congruence X¢ = 1 (mod P)
has ezactly d solutions. Equivalently, the equation X = 1 has exactly d
solutions in (A/PA)*.

Proof. We prove the second assertion. Since d | |P| — 1 it follows that
X< —1 divides X!¥1=1 — 1. By the proposition, the latter polynomial splits
as a product of distinet linear factors. Thus so does the former polynomial.
This establishes the result,

Corollary 2. With the same notation,

11 f=-1 (mod P).

0<deg{f)<deg P

Proof. Just set X = 0 in the proposition. If the characteristic of F is odd
|P| ~ 1 is even and the result follows. If the characteristic is 2 then the
result also follows since in characteristic 2 we have —1 = 1.

The above corollary is the polynomial version of Wilson’s theorem. It’s
interesting to note that the left-hand side of the congruence only depends
on the degree of P and not on P itself.

As a final topic in this chapter we give some of the theory of d-th power
residues, This will be of importance in Chapter 3 when we discuss quadratic
reciprocity and more general reciprocity laws for A.
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If f € A is of positive degree and a € A is relatively prime to f, we say
that o is a d-th power residue modulo f if the equation z% = a (mod f) is
solvable in A. Equivalently, & is a d-th power in (A/fA)*.

Suppose f = aP{*Ps? ... Pft is the prime decomposition of f. Then it
is easy to check that o is a d-th power residue modulo f if and only if a
is a d-th power residue modulo P;* for all ¢ between 1 and t. This reduces
the problem to the case where the modulus is a prime power.

Proposition 1.10. Let P be irreducible and a € A not divisible by P.
Assume d divides |P| — 1. The congruence X¢ = a (mod P?) is solvable if
and only if

1P|—1

a ¢ =1 [modP).

There are %e—)— d-th power residues modulo P*.

Proof. Assume to begin with that e = 1.

If 5% = a {mod P), then o' ¢ = 6/P1-1 = 1 (mod P) by the corollary
to Proposition 1.8. This shows the condition is necessary. To show it is
sufficient recall that by Corollary 1 to Proposition 1.9 all the d-th roots of
unity are in the field A/PA. Consider the homomorphism from (4/PA)*
to itself given by raising to the d-th power. It’s kernel has order d and its

image is the d-th powers. Thus, there are precisely J% d-th powers in

|£1-1

(A/PA)*. We have seen that they all satisfy X~ — 1 = 0. Thus, they
are precisely the roots of this equation. This proves all assertions in the
case e = 1.

To deal with the remaining cases, we employ a little group theory. The
natural map (i.e., reduction modulo P) is & homomorphism from (A/P*A)*
onto (A/PAY and the kernel is a p-group as follows from Proposition
1.6. Since the order of (A/PA)* is |P| — 1 which is prime to p it follows
that (A/P*A)* is the direct product of a p-group and a copy of (4/FPA)".
Since {d,p) = 1, raising to the d-th power in an abelian p-group is an
automorphism. Thus, ¢ € A is a d-th power modulo P¢ if and only if it
is a d-th power modulo P. The latter has been shown to hold if and only
if at =1 (mod P). Now consider the homomorphism from (4/P®A)*
to itself given by raising to the d-th power. [t easily follows from what has
been said that the kernel has d elements and the image is the subgroup of
d-th powers. It follows that the latter group has order ﬂf—e). This concludes
the proof,

Exercises
1. If m € A =TT}, and deg(m) > 0, show that ¢ — 1 | &(m).

2.If ¢ = pis a prime number and P € A is an irreducible, show
(F[T]/P?A)* is cyclic if and only if deg P = 1.
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. Suppose m € A is monic and that m = mqms is a factorization into

two monics which are relatively prime and of positive degree. Show
(A/mA)* is not cyclic except possibly in the case ¢ = 2 and m, and
mg have relatively prime degrees.

. Assume g # 2. Determine all m for which {A/mA)* is cyclic (see the

proof of Proposition 1.6}.

. Suppose d | ¢ — 1. Show 2 = —1 (mod P) is solvable if and only if

(1) dee P = 1.

. Show ], cp- = -1

. Let P € A be a monic irreducible. Show

H f=+1 (mod P),
deg f<d
[ monic
where d = deg P. Determine the sign on the right-hand side of this
congruence.

. For an integer m > 1 define {m] = T9" — 7. Show that [mm] is the

product of all monic irreducible polynomials P(T") such that deg P(T")
divides .

. Working in the polynomial ring Flug,u1,...,u,), define D{ug,u,

1 Up) = det }uEJ |, where 1,7 = 0,1,...,n. This is called the Moore
determinant. Show

n
D(ug,u1,. .. un) = H H e H (e + cimrtti—y + -+ coug) .
i=0c,_,€F coER

Hint: Show each factor on the right divides the determinant and then
count degrees.

Define Fy = [[220(T% —T7) = [[!Z3[j — §)7". Show that
DL T,7... . Ty =]]F .
§=0

Hint: Use the fact that D(1,T,72,...,T™) can be viewed as a
Vandermonde determinant,

Show that F; is the product of all monic polynomials in A of degee
i.

Define L; = [[[_(T7 —T) = i_,li]. Use Exercise 8 to prove that
L; is the least common multiple of all monics of degree 5.
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Show

D(1,T,7%,..., 7%,
T wn=-2 oy
DL T, 7, T}
deg f<d
Deduce from Exercise 13 that

d—j__ to 3
[ @+h= >0 FLQJ ut’ .

deg f<d i=0

Show that the product of all the non-zero polynomials of degree less
than d is equal to (—1)%Fy/Lq .

Prove that

v 1 I(l_") Z;,( 1y F‘L

deg f<d

In the product the term corresponding to f = 0 is ormitted.
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Primes, Arithmetic Functions,
and the Zeta Function

In this chapter we will discuss properties of primes and prime decomposition
in the ring A = F[T']. Much of this discussion will be facilitated by the use
of the zeta function associated to A. This zeta function is an analogue of
the classical zeta function which was first introduced by L. Euler and whose
study was immeasurably enriched by the contributions of B. Riemann. In
the case of polynomial rings the zeta function is a much simpler object and
its use rapidly leads to a sharp version of the prime number theorem for
polynomials without the need for any complicated analytic investigations.
Later we will see that this situation is a bit deceptive. When we investigate
arithmetic in more general function fields than F(T), the corresponding
zeta function will turn out to be a much more subtle invariant.

Definition. The zeta function of A, denoted ¢4(s), is defined by the infinite
series )
Cals) = T
( ) Z lfls

feA
f monic

There are exactly ¢* monic polynomials of degree d in A, so one has

2 d
> I =14 St
q q q
deg(f)<d
and consequently
1
als}= s (1)
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for all complex numbers s with R(s) > 1. In the classical case of the Rie-
mann zeta function, {(s) = Y .o, n™%, it is easy to show the defining
series converges for R(s) > 1, but it is more difficult to provide an analytic
continuation. Riemann showed that it can be analytically continued to a
meromorphic function on the whole complex plane with the only pole be-
ing a simple pole of residue 1 at s = 1. Moreover, if I'(s) is the classical
gamma function and £(s) = 7~ 2['(§)¢(s), Riemann showed the functional
equation £(1 — s) = £(s). What can be said about (4(s)7?

By Equation 1 above, we see clearly that (4(s), which is initially defined
for R(s) > 1, can be continued to a meromorphic function on the whale
complex plane with a simple pole at s = 1. A simple computation shows
that the residue at s = 1 is @. Now define £4(s) = ¢7*{1—-g7*)"*¢a(s).
It is easy to check that §4(1—s) = £4(s) so that a functional equation holds
in this situation as well. As opposed to case of the classical zeta-function,
the proofs are very easy for 4(s). Later we will consider generalizations of
Ca(s) in the context of function flelds over finite fields. Similar statements
will hold, but the proofs will be more difficult and will be based on the
Riemann-Roch theorem for algebraic curves.

Euler noted that the unique decomposition of integers into products of
primes leads to the following identity for the Riemann zeta-function:

1.4
SOEN || -3

p prime
p>»0

This is valid for R(s) > 1. The exact same reasoning (which we won't
repeat here) leads to the following identity:

1 ._
CA(3)= H (1_ |P|'9) 1' (2)
P irreducible
P monic

This is also valid for all R{s) > 1.

One can immediately put Equation 2 to use. Suppose there were only
finitely many irreducible polynomials in A. The right-hand side of the equa-
tion would then be defined at s = 1 and even have a non-zero value there.
On the other hand, the left hand side has a pole at s = 1. This shows there
are infinitely many irreducibles in A. One doesn’t need the zeta-function
to show this. Euclid’s proof that there are infinitely many prime integers
works equally well in polynomial rings. Suppose S is a finite set of irre-
ducibles. Multiply the elements of S together and add one. The result is
a polynomial of positive degree not divisible by any element of S. Thus,
S cannot contain all irreducible polynomials. It follows, once more, that
there are infinitely many irreducibles.

Let z be areal number and 7(2) be the number of positive prime numbers
less than or equal to z. The classical prime number theorem states that
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7(z) is asymptotic to =/ log(x). Let d be a positive integer and « = ¢¢. We
will show that the number of monic irreducibles P such that |P| = x is
asymptotic to z/log, () which is clearly in the spirit of the classical result.

Define aq to be the number of monic irreducibles of degree d. Then, from
Equation 2 we find

ats) = [0 -y,
d=1

If we recall that 4(s) = 1/(1 — ¢'~*) and substitute © = ¢~* (note that
|u| < 1 if and only if R(s) > 1) we obtain the identity

oo

! (1- ud)"““.
=1

1—qu=

d

Taking the logarithmic derivative of both sides and multiplying the result
by u yields

Finally, expand both sides into power series using the geometric series and
compare coeflicients of u”. The result is the beautiful formula,

Z dad = qﬂ.

dln

Proposition 2.1.

This formula is often attributed to Richard Dedekind. Tt is interesting to
note that it appears, with essentially the above proof, in a manuscript of
C.F. Gauss (unpublished in his lifetime), “Die Lehre von den Resten.” See
Gauss [1], pages 608-611.

Carollary
1 n
an = =3 uld)q?. (3)

d|n

Proof. This formula follows by applying the Mobius inversion formula to
the formula given in the proposition.

The formula in the above proposition can also be proven by means of
the algebraic theory of finite fields. In fact, most books on abstract alge-
bra contain the formula and the purely algebraic proof. The zeta-function
approach has the advantage that the same method can be used to prove
many other things as we shall see in this and later chapters.

The next task is to write a,, in a way which makes it easy to see how big
it is. In Equation 3 the highest power of ¢ that occurs is ¢™ and the next
highest power that may occur is g2 (this occurs if and only if 2|n. All the
other terms have the form +¢™ where m < %. The total number of terms is



14 Michael Rosen

> |11(d)], which is easily seen to be 2, where t is the number of distinct
prime divisors of n. Let p1,pa,...,p: be the distinet primes dividing n.
Then, 2 < p1ps...py < n. Thus, we have the following estimate:

Using the standard big O notation, we have proved the following theorem.

Theorem 2.2. [The prime number theorem for polynomials) Let a,, denote
the number of monic irreducible polynomials in A = F[T] of degree n. Then,

=210 (q_) _
n n
Note that if we set © = ¢™ the right-hand side of this equation is
z/log,(z) + O(v/x/ log,(x)) which looks like the conjectured precise form
of the classical prime number theorem. This is still not proven. It depends
on the truth of the Riemann hypothesis (which will be discussed later),
We now show how to use the zeta function for other counting problems.

What is the number of square-free monics of degres n? Let this number be
b,.. Consider the product

1 )
I_P[(l + W) =Y % (4)

As usual, the product is over all monic irreducibles P and the sum is over
all monics f. We will maintain this convention unless otherwise stated.
The function 8(f) is 1 when f is square-free, and 0 otherwise. This is
an easy consequence of unique factorization in A and the definition of
square-free. Making the substitution v = ¢~*° once again, the right-hand
side of Equation 4 becomes Y, b,u". Consider the identity 1 4+ w =
(1 — w?)/(1 — w). If we substitute w = {P|~* and then take the product
over all monic irreducibles P, we see that the left-hand side of Equation 4
is equal to Ca(s)/Ca{25) = (1 — ¢'~2%)/(1 — ¢*~*). Putting everything in
terms of u leads to the identity

Finally, expand the left-hand side in a georetric series and compare the
coefficients of 4™ on both sides. We have proven—

Proposition 2.3. Let b, be the number of square-free monics in A of
degree n. Then by = q and forn > 1, b, = ¢"(1 — ¢™}).

It is amusing to compare this result with what is known to be true in
Z. If By, is the number of positive square-free integers less than or equal
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to n, then limy o B, /n = 6/m2, In less precise language, the probability
that a positive integer is square-free is 6/w%. The probablity that a monic
polynomial of degree n is square-free is b, /¢", and this equals (1 — ¢~1)
for n > 1. Thus the probabilty that a monic polynomial in A is square-
free is (1 — ¢71). Now, 6/72 = 1/¢(2), so it is interesting to note that
(1—q™1) = 1/¢4(2). This is, of course, no aceident and one can give good
heuristic reasons why this should occur. The interested reader may want
to find these reasons and to investigate the probablity that a polynomial
be cube-free, fourth-power-free, ete.

Our next goal is to introduce analogues of some well-known number-
theoretic functions and to discuss their properties. We have already in-
troduced ®(f). Let u{f) be 0 if f is not square-free, and (1) if f is a
coustant times a product of ¢ distinct monic irreducibles. This is the poly-
nomial version of the Mobius function. Let d{f) be the number of monic
divisors of f and o(f) =3_  ,{g} where the sum is over all monic divisors
of f.

These functions, like their classical counterparts, have the property of
being multiplicative. More precisely, a compiex valued function A on A—{0}
is called multiplicative if A(fg) = M) A(g) whenever f and g are relatively
prime. We agsume X is 1 on F*. Let

f=aPP P, PP
be the prime decomposition of f. If X is multiplicative,
AF) = APEAEPSY L AP,

Thus, a multiplicative function is completely determined by its values on
prime powers. Using multiplicativity, one can derive the following formulas
for these functions,

Proposition 2.4. Let the prime decomposition of [ be given as above.
Then,

HH
~~
ety
"

{

AT -121,
P|f
d(f) = {(es+D(e2+1)...{e.+1).
[Prlestt — 1 (Ppjeett — 1 Pyt -

U = R TAEST AT

Proof. The formula for ®{n) has already been given in Proposition 1.7,
If P is a monic irreducible, the only monic divisors of P¢ are 1, P,
P2, .. P® so d{P%)=e+1 and the second formula follows.
By the above paragraph, o(P®) = 1 4 |P| +|P]* + ...|P]®* =
(|P]e¥t — 1/(|P) — 1), and the formula for ¢(f) also follows.

As a final topic in this chapter we shall introduce the notion of the
average values in the context of polynomials. Suppose h(z) is a complex-
valued function on N, the set of positive integers. Suppose the following
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limit exists
dim 2 Z A(n) = o

We then define @& to be the average value of the function h. For example,
suppose h(n) = 1 if n is square-free and 0 otherwise. Then, as noted above,
the average value of h is known to be 6/7%. The sum Y, _; h{(k) sometimes
grows too fast for the average value to exist. Often though, one can show
the growth is dominated by a simple function of n. An example of this is
the Enler ¢-function. One can show

qu (k) = —n 2+ O(nlog(n)).

For this and other results of a similar nature, see Chapter VIII of the classic
book by G.H. Hardy and E.M. Wright, Hardy and Wright [1). Another good
reference for this material is Chapter 3 of Apostol [1].

In the ring A the analogue of the positive integers is the set of monic
polynomials. Let h(z) be a function on the set of monic polynomials. For
n > 0 we define )

Aven (h) = e Z R{f).

f monic

deg(f}=n
This is clearly the average value of h on the set of monic polynomials of
degree n. We define the average value of k to be lim,,_, o, Ave,(h) provided
this limit exists. This is the natural way in which average values arise in
the context of polynomials. It is an exercise to show that if the average
value exists in the sense just given, then it is also equal to the following

limit: 1
lim h{f).
n—>w1+q+q2...+qn f%‘nic )
deg{f)<n
As we pointed out above, this limit does not always exist, However, even
-when it doesn’t exist, one can speak of the average rate of growth of Z(f).
Define H(n) to equal the sum of A(f) over all monic polynomials of degree
n. As we will see, the function H(n) sometimes behaves in a quite regular
manner even though the values A{f) vary erratically.
Instead of approaching these problems directly we use the method of
Carlitz which uses Dirichlet series. Given a function h as above, we define
the associated Dirichlet series to be

PRETEE SN O 80 )

fmonic |f|s =0 qns

In what follows, we will work in a formal manner with these series. If one
wants to worry about convergence, it is useful to remark that if jA(f)] =
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O(1#1?), then Dy (s) converges for R(s) > 1 + 3. The proof just uses the
comparison test and the fact that {4(s) converges for R(s) > 1,

The right-hand side of 5 is simply > .-, H{n)u™, so the Dirichlet series
in s becomes a power series in u whose coefficients are the averages H(n).
To see how this is useful, recall the function d(f) which is the number of
monic divisors of f. Let D(n) be the sum of d(f) over all monics of degree
n (hopefully, this notation will not cause too much confusion). Then,

Proposition 2.5. Dy(s) = Ca{s)? = (1 — qu)~? . Consequently, D(n) =

(n+1)g™.
Proof. 1 )
Cals)? = (]Zz W) (; m;) =
L 59D _poey
> (hg%f i =2y 7P

This proves the Arst assertion. To prove the second assertion, notice

Dy(s) = Z D(n)u™ = (1 —qu)™* .

n=0

It is easily seen that (1 — qu)™2 = 327 (n + 1)¢™u". Thus, the second
agsertion follows by comparing the coefficients of u™ on both sides of this
identity.

A few remarks are in order. Notice that Ave,(d) = n -+ 1 so the average
value of d{f) in the way we have defined it doesn’t exist. On average, the
nurmber of divisors of f grows with the degree. If we set = = ¢™ then our
result reads D(n) = zlog,(z) + = which resembles closely the analogous
result for the integers Zf=ld(k) = zlog(x) + (2v - L)z + O(y/z} (here
v &2 577216 is Huler’s constant). This formula is due to Dirichlet. 1t is
a farnous problem in elementary number theory to find the best possible
error term. In the polynemial case, there is no error term! This is because
of the very simple nature of the zeta function {a(s). Similar sums in the
general function field context lead to more difficult problems. We shall have
more to say in this direction in Chapter 17,

It is an interesting fact that many multiplicative funetions have corre-
sponding Dirichlet series which can be simply expressed in terms of the
zeta function. We have just seen this for d(f). More generallly, let k(f) be
multiplicative. The multiplicativity of h{f) leads to the identity

Duto) = T[(3. To))

P k=0
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As an example, consider the function p(f). Since Y 4o, }IL%IJ';’Z = 1-|P|~%,
we find D, (s) = {a(s)~!. The same method would enable us to determine
the Dirichlet series for ®(f) and o(f). However, we will follow a slightly
different path to this goal.

Let A and p be two complex valued functions on the monic polynomials.
We define their Dirichlet product by the following formula {all polynemials
involved are assumed to be monic)

A xp)(f) = > Mhplg) -
h,g
hg=f

This definition is exactly similar to the corresponding notion in elemen-
tary number theory. As is the case there, the Dirichlet product is closely
related to multiplication of Dirichlet series.

Proposition 2.6.
D;(S)DP(S) = D)\*p[.s‘) .

Proof. The calculation is just like that of Proposition 2.5.

Dy92,(0) = (3 712) (2 Ll -

1
Z( g )\(h)P(Q)) i Diyp(s) .

f
hg=f
We now proceed to calculate the average value of ®{f). We have seen that

() =ATJa-1PI7Y .

PIf

Define A{f) = |f|. A moment’s reflection shows that the right hand side of
the above equation can be rewritten as Eg'f w(g)|f/ gl = (u* A f). Thus,
by Proposition 2.6 we find

Da(s) = Dyur(s) = Dyu(s)Da{s) = Ca(s) ™ als — 1) . (6)
Proposition 2.7.
3N df=g(1—q ).

deg f=n
J monic

Proof. Let A(n) be the left-hand side of the above equation. Then, with
the usual transformation u == ¢~% , Equation 6 becomes

Alnyu™ = .
=0 I- qzu
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Now, expand (1 — ¢u)~! into a power series using the geometric series,
multiply out, and equate the coefficients of u™ on both sides. One finds
A(n) = ¢* — ¢**~L. The result follows.

Finally, we want to do a similar analysis for the function o(f). Let 1(f)
denote the function which is identically equal to 1 on all monies f. For any
complex valued function A on monics, we see immediately that {1+ A)(f) =

o1 M9)- In particular, if A(f) = |f], then (1% A}(f} = o(f). Thus,
Dq(s) = D1.a{s) = Di(s)Da(s) = Cafs)Cals — 1) . (7)
Proposition 2.8.

e q——1
Y =

1_g-1
deg(f)=n q

f monic

Proof. Define S(n) to be the sum on the left hand side of the abaove
equation. Then, making the substitution « = ¢* in Equation 7 we find

o0

S = (1 - qu) M1 - ¢?u) T

n=0

Expanding the two terms on the right using the geometric series, multiply-
ing out, and collecting terms, we deduce

Sny= > ¢*¢*.

k+l=n
The result follows after applying a little algebra.

The method of obtaining average value results via the zeta function has
now been amply demonstrated. The reader who wants to pursue this fur-
ther can consult the original article of Carlitz [1]. Alternatively, it is an
interesting exercise to look at Chapter VII of Hardy and Wright [1] or
Chapter 3 of Apostol (1] , formulate the results given there for Z in the
context of the polynomial ring A = F[T], and prove them by the methods
developed above.

In Chapter 17, we will return to the subject of average value results, but
in the broader context of global function fields.

Exercises

1. Let f € A be a polynomial of degree at least m > 1. For cach N >
m show that the number of polynomials of degree N divisible by
f divided by the number of polynomials of degree N is just |f|~!.
Thus, it makes sense to say that the probability that an arbitrary
polynomial is divisible by f is |f{~1.
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. Let P, P,,..., P, € A be distinct monic irreducibles. Give a proba-

bilistic argument that the probability that a polynomial not be divis-
ible by any P? for 1 =1,2,...,1 is give by [[,, (I — |B|~2).

Based on Exercise 2, give a heuristic argument to show that the prob-
ability that a polynomial in A is square-free is given by (4(2)71.

. Generalize Exercise 3 to give a heuristic argument to show that the

probability that a polynomial in A be k-th power free is given by
Calk)™t

Show Y |m{~1 diverges, where the sum is over all monic polynomials
m € A

. Use the fact that every monic m can be written uniquely in the form

m = mom?} where mg and m; are monic and my is square-free to
show ¥~ [mo|~! diverges where the sum is over all square-free monics
my.

Use Exercise 6 to show

[I a+iP) 20 as d—> .

P irreducible
deg P<d

. Use the obvious inequality 1+= < e® and Exercise 7 to show 3_ [P~}

diverges where the sum is over all monic irreducibles P € A.
Use Theorem 2.2 to give another proof that 3 |P|~! diverges.

Suppose there were only finitely many monic irreducibles in A . De-
note them by {Py, Py, ..., P,}. Let m = Py P;... P, be their product.
Show ®(m) =1 and derive a contradiction.

Suppose £ is a complex valued function on monics in A and that the
limit as » tends to infinity of Ave,(h} is equal to a. Show

: ny—1 _
nlggg(l+q+-"+q) E R(f) =« .
f monie
deg f<n

Let u(m) be the Mobius function on monic polynomials which we
introduced in the text. Consider the sum ;. ,,_, #{m) over monic
polynomials of degree n. Show the value of this sum is 1 ifn =0, —¢
ifn=1,and 0if n > 1,

For each integer k& > 1 define ox(m) = 3, | f|*. Caleulate Ave,(ay).
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Define A{m) to be log |P| if m = F*, a prime power, and zero other-

wise. Show

S A(F) =loglm |

flm

Show that
D(s) = —Ca(s)/Cals).

Use this to evaluate 34, o, A(m).

Recall that d(m) is the number of monic divisors of m. Show

d(m)? _ Cal(s)*
2 ml* "~ Cal2s)

m monic

Use this to evaluate 3 4., —, d(m)%.






3
The Reciprocity Law

Gauss called the quadratic reciprocity law “the golden theorem.” He was
the first to give a valid proof of this theorem. In fact, he found nine differ-
ent proofs. After this he worked on biquadratic reciprocity, obtaining the
correct statement, but not finding a proof. The first to do so were Eisen-
stein and Jacobi. The history of the general reciprocity law is long and
complicated involving the creation of a good portion of algebraic number
theory and class field theory. By contrast, it is possible to formulate and
prove a very general reciprocity law for 4 = F[T] without introducing much
machinery. Dedekind proved an analogue of the quadratic reciprocity law
for A in the last century. Carlitz thought he was the first to prove the gen-
eral reciprocity law for F[T]. However O. Ore pointed out to him that F.K.
Schmidt had already published the result, albeit in a somewhat obscure
place (Erlanger Sitzungsberichte, Vol. 58-59, 1928). See Carlitz (2| for this
remark and also for a number of references in which Carlitz gives different
proofs the reciprocity law. We will present a particularly simple and elegant
proof due to Carlitz. The only tools necessary will be a few results from
the theory of finite fields.

Let P € A be an irreducible polynomial and d a divisor of g — 1 (recall
that g is the cardinality of F). If « € A and F does not divide a, then, by
Proposition 1.10, we know z¢=a (mod P} is solvable if and only if

oo =1 {mod P).

The left-hand side of this congruence is, in any case, an element of order
dividing d in (A/PA)*. Since F* — (A4/PA)* is one to one, there i a
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unique & & F* such that

Pt

a T =ca (mod P).

Definition. If P does not divide a, let (a/FP)4 be the unique element of F*

such that
P11 o

a T = (E)d (mod P).

If Pla define (a/P)y = 0. The symbol (a/P)g4 is called the d-th power
residue symbol.

When d = 2, this symbol is just like the Legendre symbol of elementary
number theory. The situation is a bit more flexible in A since A* =T is
cyclic of order g — 1, whereas Z* is just {£1}. Notice that the value of the
residue symbol is in the finite field F and not in the complex numbers.

Proposition 3.1. The d-th power residue symbol has the following prop-
erties:

1) (%)dz (%)d ifa=b (mod P).

2 (%J)d B (%)d(%)d'
3) (%)d =1 if 2% = a (mod P) is solvable.

4) Let { € F* be an element of order dividing d. There exists ana € A
t]% ={.
such tha ( P)d ¢

Proof. The first assertion follows immediately from the definition. The sec-
ond follows from the definition and the fact that if two constants are congru-
ent modulo P2 then they are equal. The third assertion follows from the def-
inition and Proposition 1.10. Finally, note that the map from (A/PAY —
F* given by a — (0/P)q is a homomorphism whose kernel is the d-th pow-
ers in (A/PA}Y* by part 3. Since {A/PA)* is a cyclic group of order |P| -1,
the arder of the kernel is (|P| — 1)/d. Consequently, the image has order d
and part 4 follows from this.

It is an easy matter to evaluate the residue symbol on a constant.

Proposition 3.2. Let « € F. Then,

(%) = ot
d

Proof. Let § = deg{ ). Then,

|IPI-1 ¢ -1 _
d T d

-1
(L+q+-+a Hi—,
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The result now follows from the definition and the fact that for all @ € F
we have o9 = a.

Notice that if d|deg(P) every constant is automatically a d'th power
residue modulo P.
‘We are now in a position to state the reciprocity law.

Theorem 3.3. (The d-th power reciprocity law) Let P and @ be monic
irreducible polynomials of degrees § and v respectively. Then,

(7).~ 0% (5).

Proof. Let’s define (a/P) = (a/P),—,. Then (a/P)s = (a/P)*T". The
theorem would follow in full generality if we could show

(#)=co*(3)

since the general result would follow by raising both sides to the (¢ — 1)/d
power.

Let o be a root of P and 8 a root of @. Let I be a finite field which
contains F, o, and 3. Using the theory of finite fields we find

1

P(T) =(T - a)(T—a%) (T —a*"") and
QT) = (T ~B)(T = 5% (T~ F"7). (1)
We now take congruences in the ring A’ = F’[T]. Note that if f(T") € A’
we have f{T} = f{a) (mod (T' — @)). Also note that if g{I'} € A then
g(TY? = g(T9) which follows readily from the fact that the coefficients of
9(T) are in F. From this remark, and the definition, we compute that (Q/D)
is congruent to

1

QDT - QT ™)
Q)RY) Q) (mod (T -a)).
By symmetry this congruence holds modulo (T'—ad') for all 7 and it follows

that it holds modulo P. Combining this result with Equation 1 vields the
following congruence:

i

Q(T)l+9+---+q6_

§-1uv-1

( ) T IIe" -57) (mod P).

i=0 j=0
Both sides of this congruence are in I so they must be equal. Thus,

—1 -1 r—148-1

() =TI - = o TL 16" - o) = (0 (5).

i=0 §=0 3=01i=0
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This concludes the proof.

This beautiful proof is due to Carlitz. It is contained in a set of lecture
notes for a course on polynomials over finite fields which he gave at Duke
in the 1950s. We will outline another proof, alse due to Carlitz, in the
exercises to Chapter 12,

As in the classical theory, it is convenient to extend the definition of the
d-th power reciprocity symbol to the case where the prime P is replaced
with an arbitrary non-zero element b € A,

Definition. Let b € A, b # 0, and b = Q' Qf*...Qf* be the prime
decomposition of b. If o € A, define

a : anf
3, =), 2
(b)d ol (QJ) d
Notice that this definition ignores 3 = sgn{b) and so the symbol only
depends on the principal ideal bA generated by b. The basic properties
of this extended symbol are easily derived from those of the d-th power
residue symbol.

Proposition 3.4. The symbol (a/b); has the following properties.

1) Ifa; =ay (mod b) then (a1/b)g = (az2/b)a.

2)  (a1az/b)a = (a1/b)a(az/b)a.

3)  {(afbiba)a = {a/b1)a(a/b2)a.

4) (a/b)g #0iff (a,8) =1 (a is relatively prime to b).

5) Ifzd=a (mod b) is solvable, then (a/b)y = 1, provided that (a,b) = 1.

Proof. Properties 1—4 follow from the definition and the properties of the
symbol {a/P)4.

To show property 5, suppose ¢ = o (mod b). Then, by properties 1 and
2, {a/blg = (¢?/6)g = (¢/B)% = 1.

The converse of assertion 5 in Proposition 3.4 is not true in general. For
example, suppose ( is a monic irreducible not dividing a and b = @¢. Then,
by property 3 above we have (a/b)y = (2/Q%)s = (a/Q)% = 1. However,
not every element of (A/bAY = (A/Q%A)* is a d-th power. In fact, the
group of d-th powers has index d as we saw in Proposition 1.10.

The same example shows that property 4 of Proposition 3.1 doesn’t hold
for the generalized symbol. As a mapping from {A/Q%A)* — F* the symbol
{a/Q%)q only takes on the value 1 and no other element of order divi-
ding d.

It is useful to have a form of the reciprocity law which works for arbitrary
(i.e., not necessarily monic or irreducible) elements of A. For f € 4, f #0,
define sgny{f) to be the leading coefficient of f raised to the 5—;—1 power.
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Theorem 3.5. (The general reciprocity law). Let a,b € A be relatively
prime, non-zero elements. Then,

a b -1 -1 )
el hd — (1) 5 deg(a) deg(d) deg(b) — deg(a) .
(5),C), =p sgn (@) e sgn, (b)
Proof. When a and b are monic irreducibles this reduces to Theorem 3.3. In
general, the proof proceeds by appealing to Proposition 3.2, Theorem 3.3,
the definitions, and the fact that the degree of a product of two polynomials
is equal to the sum of their degrees. We omit the details.

The reciprocity law can be thought of as a pretty formula, but its im-
portance lies in the fact that it relates two natural questions in an intrinsic
way. Given a polynomial 7 of positive degree, what are the d-th powers
modulo m? Since (A/mA)* is finite, one can answer this question in prin-
ciple by just writing down the elements of (4/mA)*, raising them to the
d-th power, and making a list of the results. The answer will be a list of
cosets or residue classes modulo m. In practice this may be hard because
of the amount of calculation involved. One can appeal to the structure of
(A/mA)* to find shorteuts. Parenthetically, it is an interesting question to
determine the number of d-th powers modulo m. Recall that we are as-
suming df(¢— 1). Under this assumption, the answer is ®(m)/d>™ where
A{m) is the number of distinct monie prime divisors of m. This follows from
Proposition 1.10 and the Chinese Remainder Theorem.

Now, let’s turn things around somewhat. Given m, find all primes P such
that m is a d-th power modulo P. It turns out that there are infinitely many
such primes, so that it is not possible to answer the question by making a
list. One has to characterize the primes with this property in some natural
way, This is what the reciprocity law allows us to do.

For simplicity, we will assume that m is monic. It is no loss of gener-
ality to assume that all the primes we deal with are monic as well. Let

{61,0a3,...,a:} be coset representatives for the classes in {A/mA)* which
have the property (a/m)q = 1. If there is a b € A such that (b/m}; = —1
let {b1,b2,..., b} be coset representatives for all classes with this property.

Proposition 3.6. With the above assumptions we have

1) Ifdeg(m) is even, (g — 1)/d is even, or p= char(F) =2, m is a d-th
power modulo P iff P = a; (mod m) for semei=1,2,... ¢

2)  If deg(m) is odd, (¢ — 1)/d s odd, and p = char(F) s odd, then m
is @ d-th power module P iff either deg(P) is even and P = a, (mod m}
for some i = 1,2,...,t or deg(P) is odd and P = b; (mod m) for some
i=1,2,...,t

Proof. By Theorem 3.5, we have

(B), - 2),
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If any of the conditions in Part 1 hold, we have (m/P)q = (P/m)q and this
gives the result by Part 3 of Proposition 3.1 and the fact that {P/m)g only
depends on the residue class of P modulo m.

If the conditions of Part 2 hold, then (m/P)g = (—=1)98(P}(P/m) . Thus,
if deg(P) is even, (m/P)s = Liff P = a; (mod m) for some 1, and if deg(P)
is odd, (m/P)g =1 iff P =b; {mod m) for some . That there s a b € A
with (b/m}s = ~1 under the conditions of Part 2 follows from the fact that

(Zl)d = (—1)%T denlm) — _3,

m

A number of interesting number-theoretic questions are of the following
form: if a certain property holds modulo all but finitely many primes, does
it hold in A? One such property is that of being a d-th power. In this cage
the question has a positive answer. The key to the proof, as we shall see,
is the reciprocity law,

Thearem 3.7. Let m € 4 be a polynomial of positive degree. Let d be an
integer dividing ¢ — 1. If 2¢ = m (mod P) is solvable for all but finitely
many primes P, then m = mg for some m, € A.

Proof. Let m = pQ7' Q% ... Q¢ be the prime decomposition of m. We
begin by showing that if some e; is not divisible by d, then there are in-
finitely many primes L such that (m/L)y # 1. This will contradict the
hypothesis and we can conclude that the hypothesis implies m = pm/¢ for
gome m, € A.

We may as well assume that e; is not divisible by d. Let {L;, L;...., L}
be a set of primes not dividing m such that (m/L;)qy £ 1for 7 =1,2,...,

For any a € A we have
G =11(20). ®)

i=1 1'

By Part 4 of Proposition 3.1, there exists an element ¢ € A such that
{e/@21)a = (4, & primitive dth root of 1. By the Chinese Remainder Theo-
rem, we can find an ¢ € A4 such that ¢ = ¢ (mod @) and a = 1 (mod @Q;}
for i > 2, and a = 1 (mod L;) for all j. Once such an a is chosen we can
add to it any A-multiple of @1Qs ... L1 Ly ... L, and it will satisfy the
same congruences as a¢. Thus we may assume, by choosing a suitable such
multiple of large degree, that a is monic and of degree divisible by 2d. As-
suming that & has these properties, we substitute it into Equation 3 and

derive “
— = £1
(m)d at # L

By the reciprocity law,
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It follows that there must be a prime L|a such that (m/L}s # 1. Since
a =1 (mod L;) for every j we must have L # L for all 5. This shows
there must be infinitely many primes L such that (m/L)4 # 1 if &; is not
divisible by d. The same assertion holds for each e;.

We have shown that under the hypothesis of the theorem m = um/¢,
where i € F*. Tt remains to show that u must be a d-th power. Consider

(7)u= (B),=r0 “

By Theorem 2.2, there are infinitely many irreducibles of degree relatively
prime to d. In fact, there are irreducibles of every degree. Thus there is
an irreducible P of degree prime to d and such that (m/P)g = 1. It then
follows from equation number (4) that p 7 98P = | and so, p*T = 1.
This shows that j is a d-th power, 4 = p¢, in £. Set m, = u,m/,, and we
have m = mg, as asserted.

In the statement and proof of Theorem 3.7 we have been assuming that
d divides ¢ — 1. Is this necessary? The statement of the theorem is not true
for all d. For example, consider p = char(IF). For every prime P and any
a € A we have that a is a p-th power modulo P. This follows from the fact
that raising to the p-th power is an automorphism of the finite field A/PA.
Thus, the theorem fails if d = p or indeed if d is a power of p. However,

Fact. The assertion of Theorem 3.7 remains true if ¢ does not divide d.
In other words, if d is not divisible by p it is not necessary to assume that
dg—1.

We will sketch a proof. We rely on Theorem 3.7 together with some
elementary facts about finite fields.

Since p does not, divide d, ¢ and d are relatively prime. Thus, there is a
positive integer n such that ¢® = 1 (mod d}. Let F/ be a field extension of
F of degree n. F'* has g™ — 1 elements and so must contain a primitive d-th
root of unity. Set A’ = F'[T].

Now, suppose that m € A and that m is a d-th power for all but finitely
many primes P of A. If P’ is a prime of A’ it is easy to check that FYA'MA =
PA where P is a prime of A. It follows that m is a d-th power modulo all
but finitely many primes of A’. Invoking Theorem 3.7, we see that m = m'¢
iz a d-th power in A’. We need to show that m’ can be chosen to be in A.

Let P be a prime of A and consider it as an element of A’. It factors as
a product of primes in A", P = P{Pj--- P, where the P are all distinct
( over a finite field, every irreducible polynomial has no repeated roots in
any algebraic extension ). For a prime P of A, let e be the highest power
to which P divides m. If P’ is a prime of A’ dividing P, then e is also the
highest power of P’ dividing m. Since m = m'?, unique factorization in A’
implies d|e. This being true for all primes £ of A, it follows that m = pum¢
with m, € A and u € F. [t remains to show that u is a d-th power in .
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By the hypothesis on m and the equation m = pum? we see that p is
a d-th power for all but finitely many primes P. Let d' = (d, ¢ - 1). p is
a d’-th power for all but finitely many primes P (since d'[d). Moreover,
d’|(g — 1). Using Theorem 3.7 once again, we see that p is a d’-th power.
Since F* is cyclic of order ¢ — 1 it is easy to see that F d = Thus, u
is a d-th power, and we are done.

Exercises

1.
2,
3.

Fill in the details of the proof of Proposition 3.4,
Fill in the details of the proof of Theotrem 3.5.

Suppose d | ¢ — 1 and that m € A is a polynomial of positive de-
gree, Show that the number of d-th powers in (4/mA)* is given by
®(m)/dM™ where A(m) is the number of distinct monic prime divi-
sors of m.

Let P € A be a prime and consider the congruence X? = -1
{mod P). Show this congruence is solvable except in the case where
g =3 (mod 4) and deg P is odd.

Suppose d' | ¢—1 and & € F* is an element of order d’. Let P € A be
a prime of positive degree and suppose that d is a divisor of [P| — 1.
Show that X¢ = « (mod P) is solvable if and only If dd’ divides
|P| — 1. Show how Exercise 4 is a special case of this result.

Suppose that d is a positive integer and that ¢ = 1 (mod 4d). Let
P ¢ A be a monic prime. Show that X¢ =T (mod P) if and only if
the constant term of P, i.e. P(0), is a d-th power in F.

Suppose d divides ¢ — 1 and that P € A is a prime. Show that the
number of solutions to X% = a (mod P) is given by

() (B (B

. Let b € A and suppose b= gP* P;* --- P{* is the prime decomposi-

tion of b. Here, # € F* and the P, are distinct monic primes. Con-
sider {a/b)y as a homomorphism from {A4/6A)* to the cyclic group
< ¢4 > generated by an element {4 € F* of order d. Show that this
map is onto if and only if the greatest common divisor of the set
{e1,ea,...,e} is relatively prime to d.

. Suppose d | ¢—1 and a, b1, by € A. Show that {a/b;)q = (a/b2)a if the

following conditions hold: b; = by (mod a), degby = degby (mod d),
and sgny(b1) = sgn,(ba).
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10. In this exercise we give an analogue of the classical Gauss criterion
for the Legendre symbol. Let PP € A be a prime. Show that every non-
zero residue class modulo P has a unique representative of the form
pm where 4 € F* and m is a monie polynomial of degree less than
deg P. Let M denote the set of monics of degree less than deg P.
Suppose a € A with P { a. For each m € M write am = p,,m’
(mod P) where p, € F* and m’ € M. Show

(%)q—l - mH m. -

In the exercises to Chapter 12, we will use this criterion to outline another
proof of the Reciprocity Law (also due to Carlitz).






4

Dirichlet L-Series and Primes
in an Arithmetic Progression

Our principal goal in this chapter will be to prove the analogue of Dirichlet’s
famous theorem about primes in arithmetic progressions. This was first
proved by H. Kornblum in his PhDD thesis written, just before the onset
of World War 1, under the direction of Edmund Landau. After completing
the work on his thesis, but before writing it up, Kornblum enlisted in the
army. He died in the fighting on the Eastern Front. After the war, Landau
completed the sad duty of writing up and publishing his student’s results,
see Kornblum [1].

The proof of the theorem uses the theory of Dirichlet series. After giving
the definitions and proving the elementary properties of these series, we
outline the connection with primes in arithmetic progressions and isolate
the main difficulty which is the proof that {1, %) # 0 for non-trivial char-
acters x. We then give a proof of this fact which differs from the Kornblum-
Landau approach. It is an adaptation to polynomial rings of a proof of the
corresponding number-theoretic fact due to de la Vallee Poussin. Finally,
to complete the chapter, we give o refinement of Dirichet’s theorem, which
shows that given an arithmetic progression {a--mz | @, € A, (a,m) = 1},
then, for all sufficiently large integers IV, there is a prime P of degree N
which lies in this arithmetic progression.

Before beginning we discuss the notion of the Dirichlet density of a set
of pritnes in A. This will give a quantitative measure of how big such a set
is. Let f(s) and g(s) be two complex valued functions of a real variable s
both defined on some open interval (1,5). We define f = g to mean that
f — g remains bounded as s -+ 1 inside (1,5).
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Proposition 4.1. We have

1
log¢a(s) = log (52 ) = 1P
P

where the sum is over all irreducible monic polynomials P.

Proof. Since ¢a(s) = (1 — ¢'=*)"! we see that lim,1(s — 1){a(s) =
1/ log(q). Thus, log{a(s) —log(s — 1)~ is bounded as s — 1, which estab-
lishes the first relation. As for the second relation we see, using the Euler
product for {a(s)

log Ca(s) = Zlogtl—lPrﬂ ZIPI“”/k ZIPI“‘+ZIPI kK

Pk>2

Now, 3pog 1PI7%/k < 3o, [PI7R¢ = |P{72°(1 — |P|=%) "7 < 2|P| 7.
Thus the last sum in the above equation is bounded by 2¢4(2). This shows
that log a(s) =~ 3 p |P|™* which completes the proof.

Definition. Henceforth the word “prime” will denote a monic irreducible
in A. Let & be a set of primes in A. The Dirichlet density of &, §(5) is
defined to be > Pl
Pes
o= o
provided that the limit exists. The limit is assumed to be taken over the
values of s lying in a real interval (1,6).

Several remarks are in order. First note that 0 < §(8) < land f § =
81U Sy, then §{(8) = §(51) + 6(Sz) provided 8; and &; both have densities
and are disjoint. Thus, Dirichlet density is something like a probability
measure. One must not carry this too far, however. Dirichlet density is not
countably additive.

It is obvious that the Dirichlet density of a finite set is zero. Thus, if the
Dirichlet density of a set exists and is positive, we are assured that the set
is infinite. One of the two main resnlts of this chapter asserts that if ¢ and
m are relatively prime polynomials, then the Dirichlet density of the set
S={P e A| P prime, P=a (mod m}} exists and is equal to 1/®{m).
It is in this refined form that we prove Dirichlet’s famous theorem in the
context of the polynomial ring A.

The next step is to introduce the main tools necessary to the proof,
Dirichlet characters and Dirichlet L-series.

Let m be an element of 4 of positive degree. A Dirichlet character module
m is a function from A — C such that

(a) (a+ bm) = x(a) for all a,b € A,
(b) x(a)x(b} = x(ab) for all a,b € A
(c) x{a) # 0 if and only if (a,m) = 1.
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A Dirichlet character modulo m induces a homomorphism from
(4/mA)* — C* and conversely, given such a homomorphism there is a
uniquely corresponding Dirichlet character. The trivial Dirichlet character
Yo 18 defined by the property that x,{(e¢) = 1 if (e,m) =1 and x,(a} =0 if
(a,m) # 1.

Tt can be shown that there are exactly ${m) Dirichlet characters modulo
m which is the same cardinality as that of the group (4/mA)*. Let X, be
the set of Dirichlet characters modulo m. If x, ¢ € X,,, define their product,
xt, by the formula xt(a) = x{(a)¥(a}). This makes X,, into a group. The
identity of this group is the trivial character x,. The inverse of a character
is given by x~{a) = x(a)7t if {(e,m) = 1, and x~"{a) = 0 if (a,m) # L.
It can be shown, but we will not do so here, that X,, is isomorphic to
(A/mA)*, which is a much better result than the bare statement that they
have the same number of elements. This is a special case of a general result
which asserts that a finite abelian group G is isomorphic to its character
group G, see Lang [4], Chapter 1, Section 9. L

Another definition is useful. If x € X, let ¥ be defined by %(a) = x{a)
= complex conjugate of x{«). Since the value of a character is either zero
or a root of unity, it is easy to see that ¥ = x~!. Moreover, we have the
following very important proposition, the orthogonality relations.

Proposition 4.2, Let x and i be two Dirichlet characters modulo m and
a ond b fwo elements of A relatively prime to m. Then

(1) =, x(@)la) = B(m)d(x, b).
(2) T, x(@)x(®) = 8(m)3(a, b).

The first sum is over any set of representative for A/mA and the second
sum is over all Dirichlet characters modulo m. By definition, 6(x,4) =0
ifx £ and 1 if x = . Similarly, §(a,b) =0 ifaZband I ifa=0.

The proofs of all these facts are standard. For the corresponding facts
over the integers, Z, the reader can consult, for example, Ireland-Rosen [1],
Chapter 16, Section 3. The relations given in the above proposition are
called the orthogonality relations.

Definition, Let x be a Dirichlet character modulo m. The Dirichlet L-
series corresponding to x is defined by

x(f}

Lis,x} = T

f monic¢

From the definition and by comparison with the zeta function (4(s)
one sees immediately that the series for L{s,y) converges absolutely for
R(s) > 1. Also, since characters are multiplicative we can deduce that the
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following product decomposition is valid in the same region.

L(s,x)zH(l—Tg;))_l.

P

An immediate consequence of this product decomposition is the fact
that the L-series corresponding to the trivial character is almost the same
as Ca(s). More precisely,

L(s,xo) = [ (1 - '!"I;]';)CA(S)-

Plm

This shows that L(s,,) can be analytically continued to all of € and
has a simple pole at ¢ = 1 since the same is true of {4(5). On the other
hand,

Proposition 4.3, Let x be o non-trivial Dirichlet character modulo m.
Then, L(s,x) is a polynomial in ¢=° of degree at most deg(m) — 1.

Proof. Define
Anx)= Y. x(h).
deg(f) =n

f monic

It is clear from the definition of L(s,x) that

L(s,x) = y_ Aln,x)g ™™

n={

Thus, the result will follow if we can show that A(n,x) = 0 for all n >
deg(m).

Let’s assume that n > deg(m). If deg(f) = n, we can write f = hm + 7,
where 7 is a polynomial of degree less than deg(m) or » = 0. Here, h is a
polynomial of degree n—deg(m) > 0, whose leading coefficient is sgn(m)~!
(since f is monic). Conversely, all monic polynomials of degree n > deg(m)
can be uniquely written in this fashion. Since y is periodic modulo m and
since h can be chosen in ¢*~ (™) ways, we have

A(n,x) = ¢" 7950 Y "y (r) = 0,
r

by the first orthogonality relation {Proposition 4.2, part (1) ) since x #
Xo, and the sum is over all r with deg(r) < deg(m), which is a set of
representatives for A/mA.

Proposition 4.3 shows that if x is non-trivial, then L{s,x) which was
initially defined for R(s) > 1 can be analytically continued to an entire
function on all of C. We have already seen that L(s, x,) can be analytically
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continued to all of C with a simple pole at s = 1. These facts are much
harder to establish when working over Z rather than A.

In the proof of Dirichlet’s theorem on primes in arithmetic progressions
the most difficult part is the proof that L(1, x) # D if x is non-trivial. This
turns out to be substantially easier in function fields because the L-series
are essentially polynomials. We begin with a lemma.

Lemma 4.4. Let x vary over all Dirichlet choracters modulo m. Then, for
each prime P not dividing m, there exist positive integers fp and gp such
that fpgp = ®(m} and

HL(S, X) = H(l — |_P|—fP3)-gp'

Ptm

Proof. For a fixed prime P not dividing m, the map ¥ — x(F) is a
homomorphism from the group X,, — C*. The image must be a cyclic
group of order fp, say, generated by (;,. If gp is the order of the kernel,
clearly fpgp = ®(m).

With these preliminaries, we calculate for fixed P.

. fr—1 '
[IC =x(PPI™*) = [] A=<l P07 = (1 = |P[7F7eyor,
X i=0

Now take the inverse of both sides, multiply over all P, and the lemma
follows.

Lemma 4.5. Suppose x is ¢ compler Dirichlet character modulo m , i.e.
% # x. Then, L(1,x) £ 0.

Proof. The right-hand side of the equation in the statement of Lemma 4.4
is equal to a Dirichlet series with positive coefficients and constant term
1. Consequently, its value at real numbers s such that s > 1 is a real
number greater than 1. Suppose x is a complex Dirichlet character and
that L(1,x) = 0. Then, by complex conjugation we see L{1,%) = 0 as well.
In the product I, L(s, x) the term corresponding to the trivial character
has a simple pole at s = 1. All the other terms are regular there and two
of them have zeros. Thus, the product is zero at 5 = 1. This contradicts
the fact, established above, that for all & > 1 the value of the product is
greater than 1. Thus, L(1, x} # 0, as asserted.

The next step is to deal with real-valued characters. It is not hard to see
that these coincide with characters of order 2. The proof for such characters
will be a modification of a proof of the classical case due to de la Vallée
Poussin.

Assume now that x has order 2 and consider the function

Lis, x0}L({s, %) .

Gls) = L(2s,x0)
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This can be written as a product over all monic irreducibles not dividing
m. Let P be such a prime. Then x(P) = &1. The factor of the above series
corresponding to P is

(L= 1P (L= (PP~}
= 1P[) |

If x(P) = —1 this whole factor reduces to 1. If x(P) = 1 it simplifies to

(1+[P7*) o~ | pl—k
Sl L T N
=P P

It follows from these remarks that G(s) is a Dirichlet series with non-
negative coefficients. This will shortly play a crucial role.

First, we look more carefully at L(s, x0}/L(2s,x0). As we have already
seen,

L{s,xo) = [T = 1PI™*)¢a(s) = [ 1 - \PI™*) T
Plm Plm
A short calculation shows

LS 0 —sv—1 =2
Lési) [H1+uﬂ ) ————?.

From this identity and what we have already proven about G{s) we deduce
that

(1 —¢=2)L(s,x) Za(n

(1—g'=s) n|s

a Dirichlet series with non-negative coefficients.
It is now convenient to switch to a new variable, v = ¢~*. The above
equation becomes

(1 —qu?)L*(u,x)
1-qu ZA

where L*(u, x) is a polynomial in % by Proposition 4.3, and

Ald)= > an)

n,deg(n)=d

is non-negative for all d > 0 and A(0) = 1. The Dirichlet series converges
for Re(s) > 1 which implies the power series in u converges for |u| < g7 1.
Finally, notice that s = 1 corresponds to ¢~ so what we are trying to prove
is that L*(g™", x) # 0. We now have developed everything we need to give
a quick proof of this.
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We argue by contradiction. Suppose L* (g™, x) = 0. Then (1—qu) divides
L*(u, x) and the left-hand side of the above equation is a polynomial in .
It follows that the right-hand side is a polynomial in w with non-negative
coefficients and constant term 1. Tt therefore cannot have a positive root.
However, the left-hand side vanishes when w = 1/,/g. This is a contradic-
tion, so L*(g~!, x) # 0 and thus, L(1, x) # 0. We have proven the following
key result,

Proposition 4.6. Let ¥ be o non-triviel Dirichlet character modulo m.

Then, L(1,x) #0.

From Proposition 4.6 and previous remarks we see that as s — 1 with s
real and greater than 1 we have

lim log L(s,x,) =00 and lim logL(s,x) exists, for x # Xo-
s5—1 a—1

Here, and in what follows we take for log(z) the principal branch of the
logarithm.

Theorem 4.7. Let a,m & A be two relatively prime polynomials with m of
positive degree. Consider the set of primes, § = {P € 4 | P = a (mod m)}.
Then, §(8) = 1/®(m). In particular, S is an infinite set.

Proof. Using the product formula for L(s, x) and the same technique used
in the proof of Proposition 4.1, one finds

log L(s,X) = |§j|? + Ris,X)

where the function R(s,x) is bounded as s tends to 1 from above. Multipy
both sides by ¥(a) and sum over all . Using the orthogonality relation for
Dirichlet characters, Proposition 4.2, part {2), we obtain

S eesLlox) = 2m) 3 B R

P=a {mod m)

where R(s) is a function which remains hounded as s — 1.

Divide each summand on the left-hand side of the above equation by
2.p|P|™® and let s tend to 1 from above. By Proposition 4.1 and the
remarks preceding the theorem, the summand corresponding to the trivial
character tends to 1, while each summand corresponding to s non-trivial
character tends to zero. If we divide the right-hand side by 3, |P|™¢ and
let s tend to 1 from above, we get ®(m)é8(S). The result follows.

Theorem 4.7 is the original form of Dirichlet's theorem. It is possible,
with more work, to prove a much stronger form of the theorern. Suppose
a,m € A are relatively prime and that m has positive degree. Consider the
set of primes

Sn(a,m)y={P € A| P=a(mod m), deg(P) = N}.
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We claim that for all large integers N this set is not empty. The following
theorem proves this and more.

Theorem 4.8.

#5y(a,m) = %%Jro (?;-) .

It will take us several steps to prove this result, but first, a remark. Let
Sy be the set of primes of degree N. We have seen {Theorem 2.2) that

g g%
Sy = — S
SN N +0 i
Putting this together with the statement of the theorem we find

. #SN(GL,TTL)_ 1
N ESy ()

This is a natural density analogue to the Dirichlet density form of the
main theorem.

Proof of Theorem 4.8. The idea of the proof is to realize that the L-
series L(s, x} can be expressed as a product in two ways. One way, which we
have already considered, is as an Euler product. The other is as a product
over its complex zeros. This iy made easier by rewriting, as we have done
before, everything in terms of the variable w = g%, If i is not trivial, then
by Proposition 4.3, L{s, x) is a polynomial in g7* of degree at most A — 1
where M = deg(m). We have

M1

M-1
Lr(u,x) = > ax(x)u* = H (1 = oal{x)w) (1)
k=0

The second expression for L* (s, ¥} comes from rewriting the Euler prod-
uct for L(s, x} in terms of u. We first regroup the terms in the Euler prod-
uct.

oo

Lsx) =T a-x@P =11 I (-xPe .
P =t deg}z};’:’}‘=d

Now, make the substitution © = ¢=°. We obtain the expression

)= II @-xtPu). (2)

d=1  Pfm
deg(P)=d



4. Dirichlet L-Series and Primes in an Arithmetic Progression 41

Our intention is to take the logarithmic derivative of both expressions,
write the results as power series in u and compare coefficients. Afterwards
we apply the orthogonality relations to isolate the primes congruent to o
modulo m. However, in addition to the algebra involved, we will have to
do a number of estimates. One of these estimates will involve invoking a
deep result of A. Weil. The others are more elementary.

We begin by writing down an identity which will be used repeatedly.
Narmely,

dci (log(1 — ou)~ Z au” . (3)

Here o is a complex number. The sum converges for all » such that |u| <
|ol=t. The proof of this identity is a simple exercise using the geometric
series.

For each character x modulo m define the numbers en{x) b

oo

ud% log(L*(u,x) = Y _ en(x)u”

N=1

We claim that

en(xo) =gV +0(1) and that cn{x) =0(¢Z)if x £ x0. (4)

The easy case is when x = x,. Recall that

L(s,xo) = [T (1= 1PI7*} Lals)

Plm
Thus,
1
'U. XD H{l degP —_—

Pim 1 —qu

It now follows immediately, using Equation 3 and the additivity of the
logarithmic derivative, that cx{x,) = ¢" +O(1). For x # Xo, by combining
Equation 1 with Equation 3 we find

en(x) = Z ar(x)" .

It follows from the analogue of the Riemann hypothesis for function fields
over a finite field that each of the roots i (x) has absolute value either 1
or /g. This is the deepest part of the proof and is due to A, Weil (see Weil
[1]). We will discuss it in some detail in the next chapter. In the Appendix
to this book we will present an “elementary” proof, due to E. Bombieri, of
this important result . Assuming it for now, we see immediately from the
last equation that ey (x) = O(¢"/2). Thus, we have verified both assertions
of (4) above. :
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It should be remarked that one can prove much more easily, a weaker
result than the Riemann hypothesis which has the eflect of replacing the
error term in the theorem with O(¢®V) where 8 is some real number less
than 1. This still gives the corollary that the set Sy (a, m) is non-empty for
all large N. We will indicate how to prove this in the next chapter.

We now continue with the proof of the theorem. Consider the Euler
product expansion of L*(s, x} given by Equation 2. Take the logarithmic
derivative of both sides and multiply both sides of the resulting equation
by u. Again using Equation 3 we find

en(x) = Z deg P x(P)* .
k,P
kdeg P=N

In the sum on the right-hand side separate out the terms corresponding
to k = 1. The result is N 3, p_n x(#}. The rest of the terms can be

written as follows:
Yood 3 x(pyMe.

d|N deg P=d
d<N/2

"The inner sum in absolute value is less than or equal to #{P € A| deg P =
d} = ¢*/d + O{¢*?/d) by Theorem 2.2. Thus the double sum is bounded

by
1+q+q2+--'+q[N/2]+O(1+q+qg+---+qi‘w4l)=O(q%).

We have proven

en(x)=N Y x(P)+0(g%). (5)
deg P=N

Finally we compute the expression Ex ¥{a)en (x) in two ways, First we
use Equation 5 and then we use Equation 4.
From the orthogonality relations and Equation 5 we find

1 _ 5
m g x(a)en(x) = N#Sn(a,m) + O(qg) .
Next, from Equation 4 we see
> x(@en(x) =" +0(g¥) .
X
So, we finally artive at the main result:

#Sn(a,m) = @—(15)% 4O (ﬁ) .



4. Dirichlet 1-Series and Primes in an Arithmetic Progression 43

Exercises

1.

Let S = {P, %, ...} be the set of monic primes in A. Let 8; = {F;}
be the set consisting of & alone. Then, 5 = UZ2,5;. Show that this
implies that Dirichlet density is not countably additive,

Let P(T) € A and define N{U? = P(T)) to be the number of pairs
(@, 8) € F x F such that 3% = P(e). Show that

NU?=P(T) =Y (1+P(a)T).
ackF

Suppose g is odd and let P € A is a monic irreducible of degree two
and that x(e) = (a/P); for all a € A. Show that Ls(s,x) =1+ g%
{Hint: Use the Reciprocity Law and Exercise 2).

In general, suppose P € A is a monic irreducible of positive degree
and set x{a) = (a/P)2. Show that

Y x(a)=+(g- N{U*= P(T)).

a monic
dega=1

. With the same notation as in Exercise 4, consider the coefficient of ¢—*

in L(s,x). Use Exercise 4 and the Riemann Hypothesis for function
fields to prove

IN(U® = P(T)) - q| < (deg £ — 1)/ .

. Let h({T) € A be a polynomial of degree m with a non-zero constant

term. Show that there are infinitely many primes in 4 whose first
m+1 terms coincide with 2(T). What is the Dirichlet density of this
collection of primes?

Let {ay,2,..., 04} be the elements of F labeled in some order and
choose elements 5; € If* for i = 1, ..., g, where repetition is allowed.
Prove that thee are infinitely many primes, P(T'), such that P(a;) =
B fori=1,...,9. What is the Dirichlet density of this set of primes?






D

Algebraic Function Fields
and Global Function Fields

So far we have been working with the polynomial ring A inside the ratio-
nal function field & = F(T). In this section we extend our considerations
to more general function fields of transcendence degree one over a general
constant field. This process is somewhat like passing from elementary num-
ber theory to slgebraic number theory. The Riemann-Roch theorem is the
fundamental result needed to accomplish this generalization. We will give
a proof of this fundamental result in Chapter 6. In this chapter we give
the basic definitions, state the theorem, and derive a number of important
corollaries. After this is accomplished, attention wiil be shifted to function
fields over a finite constant field. Such fields are called global function fields.
The other class of global fields are algebraic number fields. All global fields
share a great number of common features. We introduce the zeta function
of a global function field and explore its properties. The Riemann hypoth-
esis for such zeta functions will be explained in some detail, and we will
derive several very important consequences, among others an analogue for
the prime number theorem for arbitrary global function fields. A proof of
the Riemann hypothesis will be given in the appendix. In this chapter we
will prove a weak version, This is enough to yield the analogue of the prime
number theorem , albeit with a poor error term. In later chapters we will
also explore L-functions associated to global function fields - both Hecke L-
functions (generalizations of Dirichlet I-functions) and Artin L-functions.

One final comment before we begin. Qur treatment of this subject is
very arithmetic. The geometric underpinnings will not be much in evidence.
The whole subject can be dealt with under the aspect of curves over finite
fields. We have chosen the arithmetic approach because our guiding theme
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in this book will be the exploration of the rich analogies that exist between
algebraic number fields and global function fields.

To begin with it is not necessary to restrict the constant field F to be
finite. In fact, in this first part of the chapter we make no restrictions on F'
whatsoever. A function field in one variable over F' is a field K, containing
F and at least one element x, transcendental over F, such that K/F(x) is a
finite algebraic extension. Such a field is said to have transcendence degree
one over F. It is not hard to show that the algebraic closure of F in K is
finite over F'. One way to see this is to note that if £ is a subfield of K,
which is algebraic over F, then [E : F] = {E(z) : F(z)] < [K : F(z)]. So,
replacing F with its algebraic closure in K, if necessary, we assume that
F' is algebraically closed in K. In that case, F is called the constant field
of K. Note the following simple consequence of this definition. If F' is the
constant field of K and y € K is not in F, then y is transcendental over
F. Tt is also true that K/F(y) is a finite extension. To see this, note that
y is algebraic over F(x} which shows there is a non-zero polynotnial in two
variables g(X,Y) € F[X,Y] such that g(z,¥) = 0. Since y is transcendental
over F' we must have that g(X,Y) ¢ F[Y]. It follows that = is algebraic
over F(y). Since K is finite over F(x,vy) and F(z,y) is finite over F(y), it
follows that K is finite over F'(y).

A prime in K is, by definition, a discrete valuation ring & with maximal
ideal P such that F' C R and the quotient field of £ equal to K. As a
shorthand such a prime is often referred to as I, the maximal ideal of R.
The ord function associated with R is denoted ordp(#). The degree of P,
deg P, is defined to be the dimension of R/F over F which can be shown to
be finite. We sketch the proof. Choose an element y € P which is not in F.
By the deductions of the last paragraph, K/F{y) is finite . We claim that
[R/P: F] < |K : F(y)]. To see this let uj,us,...,um € R be such that the
residue classes modulo P, @1,1s,. .., iy, are linearly independent over F.
We claim that wi,ug,...,un are linearly independent over #(y). Suppoge
not. Then we could find polynomials in y, {fi(¥), f2(y),- .., fm{¥)}, such
that

Fiur + foly)us + - + fon (Yoo, =0

Tt is no loss of generality to assume that not all the polynomials f;(y) are di-
visible by 4. Now, reducing this relation modulo P gives a non-trivial linear
relation for the elements u; over £, a contradiction. Thus, {u,,us,... ,tm}
is a set linearly independent over F'(y) and it follows that m < [K : F(y)]
which proves the assertion.

To illustrate these definitions, consider the case of the rational function
field F'(z). Let A = F|z|. Every non-zero prime ideal in A is generated
by a unique monic irreducible P. The localization of A at P, Ap, is a
discrete valuation ring. We continue to use the letter P to denote the unique
maximal ideal of Ap. It is clear that P is a prime of F(x) in the above sense.
This collection of primes can be shown to almost exhaust the set of primes
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of F(z). Tn fact, there is just one more. Consider the ring A’ = Fz~!|
and the prime ideal P’ generated by z7! in A’. The localization of A’ at
P’ is a discrete valuation ring which defines a prime of F(z) called the
prime at infinity. This is usually denoted by P,, or, more simply, by “oo”
alone. The corresponding ord-function, orde., attaches the value —deg(f)
to any polynomial f € A and thus the value deg(g) — deg( f} to any rational
function f/g where f, g € A. The reader may wish to supply the proof that
the only primes of F(z) are the ones attached to the monic irreducibles,
called the finite primes, together with the prime at infinity. The degree of
any finite prime is equal to the degree of the monic irreducible to which it
corresponds, and the degree of the prime at infinity is 1.

Returning to the general case, the group of divisors of K, Dk, is by
definition the free abelian group generated by the primes. We write these
additively so that a typical divisor looks like D = 3, a(P)P. The coeffi-
cients, o(F), are uniquely determined by I and we will sometimes denote
them as ordp(D). The degree of such a divisor is defined as deg(D) =
S pa(P)ydeg P. This gives a homomorphism from Dg to Z whose kernel
is denoted by DY, the group of divisars of degree zero.

Let @ € K*. The divisor of a, (a), is defined to be Y ordp(a)P. It is
not hard to see that (a) is actually a divisor, i.e., that ordp(a) is zero for
all but finitely many P. The idea of the proof will be included in the proof
of Proposition 5.1 (given below). The map a — (a) is a homomorphism
fromn K* to Dg. The image of this map is denoted by Px and is called the
group of principal divisors.

If P is a prime such that ordp(a) = m > 0, we say that P is a zero of ¢

of order m. If ordp(a) = —n < 0 we say that P is a pole of a of order n.
Let
{a)o = Z ordp(a) P and [6)e =— Z ordp{a) P .
P P
ord p(a)=>0 ordp{a)<0

The divisor (a), is called the divisor of zeros of a and the divisor (a) is
called the divisor of poles of a. Note that (a) = (a)s — (@}ec-

Proposition 5.1. Let e € K=. Then, ordp(a) = 0 for all but finitely many
primes P. Secondly, (o) =0, the zero divisor, if and only ifa € F*, i.e., 0
is @ non-zero constant. Finally, deg{a), = degla)w = [K @ F(a)]. It follows
that deg{a) = 0, t.e., the degree of a principal divisor is zero.

Proof. (Sketch) If a € F*, it is easy to see from the definitions that (a) = 0.
So, suppose @ € K* — F*. Then, as we have seen, K is finite over F'(a). Let
H be the integral closure of Fla] in K. R is a Dedekind domain (see Sarmuel
and Zariski [1], Chapter V, Theorem 19). Let Ra = PP -- -3 be the
prime decomposition of the principal ideal Ra in A. The localizations of R
at the prime ideals 9; are primes of the field K. If we denote by P; the
maximal ideals of these discrete valuation rings we find that ordp {a) = e;.
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It is now not hard to show that the finite set {Pi, Ps,...,F,} is the set
of zeros of a. Applying the same reasoning to a~! we see that the set of
poles of @ are is also finite. This proves the first assertion. It also proves
the second assertion since if a is not in F* we see that the set of P such
that ordp{a) > 0 is not empty.

To show [K : F{a)] = deg{a), = deg(a)oc we can apply Theorem 7.6 of
this book if we assume that F is a perfect field. For the general case, see
Deuring [1], Chevalley [1], or Stichtenoth [1].

For emphasis we point out that implicit in the above sketch is the fact
that every non-constant element of K has at least one zero and at least one
pole.

Two divisors, Dy and Da, are said to be linearly equivalent, Dy ~ Dy if
their difference is principal, i.e., Dy — Dy = (a) for some a € K*. Define
Clx = Dk [Pk, the group of divisor classes. Since the degree of a principal
divisor is zero, the degree function gives rise to a homomorphism from Clg
to Z. The kernel of this map is denoted Ci%, the group of divisor classes
of degree zero.

We are almost ready to state the Riemnann-Roch theorem. Just two more
definitions are needed. A divisor, D = 3, a(P)P, is said to be an effective
divisor if for all P, a(P) > 0. We denote this by D > 0.

Definition. Let I} be a divisor. Define L(D) = {z € K*|(z) + D >
0 }U{0}. It is easy to see that L{D) has the structure of a vector space over
F and it can be proved that it is finite dimensional over F' (see Exercises
17 and 18). The dimension of L(D) over F is denoted by (D). The nurmber
I{D) is sometimes referred to as the dimension of D.

Lemma 5.2, If A and B are linearly equivalent divisors, then L(A) and
L(B) are isomorphic. In porticular, {(4) = I[B).

Proof. Suppose A = B + (k). Then a short calculation shows that £ — zh
is an isomorphism from L{A) with L{B).

Lemma 5.3. If deg(A) < 0 then I(A) = 0 unless 4 ~ 0 in which case
I{A)=1.

Proof. If deg(A) < 0 and z € L{A), then deg({z) + A) is both < 0 and
> 0 which is a contradiction. If deg(A4) = 0 and L{A) is not empty, let
z € L{A). Then (x) + A > 0 and has degree zero, so it must be the zero
divisor. Thus, A ~ 0. Conversely, if A ~ 0, then {(4) = I{0) = 1 since
L{0) = F becanse z € L(0) implies z has no poles and so z € F.

Before stating the Riemann-Roch theorem it is worth pointing out that
Lemma 5.2 shows {(A) depends only on the class of A. Similarly, deg{A)
depends only on the class of 4. Thus we could define ¢{A) and deg(A4) and
state Riemann-Roch in terms of divisor classes. However, we prefer to state
it in terms of divisors which is more customary.
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Theorem 5.4. (Riemann-Roch) There is an integer g > 0 and e divisor
class C such that for C € C and A € Dy we have

I(A) = deg(A) — g + 1‘+ (o — A).

The proof will be given in the next chapter. For other treatments see
Chevalley (1}, Deuring {1], Eichler [1], Moreno [1], or Stichtenoth [1]. The
integer g is uniquely determined by K, as we shall see, and is called the
genus of K. The genus of a function field is a key invariant. The divisor
class C is also uniquely determined and is called the canonical class. It is
related to differentials of K. In the next chapter we will define the notion
of a Weil differential. To each Weil differential will be associated a divisor.
It turns out that all such divisors are equivalent and that C, the canonical
class, is the equivalence class of divisors of Weil differentials.

We now give a series of corollaries to this important theorem.

Corollary 1. (Riemann’s inequality) For all divisors A, we have [(A) >
deg{A) — g -+ 1.

Corollary 2. For C' € C we have [(C) = g.

Proof. Set A = 0 in the theorem.

Corollary 3. For C € C we have deg{C) = 2¢ — 2.
Proof. Set A = ' in the theorem, and use Corollary 2.

Corollary 4. Ifdeg(A) > 29 —2, then [(A) = deg(A) — g+ 1 except in the
case deg(A) =2¢ — 2 and A € (.

Proof. If deg(A) > 2¢ — 2, then deg(C — A) < 0. Now use Lemma 5.3.

Corollary 5. Suppose that ¢’ and C' have the same properties as those of
g and C stated in the theorem. Then, g =g and C ~ ",

Proof. Find a divisor A whose degree is larger than max(2g—2,2¢" - 2) (a
large positive multiple of a prime will do). By Corollary 4, [{A) = deg(A) —
g+1 =deg(A)—g'+1. Thus, g = g’. Now set A = "’ in the statement of the
theorem. Using Corollaries 2 and 3, applied to €7, we see that [{(C—C'} = 1.
There is an z € K* such that (z) + C —~ ¢ > 0. On the other hand,
{z) -+ C — C" has degree zero by Corallary 3. Thus, it is the zero divisor,
and C ~ ",

As an example of these results, consider the rational function field F(z).
Let (A, Px) be the prime which is, as we have seen, the localization of
the ring F'[1/x] at the prime ideal generated by 1/z. The corresponding ord
function is orde.(f) = — deg(f). By Corollary 4, for n large and positive
we must have I(nPy) = n — g-+ 1. On the other hand, one can prove that
f € L{nP,)} if and only if f is a polynomial in T of degree < n. Thus,
l(nPy) =n+ 1. It follows that g = 0. From this and Corollary 3 one sees
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that C has degree —2. 1t can be shown that C!% = (1) so there is only one
class of degree —2 and we can choose any divisor of degree -2 for C. A
conventional choice is C = —2F,,.

We can characterize the rational function field intrinsically as follows:
K/F is a rational function field if and only if there exists a prime P of K
degree 1 and the genus of K is 0. We have seen that rational function fields
have this property. Now, assume these conditions and consider {{(P). Since
g = 0wehave (D) =degD —g+1=degD +1fordegD >29-2 =
—2. Thus, I{P) = 2 and we can find a non-constant function 2 such that
{z)+ P > 0. Since deg ( {x)+ P) = 1, it follows that (z) + P = @, a prime
of degree 1. Thus, (z) = @ — P and it follows that [K : F(z}] = 1. Thus,
K = F(z) as asserted.

In the same way one can investigate fields of genus 1. Assume K is a
function field of genus 1 and that there is a prime P of degree 1. Such a
field is called an elliptic function field. By the above results we have | for
any divisor D, I(D) = deg(D) if deg(D) > 2¢ — 2 = 0. Thus, I(nP) =
n for positive integers n. Taking n = 2 and n = 3 we see there exist
functions = and y with polar divisors 2P and 3P, respectively. It follows
that [K : F(z)] = 2 and [K : F{y)] = 3 so that K = F{x,y). We see that
y must satisfy a quadratic equation over F(z). One can prove much more.
If the characteristic of F' is different from 2 one can show that by a smali
change of variables y can be chosen so that y? = f(z) where f(z) is a cubic
polynomial of degree 3 without repeated roots. See Silverman [3] for more
details.

For the rest of this section we assume that F = F is a finite field with
g elements. A function field in one variable over a finite constant fleld is
called a global function field. Qur next goal is to define the zeta [unction
of a global function field K/F and to investigate its properties.

It was proven by F.K. Schmidt, Schmidt [1], that a function field over a
finite field always has divisors of degree 1. We will assume this, although
it is possible to give a proof without introducing any new concepts. Using
Schmidt’s theorem, we have an exact sequence

(0) = Cl, — Cl — Z - (0).

We will prove shortly that the group Cl% is finite. Denote its order by
R . The number kg is called the class number of the field K. This number
is an important invariant of K and has been the object of much study. The
above exact sequence shows that for any integer n there are exactly hx
classes of degree n.

Lemma 5.5. For any integer n > 0 the number of effective divisors of
degree n is finite.

Proof. (Sketch) Choose an = € K such that x is transcendental over I,
K /F(x) is finite. The primes of F(z) are in one to one correspondence with
the monic irreducible polynomials in Flz] with the one exception of the
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prime at infinity. Thus, there are only finitely many primes of F(x) of any
fixed degree. By standard theorems on extensions of primes {see Chapter
7) one sees that there are only finitely many primes of K of fixed degree. If
Y pa(P)P is an effective divisor of degree n then each prime that occurs
with positive coefficient must have degree < n. There are only finitely many
such primes. Moreover the coefficients must be < n, so there are at most
finitely many such effective divisors.

We define a, to be the number of primes of degree n and b, to be the num-
ber of effective divisors of degree n. Both these numbers are of considerable
interest.

Lemma 5.6. The number of divisor classes of degree zevo, hg, is finite.

Proof. Let D be a divisor of degree 1. If A is any divisor of degree 0, then
deg(gD+ A) = g and so by Riemann’s inequality, [(gD+A4) > g—g+1 = 1.
Let f € L(gD + A). Then, B = (f}+¢D+A>0andso A ~ B — gD
where B is an effective divisor of degree g. It follows that the number of
divisor classes of degree zero is bounded above by the number of effective
divisors of degree g which is finite by Lemma 5.5. More precisely, what we
have shown is that Ay < by.

We have now proved that the class number hx = |ClY| is finite. Later we
will give estimates for the size of hg derived from the Riemann hypothesis
for function fields (see Proposition 5.11}. '

Lemma 5.7. For any divisor A, the number of effective divisors in A is
g

q-1
Proof, We begin by showing that A contains effective divisors if and only
if [(A) > 0.

Suppose B € 4 and is effective. There is an f ¢ K* such that (f)+ A=
B > 0,50 f € L{A) and I{A) > 0. The converse is obtained by just running
this proof backwards.

Suppose [(4) > 0. The map from L(A) - {0} to effective divisors in A
given by f — {f)+ A is onto. Two functions f and f’ have the same image
M (f)+ A= (f)+Aiff (f) = (f) iff (f/f!) = 0. The last condition
happens iff f'f~! s in F* by Proposition 5.1. Since L{A) — {0} has ¢'(4} -1
elements and the fibers of our map have g — 1 elements, the result follows.

Finally, if (A} = 0, then ¢'(* — 1 = 0 and the result holds in this case
as well.

For A € Dk define the norm of A, NA, to be g9°&(4) Note that NA is a
positive integer and that for any two divisors A and B we have N{A+B) =
NANB.

Definition. The zeta function of K, (x{s), is defined by
(k(s)=) NA™

Az
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Over the rational function field £ = F(T) we did not discuss the zeta
function of k but rather the zeta function associated to the ring A = F[T}.
These are closely related. In fact, it is not hard to prove that Ca(s) =
Ce(8)(1—g7%), 50 {k(8) = (L—g'~*)7* (1 —g=*)~1. Also in the general case
it is sometimes useful to assoclate zeta functions with appropriate subrings
of the field. However, for the purposes of the following discussion we will
concentrate on the zeta function of the field

The term NA™? in the definition of the zeta function is equal to ¢~™¢
where n is the degree of A. Thus the zeta function can be rewritten in the
form

= b
Cr(s) = _..”_S .
n=1 qn

Another key fact is that we have an Euler product for {g(s). Using the
multiplicativity of the norm and the fact that Dy is a free abelian group
on the set of primes we see, at least formally, that

CK@):II<1—E%g)—I-

P

Recalling that a, is the number of primes of degree n, we observe that
this expression can be rewritten as follows:

@@=ﬁ@—$y%.

n=1

We shall soon see that all these expressions converge absolutely for
R(s) > 1 and define analytic functions in this region.

Lemma 5.8. Let h = hy. For every integer n, there are h divisor closses

of degree n. Suppose n > 0 ond that {4y, As, ..., A} are the divisor classes

of degree n. Then the number of effective divisors of degree n, b, is given
t(Al)

by Z‘l 1 g- 1

Proof. The first assertion follows directly from Lemma 5.6 and the remarks

preceding Lemma 5.5. The second follows just as directly from Lemmas 5.6

and 5.7.

By Lemma 5.7 E.nd Corollary 4 to Theorem 5.4, we see that if n > 2¢—2,
n—g-i-1

then b, = hkg—-— It follows that b, = O(¢™). From this fact, and the

expression ¢ K(s) Y oo bng ™, it follows that (x (s) converges absolutely
for all s with R(s) > 1.

In the same way we can prove the product expression for (g (s} converges
absolutely for R(s) > 1. To do this it suffices, by the thecry of infinite
products, to show that fo:l an|g™™*| converges in this region. This follows
immediately since a, < b, = O(g").
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The next thing to do is to investigate whether {x (s) can be analytically
continued to all of C and whether it satisfies a functional equation, etc.
The next theorem shows that the answer to both these questions is ves,
and that a lot more is true as well.

Theorem 5.9. Let K be e global function field in one variable with o finite
constant fleld F with g elerments. Suppose that the genus of K s g. Then
there is o polynomial Ly (u) € Z{u] of degree 29 such that

Ly(q~*)
(1—g=)(1—q¢'9)

This holds for all s such that R(s) > 1 and the right-hend side provides an
analytic continuation of (x(s) to all of . {x(s) has simple poles at 5 =0
and s = 1. One has Lg(0) =1, Ly (0) = a1 — 1 — ¢, end Lx(1) = hk.
Finally, set £x(s) = ¢U9~V9¢(s). Then for all s one has Ex(1—s) = L (s)
(this relationship is referred to as the functional equation for {x(s)).

Cris) =

Proof. It is convenient to work with the variable u = ¢7*. Then

CK(S) = ZK anu

We noted earlier that for n > 2g — 2 we have b, = hy gnéL Sub-

stituting this into the above formula and summing the resulting geometric
series, yields

ol K q7 1
_ 2g—1
E b + —1(1—qu 1—1},)” . (1)
From this, simple algebraic manipulation shows
Ly (u) .
=——"""" it Ziu). 2
Zx(u) A= w)(l =0 with Ly {u) € Z{y] (2}

From Equation 2, we see the expression for {x(s) given in the theoremn is
correct. We will show that Lk (1) and Lg{g™") are both non-zero. Thus,
Cx{s) has a pole at 0 and 1. The lact that deg L (u) < 2g also follows
from this calculation. Substituting » = 0 ylelds Lx (0) = 1. Comparing the
coefficients of « on both sides yields b1 = L%(0) + 1+ q. It is easy to see
that b, = a; = the number of primes of K of degree one.

From Equation 1 above, we see that lm, (v — 1) 7k (u) = hg /(g —1).
From Equation 2 we see

—Lx(1)
1—¢q

lim (u — 12 (u) =

Thus, Lk (1) = hg, as asserted.
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As for the functional equation, recall that b, = > 4. 1., (qi(“i) -1}/
{g —1). Then,

oo
_ . Y 1
(q—l)ZK(u) — Z Z ql(A) —1fu" = Z ql(A)udegA —hg —
n=0 \ deg A=n deg A>0

- - 1 . .
— Z ql(A)udeg A _ hx — + Z ql(A)udeg A
0<deg A<29—-2 2g—2<deg A<oo

- _ 1 74,291
_ Z g Ay deg A _hKl— +h g u

K
= U 1—qu
0<deg A<29-2

Multiplying both sides by «!~9 we have (¢—1)u!9Zx (u) = R{u)+9(u)
where

- , 1-g 9y
Ruy= Y.  ¢@DufsA-04 and S(u) = —hxr— +hK1q_”qu.

0<deg A<2g—2

A direct calculation shows that S(x) is invariant under » — g~ 'u~!.

R(w) is also invariant under this transformation. To see this, first note that

R(q—lu—l) — Z q!(A)-l-g—l—deg Au«- deg A+g—1 .
deg A<29-2

From the Riemann-Roch Theorem, Theorem 5.4, and Corollary 3, we see
(C—Ay=deg(C—A)—g+1+1(A)=g—1—degA+I(A).
Substituting this expression into the formula for R(g™*u~!) yields

R = D Dyt Aot
deg A<29—2

Since A — C — A is a permutation of the divisor classes of degree d with
0 <d< 2g—2 it follows that R{(g7 u=!) = R{w) as asserted, We have now
completed the proof that u!~9Z (1) is invariant under the transformation
u - g el

Since u' ™97k (v) is invariant under u — ¢~ 'u~!, it follows easily that
g 9u"29 Lk (u) = Lg(g~u1). Letting v — oo we see that deg Ly (1) = 2g
and that the highest degree term is ¢9429,

Finally, recalling that u = ¢™%, we see that ul™9 = @15 and the
transformation w = ¢~ '»~! is the same as the transformation s — 1 —s.
So passing from the u language to the s language we see we have shown

£ (8) is invariant under s -~ 1 — s, as asserted.

1 1
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The polynomial L (u) defined in the theorem carries a lot of informa-
tion. Since the eoefficients are in Z we can factor this polynomial over the
complex numbers,

2¢

Lg(u) = H(l — Ty}

i=1

It is worth pointing out that the relation L (g™ u~t) = ¢~ 9u~29 L (w)

implies that the set {m,wa,... ,7g,} is permuted by the transformation
7w — g/m. This iz easily seen to be equivalent to the functional equation for
Cre (s)-

Since (g (s) has a convergent Euler product whose factors have no zerosin
the region Re(s) > 1, it follows that (g (s) has no zeros there. Consequently,
L {u) has no zeros in the region {u € C | |u| < ¢~*}. For the inverse roots,
m;, the consequence is that |7;| < g. We will prove later, Proposition 5.13,
that |m;| < g for all ¢ and this will have a number of important applications.
However, much more is true. The classical generalized Riemann hypothesis
states that the zeros of (i (8), the Dedekind zeta function of a number field
K, has all its non-trivial zeros on the line R(s) = 1/2. Riemann conjectured
this for {(s), the Riemann zeta function. Neither Riemann’s conjecture nor
its generalizations are known to be true. In fact, these are among the most
important unsolved problems in all of mathematics. However, the analogous
statement over global function fields was proved by A. Weil in the 1940s.

Theorem 5.10. (The Riemann Hypothesis for Function Fields} Let K be
a global function field whose constant field B has q elements. All the roots of
Cx(s) lie on the line R(s) = 1/2. Equivalently, the inverse roots of Ly (u)
all have absolute value \/q.

Theorem 5.10 was first conjectured for hyper-elliptic function fields by
E. Artin in his thesis, Artin [1}. The important special case when g = 1 was
proven by H. Hasse. The first proof of the general result was published by
Weil in 1948. Weil gave two, rather difficult, proofs of this theorem. The first
used the geometry of algebraic surfaces and the theory of correspondences.
The second used the theory of abelian varieties. See Weil [1] and Weil
[2]. The whole project required revisions in the foundations of algebraic
geometry since he needed these theories to be valid over arbitrary fields not
just algebraically closed fields in characteristic zero. In the early seventies,
a more elementary proof appeared due, in a special case to Stepanov, and
in the general case to Bombieri [1]. We will give an exposition of Bombieri's
proof in the appendix to this book.

Here are two simple but important consequences of the Riemann Hy-
pothesis.

Proposition 5.11. The number of prime divisors of degree 1 of K, ay,
satisfies the inequality |a; — q — 1| < 2¢./g. Also, (/7 —1)*7 < hg <
(Vg +1)%.
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Proof. By Theorem 5.9, L% (0) = a1 —g—1. From the above factorization of
L (u) wesee —Lc(0) = my+ma4-- - 4my,. The first assertion is immediate
from this and Theorem 3.10.

As for the second assertion, we have hg = Ly (1) = H?il(l — ), by
Theorem 5.9. Now use Theorem 5.10 once again,

Here are several qualitative consequences of this proposition. If g is big
compared to the genus, then there must exist primes of degree one. Indeed,
ai/q — 1 if we fix g and let g grow. Secondly, if ¢ > 4 we must have
hg > 1. Also, if we fix g and let ¢ tend to infinity then hy /g7 — 1 {here,
K is varying over global flelds of fixed genus g with varying constant fields).
Moreover, if we fix ¢ > 4 and let g grow, then hxp — oo

We can now present a generalization of Proposition 2.3, which, as we
pointed out, is an analogue of the prime number theorem.

Theorem 5.12.
qN q%
N {P] deg(P) = N} N 0 N

Proof. Using the Euler product decomposition and Theorem 5.9, we see

(1 - u}(l~q0)

Take the logarithmic derivative of both sides, multiply the result by w ,
and equate the coefficients of +”¥ on both sides. We find

2
qN +1 —Zgwfv :Zdad
=1

d|N

ZK('LL) = Hiil(l — To) — ﬁ(l ”ud)_ad
d=1

Using the Mobius inversion formula, yields
N 29 N
Nay =) uldq? +0+Y pld) (ZWT) -
diN AN i=1

Let e(N) be —~1 if N is even and 0 if N is odd. Then, as we saw in the
proof of Proposition 2.3,

S ndg¥ =¥ —e(N)g¥ +O(V¥) .
dIN

Similarly, using the Riernann hypothesis, we see

2g
Zﬂ(d) (Zﬂﬁ‘) < 2ggT +2gNg¥ .
i=1

dIN
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Putting the last three equations together, we find
Nay = ¢V +0(¢%) .
The theorem follows upon dividing both sides by N.

Note that, in this proof, it was crucial to know the size of the zeros of the
zeta function. The proof of Proposition 2.3 was so easy because the zeta
function of A = F[T] has no zeros!

We wish to derive yet another expression for the zeta function. To this
end we consider once more the equation

Zge(u) = [T —u®)™ .

b

d

1l
—

Take the logarithm of both sides and write the result as a power series
in % using the identity —log(l —u) = 3 oo_, ™ /. The result is

o0
N m

logZK('U.)Z Z—Eh‘, B

m=1

where the numbers Ny, are defined by N,, = 3}, dag . These numbers
have a very appealing geometric interpretation, which we shall explain in
more detail later. Roughly speaking, what is going on is that the function
field K/F is associated to a complete, non-singular curve X defined over
F. The number N, is the number of rational points on X over the unique
field extension F,, of F of degree m. In any case, using these numbers, the
zeta function can be given by

oQ

Zy(u) =exp (Z %um)

m=1

In the course of the proof of Theorem 5.12, we showed that
2g
Nm=qm+1—2ﬂ?‘ .
i=1

This equality plays an important role in the proof of the Riemann hy-
pothesis for function fields. If we assume the Riemann hypothesis, another
consequence is

[N — g™ — 1] < 2g9¢7 .

We will interpret this inequality in Chapter 8 when we discuss constant
field extensions of function fieids (see Proposition 8.18).
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We conclude this chapter by showing how to obtain a weaker result than
the Riemann hypothesis, which nevertheless is strong enough to give a proof
that

qN
any = #{F | deg(P) =N} ~

Before the statement and proof of the next proposition, we need to deal
with an important technical point. Since {x(s) is a rational function of
g~%, it is a periodic function of s with period 2mi/log(g). Since it has a
pole at s = 0 and at s = 1 it has infinitely many poles on both the line
#(s) = 0 and the line R(s) = 1. We will be concerned with the latter line.
From Theorem 5.9, we see that all the poles on this line are at the points

1+ 2xmi/log(q) for m € Z.

Proposition 5.13. Let K be a global function field. The zeta function of
K, (k(s), does not vanish on the line R(s) = 1.

Proof. The proof of this proceeds, for the most part, exactly as in the case
where K is a number field. It is based on the trigonometric inequality

34 4cosf+cos20>0.

The proof of this inequality consists of nothing more than noticing that
the left hand side is 2(1 + cos ).

‘Write 5 = o + it where ¢ and ¢ are real. Assume that ¢ > 1. Then a
short calculation with the Euler product for (x(s) vields

R log(x(s) =Y m ™ NP™™ cos(tlog NP™) .

Pm
Now, replace t with 0,t,and 2t and use the above identity to derive
IRlog Ck (o) + 4Rloglr{o + it) + Rlog (i (o +2it) > 0.
Exponentiating, we find

Ik (@) 1Ck (o + i) Cx (o + 2it)] > 1.

This inequality holds for o > 1 and all real ¢. Suppose t is such that
{x (1 + 1t} = 0. Of course, such a t cannot be zero. It follows that {x{o +
it)/(c — 1) is bounded as ¢ — 1. We know that (o — 1){x (o) is bounded
as ¢ — 1 since by Theorem 5.9, (s (s) has a simple pole at s = 1. Finally,
Cre (e + 24t) is bounded as ¢ -+ 1 provided that t is not an odd multiple
of n/log(q) (see the remarks preceeding the Proposition}. Assume this for
now. Putting everything together shows that the left-hand side of the above
inequality tends to zero as ¢ — 1, which contradicts the fact that it is
always greater than or equal to 1.

Now suppose that ¢ is an odd multiple of 2/ log(q). In this case, g~ +%#) =
—g~!. We must show that (g (1 + it} = Zx(—g~!) # 0. By the functional
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equation, Z (—g™!) is related to Zx(—1), which in turn is not zero if and
only if Lg{—1) # 0. To show this we must, unfortunately, use a result from
a later chapter, namely, Theorem 8.15.

Let Fy be a quadratic extension of the constant field F. One can form
& new function field from K by extending the field of constants from F to
F5. Call this new field K3. Using Theorem 8.15 we can derive the following
relation between Ly, (u) and Ly (u).

LKB(u2) = Lp(u)Lg{—u) .

Substitute = = 1 into this relationship and use Theorem 5.9 once again.
We find that kg, = hi Ly (—1) from which it is clear that Lx{—1) #0.

Corollary. There is a real number 8 < 1 such that (x(s) does not vanish
in the region {s € C | Rs > 6},

Proof. The zeta function is represented by a convergent Euler product in
the region {s € C| R(s) > 1} and so doesn’t vanish there. By the functional
equation (see Theorem 5.9) it doesn't vanish in {s € C | R(s} < 0} either.
From the Proposition it doesn’t vanish on the boundary of these regions.

The key point that makes the function field case different from the num-
ber field case is that {x(s) is a function of g~* and so it is periodic with
period 27i/ log g. Thus we may confine our search for zeros to the compact
region {s €C |0 < Rs) <1, 0 < ¥(s) < 2mi/logg}. The zero set of an
analytic function is discrete, so the number of zeros in this region is finite.
The corollary follows immediately.

The Riemann hypothesis for the function field case is that 6 can be taken
to be 1/2. Tt is worth pointing out that nothing as strong as the above
corollary is known to be true in the number field case. Zero free regions to
the left of the line R(s) = 1 are known to exist, but the boundary of these
regions approach the line as [3(s)| — co.

Translating the above corollary into a result about Lg(u) = []-2 (1 -
m;u), we see that the assertion is that |m;| < ¢ for all 1 < ¢ < 2¢. If we
use this estimate instead of the Riemann hypothesis and follow the steps
of the proof of Theorem 5.12, we arrive at the following result.

qN qﬁ'N
an = #{P | deg(P) =N}:F+O (T) .

As promised, this is good enough to show ay ~ ¢V /N as N - o0, a
result which is much weaker than Theorem 5.12, but is still very interesting.

Exercises

1. Suppose K/F has genus zero. For a divisor D with deg ' > —1 show
that {(D) = deg D + 1.
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Suppose K /F has genus zero and that C is a divisor in the canonical
class. Show I{—C) = 3 and conclude that there is a prime P of degree
less than or equal to 2.

Suppose K/F has genus zero and that there is a prime P of degree
1. Show K = F(z) for some element z € K.

Suppose K/F has genus zero and that P is a prime of degree 2.
By Exercise 1, {(P) = 3. Let {1,z,y} be a basis for L{F). Show
K = F(z,y). Show further that {1,z,y,z%y* zy} C L{2P) and
conclude that = and y satisfy a polynomial of degree 2 over F.

Suppose that K/F has genus 1. Show that {(D) = deg D} for all
divisors I with deg D > 1.

Suppose K/F has genus 1 and that P is a prime of degree 1. By the
last exercise we know I(2P) = 2 and {(3P) = 3. Let {1,z} be a basis
of L(2P) and {1,z,y} be a basis of L(3P). Show that K = F(z,y).
Show also that x and y satisfy a cubic polynomial with coefficients
in F of the form

¥ a1 XY + a3t = X3 +CL2X2+CL4X~I—G6 .
Hint: Consider L(6P).

Let K/F be of positive genus and suppose there is a prime P of
degree 1. Suppose further that L(2P) has dimension 2. Let {1, z} be
a basis. If char & 3£ 2, show that there is an element y € K such that
K = F(z,y) and such that z and y satisfy a polynomial equation
of the form Y% = f(X) where f(X) is a square-free polynomial of
degree at least three,

. Use the Riemann-Roch theorem to show that if 8 and I} are divi-

sors such that B 4 D is in the canonical class, then {{B) — (D} <
7| deg B) — deg(D)}.

. Suppose P is a prime of degree 1 of a function field X/F. For every

positive integer n show {((n + 1)P) — {{nP) < 1.

Let K/F be a function field of genus g > 2, and P a prime of degree
1. For all integers k& we have [(kP) < I{(k + 1) P). If we restrict £ to
the range 0 < k < 29 — 2 show there are exactly g values of & where
[(kP) = I((k + 1)P). These are called Weierstrass gaps. Assume F
hag characteristic zero. If all the gaps are less than or equal to g we
say P is a non-Weierstrass point, if not, we say P is a Welerstrass
point. It can be shown that there are only finitely many Weierstrass
points. In characteristic p there is a theory of Weierstrass points (due
to H. Schmid), but the definition is somewhat diflerent.
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Suppose A/F has genus 1 and that Py, is a prime of degree 1, also
called a rational point. Let £({F) denote the set of rational points.
If P,Q € E(F), show there is a unique element R € E(F) such that
P+ @ ~ R+ Py (Recall that for two divisors A and B, A ~ B
means that A — B is a principal divisor). Denote R by P @ Q. Show
that (P, Q) — P ® @ makes E{F) into an abelian group with Py, as
the zero element.

With the same assumptions as Exercise 11, map E(F} — Cl% by
sending P to the class of P — P,,. Show that this map is an isomor-
phism of abelian groups.

Let K/F be a function field and ¢ an automorphism of K, which
leaves F fixed. If (O, P) is a prime of K, show that (¢Q, o P) is also
a prime of K. Show, further, that for all @ € K, we have ord,p(a) =
ordp(c~1a).

{Continuation}. The map P — ¢ F on primes extends to an action of
o on divisors. If a € K*, show that o(a) = (oa).

(Continuation). If D is a divisor of X, show a — oa induces a linear
isomorphism from L(D) — L{o D). In particular, if ¢ fixes D, i.e.,
gD = D, then ¢ induces an automorphism of L{D).

(Continuation). Suppose P is a prime of degree 1 and that ¢P = P.
Then, o induces an automorphism of L((2g + 1)F). If this induced
map is the identity, show that o is the identity automorphism. (Hint:
Find two elements z,y € K* fixed by ¢ such that K = F(z,y)).

Let A be a divisor and P a prime divisor. Suppose g € L(A + P) —
L{A). It f € L{(A+ P) show f/g € @,. Use this to prove {(A+ P) <
I{A) + deg(P).

Use Exercise 17 to show [(A4)} < deg{A)+1 if A is an effective divisor.
Show further that this inequality holds in general. Thus, I{A) is finite
for any divisor A.






6

Weil Differentials
and the Canonical Class

In the last chapter we gave some definitions and then the statement of the
Riemann-Roch theorem for a function field K/F' In this chapter we will
provide a proof. In the statement of the theorem an integer, g, enters which
is called the genus of K. Also, a divisor class, C, makes an appearance,
the canonical class of K. We will provide another interpretation of these
concepts in terms of differentials. Thus, differentials give us the tools we
need for the proof and, as well, lead to a deeper understanding of the
theorem. ln addition, the use of differentials will enable us to prove two
important results: the strong approximation theorem and the Riemann-
Hurwitz formula. The first of these will be proven in this chapter, the second
in Chapter 7, where we will also prove the ABC conjecture in function fields
and give some of its applications.

We will use a notion of differential which is due to A. Weil. It is somewhat
more abstract than the usual definition but has the advantage of requiring
1o special assumptions about the constant field. Also, it leads to very short,
conceptual proofs of the two theorems mentioned in the last paragraph. We
will motivate the definition by frst discussing some properties of differen-
tials on compact Riemann surfaces. If the reader is unfamiliar with this
theory, he or she can skip directly to the definition of Weil differential in
the purely algebraic setting.

Let X be a compact Riemann surface of genus g, M the field of mero-
morphic functions on X, and  the space of meromorphic differentials on
X. Fix a non-zero differential w € Q and a point z € X. Let { be a lo-
cal uniformizing parameter at z. In some neighborhood around x we can
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express w in the following form:

w = i aitt dt. (1)

i=—N

If f € M., the field of germs of meromorphic functions at z, then we
can integrate fw around a small circle about = to get 2wi Res.(fw). If

f=%"_u bjt?, then

Res:(fw)= > ab;. (2)

ii=—1

Let wy be defined to be the C-linear map f — Res (fw) from M; to
€. We now look into the question of what restrictions are placed on the
collection of linear functionals {w, | z € X} by the fact that they arise
from a differential in the manner indicated.

We recall the definition of the order of w at a point z, ord;{w). Write
w locally in terms of a uniformizing parameter as in Equation 1. Then the
order of w at z is defined to be the smallest index ¢ such that a; # 0. This
number is independent of the choice of uniformizing parameter. If a_n # 0,
then ordg (w) = —N. It is well known that ord,(w) = 0 for all but finitely
many points £ € X and thus we can associate to w # 0 a divisor:

(w) = Z ord.{w) z.

T€X

This definition will be useful as we go along. For the moment we will show
how to characterize the number ord,{w) in a different way. Let Oy C M,
be the ring of germs of holomorphic functions at . Fach element of O,
has a power series expansion in terms of a uniformizing paramenter ¢, at z
with all coeflicients of negative index zero. O, is a discrete valuation ring.
Its unique maximal ideal P, is generated by t,. Every non-zero fractional
ideal of O, is a power PI* of P, where m can be any integer, With this
notation we show—

Lemma 6.1, Let w be a non-zero meromorphic differential, v € X, and
w the linear functional on M, described above. There is an integer N such
that w, vanishes on PN but nat on PN=L This integer is characterized by

ordz{w) = —N,

Proof. Since we are fixing = in our considerations we set t; = ¢ and
suppose w is expressed in terms of ¢ as in Equation 1. Assume a_y # 0 so
that ord,(w} = —N. From equation (2) it is then clear that w, vanishes on
PX. On the other hand, V=1 € PN-1 and w, (tV~!) = a_y # 0.

Corollary. w, is zero on Oy but not on P71 for oll but finitely many
ze X.
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Proof. This follows from the lemma and the fact that ord;(w) = 0 for all
but finitely many =z € X.

Lemma 6.1 shows that the linear functionals w, must satisfy certain van-
ishing properties. These are all local properties only involving the knowl-
edge of the behavior of w in the neighborhoods of points. In addition, there
is at least one global constraint,

Lemma 6.2. For every f € M we have

Z wx(f) = 0.

zeX

Proof. Note that f € M implies f € M, for all z € X, so the terms in the
sum make sense. Also, f € O, for all but finitely many z {on a compact
Riemann surface a meromorphic function has at most finitely many poles).
By the corollary to Lemma 6.1, w.{f) = 0 {for all but finitely many x € X.
Thus, the sum is finite.

Now, fw is also a meromorphic differential. It is a well-known theorem
that on a compact Riemann surface the sum of the residues of a meromor-
phic differential is zero. Thus,

Z wel{f} = Z Rese(fw) = 0.

zeX zeX

We now have all the background we need to set up the notion of a Weil
differential. Let A({X) be the subset of [], M. consisting of elements with
all but finitely many coordinates in O.. It is clear that A(X) is a ring
with addition and multiplication defined ccordinatewise. We will denote
the elements of A(X) by ¢ = (f;); i.e., the z-th component of ¢ is f .
A(X) is a vector space over C in the obvious way, a¢ = a(f;) = {afz). If
w &, define & : A{X} = C by

B(g) = > walfa)-

zeX

By the corollary to Lemma 6.1 and the definition of A(X), the sum on the
right-hand side of the above equation is finite.

Let's map M into A(X) by sending f to {f,}, where f, = fforallz € X,
Clearly, M is isomorphic to its image under this map and from now on we
identify M with its image. Lemma 6.2 can now be interpreted as asserting
that & vanishes in M.

Let D = 3", n, = be any divisor on X. We associate to IJ a subset of
A(X), namely, A(D) = {{(fz) € A(X) | ords(fz) > —ng,Vz € X} (we
use the convention that ord;{0) = oo, which is greater than any integer).
Recall that a divisor D is said to be effective, D > 0, if all its coefficients
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are non-negative, and one divisor is bigger than another if their difference
is effective, ie., D < C iff C — D > 0. One then checks easily that D < C
implies A(D) C A(C} and that | J A(D) = A(X).

With these definitions, the definition of @, Lemma 6.1, and Lemma 6.2
we can easily prove—

Lemma 6.3. The functional @ vanishes on both M and A((w}). Moreover,
if @ vanishes on A(D), then A(D) C A((w)).

It is possible to show, although we shall not do so here, that if A is a
linear functional on A(X) and A vanishes on both M and A(D) for some
divisor 7, then there is a unique differential w & §) such that & = A, For
the case when X is the Riemann sphere see Chevalley (1], pp. 29-30. This
being o, in the abstract case we shall, following Weil, define differentials
to be linear functionals on a certain space, the adele ring of the function
field, having properties analogous to those we have seen to be true for the
functionals @ on A{X).

For the remainder of this chapter, let K/F be a function field with con-
stant field F. We make no assumptions about F'. Other notations will be
the same as those in Chapter 5, except that we now introduce the new
notation S for the set of prime divisors of K.

For P € Sk let |ajp = 27°#(@) for a % 0 and [0|p = 0 (2 is chosen
for convenience, any number greater than one will do). Define a metric on
K by ppla,b) = |a — blp. We denote by Op and Kp the completions of
the local ring Up and the field K with respect to this metric. We assume
that the reader is familiar with standard facts about completions. See, for
example, Lang [5], Chapter II . The adele ring of K is defined as

A = {(C\!p) € Hf{p ] ap € ép for all but finitely many P ESK} .
P

The analogy between the adele ring Ax of the function field K and the
ring A(X) which we attached to a compact Riemann surface is clear.

We imbed K into Ax by taking z € K to (zp) where for all P, zp = z.
Since for any element z € K, either z = 0 or ordp(z) = 0 for all but finitely
many P, the image of z is indeed in Ag. K is isomorphic to its image and
we identify K with its image under this map.

IfD =3 pn(P)Pis adivisor of K, define Ay (D) as the set of all (zp) €
Ay such that ordp(zp) = —n(P) for all P € Sp (notice the minus sign!).
Then, as in the Riemann surface case, it is easy to see that D < (' implies
A (D) € Ax(C) and that | Ax (D) = Ag. It is also useful to notice that
Ap{DYNAR(C) = Ag((D,C)) and Ag(C) + Ag (D) = Ax(|C, D}), where
(C, D) and [C, D! denote the infimum of €' and D and the supremum of C
and D, respectively, More concretely,

ordp({C, D)) = min{ordp(C),ordp(L)) and
ordp([C, D]} = max{ordp(C),ordp(D)).
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A very important remark for our further considerations is that Agx(D}N
K = L(D), the vector space whose dimension over F, {(D), is the focus of
interest in the Riemann-Roch theorem. This equality follows directly from
the definitions of Ax (D), L(D), and the way K is imbedded in Ag (D).

We note that Ax and the subsets Ag{D) are all vector spaces over I
under the obvious operation; for & € F, a(zp) = (azp). With all these
definitions in place, we can now define a Weil differential.

Weil Differential. An F-linear map w from Ag to F is called o Weil
differential if it vanishes on K and on Ay (D) for some divisor D. We
denote the set of Weil differentials on K by Qi ond the set of all Wedl
differentials which vanish on Ag (D) by Qg (D).

A number of remarks are in order. To begin with, many authors define a
somewhat smaller ring than the adele ring, namely, the ring of repartitions,
and define Weil differentials using it. The advantage is that one avoids going
to the completion at all the primes P of K. While this is more elementary,
some of the proofs become more difficult, In particular, the proof of the
Riemann-Hurwitz formula is more transparant using the full ring of adeles
and this is the principal reason we have used adeles in the above definition.

It is usual to define a topology on Ay by declaring the subsets Ay (D)
to be the open neighborhoods of the identity (the adele, all of whose coor-
dinates are zero). We can then say that a Weil differential is a continuous
F-linear functional on Ax which vanishes on K. We will not, however,
make much use of topological considerations.

Ay is a vector space over K and all the sets Ag (D) are vector spaces
over F' as we have seen. Qx also can be made into a vector space over K
by means of the following definition. Let £ € Ag and x € K. Define

(zw){£) = w(=g).

It is clear that xw is an F-linear functional on Ay and that it vanishes
on K. It requires but a short calculation to see that w € Qg () implies
zw € Qg ({z) + D). Thus, zw is a Weil differential.

From now on we will refer to the elements of {1 simply as differen-
tials rather than Weil differentials. We will show (Proposition 6.7) that the
spaces Qg (D) are finite dimensional over F. Before doing that, we need
some important preliminary material. In particular, we need Riemann’s
inequality, the precursor to the Riemann-Roch theorem.

Lemma 6.4, Let D < C be divisors of K. Then,
dimg Ap (CY/Ag(D) = deg C — deg D,

Proof. If ¢ = D the result is clear. Otherwise, €' is obtained from D by
adding finitely many primes, so it suffices to show that

dimp Ag(D + P)/AK(D) =deg P
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for any prime P.

Let P = POp. Let n = ordpD. If £ = (ap) € Ag(D + P), then
ordp(ap) > —n—1which is the same as ap € B~7=1 Now map Ax (D+P)
to P‘“‘I/P"“ by taking £ = (ap) to the coset of ap modulo P~m. This
is clearly an epimorphism and from the definitions the kernel is seen to be
Ag (D). Thus,

Ax(D+ P)/Ag(D) = Pt/ P e po=l/P=" 2 Op /P,
All these isomorphisms preserve F-vector space structure. Since
dimp Op/P = deg P,
the result follows.
Lemma 6.5. Let [} < C be divisors of K. Then,
Ag(CY+ K
Ag(D)+ K

Proof. Recall that Ax(C)N K = L{C). Using the first and second laws of
isomorphism, the space on the left-hand side of the above equation is seen
to be isomorphic to

A (C) ~ Ag(C) | Ag{D)
Ag(D) + L(C) (AﬂD%+MC)/AMD)

Using the first law once again, we see that {(Ax (D) + L(C)) / A (D) =2
L(C)/L(D). Thus,
AK(C) + K
Ax(D)+ K

Using Lemma 6.4, the right-hand side is equal to (degC — deg D)) —
(I(C) = UD)) = (deg C — I(C)) — (deg D — I(D)) as asserted.

Corollary. For a divisor D, define r{D) = deg D — (D). If D < C, then
r(D) < r(C).

Proof. This is an immediate consequence of the Lemma since the dimen-
sion of a vector space is a non-negative integer.

dimp = (deg C — I(C)) ~ (deg D — (D).

dimpg =dimpg AK(C)/AK(D) - dimp L(C)/L(D)

Since both deg I} and {(D) only depend on the linear equivalence class
of D, the same is true of r(D). We will use this remark in a moment.

Theorem 6.6. (Riemann’s Theorem) Let K/F be an algebraic function
fleld with field of constants F. There is a unique integer g = 0 with the
following two properties. For all divisors D, we have (D) > deg D — g + 1.
Also, there is e constant ¢ such that for oll divisors D with deg D > ¢
we have I(D) = deg D — g+ 1. {g will turn out to be the constant in the
Riemann-Roch theorem, i.e., the genus of K ).
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Proof. Choose an element z € K*—~F*. Then, K/F(z) is a finite extension
of degree n, say. Let B = (z)o be the divisor of poles of z. The primes P
which occur in the support of B are the only ones for which ordp(z) <0,
By Proposition 5.1, deg B = [K : F(z)] = n.

Consider the integral closure, R, of F[z] in K. If p € R, the only poles of
p are among the poles of z. Thus, p € L{mgB) for some positive integer mg.
It is a standard fact that we can find a basis {p1, p3,...,pn} for K/F(z)
such that p; € R for 1 < i < n. Choose a positive integer ng such that
pi € L(myB) for all 1 < 4 < n. For any integer m > mg the elements z7p,
with 0 < j <m—mpand 1 <i<nareall in L(mB) and are linearly
independent over F. We conclude from this that

ImB)>n(m—mg+1).
It follows that for any m > mg we have
r(mB) =degmB —-{(mB) <mn—n{m—-mg+1)=nmyg—n .

This shows that v(mB), which is an increasing sequence by the Corollary
to Lemma 6.5, is bounded above and so must remain constant from some
point on. Call this maximum value g — 1. 8ince O < mB, —1 = r(0) <
r{(mB) < g — 1. It follows that g > 0.

Let D be any divisor., Write —D = [ + Dy where the support of [
is disjoint from the support of B and the support of Dy is a subset of
the support of B. Let P be in the support of I)y. Then, Fiz] € Op and
Pn Flz] = (¢9(x)}) where g(r) is a monic, irreducible polynomial. It follows
that for some positive integer &, (9(z)"*)+ D1 has no pole at P. Multiplying
together the polynomials of this type at each P in the support of D and
we wind up with a polynomial f(x} with the property that (f(z)) + Dy
only has poles among those of z. The same is true of Dy and so, the same
is true of (f(x)) — D. Tt follows that there is a positive integer mn such that

(f(z))—=D+mB>0.

By the corollary to Lemma 6.5, we deduce »(D) < r({f(z)) + mB) =
r(mB). It follows that r(D} < g — 1 for all divisors D. From the definition
of (D), this is equivalent to

UD)>degD —g-+1,

which concludes the proof of Riemann’s inequality.

We now have to produce a constant ¢ such that (D) = degD — g+ 1
whenever deg D > c¢. Let m; be a positive integer large enough so that
r{m1B) = g—1. Define ¢ = min+g. If D is a divisor with deg D > ¢, then
by Riemann’s inequality we find

(D —myB) > deg{(D—mBy—g+1>1.
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Tt follows that there is a ¥ € K* such that (y) + D ~m B> 0 ormB <
D + (y). Once again invoking the corollary to Lemma 6.5, we find g — 1 =
r(m;B) € r(D). We have already shown that for all divisors D, r(I}) <
g — 1. Thus, r(D) = g — 1, which is the same as [{(D) =deg D~ g+ 1.

The constant ¢ can, in fact, be taken to be 2g ~ 1. This follows from the
full Riemann-Roch theorem, as we saw in the last chapter.

The Riemann-Roch theorem replaces the Riemann inequality with an
equation. The following proposition is an approximation to what we want,

Propositi;ion 6.7. For any divisor D of K, the space §2x (D) is finite
dimensional over F and

I(D) =deg D — g + 1 + dimp Qi (D).

Proof. In Lemma 6.5, we are going to fix D and let C vary over divisors
greater than or equal to D. By Riemann’s theorem I(C) > degC — g+ 1
or what is the same deg C — {(C) < g — 1. So, by Lemma 6.5

Ag(CY+ K

dim _“—_AK[D) e

Lg—14+1D)—degD.

The second part of Riemann’s theorem asserts that there is a constant ¢
such that equality holds for all divisors C' with deg C' > ¢. Let C, he any
divisor greater than or equal to D and with degree bigger than ¢. Then,

Ag(CY+ K

1+ (D) —degD

for all divisors C bigger than C,. It follows that Ag(C)+K = Ag(C,)+ K
for all C > C,. However, it is easily seen that for any adele £ there is a
divisor C' > C, such that £ € Ag(C). Thus, Ax(C,) + K = Ak and we
have shown

. Ag
D) = D- I (S
(D} = deg g+1+d1mFAK(D)+K
To finish the proof one has only to notice that Qg (D) is the F-dual of
the vector space Ax /{Ax (D) + K).

Corollary 1. Lef ¢ be the constent in Riemann’s theorem. Then if I} is a
divisor with deg D > ¢, we have Ax = Ax(D} + K.

Proof. We have just shown that dimz{Ayx / Ax(D}+K) = {{D)—deg D+
g — 1, which is zero if deg D > ¢ by Riemann’s theorem. Thus Ax =
Ag (D) + K in this case.

Corollary 2. The genus of K, g, can be characterized as the dimension
over ' of the space Q2 (0).
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Proof. The zero divisor, 0, has degree zero and dimension 1. From the
proposition we derive 1 = 0 — g + 1 -+ dimp Qx (0). This gives the result.

The interested reader can easily show that if on a compact Riemann
surface a meromorphic differential w is such that @ is zero on A{0), then w
has no poles and conversely. Thus the space Qx(0) is the analogue of the
space of holomorphic differentials and this appellation is sometimes used
even in the ahstract case.

We have now given the promised characterization of the genus in terms
of differentials., The next task is to give an interpretation of the canonical
class. To do so we have to show how to assign a divisor to a non-zero
differential. Since we don’t have (yet) local expressions for a differential at
a point as in the classical case, we proceed by, in essence, using the result
of Lemma 6.3 as a definition. That is, if w € Qx, we want to define {w)
as the largest divisor I such that w vanishes on A (D). First we need to
show there is such a divisor.

Lemma 6.8. Let w € Qg be o non-zero differential. Then, there is a
unique divisor D with the property thot w vanishes on Ag (D) and if D' is
any divisor such that w venishes on Ax (D'}, then IV < D.

Proof. Let 7 = {D' | w{Ag(D')) = 0}. Since w is a differential, 7 is non-
empty. By Corollary 1 to Proposition 6.7, we see that deg D' < ¢ for all
D' e T, since w # 0. Let D be a divisor of maximal degree in 7", We claim
that IJ has the desired properties. Clearly, w vanishes on Ag (D). Suppose w
vanishes on Ag{D’). Then w vanishes on Ag{D)+ Ag (D) = Ax(|D, D']);
Le, [D,D'] € T. Since deg [D, D] > deg D, it follows that the degrees
must be equal and so [D, D'] = D, which implies D’ < D as required. The
uniqueness is clear.

We now define the divisor of a differential « to be the unique divisor D
with the properties stated in the Lemma. We use the notation {w) for the
divisor of w.

Lemma 6.9. Let w € Qg and z € K*. Then,

(aw) = (2} + (w).

Proof. Suppose w € Qg (D). If £ € Ak, then zw vanishes on £ if z¢ €
Ag (D), which is equivalent to £ € Ag{(z) + D). Thus, w vanishes on
Ag (D) implies zw vanishes on Ag((z) + D). The converse also holds as
one can see by observing that w = z~!(zw). Thus, w vanishes on Ag (D) if
and only if 2w vanishes on Ax({(z) + D) and the result follows easily from
this.

In the classical case of compact Riemann surfaces Q(X) is one dimen-
sional over the field of meromorphic functions on X. To see this, let w,w’ €
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Q(X) with w # 0. Suppose w = f(t)dt and w' = g(f)dt in a neighborhood
U of a point x € X. Here, f(¢) and y(¢) are Laurent series in a uniformizing
parameter t about x. Then Ay (¢} = g(t)/ f(t) is a meromorphic function on
[/ which is well defined in that it is independent of the choice of uniformiz-
ing parameter. This follows easily by use of the chain rule. These functions
hy fit together to give a meromorphic function £ on X and w' = hw.

A similar proof cannot be given in the abstract case, but nevertheless an
analogous result is true. This will follow by the use of Riemann’s theorem
(once again) together with some elementary linear algebra.

Proposition 6.10. The space of Weil differentials, Sl , is of dimension
one when considered as a vector space over K.

Proof. Let 0 # w € Qg and = € L{{w) — D) where D is some divisor. We
claim that zw € Qg (D). By the proof of the previous Lemma, we know
that zw vanishes on A ({z) + (w)). Since € L{{w) — D) we have

(@) + W) 2 =((w) - D)+ (w) = D,

and so zw vanishes on Ag (D). This establishes the claim.

Now let w,w’ € Qg be non-zero differentials. By the previous paragraph
we see that L({w) —DJw and L{{w')—D)w’ are botl F-subspaces of Qx (D).
If we could show that these subspaces have a non-zero intersection, the
proposition would follow immediately. The idea of the proof is to force this
to happen by a suitable choice of D.

Let F be any prime, and set ) = —nP, where n s large and positive
(how large will be determined shortly). By Proposition 6.7,

dimp Q(—nP)=l{-nP)+ndegP+g—1=ndegP +gy—1.

Recall L{—nP) = (0) since any element in it would have no pole but would
have a zero at P.
Using Riemann's inequality we find

dimp L{{w) + nP) > deg(w) +- ndeg P — g+ 1,
and similarly for w’. Thus,

dimp L{(w) + nP)w + dimp L{(w') + nP)’
> 2ndeg P + deg(w) + deg(w’) ~ 2g - 2.

Tt follows that for large enough n the sum of the dimensions of the two
subspaces L((w) + nPlw and L{{(w') + nP)w’ exceeds the dimension of
the ambient space {1 (—nl’). By linear algebra, they must have a non-
zero intersection. Thus, there exist z,y € K™* such that zw = yw' and so,
w = zy~ lw.

Corollary 1. Let O # w € Qg and let D be o divisor. Then there is an
F-linear isomorphism between L{{w) — D) and Qg (D).
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Proof. In the proof of the proposition we showed that L{(w) — Djw C
Qg (D). So it just remains to show that this inclusion is an equality. Let
w' € Qg (D). By the proposition, there is an element z € K such that
w' = zw. Since w’ vanishes on Ag (D) we must have D < (w') = (z) + (w)
by Lemma 6.9. Thus, (z) > D — (w) = —((w) — D); Le, z € L{{w) — D).

Corollary 2. All the divisors of non-zero differentiols fill out o single
divisor class. This class is called the canonical class of K.

Proof. If w,w’ € 1) are non-zero, there exists an 2 € K™ such that
w' = zw by the proposition. By Lemma 6.9 we have (w') = (z) + (w) so
that (w'} and (w) are in the same class. Conversely, if D is in the class of
{w), D = {x) + (w) for some = € K*. Thus, D = (zw), the divisor of a
differential.

Proof of the Riemann-Roch Theorem. By Corollaries 1 and 2 to
Proposition 6.10 and Proposition 8.7, we find

(D) =deg D~ g+ 1+{((w) ~ D).

This is the assertion of the Riemann-Roch theorem given in the last chapter,
Theorem 5.4, We see that the divisor ' in the statement of that theorem
can be taken to be any divisor of a non-zero differential. We now have a
complete proof of the Riemann-Roch theorem!

Using Theorem 5.4 and its corollaries, we see that the constant ¢ in the
statement of Riemann’s theorem can be taken to be 2g — 1 and for any
differential w the degree of (w) is 2¢ — 2.

Finally, we want to decompose a differential into a sum of local pieces
analogous to the sum of the residues construction in the classical case. To
this end, let’s define a map ip : Kp — Ag. If zp € Kp let ip{zp) be the
adele with all components zero except the P-th component which is equal
to zp. Clearly, ip is an F' vector space isomorphisim of Kp with its image.

Let w € Q. We define wp € Homp(Kp, F) by wplzp) = w(ip(zp)).
This process associates a family of local functionals {wp | P € Sk} to a dif-
ferential. Knowing this family, we would like to reconstruct the differential
and Its divisor.

The functionals wp are not arbitrary. They must vanish on some power
of the maximal ideal £ ¢ Op. Indeed, wp(zp) = 0 if ip{zp) € Ax({w))
and this inclusion holds if ordp(zp) > —ordp{w}. Thus, wp vanishes on
P-orde(@) This shows the functionals wp are continuous in the P-adic
topology.

Proposition 6.11. Let w € Qy and £ = (zp) € Ag. Then, for all but
finitely many P we have wp{zp) =0 and

w(€) = welzp).
Z
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Proof. Let § be the finite set of primes where either ordp(w) < 0 or
ordp(zp) < 0. If P ¢ S then 2p € Op and 50 wp(zp) = 0 by the remark
preceding the Proposition. Define a new adele £’ whose P’th component is
zpif P¢ Sand 0if P € S. Then, & € Ax((w)) and € = &'+3 p g ir(zp).
Thus,

w(g) =w(@)+ D wlip(zp)) = Y wplzp) =Y we(ze).

Pes Pes P

The next proposition provides the abstract analogue of Lemma 6.1. It
enables one to recover the divisor of w from properties of the local funec-
tionals wp. This will be very useful in the proof of the Riemann-Hurwitz
formula.

Proposition 6.12. Let 0 # w € Q. Then, N = ordp(w) is determined
by the following two properties; wp vanishes on P~ but does not vanish
on P~N-L,

Proof. We have already seen in the remarks preceding Proposition 6.10
that wp vanishes on P—ordr(w) Tt yemains to show that wp doesn’t vanish
on Perdr(@i=1 We know, from Lemma 6.8 and the definition, that w does
not vanish on Ag((w)+ P). Let £ € Ag((w) + P) be such that w(§) # 0.
As usual, write £ = (zg) with @ varying over all primes. By Proposition
6.11,
0 # w(€) =wp(zp) + Y wglzg) = wp(zp).
Q#P

The last equality follows from the fact that ordg((w) 4 P) = ordg{w) for
Q#P. )

Since £ € A ((w) + P), we must have zp &€ P~o"¢P@)~1 This concludes
the proof.

Corollary. A differentiol w is completely determined by any local compo-
nent wp. That is, if w,w’ € (g end wp = wp then w =’

Proof. If wp = wh then (w — w’)p = 0. The proposition shows that if
w — w' were a non-zero differential no local component could be the zero
map. Thus, w —w’ =0; le, w=w',

We have now accomplished all the goals set out for this chapter except
the statement and proof of the strong approximation theorem. This im-
portant theorem, strictly speaking, has nothing to do with differentials.
However, its proof is an easy consequence of material developed earlier,
namely, Corollary 1 to Proposition 6.7.

Let’s first recall a version of the weak approximation theorem. Suppose
K is a fileld and O;,04,...,0; a collection of subrings of K which are
discrete valuation rings with quotient field K. Let P; C O; be the maximal
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ideal of O;, Finally, suppose we are given a set of elements o; € K and a set
of positive integers n; with ¢ varying from 1 to . The weak approximation
theorem asserts that there is an element @' € K such that ordp, (a—a;) > n;
for i = 1,2,...,t. The proof, which is not hard, can be found in many
sources, e.g. see Lang [5]. The strong approximation theorem in function
fields is an assertion of similar type, but with much greater constraints on
the element a € K.

Theorem 6.13. Let K/F be o junction field and S C Si a finite set of
primes. For each P € § let an element ap € Kp and a positive integer np
be given. Finally, let’s specify a prime Q@ € S. Then, there is an element
a € K such that ordp(a — ap) > np for all P € S and ordp(a) > 0 for all

P¢Ssu{q@}.

This theorem is called the strong approximation theorem. Before begin-
ning the proof, two remarks are in order. First, the added generality of
choosing the ap € Kp is very small. If we prove the theorem with the
ap € K, then the full theorem takes just a trivial extra step. The main
point is that in addition to the conditions at the primes in § we have added
the infinitely many conditions that the element @ be integral at all primes
not in § with the one exception of Q.

Proof. Define an adele £ = (xp) by the conditions that zp = ap for P € §
ar_ld zp = {0 for P & S. Next, define a divisor D = m@) — Zpes np P.
Choose the integer m so large that the degree of D exceeds the constant
¢ in Riemann’s theorem. Then, by Corollary 1 to Proposition 6.7, we have
Ax = K + Ag(D). In particular, £ = a +7 where a € K and n € Ag(D).
In other words, £ — a € Ag(D). Examining this relation, component by
component, shows that ¢ has the desired properties.

Exercises

1. Let w be a meromorphic differential on a compact Riemann surface
X. Show that @ is zero on A(O) if and only if w has no poles.

2. Let M be the field of meromorphic functions on a compact Riemann
surface X and  the space of meromorphic differentials on X. Show

in detail that } is a one-dimensional vector space over M.

3. Show directly (i.e., arguing only with differentials) that dim Qg (D) =
0ifdegD > 29— 2.

4. Suppose that D is a divisor of degree zero, but that D is not principal.
Show dimp Qx (D) =g — 1.

5. If D is a divisor, and deg I} < g ~ I, show that dimp Qg (D) > 0.
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11.

12.

13.

14,

15.

Michael Rosen

. Suppose that w € Qg (O) and has a zero P of degree 1 and that

ordpw > g. Show that P is s Weierstrass point {see Exercise 10 of
Chapter 5).

. In this and the following two exercises, we assume that F is alge-

braically closed. Let P be a prime. Assume the genus g is greater
than 0. Show {2x (P) is properly contained in 5 (Q).

. (Continuation) Suppose g > 1 and 0 < n < g. Show there exist primes

{P, P, ..., P} with the property, dim Qg (Py+Pp-+- - ~+Pp) = g—n.

. {Continuation) Suppose g > 1. Show there are primes {Py, Py, ..., P}

such that Py 4+ P2 + -+ 4 Py is not the polar divisor of any element
of K*,

Suppose o and wsy are two Weil differentials with the same divisor.
Show w = ows for some o £ F™,

Let ¢ be an automorphism of K which leaves F' fixed. Let P be a
prime of K and oP the prime obtained by applying o to P (see
Exercise 13 of Chapter 5). Show that o extends to an isomorphism
of Kp with K,p. Show further that ¢ induces an automorphism of
A which is F-linear and maps K to itself.

{Continuation) If w is a Weil differential, define ow : Ag — Ax by
the equation cw(e) = w(c~'a) for all a € Ag. Show that ow is a
differential.

(Continuation) Let I be a divisor of K. If w € Qg (D) , show that
ow € Qx(oD).

{Continuation) From the last exercise we see that ¢ induces an au-
tomorphism of Qg (O). If F is algebraically closed and g > 1, show
there is a differential of the first kind w such that o(w) = (w).

{Continuation) Assume F' is algebraically closed and that the genus
g of K is > 2. Show there is an integer & with 1 < k < 2¢ - 2 and
a prime P such that o* leaves P fixed. (This series of exercises was
inspired by the paper of Iwasawa and Tamagawa {1], where it was
proved that the automorphism group of a function field of genus 2 or
greater is finite. In characteristic zero this result is due to A. Hurwitz.
In charactersitic p the first proof was given by H. Schmid [1}).
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Extensions of Function Fields,

Riemann-Hurwitz, and the
ABC Theorem

Having developed all the basic material we will need about function fields
we now proceed to discuss extensions of function fields. This material can
be presented in a geometric fashion, Function fields correspond to algebraic
curves and finite extensions of funetion fields correspond to ramified covers
of curves. In this chapter, however, we will continue to use a more arithmetic
point of view which emphasizes the analogy of function fields with algebraic
number fields.

Let K/F be a function field with constant field F and let L be a finite
algebraic extension of K. Let E bhe the algebraic elosure of F' in L. Tt is
then clear that I is a function field with F as its field of constants. Recall
that in this book, a “function field” over I refers to a field which is finitely
generated over F' and of transcendence degree one. If L = EK, we say that
I is a constant field extension of K. We will discuss such extensions in
detail in the next chapter. If E = F, we say that L is a geometric extension
of K. In the general case, we have a tower K C EK C L, where EK/K is
a constant field extension, and L/EK is a geometric extension.

Let p denote the characteristic of F. In the characteristic zero case, all
extensions are separable and this considerably simplifies the theory. Since
we will be especially interested in the case where the constant field F is
finite, we must also deal with the theory when p > 0 and thus with questions
of inseparability. Instead of working in complete generality we will often
compromise by assuming that F is perfect, i.e., that all algebraic extensions
of £ are separable. This holds if F has characteristic zero or is algebraically
closed or is finite. These cover all the cases of interest in this book.
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This chapter falls naturally into three parts. In the first part we recall
some basic facts about extensions of discrete, rank one valuations and, also,
the theory of the different and its application to questions of ramification.
Here we will assume the reader is somewhat familiar with this material so
that the proofs will only be sketched. In the second part we will discuss
how differentials behave in extensions. This will lead to the proof of the
Riemann-Hurwitz theorem, one of the most important and useful theorems
in the subject. Finally, we will discuss the so-called ABC-conjecture of
Oesterlé-Masser and give a very simple proof in function fields using an
idea the author learned from W. Fulton. Several applications of this result
will be given, e.g., a proof of Fermat’s last theorem for polynomial rings.

Let L/K be a finite algebraic extension of fields. We will use the abbre-
viation “dvr” for a discrete valuation ring. Let Op be a dvr in K having
K as its quotient field. Denote its maximal ideal by P. Let Og be a dvr
in L with maximal ideal 3. We say that Og lies above Op or that '@ lies
above P if Op = KN Ogp and P = P 1 Op. The notation PP for this
relation is often useful. There are two integers associated to this sitnation,
f = f(P/P), the relative degree, and e = e[PB/P), the ramification index.
To define f, note that Og /P is a vector space over Op/P. The relative
degree is defined to be the dimension of this vector space. We shall see
shortly that it is finite. Next, POgq is a non-zero ideal of Og contained
in P. Thus, POp = B for some integer e > 1. This integer is called the
ramification index. It is easy to see that e is characterized by the following
condition; for all @ € K, ordp{a) = e ordp(a).

The ramification index and the relative degree behave transitively in
towers. More precisely, let K C L € M be a tower of function fields with
L/K and M/L finite, algebraic extensions. If 93 is a prime of M and p and
P are the primes lying below P in L and K respectively, then, e(3/P) =
e(B/ple(p/P) and fIR/PY = F(B/p)f(p/P). Both relations follow easily
from the definitions.

Proposition 7.1. With the above notations, ef <n = [L: K], the dimen-
ston of L over K.

Proof. Let I1 be a generator of P and choose wq,ws, . . ., wy, such that their
reductions modulo 9 are linearly independent over Op/P. We will show
that the em elements w;Il¥ with 1 < i < m and 0 < § < e are linearly
independent over K. This is sufficient to establish the result.

Suppose

e—1 m

Z Z a,;jw.;Hj =0

4=01:=1

is a linear dependence relation over K. If the a;; € K are not all zero we
can assume they are all in Op and at least one of them is not in P (since
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K is the quotient field of Op and Op is a dvr). Consider the elements

m

Aj = E a'ijwi-

i=1

If some a;; ¢ P, then Aj; is a unit in Ogp since its reduction modulo P
is not zero. Otherwise, A; is divisible by w, the generator of P, and so
ordp(A;) = e. Thus, ordg (352 A;I7) = j, for some j, < e. This is a
contradiction since Z;ﬁ;é AT =0,

If we assume L/K is a finite and separable extension, then we can
construct all the P lying over P as follows. Let Op be ag above, and
let R be the integral closure of Op in L. R is a Dedekind domain. Let
PR = p$'ps*...pg° be the prime decomposition of PR in R. The set
{p1,p2,...,pg} is the complete set of non-zero prime ideals of R. For
each 1, the localization Rj, iz a discrete valuation ring with maximal ideal
Bi = piRy,. Define Og, = R,,. Then {Og,,0yp,,...,Op,} is the com-
plete set of dvrs in L lying above Op. Let f; and e; be the relative degree
and ramification index of PB; over P;. By standard properties of localiza-
tion, the exponents in the decomposition of PR are indeed the same as the
ramification indices defined earlier.

Proposition 7.2. Assume L/K is a finite, separable extension of fields.
Then, with the ebove notations, ¥ 5 eifi=n=[L: K].

Proof. Since L/K is separable, the trace from L to K, try;x, is a non-
trivial K-linear functional on L. Using this, one can prove that R is a free
module over Op of rank equal to n = [L : K] (see Samuel and Zariski [1]).
Thus, R/PR is a vector space over Op/P of dimension n.

Now, PR = p%'p&?...py” and so, by the Chinese Remainder Theorem,

R/PR=R/p; @ B/p2 @ & R/pl.

Again, by standard properties of localization, for each index 7 we have a
ring isomorphism
Ripi = O, /T
The latter ring is a vector space over Op /P, and we calculate its dimen-
sion using the filtration

POg, =Py c Py~ C - CPi C Op,.

Since 9P, is principal, the successive quotients are one dimensional over
Og, /"B;. This ring is f; dimensional over Op /P (by definition}. Thus, the
total dimension of Og /P over Op/P is e; f;.

Summing over ¢ gives n =3 5_, e;fi as asserted.

=
Having dealt with the separable case we now prove a simple fact about
the purely inseparable case.



80 Michael Rosen

Lemma 7.3, Let L/K be a purely inseparable estension of degree p, the
characteristic of K. Assume K = LP (this strange assumption is often
correct in function fields). Suppose Op C K is o dur with quotient field K.
Then there is one ond only one dur Op C L above Op. Moreover, e = p
and f=1soef=p=[L: K]

Proof. Let R={rc L |r? € Op}and P={r e L |rF € P}. It is easy
to see that R is a ring, P is a prime ideal in R, and PN Op = P. We will
show that R is a dvr.

Let 7 be a generator of P, Since LP = K, there is an element [1 & L with
I[P = 7. Clearly, I1 € B. We claim that every element £ € L is a power of
I times a unit in R. Once this is proved, it is almost immediate that I
generates P and that R is a dvr.

Now, t? € K so that ¥ = um® where v is a unit in Op and s € Z. Thus,
{¢/T1*)? = u which shows that t/II° € R. Since (IT*/t)f = v~! ¢ Op it
follows that II*/t € R as well. Thus, ¢ is a power of II times a unit as
claimed.

If O C L is any other dvr lying over Op, let  be one of its elements.
Then t* € K N Og: = Op so that t € R. We have shown Oy C R. Since,
as we shall show in a moment, dvrs are maximal subrings of their quotient
fields, we have R = Ogq, which establishes uniqueness.

To prove the maximality property of dvrs, let O € K be a dvr with
quotient field K and uniformizing parameter . Let (0 be a subring of K
containing O. Suppose there is an element r € O with 7 € . Then, there is
a unit v € O such that r = unr™™ with n > 0. Then, 7~L = w171y ¢ O
and it follows that all powers of 7, both positive and negative, are in (.
Since every element of K is equal to a unit of O times a power of 7, we
conclude that if O # O, then O’ = K.

Finally, ordg (m) = p so e = p. By Proposition 7.1, ef < p, and it follows
that f = 1, as asserted.

A field F is called perfect if every algebraic extension is separable. This
is automatic in characteristic zero. In characteristic p > 0, it is well known
that F' is perfect if and only if F = FP. We use this eriterion in the next
proposition.

Propasition 7.4. Let F' be a perfect field of positive characteristic p, and
K o function field with constant field F'. Then, [K : K¥] = p,

Proof. Let = be an element of K not in F. Then [K : F(z)} < co. Consider

F(z)P = FP(2P) = F(zP). It is clear that [F'(2) : F(x?)] = p. For example,

one shows easily that {1,z,z%,..., 2771} is a field basis for F(z) over F{z?).
Thus, the proposition follows from the equation

(K F(aF)] = (K2 F(@)][F(z) : F(2)] = [K : K"|[K? : F(z")],
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if we can show [K : F(z)] = [K? : F(zP)]. To show this, let {w1,ws,...,wm}
be a field basis for K over F(x). We claim that {w] w5, .. w8 } is a field
basis for K* over F(zP). This is a straightforward calculation.

Corollary. Let K be a function field of choracteristic p > O with perfect
constant fleld F. Let I be a purely inseperable extension of K of degree p.
Then, I is the constant field of L and LP = K.

Proof. Suppose o € L is a constant. By definition, it is algebraic over F.
Since L/K is purely inseparable of degree p, af € K and is algebraic over
F. This implies af € F. Since F' = FP thereisa § € F with of = ¥ which
implies o == B € F.

Applying the proposition to L we see [L : L?] = p. However, since L/K
is purely inseparable, L? C K. It follows that [K : LP] =1 and so K = L*.

Proposition 7.5. Lel K be a function field with a perfect constant field F.
Let L be a finite extension of K, and M, the mazimal separable extension
of K in L. Then, the genus of M is egqual to the genus of L. Also, for
each prime p of M there is a unique prime B in L lying above it. Finally,

e(/p) = (L M] and [(/p) = 1.

Proof. The constant field F of M is perfect since it is a finite extension of
F, which is perfect by assumpticn.
Since L/M is purely inseparable, there is a tower of felds

KCM=KCcKic - -CKy,_yCK,=1L,

where for each 1 > 1, K;/K;_ is purely inseparable of degree p. By the
corollary to Proposition 7.4, and an obvious induction, we have K;_, = K7
for each 1 <4 < n. Raising to the p-th power is thus an isomorphism from
K; to K;_;, which shows that all these fields have the same genus. This
proves the first assertion.

The remaining part of the Proposition is proven by induction using the
corollary to Proposition 7.4, Lemma 7.3, and the fact that both the relative
degree and ramification index are multiplicative in towers.

We are now in a position to prove the theorem at which we have been
aiming.
Theorem 7.6. Let K be a function fleld with perfect constant field F. Let
L be a finite extension of K of degree n. Suppose P iz o prime of K and
{B1.Wa,.. ., By} the set of primes in L lying above P. Then, .7_  e;fi=n
where, as usual, e; is the ramification inder and f; the relative degree of

PB; over P.

Proof. Let M be the maximal separable extension of K in L. Let p; be
the prime of M lying below 93; and let ¢; and f! be the ramification index
and relative degree of p; over P. By Proposition 7.5, PB; is the unique
prime of L lying over p;. By Proposition 7.2, the theorem is true for M/K.
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Thus, 327, elf! = [M : K]. Invoking Proposition 7.5 once more we see
€[l : M} = e; and f] = fi. Substituting into the sum and noticing that
[L: K)=[L: M]{M : K] finishes the proof.

When L/K is a finite extension of function fields, the conclusion of Theo-
rem 7.6 holds without any assumption about the constant fields (see Cheval-
ley [1] or Stichtenoth [1]). The method uses results which are specific to
function fields, e.g., the degree of the zero divisor of a function and Rie-
mann’s inequality. We have chosen a different route, which seems more
natural, but at the expense of having to assume the constant field is per-
fect.

Recall the notation P and Dy for the divisor groups of K and L,
respectively. We introduce homomorphisms Ny, z and ip,x as follows:

1. Npsx - Dy = D is defined by Ny (P) = f(B/P)P for all primes
P € &, and then extended by linearity. Here, P is the prime of K lying
below B, ie., P=PNK . Ny g is called the norm map on divisors.

2. igsi @ D — Dy, is defined by iy /pc(P) = Fog0 p e(P/P) P for all
P € Sk and then extended by linearity. iy/x is caﬂed the extension of
divisors map, or, sometimes, the conorm map.,

A simple consequence of these definitions and Theorem 7.6 is that Ny, /xo
ir,si is the map “multiplication by [L : K]” on Dy. Thus, i,k is one to
one (which is obvious anyway) and the quotient group D /Ny g (Dy,) is
annihilated by [L : K} (which is perhaps not so obvious).

It is important to determine how these maps interact with the degree
maps. Suppose that F and E are the constant fields of K and L, respec-
tively. Recall that for a prime P of L, deg; (P) is the dimension of Og /P
over £. Similarly, for a prime P of K, degg(P) is the dimension of Op/P
over F'. These degree maps are then extended by linearity to D, and Dg.

Proposition 7.7. Let A € D, and A € Dy, Then

) LK
degy Npsp(U) = [E: Fldeg, A and  deg, (ir,x(4)) = ﬁdeg}( A

Proof. Both facts follow from the calculation
O/ : F| = (Og /B : BB : F] = (Op/F : Op/P)lOp/ P F),

which shows that [E: Fldeg, B = f(P/P)degy P.

To show the first assertion, we see it is sufficient to do it when U =
B is a prime divisor. In that case, degy N g () = degy f(P/P) P =
F(B/P)degy P = [E : Fldeg, P.

To show the second assertion, it is again sufficient to consider the case
where A = P is a prime. Then,
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Y e(B/P)deg, P

BIF

= O eB/P)(R/P)dogic P
BIP

deg, ik (F)

The result is now immediate from Theorem 7.6.

We also would like to investigate how these two maps behave on the
group of principal divisors. Recall that if o € K* its divisor is defined to
be (a)x = Y pordp(a)P, where the sum is over all P € Sg. Similarly, one
defines the principal divisor (b);, for an element b € L*.

Proposition 7.8,
(i). If a € K*, then z'L/K(a)K ={a)g.

(ii). If b & L*, then Npyx ()1, = (Np k(D) k.

Proof. To prove the first assertion, one simply computes

iryla)k = i S ordp(a) P =S ordp(a) S e(B/P)P
P P B

=Y e(P/Pordp(a) P=_ ordpla) P = (a)s.
B kY

The proof of the second assertion is somewhat more difficult, but stan-
dard. It follows from general properties of Dedekind domains. A particularly
elegant proof is given in Serre [2]. A more conventional treatment is given
in Samuel and Zariski [1].

Corollary. The maps ir;x and Np g induce homomorphisms on the class
groups Clg and Cly, (which we will designate by the same letters).

Proof. The proposition shows iy ;x maps Px — P and so induces a map
from Clgx = Dk /Px — Cly, =D /Py. Similarly for Np .

The next topic to consider is that of ramification. Let L/K be a finite
extension of function fields, suppose B is a prime of L lying over a prime P
of K. We say that B is unramified over P if two conditions hold: e(P/P) =
1 and the extension of residue class fields is separable. If either condition
is not satistied, we say P is ramified over 3. In a separable extension
of function fields, only finitely many primes are ramified. This important
result is a consequence of the theory of the different, which we will now
sketch without complete proofs. A detailed treatment can be found in the
above cited references, Serre 2] and Samuel and Zariski [1].
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We begin with considerations of some generality. Let L/K be a separable
extension of fields, A C K a discrete valuation ring with quotient field K,
and B the integral closure of 4 in L. One can show that B is a Dedekind
domain with only finitely many prime ideals. These are the prime ideals
which occur in the prime decomposition of PB, where £ ig the maximal
ideal of A. As an A module, B is a finitely generated free module over
A of rank equal to [L : KJ. Also, the trace of any element of B lies in
A. Let {z1,22,...,2,} be an A basis for B and let 95,4 be the ideal in
A generated by det(try g (z;z;}). This ideal is called the discriminant of
B/A. It is independent of the choice of a basis. Since L/ K is separable, the
diseriminant is not the zero ideal. Let

PB =[] ®¢
PP

be the prime decomposition of PB and consider the A/ P algebra
B/PB = B/Py ©@B/P* @ - & B/Ps.

A commutative algebra over a field & is said to be separable if it is a direct
sum of separable field extensions of k. From general theory, B/PB is a
separable A/P algebra if and only if det(trg,z{Z:Z;)) # 0. Here the bar
refers to reduction modulo PB and we have set B = B/PB and 4 = A/P.
It follows easily that every prime in B is unramified over A if and only
if 9p;4 = A, in other words, B is unramified over 4 if and only if the
discriminant is all of A.

Define Cga = {x € L | trp x(xb) € A,¥b € B}, This set is easily seen
to be 2 B submodule of L. In fact, it is the largest B submodule of L whose
trace is contained in 4. We shall show it is a fractional B ideal. Notice that
B € Cga- Cpyy is called the inverse different of B over 4. By definition,
Dpja = CE}A C B is called the different of B over A.

Since, Cp,4 is a B-module, to show it is a fractional ideal it suffices
to produce a non-zero element d of L such that dCp;s C B. Set d =
det(try g (xiz;)), the element we used in defining the discriminant. If ¢ €
CB/As then

b3
c= E T2L5 r € K.
i=1

Multiply both sides by z; and take the trace. We get

b
tI‘L/K(CIj) = ZT{ trL/K{:E-in).
i=]
It follows from Cramer’s rule that dr; € A for all 4, and so dCpg;4 C B
as asserted. This argument tells us a bit more. Since Cg;n € d™'B we
must have 0z 4B = dB C Dpj,; l.e., the discriminant is contained in the
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different. The connection between the different and discriminant is even
closer as we see from the following proposition.

Proposition 7.9.  ¢) Let A be a dur with mazimal ideol P, K its quotient
field, L a finite separable extension, and B the integral closure of A in L.
Then, some prime above P in B is ramified if and only if 0psa C P.

i) NiykDpia = 0gsa- In words, the norm of the different is the diserim-
inant.

Proof. We have already given the proof of ¢) in the above discussion. For
the proof of part i) see Serre [2].

We will say that B/A is unramified if no prime of B is ramified over
A. From the above proposition, it follows that if Dp,4 = B, then B/A is
unramified. Much more is true, however. A prime P of B is ramified over
A if and only if P divides D /4. The easiest way to see this is to pass to
completions. )

For each prime P < B lying over P consider the completion Ly of L at
B, The closure of K in fn,p is isomorphic to Kp, the completion of K at
P. We also complete A at P and B at 9 to obtain the rings Ap C Bl;p. It
is not hard to show that E‘q; is the integral closure of Ap in LA"D- This local
situation has all the ingredients of the “semi-local” situation considered

above, so in exactly the same way we can define the local discriminant and
the local different, 2,4(P) C Ap and D, 4(P) € Byp.

Lemma 7.10. We have UB/A(P) = ag/Afip and @B/A(m) = @B/Aéqg.
In other words, if 954 = P*, then 0g a(FP) = Pt and if § is the ezact
power of P dividing Dg,a, then Dp,a(P) = ;e

For the proof of this result we refer the reader to Serre 2], Chapter 3.

Corollary 1. As in the Lemma, let & be the exact power of P dividing
Dpsa. Then & can be characterized as the largest integer m such that the

trace from ﬁ‘D to Rp of ‘ﬁ‘m is contained in flp.

Proof. From the definition, if m has the property described in the corollary,
the local inverse different is #~™ and so D 4(P) = P™. The result is
then immediate from the lemma.

Corollary 2. With the same notation as Corollary 1, § > e(B/P) -1 with
equality holding if and only if the characteristic of ' is either zero or does
not divide e(P/P).

Proof. (sketch} Neither e(*8/F) nor § changes after passing to the com-
pletion (for ¢ this follows from the lemma). So, we can assume A and
B are complete. Again, nothing essential changes if we replace K by the
maximal unramified extension of K in L and A by its integral closure
in this extension. We can thus assume P is totally ramified over P. Set
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e = e(P/P) = [L : K]. Let 7 € P be a uniformizing parameter, and
f(x) = Y i_g aix* be the monjc irreducible polynomial for = over K. f(z)
is an Eisenstein polynomial (see Serre [2], Chapter 3) and in particular,
a; € P for 0 < i < e. Under these circumstances, {1, 7,...,7°"!} is a basis
for B over A and one can show that D g4 = (f'(r)). Now,

fiim)y=er* ™! 4+ (e — Daem®™ 2 4+ +ay.

Every term in the sum except possibly the first is divisible by #° and the
first is divisible by 7¢~}. The first assertion of Corollary 2 follows from this.
The first term of the sum is exactly divisible by #*~! if and only if either
the characteristic of F' is zero or does not divide e. This proves the second
assertion.

Let L/K be a finite extension of function fields, ¢ a prime of L and P
the prime lying helow it in K. We say that P is tamely ramified over P if
it is ramified and either the characteristic of the residue class field Og /P
is zero or does not divide e(B/FP). The second assertion of Corollary 2
can then be reworded to assert that for a tamely ramified prime P, the
exponent to which it divides the different is e(f/P) — 1.

Theorem 7.11. With the above notations and hypotheses, o prime P of
B is ramified over A if and only if P | Dp/4.

Proof. {sketch) The definition of unramifiedness is in two parts; the ram-
ification index must be one, and the residue class field extension must be
separable. If one ignores the second condition one can refer to the above
Coraollary 2 to Lemma 7.10 for a proof of the theorem. We proceed some-
what differently and handle both conditions at once.

By standard properties of localization and completion, a prime P of B
iz ramified over P it and only if E}S is ramified over P. Sa we can work in
the local situation Bsp /Ap. The advantage here is that B;p has only one
prime ideal, namely, . Thus, using what we know about discriminants, ‘43
is ramified over P if and only if 05 sa(P) # Ap. By Proposition 7.9, applied

to this situation, we see this is true if and only if D g4 (P) # ng. Finally,
by Lemma 7.10 this last condition holds if and only if D p/4 is divisible

by B.

We have now developed enough theory to enable us to return to function
fields. We will define the different divisor and explore its properties. From
now on, we suppose L/K is a finite separable extension of function fields
with E the constant field of L and F the constant field of K. It is easy to
see that E/F is also a finite, separable extension. For any prime PP of K we
let Rp be the integral closure of Op in L. As we have seen, the primes of
L lying above P are in one to one correspondence with the non-zero prime
ideals p of Rp. If p is such an ideal let Og be the localization of RBp at p
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and, of course, the maximal ideal of Oy is P = pOg. Note that the pair
Rp,Op is playing the role of the pair B, A in the above considerations.

For any prime R of L, let p = Rp NP and let §{P) be the exact power
of b dividing the different of Rp over Op. We define the different divisor
of L/K as follows:

Dy =Y 8(P)B.

PesS,

Actually, we must prove that all but finitely many 6(*I1) are zero before we
can be sure this definition makes sense. By our previous work, a prime ‘3
is unramified over P if and only if §{) = 0. Once we prove the finiteness
assertion, it will follow that only finitely many primes in L can be ramified
over K.

To prove the finiteness result, let {1, zs,...,2,} be a basis of L over K.
Let S < Sy be the set of primes of K which lie below a pole of some z;.
Since there are only finitely many such poles, the set S is finite. For P ¢ S
we have ; € Rp for 1 <1 < n. This follows from the fact that Rp is the
intersection of the valuation rings containing it [ Rp is a Dedekind ring and
has quotient field L). Let Cp be the inverse different of £p over Op. Let
c € Cp and write e = 3 i, a;z; with a; € K. Then, for all 1 < j < n,

trruc{es,;) = Z aitrL/}((.’Ei.Tj).

i=1

Using Cramer’s rule, as we have previously, we find da; € Op for 1 €4 < n,
where d = det(tr;, 5 (z;z;)). Thus, dCp C Rp and so Rp € Cp Cd™'Rp.
Now, ordg(d) = 0 for all but finitely many 9 and, consequently, d is a unit
in Bp for all but finitely many P € Sg. This implies Cp = Rp and so
Dgrpsop = Rp for all but finitely many P. The fact that §(9) = 0 for all
but finitely many P is now clear.

We summarize our discussion of the different in the following theorem.

Theorem 7.12. Suppose L/K 1is ¢ finite separable extension of function
fields. The different Dy, defined above is a divisor with the property that
a prime B of L is ramified over K if and only if it occurs in Dy g with
a non-zere coefficient. In particular, only finitely many primes of L are
ramified over K.

We note that separability is crucial for the last assertion of the theorem.
If F is perfect and L/K is purely inseparable of degree p, then Lemma 7.3
shows that every prime of I is ramified over K.

Because it is often useful, we record an important property of differents,
The proof is not hard, but will be omitted. Suppose K C I, C M is a tower
of function fields with M/K finite and separable. Then,

Dyijre = Dy + i (Dryxe) -



88 Michael Rosen

The next topic will be the behavior of differentials in field extensions.
Let w be a Weil differential of a function field & and suppose L is a finite
separable extension of K. We want to associate to w a differential w* of L.
After this is done the next task will be to relate the divisor of w* to the
divisor of w.

We begin by extending of the trace map from L to K to a trace map
from the adeles of L, Ay, to the adeles of K, Ag. The key to this is the
following important isomorphism

L®KKPQ®£Q.
P

The map involved can be described quite easily. Identifying L as a subfield
of Ly and Kp as a subfield of Ly there is an obvious K-bilinear map
from L x Kp to L‘p, namely, (¢, a) —» fox. Thus, for each PB|P, there is a
map from L @ Kp — ng Now pass to the direct sum. The fact that the
resulting homomorphism is an isomorphism is given in Serre [2], Chapter
3. Note that L is embedded diagonally into the right-hand side,

Both sides of the above isomorphism are K p algebras and the isomor-
phism respects this structure. If {zy,z2,...,2s} is a basis for L/K, then
{21 ®1,2,®1,...,2, ® 1} is & basis for the left-hand side aver K,. On
the other hand, choosmg o basis for L&p over K p for each PP and putting
these together gives a basis for the right-hand side. Using these bases en-
able one to prove the following result, which connects the global and local
traces and norms.

Proposition 7.13. Let Ty and Ny denote the trace and norm from Ec_p
to Kp, respectively. Then, for x € L we have

trL/K(:r:)=ZTrp(x) and Np/x(z) = Hng(z.
piile BIF

In words, this says that the global trace is the sum of the local traces
and the global norm is the product of the local norms. We will be primarily
cancerned with the traces.

We now define the trace map from Ay to Ag. Let @ = (aup) be an
element of A,. We map it to the adele of K, whose P-th coordinate, ap,
is Esmp Tip{aq). Since for all B, T : Oqg — Op we see that for all but

finitely many P, ap is in fact in Op. Thus, the image of our map is indeed
in Ag. We call this trace map try 5 because it extends the trace map on
the level of fields. To see this, recall L is embedded diagonally into Aj.
If A € A is the adele all of whose coordinates are equal to £, then, by
Proposition 7.13, try (A} is the adele of X all of whose coordinates are
equal to try, g (£). One also checks easily that try,x is an F-linear map
from Ap to Ag (recall that F is the constant field of K).
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Having extended the trace map, it is now relatively easy to define the
map from Qp -3 {7, which we need. Let w € Qg. Define w” to be the
compositum wotry, g, which is an F-linear homomorphism from Ay, to F.
From now on we assume that I is also the constant field of L, i.e., that L/ K
is a geometric extension. We claim that w* is, in fact, a Weil differential
of L. That it vanishes on L follows from what we have just proved; try
maps L to K and w vanishes on K by definition. It remains to prove that
w” vanishes on Ag(C) for svmne divisor € of L.

Since w € Qg there is a divisor ¢ of K such that w vanishes on

Ag(C) = {{ap) € Ag | ordp{ap) = —ordpC, VP € Sk} .

Let o = (oq) € Ar. Fix a prime P of K and suppose {P1, Ba, ..., By} are
the primes of L lying above . We need to ascertain the conditions which
force

q
Ordp(z ngt(a’s;p:)) > —ordplC .
i=]

This will follow if for each ¢ individually ordp(Tip, (ep,)} > —ordpC. Let
7 be a uniformizing parameter at P and for simplicity set m = ordpC. The
last condition is equivalent to the following: for each i, ordp (T, (7™ g, )) =
0. This will happen if 7™ ay, is in the local inverse different at ;. From
the definition of the different and Corollary 1 to Lemma 7.10 this condition
is equivalent to

ordg, (TMap,) = —6(P;) or ordy, (aq;) = —8(B;) — e(Py/ PlordpC .

It is easy to check from the definitions that

S (6(P) + e(P/PhordpC) P = Dy + in/rC.
Ry

To sum up, we have proven—

Proposition 7.14. Let L/K be a finite, separable, geometric extension of
function fields and w o non-zero differential of K. The w* =wotry x is o
differential of L. In more detail, if w vanishes on Ax(C), w* is an F-linear
homomorphism from Ay — F which vanishes on L and on Ap{iy/ g C +
Dpix)-

We would like to determine the divisor of w*. Recall, by definition, this
is the largest L-divisor B such that w™ vanishes on Ar(B}. In light of the
previous proposition, a good guess would be iz g {w) g + Dy /g This is, in
fact, correct.

Theorem 7.15. With the hypotheses and notation of Proposition 7.14, we
have

(W™l = ipx{w)i + Dok,
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Proof. We are going to use Proposition 6.12 of the last chapter, which
shows how to determine the divisor of a differential using properties of its
local components.

We begin by recalling the definition. Let p € 2. For a prime P of L let
ip ﬁgp — Ar, be the map that takes an element v & .fzq;} to the adele all of
whose components are zerc except the J3-th component which is v. Then
pgp = g o i

Now, wg = (wotryg)oip = wo(trp yodp) '=wo(ipoTy) =wpoTly.
The third equality follows directly from the definition of the trace map on
the adeles. In words, the local component of w* at P is the local component
of w at P composed with the local trace map.

According to Proposition 6.11, ordg(w™) = N, where N is the integer N
such that wy, vanishes on P~N but not on P=N-1.

Wy vanishes on B~ if and only if wp vanishes on Tm(‘,ﬁ‘N 3, which oc-
curs if and only if T (=) € P~ where m = ard p(w). This is equivalent
to Tq;(Pm‘jI_N) C Op, which in turn is true if and only if fee(®/Fim=N ¢
P-4 by Lemma 7.10 and the definition of the different, We conclude
that wy, vanishes on P~V if and only if N < e(B/P)ordp(w) + 6(/). The
largest IV with this property is clearly the right-hand side of this inequality.
The theorem follows.

It might be asked, what is the necessity of Proposition 7.14 since Theorem
7.15 is a more accurate result? The answer is we had to show w* is a
differential before we could decompose it into its local components and use
Proposition 6.11 to determine its divisor.

We are finally in a position to prove the Riemann-Hurwitz Theorem, cne
of the main goals of this chapter.

Theorem 7.16. (Riemann-Hurwitz) Let L/K be a finite, separable, geo-
metric extension of function fields, Then,

2 —2=[L: K](?gK — 2} + deg;, DL/Kv

In particular,

2, —22>[L: K)(20x ~ 2) + > _(e(B/P) 1) deg, B.
B

where the sum is over all primes P of L, which are ramified in L/K.
The inequality is an equality if and only if all ramified primes are tamely
ramified.

Proof. Let w be a non-zero differential of K. By the remarks following
Corollary 2 to Lemma 6.10, (w) g 1s in the canonical class of K. By Corollary
3 to Theorem 5.4, every divisor in the canonical class of K has degree
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29r — 2. Thus, degg(w)r = 2¢g — 2. Similarly, deg; {w*);, = 2¢g1 — 2.
From Theorem 7.15 we find

291, — 2 = deg (") = degy i x(w)x +degy, Dk

From Proposition 7.7 we see that degy i, x(w)x = [L : K]degg(w)k =
[L ¢ K](29x — 2). We have used the assumption that L has the same
constant field as K. Substituting into the above equality yields the first
assertion of the theorem.

The second assertion is an immediate consequence of Corollary 2 to
Lemma 7.10, since deg;, Dpjx = 3 gy 6('B) deg, P.

The Riemann-Hurwitz theorem has a very large number of consequences.
We will give some idea of how it is used by giving three corollaries.

Corollary 1. Suppose L/K is o finite, separable, geometric extension of
function fields. Then, g < gp. (This need not be true for inseparoble
eztensions!)

Proof. Since the different is an effective divisor [(all its coeflicients are non-
negative) we see 2g;, — 2 > [L: K|(2gx ~2) > 2gx — 2. Thus gg < gr as
asserted,

One can prove this result in another way. It follows immediately from
the theorem that w* is a holomorphic differential {no poles} if w is & holo-
morphic differential. One checks (using the fact that the trace map from
A to Ax is onto when L/K is separable) that the map w — w* is a one
to one F-linear map from Qg (0) to Qp(0). Since these two vector spaces
have dimension gx and gy, respectively, it follows that gx < g

Corollary 2. {Luroth’s Theorem) Let L = F(z) be a rational function field
over F' and K o subfield properly containing F. Then, there is au € K
such that K = F(u).

Proof. Since K properly contains F, it is easy to see that [L : K] < oo,
Let M be the maximal separable extension of K contained in L. If the
characteristic of #' is zero, then M = L. If the characteristic of F' is p > 0,
then L/M is purely inseparable of degree p™ for some n > 0. It follows that
zF" € M. On the other hand, the polar divisor of = in L is a prime (the
prime at infinity) of degree 1 and so the polar divisor of 2" has degree p".
Consequently, [L : F(z?")] = p* by Proposition 5.1. Thus, M = F(z?"}
and M is a rational function field. This shows that we can assume to begin
with that L/K is separable. Since L has genus zero it follows by Corollary
1 that gx = 0. Since L has a prime of degree 1, e.g., the zero or pole of r,
the prime lying below it in K must also have degree 1. It follows that K
is a rational function field (see the discussion after the proof of Corollary
5 to Theorem 5.4).
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Corollary 3. Let L/K be a finite, separable, geometric extension of func-
tion fields, Assume g = 1. Then, gx < 1 with equality holding if and only
if L/ K is unramified.

Proof. The inequality gx < 1 follows from Corollary 1. From g; = 1 and
the theorem we deduce, 0 = [L : K|(29x — 2) +deg, Dy /i If g = 1 the
degree of the different is zero and so the different is the zero divisor (recall
that the different is an effective divisor). From Theorem 7.12 it follows
that L/K is unramified. By the same theorem, if L/K is unramified then
Dyp/k =0 and so 2gx — 2 =0 or, what is the same, gx = 1.

We will conclude this chapter with a beautiful application of the Riemann-
Hurwitz theorem to the proof of the ABC theorem in function fields. Let’s
begin by recalling the ABC conjecture of Masser and Oesterlé in the case
of the rational numbers Q. Suppose A, B,C € Z and that A+ B = C.
Suppose further that the three integers A, B, and C are pairwise relatively
prime. The conjecture states that for each € > 0 there is a constant M,
such that if A, B, and C satisfy the given conditions, we have

max {|A|,|B],|C)) < Mc ( [ »)**=.
plABC

This elegant conjecture has many surprisingly powerful consequences. See
Lang [4], Chapter IV, Section 7, for a discussion and a number of references.
At present the conjecture is not proven and many people consider it to be
beyond the range of the available methods.

The ABC conjecture for @ can be easily generalized to number fields.
‘We omit this formulation here, Instead we reformulate the conjecture over
Q slightly. In this new formulation it becomes clear what the analogous
conjecture should be in the function field case.

Rewrite A+ B=C as A/C+ B/C =1. Write wu = A/C and v = B/C.
Then u,v € Q@ and w+ v = 1. Let’s recall the definition of the height of
a rational number r. Write + = m/n where m,n € Z and (m,n} = L.
Then the height of r, ht{r), is defined to be max(log|m|,log|n|). With
this notation we can recast the ABC conjecture as follows. Suppose ¢ > 0
is given. Then there is a constant m, such that whenever u,v € Q* and
w4 v =1, we have

max{ht(u), ht(v}) < m+ (1 +¢) Z log p.
p|lABC

Here, A and B represent the numerators of + and v and  their common
denominator.

Now, let’'s return to the function field case. Let K be a function field
and F its fleld of constants. Suppose u,» € K* and « 4+ v = 1. We need
a substitute for the notion of height. Let 4 be the zero divisor of w and
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C its polar divisor. A good measure of the size of a divisor is its degree,
so it is natural to define the height of u to be max(deg A, deg C). This is
fine, but it can be stated more simply. We know (Proposition 5.1} that
deg A = degC' = [K : F'(u)]. Instead of calling this number the height of
u, it is more conventional to call it the degree of u and use the notation
degu. One should be careful though, the degree of the divisor {u) is zero
(Proposition 5.1), whereas the degree of the element « is greater than or
equal to zero and is zero only when it is a constant.

For those with some algebraic geometry background, the degree of an
element has a nice geometric interpretation. The field K is the function
field of a smooth, complete curve I' defined over F. The element u can
be thought of as a rational map from I' to the projective line P'/F. The
degree of u is the degree of this mapping. If F' is algebraically closed, ali
fibers have degu elements with (possibly) finitely many exceptions.

Before stating the next theorem, we need two more definitions.

If D € Dy is a divisor, recall that Supp(D) is defined to be the set of
primes which occur in [ with non-zero coefficient. This set is called the
support of D

Secondly, suppose ©u € K™ is not a constant. Let A/ be the maximal
separable extension of F{u) inside of K. Then, the field degree, [M : F(u)},
is called the separable degree of « and is denoted by deg, . Note that
deg, v < degu with equality holding if and only if K/F(u) is separable.

We can now state and prove(!) the ABC conjecture for function fields.

Theorem 7.17. Let K be a function field with o perfect constant field F.
Suppose u,v € K* and u+v = 1. Then,

deg,u=deg,v < 295 —2+ Z degy P .
PeSupp{A+B+C)

Here, A and B are the zero divisors of v and v in K, respectively, and C is
.

their common polar divisor in K. (Note that no “¢” appears in the function
field version).

Proof. It is convenient to set & = F{u). We first treat the case that K/k
is separable and do the general case later. Let n = degu = [K : k]. The
Riemann-Hurwitz theorem implies that

29 —2> —2n+ Y (e(P/P) —1)degg P, (1)

where the sum is over all primes of K and for any such prime P, ¢ denotes
the prime of &£ lying below P. The point is that since ' is perfect a prime
is ramified if and only if its ramification index is greater than one. If its
ramification index is equal to one, it doesn't contribute to the sum.

In the function field k = F(u) we consider three primes Pg, By, and
PBoo, which are the zero divisors in k of w, 1 —u = v, and 1/u, respectively.
It is easy to see that A = "-;K,’k(mﬂ), B = ?:K/k(ml)} and C = zK/k(moo)
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(Thinking of u as a mapping from the curve " to P!, this says that A, B,
and C are the inverse images (as divisars} of 0, 1, and o). In the above
sum we are only going to consider primes in the support of either A, B,
or C. This will only strengthen the inequality. Consider the sum only over
the primes in the support of A. We have

3" (e(P/Po) — 1) degy P =degyclinsn Po) — D, degy P.

PESupp(A] FeSupp(A)

By Proposition 7.7, degg (ix/xPo) = [K : k] deg, Po = n. So, the above
sum is simply n minus the sum of deg; P over those P in the support
of A. The same considerations prove the analogous result for B and C.
So, adding the contributions from these three sums and substituting into
Equation 1 above, we find

9 —22>n— Z degp P,
PeBupp{A+B+C)

and that concludes the proof in the case where K /k is separable.

Now suppose the characteristic p of F is positive and that K/k is insep-
arable. Let M be the maximal separable extension of k in K. Then K/M
is purely inseparable of degree p™ for some rn. Working with the separable
extension M /k, we find

20m —2 > (M k) — > degps P,
PleSupp(A'+ B/ +7)

where A’ = ing/(FPo)s B' = inre(P1), and ¢ = 454 (Poo). By Proposition
7.5, we see that for each prime /' of M there is one and only one prime
P of K lying above P’ and that degy P = degy; P’. Since, by definition,
(M : k] = deg, u, the above inequality can be rewritien as

290 — 2> deg,u— Z degy P .
P&Supp{A+B+C)

Invoking Proposition 7.5 once more, we see gps = g, This completes the
proof.

To show the power of the ABC Theorem, we will give two applications.
The first will concern solutions to the Fermat equation X¥ + ¥V =1
in function fields and the second will be the statement and proof of the
S-unit Theorem, a powerful result with many applications to diophantine
problems.

Proposition 7.18. Let K be a function field with a perfect constant field
F. Consider the equation XN + YN =1, We assume that N is not divisible
by the charecteristic p of F. If g5 = 0 and N > 3, then there is no non-
constant solufion to this equation in K. If g5 > 1 and N > 6gx — 3, then
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there is no non-constant solution to this equation in K. {By a non-constant
solution we mean o pair (u,v) € K? — F? such that u”¥ +vV =1.)

Proof. Suppose that (u,v) € K2 is a non-constant, solution. Invoking the
ABC theorem we find

max({deg, u”, deg, ™) < 29 — 2+ Z degp P, (2}
PeSupp(A+B+C)

where A is the zero divisor of u, B is the zero divisor of v, and C is their
common polar divisor. We’ll return to this equation in a moment.

Let M be the maximal separable extension of F(u) in K. By considering
the tower of fields F(u) C F(u) C M C K, and noting that F(u)/F({u")
is separable of degree N (it’s here we use the hypothesis (p, N) = 1), we
see that deg, v = N deg, u. Similarly, deg, vV = N deg, v.

Next, by comparing the zero divisor of u in M to the zero divisor of
# in K (as we have done in the proof of Theorem 7.17} we see that
ZPGSupp(A) degg P < deg,u. Applying the same reasoning to v yields
2 pesupp(p) 4egx P < deg, v. Since C is the common polar divisor of u
and v we have a similar inequality involving C.

Putting all this together and substituting inte Equation 2 yields

N Z degrp P <295 — 2+ Z degp P,
PeSupp(A4) PeSupp(A+ B+4C)

with similar equations involving B and C on the left-hand side. Adding all
three and rearranging terms gives

(N —3) > degy P < 6gx — 6 .
PeBupp{A+4B4-C)

If g = 0 and N > 3, the left-hand side of this inequality is non-negative
and the right-hand side is -6, This is impossible and this contradiction
establishes the first assertion of the Proposition.

Assume now that g5 > 1 and N > 6gz — 3. Then certainly N > 4 so
N —3 is positive. Dividing both sides of the inequality by /N —3 we see that
6gx —6 / N —3 must be bigger than or equal to one. If 6grr —6 / N -3 < 1
we get a contradiction, Since this inequality is equivalent to N > 6gx — 3
the proposition is proved.

Actually, one can get a somewhat better result by a different method.
Namely, suppose all the hypotheses of the proposition hold and that (u,v) €
K? is a non-constant solution. Let £'(, v) be the subfield of K generated by
u and v over F. We will show in the next chapter that in characteristic zero
or when (p, N) = 1 the genus of #(u, v} is equal to (N —1}(N —2)/2. When
the constant field is perfect the genus of a subfield is less than or equal to
the genus of the field. Thus, if a solution exists (N — 1)(N — 2)/2 < gg.
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Put the other way around, if gg < (N — 1)(N — 2)/2, there are no non-
constant solutions. Although this is quite elegant, the solution using the
ABC Theorem is applicable in many situations where this method fails.

By the way, the hypothesis about the constant field being perfect is
superfluous. In the next chapter we will show that in this problem we could
have replaced F by its algebraic closure F. Since algebraically closed fields
are perfect the method applies and gives the result over F and a posteriori
over £

The final result of the chapter involves the notion of S-units. Let K be
a function field with constant field F' and suppose S = {P;, Pe,..., P}
is a finite set of primes of K. An element u € K* is called an S-unit if
Supp{u) € S, L.e., only primes in S enter into the principal divisor (u). The
S-units form a group denoted by Us. The map u — {u) is a homomorphism
from the S-units into the free abelian group of divisors supported on S.
Every element in the kernel of this map has zero for its divisor. Thus,
the kernel consists precisely of the constants F*. The degree of a principal
divisor is zero. Thus the image of this map is a subgroup of the divisors
of degree zero supported on 5. The latter group is free of rank ¢t — 1. We
have shown that Ug/F™ is free of rank < t — 1 where ¢ is the number of
elements in §. This tells us something about the multiplicative properties
of S-units. The next theorem is about an additive property of S-units.

Theorem 7.19. Let K be a function fleld with a perfect constant field F.
Let S be a finite set of primes of K. Then, there are only finitely many pairs
of separable, non-constant S-units (u,v) such that w4+ v =1, {u is said to
be separable if the field extension K/F(u) is separable). If the characteristic
of F is zero, then every solution is separable. If characteristic of F isp > 0,
then the most general solution to X +Y = 1 in non-constant S-units is
(uP™ P ) where (u,v) is o separable, non-constant solution in S-units and
m e Lom >0,

Proof. Assume to begin with that (u,v) is a non-constant, separable solu-
tion to X + Y =1 is S-units. By the ABC Theorem we have

degu < 29 — 2+ Z degy P,
PeSupp(A+-B+C)

with the usual notations. Let M = >, _cdegy P. Then, the right-hand
side is < 2¢x — 2 + M since the supports of A, B, and C are in S,
Let A = 3 p.ga{P} P with each a(P) > 0. Then, degu = degp A =
Y pes o(P)degy P. This shows that for each P € 8,

a(Pydeg, P <degp A <2gx — 2+ M,

and consequently that a(P} is bounded. Since A is a divisor with support
in a finite set of primes with bounded coefficients, A must be one of only
finitely many divisors. Similarly for B and C. It follows that the number
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of possibilities for the principal divisor (u} is finite and similarly for (v).
For each of these possible principal divisors choose an S-unit u; and v;. We
suppose that 1 < i <! and 1 € j < k. Since any two non-zero elements
of K have the same divisor if and only if they differ by a constant, all
the non-constant, separable, S-unit solutions to X + ¥ =1 have the form
{au;, Bu;} with e, 3 € F. If there are more than [k such solutions, then by
the pidgeon hole principal we can find a given pair of indices (i, 7) and two
distinet pairs of constants (e, 8}, (@, 5) such that

aui+fv; =1 and o&'ui+Fv;=1.

Subtracting these two equations, we find that vu; is a constant times v;.
Substituting into the first equation shows that w; is a constant. This is a
contradiction, so we have shown there are only finitely many non-constant,
separable, S-unit solutions to X 1+ ¥ =1,

Now suppose u and v are non-constant S-units and u+v = 1. If « is not,
separable, let M be the maximal separable extension of F'(u) in . Then,
[K : M] = p™ for some positive integer m. By the corollary to Proposition
7.4 we see that v and v = 1 — u are p-th powers. Write v = u} and v =7
with 13, v; € K. Note that, in fact, 1;, v, € Ug. Since p is the characteristic
of K,1=u+v=u} +v) = 1= (u + )" which implies u;, +u, = 1.
I uy is separable, we are done. If not, repeat the process and we find two
S-units up and vy such that u; =uf, vy = vf, and ug + v = 1. Note that
U= u’; and v = vgz. Thus, if 14 is separable we are done. If not, continue
the process. This must end in finitely many steps since a non-constant in
K cannot be a p™ power for infinitely many m. This is easy to see. For
example, if 4 is not a constant, let P be a prime which is a zero of u. f
is a p™ power then p™ divides ordp(u) which bounds m. The proof is now
complete,

Corollary. Suppose K is a function field over a finite field F. Suppose N
is greater than 3 and is relatively prime to the characteristic of F. Then,
XN 4+ YN =1 has ot most finitely many non-constant separable solutions
in K.

Proof. Suppose (u,v) € K? is a non-constant solution. In the course of
proving Proposition 7.18, we proved that

(N -3 Z degy P <6gx — 6,
PeSupp(A+B+C)

where A is the zero divisor of u, B is the zero divisor of v, and C is their
common polar divisor. Assuming N > 4, this shows that for any prime P
in the support of either u or v we must have deg, P < (6gx —6) / N —3.
In a function field over a finite field there are at most finitely many primes
whose degree is below a fixed bound (in Chapter 5 we gave estimates for
the number of such primes). Let & be the set of all primes in K whose
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degree is less than or equal to (Bgx — 6) / N — 3. Then every solution
to X¥ +¥N =1 in K is an S-unit. The corollary now follows from the
theorerm.

Notice that the assumption that a solution be separable is essential since
if (u,v) is a solution, then (uw?™ ,vP™) is also a solution for all m > 1.

We have just given a taste of the possible applications of the ABC The-
orem in function fields. For more, see the paper by Silverman [2] and the
book by R.C. Mason [1].

The restriction on the constant field in the corcllary to Theorem 7.19 is
not necessary. One could apply the classical theorem of de Franchis from
algebraic geometry, which states, in part, that if K/F is a function fleld
there are only finitely many subfields M such that F ¢ M, K is separable
over M, and the genus of M is greater than 1. In the notation of the
corollary, if (u,v) is a non-constant separable solution to XV 4 YV =1,
then F(u,v) is a subfield, which satisfies these three properties (its genus is
(N-1)(N-2)/2 > 1since N > 3). Thus, we are reduced to worrying about
how many solutions (%, v) and (¥/,2') can exist with F{u,v) = F(u',v"). If
this happens, there is an automorphism of F'(u, v), which takes u to »' and
v to »'. A function field with genus greater than 2 has only finitely many
automorphisms (see Jwasawa and Tamagawa [1]). It follows that there are
only finitely many non-constant, separable solutions to XY Y% =11in
K.

The theorem of de Franchis is not easy to prove. The paper by E. Kani
(1] contains a proof of an effective version of the theorem. The bibliography
of that paper gives a number of relevant references to both the classical and
more modern treatments.

Exercises

1. Let K = F(z,y) be a function field where = and y satisfy an equation
of the form ¥2 = (X —a;)(X —ag) - -+ (X —a,,). We assume the a; are
distinct elements of F. Let the divisor of x — e; in F(z) be denoted
by Pi — Py, For each i show that iy p(;)P; = 2; where P; is a
prime of K of degree 1. Use this information to compute the genus
of K (don’t forget the role of the prime at infinity).

2. With the same notation as in Exercise 1, suppose that n > 5. Show
that each prime of K which is ramified over F(z) is a Weierstrass
point (see Exercise 10 of Chapter 5).

3. Let ! be a prime not equal to the characteristic of F and K = F(z,y) a
function field where = and y satisfy ¥ = (X —a1 )™ (X —az)™ -+ - (X -
G ). We assume that the o, are all distinct and that for each i,
{ t n;. Compute the genus of K.
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. Assume that F' contains a primitive N-th root of unity and that

N is not divisible by the characteristic of . Consider a function
field K = F(x,y) where z and y satisfy an equation of the form
XN 4+ YN = 1. Compute the genus of K.

. Let K be a function field of genus 0 and L/K a finite geometric

extension. If L/K is unramified, show that L = K. (Assuming the
constant field is algebraically closed, this is the algebraic equivalent
of the statement that the projective line is simply connected).

. Let L/K be a finite, tamely ramified, geometric extension of the

rational function field. Let P be a prime of K of degree 1. Suppose
that L/K is unramified except possibly at primes lying above P.
Show that L = K.

. Let L/K be a finite, separable, geometric extension of function fields.

Set [L : K] = n. Suppose that deg Dy, > 4(n —1). Show that
gr+1>nlgr +1).

. With the same notation and assumptions as Exercise 7, suppose J is

a prime of L of degree 1 and that 8 is totally ramified over K. Show
that 3 is a Weierstrass point.

. Let L/K be a finite, separable, geometric extension of function fields

with five or more totally ramified primes all of degree 1. Show that
each of them is a Weierstrass point. (The results contained in Exer-
cises 7, 8, and 9 are due to J. Lewittes.)

Let § be a finite set of primes of the function field K. Let 6,6 &€ K*.
Show that the equation o X +5Y = 1 has only finitely many solutions
in S-units,

Assume F is finite and let K/IF be a function field, ¢,b € K*,and N >
5 an integer not divisible by the characteristic of F'. Show that the
equation a X" +bYN = 1 has only finitely many separable solutions
in K. If at least one of the two elements ¢ and b is not a constant,

there are only finitely many solutions altogether. (Hint: Pass to the
extension field L = K( ¥/a, ¥/b).)
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Constant Field Extensions

In this chapter we investigate a very important class of extensions of func-
tion flelds, namely, constant field extensions. Let K/F be a function field
with constant field F. For every field extension F of F we want to define
a function field K E over E and investigate its properties. We shall confine
ourselves to the special case where E/F is algebraic, which is substantially
easier and which will suffice for most of the applications we have in mind.
However, the general case is both interesting and important. Expositions
of the general case can be found in Chevalley [1] and Deuring [1].

Let K be an algebraic closure of K and F' C K the algebraic closure of F
in K. If E is any field intermediate between F and F, we set K E equal to
the compositum of K and E inside K. By definition, K is finitely generated
and of transcendence degree 1 as a field extension of F, and it is clear from
this that K'F is finitely generated and of transcendence degree 1 as a field
extension of F. Thus, K'F is a function field over E. It is called the constant
field extension of K by E. It is not true, in general, that E is the constant
field of KE, but as we shall see shortly, this is often the case. The genus
of K'F is always less than or equal to the genus of K. It can be shown by
example that the genus can decrease. Once again, though, it is often the
case that the genus remains unchanged under constant field extension. The
magic hypothesis which tends to eliminate all “pathological” behavior is
that F' is a perfect field. We shall make that assumption throughout this
chapter, except when explicitly stated to the contrary. For emphasis —
unless otherwise stated we shall assume for the rest of this chapter that F
is a perfect field. As a consequence E/F will always be separable algebraic
and thus KE/K is also separable algebraic.
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The last topic we will consider in this chapter is the theory of constant
field extensions when the constant fields involved are finite, This will involve
interesting questions. Among other things we will consider how primes, the
zeta function, and the class number behave under constant field extension.
In a later chapter, Chapter 11, we will consider the behavior of the class
group and the class number of constant field extensions in greater detail.

Proposition 8.1. Assume [E : F] < co. Then, [KE : K| = |E : F]. Any
basis for E/F i3 also a basis for KE/K.

Proof. Suppose first that E/F is a finite, Galois extension. Then, by a stan-
dard theorem in Galois theory, KE/K is also Galois and Gal(KE/K) =
Gal(E/K N E). Since F is the constant field of K, EN K = F. It follows
that Gal(K E/K) and Gal(F/F) have the same number of elements, which
implies [KE : K| ={F: F].

Now suppose E/F is finite and separable. Let Fy be the smallest ex-
tension of £ in F which is Galois over £. Then [Ey : F] = [KEy : K] =
[KE, : KE||[KE : K] < [Ey: E|[E : F] = [Ey : F]. The inequality in
the middle comes about because, obviously, [KE, : KE] < [F : E] and
[KE : K| < [E : F|. We conclude that both inequalities are in fact equali-
ties. This proves the first assertion.

Suppose {1, ag, -, an} is a basis for E/F. It is easy to see that this set
also generates K F as a vector space over K. By the first part of the propo-
sition, it follows that the set is also linearly independent since otherwise

[KE:K]<n=|[E:F]

We will need the following lemma in several of the following proofs.

Lemma 8.2. (a} Suppose L/K is a finite extension of fields and thet K
contains o field F' which is algebroicolly closed in K. If 8 € L is algebraic
over F, then try x(B) € F. (b) Suppose LK is o finite extension of fields
and that O C K is o subring of K which is integrally closed in K. Ifb € L
is integral over O, then try, k(b) € O.

Proof. This is fairly standard so we merely sketch the proofs,

For part (a) one considers the minimal polynomial for 8 over K and
shows that all its roots (in some extension ficld) are algebraic over F'. Thus
the sum of the roots is algebraic over F' and in K, so the sum of the roots
is in F. The trace is an integer multiple of the sum of the roots, so it is in
F as well.

Part (b) is similar. One shows that all the roots of the minimal polyno-
mial for J over K are integral over 0. This implies that the sum of the
roots is integral over O. The sum is also in K. Since O is integrally closed,
the sum of the roots is in ). The trace is an integral multiple of the sum
of the roots so it is also in O,

Proposition 8.3. E s the exact constant ficld of KE.
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Proof. We have to show that any element of KE which is algebraic over
E is actually in E.

Assume first that [E : F| < oo, and that {a;,az, -+ ,®,} is a basis for
E/F. Suppose 8 € KE is algebraic over E. By Proposition 1, we may write
B = ¥, zsoy where the z; € K. Multiply this relation by a; and take
the trace of both sides. We find

ﬁI‘KE/K(O:jﬁ} = ZtrKE/K(aja.i) r; 1<ij<n.
i=1
Since 8 is algebraic over E and F is algebraic over F, it follows that 8
is algebraic over F. By Lemma 8.2, part (a), trgp,x(o;8) € F. Thus, by
Cramer's rule, we find each #; € F. (We have used det(trgg/x (i) =
det(trg; p{cucr;)} # 0, which is true because E/F is separable). It follows
that 8 =37 | ia; € E.

Now suppose that E/F is algebraic but not necessarily a finite extension.
Since 3 € KF we must have 8 € KE; for some F C E; C E with
[Ey : F] < co. By enlarging E,, if necessary, we can suppose £ is algebraic
over E). By the first part of the proof, 8 € F;, which is contained in E.
The proof is complete.

Our next task is to show that constant fleld extensions of function fields
are unramified extensions. This will be an easy consequence of the next
lemma.

Lemma 8.4. Let E/F be a finite extension with {o1, 00, -+ ,an} a basis
Jor E over F. Let P be a prime of K and Op the corresponding valuation
ring. Let Rp be the integral closure of Op in KE. Then {a1,02, - ,an}
is a free basis for Rp considered as an Op module.

Proof. Since F' C Op by definition, and each «; is algebraic over F, it
follows that each «; is integral over Op.

Suppose b € Rp. By Proposition 8.1, we can write b= 3. | 0, where
each z; € K. Multiply this relation by ¢; and take the trace of both sides.
One finds

tI‘KE/K(CEjb) = ZtrKE/K(ajai) T; 1<i<n.
i=1

The left-hand side of these equations are in Op by Lemma 8.2, part (b).
Again invoking Cramer’s rule and using the fact that the determinant of
the coefficient matrix is a non-zero element of F’ we conclude that each z; is
in Op. Thus, {a,as,- - ,a,} spans Bp over Op. It is linearly independent
over Op (being a basis for KE over K} so it is a free basis for Rp over Op
as asserted.

Proposition 8.5. Suppose E/F is a finite extension. Then, KE/K is
unramified at all primes.
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Proof. Let P be a prime of K, Qp its valuation ring, and Rp the integral
closure of Op in KE. By Lemma 8.4, any field basis {a, a2, -+ ,a,} for
E/F is a free basis for Rp considered as an Op module. The discriminant
ideal ®g, s0, is generated by det(try g s (cxc;)}), which is a non-zero ele-
ment of ¥. Thus, 95,0, = Rp. It follows by Proposition 7.9 of the last
chapter that KX E/K is unramified at every prime above P. Since P was
arbitrary, the proof is complete,

[t is possible to talk about infinite algebraic extensions being unrami-
fied. Once these definitions are given it can be shown that Proposition 8.5
remains valid even without the restriction that E/F be a finite extension,

Now that we know KE/K is unramified, we want to find out how the
degree and dimension of a divisor behaves in constant field extensions. For
notational convenience, set L = K F. Let A be a divisor of K. We want to
compare degy ip/5 (A) with degg A. This will turn out to be fairly easy.
More difficult will be the comparison of I(iy,x(A)) with [{A). We begin
with two lemmas.

Lemma 8.8. Let {z1,23, - ,2,n} C K be linearly independent over F.
Then, considered as a subset of KE, it remains bnearly independent
over B

Proof. Suppose ¥ .-, f;x; = 0 with each 5; € E. Assuming E/F is a finite
extension, let {a, a9, - ,0n} be a basis for E/F. Then, 3; = Ell it
with ¢;; € F. Substituting and interchanging the order of summation yields

mn m
Zcﬁxi a;=0.
=1 \i=1

)

Using Proposition 8.1, once again, we find 30", ¢;;z; = 0 for each j with
1 < j < n. Since the z;’s are linearly independent over F' by assumption,
it follows that all the ¢;; are O which implies that all the 8; = 0.

If E/F is not finite, suppose 3 .-, fz; = 0 with each §5; € E. Let
E; be the field obtained from F by adjoining the elements of the set
{B1, B2, + ,Bm}. E1 is a finite extension of F. Write L; = K E;. Working
in this field, and using the first part of the proof, we conclude that all the

B.=0.

Lemma 8.7, Let L/K be o finite extension of function fields and P o
prime of K. Suppose that {P1,P2,--- By}, the primes above P in L,
are all unramified over P, Let n € Z be a given integer. Finally, suppose
ordg, (b} > —n for all i with 1 < i < g. Then ordp(try g (b}) > ~n.

Proof. Let 7 € K be a uniformizing parameter at P. Then, since each B,
is unramified over P we have 1 = ordp(m) = ordg, (n) for 1 < i < n.
The inequalities ordgp, (b} > —n are equivalent to ordg (s7b) > 0. It
follows that #™b is in the intersection of the valuation rings Op, where
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1 < i < n. This intersection is precisely Rp, the integral closure of Op
in L. Thus, #™b is integral over Op and by Lemma 8.2, part (b), we have
trrsx (#"b) € Op. It follows that ordp(w”-trL/K(b)) > 0 and this is equiv-
alent to ordp(try, k(b)) > ~-n as asserted.

We are now in a position to answer the questions raised earlier.

Proposition 8.8. Let E/F be a finite algebroic extension, K a function
field with constant field F', and L = KE. Let A be o divisor of K. Then,

(e} degy if/x(A)=degy A .

{(B) (ipsxc(A)) =1(A).

Proof. By Proposition 8.3, F is the exact constant field of L = KE. By
Proposition 8.1, {L: K] = [E : F]. Part {a) now follows immediately from
Proposition 7.7.

To prove part (b), we recall that [(4;,/f (A)) is the dimension over £ of the
vector space L{ir;x(A)) = {ve€ L | (v)r + ir;x(A) > 0}. By Proposition
7.8, ik ()i = (x) and it follows immediately that L{A) C L(i,;x(4)).
Let {x1,z3.- - ,z4} be a basis for L(A}. This set is linearly independent
over F', so by Lemma 8.6, it is linearly independent over E. Consequently,

(A) < Ui (4)) -

‘The reverse inequality will follow if we can show that {1, s, - ,z4} gen-
erates L(igk(A)) over E, and this is what we will prove,
Let z € L(i /¢ (A)) and let, as usual by now, {ay, g, -+, an} be a basis

for E over F'. By Proposition 8.1, we can write z = Z?:l y;o; wherey; € K
for 1 <4 < n. Multiply both sides by a; and take traces to arrive at

troxla;z) = trprf{oge) e 1<ji<n.

i=1

Suppose we can show that the trace of any element in L{ip,x(4)) is in
L{A). Then the left-hand side of these equations are in L{A) and by
Cramer’s rule, each y; € L{A). It follows that each y; is in the F-linear
span of {z1,Za, -+ ,24} and so z is in the E-linear span of {z;, z2, -, za}.

It remains to prove that v € L(iy/x(A)) implies try /g (v) € L{A). The
main tool in doing this will be Lemma 8.7. We begin by recalling that
v € L{ig; k(A))} if and only if for every prime P of L the following inequality
holds:

OI‘dgp(U) > -—OIdm(iL/'K(A)) .
Let P be the prime of K lying below B. Since L/K is unramified by

Proposition 8.5, we have ordy(ip x(A)) = ordp(A). The condition for v
to belong to L(ir;x(A)}) can be rephrased as follows. For all primes P of
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K let {1, P2, -+, Py} be the set of primes of L lying above P. Then, for
each i with 1 <1 < ¢ we have

ordg, (v} = —ordp(A4) .

By Lemma 8.7, this implies that ordp(try/x(v)) = —ordp(A) for all primes
P of K. These are exactly the conditions for try, sk (v) to belong to L{A),
so the proof is complete.

Proposition 8.8 provides us with all the background we need to determine
how the genus behaves in constant field extensions.

Proposition 8.9, Let E/F be a finite eztension and L = KE. Then the
genus of L, considered as a function field over E, is equal to the genus of
K. (Once more we emphasize that, by hypothesis, F' 15 perfect).

Proof. Let g be the genus of K and ¢’ the genus of L. Choose a divisor
A of K such that degp(A4) > max(2g — 1,2¢’ — 1), e.g., A = nP, where P
is a prime divisor and n is a sufficiently large positive integer. By Propo-
sition 8.8, part (), we have degy (iy/x (A)) = degy (A). By Corollary 4 to
Theorem 5.4 we have

HA) =degp(A) —g+1 and (ig x(A)) = deg,(ip;x{A)) —¢ +1.

By Proposition 8.8, part (b), we have {(ig;x(A)) = I(A4). It follows that
—g+1=—-g+1landsog=g"

In the last proposition we could have assumed that E/F is algebraic, but
not necessarily finite. The conclusion makes sense and is correct. To prove
this in complete generality necessitates a discussion of extension of divisors
in infinite, algebraic constant field extensions. We will sketch how this goes
after we investigate the way in which primes split in finite constant field
extensions.

Proposition 8.10. Let E/F be a finite extension and L = KE. Let 'R be
a prime of L and P the prime lying below it in K. Define By = Ogp/P
and Fp = Op/P. Then, Eqp is the compositum of Fp and E.

Proof. Let @ € Eg and let w be an element of O representing @. Let’s
consider {1 = P,Pa,--- , Py} , the primes in L lying over P. By the
weak approximation thecrem, we may find an element o’ € L such that
w =w (mod PB) and w’ =0 (mod B;) for 2 < i < g. Then ' € Rp, the
integral closure of Op in L. By Lemma 8.4, any basis {0, aq, -+ , 0} of
E/F is automatically a free basis of Rp considered as a module over Op.
Thus,

k)
w = Zmi a; with z; € Op .
i=1



8. Constant Field Extensions 107

Now reduce both sides modulo P and we see that @ is in the compositum

of Fp and E.

By a small variation of this proof, we can give a very explicit way of
understanding how primes split in a constant field extension.

Proposition 8.11. With the notation of the previous proposition, suppose
Fp = F[8] and that h(T) € F[T] is the irreducible polynomial for 8 over
F. Let

WT) = h(T)ha(T) - - he(T)
be the prime decomposition of h(T}) in E[T]. There are exactly g primes

{B1, P2, , By} of L lying above P. The numbering can be chosen in
such a way that for 1 <1 < g we have deg; B, = deg hi(T'). Moreover,

g
degy P =Y _deg, P: .
i=1
Proof. Lemma 8.4 can be restated to say that Rp = Op @5 E. Reducing
both sides modulo P yields, Rp/PRp = Fp ®r E. By hypothesis, Fp =
Fld) = F[T]/(h(T.)). Thus,

g
Rp/PRp & Fp®r B2 E[T)/(MT)) = @ E[T)/(h{T)) .
=1

The right-hand side is a direct sum of fields. Let M; be the maximal ideal
which is the kernel of projection on the i-th factor. Let p; be the maximal
idesl of Rp which goes to M; under Rp — Rp/PRp followed by the above
sequence of isomorphisms. Set P; equal to the maximal ideal of the ring
“Rp localized at p;,” i.e., the ring Ogp . A simple check shows that the set
of primes of L given by {J1,P2,---,P,} has all the properties asserted,
except perhaps the last one about the sum of the degrees. To prove this,
simply notice that 3 ;_, degy, B = 3.7, deg ;(T) = deg h({T) = degg P.

Corollary. Suppose Fp = F[T]/(h(T)) and that E' is an extension of F of
degree n in which h(T) decomposes as a product of linear factors. Then in
KE the prime P splits into n primes of degree 1

Proof. Clear.

The proof of the above proposition was most easily accomplished by
choosing a primitive element {which exists since Fp/F is separable) for the
field extension Fp/F. However, the situation can be described in a more
canonical way without having to make any choices. Consider the algebra
Fp ®p E over F. The proof shows this algebra is a direct sum of fields, L;,
say, each of which is a field extension of E.

9
Fror E2PL;.

=1
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Then there is a one-to-one correspondence between primes 9P;, lying above
P in K E and the fields L; with the property that the residue class field of
9P, is isomorphic to the field L.

We have been assuming that the constant field extension E/F is finite,
but this is not necessary. Let E/F be an algebraic, but possibly infinite,
extension of fields. Using properties of tensor product and Lemma 8.4,
one can prove that the integral closure Rp of Op in KE is isomorphic to
Op @p E, the map being w ® 0 — aw € Rp. The statement and proof of
Proposition 8.11 can now he repeated without change.

As a special case, let £ = | an algebraic closure of F, Every polynomial
in F[T) splits into a product of linear factors in F[T7]. Consequently, every
prime P of K splits into degy P primes of degree 1 in K'F. This will be
very useful later when we discuss how to use results about the geometry of
algebraic curves to give us information about the arithmetic of algebraic
function fields.

As an illustration of the material developed in this chapter we will now
discuss the particular case when the constant field F = [F, a [inite field
with ¢ elements. Let F be an algebraic closure of F and F,, the unique
intermediate extension such that [F,, : F] = n. Set K,, = KF,,.

We recall some definitions from Chapter 5. We set a,,,{K) equal to the
number of primes of degree m, &, (K) equal to the number of effective
divisors of dagree m, and h(K) equal to the number of divisor classes of
degree zero, i.e., the class number of K. The latter number was dencted kg
in Chapter 5. These numbers are all finite. We would like to compare them
with the numbers am{(Ky), b (K,), and h(K,). We also want to compare
the zeta function of K, with that of K. Of course, all these questions are
interrelated. There are connections between this material and Iwasawa’s
theory of cyclotomic number fields. We will discuss these connections in
more detail in Chapter 11.

The first thing to do is to make precise the way in which primes of K
split in K,. Let P be a prime of K and ¥ a prime lying above it in K,,. By
Proposition 8.10, the residue class field of B, is the compositum of Op /P
and F, inside Og/P. To compute the compositum and its dimension over
F we can invoke the following simple lemma.

Lemma 8.12. The composttum of F, and F,,, is Fi, . where [n,m] is the
least common multiple of n and m.

Proof. Let Fj, be the compositum of F,, and F,, inside F. Since F,,,F,,, €
F,, we have n,m | h, which implies [, m] | k. Thus, F(, rmy C F. On the
other hand, since n, m | [n,m], we have By, Fr, C Fiy, o, and so Fp, € Fy, ).

Proposition 8.13. Let P be u prime of K. Then P splits into (n,degy P)
primes in K,,. Let P be a prime of K,, lying over P. Then

_ degKP _
degK,,‘»B_m and f(P/P) =

n

(?’l,, degK P) .
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Proof. By definition, the dimension of Op/P over F is degz F. Thus,
by the above lemma, the compositum of Op/P and F, inside Ogp /P has
dimension [n, degy P| over F. By Proposition 8.10, this compositurmn is equal

to Og /P, and so

n,deg, P deg, P
Ao, ¥ = 10w /B 1 Bl = ) N {n de};k Py

H)

The last equality follows from elementary number theory — for any two
non-zero integers n and m, nm = (n, m)n, m].

The relative degree f{/P) is the dimension of Og /P over Op/ P, which
in this case is [n,deg; P]/degp P =n/(n,degyg P).

Finally, we recall that K, /K is unramified. Since each prime B over P
has relative degree n/(n,degy P) and [K,, : K] = n we see the number of
primes above P is (n, degy P} by Theorem 7.6.

Corollary. A prime P of K splits into degy P primes of degree I in K,
if and only if degy P divides n.

Proof. This is immediate from the proposition.

Proposition 8.13 is the key to comparing the zeta function of K with
that of K;. The only other piece of information needed is provided by the
following elementary iemma.

Lemma 8.14. Let {, € C be a primitive n-th roof of unity and m o positive
integer. Then

n—1
[T - Gram) = @ — ubrmyom.
i=0

Proof. First consider the case where m = 1. The result in this case follows
from the identity T — 1 = [ (T — ¢}) by making the substitution
T =u~! and simplifying.

In the general case, let m' = m/(n,m} and n’ = n/(n, m). It is easy to
see that (7 is a primitive n’ root of unity. Call it {,-. Every ¢ in the range
0 <4 < n can be uniquely represented in the form ¢ = kn' + r, where
0<k<{nm)and 0 <r <n'. Thus,

(nym)—1x'—1

H(] — Cimum) — H H (1 _ ;,um) — (1 _ umn'](n,m} .
i=1 h=0 =0

Finally, mn’ = mn/(n,m) = [n,m].
Theorem 8.15. Let v =g~ and (x(s) = Zx{u). Then,

n—1

k() = Zi, (w™) = [] Zx (&) -

i=0
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Proof. Since the constant field of K,, is [F,, which has ¢™ elements, we

have Cx, (8) = Zx,.(u), where o' = (¢"*)"* = ¢7™ = u". Thus, {k, (s} =

Zg, (u™), which proves the first equality in the statement of the theorem.
Setting dp = (n,degy P) for each P € Sk, we have

(o (s) = [Ja = Np)~t =[] - NP~*FF )2
B P

where 92 ranges over Sk, and P ranges over Sg. We have used Proposition
8.13 and the fact that NP = NPTP/F) Since NP = ¢%8x ¥ by definition,
the last product can be rewritten as

n—1
H{l i uﬂde!}KP/dP)—dP — H H(l _ C:;degk Pudegk P)—l .
P P

i=0

Here we have used Lemma 8.14 with m == degy P. Recall that Zx(u) =
TIp{1 — wiex P)~1 Now, interchanging the order of the products on the
right-hand side of the above identity completes the proof.

By the proof of Theorem 5.9, Zg(u) = Ly (u)/(1 — u}(1 — qu) where
Lx(u) is a polynomial of degree equal to twice the genus ¢ of A. By
Proposition 8.9, K, has the same genus as K. Let ' = «", as above, and

we have
Lk, (u)
(L—w)(l ~qru)

Proposition 8.16. Let Ly (u) = 1’[32.‘"':1(1 — mju) be the foctorization of
Li(u) in Clu). Then,

Zx, (W) =

2g
Lg (W)= H(l — ') .
j=1

Proof. Using the definitions and Theorem 8.15, we find

Li,(w™) Y Lr(Gw
L —um)(1—grum) 130 (- Clu)(1 — qliu)

For any complex number 7 we have the identity [[7 ) (1~¢inu) = 1-7"u™.
Thus,
Li,(w®)  ILL.(—ntu)
(LT-u)(I—gum) ~ (1—um)(l—gru)
The proposition follows upon canceling the denominators.
Corollary. h(K,,) = [T*,(1 — «?).

i=1
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Proof. Applying Theorem 5.9 with K replaced by K, we find Lg (1) =
h(K,}. The result follows upon substituting »’ = 1 in the proposition.

By the Riemann Hypothesis, |m;| = /g for 1 < 1 < 2g. Using this and
the corollary we get the following tower bound for A(K,}):

h(Ky) 2 (qn/2 - 1]29 .

This shows that A{(K,,) grows rapidly with n. A more precise investigation
of how h{K,) varies with n is possible. The results one obtains lead the way,
by analogy, to Iwasawa theory in algebraic number fields (see Iwasawa [3]).
As stated earlier, we will discuss these matters in greater detail in Chap-
ter 11.

The next proposition gives some insight into how the numbers by, (K,)
grow with n,

Proposition 8.17. b,,(K,) = h(K, )M— , provided m > 29 — 2.

Proof. We proved earlier (see the remarks following Lemma 5.8) that if
m > 2g — 2, where g is the genus of K, that

qm—g+1 -1
by = —_—

() = (i) T
In this equality, replace K by K, and ¢ by ¢™ (since the constant field of
K, has ¢" elements). The resulting equation is valid because the genus of
K, is the same as the genus of K {Proposition 8.9).

In Chapter 5 we provided three different description of Zg (), namely,

Zr(w) = bu(K H(l—u ~2a(K) = oxp (): E’%@um)
m=0 m=1

By definition, N,,(K) = Zd|m dag(K) and we showed in Chapter 5 that

Nn(K) = g™ +1 - El_l ™. Although these numbers are clearly very
important we did not give an interpretation of them. We can do so now.

Proposition 8.18. N, (K} is equal to the number of prime divisors of
K, of degree 1.

Proof. It is interesting to note that N (K) = a1(K), so the result is
certainly true when m = 1.
To prove the general case, we invoke Proposition 8.18.

172,01 — w7u’) s "
- o 1 b (K 1!
A=)l —qmu) Zren () é *
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Compute Zj {0)/Zkm(0) in two different ways using these expressions.
We find

2g
gt 1=y a = by (Kp) .
i=1

The left-hand side is just N,,(K) and the right-hand side is the number
of effective divisors of degree 1 in K,,,, which is the same as the number of
prime divisors of K, of degree 1.

We have proved N, (K} = b (K,,) = 01(K,,) = Ni(K,,). Assuming
some algebraic geometry we can reword the result as follows. Let X be an
absolutely irreducible, non-singular curve defined over a finite field ¥ with
q elements. For each m > 1 let N} (X)) be the number of rational points on
X over B, ie., N/ (X) = #X(Fp.). It can be shown that N/ (X) is equal
to the number of prime divisors of degree 1 belonging to the function field
Fn(X) of X over Fp,. This means that N (X} = N,{K) by the above
proposition, where K = F(X). Thus, the zeta function of the function field
of X, K = F(X), is equal to exp(} - _; NJ,{X)/m w™). This approach
enables one, in a fairly obvious manner, to define the zeta function of
a variety X of any dimension over a finite field by using the numbers
#X(Fm). A beautiful exposition of the general theory is given in Serre [1].

Consider the identity Ny, (K} = N1(Ky). Let’s apply this to the field
K, rather than K. It is easy to see that (K,)m = Knm and it follows that

N [Kn) = N1 (Knm) = Na(Kp) -

This identity allows us to derive an interesting expression for the number
of primes of degree m in the field K, i.e., an(Ky).

Proposition 8.19. an(Ka) =m™' T, w(d)at(Knmsa) -

Proof. From the definition, N,,(K,,) = Zd}m day{Ky). Using Mébius in-
version, we see that man,(K,,) = Zdlm,u(d)Nm;d(Kn). From the relation
Nonsa(Kn) = Ni(Knmya) = a1{Knmya) the result follows.

There is much more to be said about the fascinating sequences of numbers
we have introduced, but it is time to break off this development for now
and to pass on to other matters.

Exercises

1. Let K = F(z,y) be the function field associated to the curve Y? =
F(X), where f(X) is a square-free polynomial of degree n, Assume
that char(¥) # 2. Compute the genus. (Hint: Reduce to the case
where f(X) is a product of linear factors and apply Exercise 1 of
Chapter 7).
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. Generalize Exercise 1 to the case where { is a prime, f(X) is {-th
power-free, | { char(F), and the curve is ¥! = f(X).

. Consider the curve XV 4 Y& =1 a:nd the associated function field
F(z,y). Assume char(F) { N. Compute the genus of K.

. Let Fy be a field of characteristic p > 0 and set F = Fo(T), the ra-
tional function field over Fyy. Consider the function field K = F(z,y)
over F, where = and y satisfy the equation Y = X? — T Prove that
the genus of K is (p — 1}/2 (use the Riemann-Hurwitz theorem ar-
guing via the extension K/F(z)). Now, extend the constant field to
F' = F(YT). Show that K' = F'(z,y) has genus 0. This does not
contradict Proposition 8.9 since the extension £”/F is purely insep-
arable.

. Let E/F be a finite Galois extension with group G. Identify & with
the Galois group of KE/K. Let B be a divisor of K F which is in-
variant under G, ie., B8 = B for all ¢ € G. Show that L(B) has a
basis consisting of elements of K. (Hint: Use Propostion 9.2 of the
next Chapter to show that B = ixp/x B for some divisor B of K.
Then invoke the proof of Proposition 8.8).

. Let K/F be a function field over a finite field and let Lg(u) =
H?il(l — m;u) be the numerator of the zeta function of K. Assume
that there is a positive constant C such that for all # > 1 we have
|N-(K)—q"—1| < Cqz. Prove that |m;| = /g for all i. (Hint: Expand

i)/ L (u) in a power series about « = 0 and consider the radius
of convergence).

. Let K/F be a function field of genus 1 over a finite field. Show that
Ny (K) determines all the other numbers N,(K).

. Generalize the last exercise as follows. Let K/F be a function field
of genus g > 1 over a finite field. Show that the numbers N;(K},
N3(K}, ..., Ng(K} determine all the other numbers N,.(K).
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Galois Extensions -
Hecke and Artin [-Series

In Chapters 7 and 8 we discussed finite extensions L/K of algebraic func-
tion fields. We propose to continue that discussion here under the special
assumption that the extension L/K is Galois. To simplify the discussion
we continue to assume that the constant field F' of K is perfect.

After proving a number of basic results in the general case, i.e., ' being
perfect but otherwise arbitrary, we specialize to the case where F = F,
a finite field with g elements, Then, for every prime P of L unramified
over K we associate an automorphism (%, L/K) in G = Gal(L/K) called
the Frobenius automorphism of 98. This is one of the most fundamental
notions in the number theory of local and global fields. It will be seen
that if P is a prime of K, unramified in L, the set of automorphisms
(PL/K} =: {(B,L/K) | B above P} fill out a conjugacy class in G.
Suppose C C (7 is a conjugacy class. One can ask how big is the set of
primes P € Sk such that (P, L/K) = C? The answer to this question is
given by the T'chebotarev density theorem. We will discuss two forins of this
important result, one involving Dirichlet density and the other involving
natural density. The key tool will be Artin L-series and their properties.

Let x be a complex character of the group G = Gal(L/K). E. Artin
showed how to associate an L-function, L(s, x), with such a character (see
Artin {2]). It is defined and analytic in the half plane {s € € | R(s} > 1}.
Artin was able to show that L(s,x) can be analytically continued to a
neighborhood of s = 1 and that if ¥ is irreducible and ¥ # ¥, the trivial
character, then L(1,x) # 0. It is this property which will enable us to
prove the version of the Tchebotarev density theorem formulated in terms
of Dirichlet density.
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Artin conjectured that his L-series can be meromorphically continued to
the entire plane and that if x is non-trivial and irreducible then L{s,x) can,
in fact, be continued to an entire function on the whole plane. R. Brauer
was able to prove the first part of this by means of a deep theorem about
group characters. His proof works in both number fields and function fields.
The second part of Artin’s conjecture is still an open question in number
fields. It is one of the most important open guestions in that area. In the
function fleld case, the matter was resolved by A, Weil {1] in the same
small book in which he first proved the Riemann hypothesis for curves over
a finite field. He showed, subject to a small technical restriction {which
we will discuss), that if x is non-trivial and irreducible, then L(s,x) is a
polynomial in g™, On the basis of this result we will give a proof of the
version of the Tchebotarev density theorem formulated in terms of natural
density.

The reader will not fail to notice that the above discussion has the same
flavor as the material in Chapter 4 where we discussed Dirichlet L-series
and the Dirichlet theorem about primes in an arithmetic progression. How-
ever, in that chapter there was no discussion of Galois groups and charac-
ters on them., We considered the groups (A/mA)* and to a character on
such a group we associated an L-series. Is there any connection between
the two types of L-series? The answer is yes, but the explanation is ex-
tremely subtle and difficult. It is by trying to answer this question in the
most general context that Artin was led to the famous Artin reciprocity
law, perhaps the deepest and most far-reaching theorem in all of algebraic
number theory. We will attempt a general discussion of these matters, but
mainly without proofs. We will investigate what happens when Gal{L/K)
is an abelian group. This will lead to a rough statement of Artin’s reci-
procity law. When G{L/K) is abelian and L/K is unramified we will give
a proof of Weil's result using Artin’s reciprocity law. In general, we will de-
fine Hecke L-functions for characters of finite order (Dirichlet L-series are
a special case of these) and state some of their properties without proof.
Artin reciprocity allows one to show that for one-dimensional characters
Artin L-series L(s, x) “are” Hecke L-series and, in the abelian case, Artin’s
conjecture about his L-series being entire will follow from this.

It is time to begin!

We assume L/K is a finite, Galois extension of function fields and denote
the Galois group by G = Gal(L/K). As usual, let F be the constant field
of K and F the constant field of L.

Proposition 9.1. The field extension E/F is Golois and the map G —
Gal(E/F) obtained by restriction of automorphisms to E is onto. Let N C
G be the kernel of this map. Then the fized field of N is KE, the mazimal
constant field extension of K contained in L.
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Proof. If 0 € G and « € F, then the fact that « is a root of a polynomial
with coefficients in F' shows that oo must be a root of the same polynomial
since o fixes F. Thus, ca is algebraic over, F, which implies oo € E. This
shows that the restriction map takes G to the group of automorphisms of
E which leave F fixed, namely, Aut(E/F). Let G' be the image of this map.
Then, the fixed field of G’ is E N K = F. This proves E/F is Galois and
that &' is its Galois group.

It is clear that NV leaves K F fixed, so to prove K E is the fixed field of N
it suffices to show |N| = [L : KE]. Since G/N 2 G’ we see |G| = |N||G]
which by Galois theory is the same as [L : K| = |N|[E : F]. By Proposition
81, [E: F|=[KE: K] and it follows that |N| = [L : KE] as required.

Let B be a prime of L lying over a prime P of K. Recall that P is the
maximal ideal of a discrete valuation ring Og which contains the constant
field & and whose quotient field is L. Let ¢ € G. Then oOy is a dvr with
the same properties and its maximal ideal is o, Thus, o} is another prime
of L and it is easy to verify that it also lies above P. The group G acts as
a group of permutations on the set of primes above P.

Proposition 9.2.- Let {;,%2,- - , By} be the set of primes of L lying
above P. The Galois group G acts transitively on this set.

Proof, For each 7 with 1 < ¢ < g we need to show there is a ¢ € G such
that O'ml = ’.‘-p;,.

Consider the set {oP; | o € G}. Suppose some P; is not in this set, P,
say. We will derive a contradiction.

By the weak approximation theorem we can find an element z € L such
that =0 (mod P,) and z =1 (mod P;) for ¢ # g. Since these conditions
imply £ € Oy, forall 1 <i¢ < g, we have x € Rp the integral closure of Op
in L. It follows that oz € Rp for all ¢ € G and Haec cx € RpNK =0p.
Since x € Py N Rp, we have, [[,.o0x € PN Rp NOp = P C P,. Since
P, is a prime ideal, there is 2 7 € G such that 7o € P, and so z € 77 P,
which contradicts z = 1 (mod 7719,).

Proposition 9.3. We continue to use the notation introduced above, except
that we now denote the number of primes in L lying above P by g{P). We
have f(PBi/P) = f(B;/P) and e(P;/P) = e(P;/P) for alll < 4,5 < g.
If we denote by f(P) the common relative degree and by e(P) the common
ramification indez, then e(P)f(P)g(P) =n = [L: K|. In particular, e(P)
f(FP), and g(P) divide n.

Proof. For a given pair i and j there is an automorphism o £ G such that
o'P; = P;. Map Og, /Pi > Op, /P; by © = 7w. It is straightforward to
check that this map is well defined and gives a field isomorphism which
leaves Op /P fixed. Tt follows immediately that f(P:/P) = F(B;/P) as
asserted.
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Similarly, if POg, = P%, applying o to both sides yields POg, = PB2.
Thus, e(B:/P) = e(PB;/ P).

By Theorem 7.6, Efg;) e(Pi/P)F(B:/ P) = n, so the last two assertions
follows from this and the first part of the proof.

Let P be a prime of L lying over a prime F of K. We now define two
important subgroups of G = Gal(L/K):

Z(B/P) = {oeCG|oP="P}and
IP/P) = {7€G|tw=w (modP), Ywe Op}

The first is called the decomposition group of T over P and the second is
called the inertia group of P over P.

Lemma 9.4. The order of Z(W/P) is e(B/P)F(P/P).

Proof. By Proposition 9.2, the group G acts transitively on the set of
primes of L lying above P. The group Z['B/P} is the isotropy group for
this action. From this it follows that [G : Z(/P)] = g(P), the number of
primes in L above P. By Proposition 9.3, we have e(B/P) f(B/P)g(P) =
(L: K] =#G. Thus, #Z{(P/P)=e(P)f(P).

Let M C L be the fixed field of Z{PB/P) and p the prime in M lying
below . M is sometimes called the decomposition field of .

Lemma 9.5. With the above notation, ‘B is the only prime in L lying above
p. Moreover, e(p/P) = f(p/FP) =1 and (M : K| = g(P).

Proof. The first assertion follows by applying Proposition 9.2 to the Ga-
lois extension L/M and using the definition of the decomposition group.
By Lemma 9.4, #Z{P/p) = e(B/p) f("B/p). On the other hand, Z(WB/p) =
Z(PB/P) and the order of this group is e{B/P)f(P/P). The fact that
e(p/P) = fip/P) = 1 follows from this since e('P/P) = e(B/ple(p/P)
and f(B/P) = f(B/p)f{p/P). Finally, the index relation [L : K] =
[L+ M][M : K], together with [L : K} = #G and [L : M} = #Z{P/P),
implies the last assertion that [M : K] = g(P).

Let’s reintroduce the notation Fg for the residue class field of Oq and
Fp for the residue class field of Op.

Theorem 9.6. Suppose L/K is o Galois ertension with G = Gal{L/K)
and that B is o prime of L lying over a prime P of K. Then the exten-
sion Eg/Fp is also a Galois extension. There is o natural homomorphism
from Z(B/P) onto Gal(Eg/Fp) and the kernel of this homomorphism is
I/ P). The inertia group is o normal subgroup of the decomposition group
and #1(P/F) = e(P/P).
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Proof, Since Fp is perfect, there is an element 8 € Ogp such that Eg =
Fp(@) where § is the residue class of # modulo B. By using the weak
approximation theorem, if necessary, we can assume that # is integral over
Op. As above, let M be the fixed feld of Z{PB/P) and f(X) € M[X]
the minimal polynomial for & over M. Since # is an integral element, the
coefficients of f(X) are in Oy = Op N M. Since L/M is a Galois extension,
f{X) splits into linear factors in , i.e., f(X) | i (X —8;) where 8 = ;.
Reducing modulo P , we have f(X) = [[iz,(X — 9 . The coefficients of
F(X) are in the residue class field of Oy, which is the same as Fp since
f(p/P) = 1 by Lemma 9.5. This shows that Eg = Fp(f) is the splitting
field of f(X) and so Ey is Galois over Fp as asserted.

If ¢ € Z(P/P) and © € Fyp, define & by the equation (@) = sw. It
is easy to check that & is a well-defined mapping from Eyp to itself which
is, in fact, an automorphism leaving Fp fixed, i.e., & € Gal(Eqp/Fp). The
map ¢ to & is a homomorphism and the kernel of this homomorphism is
I{B/P). Again, all this is straightforward from the definition. It remains
to show that the homomorphism which takes ¢ to & is onto Gal{Ey/Fp).

Let A € Gal{Eq/Fp). Let h{X) € Fp[X] be the irreducible polynomial
of 8 over Fp. Then MA@ is also a root of h(X). Since 4 is also a root of f{(X)
(see the first paragraph), R(X)|f(X). It follows that A@ = §; for some root
6; of f(X). Since f(X) is irreducible over M, there is a o € Z(B/P) such
that o = ;. Thus, 6 = Ad. From this, and the fact that # generates B
over Fp we can conclude that A = 7. This proves the onto-ness. We have
shown that the following sequence is exact.

(e) = I{P/P) — Z(B/P) - Gal(Ep/Fp) — (e) .

The middle term has order e("p/P)f(P/P) and the end term has order
F(B/P). One concludes that #1{P/P) = e(B/P).

Corollary. If B/P is unramified, then Z{P/P) = Gal{Ey/Fp).

We continue with two propositions about how the decomposition groups
and inertia groups behave “functorially.”

Proposition 9.7. Suppose L/ K is o Galois extension of function fields and
suppose P is a prime of L lying above a prime P of K. Let 0 € Gal(L/K).
Then, Z(oPB/P) = cZ{(P/P)o=" and I{oP/P) = oI(P/Plo~1. In par-
ticular, all the decomposition groups of primes above P in L are conjugate
and similarly for the inertia groups.

Proof. By definition, 7 € Z{¢B/P) if and only if 76 = ¢'P. This is so if
and only if o™ 7B = P, i.e., if and only if e~ 170 € Z(P/P), which holds
if and only if 7 € ¢Z(P/P)o~. This proves the first assertion. The proof
of the second is entirely similar.

To prove the last assertion, it is enough to recall that by Proposition 9.2,
all the primes above P are of the form o for ¢ € Gal(L/K).
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Proposition 9.8. Let L/K be a Galois extension of function fields and
M an arbitrary intermediote field. Let G be o prime of L and p ond P the
primes of M and K respectively which lie below . Set H = Gal(L/M).
Then,

(&) Z(B/p}=HNZP/P} and I(P/p)=HNIP/P).

Now, wssume H is ¢ normal subgroup and that p is the restriction map

from Gal(L/K) — Gal(M/K). Then,
(i) p(Z(B/P))=Z{p/P} and p(I(P/P))=1(p/F).

Proof. Part {¢} of the proposition follows directly from the definitions.

To prove part (it} we first remark that from the definitions it is easy
to prove that p maps Z(P/P) to Z{(p/p). The kernel of the this map is
Z(P/Pyn H = Z(P/p). Thus, the order of the image is

e(B/PYF(B/P)/ e(B/p)F(B/p) = elp/P)f(p/P) = #Z(p/P).

This proves the map is onto.
The proof for the inertia groups is entirely similar.

Let L/K be a finite extension of function fields, and P a prime of K. We
say that P splits completely in L if there are [L : K] primes ahove it in L.
From the relation Y7 _, e;f; = n it follows that if a prime splits completely
in L, every prime above it is unramified and of relative degree 1. Suppose
L/K is a Galois extension and that P is some prime of L above P. Then,
by Proposition 9.3 and Lemma 9.4, we see that P splits completely in L if
and only if Z(/P) = (&). More directly, the Galois group acts transitively
on the primes above £ and the decomposition group of one of them is an
isotropy group for this action. Thus, one gets [L : K| primes above P if
and only if this decomposition group is trivial.

‘We recall that a prime P of K is said to be unramified in L if and only
if every prime above it in L is unramified.

Proposition 9.9. Let My and My be twa Galois extensions of a function
field K and let L = M) M, be the compositum. A prime P of K splits
completely in L if and only if it splits completely in My and M. A prime
P of K is unramified in L if and only if it is unramified in M) and M.

Proof. Let 9P be some prime of L lying above P. If P splits completely
in L, then by the previous remarks Z(B/P) = (e). Let py and py be the
primes of M; and My, respectively, which lie below 3. By Proposition 9.8,
part (¢1), we deduce that Z(p1/F) = (e) and Z(ps/P) = (e). Thus, P splits
completely in M; and Ms.

Now suppose that P splits completely in M; and M,. Then, Z(p,/P) =
(€) and Z(pa/P) = (e). Let 0 € Z(P/P). By Proposition 9.8, part (i), we
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see the restrictions of o to both M and My are the identity maps. Since M;
and My generate L, it follows that o is the identity. Thus, Z(/P) = {e)
and so P splits completely in L.

Ornce again, the proof of the last assertlon about unramifiedness is en-
tirely similar. We omit the details.

We conclude this part of the chapter by sketching the behavior of a
prime P in the fixed fields of Z{J3/P) and I(P/P), where P is a prime of
L lying above P. To ease the notation, call the two subgroups £ and I and
the corresponding subfields Lz and Ly of L (we previously denoted Lz by
M), We have K € Ly C Ly € L. The fields Lz and L; are called the
decomposition field and the inertia field of 9B. Let pz and p; be the primes
of Lz and L;, respectively, which lie below J2. Then f{pz/P) = 1 and
e(pz/P) = L. If Gal(L/K) is abelian, it follows that P splits completely in
Lz. It is the case that p; is the only prime of Ly above pz and we have
elpr/pz) =1 and f{p1/pz) = F(B/P) = [L; : Lz). Finally, P is the only
prime of L above p; and we have f{P/p;) = 1 and e('B/pr) = e(P/P) =
[L : Lyr]. We say that pz/P is unramified of degree 1, that pr/pz is inert,
and J8/p; is totally ramified. All this is relatively easy to prove on the basis
of our earlier results. We leave the details as an exercise.

This is about as far as we wish to go with the general theory. Although
we have been working in function fields, it is clear that most of what we
have proven will work in a more general context of Dedekind domains, their
quotient fields, and finite extensions thereof.

For the rest of this chapter we will be working with global function fields,
i.e., function fields whose field of constants is finite. A key notion in this
context is that of the Frobenius automorphism attached to an unramified
prime ideal. Qur first goal will be to define this object and discuss its
properties,

Let K be a function field whose constant field IF is a finite field with ¢
elements. Let L/X be a finite, Galois extension with constant field E. Let
(3, as usual, denote Gal(L/K). Suppose £ is a prime of K and B, a prime
of L lying above P. The residue class fields are finite and, as is well known,
the Galois group, Gal{Eg/Fp), is cyclic, generated by ¢p which is defined
by ¢p(z) = z™F for all x € By (the point is that NP = |Fp|}.

If we suppose that /P is unramified, then by the corollary to Proposi-
tion 9.6 we have a canonical isomorphism Z(P/P} = Gal(Eg/F p). Under
these circumstances, there is a unique element (%8, L/K} € Z{3/P) which
carresponds to ¢p under this isomorphism. (3, L/ K) is called the Frobe-
nius automorphism of P for the extension L/K. Going back through the
definitions we see that the Frobenius automorphism can be characterized
by the following condition

(B, L/K) w=w"" (mod P) Ywe Op.
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Proposition 9.10. Let L/K be a Galois extension of global function fields,
P a prime of L and P the prime of K lying below it. Suppose B/ P is un-
ramified. Then, (B, L/K) is a cyclic generator of Z(P/P) and consequently
has order f(B/P). Furthermore, if o € Gal(L/K), then (¢'B,L/K) =
a(B, L/ K)ot
Proof. The first assertion is true by the definition of the Frobenius auto-
morphism via the isomorphism Z(B/P) & Gal(Eqy /Fp).

To prove the second assertion, recall that for o € G we have 0Og = Oyp.
Thus, (0B, L/K) is characterized by

(0B, L/K) ow={ow)"F (mod ¢P) Vwe Ogp.

Applying o1 to both sides of this congruence we deduce that o~ (a3,
L/K)o = (', L/K) from which the result follows immediately.

From the second part of this proposition and Proposition 9.2, we see that
as 3 varies over the primes above P in I, the Frobenius automorphisins
(P, L/K) fill out a conjugacy class in G. This leads to the following formal
definition.

Definition. Let L/K be a Galois extension of global function fields, and
P a prime of K which is unramified in L. The Artin conjugacy class of P,
(P,L/K), is defined as the set of all Frobenius antomorphisms (%8, L/K)
as 7} varies over the primes in L above P,

The map from Sk to the conjugacy classes of Gal(L/K) given by P —
(P,L/K) is called the Artin map. It is extremely important and we shall
discuss it in some detail. First, however, we will record some more “func-
torial” properties of the Frobenius automorphism.

Proposition 9.11. Let L/K be a Galois extension of global function fields
and M an arbitrary intermediote fleld. Let B be o prime of L and p and
P the primes lying below it in M and K, respectively. Assume B/P is
unramified. Then,

(B, L/K)T®/E) = (B, L/M) .
If M/K is also a Galois extension, then
(B, L/K s = (o, M/K)
Proof. Using the characterization
(P L/K)w=uw™" (modP) Ywe Oy,
we deduce

(3, L/K)f(pfp)w = VPIE (mod P} Vw € Oy .
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Since NPTP/P} = Np, this also characterizes (p, L/M). This proves the
first assertion.
To prove the second, just recall Op = Op N M and p = PN M. Thus,

(B, L/K)w=u™P (modp) VweO,.

This characterizes the automorphism (p, M/K) as well, so (B, L/ K}y =
(p, M/K), which finishes the proof.

One of the main goals of this chapter is to investigate the set of primes
P of K which go to a fixed conjugacy class C in Gal(L/K) via the Artin
map P — (P, L/K). One way to describe the abundance of such primes is
via the notion of Dirichlet density. We introduced this notion in a special
case in Chapter 4. The next task is to give the general definition and to
investigate its properties.

Let M C Sk be a set of primes in K. The Dirichlet density of M, §(M),
is given by the following limit, provided that the limit exists. If it doesn't
exist we say that A does not have Dirichlet density.

2pem NP7
M) = i, S NP

The expression “s — 17” means that s approaches 1 through real values
from above,

It is clear from this definition that when #(M) exists we have
0<§(M) <1

The denominator in this definition can be replaced with either log {x(s)
or — log(1--5). To see this, consider the following calculation where through-
out we assume R{s} > 1, and sums over P mean sums over all P in Sk.

log Cx (s ZZA: INp=Fks = ZNP”+ZE!¢ INpks

P k=2

Let’s call the second sum Rg(s). We claim Ry (s) remains bounded as
s — 1. To see this, set z = R(s) and note that

|Ric(s)] <> i NPTF =" NP (1-NP77)!
P

P k=2
<2Y NP™* <20k (2z) .
P

Since (i (s) is holomorphic for (s} > 1, we see that {x(2s) is bounded in
a neighborhood of 1, which establishes our claim.

Next, by Theorem 5.9, {g(s) has a simple pole at s = 1. Thus,
lim,_,y+(s — 1)k (5} = ax # 0. Confining s to a small neighborhood of 1
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we see that log((s — 1){k(5)) = log(s — 1) +log (x (8) is bounded. Thus, we
have shown
ZNP_‘* = log Cx(s) = —log{s — 1) .

where f(s) =2 g(s} means that f{s) — ¢(s) is bounded in a neighborhood of
1 (in particular, on an interval of the form (1,7)}). It follows that all three
functions tend to infinity as s — 17 and, also, that the ratio of any two
tend to 1 as s — 17. So, we have justified the claim that we could have used
any of the three functions as the denominator in the definition of Dirichlet
density. The function —log{s - 1) is particularly useful for some purposes.
It does not depend on K!

Certain properties of Dirichlet density follow easily from the definition.
We have already mentioned one of them. We summarize those which will
be needed later.

Proposition 9.12. Let K be a global function field and M C Sk a set
of primes. If the Dirichlet density of M ezists, 0 < (M) < 1. If M
is finite, (M) = 0. Also, §{(Sk) = 1. Suppose M,y and My both have
Dirichlet density. If these two sets differ by only finitely many primes, then
5(M1) = (5(M2). If My C My then 5(./\41) < 5(M2). If Min Mg = o,
the empty set, then §(M; U M) = §(My) + 6{M>).

The property involving disjoint unions extends to finitely many sets,
but not to denumerably many sets! For each P € Sk let {P} be the set
consisting of one element, P. Then, 6{{P}) = 0 for every P, Sg = Jp{P},
but §{8x) = 1 # 0. One must not think of Dirichlet density as a measure
(in the technical sense) on the set of primes of K.

We have enough information to prove an important special case of the
Tchebotarev density theorem, and we proceed to do so. For much of the
rest of this chapter we will fix a global function field K as base field and
consider a finite Galois extension I of K. Given such an extension, we
define {L} € Sx to be the set of primes in K which split completely in L.
By our previous work, this can be characterized as the set of primes P of
K, which are unramified in L and for which (P, L/ K} = (&), the conjugacy
class of Gal(L/K) consisting of the identity element.

Proposition 9.13. Let L/K be o Galois extension of global funciion flelds.
The Dirichlet density of the set of primes in K which split in L is given
by 8({L}) = 1/[L : K|. If L and Ly are two Galois extensions of K and
{Ll} = {Lg}, then Ll = Lg.

Proof. We consider the zeta function of L. We have,
IOECL Z Z k~ leﬂks ZNm—a + ZZ P qus—ks )
Besy, k=1 P k=2

The double sum is what we prevmusly labeled Ry (s). This was shown
to be bounded in a neighborhood of s = 1. In the sum that remains, group
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the terms lying over a fixed prime P in K and we get

log ¢y (s} =~ Z ZN‘I{J_S.

PESK TP

We can ignore the finitely many ramified primes. Set [L : K] = n. For the
remaining primes we have f('B/P)g{"p/FP) = n. Thus,

)BPIIL S LIS SR

Popp fin PeSg
FBiP)=f

where we have used Ng = NP/P/P), The sum of the terms with f > 1
is bounded in a neighborhood of 1 and the sum of the terms with f =1 is
exactly n3 pc (L} NP~# Putting all this together we find

log ¢r.(s) = [L: K] Z NP~
Pe{L}

Finally, divide both sides by — log(s — 1) and take the limit as s — 1t. We
conclude that 1 = {L : K)6({L}) and so 6({L}) = [L: K]~

To prove the second part of the Proposition, consider the compositum
L = Ly Ls. By Proposition 9.9, a prime splits completely in L if and only if
it splits completely in Ly and Ly. Thus, {L} = {L1}N{L;} = {L1} = {L2}.
From the first part of the proposition we conelude that (L : K| = [L; : K| =
[Lo : K. Since Ly € L and Ly C L we have Ly = L = Ly. The proof is
complete.

We note that to get the second part of the Proposition it would have
been enough to assume {L:} and {L,} differ by at most a set of Dirichlet
density zero. This generalization is sometimes quite useful.

We are now in a position to state the two different forms of the Tcheb-
otarev density theorem that we have promised.

Theorem 9.13A. {Tchebotarev Density Theorem, first version). Let L/K
be o Galois extension of globol function fields ond set G = Gal(L/K). Let
C C G be a conjugacy class in G and Sy be the set of primes of K which
are unramified in L. Then

(P Sk | (PL/K) = ) = B

In particular, every conjugacy class C is of the form (P, L/ K) for infinitely
many primes P in K.

Theorem 9.13B. ({Tchebotarev Density Theorem, second version). Let
L/K be a geometric, Galois extension of global funciion fields and set
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G = Gal(L/K). Let C C G be a conjugacy class. Suppose the common
eonstant field F of K and L has q elements. As above let Sj be the set of
primes of K unramified in L. Then, for each positive integer N, we have

PecSy| degge P=N (PL/K)—O}—ﬁ—C—ﬁ-i-O ﬂﬂ

#{ € oK 12574 — i 3 = = #G N N .
In particular, for every sufficiently large integer N, there is o prime P of
degree N with (P,L/K) = C.

In the second theorem, the hypothesis that the extension be geometric is
not absolutely necessary, but it simplifies both the statement and the proof.
The interested reader can investigate how matters should be modified to
handle the general case.

It will be seen that both of these theorems have considerable depth.
However, the second ig much stronger and much more difficult to prove.

In fact, we will not. prove either theorem completely, but will reduce both
theorems to facts about Artin L-series. This may not be the easiest way
to proceed, but is, perhaps, the most instructive. M. Deuring was able to
prove the number field version of the first theorem by reducing to the case
where Gal{L/K) is abelian by means of a very clever trick. The reader may
wish to adapt this proof to function fields. See Lang [5], Ch. VIII, Theorem
10, for an exposition of Deuring’s proof.

Of course, before we can go forward along the lines indicated toward a
proof of either theorem, we have to define Artin L-functions and discuss
their properties. So, we do this first, and afterwards sketch the proofs.

Let G = Gal(L/K) be the Galois group of a Galois extension of global
function fields and p : G — Aute{V) a representation of G. Here V is a
finite-dimensional vector space over the complex numbers € of dimension
m. By choosing a basis of V over € we are led to an isomorphism Autc (V) =
(GL,.(C). Thus, for ¢ € & we can think of p(g) either as an automorphism
of V or an m x m matrix with complex coefficients. The latter way of
looking at things is more concrete, but depends on the choice of a basis.
However, our definitions will only depend on the determinant and trace of
such a matrix and these only depend on the automorphism.

Let P be a prime of K which is unramified in L and let 98 be a prime of
L lying above it. We define the local factor Lp(s, p) as follows:

Lp(s, p) = det (I — (%, L/K))NP~*) ™" .

Here, I is the identity automorphism on V' and (P, L/K) is the Frobe-
nius automorphism at P. By Proposition 9.10, we easily verify that the
definition is independent of the choice of P above P.

Let {e1 (P), 0a(P), - - - , e {P}} be the eigenvalues of p((B, L/K)). Again,
Proposition 9.10 can be used to show that these eigenvalues depend only
on P and not the choice of P above P. In terms of these eigenvalues, we
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get the following useful expression for the local factor at P
Lp(s,p)7 ' = (1 = a1 (PYNP )1 — aa(PYNP™5) ... (1 — o (PYNP™7}

We remark that since (8, L/K) has finite order, these eigenvalues are
roots of unity { f{/F)-th roots of unity, to be precise).

Next, we must answer the question of what should be the local factors
at P in the case when P is ramified in L. Let ' lie above P and set
Z = Z{(P/P) and I = I{(P/P) (the context should keep this use of “J"
separate from its use as the identity automorphism)., We recall the exact
sequence:

(e) > 1= Z - Gal(Ep/Fp) — (e) .

Let VI = {v € V | p(r)v = v, ¥r € I}, This is a vector subspace of
V. Let yp be any element in Z which maps to ¢p € Gal(Eq/Fp), the
automorphism defined by raising to the NP power. We define the local
factor at P by

Lp(s,p) = det (I’ = plyp)lv: NP~*) 7" .

Here, I’ is the identity automorphism on V. Since any two choices of vy
differ by an element in f, the definition of Lp(s, p} is unaffected. As before,
the definition is also unaffected by the choice of P lying above P.

Let ' be the dimension of V/ and {o)(P),ca(P), + ,am(P)} the
eigenvalues of p(vyy). These, indeed, depend only on P, and we have

Lp(s,0)™ = (1 — ey (PYNP~*)(1 = ap(PIYNP™*) -+ {1 — aus (P)N P .

We remark that m’ < m and, once again, the eigenvalues are all roots of
unity.

Having defined the local factors for all P € S we now define the Artin
L-series associated to the representation p by the equation

L(Sap)= H Lp(S,p) .

PesSx

Suppose p = p,, the trivial representation. This means that V is one
dimensional and p,(r) is the identity for all ¢ € G. It follows easily from
the definitions that L(s, o) = Cx (s},

Another interesting representation of G is the regular representation preg.
In this case V = C|[], the group ring of G over C and for all ¢ € G, preg(c)
is given by left multiplication by o. It can be shown that L{s, preg) = CL(5)-
We will return to these matters later,

Suppose (V, p) and (V’,p’) are isomorphic representations. This means
there is an isomorphism g : V — V/, such that forall v € V and ¢ € G
we have p(p(o)(v})) = p'{e)(u(v)). It is easy to see that if p and p’ belong
to isomorphie representations, then L(s,p) = L(s, p'). It follows that the
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L-series depends only on the character x of the representation. Recall that
if (V, p) is a representation, the corresponding character is given by x(o] =
trace(p(o)) for all o € G, x is a complex-valued function on @. It is a class
function in the sense that x(77lo7) = x(¢) for all 0,7 € G. It is easily
seen that two isomorphic representations have the same character, We will
write L(s, p) = L(s,x).

Lemma 9.14. Let (V,p} be a representation of G = Gal(L/K) where

L/K is a Galois extension of global function fields. Let P be a prime of K
unramified in L. Then

Pk)
IOgLP(S X) Z LN Pks

where x{P*) means x((B, L/K)*) for a prime B lying over P.

Proof. If {a; (P), aa( P}, - - - am P)} are the eigenvalues of (', L/K), then
we showed earlier that Lp(s )7t = [T, (1 — cu(P)NP~*). Taking the
logarithm of both sides and using the identity ~log(1—X) = S50 | k71 X*,
we find

log Lp(s,x) = NPk

i e PP 1
= k

The sum } ;- 0 [P}k is equal to the trace of p({, L/K)*), which is x(P¥)
by definition.

The reader may wish to give a similar expression for log Lp(s,x) when
P is ramified (see Artin {2] or Lang [5], Chapter XII}.

Up to now we have been treating everything in a formal manner and not
worrying about where these new L-series are defined. It is relatively easy
to provide some information by using the comparison test.

Proposition 9.15. With the above notation and conventions, L{s, x) con-
verges absolutely in the region R(s) > 1 and for every § > D it converges
absolutely and uniformly in the region R{s) > 1+ 8. Consequenily, L(s, x)
is holomorphic and non-vanishing for all s with R(s) > 1.

Proof. An infinite product [T, | (1 + ax) converges absolutely if and only
if 3 e |an| converges. Using the local decomposition Lp(s) = [Ti=,(1 —
a;(P)YNP~%)~!, we can use this criterion together with the fact that the
zeta function (i (s) = [[p{1 — NP~*)~! converges absolutely in the region
R(s) > 1 to show the same holds for L{s, x). Since each of the local factors,
Lp(s,x), is non-vanishing in that region, the same holds for the product,
L(s,x)-

The statement about uniform convergence can be proved in a similar
fashion.
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To prove the Tchebotarev Density Theorem we need more information
on the analytic properties of Artin L-series. We present the next two the-
orems in parallel with the two versions of the Tchebotarev Theorem, i.e.,
Theorems 9.13A and 9.13B.

Theorem 9.16A. (E. Artin) Let L/K be a Galois extension of global fields
(either function flelds or number fields) and L{s, x) a corresponding Artin
L-series. Then, for some positive integer n, L(s,x)" has o meromorphic
continuation to the whole complex plane. Moreover, if x is a non-trivial
irreducible character, then L(s, x)™ is holomorphic and non-vanishing in a
neighborhood of 3 = 1.

Theorem 9.16B. (A. Weil] Let L/K be a geometric, Galois extension of
global function fields. Denote by q the number of elements in the constant
field. Let L{s,x) be o corresponding Artin L-series and assume that x is
irreducible and non-trivial. Then L(s,x) is a polynomial in ¢~°. In partic-
wlar, this implies that L{s, x) has a holomorphic continuation to the whole
complex plane. Moreover, denoting by m the degree of L(s,x) in ¢—°, we

have
T

Lis,x) = ][]0 - m(x)a ™) ,

i=1
where for each i with 1 <4 <m, |m(x)| = /9

We will not prove either of these results. In the case of Artin’s theorem,
we will show later how to reduce the proof to the case of one-dimensional
characters and how, via Artin’s reciprocity law, the result can be made
to follow from Hecke's work on another type of L-series. Our main goal
is to show how to use Theorem 9.16A to prove Theorem 9.13A and how
to use Theorem 9.16B to prove Theorem 9.13B. First, however, a series
of remarks. These remarks are not needed in the proofs, so the impatient
reader can simply skip over them.

1. Artin deduced Theorem 9.16A by means of a theorem on group char-
acters. Namely, he showed that any complex character of a finite group G
can be written as a rational linear combination of induced characters from
eyclic subgroups of G. See Serre [3] for the definition of induced character
and the proof of this theorem (Chapter 9). From this it follows that there
is an integer n > 0 such that L{s, x)™ can be written as a product of Artin
L-series corresponding to one-dimensional characters divided by another
such product. Sinece, via Hecke's work and the reciprocity law, he knew the
result to be true for one-dimensional characters, the meromorphic contin-
uation follows. Using the same ideas he deduced L(1,x) # 0 by reducing
to the case of one-dimensional characters.

2. Strictly speaking, Theorem 9.16A only gives information about L(s, x)™
about s = 1, not L(s, x) itself. However, the result implies that on any real
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interval (1,t}, L(s,x) is bounded from above and is bounded away from 0.
This is all we need to prove Theorem 13A.

3. In 1947 , R. Brauer proved a much stronger theorem on group char-
acters. Namely, if x is any complex character on a finite group G, then x
cat be written as a Z-linear combination of characters induced from one-
dimensional characters on “elementary subgroups” (again, see Serre [3],
Chapter 10, for the definitions and proof). This sufficed to show that any
Artin L-series has a meromorphic continuation to the whole complex plane,
i.e., the troublesome “n” in Artin's theorem can be taken to be 1. Brauer’s
result did not give Artin's conjecture that L{s, x) has a holomorphic con-
tinuation to the whole complex plane when y is irreducible and non-trivial.
In the number field case, this remains an open conjecture. In the function
field case, Weil proved it in the precise form given by Theorem 9.16B, using
algebraic-geometric methods.

4. In Theorem 9.16B, once the first part of the theorem has been estab-
lished, the second part, about the size of the inverse roots, follows from
an important, but not deep, property of Artin L-series and the Riemann
hypothesis for function fields.

Let G be a finite group and Xreg the character of the regular repre-
sentation described earlier. Let {x1,x2,--+,xq} be the set of irreducible
characters of G. We set x, = x,, the trivial character. Denote by d; the
degree of )i, i.e., d; = xi(e} = the dimension of the representation space
corresponding to x:. In this language, the one-dimensional characters are
those of degree 1. It is well known that xep = >9_| dix; (See Serre [3],
Chapter 2).

To avold awkward notation, we consider a geometric, Galois extension
of function flelds M/K (not L/K for now). Let G = Gal(M/K). Then,
using the result about group characters given in the last paragraph, formal
properties of Artin L-series, and L(s, Xreg) = {p(s), one deduces

Car(s) = Cae () [] Lsuxa)™ .

i=2

Assuming the first part of Weil’s result, set, for 2 < i < g, Ls,x¢) =
P(u, x;), a polynomial in v = g™*. Now use Theorem 5.9, which describes
the form of the zeta function of a global function field. Substituting into
the last equation, we get

g

Lpg(u) = Le(u) [T Plu xa)™ -

i=2

By the Riemann hypothesis for global function fields (see Theorem 5.10),
and the fact that M /K is a geometric extension, the inverse roots of L ps(u)
all have size ,/q. The right-hand side of the above equation is a product of
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polynomials, so each of these polynomials must have inverse roots whose
absolute value is ,/g.

5. Weil was able to determine the exact degree m; of the polynomials
P(u,x:}. The answer is that for 2 <¢ < g, m; = d; (295 — 2) + degy F(x.}.
Here, F(x;) is an effective divisor of K called the Artin conductor of the
character x;. We will not define it here, but the interested reader can consult
Serre [2], Chapter VI. We will give the definition later in the special case
where  is a linear character. By considering the last relation in Remark 4
above, and taking degrees, we find

g
2 —2=[M: K|(2¢x — 2)+Zd,~deg;{ F(xq),

i=2

arelation which is the function field analogue of the conductor-discriminant
theorem of algebraic number theory. (We have used [M : K] = 39 d?
which follows from x,e, = 3.7, dix; by evaluating both sides at the 1den-
tity element e).

We now return to our main business.

Lemma 9.17. Let G be a finite group and C C G a conjugacy class of G.
Let 0 € C and 7 € G. Then

Zx T)—sz'rgécand#

g if reC,

where the sum is over all irreducible characters of G.

Proof. This is one of the two standard othogonality relations among char-
acters of finite groups. See Lang [4] or Serre [3].

We have all the tools we need to give a proof of the first form of the
Tchebotarev Density Theorem.

Proof of Theorem 9.13A. Let x be any irreducible character and define
L*(s,x) = [lpe st Lp(s,x). We have omitted the finitely many factors
from the product defining L(s, x} which correspond to primes of K ramified
in L. It is still true that L*(s, ¥p) has a simple pole at s = 1 (since it differs
from (g (s) by a factor which is holomorphic and non-vanishing at s = 1)
and that L*(s, x) is bounded and bounded away from 0 on any real interval
of the form (1,¢) if x # x, is irreducible. This follows from Theorem 9.16A.
By Lemma 9.14, we have, for R(s) > 1

log L*(s Z log Lp{s,x) = Z ZkNP‘“ .

Pesy Pes). k=
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For any element 7 € G, we have [x{7)| < d, the degree of x. This follows
since x(7) is the sum of d roots of unity. From this, we see

¥(P
Z: Zk}&fpk)s < 2 ZNP’“” dRK( )

PES) k=2 PeS,

Just as in a previous discussion, after the definition of Dirichlet density,
one shows R {z) < 2{x(2z). Since this is bounded in a neighborhood of 1
we deduce P
log L*(s,x) = X(P) .
NP
Pes;,

Choose an element o € C and multiply both sides by x{¢) and add the
result over all irreducible characters x of G. Making use of Lemma 9.17,
we obtain

S X log L) = D S ()

P, (PL{K)=C

Since L*(s,xo) has a simple pole at s = 1 and for the other irreducible
characters, L*(s, x)} is bounded and bounded away [rom zero on any interval
of the form (1,t) we have

log I*(s,Xo) _ 1,04 log L* (s, x)

s—+1+ —log(s — 1) Py 8 ~log(s — 1) =0 for x # xo -

In equation (x} above, divide both sides by —log(s — 1) and take the
limit as s — 1. The result is

#G
#C

which concludes the proof of the theorem.

l=2={Pes& [(PL/K)=C}),

The exact same proof works equally well in algebraic rumber fields. The
reader will not fail to notice how similar this proof is to the proof of Dirich-
let’s theorem, Theorem 4.7. We shall indicate below how the two results
are connected. In fact, Theorem 9.16A should be thought of as a vast gen-
eralization of Dirichlet’s theorem. First, however, it is time to prove the
second form of Tchebotarev’s density theorem.

Proof of Theorem 9.13B. We begin by making a remark about Lemma
9.14. We proved it assuming P is a prime of K unramified in L. We would
like to take the ramified primes into account as well. Using the definition
of the local factor of an Artin L-series at a ramified prime we found in this

case also one can write Lp(s,x)~ ! = H?:I(l — o;{ P)YNP~*) where the o;
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are Toots of unity and m’ < m = the degree of x. We define x(P*) to be

Z;’ilai‘. This coincides with the definition in case P is unramified and
with this definition the formula of Lemma 9.14 is valid for all primes.

We next calculate the logarithmic derivative of L(s,x) assuming
R(s) > 1. From the Euler factor definition, L(s, x} = [[pes, Le(s X)),
we find, using Lemma 9.14, that

Pk
log L(s,x} = Z Z Xj&rpks )
PESK k=1

We now switch to the variable u = ¢~ and, by abuse of notation, write
L(s,x) = L(u,x). The above relation becomes

IOgL(’LL X Z Z X(P kdegP

PeSk k=1

Take the derivative of both sides and multiply the resulting equation by
u. We find

L (u, X) Z ZdegP x( Pk)ukdegp Z enlx)u™ .

T Tz

The coeflicient ¢, (x) of «™ is given by

enlx)= Y, degP x(P/eEFy, (1)
P, deg P|n
We write this as
en()=n{ Y x(P)+Ra(x), (2)
P, deg P=n

and we will show later that R, (x) = O(¢"/?).

The main idea of the proof is to express c,(x) in another way using the
zeros and poles of the various L-series whose size we know something about
because of the Riemann hypothesis for function fields and Theorem 9.16B
above. From this it will turn out that

CR(X) = qna(X7X0) + O(qnlz) ’ (3)

where 8(x, xo) = 1 if ¥ = x, and is 0 otherwise.

Assuming these facts about c,(x) we will now show how to complete
the proof. Afterwards we will give the details behind these two separate
evaluations of c,(x).

Combining equations 2 and 3, we find

g0 %) F Ol =n{ D x(P))+0(g"?) . (4)

P, deg P=n
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There are only finitely many ramified primes in L/K so for all n sufficiently
large there are no ramified primes of degree n. Thus, from some point on
x(P) = x({(P, L/ K)) for all primes of degree n. We assume n is at least this
big. Now, choose an element ¢ € ' and multiply both sides of Equation 4
by x(o) and sum over all irreducible characters x. Using Lemma 9.17, we
deduce

+ g =n %#{P ESk | degP=mn, (PL/K}=C}+ o{g™?) .
Divide both sides of the equation by n#G/#C, combine the error terms,
and, subject to the proofs of 2 and 3, the theorem follows.

We now proceed to show the validity of the two expressions we have given
for c,{x)}. Consider first Equation 2. From Equation 1 we get the following
explicit expression for R,{x):

Ri(x)= Y  degP x(P™/s%),
deg P|n
deg P <n

If h is the degree of ¥, then, as we have seen, |x(7)| < h for all 7 € G. So,
taking absolute values and using the triangle inequality, we get

Ra()l <h Y dag(K) .

d|n,d<n

Recall that aq(K) is the number of primes of K of degree d. We know that
2o dea(K) = Np(K). It follows that

|Bn(x)} £ h|Nn(K) — nan(K)| . (5)

By the analogue of the prime number theorem, Theorem 5.12, we know
na, = ¢ + Olg™?). Since N (K) = ¢ + 1 — 522 #7, where for each i
we have |m;| = /g, we also have N,(K) = ¢" + O(¢g™?). It follows that
{Np (K} —nan(K)| = O(g™/?). The required estimate R,,(x) = O(¢"?) now
follows from Equation 5.

The final step is to prove the estimate for ¢, (x) in Equation 3. We begin
with the trivial character x,. As we have seen, the Artin L-series for x, is
just the zeta function of K. Thus,

Lg(u)

(1 —u}(1--qu)’
2g

where Ly (u) = [[;2,(1 — mu) and for each ¢, |;| = /7. Taking the loga-
rithmic derivative of both sides, multiplying by u and equating coefficients,
we find

L{s,xs) =

2g

en{Xe) =" +1 =) 7 = g" + 0(g™/?) .

=1
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This verifies the estimate for ¢,(x,). We have done this calculation much
earlier, in the proof of Theorem 5.12, and we have used the result in a
different context in the last paragraph.

If x¥ # xo is irreducible, then by Weil's result, Theorem 9.16B, we can
write L{u, x) = [Ti2 (1 —mi{x}u) where m is the degree of L{u, x) and each
mi(x) has absolute value ,/G. Taking logarithmic derivatives, multiplying
by u, and comparing coefficients we derive

ealX) == D mlx)" .
=]

From this it is clear that c,(x) = O(g™/?}.
Theorem 9.13B is proved.

We have been content to be somewhat careless about the error term. It
can be estimated effectively by keeping careful track of constants at each
step of the proof. The interested reader can try working this out or he/she
can consult Murty and Scherk (1].

The method of proof is often used in analytic number theory. We have an
arithmetic L-series which is defined by an Euler product over primes. One
then tries to continue the function to be analytic on the whole complex
plane. One then writes the same function as a product over its zeros and,
when they exist, poles. Taking the logarithmic derivative of both product
expansions and comparing the results usually leads to important results.
This idea goes back to Riemann. It has been a very fruitful method.

For the rest of the chapter we will treat the case of abelian extensions of
global function fields. For the most part we will be content to sketch this
beautiful theory, but from time to time complete proofs will be supplied.
Our main objective is to set out the connection between Artin L-series
associated to abelian extensions and Hecke L-series (to be defined below}.
This is fundamental to any deeper understanding of the material we have
covered Up to now.

From now on we assume that L/K is a finite, Galois extension of global
function fields and that the Galois group, G = Gal(L/K), is an abelian
group. As before, E will be the constant field of L and F the constant field
of K. We set g = #IF and m = [E : F]. If P is a prime of X and P; and
Pq are two unramified primes of L lying abave P, then by Proposition 9.10
the two Frobenius automorphisms (%1, L/K) and (P, L/ K) are conjugate
in 7. Since we are assuming G is abelian, these two automorphisms are
equal. Thus, the conjugacy class (P, L/K) contains only one element. We
identify this conjugacy class consisting of one element with an element of
G. The automorphism (P, L/ K} is called the Artin automorphism at P. Let
Sk C Sk denote the set of primes in K which are unramified in L. Then,
P — (P,L/K) is a well-defined map from 8§ to G. Let D} C Dg be the
divisors of K whose support lies in Si. Then, by linearity, P — (P, L/K)
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extends to a homomorphism from D% — & which is called the Artin map,
{(x, L/K). To be explicit, if D € DY, then

(D,L/K) = ( Z a(P)P,L/Ky= [] (P.L/K)*®) .

Pesy, PesSy,

Proposition 9.18. The Artin map (%, L/K) : Dy — G is onto and
the kernel contains the group Ny, D} where Dy is the subgroup of D
generated by primes of L unramified over K.

Proof. Let &' denote the image of (%, L/K) and M < L the fixed fleld
of G'. If P & 8} then, by Proposition 9.11, (F,L/K)|x = (P, M/K). By
definition, (P, L/K}{s = e. Thus, (P,M/K) = e which implies that P
splits completely in M. Since S}, has Dirichlet density 1, it follows from
Theorem 9.13 that M = K. Galois theory now yields that &' = G, ie.,
(x,L/K} is onto.

If P is a prime of L lying above P, then by the definition of the norm map
{see the discussion following Proposition 7.6) we have Ny, x P = f(B/P)P.
Thus,

(NpyaB, LIK) = (P,L/K)Y PP = ¢

The last equality is a consequence of Proposition 9.10 which asserts that the
Frobenius automorphism (B, L/K) (and so (£, L/K)) has order f(B/P).

The second assertion of the proposition follows from this.

The exact nature of the kernel of the Artin map is a very difficult ques-
tion. We first turn our attention to a much simpler question. Among abelian
extensions of K the simplest are the constant field extensions. How does
the general theory play out in this special case? The key to answering this
question is to determine explicitly the Artin automorphism {P, KIE/K).

Recall that Gal(E/IF) is cyclic of order m generaied by the autormorphism
¢y which maps a — of for all & € E. We have shown previously that
Gal{KE/K) = Gal{E/F). From now on we identify these two groups.

Proposition 9.19. Let L = KIE where E is an extension of F of degree
m. Let P be any prime of K. Then (P, L/K) = qﬁgeg;( P

Proof. Every prime of K is unramified in L since L is a constant field
extension. See Proposition 8.5.

Suppose « € E. From the definition, (P, L/K)a = o7 (mod ), where
P is a prime of L above P. Both sides of this congruence are in E and thus
the difference is in ENP = (0). It follows that

(P,L/K)a=a"" YacE.

Now, NP = ¢%8x £ It follows that the right-hand side of the above

equality coincides with ¢a°8% ¥(a). Since o € I is arbitrary, we deduce

(P,L/K) = ¢3°8x .
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Proposition 9.20. Maintaining the notation of the previous proposition,
the Artin map (x,L/K) : Dg — Gal(L/K) =2 Gal(E/F) is onto and the
kernel is the group D% D, Here, DY, denotes the group of divisors of degree
zero.

Proof. We already know that the map is onto. To determine the kernel
we note that the Artin map is given by (D, L/K) = ¢5%5% © for D € Dy
This is true for prime divisors by the previous proposition and it follows in
general by linearity. From this we see D% is in the kernel. Since Gal(L/K)
has order m, it follows that D% is also in the kernel. Thus, D DF is in
the kernel. This group is equal to the kernel since it has index m in Dg.
This follows since D% D} is the kernel of the map

D —degp D (modm) from Dy — Z/mZ.

We note, for future reference, that Py, the principal divisors of K, have
degree zero and are thus in the kernel of the Artin map for constant field
extensions.

We can now determine the Artin L-functions associated to constant field
extensions. '

Proposition 9.21. Again maintaining the notations and hypotheses of
Proposition 9.19, let ; be an trreducible choracter of G = Gal{L/K). Then,
L(s,x) = Zx (x(¢pg)u) where, as usual, v =q~*, and Zx (v) = (x(s).

Proof. Since G is abelian, y ig a linear character, i.e., a homomorphism
from & to C*. From the definitions, and Proposition 9.19,

L(s,x) =[] (0 -x({(P,L/K)NP~*)~!
PeSy
— H (1 "'X(ﬁbq)degx Pq—sdegK P)—l
PeSk
= ][ (1 - Ocdeghu)®®ex P)=" = Zic(x(dq)u) -
Pe8p

This proposition gives a meromorphic continuation of L{s,x) to the
whole plane, which is good. However, all of these functions have poles,
which seems to be bad.

This result seems troubling at first sight. If % = ¥, the trivial character,
the Artin L-function, is the zeta function, which is as it should be. I{ x is not
trivial, then L{s, x) is not a polynomial in « and in fact has poles (at s € C
such that x(¢,)g~* = ¢~ or 1). This seems to contradict Artin's conjecture
and Weil’s theorem. It does not contradict Weil’s theorem, Theorem 9.168,
because part of the hypothesis was that L/K be a geometric extension,
t.e., L and K have the same constant fields. Artin’s conjecture has to be
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modified in the function field case to accommodate characters belonging to
constant field extensions. We will explain this more fully later.

[t is worth noting that a consequence of Proposition 9.21 is that for
constant field extensions I{1,x) 5 0 if x is linear and non-trivial. This
follows because

L{Lx) = Zi(x(dg)g™ ) #£ 0,

since {k (s) has no zeros on the line #(s} = 1 by Proposition 5.13, and so
Zi(u) has no zeros on the circle |u| = ¢

Another interesting consequence, which is a special case of a far more
general result (which we discussed in Remark 4 following the statement of

Theorem 9.16B) is that
¢ls) =] (s
x

where the product is over all linear characters of G. This is immediate from
Theorem 8.15 and Proposition 9.21.

Having investigated constant field extensions the next question is to see
how they fit into the more general situation. Let L/K be a general abelian
extension with E the constant fleld of L and F the constant field of &.
Then KE is the maximal constant field extension of K in L. L/KE is a
geometric function field extension.

Proposition 9.22. Let L/K be an abelion extension of global function
fields and KE be the mazimal constant fleld extension of K in L. Let G =
Gal(L/K) and G' the image of Dg under the Artin map. Then, G’ =
Gal(L/KE). In particular, if L/ K 1is a geometric extension, D¢ maps onto
G under the Artin map.

Proof. Let P be a prime of K which is unramified in L. By Proposition
9.11 and Proposition 9.19 we see {(P,L/K)|gp = (P, KE/K) = ;‘EgKP.
By linearity, if D' € D}, then (D, L/K)|xe = 3eg“ ? 1t follows that DE
maps to Gal{L/KE), i.e., G’ C Gal{L/KE}.

To show the Artin map from D to Gal{L/KE) is onto is a little tricky.
We first need a subsidiary result, namely, that m = [KE : K] is the greatest
common divisor of the degrees of the primes in {L}, the primes of K which
split completely in L. Note first that if P € {L} then (F,L/K) = e. Thus,
(P,KE/K) = e and this occurs if and only if m|degy P. Let m' be the
greatest common divisor of the degrees of primes in {L}. We have just
shown mlm’, and we want to show sn = m’. To do this, consider the finite
field E' 2 E whose degree over I is m’, Every prime in {L} splits completely
in KE' since the degree of any such prime is divisible by m’. The field LE/
is a (Galois extension of K since it is the composite of two Galois extensions
of K, L and KE’. A moment’s reflection shows that {L} = {LE'}. By
Proposition 9.13, this implies that [ = LE’, i.e., B’ C L. This shows that
E = and it follows that m = m’.
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From what we have proven, it follows that there are primes £y, P, -+,
P, € {L} and integers a1, Gz, ,a¢ € Z such that

t
Zai degyp Fi=m .
i=1

Set C = Z:=1 a;P;. Then, C' € D} and degp C = m. Also, (C,L/K)=¢
since every prime in the support of C splits completely in L.

To finish the proof, choose o € Gal{(L/KE). By Proposition $.18, ¢ =
(D, L/K) for some D € D . Since ¢ is the identity on KE it follows from
e =olgg = (D, KE/K) = SEEKD, that m|degg D). Suppose degy D =
km with k € Z. Then D — kC has degree zero, and

(D—kC,L/K) = (D, L/K){C,L/KY * =ge™* =0 .
The proof is complete!

Let & be a finite set of primes in a global function field K and F =
Yopeg M(P)P an effective divisor of K with support in S. We define the
ray modulo F, P¥, to be the set of principal divisors of K generated by
elements x € K™ which satisfy

ordp(z—1) > h(P) VYPeS.

Clearly, the ray modulo F is a subgroup of the group of principal divisors
Pr. In fact, it is a subgroup of P{S), the principal divisors of K whose
support is disjoint from S. Let D(S) C Dg be the group of divisors whose
support is disjoint from S.

The ray class group modulo F, Clz, is defined to be the quotient D(S)/P*.
This group is not finite. However, there is an exact sequence

{0) = Cl% = Clr = Z — ()

induced by the degree map. It can be shown, using the finiteness of the
divisor class group of degree zero, that CI% is a finite group. The first step
in the proof (which we shall not pursue) is to show the following sequence
is exact:

(0) = P(S)/PF = ClE —= Cl5 = (0),

where the map from Cl% to ClY, is as follows: given a ray class in Cl%,
find a divisor representing it and map that divisor to its class in C1%,. We
know that this latter group is finite, so it all comes down to showing that
P(S)/P7F is finite. This is not difficult.

The relevance of these notions comes from the following theorem, which
is one form of the Artin reciprocity law.
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Theorem ©.23. (E. Artin} Let L/K be «a finite abelien extension of global
function flelds. Let S be the set of primes’ of K which ave ramified in L.
Then the Artin map, (x,L/K), takes D(8)} onto Gal{L/K) and there is
an effective divisor F supported on § such that the kernel of the map is
PFNL DL,

As we have already mentioned, this is a very deep result whose proof is
long and involved. We have proved a portion of the Theorem in Proposition
9,18, The Artin map is onto and the norms of divisors are contained in the
kernel. The exisitence of a divisor F such that PF N, 75D 18 the kernel is
the hard part. We will not prove it here, but, accepting its truth, we will
derive some consequences,

Notice that another way to state the same thing is that the Artin map
takes the ray class group Clr onto Gal(L/F) and the kernel is generated
by the classes of the norms of unramified primes in L. With minor modifi-
cations, the same result holds in algebraic number fields. What is required
in this case is some attention to the archimedean primes. These do not
exist in function fields.

How unique is the divisor F which plays such a major role in the Theo-
rem? It turns out it is not unique. However, one can show that in the set of
all effective divisors with the same property as F there is a minitnum one
(recall that one divisor is greater than or equal to another if their difference
is effective or zero). This minimum divisor, which we continue to denote
by F, is called the conductor of L/K. Sometimes one writes this as Fp .

Cur next goal is to define Hecke L-series and then, using Artin’s theorem,
connect these to Artin L-series.

Let F be an effective divisor with support § < Sk. A character of finite
order on Cly is called a Hecke character madulo F. There is a more general
notion of Hecke character which is very important, but we will confine our
attention to those which satisfy the definition just given.

Another way to phrase the definition is to say a Hecke character modulo
F is a homomorphism from D(§) -+ €* whose kernel is a subgroup of finite
index containing the ray P7.

Let A be a Hecke character modulo F in the sense just given. We want
to define a Hecke L-series, L(s, A}. The definition suggests itself. Let F ¢ &
be a prime of K. Define A{P)} to be A evaluated on the ray class in ClF
containing £, Then, define

L(s, )y = [J (1= MPINP~)?

Pgs

Since |A(P)| = 1, one sees easily by the comparison test that L{s, A) con-
verges absolutely for R(s) > 1 and for every ¢ > 0 it converges absolutely
and uniformly in the region R(s) > 1 4 4. It follows that Hecke L-series are
entire function of s in the region R{s) > 1. Since the terms of the product
are non-vanishing in that region, the same is true for L{s, ). The following
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result is essentially due to Hecke. He proved the analogous result in the case
of algebraic number fields. The details of the function field version were first
worked out by F.X. Schmidt. Nowadays, one can give a uniform proof of
both versions simultaneously (and for the most general Hecke characters).
This was done by J. Tate [2] in his thesis. A more classical approach to the
function field case can be found in Deuring [1] and Moreno [1]. We will give
the proof of a special case below (Proposition 9.26).

Theorem 9.24. Let A be o Hecke character modulo F and assume that A
is not trivial on D°(S). Then L{s, A) s an entire function of s. In fact, it
is a polynomial in ¢~°. Moreover, L(1, ) # 0.

This is actually a rough version of the full result which includes a beau-
tiful functional equation that is satisfied when the character A is primitive.
We will briefly explain what this means and write down the functional
equation.

Suppose F' < F are two effective divisors. It is easy to see that there is
a natural map w: Clyg — Cle. If X is a character of Clz then A= X o
is a character of Cls. X is said to be induced from

A character A modulo F is said to be primitive if it is not induced from
a character of any properly smaller modulus. In this case JF is said to be
the conductor of A and we write F = F,.

Theorem 9.24A. Let A be a primitive Hecke character with conductor Fi
and suppose X is not trivial on D°(S). Then L(s,A) is a polynomial in g~°
of degree 2g — 2 + degy F. Define A(s,)) = q{g_l)sN}';/?L(s, X). Then

Als,A) = e(MA(1—s,A),
where €(A) is a complex number of absolute value 1.

We are finally in a position to explain why, for linear (one dimensional)
characters, Artin L-series are “the same as” Hecke L-series.

Let L/K be a finite, abelian extension of global function fields, & =
Gal(L/K), and x a linear character on G. We want to show that the Artin
L-series L{s,x} is equal to a Hecke L-series. As a first step, let N,, € G
be the kernel of x and let K, < L be the fixed field of N,. It is almost
immediate that Gal(K, /K is cyclic of order equal to the order of x in the
character group of G. We set Gal(K, /K) = (7, and note that y gives rise
to a character on G, = G/N,. We call this character x as well. Let F,
be the conductor of the extension K, /K. By Artin’s theorem, Theorem
9.23, the Artin map, (%, K,/K), gives a homomorphism from Clz_onto
Gal{K, /K). Call this homomorphism p and set A = y o p. Then X is a
homomorphism from Clx_to C*, i.e., a Hecke character medulo 7. It can
be shown that X is a primitive character modulo F,, i.e., F,, = Fy. With
all this in place, it now follows directly from the definitions that

Lis,x) = L{s,A) .
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This is the long awaited identification of an Artin L-series associated to a
linear character with a Hecke L-series. We can now invoke Theorem 9.24 to
establish the analytic continuation of L{s,x) to the whole complex plane.
It remains to explain when this continuation is entire.

Theorem 9.25. Let L/K be a finite, abelian extension of global function
fields, G = Gal(L/K), and x a linear character of G. Then, L{s,x) has
an analytic continuation to an entire function in the whole complex plane
if and only if K\ /K 5 not a constant field extension.

Proof. From the discussion preceding the statement of the theorem,
L(s,x) = L(s,\) where A = x o p. Here, p: Clg, —» Gy and x: G, — C*.
Let G, be the image of Cl%_in Gy. By Proposition 9.22, the fixed field of
G/, is the maximal constant field extension of K inside of K.

Since p is onto A is not trivial on Cl?._—x if and only if ¥ is not trivial on
G, Since x is one to one on Gy we see X is trivial on &G, if and only if G
is trivial and this happens if and only if K, is a constant field extension.
Bquivalently, x is not trivial on G’;c if and only if K, /K is not a constant
field extension. :

Thus, if K, /K is not a constant field extension, X is not trivial on Clg,
and by Theorem 9.24 this shows L(s, A) = L{s,x) is entire. If K, /K is
a constant field extension, Proposition 9.21 shows L{s, ) is meromorphic,
but not entire,

Theorem 9.25 gives a precise understanding of when L{s, x) fails to sat-
isfy Artin’s conjecture in the function field case.

In the exercises we will outline the relationship of Hecke L-series to the
Dirichlet L-series, which were introduced and investigated in Chapter 4. As
it turns out, the latter are simply a special case of the former.

We will conclude this chapter by proving a portion of Theorem 9.24,
namely for those Hecke characters belonging to the trivial modulus. In this
case, the ray is just the group of principal ideals, Py, and the ray class
group is Pg/Pr = Clg, the class group of K. So, we will consider L-
series attached to characters of finite order of the class group of K. In this
case, the analytic continuation and the functional equation follow from the
Riemann-Roch theorem by using the same ideas that went into the proof
of Theorem 5.9.

Proposition 9.26. (special case of Theorem 9.24A) Let A be a character of
finite order of Cly and suppose that X is not trivial on Cl3.. Then, L(s,})
is a polynomial in g™° of degree 2g — 2. Set A(s, A) = ¢U9=15L(s, A). Then,
A5, A) = MCIA(1 ~— 5, X), where C is the canonical class of K.

Proof. L(s,\) = [[p(1-A{LP)NP~#)~1 = 5", A{4)NA~? where the prad-
uct is over all primes of K and the sum is over all effective divisors of K.
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Summing by degrees we find

L{s, A} :i > )\(A)) g e

k=0 \deg, A=k

We claim 3., 4. A(A) = 0 for all £ > 2¢ — 2. This will show that
L(s,x) is a polynomial in ¢~¢ of degree at most 2g — 2.

Assume & > 29 — 2 and let {A4;, Aq,---, A} be a set of divisors of
degree k representing the divisor classes of degree k. Here, h = hg is the
class number of K. For any two divisors By and Bz we will use the notation
B, ~ B; to mean that B, and By are linearly equivalent, i.e., B; — By is
principal. All sums will be over effective divisors A. We have

> AA)y= Z ( > A(A)) Z)\(A

degy A=k i=1 N\A~A;

We have used two facts. Since A takes principal divisors to 1, A ~ A;
implies A(A) = A(A;). Secondly, if & > 2g - 2, the number of effective
divisors linearly equivalent to 4; is (¢*~9%! — 1)/(g — 1). This follows from
Lemma 5.7 and the fact that [(A;) =k — g+ 1 since degp A; =k > 2g—2
(see Theorem 5.4, Corcllary 4).

Let 2 be a divisor of K of degree 1. Such a divisor exists by the theorem
of F.K. Schmidt. Write A; — kD = B, for each i with 1 < i < h. The divisors
{By, By, -+ , By} have degree zero and, in fact, are a set of representatives
for the divisor classes of degree zero. Substituting A; = kD + B; in the
ahove sum, we see that

deg, A=k

The latter sum is zero, since it is the sum of the character A evaluated on
all the elements of the group Ci%, and by hypothesis, A is not trivial on
that group. This completes the first part of the proof.

To prove the functional equation for L{s, A) we first ease the notation by
setting u = g7 and writing L(s, A} = f(u, A) . We have shown that f(u,A)
is a polynomial in u of degree at most 2g — 2. Now,

Lis,\)=f(u,N )= > MApulexs

deg A<29—2

(A} _
. ,\(.4} ydetic A
-1
degg A<L29-2
The first sum is over effective divisors A and the second sum is over divisor
classes 4. The passage from the first sum to the second uses Lemma. 5.7
once again,
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A simplification occurs because

> MAutEeA =0,

deg, A<2g-2

To see this, simply sum by degrees and check that each coeflicient of the
resulting polynomial is 0 because the sum of A evaluated on all divisor
classes of a fixed degree is 0 (one reduces to the case of divisor classes of
degree zero, as above). We are thus led to the following simple expression

(g-VFN) = Y AMAWudext,

degp 4<52¢9-2

Multiply both sides by u!~9 = ¢{9=1% and we get

(G- DS fa = ¥ A udsE At

degp AL2g9-2

The key observation is that if C denotes the canonical class, the map
A — C — A is a permutation of the divisor classes of degree less than or
equal to 29 —2. Thus, in the last summation we can substitute C — A for A4
and the sum remains the same. Let’s investigate how the individual terms
change. L

The expression A(A) becomes A(C — A) = A(C)A(4A)~! = A(EIA(A).

The expression ¢H4) becomes ¢é~A) = go-1—degxc AgllA) gince, by the
Riemann-Roch theorem, {(A) = degp A— 9 + 1+ {(C — A).

Finally, u®egx 4=9+! hecomes u9—1~9%€x A gince degy C = 29 — 2.

Making all these substitutions in the above equation yields

(= Du 9 fw ) =AC) Y. AA)GO (g u e Aot <
degp A<L2g-2

(g =DACHg ™) f (g ™)

If we let Fu,A) = ul79f(u,)), we have shown that F{u,)) =
MCYF(q~ u~1, A). Since Fu, Ay = ¢~V L{s,)) = A(s, )), the functional
equation we have proven for Fi(u, A) translates into the functional equation
for A(s,A) given in the statement of the Proposition.

It remains to prove that L(s, A) is a polynomial in ¢~° of degree 2g — 2.

Rewriting the functional equation for f(u, A) we derive

w2972 flu, A) = M(C)gv ™ Flg™ ™ )

The constant term of f(u,X) is 1 (this is immediate from the definition),
Thus, the right-hand side tends to A(C)¢9™! as v — oo. It follows that
F(u, A) has degree 2g — 2 and also that the coeflicient of the leading term
is A(C)g®~L. Translating back to “s” language shows that L(s, \) is a poly-
nomial in ¢~° of degree 2g — 2, as asserted.
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Exercises

1.

Let L/K be a Galois extension of function fields with Galois group
G. Let Dk be the different divisor. Show that 6D/ = Dk for
all o € G,

Let L/K be a Galois extension of function fields with Galeis group
. Suppose there is a prime P of K which is inert in L; i.e., there is
a prime P in L, lying above P, such that f('B/P} = [L : K]. Show
that G is cyclic.

(Continuation). Conversely, il & is cyelie, show that there exist in-
finitely many primes P in A which are inert in L. What is the density
of this set of primes?

Suppose that E/K is a geometric and separable extension of function
felds. Let I be the smallest Galois extension of K containing L.
Show by example that the constant field of L may be larger than the
constant field of K.

Let B, and Fy be two finite Galois extensions of a function field K.
Suppose that there is a prime I* of K which ig totally ramified in
E; and unramified in Fa. Show that By Eq/Ey is Galois with group
isomorphic to Gal(Fy /K and that every prime in Fo lying above P
is totally ramified in E)Es.

Let L/K be a Galois extension of function fields with Galois group .
Let &V be a normal subgroup of G and L' the fixed field of N. Let 0
be a prime of L and P the prime of K lying below . If I{([B/P) C N,
show that P is unramified in L'. If Z(p/P) C N, show that P splits
completely in /.

. Suppose L/K is a Galois extension of function fields and that P

is a prime of L. If ¢ € L*, and ¢ € Gal(L/K), show ord,q(a) =
ordg{eta). In particular, if P is fixed by Gal(L/K), then for any
a & L=, all the conjugates of a have the same order at 3.

Let L/K be a Galois extension of function fields with Galois group
G. Let T be a prime of L and P the prime of K lying below it. We
assume that & = Z(P/P) (if this isn’t true, simply replace K by the
fixed field of Z(B/P)}. Define subsets of & as follows: G, = {0 €
G | ordg(ca—a) > m+1,Ya € Ogp}. Show that these sets are normal
subgroups of . Note that G_; = G = Z(B/P) and Gy = I{P/P).

. (Continuation} We wish to study the structure of &y = I(B/P).

We can replace K with the fixed field of I{3/P). Once this is done,
we can assume ‘P is totally ramified over P. If [I is a uniformizing
parameter at 3, it can be shown that Oy is free as a module over Op
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with a basis {1,I[,T12,...,I1*"!}. Using this, show for each m > 0
that G, = {¢ € Go | ordg(cIl —TI) > m + 1}, Also show that
G, = (e) for all sufficiently large integers m.

(Continuation) Define U™ = {u ¢ 0% | ordgp(u -~ 1) 2 m}. For
m > 0 we define maps pm : Gm/Gmaq — UM U by sending
& € G to the residue class of oII/TI in U™ /U™, Show that g,
is independent of the choice of uniformizing parameter. Show that
pm 18 & homomorphism and that it is one to one.

{Continuation) Let Fig = Oq /. Show that there is a monomorphism
from U/U™ to F and monomorphisms from U fpm+l) o F
for all m > 1. Deduce that Gy /G is cyclic of order prime to p=char
F, and that (7 is a p-group, in fact, the unique p-Sylow subgroup of

1(B/P).

Let L be a function field over a constant field ' and suppose that
o is an automorphism of L which is the identity on F. Let P be a
prime of L. Then, o induces a continuous map from Oy-1p — Ogp
which extends to an isomorphism (which we continue to call o) from
Ly-1qp — Ly Define & : Az — Ay, by &(agp) = (byp) where by =
0a,-1y for all primes PP of L. Show that & is a ring automorphism
of A;, and that its restriction to L is o.

Let L/K be a finite separable extension of function fields. In Chapter
7, we defined a trace map #ry i : A, — Ax. We now define a map
in the other direction, 47,5 : A — Ay sending the adele (ap) to the
adele (by) whose P-th coordinate is ap for every prime ¢ lying over
P. Show that iy ,x is a one-to-one ring homomorphism which sends
K to L.

(Continuation} Show that trp x oipy is multiplication by n = (L
K. If n is not divisible by the characteristic of L, conclude that try,x
is onto.

(Continuation} Suppose L/K is a Galois extension of function fields
with Galoig group G, Show that the adeles of L which are fixed by
G, A%, are equal to iy /x Ak,

Let L/K be a Galois extension of function fields and o an auto-
morphism of L which leaves the constant field fixed, If w € 02, is a
differential, define ow by cw(a) = w(e~ta) for all a € A;. If w van-
ishes on Ap(D) for a divisor D, show that ow vanishes on Ap(cD}).
Use this fo prove that ow is a differential. If (w} is the divisor of w
show that the divisor of ow is o(w).

(Continuation) Let O denote the zero divisor and 5 {Q) the space
of holomorphic differentials. Show ¢ maps Q,(0) into itself. Assume
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that g > 2, where g is the genus of L. Also assume that o is non-
trivial and of finite order prime to the characteristic of L. Show that
the action of ¢ on 21,(O) is non-trivial. {Hint: Let K be the fixed field
of 0. If ¢ acts trivially on €2, (O), show the map w — w* = wotryx is
an isomorphism between Qg {0) and 1 (O) . Conclude that gr, = gx.
This contradicts the Riemann-Hurwitz formula). The proof outlined
here is due to R. Accola.

Let & = F(T') be the rational function field and A = F[T] be the ring of
polynomials. Let m € A, m ¢ F*, and suppose m = aP{  Py? .. P
is its prime decomposition. Each P; corresponds to a prime ; of k.
Let M = 3" a;P; be the effective divisor of k corresponding to m. We
set Moo = M + co. Show that Cl§, = (A/mA)* and deduce that a
ray class character modulo M, restricted to the divisors of degree
zero, 15 the same as a Dirichlet character modulo m.
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Artin’s Primitive Root Conjecture

By now we have developed a lot of foundational material about the arith-
metic of function fields. In this chapter we will put this material to work
and give the beautiful proof, due to H. Bilharz, of E. Artin’s conjecture
about primitive roots in function fields.

The work we will describe is the PhD thesis of Bilharz, who wrote the
thesis under the direction of H. Hasse. His paper appeared in 1937 (see
Bilharz [1]).

Bilharz dates the origin of the conjecture very precisely. He claims Artin
made his conjecture in a private conversation with Hasse which took place
on September 12, 1927, Artin considered an integer o € Z which is not in
the set {0,1,~1} . Let M, be the set of primes, not dividing a, for which
@ Is a primitive root. Does this set have a Dirichlet density and if so can a
formula be found for it? On heuristic grounds, Artin conjectured that the
density was

1 1
sMa) =[] (- m) [gu(l ek

125,

where the first product is over all primes for which a is not an [-th power in
Q and the second over the finitely many primes (maybe the empty set) for
which a is an {-th power. The first product is convergent and, since all the
terms are non-zgero, so is the product. The second term is zero if and only
if2€8,,ie aisasquare in Q. Thus, assuming this formula is correct,
it follows that if @ is not 0,+1, and not a square, then there are infinitely
many primes for which ¢ is a primitive root,
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Artin’s formula is not correct as it stands, but it may be modified slightly
to give what is believed to be the correct result . The qualitative conse-
quence described above remains unaffected by this. It is this latter state-
ment that is known as Artin’s conjecture on primitive roots. It remains
open to this day. In 1967, C. Hooley gave a conditional proof of the conjec-
ture, with the correct formula for the Dirichtlet density, by assuming the
truth of the generalized Riemann hypothesis for a certain set of algebraic
number fields (Hooley [1]). Even without the Riemann hypothesis, great
progress has been made in recent years by R. Gupta, M. Ram Murty, and
D.R. Heath-Brown (see the survey article of M. Ram Murty [1]}.

The thesis problem of Bilharz was to formulate the primitive root con-
jecture in global function fields and give a proof of it in this context. He
did this brilliantly except that his proof was conditional on the truth of the
Riemann hypothesis for global function fields. In 1948, Weil published his
proof of this result and one consequence was that the Artin conjecture on
primitive roots was no longet a conjecture, but a theorem, in the function
field context.

Let us fix a global function field K with constant field F having ¢ ele-
ments. Let a € K* and P € Sk, a prime of K which is prime to a. We
say that a is a primitive root modulo P if its residue class in {Op/P)* has
order NP — 1, i.e. it is a cyclic generator of (Op/P)". If o € F~ its order
divides ¢ ~ 1 and thus a can be a primitive root only for the finitely many
primes of degree 1. We assume from now on that @ € A*, hut not in [F*.
The following simple lemma is crucial to what follows.

Lemma 10.1. Let P be a prime of K not containing a € K*. Then, a is
o primitive root modulo P if and only if there is no prime | € Z satisfying
both of the following conditions:

i) NP=1 (modl) and ) a7 =1 (mod P).

Proof. If there is a prime [ satisfying both conditions, then the order of a
modulo P divides (NP — 1)/, so that a cannot be a primitive root. So, if
@ is a primitive root, there is no prime { for which both conditions hold.

Now, suppose there is ne prime ! for which both conditions hold and let
f be the order of 2 modulo P. We claim that h = NP — 1. If not, there is
a prime ! dividing (NP — 1}/h. In this case, h divides (NP — 1)/l and so
both conditions of the lemina are satisfied, which is a contradiction. Thus,
h=NP —1 and o is a primitive root modulo P.

We can assume from now on that [ # p since condition i} of the lemma
never holds for the characteristic p of F. For each prime ! # pin Z let {; be
a primitive I-th root of unity in a fixed algebraic closure of K. We define
an extension K; of K to be the field obtained by adjoining ¢{; and any I-th
root of a, V/a, to K, ie., K| = K({;,/a). Since K; is the splitting field of
the separable polynomial X' — a over K, K; is a Galois extension of K.
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We will show in a while that both conditions of Lemma 9.1 are satisfied if
and only if P splits completely in K;. This will tie our discussion in with
some of the material developed in the last.chapter. Before doing so we have
to take a short detour to discuss cyclotomic and Kummer extensions in
function fields.

Proposition 10.2. Let L = K({;). Then [L : K| = f(l), the smallest posi-
tive integer f such that g/ =1 (mod !). A prime P € Sk splits completely
in L if and only if NP =1 (mod ).

Proof. Since L = KT((;) it is a constant field extension and [L : K| =
[F({:) : F] by Proposition 8.1. Now, Gal(F(¢;) : F) is generated by ¢, the
automorphism that takes an element to its g—th power. Thus, ¢/ (¢} = ff.
It follows that ¢/ fixes ¢ if and only if ¢f =1 {mod 1). Tt follows that the
order of ¢; is f({} since {; generates F((;) over F. This proves [L : K] = f({).

Since L/K is a constant field extension, every prime of K is unramified
in L by Proposition 85. If ¢ is a prime of L above P, then by definition
(P,L/K)¢ = ¢F (mod B). Both sides of this congruence are constants,

so we must have equality. Thus,
(P.L/K)G) = ¢

and it follows that (P, L/K) is the identity on F((;) if and only if NP =1
(mod ). This proves the second assertion of the proposition.

A more elementary proof of the second part of the proposition can be
obtained by using the corollary to Proposition 8.13.

Our next task is to investigate extensions of the type K{(/a)/K. These
are called Kummer extensions. We want to know which primes split com-
pletely, which primes ramify, and also a formula for the genus of K{(\/a) if
we know the genus of K. The answers to these questions are given in the
next three propositions.

Proposition 10.3. Let K be o function field over a constant field F' of
characteristic p. Let | be a prime number not equal to p and a ¢ K*, not
an {-th power in K*. Let o be a root of X! —a =0 and L = K(a). A prime
P of K is ramified in L if and only if | does not divide ordp(a). If P is
ramified, il is totally ramified, i.e., there is only one prime W above it in L

and e(P/P) = 1.

Proof. Note to begin with that since [ # p, X' —a is a separable polynomial
and so L is a separable extension of K. Also, since @ is not an l-th power,
#' — a is irreducible (see Lang [4]) and so [L: K] = L. .
Suppose first that [[ordp(e). Let = be a uniformizing parameter in the
valuation ring of P, Op. Then, o = w**u, where & € Z and u is a unit in
Op. Thus, a/x" = p is an I — th root of w and L = K(c) = K(u). Let Rp
be the integral closure of Op in L. We claim {1,u, u2,++- ,u'~1} is a basis
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of Rp over Op. It is certainly a basis of L/K since X' — u is irreducible.
Suppose § € Kp. Then

-1
8= Zcm" with ;€ K.
i=0
By the usual argument, the coefficients ¢; will be in Op if we can show
that the determinant of the matrix {trr;x (14+7)) is a unit in Op. We claim
tr(y") = 0 unless I|k, in which case the answer is [u*/!. This is because u"
is a root of X! — ", which is irreducible when «” is not an {-th power, i.e.,
when h is not divisible by L. If IjA, then p* = u*"! and the result is clear.
We now have enough information to show easily

det{trp x (p'p?)) = £liu~1

This is a unit in Op since | £ p and w is a unit in Op. This shows,
simultaneously, that {1,u,---,2'~1} is an integral basis for Rp/Op and
that the discriminant dr,;0, = Op. From Proposition 7.9, we canclude
that P is unramified in L.

Now suppose that [ does not divide ordp(a). Let P be a prime above P
in L. Since o = a, we have

{ ordy(a) = ordp(a) = e(P/Plordp(a) .

This implies that {[e("8/P). By Proposition 7.1, e('/P) < I. This shows
that e(3/P) =1 and so P is totally ramified as claimed.

Before stating the next proposition we pause to give a somewhat technical
definition which will be useful here and later. I.et K/F be a function field
with the constant field of characteristic p, possibly zero. An element ¢ € F™
is said to be geometric at a prime I # p if K(V/2) is a geometric field
extension of K; i.e., the constant field of K({/a) is F. Here /a is some root
of X! —a = 0 in an extension of X. The definition does not depend on
which root is chosen (in a given algebraic closure of K). It is an exercise to
show that a is geometric at | unless it has the form ub! where u € F* — F*!
and b € K*. One way is clear. If a has this form, then K(¥a) = K(Yp)
which is certainly a constant fleld extension.

Proposition 10.4. Let K/F be a function field, with constant field F' of
characteristic p (possibly, p = 0). Let | # p be o prime and L = K(c)
where o' = a € K*. Asswme that a is geometric at | and that e is not an
I-th power in K*. Then, 2g; — 2 =1{2gx — 2) + R, (I — 1) where R, is the
sum of the degrees of the finitely many primes P of K where ordp(a) is
not divisible by .

Proof. This is an application of the Riemann-Hurwitz Theorem. Theorem
7.16, which asserts that

291 —2=[L: K|(20x — 2) +deg; Dr/k .
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Here, L/K is presumed to be a finite, separable, geometric extension of
function fields and Dy 4 is the different divisor of the extension. These
hypotheses apply to L = K(a), given our assumptions. If 2 is a ramified
prime of L lying above P in K, by Proposition 10.3 we must have e(/P) =
U, f(B/P) =1, and g(B/P) = 1.

We have to figure out the quantities on the right-hand side of the equa-
tion. We already know [L : K| = [ since a is not an I-th power in K.
Since p # I, by Corollary 2 to Lemma 7.10, the coefficient of a ramified
prime P in the different is e('P/P)—1 =1 — 1. Since P is totally ramified,
f(B/P) = 1 and so degy P = degy P. Thus, the degree of the different
is just (I — 1) times the sum of the K-degrees of the primes P of K with
ordp(a) not divisible by ! (again using Proposition 10.3). This sum is R,,
by definition, so the proof is complete.

It is worthwhile noticing that if one fixes the base field K and an element
a € K" satistying the hypotheses of Proposition 10.4, then, as { varies over
the prime numbers, the genus of K({/a) is a linear function of {. This
observation will be of use later.

An interesting special case is to take K = F(T), the rational func-
tional field, f(T) € F[T] a square-free polynomial of degree N, and L =
K(+/f(T)) (assuming that char (F) # 2). A caleulation, using the proposi-
tion {and not forgetting the prime at infinity) yields the fact that the genus
of L is (N —1)}/2if N is odd and (N/2) — 1 if N is even.

Proposition 10.5. Let K be a global function field over o constant field F
with ¢ elements. Let | be o prime different from the charecteristic of F. Let
a € K*. Assume that R contains a primitive {-th root of unity, {;. Suppose
that P is a prime of K and that ordp(a) = 0. Then, P splits completely in
L = K(¥/a) if and only if

NP-1
a T =1 (mod ).

Proof. Since {; € K, the extension L/K is a cyclic Galois extension. Also,
we must have {; € F*, which impliesg = 1 (mod {} and so NP =1 (mod {)
for all primes P of K.

P is unramified in L if ordp(a} = 0 by Proposition 10.3. Thus, the
Artin automorphism (P, L/K) is defined. The order of this automorphism
is f(P/F) where T is any prime of [ lying over £. Thus, P splits completely
if and only if (P, L/K) is the identity automorphism.

Any two roots of X' — a = 0 differ by an {-th root of unity. Let a be any
root of this equation. Then (P, L/K)a is another root. Thus (P, L/ K)o /a
is an {-th root of unity which is easily seen to depend only on a and not
on . The usual notation for this l-root of unity is (a/F);, the {-th power
residue symbal. We have

(a/Pha= (P L/IK)a=ao"F (mod P),
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where T8 is any prime of L lying above P. By hypothesis a ¢ P, so we can
divide this congruence by o to obtain

(a/P)y = a™F 1 = ot {mod P) .

Since ¢, € K we can conclude that

NP1

{a/Pyp=a¢"7 (modP).

Thus, if P splits completely, (P,L/K) is the identity, which implies
(a/P); = 1 and the above congruence shows a¥~1/! =1 (mod P). Con-
versely, if a¥F~1/1 = 1 (mod P), then (a/P), = 1 {mod P). Since both
sides are constants, they must be equal; ie., (a/P); = 1. This implies
(P, L/K) is the identity ( since o generates L) and so, P splits completely.

Notice that the conclusion is true even if o is an I-th power in K*. Of
course, everything is trivial in this case.

Proposition 10.6. Let K be o global function field with constant field .
Let | be a prime different from the characteristic of B. Let o € K*. Let
By = K({i,a). Let P be a prime of K such that ordp{a) = 0. Then, P
splits completely in L if and only ¢f

NP=1 (mod!) and a" 7= =1 (mod P).

Proof. Consider the tower of fields K € K({;) C £;. A prime of K splits
completely in L if and only if it splits completely in K (¢;) and every prime
above it in K((;) splits completely in E,.

By Proposition 10.2, P splits in K(¢;)} if NP =1 (mod {). Let 3 be a
prime of K({;) lying above P. We apply Proposition 10.5 to E;/K((;); i.e.,
in that proposition we replace K by K{({) and L by E;. It follows that P
splits completely in £; if and only if

™ =1 (mod P).

Since both sides of this congruence are in Op, we may replace the modulus

with P. Also, if P splits in K(§), then N8 = N P; so the condition is

o =1 {mod P} .

This completes the proof.

We now return to the original problem about Artin’s primitive root con-
jecture in the function field case. By combining Propositions 10.1 and 10.6
we see that o is a primitive roots modulo a prime P if and only if ordp(a} =
0 and P does not split completely in any of the fields E; = K ({,/a), where
{ runs through all the primes different from the characterissic of F. Let M,
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denote the set of primes in K which do not split completely in any of the
fields E,. M, differs from the set of primes for which a is a primitive root
by at most the finitely many primes P with ordp(a) # 0. In particular, if
one of the sets has Dirichlet density, both do, and the Dirichlet densities
are equal. Bilharz’s proof proceeds by showing that the Dirichlet density of
Mg, §(M,), exists and is non-zero with the exception of some very special
circumstances for which @ cannot be a primitive root for infinitely many
primes. We will make the simplifying assumption that o is geometric. We
remind the reader that this means that for all primes I 3 p, the field exten-
sion K(/a)/K is geometric. If this assumption is not made, there is a gap
in Bilharz's proof of his theorem. This observation was also made by J. Yu,
who has filled in the gap in a paper which is to appear, Yu [2]. By assuming
o is geometric we avoid these difficulties and lose nothing essential about
the original proof.

The outline of the proof is clear and elegant, but the details are some-
what complicated. We will begin by sketching the outline of the proof and,
afterwards, go back and fill in the details.

For any field extension L/K, recall that {L} denotes the set of primes
of K which split completely in L. Note that {K'} = Sk in our previous
notation. ‘

We will need the following key resuit.

Proposition 10.7. Assume a is geometric and not an l-th power in K.
Let m be a square-free integer prime to ¢ and By, the compositum of the
fields Ey for all Ilm. Let f(m) denote the order of ¢ modulo m. Then,
[Em ¢ K] = m,f(m), where m, is the product of the primes | dividing
m for which a is not an l-th power.  The Dirichlet density of the set of
primes which do not split completely in any of the fields By with I|m is
grven by

u(d)
dof(d)

dlm

Proof. The field F,,, contains {,, a primitive m-th root of unity.

Let !|m. We claim a is an {-th power in K if and only if it is an {-th power
in K{{m»). One way is obvious, so suppose a is an I-th power in K ({,). This
implies that K{\/a} € K({m). A subfield of a constant field extension is
a constant field extension. Since, by assumption, a is geometric, this can
only happen if K(/a) C K, i.e., when a is an l-th power in K.

Clearly, F,, is the compositum of the field extensions K{(n, Va}/K (Cn)
as | runs through those primes dividing 7» for which a is not an I-th power
in K((m). By the last paragraph, these primes are the same as those for
which a is not an I-th power in K. Since all these field extensions are cyclic
of prime order, for distinct primes, we conclude that {E,, : K(()] = ma.

To finish the proof that |E,, : K] = m,f(m) it remains to show that
[K(¢m) : K] = f(m). Since [K () : K] = [F((,r) : F], this follows in the
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usual way by computing the order of the finite field Frobenius automor-
phism ¢,.

To compute the density of the primes My, which do not split com-
pletely in E,,, we resort to the inclusion-exclusion principle of set theory.
Let {{1,03,- - It} be the primes dividing m. Applied to our situation, the
inclusion-exclusion principle yields the following expression for the set in
question:

Mmy = {K} - U{E:,} +| MBI N (B} -

%)

For any subset T < {K'} define

Z:PI:T Np—s
9= Fog (s)

It is clear that §(T', s) is well defined for s > 1. From our discussion of
Dirichlet density in Chapter 9 (immediately after Proposition 9.11} we see
that lim,_,1+ (T, s} = &(T}.

The above set theoretic-expression for M,y,; yields the following identity
on the level of functions:

§(Mmy;8) = 6({K}, s Zé({E’z s)+§:5({E; H{E,}, 8)~- - ete.

Taking the limit as 5 — 17, we see

HMmy) =1— Z d({E, 1)+ 25({Ea,} N{E,}) —- ete
i i

In a finite set of Galois extensions the set of primes which split completely
in the compositum is the intersection of the sets of primes which split
completely in the individual extensions. Using this, the above expression,
Theorem 9.13, and the computation of [E,, : K] in the first part of the
proof yields

_ #(d)
HMmy) = Z dof(d) "’
a3 asserted.
Let {;,{a,!3,--- be an enumeration of the primes different from p, the

characteristic of F. Let my, =1l -1, and let E,, be the compositum of
the fields Ey with ljmy,, Le. L € {l1,15,- , 1.}, Let M,, be the set of primes
which do not split completely in any of the field Ej, with 1 < < n (in the
notation of the above proof, M,, = My, ;). Note that M, D My O M,
and that [1),, M, = M,. We have just shown that

d
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It is tempting to just pass to the limit as n — oo to get Bilharz’s Theorem
(Theorem 10.19 below). In fact, that is how the theorem is proved, but the
passage to the limit requires a rather elaborate justification. An important
part of the justification is played by the following theorem, whose proof we
postpone.

Theorem 10.8. (Romanoft} Let ¢ > 1 be an integer and for any integer
m relotively prime fo g, let f(m) be the order of ¢ modula m. Then, the

series
>
— mf{m}
converges. The sum is over all square-free integers m relatively prime fo q.

We can now state the principal result of this chapter.

Theorem 10.9. (Bilharz) Assume a is geomeiric element of K*. Then,
with the above notations, the Dirichlet density of M, exists and is given

by

o(Ma) = Zl m}:(fﬂ(ﬂg%)
(mp)=1

The sum is easily seen to be absolutely convergent using Romanoff’s
theorem.

As we have already pointed out, Bilharz does not make the restriction
that a be geometric. His proof seems to contain a small error involving
the computation of the degree [E,, : K. This problem has recently been
corrected by J. Yu, but we will be content with proving the thecrem as
stated.

Before going on to the proof, we discuss the consequences of Bilharz's
theorem. The main difficulty is to determine when §(M,) is zero and when
it is not. The above expression for 6(AM;) as sum does not immediately
resolve this problem. One needs the following special case of a result of
H. Heilbronn, whose proof we also postpone.

Proposition 10.10. With the same notations as Theorem 10.9,

imﬁ m)—H (I‘ﬁ) |

m=1

Let S denote the set of primes I # p for which a is an I-th power. S
is a finite set, possibly empty. We can rewrite the right-hand side of the
equation in Proposition 10.10 as follows:

11 (-7w) H(l‘ﬁ) |
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The first (infinite} product converges and is not zero since the individual
factors are non-zero and the product converges, since } 4q1/1f(l) con-
verges by Romanoff’s theorem. The second (finite} product is zero if and
only if f(!) = 1 for some prime I € S. In other words, the whole product
is non-gero unless there is a prime ! dividing ¢ — 1 for which ¢ is an {-th
power. This leads to the following theorem,

Theorem 10.11. ({Bilharz) Let a be a geometric element of K*. Then
there are infinitely many primes P € Si for which a is o primitive root
provided thet there is mo prime divisor [ of g — 1 for which a is an [-th
power. If there is such a prime divisor, then a is not a primitive root of
any prime P € Sk.

Proof. We have just shown on the basis of Theorem 10.9 and Proposition
10.10 that if ¢ is not an I-th power for some prime | ¢—1, then §(M,) 5 0.
Since we pointed out earlier that M, differs from the set of primes for which
a is a primitive root by a finite set, it follows that the latter set has non-zero
Dirichlet density and so must be infinite.

Ifll g —1 and a = b for some b € K*, then for any prime P of K not
dividing a we have (using {| ¢— 1| NP - 1)

o™ =Pl =1 (mod P).

Thus, e is not a primitive root for any prime P of K.

We now turn to the proof of Theorem 10.9. We first show how to reduce
the proof of the theorem to the proof that a certain infinite sum of functions
converges uniformly. We then prove that assertion. This is the hardest part
of the proof. After that we give a proofl of Romanoff’s Theorem. Finally,
we prove Heilbronn’s result, Proposition 10.10.

Suppose ¢ € K* is a fixed geometric element. Recall that M, is the set
of primes in A which do not split in any field By, for 1 < i < n. We note
again that

o0
) Mp D Mup1 DM, i) [ Mu=M, .
n=1

To these two properties we add a third:

i) My~ Ma G | {B0}.
i=n+l
This follows since any prime in Ad,, which is not in M, must split com-

pletely in E, for some i > n.
From property ¢) we see that for any s with s > 1 we have

§(My5) = 6(Mnyr,8) > 6(Ma,s) .
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Thus, lim, 00 §(My, §) exists and is = §(M,, s).
We want to estimate §{M,,, s) — 8(M,, 3). To do this we first observe
that by property iii we have :

J( M, 8) — 6(Ma,5) < _Z 8({B},5) -

To go further we need an observation and a key lemma. The observation
is that for any Galois extension L of K and s which is real and greater
than 1 we have

1 log¢i(s)
§({L},s) < —
W) < T R og cx )

To justify this, one can go back to the proof of Theorem 9.13 and note
that the proof shows log {1(s) = [L : K] Y pe(ry NP~* + R(s) where R(s)
is positive when s is real and bigger than 1. ]51v1dmg both sides of this
equation by [L : K)log{x{s) proves what we want.

Putting the last two inequalities together yields

1 logdg (s)
5{My,5) — a=3)<1§] [E1, : K] logCre(s) .

We can now state the main lemma

Lemma 10.12. There is a real number sy > 1 such that
i 1 log CEz‘ (3)
[Ey, : K] log (ke (s)

converges uniformly on the interval (1,s,).

Assuming this lemma we will conclude the proof of Theorem 10.9. We
will then give the proof of the lemma.

From Lemma 10.12 and Equation 1 we see that lim, o §{M,,s) =
8(M,,s) on (1,s1) and that the convergence is uniform. We can use the
following standard fact from real analysis.

Fact. Let {fn(s)} be a sequence of functions on the interval (sg, s1) which
converges uniformly to a function f(s). For each n suppose lim,_,,, fn(s) =
A, exists and that lim, o, A, = A exists. Then, lim,o,, f(s) = 4. In
other words,

lim lim fo(s) = lim lim f.(s).

8389 n—00 — 0O S~rdg

We now apply this fact to the sequence of functions §(M,,, 5).
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al_i}r%_ Mg, s) = sl_i}r}}{_ ’}Lngoé-(Mn, s} = lim llm §(My,s) =

n—roo g1+

Z (d) _ \E Hm)
n—}c\o d =, (map)=1 muf(m]
In the next to the last equahty we have used Proposition 10.7. The last
equality uses Theorem 10.8, Romanoff's Theorem.

This sequence of equalities gives the proof of Bilharz’s Theorem, Theorem
10.9, once we have proved Theorem 10.8, Proposition 10.10, and Lemma
10.12.

Still assuming the truth of Romanoff’s Theorem, we next tackle the proof
of Lemma 10.12.

Since @ is an I-th power for only finitely many primes, to prove Lemma
10.12 it suffices to prove that the sum

1 log(:E[ S)
anmg@ @)

is uniformly convergent on some interval (1, s;), where the sum is over all
primes [ # p for which g is not an [-th power.

Let R = F(T) denote the rational function field over F and Ry = F({)(T)
denote the rational function field with F({;} as constant field. It follows from
Theorem 5.9 that

CE] (S) = LE; (S)CRI (Sjy

where L, (5) is a polynomial in ¢=79¢ of degree 2g;, where g; is the genus
of E;. {(Remember that f(I) = [F({;) : F].) Taking the logarithm of both
sides of this relation and substituting into Equation 2 gives

1 logim(s) log Lg,{s) 1 log¢m{s)
3
Y 0 bete® Zwumg EHDM&@ @)
It thus suffices to prove that these two sums are uniformly convergent on

some interval (1,s;). We shall first prove this for the second sum.
For s > 1 we note that

1 1
Cr; (3) = (1— [)s (1 _ qf{I) 1—3)) (1— s)(l — ql—a) = CR(S) .
Thus, (s)
r 1 log(r(s) 1 log¢g(s)
% 1f(1) log Cxe(s) = Z = LA(1) log Cx(s) W

Since both {r(s) and (x(s) have a sunple pole at 3 = 1, it follows easily
that the ratio log {x(s)/log {x (s} — 1 as s — 17. Thus, there is an interval
(1,1) such that this ratio is less than 2 for s € (1,s5;:). It follows that
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the right-hand sum in Equation 4 is dominated by the convergent sum
Y isp r77y- This establishes the uniform convergence of the second sum in

Equation 3 on the interval (1,s;). We now turn our attention to the first
UL
From Theorem 5.10, we deduce the following:

2

Lg(s) =[] (1 - qu_f(t)s) )

3=1

where each m; has absolute value ¢ 0/2 (it is here that the Riemann hy-
pothesis for function fields is used}. Assuming that s is real and bigger than
1, we obtain the following inequalities;

2 2
(1o )" <In ) < (144"

By Proposition 10.4 and the remark following it, we see that there is a
constant r, independent of [, such that 2¢; < rf for all {. Substituting this
into the last equation and taking logarithms of the terms of the resulting
inequalities yields

rllog (1 —q_ﬁ?l) SlogLg (s) < rllog (1+q —%—)) . (5)
If 0 < z, then log(l + z) < z, so

log L, (s) < rlg~ "

To deal with the left-hand side of Equation 5, note that for 0 <z < 1

—log(l—=) = Zw—— <Z:ﬂ

k=1

Substitute z = ¢~/ (/2 into this and also use the fact that (1—¢—f(H/3)71 <
(1 ~g /%)=L, We obtain

V@
Vi—1

Altogether, we have established that

¢~ <logLg(s) .

—rl

Ve 5
ﬁ —1

Since log (g (s) — oo as s = 1T, we see that 1/|log {x (s)| is bounded by
some constant, say, C, on the interval (1,31). Thus, for s € (1, s7) we have

1 IlOgLE:(S)}
Z LF(1) loglr(s]| Z

l#p f)q

|10gLE|( ,

f(ll )



162 Michael Rosen

We will have established that the first sum on the right-hand side of
Equation 3 is uniformly convergent on the interval (1,s;) once we prove
the following lemma. This will also finish the proof of Lemma 10.12.

Lemma 10.13. The sum ) 1
Z It

0]
i#p f(l)q 2
8 convergent.
Proof. We will break the sum up into two subsums, the first over all primes

{ such that | < ¢/0/2 and the second over all primes such that [ > ¢f¥/2,
For the first subsum we have

> S
1<q# /2
The latter sum converges by Romanoff’s Theorem.
To analyze the second subsum, we first try to figure out how many primes
{ there are such that f(I) takes on a fixed value f. Such primes must divide
gf — 1. Let Iy,l3,--- , 14, be the set of such primes. We have

5112"'&! |qf—1.

We are now considering primes ¢ such that ¢//2 < {, so it follows that

and it follows that ty < 1. Thus,

1 =1

< =,

% f(f)q ;;{qu
T,

which is a convergent series. In fact, its sum is —log(1 — ¢~ 7).
Since both subsums converge, the proof is complete.

The two remaining things which need proof are the results of Romanoff
and Heilbronn. Both these proofs belong to elementary number theory
and not to the arithmetic of function fields. Nevertheless, for the sake of
completeness we will sketch these proofs.

The proof of Romanoff’s Theorem uses the following lemma.

Lemma 10.14. Let v denote Euler’s constant.
pldy _ 8
L S iy
7 S e loglog(n) + O(1) .

dln
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Proof. First of all, note that
pld)® 1
> = =1+5)-
din pln
The product is over all prime divisors p of n. We break this product up
into two parts - first the product over prime divisors > log(n) and secondly
over prime divisors < log(n).

If p1,p2, -+, Pgn) are the prime divisors of n which are greater than
log{n) we find, using [[p; < n, that

log(n)?™ < n ,

and, consequently, g(n) < log(n)/loglog{n). It follows that

I (3) (o) =1+ () -

pin
tog(n)<p

We now consider the product over prime divisors less than log(n).

1 1 1\~
I+=]= 1— = 1—-=-) .
11 ( p) LI ( pz) 11 ( p)
pln pln pin
p<log(n) p<log(n) p<log{n)
The first product on the right-hand side is 1/¢(2) + Q(1/ log(n)) = 6/%% +
O(1/log(n)). The second product is < e7loglog(n) + O(1} by Merten's
Theorem (see Hardy and Wright [1], Theorem 429).
Putting all these estimates together gives the result.

We now have everything we need to give the proof of Theorem 10.8,
We begin by rewriting the sum in question as follows (all sums are over
square-free m prime to gq):

1 =dn)
Zm_}“(m)—Z n '

m n=1

where d(n) =37 ¢(n)=n 1/m-
Define D(n) = Y_p_, d(k). A moment’s reflection shows that

Din} = Z %

m, f{m)}<n

Any m entering the definition of D{r) must be a square-free divisor of
Afn) = (¢ — 1)(g*t = 1)--- (g ~ 1). Clearly, A(n) < q* . Thus, using
Lemma 10.14 we find

2
D)< Y % < %e”' loglog A(n) < M log(n) ,
miA{n}
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for an appropriate positive constant M.
Let’s define D(0) = 0 and calculate

N N -D __1
- e

Since D(n) < M log(n), we see that for large N the right-hand side of
this equation is less than

D(n} D(N)
nn+1) N

MZ

n=1

— log(n)
1+MZ oy

This is finite, and this implies 3 >
plete.

oo d(n)/n converges. The proof is com-

This simple proof is due to M. Ram Murty. The same argument can be
made to give much stronger and more general results of the same nature.
For these improvements and generalizations see Murty-Rosen-Silverman
[].

Our final task in his chapter is to prove the inequality due to Heilbronn,
Proposition 10.10. This will be seen to follow from a more general inequality
belonging to the elementary theory of numbers (see Heilbronn [1]).

For any subset 8 C Z+, the positive integers, we define its natural density
to be

4(S) = Jim X~'#{neS|n<X},

provided that the limit exists.

If § has a natural density, then it is not too hard to show it has a Dirichlet
density as well, and that the two are equal. On the other hand, there exist
sets with Dirichlet density, but not natural density.

Natural density has a number of simple and easily proven properties.

1. d(8)=0if 5 is a finite set.

2. d(Z*) =1, where Z7T is the set of all positive integers.

3. If 8] C Sz, then d(81) < d{53), provided that both densities exist.

4. If 51 N8 = ¢, then d(S; U Sy} = d(S1) + d(S,), provided that d(S;)
and d(S2) both exist.

5. Let h be a positive integer and define hS = {hs | s € S}. Then,
d(hS) = 2d(9), provided that d(S) exists.

It follows that the natural density of the set of integers divisible by a
positive integer a is exactly 1/a and, consequently, the natural density of
the set of integers not divisible by a is 1 — 1/a. Let {ay,as,...,a2,} be a
finite set of positive integers and T;, the set of positive integers not divisible
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by any a; with 1 < i < n. Tt is an exercise to show, using the inclusion-
exelusion principle, that T, has a natural density given by

T)—I—Z + Y

i 1<z<3<n[ “aj-l

1

e (-1 —
(=1) [a1,02,...,0x]
In this equation, the square brackets denote least common multiple.
Heilbronn gives the following lower bound for this density. It is worth
pointing out that the inequality becomes an equality if the integers a; are
pairwise relatively prime.

Lemma 10.15. N
d(Tn) H (1 - —)

Proof. The proof is by induction on n. If n = 1 the assertion reads d(11) =
1 —1/a; which we have already noted. So, we assume the result is true for
n and prove it for n + 1.

Note that T3, = T}, 11US where S is the set of positive integers divisible by
@n+1 and by none of the integers a; with 1 < ¢ < n. This is a disjoint union,
A moments reflection shows that § C a,4,7,.. Thus, d(5) < ; 1
Consequently,

WTnps) = d(T)—d(S) > d(T,) - ——d(T)

Gn4-

( an+1) dT5) > ﬁ (1 - alt) :

The last inequality follows from the induction assumption,

To go from this elementary lemma to the inequality of Proposition 10.10
we need to first give a mild generalization which is proven, as we shall see,
by an amusing geometric argument.

Lemma 10,16, Letz1,1a, ...,z be real numbers with 0 < x; <1 for each
i. As above, let {a1,0q,...,0,} be o finite set of positive integers, Then

n 7
&T; $z.’L‘J 1T - Tp €Iy
1— E a.+ E ...+(_1)n_.___m2||(1_a.;) ,
=1 i=1

* 1<i<j<n [ 1,(.1,3,] [0.1,6.2,-..

Proof. (Sketch) Let F(z1,zs,...,z,) denote the difference between the
lefi-hand side and the right-hand side of the inequality given in the state-
ment of the Lemma. We think of F' as a function on the unit cube and
prove that it is non-negative on this domain. That will prove the lemma.
If we fix the values of all the variables except z; the resulting function is
an inhomogeneous linear function of z,. Consequently, on the interval [0,1]
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it takes its minimum value at one of the endpoints. Using this fact, and a
simple induction on n, we find that on the unit cube, F takes its minimum
at a vertex. A vertex has coordinates (e, €z, ..., €, ), where each ¢; is either
0 or 1. At such a point, the value of F is non-negative by Lemma 10.15.
Thus, F' is non-negative on the unit cube. This completes the proofl.

We can now prove Proposition 10.10. Let {; < Iy < I3 < --- be an
enumeration of the positive prime numbers different from p. Recall that
f(m) is the order of ¢ modulo m and that, for square-free m, f(m) is the
least common multiple of {f(1) | {jm}

Define my, = ljla - -1,,. Then

pld) &1 I
d% df(d) ! ; Lif () * 132@ Ll [f{L), £(45)]

1
hiy - La[f(la), f(la), - F(ta)]
By Lemma 10.16, setting a; = f(l;) and x; = 1/1;, we obtain

|72

— (__1)n+1

Using Romanofl’s theorem one more time, it is easy to see that the left-
hand side of this inequality tends to 3, . .; p(m)/mf(m) as n tends
to co.

We have now proven Theorem 10.10 in the case where « is not an [-th
power for any prime ! # p. In the general case one proceeds the same way
as above except that one sets z; = 1/I; if a is not an {;-th power and x; = 1
if a is an I;-th power, We leave it to the reader to check that this procedure
leads to the correct result.

Exercises

1. Let K/F be a function field and suppose K contains a primitive I-th
root, of unity, where ! is a prime unequal to the characteristic of K.
If a € K* is not geometric at [, show thereis a p ¢ F* and a b€ K*
such that a = ub'.

2. In the course of the proof of Proposition 10.5 the {-th power residue
symbol, (a/P);, was defined. Show that it is a good generalization
of the Legendre symbol of elementary number theory, by proving
that it has the following three properties: (i) (a/Ph = (b/P); if
a=b (mod P), (i) (ab/P) = (a/P)(b/P), and X' = a (mod P)
is solvable (for a # 0) if and only if (a/P); =1 .
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. Prove that [F((} : F] = f{(m) is the order of ¢ modulo m, provided

that {g,m) = 1.

. Prove Property 5 of natural densityl. Namely, if § € Zt and h € ZT,

then §(hS) = h~18(S) provided that either density exists.

. In Lemma 10.5, show the inequality is an equality if the a; are pairwise

coprime. What happens if all the a; are all equal?

. Buppose K /F is a function field of characteristic p. If a € K* is not

an -th power for any prime {, then it follows from the text thai the
Dirichlet density of the set of primes for which a is a primitive root
exceeds [T,.,(1 — 17! f(1)~!) = ¢, which does not depend on a. If
p>2show ¢y < .5 .Is ex > .57 (Recall that f(I) is the order of ¢
modulo {, where ¢ = |IF|.)

. Let K/F be a function field and suppose { |¢ — 1 where ¢ = |F|. If a

and b are geometric at [, show the constant field of K({/a,vb) is F
unless ab® € F*K* for some i with 1 <1 < L.

. Let K/F be a function field and let ! be a prime different from

the characteristic. Two elements of K*, o and b, are said to be I-
independent if for all integers m and n, a™b™ € F*K*! if and only if
{|m and |n. Assume a,b € K* are geometric at ! and l-independent.
Define K; = K{{;,+/a, vb). Prove that [K,: K] = f(I)i%.

With the same notation as the previous problem, suppose a,b € K*
are l-independent for all primes ! different from the characteristic of
K. Bhow there is a constant ¢ depending only on a and b such that
the genus of K is bounded by ¢f? for all .

{Continuation} Let a,b € K* be geometric and l-independent for all
primes { different from p, the characteristic of K. Define M, to be
the set of primes P of K such that (Op/F)* is generated by the
residues of a and b modulo P. Calculate (A1, ). Use Heilbronn’s
Theorem to show that §(M,p) > 6/7%(1 — p~2)~L. (Hint: Imitate
the proof of Bilharz’s Theorem. Because many of the sums involved
converge for trivial reasons, one need not use Romanoff's Theorem.)

The readser may wonder if there are elements which satisfy the hy-
potheses of the previous problem. In fact, they exist in abundance.
Suppose S is a finite set of primes with more than three elements. Let
E(S)={a e K~ }{ordp(a) =0, VP ¢ S}, the group of S-units of K*.
In Chapter 14 we will show that E(S)/F* is a free group on |S| —1
generators. Let a, b € £(S) map onto elements of a basis of E(S) /F*.
Show that a and b are geometric and that they are {-independent for
all primes {.
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The Behavior of the Class Group in
Constant Field Extensions

In Chapter 8, we discussed constant field extensions and, toward the end
of the chapter, we gave particular attention to the case when the base field
has a finite field of constants. We begin by recalling some notation.

Let K be an algebraic function field over a finite field FF with g elements.
Fix an algebraic closure F of F, and let F,, be the unique subfield of F
such that [, : F] = n. Let K, = KT, be the constant field extension of
K by F,, and h(K,) the class number of K,,. By definition, h(K,,) is the
number of elements in the group of divisor classes of degree zero of the field
K,,. Formerly we denoted this group by Cl3 . We simplify the notation
by writing Clg, = J (F,,). The choice of the letter “J” is not completely
arbitrary. If one regards K as the field of rational functions on a smooth
curve defined over F, then J is closely related to the Jacobian variety of
that curve,

To begin with we will discuss the question of how the class numbers
h(K,.) vary with n. The main tool will be the formula

2q
hEA) =] - 7).,
i=1

given in the corollary to Proposition 8.16. We wili also use some elementary
facts from algebraic number theory and the theory of l-adic numbers.
Afterwards we will deal with the more difficult question of how the finite
abelian groups J(F,) vary with n. Once again we will need to deal with
some elementary results from the theory of l-adic numbers. We will also
use some results from the theory of cohomology of groups. Readers who
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lack this background may want to just skim these proofs and move on.
Finally, we will need some basic facts which can be stated entirely in the
language of function fields, but whose proof requires a substantial amount
of algebraic geometry. We will state these facts as clearly as possible and
use them to derive a number of interesting results on the behavior of the
class group under constant field extension. For the proof of the basic facts
we will have to refer the reader to other sourees.

The chapter will conclude with a brief discussion of how the material
presented in this chapter was imported into algebraic number theory by K.
Twasawa. The resulting theory has been a fundamental tool in many of the
most important developments in number theory over the past 50 years.

Let w = ¢~¢. Then the zeta function of K written as a function of u has

the form Lc()
Zyc(u) = ——B8
¥ = Twn -
where Ly (u)} is a polynomial of degree twice the genus with integer coef-
ficients and constant term 1. If we factor Ly (u) over the algebraic closure

of (), we obtain
2g

Lre() = (1 ~mu)
d=s1
where the 7; are algebraie integers. It was pointed out after Theorem 5.9
that the functional equation for Zg(u) is equivalent to = — ¢/m being a
permutation of the roots of Lg(u). Write Ly (u) = Eiio axu®. It is then
easy to see that another way of stating the functional equation is

¢ Fa, = age_x for 0<k<g.

We will now use these facts to prove several things about how class numbers
behave in constant field extensions.

Proposition 11,1, Let ! be a prime which divides h(K). If [ | n%,
then ! |h(K,)/h{K).
Proof. Let F be the number field obtain by adjoining all the elements

to the rational numbers @, and let £ be a prime ideal of F lying over i.
Then, ! |h{K) implies

2g

H(l —m) =0 (modL).

i=1
It follows that there is an ¢ such that m; = 1 {mod £). Let j be such that
7im; = ¢. Then, 7; = ¢ {mod £). Now write

MEKp)/WK) = l_g[(l +m et (mod £) .

i==1
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The i-th term is congruent to n and the j-th term is congruent to ¢"—1/g—1
modulo £. The Proposition follows from this,

Corollary 1. Ifl |R(K) andl |n, then ! |h{K,)/h(K).
Corollary 2. Ifl |h(K) and n =1, then I* |A(K,)/h(K).
Proof. Just use Corollary 1 and induction on t.

Corollary 3. If the genus of K is 1 and ! |h(K), then I |h(K,)}/h(K) if
and only if { [n(g™ — 1)/ (g — 1).

Proposition 11.1 is about divisibility. The next result will be about non-
divisibility. First, a definition. If { is a prime different from p, the charac-
teristic of F, let d(I) be the least common multiple of the numbers 1¥ — 1 for
1 <k < 2g. Let d(p) be the least common multiple of the numbers p* — 1
for L1<k <g.

Lemma 11.2. As above, let £ be a prime of E lying wbove . If m; ¢ L,
then n2) = (mod L£).

Proof. Let L} (u) = u* L (1/u). Then, L} (u) is a monic polynomial with
integer coefficients whose roots are the numbers ;. Suppose 7; € £ and let
7; be the residue of m; modulo £. Then, #; is a root of L}, (1) modulo £, i.e.
of L3} (u) € Z/1Z[u]. Thus, it satisfies an irreducible polynomial over Z/IZ
of degree k where 1 < k< 2g, ifl #p,and 1 <k < gifl = p. The last
restriction holds because if | = p, the first g coefficients of L}, (1} are zero
{recall that ¢? *ay = ag,_x for 0 < k < g). Since [Z/IZ[7;] : Z/IT] = k,
i; is a non-zero element of a finite field with {* elements. This implies
'Trﬁk_l =1, which in turn implies that W,Ek_l =1 (mod L), and so Wf(i) =1
(mod L), as asserted.

Since for every =; there is a m; with mym; = g, it follows that every prime
dividing m; in E must lie above p. Thus, the hypothesis m; ¢ £ is only
necessary when [ = p.

Proposition 11.3. Suppose | does not divide h(K) and that n is relotively
prime to d(l). Then, [ does not divide h{K,,).

Proof. Suppose { |h(K,,). Then, for some k, 77 — 1 =0 (mod £). By the
above lemma, ’IT:{I} =1 (mod £). Since (n,d(l)) = 1 it follows that m, =1
(mod L), but this implies ! |A(K) contrary to the hypothesis. Thus, ! does
not divide h(K,).

Corollary. If n = I* and | does not divide h(K), then | does not divide
h(Ky,).

Proof. From the definition of d{l), it is clear that ! does not divide d({{)
and so (*,d(1)) = 1. Now apply the proposition,
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Proposition 11.4. Let n be he smallest integer such that { |h{K,). Then,
n jd(1).

Proof. There must be an index k such that 7} = 1 (mod £}. From the
definition of n it follows that n is the order of m; module £. By Lemma
11.2, 7% = 1 (mod £). Thus, n |d(}), as asserted.

We are next going to consider the behavior of the class group in the
l-tower. By this we mean the ascending sequence of fields K C K; C K2 C
-o. C K < ... . To begin with we will be interested in the l-primary
part of the class groups. We denote these by J{IF;n)(!). The orders of these
groups are given by

1  where e, =ard; h(Kp) .

Of course, the numbers e, depend on the prime {, but we have decided not
to complicate the notation overmuch by making this dependence explicit.
The main result is as follows.

Theorem 11.5. There are constants Ay, v, and o positive integer ng such
that for all n > ng, e, = A n + 15 ie., the numbers e, grow linearly
with .

Proof. We will again make use of the formula h{K,) = [T22,(1 —#7), but
it will be convenient to reformulate it as an [-adic formula. Consider @ as
a subset of its l-adic completion Q;. Let @ and @; be the algebraic closures
of @ and @y, respectively. Finally, let o be an embedding of Q into Q.
Applying p to the above formula yields A{K,,) = Hfi (1= pfm)™). Having
done this, we now simply rename p(7;) as 7; and assume that our original
formula takes place inside Q.

In the usual way, the additive valuation ord; from Q; to Z U co extends
to an additive valuation from Q; to QU oo. Namely, if o € Q, let a be the
norm of & from Qi{c) down to @;. Then, ord;(a) = [Qi(c) : Qi) ordi(a).
If ¢ € @ is any primitive I"-th root of unity, it is a standard fact that
ordi{¢—-1) = 1/¢(I") = 1/*~1(1 - 1). Thus, as n increases, these valuations
tend to zero.

Let w € @, be integral over Z;. If ord; (w—1) = 0, we claim that ord; (Trin —
1) = 0 for all positive integers n. To see this, note

"1 -1
ordi(z" —1) = Z ordy(m — ;) = ordy(m — 1) + Z ord;(m — &5} .
i=0 i=1

Here, the {; run through all the {®-th roots of unity and ¢y = 1. We
are assuming ord;(m — 1) = 0, It follows that for j > 0, ordy(w — {;) =
ord;(m —1+1—¢;) = ordy(m ~ 1) = 0. The next to the last equality follows
since ord;(¢; —1) > 0 = ord;{w ~ 1). Thus, all the terms on the right-hand
side of the equation displayed above are zero and we have proven our claim.
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Now assume that ord;(n — 1) > 0. Consider all {"-th roots of unity for
all n. Among all these we claim ord;{7 ~ ) = ord;{1 — {) with only finitely
many exceptions. This is because :

ordy(m ~ () =ordi{m —14+1—-¢) =ordi(1 — ¢} ,

as soon as ¢ is a primitive {®-th root of unity with 7 so large that ord;(1 —
¢) = 1/¢{I™) < ord,(m—1). Let 9 be the set of I-power roots of unity where
this fails to happen. Choosing n sufficiently large we find

-1 "1
ord(r Z ordy(m—¢{;) = Z ordy(m— ;) + Z ord,(m~¢;) .
CgES 1=k CJ&S

In the last sum all the terms can be replaced by ord;(1 — {;). Adding in
and simultaneously subtracting the remaining terms yields

"-1

> fordi(m — &) —ordi(1 = ;) + ) ordi(1—¢y) .

CFES j=1

Call the first sum c. The second sum is actually equal to n as we see by
differentiating the equation z/" —1 = H;;Bl(a: — §;), setting z = 1 in the
result, and then taking ord; of both sides.

Summarizing, we have shown that if ord;(w — 1) > 0, then for all suffi-
ciently large n there is & constant ¢ such that ordi{(n"" — 1) = n+4¢. Of
course, ¢ depends on 7.

To return to our original situation, among the numbers {m; | 1 <i < 2g}
label them in such a way that for 1 < i < A; we have ordi(m; — 1) > 0
and for A; < { € 2g we have ord,(m; — 1} = 0. For the first range, let ¢; be
the constant associated to m, by the above considerations. Then, for all n
sufficiently large,

en = ord; (A(K=)) Zordg(l 7 )=

LYl Al
Zordg(l —al") = Z(n—l— gy=An+uy,
i=1 i=1

where v, = Ei“l ;. The proof is complete!

Let I run through the primes other than {. What can be said about
the behavior of the l'-primary componentis of the class group of K7 Sur-
prisingly, these behave in an entirely different manner than the l-primary
component.
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Theorem 11.68. The numbers ordy (A(Kj»)) are bounded from above. In
other words, they increase up to some point ng and then stay the same for
all n > n,.

Proof. Once again, we start from the formula A(K,) = H?il(l — )
taking place in @, but now we reinterpret it to hold in Qp (see the first
paragraph in the proof of Theorem 11.5).

If ¢ # 1 is an I™-th root of unity, then ord; (¢ - 1) = 0. This follows from

the identity
m—1

0 =ordp (") = Z ordp (1 — ;) ,
i=1
where the sum is over all {"-th roots of unity except 1.

Suppose © € Qp is integral over Zp and ordp(w — 1) > 0. If { # 1 is
any ["-th root of unity, we must have ordp(r — ) =ordp(r —14+1-¢() =
ordy (1 —¢) = 0. Thus, ordp (7" -1} = Z;n:;l ordp{m —¢;) = ordy (m — 1.

Now, suppose ordy(m — 1) = 0. There are two possibilities. Either
ordy{m!" —1) =0 for all n, or there is a t such that ordy(n'’ —1) > 0. In
the latter case we must have ordy {7/ — 1) = ordy (" —1) for all n > ¢ by
the considerations of the last paragraph.

For the set of elements {m; | 1 < i < 2g} label the indices in such a way
that for each ¢ with 1 < 4 < d there is a ¢; > 0 such that ordy (ﬁf;t’ -D>0
and for ¢ > d, ordp(m” — 1) = 0 for all n > 0. Then, if n is bigger than
max) <;<q(t;] we have

d

2g
ordy (h{K»)) = Zordy (7l —1) = Zordp(ﬂf' -1).

j=l i=1
Since this last sum does not depend on n, the resuit follows.

Corollary. Let S{I") be the set of primes which divide h{K)). Then,
F#S(™) — o0 as n — oo,

Proof. By Proposition 5.11, there is a constant ' such that A(K;=) >
Cg9t" . If S(I*) remained constant from some point on, then combining
Theorems 11.5 and 11.6, it would follow that A(K;») would be equal to a
constant times IM™ for large n. Clearly, this is incompatible with the lower
bound for the growth of h{HKj=) just given.

Up to now, we have not paid too much attention to the fact that the
prime p, the characteristic of F, behaves differently from the other primes.
Let's pay a little more attention to this now,

As before, let F be the field obtained by adjoining all the elements 7; to
the rational numbers Q. Let P be a prime in E lying above p. Given an
index i let § be determined by m;m; = ¢. Then either m; or 7; or both must
lie in P. It follows that at most g of the m; do not belong to P. Let A be
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the exact number that do not belong to P. We have I < A < g. Relabel
the indices, if necessary, so that #; ¢ P for 0 < ¢ £ A and m; € P for
A<t < 2g.

Lemma 11.7. Let Ly (u) be the reduction of Ly (u) modulo p. Then X is
equal to the degree of Ly {u).

Proof. Ly (u) = 3229, amu™ = [[-2,(1 - mu). Thus, each ap, is the m-th
elementary symmetric function of the m;. If m > A, each term of the m-th
elementary symmetric function contains a factor w; with § in the range
A < § <2g. Thus, a,, € P, which implies p|a,,. Now consider ay, the A-th
elementary symmetric function of the #;. One of the terms is mimg.. . my,
which is not in P. All the other terms are in P. Thus, ay ¢ P. This implies
that p does not divide @y, and so the degree of Ly {u) is A, as asserted.

Later we will give a nice algebraic interpretation to the number A, which
is sometimes called the p-invariant of K. For the moment, we consider in
more detail the case A = 0, i.e., the situation when all the m; are in P. By
the lemma, this is equivalent to Ly (u)’s having degree zero. It also yields
the following interesting congruences:

2g
h(Kay=[J(1—7") =1 (mod P).

i=1

It follows from this that none of the class groups J{F,) contain an element
of order p. We make this property into a definition.

Definition. Let K/F be a function field over a finite feld of constants F.
Let p be the characteristic of F. We say that K is super-singular if for all
integers nn > 0, p does not divide h(K},).

This definition can be given in even greater generality. Assume F has
characteristic p > 0 (but is not necessarily finite] and that K/F is a func-
tion field with F* as its field of constants. One defines K to be super-singular
if the class group of every constant field extension of & contains no element
of order p.

The next proposition gives several equivalent conditions for a global func-
tion field to be supersingular. Before we state it, recall that for each integer
m > 0, by, (K} denotes the number of effective divisors of K of degree m.

Proposition 11.8. The following conditions are equivalent.
a) K is supersingular,
b) All the m; are in P.

¢) The degree of Lyc(u) is zero.
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d) h{K,) =1 (mod P} for alln > 0.
e) bu(KY=1 (mod p) fori <m <y,

Proof. We have already seen that b implies a. To show the reverse, suppose
that some m; ¢ P. Then, for some n > 0 we have 77 = 1 (mod P). This
implies p|A{K,) contrary to a. Thus, a implies b so these two conditions
are equivalent.

Lemma 11.7 shows the equivalence of b and .

We have already seen that & implies d. If d holds then a obviously follows,
and we have shown d implies b. Thus, the first four conditions are all
equivalent.

Recall that Zxc{u) = 3 oo bn(K)u™ (see Chapter 5). From consideration
of the equation (1 — u)(1 — qu}Zx(u) = Lk (u), we obtain the following
congruence:

(1 —u) Z R(K " = Zamu {mod p) .

m=0

1t follows easily that by, (K) = 3., ax (mod p) for all m > 0 (we define
am = 0 if m > 2g).

Now, assuming that ¢ holds, it follows from the last paragraph that e
is true. Assuming e, it follows again from the last paragraph, that pla.,
for 1 < m < g. Since dagg—m = ¢%ay, for m in the same range, we have
play, for 1 < m < 2g. This is the same as ¢. All equivalences have been
demonstrated.

Before giving two corollaries, we note that A(K) = b,(K’) (mod p). This
is because h(K) = Lg(l) = 3.0 om = 3.7 o tm = by(K) (mod p) by

what has been proven above,

Corollary 1. Suppose K has genus 1. Then, K s supersingular if and
only if W{K) =1 {mod p).

Corollary 2. Suppose K has genus 2. Then, K is supersingular if and
only if the number of primes of degree | and the class number, h(K), are
both congruent to 1 modulo p.

Both corollaries are consequences of condition e and the above remark.

We are now going to consider not just the size of the class groups J(IF,.),
i.e., the class numbers h{K,), but the actual structure of these groups.
To do this it will be necessary to use more algebraic tools than we have
previously, and also, as already has been said, a number of fairly difficult
results whose only known proofs require a substantial amount of algebraic
geometry. So we will only sketch these developments and not attempt to
provide proofs for everything. Nevertheless, we hope to tell a coherent and
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interesting mathematical story with enough detail so that the interested
reader can, perhaps with some additional work, fill in the gaps.

We bepin with some generalities about constant field extensions. For a
while we only require that the constant field F of the function field K
be a perfect field. With this assumption, we can use all the results about
constant field extensions proven in Chapter 8.

The first result we will need is even more general.

Proposition 11.9. Let L be e finite, unramified, Gealois extension of the
function field K. Let G = Gal{L/K). Then, Df =i,k Dx. Here, Dk and
Dy, denote the divisor groups of K and L, respectively, and Df denotes the
divisors of L left fired by the elements of G.

Proof. If P is a prime of K, then, by definition, iy /5 P’ = Z‘JJIP e(P/PYP.
Since we are assuming that L/K is unramified, this becomes iy /g P =
mep B.

Suppose D = 2‘13 a(P)P is a divisor of L fixed by all the elements o € G.
Applying ¢ to both sides, using oD = I, and equating coefficients, yields
the result that a(eP) = a(P) for all primes P of L. By Proposition 9.2,
G acts transitively on the set of primes of L lying over a fixed prime P
of K. It foliows that D is a Z-linear combination of divisors of the form
ipyi P. This shows that D € iy, xDy. Thus, Df C i/ Dg. The converse
is obvious.

From the definition, it is clear that iy ,x gives a one-to-one homomor-
phism from D to Dy. By the corollary to Proposition 7.8, 4y, induces a
homomorphism from Clg to Cly. On this level it need not be one to one
in general. However, in the case of separable constant field extensions it is
one to one. Even more is true when the constant field extension is Galois.

Proposition 11.10. Let K be a function field with constant field F. Let &
be a finite, Galois extension of F' and set L = KE. Let G = Gal(E/F) =
Gal(L/K). Then iy x : Clg = Cly, is one to one, and CIE =iy /xCly.

Proof. The prool will use some facts from cohomology of groups.
Let Py and Pg be the principal divisors of L and K, respectively. Con-
sider the exact sequence:

(0) = E* > L* = P, — (0] .
Passing to the long exact sequence and using the fact that H*(G, E*) = (0)
(Hilbert’s Theorem 90), we find that the following sequence is exact

(0) = F* 5 K~ =P = (0).
This shows that i /%Py = PE.

Using the same associated long exact sequence, but starting at the term
HY{G, L*), which is zero, again by Hilbert’s Theorem 90, we find

{0y = HY(G,PL) — H*(G,E*) - HYG, L")
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is exact. The third arrow can be shown to be one to one by a localiza-
tion argument. It follows that H1(G,P) = (0). In the case of finite con-
stant fields, which is our principal interest, the result is even easier. In this
case H2(G, E*) is isomorphic to F*/Ng;pE* smce G is eyclic. For finite
fields the norm map is onto. Thus, in this case, H2(G, E*) = (0) and so
HY G, Pr) ={0) as well,

Next, consider a second exact sequence:
(0) = PL— Dy = Cly > (0) .
Passing to the associated long exact sequence, we find
(0) = P¢ - DY » CI¥ - HYG,PL)

is exact. By what we have already proven, the first term is iy, Pk, the
second is iy, Dg (by Proposition 11.9, since constant field exiensions are
unramified), and the fourth term is zero. Thus,

(0)—>'PK—>'DK-—)CZE—> (0)

is exact if we define the third arrow to be the map ¢, k. This is equivalent
to the assertions of the proposition, so the proof is complete.

Corollary. With the same hypotheses as the proposition, i, 5 restricled
to C1% is one to one and iy Cl§ = (C13)°.

Proof. The restriction of a one-to-one map is still one to one, so the first
assertion is obvious.

To prove the second assertion, suppose D € (Cig )G By the proposition,
there is a class D € Clg such that iy D = D. By Proposition 7.7,
degy ir/xD = degy D. Since deg, D = 0, it follows that degg D = 0,
which completes the proof.

We now attempt to package all the class groups of constant field ex-
tensions of K into one big group. To do this we will need the notion of an
infinite Galois extension of fields and the associated Galois group. Let L/ K
be an algebraic extension of fields, of finite or infinite degree. Let Aut(L/K)
be the group of all field automorphisms of I which leave K fixed. If K is
the fixed field of Aut(L/KY), we say that L/K is a Galois extension and
define Gal(L/K) = Aut(L/K) to be its Galois group. It is easy to check
that L/K is a Galois extension if and only if it is the union of all finite
Galois extensions of K contained in L. The fundamental theorem of Galois
theory relating subgroups of Gal(L/K) with intermediate fields does not
hold in the general case, but it can be reestablished by defining a topology
on the Galois group. One proclaims a neighborhood basis for the identity
element to be the set of subgroups of finite index. This leads to a unique
topology on the Galois group which makes it into a topological group. This
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topology is called the Krull topology. It then turns out that the usual pro-
cedure now yields a one to one correspondence between closed subgroups
of the Galois group and intermediate fields. All the standard properties of
this correspondence continue to hold. One simply has to be careful that all
subgroups under consideration are closed.

We continue to assume that F' is perfect. Let £ denote an algebraic
closure of F. Then, one sees easily that F'/F is an infinite Galois extension.
We set Gp = Gal(F*/F). If F C E C F is an intermediate field we easily
see that F'/E is a Galois extension and we write Gg = Gal{(F/E). Gg is a
closed subgroup of Gp. 1t is a normal subgroup if and only if £ is a Galois
extension of F. In this case Gal(E/F) = G /GEg.

We now return to the situation where K is a function field over a perfect
constant field F. For every field E between F and F, we define J(E) to be
the group Cl% 5. Proposition 11.10 and its corollary which we proved for
finite constant field extensions continue to hold for infinite constant field
extensions. Thus, there are one-to-one maps from all the groups J{E) into
J(F") given by extension of divisors. We will identify J() with its image in
J(F). In this way all the groups J(E) are subgroups of J(F') and one can use
the corollary to Proposition 11.10 to show that J(F)%# = J(E). Of course,
the same corollary shows that if E/F is Galois, then J(E)S*E/F} = J(F),

Another useful property is that J(F') is the union of the groups {J(E) | [E :
F| < oo}, The idea of the proof is to use Propositions 8.10 and 8.11 to show
that every prime P of K F is the extension of a prime coming from a finite
level. If P is a prime of K lying below T3, then Proposition 8.11 shows there
is a finite extension E/F such that P splits into a product of primes of de-
gree 1 in KE. Let p be the prime in K F lying below 8. Then Proposition
8.10 can be used to show that P is the extension of p to KF'.

It will simplify the notation to simply call J(F) = J. The advantage
of considering the group J is that algebraic geametry gives a method for
determining a great deal about its structure. We then attempt to use this
information to investigate the structure of the groups J(E) where E is a
finite extension of F.

Theorem 11.12. Let K/M be a function field over an algebraically closed
field of constants M. Set J = Cl%.. Then, J is a divisible group (for all
integers n, the map © — nx is onto). Denote by g the genus of K. Ifl is o
prime different from the characteristic of M, then the l-primary subgroup
of J, J(I), is the dircct sum of 2g copies of Qi/Z;. If the characteristic
of M is p > 0, then J(p) is the direct sum of v copies of Q,/Z, where
0<r=g

In the case where M = C, the complex numbers, it is a classical theorem
(Abel-Jacobi) that J is isomorphic to the direct sum of g copies of C modulo
a lattice A of maximal rank, i.e, J 2 C9/A. A must be a free Z module of
rank 2g. It follows that the elements of J of order dividing {™ constitute a
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group isomorphic to & A/A 2 @ LZ/Z. Passing to the limit as n — oo
gives the theorem.

The first proof of the theorem in the abstract case was due to Weil [2].
The reader can also consult Mumford [1].

The group Q;/Z; has a very simple structure. It is the union of the
subgroups 1 Z;/Z; which are isomorphic to Z; /I"Z = Z/I"Z, a cyclic group
of order {®. Thus, there is a one-to-one correspondence between proper
subgroups of Q;/Z; and non-negative powers of {. This allows us to deduce
a simple corollary from the theorem.

Corollary. Define J[N] to be the subgroup of J consisting of elements
whose order divides N. If N is not divisible by the characteristic of M,
then

2
JIN] = éZ/NZ .

Proof. By the Chinese Remainder Theorem, it is enough to check the result
when N = ™ is a power of a prime different from the characteristic. [n this
case the corollary is immediate from the theorem and the above remark.

Let ¥ C J be a finite subgroup of J which is invariant under Gz, e,
oy € Y forall ¢ € Gp and all y € Y. For example, ¥ = J|N] is such
& subgroup since Ny = 0 implies 0 = o(Ny) = N(oy). It is immediate
that each ¢ € Gp induces a group antomorphism of Y. Thus, we get a
map G — Aut(Y"). This is easily seen to be a group homomorphism. The
kernel is a normal subgroup H of G# of finite index. By definition, such
a group is closed and thus it corresponds uniquely to its fixed field which
we will call F(Y). Thus, H = Gp(y). Since Gp(y) fixes ¥ we see that
Y C J%ron = J(F(Y)). F(Y) is called the field of rationality of Y. It is
the smallest extension E/F such that Y C J{E).

The exact sequence

(0) — Gp(y) - G- Aut(Y),
gives rise to a monomorphism from Gal(F(Y)/F) = Gr/Gpyvy = Aut(Y).

Suppose N is a positive integer prime to the characteristic of £'. By the
Corollary to Proposition 11.12 we have

2g
JINl=2EzZ/NZ .
1

It follows that Aut(J[N]) = GLy(Z/NZ). Putting it all together we get a
monomorphism

o : Gal(F(J[N))/F) = CLay(Z/NT) . 1
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This “Galois representation” plays a big role in the more advanced
arithmetic theory of curves. Here we will leave off this general develop-
ment and return to the special case where the constant field is finite. So,
once again, let us suppose that 7 = F, a finite field with ¢ elements, Let
$q € Gr = Gal(F/FF) be the automorphism defined by ¢,(a) = a¥ for all
e € F. For every positive integer m, let F,, C F be the unique intermediate
field with [IF, : F] = m. The restriction of ¢, to F,, generates the Galois
group Gal(F..,/IF). The image of ¢, in this group has order m. It follows
that the subgroup of Gy corresponding to the field Fr, is the closure of the
cyclic group < ¢7* > generated by ¢7" in Gr. We note the fact that Gr is

isomorphic to the inverse limit of the groups Z/mZ, i.e. the group Z, the
completion of Z with respect to all subgroups of finite index.

Proposition 11.13. Let J[N] C J be the subgroup of J consisting of
elements whose order divides N. Then, [F(J[N]) : IF] is equal to the order
of the matriz pn(¢q) (see Equation 1 above).

Proof. Since py is a monomorphism, the order of pn(¢4) is the smallest
power of ¢, which is the identity on F(J{N]). By the Galois theory of finite
fields, this number is the dimension [F(J[N]) : F].

Proposition 11.14. Ffor all but finitely many primes [, the dimension
[F(J[I]) - ¥] is prime to !,

Proof. We will need to use one of those basic facts about J whose proof
involves a substantial amount of algebraic geometry. It concerns the char-
acteristic polynomial of the matrix p;(¢,). We will assume { 3 p, the char-
acteristic of F.

Let Lg(u) be numerator of the zeta function Zx(v). Define L™ (uw) =
u? L (1/u). L*(u) is a monic polynomial of degree 2g with coefficients in
Z. Let D € Z denote the discriminant of this polynomial. The fact we need
is that the characteristic polynomial of pi(¢,) is the reduction of L*(u)
modulo /. This is implied by the characterization, due to Weil, of L*(v)
as the “characteristic polynomial of Frobenius” acting on the Tate module
at {. See Milne [1], Mumford {1], or, for the original formulation, Weil [2|.
It follows from this that if [ does not divide I, then the characteristic
polynomial of pi{#,) does not have repeated factors in Z/IZ[u]. By linear
algebra p(¢,) is diagonalizable over the algebraic closure of Z/IZ. The
eigenvalues , which are non-zero since { # p, have order prime ta 1. It
follows that the matrix p(¢,) has order prime to . The proposition is now
a consequence of Propesition 11.13.

Because of these propositions, among other reasons, it is of interest to
investigate the structure of the matrix groups GL.(Z/NZ) where r and N
are positive integers. We will sketch some of the main facts about them.
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Suppose N = (717" ... [{* is the prime decomposition of N. Then using
the Chinese Remainder Theorem, it can be seen that

GL,(Z/NZ)Y = GL (Z/ITVE) x GL.(Z/IT? L) % .. .GL(ZJITL) .

This reduces the problem to the structure of the groups GL,.(Z/I™Z),
where ! is a prime number. If m > 1, reduction modulo ! gives rise to an
exact sequence:

(1) = T+ IM(Z/I™E) = GL(Z/I™E) - GL(Z/IT) — (I} .

Here, I denotes the identity r x r matrix and M,.(Z/I™Z) the ring of r x r
matrices with coefficients in Z/I™Z. The order of the group I +IM,(Z/I™Z)
is In“0m=1) 1t is an l-group whose structure can be investigated more closely.
However, we will not enter into further details about this here.

The size of the group GL.{Z/IZ} is given by

IGL(Z/IZ)|

]

(=1 =), (=1
pe-n2gr et -1 (-1 .

The proof of this is obtained by noticing that an » x r matrix with coefhi-
cients in a field is invertible if and only if its rows are linearly independent.
Thus, the first row must be non-zero. It can be any of I* — 1 row vectors.
The second row must be linearly independent from the first, so it cannot
be a multiple of the first row, Thus, there are " — [ choices for the second
row. There are {2 vectors in the linear span of the first two rows, so there
are " — 12 choices for the third row. The general pattern is now clear.
We summarize a portion of this discussion as follows.

Proposition 11.15. The group GL.(Z/I™Z) has order equal to
Hombgr — (-t =1)... (1~ 1)

where f(r,m}=(m — 1)r? +r(r - 1)/2.

Note, in particular, that GL,.(Z/I™Z) has a large I-Sylow subgroup whose
order depends on m, whereas the “prime to {” part of the group has order
which is independent of m. This will be of importance later.

We have developed most of the tools we will need for the next task,
which is to give a structural, algebraic interpretation to Theorems 11.5
and 11.6. To recall the situation, fix a prime ! and consider the tower of
fields K ¢ K; ¢ Kz C ... . The two theorems in question were about the
way the class numbers h{K;»} behave as a function of n. We will now look
at the more general question of how the groups J(IF;~») behave as a function
of n.

It will be convenient to define Fy to be the union of the fields Fj» where
n varies over the positive integers. 1t is not hard to check that for every
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finite extension E of Fi= we have [E : Fie] is prime to [, Thus, Fi= is
characterized as the maximal l-extension of F in F. Note that the group
J(Fi=) is the union of the groups J(F») over all n.

We first. consider the {-primary components. Recail

2g
J(Fe=)() C IO = B/ (2)
1
Proposition 11.16. We have the following group isomorphism.

J(Free ) @Ql/zh

where vy is the dimension over Z/IZ of JI| N J(Fjee).

Proof. (Sketch) We first show that J(IF; )(1) is a divisible group. Consider
the exact sequence of Gy modules

(0) = J[I] = J({t) = J() = (0) ,

where the third arrow is the map “multiplication by [.” This is onto since J
is a divisible group and this easily implies that the I-primary component of
J is divisible. Let fI C Gy be the subgroup corresponding to Fie. Passing
to the associated long exact sequence we find

T(Fi)(1)  J(Fie)(1) » HY(H, [l

is exaet. The first arrow is, again, multiplication by {. BEvery finite quotient
of A is prime to . It follows that H1(H, J[]]) = (0). Thus, multiplication
by ! is onto and J(Fy ){!) is divisible.
From Equation 2 it now follows that
1
J(Fre=) (1) = P U/ 2

1
where 1 < 7 € 2g. If one considers the subgroups of both sides of this
isomorphism consisting of the elements of order dividing [ we obtain the
characterization of r; given in the proposition.

The following group theoretic lemma and its corollaries are the key to
understanding the behavior of the groups J{F»}(1).

Lemma 11.17. Supposel is an odd prime, and that A is an obelian group
isomorphic to @] Qu/Zy. Let ¢ : A — A be an endomorphism. Define
Ag={r € A| ¢(z) =z} and A1 = {z € A |¢*(z) = z}. Suppose that Ay
contains All] = {a € A | la = 0}. Then, we have

:{EEAIL'EEAQ}.

Ifl =12, the same resull holds provided we assume Ay contoins Al4].



184 Michael Rosen

Proof. We assume { is odd and begin by showing there is an endomorphism
¥ of A such that ¢ = I + {1y where I is the identity endomorphism.

Since A is divisible, given £ € A, there is a y € A4 such that ly =
z. Set ¥(z) = @(y) ~ y. This is well defined, because if {y’ = z, then
y —y' & A[l]. Since ¢ — I vanishes on A[l] by hypothesis, we must have-
d(y) —y = ¢(y') — v It is easily verified that 1 is an endomorphism.
Finally, l9(z) = ¢(ly) — ly = ¢{x) — =, so ¢ =T + 9 as asserted.

Thus,

H =) =1+ G)zw (;)52¢2+-.-=f+ﬂw+m) ,

where u is an endomorphism of A which commutes with 1.

The endomorphism [ + i is invertible because A being a torsion group
implies that the formal inverse (I 4+ lu)~! = I —lu + 12p? — ... gives an
actual inverse.

We find that ¢'(x) = z if and only if I%(1 + {u)(z) = 0 if and only
if 124(z) = 0 (since ¥ and 1+ Iy commute). This last condition can be
rewritten as [y{lz) = 0. Adding [z to both sides, we see this condition is
equivalent to lz + [p(lz) = Iz, or, what is the same ¢({z) = lx. We have
shown that z is fixed by ¢ if and only if Iz is fixed by ¢. This is equivalent
to the statement of the lemma.

It I = 2 and A[4] C Ag, the proof is entirely similar. We leave the details
to the reader.

Corollary 1. In addition to the hypotheses of the lemma, assume that Ay
is finite. Then,

T ™

Ay P 2y/Z, and A =PI,

i=1 i=]
Proof. Since Afl] C Ag and Ay is finite, it follows that Ag is the direct
sum of r eyclic groups each of I-power order. This gives the first assertion.

Rephrasing what has been shown so far, Ag has a set of generators

{e1,eq,...,er} such that 30 n.e; = 0if and only if ¥ |n; for 1 <i < v
Since A is divisible, for each 7 there is an element e} € A with le} = ;. Let
Al be the group generated by the set {el,ed, ..., el}. Clearly, A] C A;.
They both have the same number of elemernts since multiplication by { maps
both sets onto Ap and the kernel in both cases is A[l]. Thus, A] = 4. It
is now a simple matter to show ) _;_; niel = 0 if and only if {**![n; for
1 <4 < r. This is equivalent to the second isomorphism in the statement
of the Corollary.

Corollary 2. With the notation of Corollary 1, define A, = {z &
A | ¢" (x) = z}. Then,

r

An 2 PU LT

il
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Proof. The proof is by induction on n. Carollary 1 shows the result is true
for n = 1. Now assume it is true for n — 1.1Then apply Corollary 1 with 4p
replaced by An_; and ¢ replaced by ¢'" .. The result follows.

We remark that the proofs may be given using properties of modules
over Z;. The Pontyagin dual of A, fi, is a free module of rank r over Z; and
¢ induces an endomorphism of A. One can then prove the dual statements
to those in the lemma and its corollaries by using properties of modules
over Zy. Then dualizing once again we get what we want. [t seemed more
straightforward to work directly with A.

The next result is, perhaps, the main result of this chapter.

Theorem 11.18. Let K/F be a function fleld of genus g over a finite field
F with q elements. Let J = CI°(KF) and define 7, to be the dimension
over Z/IZ of J{|N J(Fi=). There is an integer ng > 0 and integers v; with
1 < i <71 such that for oll n > ng we have

J(Ep) () = Pt L2,
1

Proof. Define ng by the equation Fiee NF(J[l]) = Finy. It is not hard to
see that every element in J[I] N J{Fj) is rational over this field. Invoking
Proposition 11.16, we find

J(Freo) (1} = €D Qu/Zs
1

Also, there exist integers v; for 1 < 4 < r; such that for each {, v; > 0,

and
T

J(Frma )(1) 2 P12 /2, .

1

Now, define A = J(Fi=)(l), Ao = J(Fimo)(l), and ¢ = q&f;'o. One sees
that ¢ is the Frobenius automorphism for the extension F/F,, and that
the triple A, A, and ¢ satisfy the hypotheses of Lemma 11.17. Invoking
Corollary 2 to that lemima, we see that for all m > 0 we have

T
J(Froem) () 2 P "L/, .
1

If we simply set n = ng + m, the theorem follows.
Corollary. For all n > ny, we have
ord; A Kp) =rm+ 1y,

where 1 = ord; A(Kino) — ming.
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Proof. We recall that A{K~) is the order of J(IFy»). From the isomorphisimn
given in the theorem, we see

T2 T
ord; h{Kpn) = Z(u,- +n-—ng)=rmn-t Z(V* —ng) .
i=1 i=1

Define 1, = ;% (vs — no) (and ignore the fact that the notation here is
somewhat ambiguous). If we set n = ng in the above formula, we get the
characterization of ¥ given in the corcllary.

The reader will not fail to notice that the corollary is a sharpened version
of Proposition 11.5. The qualitative content is exactly the same, but now
we have given group theoretic interpretations of the constants r; and v,
Moreover, even ng is now made more precise.

The situation becomes much simpler when Fi-. NF{J[{]} = F. By Propo-
sition 11.14, this happens for all but finitely many primes {. In this case,
ng = 0. Thus, r; is just the number of cyclic groups whose sum is J(F){I)
and the regular behavior of the ! primary parts of the class group begins at
the first step. Also, in this case vy = ord; A(K'). Everything is really simple!

‘We can now give a group theoretic interpretation of Proposition 11.6 as
well. For notational convenience we will use k for the second prime instead
of I’

Theorem 11.18. Letl and k be primes with 1 £ k. Assume k # p. Define
ng as follows

2g
ng = ord; H(ki -1,
i=1

Then, J(Free) 0 J(k)  J(Fymo).

Proof. Let P € J(Fie) have order ™. Then, P € J[k™] and so P is ratio-
nal over both F;e and F(J[k™]), and is thus rational over their intersection.
By Equation 1 {just before Proposition 11.13) we have a monomorphism

Gal(F(J(E™]}/F) ~ GLqy(Z/k™Z) .
By Proposition 11.15, the later group has an order which is a power of &
times []27,(k*—1). Thus, the highest power of  which divides [F(J[k™]) : )
is less than or equal to ng. It follows that
Flee NF(J[E™]) C Fino .
This containment holds for all m > 0, Thus,
Fim AF(J(K)) C Fioo

which is equivalent to the theorem.



11. The Behavior of the Class Group in Constant Field Extensions 187

It is clear that Theorem 11.19 implies Theorem 11.6 together with the
improvement that we get an upper bound on ng. It also gives some added
insight into why the result is true.

The restriction in the statement of the theorem that & # p is not essential.
One simply has to modify the definition of ng slightly and then the result
holds when & = p as well.

The final theorem of this chapter concerns the reduction of the polyno-
mial Ly (u) modulo p. In Proposition 11.7 we showed this reduced polyno-
mial has degree A where 0 < A < g. In Proposition 11.8, we showed that
K is supersingular if and only if A = 0. This can be restated as, J{p] = (0)
if and only if A = 0. Using the tools developed to this point we can give a
far-reaching generalization of this.

Proposition 11.20. With previous notations, let v be the dimension over
Z/pZ of J[p|. Then, -y is equal to A, the degree of the polynomial Ljc(u)
reduced modulo p.

Proof. Let Ly (u) = Hfi {1 — mu) be the factorization of Lg(u) over
the algebraic closure of the p-adic numbers. Let £ be the subfield of @,
obtained by adjoining the elements 7, to Q. Finally, let P be the maximal
ideal of the integral closure of Z,, in E.

By the above remarks we can assume A > 1. By using the proof of
Proposition 11.7 we can assume ord,m; =0 for 1 <4 < A and ordynw, > 0
for A < i < 2g. By passing to a constant fleld extension K, = KT, the
elements m; are replaced by #*. Using the proof of Lemma 11.7, we easily
see that the degrees of L (u) modulo p and Ly, (u) modulo p are the
same. By an appropriate choice of n we can insure 77 = 1 {mod P) for
1 <14 < A. By passing to a further constant field extension Knm = KFpm,
we can insure Jip| © J(Fpm ). This does not affect the congruences already
established, so we can assume from the beginning that ord,(m; —1) > 0 for
1<i<Aand Jlp] € J(F).

Since J[p|] € J(F) it follows from the proof of Theorem 11.18 and its
Corollary that ord, h(Kp») = yn + v for all n sufficiently large. We will
now establish a similar formula with + replaced with A.

Recall that

2g
A(Kpn) = (1= m1") .

The terms in the product with A < i < 2¢ are units since in this range
ordpm; > 0. Thus,

A
ord, h{Kp») = Zordp(l —at"y. {3)
i=1

In the proof of Proposition 11.5, we showed that if ord,(1 — ;) > 0, then
for all sufficiently large n, ord,(1 — 7%} = n+ ¢. It now follows from
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Equation 3 that ord, h(Kpn} = An + ¢ for all sufficiently large n, where
c= Z?=1 Ci-

We have now established that ord, A(Kpn) = yn 4+ v = An + ¢ for all
sufficiently large n. This can only happen if A = ~.

This theorem is well known, but the usual proof uses much more sophis-
ticated methods, e.g., crystalline cohomology. The above proof is due to H.
Stichtenoth.

In the late 1950s, K. Iwasawa began publishing papers which carry over
some of the theory developed in this chapter into algebraic number theory.
The key idea is that constants in function fields are like roots of unity in
number fields. To see why this is so, let K/ F be a function field over a field
of constanis F. Let Cp > 1 be a constant and define for x € K and P a

prime divisor of &
'm'P — O;Opo(:‘C) .
It is easily checked that |z|p is a non-archimedean valuation of K i.e.,
it satisfies

(a) [0[p =0 (b) 1P =1
() lwylp = zlplylp  (d) |z +ylp < max(jz(p, [ylp) -

Up to a standard equivalence relation this set of valuations is a complete
set of valuations of K. By Proposition 5.1, an element € K* is a constant
if and only if ordp(x) = 0 for all P € Sy. This is equivalent to saying that
x € K* is a constant if and only if |z|p =1 for all P € Sg.

If K is an algebraic number field, let Ok be the ring of integers. If P is
a maximal ideal in O and z € K, define

lz|p = N PP

This is a non-archimedean valuation for each maximal ideal P C Og.
The equivalence classes of these valuations are called the finite primes of
K. In addition to the non-archimedean valuations there are finitely many
archimedean valuations. These are obtained by imbedding K into the com-
plex numbers and then applying the usual absolute value. By definition,
these archimedean valuations correspond to primes at infinity. It is a well
known theorem, due to Kronecker, that # € K™ is a root of unity if and
only if |z|p = 1 for all primes of K, both finite and infinite.

From this discussion, it is clear that constants and roots of unity are
analogous concepts, so it makes sense to think of cyclotomic extensions of
a number field as analogous to constant field extensions of a function field.
This is exactly what Iwasawa did.

What is the analogue of the cyclic I-towers of constant field extensions
we have considered in this chapter? Consider the cyclotomic field Q((n+s)
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where (j~+1 15 a primitive {®+!-th root of unity in a fixed algebraic closure
Q of Q. The dimension of this field over Q is ”(I — 1) and there is a unique
subfield By« such that [Bp : Q] = 1™ The tower Q@ C By C Bp < ...
is called the basic Z; extension of @. Note that Gal(Bi/Q) is a cyclic
group of order {". Let Bjee = U2 3B, The Galois group of Bie- over Q is
isomorphic to Z;, which is why this tower of fields is called a Z;-tower.

If K is an arbitrary number field we define K- to be the compositum
K Bj~. The Galois group of Ko over K is isomorphic to Gal(Be /K N
By} which is isomorphic to a subgroup of Z; of finite index and is thus
isomorphic to Z;. It follows that Ky is a Z; extension of K and there is
a tower of extensions K C K; C Ky C ... K= with K being a cyclic
extension of K of degree {". The field K= is taken to be the analogue of
the constant field extension KF;e. It is called the cyclotomic Z; extension
of K.

One can now ask the question if there is an analogue of Proposition 11.57
Is there an asymptotic formula for ord; A{K =} in the number field case? It
is a remarkable fact that the answer is yes. The zeta function of a number
field is a much more complicated and mysterious object than that of a
function field. Also, there is no obvious appeal to algebraic geometry as
in the case of function fields. Nevertheless, [wasawa was able to prove the
following result (see Iwasawa (1] and [3], Lang [6], and Washington (1]).

Theorem 11.21. (K. Iwasawa) Let K be an algebraic number fleld, |
prime number, and K= the cyclotomic Z; eztension of K. Let h{K;=) be
the class number of Kin. Then there are integers Ay, ug, vy, and ng, such
that for all n > ng,

ord, h(K[n] =An+pd™+ .

Actually, [wasawa was able to prove this for any Z; extension of K. An
infinite number field L is said to be a Z; extension of K if it is a Galois
extension and Gal(L/K) 2 Z;. In general, there exist many such extensions
in addition to the cyclotomic Z; extension.

The formula given in the theorem is of precisely the same type as that
given in Proposition 11.5 and the analogy is even more precise if g = 0.
Iwasawa conjectured that p; = 0 for the cyclotomic Z; extension. For the
case of general number felds this is still an open question. However, if K
is a Galois extension of Q@ with Gal(K/Q) abelian, then Ferraro and L.
Washington were able to show p; = 0 (see Washington [1], Chapter 7), so
in these cases the analogy is perfect.

It is worth pointing out that 14 is not always zero. [wasawa gave examples
of non-cyclotomic Z; extensions where y; 7 0 and even showed that y; can
be made to be as large as you like (see Iwasawa [2]).

Washington was also able to show that the analogue of Proposition 11.6
is true for cyclotomic Z; of number fields {see Washington [1], Chapter 16).
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There are many interesting open questions remaining in Iwasawa’s the-
ory of number fields. There are also generalizations of these councepts to
arithmetic-geometric contexts. For example, if A is an abelian variety over
a number field K and L is a Z; extension of K, is there an asymptotic
formula for the Mordell-Weil rank of A(K) as a function of n? This is the
subject of a fascinating paper of B. Mazur (1]. However, we will have to be
content with pointing out these directions and pass on to other matters.

Exercises

1.

Let K/F be a function field over a finite field with g elements. Let
Li(u) = fﬁ_o axu® be the numerator of the zeta-function of X.
Show that the functional equation {see Chapter 5) implies that
¢ kay = ang_ for 0 <k < g

Suppose K/F has genus 1 and that { is an odd prime dividing ¢ — 1.
Show that [|h, for some n dividing (I — 1)/2. (Hint: If Lg(u) =
(1 —ryu)(1 —mau), show that 77 = 7; or w2 {mod £), in the notation
of Proposition 11.1). This fact is due to J. Leitzel.

. Let K/F hbe a function field of genus 1 over a finite field with ¢

elements. Write Ly (u) = 1 — au + gu®. Suppose [ is a prime such
that (a® — 4q / {) = 1 (the Legendre symbol). Show |k, for some
il -1

. Let K/F be a function field of genus 2 and characteristic p. Let h

be the class number of K and Nj the number of primes of degree 1.
Suppose that 2 = N} (mod p) and that Ny # 1 (mod p). Show that
p|hy for some integer n dividing p — 1. (Hint: Make use of the proof
of Proposition 11.8.)

. Prove the case [ = 2 of Lemuma 11.17.

. Let K/F be a function field aver a finite field and let J be the as-

sociated divisor class group over the algebraic closure of IF. Suppose
I # 2 is a regular prime in this situation, ie., [F(J[{]) : F] is prime
to I. Use Lemma 11.17 to show directly, i.e., not as a corollary to
Theorem 11.18, that ord; h{Ki) = mn + ord; h({K), where r; is the
dimension over Z/IZ of J(F)[l].

. Let F be a field with ¢ elements and K = F(z, y) be a function field

with generators = and y which satisfy ¥? = f(X), where f(X) €
F[X) is a cubic polynomial without repeated roots. Assume that g
is odd. Prove that 2 is an irregular prime if and only if f{X) is the
product of a linear factor and an irreducible quadratic. (One needs
soime elementary facts about points of order 2 on an elliptic curve}.
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8. Suppose F = Z/5Z and K = [F(z,y), where = and y satisfy Y2 =
X?* —3X. This is a curve of genus 1. The primes of degree 1 of K
are in one-to-one correspondence with the solutions of this equation
over F together with one prime at infinity. Use this to show N1(K) =
h(K) = 2 and deduce Ly (u) = 1 — 4u + 5u®. Deduce from this that
(we drop K from the notation): Ny = 2, N = 225, N, = 275, and
Ng = 2°3%5 . 17.

9. (Continuation) One can show that all the points of order dividing 4
are in J(F4). Use this and the previous exercise to show

J(Fe)(2) =277 12/Z 0 2712 /7
forall 1 > 2.
10. (Continuation) Show [F(J[5]) : F] = 2 and deduce that J(IFs,)(5) =

(0) for 7 > 0, J(Fq.5:){5) 2 Z/5Z for j > 0, and J(Fy;)(5) = Z/5Z
for j = 1.
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Cyclotomic Function Fields

[n the last chapter we explored the arithmetic of constant field extensions
and noted (as was pointed out by Iwasawa) that these extensions can be
thought of as function field analogues of cyclotomic extensions of number
fields. This analogy led to various conjectures about the behavior of class
groups in number fields which have proved very fruitful for the development
of algebraic number theory and arithmetic geometry. There is another func-
tion feld analogy to cyclotomic number fields which was first discovered
by L. Carlitz [3] in the late 1930s. This ingenious analogy was not well
known until D. Hayes, in 1973, published an exposition of Carlitz’s idea
and showed that it provided an explicit class field theory for the rational
function field (see Hayes [1]). Later developments, due independently to
Hayes and V. Drinfeld, showed that Carlitz’s ideas can be generalized to
provide an explicit class field theory for any global function field, i.e., an
explicit construction of all abelian extensions of such a field (see Drinfeld
[1] and Hayes [2]). This is a complete solution to Hilbert’s 9-th problem in
the function field case. Nothing remotely so satisfying is known for num-
ber fields except for the field of rational numbers (cyclotomic theory) and
imaginary quadratic number flelds (the theory of complex multiplication}.

It is interesting to note that this discussion shows how the power of the
number field-function field analogy is useful in both directions. The theory
of constant field extensions in function fields gave rise to Iwasawa theory in
number fields. The extensive theory of cyclotomic number fields gave rise
to the work of Carlitz, Drinfeld, and Hayes which provided a way explicitly
to construct all abelian extensions of a global function field.



194 Michael Rosen

The impetus ta function field arithmetic given by these developments has
led to many new ideas and developments. One direction, which we will not
be able to discuss, is the invention of characteristic p-valued L-functions by
D. Goss. These functions share many properties of their classical analogues.
In particular, their special values can be related to the arithmetic of fields
generated by adding torsion points on Drinfeld modules. On the other hand,
they do not seem to possess functional equations. For a survey of these
developmments, see Goss [2]. Another interesting reference is Thakur [2].
For a more comprehensive treatment, one should consult the treatise by
Goss 4.

In this chapter we will deal almost exclusively with Carlitz’s construction
of what we will call eyelotomic function fields. This is a special case of far
more general constructions, but it contains most of the features of the
general theory and has the advantage of being very down to earth and very
close to our initial theme in this book; the analogy between the rational
integers Z and the ring of polynomials over a finite field A = F[T.

We begin by recalling, mostly without proof, several features of the the-
ory of cyclotomic number fields. Let m > 2 be a positive integer and {,, € C
a primitive m-th root of unity. Then, the field K,, := Q{{n) is called the
m-th cyclotomic number field. It is the splitting field of z™ — 1 € Q[z], so
it is a Galois extension of Q. If ¢ € Gal(K,,/Q), then o({m) = (2, where
a is relatively prime to m and is only determined modulo m. This gives
rise to a monomorphism Gal(f,,/Q) — (Z/mZ)*. This map can be shown
to be onto (the irreducibility of the m-th cyclotomic polynomial). Thus,
Gal(K,,/Q) & (Z/mZ)*. It follows that K,,/Q is an abelian extension of
degree ¢#{m), where ¢ is the Euler ¢-function.

Ifa € (Z/mZ)*, we denote by o, the corresponding automorphism. It is
characterized by

FalGm) = G, -

There are two important consequences of this. The first is immediate,
Namely, o..; is complex conjugation on K. Indeed, o-1({m) = (L = Cm
and (n,, by definition, generates Q((y,) over Q. The second consequence is
that if p > 0 is a prime not dividing m, then o, is the Artin automorphism
for the prime ideal pZ. To see this, we must first investigate ramification
in K, and learn something about the ring of integers O, of K,,.

Consider first the case when m = p* is a prime power, Set {,c = ¢. Since
¢ satisfies the polynomial f(z) = 2P" — 1 and f'(¢) = p¢* ! one can
deduce that #,./Q is unramified at all primes different from p. We claim
it is totally ramified at p and that the prime ideal lying above pZ in O, is
just (¢ —1). Here is a sketch of the proof. Let a € Z be relatively prime to
p. There is a b € Z such that ab=1 (mod p?). One has

‘::_—11 =TT
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and
C -1 3 Cab -1
=1 e
It follows that (* —1/¢ 1 is a unit in ©,. Now, the irreducible polynomial
in Qjz] for ¢ is

(3
P —1
-1

— (Ca)b—l _}_(Cl-a)b—? 4o Ca. +1.

9(=) = =@ TP @ T L

The irreducible polynomial for ¢ — 1 is thus g{z + 1), which has constant
term p. The other roots of g(z + 1) are (* — 1, where 1 < a < p® and
{a,p) = 1. Thus,

e

p

p=[] (*-1)=(-1)*") x unit .
a=1
(a,p)=1

Passing to ideals in @,,, we find p@,, = ((—1)%?"}, Since [K o : Q) = ¢(m),
this can only happen if (¢ — 1) is a prime ideal in &,,, which shows that
pZ is totally ramified, as asserted.

We continue to assume that m = p® and set (e = ¢. Under these cir-
cumstances we claim O, = Z{¢]. To this end we note that the discriminant
of the ring Z[{] over Z is a power of p. This is a calculation (see Lang [5]}).
Note that Z[(] = Z[¢ — 1]. Let w € Ope and write

#(p*)-1

w= Z ai{¢—1), a;eQ.

i=0

From the usual deduction via discriminants and Cramer’s rule we find that
the rational numbers a; have denominators a power of p. We want to show
the denominators are +1 so that the a; € Z. Let the least common multiple
of the denominators be "™ with n > 0. Then a; = b;/p™ with the b, € Z
and not all the b; divisible by p. We have

${p*)-1

Plw= Y b(¢-1).
i=0

Extend ordy to Kpe by writing ord,{a) = ¢(p*)~tord_1)(a) for all a €
K. Let ig be the smallest integer such that ord,(b;) = 0. Then, as is easily
seen, ord, of the right-hand side of the above equation is iy/¢(p®) < 1. On
the other hand, ord, of the left-hand side is > n. This shows n = 0 and it
follows that all the a; are integers, as required.

In the general case, write out the prime decomposition of m, m =
] ps? -+ pft. We require that m not be twice an odd integer. This is not
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a big restriction since if myg is odd, Kom, = Km,. Then, Kn, is the com-
positum of the fields Kpg, , Tt follows that all the p, ramify in K, and all
other primes are unramified in K,,. Moreover, using what we have shown
in the prime power case it follows that O,, = Z|(,..] (see Lang [5]).

We now can prove what was promised earlier. Namely, if p > 0 does not
divide m, then the Artin automorphism of the prime ideal P = pZ for the
extension K, /Q is precisely o, provided p4 m. Let B be a prime ideal in
O, lying aver P. The Artin automorphism for P is characterized by the
congruence

(P Kp/Q) w=w™F (mod P) YweO,.

If p > 0 is prime and P = pZ, then NP = p. Since O,,, = Z{(y] we can
check the congruence on elements of the form Y (%, where the a; € Z
and the sum is from 0 to ¢(m) — 1. We calculate

op(Y_aigh) = alhi= () all ) (mod ).

This shows that (£, K;./Q) = 0, as asserted.

From this fact about ¢, one can calculate the way primes in Z split in
K. If P = pZ is unramified, then P splits into ¢(m)/ f primes of degree f
in K,,, where f is the order of (P, K,,,/Q) in Gal(K,,/Q) (see Proposition
9.10). Since we have shown Gal{K,,/Q) = (Z/mZ)*, the order of o, in
Gal(K,,/Q) is the smallest integer f such that p/ =1 (mod m).

We summarize a portion of this discussion in a theorem.

Theorem 12.1. Leim > 0 be an integer not equal to fwice an odd number.
Let (m € C be a primative m-th root of unity and K, = Q((n). Then Kon /Q
is an abelian extension of degree ¢(m). The Gualois group is isomorphic to
(Z/mZY*. A rotional prime p is ramified in K, if and enly if pjm. If
p > 0 does not divide m, the Arlin automorphism corresponding to the
prime ideal P = piZ takes (, to ¢F,. Let [ be the smallest positive integer
such that pf = 1 (mod m). Then, P = pZ splits into ¢p(m)/f primes of
degree [ in K,,. Finally, if O,, denotes the ring of integers in K,,, then
O = Zl(m)-

The last thing about cyclotomic fields which we wish to discuss at this
point, is the behavior of the prime at infinity. The field of rational numbers
{0 has only one archimedean prime given by the usual absolute value. The
field K, is such that every embedding into € is complex since the only
roots of unity in the real numbers R are 1. Consider the subfield K}, =
Q($m + ¢nt)- This field is real and so is every embedding of it into the
complex numbers. Moreover, it is of index 2 in K, since (,, satisfied the
guadratic equation z% ~ ({. + (;')z +1 = 0. Thus, the prime at infinity
in Q splits into ¢(m)/2 real primes in K, and each of these ramifies to
a complex prime in K. It is clear that the Galois group of K, /K, is
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generated by _; which is complex conjugation. Thus, ¢.-; can be thought
of as generating the inertia group of the primes at infinity in K,,.

Having now reviewed the cyclotomic theory in the number field case
we will next consider how to construct an analogous theory in the function
field case. Considering roots of unity will yvield only constant field extensions
which, as we have seen, are everywhere unramified. How can we generate
abelian extensions which are geometric? The answer is not at all obvicus,
To provide the necessary background, we begin by exploring the notion of
an additive polynomial over a field.

Let & be a field. A polynomial f(z) € k[z] is said to be additive if inside
the polynomial ring in two variables k[z, y] we have f(z+vy) = f(z)+ f(v)-
For any element a € k, f{x) = az is such a polynomial. We shall see that
in characteristic zero this collection of homogeneous linear polynomials
constitutes all additive polynomials. In characteristic p > 0 the polynomial
T(z) = 2¥ is additive, as is easily seen using the binomial theorem. It is
easy to check that the set of additive polynomials is closed under addition,
subtraction, multiplication by elements of &k, and composition. The last is
seen from the calculation

I

flo(z +y) = flo(z} + g(¥))
fg(@) + fo) = (Fog)(@) + fog)(y) -
This leads us to additive polynomials of the form agx + @127 4+ - -+ aqz¥ .

With these we have exhausted the collection of additive polynomials as we
now show.

(fogiz+y)

Proposition 12.2. Let k be o field and f(z) € k|z] an additive polynomial.
If the characteristic of k is zero then f(z) = az for some a € k. If the
choracteristic of k is p > 0, then there are elements g, € k with0 <i<r
such that f(z) = apz 4+ aya? + - - + apa®

Proof. By definition, if f(x) is additive, f{z +y) = f(z) + f(y). Take the
formal partial derivative with respect to z. Then, 8. f{z + %) = O-f(z).
Setting © = 0 we see that the formal derivative of f is a constant. If
Flz) = 3 bixt, then f/(z) = 3 ib;x*1. In characteristic zero this shows
that f'(z) is a constant if and only if f(x) = by + b1z, a linear polynomial.
However, f(z + y) = f(z) + f(y) implies f(0) = 0. Thus, in this case
flz) = bz

Now, if the characteristic of k is p > 0, then f’(x) is a constant if and
only if b; = 0 for all ¢ > 1 with ¢ not divisible by p. We may write

flm)y=biz+ Y bya? = bz +g(z)?

jz1

where g(x) has coefficients in the field &; obtained from & by adjoining the
p-th roots of the coefficients by;. It is a simple matter to check that g{x) is
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additive in k1{z]. By induction on the degree of f(z) we can assume that
9(z) = Fpso cpz®”. Thus,

f(wj = blili + Zciitph*'l ;

h>0
which is a polynomial of the required form since ¢} € k for all h.

From now on, we assume that we are working in characteristic p > 0.
Suppose that k is a field of characteristic p and let ,A(k) denote the set of
additive polynomials with coefficients in k. A(k) is easily seen to be a ring
with addition being given by the standard addition of polynomials and
multiplication being given by composition (as is easily seen, A(k) is not
closed under ordinary multiplication}. We will reformulate the structure
of A(k) in a more convenient manner by associating with every additive

polynomial
flzy= Zai el
i=0

the polynomial in 7 (recall, 7{z) = zF)

g{m) = Z 0Tt .

i=0

Clearly, f(z) = g{r}(z) and the map f(z) -+ g(7)} sets up a bijection
hetween A(k) and k& < 7 >, the ring of polynomials in 7 with “twisted”
multiplication. This means that for all a € & we have

Ta =alr . (1)
This follows from the calculation,
(ta)(z) = 1(az) = (az)? = aPz” = (aPT)(x) .

Thus, multiplication in k < 7 > is just like that in a polynomial ring
except that when multiplying an element of k by a power of 7 one must
use the Relation 1. For ohvious reasons, & < 7 > ig often referred to as a
twisted polynomial ring. Tt is now easy to check that the ring of additive
polynomials with coefficients in k is isomorphic to & < 7 > under the map
f(z) = g(1) given above. We will work primarily with & < 7 >.

It is possible, and desirable, to give a group scheme interpretation to this
ring. Let G, /k be the additive group scheme over k. Among other things,
G./k assigns to every commutative k-algebra B the underlying additive
group B.. Every additive polynomial gives rise to an endomorphism of B,
in the obvious way. If u € B and 3 a7 € k& < 7 >, then

(Z a,-‘ri) (u) = Zaiupl .
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From these considerations it is not hard to show End{(Ga/k) =2 k <7 >.In
what follows, we will identify these rings. We will not need to invoke any
facts from the theory of group schemes, but this point of view is illuminat-
ing. All of the theory which we will develop is made possible by the fact
that in characteristic p, End(G,/k) is a “big” ring.

We need to make one modification in these definitions before returning
to function fields. Let F be a finite field with ¢ = p® elements. We want
to work only with F-algebras and we want our endomorphisms to respect
the F-algebra structure. So we assume F C & and only look at additive
polynomials f(z) which eommute with the elements of F. This requirement
is that f(e) = af(z) for all « € F. If f = 3~ a,7* this requirement is easily
seen to be equivalent to

o =a YaeF whenever a; #0 .

From the theory of finite fields, we see that these conditions hold if and
only if s|¢ for all ¢ such that a; 3 0. Another way of saying this is that
f €k < 1% >. Note that 7°(z) = x7. Since F will be fixed in our further
considerations, we will redefine 7 to be the mapping which raises to the
g-th power and write

Endp(G./k) =k <1 >,
where now the fundamental commutation Relation 1 will be replaced by
ra=a%r Yack. {2)

As usual, set A =TF[T] and k =F(T).

Definition. A Drinfeld module for A4 defined over k£ will be an F-algebra
homomorphism p: A — k& < 7 > such that for all ¢ € A the constant term
of p, s @ and, moreover, for at least one a € A, p, ¢ k.

The notion of a Drinfeld module is much more general, but for the pur-
poses of this chapter, this definition will suffice. The idea behind the defini-
tion is that given a Drinfeld module p every commutative k-algebra B can
be made into an A algebra in a new way. B is already an A-algebra since
A is a subset of k and B is a k-algebra. However, given p we can define &
new multiplication by

a-u=pelu) YacA and Yu€B.

The condition that p, ¢ k for at least one a € A is to insure that this
action is indeed different from the standard action of A on B. We will call
B with this new A-module structure, B,. The k-algebra which will receive
the most attention is the algebraic closure of &, &.

We have said nothing yet about the existence of Drinfeld modules. In
the general case (which we have yet to define) this is a delicate question.
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Here, however, it is a trivial matter. A is generated freely as an algebra
over IF by one element 7. Thus, for any element 2 € k¥ < 7 > there is
a unique homomaorphism from A4 to & < 7 > which takes T' to h. We
must only make sure that the constant term of k is T and that h ¢ k to
get a Drinfeld module. Perhaps the simplest choice for h is T+ 7. The
resulting Drinfeld module is called the Carlitz module, C. Thus, Cr =
T+ 7, Cp2 = T2+ (1" 4 T9)1 + 72, ete. Carlitz discovered and exploited
this module decades before anyone else had any idea of the value of this
construction. The reader may wish to consult the papers by Carlitz [1, 2].
In these papers Carlitz actually works with the module € defined by the
relation C'(T) = T — 7. In almost all modern treatment the plus sign is
chosen. We shall stay with this convention.

We will discuss the properties of the Carlitz module in some detail, but
for a while we will continue to develop the theory more generally.

Suppose p is a Drinfeld module and

pr =T +aT+ecm 4+ +er",

where the ¢; € & and ¢, # 0. Using pr2 = pror, we see that the constant
term of pp2 is T2 and that the highest power of 7 that occurs is 2 and
the leading coefficient is ¢, raised to the power 1 4 ¢". Continuing this
way we find that the constant term of pp- is T™ and the highest power
of T that occurs is nr and the leading coefficient is ¢, raised to the power
14+g"+¢* 4+ + ¢V, Using these comments and the fact that p is
an F-algebra homomorphism we find for @ € A that the constant term of
Pu is a and the degree in 7 of p, is rdeg{a). It is important to note that
the degree of the polynomial p,(x) is g" %8 Under these conditions, we
say that the Drinfeld module g has rank r. We shall now see how the rank
plays an important role in the theory of the A-module k,,.
Let's consider the A-module k, and its torsion submodule:

A, ={Nek! ps(X) =0 for some a € A a0} .
For any a € A, a # 0, we define the submodule A [a] C A, as follows:
Adla] = (A € F | palh) =0} .

It is possible to identify the A-module structure of these modules with
some precision. The following abstract lemina is the key.

Lemma 12.3. fet a € A, a # 0. Let M be an A-module and suppose
for each bla that the submodule M[b] = {m € M | bm = 0} has ¢~ 4&®)
elements. Then

Mle|2 AjeA® AfeA® - ®Afad r times .

Proof. Consider the prime decomposition of a, a = aPy* £57? - - - PP, where
« € F* and the P run through the monic, irreducible divisors of a. M|a] is
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isomorphic to the direct sum of the submodules M{Ff*]. Via the Chinese
Remainder Theorem, it suffices to consider the case that @ = P is a prime
power. :

So, suppose @ = P*® is a prime power. Since M[P] is a vector space over
A/ PA with g"98(") clements, by hypothesis, it follows that the dimension
of M[P] over A/PA is r (recall that A/PA has ¢°¢ ¥ elements). It follows
from the structure of modules over principal ideal domains that M[P¢] is
a sum of r cyclic submodules,

M{P*|= A/PhAp A/PAe..-9 A/P A

One must have f; < e for 1 <i < r. The number of elements in the right-
hand side of this isomorphism is ¢ to the power (f1 + fa+ - + fr.) deg{P).
The number of elements in the left-hand side is, by hypothesis, g to the
power redeg(P). These two numbers being equal implies that each f; = ¢
and this concludes the proof.

Proposition 12.4. Let p be a Drinfeld module of rank », i.e., for ecch
a € A the degree in 7 of p, is rdeg(a). Then, for eacha € A, a # 0 we
have

Aple] 2 AJaAB AfaAD - B Afad r times .

For the module A, we have the isomorphism

A ZE/ASK/AD - DE/A 7 times .

Proof. We apply Lemma 12.3 with M = k,. We have to check that for
each a # 0 in 4 that A,[a] has ¢"9°8(®} glements. From our previous work
we see that p,(z) has the form

rdeg(u)

palx) = ax + byz? + baa? + -+ brdeg(a)®? ;

where the b; € k and b, geg(a) # 0. The derivative of p,(z) with respect
to z is a # 0. Thus, p.{x) is a separable polynomial and in k has g~ <e&(®)
distinct roots. These roots are exactly the elements of A,fa] so the first
part of the proof is complete.

The second assertion is a formal consequence of the first. Since we won'’t
use it in what follows, we merely sketch the proof. Note first that A, is the
union of the submodules A,[a] as ¢ runs through the non-zero elements of
A. Secondly, since Afad = a~'A/A we can rewrite the first isomorphism
as

Aglal2a 'A/JAea P AJAD - @ a"AJA 1 times .

Order the non-zerc elements of A by divisibility. The result would follow
if we could pass to the direct limit and this process could be done in such
a way that the direct limit could be interchanged with the direct sums.
One can arrange the direct sum decompositions so that this is possible.
However, we will omit the details.
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Suppose we adjoin the elements of A,[a] to & to form the field K, :=
k(A,(a]). Since, as we have seen, pa(z) is a separable polynomial and Ay q
is the set of roots of this polynomial, it follows that K, ./k is a Galois
extension. Since p,(z} € k[z] we see pa(A} = 0 implies p,(cA) = 0 for all
o € Gal(K, ,/k). For such o it is easy to check that not only does o map
A,la] into itself, it actually induces an automorphism of the A/aA-module
structure. We thus get a map, in fact a homomorphism, from

Gal(K, . /k) — Autasaa(A,al) .

Since Ap[a] generates K, ., any automorphism inducing the identity map
on Ayla] must be the identity automorphism. Thus, the kernel of the above
map is trivial.

Finally, by the first assertion of Proposition 12.4, we see that

Autaaa(A,la]) = GL,(A/ad) .

‘We have proved the following proposition,

Proposition 12.5. Define K, . to be the field k(Ap[a]). Then K, o/k is a
Gualois extension and there is a monomorphism

Gal(K, . /k) = CL(Ajad) .

Corollary. If p has rank 1, then K, ./k is an abelian extension.

Proof. This is immediate from the Proposition since GL,(A/aA) = (4/aA}*
which is abelian.

One can ask about the size and nature of the image of the maps given in
the Proposition. This is a very difficult question in general. Much remains
to be discovered. Using a lot of sophisticated machinery some answers have
recently been given by Richard Pink (see Pink [1}). Here, we will be con-
cerned with a very special, but interesting case. Namely, the case of the
Carlitz module.

Recall that the Carlitz module is characterized by Cp =T + 7 or equiv-
alently Cp{z) = Tz + z?. Clearly the Carlitz module has rank 1 and so, by
the carollary to Proposition 12.5, adjoining torsion points for the Carlitz
module to k gives rise to abelian extensions. We will investigate these exten-
sions in some detall and show that they have remarkably similar behavior
to cyclotomic extensions of Q.

Since the Carlitz module will be the focus of our work for the rest of this
chapter, we will write A for Ag , A, for Ag[a], and K, for K¢ 4. Also, to
emphasize the relation to our discussion of cyclotomic fields we will use the
letter “m” from now on rather than “a” as our typical non-zero element
of A. The fields K, = k(A,,) will be the analogues of cyclotomic number
fields. We define them to be cyclotomic function fields.
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By Proposition 12.5 and its corollary we see that Gal(Km/k) is iso-
morphic to a subgroup of {A/mA)*. Our first goal will be to show it is
isomorphic to all of (A/mA)*. Before doing this it will be necessary to
make a number of preliminary observations.

Notice that Cu,, = CoCh = aly, for all & € F. It follows thats that
Aam = Ap for all o € F*. Another way of saying this is that the torsion
points A, depend only on the ideal mA and not on any particular generator
of this ideal.

Let m be a polynomial of degree d. Then

Conlz) = [m, Oz + [, 1ot + [0, 227 + -+ [m,dz? ,  (3)

where [m, i} € A for every 1, [m, 0] = m, and [m, d] is the leading coefficient
of m. Note that if m is monic, then [m,d] = 1. The degree of C,,,(z) is
g? = |m| (see Chapter 1 for a discussion of this notation). Later we will
show that as a polynomial in T, |m,i] has degree ¢'(d — 7). It is a good
exercise to compute Cp,(x) explicitly for a few polynomials m of small
degree to get a feel for the nature of the coefficients [m, ].

It will turn out that if m = P, a irreducible polynomial, then Cp{z)/x is
an Eisenstein polynomial at P {i.e., the leading coefficient is not divisible by
P, all the other coeflicients are divisible by P, and the constant term is not
divisible by P?). Thus, Cp(z)/z € A[z] is analogous to [{(1+ z)F — 1}/z €
Z[zx) in the classical cyclotomic theory. It follows that 0 # Ap € Ap is
analogous to {p — 1, not .

From Proposition 12.5, we know that A,, &2 A/mA as an A-module. Let
Am be a generator of this module. Then, it is easy to see that C,(Ay)
is a generator if and only if {a,m) = 1. This shows that A,, has ®(m)
generators where ®(m) is the analogue of the Euler ¢-function for the ring
A. By definition, ®(m) is the number of non-zero polynomials in A of degree
less than that of m and relatively prime to m. Alternatively, ®(m} is the
number of elements in (4/mA}* (see Chapter 1).

Since An, is a generator of A, it follows that K., = &{An). Let On
denote the integral closure of A in K.

Proposition 12.6. Let A, € A, be a generntor and suppose a € A is
relatively prime to m. Then, Co(An)/Am is a unit in Op,. If m is divisible
by two or more primes, then A, is itself a unit.

Proof. From Equation 3 we see that A, is integral over A. From the same
equation, replacing m by a, d by deg(a), and substituting x = A, we see
that Co{Am)/Am € O,,. We must show the reciprocal of this element is
also in @,,.

Let b € A be such that ba =1 (mod m). There is an element f € A such
that ba = 1+ fm and we have CyC; = 1+ C¢Cr. Applying this to A,
yields Cp(C,(Am)) = Am. Thus,

M Co(Caldm))
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To praove the second assertion, it is no loss of generality to assume m is
monic. Suppose m = mymg, where m; and my are monic and relatively
prime. Set Am; = Cm,{Am) and Ap, = Cp, (An). Then Mg, is a primitve
me-th torsion point for i = 1,2. For all a € A, C,(z) is divisible by .
Consider the factorization

Crry (Am)
Am

This shows that A, divides A, and similarly A, divides Ap, in Op.
Taking norms from K., to k shows that the norm of A, divides a power of
NKm,/'k()\mi) for i = 1, 2.

To finish the proof one does induction on the number of distinct primes
dividing m. We will need the corollary to Proposition 12.7, which will be
proven shortly. [ts proof is independent of what we are doing here, so it is
legitimate to use it. The corollary implies that if m = P¢ is a prime power,
then the norm of Ap. is . Suppose m is a product of two prime powers
Pyt and Pg2. Then, from what we have proven, it follows that the norm
of X, divides a power of 1 and a power of P;. This implies the norm of
Am 15 a non-Zero constant and so A, is a unit. If m is divisible by ¢ > 2
distinct primes, set

Amy = Am

1

t
my =P and mg = pr )
i=2
Then, by induction, Am, is & unit and its norm is a non-zero constant. By
what we have proven above, it follows that the norm of A, is a non-zero
constant. Thus, A, 18 a unit, and we are done.

With the aid of these units we will imitate some of the deductions of the
classical theory. As there, we begin by considering the case when m = P¢
is a power of an irreducible polynomial P. Since Ap. =2 A/P°A an element
A € Ape is a primitive generator iff Cp.(A} = 0 and Cpe-1(A) 5 0. Thus,
the primitive generators are precisely the roots of the polynomial

Cpe (I) _ Cp(Cpe_x(m))
Cpewi(:ﬂ) Cpa—] (.’L‘)

= P+ [P, Z-]Cpe‘i(:r,')‘T—l oo [P, d}cpc—l(gg)qd—l , (4)

where d = deg(P). The degree in = of the polynomial in Equation 4 is
[Ple1{g? ~ 1) = |P|*~}(|P| ~ 1) = $(P*?) as it should be.

Proposition 12.Y. Let P € A be a monic irreducible polynomiel and
e € Z, e > 0. Then, Kpe is unramified ot every prime ideal QA with
QA # PA. The prime PA is totally ramified with ramification index ®(P¢).
Consequently,

[Kpe: k] =B(P°) and Cal(Kp /&) 2 (A/P°A)" |
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Finally, the prime ideal above PA is (A) = AOpe where A is any generator
of Ape.

Proof. Let A be a primitive generator of Ap. and let g(z} € k[z] be the
monic irreducible polynomial it satisfies. Then g(z) must divide Cpe{z).
Write Cpe{z) = f(z)g(x). Differentiate both sides and substitute = = A,
The result is P* = f(A)g'(A). Since Kp. = k(}), it follows that g'(}) is
contained in the different of Op: /A. Thus any prime ideal of @pe dividing
the different, must contain a power of P and thus P itself. This shows that
PA is the only possible prime ideal in A ramified in Op..

Let d = deg(P). As we have seen, the other primitive generators of Ape
are

{Ca(A) | 0 < deg(a) < deg(£*} =ed and {(a, P) =1} .

These are the roots of the polynomiai in Equation 4, which is monie {since
P is assumed to be monic) and has constant term P. By the first part of
Proposition 12.6, we deduce

P= ] Gu(n) =22 xunit .

a,deg{a)< ed
{a,P)=1

It follows that PA = (A)?¥), Let 'B be a prime ideal of @p. dividing (A).
Then, the ramification index of B/P is divisible by ¢(FP¢). Since X is a
root of the polynomial in Equation 4, we know that [Kp. : k] < ®(P®). It
follows that the ramification index of 13/ P is precisely ®(P*), that POp. =
PP and that B = (A). The remaining assertions are now clear.

Corollary. Let P € A be monic irreducible of positive degree, and e €
Z, e > 0. Let A be a generator of Ape and g(x) € k[z] its drreducible
polynomial. Then g{z) is an Eisenstein polynomial at P.

Proof. By what has been proven in the proposition, g(z) is the polynomial
which appears in Equation 4, We have

oz = ] =-c.(n),

(a,P)=1

where the product is over all primitive generators of Ape.

Except for the leading coefficient, which is 1, the coefficients of g are
the elementary symmetric functions of the primitive elements in Ape. The
proposition shows these are all in the ideal (A}, Thus, all the coefficients of
g(x), except the leading coefficient, are in (A\)N A = PA. Since the constant
term is P, it follows that g{z) is an Eisenstein polynomial.

Using the above corollary and an easy induction on e, we see that Cpe(z)
is a product of Eisenstein polynomials at P. Consequently, all its non-
leading coefficients must be divisible by P. In other words, we have shown
P | [Pe,i] for all 0 <1{ < ed where d = deg(P).
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Having dealt with the case rm = P¢, we now pass on to the general case.
Let m € A be a polynomial of positive degree and let m = Py Py -« P
be its prime decomposition.

Theorem 12.8. K, is the compositum of the flelds K pra- The only ideals
in A ramified in O, are FA with 1 <1 <t. We have [K Dkl = @(m).
More precisely,

Gal(K,,/k) 2 (AjmA)*

Proof. Define m; to be m divided by P, Let A, be a generator of A, as
an A-module. It is clear that Ci,, (M) Is a generator of Ape.. Set Ape. =
Cim, (Am). ‘

Clearly, Kpe = k()\P &) C k{Am) = K. Thus, K, contains the com-
positum of the fields Kpc,, for1 <i<t.

Since the greatest common divisor of the set {m,_ | 1 <4<t} is just 1,
there exist polynomials &; € A such that 1 = 21 1 aimng. It follows tha,t
1= E:zl C,,Cm, . Applying this relation to the element A, yields

3

Am =3 Ca,(Apsi) . (5)

i=1

This shows that Ay, is in the compositum of the fields K B which com-
pletes the proof that K, is the compositum of these fields.

If P is a prime element such that PA s P; A for any 4, then by Proposition
12.7, PA is unramified in every K P and so must be unramified in their
compositum K,,. On the other hand, P.A is totally ramified in K P by
the same proposition. Thus all the ideals P, A are ramified in K,

We will prove that K, : k] = &(m) by induction on t. For t— 1 this
assertion is part of Proposition 12.7. Assume the result is true for ¢t — 1.
Then, [Kp, : k| = ®(my). Now, K;;,, N Kpe: = k because K.y, is unramified
at A and K prt is totally ramified at Pt A. It follows that

(Ko k] = [Kom, : k| K pee : B} = ©(my)R(Ff*)} = ®(m) .

Finally, we know from the corollary Lo Proposition 12.5 that there is
a monomorphism from Gal(K,,/k) to (A/mA)*. Since we now know that
both of these groups have the same order, $(m), it follows that this monomor-
phism is an isomorphism.

Our next task is to investigate how the primes in A split in O,,. To
do this we have to lock at the isomorphism Gal{K,,/k) = (A/mA)* more
closely.

We first recall how this isomorphism is defined. As usual, let A, denote
a generator of A, as an A-module. If 6 € Gal(K,/k), then clearly oAn, is
another such generator. Thus, there is an a € A with (a,m) =1 such that
{Am) = Ca(An). The automorphism & is completely determined by this
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relation sinee A, generates K, over k. Note that a is determined only up to
a multiple of m. We write ¢ = g,. The map ¢ — @ is the isomorphism from
Gal(K,./k) — (A/mA)* which we have been discussing. The content of
Theorem 12.8 is that for any ¢ € A, relatively prime to m, there is a2 unique
automorphism o, € Gal(K,,/k) such that o, Ay, = Cy{A\y). The important
fact that we are after is that when P is a monic, irreducible polynomial
not dividing m, then op = (PA, K, /k), the Artin automorphism for the
prime ideal PA. The next propesition, interesting in itself, will be a useful
tool,

Proposition 12.9. Let O, be the integral closure of A in K,,. Then,
O, = AlAy].

Proof. We first consider the case when m = P¢, i.e., when m is a prime
power.

For the moment, let’s drop the subscript and set Aype = X, We have that
A[A) € Ope and we want to show equality holds. Let g(z) € k{z] be the
irreducible polynormial for A. We showed at the beginning of the proof of
Proposition 12.7 that g/(A) divided a power of P in Ope.. It is a standard fact
about Dedekind domains that the discriminant of the A-order A[A] C Kpe
is the norm from Kp. to k of the element g’()) (see Serre [2]). It follows
that the discriminant of A[M] is a constant times a power of P.

Let w € Ope. Then

B(P)-1

L = Z ai)\’: y
i=0
where a; € k for 0 < ¢ < §(P¢). Using the fact that the discriminant
of A[A] is a constant times a power of P, we see in the usual way that
each a; is if the form b;/P™, where b; € A and n can be chosen so that at
least one of the b; is not divisible by . We want to show that under these
circumstances, n = 0, so that w € A[A]. From the last equation, we find

B(POY—1
Pru= > bt (6)
1=0

Extend the additive valuation ordp from & to K, by the equation ordp =
@(Pe)—lord(k). Recall that by Proposition 12.7, (1) is a prime ideal and it
is totally ramified over PA. Thus, this procedure makes good sense. Also,
ordp(A) = 1/B(P*).

In Bquation 6, ordp of the left-hand side is > n. Let ig < ®({P¢) be
the smallest non-negative integer such that ordp(d;,) = 0. A moment’s
reflection will then establish that the ig-th term on the right-hand side of
Equation 6 has the smaliest valuation of all the terms. Thus, the ordp of
the right-hand side is i5/®(P°) < 1. It follows that n = 0 and so w & A[}]
as asserted.
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To handle the general case suppose m = alF['F;? --- Pf* is the prime
decomposition of m in A. One can show that @,, is the ring compositum
of the subrings Ope. = A[Ape.]. We omit the details of this, but refer the
reader to Pr0pos1t10n 17, Chapter 3 of Lang [5] where the analogous result
is proven in the number field case. Since A[Ape] T A[Ag] forall 1 <i <t
we have O, C A[Am] C Op,. '

We are now in a position to give a fairly short proof of the following
impaortant result,

Theorem 12,10. Let m € A have positive degree and let P € A be a
monic, frreductble polynomial not dividing m. Then, the Artin cutomor-
phism of the prime ideal PA in the extension K, /k is the awtomorphism
op which takes Ay, to Cp(Ay). Let | be the smallest positive integer such
that PY =1 (mod m). Then, PO, is the product of ®(m)/f prime ideals
each of degree f. In particular, PA splits completely iff P =1 (mod m).

Proof. Since P does not divide m, PA is unramified in K,,. Let ¢ be
any prime ideal in Oy, lying above PA. Then, the Artin automorphism is
characterized by

(PA, K /k)w =wfl (mod P) Vwe Op

This is because the norm of the ideal PA is the number of elements in
A/PA which is g%&(F) = |P|.

As we have seen, the irreducible polynomial for Ap is Cp(z)}/x. By the
Corollary to Proposition 12.7, Cp(x}/z is an Eisenstein polynomial. Also,
it is monic since we are assuming that P i{s monic. Thus,

Cp(z) = o1 (mod P),

and this congruence continues to hold modulo 0 since P € B. Conse-
quently,
apAm = Cp(An) = AP (mod J) .

Let w € Oy,. By Proposition 12.9, w = 3" a;A},, where a; € Aand 0 < i <
®(m). Thus,

opw =Y ailopin) = Y alP = (3 aa )P = w!Pl (mod ) .
1 1 1 @

We have used the fact that |P| is a power of the characteristic p of & and
Fermat’s little theorem for polynomials; i.e., @l = @ (mod P)foralla € A
(see the corollary to Propaosition 1.8).

Equation 7 establishes the first part of the theorem, namely, (PA,
K /k) = op. For emphasis, we mention again that this equality is only
true when P is a monic irreducible.

The last part of the Theorem follows from the standard property of
the Artin automorphism of a prime. Namely, il f is the order of the Artin
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automorphism, then the prime splits into ®(m)/f primes of degree f. From
the isomorphism Gal(Kn,/k) = (A/mA)”, we see that the order of op is
the smallest positive integer f such that Pf =1 (mod m). This completes
the proof of the theorem.

The last task in this chapter is to investigate the way in which the prime
at infinity of & splits in the extension K,,. To do this we will need some
preliminary work. First we need to know the degrees of the polynomial
{m, 3] € A which are the coeflicients of Cp,(x). Secondly, we need a descrip-
tion of the completion of k at co. Finally, we will need an elementary, but
powerful, technique of non-archimedean analysis, the Newton polygon.

Proposition 12.11. Let Cpiz) = Ef=0[m, i)2¢ where each coefficient
[m,i] € A and d = deg(m). Then the degree of [m,i] as a polynomial in T
is g*(d - 4).

Proof. If i > d, we set [m,i] = 0. Notice that [m, 0] = m which has degree
d = ¢g°(d — 0). This shows the result is true for ¢ = 0. For the rest of the
proof we assume 7 > 0,

We first investigate the special case mn = T™ and proceed by induction
on n. For n =1 we have [I,0] = 7" of degree 1 = ¢*(1 — 0) and [T,1] =1
of degree 0 = g*(1 — 1}. Thus, the result is true for n = 1.

To go further, we first derive a recursion formula for the coefficients
[T™,4). Consider the equation

Cpn(3) = Cp(Crect (3)) = TCpnon(2) -+ Cnes ()7 .
By isolating the coefficient of z¢ on both sides, we find
[T? 4] = T[T L4 4+ [Tt i~ 1] .

B'y induction, the degree of the first term on the right-hand side is 1 +
g'(n — 1 —1) and the degree of the second term on the right-hand side is
g*(n — 1). Since we are assuming 1 > 0, the second term has larger degree
and it follows that [T™, i) has degree ¢*(n - i).

Finally, if m = ¥7_g 077 with each c; & F and aq # 0, then

d
(mad) =Y oylT9,4]
j=0

from which one sees that degy([m,i]) = ¢*(d —4) since au(T'%,i] is the
non-zero term of largest degree.

We now turn our attention to the completion of & at infinity. [t is useful
to first give a discussion of the completion of k at the prime corresponding
to the monic irreducible polynomial T, i.e., the completion of &k at zero.
Every element of & € k can be written as a power of T, T™, say, times a
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quotient f(T)/g(T) of polynomials, both not divisible by T. Under these
circumstances, ordyp{h) = n. We can give k& a metric space structure by
setting Jhy — ho|p = gordr(h1=h2) where ¢ = #F. Two polynomials will
be clase in the resulting topoclogy if their difference is divisible by a high
power of T, i.e. if their initial coefficients coincide. Thus, a Cauchy sequence
of polynomials will give rise to a uniquely defined power series in T. The
completion of A4 in this topology, algebraically and topologically, is the ring
of formal power series, F[[T]], where the topology is given by the powers
of the maximal ideal (T). The completion of & is just the quotient field
of F[[T]], which is called the feld of formal Laurent series. We denote this
field, F((T)). A typical element has the form

[x o]
E o;T*, where o; €F .
i=—N

To get a good deseription of the completion of & at infinity the trick is
to replace T by 1/T in the above analysis. To see this, recall that for a
polynomial f(T') in T we have, by definition, orde f(T) = — deg f(T'}. Let
d = deg f(T). We can write f(T) = T¢h{1/T} where h is a polynomial with
non-zero constant term. If we set U = 1/7, then the monic irreducible U7 of
the ring F[U] = F[1/T] defines a discrete, rank 1 valuation of & and clearly,
ordy f(T) = ordy U—2A(U) = —d. 1t follows that the two valnations orde
and ordy coincide on A and so they must coincide on k, i.e., they are equal.
As a consequence of our previous discussion of the completion of & at zero
we cal now assert that the completion of & at infinity is the ring of formal
Laurent series in U, i.e,

koo =F((U)) = F((1/T)) .

The elements which are regular at infinity are the power series in 1/T,
F[[1/7]], and the units at infinity are the power series in 1/T with non-zero
constant term. If 0 # g € F((1/T)), then we can write g = (1/T)™h, where
h is a unit in F[{1/7]]. In this sitvation, orde.g = N.

We shall return to k., shortly, but first we will describe the method of
the Newton polygon. This method enables us to find information about
the roots of a polynomial with coefficients in a field L, which is complete
with respect to a diserete rank 1 valuation v. We denote by ord, the cor-
responding ord function. Let

d
flz) = a’ € Lfaj,
=0

be a polynomial and assume that apay # 0. Consider the set of points

8y = {{j.ordya;) €R? |0 < j < d, a5 #0} .
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Above each point in 55 erect a vertical ray and then take the convex hull of
the resulting set. This convex hull is bounded on the sides by two vertical
rays and below by a polygonal path conrecting (0, ord,eq) with {d, ord,a,).
This polygonal path is defined to be the Newton polygon of f, N.

Let L be an algebraic closure of L. We continue to use the notation ord,,
for the unique extension of ord, to L.

Theorem 12.12. Let L be a field which is complete with respeet to o
discrete, rank I voluation v. Let ord, be the corresponding ord function
extended to L, an algebraic closure of L. Let f(z) = E;‘:O a;z’ € Lz] be
a polynomiol with agag # 0. Let | be a linc segment of the Newton polygon
of f joining (j,ordya;) with (h,ordyag) with § < h. Then f(x) has ezoctly
h— j roots ¥ in L such that ord,~y is the negative of the slope of I .

We shall postpone the proof of this theorem until the end of the chapter.

To give some idea of its usefulness, let's apply it to the case where f{z)
is an Eisenstein polynomial, i.e., ord,ag = 0, ord,e; > 0 for 0 < i < d,
and ord,ap = 1. One sees, without effort, that the Newton polynomial
of f is just the line segment joining (0,1} with (d,0). Tt follows that f
has d roots v such that ordyy = 1/d. Since an Eisenstein polyncmial is
irreducible, it follows that adjoining any root of f to L results in a totally
ramified extension of degree d. Other applications of this nature are easy
to produce, but we leave these aside and proceed to apply the method to
the case f(z) = Cn(z) € koofz].

Proposition 12.13. Let C,.(z) € k[x] C koo[x] be the Carlitz polynomial
corresponding to m € F{T] of degree d. Let koo be an algebraic closure of
ks and continue to denote by ord,, the unigue extension of ordy, t0 koo
Then, for each 1 < i < d, there erist ezactly ¢ — ¢'~! roots A of Cp(x)
such that ]
ordeh =d —i ~ —— .
g—1

Proof. Recall that C,.(2) = Z;LD [m,i]x?. By Proposition 12.11,
ordeo{m, i} = —deg [m, i) = —¢*(d — i).

To apply Theorem 12.12, we first divide C,,(z) by « to get a polynomial
with non-zero constant term. The points to consider in the construetion of
the Newton polygon of Cp,(z)/z are

{(& ~L-g(d-5))|0<i<d}.
The lines connecting successive points all have different {and increasing)
slopes, so the Newton polygon of C,,(z)/z consists of just these line seg-
ments. Connecting the ¢ — 1’st point with the 4-th point gives the slope:
g (d =) = (¢ (d =it 1)) _
qi —_ q-i—] -

The proposition now follows from Theorem 12.12.

, 1
—(d—i)+q—_—— .
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Corollary. There are g — 1 roots A of Cr(z) in koo such that ordeoh =
d—1—1/(g—1). For each such root, we haove A¥7! € koo

Proof. The first assertion is a special case of the proposition corresponding
toi=1.

The monomials which oceur in Cr,(z)/z with non-zero coefficients all
have the form z9 ~1. Thus, Cp(z)/z = f(w), where w = 297" and f(w) €
k[w]. The roots of f(w) in koc, are {AY"1} where X runs through the roots
of Cm(z). The map A — M= i5 g -1 to 1, since whenever A is a root of
Cin(z) 50 is ak for any a € F*. It follows that f(w) has exactly one root
with ordesy = (g — 1){d — 1) — 1.

Let o be any automorphism of ke leaving koo fixed. Then, o+ is also a
root of f{w). Since ordy = orde,oy, we must have o = «y. Since o is
arbitrary, it follows that + € ko,, as asserted.

Using the Carlitz action, ko can be made into an A-module in exactly
the same way that we made k into an A-module. Namely, if « € A and
U € koo then we define a-u = Cp(u). If m € A is of positive degree, we
denote the m-torsion points, ke [m], by Ay,

Let ¢ denote a fixed field zsomorphlsm over k from K, t0 keo. Since
K,./k is a Galois extension, all field isomorphisms over k from K., t0 koo
are of the form ¢ o o with o € Gal{K,, /k)}.

The isomorphism ¢« corresponds to a prime P, of K, lying over oco. To
see this, let Op = {w € K,y | ordgouw > 0}, Tt is easy to see that Oy is a
discrete valuation ring inside K, which contains F and has quotient field
K. By definition this is a prime of K, which we denote by P, its max-
imal ideal. The proof of the fact that P, lies above oo is straightforward.

Suppose that A is a root of Cp{z) in k. Since C,y(\) = 0 implies
Cm(th) = 0, we see that ¢ maps A,, to A,,. This map is an A-module
isomorphism. By Proposition 12.13, there is an element A € A such
that ordee Ay, = d — 1 — 1/(g —1). Let A, € Ay, be such that th, = A

Theorem 12.14. Let J = {0, € Gal(Kn/k) | @ € F*} and set K}, equal
to the fired field of J. Then oo splits completely in K} and every prime
above oo in K} is totally and tamely ramified in K.

Proof. The proof will proceed in steps.

Step 1. The first thing to do is to show that Am is an A generator of
A... Suppose a € A — {0} of degree less than d. Then,

dega
1
0rd oo Cu(Ap) = ordee (Z[a AL ) = ordgead, =d~dega~1-- 1
®
To justify the second equality, one has to show that the term aA,, in the
sumn is the one with lowest ord. We leave this straightforward calculation
to the reader.
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If X, were not an A-generator of A, there would be a proper divisor m,
of m such that le(/\ ) = 0. Equation 8 shows this is impossible. Thus,
Am I8 an A-generator of Ay, as asserted. Moreover, since A,, and A, are
A-isomorphic via ¢, it follows that A, is an A-generator of An,. It follows
£hat koo (Am) = koo(Am) and Ko, = k(Ap) = &(Am).

Step 2. We show that K, = k(A%71). Let oo € J. Then, go(A87) =
(0aAm)?™ ! = (@A,)?7! = A4 L. Since o € F* is arbitrary, it follows that
At e Kb Since Ay, Is a root of 2971 — A7 € Kfj[z] we have [Kim :
k(A2 1] < g — 1. By Galois theory, [Km : K} = g — 1. Tt follows that
Kb = k(X377), as claimed.

Step 3. From Step 2, we see that «(K7%) = k(A1) C koo(A271). By the
corollary to Proposition 12.13, we have A% ! € koo, Thus, o(K}) C koo It
follows that oo splits completely in K wh1ch proves the first part of the
theoremn.

Step 4. We claim that the extension ke (A m)/k:00 is totally and tamely
ramified of degree g—1. Let v = /\‘? =1 Then, A, satisfies 297 — € koo[a].
Thus, [keo(Am) : ko] < g—1.0n the other hand, ordeeAm = d—1-1/(g—1)
so the ramification index of the extension is at least ¢ — 1. It follows that
the degree of the extension is ¢ — 1 and the ramification index is g — 1,
which is what was to be proven. The ramification is tame, since ¢ — 1 is
prime to the residue field characteristic which is p.

Step 5. Let B, be the prime of K, discussed earlier and po, be the prime
of K.} lying below it. The completion of K}, at peo is koo by Step 3. The
complemon of K at Poo 15 kog(Am). Thus, by Step 4, Poo/Poc is totally
and tamely ramified of ramification degree g — 1. The other primes over oo
behave the same way since K, /k is a Galois extension.

Corollary. For all m € A, m # 0, the constant flield of Ky, is F, ie.,
Kn/k is a geometric extension.

Proof. Since f(poo/o0) = 1, the residue class field at po is F. We have
F(PBoo/Poo) = 1 since Poo/Poo is totally ramified. Thus the residue class
field of P is also F. Since the constant field of K, injects into the residue
class field of Py, the result follows.

Since the properties of K} are so similar to those of Q}, we call K, the
maximal real subfield of K,,. The point is that the prime at infinity of &
splits completely in K} and every prime above it in K ramifies totalty
in K. This is just the behavior of the prime at infinity of @, the only
archimedean prime. It splits completely in Q;}, and every prime above it
ramifies totally in Q. Also notice that the Galois group of K,,/K}, is
isomorphic to F*, the non-zero units of A, whereas the Galois group of
Qm /@, is isomorphic to {£1} the non-zero units of Z.

In general, we will call a finite extension K of k real if oo splits completely
in K. For example, the theory of quadratic function fieids (gquadratic ex-
tensions of &) is divided up into the theory of real quadratic function fields,
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the case where oo splits, and complex quadratic function fields, the case
where oo is either inert or ramifies. We will discuss this in greater detail
later.

Having described in some detail the cyclotomic function fields, K, =
k(An), we will give a sketch of the result of Hayes which is the function
field analogue the Kronecker-Weber theorem. The latter theorem states
that every finite abelian extension of the rational numbers 9 is contained
in a cyclotomic field ({,) for some positive integer n. For a discussion
of the history of this theorem and a proof see Chapter 14 of Washington
[1]. It cannot be true that every abelian extension of k& = F(T) is con-
tained in some field K, = k(A) because, among other reasons, the above
Corollary shows that K. /k is a geometric extension. Thus, it cannot con-
tain a constant field extension of & (recall that all finite extensions of a
finite field have a cyclic Galois group}. Let’s work within a fixed algebraic
closure of k. Define (A} to be the union of all the fields K. Secondly,
let & = F& be the maximal constant field extension of k. These fields are
abelian and disjoint and one might think that every ahelian extension of k
is a subfield of the compositum of 4(A) and k. However, this field is still
not big enough since a moment’s refiection shows that a subfield of this
compositum must be tamely ramified at oo, To construct abelian exten-
sions of k that are wildly ramified at infinity, work with the parameter at
infinity, i.e., 1/7, rather than T. One considers the ideal (1/7T) in the ring
F[1/T] and using the Carlitz construction for this situation produces the
fields k(A7-n-1). These fields are abelian over k, totally ramified at oo,
and [k{Ap-n-1): k] = ¢"{g — 1). Let L, be the unique subfield such that
[Ln : k] = g™ and set Lo, equal to the union of all the fields, L,. These
three fields, k(A), %, and L., are disjoint and the main theorem states
that every abelian extension of k is contained in their compositum. In this
sense, the Carlitz module gives an explicit construction of the maximal
abelian extension of k. Hayes’ proof relies heavily on class field theory. In
the case of the Kronecker-Weber theorem it is possible to produce more
eleruentary proofs so it is certainly possible that a more elementary proof
can also be given in the function fleld case. We leave this as a challenge to
the interested reader.

To conclude this chapter, we sketch the proof of Theorem 12.12, the
Newton polygon method. Our skefch will include enough details so that
giving a complete proof will only involve setiing up a formal induction step
rather than the informal one given below.

Proof of Theorem 12.12. (Sketch)

We begin by noticing that we can assume that ap = 1. This is because
the Newton polygon of E?:o o, Jop z¥ is the same as that of f{z) except
that it is shifted vertically by —ord,cp. The roots remain the same and the
length of the line segments and the slopes remain the same, so we may as
well assume that ag = 1.
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Secondly, since zero is not a root, we may as well work with the inverse
roots rather than the roots. We will thus connect the slopes of the line
segments with the ord, s of the inverse roots (no negative sign). Thus, write

d
_f(SC) = H(l - ﬂ'i:t) 3

and arrange the inverse roots such that

ord,m; =+ = 0Idy Ty, = 81 < OrduTr, 41
= = 00dyTr 47, = 83 < OTdyTr 4 a1

= = 0rdyTr, 4 rytry = 53 < OTdy Ty frgprgt1 = OLC .

Having ordered the inverse roots in this fashion, we claim that the ver-
tices of the Newton polygon are

Py = (0,0),P = (ri,r181), Py = (r1 + 7o, 7181 + r2s2),
Py = (ry+72+7a,718) + 728y +7383),

etc. Assuming for the moment that this is the case, we see that the theorem
is established since the difference of the z-coordinates of P;_; and P; is ry
and the slope of the line connecting them is s;. By the way, we have grouped
the inverse roots, we see there are precisely r; of them such that ord, ™ = 5.

To prove our assertion about the vertices, notice that the j-th coefficient
of f{z}, namely a;, is the j-th elementary symmetric function of the inverse
roots m;. If 0 < § < 71, then from the form of the j-th elementary symmetric
function we see that ordya; > jsi. It follows that the slopes of the lines
connecting (4, ord,a;) to (0,0) are all greater than or equal to s for j in
this range. However, we must have ord,a,, = r1s;, since only one term
in the ri-st symmetric function has this order, namely, my7g - -7, , all the
other terms having greater order. By exactly the same reasoning we see that
for h in the range 0 < h < ry we have ordya, s > r18; + hso, whereas
ord,ay, 4, = 1181 + 7282 (the term of the r1 + ro-th elementary symmetric
function having the smallest order being 7 - -+ T Try41 - Ty 41 ). Thus,
the lines connecting these points to (r, ordya,, all have slopes greater than
or equal to s, whereas the line connecting (ry,7151) to (r1+7r2, 7151 +7282)
has slope exactly s;. In general, let A vary in the range 0 < A < r; and
consider the point with index r = E:;u rm + h. Looking at the r-th
elementary symmetric function of the inverse roots we see

i1
ord,a, > Z TrmSm + hs; .

m={

Thus, the slopes connecting these points to F,_; are greater than or equal
to s;, whereas the slope connecting F; to F;_; is exactly s;. Since the slopes
s; are monotone increasing, this is sufficient information to conclude the
proof.
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Exercises

Throughout the exercises, F will denote a finite field with ¢ elements, 4 =

F[T],

the polynomial ring over F, and k = F(T") the quotient field of A. If

m € A we set [m| = ¢%™. If m € A, Ap, will denote the m-torsion points -
on the Carlitz module.

1.

Let P € A be a monic irreducible polynomial and A a generator of
Ap. Show that P =T[,.. ;caeg p Ca(}), where the product is over all
non-zero polynomials of degree less than deg P.

Let M denote all monic polynomials of degree less than deg P. Set
7 = [T,e p CalA). Use Exercise 1 to show that P = (—1)%&Pge-),
Set P* = (—1)%eP P, Then P* = 797\

{Continuation) Let @ # P be another monic irreducible polynomial,
Recall the symbol (a/@), which is defined to be the unique element

of [F such that
T = (%) (mod Q) .

Use the fact that og is the Artin automorphism at € in the field
Kp = k(Ap) to prove that og(m) = (P /Q}r.

. {Continuation) Use Theorem 12.10 to show og(m) = [I,c s Cqald)-

Now, use Gauss’ criterion (see Exercise 10 of Chapter 3} to show that

oo{m) = (Q/P)m.

. [Continuation) Combine Exercises 3 and 4 to prove the reciprocity

law; i.e., if P+ Q are two monic irreducibles, then

(g) (%)_1 ~ (~1)deEPdesQ

This nice proof is due to Carlitz.

. Let P be a monic irreducible of degree d. Use the Riemann-Hurwitz

formula to prove that the genus of Kp = k(Ap) is (d — L)g% + 1 —
24— (1+g+ - +g% 1)

. Let e > 0 be an integer. Compute the genus of Kp.. (When e > 2

the calculation is more difficult because the extension is not tamely
ramified. One needs to compute the exponent of the different at the
prime above P by local considerations, See Hayes [1].)

. 'We continve to assume that P is a monic irreducible of degree d.

Tet e > 1 and let A be an A-generator of Ape. Let (Ao be the
polar divisor of A. Show deg (Meo = ¢* ! if e = 1 and deg (Mo =
gle=Dd=1(g? _ 1) ife > 2.
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9. Let m € A be a monic polynomial, A a non-zero element of A,

10.

and ¢ an element of the Galois group of K,,/k. Prove that oA/A
is a unit in O,,. (These units are called cyclotomic units since they
are analogous to cyclotomic units in Q{¢m). We will encounter them
again in Chapter 16.)

Let m € A be a monic polynomial. Define Qp to be the index [O}, :
OF*]. Show that Qo = 1 if m is a prime power and that Qy =
g — 1 if m is not a prime power. Hint: Try imitating the proof of the
corresponding fact in cyclotomic number Helds,






13
Drinfeld Modules: An Introduction

In the last chapter we introduced a special class of Drinfeld modules for the
ring A = F[T} defined over the field & = F(T'} and discussed some of their
properties. By considering the Carlitz module, in particular, we were able
to construct a family of field extensions of k with properties remarkably
similar to those of cyclotomic fields. In this chapter we will give a more
general definition of a Drinfeld module. The definition and theory of these
modules was given by V. Drinfeld in the mid-seventies, see Drinfeld [1,
2}, The application of the rank 1 theory to the class field theory of global
function fields is due to Drinfeld and independently to D. Hayes [2]. The
article by Hayes [6] provides a compact introduction to this material. A
comprehensive treatment of Drinfeld modules (and, even more generally,
T-modules) can be found in the treatise of Goss [4].

In this chapter we will develop the beginnings of the general theory, but
will not pursue it further. Our aim is to supply the reader with some of
the basic ideas and, hopefully, the stimulus to pursue the study of these
modules further, Many beautiful and deep applications have already been
discovered. However, the subject remains young and is under active devel-
opment,

Let k/F be a function feld with exact field of constants F, a finite field
with g elements. Let 0o be a fixed prime of k£ and let A C & be the ring
of all elements of & whose only poles are at co. It is well known that
A is a Dedekind domain whose non-zero prime ideals are in one-to-one
correspondence with the primes of k different from oco. If ((?, M) is a prime
of k such that A C O, the corresponding prime ideal of A is M N A. On
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the other hand, if P C A4 is a non-zero prime ideal of A, then (4p, PAp) is
the corresponding prime of k. It is clear that the polynomial ring 4 = F[T]]
considered in the last chapter is a special case of this construction. In this
special case, the degree of the prime at infinity is 1, but that might not be
50 in the general case. We set dy, to be the degree of the prime at infinity.

Let L be a field containing F and G,,;. the additive group scheme over
L. I @ is an L-algebra, G,/ assigns to  its additive group £, ie., £
considered solely as an additive group under addition. In homological al-
gebra this is sometimes referred to as a “forgetful functor.” The additive
group scheme over L assigns to every L-algebra its structure as an additive
group, forgetting about the multiplicative structure. The endomorphism
ring of Gq,y, over ¥, Endp(G,/r), assigns to every L-algebra Q2 the alge-
braic endomorphisms of §2. which commute with the action of F. Using
Proposition 12.2, one can show that Endp(G,;p) = L < 7 > where 7
is the map which raises an element to the g-th power. So, if u € { and
St e L <71, then

(Z e (u) = Zciuq’ .

The right-hand side of this equation is an additive polynomial with coeffi-
cients in L. The endomorphism ring of G4, over F can thus be considered
either as the non-commutative polynomial ring L < 7 > with the key
relation Ta = @97, or as the ring of additive polynomials over L with mul-
tiplication being given by composition. Both descriptions are useful and,
after a little experience, no confusion is likely to result from employing
them both.

The map D : L <7 >— L given by D[} ¢;7") = ¢p is a homomorphism.
It will play a role in the definition of a Drinfeld medule, which we are
about to give. In the alternate world of additive polynomials, 2 applied to
Szt is just differentiation with respect to .

Definition. A Drinfeld A-module over L consists of an F-algebra ho-
momorphism & from A to L, together with an F-algebra homomorphism
p: A— L <7 > such that for all o € A, D{p,) = §{a). Moreover, we
require that the image of p not be contained in L. The notation Drina (L)
will denote the set of all Drinfeld A-modules over L, the structural map §
being assumed fixed.

In practice the map ¢ is often just containment in & field I, but it is also
oceurs as reduction modulo a prime ideal. In the last chapter, it was just
the containment of A in k.

A simple but useful, remark is that p, = o1°, the identity of L < 1 >,
for all @ € F. This is because p is an F-algebra homomorphism taking 1 to
7% Thus, ps = apr = ar® forall a € F.

If  is an L-algebra, then § makes {1 into an A-module in the obvicus
way, namely, o - w = §{a)u. The idea of a Drinfeld module is that it makes
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Q into an A-module in a new way which is a “deformation” of the standard
one. Namely, if we define a x u = p,(u), it is straightforward to check that
this makes £ into an A-module. This is. a deformation of the standard
action since @ - v and a * w both have the same linear term, §(a)u. It is a
new action since from the definition of a Drinfeld module, a -« # @ * u for
at least one a € A. When considering @ as an A-module under the action
of p we shall use the notation €2,. In this chapter, the only algebras we will
consider are fleld extensions of L.

Let p € Drina{L) and M/L be an algebraically closed field extension.
Consider the A-module, M,. If 0 # a € A, we want to investigate the
structure of the torsion submodule M,[a] = {u € M, | p,(u) = 0}. More
generally, if (0) # I C A is an ideal in A, we want to investigate the
structure of M,[J] = {u € M | p.{u) = 0,Va € I}. In the course of doing
this we will have to define and explain the notions of the rank and height
of a Drinfeld module.

We begin by defining another notion, the A-characteristic of L, con-
sidered as an A-module via §. If § is one to one, we say that L has A-
characteristic 0. If § is not one to one, its kernel is a non-zerc prime ideal
@ of A. In this case we call @ the A-characteristic of L. This notion is not
to be confused with the characteristic of L as a Z module. For all fields un-
der consideration in this chapter, this characteristic is p, a non-zero prime
number in Z. The A-characteristic of L is a completely different notion.

A reader familiar with the arithmetic of elliptic curves or, more generally,
abelian varieties, will find the form of the following result and its corollary
quite familiar.

Theorem 13.1. Let p € Dring(L) as above. Let Q@ be the A-characteristic
of L. Finally, let M be an algebraically closed field containing L. If P # Q
8 a non-zero prime ideal of A, and e > 1 an integer, then there is a positive
integer v independent of P end e such that

M,[Pe] = (A/ P2

If Q # (0) and e > 1 is an integer, there is another integer h, independent
of e, such that

My[Q7) = (4/Q4)H

Corollary. Let I < A be an ideal relatively prime to the A-characteristic
of L. Let p € Dring (L) and let M be an algebraically closed field containing
L. Then there is an integer r, independent of I, such that

M1 = (A/D)

We will not prove these results now, but we will do so after developing
some preliminary machinery. The integer » will turn out to be the rank
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of p and the integer A will turn out to be the height of p, concepts whose
definition will be given shortly.

The next few lemmas will be very general results about torsion modules
over a Dedekind domain. Since these facts are fairly standard, we will only
sketch the proofs, assuming that the reader either already knows these
results or can fill in the details without difficulty. In these lemmas, A will
be a Dedekind domain and M a module over A. If I C A is a non-zero
ideal, then M[I] ={m e M | ax =0,Va € I'}.

Lemma 18.2. Suppose J and H are non-zero ideals of A which are rela-
tively prime; i.e., J -+ H = A, Then M[JH| = M|J| ® M|H].

Proof. By hypothesis, there exist a € J and b € H such that a+b = 1. For
m € M{JH| we have m = am -+ bm. Since am € M[H| and bM € M|J|,
we have shown M[JH] = M|J}+ M[H]. To prove that the sum is a direct
sum, let m € M[I]n M[J]. Then m = am +bm =0+0 = 0, and we're
done.

Corollary. Let I = P{1Py? .- P be the prime decomposition of the ideal
I # (0). Then,

M| = M[P{*| @ M3t} @ - M[F] .

Proof., This follows from the lemma by a simple induction on ¢.

If P is a maximal ideal of A, let’s define M (P} = U, M[P*]. This is
called the P-primary component of M.

Lemma 13.3. Let M be o forsion A-module. Then

M=up),
P

where the sum is over all mazimal ideals of A.

Proof. Let m € M. Since M is a torsion module, there is a non-zeroa € A
such that amn = 0. Consider the prime decomposition of the principal ideal
() and apply Corollary 1 to Lemma 13.2. This shows that M = Y~ M(P).

To show the sum is direct, suppose 0 = E:=1 mi, where m; € M(F;).
For each i with 1 <4 <, there is an e; > 0 such that m; € M[P]. Now
apply the corollary to Lemma 13.2.

Lemma 13.4. If (0) - M1 = My — M3 — {0) is an exact sequence of
torsion A-modules and P C A is o mazimal ideal, then (0) — M (P) -
My(P) — M3(P) — (0) is also ezact.

Proof. This follows easily from Lemma 13.3.
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Lemma 13.5. Let P be a masimal ideol of A and select m € P —P?. Then
M[PT] = M[=|(P) .

Proof. We have (7%) = P°J where P and J are relatively prime. By
Lemma 13.2,
Mz®] = M[P*) & M[J] .

Taking the P-primary component of both sides gives the result, since
M{J|(P) = (0}.

Lemma 13.6. Suppose M is o divisible A-module, P C A o mazimal idesl,
and e > 1 and integer. The following sequence is exact:

(0) = M|P| = M[P?] = M{P*']| = (0),
where the third arrow is given by multiplication by mw € P — P2,

Proof. Choose # € P — P2, Using the divisibility of M, we see that the
following sequence is exact:

(0) = M[x] -+ Mr®] = M[r*"1] — (0) .

The result follows by taking P-primary components and using Lemmas
13.4 and 13.5.

Corollary. Suppose that M|P) is finite. Then M|P®] is finite for alle >0
and #M[P®] = #M{P|°.

Proof. This is immediate from the lemma and a simple induction.

We will now give a result which provides the basis for the definition of
the rank of a Drinfeld module.

Proposition 13.7. Let p be an A-Drinfeld module defined over a field L.
Define pu{a) = —deg, p, for all a € A. Then there is a positive rational
number r such that p(a) = r ordy(a)dy for alla € A.

Proof. If we define u(0) = co we easily check that p gives a map from A
to Z U oo such that p(a) = co if and only if a == 0, p(abd) = ula) + u(b),
and ple + b) > min{g(a), p(b)). Moreover, uf(a) < 0 for all @ € A and
pla} < 0 for some a € A. These properties show that p can be extended
to an additive valuation on the quotient field &£ of A. It cannot be one of
the valuations associated to maximal ideals of A since all these have non-
negative ord on 4. Thus, i must be equivalent to the valuation at infinity.
This shows there is a real number » such that u(e) = r ordec(a)ds. Let
a € A be such that deg, (p.) > 0 {the existence of such an a € A is specified
in the definition of Drinfeld module). Then, u(a) is a negative integer. We
claim ord,{a) is also a negative integer. To see this, note that the remark
immediately following the definition of a Drinfeld module shows that a is
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not a constant. Since a has no pole at primes corresponding to maximal
ideals in A, it must have a pole at infinity (see Proposition 5.1). It follows
that r is a positive rational number, as asserted.

Definition. The rank of a Drinfeld A-module p is defined to be the unique

positive, rational number » , such that deg, p, = —7 orde(a)dy for all
a € A

We will soon see that the rank of a Drinfeld module is actually a positive
integer.

It is illuminating to reformulate the definition somewhat. For o € A
define dega to be the dimension over F of A/aA. This is clearly a gener-
alization of the degree of a polynomial in a polynomial ring over a field.
(Caution! This is not the degree of the principal divisor (a} which we know
is zero.} As we will see from the following proof, dega coincides with the
degree of the zero divisor of a.

Proposition 13.8. For all a € A we have dega = —ordeo(a)de. Thus,
the rank of a Drinfeld A-module p, can also be defined to be the unigue
positive, rational number r such that deg, (pa} =1 dega for alla € A.

Proof. Let mp = ordp(a} and a4 = [] P™F be the prime decomposition
of the principal ideal a A. By the Chinese Remainder Theorem, we have

AfaA =P A/P™P .
P

For any maximal ideal P C A, we have A/P™ =2 Ap[/(PAp)™. Since PAp
is a principal ideal, (PA,)""'/(PAp)' = Ap/PAp for all i > 1. Thus,

dimp(A/P™) = m dimp(Ap/PAp) =m deg P .

We conclude that dega = zp#m ordp(a) deg P. Since the degree of a
principal divisor is zero (Proposition 5.1), it follows that

dega = Z ordp(a}deg P = —ordoo(a)ds ,
P#oo

as asserted,

The next topic to consider is the height of a Drinfeld module. This is
of interest only for Drinfeld A-modules p of non-zero characteristic. Recall
that the A-characteristic of p is the kernel of the structural map § : A — L,
where L is the field of definition of p. Call this ideal ¢ and suppose that
Q # (0). For a € 4, let w(a) be the index of the smallest power of 7 in p,
with non-zero coeflicient. In other words, if p, = 3 . en7™™ and ¢; = 0
for i < n but e, # 0, then w(a} = n. Define w(0}) = co.

Proposition 13.9. There is a positive rational number h with the property
that for all a € A we have w(a) = h ordg(a) deg Q.
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Proof. The map w takes A to Z U oo and has the following properties:
w(e) = oo if and only if a = 0, w(eb) = w(a) + w(b), and wla + b} =
min(w{a), w(b)}. Moreover, w(a) > 0 for all @ € A, and w(a) > 0 if and only
if a € Q. It follows easily from these facts that w extends to an additive
valuation of & which is equivalent to ordg (). Thus, there is a real number
h having the required property. To show that & is positive and rational,
just choose e € @ with a # . Then w(a) is a positive integer and so is
ordg{a). Thus, h is a positive, rational number.

Definition. If p is an A-Drinfeld module with A-characteristic zero, de-
fine the height of p to be zero. If p has A-characteristic & # (0), de-
fine the height to be the unique positive, rational number % such that
w(a) = h ordg(a) deg Q for all @ € A.

We are now in a position to prove Theorem 13.1 and its corollary. In the
course of the proof we will show that both the rank and the height of p are
integers.

Proof of Theorem 13.1. We recall that M is an algebraically closed field
containing I and that p € Dring(L). Let P C A be a prime ideal different
from the A-characteristic Q of L. Choose b € P with & # 0. The A-module
M,[P] is finite since M,[P] C M,|b] and the latter set is finite being the
set of zeros of py(u). If follows that M,[P] is a finite dimensional vector
space over A/P of dimension d, say. Thus,

#MP[P] = qddegP .

The class group of A is finite. We borrow this result from Chapter 14,
{see Corollary 2 to Proposition 14.1 and take the set S in that proposition
to be § = {oo}). It follows that there is a positive integer m such that
P™ = aA, a principal ideal. Thus, #M,[P™| = #Mla]. We compute the
size of both sides. By the corollary to Lemma 13.6, we have

#MP[Pm] — #M[P]m — qmddegP .

If @ € @, the A-characteristic of p, then P™ C @, and it would follow
that P = (}, contrary to assumption. Thus, ¢ ¢ @ and p,{u) is a separable
polynomial (its derivative with respect to u is 8{(a)). Thus,

#Mp[&} — qdeg.,. Pa — qr dega ,

where the last equality follows from Proposition 13.8. Here, r is the rank
of p.
Since P™ = aA, we have dego = mdeg P. Thus,

mddeg P =r dega =rmdeg P .

Cancelling rndeg P from both sides, we conclude » = d. This shows that
the rank is an integer and proves the first assertion of Theorem 13.1 in
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the case where e = 1. The general case follows [rom what we have already
proven, Lemma 13.6, and the structure theorems of finitely generated, tor-
sion modules aver Dedekind domains. We leave the details to the reader.
(See Exercise 1 at the end of the chapter.)

Suppose now that the A-characteristic @ is not the zero ideal. Again,
using the finiteness of the ideal class group we see there is a positive integer
n such that @™ = bA, a principal ideal. It follows that #M,{Q"] = #M,[b].

We first count the number of elements in M,[b]. Since the polynomial
pu(u) is inseparable in this case, we cannot simply use its degree. However,
it is clear that by factoring out 7% on the right, we can write py = p;,'r“’(b),
where pj(u) is separable and deg, p), = deg, pp — w(b}. Since 7 is a one to
one and onto map from M — M, we conclude

#M[b] — qdeg,_ m—wib) _ qrdegb—h ordg (b} deg @ )

The last. equality follows from Propositions 13.8 and 13.9.
On the other hand,

#M[Q™ = #M(Q]" = ¢°¥ 4

where d' is the dimension of M,[Q)] considered as a vector space over 4/Q.
Using the last two equations together with the facts, degb = ndeg Q and
ordg(b) = n, we find

nd’ deg (@ = rndeg J — hndeg @ .

Cancelling ndeg @@ from both sides, we conclude &’ = » — h. This proves
k is an integer and simultaneously proves the second assertion of Theorem
13.1 in the case when e = 1. As before, the general case follows without
much difficulty .

Proof of the Corollary to Theorem 13.1. Since [ is prime to Q, @
does not occur in the prime decomposition of I = Py FP;? ... P;*. By the
Theorem, we have for each ¢ with 1 <1 <t,

MP8] 22 (A) P

Sum both sides from 1 to ¢. The result follows from the Corollary to Lemma
13.2 together with the Chinese Remainder Theorem,

Having defined Drinfeld modules and discussed their torsion points and
the notions of rank and height, we now proceed to define maps between
Drinfeld modules, i.e., we want to study the category of such objects.

Definition. Let p, p’ € Dring(L). A morphism from p to p' is an element
f of L < 7 > with the property that fp, = g}, f for all a € A, The set of
all such morphisms is denoted by Hom . (p, p').

Under the addition in L < 7 > it is easy to see that Homp{p,p") is
an abelian group. Also, the product in I < 7 > gives a bi-additive map
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(f,g9) — gf from Homy{p, p') xHom (o', p") to Homy(p, p”}. In particular,
these two operations make Homy (p, p) = Endp(p} into a ring.

Let Q be an L-algebra and p, p' € Drina(L). Let f € Hompg(p, p). Then,
1 — f{u} is a homomorphism of O — €1 as abelian groups and, as is easily
checked from the definition, an A-module homomorphism from , -+ Q..

If, as is often the case, we take ) = M, an algebraically closed field
extension of L, we see that ¥ — f(u) is an onto map from M, = M,
with finite kernel {the zeros of f(u)). For this reason we may refer to non-
zero elements of Homp(p, ') as isogenies. Also, we say that p and p' are
isogenous over L if Homz(p, o'} 5 (0).

Proposition 13.10. Ifp and o' are isogenous Drinfeld meodules, then they
have the same rank and height,

Proof. Let 0 £ f € Homy,(p, p') and choose a non-constant element a € A.
‘Then, fp, = pl, f. Taking the degree with respect to 7 of both sides shows
that deg, p, = deg, p},. Thus, r deg(a) = ' deg(a), where r and r’ are the
ranks of g and p/, respectively. This shows r = ¢/,

That the heights of p and p’ are equal follows from similar reasoning.

The identity of Homy, (p, p) is clearty 7° for all Drinfeld modules. What is
an isomorphism? By definition, f € Homy{p, p') is an isomorphism if and
only if there is a g € Homy (¢, p} such that fg = 7% = gf. In the twisted
polynomial ring L < T > this can only happen if f = ¢7° and g = ¢~ 170
for some non-zero element ¢ € L. Thus, p and p' are isomorphic if and only
if there is a ¢ € L* such that cp, = ple forall a € A.

Suppose I C A is a non-zero ideal and that p € Dring(L). We are
going to construct a new Drinfeld module p/ and a non-zero isogeny pr €
Homy (p, p/). This construction plays an important role, especially in the
arithmetic applications of the theory of rank 1 Drinfeld modules.

Lemma 13.11. The ring L < 7 > has o division algorithm on the right.
More precisely, if ffg € L <7 > and g £ 0, there ezxist s,r € L < 7 >
such that f =sg+r withr =0 or deg, v < deg, g.

Proof. The proof is just about the same as in the case of a commutative
polynomial ring. For details see Goss [4], Chapter 1.

Corollary. Fvery left ideal in [ < 7 > is principal.

Proof. If J € L < 7 > is a non-zero left ideal, let g € J be an element of J
with smallest degree in 7. If f € J, then by the theorem we have f = sg++
with either » = 0 or deg_ » < deg_ g. The latter alternative is impossible by
the definition of g and the fact that r € J. Thus, r = 0, so every element
of J is a left multiple of g.
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Definition. Let I ¢ A be an ideal and J the left ideal in L < 7 > generated
by the set {py | b € I'}. Define p; to be the unique monic generator of the
left ideal J.

Proposition 13.12. Let M be an algebraicolly closed field containing L.
Then,
MplI) = {h e M | pr{2) =0} .

Proof. Suppose A is a root of pr(z). If b € I, thereisan f € L <71 >
such that frpr = pp. Thus, 0 = £,(0) = fu{pr(A)) = ps(A). It follows that
the roots of p; are contained in M,[I].

On the other hand, thereexist b; € Jand f; € L <7 >, with1 < j <1,
such that

4
pr=73_ fips, .
=1

From this it follows easily that every element of M,[I] is a root of p;{x).

Proposition 13.13. Let p € Dring (A4) and (0) ¢ I C A be an ideal. Then
there is a uniquely determined Drinfeld module I % p € Dring, (A} such that
g1 is an isogeny from p to I * p,

Proof. The left ideal J C L < T > generated by the set, {pp | b € I}, is
mapped into itself under right multiplication by p, for any a € A. Thus, for
alla € A, thereis a pf, € L < 7 > such that pyp, = g ps. A straightforward
calculation shows that the map a — g/, is an F-algebra homomorphism from
A= L<r>.

Define §(a) = D(p}). This is easily seen to be an F-algebra homo-
morphism from A — L. If we knew that §' = § it would follow that
p' € Dring (A) and by setting £ * p = p/, the proof would be concluded. As a
matter of fact, 8’ is equal to 4, but to show this requires a little more work.
We will postpone the proof for a while (see the corollary to Proposition
13.18). For the moment we simply note that [ x p is a Drinfeld module
with, perhaps, a different structural map from that of p.

It is instructive, and useful, to understand py when [ is a principal ideal.
Let I = {b). Then, by definition, p; is the unique monic generater of the
left ideal in L < 7 > generated by py. Let ¢ € L be the leading coefficient
of pp. Then, clearly, py = ¢~ ps.

Proposition 13.14. If p € Driny(A4) and 0 # b € A, then pgy = ¢y,
where ¢ is the leading coefficient of py. Moreover, ¢[(b) % pla = pac for all
a € A; ie., (b) * p is isomorphic to p over L.

Proof. We have already proven the first assertion. To prove the second,
note that for all @ € A we have pyypa = [(b) * plapgey- Thus, ¢ 'pppa =
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((b) * plac™pp. Since pppe = papyr we can cancel py (because I < 7 > has
no zero divisors) and conclude that ¢™1p, = [(b) * plac™t.

The *-operation has a number of important properties. The following
proposition provides two of the most useful of them. The proof is fairly
straightforward, but somewhat tedious. We will leave the proofs as an ex-
ercise. A good reference is Goss [4], Lemma 4.9.2.

Proposition 13.15. Let p € Dring(A) and I,J C A be non-zero ideals.
Then

pra=UTxp)jpr and [x(Jxp)=TFJxp.

The first of these relations will be especially useful in our next task, which
is to generalize the relations deg, p, = rdega and w(a)} = hdeg @ ordg(a)
to the isogenies py. To do this we will need a new definition.

Let w, : L < 7 >— Z be the map which assigns to a non-zerc element
f of L < 7 > the smallest index of the non-vanishing coefficients of f. In
other words, if f = ZLO eirt, the wr(f) = ip if ¢; = 0 for i < 4p and
Cig % .

It is clear that w-(fg) = w,(f) +w-(g) and that w,(f) = 0if and only if
f(x} is a separable polynomial in z. If p is a Drinfeld module then, in our
previous notation, w(a) = w;(p,). We introduce this new mapping because,
among other things, when dealing with more than one Drinfeld module, the
notation “w{e)” is ambiguous.

Lemma 13.16. Let p € Dring(A) and let I C A be an ideal prime to the
A-characteristic @ of L. Then pr(z) is a separable polynomial.

Proof. Let @ € T with a not in the A-characteristic of L. We have (a) = 1.J
for some ideal .J. By Proposition 13.15, pg,y = (I#p)sp;. Since a is not in @,
we know w-{p,) = 0 (see Proposition 13.9). Thus, w-(p)) = wr{pa) = 0.
The result now follows, because

0= ‘“'T(P[a)) =w((I*p)) +wrpi),
which implies that w,(pr) = 0.

Proposition 13.17. Let p € Dring(A4) be a Drinfeld module of rank r. Let
I C A be a non-zero ideal. Then, deg_p; =rdegl.

Proof. To begin with, let us assume that [ is prime to the A-characteristic
of L. Let M be an algebraically closed field containing I and consider
M,[I]. By Lemma 13.16 and Proposition 13.12, we see that

#M,|I) = qug-r o
On the other hand, by the Corollary to Theorem 13.1, we see that

#MP[I] =qrdeg}' .
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Combining these two facts gives the result in the present case.

Assume now that the A-characteristic, (2, is not zero, and that J is a non-
zera ideal divisible by ¢J. By a standard result in the theory of Dedekind
domains, there exist elements ¢,b € A and an ideal I, prime to ¢, such
that aJ = bI. Applying the frst part of Proposition 13.15, we find

(J * pl@yps = (I * plypr - (1}

Since isogenous Drinfeld modules have the same rank and using the fact
that p(q) differs (rom p, by multiplication by a non-zero element of L, we
deduce from Equation 1 that

rdega + deg, py =rdegb+rdegl .

We have used Proposition 13.8 and the first part of the proof applied to I.
From the relation eJ = bI we find that dega 4 degJ = degt + deg ]
Putting all this together, we see that deg, ps = rdeg J, as asserted.

Proposition 13.18. Let p € Dring(A). Assume that the A-charocteristic
of L, @, is not zero. Let J C A be o non-zero ideal. Then w-(py) =
hdeg @ ordgJ, where h is the height of p.

Proof. If J is prime to ¢}, the w {ps) = 0 by Proposition 13.16. We also
have ordgJ = 0, so the proposition is proven in this case.

Now, assume @ divides J. Then as above we can write aJJ = bf, where
I is an ideal prime to §. Applying w. to both sides of Equation 1, we find

hdeg @ ordgla) +w(ps) = hdeg Q@ oxdg(b) +0 .

We have used the fact that isogenous Drinfeld modules have the same
height, Proposition 13.9, and the first part of the proof applied to the ideal
I

Since aJ = bl, we have ordg(a) + ordgJ = ordg(h) + 0. Thus,

wr{ps) = hdeg Q ordg(b/a) = hdeg @ ordgJ ,

and the proof is complete.

Corollary. Let p be a Drinfeld module over a field L with structural map
§: A= L LetI C A be an ideal, and p/ = I x p with structural map
§F: A~ L Thend=4¢.

Proof. If p has A-characteristic zero, then by Lemma 13.16, p;(z) is a
separable polynomial for all ideals I. This implies that the constant term
of pr € L < 7 >, ¢(I), is not zero. Setting [ * p = p’, consider the equation
Pifa = pLp1- Comparing the constant terms on both sides yields ¢(I)é{a) =
¢'(a)e(I). Since ¢(I) # 0, we conclude §(a) = §'(a) for all a € A.

Now assume that the A-characteristic of p, @, is not zero. By the propo-
sition, the first non-vanishing term of gy is of the form er™ where ¢ 5 0 and
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m is an integer divisible by deg (3. Again consider the equation prp, = plLpr
and compare the coefficients of 7™ on both sides. We find

cd(a)?” =68'(a)e and so '8(a)” = &(a) .

Now, 4 induces an injection of A/Q) into L and so §(a) is an element of
a finite field with ¢96 @ elements. Since deg @ | m it follows that §{a)?" =
8(a). Thus, é(a) = 8'(a) for all a € A and we are done.

Having introduced the general notion of Drinfeld module, division points,
rank and height, morphisms (isogenies), and some of their properties we
now break off the general development to ask the possibly embarrassing
question about whether Drinfeld modules exist. When A is a polynomial
ring, there is no problem. As we observed in the last chapter, when A =
F[T], we simply assign to T any element of L < 7 > with constant term
§(T) and this automatically extends to a homomorphism p: A - L <7 >
with the property that D(p,) = d{a), i.e., a Drinfeld A-module over L.
When A4 is more general, it is not clear that there are any elements of
Dring(L). Indeed, why should the non-commutative ring L < 7 > have
a commutative subring isomorphic to A? To construct Drinfeld modules
in the more general situation we follow Drinfeld and introduce analytic
methods. The construction will be similar to the construction of elliptic
curves over the complex numbers C by means of two dimensional Z-lattices
and the associated Welerstrass P-functions.

Recall that ko is the completion of &k at the prime co. Let koo be the
algebraic closure of k. The (normalized) valuation on ke

‘b|00 — q—ordm(b)dm ’

extends to k., uniquely by means of the formula

Moo = [Neja,, (MIEH*=]
where I is any intermediate field containing v and of finite degree over %,.
We now define C to be the completion of ke, with respect to | * |oo.
This valuation extends uniquely to C and C is complete. It is also well
known that C is algebraically closed. The field C plays the role of the
complex numbers in our context. The theory of infinite series and infinite
products can be developed for functions defined on open subsets of C and
the usual theorems continue to hold in even stronger form. [n particular
> a, converges if the terms a, tend to zero and []{1 + a,) converges if
> a, converges. A function from C — C is said to be entire if it can be
represented by a power series 3 anz™ which converges everywhere. The
set of zeros of an entire function form a discrete subset. of C. Moreaver, an
entire function is determined by its zeros in & much stricter way than in the
theory over the complex variables. For example, the exponential function
in the complex theory is a highly non-trivial function, but it has no zeros
at all. Over C we have the following, very different, type of result.
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Proposition 13.19. Let f(z) be a non-constant entire function on C.
Then f(x) has at least one zero.

Corollary. Let f(z) be o non-constant entire function on C. Then f(z) is
onto as a map from C — C.

Proof. Let ¢ € C and consider then entire function —c¢ + f(x}. By the
proposition this function has a zero, say, v. Thus, f(y) = ¢

The proof of the proposition uses the Newton polygon in the context of
power series. For a treatment of this and other results which we employ
about analysis on C, see Goss [4], Chapter 2.

If v is a zero of an entire function, there is a uniquely determined positive
integer m such that f(z) = (z—~)™g(z), where g(z) is entire and g() # 0.
The integer m is called the multiplicity of the zero 4 and is denoted by
ordz— f(z}.

Theorem 13.19. Let f(z) be an entire function on C and let {y; | i =
1,2,3,.--} be its zero set with 0 excluded if f(0) = 0. Let m; be the mul-
tiplicity of vi. Then, limy_ 001 = 00 and there is a constant ¢ # 0 such

that - .
flz) = 2™ H (1 — _a_:_) .
=1

i

The integer n is equal to ordy—q f(z). Conversely, if limi_, o 1; = o0, then
the above infinite product defines an entire function on C,

Definition. A lattice is a discrete, finitely generated, A-submodule of C.
If I' € C is a lattice, the dimension of the vector space k. [' over ke is
called the rank of the lattice.

One can show that lattices are formed in the following manner. Let
{wi,we, - ywre} < C be a set of elements linearly independent over k.
Let {I1,12,--- , I} be a set of fractional ideals of A. Then,

F=I1w1+fzw2+---+frwr,

is a lattice in C of rank r. In fact every lattice of rank 7 has this form. This
shows that lattices exist in abundance and in every rank.

Let I'y and I'y be two lattices, and let ¢ € C be such that [’} C T's.
Then ¢ : I'y — T’y given by ¢(x) = cz, is an A-module mapping. We define

Hom(Fl,Fg) = {C e C I CF] (; Pg} .

One can show that since a lattice I' is discrete, we must have |¥|e — 00
as -+ varies over the elements of I'. Thus, if we define

er(@) =[] (1 . f’—y) ,

el
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the result is an entire function on C (the product is over all non-zero
elements of I'). We call er(z) the exponential function associated to I'. It is
characterized as being the unique entire function with simple zeros on the
elements of I and with leading term z. Tt also has the remarkabls property
of being additive, as we now show.

Proposition 13.20. Let " be ¢ lattice in C. Then for ell u,v € C and
o € F we have

er(u+v) =ep(v) +er(v) and er(ou) = aer(u).

Proof. For each positive integer M, define I'as = {y € T' | |'¥|oo < M}. This
is readily checked to be a finite F vector space (as we've seen, |v|e — 00
for v € T'). If we set

Py (z) —mg (1—~)

then ep(z) = limpsyo0 Par{z). The result then follows from the foilowing
lemma.

Lemma 13.21, Let V C C be a finite, IF vector space, and set
= H (z—v).
veV
Then, Py (x) is an F-linear, additive polynomial in x.

Proof. We prove this by induction on the dimension of V. If dim V' =0,
then V = (0) and fy (x) = «, so the result is true in this case.

Now assume that the result is true for vector spaces of dimension less
than n and that dimV = n. Write V' = W 4 Fu, where W is a n — 1
dimensional subspace of V. From the definition it is easy o see

fu(z) = fw(@) [ fwiz—ap).

OtaeF

By induction, fw(z — au) = fw(z) — afw(y). It follows that

fviz) = fw(z)? — fu () fw(z) .

It follows immediately that fy(z) has the required properties.

We see from these considerations that er{z) can be written as an infinite
series as follows:

er(z) =z+ 3 ()27 with [} €C.
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The main reason for introducing these exponential functions is that, as we
shall now show, to every lattice we can construct an element of Dring (C).
Moreover, this assignment is an equivalence of categories if we use our def-
initions of Hom(I';,T's) for lattices and Hom({p,, p2) for Drinfeld modules.
In particular, this will show that Dring(C) has lots of elements.

Let I' € IV be two lattices of the same rank. Then, I'/T ig a finite A-
module which maps isomorphically into a finite F vector subspace of C by
means of the exponential function er(z) (note that the exponential function
is F-linear by Proposition 13.20). Define

PzI/Ty =z [] '(1-#) .

el /T

Proposition 13.22. The polynomial P(z;I"/T) is F-linear of degree
#(T'/T). Its initial term is . Moreover,

er(u) = Plep(u); T/T) .

Proof. The first assertion follows from Lemma 13.21, and the second as-
sertion is clear from the definition.

To prove the identity, notice that Pler{u};I"/T') is zero if and only if
er(u} = er(p) for some p € I, i.e., if and only if ep(u — p) = 0. This is
true if and only if % — u &€ I", which in turn is true if and only if v € TV,
Thus, the right-hand side of the proposed identity is an entire function with
simple zeros (the simplicity of the zeros is easily checked) at the elements
of I and the initial term is «. These conditions characterize e (u).

Theorem 13.23. LetT' C C be a lottice of rankr. For eacha € A, a # 0,
define pL € C < 7 > by the formula

pL(z) = aP(z,a”T/T) .

Then, if we send zero to zero and map a — pl for 0 £ a € A, the result is
a Drinfeld A module over C of rank r.

Proof. In what follows we regard A is a subset of C via the inclusions
A = k — koo — C. Thus the structure map 6 : A — C is just the inclusion,
so the first thing we must show is that D{pL} = a. This, however, is clear
from the definition,

Next, we have to show that p[, = plpl and pl , = oL + pf. We prove
the first and leave the second as an exercise.

The idea is to work on the level of F-linear polynomials and use the
exponential functions. By Proposition 13.22,

eg-1p(u) = P(ep(u);a_lF/F) .

By looking at the zero set and the initial term, it is easy to see e,—~1p(u) =
a~lep(aw). Substituting this in the above equation, and using the definition
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of pb, yields the following fundamental identity:
er{au) = g, (er(x)) - (2)

One now computes

pasler(u)) = erfabu) = g (er(bu)) = pl;(of (er (u))} -

Since er{u) maps C onto C, we can conclude pf, = pf o} . The proof of the
additive identity is similar and even easier.

It remains to show that the rank of p' is r. To do this we must show that
deg, pf = r dega. The degree of pL(z) as a polynomial in = is #(e~1L'/T).
Recall that as an A module I' is isomorphic to the direct sum of r fractional
ideals. Since a=1I/] = a~'A/A = AjaA, for any non-zero fractional ideal
I, it follows that #(a~'T'/T") = ¢" 962, Thus, deg, p} = r deg @. The proof
is complete.

Theorem 13.24. Let Lat 4(C) be the set of A-lattices inside C. The map
T'— p from Lat(C) — Drina(C) is one to one and onto.

Proof. We will prove the map is one to cne and only give a brief sketch of
the proof that it is onto.

Suppose [' and T are two lattices such that p¥ = p" . It is convenient to
work inside the ring of twisted power series C << 7 >>. This consists in
formai power series Y ;o ¢; 7%, with the usual addition and multiplication
except for the non-commutativity relation rc = ¢7. Clearly, C <7 > isa
subring of C << 7 >>. Every additive power series, such as er{u), can be
considered as an element of C << 7 >> applied to v where 7{u) = u?. The
fundamental relation (Equation 2) given in the proof of Theorem 13.23 can
be rewritten as

era= pler .

Since pL = pL, we also have
era = phep .
Subtracting, we find that
(er —er)a = p{er —er) .

We want to deduce from this that ep = eps. Suppose that er — e is
not zero. Since both exponential series have initial term 7°, the first non-
vanishing term of their difference has the form ¢7* where 0 # ¢ € C and
k > 0. Then, comparing the coefficients of 7% on both sides of the above
identity yields

ca? =ac.

This shows @?° = a for all a € A. This is false i a is not a constant. We
have arrived at a contradiction which implies that ep = erv. Since I is the
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zero set of ep{z) and I is the zero set of e/ (), it follows that I’ =T as
asserted.

To prove the onto-ness of our map, let p € Drins(C}), and choose an
2 € A with a ¢ F. Using the method of undetermined coefficients, one finds
a power series f € C << 7 >> with initial term 7°, such that fa = p,f.
One then proves this relation must hold for all @ € 4 and that f(z) is an
additive power series; which is, in fact, an entire function on C. The zero
set of this function turns out to be an A-lattice I'. One then proves that
pF' = p. For the details of this argument see Goss [4], Theorem 4.6.9.

It is of interest to pause at this point and ask what is the laftice corre-
sponding to the Carlitz module, the first Drinfeld module to appear in the
literature. Since the Carlitz module has rank 1, the corresponding lattice
must be of rank 1 over A = [F|T]. Thus, it must be of the form A7 for some

7 € C. Carlitz found an explicit expresmon for 7 as an infinite product. Set
[(] =79 —T and F; = [{][i — 1}9...[1] (see the exercises to Chapter 1
where some of the properties of these polynomials are set forth). Define i
to be any g — l-st root of T — 1'%, Then, we have

%:i}j}(l— [i[j]l]) .

Carlitz also computed the exponential function corresponding to the lattice
A, Tt is given by

ear{u) —uH (1——) = 3 qj:

aEA =0

Actually, Carlitz did not first define the Carlitz module and then work
out this exponential function, He was first led to construct this exponential
function and then proved the “complex multiplication” property e 4z{(Tu) =
Tean(t) + ear(w)?. It was this remarkable property of the exponential
function which led to the invention of what we now call the Carlitz module;
see Carlitz [2, 3], and, also, Goss |4}, Chapter 3 (in Carlitz’s papers the
notation is somewhat different and the module he works with is defined by
u — Tu — u? rather than u — Tu + u9).

Having made a short detour to discuss the special case of the Carlitz
module, we now return to the general theory. We have set up a one-to-one
correspondence between Lat 4{C) and Drin 4(C) (which is rank preserving).
We now want to deepen this relationship by showing a correspondence
between elements of Hom(I',[V) and Hom({p", o™}

Theorem 13.25, Let I''I" € Lata{C} be lattices of the same rank and
suppose 0 3 ¢ € Hom([, V). Define

Fo(z) = eP(z; ¢ IT/T) .
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Then, f. € Homgpr; pr'). Moreover, c — f. is an isomorphism of Hom(I', T}
with Hom(p", p* ) as abelian groups (end even as F wector spaces).

Proof, By Proposition 13.22, we know that e .~y (u) = Plep(u); ¢~ I'/T).
As we have seen previously, e.~ir/{u} = ¢ 'ep(cu). Thus, er(cu) =
feler(u)). It is convenient to work inside C << 7 > where this rela-
tion hecomes erc = fyer. Multiply both sides on the right by any e € 4
and calculate. We find

r r’
erea = ereag = P, epc = P, felr ,

and
fcel"a = fcp£€1‘ .

Setting both expressions equal to one another and cancelling er on the
right yields the identity pl f. = Jept. Bince this is true for all a € A we
have shown that f, € Hom({p, p7).

It is easy to check that ¢ — f, is F linear. Since D{f.) = ¢, it is also clear
that this homomorphisin is one to one. It remains to show that it is onto.

We will sketch the proof of the ontoness. Suppose f € Hom(pT, p™).
If f = 0 we may choose ¢ = 0, so suppose f % 0. For each 2 € 4 we
have fpl = pL f. Multiply both sides of this identity on the right with
er. We find (fer)a = pl (fer). Let ¢ = D(f). One has to show that
¢ # 0. This is not too hard using the fact that F intertwines p' and o
and that C has A-characteristic zero. Then, erre has the property that
er e = ep/ac = pgtep:c. Thus,

(fer —epcla = pgf(fep —epc) .

By our choice of ¢, the coefficient of 7° in fer — er+c is zero. By the same
argument used at the end of the proof of Theorem 13.24, we can conclude
that fer = epc. As power series, this says that flep(u)) = ep(ew). If
v € I we se that v is a root of the left hand side which implies 0 = er+{cv)
and so ey € IV, We conclude that e[’ C TV, i.e., ¢ € Hom(T',T”). The proof
is concluded by showing that f = f.. The argument uses the fact that
D(f) = D(f.) and that for all a € A, (f — fo)pk = p5 {f — f.).

The last two theorems make it possible to answer questions about the
category of Drinfeld modules over C by considering the same question in
the category of lattices which is much easier to analyze. As an example, we
prove the following theorem about Drin(C, 1), the set of rank 1 Drinfeld
A-modules over C up to isomorphism. To be more precise, Drin%({C,1)
is the quotient of the set Drin{C,1) of rank 1 Drinfeld A-modules over
C modulo the equivalénce p ~ p' if and only if p and p’ are isomorphic
aver C.

Theorem 13.26. The set Drin% (C,1) is finite with cardinality equal fo
the order of the class group of A.
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Proof. By Theorems 13.24 and 13.25, it is equivalent to consider the set
of rank 1 A-lattices in C up to isomorphism, Note that two lattice I' and
T are isomorphic if and only if there is a ¢ € C* such that I' = eI".

Every rank 1 lattice has the form fw, where [ is a fractional ideal of A
and w € C*. For every fractional ideal I of A, let [ be the set of lattices
equivalent to I. Clearly if two ideals are in the same ideal class, they go to
the same class of lattices. By the first remark, this map from ideal classes
to lattice classes is onto. Suppose I; and I, are two ideals such that [, = I,.
By definition, there is an w € C* such that [ = Liw. From this equation
we can deduce that w € & and this shows that I, and I; are in the same
ideal class. Altogether then, we have produced a one-to-one, onto map from
the class group of A to the isomorphism classes of rank one A-lattices. This
proves the theorem.

We conclude this chapter with a few remarks on how to make Theorem
13.26 into a more structural theorem. The operation star operation ({, p} —
I p gives an operation of the group of fractional ideals of A on Drina (C).
Since for a principal ideal (a) we have (a}#p is isomorphic to p, this descends
to an action of CI(A), the class group of A, on Drin%(C). If we restrict this
action to rank 1 Drinfeld modules, we claim this action is one to one and
transitive, Le., Drin%(C,1) is a principal homogeneous space for CI{A).
This is the more structural form of Theorem 13.26,

To prove this result we pass to the equivalent category of lattices, Lat 4 (C}.
We have an obvious action (I,I') — IT of fractional ideals on lattices. By
the way isomorphism hetween lattices is defined, it is clear that this action
descends to an action of CI{A) on Lat(C), the isomorphism classes of
A-lattices in C. If we restrict attention to rank 1 lattices we easily see that
Lat%{C, 1) is a principal homogeneous space for CI(A)}.

There is one subtlety, however, which must be addressed before applying
this calculation with lattices to Drinfeld modules. Namely, if T' is the lattice
associated with p, what is the lattice associated with [ % p 7 The answer
is not IT", which is a good first guess. Let ¢(f) = D{pr). Then the lattice
associated with I % p is e(J)J~'T". The proof of this is not too hard to give
using the techniques introduced in this chapter, Although the right answer
is a little more complicated than expected, it nevertheless leads to the final
result.

Theorem 13.27. The set Drin(C,1) is o principal homogeneous space
for Cl{A) under the action induced by (I, p) — I*p, where I is a fractional
ideal of A and p € Dring(C).

We could go on to consider isomorphism classes of rank 2 Drinfeld mod-
ules, a question which leads to the theory of Drinfeld modular curves.
Instead, we will stop here and go to other topics. A good introduction to
Drinfeld modular curves and their properties is found in Gekeler [2].
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Exercises

1.

10.

11.

Fill in the details of the proof of Theorem 13.1 in the case M[P¥]
where ¢ > 2 and P # . You may use the following fact. If M
is a finitely generated module over a Dedekind domain A which is
annihilated by a power of a maximal ideal, say, P®, then M is a
direct sum of cyclic modules of the form A/P/ where [ <e.

. Similarly, fill in the details of the proof of Theorem 13.1 in the case

M,[|Q¢] where e > 2.

Let p,p' € Drina(L). If p and p’ are isogenous show that they have
the same height.

Prove Lemma 13.11.

Prove Proposition 13.15.

. In Proposition 13.22 we showed P(er{u)},I"/I') has a zero at each

element of IV, Show that each such zero is simple.
Prove that p., = pb + pf (part of Theorem 13.23).

Show that in a neighborhood of zero in C we have

U
=1- Ga(Du™
er(u) nZMJ ( )
(g—1)|»

where G,(I") = Z;GF')"”', where the prime indicates that 0 is to
be omitted. Show that the sums G,(I') converge and discuss the
convergence of the expression given above for w/er(u).

. Show that the lattice associated to the Drinfeld module 7 x pf is

D(NI7T where D(I) is the constant term of pT (7).

In the text we discussed the lattice corresponding to the Carlitz mod-
ule and the corresponding exponential function. The lattice is Af
and we gave an Carlitz’s explicit formula for #. For convenience, set
eaz(u) = ec{u). If m € A is a monic polynomial show that the sot
of m-division points in C for the Carlitz module is given by

A= {ec(a/m)| a€ A, dega < degm} U {0} .
(Continuation) Set A, = ec(#/m). Let a € A be a polynomial of
degree less than deg m. Show that

- 1
0rdooCu(Arm) = degm — dega — 1 — ;1—__ .

This important formula was proved in Chapter 12 using the Newton
polygon. The analytic proof, sketched here, is due to D. Goss.
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S-Units, S-Class Groﬁp, and the
Corresponding L-Functions

Let K/F be an algebraic function field over the field of constants F.
Throughout this book we have been emphasizing the analogy between the
arithmetic of K and that of an algebraic number field. This analogy is par-
ticulary clear when we choose an element = € K which is not a constant.
The ring A = Flz] € k& = F(z) then plays the role of the pair Z C Q in
number theory. K is an algebraic extension of F{z) and the analogue of
the ring of integers in an algebraic number field is the integral closure of
Ain K. Let’s call this ring B. We will show that B is a Dedekind domain.
We will investigate the unit group and the class group of B. We will also
associate zeta and L-functions to B.

The ring B and its properties can be discussed in a slightly different,
somewhat more intrinsic, way. Let oo denote the prime at infinity in the
subfield & = F(x} and denote by S the finitely many primes in X lying
above co. We will show that B is the intersection of all the valuation rings
Op for P € Sg — 8§ (recall that Sg is the set of all primes of K). This
being the case, let .5 C Sg be any finite set of primes. Define

Og={aec K |ordp(a) =0, VP ¢ S},

the ring of S-integers. We will define S-units, S-divisors, S-class group,
and even, an S-zeta function. After discussing these concepts and deriving
their basic properties, we will show how all of this relates to the arithmetic
properties of the field K.

Finally, we will discuss L-functions in a slightly more general situation.
Namely, suppose that K/k is an abelian extension of global function fields
and that 3 is a set of primes of k (not of K asin the above paragaph). We do
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not assume that k is a rational function field. Let A be the ring of S-integers
of k and B the integral closure of A in K, We will introduce L-functions,
L a(w,x) determined by the ring A and a character x of the Galois group.
Using properties of these functions, we will derive a very general class
number formula relating the class number of B to the class number of A
and certain finite character sums. In Chapter 16 we will look more closely
into these formulas in the special cases of quadratic and cyclotomic function
fields and find close analogues to a number of classical results in algebraic
number theory.

Let us return to considering $ as a finite set of primes of K. In addition
to the definition of the ring of S-integers we will need a number of other
definitions. The S-unit group is defined by

E(S)={a € K*|ordp(a) =0, VP ¢ S}.

It is clear that E(S) = O%, the units of the ring of S-integers. Moreover,
F* C E(S). We will see that E(S)/F* is a finitely generated, free abelian
group.

Since the field K will be fixed throughout the first part of our discus-
sion, we denote by D its group of divisors, by P the subgroup of principal
divisors, and by C! = D/P the group of divisor classes. The group of S-
divisors, Dg, is defined to be the subgroup of D generated by the primes
in S — §. Given an element o € K*, we define its S-divisor to be

(a)s =Y _ ordp(a)P.

Pgs

A divisor which is of the form {(a)s for some @ & K* is called a principal S-
divisor. The principal S-divisors form a subgroup of Dg, which is denoted
by Pg. The quotient group Clg = Dg/Pg is called the S-class group. Later
we will show that Clg is isomorphic to the ideal class group of the Dedekind
domain Og.

Finally, we define D(8) to be the subgroup of D generated by the primes
in S and P(§) =PnD(S).

Consider the degree map deg : D — Z. The image of this map is a
principal ideal 1Z. The integer ¢ is easily seen to be the greatest common
divisor of all the elements of the set {deg P | P € Sx}. When F is a finite
field a theorem of F.K. Schimidt insures that 1 = 1. However, in the general
case it is quite possible for ¢ to be greater than 1. For example, consider
the quotient field of the integral domain R[X,Y]/(X? 4+ Y2 +1). This is a
function field over the real numbers R as constant field. It is not hard to
check that every prime has degree 2 and so we must have ¢ = 2 for this
example.

The image of D(S) under the degree map is also a principal ideal in
Z which we denote by dZ. The integer d is characterized as the greatest
common divisor of the elements in {deg P | P € 5}. Clearly, ¢ divides d.
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Proposition 14.1. The following sequences are exact:

(a) (0) = F* — E(S) = P(8)— (0),

(6) (0) = D(8)°/P(8) = CI° > Clg = C — (0)

where C iz a eyclic group of order d/1.

Proof. The map from E(5) to P(S) is given by taking an S-unit to its
divisor. This map is onto by the definition of P(S). If an S-unit e goes
to the zero divisor, then ordpfe) = 0 for all P € Sk and so must be a
constant. This proves the exactness of sequence (a).

To deal with the second exact sequence we first define a map 7 : D — Dy
as follows:

(D) = Z ordp(D)P .
Pgs

This map is an epimorphism with kernel D(S). The image of P under
7 is Pg. Thus, 7 induces a homomorphism from Cl —» Clg with kernel
(D(S) + P)/P = D(S)/P(S). From this we deduce the exactness of the
sequence

(0) = D(8)°/P(8) = CI° — Cls

and it remains to show that the cokernel of the last arrow is a cyclic group
of order d/i.

To do this, we again use the fact that 7 induces an isomorphism from
D/(P+D(8)) to Clg. The group we are interested in can also be described
as the cokernel of the natural map from D°/P to D/(P + D(S5)). This
cokernel is easily seen to be isomorphic to D/{D? + D(S)) (use the fact
that 7 C D°). The degree map provides an isomorphism of D/(D° 4+ D(S))
with iZ/dZ = Z/(d/i)Z. "This completes the proof.

This proof is due, in essence, to F.K. Schmidt. See his classic paper
(Schmidt [17).

Corollary 1. The group E(S)/F* is o finitely generated free group of rank

at most |§| — 1, where |S| is the number of elements in S,

Proof. By the exact sequence a) we have E{S)/F* = P(S), which is a
subgroup of the free group D(S5)° on |S| — 1 generators, Thus, P(S) is free
on at most |S| — 1 generators.

Corollary 2. Clg is a finite group if Cl° is a finite group. Also, Clg i3 a
torsion group if CI° is a torsion group.

Proof. Both statements are immediate consequences of exact sequence b).

Proposition 14.2. Let K/F be o function field over a finite field F. Then,
for all finite subsets S C Sg we have that Clg s a finite group and E(S) /F*
is a free group on |S| — 1 generators.
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Proof. By Lemma 5.6, Cl° is a finite group. By Corollary 2 to Proposition
14.1 we see that Clg is a finite group.

By exact sequence &) of Proposition 14.1 we see that D(8)°/P(5) is
finite, This shows that P(S) is free on |§| — 1 generators. We have already
seen that P(S) = E(S)/F™.

It is fairly clear that the above results are analogues of finiteness of class
number and the Dirichlet unit theorem in algebraic number theory.

For the rest of the chapter, we will assume that the constant field F =¥
is a finite field with ¢ elements.

Our next fask is to introduce the S-zeta function and investigate some
of its properties. Recall the definition of {x (),

ck(wy= [[ 1-NP™)7",

PeSk

If S is a finite set of primes, we define the S-zeta function to be

¢stw) =[] @-nNP) 7"

Pgs

Two remarks are in order about the notation. Since we are not varying
the field K in the discussion, we write (s(w) rather than (i g(w)}. Secondly,
we will use w as the variable instead of s, which we have used earlier. Among
other reasons, this is because the notation (s(s) is a bit confusing. Also,
we want to reserve s to represent the number of elements in S, i.e., s = [5].

It follows immediately from the definition that

(s{w) = H {1-NP™¥) {x(w) . (1)

Pes

Since {x(w} is a rational function of ¢, the same is true for {s(w). We
will be interested in the power series expansion of (g(w} about w = 0. By
Theorem 5.9 we know that

Lr(g™™)
Crlw) = ;
K9 = T 1= )
where Ly (u) € Z[u] is a polynomial with the property that Lg(1) = hg,

the number of divisor classes of degree zero. It follows (as we have seen
before) that

. hi
ilglow(;;((w) = e =1

Since NP~% = g-desP w — o~IngdegP v yo gpp that 1 — NP™¥ =
In g deg P w+O(w?). Using this information and substituting into Equation
1, we find

Co(w) = —(g— 1) hye H deg P){(Ing)* 1wt 4+ O(w®) . (
Pes

b2

)
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From this we see that the order of vanishing of {s{w} at w =01is 5 ~ 1,
which is equal to the rank of the S-unit group by Proposition 14.2. We will
now show how to rewrite the leading coeflicient given in Equation 2 so that
it becomes strikingly close to what it looks like in the number field case.

An ingredient in the calculation will be the S-regulator. To define this,
we begin by choosing a set of S-units {ej,es,...,e,—1} whose projection
to E(S)/F* is a basis. Consider the {s — 1) x s matrix M whose ij-th entry
is Injeq|qp,, where S = {1,Ps,...,P,}. We claim that the sum of the
columns of this matrix is zero. To see this, note that for any a € K* we
have

—Y Injalp =) ordp(a) deg P Ing=deg(a} Ing=0.
P P

For any S-unit, the only primes which occur in the sum are the primes in
S. Our assertion follows.

It follows that the determinants of the (s — 1) x (s — 1) minors of M are
all the same, up te sign. The absolute value of any of these determinants is
then taken as the definition of the S-regulator. We denote the S-regulator
by Rg. It is not hard to show that the S-regulator is independent of the
choice of basis {ey,ea,...,€5.1}

An associated regulator Rg?) has the same definition as Rg except that
throughout one uses log, (z), the logarithm to the base g, instead of the
natural logarithm, In{z). The two regulators are related by the equation

(ng)**RY = Rs .

It is worthwhile to give a more direct definition of R® , which has the
advantage of showing that it is an ordinary integer. Simply notice that

log,(lelp) = 10gq(NP_°rdP(e)) = —deg P ordp(e) .

Now, form the (s — 1} x s matrix whose ij-th entry is —deg P, ordp, (e;).
Then R(S'” is the absolute value of the determinant of any (s — 1) x (s — 1)
minor of this matrix.

Lemma 14.3.
dRY

B (I pes deg P} '

Proof. We begin by defining a map [ : D(8) — Z*. If D € D(S), we set
{D)y={(...,—ordpDdeg P,...), where P varies over the set S. Note that !
is a homomorphism and that if @ € E(S), then {((a)) = (..., 1og, |alp,...).
Also, it is easy to see from the definition that [Z° : {{D(8))] = [[ pc g deg P.

Consider the elements of Z* as row vectors and define H° C Z° as the
subgroup consisting of row vectors the sum of whose coordinates is zero,

[D(S)” : P(S)
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We have I[(P(S)) C I(D{S)°) C H®. It is easy to check that | is one to one.
It follows that

[H°: {(P(S)]

[D(S)° : P(S)] = UD(5)°) : LP(S))] = e 1(D(S))] (3)

We now calculate the numerator and denominator of this expression.

First we compute the index [H° : I{P{S))]. Let €, € Z* be the vector
with zeros everywhere except for a 1 at the s-th place. Then, Z* is the
direct sum of H® and Ze,. It follows that the index of {[P(S))} in H? is the
same as the index of I{P{S)) + Ze, in Z*. A free basis for this subgroup
is {H{(e1)),- -+ U(es—1)) €5} Let M@ be the s — 1 x s matrix whose i-th
row is {{(e;)) and M’ be the s x s matrix obtained from M? by adjoining
€5 as the bottom row. By a simple application of the elementary divisors
theorem (see Lang [4], Theorem 7.8), the index we are looking for is the
absolute value of the determinant of M'. Expanding this determinant in
cofactors along the bottom row shows the index in question is RCS?) .

To compute [H® : I(D(5)°)], consider the exact sequence

(0) = He/U(D(S)*) = Z°JI(D(S)) - Z/dZ — (0) .

The second arrow is induced by inclusion and the third arrow by the sum
of coordinates map from Z* — Z. From this exact sequence, we deduce

— [pcsdeg P

[H° £ ((D(S)7)] = SEEE

Substituting these results into Equation 3 completes the proof of the
lemma.
Corollary 1. Suppose all the primes in S have degree 1. Then, [D(5)° :
P(S)) = RY.
Corollary 2. Both regulators Rg and qu) are not zero,

Theorem 14.4. Let K/F be o function field over o finite field B with ¢
elements, Let § C Sk be o finite sel of primes with s elements. Then

hs R
(s(w) = ——qf-_—lﬁw’_l + O(w®) .

Proof. Referring to Equation 2 we see that everything has already been
proved except that in that equation the coefficient of w*~! is given as

—(g— 1) hxc( [ [ deg P)(Ing)* . ()
Peg

Our task is to show that this number is the same as that given in the
theorem.
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By Proposition 14.1, part ), we see that hxd = hg{D(5)° : P(S).
From Lemma 14.3, we deduce hg ([[pogdegP) = hsR{. Since RY =
(Ing)~~YRg, we find that hx ([Ipcgdeg P) (Ing)*~! = hsRs. Substi-
tuting this into Equation 4 we obtain

_hSRs
qg--1

which proves the theorem.

The formula in this theorem is remarkably similar to the analogous for-
mula for the S-zeta function in number fields. For a parallel *number field
- function field” treatment sece Tate [2].

The ring of S-integers can be characterized in other ways, as has already
been suggested.

Theorem 14.5. Let K/F be o function field with constant field F and let S
be a non-empty, finite set of primes. There exist elements z € K such that
the poles of T consist precisely of the elements of 8. For any such element
x, the integrel closure of Flx] in K is Og. Og is a Dedekind domain end
there is o one-to-one correspondence between the non-zero prime ideals of
Os and the primes of K not in §. The S-units E(S} are equal to the undts
of Og and the class group of Og, Cl(Os), is isomorphic to Clg.

Procf. To begin with, let’s label the primes in §, § = {Py, P, ..., Ps}. For
a large positive integer M consider the vector spaces L(MP) =
{z € K*|(z) + MP; > 0}. As soon as M is big enough (say, M > 2¢g — 2)
we know from Corollary 4 to Theorem 5.4 that the dimension of this
space is Mdeg P, — g + 1. It follows that L(MP7) is properly contained
in L{{M 4+ 1)F;). Pick an element z; which is in the latter set, but not in
the former set. Then x; has a pole of order M +1 at P, and no other poles.
Now consider = = %2+ - 2,. Then, T has each element of 5 as a pole and
no other poles.

With z chosen to have poles at the elements of 5, and nowhere else, let
R be the integral closure of Fz| in K. The ring R is a Dedekind domain.
If K/F(z) is a separable extension, this fact is well known and is proven
in many places. As is shown in Chapter V, Theorem 19, of Samuel and
Zaxiski [1], it remains true even if K/F(z) is inseparable. If P is a prime
of K not in 5, then 2 € Op and it follows that R € Op. Thus,

AC ﬂOP—_-OS-
rgs

We will show that R = Og. Let P ¢ § be a prime of X and consider
PNA. It cannot be that PN R = (0} since otherwise the quotient field of R,
namely, K, would inject into the residue class field Op /P. However, Op/P
is finite over F'. Thus, PN R = p is a maximal ideal of R, and B, € Op.
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This must be an equality because R, is a discrete valuation ring and so is a
maximal subring of K. On the other hand, if p is a maximal ideal of R then
R, is a discrete valuation ring and (pR,,, R,) is a prime of K containing z.
This shows that p — (pRy, Ryp) is a one-to-one correspondence between the
maximal ideals of R and the primes of K not in 5. Again using the fact
that R is a Dedekind domain, we find (see Jacobson {2|, Section 10.4)

R=(Ry=[)0p=0s.

PCR PgS

We have shown that Og is a Dedekind domain and that there is a one-
to-one correspondence between the maximal ideals of Og and the primes of
K not in §. The remaining statements of the thecrem are straightforward
and we leave them as exercises for the reader.

It is of interest to see how these general ideas work out in particular
cases. We will see how they apply in quadratic extensions of F(T") and in
the cyclotomic functions fields which were defined and discussed in Chapter
12, We use the notation given there.

Let’s assume that ¢ = [F| is odd. Let f(T) € F[T] = A, be a square-free
polynomial. Define K = k(y/ f(T)} (recall that & = F(T")}. One sees imme-
diately that K/k is a Galois extension of degree 2 and that the noun-trivial
element, o, of the Galois group is characterized by o+/f{T) = —+/ f(T).
A short calculation, completely analogous to what happens in quadratic
number fields, shows that the integral closure of A in K, R, is equal to
A+ AVF(T).

Recall that the prime at infinity, oo, of k is defined by ordh = —deg k.
Let U = 1/T. Then, ordeU/ = 1, ie., {7 is a uniformizing parameter at
infinity. Let d = deg f(T) and rewrite f(7') in terms of U as follows:

Za,T" TdZa T =U- dZa Ut = U4 Uy .
i=0 =0
Note that f*(U) € F[U] and that its constant term is a4 # 0, the leading
term of f(T).

Proposition 14.6. Let K = k(\/f(T) ), where f(T) € A = F[T] is
square-free. Let d = deg f(T') and a4 the leading coefficient of f(T'). If d is
odd, then oo is ramified in K. If d is even, and ay is a square in F*, then
oo splits in K. Finally, if d is even and ay is not o square in F~, then co
remains prime in K.

Proof. Suppose d is odd. Since U is a uniformizing parameter at oo and
aq # 0 is the constant term of f*(U), we see that f*(U) is a unit at infinity.

Suppose Py is a prime of K lying above oo, Then, setting e equal to the
ramification index of P, over oo,

ordpv/F(T) = gordp. J(T) = SordonU (V) = =2 .

2
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Since this number must be an integer and since d is assumed odd, it follows
that 2|e. Thus, e = 2 and K/k is ramified at co.

Now suppose that d is even. Then, K is generated over & by /f*(U}.
Since f*(U) is square-free as a polynomial in U, it follows that the integral
closure, R, of A’ = F[U] in K is A’ + A’\/f*(U). By Proposition 15 in
Chapter 1 of Lang [3], the prime decomposition of co follows from that of
the irreducible polynomial X2 — f*{U) reduced modulo U. The reduction
is simply X? — a4 € F[X]. This either splits or is irreducible according to
whether ag is a square or not in F*. This completes the proof.

We have given a rather old-fashioned proof. A more modern proof can
be given using the properties of the completion F{{1/T)} of & at co.

Following Emil Artin (1], we say that the quadratic function field K =
k(+/f(T) } is real if co splits in K and is imaginary in the other two cases.
This closely follows the terminology in the number field case.

Let B = A+ A\/f(T} be the integral closure of A in K. We want to
compare the class number of B | hp, with hg.

Proposition 14.7. With the above notation, we have hg = hg if 0o is
ramified, hg = 2hy if oo is inert, and hp log, le|p,, = hx if co splits. In
the latter case, e represents a fundamental unit in B, and Py, 1s the prime
above co at which e has negative ord.

Proof. In the first two cases the set of primes above co consists of one
element P,. Thus, s = 1 and the rank of D(S5)° is zero. Also, in the first
case the degree of P, is 1 and in the second case it is 2. Thus, the first two
assertions follow from Proposition 14.1, part (b), and Lemma 14.3.

In the third case, there are two primes above oo, Py, and P, . Thus, the
unit group B* has rank 1. Let e be a generator of B* modulo torsion, i.e.,
B* =F* < e >. If ¢ denotes the Galoig conjugate of ¢, then e’ € F* which
implies ordp_ €+ ordp: e = 0. Thus we can chose P, to be the prime over
oo with ordp_e < 0. Both primes above oo have degree 1, so by Lemma
14.3, [D(S)° : P(8)] = R = |log, |e|p,,|- By our choice of Foo we can
remove the absolute value sign. Now, invoking Proposition 14.1 once again
gives the result.

Remark. It is worth pointing out that the expression log, le|p,, can be
considerably simplified. Let ¢ = g - h\/f(T), where g,k € F[T]. Then
e ¢’ = 2g, which implies ordeog = ordp_g = ordp,_ (e + &) = ordp_e =
—log, |e|p,.. Since orde, ¢ = —deg g, we arrive at the simple equation
hx = hpdeg g.

Now let’s consider briefly the cyclotomic function fields treated in Chap-
ter 12. Recall that K, is defined to be k(A,) where A, are the m-torsion
points on the Carlitz module. The ring O,, is the integral closure of A in
K. Let S,, be the set of primes in K, lying over co. Then, as we have



250 Michael Rosen

seen, O, is the ring of Sy,-integers in K, and its unit group is the group
of S -units. What is the cardinality of 5,7 The answer is implicitly given
in Theorem 12.14. The fixed field of {o, | o € F*} is denoted by K. Ac-
cording to that theorem, oo splits completely in K, and each prime above
oo in K% ramifies totally in K,,. Let S}, denote the primes in K}, lying
above co. It follows that

&(m
1S5 = 18] = 1B - 4] = 2
q —_—
From this information it also follows that each prime in K, lying above oo
has degree 1. Thus,

Proposition 14.8. The groups OF, /F* and OF," /F* are free of rank d’(m)
1. Moreouver, hg,_, = ho,, R_(s?i and g+ = hot R(Q)

ru

Proof. With the information already provided, the proof is a straightfor-
ward application of Propositions 14.1, 14.2, and Lemma 14.3.

In Chapter 16 we will investigate the class numbers for quadratic and
cyclotomic function fields in greater detail. A fundamental tool will be
Artin L-functions and their properties in the special case where the Galois
group is abelian. Some of this was already discussed in Chapter 9. We will
provide a short review these ideas,

Let K/k be an Galois extension of global function fields. The number of
elements in the constant field of k, F, will be denoted by g (as usual). We will
not suppose that & is a rational function field. Let G denote the Galois group
of K/k. We suppose that G is abelian. If P is a prime of k and 9 is a prime
of K lying over P, then the decomposition and inertia groups, Z(%/P)
and I{§B/P), are independent of P (because ¢ is abelian). We denote
them more simply by Z(P) and I(P). We recall that [Z(P)| = e(P}f (P}
and |I(P)| = e(P). Here, e(P) = ¢(B/P) and f(P) = f(P/P) are the
ramification index and relative degree of P over P. We also know that
Z(P)/I(P) is cyclic, being isomorphic to the Galois group of the residue
class field extension.

If B/ P is unramified, then the Artin automorphism (P, K/k) € G gen-
erates Z{P) and is characterized by the congruence

(P,K/kw=w"" (modP),

where w is any element of K integral at .

Let P be any prime of k and x € & a one-dimensional character of G. We
want to define x(P). If P is unramified in K, we set x{P) = x((£, K/k)).
If P is ramified, suppose x{(I{P)) # 1. In this case we say that y is ramified
at P and set x(P) = 0. Iif x(I{P)) = 1, then x is a character on G/I{P).
Let the fixed field of J(P) be denoted by M. Then, Gal(M/k) = G/I(P).
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Under these conditions, set x(P) = x{{F, M/k)). We have now defined
x{P) for any prime P and we define the Artin L-function of x to be

Lw,x)= ][] @~ x(PNP~)"".
Pes;

When x = x,, the trivial character, we see that L{w, x.) = (x(w), which
has a simple pole at w = 1 but is analytic everywhere else. If x # x,, then
L{s,x) is entire (as follows from the fact that it can be identified with a
Hecke L-function; see Chapter 9). The following proposition is a special
case of a more general result about Artin L-functions. Since we will use it
so often, we provide the relatively simple proof.

Proposition 14.9. With the above notations, we have

¢ (w) = Gw) [[ Liwx) . (5)
XFXo

Proof. By looking at the product decompositions on both sides we see that
it is sufficient to prove the following “semi-local” identity for each prime P

of k.
[[a-~g™) =[] -x(P)NP™). (6)
BIF xeG
Let e = e(P), f = f(P), and g = [K : k]/ef. We see that g is the number
of primes of K lying above P, The left-hand side of Equation 6 is thus

(1— NP~fwye

We want to show that the right-hand side of Equation 6 is equal to this
same expression. Note first of all that if x(I(P)) # 1, then 1-x(P)NP~" =
1. Thus, the right-hand side is equal to

11 a-x@npvy.

X&G/I(P)

As before, let M be the fixed field of I{P). Then, by definition, x{F) =
x((P, M/k}) an f-th root of unity. Every f-th root of unity determines a
unique character of the subgroup of Z(P)/I(P) generated by (P, M/k) and
each such character will extend in ¢ = [G: Z(P)] = [G/I{P): Z(P)/I(P)]
ways to a character of G/I{P). Thus,

-1

Il Q-x(PNP™)=T](1~¢(NP™) =(1 - NP T¥)3,
x€GTI(F) iz=0

This concludes the proof.

The proof is a little easier to see when P is unramified in K, but it is
important to include all the primes in the definition of L(w, x).
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Covollary 1. Suppose K/k is abelian and geometric, i.e. that there is no
constant field extension. Then

hie =he ] 200,%) .
X#Xa
Proof. By Theorem 5.9, we have
LK (q—'zu)
(1—g){1—g'=*) "

where Ly (u) € Z[u) is such that Lg(1) = hg.

By the assumption that there is no constant field extension in K/k we
can multiply both sides Equation 5 in the statement of the proposition by
(1 —g™){1 - ¢'™") to derive

Li(g™") = Li(e™) [] Liw,x) .

X#Xo

Cr(w) =

Now substitute w = 0 to get the result.
Corollary 2. For x # x. we have L{0,x) £ 0 .
Proof. This follows immediately from Corollary 1.

Remark. From Corollary 1, we can infer that hy | hg. In fact, hg/hy is
a rational number equal to JT, 4x. L0, X), which is in Z(Gn], where n =
[K : k]. This is because L{s, x) for x # xo is a polynomial in ¢~* with co-
efficients in Z[(,]. A rational number which is simultaneously an algebraic
integer is a rational integer, which proves the assertion. By using formal
properties of Artin L-functions, one can show in this way that for any finite
extension K /k of global fields, the class number of k divides the class num-
ber of K. This fact was first shown by M. Madan [1] using cohomological
methods. His proof is actually much more elementary than the analytic one
we have just sketched.

Vor the remainder of the chapter, we will be concerned with finding a
class number formula similar to that given in the above Corollary 1, but for
the class number of the ring of S-integers rather than the group of divisor
classes of degree zero.

Let K/k continue to denote a geometric, abelian extension of global
function flelds with Galois group G. Let 5 denote a finite set of primes
of k and 5 the set of primes of K lying above those in §. Let A C &
denote the ring of S-integers in & and B C K denote the ring of 5'-integers
in K. By Theorem 14.5, both A and B are Dedekind domains. Using the
method of proof of that theorem, it is not hard to see that B is the integral
closure of A in K. We denote by h4 and hg the class numbers of A and B,
respectively. In the special case where k = F(T), § = {oc}, and A = F(T]
we have hy = 1.



14. 5-Units, §-Class Group, and the Corresponding L-functions 253

We have previously defined S-zeta functions. We now define 5-L-functions
in an analogous way. Namely, for x € 7, define

Ls(w,x) = [[ (1 - x(PINP=*)7 .
Pgs

By Theorem 14.5 there is a one-to-one correspondence between the primes
in S, not in S and the prime ideals of the ring A. Thus, it is natural to
think of Lg(w,x) as the L-function corresponding to the ring A. We set
Lg(w, x) = La(w,x) and work primarily with the latter notation.

In the following proposition we will need the definition of the Artin con-
ductor F(x) of a character . Artin gave a definition in great generality.
It applies even if the Galois group @ is not abelian. In the abelian case,
which is treated briefly in Chapter 9, F(x) is defined to be the minimal
effective divisor JF such that x is trivial on the ray modulo F, P*. Recall
that P¥ is the group of principal divisors generated by elements o € k*
such that ordp(a — 1} > ordpF for all primes P in the support of F. That
some effective divisor F exists with the property that x vanishes on P% is
part of the statement of the Artin reciprocity law, Theorem 9.23. It is then
an exercise to ShCW}r there is a unique minimal one with this property.

Proposition 14.10, L,({w,x) is a polynomial in g~ of degree d{)} where

dx)=2g—2+deg F(x}+ »_ degP.
Pes{x)

Here, g is the genus of k, F(x) is the Artin conductor of x, and S(x) C 5
is the set of primes in S at which x is unramified (ie., x(I{(P)) =1)

Proof. From the definition of L4(w, x} we have

LA(w3X) = H{l - X(P)Npﬂw) L(M)X) '
Pes

By a famous result of A. Weil [1], we know that L{w, x) is a polynomial in
g~ " of degree 2g — 2 + deg F(x). It remains to examine the factors of the
product over the primes in S.

If x is ramified at P we have x(P) = 0, so these terms do not contribute.
If x is not ramified at P, we have x(£) # 0 and so 1 — x(P)NP™% =
1—x(P)g~* %P which is a polynomial of degree deg P in ¢~*. The result
follows from this.

Proposition 14.11, We have
Cow) = Ca(w) [T Lalw,x) . (7)
X#Xe

Proof. This assertion follows immediately from the definitions and the
method of proof of Theorem 14.9. The method there uses the semi-local
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identity given in Equation 6. We simply use that identity for all primes not
in 8, take the inverse of both sides, and then multiply over all primnes not
in S.

We want to use Equation 7 together with Theorem 14.4 to get a class
number formula. An important first step is to find a formula for the order
of vanishing of L4(w,x) at w =10,

Proposition 14.12. Suppose x # X, and let m(x) denote the order of
vanishing of La(w, x) at w=0. Then,

m(x) = #{P eS| x(Z(P))=1}.
Proof. From the definition,

La(w,x) = [[ (1 = x(PYNP~)L(w,x) -
Pes
Since L{0,x} # 0 by Corollary 2 to Proposition 14.9, we see that m(y) is
just the number of P € § such that x{P) = 1. This only happens when x
is unramified and is trivial on {P, M/k) (recall that M is the fixed field of
I{P)). Since the Artin automorphism at P generates Z(P)/I(P} C G/I(P)
these conditions are equivalent to x(Z(P)) = 1.

We have now assembled all the background necessary to prove the main
result of this chapter. However, we need one more piece of notation. For
a character y of G and a prime P & Sy we have defined x(F). We now
extend this definition to divisors D € Dy. If D) = 3 a(P)P € Dy, set

x(D) =] x(P)*™ .
P

Theorem 14.13. (The Analytic Class Number Formula) Let K/k be a
geometric, abelian extension of global function fields. Let S be a finite set
of primes of k, A the ring of S-integers and B the inlegral closure of A in
K. Set R.(S") = Rff) and Rg?,) = Rg) , where S’ is the set of primes of K
lying above those in 5. Then

heRY =haRP ] O,
XFXo

where (1) )

—1ymix

Cy = ——— D) deg(Dy™x)
X m(x)] “ J; X( ) g( )
g D<d(x)

Here D runs over oll effective divisors of k which are prime to S and of
degree less than or equal to d(x) (defined in the statement of Proposition

14.10). Alternatively, one can think of D as running through all integral
ideals of A with dimp(A/D) < d(x). The number m{x) is defined above.
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Proof. By Proposition 14.12 we have
La(w,x) = cxwm(X) +‘O(wm(")+l) , G

where ¢, is a non-zero constant. Combining this with Equation 7 of Propo-
sition 14.11 and the assertion of Theorem 14.4 ylelds the following identity:

hgRy =haRa [] ex- (9)
X#Xo

We have set Rg: = R and g = R 4. The same process shows the following
fact (which can also be proved directly),

191 =151+ > m(x) - (10)
XFEXe

From Equation 8 we see that c, is the m(x)-th derivative of La(w, x)
evaluated at w = 0 divided by m(x)!. By Proposition 14.10, we know that
L a(w,x) is a polynomial in g7 of degree d{x). Thus,

D ~ dey w
Latw,) = 3 D) _ S~y (pygaesp v
. D D

where the sum is over effective divisors prime to S and of degree < d(x).
Thus, with the same restrictions on the sum we find

1 dm0 1
= mix)! dwmGd ! = - m(x)
Cy m(x)! dwmGo (L a(w, x)|w=0 )] ;X(D)( deg D In q) )

Notice that ¢, = (In ¢)™XC,,, where C, is defined in the statement of
the theorem. Combining this remark with Equations 9 and 10 yields

hpRg =haRa(ln q)** IT ¢ -
X¥Xo

where §' = {5’] and s = |9).
The result now follows from the fact (see the remarks preceding Lemma
14.3) that (In ¢)* R = Rp and (In q)*" 'R = R,.

In the number field case the situation is similar, but more complicated. If
K /k is an abelian extension of number fields we can again choose a finite set
S of primes of k and form S-units, S-class groups, S-I-functions, etc. Here
it is standard to include in § at least the primes which ramify in K and (!)
the archimedean primes. The local factors at the non-archimedean primes
look exactly like their counterparts in the function field case, 1--x(P)N P4,
and are handled similarly. On the other hand, the local factors at the
archimedean primes involve the [-function, and this adds another level of
complexity. The use of the [-function in “the local factors at infinity” is
seen most clearly in the famous thesis of J. Tate [1]. An exposition is found
in Chapter XIV of Lang [4].
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Exercises

1.

10.

Let S be a finite set of primes in a global function field. In the def-
inition of the S-regulator, Rg, we began by choasing a set of units
{e1,e2,...,es—1} whose cosets in E(S)/F* form a [ree Z-basis. Show
that Rg is independent of this choice,

. In the proof of Lemma 14.3, we defined a map [ : D(S) — Z*°. Prove

the assertion that [Z : {(D(s)}] = [[p g deg P.

. Prove the last assertions of Theorem 14.5. Namely, prove that E(.S)

is the group of units of Og and that Clg is isomorphic to the ideal
class group of Og.

. Let F be a finite field of characteristic different from 2. Let f(T) €

A ==TF|T] be a square-free polynomial and let B be the integral closure

of A in F(T)(\/f(T)). Show that B =4+ A/ f(T).

. Prove Proposition 14.6 by considering the completion of k = F(T'} at

00, koo, and the extension of k., generated by the roots of X2 — f(T).

. Let 5 be a finite set of primes in a global function field K. Suppose

all the elements in § have degree 1. Show that hy = hSRg’).

. Let k =F(T) and let 8 = { P, P}, the set consisiting of the prime

at 0 and the prime at co. Show that Og = F[T,T~!]. What is F(5)
in this case?

. {Continuation) Let f(T') € F[T] be a square-free polynomial of even

degree whose constant coefficient and leading coefficient are both
squares in F*. Show that both Py and Py split in K = k(+/f(1)).

. (Continuation) Let B be the integral closure of F[T, 7] in K. Show

that 1
(q) _ 2
heRy =3 Eg x{g){deg g)* ,

where the sum is over all polynomials g(T'}) with degg < deg f and
g(0) # 0. Here, x(g) means x of the divisor 3 py g ordp(g)P.

Redo the last three exercises under the assumption that S constitutes
all the primes of k of degree 1,1.e., § = {P, | « € F} U {Px}, where
£, is the prime corresponding to the localization of F[T] at (7' — ).
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The Brumer-Stark Conjecture

This chapter is devoted to the explanation and, in special cases, the proof of
a conjecture which generalizes the famous theorem of Stickelberger about
the structure of the class group of cyclotomic number fields. This important
conjecture, due to A, Brumer and H. Stark, is unresolved in the number
field case. The analogous conjecture in function fields is now a theorem due
to the efforts of J. Tate and P. Deligne. A short time after Deligne completed
Tate's work on this result, D. Hayes found a proof along completely different.
lines. We will give a proof for the cyclotomic function fields introduced in
Chapter 12. We will do so by using a method of B. Gross which combines
the approaches of Tate and Hayes as they apply in this relatively simple
special case. The use of 1-motives, which is essential in Deligne’s work, will
not be needed here.

Before beginning, it will be useful to give an outline of this chapter.
We start with some generalities about groups acting on abelian groups, the
group ring and its properties, and a review of the orthogonality relations for
group characters. After these preliminaries we will discuss Gauss sums and
their prime decomposition in cyclotomic number fields. This culminates in
the statement of Stickelberger’s theorem. We then formulate the Brumer-
Stark conjecture for both number fields and function flelds (i.e., for all
global fields). For abelian extensions of the rational numbers @ we show
that the Brumer-Stark conjecture is a simple congequence of the theorem of
Stickelberger. Finally, we come to the main result of this chapter, the proofl
of the Brumer-Stark conjecture for cyclotomic function fields. The proof is
in two parts. The first is a general result due to Tate which asserts, roughly
speaking, that the generalized Stickelberger element annihilates the group
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of divisor classes of degree zero {of a global function field). The second
part involves determining the prime decomposition of a torsion point of
the Carlitz module. Since this decomposition is implicit in the results of
Chapter 12, we prove the second part first. We then conclude the chapter
with a proof of Tate’s result. This proof will be somewhat incomplete,
because it relies heavily on work of A. Weil. Weil’s results will be stated,
but not proved, since this would require advanced methods of algebraic
geometry. Accepting Weil’s results as given, Tate’s proof is very beautiful
and ingenious. It can be described as a sophisticated application of the
Cayley-Hamilton theorem of linear algebra.

Let V' be an abelian group which is acted on by a finite group G. In
other words, we are given a homomorphism p : G — Aut(V). Given this
data, there is a canonical way to make V into a module over the group
ring Z|[G]. Recall that the elements of Z[G| are formal linear combinations
of group elements, Y . a(o)o, with coefficients a(c) € Z. The addition
of two such elements is done coordinate-wise, The product is given by the
following formula:

(Z a(cr)cr) (Z b(T}T) = Z( Z a(a)b(f))ry .

cEG T€G ~eG o7l
oT="y

With these conventions, let ). .- a(o)o € Z|G] and v € V. Then define

(Y ale)) ) = 3 al@dele))

gEG geG

It is a simple matter to check that with this definition, V' becomes a Z[G]
module.

It is cumbersome to write p{o)(v). We often accept p as fixed and write
more simply p(o)(v) = ov.

Another notational convention is worth mentioning. Suppose that the
group operation in the abelian group V is written multiplicatively instead
of additively. Then the group ring acts according to the following formula:

( Z a(a)a) (v} = H (o))

oelG oel@

An example of when this notaticn is appropriate is the case where K/k is
a Galois extension of number fields, G is the Galois group, and V is the
ideal class group of K.

It is often useful to generalize these notions by assuming that V is not
just an abelian group, but a module over a commutative ring R. In this
case, we assume p maps G to Autr(V), ie., that the actions of G and
of R on V commute with one another. In this case the action of G on
V.extends to an action of the group ring R[G] on V in exactly the same

)
[
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manner as outlined above in the case B = Z. Of course, the group ring
R[@] consists of formal R-linear combination of group elements. Addition
and multiplication are given by the same formulas as in the case of the ring
ZiG).

Let f: G — R* be a homomorphism from G to the group of units of R.
This is easily seen to extend to a homomorphism of rings from R[G] to R
by means of the formula

1 ato)e) = Y alo) (o).

oEG oEG

Conversely, if such a homomeorphism of rings {more precisely, R-algebras)
Is given, then, by restricting to , one gets a homomorphism of groups
G — R~

Let’s now specialize somewhat. We will assume that G is abelian, Set
|G| = n and suppose that n is a unit in R. Suppose further that R is
an integral domain and that R* contains an element of order n. These
assumptions are satisfied If R is an algebraically closed field of characteristic
zero. If R is an algebraically closed field of characteristic p > 0 and p does
not divide n, then, once again, both assumptions hold.

Proposition 15.1. The group G = Hom(G, R*) is isomorphic to G.

Proof. (Sketch) The proof is very simple in the case that G is a finite
cyclic group. The general case is handled by use of the theorem that a
finite abelian group is isomorphic to a direct sum of cyclic groups. See
Lang [4] for details.

Corollary. |G| = |@|.

The elements of & are called characters of & and the groups G is called
the character group of GG or, sometimes, the dual group of G.

Lemma 15.2. Let G be a finite abelian group and 0 € G, o # e, the
identity element of G. Then there is o x € G such that x{o) # 1.

Proof. (Sketch) Suppose (o) = 1 for all x € &. There is a natural homo-

morphism from G/{z} > G which, under our assumptions, would be onto.
This contradicts the corollary to Proposition 15.1.

Proposition 15.3. (The Orthogonality Relations) Let G be a finite abelian
group of order n. If o, 7 € G, then

(@) =S Mo x(r) = 3o |

xeC

where §(o,7) = 1 if ¢ = v and is 0 otherwise. If x, ¥ € G, then
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(b} - Z x(@™ (o) = 8(x,¥)

o'EG

where d(x,¥) =1 if x = ¢ and is O otherwise.

Proof. To prove the first relation, let v € G and set T(y) = Exeé x(7)- If

7 = ¢, the identity of G, theu clearly, T(e) = n. If v # e there is a 9 € G
such that 9(y) # 1 by Lemma 15.2. We have,

PNT) =0 3 x() =D X)) =T() -

x€d xed

Thus, (1(v) ~ 1)T(v) = 0 and so, T'(y) = 0. In general given &, 7 € G set
v = =7 and note that for all characters ¥, L1y = x(o7 ) x(7). This
proves the first relation.

The proof of the second relation is similar. Choose an element A € G
and set S(A) = 3, .o Ma). If A = x,, the trivial character (x,(¢) =1 for
all o € ), then, clearly, S{x,) = n. If A # x,, then there is a 7 & & such
that A(7) # 1. We have,

AT)IS) = M1) Y Aoy =D A(ro) =

ged oeld

Thus, (A7) — 1}5(X) = 0 and so S{A} = 0. In general, if x, € G, set
A = x7'. Then, A(o) = (x M) (o) = x"Ho)¥(o) = x(o7'}¥(c}. The

second relation follows immediately from this.

We have assumed that & is a finite, abelian group. For any finite group
one can define irreducible characters and prove orthogonality relations
which generalize those given in Proposition 15.3. We will have no need
for this generalization in this chapter. We have discussed this situation in
Chapter 9. The interested reader can find an elegant presentation of this
topic in Serre {3].

Let V be an R[G] module and x € G. Define V(x) = {v e V | ov =
x{o)v, Vo € G}. The R-submodule V() is called the x—th isotypic com-
ponent of V. Under the assumptions on G and R that we have made, we
will show that V' is the direct sum of the isotypic components V(x), as x
varies over G This useful result is proved using certain idempotents in the
group ring R[G] which We will now define.

Let x € ( and define s(x) € R[G] by the following formula;

e(x) = Z N Ca
UEG

Since we are assuming that n = |G| is a unit in R, the formula does indeed
define an element of R[G].
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Lemma 15.4.
1) For all o € G, we have oe(x) = x{o)e{x) .

2) For all x,4 € G, we have e(x)e() = 6(x,¥)e(x} -
3) T, ec(X) = e, the identity of G (and, also, of R[G]).

4) For x,4 € G we have x(e(¥)) = 6(x, ).
5) The set {e(x) | x € &) is a free R basis for the group ring RG]
Proof. To prove part 1, let 7 € G and calculate

re(x) = 7= 3 xo o = = 3 XX (oo =

aeld oce?

X Y x((r0) ™ )r = x(r)elx)

TeQ
To prove part 2, we use part 1 and the orthogonality relations as follows:

(el = = 3 xlo™ Joely) =

oced@

(% > X(U‘l)ﬂ)(a))s(w = 6{x, ¥)e()

aed

The proof of part 3 is another application of the orthogonality relations.
We calculate again

St =3 (= Yo xteo)

x&eC xel oed
= Z(%Zx(a 1))0*25
TG xe@ gEG

The property 4 is just a restatement of the second orthogonality relation.
To see this, note that

x(e@) =x(= T 9le™0) = = Y2 9o (o) = 6(x,9).

oeG oeG

Finally, to prove property 5 note first that by part 1, R[Gle(x) = Re(x)-
From this and part 3 we see that the set {e(x) | x € G} spans R[G] over
R. The linear independence follows immediately from 2.

For the sake of clarity, in the following proposition we restate the hy-
potheses under which we have been operating.
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Proposition 15.5. Let G be a finite abelian group of order n, R an integrol
domain whose units, R*, contains an element of order n. Assume also that
n is a unit in R. Let V be an R{G] module. Then V' s the direct sum of its
isotypic components V(x). In other words,

VBV .

xed

Proof. To begin with, we claim that V(x) = e(x)V. If v € V, consider
£(x)v. By the first part of the above lemma, we see that oe(x)v = x(7)e(x)v
for all o € G. This shows that £{x)V C V(x). If v € V{x), then

e0v =+ 3 (oo Yo =

o€

(X o) o =w.

oeG

This shows V(x) C £(x)V, so our claim is proved. We have also shown that
e(x) acts as the identity on V(x), a fact which we will use shortly.

From the above Lemma, part 3, we see that forallv € V, v = Exeé e(x)v.
This shows that V is the sum of its isotypic components. It remains to show
that the sum is direct. Suppose that for each x € G we have an element
vy € Vix) and that 3°, vy = 0. Then, for each ¢ € & we have

0=e()(D_ v = D el)ux =

xEC’ xEG

Z E(W)E(X)Ux = E(¢)’U¢ =y .

xe@

We have used part 2 of Lemma 15.4 and the fact that £(x) acts like the
identity on V(x). This completes the proof.

We have now presented all that we shall need from abstract algebra. Qur
next goal is to recall the relevant definitions and state the classical theorem
of L. Stickelberger on the prime decomposition of Gauss sums. The details
of this development and the proofs can be found in Ireland and Rosen [1].
Other sources are Lang [6] and Washington {1].

For every positive integer m let {,,, denote the complex number e Let
K. = Q({m) and denote by D,, the ring of algebraic integers in K,,,. Dy,
is generated, as a ring by (., 1.6., Dn, = Z[{m). We can assume that m 3£ 2

m+42

(mod 4), since if m = 2 (mod 4) then (0 = (2 and {m = — myz andso
Km = K 2. With this convention, a prime p € Z is ramified in K, if and

only if p|m.
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Assume that p € Z is a prime which does not divide m and that P C
D, is a prime ideal lying above pZ. D, /P is a finite field with NP =
pl elements, where f is the smallest positive integer such that pf =1
(mod m). If @ ¢ P there is a unique integer 1 such that 0 £i < m and

ot =¢ (mod P).
We set {(a/P)m = (}, and call (e/P),y, the m-th power residue symbol. If
o € P, we set (a/P),, = 0. The m-th power residue symbol has a number of
arithmetically interesting properties. For our purposes, the most importa.n’c
is that & -+ (@/P)y, induces a homomorphism from (D /P)* = {Gn), 1.

a character of the multiplicative group of D, /P. Let T'rp be the trace map
from D,/ P to Z/pZ and define

9Py = Y (/PRI

ae(Dm /P

The quantity g(P) is called the Gauss sum associated with the prime ideal
P._ We further define ®(P) = g(P)™. These quantities possess the following
properties

Proposition 15.6.

1) 9(P) € Q{{m, Gp)-
2) (P} € QGm).

3) l9(P)|> = NP

The proof of part 1 is immediate from the definition. Part 2 is somewhat
surprising. The proof uses Galois theory. Part 3 is a standard property of
Gauss sums. For details see Ireland and Rosen [1], Proposition 14.3.1.

The goal we are after is the prime decomposition of ®(P) in D, where
P is any prime ideal not containing m. From part 3 of Proposition 15.6. we
deduce that ®(P)®(F) = NP™ = p/™ It follows that the primes which
divide (®(P)}) are primes in D, lying over pZ. Since Q({m) is a Galois
extension, the primes above pZ are all conjugates of P. We thus take a
moment to recall the explicit description of the Galois group of Q(¢m)
which we gave in Chapter 12.

If t € Z is relatively prime to m, there is a unique sutomorphism &, in
G = Gal(&,, /Q) with the property o;(¢m) = ¢},. The map t — o, gives
rise to an isomorphism (Z/mZ)* = Gy,.

We can now state

Theorem 15.7. (L. Stickelberger):

@Ey= ] ey =( 3w )P
t=1 t=1

(t,m)=1 {t,m}=1
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This theorem dates from the 19-th century. In the case where m is a
prime it was formulated and proved by E. Kummer (1847). Stickelberger'’s
generalization came 43 years later (1890).

We have seen that the prime decomposition of $(P) involves only primes
above pZ and that these are all conjugates of P under the action of the
Galois group (,,. This is quite elementary. The remarkable feature of Stick-
elberger’s theorem is that the same element of the group ring Z[G] describes
the prime decomposition for all £ not containing m. If we use the known
fact that every element of the class group Clg,, contains infinitely many
prime ideals, we derive the following important corollary.

Corollary. The element

m—1

> tor! € Z[Gy]

t=1
(t,m)=1

annihilotes the class group Cly

m*

For the proof of Stickelberger’s theorem and some of the many important
applications, see Ireland and Rosen [1], Lang [6], and/or Washington [1].

The goal of the Brumer-Stark conjecture is to generalize the above results
to an arbitrary abelian extension of global fields K/k. If G = Gal{K/k),
we are looking for an element of Z|[G] defined in some canonical way which
annihilates the class group of K in the number field case and the divisor
class group of K in the function field case. This canonical element should
essentially be the one given in the above corollary when K = K, and
k = Q. Brumer (unpublished, but see Coates [1]) was the first to suggest a
candidate for such an element. We now describe the background necessary
to write this down.

Let K/k be a finite abelian extension of global fields of degree n, and
G its Galois group. Let S be a non-empty finite set of primes of & which
contains all the primes which ramify in K and, in the number field case,
all the archimedean primes. If ¥ : G — C* is a complex valued character
on G we defined the S-L-function, Lg{w, x), in Chapter 14 as follows:

Ls(w,x) = [[A-x(P)NP™)" = T]  (-x(PYNP™) L{w,x).
e P non-asch

where L{w,x) is the complete Artin /-function attached to x.

For the rest of this discussion the ring R will denote the ring of complex-
valued meromorphic functions on the complex plane. It satisfies all the
hypotheses we need; it is an integral domain, it contains n n-th roots of
unity, and = is a unit in R.
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Definition. The L-function evaluator 8/ ¢(w) € R|G] is defined as fol-
lows:
8(w) = Ox e, s(w) = > Ls(w, %)e(x) -

x€G
Proposition 15.9. For all x € G we have y(6{w)) = Ls(w, %) .

Proof, This is an immediate consequence of the definition of #(w) and
Lemma 15.4, part 4,

This proposition explains the designation of #{w) as the L-function eval-
uator.

One can rewrite the definition of 8{w) in terms of partial zeta functions.
For ¢ € & the definition of the partial zeta function {g(w,o} is given by
the sum

Colw, o) = Z ND—™

DJ(D,$)=1

(D,K/k)=c
Here, in the function field case the sum is over al] effective divisors whose
support containsno prime in § and whose Artin symbol, (D, K/k), is equal
to o. In the number field case the sum is over all integral ideals in the ring
of integers of k which are prime to S and for which the Artin symbol,
(D,K/k), is equal to o.

In all cases, the sum is absolutely convergent in the region R(w) > 1
and all these functions can be analytically continued to the whole complex
plane with at most one simple pole at w = 1. The facts are reduced to
known properties of zeta and L-funetions by the following proposition.

Proposition 15.10. With the above definitions and notations we have

Ls{w,x) = Y _ x(0)¢s(w, o) (1)
oEeG
and

Cslw,0) = = 3 X@ Es(w, %) 2
x€@

Proof. From the definition of Lg{w, x), we find (summing over effective
divisors or over integral ideals, prime to &)

Ltwy) = 3 MEEB sy v o

(D,5)=1 ce@ (D,S)=1

(D, K/k)=0
= Ex 1Cs(w,a) .
-4=le
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This shows that the sum defining {g(w, o) is, essentially, a subsum of that
defining Lg(w, x). The latter sum is absolutely convergent in the region
R(w) > 1 and so the sum defining s(w, o) is absolutely convergent in this
region as well.

To prove Equation 2 simply choose a 7 € G, multiply Equation 1 on
both sides by x(7"1)/n = x{r)/n, sum over all x € G, and use the first
orthogonality relation.

From Equation 2 we see that (s(w, o) can be analytically continued to
the whole complex plane and is holomorphic everywhere except for a simple
pole at w = 1 (corresponding to the simple pole of Lg{w, xo) at w =1},

We can now give the promised alternate expression for the I-function
evaluator #{w).

Proposition 15.11.

O(w) = Op/r,5(w) = Z ¢s(w,o)a™!

aelG

Proof. Define 8(w) = ¥, .o (s(w,o)0~! € R[G]. By Equation 1 of the
previous proposition, we find that x(@( )). = Ls(w,X) (we have used
x(o~Y) = x()). It follows that x{(6(w) — 8(w}) = 0O for all x € G. As
we will see in a moment, this implies B(w) = f(w).

Suppose f € R|G] has the property that x(f) =0 for all x € &. Write
f =3 re{x) with r, € R (that this is possible follows from Lemma 15.4,
part 5. Let ¢ € G and apply ¥ to both sides of this equation. We find
0 = ry (by Lemma 15.4, part 4. Since this is true for all ¢ & G it follows
that f = 0.

The values of the partial zeta functions (g{w, o) at w = 0 are especially
important. It turns out that they are rational numbers and we have good
control of their denominators. More precisely—

Theorem 15.12,

(a) ¢s{0,0) € Q.

(b) Wigls(0,0) € % .

where Wy denotes the number of roots of unity in K.

This theorem is quite deep. Part a was first proved, in the number field
case, by C.L. Siegel [1] and part b was first proved, in this case, by P. Deligne
and K. Ribet [1]. Other proofs of both results appeared soon thereafter,
e.g., by D. Barsky and by P. Cassou-Nogués. Part a remains true when 0 is
replaced by a negative integer —n and part b remains true if we replace 0
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by —n and Wi by W};‘), an integer also defined in terms of roots of unity.
For details and applications see the instructive article of J. Coates [1].

We will give a proof later in the function field case using the fact that
for non-trivial linear characters, x, Ls(w, x) is a polynomial in g7
Definition. Define 9;(/3‘:.3 = BK/A:,S(O) and W8 = WKQK/k,S . The
element wg . ¢ is called Brumer element of K/k relative to S.

It. follows from Proposition 15.11 and Theorem 15.12 that 85 /1, 5 € Q[G]
and that wg/x s € Z[G]. For the most part we will fix the abelian extension
K/k and the non-empty set of primes §, so we will call these elements
simply 8 and w.

We are now in a position to state the Brumer-Stark conjecture in both
number fields and function fields.

The Brumer-Stark Conjecture (The Number Field Case). We suppose
that |S| > 1. Then, for every fractional ideal D of K we have wD =
(ap) where ap € K* and ap has absolute value 1 at all archimedean
primes. Moreover, if Ap is o Wi -th root of ap, then K(Ap)/k is an abelion
extension.

Since the divisor of ap is determined, ap is determined up to a unit in
O%. The supplementary restrictions on ap insure that it is well defined up
to a root of unity in K.

The Brumer-Stark Conjecture (The Function Field Case). Suppose
first that |S| > 1. Then, for every divisor D of K, we have wD = {ap)
with ap € K*. If Ap is a Wi -th root of ap, then K(Ap)/k i3 an abelion
extension. If § = {P}, then for every divisor D of K, there is an integer
np € L and an element ap € K* such that wD = (ap) + np Ygip B
Once agein, if Ap is any Wg-th oot of ap, then K(Ap)/k is an abelian
extension.

In both the number field and the function field cass, it is easy to see that
the conditions imposed on op determine it up to multiplication by a root
of unity. The same is true for Ap. The question of whether K'(Ap)/k is or
is not abelian is not affected by this ambiguity.

In both versions, the conjecture that w annihilates the class group is due
to Brumer and the conjecture that K{Ap)/k is abelian ig due to Stark.

We now show how Stickelberger’s theorem implies the number field ver-
sion of the Brumer-Stark conjecture for cyclotomic extensions of Q.

Suppose m is a positive integer which is either odd or divisible by 4 and
consider the cyclotomic field Ky, = Q({m). Let S be the set of primes
dividing m together with the archimedean prime of @. The first task is fo
compute the element w = wg g _ /-

Let t € Z be relatively prime to m and 1 € ¢t < m. Let o; be the
corresponding element of Gal(K,,,/Q). As is easily seen, if n. > 0 is relatively
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prime to m, ¢, = ((n), Kn/Q) = o¢ if and only if n =t {mod m). Thus,

— 1 — 1
R VN

n=t (mod m)

For any real number b with 0 < b < 1, the Hurwitz zeta function is
defined by the formula

<w, )_Z(b-l—h

It follows that {g(w, o:) = m~™¢(w,t/m). It is a well-known property of
the Hurwitz zeta function that for every integer n > 1 we have {(1—n,b) =
—B,(b)/n, where B,,{b) is the n-th Bernoulli polynomial. A good source
for this is Washington {1] or Lang [6]. For n = 1 we have Bi(b) = b — 1.
Putting all this together yields

A
]
"L

CS([]a Ji.:l =

and so

(t,m)=1

Assume first that m is odd. Then, Wg_ = 2m and so

m—1 m—1
w=Wg 6= Z (m—2t)a;! =mN -2 Z to; .
=1 t=1

(t,m)=1 {t,m)=1

Here, N =3 .~0 is the norm map.
Let P be a prime of K, which is prime to m. Then, using the explicit
expression we have just derived for w and Stickelberger’s theorem, we find

wh = ({Jn\;};;) - (gJEVPl:)):“) ‘

This verifies the first part of the Brumer-Stark conjecture when D = P is
a prime ideal which is prime to m with ap = NP™ /g(P)*™, By Proposition
15.6, part 3, ap has absolute value equal to 1, It is easily checked, by
using the Galois properties of Gauss sums, that every Galois conjugate
of ap also has absolute value 1. This verifies the second condition of the
conjecture. Finally, since Wy = 2m in the case we are considering, we
find that Ap = NPY¥2/g(P) so that K,,(Ap) € Q(Cm, Cpy VN P) which is
abelian over Q. If m is odd, the full Brumer-Stark conjecture for any divisor
D prime to m follows from this.
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When m is even and divisible by 4 we have Wi = m. The proof in this
case differs insignificantly from the case we have considered. We leave the
details as an exercise.

We now turn our attention to the function field case. To ease the expo-
sition we will restrict our attention to abelian extensions K /k which are
geometric; i.e., both K and &k have the same constant field, F, which is a
finite field with ¢ elements. Under this condition, group of roots of unity
in K is just F*, so that Wy =g — 1.

Our first task is to consider more closely the L-function evaluator 8(w) =
fx /1 s(w) (we fix an abelian extension K/& of degree n and a finite set of
primes S of k which contains all the ramified primes). In the function field
case, all the 5-L-functions which occur are rational functions of v = ¢=%.
We write Lg(w, x) = Ls(u, x), {s{w, 0} = (s(u,0), and 8(w) = 8(u). From
Proposition 15.10, Equation 2, we find

Es(w0) = = 3 X(0) () 3)

xeq

Let E = Q(¢n). All the characters in G have values in E. It follows
from Theorem 9.24, and the Artin reciprocity law (Artin L-functions can
be identified with Hecke L-functions), that for ¥ non-trivial Le(u, x) is a
polynomial in u with coefficients in E. If x = x,, the trivial character, then

Bt = [0 -u8%7) 7400 = [ (1 - uim?) 0

PeS Pes up(l - qu)

Since S is non-empty by assumption, it follows that {1 — qu)ﬂg (1, X0) €
Ziu].

Tt follows from all this and Equation 3, that {1 — qu)f(v) € E[«][C]. We
claim that it is actually in Z{u}[G].

To see this, note that from the definition of the partial zeta functions we
have

Cs(w, o) = Z ! — = Z yies D 53{’113,0’) ]

D, (D,K/k)=c D, (D,K[k)=a

It follows from this and Proposition 15.11 that {1 — qu)@{u) € Z[[])[C].
Since FElu) NZ{[u]] = Ziu], we have proved—

Theorem 15.13. Let f(w) = 8(u) = Ok s(u) be the L-function evalua-
tor. Then, (1 — qu)f(u) is an element of Ziu)|G]. Evaluating at u = 1 we
have (g — 1)8 = {g — 1}8(1) € Z|G].

The only point which perhaps needs some explanation is the last asser-
tion. Recall that w = ¢~%. It [ollows that & = 8{0) = 8(1).
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Since, as we have already pointed out, Wx = ¢ —1 under our hypothesis
that K/k is a geometric extension, we see that Theorem 15.13 is a strong
function field version of Theorem 15.12.

As before, set w = (g — 1}# € Z[G]. We can now state the theorem of J.
Tate mentioned in the introduction to this chapter.

Theorem 15.14. fet K/k be o geometric abelian extension of global func-
tion fields with Galois group G. Let w = (g — 116 € Z|G] be the Brumer
element defined above. Then for every divisor D of K of degree zero, we
have wD = (ap), a principal divisor of K. In olher words, w annihilates
the group of divisor classes of degree zero, Cl%.

This theorem proves a big piece of the Brumer-Stark conjecture in the
general case, We will give the proof at the end of the chapter. Qur next
task is to use this result to prove the [ull Brumer-Stark conjecture for the
cyclotomic function fields K, = k{An) and K} = k{An)* which were
defined and investigated in Chapter 12. Note that K, now denotes the
cyclotomic function field generated by adding the m-torsion on the Carlitz
module to the rational function field k¥ = F(T"). Here m is a non-constant
monie polynomial of degree M in the ring A = [F[T].

The sets & and ST corresponding to K., /k and K /k will consist pre-
cisely of the ramified primes. Thus, § = {P | Pjm} U {00} and S* =
{P| Plm}. We recall that oc is ramified in K, and splits completely in K,
(see Theorem 12.4). We wish to calculate 8 = 8,/ 5 and 67 = st ph s+

Proposition 15.15. With the above definitions and notations we have

_ -1
(a) = Z [« quN .
a monic
deg a< M, {a,m)=1
1
b gt = M —dega—1)o7! - Nt
(b) >, (M—dega-1)o7 ~——

o monic
dega<M, (a,m)=1

In the first equation, N = 3 cqux,. /iy O ond in the second, Nt =
Zaecal{K,T./k) o , i.e., the norm maps.

Proof. Recall that Gal(Ky /&) = {04 | (a,m} =1 and dega < M}. Here
0, is the unique automorphism with the property that ¢,(d) = C,{A} for
all A € Ay, In fact, this condition defines o, for any @ € A with (a,m) = 1.
We have o, = oy if and only if @ = & (mod m). Moreover, ((a}, Km/k) = 04
if and only if ¢ is monic. For all this see Chapter 12.

Since S consists of the primes dividing m and oo, in the definition of the
partial zeta function we sum over effective divisors relatively prime to m
with no component at oo, This is the same as summing over ideals in A
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which are prime to m. Every ideal I} has a unique monic generator d and
ND = |d| = ¢¥°8¢. Thus, assuming a is monic, we have

Gswod= Y wpe= >l

(D,5)=1 d monic, {d,m)=l
(DK fk)=0, Tu=0,
=lal™+ Y la+hm[ =™+ w7 D (AT
hed f monic
h monic

:lal w+|'ml wl—_F .

If o is not monic, the calculation is exactly the same except that the
term [a|™* does not appear. Thus, (s(0,0,) =1— (g —1)~! if a is monic
and {s(0,0,) = —(g— 1)~} if @ is not monic. The expression for # given in
part a of the proposition follows immediately from these results.

Recall that K} is the fixed field of {oo | @ € F*}. Tt follows that
Gal(K5/k) = {0, | {a,m) = 1 and dega < M and e monic}. Here we
are identifying o, with its restriction to K. As automorphisms of K}, we
have oy = o, if and only if d = aa {mod m) for some a € F*.

Since ST consists only of primes dividing m, in the definition of the
partial zeta we sum over all effective divisors of the form D = Dy + ico,
where Dy is an effective divisor prime to m and oo and i is a non-negative
integer. As before, [}y corresponds to an ideal of A with a monic generator
d which is prime to .

Since oo splits completely in K, we have (o0, K /k} = e. Thus, for a
monic we have

1
Grlwoa) = 3, > ¥ ND; T
(D,5+)=1 =0 ps KL kY=o
(D:Kft/k)=0’a
Now, N{Dy 4+ ico) = NDyN(co) = |d|g*. Thus, we can rewrite this ex-
pression as

o)=Y 3 = S

i=0 d monic d moenic
T4=0, ca=c,
Here, d runs over monic polynomials prime to m with oy = o,. As we
have seen, the latter candition holds if and only if d = aa (mod m) for
some a € F*, which is equivalent to the condition a~'d = a (mod m}. In
other words, we can sum over all d € A (not just the monics) with d = a
(mod m). Thus,

Yooldr= 3 A=l Y et hm| T

4 monic dEA heA
Ti=0qa d=a {mod m) hz0
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=l = Dl Y B =l b Il

— pgl—w
h monic q
Putting all this together, we find
Cs+(w,00) = (1~ q7) a7 + (g = 1)(1~ ¢' ) pm|™¥)
B (1 _ qu)udega 4 (Q _ l)udegm
(1—u)(1—qu)
As usual, we have substituted © = ¢~ and simplified somewhat. We need
the value of this function at w = 0 or what is the same, at v = 1. If we
substitute u = 1 into the above expression, we find that both numerator
and denominator vanish. Invoking L’Hépital's rule, we differentiate both
numerator and denominator and then substitute w = 1, The result is
1

Cer{0,05) = (fS+(1,cra) =degm —dega—1— qu .

From this the proof of part b of the proposition is immediate.
Define

gp = _S_ o' and 7t = E (M —dega~ Doz’ .
a monic a monic
deg a< M, (a,m)=1 deg e< M, (z,mi=1

We can now write 8§ = n—{g— 1)7'N and 8t = o+ — (g ~ 1)7'N*.
Also, for the Brumer elements we have w = (g — 1}8 = (g — 1)p — N and
wt ={g—1)yt — N*t. This method of writing things will be of importance
to us because of the following result of B. Gross [1].

Proposition 15.16. The element n annihilates Clg, and the element 5™
annihilates CI%,, .

We will prove this later as a corollary to the proof of Theorem 15.14,

The last ingredient we will need is the prime decomposition of a primitive
m-torsion point on the Carlitz module. The miraculous thing that happens
is that this decomposition is essentially given by the Brumer element w™.

Proposition 15.17. Let P, be a prime of K, lying over oo in k. There
exists ¢ primitive m-torsion point A € A, such that

(A = ({g ~ 11" —~9)Poo + P -

The element A¥71 is in K}, As an element of K, its prime decomposition
18 given by

(MY =Wt BL + By
Here, Py is the unique prime of K, lying above P if m = P* is g prime
power and is the zero divisor otherwise. BT, is the prime of K, lying below
B... Finally, PL, is the prime of K, lying below Poo.
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Proof. Let ko be the completion of k at oo and let koo be its algebraic
closure. Let ord. denote the normalized additive valuation of k., extended
t0 koo in the usual way. Finally, let  : K,,, = koo be an embedding and let
P be the corresponding prime of K,.

Using the results of Chapter 12, in particular Proposition 12.13 and
Theorem 12.14, we see there is a primitive m-torsion point for the Carlitz
module, A, such that orde (0, A) = M —dega—1—(g—1)"t foranya € A
relatively prime to m and with degree less than M. Since P, is ramified
over k with ramification index ¢ ~ 1, we can write this as

ordgn_l,pm(/\) =ordy {0, A) = (g - 1){M —dega—1)—1.

The decomposition group of Poo is {0, | o € F*}. It follows that the set
of distinct primes above oo in Ky, is {07 Po | @ monic and dega < M},
We recall Proposition 12.7, which shows that if m = P¢ is a prime power
there is exactly one prime ideal above P in @, C K, and it is totally
ramified and generated by A. Otherwise, A is a unit in &,, by the second
part of Proposition 12.6. It follows that the prime decomposition of the
divisor (A} is given by

(A) = > ((g—1)(M — dega — 1) — )0 'Poo + Prm -
deg agﬂr/frto?c:‘,:m) =1

From this and the definitions of n and n* we get the first assertion.

All the primes {0 !B, | @ monic and dega < M} are totally and tamely
ramified over K} of ramification index ¢ — 1. The same is true of P,,, when
it is non-trivial. The second relation follows easily frotn these remarks, the
first relation, and the fact that w' = (g — 1)yt — N7, It is also helpful to
notice that 7 restricted to K} is N*t.

We have now assembled everything we need to prove the Brumer-Stark
conjecture for K, /k and K, /k.

Theorem 15.18. Let k = W(T), K. = k(An), ond K} = k(AT
the mazimal real subfield of K,,. The Brumer-Stark conjecture is valid for
K. /k and Kt /k.

Proof. Let D be any divisor of K,,.. Since P, has degree 1 we can write
D = Dy + tP where § = deg I and Dy has degree zero. Since the decom-
position group of P is {0a | & € F*} we see that NP = (¢ — 1)7Poc.
Thus,
wWheo = ((g—=1)7— N)PBoo = NPoo — NPoo =0 .

From this and Theorem 15.14 we see that wD = wDy = (ap)} for some
op € K. This proves the first part of the Brumer-Stark conjecture for
K. /k.

To prove the second part we make use of Gross’s result, Proposition
15.16. From this we know that nDy is already principal. Set #Dy = (8p).



274 Michael Rosen

Notice, also, that Ny = (d) where d € &£*. This follows from the fact that
C17 is trivial. Therefore,

wD =wDy = (g~ 1)nDy — NDy = (851) — (d) = (85 'd~1) .

We see that we can choose ap = ﬂ‘f)_ld_l and so the field generated by
Ap = s-yap over Kn, is the same as the field generated over K., by /d.
Now, k{ “¥/d)}/k is a Kummer extension and consequently a cyclic exten-
sion of fields. Thus, K,,{Ap) is the composite of two abelian extensions of
k, namely, K, and &( “'\I/E), and so is itself an abelian extension of k. This
completes the proof for the case K, /k.

Now consider the case K}, /k. Once again, any divisor D of K}, can be
written in the form Dy + tP%, where t = deg D. By Theorem 15.14, we
find wt Dy = (ap,) is principal. From Proposition 15.17, we have wt Q% =
(A?~1) — Bt Thus,

wtD = (ap, X014 — et

which verifies the first part of the Brumer-Stark conjecture for K /k.
To prove the second part of the conjecture we use Proposition 15.15 once
more to deduce that 5+ Do = (8p,) is principal. It follows that

wtDo = ((g—1)n* = NY)Do = (85, 'd™ ),

where d € &* is such that N+ Dy = (d). Thus, we can choose ap, =
%13~ and so

wtD = (p5;1d~ A= 14) _gpt

We can set ap = % 'd~IAl~D¢, From this we see that A}, which is the
q—1root of ap generates the same field over K., as *+/d. Thus, K (A})

is contained in K, ( ““\1/:_!), which is abelian over k as we showed in the first
part of the proof. This completes the proof for K /k.

Remarks.

1. We hope there is no confusion caused by the notation Ap for the ele-
ment appearing in the statement of the Brumer-Stark conjecture and the
element A, a primitive m-torsion point of the Carlitz module.

2. For the reader who is familiar with the classical situation there may be
some surprise that the Brumer element for K}, is non-trivial. The Brumer
element for Q(¢{,,)*/Q is zero. This is because in this case St contains
the archimedean prime of @ and this splits completely in Q(¢)*. Tt can
be shown in general that a prime in S which splits completely in K forces
the Brumer element wg x5 to be zero. In the function field case, there are
no archimedean primes. ST contains only those primes dividing the monic
polynomial m, all of which ramify in K.
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3. Using functorial properties of the Stickelberger element and Theorem
15.18 on can show that if & is the rational function field and K € K, for
some monic m € A, then the Brumer-Stark conjecture holds for K/k.

‘We now begin to describe the background necessary for the proof of
Tate’s theorem, Theorem 15.14.

As we have seen, in the function field case, when we describe everything
in terms of v = ¢g~%, all the functions in question are rational in » with
coefficients in E = Q(¢,), where n = [K : k]. It will be necessary for us
to work with characters whose values oceur in the algebraic closure of ;.
Here,  is an arbitrarily chosen prime in Z different from p, the characteristic
of F. We write E; for a finite extension of ; containing the n-th roots of
unity. The same analysis given earlier shows that

f(u) = Z Ls(u,x He(x) = Zfs(u, oot .

*EG ocEG

Now, of course, G = Hom(G, E}), L(u, x) € Ei(u), and £(x) € E[G]. It
is still the case that (1 — qu)8 € Z[u|[G]. The necessity for these changes
will become apparent in a little while.

Let F be the algebraic closure of F, & = &F, and K = KTF. Since K/k is a
geometric extension, we have K Nk = k. It follows that the Galois group of
K [k is the direct product of Gal(K /k) and Gal(K /K). The first group is
naturally isomorphic to G, so we will now think of & as automorphisms of
K which leave k fixed. Let ¢ be the automorphism of X /K which induces
the automorphism “raising to the ¢-th power” on F. This is called the
Frobenius automorphism of the extension. Note that ¢ commutes with the
elements of G as automorphisms of K.

In Chapter 11 we introduced the notation J for the divisor classes of
degree zero of K, ie., J = Cl%. The corollary to Theorem 11,12 gives the
algebraic structure of J{N], the points of order dividing N on J. If pt N,
then

2g
JIN =D Z/NT .

where g denotes the genus of K.

Choose and fix a rational prime [ # p and consider the groups J[{*]. Tt
is clear that for each positive integer n, multiplication by ! maps J{I"*¥1] to
J[1"*]. We define the Tate module, T;(J) as the inverse limit of the groups
J[I"] under these maps. It is possible to give a very concrete interpreta-
tion of this group. Namely, the elements of Tj{J} can be identified with
infinite-tuples, (a1,a2,as,...), where for all n > 0 we have a, ¢ J[I"|
and !,y = a,. The Tate module is acted upon by the l-adic integers
Zy in the obvious way; if @ € Z; and @ = (a1, a9,a3,...) € Ti(J), then
aa = (ea, @as, &ag, . .. ). Similarly, since G and ¢ act on each J[{?], these
actions can be extended diagonally to an action on T;{J). Thus, T;(J} is a
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Zy[G) module with an action by ¢ which commutes with the action of Z;[G].
Using the above structure theorem for J[N|, one can show that Ti(J) is a
free Z;, module of rank 2g. We set V; = Vi{(J) = Q; ®z, T1(J). V| is a vector
space of dimension 2¢ over € with a natural action by Q[G] and ¢ and
these two actions commute.

We need enough roots of unity in our coefficient field. To this end define
V = F, ®q, Vi. By Propesition 15.5, we have the following decomposition:

V=3 V(X

xeC

Since the actions of ¢ and G commute, it is easy to see that each Ej-
vector space, V(x), is mapped into itself by ¢. We need the following two
results.

Proposition 15.19. If a polynomial in $, f(@) € Z|G]|¢], vanishes on V),
then it vanishes on J.

Theorem 15.20. The determinant of 1 —gu acting on V} is the numerator
of the zeta function of the field K, i.e.,

det(l — dully, = Lre(w) .

Suppose x € G, X 7 Xo- Let ¢(x) be the Ey-endomorphism of V{x) induced
by ¢. Then

det(] — ¢p(x)u) = L{u,x™1) .
For the trivial character, x,, we have

det(l — ¢(xo)u} = Li(u) ,
where Ly{u) is the numerator of the zeta function of k.

Proposition 15.19 is a consequence of a far more general result about
geometric endomorphisms of abelian varieties. The point is that any such
polynomial f(¢) can be thought of as an element of Endg(J), regarding J
as an abelian variety over F. 1t is not a difficult result given the necessary
background. Theorem 15.20, on the other hand, is a major theorem. It is
due to Weil, The proof can be found in the original book of Weil [2]. A
more modern exposition can be found in the article by J. Milne [1]. We will
simply accept the result as true and deduce consequences.

We now have everything we nesed for the proof of Theorem 15.14. We
know by Proposition 15.13 that

(1 - i) = 3~ (1 - qu)Ls(u, x)etx) € ZR[CI.
xed

For each x # ¥o, Ls(u x) is a polynomial in Ej[u] which is divisible by
the Artin L-function L{u, x). For x = x, we know that (1 — qu) s (u, x0)
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is in Z[u] and is divisible by Li(w). From thls, Theorem 15.20, and the
Cayley-Hamilton theorem, we see that (1 — g¢~1)6(¢~1) induces the zero
endomorphism on V. Multiplying by a sufficiently large power of ¢, ¢ say,
we see that

F($) = o™ (1 — g7 ")0(¢ 1) € Z[4][G)

is a polynomial in ¢ with coefficients in Z[G]. Since it vanishes on V, it
vanishes on V;(.J) and, by Proposition 15.19, it vanishes on J. Since Cl%, =

J(F) C J, we see f(qi) restricted to J(IF) is zero. However, ¢ restricted to
J(F) is the identity, so f(¢) restricted to J(F) is f(1) = (1 — )8(1) = —w.
This shows that w annihilates J(IF) = Cl9, as asserted.

It remains to prove Gross's result, Proposition 15.16. This will follow
from the proof, just given, of Tates theorem. We need explicit expres-
sions for the elements (u) and 9+(u) associated to the cyclotomic func-
tion field extensions K, /k and K} /k, respectively. These were implicitly
constructed in the course of the proof of Proposition 15.15.

For the extension K, /k, we found that {(u, 0,) = u3B 2 {1—gu)~ludes™
if @ is monic and (1 — gu)~!ud®e™ if g is not monic. Thus,

B(u) = E ydegog—1
o tmonic
dega<M, (a,m)=1

1—q1_1

We note that the norm map N induces the zero mapping on V), and
thus on V, since CI = (0) (because k is the rational function field). As in

the proof of Tate's theorem, substitute ¢~ into (1 — qu)é(u) and multiply
by ¢ to obtain a polynomial in Z[G][¢] that annihilates V. Because the
norm element annihilates V', we find that

(qs _ q) Z ¢M—l—degaaa—1 ,

o monic
dega<M, (a,m)=1

annihilates V. The endomorphism of V' induced by ¢ — ¢ is invertible since
its determinant is given by

det(¢ — g} = det —q(1 — ¢~ 1) = ¢ Lc(g™ 1) .

We have used the first part of Theorem 15.20. By the functional equation for
the zeta function we find that the last quantity is a power of ¢ times L (1),
which is the class number of K (see Theorem 5.9). Therefore det{¢—¢q) # 0.
It follows that the element

S Mol e gio)g)

a monic
dege<M, (a,m)=1
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annihilates V. By Proposition 15.19, it annihilates J and so its restriction
to J(F) = Cl% is the zero mapping. Since ¢ restricts to the identity, the
restriction of this element is 1. We have proven Proposition 15.16 in the
case K /k.

The proof in the case K} /k is similar, but a bit more complicated. We
sketch the proof and leave it to the reader to check the details. Recall that
in the proof of Proposition 15.15 we showed

(1 _ qu)udega + (q _ 1)udegm
(1 —)(1 - qu) '

‘f(’“‘)aﬂ) =

Using this, and a little algebraic manipulation, we deduce the following
identity:

deg a M
= N -1 _ l—qu-+(g— L
(1—qu)f(u) = (1—qu) S — O - 1_(qu T

a monic
dega< M, (a,m)=1
All the rational functions of u occurring as coefficients are actually poly-
nomials since the numerators vanish at u = 1. Now, substituting u = ¢!,
and following the same steps as in the first part of the proof leads to the
conclusion that the following element annihilates C’J‘;{J,

Z —~dega ;! .

& monic
dega<M, (a,m)=1
However, this element differs from nt by an integer multiple of the norm
map, N*; so we find that n+ annihilates €1, and the proof is complete.

Having come this far, the reader who is interested in the proof of the
Brumer-Stark conjecture in the general case for function felds has two di-
rections to go. Learn the necessary background about 1-motives and read
Deligne’s proof as presented in Chapter V of Tate's monograph [1]. This
proof does not involve Drinfeld modules at all. On the other hand, by learn-
ing more about the theory of Drinfeld madules one can build up enough
background to read the paper Hayes [5], which gives an elegant proof involv-
ing no algebraic geometry beyond the Riemann-Roch theorem for curves.
Hayes relies instead on the more advanced theory of Drinfeld modules. The
“mixed” proof we have given here for the case of cyclotomic function fields
should provide a good head start in either direction.

Exercises

In the following problems, K/k will denote a finite, geometrie, abelian
extension of global fields, G the Galois group of K/k, and S a finite set of
primes of & which includes all those which ramify in K and, in the number
field case, all the archimedean primes. We will often shorten the notation
for the Stickelberger element 8y s to fs.



15. The Brumer-Stark Conjecture 270

1. If P ¢ S, show that 8gy(p} = (1~ 0p' )85 where op = (P, K/k).

2. For any prime P of &, let Np = Eer(P) o, where the sum is over
all the elements of the decomposition group of any prime in K lying
over P. Suppose P € 5 and that #(5) > 2. Show that Npfls = 0.
Conclude that 85 = 0 if any prime in 9 splits completely in K. Hint:
Consider x(Npbs) for all x € & and use Proposition 14.12.

3. Let K' be an intermediate extension between k& and K. Let ' =
Gal(K'/k} and 7 : G — G’ the natural map given by restriction.
ShOW tha.t ?r(gkals} = GK’/R:,S‘

4. Let e : Q[G] — Q be the augmentation map defined by (3", r(o)e} =
Y, r(a). T #(8) > 2, show that £(8s) =0.

5. We showed in the text that (g — 1)4, € Z[G]. Show that (¢ ~1)85 €
Z|G) for every ¢ € G, o # 1, Hint: If @5(w) is the L-function evaluator,
show first that (o — 1)8g(w) is a polynomial in w.

6. In Deligne-Ribet [1], the authors show that for primes P which are
unramified in K and do not divide Wx we have {vp — NP)8g € Z[(],
where op = (P, K/k). Let D be any divisor (ideal) of K and assume
the Brumer-Stark conjecture is true. Assume also that #(5) > 2. For
P &5 PiWgk,and P ¢ Supp(D), show that (cp — NP)8sD = (ap)
where op € K*. Hint: By the Brumer-Stark conjecture, Wy gD =
(@), where @ € K* and K(A)/k is abelian where A% = «. Let
op = (P, K(A}/k). Show that (¢, —NP)8sD = (0l — NP)J), where
both sides are interpreted as divisors in K(A). Let ap = (cp — NP)A.
Show that it suffice to prove that ap € K* and then prove this using
Galois theory and the fact that op — NP annihilates ug.

The next exercises are based on another conjecture of Stark, which is
in turn a very special case of a broad class of conjectures on the value of
Artin L-functions at zero. Let T be a finite set of primes in %k such that
all primes which ramify in K and all archimidean primes (if there are any)
lie in T, #(T) > 2, and at least one prime F, € 1" splits completely in K.
If #(T) > 3, define U{} to be the set of elements in K * which are units
except possibly at the primes lying above P,. If T = {P,,Q} define U
to be all T-units » which satisfy |u|g = |u|zg for all o € G. Finally, let 3,
be a prime in K lying above P,.

Conjecture A. If T satisfies the conditions just stated, there is an element
o € U9 such that

1
L'{0,x) = W Z x(o) log|oeoly, ,
vEG

for all x € G. Moreover, K{ wx VEa)/k is an abelian extension.
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The next exercises indicate how one can deduce the Brumer-Stark con-
jecture from Conjecture A.

7.

10.

11.

12,

Let S be a non-empty, finite set of primes of & containing the primes
which ramify in K and, in the number field case, the archimedean
primes. Let P, be a prime of k which splits in K and set T = SU{F,}.
Prove that L4(0, x) = log(N P} Ls(0, x)-

. Let P, be a prime which splits completely in K and 3, a prime of

K lying above F,. Prove that ordgp, a = —log |alp, / log(N P,) for all
a € K™,

. Use Conjecture A, stated above, together with the last two exercises

to deduce

, 1
Ls{(0,x) = W Z x(cjordg, (ce,) .
gEC

Use Exercise 8 and Proposition 15.10 to deduce Wi (g(0,0) =
ordg-153, (o).

Assuming #(9) > 2 show that Conjecture A implies WglsP, =
(€p), which verifies Brumer-Stark for the prime divisor 5. Show
Conjecture A also implies Brumer-Stark at 9, in the remaining case

where #(5) = 1.

The result of Exercise 10 can be used to prove the full Brumer-Stark
conjecture if one assumes Conjecture A. We sketch a proof and invite
the reader to fill in the details. We have seen that Brumer-Stéark
is true for a prime P ¢ I provided that 7B has relative degree 1
{(f(B/P) = 1). Choose one such prime P, and let 5, be the set
consisting of B, alone. The F,-class group (of K’} is finite and every
class in it is represented by infinitely many primes of relative degree
one. This follows from considerations of L-functions associated to
Clg,. Using this, show that if D is any divisor of K we can write
D =P + [a) + m'B,, where P ¢ 5 is a prime of relative degree
one, a € K*, and m is an integer. The result now follows from the
Exercise 11 and the fact, proved in Tate (3], that Brumer-Stark is
true for principal divisors.

In the next set of exercises we sketch the proof of the Brumer-Stark
conjecture in the case of relatively quadratic extensions of global function
fields. Let K/k be a geometric extension of degree 2. Assume that the
characteristic of & is not 2. Let the Galois group & of K /k be generated by
7. Let x be the unique non-trivial character of G. Let S be a finite set of
primes of k& which include all those primes which ramify in K. Finally, let
S’ be the set of primes of K lying above those in 5. We will agsume |5| > 2
and that no prime in 5 splits in K (otherwise the Stickelberger element &g
would be zero).



13.
14,

15.

16.

17.

18,

19.

20.
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Prove that 8g = 27 Lg(0, x}(1 — 7).

Use the relation (x s(w) = C,s{w)Ls(w,x) to show (with obvious
notation)
hi,s' Rk,
Lg(0, = T A
s(0,x) M5 Bes

Let s = |S}, Uk, s be the §'-units of K, and Uy s be the S-units of
k. Show
27 'Ry 9 = [Uk,s  Us|Rr,s -

Hint: Since no prime in 5 is ramified or spiit in K show that for every
u €k, loglulg = 2log |u|p for P|P € S,

Show that the kernel of the natural map from Cly s — Clg g is
isomorphic to HY(G,Ug s) = {u € Uk,s | wu” = 1}/{u/u” |u €
Uk, s'}. The reader who does not know cohomology of groups may
just want to accept this fact “on authority.”

For all w € Uk g show that +7 = tu. Hint: First show u” /u € [F* by
showing |u” /u|p =1 for all primes P of K.

The map v — " /u gives rise to an exact sequence (1) - Ugs —
Uk, g0 = {%1). Use this and the definition of HY{G, Uk g) to prove
that [Ux,s : U sl|H(G, Uk s )| = 2. Hint: Consider individually
the following two cases: the case where u = u” for all u € Ug g and
the case where there is a u, € Ug g such that u} = —u,.

Let M be the number of elements in the cokernel of the natural map
from Clg s — Clg g:. Use the last few exercises to give the following
explicit description of the Brumer element:

ws = (g —1)fs = ‘?_"2"_123-2M(1 —).

Use the result of Exercise 19 to verify the Brumer-Stark conjecture for
the extension K/k and the set S. For all this in the case of algebraic
number fields consult Tate {3).
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The Class Number Formulas
in Quadratic and Cyclotomic
Function Fields

In this chapter we will discuss the analogues of some fascinating class num-
ber formulas which are well known in the case of quadratic and c¢yelotomic
number fields. Some of these go back to the nineteenth century, e.g., the
work of Dirichlet and Kummer. More recent contributions are associated
with the names of Carlitz, Iwasawa, and Sinnott. We will review some of
these results and then formulate and prove a number of analogues in the
function field context,

Let’s begin by reviewing the class number formulas for quadratic num-
ber flelds (for details, see the classical text of E. Hecke [2]). We need the
definition of the Kronecker symbol which is a mild generalization of the
Jacobi symbol of elementary number theory. Suppose d is an integer con-
gruent to either 0 or 1 modulo 4. If p is an odd prime, define (d/p) to be
the usual Jacobi symbol. If p = 2, define (d/2) = (d/ — 2) to be 0 if d is
even, 1 ifd =1 (mod 8), and —1 if d =5 (mod 8). Now define (d/m) for
any non-zero integer m by multiplicativity. This new symbol is called the
Kronecker symbol. It is useful in the theory of quadratic number fields, as
we will see in a moment.

Let d € Z be square-free and consider the field K = Q(v/d). The dis-
criminant of K/Q, 0, isdifd=1 (mod 4) and 4d if d =2 or 3 {mod 4).
If x4 is the non-trivial character of Gal(K/Q), then it can be shown that
the Artin L-function L(w, x.) is given by

L(w, Xd) - Z (61‘(/'”') .

nw
n=1
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By using the relation {x (w) = {o(w)L{w, x4) and comparing the residue
of both sides at w = 1 we link up the class number of A with the value
of L(w,xq) at w = 1. Pursuing these ideas leads to the following theorem
which is due to Dirichlet.

Theorem 16.1. The class number h of the quadratic number field K =
Q(\/Ei.) is given by

[8r]—1
| _
(a) h= r] :L; m(dg/m) ,
if I < —4, and by
I1, sin{ma/ék)

h =
o 3Toa(e) "8 [1, sin(nb/3x)
if g > 1. Here, € > 1 is the fundamental unit of K, and a varies over all
integers between 1 and by with (dg /o) = —1, and b varies over all integers
between 1 and S with (§r/b) = 1.

In the case that d is negative, K is called an imaginary quadratic number
field. Part a of the theorem shows that the c¢lass number of such a field can
always be computed in finitely many steps. It turns out that this is not
the most efficient way to compute the class number, but the formula is
remarkable nevertheless.

In the case where d is positive, K is sald to be a real quadratic number
field. The Dirichlet unit theorem tells us, in this case, that the unit group
modulo (%1} is infinite cyclic. There is precisely one unit € in K which
is greater than 1 and projects on to a generator. This unit is called the
fundamental unit in L. In part b of the theorem, let 1 be the quotient of
the product of values of the sine-function which appears on the right hand
side of the equation. We have

1
h = o——log(n) ,

2logle)
from which it follows that ¢2* = 5. This shows that 7 is a unit of K which
can be explicitly constructed using special values of the sine-function. It is
called a cyclotomic unit. It turns out to be a general phenomenon that for
totally real abelian number fields, the class number is related to the index
in the whole unit group of an explicitly constructed subgroup of cyclotomic
units.

We next consider the cyclotomic fields K,,, = Q({x) and their maximal
real subfields K = Q((n + (') Let h,,, denote the class number of K,
and At denote the class number of K%, It can be shown that At |h., so
that h,, = h;th-,, where A, is an integer called the relative class number.

! tma

We will state results about both 4}, and k.
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For o prime to m let o, € Gal(K,,/Q) be the automorphism which takes
Cm to ¢2,. This induces an isomorphism (Z/mZ)* = Gal{ K, /Q). Note that
7_1 is complex conjugation, Any character of Gal{K,,/Q) can be thought
of, via this isomorphism, as a character on (Z/mZ)*. We call x an even
character if x(-1) = 1 and an odd character if x(—1) = —1. Since -1
corresponds to complex conjugation, we see that the even characters are in
one-to-one correspondence with the characters of Gal(K % /Q).

For the sake of simplicity, we restrict ourselves, in the statement of the
next two theorems, to the case where m = p, an odd prime.

Theorem 16.2. Let hy be the relative class number of Q({y). Then,

hy =2 [ (~§Zx(a)§) ,
a=1

x odd

where the product is over all odd characters of (Z/pZ)*.

This beautiful result is due to Kummer. It shows that the relative class
number can be computed in finitely many steps. It also turns out to be use-
ful in deriving divisibility results about the class number. As we shall soon
see, it is possible to rework this formula in such a way that the calculation
of hy involves nothing but elementary arithmetic in Z.

Recall that in Chapter 12 we showed that the elements %‘;—E-:— are units

in the field Kp. Assuming that K, C € we can choose ¢ = e’s". Then
: (o—1y8in{7a/p)

Cg _ 1 = 6%( .
(p—1 sin{7 /p)

The element ¢7 "1 is a 2p-th root of unity and so is a unit in Kyp. Thus,
the elements

sin(mwa
M fora=23,...,p—-1
sin(m/p)
are units in K, and, in fact, they are units in K;‘ . Note that the units

corresponding to @ and p— a are the same. Kummer showed that the units
corresponding to o in the interval 1 < a < £ are independent. He actually
showed much more.

Theorem 16.3. Let Cf be the subgroup of units in K} generated by the
units in(a/p)

sin{wa/p P

ik Yol o4 -1 g
sin(7/p) for <e< 2

and by 1. Let B} be the full unit group of K. Then, ht = [E} : CH.

This result can easily be generalized to apply to K., i.e., to K, where
m is a prime power. For a proof see Lang [6] or Washington [1]. It can
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also be generalized to arbitrary positive integers m, but this is much more
difficult than one might expect. It was accomplished by W. Sinnott in 1978
{see Sinnott {1}), over a hundred years after Kummer proved his result.

‘We will prove the analogue of Theorem 16.3 in the case of cyclotomic
function fields K, where m = P is a monic irreducible polynomial in IF[T].
The result for prime powers was first proven in Galovich-Rosen {1] and
generalized to arbitrary monic polynomials m in Galovich-Rosen (2]. In
fact, much more general versions hold in the function field case. We will
discuss these generalizations briefly after the proof of Theorem 16.12,

A tool which is useful both in number fields and function fields is the
Dedekind determinant formula. This result was communicated by Dedekind
in a letter to Frobenius in 1896.

Theorem 16.4. Let G be a finite abelian group, f a function from G to
C, ond G = Hom(G,C*). Then

(a) det [fo7 ) = [ 3 x(0)f(e)

xg(G 0EG
and
() et [fo71n) = o™ = J] 3. x(o)ffo) .
' X#EXo TEG

Proof. Let V be the vector space of all complex-valued functions on G,
A basis for this vector space is given by the functions é,(z) defined by
8qs(¢) = 1 and §,{r) = O for 7 # o. The proof is straightforward. This
shows the dimension of V over C is n := |G].

Another basis of V is given by {x | x € G}. The characters are linearly
independent over C, as can easily be seen from the orthogonality relation.
Since |G| = |G| by the corollary to Propasition 15.1, it follows that the
elements of 7 are a basis for V, as asserted.

Let G act on V by defining o f to be the function which takes = to f(ze).
This extends to an action of the group ring C[G] on V as follows:

(Z a,,,()') f= Zaa(af) .
ce@ oced

Now, fix an element f € V and associate to it the group ring element
T =5, f(o)o. The idea is to lock at the matrix of T° with respect to the
two bases of V we have given and then take determinants.

First, note that ¢é, = §,,-1. Thus,

Tor = f(0)0rg-1 =3 flo7ir), .

It follows that the determinant of T is the determinant of the n x n matrix

[f(e=7)).
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Secondly, note that (ox)(z) = x(zc) = x(z)x(c) = x{(o)x(z), so that
x is an eigenvector for o with eigenvalue x{c). It follows that x is an
eigenvector for T with eigenvalue 5" ¥(o)f(g). The determinant of T
on V is just the product of its eigenvalues and this concludes the proof of
part a.

To prove part b we restrict T to the subspace V, := {f € V| 3 g flo) =
0}. Tt is easy to see that this subspace is mapped into itself by every element
in G and thus by every element in C[G]. We write down two bases for V.
The first is {6 — 8. | 7 # €}. The second is {x € G | x # xo}. The proof
that the first is a basis is a simple exercise. As for the second, we know that
for x # xo we have 3 x(c) = 0. This shows the non-trivial characters are
in V. There are n — 1 of them and they are linearly independent. Since the
dimension of V, is n — 1, we conclude that the non-trivial characters form
a basis.

What is the matrix of T restricted to V, with respect to the basis {4, —
8. | 7 % e}? From our earlier computation we see

T(br —0e) =18, —Tb.= Y _(flo™ 7} = fla™"))és

geG

For any f € V we have 0 = 3 _ _(f(o717) — f(¢™1)). Multiply both sides
of this equation on the right by 8. and subtract the result from the last
sum in displayed equation. We find

T —be)= Y (flo7'r)— f(e7" )8 — &) -

oeG,axte

This shows the determinant of T restricted to V, is the determinant of the
{n—1) x {n—1) matrix [f{o~'7) — f(¢~"}]. The proof of part b now follows
from considering the action of 1" on the basis {x € G | x # x,}, exactly as
in the proof of part a.

We remark that if o is replaced by o1 in either determinant considered

in the theorem, the effect is simply to permute the rows so that the deter-
minant is multiplied by 41. Thus, det[f(¢~ )] = Ldet[f(o7)]. We will
use this remark shortly. It is a nice exercise to determine this sign change
in terms of the structure of the group G.

As an illustration of the use of the Dedekind determinant formula we
will state and prove the promised reformulation of Theorem 16.1.

First we recall a definition from elementary number theory. Let r € R
be any real number. Then there is a unique integer n € Z such that 0 <
r—n <1 Weset n=[r] and r —n = {r). The latter quantity is called the
fractional part of r. Note that if a,m € Z and m # 0, then (£) depends
only on the residue class of @ modulo m,

It will be convenient to write G,, = (Z/mZ)* and G}, = G,,./{£1).
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Let y be an odd character of (Z/pZ)* and define the generalized Bernoulli

number
p—1 a
By =Y _xla)(=)
a=1

The reader will recognize these are the quantities that appear in the state-
ment of Theorem 16.2. Since both x(a) and (%) only depend on e modulo
p we can rewrite this definition as

Bix=3_ x(a)(:;)

acl,

In this expression substitute —a for a and use the fact that x is odd to
derive

Byx = Z ‘X(GN‘—;:) :

aell,

Now add both expressions for B ,, and we find
1 G —a
Biy=< a ( -y —{— ) .
= 32 ()= 5

The summands are invariant under the substitution a — —a, so we get our
final expression for B ,,

Bl,x=a§£x(d) (G1-c0)

Theorem 16.5. Let hy be the relative class number of Q((p), where p is
an odd prime number. Then

b
by —:t2—_1dt[( y—{ —15_

where & and b are infegers in the range 1 < a,b < Pz_

Proof. From Theorem 16.2 and the expression we have derived for the
generalized Bernoulli number B, ,, we find

Hd ZG x@ (&-12) .

From this, it is clear that all we have to prove is that the product in this
expression is, up to sign, the determinant of the theorem.
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Let w be any odd character on G,. The set of odd characters is easily seen
to be the same as {wx’ |x" even}. Thus, the product in the last expression
is the same as ‘

I X xe( >—<:§>)=idet[(ab)(<jf> =)

x' even aEG‘+

where we have invoked the Dedekind determinant formula as it applies to
the group G’;‘ and the function f(a) =w(a) ((%) — (;ﬂ))

P
To complete the proof, simply notice that {os € Z |1 € a < %l} is a set
of representatives for G, Also, since w is a character, w(ab) = w(a)w(b).
Thus, the terms involving w in the determinant can be factored out to give

=1
the determinant of the theorem multiplied by H:i_l w(a)?. This is easily
seen to be (hl)%ﬂ, and that completes the proof.

This elegant result is was proved in Carlitz and Olson {1]. A discussion
can also be found in Lang [6], Chapter 3. Later, we will give a function
field analogue of Theorem 16.5. For now, we will concentrate on finding an
analogue to Kummer’s theorem, Theorem 16.3.

Let's begin by recalling some notation and results about cyclotomic func-
tion fields. Let 4 = F[T|, ¥ = F(T"), Ay = the m-torsion points on the
Carlitz module (m € A, a monic polynomial), K, = k{A), and Oy, the
integral closure of 4 in K,

We have an isomorphism a — o, from (A/mA)* = G, = Gal{Kn/k)
where ¢, is characterized by g,(A) = C,(A) for all A € A,

Let J = {on | @ € F*}. The fixed field of J is denoted by K and by
analogy with Q(¢n)* is called the maximal real subfleld of K,,,. We denote
by OF the integral closure of A in K}.. The prime oo of k splits completely
in K. Each prime B, of K,, which lies above 00 is totally and tamely
ramified above K. The map a — o, gives rise to an isomorphism:

(A/mA)* /] = G} = Gal(KZ k) .

Let 5, be the set of primes of K, lying over 8§ = {0} and St the set
of primes of K}, lying over oc. We have |S}| = {Sm| = ®(m)/(g — 1) and,
by Proposmon 14.8,

- (a) - (¢)
hio = ho, BY  and hyy = hor RY .

st

In these equations, R(Q) is the g-regulator of the S,,-units and R ‘” is the

g-regulator of the Sj,;—umts
Our next goal is to give analytic formulas for the class numbers of &,
and & . One approach would be to specialize Theorem 14.13 to the two
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abelian extensions K,,/k and K. /k. However, that theorem involves some
advanced material in its statement, for example the notion of the Artin
conductor whose very definition depends on the Artin reciprocity law. We
prefer to derive the necessary formula in the present circumstance in a
much more elementary fashion.

Let’s reconsider the Artin L-series L 4(w, x), which appeared in Chapter

14, (D)
X
Lalwx) =2 Npw -
D

In this sum, £ varies over all effective divisors of k prime to § = {co}.
Recall x(D) = x{({D, K,»/k)) if D is prime to the conductor of x and
x(D) = 0 otherwise (see the discussion of these points in Chapter 9}. The
effective divisors prime to oo are in one-to-one correspondence with ideals
in A. We make this identification. The definition of the conductor of x can
be made very concrete in the present situation. Let Gp,(x) € G be the
kernel of x and let K, (x) be the corresponding subfield of K,,,. Then the
conductor of , or rather the part of the conductor which is prime to oo,
is given by the ideal (m,) C A where m, is the monic divisor of m of least
degree such that Ko (x) C Ky, C Ko Since Gal(K,, /K, ) € Gr(x) we
see that x can be viewed as a character on G, = (4/m, A)*.

Fach ideal D in A has a unique monic generator, say, a. It follows
immediately from Proposition 12.10 that if D is prime to (m,), then
(D, Ky, /k) = 04 as elements of G,,,. Thus, if we define, as we have been
doing, x(cs) = x{(a), we can rewrite the L-series as follows:

LA(w}X) = @ .

|a]*

e€A.

4 monic
We have used ND = N{ad) = #(A/ad) = ¢%£¢ = |a|. For emphasis,
in this equation x is being considered as a character on (4/m, A}*. From
now on we make this convention: whenever a Dirichlet character modulo
m ocewrs in an L-series, La(w,x), we regard x as a character modulo m,,.
With this convention, the Artin L-series and the Dirichlet L-series coincide.
Our Artin L-series (associated to K, /k with § = {oo}) have been re-
vealed to be nothing more than the Dirichlet L-series that we treated in
some detail in Chapter 4. Proposition 4.3 shows that when x # x., L{w, x)
is a polynomial in g~ of degree at most M, -1, where M, = degm, . Set-
tingw = ¢~ and La(w, x) = La{u, x) we recast the content of Proposition

4.3 as follows: _
La(u,x) = Y x{apudese ey

a monic
depa<M,

At this point we need to make a distinction between characters. For any
monic polynromial m, we call a character of (4/mA)* even if x(a) =1 for
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all @ € F*. Otherwise, x is said to be an odd character. If we think of x
as a Galois character on Gy, then it is even if and only if it is trivial on
J = Gal(K,,/K}). For this reason, one sometimes calls an even character
a real character and an odd character an imaginary character. This is all
done by analogy with the number field case.

Recall that the value w = 0 corresponds to the value © = 1. We will need
the following result.

Lemma 16.6. If x # ., is an even character, we hove La(1,x) = 0.
Proof. If x is even, o € F*, and a € A is monic, then x(aa} = x{a). Thus,
La(lx)= Y, x(@=(-17" > xfe)=0.

a manic a0
dega< M, deg o< M,

The last equality is a consequence of the following facts: x is nof trivial,
x(a) =0if (a,m,) # 1, and the set {a € A | {a,m,) =1, dega < M, } is
a set of representatives for the group {A4/m, A)*.

Proposition 16.7. We have

(a) . Con(w) =Ca(w) [] Lalw,x)-
XFXo
) Cor.(w)= [[ Lalwx).
X#Xo

The first product is over all non-irivial Dirichlet characters modulo m and
the second is over all non-trivial even Dirichlet characters modulo m.

Proof, Both formulas are special cases of Proposition 14.11. To justify the

)

second formula, note that even characters are the characters of (A/m)* /F* =
Gm/J = G = Gal(K L k).

It is possible to give a proof which avoids Artin L-series and just uses
properties of Dirichlet L-series. One combines Lemma 4.4 with Proposition
12.10 and the definition of {p, (w) to get the first equality. The second
equality can also be done in a similar manner. This method is especially
easy to carry out when m is irreducible. In the general case, there are
technical difficulties introduced by having to consider conductors.

Theorem 16.8. We have

(a) hg, = H( Z X(a)) H ( Z —dega x(a)).

x odd & monic X even - g monic
deg a< M, X#Xe dega<M,

(&) Pyt = H ( E —dega,x(a)).

X even 4 monic
XFEXo  dega<M,
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Proof. Recall that
Co.(w)y= ] @ -NB™) ¢k, (w)
PES

and
¢ _ Lk, ()
Ko (w) (1= q—w)(l — gl-w) !

where Lk, (u) is a polynomial whose value at u=11is g, .

Since every prime in 5, has degree 1, we have 1 - NP% =1 — g~ for
all % € 5,,,. So, combining the last two equations and switching to the “u”
language, we find

#tm_y L, (1)
1— el i CAL/AY
o) = (1— ) ¥ o
By Proposition 16.7, part a, we find

o, (w) =

H LA 1X)

1~
a4 XFXo

Now, combining these last two equations and rewriting slightly, we find

L u,
Lin(w) = [] Zatwx) [] A X) (2)
x odd X even
x?éXu

We have used the fact that the number of non-trivial even characters
is ﬂ-m—) 1. This is because the set of even characters are in one-to-one

correspondence with the characters of (A/mA)*/F*, a group with ‘Mm

elements.

We would like to just substitute u = 1 into Equation 2, but we must first
deal with the expressions L 4(u, x}/(1 — «) when x is even and non-trivial.
By Lemma 16.6, the numerator of these expressions are zero at u = 1. We
can apply L'Hopital's rule and Equation 1, which gives an explicit formula
for the polynomial L a{x, x) to derive

lim —LA(U'X) =
=1 1 —u

Y dega x(a),

a mornic
deg a<< M,
whenever ¥ is even and non-trivial,
The proof of part a of the theorem now follows immediately by taking
the limit as u — 1 in Equation 2, and using Equation 1 once again.
The proof of part (b) follows along exactly the same lines using the
fact that the even characters are in one to one correspondence with the
characters of (A/mA)"/F* = G}, and the fact that |SE| = || = q’(m).

Before we can state and prove the main theorem of thxs chapter, we need
three more preliminary results.
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Lemma 16.9. Let m be a monic polynomial and suppose that A is e gen-
erator of A,,. If b is a polynomial prime to m, then opsA/X € K}

Proof. By definition of the automorphism o, we have opA = Ch(A). In
particular, when o € F*, we have o, )\ = Co.(A} = aA. Thus,

FolopA /) = opoarfoa A = op(ad) jad = aph/X .

It follows that opA/ X is fixed for all elements in {7, | & € F*} = J, the
Galois group of K,/ K}\,. The result follows.

It follows readily from the results of Chapter 12 that the elements opA/A
are units. If m is not a prime power, then X itself is a unit. If m = P® is
a prime power, then A generates the unique prime ideal in @,, lying above
P. It follows easily that oA is another such generator and therefore opA/A
is a unit. Units of this type will play a key role in what follows.

Now that we know opA/) is a unit in OF our next task is to determine
its divisor as an element of K. In Chapter 15, using results developed in
Chapter 12, we showed that there is a primitive m-torsion point A, € A
and a prime P, of K, lying over oo such that for all monics ¢ € A with
(a,m) =1 and dega < M we have

ord,—1y (Am) =(g—1)(M ~dega—1)—1. (3)

See Proposition 15.17 and its proof,

We need to allow a to vary somewhat more freely. For a € A with
(a,m) = 1, define (&) to be the unique polynomial ¢ with 0 < dege < M
and e = ¢ (mod m}. Define fp.(a) = (¢ — 1)(M — deg{a} — 1) — 1. We can
then rewrite Equation 3 as follows:

Orda,:l‘pw (Am) = fmf{a) . (3%}

The advantage is that Equation 3’ is valid for any o prime to m.

The ®(m}/(g—1) primes in S,, = {0, Poo | a monic,dega < M, (a,m) =
1} are all the primes in K, lying over co. Let Pt be the prime of K
lying below PBoo. Then St = {o71PBL | ¢ monic, dega < M, (a,m) = 1}
are all the primes of K} lying above co. Since gpAm /Ay, is & umnit in O,
the next proposition completely determines its divisor.

Proposition 16.10. For a,b € A monic end prime to m we have

fm(@) = fnle)

ordazl‘p;(ab)\m/)\m) = q 1

Proof. Using Equation 3’ above, we find

Ol‘da,a—lmm(o'b/\m) = orda;10:1q3w()\m)
= (g—1)(M — deg(ab) — 1) — 1 = fn(ab) .
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Combining Equations 3’ and 4, we find
Ordaa‘l‘pw (U'b)\m//\m) = ord‘r; D (O'b/\) ——OrdU:x,nm (Am) = fm(a,b] ~fmla).

Finally, since 071 is totally and tamely ramified over ¢ P}, and
Ty Am/Am € K, by Lemma 16.9 we have

fm(ab) - .fm(a) )

1
Ordaa—im‘i'o(ab/\m//\m) = mordaIlmm(UbAm/Am) _ pp N

The units gy A/ are similar to the cyclotomic units %:—i in the number

field Q(¢m). We now give the general definition of eyclotomic units in the
function field case.

Definition. Let V,, be the subgroup of K}, generated by the non-zero
elements of A, and &,, = V,,, N &},. The group &,, is called the group of
cyclotomic units in K,,.

Note that constants are cyclotomic units since if o € F* we have o =
Tarm/ Am.

Lemma 16.11. If m = P' is a power of an irreducible P, then the group
of cyclotomic units, £y, is generated by F* and the set

Ton = {0bAm/Am | b monic, 0 < degb < degm, (b,m) =1} .

Proof. We will give the proof when m = P is irreducible and leave the
case i = Pt ¢ > 1, as an exercise,

Every non-zero element of Ap has the form o, Ap, where @ varies over the
non-zero polynomials of degree less that deg P. If u is a cyclotomic unit,

then
w=[]J(earp)™ ,

a

where the exponents n, are in Z. Rewrite this equation as

u=[Jleare/rp)= x A5 .

a

Consider the fractional Op-ideal generated by both sides. We find, Op =
(Ap)¥™e. Since (Ap) is a prime ideal, this implies 3" n, = 0. It remains to
show that we can restrict our attention to e monic.

If @ is not monic, a = b with o € F* and b monic. Then

o‘a)\p/)\p = Jbaﬂ)\p/)\p =uo O'b/\p/)\p .

The lernma now follows immediately.

Corollary. If m = P!, every cyclotomic unit is in O},
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Proof. 1t follows from Lemma 16.9 that the set T,, is contained in K.
Since the constants, If*, are also in K%, the result follows.

We remark that both the lemnma and the corollary are false if m is not a
prime power, since then A, is a cyclotomic unit and it is not in K.

Note that the set T}, has the same cardinality as the rank of O} . One
might be tempted to think that it generates a subgroup of finite index.
This is not always the case, but it is true if m = P* is a prime power. We
will now show this and more when m = P is itself a prime. The following
theorem is the analogue of Kummer’s theorem, Theorem 16.3.

Theorem 16.12. Let m = P be a prime. Then, the group of cyclotomic
units, Ep, is of finite index in O;* and

hoy =[0F" : £} .

Proof. We begin by specializing and reworking the analytic class number
formula, Theorem 16.8, part b, in the case where m = P, a prime in
A =TF[T).

Since P has no monic divisors except 1 and itself, we see that any non-
trivial character y on {A/PA)* has P for its conductor. Let d = deg P.

Then
H ( E ——degax(a)).

X even g monic
X#Xo dega<d

Recall the definition, fp(a) = (g — 1)(d — deg{a} — 1) — 1. By Lemma
16.6, we see that for x even and non-trivial, 37, onic, degacaX(2) =0. It
follows that

> xla)fela)=(g—1) > —degax(a).

a monic o monic

dega<d dega<d

Thus, our formula for A+ can be rewritten
m

hKE =(g—-1) 38 H ( Z x(a) fp(a)).

X Bvenl g monic
XFXo deg a<d

We want to apply the Dedekind determinant formula to rewrite the
right-hand side of this equation. The group we are considering is G} =
Gal(K} /k). If o € G}, then o coincides with o, for some a representmg
an element of (A/PA) /IF’“. Define fp(c) = fpla). It is easy to see that
this definition is independent of the choice of a. Now, invoking Theorem
16.4, part (b), we find

by = £(g— 1) 57 det[fp(ab) — fo(a )]:idet[M] )
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In this matrix, @ and b vary over all monic polynomials which are distinct
from 1 and have degree less than d = deg P.
By Proposition 16.10, the determinant on the right-hand side is the same
as
dEt[Ordaglspgc (G’b)\p/}\p)] .

Call the absolute value of this determinant Rgg . Using this remark, Equa-
tion 5, and the fact that h K= hO+R , (see Proposition 14.8), we derive

e

2 ©)
st

ho;-c; =

It remains to show that the right-hand side of this equation is equal to
the index of £p in O}, To do this we use the ideas that go into the proof
of Proposition 14.3. Matters are even simpler in the present case, since all
the primes above oo have degree 1.

Before proceeding, lei’s simplify the notation. Let 7 be a subgroup of

“and § = SE. Let s = |S| = M For each monic a with dega < d,

let P, = o, 'BL. Arrange the momcs of degree less than d in some order
with 1 being the first and label the coordinates of Z* with these monics.

Define a map, ly, from K, to Z°, which takes an element x to the s-tuple
whose a-th coordinate is ordg, (z). Let H® be the subgroup of elements in
Z* whose coordinates sum to zero. H? is a free group of rank s — 1. Using
the fact that the primes in § have degree 1, it follows that if © € U/, we
have lg(u) € H°.

Let T'= {u1,us,...,us—1} be a set of elements in U. Consider the (s —
1) % (s — 1) matrix:

T = lords, (u)] ,

where 1 €7 < 35— 1 and a # 1 varies over monics of degree less than d.
We claim that the s-tuples {Ig(ui),l{ua2), ... lg{1te—1)} are linearly inde-
pendent over Z if and only if det T ;é 0. Moreover, if detT £ 0, then the
group generated by {I5(u),l(u2),...,{;{us—1)} has index |det 7| in H®.
To see this, let ¢; € Z* be the vector whose first coordinate is 1 and all of
whose other coordinates are 0). Then, Z° = Ze; & H° and we are reduced
to considering the s x s matrix whose first row is ey and whose i-th row,
for 2 < i < s, is {g{u;—1). The determinant of this matrix is the same as
the determinant of 7 (consider the cofactor expansion along the first row}),
which proves the assertion.

Applying these general considerations to a set of fundamental units and

to the generating set of cyclotomic units, we find that R(SQ) [H®: O"'*)]
and R(qu = [H® : {,(Ep)l. From this and Equation 6 we find

hog = [(0F) : L(€p)] -
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If I7 is any subgroup of the group of units containing F* we have an exact
sequence (1) = F* — U — 1,(U) — (1). 1t follows that

hoy = [OF": &p] .

Remarks.

1. The main reason the case m = P, a prime, is so much easier than the
general case is that all non-trivial Dirichlet characters have P as conductor.
This makes it easy to use the Dedekind determinant formula in conjunc-
tion with the analytic class number formula. In other cases, the conductor
depends on the character and one must take care. In the case m = Pt a
prime power, this is relatively easy to do (see the exercises). If m is not a
prime power, keeping track of the conductor is quite difficult and requires
rather sophisticated technique,

2. Theorem 16.12 first appeared in Galovich-Rosen [1]. Soon thereafter it
was generalized to K}, for arbitrary m (see Galovich-Rosen [2]) by following
the methods of Sinnott [1]. These results were generalized in stages to the
case of arbitrary global function field & as base and with ray class fields
taking the place of K,,,. See the work of Hayes [4], Shu [1], and Oukaba [1].
The most general case was handled by L. Yin [1].

We want to use Theorem 16.12 to help provide an analogue to Dirichlet’s
theorem, Theorem 16.1, part b. For simplicity we will assume m = P, a
menic polynomial of even degree d.

It will be useful to define M to be the set of monic polynomials of degree
less than d.

Lemma 16.13. Assume ¢ = |F| is odd and that P is a monic trreducible
of even degree d. Then k(\/I—J) C K?;.

Proof. Recall the factorization of the Carlitz polynomial

Cp(’u,)

—L = {u—X).
u )\];'\[p :
AFD

Comparing constant terms on both sides shows (—1]‘?fd‘1 [Hr=][»=P,
where the product is over all elements in Ap — {0},

The set of non-zero elements of Ap coincides with {o,Ap | a # 0,dega <
d}. Since every non-zero polynomial can be written uniquely as the product
of a constant times a monic, we derive the following equation:

(J] %5 ] (adryt=P.
(=75 3 ag.m
The product of all the non-zero elements in a finite field is —1. Since g is
assumed odd and d is even, 9:_;11 is even. It follows that P is a ¢ — 1-power
in Kp, and so, a posteriori, a square. This shows that k(\/I_J) C Kp.
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To show k(vFP) C K +, note that Gp is cyclic. This shows there is a
o
unique quadratic extension of k inside K'p. We have just seen that -";T_ll =

|GE| is even. It follows that k has a quadratic extension inside K}. By the
uniqueness, it must be k(v/P).

We now want to define a cyclotomic unit in k(v/P). Recall that g, A/ €
K} for all a not divisible by P. The Galois group G} is isomorphic to
(A/PAY /F*. For the rest of the present discussion we are going to let o
vary over (A/F)*/F*. Define

= H (_@,)\L.)—{aﬂ’)’ 7

a€{A/PA)* JF* sgn(a)Ap

where (a/P) is the quadratic character on (A4/PA)*. The factor sgn(a),
the leading coeflicient of ¢, is included so that the quotient g, A/sgn(a)A is
independent of the class of o in (A/PA)*/F*. We also need to know that
(a/P) is an even character, i.e., that it is equal to 1 on F*. This is true,
since for o € F*,

- d_ —

o
because, under our assumptions, 99—_71 is an even integer,

Lemma 16.14. The unit 77 is an element of k{(/P).

Proof. We have seen that k(vP) C K}. An element oy € G} is in
Gal(K} /k(v/P)) if and only if b is a square in (A4/PA)*/F*. Notice that

Toadp =P oA\ Zule/P)
76N = H car b X | ——— .
(aE(A/PA)*/[E’v(Sgn(a‘b)AP) (Sgn(b),\p)

The second factor is equal to 1, since > (a/F) = 0. If b is a square in
{A/PA)*/F*, then (b/P} =1 so (a/P) = (ba/P). Under these conditions

the above equation shows o1 = 1, which proves the lemma.

Theorem 16.15. Let ¢ be odd and P be o monic irreducible polynomial
of even degree d. Let K = k{\/P) and O the ring of integers of K fi.e.,
the integral closure of A in K ). Let poo be a prime of K lying over co and
€ a fundamental unit of O} such that ordy_ (€) < 0. Finally, let n be the
cyclotomic unit defined in Equation 7 (ofter an appropriate choice of Ap).
Then
_ ordy (1)
7 ordy (€)

Moreover, €"°x = an for some o € F*.
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Proof, By Propositions 14.6 and 14.7, we know that oo splits in K and
that

hK = hoK lqu |€|Fm = -—'ho,{ordpw(e) .
The last equality uses the fact that po, has degree 1 .

The Artin character x of Gp & (A/PA)* corresponding to K /k is even
and of order 2. The only prime of K which is ramified over k is the prime
above P, from which it is easy to see that x(o,} = x(a) = (P/ea} for all o
not divisible by P. By the law of quadratic reciprocity (see Theorem 3.5),
we find

(Pfa) = (~1)d%ede8? ST gon (a) =92 P(a/P) = (a/P)

since deg P is even by hypothesis.
Using the same method of proof that led to Theorems 16.8, we can derive
the following class number formula for Ag:

he= Y —degax(a)= Y —dega(a/P).
o monic o monic
dega<d dega<d

Recall the definition fp(a) = (¢—1)(d—deg(a)— 1) —1. By Lemma 16.6,
we rewrite this forinula as

he =(g—1)"" Y (a/P) fo(a). (8)

a monic

dega<d
Let P, be a prime of Kp lying over p,, and let Ap be a generator of
Ap such that ordg Ap = (¢ — 1)(d — 1} — 1. As we have seen, such a
generator exists and for all a not divisible by P we have ordgp_ (.} =
fe(a). Substituting this into Equation 8 and simplifying the result gives us

hi = (g 1) tordp_(n7") .

By Lemma 16.14, € K. Also, P, is ramified over po, with ramification

index ¢ — 1. Thus,
hK = —ordpm(n) .

The first assertion of the theorem follows by combining this equation
with kg = —hoord, (€}, which has already been demonstrated.

To prove the last assertion, consider o := €"®x 5. This is a unit in O
and the first part of the proof shows that the ord of & at poe is zerc. Since
the divisor of & has degree zero its ord at the other infinite prime must
also be zero. We have shown the divisor of « is the zero divisor. Thus, « is
a constant.

It may be useful to rewrite the unit » in a way that emphasizes the
relationship of Theorem 16.15 to Theorem 16.1, part (b). Namely,

n= H Tarp [ H TLAP -

(a/P)=-1 (b/P)=1

a monic b monic
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Using the analytic theory of Drinfeld modules which we sketched in
Chapter 13 we can make the analogy even more precise. The Carlitz mod-
ule is associated to a rank 1 lattice AT and a Carlitz exponential function
ean(u). Set ec(u) = eaz(w). In the exercises to Chapter 13 we point out
that the set of P-torsion points for the Carlitz module which lie in C (the
completion of the algebraic closure of ko) is given by

{ec(a®/P) |0 < dega < d} U {0} .

If we take Ap to be e (7/P), then g,Ap = Cu(Ap) = Culec{7/P)) =
ec{af/P). Hence, we can rewrite 7 once more {considering it as an element
of C) as fotlows:

n= [l ec@®/Py; J[ ect/P).
(a/P)=-1 b/ Py=1
& monic & monic
The relationship of this unit with the expression after the logarithm in
Theorem 16.1, part b, is now quite striking!

The final goal of this chapter is to produce a function field analogue of
the Carlitz-Olsen Theorem, Theorem 16.5. We need a definition.

Definition. The relative class number, A7, is defined to be hg,, /hp .

As it stands, h,, is a rational number, but it is actually an integer. This
can be shown algebraically, by showing that the mapping from the divisor
classes of K} to the divisor classes of K.y, induced by extension of divisors,
is injective. It also follows from Theorem 16.8 since by parts a and b of that
theorem and the definition of A, we deduce

P = H( Y. x(a))-

x odd @& monic
deg a <M,
The right-hand side of this equation is an algebraic integer and the left-
hand side is a rational number. This shows A, € Z.
We will again assume m = P a monic irreducible of degree 4. As before,
the advantage of assuming m is prime is that we don’t have to worry about
conductors. The last equation simplifies to

= T1( 3 x@). (9)

x odd a monic
dega<d

To be precise, the product is over odd characters on (A/PA)*. We will
come back to this equation shortly.

Define ¢ = (g% — 1}/{g — 1). Then t is the size of the set M of monic
polynomials of degree less than d. For each character v of F* we construct
a t x t matrix C(v) as follows:

C(¢) = [¢(senfab))] .
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More concretely, write ab = ¢P + r, where 7 € A and degr < d. The
element r cannot be zero since neither a nor b is divisible by P. Then,
sgn(ab) = sgn(r) = the leading coefficient of r,

The following theorem is the function field version of Theorem 16.5.
Theorem 16.16.

hp== [] detC(y).
peF
Y#Edo
Proof, For every non-trivial character ¢ of F* define

hy = H ( Z X(ﬂ)) . !:é: Lum{nyé:’
o= o monie %9,/

Then Equation 9 can be rewritten

hp =[] ks - (10)
¥ Vo

Fix a character ¢ on (4/PA)* whose restriction to F* is ¢. Then every
character with this property is of the form ¢x’ where x’ is an even character.
We’ll return to this in a moment.

If ¢ is & non-trivial character on F*, define ¢ : A — C by ¢(a) =
P(sgn{{a})}~! if P {a and 0 otherwise.

Using this definition and the previous remark we can write

b= 11 (3 X(@@ita) . (11)

¥’ even a monic
dega<d

Of course, with ¢ monic and dega < d the term 1{3(@) is equal to 1. So why
is it there? The point is that the product ¢(a)d(a) defines a function on
{A/PA)* since both terms depend only on the congruence class of @ modulo
P, and, in fact, it defines a function on (A4/PA)*/F* since if o € F* and a
is monic with dega < d,

Plaa)i(aa) = p)dla)p(a)™? = dla) = d(a)d(a) -

The upshot is that the sums in Equation 11 over all monic a with dega <
d can be replaced with sums over {A/PA)*/F*. We then apply the Dedekind
determinant formula to Equation 11 and deduce

hy = + det[¢(ab)d(ab)] = det[p(a)(b)P(ab)] .

By elementary properties of the determinant we can factor out ¢{b)
from the b-th row and ¢(a) from the a-th column. The result is that
the determinant is multiplied by ¢([], @)?, where the product is over all
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a € (A/PAY*/F*. This product is the product of the elements of order two
in this group and so its square is the identity. Thus,

hay = =+ det[ih(ab)] = % detiv(sgn{ab)) "] = £ det C(p~7} .

The proof is concluded by substituting this result into Equation 10 and
noting that ©»~! runs through the non-trivial characters of F* as 9 does.

Theorem 16.16 is taken from Rosen [4], where other similar results are
proven and some applications to the size of hp are given. As far as [ know,
no one has published anything generalizing Thecrem 16.16 although L. Shu
has a preprint which addresses this problem.

There is an elaborate theory of the so-called Stickelberger ideal and its
relation to the relative class number. We have not discussed this circle of
ideas. The interested reader may wish to consult Iwasawa |1] and Sinnott
[1] for the case of cyclotomic fields. The (very general) function field case
has been dealt with in Yin [3]. In a paper which is to appear, Yin [4], gives
a new definition of the Stickelberger ideal in the function field case which
enables him to deal with the class number itself and not just the relative
class number.

Exercises

1. Prove Lemma 16.11 in the general case. More specifically, if m =
Pt is a prime power, show that the group of cyclotomic units in
Kp: is generated by I and the set {g,Ap:/Ape | 2 monic, (a,P) =
1, dega < tdeg P}.

2. Generalize the statement of Theorem 16.12 to the case where m = Pt
is a prime power and prove it. Hint: Prove first that a character of
Gal(Kp«/k) has conductor P if s is the smallest power of P such
that x(o,) = 1 for all @ = 1 {mod P*). The reader may wish to
consult the proof of the classical case. See, for example, Chapter 8 of
Washington [1].

3. Let P be a monic irreducible of even degree. In the proof of Theorem
16.15 it is claimed that

hy = Z —dega (a/P) .

a monic
deg a<deg P

Prove this formula.

4. There is a natural map from C! Kt Clk,, induced by extension
of divisors. Show this map is one to one, thereby giving a new proof
that hy+ divides hg,,. Hint: Assume D is a divisor of K and that
ig, sx D = (@) for some o € K77, Show of~! = a € K and deduce
K (a)/K is unramified everywhere.
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. Let P be a monic irreducible of degree d in F[T]. Since Gal(Kp/k)
is cyclic of degree g% — 1, there is a unique subfield L ¢ Kp such
that (L : k] = ¢ — 1. Show that L = k("V/P) if d is even, and
L =k{"=/~P)if dis odd.

. (Continued) Show that L C KIJE ifand onlyif¢g—1 | d.
. (Continued) More generally, show [LN K} : k] = (d, ¢ — 1).

. (Continued) Let L+ = LNK}. Derive analytic class number formulas
for hp+ and ky and show A+ divides hp.






17

Average Value Theorems
in Function Fields

In Chapter 2 we touched upon the subject of average value theorems in
A = F[T]. The technique which we used goes back to Carlitz who as-
sociated certain Dirichlet series with some of the basic number-theoretic
functions and then expressed these Dirichlet series in terms of 4(s). The
zeta function is so simple in the case of the polynomial ring that it was
possible to arrive at very precise results for the average values in question,
For example, for n € A define d(n} to be the number of monic divisors of
n. Then we showed

E din) =gV (N +1).
n monic
degn=N

The corresponding classical result goes as follows. For n € Z, let d(n)
denote the number of positive divisors of n. Then

3 din) =zlogz +(2y — Lo + O(v/a) .

l<n<z

The constant ~ is Euler’s constant.

The relation of the two results is made clearer if one recalls that the size
of a non-zero polynomial n of degree N was defined to be |n| = g™, Setting
x = g%, the first equation can be rewritten

Z d(n) = zlog,(z) +

n moenic
ln|==
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which makes the analogy much clearer.

In the first part of this chapter we consider average values of the general-
izations of some elementary number-theoretic functions to global function
fields. Everything becomes a little more complicated, as will be seen. The
work is made a lot easier through the use of a function-field version of the
famous Wiener-Tkehara Tauberian theorem. The proof of the function-field
version of this theorem is relatively simple, being an application of the
Cauchy integral formula. The idea behind this is due to Jeff Hoffstein.

In the second part of the chapter we work over A = F[T] once again,
but we consider average values of a “not so elementary” number-theoretic
function. Namely, to each non-square polynomial m € A we consider the
order O, = A+ Ay/m C k{y/m) and its class number k., = |Pic(O,,]|. We
will average these class numbers in various ways, thereby obtaining analo-
gies to two famous conjectures of Gauss. We will discuss this connection as
well as possible variants and generalizations,

Let K/F be an algebraic function field with field of constants F with
|F| = q. We could set aside a few prime divisors, S, the primes “at infinity,”
and work with the ring A of functions whose only poles lie in §. Our
functions would then be defined on the ideals of A. Instead, we will work
with functions on the semigroup of all effective divisors. Everything we do
can be extended to the former situation without much difficulty.

Let Dk be the group of divisors of K and D} be the sub-semigroup of
effective divisors. We explicitly include the zero divisor as an element of
D};. Let f: Df — C be a function and define

=y 120 (n

the Dirichlet series associated to f.

Since the use of the variable s will cause no confusion in this chapter,
we go back to using s for the variable instead of w. Also, when we use D
as a summation variable, it will be assumed that the sum is over D in ’D_‘}’{
with, perhaps, some other restrictions.

For N > 0 an integer, define F(N) = 3, p_n f(D). Equation 1 can
be rewritten

sy =) F(N)g~.
N=0
Finally, define Z¢(u) as the function for which Z¢(¢™*) = ¢;(s). Then
Zi(w) =y F(Nw" . 2)
N=0

In Chapter 5 we investigated the function by (K), the number of effective
divisors of K with degree N. We showed that if N > 2¢g—2 (where g is the
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genus of K)

b (K) — he T

N(K) =hic T
Definition. Let f : Df — C be a function. The average value of f is
defined to be

— 1 Ede D= Nf(D) i (N)
Ave(f) = Nll_mo _E-:egD_—N—l— Nh—Irnco by (K)

provided the limit exists.

This definition is certainly the right one in the current context, In many
interesting cases, the limit doesn't exist. In that case the task is to find
some simple formula for (N}, or a simple formula plus an error term. We
will give a number of examples after proving the next theorem which is
the function field version of the Wiener-lkehara Tauberian theorem. The
original theorem is much more difficult to prove. See Lang [5]. A little later
we will give a function fleld version of greater generality.

Before stating the theorem we have to establish a convention which will
be used throughout the remainder of this chapter. The function g~ is easily
seen to be periodic with period 27i/log(q). The same therefore applies to
all functions of ¢g~* such as our functions {s(s). For this reason, nothing is
lost by confining cur attention to the region

me i
Bz{sec LIPS ') <_.__} .
| log(q) (=) log(q)

In what follows, we will always suppose that s is confined to the region
B. This makes life a lot casier. For example, {x{s) has two simple poles,
one at § = 1 and one at s = 0 if s is confined to B, but it has infinitely
many poles on the lines R(s) = 1 and R(s) = 0 if s is not so confined.

Theorem 17.1. Let f : Df — C be given and suppose (;(s) converges
absolutely for R(s) > 1 and is holomorphic on {s € B | R(s) = 1} except
for a simple pole at s = 1 with residue o. Then, there is a § < 1 such that

> A(D) = alog(g)g™ +0(¢*) .

deg D=N

If Cr(s) — 27 is holomorphic in R(s) > &, then the error term can be
replaced with O(g* V).

Proof. The hypothesis implies that Z(u} is holomorphic on the disk {u €
C | [u| < ¢!} with the exception of a simple pole at u = g1 (just use the
transformation s — u = ¢7°). What is the residue of Zs(u} at v = ¢ -17?
The answer is given by

—3 -1

lim (u—q 1) Zp(u) = lim &I —(s - 1)¢s(s) = gq(tz)

u—q— 51 §-1
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Next, notice that since the circle {u € C | |u| = ¢!} is compact, there
is a & < 1 such that Z(u) is holomorphic on the disk {u € C | |u| < ¢~%}
except for the simple pole at u = ¢!, Let C be the boundary of this disk
oriented counterclockwise and let C, be a small disc about the origin of
radius € < ¢~%. Orient C, clockwise, and consider the integral

1
_}§ ZfN(u) s
2t Jo, 0w

By the Cauchy integral formula, this equals to sum of the residues of
Z;(1)u=N =1 between the two circles. There is only one pole at u = gt
and the residue there is

log(q) N+1

—_—— 1y q

=—olo N
. g(q)q

On the other hand, using the power series expansion of Z;(u) about
w =0, we see

1 Zp(u}
% c. ’LLN+1 dLL——F(N)

It follows that

_ N Lf Zj{u)
F(N) =alog(g)g +27ri D N du

Let M be the maximum value of |Z;(u)i on the circle C. The integral
in the last formula is bounded by M¢*" which completes the proof of the
first assertion of the theorem.

To prove the last part, we may assume & < 1 since otherwise the error
term would be the same size or bigger than the main term. If {¢(s) —
a/(s — 1) is holomorphic for R(s) > ¢’, then Zs(w) is holomorphic on the
disc {u € C | |u| < ¢~%} except for a simple pole at u = ¢~!. In that case
we can repeat the above proof with the role of the cirele C being replaced
by the circle €' = {u € C | |u| = ¢=¥}. The result follows.

We illustrate the use of this theorem by investigating the generalization
of the question: what is the probability that a polynomial is square-free?
In Chapter 2 we showed, after making the question more precise, that the
answer is 1/¢4(2).

What would it mean for a divisor to be square-free? This is initially
confusing, but only because we write the group law for divisors additively.
A moment’s reflection shows that the following to be the right definition.
An effective divisor D is square-free if and only if ordplD) is either 0 or 1
for all prime divisors P, i.e., if and only if IJ is a sum of distinct prime
divisors.
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Proposition 17.2. Let [ : 'D}"(- — C be the characteristic function of the
square-free effective divisors. Then F(N) =3, p_y f(D) is the number
of square-free effective divisors of degree V. Given € > 0, we have

1 hi
Ck(2)¢o~Hg - 1)
Moreover, Ave(f)=1/¢x(2).

Proof, Recall that for divisors C and D we have N(C + D) = NC ND.
From this we calculate

B _f(D) _ 1 _ 1 _ ¢ (3)
Crls) = g Np~ X WD l;l(l * NPSJ - Cff(zs) '

D square—free

F(N) = g™+ O (gl TNy |

By the function-field Riemann Hypothesis we know that all the zeros
of {x(s) are on the line R(s) = 1. Thus 1/{x(2s) has no poles in the
region R{s) > i. On the other hand, we know that in this region (g () is
holomerphic except for a simple pole at s = 1.

Choose an ¢ > 0 and set § = -‘13 -+ €. Then all the hypotheses of Theorem
17.1 apply to {y(s) and we find

F(N) = alog(g)g" + Oc(ql3+N) (3)

where « is the residue of (g (s)/{x(2s) at s = 1. We have seen in Chapter
5 that the residue of {x (s} at s=1Is

- hi
qs=t(g — 1) log(q) -

It follows that o = pg /Cx(2). Substituting this information inte Equa-
tion 3 completes the proof of the first assertion of the proposition.

To prove the second assertion recall that Ave(f) = limy 00 F(N)/bn(K)
and that for alt N > 2g—2, by{K) = hg(g¥ =9+ — 1) /(g ~1). By the first
part of the proposition we find, for N in this range,

(4)

PK

F(N)y 1 gN-st!
by(K)  Cx(2)gN-9t1 -1

+ Oe(q[—%ﬁ-e)N) _

Now, simply pass to the limit as /N tends to oo.

As a second example, we generalize the function o{n), the sum of the
divisors of n. If I) is an effective divisor, what is a divisor of D2 7 A little
thought leads to the following definition; C is a divisor of D if and only if
D —C > 0. D has only finitely many effective divisors in this sense and we
define o(D) to be

oD)= Y NC.

O<C<D
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The reader should not have trouble being convinced that this is a sensible
generalization of the usual “sum of the size of divisors” function.

The Dirichlet series {, (s} is equal to (g (s){x (s — 1), as can be verified
by the following calculation:

Ge@ints -1 = (D wg) (D ma) =2 X ne)wp-.
B &)

D B+C=D

Proposition 17.3. Let o : ’D}‘} — © be the sum of norms of divisors
Junction defined above. Given an € > 0, we have

> (D) = G2 s 4 0%

1/, _
deg D=N ' (q 1)

Proof. Since {,(s) = {k(s){x (s —1), it has a pole at s = 2, a double pole
at § =1, and a pole at s = 0. The conditions of Theorem 17.1 do not hold!
However, we can make progress by substituting s 4+ 1 for s. This yields
(a3 + 1) = (i (s + 1)¢k (). This function has a simple pole at s =1 and
is otherwise holomorphic on the region R(s) > 0. Choose an € > 0 and set
¢ = ¢ in Theorem 17.1. We have {,{5 + 1} is holomorphic on the region
R(s) > € except for a simple pole at s = 1 with residue {x(2)px.

We are all set to apply Theorem 17.1, except that we need the expansion
of {;(s+ 1) as a power series in ¢~° = u. This is easy,

alD = o(D)\ _ny
Gl = S =2 Y G

N=0 deg D=N

I
[~]8
“a
&
]
Q.
R~
S
=
-

It follows that

N Y o(D) =Ck(2pxlog(a)g" + Oc(q) .
deg D=N

Multiply both sides of this equation by ¢ and use the explicit expression
for px given by Equation 4. This finishes the proof.

It is amusing to carry matters a step further. Divide both sides of the
equation in the proposition by by (K) and use the reasoning at the end of
the proof of Proposition 17.2. We find that the average of ¢(D) among all
effective divisors of degree N is approximately (x{2)g".

As a final application of these methods we want to investigate the func-
tion d{D)), the number of effective divisors of D. More precisely, d(D) =
#{CeDg|0<C<D)
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It is relatively easy to check that {4(s) = (i (s)® This function has a
double pole at § = 1 so Theorem 17.1 doesn’t immediately apply. Moreover,
it is hard to imagine any simple trick reducing us to the conditions of that
Theorem. What is needed is a generalization. This is provided by the next
result.

Theorem 17.4. Let f : D -+ € and let {;(s) be the corresponding Dirich-
let series. Suppose this series converges absolutely in the region R{s) > 1
and s holomorphic in the region {s € B | R(s) = 1} except for a pole of
order v at s = 1. Let o = lim,, (s — 1)7¢;(s). Then, there is a é < 1 and
constants c_; with 1 <1 <7 such that

T

= > fDy=4" (ZC—I(N-JF_% )( a)') +0(¢™) .

deg D=N

The sum in parenthesis is o polynomiol in N of degree v — 1 with leading
term

(1:g_(q1))f! o N

Proof. As in the proof of Theorem 17.1, we can find a § < 1 such that
Z¢(u) is holomorphic on the disc {u € C | |u| < ¢~°}. We again let C be the
boundary of this disc oriented counterclockwise and C, a small circle about
s = 0 oriented clockwise. By the Cauchy integral theorem, the integral

1 Zs(u)
— d
271'3- ‘ﬁv‘_{‘c ’LLN+1 Y

is equal to the sum of the residues of the function Z;{u)u in the region
between the two circles. There is only one pole in this region. It is located
at v = ¢~1, To find the residue there, we expand both Z;(u) and v~ ! in
Laurent series about u = ¢~!, multiply the results together, and pick out
the coefficient of {(x — g=1)"!,

By using the Taylor series formula or the general binomial expansion
theorem we find

oo

—N~- -N-1y —1vi

u N 1=qN+1§ ( ; )Q"(‘U“‘q 1)3 .
i=0

The Laurent series for Zy(u) has the form

-N-1

o0

Zp(w) =Y _ eilu—qg '),

i=—r

with ¢, # 0.
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Multiplying these two series together and isolating the coefficient of
{(u— g~ 1)L in the result yields

= [=N-1\ _,
Resyeg-1 45 (w1 = ¢4 Z ci( i1 )q“"l

z —N -1\ |,
— N . i
= 4 ;M(H )q.

To get the last equality we simply transformed ¢ to —i and redistributed

one factor of ¢.
It is easy to see that (75,7) = (—1)* (%), 5o the residue can be rewrit-

ten as
Z N+4+i-1 ;
_qwzc_i( A )(—q}.
i=1

As in the proof of Theorem 17.1, it now follows that

™
N+i-1 ‘
F(N) = N( » _ z) Ny
(N)=¢ ;c i1 )9 0™
Finally, we must prove the assertions about the term in parenthesis. First
of all, it is clear that when k > 0, (Ngk) is a polynomial in N of degree
k, and that its leading term is &1=1N*. Thus the sum in parenthesis is a
polynomial in N of degree  — 1 and its leading term is
Cr T —~1
—(—g)" N" .
RV
It remains to relate o = lim,_,;{s — 1)7¢s(s) to c_,. This relationship
follows from the calculation

e =l (um g7 2w
= g (T2 - = (-22)

Substitute this expression for ¢_, into the previous expression for the
leading term of the sum in parentheses and we arrive at

}'Og(QJT r—1
(r— 1)Ia N

for the leading term. This completes the proof.

Corollary. With the assumptions and notation of the theorem, we have,
as N — oo,

F(N) ~ (lsg_(ql)] o gV N

(Here, “~" means “@s asymptotic to”).
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Proof. This is immediate from the theorem.

In order not to clutter the statement of Theorem 17.4, we did not in-
clude a refinement similar to the last part of the statement of Theorem
17.1. However, it is easy to establish the following generalization in the
present case. Suppose the hypotheses of Theorem 17.4 hold and that P(s) =
Sy a—i{s—1)"" is the polar part of the Laurent expansion of (f(s) about
s =1. If {y(s) — P(s) is holomorphic in R(s) > &, then the error term can
be replaced with O(g% V). The proof is the same as in the earlier situation.

For general Dirichlet series there is a generalization of the Wiener-lkehara
Tauberian theorem, which is analogous to Theorem 17.4. It is due to H. De-
lange [1]. A statement of the theorem is given in Appendix I of Narkiewicz
[1].

We now want to apply Theorem 17.4 to the divisor funetion d{D) on
D,

Proposition 17.5. Let K/F be a global function field and d(D) the divisor
Function on the effective divisors. Then, there ezist constants px ond Ak
stch that for fized ¢ > 0 we have

ST dD) = ¢ (kN +px) + OfgN) .
deg D=N

More explicitly, Mg = h3,q*~29(qg — 1)72.

Proof. We have already seen that {;(s) = (g (s)?, a function which has a
double pole at s = 1 and is otherwise holomorphic for R(s) > 0. Choose
e > 0, Notice that lim,_41(s —1)%Cx {s)? = p%. Applying Theorem 17.4 and
the remarks given after that theorem we find there are constants Ax and
e such that

Y dD) = ¢¥ AkN+pux) + O(¢V) .
deg D=N

Applying the formula for the leading term of the polynomial in paren-
thesis given in the statement of Theorem 17.4, we find

_ log(e)”  log(g)? , W%
Ak = (r— 1}!a B TR g 2g—1)%

This finishes the proof.

Another interesting fact is that the average value of d(D) over the effec-
tive divisors of degree N is asymptotic to
h
+ N .
¢ Hg—1)
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This is easy to establish on the basis of the proposition.

We have merely touched on the fringes of a large subject. The reader who
wishes to explore this area further should consult the book of J. Knopf-
macher [1]. We will not pursue these matters here. Instead, we turn to
another topic in the area of average values of arithmetic functions.

In his famous work Disquisitiones Mathematicae, C.¥. Gauss considered
at length the arithmetic of binary quadratic forms az? 4+ 2bxy +cy? defined
over the integers Z. The discriminant of such a form is by definition I} =
4b% —4ac (because of the restriction that the coefficient of zy be even, Gauss
considered only even discriminants). He defined an equivalence between
such forms and showed that equivalent forms have the same discriminant.
Moreover, he showed that the number of equivalence classes of forms with
the same discriminant is finite. Call that number hp. Based on extensive
numerical evidence he made two conjectures about the average value of
these class numbers Ap. Slightly reformulated, they read as follows.

1. Let D = —4k vary over all negative even discriminants with 1 < & <
N. Then 4
vy 3
z hp ~ —— NT |
gt 21¢(3)

2. Let D = 4k vary over all positive even discriminants such that 1 <
k < N. Then ,
4 2
h ~—— N7
D hoRo ~ gomy N

1<k<N

The number Rp in the second conjecture is closely related to the regula-
tor of the real quadratic number field Q(v/D). Tn fact, the both conjectures
can be reformulated in terms of orders © in quadratic number fields where
the class numbers h are interpreted in terms of the size of the Picard group
of @, Pie{0), i.e., invertible fractional ideals of € module principal ideals.

Both of these conjectures have been proven. There is a long history. The
interested reader can find a brief review of all this in Hoffstein-Rosen [1].

We will consider the function field analogue of Gauss’s conjectures. As
usual, instead of Z and @ we consider the pair A = F[T] and k& = F(T).
For the remainder of the chapter, we assume that the characteristic of IF is
odd. Let m € A be any non-square polynomial, and consider the quadratic
function field K = k(y/m). Write m = mgm?, where my is square-free. The
polynomial rg is well defined up to the square of a constant. Define ©@,, to
be the ring A+ A/m C K. It is an A-order in K, i.e., it is a ring, finitely
generated as an A-module, and its quotient field is K.

Proposition 17.6. With the notations introduced above, the integrol clo-
sure of A in K is On,y. The ring Op, 15 a subring of O,,, and the polynomial
ma is o generator of the annihilator of the A-module Op,, /Oy,. Finally, if
O is any A-order in K, then O = O, for some m € A.
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Proof. Since the characteristic of F is odd, it is easy to see that K/k is a
Galois extension. Let o generate the Galois group.

Clearly, K = k(y/m) = k(,/myg). Every element in K has the form r +
s/myq for suitable r, s € k. The automorphism ¢ takes \/mo to —/my.

Suppose 7+ s,/myg is integral over A, Applying o we see that r —s,/mg is
also integral over A. Thus, s0 is the sum and product of these two elements,
Le. 27 and r2 — mys? are integral over A. Since A is integrally closed, we
have 2r € A and 72 — mgs®? € A. We may divide by 2, so r € 4 and it
follows that mgs® € A. Since mg is square-free, we must have s € A. We
have proved that if 7+ s./mg is integral over A, then r4+s,/mg € A+A/mo.
The converse is clear, so our first assertion is established.

From the definitions, Op, = A+ Ay/m = A+ Ami /g C A+ Ay/mg =
Oy It is then immediate that as A-modules

Omo/om. = A/m].A 3

which proves the second assertion.

Let @ be any A-order in K. One can easily show that every element of
O is integral over A. Since 1 € O by definition, we have A C (. Since K is
the quotient field of O there is an element « € O such that o ¢ A. By the
first part of the proof we can write o = ¢ + by/fng with a,b € A and b # 0,
It follows that b./mg € O with b € A — {0}. Choose m; € A — {0} to be a
non-zero polynomial of least degree such that m,/mg € O. Set m = mgmni.
We claim that O = @,,. Tt is clear that &, C O, so we must show the
reverse inclusion. Suppose o + by/mg € O with a,b € A. By the division
algorithm in A we can write b = ey + 7, where ¢, € A and either r =0
or degr < degm;. Multiply this relation on the right by \/mg and we can
deduce that r,/mg € O. Since m; is a non-zero polynomial of least degree
with this property, we conclude that » = 0. Thus, o = a 4+ em;/mp € Oy
and we are done,

Definition, Let m € A, m not a square, and let &, C k(y/fr} be the
A-order described above. Pic(0,,), the Picard group of ©,,, is the group
of invertible fractional ideals of Oy, modulo the subgroup of principal frae-
tional ideals. The class number h,, is defined to be the cardinality of this
group (we will see shortly that A, is finite).

If mo is square-free, then as we have just seen, O, is the integral
closure of 4 in K = k(\/mg). In this case, O,,, is a Dedekind domain,
Pic(Osp,) = Cl(Opy )}, the class group of O, and hy,, is the usual class
number. Moreover, h,., is finite by Proposition 14.2 {take S to be the
primes of K lying above co).

Before going further with this analysis, we need another definition. If
m € A, m a non-square, define x.,(a) as follows:

Xm(e) = (%‘)2 '
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Recall that if P is irreducible, then x,(P) = 0 if P|m, and if P { m then
xm(P) = 1 if m is a square modulo P and —1 otherwise. [{ a is a product
of irreducibles, one extends x.(P) by multiplicativity; i.e., ifa = Hz -1 P

then xm(@) = [Ticy Xm{P.).

If m = mom? we have x,n{a) = Xm,(2) whenever (a, m) = 1. However, if

P is an irreducible such that P|m; and P} mg, then we have xm(P) =0,

whereas Xmq(F) # 0.
Define L(s, xm) as follows:

min m (P -1
onie T

7 monic P{m

Notice that if m = mgm?, we have

Lis,xm) = ]| (1—"—*"’1,%,%[)—)) L8, Xmq) -

Plmy

When m is square-free, the next proposition shows that L(s,xm) is
closely related to the Artin L-function associated o the abelian extension

k().

Proposition 17.7. Suppose m is square-free. Consider the quadratic ez-
tension K = k(y/m) of k. Let Loo{s,xm) be 1 if co is ramified in K,
(1 —¢g7*)~! if oo splits in K, and (1 +¢~*)~! if oo is inert in K. Then

LDO(S'J xm:lL(Sa X‘m)

is the Artin L-function associated to the unigue non-trivial character of

Gal(K/k).

Proof. We have seen that A+ A./m is the integral closure of A in K. The
discriminant of this ring over A is 4m. Since 4 is a non-zero constant, a
prime P of A is ramified if and only if it divides .

Let L(s,x) be the Artin L-function associated to the unique non-trivial
character y of Gal{K/k). If P is a finite prime, x(P) = 0 if P is ramified
and x(P) = x((P,K/k)) if P is unramified. By the definition of the Artin
symbol, {P, K/k} is e if P splits, and o if P is inert {¢ being the non-trivial
element of the Galois group). Thus, x(} = 1 if £ splits and x{P) = —1if
P is inert. By the decompesition law in quadratic extensions (take { = 2 in
Proposition 10.5), P splits in K if and only i x,,(FP) = 1. Thus, for finite
primes x(P) = xm(P). At 0o we know that |oo| = g so (1 — x{co)g™*)!
is 1 if oo is ramified, (1 —g~*)~? if co splits, and (1 +¢~*)~1 if co is inert.
Thus, (1 — x{00)]oo|™*)™! = Leo(s, Xm). We have shown that L(s,x) and
Lo (8, Xm) L5, xm) have the same Euler factors for all primes. Thus, they
are equal.
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We are now in a position to state the connection between L(1, xm) and
class numbers. We begin with the case of m square-free. This relation is
proven in the thesis of E. Artin (see Artin (1]). We will show, in a little
while, how to generalize this result to the case of non-square polynomials
m.
If m € A, recall the definition of sgn,(m). This is 1 if the leading coeffi-
cient of m is a square in F* and is —1 if it is not.

Theorem 17.8A. Let m € A be a square-free polynomial of degree M.
Then,

1) If M is odd, L(1, xm)} = Py, »

vq
v iml

2) If M is even and sgny(m) = =1, L(1,xm) = 29-711”' B

8} If M is even and sgno(m) = 1, L{1, xm) = —9{_71! R

Sl

Here, Ry, is the requlator of the ring O,.

Proof. Set K = k(y/m). From Proposition 17.7 and Proposition 14.9 we
derive

Cie(8) = Crl8) Loo(8, Xm ) L8, Xom) -

Multiply both sides of this equation by s — 1 and take the limit ag s — 1.
One finds

hi _ 1
g9~ (g —1)log(g) = ¢~ (g - 1)log{q)

Simplifying, we obtain

Loo{l, Xm) L1 xm)

hgg™? = Loo(l,Xm)L(la Xm) : (5)

Proposition 10.4 and the following remarks show that the genus, g, of K
is Mz;l- in case 1 and & — 1 in cases 2 and 3.

Proposition 14.6 shows that in case 1, co is ramified, in case 2, oo is inert,
and in case 3, oo splits. By Proposition 14.7, we find h,, = hg, hm = 2hy,
and R, Ry = hye in cases 1, 2, and 3, respectively.

Let’s consider case 1. We have g = =L and Loo(1, xm) = 1. Also, A, =
hye. Substituting this information into Equation 5, and noting \/I?z_l =q¥,
we find

N T

Vim]

This proves case 1.
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To deal with case 2 we note g = 2 — 1, Loo(1,xm) = {1 4+ ¢~ 1)1, and

hm = 2hg. Substituting into Equation 5 once again, we find

h

?m..\/‘l?_m - (1+ %)_] L(1,xm) .

Case 2 of the Proposition is immediate from this.

The last case, case 3, is done in exactly the same way. Here, g = % -1,
Lo (L, xm) = (L — ¢~} !, and hg = h,y Ry, Substituting into Equation 3
one more time yvields

-1
honBina _ (1 _ ;1}.) L1, xm) -

|

Case 3 follows easily, and this concludes the proof.

Let's now return to the general case. Let m be a non-square polynomial
and write m = mom? with mg square-free. We will need the relation be-
tween A,, and h,,,. While this is not a very difficult relationship to find and
prove, it does take a rather detailed investigation which is off to the side
of our main purpose. For this reason, we will merely state the result and
refer to Lang {1], Chapter 8, Theorem 7, where the corresponding result for
quadratic number fields is proven. The function field version, stated below,
is proved in exactly the same way. For a general result (for number fields)
along the same lines the reader may wish to look at Neukirch [1], Chapter
1, Theorem 12.12.

Proposition 17.9. Let m € A be a non-square and write m = mom? with
mg square-free. Then,

m —
. [O' Tty T @ =xma (PUPI™)
’ P|m

Implicit in this result is that the index [0}, : O] is finite. If co either
ramifies or is inert, both groups are equal to F* and the index is 1. If 0o
splits, then both groups have Z-rank 1 and one can show without much
difficulty that the index is the same as the quotient of regulators Ry, /R, .
We set R, = Rm, = 1 in the first two cases. Then the relationship given
by Proposition 17.9 can be rewritten

\"}R'_T h«?ﬁ TI (L xmo(PYPIY) . (©)
ol plm,

Theorem 17.8B. All the assertions of Theorem 17.84 remain valid if
m € A is a non-square polynomial.
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Proof. Suppose m = mpm? with mo square-free. From the definitions,
L(s,xm) = L(8,xmo) [] (1= xmo(PIPI7*) .
Plﬂ'lq
It follows that Equation 6 can be rewritten as
P B 13 Prng By 1

\/I—TIT| L1, xm) N v |mol L(1, Xmo) '

With the help of this equation, we see that Theorem 17.8B follows from
Theorem 17.8A.

By Theorem 17.8B, we see that the task of averaging class numbers
reduces to the task of averaging the numbers L(1, X,). It turns out that it
is no harder to average L{s, xm) for any value of s. This is what we shall
do.

To begin with, notice that

L(s,Xm)= 3_ XF:LTT)=Z( S )

7 monic d=0 = monic
deg{n)=d

Definition. For d € Z, d > 0, define

Salxm)= 3. xm(n)

7 monic
deg(n)=d

Using this definition, we can rewrite L(s, xm) a8 3 g Sa{xm )¢~ This
sum is actually finite as we see from the following Lemma.

Lemma 17.10. If m ¢ F* is not o square, Sy{xm) =0 ford > M =
deg(m).

Proof. By the reciprocity law, Theorem 3.5, we have
MALTRN o yiziud d
(n)(m) =(—1)"7 “*sgn(m)"* .

Call the quantity on the right of this equation ¢4. Then, we have xp(n) =
ca(n/m). Thus, if d > M,

Salxm)=ca Y. (=) =0,

7 moric
deg(n)=d

by the proof of Proposition 4.3.
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Corollary. If m & F* is not a square, then

M-1
L(S:Xm) - Z Sd(Xm)qﬁds )
d=0

a polynomial of degree of most M — 1 in ¢g~°.

Proof. This is immediate from the lemma and the previous remarks.

Our goal is to understand the sums 3 ,..cy- s L(8, Xm) or the same
sums restricted to monic polynomials m of degree M. By the corollary we
are reduced to considering the sums Edeg(m)=M Sulxm) where d < M.

We will need the following definition and the subsequent proposition.
Definition. Let M and NV be non-negative integers and n a monic poly-
nomial of degree N. Define @, (M) to be the number of monic polynomials
m of degree M such that ged(n, m) = 1. Define (N, M) to be the number
of pairs (n,m) of monic polynomials such that deg{n) = N, deg(m) = M,
and ged(n,m) = 1.

Note that
ST Ba(M)=3(N,M).
cl:gll?:zo)rig\’
Also, it is obvious that $(N, M} = &(M, N).

Proposition 17.11. ®(0, M) = ¢ and if M,N > 1, then

(N, M) = M+ (1 - 1) .
q
Proof. From the definition, €(0, M) is equal to the number of monic poly-
nomials of degree M which we know is ¢™ . This proves the first assertion.
To prove the second assertion, call two pairs (n, m) and (n', m’) equivalent if
ged(n, m) = ged(n’, m’). Breaking the set {(n,m) | deg(n) = N, deg(m) =
M} into equivalence classes and counting leads to the identity

min(N, M)
M= N BN -d,M—d).
d=0

Suppose M, N > 1. The proof now proceeds by induction on the number
M + N. The smallest value this number can have is 2, in which case the
formula yields g2 = ©(1,1) + ¢®(0,0), or #(1,1) =¢? — ¢ = ¢*(1 — g~ 1).

Now suppose the formula is correct for all pairs N/, M’ > 1 with N’ +
M < N4+ M. We may also suppose, by symmetry, that N < M. Then

N-1
MY = BN, M)+ > " (N —d, M —d) +¢7B(0,M - N) .

d=1
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For1 < d < N—1we have 3(N —d, M —d) = gM TN ~24(1..q~1) whereas
by the first part of the proof, (0, M — N) = ¢™~¥, Substituting into the
above formula and simplifying slightly,

qM+ @(N M M+.f\.r Z q_d{l— ) Q‘M =@(N,M)+QM+N_] .

The second assertion now follows immediately.

This elegant proof is due to David Hayes.
It is convenient to extend the definition of ®{N, M) to half integers by
defining @({N/2, M} =0 if N is odd.

Proposition 17.12. Suppose 1 <d < M — 1. Then
> Sulxm)=(@—-17" Y Salxm)=8(d/2,M).

m monic deg(m)=NM

deg{m)=M
Proof. To begin with assume all sums are over monics. Then

m
S st XY (e ¥ ¥ ().

deg{m)=M deg(m)=M deg(n)=d deg{n)=d deg(m)=M

[f n is not a square, (*/n) is a non-trivial character modulo n. Thus, in
this case, since M > degn = d,

deg(m)}=M

by the proof of Proposition 4.3,
Now, suppose that n = n} is a square. Then (m/n) = (m/n1)* =1
whenever ged(m,n1) = 1 and {(m/n,)® = 0 otherwise. lt follows that

3 (T)= ) (%)2=QRI(M).

i
deg(m)=M deg{m)=M

Thus
Do Salxm)= Y. B (M) =8(d/2,M) .

deg{m)=M deg(ny )=d/2

To do the general case, let o € F* and sum over all cern as m runs through
the monics of degree M. The above calculation shows the answer is again
equal to ${d/2, M). It follows that if we sum over all polynomials of degree
d the answer is (¢ — 1)®{d/2, M). This completes the proof.

We now have all the information we need to state our main results about
averages of L-functions. We begik with the easiest case, averaging over all
monics of fixed odd degree.
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Theorem 17.13. Let M be odd and positive. We have, for all s € B with
s#%,
CA(QS) 1 e M41
-M m) = _ 1 _ = 1-25 -7 2
MY Lexe) = SR T 2 ) @7 )

m monic
deg(m)=M

For s = %, we have

"R DR 2V Xm)—1+(1-1) (M_;_l)

™M monic

deg(m)=M

Proof. By the corollary to Lemma 17.10, L(s, xm} = L irs’ Sa(xmlg™*
From this, Proposition 17.11 and Proposition 17.12, we find

M-1

S L{s,%m) = Z( > Sulxm))a
™ monic d=0 m monic
deg(m}=M deg{m)=M

= g™+ ®(1, Mg + &(2, M)g™* + - + (M — 1)/2, M)g~ M~

= g™ (1 + (1 - é) [‘11_2” +(g" )+ 4 (ql"g""]%__l]) '

The result for s = % follows from this by substitution. For s # % We SuIm
the geometric series to derive

_ 1 _ 1_(q1 2sy ML
o Bt = (1-g) e S
m maonic
deg{m)=M
1 ql—2a 1 |9y M1
= 1—- == —|1-= —28y 5 )
1+ ( q) 1 — q1_23 ( q) (q } CA(ZS)

We have used the fact that {4(s) = (1 —g'=%)~%, a fact we will use again
almost immediately.

A close look at the last line shows that it only remains to identify the
sum of the first two terms with a quotient of zeta values. This follows from
the calculation

- ( 1) q1—2s q1—23 _ q—2s B 1— q—2s _ CA(zS)

1—- — =1 = = .
1 _ql —28 + 1-— q1—23 1— ql--2s cA(ZS + 1)
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Corollary 1. If R(s) > 1, then

_Gal2s)

D D Cal2s+ 1)

e monic
deg(m}=M
as M — oo through odd values.

Proof. This follows immediately from the theorem together with the ob-
servation that if R(s) > 1 then |¢'~2¢| < 1.

Corollary 2. If M is odd and positive, then

-M _CA{Q) M1 -1
S e

m monic
deg(m)=M

Proof. We begin by substituting s = 1 into the identity given in the
theorem. We find

iy _a@ (1 A2 m
q m%[ﬁc L(]-:Xm)_ CA('?’) (1 Q‘) (2) () —q .
deg(m)=M

The last equality follows from ¢4(2) = (1 —¢q~ 1)~ 1.
By Theorem 17.8A and Theorem 17.8B, we see that L(1, xm) = Am -—\/3; =

hmq‘ﬁf_l. Substituting this information into the last equation vields the
result.

We remark that in Theorem 17.13 and the corollaries we could have
averaged over all polynomials of odd degree M instead of the monics of that
degree and the result would be the same. This is implied by Proposition
17.12. We leave the details to the reader.

We are left with consideration of the two cases where deg(m) = M s
even and the leading coefficient of m is either a square in F* or a non-
square. These cases are complicated by the possibility of m being itself a
square or a constant times a square. In these cases, k(y/m) is either equal
to k or is a constant field extension. We wish to exclude both possibilities.
This can be done without much difficulty, but the calculations are more
involved. We will be content with stating the results in these cases and
referring the reader to Hoffstein-Rosen [1], Section 1, for the proofs.

Theorem 17.14. Let M be even and positive. The following sums are over
all non-square monic polynomials of degree M.

(1) Suppose s # % or 1. Then

MY o) = il — (12 1) @ ¥ Gatos
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(o)

(2) For s =1 we have
2) M 1
~MNT (1, - $al ~q-7(2+(1——) M—l) .
Corollary 1. If Re(s) > 1, then as M — oo though even integers,

Cal2s)
Ca(2s+1)

Corollary 2. With the hypotheses of the theorem, we have

M bR = (g = 1) (g—j%q%“ - (2+ (1 - %) (M — 1))) :

Nothing mysterious happens at s = 3. We leave the evaluation of these

averages at 5 = % to the exercises.

g™ L(s, xXm)

We now state the result in the remaining case.

Theorem 17.15. Let M be positive and even, and let v € F* be a non-
square constant. The following sum is over all non-square monic polyno-
mials of degree M. For s # % we have

q_M ZL(S, X‘Tm) =

_Sal2a) H( _1) 120 8 0g) o (1+q-*’ _(]_1) (q“)M)
Ca(2s+1) Ty (@) Cal2e) =g 1+g'—* g/ 1+gt=c) "~
Corollary 1. If R(s) > 1, then as M — co through even integers,

Ca4(2s)
Ca(2s+1) .

Corollary 2. With the hypotheses of the theorem, we have

o Shmsorir (8 1-)

There is a question that could be asked about all the occurrences of
expressions involving the zeta function, {4(s), which occur in these last
few theorems. After all, all these expressions are simple rational functions
of g~* that can be written down explicitly. We have maintained the zeta
function notation for two reasons. First, it makes the analogy with average
value results in the number field case more striking. Secondly, consider the
following research project. Fix a global function feld k other than F(T) as

g™ " L(s,Xym) =
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base field and fix a ring of S-integers A in k. Investigate average value of
class numbers of the integral closure of A in quadratic extensions of k. This
would all have to be formulated more exactly, but after making everything
precise it is fairly clear that special values of (4(s) will appear in the answer.
In this general situation, the zeta function ¢4 (s) is no longer as simpie as in
the rational function field case, nevertheless it will play a similar structural
role. Thus, it seems reasonable to phrase the more elementary results in
the way we have done it.

1

We want to conclude this chapter by mentioning a number of refinetments
and generalizations of the above results on class numbers.

The first refinement is to consider only polynomials m that are square-
free. In this case, O, is the integral closure of A = F[T] in K = k{3/m).
Thus the class numbers h,, are similar to the class numbers associated
to quadratic number fields. In the language of binary quadratic forms,
we would be restricting consideration to forms with fundamental discrimi-
nants. Averaging in this case is surprisingly difficult. In Hoffstein-Rosen [1],
the task is accomplished with the help of functions defined on the meta-
plectic two-fold cover of GLL(2, k), where ko is the completion of & at the
prime at infinity.

Definition. For s € C, R(s) > 3, define

o(s) =TJ(1 =PI = |P|=C=+0) 4| p=ri2])
P

It is easy to see the product converges uniformly and absolutely in the
region under consideration.

For simplicity we state the next theorem for the region R(s) > 1. The
full result concerns the region R(s) > .

Theorem 17.16. Let € > 0 be given and assume s € C with R(s) > 1.

(1) If M =2n -1 is odd, then
(¢=1)H g™ —g" 1)1 " Lis, xm) = Ca(2)Ca(28)e(s)+0(g ™),
where the sum is over all square-free m such that deg{m) = M.

(2) If M = 2n is even, then

27 (g—1)"HgM =g TS Lis, xm) = Ca (24 (28)e(s) +O0(g )

where the sum is over all square-free m such that deg(m) = M
and sgny(m) = 1, or over all square-free m with deg(m) = M and
sghy{m) = —1.
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The problem of working out the generalization of these results to the
case of arbitrary global function fields as base field has been solved by B.
Fisher and S. Friedberg. They use a new technique of “double Dirichlet
series.” Their paper should appear soon.

Motivated by questions about rank 2 Drinfeld modules on A = F[T] with
complex multiplication by orders in quadratic extensions of k& = F{T"), D.
Hayes has formulated average value results about degrees of “minimal ide-
als” and j-invariants which refine Theorem 17.13. Results and conjectures
in the case of all discriminants have been published in Hayes [7]. Using The-
orem 17.16, he and his former student, 7. Chen, have also treated the case
of averaging over fundamental discriminants. This has not yet appeared.

Finally, we point out that one can move beyond the consideration of
quadratic extensions. Let { be a prime dividing ¢ — 1. Then, F* contains a
primitive [-th root of unity. It follows that every cyclic extension of degree
l of k = F{T) is obtained by adjoining an I-th root of a polynomial in
A. One can develop a theory of orders in such an extension and try to
build a theory of average values of class numbers similar to what we have
seen in the case of quadratic extensions. This was done in Rosen [3]. Even
in the case where all discriminants are under consideration, the averaging
process becomes more difficult. In this papet the case { = 3 is treated in
detail. Later, in her Brown University Ph.D. thesis, G. Menochi was able
to handle the case { = 5. The complication increases at each step. To get
a completely general result looks out of reach without new methods. At
this time, no one has attempted the task of averaging class numbers over
fundamental discriminants when [ > 2.

Exercises
1. Suppose [ 'D} —~» € and that Ave(f) exists in the sense defined at
the beginning of this Chapter. Show that

T Ede D<N f(D)
Ave(_f) = Nl]_rgq 'Z:ieg—DSNl .

2. Let &' = > a{P)P be an effective divisor of K. Let m > 0 be a
positive integer We say that D is m-th power free if for each P,
a(P) # 0 implies m { a(P). Let f,, be the characteristic function of
the m-th power free divisors. Show Ave(f,,) = {x(m)~.

3. Let m > 0 be a positive integer and D an effective divisor. Define

om{D)= S NO™.
0<C<D

Find an asymptotic formula for S,.(N) = 32,4, p_n (D)
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. Let D =3 a(P)P be an effective divisor of K. Define p(D} =1 if D
is the zero divisor, u(D) = (~1)* if I is square-free and exactly ¢ of
the coefficients a(P) are not zero, and p{D) = 0 otherwise. For every
fixed ¢ > 0, show

3> WD) =0(glEtIy .
deg D=N

. Let I} be an effective divisor of K. Define dp,,(£}) to be the number
of m + 1-tuples of effective divisors (Cy, Cy, ..., Cnp, Cpma1) such that
Sot ¢y = D. Note that dy(D) = d(D) is equal to the number of
divisors of D. Show that (4, (5) = {x(s)™"! and use Theorem 17.4
to derive an asymptotic formula for A (N) = 3" 4., pon dm(D).

. Prove Theorems 17.14 and 17.15.

. In the situations of Theorem 17.14 and 17.15 find a formula for

™ N L(1/2,xm) -

e monic

deg m=M






Appendix

A Proof of the Function Field
Riemann Hypothesis

In this Appendix we will give a detailed exposition of E. Bombieri’s proof
of the Riemann Hypothesis for function fields over finite fields or, in other
language, for curves over finite fields. For the statement, see Theorem 5.10
of Chapter & or Theorem A7 below,

For hyperelliptic curves this result was fArst conjectured, in the 1920s,
by E. Artin. In the 1930s, H. Hasse made the first substantial contribution
by proving it in the case of function fields of genus one (the case of elliptic
curves). In the late 1940s, A. Weil found a way to prove the general resuit.
In fact, he gave two proofs; one involved intersection theory on algebraic
surfaces, the second involved l-adic representations and abelian varieties.
Both proofs used sophisticated algebraic geometry, ln fact Weil had to
redo the foundations of algebraic geometry to provide the necessary back-
ground for his proofs. It was a surprise then when S.A. Stepanov, in the late
1960s, found a proof, albeit in special cases, which involved nothing deeper
than the Riemann-Roch theorem. Soon thereafter, W, Schmidt was able
ot use Stepanov’s ideas to prove the general result. Finally, E. Bombieri
found a substantial simplification of the proof of Stepanov and Schmidt,
see Bombieri [1], both for his original treatment and for references to this
history.

Although the proof we are about to give is extremely ingenious and
“elementary” it has to be admitted that Weil's oviginal method, espe-
cially the approach involving algebraic surfaces, is much more natural.
However, this intersection-theoretic proof requires extensive background
whereas Bombieri’s proof uses nothing more than material developed in
this book.
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It is possible to give Bombieri's proof purely in the context of function
fields without mentioning algebraic curves. The resulting treatment is log-
ically coherent, but feels very artificial. As a compromise, we will assume
that the reader is familiar with the beginnings of the theory of algebraic
curves as is presented, for example, in Fulton [1], and sketch the connection
between the algebraic-geometric language and the language we have used
in this book. Having done that, we will switch back and forth as convenient.

Let C be a complete, non-singular algebraic curve defined over a finite
field F. We assume that C' is embedded in projective N-space, PN (F), where
F denotes a fixed algebraic closure of F. Let K = F(C) be the function
field of € over F. Recall that a typical element of f € K is represented
by a quotient F/G where F and G are homogeneous polynomials of the
same degree in the ring F[Xy, X1,..., X x|, and where G does not vanish
identically on C. In this circumstance, G only vanishes at finitely many
points of €, and f defines an actual function on the complement of this set
to . K is an algebraic function field in one variable over F and one can
show I is algebraically closed in K. Now, let K = F(C). Then K = KT =
U, KFn =, Kn- B

There is a one to one correspondence between points on C'(F) and primes
in K. If a = [a, a1, .., an] € C(F), let O, be the set of elements f € K
represented by F/G where G(«) # 0 (F and G are homogeneous polyno-
mials with coefficients in F). This is easily seen to be a ring. Let Py C Oq
be the set of f € O, such that f{a) = 0. Then, O, is a discrete valuation
ring and P, is its maximal ideal. The fact that O, is a dvr follows from
the assumption that every point on ', in particular ¢, is non-singular. One
can show that the map o — (O, P,) is one to one and onto map from
C(F) to the primes of the function feld K.

There is also a natural map from C(F) to the primes of K. If o € C(F),
let R, be the set of elements in f € K which are represented by F/G with
Gla) # ( where the coefficients of both F' and G are in F. Let P, be the
set of elements f € R, such that f(a) = 0. Then, R, is advr and P, is
its maximal ideal. It is useful to remark that the residue class field, R, /F,
is generated over F by adjoining the ratios of the coordinates of &, We call
that field F(a) and note that degy P, = [Fla) : FJ.

The map o — (Ra, Py) from C(F) to the set of primes of K is onto,

but it is not one to one. In fact, we have P, = P, if and only if oox = o
for some ¢ € Gal(FF/F). An automorphism ¢ operates on a point o =
[cg, cx1, ..., an] by oo = [oag, 00, .. ,0an]. It follows from this that the

number of points in C(F) which correspond to a given prime P of K is
equal to degy P. An important special case of this remark is that there is
a one to one correspondence between rational points on C, i.e. C(F), and
primes P of K of degree 1. The number of primes of degree 1 of K was
denoted by Ny(K) in Chapter 8. See Proposition 8.18 and also Proposition
5.12.

We define a rational map ¢ : PY(F) — PN (F) by



Appendix 331

qb([:ﬂo,ml, s ’IN]) = [2’,‘3193'?,...,3:?‘;] i

This is called the Frobenius morphism. It has the important property that
an element is fixed under ¢ if and only if it is in P¥(F). More generally,
an element is fixed under ¢ if and only if it is in P¥(F,). Since C is
defined over F, C{[F) is defined by the vanishing of a set of homogeneous
polynomials with coefficients in F. It follows easily that ¢ maps C(F) to
itself and that the fixed points of this action, C?, is equal to C(F}. More
generally, C¢" = C(F,,).

As we saw in Chapter 8, the Galois group of K /K is isomorphic to the
Galois group of F/F. The latter group is generated (topologically) by =,
the automorphism that takes v € F to ¥?. We use the same letter 7 to
denote the corresponding automorphism of K. We think of 7 as acting on
the coefficients of functions. Note that ¢ and 7 have the same action on
points of C(F). Using this and the definitions, we find that for o € C(F) we
have 7P, = Py(a). Thus, a prime P of K corresponds to a rational point
if and only if #P = P.

Our first goal is to establisk, under some mild restrictions, an upper
bound for N;(K). We will show

Theorem Al. Let g be the genus of C and suppose {g + 1)* < g and that
g is an even power of the characleristic p. Then,

Ni(K)<qg+14+(2¢+1)/7.

Before getting to the proof of Theorem Al, we will need a number of
preliminary results.

We may assume that C{F) is non-empty since otherwise the Theorem
is vacuous. Let o be a rational point, i.e. an element of C(F), and P,
the corresponding prime of K. For each positive integer m define R, =
LimP,y = {f € K| (f) + mP, > 0}. Ry, is a finite dimensional vector
space over F and we know a lot about this dimension via the Riemann-Roch
theorem, Theorem 5.4.

Proposition A2.
1) dimRy4, <dimR,, +1.
2y dimR,<m+4 1
3) dimR,, > m — g+ 1 with equality if m > 2¢g — 2.
4) Rno¢ C Bmg
5) f € R, implies fo ¢ is a g-th power and (fo @) = gr~'(f} .



332 Appendix

6) dimRE, =dim R, for e > 0.
7y dim Rm o ¢ = dim Rpy.

Proof. To prove 1, note that if f and g both have a pole of order m + 1
at P, then f/g has order 0 at P, and thus is congruent to a constant vy
modulo P,. It follows that f —vg = g(f/g —-v) has a pole of order at most
m, ie f—vg€ Rn.

Since [y consists precisely of the constants, it has dimension 1. Assertion
2 now follows from 1 and induction.

Assertion 3 is simply Riemann's Theorem, Theorem 6.6, together with
deggp Po=1.

We can deal with 4 and 5 simultaneously. Let f be represented by the
quotient of two homogeneous polynomials with coefficients in F. Set A =
x~! € Gal(F/F). We find

_ F($(a)) _ AF(a)
C(#e) ~ 3G(w)

Thus, fo ¢ = Af7? and consequently (f ¢ ¢} = gA(f) which proves 5. Also,
if f € Rum, then so is Af since ordp, (Af) = ordyp,(f) = ordp, (f). Thus,
fo¢=Af¢e Ry, which proves 4.

The map f - f* is a quasi-linear isomorphism of R, with RE, which
proves 6.

Finally, to show 7 it is enough to check that f — f o ¢ is one to one. If
fop=gog, then Af? = Ag? so Af = Ag which implies f = g (apply = to
bath sides).

If A is a subspace of R,, and B is a subspace of R,, we denote by AB

the subspace of Rpy4n generated by all the products fg where f € A and
g € B.

(f o p}a)

: = Af(a)? .

Proposition A3. If Ip® < g, then the natural homomorphism from
R ®§ Ry o ¢ to R} (R o ¢) is an isomorphism.

Proof. By Proposition A2, part 1, we see that R, has a basis {f1, fa, ...,
fi} such that ordf; < ordfisq for i = 1,2,...,¢ — 1. Any element of the
tensor product can be written in the form

t
Y ' ®fiod,
i=1

where the g; are elements of R;. If such an element is in the kernel of the
natural homomorphism, we would have a relation of the form

Y o (fiod)=0.
i=1
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We will show this can’t happen unless ¢; =0 foralli=1,2,...,f -1 and
that will establish the Proposition.
Suppoese some g; # 0 and let 7 be the smallest such index. Then,

G (frog)=— 3 g (fiod).
t=r-+1

Taking the order of both sides at P, and using Proposition A2, part 5, we
see

pord gr +gord f, = min (pord g; + g ord fi) 2 ~lp® + g ord fryy .
1T
Thus,
pford g, = —Ip° +g(ord frp1 —ord fr) 2 ¢ —1p° >0

It follows that g, has a zero at P,. Since g, € Ry it has no poles away
from P, and a zero at P,. It follows that g, = 0. This contradicts owr
assumption, and o, completes the proaof.

Caorollary. If Ip® < q, then dim Rfe (Rp 0 ¢) = (dim By){dim Ry, ).

Proof. This follows directly from the Proposition and from Proposition
A2, part (7).

We have now completed the preliminaries.

Proof of Theorem A1l. The idea is to produce a function with a high
order zerc at each rational point and a small number of poles. We will see
how this works as we go along. We continue to assume that lp® < ¢.

We begin by defining a F-linear homomorphism & from RY (R, ¢ ¢) to
szRm. Using the notation established in the proof of Proposition A3, this
is given by

t £
SO g o) =D ol ki
i=1 i=1

That § is well defined follows immediately from Proposition A3. The dimen-
ston of the domain of 4 is greater than {{ — g+ 1)(m — g+ 1} by Proposition
A2, parts 6 and 7 and Riemann’s theorem, part 3. Assume that {,m > g.
Then, the image of § is contained in Z{(I{p® + m)P,) which has dimension
Ip® 4+ m — g + 1, again using Proposition A2, part 3. Thus,

dimker 6 > (l—g+){m—g+ 1) - (Ip*+m—g+1).

If the quantity on the right is positive, the kernel is not empty. Assume
this and let f = 3", ¢F (fi o ¢) be a non-zero element of kerd. If 0 # a
C(F), we calculate

Flo) = Zgi(a)**“ Fi(p(a) = ):gi (@) fila) =0 .



334 Appendix

So, f must vanish at every point of C(F) except o. Moreover, by Propo-
sition A2, part 5, and the fact that p® < ¢ by hypothesis, we see from the
expression for f as a sum that f is a p®-th power. Thus,

PP(N(K) — 1) < degg(flo = degg(floo < 1p° +mg .

We have used the fact that R,, o ¢ C R4 by Proposition A2, part 4. This
inequality yields
Ni(K)<1+41l+mgp™*.

Our proof of this inequality is subject to the conditions

a) Ipf<q.
(by iLmzyg.
(e) (—g+1l)im—-g+1)>lpf+m—g+1.

We proceed to make suitable choices for I, m, and e so that these three
conditions are fulfilled and makes the above inequality into the one asserted
in the statement of the Theorem.

We are assuming that g is an even power of p, so set ¢ = p?® and choose
e = b Set m = p® + 2g. We now want to choose { so that condition {c)
holds. Simplifying that inequality slightly, we need

(l—g)(m+1—-g) >’

or
(-9 +g+1)>1p°
or g »
l>——9p"+¢g.
g+1p g

Let’s choose [ = {gp®/(g +1)] + g+ 1 (jr] denotes the greatest integer less
than or equal to r). With these choices for [ and m, conditions b and c are
fulfilled.

Assuming (g+1)* < ¢ we will now show that condition a is also fulfilled.
Note that (g 4 1}* < g implies (g 4+ 1)2 < p® which yields gp® + (g +1)% <
(g + 1)p°. Thus, .

b b
giP et (1)
This inequality implies I < p®, so that {p® < p®® = ¢ which is condition c.

Let’s substitute our choices for [, m, and e into the inequality N1(K) <

{ + 1+ mgp~¢. Since, by Equation 1 we have { < p® we find

Ni(K) <p®+1+(pP 420" =g +1+ (20 +1)y/7 .

This completes the proof of Theorem Al.
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Having produced a good upper bound for N1(K'), we now take up the task
of producing a suitable lower bound. The met,hod will involve consideration
of Galois extensions of K.

Let L/K denote a finite, geometric, Galois extension of K with Galois
group G. Let I = FL and K = FK. Since we have assumed L/K is
geometric, it follows that Gal(L/K) = Gal(L/K) = G. We will simply
identify G with the Galois group of L/K. The Frobenius element m of
L/L maps to the Frobenius element of X /K by restriction. We will denote
both of these antomorphisms by 7. Note that as automorphisms of L/K,
7 commutes with G (use the fact that L is the composite of L and K).

Let T denote the set of primes in K which lie above rational primes
in K, lLe. those primes of K whose degree is equal to 1. As we have seen
|T'| = N1{X). Also, we showed earlier that the primes in T are characterized
by the condition 7P = P. Let T denote the primes in L lying above those
inT. If' P € T then the set of primes above P are acted upon transitively by
. Also, m maps this set into itself since 7P = P. Thus, if P € T there is a
o € G such that 7 = o, Moreover, the element o is uniquely determined
if [/P is unramified. Let 72 C T be the set of unramified primes in T. We
have defined a map

) T > G.

Definition. With the above notations, let T(cr) denote the set of unrami-
fied primes P in T such that () = o. Let N(L/K, o) denote the number
of elements in /(o).

A few observations will be useful. For each prime in T which is unram-
ified in L, there are |G| primes above it in 7. This follows from from the
fundamental relation efg = |G| (see Proposition 9.3} since f = 1 because
we a working over an algebraically closed constant field F. Thus,

IT| = |GIN:1(K) + O(1) .

The error term depends on the number of ramified primes in L/K but
is independent of q. We will later vary the constant field, i.e consider the
flelds K,, = F, K, and so the O(1) term will not matter much.

Since 7' = Uyeqr (o), disjoint union, we find

Y N(o, L/K) = |GIN:(K) + 0(1) . (2)
oe@

We will need this relation shortly.

For those readers who prefer more geometric language, L corresponds
to a curve C defined over I and covering C, i.e. there is an epimorphism
¥ : C — €. The set T" corresponds to the set of rational points C(F) on
C and the set T' corresponds to 1~ (C(IF). The fibers above the points in
C(IF) are mapped into themselves by both ¢ {or 7) and G, etc. The whole
argument can be given in either language.
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Proposition A4. With the above notations and definitions lel § be the
genus of L (which is the same as that of L) and let ¢ be an element of G.
Suppose (§ + 1)* < ¢ and that q is an even power of p. Then,

Ni(o,L/K) <q+1+ (25 +1)\/7 .

Proof. The proof is almost identical with the proof of Theorem Al. One
supposes there is at least on rational prime 9, in L and defines the vector
spaces I, = L(n,). In the proof of that Theorem we begin with defining
a homomorphism 4 from R} “(Ryn 0 @) — ng R, We modify that to get a

map 0§, from R?E(Rm ody = Rfﬂ (R, 0 ) as follows

t

a(th (fiod)) =Y o (fioo).

Tl

Just as before, one invokes Proposition A3 to insure this map is well defined.
The rest of the proof goes exactly as before with the one exception. After
assuming ! > § and m > § one has to show that the image of §, has
dimension less than or equal to Ip® +m — g + 1.

If f € Ry, then foo € Limo~'P,). It follows that the image of &, is
contained in L({p*P, + mo~1P,} which has dimension Ip® +m —g+1 by
Riemann-Roch.

We leave it to the reader to check the remaining details.

Proposition AB. With the same notations as above, for oll o € G,

g+1+ (NM(K) — ¢ - 1)IG| + O(/) < Mi(o, L/K) .

Proof. By Proposition Ad, we have for each ¢ € G,
0<ig+1+4(25+1)/g— Ni(o,L/K)] .
Sum over o and one finds

0< > [ ]S (e+1+(25+1)y/@)|C] - |GIN(K) +O(1) .
oG

We have used Equation 2. Since each term in brackets is positive, we deduce
¢+1+(29+1)v/g—Ni(o, L/K) < (q+1+(2§+1)y/D|C|—|GINL(K)+0(1) .
From this inequality, the Proposition follows immediately.

We are aiming to prove that Ny(K) = ¢ + O(,/g). Theorem Al assures
us that with mild restrictions N;(K) < g+ O(/q) so we must derive the



Appendix 337

inequality in the other direction. Propesition A5 allows us to do this quickly
in a special case. Suppose we can find an element = € K such that K/IF(x)
is a finite, geometric, Galois extension. Lét's apply Proposition A5 to the
pair of field K and F(z) instead of L and K. Since the number of rational
primes in F(z) is exactly ¢ + 1, we find ¢ + O(,/9) < Ni(o, K/F(z)) for
each ¢ € Gal(K /F(z). Summing over ¢ and using Equation 2 again we find
(K : F(x)]g + O(/q) < K : F(z)}]N1(K). Cancel {K : F(z)] and we have
our proof that N,(K) = ¢+ O(./g).

In general, we cannot find an element x € K with all these nice proper-
ties. However, since IF is a perfect field, one can find an element x € K such
that K /IF(x) is separable (see Lang [4], Chapter VIII, Proposition 4.1). Let
L be the Galois closure of K/F(x), i.e., the smallest algebraic extension
of K that is Galois over F(z). It can happen that the constant field, E,
of L is larger than F. If so replace F(z) by E(z) and K by EK. Then, all
three extensions are geometric and L/E(x) is Galois. So, at the expense of
making a small constant field extension, we can assume F is the constant
field of L to begin with. We shall see that small constant field extensions
will not affect the overall proof.

Theorem AS8. Let K/F be a function field of genus g over a finite field
F with g elements. Suppose q i3 an even power of p. Suppose further that
there is an element © € K such that the Galois closure, L, of K/F(z)
is o geometric extension of F(z). Finally, assume (g + 1)* < g. Then,
Ni(K) =g+ O0(/g).

Proof, By Theorem Al, Ni(K) < ¢+ O(,/g), so it remains to prove the
opposite inequality.

Let G = Gal(L/F(z)) and H = Gal(L/K). Let ¢ € G. Applying Propo-
sition A5 to the extension L/F(z) we find

4+ O0(/q) < Nilo, L/F(x)) - ﬁﬁ:@
Sum these inequalities over all elements in 7 € H. We obtain Luminy *

|Hlg+0(vg) < Y Ni(r, L/F(z)) , \qu@

TeH

We will show in a moment that if 7 € H, Ny(r, L/F(z)) = Ni(r,L/K).
Assuming this is correct, the sum in the last inequality is

> Ni(r L/F(z) = Y Ni(r,L/K) = [H|Ny(K) +O(1)

reH TEH

using Equation 2 one more time.

Putting the last two relations together, we have ¢ + O(,/q) < N (X)
which is the result we are looking for.

It remains to prove Ny(7, L/F(z)) = Ny(r,L/K)ifr € H Let Pbea
prime of L lying over a rational prime P of F(z). f 7P = v for 7 € H,
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we have to show that P lies over a rational prime of K. Let p lie below P
in K. Then, ™} = 7P implies 7p = 7p = p. However, we have seen that
the relation 7p = p characterizes the rational primes of XK. This completes
the proof.

Qur final task is to show that Theorem A6 is equivalent to the Riemann
Hypothesis for function fields over finite fields. This is relatively simple.

Theorem A.7 (the Riemann Hypothesis for Function Fields) Let K/F be
a function field with finite constant field, ¥, having g elements. Let {x(s)
be the zeta function of K. All the zeros of (x (s) lie on the line R(s) = 3.

Proof. If we make the substitution « = ¢~* we have

6l = 20 = (i
where 2
Lg{u) = H(l — ) .
i=1

Here, g denotes the genus of K. As we have pointed out in many places, the
assertion that all the zeros of (k(s) lie on the line R(s) = 1 is equivalent
to the assertion that all the inverse roots, m;, of Ly (u) have absolute value
V4

We first remark that to prove the Theorem, it suffices to prove it for any
constant field extension, K,, = F,,K, of K. This follows from Proposition

8.16 which asserts that

2g

Ly, (u) = H(l — wra) .

i=1

Thus, if the Riemann Hypothesis is true for K,, we would have |7?| = ¢7 for
alli=1,...,2g which implies, obviously, that |m;| = gt foralli=1,...,2¢.
This is the Riemann Hypothesis for K.

Let's choose n so large that (g + 1)* < ¢™. If ¢™ is not an even power
of p, replace n by 2n. Next, as we have seen, we may, by taking a finite
extension Fp, of Fa,, assume there is an z € K, such that K,,/F,,(x)
is separable and that the Galois closure L of K, /F.,(z) is a geometric
extension of Fr,(z}. Thus, we have shown that we can find an m > 1 so
that all the conditions of Theorem A6 are fulfilled for K. By the last
paragraph, to prove the Riemann Hypothesis for K we may as well assume
all these properties hold already for K/F. If these conditions hold for K/F,
they hold in any constant field extension. Theorem A6 then implies that
Ni(Kn) = ¢" + O(q%) for all n > 1,

We recall some facts proved in the text, namely at the end of Chapters
5 and 8. First, N(K,) = Np(K) where N, (K) is defined by N,(K) =




Appendix 339

2_djn daa{K). The number ay(K) denotes the number of prime divisors of
H of K-degree equal to d. Moreover,

Zg(u) = exp (Z E°'?'1’(1—1r{)-u“) .
n=1

Taking the logarithmic derivative of Zg({u) and using the above identity
yields

w2 _ iNl(Kn)u” .

Now write Zg{u) = H?ﬁl (1—mu)/(1—u){1—qu) and calculate w2y (u)/
Zy(u) using this formula, We find

Z;{(U) - T n m 3 t
PO D DICAR e ekt Rl L

ri=l
Combining these formulas produces the following identity.

29 oo

Z(M(K bm o = =30

i=l n=1

Since Ni( .n) =q" 4 O(q?) the sum on the left has radius of convergence
at least ¢~ 9. The radius of convergence of the sum on the rlght is exactly
the minimum over 7 of the quantities |z;|~!. Thus, |m| < g2 for all 1.
We know that ; — ¢/#; is a permutation of the set of inverse roots of
L (u) {see the remarks following Theorem 5.9 where this fact is shown to
equivalent to the functional equation for {x(s)). It follows that |m;| = q7
for1=1,2,...,2g. This is what we wanted to provel!l
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Artin, 127, 128
Dirichlet, 34
even, 291
Hecke, 140
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odd, 291
real, 261
Chinese remainder theorem, 3
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canonical, 49, 73
group, 48, 50, 242
number, 50
class number formulas, 295, 299,
301
analytic, 254, 291
Carlitz-Olsen, 288
Dirichlet, 284
Kummer, 285
conorm, 82
constant field, 46
constant field extension, 101 f
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209-213, 219, 220, 231
degree of, 46
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real function field, 213

reciprocity law, 25, 27
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Romanoff’s theorem, 157, 163,
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super-singular, 175
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Weil’s theorems
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thesis, 55, 338
function field L-series are en-
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Frobenius, 276
zeta function
of A=F[T], 11, 12
of k =TF(T), 52
of a function field, 51, 52
partial, 265, 266
Riemann, 12, 55
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